* arch-utils.c (init_frame_pc_default): New function
[deliverable/binutils-gdb.git] / gdb / blockframe.c
1 /* Get info from stack frames;
2 convert between frames, blocks, functions and pc values.
3 Copyright 1986, 1987, 1988, 1989, 1990, 1991, 1992, 1993, 1994, 1995,
4 1996, 1997, 1998, 1999, 2000, 2001 Free Software Foundation, Inc.
5
6 This file is part of GDB.
7
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 2 of the License, or
11 (at your option) any later version.
12
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with this program; if not, write to the Free Software
20 Foundation, Inc., 59 Temple Place - Suite 330,
21 Boston, MA 02111-1307, USA. */
22
23 #include "defs.h"
24 #include "symtab.h"
25 #include "bfd.h"
26 #include "symfile.h"
27 #include "objfiles.h"
28 #include "frame.h"
29 #include "gdbcore.h"
30 #include "value.h" /* for read_register */
31 #include "target.h" /* for target_has_stack */
32 #include "inferior.h" /* for read_pc */
33 #include "annotate.h"
34 #include "regcache.h"
35
36 /* Prototypes for exported functions. */
37
38 void _initialize_blockframe (void);
39
40 /* A default FRAME_CHAIN_VALID, in the form that is suitable for most
41 targets. If FRAME_CHAIN_VALID returns zero it means that the given
42 frame is the outermost one and has no caller. */
43
44 int
45 file_frame_chain_valid (CORE_ADDR chain, struct frame_info *thisframe)
46 {
47 return ((chain) != 0
48 && !inside_entry_file (FRAME_SAVED_PC (thisframe)));
49 }
50
51 /* Use the alternate method of avoiding running up off the end of the
52 frame chain or following frames back into the startup code. See
53 the comments in objfiles.h. */
54
55 int
56 func_frame_chain_valid (CORE_ADDR chain, struct frame_info *thisframe)
57 {
58 return ((chain) != 0
59 && !inside_main_func ((thisframe)->pc)
60 && !inside_entry_func ((thisframe)->pc));
61 }
62
63 /* A very simple method of determining a valid frame */
64
65 int
66 nonnull_frame_chain_valid (CORE_ADDR chain, struct frame_info *thisframe)
67 {
68 return ((chain) != 0);
69 }
70
71 /* Is ADDR inside the startup file? Note that if your machine
72 has a way to detect the bottom of the stack, there is no need
73 to call this function from FRAME_CHAIN_VALID; the reason for
74 doing so is that some machines have no way of detecting bottom
75 of stack.
76
77 A PC of zero is always considered to be the bottom of the stack. */
78
79 int
80 inside_entry_file (CORE_ADDR addr)
81 {
82 if (addr == 0)
83 return 1;
84 if (symfile_objfile == 0)
85 return 0;
86 if (CALL_DUMMY_LOCATION == AT_ENTRY_POINT)
87 {
88 /* Do not stop backtracing if the pc is in the call dummy
89 at the entry point. */
90 /* FIXME: Won't always work with zeros for the last two arguments */
91 if (PC_IN_CALL_DUMMY (addr, 0, 0))
92 return 0;
93 }
94 return (addr >= symfile_objfile->ei.entry_file_lowpc &&
95 addr < symfile_objfile->ei.entry_file_highpc);
96 }
97
98 /* Test a specified PC value to see if it is in the range of addresses
99 that correspond to the main() function. See comments above for why
100 we might want to do this.
101
102 Typically called from FRAME_CHAIN_VALID.
103
104 A PC of zero is always considered to be the bottom of the stack. */
105
106 int
107 inside_main_func (CORE_ADDR pc)
108 {
109 if (pc == 0)
110 return 1;
111 if (symfile_objfile == 0)
112 return 0;
113
114 /* If the addr range is not set up at symbol reading time, set it up now.
115 This is for FRAME_CHAIN_VALID_ALTERNATE. I do this for coff, because
116 it is unable to set it up and symbol reading time. */
117
118 if (symfile_objfile->ei.main_func_lowpc == INVALID_ENTRY_LOWPC &&
119 symfile_objfile->ei.main_func_highpc == INVALID_ENTRY_HIGHPC)
120 {
121 struct symbol *mainsym;
122
123 mainsym = lookup_symbol ("main", NULL, VAR_NAMESPACE, NULL, NULL);
124 if (mainsym && SYMBOL_CLASS (mainsym) == LOC_BLOCK)
125 {
126 symfile_objfile->ei.main_func_lowpc =
127 BLOCK_START (SYMBOL_BLOCK_VALUE (mainsym));
128 symfile_objfile->ei.main_func_highpc =
129 BLOCK_END (SYMBOL_BLOCK_VALUE (mainsym));
130 }
131 }
132 return (symfile_objfile->ei.main_func_lowpc <= pc &&
133 symfile_objfile->ei.main_func_highpc > pc);
134 }
135
136 /* Test a specified PC value to see if it is in the range of addresses
137 that correspond to the process entry point function. See comments
138 in objfiles.h for why we might want to do this.
139
140 Typically called from FRAME_CHAIN_VALID.
141
142 A PC of zero is always considered to be the bottom of the stack. */
143
144 int
145 inside_entry_func (CORE_ADDR pc)
146 {
147 if (pc == 0)
148 return 1;
149 if (symfile_objfile == 0)
150 return 0;
151 if (CALL_DUMMY_LOCATION == AT_ENTRY_POINT)
152 {
153 /* Do not stop backtracing if the pc is in the call dummy
154 at the entry point. */
155 /* FIXME: Won't always work with zeros for the last two arguments */
156 if (PC_IN_CALL_DUMMY (pc, 0, 0))
157 return 0;
158 }
159 return (symfile_objfile->ei.entry_func_lowpc <= pc &&
160 symfile_objfile->ei.entry_func_highpc > pc);
161 }
162
163 /* Info about the innermost stack frame (contents of FP register) */
164
165 static struct frame_info *current_frame;
166
167 /* Cache for frame addresses already read by gdb. Valid only while
168 inferior is stopped. Control variables for the frame cache should
169 be local to this module. */
170
171 static struct obstack frame_cache_obstack;
172
173 void *
174 frame_obstack_alloc (unsigned long size)
175 {
176 return obstack_alloc (&frame_cache_obstack, size);
177 }
178
179 void
180 frame_saved_regs_zalloc (struct frame_info *fi)
181 {
182 fi->saved_regs = (CORE_ADDR *)
183 frame_obstack_alloc (SIZEOF_FRAME_SAVED_REGS);
184 memset (fi->saved_regs, 0, SIZEOF_FRAME_SAVED_REGS);
185 }
186
187
188 /* Return the innermost (currently executing) stack frame. */
189
190 struct frame_info *
191 get_current_frame (void)
192 {
193 if (current_frame == NULL)
194 {
195 if (target_has_stack)
196 current_frame = create_new_frame (read_fp (), read_pc ());
197 else
198 error ("No stack.");
199 }
200 return current_frame;
201 }
202
203 void
204 set_current_frame (struct frame_info *frame)
205 {
206 current_frame = frame;
207 }
208
209 /* Create an arbitrary (i.e. address specified by user) or innermost frame.
210 Always returns a non-NULL value. */
211
212 struct frame_info *
213 create_new_frame (CORE_ADDR addr, CORE_ADDR pc)
214 {
215 struct frame_info *fi;
216 char *name;
217
218 fi = (struct frame_info *)
219 obstack_alloc (&frame_cache_obstack,
220 sizeof (struct frame_info));
221
222 /* Zero all fields by default. */
223 memset (fi, 0, sizeof (struct frame_info));
224
225 fi->frame = addr;
226 fi->pc = pc;
227 find_pc_partial_function (pc, &name, (CORE_ADDR *) NULL, (CORE_ADDR *) NULL);
228 fi->signal_handler_caller = IN_SIGTRAMP (fi->pc, name);
229
230 #ifdef INIT_EXTRA_FRAME_INFO
231 INIT_EXTRA_FRAME_INFO (0, fi);
232 #endif
233
234 return fi;
235 }
236
237 /* Return the frame that FRAME calls (NULL if FRAME is the innermost
238 frame). */
239
240 struct frame_info *
241 get_next_frame (struct frame_info *frame)
242 {
243 return frame->next;
244 }
245
246 /* Flush the entire frame cache. */
247
248 void
249 flush_cached_frames (void)
250 {
251 /* Since we can't really be sure what the first object allocated was */
252 obstack_free (&frame_cache_obstack, 0);
253 obstack_init (&frame_cache_obstack);
254
255 current_frame = NULL; /* Invalidate cache */
256 select_frame (NULL, -1);
257 annotate_frames_invalid ();
258 }
259
260 /* Flush the frame cache, and start a new one if necessary. */
261
262 void
263 reinit_frame_cache (void)
264 {
265 flush_cached_frames ();
266
267 /* FIXME: The inferior_ptid test is wrong if there is a corefile. */
268 if (PIDGET (inferior_ptid) != 0)
269 {
270 select_frame (get_current_frame (), 0);
271 }
272 }
273
274 /* Return nonzero if the function for this frame lacks a prologue. Many
275 machines can define FRAMELESS_FUNCTION_INVOCATION to just call this
276 function. */
277
278 int
279 frameless_look_for_prologue (struct frame_info *frame)
280 {
281 CORE_ADDR func_start, after_prologue;
282
283 func_start = get_pc_function_start (frame->pc);
284 if (func_start)
285 {
286 func_start += FUNCTION_START_OFFSET;
287 /* This is faster, since only care whether there *is* a
288 prologue, not how long it is. */
289 return PROLOGUE_FRAMELESS_P (func_start);
290 }
291 else if (frame->pc == 0)
292 /* A frame with a zero PC is usually created by dereferencing a
293 NULL function pointer, normally causing an immediate core dump
294 of the inferior. Mark function as frameless, as the inferior
295 has no chance of setting up a stack frame. */
296 return 1;
297 else
298 /* If we can't find the start of the function, we don't really
299 know whether the function is frameless, but we should be able
300 to get a reasonable (i.e. best we can do under the
301 circumstances) backtrace by saying that it isn't. */
302 return 0;
303 }
304
305 /* Default a few macros that people seldom redefine. */
306
307 #ifndef FRAME_CHAIN_COMBINE
308 #define FRAME_CHAIN_COMBINE(chain, thisframe) (chain)
309 #endif
310
311 /* Return a structure containing various interesting information
312 about the frame that called NEXT_FRAME. Returns NULL
313 if there is no such frame. */
314
315 struct frame_info *
316 get_prev_frame (struct frame_info *next_frame)
317 {
318 CORE_ADDR address = 0;
319 struct frame_info *prev;
320 int fromleaf = 0;
321 char *name;
322
323 /* If the requested entry is in the cache, return it.
324 Otherwise, figure out what the address should be for the entry
325 we're about to add to the cache. */
326
327 if (!next_frame)
328 {
329 #if 0
330 /* This screws value_of_variable, which just wants a nice clean
331 NULL return from block_innermost_frame if there are no frames.
332 I don't think I've ever seen this message happen otherwise.
333 And returning NULL here is a perfectly legitimate thing to do. */
334 if (!current_frame)
335 {
336 error ("You haven't set up a process's stack to examine.");
337 }
338 #endif
339
340 return current_frame;
341 }
342
343 /* If we have the prev one, return it */
344 if (next_frame->prev)
345 return next_frame->prev;
346
347 /* On some machines it is possible to call a function without
348 setting up a stack frame for it. On these machines, we
349 define this macro to take two args; a frameinfo pointer
350 identifying a frame and a variable to set or clear if it is
351 or isn't leafless. */
352
353 /* Still don't want to worry about this except on the innermost
354 frame. This macro will set FROMLEAF if NEXT_FRAME is a
355 frameless function invocation. */
356 if (!(next_frame->next))
357 {
358 fromleaf = FRAMELESS_FUNCTION_INVOCATION (next_frame);
359 if (fromleaf)
360 address = FRAME_FP (next_frame);
361 }
362
363 if (!fromleaf)
364 {
365 /* Two macros defined in tm.h specify the machine-dependent
366 actions to be performed here.
367 First, get the frame's chain-pointer.
368 If that is zero, the frame is the outermost frame or a leaf
369 called by the outermost frame. This means that if start
370 calls main without a frame, we'll return 0 (which is fine
371 anyway).
372
373 Nope; there's a problem. This also returns when the current
374 routine is a leaf of main. This is unacceptable. We move
375 this to after the ffi test; I'd rather have backtraces from
376 start go curfluy than have an abort called from main not show
377 main. */
378 address = FRAME_CHAIN (next_frame);
379 if (!FRAME_CHAIN_VALID (address, next_frame))
380 return 0;
381 address = FRAME_CHAIN_COMBINE (address, next_frame);
382 }
383 if (address == 0)
384 return 0;
385
386 prev = (struct frame_info *)
387 obstack_alloc (&frame_cache_obstack,
388 sizeof (struct frame_info));
389
390 /* Zero all fields by default. */
391 memset (prev, 0, sizeof (struct frame_info));
392
393 if (next_frame)
394 next_frame->prev = prev;
395 prev->next = next_frame;
396 prev->frame = address;
397
398 /* This change should not be needed, FIXME! We should
399 determine whether any targets *need* INIT_FRAME_PC to happen
400 after INIT_EXTRA_FRAME_INFO and come up with a simple way to
401 express what goes on here.
402
403 INIT_EXTRA_FRAME_INFO is called from two places: create_new_frame
404 (where the PC is already set up) and here (where it isn't).
405 INIT_FRAME_PC is only called from here, always after
406 INIT_EXTRA_FRAME_INFO.
407
408 The catch is the MIPS, where INIT_EXTRA_FRAME_INFO requires the PC
409 value (which hasn't been set yet). Some other machines appear to
410 require INIT_EXTRA_FRAME_INFO before they can do INIT_FRAME_PC. Phoo.
411
412 We shouldn't need INIT_FRAME_PC_FIRST to add more complication to
413 an already overcomplicated part of GDB. gnu@cygnus.com, 15Sep92.
414
415 Assuming that some machines need INIT_FRAME_PC after
416 INIT_EXTRA_FRAME_INFO, one possible scheme:
417
418 SETUP_INNERMOST_FRAME()
419 Default version is just create_new_frame (read_fp ()),
420 read_pc ()). Machines with extra frame info would do that (or the
421 local equivalent) and then set the extra fields.
422 SETUP_ARBITRARY_FRAME(argc, argv)
423 Only change here is that create_new_frame would no longer init extra
424 frame info; SETUP_ARBITRARY_FRAME would have to do that.
425 INIT_PREV_FRAME(fromleaf, prev)
426 Replace INIT_EXTRA_FRAME_INFO and INIT_FRAME_PC. This should
427 also return a flag saying whether to keep the new frame, or
428 whether to discard it, because on some machines (e.g. mips) it
429 is really awkward to have FRAME_CHAIN_VALID called *before*
430 INIT_EXTRA_FRAME_INFO (there is no good way to get information
431 deduced in FRAME_CHAIN_VALID into the extra fields of the new frame).
432 std_frame_pc(fromleaf, prev)
433 This is the default setting for INIT_PREV_FRAME. It just does what
434 the default INIT_FRAME_PC does. Some machines will call it from
435 INIT_PREV_FRAME (either at the beginning, the end, or in the middle).
436 Some machines won't use it.
437 kingdon@cygnus.com, 13Apr93, 31Jan94, 14Dec94. */
438
439 INIT_FRAME_PC_FIRST (fromleaf, prev);
440
441 #ifdef INIT_EXTRA_FRAME_INFO
442 INIT_EXTRA_FRAME_INFO (fromleaf, prev);
443 #endif
444
445 /* This entry is in the frame queue now, which is good since
446 FRAME_SAVED_PC may use that queue to figure out its value
447 (see tm-sparc.h). We want the pc saved in the inferior frame. */
448 INIT_FRAME_PC (fromleaf, prev);
449
450 /* If ->frame and ->pc are unchanged, we are in the process of getting
451 ourselves into an infinite backtrace. Some architectures check this
452 in FRAME_CHAIN or thereabouts, but it seems like there is no reason
453 this can't be an architecture-independent check. */
454 if (next_frame != NULL)
455 {
456 if (prev->frame == next_frame->frame
457 && prev->pc == next_frame->pc)
458 {
459 next_frame->prev = NULL;
460 obstack_free (&frame_cache_obstack, prev);
461 return NULL;
462 }
463 }
464
465 find_pc_partial_function (prev->pc, &name,
466 (CORE_ADDR *) NULL, (CORE_ADDR *) NULL);
467 if (IN_SIGTRAMP (prev->pc, name))
468 prev->signal_handler_caller = 1;
469
470 return prev;
471 }
472
473 CORE_ADDR
474 get_frame_pc (struct frame_info *frame)
475 {
476 return frame->pc;
477 }
478
479
480 #ifdef FRAME_FIND_SAVED_REGS
481 /* XXX - deprecated. This is a compatibility function for targets
482 that do not yet implement FRAME_INIT_SAVED_REGS. */
483 /* Find the addresses in which registers are saved in FRAME. */
484
485 void
486 get_frame_saved_regs (struct frame_info *frame,
487 struct frame_saved_regs *saved_regs_addr)
488 {
489 if (frame->saved_regs == NULL)
490 {
491 frame->saved_regs = (CORE_ADDR *)
492 frame_obstack_alloc (SIZEOF_FRAME_SAVED_REGS);
493 }
494 if (saved_regs_addr == NULL)
495 {
496 struct frame_saved_regs saved_regs;
497 FRAME_FIND_SAVED_REGS (frame, saved_regs);
498 memcpy (frame->saved_regs, &saved_regs, SIZEOF_FRAME_SAVED_REGS);
499 }
500 else
501 {
502 FRAME_FIND_SAVED_REGS (frame, *saved_regs_addr);
503 memcpy (frame->saved_regs, saved_regs_addr, SIZEOF_FRAME_SAVED_REGS);
504 }
505 }
506 #endif
507
508 /* Return the innermost lexical block in execution
509 in a specified stack frame. The frame address is assumed valid. */
510
511 struct block *
512 get_frame_block (struct frame_info *frame)
513 {
514 CORE_ADDR pc;
515
516 pc = frame->pc;
517 if (frame->next != 0 && frame->next->signal_handler_caller == 0)
518 /* We are not in the innermost frame and we were not interrupted
519 by a signal. We need to subtract one to get the correct block,
520 in case the call instruction was the last instruction of the block.
521 If there are any machines on which the saved pc does not point to
522 after the call insn, we probably want to make frame->pc point after
523 the call insn anyway. */
524 --pc;
525 return block_for_pc (pc);
526 }
527
528 struct block *
529 get_current_block (void)
530 {
531 return block_for_pc (read_pc ());
532 }
533
534 CORE_ADDR
535 get_pc_function_start (CORE_ADDR pc)
536 {
537 register struct block *bl;
538 register struct symbol *symbol;
539 register struct minimal_symbol *msymbol;
540 CORE_ADDR fstart;
541
542 if ((bl = block_for_pc (pc)) != NULL &&
543 (symbol = block_function (bl)) != NULL)
544 {
545 bl = SYMBOL_BLOCK_VALUE (symbol);
546 fstart = BLOCK_START (bl);
547 }
548 else if ((msymbol = lookup_minimal_symbol_by_pc (pc)) != NULL)
549 {
550 fstart = SYMBOL_VALUE_ADDRESS (msymbol);
551 }
552 else
553 {
554 fstart = 0;
555 }
556 return (fstart);
557 }
558
559 /* Return the symbol for the function executing in frame FRAME. */
560
561 struct symbol *
562 get_frame_function (struct frame_info *frame)
563 {
564 register struct block *bl = get_frame_block (frame);
565 if (bl == 0)
566 return 0;
567 return block_function (bl);
568 }
569 \f
570
571 /* Return the blockvector immediately containing the innermost lexical block
572 containing the specified pc value and section, or 0 if there is none.
573 PINDEX is a pointer to the index value of the block. If PINDEX
574 is NULL, we don't pass this information back to the caller. */
575
576 struct blockvector *
577 blockvector_for_pc_sect (register CORE_ADDR pc, struct sec *section,
578 int *pindex, struct symtab *symtab)
579 {
580 register struct block *b;
581 register int bot, top, half;
582 struct blockvector *bl;
583
584 if (symtab == 0) /* if no symtab specified by caller */
585 {
586 /* First search all symtabs for one whose file contains our pc */
587 if ((symtab = find_pc_sect_symtab (pc, section)) == 0)
588 return 0;
589 }
590
591 bl = BLOCKVECTOR (symtab);
592 b = BLOCKVECTOR_BLOCK (bl, 0);
593
594 /* Then search that symtab for the smallest block that wins. */
595 /* Use binary search to find the last block that starts before PC. */
596
597 bot = 0;
598 top = BLOCKVECTOR_NBLOCKS (bl);
599
600 while (top - bot > 1)
601 {
602 half = (top - bot + 1) >> 1;
603 b = BLOCKVECTOR_BLOCK (bl, bot + half);
604 if (BLOCK_START (b) <= pc)
605 bot += half;
606 else
607 top = bot + half;
608 }
609
610 /* Now search backward for a block that ends after PC. */
611
612 while (bot >= 0)
613 {
614 b = BLOCKVECTOR_BLOCK (bl, bot);
615 if (BLOCK_END (b) > pc)
616 {
617 if (pindex)
618 *pindex = bot;
619 return bl;
620 }
621 bot--;
622 }
623 return 0;
624 }
625
626 /* Return the blockvector immediately containing the innermost lexical block
627 containing the specified pc value, or 0 if there is none.
628 Backward compatibility, no section. */
629
630 struct blockvector *
631 blockvector_for_pc (register CORE_ADDR pc, int *pindex)
632 {
633 return blockvector_for_pc_sect (pc, find_pc_mapped_section (pc),
634 pindex, NULL);
635 }
636
637 /* Return the innermost lexical block containing the specified pc value
638 in the specified section, or 0 if there is none. */
639
640 struct block *
641 block_for_pc_sect (register CORE_ADDR pc, struct sec *section)
642 {
643 register struct blockvector *bl;
644 int index;
645
646 bl = blockvector_for_pc_sect (pc, section, &index, NULL);
647 if (bl)
648 return BLOCKVECTOR_BLOCK (bl, index);
649 return 0;
650 }
651
652 /* Return the innermost lexical block containing the specified pc value,
653 or 0 if there is none. Backward compatibility, no section. */
654
655 struct block *
656 block_for_pc (register CORE_ADDR pc)
657 {
658 return block_for_pc_sect (pc, find_pc_mapped_section (pc));
659 }
660
661 /* Return the function containing pc value PC in section SECTION.
662 Returns 0 if function is not known. */
663
664 struct symbol *
665 find_pc_sect_function (CORE_ADDR pc, struct sec *section)
666 {
667 register struct block *b = block_for_pc_sect (pc, section);
668 if (b == 0)
669 return 0;
670 return block_function (b);
671 }
672
673 /* Return the function containing pc value PC.
674 Returns 0 if function is not known. Backward compatibility, no section */
675
676 struct symbol *
677 find_pc_function (CORE_ADDR pc)
678 {
679 return find_pc_sect_function (pc, find_pc_mapped_section (pc));
680 }
681
682 /* These variables are used to cache the most recent result
683 * of find_pc_partial_function. */
684
685 static CORE_ADDR cache_pc_function_low = 0;
686 static CORE_ADDR cache_pc_function_high = 0;
687 static char *cache_pc_function_name = 0;
688 static struct sec *cache_pc_function_section = NULL;
689
690 /* Clear cache, e.g. when symbol table is discarded. */
691
692 void
693 clear_pc_function_cache (void)
694 {
695 cache_pc_function_low = 0;
696 cache_pc_function_high = 0;
697 cache_pc_function_name = (char *) 0;
698 cache_pc_function_section = NULL;
699 }
700
701 /* Finds the "function" (text symbol) that is smaller than PC but
702 greatest of all of the potential text symbols in SECTION. Sets
703 *NAME and/or *ADDRESS conditionally if that pointer is non-null.
704 If ENDADDR is non-null, then set *ENDADDR to be the end of the
705 function (exclusive), but passing ENDADDR as non-null means that
706 the function might cause symbols to be read. This function either
707 succeeds or fails (not halfway succeeds). If it succeeds, it sets
708 *NAME, *ADDRESS, and *ENDADDR to real information and returns 1.
709 If it fails, it sets *NAME, *ADDRESS, and *ENDADDR to zero and
710 returns 0. */
711
712 int
713 find_pc_sect_partial_function (CORE_ADDR pc, asection *section, char **name,
714 CORE_ADDR *address, CORE_ADDR *endaddr)
715 {
716 struct partial_symtab *pst;
717 struct symbol *f;
718 struct minimal_symbol *msymbol;
719 struct partial_symbol *psb;
720 struct obj_section *osect;
721 int i;
722 CORE_ADDR mapped_pc;
723
724 mapped_pc = overlay_mapped_address (pc, section);
725
726 if (mapped_pc >= cache_pc_function_low &&
727 mapped_pc < cache_pc_function_high &&
728 section == cache_pc_function_section)
729 goto return_cached_value;
730
731 /* If sigtramp is in the u area, it counts as a function (especially
732 important for step_1). */
733 #if defined SIGTRAMP_START
734 if (IN_SIGTRAMP (mapped_pc, (char *) NULL))
735 {
736 cache_pc_function_low = SIGTRAMP_START (mapped_pc);
737 cache_pc_function_high = SIGTRAMP_END (mapped_pc);
738 cache_pc_function_name = "<sigtramp>";
739 cache_pc_function_section = section;
740 goto return_cached_value;
741 }
742 #endif
743
744 msymbol = lookup_minimal_symbol_by_pc_section (mapped_pc, section);
745 pst = find_pc_sect_psymtab (mapped_pc, section);
746 if (pst)
747 {
748 /* Need to read the symbols to get a good value for the end address. */
749 if (endaddr != NULL && !pst->readin)
750 {
751 /* Need to get the terminal in case symbol-reading produces
752 output. */
753 target_terminal_ours_for_output ();
754 PSYMTAB_TO_SYMTAB (pst);
755 }
756
757 if (pst->readin)
758 {
759 /* Checking whether the msymbol has a larger value is for the
760 "pathological" case mentioned in print_frame_info. */
761 f = find_pc_sect_function (mapped_pc, section);
762 if (f != NULL
763 && (msymbol == NULL
764 || (BLOCK_START (SYMBOL_BLOCK_VALUE (f))
765 >= SYMBOL_VALUE_ADDRESS (msymbol))))
766 {
767 cache_pc_function_low = BLOCK_START (SYMBOL_BLOCK_VALUE (f));
768 cache_pc_function_high = BLOCK_END (SYMBOL_BLOCK_VALUE (f));
769 cache_pc_function_name = SYMBOL_NAME (f);
770 cache_pc_function_section = section;
771 goto return_cached_value;
772 }
773 }
774 else
775 {
776 /* Now that static symbols go in the minimal symbol table, perhaps
777 we could just ignore the partial symbols. But at least for now
778 we use the partial or minimal symbol, whichever is larger. */
779 psb = find_pc_sect_psymbol (pst, mapped_pc, section);
780
781 if (psb
782 && (msymbol == NULL ||
783 (SYMBOL_VALUE_ADDRESS (psb)
784 >= SYMBOL_VALUE_ADDRESS (msymbol))))
785 {
786 /* This case isn't being cached currently. */
787 if (address)
788 *address = SYMBOL_VALUE_ADDRESS (psb);
789 if (name)
790 *name = SYMBOL_NAME (psb);
791 /* endaddr non-NULL can't happen here. */
792 return 1;
793 }
794 }
795 }
796
797 /* Not in the normal symbol tables, see if the pc is in a known section.
798 If it's not, then give up. This ensures that anything beyond the end
799 of the text seg doesn't appear to be part of the last function in the
800 text segment. */
801
802 osect = find_pc_sect_section (mapped_pc, section);
803
804 if (!osect)
805 msymbol = NULL;
806
807 /* Must be in the minimal symbol table. */
808 if (msymbol == NULL)
809 {
810 /* No available symbol. */
811 if (name != NULL)
812 *name = 0;
813 if (address != NULL)
814 *address = 0;
815 if (endaddr != NULL)
816 *endaddr = 0;
817 return 0;
818 }
819
820 cache_pc_function_low = SYMBOL_VALUE_ADDRESS (msymbol);
821 cache_pc_function_name = SYMBOL_NAME (msymbol);
822 cache_pc_function_section = section;
823
824 /* Use the lesser of the next minimal symbol in the same section, or
825 the end of the section, as the end of the function. */
826
827 /* Step over other symbols at this same address, and symbols in
828 other sections, to find the next symbol in this section with
829 a different address. */
830
831 for (i = 1; SYMBOL_NAME (msymbol + i) != NULL; i++)
832 {
833 if (SYMBOL_VALUE_ADDRESS (msymbol + i) != SYMBOL_VALUE_ADDRESS (msymbol)
834 && SYMBOL_BFD_SECTION (msymbol + i) == SYMBOL_BFD_SECTION (msymbol))
835 break;
836 }
837
838 if (SYMBOL_NAME (msymbol + i) != NULL
839 && SYMBOL_VALUE_ADDRESS (msymbol + i) < osect->endaddr)
840 cache_pc_function_high = SYMBOL_VALUE_ADDRESS (msymbol + i);
841 else
842 /* We got the start address from the last msymbol in the objfile.
843 So the end address is the end of the section. */
844 cache_pc_function_high = osect->endaddr;
845
846 return_cached_value:
847
848 if (address)
849 {
850 if (pc_in_unmapped_range (pc, section))
851 *address = overlay_unmapped_address (cache_pc_function_low, section);
852 else
853 *address = cache_pc_function_low;
854 }
855
856 if (name)
857 *name = cache_pc_function_name;
858
859 if (endaddr)
860 {
861 if (pc_in_unmapped_range (pc, section))
862 {
863 /* Because the high address is actually beyond the end of
864 the function (and therefore possibly beyond the end of
865 the overlay), we must actually convert (high - 1)
866 and then add one to that. */
867
868 *endaddr = 1 + overlay_unmapped_address (cache_pc_function_high - 1,
869 section);
870 }
871 else
872 *endaddr = cache_pc_function_high;
873 }
874
875 return 1;
876 }
877
878 /* Backward compatibility, no section argument */
879
880 int
881 find_pc_partial_function (CORE_ADDR pc, char **name, CORE_ADDR *address,
882 CORE_ADDR *endaddr)
883 {
884 asection *section;
885
886 section = find_pc_overlay (pc);
887 return find_pc_sect_partial_function (pc, section, name, address, endaddr);
888 }
889
890 /* Return the innermost stack frame executing inside of BLOCK,
891 or NULL if there is no such frame. If BLOCK is NULL, just return NULL. */
892
893 struct frame_info *
894 block_innermost_frame (struct block *block)
895 {
896 struct frame_info *frame;
897 register CORE_ADDR start;
898 register CORE_ADDR end;
899
900 if (block == NULL)
901 return NULL;
902
903 start = BLOCK_START (block);
904 end = BLOCK_END (block);
905
906 frame = NULL;
907 while (1)
908 {
909 frame = get_prev_frame (frame);
910 if (frame == NULL)
911 return NULL;
912 if (frame->pc >= start && frame->pc < end)
913 return frame;
914 }
915 }
916
917 /* Return the full FRAME which corresponds to the given CORE_ADDR
918 or NULL if no FRAME on the chain corresponds to CORE_ADDR. */
919
920 struct frame_info *
921 find_frame_addr_in_frame_chain (CORE_ADDR frame_addr)
922 {
923 struct frame_info *frame = NULL;
924
925 if (frame_addr == (CORE_ADDR) 0)
926 return NULL;
927
928 while (1)
929 {
930 frame = get_prev_frame (frame);
931 if (frame == NULL)
932 return NULL;
933 if (FRAME_FP (frame) == frame_addr)
934 return frame;
935 }
936 }
937
938 #ifdef SIGCONTEXT_PC_OFFSET
939 /* Get saved user PC for sigtramp from sigcontext for BSD style sigtramp. */
940
941 CORE_ADDR
942 sigtramp_saved_pc (struct frame_info *frame)
943 {
944 CORE_ADDR sigcontext_addr;
945 char *buf;
946 int ptrbytes = TARGET_PTR_BIT / TARGET_CHAR_BIT;
947 int sigcontext_offs = (2 * TARGET_INT_BIT) / TARGET_CHAR_BIT;
948
949 buf = alloca (ptrbytes);
950 /* Get sigcontext address, it is the third parameter on the stack. */
951 if (frame->next)
952 sigcontext_addr = read_memory_integer (FRAME_ARGS_ADDRESS (frame->next)
953 + FRAME_ARGS_SKIP
954 + sigcontext_offs,
955 ptrbytes);
956 else
957 sigcontext_addr = read_memory_integer (read_register (SP_REGNUM)
958 + sigcontext_offs,
959 ptrbytes);
960
961 /* Don't cause a memory_error when accessing sigcontext in case the stack
962 layout has changed or the stack is corrupt. */
963 target_read_memory (sigcontext_addr + SIGCONTEXT_PC_OFFSET, buf, ptrbytes);
964 return extract_unsigned_integer (buf, ptrbytes);
965 }
966 #endif /* SIGCONTEXT_PC_OFFSET */
967
968
969 /* Are we in a call dummy? The code below which allows DECR_PC_AFTER_BREAK
970 below is for infrun.c, which may give the macro a pc without that
971 subtracted out. */
972
973 extern CORE_ADDR text_end;
974
975 int
976 pc_in_call_dummy_before_text_end (CORE_ADDR pc, CORE_ADDR sp,
977 CORE_ADDR frame_address)
978 {
979 return ((pc) >= text_end - CALL_DUMMY_LENGTH
980 && (pc) <= text_end + DECR_PC_AFTER_BREAK);
981 }
982
983 int
984 pc_in_call_dummy_after_text_end (CORE_ADDR pc, CORE_ADDR sp,
985 CORE_ADDR frame_address)
986 {
987 return ((pc) >= text_end
988 && (pc) <= text_end + CALL_DUMMY_LENGTH + DECR_PC_AFTER_BREAK);
989 }
990
991 /* Is the PC in a call dummy? SP and FRAME_ADDRESS are the bottom and
992 top of the stack frame which we are checking, where "bottom" and
993 "top" refer to some section of memory which contains the code for
994 the call dummy. Calls to this macro assume that the contents of
995 SP_REGNUM and FP_REGNUM (or the saved values thereof), respectively,
996 are the things to pass.
997
998 This won't work on the 29k, where SP_REGNUM and FP_REGNUM don't
999 have that meaning, but the 29k doesn't use ON_STACK. This could be
1000 fixed by generalizing this scheme, perhaps by passing in a frame
1001 and adding a few fields, at least on machines which need them for
1002 PC_IN_CALL_DUMMY.
1003
1004 Something simpler, like checking for the stack segment, doesn't work,
1005 since various programs (threads implementations, gcc nested function
1006 stubs, etc) may either allocate stack frames in another segment, or
1007 allocate other kinds of code on the stack. */
1008
1009 int
1010 pc_in_call_dummy_on_stack (CORE_ADDR pc, CORE_ADDR sp, CORE_ADDR frame_address)
1011 {
1012 return (INNER_THAN ((sp), (pc))
1013 && (frame_address != 0)
1014 && INNER_THAN ((pc), (frame_address)));
1015 }
1016
1017 int
1018 pc_in_call_dummy_at_entry_point (CORE_ADDR pc, CORE_ADDR sp,
1019 CORE_ADDR frame_address)
1020 {
1021 return ((pc) >= CALL_DUMMY_ADDRESS ()
1022 && (pc) <= (CALL_DUMMY_ADDRESS () + DECR_PC_AFTER_BREAK));
1023 }
1024
1025
1026 /*
1027 * GENERIC DUMMY FRAMES
1028 *
1029 * The following code serves to maintain the dummy stack frames for
1030 * inferior function calls (ie. when gdb calls into the inferior via
1031 * call_function_by_hand). This code saves the machine state before
1032 * the call in host memory, so we must maintain an independent stack
1033 * and keep it consistant etc. I am attempting to make this code
1034 * generic enough to be used by many targets.
1035 *
1036 * The cheapest and most generic way to do CALL_DUMMY on a new target
1037 * is probably to define CALL_DUMMY to be empty, CALL_DUMMY_LENGTH to
1038 * zero, and CALL_DUMMY_LOCATION to AT_ENTRY. Then you must remember
1039 * to define PUSH_RETURN_ADDRESS, because no call instruction will be
1040 * being executed by the target. Also FRAME_CHAIN_VALID as
1041 * generic_{file,func}_frame_chain_valid and FIX_CALL_DUMMY as
1042 * generic_fix_call_dummy. */
1043
1044 /* Dummy frame. This saves the processor state just prior to setting
1045 up the inferior function call. Older targets save the registers
1046 on the target stack (but that really slows down function calls). */
1047
1048 struct dummy_frame
1049 {
1050 struct dummy_frame *next;
1051
1052 CORE_ADDR pc;
1053 CORE_ADDR fp;
1054 CORE_ADDR sp;
1055 CORE_ADDR top;
1056 char *registers;
1057 };
1058
1059 static struct dummy_frame *dummy_frame_stack = NULL;
1060
1061 /* Function: find_dummy_frame(pc, fp, sp)
1062 Search the stack of dummy frames for one matching the given PC, FP and SP.
1063 This is the work-horse for pc_in_call_dummy and read_register_dummy */
1064
1065 char *
1066 generic_find_dummy_frame (CORE_ADDR pc, CORE_ADDR fp)
1067 {
1068 struct dummy_frame *dummyframe;
1069
1070 if (pc != entry_point_address ())
1071 return 0;
1072
1073 for (dummyframe = dummy_frame_stack; dummyframe != NULL;
1074 dummyframe = dummyframe->next)
1075 if (fp == dummyframe->fp
1076 || fp == dummyframe->sp
1077 || fp == dummyframe->top)
1078 /* The frame in question lies between the saved fp and sp, inclusive */
1079 return dummyframe->registers;
1080
1081 return 0;
1082 }
1083
1084 /* Function: pc_in_call_dummy (pc, fp)
1085 Return true if this is a dummy frame created by gdb for an inferior call */
1086
1087 int
1088 generic_pc_in_call_dummy (CORE_ADDR pc, CORE_ADDR sp, CORE_ADDR fp)
1089 {
1090 /* if find_dummy_frame succeeds, then PC is in a call dummy */
1091 /* Note: SP and not FP is passed on. */
1092 return (generic_find_dummy_frame (pc, sp) != 0);
1093 }
1094
1095 /* Function: read_register_dummy
1096 Find a saved register from before GDB calls a function in the inferior */
1097
1098 CORE_ADDR
1099 generic_read_register_dummy (CORE_ADDR pc, CORE_ADDR fp, int regno)
1100 {
1101 char *dummy_regs = generic_find_dummy_frame (pc, fp);
1102
1103 if (dummy_regs)
1104 return extract_address (&dummy_regs[REGISTER_BYTE (regno)],
1105 REGISTER_RAW_SIZE (regno));
1106 else
1107 return 0;
1108 }
1109
1110 /* Save all the registers on the dummy frame stack. Most ports save the
1111 registers on the target stack. This results in lots of unnecessary memory
1112 references, which are slow when debugging via a serial line. Instead, we
1113 save all the registers internally, and never write them to the stack. The
1114 registers get restored when the called function returns to the entry point,
1115 where a breakpoint is laying in wait. */
1116
1117 void
1118 generic_push_dummy_frame (void)
1119 {
1120 struct dummy_frame *dummy_frame;
1121 CORE_ADDR fp = (get_current_frame ())->frame;
1122
1123 /* check to see if there are stale dummy frames,
1124 perhaps left over from when a longjump took us out of a
1125 function that was called by the debugger */
1126
1127 dummy_frame = dummy_frame_stack;
1128 while (dummy_frame)
1129 if (INNER_THAN (dummy_frame->fp, fp)) /* stale -- destroy! */
1130 {
1131 dummy_frame_stack = dummy_frame->next;
1132 xfree (dummy_frame->registers);
1133 xfree (dummy_frame);
1134 dummy_frame = dummy_frame_stack;
1135 }
1136 else
1137 dummy_frame = dummy_frame->next;
1138
1139 dummy_frame = xmalloc (sizeof (struct dummy_frame));
1140 dummy_frame->registers = xmalloc (REGISTER_BYTES);
1141
1142 dummy_frame->pc = read_pc ();
1143 dummy_frame->sp = read_sp ();
1144 dummy_frame->top = dummy_frame->sp;
1145 dummy_frame->fp = fp;
1146 read_register_bytes (0, dummy_frame->registers, REGISTER_BYTES);
1147 dummy_frame->next = dummy_frame_stack;
1148 dummy_frame_stack = dummy_frame;
1149 }
1150
1151 void
1152 generic_save_dummy_frame_tos (CORE_ADDR sp)
1153 {
1154 dummy_frame_stack->top = sp;
1155 }
1156
1157 /* Restore the machine state from either the saved dummy stack or a
1158 real stack frame. */
1159
1160 void
1161 generic_pop_current_frame (void (*popper) (struct frame_info * frame))
1162 {
1163 struct frame_info *frame = get_current_frame ();
1164
1165 if (PC_IN_CALL_DUMMY (frame->pc, frame->frame, frame->frame))
1166 generic_pop_dummy_frame ();
1167 else
1168 (*popper) (frame);
1169 }
1170
1171 /* Function: pop_dummy_frame
1172 Restore the machine state from a saved dummy stack frame. */
1173
1174 void
1175 generic_pop_dummy_frame (void)
1176 {
1177 struct dummy_frame *dummy_frame = dummy_frame_stack;
1178
1179 /* FIXME: what if the first frame isn't the right one, eg..
1180 because one call-by-hand function has done a longjmp into another one? */
1181
1182 if (!dummy_frame)
1183 error ("Can't pop dummy frame!");
1184 dummy_frame_stack = dummy_frame->next;
1185 write_register_bytes (0, dummy_frame->registers, REGISTER_BYTES);
1186 flush_cached_frames ();
1187
1188 xfree (dummy_frame->registers);
1189 xfree (dummy_frame);
1190 }
1191
1192 /* Function: frame_chain_valid
1193 Returns true for a user frame or a call_function_by_hand dummy frame,
1194 and false for the CRT0 start-up frame. Purpose is to terminate backtrace */
1195
1196 int
1197 generic_file_frame_chain_valid (CORE_ADDR fp, struct frame_info *fi)
1198 {
1199 if (PC_IN_CALL_DUMMY (FRAME_SAVED_PC (fi), fp, fp))
1200 return 1; /* don't prune CALL_DUMMY frames */
1201 else /* fall back to default algorithm (see frame.h) */
1202 return (fp != 0
1203 && (INNER_THAN (fi->frame, fp) || fi->frame == fp)
1204 && !inside_entry_file (FRAME_SAVED_PC (fi)));
1205 }
1206
1207 int
1208 generic_func_frame_chain_valid (CORE_ADDR fp, struct frame_info *fi)
1209 {
1210 if (PC_IN_CALL_DUMMY ((fi)->pc, fp, fp))
1211 return 1; /* don't prune CALL_DUMMY frames */
1212 else /* fall back to default algorithm (see frame.h) */
1213 return (fp != 0
1214 && (INNER_THAN (fi->frame, fp) || fi->frame == fp)
1215 && !inside_main_func ((fi)->pc)
1216 && !inside_entry_func ((fi)->pc));
1217 }
1218
1219 /* Function: fix_call_dummy
1220 Stub function. Generic dumy frames typically do not need to fix
1221 the frame being created */
1222
1223 void
1224 generic_fix_call_dummy (char *dummy, CORE_ADDR pc, CORE_ADDR fun, int nargs,
1225 struct value **args, struct type *type, int gcc_p)
1226 {
1227 return;
1228 }
1229
1230 /* Function: get_saved_register
1231 Find register number REGNUM relative to FRAME and put its (raw,
1232 target format) contents in *RAW_BUFFER.
1233
1234 Set *OPTIMIZED if the variable was optimized out (and thus can't be
1235 fetched). Note that this is never set to anything other than zero
1236 in this implementation.
1237
1238 Set *LVAL to lval_memory, lval_register, or not_lval, depending on
1239 whether the value was fetched from memory, from a register, or in a
1240 strange and non-modifiable way (e.g. a frame pointer which was
1241 calculated rather than fetched). We will use not_lval for values
1242 fetched from generic dummy frames.
1243
1244 Set *ADDRP to the address, either in memory or as a REGISTER_BYTE
1245 offset into the registers array. If the value is stored in a dummy
1246 frame, set *ADDRP to zero.
1247
1248 To use this implementation, define a function called
1249 "get_saved_register" in your target code, which simply passes all
1250 of its arguments to this function.
1251
1252 The argument RAW_BUFFER must point to aligned memory. */
1253
1254 void
1255 generic_get_saved_register (char *raw_buffer, int *optimized, CORE_ADDR *addrp,
1256 struct frame_info *frame, int regnum,
1257 enum lval_type *lval)
1258 {
1259 if (!target_has_registers)
1260 error ("No registers.");
1261
1262 /* Normal systems don't optimize out things with register numbers. */
1263 if (optimized != NULL)
1264 *optimized = 0;
1265
1266 if (addrp) /* default assumption: not found in memory */
1267 *addrp = 0;
1268
1269 /* Note: since the current frame's registers could only have been
1270 saved by frames INTERIOR TO the current frame, we skip examining
1271 the current frame itself: otherwise, we would be getting the
1272 previous frame's registers which were saved by the current frame. */
1273
1274 while (frame && ((frame = frame->next) != NULL))
1275 {
1276 if (PC_IN_CALL_DUMMY (frame->pc, frame->frame, frame->frame))
1277 {
1278 if (lval) /* found it in a CALL_DUMMY frame */
1279 *lval = not_lval;
1280 if (raw_buffer)
1281 memcpy (raw_buffer,
1282 generic_find_dummy_frame (frame->pc, frame->frame) +
1283 REGISTER_BYTE (regnum),
1284 REGISTER_RAW_SIZE (regnum));
1285 return;
1286 }
1287
1288 FRAME_INIT_SAVED_REGS (frame);
1289 if (frame->saved_regs != NULL
1290 && frame->saved_regs[regnum] != 0)
1291 {
1292 if (lval) /* found it saved on the stack */
1293 *lval = lval_memory;
1294 if (regnum == SP_REGNUM)
1295 {
1296 if (raw_buffer) /* SP register treated specially */
1297 store_address (raw_buffer, REGISTER_RAW_SIZE (regnum),
1298 frame->saved_regs[regnum]);
1299 }
1300 else
1301 {
1302 if (addrp) /* any other register */
1303 *addrp = frame->saved_regs[regnum];
1304 if (raw_buffer)
1305 read_memory (frame->saved_regs[regnum], raw_buffer,
1306 REGISTER_RAW_SIZE (regnum));
1307 }
1308 return;
1309 }
1310 }
1311
1312 /* If we get thru the loop to this point, it means the register was
1313 not saved in any frame. Return the actual live-register value. */
1314
1315 if (lval) /* found it in a live register */
1316 *lval = lval_register;
1317 if (addrp)
1318 *addrp = REGISTER_BYTE (regnum);
1319 if (raw_buffer)
1320 read_register_gen (regnum, raw_buffer);
1321 }
1322
1323 void
1324 _initialize_blockframe (void)
1325 {
1326 obstack_init (&frame_cache_obstack);
1327 }
This page took 0.054364 seconds and 5 git commands to generate.