2004-03-23 Andrew Cagney <cagney@redhat.com>
[deliverable/binutils-gdb.git] / gdb / blockframe.c
1 /* Get info from stack frames; convert between frames, blocks,
2 functions and pc values.
3
4 Copyright 1986, 1987, 1988, 1989, 1990, 1991, 1992, 1993, 1994,
5 1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004
6 Free Software Foundation, Inc.
7
8 This file is part of GDB.
9
10 This program is free software; you can redistribute it and/or modify
11 it under the terms of the GNU General Public License as published by
12 the Free Software Foundation; either version 2 of the License, or
13 (at your option) any later version.
14
15 This program is distributed in the hope that it will be useful,
16 but WITHOUT ANY WARRANTY; without even the implied warranty of
17 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
18 GNU General Public License for more details.
19
20 You should have received a copy of the GNU General Public License
21 along with this program; if not, write to the Free Software
22 Foundation, Inc., 59 Temple Place - Suite 330,
23 Boston, MA 02111-1307, USA. */
24
25 #include "defs.h"
26 #include "symtab.h"
27 #include "bfd.h"
28 #include "objfiles.h"
29 #include "frame.h"
30 #include "gdbcore.h"
31 #include "value.h" /* for read_register */
32 #include "target.h" /* for target_has_stack */
33 #include "inferior.h" /* for read_pc */
34 #include "annotate.h"
35 #include "regcache.h"
36 #include "gdb_assert.h"
37 #include "dummy-frame.h"
38 #include "command.h"
39 #include "gdbcmd.h"
40 #include "block.h"
41
42 /* Prototypes for exported functions. */
43
44 void _initialize_blockframe (void);
45
46 /* Is ADDR inside the startup file? Note that if your machine has a
47 way to detect the bottom of the stack, there is no need to call
48 this function from DEPRECATED_FRAME_CHAIN_VALID; the reason for
49 doing so is that some machines have no way of detecting bottom of
50 stack.
51
52 A PC of zero is always considered to be the bottom of the stack. */
53
54 int
55 deprecated_inside_entry_file (CORE_ADDR addr)
56 {
57 if (addr == 0)
58 return 1;
59 if (symfile_objfile == 0)
60 return 0;
61 if (CALL_DUMMY_LOCATION == AT_ENTRY_POINT
62 || CALL_DUMMY_LOCATION == AT_SYMBOL)
63 {
64 /* Do not stop backtracing if the pc is in the call dummy
65 at the entry point. */
66 /* FIXME: Won't always work with zeros for the last two arguments */
67 if (DEPRECATED_PC_IN_CALL_DUMMY (addr, 0, 0))
68 return 0;
69 }
70 return (addr >= symfile_objfile->ei.deprecated_entry_file_lowpc &&
71 addr < symfile_objfile->ei.deprecated_entry_file_highpc);
72 }
73
74 /* Test whether PC is in the range of addresses that corresponds to
75 the "main" function. */
76
77 int
78 inside_main_func (CORE_ADDR pc)
79 {
80 struct minimal_symbol *msymbol;
81
82 if (symfile_objfile == 0)
83 return 0;
84
85 msymbol = lookup_minimal_symbol (main_name (), NULL, symfile_objfile);
86
87 /* If the address range hasn't been set up at symbol reading time,
88 set it up now. */
89
90 if (msymbol != NULL
91 && symfile_objfile->ei.main_func_lowpc == INVALID_ENTRY_LOWPC
92 && symfile_objfile->ei.main_func_highpc == INVALID_ENTRY_HIGHPC)
93 {
94 /* brobecker/2003-10-10: We used to rely on lookup_symbol() to
95 search the symbol associated to the "main" function.
96 Unfortunately, lookup_symbol() uses the current-language
97 la_lookup_symbol_nonlocal function to do the global symbol
98 search. Depending on the language, this can introduce
99 certain side-effects, because certain languages, for instance
100 Ada, may find more than one match. Therefore we prefer to
101 search the "main" function symbol using its address rather
102 than its name. */
103 struct symbol *mainsym =
104 find_pc_function (SYMBOL_VALUE_ADDRESS (msymbol));
105
106 if (mainsym && SYMBOL_CLASS (mainsym) == LOC_BLOCK)
107 {
108 symfile_objfile->ei.main_func_lowpc =
109 BLOCK_START (SYMBOL_BLOCK_VALUE (mainsym));
110 symfile_objfile->ei.main_func_highpc =
111 BLOCK_END (SYMBOL_BLOCK_VALUE (mainsym));
112 }
113 }
114
115 /* Not in the normal symbol tables, see if "main" is in the partial
116 symbol table. If it's not, then give up. */
117 if (msymbol != NULL && MSYMBOL_TYPE (msymbol) == mst_text)
118 {
119 CORE_ADDR maddr = SYMBOL_VALUE_ADDRESS (msymbol);
120 asection *msect = SYMBOL_BFD_SECTION (msymbol);
121 struct obj_section *osect = find_pc_sect_section (maddr, msect);
122
123 if (osect != NULL)
124 {
125 int i;
126
127 /* Step over other symbols at this same address, and symbols
128 in other sections, to find the next symbol in this
129 section with a different address. */
130 for (i = 1; SYMBOL_LINKAGE_NAME (msymbol + i) != NULL; i++)
131 {
132 if (SYMBOL_VALUE_ADDRESS (msymbol + i) != maddr
133 && SYMBOL_BFD_SECTION (msymbol + i) == msect)
134 break;
135 }
136
137 symfile_objfile->ei.main_func_lowpc = maddr;
138
139 /* Use the lesser of the next minimal symbol in the same
140 section, or the end of the section, as the end of the
141 function. */
142 if (SYMBOL_LINKAGE_NAME (msymbol + i) != NULL
143 && SYMBOL_VALUE_ADDRESS (msymbol + i) < osect->endaddr)
144 symfile_objfile->ei.main_func_highpc =
145 SYMBOL_VALUE_ADDRESS (msymbol + i);
146 else
147 /* We got the start address from the last msymbol in the
148 objfile. So the end address is the end of the
149 section. */
150 symfile_objfile->ei.main_func_highpc = osect->endaddr;
151 }
152 }
153
154 return (symfile_objfile->ei.main_func_lowpc <= pc
155 && symfile_objfile->ei.main_func_highpc > pc);
156 }
157
158 /* Test whether THIS_FRAME is inside the process entry point function. */
159
160 int
161 inside_entry_func (struct frame_info *this_frame)
162 {
163 return (get_frame_func (this_frame) == entry_point_address ());
164 }
165
166 /* Similar to inside_entry_func, but accomodating legacy frame code. */
167
168 static int
169 legacy_inside_entry_func (CORE_ADDR pc)
170 {
171 if (symfile_objfile == 0)
172 return 0;
173
174 if (CALL_DUMMY_LOCATION == AT_ENTRY_POINT)
175 {
176 /* Do not stop backtracing if the program counter is in the call
177 dummy at the entry point. */
178 /* FIXME: This won't always work with zeros for the last two
179 arguments. */
180 if (DEPRECATED_PC_IN_CALL_DUMMY (pc, 0, 0))
181 return 0;
182 }
183
184 return (symfile_objfile->ei.entry_func_lowpc <= pc
185 && symfile_objfile->ei.entry_func_highpc > pc);
186 }
187
188 /* Return nonzero if the function for this frame lacks a prologue.
189 Many machines can define DEPRECATED_FRAMELESS_FUNCTION_INVOCATION
190 to just call this function. */
191
192 int
193 legacy_frameless_look_for_prologue (struct frame_info *frame)
194 {
195 CORE_ADDR func_start;
196
197 func_start = get_frame_func (frame);
198 if (func_start)
199 {
200 func_start += FUNCTION_START_OFFSET;
201 /* NOTE: cagney/2004-02-09: Eliminated per-architecture
202 PROLOGUE_FRAMELESS_P call as architectures with custom
203 implementations had all been deleted. Eventually even this
204 function can go - GDB no longer tries to differentiate
205 between framed, frameless and stackless functions. They are
206 all now considered equally evil :-^. */
207 /* If skipping the prologue ends up skips nothing, there must be
208 no prologue and hence no code creating a frame. There for
209 the function is "frameless" :-/. */
210 return func_start == SKIP_PROLOGUE (func_start);
211 }
212 else if (get_frame_pc (frame) == 0)
213 /* A frame with a zero PC is usually created by dereferencing a
214 NULL function pointer, normally causing an immediate core dump
215 of the inferior. Mark function as frameless, as the inferior
216 has no chance of setting up a stack frame. */
217 return 1;
218 else
219 /* If we can't find the start of the function, we don't really
220 know whether the function is frameless, but we should be able
221 to get a reasonable (i.e. best we can do under the
222 circumstances) backtrace by saying that it isn't. */
223 return 0;
224 }
225
226 /* Return the innermost lexical block in execution
227 in a specified stack frame. The frame address is assumed valid.
228
229 If ADDR_IN_BLOCK is non-zero, set *ADDR_IN_BLOCK to the exact code
230 address we used to choose the block. We use this to find a source
231 line, to decide which macro definitions are in scope.
232
233 The value returned in *ADDR_IN_BLOCK isn't necessarily the frame's
234 PC, and may not really be a valid PC at all. For example, in the
235 caller of a function declared to never return, the code at the
236 return address will never be reached, so the call instruction may
237 be the very last instruction in the block. So the address we use
238 to choose the block is actually one byte before the return address
239 --- hopefully pointing us at the call instruction, or its delay
240 slot instruction. */
241
242 struct block *
243 get_frame_block (struct frame_info *frame, CORE_ADDR *addr_in_block)
244 {
245 const CORE_ADDR pc = get_frame_address_in_block (frame);
246
247 if (addr_in_block)
248 *addr_in_block = pc;
249
250 return block_for_pc (pc);
251 }
252
253 CORE_ADDR
254 get_pc_function_start (CORE_ADDR pc)
255 {
256 struct block *bl;
257 struct minimal_symbol *msymbol;
258
259 bl = block_for_pc (pc);
260 if (bl)
261 {
262 struct symbol *symbol = block_function (bl);
263
264 if (symbol)
265 {
266 bl = SYMBOL_BLOCK_VALUE (symbol);
267 return BLOCK_START (bl);
268 }
269 }
270
271 msymbol = lookup_minimal_symbol_by_pc (pc);
272 if (msymbol)
273 {
274 CORE_ADDR fstart = SYMBOL_VALUE_ADDRESS (msymbol);
275
276 if (find_pc_section (fstart))
277 return fstart;
278 }
279
280 return 0;
281 }
282
283 /* Return the symbol for the function executing in frame FRAME. */
284
285 struct symbol *
286 get_frame_function (struct frame_info *frame)
287 {
288 struct block *bl = get_frame_block (frame, 0);
289 if (bl == 0)
290 return 0;
291 return block_function (bl);
292 }
293 \f
294
295 /* Return the function containing pc value PC in section SECTION.
296 Returns 0 if function is not known. */
297
298 struct symbol *
299 find_pc_sect_function (CORE_ADDR pc, struct bfd_section *section)
300 {
301 struct block *b = block_for_pc_sect (pc, section);
302 if (b == 0)
303 return 0;
304 return block_function (b);
305 }
306
307 /* Return the function containing pc value PC.
308 Returns 0 if function is not known. Backward compatibility, no section */
309
310 struct symbol *
311 find_pc_function (CORE_ADDR pc)
312 {
313 return find_pc_sect_function (pc, find_pc_mapped_section (pc));
314 }
315
316 /* These variables are used to cache the most recent result
317 * of find_pc_partial_function. */
318
319 static CORE_ADDR cache_pc_function_low = 0;
320 static CORE_ADDR cache_pc_function_high = 0;
321 static char *cache_pc_function_name = 0;
322 static struct bfd_section *cache_pc_function_section = NULL;
323
324 /* Clear cache, e.g. when symbol table is discarded. */
325
326 void
327 clear_pc_function_cache (void)
328 {
329 cache_pc_function_low = 0;
330 cache_pc_function_high = 0;
331 cache_pc_function_name = (char *) 0;
332 cache_pc_function_section = NULL;
333 }
334
335 /* Finds the "function" (text symbol) that is smaller than PC but
336 greatest of all of the potential text symbols in SECTION. Sets
337 *NAME and/or *ADDRESS conditionally if that pointer is non-null.
338 If ENDADDR is non-null, then set *ENDADDR to be the end of the
339 function (exclusive), but passing ENDADDR as non-null means that
340 the function might cause symbols to be read. This function either
341 succeeds or fails (not halfway succeeds). If it succeeds, it sets
342 *NAME, *ADDRESS, and *ENDADDR to real information and returns 1.
343 If it fails, it sets *NAME, *ADDRESS, and *ENDADDR to zero and
344 returns 0. */
345
346 /* Backward compatibility, no section argument. */
347
348 int
349 find_pc_partial_function (CORE_ADDR pc, char **name, CORE_ADDR *address,
350 CORE_ADDR *endaddr)
351 {
352 struct bfd_section *section;
353 struct partial_symtab *pst;
354 struct symbol *f;
355 struct minimal_symbol *msymbol;
356 struct partial_symbol *psb;
357 struct obj_section *osect;
358 int i;
359 CORE_ADDR mapped_pc;
360
361 /* To ensure that the symbol returned belongs to the correct setion
362 (and that the last [random] symbol from the previous section
363 isn't returned) try to find the section containing PC. First try
364 the overlay code (which by default returns NULL); and second try
365 the normal section code (which almost always succeeds). */
366 section = find_pc_overlay (pc);
367 if (section == NULL)
368 {
369 struct obj_section *obj_section = find_pc_section (pc);
370 if (obj_section == NULL)
371 section = NULL;
372 else
373 section = obj_section->the_bfd_section;
374 }
375
376 mapped_pc = overlay_mapped_address (pc, section);
377
378 if (mapped_pc >= cache_pc_function_low
379 && mapped_pc < cache_pc_function_high
380 && section == cache_pc_function_section)
381 goto return_cached_value;
382
383 /* If sigtramp is in the u area, it counts as a function (especially
384 important for step_1). */
385 /* NOTE: cagney/2004-03-16: Determining if the PC is in a signal
386 trampoline typically depends on the detailed analysis of dynamic
387 information obtained from the inferior yet this function is
388 expected to work using static information obtained from the
389 symbol table. */
390 if (DEPRECATED_SIGTRAMP_START_P ()
391 && DEPRECATED_PC_IN_SIGTRAMP (mapped_pc, (char *) NULL))
392 {
393 cache_pc_function_low = DEPRECATED_SIGTRAMP_START (mapped_pc);
394 cache_pc_function_high = DEPRECATED_SIGTRAMP_END (mapped_pc);
395 cache_pc_function_name = "<sigtramp>";
396 cache_pc_function_section = section;
397 goto return_cached_value;
398 }
399
400 msymbol = lookup_minimal_symbol_by_pc_section (mapped_pc, section);
401 pst = find_pc_sect_psymtab (mapped_pc, section);
402 if (pst)
403 {
404 /* Need to read the symbols to get a good value for the end address. */
405 if (endaddr != NULL && !pst->readin)
406 {
407 /* Need to get the terminal in case symbol-reading produces
408 output. */
409 target_terminal_ours_for_output ();
410 PSYMTAB_TO_SYMTAB (pst);
411 }
412
413 if (pst->readin)
414 {
415 /* Checking whether the msymbol has a larger value is for the
416 "pathological" case mentioned in print_frame_info. */
417 f = find_pc_sect_function (mapped_pc, section);
418 if (f != NULL
419 && (msymbol == NULL
420 || (BLOCK_START (SYMBOL_BLOCK_VALUE (f))
421 >= SYMBOL_VALUE_ADDRESS (msymbol))))
422 {
423 cache_pc_function_low = BLOCK_START (SYMBOL_BLOCK_VALUE (f));
424 cache_pc_function_high = BLOCK_END (SYMBOL_BLOCK_VALUE (f));
425 cache_pc_function_name = DEPRECATED_SYMBOL_NAME (f);
426 cache_pc_function_section = section;
427 goto return_cached_value;
428 }
429 }
430 else
431 {
432 /* Now that static symbols go in the minimal symbol table, perhaps
433 we could just ignore the partial symbols. But at least for now
434 we use the partial or minimal symbol, whichever is larger. */
435 psb = find_pc_sect_psymbol (pst, mapped_pc, section);
436
437 if (psb
438 && (msymbol == NULL ||
439 (SYMBOL_VALUE_ADDRESS (psb)
440 >= SYMBOL_VALUE_ADDRESS (msymbol))))
441 {
442 /* This case isn't being cached currently. */
443 if (address)
444 *address = SYMBOL_VALUE_ADDRESS (psb);
445 if (name)
446 *name = DEPRECATED_SYMBOL_NAME (psb);
447 /* endaddr non-NULL can't happen here. */
448 return 1;
449 }
450 }
451 }
452
453 /* Not in the normal symbol tables, see if the pc is in a known section.
454 If it's not, then give up. This ensures that anything beyond the end
455 of the text seg doesn't appear to be part of the last function in the
456 text segment. */
457
458 osect = find_pc_sect_section (mapped_pc, section);
459
460 if (!osect)
461 msymbol = NULL;
462
463 /* Must be in the minimal symbol table. */
464 if (msymbol == NULL)
465 {
466 /* No available symbol. */
467 if (name != NULL)
468 *name = 0;
469 if (address != NULL)
470 *address = 0;
471 if (endaddr != NULL)
472 *endaddr = 0;
473 return 0;
474 }
475
476 cache_pc_function_low = SYMBOL_VALUE_ADDRESS (msymbol);
477 cache_pc_function_name = DEPRECATED_SYMBOL_NAME (msymbol);
478 cache_pc_function_section = section;
479
480 /* Use the lesser of the next minimal symbol in the same section, or
481 the end of the section, as the end of the function. */
482
483 /* Step over other symbols at this same address, and symbols in
484 other sections, to find the next symbol in this section with
485 a different address. */
486
487 for (i = 1; DEPRECATED_SYMBOL_NAME (msymbol + i) != NULL; i++)
488 {
489 if (SYMBOL_VALUE_ADDRESS (msymbol + i) != SYMBOL_VALUE_ADDRESS (msymbol)
490 && SYMBOL_BFD_SECTION (msymbol + i) == SYMBOL_BFD_SECTION (msymbol))
491 break;
492 }
493
494 if (DEPRECATED_SYMBOL_NAME (msymbol + i) != NULL
495 && SYMBOL_VALUE_ADDRESS (msymbol + i) < osect->endaddr)
496 cache_pc_function_high = SYMBOL_VALUE_ADDRESS (msymbol + i);
497 else
498 /* We got the start address from the last msymbol in the objfile.
499 So the end address is the end of the section. */
500 cache_pc_function_high = osect->endaddr;
501
502 return_cached_value:
503
504 if (address)
505 {
506 if (pc_in_unmapped_range (pc, section))
507 *address = overlay_unmapped_address (cache_pc_function_low, section);
508 else
509 *address = cache_pc_function_low;
510 }
511
512 if (name)
513 *name = cache_pc_function_name;
514
515 if (endaddr)
516 {
517 if (pc_in_unmapped_range (pc, section))
518 {
519 /* Because the high address is actually beyond the end of
520 the function (and therefore possibly beyond the end of
521 the overlay), we must actually convert (high - 1) and
522 then add one to that. */
523
524 *endaddr = 1 + overlay_unmapped_address (cache_pc_function_high - 1,
525 section);
526 }
527 else
528 *endaddr = cache_pc_function_high;
529 }
530
531 return 1;
532 }
533
534 /* Return the innermost stack frame executing inside of BLOCK,
535 or NULL if there is no such frame. If BLOCK is NULL, just return NULL. */
536
537 struct frame_info *
538 block_innermost_frame (struct block *block)
539 {
540 struct frame_info *frame;
541 CORE_ADDR start;
542 CORE_ADDR end;
543 CORE_ADDR calling_pc;
544
545 if (block == NULL)
546 return NULL;
547
548 start = BLOCK_START (block);
549 end = BLOCK_END (block);
550
551 frame = NULL;
552 while (1)
553 {
554 frame = get_prev_frame (frame);
555 if (frame == NULL)
556 return NULL;
557 calling_pc = get_frame_address_in_block (frame);
558 if (calling_pc >= start && calling_pc < end)
559 return frame;
560 }
561 }
562
563 /* Are we in a call dummy? The code below which allows DECR_PC_AFTER_BREAK
564 below is for infrun.c, which may give the macro a pc without that
565 subtracted out. */
566
567 /* Is the PC in a call dummy? SP and FRAME_ADDRESS are the bottom and
568 top of the stack frame which we are checking, where "bottom" and
569 "top" refer to some section of memory which contains the code for
570 the call dummy. Calls to this macro assume that the contents of
571 SP_REGNUM and DEPRECATED_FP_REGNUM (or the saved values thereof),
572 respectively, are the things to pass.
573
574 This won't work on the 29k, where SP_REGNUM and
575 DEPRECATED_FP_REGNUM don't have that meaning, but the 29k doesn't
576 use ON_STACK. This could be fixed by generalizing this scheme,
577 perhaps by passing in a frame and adding a few fields, at least on
578 machines which need them for DEPRECATED_PC_IN_CALL_DUMMY.
579
580 Something simpler, like checking for the stack segment, doesn't work,
581 since various programs (threads implementations, gcc nested function
582 stubs, etc) may either allocate stack frames in another segment, or
583 allocate other kinds of code on the stack. */
584
585 int
586 deprecated_pc_in_call_dummy_on_stack (CORE_ADDR pc, CORE_ADDR sp,
587 CORE_ADDR frame_address)
588 {
589 return (INNER_THAN ((sp), (pc))
590 && (frame_address != 0)
591 && INNER_THAN ((pc), (frame_address)));
592 }
593
594 /* Returns true for a user frame or a call_function_by_hand dummy
595 frame, and false for the CRT0 start-up frame. Purpose is to
596 terminate backtrace. */
597
598 int
599 legacy_frame_chain_valid (CORE_ADDR fp, struct frame_info *fi)
600 {
601 /* Don't prune CALL_DUMMY frames. */
602 if (DEPRECATED_USE_GENERIC_DUMMY_FRAMES
603 && DEPRECATED_PC_IN_CALL_DUMMY (get_frame_pc (fi), 0, 0))
604 return 1;
605
606 /* If the new frame pointer is zero, then it isn't valid. */
607 if (fp == 0)
608 return 0;
609
610 /* If the new frame would be inside (younger than) the previous frame,
611 then it isn't valid. */
612 if (INNER_THAN (fp, get_frame_base (fi)))
613 return 0;
614
615 /* If the architecture has a custom DEPRECATED_FRAME_CHAIN_VALID,
616 call it now. */
617 if (DEPRECATED_FRAME_CHAIN_VALID_P ())
618 return DEPRECATED_FRAME_CHAIN_VALID (fp, fi);
619
620 /* If we're already inside the entry function for the main objfile, then it
621 isn't valid. */
622 if (legacy_inside_entry_func (get_frame_pc (fi)))
623 return 0;
624
625 /* If we're inside the entry file, it isn't valid. */
626 /* NOTE/drow 2002-12-25: should there be a way to disable this check? It
627 assumes a single small entry file, and the way some debug readers (e.g.
628 dbxread) figure out which object is the entry file is somewhat hokey. */
629 if (deprecated_inside_entry_file (frame_pc_unwind (fi)))
630 return 0;
631
632 return 1;
633 }
This page took 0.043464 seconds and 5 git commands to generate.