2004-08-31 Andrew Cagney <cagney@gnu.org>
[deliverable/binutils-gdb.git] / gdb / blockframe.c
1 /* Get info from stack frames; convert between frames, blocks,
2 functions and pc values.
3
4 Copyright 1986, 1987, 1988, 1989, 1990, 1991, 1992, 1993, 1994,
5 1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004
6 Free Software Foundation, Inc.
7
8 This file is part of GDB.
9
10 This program is free software; you can redistribute it and/or modify
11 it under the terms of the GNU General Public License as published by
12 the Free Software Foundation; either version 2 of the License, or
13 (at your option) any later version.
14
15 This program is distributed in the hope that it will be useful,
16 but WITHOUT ANY WARRANTY; without even the implied warranty of
17 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
18 GNU General Public License for more details.
19
20 You should have received a copy of the GNU General Public License
21 along with this program; if not, write to the Free Software
22 Foundation, Inc., 59 Temple Place - Suite 330,
23 Boston, MA 02111-1307, USA. */
24
25 #include "defs.h"
26 #include "symtab.h"
27 #include "bfd.h"
28 #include "objfiles.h"
29 #include "frame.h"
30 #include "gdbcore.h"
31 #include "value.h" /* for read_register */
32 #include "target.h" /* for target_has_stack */
33 #include "inferior.h" /* for read_pc */
34 #include "annotate.h"
35 #include "regcache.h"
36 #include "gdb_assert.h"
37 #include "dummy-frame.h"
38 #include "command.h"
39 #include "gdbcmd.h"
40 #include "block.h"
41
42 /* Prototypes for exported functions. */
43
44 void _initialize_blockframe (void);
45
46 /* Test whether THIS_FRAME is inside the process entry point function. */
47
48 int
49 inside_entry_func (struct frame_info *this_frame)
50 {
51 return (get_frame_func (this_frame) == entry_point_address ());
52 }
53
54 /* Return the innermost lexical block in execution
55 in a specified stack frame. The frame address is assumed valid.
56
57 If ADDR_IN_BLOCK is non-zero, set *ADDR_IN_BLOCK to the exact code
58 address we used to choose the block. We use this to find a source
59 line, to decide which macro definitions are in scope.
60
61 The value returned in *ADDR_IN_BLOCK isn't necessarily the frame's
62 PC, and may not really be a valid PC at all. For example, in the
63 caller of a function declared to never return, the code at the
64 return address will never be reached, so the call instruction may
65 be the very last instruction in the block. So the address we use
66 to choose the block is actually one byte before the return address
67 --- hopefully pointing us at the call instruction, or its delay
68 slot instruction. */
69
70 struct block *
71 get_frame_block (struct frame_info *frame, CORE_ADDR *addr_in_block)
72 {
73 const CORE_ADDR pc = get_frame_address_in_block (frame);
74
75 if (addr_in_block)
76 *addr_in_block = pc;
77
78 return block_for_pc (pc);
79 }
80
81 CORE_ADDR
82 get_pc_function_start (CORE_ADDR pc)
83 {
84 struct block *bl;
85 struct minimal_symbol *msymbol;
86
87 bl = block_for_pc (pc);
88 if (bl)
89 {
90 struct symbol *symbol = block_function (bl);
91
92 if (symbol)
93 {
94 bl = SYMBOL_BLOCK_VALUE (symbol);
95 return BLOCK_START (bl);
96 }
97 }
98
99 msymbol = lookup_minimal_symbol_by_pc (pc);
100 if (msymbol)
101 {
102 CORE_ADDR fstart = SYMBOL_VALUE_ADDRESS (msymbol);
103
104 if (find_pc_section (fstart))
105 return fstart;
106 }
107
108 return 0;
109 }
110
111 /* Return the symbol for the function executing in frame FRAME. */
112
113 struct symbol *
114 get_frame_function (struct frame_info *frame)
115 {
116 struct block *bl = get_frame_block (frame, 0);
117 if (bl == 0)
118 return 0;
119 return block_function (bl);
120 }
121 \f
122
123 /* Return the function containing pc value PC in section SECTION.
124 Returns 0 if function is not known. */
125
126 struct symbol *
127 find_pc_sect_function (CORE_ADDR pc, struct bfd_section *section)
128 {
129 struct block *b = block_for_pc_sect (pc, section);
130 if (b == 0)
131 return 0;
132 return block_function (b);
133 }
134
135 /* Return the function containing pc value PC.
136 Returns 0 if function is not known. Backward compatibility, no section */
137
138 struct symbol *
139 find_pc_function (CORE_ADDR pc)
140 {
141 return find_pc_sect_function (pc, find_pc_mapped_section (pc));
142 }
143
144 /* These variables are used to cache the most recent result
145 * of find_pc_partial_function. */
146
147 static CORE_ADDR cache_pc_function_low = 0;
148 static CORE_ADDR cache_pc_function_high = 0;
149 static char *cache_pc_function_name = 0;
150 static struct bfd_section *cache_pc_function_section = NULL;
151
152 /* Clear cache, e.g. when symbol table is discarded. */
153
154 void
155 clear_pc_function_cache (void)
156 {
157 cache_pc_function_low = 0;
158 cache_pc_function_high = 0;
159 cache_pc_function_name = (char *) 0;
160 cache_pc_function_section = NULL;
161 }
162
163 /* Finds the "function" (text symbol) that is smaller than PC but
164 greatest of all of the potential text symbols in SECTION. Sets
165 *NAME and/or *ADDRESS conditionally if that pointer is non-null.
166 If ENDADDR is non-null, then set *ENDADDR to be the end of the
167 function (exclusive), but passing ENDADDR as non-null means that
168 the function might cause symbols to be read. This function either
169 succeeds or fails (not halfway succeeds). If it succeeds, it sets
170 *NAME, *ADDRESS, and *ENDADDR to real information and returns 1.
171 If it fails, it sets *NAME, *ADDRESS, and *ENDADDR to zero and
172 returns 0. */
173
174 /* Backward compatibility, no section argument. */
175
176 int
177 find_pc_partial_function (CORE_ADDR pc, char **name, CORE_ADDR *address,
178 CORE_ADDR *endaddr)
179 {
180 struct bfd_section *section;
181 struct partial_symtab *pst;
182 struct symbol *f;
183 struct minimal_symbol *msymbol;
184 struct partial_symbol *psb;
185 struct obj_section *osect;
186 int i;
187 CORE_ADDR mapped_pc;
188
189 /* To ensure that the symbol returned belongs to the correct setion
190 (and that the last [random] symbol from the previous section
191 isn't returned) try to find the section containing PC. First try
192 the overlay code (which by default returns NULL); and second try
193 the normal section code (which almost always succeeds). */
194 section = find_pc_overlay (pc);
195 if (section == NULL)
196 {
197 struct obj_section *obj_section = find_pc_section (pc);
198 if (obj_section == NULL)
199 section = NULL;
200 else
201 section = obj_section->the_bfd_section;
202 }
203
204 mapped_pc = overlay_mapped_address (pc, section);
205
206 if (mapped_pc >= cache_pc_function_low
207 && mapped_pc < cache_pc_function_high
208 && section == cache_pc_function_section)
209 goto return_cached_value;
210
211 msymbol = lookup_minimal_symbol_by_pc_section (mapped_pc, section);
212 pst = find_pc_sect_psymtab (mapped_pc, section);
213 if (pst)
214 {
215 /* Need to read the symbols to get a good value for the end address. */
216 if (endaddr != NULL && !pst->readin)
217 {
218 /* Need to get the terminal in case symbol-reading produces
219 output. */
220 target_terminal_ours_for_output ();
221 PSYMTAB_TO_SYMTAB (pst);
222 }
223
224 if (pst->readin)
225 {
226 /* Checking whether the msymbol has a larger value is for the
227 "pathological" case mentioned in print_frame_info. */
228 f = find_pc_sect_function (mapped_pc, section);
229 if (f != NULL
230 && (msymbol == NULL
231 || (BLOCK_START (SYMBOL_BLOCK_VALUE (f))
232 >= SYMBOL_VALUE_ADDRESS (msymbol))))
233 {
234 cache_pc_function_low = BLOCK_START (SYMBOL_BLOCK_VALUE (f));
235 cache_pc_function_high = BLOCK_END (SYMBOL_BLOCK_VALUE (f));
236 cache_pc_function_name = DEPRECATED_SYMBOL_NAME (f);
237 cache_pc_function_section = section;
238 goto return_cached_value;
239 }
240 }
241 else
242 {
243 /* Now that static symbols go in the minimal symbol table, perhaps
244 we could just ignore the partial symbols. But at least for now
245 we use the partial or minimal symbol, whichever is larger. */
246 psb = find_pc_sect_psymbol (pst, mapped_pc, section);
247
248 if (psb
249 && (msymbol == NULL ||
250 (SYMBOL_VALUE_ADDRESS (psb)
251 >= SYMBOL_VALUE_ADDRESS (msymbol))))
252 {
253 /* This case isn't being cached currently. */
254 if (address)
255 *address = SYMBOL_VALUE_ADDRESS (psb);
256 if (name)
257 *name = DEPRECATED_SYMBOL_NAME (psb);
258 /* endaddr non-NULL can't happen here. */
259 return 1;
260 }
261 }
262 }
263
264 /* Not in the normal symbol tables, see if the pc is in a known section.
265 If it's not, then give up. This ensures that anything beyond the end
266 of the text seg doesn't appear to be part of the last function in the
267 text segment. */
268
269 osect = find_pc_sect_section (mapped_pc, section);
270
271 if (!osect)
272 msymbol = NULL;
273
274 /* Must be in the minimal symbol table. */
275 if (msymbol == NULL)
276 {
277 /* No available symbol. */
278 if (name != NULL)
279 *name = 0;
280 if (address != NULL)
281 *address = 0;
282 if (endaddr != NULL)
283 *endaddr = 0;
284 return 0;
285 }
286
287 cache_pc_function_low = SYMBOL_VALUE_ADDRESS (msymbol);
288 cache_pc_function_name = DEPRECATED_SYMBOL_NAME (msymbol);
289 cache_pc_function_section = section;
290
291 /* Use the lesser of the next minimal symbol in the same section, or
292 the end of the section, as the end of the function. */
293
294 /* Step over other symbols at this same address, and symbols in
295 other sections, to find the next symbol in this section with
296 a different address. */
297
298 for (i = 1; DEPRECATED_SYMBOL_NAME (msymbol + i) != NULL; i++)
299 {
300 if (SYMBOL_VALUE_ADDRESS (msymbol + i) != SYMBOL_VALUE_ADDRESS (msymbol)
301 && SYMBOL_BFD_SECTION (msymbol + i) == SYMBOL_BFD_SECTION (msymbol))
302 break;
303 }
304
305 if (DEPRECATED_SYMBOL_NAME (msymbol + i) != NULL
306 && SYMBOL_VALUE_ADDRESS (msymbol + i) < osect->endaddr)
307 cache_pc_function_high = SYMBOL_VALUE_ADDRESS (msymbol + i);
308 else
309 /* We got the start address from the last msymbol in the objfile.
310 So the end address is the end of the section. */
311 cache_pc_function_high = osect->endaddr;
312
313 return_cached_value:
314
315 if (address)
316 {
317 if (pc_in_unmapped_range (pc, section))
318 *address = overlay_unmapped_address (cache_pc_function_low, section);
319 else
320 *address = cache_pc_function_low;
321 }
322
323 if (name)
324 *name = cache_pc_function_name;
325
326 if (endaddr)
327 {
328 if (pc_in_unmapped_range (pc, section))
329 {
330 /* Because the high address is actually beyond the end of
331 the function (and therefore possibly beyond the end of
332 the overlay), we must actually convert (high - 1) and
333 then add one to that. */
334
335 *endaddr = 1 + overlay_unmapped_address (cache_pc_function_high - 1,
336 section);
337 }
338 else
339 *endaddr = cache_pc_function_high;
340 }
341
342 return 1;
343 }
344
345 /* Return the innermost stack frame executing inside of BLOCK,
346 or NULL if there is no such frame. If BLOCK is NULL, just return NULL. */
347
348 struct frame_info *
349 block_innermost_frame (struct block *block)
350 {
351 struct frame_info *frame;
352 CORE_ADDR start;
353 CORE_ADDR end;
354 CORE_ADDR calling_pc;
355
356 if (block == NULL)
357 return NULL;
358
359 start = BLOCK_START (block);
360 end = BLOCK_END (block);
361
362 frame = NULL;
363 while (1)
364 {
365 frame = get_prev_frame (frame);
366 if (frame == NULL)
367 return NULL;
368 calling_pc = get_frame_address_in_block (frame);
369 if (calling_pc >= start && calling_pc < end)
370 return frame;
371 }
372 }
This page took 0.037549 seconds and 5 git commands to generate.