2002-11-08 Andrew Cagney <ac131313@redhat.com>
[deliverable/binutils-gdb.git] / gdb / blockframe.c
1 /* Get info from stack frames; convert between frames, blocks,
2 functions and pc values.
3
4 Copyright 1986, 1987, 1988, 1989, 1990, 1991, 1992, 1993, 1994,
5 1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002 Free Software
6 Foundation, Inc.
7
8 This file is part of GDB.
9
10 This program is free software; you can redistribute it and/or modify
11 it under the terms of the GNU General Public License as published by
12 the Free Software Foundation; either version 2 of the License, or
13 (at your option) any later version.
14
15 This program is distributed in the hope that it will be useful,
16 but WITHOUT ANY WARRANTY; without even the implied warranty of
17 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
18 GNU General Public License for more details.
19
20 You should have received a copy of the GNU General Public License
21 along with this program; if not, write to the Free Software
22 Foundation, Inc., 59 Temple Place - Suite 330,
23 Boston, MA 02111-1307, USA. */
24
25 #include "defs.h"
26 #include "symtab.h"
27 #include "bfd.h"
28 #include "symfile.h"
29 #include "objfiles.h"
30 #include "frame.h"
31 #include "gdbcore.h"
32 #include "value.h" /* for read_register */
33 #include "target.h" /* for target_has_stack */
34 #include "inferior.h" /* for read_pc */
35 #include "annotate.h"
36 #include "regcache.h"
37 #include "gdb_assert.h"
38 #include "dummy-frame.h"
39
40 /* Prototypes for exported functions. */
41
42 void _initialize_blockframe (void);
43
44 /* A default FRAME_CHAIN_VALID, in the form that is suitable for most
45 targets. If FRAME_CHAIN_VALID returns zero it means that the given
46 frame is the outermost one and has no caller. */
47
48 int
49 file_frame_chain_valid (CORE_ADDR chain, struct frame_info *thisframe)
50 {
51 return ((chain) != 0
52 && !inside_entry_file (FRAME_SAVED_PC (thisframe)));
53 }
54
55 /* Use the alternate method of avoiding running up off the end of the
56 frame chain or following frames back into the startup code. See
57 the comments in objfiles.h. */
58
59 int
60 func_frame_chain_valid (CORE_ADDR chain, struct frame_info *thisframe)
61 {
62 return ((chain) != 0
63 && !inside_main_func ((thisframe)->pc)
64 && !inside_entry_func ((thisframe)->pc));
65 }
66
67 /* A very simple method of determining a valid frame */
68
69 int
70 nonnull_frame_chain_valid (CORE_ADDR chain, struct frame_info *thisframe)
71 {
72 return ((chain) != 0);
73 }
74
75 /* Is ADDR inside the startup file? Note that if your machine
76 has a way to detect the bottom of the stack, there is no need
77 to call this function from FRAME_CHAIN_VALID; the reason for
78 doing so is that some machines have no way of detecting bottom
79 of stack.
80
81 A PC of zero is always considered to be the bottom of the stack. */
82
83 int
84 inside_entry_file (CORE_ADDR addr)
85 {
86 if (addr == 0)
87 return 1;
88 if (symfile_objfile == 0)
89 return 0;
90 if (CALL_DUMMY_LOCATION == AT_ENTRY_POINT)
91 {
92 /* Do not stop backtracing if the pc is in the call dummy
93 at the entry point. */
94 /* FIXME: Won't always work with zeros for the last two arguments */
95 if (PC_IN_CALL_DUMMY (addr, 0, 0))
96 return 0;
97 }
98 return (addr >= symfile_objfile->ei.entry_file_lowpc &&
99 addr < symfile_objfile->ei.entry_file_highpc);
100 }
101
102 /* Test a specified PC value to see if it is in the range of addresses
103 that correspond to the main() function. See comments above for why
104 we might want to do this.
105
106 Typically called from FRAME_CHAIN_VALID.
107
108 A PC of zero is always considered to be the bottom of the stack. */
109
110 int
111 inside_main_func (CORE_ADDR pc)
112 {
113 if (pc == 0)
114 return 1;
115 if (symfile_objfile == 0)
116 return 0;
117
118 /* If the addr range is not set up at symbol reading time, set it up now.
119 This is for FRAME_CHAIN_VALID_ALTERNATE. I do this for coff, because
120 it is unable to set it up and symbol reading time. */
121
122 if (symfile_objfile->ei.main_func_lowpc == INVALID_ENTRY_LOWPC &&
123 symfile_objfile->ei.main_func_highpc == INVALID_ENTRY_HIGHPC)
124 {
125 struct symbol *mainsym;
126
127 mainsym = lookup_symbol (main_name (), NULL, VAR_NAMESPACE, NULL, NULL);
128 if (mainsym && SYMBOL_CLASS (mainsym) == LOC_BLOCK)
129 {
130 symfile_objfile->ei.main_func_lowpc =
131 BLOCK_START (SYMBOL_BLOCK_VALUE (mainsym));
132 symfile_objfile->ei.main_func_highpc =
133 BLOCK_END (SYMBOL_BLOCK_VALUE (mainsym));
134 }
135 }
136 return (symfile_objfile->ei.main_func_lowpc <= pc &&
137 symfile_objfile->ei.main_func_highpc > pc);
138 }
139
140 /* Test a specified PC value to see if it is in the range of addresses
141 that correspond to the process entry point function. See comments
142 in objfiles.h for why we might want to do this.
143
144 Typically called from FRAME_CHAIN_VALID.
145
146 A PC of zero is always considered to be the bottom of the stack. */
147
148 int
149 inside_entry_func (CORE_ADDR pc)
150 {
151 if (pc == 0)
152 return 1;
153 if (symfile_objfile == 0)
154 return 0;
155 if (CALL_DUMMY_LOCATION == AT_ENTRY_POINT)
156 {
157 /* Do not stop backtracing if the pc is in the call dummy
158 at the entry point. */
159 /* FIXME: Won't always work with zeros for the last two arguments */
160 if (PC_IN_CALL_DUMMY (pc, 0, 0))
161 return 0;
162 }
163 return (symfile_objfile->ei.entry_func_lowpc <= pc &&
164 symfile_objfile->ei.entry_func_highpc > pc);
165 }
166
167 /* Return nonzero if the function for this frame lacks a prologue. Many
168 machines can define FRAMELESS_FUNCTION_INVOCATION to just call this
169 function. */
170
171 int
172 frameless_look_for_prologue (struct frame_info *frame)
173 {
174 CORE_ADDR func_start, after_prologue;
175
176 func_start = get_pc_function_start (frame->pc);
177 if (func_start)
178 {
179 func_start += FUNCTION_START_OFFSET;
180 /* This is faster, since only care whether there *is* a
181 prologue, not how long it is. */
182 return PROLOGUE_FRAMELESS_P (func_start);
183 }
184 else if (frame->pc == 0)
185 /* A frame with a zero PC is usually created by dereferencing a
186 NULL function pointer, normally causing an immediate core dump
187 of the inferior. Mark function as frameless, as the inferior
188 has no chance of setting up a stack frame. */
189 return 1;
190 else
191 /* If we can't find the start of the function, we don't really
192 know whether the function is frameless, but we should be able
193 to get a reasonable (i.e. best we can do under the
194 circumstances) backtrace by saying that it isn't. */
195 return 0;
196 }
197
198 /* return the address of the PC for the given FRAME, ie the current PC value
199 if FRAME is the innermost frame, or the address adjusted to point to the
200 call instruction if not. */
201
202 CORE_ADDR
203 frame_address_in_block (struct frame_info *frame)
204 {
205 CORE_ADDR pc = frame->pc;
206
207 /* If we are not in the innermost frame, and we are not interrupted
208 by a signal, frame->pc points to the instruction following the
209 call. As a consequence, we need to get the address of the previous
210 instruction. Unfortunately, this is not straightforward to do, so
211 we just use the address minus one, which is a good enough
212 approximation. */
213 if (frame->next != 0 && frame->next->signal_handler_caller == 0)
214 --pc;
215
216 return pc;
217 }
218
219 /* Return the innermost lexical block in execution
220 in a specified stack frame. The frame address is assumed valid.
221
222 If ADDR_IN_BLOCK is non-zero, set *ADDR_IN_BLOCK to the exact code
223 address we used to choose the block. We use this to find a source
224 line, to decide which macro definitions are in scope.
225
226 The value returned in *ADDR_IN_BLOCK isn't necessarily the frame's
227 PC, and may not really be a valid PC at all. For example, in the
228 caller of a function declared to never return, the code at the
229 return address will never be reached, so the call instruction may
230 be the very last instruction in the block. So the address we use
231 to choose the block is actually one byte before the return address
232 --- hopefully pointing us at the call instruction, or its delay
233 slot instruction. */
234
235 struct block *
236 get_frame_block (struct frame_info *frame, CORE_ADDR *addr_in_block)
237 {
238 const CORE_ADDR pc = frame_address_in_block (frame);
239
240 if (addr_in_block)
241 *addr_in_block = pc;
242
243 return block_for_pc (pc);
244 }
245
246 struct block *
247 get_current_block (CORE_ADDR *addr_in_block)
248 {
249 CORE_ADDR pc = read_pc ();
250
251 if (addr_in_block)
252 *addr_in_block = pc;
253
254 return block_for_pc (pc);
255 }
256
257 CORE_ADDR
258 get_pc_function_start (CORE_ADDR pc)
259 {
260 register struct block *bl;
261 register struct symbol *symbol;
262 register struct minimal_symbol *msymbol;
263 CORE_ADDR fstart;
264
265 if ((bl = block_for_pc (pc)) != NULL &&
266 (symbol = block_function (bl)) != NULL)
267 {
268 bl = SYMBOL_BLOCK_VALUE (symbol);
269 fstart = BLOCK_START (bl);
270 }
271 else if ((msymbol = lookup_minimal_symbol_by_pc (pc)) != NULL)
272 {
273 fstart = SYMBOL_VALUE_ADDRESS (msymbol);
274 if (!find_pc_section (fstart))
275 return 0;
276 }
277 else
278 {
279 fstart = 0;
280 }
281 return (fstart);
282 }
283
284 /* Return the symbol for the function executing in frame FRAME. */
285
286 struct symbol *
287 get_frame_function (struct frame_info *frame)
288 {
289 register struct block *bl = get_frame_block (frame, 0);
290 if (bl == 0)
291 return 0;
292 return block_function (bl);
293 }
294 \f
295
296 /* Return the blockvector immediately containing the innermost lexical block
297 containing the specified pc value and section, or 0 if there is none.
298 PINDEX is a pointer to the index value of the block. If PINDEX
299 is NULL, we don't pass this information back to the caller. */
300
301 struct blockvector *
302 blockvector_for_pc_sect (register CORE_ADDR pc, struct sec *section,
303 int *pindex, struct symtab *symtab)
304 {
305 register struct block *b;
306 register int bot, top, half;
307 struct blockvector *bl;
308
309 if (symtab == 0) /* if no symtab specified by caller */
310 {
311 /* First search all symtabs for one whose file contains our pc */
312 if ((symtab = find_pc_sect_symtab (pc, section)) == 0)
313 return 0;
314 }
315
316 bl = BLOCKVECTOR (symtab);
317 b = BLOCKVECTOR_BLOCK (bl, 0);
318
319 /* Then search that symtab for the smallest block that wins. */
320 /* Use binary search to find the last block that starts before PC. */
321
322 bot = 0;
323 top = BLOCKVECTOR_NBLOCKS (bl);
324
325 while (top - bot > 1)
326 {
327 half = (top - bot + 1) >> 1;
328 b = BLOCKVECTOR_BLOCK (bl, bot + half);
329 if (BLOCK_START (b) <= pc)
330 bot += half;
331 else
332 top = bot + half;
333 }
334
335 /* Now search backward for a block that ends after PC. */
336
337 while (bot >= 0)
338 {
339 b = BLOCKVECTOR_BLOCK (bl, bot);
340 if (BLOCK_END (b) > pc)
341 {
342 if (pindex)
343 *pindex = bot;
344 return bl;
345 }
346 bot--;
347 }
348 return 0;
349 }
350
351 /* Return the blockvector immediately containing the innermost lexical block
352 containing the specified pc value, or 0 if there is none.
353 Backward compatibility, no section. */
354
355 struct blockvector *
356 blockvector_for_pc (register CORE_ADDR pc, int *pindex)
357 {
358 return blockvector_for_pc_sect (pc, find_pc_mapped_section (pc),
359 pindex, NULL);
360 }
361
362 /* Return the innermost lexical block containing the specified pc value
363 in the specified section, or 0 if there is none. */
364
365 struct block *
366 block_for_pc_sect (register CORE_ADDR pc, struct sec *section)
367 {
368 register struct blockvector *bl;
369 int index;
370
371 bl = blockvector_for_pc_sect (pc, section, &index, NULL);
372 if (bl)
373 return BLOCKVECTOR_BLOCK (bl, index);
374 return 0;
375 }
376
377 /* Return the innermost lexical block containing the specified pc value,
378 or 0 if there is none. Backward compatibility, no section. */
379
380 struct block *
381 block_for_pc (register CORE_ADDR pc)
382 {
383 return block_for_pc_sect (pc, find_pc_mapped_section (pc));
384 }
385
386 /* Return the function containing pc value PC in section SECTION.
387 Returns 0 if function is not known. */
388
389 struct symbol *
390 find_pc_sect_function (CORE_ADDR pc, struct sec *section)
391 {
392 register struct block *b = block_for_pc_sect (pc, section);
393 if (b == 0)
394 return 0;
395 return block_function (b);
396 }
397
398 /* Return the function containing pc value PC.
399 Returns 0 if function is not known. Backward compatibility, no section */
400
401 struct symbol *
402 find_pc_function (CORE_ADDR pc)
403 {
404 return find_pc_sect_function (pc, find_pc_mapped_section (pc));
405 }
406
407 /* These variables are used to cache the most recent result
408 * of find_pc_partial_function. */
409
410 static CORE_ADDR cache_pc_function_low = 0;
411 static CORE_ADDR cache_pc_function_high = 0;
412 static char *cache_pc_function_name = 0;
413 static struct sec *cache_pc_function_section = NULL;
414
415 /* Clear cache, e.g. when symbol table is discarded. */
416
417 void
418 clear_pc_function_cache (void)
419 {
420 cache_pc_function_low = 0;
421 cache_pc_function_high = 0;
422 cache_pc_function_name = (char *) 0;
423 cache_pc_function_section = NULL;
424 }
425
426 /* Finds the "function" (text symbol) that is smaller than PC but
427 greatest of all of the potential text symbols in SECTION. Sets
428 *NAME and/or *ADDRESS conditionally if that pointer is non-null.
429 If ENDADDR is non-null, then set *ENDADDR to be the end of the
430 function (exclusive), but passing ENDADDR as non-null means that
431 the function might cause symbols to be read. This function either
432 succeeds or fails (not halfway succeeds). If it succeeds, it sets
433 *NAME, *ADDRESS, and *ENDADDR to real information and returns 1.
434 If it fails, it sets *NAME, *ADDRESS, and *ENDADDR to zero and
435 returns 0. */
436
437 int
438 find_pc_sect_partial_function (CORE_ADDR pc, asection *section, char **name,
439 CORE_ADDR *address, CORE_ADDR *endaddr)
440 {
441 struct partial_symtab *pst;
442 struct symbol *f;
443 struct minimal_symbol *msymbol;
444 struct partial_symbol *psb;
445 struct obj_section *osect;
446 int i;
447 CORE_ADDR mapped_pc;
448
449 mapped_pc = overlay_mapped_address (pc, section);
450
451 if (mapped_pc >= cache_pc_function_low
452 && mapped_pc < cache_pc_function_high
453 && section == cache_pc_function_section)
454 goto return_cached_value;
455
456 /* If sigtramp is in the u area, it counts as a function (especially
457 important for step_1). */
458 if (SIGTRAMP_START_P () && PC_IN_SIGTRAMP (mapped_pc, (char *) NULL))
459 {
460 cache_pc_function_low = SIGTRAMP_START (mapped_pc);
461 cache_pc_function_high = SIGTRAMP_END (mapped_pc);
462 cache_pc_function_name = "<sigtramp>";
463 cache_pc_function_section = section;
464 goto return_cached_value;
465 }
466
467 msymbol = lookup_minimal_symbol_by_pc_section (mapped_pc, section);
468 pst = find_pc_sect_psymtab (mapped_pc, section);
469 if (pst)
470 {
471 /* Need to read the symbols to get a good value for the end address. */
472 if (endaddr != NULL && !pst->readin)
473 {
474 /* Need to get the terminal in case symbol-reading produces
475 output. */
476 target_terminal_ours_for_output ();
477 PSYMTAB_TO_SYMTAB (pst);
478 }
479
480 if (pst->readin)
481 {
482 /* Checking whether the msymbol has a larger value is for the
483 "pathological" case mentioned in print_frame_info. */
484 f = find_pc_sect_function (mapped_pc, section);
485 if (f != NULL
486 && (msymbol == NULL
487 || (BLOCK_START (SYMBOL_BLOCK_VALUE (f))
488 >= SYMBOL_VALUE_ADDRESS (msymbol))))
489 {
490 cache_pc_function_low = BLOCK_START (SYMBOL_BLOCK_VALUE (f));
491 cache_pc_function_high = BLOCK_END (SYMBOL_BLOCK_VALUE (f));
492 cache_pc_function_name = SYMBOL_NAME (f);
493 cache_pc_function_section = section;
494 goto return_cached_value;
495 }
496 }
497 else
498 {
499 /* Now that static symbols go in the minimal symbol table, perhaps
500 we could just ignore the partial symbols. But at least for now
501 we use the partial or minimal symbol, whichever is larger. */
502 psb = find_pc_sect_psymbol (pst, mapped_pc, section);
503
504 if (psb
505 && (msymbol == NULL ||
506 (SYMBOL_VALUE_ADDRESS (psb)
507 >= SYMBOL_VALUE_ADDRESS (msymbol))))
508 {
509 /* This case isn't being cached currently. */
510 if (address)
511 *address = SYMBOL_VALUE_ADDRESS (psb);
512 if (name)
513 *name = SYMBOL_NAME (psb);
514 /* endaddr non-NULL can't happen here. */
515 return 1;
516 }
517 }
518 }
519
520 /* Not in the normal symbol tables, see if the pc is in a known section.
521 If it's not, then give up. This ensures that anything beyond the end
522 of the text seg doesn't appear to be part of the last function in the
523 text segment. */
524
525 osect = find_pc_sect_section (mapped_pc, section);
526
527 if (!osect)
528 msymbol = NULL;
529
530 /* Must be in the minimal symbol table. */
531 if (msymbol == NULL)
532 {
533 /* No available symbol. */
534 if (name != NULL)
535 *name = 0;
536 if (address != NULL)
537 *address = 0;
538 if (endaddr != NULL)
539 *endaddr = 0;
540 return 0;
541 }
542
543 cache_pc_function_low = SYMBOL_VALUE_ADDRESS (msymbol);
544 cache_pc_function_name = SYMBOL_NAME (msymbol);
545 cache_pc_function_section = section;
546
547 /* Use the lesser of the next minimal symbol in the same section, or
548 the end of the section, as the end of the function. */
549
550 /* Step over other symbols at this same address, and symbols in
551 other sections, to find the next symbol in this section with
552 a different address. */
553
554 for (i = 1; SYMBOL_NAME (msymbol + i) != NULL; i++)
555 {
556 if (SYMBOL_VALUE_ADDRESS (msymbol + i) != SYMBOL_VALUE_ADDRESS (msymbol)
557 && SYMBOL_BFD_SECTION (msymbol + i) == SYMBOL_BFD_SECTION (msymbol))
558 break;
559 }
560
561 if (SYMBOL_NAME (msymbol + i) != NULL
562 && SYMBOL_VALUE_ADDRESS (msymbol + i) < osect->endaddr)
563 cache_pc_function_high = SYMBOL_VALUE_ADDRESS (msymbol + i);
564 else
565 /* We got the start address from the last msymbol in the objfile.
566 So the end address is the end of the section. */
567 cache_pc_function_high = osect->endaddr;
568
569 return_cached_value:
570
571 if (address)
572 {
573 if (pc_in_unmapped_range (pc, section))
574 *address = overlay_unmapped_address (cache_pc_function_low, section);
575 else
576 *address = cache_pc_function_low;
577 }
578
579 if (name)
580 *name = cache_pc_function_name;
581
582 if (endaddr)
583 {
584 if (pc_in_unmapped_range (pc, section))
585 {
586 /* Because the high address is actually beyond the end of
587 the function (and therefore possibly beyond the end of
588 the overlay), we must actually convert (high - 1) and
589 then add one to that. */
590
591 *endaddr = 1 + overlay_unmapped_address (cache_pc_function_high - 1,
592 section);
593 }
594 else
595 *endaddr = cache_pc_function_high;
596 }
597
598 return 1;
599 }
600
601 /* Backward compatibility, no section argument. */
602
603 int
604 find_pc_partial_function (CORE_ADDR pc, char **name, CORE_ADDR *address,
605 CORE_ADDR *endaddr)
606 {
607 asection *section;
608
609 section = find_pc_overlay (pc);
610 return find_pc_sect_partial_function (pc, section, name, address, endaddr);
611 }
612
613 /* Return the innermost stack frame executing inside of BLOCK,
614 or NULL if there is no such frame. If BLOCK is NULL, just return NULL. */
615
616 struct frame_info *
617 block_innermost_frame (struct block *block)
618 {
619 struct frame_info *frame;
620 register CORE_ADDR start;
621 register CORE_ADDR end;
622 CORE_ADDR calling_pc;
623
624 if (block == NULL)
625 return NULL;
626
627 start = BLOCK_START (block);
628 end = BLOCK_END (block);
629
630 frame = NULL;
631 while (1)
632 {
633 frame = get_prev_frame (frame);
634 if (frame == NULL)
635 return NULL;
636 calling_pc = frame_address_in_block (frame);
637 if (calling_pc >= start && calling_pc < end)
638 return frame;
639 }
640 }
641
642 /* Return the full FRAME which corresponds to the given CORE_ADDR
643 or NULL if no FRAME on the chain corresponds to CORE_ADDR. */
644
645 struct frame_info *
646 find_frame_addr_in_frame_chain (CORE_ADDR frame_addr)
647 {
648 struct frame_info *frame = NULL;
649
650 if (frame_addr == (CORE_ADDR) 0)
651 return NULL;
652
653 while (1)
654 {
655 frame = get_prev_frame (frame);
656 if (frame == NULL)
657 return NULL;
658 if (FRAME_FP (frame) == frame_addr)
659 return frame;
660 }
661 }
662
663 #ifdef SIGCONTEXT_PC_OFFSET
664 /* Get saved user PC for sigtramp from sigcontext for BSD style sigtramp. */
665
666 CORE_ADDR
667 sigtramp_saved_pc (struct frame_info *frame)
668 {
669 CORE_ADDR sigcontext_addr;
670 char *buf;
671 int ptrbytes = TARGET_PTR_BIT / TARGET_CHAR_BIT;
672 int sigcontext_offs = (2 * TARGET_INT_BIT) / TARGET_CHAR_BIT;
673
674 buf = alloca (ptrbytes);
675 /* Get sigcontext address, it is the third parameter on the stack. */
676 if (frame->next)
677 sigcontext_addr = read_memory_typed_address
678 (FRAME_ARGS_ADDRESS (frame->next) + FRAME_ARGS_SKIP + sigcontext_offs,
679 builtin_type_void_data_ptr);
680 else
681 sigcontext_addr = read_memory_typed_address
682 (read_register (SP_REGNUM) + sigcontext_offs, builtin_type_void_data_ptr);
683
684 /* Don't cause a memory_error when accessing sigcontext in case the stack
685 layout has changed or the stack is corrupt. */
686 target_read_memory (sigcontext_addr + SIGCONTEXT_PC_OFFSET, buf, ptrbytes);
687 return extract_typed_address (buf, builtin_type_void_data_ptr);
688 }
689 #endif /* SIGCONTEXT_PC_OFFSET */
690
691
692 /* Are we in a call dummy? The code below which allows DECR_PC_AFTER_BREAK
693 below is for infrun.c, which may give the macro a pc without that
694 subtracted out. */
695
696 extern CORE_ADDR text_end;
697
698 int
699 pc_in_call_dummy_before_text_end (CORE_ADDR pc, CORE_ADDR sp,
700 CORE_ADDR frame_address)
701 {
702 return ((pc) >= text_end - CALL_DUMMY_LENGTH
703 && (pc) <= text_end + DECR_PC_AFTER_BREAK);
704 }
705
706 int
707 pc_in_call_dummy_after_text_end (CORE_ADDR pc, CORE_ADDR sp,
708 CORE_ADDR frame_address)
709 {
710 return ((pc) >= text_end
711 && (pc) <= text_end + CALL_DUMMY_LENGTH + DECR_PC_AFTER_BREAK);
712 }
713
714 /* Is the PC in a call dummy? SP and FRAME_ADDRESS are the bottom and
715 top of the stack frame which we are checking, where "bottom" and
716 "top" refer to some section of memory which contains the code for
717 the call dummy. Calls to this macro assume that the contents of
718 SP_REGNUM and FP_REGNUM (or the saved values thereof), respectively,
719 are the things to pass.
720
721 This won't work on the 29k, where SP_REGNUM and FP_REGNUM don't
722 have that meaning, but the 29k doesn't use ON_STACK. This could be
723 fixed by generalizing this scheme, perhaps by passing in a frame
724 and adding a few fields, at least on machines which need them for
725 PC_IN_CALL_DUMMY.
726
727 Something simpler, like checking for the stack segment, doesn't work,
728 since various programs (threads implementations, gcc nested function
729 stubs, etc) may either allocate stack frames in another segment, or
730 allocate other kinds of code on the stack. */
731
732 int
733 pc_in_call_dummy_on_stack (CORE_ADDR pc, CORE_ADDR sp, CORE_ADDR frame_address)
734 {
735 return (INNER_THAN ((sp), (pc))
736 && (frame_address != 0)
737 && INNER_THAN ((pc), (frame_address)));
738 }
739
740 int
741 pc_in_call_dummy_at_entry_point (CORE_ADDR pc, CORE_ADDR sp,
742 CORE_ADDR frame_address)
743 {
744 return ((pc) >= CALL_DUMMY_ADDRESS ()
745 && (pc) <= (CALL_DUMMY_ADDRESS () + DECR_PC_AFTER_BREAK));
746 }
747
748
749 /* Function: frame_chain_valid
750 Returns true for a user frame or a call_function_by_hand dummy frame,
751 and false for the CRT0 start-up frame. Purpose is to terminate backtrace */
752
753 int
754 generic_file_frame_chain_valid (CORE_ADDR fp, struct frame_info *fi)
755 {
756 if (PC_IN_CALL_DUMMY (FRAME_SAVED_PC (fi), fp, fp))
757 return 1; /* don't prune CALL_DUMMY frames */
758 else /* fall back to default algorithm (see frame.h) */
759 return (fp != 0
760 && (INNER_THAN (fi->frame, fp) || fi->frame == fp)
761 && !inside_entry_file (FRAME_SAVED_PC (fi)));
762 }
763
764 int
765 generic_func_frame_chain_valid (CORE_ADDR fp, struct frame_info *fi)
766 {
767 if (USE_GENERIC_DUMMY_FRAMES
768 && PC_IN_CALL_DUMMY ((fi)->pc, 0, 0))
769 return 1; /* don't prune CALL_DUMMY frames */
770 else /* fall back to default algorithm (see frame.h) */
771 return (fp != 0
772 && (INNER_THAN (fi->frame, fp) || fi->frame == fp)
773 && !inside_main_func ((fi)->pc)
774 && !inside_entry_func ((fi)->pc));
775 }
776
This page took 0.059439 seconds and 5 git commands to generate.