*** empty log message ***
[deliverable/binutils-gdb.git] / gdb / blockframe.c
1 /* Get info from stack frames;
2 convert between frames, blocks, functions and pc values.
3 Copyright 1986, 87, 88, 89, 91, 94, 95, 96, 97, 1998
4 Free Software Foundation, Inc.
5
6 This file is part of GDB.
7
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 2 of the License, or
11 (at your option) any later version.
12
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with this program; if not, write to the Free Software
20 Foundation, Inc., 59 Temple Place - Suite 330,
21 Boston, MA 02111-1307, USA. */
22
23 #include "defs.h"
24 #include "symtab.h"
25 #include "bfd.h"
26 #include "symfile.h"
27 #include "objfiles.h"
28 #include "frame.h"
29 #include "gdbcore.h"
30 #include "value.h" /* for read_register */
31 #include "target.h" /* for target_has_stack */
32 #include "inferior.h" /* for read_pc */
33 #include "annotate.h"
34
35 /* Prototypes for exported functions. */
36
37 void _initialize_blockframe (void);
38
39 /* A default FRAME_CHAIN_VALID, in the form that is suitable for most
40 targets. If FRAME_CHAIN_VALID returns zero it means that the given
41 frame is the outermost one and has no caller. */
42
43 int
44 file_frame_chain_valid (chain, thisframe)
45 CORE_ADDR chain;
46 struct frame_info *thisframe;
47 {
48 return ((chain) != 0
49 && !inside_entry_file (FRAME_SAVED_PC (thisframe)));
50 }
51
52 /* Use the alternate method of avoiding running up off the end of the
53 frame chain or following frames back into the startup code. See
54 the comments in objfiles.h. */
55
56 int
57 func_frame_chain_valid (chain, thisframe)
58 CORE_ADDR chain;
59 struct frame_info *thisframe;
60 {
61 return ((chain) != 0
62 && !inside_main_func ((thisframe)->pc)
63 && !inside_entry_func ((thisframe)->pc));
64 }
65
66 /* A very simple method of determining a valid frame */
67
68 int
69 nonnull_frame_chain_valid (chain, thisframe)
70 CORE_ADDR chain;
71 struct frame_info *thisframe;
72 {
73 return ((chain) != 0);
74 }
75
76 /* Is ADDR inside the startup file? Note that if your machine
77 has a way to detect the bottom of the stack, there is no need
78 to call this function from FRAME_CHAIN_VALID; the reason for
79 doing so is that some machines have no way of detecting bottom
80 of stack.
81
82 A PC of zero is always considered to be the bottom of the stack. */
83
84 int
85 inside_entry_file (addr)
86 CORE_ADDR addr;
87 {
88 if (addr == 0)
89 return 1;
90 if (symfile_objfile == 0)
91 return 0;
92 if (CALL_DUMMY_LOCATION == AT_ENTRY_POINT)
93 {
94 /* Do not stop backtracing if the pc is in the call dummy
95 at the entry point. */
96 /* FIXME: Won't always work with zeros for the last two arguments */
97 if (PC_IN_CALL_DUMMY (addr, 0, 0))
98 return 0;
99 }
100 return (addr >= symfile_objfile->ei.entry_file_lowpc &&
101 addr < symfile_objfile->ei.entry_file_highpc);
102 }
103
104 /* Test a specified PC value to see if it is in the range of addresses
105 that correspond to the main() function. See comments above for why
106 we might want to do this.
107
108 Typically called from FRAME_CHAIN_VALID.
109
110 A PC of zero is always considered to be the bottom of the stack. */
111
112 int
113 inside_main_func (pc)
114 CORE_ADDR pc;
115 {
116 if (pc == 0)
117 return 1;
118 if (symfile_objfile == 0)
119 return 0;
120
121 /* If the addr range is not set up at symbol reading time, set it up now.
122 This is for FRAME_CHAIN_VALID_ALTERNATE. I do this for coff, because
123 it is unable to set it up and symbol reading time. */
124
125 if (symfile_objfile->ei.main_func_lowpc == INVALID_ENTRY_LOWPC &&
126 symfile_objfile->ei.main_func_highpc == INVALID_ENTRY_HIGHPC)
127 {
128 struct symbol *mainsym;
129
130 mainsym = lookup_symbol ("main", NULL, VAR_NAMESPACE, NULL, NULL);
131 if (mainsym && SYMBOL_CLASS (mainsym) == LOC_BLOCK)
132 {
133 symfile_objfile->ei.main_func_lowpc =
134 BLOCK_START (SYMBOL_BLOCK_VALUE (mainsym));
135 symfile_objfile->ei.main_func_highpc =
136 BLOCK_END (SYMBOL_BLOCK_VALUE (mainsym));
137 }
138 }
139 return (symfile_objfile->ei.main_func_lowpc <= pc &&
140 symfile_objfile->ei.main_func_highpc > pc);
141 }
142
143 /* Test a specified PC value to see if it is in the range of addresses
144 that correspond to the process entry point function. See comments
145 in objfiles.h for why we might want to do this.
146
147 Typically called from FRAME_CHAIN_VALID.
148
149 A PC of zero is always considered to be the bottom of the stack. */
150
151 int
152 inside_entry_func (pc)
153 CORE_ADDR pc;
154 {
155 if (pc == 0)
156 return 1;
157 if (symfile_objfile == 0)
158 return 0;
159 if (CALL_DUMMY_LOCATION == AT_ENTRY_POINT)
160 {
161 /* Do not stop backtracing if the pc is in the call dummy
162 at the entry point. */
163 /* FIXME: Won't always work with zeros for the last two arguments */
164 if (PC_IN_CALL_DUMMY (pc, 0, 0))
165 return 0;
166 }
167 return (symfile_objfile->ei.entry_func_lowpc <= pc &&
168 symfile_objfile->ei.entry_func_highpc > pc);
169 }
170
171 /* Info about the innermost stack frame (contents of FP register) */
172
173 static struct frame_info *current_frame;
174
175 /* Cache for frame addresses already read by gdb. Valid only while
176 inferior is stopped. Control variables for the frame cache should
177 be local to this module. */
178
179 static struct obstack frame_cache_obstack;
180
181 void *
182 frame_obstack_alloc (size)
183 unsigned long size;
184 {
185 return obstack_alloc (&frame_cache_obstack, size);
186 }
187
188 void
189 frame_saved_regs_zalloc (fi)
190 struct frame_info *fi;
191 {
192 fi->saved_regs = (CORE_ADDR *)
193 frame_obstack_alloc (SIZEOF_FRAME_SAVED_REGS);
194 memset (fi->saved_regs, 0, SIZEOF_FRAME_SAVED_REGS);
195 }
196
197
198 /* Return the innermost (currently executing) stack frame. */
199
200 struct frame_info *
201 get_current_frame ()
202 {
203 if (current_frame == NULL)
204 {
205 if (target_has_stack)
206 current_frame = create_new_frame (read_fp (), read_pc ());
207 else
208 error ("No stack.");
209 }
210 return current_frame;
211 }
212
213 void
214 set_current_frame (frame)
215 struct frame_info *frame;
216 {
217 current_frame = frame;
218 }
219
220 /* Create an arbitrary (i.e. address specified by user) or innermost frame.
221 Always returns a non-NULL value. */
222
223 struct frame_info *
224 create_new_frame (addr, pc)
225 CORE_ADDR addr;
226 CORE_ADDR pc;
227 {
228 struct frame_info *fi;
229 char *name;
230
231 fi = (struct frame_info *)
232 obstack_alloc (&frame_cache_obstack,
233 sizeof (struct frame_info));
234
235 /* Arbitrary frame */
236 fi->saved_regs = NULL;
237 fi->next = NULL;
238 fi->prev = NULL;
239 fi->frame = addr;
240 fi->pc = pc;
241 find_pc_partial_function (pc, &name, (CORE_ADDR *) NULL, (CORE_ADDR *) NULL);
242 fi->signal_handler_caller = IN_SIGTRAMP (fi->pc, name);
243
244 #ifdef INIT_EXTRA_FRAME_INFO
245 INIT_EXTRA_FRAME_INFO (0, fi);
246 #endif
247
248 return fi;
249 }
250
251 /* Return the frame that FRAME calls (NULL if FRAME is the innermost
252 frame). */
253
254 struct frame_info *
255 get_next_frame (frame)
256 struct frame_info *frame;
257 {
258 return frame->next;
259 }
260
261 /* Flush the entire frame cache. */
262
263 void
264 flush_cached_frames ()
265 {
266 /* Since we can't really be sure what the first object allocated was */
267 obstack_free (&frame_cache_obstack, 0);
268 obstack_init (&frame_cache_obstack);
269
270 current_frame = NULL; /* Invalidate cache */
271 select_frame (NULL, -1);
272 annotate_frames_invalid ();
273 }
274
275 /* Flush the frame cache, and start a new one if necessary. */
276
277 void
278 reinit_frame_cache ()
279 {
280 flush_cached_frames ();
281
282 /* FIXME: The inferior_pid test is wrong if there is a corefile. */
283 if (inferior_pid != 0)
284 {
285 select_frame (get_current_frame (), 0);
286 }
287 }
288
289 /* Return nonzero if the function for this frame lacks a prologue. Many
290 machines can define FRAMELESS_FUNCTION_INVOCATION to just call this
291 function. */
292
293 int
294 frameless_look_for_prologue (frame)
295 struct frame_info *frame;
296 {
297 CORE_ADDR func_start, after_prologue;
298
299 func_start = get_pc_function_start (frame->pc);
300 if (func_start)
301 {
302 func_start += FUNCTION_START_OFFSET;
303 /* This is faster, since only care whether there *is* a
304 prologue, not how long it is. */
305 return PROLOGUE_FRAMELESS_P (func_start);
306 }
307 else if (frame->pc == 0)
308 /* A frame with a zero PC is usually created by dereferencing a
309 NULL function pointer, normally causing an immediate core dump
310 of the inferior. Mark function as frameless, as the inferior
311 has no chance of setting up a stack frame. */
312 return 1;
313 else
314 /* If we can't find the start of the function, we don't really
315 know whether the function is frameless, but we should be able
316 to get a reasonable (i.e. best we can do under the
317 circumstances) backtrace by saying that it isn't. */
318 return 0;
319 }
320
321 /* Default a few macros that people seldom redefine. */
322
323 #if !defined (INIT_FRAME_PC)
324 #define INIT_FRAME_PC(fromleaf, prev) \
325 prev->pc = (fromleaf ? SAVED_PC_AFTER_CALL (prev->next) : \
326 prev->next ? FRAME_SAVED_PC (prev->next) : read_pc ());
327 #endif
328
329 #ifndef FRAME_CHAIN_COMBINE
330 #define FRAME_CHAIN_COMBINE(chain, thisframe) (chain)
331 #endif
332
333 /* Return a structure containing various interesting information
334 about the frame that called NEXT_FRAME. Returns NULL
335 if there is no such frame. */
336
337 struct frame_info *
338 get_prev_frame (next_frame)
339 struct frame_info *next_frame;
340 {
341 CORE_ADDR address = 0;
342 struct frame_info *prev;
343 int fromleaf = 0;
344 char *name;
345
346 /* If the requested entry is in the cache, return it.
347 Otherwise, figure out what the address should be for the entry
348 we're about to add to the cache. */
349
350 if (!next_frame)
351 {
352 #if 0
353 /* This screws value_of_variable, which just wants a nice clean
354 NULL return from block_innermost_frame if there are no frames.
355 I don't think I've ever seen this message happen otherwise.
356 And returning NULL here is a perfectly legitimate thing to do. */
357 if (!current_frame)
358 {
359 error ("You haven't set up a process's stack to examine.");
360 }
361 #endif
362
363 return current_frame;
364 }
365
366 /* If we have the prev one, return it */
367 if (next_frame->prev)
368 return next_frame->prev;
369
370 /* On some machines it is possible to call a function without
371 setting up a stack frame for it. On these machines, we
372 define this macro to take two args; a frameinfo pointer
373 identifying a frame and a variable to set or clear if it is
374 or isn't leafless. */
375
376 /* Still don't want to worry about this except on the innermost
377 frame. This macro will set FROMLEAF if NEXT_FRAME is a
378 frameless function invocation. */
379 if (!(next_frame->next))
380 {
381 fromleaf = FRAMELESS_FUNCTION_INVOCATION (next_frame);
382 if (fromleaf)
383 address = FRAME_FP (next_frame);
384 }
385
386 if (!fromleaf)
387 {
388 /* Two macros defined in tm.h specify the machine-dependent
389 actions to be performed here.
390 First, get the frame's chain-pointer.
391 If that is zero, the frame is the outermost frame or a leaf
392 called by the outermost frame. This means that if start
393 calls main without a frame, we'll return 0 (which is fine
394 anyway).
395
396 Nope; there's a problem. This also returns when the current
397 routine is a leaf of main. This is unacceptable. We move
398 this to after the ffi test; I'd rather have backtraces from
399 start go curfluy than have an abort called from main not show
400 main. */
401 address = FRAME_CHAIN (next_frame);
402 if (!FRAME_CHAIN_VALID (address, next_frame))
403 return 0;
404 address = FRAME_CHAIN_COMBINE (address, next_frame);
405 }
406 if (address == 0)
407 return 0;
408
409 prev = (struct frame_info *)
410 obstack_alloc (&frame_cache_obstack,
411 sizeof (struct frame_info));
412
413 prev->saved_regs = NULL;
414 if (next_frame)
415 next_frame->prev = prev;
416 prev->next = next_frame;
417 prev->prev = (struct frame_info *) 0;
418 prev->frame = address;
419 prev->signal_handler_caller = 0;
420
421 /* This change should not be needed, FIXME! We should
422 determine whether any targets *need* INIT_FRAME_PC to happen
423 after INIT_EXTRA_FRAME_INFO and come up with a simple way to
424 express what goes on here.
425
426 INIT_EXTRA_FRAME_INFO is called from two places: create_new_frame
427 (where the PC is already set up) and here (where it isn't).
428 INIT_FRAME_PC is only called from here, always after
429 INIT_EXTRA_FRAME_INFO.
430
431 The catch is the MIPS, where INIT_EXTRA_FRAME_INFO requires the PC
432 value (which hasn't been set yet). Some other machines appear to
433 require INIT_EXTRA_FRAME_INFO before they can do INIT_FRAME_PC. Phoo.
434
435 We shouldn't need INIT_FRAME_PC_FIRST to add more complication to
436 an already overcomplicated part of GDB. gnu@cygnus.com, 15Sep92.
437
438 Assuming that some machines need INIT_FRAME_PC after
439 INIT_EXTRA_FRAME_INFO, one possible scheme:
440
441 SETUP_INNERMOST_FRAME()
442 Default version is just create_new_frame (read_fp ()),
443 read_pc ()). Machines with extra frame info would do that (or the
444 local equivalent) and then set the extra fields.
445 SETUP_ARBITRARY_FRAME(argc, argv)
446 Only change here is that create_new_frame would no longer init extra
447 frame info; SETUP_ARBITRARY_FRAME would have to do that.
448 INIT_PREV_FRAME(fromleaf, prev)
449 Replace INIT_EXTRA_FRAME_INFO and INIT_FRAME_PC. This should
450 also return a flag saying whether to keep the new frame, or
451 whether to discard it, because on some machines (e.g. mips) it
452 is really awkward to have FRAME_CHAIN_VALID called *before*
453 INIT_EXTRA_FRAME_INFO (there is no good way to get information
454 deduced in FRAME_CHAIN_VALID into the extra fields of the new frame).
455 std_frame_pc(fromleaf, prev)
456 This is the default setting for INIT_PREV_FRAME. It just does what
457 the default INIT_FRAME_PC does. Some machines will call it from
458 INIT_PREV_FRAME (either at the beginning, the end, or in the middle).
459 Some machines won't use it.
460 kingdon@cygnus.com, 13Apr93, 31Jan94, 14Dec94. */
461
462 #ifdef INIT_FRAME_PC_FIRST
463 INIT_FRAME_PC_FIRST (fromleaf, prev);
464 #endif
465
466 #ifdef INIT_EXTRA_FRAME_INFO
467 INIT_EXTRA_FRAME_INFO (fromleaf, prev);
468 #endif
469
470 /* This entry is in the frame queue now, which is good since
471 FRAME_SAVED_PC may use that queue to figure out its value
472 (see tm-sparc.h). We want the pc saved in the inferior frame. */
473 INIT_FRAME_PC (fromleaf, prev);
474
475 /* If ->frame and ->pc are unchanged, we are in the process of getting
476 ourselves into an infinite backtrace. Some architectures check this
477 in FRAME_CHAIN or thereabouts, but it seems like there is no reason
478 this can't be an architecture-independent check. */
479 if (next_frame != NULL)
480 {
481 if (prev->frame == next_frame->frame
482 && prev->pc == next_frame->pc)
483 {
484 next_frame->prev = NULL;
485 obstack_free (&frame_cache_obstack, prev);
486 return NULL;
487 }
488 }
489
490 find_pc_partial_function (prev->pc, &name,
491 (CORE_ADDR *) NULL, (CORE_ADDR *) NULL);
492 if (IN_SIGTRAMP (prev->pc, name))
493 prev->signal_handler_caller = 1;
494
495 return prev;
496 }
497
498 CORE_ADDR
499 get_frame_pc (frame)
500 struct frame_info *frame;
501 {
502 return frame->pc;
503 }
504
505
506 #ifdef FRAME_FIND_SAVED_REGS
507 /* XXX - deprecated. This is a compatibility function for targets
508 that do not yet implement FRAME_INIT_SAVED_REGS. */
509 /* Find the addresses in which registers are saved in FRAME. */
510
511 void
512 get_frame_saved_regs (frame, saved_regs_addr)
513 struct frame_info *frame;
514 struct frame_saved_regs *saved_regs_addr;
515 {
516 if (frame->saved_regs == NULL)
517 {
518 frame->saved_regs = (CORE_ADDR *)
519 frame_obstack_alloc (SIZEOF_FRAME_SAVED_REGS);
520 }
521 if (saved_regs_addr == NULL)
522 {
523 struct frame_saved_regs saved_regs;
524 FRAME_FIND_SAVED_REGS (frame, saved_regs);
525 memcpy (frame->saved_regs, &saved_regs, SIZEOF_FRAME_SAVED_REGS);
526 }
527 else
528 {
529 FRAME_FIND_SAVED_REGS (frame, *saved_regs_addr);
530 memcpy (frame->saved_regs, saved_regs_addr, SIZEOF_FRAME_SAVED_REGS);
531 }
532 }
533 #endif
534
535 /* Return the innermost lexical block in execution
536 in a specified stack frame. The frame address is assumed valid. */
537
538 struct block *
539 get_frame_block (frame)
540 struct frame_info *frame;
541 {
542 CORE_ADDR pc;
543
544 pc = frame->pc;
545 if (frame->next != 0 && frame->next->signal_handler_caller == 0)
546 /* We are not in the innermost frame and we were not interrupted
547 by a signal. We need to subtract one to get the correct block,
548 in case the call instruction was the last instruction of the block.
549 If there are any machines on which the saved pc does not point to
550 after the call insn, we probably want to make frame->pc point after
551 the call insn anyway. */
552 --pc;
553 return block_for_pc (pc);
554 }
555
556 struct block *
557 get_current_block ()
558 {
559 return block_for_pc (read_pc ());
560 }
561
562 CORE_ADDR
563 get_pc_function_start (pc)
564 CORE_ADDR pc;
565 {
566 register struct block *bl;
567 register struct symbol *symbol;
568 register struct minimal_symbol *msymbol;
569 CORE_ADDR fstart;
570
571 if ((bl = block_for_pc (pc)) != NULL &&
572 (symbol = block_function (bl)) != NULL)
573 {
574 bl = SYMBOL_BLOCK_VALUE (symbol);
575 fstart = BLOCK_START (bl);
576 }
577 else if ((msymbol = lookup_minimal_symbol_by_pc (pc)) != NULL)
578 {
579 fstart = SYMBOL_VALUE_ADDRESS (msymbol);
580 }
581 else
582 {
583 fstart = 0;
584 }
585 return (fstart);
586 }
587
588 /* Return the symbol for the function executing in frame FRAME. */
589
590 struct symbol *
591 get_frame_function (frame)
592 struct frame_info *frame;
593 {
594 register struct block *bl = get_frame_block (frame);
595 if (bl == 0)
596 return 0;
597 return block_function (bl);
598 }
599 \f
600
601 /* Return the blockvector immediately containing the innermost lexical block
602 containing the specified pc value and section, or 0 if there is none.
603 PINDEX is a pointer to the index value of the block. If PINDEX
604 is NULL, we don't pass this information back to the caller. */
605
606 struct blockvector *
607 blockvector_for_pc_sect (pc, section, pindex, symtab)
608 register CORE_ADDR pc;
609 struct sec *section;
610 int *pindex;
611 struct symtab *symtab;
612
613 {
614 register struct block *b;
615 register int bot, top, half;
616 struct blockvector *bl;
617
618 if (symtab == 0) /* if no symtab specified by caller */
619 {
620 /* First search all symtabs for one whose file contains our pc */
621 if ((symtab = find_pc_sect_symtab (pc, section)) == 0)
622 return 0;
623 }
624
625 bl = BLOCKVECTOR (symtab);
626 b = BLOCKVECTOR_BLOCK (bl, 0);
627
628 /* Then search that symtab for the smallest block that wins. */
629 /* Use binary search to find the last block that starts before PC. */
630
631 bot = 0;
632 top = BLOCKVECTOR_NBLOCKS (bl);
633
634 while (top - bot > 1)
635 {
636 half = (top - bot + 1) >> 1;
637 b = BLOCKVECTOR_BLOCK (bl, bot + half);
638 if (BLOCK_START (b) <= pc)
639 bot += half;
640 else
641 top = bot + half;
642 }
643
644 /* Now search backward for a block that ends after PC. */
645
646 while (bot >= 0)
647 {
648 b = BLOCKVECTOR_BLOCK (bl, bot);
649 if (BLOCK_END (b) > pc)
650 {
651 if (pindex)
652 *pindex = bot;
653 return bl;
654 }
655 bot--;
656 }
657 return 0;
658 }
659
660 /* Return the blockvector immediately containing the innermost lexical block
661 containing the specified pc value, or 0 if there is none.
662 Backward compatibility, no section. */
663
664 struct blockvector *
665 blockvector_for_pc (pc, pindex)
666 register CORE_ADDR pc;
667 int *pindex;
668 {
669 return blockvector_for_pc_sect (pc, find_pc_mapped_section (pc),
670 pindex, NULL);
671 }
672
673 /* Return the innermost lexical block containing the specified pc value
674 in the specified section, or 0 if there is none. */
675
676 struct block *
677 block_for_pc_sect (pc, section)
678 register CORE_ADDR pc;
679 struct sec *section;
680 {
681 register struct blockvector *bl;
682 int index;
683
684 bl = blockvector_for_pc_sect (pc, section, &index, NULL);
685 if (bl)
686 return BLOCKVECTOR_BLOCK (bl, index);
687 return 0;
688 }
689
690 /* Return the innermost lexical block containing the specified pc value,
691 or 0 if there is none. Backward compatibility, no section. */
692
693 struct block *
694 block_for_pc (pc)
695 register CORE_ADDR pc;
696 {
697 return block_for_pc_sect (pc, find_pc_mapped_section (pc));
698 }
699
700 /* Return the function containing pc value PC in section SECTION.
701 Returns 0 if function is not known. */
702
703 struct symbol *
704 find_pc_sect_function (pc, section)
705 CORE_ADDR pc;
706 struct sec *section;
707 {
708 register struct block *b = block_for_pc_sect (pc, section);
709 if (b == 0)
710 return 0;
711 return block_function (b);
712 }
713
714 /* Return the function containing pc value PC.
715 Returns 0 if function is not known. Backward compatibility, no section */
716
717 struct symbol *
718 find_pc_function (pc)
719 CORE_ADDR pc;
720 {
721 return find_pc_sect_function (pc, find_pc_mapped_section (pc));
722 }
723
724 /* These variables are used to cache the most recent result
725 * of find_pc_partial_function. */
726
727 static CORE_ADDR cache_pc_function_low = 0;
728 static CORE_ADDR cache_pc_function_high = 0;
729 static char *cache_pc_function_name = 0;
730 static struct sec *cache_pc_function_section = NULL;
731
732 /* Clear cache, e.g. when symbol table is discarded. */
733
734 void
735 clear_pc_function_cache ()
736 {
737 cache_pc_function_low = 0;
738 cache_pc_function_high = 0;
739 cache_pc_function_name = (char *) 0;
740 cache_pc_function_section = NULL;
741 }
742
743 /* Finds the "function" (text symbol) that is smaller than PC but
744 greatest of all of the potential text symbols in SECTION. Sets
745 *NAME and/or *ADDRESS conditionally if that pointer is non-null.
746 If ENDADDR is non-null, then set *ENDADDR to be the end of the
747 function (exclusive), but passing ENDADDR as non-null means that
748 the function might cause symbols to be read. This function either
749 succeeds or fails (not halfway succeeds). If it succeeds, it sets
750 *NAME, *ADDRESS, and *ENDADDR to real information and returns 1.
751 If it fails, it sets *NAME, *ADDRESS, and *ENDADDR to zero and
752 returns 0. */
753
754 int
755 find_pc_sect_partial_function (pc, section, name, address, endaddr)
756 CORE_ADDR pc;
757 asection *section;
758 char **name;
759 CORE_ADDR *address;
760 CORE_ADDR *endaddr;
761 {
762 struct partial_symtab *pst;
763 struct symbol *f;
764 struct minimal_symbol *msymbol;
765 struct partial_symbol *psb;
766 struct obj_section *osect;
767 int i;
768 CORE_ADDR mapped_pc;
769
770 mapped_pc = overlay_mapped_address (pc, section);
771
772 if (mapped_pc >= cache_pc_function_low &&
773 mapped_pc < cache_pc_function_high &&
774 section == cache_pc_function_section)
775 goto return_cached_value;
776
777 /* If sigtramp is in the u area, it counts as a function (especially
778 important for step_1). */
779 #if defined SIGTRAMP_START
780 if (IN_SIGTRAMP (mapped_pc, (char *) NULL))
781 {
782 cache_pc_function_low = SIGTRAMP_START (mapped_pc);
783 cache_pc_function_high = SIGTRAMP_END (mapped_pc);
784 cache_pc_function_name = "<sigtramp>";
785 cache_pc_function_section = section;
786 goto return_cached_value;
787 }
788 #endif
789
790 msymbol = lookup_minimal_symbol_by_pc_section (mapped_pc, section);
791 pst = find_pc_sect_psymtab (mapped_pc, section);
792 if (pst)
793 {
794 /* Need to read the symbols to get a good value for the end address. */
795 if (endaddr != NULL && !pst->readin)
796 {
797 /* Need to get the terminal in case symbol-reading produces
798 output. */
799 target_terminal_ours_for_output ();
800 PSYMTAB_TO_SYMTAB (pst);
801 }
802
803 if (pst->readin)
804 {
805 /* Checking whether the msymbol has a larger value is for the
806 "pathological" case mentioned in print_frame_info. */
807 f = find_pc_sect_function (mapped_pc, section);
808 if (f != NULL
809 && (msymbol == NULL
810 || (BLOCK_START (SYMBOL_BLOCK_VALUE (f))
811 >= SYMBOL_VALUE_ADDRESS (msymbol))))
812 {
813 cache_pc_function_low = BLOCK_START (SYMBOL_BLOCK_VALUE (f));
814 cache_pc_function_high = BLOCK_END (SYMBOL_BLOCK_VALUE (f));
815 cache_pc_function_name = SYMBOL_NAME (f);
816 cache_pc_function_section = section;
817 goto return_cached_value;
818 }
819 }
820 else
821 {
822 /* Now that static symbols go in the minimal symbol table, perhaps
823 we could just ignore the partial symbols. But at least for now
824 we use the partial or minimal symbol, whichever is larger. */
825 psb = find_pc_sect_psymbol (pst, mapped_pc, section);
826
827 if (psb
828 && (msymbol == NULL ||
829 (SYMBOL_VALUE_ADDRESS (psb)
830 >= SYMBOL_VALUE_ADDRESS (msymbol))))
831 {
832 /* This case isn't being cached currently. */
833 if (address)
834 *address = SYMBOL_VALUE_ADDRESS (psb);
835 if (name)
836 *name = SYMBOL_NAME (psb);
837 /* endaddr non-NULL can't happen here. */
838 return 1;
839 }
840 }
841 }
842
843 /* Not in the normal symbol tables, see if the pc is in a known section.
844 If it's not, then give up. This ensures that anything beyond the end
845 of the text seg doesn't appear to be part of the last function in the
846 text segment. */
847
848 osect = find_pc_sect_section (mapped_pc, section);
849
850 if (!osect)
851 msymbol = NULL;
852
853 /* Must be in the minimal symbol table. */
854 if (msymbol == NULL)
855 {
856 /* No available symbol. */
857 if (name != NULL)
858 *name = 0;
859 if (address != NULL)
860 *address = 0;
861 if (endaddr != NULL)
862 *endaddr = 0;
863 return 0;
864 }
865
866 cache_pc_function_low = SYMBOL_VALUE_ADDRESS (msymbol);
867 cache_pc_function_name = SYMBOL_NAME (msymbol);
868 cache_pc_function_section = section;
869
870 /* Use the lesser of the next minimal symbol in the same section, or
871 the end of the section, as the end of the function. */
872
873 /* Step over other symbols at this same address, and symbols in
874 other sections, to find the next symbol in this section with
875 a different address. */
876
877 for (i = 1; SYMBOL_NAME (msymbol + i) != NULL; i++)
878 {
879 if (SYMBOL_VALUE_ADDRESS (msymbol + i) != SYMBOL_VALUE_ADDRESS (msymbol)
880 && SYMBOL_BFD_SECTION (msymbol + i) == SYMBOL_BFD_SECTION (msymbol))
881 break;
882 }
883
884 if (SYMBOL_NAME (msymbol + i) != NULL
885 && SYMBOL_VALUE_ADDRESS (msymbol + i) < osect->endaddr)
886 cache_pc_function_high = SYMBOL_VALUE_ADDRESS (msymbol + i);
887 else
888 /* We got the start address from the last msymbol in the objfile.
889 So the end address is the end of the section. */
890 cache_pc_function_high = osect->endaddr;
891
892 return_cached_value:
893
894 if (address)
895 {
896 if (pc_in_unmapped_range (pc, section))
897 *address = overlay_unmapped_address (cache_pc_function_low, section);
898 else
899 *address = cache_pc_function_low;
900 }
901
902 if (name)
903 *name = cache_pc_function_name;
904
905 if (endaddr)
906 {
907 if (pc_in_unmapped_range (pc, section))
908 {
909 /* Because the high address is actually beyond the end of
910 the function (and therefore possibly beyond the end of
911 the overlay), we must actually convert (high - 1)
912 and then add one to that. */
913
914 *endaddr = 1 + overlay_unmapped_address (cache_pc_function_high - 1,
915 section);
916 }
917 else
918 *endaddr = cache_pc_function_high;
919 }
920
921 return 1;
922 }
923
924 /* Backward compatibility, no section argument */
925
926 int
927 find_pc_partial_function (pc, name, address, endaddr)
928 CORE_ADDR pc;
929 char **name;
930 CORE_ADDR *address;
931 CORE_ADDR *endaddr;
932 {
933 asection *section;
934
935 section = find_pc_overlay (pc);
936 return find_pc_sect_partial_function (pc, section, name, address, endaddr);
937 }
938
939 /* Return the innermost stack frame executing inside of BLOCK,
940 or NULL if there is no such frame. If BLOCK is NULL, just return NULL. */
941
942 struct frame_info *
943 block_innermost_frame (block)
944 struct block *block;
945 {
946 struct frame_info *frame;
947 register CORE_ADDR start;
948 register CORE_ADDR end;
949
950 if (block == NULL)
951 return NULL;
952
953 start = BLOCK_START (block);
954 end = BLOCK_END (block);
955
956 frame = NULL;
957 while (1)
958 {
959 frame = get_prev_frame (frame);
960 if (frame == NULL)
961 return NULL;
962 if (frame->pc >= start && frame->pc < end)
963 return frame;
964 }
965 }
966
967 /* Return the full FRAME which corresponds to the given CORE_ADDR
968 or NULL if no FRAME on the chain corresponds to CORE_ADDR. */
969
970 struct frame_info *
971 find_frame_addr_in_frame_chain (frame_addr)
972 CORE_ADDR frame_addr;
973 {
974 struct frame_info *frame = NULL;
975
976 if (frame_addr == (CORE_ADDR) 0)
977 return NULL;
978
979 while (1)
980 {
981 frame = get_prev_frame (frame);
982 if (frame == NULL)
983 return NULL;
984 if (FRAME_FP (frame) == frame_addr)
985 return frame;
986 }
987 }
988
989 #ifdef SIGCONTEXT_PC_OFFSET
990 /* Get saved user PC for sigtramp from sigcontext for BSD style sigtramp. */
991
992 CORE_ADDR
993 sigtramp_saved_pc (frame)
994 struct frame_info *frame;
995 {
996 CORE_ADDR sigcontext_addr;
997 char buf[TARGET_PTR_BIT / TARGET_CHAR_BIT];
998 int ptrbytes = TARGET_PTR_BIT / TARGET_CHAR_BIT;
999 int sigcontext_offs = (2 * TARGET_INT_BIT) / TARGET_CHAR_BIT;
1000
1001 /* Get sigcontext address, it is the third parameter on the stack. */
1002 if (frame->next)
1003 sigcontext_addr = read_memory_integer (FRAME_ARGS_ADDRESS (frame->next)
1004 + FRAME_ARGS_SKIP
1005 + sigcontext_offs,
1006 ptrbytes);
1007 else
1008 sigcontext_addr = read_memory_integer (read_register (SP_REGNUM)
1009 + sigcontext_offs,
1010 ptrbytes);
1011
1012 /* Don't cause a memory_error when accessing sigcontext in case the stack
1013 layout has changed or the stack is corrupt. */
1014 target_read_memory (sigcontext_addr + SIGCONTEXT_PC_OFFSET, buf, ptrbytes);
1015 return extract_unsigned_integer (buf, ptrbytes);
1016 }
1017 #endif /* SIGCONTEXT_PC_OFFSET */
1018
1019
1020 /* Are we in a call dummy? The code below which allows DECR_PC_AFTER_BREAK
1021 below is for infrun.c, which may give the macro a pc without that
1022 subtracted out. */
1023
1024 extern CORE_ADDR text_end;
1025
1026 int
1027 pc_in_call_dummy_before_text_end (pc, sp, frame_address)
1028 CORE_ADDR pc;
1029 CORE_ADDR sp;
1030 CORE_ADDR frame_address;
1031 {
1032 return ((pc) >= text_end - CALL_DUMMY_LENGTH
1033 && (pc) <= text_end + DECR_PC_AFTER_BREAK);
1034 }
1035
1036 int
1037 pc_in_call_dummy_after_text_end (pc, sp, frame_address)
1038 CORE_ADDR pc;
1039 CORE_ADDR sp;
1040 CORE_ADDR frame_address;
1041 {
1042 return ((pc) >= text_end
1043 && (pc) <= text_end + CALL_DUMMY_LENGTH + DECR_PC_AFTER_BREAK);
1044 }
1045
1046 /* Is the PC in a call dummy? SP and FRAME_ADDRESS are the bottom and
1047 top of the stack frame which we are checking, where "bottom" and
1048 "top" refer to some section of memory which contains the code for
1049 the call dummy. Calls to this macro assume that the contents of
1050 SP_REGNUM and FP_REGNUM (or the saved values thereof), respectively,
1051 are the things to pass.
1052
1053 This won't work on the 29k, where SP_REGNUM and FP_REGNUM don't
1054 have that meaning, but the 29k doesn't use ON_STACK. This could be
1055 fixed by generalizing this scheme, perhaps by passing in a frame
1056 and adding a few fields, at least on machines which need them for
1057 PC_IN_CALL_DUMMY.
1058
1059 Something simpler, like checking for the stack segment, doesn't work,
1060 since various programs (threads implementations, gcc nested function
1061 stubs, etc) may either allocate stack frames in another segment, or
1062 allocate other kinds of code on the stack. */
1063
1064 int
1065 pc_in_call_dummy_on_stack (pc, sp, frame_address)
1066 CORE_ADDR pc;
1067 CORE_ADDR sp;
1068 CORE_ADDR frame_address;
1069 {
1070 return (INNER_THAN ((sp), (pc))
1071 && (frame_address != 0)
1072 && INNER_THAN ((pc), (frame_address)));
1073 }
1074
1075 int
1076 pc_in_call_dummy_at_entry_point (pc, sp, frame_address)
1077 CORE_ADDR pc;
1078 CORE_ADDR sp;
1079 CORE_ADDR frame_address;
1080 {
1081 return ((pc) >= CALL_DUMMY_ADDRESS ()
1082 && (pc) <= (CALL_DUMMY_ADDRESS () + DECR_PC_AFTER_BREAK));
1083 }
1084
1085
1086 /*
1087 * GENERIC DUMMY FRAMES
1088 *
1089 * The following code serves to maintain the dummy stack frames for
1090 * inferior function calls (ie. when gdb calls into the inferior via
1091 * call_function_by_hand). This code saves the machine state before
1092 * the call in host memory, so we must maintain an independant stack
1093 * and keep it consistant etc. I am attempting to make this code
1094 * generic enough to be used by many targets.
1095 *
1096 * The cheapest and most generic way to do CALL_DUMMY on a new target
1097 * is probably to define CALL_DUMMY to be empty, CALL_DUMMY_LENGTH to
1098 * zero, and CALL_DUMMY_LOCATION to AT_ENTRY. Then you must remember
1099 * to define PUSH_RETURN_ADDRESS, because no call instruction will be
1100 * being executed by the target. Also FRAME_CHAIN_VALID as
1101 * generic_{file,func}_frame_chain_valid and FIX_CALL_DUMMY as
1102 * generic_fix_call_dummy. */
1103
1104 /* Dummy frame. This saves the processor state just prior to setting
1105 up the inferior function call. Older targets save the registers
1106 on the target stack (but that really slows down function calls). */
1107
1108 struct dummy_frame
1109 {
1110 struct dummy_frame *next;
1111
1112 CORE_ADDR pc;
1113 CORE_ADDR fp;
1114 CORE_ADDR sp;
1115 CORE_ADDR top;
1116 char *registers;
1117 };
1118
1119 static struct dummy_frame *dummy_frame_stack = NULL;
1120
1121 /* Function: find_dummy_frame(pc, fp, sp)
1122 Search the stack of dummy frames for one matching the given PC, FP and SP.
1123 This is the work-horse for pc_in_call_dummy and read_register_dummy */
1124
1125 char *
1126 generic_find_dummy_frame (pc, fp)
1127 CORE_ADDR pc;
1128 CORE_ADDR fp;
1129 {
1130 struct dummy_frame *dummyframe;
1131
1132 if (pc != entry_point_address ())
1133 return 0;
1134
1135 for (dummyframe = dummy_frame_stack; dummyframe != NULL;
1136 dummyframe = dummyframe->next)
1137 if (fp == dummyframe->fp
1138 || fp == dummyframe->sp
1139 || fp == dummyframe->top)
1140 /* The frame in question lies between the saved fp and sp, inclusive */
1141 return dummyframe->registers;
1142
1143 return 0;
1144 }
1145
1146 /* Function: pc_in_call_dummy (pc, fp)
1147 Return true if this is a dummy frame created by gdb for an inferior call */
1148
1149 int
1150 generic_pc_in_call_dummy (pc, sp, fp)
1151 CORE_ADDR pc;
1152 CORE_ADDR sp;
1153 CORE_ADDR fp;
1154 {
1155 /* if find_dummy_frame succeeds, then PC is in a call dummy */
1156 /* Note: SP and not FP is passed on. */
1157 return (generic_find_dummy_frame (pc, sp) != 0);
1158 }
1159
1160 /* Function: read_register_dummy
1161 Find a saved register from before GDB calls a function in the inferior */
1162
1163 CORE_ADDR
1164 generic_read_register_dummy (pc, fp, regno)
1165 CORE_ADDR pc;
1166 CORE_ADDR fp;
1167 int regno;
1168 {
1169 char *dummy_regs = generic_find_dummy_frame (pc, fp);
1170
1171 if (dummy_regs)
1172 return extract_address (&dummy_regs[REGISTER_BYTE (regno)],
1173 REGISTER_RAW_SIZE (regno));
1174 else
1175 return 0;
1176 }
1177
1178 /* Save all the registers on the dummy frame stack. Most ports save the
1179 registers on the target stack. This results in lots of unnecessary memory
1180 references, which are slow when debugging via a serial line. Instead, we
1181 save all the registers internally, and never write them to the stack. The
1182 registers get restored when the called function returns to the entry point,
1183 where a breakpoint is laying in wait. */
1184
1185 void
1186 generic_push_dummy_frame ()
1187 {
1188 struct dummy_frame *dummy_frame;
1189 CORE_ADDR fp = (get_current_frame ())->frame;
1190
1191 /* check to see if there are stale dummy frames,
1192 perhaps left over from when a longjump took us out of a
1193 function that was called by the debugger */
1194
1195 dummy_frame = dummy_frame_stack;
1196 while (dummy_frame)
1197 if (INNER_THAN (dummy_frame->fp, fp)) /* stale -- destroy! */
1198 {
1199 dummy_frame_stack = dummy_frame->next;
1200 free (dummy_frame->registers);
1201 free (dummy_frame);
1202 dummy_frame = dummy_frame_stack;
1203 }
1204 else
1205 dummy_frame = dummy_frame->next;
1206
1207 dummy_frame = xmalloc (sizeof (struct dummy_frame));
1208 dummy_frame->registers = xmalloc (REGISTER_BYTES);
1209
1210 dummy_frame->pc = read_pc ();
1211 dummy_frame->sp = read_sp ();
1212 dummy_frame->top = dummy_frame->sp;
1213 dummy_frame->fp = fp;
1214 read_register_bytes (0, dummy_frame->registers, REGISTER_BYTES);
1215 dummy_frame->next = dummy_frame_stack;
1216 dummy_frame_stack = dummy_frame;
1217 }
1218
1219 void
1220 generic_save_dummy_frame_tos (sp)
1221 CORE_ADDR sp;
1222 {
1223 dummy_frame_stack->top = sp;
1224 }
1225
1226 /* Restore the machine state from either the saved dummy stack or a
1227 real stack frame. */
1228
1229 void
1230 generic_pop_current_frame (void (*popper) (struct frame_info * frame))
1231 {
1232 struct frame_info *frame = get_current_frame ();
1233
1234 if (PC_IN_CALL_DUMMY (frame->pc, frame->frame, frame->frame))
1235 generic_pop_dummy_frame ();
1236 else
1237 (*popper) (frame);
1238 }
1239
1240 /* Function: pop_dummy_frame
1241 Restore the machine state from a saved dummy stack frame. */
1242
1243 void
1244 generic_pop_dummy_frame ()
1245 {
1246 struct dummy_frame *dummy_frame = dummy_frame_stack;
1247
1248 /* FIXME: what if the first frame isn't the right one, eg..
1249 because one call-by-hand function has done a longjmp into another one? */
1250
1251 if (!dummy_frame)
1252 error ("Can't pop dummy frame!");
1253 dummy_frame_stack = dummy_frame->next;
1254 write_register_bytes (0, dummy_frame->registers, REGISTER_BYTES);
1255 flush_cached_frames ();
1256
1257 free (dummy_frame->registers);
1258 free (dummy_frame);
1259 }
1260
1261 /* Function: frame_chain_valid
1262 Returns true for a user frame or a call_function_by_hand dummy frame,
1263 and false for the CRT0 start-up frame. Purpose is to terminate backtrace */
1264
1265 int
1266 generic_file_frame_chain_valid (fp, fi)
1267 CORE_ADDR fp;
1268 struct frame_info *fi;
1269 {
1270 if (PC_IN_CALL_DUMMY (FRAME_SAVED_PC (fi), fp, fp))
1271 return 1; /* don't prune CALL_DUMMY frames */
1272 else /* fall back to default algorithm (see frame.h) */
1273 return (fp != 0
1274 && (INNER_THAN (fi->frame, fp) || fi->frame == fp)
1275 && !inside_entry_file (FRAME_SAVED_PC (fi)));
1276 }
1277
1278 int
1279 generic_func_frame_chain_valid (fp, fi)
1280 CORE_ADDR fp;
1281 struct frame_info *fi;
1282 {
1283 if (PC_IN_CALL_DUMMY ((fi)->pc, fp, fp))
1284 return 1; /* don't prune CALL_DUMMY frames */
1285 else /* fall back to default algorithm (see frame.h) */
1286 return (fp != 0
1287 && (INNER_THAN (fi->frame, fp) || fi->frame == fp)
1288 && !inside_main_func ((fi)->pc)
1289 && !inside_entry_func ((fi)->pc));
1290 }
1291
1292 /* Function: fix_call_dummy
1293 Stub function. Generic dumy frames typically do not need to fix
1294 the frame being created */
1295
1296 void
1297 generic_fix_call_dummy (dummy, pc, fun, nargs, args, type, gcc_p)
1298 char *dummy;
1299 CORE_ADDR pc;
1300 CORE_ADDR fun;
1301 int nargs;
1302 struct value **args;
1303 struct type *type;
1304 int gcc_p;
1305 {
1306 return;
1307 }
1308
1309 /* Function: get_saved_register
1310 Find register number REGNUM relative to FRAME and put its (raw,
1311 target format) contents in *RAW_BUFFER.
1312
1313 Set *OPTIMIZED if the variable was optimized out (and thus can't be
1314 fetched). Note that this is never set to anything other than zero
1315 in this implementation.
1316
1317 Set *LVAL to lval_memory, lval_register, or not_lval, depending on
1318 whether the value was fetched from memory, from a register, or in a
1319 strange and non-modifiable way (e.g. a frame pointer which was
1320 calculated rather than fetched). We will use not_lval for values
1321 fetched from generic dummy frames.
1322
1323 Set *ADDRP to the address, either in memory on as a REGISTER_BYTE
1324 offset into the registers array. If the value is stored in a dummy
1325 frame, set *ADDRP to zero.
1326
1327 To use this implementation, define a function called
1328 "get_saved_register" in your target code, which simply passes all
1329 of its arguments to this function.
1330
1331 The argument RAW_BUFFER must point to aligned memory. */
1332
1333 void
1334 generic_get_saved_register (raw_buffer, optimized, addrp, frame, regnum, lval)
1335 char *raw_buffer;
1336 int *optimized;
1337 CORE_ADDR *addrp;
1338 struct frame_info *frame;
1339 int regnum;
1340 enum lval_type *lval;
1341 {
1342 if (!target_has_registers)
1343 error ("No registers.");
1344
1345 /* Normal systems don't optimize out things with register numbers. */
1346 if (optimized != NULL)
1347 *optimized = 0;
1348
1349 if (addrp) /* default assumption: not found in memory */
1350 *addrp = 0;
1351
1352 /* Note: since the current frame's registers could only have been
1353 saved by frames INTERIOR TO the current frame, we skip examining
1354 the current frame itself: otherwise, we would be getting the
1355 previous frame's registers which were saved by the current frame. */
1356
1357 while (frame && ((frame = frame->next) != NULL))
1358 {
1359 if (PC_IN_CALL_DUMMY (frame->pc, frame->frame, frame->frame))
1360 {
1361 if (lval) /* found it in a CALL_DUMMY frame */
1362 *lval = not_lval;
1363 if (raw_buffer)
1364 memcpy (raw_buffer,
1365 generic_find_dummy_frame (frame->pc, frame->frame) +
1366 REGISTER_BYTE (regnum),
1367 REGISTER_RAW_SIZE (regnum));
1368 return;
1369 }
1370
1371 FRAME_INIT_SAVED_REGS (frame);
1372 if (frame->saved_regs != NULL
1373 && frame->saved_regs[regnum] != 0)
1374 {
1375 if (lval) /* found it saved on the stack */
1376 *lval = lval_memory;
1377 if (regnum == SP_REGNUM)
1378 {
1379 if (raw_buffer) /* SP register treated specially */
1380 store_address (raw_buffer, REGISTER_RAW_SIZE (regnum),
1381 frame->saved_regs[regnum]);
1382 }
1383 else
1384 {
1385 if (addrp) /* any other register */
1386 *addrp = frame->saved_regs[regnum];
1387 if (raw_buffer)
1388 read_memory (frame->saved_regs[regnum], raw_buffer,
1389 REGISTER_RAW_SIZE (regnum));
1390 }
1391 return;
1392 }
1393 }
1394
1395 /* If we get thru the loop to this point, it means the register was
1396 not saved in any frame. Return the actual live-register value. */
1397
1398 if (lval) /* found it in a live register */
1399 *lval = lval_register;
1400 if (addrp)
1401 *addrp = REGISTER_BYTE (regnum);
1402 if (raw_buffer)
1403 read_register_gen (regnum, raw_buffer);
1404 }
1405
1406 void
1407 _initialize_blockframe (void)
1408 {
1409 obstack_init (&frame_cache_obstack);
1410 }
This page took 0.074964 seconds and 4 git commands to generate.