Add basic support for AArch64.
[deliverable/binutils-gdb.git] / gdb / breakpoint.c
1 /* Everything about breakpoints, for GDB.
2
3 Copyright (C) 1986-2013 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20 #include "defs.h"
21 #include "arch-utils.h"
22 #include <ctype.h>
23 #include "hashtab.h"
24 #include "symtab.h"
25 #include "frame.h"
26 #include "breakpoint.h"
27 #include "tracepoint.h"
28 #include "gdbtypes.h"
29 #include "expression.h"
30 #include "gdbcore.h"
31 #include "gdbcmd.h"
32 #include "value.h"
33 #include "command.h"
34 #include "inferior.h"
35 #include "gdbthread.h"
36 #include "target.h"
37 #include "language.h"
38 #include "gdb_string.h"
39 #include "gdb-demangle.h"
40 #include "filenames.h"
41 #include "annotate.h"
42 #include "symfile.h"
43 #include "objfiles.h"
44 #include "source.h"
45 #include "linespec.h"
46 #include "completer.h"
47 #include "gdb.h"
48 #include "ui-out.h"
49 #include "cli/cli-script.h"
50 #include "gdb_assert.h"
51 #include "block.h"
52 #include "solib.h"
53 #include "solist.h"
54 #include "observer.h"
55 #include "exceptions.h"
56 #include "memattr.h"
57 #include "ada-lang.h"
58 #include "top.h"
59 #include "valprint.h"
60 #include "jit.h"
61 #include "xml-syscall.h"
62 #include "parser-defs.h"
63 #include "gdb_regex.h"
64 #include "probe.h"
65 #include "cli/cli-utils.h"
66 #include "continuations.h"
67 #include "stack.h"
68 #include "skip.h"
69 #include "gdb_regex.h"
70 #include "ax-gdb.h"
71 #include "dummy-frame.h"
72
73 #include "format.h"
74
75 /* readline include files */
76 #include "readline/readline.h"
77 #include "readline/history.h"
78
79 /* readline defines this. */
80 #undef savestring
81
82 #include "mi/mi-common.h"
83 #include "python/python.h"
84
85 /* Enums for exception-handling support. */
86 enum exception_event_kind
87 {
88 EX_EVENT_THROW,
89 EX_EVENT_CATCH
90 };
91
92 /* Prototypes for local functions. */
93
94 static void enable_delete_command (char *, int);
95
96 static void enable_once_command (char *, int);
97
98 static void enable_count_command (char *, int);
99
100 static void disable_command (char *, int);
101
102 static void enable_command (char *, int);
103
104 static void map_breakpoint_numbers (char *, void (*) (struct breakpoint *,
105 void *),
106 void *);
107
108 static void ignore_command (char *, int);
109
110 static int breakpoint_re_set_one (void *);
111
112 static void breakpoint_re_set_default (struct breakpoint *);
113
114 static void create_sals_from_address_default (char **,
115 struct linespec_result *,
116 enum bptype, char *,
117 char **);
118
119 static void create_breakpoints_sal_default (struct gdbarch *,
120 struct linespec_result *,
121 struct linespec_sals *,
122 char *, char *, enum bptype,
123 enum bpdisp, int, int,
124 int,
125 const struct breakpoint_ops *,
126 int, int, int, unsigned);
127
128 static void decode_linespec_default (struct breakpoint *, char **,
129 struct symtabs_and_lines *);
130
131 static void clear_command (char *, int);
132
133 static void catch_command (char *, int);
134
135 static int can_use_hardware_watchpoint (struct value *);
136
137 static void break_command_1 (char *, int, int);
138
139 static void mention (struct breakpoint *);
140
141 static struct breakpoint *set_raw_breakpoint_without_location (struct gdbarch *,
142 enum bptype,
143 const struct breakpoint_ops *);
144 static struct bp_location *add_location_to_breakpoint (struct breakpoint *,
145 const struct symtab_and_line *);
146
147 /* This function is used in gdbtk sources and thus can not be made
148 static. */
149 struct breakpoint *set_raw_breakpoint (struct gdbarch *gdbarch,
150 struct symtab_and_line,
151 enum bptype,
152 const struct breakpoint_ops *);
153
154 static struct breakpoint *
155 momentary_breakpoint_from_master (struct breakpoint *orig,
156 enum bptype type,
157 const struct breakpoint_ops *ops);
158
159 static void breakpoint_adjustment_warning (CORE_ADDR, CORE_ADDR, int, int);
160
161 static CORE_ADDR adjust_breakpoint_address (struct gdbarch *gdbarch,
162 CORE_ADDR bpaddr,
163 enum bptype bptype);
164
165 static void describe_other_breakpoints (struct gdbarch *,
166 struct program_space *, CORE_ADDR,
167 struct obj_section *, int);
168
169 static int breakpoint_address_match (struct address_space *aspace1,
170 CORE_ADDR addr1,
171 struct address_space *aspace2,
172 CORE_ADDR addr2);
173
174 static int watchpoint_locations_match (struct bp_location *loc1,
175 struct bp_location *loc2);
176
177 static int breakpoint_location_address_match (struct bp_location *bl,
178 struct address_space *aspace,
179 CORE_ADDR addr);
180
181 static void breakpoints_info (char *, int);
182
183 static void watchpoints_info (char *, int);
184
185 static int breakpoint_1 (char *, int,
186 int (*) (const struct breakpoint *));
187
188 static int breakpoint_cond_eval (void *);
189
190 static void cleanup_executing_breakpoints (void *);
191
192 static void commands_command (char *, int);
193
194 static void condition_command (char *, int);
195
196 typedef enum
197 {
198 mark_inserted,
199 mark_uninserted
200 }
201 insertion_state_t;
202
203 static int remove_breakpoint (struct bp_location *, insertion_state_t);
204 static int remove_breakpoint_1 (struct bp_location *, insertion_state_t);
205
206 static enum print_stop_action print_bp_stop_message (bpstat bs);
207
208 static int watchpoint_check (void *);
209
210 static void maintenance_info_breakpoints (char *, int);
211
212 static int hw_breakpoint_used_count (void);
213
214 static int hw_watchpoint_use_count (struct breakpoint *);
215
216 static int hw_watchpoint_used_count_others (struct breakpoint *except,
217 enum bptype type,
218 int *other_type_used);
219
220 static void hbreak_command (char *, int);
221
222 static void thbreak_command (char *, int);
223
224 static void enable_breakpoint_disp (struct breakpoint *, enum bpdisp,
225 int count);
226
227 static void stop_command (char *arg, int from_tty);
228
229 static void stopin_command (char *arg, int from_tty);
230
231 static void stopat_command (char *arg, int from_tty);
232
233 static char *ep_parse_optional_if_clause (char **arg);
234
235 static void catch_exception_command_1 (enum exception_event_kind ex_event,
236 char *arg, int tempflag, int from_tty);
237
238 static void tcatch_command (char *arg, int from_tty);
239
240 static void detach_single_step_breakpoints (void);
241
242 static int single_step_breakpoint_inserted_here_p (struct address_space *,
243 CORE_ADDR pc);
244
245 static void free_bp_location (struct bp_location *loc);
246 static void incref_bp_location (struct bp_location *loc);
247 static void decref_bp_location (struct bp_location **loc);
248
249 static struct bp_location *allocate_bp_location (struct breakpoint *bpt);
250
251 static void update_global_location_list (int);
252
253 static void update_global_location_list_nothrow (int);
254
255 static int is_hardware_watchpoint (const struct breakpoint *bpt);
256
257 static void insert_breakpoint_locations (void);
258
259 static int syscall_catchpoint_p (struct breakpoint *b);
260
261 static void tracepoints_info (char *, int);
262
263 static void delete_trace_command (char *, int);
264
265 static void enable_trace_command (char *, int);
266
267 static void disable_trace_command (char *, int);
268
269 static void trace_pass_command (char *, int);
270
271 static void set_tracepoint_count (int num);
272
273 static int is_masked_watchpoint (const struct breakpoint *b);
274
275 static struct bp_location **get_first_locp_gte_addr (CORE_ADDR address);
276
277 /* Return 1 if B refers to a static tracepoint set by marker ("-m"), zero
278 otherwise. */
279
280 static int strace_marker_p (struct breakpoint *b);
281
282 /* The abstract base class all breakpoint_ops structures inherit
283 from. */
284 struct breakpoint_ops base_breakpoint_ops;
285
286 /* The breakpoint_ops structure to be inherited by all breakpoint_ops
287 that are implemented on top of software or hardware breakpoints
288 (user breakpoints, internal and momentary breakpoints, etc.). */
289 static struct breakpoint_ops bkpt_base_breakpoint_ops;
290
291 /* Internal breakpoints class type. */
292 static struct breakpoint_ops internal_breakpoint_ops;
293
294 /* Momentary breakpoints class type. */
295 static struct breakpoint_ops momentary_breakpoint_ops;
296
297 /* Momentary breakpoints for bp_longjmp and bp_exception class type. */
298 static struct breakpoint_ops longjmp_breakpoint_ops;
299
300 /* The breakpoint_ops structure to be used in regular user created
301 breakpoints. */
302 struct breakpoint_ops bkpt_breakpoint_ops;
303
304 /* Breakpoints set on probes. */
305 static struct breakpoint_ops bkpt_probe_breakpoint_ops;
306
307 /* Dynamic printf class type. */
308 static struct breakpoint_ops dprintf_breakpoint_ops;
309
310 /* The style in which to perform a dynamic printf. This is a user
311 option because different output options have different tradeoffs;
312 if GDB does the printing, there is better error handling if there
313 is a problem with any of the arguments, but using an inferior
314 function lets you have special-purpose printers and sending of
315 output to the same place as compiled-in print functions. */
316
317 static const char dprintf_style_gdb[] = "gdb";
318 static const char dprintf_style_call[] = "call";
319 static const char dprintf_style_agent[] = "agent";
320 static const char *const dprintf_style_enums[] = {
321 dprintf_style_gdb,
322 dprintf_style_call,
323 dprintf_style_agent,
324 NULL
325 };
326 static const char *dprintf_style = dprintf_style_gdb;
327
328 /* The function to use for dynamic printf if the preferred style is to
329 call into the inferior. The value is simply a string that is
330 copied into the command, so it can be anything that GDB can
331 evaluate to a callable address, not necessarily a function name. */
332
333 static char *dprintf_function = "";
334
335 /* The channel to use for dynamic printf if the preferred style is to
336 call into the inferior; if a nonempty string, it will be passed to
337 the call as the first argument, with the format string as the
338 second. As with the dprintf function, this can be anything that
339 GDB knows how to evaluate, so in addition to common choices like
340 "stderr", this could be an app-specific expression like
341 "mystreams[curlogger]". */
342
343 static char *dprintf_channel = "";
344
345 /* True if dprintf commands should continue to operate even if GDB
346 has disconnected. */
347 static int disconnected_dprintf = 1;
348
349 /* A reference-counted struct command_line. This lets multiple
350 breakpoints share a single command list. */
351 struct counted_command_line
352 {
353 /* The reference count. */
354 int refc;
355
356 /* The command list. */
357 struct command_line *commands;
358 };
359
360 struct command_line *
361 breakpoint_commands (struct breakpoint *b)
362 {
363 return b->commands ? b->commands->commands : NULL;
364 }
365
366 /* Flag indicating that a command has proceeded the inferior past the
367 current breakpoint. */
368
369 static int breakpoint_proceeded;
370
371 const char *
372 bpdisp_text (enum bpdisp disp)
373 {
374 /* NOTE: the following values are a part of MI protocol and
375 represent values of 'disp' field returned when inferior stops at
376 a breakpoint. */
377 static const char * const bpdisps[] = {"del", "dstp", "dis", "keep"};
378
379 return bpdisps[(int) disp];
380 }
381
382 /* Prototypes for exported functions. */
383 /* If FALSE, gdb will not use hardware support for watchpoints, even
384 if such is available. */
385 static int can_use_hw_watchpoints;
386
387 static void
388 show_can_use_hw_watchpoints (struct ui_file *file, int from_tty,
389 struct cmd_list_element *c,
390 const char *value)
391 {
392 fprintf_filtered (file,
393 _("Debugger's willingness to use "
394 "watchpoint hardware is %s.\n"),
395 value);
396 }
397
398 /* If AUTO_BOOLEAN_FALSE, gdb will not attempt to create pending breakpoints.
399 If AUTO_BOOLEAN_TRUE, gdb will automatically create pending breakpoints
400 for unrecognized breakpoint locations.
401 If AUTO_BOOLEAN_AUTO, gdb will query when breakpoints are unrecognized. */
402 static enum auto_boolean pending_break_support;
403 static void
404 show_pending_break_support (struct ui_file *file, int from_tty,
405 struct cmd_list_element *c,
406 const char *value)
407 {
408 fprintf_filtered (file,
409 _("Debugger's behavior regarding "
410 "pending breakpoints is %s.\n"),
411 value);
412 }
413
414 /* If 1, gdb will automatically use hardware breakpoints for breakpoints
415 set with "break" but falling in read-only memory.
416 If 0, gdb will warn about such breakpoints, but won't automatically
417 use hardware breakpoints. */
418 static int automatic_hardware_breakpoints;
419 static void
420 show_automatic_hardware_breakpoints (struct ui_file *file, int from_tty,
421 struct cmd_list_element *c,
422 const char *value)
423 {
424 fprintf_filtered (file,
425 _("Automatic usage of hardware breakpoints is %s.\n"),
426 value);
427 }
428
429 /* If on, gdb will keep breakpoints inserted even as inferior is
430 stopped, and immediately insert any new breakpoints. If off, gdb
431 will insert breakpoints into inferior only when resuming it, and
432 will remove breakpoints upon stop. If auto, GDB will behave as ON
433 if in non-stop mode, and as OFF if all-stop mode.*/
434
435 static enum auto_boolean always_inserted_mode = AUTO_BOOLEAN_AUTO;
436
437 static void
438 show_always_inserted_mode (struct ui_file *file, int from_tty,
439 struct cmd_list_element *c, const char *value)
440 {
441 if (always_inserted_mode == AUTO_BOOLEAN_AUTO)
442 fprintf_filtered (file,
443 _("Always inserted breakpoint "
444 "mode is %s (currently %s).\n"),
445 value,
446 breakpoints_always_inserted_mode () ? "on" : "off");
447 else
448 fprintf_filtered (file, _("Always inserted breakpoint mode is %s.\n"),
449 value);
450 }
451
452 int
453 breakpoints_always_inserted_mode (void)
454 {
455 return (always_inserted_mode == AUTO_BOOLEAN_TRUE
456 || (always_inserted_mode == AUTO_BOOLEAN_AUTO && non_stop));
457 }
458
459 static const char condition_evaluation_both[] = "host or target";
460
461 /* Modes for breakpoint condition evaluation. */
462 static const char condition_evaluation_auto[] = "auto";
463 static const char condition_evaluation_host[] = "host";
464 static const char condition_evaluation_target[] = "target";
465 static const char *const condition_evaluation_enums[] = {
466 condition_evaluation_auto,
467 condition_evaluation_host,
468 condition_evaluation_target,
469 NULL
470 };
471
472 /* Global that holds the current mode for breakpoint condition evaluation. */
473 static const char *condition_evaluation_mode_1 = condition_evaluation_auto;
474
475 /* Global that we use to display information to the user (gets its value from
476 condition_evaluation_mode_1. */
477 static const char *condition_evaluation_mode = condition_evaluation_auto;
478
479 /* Translate a condition evaluation mode MODE into either "host"
480 or "target". This is used mostly to translate from "auto" to the
481 real setting that is being used. It returns the translated
482 evaluation mode. */
483
484 static const char *
485 translate_condition_evaluation_mode (const char *mode)
486 {
487 if (mode == condition_evaluation_auto)
488 {
489 if (target_supports_evaluation_of_breakpoint_conditions ())
490 return condition_evaluation_target;
491 else
492 return condition_evaluation_host;
493 }
494 else
495 return mode;
496 }
497
498 /* Discovers what condition_evaluation_auto translates to. */
499
500 static const char *
501 breakpoint_condition_evaluation_mode (void)
502 {
503 return translate_condition_evaluation_mode (condition_evaluation_mode);
504 }
505
506 /* Return true if GDB should evaluate breakpoint conditions or false
507 otherwise. */
508
509 static int
510 gdb_evaluates_breakpoint_condition_p (void)
511 {
512 const char *mode = breakpoint_condition_evaluation_mode ();
513
514 return (mode == condition_evaluation_host);
515 }
516
517 void _initialize_breakpoint (void);
518
519 /* Are we executing breakpoint commands? */
520 static int executing_breakpoint_commands;
521
522 /* Are overlay event breakpoints enabled? */
523 static int overlay_events_enabled;
524
525 /* See description in breakpoint.h. */
526 int target_exact_watchpoints = 0;
527
528 /* Walk the following statement or block through all breakpoints.
529 ALL_BREAKPOINTS_SAFE does so even if the statement deletes the
530 current breakpoint. */
531
532 #define ALL_BREAKPOINTS(B) for (B = breakpoint_chain; B; B = B->next)
533
534 #define ALL_BREAKPOINTS_SAFE(B,TMP) \
535 for (B = breakpoint_chain; \
536 B ? (TMP=B->next, 1): 0; \
537 B = TMP)
538
539 /* Similar iterator for the low-level breakpoints. SAFE variant is
540 not provided so update_global_location_list must not be called
541 while executing the block of ALL_BP_LOCATIONS. */
542
543 #define ALL_BP_LOCATIONS(B,BP_TMP) \
544 for (BP_TMP = bp_location; \
545 BP_TMP < bp_location + bp_location_count && (B = *BP_TMP); \
546 BP_TMP++)
547
548 /* Iterates through locations with address ADDRESS for the currently selected
549 program space. BP_LOCP_TMP points to each object. BP_LOCP_START points
550 to where the loop should start from.
551 If BP_LOCP_START is a NULL pointer, the macro automatically seeks the
552 appropriate location to start with. */
553
554 #define ALL_BP_LOCATIONS_AT_ADDR(BP_LOCP_TMP, BP_LOCP_START, ADDRESS) \
555 for (BP_LOCP_START = BP_LOCP_START == NULL ? get_first_locp_gte_addr (ADDRESS) : BP_LOCP_START, \
556 BP_LOCP_TMP = BP_LOCP_START; \
557 BP_LOCP_START \
558 && (BP_LOCP_TMP < bp_location + bp_location_count \
559 && (*BP_LOCP_TMP)->address == ADDRESS); \
560 BP_LOCP_TMP++)
561
562 /* Iterator for tracepoints only. */
563
564 #define ALL_TRACEPOINTS(B) \
565 for (B = breakpoint_chain; B; B = B->next) \
566 if (is_tracepoint (B))
567
568 /* Chains of all breakpoints defined. */
569
570 struct breakpoint *breakpoint_chain;
571
572 /* Array is sorted by bp_location_compare - primarily by the ADDRESS. */
573
574 static struct bp_location **bp_location;
575
576 /* Number of elements of BP_LOCATION. */
577
578 static unsigned bp_location_count;
579
580 /* Maximum alignment offset between bp_target_info.PLACED_ADDRESS and
581 ADDRESS for the current elements of BP_LOCATION which get a valid
582 result from bp_location_has_shadow. You can use it for roughly
583 limiting the subrange of BP_LOCATION to scan for shadow bytes for
584 an address you need to read. */
585
586 static CORE_ADDR bp_location_placed_address_before_address_max;
587
588 /* Maximum offset plus alignment between bp_target_info.PLACED_ADDRESS
589 + bp_target_info.SHADOW_LEN and ADDRESS for the current elements of
590 BP_LOCATION which get a valid result from bp_location_has_shadow.
591 You can use it for roughly limiting the subrange of BP_LOCATION to
592 scan for shadow bytes for an address you need to read. */
593
594 static CORE_ADDR bp_location_shadow_len_after_address_max;
595
596 /* The locations that no longer correspond to any breakpoint, unlinked
597 from bp_location array, but for which a hit may still be reported
598 by a target. */
599 VEC(bp_location_p) *moribund_locations = NULL;
600
601 /* Number of last breakpoint made. */
602
603 static int breakpoint_count;
604
605 /* The value of `breakpoint_count' before the last command that
606 created breakpoints. If the last (break-like) command created more
607 than one breakpoint, then the difference between BREAKPOINT_COUNT
608 and PREV_BREAKPOINT_COUNT is more than one. */
609 static int prev_breakpoint_count;
610
611 /* Number of last tracepoint made. */
612
613 static int tracepoint_count;
614
615 static struct cmd_list_element *breakpoint_set_cmdlist;
616 static struct cmd_list_element *breakpoint_show_cmdlist;
617 struct cmd_list_element *save_cmdlist;
618
619 /* Return whether a breakpoint is an active enabled breakpoint. */
620 static int
621 breakpoint_enabled (struct breakpoint *b)
622 {
623 return (b->enable_state == bp_enabled);
624 }
625
626 /* Set breakpoint count to NUM. */
627
628 static void
629 set_breakpoint_count (int num)
630 {
631 prev_breakpoint_count = breakpoint_count;
632 breakpoint_count = num;
633 set_internalvar_integer (lookup_internalvar ("bpnum"), num);
634 }
635
636 /* Used by `start_rbreak_breakpoints' below, to record the current
637 breakpoint count before "rbreak" creates any breakpoint. */
638 static int rbreak_start_breakpoint_count;
639
640 /* Called at the start an "rbreak" command to record the first
641 breakpoint made. */
642
643 void
644 start_rbreak_breakpoints (void)
645 {
646 rbreak_start_breakpoint_count = breakpoint_count;
647 }
648
649 /* Called at the end of an "rbreak" command to record the last
650 breakpoint made. */
651
652 void
653 end_rbreak_breakpoints (void)
654 {
655 prev_breakpoint_count = rbreak_start_breakpoint_count;
656 }
657
658 /* Used in run_command to zero the hit count when a new run starts. */
659
660 void
661 clear_breakpoint_hit_counts (void)
662 {
663 struct breakpoint *b;
664
665 ALL_BREAKPOINTS (b)
666 b->hit_count = 0;
667 }
668
669 /* Allocate a new counted_command_line with reference count of 1.
670 The new structure owns COMMANDS. */
671
672 static struct counted_command_line *
673 alloc_counted_command_line (struct command_line *commands)
674 {
675 struct counted_command_line *result
676 = xmalloc (sizeof (struct counted_command_line));
677
678 result->refc = 1;
679 result->commands = commands;
680 return result;
681 }
682
683 /* Increment reference count. This does nothing if CMD is NULL. */
684
685 static void
686 incref_counted_command_line (struct counted_command_line *cmd)
687 {
688 if (cmd)
689 ++cmd->refc;
690 }
691
692 /* Decrement reference count. If the reference count reaches 0,
693 destroy the counted_command_line. Sets *CMDP to NULL. This does
694 nothing if *CMDP is NULL. */
695
696 static void
697 decref_counted_command_line (struct counted_command_line **cmdp)
698 {
699 if (*cmdp)
700 {
701 if (--(*cmdp)->refc == 0)
702 {
703 free_command_lines (&(*cmdp)->commands);
704 xfree (*cmdp);
705 }
706 *cmdp = NULL;
707 }
708 }
709
710 /* A cleanup function that calls decref_counted_command_line. */
711
712 static void
713 do_cleanup_counted_command_line (void *arg)
714 {
715 decref_counted_command_line (arg);
716 }
717
718 /* Create a cleanup that calls decref_counted_command_line on the
719 argument. */
720
721 static struct cleanup *
722 make_cleanup_decref_counted_command_line (struct counted_command_line **cmdp)
723 {
724 return make_cleanup (do_cleanup_counted_command_line, cmdp);
725 }
726
727 \f
728 /* Return the breakpoint with the specified number, or NULL
729 if the number does not refer to an existing breakpoint. */
730
731 struct breakpoint *
732 get_breakpoint (int num)
733 {
734 struct breakpoint *b;
735
736 ALL_BREAKPOINTS (b)
737 if (b->number == num)
738 return b;
739
740 return NULL;
741 }
742
743 \f
744
745 /* Mark locations as "conditions have changed" in case the target supports
746 evaluating conditions on its side. */
747
748 static void
749 mark_breakpoint_modified (struct breakpoint *b)
750 {
751 struct bp_location *loc;
752
753 /* This is only meaningful if the target is
754 evaluating conditions and if the user has
755 opted for condition evaluation on the target's
756 side. */
757 if (gdb_evaluates_breakpoint_condition_p ()
758 || !target_supports_evaluation_of_breakpoint_conditions ())
759 return;
760
761 if (!is_breakpoint (b))
762 return;
763
764 for (loc = b->loc; loc; loc = loc->next)
765 loc->condition_changed = condition_modified;
766 }
767
768 /* Mark location as "conditions have changed" in case the target supports
769 evaluating conditions on its side. */
770
771 static void
772 mark_breakpoint_location_modified (struct bp_location *loc)
773 {
774 /* This is only meaningful if the target is
775 evaluating conditions and if the user has
776 opted for condition evaluation on the target's
777 side. */
778 if (gdb_evaluates_breakpoint_condition_p ()
779 || !target_supports_evaluation_of_breakpoint_conditions ())
780
781 return;
782
783 if (!is_breakpoint (loc->owner))
784 return;
785
786 loc->condition_changed = condition_modified;
787 }
788
789 /* Sets the condition-evaluation mode using the static global
790 condition_evaluation_mode. */
791
792 static void
793 set_condition_evaluation_mode (char *args, int from_tty,
794 struct cmd_list_element *c)
795 {
796 const char *old_mode, *new_mode;
797
798 if ((condition_evaluation_mode_1 == condition_evaluation_target)
799 && !target_supports_evaluation_of_breakpoint_conditions ())
800 {
801 condition_evaluation_mode_1 = condition_evaluation_mode;
802 warning (_("Target does not support breakpoint condition evaluation.\n"
803 "Using host evaluation mode instead."));
804 return;
805 }
806
807 new_mode = translate_condition_evaluation_mode (condition_evaluation_mode_1);
808 old_mode = translate_condition_evaluation_mode (condition_evaluation_mode);
809
810 /* Flip the switch. Flip it even if OLD_MODE == NEW_MODE as one of the
811 settings was "auto". */
812 condition_evaluation_mode = condition_evaluation_mode_1;
813
814 /* Only update the mode if the user picked a different one. */
815 if (new_mode != old_mode)
816 {
817 struct bp_location *loc, **loc_tmp;
818 /* If the user switched to a different evaluation mode, we
819 need to synch the changes with the target as follows:
820
821 "host" -> "target": Send all (valid) conditions to the target.
822 "target" -> "host": Remove all the conditions from the target.
823 */
824
825 if (new_mode == condition_evaluation_target)
826 {
827 /* Mark everything modified and synch conditions with the
828 target. */
829 ALL_BP_LOCATIONS (loc, loc_tmp)
830 mark_breakpoint_location_modified (loc);
831 }
832 else
833 {
834 /* Manually mark non-duplicate locations to synch conditions
835 with the target. We do this to remove all the conditions the
836 target knows about. */
837 ALL_BP_LOCATIONS (loc, loc_tmp)
838 if (is_breakpoint (loc->owner) && loc->inserted)
839 loc->needs_update = 1;
840 }
841
842 /* Do the update. */
843 update_global_location_list (1);
844 }
845
846 return;
847 }
848
849 /* Shows the current mode of breakpoint condition evaluation. Explicitly shows
850 what "auto" is translating to. */
851
852 static void
853 show_condition_evaluation_mode (struct ui_file *file, int from_tty,
854 struct cmd_list_element *c, const char *value)
855 {
856 if (condition_evaluation_mode == condition_evaluation_auto)
857 fprintf_filtered (file,
858 _("Breakpoint condition evaluation "
859 "mode is %s (currently %s).\n"),
860 value,
861 breakpoint_condition_evaluation_mode ());
862 else
863 fprintf_filtered (file, _("Breakpoint condition evaluation mode is %s.\n"),
864 value);
865 }
866
867 /* A comparison function for bp_location AP and BP that is used by
868 bsearch. This comparison function only cares about addresses, unlike
869 the more general bp_location_compare function. */
870
871 static int
872 bp_location_compare_addrs (const void *ap, const void *bp)
873 {
874 struct bp_location *a = *(void **) ap;
875 struct bp_location *b = *(void **) bp;
876
877 if (a->address == b->address)
878 return 0;
879 else
880 return ((a->address > b->address) - (a->address < b->address));
881 }
882
883 /* Helper function to skip all bp_locations with addresses
884 less than ADDRESS. It returns the first bp_location that
885 is greater than or equal to ADDRESS. If none is found, just
886 return NULL. */
887
888 static struct bp_location **
889 get_first_locp_gte_addr (CORE_ADDR address)
890 {
891 struct bp_location dummy_loc;
892 struct bp_location *dummy_locp = &dummy_loc;
893 struct bp_location **locp_found = NULL;
894
895 /* Initialize the dummy location's address field. */
896 memset (&dummy_loc, 0, sizeof (struct bp_location));
897 dummy_loc.address = address;
898
899 /* Find a close match to the first location at ADDRESS. */
900 locp_found = bsearch (&dummy_locp, bp_location, bp_location_count,
901 sizeof (struct bp_location **),
902 bp_location_compare_addrs);
903
904 /* Nothing was found, nothing left to do. */
905 if (locp_found == NULL)
906 return NULL;
907
908 /* We may have found a location that is at ADDRESS but is not the first in the
909 location's list. Go backwards (if possible) and locate the first one. */
910 while ((locp_found - 1) >= bp_location
911 && (*(locp_found - 1))->address == address)
912 locp_found--;
913
914 return locp_found;
915 }
916
917 void
918 set_breakpoint_condition (struct breakpoint *b, char *exp,
919 int from_tty)
920 {
921 xfree (b->cond_string);
922 b->cond_string = NULL;
923
924 if (is_watchpoint (b))
925 {
926 struct watchpoint *w = (struct watchpoint *) b;
927
928 xfree (w->cond_exp);
929 w->cond_exp = NULL;
930 }
931 else
932 {
933 struct bp_location *loc;
934
935 for (loc = b->loc; loc; loc = loc->next)
936 {
937 xfree (loc->cond);
938 loc->cond = NULL;
939
940 /* No need to free the condition agent expression
941 bytecode (if we have one). We will handle this
942 when we go through update_global_location_list. */
943 }
944 }
945
946 if (*exp == 0)
947 {
948 if (from_tty)
949 printf_filtered (_("Breakpoint %d now unconditional.\n"), b->number);
950 }
951 else
952 {
953 char *arg = exp;
954
955 /* I don't know if it matters whether this is the string the user
956 typed in or the decompiled expression. */
957 b->cond_string = xstrdup (arg);
958 b->condition_not_parsed = 0;
959
960 if (is_watchpoint (b))
961 {
962 struct watchpoint *w = (struct watchpoint *) b;
963
964 innermost_block = NULL;
965 arg = exp;
966 w->cond_exp = parse_exp_1 (&arg, 0, 0, 0);
967 if (*arg)
968 error (_("Junk at end of expression"));
969 w->cond_exp_valid_block = innermost_block;
970 }
971 else
972 {
973 struct bp_location *loc;
974
975 for (loc = b->loc; loc; loc = loc->next)
976 {
977 arg = exp;
978 loc->cond =
979 parse_exp_1 (&arg, loc->address,
980 block_for_pc (loc->address), 0);
981 if (*arg)
982 error (_("Junk at end of expression"));
983 }
984 }
985 }
986 mark_breakpoint_modified (b);
987
988 observer_notify_breakpoint_modified (b);
989 }
990
991 /* Completion for the "condition" command. */
992
993 static VEC (char_ptr) *
994 condition_completer (struct cmd_list_element *cmd, char *text, char *word)
995 {
996 char *space;
997
998 text = skip_spaces (text);
999 space = skip_to_space (text);
1000 if (*space == '\0')
1001 {
1002 int len;
1003 struct breakpoint *b;
1004 VEC (char_ptr) *result = NULL;
1005
1006 if (text[0] == '$')
1007 {
1008 /* We don't support completion of history indices. */
1009 if (isdigit (text[1]))
1010 return NULL;
1011 return complete_internalvar (&text[1]);
1012 }
1013
1014 /* We're completing the breakpoint number. */
1015 len = strlen (text);
1016
1017 ALL_BREAKPOINTS (b)
1018 {
1019 int single = b->loc->next == NULL;
1020 struct bp_location *loc;
1021 int count = 1;
1022
1023 for (loc = b->loc; loc; loc = loc->next)
1024 {
1025 char location[50];
1026
1027 if (single)
1028 xsnprintf (location, sizeof (location), "%d", b->number);
1029 else
1030 xsnprintf (location, sizeof (location), "%d.%d", b->number,
1031 count);
1032
1033 if (strncmp (location, text, len) == 0)
1034 VEC_safe_push (char_ptr, result, xstrdup (location));
1035
1036 ++count;
1037 }
1038 }
1039
1040 return result;
1041 }
1042
1043 /* We're completing the expression part. */
1044 text = skip_spaces (space);
1045 return expression_completer (cmd, text, word);
1046 }
1047
1048 /* condition N EXP -- set break condition of breakpoint N to EXP. */
1049
1050 static void
1051 condition_command (char *arg, int from_tty)
1052 {
1053 struct breakpoint *b;
1054 char *p;
1055 int bnum;
1056
1057 if (arg == 0)
1058 error_no_arg (_("breakpoint number"));
1059
1060 p = arg;
1061 bnum = get_number (&p);
1062 if (bnum == 0)
1063 error (_("Bad breakpoint argument: '%s'"), arg);
1064
1065 ALL_BREAKPOINTS (b)
1066 if (b->number == bnum)
1067 {
1068 /* Check if this breakpoint has a Python object assigned to
1069 it, and if it has a definition of the "stop"
1070 method. This method and conditions entered into GDB from
1071 the CLI are mutually exclusive. */
1072 if (b->py_bp_object
1073 && gdbpy_breakpoint_has_py_cond (b->py_bp_object))
1074 error (_("Cannot set a condition where a Python 'stop' "
1075 "method has been defined in the breakpoint."));
1076 set_breakpoint_condition (b, p, from_tty);
1077
1078 if (is_breakpoint (b))
1079 update_global_location_list (1);
1080
1081 return;
1082 }
1083
1084 error (_("No breakpoint number %d."), bnum);
1085 }
1086
1087 /* Check that COMMAND do not contain commands that are suitable
1088 only for tracepoints and not suitable for ordinary breakpoints.
1089 Throw if any such commands is found. */
1090
1091 static void
1092 check_no_tracepoint_commands (struct command_line *commands)
1093 {
1094 struct command_line *c;
1095
1096 for (c = commands; c; c = c->next)
1097 {
1098 int i;
1099
1100 if (c->control_type == while_stepping_control)
1101 error (_("The 'while-stepping' command can "
1102 "only be used for tracepoints"));
1103
1104 for (i = 0; i < c->body_count; ++i)
1105 check_no_tracepoint_commands ((c->body_list)[i]);
1106
1107 /* Not that command parsing removes leading whitespace and comment
1108 lines and also empty lines. So, we only need to check for
1109 command directly. */
1110 if (strstr (c->line, "collect ") == c->line)
1111 error (_("The 'collect' command can only be used for tracepoints"));
1112
1113 if (strstr (c->line, "teval ") == c->line)
1114 error (_("The 'teval' command can only be used for tracepoints"));
1115 }
1116 }
1117
1118 /* Encapsulate tests for different types of tracepoints. */
1119
1120 static int
1121 is_tracepoint_type (enum bptype type)
1122 {
1123 return (type == bp_tracepoint
1124 || type == bp_fast_tracepoint
1125 || type == bp_static_tracepoint);
1126 }
1127
1128 int
1129 is_tracepoint (const struct breakpoint *b)
1130 {
1131 return is_tracepoint_type (b->type);
1132 }
1133
1134 /* A helper function that validates that COMMANDS are valid for a
1135 breakpoint. This function will throw an exception if a problem is
1136 found. */
1137
1138 static void
1139 validate_commands_for_breakpoint (struct breakpoint *b,
1140 struct command_line *commands)
1141 {
1142 if (is_tracepoint (b))
1143 {
1144 /* We need to verify that each top-level element of commands is
1145 valid for tracepoints, that there's at most one
1146 while-stepping element, and that while-stepping's body has
1147 valid tracing commands excluding nested while-stepping. */
1148 struct command_line *c;
1149 struct command_line *while_stepping = 0;
1150 for (c = commands; c; c = c->next)
1151 {
1152 if (c->control_type == while_stepping_control)
1153 {
1154 if (b->type == bp_fast_tracepoint)
1155 error (_("The 'while-stepping' command "
1156 "cannot be used for fast tracepoint"));
1157 else if (b->type == bp_static_tracepoint)
1158 error (_("The 'while-stepping' command "
1159 "cannot be used for static tracepoint"));
1160
1161 if (while_stepping)
1162 error (_("The 'while-stepping' command "
1163 "can be used only once"));
1164 else
1165 while_stepping = c;
1166 }
1167 }
1168 if (while_stepping)
1169 {
1170 struct command_line *c2;
1171
1172 gdb_assert (while_stepping->body_count == 1);
1173 c2 = while_stepping->body_list[0];
1174 for (; c2; c2 = c2->next)
1175 {
1176 if (c2->control_type == while_stepping_control)
1177 error (_("The 'while-stepping' command cannot be nested"));
1178 }
1179 }
1180 }
1181 else
1182 {
1183 check_no_tracepoint_commands (commands);
1184 }
1185 }
1186
1187 /* Return a vector of all the static tracepoints set at ADDR. The
1188 caller is responsible for releasing the vector. */
1189
1190 VEC(breakpoint_p) *
1191 static_tracepoints_here (CORE_ADDR addr)
1192 {
1193 struct breakpoint *b;
1194 VEC(breakpoint_p) *found = 0;
1195 struct bp_location *loc;
1196
1197 ALL_BREAKPOINTS (b)
1198 if (b->type == bp_static_tracepoint)
1199 {
1200 for (loc = b->loc; loc; loc = loc->next)
1201 if (loc->address == addr)
1202 VEC_safe_push(breakpoint_p, found, b);
1203 }
1204
1205 return found;
1206 }
1207
1208 /* Set the command list of B to COMMANDS. If breakpoint is tracepoint,
1209 validate that only allowed commands are included. */
1210
1211 void
1212 breakpoint_set_commands (struct breakpoint *b,
1213 struct command_line *commands)
1214 {
1215 validate_commands_for_breakpoint (b, commands);
1216
1217 decref_counted_command_line (&b->commands);
1218 b->commands = alloc_counted_command_line (commands);
1219 observer_notify_breakpoint_modified (b);
1220 }
1221
1222 /* Set the internal `silent' flag on the breakpoint. Note that this
1223 is not the same as the "silent" that may appear in the breakpoint's
1224 commands. */
1225
1226 void
1227 breakpoint_set_silent (struct breakpoint *b, int silent)
1228 {
1229 int old_silent = b->silent;
1230
1231 b->silent = silent;
1232 if (old_silent != silent)
1233 observer_notify_breakpoint_modified (b);
1234 }
1235
1236 /* Set the thread for this breakpoint. If THREAD is -1, make the
1237 breakpoint work for any thread. */
1238
1239 void
1240 breakpoint_set_thread (struct breakpoint *b, int thread)
1241 {
1242 int old_thread = b->thread;
1243
1244 b->thread = thread;
1245 if (old_thread != thread)
1246 observer_notify_breakpoint_modified (b);
1247 }
1248
1249 /* Set the task for this breakpoint. If TASK is 0, make the
1250 breakpoint work for any task. */
1251
1252 void
1253 breakpoint_set_task (struct breakpoint *b, int task)
1254 {
1255 int old_task = b->task;
1256
1257 b->task = task;
1258 if (old_task != task)
1259 observer_notify_breakpoint_modified (b);
1260 }
1261
1262 void
1263 check_tracepoint_command (char *line, void *closure)
1264 {
1265 struct breakpoint *b = closure;
1266
1267 validate_actionline (&line, b);
1268 }
1269
1270 /* A structure used to pass information through
1271 map_breakpoint_numbers. */
1272
1273 struct commands_info
1274 {
1275 /* True if the command was typed at a tty. */
1276 int from_tty;
1277
1278 /* The breakpoint range spec. */
1279 char *arg;
1280
1281 /* Non-NULL if the body of the commands are being read from this
1282 already-parsed command. */
1283 struct command_line *control;
1284
1285 /* The command lines read from the user, or NULL if they have not
1286 yet been read. */
1287 struct counted_command_line *cmd;
1288 };
1289
1290 /* A callback for map_breakpoint_numbers that sets the commands for
1291 commands_command. */
1292
1293 static void
1294 do_map_commands_command (struct breakpoint *b, void *data)
1295 {
1296 struct commands_info *info = data;
1297
1298 if (info->cmd == NULL)
1299 {
1300 struct command_line *l;
1301
1302 if (info->control != NULL)
1303 l = copy_command_lines (info->control->body_list[0]);
1304 else
1305 {
1306 struct cleanup *old_chain;
1307 char *str;
1308
1309 str = xstrprintf (_("Type commands for breakpoint(s) "
1310 "%s, one per line."),
1311 info->arg);
1312
1313 old_chain = make_cleanup (xfree, str);
1314
1315 l = read_command_lines (str,
1316 info->from_tty, 1,
1317 (is_tracepoint (b)
1318 ? check_tracepoint_command : 0),
1319 b);
1320
1321 do_cleanups (old_chain);
1322 }
1323
1324 info->cmd = alloc_counted_command_line (l);
1325 }
1326
1327 /* If a breakpoint was on the list more than once, we don't need to
1328 do anything. */
1329 if (b->commands != info->cmd)
1330 {
1331 validate_commands_for_breakpoint (b, info->cmd->commands);
1332 incref_counted_command_line (info->cmd);
1333 decref_counted_command_line (&b->commands);
1334 b->commands = info->cmd;
1335 observer_notify_breakpoint_modified (b);
1336 }
1337 }
1338
1339 static void
1340 commands_command_1 (char *arg, int from_tty,
1341 struct command_line *control)
1342 {
1343 struct cleanup *cleanups;
1344 struct commands_info info;
1345
1346 info.from_tty = from_tty;
1347 info.control = control;
1348 info.cmd = NULL;
1349 /* If we read command lines from the user, then `info' will hold an
1350 extra reference to the commands that we must clean up. */
1351 cleanups = make_cleanup_decref_counted_command_line (&info.cmd);
1352
1353 if (arg == NULL || !*arg)
1354 {
1355 if (breakpoint_count - prev_breakpoint_count > 1)
1356 arg = xstrprintf ("%d-%d", prev_breakpoint_count + 1,
1357 breakpoint_count);
1358 else if (breakpoint_count > 0)
1359 arg = xstrprintf ("%d", breakpoint_count);
1360 else
1361 {
1362 /* So that we don't try to free the incoming non-NULL
1363 argument in the cleanup below. Mapping breakpoint
1364 numbers will fail in this case. */
1365 arg = NULL;
1366 }
1367 }
1368 else
1369 /* The command loop has some static state, so we need to preserve
1370 our argument. */
1371 arg = xstrdup (arg);
1372
1373 if (arg != NULL)
1374 make_cleanup (xfree, arg);
1375
1376 info.arg = arg;
1377
1378 map_breakpoint_numbers (arg, do_map_commands_command, &info);
1379
1380 if (info.cmd == NULL)
1381 error (_("No breakpoints specified."));
1382
1383 do_cleanups (cleanups);
1384 }
1385
1386 static void
1387 commands_command (char *arg, int from_tty)
1388 {
1389 commands_command_1 (arg, from_tty, NULL);
1390 }
1391
1392 /* Like commands_command, but instead of reading the commands from
1393 input stream, takes them from an already parsed command structure.
1394
1395 This is used by cli-script.c to DTRT with breakpoint commands
1396 that are part of if and while bodies. */
1397 enum command_control_type
1398 commands_from_control_command (char *arg, struct command_line *cmd)
1399 {
1400 commands_command_1 (arg, 0, cmd);
1401 return simple_control;
1402 }
1403
1404 /* Return non-zero if BL->TARGET_INFO contains valid information. */
1405
1406 static int
1407 bp_location_has_shadow (struct bp_location *bl)
1408 {
1409 if (bl->loc_type != bp_loc_software_breakpoint)
1410 return 0;
1411 if (!bl->inserted)
1412 return 0;
1413 if (bl->target_info.shadow_len == 0)
1414 /* BL isn't valid, or doesn't shadow memory. */
1415 return 0;
1416 return 1;
1417 }
1418
1419 /* Update BUF, which is LEN bytes read from the target address MEMADDR,
1420 by replacing any memory breakpoints with their shadowed contents.
1421
1422 If READBUF is not NULL, this buffer must not overlap with any of
1423 the breakpoint location's shadow_contents buffers. Otherwise,
1424 a failed assertion internal error will be raised.
1425
1426 The range of shadowed area by each bp_location is:
1427 bl->address - bp_location_placed_address_before_address_max
1428 up to bl->address + bp_location_shadow_len_after_address_max
1429 The range we were requested to resolve shadows for is:
1430 memaddr ... memaddr + len
1431 Thus the safe cutoff boundaries for performance optimization are
1432 memaddr + len <= (bl->address
1433 - bp_location_placed_address_before_address_max)
1434 and:
1435 bl->address + bp_location_shadow_len_after_address_max <= memaddr */
1436
1437 void
1438 breakpoint_xfer_memory (gdb_byte *readbuf, gdb_byte *writebuf,
1439 const gdb_byte *writebuf_org,
1440 ULONGEST memaddr, LONGEST len)
1441 {
1442 /* Left boundary, right boundary and median element of our binary
1443 search. */
1444 unsigned bc_l, bc_r, bc;
1445
1446 /* Find BC_L which is a leftmost element which may affect BUF
1447 content. It is safe to report lower value but a failure to
1448 report higher one. */
1449
1450 bc_l = 0;
1451 bc_r = bp_location_count;
1452 while (bc_l + 1 < bc_r)
1453 {
1454 struct bp_location *bl;
1455
1456 bc = (bc_l + bc_r) / 2;
1457 bl = bp_location[bc];
1458
1459 /* Check first BL->ADDRESS will not overflow due to the added
1460 constant. Then advance the left boundary only if we are sure
1461 the BC element can in no way affect the BUF content (MEMADDR
1462 to MEMADDR + LEN range).
1463
1464 Use the BP_LOCATION_SHADOW_LEN_AFTER_ADDRESS_MAX safety
1465 offset so that we cannot miss a breakpoint with its shadow
1466 range tail still reaching MEMADDR. */
1467
1468 if ((bl->address + bp_location_shadow_len_after_address_max
1469 >= bl->address)
1470 && (bl->address + bp_location_shadow_len_after_address_max
1471 <= memaddr))
1472 bc_l = bc;
1473 else
1474 bc_r = bc;
1475 }
1476
1477 /* Due to the binary search above, we need to make sure we pick the
1478 first location that's at BC_L's address. E.g., if there are
1479 multiple locations at the same address, BC_L may end up pointing
1480 at a duplicate location, and miss the "master"/"inserted"
1481 location. Say, given locations L1, L2 and L3 at addresses A and
1482 B:
1483
1484 L1@A, L2@A, L3@B, ...
1485
1486 BC_L could end up pointing at location L2, while the "master"
1487 location could be L1. Since the `loc->inserted' flag is only set
1488 on "master" locations, we'd forget to restore the shadow of L1
1489 and L2. */
1490 while (bc_l > 0
1491 && bp_location[bc_l]->address == bp_location[bc_l - 1]->address)
1492 bc_l--;
1493
1494 /* Now do full processing of the found relevant range of elements. */
1495
1496 for (bc = bc_l; bc < bp_location_count; bc++)
1497 {
1498 struct bp_location *bl = bp_location[bc];
1499 CORE_ADDR bp_addr = 0;
1500 int bp_size = 0;
1501 int bptoffset = 0;
1502
1503 /* bp_location array has BL->OWNER always non-NULL. */
1504 if (bl->owner->type == bp_none)
1505 warning (_("reading through apparently deleted breakpoint #%d?"),
1506 bl->owner->number);
1507
1508 /* Performance optimization: any further element can no longer affect BUF
1509 content. */
1510
1511 if (bl->address >= bp_location_placed_address_before_address_max
1512 && memaddr + len <= (bl->address
1513 - bp_location_placed_address_before_address_max))
1514 break;
1515
1516 if (!bp_location_has_shadow (bl))
1517 continue;
1518 if (!breakpoint_address_match (bl->target_info.placed_address_space, 0,
1519 current_program_space->aspace, 0))
1520 continue;
1521
1522 /* Addresses and length of the part of the breakpoint that
1523 we need to copy. */
1524 bp_addr = bl->target_info.placed_address;
1525 bp_size = bl->target_info.shadow_len;
1526
1527 if (bp_addr + bp_size <= memaddr)
1528 /* The breakpoint is entirely before the chunk of memory we
1529 are reading. */
1530 continue;
1531
1532 if (bp_addr >= memaddr + len)
1533 /* The breakpoint is entirely after the chunk of memory we are
1534 reading. */
1535 continue;
1536
1537 /* Offset within shadow_contents. */
1538 if (bp_addr < memaddr)
1539 {
1540 /* Only copy the second part of the breakpoint. */
1541 bp_size -= memaddr - bp_addr;
1542 bptoffset = memaddr - bp_addr;
1543 bp_addr = memaddr;
1544 }
1545
1546 if (bp_addr + bp_size > memaddr + len)
1547 {
1548 /* Only copy the first part of the breakpoint. */
1549 bp_size -= (bp_addr + bp_size) - (memaddr + len);
1550 }
1551
1552 if (readbuf != NULL)
1553 {
1554 /* Verify that the readbuf buffer does not overlap with
1555 the shadow_contents buffer. */
1556 gdb_assert (bl->target_info.shadow_contents >= readbuf + len
1557 || readbuf >= (bl->target_info.shadow_contents
1558 + bl->target_info.shadow_len));
1559
1560 /* Update the read buffer with this inserted breakpoint's
1561 shadow. */
1562 memcpy (readbuf + bp_addr - memaddr,
1563 bl->target_info.shadow_contents + bptoffset, bp_size);
1564 }
1565 else
1566 {
1567 struct gdbarch *gdbarch = bl->gdbarch;
1568 const unsigned char *bp;
1569 CORE_ADDR placed_address = bl->target_info.placed_address;
1570 unsigned placed_size = bl->target_info.placed_size;
1571
1572 /* Update the shadow with what we want to write to memory. */
1573 memcpy (bl->target_info.shadow_contents + bptoffset,
1574 writebuf_org + bp_addr - memaddr, bp_size);
1575
1576 /* Determine appropriate breakpoint contents and size for this
1577 address. */
1578 bp = gdbarch_breakpoint_from_pc (gdbarch, &placed_address, &placed_size);
1579
1580 /* Update the final write buffer with this inserted
1581 breakpoint's INSN. */
1582 memcpy (writebuf + bp_addr - memaddr, bp + bptoffset, bp_size);
1583 }
1584 }
1585 }
1586 \f
1587
1588 /* Return true if BPT is either a software breakpoint or a hardware
1589 breakpoint. */
1590
1591 int
1592 is_breakpoint (const struct breakpoint *bpt)
1593 {
1594 return (bpt->type == bp_breakpoint
1595 || bpt->type == bp_hardware_breakpoint
1596 || bpt->type == bp_dprintf);
1597 }
1598
1599 /* Return true if BPT is of any hardware watchpoint kind. */
1600
1601 static int
1602 is_hardware_watchpoint (const struct breakpoint *bpt)
1603 {
1604 return (bpt->type == bp_hardware_watchpoint
1605 || bpt->type == bp_read_watchpoint
1606 || bpt->type == bp_access_watchpoint);
1607 }
1608
1609 /* Return true if BPT is of any watchpoint kind, hardware or
1610 software. */
1611
1612 int
1613 is_watchpoint (const struct breakpoint *bpt)
1614 {
1615 return (is_hardware_watchpoint (bpt)
1616 || bpt->type == bp_watchpoint);
1617 }
1618
1619 /* Returns true if the current thread and its running state are safe
1620 to evaluate or update watchpoint B. Watchpoints on local
1621 expressions need to be evaluated in the context of the thread that
1622 was current when the watchpoint was created, and, that thread needs
1623 to be stopped to be able to select the correct frame context.
1624 Watchpoints on global expressions can be evaluated on any thread,
1625 and in any state. It is presently left to the target allowing
1626 memory accesses when threads are running. */
1627
1628 static int
1629 watchpoint_in_thread_scope (struct watchpoint *b)
1630 {
1631 return (b->base.pspace == current_program_space
1632 && (ptid_equal (b->watchpoint_thread, null_ptid)
1633 || (ptid_equal (inferior_ptid, b->watchpoint_thread)
1634 && !is_executing (inferior_ptid))));
1635 }
1636
1637 /* Set watchpoint B to disp_del_at_next_stop, even including its possible
1638 associated bp_watchpoint_scope breakpoint. */
1639
1640 static void
1641 watchpoint_del_at_next_stop (struct watchpoint *w)
1642 {
1643 struct breakpoint *b = &w->base;
1644
1645 if (b->related_breakpoint != b)
1646 {
1647 gdb_assert (b->related_breakpoint->type == bp_watchpoint_scope);
1648 gdb_assert (b->related_breakpoint->related_breakpoint == b);
1649 b->related_breakpoint->disposition = disp_del_at_next_stop;
1650 b->related_breakpoint->related_breakpoint = b->related_breakpoint;
1651 b->related_breakpoint = b;
1652 }
1653 b->disposition = disp_del_at_next_stop;
1654 }
1655
1656 /* Assuming that B is a watchpoint:
1657 - Reparse watchpoint expression, if REPARSE is non-zero
1658 - Evaluate expression and store the result in B->val
1659 - Evaluate the condition if there is one, and store the result
1660 in b->loc->cond.
1661 - Update the list of values that must be watched in B->loc.
1662
1663 If the watchpoint disposition is disp_del_at_next_stop, then do
1664 nothing. If this is local watchpoint that is out of scope, delete
1665 it.
1666
1667 Even with `set breakpoint always-inserted on' the watchpoints are
1668 removed + inserted on each stop here. Normal breakpoints must
1669 never be removed because they might be missed by a running thread
1670 when debugging in non-stop mode. On the other hand, hardware
1671 watchpoints (is_hardware_watchpoint; processed here) are specific
1672 to each LWP since they are stored in each LWP's hardware debug
1673 registers. Therefore, such LWP must be stopped first in order to
1674 be able to modify its hardware watchpoints.
1675
1676 Hardware watchpoints must be reset exactly once after being
1677 presented to the user. It cannot be done sooner, because it would
1678 reset the data used to present the watchpoint hit to the user. And
1679 it must not be done later because it could display the same single
1680 watchpoint hit during multiple GDB stops. Note that the latter is
1681 relevant only to the hardware watchpoint types bp_read_watchpoint
1682 and bp_access_watchpoint. False hit by bp_hardware_watchpoint is
1683 not user-visible - its hit is suppressed if the memory content has
1684 not changed.
1685
1686 The following constraints influence the location where we can reset
1687 hardware watchpoints:
1688
1689 * target_stopped_by_watchpoint and target_stopped_data_address are
1690 called several times when GDB stops.
1691
1692 [linux]
1693 * Multiple hardware watchpoints can be hit at the same time,
1694 causing GDB to stop. GDB only presents one hardware watchpoint
1695 hit at a time as the reason for stopping, and all the other hits
1696 are presented later, one after the other, each time the user
1697 requests the execution to be resumed. Execution is not resumed
1698 for the threads still having pending hit event stored in
1699 LWP_INFO->STATUS. While the watchpoint is already removed from
1700 the inferior on the first stop the thread hit event is kept being
1701 reported from its cached value by linux_nat_stopped_data_address
1702 until the real thread resume happens after the watchpoint gets
1703 presented and thus its LWP_INFO->STATUS gets reset.
1704
1705 Therefore the hardware watchpoint hit can get safely reset on the
1706 watchpoint removal from inferior. */
1707
1708 static void
1709 update_watchpoint (struct watchpoint *b, int reparse)
1710 {
1711 int within_current_scope;
1712 struct frame_id saved_frame_id;
1713 int frame_saved;
1714
1715 /* If this is a local watchpoint, we only want to check if the
1716 watchpoint frame is in scope if the current thread is the thread
1717 that was used to create the watchpoint. */
1718 if (!watchpoint_in_thread_scope (b))
1719 return;
1720
1721 if (b->base.disposition == disp_del_at_next_stop)
1722 return;
1723
1724 frame_saved = 0;
1725
1726 /* Determine if the watchpoint is within scope. */
1727 if (b->exp_valid_block == NULL)
1728 within_current_scope = 1;
1729 else
1730 {
1731 struct frame_info *fi = get_current_frame ();
1732 struct gdbarch *frame_arch = get_frame_arch (fi);
1733 CORE_ADDR frame_pc = get_frame_pc (fi);
1734
1735 /* If we're in a function epilogue, unwinding may not work
1736 properly, so do not attempt to recreate locations at this
1737 point. See similar comments in watchpoint_check. */
1738 if (gdbarch_in_function_epilogue_p (frame_arch, frame_pc))
1739 return;
1740
1741 /* Save the current frame's ID so we can restore it after
1742 evaluating the watchpoint expression on its own frame. */
1743 /* FIXME drow/2003-09-09: It would be nice if evaluate_expression
1744 took a frame parameter, so that we didn't have to change the
1745 selected frame. */
1746 frame_saved = 1;
1747 saved_frame_id = get_frame_id (get_selected_frame (NULL));
1748
1749 fi = frame_find_by_id (b->watchpoint_frame);
1750 within_current_scope = (fi != NULL);
1751 if (within_current_scope)
1752 select_frame (fi);
1753 }
1754
1755 /* We don't free locations. They are stored in the bp_location array
1756 and update_global_location_list will eventually delete them and
1757 remove breakpoints if needed. */
1758 b->base.loc = NULL;
1759
1760 if (within_current_scope && reparse)
1761 {
1762 char *s;
1763
1764 if (b->exp)
1765 {
1766 xfree (b->exp);
1767 b->exp = NULL;
1768 }
1769 s = b->exp_string_reparse ? b->exp_string_reparse : b->exp_string;
1770 b->exp = parse_exp_1 (&s, 0, b->exp_valid_block, 0);
1771 /* If the meaning of expression itself changed, the old value is
1772 no longer relevant. We don't want to report a watchpoint hit
1773 to the user when the old value and the new value may actually
1774 be completely different objects. */
1775 value_free (b->val);
1776 b->val = NULL;
1777 b->val_valid = 0;
1778
1779 /* Note that unlike with breakpoints, the watchpoint's condition
1780 expression is stored in the breakpoint object, not in the
1781 locations (re)created below. */
1782 if (b->base.cond_string != NULL)
1783 {
1784 if (b->cond_exp != NULL)
1785 {
1786 xfree (b->cond_exp);
1787 b->cond_exp = NULL;
1788 }
1789
1790 s = b->base.cond_string;
1791 b->cond_exp = parse_exp_1 (&s, 0, b->cond_exp_valid_block, 0);
1792 }
1793 }
1794
1795 /* If we failed to parse the expression, for example because
1796 it refers to a global variable in a not-yet-loaded shared library,
1797 don't try to insert watchpoint. We don't automatically delete
1798 such watchpoint, though, since failure to parse expression
1799 is different from out-of-scope watchpoint. */
1800 if ( !target_has_execution)
1801 {
1802 /* Without execution, memory can't change. No use to try and
1803 set watchpoint locations. The watchpoint will be reset when
1804 the target gains execution, through breakpoint_re_set. */
1805 }
1806 else if (within_current_scope && b->exp)
1807 {
1808 int pc = 0;
1809 struct value *val_chain, *v, *result, *next;
1810 struct program_space *frame_pspace;
1811
1812 fetch_subexp_value (b->exp, &pc, &v, &result, &val_chain);
1813
1814 /* Avoid setting b->val if it's already set. The meaning of
1815 b->val is 'the last value' user saw, and we should update
1816 it only if we reported that last value to user. As it
1817 happens, the code that reports it updates b->val directly.
1818 We don't keep track of the memory value for masked
1819 watchpoints. */
1820 if (!b->val_valid && !is_masked_watchpoint (&b->base))
1821 {
1822 b->val = v;
1823 b->val_valid = 1;
1824 }
1825
1826 frame_pspace = get_frame_program_space (get_selected_frame (NULL));
1827
1828 /* Look at each value on the value chain. */
1829 for (v = val_chain; v; v = value_next (v))
1830 {
1831 /* If it's a memory location, and GDB actually needed
1832 its contents to evaluate the expression, then we
1833 must watch it. If the first value returned is
1834 still lazy, that means an error occurred reading it;
1835 watch it anyway in case it becomes readable. */
1836 if (VALUE_LVAL (v) == lval_memory
1837 && (v == val_chain || ! value_lazy (v)))
1838 {
1839 struct type *vtype = check_typedef (value_type (v));
1840
1841 /* We only watch structs and arrays if user asked
1842 for it explicitly, never if they just happen to
1843 appear in the middle of some value chain. */
1844 if (v == result
1845 || (TYPE_CODE (vtype) != TYPE_CODE_STRUCT
1846 && TYPE_CODE (vtype) != TYPE_CODE_ARRAY))
1847 {
1848 CORE_ADDR addr;
1849 int type;
1850 struct bp_location *loc, **tmp;
1851
1852 addr = value_address (v);
1853 type = hw_write;
1854 if (b->base.type == bp_read_watchpoint)
1855 type = hw_read;
1856 else if (b->base.type == bp_access_watchpoint)
1857 type = hw_access;
1858
1859 loc = allocate_bp_location (&b->base);
1860 for (tmp = &(b->base.loc); *tmp != NULL; tmp = &((*tmp)->next))
1861 ;
1862 *tmp = loc;
1863 loc->gdbarch = get_type_arch (value_type (v));
1864
1865 loc->pspace = frame_pspace;
1866 loc->address = addr;
1867 loc->length = TYPE_LENGTH (value_type (v));
1868 loc->watchpoint_type = type;
1869 }
1870 }
1871 }
1872
1873 /* Change the type of breakpoint between hardware assisted or
1874 an ordinary watchpoint depending on the hardware support
1875 and free hardware slots. REPARSE is set when the inferior
1876 is started. */
1877 if (reparse)
1878 {
1879 int reg_cnt;
1880 enum bp_loc_type loc_type;
1881 struct bp_location *bl;
1882
1883 reg_cnt = can_use_hardware_watchpoint (val_chain);
1884
1885 if (reg_cnt)
1886 {
1887 int i, target_resources_ok, other_type_used;
1888 enum bptype type;
1889
1890 /* Use an exact watchpoint when there's only one memory region to be
1891 watched, and only one debug register is needed to watch it. */
1892 b->exact = target_exact_watchpoints && reg_cnt == 1;
1893
1894 /* We need to determine how many resources are already
1895 used for all other hardware watchpoints plus this one
1896 to see if we still have enough resources to also fit
1897 this watchpoint in as well. */
1898
1899 /* If this is a software watchpoint, we try to turn it
1900 to a hardware one -- count resources as if B was of
1901 hardware watchpoint type. */
1902 type = b->base.type;
1903 if (type == bp_watchpoint)
1904 type = bp_hardware_watchpoint;
1905
1906 /* This watchpoint may or may not have been placed on
1907 the list yet at this point (it won't be in the list
1908 if we're trying to create it for the first time,
1909 through watch_command), so always account for it
1910 manually. */
1911
1912 /* Count resources used by all watchpoints except B. */
1913 i = hw_watchpoint_used_count_others (&b->base, type, &other_type_used);
1914
1915 /* Add in the resources needed for B. */
1916 i += hw_watchpoint_use_count (&b->base);
1917
1918 target_resources_ok
1919 = target_can_use_hardware_watchpoint (type, i, other_type_used);
1920 if (target_resources_ok <= 0)
1921 {
1922 int sw_mode = b->base.ops->works_in_software_mode (&b->base);
1923
1924 if (target_resources_ok == 0 && !sw_mode)
1925 error (_("Target does not support this type of "
1926 "hardware watchpoint."));
1927 else if (target_resources_ok < 0 && !sw_mode)
1928 error (_("There are not enough available hardware "
1929 "resources for this watchpoint."));
1930
1931 /* Downgrade to software watchpoint. */
1932 b->base.type = bp_watchpoint;
1933 }
1934 else
1935 {
1936 /* If this was a software watchpoint, we've just
1937 found we have enough resources to turn it to a
1938 hardware watchpoint. Otherwise, this is a
1939 nop. */
1940 b->base.type = type;
1941 }
1942 }
1943 else if (!b->base.ops->works_in_software_mode (&b->base))
1944 error (_("Expression cannot be implemented with "
1945 "read/access watchpoint."));
1946 else
1947 b->base.type = bp_watchpoint;
1948
1949 loc_type = (b->base.type == bp_watchpoint? bp_loc_other
1950 : bp_loc_hardware_watchpoint);
1951 for (bl = b->base.loc; bl; bl = bl->next)
1952 bl->loc_type = loc_type;
1953 }
1954
1955 for (v = val_chain; v; v = next)
1956 {
1957 next = value_next (v);
1958 if (v != b->val)
1959 value_free (v);
1960 }
1961
1962 /* If a software watchpoint is not watching any memory, then the
1963 above left it without any location set up. But,
1964 bpstat_stop_status requires a location to be able to report
1965 stops, so make sure there's at least a dummy one. */
1966 if (b->base.type == bp_watchpoint && b->base.loc == NULL)
1967 {
1968 struct breakpoint *base = &b->base;
1969 base->loc = allocate_bp_location (base);
1970 base->loc->pspace = frame_pspace;
1971 base->loc->address = -1;
1972 base->loc->length = -1;
1973 base->loc->watchpoint_type = -1;
1974 }
1975 }
1976 else if (!within_current_scope)
1977 {
1978 printf_filtered (_("\
1979 Watchpoint %d deleted because the program has left the block\n\
1980 in which its expression is valid.\n"),
1981 b->base.number);
1982 watchpoint_del_at_next_stop (b);
1983 }
1984
1985 /* Restore the selected frame. */
1986 if (frame_saved)
1987 select_frame (frame_find_by_id (saved_frame_id));
1988 }
1989
1990
1991 /* Returns 1 iff breakpoint location should be
1992 inserted in the inferior. We don't differentiate the type of BL's owner
1993 (breakpoint vs. tracepoint), although insert_location in tracepoint's
1994 breakpoint_ops is not defined, because in insert_bp_location,
1995 tracepoint's insert_location will not be called. */
1996 static int
1997 should_be_inserted (struct bp_location *bl)
1998 {
1999 if (bl->owner == NULL || !breakpoint_enabled (bl->owner))
2000 return 0;
2001
2002 if (bl->owner->disposition == disp_del_at_next_stop)
2003 return 0;
2004
2005 if (!bl->enabled || bl->shlib_disabled || bl->duplicate)
2006 return 0;
2007
2008 if (user_breakpoint_p (bl->owner) && bl->pspace->executing_startup)
2009 return 0;
2010
2011 /* This is set for example, when we're attached to the parent of a
2012 vfork, and have detached from the child. The child is running
2013 free, and we expect it to do an exec or exit, at which point the
2014 OS makes the parent schedulable again (and the target reports
2015 that the vfork is done). Until the child is done with the shared
2016 memory region, do not insert breakpoints in the parent, otherwise
2017 the child could still trip on the parent's breakpoints. Since
2018 the parent is blocked anyway, it won't miss any breakpoint. */
2019 if (bl->pspace->breakpoints_not_allowed)
2020 return 0;
2021
2022 return 1;
2023 }
2024
2025 /* Same as should_be_inserted but does the check assuming
2026 that the location is not duplicated. */
2027
2028 static int
2029 unduplicated_should_be_inserted (struct bp_location *bl)
2030 {
2031 int result;
2032 const int save_duplicate = bl->duplicate;
2033
2034 bl->duplicate = 0;
2035 result = should_be_inserted (bl);
2036 bl->duplicate = save_duplicate;
2037 return result;
2038 }
2039
2040 /* Parses a conditional described by an expression COND into an
2041 agent expression bytecode suitable for evaluation
2042 by the bytecode interpreter. Return NULL if there was
2043 any error during parsing. */
2044
2045 static struct agent_expr *
2046 parse_cond_to_aexpr (CORE_ADDR scope, struct expression *cond)
2047 {
2048 struct agent_expr *aexpr = NULL;
2049 struct cleanup *old_chain = NULL;
2050 volatile struct gdb_exception ex;
2051
2052 if (!cond)
2053 return NULL;
2054
2055 /* We don't want to stop processing, so catch any errors
2056 that may show up. */
2057 TRY_CATCH (ex, RETURN_MASK_ERROR)
2058 {
2059 aexpr = gen_eval_for_expr (scope, cond);
2060 }
2061
2062 if (ex.reason < 0)
2063 {
2064 /* If we got here, it means the condition could not be parsed to a valid
2065 bytecode expression and thus can't be evaluated on the target's side.
2066 It's no use iterating through the conditions. */
2067 return NULL;
2068 }
2069
2070 /* We have a valid agent expression. */
2071 return aexpr;
2072 }
2073
2074 /* Based on location BL, create a list of breakpoint conditions to be
2075 passed on to the target. If we have duplicated locations with different
2076 conditions, we will add such conditions to the list. The idea is that the
2077 target will evaluate the list of conditions and will only notify GDB when
2078 one of them is true. */
2079
2080 static void
2081 build_target_condition_list (struct bp_location *bl)
2082 {
2083 struct bp_location **locp = NULL, **loc2p;
2084 int null_condition_or_parse_error = 0;
2085 int modified = bl->needs_update;
2086 struct bp_location *loc;
2087
2088 /* This is only meaningful if the target is
2089 evaluating conditions and if the user has
2090 opted for condition evaluation on the target's
2091 side. */
2092 if (gdb_evaluates_breakpoint_condition_p ()
2093 || !target_supports_evaluation_of_breakpoint_conditions ())
2094 return;
2095
2096 /* Do a first pass to check for locations with no assigned
2097 conditions or conditions that fail to parse to a valid agent expression
2098 bytecode. If any of these happen, then it's no use to send conditions
2099 to the target since this location will always trigger and generate a
2100 response back to GDB. */
2101 ALL_BP_LOCATIONS_AT_ADDR (loc2p, locp, bl->address)
2102 {
2103 loc = (*loc2p);
2104 if (is_breakpoint (loc->owner) && loc->pspace->num == bl->pspace->num)
2105 {
2106 if (modified)
2107 {
2108 struct agent_expr *aexpr;
2109
2110 /* Re-parse the conditions since something changed. In that
2111 case we already freed the condition bytecodes (see
2112 force_breakpoint_reinsertion). We just
2113 need to parse the condition to bytecodes again. */
2114 aexpr = parse_cond_to_aexpr (bl->address, loc->cond);
2115 loc->cond_bytecode = aexpr;
2116
2117 /* Check if we managed to parse the conditional expression
2118 correctly. If not, we will not send this condition
2119 to the target. */
2120 if (aexpr)
2121 continue;
2122 }
2123
2124 /* If we have a NULL bytecode expression, it means something
2125 went wrong or we have a null condition expression. */
2126 if (!loc->cond_bytecode)
2127 {
2128 null_condition_or_parse_error = 1;
2129 break;
2130 }
2131 }
2132 }
2133
2134 /* If any of these happened, it means we will have to evaluate the conditions
2135 for the location's address on gdb's side. It is no use keeping bytecodes
2136 for all the other duplicate locations, thus we free all of them here.
2137
2138 This is so we have a finer control over which locations' conditions are
2139 being evaluated by GDB or the remote stub. */
2140 if (null_condition_or_parse_error)
2141 {
2142 ALL_BP_LOCATIONS_AT_ADDR (loc2p, locp, bl->address)
2143 {
2144 loc = (*loc2p);
2145 if (is_breakpoint (loc->owner) && loc->pspace->num == bl->pspace->num)
2146 {
2147 /* Only go as far as the first NULL bytecode is
2148 located. */
2149 if (!loc->cond_bytecode)
2150 return;
2151
2152 free_agent_expr (loc->cond_bytecode);
2153 loc->cond_bytecode = NULL;
2154 }
2155 }
2156 }
2157
2158 /* No NULL conditions or failed bytecode generation. Build a condition list
2159 for this location's address. */
2160 ALL_BP_LOCATIONS_AT_ADDR (loc2p, locp, bl->address)
2161 {
2162 loc = (*loc2p);
2163 if (loc->cond
2164 && is_breakpoint (loc->owner)
2165 && loc->pspace->num == bl->pspace->num
2166 && loc->owner->enable_state == bp_enabled
2167 && loc->enabled)
2168 /* Add the condition to the vector. This will be used later to send the
2169 conditions to the target. */
2170 VEC_safe_push (agent_expr_p, bl->target_info.conditions,
2171 loc->cond_bytecode);
2172 }
2173
2174 return;
2175 }
2176
2177 /* Parses a command described by string CMD into an agent expression
2178 bytecode suitable for evaluation by the bytecode interpreter.
2179 Return NULL if there was any error during parsing. */
2180
2181 static struct agent_expr *
2182 parse_cmd_to_aexpr (CORE_ADDR scope, char *cmd)
2183 {
2184 struct cleanup *old_cleanups = 0;
2185 struct expression *expr, **argvec;
2186 struct agent_expr *aexpr = NULL;
2187 struct cleanup *old_chain = NULL;
2188 volatile struct gdb_exception ex;
2189 char *cmdrest;
2190 char *format_start, *format_end;
2191 struct format_piece *fpieces;
2192 int nargs;
2193 struct gdbarch *gdbarch = get_current_arch ();
2194
2195 if (!cmd)
2196 return NULL;
2197
2198 cmdrest = cmd;
2199
2200 if (*cmdrest == ',')
2201 ++cmdrest;
2202 cmdrest = skip_spaces (cmdrest);
2203
2204 if (*cmdrest++ != '"')
2205 error (_("No format string following the location"));
2206
2207 format_start = cmdrest;
2208
2209 fpieces = parse_format_string (&cmdrest);
2210
2211 old_cleanups = make_cleanup (free_format_pieces_cleanup, &fpieces);
2212
2213 format_end = cmdrest;
2214
2215 if (*cmdrest++ != '"')
2216 error (_("Bad format string, non-terminated '\"'."));
2217
2218 cmdrest = skip_spaces (cmdrest);
2219
2220 if (!(*cmdrest == ',' || *cmdrest == '\0'))
2221 error (_("Invalid argument syntax"));
2222
2223 if (*cmdrest == ',')
2224 cmdrest++;
2225 cmdrest = skip_spaces (cmdrest);
2226
2227 /* For each argument, make an expression. */
2228
2229 argvec = (struct expression **) alloca (strlen (cmd)
2230 * sizeof (struct expression *));
2231
2232 nargs = 0;
2233 while (*cmdrest != '\0')
2234 {
2235 char *cmd1;
2236
2237 cmd1 = cmdrest;
2238 expr = parse_exp_1 (&cmd1, scope, block_for_pc (scope), 1);
2239 argvec[nargs++] = expr;
2240 cmdrest = cmd1;
2241 if (*cmdrest == ',')
2242 ++cmdrest;
2243 }
2244
2245 /* We don't want to stop processing, so catch any errors
2246 that may show up. */
2247 TRY_CATCH (ex, RETURN_MASK_ERROR)
2248 {
2249 aexpr = gen_printf (scope, gdbarch, 0, 0,
2250 format_start, format_end - format_start,
2251 fpieces, nargs, argvec);
2252 }
2253
2254 if (ex.reason < 0)
2255 {
2256 /* If we got here, it means the command could not be parsed to a valid
2257 bytecode expression and thus can't be evaluated on the target's side.
2258 It's no use iterating through the other commands. */
2259 return NULL;
2260 }
2261
2262 do_cleanups (old_cleanups);
2263
2264 /* We have a valid agent expression, return it. */
2265 return aexpr;
2266 }
2267
2268 /* Based on location BL, create a list of breakpoint commands to be
2269 passed on to the target. If we have duplicated locations with
2270 different commands, we will add any such to the list. */
2271
2272 static void
2273 build_target_command_list (struct bp_location *bl)
2274 {
2275 struct bp_location **locp = NULL, **loc2p;
2276 int null_command_or_parse_error = 0;
2277 int modified = bl->needs_update;
2278 struct bp_location *loc;
2279
2280 /* For now, limit to agent-style dprintf breakpoints. */
2281 if (bl->owner->type != bp_dprintf
2282 || strcmp (dprintf_style, dprintf_style_agent) != 0)
2283 return;
2284
2285 if (!target_can_run_breakpoint_commands ())
2286 return;
2287
2288 /* Do a first pass to check for locations with no assigned
2289 conditions or conditions that fail to parse to a valid agent expression
2290 bytecode. If any of these happen, then it's no use to send conditions
2291 to the target since this location will always trigger and generate a
2292 response back to GDB. */
2293 ALL_BP_LOCATIONS_AT_ADDR (loc2p, locp, bl->address)
2294 {
2295 loc = (*loc2p);
2296 if (is_breakpoint (loc->owner) && loc->pspace->num == bl->pspace->num)
2297 {
2298 if (modified)
2299 {
2300 struct agent_expr *aexpr;
2301
2302 /* Re-parse the commands since something changed. In that
2303 case we already freed the command bytecodes (see
2304 force_breakpoint_reinsertion). We just
2305 need to parse the command to bytecodes again. */
2306 aexpr = parse_cmd_to_aexpr (bl->address,
2307 loc->owner->extra_string);
2308 loc->cmd_bytecode = aexpr;
2309
2310 if (!aexpr)
2311 continue;
2312 }
2313
2314 /* If we have a NULL bytecode expression, it means something
2315 went wrong or we have a null command expression. */
2316 if (!loc->cmd_bytecode)
2317 {
2318 null_command_or_parse_error = 1;
2319 break;
2320 }
2321 }
2322 }
2323
2324 /* If anything failed, then we're not doing target-side commands,
2325 and so clean up. */
2326 if (null_command_or_parse_error)
2327 {
2328 ALL_BP_LOCATIONS_AT_ADDR (loc2p, locp, bl->address)
2329 {
2330 loc = (*loc2p);
2331 if (is_breakpoint (loc->owner)
2332 && loc->pspace->num == bl->pspace->num)
2333 {
2334 /* Only go as far as the first NULL bytecode is
2335 located. */
2336 if (!loc->cond_bytecode)
2337 return;
2338
2339 free_agent_expr (loc->cond_bytecode);
2340 loc->cond_bytecode = NULL;
2341 }
2342 }
2343 }
2344
2345 /* No NULL commands or failed bytecode generation. Build a command list
2346 for this location's address. */
2347 ALL_BP_LOCATIONS_AT_ADDR (loc2p, locp, bl->address)
2348 {
2349 loc = (*loc2p);
2350 if (loc->owner->extra_string
2351 && is_breakpoint (loc->owner)
2352 && loc->pspace->num == bl->pspace->num
2353 && loc->owner->enable_state == bp_enabled
2354 && loc->enabled)
2355 /* Add the command to the vector. This will be used later
2356 to send the commands to the target. */
2357 VEC_safe_push (agent_expr_p, bl->target_info.tcommands,
2358 loc->cmd_bytecode);
2359 }
2360
2361 bl->target_info.persist = 0;
2362 /* Maybe flag this location as persistent. */
2363 if (bl->owner->type == bp_dprintf && disconnected_dprintf)
2364 bl->target_info.persist = 1;
2365 }
2366
2367 /* Insert a low-level "breakpoint" of some type. BL is the breakpoint
2368 location. Any error messages are printed to TMP_ERROR_STREAM; and
2369 DISABLED_BREAKS, and HW_BREAKPOINT_ERROR are used to report problems.
2370 Returns 0 for success, 1 if the bp_location type is not supported or
2371 -1 for failure.
2372
2373 NOTE drow/2003-09-09: This routine could be broken down to an
2374 object-style method for each breakpoint or catchpoint type. */
2375 static int
2376 insert_bp_location (struct bp_location *bl,
2377 struct ui_file *tmp_error_stream,
2378 int *disabled_breaks,
2379 int *hw_breakpoint_error,
2380 int *hw_bp_error_explained_already)
2381 {
2382 int val = 0;
2383 char *hw_bp_err_string = NULL;
2384 struct gdb_exception e;
2385
2386 if (!should_be_inserted (bl) || (bl->inserted && !bl->needs_update))
2387 return 0;
2388
2389 /* Note we don't initialize bl->target_info, as that wipes out
2390 the breakpoint location's shadow_contents if the breakpoint
2391 is still inserted at that location. This in turn breaks
2392 target_read_memory which depends on these buffers when
2393 a memory read is requested at the breakpoint location:
2394 Once the target_info has been wiped, we fail to see that
2395 we have a breakpoint inserted at that address and thus
2396 read the breakpoint instead of returning the data saved in
2397 the breakpoint location's shadow contents. */
2398 bl->target_info.placed_address = bl->address;
2399 bl->target_info.placed_address_space = bl->pspace->aspace;
2400 bl->target_info.length = bl->length;
2401
2402 /* When working with target-side conditions, we must pass all the conditions
2403 for the same breakpoint address down to the target since GDB will not
2404 insert those locations. With a list of breakpoint conditions, the target
2405 can decide when to stop and notify GDB. */
2406
2407 if (is_breakpoint (bl->owner))
2408 {
2409 build_target_condition_list (bl);
2410 build_target_command_list (bl);
2411 /* Reset the modification marker. */
2412 bl->needs_update = 0;
2413 }
2414
2415 if (bl->loc_type == bp_loc_software_breakpoint
2416 || bl->loc_type == bp_loc_hardware_breakpoint)
2417 {
2418 if (bl->owner->type != bp_hardware_breakpoint)
2419 {
2420 /* If the explicitly specified breakpoint type
2421 is not hardware breakpoint, check the memory map to see
2422 if the breakpoint address is in read only memory or not.
2423
2424 Two important cases are:
2425 - location type is not hardware breakpoint, memory
2426 is readonly. We change the type of the location to
2427 hardware breakpoint.
2428 - location type is hardware breakpoint, memory is
2429 read-write. This means we've previously made the
2430 location hardware one, but then the memory map changed,
2431 so we undo.
2432
2433 When breakpoints are removed, remove_breakpoints will use
2434 location types we've just set here, the only possible
2435 problem is that memory map has changed during running
2436 program, but it's not going to work anyway with current
2437 gdb. */
2438 struct mem_region *mr
2439 = lookup_mem_region (bl->target_info.placed_address);
2440
2441 if (mr)
2442 {
2443 if (automatic_hardware_breakpoints)
2444 {
2445 enum bp_loc_type new_type;
2446
2447 if (mr->attrib.mode != MEM_RW)
2448 new_type = bp_loc_hardware_breakpoint;
2449 else
2450 new_type = bp_loc_software_breakpoint;
2451
2452 if (new_type != bl->loc_type)
2453 {
2454 static int said = 0;
2455
2456 bl->loc_type = new_type;
2457 if (!said)
2458 {
2459 fprintf_filtered (gdb_stdout,
2460 _("Note: automatically using "
2461 "hardware breakpoints for "
2462 "read-only addresses.\n"));
2463 said = 1;
2464 }
2465 }
2466 }
2467 else if (bl->loc_type == bp_loc_software_breakpoint
2468 && mr->attrib.mode != MEM_RW)
2469 warning (_("cannot set software breakpoint "
2470 "at readonly address %s"),
2471 paddress (bl->gdbarch, bl->address));
2472 }
2473 }
2474
2475 /* First check to see if we have to handle an overlay. */
2476 if (overlay_debugging == ovly_off
2477 || bl->section == NULL
2478 || !(section_is_overlay (bl->section)))
2479 {
2480 /* No overlay handling: just set the breakpoint. */
2481 TRY_CATCH (e, RETURN_MASK_ALL)
2482 {
2483 val = bl->owner->ops->insert_location (bl);
2484 }
2485 if (e.reason < 0)
2486 {
2487 val = 1;
2488 hw_bp_err_string = (char *) e.message;
2489 }
2490 }
2491 else
2492 {
2493 /* This breakpoint is in an overlay section.
2494 Shall we set a breakpoint at the LMA? */
2495 if (!overlay_events_enabled)
2496 {
2497 /* Yes -- overlay event support is not active,
2498 so we must try to set a breakpoint at the LMA.
2499 This will not work for a hardware breakpoint. */
2500 if (bl->loc_type == bp_loc_hardware_breakpoint)
2501 warning (_("hardware breakpoint %d not supported in overlay!"),
2502 bl->owner->number);
2503 else
2504 {
2505 CORE_ADDR addr = overlay_unmapped_address (bl->address,
2506 bl->section);
2507 /* Set a software (trap) breakpoint at the LMA. */
2508 bl->overlay_target_info = bl->target_info;
2509 bl->overlay_target_info.placed_address = addr;
2510 val = target_insert_breakpoint (bl->gdbarch,
2511 &bl->overlay_target_info);
2512 if (val != 0)
2513 fprintf_unfiltered (tmp_error_stream,
2514 "Overlay breakpoint %d "
2515 "failed: in ROM?\n",
2516 bl->owner->number);
2517 }
2518 }
2519 /* Shall we set a breakpoint at the VMA? */
2520 if (section_is_mapped (bl->section))
2521 {
2522 /* Yes. This overlay section is mapped into memory. */
2523 TRY_CATCH (e, RETURN_MASK_ALL)
2524 {
2525 val = bl->owner->ops->insert_location (bl);
2526 }
2527 if (e.reason < 0)
2528 {
2529 val = 1;
2530 hw_bp_err_string = (char *) e.message;
2531 }
2532 }
2533 else
2534 {
2535 /* No. This breakpoint will not be inserted.
2536 No error, but do not mark the bp as 'inserted'. */
2537 return 0;
2538 }
2539 }
2540
2541 if (val)
2542 {
2543 /* Can't set the breakpoint. */
2544 if (solib_name_from_address (bl->pspace, bl->address))
2545 {
2546 /* See also: disable_breakpoints_in_shlibs. */
2547 val = 0;
2548 bl->shlib_disabled = 1;
2549 observer_notify_breakpoint_modified (bl->owner);
2550 if (!*disabled_breaks)
2551 {
2552 fprintf_unfiltered (tmp_error_stream,
2553 "Cannot insert breakpoint %d.\n",
2554 bl->owner->number);
2555 fprintf_unfiltered (tmp_error_stream,
2556 "Temporarily disabling shared "
2557 "library breakpoints:\n");
2558 }
2559 *disabled_breaks = 1;
2560 fprintf_unfiltered (tmp_error_stream,
2561 "breakpoint #%d\n", bl->owner->number);
2562 }
2563 else
2564 {
2565 if (bl->loc_type == bp_loc_hardware_breakpoint)
2566 {
2567 *hw_breakpoint_error = 1;
2568 *hw_bp_error_explained_already = hw_bp_err_string != NULL;
2569 fprintf_unfiltered (tmp_error_stream,
2570 "Cannot insert hardware breakpoint %d%s",
2571 bl->owner->number, hw_bp_err_string ? ":" : ".\n");
2572 if (hw_bp_err_string)
2573 fprintf_unfiltered (tmp_error_stream, "%s.\n", hw_bp_err_string);
2574 }
2575 else
2576 {
2577 fprintf_unfiltered (tmp_error_stream,
2578 "Cannot insert breakpoint %d.\n",
2579 bl->owner->number);
2580 fprintf_filtered (tmp_error_stream,
2581 "Error accessing memory address ");
2582 fputs_filtered (paddress (bl->gdbarch, bl->address),
2583 tmp_error_stream);
2584 fprintf_filtered (tmp_error_stream, ": %s.\n",
2585 safe_strerror (val));
2586 }
2587
2588 }
2589 }
2590 else
2591 bl->inserted = 1;
2592
2593 return val;
2594 }
2595
2596 else if (bl->loc_type == bp_loc_hardware_watchpoint
2597 /* NOTE drow/2003-09-08: This state only exists for removing
2598 watchpoints. It's not clear that it's necessary... */
2599 && bl->owner->disposition != disp_del_at_next_stop)
2600 {
2601 gdb_assert (bl->owner->ops != NULL
2602 && bl->owner->ops->insert_location != NULL);
2603
2604 val = bl->owner->ops->insert_location (bl);
2605
2606 /* If trying to set a read-watchpoint, and it turns out it's not
2607 supported, try emulating one with an access watchpoint. */
2608 if (val == 1 && bl->watchpoint_type == hw_read)
2609 {
2610 struct bp_location *loc, **loc_temp;
2611
2612 /* But don't try to insert it, if there's already another
2613 hw_access location that would be considered a duplicate
2614 of this one. */
2615 ALL_BP_LOCATIONS (loc, loc_temp)
2616 if (loc != bl
2617 && loc->watchpoint_type == hw_access
2618 && watchpoint_locations_match (bl, loc))
2619 {
2620 bl->duplicate = 1;
2621 bl->inserted = 1;
2622 bl->target_info = loc->target_info;
2623 bl->watchpoint_type = hw_access;
2624 val = 0;
2625 break;
2626 }
2627
2628 if (val == 1)
2629 {
2630 bl->watchpoint_type = hw_access;
2631 val = bl->owner->ops->insert_location (bl);
2632
2633 if (val)
2634 /* Back to the original value. */
2635 bl->watchpoint_type = hw_read;
2636 }
2637 }
2638
2639 bl->inserted = (val == 0);
2640 }
2641
2642 else if (bl->owner->type == bp_catchpoint)
2643 {
2644 gdb_assert (bl->owner->ops != NULL
2645 && bl->owner->ops->insert_location != NULL);
2646
2647 val = bl->owner->ops->insert_location (bl);
2648 if (val)
2649 {
2650 bl->owner->enable_state = bp_disabled;
2651
2652 if (val == 1)
2653 warning (_("\
2654 Error inserting catchpoint %d: Your system does not support this type\n\
2655 of catchpoint."), bl->owner->number);
2656 else
2657 warning (_("Error inserting catchpoint %d."), bl->owner->number);
2658 }
2659
2660 bl->inserted = (val == 0);
2661
2662 /* We've already printed an error message if there was a problem
2663 inserting this catchpoint, and we've disabled the catchpoint,
2664 so just return success. */
2665 return 0;
2666 }
2667
2668 return 0;
2669 }
2670
2671 /* This function is called when program space PSPACE is about to be
2672 deleted. It takes care of updating breakpoints to not reference
2673 PSPACE anymore. */
2674
2675 void
2676 breakpoint_program_space_exit (struct program_space *pspace)
2677 {
2678 struct breakpoint *b, *b_temp;
2679 struct bp_location *loc, **loc_temp;
2680
2681 /* Remove any breakpoint that was set through this program space. */
2682 ALL_BREAKPOINTS_SAFE (b, b_temp)
2683 {
2684 if (b->pspace == pspace)
2685 delete_breakpoint (b);
2686 }
2687
2688 /* Breakpoints set through other program spaces could have locations
2689 bound to PSPACE as well. Remove those. */
2690 ALL_BP_LOCATIONS (loc, loc_temp)
2691 {
2692 struct bp_location *tmp;
2693
2694 if (loc->pspace == pspace)
2695 {
2696 /* ALL_BP_LOCATIONS bp_location has LOC->OWNER always non-NULL. */
2697 if (loc->owner->loc == loc)
2698 loc->owner->loc = loc->next;
2699 else
2700 for (tmp = loc->owner->loc; tmp->next != NULL; tmp = tmp->next)
2701 if (tmp->next == loc)
2702 {
2703 tmp->next = loc->next;
2704 break;
2705 }
2706 }
2707 }
2708
2709 /* Now update the global location list to permanently delete the
2710 removed locations above. */
2711 update_global_location_list (0);
2712 }
2713
2714 /* Make sure all breakpoints are inserted in inferior.
2715 Throws exception on any error.
2716 A breakpoint that is already inserted won't be inserted
2717 again, so calling this function twice is safe. */
2718 void
2719 insert_breakpoints (void)
2720 {
2721 struct breakpoint *bpt;
2722
2723 ALL_BREAKPOINTS (bpt)
2724 if (is_hardware_watchpoint (bpt))
2725 {
2726 struct watchpoint *w = (struct watchpoint *) bpt;
2727
2728 update_watchpoint (w, 0 /* don't reparse. */);
2729 }
2730
2731 update_global_location_list (1);
2732
2733 /* update_global_location_list does not insert breakpoints when
2734 always_inserted_mode is not enabled. Explicitly insert them
2735 now. */
2736 if (!breakpoints_always_inserted_mode ())
2737 insert_breakpoint_locations ();
2738 }
2739
2740 /* Invoke CALLBACK for each of bp_location. */
2741
2742 void
2743 iterate_over_bp_locations (walk_bp_location_callback callback)
2744 {
2745 struct bp_location *loc, **loc_tmp;
2746
2747 ALL_BP_LOCATIONS (loc, loc_tmp)
2748 {
2749 callback (loc, NULL);
2750 }
2751 }
2752
2753 /* This is used when we need to synch breakpoint conditions between GDB and the
2754 target. It is the case with deleting and disabling of breakpoints when using
2755 always-inserted mode. */
2756
2757 static void
2758 update_inserted_breakpoint_locations (void)
2759 {
2760 struct bp_location *bl, **blp_tmp;
2761 int error_flag = 0;
2762 int val = 0;
2763 int disabled_breaks = 0;
2764 int hw_breakpoint_error = 0;
2765 int hw_bp_details_reported = 0;
2766
2767 struct ui_file *tmp_error_stream = mem_fileopen ();
2768 struct cleanup *cleanups = make_cleanup_ui_file_delete (tmp_error_stream);
2769
2770 /* Explicitly mark the warning -- this will only be printed if
2771 there was an error. */
2772 fprintf_unfiltered (tmp_error_stream, "Warning:\n");
2773
2774 save_current_space_and_thread ();
2775
2776 ALL_BP_LOCATIONS (bl, blp_tmp)
2777 {
2778 /* We only want to update software breakpoints and hardware
2779 breakpoints. */
2780 if (!is_breakpoint (bl->owner))
2781 continue;
2782
2783 /* We only want to update locations that are already inserted
2784 and need updating. This is to avoid unwanted insertion during
2785 deletion of breakpoints. */
2786 if (!bl->inserted || (bl->inserted && !bl->needs_update))
2787 continue;
2788
2789 switch_to_program_space_and_thread (bl->pspace);
2790
2791 /* For targets that support global breakpoints, there's no need
2792 to select an inferior to insert breakpoint to. In fact, even
2793 if we aren't attached to any process yet, we should still
2794 insert breakpoints. */
2795 if (!gdbarch_has_global_breakpoints (target_gdbarch ())
2796 && ptid_equal (inferior_ptid, null_ptid))
2797 continue;
2798
2799 val = insert_bp_location (bl, tmp_error_stream, &disabled_breaks,
2800 &hw_breakpoint_error, &hw_bp_details_reported);
2801 if (val)
2802 error_flag = val;
2803 }
2804
2805 if (error_flag)
2806 {
2807 target_terminal_ours_for_output ();
2808 error_stream (tmp_error_stream);
2809 }
2810
2811 do_cleanups (cleanups);
2812 }
2813
2814 /* Used when starting or continuing the program. */
2815
2816 static void
2817 insert_breakpoint_locations (void)
2818 {
2819 struct breakpoint *bpt;
2820 struct bp_location *bl, **blp_tmp;
2821 int error_flag = 0;
2822 int val = 0;
2823 int disabled_breaks = 0;
2824 int hw_breakpoint_error = 0;
2825 int hw_bp_error_explained_already = 0;
2826
2827 struct ui_file *tmp_error_stream = mem_fileopen ();
2828 struct cleanup *cleanups = make_cleanup_ui_file_delete (tmp_error_stream);
2829
2830 /* Explicitly mark the warning -- this will only be printed if
2831 there was an error. */
2832 fprintf_unfiltered (tmp_error_stream, "Warning:\n");
2833
2834 save_current_space_and_thread ();
2835
2836 ALL_BP_LOCATIONS (bl, blp_tmp)
2837 {
2838 if (!should_be_inserted (bl) || (bl->inserted && !bl->needs_update))
2839 continue;
2840
2841 /* There is no point inserting thread-specific breakpoints if
2842 the thread no longer exists. ALL_BP_LOCATIONS bp_location
2843 has BL->OWNER always non-NULL. */
2844 if (bl->owner->thread != -1
2845 && !valid_thread_id (bl->owner->thread))
2846 continue;
2847
2848 switch_to_program_space_and_thread (bl->pspace);
2849
2850 /* For targets that support global breakpoints, there's no need
2851 to select an inferior to insert breakpoint to. In fact, even
2852 if we aren't attached to any process yet, we should still
2853 insert breakpoints. */
2854 if (!gdbarch_has_global_breakpoints (target_gdbarch ())
2855 && ptid_equal (inferior_ptid, null_ptid))
2856 continue;
2857
2858 val = insert_bp_location (bl, tmp_error_stream, &disabled_breaks,
2859 &hw_breakpoint_error, &hw_bp_error_explained_already);
2860 if (val)
2861 error_flag = val;
2862 }
2863
2864 /* If we failed to insert all locations of a watchpoint, remove
2865 them, as half-inserted watchpoint is of limited use. */
2866 ALL_BREAKPOINTS (bpt)
2867 {
2868 int some_failed = 0;
2869 struct bp_location *loc;
2870
2871 if (!is_hardware_watchpoint (bpt))
2872 continue;
2873
2874 if (!breakpoint_enabled (bpt))
2875 continue;
2876
2877 if (bpt->disposition == disp_del_at_next_stop)
2878 continue;
2879
2880 for (loc = bpt->loc; loc; loc = loc->next)
2881 if (!loc->inserted && should_be_inserted (loc))
2882 {
2883 some_failed = 1;
2884 break;
2885 }
2886 if (some_failed)
2887 {
2888 for (loc = bpt->loc; loc; loc = loc->next)
2889 if (loc->inserted)
2890 remove_breakpoint (loc, mark_uninserted);
2891
2892 hw_breakpoint_error = 1;
2893 fprintf_unfiltered (tmp_error_stream,
2894 "Could not insert hardware watchpoint %d.\n",
2895 bpt->number);
2896 error_flag = -1;
2897 }
2898 }
2899
2900 if (error_flag)
2901 {
2902 /* If a hardware breakpoint or watchpoint was inserted, add a
2903 message about possibly exhausted resources. */
2904 if (hw_breakpoint_error && !hw_bp_error_explained_already)
2905 {
2906 fprintf_unfiltered (tmp_error_stream,
2907 "Could not insert hardware breakpoints:\n\
2908 You may have requested too many hardware breakpoints/watchpoints.\n");
2909 }
2910 target_terminal_ours_for_output ();
2911 error_stream (tmp_error_stream);
2912 }
2913
2914 do_cleanups (cleanups);
2915 }
2916
2917 /* Used when the program stops.
2918 Returns zero if successful, or non-zero if there was a problem
2919 removing a breakpoint location. */
2920
2921 int
2922 remove_breakpoints (void)
2923 {
2924 struct bp_location *bl, **blp_tmp;
2925 int val = 0;
2926
2927 ALL_BP_LOCATIONS (bl, blp_tmp)
2928 {
2929 if (bl->inserted && !is_tracepoint (bl->owner))
2930 val |= remove_breakpoint (bl, mark_uninserted);
2931 }
2932 return val;
2933 }
2934
2935 /* Remove breakpoints of process PID. */
2936
2937 int
2938 remove_breakpoints_pid (int pid)
2939 {
2940 struct bp_location *bl, **blp_tmp;
2941 int val;
2942 struct inferior *inf = find_inferior_pid (pid);
2943
2944 ALL_BP_LOCATIONS (bl, blp_tmp)
2945 {
2946 if (bl->pspace != inf->pspace)
2947 continue;
2948
2949 if (bl->owner->type == bp_dprintf)
2950 continue;
2951
2952 if (bl->inserted)
2953 {
2954 val = remove_breakpoint (bl, mark_uninserted);
2955 if (val != 0)
2956 return val;
2957 }
2958 }
2959 return 0;
2960 }
2961
2962 int
2963 reattach_breakpoints (int pid)
2964 {
2965 struct cleanup *old_chain;
2966 struct bp_location *bl, **blp_tmp;
2967 int val;
2968 struct ui_file *tmp_error_stream;
2969 int dummy1 = 0, dummy2 = 0, dummy3 = 0;
2970 struct inferior *inf;
2971 struct thread_info *tp;
2972
2973 tp = any_live_thread_of_process (pid);
2974 if (tp == NULL)
2975 return 1;
2976
2977 inf = find_inferior_pid (pid);
2978 old_chain = save_inferior_ptid ();
2979
2980 inferior_ptid = tp->ptid;
2981
2982 tmp_error_stream = mem_fileopen ();
2983 make_cleanup_ui_file_delete (tmp_error_stream);
2984
2985 ALL_BP_LOCATIONS (bl, blp_tmp)
2986 {
2987 if (bl->pspace != inf->pspace)
2988 continue;
2989
2990 if (bl->inserted)
2991 {
2992 bl->inserted = 0;
2993 val = insert_bp_location (bl, tmp_error_stream, &dummy1, &dummy2, &dummy3);
2994 if (val != 0)
2995 {
2996 do_cleanups (old_chain);
2997 return val;
2998 }
2999 }
3000 }
3001 do_cleanups (old_chain);
3002 return 0;
3003 }
3004
3005 static int internal_breakpoint_number = -1;
3006
3007 /* Set the breakpoint number of B, depending on the value of INTERNAL.
3008 If INTERNAL is non-zero, the breakpoint number will be populated
3009 from internal_breakpoint_number and that variable decremented.
3010 Otherwise the breakpoint number will be populated from
3011 breakpoint_count and that value incremented. Internal breakpoints
3012 do not set the internal var bpnum. */
3013 static void
3014 set_breakpoint_number (int internal, struct breakpoint *b)
3015 {
3016 if (internal)
3017 b->number = internal_breakpoint_number--;
3018 else
3019 {
3020 set_breakpoint_count (breakpoint_count + 1);
3021 b->number = breakpoint_count;
3022 }
3023 }
3024
3025 static struct breakpoint *
3026 create_internal_breakpoint (struct gdbarch *gdbarch,
3027 CORE_ADDR address, enum bptype type,
3028 const struct breakpoint_ops *ops)
3029 {
3030 struct symtab_and_line sal;
3031 struct breakpoint *b;
3032
3033 init_sal (&sal); /* Initialize to zeroes. */
3034
3035 sal.pc = address;
3036 sal.section = find_pc_overlay (sal.pc);
3037 sal.pspace = current_program_space;
3038
3039 b = set_raw_breakpoint (gdbarch, sal, type, ops);
3040 b->number = internal_breakpoint_number--;
3041 b->disposition = disp_donttouch;
3042
3043 return b;
3044 }
3045
3046 static const char *const longjmp_names[] =
3047 {
3048 "longjmp", "_longjmp", "siglongjmp", "_siglongjmp"
3049 };
3050 #define NUM_LONGJMP_NAMES ARRAY_SIZE(longjmp_names)
3051
3052 /* Per-objfile data private to breakpoint.c. */
3053 struct breakpoint_objfile_data
3054 {
3055 /* Minimal symbol for "_ovly_debug_event" (if any). */
3056 struct minimal_symbol *overlay_msym;
3057
3058 /* Minimal symbol(s) for "longjmp", "siglongjmp", etc. (if any). */
3059 struct minimal_symbol *longjmp_msym[NUM_LONGJMP_NAMES];
3060
3061 /* True if we have looked for longjmp probes. */
3062 int longjmp_searched;
3063
3064 /* SystemTap probe points for longjmp (if any). */
3065 VEC (probe_p) *longjmp_probes;
3066
3067 /* Minimal symbol for "std::terminate()" (if any). */
3068 struct minimal_symbol *terminate_msym;
3069
3070 /* Minimal symbol for "_Unwind_DebugHook" (if any). */
3071 struct minimal_symbol *exception_msym;
3072
3073 /* True if we have looked for exception probes. */
3074 int exception_searched;
3075
3076 /* SystemTap probe points for unwinding (if any). */
3077 VEC (probe_p) *exception_probes;
3078 };
3079
3080 static const struct objfile_data *breakpoint_objfile_key;
3081
3082 /* Minimal symbol not found sentinel. */
3083 static struct minimal_symbol msym_not_found;
3084
3085 /* Returns TRUE if MSYM point to the "not found" sentinel. */
3086
3087 static int
3088 msym_not_found_p (const struct minimal_symbol *msym)
3089 {
3090 return msym == &msym_not_found;
3091 }
3092
3093 /* Return per-objfile data needed by breakpoint.c.
3094 Allocate the data if necessary. */
3095
3096 static struct breakpoint_objfile_data *
3097 get_breakpoint_objfile_data (struct objfile *objfile)
3098 {
3099 struct breakpoint_objfile_data *bp_objfile_data;
3100
3101 bp_objfile_data = objfile_data (objfile, breakpoint_objfile_key);
3102 if (bp_objfile_data == NULL)
3103 {
3104 bp_objfile_data = obstack_alloc (&objfile->objfile_obstack,
3105 sizeof (*bp_objfile_data));
3106
3107 memset (bp_objfile_data, 0, sizeof (*bp_objfile_data));
3108 set_objfile_data (objfile, breakpoint_objfile_key, bp_objfile_data);
3109 }
3110 return bp_objfile_data;
3111 }
3112
3113 static void
3114 free_breakpoint_probes (struct objfile *obj, void *data)
3115 {
3116 struct breakpoint_objfile_data *bp_objfile_data = data;
3117
3118 VEC_free (probe_p, bp_objfile_data->longjmp_probes);
3119 VEC_free (probe_p, bp_objfile_data->exception_probes);
3120 }
3121
3122 static void
3123 create_overlay_event_breakpoint (void)
3124 {
3125 struct objfile *objfile;
3126 const char *const func_name = "_ovly_debug_event";
3127
3128 ALL_OBJFILES (objfile)
3129 {
3130 struct breakpoint *b;
3131 struct breakpoint_objfile_data *bp_objfile_data;
3132 CORE_ADDR addr;
3133
3134 bp_objfile_data = get_breakpoint_objfile_data (objfile);
3135
3136 if (msym_not_found_p (bp_objfile_data->overlay_msym))
3137 continue;
3138
3139 if (bp_objfile_data->overlay_msym == NULL)
3140 {
3141 struct minimal_symbol *m;
3142
3143 m = lookup_minimal_symbol_text (func_name, objfile);
3144 if (m == NULL)
3145 {
3146 /* Avoid future lookups in this objfile. */
3147 bp_objfile_data->overlay_msym = &msym_not_found;
3148 continue;
3149 }
3150 bp_objfile_data->overlay_msym = m;
3151 }
3152
3153 addr = SYMBOL_VALUE_ADDRESS (bp_objfile_data->overlay_msym);
3154 b = create_internal_breakpoint (get_objfile_arch (objfile), addr,
3155 bp_overlay_event,
3156 &internal_breakpoint_ops);
3157 b->addr_string = xstrdup (func_name);
3158
3159 if (overlay_debugging == ovly_auto)
3160 {
3161 b->enable_state = bp_enabled;
3162 overlay_events_enabled = 1;
3163 }
3164 else
3165 {
3166 b->enable_state = bp_disabled;
3167 overlay_events_enabled = 0;
3168 }
3169 }
3170 update_global_location_list (1);
3171 }
3172
3173 static void
3174 create_longjmp_master_breakpoint (void)
3175 {
3176 struct program_space *pspace;
3177 struct cleanup *old_chain;
3178
3179 old_chain = save_current_program_space ();
3180
3181 ALL_PSPACES (pspace)
3182 {
3183 struct objfile *objfile;
3184
3185 set_current_program_space (pspace);
3186
3187 ALL_OBJFILES (objfile)
3188 {
3189 int i;
3190 struct gdbarch *gdbarch;
3191 struct breakpoint_objfile_data *bp_objfile_data;
3192
3193 gdbarch = get_objfile_arch (objfile);
3194 if (!gdbarch_get_longjmp_target_p (gdbarch))
3195 continue;
3196
3197 bp_objfile_data = get_breakpoint_objfile_data (objfile);
3198
3199 if (!bp_objfile_data->longjmp_searched)
3200 {
3201 bp_objfile_data->longjmp_probes
3202 = find_probes_in_objfile (objfile, "libc", "longjmp");
3203 bp_objfile_data->longjmp_searched = 1;
3204 }
3205
3206 if (bp_objfile_data->longjmp_probes != NULL)
3207 {
3208 int i;
3209 struct probe *probe;
3210 struct gdbarch *gdbarch = get_objfile_arch (objfile);
3211
3212 for (i = 0;
3213 VEC_iterate (probe_p,
3214 bp_objfile_data->longjmp_probes,
3215 i, probe);
3216 ++i)
3217 {
3218 struct breakpoint *b;
3219
3220 b = create_internal_breakpoint (gdbarch, probe->address,
3221 bp_longjmp_master,
3222 &internal_breakpoint_ops);
3223 b->addr_string = xstrdup ("-probe-stap libc:longjmp");
3224 b->enable_state = bp_disabled;
3225 }
3226
3227 continue;
3228 }
3229
3230 for (i = 0; i < NUM_LONGJMP_NAMES; i++)
3231 {
3232 struct breakpoint *b;
3233 const char *func_name;
3234 CORE_ADDR addr;
3235
3236 if (msym_not_found_p (bp_objfile_data->longjmp_msym[i]))
3237 continue;
3238
3239 func_name = longjmp_names[i];
3240 if (bp_objfile_data->longjmp_msym[i] == NULL)
3241 {
3242 struct minimal_symbol *m;
3243
3244 m = lookup_minimal_symbol_text (func_name, objfile);
3245 if (m == NULL)
3246 {
3247 /* Prevent future lookups in this objfile. */
3248 bp_objfile_data->longjmp_msym[i] = &msym_not_found;
3249 continue;
3250 }
3251 bp_objfile_data->longjmp_msym[i] = m;
3252 }
3253
3254 addr = SYMBOL_VALUE_ADDRESS (bp_objfile_data->longjmp_msym[i]);
3255 b = create_internal_breakpoint (gdbarch, addr, bp_longjmp_master,
3256 &internal_breakpoint_ops);
3257 b->addr_string = xstrdup (func_name);
3258 b->enable_state = bp_disabled;
3259 }
3260 }
3261 }
3262 update_global_location_list (1);
3263
3264 do_cleanups (old_chain);
3265 }
3266
3267 /* Create a master std::terminate breakpoint. */
3268 static void
3269 create_std_terminate_master_breakpoint (void)
3270 {
3271 struct program_space *pspace;
3272 struct cleanup *old_chain;
3273 const char *const func_name = "std::terminate()";
3274
3275 old_chain = save_current_program_space ();
3276
3277 ALL_PSPACES (pspace)
3278 {
3279 struct objfile *objfile;
3280 CORE_ADDR addr;
3281
3282 set_current_program_space (pspace);
3283
3284 ALL_OBJFILES (objfile)
3285 {
3286 struct breakpoint *b;
3287 struct breakpoint_objfile_data *bp_objfile_data;
3288
3289 bp_objfile_data = get_breakpoint_objfile_data (objfile);
3290
3291 if (msym_not_found_p (bp_objfile_data->terminate_msym))
3292 continue;
3293
3294 if (bp_objfile_data->terminate_msym == NULL)
3295 {
3296 struct minimal_symbol *m;
3297
3298 m = lookup_minimal_symbol (func_name, NULL, objfile);
3299 if (m == NULL || (MSYMBOL_TYPE (m) != mst_text
3300 && MSYMBOL_TYPE (m) != mst_file_text))
3301 {
3302 /* Prevent future lookups in this objfile. */
3303 bp_objfile_data->terminate_msym = &msym_not_found;
3304 continue;
3305 }
3306 bp_objfile_data->terminate_msym = m;
3307 }
3308
3309 addr = SYMBOL_VALUE_ADDRESS (bp_objfile_data->terminate_msym);
3310 b = create_internal_breakpoint (get_objfile_arch (objfile), addr,
3311 bp_std_terminate_master,
3312 &internal_breakpoint_ops);
3313 b->addr_string = xstrdup (func_name);
3314 b->enable_state = bp_disabled;
3315 }
3316 }
3317
3318 update_global_location_list (1);
3319
3320 do_cleanups (old_chain);
3321 }
3322
3323 /* Install a master breakpoint on the unwinder's debug hook. */
3324
3325 static void
3326 create_exception_master_breakpoint (void)
3327 {
3328 struct objfile *objfile;
3329 const char *const func_name = "_Unwind_DebugHook";
3330
3331 ALL_OBJFILES (objfile)
3332 {
3333 struct breakpoint *b;
3334 struct gdbarch *gdbarch;
3335 struct breakpoint_objfile_data *bp_objfile_data;
3336 CORE_ADDR addr;
3337
3338 bp_objfile_data = get_breakpoint_objfile_data (objfile);
3339
3340 /* We prefer the SystemTap probe point if it exists. */
3341 if (!bp_objfile_data->exception_searched)
3342 {
3343 bp_objfile_data->exception_probes
3344 = find_probes_in_objfile (objfile, "libgcc", "unwind");
3345 bp_objfile_data->exception_searched = 1;
3346 }
3347
3348 if (bp_objfile_data->exception_probes != NULL)
3349 {
3350 struct gdbarch *gdbarch = get_objfile_arch (objfile);
3351 int i;
3352 struct probe *probe;
3353
3354 for (i = 0;
3355 VEC_iterate (probe_p,
3356 bp_objfile_data->exception_probes,
3357 i, probe);
3358 ++i)
3359 {
3360 struct breakpoint *b;
3361
3362 b = create_internal_breakpoint (gdbarch, probe->address,
3363 bp_exception_master,
3364 &internal_breakpoint_ops);
3365 b->addr_string = xstrdup ("-probe-stap libgcc:unwind");
3366 b->enable_state = bp_disabled;
3367 }
3368
3369 continue;
3370 }
3371
3372 /* Otherwise, try the hook function. */
3373
3374 if (msym_not_found_p (bp_objfile_data->exception_msym))
3375 continue;
3376
3377 gdbarch = get_objfile_arch (objfile);
3378
3379 if (bp_objfile_data->exception_msym == NULL)
3380 {
3381 struct minimal_symbol *debug_hook;
3382
3383 debug_hook = lookup_minimal_symbol (func_name, NULL, objfile);
3384 if (debug_hook == NULL)
3385 {
3386 bp_objfile_data->exception_msym = &msym_not_found;
3387 continue;
3388 }
3389
3390 bp_objfile_data->exception_msym = debug_hook;
3391 }
3392
3393 addr = SYMBOL_VALUE_ADDRESS (bp_objfile_data->exception_msym);
3394 addr = gdbarch_convert_from_func_ptr_addr (gdbarch, addr,
3395 &current_target);
3396 b = create_internal_breakpoint (gdbarch, addr, bp_exception_master,
3397 &internal_breakpoint_ops);
3398 b->addr_string = xstrdup (func_name);
3399 b->enable_state = bp_disabled;
3400 }
3401
3402 update_global_location_list (1);
3403 }
3404
3405 void
3406 update_breakpoints_after_exec (void)
3407 {
3408 struct breakpoint *b, *b_tmp;
3409 struct bp_location *bploc, **bplocp_tmp;
3410
3411 /* We're about to delete breakpoints from GDB's lists. If the
3412 INSERTED flag is true, GDB will try to lift the breakpoints by
3413 writing the breakpoints' "shadow contents" back into memory. The
3414 "shadow contents" are NOT valid after an exec, so GDB should not
3415 do that. Instead, the target is responsible from marking
3416 breakpoints out as soon as it detects an exec. We don't do that
3417 here instead, because there may be other attempts to delete
3418 breakpoints after detecting an exec and before reaching here. */
3419 ALL_BP_LOCATIONS (bploc, bplocp_tmp)
3420 if (bploc->pspace == current_program_space)
3421 gdb_assert (!bploc->inserted);
3422
3423 ALL_BREAKPOINTS_SAFE (b, b_tmp)
3424 {
3425 if (b->pspace != current_program_space)
3426 continue;
3427
3428 /* Solib breakpoints must be explicitly reset after an exec(). */
3429 if (b->type == bp_shlib_event)
3430 {
3431 delete_breakpoint (b);
3432 continue;
3433 }
3434
3435 /* JIT breakpoints must be explicitly reset after an exec(). */
3436 if (b->type == bp_jit_event)
3437 {
3438 delete_breakpoint (b);
3439 continue;
3440 }
3441
3442 /* Thread event breakpoints must be set anew after an exec(),
3443 as must overlay event and longjmp master breakpoints. */
3444 if (b->type == bp_thread_event || b->type == bp_overlay_event
3445 || b->type == bp_longjmp_master || b->type == bp_std_terminate_master
3446 || b->type == bp_exception_master)
3447 {
3448 delete_breakpoint (b);
3449 continue;
3450 }
3451
3452 /* Step-resume breakpoints are meaningless after an exec(). */
3453 if (b->type == bp_step_resume || b->type == bp_hp_step_resume)
3454 {
3455 delete_breakpoint (b);
3456 continue;
3457 }
3458
3459 /* Longjmp and longjmp-resume breakpoints are also meaningless
3460 after an exec. */
3461 if (b->type == bp_longjmp || b->type == bp_longjmp_resume
3462 || b->type == bp_longjmp_call_dummy
3463 || b->type == bp_exception || b->type == bp_exception_resume)
3464 {
3465 delete_breakpoint (b);
3466 continue;
3467 }
3468
3469 if (b->type == bp_catchpoint)
3470 {
3471 /* For now, none of the bp_catchpoint breakpoints need to
3472 do anything at this point. In the future, if some of
3473 the catchpoints need to something, we will need to add
3474 a new method, and call this method from here. */
3475 continue;
3476 }
3477
3478 /* bp_finish is a special case. The only way we ought to be able
3479 to see one of these when an exec() has happened, is if the user
3480 caught a vfork, and then said "finish". Ordinarily a finish just
3481 carries them to the call-site of the current callee, by setting
3482 a temporary bp there and resuming. But in this case, the finish
3483 will carry them entirely through the vfork & exec.
3484
3485 We don't want to allow a bp_finish to remain inserted now. But
3486 we can't safely delete it, 'cause finish_command has a handle to
3487 the bp on a bpstat, and will later want to delete it. There's a
3488 chance (and I've seen it happen) that if we delete the bp_finish
3489 here, that its storage will get reused by the time finish_command
3490 gets 'round to deleting the "use to be a bp_finish" breakpoint.
3491 We really must allow finish_command to delete a bp_finish.
3492
3493 In the absence of a general solution for the "how do we know
3494 it's safe to delete something others may have handles to?"
3495 problem, what we'll do here is just uninsert the bp_finish, and
3496 let finish_command delete it.
3497
3498 (We know the bp_finish is "doomed" in the sense that it's
3499 momentary, and will be deleted as soon as finish_command sees
3500 the inferior stopped. So it doesn't matter that the bp's
3501 address is probably bogus in the new a.out, unlike e.g., the
3502 solib breakpoints.) */
3503
3504 if (b->type == bp_finish)
3505 {
3506 continue;
3507 }
3508
3509 /* Without a symbolic address, we have little hope of the
3510 pre-exec() address meaning the same thing in the post-exec()
3511 a.out. */
3512 if (b->addr_string == NULL)
3513 {
3514 delete_breakpoint (b);
3515 continue;
3516 }
3517 }
3518 /* FIXME what about longjmp breakpoints? Re-create them here? */
3519 create_overlay_event_breakpoint ();
3520 create_longjmp_master_breakpoint ();
3521 create_std_terminate_master_breakpoint ();
3522 create_exception_master_breakpoint ();
3523 }
3524
3525 int
3526 detach_breakpoints (ptid_t ptid)
3527 {
3528 struct bp_location *bl, **blp_tmp;
3529 int val = 0;
3530 struct cleanup *old_chain = save_inferior_ptid ();
3531 struct inferior *inf = current_inferior ();
3532
3533 if (PIDGET (ptid) == PIDGET (inferior_ptid))
3534 error (_("Cannot detach breakpoints of inferior_ptid"));
3535
3536 /* Set inferior_ptid; remove_breakpoint_1 uses this global. */
3537 inferior_ptid = ptid;
3538 ALL_BP_LOCATIONS (bl, blp_tmp)
3539 {
3540 if (bl->pspace != inf->pspace)
3541 continue;
3542
3543 if (bl->inserted)
3544 val |= remove_breakpoint_1 (bl, mark_inserted);
3545 }
3546
3547 /* Detach single-step breakpoints as well. */
3548 detach_single_step_breakpoints ();
3549
3550 do_cleanups (old_chain);
3551 return val;
3552 }
3553
3554 /* Remove the breakpoint location BL from the current address space.
3555 Note that this is used to detach breakpoints from a child fork.
3556 When we get here, the child isn't in the inferior list, and neither
3557 do we have objects to represent its address space --- we should
3558 *not* look at bl->pspace->aspace here. */
3559
3560 static int
3561 remove_breakpoint_1 (struct bp_location *bl, insertion_state_t is)
3562 {
3563 int val;
3564
3565 /* BL is never in moribund_locations by our callers. */
3566 gdb_assert (bl->owner != NULL);
3567
3568 if (bl->owner->enable_state == bp_permanent)
3569 /* Permanent breakpoints cannot be inserted or removed. */
3570 return 0;
3571
3572 /* The type of none suggests that owner is actually deleted.
3573 This should not ever happen. */
3574 gdb_assert (bl->owner->type != bp_none);
3575
3576 if (bl->loc_type == bp_loc_software_breakpoint
3577 || bl->loc_type == bp_loc_hardware_breakpoint)
3578 {
3579 /* "Normal" instruction breakpoint: either the standard
3580 trap-instruction bp (bp_breakpoint), or a
3581 bp_hardware_breakpoint. */
3582
3583 /* First check to see if we have to handle an overlay. */
3584 if (overlay_debugging == ovly_off
3585 || bl->section == NULL
3586 || !(section_is_overlay (bl->section)))
3587 {
3588 /* No overlay handling: just remove the breakpoint. */
3589 val = bl->owner->ops->remove_location (bl);
3590 }
3591 else
3592 {
3593 /* This breakpoint is in an overlay section.
3594 Did we set a breakpoint at the LMA? */
3595 if (!overlay_events_enabled)
3596 {
3597 /* Yes -- overlay event support is not active, so we
3598 should have set a breakpoint at the LMA. Remove it.
3599 */
3600 /* Ignore any failures: if the LMA is in ROM, we will
3601 have already warned when we failed to insert it. */
3602 if (bl->loc_type == bp_loc_hardware_breakpoint)
3603 target_remove_hw_breakpoint (bl->gdbarch,
3604 &bl->overlay_target_info);
3605 else
3606 target_remove_breakpoint (bl->gdbarch,
3607 &bl->overlay_target_info);
3608 }
3609 /* Did we set a breakpoint at the VMA?
3610 If so, we will have marked the breakpoint 'inserted'. */
3611 if (bl->inserted)
3612 {
3613 /* Yes -- remove it. Previously we did not bother to
3614 remove the breakpoint if the section had been
3615 unmapped, but let's not rely on that being safe. We
3616 don't know what the overlay manager might do. */
3617
3618 /* However, we should remove *software* breakpoints only
3619 if the section is still mapped, or else we overwrite
3620 wrong code with the saved shadow contents. */
3621 if (bl->loc_type == bp_loc_hardware_breakpoint
3622 || section_is_mapped (bl->section))
3623 val = bl->owner->ops->remove_location (bl);
3624 else
3625 val = 0;
3626 }
3627 else
3628 {
3629 /* No -- not inserted, so no need to remove. No error. */
3630 val = 0;
3631 }
3632 }
3633
3634 /* In some cases, we might not be able to remove a breakpoint
3635 in a shared library that has already been removed, but we
3636 have not yet processed the shlib unload event. */
3637 if (val && solib_name_from_address (bl->pspace, bl->address))
3638 val = 0;
3639
3640 if (val)
3641 return val;
3642 bl->inserted = (is == mark_inserted);
3643 }
3644 else if (bl->loc_type == bp_loc_hardware_watchpoint)
3645 {
3646 gdb_assert (bl->owner->ops != NULL
3647 && bl->owner->ops->remove_location != NULL);
3648
3649 bl->inserted = (is == mark_inserted);
3650 bl->owner->ops->remove_location (bl);
3651
3652 /* Failure to remove any of the hardware watchpoints comes here. */
3653 if ((is == mark_uninserted) && (bl->inserted))
3654 warning (_("Could not remove hardware watchpoint %d."),
3655 bl->owner->number);
3656 }
3657 else if (bl->owner->type == bp_catchpoint
3658 && breakpoint_enabled (bl->owner)
3659 && !bl->duplicate)
3660 {
3661 gdb_assert (bl->owner->ops != NULL
3662 && bl->owner->ops->remove_location != NULL);
3663
3664 val = bl->owner->ops->remove_location (bl);
3665 if (val)
3666 return val;
3667
3668 bl->inserted = (is == mark_inserted);
3669 }
3670
3671 return 0;
3672 }
3673
3674 static int
3675 remove_breakpoint (struct bp_location *bl, insertion_state_t is)
3676 {
3677 int ret;
3678 struct cleanup *old_chain;
3679
3680 /* BL is never in moribund_locations by our callers. */
3681 gdb_assert (bl->owner != NULL);
3682
3683 if (bl->owner->enable_state == bp_permanent)
3684 /* Permanent breakpoints cannot be inserted or removed. */
3685 return 0;
3686
3687 /* The type of none suggests that owner is actually deleted.
3688 This should not ever happen. */
3689 gdb_assert (bl->owner->type != bp_none);
3690
3691 old_chain = save_current_space_and_thread ();
3692
3693 switch_to_program_space_and_thread (bl->pspace);
3694
3695 ret = remove_breakpoint_1 (bl, is);
3696
3697 do_cleanups (old_chain);
3698 return ret;
3699 }
3700
3701 /* Clear the "inserted" flag in all breakpoints. */
3702
3703 void
3704 mark_breakpoints_out (void)
3705 {
3706 struct bp_location *bl, **blp_tmp;
3707
3708 ALL_BP_LOCATIONS (bl, blp_tmp)
3709 if (bl->pspace == current_program_space)
3710 bl->inserted = 0;
3711 }
3712
3713 /* Clear the "inserted" flag in all breakpoints and delete any
3714 breakpoints which should go away between runs of the program.
3715
3716 Plus other such housekeeping that has to be done for breakpoints
3717 between runs.
3718
3719 Note: this function gets called at the end of a run (by
3720 generic_mourn_inferior) and when a run begins (by
3721 init_wait_for_inferior). */
3722
3723
3724
3725 void
3726 breakpoint_init_inferior (enum inf_context context)
3727 {
3728 struct breakpoint *b, *b_tmp;
3729 struct bp_location *bl, **blp_tmp;
3730 int ix;
3731 struct program_space *pspace = current_program_space;
3732
3733 /* If breakpoint locations are shared across processes, then there's
3734 nothing to do. */
3735 if (gdbarch_has_global_breakpoints (target_gdbarch ()))
3736 return;
3737
3738 ALL_BP_LOCATIONS (bl, blp_tmp)
3739 {
3740 /* ALL_BP_LOCATIONS bp_location has BL->OWNER always non-NULL. */
3741 if (bl->pspace == pspace
3742 && bl->owner->enable_state != bp_permanent)
3743 bl->inserted = 0;
3744 }
3745
3746 ALL_BREAKPOINTS_SAFE (b, b_tmp)
3747 {
3748 if (b->loc && b->loc->pspace != pspace)
3749 continue;
3750
3751 switch (b->type)
3752 {
3753 case bp_call_dummy:
3754 case bp_longjmp_call_dummy:
3755
3756 /* If the call dummy breakpoint is at the entry point it will
3757 cause problems when the inferior is rerun, so we better get
3758 rid of it. */
3759
3760 case bp_watchpoint_scope:
3761
3762 /* Also get rid of scope breakpoints. */
3763
3764 case bp_shlib_event:
3765
3766 /* Also remove solib event breakpoints. Their addresses may
3767 have changed since the last time we ran the program.
3768 Actually we may now be debugging against different target;
3769 and so the solib backend that installed this breakpoint may
3770 not be used in by the target. E.g.,
3771
3772 (gdb) file prog-linux
3773 (gdb) run # native linux target
3774 ...
3775 (gdb) kill
3776 (gdb) file prog-win.exe
3777 (gdb) tar rem :9999 # remote Windows gdbserver.
3778 */
3779
3780 case bp_step_resume:
3781
3782 /* Also remove step-resume breakpoints. */
3783
3784 delete_breakpoint (b);
3785 break;
3786
3787 case bp_watchpoint:
3788 case bp_hardware_watchpoint:
3789 case bp_read_watchpoint:
3790 case bp_access_watchpoint:
3791 {
3792 struct watchpoint *w = (struct watchpoint *) b;
3793
3794 /* Likewise for watchpoints on local expressions. */
3795 if (w->exp_valid_block != NULL)
3796 delete_breakpoint (b);
3797 else if (context == inf_starting)
3798 {
3799 /* Reset val field to force reread of starting value in
3800 insert_breakpoints. */
3801 if (w->val)
3802 value_free (w->val);
3803 w->val = NULL;
3804 w->val_valid = 0;
3805 }
3806 }
3807 break;
3808 default:
3809 break;
3810 }
3811 }
3812
3813 /* Get rid of the moribund locations. */
3814 for (ix = 0; VEC_iterate (bp_location_p, moribund_locations, ix, bl); ++ix)
3815 decref_bp_location (&bl);
3816 VEC_free (bp_location_p, moribund_locations);
3817 }
3818
3819 /* These functions concern about actual breakpoints inserted in the
3820 target --- to e.g. check if we need to do decr_pc adjustment or if
3821 we need to hop over the bkpt --- so we check for address space
3822 match, not program space. */
3823
3824 /* breakpoint_here_p (PC) returns non-zero if an enabled breakpoint
3825 exists at PC. It returns ordinary_breakpoint_here if it's an
3826 ordinary breakpoint, or permanent_breakpoint_here if it's a
3827 permanent breakpoint.
3828 - When continuing from a location with an ordinary breakpoint, we
3829 actually single step once before calling insert_breakpoints.
3830 - When continuing from a location with a permanent breakpoint, we
3831 need to use the `SKIP_PERMANENT_BREAKPOINT' macro, provided by
3832 the target, to advance the PC past the breakpoint. */
3833
3834 enum breakpoint_here
3835 breakpoint_here_p (struct address_space *aspace, CORE_ADDR pc)
3836 {
3837 struct bp_location *bl, **blp_tmp;
3838 int any_breakpoint_here = 0;
3839
3840 ALL_BP_LOCATIONS (bl, blp_tmp)
3841 {
3842 if (bl->loc_type != bp_loc_software_breakpoint
3843 && bl->loc_type != bp_loc_hardware_breakpoint)
3844 continue;
3845
3846 /* ALL_BP_LOCATIONS bp_location has BL->OWNER always non-NULL. */
3847 if ((breakpoint_enabled (bl->owner)
3848 || bl->owner->enable_state == bp_permanent)
3849 && breakpoint_location_address_match (bl, aspace, pc))
3850 {
3851 if (overlay_debugging
3852 && section_is_overlay (bl->section)
3853 && !section_is_mapped (bl->section))
3854 continue; /* unmapped overlay -- can't be a match */
3855 else if (bl->owner->enable_state == bp_permanent)
3856 return permanent_breakpoint_here;
3857 else
3858 any_breakpoint_here = 1;
3859 }
3860 }
3861
3862 return any_breakpoint_here ? ordinary_breakpoint_here : 0;
3863 }
3864
3865 /* Return true if there's a moribund breakpoint at PC. */
3866
3867 int
3868 moribund_breakpoint_here_p (struct address_space *aspace, CORE_ADDR pc)
3869 {
3870 struct bp_location *loc;
3871 int ix;
3872
3873 for (ix = 0; VEC_iterate (bp_location_p, moribund_locations, ix, loc); ++ix)
3874 if (breakpoint_location_address_match (loc, aspace, pc))
3875 return 1;
3876
3877 return 0;
3878 }
3879
3880 /* Returns non-zero if there's a breakpoint inserted at PC, which is
3881 inserted using regular breakpoint_chain / bp_location array
3882 mechanism. This does not check for single-step breakpoints, which
3883 are inserted and removed using direct target manipulation. */
3884
3885 int
3886 regular_breakpoint_inserted_here_p (struct address_space *aspace,
3887 CORE_ADDR pc)
3888 {
3889 struct bp_location *bl, **blp_tmp;
3890
3891 ALL_BP_LOCATIONS (bl, blp_tmp)
3892 {
3893 if (bl->loc_type != bp_loc_software_breakpoint
3894 && bl->loc_type != bp_loc_hardware_breakpoint)
3895 continue;
3896
3897 if (bl->inserted
3898 && breakpoint_location_address_match (bl, aspace, pc))
3899 {
3900 if (overlay_debugging
3901 && section_is_overlay (bl->section)
3902 && !section_is_mapped (bl->section))
3903 continue; /* unmapped overlay -- can't be a match */
3904 else
3905 return 1;
3906 }
3907 }
3908 return 0;
3909 }
3910
3911 /* Returns non-zero iff there's either regular breakpoint
3912 or a single step breakpoint inserted at PC. */
3913
3914 int
3915 breakpoint_inserted_here_p (struct address_space *aspace, CORE_ADDR pc)
3916 {
3917 if (regular_breakpoint_inserted_here_p (aspace, pc))
3918 return 1;
3919
3920 if (single_step_breakpoint_inserted_here_p (aspace, pc))
3921 return 1;
3922
3923 return 0;
3924 }
3925
3926 /* This function returns non-zero iff there is a software breakpoint
3927 inserted at PC. */
3928
3929 int
3930 software_breakpoint_inserted_here_p (struct address_space *aspace,
3931 CORE_ADDR pc)
3932 {
3933 struct bp_location *bl, **blp_tmp;
3934
3935 ALL_BP_LOCATIONS (bl, blp_tmp)
3936 {
3937 if (bl->loc_type != bp_loc_software_breakpoint)
3938 continue;
3939
3940 if (bl->inserted
3941 && breakpoint_address_match (bl->pspace->aspace, bl->address,
3942 aspace, pc))
3943 {
3944 if (overlay_debugging
3945 && section_is_overlay (bl->section)
3946 && !section_is_mapped (bl->section))
3947 continue; /* unmapped overlay -- can't be a match */
3948 else
3949 return 1;
3950 }
3951 }
3952
3953 /* Also check for software single-step breakpoints. */
3954 if (single_step_breakpoint_inserted_here_p (aspace, pc))
3955 return 1;
3956
3957 return 0;
3958 }
3959
3960 int
3961 hardware_watchpoint_inserted_in_range (struct address_space *aspace,
3962 CORE_ADDR addr, ULONGEST len)
3963 {
3964 struct breakpoint *bpt;
3965
3966 ALL_BREAKPOINTS (bpt)
3967 {
3968 struct bp_location *loc;
3969
3970 if (bpt->type != bp_hardware_watchpoint
3971 && bpt->type != bp_access_watchpoint)
3972 continue;
3973
3974 if (!breakpoint_enabled (bpt))
3975 continue;
3976
3977 for (loc = bpt->loc; loc; loc = loc->next)
3978 if (loc->pspace->aspace == aspace && loc->inserted)
3979 {
3980 CORE_ADDR l, h;
3981
3982 /* Check for intersection. */
3983 l = max (loc->address, addr);
3984 h = min (loc->address + loc->length, addr + len);
3985 if (l < h)
3986 return 1;
3987 }
3988 }
3989 return 0;
3990 }
3991
3992 /* breakpoint_thread_match (PC, PTID) returns true if the breakpoint at
3993 PC is valid for process/thread PTID. */
3994
3995 int
3996 breakpoint_thread_match (struct address_space *aspace, CORE_ADDR pc,
3997 ptid_t ptid)
3998 {
3999 struct bp_location *bl, **blp_tmp;
4000 /* The thread and task IDs associated to PTID, computed lazily. */
4001 int thread = -1;
4002 int task = 0;
4003
4004 ALL_BP_LOCATIONS (bl, blp_tmp)
4005 {
4006 if (bl->loc_type != bp_loc_software_breakpoint
4007 && bl->loc_type != bp_loc_hardware_breakpoint)
4008 continue;
4009
4010 /* ALL_BP_LOCATIONS bp_location has bl->OWNER always non-NULL. */
4011 if (!breakpoint_enabled (bl->owner)
4012 && bl->owner->enable_state != bp_permanent)
4013 continue;
4014
4015 if (!breakpoint_location_address_match (bl, aspace, pc))
4016 continue;
4017
4018 if (bl->owner->thread != -1)
4019 {
4020 /* This is a thread-specific breakpoint. Check that ptid
4021 matches that thread. If thread hasn't been computed yet,
4022 it is now time to do so. */
4023 if (thread == -1)
4024 thread = pid_to_thread_id (ptid);
4025 if (bl->owner->thread != thread)
4026 continue;
4027 }
4028
4029 if (bl->owner->task != 0)
4030 {
4031 /* This is a task-specific breakpoint. Check that ptid
4032 matches that task. If task hasn't been computed yet,
4033 it is now time to do so. */
4034 if (task == 0)
4035 task = ada_get_task_number (ptid);
4036 if (bl->owner->task != task)
4037 continue;
4038 }
4039
4040 if (overlay_debugging
4041 && section_is_overlay (bl->section)
4042 && !section_is_mapped (bl->section))
4043 continue; /* unmapped overlay -- can't be a match */
4044
4045 return 1;
4046 }
4047
4048 return 0;
4049 }
4050 \f
4051
4052 /* bpstat stuff. External routines' interfaces are documented
4053 in breakpoint.h. */
4054
4055 int
4056 is_catchpoint (struct breakpoint *ep)
4057 {
4058 return (ep->type == bp_catchpoint);
4059 }
4060
4061 /* Frees any storage that is part of a bpstat. Does not walk the
4062 'next' chain. */
4063
4064 static void
4065 bpstat_free (bpstat bs)
4066 {
4067 if (bs->old_val != NULL)
4068 value_free (bs->old_val);
4069 decref_counted_command_line (&bs->commands);
4070 decref_bp_location (&bs->bp_location_at);
4071 xfree (bs);
4072 }
4073
4074 /* Clear a bpstat so that it says we are not at any breakpoint.
4075 Also free any storage that is part of a bpstat. */
4076
4077 void
4078 bpstat_clear (bpstat *bsp)
4079 {
4080 bpstat p;
4081 bpstat q;
4082
4083 if (bsp == 0)
4084 return;
4085 p = *bsp;
4086 while (p != NULL)
4087 {
4088 q = p->next;
4089 bpstat_free (p);
4090 p = q;
4091 }
4092 *bsp = NULL;
4093 }
4094
4095 /* Return a copy of a bpstat. Like "bs1 = bs2" but all storage that
4096 is part of the bpstat is copied as well. */
4097
4098 bpstat
4099 bpstat_copy (bpstat bs)
4100 {
4101 bpstat p = NULL;
4102 bpstat tmp;
4103 bpstat retval = NULL;
4104
4105 if (bs == NULL)
4106 return bs;
4107
4108 for (; bs != NULL; bs = bs->next)
4109 {
4110 tmp = (bpstat) xmalloc (sizeof (*tmp));
4111 memcpy (tmp, bs, sizeof (*tmp));
4112 incref_counted_command_line (tmp->commands);
4113 incref_bp_location (tmp->bp_location_at);
4114 if (bs->old_val != NULL)
4115 {
4116 tmp->old_val = value_copy (bs->old_val);
4117 release_value (tmp->old_val);
4118 }
4119
4120 if (p == NULL)
4121 /* This is the first thing in the chain. */
4122 retval = tmp;
4123 else
4124 p->next = tmp;
4125 p = tmp;
4126 }
4127 p->next = NULL;
4128 return retval;
4129 }
4130
4131 /* Find the bpstat associated with this breakpoint. */
4132
4133 bpstat
4134 bpstat_find_breakpoint (bpstat bsp, struct breakpoint *breakpoint)
4135 {
4136 if (bsp == NULL)
4137 return NULL;
4138
4139 for (; bsp != NULL; bsp = bsp->next)
4140 {
4141 if (bsp->breakpoint_at == breakpoint)
4142 return bsp;
4143 }
4144 return NULL;
4145 }
4146
4147 /* See breakpoint.h. */
4148
4149 enum bpstat_signal_value
4150 bpstat_explains_signal (bpstat bsp)
4151 {
4152 enum bpstat_signal_value result = BPSTAT_SIGNAL_NO;
4153
4154 for (; bsp != NULL; bsp = bsp->next)
4155 {
4156 /* Ensure that, if we ever entered this loop, then we at least
4157 return BPSTAT_SIGNAL_HIDE. */
4158 enum bpstat_signal_value newval = BPSTAT_SIGNAL_HIDE;
4159
4160 if (bsp->breakpoint_at != NULL)
4161 newval = bsp->breakpoint_at->ops->explains_signal (bsp->breakpoint_at);
4162
4163 if (newval > result)
4164 result = newval;
4165 }
4166
4167 return result;
4168 }
4169
4170 /* Put in *NUM the breakpoint number of the first breakpoint we are
4171 stopped at. *BSP upon return is a bpstat which points to the
4172 remaining breakpoints stopped at (but which is not guaranteed to be
4173 good for anything but further calls to bpstat_num).
4174
4175 Return 0 if passed a bpstat which does not indicate any breakpoints.
4176 Return -1 if stopped at a breakpoint that has been deleted since
4177 we set it.
4178 Return 1 otherwise. */
4179
4180 int
4181 bpstat_num (bpstat *bsp, int *num)
4182 {
4183 struct breakpoint *b;
4184
4185 if ((*bsp) == NULL)
4186 return 0; /* No more breakpoint values */
4187
4188 /* We assume we'll never have several bpstats that correspond to a
4189 single breakpoint -- otherwise, this function might return the
4190 same number more than once and this will look ugly. */
4191 b = (*bsp)->breakpoint_at;
4192 *bsp = (*bsp)->next;
4193 if (b == NULL)
4194 return -1; /* breakpoint that's been deleted since */
4195
4196 *num = b->number; /* We have its number */
4197 return 1;
4198 }
4199
4200 /* See breakpoint.h. */
4201
4202 void
4203 bpstat_clear_actions (void)
4204 {
4205 struct thread_info *tp;
4206 bpstat bs;
4207
4208 if (ptid_equal (inferior_ptid, null_ptid))
4209 return;
4210
4211 tp = find_thread_ptid (inferior_ptid);
4212 if (tp == NULL)
4213 return;
4214
4215 for (bs = tp->control.stop_bpstat; bs != NULL; bs = bs->next)
4216 {
4217 decref_counted_command_line (&bs->commands);
4218
4219 if (bs->old_val != NULL)
4220 {
4221 value_free (bs->old_val);
4222 bs->old_val = NULL;
4223 }
4224 }
4225 }
4226
4227 /* Called when a command is about to proceed the inferior. */
4228
4229 static void
4230 breakpoint_about_to_proceed (void)
4231 {
4232 if (!ptid_equal (inferior_ptid, null_ptid))
4233 {
4234 struct thread_info *tp = inferior_thread ();
4235
4236 /* Allow inferior function calls in breakpoint commands to not
4237 interrupt the command list. When the call finishes
4238 successfully, the inferior will be standing at the same
4239 breakpoint as if nothing happened. */
4240 if (tp->control.in_infcall)
4241 return;
4242 }
4243
4244 breakpoint_proceeded = 1;
4245 }
4246
4247 /* Stub for cleaning up our state if we error-out of a breakpoint
4248 command. */
4249 static void
4250 cleanup_executing_breakpoints (void *ignore)
4251 {
4252 executing_breakpoint_commands = 0;
4253 }
4254
4255 /* Return non-zero iff CMD as the first line of a command sequence is `silent'
4256 or its equivalent. */
4257
4258 static int
4259 command_line_is_silent (struct command_line *cmd)
4260 {
4261 return cmd && (strcmp ("silent", cmd->line) == 0
4262 || (xdb_commands && strcmp ("Q", cmd->line) == 0));
4263 }
4264
4265 /* Execute all the commands associated with all the breakpoints at
4266 this location. Any of these commands could cause the process to
4267 proceed beyond this point, etc. We look out for such changes by
4268 checking the global "breakpoint_proceeded" after each command.
4269
4270 Returns true if a breakpoint command resumed the inferior. In that
4271 case, it is the caller's responsibility to recall it again with the
4272 bpstat of the current thread. */
4273
4274 static int
4275 bpstat_do_actions_1 (bpstat *bsp)
4276 {
4277 bpstat bs;
4278 struct cleanup *old_chain;
4279 int again = 0;
4280
4281 /* Avoid endless recursion if a `source' command is contained
4282 in bs->commands. */
4283 if (executing_breakpoint_commands)
4284 return 0;
4285
4286 executing_breakpoint_commands = 1;
4287 old_chain = make_cleanup (cleanup_executing_breakpoints, 0);
4288
4289 prevent_dont_repeat ();
4290
4291 /* This pointer will iterate over the list of bpstat's. */
4292 bs = *bsp;
4293
4294 breakpoint_proceeded = 0;
4295 for (; bs != NULL; bs = bs->next)
4296 {
4297 struct counted_command_line *ccmd;
4298 struct command_line *cmd;
4299 struct cleanup *this_cmd_tree_chain;
4300
4301 /* Take ownership of the BSP's command tree, if it has one.
4302
4303 The command tree could legitimately contain commands like
4304 'step' and 'next', which call clear_proceed_status, which
4305 frees stop_bpstat's command tree. To make sure this doesn't
4306 free the tree we're executing out from under us, we need to
4307 take ownership of the tree ourselves. Since a given bpstat's
4308 commands are only executed once, we don't need to copy it; we
4309 can clear the pointer in the bpstat, and make sure we free
4310 the tree when we're done. */
4311 ccmd = bs->commands;
4312 bs->commands = NULL;
4313 this_cmd_tree_chain = make_cleanup_decref_counted_command_line (&ccmd);
4314 cmd = ccmd ? ccmd->commands : NULL;
4315 if (command_line_is_silent (cmd))
4316 {
4317 /* The action has been already done by bpstat_stop_status. */
4318 cmd = cmd->next;
4319 }
4320
4321 while (cmd != NULL)
4322 {
4323 execute_control_command (cmd);
4324
4325 if (breakpoint_proceeded)
4326 break;
4327 else
4328 cmd = cmd->next;
4329 }
4330
4331 /* We can free this command tree now. */
4332 do_cleanups (this_cmd_tree_chain);
4333
4334 if (breakpoint_proceeded)
4335 {
4336 if (target_can_async_p ())
4337 /* If we are in async mode, then the target might be still
4338 running, not stopped at any breakpoint, so nothing for
4339 us to do here -- just return to the event loop. */
4340 ;
4341 else
4342 /* In sync mode, when execute_control_command returns
4343 we're already standing on the next breakpoint.
4344 Breakpoint commands for that stop were not run, since
4345 execute_command does not run breakpoint commands --
4346 only command_line_handler does, but that one is not
4347 involved in execution of breakpoint commands. So, we
4348 can now execute breakpoint commands. It should be
4349 noted that making execute_command do bpstat actions is
4350 not an option -- in this case we'll have recursive
4351 invocation of bpstat for each breakpoint with a
4352 command, and can easily blow up GDB stack. Instead, we
4353 return true, which will trigger the caller to recall us
4354 with the new stop_bpstat. */
4355 again = 1;
4356 break;
4357 }
4358 }
4359 do_cleanups (old_chain);
4360 return again;
4361 }
4362
4363 void
4364 bpstat_do_actions (void)
4365 {
4366 struct cleanup *cleanup_if_error = make_bpstat_clear_actions_cleanup ();
4367
4368 /* Do any commands attached to breakpoint we are stopped at. */
4369 while (!ptid_equal (inferior_ptid, null_ptid)
4370 && target_has_execution
4371 && !is_exited (inferior_ptid)
4372 && !is_executing (inferior_ptid))
4373 /* Since in sync mode, bpstat_do_actions may resume the inferior,
4374 and only return when it is stopped at the next breakpoint, we
4375 keep doing breakpoint actions until it returns false to
4376 indicate the inferior was not resumed. */
4377 if (!bpstat_do_actions_1 (&inferior_thread ()->control.stop_bpstat))
4378 break;
4379
4380 discard_cleanups (cleanup_if_error);
4381 }
4382
4383 /* Print out the (old or new) value associated with a watchpoint. */
4384
4385 static void
4386 watchpoint_value_print (struct value *val, struct ui_file *stream)
4387 {
4388 if (val == NULL)
4389 fprintf_unfiltered (stream, _("<unreadable>"));
4390 else
4391 {
4392 struct value_print_options opts;
4393 get_user_print_options (&opts);
4394 value_print (val, stream, &opts);
4395 }
4396 }
4397
4398 /* Generic routine for printing messages indicating why we
4399 stopped. The behavior of this function depends on the value
4400 'print_it' in the bpstat structure. Under some circumstances we
4401 may decide not to print anything here and delegate the task to
4402 normal_stop(). */
4403
4404 static enum print_stop_action
4405 print_bp_stop_message (bpstat bs)
4406 {
4407 switch (bs->print_it)
4408 {
4409 case print_it_noop:
4410 /* Nothing should be printed for this bpstat entry. */
4411 return PRINT_UNKNOWN;
4412 break;
4413
4414 case print_it_done:
4415 /* We still want to print the frame, but we already printed the
4416 relevant messages. */
4417 return PRINT_SRC_AND_LOC;
4418 break;
4419
4420 case print_it_normal:
4421 {
4422 struct breakpoint *b = bs->breakpoint_at;
4423
4424 /* bs->breakpoint_at can be NULL if it was a momentary breakpoint
4425 which has since been deleted. */
4426 if (b == NULL)
4427 return PRINT_UNKNOWN;
4428
4429 /* Normal case. Call the breakpoint's print_it method. */
4430 return b->ops->print_it (bs);
4431 }
4432 break;
4433
4434 default:
4435 internal_error (__FILE__, __LINE__,
4436 _("print_bp_stop_message: unrecognized enum value"));
4437 break;
4438 }
4439 }
4440
4441 /* A helper function that prints a shared library stopped event. */
4442
4443 static void
4444 print_solib_event (int is_catchpoint)
4445 {
4446 int any_deleted
4447 = !VEC_empty (char_ptr, current_program_space->deleted_solibs);
4448 int any_added
4449 = !VEC_empty (so_list_ptr, current_program_space->added_solibs);
4450
4451 if (!is_catchpoint)
4452 {
4453 if (any_added || any_deleted)
4454 ui_out_text (current_uiout,
4455 _("Stopped due to shared library event:\n"));
4456 else
4457 ui_out_text (current_uiout,
4458 _("Stopped due to shared library event (no "
4459 "libraries added or removed)\n"));
4460 }
4461
4462 if (ui_out_is_mi_like_p (current_uiout))
4463 ui_out_field_string (current_uiout, "reason",
4464 async_reason_lookup (EXEC_ASYNC_SOLIB_EVENT));
4465
4466 if (any_deleted)
4467 {
4468 struct cleanup *cleanup;
4469 char *name;
4470 int ix;
4471
4472 ui_out_text (current_uiout, _(" Inferior unloaded "));
4473 cleanup = make_cleanup_ui_out_list_begin_end (current_uiout,
4474 "removed");
4475 for (ix = 0;
4476 VEC_iterate (char_ptr, current_program_space->deleted_solibs,
4477 ix, name);
4478 ++ix)
4479 {
4480 if (ix > 0)
4481 ui_out_text (current_uiout, " ");
4482 ui_out_field_string (current_uiout, "library", name);
4483 ui_out_text (current_uiout, "\n");
4484 }
4485
4486 do_cleanups (cleanup);
4487 }
4488
4489 if (any_added)
4490 {
4491 struct so_list *iter;
4492 int ix;
4493 struct cleanup *cleanup;
4494
4495 ui_out_text (current_uiout, _(" Inferior loaded "));
4496 cleanup = make_cleanup_ui_out_list_begin_end (current_uiout,
4497 "added");
4498 for (ix = 0;
4499 VEC_iterate (so_list_ptr, current_program_space->added_solibs,
4500 ix, iter);
4501 ++ix)
4502 {
4503 if (ix > 0)
4504 ui_out_text (current_uiout, " ");
4505 ui_out_field_string (current_uiout, "library", iter->so_name);
4506 ui_out_text (current_uiout, "\n");
4507 }
4508
4509 do_cleanups (cleanup);
4510 }
4511 }
4512
4513 /* Print a message indicating what happened. This is called from
4514 normal_stop(). The input to this routine is the head of the bpstat
4515 list - a list of the eventpoints that caused this stop. KIND is
4516 the target_waitkind for the stopping event. This
4517 routine calls the generic print routine for printing a message
4518 about reasons for stopping. This will print (for example) the
4519 "Breakpoint n," part of the output. The return value of this
4520 routine is one of:
4521
4522 PRINT_UNKNOWN: Means we printed nothing.
4523 PRINT_SRC_AND_LOC: Means we printed something, and expect subsequent
4524 code to print the location. An example is
4525 "Breakpoint 1, " which should be followed by
4526 the location.
4527 PRINT_SRC_ONLY: Means we printed something, but there is no need
4528 to also print the location part of the message.
4529 An example is the catch/throw messages, which
4530 don't require a location appended to the end.
4531 PRINT_NOTHING: We have done some printing and we don't need any
4532 further info to be printed. */
4533
4534 enum print_stop_action
4535 bpstat_print (bpstat bs, int kind)
4536 {
4537 int val;
4538
4539 /* Maybe another breakpoint in the chain caused us to stop.
4540 (Currently all watchpoints go on the bpstat whether hit or not.
4541 That probably could (should) be changed, provided care is taken
4542 with respect to bpstat_explains_signal). */
4543 for (; bs; bs = bs->next)
4544 {
4545 val = print_bp_stop_message (bs);
4546 if (val == PRINT_SRC_ONLY
4547 || val == PRINT_SRC_AND_LOC
4548 || val == PRINT_NOTHING)
4549 return val;
4550 }
4551
4552 /* If we had hit a shared library event breakpoint,
4553 print_bp_stop_message would print out this message. If we hit an
4554 OS-level shared library event, do the same thing. */
4555 if (kind == TARGET_WAITKIND_LOADED)
4556 {
4557 print_solib_event (0);
4558 return PRINT_NOTHING;
4559 }
4560
4561 /* We reached the end of the chain, or we got a null BS to start
4562 with and nothing was printed. */
4563 return PRINT_UNKNOWN;
4564 }
4565
4566 /* Evaluate the expression EXP and return 1 if value is zero. This is
4567 used inside a catch_errors to evaluate the breakpoint condition.
4568 The argument is a "struct expression *" that has been cast to a
4569 "char *" to make it pass through catch_errors. */
4570
4571 static int
4572 breakpoint_cond_eval (void *exp)
4573 {
4574 struct value *mark = value_mark ();
4575 int i = !value_true (evaluate_expression ((struct expression *) exp));
4576
4577 value_free_to_mark (mark);
4578 return i;
4579 }
4580
4581 /* Allocate a new bpstat. Link it to the FIFO list by BS_LINK_POINTER. */
4582
4583 static bpstat
4584 bpstat_alloc (struct bp_location *bl, bpstat **bs_link_pointer)
4585 {
4586 bpstat bs;
4587
4588 bs = (bpstat) xmalloc (sizeof (*bs));
4589 bs->next = NULL;
4590 **bs_link_pointer = bs;
4591 *bs_link_pointer = &bs->next;
4592 bs->breakpoint_at = bl->owner;
4593 bs->bp_location_at = bl;
4594 incref_bp_location (bl);
4595 /* If the condition is false, etc., don't do the commands. */
4596 bs->commands = NULL;
4597 bs->old_val = NULL;
4598 bs->print_it = print_it_normal;
4599 return bs;
4600 }
4601 \f
4602 /* The target has stopped with waitstatus WS. Check if any hardware
4603 watchpoints have triggered, according to the target. */
4604
4605 int
4606 watchpoints_triggered (struct target_waitstatus *ws)
4607 {
4608 int stopped_by_watchpoint = target_stopped_by_watchpoint ();
4609 CORE_ADDR addr;
4610 struct breakpoint *b;
4611
4612 if (!stopped_by_watchpoint)
4613 {
4614 /* We were not stopped by a watchpoint. Mark all watchpoints
4615 as not triggered. */
4616 ALL_BREAKPOINTS (b)
4617 if (is_hardware_watchpoint (b))
4618 {
4619 struct watchpoint *w = (struct watchpoint *) b;
4620
4621 w->watchpoint_triggered = watch_triggered_no;
4622 }
4623
4624 return 0;
4625 }
4626
4627 if (!target_stopped_data_address (&current_target, &addr))
4628 {
4629 /* We were stopped by a watchpoint, but we don't know where.
4630 Mark all watchpoints as unknown. */
4631 ALL_BREAKPOINTS (b)
4632 if (is_hardware_watchpoint (b))
4633 {
4634 struct watchpoint *w = (struct watchpoint *) b;
4635
4636 w->watchpoint_triggered = watch_triggered_unknown;
4637 }
4638
4639 return stopped_by_watchpoint;
4640 }
4641
4642 /* The target could report the data address. Mark watchpoints
4643 affected by this data address as triggered, and all others as not
4644 triggered. */
4645
4646 ALL_BREAKPOINTS (b)
4647 if (is_hardware_watchpoint (b))
4648 {
4649 struct watchpoint *w = (struct watchpoint *) b;
4650 struct bp_location *loc;
4651
4652 w->watchpoint_triggered = watch_triggered_no;
4653 for (loc = b->loc; loc; loc = loc->next)
4654 {
4655 if (is_masked_watchpoint (b))
4656 {
4657 CORE_ADDR newaddr = addr & w->hw_wp_mask;
4658 CORE_ADDR start = loc->address & w->hw_wp_mask;
4659
4660 if (newaddr == start)
4661 {
4662 w->watchpoint_triggered = watch_triggered_yes;
4663 break;
4664 }
4665 }
4666 /* Exact match not required. Within range is sufficient. */
4667 else if (target_watchpoint_addr_within_range (&current_target,
4668 addr, loc->address,
4669 loc->length))
4670 {
4671 w->watchpoint_triggered = watch_triggered_yes;
4672 break;
4673 }
4674 }
4675 }
4676
4677 return 1;
4678 }
4679
4680 /* Possible return values for watchpoint_check (this can't be an enum
4681 because of check_errors). */
4682 /* The watchpoint has been deleted. */
4683 #define WP_DELETED 1
4684 /* The value has changed. */
4685 #define WP_VALUE_CHANGED 2
4686 /* The value has not changed. */
4687 #define WP_VALUE_NOT_CHANGED 3
4688 /* Ignore this watchpoint, no matter if the value changed or not. */
4689 #define WP_IGNORE 4
4690
4691 #define BP_TEMPFLAG 1
4692 #define BP_HARDWAREFLAG 2
4693
4694 /* Evaluate watchpoint condition expression and check if its value
4695 changed.
4696
4697 P should be a pointer to struct bpstat, but is defined as a void *
4698 in order for this function to be usable with catch_errors. */
4699
4700 static int
4701 watchpoint_check (void *p)
4702 {
4703 bpstat bs = (bpstat) p;
4704 struct watchpoint *b;
4705 struct frame_info *fr;
4706 int within_current_scope;
4707
4708 /* BS is built from an existing struct breakpoint. */
4709 gdb_assert (bs->breakpoint_at != NULL);
4710 b = (struct watchpoint *) bs->breakpoint_at;
4711
4712 /* If this is a local watchpoint, we only want to check if the
4713 watchpoint frame is in scope if the current thread is the thread
4714 that was used to create the watchpoint. */
4715 if (!watchpoint_in_thread_scope (b))
4716 return WP_IGNORE;
4717
4718 if (b->exp_valid_block == NULL)
4719 within_current_scope = 1;
4720 else
4721 {
4722 struct frame_info *frame = get_current_frame ();
4723 struct gdbarch *frame_arch = get_frame_arch (frame);
4724 CORE_ADDR frame_pc = get_frame_pc (frame);
4725
4726 /* in_function_epilogue_p() returns a non-zero value if we're
4727 still in the function but the stack frame has already been
4728 invalidated. Since we can't rely on the values of local
4729 variables after the stack has been destroyed, we are treating
4730 the watchpoint in that state as `not changed' without further
4731 checking. Don't mark watchpoints as changed if the current
4732 frame is in an epilogue - even if they are in some other
4733 frame, our view of the stack is likely to be wrong and
4734 frame_find_by_id could error out. */
4735 if (gdbarch_in_function_epilogue_p (frame_arch, frame_pc))
4736 return WP_IGNORE;
4737
4738 fr = frame_find_by_id (b->watchpoint_frame);
4739 within_current_scope = (fr != NULL);
4740
4741 /* If we've gotten confused in the unwinder, we might have
4742 returned a frame that can't describe this variable. */
4743 if (within_current_scope)
4744 {
4745 struct symbol *function;
4746
4747 function = get_frame_function (fr);
4748 if (function == NULL
4749 || !contained_in (b->exp_valid_block,
4750 SYMBOL_BLOCK_VALUE (function)))
4751 within_current_scope = 0;
4752 }
4753
4754 if (within_current_scope)
4755 /* If we end up stopping, the current frame will get selected
4756 in normal_stop. So this call to select_frame won't affect
4757 the user. */
4758 select_frame (fr);
4759 }
4760
4761 if (within_current_scope)
4762 {
4763 /* We use value_{,free_to_}mark because it could be a *long*
4764 time before we return to the command level and call
4765 free_all_values. We can't call free_all_values because we
4766 might be in the middle of evaluating a function call. */
4767
4768 int pc = 0;
4769 struct value *mark;
4770 struct value *new_val;
4771
4772 if (is_masked_watchpoint (&b->base))
4773 /* Since we don't know the exact trigger address (from
4774 stopped_data_address), just tell the user we've triggered
4775 a mask watchpoint. */
4776 return WP_VALUE_CHANGED;
4777
4778 mark = value_mark ();
4779 fetch_subexp_value (b->exp, &pc, &new_val, NULL, NULL);
4780
4781 /* We use value_equal_contents instead of value_equal because
4782 the latter coerces an array to a pointer, thus comparing just
4783 the address of the array instead of its contents. This is
4784 not what we want. */
4785 if ((b->val != NULL) != (new_val != NULL)
4786 || (b->val != NULL && !value_equal_contents (b->val, new_val)))
4787 {
4788 if (new_val != NULL)
4789 {
4790 release_value (new_val);
4791 value_free_to_mark (mark);
4792 }
4793 bs->old_val = b->val;
4794 b->val = new_val;
4795 b->val_valid = 1;
4796 return WP_VALUE_CHANGED;
4797 }
4798 else
4799 {
4800 /* Nothing changed. */
4801 value_free_to_mark (mark);
4802 return WP_VALUE_NOT_CHANGED;
4803 }
4804 }
4805 else
4806 {
4807 struct ui_out *uiout = current_uiout;
4808
4809 /* This seems like the only logical thing to do because
4810 if we temporarily ignored the watchpoint, then when
4811 we reenter the block in which it is valid it contains
4812 garbage (in the case of a function, it may have two
4813 garbage values, one before and one after the prologue).
4814 So we can't even detect the first assignment to it and
4815 watch after that (since the garbage may or may not equal
4816 the first value assigned). */
4817 /* We print all the stop information in
4818 breakpoint_ops->print_it, but in this case, by the time we
4819 call breakpoint_ops->print_it this bp will be deleted
4820 already. So we have no choice but print the information
4821 here. */
4822 if (ui_out_is_mi_like_p (uiout))
4823 ui_out_field_string
4824 (uiout, "reason", async_reason_lookup (EXEC_ASYNC_WATCHPOINT_SCOPE));
4825 ui_out_text (uiout, "\nWatchpoint ");
4826 ui_out_field_int (uiout, "wpnum", b->base.number);
4827 ui_out_text (uiout,
4828 " deleted because the program has left the block in\n\
4829 which its expression is valid.\n");
4830
4831 /* Make sure the watchpoint's commands aren't executed. */
4832 decref_counted_command_line (&b->base.commands);
4833 watchpoint_del_at_next_stop (b);
4834
4835 return WP_DELETED;
4836 }
4837 }
4838
4839 /* Return true if it looks like target has stopped due to hitting
4840 breakpoint location BL. This function does not check if we should
4841 stop, only if BL explains the stop. */
4842
4843 static int
4844 bpstat_check_location (const struct bp_location *bl,
4845 struct address_space *aspace, CORE_ADDR bp_addr,
4846 const struct target_waitstatus *ws)
4847 {
4848 struct breakpoint *b = bl->owner;
4849
4850 /* BL is from an existing breakpoint. */
4851 gdb_assert (b != NULL);
4852
4853 return b->ops->breakpoint_hit (bl, aspace, bp_addr, ws);
4854 }
4855
4856 /* Determine if the watched values have actually changed, and we
4857 should stop. If not, set BS->stop to 0. */
4858
4859 static void
4860 bpstat_check_watchpoint (bpstat bs)
4861 {
4862 const struct bp_location *bl;
4863 struct watchpoint *b;
4864
4865 /* BS is built for existing struct breakpoint. */
4866 bl = bs->bp_location_at;
4867 gdb_assert (bl != NULL);
4868 b = (struct watchpoint *) bs->breakpoint_at;
4869 gdb_assert (b != NULL);
4870
4871 {
4872 int must_check_value = 0;
4873
4874 if (b->base.type == bp_watchpoint)
4875 /* For a software watchpoint, we must always check the
4876 watched value. */
4877 must_check_value = 1;
4878 else if (b->watchpoint_triggered == watch_triggered_yes)
4879 /* We have a hardware watchpoint (read, write, or access)
4880 and the target earlier reported an address watched by
4881 this watchpoint. */
4882 must_check_value = 1;
4883 else if (b->watchpoint_triggered == watch_triggered_unknown
4884 && b->base.type == bp_hardware_watchpoint)
4885 /* We were stopped by a hardware watchpoint, but the target could
4886 not report the data address. We must check the watchpoint's
4887 value. Access and read watchpoints are out of luck; without
4888 a data address, we can't figure it out. */
4889 must_check_value = 1;
4890
4891 if (must_check_value)
4892 {
4893 char *message
4894 = xstrprintf ("Error evaluating expression for watchpoint %d\n",
4895 b->base.number);
4896 struct cleanup *cleanups = make_cleanup (xfree, message);
4897 int e = catch_errors (watchpoint_check, bs, message,
4898 RETURN_MASK_ALL);
4899 do_cleanups (cleanups);
4900 switch (e)
4901 {
4902 case WP_DELETED:
4903 /* We've already printed what needs to be printed. */
4904 bs->print_it = print_it_done;
4905 /* Stop. */
4906 break;
4907 case WP_IGNORE:
4908 bs->print_it = print_it_noop;
4909 bs->stop = 0;
4910 break;
4911 case WP_VALUE_CHANGED:
4912 if (b->base.type == bp_read_watchpoint)
4913 {
4914 /* There are two cases to consider here:
4915
4916 1. We're watching the triggered memory for reads.
4917 In that case, trust the target, and always report
4918 the watchpoint hit to the user. Even though
4919 reads don't cause value changes, the value may
4920 have changed since the last time it was read, and
4921 since we're not trapping writes, we will not see
4922 those, and as such we should ignore our notion of
4923 old value.
4924
4925 2. We're watching the triggered memory for both
4926 reads and writes. There are two ways this may
4927 happen:
4928
4929 2.1. This is a target that can't break on data
4930 reads only, but can break on accesses (reads or
4931 writes), such as e.g., x86. We detect this case
4932 at the time we try to insert read watchpoints.
4933
4934 2.2. Otherwise, the target supports read
4935 watchpoints, but, the user set an access or write
4936 watchpoint watching the same memory as this read
4937 watchpoint.
4938
4939 If we're watching memory writes as well as reads,
4940 ignore watchpoint hits when we find that the
4941 value hasn't changed, as reads don't cause
4942 changes. This still gives false positives when
4943 the program writes the same value to memory as
4944 what there was already in memory (we will confuse
4945 it for a read), but it's much better than
4946 nothing. */
4947
4948 int other_write_watchpoint = 0;
4949
4950 if (bl->watchpoint_type == hw_read)
4951 {
4952 struct breakpoint *other_b;
4953
4954 ALL_BREAKPOINTS (other_b)
4955 if (other_b->type == bp_hardware_watchpoint
4956 || other_b->type == bp_access_watchpoint)
4957 {
4958 struct watchpoint *other_w =
4959 (struct watchpoint *) other_b;
4960
4961 if (other_w->watchpoint_triggered
4962 == watch_triggered_yes)
4963 {
4964 other_write_watchpoint = 1;
4965 break;
4966 }
4967 }
4968 }
4969
4970 if (other_write_watchpoint
4971 || bl->watchpoint_type == hw_access)
4972 {
4973 /* We're watching the same memory for writes,
4974 and the value changed since the last time we
4975 updated it, so this trap must be for a write.
4976 Ignore it. */
4977 bs->print_it = print_it_noop;
4978 bs->stop = 0;
4979 }
4980 }
4981 break;
4982 case WP_VALUE_NOT_CHANGED:
4983 if (b->base.type == bp_hardware_watchpoint
4984 || b->base.type == bp_watchpoint)
4985 {
4986 /* Don't stop: write watchpoints shouldn't fire if
4987 the value hasn't changed. */
4988 bs->print_it = print_it_noop;
4989 bs->stop = 0;
4990 }
4991 /* Stop. */
4992 break;
4993 default:
4994 /* Can't happen. */
4995 case 0:
4996 /* Error from catch_errors. */
4997 printf_filtered (_("Watchpoint %d deleted.\n"), b->base.number);
4998 watchpoint_del_at_next_stop (b);
4999 /* We've already printed what needs to be printed. */
5000 bs->print_it = print_it_done;
5001 break;
5002 }
5003 }
5004 else /* must_check_value == 0 */
5005 {
5006 /* This is a case where some watchpoint(s) triggered, but
5007 not at the address of this watchpoint, or else no
5008 watchpoint triggered after all. So don't print
5009 anything for this watchpoint. */
5010 bs->print_it = print_it_noop;
5011 bs->stop = 0;
5012 }
5013 }
5014 }
5015
5016
5017 /* Check conditions (condition proper, frame, thread and ignore count)
5018 of breakpoint referred to by BS. If we should not stop for this
5019 breakpoint, set BS->stop to 0. */
5020
5021 static void
5022 bpstat_check_breakpoint_conditions (bpstat bs, ptid_t ptid)
5023 {
5024 int thread_id = pid_to_thread_id (ptid);
5025 const struct bp_location *bl;
5026 struct breakpoint *b;
5027
5028 /* BS is built for existing struct breakpoint. */
5029 bl = bs->bp_location_at;
5030 gdb_assert (bl != NULL);
5031 b = bs->breakpoint_at;
5032 gdb_assert (b != NULL);
5033
5034 /* Even if the target evaluated the condition on its end and notified GDB, we
5035 need to do so again since GDB does not know if we stopped due to a
5036 breakpoint or a single step breakpoint. */
5037
5038 if (frame_id_p (b->frame_id)
5039 && !frame_id_eq (b->frame_id, get_stack_frame_id (get_current_frame ())))
5040 bs->stop = 0;
5041 else if (bs->stop)
5042 {
5043 int value_is_zero = 0;
5044 struct expression *cond;
5045
5046 /* Evaluate Python breakpoints that have a "stop"
5047 method implemented. */
5048 if (b->py_bp_object)
5049 bs->stop = gdbpy_should_stop (b->py_bp_object);
5050
5051 if (is_watchpoint (b))
5052 {
5053 struct watchpoint *w = (struct watchpoint *) b;
5054
5055 cond = w->cond_exp;
5056 }
5057 else
5058 cond = bl->cond;
5059
5060 if (cond && b->disposition != disp_del_at_next_stop)
5061 {
5062 int within_current_scope = 1;
5063 struct watchpoint * w;
5064
5065 /* We use value_mark and value_free_to_mark because it could
5066 be a long time before we return to the command level and
5067 call free_all_values. We can't call free_all_values
5068 because we might be in the middle of evaluating a
5069 function call. */
5070 struct value *mark = value_mark ();
5071
5072 if (is_watchpoint (b))
5073 w = (struct watchpoint *) b;
5074 else
5075 w = NULL;
5076
5077 /* Need to select the frame, with all that implies so that
5078 the conditions will have the right context. Because we
5079 use the frame, we will not see an inlined function's
5080 variables when we arrive at a breakpoint at the start
5081 of the inlined function; the current frame will be the
5082 call site. */
5083 if (w == NULL || w->cond_exp_valid_block == NULL)
5084 select_frame (get_current_frame ());
5085 else
5086 {
5087 struct frame_info *frame;
5088
5089 /* For local watchpoint expressions, which particular
5090 instance of a local is being watched matters, so we
5091 keep track of the frame to evaluate the expression
5092 in. To evaluate the condition however, it doesn't
5093 really matter which instantiation of the function
5094 where the condition makes sense triggers the
5095 watchpoint. This allows an expression like "watch
5096 global if q > 10" set in `func', catch writes to
5097 global on all threads that call `func', or catch
5098 writes on all recursive calls of `func' by a single
5099 thread. We simply always evaluate the condition in
5100 the innermost frame that's executing where it makes
5101 sense to evaluate the condition. It seems
5102 intuitive. */
5103 frame = block_innermost_frame (w->cond_exp_valid_block);
5104 if (frame != NULL)
5105 select_frame (frame);
5106 else
5107 within_current_scope = 0;
5108 }
5109 if (within_current_scope)
5110 value_is_zero
5111 = catch_errors (breakpoint_cond_eval, cond,
5112 "Error in testing breakpoint condition:\n",
5113 RETURN_MASK_ALL);
5114 else
5115 {
5116 warning (_("Watchpoint condition cannot be tested "
5117 "in the current scope"));
5118 /* If we failed to set the right context for this
5119 watchpoint, unconditionally report it. */
5120 value_is_zero = 0;
5121 }
5122 /* FIXME-someday, should give breakpoint #. */
5123 value_free_to_mark (mark);
5124 }
5125
5126 if (cond && value_is_zero)
5127 {
5128 bs->stop = 0;
5129 }
5130 else if (b->thread != -1 && b->thread != thread_id)
5131 {
5132 bs->stop = 0;
5133 }
5134 else if (b->ignore_count > 0)
5135 {
5136 b->ignore_count--;
5137 bs->stop = 0;
5138 /* Increase the hit count even though we don't stop. */
5139 ++(b->hit_count);
5140 observer_notify_breakpoint_modified (b);
5141 }
5142 }
5143 }
5144
5145
5146 /* Get a bpstat associated with having just stopped at address
5147 BP_ADDR in thread PTID.
5148
5149 Determine whether we stopped at a breakpoint, etc, or whether we
5150 don't understand this stop. Result is a chain of bpstat's such
5151 that:
5152
5153 if we don't understand the stop, the result is a null pointer.
5154
5155 if we understand why we stopped, the result is not null.
5156
5157 Each element of the chain refers to a particular breakpoint or
5158 watchpoint at which we have stopped. (We may have stopped for
5159 several reasons concurrently.)
5160
5161 Each element of the chain has valid next, breakpoint_at,
5162 commands, FIXME??? fields. */
5163
5164 bpstat
5165 bpstat_stop_status (struct address_space *aspace,
5166 CORE_ADDR bp_addr, ptid_t ptid,
5167 const struct target_waitstatus *ws)
5168 {
5169 struct breakpoint *b = NULL;
5170 struct bp_location *bl;
5171 struct bp_location *loc;
5172 /* First item of allocated bpstat's. */
5173 bpstat bs_head = NULL, *bs_link = &bs_head;
5174 /* Pointer to the last thing in the chain currently. */
5175 bpstat bs;
5176 int ix;
5177 int need_remove_insert;
5178 int removed_any;
5179
5180 /* First, build the bpstat chain with locations that explain a
5181 target stop, while being careful to not set the target running,
5182 as that may invalidate locations (in particular watchpoint
5183 locations are recreated). Resuming will happen here with
5184 breakpoint conditions or watchpoint expressions that include
5185 inferior function calls. */
5186
5187 ALL_BREAKPOINTS (b)
5188 {
5189 if (!breakpoint_enabled (b) && b->enable_state != bp_permanent)
5190 continue;
5191
5192 for (bl = b->loc; bl != NULL; bl = bl->next)
5193 {
5194 /* For hardware watchpoints, we look only at the first
5195 location. The watchpoint_check function will work on the
5196 entire expression, not the individual locations. For
5197 read watchpoints, the watchpoints_triggered function has
5198 checked all locations already. */
5199 if (b->type == bp_hardware_watchpoint && bl != b->loc)
5200 break;
5201
5202 if (!bl->enabled || bl->shlib_disabled)
5203 continue;
5204
5205 if (!bpstat_check_location (bl, aspace, bp_addr, ws))
5206 continue;
5207
5208 /* Come here if it's a watchpoint, or if the break address
5209 matches. */
5210
5211 bs = bpstat_alloc (bl, &bs_link); /* Alloc a bpstat to
5212 explain stop. */
5213
5214 /* Assume we stop. Should we find a watchpoint that is not
5215 actually triggered, or if the condition of the breakpoint
5216 evaluates as false, we'll reset 'stop' to 0. */
5217 bs->stop = 1;
5218 bs->print = 1;
5219
5220 /* If this is a scope breakpoint, mark the associated
5221 watchpoint as triggered so that we will handle the
5222 out-of-scope event. We'll get to the watchpoint next
5223 iteration. */
5224 if (b->type == bp_watchpoint_scope && b->related_breakpoint != b)
5225 {
5226 struct watchpoint *w = (struct watchpoint *) b->related_breakpoint;
5227
5228 w->watchpoint_triggered = watch_triggered_yes;
5229 }
5230 }
5231 }
5232
5233 for (ix = 0; VEC_iterate (bp_location_p, moribund_locations, ix, loc); ++ix)
5234 {
5235 if (breakpoint_location_address_match (loc, aspace, bp_addr))
5236 {
5237 bs = bpstat_alloc (loc, &bs_link);
5238 /* For hits of moribund locations, we should just proceed. */
5239 bs->stop = 0;
5240 bs->print = 0;
5241 bs->print_it = print_it_noop;
5242 }
5243 }
5244
5245 /* A bit of special processing for shlib breakpoints. We need to
5246 process solib loading here, so that the lists of loaded and
5247 unloaded libraries are correct before we handle "catch load" and
5248 "catch unload". */
5249 for (bs = bs_head; bs != NULL; bs = bs->next)
5250 {
5251 if (bs->breakpoint_at && bs->breakpoint_at->type == bp_shlib_event)
5252 {
5253 handle_solib_event ();
5254 break;
5255 }
5256 }
5257
5258 /* Now go through the locations that caused the target to stop, and
5259 check whether we're interested in reporting this stop to higher
5260 layers, or whether we should resume the target transparently. */
5261
5262 removed_any = 0;
5263
5264 for (bs = bs_head; bs != NULL; bs = bs->next)
5265 {
5266 if (!bs->stop)
5267 continue;
5268
5269 b = bs->breakpoint_at;
5270 b->ops->check_status (bs);
5271 if (bs->stop)
5272 {
5273 bpstat_check_breakpoint_conditions (bs, ptid);
5274
5275 if (bs->stop)
5276 {
5277 ++(b->hit_count);
5278 observer_notify_breakpoint_modified (b);
5279
5280 /* We will stop here. */
5281 if (b->disposition == disp_disable)
5282 {
5283 --(b->enable_count);
5284 if (b->enable_count <= 0
5285 && b->enable_state != bp_permanent)
5286 b->enable_state = bp_disabled;
5287 removed_any = 1;
5288 }
5289 if (b->silent)
5290 bs->print = 0;
5291 bs->commands = b->commands;
5292 incref_counted_command_line (bs->commands);
5293 if (command_line_is_silent (bs->commands
5294 ? bs->commands->commands : NULL))
5295 bs->print = 0;
5296 }
5297
5298 }
5299
5300 /* Print nothing for this entry if we don't stop or don't
5301 print. */
5302 if (!bs->stop || !bs->print)
5303 bs->print_it = print_it_noop;
5304 }
5305
5306 /* If we aren't stopping, the value of some hardware watchpoint may
5307 not have changed, but the intermediate memory locations we are
5308 watching may have. Don't bother if we're stopping; this will get
5309 done later. */
5310 need_remove_insert = 0;
5311 if (! bpstat_causes_stop (bs_head))
5312 for (bs = bs_head; bs != NULL; bs = bs->next)
5313 if (!bs->stop
5314 && bs->breakpoint_at
5315 && is_hardware_watchpoint (bs->breakpoint_at))
5316 {
5317 struct watchpoint *w = (struct watchpoint *) bs->breakpoint_at;
5318
5319 update_watchpoint (w, 0 /* don't reparse. */);
5320 need_remove_insert = 1;
5321 }
5322
5323 if (need_remove_insert)
5324 update_global_location_list (1);
5325 else if (removed_any)
5326 update_global_location_list (0);
5327
5328 return bs_head;
5329 }
5330
5331 static void
5332 handle_jit_event (void)
5333 {
5334 struct frame_info *frame;
5335 struct gdbarch *gdbarch;
5336
5337 /* Switch terminal for any messages produced by
5338 breakpoint_re_set. */
5339 target_terminal_ours_for_output ();
5340
5341 frame = get_current_frame ();
5342 gdbarch = get_frame_arch (frame);
5343
5344 jit_event_handler (gdbarch);
5345
5346 target_terminal_inferior ();
5347 }
5348
5349 /* Handle an solib event by calling solib_add. */
5350
5351 void
5352 handle_solib_event (void)
5353 {
5354 clear_program_space_solib_cache (current_inferior ()->pspace);
5355
5356 /* Check for any newly added shared libraries if we're supposed to
5357 be adding them automatically. Switch terminal for any messages
5358 produced by breakpoint_re_set. */
5359 target_terminal_ours_for_output ();
5360 #ifdef SOLIB_ADD
5361 SOLIB_ADD (NULL, 0, &current_target, auto_solib_add);
5362 #else
5363 solib_add (NULL, 0, &current_target, auto_solib_add);
5364 #endif
5365 target_terminal_inferior ();
5366 }
5367
5368 /* Prepare WHAT final decision for infrun. */
5369
5370 /* Decide what infrun needs to do with this bpstat. */
5371
5372 struct bpstat_what
5373 bpstat_what (bpstat bs_head)
5374 {
5375 struct bpstat_what retval;
5376 int jit_event = 0;
5377 bpstat bs;
5378
5379 retval.main_action = BPSTAT_WHAT_KEEP_CHECKING;
5380 retval.call_dummy = STOP_NONE;
5381 retval.is_longjmp = 0;
5382
5383 for (bs = bs_head; bs != NULL; bs = bs->next)
5384 {
5385 /* Extract this BS's action. After processing each BS, we check
5386 if its action overrides all we've seem so far. */
5387 enum bpstat_what_main_action this_action = BPSTAT_WHAT_KEEP_CHECKING;
5388 enum bptype bptype;
5389
5390 if (bs->breakpoint_at == NULL)
5391 {
5392 /* I suspect this can happen if it was a momentary
5393 breakpoint which has since been deleted. */
5394 bptype = bp_none;
5395 }
5396 else
5397 bptype = bs->breakpoint_at->type;
5398
5399 switch (bptype)
5400 {
5401 case bp_none:
5402 break;
5403 case bp_breakpoint:
5404 case bp_hardware_breakpoint:
5405 case bp_until:
5406 case bp_finish:
5407 case bp_shlib_event:
5408 if (bs->stop)
5409 {
5410 if (bs->print)
5411 this_action = BPSTAT_WHAT_STOP_NOISY;
5412 else
5413 this_action = BPSTAT_WHAT_STOP_SILENT;
5414 }
5415 else
5416 this_action = BPSTAT_WHAT_SINGLE;
5417 break;
5418 case bp_watchpoint:
5419 case bp_hardware_watchpoint:
5420 case bp_read_watchpoint:
5421 case bp_access_watchpoint:
5422 if (bs->stop)
5423 {
5424 if (bs->print)
5425 this_action = BPSTAT_WHAT_STOP_NOISY;
5426 else
5427 this_action = BPSTAT_WHAT_STOP_SILENT;
5428 }
5429 else
5430 {
5431 /* There was a watchpoint, but we're not stopping.
5432 This requires no further action. */
5433 }
5434 break;
5435 case bp_longjmp:
5436 case bp_longjmp_call_dummy:
5437 case bp_exception:
5438 this_action = BPSTAT_WHAT_SET_LONGJMP_RESUME;
5439 retval.is_longjmp = bptype != bp_exception;
5440 break;
5441 case bp_longjmp_resume:
5442 case bp_exception_resume:
5443 this_action = BPSTAT_WHAT_CLEAR_LONGJMP_RESUME;
5444 retval.is_longjmp = bptype == bp_longjmp_resume;
5445 break;
5446 case bp_step_resume:
5447 if (bs->stop)
5448 this_action = BPSTAT_WHAT_STEP_RESUME;
5449 else
5450 {
5451 /* It is for the wrong frame. */
5452 this_action = BPSTAT_WHAT_SINGLE;
5453 }
5454 break;
5455 case bp_hp_step_resume:
5456 if (bs->stop)
5457 this_action = BPSTAT_WHAT_HP_STEP_RESUME;
5458 else
5459 {
5460 /* It is for the wrong frame. */
5461 this_action = BPSTAT_WHAT_SINGLE;
5462 }
5463 break;
5464 case bp_watchpoint_scope:
5465 case bp_thread_event:
5466 case bp_overlay_event:
5467 case bp_longjmp_master:
5468 case bp_std_terminate_master:
5469 case bp_exception_master:
5470 this_action = BPSTAT_WHAT_SINGLE;
5471 break;
5472 case bp_catchpoint:
5473 if (bs->stop)
5474 {
5475 if (bs->print)
5476 this_action = BPSTAT_WHAT_STOP_NOISY;
5477 else
5478 this_action = BPSTAT_WHAT_STOP_SILENT;
5479 }
5480 else
5481 {
5482 /* There was a catchpoint, but we're not stopping.
5483 This requires no further action. */
5484 }
5485 break;
5486 case bp_jit_event:
5487 jit_event = 1;
5488 this_action = BPSTAT_WHAT_SINGLE;
5489 break;
5490 case bp_call_dummy:
5491 /* Make sure the action is stop (silent or noisy),
5492 so infrun.c pops the dummy frame. */
5493 retval.call_dummy = STOP_STACK_DUMMY;
5494 this_action = BPSTAT_WHAT_STOP_SILENT;
5495 break;
5496 case bp_std_terminate:
5497 /* Make sure the action is stop (silent or noisy),
5498 so infrun.c pops the dummy frame. */
5499 retval.call_dummy = STOP_STD_TERMINATE;
5500 this_action = BPSTAT_WHAT_STOP_SILENT;
5501 break;
5502 case bp_tracepoint:
5503 case bp_fast_tracepoint:
5504 case bp_static_tracepoint:
5505 /* Tracepoint hits should not be reported back to GDB, and
5506 if one got through somehow, it should have been filtered
5507 out already. */
5508 internal_error (__FILE__, __LINE__,
5509 _("bpstat_what: tracepoint encountered"));
5510 break;
5511 case bp_gnu_ifunc_resolver:
5512 /* Step over it (and insert bp_gnu_ifunc_resolver_return). */
5513 this_action = BPSTAT_WHAT_SINGLE;
5514 break;
5515 case bp_gnu_ifunc_resolver_return:
5516 /* The breakpoint will be removed, execution will restart from the
5517 PC of the former breakpoint. */
5518 this_action = BPSTAT_WHAT_KEEP_CHECKING;
5519 break;
5520
5521 case bp_dprintf:
5522 this_action = BPSTAT_WHAT_STOP_SILENT;
5523 break;
5524
5525 default:
5526 internal_error (__FILE__, __LINE__,
5527 _("bpstat_what: unhandled bptype %d"), (int) bptype);
5528 }
5529
5530 retval.main_action = max (retval.main_action, this_action);
5531 }
5532
5533 /* These operations may affect the bs->breakpoint_at state so they are
5534 delayed after MAIN_ACTION is decided above. */
5535
5536 if (jit_event)
5537 {
5538 if (debug_infrun)
5539 fprintf_unfiltered (gdb_stdlog, "bpstat_what: bp_jit_event\n");
5540
5541 handle_jit_event ();
5542 }
5543
5544 for (bs = bs_head; bs != NULL; bs = bs->next)
5545 {
5546 struct breakpoint *b = bs->breakpoint_at;
5547
5548 if (b == NULL)
5549 continue;
5550 switch (b->type)
5551 {
5552 case bp_gnu_ifunc_resolver:
5553 gnu_ifunc_resolver_stop (b);
5554 break;
5555 case bp_gnu_ifunc_resolver_return:
5556 gnu_ifunc_resolver_return_stop (b);
5557 break;
5558 }
5559 }
5560
5561 return retval;
5562 }
5563
5564 /* Nonzero if we should step constantly (e.g. watchpoints on machines
5565 without hardware support). This isn't related to a specific bpstat,
5566 just to things like whether watchpoints are set. */
5567
5568 int
5569 bpstat_should_step (void)
5570 {
5571 struct breakpoint *b;
5572
5573 ALL_BREAKPOINTS (b)
5574 if (breakpoint_enabled (b) && b->type == bp_watchpoint && b->loc != NULL)
5575 return 1;
5576 return 0;
5577 }
5578
5579 int
5580 bpstat_causes_stop (bpstat bs)
5581 {
5582 for (; bs != NULL; bs = bs->next)
5583 if (bs->stop)
5584 return 1;
5585
5586 return 0;
5587 }
5588
5589 \f
5590
5591 /* Compute a string of spaces suitable to indent the next line
5592 so it starts at the position corresponding to the table column
5593 named COL_NAME in the currently active table of UIOUT. */
5594
5595 static char *
5596 wrap_indent_at_field (struct ui_out *uiout, const char *col_name)
5597 {
5598 static char wrap_indent[80];
5599 int i, total_width, width, align;
5600 char *text;
5601
5602 total_width = 0;
5603 for (i = 1; ui_out_query_field (uiout, i, &width, &align, &text); i++)
5604 {
5605 if (strcmp (text, col_name) == 0)
5606 {
5607 gdb_assert (total_width < sizeof wrap_indent);
5608 memset (wrap_indent, ' ', total_width);
5609 wrap_indent[total_width] = 0;
5610
5611 return wrap_indent;
5612 }
5613
5614 total_width += width + 1;
5615 }
5616
5617 return NULL;
5618 }
5619
5620 /* Determine if the locations of this breakpoint will have their conditions
5621 evaluated by the target, host or a mix of both. Returns the following:
5622
5623 "host": Host evals condition.
5624 "host or target": Host or Target evals condition.
5625 "target": Target evals condition.
5626 */
5627
5628 static const char *
5629 bp_condition_evaluator (struct breakpoint *b)
5630 {
5631 struct bp_location *bl;
5632 char host_evals = 0;
5633 char target_evals = 0;
5634
5635 if (!b)
5636 return NULL;
5637
5638 if (!is_breakpoint (b))
5639 return NULL;
5640
5641 if (gdb_evaluates_breakpoint_condition_p ()
5642 || !target_supports_evaluation_of_breakpoint_conditions ())
5643 return condition_evaluation_host;
5644
5645 for (bl = b->loc; bl; bl = bl->next)
5646 {
5647 if (bl->cond_bytecode)
5648 target_evals++;
5649 else
5650 host_evals++;
5651 }
5652
5653 if (host_evals && target_evals)
5654 return condition_evaluation_both;
5655 else if (target_evals)
5656 return condition_evaluation_target;
5657 else
5658 return condition_evaluation_host;
5659 }
5660
5661 /* Determine the breakpoint location's condition evaluator. This is
5662 similar to bp_condition_evaluator, but for locations. */
5663
5664 static const char *
5665 bp_location_condition_evaluator (struct bp_location *bl)
5666 {
5667 if (bl && !is_breakpoint (bl->owner))
5668 return NULL;
5669
5670 if (gdb_evaluates_breakpoint_condition_p ()
5671 || !target_supports_evaluation_of_breakpoint_conditions ())
5672 return condition_evaluation_host;
5673
5674 if (bl && bl->cond_bytecode)
5675 return condition_evaluation_target;
5676 else
5677 return condition_evaluation_host;
5678 }
5679
5680 /* Print the LOC location out of the list of B->LOC locations. */
5681
5682 static void
5683 print_breakpoint_location (struct breakpoint *b,
5684 struct bp_location *loc)
5685 {
5686 struct ui_out *uiout = current_uiout;
5687 struct cleanup *old_chain = save_current_program_space ();
5688
5689 if (loc != NULL && loc->shlib_disabled)
5690 loc = NULL;
5691
5692 if (loc != NULL)
5693 set_current_program_space (loc->pspace);
5694
5695 if (b->display_canonical)
5696 ui_out_field_string (uiout, "what", b->addr_string);
5697 else if (loc && loc->symtab)
5698 {
5699 struct symbol *sym
5700 = find_pc_sect_function (loc->address, loc->section);
5701 if (sym)
5702 {
5703 ui_out_text (uiout, "in ");
5704 ui_out_field_string (uiout, "func",
5705 SYMBOL_PRINT_NAME (sym));
5706 ui_out_text (uiout, " ");
5707 ui_out_wrap_hint (uiout, wrap_indent_at_field (uiout, "what"));
5708 ui_out_text (uiout, "at ");
5709 }
5710 ui_out_field_string (uiout, "file",
5711 symtab_to_filename_for_display (loc->symtab));
5712 ui_out_text (uiout, ":");
5713
5714 if (ui_out_is_mi_like_p (uiout))
5715 ui_out_field_string (uiout, "fullname",
5716 symtab_to_fullname (loc->symtab));
5717
5718 ui_out_field_int (uiout, "line", loc->line_number);
5719 }
5720 else if (loc)
5721 {
5722 struct ui_file *stb = mem_fileopen ();
5723 struct cleanup *stb_chain = make_cleanup_ui_file_delete (stb);
5724
5725 print_address_symbolic (loc->gdbarch, loc->address, stb,
5726 demangle, "");
5727 ui_out_field_stream (uiout, "at", stb);
5728
5729 do_cleanups (stb_chain);
5730 }
5731 else
5732 ui_out_field_string (uiout, "pending", b->addr_string);
5733
5734 if (loc && is_breakpoint (b)
5735 && breakpoint_condition_evaluation_mode () == condition_evaluation_target
5736 && bp_condition_evaluator (b) == condition_evaluation_both)
5737 {
5738 ui_out_text (uiout, " (");
5739 ui_out_field_string (uiout, "evaluated-by",
5740 bp_location_condition_evaluator (loc));
5741 ui_out_text (uiout, ")");
5742 }
5743
5744 do_cleanups (old_chain);
5745 }
5746
5747 static const char *
5748 bptype_string (enum bptype type)
5749 {
5750 struct ep_type_description
5751 {
5752 enum bptype type;
5753 char *description;
5754 };
5755 static struct ep_type_description bptypes[] =
5756 {
5757 {bp_none, "?deleted?"},
5758 {bp_breakpoint, "breakpoint"},
5759 {bp_hardware_breakpoint, "hw breakpoint"},
5760 {bp_until, "until"},
5761 {bp_finish, "finish"},
5762 {bp_watchpoint, "watchpoint"},
5763 {bp_hardware_watchpoint, "hw watchpoint"},
5764 {bp_read_watchpoint, "read watchpoint"},
5765 {bp_access_watchpoint, "acc watchpoint"},
5766 {bp_longjmp, "longjmp"},
5767 {bp_longjmp_resume, "longjmp resume"},
5768 {bp_longjmp_call_dummy, "longjmp for call dummy"},
5769 {bp_exception, "exception"},
5770 {bp_exception_resume, "exception resume"},
5771 {bp_step_resume, "step resume"},
5772 {bp_hp_step_resume, "high-priority step resume"},
5773 {bp_watchpoint_scope, "watchpoint scope"},
5774 {bp_call_dummy, "call dummy"},
5775 {bp_std_terminate, "std::terminate"},
5776 {bp_shlib_event, "shlib events"},
5777 {bp_thread_event, "thread events"},
5778 {bp_overlay_event, "overlay events"},
5779 {bp_longjmp_master, "longjmp master"},
5780 {bp_std_terminate_master, "std::terminate master"},
5781 {bp_exception_master, "exception master"},
5782 {bp_catchpoint, "catchpoint"},
5783 {bp_tracepoint, "tracepoint"},
5784 {bp_fast_tracepoint, "fast tracepoint"},
5785 {bp_static_tracepoint, "static tracepoint"},
5786 {bp_dprintf, "dprintf"},
5787 {bp_jit_event, "jit events"},
5788 {bp_gnu_ifunc_resolver, "STT_GNU_IFUNC resolver"},
5789 {bp_gnu_ifunc_resolver_return, "STT_GNU_IFUNC resolver return"},
5790 };
5791
5792 if (((int) type >= (sizeof (bptypes) / sizeof (bptypes[0])))
5793 || ((int) type != bptypes[(int) type].type))
5794 internal_error (__FILE__, __LINE__,
5795 _("bptypes table does not describe type #%d."),
5796 (int) type);
5797
5798 return bptypes[(int) type].description;
5799 }
5800
5801 DEF_VEC_I(int);
5802
5803 /* For MI, output a field named 'thread-groups' with a list as the value.
5804 For CLI, prefix the list with the string 'inf'. */
5805
5806 static void
5807 output_thread_groups (struct ui_out *uiout,
5808 const char *field_name,
5809 VEC(int) *inf_num,
5810 int mi_only)
5811 {
5812 struct cleanup *back_to = make_cleanup_ui_out_list_begin_end (uiout,
5813 field_name);
5814 int is_mi = ui_out_is_mi_like_p (uiout);
5815 int inf;
5816 int i;
5817
5818 /* For backward compatibility, don't display inferiors in CLI unless
5819 there are several. Always display them for MI. */
5820 if (!is_mi && mi_only)
5821 return;
5822
5823 for (i = 0; VEC_iterate (int, inf_num, i, inf); ++i)
5824 {
5825 if (is_mi)
5826 {
5827 char mi_group[10];
5828
5829 xsnprintf (mi_group, sizeof (mi_group), "i%d", inf);
5830 ui_out_field_string (uiout, NULL, mi_group);
5831 }
5832 else
5833 {
5834 if (i == 0)
5835 ui_out_text (uiout, " inf ");
5836 else
5837 ui_out_text (uiout, ", ");
5838
5839 ui_out_text (uiout, plongest (inf));
5840 }
5841 }
5842
5843 do_cleanups (back_to);
5844 }
5845
5846 /* Print B to gdb_stdout. */
5847
5848 static void
5849 print_one_breakpoint_location (struct breakpoint *b,
5850 struct bp_location *loc,
5851 int loc_number,
5852 struct bp_location **last_loc,
5853 int allflag)
5854 {
5855 struct command_line *l;
5856 static char bpenables[] = "nynny";
5857
5858 struct ui_out *uiout = current_uiout;
5859 int header_of_multiple = 0;
5860 int part_of_multiple = (loc != NULL);
5861 struct value_print_options opts;
5862
5863 get_user_print_options (&opts);
5864
5865 gdb_assert (!loc || loc_number != 0);
5866 /* See comment in print_one_breakpoint concerning treatment of
5867 breakpoints with single disabled location. */
5868 if (loc == NULL
5869 && (b->loc != NULL
5870 && (b->loc->next != NULL || !b->loc->enabled)))
5871 header_of_multiple = 1;
5872 if (loc == NULL)
5873 loc = b->loc;
5874
5875 annotate_record ();
5876
5877 /* 1 */
5878 annotate_field (0);
5879 if (part_of_multiple)
5880 {
5881 char *formatted;
5882 formatted = xstrprintf ("%d.%d", b->number, loc_number);
5883 ui_out_field_string (uiout, "number", formatted);
5884 xfree (formatted);
5885 }
5886 else
5887 {
5888 ui_out_field_int (uiout, "number", b->number);
5889 }
5890
5891 /* 2 */
5892 annotate_field (1);
5893 if (part_of_multiple)
5894 ui_out_field_skip (uiout, "type");
5895 else
5896 ui_out_field_string (uiout, "type", bptype_string (b->type));
5897
5898 /* 3 */
5899 annotate_field (2);
5900 if (part_of_multiple)
5901 ui_out_field_skip (uiout, "disp");
5902 else
5903 ui_out_field_string (uiout, "disp", bpdisp_text (b->disposition));
5904
5905
5906 /* 4 */
5907 annotate_field (3);
5908 if (part_of_multiple)
5909 ui_out_field_string (uiout, "enabled", loc->enabled ? "y" : "n");
5910 else
5911 ui_out_field_fmt (uiout, "enabled", "%c",
5912 bpenables[(int) b->enable_state]);
5913 ui_out_spaces (uiout, 2);
5914
5915
5916 /* 5 and 6 */
5917 if (b->ops != NULL && b->ops->print_one != NULL)
5918 {
5919 /* Although the print_one can possibly print all locations,
5920 calling it here is not likely to get any nice result. So,
5921 make sure there's just one location. */
5922 gdb_assert (b->loc == NULL || b->loc->next == NULL);
5923 b->ops->print_one (b, last_loc);
5924 }
5925 else
5926 switch (b->type)
5927 {
5928 case bp_none:
5929 internal_error (__FILE__, __LINE__,
5930 _("print_one_breakpoint: bp_none encountered\n"));
5931 break;
5932
5933 case bp_watchpoint:
5934 case bp_hardware_watchpoint:
5935 case bp_read_watchpoint:
5936 case bp_access_watchpoint:
5937 {
5938 struct watchpoint *w = (struct watchpoint *) b;
5939
5940 /* Field 4, the address, is omitted (which makes the columns
5941 not line up too nicely with the headers, but the effect
5942 is relatively readable). */
5943 if (opts.addressprint)
5944 ui_out_field_skip (uiout, "addr");
5945 annotate_field (5);
5946 ui_out_field_string (uiout, "what", w->exp_string);
5947 }
5948 break;
5949
5950 case bp_breakpoint:
5951 case bp_hardware_breakpoint:
5952 case bp_until:
5953 case bp_finish:
5954 case bp_longjmp:
5955 case bp_longjmp_resume:
5956 case bp_longjmp_call_dummy:
5957 case bp_exception:
5958 case bp_exception_resume:
5959 case bp_step_resume:
5960 case bp_hp_step_resume:
5961 case bp_watchpoint_scope:
5962 case bp_call_dummy:
5963 case bp_std_terminate:
5964 case bp_shlib_event:
5965 case bp_thread_event:
5966 case bp_overlay_event:
5967 case bp_longjmp_master:
5968 case bp_std_terminate_master:
5969 case bp_exception_master:
5970 case bp_tracepoint:
5971 case bp_fast_tracepoint:
5972 case bp_static_tracepoint:
5973 case bp_dprintf:
5974 case bp_jit_event:
5975 case bp_gnu_ifunc_resolver:
5976 case bp_gnu_ifunc_resolver_return:
5977 if (opts.addressprint)
5978 {
5979 annotate_field (4);
5980 if (header_of_multiple)
5981 ui_out_field_string (uiout, "addr", "<MULTIPLE>");
5982 else if (b->loc == NULL || loc->shlib_disabled)
5983 ui_out_field_string (uiout, "addr", "<PENDING>");
5984 else
5985 ui_out_field_core_addr (uiout, "addr",
5986 loc->gdbarch, loc->address);
5987 }
5988 annotate_field (5);
5989 if (!header_of_multiple)
5990 print_breakpoint_location (b, loc);
5991 if (b->loc)
5992 *last_loc = b->loc;
5993 break;
5994 }
5995
5996
5997 if (loc != NULL && !header_of_multiple)
5998 {
5999 struct inferior *inf;
6000 VEC(int) *inf_num = NULL;
6001 int mi_only = 1;
6002
6003 ALL_INFERIORS (inf)
6004 {
6005 if (inf->pspace == loc->pspace)
6006 VEC_safe_push (int, inf_num, inf->num);
6007 }
6008
6009 /* For backward compatibility, don't display inferiors in CLI unless
6010 there are several. Always display for MI. */
6011 if (allflag
6012 || (!gdbarch_has_global_breakpoints (target_gdbarch ())
6013 && (number_of_program_spaces () > 1
6014 || number_of_inferiors () > 1)
6015 /* LOC is for existing B, it cannot be in
6016 moribund_locations and thus having NULL OWNER. */
6017 && loc->owner->type != bp_catchpoint))
6018 mi_only = 0;
6019 output_thread_groups (uiout, "thread-groups", inf_num, mi_only);
6020 VEC_free (int, inf_num);
6021 }
6022
6023 if (!part_of_multiple)
6024 {
6025 if (b->thread != -1)
6026 {
6027 /* FIXME: This seems to be redundant and lost here; see the
6028 "stop only in" line a little further down. */
6029 ui_out_text (uiout, " thread ");
6030 ui_out_field_int (uiout, "thread", b->thread);
6031 }
6032 else if (b->task != 0)
6033 {
6034 ui_out_text (uiout, " task ");
6035 ui_out_field_int (uiout, "task", b->task);
6036 }
6037 }
6038
6039 ui_out_text (uiout, "\n");
6040
6041 if (!part_of_multiple)
6042 b->ops->print_one_detail (b, uiout);
6043
6044 if (part_of_multiple && frame_id_p (b->frame_id))
6045 {
6046 annotate_field (6);
6047 ui_out_text (uiout, "\tstop only in stack frame at ");
6048 /* FIXME: cagney/2002-12-01: Shouldn't be poking around inside
6049 the frame ID. */
6050 ui_out_field_core_addr (uiout, "frame",
6051 b->gdbarch, b->frame_id.stack_addr);
6052 ui_out_text (uiout, "\n");
6053 }
6054
6055 if (!part_of_multiple && b->cond_string)
6056 {
6057 annotate_field (7);
6058 if (is_tracepoint (b))
6059 ui_out_text (uiout, "\ttrace only if ");
6060 else
6061 ui_out_text (uiout, "\tstop only if ");
6062 ui_out_field_string (uiout, "cond", b->cond_string);
6063
6064 /* Print whether the target is doing the breakpoint's condition
6065 evaluation. If GDB is doing the evaluation, don't print anything. */
6066 if (is_breakpoint (b)
6067 && breakpoint_condition_evaluation_mode ()
6068 == condition_evaluation_target)
6069 {
6070 ui_out_text (uiout, " (");
6071 ui_out_field_string (uiout, "evaluated-by",
6072 bp_condition_evaluator (b));
6073 ui_out_text (uiout, " evals)");
6074 }
6075 ui_out_text (uiout, "\n");
6076 }
6077
6078 if (!part_of_multiple && b->thread != -1)
6079 {
6080 /* FIXME should make an annotation for this. */
6081 ui_out_text (uiout, "\tstop only in thread ");
6082 ui_out_field_int (uiout, "thread", b->thread);
6083 ui_out_text (uiout, "\n");
6084 }
6085
6086 if (!part_of_multiple)
6087 {
6088 if (b->hit_count)
6089 {
6090 /* FIXME should make an annotation for this. */
6091 if (is_catchpoint (b))
6092 ui_out_text (uiout, "\tcatchpoint");
6093 else if (is_tracepoint (b))
6094 ui_out_text (uiout, "\ttracepoint");
6095 else
6096 ui_out_text (uiout, "\tbreakpoint");
6097 ui_out_text (uiout, " already hit ");
6098 ui_out_field_int (uiout, "times", b->hit_count);
6099 if (b->hit_count == 1)
6100 ui_out_text (uiout, " time\n");
6101 else
6102 ui_out_text (uiout, " times\n");
6103 }
6104 else
6105 {
6106 /* Output the count also if it is zero, but only if this is mi. */
6107 if (ui_out_is_mi_like_p (uiout))
6108 ui_out_field_int (uiout, "times", b->hit_count);
6109 }
6110 }
6111
6112 if (!part_of_multiple && b->ignore_count)
6113 {
6114 annotate_field (8);
6115 ui_out_text (uiout, "\tignore next ");
6116 ui_out_field_int (uiout, "ignore", b->ignore_count);
6117 ui_out_text (uiout, " hits\n");
6118 }
6119
6120 /* Note that an enable count of 1 corresponds to "enable once"
6121 behavior, which is reported by the combination of enablement and
6122 disposition, so we don't need to mention it here. */
6123 if (!part_of_multiple && b->enable_count > 1)
6124 {
6125 annotate_field (8);
6126 ui_out_text (uiout, "\tdisable after ");
6127 /* Tweak the wording to clarify that ignore and enable counts
6128 are distinct, and have additive effect. */
6129 if (b->ignore_count)
6130 ui_out_text (uiout, "additional ");
6131 else
6132 ui_out_text (uiout, "next ");
6133 ui_out_field_int (uiout, "enable", b->enable_count);
6134 ui_out_text (uiout, " hits\n");
6135 }
6136
6137 if (!part_of_multiple && is_tracepoint (b))
6138 {
6139 struct tracepoint *tp = (struct tracepoint *) b;
6140
6141 if (tp->traceframe_usage)
6142 {
6143 ui_out_text (uiout, "\ttrace buffer usage ");
6144 ui_out_field_int (uiout, "traceframe-usage", tp->traceframe_usage);
6145 ui_out_text (uiout, " bytes\n");
6146 }
6147 }
6148
6149 l = b->commands ? b->commands->commands : NULL;
6150 if (!part_of_multiple && l)
6151 {
6152 struct cleanup *script_chain;
6153
6154 annotate_field (9);
6155 script_chain = make_cleanup_ui_out_tuple_begin_end (uiout, "script");
6156 print_command_lines (uiout, l, 4);
6157 do_cleanups (script_chain);
6158 }
6159
6160 if (is_tracepoint (b))
6161 {
6162 struct tracepoint *t = (struct tracepoint *) b;
6163
6164 if (!part_of_multiple && t->pass_count)
6165 {
6166 annotate_field (10);
6167 ui_out_text (uiout, "\tpass count ");
6168 ui_out_field_int (uiout, "pass", t->pass_count);
6169 ui_out_text (uiout, " \n");
6170 }
6171
6172 /* Don't display it when tracepoint or tracepoint location is
6173 pending. */
6174 if (!header_of_multiple && loc != NULL && !loc->shlib_disabled)
6175 {
6176 annotate_field (11);
6177
6178 if (ui_out_is_mi_like_p (uiout))
6179 ui_out_field_string (uiout, "installed",
6180 loc->inserted ? "y" : "n");
6181 else
6182 {
6183 if (loc->inserted)
6184 ui_out_text (uiout, "\t");
6185 else
6186 ui_out_text (uiout, "\tnot ");
6187 ui_out_text (uiout, "installed on target\n");
6188 }
6189 }
6190 }
6191
6192 if (ui_out_is_mi_like_p (uiout) && !part_of_multiple)
6193 {
6194 if (is_watchpoint (b))
6195 {
6196 struct watchpoint *w = (struct watchpoint *) b;
6197
6198 ui_out_field_string (uiout, "original-location", w->exp_string);
6199 }
6200 else if (b->addr_string)
6201 ui_out_field_string (uiout, "original-location", b->addr_string);
6202 }
6203 }
6204
6205 static void
6206 print_one_breakpoint (struct breakpoint *b,
6207 struct bp_location **last_loc,
6208 int allflag)
6209 {
6210 struct cleanup *bkpt_chain;
6211 struct ui_out *uiout = current_uiout;
6212
6213 bkpt_chain = make_cleanup_ui_out_tuple_begin_end (uiout, "bkpt");
6214
6215 print_one_breakpoint_location (b, NULL, 0, last_loc, allflag);
6216 do_cleanups (bkpt_chain);
6217
6218 /* If this breakpoint has custom print function,
6219 it's already printed. Otherwise, print individual
6220 locations, if any. */
6221 if (b->ops == NULL || b->ops->print_one == NULL)
6222 {
6223 /* If breakpoint has a single location that is disabled, we
6224 print it as if it had several locations, since otherwise it's
6225 hard to represent "breakpoint enabled, location disabled"
6226 situation.
6227
6228 Note that while hardware watchpoints have several locations
6229 internally, that's not a property exposed to user. */
6230 if (b->loc
6231 && !is_hardware_watchpoint (b)
6232 && (b->loc->next || !b->loc->enabled))
6233 {
6234 struct bp_location *loc;
6235 int n = 1;
6236
6237 for (loc = b->loc; loc; loc = loc->next, ++n)
6238 {
6239 struct cleanup *inner2 =
6240 make_cleanup_ui_out_tuple_begin_end (uiout, NULL);
6241 print_one_breakpoint_location (b, loc, n, last_loc, allflag);
6242 do_cleanups (inner2);
6243 }
6244 }
6245 }
6246 }
6247
6248 static int
6249 breakpoint_address_bits (struct breakpoint *b)
6250 {
6251 int print_address_bits = 0;
6252 struct bp_location *loc;
6253
6254 for (loc = b->loc; loc; loc = loc->next)
6255 {
6256 int addr_bit;
6257
6258 /* Software watchpoints that aren't watching memory don't have
6259 an address to print. */
6260 if (b->type == bp_watchpoint && loc->watchpoint_type == -1)
6261 continue;
6262
6263 addr_bit = gdbarch_addr_bit (loc->gdbarch);
6264 if (addr_bit > print_address_bits)
6265 print_address_bits = addr_bit;
6266 }
6267
6268 return print_address_bits;
6269 }
6270
6271 struct captured_breakpoint_query_args
6272 {
6273 int bnum;
6274 };
6275
6276 static int
6277 do_captured_breakpoint_query (struct ui_out *uiout, void *data)
6278 {
6279 struct captured_breakpoint_query_args *args = data;
6280 struct breakpoint *b;
6281 struct bp_location *dummy_loc = NULL;
6282
6283 ALL_BREAKPOINTS (b)
6284 {
6285 if (args->bnum == b->number)
6286 {
6287 print_one_breakpoint (b, &dummy_loc, 0);
6288 return GDB_RC_OK;
6289 }
6290 }
6291 return GDB_RC_NONE;
6292 }
6293
6294 enum gdb_rc
6295 gdb_breakpoint_query (struct ui_out *uiout, int bnum,
6296 char **error_message)
6297 {
6298 struct captured_breakpoint_query_args args;
6299
6300 args.bnum = bnum;
6301 /* For the moment we don't trust print_one_breakpoint() to not throw
6302 an error. */
6303 if (catch_exceptions_with_msg (uiout, do_captured_breakpoint_query, &args,
6304 error_message, RETURN_MASK_ALL) < 0)
6305 return GDB_RC_FAIL;
6306 else
6307 return GDB_RC_OK;
6308 }
6309
6310 /* Return true if this breakpoint was set by the user, false if it is
6311 internal or momentary. */
6312
6313 int
6314 user_breakpoint_p (struct breakpoint *b)
6315 {
6316 return b->number > 0;
6317 }
6318
6319 /* Print information on user settable breakpoint (watchpoint, etc)
6320 number BNUM. If BNUM is -1 print all user-settable breakpoints.
6321 If ALLFLAG is non-zero, include non-user-settable breakpoints. If
6322 FILTER is non-NULL, call it on each breakpoint and only include the
6323 ones for which it returns non-zero. Return the total number of
6324 breakpoints listed. */
6325
6326 static int
6327 breakpoint_1 (char *args, int allflag,
6328 int (*filter) (const struct breakpoint *))
6329 {
6330 struct breakpoint *b;
6331 struct bp_location *last_loc = NULL;
6332 int nr_printable_breakpoints;
6333 struct cleanup *bkpttbl_chain;
6334 struct value_print_options opts;
6335 int print_address_bits = 0;
6336 int print_type_col_width = 14;
6337 struct ui_out *uiout = current_uiout;
6338
6339 get_user_print_options (&opts);
6340
6341 /* Compute the number of rows in the table, as well as the size
6342 required for address fields. */
6343 nr_printable_breakpoints = 0;
6344 ALL_BREAKPOINTS (b)
6345 {
6346 /* If we have a filter, only list the breakpoints it accepts. */
6347 if (filter && !filter (b))
6348 continue;
6349
6350 /* If we have an "args" string, it is a list of breakpoints to
6351 accept. Skip the others. */
6352 if (args != NULL && *args != '\0')
6353 {
6354 if (allflag && parse_and_eval_long (args) != b->number)
6355 continue;
6356 if (!allflag && !number_is_in_list (args, b->number))
6357 continue;
6358 }
6359
6360 if (allflag || user_breakpoint_p (b))
6361 {
6362 int addr_bit, type_len;
6363
6364 addr_bit = breakpoint_address_bits (b);
6365 if (addr_bit > print_address_bits)
6366 print_address_bits = addr_bit;
6367
6368 type_len = strlen (bptype_string (b->type));
6369 if (type_len > print_type_col_width)
6370 print_type_col_width = type_len;
6371
6372 nr_printable_breakpoints++;
6373 }
6374 }
6375
6376 if (opts.addressprint)
6377 bkpttbl_chain
6378 = make_cleanup_ui_out_table_begin_end (uiout, 6,
6379 nr_printable_breakpoints,
6380 "BreakpointTable");
6381 else
6382 bkpttbl_chain
6383 = make_cleanup_ui_out_table_begin_end (uiout, 5,
6384 nr_printable_breakpoints,
6385 "BreakpointTable");
6386
6387 if (nr_printable_breakpoints > 0)
6388 annotate_breakpoints_headers ();
6389 if (nr_printable_breakpoints > 0)
6390 annotate_field (0);
6391 ui_out_table_header (uiout, 7, ui_left, "number", "Num"); /* 1 */
6392 if (nr_printable_breakpoints > 0)
6393 annotate_field (1);
6394 ui_out_table_header (uiout, print_type_col_width, ui_left,
6395 "type", "Type"); /* 2 */
6396 if (nr_printable_breakpoints > 0)
6397 annotate_field (2);
6398 ui_out_table_header (uiout, 4, ui_left, "disp", "Disp"); /* 3 */
6399 if (nr_printable_breakpoints > 0)
6400 annotate_field (3);
6401 ui_out_table_header (uiout, 3, ui_left, "enabled", "Enb"); /* 4 */
6402 if (opts.addressprint)
6403 {
6404 if (nr_printable_breakpoints > 0)
6405 annotate_field (4);
6406 if (print_address_bits <= 32)
6407 ui_out_table_header (uiout, 10, ui_left,
6408 "addr", "Address"); /* 5 */
6409 else
6410 ui_out_table_header (uiout, 18, ui_left,
6411 "addr", "Address"); /* 5 */
6412 }
6413 if (nr_printable_breakpoints > 0)
6414 annotate_field (5);
6415 ui_out_table_header (uiout, 40, ui_noalign, "what", "What"); /* 6 */
6416 ui_out_table_body (uiout);
6417 if (nr_printable_breakpoints > 0)
6418 annotate_breakpoints_table ();
6419
6420 ALL_BREAKPOINTS (b)
6421 {
6422 QUIT;
6423 /* If we have a filter, only list the breakpoints it accepts. */
6424 if (filter && !filter (b))
6425 continue;
6426
6427 /* If we have an "args" string, it is a list of breakpoints to
6428 accept. Skip the others. */
6429
6430 if (args != NULL && *args != '\0')
6431 {
6432 if (allflag) /* maintenance info breakpoint */
6433 {
6434 if (parse_and_eval_long (args) != b->number)
6435 continue;
6436 }
6437 else /* all others */
6438 {
6439 if (!number_is_in_list (args, b->number))
6440 continue;
6441 }
6442 }
6443 /* We only print out user settable breakpoints unless the
6444 allflag is set. */
6445 if (allflag || user_breakpoint_p (b))
6446 print_one_breakpoint (b, &last_loc, allflag);
6447 }
6448
6449 do_cleanups (bkpttbl_chain);
6450
6451 if (nr_printable_breakpoints == 0)
6452 {
6453 /* If there's a filter, let the caller decide how to report
6454 empty list. */
6455 if (!filter)
6456 {
6457 if (args == NULL || *args == '\0')
6458 ui_out_message (uiout, 0, "No breakpoints or watchpoints.\n");
6459 else
6460 ui_out_message (uiout, 0,
6461 "No breakpoint or watchpoint matching '%s'.\n",
6462 args);
6463 }
6464 }
6465 else
6466 {
6467 if (last_loc && !server_command)
6468 set_next_address (last_loc->gdbarch, last_loc->address);
6469 }
6470
6471 /* FIXME? Should this be moved up so that it is only called when
6472 there have been breakpoints? */
6473 annotate_breakpoints_table_end ();
6474
6475 return nr_printable_breakpoints;
6476 }
6477
6478 /* Display the value of default-collect in a way that is generally
6479 compatible with the breakpoint list. */
6480
6481 static void
6482 default_collect_info (void)
6483 {
6484 struct ui_out *uiout = current_uiout;
6485
6486 /* If it has no value (which is frequently the case), say nothing; a
6487 message like "No default-collect." gets in user's face when it's
6488 not wanted. */
6489 if (!*default_collect)
6490 return;
6491
6492 /* The following phrase lines up nicely with per-tracepoint collect
6493 actions. */
6494 ui_out_text (uiout, "default collect ");
6495 ui_out_field_string (uiout, "default-collect", default_collect);
6496 ui_out_text (uiout, " \n");
6497 }
6498
6499 static void
6500 breakpoints_info (char *args, int from_tty)
6501 {
6502 breakpoint_1 (args, 0, NULL);
6503
6504 default_collect_info ();
6505 }
6506
6507 static void
6508 watchpoints_info (char *args, int from_tty)
6509 {
6510 int num_printed = breakpoint_1 (args, 0, is_watchpoint);
6511 struct ui_out *uiout = current_uiout;
6512
6513 if (num_printed == 0)
6514 {
6515 if (args == NULL || *args == '\0')
6516 ui_out_message (uiout, 0, "No watchpoints.\n");
6517 else
6518 ui_out_message (uiout, 0, "No watchpoint matching '%s'.\n", args);
6519 }
6520 }
6521
6522 static void
6523 maintenance_info_breakpoints (char *args, int from_tty)
6524 {
6525 breakpoint_1 (args, 1, NULL);
6526
6527 default_collect_info ();
6528 }
6529
6530 static int
6531 breakpoint_has_pc (struct breakpoint *b,
6532 struct program_space *pspace,
6533 CORE_ADDR pc, struct obj_section *section)
6534 {
6535 struct bp_location *bl = b->loc;
6536
6537 for (; bl; bl = bl->next)
6538 {
6539 if (bl->pspace == pspace
6540 && bl->address == pc
6541 && (!overlay_debugging || bl->section == section))
6542 return 1;
6543 }
6544 return 0;
6545 }
6546
6547 /* Print a message describing any user-breakpoints set at PC. This
6548 concerns with logical breakpoints, so we match program spaces, not
6549 address spaces. */
6550
6551 static void
6552 describe_other_breakpoints (struct gdbarch *gdbarch,
6553 struct program_space *pspace, CORE_ADDR pc,
6554 struct obj_section *section, int thread)
6555 {
6556 int others = 0;
6557 struct breakpoint *b;
6558
6559 ALL_BREAKPOINTS (b)
6560 others += (user_breakpoint_p (b)
6561 && breakpoint_has_pc (b, pspace, pc, section));
6562 if (others > 0)
6563 {
6564 if (others == 1)
6565 printf_filtered (_("Note: breakpoint "));
6566 else /* if (others == ???) */
6567 printf_filtered (_("Note: breakpoints "));
6568 ALL_BREAKPOINTS (b)
6569 if (user_breakpoint_p (b) && breakpoint_has_pc (b, pspace, pc, section))
6570 {
6571 others--;
6572 printf_filtered ("%d", b->number);
6573 if (b->thread == -1 && thread != -1)
6574 printf_filtered (" (all threads)");
6575 else if (b->thread != -1)
6576 printf_filtered (" (thread %d)", b->thread);
6577 printf_filtered ("%s%s ",
6578 ((b->enable_state == bp_disabled
6579 || b->enable_state == bp_call_disabled)
6580 ? " (disabled)"
6581 : b->enable_state == bp_permanent
6582 ? " (permanent)"
6583 : ""),
6584 (others > 1) ? ","
6585 : ((others == 1) ? " and" : ""));
6586 }
6587 printf_filtered (_("also set at pc "));
6588 fputs_filtered (paddress (gdbarch, pc), gdb_stdout);
6589 printf_filtered (".\n");
6590 }
6591 }
6592 \f
6593
6594 /* Return true iff it is meaningful to use the address member of
6595 BPT. For some breakpoint types, the address member is irrelevant
6596 and it makes no sense to attempt to compare it to other addresses
6597 (or use it for any other purpose either).
6598
6599 More specifically, each of the following breakpoint types will
6600 always have a zero valued address and we don't want to mark
6601 breakpoints of any of these types to be a duplicate of an actual
6602 breakpoint at address zero:
6603
6604 bp_watchpoint
6605 bp_catchpoint
6606
6607 */
6608
6609 static int
6610 breakpoint_address_is_meaningful (struct breakpoint *bpt)
6611 {
6612 enum bptype type = bpt->type;
6613
6614 return (type != bp_watchpoint && type != bp_catchpoint);
6615 }
6616
6617 /* Assuming LOC1 and LOC2's owners are hardware watchpoints, returns
6618 true if LOC1 and LOC2 represent the same watchpoint location. */
6619
6620 static int
6621 watchpoint_locations_match (struct bp_location *loc1,
6622 struct bp_location *loc2)
6623 {
6624 struct watchpoint *w1 = (struct watchpoint *) loc1->owner;
6625 struct watchpoint *w2 = (struct watchpoint *) loc2->owner;
6626
6627 /* Both of them must exist. */
6628 gdb_assert (w1 != NULL);
6629 gdb_assert (w2 != NULL);
6630
6631 /* If the target can evaluate the condition expression in hardware,
6632 then we we need to insert both watchpoints even if they are at
6633 the same place. Otherwise the watchpoint will only trigger when
6634 the condition of whichever watchpoint was inserted evaluates to
6635 true, not giving a chance for GDB to check the condition of the
6636 other watchpoint. */
6637 if ((w1->cond_exp
6638 && target_can_accel_watchpoint_condition (loc1->address,
6639 loc1->length,
6640 loc1->watchpoint_type,
6641 w1->cond_exp))
6642 || (w2->cond_exp
6643 && target_can_accel_watchpoint_condition (loc2->address,
6644 loc2->length,
6645 loc2->watchpoint_type,
6646 w2->cond_exp)))
6647 return 0;
6648
6649 /* Note that this checks the owner's type, not the location's. In
6650 case the target does not support read watchpoints, but does
6651 support access watchpoints, we'll have bp_read_watchpoint
6652 watchpoints with hw_access locations. Those should be considered
6653 duplicates of hw_read locations. The hw_read locations will
6654 become hw_access locations later. */
6655 return (loc1->owner->type == loc2->owner->type
6656 && loc1->pspace->aspace == loc2->pspace->aspace
6657 && loc1->address == loc2->address
6658 && loc1->length == loc2->length);
6659 }
6660
6661 /* Returns true if {ASPACE1,ADDR1} and {ASPACE2,ADDR2} represent the
6662 same breakpoint location. In most targets, this can only be true
6663 if ASPACE1 matches ASPACE2. On targets that have global
6664 breakpoints, the address space doesn't really matter. */
6665
6666 static int
6667 breakpoint_address_match (struct address_space *aspace1, CORE_ADDR addr1,
6668 struct address_space *aspace2, CORE_ADDR addr2)
6669 {
6670 return ((gdbarch_has_global_breakpoints (target_gdbarch ())
6671 || aspace1 == aspace2)
6672 && addr1 == addr2);
6673 }
6674
6675 /* Returns true if {ASPACE2,ADDR2} falls within the range determined by
6676 {ASPACE1,ADDR1,LEN1}. In most targets, this can only be true if ASPACE1
6677 matches ASPACE2. On targets that have global breakpoints, the address
6678 space doesn't really matter. */
6679
6680 static int
6681 breakpoint_address_match_range (struct address_space *aspace1, CORE_ADDR addr1,
6682 int len1, struct address_space *aspace2,
6683 CORE_ADDR addr2)
6684 {
6685 return ((gdbarch_has_global_breakpoints (target_gdbarch ())
6686 || aspace1 == aspace2)
6687 && addr2 >= addr1 && addr2 < addr1 + len1);
6688 }
6689
6690 /* Returns true if {ASPACE,ADDR} matches the breakpoint BL. BL may be
6691 a ranged breakpoint. In most targets, a match happens only if ASPACE
6692 matches the breakpoint's address space. On targets that have global
6693 breakpoints, the address space doesn't really matter. */
6694
6695 static int
6696 breakpoint_location_address_match (struct bp_location *bl,
6697 struct address_space *aspace,
6698 CORE_ADDR addr)
6699 {
6700 return (breakpoint_address_match (bl->pspace->aspace, bl->address,
6701 aspace, addr)
6702 || (bl->length
6703 && breakpoint_address_match_range (bl->pspace->aspace,
6704 bl->address, bl->length,
6705 aspace, addr)));
6706 }
6707
6708 /* If LOC1 and LOC2's owners are not tracepoints, returns false directly.
6709 Then, if LOC1 and LOC2 represent the same tracepoint location, returns
6710 true, otherwise returns false. */
6711
6712 static int
6713 tracepoint_locations_match (struct bp_location *loc1,
6714 struct bp_location *loc2)
6715 {
6716 if (is_tracepoint (loc1->owner) && is_tracepoint (loc2->owner))
6717 /* Since tracepoint locations are never duplicated with others', tracepoint
6718 locations at the same address of different tracepoints are regarded as
6719 different locations. */
6720 return (loc1->address == loc2->address && loc1->owner == loc2->owner);
6721 else
6722 return 0;
6723 }
6724
6725 /* Assuming LOC1 and LOC2's types' have meaningful target addresses
6726 (breakpoint_address_is_meaningful), returns true if LOC1 and LOC2
6727 represent the same location. */
6728
6729 static int
6730 breakpoint_locations_match (struct bp_location *loc1,
6731 struct bp_location *loc2)
6732 {
6733 int hw_point1, hw_point2;
6734
6735 /* Both of them must not be in moribund_locations. */
6736 gdb_assert (loc1->owner != NULL);
6737 gdb_assert (loc2->owner != NULL);
6738
6739 hw_point1 = is_hardware_watchpoint (loc1->owner);
6740 hw_point2 = is_hardware_watchpoint (loc2->owner);
6741
6742 if (hw_point1 != hw_point2)
6743 return 0;
6744 else if (hw_point1)
6745 return watchpoint_locations_match (loc1, loc2);
6746 else if (is_tracepoint (loc1->owner) || is_tracepoint (loc2->owner))
6747 return tracepoint_locations_match (loc1, loc2);
6748 else
6749 /* We compare bp_location.length in order to cover ranged breakpoints. */
6750 return (breakpoint_address_match (loc1->pspace->aspace, loc1->address,
6751 loc2->pspace->aspace, loc2->address)
6752 && loc1->length == loc2->length);
6753 }
6754
6755 static void
6756 breakpoint_adjustment_warning (CORE_ADDR from_addr, CORE_ADDR to_addr,
6757 int bnum, int have_bnum)
6758 {
6759 /* The longest string possibly returned by hex_string_custom
6760 is 50 chars. These must be at least that big for safety. */
6761 char astr1[64];
6762 char astr2[64];
6763
6764 strcpy (astr1, hex_string_custom ((unsigned long) from_addr, 8));
6765 strcpy (astr2, hex_string_custom ((unsigned long) to_addr, 8));
6766 if (have_bnum)
6767 warning (_("Breakpoint %d address previously adjusted from %s to %s."),
6768 bnum, astr1, astr2);
6769 else
6770 warning (_("Breakpoint address adjusted from %s to %s."), astr1, astr2);
6771 }
6772
6773 /* Adjust a breakpoint's address to account for architectural
6774 constraints on breakpoint placement. Return the adjusted address.
6775 Note: Very few targets require this kind of adjustment. For most
6776 targets, this function is simply the identity function. */
6777
6778 static CORE_ADDR
6779 adjust_breakpoint_address (struct gdbarch *gdbarch,
6780 CORE_ADDR bpaddr, enum bptype bptype)
6781 {
6782 if (!gdbarch_adjust_breakpoint_address_p (gdbarch))
6783 {
6784 /* Very few targets need any kind of breakpoint adjustment. */
6785 return bpaddr;
6786 }
6787 else if (bptype == bp_watchpoint
6788 || bptype == bp_hardware_watchpoint
6789 || bptype == bp_read_watchpoint
6790 || bptype == bp_access_watchpoint
6791 || bptype == bp_catchpoint)
6792 {
6793 /* Watchpoints and the various bp_catch_* eventpoints should not
6794 have their addresses modified. */
6795 return bpaddr;
6796 }
6797 else
6798 {
6799 CORE_ADDR adjusted_bpaddr;
6800
6801 /* Some targets have architectural constraints on the placement
6802 of breakpoint instructions. Obtain the adjusted address. */
6803 adjusted_bpaddr = gdbarch_adjust_breakpoint_address (gdbarch, bpaddr);
6804
6805 /* An adjusted breakpoint address can significantly alter
6806 a user's expectations. Print a warning if an adjustment
6807 is required. */
6808 if (adjusted_bpaddr != bpaddr)
6809 breakpoint_adjustment_warning (bpaddr, adjusted_bpaddr, 0, 0);
6810
6811 return adjusted_bpaddr;
6812 }
6813 }
6814
6815 void
6816 init_bp_location (struct bp_location *loc, const struct bp_location_ops *ops,
6817 struct breakpoint *owner)
6818 {
6819 memset (loc, 0, sizeof (*loc));
6820
6821 gdb_assert (ops != NULL);
6822
6823 loc->ops = ops;
6824 loc->owner = owner;
6825 loc->cond = NULL;
6826 loc->cond_bytecode = NULL;
6827 loc->shlib_disabled = 0;
6828 loc->enabled = 1;
6829
6830 switch (owner->type)
6831 {
6832 case bp_breakpoint:
6833 case bp_until:
6834 case bp_finish:
6835 case bp_longjmp:
6836 case bp_longjmp_resume:
6837 case bp_longjmp_call_dummy:
6838 case bp_exception:
6839 case bp_exception_resume:
6840 case bp_step_resume:
6841 case bp_hp_step_resume:
6842 case bp_watchpoint_scope:
6843 case bp_call_dummy:
6844 case bp_std_terminate:
6845 case bp_shlib_event:
6846 case bp_thread_event:
6847 case bp_overlay_event:
6848 case bp_jit_event:
6849 case bp_longjmp_master:
6850 case bp_std_terminate_master:
6851 case bp_exception_master:
6852 case bp_gnu_ifunc_resolver:
6853 case bp_gnu_ifunc_resolver_return:
6854 case bp_dprintf:
6855 loc->loc_type = bp_loc_software_breakpoint;
6856 mark_breakpoint_location_modified (loc);
6857 break;
6858 case bp_hardware_breakpoint:
6859 loc->loc_type = bp_loc_hardware_breakpoint;
6860 mark_breakpoint_location_modified (loc);
6861 break;
6862 case bp_hardware_watchpoint:
6863 case bp_read_watchpoint:
6864 case bp_access_watchpoint:
6865 loc->loc_type = bp_loc_hardware_watchpoint;
6866 break;
6867 case bp_watchpoint:
6868 case bp_catchpoint:
6869 case bp_tracepoint:
6870 case bp_fast_tracepoint:
6871 case bp_static_tracepoint:
6872 loc->loc_type = bp_loc_other;
6873 break;
6874 default:
6875 internal_error (__FILE__, __LINE__, _("unknown breakpoint type"));
6876 }
6877
6878 loc->refc = 1;
6879 }
6880
6881 /* Allocate a struct bp_location. */
6882
6883 static struct bp_location *
6884 allocate_bp_location (struct breakpoint *bpt)
6885 {
6886 return bpt->ops->allocate_location (bpt);
6887 }
6888
6889 static void
6890 free_bp_location (struct bp_location *loc)
6891 {
6892 loc->ops->dtor (loc);
6893 xfree (loc);
6894 }
6895
6896 /* Increment reference count. */
6897
6898 static void
6899 incref_bp_location (struct bp_location *bl)
6900 {
6901 ++bl->refc;
6902 }
6903
6904 /* Decrement reference count. If the reference count reaches 0,
6905 destroy the bp_location. Sets *BLP to NULL. */
6906
6907 static void
6908 decref_bp_location (struct bp_location **blp)
6909 {
6910 gdb_assert ((*blp)->refc > 0);
6911
6912 if (--(*blp)->refc == 0)
6913 free_bp_location (*blp);
6914 *blp = NULL;
6915 }
6916
6917 /* Add breakpoint B at the end of the global breakpoint chain. */
6918
6919 static void
6920 add_to_breakpoint_chain (struct breakpoint *b)
6921 {
6922 struct breakpoint *b1;
6923
6924 /* Add this breakpoint to the end of the chain so that a list of
6925 breakpoints will come out in order of increasing numbers. */
6926
6927 b1 = breakpoint_chain;
6928 if (b1 == 0)
6929 breakpoint_chain = b;
6930 else
6931 {
6932 while (b1->next)
6933 b1 = b1->next;
6934 b1->next = b;
6935 }
6936 }
6937
6938 /* Initializes breakpoint B with type BPTYPE and no locations yet. */
6939
6940 static void
6941 init_raw_breakpoint_without_location (struct breakpoint *b,
6942 struct gdbarch *gdbarch,
6943 enum bptype bptype,
6944 const struct breakpoint_ops *ops)
6945 {
6946 memset (b, 0, sizeof (*b));
6947
6948 gdb_assert (ops != NULL);
6949
6950 b->ops = ops;
6951 b->type = bptype;
6952 b->gdbarch = gdbarch;
6953 b->language = current_language->la_language;
6954 b->input_radix = input_radix;
6955 b->thread = -1;
6956 b->enable_state = bp_enabled;
6957 b->next = 0;
6958 b->silent = 0;
6959 b->ignore_count = 0;
6960 b->commands = NULL;
6961 b->frame_id = null_frame_id;
6962 b->condition_not_parsed = 0;
6963 b->py_bp_object = NULL;
6964 b->related_breakpoint = b;
6965 }
6966
6967 /* Helper to set_raw_breakpoint below. Creates a breakpoint
6968 that has type BPTYPE and has no locations as yet. */
6969
6970 static struct breakpoint *
6971 set_raw_breakpoint_without_location (struct gdbarch *gdbarch,
6972 enum bptype bptype,
6973 const struct breakpoint_ops *ops)
6974 {
6975 struct breakpoint *b = XNEW (struct breakpoint);
6976
6977 init_raw_breakpoint_without_location (b, gdbarch, bptype, ops);
6978 add_to_breakpoint_chain (b);
6979 return b;
6980 }
6981
6982 /* Initialize loc->function_name. EXPLICIT_LOC says no indirect function
6983 resolutions should be made as the user specified the location explicitly
6984 enough. */
6985
6986 static void
6987 set_breakpoint_location_function (struct bp_location *loc, int explicit_loc)
6988 {
6989 gdb_assert (loc->owner != NULL);
6990
6991 if (loc->owner->type == bp_breakpoint
6992 || loc->owner->type == bp_hardware_breakpoint
6993 || is_tracepoint (loc->owner))
6994 {
6995 int is_gnu_ifunc;
6996 const char *function_name;
6997 CORE_ADDR func_addr;
6998
6999 find_pc_partial_function_gnu_ifunc (loc->address, &function_name,
7000 &func_addr, NULL, &is_gnu_ifunc);
7001
7002 if (is_gnu_ifunc && !explicit_loc)
7003 {
7004 struct breakpoint *b = loc->owner;
7005
7006 gdb_assert (loc->pspace == current_program_space);
7007 if (gnu_ifunc_resolve_name (function_name,
7008 &loc->requested_address))
7009 {
7010 /* Recalculate ADDRESS based on new REQUESTED_ADDRESS. */
7011 loc->address = adjust_breakpoint_address (loc->gdbarch,
7012 loc->requested_address,
7013 b->type);
7014 }
7015 else if (b->type == bp_breakpoint && b->loc == loc
7016 && loc->next == NULL && b->related_breakpoint == b)
7017 {
7018 /* Create only the whole new breakpoint of this type but do not
7019 mess more complicated breakpoints with multiple locations. */
7020 b->type = bp_gnu_ifunc_resolver;
7021 /* Remember the resolver's address for use by the return
7022 breakpoint. */
7023 loc->related_address = func_addr;
7024 }
7025 }
7026
7027 if (function_name)
7028 loc->function_name = xstrdup (function_name);
7029 }
7030 }
7031
7032 /* Attempt to determine architecture of location identified by SAL. */
7033 struct gdbarch *
7034 get_sal_arch (struct symtab_and_line sal)
7035 {
7036 if (sal.section)
7037 return get_objfile_arch (sal.section->objfile);
7038 if (sal.symtab)
7039 return get_objfile_arch (sal.symtab->objfile);
7040
7041 return NULL;
7042 }
7043
7044 /* Low level routine for partially initializing a breakpoint of type
7045 BPTYPE. The newly created breakpoint's address, section, source
7046 file name, and line number are provided by SAL.
7047
7048 It is expected that the caller will complete the initialization of
7049 the newly created breakpoint struct as well as output any status
7050 information regarding the creation of a new breakpoint. */
7051
7052 static void
7053 init_raw_breakpoint (struct breakpoint *b, struct gdbarch *gdbarch,
7054 struct symtab_and_line sal, enum bptype bptype,
7055 const struct breakpoint_ops *ops)
7056 {
7057 init_raw_breakpoint_without_location (b, gdbarch, bptype, ops);
7058
7059 add_location_to_breakpoint (b, &sal);
7060
7061 if (bptype != bp_catchpoint)
7062 gdb_assert (sal.pspace != NULL);
7063
7064 /* Store the program space that was used to set the breakpoint,
7065 except for ordinary breakpoints, which are independent of the
7066 program space. */
7067 if (bptype != bp_breakpoint && bptype != bp_hardware_breakpoint)
7068 b->pspace = sal.pspace;
7069 }
7070
7071 /* set_raw_breakpoint is a low level routine for allocating and
7072 partially initializing a breakpoint of type BPTYPE. The newly
7073 created breakpoint's address, section, source file name, and line
7074 number are provided by SAL. The newly created and partially
7075 initialized breakpoint is added to the breakpoint chain and
7076 is also returned as the value of this function.
7077
7078 It is expected that the caller will complete the initialization of
7079 the newly created breakpoint struct as well as output any status
7080 information regarding the creation of a new breakpoint. In
7081 particular, set_raw_breakpoint does NOT set the breakpoint
7082 number! Care should be taken to not allow an error to occur
7083 prior to completing the initialization of the breakpoint. If this
7084 should happen, a bogus breakpoint will be left on the chain. */
7085
7086 struct breakpoint *
7087 set_raw_breakpoint (struct gdbarch *gdbarch,
7088 struct symtab_and_line sal, enum bptype bptype,
7089 const struct breakpoint_ops *ops)
7090 {
7091 struct breakpoint *b = XNEW (struct breakpoint);
7092
7093 init_raw_breakpoint (b, gdbarch, sal, bptype, ops);
7094 add_to_breakpoint_chain (b);
7095 return b;
7096 }
7097
7098
7099 /* Note that the breakpoint object B describes a permanent breakpoint
7100 instruction, hard-wired into the inferior's code. */
7101 void
7102 make_breakpoint_permanent (struct breakpoint *b)
7103 {
7104 struct bp_location *bl;
7105
7106 b->enable_state = bp_permanent;
7107
7108 /* By definition, permanent breakpoints are already present in the
7109 code. Mark all locations as inserted. For now,
7110 make_breakpoint_permanent is called in just one place, so it's
7111 hard to say if it's reasonable to have permanent breakpoint with
7112 multiple locations or not, but it's easy to implement. */
7113 for (bl = b->loc; bl; bl = bl->next)
7114 bl->inserted = 1;
7115 }
7116
7117 /* Call this routine when stepping and nexting to enable a breakpoint
7118 if we do a longjmp() or 'throw' in TP. FRAME is the frame which
7119 initiated the operation. */
7120
7121 void
7122 set_longjmp_breakpoint (struct thread_info *tp, struct frame_id frame)
7123 {
7124 struct breakpoint *b, *b_tmp;
7125 int thread = tp->num;
7126
7127 /* To avoid having to rescan all objfile symbols at every step,
7128 we maintain a list of continually-inserted but always disabled
7129 longjmp "master" breakpoints. Here, we simply create momentary
7130 clones of those and enable them for the requested thread. */
7131 ALL_BREAKPOINTS_SAFE (b, b_tmp)
7132 if (b->pspace == current_program_space
7133 && (b->type == bp_longjmp_master
7134 || b->type == bp_exception_master))
7135 {
7136 enum bptype type = b->type == bp_longjmp_master ? bp_longjmp : bp_exception;
7137 struct breakpoint *clone;
7138
7139 /* longjmp_breakpoint_ops ensures INITIATING_FRAME is cleared again
7140 after their removal. */
7141 clone = momentary_breakpoint_from_master (b, type,
7142 &longjmp_breakpoint_ops);
7143 clone->thread = thread;
7144 }
7145
7146 tp->initiating_frame = frame;
7147 }
7148
7149 /* Delete all longjmp breakpoints from THREAD. */
7150 void
7151 delete_longjmp_breakpoint (int thread)
7152 {
7153 struct breakpoint *b, *b_tmp;
7154
7155 ALL_BREAKPOINTS_SAFE (b, b_tmp)
7156 if (b->type == bp_longjmp || b->type == bp_exception)
7157 {
7158 if (b->thread == thread)
7159 delete_breakpoint (b);
7160 }
7161 }
7162
7163 void
7164 delete_longjmp_breakpoint_at_next_stop (int thread)
7165 {
7166 struct breakpoint *b, *b_tmp;
7167
7168 ALL_BREAKPOINTS_SAFE (b, b_tmp)
7169 if (b->type == bp_longjmp || b->type == bp_exception)
7170 {
7171 if (b->thread == thread)
7172 b->disposition = disp_del_at_next_stop;
7173 }
7174 }
7175
7176 /* Place breakpoints of type bp_longjmp_call_dummy to catch longjmp for
7177 INFERIOR_PTID thread. Chain them all by RELATED_BREAKPOINT and return
7178 pointer to any of them. Return NULL if this system cannot place longjmp
7179 breakpoints. */
7180
7181 struct breakpoint *
7182 set_longjmp_breakpoint_for_call_dummy (void)
7183 {
7184 struct breakpoint *b, *retval = NULL;
7185
7186 ALL_BREAKPOINTS (b)
7187 if (b->pspace == current_program_space && b->type == bp_longjmp_master)
7188 {
7189 struct breakpoint *new_b;
7190
7191 new_b = momentary_breakpoint_from_master (b, bp_longjmp_call_dummy,
7192 &momentary_breakpoint_ops);
7193 new_b->thread = pid_to_thread_id (inferior_ptid);
7194
7195 /* Link NEW_B into the chain of RETVAL breakpoints. */
7196
7197 gdb_assert (new_b->related_breakpoint == new_b);
7198 if (retval == NULL)
7199 retval = new_b;
7200 new_b->related_breakpoint = retval;
7201 while (retval->related_breakpoint != new_b->related_breakpoint)
7202 retval = retval->related_breakpoint;
7203 retval->related_breakpoint = new_b;
7204 }
7205
7206 return retval;
7207 }
7208
7209 /* Verify all existing dummy frames and their associated breakpoints for
7210 THREAD. Remove those which can no longer be found in the current frame
7211 stack.
7212
7213 You should call this function only at places where it is safe to currently
7214 unwind the whole stack. Failed stack unwind would discard live dummy
7215 frames. */
7216
7217 void
7218 check_longjmp_breakpoint_for_call_dummy (int thread)
7219 {
7220 struct breakpoint *b, *b_tmp;
7221
7222 ALL_BREAKPOINTS_SAFE (b, b_tmp)
7223 if (b->type == bp_longjmp_call_dummy && b->thread == thread)
7224 {
7225 struct breakpoint *dummy_b = b->related_breakpoint;
7226
7227 while (dummy_b != b && dummy_b->type != bp_call_dummy)
7228 dummy_b = dummy_b->related_breakpoint;
7229 if (dummy_b->type != bp_call_dummy
7230 || frame_find_by_id (dummy_b->frame_id) != NULL)
7231 continue;
7232
7233 dummy_frame_discard (dummy_b->frame_id);
7234
7235 while (b->related_breakpoint != b)
7236 {
7237 if (b_tmp == b->related_breakpoint)
7238 b_tmp = b->related_breakpoint->next;
7239 delete_breakpoint (b->related_breakpoint);
7240 }
7241 delete_breakpoint (b);
7242 }
7243 }
7244
7245 void
7246 enable_overlay_breakpoints (void)
7247 {
7248 struct breakpoint *b;
7249
7250 ALL_BREAKPOINTS (b)
7251 if (b->type == bp_overlay_event)
7252 {
7253 b->enable_state = bp_enabled;
7254 update_global_location_list (1);
7255 overlay_events_enabled = 1;
7256 }
7257 }
7258
7259 void
7260 disable_overlay_breakpoints (void)
7261 {
7262 struct breakpoint *b;
7263
7264 ALL_BREAKPOINTS (b)
7265 if (b->type == bp_overlay_event)
7266 {
7267 b->enable_state = bp_disabled;
7268 update_global_location_list (0);
7269 overlay_events_enabled = 0;
7270 }
7271 }
7272
7273 /* Set an active std::terminate breakpoint for each std::terminate
7274 master breakpoint. */
7275 void
7276 set_std_terminate_breakpoint (void)
7277 {
7278 struct breakpoint *b, *b_tmp;
7279
7280 ALL_BREAKPOINTS_SAFE (b, b_tmp)
7281 if (b->pspace == current_program_space
7282 && b->type == bp_std_terminate_master)
7283 {
7284 momentary_breakpoint_from_master (b, bp_std_terminate,
7285 &momentary_breakpoint_ops);
7286 }
7287 }
7288
7289 /* Delete all the std::terminate breakpoints. */
7290 void
7291 delete_std_terminate_breakpoint (void)
7292 {
7293 struct breakpoint *b, *b_tmp;
7294
7295 ALL_BREAKPOINTS_SAFE (b, b_tmp)
7296 if (b->type == bp_std_terminate)
7297 delete_breakpoint (b);
7298 }
7299
7300 struct breakpoint *
7301 create_thread_event_breakpoint (struct gdbarch *gdbarch, CORE_ADDR address)
7302 {
7303 struct breakpoint *b;
7304
7305 b = create_internal_breakpoint (gdbarch, address, bp_thread_event,
7306 &internal_breakpoint_ops);
7307
7308 b->enable_state = bp_enabled;
7309 /* addr_string has to be used or breakpoint_re_set will delete me. */
7310 b->addr_string
7311 = xstrprintf ("*%s", paddress (b->loc->gdbarch, b->loc->address));
7312
7313 update_global_location_list_nothrow (1);
7314
7315 return b;
7316 }
7317
7318 void
7319 remove_thread_event_breakpoints (void)
7320 {
7321 struct breakpoint *b, *b_tmp;
7322
7323 ALL_BREAKPOINTS_SAFE (b, b_tmp)
7324 if (b->type == bp_thread_event
7325 && b->loc->pspace == current_program_space)
7326 delete_breakpoint (b);
7327 }
7328
7329 struct lang_and_radix
7330 {
7331 enum language lang;
7332 int radix;
7333 };
7334
7335 /* Create a breakpoint for JIT code registration and unregistration. */
7336
7337 struct breakpoint *
7338 create_jit_event_breakpoint (struct gdbarch *gdbarch, CORE_ADDR address)
7339 {
7340 struct breakpoint *b;
7341
7342 b = create_internal_breakpoint (gdbarch, address, bp_jit_event,
7343 &internal_breakpoint_ops);
7344 update_global_location_list_nothrow (1);
7345 return b;
7346 }
7347
7348 /* Remove JIT code registration and unregistration breakpoint(s). */
7349
7350 void
7351 remove_jit_event_breakpoints (void)
7352 {
7353 struct breakpoint *b, *b_tmp;
7354
7355 ALL_BREAKPOINTS_SAFE (b, b_tmp)
7356 if (b->type == bp_jit_event
7357 && b->loc->pspace == current_program_space)
7358 delete_breakpoint (b);
7359 }
7360
7361 void
7362 remove_solib_event_breakpoints (void)
7363 {
7364 struct breakpoint *b, *b_tmp;
7365
7366 ALL_BREAKPOINTS_SAFE (b, b_tmp)
7367 if (b->type == bp_shlib_event
7368 && b->loc->pspace == current_program_space)
7369 delete_breakpoint (b);
7370 }
7371
7372 struct breakpoint *
7373 create_solib_event_breakpoint (struct gdbarch *gdbarch, CORE_ADDR address)
7374 {
7375 struct breakpoint *b;
7376
7377 b = create_internal_breakpoint (gdbarch, address, bp_shlib_event,
7378 &internal_breakpoint_ops);
7379 update_global_location_list_nothrow (1);
7380 return b;
7381 }
7382
7383 /* Disable any breakpoints that are on code in shared libraries. Only
7384 apply to enabled breakpoints, disabled ones can just stay disabled. */
7385
7386 void
7387 disable_breakpoints_in_shlibs (void)
7388 {
7389 struct bp_location *loc, **locp_tmp;
7390
7391 ALL_BP_LOCATIONS (loc, locp_tmp)
7392 {
7393 /* ALL_BP_LOCATIONS bp_location has LOC->OWNER always non-NULL. */
7394 struct breakpoint *b = loc->owner;
7395
7396 /* We apply the check to all breakpoints, including disabled for
7397 those with loc->duplicate set. This is so that when breakpoint
7398 becomes enabled, or the duplicate is removed, gdb will try to
7399 insert all breakpoints. If we don't set shlib_disabled here,
7400 we'll try to insert those breakpoints and fail. */
7401 if (((b->type == bp_breakpoint)
7402 || (b->type == bp_jit_event)
7403 || (b->type == bp_hardware_breakpoint)
7404 || (is_tracepoint (b)))
7405 && loc->pspace == current_program_space
7406 && !loc->shlib_disabled
7407 #ifdef PC_SOLIB
7408 && PC_SOLIB (loc->address)
7409 #else
7410 && solib_name_from_address (loc->pspace, loc->address)
7411 #endif
7412 )
7413 {
7414 loc->shlib_disabled = 1;
7415 }
7416 }
7417 }
7418
7419 /* Disable any breakpoints and tracepoints that are in an unloaded shared
7420 library. Only apply to enabled breakpoints, disabled ones can just stay
7421 disabled. */
7422
7423 static void
7424 disable_breakpoints_in_unloaded_shlib (struct so_list *solib)
7425 {
7426 struct bp_location *loc, **locp_tmp;
7427 int disabled_shlib_breaks = 0;
7428
7429 /* SunOS a.out shared libraries are always mapped, so do not
7430 disable breakpoints; they will only be reported as unloaded
7431 through clear_solib when GDB discards its shared library
7432 list. See clear_solib for more information. */
7433 if (exec_bfd != NULL
7434 && bfd_get_flavour (exec_bfd) == bfd_target_aout_flavour)
7435 return;
7436
7437 ALL_BP_LOCATIONS (loc, locp_tmp)
7438 {
7439 /* ALL_BP_LOCATIONS bp_location has LOC->OWNER always non-NULL. */
7440 struct breakpoint *b = loc->owner;
7441
7442 if (solib->pspace == loc->pspace
7443 && !loc->shlib_disabled
7444 && (((b->type == bp_breakpoint
7445 || b->type == bp_jit_event
7446 || b->type == bp_hardware_breakpoint)
7447 && (loc->loc_type == bp_loc_hardware_breakpoint
7448 || loc->loc_type == bp_loc_software_breakpoint))
7449 || is_tracepoint (b))
7450 && solib_contains_address_p (solib, loc->address))
7451 {
7452 loc->shlib_disabled = 1;
7453 /* At this point, we cannot rely on remove_breakpoint
7454 succeeding so we must mark the breakpoint as not inserted
7455 to prevent future errors occurring in remove_breakpoints. */
7456 loc->inserted = 0;
7457
7458 /* This may cause duplicate notifications for the same breakpoint. */
7459 observer_notify_breakpoint_modified (b);
7460
7461 if (!disabled_shlib_breaks)
7462 {
7463 target_terminal_ours_for_output ();
7464 warning (_("Temporarily disabling breakpoints "
7465 "for unloaded shared library \"%s\""),
7466 solib->so_name);
7467 }
7468 disabled_shlib_breaks = 1;
7469 }
7470 }
7471 }
7472
7473 /* FORK & VFORK catchpoints. */
7474
7475 /* An instance of this type is used to represent a fork or vfork
7476 catchpoint. It includes a "struct breakpoint" as a kind of base
7477 class; users downcast to "struct breakpoint *" when needed. A
7478 breakpoint is really of this type iff its ops pointer points to
7479 CATCH_FORK_BREAKPOINT_OPS. */
7480
7481 struct fork_catchpoint
7482 {
7483 /* The base class. */
7484 struct breakpoint base;
7485
7486 /* Process id of a child process whose forking triggered this
7487 catchpoint. This field is only valid immediately after this
7488 catchpoint has triggered. */
7489 ptid_t forked_inferior_pid;
7490 };
7491
7492 /* Implement the "insert" breakpoint_ops method for fork
7493 catchpoints. */
7494
7495 static int
7496 insert_catch_fork (struct bp_location *bl)
7497 {
7498 return target_insert_fork_catchpoint (PIDGET (inferior_ptid));
7499 }
7500
7501 /* Implement the "remove" breakpoint_ops method for fork
7502 catchpoints. */
7503
7504 static int
7505 remove_catch_fork (struct bp_location *bl)
7506 {
7507 return target_remove_fork_catchpoint (PIDGET (inferior_ptid));
7508 }
7509
7510 /* Implement the "breakpoint_hit" breakpoint_ops method for fork
7511 catchpoints. */
7512
7513 static int
7514 breakpoint_hit_catch_fork (const struct bp_location *bl,
7515 struct address_space *aspace, CORE_ADDR bp_addr,
7516 const struct target_waitstatus *ws)
7517 {
7518 struct fork_catchpoint *c = (struct fork_catchpoint *) bl->owner;
7519
7520 if (ws->kind != TARGET_WAITKIND_FORKED)
7521 return 0;
7522
7523 c->forked_inferior_pid = ws->value.related_pid;
7524 return 1;
7525 }
7526
7527 /* Implement the "print_it" breakpoint_ops method for fork
7528 catchpoints. */
7529
7530 static enum print_stop_action
7531 print_it_catch_fork (bpstat bs)
7532 {
7533 struct ui_out *uiout = current_uiout;
7534 struct breakpoint *b = bs->breakpoint_at;
7535 struct fork_catchpoint *c = (struct fork_catchpoint *) bs->breakpoint_at;
7536
7537 annotate_catchpoint (b->number);
7538 if (b->disposition == disp_del)
7539 ui_out_text (uiout, "\nTemporary catchpoint ");
7540 else
7541 ui_out_text (uiout, "\nCatchpoint ");
7542 if (ui_out_is_mi_like_p (uiout))
7543 {
7544 ui_out_field_string (uiout, "reason",
7545 async_reason_lookup (EXEC_ASYNC_FORK));
7546 ui_out_field_string (uiout, "disp", bpdisp_text (b->disposition));
7547 }
7548 ui_out_field_int (uiout, "bkptno", b->number);
7549 ui_out_text (uiout, " (forked process ");
7550 ui_out_field_int (uiout, "newpid", ptid_get_pid (c->forked_inferior_pid));
7551 ui_out_text (uiout, "), ");
7552 return PRINT_SRC_AND_LOC;
7553 }
7554
7555 /* Implement the "print_one" breakpoint_ops method for fork
7556 catchpoints. */
7557
7558 static void
7559 print_one_catch_fork (struct breakpoint *b, struct bp_location **last_loc)
7560 {
7561 struct fork_catchpoint *c = (struct fork_catchpoint *) b;
7562 struct value_print_options opts;
7563 struct ui_out *uiout = current_uiout;
7564
7565 get_user_print_options (&opts);
7566
7567 /* Field 4, the address, is omitted (which makes the columns not
7568 line up too nicely with the headers, but the effect is relatively
7569 readable). */
7570 if (opts.addressprint)
7571 ui_out_field_skip (uiout, "addr");
7572 annotate_field (5);
7573 ui_out_text (uiout, "fork");
7574 if (!ptid_equal (c->forked_inferior_pid, null_ptid))
7575 {
7576 ui_out_text (uiout, ", process ");
7577 ui_out_field_int (uiout, "what",
7578 ptid_get_pid (c->forked_inferior_pid));
7579 ui_out_spaces (uiout, 1);
7580 }
7581
7582 if (ui_out_is_mi_like_p (uiout))
7583 ui_out_field_string (uiout, "catch-type", "fork");
7584 }
7585
7586 /* Implement the "print_mention" breakpoint_ops method for fork
7587 catchpoints. */
7588
7589 static void
7590 print_mention_catch_fork (struct breakpoint *b)
7591 {
7592 printf_filtered (_("Catchpoint %d (fork)"), b->number);
7593 }
7594
7595 /* Implement the "print_recreate" breakpoint_ops method for fork
7596 catchpoints. */
7597
7598 static void
7599 print_recreate_catch_fork (struct breakpoint *b, struct ui_file *fp)
7600 {
7601 fprintf_unfiltered (fp, "catch fork");
7602 print_recreate_thread (b, fp);
7603 }
7604
7605 /* The breakpoint_ops structure to be used in fork catchpoints. */
7606
7607 static struct breakpoint_ops catch_fork_breakpoint_ops;
7608
7609 /* Implement the "insert" breakpoint_ops method for vfork
7610 catchpoints. */
7611
7612 static int
7613 insert_catch_vfork (struct bp_location *bl)
7614 {
7615 return target_insert_vfork_catchpoint (PIDGET (inferior_ptid));
7616 }
7617
7618 /* Implement the "remove" breakpoint_ops method for vfork
7619 catchpoints. */
7620
7621 static int
7622 remove_catch_vfork (struct bp_location *bl)
7623 {
7624 return target_remove_vfork_catchpoint (PIDGET (inferior_ptid));
7625 }
7626
7627 /* Implement the "breakpoint_hit" breakpoint_ops method for vfork
7628 catchpoints. */
7629
7630 static int
7631 breakpoint_hit_catch_vfork (const struct bp_location *bl,
7632 struct address_space *aspace, CORE_ADDR bp_addr,
7633 const struct target_waitstatus *ws)
7634 {
7635 struct fork_catchpoint *c = (struct fork_catchpoint *) bl->owner;
7636
7637 if (ws->kind != TARGET_WAITKIND_VFORKED)
7638 return 0;
7639
7640 c->forked_inferior_pid = ws->value.related_pid;
7641 return 1;
7642 }
7643
7644 /* Implement the "print_it" breakpoint_ops method for vfork
7645 catchpoints. */
7646
7647 static enum print_stop_action
7648 print_it_catch_vfork (bpstat bs)
7649 {
7650 struct ui_out *uiout = current_uiout;
7651 struct breakpoint *b = bs->breakpoint_at;
7652 struct fork_catchpoint *c = (struct fork_catchpoint *) b;
7653
7654 annotate_catchpoint (b->number);
7655 if (b->disposition == disp_del)
7656 ui_out_text (uiout, "\nTemporary catchpoint ");
7657 else
7658 ui_out_text (uiout, "\nCatchpoint ");
7659 if (ui_out_is_mi_like_p (uiout))
7660 {
7661 ui_out_field_string (uiout, "reason",
7662 async_reason_lookup (EXEC_ASYNC_VFORK));
7663 ui_out_field_string (uiout, "disp", bpdisp_text (b->disposition));
7664 }
7665 ui_out_field_int (uiout, "bkptno", b->number);
7666 ui_out_text (uiout, " (vforked process ");
7667 ui_out_field_int (uiout, "newpid", ptid_get_pid (c->forked_inferior_pid));
7668 ui_out_text (uiout, "), ");
7669 return PRINT_SRC_AND_LOC;
7670 }
7671
7672 /* Implement the "print_one" breakpoint_ops method for vfork
7673 catchpoints. */
7674
7675 static void
7676 print_one_catch_vfork (struct breakpoint *b, struct bp_location **last_loc)
7677 {
7678 struct fork_catchpoint *c = (struct fork_catchpoint *) b;
7679 struct value_print_options opts;
7680 struct ui_out *uiout = current_uiout;
7681
7682 get_user_print_options (&opts);
7683 /* Field 4, the address, is omitted (which makes the columns not
7684 line up too nicely with the headers, but the effect is relatively
7685 readable). */
7686 if (opts.addressprint)
7687 ui_out_field_skip (uiout, "addr");
7688 annotate_field (5);
7689 ui_out_text (uiout, "vfork");
7690 if (!ptid_equal (c->forked_inferior_pid, null_ptid))
7691 {
7692 ui_out_text (uiout, ", process ");
7693 ui_out_field_int (uiout, "what",
7694 ptid_get_pid (c->forked_inferior_pid));
7695 ui_out_spaces (uiout, 1);
7696 }
7697
7698 if (ui_out_is_mi_like_p (uiout))
7699 ui_out_field_string (uiout, "catch-type", "vfork");
7700 }
7701
7702 /* Implement the "print_mention" breakpoint_ops method for vfork
7703 catchpoints. */
7704
7705 static void
7706 print_mention_catch_vfork (struct breakpoint *b)
7707 {
7708 printf_filtered (_("Catchpoint %d (vfork)"), b->number);
7709 }
7710
7711 /* Implement the "print_recreate" breakpoint_ops method for vfork
7712 catchpoints. */
7713
7714 static void
7715 print_recreate_catch_vfork (struct breakpoint *b, struct ui_file *fp)
7716 {
7717 fprintf_unfiltered (fp, "catch vfork");
7718 print_recreate_thread (b, fp);
7719 }
7720
7721 /* The breakpoint_ops structure to be used in vfork catchpoints. */
7722
7723 static struct breakpoint_ops catch_vfork_breakpoint_ops;
7724
7725 /* An instance of this type is used to represent an solib catchpoint.
7726 It includes a "struct breakpoint" as a kind of base class; users
7727 downcast to "struct breakpoint *" when needed. A breakpoint is
7728 really of this type iff its ops pointer points to
7729 CATCH_SOLIB_BREAKPOINT_OPS. */
7730
7731 struct solib_catchpoint
7732 {
7733 /* The base class. */
7734 struct breakpoint base;
7735
7736 /* True for "catch load", false for "catch unload". */
7737 unsigned char is_load;
7738
7739 /* Regular expression to match, if any. COMPILED is only valid when
7740 REGEX is non-NULL. */
7741 char *regex;
7742 regex_t compiled;
7743 };
7744
7745 static void
7746 dtor_catch_solib (struct breakpoint *b)
7747 {
7748 struct solib_catchpoint *self = (struct solib_catchpoint *) b;
7749
7750 if (self->regex)
7751 regfree (&self->compiled);
7752 xfree (self->regex);
7753
7754 base_breakpoint_ops.dtor (b);
7755 }
7756
7757 static int
7758 insert_catch_solib (struct bp_location *ignore)
7759 {
7760 return 0;
7761 }
7762
7763 static int
7764 remove_catch_solib (struct bp_location *ignore)
7765 {
7766 return 0;
7767 }
7768
7769 static int
7770 breakpoint_hit_catch_solib (const struct bp_location *bl,
7771 struct address_space *aspace,
7772 CORE_ADDR bp_addr,
7773 const struct target_waitstatus *ws)
7774 {
7775 struct solib_catchpoint *self = (struct solib_catchpoint *) bl->owner;
7776 struct breakpoint *other;
7777
7778 if (ws->kind == TARGET_WAITKIND_LOADED)
7779 return 1;
7780
7781 ALL_BREAKPOINTS (other)
7782 {
7783 struct bp_location *other_bl;
7784
7785 if (other == bl->owner)
7786 continue;
7787
7788 if (other->type != bp_shlib_event)
7789 continue;
7790
7791 if (self->base.pspace != NULL && other->pspace != self->base.pspace)
7792 continue;
7793
7794 for (other_bl = other->loc; other_bl != NULL; other_bl = other_bl->next)
7795 {
7796 if (other->ops->breakpoint_hit (other_bl, aspace, bp_addr, ws))
7797 return 1;
7798 }
7799 }
7800
7801 return 0;
7802 }
7803
7804 static void
7805 check_status_catch_solib (struct bpstats *bs)
7806 {
7807 struct solib_catchpoint *self
7808 = (struct solib_catchpoint *) bs->breakpoint_at;
7809 int ix;
7810
7811 if (self->is_load)
7812 {
7813 struct so_list *iter;
7814
7815 for (ix = 0;
7816 VEC_iterate (so_list_ptr, current_program_space->added_solibs,
7817 ix, iter);
7818 ++ix)
7819 {
7820 if (!self->regex
7821 || regexec (&self->compiled, iter->so_name, 0, NULL, 0) == 0)
7822 return;
7823 }
7824 }
7825 else
7826 {
7827 char *iter;
7828
7829 for (ix = 0;
7830 VEC_iterate (char_ptr, current_program_space->deleted_solibs,
7831 ix, iter);
7832 ++ix)
7833 {
7834 if (!self->regex
7835 || regexec (&self->compiled, iter, 0, NULL, 0) == 0)
7836 return;
7837 }
7838 }
7839
7840 bs->stop = 0;
7841 bs->print_it = print_it_noop;
7842 }
7843
7844 static enum print_stop_action
7845 print_it_catch_solib (bpstat bs)
7846 {
7847 struct breakpoint *b = bs->breakpoint_at;
7848 struct ui_out *uiout = current_uiout;
7849
7850 annotate_catchpoint (b->number);
7851 if (b->disposition == disp_del)
7852 ui_out_text (uiout, "\nTemporary catchpoint ");
7853 else
7854 ui_out_text (uiout, "\nCatchpoint ");
7855 ui_out_field_int (uiout, "bkptno", b->number);
7856 ui_out_text (uiout, "\n");
7857 if (ui_out_is_mi_like_p (uiout))
7858 ui_out_field_string (uiout, "disp", bpdisp_text (b->disposition));
7859 print_solib_event (1);
7860 return PRINT_SRC_AND_LOC;
7861 }
7862
7863 static void
7864 print_one_catch_solib (struct breakpoint *b, struct bp_location **locs)
7865 {
7866 struct solib_catchpoint *self = (struct solib_catchpoint *) b;
7867 struct value_print_options opts;
7868 struct ui_out *uiout = current_uiout;
7869 char *msg;
7870
7871 get_user_print_options (&opts);
7872 /* Field 4, the address, is omitted (which makes the columns not
7873 line up too nicely with the headers, but the effect is relatively
7874 readable). */
7875 if (opts.addressprint)
7876 {
7877 annotate_field (4);
7878 ui_out_field_skip (uiout, "addr");
7879 }
7880
7881 annotate_field (5);
7882 if (self->is_load)
7883 {
7884 if (self->regex)
7885 msg = xstrprintf (_("load of library matching %s"), self->regex);
7886 else
7887 msg = xstrdup (_("load of library"));
7888 }
7889 else
7890 {
7891 if (self->regex)
7892 msg = xstrprintf (_("unload of library matching %s"), self->regex);
7893 else
7894 msg = xstrdup (_("unload of library"));
7895 }
7896 ui_out_field_string (uiout, "what", msg);
7897 xfree (msg);
7898
7899 if (ui_out_is_mi_like_p (uiout))
7900 ui_out_field_string (uiout, "catch-type",
7901 self->is_load ? "load" : "unload");
7902 }
7903
7904 static void
7905 print_mention_catch_solib (struct breakpoint *b)
7906 {
7907 struct solib_catchpoint *self = (struct solib_catchpoint *) b;
7908
7909 printf_filtered (_("Catchpoint %d (%s)"), b->number,
7910 self->is_load ? "load" : "unload");
7911 }
7912
7913 static void
7914 print_recreate_catch_solib (struct breakpoint *b, struct ui_file *fp)
7915 {
7916 struct solib_catchpoint *self = (struct solib_catchpoint *) b;
7917
7918 fprintf_unfiltered (fp, "%s %s",
7919 b->disposition == disp_del ? "tcatch" : "catch",
7920 self->is_load ? "load" : "unload");
7921 if (self->regex)
7922 fprintf_unfiltered (fp, " %s", self->regex);
7923 fprintf_unfiltered (fp, "\n");
7924 }
7925
7926 static struct breakpoint_ops catch_solib_breakpoint_ops;
7927
7928 /* Shared helper function (MI and CLI) for creating and installing
7929 a shared object event catchpoint. If IS_LOAD is non-zero then
7930 the events to be caught are load events, otherwise they are
7931 unload events. If IS_TEMP is non-zero the catchpoint is a
7932 temporary one. If ENABLED is non-zero the catchpoint is
7933 created in an enabled state. */
7934
7935 void
7936 add_solib_catchpoint (char *arg, int is_load, int is_temp, int enabled)
7937 {
7938 struct solib_catchpoint *c;
7939 struct gdbarch *gdbarch = get_current_arch ();
7940 struct cleanup *cleanup;
7941
7942 if (!arg)
7943 arg = "";
7944 arg = skip_spaces (arg);
7945
7946 c = XCNEW (struct solib_catchpoint);
7947 cleanup = make_cleanup (xfree, c);
7948
7949 if (*arg != '\0')
7950 {
7951 int errcode;
7952
7953 errcode = regcomp (&c->compiled, arg, REG_NOSUB);
7954 if (errcode != 0)
7955 {
7956 char *err = get_regcomp_error (errcode, &c->compiled);
7957
7958 make_cleanup (xfree, err);
7959 error (_("Invalid regexp (%s): %s"), err, arg);
7960 }
7961 c->regex = xstrdup (arg);
7962 }
7963
7964 c->is_load = is_load;
7965 init_catchpoint (&c->base, gdbarch, is_temp, NULL,
7966 &catch_solib_breakpoint_ops);
7967
7968 c->base.enable_state = enabled ? bp_enabled : bp_disabled;
7969
7970 discard_cleanups (cleanup);
7971 install_breakpoint (0, &c->base, 1);
7972 }
7973
7974 /* A helper function that does all the work for "catch load" and
7975 "catch unload". */
7976
7977 static void
7978 catch_load_or_unload (char *arg, int from_tty, int is_load,
7979 struct cmd_list_element *command)
7980 {
7981 int tempflag;
7982 const int enabled = 1;
7983
7984 tempflag = get_cmd_context (command) == CATCH_TEMPORARY;
7985
7986 add_solib_catchpoint (arg, is_load, tempflag, enabled);
7987 }
7988
7989 static void
7990 catch_load_command_1 (char *arg, int from_tty,
7991 struct cmd_list_element *command)
7992 {
7993 catch_load_or_unload (arg, from_tty, 1, command);
7994 }
7995
7996 static void
7997 catch_unload_command_1 (char *arg, int from_tty,
7998 struct cmd_list_element *command)
7999 {
8000 catch_load_or_unload (arg, from_tty, 0, command);
8001 }
8002
8003 /* An instance of this type is used to represent a syscall catchpoint.
8004 It includes a "struct breakpoint" as a kind of base class; users
8005 downcast to "struct breakpoint *" when needed. A breakpoint is
8006 really of this type iff its ops pointer points to
8007 CATCH_SYSCALL_BREAKPOINT_OPS. */
8008
8009 struct syscall_catchpoint
8010 {
8011 /* The base class. */
8012 struct breakpoint base;
8013
8014 /* Syscall numbers used for the 'catch syscall' feature. If no
8015 syscall has been specified for filtering, its value is NULL.
8016 Otherwise, it holds a list of all syscalls to be caught. The
8017 list elements are allocated with xmalloc. */
8018 VEC(int) *syscalls_to_be_caught;
8019 };
8020
8021 /* Implement the "dtor" breakpoint_ops method for syscall
8022 catchpoints. */
8023
8024 static void
8025 dtor_catch_syscall (struct breakpoint *b)
8026 {
8027 struct syscall_catchpoint *c = (struct syscall_catchpoint *) b;
8028
8029 VEC_free (int, c->syscalls_to_be_caught);
8030
8031 base_breakpoint_ops.dtor (b);
8032 }
8033
8034 static const struct inferior_data *catch_syscall_inferior_data = NULL;
8035
8036 struct catch_syscall_inferior_data
8037 {
8038 /* We keep a count of the number of times the user has requested a
8039 particular syscall to be tracked, and pass this information to the
8040 target. This lets capable targets implement filtering directly. */
8041
8042 /* Number of times that "any" syscall is requested. */
8043 int any_syscall_count;
8044
8045 /* Count of each system call. */
8046 VEC(int) *syscalls_counts;
8047
8048 /* This counts all syscall catch requests, so we can readily determine
8049 if any catching is necessary. */
8050 int total_syscalls_count;
8051 };
8052
8053 static struct catch_syscall_inferior_data*
8054 get_catch_syscall_inferior_data (struct inferior *inf)
8055 {
8056 struct catch_syscall_inferior_data *inf_data;
8057
8058 inf_data = inferior_data (inf, catch_syscall_inferior_data);
8059 if (inf_data == NULL)
8060 {
8061 inf_data = XZALLOC (struct catch_syscall_inferior_data);
8062 set_inferior_data (inf, catch_syscall_inferior_data, inf_data);
8063 }
8064
8065 return inf_data;
8066 }
8067
8068 static void
8069 catch_syscall_inferior_data_cleanup (struct inferior *inf, void *arg)
8070 {
8071 xfree (arg);
8072 }
8073
8074
8075 /* Implement the "insert" breakpoint_ops method for syscall
8076 catchpoints. */
8077
8078 static int
8079 insert_catch_syscall (struct bp_location *bl)
8080 {
8081 struct syscall_catchpoint *c = (struct syscall_catchpoint *) bl->owner;
8082 struct inferior *inf = current_inferior ();
8083 struct catch_syscall_inferior_data *inf_data
8084 = get_catch_syscall_inferior_data (inf);
8085
8086 ++inf_data->total_syscalls_count;
8087 if (!c->syscalls_to_be_caught)
8088 ++inf_data->any_syscall_count;
8089 else
8090 {
8091 int i, iter;
8092
8093 for (i = 0;
8094 VEC_iterate (int, c->syscalls_to_be_caught, i, iter);
8095 i++)
8096 {
8097 int elem;
8098
8099 if (iter >= VEC_length (int, inf_data->syscalls_counts))
8100 {
8101 int old_size = VEC_length (int, inf_data->syscalls_counts);
8102 uintptr_t vec_addr_offset
8103 = old_size * ((uintptr_t) sizeof (int));
8104 uintptr_t vec_addr;
8105 VEC_safe_grow (int, inf_data->syscalls_counts, iter + 1);
8106 vec_addr = ((uintptr_t) VEC_address (int,
8107 inf_data->syscalls_counts)
8108 + vec_addr_offset);
8109 memset ((void *) vec_addr, 0,
8110 (iter + 1 - old_size) * sizeof (int));
8111 }
8112 elem = VEC_index (int, inf_data->syscalls_counts, iter);
8113 VEC_replace (int, inf_data->syscalls_counts, iter, ++elem);
8114 }
8115 }
8116
8117 return target_set_syscall_catchpoint (PIDGET (inferior_ptid),
8118 inf_data->total_syscalls_count != 0,
8119 inf_data->any_syscall_count,
8120 VEC_length (int,
8121 inf_data->syscalls_counts),
8122 VEC_address (int,
8123 inf_data->syscalls_counts));
8124 }
8125
8126 /* Implement the "remove" breakpoint_ops method for syscall
8127 catchpoints. */
8128
8129 static int
8130 remove_catch_syscall (struct bp_location *bl)
8131 {
8132 struct syscall_catchpoint *c = (struct syscall_catchpoint *) bl->owner;
8133 struct inferior *inf = current_inferior ();
8134 struct catch_syscall_inferior_data *inf_data
8135 = get_catch_syscall_inferior_data (inf);
8136
8137 --inf_data->total_syscalls_count;
8138 if (!c->syscalls_to_be_caught)
8139 --inf_data->any_syscall_count;
8140 else
8141 {
8142 int i, iter;
8143
8144 for (i = 0;
8145 VEC_iterate (int, c->syscalls_to_be_caught, i, iter);
8146 i++)
8147 {
8148 int elem;
8149 if (iter >= VEC_length (int, inf_data->syscalls_counts))
8150 /* Shouldn't happen. */
8151 continue;
8152 elem = VEC_index (int, inf_data->syscalls_counts, iter);
8153 VEC_replace (int, inf_data->syscalls_counts, iter, --elem);
8154 }
8155 }
8156
8157 return target_set_syscall_catchpoint (PIDGET (inferior_ptid),
8158 inf_data->total_syscalls_count != 0,
8159 inf_data->any_syscall_count,
8160 VEC_length (int,
8161 inf_data->syscalls_counts),
8162 VEC_address (int,
8163 inf_data->syscalls_counts));
8164 }
8165
8166 /* Implement the "breakpoint_hit" breakpoint_ops method for syscall
8167 catchpoints. */
8168
8169 static int
8170 breakpoint_hit_catch_syscall (const struct bp_location *bl,
8171 struct address_space *aspace, CORE_ADDR bp_addr,
8172 const struct target_waitstatus *ws)
8173 {
8174 /* We must check if we are catching specific syscalls in this
8175 breakpoint. If we are, then we must guarantee that the called
8176 syscall is the same syscall we are catching. */
8177 int syscall_number = 0;
8178 const struct syscall_catchpoint *c
8179 = (const struct syscall_catchpoint *) bl->owner;
8180
8181 if (ws->kind != TARGET_WAITKIND_SYSCALL_ENTRY
8182 && ws->kind != TARGET_WAITKIND_SYSCALL_RETURN)
8183 return 0;
8184
8185 syscall_number = ws->value.syscall_number;
8186
8187 /* Now, checking if the syscall is the same. */
8188 if (c->syscalls_to_be_caught)
8189 {
8190 int i, iter;
8191
8192 for (i = 0;
8193 VEC_iterate (int, c->syscalls_to_be_caught, i, iter);
8194 i++)
8195 if (syscall_number == iter)
8196 break;
8197 /* Not the same. */
8198 if (!iter)
8199 return 0;
8200 }
8201
8202 return 1;
8203 }
8204
8205 /* Implement the "print_it" breakpoint_ops method for syscall
8206 catchpoints. */
8207
8208 static enum print_stop_action
8209 print_it_catch_syscall (bpstat bs)
8210 {
8211 struct ui_out *uiout = current_uiout;
8212 struct breakpoint *b = bs->breakpoint_at;
8213 /* These are needed because we want to know in which state a
8214 syscall is. It can be in the TARGET_WAITKIND_SYSCALL_ENTRY
8215 or TARGET_WAITKIND_SYSCALL_RETURN, and depending on it we
8216 must print "called syscall" or "returned from syscall". */
8217 ptid_t ptid;
8218 struct target_waitstatus last;
8219 struct syscall s;
8220
8221 get_last_target_status (&ptid, &last);
8222
8223 get_syscall_by_number (last.value.syscall_number, &s);
8224
8225 annotate_catchpoint (b->number);
8226
8227 if (b->disposition == disp_del)
8228 ui_out_text (uiout, "\nTemporary catchpoint ");
8229 else
8230 ui_out_text (uiout, "\nCatchpoint ");
8231 if (ui_out_is_mi_like_p (uiout))
8232 {
8233 ui_out_field_string (uiout, "reason",
8234 async_reason_lookup (last.kind == TARGET_WAITKIND_SYSCALL_ENTRY
8235 ? EXEC_ASYNC_SYSCALL_ENTRY
8236 : EXEC_ASYNC_SYSCALL_RETURN));
8237 ui_out_field_string (uiout, "disp", bpdisp_text (b->disposition));
8238 }
8239 ui_out_field_int (uiout, "bkptno", b->number);
8240
8241 if (last.kind == TARGET_WAITKIND_SYSCALL_ENTRY)
8242 ui_out_text (uiout, " (call to syscall ");
8243 else
8244 ui_out_text (uiout, " (returned from syscall ");
8245
8246 if (s.name == NULL || ui_out_is_mi_like_p (uiout))
8247 ui_out_field_int (uiout, "syscall-number", last.value.syscall_number);
8248 if (s.name != NULL)
8249 ui_out_field_string (uiout, "syscall-name", s.name);
8250
8251 ui_out_text (uiout, "), ");
8252
8253 return PRINT_SRC_AND_LOC;
8254 }
8255
8256 /* Implement the "print_one" breakpoint_ops method for syscall
8257 catchpoints. */
8258
8259 static void
8260 print_one_catch_syscall (struct breakpoint *b,
8261 struct bp_location **last_loc)
8262 {
8263 struct syscall_catchpoint *c = (struct syscall_catchpoint *) b;
8264 struct value_print_options opts;
8265 struct ui_out *uiout = current_uiout;
8266
8267 get_user_print_options (&opts);
8268 /* Field 4, the address, is omitted (which makes the columns not
8269 line up too nicely with the headers, but the effect is relatively
8270 readable). */
8271 if (opts.addressprint)
8272 ui_out_field_skip (uiout, "addr");
8273 annotate_field (5);
8274
8275 if (c->syscalls_to_be_caught
8276 && VEC_length (int, c->syscalls_to_be_caught) > 1)
8277 ui_out_text (uiout, "syscalls \"");
8278 else
8279 ui_out_text (uiout, "syscall \"");
8280
8281 if (c->syscalls_to_be_caught)
8282 {
8283 int i, iter;
8284 char *text = xstrprintf ("%s", "");
8285
8286 for (i = 0;
8287 VEC_iterate (int, c->syscalls_to_be_caught, i, iter);
8288 i++)
8289 {
8290 char *x = text;
8291 struct syscall s;
8292 get_syscall_by_number (iter, &s);
8293
8294 if (s.name != NULL)
8295 text = xstrprintf ("%s%s, ", text, s.name);
8296 else
8297 text = xstrprintf ("%s%d, ", text, iter);
8298
8299 /* We have to xfree the last 'text' (now stored at 'x')
8300 because xstrprintf dynamically allocates new space for it
8301 on every call. */
8302 xfree (x);
8303 }
8304 /* Remove the last comma. */
8305 text[strlen (text) - 2] = '\0';
8306 ui_out_field_string (uiout, "what", text);
8307 }
8308 else
8309 ui_out_field_string (uiout, "what", "<any syscall>");
8310 ui_out_text (uiout, "\" ");
8311
8312 if (ui_out_is_mi_like_p (uiout))
8313 ui_out_field_string (uiout, "catch-type", "syscall");
8314 }
8315
8316 /* Implement the "print_mention" breakpoint_ops method for syscall
8317 catchpoints. */
8318
8319 static void
8320 print_mention_catch_syscall (struct breakpoint *b)
8321 {
8322 struct syscall_catchpoint *c = (struct syscall_catchpoint *) b;
8323
8324 if (c->syscalls_to_be_caught)
8325 {
8326 int i, iter;
8327
8328 if (VEC_length (int, c->syscalls_to_be_caught) > 1)
8329 printf_filtered (_("Catchpoint %d (syscalls"), b->number);
8330 else
8331 printf_filtered (_("Catchpoint %d (syscall"), b->number);
8332
8333 for (i = 0;
8334 VEC_iterate (int, c->syscalls_to_be_caught, i, iter);
8335 i++)
8336 {
8337 struct syscall s;
8338 get_syscall_by_number (iter, &s);
8339
8340 if (s.name)
8341 printf_filtered (" '%s' [%d]", s.name, s.number);
8342 else
8343 printf_filtered (" %d", s.number);
8344 }
8345 printf_filtered (")");
8346 }
8347 else
8348 printf_filtered (_("Catchpoint %d (any syscall)"),
8349 b->number);
8350 }
8351
8352 /* Implement the "print_recreate" breakpoint_ops method for syscall
8353 catchpoints. */
8354
8355 static void
8356 print_recreate_catch_syscall (struct breakpoint *b, struct ui_file *fp)
8357 {
8358 struct syscall_catchpoint *c = (struct syscall_catchpoint *) b;
8359
8360 fprintf_unfiltered (fp, "catch syscall");
8361
8362 if (c->syscalls_to_be_caught)
8363 {
8364 int i, iter;
8365
8366 for (i = 0;
8367 VEC_iterate (int, c->syscalls_to_be_caught, i, iter);
8368 i++)
8369 {
8370 struct syscall s;
8371
8372 get_syscall_by_number (iter, &s);
8373 if (s.name)
8374 fprintf_unfiltered (fp, " %s", s.name);
8375 else
8376 fprintf_unfiltered (fp, " %d", s.number);
8377 }
8378 }
8379 print_recreate_thread (b, fp);
8380 }
8381
8382 /* The breakpoint_ops structure to be used in syscall catchpoints. */
8383
8384 static struct breakpoint_ops catch_syscall_breakpoint_ops;
8385
8386 /* Returns non-zero if 'b' is a syscall catchpoint. */
8387
8388 static int
8389 syscall_catchpoint_p (struct breakpoint *b)
8390 {
8391 return (b->ops == &catch_syscall_breakpoint_ops);
8392 }
8393
8394 /* Initialize a new breakpoint of the bp_catchpoint kind. If TEMPFLAG
8395 is non-zero, then make the breakpoint temporary. If COND_STRING is
8396 not NULL, then store it in the breakpoint. OPS, if not NULL, is
8397 the breakpoint_ops structure associated to the catchpoint. */
8398
8399 void
8400 init_catchpoint (struct breakpoint *b,
8401 struct gdbarch *gdbarch, int tempflag,
8402 char *cond_string,
8403 const struct breakpoint_ops *ops)
8404 {
8405 struct symtab_and_line sal;
8406
8407 init_sal (&sal);
8408 sal.pspace = current_program_space;
8409
8410 init_raw_breakpoint (b, gdbarch, sal, bp_catchpoint, ops);
8411
8412 b->cond_string = (cond_string == NULL) ? NULL : xstrdup (cond_string);
8413 b->disposition = tempflag ? disp_del : disp_donttouch;
8414 }
8415
8416 void
8417 install_breakpoint (int internal, struct breakpoint *b, int update_gll)
8418 {
8419 add_to_breakpoint_chain (b);
8420 set_breakpoint_number (internal, b);
8421 if (is_tracepoint (b))
8422 set_tracepoint_count (breakpoint_count);
8423 if (!internal)
8424 mention (b);
8425 observer_notify_breakpoint_created (b);
8426
8427 if (update_gll)
8428 update_global_location_list (1);
8429 }
8430
8431 static void
8432 create_fork_vfork_event_catchpoint (struct gdbarch *gdbarch,
8433 int tempflag, char *cond_string,
8434 const struct breakpoint_ops *ops)
8435 {
8436 struct fork_catchpoint *c = XNEW (struct fork_catchpoint);
8437
8438 init_catchpoint (&c->base, gdbarch, tempflag, cond_string, ops);
8439
8440 c->forked_inferior_pid = null_ptid;
8441
8442 install_breakpoint (0, &c->base, 1);
8443 }
8444
8445 /* Exec catchpoints. */
8446
8447 /* An instance of this type is used to represent an exec catchpoint.
8448 It includes a "struct breakpoint" as a kind of base class; users
8449 downcast to "struct breakpoint *" when needed. A breakpoint is
8450 really of this type iff its ops pointer points to
8451 CATCH_EXEC_BREAKPOINT_OPS. */
8452
8453 struct exec_catchpoint
8454 {
8455 /* The base class. */
8456 struct breakpoint base;
8457
8458 /* Filename of a program whose exec triggered this catchpoint.
8459 This field is only valid immediately after this catchpoint has
8460 triggered. */
8461 char *exec_pathname;
8462 };
8463
8464 /* Implement the "dtor" breakpoint_ops method for exec
8465 catchpoints. */
8466
8467 static void
8468 dtor_catch_exec (struct breakpoint *b)
8469 {
8470 struct exec_catchpoint *c = (struct exec_catchpoint *) b;
8471
8472 xfree (c->exec_pathname);
8473
8474 base_breakpoint_ops.dtor (b);
8475 }
8476
8477 static int
8478 insert_catch_exec (struct bp_location *bl)
8479 {
8480 return target_insert_exec_catchpoint (PIDGET (inferior_ptid));
8481 }
8482
8483 static int
8484 remove_catch_exec (struct bp_location *bl)
8485 {
8486 return target_remove_exec_catchpoint (PIDGET (inferior_ptid));
8487 }
8488
8489 static int
8490 breakpoint_hit_catch_exec (const struct bp_location *bl,
8491 struct address_space *aspace, CORE_ADDR bp_addr,
8492 const struct target_waitstatus *ws)
8493 {
8494 struct exec_catchpoint *c = (struct exec_catchpoint *) bl->owner;
8495
8496 if (ws->kind != TARGET_WAITKIND_EXECD)
8497 return 0;
8498
8499 c->exec_pathname = xstrdup (ws->value.execd_pathname);
8500 return 1;
8501 }
8502
8503 static enum print_stop_action
8504 print_it_catch_exec (bpstat bs)
8505 {
8506 struct ui_out *uiout = current_uiout;
8507 struct breakpoint *b = bs->breakpoint_at;
8508 struct exec_catchpoint *c = (struct exec_catchpoint *) b;
8509
8510 annotate_catchpoint (b->number);
8511 if (b->disposition == disp_del)
8512 ui_out_text (uiout, "\nTemporary catchpoint ");
8513 else
8514 ui_out_text (uiout, "\nCatchpoint ");
8515 if (ui_out_is_mi_like_p (uiout))
8516 {
8517 ui_out_field_string (uiout, "reason",
8518 async_reason_lookup (EXEC_ASYNC_EXEC));
8519 ui_out_field_string (uiout, "disp", bpdisp_text (b->disposition));
8520 }
8521 ui_out_field_int (uiout, "bkptno", b->number);
8522 ui_out_text (uiout, " (exec'd ");
8523 ui_out_field_string (uiout, "new-exec", c->exec_pathname);
8524 ui_out_text (uiout, "), ");
8525
8526 return PRINT_SRC_AND_LOC;
8527 }
8528
8529 static void
8530 print_one_catch_exec (struct breakpoint *b, struct bp_location **last_loc)
8531 {
8532 struct exec_catchpoint *c = (struct exec_catchpoint *) b;
8533 struct value_print_options opts;
8534 struct ui_out *uiout = current_uiout;
8535
8536 get_user_print_options (&opts);
8537
8538 /* Field 4, the address, is omitted (which makes the columns
8539 not line up too nicely with the headers, but the effect
8540 is relatively readable). */
8541 if (opts.addressprint)
8542 ui_out_field_skip (uiout, "addr");
8543 annotate_field (5);
8544 ui_out_text (uiout, "exec");
8545 if (c->exec_pathname != NULL)
8546 {
8547 ui_out_text (uiout, ", program \"");
8548 ui_out_field_string (uiout, "what", c->exec_pathname);
8549 ui_out_text (uiout, "\" ");
8550 }
8551
8552 if (ui_out_is_mi_like_p (uiout))
8553 ui_out_field_string (uiout, "catch-type", "exec");
8554 }
8555
8556 static void
8557 print_mention_catch_exec (struct breakpoint *b)
8558 {
8559 printf_filtered (_("Catchpoint %d (exec)"), b->number);
8560 }
8561
8562 /* Implement the "print_recreate" breakpoint_ops method for exec
8563 catchpoints. */
8564
8565 static void
8566 print_recreate_catch_exec (struct breakpoint *b, struct ui_file *fp)
8567 {
8568 fprintf_unfiltered (fp, "catch exec");
8569 print_recreate_thread (b, fp);
8570 }
8571
8572 static struct breakpoint_ops catch_exec_breakpoint_ops;
8573
8574 static void
8575 create_syscall_event_catchpoint (int tempflag, VEC(int) *filter,
8576 const struct breakpoint_ops *ops)
8577 {
8578 struct syscall_catchpoint *c;
8579 struct gdbarch *gdbarch = get_current_arch ();
8580
8581 c = XNEW (struct syscall_catchpoint);
8582 init_catchpoint (&c->base, gdbarch, tempflag, NULL, ops);
8583 c->syscalls_to_be_caught = filter;
8584
8585 install_breakpoint (0, &c->base, 1);
8586 }
8587
8588 static int
8589 hw_breakpoint_used_count (void)
8590 {
8591 int i = 0;
8592 struct breakpoint *b;
8593 struct bp_location *bl;
8594
8595 ALL_BREAKPOINTS (b)
8596 {
8597 if (b->type == bp_hardware_breakpoint && breakpoint_enabled (b))
8598 for (bl = b->loc; bl; bl = bl->next)
8599 {
8600 /* Special types of hardware breakpoints may use more than
8601 one register. */
8602 i += b->ops->resources_needed (bl);
8603 }
8604 }
8605
8606 return i;
8607 }
8608
8609 /* Returns the resources B would use if it were a hardware
8610 watchpoint. */
8611
8612 static int
8613 hw_watchpoint_use_count (struct breakpoint *b)
8614 {
8615 int i = 0;
8616 struct bp_location *bl;
8617
8618 if (!breakpoint_enabled (b))
8619 return 0;
8620
8621 for (bl = b->loc; bl; bl = bl->next)
8622 {
8623 /* Special types of hardware watchpoints may use more than
8624 one register. */
8625 i += b->ops->resources_needed (bl);
8626 }
8627
8628 return i;
8629 }
8630
8631 /* Returns the sum the used resources of all hardware watchpoints of
8632 type TYPE in the breakpoints list. Also returns in OTHER_TYPE_USED
8633 the sum of the used resources of all hardware watchpoints of other
8634 types _not_ TYPE. */
8635
8636 static int
8637 hw_watchpoint_used_count_others (struct breakpoint *except,
8638 enum bptype type, int *other_type_used)
8639 {
8640 int i = 0;
8641 struct breakpoint *b;
8642
8643 *other_type_used = 0;
8644 ALL_BREAKPOINTS (b)
8645 {
8646 if (b == except)
8647 continue;
8648 if (!breakpoint_enabled (b))
8649 continue;
8650
8651 if (b->type == type)
8652 i += hw_watchpoint_use_count (b);
8653 else if (is_hardware_watchpoint (b))
8654 *other_type_used = 1;
8655 }
8656
8657 return i;
8658 }
8659
8660 void
8661 disable_watchpoints_before_interactive_call_start (void)
8662 {
8663 struct breakpoint *b;
8664
8665 ALL_BREAKPOINTS (b)
8666 {
8667 if (is_watchpoint (b) && breakpoint_enabled (b))
8668 {
8669 b->enable_state = bp_call_disabled;
8670 update_global_location_list (0);
8671 }
8672 }
8673 }
8674
8675 void
8676 enable_watchpoints_after_interactive_call_stop (void)
8677 {
8678 struct breakpoint *b;
8679
8680 ALL_BREAKPOINTS (b)
8681 {
8682 if (is_watchpoint (b) && b->enable_state == bp_call_disabled)
8683 {
8684 b->enable_state = bp_enabled;
8685 update_global_location_list (1);
8686 }
8687 }
8688 }
8689
8690 void
8691 disable_breakpoints_before_startup (void)
8692 {
8693 current_program_space->executing_startup = 1;
8694 update_global_location_list (0);
8695 }
8696
8697 void
8698 enable_breakpoints_after_startup (void)
8699 {
8700 current_program_space->executing_startup = 0;
8701 breakpoint_re_set ();
8702 }
8703
8704
8705 /* Set a breakpoint that will evaporate an end of command
8706 at address specified by SAL.
8707 Restrict it to frame FRAME if FRAME is nonzero. */
8708
8709 struct breakpoint *
8710 set_momentary_breakpoint (struct gdbarch *gdbarch, struct symtab_and_line sal,
8711 struct frame_id frame_id, enum bptype type)
8712 {
8713 struct breakpoint *b;
8714
8715 /* If FRAME_ID is valid, it should be a real frame, not an inlined or
8716 tail-called one. */
8717 gdb_assert (!frame_id_artificial_p (frame_id));
8718
8719 b = set_raw_breakpoint (gdbarch, sal, type, &momentary_breakpoint_ops);
8720 b->enable_state = bp_enabled;
8721 b->disposition = disp_donttouch;
8722 b->frame_id = frame_id;
8723
8724 /* If we're debugging a multi-threaded program, then we want
8725 momentary breakpoints to be active in only a single thread of
8726 control. */
8727 if (in_thread_list (inferior_ptid))
8728 b->thread = pid_to_thread_id (inferior_ptid);
8729
8730 update_global_location_list_nothrow (1);
8731
8732 return b;
8733 }
8734
8735 /* Make a momentary breakpoint based on the master breakpoint ORIG.
8736 The new breakpoint will have type TYPE, and use OPS as it
8737 breakpoint_ops. */
8738
8739 static struct breakpoint *
8740 momentary_breakpoint_from_master (struct breakpoint *orig,
8741 enum bptype type,
8742 const struct breakpoint_ops *ops)
8743 {
8744 struct breakpoint *copy;
8745
8746 copy = set_raw_breakpoint_without_location (orig->gdbarch, type, ops);
8747 copy->loc = allocate_bp_location (copy);
8748 set_breakpoint_location_function (copy->loc, 1);
8749
8750 copy->loc->gdbarch = orig->loc->gdbarch;
8751 copy->loc->requested_address = orig->loc->requested_address;
8752 copy->loc->address = orig->loc->address;
8753 copy->loc->section = orig->loc->section;
8754 copy->loc->pspace = orig->loc->pspace;
8755 copy->loc->probe = orig->loc->probe;
8756 copy->loc->line_number = orig->loc->line_number;
8757 copy->loc->symtab = orig->loc->symtab;
8758 copy->frame_id = orig->frame_id;
8759 copy->thread = orig->thread;
8760 copy->pspace = orig->pspace;
8761
8762 copy->enable_state = bp_enabled;
8763 copy->disposition = disp_donttouch;
8764 copy->number = internal_breakpoint_number--;
8765
8766 update_global_location_list_nothrow (0);
8767 return copy;
8768 }
8769
8770 /* Make a deep copy of momentary breakpoint ORIG. Returns NULL if
8771 ORIG is NULL. */
8772
8773 struct breakpoint *
8774 clone_momentary_breakpoint (struct breakpoint *orig)
8775 {
8776 /* If there's nothing to clone, then return nothing. */
8777 if (orig == NULL)
8778 return NULL;
8779
8780 return momentary_breakpoint_from_master (orig, orig->type, orig->ops);
8781 }
8782
8783 struct breakpoint *
8784 set_momentary_breakpoint_at_pc (struct gdbarch *gdbarch, CORE_ADDR pc,
8785 enum bptype type)
8786 {
8787 struct symtab_and_line sal;
8788
8789 sal = find_pc_line (pc, 0);
8790 sal.pc = pc;
8791 sal.section = find_pc_overlay (pc);
8792 sal.explicit_pc = 1;
8793
8794 return set_momentary_breakpoint (gdbarch, sal, null_frame_id, type);
8795 }
8796 \f
8797
8798 /* Tell the user we have just set a breakpoint B. */
8799
8800 static void
8801 mention (struct breakpoint *b)
8802 {
8803 b->ops->print_mention (b);
8804 if (ui_out_is_mi_like_p (current_uiout))
8805 return;
8806 printf_filtered ("\n");
8807 }
8808 \f
8809
8810 static struct bp_location *
8811 add_location_to_breakpoint (struct breakpoint *b,
8812 const struct symtab_and_line *sal)
8813 {
8814 struct bp_location *loc, **tmp;
8815 CORE_ADDR adjusted_address;
8816 struct gdbarch *loc_gdbarch = get_sal_arch (*sal);
8817
8818 if (loc_gdbarch == NULL)
8819 loc_gdbarch = b->gdbarch;
8820
8821 /* Adjust the breakpoint's address prior to allocating a location.
8822 Once we call allocate_bp_location(), that mostly uninitialized
8823 location will be placed on the location chain. Adjustment of the
8824 breakpoint may cause target_read_memory() to be called and we do
8825 not want its scan of the location chain to find a breakpoint and
8826 location that's only been partially initialized. */
8827 adjusted_address = adjust_breakpoint_address (loc_gdbarch,
8828 sal->pc, b->type);
8829
8830 loc = allocate_bp_location (b);
8831 for (tmp = &(b->loc); *tmp != NULL; tmp = &((*tmp)->next))
8832 ;
8833 *tmp = loc;
8834
8835 loc->requested_address = sal->pc;
8836 loc->address = adjusted_address;
8837 loc->pspace = sal->pspace;
8838 loc->probe = sal->probe;
8839 gdb_assert (loc->pspace != NULL);
8840 loc->section = sal->section;
8841 loc->gdbarch = loc_gdbarch;
8842 loc->line_number = sal->line;
8843 loc->symtab = sal->symtab;
8844
8845 set_breakpoint_location_function (loc,
8846 sal->explicit_pc || sal->explicit_line);
8847 return loc;
8848 }
8849 \f
8850
8851 /* Return 1 if LOC is pointing to a permanent breakpoint,
8852 return 0 otherwise. */
8853
8854 static int
8855 bp_loc_is_permanent (struct bp_location *loc)
8856 {
8857 int len;
8858 CORE_ADDR addr;
8859 const gdb_byte *bpoint;
8860 gdb_byte *target_mem;
8861 struct cleanup *cleanup;
8862 int retval = 0;
8863
8864 gdb_assert (loc != NULL);
8865
8866 addr = loc->address;
8867 bpoint = gdbarch_breakpoint_from_pc (loc->gdbarch, &addr, &len);
8868
8869 /* Software breakpoints unsupported? */
8870 if (bpoint == NULL)
8871 return 0;
8872
8873 target_mem = alloca (len);
8874
8875 /* Enable the automatic memory restoration from breakpoints while
8876 we read the memory. Otherwise we could say about our temporary
8877 breakpoints they are permanent. */
8878 cleanup = save_current_space_and_thread ();
8879
8880 switch_to_program_space_and_thread (loc->pspace);
8881 make_show_memory_breakpoints_cleanup (0);
8882
8883 if (target_read_memory (loc->address, target_mem, len) == 0
8884 && memcmp (target_mem, bpoint, len) == 0)
8885 retval = 1;
8886
8887 do_cleanups (cleanup);
8888
8889 return retval;
8890 }
8891
8892 /* Build a command list for the dprintf corresponding to the current
8893 settings of the dprintf style options. */
8894
8895 static void
8896 update_dprintf_command_list (struct breakpoint *b)
8897 {
8898 char *dprintf_args = b->extra_string;
8899 char *printf_line = NULL;
8900
8901 if (!dprintf_args)
8902 return;
8903
8904 dprintf_args = skip_spaces (dprintf_args);
8905
8906 /* Allow a comma, as it may have terminated a location, but don't
8907 insist on it. */
8908 if (*dprintf_args == ',')
8909 ++dprintf_args;
8910 dprintf_args = skip_spaces (dprintf_args);
8911
8912 if (*dprintf_args != '"')
8913 error (_("Bad format string, missing '\"'."));
8914
8915 if (strcmp (dprintf_style, dprintf_style_gdb) == 0)
8916 printf_line = xstrprintf ("printf %s", dprintf_args);
8917 else if (strcmp (dprintf_style, dprintf_style_call) == 0)
8918 {
8919 if (!dprintf_function)
8920 error (_("No function supplied for dprintf call"));
8921
8922 if (dprintf_channel && strlen (dprintf_channel) > 0)
8923 printf_line = xstrprintf ("call (void) %s (%s,%s)",
8924 dprintf_function,
8925 dprintf_channel,
8926 dprintf_args);
8927 else
8928 printf_line = xstrprintf ("call (void) %s (%s)",
8929 dprintf_function,
8930 dprintf_args);
8931 }
8932 else if (strcmp (dprintf_style, dprintf_style_agent) == 0)
8933 {
8934 if (target_can_run_breakpoint_commands ())
8935 printf_line = xstrprintf ("agent-printf %s", dprintf_args);
8936 else
8937 {
8938 warning (_("Target cannot run dprintf commands, falling back to GDB printf"));
8939 printf_line = xstrprintf ("printf %s", dprintf_args);
8940 }
8941 }
8942 else
8943 internal_error (__FILE__, __LINE__,
8944 _("Invalid dprintf style."));
8945
8946 gdb_assert (printf_line != NULL);
8947 /* Manufacture a printf/continue sequence. */
8948 {
8949 struct command_line *printf_cmd_line, *cont_cmd_line = NULL;
8950
8951 if (strcmp (dprintf_style, dprintf_style_agent) != 0)
8952 {
8953 cont_cmd_line = xmalloc (sizeof (struct command_line));
8954 cont_cmd_line->control_type = simple_control;
8955 cont_cmd_line->body_count = 0;
8956 cont_cmd_line->body_list = NULL;
8957 cont_cmd_line->next = NULL;
8958 cont_cmd_line->line = xstrdup ("continue");
8959 }
8960
8961 printf_cmd_line = xmalloc (sizeof (struct command_line));
8962 printf_cmd_line->control_type = simple_control;
8963 printf_cmd_line->body_count = 0;
8964 printf_cmd_line->body_list = NULL;
8965 printf_cmd_line->next = cont_cmd_line;
8966 printf_cmd_line->line = printf_line;
8967
8968 breakpoint_set_commands (b, printf_cmd_line);
8969 }
8970 }
8971
8972 /* Update all dprintf commands, making their command lists reflect
8973 current style settings. */
8974
8975 static void
8976 update_dprintf_commands (char *args, int from_tty,
8977 struct cmd_list_element *c)
8978 {
8979 struct breakpoint *b;
8980
8981 ALL_BREAKPOINTS (b)
8982 {
8983 if (b->type == bp_dprintf)
8984 update_dprintf_command_list (b);
8985 }
8986 }
8987
8988 /* Create a breakpoint with SAL as location. Use ADDR_STRING
8989 as textual description of the location, and COND_STRING
8990 as condition expression. */
8991
8992 static void
8993 init_breakpoint_sal (struct breakpoint *b, struct gdbarch *gdbarch,
8994 struct symtabs_and_lines sals, char *addr_string,
8995 char *filter, char *cond_string,
8996 char *extra_string,
8997 enum bptype type, enum bpdisp disposition,
8998 int thread, int task, int ignore_count,
8999 const struct breakpoint_ops *ops, int from_tty,
9000 int enabled, int internal, unsigned flags,
9001 int display_canonical)
9002 {
9003 int i;
9004
9005 if (type == bp_hardware_breakpoint)
9006 {
9007 int target_resources_ok;
9008
9009 i = hw_breakpoint_used_count ();
9010 target_resources_ok =
9011 target_can_use_hardware_watchpoint (bp_hardware_breakpoint,
9012 i + 1, 0);
9013 if (target_resources_ok == 0)
9014 error (_("No hardware breakpoint support in the target."));
9015 else if (target_resources_ok < 0)
9016 error (_("Hardware breakpoints used exceeds limit."));
9017 }
9018
9019 gdb_assert (sals.nelts > 0);
9020
9021 for (i = 0; i < sals.nelts; ++i)
9022 {
9023 struct symtab_and_line sal = sals.sals[i];
9024 struct bp_location *loc;
9025
9026 if (from_tty)
9027 {
9028 struct gdbarch *loc_gdbarch = get_sal_arch (sal);
9029 if (!loc_gdbarch)
9030 loc_gdbarch = gdbarch;
9031
9032 describe_other_breakpoints (loc_gdbarch,
9033 sal.pspace, sal.pc, sal.section, thread);
9034 }
9035
9036 if (i == 0)
9037 {
9038 init_raw_breakpoint (b, gdbarch, sal, type, ops);
9039 b->thread = thread;
9040 b->task = task;
9041
9042 b->cond_string = cond_string;
9043 b->extra_string = extra_string;
9044 b->ignore_count = ignore_count;
9045 b->enable_state = enabled ? bp_enabled : bp_disabled;
9046 b->disposition = disposition;
9047
9048 if ((flags & CREATE_BREAKPOINT_FLAGS_INSERTED) != 0)
9049 b->loc->inserted = 1;
9050
9051 if (type == bp_static_tracepoint)
9052 {
9053 struct tracepoint *t = (struct tracepoint *) b;
9054 struct static_tracepoint_marker marker;
9055
9056 if (strace_marker_p (b))
9057 {
9058 /* We already know the marker exists, otherwise, we
9059 wouldn't see a sal for it. */
9060 char *p = &addr_string[3];
9061 char *endp;
9062 char *marker_str;
9063
9064 p = skip_spaces (p);
9065
9066 endp = skip_to_space (p);
9067
9068 marker_str = savestring (p, endp - p);
9069 t->static_trace_marker_id = marker_str;
9070
9071 printf_filtered (_("Probed static tracepoint "
9072 "marker \"%s\"\n"),
9073 t->static_trace_marker_id);
9074 }
9075 else if (target_static_tracepoint_marker_at (sal.pc, &marker))
9076 {
9077 t->static_trace_marker_id = xstrdup (marker.str_id);
9078 release_static_tracepoint_marker (&marker);
9079
9080 printf_filtered (_("Probed static tracepoint "
9081 "marker \"%s\"\n"),
9082 t->static_trace_marker_id);
9083 }
9084 else
9085 warning (_("Couldn't determine the static "
9086 "tracepoint marker to probe"));
9087 }
9088
9089 loc = b->loc;
9090 }
9091 else
9092 {
9093 loc = add_location_to_breakpoint (b, &sal);
9094 if ((flags & CREATE_BREAKPOINT_FLAGS_INSERTED) != 0)
9095 loc->inserted = 1;
9096 }
9097
9098 if (bp_loc_is_permanent (loc))
9099 make_breakpoint_permanent (b);
9100
9101 if (b->cond_string)
9102 {
9103 char *arg = b->cond_string;
9104 loc->cond = parse_exp_1 (&arg, loc->address,
9105 block_for_pc (loc->address), 0);
9106 if (*arg)
9107 error (_("Garbage '%s' follows condition"), arg);
9108 }
9109
9110 /* Dynamic printf requires and uses additional arguments on the
9111 command line, otherwise it's an error. */
9112 if (type == bp_dprintf)
9113 {
9114 if (b->extra_string)
9115 update_dprintf_command_list (b);
9116 else
9117 error (_("Format string required"));
9118 }
9119 else if (b->extra_string)
9120 error (_("Garbage '%s' at end of command"), b->extra_string);
9121 }
9122
9123 b->display_canonical = display_canonical;
9124 if (addr_string)
9125 b->addr_string = addr_string;
9126 else
9127 /* addr_string has to be used or breakpoint_re_set will delete
9128 me. */
9129 b->addr_string
9130 = xstrprintf ("*%s", paddress (b->loc->gdbarch, b->loc->address));
9131 b->filter = filter;
9132 }
9133
9134 static void
9135 create_breakpoint_sal (struct gdbarch *gdbarch,
9136 struct symtabs_and_lines sals, char *addr_string,
9137 char *filter, char *cond_string,
9138 char *extra_string,
9139 enum bptype type, enum bpdisp disposition,
9140 int thread, int task, int ignore_count,
9141 const struct breakpoint_ops *ops, int from_tty,
9142 int enabled, int internal, unsigned flags,
9143 int display_canonical)
9144 {
9145 struct breakpoint *b;
9146 struct cleanup *old_chain;
9147
9148 if (is_tracepoint_type (type))
9149 {
9150 struct tracepoint *t;
9151
9152 t = XCNEW (struct tracepoint);
9153 b = &t->base;
9154 }
9155 else
9156 b = XNEW (struct breakpoint);
9157
9158 old_chain = make_cleanup (xfree, b);
9159
9160 init_breakpoint_sal (b, gdbarch,
9161 sals, addr_string,
9162 filter, cond_string, extra_string,
9163 type, disposition,
9164 thread, task, ignore_count,
9165 ops, from_tty,
9166 enabled, internal, flags,
9167 display_canonical);
9168 discard_cleanups (old_chain);
9169
9170 install_breakpoint (internal, b, 0);
9171 }
9172
9173 /* Add SALS.nelts breakpoints to the breakpoint table. For each
9174 SALS.sal[i] breakpoint, include the corresponding ADDR_STRING[i]
9175 value. COND_STRING, if not NULL, specified the condition to be
9176 used for all breakpoints. Essentially the only case where
9177 SALS.nelts is not 1 is when we set a breakpoint on an overloaded
9178 function. In that case, it's still not possible to specify
9179 separate conditions for different overloaded functions, so
9180 we take just a single condition string.
9181
9182 NOTE: If the function succeeds, the caller is expected to cleanup
9183 the arrays ADDR_STRING, COND_STRING, and SALS (but not the
9184 array contents). If the function fails (error() is called), the
9185 caller is expected to cleanups both the ADDR_STRING, COND_STRING,
9186 COND and SALS arrays and each of those arrays contents. */
9187
9188 static void
9189 create_breakpoints_sal (struct gdbarch *gdbarch,
9190 struct linespec_result *canonical,
9191 char *cond_string, char *extra_string,
9192 enum bptype type, enum bpdisp disposition,
9193 int thread, int task, int ignore_count,
9194 const struct breakpoint_ops *ops, int from_tty,
9195 int enabled, int internal, unsigned flags)
9196 {
9197 int i;
9198 struct linespec_sals *lsal;
9199
9200 if (canonical->pre_expanded)
9201 gdb_assert (VEC_length (linespec_sals, canonical->sals) == 1);
9202
9203 for (i = 0; VEC_iterate (linespec_sals, canonical->sals, i, lsal); ++i)
9204 {
9205 /* Note that 'addr_string' can be NULL in the case of a plain
9206 'break', without arguments. */
9207 char *addr_string = (canonical->addr_string
9208 ? xstrdup (canonical->addr_string)
9209 : NULL);
9210 char *filter_string = lsal->canonical ? xstrdup (lsal->canonical) : NULL;
9211 struct cleanup *inner = make_cleanup (xfree, addr_string);
9212
9213 make_cleanup (xfree, filter_string);
9214 create_breakpoint_sal (gdbarch, lsal->sals,
9215 addr_string,
9216 filter_string,
9217 cond_string, extra_string,
9218 type, disposition,
9219 thread, task, ignore_count, ops,
9220 from_tty, enabled, internal, flags,
9221 canonical->special_display);
9222 discard_cleanups (inner);
9223 }
9224 }
9225
9226 /* Parse ADDRESS which is assumed to be a SAL specification possibly
9227 followed by conditionals. On return, SALS contains an array of SAL
9228 addresses found. ADDR_STRING contains a vector of (canonical)
9229 address strings. ADDRESS points to the end of the SAL.
9230
9231 The array and the line spec strings are allocated on the heap, it is
9232 the caller's responsibility to free them. */
9233
9234 static void
9235 parse_breakpoint_sals (char **address,
9236 struct linespec_result *canonical)
9237 {
9238 /* If no arg given, or if first arg is 'if ', use the default
9239 breakpoint. */
9240 if ((*address) == NULL
9241 || (strncmp ((*address), "if", 2) == 0 && isspace ((*address)[2])))
9242 {
9243 /* The last displayed codepoint, if it's valid, is our default breakpoint
9244 address. */
9245 if (last_displayed_sal_is_valid ())
9246 {
9247 struct linespec_sals lsal;
9248 struct symtab_and_line sal;
9249 CORE_ADDR pc;
9250
9251 init_sal (&sal); /* Initialize to zeroes. */
9252 lsal.sals.sals = (struct symtab_and_line *)
9253 xmalloc (sizeof (struct symtab_and_line));
9254
9255 /* Set sal's pspace, pc, symtab, and line to the values
9256 corresponding to the last call to print_frame_info.
9257 Be sure to reinitialize LINE with NOTCURRENT == 0
9258 as the breakpoint line number is inappropriate otherwise.
9259 find_pc_line would adjust PC, re-set it back. */
9260 get_last_displayed_sal (&sal);
9261 pc = sal.pc;
9262 sal = find_pc_line (pc, 0);
9263
9264 /* "break" without arguments is equivalent to "break *PC"
9265 where PC is the last displayed codepoint's address. So
9266 make sure to set sal.explicit_pc to prevent GDB from
9267 trying to expand the list of sals to include all other
9268 instances with the same symtab and line. */
9269 sal.pc = pc;
9270 sal.explicit_pc = 1;
9271
9272 lsal.sals.sals[0] = sal;
9273 lsal.sals.nelts = 1;
9274 lsal.canonical = NULL;
9275
9276 VEC_safe_push (linespec_sals, canonical->sals, &lsal);
9277 }
9278 else
9279 error (_("No default breakpoint address now."));
9280 }
9281 else
9282 {
9283 struct symtab_and_line cursal = get_current_source_symtab_and_line ();
9284
9285 /* Force almost all breakpoints to be in terms of the
9286 current_source_symtab (which is decode_line_1's default).
9287 This should produce the results we want almost all of the
9288 time while leaving default_breakpoint_* alone.
9289
9290 ObjC: However, don't match an Objective-C method name which
9291 may have a '+' or '-' succeeded by a '['. */
9292 if (last_displayed_sal_is_valid ()
9293 && (!cursal.symtab
9294 || ((strchr ("+-", (*address)[0]) != NULL)
9295 && ((*address)[1] != '['))))
9296 decode_line_full (address, DECODE_LINE_FUNFIRSTLINE,
9297 get_last_displayed_symtab (),
9298 get_last_displayed_line (),
9299 canonical, NULL, NULL);
9300 else
9301 decode_line_full (address, DECODE_LINE_FUNFIRSTLINE,
9302 cursal.symtab, cursal.line, canonical, NULL, NULL);
9303 }
9304 }
9305
9306
9307 /* Convert each SAL into a real PC. Verify that the PC can be
9308 inserted as a breakpoint. If it can't throw an error. */
9309
9310 static void
9311 breakpoint_sals_to_pc (struct symtabs_and_lines *sals)
9312 {
9313 int i;
9314
9315 for (i = 0; i < sals->nelts; i++)
9316 resolve_sal_pc (&sals->sals[i]);
9317 }
9318
9319 /* Fast tracepoints may have restrictions on valid locations. For
9320 instance, a fast tracepoint using a jump instead of a trap will
9321 likely have to overwrite more bytes than a trap would, and so can
9322 only be placed where the instruction is longer than the jump, or a
9323 multi-instruction sequence does not have a jump into the middle of
9324 it, etc. */
9325
9326 static void
9327 check_fast_tracepoint_sals (struct gdbarch *gdbarch,
9328 struct symtabs_and_lines *sals)
9329 {
9330 int i, rslt;
9331 struct symtab_and_line *sal;
9332 char *msg;
9333 struct cleanup *old_chain;
9334
9335 for (i = 0; i < sals->nelts; i++)
9336 {
9337 struct gdbarch *sarch;
9338
9339 sal = &sals->sals[i];
9340
9341 sarch = get_sal_arch (*sal);
9342 /* We fall back to GDBARCH if there is no architecture
9343 associated with SAL. */
9344 if (sarch == NULL)
9345 sarch = gdbarch;
9346 rslt = gdbarch_fast_tracepoint_valid_at (sarch, sal->pc,
9347 NULL, &msg);
9348 old_chain = make_cleanup (xfree, msg);
9349
9350 if (!rslt)
9351 error (_("May not have a fast tracepoint at 0x%s%s"),
9352 paddress (sarch, sal->pc), (msg ? msg : ""));
9353
9354 do_cleanups (old_chain);
9355 }
9356 }
9357
9358 /* Issue an invalid thread ID error. */
9359
9360 static void ATTRIBUTE_NORETURN
9361 invalid_thread_id_error (int id)
9362 {
9363 error (_("Unknown thread %d."), id);
9364 }
9365
9366 /* Given TOK, a string specification of condition and thread, as
9367 accepted by the 'break' command, extract the condition
9368 string and thread number and set *COND_STRING and *THREAD.
9369 PC identifies the context at which the condition should be parsed.
9370 If no condition is found, *COND_STRING is set to NULL.
9371 If no thread is found, *THREAD is set to -1. */
9372
9373 static void
9374 find_condition_and_thread (char *tok, CORE_ADDR pc,
9375 char **cond_string, int *thread, int *task,
9376 char **rest)
9377 {
9378 *cond_string = NULL;
9379 *thread = -1;
9380 *task = 0;
9381 *rest = NULL;
9382
9383 while (tok && *tok)
9384 {
9385 char *end_tok;
9386 int toklen;
9387 char *cond_start = NULL;
9388 char *cond_end = NULL;
9389
9390 tok = skip_spaces (tok);
9391
9392 if ((*tok == '"' || *tok == ',') && rest)
9393 {
9394 *rest = savestring (tok, strlen (tok));
9395 return;
9396 }
9397
9398 end_tok = skip_to_space (tok);
9399
9400 toklen = end_tok - tok;
9401
9402 if (toklen >= 1 && strncmp (tok, "if", toklen) == 0)
9403 {
9404 struct expression *expr;
9405
9406 tok = cond_start = end_tok + 1;
9407 expr = parse_exp_1 (&tok, pc, block_for_pc (pc), 0);
9408 xfree (expr);
9409 cond_end = tok;
9410 *cond_string = savestring (cond_start, cond_end - cond_start);
9411 }
9412 else if (toklen >= 1 && strncmp (tok, "thread", toklen) == 0)
9413 {
9414 char *tmptok;
9415
9416 tok = end_tok + 1;
9417 tmptok = tok;
9418 *thread = strtol (tok, &tok, 0);
9419 if (tok == tmptok)
9420 error (_("Junk after thread keyword."));
9421 if (!valid_thread_id (*thread))
9422 invalid_thread_id_error (*thread);
9423 }
9424 else if (toklen >= 1 && strncmp (tok, "task", toklen) == 0)
9425 {
9426 char *tmptok;
9427
9428 tok = end_tok + 1;
9429 tmptok = tok;
9430 *task = strtol (tok, &tok, 0);
9431 if (tok == tmptok)
9432 error (_("Junk after task keyword."));
9433 if (!valid_task_id (*task))
9434 error (_("Unknown task %d."), *task);
9435 }
9436 else if (rest)
9437 {
9438 *rest = savestring (tok, strlen (tok));
9439 return;
9440 }
9441 else
9442 error (_("Junk at end of arguments."));
9443 }
9444 }
9445
9446 /* Decode a static tracepoint marker spec. */
9447
9448 static struct symtabs_and_lines
9449 decode_static_tracepoint_spec (char **arg_p)
9450 {
9451 VEC(static_tracepoint_marker_p) *markers = NULL;
9452 struct symtabs_and_lines sals;
9453 struct cleanup *old_chain;
9454 char *p = &(*arg_p)[3];
9455 char *endp;
9456 char *marker_str;
9457 int i;
9458
9459 p = skip_spaces (p);
9460
9461 endp = skip_to_space (p);
9462
9463 marker_str = savestring (p, endp - p);
9464 old_chain = make_cleanup (xfree, marker_str);
9465
9466 markers = target_static_tracepoint_markers_by_strid (marker_str);
9467 if (VEC_empty(static_tracepoint_marker_p, markers))
9468 error (_("No known static tracepoint marker named %s"), marker_str);
9469
9470 sals.nelts = VEC_length(static_tracepoint_marker_p, markers);
9471 sals.sals = xmalloc (sizeof *sals.sals * sals.nelts);
9472
9473 for (i = 0; i < sals.nelts; i++)
9474 {
9475 struct static_tracepoint_marker *marker;
9476
9477 marker = VEC_index (static_tracepoint_marker_p, markers, i);
9478
9479 init_sal (&sals.sals[i]);
9480
9481 sals.sals[i] = find_pc_line (marker->address, 0);
9482 sals.sals[i].pc = marker->address;
9483
9484 release_static_tracepoint_marker (marker);
9485 }
9486
9487 do_cleanups (old_chain);
9488
9489 *arg_p = endp;
9490 return sals;
9491 }
9492
9493 /* Set a breakpoint. This function is shared between CLI and MI
9494 functions for setting a breakpoint. This function has two major
9495 modes of operations, selected by the PARSE_CONDITION_AND_THREAD
9496 parameter. If non-zero, the function will parse arg, extracting
9497 breakpoint location, address and thread. Otherwise, ARG is just
9498 the location of breakpoint, with condition and thread specified by
9499 the COND_STRING and THREAD parameters. If INTERNAL is non-zero,
9500 the breakpoint number will be allocated from the internal
9501 breakpoint count. Returns true if any breakpoint was created;
9502 false otherwise. */
9503
9504 int
9505 create_breakpoint (struct gdbarch *gdbarch,
9506 char *arg, char *cond_string,
9507 int thread, char *extra_string,
9508 int parse_condition_and_thread,
9509 int tempflag, enum bptype type_wanted,
9510 int ignore_count,
9511 enum auto_boolean pending_break_support,
9512 const struct breakpoint_ops *ops,
9513 int from_tty, int enabled, int internal,
9514 unsigned flags)
9515 {
9516 volatile struct gdb_exception e;
9517 char *copy_arg = NULL;
9518 char *addr_start = arg;
9519 struct linespec_result canonical;
9520 struct cleanup *old_chain;
9521 struct cleanup *bkpt_chain = NULL;
9522 int pending = 0;
9523 int task = 0;
9524 int prev_bkpt_count = breakpoint_count;
9525
9526 gdb_assert (ops != NULL);
9527
9528 init_linespec_result (&canonical);
9529
9530 TRY_CATCH (e, RETURN_MASK_ALL)
9531 {
9532 ops->create_sals_from_address (&arg, &canonical, type_wanted,
9533 addr_start, &copy_arg);
9534 }
9535
9536 /* If caller is interested in rc value from parse, set value. */
9537 switch (e.reason)
9538 {
9539 case GDB_NO_ERROR:
9540 if (VEC_empty (linespec_sals, canonical.sals))
9541 return 0;
9542 break;
9543 case RETURN_ERROR:
9544 switch (e.error)
9545 {
9546 case NOT_FOUND_ERROR:
9547
9548 /* If pending breakpoint support is turned off, throw
9549 error. */
9550
9551 if (pending_break_support == AUTO_BOOLEAN_FALSE)
9552 throw_exception (e);
9553
9554 exception_print (gdb_stderr, e);
9555
9556 /* If pending breakpoint support is auto query and the user
9557 selects no, then simply return the error code. */
9558 if (pending_break_support == AUTO_BOOLEAN_AUTO
9559 && !nquery (_("Make %s pending on future shared library load? "),
9560 bptype_string (type_wanted)))
9561 return 0;
9562
9563 /* At this point, either the user was queried about setting
9564 a pending breakpoint and selected yes, or pending
9565 breakpoint behavior is on and thus a pending breakpoint
9566 is defaulted on behalf of the user. */
9567 {
9568 struct linespec_sals lsal;
9569
9570 copy_arg = xstrdup (addr_start);
9571 lsal.canonical = xstrdup (copy_arg);
9572 lsal.sals.nelts = 1;
9573 lsal.sals.sals = XNEW (struct symtab_and_line);
9574 init_sal (&lsal.sals.sals[0]);
9575 pending = 1;
9576 VEC_safe_push (linespec_sals, canonical.sals, &lsal);
9577 }
9578 break;
9579 default:
9580 throw_exception (e);
9581 }
9582 break;
9583 default:
9584 throw_exception (e);
9585 }
9586
9587 /* Create a chain of things that always need to be cleaned up. */
9588 old_chain = make_cleanup_destroy_linespec_result (&canonical);
9589
9590 /* ----------------------------- SNIP -----------------------------
9591 Anything added to the cleanup chain beyond this point is assumed
9592 to be part of a breakpoint. If the breakpoint create succeeds
9593 then the memory is not reclaimed. */
9594 bkpt_chain = make_cleanup (null_cleanup, 0);
9595
9596 /* Resolve all line numbers to PC's and verify that the addresses
9597 are ok for the target. */
9598 if (!pending)
9599 {
9600 int ix;
9601 struct linespec_sals *iter;
9602
9603 for (ix = 0; VEC_iterate (linespec_sals, canonical.sals, ix, iter); ++ix)
9604 breakpoint_sals_to_pc (&iter->sals);
9605 }
9606
9607 /* Fast tracepoints may have additional restrictions on location. */
9608 if (!pending && type_wanted == bp_fast_tracepoint)
9609 {
9610 int ix;
9611 struct linespec_sals *iter;
9612
9613 for (ix = 0; VEC_iterate (linespec_sals, canonical.sals, ix, iter); ++ix)
9614 check_fast_tracepoint_sals (gdbarch, &iter->sals);
9615 }
9616
9617 /* Verify that condition can be parsed, before setting any
9618 breakpoints. Allocate a separate condition expression for each
9619 breakpoint. */
9620 if (!pending)
9621 {
9622 struct linespec_sals *lsal;
9623
9624 lsal = VEC_index (linespec_sals, canonical.sals, 0);
9625
9626 if (parse_condition_and_thread)
9627 {
9628 char *rest;
9629 /* Here we only parse 'arg' to separate condition
9630 from thread number, so parsing in context of first
9631 sal is OK. When setting the breakpoint we'll
9632 re-parse it in context of each sal. */
9633
9634 find_condition_and_thread (arg, lsal->sals.sals[0].pc, &cond_string,
9635 &thread, &task, &rest);
9636 if (cond_string)
9637 make_cleanup (xfree, cond_string);
9638 if (rest)
9639 make_cleanup (xfree, rest);
9640 if (rest)
9641 extra_string = rest;
9642 }
9643 else
9644 {
9645 /* Create a private copy of condition string. */
9646 if (cond_string)
9647 {
9648 cond_string = xstrdup (cond_string);
9649 make_cleanup (xfree, cond_string);
9650 }
9651 /* Create a private copy of any extra string. */
9652 if (extra_string)
9653 {
9654 extra_string = xstrdup (extra_string);
9655 make_cleanup (xfree, extra_string);
9656 }
9657 }
9658
9659 ops->create_breakpoints_sal (gdbarch, &canonical, lsal,
9660 cond_string, extra_string, type_wanted,
9661 tempflag ? disp_del : disp_donttouch,
9662 thread, task, ignore_count, ops,
9663 from_tty, enabled, internal, flags);
9664 }
9665 else
9666 {
9667 struct breakpoint *b;
9668
9669 make_cleanup (xfree, copy_arg);
9670
9671 if (is_tracepoint_type (type_wanted))
9672 {
9673 struct tracepoint *t;
9674
9675 t = XCNEW (struct tracepoint);
9676 b = &t->base;
9677 }
9678 else
9679 b = XNEW (struct breakpoint);
9680
9681 init_raw_breakpoint_without_location (b, gdbarch, type_wanted, ops);
9682
9683 b->addr_string = copy_arg;
9684 if (parse_condition_and_thread)
9685 b->cond_string = NULL;
9686 else
9687 {
9688 /* Create a private copy of condition string. */
9689 if (cond_string)
9690 {
9691 cond_string = xstrdup (cond_string);
9692 make_cleanup (xfree, cond_string);
9693 }
9694 b->cond_string = cond_string;
9695 }
9696 b->extra_string = NULL;
9697 b->ignore_count = ignore_count;
9698 b->disposition = tempflag ? disp_del : disp_donttouch;
9699 b->condition_not_parsed = 1;
9700 b->enable_state = enabled ? bp_enabled : bp_disabled;
9701 if ((type_wanted != bp_breakpoint
9702 && type_wanted != bp_hardware_breakpoint) || thread != -1)
9703 b->pspace = current_program_space;
9704
9705 install_breakpoint (internal, b, 0);
9706 }
9707
9708 if (VEC_length (linespec_sals, canonical.sals) > 1)
9709 {
9710 warning (_("Multiple breakpoints were set.\nUse the "
9711 "\"delete\" command to delete unwanted breakpoints."));
9712 prev_breakpoint_count = prev_bkpt_count;
9713 }
9714
9715 /* That's it. Discard the cleanups for data inserted into the
9716 breakpoint. */
9717 discard_cleanups (bkpt_chain);
9718 /* But cleanup everything else. */
9719 do_cleanups (old_chain);
9720
9721 /* error call may happen here - have BKPT_CHAIN already discarded. */
9722 update_global_location_list (1);
9723
9724 return 1;
9725 }
9726
9727 /* Set a breakpoint.
9728 ARG is a string describing breakpoint address,
9729 condition, and thread.
9730 FLAG specifies if a breakpoint is hardware on,
9731 and if breakpoint is temporary, using BP_HARDWARE_FLAG
9732 and BP_TEMPFLAG. */
9733
9734 static void
9735 break_command_1 (char *arg, int flag, int from_tty)
9736 {
9737 int tempflag = flag & BP_TEMPFLAG;
9738 enum bptype type_wanted = (flag & BP_HARDWAREFLAG
9739 ? bp_hardware_breakpoint
9740 : bp_breakpoint);
9741 struct breakpoint_ops *ops;
9742 const char *arg_cp = arg;
9743
9744 /* Matching breakpoints on probes. */
9745 if (arg && probe_linespec_to_ops (&arg_cp) != NULL)
9746 ops = &bkpt_probe_breakpoint_ops;
9747 else
9748 ops = &bkpt_breakpoint_ops;
9749
9750 create_breakpoint (get_current_arch (),
9751 arg,
9752 NULL, 0, NULL, 1 /* parse arg */,
9753 tempflag, type_wanted,
9754 0 /* Ignore count */,
9755 pending_break_support,
9756 ops,
9757 from_tty,
9758 1 /* enabled */,
9759 0 /* internal */,
9760 0);
9761 }
9762
9763 /* Helper function for break_command_1 and disassemble_command. */
9764
9765 void
9766 resolve_sal_pc (struct symtab_and_line *sal)
9767 {
9768 CORE_ADDR pc;
9769
9770 if (sal->pc == 0 && sal->symtab != NULL)
9771 {
9772 if (!find_line_pc (sal->symtab, sal->line, &pc))
9773 error (_("No line %d in file \"%s\"."),
9774 sal->line, symtab_to_filename_for_display (sal->symtab));
9775 sal->pc = pc;
9776
9777 /* If this SAL corresponds to a breakpoint inserted using a line
9778 number, then skip the function prologue if necessary. */
9779 if (sal->explicit_line)
9780 skip_prologue_sal (sal);
9781 }
9782
9783 if (sal->section == 0 && sal->symtab != NULL)
9784 {
9785 struct blockvector *bv;
9786 struct block *b;
9787 struct symbol *sym;
9788
9789 bv = blockvector_for_pc_sect (sal->pc, 0, &b, sal->symtab);
9790 if (bv != NULL)
9791 {
9792 sym = block_linkage_function (b);
9793 if (sym != NULL)
9794 {
9795 fixup_symbol_section (sym, sal->symtab->objfile);
9796 sal->section = SYMBOL_OBJ_SECTION (sym);
9797 }
9798 else
9799 {
9800 /* It really is worthwhile to have the section, so we'll
9801 just have to look harder. This case can be executed
9802 if we have line numbers but no functions (as can
9803 happen in assembly source). */
9804
9805 struct minimal_symbol *msym;
9806 struct cleanup *old_chain = save_current_space_and_thread ();
9807
9808 switch_to_program_space_and_thread (sal->pspace);
9809
9810 msym = lookup_minimal_symbol_by_pc (sal->pc);
9811 if (msym)
9812 sal->section = SYMBOL_OBJ_SECTION (msym);
9813
9814 do_cleanups (old_chain);
9815 }
9816 }
9817 }
9818 }
9819
9820 void
9821 break_command (char *arg, int from_tty)
9822 {
9823 break_command_1 (arg, 0, from_tty);
9824 }
9825
9826 void
9827 tbreak_command (char *arg, int from_tty)
9828 {
9829 break_command_1 (arg, BP_TEMPFLAG, from_tty);
9830 }
9831
9832 static void
9833 hbreak_command (char *arg, int from_tty)
9834 {
9835 break_command_1 (arg, BP_HARDWAREFLAG, from_tty);
9836 }
9837
9838 static void
9839 thbreak_command (char *arg, int from_tty)
9840 {
9841 break_command_1 (arg, (BP_TEMPFLAG | BP_HARDWAREFLAG), from_tty);
9842 }
9843
9844 static void
9845 stop_command (char *arg, int from_tty)
9846 {
9847 printf_filtered (_("Specify the type of breakpoint to set.\n\
9848 Usage: stop in <function | address>\n\
9849 stop at <line>\n"));
9850 }
9851
9852 static void
9853 stopin_command (char *arg, int from_tty)
9854 {
9855 int badInput = 0;
9856
9857 if (arg == (char *) NULL)
9858 badInput = 1;
9859 else if (*arg != '*')
9860 {
9861 char *argptr = arg;
9862 int hasColon = 0;
9863
9864 /* Look for a ':'. If this is a line number specification, then
9865 say it is bad, otherwise, it should be an address or
9866 function/method name. */
9867 while (*argptr && !hasColon)
9868 {
9869 hasColon = (*argptr == ':');
9870 argptr++;
9871 }
9872
9873 if (hasColon)
9874 badInput = (*argptr != ':'); /* Not a class::method */
9875 else
9876 badInput = isdigit (*arg); /* a simple line number */
9877 }
9878
9879 if (badInput)
9880 printf_filtered (_("Usage: stop in <function | address>\n"));
9881 else
9882 break_command_1 (arg, 0, from_tty);
9883 }
9884
9885 static void
9886 stopat_command (char *arg, int from_tty)
9887 {
9888 int badInput = 0;
9889
9890 if (arg == (char *) NULL || *arg == '*') /* no line number */
9891 badInput = 1;
9892 else
9893 {
9894 char *argptr = arg;
9895 int hasColon = 0;
9896
9897 /* Look for a ':'. If there is a '::' then get out, otherwise
9898 it is probably a line number. */
9899 while (*argptr && !hasColon)
9900 {
9901 hasColon = (*argptr == ':');
9902 argptr++;
9903 }
9904
9905 if (hasColon)
9906 badInput = (*argptr == ':'); /* we have class::method */
9907 else
9908 badInput = !isdigit (*arg); /* not a line number */
9909 }
9910
9911 if (badInput)
9912 printf_filtered (_("Usage: stop at <line>\n"));
9913 else
9914 break_command_1 (arg, 0, from_tty);
9915 }
9916
9917 /* The dynamic printf command is mostly like a regular breakpoint, but
9918 with a prewired command list consisting of a single output command,
9919 built from extra arguments supplied on the dprintf command
9920 line. */
9921
9922 static void
9923 dprintf_command (char *arg, int from_tty)
9924 {
9925 create_breakpoint (get_current_arch (),
9926 arg,
9927 NULL, 0, NULL, 1 /* parse arg */,
9928 0, bp_dprintf,
9929 0 /* Ignore count */,
9930 pending_break_support,
9931 &dprintf_breakpoint_ops,
9932 from_tty,
9933 1 /* enabled */,
9934 0 /* internal */,
9935 0);
9936 }
9937
9938 static void
9939 agent_printf_command (char *arg, int from_tty)
9940 {
9941 error (_("May only run agent-printf on the target"));
9942 }
9943
9944 /* Implement the "breakpoint_hit" breakpoint_ops method for
9945 ranged breakpoints. */
9946
9947 static int
9948 breakpoint_hit_ranged_breakpoint (const struct bp_location *bl,
9949 struct address_space *aspace,
9950 CORE_ADDR bp_addr,
9951 const struct target_waitstatus *ws)
9952 {
9953 if (ws->kind != TARGET_WAITKIND_STOPPED
9954 || ws->value.sig != GDB_SIGNAL_TRAP)
9955 return 0;
9956
9957 return breakpoint_address_match_range (bl->pspace->aspace, bl->address,
9958 bl->length, aspace, bp_addr);
9959 }
9960
9961 /* Implement the "resources_needed" breakpoint_ops method for
9962 ranged breakpoints. */
9963
9964 static int
9965 resources_needed_ranged_breakpoint (const struct bp_location *bl)
9966 {
9967 return target_ranged_break_num_registers ();
9968 }
9969
9970 /* Implement the "print_it" breakpoint_ops method for
9971 ranged breakpoints. */
9972
9973 static enum print_stop_action
9974 print_it_ranged_breakpoint (bpstat bs)
9975 {
9976 struct breakpoint *b = bs->breakpoint_at;
9977 struct bp_location *bl = b->loc;
9978 struct ui_out *uiout = current_uiout;
9979
9980 gdb_assert (b->type == bp_hardware_breakpoint);
9981
9982 /* Ranged breakpoints have only one location. */
9983 gdb_assert (bl && bl->next == NULL);
9984
9985 annotate_breakpoint (b->number);
9986 if (b->disposition == disp_del)
9987 ui_out_text (uiout, "\nTemporary ranged breakpoint ");
9988 else
9989 ui_out_text (uiout, "\nRanged breakpoint ");
9990 if (ui_out_is_mi_like_p (uiout))
9991 {
9992 ui_out_field_string (uiout, "reason",
9993 async_reason_lookup (EXEC_ASYNC_BREAKPOINT_HIT));
9994 ui_out_field_string (uiout, "disp", bpdisp_text (b->disposition));
9995 }
9996 ui_out_field_int (uiout, "bkptno", b->number);
9997 ui_out_text (uiout, ", ");
9998
9999 return PRINT_SRC_AND_LOC;
10000 }
10001
10002 /* Implement the "print_one" breakpoint_ops method for
10003 ranged breakpoints. */
10004
10005 static void
10006 print_one_ranged_breakpoint (struct breakpoint *b,
10007 struct bp_location **last_loc)
10008 {
10009 struct bp_location *bl = b->loc;
10010 struct value_print_options opts;
10011 struct ui_out *uiout = current_uiout;
10012
10013 /* Ranged breakpoints have only one location. */
10014 gdb_assert (bl && bl->next == NULL);
10015
10016 get_user_print_options (&opts);
10017
10018 if (opts.addressprint)
10019 /* We don't print the address range here, it will be printed later
10020 by print_one_detail_ranged_breakpoint. */
10021 ui_out_field_skip (uiout, "addr");
10022 annotate_field (5);
10023 print_breakpoint_location (b, bl);
10024 *last_loc = bl;
10025 }
10026
10027 /* Implement the "print_one_detail" breakpoint_ops method for
10028 ranged breakpoints. */
10029
10030 static void
10031 print_one_detail_ranged_breakpoint (const struct breakpoint *b,
10032 struct ui_out *uiout)
10033 {
10034 CORE_ADDR address_start, address_end;
10035 struct bp_location *bl = b->loc;
10036 struct ui_file *stb = mem_fileopen ();
10037 struct cleanup *cleanup = make_cleanup_ui_file_delete (stb);
10038
10039 gdb_assert (bl);
10040
10041 address_start = bl->address;
10042 address_end = address_start + bl->length - 1;
10043
10044 ui_out_text (uiout, "\taddress range: ");
10045 fprintf_unfiltered (stb, "[%s, %s]",
10046 print_core_address (bl->gdbarch, address_start),
10047 print_core_address (bl->gdbarch, address_end));
10048 ui_out_field_stream (uiout, "addr", stb);
10049 ui_out_text (uiout, "\n");
10050
10051 do_cleanups (cleanup);
10052 }
10053
10054 /* Implement the "print_mention" breakpoint_ops method for
10055 ranged breakpoints. */
10056
10057 static void
10058 print_mention_ranged_breakpoint (struct breakpoint *b)
10059 {
10060 struct bp_location *bl = b->loc;
10061 struct ui_out *uiout = current_uiout;
10062
10063 gdb_assert (bl);
10064 gdb_assert (b->type == bp_hardware_breakpoint);
10065
10066 if (ui_out_is_mi_like_p (uiout))
10067 return;
10068
10069 printf_filtered (_("Hardware assisted ranged breakpoint %d from %s to %s."),
10070 b->number, paddress (bl->gdbarch, bl->address),
10071 paddress (bl->gdbarch, bl->address + bl->length - 1));
10072 }
10073
10074 /* Implement the "print_recreate" breakpoint_ops method for
10075 ranged breakpoints. */
10076
10077 static void
10078 print_recreate_ranged_breakpoint (struct breakpoint *b, struct ui_file *fp)
10079 {
10080 fprintf_unfiltered (fp, "break-range %s, %s", b->addr_string,
10081 b->addr_string_range_end);
10082 print_recreate_thread (b, fp);
10083 }
10084
10085 /* The breakpoint_ops structure to be used in ranged breakpoints. */
10086
10087 static struct breakpoint_ops ranged_breakpoint_ops;
10088
10089 /* Find the address where the end of the breakpoint range should be
10090 placed, given the SAL of the end of the range. This is so that if
10091 the user provides a line number, the end of the range is set to the
10092 last instruction of the given line. */
10093
10094 static CORE_ADDR
10095 find_breakpoint_range_end (struct symtab_and_line sal)
10096 {
10097 CORE_ADDR end;
10098
10099 /* If the user provided a PC value, use it. Otherwise,
10100 find the address of the end of the given location. */
10101 if (sal.explicit_pc)
10102 end = sal.pc;
10103 else
10104 {
10105 int ret;
10106 CORE_ADDR start;
10107
10108 ret = find_line_pc_range (sal, &start, &end);
10109 if (!ret)
10110 error (_("Could not find location of the end of the range."));
10111
10112 /* find_line_pc_range returns the start of the next line. */
10113 end--;
10114 }
10115
10116 return end;
10117 }
10118
10119 /* Implement the "break-range" CLI command. */
10120
10121 static void
10122 break_range_command (char *arg, int from_tty)
10123 {
10124 char *arg_start, *addr_string_start, *addr_string_end;
10125 struct linespec_result canonical_start, canonical_end;
10126 int bp_count, can_use_bp, length;
10127 CORE_ADDR end;
10128 struct breakpoint *b;
10129 struct symtab_and_line sal_start, sal_end;
10130 struct cleanup *cleanup_bkpt;
10131 struct linespec_sals *lsal_start, *lsal_end;
10132
10133 /* We don't support software ranged breakpoints. */
10134 if (target_ranged_break_num_registers () < 0)
10135 error (_("This target does not support hardware ranged breakpoints."));
10136
10137 bp_count = hw_breakpoint_used_count ();
10138 bp_count += target_ranged_break_num_registers ();
10139 can_use_bp = target_can_use_hardware_watchpoint (bp_hardware_breakpoint,
10140 bp_count, 0);
10141 if (can_use_bp < 0)
10142 error (_("Hardware breakpoints used exceeds limit."));
10143
10144 arg = skip_spaces (arg);
10145 if (arg == NULL || arg[0] == '\0')
10146 error(_("No address range specified."));
10147
10148 init_linespec_result (&canonical_start);
10149
10150 arg_start = arg;
10151 parse_breakpoint_sals (&arg, &canonical_start);
10152
10153 cleanup_bkpt = make_cleanup_destroy_linespec_result (&canonical_start);
10154
10155 if (arg[0] != ',')
10156 error (_("Too few arguments."));
10157 else if (VEC_empty (linespec_sals, canonical_start.sals))
10158 error (_("Could not find location of the beginning of the range."));
10159
10160 lsal_start = VEC_index (linespec_sals, canonical_start.sals, 0);
10161
10162 if (VEC_length (linespec_sals, canonical_start.sals) > 1
10163 || lsal_start->sals.nelts != 1)
10164 error (_("Cannot create a ranged breakpoint with multiple locations."));
10165
10166 sal_start = lsal_start->sals.sals[0];
10167 addr_string_start = savestring (arg_start, arg - arg_start);
10168 make_cleanup (xfree, addr_string_start);
10169
10170 arg++; /* Skip the comma. */
10171 arg = skip_spaces (arg);
10172
10173 /* Parse the end location. */
10174
10175 init_linespec_result (&canonical_end);
10176 arg_start = arg;
10177
10178 /* We call decode_line_full directly here instead of using
10179 parse_breakpoint_sals because we need to specify the start location's
10180 symtab and line as the default symtab and line for the end of the
10181 range. This makes it possible to have ranges like "foo.c:27, +14",
10182 where +14 means 14 lines from the start location. */
10183 decode_line_full (&arg, DECODE_LINE_FUNFIRSTLINE,
10184 sal_start.symtab, sal_start.line,
10185 &canonical_end, NULL, NULL);
10186
10187 make_cleanup_destroy_linespec_result (&canonical_end);
10188
10189 if (VEC_empty (linespec_sals, canonical_end.sals))
10190 error (_("Could not find location of the end of the range."));
10191
10192 lsal_end = VEC_index (linespec_sals, canonical_end.sals, 0);
10193 if (VEC_length (linespec_sals, canonical_end.sals) > 1
10194 || lsal_end->sals.nelts != 1)
10195 error (_("Cannot create a ranged breakpoint with multiple locations."));
10196
10197 sal_end = lsal_end->sals.sals[0];
10198 addr_string_end = savestring (arg_start, arg - arg_start);
10199 make_cleanup (xfree, addr_string_end);
10200
10201 end = find_breakpoint_range_end (sal_end);
10202 if (sal_start.pc > end)
10203 error (_("Invalid address range, end precedes start."));
10204
10205 length = end - sal_start.pc + 1;
10206 if (length < 0)
10207 /* Length overflowed. */
10208 error (_("Address range too large."));
10209 else if (length == 1)
10210 {
10211 /* This range is simple enough to be handled by
10212 the `hbreak' command. */
10213 hbreak_command (addr_string_start, 1);
10214
10215 do_cleanups (cleanup_bkpt);
10216
10217 return;
10218 }
10219
10220 /* Now set up the breakpoint. */
10221 b = set_raw_breakpoint (get_current_arch (), sal_start,
10222 bp_hardware_breakpoint, &ranged_breakpoint_ops);
10223 set_breakpoint_count (breakpoint_count + 1);
10224 b->number = breakpoint_count;
10225 b->disposition = disp_donttouch;
10226 b->addr_string = xstrdup (addr_string_start);
10227 b->addr_string_range_end = xstrdup (addr_string_end);
10228 b->loc->length = length;
10229
10230 do_cleanups (cleanup_bkpt);
10231
10232 mention (b);
10233 observer_notify_breakpoint_created (b);
10234 update_global_location_list (1);
10235 }
10236
10237 /* Return non-zero if EXP is verified as constant. Returned zero
10238 means EXP is variable. Also the constant detection may fail for
10239 some constant expressions and in such case still falsely return
10240 zero. */
10241
10242 static int
10243 watchpoint_exp_is_const (const struct expression *exp)
10244 {
10245 int i = exp->nelts;
10246
10247 while (i > 0)
10248 {
10249 int oplenp, argsp;
10250
10251 /* We are only interested in the descriptor of each element. */
10252 operator_length (exp, i, &oplenp, &argsp);
10253 i -= oplenp;
10254
10255 switch (exp->elts[i].opcode)
10256 {
10257 case BINOP_ADD:
10258 case BINOP_SUB:
10259 case BINOP_MUL:
10260 case BINOP_DIV:
10261 case BINOP_REM:
10262 case BINOP_MOD:
10263 case BINOP_LSH:
10264 case BINOP_RSH:
10265 case BINOP_LOGICAL_AND:
10266 case BINOP_LOGICAL_OR:
10267 case BINOP_BITWISE_AND:
10268 case BINOP_BITWISE_IOR:
10269 case BINOP_BITWISE_XOR:
10270 case BINOP_EQUAL:
10271 case BINOP_NOTEQUAL:
10272 case BINOP_LESS:
10273 case BINOP_GTR:
10274 case BINOP_LEQ:
10275 case BINOP_GEQ:
10276 case BINOP_REPEAT:
10277 case BINOP_COMMA:
10278 case BINOP_EXP:
10279 case BINOP_MIN:
10280 case BINOP_MAX:
10281 case BINOP_INTDIV:
10282 case BINOP_CONCAT:
10283 case BINOP_IN:
10284 case BINOP_RANGE:
10285 case TERNOP_COND:
10286 case TERNOP_SLICE:
10287
10288 case OP_LONG:
10289 case OP_DOUBLE:
10290 case OP_DECFLOAT:
10291 case OP_LAST:
10292 case OP_COMPLEX:
10293 case OP_STRING:
10294 case OP_ARRAY:
10295 case OP_TYPE:
10296 case OP_TYPEOF:
10297 case OP_DECLTYPE:
10298 case OP_NAME:
10299 case OP_OBJC_NSSTRING:
10300
10301 case UNOP_NEG:
10302 case UNOP_LOGICAL_NOT:
10303 case UNOP_COMPLEMENT:
10304 case UNOP_ADDR:
10305 case UNOP_HIGH:
10306 case UNOP_CAST:
10307
10308 case UNOP_CAST_TYPE:
10309 case UNOP_REINTERPRET_CAST:
10310 case UNOP_DYNAMIC_CAST:
10311 /* Unary, binary and ternary operators: We have to check
10312 their operands. If they are constant, then so is the
10313 result of that operation. For instance, if A and B are
10314 determined to be constants, then so is "A + B".
10315
10316 UNOP_IND is one exception to the rule above, because the
10317 value of *ADDR is not necessarily a constant, even when
10318 ADDR is. */
10319 break;
10320
10321 case OP_VAR_VALUE:
10322 /* Check whether the associated symbol is a constant.
10323
10324 We use SYMBOL_CLASS rather than TYPE_CONST because it's
10325 possible that a buggy compiler could mark a variable as
10326 constant even when it is not, and TYPE_CONST would return
10327 true in this case, while SYMBOL_CLASS wouldn't.
10328
10329 We also have to check for function symbols because they
10330 are always constant. */
10331 {
10332 struct symbol *s = exp->elts[i + 2].symbol;
10333
10334 if (SYMBOL_CLASS (s) != LOC_BLOCK
10335 && SYMBOL_CLASS (s) != LOC_CONST
10336 && SYMBOL_CLASS (s) != LOC_CONST_BYTES)
10337 return 0;
10338 break;
10339 }
10340
10341 /* The default action is to return 0 because we are using
10342 the optimistic approach here: If we don't know something,
10343 then it is not a constant. */
10344 default:
10345 return 0;
10346 }
10347 }
10348
10349 return 1;
10350 }
10351
10352 /* Implement the "dtor" breakpoint_ops method for watchpoints. */
10353
10354 static void
10355 dtor_watchpoint (struct breakpoint *self)
10356 {
10357 struct watchpoint *w = (struct watchpoint *) self;
10358
10359 xfree (w->cond_exp);
10360 xfree (w->exp);
10361 xfree (w->exp_string);
10362 xfree (w->exp_string_reparse);
10363 value_free (w->val);
10364
10365 base_breakpoint_ops.dtor (self);
10366 }
10367
10368 /* Implement the "re_set" breakpoint_ops method for watchpoints. */
10369
10370 static void
10371 re_set_watchpoint (struct breakpoint *b)
10372 {
10373 struct watchpoint *w = (struct watchpoint *) b;
10374
10375 /* Watchpoint can be either on expression using entirely global
10376 variables, or it can be on local variables.
10377
10378 Watchpoints of the first kind are never auto-deleted, and even
10379 persist across program restarts. Since they can use variables
10380 from shared libraries, we need to reparse expression as libraries
10381 are loaded and unloaded.
10382
10383 Watchpoints on local variables can also change meaning as result
10384 of solib event. For example, if a watchpoint uses both a local
10385 and a global variables in expression, it's a local watchpoint,
10386 but unloading of a shared library will make the expression
10387 invalid. This is not a very common use case, but we still
10388 re-evaluate expression, to avoid surprises to the user.
10389
10390 Note that for local watchpoints, we re-evaluate it only if
10391 watchpoints frame id is still valid. If it's not, it means the
10392 watchpoint is out of scope and will be deleted soon. In fact,
10393 I'm not sure we'll ever be called in this case.
10394
10395 If a local watchpoint's frame id is still valid, then
10396 w->exp_valid_block is likewise valid, and we can safely use it.
10397
10398 Don't do anything about disabled watchpoints, since they will be
10399 reevaluated again when enabled. */
10400 update_watchpoint (w, 1 /* reparse */);
10401 }
10402
10403 /* Implement the "insert" breakpoint_ops method for hardware watchpoints. */
10404
10405 static int
10406 insert_watchpoint (struct bp_location *bl)
10407 {
10408 struct watchpoint *w = (struct watchpoint *) bl->owner;
10409 int length = w->exact ? 1 : bl->length;
10410
10411 return target_insert_watchpoint (bl->address, length, bl->watchpoint_type,
10412 w->cond_exp);
10413 }
10414
10415 /* Implement the "remove" breakpoint_ops method for hardware watchpoints. */
10416
10417 static int
10418 remove_watchpoint (struct bp_location *bl)
10419 {
10420 struct watchpoint *w = (struct watchpoint *) bl->owner;
10421 int length = w->exact ? 1 : bl->length;
10422
10423 return target_remove_watchpoint (bl->address, length, bl->watchpoint_type,
10424 w->cond_exp);
10425 }
10426
10427 static int
10428 breakpoint_hit_watchpoint (const struct bp_location *bl,
10429 struct address_space *aspace, CORE_ADDR bp_addr,
10430 const struct target_waitstatus *ws)
10431 {
10432 struct breakpoint *b = bl->owner;
10433 struct watchpoint *w = (struct watchpoint *) b;
10434
10435 /* Continuable hardware watchpoints are treated as non-existent if the
10436 reason we stopped wasn't a hardware watchpoint (we didn't stop on
10437 some data address). Otherwise gdb won't stop on a break instruction
10438 in the code (not from a breakpoint) when a hardware watchpoint has
10439 been defined. Also skip watchpoints which we know did not trigger
10440 (did not match the data address). */
10441 if (is_hardware_watchpoint (b)
10442 && w->watchpoint_triggered == watch_triggered_no)
10443 return 0;
10444
10445 return 1;
10446 }
10447
10448 static void
10449 check_status_watchpoint (bpstat bs)
10450 {
10451 gdb_assert (is_watchpoint (bs->breakpoint_at));
10452
10453 bpstat_check_watchpoint (bs);
10454 }
10455
10456 /* Implement the "resources_needed" breakpoint_ops method for
10457 hardware watchpoints. */
10458
10459 static int
10460 resources_needed_watchpoint (const struct bp_location *bl)
10461 {
10462 struct watchpoint *w = (struct watchpoint *) bl->owner;
10463 int length = w->exact? 1 : bl->length;
10464
10465 return target_region_ok_for_hw_watchpoint (bl->address, length);
10466 }
10467
10468 /* Implement the "works_in_software_mode" breakpoint_ops method for
10469 hardware watchpoints. */
10470
10471 static int
10472 works_in_software_mode_watchpoint (const struct breakpoint *b)
10473 {
10474 /* Read and access watchpoints only work with hardware support. */
10475 return b->type == bp_watchpoint || b->type == bp_hardware_watchpoint;
10476 }
10477
10478 static enum print_stop_action
10479 print_it_watchpoint (bpstat bs)
10480 {
10481 struct cleanup *old_chain;
10482 struct breakpoint *b;
10483 const struct bp_location *bl;
10484 struct ui_file *stb;
10485 enum print_stop_action result;
10486 struct watchpoint *w;
10487 struct ui_out *uiout = current_uiout;
10488
10489 gdb_assert (bs->bp_location_at != NULL);
10490
10491 bl = bs->bp_location_at;
10492 b = bs->breakpoint_at;
10493 w = (struct watchpoint *) b;
10494
10495 stb = mem_fileopen ();
10496 old_chain = make_cleanup_ui_file_delete (stb);
10497
10498 switch (b->type)
10499 {
10500 case bp_watchpoint:
10501 case bp_hardware_watchpoint:
10502 annotate_watchpoint (b->number);
10503 if (ui_out_is_mi_like_p (uiout))
10504 ui_out_field_string
10505 (uiout, "reason",
10506 async_reason_lookup (EXEC_ASYNC_WATCHPOINT_TRIGGER));
10507 mention (b);
10508 make_cleanup_ui_out_tuple_begin_end (uiout, "value");
10509 ui_out_text (uiout, "\nOld value = ");
10510 watchpoint_value_print (bs->old_val, stb);
10511 ui_out_field_stream (uiout, "old", stb);
10512 ui_out_text (uiout, "\nNew value = ");
10513 watchpoint_value_print (w->val, stb);
10514 ui_out_field_stream (uiout, "new", stb);
10515 ui_out_text (uiout, "\n");
10516 /* More than one watchpoint may have been triggered. */
10517 result = PRINT_UNKNOWN;
10518 break;
10519
10520 case bp_read_watchpoint:
10521 if (ui_out_is_mi_like_p (uiout))
10522 ui_out_field_string
10523 (uiout, "reason",
10524 async_reason_lookup (EXEC_ASYNC_READ_WATCHPOINT_TRIGGER));
10525 mention (b);
10526 make_cleanup_ui_out_tuple_begin_end (uiout, "value");
10527 ui_out_text (uiout, "\nValue = ");
10528 watchpoint_value_print (w->val, stb);
10529 ui_out_field_stream (uiout, "value", stb);
10530 ui_out_text (uiout, "\n");
10531 result = PRINT_UNKNOWN;
10532 break;
10533
10534 case bp_access_watchpoint:
10535 if (bs->old_val != NULL)
10536 {
10537 annotate_watchpoint (b->number);
10538 if (ui_out_is_mi_like_p (uiout))
10539 ui_out_field_string
10540 (uiout, "reason",
10541 async_reason_lookup (EXEC_ASYNC_ACCESS_WATCHPOINT_TRIGGER));
10542 mention (b);
10543 make_cleanup_ui_out_tuple_begin_end (uiout, "value");
10544 ui_out_text (uiout, "\nOld value = ");
10545 watchpoint_value_print (bs->old_val, stb);
10546 ui_out_field_stream (uiout, "old", stb);
10547 ui_out_text (uiout, "\nNew value = ");
10548 }
10549 else
10550 {
10551 mention (b);
10552 if (ui_out_is_mi_like_p (uiout))
10553 ui_out_field_string
10554 (uiout, "reason",
10555 async_reason_lookup (EXEC_ASYNC_ACCESS_WATCHPOINT_TRIGGER));
10556 make_cleanup_ui_out_tuple_begin_end (uiout, "value");
10557 ui_out_text (uiout, "\nValue = ");
10558 }
10559 watchpoint_value_print (w->val, stb);
10560 ui_out_field_stream (uiout, "new", stb);
10561 ui_out_text (uiout, "\n");
10562 result = PRINT_UNKNOWN;
10563 break;
10564 default:
10565 result = PRINT_UNKNOWN;
10566 }
10567
10568 do_cleanups (old_chain);
10569 return result;
10570 }
10571
10572 /* Implement the "print_mention" breakpoint_ops method for hardware
10573 watchpoints. */
10574
10575 static void
10576 print_mention_watchpoint (struct breakpoint *b)
10577 {
10578 struct cleanup *ui_out_chain;
10579 struct watchpoint *w = (struct watchpoint *) b;
10580 struct ui_out *uiout = current_uiout;
10581
10582 switch (b->type)
10583 {
10584 case bp_watchpoint:
10585 ui_out_text (uiout, "Watchpoint ");
10586 ui_out_chain = make_cleanup_ui_out_tuple_begin_end (uiout, "wpt");
10587 break;
10588 case bp_hardware_watchpoint:
10589 ui_out_text (uiout, "Hardware watchpoint ");
10590 ui_out_chain = make_cleanup_ui_out_tuple_begin_end (uiout, "wpt");
10591 break;
10592 case bp_read_watchpoint:
10593 ui_out_text (uiout, "Hardware read watchpoint ");
10594 ui_out_chain = make_cleanup_ui_out_tuple_begin_end (uiout, "hw-rwpt");
10595 break;
10596 case bp_access_watchpoint:
10597 ui_out_text (uiout, "Hardware access (read/write) watchpoint ");
10598 ui_out_chain = make_cleanup_ui_out_tuple_begin_end (uiout, "hw-awpt");
10599 break;
10600 default:
10601 internal_error (__FILE__, __LINE__,
10602 _("Invalid hardware watchpoint type."));
10603 }
10604
10605 ui_out_field_int (uiout, "number", b->number);
10606 ui_out_text (uiout, ": ");
10607 ui_out_field_string (uiout, "exp", w->exp_string);
10608 do_cleanups (ui_out_chain);
10609 }
10610
10611 /* Implement the "print_recreate" breakpoint_ops method for
10612 watchpoints. */
10613
10614 static void
10615 print_recreate_watchpoint (struct breakpoint *b, struct ui_file *fp)
10616 {
10617 struct watchpoint *w = (struct watchpoint *) b;
10618
10619 switch (b->type)
10620 {
10621 case bp_watchpoint:
10622 case bp_hardware_watchpoint:
10623 fprintf_unfiltered (fp, "watch");
10624 break;
10625 case bp_read_watchpoint:
10626 fprintf_unfiltered (fp, "rwatch");
10627 break;
10628 case bp_access_watchpoint:
10629 fprintf_unfiltered (fp, "awatch");
10630 break;
10631 default:
10632 internal_error (__FILE__, __LINE__,
10633 _("Invalid watchpoint type."));
10634 }
10635
10636 fprintf_unfiltered (fp, " %s", w->exp_string);
10637 print_recreate_thread (b, fp);
10638 }
10639
10640 /* The breakpoint_ops structure to be used in hardware watchpoints. */
10641
10642 static struct breakpoint_ops watchpoint_breakpoint_ops;
10643
10644 /* Implement the "insert" breakpoint_ops method for
10645 masked hardware watchpoints. */
10646
10647 static int
10648 insert_masked_watchpoint (struct bp_location *bl)
10649 {
10650 struct watchpoint *w = (struct watchpoint *) bl->owner;
10651
10652 return target_insert_mask_watchpoint (bl->address, w->hw_wp_mask,
10653 bl->watchpoint_type);
10654 }
10655
10656 /* Implement the "remove" breakpoint_ops method for
10657 masked hardware watchpoints. */
10658
10659 static int
10660 remove_masked_watchpoint (struct bp_location *bl)
10661 {
10662 struct watchpoint *w = (struct watchpoint *) bl->owner;
10663
10664 return target_remove_mask_watchpoint (bl->address, w->hw_wp_mask,
10665 bl->watchpoint_type);
10666 }
10667
10668 /* Implement the "resources_needed" breakpoint_ops method for
10669 masked hardware watchpoints. */
10670
10671 static int
10672 resources_needed_masked_watchpoint (const struct bp_location *bl)
10673 {
10674 struct watchpoint *w = (struct watchpoint *) bl->owner;
10675
10676 return target_masked_watch_num_registers (bl->address, w->hw_wp_mask);
10677 }
10678
10679 /* Implement the "works_in_software_mode" breakpoint_ops method for
10680 masked hardware watchpoints. */
10681
10682 static int
10683 works_in_software_mode_masked_watchpoint (const struct breakpoint *b)
10684 {
10685 return 0;
10686 }
10687
10688 /* Implement the "print_it" breakpoint_ops method for
10689 masked hardware watchpoints. */
10690
10691 static enum print_stop_action
10692 print_it_masked_watchpoint (bpstat bs)
10693 {
10694 struct breakpoint *b = bs->breakpoint_at;
10695 struct ui_out *uiout = current_uiout;
10696
10697 /* Masked watchpoints have only one location. */
10698 gdb_assert (b->loc && b->loc->next == NULL);
10699
10700 switch (b->type)
10701 {
10702 case bp_hardware_watchpoint:
10703 annotate_watchpoint (b->number);
10704 if (ui_out_is_mi_like_p (uiout))
10705 ui_out_field_string
10706 (uiout, "reason",
10707 async_reason_lookup (EXEC_ASYNC_WATCHPOINT_TRIGGER));
10708 break;
10709
10710 case bp_read_watchpoint:
10711 if (ui_out_is_mi_like_p (uiout))
10712 ui_out_field_string
10713 (uiout, "reason",
10714 async_reason_lookup (EXEC_ASYNC_READ_WATCHPOINT_TRIGGER));
10715 break;
10716
10717 case bp_access_watchpoint:
10718 if (ui_out_is_mi_like_p (uiout))
10719 ui_out_field_string
10720 (uiout, "reason",
10721 async_reason_lookup (EXEC_ASYNC_ACCESS_WATCHPOINT_TRIGGER));
10722 break;
10723 default:
10724 internal_error (__FILE__, __LINE__,
10725 _("Invalid hardware watchpoint type."));
10726 }
10727
10728 mention (b);
10729 ui_out_text (uiout, _("\n\
10730 Check the underlying instruction at PC for the memory\n\
10731 address and value which triggered this watchpoint.\n"));
10732 ui_out_text (uiout, "\n");
10733
10734 /* More than one watchpoint may have been triggered. */
10735 return PRINT_UNKNOWN;
10736 }
10737
10738 /* Implement the "print_one_detail" breakpoint_ops method for
10739 masked hardware watchpoints. */
10740
10741 static void
10742 print_one_detail_masked_watchpoint (const struct breakpoint *b,
10743 struct ui_out *uiout)
10744 {
10745 struct watchpoint *w = (struct watchpoint *) b;
10746
10747 /* Masked watchpoints have only one location. */
10748 gdb_assert (b->loc && b->loc->next == NULL);
10749
10750 ui_out_text (uiout, "\tmask ");
10751 ui_out_field_core_addr (uiout, "mask", b->loc->gdbarch, w->hw_wp_mask);
10752 ui_out_text (uiout, "\n");
10753 }
10754
10755 /* Implement the "print_mention" breakpoint_ops method for
10756 masked hardware watchpoints. */
10757
10758 static void
10759 print_mention_masked_watchpoint (struct breakpoint *b)
10760 {
10761 struct watchpoint *w = (struct watchpoint *) b;
10762 struct ui_out *uiout = current_uiout;
10763 struct cleanup *ui_out_chain;
10764
10765 switch (b->type)
10766 {
10767 case bp_hardware_watchpoint:
10768 ui_out_text (uiout, "Masked hardware watchpoint ");
10769 ui_out_chain = make_cleanup_ui_out_tuple_begin_end (uiout, "wpt");
10770 break;
10771 case bp_read_watchpoint:
10772 ui_out_text (uiout, "Masked hardware read watchpoint ");
10773 ui_out_chain = make_cleanup_ui_out_tuple_begin_end (uiout, "hw-rwpt");
10774 break;
10775 case bp_access_watchpoint:
10776 ui_out_text (uiout, "Masked hardware access (read/write) watchpoint ");
10777 ui_out_chain = make_cleanup_ui_out_tuple_begin_end (uiout, "hw-awpt");
10778 break;
10779 default:
10780 internal_error (__FILE__, __LINE__,
10781 _("Invalid hardware watchpoint type."));
10782 }
10783
10784 ui_out_field_int (uiout, "number", b->number);
10785 ui_out_text (uiout, ": ");
10786 ui_out_field_string (uiout, "exp", w->exp_string);
10787 do_cleanups (ui_out_chain);
10788 }
10789
10790 /* Implement the "print_recreate" breakpoint_ops method for
10791 masked hardware watchpoints. */
10792
10793 static void
10794 print_recreate_masked_watchpoint (struct breakpoint *b, struct ui_file *fp)
10795 {
10796 struct watchpoint *w = (struct watchpoint *) b;
10797 char tmp[40];
10798
10799 switch (b->type)
10800 {
10801 case bp_hardware_watchpoint:
10802 fprintf_unfiltered (fp, "watch");
10803 break;
10804 case bp_read_watchpoint:
10805 fprintf_unfiltered (fp, "rwatch");
10806 break;
10807 case bp_access_watchpoint:
10808 fprintf_unfiltered (fp, "awatch");
10809 break;
10810 default:
10811 internal_error (__FILE__, __LINE__,
10812 _("Invalid hardware watchpoint type."));
10813 }
10814
10815 sprintf_vma (tmp, w->hw_wp_mask);
10816 fprintf_unfiltered (fp, " %s mask 0x%s", w->exp_string, tmp);
10817 print_recreate_thread (b, fp);
10818 }
10819
10820 /* The breakpoint_ops structure to be used in masked hardware watchpoints. */
10821
10822 static struct breakpoint_ops masked_watchpoint_breakpoint_ops;
10823
10824 /* Tell whether the given watchpoint is a masked hardware watchpoint. */
10825
10826 static int
10827 is_masked_watchpoint (const struct breakpoint *b)
10828 {
10829 return b->ops == &masked_watchpoint_breakpoint_ops;
10830 }
10831
10832 /* accessflag: hw_write: watch write,
10833 hw_read: watch read,
10834 hw_access: watch access (read or write) */
10835 static void
10836 watch_command_1 (char *arg, int accessflag, int from_tty,
10837 int just_location, int internal)
10838 {
10839 volatile struct gdb_exception e;
10840 struct breakpoint *b, *scope_breakpoint = NULL;
10841 struct expression *exp;
10842 const struct block *exp_valid_block = NULL, *cond_exp_valid_block = NULL;
10843 struct value *val, *mark, *result;
10844 struct frame_info *frame;
10845 char *exp_start = NULL;
10846 char *exp_end = NULL;
10847 char *tok, *end_tok;
10848 int toklen = -1;
10849 char *cond_start = NULL;
10850 char *cond_end = NULL;
10851 enum bptype bp_type;
10852 int thread = -1;
10853 int pc = 0;
10854 /* Flag to indicate whether we are going to use masks for
10855 the hardware watchpoint. */
10856 int use_mask = 0;
10857 CORE_ADDR mask = 0;
10858 struct watchpoint *w;
10859
10860 /* Make sure that we actually have parameters to parse. */
10861 if (arg != NULL && arg[0] != '\0')
10862 {
10863 char *value_start;
10864
10865 /* Look for "parameter value" pairs at the end
10866 of the arguments string. */
10867 for (tok = arg + strlen (arg) - 1; tok > arg; tok--)
10868 {
10869 /* Skip whitespace at the end of the argument list. */
10870 while (tok > arg && (*tok == ' ' || *tok == '\t'))
10871 tok--;
10872
10873 /* Find the beginning of the last token.
10874 This is the value of the parameter. */
10875 while (tok > arg && (*tok != ' ' && *tok != '\t'))
10876 tok--;
10877 value_start = tok + 1;
10878
10879 /* Skip whitespace. */
10880 while (tok > arg && (*tok == ' ' || *tok == '\t'))
10881 tok--;
10882
10883 end_tok = tok;
10884
10885 /* Find the beginning of the second to last token.
10886 This is the parameter itself. */
10887 while (tok > arg && (*tok != ' ' && *tok != '\t'))
10888 tok--;
10889 tok++;
10890 toklen = end_tok - tok + 1;
10891
10892 if (toklen == 6 && !strncmp (tok, "thread", 6))
10893 {
10894 /* At this point we've found a "thread" token, which means
10895 the user is trying to set a watchpoint that triggers
10896 only in a specific thread. */
10897 char *endp;
10898
10899 if (thread != -1)
10900 error(_("You can specify only one thread."));
10901
10902 /* Extract the thread ID from the next token. */
10903 thread = strtol (value_start, &endp, 0);
10904
10905 /* Check if the user provided a valid numeric value for the
10906 thread ID. */
10907 if (*endp != ' ' && *endp != '\t' && *endp != '\0')
10908 error (_("Invalid thread ID specification %s."), value_start);
10909
10910 /* Check if the thread actually exists. */
10911 if (!valid_thread_id (thread))
10912 invalid_thread_id_error (thread);
10913 }
10914 else if (toklen == 4 && !strncmp (tok, "mask", 4))
10915 {
10916 /* We've found a "mask" token, which means the user wants to
10917 create a hardware watchpoint that is going to have the mask
10918 facility. */
10919 struct value *mask_value, *mark;
10920
10921 if (use_mask)
10922 error(_("You can specify only one mask."));
10923
10924 use_mask = just_location = 1;
10925
10926 mark = value_mark ();
10927 mask_value = parse_to_comma_and_eval (&value_start);
10928 mask = value_as_address (mask_value);
10929 value_free_to_mark (mark);
10930 }
10931 else
10932 /* We didn't recognize what we found. We should stop here. */
10933 break;
10934
10935 /* Truncate the string and get rid of the "parameter value" pair before
10936 the arguments string is parsed by the parse_exp_1 function. */
10937 *tok = '\0';
10938 }
10939 }
10940
10941 /* Parse the rest of the arguments. */
10942 innermost_block = NULL;
10943 exp_start = arg;
10944 exp = parse_exp_1 (&arg, 0, 0, 0);
10945 exp_end = arg;
10946 /* Remove trailing whitespace from the expression before saving it.
10947 This makes the eventual display of the expression string a bit
10948 prettier. */
10949 while (exp_end > exp_start && (exp_end[-1] == ' ' || exp_end[-1] == '\t'))
10950 --exp_end;
10951
10952 /* Checking if the expression is not constant. */
10953 if (watchpoint_exp_is_const (exp))
10954 {
10955 int len;
10956
10957 len = exp_end - exp_start;
10958 while (len > 0 && isspace (exp_start[len - 1]))
10959 len--;
10960 error (_("Cannot watch constant value `%.*s'."), len, exp_start);
10961 }
10962
10963 exp_valid_block = innermost_block;
10964 mark = value_mark ();
10965 fetch_subexp_value (exp, &pc, &val, &result, NULL);
10966
10967 if (just_location)
10968 {
10969 int ret;
10970
10971 exp_valid_block = NULL;
10972 val = value_addr (result);
10973 release_value (val);
10974 value_free_to_mark (mark);
10975
10976 if (use_mask)
10977 {
10978 ret = target_masked_watch_num_registers (value_as_address (val),
10979 mask);
10980 if (ret == -1)
10981 error (_("This target does not support masked watchpoints."));
10982 else if (ret == -2)
10983 error (_("Invalid mask or memory region."));
10984 }
10985 }
10986 else if (val != NULL)
10987 release_value (val);
10988
10989 tok = skip_spaces (arg);
10990 end_tok = skip_to_space (tok);
10991
10992 toklen = end_tok - tok;
10993 if (toklen >= 1 && strncmp (tok, "if", toklen) == 0)
10994 {
10995 struct expression *cond;
10996
10997 innermost_block = NULL;
10998 tok = cond_start = end_tok + 1;
10999 cond = parse_exp_1 (&tok, 0, 0, 0);
11000
11001 /* The watchpoint expression may not be local, but the condition
11002 may still be. E.g.: `watch global if local > 0'. */
11003 cond_exp_valid_block = innermost_block;
11004
11005 xfree (cond);
11006 cond_end = tok;
11007 }
11008 if (*tok)
11009 error (_("Junk at end of command."));
11010
11011 if (accessflag == hw_read)
11012 bp_type = bp_read_watchpoint;
11013 else if (accessflag == hw_access)
11014 bp_type = bp_access_watchpoint;
11015 else
11016 bp_type = bp_hardware_watchpoint;
11017
11018 frame = block_innermost_frame (exp_valid_block);
11019
11020 /* If the expression is "local", then set up a "watchpoint scope"
11021 breakpoint at the point where we've left the scope of the watchpoint
11022 expression. Create the scope breakpoint before the watchpoint, so
11023 that we will encounter it first in bpstat_stop_status. */
11024 if (exp_valid_block && frame)
11025 {
11026 if (frame_id_p (frame_unwind_caller_id (frame)))
11027 {
11028 scope_breakpoint
11029 = create_internal_breakpoint (frame_unwind_caller_arch (frame),
11030 frame_unwind_caller_pc (frame),
11031 bp_watchpoint_scope,
11032 &momentary_breakpoint_ops);
11033
11034 scope_breakpoint->enable_state = bp_enabled;
11035
11036 /* Automatically delete the breakpoint when it hits. */
11037 scope_breakpoint->disposition = disp_del;
11038
11039 /* Only break in the proper frame (help with recursion). */
11040 scope_breakpoint->frame_id = frame_unwind_caller_id (frame);
11041
11042 /* Set the address at which we will stop. */
11043 scope_breakpoint->loc->gdbarch
11044 = frame_unwind_caller_arch (frame);
11045 scope_breakpoint->loc->requested_address
11046 = frame_unwind_caller_pc (frame);
11047 scope_breakpoint->loc->address
11048 = adjust_breakpoint_address (scope_breakpoint->loc->gdbarch,
11049 scope_breakpoint->loc->requested_address,
11050 scope_breakpoint->type);
11051 }
11052 }
11053
11054 /* Now set up the breakpoint. */
11055
11056 w = XCNEW (struct watchpoint);
11057 b = &w->base;
11058 if (use_mask)
11059 init_raw_breakpoint_without_location (b, NULL, bp_type,
11060 &masked_watchpoint_breakpoint_ops);
11061 else
11062 init_raw_breakpoint_without_location (b, NULL, bp_type,
11063 &watchpoint_breakpoint_ops);
11064 b->thread = thread;
11065 b->disposition = disp_donttouch;
11066 b->pspace = current_program_space;
11067 w->exp = exp;
11068 w->exp_valid_block = exp_valid_block;
11069 w->cond_exp_valid_block = cond_exp_valid_block;
11070 if (just_location)
11071 {
11072 struct type *t = value_type (val);
11073 CORE_ADDR addr = value_as_address (val);
11074 char *name;
11075
11076 t = check_typedef (TYPE_TARGET_TYPE (check_typedef (t)));
11077 name = type_to_string (t);
11078
11079 w->exp_string_reparse = xstrprintf ("* (%s *) %s", name,
11080 core_addr_to_string (addr));
11081 xfree (name);
11082
11083 w->exp_string = xstrprintf ("-location %.*s",
11084 (int) (exp_end - exp_start), exp_start);
11085
11086 /* The above expression is in C. */
11087 b->language = language_c;
11088 }
11089 else
11090 w->exp_string = savestring (exp_start, exp_end - exp_start);
11091
11092 if (use_mask)
11093 {
11094 w->hw_wp_mask = mask;
11095 }
11096 else
11097 {
11098 w->val = val;
11099 w->val_valid = 1;
11100 }
11101
11102 if (cond_start)
11103 b->cond_string = savestring (cond_start, cond_end - cond_start);
11104 else
11105 b->cond_string = 0;
11106
11107 if (frame)
11108 {
11109 w->watchpoint_frame = get_frame_id (frame);
11110 w->watchpoint_thread = inferior_ptid;
11111 }
11112 else
11113 {
11114 w->watchpoint_frame = null_frame_id;
11115 w->watchpoint_thread = null_ptid;
11116 }
11117
11118 if (scope_breakpoint != NULL)
11119 {
11120 /* The scope breakpoint is related to the watchpoint. We will
11121 need to act on them together. */
11122 b->related_breakpoint = scope_breakpoint;
11123 scope_breakpoint->related_breakpoint = b;
11124 }
11125
11126 if (!just_location)
11127 value_free_to_mark (mark);
11128
11129 TRY_CATCH (e, RETURN_MASK_ALL)
11130 {
11131 /* Finally update the new watchpoint. This creates the locations
11132 that should be inserted. */
11133 update_watchpoint (w, 1);
11134 }
11135 if (e.reason < 0)
11136 {
11137 delete_breakpoint (b);
11138 throw_exception (e);
11139 }
11140
11141 install_breakpoint (internal, b, 1);
11142 }
11143
11144 /* Return count of debug registers needed to watch the given expression.
11145 If the watchpoint cannot be handled in hardware return zero. */
11146
11147 static int
11148 can_use_hardware_watchpoint (struct value *v)
11149 {
11150 int found_memory_cnt = 0;
11151 struct value *head = v;
11152
11153 /* Did the user specifically forbid us to use hardware watchpoints? */
11154 if (!can_use_hw_watchpoints)
11155 return 0;
11156
11157 /* Make sure that the value of the expression depends only upon
11158 memory contents, and values computed from them within GDB. If we
11159 find any register references or function calls, we can't use a
11160 hardware watchpoint.
11161
11162 The idea here is that evaluating an expression generates a series
11163 of values, one holding the value of every subexpression. (The
11164 expression a*b+c has five subexpressions: a, b, a*b, c, and
11165 a*b+c.) GDB's values hold almost enough information to establish
11166 the criteria given above --- they identify memory lvalues,
11167 register lvalues, computed values, etcetera. So we can evaluate
11168 the expression, and then scan the chain of values that leaves
11169 behind to decide whether we can detect any possible change to the
11170 expression's final value using only hardware watchpoints.
11171
11172 However, I don't think that the values returned by inferior
11173 function calls are special in any way. So this function may not
11174 notice that an expression involving an inferior function call
11175 can't be watched with hardware watchpoints. FIXME. */
11176 for (; v; v = value_next (v))
11177 {
11178 if (VALUE_LVAL (v) == lval_memory)
11179 {
11180 if (v != head && value_lazy (v))
11181 /* A lazy memory lvalue in the chain is one that GDB never
11182 needed to fetch; we either just used its address (e.g.,
11183 `a' in `a.b') or we never needed it at all (e.g., `a'
11184 in `a,b'). This doesn't apply to HEAD; if that is
11185 lazy then it was not readable, but watch it anyway. */
11186 ;
11187 else
11188 {
11189 /* Ahh, memory we actually used! Check if we can cover
11190 it with hardware watchpoints. */
11191 struct type *vtype = check_typedef (value_type (v));
11192
11193 /* We only watch structs and arrays if user asked for it
11194 explicitly, never if they just happen to appear in a
11195 middle of some value chain. */
11196 if (v == head
11197 || (TYPE_CODE (vtype) != TYPE_CODE_STRUCT
11198 && TYPE_CODE (vtype) != TYPE_CODE_ARRAY))
11199 {
11200 CORE_ADDR vaddr = value_address (v);
11201 int len;
11202 int num_regs;
11203
11204 len = (target_exact_watchpoints
11205 && is_scalar_type_recursive (vtype))?
11206 1 : TYPE_LENGTH (value_type (v));
11207
11208 num_regs = target_region_ok_for_hw_watchpoint (vaddr, len);
11209 if (!num_regs)
11210 return 0;
11211 else
11212 found_memory_cnt += num_regs;
11213 }
11214 }
11215 }
11216 else if (VALUE_LVAL (v) != not_lval
11217 && deprecated_value_modifiable (v) == 0)
11218 return 0; /* These are values from the history (e.g., $1). */
11219 else if (VALUE_LVAL (v) == lval_register)
11220 return 0; /* Cannot watch a register with a HW watchpoint. */
11221 }
11222
11223 /* The expression itself looks suitable for using a hardware
11224 watchpoint, but give the target machine a chance to reject it. */
11225 return found_memory_cnt;
11226 }
11227
11228 void
11229 watch_command_wrapper (char *arg, int from_tty, int internal)
11230 {
11231 watch_command_1 (arg, hw_write, from_tty, 0, internal);
11232 }
11233
11234 /* A helper function that looks for the "-location" argument and then
11235 calls watch_command_1. */
11236
11237 static void
11238 watch_maybe_just_location (char *arg, int accessflag, int from_tty)
11239 {
11240 int just_location = 0;
11241
11242 if (arg
11243 && (check_for_argument (&arg, "-location", sizeof ("-location") - 1)
11244 || check_for_argument (&arg, "-l", sizeof ("-l") - 1)))
11245 {
11246 arg = skip_spaces (arg);
11247 just_location = 1;
11248 }
11249
11250 watch_command_1 (arg, accessflag, from_tty, just_location, 0);
11251 }
11252
11253 static void
11254 watch_command (char *arg, int from_tty)
11255 {
11256 watch_maybe_just_location (arg, hw_write, from_tty);
11257 }
11258
11259 void
11260 rwatch_command_wrapper (char *arg, int from_tty, int internal)
11261 {
11262 watch_command_1 (arg, hw_read, from_tty, 0, internal);
11263 }
11264
11265 static void
11266 rwatch_command (char *arg, int from_tty)
11267 {
11268 watch_maybe_just_location (arg, hw_read, from_tty);
11269 }
11270
11271 void
11272 awatch_command_wrapper (char *arg, int from_tty, int internal)
11273 {
11274 watch_command_1 (arg, hw_access, from_tty, 0, internal);
11275 }
11276
11277 static void
11278 awatch_command (char *arg, int from_tty)
11279 {
11280 watch_maybe_just_location (arg, hw_access, from_tty);
11281 }
11282 \f
11283
11284 /* Helper routines for the until_command routine in infcmd.c. Here
11285 because it uses the mechanisms of breakpoints. */
11286
11287 struct until_break_command_continuation_args
11288 {
11289 struct breakpoint *breakpoint;
11290 struct breakpoint *breakpoint2;
11291 int thread_num;
11292 };
11293
11294 /* This function is called by fetch_inferior_event via the
11295 cmd_continuation pointer, to complete the until command. It takes
11296 care of cleaning up the temporary breakpoints set up by the until
11297 command. */
11298 static void
11299 until_break_command_continuation (void *arg, int err)
11300 {
11301 struct until_break_command_continuation_args *a = arg;
11302
11303 delete_breakpoint (a->breakpoint);
11304 if (a->breakpoint2)
11305 delete_breakpoint (a->breakpoint2);
11306 delete_longjmp_breakpoint (a->thread_num);
11307 }
11308
11309 void
11310 until_break_command (char *arg, int from_tty, int anywhere)
11311 {
11312 struct symtabs_and_lines sals;
11313 struct symtab_and_line sal;
11314 struct frame_info *frame;
11315 struct gdbarch *frame_gdbarch;
11316 struct frame_id stack_frame_id;
11317 struct frame_id caller_frame_id;
11318 struct breakpoint *breakpoint;
11319 struct breakpoint *breakpoint2 = NULL;
11320 struct cleanup *old_chain;
11321 int thread;
11322 struct thread_info *tp;
11323
11324 clear_proceed_status ();
11325
11326 /* Set a breakpoint where the user wants it and at return from
11327 this function. */
11328
11329 if (last_displayed_sal_is_valid ())
11330 sals = decode_line_1 (&arg, DECODE_LINE_FUNFIRSTLINE,
11331 get_last_displayed_symtab (),
11332 get_last_displayed_line ());
11333 else
11334 sals = decode_line_1 (&arg, DECODE_LINE_FUNFIRSTLINE,
11335 (struct symtab *) NULL, 0);
11336
11337 if (sals.nelts != 1)
11338 error (_("Couldn't get information on specified line."));
11339
11340 sal = sals.sals[0];
11341 xfree (sals.sals); /* malloc'd, so freed. */
11342
11343 if (*arg)
11344 error (_("Junk at end of arguments."));
11345
11346 resolve_sal_pc (&sal);
11347
11348 tp = inferior_thread ();
11349 thread = tp->num;
11350
11351 old_chain = make_cleanup (null_cleanup, NULL);
11352
11353 /* Note linespec handling above invalidates the frame chain.
11354 Installing a breakpoint also invalidates the frame chain (as it
11355 may need to switch threads), so do any frame handling before
11356 that. */
11357
11358 frame = get_selected_frame (NULL);
11359 frame_gdbarch = get_frame_arch (frame);
11360 stack_frame_id = get_stack_frame_id (frame);
11361 caller_frame_id = frame_unwind_caller_id (frame);
11362
11363 /* Keep within the current frame, or in frames called by the current
11364 one. */
11365
11366 if (frame_id_p (caller_frame_id))
11367 {
11368 struct symtab_and_line sal2;
11369
11370 sal2 = find_pc_line (frame_unwind_caller_pc (frame), 0);
11371 sal2.pc = frame_unwind_caller_pc (frame);
11372 breakpoint2 = set_momentary_breakpoint (frame_unwind_caller_arch (frame),
11373 sal2,
11374 caller_frame_id,
11375 bp_until);
11376 make_cleanup_delete_breakpoint (breakpoint2);
11377
11378 set_longjmp_breakpoint (tp, caller_frame_id);
11379 make_cleanup (delete_longjmp_breakpoint_cleanup, &thread);
11380 }
11381
11382 /* set_momentary_breakpoint could invalidate FRAME. */
11383 frame = NULL;
11384
11385 if (anywhere)
11386 /* If the user told us to continue until a specified location,
11387 we don't specify a frame at which we need to stop. */
11388 breakpoint = set_momentary_breakpoint (frame_gdbarch, sal,
11389 null_frame_id, bp_until);
11390 else
11391 /* Otherwise, specify the selected frame, because we want to stop
11392 only at the very same frame. */
11393 breakpoint = set_momentary_breakpoint (frame_gdbarch, sal,
11394 stack_frame_id, bp_until);
11395 make_cleanup_delete_breakpoint (breakpoint);
11396
11397 proceed (-1, GDB_SIGNAL_DEFAULT, 0);
11398
11399 /* If we are running asynchronously, and proceed call above has
11400 actually managed to start the target, arrange for breakpoints to
11401 be deleted when the target stops. Otherwise, we're already
11402 stopped and delete breakpoints via cleanup chain. */
11403
11404 if (target_can_async_p () && is_running (inferior_ptid))
11405 {
11406 struct until_break_command_continuation_args *args;
11407 args = xmalloc (sizeof (*args));
11408
11409 args->breakpoint = breakpoint;
11410 args->breakpoint2 = breakpoint2;
11411 args->thread_num = thread;
11412
11413 discard_cleanups (old_chain);
11414 add_continuation (inferior_thread (),
11415 until_break_command_continuation, args,
11416 xfree);
11417 }
11418 else
11419 do_cleanups (old_chain);
11420 }
11421
11422 /* This function attempts to parse an optional "if <cond>" clause
11423 from the arg string. If one is not found, it returns NULL.
11424
11425 Else, it returns a pointer to the condition string. (It does not
11426 attempt to evaluate the string against a particular block.) And,
11427 it updates arg to point to the first character following the parsed
11428 if clause in the arg string. */
11429
11430 static char *
11431 ep_parse_optional_if_clause (char **arg)
11432 {
11433 char *cond_string;
11434
11435 if (((*arg)[0] != 'i') || ((*arg)[1] != 'f') || !isspace ((*arg)[2]))
11436 return NULL;
11437
11438 /* Skip the "if" keyword. */
11439 (*arg) += 2;
11440
11441 /* Skip any extra leading whitespace, and record the start of the
11442 condition string. */
11443 *arg = skip_spaces (*arg);
11444 cond_string = *arg;
11445
11446 /* Assume that the condition occupies the remainder of the arg
11447 string. */
11448 (*arg) += strlen (cond_string);
11449
11450 return cond_string;
11451 }
11452
11453 /* Commands to deal with catching events, such as signals, exceptions,
11454 process start/exit, etc. */
11455
11456 typedef enum
11457 {
11458 catch_fork_temporary, catch_vfork_temporary,
11459 catch_fork_permanent, catch_vfork_permanent
11460 }
11461 catch_fork_kind;
11462
11463 static void
11464 catch_fork_command_1 (char *arg, int from_tty,
11465 struct cmd_list_element *command)
11466 {
11467 struct gdbarch *gdbarch = get_current_arch ();
11468 char *cond_string = NULL;
11469 catch_fork_kind fork_kind;
11470 int tempflag;
11471
11472 fork_kind = (catch_fork_kind) (uintptr_t) get_cmd_context (command);
11473 tempflag = (fork_kind == catch_fork_temporary
11474 || fork_kind == catch_vfork_temporary);
11475
11476 if (!arg)
11477 arg = "";
11478 arg = skip_spaces (arg);
11479
11480 /* The allowed syntax is:
11481 catch [v]fork
11482 catch [v]fork if <cond>
11483
11484 First, check if there's an if clause. */
11485 cond_string = ep_parse_optional_if_clause (&arg);
11486
11487 if ((*arg != '\0') && !isspace (*arg))
11488 error (_("Junk at end of arguments."));
11489
11490 /* If this target supports it, create a fork or vfork catchpoint
11491 and enable reporting of such events. */
11492 switch (fork_kind)
11493 {
11494 case catch_fork_temporary:
11495 case catch_fork_permanent:
11496 create_fork_vfork_event_catchpoint (gdbarch, tempflag, cond_string,
11497 &catch_fork_breakpoint_ops);
11498 break;
11499 case catch_vfork_temporary:
11500 case catch_vfork_permanent:
11501 create_fork_vfork_event_catchpoint (gdbarch, tempflag, cond_string,
11502 &catch_vfork_breakpoint_ops);
11503 break;
11504 default:
11505 error (_("unsupported or unknown fork kind; cannot catch it"));
11506 break;
11507 }
11508 }
11509
11510 static void
11511 catch_exec_command_1 (char *arg, int from_tty,
11512 struct cmd_list_element *command)
11513 {
11514 struct exec_catchpoint *c;
11515 struct gdbarch *gdbarch = get_current_arch ();
11516 int tempflag;
11517 char *cond_string = NULL;
11518
11519 tempflag = get_cmd_context (command) == CATCH_TEMPORARY;
11520
11521 if (!arg)
11522 arg = "";
11523 arg = skip_spaces (arg);
11524
11525 /* The allowed syntax is:
11526 catch exec
11527 catch exec if <cond>
11528
11529 First, check if there's an if clause. */
11530 cond_string = ep_parse_optional_if_clause (&arg);
11531
11532 if ((*arg != '\0') && !isspace (*arg))
11533 error (_("Junk at end of arguments."));
11534
11535 c = XNEW (struct exec_catchpoint);
11536 init_catchpoint (&c->base, gdbarch, tempflag, cond_string,
11537 &catch_exec_breakpoint_ops);
11538 c->exec_pathname = NULL;
11539
11540 install_breakpoint (0, &c->base, 1);
11541 }
11542
11543 static enum print_stop_action
11544 print_it_exception_catchpoint (bpstat bs)
11545 {
11546 struct ui_out *uiout = current_uiout;
11547 struct breakpoint *b = bs->breakpoint_at;
11548 int bp_temp, bp_throw;
11549
11550 annotate_catchpoint (b->number);
11551
11552 bp_throw = strstr (b->addr_string, "throw") != NULL;
11553 if (b->loc->address != b->loc->requested_address)
11554 breakpoint_adjustment_warning (b->loc->requested_address,
11555 b->loc->address,
11556 b->number, 1);
11557 bp_temp = b->disposition == disp_del;
11558 ui_out_text (uiout,
11559 bp_temp ? "Temporary catchpoint "
11560 : "Catchpoint ");
11561 if (!ui_out_is_mi_like_p (uiout))
11562 ui_out_field_int (uiout, "bkptno", b->number);
11563 ui_out_text (uiout,
11564 bp_throw ? " (exception thrown), "
11565 : " (exception caught), ");
11566 if (ui_out_is_mi_like_p (uiout))
11567 {
11568 ui_out_field_string (uiout, "reason",
11569 async_reason_lookup (EXEC_ASYNC_BREAKPOINT_HIT));
11570 ui_out_field_string (uiout, "disp", bpdisp_text (b->disposition));
11571 ui_out_field_int (uiout, "bkptno", b->number);
11572 }
11573 return PRINT_SRC_AND_LOC;
11574 }
11575
11576 static void
11577 print_one_exception_catchpoint (struct breakpoint *b,
11578 struct bp_location **last_loc)
11579 {
11580 struct value_print_options opts;
11581 struct ui_out *uiout = current_uiout;
11582
11583 get_user_print_options (&opts);
11584 if (opts.addressprint)
11585 {
11586 annotate_field (4);
11587 if (b->loc == NULL || b->loc->shlib_disabled)
11588 ui_out_field_string (uiout, "addr", "<PENDING>");
11589 else
11590 ui_out_field_core_addr (uiout, "addr",
11591 b->loc->gdbarch, b->loc->address);
11592 }
11593 annotate_field (5);
11594 if (b->loc)
11595 *last_loc = b->loc;
11596 if (strstr (b->addr_string, "throw") != NULL)
11597 {
11598 ui_out_field_string (uiout, "what", "exception throw");
11599 if (ui_out_is_mi_like_p (uiout))
11600 ui_out_field_string (uiout, "catch-type", "throw");
11601 }
11602 else
11603 {
11604 ui_out_field_string (uiout, "what", "exception catch");
11605 if (ui_out_is_mi_like_p (uiout))
11606 ui_out_field_string (uiout, "catch-type", "catch");
11607 }
11608 }
11609
11610 static void
11611 print_mention_exception_catchpoint (struct breakpoint *b)
11612 {
11613 struct ui_out *uiout = current_uiout;
11614 int bp_temp;
11615 int bp_throw;
11616
11617 bp_temp = b->disposition == disp_del;
11618 bp_throw = strstr (b->addr_string, "throw") != NULL;
11619 ui_out_text (uiout, bp_temp ? _("Temporary catchpoint ")
11620 : _("Catchpoint "));
11621 ui_out_field_int (uiout, "bkptno", b->number);
11622 ui_out_text (uiout, bp_throw ? _(" (throw)")
11623 : _(" (catch)"));
11624 }
11625
11626 /* Implement the "print_recreate" breakpoint_ops method for throw and
11627 catch catchpoints. */
11628
11629 static void
11630 print_recreate_exception_catchpoint (struct breakpoint *b,
11631 struct ui_file *fp)
11632 {
11633 int bp_temp;
11634 int bp_throw;
11635
11636 bp_temp = b->disposition == disp_del;
11637 bp_throw = strstr (b->addr_string, "throw") != NULL;
11638 fprintf_unfiltered (fp, bp_temp ? "tcatch " : "catch ");
11639 fprintf_unfiltered (fp, bp_throw ? "throw" : "catch");
11640 print_recreate_thread (b, fp);
11641 }
11642
11643 static struct breakpoint_ops gnu_v3_exception_catchpoint_ops;
11644
11645 static int
11646 handle_gnu_v3_exceptions (int tempflag, char *cond_string,
11647 enum exception_event_kind ex_event, int from_tty)
11648 {
11649 char *trigger_func_name;
11650
11651 if (ex_event == EX_EVENT_CATCH)
11652 trigger_func_name = "__cxa_begin_catch";
11653 else
11654 trigger_func_name = "__cxa_throw";
11655
11656 create_breakpoint (get_current_arch (),
11657 trigger_func_name, cond_string, -1, NULL,
11658 0 /* condition and thread are valid. */,
11659 tempflag, bp_breakpoint,
11660 0,
11661 AUTO_BOOLEAN_TRUE /* pending */,
11662 &gnu_v3_exception_catchpoint_ops, from_tty,
11663 1 /* enabled */,
11664 0 /* internal */,
11665 0);
11666
11667 return 1;
11668 }
11669
11670 /* Deal with "catch catch" and "catch throw" commands. */
11671
11672 static void
11673 catch_exception_command_1 (enum exception_event_kind ex_event, char *arg,
11674 int tempflag, int from_tty)
11675 {
11676 char *cond_string = NULL;
11677
11678 if (!arg)
11679 arg = "";
11680 arg = skip_spaces (arg);
11681
11682 cond_string = ep_parse_optional_if_clause (&arg);
11683
11684 if ((*arg != '\0') && !isspace (*arg))
11685 error (_("Junk at end of arguments."));
11686
11687 if (ex_event != EX_EVENT_THROW
11688 && ex_event != EX_EVENT_CATCH)
11689 error (_("Unsupported or unknown exception event; cannot catch it"));
11690
11691 if (handle_gnu_v3_exceptions (tempflag, cond_string, ex_event, from_tty))
11692 return;
11693
11694 warning (_("Unsupported with this platform/compiler combination."));
11695 }
11696
11697 /* Implementation of "catch catch" command. */
11698
11699 static void
11700 catch_catch_command (char *arg, int from_tty, struct cmd_list_element *command)
11701 {
11702 int tempflag = get_cmd_context (command) == CATCH_TEMPORARY;
11703
11704 catch_exception_command_1 (EX_EVENT_CATCH, arg, tempflag, from_tty);
11705 }
11706
11707 /* Implementation of "catch throw" command. */
11708
11709 static void
11710 catch_throw_command (char *arg, int from_tty, struct cmd_list_element *command)
11711 {
11712 int tempflag = get_cmd_context (command) == CATCH_TEMPORARY;
11713
11714 catch_exception_command_1 (EX_EVENT_THROW, arg, tempflag, from_tty);
11715 }
11716
11717 void
11718 init_ada_exception_breakpoint (struct breakpoint *b,
11719 struct gdbarch *gdbarch,
11720 struct symtab_and_line sal,
11721 char *addr_string,
11722 const struct breakpoint_ops *ops,
11723 int tempflag,
11724 int from_tty)
11725 {
11726 if (from_tty)
11727 {
11728 struct gdbarch *loc_gdbarch = get_sal_arch (sal);
11729 if (!loc_gdbarch)
11730 loc_gdbarch = gdbarch;
11731
11732 describe_other_breakpoints (loc_gdbarch,
11733 sal.pspace, sal.pc, sal.section, -1);
11734 /* FIXME: brobecker/2006-12-28: Actually, re-implement a special
11735 version for exception catchpoints, because two catchpoints
11736 used for different exception names will use the same address.
11737 In this case, a "breakpoint ... also set at..." warning is
11738 unproductive. Besides, the warning phrasing is also a bit
11739 inappropriate, we should use the word catchpoint, and tell
11740 the user what type of catchpoint it is. The above is good
11741 enough for now, though. */
11742 }
11743
11744 init_raw_breakpoint (b, gdbarch, sal, bp_breakpoint, ops);
11745
11746 b->enable_state = bp_enabled;
11747 b->disposition = tempflag ? disp_del : disp_donttouch;
11748 b->addr_string = addr_string;
11749 b->language = language_ada;
11750 }
11751
11752 /* Splits the argument using space as delimiter. Returns an xmalloc'd
11753 filter list, or NULL if no filtering is required. */
11754 static VEC(int) *
11755 catch_syscall_split_args (char *arg)
11756 {
11757 VEC(int) *result = NULL;
11758 struct cleanup *cleanup = make_cleanup (VEC_cleanup (int), &result);
11759
11760 while (*arg != '\0')
11761 {
11762 int i, syscall_number;
11763 char *endptr;
11764 char cur_name[128];
11765 struct syscall s;
11766
11767 /* Skip whitespace. */
11768 while (isspace (*arg))
11769 arg++;
11770
11771 for (i = 0; i < 127 && arg[i] && !isspace (arg[i]); ++i)
11772 cur_name[i] = arg[i];
11773 cur_name[i] = '\0';
11774 arg += i;
11775
11776 /* Check if the user provided a syscall name or a number. */
11777 syscall_number = (int) strtol (cur_name, &endptr, 0);
11778 if (*endptr == '\0')
11779 get_syscall_by_number (syscall_number, &s);
11780 else
11781 {
11782 /* We have a name. Let's check if it's valid and convert it
11783 to a number. */
11784 get_syscall_by_name (cur_name, &s);
11785
11786 if (s.number == UNKNOWN_SYSCALL)
11787 /* Here we have to issue an error instead of a warning,
11788 because GDB cannot do anything useful if there's no
11789 syscall number to be caught. */
11790 error (_("Unknown syscall name '%s'."), cur_name);
11791 }
11792
11793 /* Ok, it's valid. */
11794 VEC_safe_push (int, result, s.number);
11795 }
11796
11797 discard_cleanups (cleanup);
11798 return result;
11799 }
11800
11801 /* Implement the "catch syscall" command. */
11802
11803 static void
11804 catch_syscall_command_1 (char *arg, int from_tty,
11805 struct cmd_list_element *command)
11806 {
11807 int tempflag;
11808 VEC(int) *filter;
11809 struct syscall s;
11810 struct gdbarch *gdbarch = get_current_arch ();
11811
11812 /* Checking if the feature if supported. */
11813 if (gdbarch_get_syscall_number_p (gdbarch) == 0)
11814 error (_("The feature 'catch syscall' is not supported on \
11815 this architecture yet."));
11816
11817 tempflag = get_cmd_context (command) == CATCH_TEMPORARY;
11818
11819 arg = skip_spaces (arg);
11820
11821 /* We need to do this first "dummy" translation in order
11822 to get the syscall XML file loaded or, most important,
11823 to display a warning to the user if there's no XML file
11824 for his/her architecture. */
11825 get_syscall_by_number (0, &s);
11826
11827 /* The allowed syntax is:
11828 catch syscall
11829 catch syscall <name | number> [<name | number> ... <name | number>]
11830
11831 Let's check if there's a syscall name. */
11832
11833 if (arg != NULL)
11834 filter = catch_syscall_split_args (arg);
11835 else
11836 filter = NULL;
11837
11838 create_syscall_event_catchpoint (tempflag, filter,
11839 &catch_syscall_breakpoint_ops);
11840 }
11841
11842 static void
11843 catch_command (char *arg, int from_tty)
11844 {
11845 error (_("Catch requires an event name."));
11846 }
11847 \f
11848
11849 static void
11850 tcatch_command (char *arg, int from_tty)
11851 {
11852 error (_("Catch requires an event name."));
11853 }
11854
11855 /* A qsort comparison function that sorts breakpoints in order. */
11856
11857 static int
11858 compare_breakpoints (const void *a, const void *b)
11859 {
11860 const breakpoint_p *ba = a;
11861 uintptr_t ua = (uintptr_t) *ba;
11862 const breakpoint_p *bb = b;
11863 uintptr_t ub = (uintptr_t) *bb;
11864
11865 if ((*ba)->number < (*bb)->number)
11866 return -1;
11867 else if ((*ba)->number > (*bb)->number)
11868 return 1;
11869
11870 /* Now sort by address, in case we see, e..g, two breakpoints with
11871 the number 0. */
11872 if (ua < ub)
11873 return -1;
11874 return ua > ub ? 1 : 0;
11875 }
11876
11877 /* Delete breakpoints by address or line. */
11878
11879 static void
11880 clear_command (char *arg, int from_tty)
11881 {
11882 struct breakpoint *b, *prev;
11883 VEC(breakpoint_p) *found = 0;
11884 int ix;
11885 int default_match;
11886 struct symtabs_and_lines sals;
11887 struct symtab_and_line sal;
11888 int i;
11889 struct cleanup *cleanups = make_cleanup (null_cleanup, NULL);
11890
11891 if (arg)
11892 {
11893 sals = decode_line_with_current_source (arg,
11894 (DECODE_LINE_FUNFIRSTLINE
11895 | DECODE_LINE_LIST_MODE));
11896 make_cleanup (xfree, sals.sals);
11897 default_match = 0;
11898 }
11899 else
11900 {
11901 sals.sals = (struct symtab_and_line *)
11902 xmalloc (sizeof (struct symtab_and_line));
11903 make_cleanup (xfree, sals.sals);
11904 init_sal (&sal); /* Initialize to zeroes. */
11905
11906 /* Set sal's line, symtab, pc, and pspace to the values
11907 corresponding to the last call to print_frame_info. If the
11908 codepoint is not valid, this will set all the fields to 0. */
11909 get_last_displayed_sal (&sal);
11910 if (sal.symtab == 0)
11911 error (_("No source file specified."));
11912
11913 sals.sals[0] = sal;
11914 sals.nelts = 1;
11915
11916 default_match = 1;
11917 }
11918
11919 /* We don't call resolve_sal_pc here. That's not as bad as it
11920 seems, because all existing breakpoints typically have both
11921 file/line and pc set. So, if clear is given file/line, we can
11922 match this to existing breakpoint without obtaining pc at all.
11923
11924 We only support clearing given the address explicitly
11925 present in breakpoint table. Say, we've set breakpoint
11926 at file:line. There were several PC values for that file:line,
11927 due to optimization, all in one block.
11928
11929 We've picked one PC value. If "clear" is issued with another
11930 PC corresponding to the same file:line, the breakpoint won't
11931 be cleared. We probably can still clear the breakpoint, but
11932 since the other PC value is never presented to user, user
11933 can only find it by guessing, and it does not seem important
11934 to support that. */
11935
11936 /* For each line spec given, delete bps which correspond to it. Do
11937 it in two passes, solely to preserve the current behavior that
11938 from_tty is forced true if we delete more than one
11939 breakpoint. */
11940
11941 found = NULL;
11942 make_cleanup (VEC_cleanup (breakpoint_p), &found);
11943 for (i = 0; i < sals.nelts; i++)
11944 {
11945 const char *sal_fullname;
11946
11947 /* If exact pc given, clear bpts at that pc.
11948 If line given (pc == 0), clear all bpts on specified line.
11949 If defaulting, clear all bpts on default line
11950 or at default pc.
11951
11952 defaulting sal.pc != 0 tests to do
11953
11954 0 1 pc
11955 1 1 pc _and_ line
11956 0 0 line
11957 1 0 <can't happen> */
11958
11959 sal = sals.sals[i];
11960 sal_fullname = (sal.symtab == NULL
11961 ? NULL : symtab_to_fullname (sal.symtab));
11962
11963 /* Find all matching breakpoints and add them to 'found'. */
11964 ALL_BREAKPOINTS (b)
11965 {
11966 int match = 0;
11967 /* Are we going to delete b? */
11968 if (b->type != bp_none && !is_watchpoint (b))
11969 {
11970 struct bp_location *loc = b->loc;
11971 for (; loc; loc = loc->next)
11972 {
11973 /* If the user specified file:line, don't allow a PC
11974 match. This matches historical gdb behavior. */
11975 int pc_match = (!sal.explicit_line
11976 && sal.pc
11977 && (loc->pspace == sal.pspace)
11978 && (loc->address == sal.pc)
11979 && (!section_is_overlay (loc->section)
11980 || loc->section == sal.section));
11981 int line_match = 0;
11982
11983 if ((default_match || sal.explicit_line)
11984 && loc->symtab != NULL
11985 && sal_fullname != NULL
11986 && sal.pspace == loc->pspace
11987 && loc->line_number == sal.line
11988 && filename_cmp (symtab_to_fullname (loc->symtab),
11989 sal_fullname) == 0)
11990 line_match = 1;
11991
11992 if (pc_match || line_match)
11993 {
11994 match = 1;
11995 break;
11996 }
11997 }
11998 }
11999
12000 if (match)
12001 VEC_safe_push(breakpoint_p, found, b);
12002 }
12003 }
12004
12005 /* Now go thru the 'found' chain and delete them. */
12006 if (VEC_empty(breakpoint_p, found))
12007 {
12008 if (arg)
12009 error (_("No breakpoint at %s."), arg);
12010 else
12011 error (_("No breakpoint at this line."));
12012 }
12013
12014 /* Remove duplicates from the vec. */
12015 qsort (VEC_address (breakpoint_p, found),
12016 VEC_length (breakpoint_p, found),
12017 sizeof (breakpoint_p),
12018 compare_breakpoints);
12019 prev = VEC_index (breakpoint_p, found, 0);
12020 for (ix = 1; VEC_iterate (breakpoint_p, found, ix, b); ++ix)
12021 {
12022 if (b == prev)
12023 {
12024 VEC_ordered_remove (breakpoint_p, found, ix);
12025 --ix;
12026 }
12027 }
12028
12029 if (VEC_length(breakpoint_p, found) > 1)
12030 from_tty = 1; /* Always report if deleted more than one. */
12031 if (from_tty)
12032 {
12033 if (VEC_length(breakpoint_p, found) == 1)
12034 printf_unfiltered (_("Deleted breakpoint "));
12035 else
12036 printf_unfiltered (_("Deleted breakpoints "));
12037 }
12038
12039 for (ix = 0; VEC_iterate(breakpoint_p, found, ix, b); ix++)
12040 {
12041 if (from_tty)
12042 printf_unfiltered ("%d ", b->number);
12043 delete_breakpoint (b);
12044 }
12045 if (from_tty)
12046 putchar_unfiltered ('\n');
12047
12048 do_cleanups (cleanups);
12049 }
12050 \f
12051 /* Delete breakpoint in BS if they are `delete' breakpoints and
12052 all breakpoints that are marked for deletion, whether hit or not.
12053 This is called after any breakpoint is hit, or after errors. */
12054
12055 void
12056 breakpoint_auto_delete (bpstat bs)
12057 {
12058 struct breakpoint *b, *b_tmp;
12059
12060 for (; bs; bs = bs->next)
12061 if (bs->breakpoint_at
12062 && bs->breakpoint_at->disposition == disp_del
12063 && bs->stop)
12064 delete_breakpoint (bs->breakpoint_at);
12065
12066 ALL_BREAKPOINTS_SAFE (b, b_tmp)
12067 {
12068 if (b->disposition == disp_del_at_next_stop)
12069 delete_breakpoint (b);
12070 }
12071 }
12072
12073 /* A comparison function for bp_location AP and BP being interfaced to
12074 qsort. Sort elements primarily by their ADDRESS (no matter what
12075 does breakpoint_address_is_meaningful say for its OWNER),
12076 secondarily by ordering first bp_permanent OWNERed elements and
12077 terciarily just ensuring the array is sorted stable way despite
12078 qsort being an unstable algorithm. */
12079
12080 static int
12081 bp_location_compare (const void *ap, const void *bp)
12082 {
12083 struct bp_location *a = *(void **) ap;
12084 struct bp_location *b = *(void **) bp;
12085 /* A and B come from existing breakpoints having non-NULL OWNER. */
12086 int a_perm = a->owner->enable_state == bp_permanent;
12087 int b_perm = b->owner->enable_state == bp_permanent;
12088
12089 if (a->address != b->address)
12090 return (a->address > b->address) - (a->address < b->address);
12091
12092 /* Sort locations at the same address by their pspace number, keeping
12093 locations of the same inferior (in a multi-inferior environment)
12094 grouped. */
12095
12096 if (a->pspace->num != b->pspace->num)
12097 return ((a->pspace->num > b->pspace->num)
12098 - (a->pspace->num < b->pspace->num));
12099
12100 /* Sort permanent breakpoints first. */
12101 if (a_perm != b_perm)
12102 return (a_perm < b_perm) - (a_perm > b_perm);
12103
12104 /* Make the internal GDB representation stable across GDB runs
12105 where A and B memory inside GDB can differ. Breakpoint locations of
12106 the same type at the same address can be sorted in arbitrary order. */
12107
12108 if (a->owner->number != b->owner->number)
12109 return ((a->owner->number > b->owner->number)
12110 - (a->owner->number < b->owner->number));
12111
12112 return (a > b) - (a < b);
12113 }
12114
12115 /* Set bp_location_placed_address_before_address_max and
12116 bp_location_shadow_len_after_address_max according to the current
12117 content of the bp_location array. */
12118
12119 static void
12120 bp_location_target_extensions_update (void)
12121 {
12122 struct bp_location *bl, **blp_tmp;
12123
12124 bp_location_placed_address_before_address_max = 0;
12125 bp_location_shadow_len_after_address_max = 0;
12126
12127 ALL_BP_LOCATIONS (bl, blp_tmp)
12128 {
12129 CORE_ADDR start, end, addr;
12130
12131 if (!bp_location_has_shadow (bl))
12132 continue;
12133
12134 start = bl->target_info.placed_address;
12135 end = start + bl->target_info.shadow_len;
12136
12137 gdb_assert (bl->address >= start);
12138 addr = bl->address - start;
12139 if (addr > bp_location_placed_address_before_address_max)
12140 bp_location_placed_address_before_address_max = addr;
12141
12142 /* Zero SHADOW_LEN would not pass bp_location_has_shadow. */
12143
12144 gdb_assert (bl->address < end);
12145 addr = end - bl->address;
12146 if (addr > bp_location_shadow_len_after_address_max)
12147 bp_location_shadow_len_after_address_max = addr;
12148 }
12149 }
12150
12151 /* Download tracepoint locations if they haven't been. */
12152
12153 static void
12154 download_tracepoint_locations (void)
12155 {
12156 struct breakpoint *b;
12157 struct cleanup *old_chain;
12158
12159 if (!target_can_download_tracepoint ())
12160 return;
12161
12162 old_chain = save_current_space_and_thread ();
12163
12164 ALL_TRACEPOINTS (b)
12165 {
12166 struct bp_location *bl;
12167 struct tracepoint *t;
12168 int bp_location_downloaded = 0;
12169
12170 if ((b->type == bp_fast_tracepoint
12171 ? !may_insert_fast_tracepoints
12172 : !may_insert_tracepoints))
12173 continue;
12174
12175 for (bl = b->loc; bl; bl = bl->next)
12176 {
12177 /* In tracepoint, locations are _never_ duplicated, so
12178 should_be_inserted is equivalent to
12179 unduplicated_should_be_inserted. */
12180 if (!should_be_inserted (bl) || bl->inserted)
12181 continue;
12182
12183 switch_to_program_space_and_thread (bl->pspace);
12184
12185 target_download_tracepoint (bl);
12186
12187 bl->inserted = 1;
12188 bp_location_downloaded = 1;
12189 }
12190 t = (struct tracepoint *) b;
12191 t->number_on_target = b->number;
12192 if (bp_location_downloaded)
12193 observer_notify_breakpoint_modified (b);
12194 }
12195
12196 do_cleanups (old_chain);
12197 }
12198
12199 /* Swap the insertion/duplication state between two locations. */
12200
12201 static void
12202 swap_insertion (struct bp_location *left, struct bp_location *right)
12203 {
12204 const int left_inserted = left->inserted;
12205 const int left_duplicate = left->duplicate;
12206 const int left_needs_update = left->needs_update;
12207 const struct bp_target_info left_target_info = left->target_info;
12208
12209 /* Locations of tracepoints can never be duplicated. */
12210 if (is_tracepoint (left->owner))
12211 gdb_assert (!left->duplicate);
12212 if (is_tracepoint (right->owner))
12213 gdb_assert (!right->duplicate);
12214
12215 left->inserted = right->inserted;
12216 left->duplicate = right->duplicate;
12217 left->needs_update = right->needs_update;
12218 left->target_info = right->target_info;
12219 right->inserted = left_inserted;
12220 right->duplicate = left_duplicate;
12221 right->needs_update = left_needs_update;
12222 right->target_info = left_target_info;
12223 }
12224
12225 /* Force the re-insertion of the locations at ADDRESS. This is called
12226 once a new/deleted/modified duplicate location is found and we are evaluating
12227 conditions on the target's side. Such conditions need to be updated on
12228 the target. */
12229
12230 static void
12231 force_breakpoint_reinsertion (struct bp_location *bl)
12232 {
12233 struct bp_location **locp = NULL, **loc2p;
12234 struct bp_location *loc;
12235 CORE_ADDR address = 0;
12236 int pspace_num;
12237
12238 address = bl->address;
12239 pspace_num = bl->pspace->num;
12240
12241 /* This is only meaningful if the target is
12242 evaluating conditions and if the user has
12243 opted for condition evaluation on the target's
12244 side. */
12245 if (gdb_evaluates_breakpoint_condition_p ()
12246 || !target_supports_evaluation_of_breakpoint_conditions ())
12247 return;
12248
12249 /* Flag all breakpoint locations with this address and
12250 the same program space as the location
12251 as "its condition has changed". We need to
12252 update the conditions on the target's side. */
12253 ALL_BP_LOCATIONS_AT_ADDR (loc2p, locp, address)
12254 {
12255 loc = *loc2p;
12256
12257 if (!is_breakpoint (loc->owner)
12258 || pspace_num != loc->pspace->num)
12259 continue;
12260
12261 /* Flag the location appropriately. We use a different state to
12262 let everyone know that we already updated the set of locations
12263 with addr bl->address and program space bl->pspace. This is so
12264 we don't have to keep calling these functions just to mark locations
12265 that have already been marked. */
12266 loc->condition_changed = condition_updated;
12267
12268 /* Free the agent expression bytecode as well. We will compute
12269 it later on. */
12270 if (loc->cond_bytecode)
12271 {
12272 free_agent_expr (loc->cond_bytecode);
12273 loc->cond_bytecode = NULL;
12274 }
12275 }
12276 }
12277
12278 /* If SHOULD_INSERT is false, do not insert any breakpoint locations
12279 into the inferior, only remove already-inserted locations that no
12280 longer should be inserted. Functions that delete a breakpoint or
12281 breakpoints should pass false, so that deleting a breakpoint
12282 doesn't have the side effect of inserting the locations of other
12283 breakpoints that are marked not-inserted, but should_be_inserted
12284 returns true on them.
12285
12286 This behaviour is useful is situations close to tear-down -- e.g.,
12287 after an exec, while the target still has execution, but breakpoint
12288 shadows of the previous executable image should *NOT* be restored
12289 to the new image; or before detaching, where the target still has
12290 execution and wants to delete breakpoints from GDB's lists, and all
12291 breakpoints had already been removed from the inferior. */
12292
12293 static void
12294 update_global_location_list (int should_insert)
12295 {
12296 struct breakpoint *b;
12297 struct bp_location **locp, *loc;
12298 struct cleanup *cleanups;
12299 /* Last breakpoint location address that was marked for update. */
12300 CORE_ADDR last_addr = 0;
12301 /* Last breakpoint location program space that was marked for update. */
12302 int last_pspace_num = -1;
12303
12304 /* Used in the duplicates detection below. When iterating over all
12305 bp_locations, points to the first bp_location of a given address.
12306 Breakpoints and watchpoints of different types are never
12307 duplicates of each other. Keep one pointer for each type of
12308 breakpoint/watchpoint, so we only need to loop over all locations
12309 once. */
12310 struct bp_location *bp_loc_first; /* breakpoint */
12311 struct bp_location *wp_loc_first; /* hardware watchpoint */
12312 struct bp_location *awp_loc_first; /* access watchpoint */
12313 struct bp_location *rwp_loc_first; /* read watchpoint */
12314
12315 /* Saved former bp_location array which we compare against the newly
12316 built bp_location from the current state of ALL_BREAKPOINTS. */
12317 struct bp_location **old_location, **old_locp;
12318 unsigned old_location_count;
12319
12320 old_location = bp_location;
12321 old_location_count = bp_location_count;
12322 bp_location = NULL;
12323 bp_location_count = 0;
12324 cleanups = make_cleanup (xfree, old_location);
12325
12326 ALL_BREAKPOINTS (b)
12327 for (loc = b->loc; loc; loc = loc->next)
12328 bp_location_count++;
12329
12330 bp_location = xmalloc (sizeof (*bp_location) * bp_location_count);
12331 locp = bp_location;
12332 ALL_BREAKPOINTS (b)
12333 for (loc = b->loc; loc; loc = loc->next)
12334 *locp++ = loc;
12335 qsort (bp_location, bp_location_count, sizeof (*bp_location),
12336 bp_location_compare);
12337
12338 bp_location_target_extensions_update ();
12339
12340 /* Identify bp_location instances that are no longer present in the
12341 new list, and therefore should be freed. Note that it's not
12342 necessary that those locations should be removed from inferior --
12343 if there's another location at the same address (previously
12344 marked as duplicate), we don't need to remove/insert the
12345 location.
12346
12347 LOCP is kept in sync with OLD_LOCP, each pointing to the current
12348 and former bp_location array state respectively. */
12349
12350 locp = bp_location;
12351 for (old_locp = old_location; old_locp < old_location + old_location_count;
12352 old_locp++)
12353 {
12354 struct bp_location *old_loc = *old_locp;
12355 struct bp_location **loc2p;
12356
12357 /* Tells if 'old_loc' is found among the new locations. If
12358 not, we have to free it. */
12359 int found_object = 0;
12360 /* Tells if the location should remain inserted in the target. */
12361 int keep_in_target = 0;
12362 int removed = 0;
12363
12364 /* Skip LOCP entries which will definitely never be needed.
12365 Stop either at or being the one matching OLD_LOC. */
12366 while (locp < bp_location + bp_location_count
12367 && (*locp)->address < old_loc->address)
12368 locp++;
12369
12370 for (loc2p = locp;
12371 (loc2p < bp_location + bp_location_count
12372 && (*loc2p)->address == old_loc->address);
12373 loc2p++)
12374 {
12375 /* Check if this is a new/duplicated location or a duplicated
12376 location that had its condition modified. If so, we want to send
12377 its condition to the target if evaluation of conditions is taking
12378 place there. */
12379 if ((*loc2p)->condition_changed == condition_modified
12380 && (last_addr != old_loc->address
12381 || last_pspace_num != old_loc->pspace->num))
12382 {
12383 force_breakpoint_reinsertion (*loc2p);
12384 last_pspace_num = old_loc->pspace->num;
12385 }
12386
12387 if (*loc2p == old_loc)
12388 found_object = 1;
12389 }
12390
12391 /* We have already handled this address, update it so that we don't
12392 have to go through updates again. */
12393 last_addr = old_loc->address;
12394
12395 /* Target-side condition evaluation: Handle deleted locations. */
12396 if (!found_object)
12397 force_breakpoint_reinsertion (old_loc);
12398
12399 /* If this location is no longer present, and inserted, look if
12400 there's maybe a new location at the same address. If so,
12401 mark that one inserted, and don't remove this one. This is
12402 needed so that we don't have a time window where a breakpoint
12403 at certain location is not inserted. */
12404
12405 if (old_loc->inserted)
12406 {
12407 /* If the location is inserted now, we might have to remove
12408 it. */
12409
12410 if (found_object && should_be_inserted (old_loc))
12411 {
12412 /* The location is still present in the location list,
12413 and still should be inserted. Don't do anything. */
12414 keep_in_target = 1;
12415 }
12416 else
12417 {
12418 /* This location still exists, but it won't be kept in the
12419 target since it may have been disabled. We proceed to
12420 remove its target-side condition. */
12421
12422 /* The location is either no longer present, or got
12423 disabled. See if there's another location at the
12424 same address, in which case we don't need to remove
12425 this one from the target. */
12426
12427 /* OLD_LOC comes from existing struct breakpoint. */
12428 if (breakpoint_address_is_meaningful (old_loc->owner))
12429 {
12430 for (loc2p = locp;
12431 (loc2p < bp_location + bp_location_count
12432 && (*loc2p)->address == old_loc->address);
12433 loc2p++)
12434 {
12435 struct bp_location *loc2 = *loc2p;
12436
12437 if (breakpoint_locations_match (loc2, old_loc))
12438 {
12439 /* Read watchpoint locations are switched to
12440 access watchpoints, if the former are not
12441 supported, but the latter are. */
12442 if (is_hardware_watchpoint (old_loc->owner))
12443 {
12444 gdb_assert (is_hardware_watchpoint (loc2->owner));
12445 loc2->watchpoint_type = old_loc->watchpoint_type;
12446 }
12447
12448 /* loc2 is a duplicated location. We need to check
12449 if it should be inserted in case it will be
12450 unduplicated. */
12451 if (loc2 != old_loc
12452 && unduplicated_should_be_inserted (loc2))
12453 {
12454 swap_insertion (old_loc, loc2);
12455 keep_in_target = 1;
12456 break;
12457 }
12458 }
12459 }
12460 }
12461 }
12462
12463 if (!keep_in_target)
12464 {
12465 if (remove_breakpoint (old_loc, mark_uninserted))
12466 {
12467 /* This is just about all we can do. We could keep
12468 this location on the global list, and try to
12469 remove it next time, but there's no particular
12470 reason why we will succeed next time.
12471
12472 Note that at this point, old_loc->owner is still
12473 valid, as delete_breakpoint frees the breakpoint
12474 only after calling us. */
12475 printf_filtered (_("warning: Error removing "
12476 "breakpoint %d\n"),
12477 old_loc->owner->number);
12478 }
12479 removed = 1;
12480 }
12481 }
12482
12483 if (!found_object)
12484 {
12485 if (removed && non_stop
12486 && breakpoint_address_is_meaningful (old_loc->owner)
12487 && !is_hardware_watchpoint (old_loc->owner))
12488 {
12489 /* This location was removed from the target. In
12490 non-stop mode, a race condition is possible where
12491 we've removed a breakpoint, but stop events for that
12492 breakpoint are already queued and will arrive later.
12493 We apply an heuristic to be able to distinguish such
12494 SIGTRAPs from other random SIGTRAPs: we keep this
12495 breakpoint location for a bit, and will retire it
12496 after we see some number of events. The theory here
12497 is that reporting of events should, "on the average",
12498 be fair, so after a while we'll see events from all
12499 threads that have anything of interest, and no longer
12500 need to keep this breakpoint location around. We
12501 don't hold locations forever so to reduce chances of
12502 mistaking a non-breakpoint SIGTRAP for a breakpoint
12503 SIGTRAP.
12504
12505 The heuristic failing can be disastrous on
12506 decr_pc_after_break targets.
12507
12508 On decr_pc_after_break targets, like e.g., x86-linux,
12509 if we fail to recognize a late breakpoint SIGTRAP,
12510 because events_till_retirement has reached 0 too
12511 soon, we'll fail to do the PC adjustment, and report
12512 a random SIGTRAP to the user. When the user resumes
12513 the inferior, it will most likely immediately crash
12514 with SIGILL/SIGBUS/SIGSEGV, or worse, get silently
12515 corrupted, because of being resumed e.g., in the
12516 middle of a multi-byte instruction, or skipped a
12517 one-byte instruction. This was actually seen happen
12518 on native x86-linux, and should be less rare on
12519 targets that do not support new thread events, like
12520 remote, due to the heuristic depending on
12521 thread_count.
12522
12523 Mistaking a random SIGTRAP for a breakpoint trap
12524 causes similar symptoms (PC adjustment applied when
12525 it shouldn't), but then again, playing with SIGTRAPs
12526 behind the debugger's back is asking for trouble.
12527
12528 Since hardware watchpoint traps are always
12529 distinguishable from other traps, so we don't need to
12530 apply keep hardware watchpoint moribund locations
12531 around. We simply always ignore hardware watchpoint
12532 traps we can no longer explain. */
12533
12534 old_loc->events_till_retirement = 3 * (thread_count () + 1);
12535 old_loc->owner = NULL;
12536
12537 VEC_safe_push (bp_location_p, moribund_locations, old_loc);
12538 }
12539 else
12540 {
12541 old_loc->owner = NULL;
12542 decref_bp_location (&old_loc);
12543 }
12544 }
12545 }
12546
12547 /* Rescan breakpoints at the same address and section, marking the
12548 first one as "first" and any others as "duplicates". This is so
12549 that the bpt instruction is only inserted once. If we have a
12550 permanent breakpoint at the same place as BPT, make that one the
12551 official one, and the rest as duplicates. Permanent breakpoints
12552 are sorted first for the same address.
12553
12554 Do the same for hardware watchpoints, but also considering the
12555 watchpoint's type (regular/access/read) and length. */
12556
12557 bp_loc_first = NULL;
12558 wp_loc_first = NULL;
12559 awp_loc_first = NULL;
12560 rwp_loc_first = NULL;
12561 ALL_BP_LOCATIONS (loc, locp)
12562 {
12563 /* ALL_BP_LOCATIONS bp_location has LOC->OWNER always
12564 non-NULL. */
12565 struct bp_location **loc_first_p;
12566 b = loc->owner;
12567
12568 if (!unduplicated_should_be_inserted (loc)
12569 || !breakpoint_address_is_meaningful (b)
12570 /* Don't detect duplicate for tracepoint locations because they are
12571 never duplicated. See the comments in field `duplicate' of
12572 `struct bp_location'. */
12573 || is_tracepoint (b))
12574 {
12575 /* Clear the condition modification flag. */
12576 loc->condition_changed = condition_unchanged;
12577 continue;
12578 }
12579
12580 /* Permanent breakpoint should always be inserted. */
12581 if (b->enable_state == bp_permanent && ! loc->inserted)
12582 internal_error (__FILE__, __LINE__,
12583 _("allegedly permanent breakpoint is not "
12584 "actually inserted"));
12585
12586 if (b->type == bp_hardware_watchpoint)
12587 loc_first_p = &wp_loc_first;
12588 else if (b->type == bp_read_watchpoint)
12589 loc_first_p = &rwp_loc_first;
12590 else if (b->type == bp_access_watchpoint)
12591 loc_first_p = &awp_loc_first;
12592 else
12593 loc_first_p = &bp_loc_first;
12594
12595 if (*loc_first_p == NULL
12596 || (overlay_debugging && loc->section != (*loc_first_p)->section)
12597 || !breakpoint_locations_match (loc, *loc_first_p))
12598 {
12599 *loc_first_p = loc;
12600 loc->duplicate = 0;
12601
12602 if (is_breakpoint (loc->owner) && loc->condition_changed)
12603 {
12604 loc->needs_update = 1;
12605 /* Clear the condition modification flag. */
12606 loc->condition_changed = condition_unchanged;
12607 }
12608 continue;
12609 }
12610
12611
12612 /* This and the above ensure the invariant that the first location
12613 is not duplicated, and is the inserted one.
12614 All following are marked as duplicated, and are not inserted. */
12615 if (loc->inserted)
12616 swap_insertion (loc, *loc_first_p);
12617 loc->duplicate = 1;
12618
12619 /* Clear the condition modification flag. */
12620 loc->condition_changed = condition_unchanged;
12621
12622 if ((*loc_first_p)->owner->enable_state == bp_permanent && loc->inserted
12623 && b->enable_state != bp_permanent)
12624 internal_error (__FILE__, __LINE__,
12625 _("another breakpoint was inserted on top of "
12626 "a permanent breakpoint"));
12627 }
12628
12629 if (breakpoints_always_inserted_mode ()
12630 && (have_live_inferiors ()
12631 || (gdbarch_has_global_breakpoints (target_gdbarch ()))))
12632 {
12633 if (should_insert)
12634 insert_breakpoint_locations ();
12635 else
12636 {
12637 /* Though should_insert is false, we may need to update conditions
12638 on the target's side if it is evaluating such conditions. We
12639 only update conditions for locations that are marked
12640 "needs_update". */
12641 update_inserted_breakpoint_locations ();
12642 }
12643 }
12644
12645 if (should_insert)
12646 download_tracepoint_locations ();
12647
12648 do_cleanups (cleanups);
12649 }
12650
12651 void
12652 breakpoint_retire_moribund (void)
12653 {
12654 struct bp_location *loc;
12655 int ix;
12656
12657 for (ix = 0; VEC_iterate (bp_location_p, moribund_locations, ix, loc); ++ix)
12658 if (--(loc->events_till_retirement) == 0)
12659 {
12660 decref_bp_location (&loc);
12661 VEC_unordered_remove (bp_location_p, moribund_locations, ix);
12662 --ix;
12663 }
12664 }
12665
12666 static void
12667 update_global_location_list_nothrow (int inserting)
12668 {
12669 volatile struct gdb_exception e;
12670
12671 TRY_CATCH (e, RETURN_MASK_ERROR)
12672 update_global_location_list (inserting);
12673 }
12674
12675 /* Clear BKP from a BPS. */
12676
12677 static void
12678 bpstat_remove_bp_location (bpstat bps, struct breakpoint *bpt)
12679 {
12680 bpstat bs;
12681
12682 for (bs = bps; bs; bs = bs->next)
12683 if (bs->breakpoint_at == bpt)
12684 {
12685 bs->breakpoint_at = NULL;
12686 bs->old_val = NULL;
12687 /* bs->commands will be freed later. */
12688 }
12689 }
12690
12691 /* Callback for iterate_over_threads. */
12692 static int
12693 bpstat_remove_breakpoint_callback (struct thread_info *th, void *data)
12694 {
12695 struct breakpoint *bpt = data;
12696
12697 bpstat_remove_bp_location (th->control.stop_bpstat, bpt);
12698 return 0;
12699 }
12700
12701 /* Helper for breakpoint and tracepoint breakpoint_ops->mention
12702 callbacks. */
12703
12704 static void
12705 say_where (struct breakpoint *b)
12706 {
12707 struct ui_out *uiout = current_uiout;
12708 struct value_print_options opts;
12709
12710 get_user_print_options (&opts);
12711
12712 /* i18n: cagney/2005-02-11: Below needs to be merged into a
12713 single string. */
12714 if (b->loc == NULL)
12715 {
12716 printf_filtered (_(" (%s) pending."), b->addr_string);
12717 }
12718 else
12719 {
12720 if (opts.addressprint || b->loc->symtab == NULL)
12721 {
12722 printf_filtered (" at ");
12723 fputs_filtered (paddress (b->loc->gdbarch, b->loc->address),
12724 gdb_stdout);
12725 }
12726 if (b->loc->symtab != NULL)
12727 {
12728 /* If there is a single location, we can print the location
12729 more nicely. */
12730 if (b->loc->next == NULL)
12731 printf_filtered (": file %s, line %d.",
12732 symtab_to_filename_for_display (b->loc->symtab),
12733 b->loc->line_number);
12734 else
12735 /* This is not ideal, but each location may have a
12736 different file name, and this at least reflects the
12737 real situation somewhat. */
12738 printf_filtered (": %s.", b->addr_string);
12739 }
12740
12741 if (b->loc->next)
12742 {
12743 struct bp_location *loc = b->loc;
12744 int n = 0;
12745 for (; loc; loc = loc->next)
12746 ++n;
12747 printf_filtered (" (%d locations)", n);
12748 }
12749 }
12750 }
12751
12752 /* Default bp_location_ops methods. */
12753
12754 static void
12755 bp_location_dtor (struct bp_location *self)
12756 {
12757 xfree (self->cond);
12758 if (self->cond_bytecode)
12759 free_agent_expr (self->cond_bytecode);
12760 xfree (self->function_name);
12761 }
12762
12763 static const struct bp_location_ops bp_location_ops =
12764 {
12765 bp_location_dtor
12766 };
12767
12768 /* Default breakpoint_ops methods all breakpoint_ops ultimately
12769 inherit from. */
12770
12771 static void
12772 base_breakpoint_dtor (struct breakpoint *self)
12773 {
12774 decref_counted_command_line (&self->commands);
12775 xfree (self->cond_string);
12776 xfree (self->addr_string);
12777 xfree (self->filter);
12778 xfree (self->addr_string_range_end);
12779 }
12780
12781 static struct bp_location *
12782 base_breakpoint_allocate_location (struct breakpoint *self)
12783 {
12784 struct bp_location *loc;
12785
12786 loc = XNEW (struct bp_location);
12787 init_bp_location (loc, &bp_location_ops, self);
12788 return loc;
12789 }
12790
12791 static void
12792 base_breakpoint_re_set (struct breakpoint *b)
12793 {
12794 /* Nothing to re-set. */
12795 }
12796
12797 #define internal_error_pure_virtual_called() \
12798 gdb_assert_not_reached ("pure virtual function called")
12799
12800 static int
12801 base_breakpoint_insert_location (struct bp_location *bl)
12802 {
12803 internal_error_pure_virtual_called ();
12804 }
12805
12806 static int
12807 base_breakpoint_remove_location (struct bp_location *bl)
12808 {
12809 internal_error_pure_virtual_called ();
12810 }
12811
12812 static int
12813 base_breakpoint_breakpoint_hit (const struct bp_location *bl,
12814 struct address_space *aspace,
12815 CORE_ADDR bp_addr,
12816 const struct target_waitstatus *ws)
12817 {
12818 internal_error_pure_virtual_called ();
12819 }
12820
12821 static void
12822 base_breakpoint_check_status (bpstat bs)
12823 {
12824 /* Always stop. */
12825 }
12826
12827 /* A "works_in_software_mode" breakpoint_ops method that just internal
12828 errors. */
12829
12830 static int
12831 base_breakpoint_works_in_software_mode (const struct breakpoint *b)
12832 {
12833 internal_error_pure_virtual_called ();
12834 }
12835
12836 /* A "resources_needed" breakpoint_ops method that just internal
12837 errors. */
12838
12839 static int
12840 base_breakpoint_resources_needed (const struct bp_location *bl)
12841 {
12842 internal_error_pure_virtual_called ();
12843 }
12844
12845 static enum print_stop_action
12846 base_breakpoint_print_it (bpstat bs)
12847 {
12848 internal_error_pure_virtual_called ();
12849 }
12850
12851 static void
12852 base_breakpoint_print_one_detail (const struct breakpoint *self,
12853 struct ui_out *uiout)
12854 {
12855 /* nothing */
12856 }
12857
12858 static void
12859 base_breakpoint_print_mention (struct breakpoint *b)
12860 {
12861 internal_error_pure_virtual_called ();
12862 }
12863
12864 static void
12865 base_breakpoint_print_recreate (struct breakpoint *b, struct ui_file *fp)
12866 {
12867 internal_error_pure_virtual_called ();
12868 }
12869
12870 static void
12871 base_breakpoint_create_sals_from_address (char **arg,
12872 struct linespec_result *canonical,
12873 enum bptype type_wanted,
12874 char *addr_start,
12875 char **copy_arg)
12876 {
12877 internal_error_pure_virtual_called ();
12878 }
12879
12880 static void
12881 base_breakpoint_create_breakpoints_sal (struct gdbarch *gdbarch,
12882 struct linespec_result *c,
12883 struct linespec_sals *lsal,
12884 char *cond_string,
12885 char *extra_string,
12886 enum bptype type_wanted,
12887 enum bpdisp disposition,
12888 int thread,
12889 int task, int ignore_count,
12890 const struct breakpoint_ops *o,
12891 int from_tty, int enabled,
12892 int internal, unsigned flags)
12893 {
12894 internal_error_pure_virtual_called ();
12895 }
12896
12897 static void
12898 base_breakpoint_decode_linespec (struct breakpoint *b, char **s,
12899 struct symtabs_and_lines *sals)
12900 {
12901 internal_error_pure_virtual_called ();
12902 }
12903
12904 /* The default 'explains_signal' method. */
12905
12906 static enum bpstat_signal_value
12907 base_breakpoint_explains_signal (struct breakpoint *b)
12908 {
12909 return BPSTAT_SIGNAL_HIDE;
12910 }
12911
12912 struct breakpoint_ops base_breakpoint_ops =
12913 {
12914 base_breakpoint_dtor,
12915 base_breakpoint_allocate_location,
12916 base_breakpoint_re_set,
12917 base_breakpoint_insert_location,
12918 base_breakpoint_remove_location,
12919 base_breakpoint_breakpoint_hit,
12920 base_breakpoint_check_status,
12921 base_breakpoint_resources_needed,
12922 base_breakpoint_works_in_software_mode,
12923 base_breakpoint_print_it,
12924 NULL,
12925 base_breakpoint_print_one_detail,
12926 base_breakpoint_print_mention,
12927 base_breakpoint_print_recreate,
12928 base_breakpoint_create_sals_from_address,
12929 base_breakpoint_create_breakpoints_sal,
12930 base_breakpoint_decode_linespec,
12931 base_breakpoint_explains_signal
12932 };
12933
12934 /* Default breakpoint_ops methods. */
12935
12936 static void
12937 bkpt_re_set (struct breakpoint *b)
12938 {
12939 /* FIXME: is this still reachable? */
12940 if (b->addr_string == NULL)
12941 {
12942 /* Anything without a string can't be re-set. */
12943 delete_breakpoint (b);
12944 return;
12945 }
12946
12947 breakpoint_re_set_default (b);
12948 }
12949
12950 static int
12951 bkpt_insert_location (struct bp_location *bl)
12952 {
12953 if (bl->loc_type == bp_loc_hardware_breakpoint)
12954 return target_insert_hw_breakpoint (bl->gdbarch,
12955 &bl->target_info);
12956 else
12957 return target_insert_breakpoint (bl->gdbarch,
12958 &bl->target_info);
12959 }
12960
12961 static int
12962 bkpt_remove_location (struct bp_location *bl)
12963 {
12964 if (bl->loc_type == bp_loc_hardware_breakpoint)
12965 return target_remove_hw_breakpoint (bl->gdbarch, &bl->target_info);
12966 else
12967 return target_remove_breakpoint (bl->gdbarch, &bl->target_info);
12968 }
12969
12970 static int
12971 bkpt_breakpoint_hit (const struct bp_location *bl,
12972 struct address_space *aspace, CORE_ADDR bp_addr,
12973 const struct target_waitstatus *ws)
12974 {
12975 struct breakpoint *b = bl->owner;
12976
12977 if (ws->kind != TARGET_WAITKIND_STOPPED
12978 || ws->value.sig != GDB_SIGNAL_TRAP)
12979 return 0;
12980
12981 if (!breakpoint_address_match (bl->pspace->aspace, bl->address,
12982 aspace, bp_addr))
12983 return 0;
12984
12985 if (overlay_debugging /* unmapped overlay section */
12986 && section_is_overlay (bl->section)
12987 && !section_is_mapped (bl->section))
12988 return 0;
12989
12990 return 1;
12991 }
12992
12993 static int
12994 bkpt_resources_needed (const struct bp_location *bl)
12995 {
12996 gdb_assert (bl->owner->type == bp_hardware_breakpoint);
12997
12998 return 1;
12999 }
13000
13001 static enum print_stop_action
13002 bkpt_print_it (bpstat bs)
13003 {
13004 struct breakpoint *b;
13005 const struct bp_location *bl;
13006 int bp_temp;
13007 struct ui_out *uiout = current_uiout;
13008
13009 gdb_assert (bs->bp_location_at != NULL);
13010
13011 bl = bs->bp_location_at;
13012 b = bs->breakpoint_at;
13013
13014 bp_temp = b->disposition == disp_del;
13015 if (bl->address != bl->requested_address)
13016 breakpoint_adjustment_warning (bl->requested_address,
13017 bl->address,
13018 b->number, 1);
13019 annotate_breakpoint (b->number);
13020 if (bp_temp)
13021 ui_out_text (uiout, "\nTemporary breakpoint ");
13022 else
13023 ui_out_text (uiout, "\nBreakpoint ");
13024 if (ui_out_is_mi_like_p (uiout))
13025 {
13026 ui_out_field_string (uiout, "reason",
13027 async_reason_lookup (EXEC_ASYNC_BREAKPOINT_HIT));
13028 ui_out_field_string (uiout, "disp", bpdisp_text (b->disposition));
13029 }
13030 ui_out_field_int (uiout, "bkptno", b->number);
13031 ui_out_text (uiout, ", ");
13032
13033 return PRINT_SRC_AND_LOC;
13034 }
13035
13036 static void
13037 bkpt_print_mention (struct breakpoint *b)
13038 {
13039 if (ui_out_is_mi_like_p (current_uiout))
13040 return;
13041
13042 switch (b->type)
13043 {
13044 case bp_breakpoint:
13045 case bp_gnu_ifunc_resolver:
13046 if (b->disposition == disp_del)
13047 printf_filtered (_("Temporary breakpoint"));
13048 else
13049 printf_filtered (_("Breakpoint"));
13050 printf_filtered (_(" %d"), b->number);
13051 if (b->type == bp_gnu_ifunc_resolver)
13052 printf_filtered (_(" at gnu-indirect-function resolver"));
13053 break;
13054 case bp_hardware_breakpoint:
13055 printf_filtered (_("Hardware assisted breakpoint %d"), b->number);
13056 break;
13057 case bp_dprintf:
13058 printf_filtered (_("Dprintf %d"), b->number);
13059 break;
13060 }
13061
13062 say_where (b);
13063 }
13064
13065 static void
13066 bkpt_print_recreate (struct breakpoint *tp, struct ui_file *fp)
13067 {
13068 if (tp->type == bp_breakpoint && tp->disposition == disp_del)
13069 fprintf_unfiltered (fp, "tbreak");
13070 else if (tp->type == bp_breakpoint)
13071 fprintf_unfiltered (fp, "break");
13072 else if (tp->type == bp_hardware_breakpoint
13073 && tp->disposition == disp_del)
13074 fprintf_unfiltered (fp, "thbreak");
13075 else if (tp->type == bp_hardware_breakpoint)
13076 fprintf_unfiltered (fp, "hbreak");
13077 else
13078 internal_error (__FILE__, __LINE__,
13079 _("unhandled breakpoint type %d"), (int) tp->type);
13080
13081 fprintf_unfiltered (fp, " %s", tp->addr_string);
13082 print_recreate_thread (tp, fp);
13083 }
13084
13085 static void
13086 bkpt_create_sals_from_address (char **arg,
13087 struct linespec_result *canonical,
13088 enum bptype type_wanted,
13089 char *addr_start, char **copy_arg)
13090 {
13091 create_sals_from_address_default (arg, canonical, type_wanted,
13092 addr_start, copy_arg);
13093 }
13094
13095 static void
13096 bkpt_create_breakpoints_sal (struct gdbarch *gdbarch,
13097 struct linespec_result *canonical,
13098 struct linespec_sals *lsal,
13099 char *cond_string,
13100 char *extra_string,
13101 enum bptype type_wanted,
13102 enum bpdisp disposition,
13103 int thread,
13104 int task, int ignore_count,
13105 const struct breakpoint_ops *ops,
13106 int from_tty, int enabled,
13107 int internal, unsigned flags)
13108 {
13109 create_breakpoints_sal_default (gdbarch, canonical, lsal,
13110 cond_string, extra_string,
13111 type_wanted,
13112 disposition, thread, task,
13113 ignore_count, ops, from_tty,
13114 enabled, internal, flags);
13115 }
13116
13117 static void
13118 bkpt_decode_linespec (struct breakpoint *b, char **s,
13119 struct symtabs_and_lines *sals)
13120 {
13121 decode_linespec_default (b, s, sals);
13122 }
13123
13124 /* Virtual table for internal breakpoints. */
13125
13126 static void
13127 internal_bkpt_re_set (struct breakpoint *b)
13128 {
13129 switch (b->type)
13130 {
13131 /* Delete overlay event and longjmp master breakpoints; they
13132 will be reset later by breakpoint_re_set. */
13133 case bp_overlay_event:
13134 case bp_longjmp_master:
13135 case bp_std_terminate_master:
13136 case bp_exception_master:
13137 delete_breakpoint (b);
13138 break;
13139
13140 /* This breakpoint is special, it's set up when the inferior
13141 starts and we really don't want to touch it. */
13142 case bp_shlib_event:
13143
13144 /* Like bp_shlib_event, this breakpoint type is special. Once
13145 it is set up, we do not want to touch it. */
13146 case bp_thread_event:
13147 break;
13148 }
13149 }
13150
13151 static void
13152 internal_bkpt_check_status (bpstat bs)
13153 {
13154 if (bs->breakpoint_at->type == bp_shlib_event)
13155 {
13156 /* If requested, stop when the dynamic linker notifies GDB of
13157 events. This allows the user to get control and place
13158 breakpoints in initializer routines for dynamically loaded
13159 objects (among other things). */
13160 bs->stop = stop_on_solib_events;
13161 bs->print = stop_on_solib_events;
13162 }
13163 else
13164 bs->stop = 0;
13165 }
13166
13167 static enum print_stop_action
13168 internal_bkpt_print_it (bpstat bs)
13169 {
13170 struct ui_out *uiout = current_uiout;
13171 struct breakpoint *b;
13172
13173 b = bs->breakpoint_at;
13174
13175 switch (b->type)
13176 {
13177 case bp_shlib_event:
13178 /* Did we stop because the user set the stop_on_solib_events
13179 variable? (If so, we report this as a generic, "Stopped due
13180 to shlib event" message.) */
13181 print_solib_event (0);
13182 break;
13183
13184 case bp_thread_event:
13185 /* Not sure how we will get here.
13186 GDB should not stop for these breakpoints. */
13187 printf_filtered (_("Thread Event Breakpoint: gdb should not stop!\n"));
13188 break;
13189
13190 case bp_overlay_event:
13191 /* By analogy with the thread event, GDB should not stop for these. */
13192 printf_filtered (_("Overlay Event Breakpoint: gdb should not stop!\n"));
13193 break;
13194
13195 case bp_longjmp_master:
13196 /* These should never be enabled. */
13197 printf_filtered (_("Longjmp Master Breakpoint: gdb should not stop!\n"));
13198 break;
13199
13200 case bp_std_terminate_master:
13201 /* These should never be enabled. */
13202 printf_filtered (_("std::terminate Master Breakpoint: "
13203 "gdb should not stop!\n"));
13204 break;
13205
13206 case bp_exception_master:
13207 /* These should never be enabled. */
13208 printf_filtered (_("Exception Master Breakpoint: "
13209 "gdb should not stop!\n"));
13210 break;
13211 }
13212
13213 return PRINT_NOTHING;
13214 }
13215
13216 static void
13217 internal_bkpt_print_mention (struct breakpoint *b)
13218 {
13219 /* Nothing to mention. These breakpoints are internal. */
13220 }
13221
13222 /* Virtual table for momentary breakpoints */
13223
13224 static void
13225 momentary_bkpt_re_set (struct breakpoint *b)
13226 {
13227 /* Keep temporary breakpoints, which can be encountered when we step
13228 over a dlopen call and SOLIB_ADD is resetting the breakpoints.
13229 Otherwise these should have been blown away via the cleanup chain
13230 or by breakpoint_init_inferior when we rerun the executable. */
13231 }
13232
13233 static void
13234 momentary_bkpt_check_status (bpstat bs)
13235 {
13236 /* Nothing. The point of these breakpoints is causing a stop. */
13237 }
13238
13239 static enum print_stop_action
13240 momentary_bkpt_print_it (bpstat bs)
13241 {
13242 struct ui_out *uiout = current_uiout;
13243
13244 if (ui_out_is_mi_like_p (uiout))
13245 {
13246 struct breakpoint *b = bs->breakpoint_at;
13247
13248 switch (b->type)
13249 {
13250 case bp_finish:
13251 ui_out_field_string
13252 (uiout, "reason",
13253 async_reason_lookup (EXEC_ASYNC_FUNCTION_FINISHED));
13254 break;
13255
13256 case bp_until:
13257 ui_out_field_string
13258 (uiout, "reason",
13259 async_reason_lookup (EXEC_ASYNC_LOCATION_REACHED));
13260 break;
13261 }
13262 }
13263
13264 return PRINT_UNKNOWN;
13265 }
13266
13267 static void
13268 momentary_bkpt_print_mention (struct breakpoint *b)
13269 {
13270 /* Nothing to mention. These breakpoints are internal. */
13271 }
13272
13273 /* Ensure INITIATING_FRAME is cleared when no such breakpoint exists.
13274
13275 It gets cleared already on the removal of the first one of such placed
13276 breakpoints. This is OK as they get all removed altogether. */
13277
13278 static void
13279 longjmp_bkpt_dtor (struct breakpoint *self)
13280 {
13281 struct thread_info *tp = find_thread_id (self->thread);
13282
13283 if (tp)
13284 tp->initiating_frame = null_frame_id;
13285
13286 momentary_breakpoint_ops.dtor (self);
13287 }
13288
13289 /* Specific methods for probe breakpoints. */
13290
13291 static int
13292 bkpt_probe_insert_location (struct bp_location *bl)
13293 {
13294 int v = bkpt_insert_location (bl);
13295
13296 if (v == 0)
13297 {
13298 /* The insertion was successful, now let's set the probe's semaphore
13299 if needed. */
13300 bl->probe->pops->set_semaphore (bl->probe, bl->gdbarch);
13301 }
13302
13303 return v;
13304 }
13305
13306 static int
13307 bkpt_probe_remove_location (struct bp_location *bl)
13308 {
13309 /* Let's clear the semaphore before removing the location. */
13310 bl->probe->pops->clear_semaphore (bl->probe, bl->gdbarch);
13311
13312 return bkpt_remove_location (bl);
13313 }
13314
13315 static void
13316 bkpt_probe_create_sals_from_address (char **arg,
13317 struct linespec_result *canonical,
13318 enum bptype type_wanted,
13319 char *addr_start, char **copy_arg)
13320 {
13321 struct linespec_sals lsal;
13322
13323 lsal.sals = parse_probes (arg, canonical);
13324
13325 *copy_arg = xstrdup (canonical->addr_string);
13326 lsal.canonical = xstrdup (*copy_arg);
13327
13328 VEC_safe_push (linespec_sals, canonical->sals, &lsal);
13329 }
13330
13331 static void
13332 bkpt_probe_decode_linespec (struct breakpoint *b, char **s,
13333 struct symtabs_and_lines *sals)
13334 {
13335 *sals = parse_probes (s, NULL);
13336 if (!sals->sals)
13337 error (_("probe not found"));
13338 }
13339
13340 /* The breakpoint_ops structure to be used in tracepoints. */
13341
13342 static void
13343 tracepoint_re_set (struct breakpoint *b)
13344 {
13345 breakpoint_re_set_default (b);
13346 }
13347
13348 static int
13349 tracepoint_breakpoint_hit (const struct bp_location *bl,
13350 struct address_space *aspace, CORE_ADDR bp_addr,
13351 const struct target_waitstatus *ws)
13352 {
13353 /* By definition, the inferior does not report stops at
13354 tracepoints. */
13355 return 0;
13356 }
13357
13358 static void
13359 tracepoint_print_one_detail (const struct breakpoint *self,
13360 struct ui_out *uiout)
13361 {
13362 struct tracepoint *tp = (struct tracepoint *) self;
13363 if (tp->static_trace_marker_id)
13364 {
13365 gdb_assert (self->type == bp_static_tracepoint);
13366
13367 ui_out_text (uiout, "\tmarker id is ");
13368 ui_out_field_string (uiout, "static-tracepoint-marker-string-id",
13369 tp->static_trace_marker_id);
13370 ui_out_text (uiout, "\n");
13371 }
13372 }
13373
13374 static void
13375 tracepoint_print_mention (struct breakpoint *b)
13376 {
13377 if (ui_out_is_mi_like_p (current_uiout))
13378 return;
13379
13380 switch (b->type)
13381 {
13382 case bp_tracepoint:
13383 printf_filtered (_("Tracepoint"));
13384 printf_filtered (_(" %d"), b->number);
13385 break;
13386 case bp_fast_tracepoint:
13387 printf_filtered (_("Fast tracepoint"));
13388 printf_filtered (_(" %d"), b->number);
13389 break;
13390 case bp_static_tracepoint:
13391 printf_filtered (_("Static tracepoint"));
13392 printf_filtered (_(" %d"), b->number);
13393 break;
13394 default:
13395 internal_error (__FILE__, __LINE__,
13396 _("unhandled tracepoint type %d"), (int) b->type);
13397 }
13398
13399 say_where (b);
13400 }
13401
13402 static void
13403 tracepoint_print_recreate (struct breakpoint *self, struct ui_file *fp)
13404 {
13405 struct tracepoint *tp = (struct tracepoint *) self;
13406
13407 if (self->type == bp_fast_tracepoint)
13408 fprintf_unfiltered (fp, "ftrace");
13409 if (self->type == bp_static_tracepoint)
13410 fprintf_unfiltered (fp, "strace");
13411 else if (self->type == bp_tracepoint)
13412 fprintf_unfiltered (fp, "trace");
13413 else
13414 internal_error (__FILE__, __LINE__,
13415 _("unhandled tracepoint type %d"), (int) self->type);
13416
13417 fprintf_unfiltered (fp, " %s", self->addr_string);
13418 print_recreate_thread (self, fp);
13419
13420 if (tp->pass_count)
13421 fprintf_unfiltered (fp, " passcount %d\n", tp->pass_count);
13422 }
13423
13424 static void
13425 tracepoint_create_sals_from_address (char **arg,
13426 struct linespec_result *canonical,
13427 enum bptype type_wanted,
13428 char *addr_start, char **copy_arg)
13429 {
13430 create_sals_from_address_default (arg, canonical, type_wanted,
13431 addr_start, copy_arg);
13432 }
13433
13434 static void
13435 tracepoint_create_breakpoints_sal (struct gdbarch *gdbarch,
13436 struct linespec_result *canonical,
13437 struct linespec_sals *lsal,
13438 char *cond_string,
13439 char *extra_string,
13440 enum bptype type_wanted,
13441 enum bpdisp disposition,
13442 int thread,
13443 int task, int ignore_count,
13444 const struct breakpoint_ops *ops,
13445 int from_tty, int enabled,
13446 int internal, unsigned flags)
13447 {
13448 create_breakpoints_sal_default (gdbarch, canonical, lsal,
13449 cond_string, extra_string,
13450 type_wanted,
13451 disposition, thread, task,
13452 ignore_count, ops, from_tty,
13453 enabled, internal, flags);
13454 }
13455
13456 static void
13457 tracepoint_decode_linespec (struct breakpoint *b, char **s,
13458 struct symtabs_and_lines *sals)
13459 {
13460 decode_linespec_default (b, s, sals);
13461 }
13462
13463 struct breakpoint_ops tracepoint_breakpoint_ops;
13464
13465 /* The breakpoint_ops structure to be use on tracepoints placed in a
13466 static probe. */
13467
13468 static void
13469 tracepoint_probe_create_sals_from_address (char **arg,
13470 struct linespec_result *canonical,
13471 enum bptype type_wanted,
13472 char *addr_start, char **copy_arg)
13473 {
13474 /* We use the same method for breakpoint on probes. */
13475 bkpt_probe_create_sals_from_address (arg, canonical, type_wanted,
13476 addr_start, copy_arg);
13477 }
13478
13479 static void
13480 tracepoint_probe_decode_linespec (struct breakpoint *b, char **s,
13481 struct symtabs_and_lines *sals)
13482 {
13483 /* We use the same method for breakpoint on probes. */
13484 bkpt_probe_decode_linespec (b, s, sals);
13485 }
13486
13487 static struct breakpoint_ops tracepoint_probe_breakpoint_ops;
13488
13489 /* The breakpoint_ops structure to be used on static tracepoints with
13490 markers (`-m'). */
13491
13492 static void
13493 strace_marker_create_sals_from_address (char **arg,
13494 struct linespec_result *canonical,
13495 enum bptype type_wanted,
13496 char *addr_start, char **copy_arg)
13497 {
13498 struct linespec_sals lsal;
13499
13500 lsal.sals = decode_static_tracepoint_spec (arg);
13501
13502 *copy_arg = savestring (addr_start, *arg - addr_start);
13503
13504 canonical->addr_string = xstrdup (*copy_arg);
13505 lsal.canonical = xstrdup (*copy_arg);
13506 VEC_safe_push (linespec_sals, canonical->sals, &lsal);
13507 }
13508
13509 static void
13510 strace_marker_create_breakpoints_sal (struct gdbarch *gdbarch,
13511 struct linespec_result *canonical,
13512 struct linespec_sals *lsal,
13513 char *cond_string,
13514 char *extra_string,
13515 enum bptype type_wanted,
13516 enum bpdisp disposition,
13517 int thread,
13518 int task, int ignore_count,
13519 const struct breakpoint_ops *ops,
13520 int from_tty, int enabled,
13521 int internal, unsigned flags)
13522 {
13523 int i;
13524
13525 /* If the user is creating a static tracepoint by marker id
13526 (strace -m MARKER_ID), then store the sals index, so that
13527 breakpoint_re_set can try to match up which of the newly
13528 found markers corresponds to this one, and, don't try to
13529 expand multiple locations for each sal, given than SALS
13530 already should contain all sals for MARKER_ID. */
13531
13532 for (i = 0; i < lsal->sals.nelts; ++i)
13533 {
13534 struct symtabs_and_lines expanded;
13535 struct tracepoint *tp;
13536 struct cleanup *old_chain;
13537 char *addr_string;
13538
13539 expanded.nelts = 1;
13540 expanded.sals = &lsal->sals.sals[i];
13541
13542 addr_string = xstrdup (canonical->addr_string);
13543 old_chain = make_cleanup (xfree, addr_string);
13544
13545 tp = XCNEW (struct tracepoint);
13546 init_breakpoint_sal (&tp->base, gdbarch, expanded,
13547 addr_string, NULL,
13548 cond_string, extra_string,
13549 type_wanted, disposition,
13550 thread, task, ignore_count, ops,
13551 from_tty, enabled, internal, flags,
13552 canonical->special_display);
13553 /* Given that its possible to have multiple markers with
13554 the same string id, if the user is creating a static
13555 tracepoint by marker id ("strace -m MARKER_ID"), then
13556 store the sals index, so that breakpoint_re_set can
13557 try to match up which of the newly found markers
13558 corresponds to this one */
13559 tp->static_trace_marker_id_idx = i;
13560
13561 install_breakpoint (internal, &tp->base, 0);
13562
13563 discard_cleanups (old_chain);
13564 }
13565 }
13566
13567 static void
13568 strace_marker_decode_linespec (struct breakpoint *b, char **s,
13569 struct symtabs_and_lines *sals)
13570 {
13571 struct tracepoint *tp = (struct tracepoint *) b;
13572
13573 *sals = decode_static_tracepoint_spec (s);
13574 if (sals->nelts > tp->static_trace_marker_id_idx)
13575 {
13576 sals->sals[0] = sals->sals[tp->static_trace_marker_id_idx];
13577 sals->nelts = 1;
13578 }
13579 else
13580 error (_("marker %s not found"), tp->static_trace_marker_id);
13581 }
13582
13583 static struct breakpoint_ops strace_marker_breakpoint_ops;
13584
13585 static int
13586 strace_marker_p (struct breakpoint *b)
13587 {
13588 return b->ops == &strace_marker_breakpoint_ops;
13589 }
13590
13591 /* Delete a breakpoint and clean up all traces of it in the data
13592 structures. */
13593
13594 void
13595 delete_breakpoint (struct breakpoint *bpt)
13596 {
13597 struct breakpoint *b;
13598
13599 gdb_assert (bpt != NULL);
13600
13601 /* Has this bp already been deleted? This can happen because
13602 multiple lists can hold pointers to bp's. bpstat lists are
13603 especial culprits.
13604
13605 One example of this happening is a watchpoint's scope bp. When
13606 the scope bp triggers, we notice that the watchpoint is out of
13607 scope, and delete it. We also delete its scope bp. But the
13608 scope bp is marked "auto-deleting", and is already on a bpstat.
13609 That bpstat is then checked for auto-deleting bp's, which are
13610 deleted.
13611
13612 A real solution to this problem might involve reference counts in
13613 bp's, and/or giving them pointers back to their referencing
13614 bpstat's, and teaching delete_breakpoint to only free a bp's
13615 storage when no more references were extent. A cheaper bandaid
13616 was chosen. */
13617 if (bpt->type == bp_none)
13618 return;
13619
13620 /* At least avoid this stale reference until the reference counting
13621 of breakpoints gets resolved. */
13622 if (bpt->related_breakpoint != bpt)
13623 {
13624 struct breakpoint *related;
13625 struct watchpoint *w;
13626
13627 if (bpt->type == bp_watchpoint_scope)
13628 w = (struct watchpoint *) bpt->related_breakpoint;
13629 else if (bpt->related_breakpoint->type == bp_watchpoint_scope)
13630 w = (struct watchpoint *) bpt;
13631 else
13632 w = NULL;
13633 if (w != NULL)
13634 watchpoint_del_at_next_stop (w);
13635
13636 /* Unlink bpt from the bpt->related_breakpoint ring. */
13637 for (related = bpt; related->related_breakpoint != bpt;
13638 related = related->related_breakpoint);
13639 related->related_breakpoint = bpt->related_breakpoint;
13640 bpt->related_breakpoint = bpt;
13641 }
13642
13643 /* watch_command_1 creates a watchpoint but only sets its number if
13644 update_watchpoint succeeds in creating its bp_locations. If there's
13645 a problem in that process, we'll be asked to delete the half-created
13646 watchpoint. In that case, don't announce the deletion. */
13647 if (bpt->number)
13648 observer_notify_breakpoint_deleted (bpt);
13649
13650 if (breakpoint_chain == bpt)
13651 breakpoint_chain = bpt->next;
13652
13653 ALL_BREAKPOINTS (b)
13654 if (b->next == bpt)
13655 {
13656 b->next = bpt->next;
13657 break;
13658 }
13659
13660 /* Be sure no bpstat's are pointing at the breakpoint after it's
13661 been freed. */
13662 /* FIXME, how can we find all bpstat's? We just check stop_bpstat
13663 in all threads for now. Note that we cannot just remove bpstats
13664 pointing at bpt from the stop_bpstat list entirely, as breakpoint
13665 commands are associated with the bpstat; if we remove it here,
13666 then the later call to bpstat_do_actions (&stop_bpstat); in
13667 event-top.c won't do anything, and temporary breakpoints with
13668 commands won't work. */
13669
13670 iterate_over_threads (bpstat_remove_breakpoint_callback, bpt);
13671
13672 /* Now that breakpoint is removed from breakpoint list, update the
13673 global location list. This will remove locations that used to
13674 belong to this breakpoint. Do this before freeing the breakpoint
13675 itself, since remove_breakpoint looks at location's owner. It
13676 might be better design to have location completely
13677 self-contained, but it's not the case now. */
13678 update_global_location_list (0);
13679
13680 bpt->ops->dtor (bpt);
13681 /* On the chance that someone will soon try again to delete this
13682 same bp, we mark it as deleted before freeing its storage. */
13683 bpt->type = bp_none;
13684 xfree (bpt);
13685 }
13686
13687 static void
13688 do_delete_breakpoint_cleanup (void *b)
13689 {
13690 delete_breakpoint (b);
13691 }
13692
13693 struct cleanup *
13694 make_cleanup_delete_breakpoint (struct breakpoint *b)
13695 {
13696 return make_cleanup (do_delete_breakpoint_cleanup, b);
13697 }
13698
13699 /* Iterator function to call a user-provided callback function once
13700 for each of B and its related breakpoints. */
13701
13702 static void
13703 iterate_over_related_breakpoints (struct breakpoint *b,
13704 void (*function) (struct breakpoint *,
13705 void *),
13706 void *data)
13707 {
13708 struct breakpoint *related;
13709
13710 related = b;
13711 do
13712 {
13713 struct breakpoint *next;
13714
13715 /* FUNCTION may delete RELATED. */
13716 next = related->related_breakpoint;
13717
13718 if (next == related)
13719 {
13720 /* RELATED is the last ring entry. */
13721 function (related, data);
13722
13723 /* FUNCTION may have deleted it, so we'd never reach back to
13724 B. There's nothing left to do anyway, so just break
13725 out. */
13726 break;
13727 }
13728 else
13729 function (related, data);
13730
13731 related = next;
13732 }
13733 while (related != b);
13734 }
13735
13736 static void
13737 do_delete_breakpoint (struct breakpoint *b, void *ignore)
13738 {
13739 delete_breakpoint (b);
13740 }
13741
13742 /* A callback for map_breakpoint_numbers that calls
13743 delete_breakpoint. */
13744
13745 static void
13746 do_map_delete_breakpoint (struct breakpoint *b, void *ignore)
13747 {
13748 iterate_over_related_breakpoints (b, do_delete_breakpoint, NULL);
13749 }
13750
13751 void
13752 delete_command (char *arg, int from_tty)
13753 {
13754 struct breakpoint *b, *b_tmp;
13755
13756 dont_repeat ();
13757
13758 if (arg == 0)
13759 {
13760 int breaks_to_delete = 0;
13761
13762 /* Delete all breakpoints if no argument. Do not delete
13763 internal breakpoints, these have to be deleted with an
13764 explicit breakpoint number argument. */
13765 ALL_BREAKPOINTS (b)
13766 if (user_breakpoint_p (b))
13767 {
13768 breaks_to_delete = 1;
13769 break;
13770 }
13771
13772 /* Ask user only if there are some breakpoints to delete. */
13773 if (!from_tty
13774 || (breaks_to_delete && query (_("Delete all breakpoints? "))))
13775 {
13776 ALL_BREAKPOINTS_SAFE (b, b_tmp)
13777 if (user_breakpoint_p (b))
13778 delete_breakpoint (b);
13779 }
13780 }
13781 else
13782 map_breakpoint_numbers (arg, do_map_delete_breakpoint, NULL);
13783 }
13784
13785 static int
13786 all_locations_are_pending (struct bp_location *loc)
13787 {
13788 for (; loc; loc = loc->next)
13789 if (!loc->shlib_disabled
13790 && !loc->pspace->executing_startup)
13791 return 0;
13792 return 1;
13793 }
13794
13795 /* Subroutine of update_breakpoint_locations to simplify it.
13796 Return non-zero if multiple fns in list LOC have the same name.
13797 Null names are ignored. */
13798
13799 static int
13800 ambiguous_names_p (struct bp_location *loc)
13801 {
13802 struct bp_location *l;
13803 htab_t htab = htab_create_alloc (13, htab_hash_string,
13804 (int (*) (const void *,
13805 const void *)) streq,
13806 NULL, xcalloc, xfree);
13807
13808 for (l = loc; l != NULL; l = l->next)
13809 {
13810 const char **slot;
13811 const char *name = l->function_name;
13812
13813 /* Allow for some names to be NULL, ignore them. */
13814 if (name == NULL)
13815 continue;
13816
13817 slot = (const char **) htab_find_slot (htab, (const void *) name,
13818 INSERT);
13819 /* NOTE: We can assume slot != NULL here because xcalloc never
13820 returns NULL. */
13821 if (*slot != NULL)
13822 {
13823 htab_delete (htab);
13824 return 1;
13825 }
13826 *slot = name;
13827 }
13828
13829 htab_delete (htab);
13830 return 0;
13831 }
13832
13833 /* When symbols change, it probably means the sources changed as well,
13834 and it might mean the static tracepoint markers are no longer at
13835 the same address or line numbers they used to be at last we
13836 checked. Losing your static tracepoints whenever you rebuild is
13837 undesirable. This function tries to resync/rematch gdb static
13838 tracepoints with the markers on the target, for static tracepoints
13839 that have not been set by marker id. Static tracepoint that have
13840 been set by marker id are reset by marker id in breakpoint_re_set.
13841 The heuristic is:
13842
13843 1) For a tracepoint set at a specific address, look for a marker at
13844 the old PC. If one is found there, assume to be the same marker.
13845 If the name / string id of the marker found is different from the
13846 previous known name, assume that means the user renamed the marker
13847 in the sources, and output a warning.
13848
13849 2) For a tracepoint set at a given line number, look for a marker
13850 at the new address of the old line number. If one is found there,
13851 assume to be the same marker. If the name / string id of the
13852 marker found is different from the previous known name, assume that
13853 means the user renamed the marker in the sources, and output a
13854 warning.
13855
13856 3) If a marker is no longer found at the same address or line, it
13857 may mean the marker no longer exists. But it may also just mean
13858 the code changed a bit. Maybe the user added a few lines of code
13859 that made the marker move up or down (in line number terms). Ask
13860 the target for info about the marker with the string id as we knew
13861 it. If found, update line number and address in the matching
13862 static tracepoint. This will get confused if there's more than one
13863 marker with the same ID (possible in UST, although unadvised
13864 precisely because it confuses tools). */
13865
13866 static struct symtab_and_line
13867 update_static_tracepoint (struct breakpoint *b, struct symtab_and_line sal)
13868 {
13869 struct tracepoint *tp = (struct tracepoint *) b;
13870 struct static_tracepoint_marker marker;
13871 CORE_ADDR pc;
13872
13873 pc = sal.pc;
13874 if (sal.line)
13875 find_line_pc (sal.symtab, sal.line, &pc);
13876
13877 if (target_static_tracepoint_marker_at (pc, &marker))
13878 {
13879 if (strcmp (tp->static_trace_marker_id, marker.str_id) != 0)
13880 warning (_("static tracepoint %d changed probed marker from %s to %s"),
13881 b->number,
13882 tp->static_trace_marker_id, marker.str_id);
13883
13884 xfree (tp->static_trace_marker_id);
13885 tp->static_trace_marker_id = xstrdup (marker.str_id);
13886 release_static_tracepoint_marker (&marker);
13887
13888 return sal;
13889 }
13890
13891 /* Old marker wasn't found on target at lineno. Try looking it up
13892 by string ID. */
13893 if (!sal.explicit_pc
13894 && sal.line != 0
13895 && sal.symtab != NULL
13896 && tp->static_trace_marker_id != NULL)
13897 {
13898 VEC(static_tracepoint_marker_p) *markers;
13899
13900 markers
13901 = target_static_tracepoint_markers_by_strid (tp->static_trace_marker_id);
13902
13903 if (!VEC_empty(static_tracepoint_marker_p, markers))
13904 {
13905 struct symtab_and_line sal2;
13906 struct symbol *sym;
13907 struct static_tracepoint_marker *tpmarker;
13908 struct ui_out *uiout = current_uiout;
13909
13910 tpmarker = VEC_index (static_tracepoint_marker_p, markers, 0);
13911
13912 xfree (tp->static_trace_marker_id);
13913 tp->static_trace_marker_id = xstrdup (tpmarker->str_id);
13914
13915 warning (_("marker for static tracepoint %d (%s) not "
13916 "found at previous line number"),
13917 b->number, tp->static_trace_marker_id);
13918
13919 init_sal (&sal2);
13920
13921 sal2.pc = tpmarker->address;
13922
13923 sal2 = find_pc_line (tpmarker->address, 0);
13924 sym = find_pc_sect_function (tpmarker->address, NULL);
13925 ui_out_text (uiout, "Now in ");
13926 if (sym)
13927 {
13928 ui_out_field_string (uiout, "func",
13929 SYMBOL_PRINT_NAME (sym));
13930 ui_out_text (uiout, " at ");
13931 }
13932 ui_out_field_string (uiout, "file",
13933 symtab_to_filename_for_display (sal2.symtab));
13934 ui_out_text (uiout, ":");
13935
13936 if (ui_out_is_mi_like_p (uiout))
13937 {
13938 const char *fullname = symtab_to_fullname (sal2.symtab);
13939
13940 ui_out_field_string (uiout, "fullname", fullname);
13941 }
13942
13943 ui_out_field_int (uiout, "line", sal2.line);
13944 ui_out_text (uiout, "\n");
13945
13946 b->loc->line_number = sal2.line;
13947 b->loc->symtab = sym != NULL ? sal2.symtab : NULL;
13948
13949 xfree (b->addr_string);
13950 b->addr_string = xstrprintf ("%s:%d",
13951 symtab_to_filename_for_display (sal2.symtab),
13952 b->loc->line_number);
13953
13954 /* Might be nice to check if function changed, and warn if
13955 so. */
13956
13957 release_static_tracepoint_marker (tpmarker);
13958 }
13959 }
13960 return sal;
13961 }
13962
13963 /* Returns 1 iff locations A and B are sufficiently same that
13964 we don't need to report breakpoint as changed. */
13965
13966 static int
13967 locations_are_equal (struct bp_location *a, struct bp_location *b)
13968 {
13969 while (a && b)
13970 {
13971 if (a->address != b->address)
13972 return 0;
13973
13974 if (a->shlib_disabled != b->shlib_disabled)
13975 return 0;
13976
13977 if (a->enabled != b->enabled)
13978 return 0;
13979
13980 a = a->next;
13981 b = b->next;
13982 }
13983
13984 if ((a == NULL) != (b == NULL))
13985 return 0;
13986
13987 return 1;
13988 }
13989
13990 /* Create new breakpoint locations for B (a hardware or software breakpoint)
13991 based on SALS and SALS_END. If SALS_END.NELTS is not zero, then B is
13992 a ranged breakpoint. */
13993
13994 void
13995 update_breakpoint_locations (struct breakpoint *b,
13996 struct symtabs_and_lines sals,
13997 struct symtabs_and_lines sals_end)
13998 {
13999 int i;
14000 struct bp_location *existing_locations = b->loc;
14001
14002 if (sals_end.nelts != 0 && (sals.nelts != 1 || sals_end.nelts != 1))
14003 {
14004 /* Ranged breakpoints have only one start location and one end
14005 location. */
14006 b->enable_state = bp_disabled;
14007 update_global_location_list (1);
14008 printf_unfiltered (_("Could not reset ranged breakpoint %d: "
14009 "multiple locations found\n"),
14010 b->number);
14011 return;
14012 }
14013
14014 /* If there's no new locations, and all existing locations are
14015 pending, don't do anything. This optimizes the common case where
14016 all locations are in the same shared library, that was unloaded.
14017 We'd like to retain the location, so that when the library is
14018 loaded again, we don't loose the enabled/disabled status of the
14019 individual locations. */
14020 if (all_locations_are_pending (existing_locations) && sals.nelts == 0)
14021 return;
14022
14023 b->loc = NULL;
14024
14025 for (i = 0; i < sals.nelts; ++i)
14026 {
14027 struct bp_location *new_loc;
14028
14029 switch_to_program_space_and_thread (sals.sals[i].pspace);
14030
14031 new_loc = add_location_to_breakpoint (b, &(sals.sals[i]));
14032
14033 /* Reparse conditions, they might contain references to the
14034 old symtab. */
14035 if (b->cond_string != NULL)
14036 {
14037 char *s;
14038 volatile struct gdb_exception e;
14039
14040 s = b->cond_string;
14041 TRY_CATCH (e, RETURN_MASK_ERROR)
14042 {
14043 new_loc->cond = parse_exp_1 (&s, sals.sals[i].pc,
14044 block_for_pc (sals.sals[i].pc),
14045 0);
14046 }
14047 if (e.reason < 0)
14048 {
14049 warning (_("failed to reevaluate condition "
14050 "for breakpoint %d: %s"),
14051 b->number, e.message);
14052 new_loc->enabled = 0;
14053 }
14054 }
14055
14056 if (sals_end.nelts)
14057 {
14058 CORE_ADDR end = find_breakpoint_range_end (sals_end.sals[0]);
14059
14060 new_loc->length = end - sals.sals[0].pc + 1;
14061 }
14062 }
14063
14064 /* Update locations of permanent breakpoints. */
14065 if (b->enable_state == bp_permanent)
14066 make_breakpoint_permanent (b);
14067
14068 /* If possible, carry over 'disable' status from existing
14069 breakpoints. */
14070 {
14071 struct bp_location *e = existing_locations;
14072 /* If there are multiple breakpoints with the same function name,
14073 e.g. for inline functions, comparing function names won't work.
14074 Instead compare pc addresses; this is just a heuristic as things
14075 may have moved, but in practice it gives the correct answer
14076 often enough until a better solution is found. */
14077 int have_ambiguous_names = ambiguous_names_p (b->loc);
14078
14079 for (; e; e = e->next)
14080 {
14081 if (!e->enabled && e->function_name)
14082 {
14083 struct bp_location *l = b->loc;
14084 if (have_ambiguous_names)
14085 {
14086 for (; l; l = l->next)
14087 if (breakpoint_locations_match (e, l))
14088 {
14089 l->enabled = 0;
14090 break;
14091 }
14092 }
14093 else
14094 {
14095 for (; l; l = l->next)
14096 if (l->function_name
14097 && strcmp (e->function_name, l->function_name) == 0)
14098 {
14099 l->enabled = 0;
14100 break;
14101 }
14102 }
14103 }
14104 }
14105 }
14106
14107 if (!locations_are_equal (existing_locations, b->loc))
14108 observer_notify_breakpoint_modified (b);
14109
14110 update_global_location_list (1);
14111 }
14112
14113 /* Find the SaL locations corresponding to the given ADDR_STRING.
14114 On return, FOUND will be 1 if any SaL was found, zero otherwise. */
14115
14116 static struct symtabs_and_lines
14117 addr_string_to_sals (struct breakpoint *b, char *addr_string, int *found)
14118 {
14119 char *s;
14120 struct symtabs_and_lines sals = {0};
14121 volatile struct gdb_exception e;
14122
14123 gdb_assert (b->ops != NULL);
14124 s = addr_string;
14125
14126 TRY_CATCH (e, RETURN_MASK_ERROR)
14127 {
14128 b->ops->decode_linespec (b, &s, &sals);
14129 }
14130 if (e.reason < 0)
14131 {
14132 int not_found_and_ok = 0;
14133 /* For pending breakpoints, it's expected that parsing will
14134 fail until the right shared library is loaded. User has
14135 already told to create pending breakpoints and don't need
14136 extra messages. If breakpoint is in bp_shlib_disabled
14137 state, then user already saw the message about that
14138 breakpoint being disabled, and don't want to see more
14139 errors. */
14140 if (e.error == NOT_FOUND_ERROR
14141 && (b->condition_not_parsed
14142 || (b->loc && b->loc->shlib_disabled)
14143 || (b->loc && b->loc->pspace->executing_startup)
14144 || b->enable_state == bp_disabled))
14145 not_found_and_ok = 1;
14146
14147 if (!not_found_and_ok)
14148 {
14149 /* We surely don't want to warn about the same breakpoint
14150 10 times. One solution, implemented here, is disable
14151 the breakpoint on error. Another solution would be to
14152 have separate 'warning emitted' flag. Since this
14153 happens only when a binary has changed, I don't know
14154 which approach is better. */
14155 b->enable_state = bp_disabled;
14156 throw_exception (e);
14157 }
14158 }
14159
14160 if (e.reason == 0 || e.error != NOT_FOUND_ERROR)
14161 {
14162 int i;
14163
14164 for (i = 0; i < sals.nelts; ++i)
14165 resolve_sal_pc (&sals.sals[i]);
14166 if (b->condition_not_parsed && s && s[0])
14167 {
14168 char *cond_string, *extra_string;
14169 int thread, task;
14170
14171 find_condition_and_thread (s, sals.sals[0].pc,
14172 &cond_string, &thread, &task,
14173 &extra_string);
14174 if (cond_string)
14175 b->cond_string = cond_string;
14176 b->thread = thread;
14177 b->task = task;
14178 if (extra_string)
14179 b->extra_string = extra_string;
14180 b->condition_not_parsed = 0;
14181 }
14182
14183 if (b->type == bp_static_tracepoint && !strace_marker_p (b))
14184 sals.sals[0] = update_static_tracepoint (b, sals.sals[0]);
14185
14186 *found = 1;
14187 }
14188 else
14189 *found = 0;
14190
14191 return sals;
14192 }
14193
14194 /* The default re_set method, for typical hardware or software
14195 breakpoints. Reevaluate the breakpoint and recreate its
14196 locations. */
14197
14198 static void
14199 breakpoint_re_set_default (struct breakpoint *b)
14200 {
14201 int found;
14202 struct symtabs_and_lines sals, sals_end;
14203 struct symtabs_and_lines expanded = {0};
14204 struct symtabs_and_lines expanded_end = {0};
14205
14206 sals = addr_string_to_sals (b, b->addr_string, &found);
14207 if (found)
14208 {
14209 make_cleanup (xfree, sals.sals);
14210 expanded = sals;
14211 }
14212
14213 if (b->addr_string_range_end)
14214 {
14215 sals_end = addr_string_to_sals (b, b->addr_string_range_end, &found);
14216 if (found)
14217 {
14218 make_cleanup (xfree, sals_end.sals);
14219 expanded_end = sals_end;
14220 }
14221 }
14222
14223 update_breakpoint_locations (b, expanded, expanded_end);
14224 }
14225
14226 /* Default method for creating SALs from an address string. It basically
14227 calls parse_breakpoint_sals. Return 1 for success, zero for failure. */
14228
14229 static void
14230 create_sals_from_address_default (char **arg,
14231 struct linespec_result *canonical,
14232 enum bptype type_wanted,
14233 char *addr_start, char **copy_arg)
14234 {
14235 parse_breakpoint_sals (arg, canonical);
14236 }
14237
14238 /* Call create_breakpoints_sal for the given arguments. This is the default
14239 function for the `create_breakpoints_sal' method of
14240 breakpoint_ops. */
14241
14242 static void
14243 create_breakpoints_sal_default (struct gdbarch *gdbarch,
14244 struct linespec_result *canonical,
14245 struct linespec_sals *lsal,
14246 char *cond_string,
14247 char *extra_string,
14248 enum bptype type_wanted,
14249 enum bpdisp disposition,
14250 int thread,
14251 int task, int ignore_count,
14252 const struct breakpoint_ops *ops,
14253 int from_tty, int enabled,
14254 int internal, unsigned flags)
14255 {
14256 create_breakpoints_sal (gdbarch, canonical, cond_string,
14257 extra_string,
14258 type_wanted, disposition,
14259 thread, task, ignore_count, ops, from_tty,
14260 enabled, internal, flags);
14261 }
14262
14263 /* Decode the line represented by S by calling decode_line_full. This is the
14264 default function for the `decode_linespec' method of breakpoint_ops. */
14265
14266 static void
14267 decode_linespec_default (struct breakpoint *b, char **s,
14268 struct symtabs_and_lines *sals)
14269 {
14270 struct linespec_result canonical;
14271
14272 init_linespec_result (&canonical);
14273 decode_line_full (s, DECODE_LINE_FUNFIRSTLINE,
14274 (struct symtab *) NULL, 0,
14275 &canonical, multiple_symbols_all,
14276 b->filter);
14277
14278 /* We should get 0 or 1 resulting SALs. */
14279 gdb_assert (VEC_length (linespec_sals, canonical.sals) < 2);
14280
14281 if (VEC_length (linespec_sals, canonical.sals) > 0)
14282 {
14283 struct linespec_sals *lsal;
14284
14285 lsal = VEC_index (linespec_sals, canonical.sals, 0);
14286 *sals = lsal->sals;
14287 /* Arrange it so the destructor does not free the
14288 contents. */
14289 lsal->sals.sals = NULL;
14290 }
14291
14292 destroy_linespec_result (&canonical);
14293 }
14294
14295 /* Prepare the global context for a re-set of breakpoint B. */
14296
14297 static struct cleanup *
14298 prepare_re_set_context (struct breakpoint *b)
14299 {
14300 struct cleanup *cleanups;
14301
14302 input_radix = b->input_radix;
14303 cleanups = save_current_space_and_thread ();
14304 if (b->pspace != NULL)
14305 switch_to_program_space_and_thread (b->pspace);
14306 set_language (b->language);
14307
14308 return cleanups;
14309 }
14310
14311 /* Reset a breakpoint given it's struct breakpoint * BINT.
14312 The value we return ends up being the return value from catch_errors.
14313 Unused in this case. */
14314
14315 static int
14316 breakpoint_re_set_one (void *bint)
14317 {
14318 /* Get past catch_errs. */
14319 struct breakpoint *b = (struct breakpoint *) bint;
14320 struct cleanup *cleanups;
14321
14322 cleanups = prepare_re_set_context (b);
14323 b->ops->re_set (b);
14324 do_cleanups (cleanups);
14325 return 0;
14326 }
14327
14328 /* Re-set all breakpoints after symbols have been re-loaded. */
14329 void
14330 breakpoint_re_set (void)
14331 {
14332 struct breakpoint *b, *b_tmp;
14333 enum language save_language;
14334 int save_input_radix;
14335 struct cleanup *old_chain;
14336
14337 save_language = current_language->la_language;
14338 save_input_radix = input_radix;
14339 old_chain = save_current_program_space ();
14340
14341 ALL_BREAKPOINTS_SAFE (b, b_tmp)
14342 {
14343 /* Format possible error msg. */
14344 char *message = xstrprintf ("Error in re-setting breakpoint %d: ",
14345 b->number);
14346 struct cleanup *cleanups = make_cleanup (xfree, message);
14347 catch_errors (breakpoint_re_set_one, b, message, RETURN_MASK_ALL);
14348 do_cleanups (cleanups);
14349 }
14350 set_language (save_language);
14351 input_radix = save_input_radix;
14352
14353 jit_breakpoint_re_set ();
14354
14355 do_cleanups (old_chain);
14356
14357 create_overlay_event_breakpoint ();
14358 create_longjmp_master_breakpoint ();
14359 create_std_terminate_master_breakpoint ();
14360 create_exception_master_breakpoint ();
14361 }
14362 \f
14363 /* Reset the thread number of this breakpoint:
14364
14365 - If the breakpoint is for all threads, leave it as-is.
14366 - Else, reset it to the current thread for inferior_ptid. */
14367 void
14368 breakpoint_re_set_thread (struct breakpoint *b)
14369 {
14370 if (b->thread != -1)
14371 {
14372 if (in_thread_list (inferior_ptid))
14373 b->thread = pid_to_thread_id (inferior_ptid);
14374
14375 /* We're being called after following a fork. The new fork is
14376 selected as current, and unless this was a vfork will have a
14377 different program space from the original thread. Reset that
14378 as well. */
14379 b->loc->pspace = current_program_space;
14380 }
14381 }
14382
14383 /* Set ignore-count of breakpoint number BPTNUM to COUNT.
14384 If from_tty is nonzero, it prints a message to that effect,
14385 which ends with a period (no newline). */
14386
14387 void
14388 set_ignore_count (int bptnum, int count, int from_tty)
14389 {
14390 struct breakpoint *b;
14391
14392 if (count < 0)
14393 count = 0;
14394
14395 ALL_BREAKPOINTS (b)
14396 if (b->number == bptnum)
14397 {
14398 if (is_tracepoint (b))
14399 {
14400 if (from_tty && count != 0)
14401 printf_filtered (_("Ignore count ignored for tracepoint %d."),
14402 bptnum);
14403 return;
14404 }
14405
14406 b->ignore_count = count;
14407 if (from_tty)
14408 {
14409 if (count == 0)
14410 printf_filtered (_("Will stop next time "
14411 "breakpoint %d is reached."),
14412 bptnum);
14413 else if (count == 1)
14414 printf_filtered (_("Will ignore next crossing of breakpoint %d."),
14415 bptnum);
14416 else
14417 printf_filtered (_("Will ignore next %d "
14418 "crossings of breakpoint %d."),
14419 count, bptnum);
14420 }
14421 observer_notify_breakpoint_modified (b);
14422 return;
14423 }
14424
14425 error (_("No breakpoint number %d."), bptnum);
14426 }
14427
14428 /* Command to set ignore-count of breakpoint N to COUNT. */
14429
14430 static void
14431 ignore_command (char *args, int from_tty)
14432 {
14433 char *p = args;
14434 int num;
14435
14436 if (p == 0)
14437 error_no_arg (_("a breakpoint number"));
14438
14439 num = get_number (&p);
14440 if (num == 0)
14441 error (_("bad breakpoint number: '%s'"), args);
14442 if (*p == 0)
14443 error (_("Second argument (specified ignore-count) is missing."));
14444
14445 set_ignore_count (num,
14446 longest_to_int (value_as_long (parse_and_eval (p))),
14447 from_tty);
14448 if (from_tty)
14449 printf_filtered ("\n");
14450 }
14451 \f
14452 /* Call FUNCTION on each of the breakpoints
14453 whose numbers are given in ARGS. */
14454
14455 static void
14456 map_breakpoint_numbers (char *args, void (*function) (struct breakpoint *,
14457 void *),
14458 void *data)
14459 {
14460 int num;
14461 struct breakpoint *b, *tmp;
14462 int match;
14463 struct get_number_or_range_state state;
14464
14465 if (args == 0)
14466 error_no_arg (_("one or more breakpoint numbers"));
14467
14468 init_number_or_range (&state, args);
14469
14470 while (!state.finished)
14471 {
14472 char *p = state.string;
14473
14474 match = 0;
14475
14476 num = get_number_or_range (&state);
14477 if (num == 0)
14478 {
14479 warning (_("bad breakpoint number at or near '%s'"), p);
14480 }
14481 else
14482 {
14483 ALL_BREAKPOINTS_SAFE (b, tmp)
14484 if (b->number == num)
14485 {
14486 match = 1;
14487 function (b, data);
14488 break;
14489 }
14490 if (match == 0)
14491 printf_unfiltered (_("No breakpoint number %d.\n"), num);
14492 }
14493 }
14494 }
14495
14496 static struct bp_location *
14497 find_location_by_number (char *number)
14498 {
14499 char *dot = strchr (number, '.');
14500 char *p1;
14501 int bp_num;
14502 int loc_num;
14503 struct breakpoint *b;
14504 struct bp_location *loc;
14505
14506 *dot = '\0';
14507
14508 p1 = number;
14509 bp_num = get_number (&p1);
14510 if (bp_num == 0)
14511 error (_("Bad breakpoint number '%s'"), number);
14512
14513 ALL_BREAKPOINTS (b)
14514 if (b->number == bp_num)
14515 {
14516 break;
14517 }
14518
14519 if (!b || b->number != bp_num)
14520 error (_("Bad breakpoint number '%s'"), number);
14521
14522 p1 = dot+1;
14523 loc_num = get_number (&p1);
14524 if (loc_num == 0)
14525 error (_("Bad breakpoint location number '%s'"), number);
14526
14527 --loc_num;
14528 loc = b->loc;
14529 for (;loc_num && loc; --loc_num, loc = loc->next)
14530 ;
14531 if (!loc)
14532 error (_("Bad breakpoint location number '%s'"), dot+1);
14533
14534 return loc;
14535 }
14536
14537
14538 /* Set ignore-count of breakpoint number BPTNUM to COUNT.
14539 If from_tty is nonzero, it prints a message to that effect,
14540 which ends with a period (no newline). */
14541
14542 void
14543 disable_breakpoint (struct breakpoint *bpt)
14544 {
14545 /* Never disable a watchpoint scope breakpoint; we want to
14546 hit them when we leave scope so we can delete both the
14547 watchpoint and its scope breakpoint at that time. */
14548 if (bpt->type == bp_watchpoint_scope)
14549 return;
14550
14551 /* You can't disable permanent breakpoints. */
14552 if (bpt->enable_state == bp_permanent)
14553 return;
14554
14555 bpt->enable_state = bp_disabled;
14556
14557 /* Mark breakpoint locations modified. */
14558 mark_breakpoint_modified (bpt);
14559
14560 if (target_supports_enable_disable_tracepoint ()
14561 && current_trace_status ()->running && is_tracepoint (bpt))
14562 {
14563 struct bp_location *location;
14564
14565 for (location = bpt->loc; location; location = location->next)
14566 target_disable_tracepoint (location);
14567 }
14568
14569 update_global_location_list (0);
14570
14571 observer_notify_breakpoint_modified (bpt);
14572 }
14573
14574 /* A callback for iterate_over_related_breakpoints. */
14575
14576 static void
14577 do_disable_breakpoint (struct breakpoint *b, void *ignore)
14578 {
14579 disable_breakpoint (b);
14580 }
14581
14582 /* A callback for map_breakpoint_numbers that calls
14583 disable_breakpoint. */
14584
14585 static void
14586 do_map_disable_breakpoint (struct breakpoint *b, void *ignore)
14587 {
14588 iterate_over_related_breakpoints (b, do_disable_breakpoint, NULL);
14589 }
14590
14591 static void
14592 disable_command (char *args, int from_tty)
14593 {
14594 if (args == 0)
14595 {
14596 struct breakpoint *bpt;
14597
14598 ALL_BREAKPOINTS (bpt)
14599 if (user_breakpoint_p (bpt))
14600 disable_breakpoint (bpt);
14601 }
14602 else if (strchr (args, '.'))
14603 {
14604 struct bp_location *loc = find_location_by_number (args);
14605 if (loc)
14606 {
14607 if (loc->enabled)
14608 {
14609 loc->enabled = 0;
14610 mark_breakpoint_location_modified (loc);
14611 }
14612 if (target_supports_enable_disable_tracepoint ()
14613 && current_trace_status ()->running && loc->owner
14614 && is_tracepoint (loc->owner))
14615 target_disable_tracepoint (loc);
14616 }
14617 update_global_location_list (0);
14618 }
14619 else
14620 map_breakpoint_numbers (args, do_map_disable_breakpoint, NULL);
14621 }
14622
14623 static void
14624 enable_breakpoint_disp (struct breakpoint *bpt, enum bpdisp disposition,
14625 int count)
14626 {
14627 int target_resources_ok;
14628
14629 if (bpt->type == bp_hardware_breakpoint)
14630 {
14631 int i;
14632 i = hw_breakpoint_used_count ();
14633 target_resources_ok =
14634 target_can_use_hardware_watchpoint (bp_hardware_breakpoint,
14635 i + 1, 0);
14636 if (target_resources_ok == 0)
14637 error (_("No hardware breakpoint support in the target."));
14638 else if (target_resources_ok < 0)
14639 error (_("Hardware breakpoints used exceeds limit."));
14640 }
14641
14642 if (is_watchpoint (bpt))
14643 {
14644 /* Initialize it just to avoid a GCC false warning. */
14645 enum enable_state orig_enable_state = 0;
14646 volatile struct gdb_exception e;
14647
14648 TRY_CATCH (e, RETURN_MASK_ALL)
14649 {
14650 struct watchpoint *w = (struct watchpoint *) bpt;
14651
14652 orig_enable_state = bpt->enable_state;
14653 bpt->enable_state = bp_enabled;
14654 update_watchpoint (w, 1 /* reparse */);
14655 }
14656 if (e.reason < 0)
14657 {
14658 bpt->enable_state = orig_enable_state;
14659 exception_fprintf (gdb_stderr, e, _("Cannot enable watchpoint %d: "),
14660 bpt->number);
14661 return;
14662 }
14663 }
14664
14665 if (bpt->enable_state != bp_permanent)
14666 bpt->enable_state = bp_enabled;
14667
14668 bpt->enable_state = bp_enabled;
14669
14670 /* Mark breakpoint locations modified. */
14671 mark_breakpoint_modified (bpt);
14672
14673 if (target_supports_enable_disable_tracepoint ()
14674 && current_trace_status ()->running && is_tracepoint (bpt))
14675 {
14676 struct bp_location *location;
14677
14678 for (location = bpt->loc; location; location = location->next)
14679 target_enable_tracepoint (location);
14680 }
14681
14682 bpt->disposition = disposition;
14683 bpt->enable_count = count;
14684 update_global_location_list (1);
14685
14686 observer_notify_breakpoint_modified (bpt);
14687 }
14688
14689
14690 void
14691 enable_breakpoint (struct breakpoint *bpt)
14692 {
14693 enable_breakpoint_disp (bpt, bpt->disposition, 0);
14694 }
14695
14696 static void
14697 do_enable_breakpoint (struct breakpoint *bpt, void *arg)
14698 {
14699 enable_breakpoint (bpt);
14700 }
14701
14702 /* A callback for map_breakpoint_numbers that calls
14703 enable_breakpoint. */
14704
14705 static void
14706 do_map_enable_breakpoint (struct breakpoint *b, void *ignore)
14707 {
14708 iterate_over_related_breakpoints (b, do_enable_breakpoint, NULL);
14709 }
14710
14711 /* The enable command enables the specified breakpoints (or all defined
14712 breakpoints) so they once again become (or continue to be) effective
14713 in stopping the inferior. */
14714
14715 static void
14716 enable_command (char *args, int from_tty)
14717 {
14718 if (args == 0)
14719 {
14720 struct breakpoint *bpt;
14721
14722 ALL_BREAKPOINTS (bpt)
14723 if (user_breakpoint_p (bpt))
14724 enable_breakpoint (bpt);
14725 }
14726 else if (strchr (args, '.'))
14727 {
14728 struct bp_location *loc = find_location_by_number (args);
14729 if (loc)
14730 {
14731 if (!loc->enabled)
14732 {
14733 loc->enabled = 1;
14734 mark_breakpoint_location_modified (loc);
14735 }
14736 if (target_supports_enable_disable_tracepoint ()
14737 && current_trace_status ()->running && loc->owner
14738 && is_tracepoint (loc->owner))
14739 target_enable_tracepoint (loc);
14740 }
14741 update_global_location_list (1);
14742 }
14743 else
14744 map_breakpoint_numbers (args, do_map_enable_breakpoint, NULL);
14745 }
14746
14747 /* This struct packages up disposition data for application to multiple
14748 breakpoints. */
14749
14750 struct disp_data
14751 {
14752 enum bpdisp disp;
14753 int count;
14754 };
14755
14756 static void
14757 do_enable_breakpoint_disp (struct breakpoint *bpt, void *arg)
14758 {
14759 struct disp_data disp_data = *(struct disp_data *) arg;
14760
14761 enable_breakpoint_disp (bpt, disp_data.disp, disp_data.count);
14762 }
14763
14764 static void
14765 do_map_enable_once_breakpoint (struct breakpoint *bpt, void *ignore)
14766 {
14767 struct disp_data disp = { disp_disable, 1 };
14768
14769 iterate_over_related_breakpoints (bpt, do_enable_breakpoint_disp, &disp);
14770 }
14771
14772 static void
14773 enable_once_command (char *args, int from_tty)
14774 {
14775 map_breakpoint_numbers (args, do_map_enable_once_breakpoint, NULL);
14776 }
14777
14778 static void
14779 do_map_enable_count_breakpoint (struct breakpoint *bpt, void *countptr)
14780 {
14781 struct disp_data disp = { disp_disable, *(int *) countptr };
14782
14783 iterate_over_related_breakpoints (bpt, do_enable_breakpoint_disp, &disp);
14784 }
14785
14786 static void
14787 enable_count_command (char *args, int from_tty)
14788 {
14789 int count = get_number (&args);
14790
14791 map_breakpoint_numbers (args, do_map_enable_count_breakpoint, &count);
14792 }
14793
14794 static void
14795 do_map_enable_delete_breakpoint (struct breakpoint *bpt, void *ignore)
14796 {
14797 struct disp_data disp = { disp_del, 1 };
14798
14799 iterate_over_related_breakpoints (bpt, do_enable_breakpoint_disp, &disp);
14800 }
14801
14802 static void
14803 enable_delete_command (char *args, int from_tty)
14804 {
14805 map_breakpoint_numbers (args, do_map_enable_delete_breakpoint, NULL);
14806 }
14807 \f
14808 static void
14809 set_breakpoint_cmd (char *args, int from_tty)
14810 {
14811 }
14812
14813 static void
14814 show_breakpoint_cmd (char *args, int from_tty)
14815 {
14816 }
14817
14818 /* Invalidate last known value of any hardware watchpoint if
14819 the memory which that value represents has been written to by
14820 GDB itself. */
14821
14822 static void
14823 invalidate_bp_value_on_memory_change (struct inferior *inferior,
14824 CORE_ADDR addr, ssize_t len,
14825 const bfd_byte *data)
14826 {
14827 struct breakpoint *bp;
14828
14829 ALL_BREAKPOINTS (bp)
14830 if (bp->enable_state == bp_enabled
14831 && bp->type == bp_hardware_watchpoint)
14832 {
14833 struct watchpoint *wp = (struct watchpoint *) bp;
14834
14835 if (wp->val_valid && wp->val)
14836 {
14837 struct bp_location *loc;
14838
14839 for (loc = bp->loc; loc != NULL; loc = loc->next)
14840 if (loc->loc_type == bp_loc_hardware_watchpoint
14841 && loc->address + loc->length > addr
14842 && addr + len > loc->address)
14843 {
14844 value_free (wp->val);
14845 wp->val = NULL;
14846 wp->val_valid = 0;
14847 }
14848 }
14849 }
14850 }
14851
14852 /* Create and insert a raw software breakpoint at PC. Return an
14853 identifier, which should be used to remove the breakpoint later.
14854 In general, places which call this should be using something on the
14855 breakpoint chain instead; this function should be eliminated
14856 someday. */
14857
14858 void *
14859 deprecated_insert_raw_breakpoint (struct gdbarch *gdbarch,
14860 struct address_space *aspace, CORE_ADDR pc)
14861 {
14862 struct bp_target_info *bp_tgt;
14863
14864 bp_tgt = XZALLOC (struct bp_target_info);
14865
14866 bp_tgt->placed_address_space = aspace;
14867 bp_tgt->placed_address = pc;
14868
14869 if (target_insert_breakpoint (gdbarch, bp_tgt) != 0)
14870 {
14871 /* Could not insert the breakpoint. */
14872 xfree (bp_tgt);
14873 return NULL;
14874 }
14875
14876 return bp_tgt;
14877 }
14878
14879 /* Remove a breakpoint BP inserted by
14880 deprecated_insert_raw_breakpoint. */
14881
14882 int
14883 deprecated_remove_raw_breakpoint (struct gdbarch *gdbarch, void *bp)
14884 {
14885 struct bp_target_info *bp_tgt = bp;
14886 int ret;
14887
14888 ret = target_remove_breakpoint (gdbarch, bp_tgt);
14889 xfree (bp_tgt);
14890
14891 return ret;
14892 }
14893
14894 /* One (or perhaps two) breakpoints used for software single
14895 stepping. */
14896
14897 static void *single_step_breakpoints[2];
14898 static struct gdbarch *single_step_gdbarch[2];
14899
14900 /* Create and insert a breakpoint for software single step. */
14901
14902 void
14903 insert_single_step_breakpoint (struct gdbarch *gdbarch,
14904 struct address_space *aspace,
14905 CORE_ADDR next_pc)
14906 {
14907 void **bpt_p;
14908
14909 if (single_step_breakpoints[0] == NULL)
14910 {
14911 bpt_p = &single_step_breakpoints[0];
14912 single_step_gdbarch[0] = gdbarch;
14913 }
14914 else
14915 {
14916 gdb_assert (single_step_breakpoints[1] == NULL);
14917 bpt_p = &single_step_breakpoints[1];
14918 single_step_gdbarch[1] = gdbarch;
14919 }
14920
14921 /* NOTE drow/2006-04-11: A future improvement to this function would
14922 be to only create the breakpoints once, and actually put them on
14923 the breakpoint chain. That would let us use set_raw_breakpoint.
14924 We could adjust the addresses each time they were needed. Doing
14925 this requires corresponding changes elsewhere where single step
14926 breakpoints are handled, however. So, for now, we use this. */
14927
14928 *bpt_p = deprecated_insert_raw_breakpoint (gdbarch, aspace, next_pc);
14929 if (*bpt_p == NULL)
14930 error (_("Could not insert single-step breakpoint at %s"),
14931 paddress (gdbarch, next_pc));
14932 }
14933
14934 /* Check if the breakpoints used for software single stepping
14935 were inserted or not. */
14936
14937 int
14938 single_step_breakpoints_inserted (void)
14939 {
14940 return (single_step_breakpoints[0] != NULL
14941 || single_step_breakpoints[1] != NULL);
14942 }
14943
14944 /* Remove and delete any breakpoints used for software single step. */
14945
14946 void
14947 remove_single_step_breakpoints (void)
14948 {
14949 gdb_assert (single_step_breakpoints[0] != NULL);
14950
14951 /* See insert_single_step_breakpoint for more about this deprecated
14952 call. */
14953 deprecated_remove_raw_breakpoint (single_step_gdbarch[0],
14954 single_step_breakpoints[0]);
14955 single_step_gdbarch[0] = NULL;
14956 single_step_breakpoints[0] = NULL;
14957
14958 if (single_step_breakpoints[1] != NULL)
14959 {
14960 deprecated_remove_raw_breakpoint (single_step_gdbarch[1],
14961 single_step_breakpoints[1]);
14962 single_step_gdbarch[1] = NULL;
14963 single_step_breakpoints[1] = NULL;
14964 }
14965 }
14966
14967 /* Delete software single step breakpoints without removing them from
14968 the inferior. This is intended to be used if the inferior's address
14969 space where they were inserted is already gone, e.g. after exit or
14970 exec. */
14971
14972 void
14973 cancel_single_step_breakpoints (void)
14974 {
14975 int i;
14976
14977 for (i = 0; i < 2; i++)
14978 if (single_step_breakpoints[i])
14979 {
14980 xfree (single_step_breakpoints[i]);
14981 single_step_breakpoints[i] = NULL;
14982 single_step_gdbarch[i] = NULL;
14983 }
14984 }
14985
14986 /* Detach software single-step breakpoints from INFERIOR_PTID without
14987 removing them. */
14988
14989 static void
14990 detach_single_step_breakpoints (void)
14991 {
14992 int i;
14993
14994 for (i = 0; i < 2; i++)
14995 if (single_step_breakpoints[i])
14996 target_remove_breakpoint (single_step_gdbarch[i],
14997 single_step_breakpoints[i]);
14998 }
14999
15000 /* Check whether a software single-step breakpoint is inserted at
15001 PC. */
15002
15003 static int
15004 single_step_breakpoint_inserted_here_p (struct address_space *aspace,
15005 CORE_ADDR pc)
15006 {
15007 int i;
15008
15009 for (i = 0; i < 2; i++)
15010 {
15011 struct bp_target_info *bp_tgt = single_step_breakpoints[i];
15012 if (bp_tgt
15013 && breakpoint_address_match (bp_tgt->placed_address_space,
15014 bp_tgt->placed_address,
15015 aspace, pc))
15016 return 1;
15017 }
15018
15019 return 0;
15020 }
15021
15022 /* Returns 0 if 'bp' is NOT a syscall catchpoint,
15023 non-zero otherwise. */
15024 static int
15025 is_syscall_catchpoint_enabled (struct breakpoint *bp)
15026 {
15027 if (syscall_catchpoint_p (bp)
15028 && bp->enable_state != bp_disabled
15029 && bp->enable_state != bp_call_disabled)
15030 return 1;
15031 else
15032 return 0;
15033 }
15034
15035 int
15036 catch_syscall_enabled (void)
15037 {
15038 struct catch_syscall_inferior_data *inf_data
15039 = get_catch_syscall_inferior_data (current_inferior ());
15040
15041 return inf_data->total_syscalls_count != 0;
15042 }
15043
15044 int
15045 catching_syscall_number (int syscall_number)
15046 {
15047 struct breakpoint *bp;
15048
15049 ALL_BREAKPOINTS (bp)
15050 if (is_syscall_catchpoint_enabled (bp))
15051 {
15052 struct syscall_catchpoint *c = (struct syscall_catchpoint *) bp;
15053
15054 if (c->syscalls_to_be_caught)
15055 {
15056 int i, iter;
15057 for (i = 0;
15058 VEC_iterate (int, c->syscalls_to_be_caught, i, iter);
15059 i++)
15060 if (syscall_number == iter)
15061 return 1;
15062 }
15063 else
15064 return 1;
15065 }
15066
15067 return 0;
15068 }
15069
15070 /* Complete syscall names. Used by "catch syscall". */
15071 static VEC (char_ptr) *
15072 catch_syscall_completer (struct cmd_list_element *cmd,
15073 char *text, char *word)
15074 {
15075 const char **list = get_syscall_names ();
15076 VEC (char_ptr) *retlist
15077 = (list == NULL) ? NULL : complete_on_enum (list, word, word);
15078
15079 xfree (list);
15080 return retlist;
15081 }
15082
15083 /* Tracepoint-specific operations. */
15084
15085 /* Set tracepoint count to NUM. */
15086 static void
15087 set_tracepoint_count (int num)
15088 {
15089 tracepoint_count = num;
15090 set_internalvar_integer (lookup_internalvar ("tpnum"), num);
15091 }
15092
15093 static void
15094 trace_command (char *arg, int from_tty)
15095 {
15096 struct breakpoint_ops *ops;
15097 const char *arg_cp = arg;
15098
15099 if (arg && probe_linespec_to_ops (&arg_cp))
15100 ops = &tracepoint_probe_breakpoint_ops;
15101 else
15102 ops = &tracepoint_breakpoint_ops;
15103
15104 create_breakpoint (get_current_arch (),
15105 arg,
15106 NULL, 0, NULL, 1 /* parse arg */,
15107 0 /* tempflag */,
15108 bp_tracepoint /* type_wanted */,
15109 0 /* Ignore count */,
15110 pending_break_support,
15111 ops,
15112 from_tty,
15113 1 /* enabled */,
15114 0 /* internal */, 0);
15115 }
15116
15117 static void
15118 ftrace_command (char *arg, int from_tty)
15119 {
15120 create_breakpoint (get_current_arch (),
15121 arg,
15122 NULL, 0, NULL, 1 /* parse arg */,
15123 0 /* tempflag */,
15124 bp_fast_tracepoint /* type_wanted */,
15125 0 /* Ignore count */,
15126 pending_break_support,
15127 &tracepoint_breakpoint_ops,
15128 from_tty,
15129 1 /* enabled */,
15130 0 /* internal */, 0);
15131 }
15132
15133 /* strace command implementation. Creates a static tracepoint. */
15134
15135 static void
15136 strace_command (char *arg, int from_tty)
15137 {
15138 struct breakpoint_ops *ops;
15139
15140 /* Decide if we are dealing with a static tracepoint marker (`-m'),
15141 or with a normal static tracepoint. */
15142 if (arg && strncmp (arg, "-m", 2) == 0 && isspace (arg[2]))
15143 ops = &strace_marker_breakpoint_ops;
15144 else
15145 ops = &tracepoint_breakpoint_ops;
15146
15147 create_breakpoint (get_current_arch (),
15148 arg,
15149 NULL, 0, NULL, 1 /* parse arg */,
15150 0 /* tempflag */,
15151 bp_static_tracepoint /* type_wanted */,
15152 0 /* Ignore count */,
15153 pending_break_support,
15154 ops,
15155 from_tty,
15156 1 /* enabled */,
15157 0 /* internal */, 0);
15158 }
15159
15160 /* Set up a fake reader function that gets command lines from a linked
15161 list that was acquired during tracepoint uploading. */
15162
15163 static struct uploaded_tp *this_utp;
15164 static int next_cmd;
15165
15166 static char *
15167 read_uploaded_action (void)
15168 {
15169 char *rslt;
15170
15171 VEC_iterate (char_ptr, this_utp->cmd_strings, next_cmd, rslt);
15172
15173 next_cmd++;
15174
15175 return rslt;
15176 }
15177
15178 /* Given information about a tracepoint as recorded on a target (which
15179 can be either a live system or a trace file), attempt to create an
15180 equivalent GDB tracepoint. This is not a reliable process, since
15181 the target does not necessarily have all the information used when
15182 the tracepoint was originally defined. */
15183
15184 struct tracepoint *
15185 create_tracepoint_from_upload (struct uploaded_tp *utp)
15186 {
15187 char *addr_str, small_buf[100];
15188 struct tracepoint *tp;
15189
15190 if (utp->at_string)
15191 addr_str = utp->at_string;
15192 else
15193 {
15194 /* In the absence of a source location, fall back to raw
15195 address. Since there is no way to confirm that the address
15196 means the same thing as when the trace was started, warn the
15197 user. */
15198 warning (_("Uploaded tracepoint %d has no "
15199 "source location, using raw address"),
15200 utp->number);
15201 xsnprintf (small_buf, sizeof (small_buf), "*%s", hex_string (utp->addr));
15202 addr_str = small_buf;
15203 }
15204
15205 /* There's not much we can do with a sequence of bytecodes. */
15206 if (utp->cond && !utp->cond_string)
15207 warning (_("Uploaded tracepoint %d condition "
15208 "has no source form, ignoring it"),
15209 utp->number);
15210
15211 if (!create_breakpoint (get_current_arch (),
15212 addr_str,
15213 utp->cond_string, -1, NULL,
15214 0 /* parse cond/thread */,
15215 0 /* tempflag */,
15216 utp->type /* type_wanted */,
15217 0 /* Ignore count */,
15218 pending_break_support,
15219 &tracepoint_breakpoint_ops,
15220 0 /* from_tty */,
15221 utp->enabled /* enabled */,
15222 0 /* internal */,
15223 CREATE_BREAKPOINT_FLAGS_INSERTED))
15224 return NULL;
15225
15226 /* Get the tracepoint we just created. */
15227 tp = get_tracepoint (tracepoint_count);
15228 gdb_assert (tp != NULL);
15229
15230 if (utp->pass > 0)
15231 {
15232 xsnprintf (small_buf, sizeof (small_buf), "%d %d", utp->pass,
15233 tp->base.number);
15234
15235 trace_pass_command (small_buf, 0);
15236 }
15237
15238 /* If we have uploaded versions of the original commands, set up a
15239 special-purpose "reader" function and call the usual command line
15240 reader, then pass the result to the breakpoint command-setting
15241 function. */
15242 if (!VEC_empty (char_ptr, utp->cmd_strings))
15243 {
15244 struct command_line *cmd_list;
15245
15246 this_utp = utp;
15247 next_cmd = 0;
15248
15249 cmd_list = read_command_lines_1 (read_uploaded_action, 1, NULL, NULL);
15250
15251 breakpoint_set_commands (&tp->base, cmd_list);
15252 }
15253 else if (!VEC_empty (char_ptr, utp->actions)
15254 || !VEC_empty (char_ptr, utp->step_actions))
15255 warning (_("Uploaded tracepoint %d actions "
15256 "have no source form, ignoring them"),
15257 utp->number);
15258
15259 /* Copy any status information that might be available. */
15260 tp->base.hit_count = utp->hit_count;
15261 tp->traceframe_usage = utp->traceframe_usage;
15262
15263 return tp;
15264 }
15265
15266 /* Print information on tracepoint number TPNUM_EXP, or all if
15267 omitted. */
15268
15269 static void
15270 tracepoints_info (char *args, int from_tty)
15271 {
15272 struct ui_out *uiout = current_uiout;
15273 int num_printed;
15274
15275 num_printed = breakpoint_1 (args, 0, is_tracepoint);
15276
15277 if (num_printed == 0)
15278 {
15279 if (args == NULL || *args == '\0')
15280 ui_out_message (uiout, 0, "No tracepoints.\n");
15281 else
15282 ui_out_message (uiout, 0, "No tracepoint matching '%s'.\n", args);
15283 }
15284
15285 default_collect_info ();
15286 }
15287
15288 /* The 'enable trace' command enables tracepoints.
15289 Not supported by all targets. */
15290 static void
15291 enable_trace_command (char *args, int from_tty)
15292 {
15293 enable_command (args, from_tty);
15294 }
15295
15296 /* The 'disable trace' command disables tracepoints.
15297 Not supported by all targets. */
15298 static void
15299 disable_trace_command (char *args, int from_tty)
15300 {
15301 disable_command (args, from_tty);
15302 }
15303
15304 /* Remove a tracepoint (or all if no argument). */
15305 static void
15306 delete_trace_command (char *arg, int from_tty)
15307 {
15308 struct breakpoint *b, *b_tmp;
15309
15310 dont_repeat ();
15311
15312 if (arg == 0)
15313 {
15314 int breaks_to_delete = 0;
15315
15316 /* Delete all breakpoints if no argument.
15317 Do not delete internal or call-dummy breakpoints, these
15318 have to be deleted with an explicit breakpoint number
15319 argument. */
15320 ALL_TRACEPOINTS (b)
15321 if (is_tracepoint (b) && user_breakpoint_p (b))
15322 {
15323 breaks_to_delete = 1;
15324 break;
15325 }
15326
15327 /* Ask user only if there are some breakpoints to delete. */
15328 if (!from_tty
15329 || (breaks_to_delete && query (_("Delete all tracepoints? "))))
15330 {
15331 ALL_BREAKPOINTS_SAFE (b, b_tmp)
15332 if (is_tracepoint (b) && user_breakpoint_p (b))
15333 delete_breakpoint (b);
15334 }
15335 }
15336 else
15337 map_breakpoint_numbers (arg, do_map_delete_breakpoint, NULL);
15338 }
15339
15340 /* Helper function for trace_pass_command. */
15341
15342 static void
15343 trace_pass_set_count (struct tracepoint *tp, int count, int from_tty)
15344 {
15345 tp->pass_count = count;
15346 observer_notify_breakpoint_modified (&tp->base);
15347 if (from_tty)
15348 printf_filtered (_("Setting tracepoint %d's passcount to %d\n"),
15349 tp->base.number, count);
15350 }
15351
15352 /* Set passcount for tracepoint.
15353
15354 First command argument is passcount, second is tracepoint number.
15355 If tracepoint number omitted, apply to most recently defined.
15356 Also accepts special argument "all". */
15357
15358 static void
15359 trace_pass_command (char *args, int from_tty)
15360 {
15361 struct tracepoint *t1;
15362 unsigned int count;
15363
15364 if (args == 0 || *args == 0)
15365 error (_("passcount command requires an "
15366 "argument (count + optional TP num)"));
15367
15368 count = strtoul (args, &args, 10); /* Count comes first, then TP num. */
15369
15370 while (*args && isspace ((int) *args))
15371 args++;
15372
15373 if (*args && strncasecmp (args, "all", 3) == 0)
15374 {
15375 struct breakpoint *b;
15376
15377 args += 3; /* Skip special argument "all". */
15378 if (*args)
15379 error (_("Junk at end of arguments."));
15380
15381 ALL_TRACEPOINTS (b)
15382 {
15383 t1 = (struct tracepoint *) b;
15384 trace_pass_set_count (t1, count, from_tty);
15385 }
15386 }
15387 else if (*args == '\0')
15388 {
15389 t1 = get_tracepoint_by_number (&args, NULL, 1);
15390 if (t1)
15391 trace_pass_set_count (t1, count, from_tty);
15392 }
15393 else
15394 {
15395 struct get_number_or_range_state state;
15396
15397 init_number_or_range (&state, args);
15398 while (!state.finished)
15399 {
15400 t1 = get_tracepoint_by_number (&args, &state, 1);
15401 if (t1)
15402 trace_pass_set_count (t1, count, from_tty);
15403 }
15404 }
15405 }
15406
15407 struct tracepoint *
15408 get_tracepoint (int num)
15409 {
15410 struct breakpoint *t;
15411
15412 ALL_TRACEPOINTS (t)
15413 if (t->number == num)
15414 return (struct tracepoint *) t;
15415
15416 return NULL;
15417 }
15418
15419 /* Find the tracepoint with the given target-side number (which may be
15420 different from the tracepoint number after disconnecting and
15421 reconnecting). */
15422
15423 struct tracepoint *
15424 get_tracepoint_by_number_on_target (int num)
15425 {
15426 struct breakpoint *b;
15427
15428 ALL_TRACEPOINTS (b)
15429 {
15430 struct tracepoint *t = (struct tracepoint *) b;
15431
15432 if (t->number_on_target == num)
15433 return t;
15434 }
15435
15436 return NULL;
15437 }
15438
15439 /* Utility: parse a tracepoint number and look it up in the list.
15440 If STATE is not NULL, use, get_number_or_range_state and ignore ARG.
15441 If OPTIONAL_P is true, then if the argument is missing, the most
15442 recent tracepoint (tracepoint_count) is returned. */
15443 struct tracepoint *
15444 get_tracepoint_by_number (char **arg,
15445 struct get_number_or_range_state *state,
15446 int optional_p)
15447 {
15448 struct breakpoint *t;
15449 int tpnum;
15450 char *instring = arg == NULL ? NULL : *arg;
15451
15452 if (state)
15453 {
15454 gdb_assert (!state->finished);
15455 tpnum = get_number_or_range (state);
15456 }
15457 else if (arg == NULL || *arg == NULL || ! **arg)
15458 {
15459 if (optional_p)
15460 tpnum = tracepoint_count;
15461 else
15462 error_no_arg (_("tracepoint number"));
15463 }
15464 else
15465 tpnum = get_number (arg);
15466
15467 if (tpnum <= 0)
15468 {
15469 if (instring && *instring)
15470 printf_filtered (_("bad tracepoint number at or near '%s'\n"),
15471 instring);
15472 else
15473 printf_filtered (_("Tracepoint argument missing "
15474 "and no previous tracepoint\n"));
15475 return NULL;
15476 }
15477
15478 ALL_TRACEPOINTS (t)
15479 if (t->number == tpnum)
15480 {
15481 return (struct tracepoint *) t;
15482 }
15483
15484 printf_unfiltered ("No tracepoint number %d.\n", tpnum);
15485 return NULL;
15486 }
15487
15488 void
15489 print_recreate_thread (struct breakpoint *b, struct ui_file *fp)
15490 {
15491 if (b->thread != -1)
15492 fprintf_unfiltered (fp, " thread %d", b->thread);
15493
15494 if (b->task != 0)
15495 fprintf_unfiltered (fp, " task %d", b->task);
15496
15497 fprintf_unfiltered (fp, "\n");
15498 }
15499
15500 /* Save information on user settable breakpoints (watchpoints, etc) to
15501 a new script file named FILENAME. If FILTER is non-NULL, call it
15502 on each breakpoint and only include the ones for which it returns
15503 non-zero. */
15504
15505 static void
15506 save_breakpoints (char *filename, int from_tty,
15507 int (*filter) (const struct breakpoint *))
15508 {
15509 struct breakpoint *tp;
15510 int any = 0;
15511 char *pathname;
15512 struct cleanup *cleanup;
15513 struct ui_file *fp;
15514 int extra_trace_bits = 0;
15515
15516 if (filename == 0 || *filename == 0)
15517 error (_("Argument required (file name in which to save)"));
15518
15519 /* See if we have anything to save. */
15520 ALL_BREAKPOINTS (tp)
15521 {
15522 /* Skip internal and momentary breakpoints. */
15523 if (!user_breakpoint_p (tp))
15524 continue;
15525
15526 /* If we have a filter, only save the breakpoints it accepts. */
15527 if (filter && !filter (tp))
15528 continue;
15529
15530 any = 1;
15531
15532 if (is_tracepoint (tp))
15533 {
15534 extra_trace_bits = 1;
15535
15536 /* We can stop searching. */
15537 break;
15538 }
15539 }
15540
15541 if (!any)
15542 {
15543 warning (_("Nothing to save."));
15544 return;
15545 }
15546
15547 pathname = tilde_expand (filename);
15548 cleanup = make_cleanup (xfree, pathname);
15549 fp = gdb_fopen (pathname, "w");
15550 if (!fp)
15551 error (_("Unable to open file '%s' for saving (%s)"),
15552 filename, safe_strerror (errno));
15553 make_cleanup_ui_file_delete (fp);
15554
15555 if (extra_trace_bits)
15556 save_trace_state_variables (fp);
15557
15558 ALL_BREAKPOINTS (tp)
15559 {
15560 /* Skip internal and momentary breakpoints. */
15561 if (!user_breakpoint_p (tp))
15562 continue;
15563
15564 /* If we have a filter, only save the breakpoints it accepts. */
15565 if (filter && !filter (tp))
15566 continue;
15567
15568 tp->ops->print_recreate (tp, fp);
15569
15570 /* Note, we can't rely on tp->number for anything, as we can't
15571 assume the recreated breakpoint numbers will match. Use $bpnum
15572 instead. */
15573
15574 if (tp->cond_string)
15575 fprintf_unfiltered (fp, " condition $bpnum %s\n", tp->cond_string);
15576
15577 if (tp->ignore_count)
15578 fprintf_unfiltered (fp, " ignore $bpnum %d\n", tp->ignore_count);
15579
15580 if (tp->commands)
15581 {
15582 volatile struct gdb_exception ex;
15583
15584 fprintf_unfiltered (fp, " commands\n");
15585
15586 ui_out_redirect (current_uiout, fp);
15587 TRY_CATCH (ex, RETURN_MASK_ALL)
15588 {
15589 print_command_lines (current_uiout, tp->commands->commands, 2);
15590 }
15591 ui_out_redirect (current_uiout, NULL);
15592
15593 if (ex.reason < 0)
15594 throw_exception (ex);
15595
15596 fprintf_unfiltered (fp, " end\n");
15597 }
15598
15599 if (tp->enable_state == bp_disabled)
15600 fprintf_unfiltered (fp, "disable\n");
15601
15602 /* If this is a multi-location breakpoint, check if the locations
15603 should be individually disabled. Watchpoint locations are
15604 special, and not user visible. */
15605 if (!is_watchpoint (tp) && tp->loc && tp->loc->next)
15606 {
15607 struct bp_location *loc;
15608 int n = 1;
15609
15610 for (loc = tp->loc; loc != NULL; loc = loc->next, n++)
15611 if (!loc->enabled)
15612 fprintf_unfiltered (fp, "disable $bpnum.%d\n", n);
15613 }
15614 }
15615
15616 if (extra_trace_bits && *default_collect)
15617 fprintf_unfiltered (fp, "set default-collect %s\n", default_collect);
15618
15619 do_cleanups (cleanup);
15620 if (from_tty)
15621 printf_filtered (_("Saved to file '%s'.\n"), filename);
15622 }
15623
15624 /* The `save breakpoints' command. */
15625
15626 static void
15627 save_breakpoints_command (char *args, int from_tty)
15628 {
15629 save_breakpoints (args, from_tty, NULL);
15630 }
15631
15632 /* The `save tracepoints' command. */
15633
15634 static void
15635 save_tracepoints_command (char *args, int from_tty)
15636 {
15637 save_breakpoints (args, from_tty, is_tracepoint);
15638 }
15639
15640 /* Create a vector of all tracepoints. */
15641
15642 VEC(breakpoint_p) *
15643 all_tracepoints (void)
15644 {
15645 VEC(breakpoint_p) *tp_vec = 0;
15646 struct breakpoint *tp;
15647
15648 ALL_TRACEPOINTS (tp)
15649 {
15650 VEC_safe_push (breakpoint_p, tp_vec, tp);
15651 }
15652
15653 return tp_vec;
15654 }
15655
15656 \f
15657 /* This help string is used for the break, hbreak, tbreak and thbreak
15658 commands. It is defined as a macro to prevent duplication.
15659 COMMAND should be a string constant containing the name of the
15660 command. */
15661 #define BREAK_ARGS_HELP(command) \
15662 command" [PROBE_MODIFIER] [LOCATION] [thread THREADNUM] [if CONDITION]\n\
15663 PROBE_MODIFIER shall be present if the command is to be placed in a\n\
15664 probe point. Accepted values are `-probe' (for a generic, automatically\n\
15665 guessed probe type) or `-probe-stap' (for a SystemTap probe).\n\
15666 LOCATION may be a line number, function name, or \"*\" and an address.\n\
15667 If a line number is specified, break at start of code for that line.\n\
15668 If a function is specified, break at start of code for that function.\n\
15669 If an address is specified, break at that exact address.\n\
15670 With no LOCATION, uses current execution address of the selected\n\
15671 stack frame. This is useful for breaking on return to a stack frame.\n\
15672 \n\
15673 THREADNUM is the number from \"info threads\".\n\
15674 CONDITION is a boolean expression.\n\
15675 \n\
15676 Multiple breakpoints at one place are permitted, and useful if their\n\
15677 conditions are different.\n\
15678 \n\
15679 Do \"help breakpoints\" for info on other commands dealing with breakpoints."
15680
15681 /* List of subcommands for "catch". */
15682 static struct cmd_list_element *catch_cmdlist;
15683
15684 /* List of subcommands for "tcatch". */
15685 static struct cmd_list_element *tcatch_cmdlist;
15686
15687 void
15688 add_catch_command (char *name, char *docstring,
15689 void (*sfunc) (char *args, int from_tty,
15690 struct cmd_list_element *command),
15691 completer_ftype *completer,
15692 void *user_data_catch,
15693 void *user_data_tcatch)
15694 {
15695 struct cmd_list_element *command;
15696
15697 command = add_cmd (name, class_breakpoint, NULL, docstring,
15698 &catch_cmdlist);
15699 set_cmd_sfunc (command, sfunc);
15700 set_cmd_context (command, user_data_catch);
15701 set_cmd_completer (command, completer);
15702
15703 command = add_cmd (name, class_breakpoint, NULL, docstring,
15704 &tcatch_cmdlist);
15705 set_cmd_sfunc (command, sfunc);
15706 set_cmd_context (command, user_data_tcatch);
15707 set_cmd_completer (command, completer);
15708 }
15709
15710 static void
15711 clear_syscall_counts (struct inferior *inf)
15712 {
15713 struct catch_syscall_inferior_data *inf_data
15714 = get_catch_syscall_inferior_data (inf);
15715
15716 inf_data->total_syscalls_count = 0;
15717 inf_data->any_syscall_count = 0;
15718 VEC_free (int, inf_data->syscalls_counts);
15719 }
15720
15721 static void
15722 save_command (char *arg, int from_tty)
15723 {
15724 printf_unfiltered (_("\"save\" must be followed by "
15725 "the name of a save subcommand.\n"));
15726 help_list (save_cmdlist, "save ", -1, gdb_stdout);
15727 }
15728
15729 struct breakpoint *
15730 iterate_over_breakpoints (int (*callback) (struct breakpoint *, void *),
15731 void *data)
15732 {
15733 struct breakpoint *b, *b_tmp;
15734
15735 ALL_BREAKPOINTS_SAFE (b, b_tmp)
15736 {
15737 if ((*callback) (b, data))
15738 return b;
15739 }
15740
15741 return NULL;
15742 }
15743
15744 /* Zero if any of the breakpoint's locations could be a location where
15745 functions have been inlined, nonzero otherwise. */
15746
15747 static int
15748 is_non_inline_function (struct breakpoint *b)
15749 {
15750 /* The shared library event breakpoint is set on the address of a
15751 non-inline function. */
15752 if (b->type == bp_shlib_event)
15753 return 1;
15754
15755 return 0;
15756 }
15757
15758 /* Nonzero if the specified PC cannot be a location where functions
15759 have been inlined. */
15760
15761 int
15762 pc_at_non_inline_function (struct address_space *aspace, CORE_ADDR pc,
15763 const struct target_waitstatus *ws)
15764 {
15765 struct breakpoint *b;
15766 struct bp_location *bl;
15767
15768 ALL_BREAKPOINTS (b)
15769 {
15770 if (!is_non_inline_function (b))
15771 continue;
15772
15773 for (bl = b->loc; bl != NULL; bl = bl->next)
15774 {
15775 if (!bl->shlib_disabled
15776 && bpstat_check_location (bl, aspace, pc, ws))
15777 return 1;
15778 }
15779 }
15780
15781 return 0;
15782 }
15783
15784 /* Remove any references to OBJFILE which is going to be freed. */
15785
15786 void
15787 breakpoint_free_objfile (struct objfile *objfile)
15788 {
15789 struct bp_location **locp, *loc;
15790
15791 ALL_BP_LOCATIONS (loc, locp)
15792 if (loc->symtab != NULL && loc->symtab->objfile == objfile)
15793 loc->symtab = NULL;
15794 }
15795
15796 void
15797 initialize_breakpoint_ops (void)
15798 {
15799 static int initialized = 0;
15800
15801 struct breakpoint_ops *ops;
15802
15803 if (initialized)
15804 return;
15805 initialized = 1;
15806
15807 /* The breakpoint_ops structure to be inherit by all kinds of
15808 breakpoints (real breakpoints, i.e., user "break" breakpoints,
15809 internal and momentary breakpoints, etc.). */
15810 ops = &bkpt_base_breakpoint_ops;
15811 *ops = base_breakpoint_ops;
15812 ops->re_set = bkpt_re_set;
15813 ops->insert_location = bkpt_insert_location;
15814 ops->remove_location = bkpt_remove_location;
15815 ops->breakpoint_hit = bkpt_breakpoint_hit;
15816 ops->create_sals_from_address = bkpt_create_sals_from_address;
15817 ops->create_breakpoints_sal = bkpt_create_breakpoints_sal;
15818 ops->decode_linespec = bkpt_decode_linespec;
15819
15820 /* The breakpoint_ops structure to be used in regular breakpoints. */
15821 ops = &bkpt_breakpoint_ops;
15822 *ops = bkpt_base_breakpoint_ops;
15823 ops->re_set = bkpt_re_set;
15824 ops->resources_needed = bkpt_resources_needed;
15825 ops->print_it = bkpt_print_it;
15826 ops->print_mention = bkpt_print_mention;
15827 ops->print_recreate = bkpt_print_recreate;
15828
15829 /* Ranged breakpoints. */
15830 ops = &ranged_breakpoint_ops;
15831 *ops = bkpt_breakpoint_ops;
15832 ops->breakpoint_hit = breakpoint_hit_ranged_breakpoint;
15833 ops->resources_needed = resources_needed_ranged_breakpoint;
15834 ops->print_it = print_it_ranged_breakpoint;
15835 ops->print_one = print_one_ranged_breakpoint;
15836 ops->print_one_detail = print_one_detail_ranged_breakpoint;
15837 ops->print_mention = print_mention_ranged_breakpoint;
15838 ops->print_recreate = print_recreate_ranged_breakpoint;
15839
15840 /* Internal breakpoints. */
15841 ops = &internal_breakpoint_ops;
15842 *ops = bkpt_base_breakpoint_ops;
15843 ops->re_set = internal_bkpt_re_set;
15844 ops->check_status = internal_bkpt_check_status;
15845 ops->print_it = internal_bkpt_print_it;
15846 ops->print_mention = internal_bkpt_print_mention;
15847
15848 /* Momentary breakpoints. */
15849 ops = &momentary_breakpoint_ops;
15850 *ops = bkpt_base_breakpoint_ops;
15851 ops->re_set = momentary_bkpt_re_set;
15852 ops->check_status = momentary_bkpt_check_status;
15853 ops->print_it = momentary_bkpt_print_it;
15854 ops->print_mention = momentary_bkpt_print_mention;
15855
15856 /* Momentary breakpoints for bp_longjmp and bp_exception. */
15857 ops = &longjmp_breakpoint_ops;
15858 *ops = momentary_breakpoint_ops;
15859 ops->dtor = longjmp_bkpt_dtor;
15860
15861 /* Probe breakpoints. */
15862 ops = &bkpt_probe_breakpoint_ops;
15863 *ops = bkpt_breakpoint_ops;
15864 ops->insert_location = bkpt_probe_insert_location;
15865 ops->remove_location = bkpt_probe_remove_location;
15866 ops->create_sals_from_address = bkpt_probe_create_sals_from_address;
15867 ops->decode_linespec = bkpt_probe_decode_linespec;
15868
15869 /* GNU v3 exception catchpoints. */
15870 ops = &gnu_v3_exception_catchpoint_ops;
15871 *ops = bkpt_breakpoint_ops;
15872 ops->print_it = print_it_exception_catchpoint;
15873 ops->print_one = print_one_exception_catchpoint;
15874 ops->print_mention = print_mention_exception_catchpoint;
15875 ops->print_recreate = print_recreate_exception_catchpoint;
15876
15877 /* Watchpoints. */
15878 ops = &watchpoint_breakpoint_ops;
15879 *ops = base_breakpoint_ops;
15880 ops->dtor = dtor_watchpoint;
15881 ops->re_set = re_set_watchpoint;
15882 ops->insert_location = insert_watchpoint;
15883 ops->remove_location = remove_watchpoint;
15884 ops->breakpoint_hit = breakpoint_hit_watchpoint;
15885 ops->check_status = check_status_watchpoint;
15886 ops->resources_needed = resources_needed_watchpoint;
15887 ops->works_in_software_mode = works_in_software_mode_watchpoint;
15888 ops->print_it = print_it_watchpoint;
15889 ops->print_mention = print_mention_watchpoint;
15890 ops->print_recreate = print_recreate_watchpoint;
15891
15892 /* Masked watchpoints. */
15893 ops = &masked_watchpoint_breakpoint_ops;
15894 *ops = watchpoint_breakpoint_ops;
15895 ops->insert_location = insert_masked_watchpoint;
15896 ops->remove_location = remove_masked_watchpoint;
15897 ops->resources_needed = resources_needed_masked_watchpoint;
15898 ops->works_in_software_mode = works_in_software_mode_masked_watchpoint;
15899 ops->print_it = print_it_masked_watchpoint;
15900 ops->print_one_detail = print_one_detail_masked_watchpoint;
15901 ops->print_mention = print_mention_masked_watchpoint;
15902 ops->print_recreate = print_recreate_masked_watchpoint;
15903
15904 /* Tracepoints. */
15905 ops = &tracepoint_breakpoint_ops;
15906 *ops = base_breakpoint_ops;
15907 ops->re_set = tracepoint_re_set;
15908 ops->breakpoint_hit = tracepoint_breakpoint_hit;
15909 ops->print_one_detail = tracepoint_print_one_detail;
15910 ops->print_mention = tracepoint_print_mention;
15911 ops->print_recreate = tracepoint_print_recreate;
15912 ops->create_sals_from_address = tracepoint_create_sals_from_address;
15913 ops->create_breakpoints_sal = tracepoint_create_breakpoints_sal;
15914 ops->decode_linespec = tracepoint_decode_linespec;
15915
15916 /* Probe tracepoints. */
15917 ops = &tracepoint_probe_breakpoint_ops;
15918 *ops = tracepoint_breakpoint_ops;
15919 ops->create_sals_from_address = tracepoint_probe_create_sals_from_address;
15920 ops->decode_linespec = tracepoint_probe_decode_linespec;
15921
15922 /* Static tracepoints with marker (`-m'). */
15923 ops = &strace_marker_breakpoint_ops;
15924 *ops = tracepoint_breakpoint_ops;
15925 ops->create_sals_from_address = strace_marker_create_sals_from_address;
15926 ops->create_breakpoints_sal = strace_marker_create_breakpoints_sal;
15927 ops->decode_linespec = strace_marker_decode_linespec;
15928
15929 /* Fork catchpoints. */
15930 ops = &catch_fork_breakpoint_ops;
15931 *ops = base_breakpoint_ops;
15932 ops->insert_location = insert_catch_fork;
15933 ops->remove_location = remove_catch_fork;
15934 ops->breakpoint_hit = breakpoint_hit_catch_fork;
15935 ops->print_it = print_it_catch_fork;
15936 ops->print_one = print_one_catch_fork;
15937 ops->print_mention = print_mention_catch_fork;
15938 ops->print_recreate = print_recreate_catch_fork;
15939
15940 /* Vfork catchpoints. */
15941 ops = &catch_vfork_breakpoint_ops;
15942 *ops = base_breakpoint_ops;
15943 ops->insert_location = insert_catch_vfork;
15944 ops->remove_location = remove_catch_vfork;
15945 ops->breakpoint_hit = breakpoint_hit_catch_vfork;
15946 ops->print_it = print_it_catch_vfork;
15947 ops->print_one = print_one_catch_vfork;
15948 ops->print_mention = print_mention_catch_vfork;
15949 ops->print_recreate = print_recreate_catch_vfork;
15950
15951 /* Exec catchpoints. */
15952 ops = &catch_exec_breakpoint_ops;
15953 *ops = base_breakpoint_ops;
15954 ops->dtor = dtor_catch_exec;
15955 ops->insert_location = insert_catch_exec;
15956 ops->remove_location = remove_catch_exec;
15957 ops->breakpoint_hit = breakpoint_hit_catch_exec;
15958 ops->print_it = print_it_catch_exec;
15959 ops->print_one = print_one_catch_exec;
15960 ops->print_mention = print_mention_catch_exec;
15961 ops->print_recreate = print_recreate_catch_exec;
15962
15963 /* Syscall catchpoints. */
15964 ops = &catch_syscall_breakpoint_ops;
15965 *ops = base_breakpoint_ops;
15966 ops->dtor = dtor_catch_syscall;
15967 ops->insert_location = insert_catch_syscall;
15968 ops->remove_location = remove_catch_syscall;
15969 ops->breakpoint_hit = breakpoint_hit_catch_syscall;
15970 ops->print_it = print_it_catch_syscall;
15971 ops->print_one = print_one_catch_syscall;
15972 ops->print_mention = print_mention_catch_syscall;
15973 ops->print_recreate = print_recreate_catch_syscall;
15974
15975 /* Solib-related catchpoints. */
15976 ops = &catch_solib_breakpoint_ops;
15977 *ops = base_breakpoint_ops;
15978 ops->dtor = dtor_catch_solib;
15979 ops->insert_location = insert_catch_solib;
15980 ops->remove_location = remove_catch_solib;
15981 ops->breakpoint_hit = breakpoint_hit_catch_solib;
15982 ops->check_status = check_status_catch_solib;
15983 ops->print_it = print_it_catch_solib;
15984 ops->print_one = print_one_catch_solib;
15985 ops->print_mention = print_mention_catch_solib;
15986 ops->print_recreate = print_recreate_catch_solib;
15987
15988 ops = &dprintf_breakpoint_ops;
15989 *ops = bkpt_base_breakpoint_ops;
15990 ops->re_set = bkpt_re_set;
15991 ops->resources_needed = bkpt_resources_needed;
15992 ops->print_it = bkpt_print_it;
15993 ops->print_mention = bkpt_print_mention;
15994 ops->print_recreate = bkpt_print_recreate;
15995 }
15996
15997 /* Chain containing all defined "enable breakpoint" subcommands. */
15998
15999 static struct cmd_list_element *enablebreaklist = NULL;
16000
16001 void
16002 _initialize_breakpoint (void)
16003 {
16004 struct cmd_list_element *c;
16005
16006 initialize_breakpoint_ops ();
16007
16008 observer_attach_solib_unloaded (disable_breakpoints_in_unloaded_shlib);
16009 observer_attach_inferior_exit (clear_syscall_counts);
16010 observer_attach_memory_changed (invalidate_bp_value_on_memory_change);
16011
16012 breakpoint_objfile_key
16013 = register_objfile_data_with_cleanup (NULL, free_breakpoint_probes);
16014
16015 catch_syscall_inferior_data
16016 = register_inferior_data_with_cleanup (NULL,
16017 catch_syscall_inferior_data_cleanup);
16018
16019 breakpoint_chain = 0;
16020 /* Don't bother to call set_breakpoint_count. $bpnum isn't useful
16021 before a breakpoint is set. */
16022 breakpoint_count = 0;
16023
16024 tracepoint_count = 0;
16025
16026 add_com ("ignore", class_breakpoint, ignore_command, _("\
16027 Set ignore-count of breakpoint number N to COUNT.\n\
16028 Usage is `ignore N COUNT'."));
16029 if (xdb_commands)
16030 add_com_alias ("bc", "ignore", class_breakpoint, 1);
16031
16032 add_com ("commands", class_breakpoint, commands_command, _("\
16033 Set commands to be executed when a breakpoint is hit.\n\
16034 Give breakpoint number as argument after \"commands\".\n\
16035 With no argument, the targeted breakpoint is the last one set.\n\
16036 The commands themselves follow starting on the next line.\n\
16037 Type a line containing \"end\" to indicate the end of them.\n\
16038 Give \"silent\" as the first line to make the breakpoint silent;\n\
16039 then no output is printed when it is hit, except what the commands print."));
16040
16041 c = add_com ("condition", class_breakpoint, condition_command, _("\
16042 Specify breakpoint number N to break only if COND is true.\n\
16043 Usage is `condition N COND', where N is an integer and COND is an\n\
16044 expression to be evaluated whenever breakpoint N is reached."));
16045 set_cmd_completer (c, condition_completer);
16046
16047 c = add_com ("tbreak", class_breakpoint, tbreak_command, _("\
16048 Set a temporary breakpoint.\n\
16049 Like \"break\" except the breakpoint is only temporary,\n\
16050 so it will be deleted when hit. Equivalent to \"break\" followed\n\
16051 by using \"enable delete\" on the breakpoint number.\n\
16052 \n"
16053 BREAK_ARGS_HELP ("tbreak")));
16054 set_cmd_completer (c, location_completer);
16055
16056 c = add_com ("hbreak", class_breakpoint, hbreak_command, _("\
16057 Set a hardware assisted breakpoint.\n\
16058 Like \"break\" except the breakpoint requires hardware support,\n\
16059 some target hardware may not have this support.\n\
16060 \n"
16061 BREAK_ARGS_HELP ("hbreak")));
16062 set_cmd_completer (c, location_completer);
16063
16064 c = add_com ("thbreak", class_breakpoint, thbreak_command, _("\
16065 Set a temporary hardware assisted breakpoint.\n\
16066 Like \"hbreak\" except the breakpoint is only temporary,\n\
16067 so it will be deleted when hit.\n\
16068 \n"
16069 BREAK_ARGS_HELP ("thbreak")));
16070 set_cmd_completer (c, location_completer);
16071
16072 add_prefix_cmd ("enable", class_breakpoint, enable_command, _("\
16073 Enable some breakpoints.\n\
16074 Give breakpoint numbers (separated by spaces) as arguments.\n\
16075 With no subcommand, breakpoints are enabled until you command otherwise.\n\
16076 This is used to cancel the effect of the \"disable\" command.\n\
16077 With a subcommand you can enable temporarily."),
16078 &enablelist, "enable ", 1, &cmdlist);
16079 if (xdb_commands)
16080 add_com ("ab", class_breakpoint, enable_command, _("\
16081 Enable some breakpoints.\n\
16082 Give breakpoint numbers (separated by spaces) as arguments.\n\
16083 With no subcommand, breakpoints are enabled until you command otherwise.\n\
16084 This is used to cancel the effect of the \"disable\" command.\n\
16085 With a subcommand you can enable temporarily."));
16086
16087 add_com_alias ("en", "enable", class_breakpoint, 1);
16088
16089 add_prefix_cmd ("breakpoints", class_breakpoint, enable_command, _("\
16090 Enable some breakpoints.\n\
16091 Give breakpoint numbers (separated by spaces) as arguments.\n\
16092 This is used to cancel the effect of the \"disable\" command.\n\
16093 May be abbreviated to simply \"enable\".\n"),
16094 &enablebreaklist, "enable breakpoints ", 1, &enablelist);
16095
16096 add_cmd ("once", no_class, enable_once_command, _("\
16097 Enable breakpoints for one hit. Give breakpoint numbers.\n\
16098 If a breakpoint is hit while enabled in this fashion, it becomes disabled."),
16099 &enablebreaklist);
16100
16101 add_cmd ("delete", no_class, enable_delete_command, _("\
16102 Enable breakpoints and delete when hit. Give breakpoint numbers.\n\
16103 If a breakpoint is hit while enabled in this fashion, it is deleted."),
16104 &enablebreaklist);
16105
16106 add_cmd ("count", no_class, enable_count_command, _("\
16107 Enable breakpoints for COUNT hits. Give count and then breakpoint numbers.\n\
16108 If a breakpoint is hit while enabled in this fashion,\n\
16109 the count is decremented; when it reaches zero, the breakpoint is disabled."),
16110 &enablebreaklist);
16111
16112 add_cmd ("delete", no_class, enable_delete_command, _("\
16113 Enable breakpoints and delete when hit. Give breakpoint numbers.\n\
16114 If a breakpoint is hit while enabled in this fashion, it is deleted."),
16115 &enablelist);
16116
16117 add_cmd ("once", no_class, enable_once_command, _("\
16118 Enable breakpoints for one hit. Give breakpoint numbers.\n\
16119 If a breakpoint is hit while enabled in this fashion, it becomes disabled."),
16120 &enablelist);
16121
16122 add_cmd ("count", no_class, enable_count_command, _("\
16123 Enable breakpoints for COUNT hits. Give count and then breakpoint numbers.\n\
16124 If a breakpoint is hit while enabled in this fashion,\n\
16125 the count is decremented; when it reaches zero, the breakpoint is disabled."),
16126 &enablelist);
16127
16128 add_prefix_cmd ("disable", class_breakpoint, disable_command, _("\
16129 Disable some breakpoints.\n\
16130 Arguments are breakpoint numbers with spaces in between.\n\
16131 To disable all breakpoints, give no argument.\n\
16132 A disabled breakpoint is not forgotten, but has no effect until re-enabled."),
16133 &disablelist, "disable ", 1, &cmdlist);
16134 add_com_alias ("dis", "disable", class_breakpoint, 1);
16135 add_com_alias ("disa", "disable", class_breakpoint, 1);
16136 if (xdb_commands)
16137 add_com ("sb", class_breakpoint, disable_command, _("\
16138 Disable some breakpoints.\n\
16139 Arguments are breakpoint numbers with spaces in between.\n\
16140 To disable all breakpoints, give no argument.\n\
16141 A disabled breakpoint is not forgotten, but has no effect until re-enabled."));
16142
16143 add_cmd ("breakpoints", class_alias, disable_command, _("\
16144 Disable some breakpoints.\n\
16145 Arguments are breakpoint numbers with spaces in between.\n\
16146 To disable all breakpoints, give no argument.\n\
16147 A disabled breakpoint is not forgotten, but has no effect until re-enabled.\n\
16148 This command may be abbreviated \"disable\"."),
16149 &disablelist);
16150
16151 add_prefix_cmd ("delete", class_breakpoint, delete_command, _("\
16152 Delete some breakpoints or auto-display expressions.\n\
16153 Arguments are breakpoint numbers with spaces in between.\n\
16154 To delete all breakpoints, give no argument.\n\
16155 \n\
16156 Also a prefix command for deletion of other GDB objects.\n\
16157 The \"unset\" command is also an alias for \"delete\"."),
16158 &deletelist, "delete ", 1, &cmdlist);
16159 add_com_alias ("d", "delete", class_breakpoint, 1);
16160 add_com_alias ("del", "delete", class_breakpoint, 1);
16161 if (xdb_commands)
16162 add_com ("db", class_breakpoint, delete_command, _("\
16163 Delete some breakpoints.\n\
16164 Arguments are breakpoint numbers with spaces in between.\n\
16165 To delete all breakpoints, give no argument.\n"));
16166
16167 add_cmd ("breakpoints", class_alias, delete_command, _("\
16168 Delete some breakpoints or auto-display expressions.\n\
16169 Arguments are breakpoint numbers with spaces in between.\n\
16170 To delete all breakpoints, give no argument.\n\
16171 This command may be abbreviated \"delete\"."),
16172 &deletelist);
16173
16174 add_com ("clear", class_breakpoint, clear_command, _("\
16175 Clear breakpoint at specified line or function.\n\
16176 Argument may be line number, function name, or \"*\" and an address.\n\
16177 If line number is specified, all breakpoints in that line are cleared.\n\
16178 If function is specified, breakpoints at beginning of function are cleared.\n\
16179 If an address is specified, breakpoints at that address are cleared.\n\
16180 \n\
16181 With no argument, clears all breakpoints in the line that the selected frame\n\
16182 is executing in.\n\
16183 \n\
16184 See also the \"delete\" command which clears breakpoints by number."));
16185 add_com_alias ("cl", "clear", class_breakpoint, 1);
16186
16187 c = add_com ("break", class_breakpoint, break_command, _("\
16188 Set breakpoint at specified line or function.\n"
16189 BREAK_ARGS_HELP ("break")));
16190 set_cmd_completer (c, location_completer);
16191
16192 add_com_alias ("b", "break", class_run, 1);
16193 add_com_alias ("br", "break", class_run, 1);
16194 add_com_alias ("bre", "break", class_run, 1);
16195 add_com_alias ("brea", "break", class_run, 1);
16196
16197 if (xdb_commands)
16198 add_com_alias ("ba", "break", class_breakpoint, 1);
16199
16200 if (dbx_commands)
16201 {
16202 add_abbrev_prefix_cmd ("stop", class_breakpoint, stop_command, _("\
16203 Break in function/address or break at a line in the current file."),
16204 &stoplist, "stop ", 1, &cmdlist);
16205 add_cmd ("in", class_breakpoint, stopin_command,
16206 _("Break in function or address."), &stoplist);
16207 add_cmd ("at", class_breakpoint, stopat_command,
16208 _("Break at a line in the current file."), &stoplist);
16209 add_com ("status", class_info, breakpoints_info, _("\
16210 Status of user-settable breakpoints, or breakpoint number NUMBER.\n\
16211 The \"Type\" column indicates one of:\n\
16212 \tbreakpoint - normal breakpoint\n\
16213 \twatchpoint - watchpoint\n\
16214 The \"Disp\" column contains one of \"keep\", \"del\", or \"dis\" to indicate\n\
16215 the disposition of the breakpoint after it gets hit. \"dis\" means that the\n\
16216 breakpoint will be disabled. The \"Address\" and \"What\" columns indicate the\n\
16217 address and file/line number respectively.\n\
16218 \n\
16219 Convenience variable \"$_\" and default examine address for \"x\"\n\
16220 are set to the address of the last breakpoint listed unless the command\n\
16221 is prefixed with \"server \".\n\n\
16222 Convenience variable \"$bpnum\" contains the number of the last\n\
16223 breakpoint set."));
16224 }
16225
16226 add_info ("breakpoints", breakpoints_info, _("\
16227 Status of specified breakpoints (all user-settable breakpoints if no argument).\n\
16228 The \"Type\" column indicates one of:\n\
16229 \tbreakpoint - normal breakpoint\n\
16230 \twatchpoint - watchpoint\n\
16231 The \"Disp\" column contains one of \"keep\", \"del\", or \"dis\" to indicate\n\
16232 the disposition of the breakpoint after it gets hit. \"dis\" means that the\n\
16233 breakpoint will be disabled. The \"Address\" and \"What\" columns indicate the\n\
16234 address and file/line number respectively.\n\
16235 \n\
16236 Convenience variable \"$_\" and default examine address for \"x\"\n\
16237 are set to the address of the last breakpoint listed unless the command\n\
16238 is prefixed with \"server \".\n\n\
16239 Convenience variable \"$bpnum\" contains the number of the last\n\
16240 breakpoint set."));
16241
16242 add_info_alias ("b", "breakpoints", 1);
16243
16244 if (xdb_commands)
16245 add_com ("lb", class_breakpoint, breakpoints_info, _("\
16246 Status of user-settable breakpoints, or breakpoint number NUMBER.\n\
16247 The \"Type\" column indicates one of:\n\
16248 \tbreakpoint - normal breakpoint\n\
16249 \twatchpoint - watchpoint\n\
16250 The \"Disp\" column contains one of \"keep\", \"del\", or \"dis\" to indicate\n\
16251 the disposition of the breakpoint after it gets hit. \"dis\" means that the\n\
16252 breakpoint will be disabled. The \"Address\" and \"What\" columns indicate the\n\
16253 address and file/line number respectively.\n\
16254 \n\
16255 Convenience variable \"$_\" and default examine address for \"x\"\n\
16256 are set to the address of the last breakpoint listed unless the command\n\
16257 is prefixed with \"server \".\n\n\
16258 Convenience variable \"$bpnum\" contains the number of the last\n\
16259 breakpoint set."));
16260
16261 add_cmd ("breakpoints", class_maintenance, maintenance_info_breakpoints, _("\
16262 Status of all breakpoints, or breakpoint number NUMBER.\n\
16263 The \"Type\" column indicates one of:\n\
16264 \tbreakpoint - normal breakpoint\n\
16265 \twatchpoint - watchpoint\n\
16266 \tlongjmp - internal breakpoint used to step through longjmp()\n\
16267 \tlongjmp resume - internal breakpoint at the target of longjmp()\n\
16268 \tuntil - internal breakpoint used by the \"until\" command\n\
16269 \tfinish - internal breakpoint used by the \"finish\" command\n\
16270 The \"Disp\" column contains one of \"keep\", \"del\", or \"dis\" to indicate\n\
16271 the disposition of the breakpoint after it gets hit. \"dis\" means that the\n\
16272 breakpoint will be disabled. The \"Address\" and \"What\" columns indicate the\n\
16273 address and file/line number respectively.\n\
16274 \n\
16275 Convenience variable \"$_\" and default examine address for \"x\"\n\
16276 are set to the address of the last breakpoint listed unless the command\n\
16277 is prefixed with \"server \".\n\n\
16278 Convenience variable \"$bpnum\" contains the number of the last\n\
16279 breakpoint set."),
16280 &maintenanceinfolist);
16281
16282 add_prefix_cmd ("catch", class_breakpoint, catch_command, _("\
16283 Set catchpoints to catch events."),
16284 &catch_cmdlist, "catch ",
16285 0/*allow-unknown*/, &cmdlist);
16286
16287 add_prefix_cmd ("tcatch", class_breakpoint, tcatch_command, _("\
16288 Set temporary catchpoints to catch events."),
16289 &tcatch_cmdlist, "tcatch ",
16290 0/*allow-unknown*/, &cmdlist);
16291
16292 /* Add catch and tcatch sub-commands. */
16293 add_catch_command ("catch", _("\
16294 Catch an exception, when caught."),
16295 catch_catch_command,
16296 NULL,
16297 CATCH_PERMANENT,
16298 CATCH_TEMPORARY);
16299 add_catch_command ("throw", _("\
16300 Catch an exception, when thrown."),
16301 catch_throw_command,
16302 NULL,
16303 CATCH_PERMANENT,
16304 CATCH_TEMPORARY);
16305 add_catch_command ("fork", _("Catch calls to fork."),
16306 catch_fork_command_1,
16307 NULL,
16308 (void *) (uintptr_t) catch_fork_permanent,
16309 (void *) (uintptr_t) catch_fork_temporary);
16310 add_catch_command ("vfork", _("Catch calls to vfork."),
16311 catch_fork_command_1,
16312 NULL,
16313 (void *) (uintptr_t) catch_vfork_permanent,
16314 (void *) (uintptr_t) catch_vfork_temporary);
16315 add_catch_command ("exec", _("Catch calls to exec."),
16316 catch_exec_command_1,
16317 NULL,
16318 CATCH_PERMANENT,
16319 CATCH_TEMPORARY);
16320 add_catch_command ("load", _("Catch loads of shared libraries.\n\
16321 Usage: catch load [REGEX]\n\
16322 If REGEX is given, only stop for libraries matching the regular expression."),
16323 catch_load_command_1,
16324 NULL,
16325 CATCH_PERMANENT,
16326 CATCH_TEMPORARY);
16327 add_catch_command ("unload", _("Catch unloads of shared libraries.\n\
16328 Usage: catch unload [REGEX]\n\
16329 If REGEX is given, only stop for libraries matching the regular expression."),
16330 catch_unload_command_1,
16331 NULL,
16332 CATCH_PERMANENT,
16333 CATCH_TEMPORARY);
16334 add_catch_command ("syscall", _("\
16335 Catch system calls by their names and/or numbers.\n\
16336 Arguments say which system calls to catch. If no arguments\n\
16337 are given, every system call will be caught.\n\
16338 Arguments, if given, should be one or more system call names\n\
16339 (if your system supports that), or system call numbers."),
16340 catch_syscall_command_1,
16341 catch_syscall_completer,
16342 CATCH_PERMANENT,
16343 CATCH_TEMPORARY);
16344
16345 c = add_com ("watch", class_breakpoint, watch_command, _("\
16346 Set a watchpoint for an expression.\n\
16347 Usage: watch [-l|-location] EXPRESSION\n\
16348 A watchpoint stops execution of your program whenever the value of\n\
16349 an expression changes.\n\
16350 If -l or -location is given, this evaluates EXPRESSION and watches\n\
16351 the memory to which it refers."));
16352 set_cmd_completer (c, expression_completer);
16353
16354 c = add_com ("rwatch", class_breakpoint, rwatch_command, _("\
16355 Set a read watchpoint for an expression.\n\
16356 Usage: rwatch [-l|-location] EXPRESSION\n\
16357 A watchpoint stops execution of your program whenever the value of\n\
16358 an expression is read.\n\
16359 If -l or -location is given, this evaluates EXPRESSION and watches\n\
16360 the memory to which it refers."));
16361 set_cmd_completer (c, expression_completer);
16362
16363 c = add_com ("awatch", class_breakpoint, awatch_command, _("\
16364 Set a watchpoint for an expression.\n\
16365 Usage: awatch [-l|-location] EXPRESSION\n\
16366 A watchpoint stops execution of your program whenever the value of\n\
16367 an expression is either read or written.\n\
16368 If -l or -location is given, this evaluates EXPRESSION and watches\n\
16369 the memory to which it refers."));
16370 set_cmd_completer (c, expression_completer);
16371
16372 add_info ("watchpoints", watchpoints_info, _("\
16373 Status of specified watchpoints (all watchpoints if no argument)."));
16374
16375 /* XXX: cagney/2005-02-23: This should be a boolean, and should
16376 respond to changes - contrary to the description. */
16377 add_setshow_zinteger_cmd ("can-use-hw-watchpoints", class_support,
16378 &can_use_hw_watchpoints, _("\
16379 Set debugger's willingness to use watchpoint hardware."), _("\
16380 Show debugger's willingness to use watchpoint hardware."), _("\
16381 If zero, gdb will not use hardware for new watchpoints, even if\n\
16382 such is available. (However, any hardware watchpoints that were\n\
16383 created before setting this to nonzero, will continue to use watchpoint\n\
16384 hardware.)"),
16385 NULL,
16386 show_can_use_hw_watchpoints,
16387 &setlist, &showlist);
16388
16389 can_use_hw_watchpoints = 1;
16390
16391 /* Tracepoint manipulation commands. */
16392
16393 c = add_com ("trace", class_breakpoint, trace_command, _("\
16394 Set a tracepoint at specified line or function.\n\
16395 \n"
16396 BREAK_ARGS_HELP ("trace") "\n\
16397 Do \"help tracepoints\" for info on other tracepoint commands."));
16398 set_cmd_completer (c, location_completer);
16399
16400 add_com_alias ("tp", "trace", class_alias, 0);
16401 add_com_alias ("tr", "trace", class_alias, 1);
16402 add_com_alias ("tra", "trace", class_alias, 1);
16403 add_com_alias ("trac", "trace", class_alias, 1);
16404
16405 c = add_com ("ftrace", class_breakpoint, ftrace_command, _("\
16406 Set a fast tracepoint at specified line or function.\n\
16407 \n"
16408 BREAK_ARGS_HELP ("ftrace") "\n\
16409 Do \"help tracepoints\" for info on other tracepoint commands."));
16410 set_cmd_completer (c, location_completer);
16411
16412 c = add_com ("strace", class_breakpoint, strace_command, _("\
16413 Set a static tracepoint at specified line, function or marker.\n\
16414 \n\
16415 strace [LOCATION] [if CONDITION]\n\
16416 LOCATION may be a line number, function name, \"*\" and an address,\n\
16417 or -m MARKER_ID.\n\
16418 If a line number is specified, probe the marker at start of code\n\
16419 for that line. If a function is specified, probe the marker at start\n\
16420 of code for that function. If an address is specified, probe the marker\n\
16421 at that exact address. If a marker id is specified, probe the marker\n\
16422 with that name. With no LOCATION, uses current execution address of\n\
16423 the selected stack frame.\n\
16424 Static tracepoints accept an extra collect action -- ``collect $_sdata''.\n\
16425 This collects arbitrary user data passed in the probe point call to the\n\
16426 tracing library. You can inspect it when analyzing the trace buffer,\n\
16427 by printing the $_sdata variable like any other convenience variable.\n\
16428 \n\
16429 CONDITION is a boolean expression.\n\
16430 \n\
16431 Multiple tracepoints at one place are permitted, and useful if their\n\
16432 conditions are different.\n\
16433 \n\
16434 Do \"help breakpoints\" for info on other commands dealing with breakpoints.\n\
16435 Do \"help tracepoints\" for info on other tracepoint commands."));
16436 set_cmd_completer (c, location_completer);
16437
16438 add_info ("tracepoints", tracepoints_info, _("\
16439 Status of specified tracepoints (all tracepoints if no argument).\n\
16440 Convenience variable \"$tpnum\" contains the number of the\n\
16441 last tracepoint set."));
16442
16443 add_info_alias ("tp", "tracepoints", 1);
16444
16445 add_cmd ("tracepoints", class_trace, delete_trace_command, _("\
16446 Delete specified tracepoints.\n\
16447 Arguments are tracepoint numbers, separated by spaces.\n\
16448 No argument means delete all tracepoints."),
16449 &deletelist);
16450 add_alias_cmd ("tr", "tracepoints", class_trace, 1, &deletelist);
16451
16452 c = add_cmd ("tracepoints", class_trace, disable_trace_command, _("\
16453 Disable specified tracepoints.\n\
16454 Arguments are tracepoint numbers, separated by spaces.\n\
16455 No argument means disable all tracepoints."),
16456 &disablelist);
16457 deprecate_cmd (c, "disable");
16458
16459 c = add_cmd ("tracepoints", class_trace, enable_trace_command, _("\
16460 Enable specified tracepoints.\n\
16461 Arguments are tracepoint numbers, separated by spaces.\n\
16462 No argument means enable all tracepoints."),
16463 &enablelist);
16464 deprecate_cmd (c, "enable");
16465
16466 add_com ("passcount", class_trace, trace_pass_command, _("\
16467 Set the passcount for a tracepoint.\n\
16468 The trace will end when the tracepoint has been passed 'count' times.\n\
16469 Usage: passcount COUNT TPNUM, where TPNUM may also be \"all\";\n\
16470 if TPNUM is omitted, passcount refers to the last tracepoint defined."));
16471
16472 add_prefix_cmd ("save", class_breakpoint, save_command,
16473 _("Save breakpoint definitions as a script."),
16474 &save_cmdlist, "save ",
16475 0/*allow-unknown*/, &cmdlist);
16476
16477 c = add_cmd ("breakpoints", class_breakpoint, save_breakpoints_command, _("\
16478 Save current breakpoint definitions as a script.\n\
16479 This includes all types of breakpoints (breakpoints, watchpoints,\n\
16480 catchpoints, tracepoints). Use the 'source' command in another debug\n\
16481 session to restore them."),
16482 &save_cmdlist);
16483 set_cmd_completer (c, filename_completer);
16484
16485 c = add_cmd ("tracepoints", class_trace, save_tracepoints_command, _("\
16486 Save current tracepoint definitions as a script.\n\
16487 Use the 'source' command in another debug session to restore them."),
16488 &save_cmdlist);
16489 set_cmd_completer (c, filename_completer);
16490
16491 c = add_com_alias ("save-tracepoints", "save tracepoints", class_trace, 0);
16492 deprecate_cmd (c, "save tracepoints");
16493
16494 add_prefix_cmd ("breakpoint", class_maintenance, set_breakpoint_cmd, _("\
16495 Breakpoint specific settings\n\
16496 Configure various breakpoint-specific variables such as\n\
16497 pending breakpoint behavior"),
16498 &breakpoint_set_cmdlist, "set breakpoint ",
16499 0/*allow-unknown*/, &setlist);
16500 add_prefix_cmd ("breakpoint", class_maintenance, show_breakpoint_cmd, _("\
16501 Breakpoint specific settings\n\
16502 Configure various breakpoint-specific variables such as\n\
16503 pending breakpoint behavior"),
16504 &breakpoint_show_cmdlist, "show breakpoint ",
16505 0/*allow-unknown*/, &showlist);
16506
16507 add_setshow_auto_boolean_cmd ("pending", no_class,
16508 &pending_break_support, _("\
16509 Set debugger's behavior regarding pending breakpoints."), _("\
16510 Show debugger's behavior regarding pending breakpoints."), _("\
16511 If on, an unrecognized breakpoint location will cause gdb to create a\n\
16512 pending breakpoint. If off, an unrecognized breakpoint location results in\n\
16513 an error. If auto, an unrecognized breakpoint location results in a\n\
16514 user-query to see if a pending breakpoint should be created."),
16515 NULL,
16516 show_pending_break_support,
16517 &breakpoint_set_cmdlist,
16518 &breakpoint_show_cmdlist);
16519
16520 pending_break_support = AUTO_BOOLEAN_AUTO;
16521
16522 add_setshow_boolean_cmd ("auto-hw", no_class,
16523 &automatic_hardware_breakpoints, _("\
16524 Set automatic usage of hardware breakpoints."), _("\
16525 Show automatic usage of hardware breakpoints."), _("\
16526 If set, the debugger will automatically use hardware breakpoints for\n\
16527 breakpoints set with \"break\" but falling in read-only memory. If not set,\n\
16528 a warning will be emitted for such breakpoints."),
16529 NULL,
16530 show_automatic_hardware_breakpoints,
16531 &breakpoint_set_cmdlist,
16532 &breakpoint_show_cmdlist);
16533
16534 add_setshow_auto_boolean_cmd ("always-inserted", class_support,
16535 &always_inserted_mode, _("\
16536 Set mode for inserting breakpoints."), _("\
16537 Show mode for inserting breakpoints."), _("\
16538 When this mode is off, breakpoints are inserted in inferior when it is\n\
16539 resumed, and removed when execution stops. When this mode is on,\n\
16540 breakpoints are inserted immediately and removed only when the user\n\
16541 deletes the breakpoint. When this mode is auto (which is the default),\n\
16542 the behaviour depends on the non-stop setting (see help set non-stop).\n\
16543 In this case, if gdb is controlling the inferior in non-stop mode, gdb\n\
16544 behaves as if always-inserted mode is on; if gdb is controlling the\n\
16545 inferior in all-stop mode, gdb behaves as if always-inserted mode is off."),
16546 NULL,
16547 &show_always_inserted_mode,
16548 &breakpoint_set_cmdlist,
16549 &breakpoint_show_cmdlist);
16550
16551 add_setshow_enum_cmd ("condition-evaluation", class_breakpoint,
16552 condition_evaluation_enums,
16553 &condition_evaluation_mode_1, _("\
16554 Set mode of breakpoint condition evaluation."), _("\
16555 Show mode of breakpoint condition evaluation."), _("\
16556 When this is set to \"host\", breakpoint conditions will be\n\
16557 evaluated on the host's side by GDB. When it is set to \"target\",\n\
16558 breakpoint conditions will be downloaded to the target (if the target\n\
16559 supports such feature) and conditions will be evaluated on the target's side.\n\
16560 If this is set to \"auto\" (default), this will be automatically set to\n\
16561 \"target\" if it supports condition evaluation, otherwise it will\n\
16562 be set to \"gdb\""),
16563 &set_condition_evaluation_mode,
16564 &show_condition_evaluation_mode,
16565 &breakpoint_set_cmdlist,
16566 &breakpoint_show_cmdlist);
16567
16568 add_com ("break-range", class_breakpoint, break_range_command, _("\
16569 Set a breakpoint for an address range.\n\
16570 break-range START-LOCATION, END-LOCATION\n\
16571 where START-LOCATION and END-LOCATION can be one of the following:\n\
16572 LINENUM, for that line in the current file,\n\
16573 FILE:LINENUM, for that line in that file,\n\
16574 +OFFSET, for that number of lines after the current line\n\
16575 or the start of the range\n\
16576 FUNCTION, for the first line in that function,\n\
16577 FILE:FUNCTION, to distinguish among like-named static functions.\n\
16578 *ADDRESS, for the instruction at that address.\n\
16579 \n\
16580 The breakpoint will stop execution of the inferior whenever it executes\n\
16581 an instruction at any address within the [START-LOCATION, END-LOCATION]\n\
16582 range (including START-LOCATION and END-LOCATION)."));
16583
16584 c = add_com ("dprintf", class_breakpoint, dprintf_command, _("\
16585 Set a dynamic printf at specified line or function.\n\
16586 dprintf location,format string,arg1,arg2,...\n\
16587 location may be a line number, function name, or \"*\" and an address.\n\
16588 If a line number is specified, break at start of code for that line.\n\
16589 If a function is specified, break at start of code for that function.\n\
16590 "));
16591 set_cmd_completer (c, location_completer);
16592
16593 add_setshow_enum_cmd ("dprintf-style", class_support,
16594 dprintf_style_enums, &dprintf_style, _("\
16595 Set the style of usage for dynamic printf."), _("\
16596 Show the style of usage for dynamic printf."), _("\
16597 This setting chooses how GDB will do a dynamic printf.\n\
16598 If the value is \"gdb\", then the printing is done by GDB to its own\n\
16599 console, as with the \"printf\" command.\n\
16600 If the value is \"call\", the print is done by calling a function in your\n\
16601 program; by default printf(), but you can choose a different function or\n\
16602 output stream by setting dprintf-function and dprintf-channel."),
16603 update_dprintf_commands, NULL,
16604 &setlist, &showlist);
16605
16606 dprintf_function = xstrdup ("printf");
16607 add_setshow_string_cmd ("dprintf-function", class_support,
16608 &dprintf_function, _("\
16609 Set the function to use for dynamic printf"), _("\
16610 Show the function to use for dynamic printf"), NULL,
16611 update_dprintf_commands, NULL,
16612 &setlist, &showlist);
16613
16614 dprintf_channel = xstrdup ("");
16615 add_setshow_string_cmd ("dprintf-channel", class_support,
16616 &dprintf_channel, _("\
16617 Set the channel to use for dynamic printf"), _("\
16618 Show the channel to use for dynamic printf"), NULL,
16619 update_dprintf_commands, NULL,
16620 &setlist, &showlist);
16621
16622 add_setshow_boolean_cmd ("disconnected-dprintf", no_class,
16623 &disconnected_dprintf, _("\
16624 Set whether dprintf continues after GDB disconnects."), _("\
16625 Show whether dprintf continues after GDB disconnects."), _("\
16626 Use this to let dprintf commands continue to hit and produce output\n\
16627 even if GDB disconnects or detaches from the target."),
16628 NULL,
16629 NULL,
16630 &setlist, &showlist);
16631
16632 add_com ("agent-printf", class_vars, agent_printf_command, _("\
16633 agent-printf \"printf format string\", arg1, arg2, arg3, ..., argn\n\
16634 (target agent only) This is useful for formatted output in user-defined commands."));
16635
16636 automatic_hardware_breakpoints = 1;
16637
16638 observer_attach_about_to_proceed (breakpoint_about_to_proceed);
16639 }
This page took 0.416961 seconds and 4 git commands to generate.