Update copyright year in most headers.
[deliverable/binutils-gdb.git] / gdb / blockframe.c
1 /* Get info from stack frames; convert between frames, blocks,
2 functions and pc values.
3
4 Copyright (C) 1986, 1987, 1988, 1989, 1990, 1991, 1992, 1993, 1994, 1995,
5 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2007, 2008, 2009,
6 2010 Free Software Foundation, Inc.
7
8 This file is part of GDB.
9
10 This program is free software; you can redistribute it and/or modify
11 it under the terms of the GNU General Public License as published by
12 the Free Software Foundation; either version 3 of the License, or
13 (at your option) any later version.
14
15 This program is distributed in the hope that it will be useful,
16 but WITHOUT ANY WARRANTY; without even the implied warranty of
17 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
18 GNU General Public License for more details.
19
20 You should have received a copy of the GNU General Public License
21 along with this program. If not, see <http://www.gnu.org/licenses/>. */
22
23 #include "defs.h"
24 #include "symtab.h"
25 #include "bfd.h"
26 #include "objfiles.h"
27 #include "frame.h"
28 #include "gdbcore.h"
29 #include "value.h"
30 #include "target.h"
31 #include "inferior.h"
32 #include "annotate.h"
33 #include "regcache.h"
34 #include "gdb_assert.h"
35 #include "dummy-frame.h"
36 #include "command.h"
37 #include "gdbcmd.h"
38 #include "block.h"
39 #include "inline-frame.h"
40
41 /* Return the innermost lexical block in execution
42 in a specified stack frame. The frame address is assumed valid.
43
44 If ADDR_IN_BLOCK is non-zero, set *ADDR_IN_BLOCK to the exact code
45 address we used to choose the block. We use this to find a source
46 line, to decide which macro definitions are in scope.
47
48 The value returned in *ADDR_IN_BLOCK isn't necessarily the frame's
49 PC, and may not really be a valid PC at all. For example, in the
50 caller of a function declared to never return, the code at the
51 return address will never be reached, so the call instruction may
52 be the very last instruction in the block. So the address we use
53 to choose the block is actually one byte before the return address
54 --- hopefully pointing us at the call instruction, or its delay
55 slot instruction. */
56
57 struct block *
58 get_frame_block (struct frame_info *frame, CORE_ADDR *addr_in_block)
59 {
60 const CORE_ADDR pc = get_frame_address_in_block (frame);
61 struct frame_info *next_frame;
62 struct block *bl;
63 int inline_count;
64
65 if (addr_in_block)
66 *addr_in_block = pc;
67
68 bl = block_for_pc (pc);
69 if (bl == NULL)
70 return NULL;
71
72 inline_count = frame_inlined_callees (frame);
73
74 while (inline_count > 0)
75 {
76 if (block_inlined_p (bl))
77 inline_count--;
78
79 bl = BLOCK_SUPERBLOCK (bl);
80 gdb_assert (bl != NULL);
81 }
82
83 return bl;
84 }
85
86 CORE_ADDR
87 get_pc_function_start (CORE_ADDR pc)
88 {
89 struct block *bl;
90 struct minimal_symbol *msymbol;
91
92 bl = block_for_pc (pc);
93 if (bl)
94 {
95 struct symbol *symbol = block_linkage_function (bl);
96
97 if (symbol)
98 {
99 bl = SYMBOL_BLOCK_VALUE (symbol);
100 return BLOCK_START (bl);
101 }
102 }
103
104 msymbol = lookup_minimal_symbol_by_pc (pc);
105 if (msymbol)
106 {
107 CORE_ADDR fstart = SYMBOL_VALUE_ADDRESS (msymbol);
108
109 if (find_pc_section (fstart))
110 return fstart;
111 }
112
113 return 0;
114 }
115
116 /* Return the symbol for the function executing in frame FRAME. */
117
118 struct symbol *
119 get_frame_function (struct frame_info *frame)
120 {
121 struct block *bl = get_frame_block (frame, 0);
122
123 if (bl == NULL)
124 return NULL;
125
126 while (BLOCK_FUNCTION (bl) == NULL && BLOCK_SUPERBLOCK (bl) != NULL)
127 bl = BLOCK_SUPERBLOCK (bl);
128
129 return BLOCK_FUNCTION (bl);
130 }
131 \f
132
133 /* Return the function containing pc value PC in section SECTION.
134 Returns 0 if function is not known. */
135
136 struct symbol *
137 find_pc_sect_function (CORE_ADDR pc, struct obj_section *section)
138 {
139 struct block *b = block_for_pc_sect (pc, section);
140 if (b == 0)
141 return 0;
142 return block_linkage_function (b);
143 }
144
145 /* Return the function containing pc value PC.
146 Returns 0 if function is not known. Backward compatibility, no section */
147
148 struct symbol *
149 find_pc_function (CORE_ADDR pc)
150 {
151 return find_pc_sect_function (pc, find_pc_mapped_section (pc));
152 }
153
154 /* These variables are used to cache the most recent result
155 * of find_pc_partial_function. */
156
157 static CORE_ADDR cache_pc_function_low = 0;
158 static CORE_ADDR cache_pc_function_high = 0;
159 static char *cache_pc_function_name = 0;
160 static struct obj_section *cache_pc_function_section = NULL;
161
162 /* Clear cache, e.g. when symbol table is discarded. */
163
164 void
165 clear_pc_function_cache (void)
166 {
167 cache_pc_function_low = 0;
168 cache_pc_function_high = 0;
169 cache_pc_function_name = (char *) 0;
170 cache_pc_function_section = NULL;
171 }
172
173 /* Finds the "function" (text symbol) that is smaller than PC but
174 greatest of all of the potential text symbols in SECTION. Sets
175 *NAME and/or *ADDRESS conditionally if that pointer is non-null.
176 If ENDADDR is non-null, then set *ENDADDR to be the end of the
177 function (exclusive), but passing ENDADDR as non-null means that
178 the function might cause symbols to be read. This function either
179 succeeds or fails (not halfway succeeds). If it succeeds, it sets
180 *NAME, *ADDRESS, and *ENDADDR to real information and returns 1.
181 If it fails, it sets *NAME, *ADDRESS, and *ENDADDR to zero and
182 returns 0. */
183
184 /* Backward compatibility, no section argument. */
185
186 int
187 find_pc_partial_function (CORE_ADDR pc, char **name, CORE_ADDR *address,
188 CORE_ADDR *endaddr)
189 {
190 struct obj_section *section;
191 struct partial_symtab *pst;
192 struct symbol *f;
193 struct minimal_symbol *msymbol;
194 struct partial_symbol *psb;
195 int i;
196 CORE_ADDR mapped_pc;
197
198 /* To ensure that the symbol returned belongs to the correct setion
199 (and that the last [random] symbol from the previous section
200 isn't returned) try to find the section containing PC. First try
201 the overlay code (which by default returns NULL); and second try
202 the normal section code (which almost always succeeds). */
203 section = find_pc_overlay (pc);
204 if (section == NULL)
205 section = find_pc_section (pc);
206
207 mapped_pc = overlay_mapped_address (pc, section);
208
209 if (mapped_pc >= cache_pc_function_low
210 && mapped_pc < cache_pc_function_high
211 && section == cache_pc_function_section)
212 goto return_cached_value;
213
214 msymbol = lookup_minimal_symbol_by_pc_section (mapped_pc, section);
215 pst = find_pc_sect_psymtab (mapped_pc, section);
216 if (pst)
217 {
218 /* Need to read the symbols to get a good value for the end address. */
219 if (endaddr != NULL && !pst->readin)
220 {
221 /* Need to get the terminal in case symbol-reading produces
222 output. */
223 target_terminal_ours_for_output ();
224 PSYMTAB_TO_SYMTAB (pst);
225 }
226
227 if (pst->readin)
228 {
229 /* Checking whether the msymbol has a larger value is for the
230 "pathological" case mentioned in print_frame_info. */
231 f = find_pc_sect_function (mapped_pc, section);
232 if (f != NULL
233 && (msymbol == NULL
234 || (BLOCK_START (SYMBOL_BLOCK_VALUE (f))
235 >= SYMBOL_VALUE_ADDRESS (msymbol))))
236 {
237 cache_pc_function_low = BLOCK_START (SYMBOL_BLOCK_VALUE (f));
238 cache_pc_function_high = BLOCK_END (SYMBOL_BLOCK_VALUE (f));
239 cache_pc_function_name = SYMBOL_LINKAGE_NAME (f);
240 cache_pc_function_section = section;
241 goto return_cached_value;
242 }
243 }
244 else
245 {
246 /* Now that static symbols go in the minimal symbol table, perhaps
247 we could just ignore the partial symbols. But at least for now
248 we use the partial or minimal symbol, whichever is larger. */
249 psb = find_pc_sect_psymbol (pst, mapped_pc, section);
250
251 if (psb
252 && (msymbol == NULL
253 || (SYMBOL_VALUE_ADDRESS (psb)
254 >= SYMBOL_VALUE_ADDRESS (msymbol))))
255 {
256 /* This case isn't being cached currently. */
257 if (address)
258 *address = SYMBOL_VALUE_ADDRESS (psb);
259 if (name)
260 *name = SYMBOL_LINKAGE_NAME (psb);
261 /* endaddr non-NULL can't happen here. */
262 return 1;
263 }
264 }
265 }
266
267 /* Not in the normal symbol tables, see if the pc is in a known section.
268 If it's not, then give up. This ensures that anything beyond the end
269 of the text seg doesn't appear to be part of the last function in the
270 text segment. */
271
272 if (!section)
273 msymbol = NULL;
274
275 /* Must be in the minimal symbol table. */
276 if (msymbol == NULL)
277 {
278 /* No available symbol. */
279 if (name != NULL)
280 *name = 0;
281 if (address != NULL)
282 *address = 0;
283 if (endaddr != NULL)
284 *endaddr = 0;
285 return 0;
286 }
287
288 cache_pc_function_low = SYMBOL_VALUE_ADDRESS (msymbol);
289 cache_pc_function_name = SYMBOL_LINKAGE_NAME (msymbol);
290 cache_pc_function_section = section;
291
292 /* If the minimal symbol has a size, use it for the cache.
293 Otherwise use the lesser of the next minimal symbol in the same
294 section, or the end of the section, as the end of the
295 function. */
296
297 if (MSYMBOL_SIZE (msymbol) != 0)
298 cache_pc_function_high = cache_pc_function_low + MSYMBOL_SIZE (msymbol);
299 else
300 {
301 /* Step over other symbols at this same address, and symbols in
302 other sections, to find the next symbol in this section with
303 a different address. */
304
305 for (i = 1; SYMBOL_LINKAGE_NAME (msymbol + i) != NULL; i++)
306 {
307 if (SYMBOL_VALUE_ADDRESS (msymbol + i) != SYMBOL_VALUE_ADDRESS (msymbol)
308 && SYMBOL_OBJ_SECTION (msymbol + i) == SYMBOL_OBJ_SECTION (msymbol))
309 break;
310 }
311
312 if (SYMBOL_LINKAGE_NAME (msymbol + i) != NULL
313 && SYMBOL_VALUE_ADDRESS (msymbol + i) < obj_section_endaddr (section))
314 cache_pc_function_high = SYMBOL_VALUE_ADDRESS (msymbol + i);
315 else
316 /* We got the start address from the last msymbol in the objfile.
317 So the end address is the end of the section. */
318 cache_pc_function_high = obj_section_endaddr (section);
319 }
320
321 return_cached_value:
322
323 if (address)
324 {
325 if (pc_in_unmapped_range (pc, section))
326 *address = overlay_unmapped_address (cache_pc_function_low, section);
327 else
328 *address = cache_pc_function_low;
329 }
330
331 if (name)
332 *name = cache_pc_function_name;
333
334 if (endaddr)
335 {
336 if (pc_in_unmapped_range (pc, section))
337 {
338 /* Because the high address is actually beyond the end of
339 the function (and therefore possibly beyond the end of
340 the overlay), we must actually convert (high - 1) and
341 then add one to that. */
342
343 *endaddr = 1 + overlay_unmapped_address (cache_pc_function_high - 1,
344 section);
345 }
346 else
347 *endaddr = cache_pc_function_high;
348 }
349
350 return 1;
351 }
352
353 /* Return the innermost stack frame executing inside of BLOCK,
354 or NULL if there is no such frame. If BLOCK is NULL, just return NULL. */
355
356 struct frame_info *
357 block_innermost_frame (struct block *block)
358 {
359 struct frame_info *frame;
360 CORE_ADDR start;
361 CORE_ADDR end;
362
363 if (block == NULL)
364 return NULL;
365
366 start = BLOCK_START (block);
367 end = BLOCK_END (block);
368
369 frame = get_current_frame ();
370 while (frame != NULL)
371 {
372 struct block *frame_block = get_frame_block (frame, NULL);
373 if (frame_block != NULL && contained_in (frame_block, block))
374 return frame;
375
376 frame = get_prev_frame (frame);
377 }
378
379 return NULL;
380 }
This page took 0.044182 seconds and 5 git commands to generate.