2002-09-30 Andrew Cagney <ac131313@redhat.com>
[deliverable/binutils-gdb.git] / gdb / blockframe.c
1 /* Get info from stack frames; convert between frames, blocks,
2 functions and pc values.
3
4 Copyright 1986, 1987, 1988, 1989, 1990, 1991, 1992, 1993, 1994,
5 1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002 Free Software
6 Foundation, Inc.
7
8 This file is part of GDB.
9
10 This program is free software; you can redistribute it and/or modify
11 it under the terms of the GNU General Public License as published by
12 the Free Software Foundation; either version 2 of the License, or
13 (at your option) any later version.
14
15 This program is distributed in the hope that it will be useful,
16 but WITHOUT ANY WARRANTY; without even the implied warranty of
17 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
18 GNU General Public License for more details.
19
20 You should have received a copy of the GNU General Public License
21 along with this program; if not, write to the Free Software
22 Foundation, Inc., 59 Temple Place - Suite 330,
23 Boston, MA 02111-1307, USA. */
24
25 #include "defs.h"
26 #include "symtab.h"
27 #include "bfd.h"
28 #include "symfile.h"
29 #include "objfiles.h"
30 #include "frame.h"
31 #include "gdbcore.h"
32 #include "value.h" /* for read_register */
33 #include "target.h" /* for target_has_stack */
34 #include "inferior.h" /* for read_pc */
35 #include "annotate.h"
36 #include "regcache.h"
37 #include "gdb_assert.h"
38
39 /* Prototypes for exported functions. */
40
41 static void generic_call_dummy_register_unwind (struct frame_info *frame,
42 void **cache,
43 int regnum,
44 int *optimized,
45 enum lval_type *lval,
46 CORE_ADDR *addrp,
47 int *realnum,
48 void *raw_buffer);
49 static void frame_saved_regs_register_unwind (struct frame_info *frame,
50 void **cache,
51 int regnum,
52 int *optimized,
53 enum lval_type *lval,
54 CORE_ADDR *addrp,
55 int *realnum,
56 void *buffer);
57
58
59 void _initialize_blockframe (void);
60
61 /* A default FRAME_CHAIN_VALID, in the form that is suitable for most
62 targets. If FRAME_CHAIN_VALID returns zero it means that the given
63 frame is the outermost one and has no caller. */
64
65 int
66 file_frame_chain_valid (CORE_ADDR chain, struct frame_info *thisframe)
67 {
68 return ((chain) != 0
69 && !inside_entry_file (FRAME_SAVED_PC (thisframe)));
70 }
71
72 /* Use the alternate method of avoiding running up off the end of the
73 frame chain or following frames back into the startup code. See
74 the comments in objfiles.h. */
75
76 int
77 func_frame_chain_valid (CORE_ADDR chain, struct frame_info *thisframe)
78 {
79 return ((chain) != 0
80 && !inside_main_func ((thisframe)->pc)
81 && !inside_entry_func ((thisframe)->pc));
82 }
83
84 /* A very simple method of determining a valid frame */
85
86 int
87 nonnull_frame_chain_valid (CORE_ADDR chain, struct frame_info *thisframe)
88 {
89 return ((chain) != 0);
90 }
91
92 /* Is ADDR inside the startup file? Note that if your machine
93 has a way to detect the bottom of the stack, there is no need
94 to call this function from FRAME_CHAIN_VALID; the reason for
95 doing so is that some machines have no way of detecting bottom
96 of stack.
97
98 A PC of zero is always considered to be the bottom of the stack. */
99
100 int
101 inside_entry_file (CORE_ADDR addr)
102 {
103 if (addr == 0)
104 return 1;
105 if (symfile_objfile == 0)
106 return 0;
107 if (CALL_DUMMY_LOCATION == AT_ENTRY_POINT)
108 {
109 /* Do not stop backtracing if the pc is in the call dummy
110 at the entry point. */
111 /* FIXME: Won't always work with zeros for the last two arguments */
112 if (PC_IN_CALL_DUMMY (addr, 0, 0))
113 return 0;
114 }
115 return (addr >= symfile_objfile->ei.entry_file_lowpc &&
116 addr < symfile_objfile->ei.entry_file_highpc);
117 }
118
119 /* Test a specified PC value to see if it is in the range of addresses
120 that correspond to the main() function. See comments above for why
121 we might want to do this.
122
123 Typically called from FRAME_CHAIN_VALID.
124
125 A PC of zero is always considered to be the bottom of the stack. */
126
127 int
128 inside_main_func (CORE_ADDR pc)
129 {
130 if (pc == 0)
131 return 1;
132 if (symfile_objfile == 0)
133 return 0;
134
135 /* If the addr range is not set up at symbol reading time, set it up now.
136 This is for FRAME_CHAIN_VALID_ALTERNATE. I do this for coff, because
137 it is unable to set it up and symbol reading time. */
138
139 if (symfile_objfile->ei.main_func_lowpc == INVALID_ENTRY_LOWPC &&
140 symfile_objfile->ei.main_func_highpc == INVALID_ENTRY_HIGHPC)
141 {
142 struct symbol *mainsym;
143
144 mainsym = lookup_symbol (main_name (), NULL, VAR_NAMESPACE, NULL, NULL);
145 if (mainsym && SYMBOL_CLASS (mainsym) == LOC_BLOCK)
146 {
147 symfile_objfile->ei.main_func_lowpc =
148 BLOCK_START (SYMBOL_BLOCK_VALUE (mainsym));
149 symfile_objfile->ei.main_func_highpc =
150 BLOCK_END (SYMBOL_BLOCK_VALUE (mainsym));
151 }
152 }
153 return (symfile_objfile->ei.main_func_lowpc <= pc &&
154 symfile_objfile->ei.main_func_highpc > pc);
155 }
156
157 /* Test a specified PC value to see if it is in the range of addresses
158 that correspond to the process entry point function. See comments
159 in objfiles.h for why we might want to do this.
160
161 Typically called from FRAME_CHAIN_VALID.
162
163 A PC of zero is always considered to be the bottom of the stack. */
164
165 int
166 inside_entry_func (CORE_ADDR pc)
167 {
168 if (pc == 0)
169 return 1;
170 if (symfile_objfile == 0)
171 return 0;
172 if (CALL_DUMMY_LOCATION == AT_ENTRY_POINT)
173 {
174 /* Do not stop backtracing if the pc is in the call dummy
175 at the entry point. */
176 /* FIXME: Won't always work with zeros for the last two arguments */
177 if (PC_IN_CALL_DUMMY (pc, 0, 0))
178 return 0;
179 }
180 return (symfile_objfile->ei.entry_func_lowpc <= pc &&
181 symfile_objfile->ei.entry_func_highpc > pc);
182 }
183
184 /* Info about the innermost stack frame (contents of FP register) */
185
186 static struct frame_info *current_frame;
187
188 /* Cache for frame addresses already read by gdb. Valid only while
189 inferior is stopped. Control variables for the frame cache should
190 be local to this module. */
191
192 static struct obstack frame_cache_obstack;
193
194 void *
195 frame_obstack_alloc (unsigned long size)
196 {
197 return obstack_alloc (&frame_cache_obstack, size);
198 }
199
200 void
201 frame_saved_regs_zalloc (struct frame_info *fi)
202 {
203 fi->saved_regs = (CORE_ADDR *)
204 frame_obstack_alloc (SIZEOF_FRAME_SAVED_REGS);
205 memset (fi->saved_regs, 0, SIZEOF_FRAME_SAVED_REGS);
206 }
207
208
209 /* Return the innermost (currently executing) stack frame. */
210
211 struct frame_info *
212 get_current_frame (void)
213 {
214 if (current_frame == NULL)
215 {
216 if (target_has_stack)
217 current_frame = create_new_frame (read_fp (), read_pc ());
218 else
219 error ("No stack.");
220 }
221 return current_frame;
222 }
223
224 void
225 set_current_frame (struct frame_info *frame)
226 {
227 current_frame = frame;
228 }
229
230
231 /* Using the PC, select a mechanism for unwinding a frame returning
232 the previous frame. The register unwind function should, on
233 demand, initialize the ->context object. */
234
235 static void
236 set_unwind_by_pc (CORE_ADDR pc, CORE_ADDR fp,
237 frame_register_unwind_ftype **unwind)
238 {
239 if (!USE_GENERIC_DUMMY_FRAMES)
240 /* Still need to set this to something. The ``info frame'' code
241 calls this function to find out where the saved registers are.
242 Hopefully this is robust enough to stop any core dumps and
243 return vaguely correct values.. */
244 *unwind = frame_saved_regs_register_unwind;
245 else if (PC_IN_CALL_DUMMY (pc, fp, fp))
246 *unwind = generic_call_dummy_register_unwind;
247 else
248 *unwind = frame_saved_regs_register_unwind;
249 }
250
251 /* Create an arbitrary (i.e. address specified by user) or innermost frame.
252 Always returns a non-NULL value. */
253
254 struct frame_info *
255 create_new_frame (CORE_ADDR addr, CORE_ADDR pc)
256 {
257 struct frame_info *fi;
258 char *name;
259
260 fi = (struct frame_info *)
261 obstack_alloc (&frame_cache_obstack,
262 sizeof (struct frame_info));
263
264 /* Zero all fields by default. */
265 memset (fi, 0, sizeof (struct frame_info));
266
267 fi->frame = addr;
268 fi->pc = pc;
269 find_pc_partial_function (pc, &name, (CORE_ADDR *) NULL, (CORE_ADDR *) NULL);
270 fi->signal_handler_caller = PC_IN_SIGTRAMP (fi->pc, name);
271
272 if (INIT_EXTRA_FRAME_INFO_P ())
273 INIT_EXTRA_FRAME_INFO (0, fi);
274
275 /* Select/initialize an unwind function. */
276 set_unwind_by_pc (fi->pc, fi->frame, &fi->register_unwind);
277
278 return fi;
279 }
280
281 /* Return the frame that FRAME calls (NULL if FRAME is the innermost
282 frame). */
283
284 struct frame_info *
285 get_next_frame (struct frame_info *frame)
286 {
287 return frame->next;
288 }
289
290 /* Flush the entire frame cache. */
291
292 void
293 flush_cached_frames (void)
294 {
295 /* Since we can't really be sure what the first object allocated was */
296 obstack_free (&frame_cache_obstack, 0);
297 obstack_init (&frame_cache_obstack);
298
299 current_frame = NULL; /* Invalidate cache */
300 select_frame (NULL);
301 annotate_frames_invalid ();
302 }
303
304 /* Flush the frame cache, and start a new one if necessary. */
305
306 void
307 reinit_frame_cache (void)
308 {
309 flush_cached_frames ();
310
311 /* FIXME: The inferior_ptid test is wrong if there is a corefile. */
312 if (PIDGET (inferior_ptid) != 0)
313 {
314 select_frame (get_current_frame ());
315 }
316 }
317
318 /* Return nonzero if the function for this frame lacks a prologue. Many
319 machines can define FRAMELESS_FUNCTION_INVOCATION to just call this
320 function. */
321
322 int
323 frameless_look_for_prologue (struct frame_info *frame)
324 {
325 CORE_ADDR func_start, after_prologue;
326
327 func_start = get_pc_function_start (frame->pc);
328 if (func_start)
329 {
330 func_start += FUNCTION_START_OFFSET;
331 /* This is faster, since only care whether there *is* a
332 prologue, not how long it is. */
333 return PROLOGUE_FRAMELESS_P (func_start);
334 }
335 else if (frame->pc == 0)
336 /* A frame with a zero PC is usually created by dereferencing a
337 NULL function pointer, normally causing an immediate core dump
338 of the inferior. Mark function as frameless, as the inferior
339 has no chance of setting up a stack frame. */
340 return 1;
341 else
342 /* If we can't find the start of the function, we don't really
343 know whether the function is frameless, but we should be able
344 to get a reasonable (i.e. best we can do under the
345 circumstances) backtrace by saying that it isn't. */
346 return 0;
347 }
348
349 /* Return a structure containing various interesting information
350 about the frame that called NEXT_FRAME. Returns NULL
351 if there is no such frame. */
352
353 struct frame_info *
354 get_prev_frame (struct frame_info *next_frame)
355 {
356 CORE_ADDR address = 0;
357 struct frame_info *prev;
358 int fromleaf = 0;
359 char *name;
360
361 /* If the requested entry is in the cache, return it.
362 Otherwise, figure out what the address should be for the entry
363 we're about to add to the cache. */
364
365 if (!next_frame)
366 {
367 #if 0
368 /* This screws value_of_variable, which just wants a nice clean
369 NULL return from block_innermost_frame if there are no frames.
370 I don't think I've ever seen this message happen otherwise.
371 And returning NULL here is a perfectly legitimate thing to do. */
372 if (!current_frame)
373 {
374 error ("You haven't set up a process's stack to examine.");
375 }
376 #endif
377
378 return current_frame;
379 }
380
381 /* If we have the prev one, return it */
382 if (next_frame->prev)
383 return next_frame->prev;
384
385 /* On some machines it is possible to call a function without
386 setting up a stack frame for it. On these machines, we
387 define this macro to take two args; a frameinfo pointer
388 identifying a frame and a variable to set or clear if it is
389 or isn't leafless. */
390
391 /* Still don't want to worry about this except on the innermost
392 frame. This macro will set FROMLEAF if NEXT_FRAME is a
393 frameless function invocation. */
394 if (!(next_frame->next))
395 {
396 fromleaf = FRAMELESS_FUNCTION_INVOCATION (next_frame);
397 if (fromleaf)
398 address = FRAME_FP (next_frame);
399 }
400
401 if (!fromleaf)
402 {
403 /* Two macros defined in tm.h specify the machine-dependent
404 actions to be performed here.
405 First, get the frame's chain-pointer.
406 If that is zero, the frame is the outermost frame or a leaf
407 called by the outermost frame. This means that if start
408 calls main without a frame, we'll return 0 (which is fine
409 anyway).
410
411 Nope; there's a problem. This also returns when the current
412 routine is a leaf of main. This is unacceptable. We move
413 this to after the ffi test; I'd rather have backtraces from
414 start go curfluy than have an abort called from main not show
415 main. */
416 address = FRAME_CHAIN (next_frame);
417
418 /* FIXME: cagney/2002-06-08: There should be two tests here.
419 The first would check for a valid frame chain based on a user
420 selectable policy. The default being ``stop at main'' (as
421 implemented by generic_func_frame_chain_valid()). Other
422 policies would be available - stop at NULL, .... The second
423 test, if provided by the target architecture, would check for
424 more exotic cases - most target architectures wouldn't bother
425 with this second case. */
426 if (!FRAME_CHAIN_VALID (address, next_frame))
427 return 0;
428 }
429 if (address == 0)
430 return 0;
431
432 prev = (struct frame_info *)
433 obstack_alloc (&frame_cache_obstack,
434 sizeof (struct frame_info));
435
436 /* Zero all fields by default. */
437 memset (prev, 0, sizeof (struct frame_info));
438
439 if (next_frame)
440 next_frame->prev = prev;
441 prev->next = next_frame;
442 prev->frame = address;
443 prev->level = next_frame->level + 1;
444
445 /* This change should not be needed, FIXME! We should
446 determine whether any targets *need* INIT_FRAME_PC to happen
447 after INIT_EXTRA_FRAME_INFO and come up with a simple way to
448 express what goes on here.
449
450 INIT_EXTRA_FRAME_INFO is called from two places: create_new_frame
451 (where the PC is already set up) and here (where it isn't).
452 INIT_FRAME_PC is only called from here, always after
453 INIT_EXTRA_FRAME_INFO.
454
455 The catch is the MIPS, where INIT_EXTRA_FRAME_INFO requires the PC
456 value (which hasn't been set yet). Some other machines appear to
457 require INIT_EXTRA_FRAME_INFO before they can do INIT_FRAME_PC. Phoo.
458
459 We shouldn't need INIT_FRAME_PC_FIRST to add more complication to
460 an already overcomplicated part of GDB. gnu@cygnus.com, 15Sep92.
461
462 Assuming that some machines need INIT_FRAME_PC after
463 INIT_EXTRA_FRAME_INFO, one possible scheme:
464
465 SETUP_INNERMOST_FRAME()
466 Default version is just create_new_frame (read_fp ()),
467 read_pc ()). Machines with extra frame info would do that (or the
468 local equivalent) and then set the extra fields.
469 SETUP_ARBITRARY_FRAME(argc, argv)
470 Only change here is that create_new_frame would no longer init extra
471 frame info; SETUP_ARBITRARY_FRAME would have to do that.
472 INIT_PREV_FRAME(fromleaf, prev)
473 Replace INIT_EXTRA_FRAME_INFO and INIT_FRAME_PC. This should
474 also return a flag saying whether to keep the new frame, or
475 whether to discard it, because on some machines (e.g. mips) it
476 is really awkward to have FRAME_CHAIN_VALID called *before*
477 INIT_EXTRA_FRAME_INFO (there is no good way to get information
478 deduced in FRAME_CHAIN_VALID into the extra fields of the new frame).
479 std_frame_pc(fromleaf, prev)
480 This is the default setting for INIT_PREV_FRAME. It just does what
481 the default INIT_FRAME_PC does. Some machines will call it from
482 INIT_PREV_FRAME (either at the beginning, the end, or in the middle).
483 Some machines won't use it.
484 kingdon@cygnus.com, 13Apr93, 31Jan94, 14Dec94. */
485
486 INIT_FRAME_PC_FIRST (fromleaf, prev);
487
488 if (INIT_EXTRA_FRAME_INFO_P ())
489 INIT_EXTRA_FRAME_INFO (fromleaf, prev);
490
491 /* This entry is in the frame queue now, which is good since
492 FRAME_SAVED_PC may use that queue to figure out its value
493 (see tm-sparc.h). We want the pc saved in the inferior frame. */
494 INIT_FRAME_PC (fromleaf, prev);
495
496 /* If ->frame and ->pc are unchanged, we are in the process of getting
497 ourselves into an infinite backtrace. Some architectures check this
498 in FRAME_CHAIN or thereabouts, but it seems like there is no reason
499 this can't be an architecture-independent check. */
500 if (next_frame != NULL)
501 {
502 if (prev->frame == next_frame->frame
503 && prev->pc == next_frame->pc)
504 {
505 next_frame->prev = NULL;
506 obstack_free (&frame_cache_obstack, prev);
507 return NULL;
508 }
509 }
510
511 /* Initialize the code used to unwind the frame PREV based on the PC
512 (and probably other architectural information). The PC lets you
513 check things like the debug info at that point (dwarf2cfi?) and
514 use that to decide how the frame should be unwound. */
515 set_unwind_by_pc (prev->pc, prev->frame, &prev->register_unwind);
516
517 find_pc_partial_function (prev->pc, &name,
518 (CORE_ADDR *) NULL, (CORE_ADDR *) NULL);
519 if (PC_IN_SIGTRAMP (prev->pc, name))
520 prev->signal_handler_caller = 1;
521
522 return prev;
523 }
524
525 CORE_ADDR
526 get_frame_pc (struct frame_info *frame)
527 {
528 return frame->pc;
529 }
530
531 /* return the address of the PC for the given FRAME, ie the current PC value
532 if FRAME is the innermost frame, or the address adjusted to point to the
533 call instruction if not. */
534
535 CORE_ADDR
536 frame_address_in_block (struct frame_info *frame)
537 {
538 CORE_ADDR pc = frame->pc;
539
540 /* If we are not in the innermost frame, and we are not interrupted
541 by a signal, frame->pc points to the instruction following the
542 call. As a consequence, we need to get the address of the previous
543 instruction. Unfortunately, this is not straightforward to do, so
544 we just use the address minus one, which is a good enough
545 approximation. */
546 if (frame->next != 0 && frame->next->signal_handler_caller == 0)
547 --pc;
548
549 return pc;
550 }
551
552 #ifdef FRAME_FIND_SAVED_REGS
553 /* XXX - deprecated. This is a compatibility function for targets
554 that do not yet implement FRAME_INIT_SAVED_REGS. */
555 /* Find the addresses in which registers are saved in FRAME. */
556
557 void
558 get_frame_saved_regs (struct frame_info *frame,
559 struct frame_saved_regs *saved_regs_addr)
560 {
561 if (frame->saved_regs == NULL)
562 {
563 frame->saved_regs = (CORE_ADDR *)
564 frame_obstack_alloc (SIZEOF_FRAME_SAVED_REGS);
565 }
566 if (saved_regs_addr == NULL)
567 {
568 struct frame_saved_regs saved_regs;
569 FRAME_FIND_SAVED_REGS (frame, saved_regs);
570 memcpy (frame->saved_regs, &saved_regs, SIZEOF_FRAME_SAVED_REGS);
571 }
572 else
573 {
574 FRAME_FIND_SAVED_REGS (frame, *saved_regs_addr);
575 memcpy (frame->saved_regs, saved_regs_addr, SIZEOF_FRAME_SAVED_REGS);
576 }
577 }
578 #endif
579
580 /* Return the innermost lexical block in execution
581 in a specified stack frame. The frame address is assumed valid.
582
583 If ADDR_IN_BLOCK is non-zero, set *ADDR_IN_BLOCK to the exact code
584 address we used to choose the block. We use this to find a source
585 line, to decide which macro definitions are in scope.
586
587 The value returned in *ADDR_IN_BLOCK isn't necessarily the frame's
588 PC, and may not really be a valid PC at all. For example, in the
589 caller of a function declared to never return, the code at the
590 return address will never be reached, so the call instruction may
591 be the very last instruction in the block. So the address we use
592 to choose the block is actually one byte before the return address
593 --- hopefully pointing us at the call instruction, or its delay
594 slot instruction. */
595
596 struct block *
597 get_frame_block (struct frame_info *frame, CORE_ADDR *addr_in_block)
598 {
599 const CORE_ADDR pc = frame_address_in_block (frame);
600
601 if (addr_in_block)
602 *addr_in_block = pc;
603
604 return block_for_pc (pc);
605 }
606
607 struct block *
608 get_current_block (CORE_ADDR *addr_in_block)
609 {
610 CORE_ADDR pc = read_pc ();
611
612 if (addr_in_block)
613 *addr_in_block = pc;
614
615 return block_for_pc (pc);
616 }
617
618 CORE_ADDR
619 get_pc_function_start (CORE_ADDR pc)
620 {
621 register struct block *bl;
622 register struct symbol *symbol;
623 register struct minimal_symbol *msymbol;
624 CORE_ADDR fstart;
625
626 if ((bl = block_for_pc (pc)) != NULL &&
627 (symbol = block_function (bl)) != NULL)
628 {
629 bl = SYMBOL_BLOCK_VALUE (symbol);
630 fstart = BLOCK_START (bl);
631 }
632 else if ((msymbol = lookup_minimal_symbol_by_pc (pc)) != NULL)
633 {
634 fstart = SYMBOL_VALUE_ADDRESS (msymbol);
635 if (!find_pc_section (fstart))
636 return 0;
637 }
638 else
639 {
640 fstart = 0;
641 }
642 return (fstart);
643 }
644
645 /* Return the symbol for the function executing in frame FRAME. */
646
647 struct symbol *
648 get_frame_function (struct frame_info *frame)
649 {
650 register struct block *bl = get_frame_block (frame, 0);
651 if (bl == 0)
652 return 0;
653 return block_function (bl);
654 }
655 \f
656
657 /* Return the blockvector immediately containing the innermost lexical block
658 containing the specified pc value and section, or 0 if there is none.
659 PINDEX is a pointer to the index value of the block. If PINDEX
660 is NULL, we don't pass this information back to the caller. */
661
662 struct blockvector *
663 blockvector_for_pc_sect (register CORE_ADDR pc, struct sec *section,
664 int *pindex, struct symtab *symtab)
665 {
666 register struct block *b;
667 register int bot, top, half;
668 struct blockvector *bl;
669
670 if (symtab == 0) /* if no symtab specified by caller */
671 {
672 /* First search all symtabs for one whose file contains our pc */
673 if ((symtab = find_pc_sect_symtab (pc, section)) == 0)
674 return 0;
675 }
676
677 bl = BLOCKVECTOR (symtab);
678 b = BLOCKVECTOR_BLOCK (bl, 0);
679
680 /* Then search that symtab for the smallest block that wins. */
681 /* Use binary search to find the last block that starts before PC. */
682
683 bot = 0;
684 top = BLOCKVECTOR_NBLOCKS (bl);
685
686 while (top - bot > 1)
687 {
688 half = (top - bot + 1) >> 1;
689 b = BLOCKVECTOR_BLOCK (bl, bot + half);
690 if (BLOCK_START (b) <= pc)
691 bot += half;
692 else
693 top = bot + half;
694 }
695
696 /* Now search backward for a block that ends after PC. */
697
698 while (bot >= 0)
699 {
700 b = BLOCKVECTOR_BLOCK (bl, bot);
701 if (BLOCK_END (b) > pc)
702 {
703 if (pindex)
704 *pindex = bot;
705 return bl;
706 }
707 bot--;
708 }
709 return 0;
710 }
711
712 /* Return the blockvector immediately containing the innermost lexical block
713 containing the specified pc value, or 0 if there is none.
714 Backward compatibility, no section. */
715
716 struct blockvector *
717 blockvector_for_pc (register CORE_ADDR pc, int *pindex)
718 {
719 return blockvector_for_pc_sect (pc, find_pc_mapped_section (pc),
720 pindex, NULL);
721 }
722
723 /* Return the innermost lexical block containing the specified pc value
724 in the specified section, or 0 if there is none. */
725
726 struct block *
727 block_for_pc_sect (register CORE_ADDR pc, struct sec *section)
728 {
729 register struct blockvector *bl;
730 int index;
731
732 bl = blockvector_for_pc_sect (pc, section, &index, NULL);
733 if (bl)
734 return BLOCKVECTOR_BLOCK (bl, index);
735 return 0;
736 }
737
738 /* Return the innermost lexical block containing the specified pc value,
739 or 0 if there is none. Backward compatibility, no section. */
740
741 struct block *
742 block_for_pc (register CORE_ADDR pc)
743 {
744 return block_for_pc_sect (pc, find_pc_mapped_section (pc));
745 }
746
747 /* Return the function containing pc value PC in section SECTION.
748 Returns 0 if function is not known. */
749
750 struct symbol *
751 find_pc_sect_function (CORE_ADDR pc, struct sec *section)
752 {
753 register struct block *b = block_for_pc_sect (pc, section);
754 if (b == 0)
755 return 0;
756 return block_function (b);
757 }
758
759 /* Return the function containing pc value PC.
760 Returns 0 if function is not known. Backward compatibility, no section */
761
762 struct symbol *
763 find_pc_function (CORE_ADDR pc)
764 {
765 return find_pc_sect_function (pc, find_pc_mapped_section (pc));
766 }
767
768 /* These variables are used to cache the most recent result
769 * of find_pc_partial_function. */
770
771 static CORE_ADDR cache_pc_function_low = 0;
772 static CORE_ADDR cache_pc_function_high = 0;
773 static char *cache_pc_function_name = 0;
774 static struct sec *cache_pc_function_section = NULL;
775
776 /* Clear cache, e.g. when symbol table is discarded. */
777
778 void
779 clear_pc_function_cache (void)
780 {
781 cache_pc_function_low = 0;
782 cache_pc_function_high = 0;
783 cache_pc_function_name = (char *) 0;
784 cache_pc_function_section = NULL;
785 }
786
787 /* Finds the "function" (text symbol) that is smaller than PC but
788 greatest of all of the potential text symbols in SECTION. Sets
789 *NAME and/or *ADDRESS conditionally if that pointer is non-null.
790 If ENDADDR is non-null, then set *ENDADDR to be the end of the
791 function (exclusive), but passing ENDADDR as non-null means that
792 the function might cause symbols to be read. This function either
793 succeeds or fails (not halfway succeeds). If it succeeds, it sets
794 *NAME, *ADDRESS, and *ENDADDR to real information and returns 1.
795 If it fails, it sets *NAME, *ADDRESS, and *ENDADDR to zero and
796 returns 0. */
797
798 int
799 find_pc_sect_partial_function (CORE_ADDR pc, asection *section, char **name,
800 CORE_ADDR *address, CORE_ADDR *endaddr)
801 {
802 struct partial_symtab *pst;
803 struct symbol *f;
804 struct minimal_symbol *msymbol;
805 struct partial_symbol *psb;
806 struct obj_section *osect;
807 int i;
808 CORE_ADDR mapped_pc;
809
810 mapped_pc = overlay_mapped_address (pc, section);
811
812 if (mapped_pc >= cache_pc_function_low
813 && mapped_pc < cache_pc_function_high
814 && section == cache_pc_function_section)
815 goto return_cached_value;
816
817 /* If sigtramp is in the u area, it counts as a function (especially
818 important for step_1). */
819 if (SIGTRAMP_START_P () && PC_IN_SIGTRAMP (mapped_pc, (char *) NULL))
820 {
821 cache_pc_function_low = SIGTRAMP_START (mapped_pc);
822 cache_pc_function_high = SIGTRAMP_END (mapped_pc);
823 cache_pc_function_name = "<sigtramp>";
824 cache_pc_function_section = section;
825 goto return_cached_value;
826 }
827
828 msymbol = lookup_minimal_symbol_by_pc_section (mapped_pc, section);
829 pst = find_pc_sect_psymtab (mapped_pc, section);
830 if (pst)
831 {
832 /* Need to read the symbols to get a good value for the end address. */
833 if (endaddr != NULL && !pst->readin)
834 {
835 /* Need to get the terminal in case symbol-reading produces
836 output. */
837 target_terminal_ours_for_output ();
838 PSYMTAB_TO_SYMTAB (pst);
839 }
840
841 if (pst->readin)
842 {
843 /* Checking whether the msymbol has a larger value is for the
844 "pathological" case mentioned in print_frame_info. */
845 f = find_pc_sect_function (mapped_pc, section);
846 if (f != NULL
847 && (msymbol == NULL
848 || (BLOCK_START (SYMBOL_BLOCK_VALUE (f))
849 >= SYMBOL_VALUE_ADDRESS (msymbol))))
850 {
851 cache_pc_function_low = BLOCK_START (SYMBOL_BLOCK_VALUE (f));
852 cache_pc_function_high = BLOCK_END (SYMBOL_BLOCK_VALUE (f));
853 cache_pc_function_name = SYMBOL_NAME (f);
854 cache_pc_function_section = section;
855 goto return_cached_value;
856 }
857 }
858 else
859 {
860 /* Now that static symbols go in the minimal symbol table, perhaps
861 we could just ignore the partial symbols. But at least for now
862 we use the partial or minimal symbol, whichever is larger. */
863 psb = find_pc_sect_psymbol (pst, mapped_pc, section);
864
865 if (psb
866 && (msymbol == NULL ||
867 (SYMBOL_VALUE_ADDRESS (psb)
868 >= SYMBOL_VALUE_ADDRESS (msymbol))))
869 {
870 /* This case isn't being cached currently. */
871 if (address)
872 *address = SYMBOL_VALUE_ADDRESS (psb);
873 if (name)
874 *name = SYMBOL_NAME (psb);
875 /* endaddr non-NULL can't happen here. */
876 return 1;
877 }
878 }
879 }
880
881 /* Not in the normal symbol tables, see if the pc is in a known section.
882 If it's not, then give up. This ensures that anything beyond the end
883 of the text seg doesn't appear to be part of the last function in the
884 text segment. */
885
886 osect = find_pc_sect_section (mapped_pc, section);
887
888 if (!osect)
889 msymbol = NULL;
890
891 /* Must be in the minimal symbol table. */
892 if (msymbol == NULL)
893 {
894 /* No available symbol. */
895 if (name != NULL)
896 *name = 0;
897 if (address != NULL)
898 *address = 0;
899 if (endaddr != NULL)
900 *endaddr = 0;
901 return 0;
902 }
903
904 cache_pc_function_low = SYMBOL_VALUE_ADDRESS (msymbol);
905 cache_pc_function_name = SYMBOL_NAME (msymbol);
906 cache_pc_function_section = section;
907
908 /* Use the lesser of the next minimal symbol in the same section, or
909 the end of the section, as the end of the function. */
910
911 /* Step over other symbols at this same address, and symbols in
912 other sections, to find the next symbol in this section with
913 a different address. */
914
915 for (i = 1; SYMBOL_NAME (msymbol + i) != NULL; i++)
916 {
917 if (SYMBOL_VALUE_ADDRESS (msymbol + i) != SYMBOL_VALUE_ADDRESS (msymbol)
918 && SYMBOL_BFD_SECTION (msymbol + i) == SYMBOL_BFD_SECTION (msymbol))
919 break;
920 }
921
922 if (SYMBOL_NAME (msymbol + i) != NULL
923 && SYMBOL_VALUE_ADDRESS (msymbol + i) < osect->endaddr)
924 cache_pc_function_high = SYMBOL_VALUE_ADDRESS (msymbol + i);
925 else
926 /* We got the start address from the last msymbol in the objfile.
927 So the end address is the end of the section. */
928 cache_pc_function_high = osect->endaddr;
929
930 return_cached_value:
931
932 if (address)
933 {
934 if (pc_in_unmapped_range (pc, section))
935 *address = overlay_unmapped_address (cache_pc_function_low, section);
936 else
937 *address = cache_pc_function_low;
938 }
939
940 if (name)
941 *name = cache_pc_function_name;
942
943 if (endaddr)
944 {
945 if (pc_in_unmapped_range (pc, section))
946 {
947 /* Because the high address is actually beyond the end of
948 the function (and therefore possibly beyond the end of
949 the overlay), we must actually convert (high - 1) and
950 then add one to that. */
951
952 *endaddr = 1 + overlay_unmapped_address (cache_pc_function_high - 1,
953 section);
954 }
955 else
956 *endaddr = cache_pc_function_high;
957 }
958
959 return 1;
960 }
961
962 /* Backward compatibility, no section argument. */
963
964 int
965 find_pc_partial_function (CORE_ADDR pc, char **name, CORE_ADDR *address,
966 CORE_ADDR *endaddr)
967 {
968 asection *section;
969
970 section = find_pc_overlay (pc);
971 return find_pc_sect_partial_function (pc, section, name, address, endaddr);
972 }
973
974 /* Return the innermost stack frame executing inside of BLOCK,
975 or NULL if there is no such frame. If BLOCK is NULL, just return NULL. */
976
977 struct frame_info *
978 block_innermost_frame (struct block *block)
979 {
980 struct frame_info *frame;
981 register CORE_ADDR start;
982 register CORE_ADDR end;
983 CORE_ADDR calling_pc;
984
985 if (block == NULL)
986 return NULL;
987
988 start = BLOCK_START (block);
989 end = BLOCK_END (block);
990
991 frame = NULL;
992 while (1)
993 {
994 frame = get_prev_frame (frame);
995 if (frame == NULL)
996 return NULL;
997 calling_pc = frame_address_in_block (frame);
998 if (calling_pc >= start && calling_pc < end)
999 return frame;
1000 }
1001 }
1002
1003 /* Return the full FRAME which corresponds to the given CORE_ADDR
1004 or NULL if no FRAME on the chain corresponds to CORE_ADDR. */
1005
1006 struct frame_info *
1007 find_frame_addr_in_frame_chain (CORE_ADDR frame_addr)
1008 {
1009 struct frame_info *frame = NULL;
1010
1011 if (frame_addr == (CORE_ADDR) 0)
1012 return NULL;
1013
1014 while (1)
1015 {
1016 frame = get_prev_frame (frame);
1017 if (frame == NULL)
1018 return NULL;
1019 if (FRAME_FP (frame) == frame_addr)
1020 return frame;
1021 }
1022 }
1023
1024 #ifdef SIGCONTEXT_PC_OFFSET
1025 /* Get saved user PC for sigtramp from sigcontext for BSD style sigtramp. */
1026
1027 CORE_ADDR
1028 sigtramp_saved_pc (struct frame_info *frame)
1029 {
1030 CORE_ADDR sigcontext_addr;
1031 char *buf;
1032 int ptrbytes = TARGET_PTR_BIT / TARGET_CHAR_BIT;
1033 int sigcontext_offs = (2 * TARGET_INT_BIT) / TARGET_CHAR_BIT;
1034
1035 buf = alloca (ptrbytes);
1036 /* Get sigcontext address, it is the third parameter on the stack. */
1037 if (frame->next)
1038 sigcontext_addr = read_memory_integer (FRAME_ARGS_ADDRESS (frame->next)
1039 + FRAME_ARGS_SKIP
1040 + sigcontext_offs,
1041 ptrbytes);
1042 else
1043 sigcontext_addr = read_memory_integer (read_register (SP_REGNUM)
1044 + sigcontext_offs,
1045 ptrbytes);
1046
1047 /* Don't cause a memory_error when accessing sigcontext in case the stack
1048 layout has changed or the stack is corrupt. */
1049 target_read_memory (sigcontext_addr + SIGCONTEXT_PC_OFFSET, buf, ptrbytes);
1050 return extract_unsigned_integer (buf, ptrbytes);
1051 }
1052 #endif /* SIGCONTEXT_PC_OFFSET */
1053
1054
1055 /* Are we in a call dummy? The code below which allows DECR_PC_AFTER_BREAK
1056 below is for infrun.c, which may give the macro a pc without that
1057 subtracted out. */
1058
1059 extern CORE_ADDR text_end;
1060
1061 int
1062 pc_in_call_dummy_before_text_end (CORE_ADDR pc, CORE_ADDR sp,
1063 CORE_ADDR frame_address)
1064 {
1065 return ((pc) >= text_end - CALL_DUMMY_LENGTH
1066 && (pc) <= text_end + DECR_PC_AFTER_BREAK);
1067 }
1068
1069 int
1070 pc_in_call_dummy_after_text_end (CORE_ADDR pc, CORE_ADDR sp,
1071 CORE_ADDR frame_address)
1072 {
1073 return ((pc) >= text_end
1074 && (pc) <= text_end + CALL_DUMMY_LENGTH + DECR_PC_AFTER_BREAK);
1075 }
1076
1077 /* Is the PC in a call dummy? SP and FRAME_ADDRESS are the bottom and
1078 top of the stack frame which we are checking, where "bottom" and
1079 "top" refer to some section of memory which contains the code for
1080 the call dummy. Calls to this macro assume that the contents of
1081 SP_REGNUM and FP_REGNUM (or the saved values thereof), respectively,
1082 are the things to pass.
1083
1084 This won't work on the 29k, where SP_REGNUM and FP_REGNUM don't
1085 have that meaning, but the 29k doesn't use ON_STACK. This could be
1086 fixed by generalizing this scheme, perhaps by passing in a frame
1087 and adding a few fields, at least on machines which need them for
1088 PC_IN_CALL_DUMMY.
1089
1090 Something simpler, like checking for the stack segment, doesn't work,
1091 since various programs (threads implementations, gcc nested function
1092 stubs, etc) may either allocate stack frames in another segment, or
1093 allocate other kinds of code on the stack. */
1094
1095 int
1096 pc_in_call_dummy_on_stack (CORE_ADDR pc, CORE_ADDR sp, CORE_ADDR frame_address)
1097 {
1098 return (INNER_THAN ((sp), (pc))
1099 && (frame_address != 0)
1100 && INNER_THAN ((pc), (frame_address)));
1101 }
1102
1103 int
1104 pc_in_call_dummy_at_entry_point (CORE_ADDR pc, CORE_ADDR sp,
1105 CORE_ADDR frame_address)
1106 {
1107 return ((pc) >= CALL_DUMMY_ADDRESS ()
1108 && (pc) <= (CALL_DUMMY_ADDRESS () + DECR_PC_AFTER_BREAK));
1109 }
1110
1111
1112 /*
1113 * GENERIC DUMMY FRAMES
1114 *
1115 * The following code serves to maintain the dummy stack frames for
1116 * inferior function calls (ie. when gdb calls into the inferior via
1117 * call_function_by_hand). This code saves the machine state before
1118 * the call in host memory, so we must maintain an independent stack
1119 * and keep it consistant etc. I am attempting to make this code
1120 * generic enough to be used by many targets.
1121 *
1122 * The cheapest and most generic way to do CALL_DUMMY on a new target
1123 * is probably to define CALL_DUMMY to be empty, CALL_DUMMY_LENGTH to
1124 * zero, and CALL_DUMMY_LOCATION to AT_ENTRY. Then you must remember
1125 * to define PUSH_RETURN_ADDRESS, because no call instruction will be
1126 * being executed by the target. Also FRAME_CHAIN_VALID as
1127 * generic_{file,func}_frame_chain_valid and FIX_CALL_DUMMY as
1128 * generic_fix_call_dummy. */
1129
1130 /* Dummy frame. This saves the processor state just prior to setting
1131 up the inferior function call. Older targets save the registers
1132 on the target stack (but that really slows down function calls). */
1133
1134 struct dummy_frame
1135 {
1136 struct dummy_frame *next;
1137
1138 CORE_ADDR pc;
1139 CORE_ADDR fp;
1140 CORE_ADDR sp;
1141 CORE_ADDR top;
1142 struct regcache *regcache;
1143
1144 /* Address range of the call dummy code. Look for PC in the range
1145 [LO..HI) (after allowing for DECR_PC_AFTER_BREAK). */
1146 CORE_ADDR call_lo;
1147 CORE_ADDR call_hi;
1148 };
1149
1150 static struct dummy_frame *dummy_frame_stack = NULL;
1151
1152 /* Function: find_dummy_frame(pc, fp, sp)
1153
1154 Search the stack of dummy frames for one matching the given PC and
1155 FP/SP. Unlike PC_IN_CALL_DUMMY, this function doesn't need to
1156 adjust for DECR_PC_AFTER_BREAK. This is because it is only legal
1157 to call this function after the PC has been adjusted. */
1158
1159 static struct regcache *
1160 generic_find_dummy_frame (CORE_ADDR pc, CORE_ADDR fp)
1161 {
1162 struct dummy_frame *dummyframe;
1163
1164 for (dummyframe = dummy_frame_stack; dummyframe != NULL;
1165 dummyframe = dummyframe->next)
1166 {
1167 /* Does the PC fall within the dummy frame's breakpoint
1168 instruction. If not, discard this one. */
1169 if (!(pc >= dummyframe->call_lo && pc < dummyframe->call_hi))
1170 continue;
1171 /* Does the FP match? */
1172 if (dummyframe->top != 0)
1173 {
1174 /* If the target architecture explicitly saved the
1175 top-of-stack before the inferior function call, assume
1176 that that same architecture will always pass in an FP
1177 (frame base) value that eactly matches that saved TOS.
1178 Don't check the saved SP and SP as they can lead to false
1179 hits. */
1180 if (fp != dummyframe->top)
1181 continue;
1182 }
1183 else
1184 {
1185 /* An older target that hasn't explicitly or implicitly
1186 saved the dummy frame's top-of-stack. Try matching the
1187 FP against the saved SP and FP. NOTE: If you're trying
1188 to fix a problem with GDB not correctly finding a dummy
1189 frame, check the comments that go with FRAME_ALIGN() and
1190 SAVE_DUMMY_FRAME_TOS(). */
1191 if (fp != dummyframe->fp && fp != dummyframe->sp)
1192 continue;
1193 }
1194 /* The FP matches this dummy frame. */
1195 return dummyframe->regcache;
1196 }
1197
1198 return 0;
1199 }
1200
1201 char *
1202 deprecated_generic_find_dummy_frame (CORE_ADDR pc, CORE_ADDR fp)
1203 {
1204 struct regcache *regcache = generic_find_dummy_frame (pc, fp);
1205 if (regcache == NULL)
1206 return NULL;
1207 return deprecated_grub_regcache_for_registers (regcache);
1208 }
1209
1210 /* Function: pc_in_call_dummy (pc, sp, fp)
1211
1212 Return true if the PC falls in a dummy frame created by gdb for an
1213 inferior call. The code below which allows DECR_PC_AFTER_BREAK is
1214 for infrun.c, which may give the function a PC without that
1215 subtracted out. */
1216
1217 int
1218 generic_pc_in_call_dummy (CORE_ADDR pc, CORE_ADDR sp, CORE_ADDR fp)
1219 {
1220 struct dummy_frame *dummyframe;
1221 for (dummyframe = dummy_frame_stack;
1222 dummyframe != NULL;
1223 dummyframe = dummyframe->next)
1224 {
1225 if ((pc >= dummyframe->call_lo)
1226 && (pc < dummyframe->call_hi + DECR_PC_AFTER_BREAK))
1227 return 1;
1228 }
1229 return 0;
1230 }
1231
1232 /* Function: read_register_dummy
1233 Find a saved register from before GDB calls a function in the inferior */
1234
1235 CORE_ADDR
1236 deprecated_read_register_dummy (CORE_ADDR pc, CORE_ADDR fp, int regno)
1237 {
1238 struct regcache *dummy_regs = generic_find_dummy_frame (pc, fp);
1239
1240 if (dummy_regs)
1241 {
1242 /* NOTE: cagney/2002-08-12: Replaced a call to
1243 regcache_raw_read_as_address() with a call to
1244 regcache_cooked_read_unsigned(). The old, ...as_address
1245 function was eventually calling extract_unsigned_integer (via
1246 extract_address) to unpack the registers value. The below is
1247 doing an unsigned extract so that it is functionally
1248 equivalent. The read needs to be cooked as, otherwise, it
1249 will never correctly return the value of a register in the
1250 [NUM_REGS .. NUM_REGS+NUM_PSEUDO_REGS) range. */
1251 ULONGEST val;
1252 regcache_cooked_read_unsigned (dummy_regs, regno, &val);
1253 return val;
1254 }
1255 else
1256 return 0;
1257 }
1258
1259 /* Save all the registers on the dummy frame stack. Most ports save the
1260 registers on the target stack. This results in lots of unnecessary memory
1261 references, which are slow when debugging via a serial line. Instead, we
1262 save all the registers internally, and never write them to the stack. The
1263 registers get restored when the called function returns to the entry point,
1264 where a breakpoint is laying in wait. */
1265
1266 void
1267 generic_push_dummy_frame (void)
1268 {
1269 struct dummy_frame *dummy_frame;
1270 CORE_ADDR fp = (get_current_frame ())->frame;
1271
1272 /* check to see if there are stale dummy frames,
1273 perhaps left over from when a longjump took us out of a
1274 function that was called by the debugger */
1275
1276 dummy_frame = dummy_frame_stack;
1277 while (dummy_frame)
1278 if (INNER_THAN (dummy_frame->fp, fp)) /* stale -- destroy! */
1279 {
1280 dummy_frame_stack = dummy_frame->next;
1281 regcache_xfree (dummy_frame->regcache);
1282 xfree (dummy_frame);
1283 dummy_frame = dummy_frame_stack;
1284 }
1285 else
1286 dummy_frame = dummy_frame->next;
1287
1288 dummy_frame = xmalloc (sizeof (struct dummy_frame));
1289 dummy_frame->regcache = regcache_xmalloc (current_gdbarch);
1290
1291 dummy_frame->pc = read_pc ();
1292 dummy_frame->sp = read_sp ();
1293 dummy_frame->top = 0;
1294 dummy_frame->fp = fp;
1295 regcache_cpy (dummy_frame->regcache, current_regcache);
1296 dummy_frame->next = dummy_frame_stack;
1297 dummy_frame_stack = dummy_frame;
1298 }
1299
1300 void
1301 generic_save_dummy_frame_tos (CORE_ADDR sp)
1302 {
1303 dummy_frame_stack->top = sp;
1304 }
1305
1306 /* Record the upper/lower bounds on the address of the call dummy. */
1307
1308 void
1309 generic_save_call_dummy_addr (CORE_ADDR lo, CORE_ADDR hi)
1310 {
1311 dummy_frame_stack->call_lo = lo;
1312 dummy_frame_stack->call_hi = hi;
1313 }
1314
1315 /* Restore the machine state from either the saved dummy stack or a
1316 real stack frame. */
1317
1318 void
1319 generic_pop_current_frame (void (*popper) (struct frame_info * frame))
1320 {
1321 struct frame_info *frame = get_current_frame ();
1322
1323 if (PC_IN_CALL_DUMMY (frame->pc, frame->frame, frame->frame))
1324 generic_pop_dummy_frame ();
1325 else
1326 (*popper) (frame);
1327 }
1328
1329 /* Function: pop_dummy_frame
1330 Restore the machine state from a saved dummy stack frame. */
1331
1332 void
1333 generic_pop_dummy_frame (void)
1334 {
1335 struct dummy_frame *dummy_frame = dummy_frame_stack;
1336
1337 /* FIXME: what if the first frame isn't the right one, eg..
1338 because one call-by-hand function has done a longjmp into another one? */
1339
1340 if (!dummy_frame)
1341 error ("Can't pop dummy frame!");
1342 dummy_frame_stack = dummy_frame->next;
1343 regcache_cpy (current_regcache, dummy_frame->regcache);
1344 flush_cached_frames ();
1345
1346 regcache_xfree (dummy_frame->regcache);
1347 xfree (dummy_frame);
1348 }
1349
1350 /* Function: frame_chain_valid
1351 Returns true for a user frame or a call_function_by_hand dummy frame,
1352 and false for the CRT0 start-up frame. Purpose is to terminate backtrace */
1353
1354 int
1355 generic_file_frame_chain_valid (CORE_ADDR fp, struct frame_info *fi)
1356 {
1357 if (PC_IN_CALL_DUMMY (FRAME_SAVED_PC (fi), fp, fp))
1358 return 1; /* don't prune CALL_DUMMY frames */
1359 else /* fall back to default algorithm (see frame.h) */
1360 return (fp != 0
1361 && (INNER_THAN (fi->frame, fp) || fi->frame == fp)
1362 && !inside_entry_file (FRAME_SAVED_PC (fi)));
1363 }
1364
1365 int
1366 generic_func_frame_chain_valid (CORE_ADDR fp, struct frame_info *fi)
1367 {
1368 if (USE_GENERIC_DUMMY_FRAMES
1369 && PC_IN_CALL_DUMMY ((fi)->pc, 0, 0))
1370 return 1; /* don't prune CALL_DUMMY frames */
1371 else /* fall back to default algorithm (see frame.h) */
1372 return (fp != 0
1373 && (INNER_THAN (fi->frame, fp) || fi->frame == fp)
1374 && !inside_main_func ((fi)->pc)
1375 && !inside_entry_func ((fi)->pc));
1376 }
1377
1378 /* Function: fix_call_dummy
1379 Stub function. Generic dummy frames typically do not need to fix
1380 the frame being created */
1381
1382 void
1383 generic_fix_call_dummy (char *dummy, CORE_ADDR pc, CORE_ADDR fun, int nargs,
1384 struct value **args, struct type *type, int gcc_p)
1385 {
1386 return;
1387 }
1388
1389 /* Given a call-dummy dummy-frame, return the registers. Here the
1390 register value is taken from the local copy of the register buffer. */
1391
1392 static void
1393 generic_call_dummy_register_unwind (struct frame_info *frame, void **cache,
1394 int regnum, int *optimized,
1395 enum lval_type *lvalp, CORE_ADDR *addrp,
1396 int *realnum, void *bufferp)
1397 {
1398 gdb_assert (frame != NULL);
1399 gdb_assert (PC_IN_CALL_DUMMY (frame->pc, frame->frame, frame->frame));
1400
1401 /* Describe the register's location. Generic dummy frames always
1402 have the register value in an ``expression''. */
1403 *optimized = 0;
1404 *lvalp = not_lval;
1405 *addrp = 0;
1406 *realnum = -1;
1407
1408 /* If needed, find and return the value of the register. */
1409 if (bufferp != NULL)
1410 {
1411 struct regcache *registers;
1412 #if 1
1413 /* Get the address of the register buffer that contains all the
1414 saved registers for this dummy frame. Cache that address. */
1415 registers = (*cache);
1416 if (registers == NULL)
1417 {
1418 registers = generic_find_dummy_frame (frame->pc, frame->frame);
1419 (*cache) = registers;
1420 }
1421 #else
1422 /* Get the address of the register buffer that contains the
1423 saved registers and then extract the value from that. */
1424 registers = generic_find_dummy_frame (frame->pc, frame->frame);
1425 #endif
1426 gdb_assert (registers != NULL);
1427 /* Return the actual value. */
1428 /* Use the regcache_cooked_read() method so that it, on the fly,
1429 constructs either a raw or pseudo register from the raw
1430 register cache. */
1431 regcache_cooked_read (registers, regnum, bufferp);
1432 }
1433 }
1434
1435 /* Return the register saved in the simplistic ``saved_regs'' cache.
1436 If the value isn't here AND a value is needed, try the next inner
1437 most frame. */
1438
1439 static void
1440 frame_saved_regs_register_unwind (struct frame_info *frame, void **cache,
1441 int regnum, int *optimizedp,
1442 enum lval_type *lvalp, CORE_ADDR *addrp,
1443 int *realnump, void *bufferp)
1444 {
1445 /* There is always a frame at this point. And THIS is the frame
1446 we're interested in. */
1447 gdb_assert (frame != NULL);
1448 /* If we're using generic dummy frames, we'd better not be in a call
1449 dummy. (generic_call_dummy_register_unwind ought to have been called
1450 instead.) */
1451 gdb_assert (!(USE_GENERIC_DUMMY_FRAMES
1452 && PC_IN_CALL_DUMMY (frame->pc, frame->frame, frame->frame)));
1453
1454 /* Load the saved_regs register cache. */
1455 if (frame->saved_regs == NULL)
1456 FRAME_INIT_SAVED_REGS (frame);
1457
1458 if (frame->saved_regs != NULL
1459 && frame->saved_regs[regnum] != 0)
1460 {
1461 if (regnum == SP_REGNUM)
1462 {
1463 /* SP register treated specially. */
1464 *optimizedp = 0;
1465 *lvalp = not_lval;
1466 *addrp = 0;
1467 *realnump = -1;
1468 if (bufferp != NULL)
1469 store_address (bufferp, REGISTER_RAW_SIZE (regnum),
1470 frame->saved_regs[regnum]);
1471 }
1472 else
1473 {
1474 /* Any other register is saved in memory, fetch it but cache
1475 a local copy of its value. */
1476 *optimizedp = 0;
1477 *lvalp = lval_memory;
1478 *addrp = frame->saved_regs[regnum];
1479 *realnump = -1;
1480 if (bufferp != NULL)
1481 {
1482 #if 1
1483 /* Save each register value, as it is read in, in a
1484 frame based cache. */
1485 void **regs = (*cache);
1486 if (regs == NULL)
1487 {
1488 int sizeof_cache = ((NUM_REGS + NUM_PSEUDO_REGS)
1489 * sizeof (void *));
1490 regs = frame_obstack_alloc (sizeof_cache);
1491 memset (regs, 0, sizeof_cache);
1492 (*cache) = regs;
1493 }
1494 if (regs[regnum] == NULL)
1495 {
1496 regs[regnum]
1497 = frame_obstack_alloc (REGISTER_RAW_SIZE (regnum));
1498 read_memory (frame->saved_regs[regnum], regs[regnum],
1499 REGISTER_RAW_SIZE (regnum));
1500 }
1501 memcpy (bufferp, regs[regnum], REGISTER_RAW_SIZE (regnum));
1502 #else
1503 /* Read the value in from memory. */
1504 read_memory (frame->saved_regs[regnum], bufferp,
1505 REGISTER_RAW_SIZE (regnum));
1506 #endif
1507 }
1508 }
1509 return;
1510 }
1511
1512 /* No luck, assume this and the next frame have the same register
1513 value. If a value is needed, pass the request on down the chain;
1514 otherwise just return an indication that the value is in the same
1515 register as the next frame. */
1516 if (bufferp == NULL)
1517 {
1518 *optimizedp = 0;
1519 *lvalp = lval_register;
1520 *addrp = 0;
1521 *realnump = regnum;
1522 }
1523 else
1524 {
1525 frame_register_unwind (frame->next, regnum, optimizedp, lvalp, addrp,
1526 realnump, bufferp);
1527 }
1528 }
1529
1530 /* Function: get_saved_register
1531 Find register number REGNUM relative to FRAME and put its (raw,
1532 target format) contents in *RAW_BUFFER.
1533
1534 Set *OPTIMIZED if the variable was optimized out (and thus can't be
1535 fetched). Note that this is never set to anything other than zero
1536 in this implementation.
1537
1538 Set *LVAL to lval_memory, lval_register, or not_lval, depending on
1539 whether the value was fetched from memory, from a register, or in a
1540 strange and non-modifiable way (e.g. a frame pointer which was
1541 calculated rather than fetched). We will use not_lval for values
1542 fetched from generic dummy frames.
1543
1544 Set *ADDRP to the address, either in memory or as a REGISTER_BYTE
1545 offset into the registers array. If the value is stored in a dummy
1546 frame, set *ADDRP to zero.
1547
1548 To use this implementation, define a function called
1549 "get_saved_register" in your target code, which simply passes all
1550 of its arguments to this function.
1551
1552 The argument RAW_BUFFER must point to aligned memory. */
1553
1554 void
1555 generic_get_saved_register (char *raw_buffer, int *optimized, CORE_ADDR *addrp,
1556 struct frame_info *frame, int regnum,
1557 enum lval_type *lval)
1558 {
1559 if (!target_has_registers)
1560 error ("No registers.");
1561
1562 /* Normal systems don't optimize out things with register numbers. */
1563 if (optimized != NULL)
1564 *optimized = 0;
1565
1566 if (addrp) /* default assumption: not found in memory */
1567 *addrp = 0;
1568
1569 /* Note: since the current frame's registers could only have been
1570 saved by frames INTERIOR TO the current frame, we skip examining
1571 the current frame itself: otherwise, we would be getting the
1572 previous frame's registers which were saved by the current frame. */
1573
1574 while (frame && ((frame = frame->next) != NULL))
1575 {
1576 if (PC_IN_CALL_DUMMY (frame->pc, frame->frame, frame->frame))
1577 {
1578 if (lval) /* found it in a CALL_DUMMY frame */
1579 *lval = not_lval;
1580 if (raw_buffer)
1581 /* FIXME: cagney/2002-06-26: This should be via the
1582 gdbarch_register_read() method so that it, on the fly,
1583 constructs either a raw or pseudo register from the raw
1584 register cache. */
1585 regcache_raw_read (generic_find_dummy_frame (frame->pc,
1586 frame->frame),
1587 regnum, raw_buffer);
1588 return;
1589 }
1590
1591 FRAME_INIT_SAVED_REGS (frame);
1592 if (frame->saved_regs != NULL
1593 && frame->saved_regs[regnum] != 0)
1594 {
1595 if (lval) /* found it saved on the stack */
1596 *lval = lval_memory;
1597 if (regnum == SP_REGNUM)
1598 {
1599 if (raw_buffer) /* SP register treated specially */
1600 store_address (raw_buffer, REGISTER_RAW_SIZE (regnum),
1601 frame->saved_regs[regnum]);
1602 }
1603 else
1604 {
1605 if (addrp) /* any other register */
1606 *addrp = frame->saved_regs[regnum];
1607 if (raw_buffer)
1608 read_memory (frame->saved_regs[regnum], raw_buffer,
1609 REGISTER_RAW_SIZE (regnum));
1610 }
1611 return;
1612 }
1613 }
1614
1615 /* If we get thru the loop to this point, it means the register was
1616 not saved in any frame. Return the actual live-register value. */
1617
1618 if (lval) /* found it in a live register */
1619 *lval = lval_register;
1620 if (addrp)
1621 *addrp = REGISTER_BYTE (regnum);
1622 if (raw_buffer)
1623 read_register_gen (regnum, raw_buffer);
1624 }
1625
1626 void
1627 _initialize_blockframe (void)
1628 {
1629 obstack_init (&frame_cache_obstack);
1630 }
This page took 0.06308 seconds and 4 git commands to generate.