11b89bcf88202d7b7ac63e762ec230b9f395574b
[deliverable/binutils-gdb.git] / gdb / breakpoint.c
1 /* Everything about breakpoints, for GDB.
2
3 Copyright (C) 1986-2018 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20 #include "defs.h"
21 #include "arch-utils.h"
22 #include <ctype.h>
23 #include "hashtab.h"
24 #include "symtab.h"
25 #include "frame.h"
26 #include "breakpoint.h"
27 #include "tracepoint.h"
28 #include "gdbtypes.h"
29 #include "expression.h"
30 #include "gdbcore.h"
31 #include "gdbcmd.h"
32 #include "value.h"
33 #include "command.h"
34 #include "inferior.h"
35 #include "infrun.h"
36 #include "gdbthread.h"
37 #include "target.h"
38 #include "language.h"
39 #include "gdb-demangle.h"
40 #include "filenames.h"
41 #include "annotate.h"
42 #include "symfile.h"
43 #include "objfiles.h"
44 #include "source.h"
45 #include "linespec.h"
46 #include "completer.h"
47 #include "ui-out.h"
48 #include "cli/cli-script.h"
49 #include "block.h"
50 #include "solib.h"
51 #include "solist.h"
52 #include "observable.h"
53 #include "memattr.h"
54 #include "ada-lang.h"
55 #include "top.h"
56 #include "valprint.h"
57 #include "jit.h"
58 #include "parser-defs.h"
59 #include "gdb_regex.h"
60 #include "probe.h"
61 #include "cli/cli-utils.h"
62 #include "continuations.h"
63 #include "stack.h"
64 #include "skip.h"
65 #include "ax-gdb.h"
66 #include "dummy-frame.h"
67 #include "interps.h"
68 #include "format.h"
69 #include "thread-fsm.h"
70 #include "tid-parse.h"
71
72 /* readline include files */
73 #include "readline/readline.h"
74 #include "readline/history.h"
75
76 /* readline defines this. */
77 #undef savestring
78
79 #include "mi/mi-common.h"
80 #include "extension.h"
81 #include <algorithm>
82 #include "progspace-and-thread.h"
83 #include "common/array-view.h"
84 #include "common/gdb_optional.h"
85
86 /* Enums for exception-handling support. */
87 enum exception_event_kind
88 {
89 EX_EVENT_THROW,
90 EX_EVENT_RETHROW,
91 EX_EVENT_CATCH
92 };
93
94 /* Prototypes for local functions. */
95
96 static void map_breakpoint_numbers (const char *,
97 gdb::function_view<void (breakpoint *)>);
98
99 static void breakpoint_re_set_default (struct breakpoint *);
100
101 static void
102 create_sals_from_location_default (const struct event_location *location,
103 struct linespec_result *canonical,
104 enum bptype type_wanted);
105
106 static void create_breakpoints_sal_default (struct gdbarch *,
107 struct linespec_result *,
108 gdb::unique_xmalloc_ptr<char>,
109 gdb::unique_xmalloc_ptr<char>,
110 enum bptype,
111 enum bpdisp, int, int,
112 int,
113 const struct breakpoint_ops *,
114 int, int, int, unsigned);
115
116 static std::vector<symtab_and_line> decode_location_default
117 (struct breakpoint *b, const struct event_location *location,
118 struct program_space *search_pspace);
119
120 static int can_use_hardware_watchpoint
121 (const std::vector<value_ref_ptr> &vals);
122
123 static void mention (struct breakpoint *);
124
125 static struct breakpoint *set_raw_breakpoint_without_location (struct gdbarch *,
126 enum bptype,
127 const struct breakpoint_ops *);
128 static struct bp_location *add_location_to_breakpoint (struct breakpoint *,
129 const struct symtab_and_line *);
130
131 /* This function is used in gdbtk sources and thus can not be made
132 static. */
133 struct breakpoint *set_raw_breakpoint (struct gdbarch *gdbarch,
134 struct symtab_and_line,
135 enum bptype,
136 const struct breakpoint_ops *);
137
138 static struct breakpoint *
139 momentary_breakpoint_from_master (struct breakpoint *orig,
140 enum bptype type,
141 const struct breakpoint_ops *ops,
142 int loc_enabled);
143
144 static void breakpoint_adjustment_warning (CORE_ADDR, CORE_ADDR, int, int);
145
146 static CORE_ADDR adjust_breakpoint_address (struct gdbarch *gdbarch,
147 CORE_ADDR bpaddr,
148 enum bptype bptype);
149
150 static void describe_other_breakpoints (struct gdbarch *,
151 struct program_space *, CORE_ADDR,
152 struct obj_section *, int);
153
154 static int watchpoint_locations_match (struct bp_location *loc1,
155 struct bp_location *loc2);
156
157 static int breakpoint_location_address_match (struct bp_location *bl,
158 const struct address_space *aspace,
159 CORE_ADDR addr);
160
161 static int breakpoint_location_address_range_overlap (struct bp_location *,
162 const address_space *,
163 CORE_ADDR, int);
164
165 static int remove_breakpoint (struct bp_location *);
166 static int remove_breakpoint_1 (struct bp_location *, enum remove_bp_reason);
167
168 static enum print_stop_action print_bp_stop_message (bpstat bs);
169
170 static int hw_breakpoint_used_count (void);
171
172 static int hw_watchpoint_use_count (struct breakpoint *);
173
174 static int hw_watchpoint_used_count_others (struct breakpoint *except,
175 enum bptype type,
176 int *other_type_used);
177
178 static void enable_breakpoint_disp (struct breakpoint *, enum bpdisp,
179 int count);
180
181 static void free_bp_location (struct bp_location *loc);
182 static void incref_bp_location (struct bp_location *loc);
183 static void decref_bp_location (struct bp_location **loc);
184
185 static struct bp_location *allocate_bp_location (struct breakpoint *bpt);
186
187 /* update_global_location_list's modes of operation wrt to whether to
188 insert locations now. */
189 enum ugll_insert_mode
190 {
191 /* Don't insert any breakpoint locations into the inferior, only
192 remove already-inserted locations that no longer should be
193 inserted. Functions that delete a breakpoint or breakpoints
194 should specify this mode, so that deleting a breakpoint doesn't
195 have the side effect of inserting the locations of other
196 breakpoints that are marked not-inserted, but should_be_inserted
197 returns true on them.
198
199 This behavior is useful is situations close to tear-down -- e.g.,
200 after an exec, while the target still has execution, but
201 breakpoint shadows of the previous executable image should *NOT*
202 be restored to the new image; or before detaching, where the
203 target still has execution and wants to delete breakpoints from
204 GDB's lists, and all breakpoints had already been removed from
205 the inferior. */
206 UGLL_DONT_INSERT,
207
208 /* May insert breakpoints iff breakpoints_should_be_inserted_now
209 claims breakpoints should be inserted now. */
210 UGLL_MAY_INSERT,
211
212 /* Insert locations now, irrespective of
213 breakpoints_should_be_inserted_now. E.g., say all threads are
214 stopped right now, and the user did "continue". We need to
215 insert breakpoints _before_ resuming the target, but
216 UGLL_MAY_INSERT wouldn't insert them, because
217 breakpoints_should_be_inserted_now returns false at that point,
218 as no thread is running yet. */
219 UGLL_INSERT
220 };
221
222 static void update_global_location_list (enum ugll_insert_mode);
223
224 static void update_global_location_list_nothrow (enum ugll_insert_mode);
225
226 static int is_hardware_watchpoint (const struct breakpoint *bpt);
227
228 static void insert_breakpoint_locations (void);
229
230 static void trace_pass_command (const char *, int);
231
232 static void set_tracepoint_count (int num);
233
234 static int is_masked_watchpoint (const struct breakpoint *b);
235
236 static struct bp_location **get_first_locp_gte_addr (CORE_ADDR address);
237
238 /* Return 1 if B refers to a static tracepoint set by marker ("-m"), zero
239 otherwise. */
240
241 static int strace_marker_p (struct breakpoint *b);
242
243 /* The breakpoint_ops structure to be inherited by all breakpoint_ops
244 that are implemented on top of software or hardware breakpoints
245 (user breakpoints, internal and momentary breakpoints, etc.). */
246 static struct breakpoint_ops bkpt_base_breakpoint_ops;
247
248 /* Internal breakpoints class type. */
249 static struct breakpoint_ops internal_breakpoint_ops;
250
251 /* Momentary breakpoints class type. */
252 static struct breakpoint_ops momentary_breakpoint_ops;
253
254 /* The breakpoint_ops structure to be used in regular user created
255 breakpoints. */
256 struct breakpoint_ops bkpt_breakpoint_ops;
257
258 /* Breakpoints set on probes. */
259 static struct breakpoint_ops bkpt_probe_breakpoint_ops;
260
261 /* Dynamic printf class type. */
262 struct breakpoint_ops dprintf_breakpoint_ops;
263
264 /* The style in which to perform a dynamic printf. This is a user
265 option because different output options have different tradeoffs;
266 if GDB does the printing, there is better error handling if there
267 is a problem with any of the arguments, but using an inferior
268 function lets you have special-purpose printers and sending of
269 output to the same place as compiled-in print functions. */
270
271 static const char dprintf_style_gdb[] = "gdb";
272 static const char dprintf_style_call[] = "call";
273 static const char dprintf_style_agent[] = "agent";
274 static const char *const dprintf_style_enums[] = {
275 dprintf_style_gdb,
276 dprintf_style_call,
277 dprintf_style_agent,
278 NULL
279 };
280 static const char *dprintf_style = dprintf_style_gdb;
281
282 /* The function to use for dynamic printf if the preferred style is to
283 call into the inferior. The value is simply a string that is
284 copied into the command, so it can be anything that GDB can
285 evaluate to a callable address, not necessarily a function name. */
286
287 static char *dprintf_function;
288
289 /* The channel to use for dynamic printf if the preferred style is to
290 call into the inferior; if a nonempty string, it will be passed to
291 the call as the first argument, with the format string as the
292 second. As with the dprintf function, this can be anything that
293 GDB knows how to evaluate, so in addition to common choices like
294 "stderr", this could be an app-specific expression like
295 "mystreams[curlogger]". */
296
297 static char *dprintf_channel;
298
299 /* True if dprintf commands should continue to operate even if GDB
300 has disconnected. */
301 static int disconnected_dprintf = 1;
302
303 struct command_line *
304 breakpoint_commands (struct breakpoint *b)
305 {
306 return b->commands ? b->commands.get () : NULL;
307 }
308
309 /* Flag indicating that a command has proceeded the inferior past the
310 current breakpoint. */
311
312 static int breakpoint_proceeded;
313
314 const char *
315 bpdisp_text (enum bpdisp disp)
316 {
317 /* NOTE: the following values are a part of MI protocol and
318 represent values of 'disp' field returned when inferior stops at
319 a breakpoint. */
320 static const char * const bpdisps[] = {"del", "dstp", "dis", "keep"};
321
322 return bpdisps[(int) disp];
323 }
324
325 /* Prototypes for exported functions. */
326 /* If FALSE, gdb will not use hardware support for watchpoints, even
327 if such is available. */
328 static int can_use_hw_watchpoints;
329
330 static void
331 show_can_use_hw_watchpoints (struct ui_file *file, int from_tty,
332 struct cmd_list_element *c,
333 const char *value)
334 {
335 fprintf_filtered (file,
336 _("Debugger's willingness to use "
337 "watchpoint hardware is %s.\n"),
338 value);
339 }
340
341 /* If AUTO_BOOLEAN_FALSE, gdb will not attempt to create pending breakpoints.
342 If AUTO_BOOLEAN_TRUE, gdb will automatically create pending breakpoints
343 for unrecognized breakpoint locations.
344 If AUTO_BOOLEAN_AUTO, gdb will query when breakpoints are unrecognized. */
345 static enum auto_boolean pending_break_support;
346 static void
347 show_pending_break_support (struct ui_file *file, int from_tty,
348 struct cmd_list_element *c,
349 const char *value)
350 {
351 fprintf_filtered (file,
352 _("Debugger's behavior regarding "
353 "pending breakpoints is %s.\n"),
354 value);
355 }
356
357 /* If 1, gdb will automatically use hardware breakpoints for breakpoints
358 set with "break" but falling in read-only memory.
359 If 0, gdb will warn about such breakpoints, but won't automatically
360 use hardware breakpoints. */
361 static int automatic_hardware_breakpoints;
362 static void
363 show_automatic_hardware_breakpoints (struct ui_file *file, int from_tty,
364 struct cmd_list_element *c,
365 const char *value)
366 {
367 fprintf_filtered (file,
368 _("Automatic usage of hardware breakpoints is %s.\n"),
369 value);
370 }
371
372 /* If on, GDB keeps breakpoints inserted even if the inferior is
373 stopped, and immediately inserts any new breakpoints as soon as
374 they're created. If off (default), GDB keeps breakpoints off of
375 the target as long as possible. That is, it delays inserting
376 breakpoints until the next resume, and removes them again when the
377 target fully stops. This is a bit safer in case GDB crashes while
378 processing user input. */
379 static int always_inserted_mode = 0;
380
381 static void
382 show_always_inserted_mode (struct ui_file *file, int from_tty,
383 struct cmd_list_element *c, const char *value)
384 {
385 fprintf_filtered (file, _("Always inserted breakpoint mode is %s.\n"),
386 value);
387 }
388
389 /* See breakpoint.h. */
390
391 int
392 breakpoints_should_be_inserted_now (void)
393 {
394 if (gdbarch_has_global_breakpoints (target_gdbarch ()))
395 {
396 /* If breakpoints are global, they should be inserted even if no
397 thread under gdb's control is running, or even if there are
398 no threads under GDB's control yet. */
399 return 1;
400 }
401 else if (target_has_execution)
402 {
403 struct thread_info *tp;
404
405 if (always_inserted_mode)
406 {
407 /* The user wants breakpoints inserted even if all threads
408 are stopped. */
409 return 1;
410 }
411
412 if (threads_are_executing ())
413 return 1;
414
415 /* Don't remove breakpoints yet if, even though all threads are
416 stopped, we still have events to process. */
417 ALL_NON_EXITED_THREADS (tp)
418 if (tp->resumed
419 && tp->suspend.waitstatus_pending_p)
420 return 1;
421 }
422 return 0;
423 }
424
425 static const char condition_evaluation_both[] = "host or target";
426
427 /* Modes for breakpoint condition evaluation. */
428 static const char condition_evaluation_auto[] = "auto";
429 static const char condition_evaluation_host[] = "host";
430 static const char condition_evaluation_target[] = "target";
431 static const char *const condition_evaluation_enums[] = {
432 condition_evaluation_auto,
433 condition_evaluation_host,
434 condition_evaluation_target,
435 NULL
436 };
437
438 /* Global that holds the current mode for breakpoint condition evaluation. */
439 static const char *condition_evaluation_mode_1 = condition_evaluation_auto;
440
441 /* Global that we use to display information to the user (gets its value from
442 condition_evaluation_mode_1. */
443 static const char *condition_evaluation_mode = condition_evaluation_auto;
444
445 /* Translate a condition evaluation mode MODE into either "host"
446 or "target". This is used mostly to translate from "auto" to the
447 real setting that is being used. It returns the translated
448 evaluation mode. */
449
450 static const char *
451 translate_condition_evaluation_mode (const char *mode)
452 {
453 if (mode == condition_evaluation_auto)
454 {
455 if (target_supports_evaluation_of_breakpoint_conditions ())
456 return condition_evaluation_target;
457 else
458 return condition_evaluation_host;
459 }
460 else
461 return mode;
462 }
463
464 /* Discovers what condition_evaluation_auto translates to. */
465
466 static const char *
467 breakpoint_condition_evaluation_mode (void)
468 {
469 return translate_condition_evaluation_mode (condition_evaluation_mode);
470 }
471
472 /* Return true if GDB should evaluate breakpoint conditions or false
473 otherwise. */
474
475 static int
476 gdb_evaluates_breakpoint_condition_p (void)
477 {
478 const char *mode = breakpoint_condition_evaluation_mode ();
479
480 return (mode == condition_evaluation_host);
481 }
482
483 /* Are we executing breakpoint commands? */
484 static int executing_breakpoint_commands;
485
486 /* Are overlay event breakpoints enabled? */
487 static int overlay_events_enabled;
488
489 /* See description in breakpoint.h. */
490 int target_exact_watchpoints = 0;
491
492 /* Walk the following statement or block through all breakpoints.
493 ALL_BREAKPOINTS_SAFE does so even if the statement deletes the
494 current breakpoint. */
495
496 #define ALL_BREAKPOINTS(B) for (B = breakpoint_chain; B; B = B->next)
497
498 #define ALL_BREAKPOINTS_SAFE(B,TMP) \
499 for (B = breakpoint_chain; \
500 B ? (TMP=B->next, 1): 0; \
501 B = TMP)
502
503 /* Similar iterator for the low-level breakpoints. SAFE variant is
504 not provided so update_global_location_list must not be called
505 while executing the block of ALL_BP_LOCATIONS. */
506
507 #define ALL_BP_LOCATIONS(B,BP_TMP) \
508 for (BP_TMP = bp_locations; \
509 BP_TMP < bp_locations + bp_locations_count && (B = *BP_TMP);\
510 BP_TMP++)
511
512 /* Iterates through locations with address ADDRESS for the currently selected
513 program space. BP_LOCP_TMP points to each object. BP_LOCP_START points
514 to where the loop should start from.
515 If BP_LOCP_START is a NULL pointer, the macro automatically seeks the
516 appropriate location to start with. */
517
518 #define ALL_BP_LOCATIONS_AT_ADDR(BP_LOCP_TMP, BP_LOCP_START, ADDRESS) \
519 for (BP_LOCP_START = BP_LOCP_START == NULL ? get_first_locp_gte_addr (ADDRESS) : BP_LOCP_START, \
520 BP_LOCP_TMP = BP_LOCP_START; \
521 BP_LOCP_START \
522 && (BP_LOCP_TMP < bp_locations + bp_locations_count \
523 && (*BP_LOCP_TMP)->address == ADDRESS); \
524 BP_LOCP_TMP++)
525
526 /* Iterator for tracepoints only. */
527
528 #define ALL_TRACEPOINTS(B) \
529 for (B = breakpoint_chain; B; B = B->next) \
530 if (is_tracepoint (B))
531
532 /* Chains of all breakpoints defined. */
533
534 struct breakpoint *breakpoint_chain;
535
536 /* Array is sorted by bp_locations_compare - primarily by the ADDRESS. */
537
538 static struct bp_location **bp_locations;
539
540 /* Number of elements of BP_LOCATIONS. */
541
542 static unsigned bp_locations_count;
543
544 /* Maximum alignment offset between bp_target_info.PLACED_ADDRESS and
545 ADDRESS for the current elements of BP_LOCATIONS which get a valid
546 result from bp_location_has_shadow. You can use it for roughly
547 limiting the subrange of BP_LOCATIONS to scan for shadow bytes for
548 an address you need to read. */
549
550 static CORE_ADDR bp_locations_placed_address_before_address_max;
551
552 /* Maximum offset plus alignment between bp_target_info.PLACED_ADDRESS
553 + bp_target_info.SHADOW_LEN and ADDRESS for the current elements of
554 BP_LOCATIONS which get a valid result from bp_location_has_shadow.
555 You can use it for roughly limiting the subrange of BP_LOCATIONS to
556 scan for shadow bytes for an address you need to read. */
557
558 static CORE_ADDR bp_locations_shadow_len_after_address_max;
559
560 /* The locations that no longer correspond to any breakpoint, unlinked
561 from the bp_locations array, but for which a hit may still be
562 reported by a target. */
563 VEC(bp_location_p) *moribund_locations = NULL;
564
565 /* Number of last breakpoint made. */
566
567 static int breakpoint_count;
568
569 /* The value of `breakpoint_count' before the last command that
570 created breakpoints. If the last (break-like) command created more
571 than one breakpoint, then the difference between BREAKPOINT_COUNT
572 and PREV_BREAKPOINT_COUNT is more than one. */
573 static int prev_breakpoint_count;
574
575 /* Number of last tracepoint made. */
576
577 static int tracepoint_count;
578
579 static struct cmd_list_element *breakpoint_set_cmdlist;
580 static struct cmd_list_element *breakpoint_show_cmdlist;
581 struct cmd_list_element *save_cmdlist;
582
583 /* See declaration at breakpoint.h. */
584
585 struct breakpoint *
586 breakpoint_find_if (int (*func) (struct breakpoint *b, void *d),
587 void *user_data)
588 {
589 struct breakpoint *b = NULL;
590
591 ALL_BREAKPOINTS (b)
592 {
593 if (func (b, user_data) != 0)
594 break;
595 }
596
597 return b;
598 }
599
600 /* Return whether a breakpoint is an active enabled breakpoint. */
601 static int
602 breakpoint_enabled (struct breakpoint *b)
603 {
604 return (b->enable_state == bp_enabled);
605 }
606
607 /* Set breakpoint count to NUM. */
608
609 static void
610 set_breakpoint_count (int num)
611 {
612 prev_breakpoint_count = breakpoint_count;
613 breakpoint_count = num;
614 set_internalvar_integer (lookup_internalvar ("bpnum"), num);
615 }
616
617 /* Used by `start_rbreak_breakpoints' below, to record the current
618 breakpoint count before "rbreak" creates any breakpoint. */
619 static int rbreak_start_breakpoint_count;
620
621 /* Called at the start an "rbreak" command to record the first
622 breakpoint made. */
623
624 scoped_rbreak_breakpoints::scoped_rbreak_breakpoints ()
625 {
626 rbreak_start_breakpoint_count = breakpoint_count;
627 }
628
629 /* Called at the end of an "rbreak" command to record the last
630 breakpoint made. */
631
632 scoped_rbreak_breakpoints::~scoped_rbreak_breakpoints ()
633 {
634 prev_breakpoint_count = rbreak_start_breakpoint_count;
635 }
636
637 /* Used in run_command to zero the hit count when a new run starts. */
638
639 void
640 clear_breakpoint_hit_counts (void)
641 {
642 struct breakpoint *b;
643
644 ALL_BREAKPOINTS (b)
645 b->hit_count = 0;
646 }
647
648 \f
649 /* Return the breakpoint with the specified number, or NULL
650 if the number does not refer to an existing breakpoint. */
651
652 struct breakpoint *
653 get_breakpoint (int num)
654 {
655 struct breakpoint *b;
656
657 ALL_BREAKPOINTS (b)
658 if (b->number == num)
659 return b;
660
661 return NULL;
662 }
663
664 \f
665
666 /* Mark locations as "conditions have changed" in case the target supports
667 evaluating conditions on its side. */
668
669 static void
670 mark_breakpoint_modified (struct breakpoint *b)
671 {
672 struct bp_location *loc;
673
674 /* This is only meaningful if the target is
675 evaluating conditions and if the user has
676 opted for condition evaluation on the target's
677 side. */
678 if (gdb_evaluates_breakpoint_condition_p ()
679 || !target_supports_evaluation_of_breakpoint_conditions ())
680 return;
681
682 if (!is_breakpoint (b))
683 return;
684
685 for (loc = b->loc; loc; loc = loc->next)
686 loc->condition_changed = condition_modified;
687 }
688
689 /* Mark location as "conditions have changed" in case the target supports
690 evaluating conditions on its side. */
691
692 static void
693 mark_breakpoint_location_modified (struct bp_location *loc)
694 {
695 /* This is only meaningful if the target is
696 evaluating conditions and if the user has
697 opted for condition evaluation on the target's
698 side. */
699 if (gdb_evaluates_breakpoint_condition_p ()
700 || !target_supports_evaluation_of_breakpoint_conditions ())
701
702 return;
703
704 if (!is_breakpoint (loc->owner))
705 return;
706
707 loc->condition_changed = condition_modified;
708 }
709
710 /* Sets the condition-evaluation mode using the static global
711 condition_evaluation_mode. */
712
713 static void
714 set_condition_evaluation_mode (const char *args, int from_tty,
715 struct cmd_list_element *c)
716 {
717 const char *old_mode, *new_mode;
718
719 if ((condition_evaluation_mode_1 == condition_evaluation_target)
720 && !target_supports_evaluation_of_breakpoint_conditions ())
721 {
722 condition_evaluation_mode_1 = condition_evaluation_mode;
723 warning (_("Target does not support breakpoint condition evaluation.\n"
724 "Using host evaluation mode instead."));
725 return;
726 }
727
728 new_mode = translate_condition_evaluation_mode (condition_evaluation_mode_1);
729 old_mode = translate_condition_evaluation_mode (condition_evaluation_mode);
730
731 /* Flip the switch. Flip it even if OLD_MODE == NEW_MODE as one of the
732 settings was "auto". */
733 condition_evaluation_mode = condition_evaluation_mode_1;
734
735 /* Only update the mode if the user picked a different one. */
736 if (new_mode != old_mode)
737 {
738 struct bp_location *loc, **loc_tmp;
739 /* If the user switched to a different evaluation mode, we
740 need to synch the changes with the target as follows:
741
742 "host" -> "target": Send all (valid) conditions to the target.
743 "target" -> "host": Remove all the conditions from the target.
744 */
745
746 if (new_mode == condition_evaluation_target)
747 {
748 /* Mark everything modified and synch conditions with the
749 target. */
750 ALL_BP_LOCATIONS (loc, loc_tmp)
751 mark_breakpoint_location_modified (loc);
752 }
753 else
754 {
755 /* Manually mark non-duplicate locations to synch conditions
756 with the target. We do this to remove all the conditions the
757 target knows about. */
758 ALL_BP_LOCATIONS (loc, loc_tmp)
759 if (is_breakpoint (loc->owner) && loc->inserted)
760 loc->needs_update = 1;
761 }
762
763 /* Do the update. */
764 update_global_location_list (UGLL_MAY_INSERT);
765 }
766
767 return;
768 }
769
770 /* Shows the current mode of breakpoint condition evaluation. Explicitly shows
771 what "auto" is translating to. */
772
773 static void
774 show_condition_evaluation_mode (struct ui_file *file, int from_tty,
775 struct cmd_list_element *c, const char *value)
776 {
777 if (condition_evaluation_mode == condition_evaluation_auto)
778 fprintf_filtered (file,
779 _("Breakpoint condition evaluation "
780 "mode is %s (currently %s).\n"),
781 value,
782 breakpoint_condition_evaluation_mode ());
783 else
784 fprintf_filtered (file, _("Breakpoint condition evaluation mode is %s.\n"),
785 value);
786 }
787
788 /* A comparison function for bp_location AP and BP that is used by
789 bsearch. This comparison function only cares about addresses, unlike
790 the more general bp_locations_compare function. */
791
792 static int
793 bp_locations_compare_addrs (const void *ap, const void *bp)
794 {
795 const struct bp_location *a = *(const struct bp_location **) ap;
796 const struct bp_location *b = *(const struct bp_location **) bp;
797
798 if (a->address == b->address)
799 return 0;
800 else
801 return ((a->address > b->address) - (a->address < b->address));
802 }
803
804 /* Helper function to skip all bp_locations with addresses
805 less than ADDRESS. It returns the first bp_location that
806 is greater than or equal to ADDRESS. If none is found, just
807 return NULL. */
808
809 static struct bp_location **
810 get_first_locp_gte_addr (CORE_ADDR address)
811 {
812 struct bp_location dummy_loc;
813 struct bp_location *dummy_locp = &dummy_loc;
814 struct bp_location **locp_found = NULL;
815
816 /* Initialize the dummy location's address field. */
817 dummy_loc.address = address;
818
819 /* Find a close match to the first location at ADDRESS. */
820 locp_found = ((struct bp_location **)
821 bsearch (&dummy_locp, bp_locations, bp_locations_count,
822 sizeof (struct bp_location **),
823 bp_locations_compare_addrs));
824
825 /* Nothing was found, nothing left to do. */
826 if (locp_found == NULL)
827 return NULL;
828
829 /* We may have found a location that is at ADDRESS but is not the first in the
830 location's list. Go backwards (if possible) and locate the first one. */
831 while ((locp_found - 1) >= bp_locations
832 && (*(locp_found - 1))->address == address)
833 locp_found--;
834
835 return locp_found;
836 }
837
838 void
839 set_breakpoint_condition (struct breakpoint *b, const char *exp,
840 int from_tty)
841 {
842 xfree (b->cond_string);
843 b->cond_string = NULL;
844
845 if (is_watchpoint (b))
846 {
847 struct watchpoint *w = (struct watchpoint *) b;
848
849 w->cond_exp.reset ();
850 }
851 else
852 {
853 struct bp_location *loc;
854
855 for (loc = b->loc; loc; loc = loc->next)
856 {
857 loc->cond.reset ();
858
859 /* No need to free the condition agent expression
860 bytecode (if we have one). We will handle this
861 when we go through update_global_location_list. */
862 }
863 }
864
865 if (*exp == 0)
866 {
867 if (from_tty)
868 printf_filtered (_("Breakpoint %d now unconditional.\n"), b->number);
869 }
870 else
871 {
872 const char *arg = exp;
873
874 /* I don't know if it matters whether this is the string the user
875 typed in or the decompiled expression. */
876 b->cond_string = xstrdup (arg);
877 b->condition_not_parsed = 0;
878
879 if (is_watchpoint (b))
880 {
881 struct watchpoint *w = (struct watchpoint *) b;
882
883 innermost_block.reset ();
884 arg = exp;
885 w->cond_exp = parse_exp_1 (&arg, 0, 0, 0);
886 if (*arg)
887 error (_("Junk at end of expression"));
888 w->cond_exp_valid_block = innermost_block.block ();
889 }
890 else
891 {
892 struct bp_location *loc;
893
894 for (loc = b->loc; loc; loc = loc->next)
895 {
896 arg = exp;
897 loc->cond =
898 parse_exp_1 (&arg, loc->address,
899 block_for_pc (loc->address), 0);
900 if (*arg)
901 error (_("Junk at end of expression"));
902 }
903 }
904 }
905 mark_breakpoint_modified (b);
906
907 gdb::observers::breakpoint_modified.notify (b);
908 }
909
910 /* Completion for the "condition" command. */
911
912 static void
913 condition_completer (struct cmd_list_element *cmd,
914 completion_tracker &tracker,
915 const char *text, const char *word)
916 {
917 const char *space;
918
919 text = skip_spaces (text);
920 space = skip_to_space (text);
921 if (*space == '\0')
922 {
923 int len;
924 struct breakpoint *b;
925
926 if (text[0] == '$')
927 {
928 /* We don't support completion of history indices. */
929 if (!isdigit (text[1]))
930 complete_internalvar (tracker, &text[1]);
931 return;
932 }
933
934 /* We're completing the breakpoint number. */
935 len = strlen (text);
936
937 ALL_BREAKPOINTS (b)
938 {
939 char number[50];
940
941 xsnprintf (number, sizeof (number), "%d", b->number);
942
943 if (strncmp (number, text, len) == 0)
944 {
945 gdb::unique_xmalloc_ptr<char> copy (xstrdup (number));
946 tracker.add_completion (std::move (copy));
947 }
948 }
949
950 return;
951 }
952
953 /* We're completing the expression part. */
954 text = skip_spaces (space);
955 expression_completer (cmd, tracker, text, word);
956 }
957
958 /* condition N EXP -- set break condition of breakpoint N to EXP. */
959
960 static void
961 condition_command (const char *arg, int from_tty)
962 {
963 struct breakpoint *b;
964 const char *p;
965 int bnum;
966
967 if (arg == 0)
968 error_no_arg (_("breakpoint number"));
969
970 p = arg;
971 bnum = get_number (&p);
972 if (bnum == 0)
973 error (_("Bad breakpoint argument: '%s'"), arg);
974
975 ALL_BREAKPOINTS (b)
976 if (b->number == bnum)
977 {
978 /* Check if this breakpoint has a "stop" method implemented in an
979 extension language. This method and conditions entered into GDB
980 from the CLI are mutually exclusive. */
981 const struct extension_language_defn *extlang
982 = get_breakpoint_cond_ext_lang (b, EXT_LANG_NONE);
983
984 if (extlang != NULL)
985 {
986 error (_("Only one stop condition allowed. There is currently"
987 " a %s stop condition defined for this breakpoint."),
988 ext_lang_capitalized_name (extlang));
989 }
990 set_breakpoint_condition (b, p, from_tty);
991
992 if (is_breakpoint (b))
993 update_global_location_list (UGLL_MAY_INSERT);
994
995 return;
996 }
997
998 error (_("No breakpoint number %d."), bnum);
999 }
1000
1001 /* Check that COMMAND do not contain commands that are suitable
1002 only for tracepoints and not suitable for ordinary breakpoints.
1003 Throw if any such commands is found. */
1004
1005 static void
1006 check_no_tracepoint_commands (struct command_line *commands)
1007 {
1008 struct command_line *c;
1009
1010 for (c = commands; c; c = c->next)
1011 {
1012 int i;
1013
1014 if (c->control_type == while_stepping_control)
1015 error (_("The 'while-stepping' command can "
1016 "only be used for tracepoints"));
1017
1018 for (i = 0; i < c->body_count; ++i)
1019 check_no_tracepoint_commands ((c->body_list)[i]);
1020
1021 /* Not that command parsing removes leading whitespace and comment
1022 lines and also empty lines. So, we only need to check for
1023 command directly. */
1024 if (strstr (c->line, "collect ") == c->line)
1025 error (_("The 'collect' command can only be used for tracepoints"));
1026
1027 if (strstr (c->line, "teval ") == c->line)
1028 error (_("The 'teval' command can only be used for tracepoints"));
1029 }
1030 }
1031
1032 struct longjmp_breakpoint : public breakpoint
1033 {
1034 ~longjmp_breakpoint () override;
1035 };
1036
1037 /* Encapsulate tests for different types of tracepoints. */
1038
1039 static bool
1040 is_tracepoint_type (bptype type)
1041 {
1042 return (type == bp_tracepoint
1043 || type == bp_fast_tracepoint
1044 || type == bp_static_tracepoint);
1045 }
1046
1047 static bool
1048 is_longjmp_type (bptype type)
1049 {
1050 return type == bp_longjmp || type == bp_exception;
1051 }
1052
1053 int
1054 is_tracepoint (const struct breakpoint *b)
1055 {
1056 return is_tracepoint_type (b->type);
1057 }
1058
1059 /* Factory function to create an appropriate instance of breakpoint given
1060 TYPE. */
1061
1062 static std::unique_ptr<breakpoint>
1063 new_breakpoint_from_type (bptype type)
1064 {
1065 breakpoint *b;
1066
1067 if (is_tracepoint_type (type))
1068 b = new tracepoint ();
1069 else if (is_longjmp_type (type))
1070 b = new longjmp_breakpoint ();
1071 else
1072 b = new breakpoint ();
1073
1074 return std::unique_ptr<breakpoint> (b);
1075 }
1076
1077 /* A helper function that validates that COMMANDS are valid for a
1078 breakpoint. This function will throw an exception if a problem is
1079 found. */
1080
1081 static void
1082 validate_commands_for_breakpoint (struct breakpoint *b,
1083 struct command_line *commands)
1084 {
1085 if (is_tracepoint (b))
1086 {
1087 struct tracepoint *t = (struct tracepoint *) b;
1088 struct command_line *c;
1089 struct command_line *while_stepping = 0;
1090
1091 /* Reset the while-stepping step count. The previous commands
1092 might have included a while-stepping action, while the new
1093 ones might not. */
1094 t->step_count = 0;
1095
1096 /* We need to verify that each top-level element of commands is
1097 valid for tracepoints, that there's at most one
1098 while-stepping element, and that the while-stepping's body
1099 has valid tracing commands excluding nested while-stepping.
1100 We also need to validate the tracepoint action line in the
1101 context of the tracepoint --- validate_actionline actually
1102 has side effects, like setting the tracepoint's
1103 while-stepping STEP_COUNT, in addition to checking if the
1104 collect/teval actions parse and make sense in the
1105 tracepoint's context. */
1106 for (c = commands; c; c = c->next)
1107 {
1108 if (c->control_type == while_stepping_control)
1109 {
1110 if (b->type == bp_fast_tracepoint)
1111 error (_("The 'while-stepping' command "
1112 "cannot be used for fast tracepoint"));
1113 else if (b->type == bp_static_tracepoint)
1114 error (_("The 'while-stepping' command "
1115 "cannot be used for static tracepoint"));
1116
1117 if (while_stepping)
1118 error (_("The 'while-stepping' command "
1119 "can be used only once"));
1120 else
1121 while_stepping = c;
1122 }
1123
1124 validate_actionline (c->line, b);
1125 }
1126 if (while_stepping)
1127 {
1128 struct command_line *c2;
1129
1130 gdb_assert (while_stepping->body_count == 1);
1131 c2 = while_stepping->body_list[0];
1132 for (; c2; c2 = c2->next)
1133 {
1134 if (c2->control_type == while_stepping_control)
1135 error (_("The 'while-stepping' command cannot be nested"));
1136 }
1137 }
1138 }
1139 else
1140 {
1141 check_no_tracepoint_commands (commands);
1142 }
1143 }
1144
1145 /* Return a vector of all the static tracepoints set at ADDR. The
1146 caller is responsible for releasing the vector. */
1147
1148 VEC(breakpoint_p) *
1149 static_tracepoints_here (CORE_ADDR addr)
1150 {
1151 struct breakpoint *b;
1152 VEC(breakpoint_p) *found = 0;
1153 struct bp_location *loc;
1154
1155 ALL_BREAKPOINTS (b)
1156 if (b->type == bp_static_tracepoint)
1157 {
1158 for (loc = b->loc; loc; loc = loc->next)
1159 if (loc->address == addr)
1160 VEC_safe_push(breakpoint_p, found, b);
1161 }
1162
1163 return found;
1164 }
1165
1166 /* Set the command list of B to COMMANDS. If breakpoint is tracepoint,
1167 validate that only allowed commands are included. */
1168
1169 void
1170 breakpoint_set_commands (struct breakpoint *b,
1171 command_line_up &&commands)
1172 {
1173 validate_commands_for_breakpoint (b, commands.get ());
1174
1175 b->commands = std::move (commands);
1176 gdb::observers::breakpoint_modified.notify (b);
1177 }
1178
1179 /* Set the internal `silent' flag on the breakpoint. Note that this
1180 is not the same as the "silent" that may appear in the breakpoint's
1181 commands. */
1182
1183 void
1184 breakpoint_set_silent (struct breakpoint *b, int silent)
1185 {
1186 int old_silent = b->silent;
1187
1188 b->silent = silent;
1189 if (old_silent != silent)
1190 gdb::observers::breakpoint_modified.notify (b);
1191 }
1192
1193 /* Set the thread for this breakpoint. If THREAD is -1, make the
1194 breakpoint work for any thread. */
1195
1196 void
1197 breakpoint_set_thread (struct breakpoint *b, int thread)
1198 {
1199 int old_thread = b->thread;
1200
1201 b->thread = thread;
1202 if (old_thread != thread)
1203 gdb::observers::breakpoint_modified.notify (b);
1204 }
1205
1206 /* Set the task for this breakpoint. If TASK is 0, make the
1207 breakpoint work for any task. */
1208
1209 void
1210 breakpoint_set_task (struct breakpoint *b, int task)
1211 {
1212 int old_task = b->task;
1213
1214 b->task = task;
1215 if (old_task != task)
1216 gdb::observers::breakpoint_modified.notify (b);
1217 }
1218
1219 void
1220 check_tracepoint_command (char *line, void *closure)
1221 {
1222 struct breakpoint *b = (struct breakpoint *) closure;
1223
1224 validate_actionline (line, b);
1225 }
1226
1227 static void
1228 commands_command_1 (const char *arg, int from_tty,
1229 struct command_line *control)
1230 {
1231 counted_command_line cmd;
1232
1233 std::string new_arg;
1234
1235 if (arg == NULL || !*arg)
1236 {
1237 if (breakpoint_count - prev_breakpoint_count > 1)
1238 new_arg = string_printf ("%d-%d", prev_breakpoint_count + 1,
1239 breakpoint_count);
1240 else if (breakpoint_count > 0)
1241 new_arg = string_printf ("%d", breakpoint_count);
1242 arg = new_arg.c_str ();
1243 }
1244
1245 map_breakpoint_numbers
1246 (arg, [&] (breakpoint *b)
1247 {
1248 if (cmd == NULL)
1249 {
1250 if (control != NULL)
1251 cmd = copy_command_lines (control->body_list[0]);
1252 else
1253 {
1254 std::string str
1255 = string_printf (_("Type commands for breakpoint(s) "
1256 "%s, one per line."),
1257 arg);
1258
1259 cmd = read_command_lines (&str[0],
1260 from_tty, 1,
1261 (is_tracepoint (b)
1262 ? check_tracepoint_command : 0),
1263 b);
1264 }
1265 }
1266
1267 /* If a breakpoint was on the list more than once, we don't need to
1268 do anything. */
1269 if (b->commands != cmd)
1270 {
1271 validate_commands_for_breakpoint (b, cmd.get ());
1272 b->commands = cmd;
1273 gdb::observers::breakpoint_modified.notify (b);
1274 }
1275 });
1276 }
1277
1278 static void
1279 commands_command (const char *arg, int from_tty)
1280 {
1281 commands_command_1 (arg, from_tty, NULL);
1282 }
1283
1284 /* Like commands_command, but instead of reading the commands from
1285 input stream, takes them from an already parsed command structure.
1286
1287 This is used by cli-script.c to DTRT with breakpoint commands
1288 that are part of if and while bodies. */
1289 enum command_control_type
1290 commands_from_control_command (const char *arg, struct command_line *cmd)
1291 {
1292 commands_command_1 (arg, 0, cmd);
1293 return simple_control;
1294 }
1295
1296 /* Return non-zero if BL->TARGET_INFO contains valid information. */
1297
1298 static int
1299 bp_location_has_shadow (struct bp_location *bl)
1300 {
1301 if (bl->loc_type != bp_loc_software_breakpoint)
1302 return 0;
1303 if (!bl->inserted)
1304 return 0;
1305 if (bl->target_info.shadow_len == 0)
1306 /* BL isn't valid, or doesn't shadow memory. */
1307 return 0;
1308 return 1;
1309 }
1310
1311 /* Update BUF, which is LEN bytes read from the target address
1312 MEMADDR, by replacing a memory breakpoint with its shadowed
1313 contents.
1314
1315 If READBUF is not NULL, this buffer must not overlap with the of
1316 the breakpoint location's shadow_contents buffer. Otherwise, a
1317 failed assertion internal error will be raised. */
1318
1319 static void
1320 one_breakpoint_xfer_memory (gdb_byte *readbuf, gdb_byte *writebuf,
1321 const gdb_byte *writebuf_org,
1322 ULONGEST memaddr, LONGEST len,
1323 struct bp_target_info *target_info,
1324 struct gdbarch *gdbarch)
1325 {
1326 /* Now do full processing of the found relevant range of elements. */
1327 CORE_ADDR bp_addr = 0;
1328 int bp_size = 0;
1329 int bptoffset = 0;
1330
1331 if (!breakpoint_address_match (target_info->placed_address_space, 0,
1332 current_program_space->aspace, 0))
1333 {
1334 /* The breakpoint is inserted in a different address space. */
1335 return;
1336 }
1337
1338 /* Addresses and length of the part of the breakpoint that
1339 we need to copy. */
1340 bp_addr = target_info->placed_address;
1341 bp_size = target_info->shadow_len;
1342
1343 if (bp_addr + bp_size <= memaddr)
1344 {
1345 /* The breakpoint is entirely before the chunk of memory we are
1346 reading. */
1347 return;
1348 }
1349
1350 if (bp_addr >= memaddr + len)
1351 {
1352 /* The breakpoint is entirely after the chunk of memory we are
1353 reading. */
1354 return;
1355 }
1356
1357 /* Offset within shadow_contents. */
1358 if (bp_addr < memaddr)
1359 {
1360 /* Only copy the second part of the breakpoint. */
1361 bp_size -= memaddr - bp_addr;
1362 bptoffset = memaddr - bp_addr;
1363 bp_addr = memaddr;
1364 }
1365
1366 if (bp_addr + bp_size > memaddr + len)
1367 {
1368 /* Only copy the first part of the breakpoint. */
1369 bp_size -= (bp_addr + bp_size) - (memaddr + len);
1370 }
1371
1372 if (readbuf != NULL)
1373 {
1374 /* Verify that the readbuf buffer does not overlap with the
1375 shadow_contents buffer. */
1376 gdb_assert (target_info->shadow_contents >= readbuf + len
1377 || readbuf >= (target_info->shadow_contents
1378 + target_info->shadow_len));
1379
1380 /* Update the read buffer with this inserted breakpoint's
1381 shadow. */
1382 memcpy (readbuf + bp_addr - memaddr,
1383 target_info->shadow_contents + bptoffset, bp_size);
1384 }
1385 else
1386 {
1387 const unsigned char *bp;
1388 CORE_ADDR addr = target_info->reqstd_address;
1389 int placed_size;
1390
1391 /* Update the shadow with what we want to write to memory. */
1392 memcpy (target_info->shadow_contents + bptoffset,
1393 writebuf_org + bp_addr - memaddr, bp_size);
1394
1395 /* Determine appropriate breakpoint contents and size for this
1396 address. */
1397 bp = gdbarch_breakpoint_from_pc (gdbarch, &addr, &placed_size);
1398
1399 /* Update the final write buffer with this inserted
1400 breakpoint's INSN. */
1401 memcpy (writebuf + bp_addr - memaddr, bp + bptoffset, bp_size);
1402 }
1403 }
1404
1405 /* Update BUF, which is LEN bytes read from the target address MEMADDR,
1406 by replacing any memory breakpoints with their shadowed contents.
1407
1408 If READBUF is not NULL, this buffer must not overlap with any of
1409 the breakpoint location's shadow_contents buffers. Otherwise,
1410 a failed assertion internal error will be raised.
1411
1412 The range of shadowed area by each bp_location is:
1413 bl->address - bp_locations_placed_address_before_address_max
1414 up to bl->address + bp_locations_shadow_len_after_address_max
1415 The range we were requested to resolve shadows for is:
1416 memaddr ... memaddr + len
1417 Thus the safe cutoff boundaries for performance optimization are
1418 memaddr + len <= (bl->address
1419 - bp_locations_placed_address_before_address_max)
1420 and:
1421 bl->address + bp_locations_shadow_len_after_address_max <= memaddr */
1422
1423 void
1424 breakpoint_xfer_memory (gdb_byte *readbuf, gdb_byte *writebuf,
1425 const gdb_byte *writebuf_org,
1426 ULONGEST memaddr, LONGEST len)
1427 {
1428 /* Left boundary, right boundary and median element of our binary
1429 search. */
1430 unsigned bc_l, bc_r, bc;
1431
1432 /* Find BC_L which is a leftmost element which may affect BUF
1433 content. It is safe to report lower value but a failure to
1434 report higher one. */
1435
1436 bc_l = 0;
1437 bc_r = bp_locations_count;
1438 while (bc_l + 1 < bc_r)
1439 {
1440 struct bp_location *bl;
1441
1442 bc = (bc_l + bc_r) / 2;
1443 bl = bp_locations[bc];
1444
1445 /* Check first BL->ADDRESS will not overflow due to the added
1446 constant. Then advance the left boundary only if we are sure
1447 the BC element can in no way affect the BUF content (MEMADDR
1448 to MEMADDR + LEN range).
1449
1450 Use the BP_LOCATIONS_SHADOW_LEN_AFTER_ADDRESS_MAX safety
1451 offset so that we cannot miss a breakpoint with its shadow
1452 range tail still reaching MEMADDR. */
1453
1454 if ((bl->address + bp_locations_shadow_len_after_address_max
1455 >= bl->address)
1456 && (bl->address + bp_locations_shadow_len_after_address_max
1457 <= memaddr))
1458 bc_l = bc;
1459 else
1460 bc_r = bc;
1461 }
1462
1463 /* Due to the binary search above, we need to make sure we pick the
1464 first location that's at BC_L's address. E.g., if there are
1465 multiple locations at the same address, BC_L may end up pointing
1466 at a duplicate location, and miss the "master"/"inserted"
1467 location. Say, given locations L1, L2 and L3 at addresses A and
1468 B:
1469
1470 L1@A, L2@A, L3@B, ...
1471
1472 BC_L could end up pointing at location L2, while the "master"
1473 location could be L1. Since the `loc->inserted' flag is only set
1474 on "master" locations, we'd forget to restore the shadow of L1
1475 and L2. */
1476 while (bc_l > 0
1477 && bp_locations[bc_l]->address == bp_locations[bc_l - 1]->address)
1478 bc_l--;
1479
1480 /* Now do full processing of the found relevant range of elements. */
1481
1482 for (bc = bc_l; bc < bp_locations_count; bc++)
1483 {
1484 struct bp_location *bl = bp_locations[bc];
1485
1486 /* bp_location array has BL->OWNER always non-NULL. */
1487 if (bl->owner->type == bp_none)
1488 warning (_("reading through apparently deleted breakpoint #%d?"),
1489 bl->owner->number);
1490
1491 /* Performance optimization: any further element can no longer affect BUF
1492 content. */
1493
1494 if (bl->address >= bp_locations_placed_address_before_address_max
1495 && memaddr + len <= (bl->address
1496 - bp_locations_placed_address_before_address_max))
1497 break;
1498
1499 if (!bp_location_has_shadow (bl))
1500 continue;
1501
1502 one_breakpoint_xfer_memory (readbuf, writebuf, writebuf_org,
1503 memaddr, len, &bl->target_info, bl->gdbarch);
1504 }
1505 }
1506
1507 \f
1508
1509 /* Return true if BPT is either a software breakpoint or a hardware
1510 breakpoint. */
1511
1512 int
1513 is_breakpoint (const struct breakpoint *bpt)
1514 {
1515 return (bpt->type == bp_breakpoint
1516 || bpt->type == bp_hardware_breakpoint
1517 || bpt->type == bp_dprintf);
1518 }
1519
1520 /* Return true if BPT is of any hardware watchpoint kind. */
1521
1522 static int
1523 is_hardware_watchpoint (const struct breakpoint *bpt)
1524 {
1525 return (bpt->type == bp_hardware_watchpoint
1526 || bpt->type == bp_read_watchpoint
1527 || bpt->type == bp_access_watchpoint);
1528 }
1529
1530 /* Return true if BPT is of any watchpoint kind, hardware or
1531 software. */
1532
1533 int
1534 is_watchpoint (const struct breakpoint *bpt)
1535 {
1536 return (is_hardware_watchpoint (bpt)
1537 || bpt->type == bp_watchpoint);
1538 }
1539
1540 /* Returns true if the current thread and its running state are safe
1541 to evaluate or update watchpoint B. Watchpoints on local
1542 expressions need to be evaluated in the context of the thread that
1543 was current when the watchpoint was created, and, that thread needs
1544 to be stopped to be able to select the correct frame context.
1545 Watchpoints on global expressions can be evaluated on any thread,
1546 and in any state. It is presently left to the target allowing
1547 memory accesses when threads are running. */
1548
1549 static int
1550 watchpoint_in_thread_scope (struct watchpoint *b)
1551 {
1552 return (b->pspace == current_program_space
1553 && (ptid_equal (b->watchpoint_thread, null_ptid)
1554 || (ptid_equal (inferior_ptid, b->watchpoint_thread)
1555 && !is_executing (inferior_ptid))));
1556 }
1557
1558 /* Set watchpoint B to disp_del_at_next_stop, even including its possible
1559 associated bp_watchpoint_scope breakpoint. */
1560
1561 static void
1562 watchpoint_del_at_next_stop (struct watchpoint *w)
1563 {
1564 if (w->related_breakpoint != w)
1565 {
1566 gdb_assert (w->related_breakpoint->type == bp_watchpoint_scope);
1567 gdb_assert (w->related_breakpoint->related_breakpoint == w);
1568 w->related_breakpoint->disposition = disp_del_at_next_stop;
1569 w->related_breakpoint->related_breakpoint = w->related_breakpoint;
1570 w->related_breakpoint = w;
1571 }
1572 w->disposition = disp_del_at_next_stop;
1573 }
1574
1575 /* Extract a bitfield value from value VAL using the bit parameters contained in
1576 watchpoint W. */
1577
1578 static struct value *
1579 extract_bitfield_from_watchpoint_value (struct watchpoint *w, struct value *val)
1580 {
1581 struct value *bit_val;
1582
1583 if (val == NULL)
1584 return NULL;
1585
1586 bit_val = allocate_value (value_type (val));
1587
1588 unpack_value_bitfield (bit_val,
1589 w->val_bitpos,
1590 w->val_bitsize,
1591 value_contents_for_printing (val),
1592 value_offset (val),
1593 val);
1594
1595 return bit_val;
1596 }
1597
1598 /* Allocate a dummy location and add it to B, which must be a software
1599 watchpoint. This is required because even if a software watchpoint
1600 is not watching any memory, bpstat_stop_status requires a location
1601 to be able to report stops. */
1602
1603 static void
1604 software_watchpoint_add_no_memory_location (struct breakpoint *b,
1605 struct program_space *pspace)
1606 {
1607 gdb_assert (b->type == bp_watchpoint && b->loc == NULL);
1608
1609 b->loc = allocate_bp_location (b);
1610 b->loc->pspace = pspace;
1611 b->loc->address = -1;
1612 b->loc->length = -1;
1613 }
1614
1615 /* Returns true if B is a software watchpoint that is not watching any
1616 memory (e.g., "watch $pc"). */
1617
1618 static int
1619 is_no_memory_software_watchpoint (struct breakpoint *b)
1620 {
1621 return (b->type == bp_watchpoint
1622 && b->loc != NULL
1623 && b->loc->next == NULL
1624 && b->loc->address == -1
1625 && b->loc->length == -1);
1626 }
1627
1628 /* Assuming that B is a watchpoint:
1629 - Reparse watchpoint expression, if REPARSE is non-zero
1630 - Evaluate expression and store the result in B->val
1631 - Evaluate the condition if there is one, and store the result
1632 in b->loc->cond.
1633 - Update the list of values that must be watched in B->loc.
1634
1635 If the watchpoint disposition is disp_del_at_next_stop, then do
1636 nothing. If this is local watchpoint that is out of scope, delete
1637 it.
1638
1639 Even with `set breakpoint always-inserted on' the watchpoints are
1640 removed + inserted on each stop here. Normal breakpoints must
1641 never be removed because they might be missed by a running thread
1642 when debugging in non-stop mode. On the other hand, hardware
1643 watchpoints (is_hardware_watchpoint; processed here) are specific
1644 to each LWP since they are stored in each LWP's hardware debug
1645 registers. Therefore, such LWP must be stopped first in order to
1646 be able to modify its hardware watchpoints.
1647
1648 Hardware watchpoints must be reset exactly once after being
1649 presented to the user. It cannot be done sooner, because it would
1650 reset the data used to present the watchpoint hit to the user. And
1651 it must not be done later because it could display the same single
1652 watchpoint hit during multiple GDB stops. Note that the latter is
1653 relevant only to the hardware watchpoint types bp_read_watchpoint
1654 and bp_access_watchpoint. False hit by bp_hardware_watchpoint is
1655 not user-visible - its hit is suppressed if the memory content has
1656 not changed.
1657
1658 The following constraints influence the location where we can reset
1659 hardware watchpoints:
1660
1661 * target_stopped_by_watchpoint and target_stopped_data_address are
1662 called several times when GDB stops.
1663
1664 [linux]
1665 * Multiple hardware watchpoints can be hit at the same time,
1666 causing GDB to stop. GDB only presents one hardware watchpoint
1667 hit at a time as the reason for stopping, and all the other hits
1668 are presented later, one after the other, each time the user
1669 requests the execution to be resumed. Execution is not resumed
1670 for the threads still having pending hit event stored in
1671 LWP_INFO->STATUS. While the watchpoint is already removed from
1672 the inferior on the first stop the thread hit event is kept being
1673 reported from its cached value by linux_nat_stopped_data_address
1674 until the real thread resume happens after the watchpoint gets
1675 presented and thus its LWP_INFO->STATUS gets reset.
1676
1677 Therefore the hardware watchpoint hit can get safely reset on the
1678 watchpoint removal from inferior. */
1679
1680 static void
1681 update_watchpoint (struct watchpoint *b, int reparse)
1682 {
1683 int within_current_scope;
1684 struct frame_id saved_frame_id;
1685 int frame_saved;
1686
1687 /* If this is a local watchpoint, we only want to check if the
1688 watchpoint frame is in scope if the current thread is the thread
1689 that was used to create the watchpoint. */
1690 if (!watchpoint_in_thread_scope (b))
1691 return;
1692
1693 if (b->disposition == disp_del_at_next_stop)
1694 return;
1695
1696 frame_saved = 0;
1697
1698 /* Determine if the watchpoint is within scope. */
1699 if (b->exp_valid_block == NULL)
1700 within_current_scope = 1;
1701 else
1702 {
1703 struct frame_info *fi = get_current_frame ();
1704 struct gdbarch *frame_arch = get_frame_arch (fi);
1705 CORE_ADDR frame_pc = get_frame_pc (fi);
1706
1707 /* If we're at a point where the stack has been destroyed
1708 (e.g. in a function epilogue), unwinding may not work
1709 properly. Do not attempt to recreate locations at this
1710 point. See similar comments in watchpoint_check. */
1711 if (gdbarch_stack_frame_destroyed_p (frame_arch, frame_pc))
1712 return;
1713
1714 /* Save the current frame's ID so we can restore it after
1715 evaluating the watchpoint expression on its own frame. */
1716 /* FIXME drow/2003-09-09: It would be nice if evaluate_expression
1717 took a frame parameter, so that we didn't have to change the
1718 selected frame. */
1719 frame_saved = 1;
1720 saved_frame_id = get_frame_id (get_selected_frame (NULL));
1721
1722 fi = frame_find_by_id (b->watchpoint_frame);
1723 within_current_scope = (fi != NULL);
1724 if (within_current_scope)
1725 select_frame (fi);
1726 }
1727
1728 /* We don't free locations. They are stored in the bp_location array
1729 and update_global_location_list will eventually delete them and
1730 remove breakpoints if needed. */
1731 b->loc = NULL;
1732
1733 if (within_current_scope && reparse)
1734 {
1735 const char *s;
1736
1737 b->exp.reset ();
1738 s = b->exp_string_reparse ? b->exp_string_reparse : b->exp_string;
1739 b->exp = parse_exp_1 (&s, 0, b->exp_valid_block, 0);
1740 /* If the meaning of expression itself changed, the old value is
1741 no longer relevant. We don't want to report a watchpoint hit
1742 to the user when the old value and the new value may actually
1743 be completely different objects. */
1744 b->val = NULL;
1745 b->val_valid = 0;
1746
1747 /* Note that unlike with breakpoints, the watchpoint's condition
1748 expression is stored in the breakpoint object, not in the
1749 locations (re)created below. */
1750 if (b->cond_string != NULL)
1751 {
1752 b->cond_exp.reset ();
1753
1754 s = b->cond_string;
1755 b->cond_exp = parse_exp_1 (&s, 0, b->cond_exp_valid_block, 0);
1756 }
1757 }
1758
1759 /* If we failed to parse the expression, for example because
1760 it refers to a global variable in a not-yet-loaded shared library,
1761 don't try to insert watchpoint. We don't automatically delete
1762 such watchpoint, though, since failure to parse expression
1763 is different from out-of-scope watchpoint. */
1764 if (!target_has_execution)
1765 {
1766 /* Without execution, memory can't change. No use to try and
1767 set watchpoint locations. The watchpoint will be reset when
1768 the target gains execution, through breakpoint_re_set. */
1769 if (!can_use_hw_watchpoints)
1770 {
1771 if (b->ops->works_in_software_mode (b))
1772 b->type = bp_watchpoint;
1773 else
1774 error (_("Can't set read/access watchpoint when "
1775 "hardware watchpoints are disabled."));
1776 }
1777 }
1778 else if (within_current_scope && b->exp)
1779 {
1780 int pc = 0;
1781 std::vector<value_ref_ptr> val_chain;
1782 struct value *v, *result, *next;
1783 struct program_space *frame_pspace;
1784
1785 fetch_subexp_value (b->exp.get (), &pc, &v, &result, &val_chain, 0);
1786
1787 /* Avoid setting b->val if it's already set. The meaning of
1788 b->val is 'the last value' user saw, and we should update
1789 it only if we reported that last value to user. As it
1790 happens, the code that reports it updates b->val directly.
1791 We don't keep track of the memory value for masked
1792 watchpoints. */
1793 if (!b->val_valid && !is_masked_watchpoint (b))
1794 {
1795 if (b->val_bitsize != 0)
1796 v = extract_bitfield_from_watchpoint_value (b, v);
1797 b->val = release_value (v);
1798 b->val_valid = 1;
1799 }
1800
1801 frame_pspace = get_frame_program_space (get_selected_frame (NULL));
1802
1803 /* Look at each value on the value chain. */
1804 gdb_assert (!val_chain.empty ());
1805 for (const value_ref_ptr &iter : val_chain)
1806 {
1807 v = iter.get ();
1808
1809 /* If it's a memory location, and GDB actually needed
1810 its contents to evaluate the expression, then we
1811 must watch it. If the first value returned is
1812 still lazy, that means an error occurred reading it;
1813 watch it anyway in case it becomes readable. */
1814 if (VALUE_LVAL (v) == lval_memory
1815 && (v == val_chain[0] || ! value_lazy (v)))
1816 {
1817 struct type *vtype = check_typedef (value_type (v));
1818
1819 /* We only watch structs and arrays if user asked
1820 for it explicitly, never if they just happen to
1821 appear in the middle of some value chain. */
1822 if (v == result
1823 || (TYPE_CODE (vtype) != TYPE_CODE_STRUCT
1824 && TYPE_CODE (vtype) != TYPE_CODE_ARRAY))
1825 {
1826 CORE_ADDR addr;
1827 enum target_hw_bp_type type;
1828 struct bp_location *loc, **tmp;
1829 int bitpos = 0, bitsize = 0;
1830
1831 if (value_bitsize (v) != 0)
1832 {
1833 /* Extract the bit parameters out from the bitfield
1834 sub-expression. */
1835 bitpos = value_bitpos (v);
1836 bitsize = value_bitsize (v);
1837 }
1838 else if (v == result && b->val_bitsize != 0)
1839 {
1840 /* If VAL_BITSIZE != 0 then RESULT is actually a bitfield
1841 lvalue whose bit parameters are saved in the fields
1842 VAL_BITPOS and VAL_BITSIZE. */
1843 bitpos = b->val_bitpos;
1844 bitsize = b->val_bitsize;
1845 }
1846
1847 addr = value_address (v);
1848 if (bitsize != 0)
1849 {
1850 /* Skip the bytes that don't contain the bitfield. */
1851 addr += bitpos / 8;
1852 }
1853
1854 type = hw_write;
1855 if (b->type == bp_read_watchpoint)
1856 type = hw_read;
1857 else if (b->type == bp_access_watchpoint)
1858 type = hw_access;
1859
1860 loc = allocate_bp_location (b);
1861 for (tmp = &(b->loc); *tmp != NULL; tmp = &((*tmp)->next))
1862 ;
1863 *tmp = loc;
1864 loc->gdbarch = get_type_arch (value_type (v));
1865
1866 loc->pspace = frame_pspace;
1867 loc->address = address_significant (loc->gdbarch, addr);
1868
1869 if (bitsize != 0)
1870 {
1871 /* Just cover the bytes that make up the bitfield. */
1872 loc->length = ((bitpos % 8) + bitsize + 7) / 8;
1873 }
1874 else
1875 loc->length = TYPE_LENGTH (value_type (v));
1876
1877 loc->watchpoint_type = type;
1878 }
1879 }
1880 }
1881
1882 /* Change the type of breakpoint between hardware assisted or
1883 an ordinary watchpoint depending on the hardware support
1884 and free hardware slots. REPARSE is set when the inferior
1885 is started. */
1886 if (reparse)
1887 {
1888 int reg_cnt;
1889 enum bp_loc_type loc_type;
1890 struct bp_location *bl;
1891
1892 reg_cnt = can_use_hardware_watchpoint (val_chain);
1893
1894 if (reg_cnt)
1895 {
1896 int i, target_resources_ok, other_type_used;
1897 enum bptype type;
1898
1899 /* Use an exact watchpoint when there's only one memory region to be
1900 watched, and only one debug register is needed to watch it. */
1901 b->exact = target_exact_watchpoints && reg_cnt == 1;
1902
1903 /* We need to determine how many resources are already
1904 used for all other hardware watchpoints plus this one
1905 to see if we still have enough resources to also fit
1906 this watchpoint in as well. */
1907
1908 /* If this is a software watchpoint, we try to turn it
1909 to a hardware one -- count resources as if B was of
1910 hardware watchpoint type. */
1911 type = b->type;
1912 if (type == bp_watchpoint)
1913 type = bp_hardware_watchpoint;
1914
1915 /* This watchpoint may or may not have been placed on
1916 the list yet at this point (it won't be in the list
1917 if we're trying to create it for the first time,
1918 through watch_command), so always account for it
1919 manually. */
1920
1921 /* Count resources used by all watchpoints except B. */
1922 i = hw_watchpoint_used_count_others (b, type, &other_type_used);
1923
1924 /* Add in the resources needed for B. */
1925 i += hw_watchpoint_use_count (b);
1926
1927 target_resources_ok
1928 = target_can_use_hardware_watchpoint (type, i, other_type_used);
1929 if (target_resources_ok <= 0)
1930 {
1931 int sw_mode = b->ops->works_in_software_mode (b);
1932
1933 if (target_resources_ok == 0 && !sw_mode)
1934 error (_("Target does not support this type of "
1935 "hardware watchpoint."));
1936 else if (target_resources_ok < 0 && !sw_mode)
1937 error (_("There are not enough available hardware "
1938 "resources for this watchpoint."));
1939
1940 /* Downgrade to software watchpoint. */
1941 b->type = bp_watchpoint;
1942 }
1943 else
1944 {
1945 /* If this was a software watchpoint, we've just
1946 found we have enough resources to turn it to a
1947 hardware watchpoint. Otherwise, this is a
1948 nop. */
1949 b->type = type;
1950 }
1951 }
1952 else if (!b->ops->works_in_software_mode (b))
1953 {
1954 if (!can_use_hw_watchpoints)
1955 error (_("Can't set read/access watchpoint when "
1956 "hardware watchpoints are disabled."));
1957 else
1958 error (_("Expression cannot be implemented with "
1959 "read/access watchpoint."));
1960 }
1961 else
1962 b->type = bp_watchpoint;
1963
1964 loc_type = (b->type == bp_watchpoint? bp_loc_other
1965 : bp_loc_hardware_watchpoint);
1966 for (bl = b->loc; bl; bl = bl->next)
1967 bl->loc_type = loc_type;
1968 }
1969
1970 /* If a software watchpoint is not watching any memory, then the
1971 above left it without any location set up. But,
1972 bpstat_stop_status requires a location to be able to report
1973 stops, so make sure there's at least a dummy one. */
1974 if (b->type == bp_watchpoint && b->loc == NULL)
1975 software_watchpoint_add_no_memory_location (b, frame_pspace);
1976 }
1977 else if (!within_current_scope)
1978 {
1979 printf_filtered (_("\
1980 Watchpoint %d deleted because the program has left the block\n\
1981 in which its expression is valid.\n"),
1982 b->number);
1983 watchpoint_del_at_next_stop (b);
1984 }
1985
1986 /* Restore the selected frame. */
1987 if (frame_saved)
1988 select_frame (frame_find_by_id (saved_frame_id));
1989 }
1990
1991
1992 /* Returns 1 iff breakpoint location should be
1993 inserted in the inferior. We don't differentiate the type of BL's owner
1994 (breakpoint vs. tracepoint), although insert_location in tracepoint's
1995 breakpoint_ops is not defined, because in insert_bp_location,
1996 tracepoint's insert_location will not be called. */
1997 static int
1998 should_be_inserted (struct bp_location *bl)
1999 {
2000 if (bl->owner == NULL || !breakpoint_enabled (bl->owner))
2001 return 0;
2002
2003 if (bl->owner->disposition == disp_del_at_next_stop)
2004 return 0;
2005
2006 if (!bl->enabled || bl->shlib_disabled || bl->duplicate)
2007 return 0;
2008
2009 if (user_breakpoint_p (bl->owner) && bl->pspace->executing_startup)
2010 return 0;
2011
2012 /* This is set for example, when we're attached to the parent of a
2013 vfork, and have detached from the child. The child is running
2014 free, and we expect it to do an exec or exit, at which point the
2015 OS makes the parent schedulable again (and the target reports
2016 that the vfork is done). Until the child is done with the shared
2017 memory region, do not insert breakpoints in the parent, otherwise
2018 the child could still trip on the parent's breakpoints. Since
2019 the parent is blocked anyway, it won't miss any breakpoint. */
2020 if (bl->pspace->breakpoints_not_allowed)
2021 return 0;
2022
2023 /* Don't insert a breakpoint if we're trying to step past its
2024 location, except if the breakpoint is a single-step breakpoint,
2025 and the breakpoint's thread is the thread which is stepping past
2026 a breakpoint. */
2027 if ((bl->loc_type == bp_loc_software_breakpoint
2028 || bl->loc_type == bp_loc_hardware_breakpoint)
2029 && stepping_past_instruction_at (bl->pspace->aspace,
2030 bl->address)
2031 /* The single-step breakpoint may be inserted at the location
2032 we're trying to step if the instruction branches to itself.
2033 However, the instruction won't be executed at all and it may
2034 break the semantics of the instruction, for example, the
2035 instruction is a conditional branch or updates some flags.
2036 We can't fix it unless GDB is able to emulate the instruction
2037 or switch to displaced stepping. */
2038 && !(bl->owner->type == bp_single_step
2039 && thread_is_stepping_over_breakpoint (bl->owner->thread)))
2040 {
2041 if (debug_infrun)
2042 {
2043 fprintf_unfiltered (gdb_stdlog,
2044 "infrun: skipping breakpoint: "
2045 "stepping past insn at: %s\n",
2046 paddress (bl->gdbarch, bl->address));
2047 }
2048 return 0;
2049 }
2050
2051 /* Don't insert watchpoints if we're trying to step past the
2052 instruction that triggered one. */
2053 if ((bl->loc_type == bp_loc_hardware_watchpoint)
2054 && stepping_past_nonsteppable_watchpoint ())
2055 {
2056 if (debug_infrun)
2057 {
2058 fprintf_unfiltered (gdb_stdlog,
2059 "infrun: stepping past non-steppable watchpoint. "
2060 "skipping watchpoint at %s:%d\n",
2061 paddress (bl->gdbarch, bl->address),
2062 bl->length);
2063 }
2064 return 0;
2065 }
2066
2067 return 1;
2068 }
2069
2070 /* Same as should_be_inserted but does the check assuming
2071 that the location is not duplicated. */
2072
2073 static int
2074 unduplicated_should_be_inserted (struct bp_location *bl)
2075 {
2076 int result;
2077 const int save_duplicate = bl->duplicate;
2078
2079 bl->duplicate = 0;
2080 result = should_be_inserted (bl);
2081 bl->duplicate = save_duplicate;
2082 return result;
2083 }
2084
2085 /* Parses a conditional described by an expression COND into an
2086 agent expression bytecode suitable for evaluation
2087 by the bytecode interpreter. Return NULL if there was
2088 any error during parsing. */
2089
2090 static agent_expr_up
2091 parse_cond_to_aexpr (CORE_ADDR scope, struct expression *cond)
2092 {
2093 if (cond == NULL)
2094 return NULL;
2095
2096 agent_expr_up aexpr;
2097
2098 /* We don't want to stop processing, so catch any errors
2099 that may show up. */
2100 TRY
2101 {
2102 aexpr = gen_eval_for_expr (scope, cond);
2103 }
2104
2105 CATCH (ex, RETURN_MASK_ERROR)
2106 {
2107 /* If we got here, it means the condition could not be parsed to a valid
2108 bytecode expression and thus can't be evaluated on the target's side.
2109 It's no use iterating through the conditions. */
2110 }
2111 END_CATCH
2112
2113 /* We have a valid agent expression. */
2114 return aexpr;
2115 }
2116
2117 /* Based on location BL, create a list of breakpoint conditions to be
2118 passed on to the target. If we have duplicated locations with different
2119 conditions, we will add such conditions to the list. The idea is that the
2120 target will evaluate the list of conditions and will only notify GDB when
2121 one of them is true. */
2122
2123 static void
2124 build_target_condition_list (struct bp_location *bl)
2125 {
2126 struct bp_location **locp = NULL, **loc2p;
2127 int null_condition_or_parse_error = 0;
2128 int modified = bl->needs_update;
2129 struct bp_location *loc;
2130
2131 /* Release conditions left over from a previous insert. */
2132 bl->target_info.conditions.clear ();
2133
2134 /* This is only meaningful if the target is
2135 evaluating conditions and if the user has
2136 opted for condition evaluation on the target's
2137 side. */
2138 if (gdb_evaluates_breakpoint_condition_p ()
2139 || !target_supports_evaluation_of_breakpoint_conditions ())
2140 return;
2141
2142 /* Do a first pass to check for locations with no assigned
2143 conditions or conditions that fail to parse to a valid agent expression
2144 bytecode. If any of these happen, then it's no use to send conditions
2145 to the target since this location will always trigger and generate a
2146 response back to GDB. */
2147 ALL_BP_LOCATIONS_AT_ADDR (loc2p, locp, bl->address)
2148 {
2149 loc = (*loc2p);
2150 if (is_breakpoint (loc->owner) && loc->pspace->num == bl->pspace->num)
2151 {
2152 if (modified)
2153 {
2154 /* Re-parse the conditions since something changed. In that
2155 case we already freed the condition bytecodes (see
2156 force_breakpoint_reinsertion). We just
2157 need to parse the condition to bytecodes again. */
2158 loc->cond_bytecode = parse_cond_to_aexpr (bl->address,
2159 loc->cond.get ());
2160 }
2161
2162 /* If we have a NULL bytecode expression, it means something
2163 went wrong or we have a null condition expression. */
2164 if (!loc->cond_bytecode)
2165 {
2166 null_condition_or_parse_error = 1;
2167 break;
2168 }
2169 }
2170 }
2171
2172 /* If any of these happened, it means we will have to evaluate the conditions
2173 for the location's address on gdb's side. It is no use keeping bytecodes
2174 for all the other duplicate locations, thus we free all of them here.
2175
2176 This is so we have a finer control over which locations' conditions are
2177 being evaluated by GDB or the remote stub. */
2178 if (null_condition_or_parse_error)
2179 {
2180 ALL_BP_LOCATIONS_AT_ADDR (loc2p, locp, bl->address)
2181 {
2182 loc = (*loc2p);
2183 if (is_breakpoint (loc->owner) && loc->pspace->num == bl->pspace->num)
2184 {
2185 /* Only go as far as the first NULL bytecode is
2186 located. */
2187 if (!loc->cond_bytecode)
2188 return;
2189
2190 loc->cond_bytecode.reset ();
2191 }
2192 }
2193 }
2194
2195 /* No NULL conditions or failed bytecode generation. Build a condition list
2196 for this location's address. */
2197 ALL_BP_LOCATIONS_AT_ADDR (loc2p, locp, bl->address)
2198 {
2199 loc = (*loc2p);
2200 if (loc->cond
2201 && is_breakpoint (loc->owner)
2202 && loc->pspace->num == bl->pspace->num
2203 && loc->owner->enable_state == bp_enabled
2204 && loc->enabled)
2205 {
2206 /* Add the condition to the vector. This will be used later
2207 to send the conditions to the target. */
2208 bl->target_info.conditions.push_back (loc->cond_bytecode.get ());
2209 }
2210 }
2211
2212 return;
2213 }
2214
2215 /* Parses a command described by string CMD into an agent expression
2216 bytecode suitable for evaluation by the bytecode interpreter.
2217 Return NULL if there was any error during parsing. */
2218
2219 static agent_expr_up
2220 parse_cmd_to_aexpr (CORE_ADDR scope, char *cmd)
2221 {
2222 const char *cmdrest;
2223 const char *format_start, *format_end;
2224 struct gdbarch *gdbarch = get_current_arch ();
2225
2226 if (cmd == NULL)
2227 return NULL;
2228
2229 cmdrest = cmd;
2230
2231 if (*cmdrest == ',')
2232 ++cmdrest;
2233 cmdrest = skip_spaces (cmdrest);
2234
2235 if (*cmdrest++ != '"')
2236 error (_("No format string following the location"));
2237
2238 format_start = cmdrest;
2239
2240 format_pieces fpieces (&cmdrest);
2241
2242 format_end = cmdrest;
2243
2244 if (*cmdrest++ != '"')
2245 error (_("Bad format string, non-terminated '\"'."));
2246
2247 cmdrest = skip_spaces (cmdrest);
2248
2249 if (!(*cmdrest == ',' || *cmdrest == '\0'))
2250 error (_("Invalid argument syntax"));
2251
2252 if (*cmdrest == ',')
2253 cmdrest++;
2254 cmdrest = skip_spaces (cmdrest);
2255
2256 /* For each argument, make an expression. */
2257
2258 std::vector<struct expression *> argvec;
2259 while (*cmdrest != '\0')
2260 {
2261 const char *cmd1;
2262
2263 cmd1 = cmdrest;
2264 expression_up expr = parse_exp_1 (&cmd1, scope, block_for_pc (scope), 1);
2265 argvec.push_back (expr.release ());
2266 cmdrest = cmd1;
2267 if (*cmdrest == ',')
2268 ++cmdrest;
2269 }
2270
2271 agent_expr_up aexpr;
2272
2273 /* We don't want to stop processing, so catch any errors
2274 that may show up. */
2275 TRY
2276 {
2277 aexpr = gen_printf (scope, gdbarch, 0, 0,
2278 format_start, format_end - format_start,
2279 argvec.size (), argvec.data ());
2280 }
2281 CATCH (ex, RETURN_MASK_ERROR)
2282 {
2283 /* If we got here, it means the command could not be parsed to a valid
2284 bytecode expression and thus can't be evaluated on the target's side.
2285 It's no use iterating through the other commands. */
2286 }
2287 END_CATCH
2288
2289 /* We have a valid agent expression, return it. */
2290 return aexpr;
2291 }
2292
2293 /* Based on location BL, create a list of breakpoint commands to be
2294 passed on to the target. If we have duplicated locations with
2295 different commands, we will add any such to the list. */
2296
2297 static void
2298 build_target_command_list (struct bp_location *bl)
2299 {
2300 struct bp_location **locp = NULL, **loc2p;
2301 int null_command_or_parse_error = 0;
2302 int modified = bl->needs_update;
2303 struct bp_location *loc;
2304
2305 /* Clear commands left over from a previous insert. */
2306 bl->target_info.tcommands.clear ();
2307
2308 if (!target_can_run_breakpoint_commands ())
2309 return;
2310
2311 /* For now, limit to agent-style dprintf breakpoints. */
2312 if (dprintf_style != dprintf_style_agent)
2313 return;
2314
2315 /* For now, if we have any duplicate location that isn't a dprintf,
2316 don't install the target-side commands, as that would make the
2317 breakpoint not be reported to the core, and we'd lose
2318 control. */
2319 ALL_BP_LOCATIONS_AT_ADDR (loc2p, locp, bl->address)
2320 {
2321 loc = (*loc2p);
2322 if (is_breakpoint (loc->owner)
2323 && loc->pspace->num == bl->pspace->num
2324 && loc->owner->type != bp_dprintf)
2325 return;
2326 }
2327
2328 /* Do a first pass to check for locations with no assigned
2329 conditions or conditions that fail to parse to a valid agent expression
2330 bytecode. If any of these happen, then it's no use to send conditions
2331 to the target since this location will always trigger and generate a
2332 response back to GDB. */
2333 ALL_BP_LOCATIONS_AT_ADDR (loc2p, locp, bl->address)
2334 {
2335 loc = (*loc2p);
2336 if (is_breakpoint (loc->owner) && loc->pspace->num == bl->pspace->num)
2337 {
2338 if (modified)
2339 {
2340 /* Re-parse the commands since something changed. In that
2341 case we already freed the command bytecodes (see
2342 force_breakpoint_reinsertion). We just
2343 need to parse the command to bytecodes again. */
2344 loc->cmd_bytecode
2345 = parse_cmd_to_aexpr (bl->address,
2346 loc->owner->extra_string);
2347 }
2348
2349 /* If we have a NULL bytecode expression, it means something
2350 went wrong or we have a null command expression. */
2351 if (!loc->cmd_bytecode)
2352 {
2353 null_command_or_parse_error = 1;
2354 break;
2355 }
2356 }
2357 }
2358
2359 /* If anything failed, then we're not doing target-side commands,
2360 and so clean up. */
2361 if (null_command_or_parse_error)
2362 {
2363 ALL_BP_LOCATIONS_AT_ADDR (loc2p, locp, bl->address)
2364 {
2365 loc = (*loc2p);
2366 if (is_breakpoint (loc->owner)
2367 && loc->pspace->num == bl->pspace->num)
2368 {
2369 /* Only go as far as the first NULL bytecode is
2370 located. */
2371 if (loc->cmd_bytecode == NULL)
2372 return;
2373
2374 loc->cmd_bytecode.reset ();
2375 }
2376 }
2377 }
2378
2379 /* No NULL commands or failed bytecode generation. Build a command list
2380 for this location's address. */
2381 ALL_BP_LOCATIONS_AT_ADDR (loc2p, locp, bl->address)
2382 {
2383 loc = (*loc2p);
2384 if (loc->owner->extra_string
2385 && is_breakpoint (loc->owner)
2386 && loc->pspace->num == bl->pspace->num
2387 && loc->owner->enable_state == bp_enabled
2388 && loc->enabled)
2389 {
2390 /* Add the command to the vector. This will be used later
2391 to send the commands to the target. */
2392 bl->target_info.tcommands.push_back (loc->cmd_bytecode.get ());
2393 }
2394 }
2395
2396 bl->target_info.persist = 0;
2397 /* Maybe flag this location as persistent. */
2398 if (bl->owner->type == bp_dprintf && disconnected_dprintf)
2399 bl->target_info.persist = 1;
2400 }
2401
2402 /* Return the kind of breakpoint on address *ADDR. Get the kind
2403 of breakpoint according to ADDR except single-step breakpoint.
2404 Get the kind of single-step breakpoint according to the current
2405 registers state. */
2406
2407 static int
2408 breakpoint_kind (struct bp_location *bl, CORE_ADDR *addr)
2409 {
2410 if (bl->owner->type == bp_single_step)
2411 {
2412 struct thread_info *thr = find_thread_global_id (bl->owner->thread);
2413 struct regcache *regcache;
2414
2415 regcache = get_thread_regcache (thr->ptid);
2416
2417 return gdbarch_breakpoint_kind_from_current_state (bl->gdbarch,
2418 regcache, addr);
2419 }
2420 else
2421 return gdbarch_breakpoint_kind_from_pc (bl->gdbarch, addr);
2422 }
2423
2424 /* Insert a low-level "breakpoint" of some type. BL is the breakpoint
2425 location. Any error messages are printed to TMP_ERROR_STREAM; and
2426 DISABLED_BREAKS, and HW_BREAKPOINT_ERROR are used to report problems.
2427 Returns 0 for success, 1 if the bp_location type is not supported or
2428 -1 for failure.
2429
2430 NOTE drow/2003-09-09: This routine could be broken down to an
2431 object-style method for each breakpoint or catchpoint type. */
2432 static int
2433 insert_bp_location (struct bp_location *bl,
2434 struct ui_file *tmp_error_stream,
2435 int *disabled_breaks,
2436 int *hw_breakpoint_error,
2437 int *hw_bp_error_explained_already)
2438 {
2439 gdb_exception bp_excpt = exception_none;
2440
2441 if (!should_be_inserted (bl) || (bl->inserted && !bl->needs_update))
2442 return 0;
2443
2444 /* Note we don't initialize bl->target_info, as that wipes out
2445 the breakpoint location's shadow_contents if the breakpoint
2446 is still inserted at that location. This in turn breaks
2447 target_read_memory which depends on these buffers when
2448 a memory read is requested at the breakpoint location:
2449 Once the target_info has been wiped, we fail to see that
2450 we have a breakpoint inserted at that address and thus
2451 read the breakpoint instead of returning the data saved in
2452 the breakpoint location's shadow contents. */
2453 bl->target_info.reqstd_address = bl->address;
2454 bl->target_info.placed_address_space = bl->pspace->aspace;
2455 bl->target_info.length = bl->length;
2456
2457 /* When working with target-side conditions, we must pass all the conditions
2458 for the same breakpoint address down to the target since GDB will not
2459 insert those locations. With a list of breakpoint conditions, the target
2460 can decide when to stop and notify GDB. */
2461
2462 if (is_breakpoint (bl->owner))
2463 {
2464 build_target_condition_list (bl);
2465 build_target_command_list (bl);
2466 /* Reset the modification marker. */
2467 bl->needs_update = 0;
2468 }
2469
2470 if (bl->loc_type == bp_loc_software_breakpoint
2471 || bl->loc_type == bp_loc_hardware_breakpoint)
2472 {
2473 if (bl->owner->type != bp_hardware_breakpoint)
2474 {
2475 /* If the explicitly specified breakpoint type
2476 is not hardware breakpoint, check the memory map to see
2477 if the breakpoint address is in read only memory or not.
2478
2479 Two important cases are:
2480 - location type is not hardware breakpoint, memory
2481 is readonly. We change the type of the location to
2482 hardware breakpoint.
2483 - location type is hardware breakpoint, memory is
2484 read-write. This means we've previously made the
2485 location hardware one, but then the memory map changed,
2486 so we undo.
2487
2488 When breakpoints are removed, remove_breakpoints will use
2489 location types we've just set here, the only possible
2490 problem is that memory map has changed during running
2491 program, but it's not going to work anyway with current
2492 gdb. */
2493 struct mem_region *mr
2494 = lookup_mem_region (bl->target_info.reqstd_address);
2495
2496 if (mr)
2497 {
2498 if (automatic_hardware_breakpoints)
2499 {
2500 enum bp_loc_type new_type;
2501
2502 if (mr->attrib.mode != MEM_RW)
2503 new_type = bp_loc_hardware_breakpoint;
2504 else
2505 new_type = bp_loc_software_breakpoint;
2506
2507 if (new_type != bl->loc_type)
2508 {
2509 static int said = 0;
2510
2511 bl->loc_type = new_type;
2512 if (!said)
2513 {
2514 fprintf_filtered (gdb_stdout,
2515 _("Note: automatically using "
2516 "hardware breakpoints for "
2517 "read-only addresses.\n"));
2518 said = 1;
2519 }
2520 }
2521 }
2522 else if (bl->loc_type == bp_loc_software_breakpoint
2523 && mr->attrib.mode != MEM_RW)
2524 {
2525 fprintf_unfiltered (tmp_error_stream,
2526 _("Cannot insert breakpoint %d.\n"
2527 "Cannot set software breakpoint "
2528 "at read-only address %s\n"),
2529 bl->owner->number,
2530 paddress (bl->gdbarch, bl->address));
2531 return 1;
2532 }
2533 }
2534 }
2535
2536 /* First check to see if we have to handle an overlay. */
2537 if (overlay_debugging == ovly_off
2538 || bl->section == NULL
2539 || !(section_is_overlay (bl->section)))
2540 {
2541 /* No overlay handling: just set the breakpoint. */
2542 TRY
2543 {
2544 int val;
2545
2546 val = bl->owner->ops->insert_location (bl);
2547 if (val)
2548 bp_excpt = gdb_exception {RETURN_ERROR, GENERIC_ERROR};
2549 }
2550 CATCH (e, RETURN_MASK_ALL)
2551 {
2552 bp_excpt = e;
2553 }
2554 END_CATCH
2555 }
2556 else
2557 {
2558 /* This breakpoint is in an overlay section.
2559 Shall we set a breakpoint at the LMA? */
2560 if (!overlay_events_enabled)
2561 {
2562 /* Yes -- overlay event support is not active,
2563 so we must try to set a breakpoint at the LMA.
2564 This will not work for a hardware breakpoint. */
2565 if (bl->loc_type == bp_loc_hardware_breakpoint)
2566 warning (_("hardware breakpoint %d not supported in overlay!"),
2567 bl->owner->number);
2568 else
2569 {
2570 CORE_ADDR addr = overlay_unmapped_address (bl->address,
2571 bl->section);
2572 /* Set a software (trap) breakpoint at the LMA. */
2573 bl->overlay_target_info = bl->target_info;
2574 bl->overlay_target_info.reqstd_address = addr;
2575
2576 /* No overlay handling: just set the breakpoint. */
2577 TRY
2578 {
2579 int val;
2580
2581 bl->overlay_target_info.kind
2582 = breakpoint_kind (bl, &addr);
2583 bl->overlay_target_info.placed_address = addr;
2584 val = target_insert_breakpoint (bl->gdbarch,
2585 &bl->overlay_target_info);
2586 if (val)
2587 bp_excpt
2588 = gdb_exception {RETURN_ERROR, GENERIC_ERROR};
2589 }
2590 CATCH (e, RETURN_MASK_ALL)
2591 {
2592 bp_excpt = e;
2593 }
2594 END_CATCH
2595
2596 if (bp_excpt.reason != 0)
2597 fprintf_unfiltered (tmp_error_stream,
2598 "Overlay breakpoint %d "
2599 "failed: in ROM?\n",
2600 bl->owner->number);
2601 }
2602 }
2603 /* Shall we set a breakpoint at the VMA? */
2604 if (section_is_mapped (bl->section))
2605 {
2606 /* Yes. This overlay section is mapped into memory. */
2607 TRY
2608 {
2609 int val;
2610
2611 val = bl->owner->ops->insert_location (bl);
2612 if (val)
2613 bp_excpt = gdb_exception {RETURN_ERROR, GENERIC_ERROR};
2614 }
2615 CATCH (e, RETURN_MASK_ALL)
2616 {
2617 bp_excpt = e;
2618 }
2619 END_CATCH
2620 }
2621 else
2622 {
2623 /* No. This breakpoint will not be inserted.
2624 No error, but do not mark the bp as 'inserted'. */
2625 return 0;
2626 }
2627 }
2628
2629 if (bp_excpt.reason != 0)
2630 {
2631 /* Can't set the breakpoint. */
2632
2633 /* In some cases, we might not be able to insert a
2634 breakpoint in a shared library that has already been
2635 removed, but we have not yet processed the shlib unload
2636 event. Unfortunately, some targets that implement
2637 breakpoint insertion themselves can't tell why the
2638 breakpoint insertion failed (e.g., the remote target
2639 doesn't define error codes), so we must treat generic
2640 errors as memory errors. */
2641 if (bp_excpt.reason == RETURN_ERROR
2642 && (bp_excpt.error == GENERIC_ERROR
2643 || bp_excpt.error == MEMORY_ERROR)
2644 && bl->loc_type == bp_loc_software_breakpoint
2645 && (solib_name_from_address (bl->pspace, bl->address)
2646 || shared_objfile_contains_address_p (bl->pspace,
2647 bl->address)))
2648 {
2649 /* See also: disable_breakpoints_in_shlibs. */
2650 bl->shlib_disabled = 1;
2651 gdb::observers::breakpoint_modified.notify (bl->owner);
2652 if (!*disabled_breaks)
2653 {
2654 fprintf_unfiltered (tmp_error_stream,
2655 "Cannot insert breakpoint %d.\n",
2656 bl->owner->number);
2657 fprintf_unfiltered (tmp_error_stream,
2658 "Temporarily disabling shared "
2659 "library breakpoints:\n");
2660 }
2661 *disabled_breaks = 1;
2662 fprintf_unfiltered (tmp_error_stream,
2663 "breakpoint #%d\n", bl->owner->number);
2664 return 0;
2665 }
2666 else
2667 {
2668 if (bl->loc_type == bp_loc_hardware_breakpoint)
2669 {
2670 *hw_breakpoint_error = 1;
2671 *hw_bp_error_explained_already = bp_excpt.message != NULL;
2672 fprintf_unfiltered (tmp_error_stream,
2673 "Cannot insert hardware breakpoint %d%s",
2674 bl->owner->number,
2675 bp_excpt.message ? ":" : ".\n");
2676 if (bp_excpt.message != NULL)
2677 fprintf_unfiltered (tmp_error_stream, "%s.\n",
2678 bp_excpt.message);
2679 }
2680 else
2681 {
2682 if (bp_excpt.message == NULL)
2683 {
2684 std::string message
2685 = memory_error_message (TARGET_XFER_E_IO,
2686 bl->gdbarch, bl->address);
2687
2688 fprintf_unfiltered (tmp_error_stream,
2689 "Cannot insert breakpoint %d.\n"
2690 "%s\n",
2691 bl->owner->number, message.c_str ());
2692 }
2693 else
2694 {
2695 fprintf_unfiltered (tmp_error_stream,
2696 "Cannot insert breakpoint %d: %s\n",
2697 bl->owner->number,
2698 bp_excpt.message);
2699 }
2700 }
2701 return 1;
2702
2703 }
2704 }
2705 else
2706 bl->inserted = 1;
2707
2708 return 0;
2709 }
2710
2711 else if (bl->loc_type == bp_loc_hardware_watchpoint
2712 /* NOTE drow/2003-09-08: This state only exists for removing
2713 watchpoints. It's not clear that it's necessary... */
2714 && bl->owner->disposition != disp_del_at_next_stop)
2715 {
2716 int val;
2717
2718 gdb_assert (bl->owner->ops != NULL
2719 && bl->owner->ops->insert_location != NULL);
2720
2721 val = bl->owner->ops->insert_location (bl);
2722
2723 /* If trying to set a read-watchpoint, and it turns out it's not
2724 supported, try emulating one with an access watchpoint. */
2725 if (val == 1 && bl->watchpoint_type == hw_read)
2726 {
2727 struct bp_location *loc, **loc_temp;
2728
2729 /* But don't try to insert it, if there's already another
2730 hw_access location that would be considered a duplicate
2731 of this one. */
2732 ALL_BP_LOCATIONS (loc, loc_temp)
2733 if (loc != bl
2734 && loc->watchpoint_type == hw_access
2735 && watchpoint_locations_match (bl, loc))
2736 {
2737 bl->duplicate = 1;
2738 bl->inserted = 1;
2739 bl->target_info = loc->target_info;
2740 bl->watchpoint_type = hw_access;
2741 val = 0;
2742 break;
2743 }
2744
2745 if (val == 1)
2746 {
2747 bl->watchpoint_type = hw_access;
2748 val = bl->owner->ops->insert_location (bl);
2749
2750 if (val)
2751 /* Back to the original value. */
2752 bl->watchpoint_type = hw_read;
2753 }
2754 }
2755
2756 bl->inserted = (val == 0);
2757 }
2758
2759 else if (bl->owner->type == bp_catchpoint)
2760 {
2761 int val;
2762
2763 gdb_assert (bl->owner->ops != NULL
2764 && bl->owner->ops->insert_location != NULL);
2765
2766 val = bl->owner->ops->insert_location (bl);
2767 if (val)
2768 {
2769 bl->owner->enable_state = bp_disabled;
2770
2771 if (val == 1)
2772 warning (_("\
2773 Error inserting catchpoint %d: Your system does not support this type\n\
2774 of catchpoint."), bl->owner->number);
2775 else
2776 warning (_("Error inserting catchpoint %d."), bl->owner->number);
2777 }
2778
2779 bl->inserted = (val == 0);
2780
2781 /* We've already printed an error message if there was a problem
2782 inserting this catchpoint, and we've disabled the catchpoint,
2783 so just return success. */
2784 return 0;
2785 }
2786
2787 return 0;
2788 }
2789
2790 /* This function is called when program space PSPACE is about to be
2791 deleted. It takes care of updating breakpoints to not reference
2792 PSPACE anymore. */
2793
2794 void
2795 breakpoint_program_space_exit (struct program_space *pspace)
2796 {
2797 struct breakpoint *b, *b_temp;
2798 struct bp_location *loc, **loc_temp;
2799
2800 /* Remove any breakpoint that was set through this program space. */
2801 ALL_BREAKPOINTS_SAFE (b, b_temp)
2802 {
2803 if (b->pspace == pspace)
2804 delete_breakpoint (b);
2805 }
2806
2807 /* Breakpoints set through other program spaces could have locations
2808 bound to PSPACE as well. Remove those. */
2809 ALL_BP_LOCATIONS (loc, loc_temp)
2810 {
2811 struct bp_location *tmp;
2812
2813 if (loc->pspace == pspace)
2814 {
2815 /* ALL_BP_LOCATIONS bp_location has LOC->OWNER always non-NULL. */
2816 if (loc->owner->loc == loc)
2817 loc->owner->loc = loc->next;
2818 else
2819 for (tmp = loc->owner->loc; tmp->next != NULL; tmp = tmp->next)
2820 if (tmp->next == loc)
2821 {
2822 tmp->next = loc->next;
2823 break;
2824 }
2825 }
2826 }
2827
2828 /* Now update the global location list to permanently delete the
2829 removed locations above. */
2830 update_global_location_list (UGLL_DONT_INSERT);
2831 }
2832
2833 /* Make sure all breakpoints are inserted in inferior.
2834 Throws exception on any error.
2835 A breakpoint that is already inserted won't be inserted
2836 again, so calling this function twice is safe. */
2837 void
2838 insert_breakpoints (void)
2839 {
2840 struct breakpoint *bpt;
2841
2842 ALL_BREAKPOINTS (bpt)
2843 if (is_hardware_watchpoint (bpt))
2844 {
2845 struct watchpoint *w = (struct watchpoint *) bpt;
2846
2847 update_watchpoint (w, 0 /* don't reparse. */);
2848 }
2849
2850 /* Updating watchpoints creates new locations, so update the global
2851 location list. Explicitly tell ugll to insert locations and
2852 ignore breakpoints_always_inserted_mode. */
2853 update_global_location_list (UGLL_INSERT);
2854 }
2855
2856 /* Invoke CALLBACK for each of bp_location. */
2857
2858 void
2859 iterate_over_bp_locations (walk_bp_location_callback callback)
2860 {
2861 struct bp_location *loc, **loc_tmp;
2862
2863 ALL_BP_LOCATIONS (loc, loc_tmp)
2864 {
2865 callback (loc, NULL);
2866 }
2867 }
2868
2869 /* This is used when we need to synch breakpoint conditions between GDB and the
2870 target. It is the case with deleting and disabling of breakpoints when using
2871 always-inserted mode. */
2872
2873 static void
2874 update_inserted_breakpoint_locations (void)
2875 {
2876 struct bp_location *bl, **blp_tmp;
2877 int error_flag = 0;
2878 int val = 0;
2879 int disabled_breaks = 0;
2880 int hw_breakpoint_error = 0;
2881 int hw_bp_details_reported = 0;
2882
2883 string_file tmp_error_stream;
2884
2885 /* Explicitly mark the warning -- this will only be printed if
2886 there was an error. */
2887 tmp_error_stream.puts ("Warning:\n");
2888
2889 scoped_restore_current_pspace_and_thread restore_pspace_thread;
2890
2891 ALL_BP_LOCATIONS (bl, blp_tmp)
2892 {
2893 /* We only want to update software breakpoints and hardware
2894 breakpoints. */
2895 if (!is_breakpoint (bl->owner))
2896 continue;
2897
2898 /* We only want to update locations that are already inserted
2899 and need updating. This is to avoid unwanted insertion during
2900 deletion of breakpoints. */
2901 if (!bl->inserted || (bl->inserted && !bl->needs_update))
2902 continue;
2903
2904 switch_to_program_space_and_thread (bl->pspace);
2905
2906 /* For targets that support global breakpoints, there's no need
2907 to select an inferior to insert breakpoint to. In fact, even
2908 if we aren't attached to any process yet, we should still
2909 insert breakpoints. */
2910 if (!gdbarch_has_global_breakpoints (target_gdbarch ())
2911 && ptid_equal (inferior_ptid, null_ptid))
2912 continue;
2913
2914 val = insert_bp_location (bl, &tmp_error_stream, &disabled_breaks,
2915 &hw_breakpoint_error, &hw_bp_details_reported);
2916 if (val)
2917 error_flag = val;
2918 }
2919
2920 if (error_flag)
2921 {
2922 target_terminal::ours_for_output ();
2923 error_stream (tmp_error_stream);
2924 }
2925 }
2926
2927 /* Used when starting or continuing the program. */
2928
2929 static void
2930 insert_breakpoint_locations (void)
2931 {
2932 struct breakpoint *bpt;
2933 struct bp_location *bl, **blp_tmp;
2934 int error_flag = 0;
2935 int val = 0;
2936 int disabled_breaks = 0;
2937 int hw_breakpoint_error = 0;
2938 int hw_bp_error_explained_already = 0;
2939
2940 string_file tmp_error_stream;
2941
2942 /* Explicitly mark the warning -- this will only be printed if
2943 there was an error. */
2944 tmp_error_stream.puts ("Warning:\n");
2945
2946 scoped_restore_current_pspace_and_thread restore_pspace_thread;
2947
2948 ALL_BP_LOCATIONS (bl, blp_tmp)
2949 {
2950 if (!should_be_inserted (bl) || (bl->inserted && !bl->needs_update))
2951 continue;
2952
2953 /* There is no point inserting thread-specific breakpoints if
2954 the thread no longer exists. ALL_BP_LOCATIONS bp_location
2955 has BL->OWNER always non-NULL. */
2956 if (bl->owner->thread != -1
2957 && !valid_global_thread_id (bl->owner->thread))
2958 continue;
2959
2960 switch_to_program_space_and_thread (bl->pspace);
2961
2962 /* For targets that support global breakpoints, there's no need
2963 to select an inferior to insert breakpoint to. In fact, even
2964 if we aren't attached to any process yet, we should still
2965 insert breakpoints. */
2966 if (!gdbarch_has_global_breakpoints (target_gdbarch ())
2967 && ptid_equal (inferior_ptid, null_ptid))
2968 continue;
2969
2970 val = insert_bp_location (bl, &tmp_error_stream, &disabled_breaks,
2971 &hw_breakpoint_error, &hw_bp_error_explained_already);
2972 if (val)
2973 error_flag = val;
2974 }
2975
2976 /* If we failed to insert all locations of a watchpoint, remove
2977 them, as half-inserted watchpoint is of limited use. */
2978 ALL_BREAKPOINTS (bpt)
2979 {
2980 int some_failed = 0;
2981 struct bp_location *loc;
2982
2983 if (!is_hardware_watchpoint (bpt))
2984 continue;
2985
2986 if (!breakpoint_enabled (bpt))
2987 continue;
2988
2989 if (bpt->disposition == disp_del_at_next_stop)
2990 continue;
2991
2992 for (loc = bpt->loc; loc; loc = loc->next)
2993 if (!loc->inserted && should_be_inserted (loc))
2994 {
2995 some_failed = 1;
2996 break;
2997 }
2998 if (some_failed)
2999 {
3000 for (loc = bpt->loc; loc; loc = loc->next)
3001 if (loc->inserted)
3002 remove_breakpoint (loc);
3003
3004 hw_breakpoint_error = 1;
3005 tmp_error_stream.printf ("Could not insert "
3006 "hardware watchpoint %d.\n",
3007 bpt->number);
3008 error_flag = -1;
3009 }
3010 }
3011
3012 if (error_flag)
3013 {
3014 /* If a hardware breakpoint or watchpoint was inserted, add a
3015 message about possibly exhausted resources. */
3016 if (hw_breakpoint_error && !hw_bp_error_explained_already)
3017 {
3018 tmp_error_stream.printf ("Could not insert hardware breakpoints:\n\
3019 You may have requested too many hardware breakpoints/watchpoints.\n");
3020 }
3021 target_terminal::ours_for_output ();
3022 error_stream (tmp_error_stream);
3023 }
3024 }
3025
3026 /* Used when the program stops.
3027 Returns zero if successful, or non-zero if there was a problem
3028 removing a breakpoint location. */
3029
3030 int
3031 remove_breakpoints (void)
3032 {
3033 struct bp_location *bl, **blp_tmp;
3034 int val = 0;
3035
3036 ALL_BP_LOCATIONS (bl, blp_tmp)
3037 {
3038 if (bl->inserted && !is_tracepoint (bl->owner))
3039 val |= remove_breakpoint (bl);
3040 }
3041 return val;
3042 }
3043
3044 /* When a thread exits, remove breakpoints that are related to
3045 that thread. */
3046
3047 static void
3048 remove_threaded_breakpoints (struct thread_info *tp, int silent)
3049 {
3050 struct breakpoint *b, *b_tmp;
3051
3052 ALL_BREAKPOINTS_SAFE (b, b_tmp)
3053 {
3054 if (b->thread == tp->global_num && user_breakpoint_p (b))
3055 {
3056 b->disposition = disp_del_at_next_stop;
3057
3058 printf_filtered (_("\
3059 Thread-specific breakpoint %d deleted - thread %s no longer in the thread list.\n"),
3060 b->number, print_thread_id (tp));
3061
3062 /* Hide it from the user. */
3063 b->number = 0;
3064 }
3065 }
3066 }
3067
3068 /* Remove breakpoints of process PID. */
3069
3070 int
3071 remove_breakpoints_pid (int pid)
3072 {
3073 struct bp_location *bl, **blp_tmp;
3074 int val;
3075 struct inferior *inf = find_inferior_pid (pid);
3076
3077 ALL_BP_LOCATIONS (bl, blp_tmp)
3078 {
3079 if (bl->pspace != inf->pspace)
3080 continue;
3081
3082 if (bl->inserted && !bl->target_info.persist)
3083 {
3084 val = remove_breakpoint (bl);
3085 if (val != 0)
3086 return val;
3087 }
3088 }
3089 return 0;
3090 }
3091
3092 static int internal_breakpoint_number = -1;
3093
3094 /* Set the breakpoint number of B, depending on the value of INTERNAL.
3095 If INTERNAL is non-zero, the breakpoint number will be populated
3096 from internal_breakpoint_number and that variable decremented.
3097 Otherwise the breakpoint number will be populated from
3098 breakpoint_count and that value incremented. Internal breakpoints
3099 do not set the internal var bpnum. */
3100 static void
3101 set_breakpoint_number (int internal, struct breakpoint *b)
3102 {
3103 if (internal)
3104 b->number = internal_breakpoint_number--;
3105 else
3106 {
3107 set_breakpoint_count (breakpoint_count + 1);
3108 b->number = breakpoint_count;
3109 }
3110 }
3111
3112 static struct breakpoint *
3113 create_internal_breakpoint (struct gdbarch *gdbarch,
3114 CORE_ADDR address, enum bptype type,
3115 const struct breakpoint_ops *ops)
3116 {
3117 symtab_and_line sal;
3118 sal.pc = address;
3119 sal.section = find_pc_overlay (sal.pc);
3120 sal.pspace = current_program_space;
3121
3122 breakpoint *b = set_raw_breakpoint (gdbarch, sal, type, ops);
3123 b->number = internal_breakpoint_number--;
3124 b->disposition = disp_donttouch;
3125
3126 return b;
3127 }
3128
3129 static const char *const longjmp_names[] =
3130 {
3131 "longjmp", "_longjmp", "siglongjmp", "_siglongjmp"
3132 };
3133 #define NUM_LONGJMP_NAMES ARRAY_SIZE(longjmp_names)
3134
3135 /* Per-objfile data private to breakpoint.c. */
3136 struct breakpoint_objfile_data
3137 {
3138 /* Minimal symbol for "_ovly_debug_event" (if any). */
3139 struct bound_minimal_symbol overlay_msym {};
3140
3141 /* Minimal symbol(s) for "longjmp", "siglongjmp", etc. (if any). */
3142 struct bound_minimal_symbol longjmp_msym[NUM_LONGJMP_NAMES] {};
3143
3144 /* True if we have looked for longjmp probes. */
3145 int longjmp_searched = 0;
3146
3147 /* SystemTap probe points for longjmp (if any). These are non-owning
3148 references. */
3149 std::vector<probe *> longjmp_probes;
3150
3151 /* Minimal symbol for "std::terminate()" (if any). */
3152 struct bound_minimal_symbol terminate_msym {};
3153
3154 /* Minimal symbol for "_Unwind_DebugHook" (if any). */
3155 struct bound_minimal_symbol exception_msym {};
3156
3157 /* True if we have looked for exception probes. */
3158 int exception_searched = 0;
3159
3160 /* SystemTap probe points for unwinding (if any). These are non-owning
3161 references. */
3162 std::vector<probe *> exception_probes;
3163 };
3164
3165 static const struct objfile_data *breakpoint_objfile_key;
3166
3167 /* Minimal symbol not found sentinel. */
3168 static struct minimal_symbol msym_not_found;
3169
3170 /* Returns TRUE if MSYM point to the "not found" sentinel. */
3171
3172 static int
3173 msym_not_found_p (const struct minimal_symbol *msym)
3174 {
3175 return msym == &msym_not_found;
3176 }
3177
3178 /* Return per-objfile data needed by breakpoint.c.
3179 Allocate the data if necessary. */
3180
3181 static struct breakpoint_objfile_data *
3182 get_breakpoint_objfile_data (struct objfile *objfile)
3183 {
3184 struct breakpoint_objfile_data *bp_objfile_data;
3185
3186 bp_objfile_data = ((struct breakpoint_objfile_data *)
3187 objfile_data (objfile, breakpoint_objfile_key));
3188 if (bp_objfile_data == NULL)
3189 {
3190 bp_objfile_data = new breakpoint_objfile_data ();
3191 set_objfile_data (objfile, breakpoint_objfile_key, bp_objfile_data);
3192 }
3193 return bp_objfile_data;
3194 }
3195
3196 static void
3197 free_breakpoint_objfile_data (struct objfile *obj, void *data)
3198 {
3199 struct breakpoint_objfile_data *bp_objfile_data
3200 = (struct breakpoint_objfile_data *) data;
3201
3202 delete bp_objfile_data;
3203 }
3204
3205 static void
3206 create_overlay_event_breakpoint (void)
3207 {
3208 struct objfile *objfile;
3209 const char *const func_name = "_ovly_debug_event";
3210
3211 ALL_OBJFILES (objfile)
3212 {
3213 struct breakpoint *b;
3214 struct breakpoint_objfile_data *bp_objfile_data;
3215 CORE_ADDR addr;
3216 struct explicit_location explicit_loc;
3217
3218 bp_objfile_data = get_breakpoint_objfile_data (objfile);
3219
3220 if (msym_not_found_p (bp_objfile_data->overlay_msym.minsym))
3221 continue;
3222
3223 if (bp_objfile_data->overlay_msym.minsym == NULL)
3224 {
3225 struct bound_minimal_symbol m;
3226
3227 m = lookup_minimal_symbol_text (func_name, objfile);
3228 if (m.minsym == NULL)
3229 {
3230 /* Avoid future lookups in this objfile. */
3231 bp_objfile_data->overlay_msym.minsym = &msym_not_found;
3232 continue;
3233 }
3234 bp_objfile_data->overlay_msym = m;
3235 }
3236
3237 addr = BMSYMBOL_VALUE_ADDRESS (bp_objfile_data->overlay_msym);
3238 b = create_internal_breakpoint (get_objfile_arch (objfile), addr,
3239 bp_overlay_event,
3240 &internal_breakpoint_ops);
3241 initialize_explicit_location (&explicit_loc);
3242 explicit_loc.function_name = ASTRDUP (func_name);
3243 b->location = new_explicit_location (&explicit_loc);
3244
3245 if (overlay_debugging == ovly_auto)
3246 {
3247 b->enable_state = bp_enabled;
3248 overlay_events_enabled = 1;
3249 }
3250 else
3251 {
3252 b->enable_state = bp_disabled;
3253 overlay_events_enabled = 0;
3254 }
3255 }
3256 }
3257
3258 static void
3259 create_longjmp_master_breakpoint (void)
3260 {
3261 struct program_space *pspace;
3262
3263 scoped_restore_current_program_space restore_pspace;
3264
3265 ALL_PSPACES (pspace)
3266 {
3267 struct objfile *objfile;
3268
3269 set_current_program_space (pspace);
3270
3271 ALL_OBJFILES (objfile)
3272 {
3273 int i;
3274 struct gdbarch *gdbarch;
3275 struct breakpoint_objfile_data *bp_objfile_data;
3276
3277 gdbarch = get_objfile_arch (objfile);
3278
3279 bp_objfile_data = get_breakpoint_objfile_data (objfile);
3280
3281 if (!bp_objfile_data->longjmp_searched)
3282 {
3283 std::vector<probe *> ret
3284 = find_probes_in_objfile (objfile, "libc", "longjmp");
3285
3286 if (!ret.empty ())
3287 {
3288 /* We are only interested in checking one element. */
3289 probe *p = ret[0];
3290
3291 if (!p->can_evaluate_arguments ())
3292 {
3293 /* We cannot use the probe interface here, because it does
3294 not know how to evaluate arguments. */
3295 ret.clear ();
3296 }
3297 }
3298 bp_objfile_data->longjmp_probes = ret;
3299 bp_objfile_data->longjmp_searched = 1;
3300 }
3301
3302 if (!bp_objfile_data->longjmp_probes.empty ())
3303 {
3304 struct gdbarch *gdbarch = get_objfile_arch (objfile);
3305
3306 for (probe *p : bp_objfile_data->longjmp_probes)
3307 {
3308 struct breakpoint *b;
3309
3310 b = create_internal_breakpoint (gdbarch,
3311 p->get_relocated_address (objfile),
3312 bp_longjmp_master,
3313 &internal_breakpoint_ops);
3314 b->location = new_probe_location ("-probe-stap libc:longjmp");
3315 b->enable_state = bp_disabled;
3316 }
3317
3318 continue;
3319 }
3320
3321 if (!gdbarch_get_longjmp_target_p (gdbarch))
3322 continue;
3323
3324 for (i = 0; i < NUM_LONGJMP_NAMES; i++)
3325 {
3326 struct breakpoint *b;
3327 const char *func_name;
3328 CORE_ADDR addr;
3329 struct explicit_location explicit_loc;
3330
3331 if (msym_not_found_p (bp_objfile_data->longjmp_msym[i].minsym))
3332 continue;
3333
3334 func_name = longjmp_names[i];
3335 if (bp_objfile_data->longjmp_msym[i].minsym == NULL)
3336 {
3337 struct bound_minimal_symbol m;
3338
3339 m = lookup_minimal_symbol_text (func_name, objfile);
3340 if (m.minsym == NULL)
3341 {
3342 /* Prevent future lookups in this objfile. */
3343 bp_objfile_data->longjmp_msym[i].minsym = &msym_not_found;
3344 continue;
3345 }
3346 bp_objfile_data->longjmp_msym[i] = m;
3347 }
3348
3349 addr = BMSYMBOL_VALUE_ADDRESS (bp_objfile_data->longjmp_msym[i]);
3350 b = create_internal_breakpoint (gdbarch, addr, bp_longjmp_master,
3351 &internal_breakpoint_ops);
3352 initialize_explicit_location (&explicit_loc);
3353 explicit_loc.function_name = ASTRDUP (func_name);
3354 b->location = new_explicit_location (&explicit_loc);
3355 b->enable_state = bp_disabled;
3356 }
3357 }
3358 }
3359 }
3360
3361 /* Create a master std::terminate breakpoint. */
3362 static void
3363 create_std_terminate_master_breakpoint (void)
3364 {
3365 struct program_space *pspace;
3366 const char *const func_name = "std::terminate()";
3367
3368 scoped_restore_current_program_space restore_pspace;
3369
3370 ALL_PSPACES (pspace)
3371 {
3372 struct objfile *objfile;
3373 CORE_ADDR addr;
3374
3375 set_current_program_space (pspace);
3376
3377 ALL_OBJFILES (objfile)
3378 {
3379 struct breakpoint *b;
3380 struct breakpoint_objfile_data *bp_objfile_data;
3381 struct explicit_location explicit_loc;
3382
3383 bp_objfile_data = get_breakpoint_objfile_data (objfile);
3384
3385 if (msym_not_found_p (bp_objfile_data->terminate_msym.minsym))
3386 continue;
3387
3388 if (bp_objfile_data->terminate_msym.minsym == NULL)
3389 {
3390 struct bound_minimal_symbol m;
3391
3392 m = lookup_minimal_symbol (func_name, NULL, objfile);
3393 if (m.minsym == NULL || (MSYMBOL_TYPE (m.minsym) != mst_text
3394 && MSYMBOL_TYPE (m.minsym) != mst_file_text))
3395 {
3396 /* Prevent future lookups in this objfile. */
3397 bp_objfile_data->terminate_msym.minsym = &msym_not_found;
3398 continue;
3399 }
3400 bp_objfile_data->terminate_msym = m;
3401 }
3402
3403 addr = BMSYMBOL_VALUE_ADDRESS (bp_objfile_data->terminate_msym);
3404 b = create_internal_breakpoint (get_objfile_arch (objfile), addr,
3405 bp_std_terminate_master,
3406 &internal_breakpoint_ops);
3407 initialize_explicit_location (&explicit_loc);
3408 explicit_loc.function_name = ASTRDUP (func_name);
3409 b->location = new_explicit_location (&explicit_loc);
3410 b->enable_state = bp_disabled;
3411 }
3412 }
3413 }
3414
3415 /* Install a master breakpoint on the unwinder's debug hook. */
3416
3417 static void
3418 create_exception_master_breakpoint (void)
3419 {
3420 struct objfile *objfile;
3421 const char *const func_name = "_Unwind_DebugHook";
3422
3423 ALL_OBJFILES (objfile)
3424 {
3425 struct breakpoint *b;
3426 struct gdbarch *gdbarch;
3427 struct breakpoint_objfile_data *bp_objfile_data;
3428 CORE_ADDR addr;
3429 struct explicit_location explicit_loc;
3430
3431 bp_objfile_data = get_breakpoint_objfile_data (objfile);
3432
3433 /* We prefer the SystemTap probe point if it exists. */
3434 if (!bp_objfile_data->exception_searched)
3435 {
3436 std::vector<probe *> ret
3437 = find_probes_in_objfile (objfile, "libgcc", "unwind");
3438
3439 if (!ret.empty ())
3440 {
3441 /* We are only interested in checking one element. */
3442 probe *p = ret[0];
3443
3444 if (!p->can_evaluate_arguments ())
3445 {
3446 /* We cannot use the probe interface here, because it does
3447 not know how to evaluate arguments. */
3448 ret.clear ();
3449 }
3450 }
3451 bp_objfile_data->exception_probes = ret;
3452 bp_objfile_data->exception_searched = 1;
3453 }
3454
3455 if (!bp_objfile_data->exception_probes.empty ())
3456 {
3457 struct gdbarch *gdbarch = get_objfile_arch (objfile);
3458
3459 for (probe *p : bp_objfile_data->exception_probes)
3460 {
3461 struct breakpoint *b;
3462
3463 b = create_internal_breakpoint (gdbarch,
3464 p->get_relocated_address (objfile),
3465 bp_exception_master,
3466 &internal_breakpoint_ops);
3467 b->location = new_probe_location ("-probe-stap libgcc:unwind");
3468 b->enable_state = bp_disabled;
3469 }
3470
3471 continue;
3472 }
3473
3474 /* Otherwise, try the hook function. */
3475
3476 if (msym_not_found_p (bp_objfile_data->exception_msym.minsym))
3477 continue;
3478
3479 gdbarch = get_objfile_arch (objfile);
3480
3481 if (bp_objfile_data->exception_msym.minsym == NULL)
3482 {
3483 struct bound_minimal_symbol debug_hook;
3484
3485 debug_hook = lookup_minimal_symbol (func_name, NULL, objfile);
3486 if (debug_hook.minsym == NULL)
3487 {
3488 bp_objfile_data->exception_msym.minsym = &msym_not_found;
3489 continue;
3490 }
3491
3492 bp_objfile_data->exception_msym = debug_hook;
3493 }
3494
3495 addr = BMSYMBOL_VALUE_ADDRESS (bp_objfile_data->exception_msym);
3496 addr = gdbarch_convert_from_func_ptr_addr (gdbarch, addr,
3497 &current_target);
3498 b = create_internal_breakpoint (gdbarch, addr, bp_exception_master,
3499 &internal_breakpoint_ops);
3500 initialize_explicit_location (&explicit_loc);
3501 explicit_loc.function_name = ASTRDUP (func_name);
3502 b->location = new_explicit_location (&explicit_loc);
3503 b->enable_state = bp_disabled;
3504 }
3505 }
3506
3507 /* Does B have a location spec? */
3508
3509 static int
3510 breakpoint_event_location_empty_p (const struct breakpoint *b)
3511 {
3512 return b->location != NULL && event_location_empty_p (b->location.get ());
3513 }
3514
3515 void
3516 update_breakpoints_after_exec (void)
3517 {
3518 struct breakpoint *b, *b_tmp;
3519 struct bp_location *bploc, **bplocp_tmp;
3520
3521 /* We're about to delete breakpoints from GDB's lists. If the
3522 INSERTED flag is true, GDB will try to lift the breakpoints by
3523 writing the breakpoints' "shadow contents" back into memory. The
3524 "shadow contents" are NOT valid after an exec, so GDB should not
3525 do that. Instead, the target is responsible from marking
3526 breakpoints out as soon as it detects an exec. We don't do that
3527 here instead, because there may be other attempts to delete
3528 breakpoints after detecting an exec and before reaching here. */
3529 ALL_BP_LOCATIONS (bploc, bplocp_tmp)
3530 if (bploc->pspace == current_program_space)
3531 gdb_assert (!bploc->inserted);
3532
3533 ALL_BREAKPOINTS_SAFE (b, b_tmp)
3534 {
3535 if (b->pspace != current_program_space)
3536 continue;
3537
3538 /* Solib breakpoints must be explicitly reset after an exec(). */
3539 if (b->type == bp_shlib_event)
3540 {
3541 delete_breakpoint (b);
3542 continue;
3543 }
3544
3545 /* JIT breakpoints must be explicitly reset after an exec(). */
3546 if (b->type == bp_jit_event)
3547 {
3548 delete_breakpoint (b);
3549 continue;
3550 }
3551
3552 /* Thread event breakpoints must be set anew after an exec(),
3553 as must overlay event and longjmp master breakpoints. */
3554 if (b->type == bp_thread_event || b->type == bp_overlay_event
3555 || b->type == bp_longjmp_master || b->type == bp_std_terminate_master
3556 || b->type == bp_exception_master)
3557 {
3558 delete_breakpoint (b);
3559 continue;
3560 }
3561
3562 /* Step-resume breakpoints are meaningless after an exec(). */
3563 if (b->type == bp_step_resume || b->type == bp_hp_step_resume)
3564 {
3565 delete_breakpoint (b);
3566 continue;
3567 }
3568
3569 /* Just like single-step breakpoints. */
3570 if (b->type == bp_single_step)
3571 {
3572 delete_breakpoint (b);
3573 continue;
3574 }
3575
3576 /* Longjmp and longjmp-resume breakpoints are also meaningless
3577 after an exec. */
3578 if (b->type == bp_longjmp || b->type == bp_longjmp_resume
3579 || b->type == bp_longjmp_call_dummy
3580 || b->type == bp_exception || b->type == bp_exception_resume)
3581 {
3582 delete_breakpoint (b);
3583 continue;
3584 }
3585
3586 if (b->type == bp_catchpoint)
3587 {
3588 /* For now, none of the bp_catchpoint breakpoints need to
3589 do anything at this point. In the future, if some of
3590 the catchpoints need to something, we will need to add
3591 a new method, and call this method from here. */
3592 continue;
3593 }
3594
3595 /* bp_finish is a special case. The only way we ought to be able
3596 to see one of these when an exec() has happened, is if the user
3597 caught a vfork, and then said "finish". Ordinarily a finish just
3598 carries them to the call-site of the current callee, by setting
3599 a temporary bp there and resuming. But in this case, the finish
3600 will carry them entirely through the vfork & exec.
3601
3602 We don't want to allow a bp_finish to remain inserted now. But
3603 we can't safely delete it, 'cause finish_command has a handle to
3604 the bp on a bpstat, and will later want to delete it. There's a
3605 chance (and I've seen it happen) that if we delete the bp_finish
3606 here, that its storage will get reused by the time finish_command
3607 gets 'round to deleting the "use to be a bp_finish" breakpoint.
3608 We really must allow finish_command to delete a bp_finish.
3609
3610 In the absence of a general solution for the "how do we know
3611 it's safe to delete something others may have handles to?"
3612 problem, what we'll do here is just uninsert the bp_finish, and
3613 let finish_command delete it.
3614
3615 (We know the bp_finish is "doomed" in the sense that it's
3616 momentary, and will be deleted as soon as finish_command sees
3617 the inferior stopped. So it doesn't matter that the bp's
3618 address is probably bogus in the new a.out, unlike e.g., the
3619 solib breakpoints.) */
3620
3621 if (b->type == bp_finish)
3622 {
3623 continue;
3624 }
3625
3626 /* Without a symbolic address, we have little hope of the
3627 pre-exec() address meaning the same thing in the post-exec()
3628 a.out. */
3629 if (breakpoint_event_location_empty_p (b))
3630 {
3631 delete_breakpoint (b);
3632 continue;
3633 }
3634 }
3635 }
3636
3637 int
3638 detach_breakpoints (ptid_t ptid)
3639 {
3640 struct bp_location *bl, **blp_tmp;
3641 int val = 0;
3642 scoped_restore save_inferior_ptid = make_scoped_restore (&inferior_ptid);
3643 struct inferior *inf = current_inferior ();
3644
3645 if (ptid_get_pid (ptid) == ptid_get_pid (inferior_ptid))
3646 error (_("Cannot detach breakpoints of inferior_ptid"));
3647
3648 /* Set inferior_ptid; remove_breakpoint_1 uses this global. */
3649 inferior_ptid = ptid;
3650 ALL_BP_LOCATIONS (bl, blp_tmp)
3651 {
3652 if (bl->pspace != inf->pspace)
3653 continue;
3654
3655 /* This function must physically remove breakpoints locations
3656 from the specified ptid, without modifying the breakpoint
3657 package's state. Locations of type bp_loc_other are only
3658 maintained at GDB side. So, there is no need to remove
3659 these bp_loc_other locations. Moreover, removing these
3660 would modify the breakpoint package's state. */
3661 if (bl->loc_type == bp_loc_other)
3662 continue;
3663
3664 if (bl->inserted)
3665 val |= remove_breakpoint_1 (bl, DETACH_BREAKPOINT);
3666 }
3667
3668 return val;
3669 }
3670
3671 /* Remove the breakpoint location BL from the current address space.
3672 Note that this is used to detach breakpoints from a child fork.
3673 When we get here, the child isn't in the inferior list, and neither
3674 do we have objects to represent its address space --- we should
3675 *not* look at bl->pspace->aspace here. */
3676
3677 static int
3678 remove_breakpoint_1 (struct bp_location *bl, enum remove_bp_reason reason)
3679 {
3680 int val;
3681
3682 /* BL is never in moribund_locations by our callers. */
3683 gdb_assert (bl->owner != NULL);
3684
3685 /* The type of none suggests that owner is actually deleted.
3686 This should not ever happen. */
3687 gdb_assert (bl->owner->type != bp_none);
3688
3689 if (bl->loc_type == bp_loc_software_breakpoint
3690 || bl->loc_type == bp_loc_hardware_breakpoint)
3691 {
3692 /* "Normal" instruction breakpoint: either the standard
3693 trap-instruction bp (bp_breakpoint), or a
3694 bp_hardware_breakpoint. */
3695
3696 /* First check to see if we have to handle an overlay. */
3697 if (overlay_debugging == ovly_off
3698 || bl->section == NULL
3699 || !(section_is_overlay (bl->section)))
3700 {
3701 /* No overlay handling: just remove the breakpoint. */
3702
3703 /* If we're trying to uninsert a memory breakpoint that we
3704 know is set in a dynamic object that is marked
3705 shlib_disabled, then either the dynamic object was
3706 removed with "remove-symbol-file" or with
3707 "nosharedlibrary". In the former case, we don't know
3708 whether another dynamic object might have loaded over the
3709 breakpoint's address -- the user might well let us know
3710 about it next with add-symbol-file (the whole point of
3711 add-symbol-file is letting the user manually maintain a
3712 list of dynamically loaded objects). If we have the
3713 breakpoint's shadow memory, that is, this is a software
3714 breakpoint managed by GDB, check whether the breakpoint
3715 is still inserted in memory, to avoid overwriting wrong
3716 code with stale saved shadow contents. Note that HW
3717 breakpoints don't have shadow memory, as they're
3718 implemented using a mechanism that is not dependent on
3719 being able to modify the target's memory, and as such
3720 they should always be removed. */
3721 if (bl->shlib_disabled
3722 && bl->target_info.shadow_len != 0
3723 && !memory_validate_breakpoint (bl->gdbarch, &bl->target_info))
3724 val = 0;
3725 else
3726 val = bl->owner->ops->remove_location (bl, reason);
3727 }
3728 else
3729 {
3730 /* This breakpoint is in an overlay section.
3731 Did we set a breakpoint at the LMA? */
3732 if (!overlay_events_enabled)
3733 {
3734 /* Yes -- overlay event support is not active, so we
3735 should have set a breakpoint at the LMA. Remove it.
3736 */
3737 /* Ignore any failures: if the LMA is in ROM, we will
3738 have already warned when we failed to insert it. */
3739 if (bl->loc_type == bp_loc_hardware_breakpoint)
3740 target_remove_hw_breakpoint (bl->gdbarch,
3741 &bl->overlay_target_info);
3742 else
3743 target_remove_breakpoint (bl->gdbarch,
3744 &bl->overlay_target_info,
3745 reason);
3746 }
3747 /* Did we set a breakpoint at the VMA?
3748 If so, we will have marked the breakpoint 'inserted'. */
3749 if (bl->inserted)
3750 {
3751 /* Yes -- remove it. Previously we did not bother to
3752 remove the breakpoint if the section had been
3753 unmapped, but let's not rely on that being safe. We
3754 don't know what the overlay manager might do. */
3755
3756 /* However, we should remove *software* breakpoints only
3757 if the section is still mapped, or else we overwrite
3758 wrong code with the saved shadow contents. */
3759 if (bl->loc_type == bp_loc_hardware_breakpoint
3760 || section_is_mapped (bl->section))
3761 val = bl->owner->ops->remove_location (bl, reason);
3762 else
3763 val = 0;
3764 }
3765 else
3766 {
3767 /* No -- not inserted, so no need to remove. No error. */
3768 val = 0;
3769 }
3770 }
3771
3772 /* In some cases, we might not be able to remove a breakpoint in
3773 a shared library that has already been removed, but we have
3774 not yet processed the shlib unload event. Similarly for an
3775 unloaded add-symbol-file object - the user might not yet have
3776 had the chance to remove-symbol-file it. shlib_disabled will
3777 be set if the library/object has already been removed, but
3778 the breakpoint hasn't been uninserted yet, e.g., after
3779 "nosharedlibrary" or "remove-symbol-file" with breakpoints
3780 always-inserted mode. */
3781 if (val
3782 && (bl->loc_type == bp_loc_software_breakpoint
3783 && (bl->shlib_disabled
3784 || solib_name_from_address (bl->pspace, bl->address)
3785 || shared_objfile_contains_address_p (bl->pspace,
3786 bl->address))))
3787 val = 0;
3788
3789 if (val)
3790 return val;
3791 bl->inserted = (reason == DETACH_BREAKPOINT);
3792 }
3793 else if (bl->loc_type == bp_loc_hardware_watchpoint)
3794 {
3795 gdb_assert (bl->owner->ops != NULL
3796 && bl->owner->ops->remove_location != NULL);
3797
3798 bl->inserted = (reason == DETACH_BREAKPOINT);
3799 bl->owner->ops->remove_location (bl, reason);
3800
3801 /* Failure to remove any of the hardware watchpoints comes here. */
3802 if (reason == REMOVE_BREAKPOINT && bl->inserted)
3803 warning (_("Could not remove hardware watchpoint %d."),
3804 bl->owner->number);
3805 }
3806 else if (bl->owner->type == bp_catchpoint
3807 && breakpoint_enabled (bl->owner)
3808 && !bl->duplicate)
3809 {
3810 gdb_assert (bl->owner->ops != NULL
3811 && bl->owner->ops->remove_location != NULL);
3812
3813 val = bl->owner->ops->remove_location (bl, reason);
3814 if (val)
3815 return val;
3816
3817 bl->inserted = (reason == DETACH_BREAKPOINT);
3818 }
3819
3820 return 0;
3821 }
3822
3823 static int
3824 remove_breakpoint (struct bp_location *bl)
3825 {
3826 /* BL is never in moribund_locations by our callers. */
3827 gdb_assert (bl->owner != NULL);
3828
3829 /* The type of none suggests that owner is actually deleted.
3830 This should not ever happen. */
3831 gdb_assert (bl->owner->type != bp_none);
3832
3833 scoped_restore_current_pspace_and_thread restore_pspace_thread;
3834
3835 switch_to_program_space_and_thread (bl->pspace);
3836
3837 return remove_breakpoint_1 (bl, REMOVE_BREAKPOINT);
3838 }
3839
3840 /* Clear the "inserted" flag in all breakpoints. */
3841
3842 void
3843 mark_breakpoints_out (void)
3844 {
3845 struct bp_location *bl, **blp_tmp;
3846
3847 ALL_BP_LOCATIONS (bl, blp_tmp)
3848 if (bl->pspace == current_program_space)
3849 bl->inserted = 0;
3850 }
3851
3852 /* Clear the "inserted" flag in all breakpoints and delete any
3853 breakpoints which should go away between runs of the program.
3854
3855 Plus other such housekeeping that has to be done for breakpoints
3856 between runs.
3857
3858 Note: this function gets called at the end of a run (by
3859 generic_mourn_inferior) and when a run begins (by
3860 init_wait_for_inferior). */
3861
3862
3863
3864 void
3865 breakpoint_init_inferior (enum inf_context context)
3866 {
3867 struct breakpoint *b, *b_tmp;
3868 struct bp_location *bl;
3869 int ix;
3870 struct program_space *pspace = current_program_space;
3871
3872 /* If breakpoint locations are shared across processes, then there's
3873 nothing to do. */
3874 if (gdbarch_has_global_breakpoints (target_gdbarch ()))
3875 return;
3876
3877 mark_breakpoints_out ();
3878
3879 ALL_BREAKPOINTS_SAFE (b, b_tmp)
3880 {
3881 if (b->loc && b->loc->pspace != pspace)
3882 continue;
3883
3884 switch (b->type)
3885 {
3886 case bp_call_dummy:
3887 case bp_longjmp_call_dummy:
3888
3889 /* If the call dummy breakpoint is at the entry point it will
3890 cause problems when the inferior is rerun, so we better get
3891 rid of it. */
3892
3893 case bp_watchpoint_scope:
3894
3895 /* Also get rid of scope breakpoints. */
3896
3897 case bp_shlib_event:
3898
3899 /* Also remove solib event breakpoints. Their addresses may
3900 have changed since the last time we ran the program.
3901 Actually we may now be debugging against different target;
3902 and so the solib backend that installed this breakpoint may
3903 not be used in by the target. E.g.,
3904
3905 (gdb) file prog-linux
3906 (gdb) run # native linux target
3907 ...
3908 (gdb) kill
3909 (gdb) file prog-win.exe
3910 (gdb) tar rem :9999 # remote Windows gdbserver.
3911 */
3912
3913 case bp_step_resume:
3914
3915 /* Also remove step-resume breakpoints. */
3916
3917 case bp_single_step:
3918
3919 /* Also remove single-step breakpoints. */
3920
3921 delete_breakpoint (b);
3922 break;
3923
3924 case bp_watchpoint:
3925 case bp_hardware_watchpoint:
3926 case bp_read_watchpoint:
3927 case bp_access_watchpoint:
3928 {
3929 struct watchpoint *w = (struct watchpoint *) b;
3930
3931 /* Likewise for watchpoints on local expressions. */
3932 if (w->exp_valid_block != NULL)
3933 delete_breakpoint (b);
3934 else
3935 {
3936 /* Get rid of existing locations, which are no longer
3937 valid. New ones will be created in
3938 update_watchpoint, when the inferior is restarted.
3939 The next update_global_location_list call will
3940 garbage collect them. */
3941 b->loc = NULL;
3942
3943 if (context == inf_starting)
3944 {
3945 /* Reset val field to force reread of starting value in
3946 insert_breakpoints. */
3947 w->val.reset (nullptr);
3948 w->val_valid = 0;
3949 }
3950 }
3951 }
3952 break;
3953 default:
3954 break;
3955 }
3956 }
3957
3958 /* Get rid of the moribund locations. */
3959 for (ix = 0; VEC_iterate (bp_location_p, moribund_locations, ix, bl); ++ix)
3960 decref_bp_location (&bl);
3961 VEC_free (bp_location_p, moribund_locations);
3962 }
3963
3964 /* These functions concern about actual breakpoints inserted in the
3965 target --- to e.g. check if we need to do decr_pc adjustment or if
3966 we need to hop over the bkpt --- so we check for address space
3967 match, not program space. */
3968
3969 /* breakpoint_here_p (PC) returns non-zero if an enabled breakpoint
3970 exists at PC. It returns ordinary_breakpoint_here if it's an
3971 ordinary breakpoint, or permanent_breakpoint_here if it's a
3972 permanent breakpoint.
3973 - When continuing from a location with an ordinary breakpoint, we
3974 actually single step once before calling insert_breakpoints.
3975 - When continuing from a location with a permanent breakpoint, we
3976 need to use the `SKIP_PERMANENT_BREAKPOINT' macro, provided by
3977 the target, to advance the PC past the breakpoint. */
3978
3979 enum breakpoint_here
3980 breakpoint_here_p (const address_space *aspace, CORE_ADDR pc)
3981 {
3982 struct bp_location *bl, **blp_tmp;
3983 int any_breakpoint_here = 0;
3984
3985 ALL_BP_LOCATIONS (bl, blp_tmp)
3986 {
3987 if (bl->loc_type != bp_loc_software_breakpoint
3988 && bl->loc_type != bp_loc_hardware_breakpoint)
3989 continue;
3990
3991 /* ALL_BP_LOCATIONS bp_location has BL->OWNER always non-NULL. */
3992 if ((breakpoint_enabled (bl->owner)
3993 || bl->permanent)
3994 && breakpoint_location_address_match (bl, aspace, pc))
3995 {
3996 if (overlay_debugging
3997 && section_is_overlay (bl->section)
3998 && !section_is_mapped (bl->section))
3999 continue; /* unmapped overlay -- can't be a match */
4000 else if (bl->permanent)
4001 return permanent_breakpoint_here;
4002 else
4003 any_breakpoint_here = 1;
4004 }
4005 }
4006
4007 return any_breakpoint_here ? ordinary_breakpoint_here : no_breakpoint_here;
4008 }
4009
4010 /* See breakpoint.h. */
4011
4012 int
4013 breakpoint_in_range_p (const address_space *aspace,
4014 CORE_ADDR addr, ULONGEST len)
4015 {
4016 struct bp_location *bl, **blp_tmp;
4017
4018 ALL_BP_LOCATIONS (bl, blp_tmp)
4019 {
4020 if (bl->loc_type != bp_loc_software_breakpoint
4021 && bl->loc_type != bp_loc_hardware_breakpoint)
4022 continue;
4023
4024 if ((breakpoint_enabled (bl->owner)
4025 || bl->permanent)
4026 && breakpoint_location_address_range_overlap (bl, aspace,
4027 addr, len))
4028 {
4029 if (overlay_debugging
4030 && section_is_overlay (bl->section)
4031 && !section_is_mapped (bl->section))
4032 {
4033 /* Unmapped overlay -- can't be a match. */
4034 continue;
4035 }
4036
4037 return 1;
4038 }
4039 }
4040
4041 return 0;
4042 }
4043
4044 /* Return true if there's a moribund breakpoint at PC. */
4045
4046 int
4047 moribund_breakpoint_here_p (const address_space *aspace, CORE_ADDR pc)
4048 {
4049 struct bp_location *loc;
4050 int ix;
4051
4052 for (ix = 0; VEC_iterate (bp_location_p, moribund_locations, ix, loc); ++ix)
4053 if (breakpoint_location_address_match (loc, aspace, pc))
4054 return 1;
4055
4056 return 0;
4057 }
4058
4059 /* Returns non-zero iff BL is inserted at PC, in address space
4060 ASPACE. */
4061
4062 static int
4063 bp_location_inserted_here_p (struct bp_location *bl,
4064 const address_space *aspace, CORE_ADDR pc)
4065 {
4066 if (bl->inserted
4067 && breakpoint_address_match (bl->pspace->aspace, bl->address,
4068 aspace, pc))
4069 {
4070 if (overlay_debugging
4071 && section_is_overlay (bl->section)
4072 && !section_is_mapped (bl->section))
4073 return 0; /* unmapped overlay -- can't be a match */
4074 else
4075 return 1;
4076 }
4077 return 0;
4078 }
4079
4080 /* Returns non-zero iff there's a breakpoint inserted at PC. */
4081
4082 int
4083 breakpoint_inserted_here_p (const address_space *aspace, CORE_ADDR pc)
4084 {
4085 struct bp_location **blp, **blp_tmp = NULL;
4086
4087 ALL_BP_LOCATIONS_AT_ADDR (blp, blp_tmp, pc)
4088 {
4089 struct bp_location *bl = *blp;
4090
4091 if (bl->loc_type != bp_loc_software_breakpoint
4092 && bl->loc_type != bp_loc_hardware_breakpoint)
4093 continue;
4094
4095 if (bp_location_inserted_here_p (bl, aspace, pc))
4096 return 1;
4097 }
4098 return 0;
4099 }
4100
4101 /* This function returns non-zero iff there is a software breakpoint
4102 inserted at PC. */
4103
4104 int
4105 software_breakpoint_inserted_here_p (const address_space *aspace,
4106 CORE_ADDR pc)
4107 {
4108 struct bp_location **blp, **blp_tmp = NULL;
4109
4110 ALL_BP_LOCATIONS_AT_ADDR (blp, blp_tmp, pc)
4111 {
4112 struct bp_location *bl = *blp;
4113
4114 if (bl->loc_type != bp_loc_software_breakpoint)
4115 continue;
4116
4117 if (bp_location_inserted_here_p (bl, aspace, pc))
4118 return 1;
4119 }
4120
4121 return 0;
4122 }
4123
4124 /* See breakpoint.h. */
4125
4126 int
4127 hardware_breakpoint_inserted_here_p (const address_space *aspace,
4128 CORE_ADDR pc)
4129 {
4130 struct bp_location **blp, **blp_tmp = NULL;
4131
4132 ALL_BP_LOCATIONS_AT_ADDR (blp, blp_tmp, pc)
4133 {
4134 struct bp_location *bl = *blp;
4135
4136 if (bl->loc_type != bp_loc_hardware_breakpoint)
4137 continue;
4138
4139 if (bp_location_inserted_here_p (bl, aspace, pc))
4140 return 1;
4141 }
4142
4143 return 0;
4144 }
4145
4146 int
4147 hardware_watchpoint_inserted_in_range (const address_space *aspace,
4148 CORE_ADDR addr, ULONGEST len)
4149 {
4150 struct breakpoint *bpt;
4151
4152 ALL_BREAKPOINTS (bpt)
4153 {
4154 struct bp_location *loc;
4155
4156 if (bpt->type != bp_hardware_watchpoint
4157 && bpt->type != bp_access_watchpoint)
4158 continue;
4159
4160 if (!breakpoint_enabled (bpt))
4161 continue;
4162
4163 for (loc = bpt->loc; loc; loc = loc->next)
4164 if (loc->pspace->aspace == aspace && loc->inserted)
4165 {
4166 CORE_ADDR l, h;
4167
4168 /* Check for intersection. */
4169 l = std::max<CORE_ADDR> (loc->address, addr);
4170 h = std::min<CORE_ADDR> (loc->address + loc->length, addr + len);
4171 if (l < h)
4172 return 1;
4173 }
4174 }
4175 return 0;
4176 }
4177 \f
4178
4179 /* bpstat stuff. External routines' interfaces are documented
4180 in breakpoint.h. */
4181
4182 int
4183 is_catchpoint (struct breakpoint *ep)
4184 {
4185 return (ep->type == bp_catchpoint);
4186 }
4187
4188 /* Frees any storage that is part of a bpstat. Does not walk the
4189 'next' chain. */
4190
4191 bpstats::~bpstats ()
4192 {
4193 if (bp_location_at != NULL)
4194 decref_bp_location (&bp_location_at);
4195 }
4196
4197 /* Clear a bpstat so that it says we are not at any breakpoint.
4198 Also free any storage that is part of a bpstat. */
4199
4200 void
4201 bpstat_clear (bpstat *bsp)
4202 {
4203 bpstat p;
4204 bpstat q;
4205
4206 if (bsp == 0)
4207 return;
4208 p = *bsp;
4209 while (p != NULL)
4210 {
4211 q = p->next;
4212 delete p;
4213 p = q;
4214 }
4215 *bsp = NULL;
4216 }
4217
4218 bpstats::bpstats (const bpstats &other)
4219 : next (NULL),
4220 bp_location_at (other.bp_location_at),
4221 breakpoint_at (other.breakpoint_at),
4222 commands (other.commands),
4223 print (other.print),
4224 stop (other.stop),
4225 print_it (other.print_it)
4226 {
4227 if (other.old_val != NULL)
4228 old_val = release_value (value_copy (other.old_val.get ()));
4229 incref_bp_location (bp_location_at);
4230 }
4231
4232 /* Return a copy of a bpstat. Like "bs1 = bs2" but all storage that
4233 is part of the bpstat is copied as well. */
4234
4235 bpstat
4236 bpstat_copy (bpstat bs)
4237 {
4238 bpstat p = NULL;
4239 bpstat tmp;
4240 bpstat retval = NULL;
4241
4242 if (bs == NULL)
4243 return bs;
4244
4245 for (; bs != NULL; bs = bs->next)
4246 {
4247 tmp = new bpstats (*bs);
4248
4249 if (p == NULL)
4250 /* This is the first thing in the chain. */
4251 retval = tmp;
4252 else
4253 p->next = tmp;
4254 p = tmp;
4255 }
4256 p->next = NULL;
4257 return retval;
4258 }
4259
4260 /* Find the bpstat associated with this breakpoint. */
4261
4262 bpstat
4263 bpstat_find_breakpoint (bpstat bsp, struct breakpoint *breakpoint)
4264 {
4265 if (bsp == NULL)
4266 return NULL;
4267
4268 for (; bsp != NULL; bsp = bsp->next)
4269 {
4270 if (bsp->breakpoint_at == breakpoint)
4271 return bsp;
4272 }
4273 return NULL;
4274 }
4275
4276 /* See breakpoint.h. */
4277
4278 int
4279 bpstat_explains_signal (bpstat bsp, enum gdb_signal sig)
4280 {
4281 for (; bsp != NULL; bsp = bsp->next)
4282 {
4283 if (bsp->breakpoint_at == NULL)
4284 {
4285 /* A moribund location can never explain a signal other than
4286 GDB_SIGNAL_TRAP. */
4287 if (sig == GDB_SIGNAL_TRAP)
4288 return 1;
4289 }
4290 else
4291 {
4292 if (bsp->breakpoint_at->ops->explains_signal (bsp->breakpoint_at,
4293 sig))
4294 return 1;
4295 }
4296 }
4297
4298 return 0;
4299 }
4300
4301 /* Put in *NUM the breakpoint number of the first breakpoint we are
4302 stopped at. *BSP upon return is a bpstat which points to the
4303 remaining breakpoints stopped at (but which is not guaranteed to be
4304 good for anything but further calls to bpstat_num).
4305
4306 Return 0 if passed a bpstat which does not indicate any breakpoints.
4307 Return -1 if stopped at a breakpoint that has been deleted since
4308 we set it.
4309 Return 1 otherwise. */
4310
4311 int
4312 bpstat_num (bpstat *bsp, int *num)
4313 {
4314 struct breakpoint *b;
4315
4316 if ((*bsp) == NULL)
4317 return 0; /* No more breakpoint values */
4318
4319 /* We assume we'll never have several bpstats that correspond to a
4320 single breakpoint -- otherwise, this function might return the
4321 same number more than once and this will look ugly. */
4322 b = (*bsp)->breakpoint_at;
4323 *bsp = (*bsp)->next;
4324 if (b == NULL)
4325 return -1; /* breakpoint that's been deleted since */
4326
4327 *num = b->number; /* We have its number */
4328 return 1;
4329 }
4330
4331 /* See breakpoint.h. */
4332
4333 void
4334 bpstat_clear_actions (void)
4335 {
4336 struct thread_info *tp;
4337 bpstat bs;
4338
4339 if (ptid_equal (inferior_ptid, null_ptid))
4340 return;
4341
4342 tp = find_thread_ptid (inferior_ptid);
4343 if (tp == NULL)
4344 return;
4345
4346 for (bs = tp->control.stop_bpstat; bs != NULL; bs = bs->next)
4347 {
4348 bs->commands = NULL;
4349 bs->old_val.reset (nullptr);
4350 }
4351 }
4352
4353 /* Called when a command is about to proceed the inferior. */
4354
4355 static void
4356 breakpoint_about_to_proceed (void)
4357 {
4358 if (!ptid_equal (inferior_ptid, null_ptid))
4359 {
4360 struct thread_info *tp = inferior_thread ();
4361
4362 /* Allow inferior function calls in breakpoint commands to not
4363 interrupt the command list. When the call finishes
4364 successfully, the inferior will be standing at the same
4365 breakpoint as if nothing happened. */
4366 if (tp->control.in_infcall)
4367 return;
4368 }
4369
4370 breakpoint_proceeded = 1;
4371 }
4372
4373 /* Return non-zero iff CMD as the first line of a command sequence is `silent'
4374 or its equivalent. */
4375
4376 static int
4377 command_line_is_silent (struct command_line *cmd)
4378 {
4379 return cmd && (strcmp ("silent", cmd->line) == 0);
4380 }
4381
4382 /* Execute all the commands associated with all the breakpoints at
4383 this location. Any of these commands could cause the process to
4384 proceed beyond this point, etc. We look out for such changes by
4385 checking the global "breakpoint_proceeded" after each command.
4386
4387 Returns true if a breakpoint command resumed the inferior. In that
4388 case, it is the caller's responsibility to recall it again with the
4389 bpstat of the current thread. */
4390
4391 static int
4392 bpstat_do_actions_1 (bpstat *bsp)
4393 {
4394 bpstat bs;
4395 int again = 0;
4396
4397 /* Avoid endless recursion if a `source' command is contained
4398 in bs->commands. */
4399 if (executing_breakpoint_commands)
4400 return 0;
4401
4402 scoped_restore save_executing
4403 = make_scoped_restore (&executing_breakpoint_commands, 1);
4404
4405 scoped_restore preventer = prevent_dont_repeat ();
4406
4407 /* This pointer will iterate over the list of bpstat's. */
4408 bs = *bsp;
4409
4410 breakpoint_proceeded = 0;
4411 for (; bs != NULL; bs = bs->next)
4412 {
4413 struct command_line *cmd = NULL;
4414
4415 /* Take ownership of the BSP's command tree, if it has one.
4416
4417 The command tree could legitimately contain commands like
4418 'step' and 'next', which call clear_proceed_status, which
4419 frees stop_bpstat's command tree. To make sure this doesn't
4420 free the tree we're executing out from under us, we need to
4421 take ownership of the tree ourselves. Since a given bpstat's
4422 commands are only executed once, we don't need to copy it; we
4423 can clear the pointer in the bpstat, and make sure we free
4424 the tree when we're done. */
4425 counted_command_line ccmd = bs->commands;
4426 bs->commands = NULL;
4427 if (ccmd != NULL)
4428 cmd = ccmd.get ();
4429 if (command_line_is_silent (cmd))
4430 {
4431 /* The action has been already done by bpstat_stop_status. */
4432 cmd = cmd->next;
4433 }
4434
4435 while (cmd != NULL)
4436 {
4437 execute_control_command (cmd);
4438
4439 if (breakpoint_proceeded)
4440 break;
4441 else
4442 cmd = cmd->next;
4443 }
4444
4445 if (breakpoint_proceeded)
4446 {
4447 if (current_ui->async)
4448 /* If we are in async mode, then the target might be still
4449 running, not stopped at any breakpoint, so nothing for
4450 us to do here -- just return to the event loop. */
4451 ;
4452 else
4453 /* In sync mode, when execute_control_command returns
4454 we're already standing on the next breakpoint.
4455 Breakpoint commands for that stop were not run, since
4456 execute_command does not run breakpoint commands --
4457 only command_line_handler does, but that one is not
4458 involved in execution of breakpoint commands. So, we
4459 can now execute breakpoint commands. It should be
4460 noted that making execute_command do bpstat actions is
4461 not an option -- in this case we'll have recursive
4462 invocation of bpstat for each breakpoint with a
4463 command, and can easily blow up GDB stack. Instead, we
4464 return true, which will trigger the caller to recall us
4465 with the new stop_bpstat. */
4466 again = 1;
4467 break;
4468 }
4469 }
4470 return again;
4471 }
4472
4473 void
4474 bpstat_do_actions (void)
4475 {
4476 struct cleanup *cleanup_if_error = make_bpstat_clear_actions_cleanup ();
4477
4478 /* Do any commands attached to breakpoint we are stopped at. */
4479 while (!ptid_equal (inferior_ptid, null_ptid)
4480 && target_has_execution
4481 && !is_exited (inferior_ptid)
4482 && !is_executing (inferior_ptid))
4483 /* Since in sync mode, bpstat_do_actions may resume the inferior,
4484 and only return when it is stopped at the next breakpoint, we
4485 keep doing breakpoint actions until it returns false to
4486 indicate the inferior was not resumed. */
4487 if (!bpstat_do_actions_1 (&inferior_thread ()->control.stop_bpstat))
4488 break;
4489
4490 discard_cleanups (cleanup_if_error);
4491 }
4492
4493 /* Print out the (old or new) value associated with a watchpoint. */
4494
4495 static void
4496 watchpoint_value_print (struct value *val, struct ui_file *stream)
4497 {
4498 if (val == NULL)
4499 fprintf_unfiltered (stream, _("<unreadable>"));
4500 else
4501 {
4502 struct value_print_options opts;
4503 get_user_print_options (&opts);
4504 value_print (val, stream, &opts);
4505 }
4506 }
4507
4508 /* Print the "Thread ID hit" part of "Thread ID hit Breakpoint N" if
4509 debugging multiple threads. */
4510
4511 void
4512 maybe_print_thread_hit_breakpoint (struct ui_out *uiout)
4513 {
4514 if (uiout->is_mi_like_p ())
4515 return;
4516
4517 uiout->text ("\n");
4518
4519 if (show_thread_that_caused_stop ())
4520 {
4521 const char *name;
4522 struct thread_info *thr = inferior_thread ();
4523
4524 uiout->text ("Thread ");
4525 uiout->field_fmt ("thread-id", "%s", print_thread_id (thr));
4526
4527 name = thr->name != NULL ? thr->name : target_thread_name (thr);
4528 if (name != NULL)
4529 {
4530 uiout->text (" \"");
4531 uiout->field_fmt ("name", "%s", name);
4532 uiout->text ("\"");
4533 }
4534
4535 uiout->text (" hit ");
4536 }
4537 }
4538
4539 /* Generic routine for printing messages indicating why we
4540 stopped. The behavior of this function depends on the value
4541 'print_it' in the bpstat structure. Under some circumstances we
4542 may decide not to print anything here and delegate the task to
4543 normal_stop(). */
4544
4545 static enum print_stop_action
4546 print_bp_stop_message (bpstat bs)
4547 {
4548 switch (bs->print_it)
4549 {
4550 case print_it_noop:
4551 /* Nothing should be printed for this bpstat entry. */
4552 return PRINT_UNKNOWN;
4553 break;
4554
4555 case print_it_done:
4556 /* We still want to print the frame, but we already printed the
4557 relevant messages. */
4558 return PRINT_SRC_AND_LOC;
4559 break;
4560
4561 case print_it_normal:
4562 {
4563 struct breakpoint *b = bs->breakpoint_at;
4564
4565 /* bs->breakpoint_at can be NULL if it was a momentary breakpoint
4566 which has since been deleted. */
4567 if (b == NULL)
4568 return PRINT_UNKNOWN;
4569
4570 /* Normal case. Call the breakpoint's print_it method. */
4571 return b->ops->print_it (bs);
4572 }
4573 break;
4574
4575 default:
4576 internal_error (__FILE__, __LINE__,
4577 _("print_bp_stop_message: unrecognized enum value"));
4578 break;
4579 }
4580 }
4581
4582 /* A helper function that prints a shared library stopped event. */
4583
4584 static void
4585 print_solib_event (int is_catchpoint)
4586 {
4587 bool any_deleted = !current_program_space->deleted_solibs.empty ();
4588 int any_added
4589 = !VEC_empty (so_list_ptr, current_program_space->added_solibs);
4590
4591 if (!is_catchpoint)
4592 {
4593 if (any_added || any_deleted)
4594 current_uiout->text (_("Stopped due to shared library event:\n"));
4595 else
4596 current_uiout->text (_("Stopped due to shared library event (no "
4597 "libraries added or removed)\n"));
4598 }
4599
4600 if (current_uiout->is_mi_like_p ())
4601 current_uiout->field_string ("reason",
4602 async_reason_lookup (EXEC_ASYNC_SOLIB_EVENT));
4603
4604 if (any_deleted)
4605 {
4606 current_uiout->text (_(" Inferior unloaded "));
4607 ui_out_emit_list list_emitter (current_uiout, "removed");
4608 for (int ix = 0; ix < current_program_space->deleted_solibs.size (); ix++)
4609 {
4610 const std::string &name = current_program_space->deleted_solibs[ix];
4611
4612 if (ix > 0)
4613 current_uiout->text (" ");
4614 current_uiout->field_string ("library", name);
4615 current_uiout->text ("\n");
4616 }
4617 }
4618
4619 if (any_added)
4620 {
4621 struct so_list *iter;
4622 int ix;
4623
4624 current_uiout->text (_(" Inferior loaded "));
4625 ui_out_emit_list list_emitter (current_uiout, "added");
4626 for (ix = 0;
4627 VEC_iterate (so_list_ptr, current_program_space->added_solibs,
4628 ix, iter);
4629 ++ix)
4630 {
4631 if (ix > 0)
4632 current_uiout->text (" ");
4633 current_uiout->field_string ("library", iter->so_name);
4634 current_uiout->text ("\n");
4635 }
4636 }
4637 }
4638
4639 /* Print a message indicating what happened. This is called from
4640 normal_stop(). The input to this routine is the head of the bpstat
4641 list - a list of the eventpoints that caused this stop. KIND is
4642 the target_waitkind for the stopping event. This
4643 routine calls the generic print routine for printing a message
4644 about reasons for stopping. This will print (for example) the
4645 "Breakpoint n," part of the output. The return value of this
4646 routine is one of:
4647
4648 PRINT_UNKNOWN: Means we printed nothing.
4649 PRINT_SRC_AND_LOC: Means we printed something, and expect subsequent
4650 code to print the location. An example is
4651 "Breakpoint 1, " which should be followed by
4652 the location.
4653 PRINT_SRC_ONLY: Means we printed something, but there is no need
4654 to also print the location part of the message.
4655 An example is the catch/throw messages, which
4656 don't require a location appended to the end.
4657 PRINT_NOTHING: We have done some printing and we don't need any
4658 further info to be printed. */
4659
4660 enum print_stop_action
4661 bpstat_print (bpstat bs, int kind)
4662 {
4663 enum print_stop_action val;
4664
4665 /* Maybe another breakpoint in the chain caused us to stop.
4666 (Currently all watchpoints go on the bpstat whether hit or not.
4667 That probably could (should) be changed, provided care is taken
4668 with respect to bpstat_explains_signal). */
4669 for (; bs; bs = bs->next)
4670 {
4671 val = print_bp_stop_message (bs);
4672 if (val == PRINT_SRC_ONLY
4673 || val == PRINT_SRC_AND_LOC
4674 || val == PRINT_NOTHING)
4675 return val;
4676 }
4677
4678 /* If we had hit a shared library event breakpoint,
4679 print_bp_stop_message would print out this message. If we hit an
4680 OS-level shared library event, do the same thing. */
4681 if (kind == TARGET_WAITKIND_LOADED)
4682 {
4683 print_solib_event (0);
4684 return PRINT_NOTHING;
4685 }
4686
4687 /* We reached the end of the chain, or we got a null BS to start
4688 with and nothing was printed. */
4689 return PRINT_UNKNOWN;
4690 }
4691
4692 /* Evaluate the boolean expression EXP and return the result. */
4693
4694 static bool
4695 breakpoint_cond_eval (expression *exp)
4696 {
4697 struct value *mark = value_mark ();
4698 bool res = value_true (evaluate_expression (exp));
4699
4700 value_free_to_mark (mark);
4701 return res;
4702 }
4703
4704 /* Allocate a new bpstat. Link it to the FIFO list by BS_LINK_POINTER. */
4705
4706 bpstats::bpstats (struct bp_location *bl, bpstat **bs_link_pointer)
4707 : next (NULL),
4708 bp_location_at (bl),
4709 breakpoint_at (bl->owner),
4710 commands (NULL),
4711 print (0),
4712 stop (0),
4713 print_it (print_it_normal)
4714 {
4715 incref_bp_location (bl);
4716 **bs_link_pointer = this;
4717 *bs_link_pointer = &next;
4718 }
4719
4720 bpstats::bpstats ()
4721 : next (NULL),
4722 bp_location_at (NULL),
4723 breakpoint_at (NULL),
4724 commands (NULL),
4725 print (0),
4726 stop (0),
4727 print_it (print_it_normal)
4728 {
4729 }
4730 \f
4731 /* The target has stopped with waitstatus WS. Check if any hardware
4732 watchpoints have triggered, according to the target. */
4733
4734 int
4735 watchpoints_triggered (struct target_waitstatus *ws)
4736 {
4737 int stopped_by_watchpoint = target_stopped_by_watchpoint ();
4738 CORE_ADDR addr;
4739 struct breakpoint *b;
4740
4741 if (!stopped_by_watchpoint)
4742 {
4743 /* We were not stopped by a watchpoint. Mark all watchpoints
4744 as not triggered. */
4745 ALL_BREAKPOINTS (b)
4746 if (is_hardware_watchpoint (b))
4747 {
4748 struct watchpoint *w = (struct watchpoint *) b;
4749
4750 w->watchpoint_triggered = watch_triggered_no;
4751 }
4752
4753 return 0;
4754 }
4755
4756 if (!target_stopped_data_address (&current_target, &addr))
4757 {
4758 /* We were stopped by a watchpoint, but we don't know where.
4759 Mark all watchpoints as unknown. */
4760 ALL_BREAKPOINTS (b)
4761 if (is_hardware_watchpoint (b))
4762 {
4763 struct watchpoint *w = (struct watchpoint *) b;
4764
4765 w->watchpoint_triggered = watch_triggered_unknown;
4766 }
4767
4768 return 1;
4769 }
4770
4771 /* The target could report the data address. Mark watchpoints
4772 affected by this data address as triggered, and all others as not
4773 triggered. */
4774
4775 ALL_BREAKPOINTS (b)
4776 if (is_hardware_watchpoint (b))
4777 {
4778 struct watchpoint *w = (struct watchpoint *) b;
4779 struct bp_location *loc;
4780
4781 w->watchpoint_triggered = watch_triggered_no;
4782 for (loc = b->loc; loc; loc = loc->next)
4783 {
4784 if (is_masked_watchpoint (b))
4785 {
4786 CORE_ADDR newaddr = addr & w->hw_wp_mask;
4787 CORE_ADDR start = loc->address & w->hw_wp_mask;
4788
4789 if (newaddr == start)
4790 {
4791 w->watchpoint_triggered = watch_triggered_yes;
4792 break;
4793 }
4794 }
4795 /* Exact match not required. Within range is sufficient. */
4796 else if (target_watchpoint_addr_within_range (&current_target,
4797 addr, loc->address,
4798 loc->length))
4799 {
4800 w->watchpoint_triggered = watch_triggered_yes;
4801 break;
4802 }
4803 }
4804 }
4805
4806 return 1;
4807 }
4808
4809 /* Possible return values for watchpoint_check. */
4810 enum wp_check_result
4811 {
4812 /* The watchpoint has been deleted. */
4813 WP_DELETED = 1,
4814
4815 /* The value has changed. */
4816 WP_VALUE_CHANGED = 2,
4817
4818 /* The value has not changed. */
4819 WP_VALUE_NOT_CHANGED = 3,
4820
4821 /* Ignore this watchpoint, no matter if the value changed or not. */
4822 WP_IGNORE = 4,
4823 };
4824
4825 #define BP_TEMPFLAG 1
4826 #define BP_HARDWAREFLAG 2
4827
4828 /* Evaluate watchpoint condition expression and check if its value
4829 changed. */
4830
4831 static wp_check_result
4832 watchpoint_check (bpstat bs)
4833 {
4834 struct watchpoint *b;
4835 struct frame_info *fr;
4836 int within_current_scope;
4837
4838 /* BS is built from an existing struct breakpoint. */
4839 gdb_assert (bs->breakpoint_at != NULL);
4840 b = (struct watchpoint *) bs->breakpoint_at;
4841
4842 /* If this is a local watchpoint, we only want to check if the
4843 watchpoint frame is in scope if the current thread is the thread
4844 that was used to create the watchpoint. */
4845 if (!watchpoint_in_thread_scope (b))
4846 return WP_IGNORE;
4847
4848 if (b->exp_valid_block == NULL)
4849 within_current_scope = 1;
4850 else
4851 {
4852 struct frame_info *frame = get_current_frame ();
4853 struct gdbarch *frame_arch = get_frame_arch (frame);
4854 CORE_ADDR frame_pc = get_frame_pc (frame);
4855
4856 /* stack_frame_destroyed_p() returns a non-zero value if we're
4857 still in the function but the stack frame has already been
4858 invalidated. Since we can't rely on the values of local
4859 variables after the stack has been destroyed, we are treating
4860 the watchpoint in that state as `not changed' without further
4861 checking. Don't mark watchpoints as changed if the current
4862 frame is in an epilogue - even if they are in some other
4863 frame, our view of the stack is likely to be wrong and
4864 frame_find_by_id could error out. */
4865 if (gdbarch_stack_frame_destroyed_p (frame_arch, frame_pc))
4866 return WP_IGNORE;
4867
4868 fr = frame_find_by_id (b->watchpoint_frame);
4869 within_current_scope = (fr != NULL);
4870
4871 /* If we've gotten confused in the unwinder, we might have
4872 returned a frame that can't describe this variable. */
4873 if (within_current_scope)
4874 {
4875 struct symbol *function;
4876
4877 function = get_frame_function (fr);
4878 if (function == NULL
4879 || !contained_in (b->exp_valid_block,
4880 SYMBOL_BLOCK_VALUE (function)))
4881 within_current_scope = 0;
4882 }
4883
4884 if (within_current_scope)
4885 /* If we end up stopping, the current frame will get selected
4886 in normal_stop. So this call to select_frame won't affect
4887 the user. */
4888 select_frame (fr);
4889 }
4890
4891 if (within_current_scope)
4892 {
4893 /* We use value_{,free_to_}mark because it could be a *long*
4894 time before we return to the command level and call
4895 free_all_values. We can't call free_all_values because we
4896 might be in the middle of evaluating a function call. */
4897
4898 int pc = 0;
4899 struct value *mark;
4900 struct value *new_val;
4901
4902 if (is_masked_watchpoint (b))
4903 /* Since we don't know the exact trigger address (from
4904 stopped_data_address), just tell the user we've triggered
4905 a mask watchpoint. */
4906 return WP_VALUE_CHANGED;
4907
4908 mark = value_mark ();
4909 fetch_subexp_value (b->exp.get (), &pc, &new_val, NULL, NULL, 0);
4910
4911 if (b->val_bitsize != 0)
4912 new_val = extract_bitfield_from_watchpoint_value (b, new_val);
4913
4914 /* We use value_equal_contents instead of value_equal because
4915 the latter coerces an array to a pointer, thus comparing just
4916 the address of the array instead of its contents. This is
4917 not what we want. */
4918 if ((b->val != NULL) != (new_val != NULL)
4919 || (b->val != NULL && !value_equal_contents (b->val.get (),
4920 new_val)))
4921 {
4922 bs->old_val = b->val;
4923 b->val = release_value (new_val);
4924 b->val_valid = 1;
4925 if (new_val != NULL)
4926 value_free_to_mark (mark);
4927 return WP_VALUE_CHANGED;
4928 }
4929 else
4930 {
4931 /* Nothing changed. */
4932 value_free_to_mark (mark);
4933 return WP_VALUE_NOT_CHANGED;
4934 }
4935 }
4936 else
4937 {
4938 /* This seems like the only logical thing to do because
4939 if we temporarily ignored the watchpoint, then when
4940 we reenter the block in which it is valid it contains
4941 garbage (in the case of a function, it may have two
4942 garbage values, one before and one after the prologue).
4943 So we can't even detect the first assignment to it and
4944 watch after that (since the garbage may or may not equal
4945 the first value assigned). */
4946 /* We print all the stop information in
4947 breakpoint_ops->print_it, but in this case, by the time we
4948 call breakpoint_ops->print_it this bp will be deleted
4949 already. So we have no choice but print the information
4950 here. */
4951
4952 SWITCH_THRU_ALL_UIS ()
4953 {
4954 struct ui_out *uiout = current_uiout;
4955
4956 if (uiout->is_mi_like_p ())
4957 uiout->field_string
4958 ("reason", async_reason_lookup (EXEC_ASYNC_WATCHPOINT_SCOPE));
4959 uiout->text ("\nWatchpoint ");
4960 uiout->field_int ("wpnum", b->number);
4961 uiout->text (" deleted because the program has left the block in\n"
4962 "which its expression is valid.\n");
4963 }
4964
4965 /* Make sure the watchpoint's commands aren't executed. */
4966 b->commands = NULL;
4967 watchpoint_del_at_next_stop (b);
4968
4969 return WP_DELETED;
4970 }
4971 }
4972
4973 /* Return true if it looks like target has stopped due to hitting
4974 breakpoint location BL. This function does not check if we should
4975 stop, only if BL explains the stop. */
4976
4977 static int
4978 bpstat_check_location (const struct bp_location *bl,
4979 const address_space *aspace, CORE_ADDR bp_addr,
4980 const struct target_waitstatus *ws)
4981 {
4982 struct breakpoint *b = bl->owner;
4983
4984 /* BL is from an existing breakpoint. */
4985 gdb_assert (b != NULL);
4986
4987 return b->ops->breakpoint_hit (bl, aspace, bp_addr, ws);
4988 }
4989
4990 /* Determine if the watched values have actually changed, and we
4991 should stop. If not, set BS->stop to 0. */
4992
4993 static void
4994 bpstat_check_watchpoint (bpstat bs)
4995 {
4996 const struct bp_location *bl;
4997 struct watchpoint *b;
4998
4999 /* BS is built for existing struct breakpoint. */
5000 bl = bs->bp_location_at;
5001 gdb_assert (bl != NULL);
5002 b = (struct watchpoint *) bs->breakpoint_at;
5003 gdb_assert (b != NULL);
5004
5005 {
5006 int must_check_value = 0;
5007
5008 if (b->type == bp_watchpoint)
5009 /* For a software watchpoint, we must always check the
5010 watched value. */
5011 must_check_value = 1;
5012 else if (b->watchpoint_triggered == watch_triggered_yes)
5013 /* We have a hardware watchpoint (read, write, or access)
5014 and the target earlier reported an address watched by
5015 this watchpoint. */
5016 must_check_value = 1;
5017 else if (b->watchpoint_triggered == watch_triggered_unknown
5018 && b->type == bp_hardware_watchpoint)
5019 /* We were stopped by a hardware watchpoint, but the target could
5020 not report the data address. We must check the watchpoint's
5021 value. Access and read watchpoints are out of luck; without
5022 a data address, we can't figure it out. */
5023 must_check_value = 1;
5024
5025 if (must_check_value)
5026 {
5027 wp_check_result e;
5028
5029 TRY
5030 {
5031 e = watchpoint_check (bs);
5032 }
5033 CATCH (ex, RETURN_MASK_ALL)
5034 {
5035 exception_fprintf (gdb_stderr, ex,
5036 "Error evaluating expression "
5037 "for watchpoint %d\n",
5038 b->number);
5039
5040 SWITCH_THRU_ALL_UIS ()
5041 {
5042 printf_filtered (_("Watchpoint %d deleted.\n"),
5043 b->number);
5044 }
5045 watchpoint_del_at_next_stop (b);
5046 e = WP_DELETED;
5047 }
5048 END_CATCH
5049
5050 switch (e)
5051 {
5052 case WP_DELETED:
5053 /* We've already printed what needs to be printed. */
5054 bs->print_it = print_it_done;
5055 /* Stop. */
5056 break;
5057 case WP_IGNORE:
5058 bs->print_it = print_it_noop;
5059 bs->stop = 0;
5060 break;
5061 case WP_VALUE_CHANGED:
5062 if (b->type == bp_read_watchpoint)
5063 {
5064 /* There are two cases to consider here:
5065
5066 1. We're watching the triggered memory for reads.
5067 In that case, trust the target, and always report
5068 the watchpoint hit to the user. Even though
5069 reads don't cause value changes, the value may
5070 have changed since the last time it was read, and
5071 since we're not trapping writes, we will not see
5072 those, and as such we should ignore our notion of
5073 old value.
5074
5075 2. We're watching the triggered memory for both
5076 reads and writes. There are two ways this may
5077 happen:
5078
5079 2.1. This is a target that can't break on data
5080 reads only, but can break on accesses (reads or
5081 writes), such as e.g., x86. We detect this case
5082 at the time we try to insert read watchpoints.
5083
5084 2.2. Otherwise, the target supports read
5085 watchpoints, but, the user set an access or write
5086 watchpoint watching the same memory as this read
5087 watchpoint.
5088
5089 If we're watching memory writes as well as reads,
5090 ignore watchpoint hits when we find that the
5091 value hasn't changed, as reads don't cause
5092 changes. This still gives false positives when
5093 the program writes the same value to memory as
5094 what there was already in memory (we will confuse
5095 it for a read), but it's much better than
5096 nothing. */
5097
5098 int other_write_watchpoint = 0;
5099
5100 if (bl->watchpoint_type == hw_read)
5101 {
5102 struct breakpoint *other_b;
5103
5104 ALL_BREAKPOINTS (other_b)
5105 if (other_b->type == bp_hardware_watchpoint
5106 || other_b->type == bp_access_watchpoint)
5107 {
5108 struct watchpoint *other_w =
5109 (struct watchpoint *) other_b;
5110
5111 if (other_w->watchpoint_triggered
5112 == watch_triggered_yes)
5113 {
5114 other_write_watchpoint = 1;
5115 break;
5116 }
5117 }
5118 }
5119
5120 if (other_write_watchpoint
5121 || bl->watchpoint_type == hw_access)
5122 {
5123 /* We're watching the same memory for writes,
5124 and the value changed since the last time we
5125 updated it, so this trap must be for a write.
5126 Ignore it. */
5127 bs->print_it = print_it_noop;
5128 bs->stop = 0;
5129 }
5130 }
5131 break;
5132 case WP_VALUE_NOT_CHANGED:
5133 if (b->type == bp_hardware_watchpoint
5134 || b->type == bp_watchpoint)
5135 {
5136 /* Don't stop: write watchpoints shouldn't fire if
5137 the value hasn't changed. */
5138 bs->print_it = print_it_noop;
5139 bs->stop = 0;
5140 }
5141 /* Stop. */
5142 break;
5143 default:
5144 /* Can't happen. */
5145 break;
5146 }
5147 }
5148 else /* must_check_value == 0 */
5149 {
5150 /* This is a case where some watchpoint(s) triggered, but
5151 not at the address of this watchpoint, or else no
5152 watchpoint triggered after all. So don't print
5153 anything for this watchpoint. */
5154 bs->print_it = print_it_noop;
5155 bs->stop = 0;
5156 }
5157 }
5158 }
5159
5160 /* For breakpoints that are currently marked as telling gdb to stop,
5161 check conditions (condition proper, frame, thread and ignore count)
5162 of breakpoint referred to by BS. If we should not stop for this
5163 breakpoint, set BS->stop to 0. */
5164
5165 static void
5166 bpstat_check_breakpoint_conditions (bpstat bs, ptid_t ptid)
5167 {
5168 const struct bp_location *bl;
5169 struct breakpoint *b;
5170 /* Assume stop. */
5171 bool condition_result = true;
5172 struct expression *cond;
5173
5174 gdb_assert (bs->stop);
5175
5176 /* BS is built for existing struct breakpoint. */
5177 bl = bs->bp_location_at;
5178 gdb_assert (bl != NULL);
5179 b = bs->breakpoint_at;
5180 gdb_assert (b != NULL);
5181
5182 /* Even if the target evaluated the condition on its end and notified GDB, we
5183 need to do so again since GDB does not know if we stopped due to a
5184 breakpoint or a single step breakpoint. */
5185
5186 if (frame_id_p (b->frame_id)
5187 && !frame_id_eq (b->frame_id, get_stack_frame_id (get_current_frame ())))
5188 {
5189 bs->stop = 0;
5190 return;
5191 }
5192
5193 /* If this is a thread/task-specific breakpoint, don't waste cpu
5194 evaluating the condition if this isn't the specified
5195 thread/task. */
5196 if ((b->thread != -1 && b->thread != ptid_to_global_thread_id (ptid))
5197 || (b->task != 0 && b->task != ada_get_task_number (ptid)))
5198
5199 {
5200 bs->stop = 0;
5201 return;
5202 }
5203
5204 /* Evaluate extension language breakpoints that have a "stop" method
5205 implemented. */
5206 bs->stop = breakpoint_ext_lang_cond_says_stop (b);
5207
5208 if (is_watchpoint (b))
5209 {
5210 struct watchpoint *w = (struct watchpoint *) b;
5211
5212 cond = w->cond_exp.get ();
5213 }
5214 else
5215 cond = bl->cond.get ();
5216
5217 if (cond && b->disposition != disp_del_at_next_stop)
5218 {
5219 int within_current_scope = 1;
5220 struct watchpoint * w;
5221
5222 /* We use value_mark and value_free_to_mark because it could
5223 be a long time before we return to the command level and
5224 call free_all_values. We can't call free_all_values
5225 because we might be in the middle of evaluating a
5226 function call. */
5227 struct value *mark = value_mark ();
5228
5229 if (is_watchpoint (b))
5230 w = (struct watchpoint *) b;
5231 else
5232 w = NULL;
5233
5234 /* Need to select the frame, with all that implies so that
5235 the conditions will have the right context. Because we
5236 use the frame, we will not see an inlined function's
5237 variables when we arrive at a breakpoint at the start
5238 of the inlined function; the current frame will be the
5239 call site. */
5240 if (w == NULL || w->cond_exp_valid_block == NULL)
5241 select_frame (get_current_frame ());
5242 else
5243 {
5244 struct frame_info *frame;
5245
5246 /* For local watchpoint expressions, which particular
5247 instance of a local is being watched matters, so we
5248 keep track of the frame to evaluate the expression
5249 in. To evaluate the condition however, it doesn't
5250 really matter which instantiation of the function
5251 where the condition makes sense triggers the
5252 watchpoint. This allows an expression like "watch
5253 global if q > 10" set in `func', catch writes to
5254 global on all threads that call `func', or catch
5255 writes on all recursive calls of `func' by a single
5256 thread. We simply always evaluate the condition in
5257 the innermost frame that's executing where it makes
5258 sense to evaluate the condition. It seems
5259 intuitive. */
5260 frame = block_innermost_frame (w->cond_exp_valid_block);
5261 if (frame != NULL)
5262 select_frame (frame);
5263 else
5264 within_current_scope = 0;
5265 }
5266 if (within_current_scope)
5267 {
5268 TRY
5269 {
5270 condition_result = breakpoint_cond_eval (cond);
5271 }
5272 CATCH (ex, RETURN_MASK_ALL)
5273 {
5274 exception_fprintf (gdb_stderr, ex,
5275 "Error in testing breakpoint condition:\n");
5276 }
5277 END_CATCH
5278 }
5279 else
5280 {
5281 warning (_("Watchpoint condition cannot be tested "
5282 "in the current scope"));
5283 /* If we failed to set the right context for this
5284 watchpoint, unconditionally report it. */
5285 }
5286 /* FIXME-someday, should give breakpoint #. */
5287 value_free_to_mark (mark);
5288 }
5289
5290 if (cond && !condition_result)
5291 {
5292 bs->stop = 0;
5293 }
5294 else if (b->ignore_count > 0)
5295 {
5296 b->ignore_count--;
5297 bs->stop = 0;
5298 /* Increase the hit count even though we don't stop. */
5299 ++(b->hit_count);
5300 gdb::observers::breakpoint_modified.notify (b);
5301 }
5302 }
5303
5304 /* Returns true if we need to track moribund locations of LOC's type
5305 on the current target. */
5306
5307 static int
5308 need_moribund_for_location_type (struct bp_location *loc)
5309 {
5310 return ((loc->loc_type == bp_loc_software_breakpoint
5311 && !target_supports_stopped_by_sw_breakpoint ())
5312 || (loc->loc_type == bp_loc_hardware_breakpoint
5313 && !target_supports_stopped_by_hw_breakpoint ()));
5314 }
5315
5316
5317 /* Get a bpstat associated with having just stopped at address
5318 BP_ADDR in thread PTID.
5319
5320 Determine whether we stopped at a breakpoint, etc, or whether we
5321 don't understand this stop. Result is a chain of bpstat's such
5322 that:
5323
5324 if we don't understand the stop, the result is a null pointer.
5325
5326 if we understand why we stopped, the result is not null.
5327
5328 Each element of the chain refers to a particular breakpoint or
5329 watchpoint at which we have stopped. (We may have stopped for
5330 several reasons concurrently.)
5331
5332 Each element of the chain has valid next, breakpoint_at,
5333 commands, FIXME??? fields. */
5334
5335 bpstat
5336 bpstat_stop_status (const address_space *aspace,
5337 CORE_ADDR bp_addr, ptid_t ptid,
5338 const struct target_waitstatus *ws)
5339 {
5340 struct breakpoint *b = NULL;
5341 struct bp_location *bl;
5342 struct bp_location *loc;
5343 /* First item of allocated bpstat's. */
5344 bpstat bs_head = NULL, *bs_link = &bs_head;
5345 /* Pointer to the last thing in the chain currently. */
5346 bpstat bs;
5347 int ix;
5348 int need_remove_insert;
5349 int removed_any;
5350
5351 /* First, build the bpstat chain with locations that explain a
5352 target stop, while being careful to not set the target running,
5353 as that may invalidate locations (in particular watchpoint
5354 locations are recreated). Resuming will happen here with
5355 breakpoint conditions or watchpoint expressions that include
5356 inferior function calls. */
5357
5358 ALL_BREAKPOINTS (b)
5359 {
5360 if (!breakpoint_enabled (b))
5361 continue;
5362
5363 for (bl = b->loc; bl != NULL; bl = bl->next)
5364 {
5365 /* For hardware watchpoints, we look only at the first
5366 location. The watchpoint_check function will work on the
5367 entire expression, not the individual locations. For
5368 read watchpoints, the watchpoints_triggered function has
5369 checked all locations already. */
5370 if (b->type == bp_hardware_watchpoint && bl != b->loc)
5371 break;
5372
5373 if (!bl->enabled || bl->shlib_disabled)
5374 continue;
5375
5376 if (!bpstat_check_location (bl, aspace, bp_addr, ws))
5377 continue;
5378
5379 /* Come here if it's a watchpoint, or if the break address
5380 matches. */
5381
5382 bs = new bpstats (bl, &bs_link); /* Alloc a bpstat to
5383 explain stop. */
5384
5385 /* Assume we stop. Should we find a watchpoint that is not
5386 actually triggered, or if the condition of the breakpoint
5387 evaluates as false, we'll reset 'stop' to 0. */
5388 bs->stop = 1;
5389 bs->print = 1;
5390
5391 /* If this is a scope breakpoint, mark the associated
5392 watchpoint as triggered so that we will handle the
5393 out-of-scope event. We'll get to the watchpoint next
5394 iteration. */
5395 if (b->type == bp_watchpoint_scope && b->related_breakpoint != b)
5396 {
5397 struct watchpoint *w = (struct watchpoint *) b->related_breakpoint;
5398
5399 w->watchpoint_triggered = watch_triggered_yes;
5400 }
5401 }
5402 }
5403
5404 /* Check if a moribund breakpoint explains the stop. */
5405 if (!target_supports_stopped_by_sw_breakpoint ()
5406 || !target_supports_stopped_by_hw_breakpoint ())
5407 {
5408 for (ix = 0; VEC_iterate (bp_location_p, moribund_locations, ix, loc); ++ix)
5409 {
5410 if (breakpoint_location_address_match (loc, aspace, bp_addr)
5411 && need_moribund_for_location_type (loc))
5412 {
5413 bs = new bpstats (loc, &bs_link);
5414 /* For hits of moribund locations, we should just proceed. */
5415 bs->stop = 0;
5416 bs->print = 0;
5417 bs->print_it = print_it_noop;
5418 }
5419 }
5420 }
5421
5422 /* A bit of special processing for shlib breakpoints. We need to
5423 process solib loading here, so that the lists of loaded and
5424 unloaded libraries are correct before we handle "catch load" and
5425 "catch unload". */
5426 for (bs = bs_head; bs != NULL; bs = bs->next)
5427 {
5428 if (bs->breakpoint_at && bs->breakpoint_at->type == bp_shlib_event)
5429 {
5430 handle_solib_event ();
5431 break;
5432 }
5433 }
5434
5435 /* Now go through the locations that caused the target to stop, and
5436 check whether we're interested in reporting this stop to higher
5437 layers, or whether we should resume the target transparently. */
5438
5439 removed_any = 0;
5440
5441 for (bs = bs_head; bs != NULL; bs = bs->next)
5442 {
5443 if (!bs->stop)
5444 continue;
5445
5446 b = bs->breakpoint_at;
5447 b->ops->check_status (bs);
5448 if (bs->stop)
5449 {
5450 bpstat_check_breakpoint_conditions (bs, ptid);
5451
5452 if (bs->stop)
5453 {
5454 ++(b->hit_count);
5455 gdb::observers::breakpoint_modified.notify (b);
5456
5457 /* We will stop here. */
5458 if (b->disposition == disp_disable)
5459 {
5460 --(b->enable_count);
5461 if (b->enable_count <= 0)
5462 b->enable_state = bp_disabled;
5463 removed_any = 1;
5464 }
5465 if (b->silent)
5466 bs->print = 0;
5467 bs->commands = b->commands;
5468 if (command_line_is_silent (bs->commands
5469 ? bs->commands.get () : NULL))
5470 bs->print = 0;
5471
5472 b->ops->after_condition_true (bs);
5473 }
5474
5475 }
5476
5477 /* Print nothing for this entry if we don't stop or don't
5478 print. */
5479 if (!bs->stop || !bs->print)
5480 bs->print_it = print_it_noop;
5481 }
5482
5483 /* If we aren't stopping, the value of some hardware watchpoint may
5484 not have changed, but the intermediate memory locations we are
5485 watching may have. Don't bother if we're stopping; this will get
5486 done later. */
5487 need_remove_insert = 0;
5488 if (! bpstat_causes_stop (bs_head))
5489 for (bs = bs_head; bs != NULL; bs = bs->next)
5490 if (!bs->stop
5491 && bs->breakpoint_at
5492 && is_hardware_watchpoint (bs->breakpoint_at))
5493 {
5494 struct watchpoint *w = (struct watchpoint *) bs->breakpoint_at;
5495
5496 update_watchpoint (w, 0 /* don't reparse. */);
5497 need_remove_insert = 1;
5498 }
5499
5500 if (need_remove_insert)
5501 update_global_location_list (UGLL_MAY_INSERT);
5502 else if (removed_any)
5503 update_global_location_list (UGLL_DONT_INSERT);
5504
5505 return bs_head;
5506 }
5507
5508 static void
5509 handle_jit_event (void)
5510 {
5511 struct frame_info *frame;
5512 struct gdbarch *gdbarch;
5513
5514 if (debug_infrun)
5515 fprintf_unfiltered (gdb_stdlog, "handling bp_jit_event\n");
5516
5517 /* Switch terminal for any messages produced by
5518 breakpoint_re_set. */
5519 target_terminal::ours_for_output ();
5520
5521 frame = get_current_frame ();
5522 gdbarch = get_frame_arch (frame);
5523
5524 jit_event_handler (gdbarch);
5525
5526 target_terminal::inferior ();
5527 }
5528
5529 /* Prepare WHAT final decision for infrun. */
5530
5531 /* Decide what infrun needs to do with this bpstat. */
5532
5533 struct bpstat_what
5534 bpstat_what (bpstat bs_head)
5535 {
5536 struct bpstat_what retval;
5537 bpstat bs;
5538
5539 retval.main_action = BPSTAT_WHAT_KEEP_CHECKING;
5540 retval.call_dummy = STOP_NONE;
5541 retval.is_longjmp = 0;
5542
5543 for (bs = bs_head; bs != NULL; bs = bs->next)
5544 {
5545 /* Extract this BS's action. After processing each BS, we check
5546 if its action overrides all we've seem so far. */
5547 enum bpstat_what_main_action this_action = BPSTAT_WHAT_KEEP_CHECKING;
5548 enum bptype bptype;
5549
5550 if (bs->breakpoint_at == NULL)
5551 {
5552 /* I suspect this can happen if it was a momentary
5553 breakpoint which has since been deleted. */
5554 bptype = bp_none;
5555 }
5556 else
5557 bptype = bs->breakpoint_at->type;
5558
5559 switch (bptype)
5560 {
5561 case bp_none:
5562 break;
5563 case bp_breakpoint:
5564 case bp_hardware_breakpoint:
5565 case bp_single_step:
5566 case bp_until:
5567 case bp_finish:
5568 case bp_shlib_event:
5569 if (bs->stop)
5570 {
5571 if (bs->print)
5572 this_action = BPSTAT_WHAT_STOP_NOISY;
5573 else
5574 this_action = BPSTAT_WHAT_STOP_SILENT;
5575 }
5576 else
5577 this_action = BPSTAT_WHAT_SINGLE;
5578 break;
5579 case bp_watchpoint:
5580 case bp_hardware_watchpoint:
5581 case bp_read_watchpoint:
5582 case bp_access_watchpoint:
5583 if (bs->stop)
5584 {
5585 if (bs->print)
5586 this_action = BPSTAT_WHAT_STOP_NOISY;
5587 else
5588 this_action = BPSTAT_WHAT_STOP_SILENT;
5589 }
5590 else
5591 {
5592 /* There was a watchpoint, but we're not stopping.
5593 This requires no further action. */
5594 }
5595 break;
5596 case bp_longjmp:
5597 case bp_longjmp_call_dummy:
5598 case bp_exception:
5599 if (bs->stop)
5600 {
5601 this_action = BPSTAT_WHAT_SET_LONGJMP_RESUME;
5602 retval.is_longjmp = bptype != bp_exception;
5603 }
5604 else
5605 this_action = BPSTAT_WHAT_SINGLE;
5606 break;
5607 case bp_longjmp_resume:
5608 case bp_exception_resume:
5609 if (bs->stop)
5610 {
5611 this_action = BPSTAT_WHAT_CLEAR_LONGJMP_RESUME;
5612 retval.is_longjmp = bptype == bp_longjmp_resume;
5613 }
5614 else
5615 this_action = BPSTAT_WHAT_SINGLE;
5616 break;
5617 case bp_step_resume:
5618 if (bs->stop)
5619 this_action = BPSTAT_WHAT_STEP_RESUME;
5620 else
5621 {
5622 /* It is for the wrong frame. */
5623 this_action = BPSTAT_WHAT_SINGLE;
5624 }
5625 break;
5626 case bp_hp_step_resume:
5627 if (bs->stop)
5628 this_action = BPSTAT_WHAT_HP_STEP_RESUME;
5629 else
5630 {
5631 /* It is for the wrong frame. */
5632 this_action = BPSTAT_WHAT_SINGLE;
5633 }
5634 break;
5635 case bp_watchpoint_scope:
5636 case bp_thread_event:
5637 case bp_overlay_event:
5638 case bp_longjmp_master:
5639 case bp_std_terminate_master:
5640 case bp_exception_master:
5641 this_action = BPSTAT_WHAT_SINGLE;
5642 break;
5643 case bp_catchpoint:
5644 if (bs->stop)
5645 {
5646 if (bs->print)
5647 this_action = BPSTAT_WHAT_STOP_NOISY;
5648 else
5649 this_action = BPSTAT_WHAT_STOP_SILENT;
5650 }
5651 else
5652 {
5653 /* There was a catchpoint, but we're not stopping.
5654 This requires no further action. */
5655 }
5656 break;
5657 case bp_jit_event:
5658 this_action = BPSTAT_WHAT_SINGLE;
5659 break;
5660 case bp_call_dummy:
5661 /* Make sure the action is stop (silent or noisy),
5662 so infrun.c pops the dummy frame. */
5663 retval.call_dummy = STOP_STACK_DUMMY;
5664 this_action = BPSTAT_WHAT_STOP_SILENT;
5665 break;
5666 case bp_std_terminate:
5667 /* Make sure the action is stop (silent or noisy),
5668 so infrun.c pops the dummy frame. */
5669 retval.call_dummy = STOP_STD_TERMINATE;
5670 this_action = BPSTAT_WHAT_STOP_SILENT;
5671 break;
5672 case bp_tracepoint:
5673 case bp_fast_tracepoint:
5674 case bp_static_tracepoint:
5675 /* Tracepoint hits should not be reported back to GDB, and
5676 if one got through somehow, it should have been filtered
5677 out already. */
5678 internal_error (__FILE__, __LINE__,
5679 _("bpstat_what: tracepoint encountered"));
5680 break;
5681 case bp_gnu_ifunc_resolver:
5682 /* Step over it (and insert bp_gnu_ifunc_resolver_return). */
5683 this_action = BPSTAT_WHAT_SINGLE;
5684 break;
5685 case bp_gnu_ifunc_resolver_return:
5686 /* The breakpoint will be removed, execution will restart from the
5687 PC of the former breakpoint. */
5688 this_action = BPSTAT_WHAT_KEEP_CHECKING;
5689 break;
5690
5691 case bp_dprintf:
5692 if (bs->stop)
5693 this_action = BPSTAT_WHAT_STOP_SILENT;
5694 else
5695 this_action = BPSTAT_WHAT_SINGLE;
5696 break;
5697
5698 default:
5699 internal_error (__FILE__, __LINE__,
5700 _("bpstat_what: unhandled bptype %d"), (int) bptype);
5701 }
5702
5703 retval.main_action = std::max (retval.main_action, this_action);
5704 }
5705
5706 return retval;
5707 }
5708
5709 void
5710 bpstat_run_callbacks (bpstat bs_head)
5711 {
5712 bpstat bs;
5713
5714 for (bs = bs_head; bs != NULL; bs = bs->next)
5715 {
5716 struct breakpoint *b = bs->breakpoint_at;
5717
5718 if (b == NULL)
5719 continue;
5720 switch (b->type)
5721 {
5722 case bp_jit_event:
5723 handle_jit_event ();
5724 break;
5725 case bp_gnu_ifunc_resolver:
5726 gnu_ifunc_resolver_stop (b);
5727 break;
5728 case bp_gnu_ifunc_resolver_return:
5729 gnu_ifunc_resolver_return_stop (b);
5730 break;
5731 }
5732 }
5733 }
5734
5735 /* Nonzero if we should step constantly (e.g. watchpoints on machines
5736 without hardware support). This isn't related to a specific bpstat,
5737 just to things like whether watchpoints are set. */
5738
5739 int
5740 bpstat_should_step (void)
5741 {
5742 struct breakpoint *b;
5743
5744 ALL_BREAKPOINTS (b)
5745 if (breakpoint_enabled (b) && b->type == bp_watchpoint && b->loc != NULL)
5746 return 1;
5747 return 0;
5748 }
5749
5750 int
5751 bpstat_causes_stop (bpstat bs)
5752 {
5753 for (; bs != NULL; bs = bs->next)
5754 if (bs->stop)
5755 return 1;
5756
5757 return 0;
5758 }
5759
5760 \f
5761
5762 /* Compute a string of spaces suitable to indent the next line
5763 so it starts at the position corresponding to the table column
5764 named COL_NAME in the currently active table of UIOUT. */
5765
5766 static char *
5767 wrap_indent_at_field (struct ui_out *uiout, const char *col_name)
5768 {
5769 static char wrap_indent[80];
5770 int i, total_width, width, align;
5771 const char *text;
5772
5773 total_width = 0;
5774 for (i = 1; uiout->query_table_field (i, &width, &align, &text); i++)
5775 {
5776 if (strcmp (text, col_name) == 0)
5777 {
5778 gdb_assert (total_width < sizeof wrap_indent);
5779 memset (wrap_indent, ' ', total_width);
5780 wrap_indent[total_width] = 0;
5781
5782 return wrap_indent;
5783 }
5784
5785 total_width += width + 1;
5786 }
5787
5788 return NULL;
5789 }
5790
5791 /* Determine if the locations of this breakpoint will have their conditions
5792 evaluated by the target, host or a mix of both. Returns the following:
5793
5794 "host": Host evals condition.
5795 "host or target": Host or Target evals condition.
5796 "target": Target evals condition.
5797 */
5798
5799 static const char *
5800 bp_condition_evaluator (struct breakpoint *b)
5801 {
5802 struct bp_location *bl;
5803 char host_evals = 0;
5804 char target_evals = 0;
5805
5806 if (!b)
5807 return NULL;
5808
5809 if (!is_breakpoint (b))
5810 return NULL;
5811
5812 if (gdb_evaluates_breakpoint_condition_p ()
5813 || !target_supports_evaluation_of_breakpoint_conditions ())
5814 return condition_evaluation_host;
5815
5816 for (bl = b->loc; bl; bl = bl->next)
5817 {
5818 if (bl->cond_bytecode)
5819 target_evals++;
5820 else
5821 host_evals++;
5822 }
5823
5824 if (host_evals && target_evals)
5825 return condition_evaluation_both;
5826 else if (target_evals)
5827 return condition_evaluation_target;
5828 else
5829 return condition_evaluation_host;
5830 }
5831
5832 /* Determine the breakpoint location's condition evaluator. This is
5833 similar to bp_condition_evaluator, but for locations. */
5834
5835 static const char *
5836 bp_location_condition_evaluator (struct bp_location *bl)
5837 {
5838 if (bl && !is_breakpoint (bl->owner))
5839 return NULL;
5840
5841 if (gdb_evaluates_breakpoint_condition_p ()
5842 || !target_supports_evaluation_of_breakpoint_conditions ())
5843 return condition_evaluation_host;
5844
5845 if (bl && bl->cond_bytecode)
5846 return condition_evaluation_target;
5847 else
5848 return condition_evaluation_host;
5849 }
5850
5851 /* Print the LOC location out of the list of B->LOC locations. */
5852
5853 static void
5854 print_breakpoint_location (struct breakpoint *b,
5855 struct bp_location *loc)
5856 {
5857 struct ui_out *uiout = current_uiout;
5858
5859 scoped_restore_current_program_space restore_pspace;
5860
5861 if (loc != NULL && loc->shlib_disabled)
5862 loc = NULL;
5863
5864 if (loc != NULL)
5865 set_current_program_space (loc->pspace);
5866
5867 if (b->display_canonical)
5868 uiout->field_string ("what", event_location_to_string (b->location.get ()));
5869 else if (loc && loc->symtab)
5870 {
5871 const struct symbol *sym = loc->symbol;
5872
5873 if (sym == NULL)
5874 sym = find_pc_sect_function (loc->address, loc->section);
5875
5876 if (sym)
5877 {
5878 uiout->text ("in ");
5879 uiout->field_string ("func", SYMBOL_PRINT_NAME (sym));
5880 uiout->text (" ");
5881 uiout->wrap_hint (wrap_indent_at_field (uiout, "what"));
5882 uiout->text ("at ");
5883 }
5884 uiout->field_string ("file",
5885 symtab_to_filename_for_display (loc->symtab));
5886 uiout->text (":");
5887
5888 if (uiout->is_mi_like_p ())
5889 uiout->field_string ("fullname", symtab_to_fullname (loc->symtab));
5890
5891 uiout->field_int ("line", loc->line_number);
5892 }
5893 else if (loc)
5894 {
5895 string_file stb;
5896
5897 print_address_symbolic (loc->gdbarch, loc->address, &stb,
5898 demangle, "");
5899 uiout->field_stream ("at", stb);
5900 }
5901 else
5902 {
5903 uiout->field_string ("pending",
5904 event_location_to_string (b->location.get ()));
5905 /* If extra_string is available, it could be holding a condition
5906 or dprintf arguments. In either case, make sure it is printed,
5907 too, but only for non-MI streams. */
5908 if (!uiout->is_mi_like_p () && b->extra_string != NULL)
5909 {
5910 if (b->type == bp_dprintf)
5911 uiout->text (",");
5912 else
5913 uiout->text (" ");
5914 uiout->text (b->extra_string);
5915 }
5916 }
5917
5918 if (loc && is_breakpoint (b)
5919 && breakpoint_condition_evaluation_mode () == condition_evaluation_target
5920 && bp_condition_evaluator (b) == condition_evaluation_both)
5921 {
5922 uiout->text (" (");
5923 uiout->field_string ("evaluated-by",
5924 bp_location_condition_evaluator (loc));
5925 uiout->text (")");
5926 }
5927 }
5928
5929 static const char *
5930 bptype_string (enum bptype type)
5931 {
5932 struct ep_type_description
5933 {
5934 enum bptype type;
5935 const char *description;
5936 };
5937 static struct ep_type_description bptypes[] =
5938 {
5939 {bp_none, "?deleted?"},
5940 {bp_breakpoint, "breakpoint"},
5941 {bp_hardware_breakpoint, "hw breakpoint"},
5942 {bp_single_step, "sw single-step"},
5943 {bp_until, "until"},
5944 {bp_finish, "finish"},
5945 {bp_watchpoint, "watchpoint"},
5946 {bp_hardware_watchpoint, "hw watchpoint"},
5947 {bp_read_watchpoint, "read watchpoint"},
5948 {bp_access_watchpoint, "acc watchpoint"},
5949 {bp_longjmp, "longjmp"},
5950 {bp_longjmp_resume, "longjmp resume"},
5951 {bp_longjmp_call_dummy, "longjmp for call dummy"},
5952 {bp_exception, "exception"},
5953 {bp_exception_resume, "exception resume"},
5954 {bp_step_resume, "step resume"},
5955 {bp_hp_step_resume, "high-priority step resume"},
5956 {bp_watchpoint_scope, "watchpoint scope"},
5957 {bp_call_dummy, "call dummy"},
5958 {bp_std_terminate, "std::terminate"},
5959 {bp_shlib_event, "shlib events"},
5960 {bp_thread_event, "thread events"},
5961 {bp_overlay_event, "overlay events"},
5962 {bp_longjmp_master, "longjmp master"},
5963 {bp_std_terminate_master, "std::terminate master"},
5964 {bp_exception_master, "exception master"},
5965 {bp_catchpoint, "catchpoint"},
5966 {bp_tracepoint, "tracepoint"},
5967 {bp_fast_tracepoint, "fast tracepoint"},
5968 {bp_static_tracepoint, "static tracepoint"},
5969 {bp_dprintf, "dprintf"},
5970 {bp_jit_event, "jit events"},
5971 {bp_gnu_ifunc_resolver, "STT_GNU_IFUNC resolver"},
5972 {bp_gnu_ifunc_resolver_return, "STT_GNU_IFUNC resolver return"},
5973 };
5974
5975 if (((int) type >= (sizeof (bptypes) / sizeof (bptypes[0])))
5976 || ((int) type != bptypes[(int) type].type))
5977 internal_error (__FILE__, __LINE__,
5978 _("bptypes table does not describe type #%d."),
5979 (int) type);
5980
5981 return bptypes[(int) type].description;
5982 }
5983
5984 /* For MI, output a field named 'thread-groups' with a list as the value.
5985 For CLI, prefix the list with the string 'inf'. */
5986
5987 static void
5988 output_thread_groups (struct ui_out *uiout,
5989 const char *field_name,
5990 const std::vector<int> &inf_nums,
5991 int mi_only)
5992 {
5993 int is_mi = uiout->is_mi_like_p ();
5994
5995 /* For backward compatibility, don't display inferiors in CLI unless
5996 there are several. Always display them for MI. */
5997 if (!is_mi && mi_only)
5998 return;
5999
6000 ui_out_emit_list list_emitter (uiout, field_name);
6001
6002 for (size_t i = 0; i < inf_nums.size (); i++)
6003 {
6004 if (is_mi)
6005 {
6006 char mi_group[10];
6007
6008 xsnprintf (mi_group, sizeof (mi_group), "i%d", inf_nums[i]);
6009 uiout->field_string (NULL, mi_group);
6010 }
6011 else
6012 {
6013 if (i == 0)
6014 uiout->text (" inf ");
6015 else
6016 uiout->text (", ");
6017
6018 uiout->text (plongest (inf_nums[i]));
6019 }
6020 }
6021 }
6022
6023 /* Print B to gdb_stdout. */
6024
6025 static void
6026 print_one_breakpoint_location (struct breakpoint *b,
6027 struct bp_location *loc,
6028 int loc_number,
6029 struct bp_location **last_loc,
6030 int allflag)
6031 {
6032 struct command_line *l;
6033 static char bpenables[] = "nynny";
6034
6035 struct ui_out *uiout = current_uiout;
6036 int header_of_multiple = 0;
6037 int part_of_multiple = (loc != NULL);
6038 struct value_print_options opts;
6039
6040 get_user_print_options (&opts);
6041
6042 gdb_assert (!loc || loc_number != 0);
6043 /* See comment in print_one_breakpoint concerning treatment of
6044 breakpoints with single disabled location. */
6045 if (loc == NULL
6046 && (b->loc != NULL
6047 && (b->loc->next != NULL || !b->loc->enabled)))
6048 header_of_multiple = 1;
6049 if (loc == NULL)
6050 loc = b->loc;
6051
6052 annotate_record ();
6053
6054 /* 1 */
6055 annotate_field (0);
6056 if (part_of_multiple)
6057 {
6058 char *formatted;
6059 formatted = xstrprintf ("%d.%d", b->number, loc_number);
6060 uiout->field_string ("number", formatted);
6061 xfree (formatted);
6062 }
6063 else
6064 {
6065 uiout->field_int ("number", b->number);
6066 }
6067
6068 /* 2 */
6069 annotate_field (1);
6070 if (part_of_multiple)
6071 uiout->field_skip ("type");
6072 else
6073 uiout->field_string ("type", bptype_string (b->type));
6074
6075 /* 3 */
6076 annotate_field (2);
6077 if (part_of_multiple)
6078 uiout->field_skip ("disp");
6079 else
6080 uiout->field_string ("disp", bpdisp_text (b->disposition));
6081
6082
6083 /* 4 */
6084 annotate_field (3);
6085 if (part_of_multiple)
6086 uiout->field_string ("enabled", loc->enabled ? "y" : "n");
6087 else
6088 uiout->field_fmt ("enabled", "%c", bpenables[(int) b->enable_state]);
6089 uiout->spaces (2);
6090
6091
6092 /* 5 and 6 */
6093 if (b->ops != NULL && b->ops->print_one != NULL)
6094 {
6095 /* Although the print_one can possibly print all locations,
6096 calling it here is not likely to get any nice result. So,
6097 make sure there's just one location. */
6098 gdb_assert (b->loc == NULL || b->loc->next == NULL);
6099 b->ops->print_one (b, last_loc);
6100 }
6101 else
6102 switch (b->type)
6103 {
6104 case bp_none:
6105 internal_error (__FILE__, __LINE__,
6106 _("print_one_breakpoint: bp_none encountered\n"));
6107 break;
6108
6109 case bp_watchpoint:
6110 case bp_hardware_watchpoint:
6111 case bp_read_watchpoint:
6112 case bp_access_watchpoint:
6113 {
6114 struct watchpoint *w = (struct watchpoint *) b;
6115
6116 /* Field 4, the address, is omitted (which makes the columns
6117 not line up too nicely with the headers, but the effect
6118 is relatively readable). */
6119 if (opts.addressprint)
6120 uiout->field_skip ("addr");
6121 annotate_field (5);
6122 uiout->field_string ("what", w->exp_string);
6123 }
6124 break;
6125
6126 case bp_breakpoint:
6127 case bp_hardware_breakpoint:
6128 case bp_single_step:
6129 case bp_until:
6130 case bp_finish:
6131 case bp_longjmp:
6132 case bp_longjmp_resume:
6133 case bp_longjmp_call_dummy:
6134 case bp_exception:
6135 case bp_exception_resume:
6136 case bp_step_resume:
6137 case bp_hp_step_resume:
6138 case bp_watchpoint_scope:
6139 case bp_call_dummy:
6140 case bp_std_terminate:
6141 case bp_shlib_event:
6142 case bp_thread_event:
6143 case bp_overlay_event:
6144 case bp_longjmp_master:
6145 case bp_std_terminate_master:
6146 case bp_exception_master:
6147 case bp_tracepoint:
6148 case bp_fast_tracepoint:
6149 case bp_static_tracepoint:
6150 case bp_dprintf:
6151 case bp_jit_event:
6152 case bp_gnu_ifunc_resolver:
6153 case bp_gnu_ifunc_resolver_return:
6154 if (opts.addressprint)
6155 {
6156 annotate_field (4);
6157 if (header_of_multiple)
6158 uiout->field_string ("addr", "<MULTIPLE>");
6159 else if (b->loc == NULL || loc->shlib_disabled)
6160 uiout->field_string ("addr", "<PENDING>");
6161 else
6162 uiout->field_core_addr ("addr",
6163 loc->gdbarch, loc->address);
6164 }
6165 annotate_field (5);
6166 if (!header_of_multiple)
6167 print_breakpoint_location (b, loc);
6168 if (b->loc)
6169 *last_loc = b->loc;
6170 break;
6171 }
6172
6173
6174 if (loc != NULL && !header_of_multiple)
6175 {
6176 struct inferior *inf;
6177 std::vector<int> inf_nums;
6178 int mi_only = 1;
6179
6180 ALL_INFERIORS (inf)
6181 {
6182 if (inf->pspace == loc->pspace)
6183 inf_nums.push_back (inf->num);
6184 }
6185
6186 /* For backward compatibility, don't display inferiors in CLI unless
6187 there are several. Always display for MI. */
6188 if (allflag
6189 || (!gdbarch_has_global_breakpoints (target_gdbarch ())
6190 && (number_of_program_spaces () > 1
6191 || number_of_inferiors () > 1)
6192 /* LOC is for existing B, it cannot be in
6193 moribund_locations and thus having NULL OWNER. */
6194 && loc->owner->type != bp_catchpoint))
6195 mi_only = 0;
6196 output_thread_groups (uiout, "thread-groups", inf_nums, mi_only);
6197 }
6198
6199 if (!part_of_multiple)
6200 {
6201 if (b->thread != -1)
6202 {
6203 /* FIXME: This seems to be redundant and lost here; see the
6204 "stop only in" line a little further down. */
6205 uiout->text (" thread ");
6206 uiout->field_int ("thread", b->thread);
6207 }
6208 else if (b->task != 0)
6209 {
6210 uiout->text (" task ");
6211 uiout->field_int ("task", b->task);
6212 }
6213 }
6214
6215 uiout->text ("\n");
6216
6217 if (!part_of_multiple)
6218 b->ops->print_one_detail (b, uiout);
6219
6220 if (part_of_multiple && frame_id_p (b->frame_id))
6221 {
6222 annotate_field (6);
6223 uiout->text ("\tstop only in stack frame at ");
6224 /* FIXME: cagney/2002-12-01: Shouldn't be poking around inside
6225 the frame ID. */
6226 uiout->field_core_addr ("frame",
6227 b->gdbarch, b->frame_id.stack_addr);
6228 uiout->text ("\n");
6229 }
6230
6231 if (!part_of_multiple && b->cond_string)
6232 {
6233 annotate_field (7);
6234 if (is_tracepoint (b))
6235 uiout->text ("\ttrace only if ");
6236 else
6237 uiout->text ("\tstop only if ");
6238 uiout->field_string ("cond", b->cond_string);
6239
6240 /* Print whether the target is doing the breakpoint's condition
6241 evaluation. If GDB is doing the evaluation, don't print anything. */
6242 if (is_breakpoint (b)
6243 && breakpoint_condition_evaluation_mode ()
6244 == condition_evaluation_target)
6245 {
6246 uiout->text (" (");
6247 uiout->field_string ("evaluated-by",
6248 bp_condition_evaluator (b));
6249 uiout->text (" evals)");
6250 }
6251 uiout->text ("\n");
6252 }
6253
6254 if (!part_of_multiple && b->thread != -1)
6255 {
6256 /* FIXME should make an annotation for this. */
6257 uiout->text ("\tstop only in thread ");
6258 if (uiout->is_mi_like_p ())
6259 uiout->field_int ("thread", b->thread);
6260 else
6261 {
6262 struct thread_info *thr = find_thread_global_id (b->thread);
6263
6264 uiout->field_string ("thread", print_thread_id (thr));
6265 }
6266 uiout->text ("\n");
6267 }
6268
6269 if (!part_of_multiple)
6270 {
6271 if (b->hit_count)
6272 {
6273 /* FIXME should make an annotation for this. */
6274 if (is_catchpoint (b))
6275 uiout->text ("\tcatchpoint");
6276 else if (is_tracepoint (b))
6277 uiout->text ("\ttracepoint");
6278 else
6279 uiout->text ("\tbreakpoint");
6280 uiout->text (" already hit ");
6281 uiout->field_int ("times", b->hit_count);
6282 if (b->hit_count == 1)
6283 uiout->text (" time\n");
6284 else
6285 uiout->text (" times\n");
6286 }
6287 else
6288 {
6289 /* Output the count also if it is zero, but only if this is mi. */
6290 if (uiout->is_mi_like_p ())
6291 uiout->field_int ("times", b->hit_count);
6292 }
6293 }
6294
6295 if (!part_of_multiple && b->ignore_count)
6296 {
6297 annotate_field (8);
6298 uiout->text ("\tignore next ");
6299 uiout->field_int ("ignore", b->ignore_count);
6300 uiout->text (" hits\n");
6301 }
6302
6303 /* Note that an enable count of 1 corresponds to "enable once"
6304 behavior, which is reported by the combination of enablement and
6305 disposition, so we don't need to mention it here. */
6306 if (!part_of_multiple && b->enable_count > 1)
6307 {
6308 annotate_field (8);
6309 uiout->text ("\tdisable after ");
6310 /* Tweak the wording to clarify that ignore and enable counts
6311 are distinct, and have additive effect. */
6312 if (b->ignore_count)
6313 uiout->text ("additional ");
6314 else
6315 uiout->text ("next ");
6316 uiout->field_int ("enable", b->enable_count);
6317 uiout->text (" hits\n");
6318 }
6319
6320 if (!part_of_multiple && is_tracepoint (b))
6321 {
6322 struct tracepoint *tp = (struct tracepoint *) b;
6323
6324 if (tp->traceframe_usage)
6325 {
6326 uiout->text ("\ttrace buffer usage ");
6327 uiout->field_int ("traceframe-usage", tp->traceframe_usage);
6328 uiout->text (" bytes\n");
6329 }
6330 }
6331
6332 l = b->commands ? b->commands.get () : NULL;
6333 if (!part_of_multiple && l)
6334 {
6335 annotate_field (9);
6336 ui_out_emit_tuple tuple_emitter (uiout, "script");
6337 print_command_lines (uiout, l, 4);
6338 }
6339
6340 if (is_tracepoint (b))
6341 {
6342 struct tracepoint *t = (struct tracepoint *) b;
6343
6344 if (!part_of_multiple && t->pass_count)
6345 {
6346 annotate_field (10);
6347 uiout->text ("\tpass count ");
6348 uiout->field_int ("pass", t->pass_count);
6349 uiout->text (" \n");
6350 }
6351
6352 /* Don't display it when tracepoint or tracepoint location is
6353 pending. */
6354 if (!header_of_multiple && loc != NULL && !loc->shlib_disabled)
6355 {
6356 annotate_field (11);
6357
6358 if (uiout->is_mi_like_p ())
6359 uiout->field_string ("installed",
6360 loc->inserted ? "y" : "n");
6361 else
6362 {
6363 if (loc->inserted)
6364 uiout->text ("\t");
6365 else
6366 uiout->text ("\tnot ");
6367 uiout->text ("installed on target\n");
6368 }
6369 }
6370 }
6371
6372 if (uiout->is_mi_like_p () && !part_of_multiple)
6373 {
6374 if (is_watchpoint (b))
6375 {
6376 struct watchpoint *w = (struct watchpoint *) b;
6377
6378 uiout->field_string ("original-location", w->exp_string);
6379 }
6380 else if (b->location != NULL
6381 && event_location_to_string (b->location.get ()) != NULL)
6382 uiout->field_string ("original-location",
6383 event_location_to_string (b->location.get ()));
6384 }
6385 }
6386
6387 static void
6388 print_one_breakpoint (struct breakpoint *b,
6389 struct bp_location **last_loc,
6390 int allflag)
6391 {
6392 struct ui_out *uiout = current_uiout;
6393
6394 {
6395 ui_out_emit_tuple tuple_emitter (uiout, "bkpt");
6396
6397 print_one_breakpoint_location (b, NULL, 0, last_loc, allflag);
6398 }
6399
6400 /* If this breakpoint has custom print function,
6401 it's already printed. Otherwise, print individual
6402 locations, if any. */
6403 if (b->ops == NULL || b->ops->print_one == NULL)
6404 {
6405 /* If breakpoint has a single location that is disabled, we
6406 print it as if it had several locations, since otherwise it's
6407 hard to represent "breakpoint enabled, location disabled"
6408 situation.
6409
6410 Note that while hardware watchpoints have several locations
6411 internally, that's not a property exposed to user. */
6412 if (b->loc
6413 && !is_hardware_watchpoint (b)
6414 && (b->loc->next || !b->loc->enabled))
6415 {
6416 struct bp_location *loc;
6417 int n = 1;
6418
6419 for (loc = b->loc; loc; loc = loc->next, ++n)
6420 {
6421 ui_out_emit_tuple tuple_emitter (uiout, NULL);
6422 print_one_breakpoint_location (b, loc, n, last_loc, allflag);
6423 }
6424 }
6425 }
6426 }
6427
6428 static int
6429 breakpoint_address_bits (struct breakpoint *b)
6430 {
6431 int print_address_bits = 0;
6432 struct bp_location *loc;
6433
6434 /* Software watchpoints that aren't watching memory don't have an
6435 address to print. */
6436 if (is_no_memory_software_watchpoint (b))
6437 return 0;
6438
6439 for (loc = b->loc; loc; loc = loc->next)
6440 {
6441 int addr_bit;
6442
6443 addr_bit = gdbarch_addr_bit (loc->gdbarch);
6444 if (addr_bit > print_address_bits)
6445 print_address_bits = addr_bit;
6446 }
6447
6448 return print_address_bits;
6449 }
6450
6451 /* See breakpoint.h. */
6452
6453 void
6454 print_breakpoint (breakpoint *b)
6455 {
6456 struct bp_location *dummy_loc = NULL;
6457 print_one_breakpoint (b, &dummy_loc, 0);
6458 }
6459
6460 /* Return true if this breakpoint was set by the user, false if it is
6461 internal or momentary. */
6462
6463 int
6464 user_breakpoint_p (struct breakpoint *b)
6465 {
6466 return b->number > 0;
6467 }
6468
6469 /* See breakpoint.h. */
6470
6471 int
6472 pending_breakpoint_p (struct breakpoint *b)
6473 {
6474 return b->loc == NULL;
6475 }
6476
6477 /* Print information on user settable breakpoint (watchpoint, etc)
6478 number BNUM. If BNUM is -1 print all user-settable breakpoints.
6479 If ALLFLAG is non-zero, include non-user-settable breakpoints. If
6480 FILTER is non-NULL, call it on each breakpoint and only include the
6481 ones for which it returns non-zero. Return the total number of
6482 breakpoints listed. */
6483
6484 static int
6485 breakpoint_1 (const char *args, int allflag,
6486 int (*filter) (const struct breakpoint *))
6487 {
6488 struct breakpoint *b;
6489 struct bp_location *last_loc = NULL;
6490 int nr_printable_breakpoints;
6491 struct value_print_options opts;
6492 int print_address_bits = 0;
6493 int print_type_col_width = 14;
6494 struct ui_out *uiout = current_uiout;
6495
6496 get_user_print_options (&opts);
6497
6498 /* Compute the number of rows in the table, as well as the size
6499 required for address fields. */
6500 nr_printable_breakpoints = 0;
6501 ALL_BREAKPOINTS (b)
6502 {
6503 /* If we have a filter, only list the breakpoints it accepts. */
6504 if (filter && !filter (b))
6505 continue;
6506
6507 /* If we have an "args" string, it is a list of breakpoints to
6508 accept. Skip the others. */
6509 if (args != NULL && *args != '\0')
6510 {
6511 if (allflag && parse_and_eval_long (args) != b->number)
6512 continue;
6513 if (!allflag && !number_is_in_list (args, b->number))
6514 continue;
6515 }
6516
6517 if (allflag || user_breakpoint_p (b))
6518 {
6519 int addr_bit, type_len;
6520
6521 addr_bit = breakpoint_address_bits (b);
6522 if (addr_bit > print_address_bits)
6523 print_address_bits = addr_bit;
6524
6525 type_len = strlen (bptype_string (b->type));
6526 if (type_len > print_type_col_width)
6527 print_type_col_width = type_len;
6528
6529 nr_printable_breakpoints++;
6530 }
6531 }
6532
6533 {
6534 ui_out_emit_table table_emitter (uiout,
6535 opts.addressprint ? 6 : 5,
6536 nr_printable_breakpoints,
6537 "BreakpointTable");
6538
6539 if (nr_printable_breakpoints > 0)
6540 annotate_breakpoints_headers ();
6541 if (nr_printable_breakpoints > 0)
6542 annotate_field (0);
6543 uiout->table_header (7, ui_left, "number", "Num"); /* 1 */
6544 if (nr_printable_breakpoints > 0)
6545 annotate_field (1);
6546 uiout->table_header (print_type_col_width, ui_left, "type", "Type"); /* 2 */
6547 if (nr_printable_breakpoints > 0)
6548 annotate_field (2);
6549 uiout->table_header (4, ui_left, "disp", "Disp"); /* 3 */
6550 if (nr_printable_breakpoints > 0)
6551 annotate_field (3);
6552 uiout->table_header (3, ui_left, "enabled", "Enb"); /* 4 */
6553 if (opts.addressprint)
6554 {
6555 if (nr_printable_breakpoints > 0)
6556 annotate_field (4);
6557 if (print_address_bits <= 32)
6558 uiout->table_header (10, ui_left, "addr", "Address"); /* 5 */
6559 else
6560 uiout->table_header (18, ui_left, "addr", "Address"); /* 5 */
6561 }
6562 if (nr_printable_breakpoints > 0)
6563 annotate_field (5);
6564 uiout->table_header (40, ui_noalign, "what", "What"); /* 6 */
6565 uiout->table_body ();
6566 if (nr_printable_breakpoints > 0)
6567 annotate_breakpoints_table ();
6568
6569 ALL_BREAKPOINTS (b)
6570 {
6571 QUIT;
6572 /* If we have a filter, only list the breakpoints it accepts. */
6573 if (filter && !filter (b))
6574 continue;
6575
6576 /* If we have an "args" string, it is a list of breakpoints to
6577 accept. Skip the others. */
6578
6579 if (args != NULL && *args != '\0')
6580 {
6581 if (allflag) /* maintenance info breakpoint */
6582 {
6583 if (parse_and_eval_long (args) != b->number)
6584 continue;
6585 }
6586 else /* all others */
6587 {
6588 if (!number_is_in_list (args, b->number))
6589 continue;
6590 }
6591 }
6592 /* We only print out user settable breakpoints unless the
6593 allflag is set. */
6594 if (allflag || user_breakpoint_p (b))
6595 print_one_breakpoint (b, &last_loc, allflag);
6596 }
6597 }
6598
6599 if (nr_printable_breakpoints == 0)
6600 {
6601 /* If there's a filter, let the caller decide how to report
6602 empty list. */
6603 if (!filter)
6604 {
6605 if (args == NULL || *args == '\0')
6606 uiout->message ("No breakpoints or watchpoints.\n");
6607 else
6608 uiout->message ("No breakpoint or watchpoint matching '%s'.\n",
6609 args);
6610 }
6611 }
6612 else
6613 {
6614 if (last_loc && !server_command)
6615 set_next_address (last_loc->gdbarch, last_loc->address);
6616 }
6617
6618 /* FIXME? Should this be moved up so that it is only called when
6619 there have been breakpoints? */
6620 annotate_breakpoints_table_end ();
6621
6622 return nr_printable_breakpoints;
6623 }
6624
6625 /* Display the value of default-collect in a way that is generally
6626 compatible with the breakpoint list. */
6627
6628 static void
6629 default_collect_info (void)
6630 {
6631 struct ui_out *uiout = current_uiout;
6632
6633 /* If it has no value (which is frequently the case), say nothing; a
6634 message like "No default-collect." gets in user's face when it's
6635 not wanted. */
6636 if (!*default_collect)
6637 return;
6638
6639 /* The following phrase lines up nicely with per-tracepoint collect
6640 actions. */
6641 uiout->text ("default collect ");
6642 uiout->field_string ("default-collect", default_collect);
6643 uiout->text (" \n");
6644 }
6645
6646 static void
6647 info_breakpoints_command (const char *args, int from_tty)
6648 {
6649 breakpoint_1 (args, 0, NULL);
6650
6651 default_collect_info ();
6652 }
6653
6654 static void
6655 info_watchpoints_command (const char *args, int from_tty)
6656 {
6657 int num_printed = breakpoint_1 (args, 0, is_watchpoint);
6658 struct ui_out *uiout = current_uiout;
6659
6660 if (num_printed == 0)
6661 {
6662 if (args == NULL || *args == '\0')
6663 uiout->message ("No watchpoints.\n");
6664 else
6665 uiout->message ("No watchpoint matching '%s'.\n", args);
6666 }
6667 }
6668
6669 static void
6670 maintenance_info_breakpoints (const char *args, int from_tty)
6671 {
6672 breakpoint_1 (args, 1, NULL);
6673
6674 default_collect_info ();
6675 }
6676
6677 static int
6678 breakpoint_has_pc (struct breakpoint *b,
6679 struct program_space *pspace,
6680 CORE_ADDR pc, struct obj_section *section)
6681 {
6682 struct bp_location *bl = b->loc;
6683
6684 for (; bl; bl = bl->next)
6685 {
6686 if (bl->pspace == pspace
6687 && bl->address == pc
6688 && (!overlay_debugging || bl->section == section))
6689 return 1;
6690 }
6691 return 0;
6692 }
6693
6694 /* Print a message describing any user-breakpoints set at PC. This
6695 concerns with logical breakpoints, so we match program spaces, not
6696 address spaces. */
6697
6698 static void
6699 describe_other_breakpoints (struct gdbarch *gdbarch,
6700 struct program_space *pspace, CORE_ADDR pc,
6701 struct obj_section *section, int thread)
6702 {
6703 int others = 0;
6704 struct breakpoint *b;
6705
6706 ALL_BREAKPOINTS (b)
6707 others += (user_breakpoint_p (b)
6708 && breakpoint_has_pc (b, pspace, pc, section));
6709 if (others > 0)
6710 {
6711 if (others == 1)
6712 printf_filtered (_("Note: breakpoint "));
6713 else /* if (others == ???) */
6714 printf_filtered (_("Note: breakpoints "));
6715 ALL_BREAKPOINTS (b)
6716 if (user_breakpoint_p (b) && breakpoint_has_pc (b, pspace, pc, section))
6717 {
6718 others--;
6719 printf_filtered ("%d", b->number);
6720 if (b->thread == -1 && thread != -1)
6721 printf_filtered (" (all threads)");
6722 else if (b->thread != -1)
6723 printf_filtered (" (thread %d)", b->thread);
6724 printf_filtered ("%s%s ",
6725 ((b->enable_state == bp_disabled
6726 || b->enable_state == bp_call_disabled)
6727 ? " (disabled)"
6728 : ""),
6729 (others > 1) ? ","
6730 : ((others == 1) ? " and" : ""));
6731 }
6732 printf_filtered (_("also set at pc "));
6733 fputs_filtered (paddress (gdbarch, pc), gdb_stdout);
6734 printf_filtered (".\n");
6735 }
6736 }
6737 \f
6738
6739 /* Return true iff it is meaningful to use the address member of
6740 BPT locations. For some breakpoint types, the locations' address members
6741 are irrelevant and it makes no sense to attempt to compare them to other
6742 addresses (or use them for any other purpose either).
6743
6744 More specifically, each of the following breakpoint types will
6745 always have a zero valued location address and we don't want to mark
6746 breakpoints of any of these types to be a duplicate of an actual
6747 breakpoint location at address zero:
6748
6749 bp_watchpoint
6750 bp_catchpoint
6751
6752 */
6753
6754 static int
6755 breakpoint_address_is_meaningful (struct breakpoint *bpt)
6756 {
6757 enum bptype type = bpt->type;
6758
6759 return (type != bp_watchpoint && type != bp_catchpoint);
6760 }
6761
6762 /* Assuming LOC1 and LOC2's owners are hardware watchpoints, returns
6763 true if LOC1 and LOC2 represent the same watchpoint location. */
6764
6765 static int
6766 watchpoint_locations_match (struct bp_location *loc1,
6767 struct bp_location *loc2)
6768 {
6769 struct watchpoint *w1 = (struct watchpoint *) loc1->owner;
6770 struct watchpoint *w2 = (struct watchpoint *) loc2->owner;
6771
6772 /* Both of them must exist. */
6773 gdb_assert (w1 != NULL);
6774 gdb_assert (w2 != NULL);
6775
6776 /* If the target can evaluate the condition expression in hardware,
6777 then we we need to insert both watchpoints even if they are at
6778 the same place. Otherwise the watchpoint will only trigger when
6779 the condition of whichever watchpoint was inserted evaluates to
6780 true, not giving a chance for GDB to check the condition of the
6781 other watchpoint. */
6782 if ((w1->cond_exp
6783 && target_can_accel_watchpoint_condition (loc1->address,
6784 loc1->length,
6785 loc1->watchpoint_type,
6786 w1->cond_exp.get ()))
6787 || (w2->cond_exp
6788 && target_can_accel_watchpoint_condition (loc2->address,
6789 loc2->length,
6790 loc2->watchpoint_type,
6791 w2->cond_exp.get ())))
6792 return 0;
6793
6794 /* Note that this checks the owner's type, not the location's. In
6795 case the target does not support read watchpoints, but does
6796 support access watchpoints, we'll have bp_read_watchpoint
6797 watchpoints with hw_access locations. Those should be considered
6798 duplicates of hw_read locations. The hw_read locations will
6799 become hw_access locations later. */
6800 return (loc1->owner->type == loc2->owner->type
6801 && loc1->pspace->aspace == loc2->pspace->aspace
6802 && loc1->address == loc2->address
6803 && loc1->length == loc2->length);
6804 }
6805
6806 /* See breakpoint.h. */
6807
6808 int
6809 breakpoint_address_match (const address_space *aspace1, CORE_ADDR addr1,
6810 const address_space *aspace2, CORE_ADDR addr2)
6811 {
6812 return ((gdbarch_has_global_breakpoints (target_gdbarch ())
6813 || aspace1 == aspace2)
6814 && addr1 == addr2);
6815 }
6816
6817 /* Returns true if {ASPACE2,ADDR2} falls within the range determined by
6818 {ASPACE1,ADDR1,LEN1}. In most targets, this can only be true if ASPACE1
6819 matches ASPACE2. On targets that have global breakpoints, the address
6820 space doesn't really matter. */
6821
6822 static int
6823 breakpoint_address_match_range (const address_space *aspace1,
6824 CORE_ADDR addr1,
6825 int len1, const address_space *aspace2,
6826 CORE_ADDR addr2)
6827 {
6828 return ((gdbarch_has_global_breakpoints (target_gdbarch ())
6829 || aspace1 == aspace2)
6830 && addr2 >= addr1 && addr2 < addr1 + len1);
6831 }
6832
6833 /* Returns true if {ASPACE,ADDR} matches the breakpoint BL. BL may be
6834 a ranged breakpoint. In most targets, a match happens only if ASPACE
6835 matches the breakpoint's address space. On targets that have global
6836 breakpoints, the address space doesn't really matter. */
6837
6838 static int
6839 breakpoint_location_address_match (struct bp_location *bl,
6840 const address_space *aspace,
6841 CORE_ADDR addr)
6842 {
6843 return (breakpoint_address_match (bl->pspace->aspace, bl->address,
6844 aspace, addr)
6845 || (bl->length
6846 && breakpoint_address_match_range (bl->pspace->aspace,
6847 bl->address, bl->length,
6848 aspace, addr)));
6849 }
6850
6851 /* Returns true if the [ADDR,ADDR+LEN) range in ASPACE overlaps
6852 breakpoint BL. BL may be a ranged breakpoint. In most targets, a
6853 match happens only if ASPACE matches the breakpoint's address
6854 space. On targets that have global breakpoints, the address space
6855 doesn't really matter. */
6856
6857 static int
6858 breakpoint_location_address_range_overlap (struct bp_location *bl,
6859 const address_space *aspace,
6860 CORE_ADDR addr, int len)
6861 {
6862 if (gdbarch_has_global_breakpoints (target_gdbarch ())
6863 || bl->pspace->aspace == aspace)
6864 {
6865 int bl_len = bl->length != 0 ? bl->length : 1;
6866
6867 if (mem_ranges_overlap (addr, len, bl->address, bl_len))
6868 return 1;
6869 }
6870 return 0;
6871 }
6872
6873 /* If LOC1 and LOC2's owners are not tracepoints, returns false directly.
6874 Then, if LOC1 and LOC2 represent the same tracepoint location, returns
6875 true, otherwise returns false. */
6876
6877 static int
6878 tracepoint_locations_match (struct bp_location *loc1,
6879 struct bp_location *loc2)
6880 {
6881 if (is_tracepoint (loc1->owner) && is_tracepoint (loc2->owner))
6882 /* Since tracepoint locations are never duplicated with others', tracepoint
6883 locations at the same address of different tracepoints are regarded as
6884 different locations. */
6885 return (loc1->address == loc2->address && loc1->owner == loc2->owner);
6886 else
6887 return 0;
6888 }
6889
6890 /* Assuming LOC1 and LOC2's types' have meaningful target addresses
6891 (breakpoint_address_is_meaningful), returns true if LOC1 and LOC2
6892 represent the same location. */
6893
6894 static int
6895 breakpoint_locations_match (struct bp_location *loc1,
6896 struct bp_location *loc2)
6897 {
6898 int hw_point1, hw_point2;
6899
6900 /* Both of them must not be in moribund_locations. */
6901 gdb_assert (loc1->owner != NULL);
6902 gdb_assert (loc2->owner != NULL);
6903
6904 hw_point1 = is_hardware_watchpoint (loc1->owner);
6905 hw_point2 = is_hardware_watchpoint (loc2->owner);
6906
6907 if (hw_point1 != hw_point2)
6908 return 0;
6909 else if (hw_point1)
6910 return watchpoint_locations_match (loc1, loc2);
6911 else if (is_tracepoint (loc1->owner) || is_tracepoint (loc2->owner))
6912 return tracepoint_locations_match (loc1, loc2);
6913 else
6914 /* We compare bp_location.length in order to cover ranged breakpoints. */
6915 return (breakpoint_address_match (loc1->pspace->aspace, loc1->address,
6916 loc2->pspace->aspace, loc2->address)
6917 && loc1->length == loc2->length);
6918 }
6919
6920 static void
6921 breakpoint_adjustment_warning (CORE_ADDR from_addr, CORE_ADDR to_addr,
6922 int bnum, int have_bnum)
6923 {
6924 /* The longest string possibly returned by hex_string_custom
6925 is 50 chars. These must be at least that big for safety. */
6926 char astr1[64];
6927 char astr2[64];
6928
6929 strcpy (astr1, hex_string_custom ((unsigned long) from_addr, 8));
6930 strcpy (astr2, hex_string_custom ((unsigned long) to_addr, 8));
6931 if (have_bnum)
6932 warning (_("Breakpoint %d address previously adjusted from %s to %s."),
6933 bnum, astr1, astr2);
6934 else
6935 warning (_("Breakpoint address adjusted from %s to %s."), astr1, astr2);
6936 }
6937
6938 /* Adjust a breakpoint's address to account for architectural
6939 constraints on breakpoint placement. Return the adjusted address.
6940 Note: Very few targets require this kind of adjustment. For most
6941 targets, this function is simply the identity function. */
6942
6943 static CORE_ADDR
6944 adjust_breakpoint_address (struct gdbarch *gdbarch,
6945 CORE_ADDR bpaddr, enum bptype bptype)
6946 {
6947 if (bptype == bp_watchpoint
6948 || bptype == bp_hardware_watchpoint
6949 || bptype == bp_read_watchpoint
6950 || bptype == bp_access_watchpoint
6951 || bptype == bp_catchpoint)
6952 {
6953 /* Watchpoints and the various bp_catch_* eventpoints should not
6954 have their addresses modified. */
6955 return bpaddr;
6956 }
6957 else if (bptype == bp_single_step)
6958 {
6959 /* Single-step breakpoints should not have their addresses
6960 modified. If there's any architectural constrain that
6961 applies to this address, then it should have already been
6962 taken into account when the breakpoint was created in the
6963 first place. If we didn't do this, stepping through e.g.,
6964 Thumb-2 IT blocks would break. */
6965 return bpaddr;
6966 }
6967 else
6968 {
6969 CORE_ADDR adjusted_bpaddr = bpaddr;
6970
6971 if (gdbarch_adjust_breakpoint_address_p (gdbarch))
6972 {
6973 /* Some targets have architectural constraints on the placement
6974 of breakpoint instructions. Obtain the adjusted address. */
6975 adjusted_bpaddr = gdbarch_adjust_breakpoint_address (gdbarch, bpaddr);
6976 }
6977
6978 adjusted_bpaddr = address_significant (gdbarch, adjusted_bpaddr);
6979
6980 /* An adjusted breakpoint address can significantly alter
6981 a user's expectations. Print a warning if an adjustment
6982 is required. */
6983 if (adjusted_bpaddr != bpaddr)
6984 breakpoint_adjustment_warning (bpaddr, adjusted_bpaddr, 0, 0);
6985
6986 return adjusted_bpaddr;
6987 }
6988 }
6989
6990 bp_location::bp_location (const bp_location_ops *ops, breakpoint *owner)
6991 {
6992 bp_location *loc = this;
6993
6994 gdb_assert (ops != NULL);
6995
6996 loc->ops = ops;
6997 loc->owner = owner;
6998 loc->cond_bytecode = NULL;
6999 loc->shlib_disabled = 0;
7000 loc->enabled = 1;
7001
7002 switch (owner->type)
7003 {
7004 case bp_breakpoint:
7005 case bp_single_step:
7006 case bp_until:
7007 case bp_finish:
7008 case bp_longjmp:
7009 case bp_longjmp_resume:
7010 case bp_longjmp_call_dummy:
7011 case bp_exception:
7012 case bp_exception_resume:
7013 case bp_step_resume:
7014 case bp_hp_step_resume:
7015 case bp_watchpoint_scope:
7016 case bp_call_dummy:
7017 case bp_std_terminate:
7018 case bp_shlib_event:
7019 case bp_thread_event:
7020 case bp_overlay_event:
7021 case bp_jit_event:
7022 case bp_longjmp_master:
7023 case bp_std_terminate_master:
7024 case bp_exception_master:
7025 case bp_gnu_ifunc_resolver:
7026 case bp_gnu_ifunc_resolver_return:
7027 case bp_dprintf:
7028 loc->loc_type = bp_loc_software_breakpoint;
7029 mark_breakpoint_location_modified (loc);
7030 break;
7031 case bp_hardware_breakpoint:
7032 loc->loc_type = bp_loc_hardware_breakpoint;
7033 mark_breakpoint_location_modified (loc);
7034 break;
7035 case bp_hardware_watchpoint:
7036 case bp_read_watchpoint:
7037 case bp_access_watchpoint:
7038 loc->loc_type = bp_loc_hardware_watchpoint;
7039 break;
7040 case bp_watchpoint:
7041 case bp_catchpoint:
7042 case bp_tracepoint:
7043 case bp_fast_tracepoint:
7044 case bp_static_tracepoint:
7045 loc->loc_type = bp_loc_other;
7046 break;
7047 default:
7048 internal_error (__FILE__, __LINE__, _("unknown breakpoint type"));
7049 }
7050
7051 loc->refc = 1;
7052 }
7053
7054 /* Allocate a struct bp_location. */
7055
7056 static struct bp_location *
7057 allocate_bp_location (struct breakpoint *bpt)
7058 {
7059 return bpt->ops->allocate_location (bpt);
7060 }
7061
7062 static void
7063 free_bp_location (struct bp_location *loc)
7064 {
7065 loc->ops->dtor (loc);
7066 delete loc;
7067 }
7068
7069 /* Increment reference count. */
7070
7071 static void
7072 incref_bp_location (struct bp_location *bl)
7073 {
7074 ++bl->refc;
7075 }
7076
7077 /* Decrement reference count. If the reference count reaches 0,
7078 destroy the bp_location. Sets *BLP to NULL. */
7079
7080 static void
7081 decref_bp_location (struct bp_location **blp)
7082 {
7083 gdb_assert ((*blp)->refc > 0);
7084
7085 if (--(*blp)->refc == 0)
7086 free_bp_location (*blp);
7087 *blp = NULL;
7088 }
7089
7090 /* Add breakpoint B at the end of the global breakpoint chain. */
7091
7092 static breakpoint *
7093 add_to_breakpoint_chain (std::unique_ptr<breakpoint> &&b)
7094 {
7095 struct breakpoint *b1;
7096 struct breakpoint *result = b.get ();
7097
7098 /* Add this breakpoint to the end of the chain so that a list of
7099 breakpoints will come out in order of increasing numbers. */
7100
7101 b1 = breakpoint_chain;
7102 if (b1 == 0)
7103 breakpoint_chain = b.release ();
7104 else
7105 {
7106 while (b1->next)
7107 b1 = b1->next;
7108 b1->next = b.release ();
7109 }
7110
7111 return result;
7112 }
7113
7114 /* Initializes breakpoint B with type BPTYPE and no locations yet. */
7115
7116 static void
7117 init_raw_breakpoint_without_location (struct breakpoint *b,
7118 struct gdbarch *gdbarch,
7119 enum bptype bptype,
7120 const struct breakpoint_ops *ops)
7121 {
7122 gdb_assert (ops != NULL);
7123
7124 b->ops = ops;
7125 b->type = bptype;
7126 b->gdbarch = gdbarch;
7127 b->language = current_language->la_language;
7128 b->input_radix = input_radix;
7129 b->related_breakpoint = b;
7130 }
7131
7132 /* Helper to set_raw_breakpoint below. Creates a breakpoint
7133 that has type BPTYPE and has no locations as yet. */
7134
7135 static struct breakpoint *
7136 set_raw_breakpoint_without_location (struct gdbarch *gdbarch,
7137 enum bptype bptype,
7138 const struct breakpoint_ops *ops)
7139 {
7140 std::unique_ptr<breakpoint> b = new_breakpoint_from_type (bptype);
7141
7142 init_raw_breakpoint_without_location (b.get (), gdbarch, bptype, ops);
7143 return add_to_breakpoint_chain (std::move (b));
7144 }
7145
7146 /* Initialize loc->function_name. EXPLICIT_LOC says no indirect function
7147 resolutions should be made as the user specified the location explicitly
7148 enough. */
7149
7150 static void
7151 set_breakpoint_location_function (struct bp_location *loc, int explicit_loc)
7152 {
7153 gdb_assert (loc->owner != NULL);
7154
7155 if (loc->owner->type == bp_breakpoint
7156 || loc->owner->type == bp_hardware_breakpoint
7157 || is_tracepoint (loc->owner))
7158 {
7159 int is_gnu_ifunc;
7160 const char *function_name;
7161 CORE_ADDR func_addr;
7162
7163 find_pc_partial_function_gnu_ifunc (loc->address, &function_name,
7164 &func_addr, NULL, &is_gnu_ifunc);
7165
7166 if (is_gnu_ifunc && !explicit_loc)
7167 {
7168 struct breakpoint *b = loc->owner;
7169
7170 gdb_assert (loc->pspace == current_program_space);
7171 if (gnu_ifunc_resolve_name (function_name,
7172 &loc->requested_address))
7173 {
7174 /* Recalculate ADDRESS based on new REQUESTED_ADDRESS. */
7175 loc->address = adjust_breakpoint_address (loc->gdbarch,
7176 loc->requested_address,
7177 b->type);
7178 }
7179 else if (b->type == bp_breakpoint && b->loc == loc
7180 && loc->next == NULL && b->related_breakpoint == b)
7181 {
7182 /* Create only the whole new breakpoint of this type but do not
7183 mess more complicated breakpoints with multiple locations. */
7184 b->type = bp_gnu_ifunc_resolver;
7185 /* Remember the resolver's address for use by the return
7186 breakpoint. */
7187 loc->related_address = func_addr;
7188 }
7189 }
7190
7191 if (function_name)
7192 loc->function_name = xstrdup (function_name);
7193 }
7194 }
7195
7196 /* Attempt to determine architecture of location identified by SAL. */
7197 struct gdbarch *
7198 get_sal_arch (struct symtab_and_line sal)
7199 {
7200 if (sal.section)
7201 return get_objfile_arch (sal.section->objfile);
7202 if (sal.symtab)
7203 return get_objfile_arch (SYMTAB_OBJFILE (sal.symtab));
7204
7205 return NULL;
7206 }
7207
7208 /* Low level routine for partially initializing a breakpoint of type
7209 BPTYPE. The newly created breakpoint's address, section, source
7210 file name, and line number are provided by SAL.
7211
7212 It is expected that the caller will complete the initialization of
7213 the newly created breakpoint struct as well as output any status
7214 information regarding the creation of a new breakpoint. */
7215
7216 static void
7217 init_raw_breakpoint (struct breakpoint *b, struct gdbarch *gdbarch,
7218 struct symtab_and_line sal, enum bptype bptype,
7219 const struct breakpoint_ops *ops)
7220 {
7221 init_raw_breakpoint_without_location (b, gdbarch, bptype, ops);
7222
7223 add_location_to_breakpoint (b, &sal);
7224
7225 if (bptype != bp_catchpoint)
7226 gdb_assert (sal.pspace != NULL);
7227
7228 /* Store the program space that was used to set the breakpoint,
7229 except for ordinary breakpoints, which are independent of the
7230 program space. */
7231 if (bptype != bp_breakpoint && bptype != bp_hardware_breakpoint)
7232 b->pspace = sal.pspace;
7233 }
7234
7235 /* set_raw_breakpoint is a low level routine for allocating and
7236 partially initializing a breakpoint of type BPTYPE. The newly
7237 created breakpoint's address, section, source file name, and line
7238 number are provided by SAL. The newly created and partially
7239 initialized breakpoint is added to the breakpoint chain and
7240 is also returned as the value of this function.
7241
7242 It is expected that the caller will complete the initialization of
7243 the newly created breakpoint struct as well as output any status
7244 information regarding the creation of a new breakpoint. In
7245 particular, set_raw_breakpoint does NOT set the breakpoint
7246 number! Care should be taken to not allow an error to occur
7247 prior to completing the initialization of the breakpoint. If this
7248 should happen, a bogus breakpoint will be left on the chain. */
7249
7250 struct breakpoint *
7251 set_raw_breakpoint (struct gdbarch *gdbarch,
7252 struct symtab_and_line sal, enum bptype bptype,
7253 const struct breakpoint_ops *ops)
7254 {
7255 std::unique_ptr<breakpoint> b = new_breakpoint_from_type (bptype);
7256
7257 init_raw_breakpoint (b.get (), gdbarch, sal, bptype, ops);
7258 return add_to_breakpoint_chain (std::move (b));
7259 }
7260
7261 /* Call this routine when stepping and nexting to enable a breakpoint
7262 if we do a longjmp() or 'throw' in TP. FRAME is the frame which
7263 initiated the operation. */
7264
7265 void
7266 set_longjmp_breakpoint (struct thread_info *tp, struct frame_id frame)
7267 {
7268 struct breakpoint *b, *b_tmp;
7269 int thread = tp->global_num;
7270
7271 /* To avoid having to rescan all objfile symbols at every step,
7272 we maintain a list of continually-inserted but always disabled
7273 longjmp "master" breakpoints. Here, we simply create momentary
7274 clones of those and enable them for the requested thread. */
7275 ALL_BREAKPOINTS_SAFE (b, b_tmp)
7276 if (b->pspace == current_program_space
7277 && (b->type == bp_longjmp_master
7278 || b->type == bp_exception_master))
7279 {
7280 enum bptype type = b->type == bp_longjmp_master ? bp_longjmp : bp_exception;
7281 struct breakpoint *clone;
7282
7283 /* longjmp_breakpoint_ops ensures INITIATING_FRAME is cleared again
7284 after their removal. */
7285 clone = momentary_breakpoint_from_master (b, type,
7286 &momentary_breakpoint_ops, 1);
7287 clone->thread = thread;
7288 }
7289
7290 tp->initiating_frame = frame;
7291 }
7292
7293 /* Delete all longjmp breakpoints from THREAD. */
7294 void
7295 delete_longjmp_breakpoint (int thread)
7296 {
7297 struct breakpoint *b, *b_tmp;
7298
7299 ALL_BREAKPOINTS_SAFE (b, b_tmp)
7300 if (b->type == bp_longjmp || b->type == bp_exception)
7301 {
7302 if (b->thread == thread)
7303 delete_breakpoint (b);
7304 }
7305 }
7306
7307 void
7308 delete_longjmp_breakpoint_at_next_stop (int thread)
7309 {
7310 struct breakpoint *b, *b_tmp;
7311
7312 ALL_BREAKPOINTS_SAFE (b, b_tmp)
7313 if (b->type == bp_longjmp || b->type == bp_exception)
7314 {
7315 if (b->thread == thread)
7316 b->disposition = disp_del_at_next_stop;
7317 }
7318 }
7319
7320 /* Place breakpoints of type bp_longjmp_call_dummy to catch longjmp for
7321 INFERIOR_PTID thread. Chain them all by RELATED_BREAKPOINT and return
7322 pointer to any of them. Return NULL if this system cannot place longjmp
7323 breakpoints. */
7324
7325 struct breakpoint *
7326 set_longjmp_breakpoint_for_call_dummy (void)
7327 {
7328 struct breakpoint *b, *retval = NULL;
7329
7330 ALL_BREAKPOINTS (b)
7331 if (b->pspace == current_program_space && b->type == bp_longjmp_master)
7332 {
7333 struct breakpoint *new_b;
7334
7335 new_b = momentary_breakpoint_from_master (b, bp_longjmp_call_dummy,
7336 &momentary_breakpoint_ops,
7337 1);
7338 new_b->thread = ptid_to_global_thread_id (inferior_ptid);
7339
7340 /* Link NEW_B into the chain of RETVAL breakpoints. */
7341
7342 gdb_assert (new_b->related_breakpoint == new_b);
7343 if (retval == NULL)
7344 retval = new_b;
7345 new_b->related_breakpoint = retval;
7346 while (retval->related_breakpoint != new_b->related_breakpoint)
7347 retval = retval->related_breakpoint;
7348 retval->related_breakpoint = new_b;
7349 }
7350
7351 return retval;
7352 }
7353
7354 /* Verify all existing dummy frames and their associated breakpoints for
7355 TP. Remove those which can no longer be found in the current frame
7356 stack.
7357
7358 You should call this function only at places where it is safe to currently
7359 unwind the whole stack. Failed stack unwind would discard live dummy
7360 frames. */
7361
7362 void
7363 check_longjmp_breakpoint_for_call_dummy (struct thread_info *tp)
7364 {
7365 struct breakpoint *b, *b_tmp;
7366
7367 ALL_BREAKPOINTS_SAFE (b, b_tmp)
7368 if (b->type == bp_longjmp_call_dummy && b->thread == tp->global_num)
7369 {
7370 struct breakpoint *dummy_b = b->related_breakpoint;
7371
7372 while (dummy_b != b && dummy_b->type != bp_call_dummy)
7373 dummy_b = dummy_b->related_breakpoint;
7374 if (dummy_b->type != bp_call_dummy
7375 || frame_find_by_id (dummy_b->frame_id) != NULL)
7376 continue;
7377
7378 dummy_frame_discard (dummy_b->frame_id, tp->ptid);
7379
7380 while (b->related_breakpoint != b)
7381 {
7382 if (b_tmp == b->related_breakpoint)
7383 b_tmp = b->related_breakpoint->next;
7384 delete_breakpoint (b->related_breakpoint);
7385 }
7386 delete_breakpoint (b);
7387 }
7388 }
7389
7390 void
7391 enable_overlay_breakpoints (void)
7392 {
7393 struct breakpoint *b;
7394
7395 ALL_BREAKPOINTS (b)
7396 if (b->type == bp_overlay_event)
7397 {
7398 b->enable_state = bp_enabled;
7399 update_global_location_list (UGLL_MAY_INSERT);
7400 overlay_events_enabled = 1;
7401 }
7402 }
7403
7404 void
7405 disable_overlay_breakpoints (void)
7406 {
7407 struct breakpoint *b;
7408
7409 ALL_BREAKPOINTS (b)
7410 if (b->type == bp_overlay_event)
7411 {
7412 b->enable_state = bp_disabled;
7413 update_global_location_list (UGLL_DONT_INSERT);
7414 overlay_events_enabled = 0;
7415 }
7416 }
7417
7418 /* Set an active std::terminate breakpoint for each std::terminate
7419 master breakpoint. */
7420 void
7421 set_std_terminate_breakpoint (void)
7422 {
7423 struct breakpoint *b, *b_tmp;
7424
7425 ALL_BREAKPOINTS_SAFE (b, b_tmp)
7426 if (b->pspace == current_program_space
7427 && b->type == bp_std_terminate_master)
7428 {
7429 momentary_breakpoint_from_master (b, bp_std_terminate,
7430 &momentary_breakpoint_ops, 1);
7431 }
7432 }
7433
7434 /* Delete all the std::terminate breakpoints. */
7435 void
7436 delete_std_terminate_breakpoint (void)
7437 {
7438 struct breakpoint *b, *b_tmp;
7439
7440 ALL_BREAKPOINTS_SAFE (b, b_tmp)
7441 if (b->type == bp_std_terminate)
7442 delete_breakpoint (b);
7443 }
7444
7445 struct breakpoint *
7446 create_thread_event_breakpoint (struct gdbarch *gdbarch, CORE_ADDR address)
7447 {
7448 struct breakpoint *b;
7449
7450 b = create_internal_breakpoint (gdbarch, address, bp_thread_event,
7451 &internal_breakpoint_ops);
7452
7453 b->enable_state = bp_enabled;
7454 /* location has to be used or breakpoint_re_set will delete me. */
7455 b->location = new_address_location (b->loc->address, NULL, 0);
7456
7457 update_global_location_list_nothrow (UGLL_MAY_INSERT);
7458
7459 return b;
7460 }
7461
7462 struct lang_and_radix
7463 {
7464 enum language lang;
7465 int radix;
7466 };
7467
7468 /* Create a breakpoint for JIT code registration and unregistration. */
7469
7470 struct breakpoint *
7471 create_jit_event_breakpoint (struct gdbarch *gdbarch, CORE_ADDR address)
7472 {
7473 return create_internal_breakpoint (gdbarch, address, bp_jit_event,
7474 &internal_breakpoint_ops);
7475 }
7476
7477 /* Remove JIT code registration and unregistration breakpoint(s). */
7478
7479 void
7480 remove_jit_event_breakpoints (void)
7481 {
7482 struct breakpoint *b, *b_tmp;
7483
7484 ALL_BREAKPOINTS_SAFE (b, b_tmp)
7485 if (b->type == bp_jit_event
7486 && b->loc->pspace == current_program_space)
7487 delete_breakpoint (b);
7488 }
7489
7490 void
7491 remove_solib_event_breakpoints (void)
7492 {
7493 struct breakpoint *b, *b_tmp;
7494
7495 ALL_BREAKPOINTS_SAFE (b, b_tmp)
7496 if (b->type == bp_shlib_event
7497 && b->loc->pspace == current_program_space)
7498 delete_breakpoint (b);
7499 }
7500
7501 /* See breakpoint.h. */
7502
7503 void
7504 remove_solib_event_breakpoints_at_next_stop (void)
7505 {
7506 struct breakpoint *b, *b_tmp;
7507
7508 ALL_BREAKPOINTS_SAFE (b, b_tmp)
7509 if (b->type == bp_shlib_event
7510 && b->loc->pspace == current_program_space)
7511 b->disposition = disp_del_at_next_stop;
7512 }
7513
7514 /* Helper for create_solib_event_breakpoint /
7515 create_and_insert_solib_event_breakpoint. Allows specifying which
7516 INSERT_MODE to pass through to update_global_location_list. */
7517
7518 static struct breakpoint *
7519 create_solib_event_breakpoint_1 (struct gdbarch *gdbarch, CORE_ADDR address,
7520 enum ugll_insert_mode insert_mode)
7521 {
7522 struct breakpoint *b;
7523
7524 b = create_internal_breakpoint (gdbarch, address, bp_shlib_event,
7525 &internal_breakpoint_ops);
7526 update_global_location_list_nothrow (insert_mode);
7527 return b;
7528 }
7529
7530 struct breakpoint *
7531 create_solib_event_breakpoint (struct gdbarch *gdbarch, CORE_ADDR address)
7532 {
7533 return create_solib_event_breakpoint_1 (gdbarch, address, UGLL_MAY_INSERT);
7534 }
7535
7536 /* See breakpoint.h. */
7537
7538 struct breakpoint *
7539 create_and_insert_solib_event_breakpoint (struct gdbarch *gdbarch, CORE_ADDR address)
7540 {
7541 struct breakpoint *b;
7542
7543 /* Explicitly tell update_global_location_list to insert
7544 locations. */
7545 b = create_solib_event_breakpoint_1 (gdbarch, address, UGLL_INSERT);
7546 if (!b->loc->inserted)
7547 {
7548 delete_breakpoint (b);
7549 return NULL;
7550 }
7551 return b;
7552 }
7553
7554 /* Disable any breakpoints that are on code in shared libraries. Only
7555 apply to enabled breakpoints, disabled ones can just stay disabled. */
7556
7557 void
7558 disable_breakpoints_in_shlibs (void)
7559 {
7560 struct bp_location *loc, **locp_tmp;
7561
7562 ALL_BP_LOCATIONS (loc, locp_tmp)
7563 {
7564 /* ALL_BP_LOCATIONS bp_location has LOC->OWNER always non-NULL. */
7565 struct breakpoint *b = loc->owner;
7566
7567 /* We apply the check to all breakpoints, including disabled for
7568 those with loc->duplicate set. This is so that when breakpoint
7569 becomes enabled, or the duplicate is removed, gdb will try to
7570 insert all breakpoints. If we don't set shlib_disabled here,
7571 we'll try to insert those breakpoints and fail. */
7572 if (((b->type == bp_breakpoint)
7573 || (b->type == bp_jit_event)
7574 || (b->type == bp_hardware_breakpoint)
7575 || (is_tracepoint (b)))
7576 && loc->pspace == current_program_space
7577 && !loc->shlib_disabled
7578 && solib_name_from_address (loc->pspace, loc->address)
7579 )
7580 {
7581 loc->shlib_disabled = 1;
7582 }
7583 }
7584 }
7585
7586 /* Disable any breakpoints and tracepoints that are in SOLIB upon
7587 notification of unloaded_shlib. Only apply to enabled breakpoints,
7588 disabled ones can just stay disabled. */
7589
7590 static void
7591 disable_breakpoints_in_unloaded_shlib (struct so_list *solib)
7592 {
7593 struct bp_location *loc, **locp_tmp;
7594 int disabled_shlib_breaks = 0;
7595
7596 ALL_BP_LOCATIONS (loc, locp_tmp)
7597 {
7598 /* ALL_BP_LOCATIONS bp_location has LOC->OWNER always non-NULL. */
7599 struct breakpoint *b = loc->owner;
7600
7601 if (solib->pspace == loc->pspace
7602 && !loc->shlib_disabled
7603 && (((b->type == bp_breakpoint
7604 || b->type == bp_jit_event
7605 || b->type == bp_hardware_breakpoint)
7606 && (loc->loc_type == bp_loc_hardware_breakpoint
7607 || loc->loc_type == bp_loc_software_breakpoint))
7608 || is_tracepoint (b))
7609 && solib_contains_address_p (solib, loc->address))
7610 {
7611 loc->shlib_disabled = 1;
7612 /* At this point, we cannot rely on remove_breakpoint
7613 succeeding so we must mark the breakpoint as not inserted
7614 to prevent future errors occurring in remove_breakpoints. */
7615 loc->inserted = 0;
7616
7617 /* This may cause duplicate notifications for the same breakpoint. */
7618 gdb::observers::breakpoint_modified.notify (b);
7619
7620 if (!disabled_shlib_breaks)
7621 {
7622 target_terminal::ours_for_output ();
7623 warning (_("Temporarily disabling breakpoints "
7624 "for unloaded shared library \"%s\""),
7625 solib->so_name);
7626 }
7627 disabled_shlib_breaks = 1;
7628 }
7629 }
7630 }
7631
7632 /* Disable any breakpoints and tracepoints in OBJFILE upon
7633 notification of free_objfile. Only apply to enabled breakpoints,
7634 disabled ones can just stay disabled. */
7635
7636 static void
7637 disable_breakpoints_in_freed_objfile (struct objfile *objfile)
7638 {
7639 struct breakpoint *b;
7640
7641 if (objfile == NULL)
7642 return;
7643
7644 /* OBJF_SHARED|OBJF_USERLOADED objfiles are dynamic modules manually
7645 managed by the user with add-symbol-file/remove-symbol-file.
7646 Similarly to how breakpoints in shared libraries are handled in
7647 response to "nosharedlibrary", mark breakpoints in such modules
7648 shlib_disabled so they end up uninserted on the next global
7649 location list update. Shared libraries not loaded by the user
7650 aren't handled here -- they're already handled in
7651 disable_breakpoints_in_unloaded_shlib, called by solib.c's
7652 solib_unloaded observer. We skip objfiles that are not
7653 OBJF_SHARED as those aren't considered dynamic objects (e.g. the
7654 main objfile). */
7655 if ((objfile->flags & OBJF_SHARED) == 0
7656 || (objfile->flags & OBJF_USERLOADED) == 0)
7657 return;
7658
7659 ALL_BREAKPOINTS (b)
7660 {
7661 struct bp_location *loc;
7662 int bp_modified = 0;
7663
7664 if (!is_breakpoint (b) && !is_tracepoint (b))
7665 continue;
7666
7667 for (loc = b->loc; loc != NULL; loc = loc->next)
7668 {
7669 CORE_ADDR loc_addr = loc->address;
7670
7671 if (loc->loc_type != bp_loc_hardware_breakpoint
7672 && loc->loc_type != bp_loc_software_breakpoint)
7673 continue;
7674
7675 if (loc->shlib_disabled != 0)
7676 continue;
7677
7678 if (objfile->pspace != loc->pspace)
7679 continue;
7680
7681 if (loc->loc_type != bp_loc_hardware_breakpoint
7682 && loc->loc_type != bp_loc_software_breakpoint)
7683 continue;
7684
7685 if (is_addr_in_objfile (loc_addr, objfile))
7686 {
7687 loc->shlib_disabled = 1;
7688 /* At this point, we don't know whether the object was
7689 unmapped from the inferior or not, so leave the
7690 inserted flag alone. We'll handle failure to
7691 uninsert quietly, in case the object was indeed
7692 unmapped. */
7693
7694 mark_breakpoint_location_modified (loc);
7695
7696 bp_modified = 1;
7697 }
7698 }
7699
7700 if (bp_modified)
7701 gdb::observers::breakpoint_modified.notify (b);
7702 }
7703 }
7704
7705 /* FORK & VFORK catchpoints. */
7706
7707 /* An instance of this type is used to represent a fork or vfork
7708 catchpoint. A breakpoint is really of this type iff its ops pointer points
7709 to CATCH_FORK_BREAKPOINT_OPS. */
7710
7711 struct fork_catchpoint : public breakpoint
7712 {
7713 /* Process id of a child process whose forking triggered this
7714 catchpoint. This field is only valid immediately after this
7715 catchpoint has triggered. */
7716 ptid_t forked_inferior_pid;
7717 };
7718
7719 /* Implement the "insert" breakpoint_ops method for fork
7720 catchpoints. */
7721
7722 static int
7723 insert_catch_fork (struct bp_location *bl)
7724 {
7725 return target_insert_fork_catchpoint (ptid_get_pid (inferior_ptid));
7726 }
7727
7728 /* Implement the "remove" breakpoint_ops method for fork
7729 catchpoints. */
7730
7731 static int
7732 remove_catch_fork (struct bp_location *bl, enum remove_bp_reason reason)
7733 {
7734 return target_remove_fork_catchpoint (ptid_get_pid (inferior_ptid));
7735 }
7736
7737 /* Implement the "breakpoint_hit" breakpoint_ops method for fork
7738 catchpoints. */
7739
7740 static int
7741 breakpoint_hit_catch_fork (const struct bp_location *bl,
7742 const address_space *aspace, CORE_ADDR bp_addr,
7743 const struct target_waitstatus *ws)
7744 {
7745 struct fork_catchpoint *c = (struct fork_catchpoint *) bl->owner;
7746
7747 if (ws->kind != TARGET_WAITKIND_FORKED)
7748 return 0;
7749
7750 c->forked_inferior_pid = ws->value.related_pid;
7751 return 1;
7752 }
7753
7754 /* Implement the "print_it" breakpoint_ops method for fork
7755 catchpoints. */
7756
7757 static enum print_stop_action
7758 print_it_catch_fork (bpstat bs)
7759 {
7760 struct ui_out *uiout = current_uiout;
7761 struct breakpoint *b = bs->breakpoint_at;
7762 struct fork_catchpoint *c = (struct fork_catchpoint *) bs->breakpoint_at;
7763
7764 annotate_catchpoint (b->number);
7765 maybe_print_thread_hit_breakpoint (uiout);
7766 if (b->disposition == disp_del)
7767 uiout->text ("Temporary catchpoint ");
7768 else
7769 uiout->text ("Catchpoint ");
7770 if (uiout->is_mi_like_p ())
7771 {
7772 uiout->field_string ("reason", async_reason_lookup (EXEC_ASYNC_FORK));
7773 uiout->field_string ("disp", bpdisp_text (b->disposition));
7774 }
7775 uiout->field_int ("bkptno", b->number);
7776 uiout->text (" (forked process ");
7777 uiout->field_int ("newpid", ptid_get_pid (c->forked_inferior_pid));
7778 uiout->text ("), ");
7779 return PRINT_SRC_AND_LOC;
7780 }
7781
7782 /* Implement the "print_one" breakpoint_ops method for fork
7783 catchpoints. */
7784
7785 static void
7786 print_one_catch_fork (struct breakpoint *b, struct bp_location **last_loc)
7787 {
7788 struct fork_catchpoint *c = (struct fork_catchpoint *) b;
7789 struct value_print_options opts;
7790 struct ui_out *uiout = current_uiout;
7791
7792 get_user_print_options (&opts);
7793
7794 /* Field 4, the address, is omitted (which makes the columns not
7795 line up too nicely with the headers, but the effect is relatively
7796 readable). */
7797 if (opts.addressprint)
7798 uiout->field_skip ("addr");
7799 annotate_field (5);
7800 uiout->text ("fork");
7801 if (!ptid_equal (c->forked_inferior_pid, null_ptid))
7802 {
7803 uiout->text (", process ");
7804 uiout->field_int ("what", ptid_get_pid (c->forked_inferior_pid));
7805 uiout->spaces (1);
7806 }
7807
7808 if (uiout->is_mi_like_p ())
7809 uiout->field_string ("catch-type", "fork");
7810 }
7811
7812 /* Implement the "print_mention" breakpoint_ops method for fork
7813 catchpoints. */
7814
7815 static void
7816 print_mention_catch_fork (struct breakpoint *b)
7817 {
7818 printf_filtered (_("Catchpoint %d (fork)"), b->number);
7819 }
7820
7821 /* Implement the "print_recreate" breakpoint_ops method for fork
7822 catchpoints. */
7823
7824 static void
7825 print_recreate_catch_fork (struct breakpoint *b, struct ui_file *fp)
7826 {
7827 fprintf_unfiltered (fp, "catch fork");
7828 print_recreate_thread (b, fp);
7829 }
7830
7831 /* The breakpoint_ops structure to be used in fork catchpoints. */
7832
7833 static struct breakpoint_ops catch_fork_breakpoint_ops;
7834
7835 /* Implement the "insert" breakpoint_ops method for vfork
7836 catchpoints. */
7837
7838 static int
7839 insert_catch_vfork (struct bp_location *bl)
7840 {
7841 return target_insert_vfork_catchpoint (ptid_get_pid (inferior_ptid));
7842 }
7843
7844 /* Implement the "remove" breakpoint_ops method for vfork
7845 catchpoints. */
7846
7847 static int
7848 remove_catch_vfork (struct bp_location *bl, enum remove_bp_reason reason)
7849 {
7850 return target_remove_vfork_catchpoint (ptid_get_pid (inferior_ptid));
7851 }
7852
7853 /* Implement the "breakpoint_hit" breakpoint_ops method for vfork
7854 catchpoints. */
7855
7856 static int
7857 breakpoint_hit_catch_vfork (const struct bp_location *bl,
7858 const address_space *aspace, CORE_ADDR bp_addr,
7859 const struct target_waitstatus *ws)
7860 {
7861 struct fork_catchpoint *c = (struct fork_catchpoint *) bl->owner;
7862
7863 if (ws->kind != TARGET_WAITKIND_VFORKED)
7864 return 0;
7865
7866 c->forked_inferior_pid = ws->value.related_pid;
7867 return 1;
7868 }
7869
7870 /* Implement the "print_it" breakpoint_ops method for vfork
7871 catchpoints. */
7872
7873 static enum print_stop_action
7874 print_it_catch_vfork (bpstat bs)
7875 {
7876 struct ui_out *uiout = current_uiout;
7877 struct breakpoint *b = bs->breakpoint_at;
7878 struct fork_catchpoint *c = (struct fork_catchpoint *) b;
7879
7880 annotate_catchpoint (b->number);
7881 maybe_print_thread_hit_breakpoint (uiout);
7882 if (b->disposition == disp_del)
7883 uiout->text ("Temporary catchpoint ");
7884 else
7885 uiout->text ("Catchpoint ");
7886 if (uiout->is_mi_like_p ())
7887 {
7888 uiout->field_string ("reason", async_reason_lookup (EXEC_ASYNC_VFORK));
7889 uiout->field_string ("disp", bpdisp_text (b->disposition));
7890 }
7891 uiout->field_int ("bkptno", b->number);
7892 uiout->text (" (vforked process ");
7893 uiout->field_int ("newpid", ptid_get_pid (c->forked_inferior_pid));
7894 uiout->text ("), ");
7895 return PRINT_SRC_AND_LOC;
7896 }
7897
7898 /* Implement the "print_one" breakpoint_ops method for vfork
7899 catchpoints. */
7900
7901 static void
7902 print_one_catch_vfork (struct breakpoint *b, struct bp_location **last_loc)
7903 {
7904 struct fork_catchpoint *c = (struct fork_catchpoint *) b;
7905 struct value_print_options opts;
7906 struct ui_out *uiout = current_uiout;
7907
7908 get_user_print_options (&opts);
7909 /* Field 4, the address, is omitted (which makes the columns not
7910 line up too nicely with the headers, but the effect is relatively
7911 readable). */
7912 if (opts.addressprint)
7913 uiout->field_skip ("addr");
7914 annotate_field (5);
7915 uiout->text ("vfork");
7916 if (!ptid_equal (c->forked_inferior_pid, null_ptid))
7917 {
7918 uiout->text (", process ");
7919 uiout->field_int ("what", ptid_get_pid (c->forked_inferior_pid));
7920 uiout->spaces (1);
7921 }
7922
7923 if (uiout->is_mi_like_p ())
7924 uiout->field_string ("catch-type", "vfork");
7925 }
7926
7927 /* Implement the "print_mention" breakpoint_ops method for vfork
7928 catchpoints. */
7929
7930 static void
7931 print_mention_catch_vfork (struct breakpoint *b)
7932 {
7933 printf_filtered (_("Catchpoint %d (vfork)"), b->number);
7934 }
7935
7936 /* Implement the "print_recreate" breakpoint_ops method for vfork
7937 catchpoints. */
7938
7939 static void
7940 print_recreate_catch_vfork (struct breakpoint *b, struct ui_file *fp)
7941 {
7942 fprintf_unfiltered (fp, "catch vfork");
7943 print_recreate_thread (b, fp);
7944 }
7945
7946 /* The breakpoint_ops structure to be used in vfork catchpoints. */
7947
7948 static struct breakpoint_ops catch_vfork_breakpoint_ops;
7949
7950 /* An instance of this type is used to represent an solib catchpoint.
7951 A breakpoint is really of this type iff its ops pointer points to
7952 CATCH_SOLIB_BREAKPOINT_OPS. */
7953
7954 struct solib_catchpoint : public breakpoint
7955 {
7956 ~solib_catchpoint () override;
7957
7958 /* True for "catch load", false for "catch unload". */
7959 unsigned char is_load;
7960
7961 /* Regular expression to match, if any. COMPILED is only valid when
7962 REGEX is non-NULL. */
7963 char *regex;
7964 std::unique_ptr<compiled_regex> compiled;
7965 };
7966
7967 solib_catchpoint::~solib_catchpoint ()
7968 {
7969 xfree (this->regex);
7970 }
7971
7972 static int
7973 insert_catch_solib (struct bp_location *ignore)
7974 {
7975 return 0;
7976 }
7977
7978 static int
7979 remove_catch_solib (struct bp_location *ignore, enum remove_bp_reason reason)
7980 {
7981 return 0;
7982 }
7983
7984 static int
7985 breakpoint_hit_catch_solib (const struct bp_location *bl,
7986 const address_space *aspace,
7987 CORE_ADDR bp_addr,
7988 const struct target_waitstatus *ws)
7989 {
7990 struct solib_catchpoint *self = (struct solib_catchpoint *) bl->owner;
7991 struct breakpoint *other;
7992
7993 if (ws->kind == TARGET_WAITKIND_LOADED)
7994 return 1;
7995
7996 ALL_BREAKPOINTS (other)
7997 {
7998 struct bp_location *other_bl;
7999
8000 if (other == bl->owner)
8001 continue;
8002
8003 if (other->type != bp_shlib_event)
8004 continue;
8005
8006 if (self->pspace != NULL && other->pspace != self->pspace)
8007 continue;
8008
8009 for (other_bl = other->loc; other_bl != NULL; other_bl = other_bl->next)
8010 {
8011 if (other->ops->breakpoint_hit (other_bl, aspace, bp_addr, ws))
8012 return 1;
8013 }
8014 }
8015
8016 return 0;
8017 }
8018
8019 static void
8020 check_status_catch_solib (struct bpstats *bs)
8021 {
8022 struct solib_catchpoint *self
8023 = (struct solib_catchpoint *) bs->breakpoint_at;
8024
8025 if (self->is_load)
8026 {
8027 struct so_list *iter;
8028
8029 for (int ix = 0;
8030 VEC_iterate (so_list_ptr, current_program_space->added_solibs,
8031 ix, iter);
8032 ++ix)
8033 {
8034 if (!self->regex
8035 || self->compiled->exec (iter->so_name, 0, NULL, 0) == 0)
8036 return;
8037 }
8038 }
8039 else
8040 {
8041 for (const std::string &iter : current_program_space->deleted_solibs)
8042 {
8043 if (!self->regex
8044 || self->compiled->exec (iter.c_str (), 0, NULL, 0) == 0)
8045 return;
8046 }
8047 }
8048
8049 bs->stop = 0;
8050 bs->print_it = print_it_noop;
8051 }
8052
8053 static enum print_stop_action
8054 print_it_catch_solib (bpstat bs)
8055 {
8056 struct breakpoint *b = bs->breakpoint_at;
8057 struct ui_out *uiout = current_uiout;
8058
8059 annotate_catchpoint (b->number);
8060 maybe_print_thread_hit_breakpoint (uiout);
8061 if (b->disposition == disp_del)
8062 uiout->text ("Temporary catchpoint ");
8063 else
8064 uiout->text ("Catchpoint ");
8065 uiout->field_int ("bkptno", b->number);
8066 uiout->text ("\n");
8067 if (uiout->is_mi_like_p ())
8068 uiout->field_string ("disp", bpdisp_text (b->disposition));
8069 print_solib_event (1);
8070 return PRINT_SRC_AND_LOC;
8071 }
8072
8073 static void
8074 print_one_catch_solib (struct breakpoint *b, struct bp_location **locs)
8075 {
8076 struct solib_catchpoint *self = (struct solib_catchpoint *) b;
8077 struct value_print_options opts;
8078 struct ui_out *uiout = current_uiout;
8079 char *msg;
8080
8081 get_user_print_options (&opts);
8082 /* Field 4, the address, is omitted (which makes the columns not
8083 line up too nicely with the headers, but the effect is relatively
8084 readable). */
8085 if (opts.addressprint)
8086 {
8087 annotate_field (4);
8088 uiout->field_skip ("addr");
8089 }
8090
8091 annotate_field (5);
8092 if (self->is_load)
8093 {
8094 if (self->regex)
8095 msg = xstrprintf (_("load of library matching %s"), self->regex);
8096 else
8097 msg = xstrdup (_("load of library"));
8098 }
8099 else
8100 {
8101 if (self->regex)
8102 msg = xstrprintf (_("unload of library matching %s"), self->regex);
8103 else
8104 msg = xstrdup (_("unload of library"));
8105 }
8106 uiout->field_string ("what", msg);
8107 xfree (msg);
8108
8109 if (uiout->is_mi_like_p ())
8110 uiout->field_string ("catch-type", self->is_load ? "load" : "unload");
8111 }
8112
8113 static void
8114 print_mention_catch_solib (struct breakpoint *b)
8115 {
8116 struct solib_catchpoint *self = (struct solib_catchpoint *) b;
8117
8118 printf_filtered (_("Catchpoint %d (%s)"), b->number,
8119 self->is_load ? "load" : "unload");
8120 }
8121
8122 static void
8123 print_recreate_catch_solib (struct breakpoint *b, struct ui_file *fp)
8124 {
8125 struct solib_catchpoint *self = (struct solib_catchpoint *) b;
8126
8127 fprintf_unfiltered (fp, "%s %s",
8128 b->disposition == disp_del ? "tcatch" : "catch",
8129 self->is_load ? "load" : "unload");
8130 if (self->regex)
8131 fprintf_unfiltered (fp, " %s", self->regex);
8132 fprintf_unfiltered (fp, "\n");
8133 }
8134
8135 static struct breakpoint_ops catch_solib_breakpoint_ops;
8136
8137 /* Shared helper function (MI and CLI) for creating and installing
8138 a shared object event catchpoint. If IS_LOAD is non-zero then
8139 the events to be caught are load events, otherwise they are
8140 unload events. If IS_TEMP is non-zero the catchpoint is a
8141 temporary one. If ENABLED is non-zero the catchpoint is
8142 created in an enabled state. */
8143
8144 void
8145 add_solib_catchpoint (const char *arg, int is_load, int is_temp, int enabled)
8146 {
8147 struct gdbarch *gdbarch = get_current_arch ();
8148
8149 if (!arg)
8150 arg = "";
8151 arg = skip_spaces (arg);
8152
8153 std::unique_ptr<solib_catchpoint> c (new solib_catchpoint ());
8154
8155 if (*arg != '\0')
8156 {
8157 c->compiled.reset (new compiled_regex (arg, REG_NOSUB,
8158 _("Invalid regexp")));
8159 c->regex = xstrdup (arg);
8160 }
8161
8162 c->is_load = is_load;
8163 init_catchpoint (c.get (), gdbarch, is_temp, NULL,
8164 &catch_solib_breakpoint_ops);
8165
8166 c->enable_state = enabled ? bp_enabled : bp_disabled;
8167
8168 install_breakpoint (0, std::move (c), 1);
8169 }
8170
8171 /* A helper function that does all the work for "catch load" and
8172 "catch unload". */
8173
8174 static void
8175 catch_load_or_unload (const char *arg, int from_tty, int is_load,
8176 struct cmd_list_element *command)
8177 {
8178 int tempflag;
8179 const int enabled = 1;
8180
8181 tempflag = get_cmd_context (command) == CATCH_TEMPORARY;
8182
8183 add_solib_catchpoint (arg, is_load, tempflag, enabled);
8184 }
8185
8186 static void
8187 catch_load_command_1 (const char *arg, int from_tty,
8188 struct cmd_list_element *command)
8189 {
8190 catch_load_or_unload (arg, from_tty, 1, command);
8191 }
8192
8193 static void
8194 catch_unload_command_1 (const char *arg, int from_tty,
8195 struct cmd_list_element *command)
8196 {
8197 catch_load_or_unload (arg, from_tty, 0, command);
8198 }
8199
8200 /* Initialize a new breakpoint of the bp_catchpoint kind. If TEMPFLAG
8201 is non-zero, then make the breakpoint temporary. If COND_STRING is
8202 not NULL, then store it in the breakpoint. OPS, if not NULL, is
8203 the breakpoint_ops structure associated to the catchpoint. */
8204
8205 void
8206 init_catchpoint (struct breakpoint *b,
8207 struct gdbarch *gdbarch, int tempflag,
8208 const char *cond_string,
8209 const struct breakpoint_ops *ops)
8210 {
8211 symtab_and_line sal;
8212 sal.pspace = current_program_space;
8213
8214 init_raw_breakpoint (b, gdbarch, sal, bp_catchpoint, ops);
8215
8216 b->cond_string = (cond_string == NULL) ? NULL : xstrdup (cond_string);
8217 b->disposition = tempflag ? disp_del : disp_donttouch;
8218 }
8219
8220 void
8221 install_breakpoint (int internal, std::unique_ptr<breakpoint> &&arg, int update_gll)
8222 {
8223 breakpoint *b = add_to_breakpoint_chain (std::move (arg));
8224 set_breakpoint_number (internal, b);
8225 if (is_tracepoint (b))
8226 set_tracepoint_count (breakpoint_count);
8227 if (!internal)
8228 mention (b);
8229 gdb::observers::breakpoint_created.notify (b);
8230
8231 if (update_gll)
8232 update_global_location_list (UGLL_MAY_INSERT);
8233 }
8234
8235 static void
8236 create_fork_vfork_event_catchpoint (struct gdbarch *gdbarch,
8237 int tempflag, const char *cond_string,
8238 const struct breakpoint_ops *ops)
8239 {
8240 std::unique_ptr<fork_catchpoint> c (new fork_catchpoint ());
8241
8242 init_catchpoint (c.get (), gdbarch, tempflag, cond_string, ops);
8243
8244 c->forked_inferior_pid = null_ptid;
8245
8246 install_breakpoint (0, std::move (c), 1);
8247 }
8248
8249 /* Exec catchpoints. */
8250
8251 /* An instance of this type is used to represent an exec catchpoint.
8252 A breakpoint is really of this type iff its ops pointer points to
8253 CATCH_EXEC_BREAKPOINT_OPS. */
8254
8255 struct exec_catchpoint : public breakpoint
8256 {
8257 ~exec_catchpoint () override;
8258
8259 /* Filename of a program whose exec triggered this catchpoint.
8260 This field is only valid immediately after this catchpoint has
8261 triggered. */
8262 char *exec_pathname;
8263 };
8264
8265 /* Exec catchpoint destructor. */
8266
8267 exec_catchpoint::~exec_catchpoint ()
8268 {
8269 xfree (this->exec_pathname);
8270 }
8271
8272 static int
8273 insert_catch_exec (struct bp_location *bl)
8274 {
8275 return target_insert_exec_catchpoint (ptid_get_pid (inferior_ptid));
8276 }
8277
8278 static int
8279 remove_catch_exec (struct bp_location *bl, enum remove_bp_reason reason)
8280 {
8281 return target_remove_exec_catchpoint (ptid_get_pid (inferior_ptid));
8282 }
8283
8284 static int
8285 breakpoint_hit_catch_exec (const struct bp_location *bl,
8286 const address_space *aspace, CORE_ADDR bp_addr,
8287 const struct target_waitstatus *ws)
8288 {
8289 struct exec_catchpoint *c = (struct exec_catchpoint *) bl->owner;
8290
8291 if (ws->kind != TARGET_WAITKIND_EXECD)
8292 return 0;
8293
8294 c->exec_pathname = xstrdup (ws->value.execd_pathname);
8295 return 1;
8296 }
8297
8298 static enum print_stop_action
8299 print_it_catch_exec (bpstat bs)
8300 {
8301 struct ui_out *uiout = current_uiout;
8302 struct breakpoint *b = bs->breakpoint_at;
8303 struct exec_catchpoint *c = (struct exec_catchpoint *) b;
8304
8305 annotate_catchpoint (b->number);
8306 maybe_print_thread_hit_breakpoint (uiout);
8307 if (b->disposition == disp_del)
8308 uiout->text ("Temporary catchpoint ");
8309 else
8310 uiout->text ("Catchpoint ");
8311 if (uiout->is_mi_like_p ())
8312 {
8313 uiout->field_string ("reason", async_reason_lookup (EXEC_ASYNC_EXEC));
8314 uiout->field_string ("disp", bpdisp_text (b->disposition));
8315 }
8316 uiout->field_int ("bkptno", b->number);
8317 uiout->text (" (exec'd ");
8318 uiout->field_string ("new-exec", c->exec_pathname);
8319 uiout->text ("), ");
8320
8321 return PRINT_SRC_AND_LOC;
8322 }
8323
8324 static void
8325 print_one_catch_exec (struct breakpoint *b, struct bp_location **last_loc)
8326 {
8327 struct exec_catchpoint *c = (struct exec_catchpoint *) b;
8328 struct value_print_options opts;
8329 struct ui_out *uiout = current_uiout;
8330
8331 get_user_print_options (&opts);
8332
8333 /* Field 4, the address, is omitted (which makes the columns
8334 not line up too nicely with the headers, but the effect
8335 is relatively readable). */
8336 if (opts.addressprint)
8337 uiout->field_skip ("addr");
8338 annotate_field (5);
8339 uiout->text ("exec");
8340 if (c->exec_pathname != NULL)
8341 {
8342 uiout->text (", program \"");
8343 uiout->field_string ("what", c->exec_pathname);
8344 uiout->text ("\" ");
8345 }
8346
8347 if (uiout->is_mi_like_p ())
8348 uiout->field_string ("catch-type", "exec");
8349 }
8350
8351 static void
8352 print_mention_catch_exec (struct breakpoint *b)
8353 {
8354 printf_filtered (_("Catchpoint %d (exec)"), b->number);
8355 }
8356
8357 /* Implement the "print_recreate" breakpoint_ops method for exec
8358 catchpoints. */
8359
8360 static void
8361 print_recreate_catch_exec (struct breakpoint *b, struct ui_file *fp)
8362 {
8363 fprintf_unfiltered (fp, "catch exec");
8364 print_recreate_thread (b, fp);
8365 }
8366
8367 static struct breakpoint_ops catch_exec_breakpoint_ops;
8368
8369 static int
8370 hw_breakpoint_used_count (void)
8371 {
8372 int i = 0;
8373 struct breakpoint *b;
8374 struct bp_location *bl;
8375
8376 ALL_BREAKPOINTS (b)
8377 {
8378 if (b->type == bp_hardware_breakpoint && breakpoint_enabled (b))
8379 for (bl = b->loc; bl; bl = bl->next)
8380 {
8381 /* Special types of hardware breakpoints may use more than
8382 one register. */
8383 i += b->ops->resources_needed (bl);
8384 }
8385 }
8386
8387 return i;
8388 }
8389
8390 /* Returns the resources B would use if it were a hardware
8391 watchpoint. */
8392
8393 static int
8394 hw_watchpoint_use_count (struct breakpoint *b)
8395 {
8396 int i = 0;
8397 struct bp_location *bl;
8398
8399 if (!breakpoint_enabled (b))
8400 return 0;
8401
8402 for (bl = b->loc; bl; bl = bl->next)
8403 {
8404 /* Special types of hardware watchpoints may use more than
8405 one register. */
8406 i += b->ops->resources_needed (bl);
8407 }
8408
8409 return i;
8410 }
8411
8412 /* Returns the sum the used resources of all hardware watchpoints of
8413 type TYPE in the breakpoints list. Also returns in OTHER_TYPE_USED
8414 the sum of the used resources of all hardware watchpoints of other
8415 types _not_ TYPE. */
8416
8417 static int
8418 hw_watchpoint_used_count_others (struct breakpoint *except,
8419 enum bptype type, int *other_type_used)
8420 {
8421 int i = 0;
8422 struct breakpoint *b;
8423
8424 *other_type_used = 0;
8425 ALL_BREAKPOINTS (b)
8426 {
8427 if (b == except)
8428 continue;
8429 if (!breakpoint_enabled (b))
8430 continue;
8431
8432 if (b->type == type)
8433 i += hw_watchpoint_use_count (b);
8434 else if (is_hardware_watchpoint (b))
8435 *other_type_used = 1;
8436 }
8437
8438 return i;
8439 }
8440
8441 void
8442 disable_watchpoints_before_interactive_call_start (void)
8443 {
8444 struct breakpoint *b;
8445
8446 ALL_BREAKPOINTS (b)
8447 {
8448 if (is_watchpoint (b) && breakpoint_enabled (b))
8449 {
8450 b->enable_state = bp_call_disabled;
8451 update_global_location_list (UGLL_DONT_INSERT);
8452 }
8453 }
8454 }
8455
8456 void
8457 enable_watchpoints_after_interactive_call_stop (void)
8458 {
8459 struct breakpoint *b;
8460
8461 ALL_BREAKPOINTS (b)
8462 {
8463 if (is_watchpoint (b) && b->enable_state == bp_call_disabled)
8464 {
8465 b->enable_state = bp_enabled;
8466 update_global_location_list (UGLL_MAY_INSERT);
8467 }
8468 }
8469 }
8470
8471 void
8472 disable_breakpoints_before_startup (void)
8473 {
8474 current_program_space->executing_startup = 1;
8475 update_global_location_list (UGLL_DONT_INSERT);
8476 }
8477
8478 void
8479 enable_breakpoints_after_startup (void)
8480 {
8481 current_program_space->executing_startup = 0;
8482 breakpoint_re_set ();
8483 }
8484
8485 /* Create a new single-step breakpoint for thread THREAD, with no
8486 locations. */
8487
8488 static struct breakpoint *
8489 new_single_step_breakpoint (int thread, struct gdbarch *gdbarch)
8490 {
8491 std::unique_ptr<breakpoint> b (new breakpoint ());
8492
8493 init_raw_breakpoint_without_location (b.get (), gdbarch, bp_single_step,
8494 &momentary_breakpoint_ops);
8495
8496 b->disposition = disp_donttouch;
8497 b->frame_id = null_frame_id;
8498
8499 b->thread = thread;
8500 gdb_assert (b->thread != 0);
8501
8502 return add_to_breakpoint_chain (std::move (b));
8503 }
8504
8505 /* Set a momentary breakpoint of type TYPE at address specified by
8506 SAL. If FRAME_ID is valid, the breakpoint is restricted to that
8507 frame. */
8508
8509 breakpoint_up
8510 set_momentary_breakpoint (struct gdbarch *gdbarch, struct symtab_and_line sal,
8511 struct frame_id frame_id, enum bptype type)
8512 {
8513 struct breakpoint *b;
8514
8515 /* If FRAME_ID is valid, it should be a real frame, not an inlined or
8516 tail-called one. */
8517 gdb_assert (!frame_id_artificial_p (frame_id));
8518
8519 b = set_raw_breakpoint (gdbarch, sal, type, &momentary_breakpoint_ops);
8520 b->enable_state = bp_enabled;
8521 b->disposition = disp_donttouch;
8522 b->frame_id = frame_id;
8523
8524 /* If we're debugging a multi-threaded program, then we want
8525 momentary breakpoints to be active in only a single thread of
8526 control. */
8527 if (in_thread_list (inferior_ptid))
8528 b->thread = ptid_to_global_thread_id (inferior_ptid);
8529
8530 update_global_location_list_nothrow (UGLL_MAY_INSERT);
8531
8532 return breakpoint_up (b);
8533 }
8534
8535 /* Make a momentary breakpoint based on the master breakpoint ORIG.
8536 The new breakpoint will have type TYPE, use OPS as its
8537 breakpoint_ops, and will set enabled to LOC_ENABLED. */
8538
8539 static struct breakpoint *
8540 momentary_breakpoint_from_master (struct breakpoint *orig,
8541 enum bptype type,
8542 const struct breakpoint_ops *ops,
8543 int loc_enabled)
8544 {
8545 struct breakpoint *copy;
8546
8547 copy = set_raw_breakpoint_without_location (orig->gdbarch, type, ops);
8548 copy->loc = allocate_bp_location (copy);
8549 set_breakpoint_location_function (copy->loc, 1);
8550
8551 copy->loc->gdbarch = orig->loc->gdbarch;
8552 copy->loc->requested_address = orig->loc->requested_address;
8553 copy->loc->address = orig->loc->address;
8554 copy->loc->section = orig->loc->section;
8555 copy->loc->pspace = orig->loc->pspace;
8556 copy->loc->probe = orig->loc->probe;
8557 copy->loc->line_number = orig->loc->line_number;
8558 copy->loc->symtab = orig->loc->symtab;
8559 copy->loc->enabled = loc_enabled;
8560 copy->frame_id = orig->frame_id;
8561 copy->thread = orig->thread;
8562 copy->pspace = orig->pspace;
8563
8564 copy->enable_state = bp_enabled;
8565 copy->disposition = disp_donttouch;
8566 copy->number = internal_breakpoint_number--;
8567
8568 update_global_location_list_nothrow (UGLL_DONT_INSERT);
8569 return copy;
8570 }
8571
8572 /* Make a deep copy of momentary breakpoint ORIG. Returns NULL if
8573 ORIG is NULL. */
8574
8575 struct breakpoint *
8576 clone_momentary_breakpoint (struct breakpoint *orig)
8577 {
8578 /* If there's nothing to clone, then return nothing. */
8579 if (orig == NULL)
8580 return NULL;
8581
8582 return momentary_breakpoint_from_master (orig, orig->type, orig->ops, 0);
8583 }
8584
8585 breakpoint_up
8586 set_momentary_breakpoint_at_pc (struct gdbarch *gdbarch, CORE_ADDR pc,
8587 enum bptype type)
8588 {
8589 struct symtab_and_line sal;
8590
8591 sal = find_pc_line (pc, 0);
8592 sal.pc = pc;
8593 sal.section = find_pc_overlay (pc);
8594 sal.explicit_pc = 1;
8595
8596 return set_momentary_breakpoint (gdbarch, sal, null_frame_id, type);
8597 }
8598 \f
8599
8600 /* Tell the user we have just set a breakpoint B. */
8601
8602 static void
8603 mention (struct breakpoint *b)
8604 {
8605 b->ops->print_mention (b);
8606 if (current_uiout->is_mi_like_p ())
8607 return;
8608 printf_filtered ("\n");
8609 }
8610 \f
8611
8612 static int bp_loc_is_permanent (struct bp_location *loc);
8613
8614 static struct bp_location *
8615 add_location_to_breakpoint (struct breakpoint *b,
8616 const struct symtab_and_line *sal)
8617 {
8618 struct bp_location *loc, **tmp;
8619 CORE_ADDR adjusted_address;
8620 struct gdbarch *loc_gdbarch = get_sal_arch (*sal);
8621
8622 if (loc_gdbarch == NULL)
8623 loc_gdbarch = b->gdbarch;
8624
8625 /* Adjust the breakpoint's address prior to allocating a location.
8626 Once we call allocate_bp_location(), that mostly uninitialized
8627 location will be placed on the location chain. Adjustment of the
8628 breakpoint may cause target_read_memory() to be called and we do
8629 not want its scan of the location chain to find a breakpoint and
8630 location that's only been partially initialized. */
8631 adjusted_address = adjust_breakpoint_address (loc_gdbarch,
8632 sal->pc, b->type);
8633
8634 /* Sort the locations by their ADDRESS. */
8635 loc = allocate_bp_location (b);
8636 for (tmp = &(b->loc); *tmp != NULL && (*tmp)->address <= adjusted_address;
8637 tmp = &((*tmp)->next))
8638 ;
8639 loc->next = *tmp;
8640 *tmp = loc;
8641
8642 loc->requested_address = sal->pc;
8643 loc->address = adjusted_address;
8644 loc->pspace = sal->pspace;
8645 loc->probe.prob = sal->prob;
8646 loc->probe.objfile = sal->objfile;
8647 gdb_assert (loc->pspace != NULL);
8648 loc->section = sal->section;
8649 loc->gdbarch = loc_gdbarch;
8650 loc->line_number = sal->line;
8651 loc->symtab = sal->symtab;
8652 loc->symbol = sal->symbol;
8653
8654 set_breakpoint_location_function (loc,
8655 sal->explicit_pc || sal->explicit_line);
8656
8657 /* While by definition, permanent breakpoints are already present in the
8658 code, we don't mark the location as inserted. Normally one would expect
8659 that GDB could rely on that breakpoint instruction to stop the program,
8660 thus removing the need to insert its own breakpoint, except that executing
8661 the breakpoint instruction can kill the target instead of reporting a
8662 SIGTRAP. E.g., on SPARC, when interrupts are disabled, executing the
8663 instruction resets the CPU, so QEMU 2.0.0 for SPARC correspondingly dies
8664 with "Trap 0x02 while interrupts disabled, Error state". Letting the
8665 breakpoint be inserted normally results in QEMU knowing about the GDB
8666 breakpoint, and thus trap before the breakpoint instruction is executed.
8667 (If GDB later needs to continue execution past the permanent breakpoint,
8668 it manually increments the PC, thus avoiding executing the breakpoint
8669 instruction.) */
8670 if (bp_loc_is_permanent (loc))
8671 loc->permanent = 1;
8672
8673 return loc;
8674 }
8675 \f
8676
8677 /* See breakpoint.h. */
8678
8679 int
8680 program_breakpoint_here_p (struct gdbarch *gdbarch, CORE_ADDR address)
8681 {
8682 int len;
8683 CORE_ADDR addr;
8684 const gdb_byte *bpoint;
8685 gdb_byte *target_mem;
8686
8687 addr = address;
8688 bpoint = gdbarch_breakpoint_from_pc (gdbarch, &addr, &len);
8689
8690 /* Software breakpoints unsupported? */
8691 if (bpoint == NULL)
8692 return 0;
8693
8694 target_mem = (gdb_byte *) alloca (len);
8695
8696 /* Enable the automatic memory restoration from breakpoints while
8697 we read the memory. Otherwise we could say about our temporary
8698 breakpoints they are permanent. */
8699 scoped_restore restore_memory
8700 = make_scoped_restore_show_memory_breakpoints (0);
8701
8702 if (target_read_memory (address, target_mem, len) == 0
8703 && memcmp (target_mem, bpoint, len) == 0)
8704 return 1;
8705
8706 return 0;
8707 }
8708
8709 /* Return 1 if LOC is pointing to a permanent breakpoint,
8710 return 0 otherwise. */
8711
8712 static int
8713 bp_loc_is_permanent (struct bp_location *loc)
8714 {
8715 gdb_assert (loc != NULL);
8716
8717 /* If we have a catchpoint or a watchpoint, just return 0. We should not
8718 attempt to read from the addresses the locations of these breakpoint types
8719 point to. program_breakpoint_here_p, below, will attempt to read
8720 memory. */
8721 if (!breakpoint_address_is_meaningful (loc->owner))
8722 return 0;
8723
8724 scoped_restore_current_pspace_and_thread restore_pspace_thread;
8725 switch_to_program_space_and_thread (loc->pspace);
8726 return program_breakpoint_here_p (loc->gdbarch, loc->address);
8727 }
8728
8729 /* Build a command list for the dprintf corresponding to the current
8730 settings of the dprintf style options. */
8731
8732 static void
8733 update_dprintf_command_list (struct breakpoint *b)
8734 {
8735 char *dprintf_args = b->extra_string;
8736 char *printf_line = NULL;
8737
8738 if (!dprintf_args)
8739 return;
8740
8741 dprintf_args = skip_spaces (dprintf_args);
8742
8743 /* Allow a comma, as it may have terminated a location, but don't
8744 insist on it. */
8745 if (*dprintf_args == ',')
8746 ++dprintf_args;
8747 dprintf_args = skip_spaces (dprintf_args);
8748
8749 if (*dprintf_args != '"')
8750 error (_("Bad format string, missing '\"'."));
8751
8752 if (strcmp (dprintf_style, dprintf_style_gdb) == 0)
8753 printf_line = xstrprintf ("printf %s", dprintf_args);
8754 else if (strcmp (dprintf_style, dprintf_style_call) == 0)
8755 {
8756 if (!dprintf_function)
8757 error (_("No function supplied for dprintf call"));
8758
8759 if (dprintf_channel && strlen (dprintf_channel) > 0)
8760 printf_line = xstrprintf ("call (void) %s (%s,%s)",
8761 dprintf_function,
8762 dprintf_channel,
8763 dprintf_args);
8764 else
8765 printf_line = xstrprintf ("call (void) %s (%s)",
8766 dprintf_function,
8767 dprintf_args);
8768 }
8769 else if (strcmp (dprintf_style, dprintf_style_agent) == 0)
8770 {
8771 if (target_can_run_breakpoint_commands ())
8772 printf_line = xstrprintf ("agent-printf %s", dprintf_args);
8773 else
8774 {
8775 warning (_("Target cannot run dprintf commands, falling back to GDB printf"));
8776 printf_line = xstrprintf ("printf %s", dprintf_args);
8777 }
8778 }
8779 else
8780 internal_error (__FILE__, __LINE__,
8781 _("Invalid dprintf style."));
8782
8783 gdb_assert (printf_line != NULL);
8784 /* Manufacture a printf sequence. */
8785 {
8786 struct command_line *printf_cmd_line = XNEW (struct command_line);
8787
8788 printf_cmd_line->control_type = simple_control;
8789 printf_cmd_line->body_count = 0;
8790 printf_cmd_line->body_list = NULL;
8791 printf_cmd_line->next = NULL;
8792 printf_cmd_line->line = printf_line;
8793
8794 breakpoint_set_commands (b, command_line_up (printf_cmd_line));
8795 }
8796 }
8797
8798 /* Update all dprintf commands, making their command lists reflect
8799 current style settings. */
8800
8801 static void
8802 update_dprintf_commands (const char *args, int from_tty,
8803 struct cmd_list_element *c)
8804 {
8805 struct breakpoint *b;
8806
8807 ALL_BREAKPOINTS (b)
8808 {
8809 if (b->type == bp_dprintf)
8810 update_dprintf_command_list (b);
8811 }
8812 }
8813
8814 /* Create a breakpoint with SAL as location. Use LOCATION
8815 as a description of the location, and COND_STRING
8816 as condition expression. If LOCATION is NULL then create an
8817 "address location" from the address in the SAL. */
8818
8819 static void
8820 init_breakpoint_sal (struct breakpoint *b, struct gdbarch *gdbarch,
8821 gdb::array_view<const symtab_and_line> sals,
8822 event_location_up &&location,
8823 gdb::unique_xmalloc_ptr<char> filter,
8824 gdb::unique_xmalloc_ptr<char> cond_string,
8825 gdb::unique_xmalloc_ptr<char> extra_string,
8826 enum bptype type, enum bpdisp disposition,
8827 int thread, int task, int ignore_count,
8828 const struct breakpoint_ops *ops, int from_tty,
8829 int enabled, int internal, unsigned flags,
8830 int display_canonical)
8831 {
8832 int i;
8833
8834 if (type == bp_hardware_breakpoint)
8835 {
8836 int target_resources_ok;
8837
8838 i = hw_breakpoint_used_count ();
8839 target_resources_ok =
8840 target_can_use_hardware_watchpoint (bp_hardware_breakpoint,
8841 i + 1, 0);
8842 if (target_resources_ok == 0)
8843 error (_("No hardware breakpoint support in the target."));
8844 else if (target_resources_ok < 0)
8845 error (_("Hardware breakpoints used exceeds limit."));
8846 }
8847
8848 gdb_assert (!sals.empty ());
8849
8850 for (const auto &sal : sals)
8851 {
8852 struct bp_location *loc;
8853
8854 if (from_tty)
8855 {
8856 struct gdbarch *loc_gdbarch = get_sal_arch (sal);
8857 if (!loc_gdbarch)
8858 loc_gdbarch = gdbarch;
8859
8860 describe_other_breakpoints (loc_gdbarch,
8861 sal.pspace, sal.pc, sal.section, thread);
8862 }
8863
8864 if (&sal == &sals[0])
8865 {
8866 init_raw_breakpoint (b, gdbarch, sal, type, ops);
8867 b->thread = thread;
8868 b->task = task;
8869
8870 b->cond_string = cond_string.release ();
8871 b->extra_string = extra_string.release ();
8872 b->ignore_count = ignore_count;
8873 b->enable_state = enabled ? bp_enabled : bp_disabled;
8874 b->disposition = disposition;
8875
8876 if ((flags & CREATE_BREAKPOINT_FLAGS_INSERTED) != 0)
8877 b->loc->inserted = 1;
8878
8879 if (type == bp_static_tracepoint)
8880 {
8881 struct tracepoint *t = (struct tracepoint *) b;
8882 struct static_tracepoint_marker marker;
8883
8884 if (strace_marker_p (b))
8885 {
8886 /* We already know the marker exists, otherwise, we
8887 wouldn't see a sal for it. */
8888 const char *p
8889 = &event_location_to_string (b->location.get ())[3];
8890 const char *endp;
8891
8892 p = skip_spaces (p);
8893
8894 endp = skip_to_space (p);
8895
8896 t->static_trace_marker_id.assign (p, endp - p);
8897
8898 printf_filtered (_("Probed static tracepoint "
8899 "marker \"%s\"\n"),
8900 t->static_trace_marker_id.c_str ());
8901 }
8902 else if (target_static_tracepoint_marker_at (sal.pc, &marker))
8903 {
8904 t->static_trace_marker_id = std::move (marker.str_id);
8905
8906 printf_filtered (_("Probed static tracepoint "
8907 "marker \"%s\"\n"),
8908 t->static_trace_marker_id.c_str ());
8909 }
8910 else
8911 warning (_("Couldn't determine the static "
8912 "tracepoint marker to probe"));
8913 }
8914
8915 loc = b->loc;
8916 }
8917 else
8918 {
8919 loc = add_location_to_breakpoint (b, &sal);
8920 if ((flags & CREATE_BREAKPOINT_FLAGS_INSERTED) != 0)
8921 loc->inserted = 1;
8922 }
8923
8924 if (b->cond_string)
8925 {
8926 const char *arg = b->cond_string;
8927
8928 loc->cond = parse_exp_1 (&arg, loc->address,
8929 block_for_pc (loc->address), 0);
8930 if (*arg)
8931 error (_("Garbage '%s' follows condition"), arg);
8932 }
8933
8934 /* Dynamic printf requires and uses additional arguments on the
8935 command line, otherwise it's an error. */
8936 if (type == bp_dprintf)
8937 {
8938 if (b->extra_string)
8939 update_dprintf_command_list (b);
8940 else
8941 error (_("Format string required"));
8942 }
8943 else if (b->extra_string)
8944 error (_("Garbage '%s' at end of command"), b->extra_string);
8945 }
8946
8947 b->display_canonical = display_canonical;
8948 if (location != NULL)
8949 b->location = std::move (location);
8950 else
8951 b->location = new_address_location (b->loc->address, NULL, 0);
8952 b->filter = filter.release ();
8953 }
8954
8955 static void
8956 create_breakpoint_sal (struct gdbarch *gdbarch,
8957 gdb::array_view<const symtab_and_line> sals,
8958 event_location_up &&location,
8959 gdb::unique_xmalloc_ptr<char> filter,
8960 gdb::unique_xmalloc_ptr<char> cond_string,
8961 gdb::unique_xmalloc_ptr<char> extra_string,
8962 enum bptype type, enum bpdisp disposition,
8963 int thread, int task, int ignore_count,
8964 const struct breakpoint_ops *ops, int from_tty,
8965 int enabled, int internal, unsigned flags,
8966 int display_canonical)
8967 {
8968 std::unique_ptr<breakpoint> b = new_breakpoint_from_type (type);
8969
8970 init_breakpoint_sal (b.get (), gdbarch,
8971 sals, std::move (location),
8972 std::move (filter),
8973 std::move (cond_string),
8974 std::move (extra_string),
8975 type, disposition,
8976 thread, task, ignore_count,
8977 ops, from_tty,
8978 enabled, internal, flags,
8979 display_canonical);
8980
8981 install_breakpoint (internal, std::move (b), 0);
8982 }
8983
8984 /* Add SALS.nelts breakpoints to the breakpoint table. For each
8985 SALS.sal[i] breakpoint, include the corresponding ADDR_STRING[i]
8986 value. COND_STRING, if not NULL, specified the condition to be
8987 used for all breakpoints. Essentially the only case where
8988 SALS.nelts is not 1 is when we set a breakpoint on an overloaded
8989 function. In that case, it's still not possible to specify
8990 separate conditions for different overloaded functions, so
8991 we take just a single condition string.
8992
8993 NOTE: If the function succeeds, the caller is expected to cleanup
8994 the arrays ADDR_STRING, COND_STRING, and SALS (but not the
8995 array contents). If the function fails (error() is called), the
8996 caller is expected to cleanups both the ADDR_STRING, COND_STRING,
8997 COND and SALS arrays and each of those arrays contents. */
8998
8999 static void
9000 create_breakpoints_sal (struct gdbarch *gdbarch,
9001 struct linespec_result *canonical,
9002 gdb::unique_xmalloc_ptr<char> cond_string,
9003 gdb::unique_xmalloc_ptr<char> extra_string,
9004 enum bptype type, enum bpdisp disposition,
9005 int thread, int task, int ignore_count,
9006 const struct breakpoint_ops *ops, int from_tty,
9007 int enabled, int internal, unsigned flags)
9008 {
9009 if (canonical->pre_expanded)
9010 gdb_assert (canonical->lsals.size () == 1);
9011
9012 for (const auto &lsal : canonical->lsals)
9013 {
9014 /* Note that 'location' can be NULL in the case of a plain
9015 'break', without arguments. */
9016 event_location_up location
9017 = (canonical->location != NULL
9018 ? copy_event_location (canonical->location.get ()) : NULL);
9019 gdb::unique_xmalloc_ptr<char> filter_string
9020 (lsal.canonical != NULL ? xstrdup (lsal.canonical) : NULL);
9021
9022 create_breakpoint_sal (gdbarch, lsal.sals,
9023 std::move (location),
9024 std::move (filter_string),
9025 std::move (cond_string),
9026 std::move (extra_string),
9027 type, disposition,
9028 thread, task, ignore_count, ops,
9029 from_tty, enabled, internal, flags,
9030 canonical->special_display);
9031 }
9032 }
9033
9034 /* Parse LOCATION which is assumed to be a SAL specification possibly
9035 followed by conditionals. On return, SALS contains an array of SAL
9036 addresses found. LOCATION points to the end of the SAL (for
9037 linespec locations).
9038
9039 The array and the line spec strings are allocated on the heap, it is
9040 the caller's responsibility to free them. */
9041
9042 static void
9043 parse_breakpoint_sals (const struct event_location *location,
9044 struct linespec_result *canonical)
9045 {
9046 struct symtab_and_line cursal;
9047
9048 if (event_location_type (location) == LINESPEC_LOCATION)
9049 {
9050 const char *spec = get_linespec_location (location)->spec_string;
9051
9052 if (spec == NULL)
9053 {
9054 /* The last displayed codepoint, if it's valid, is our default
9055 breakpoint address. */
9056 if (last_displayed_sal_is_valid ())
9057 {
9058 /* Set sal's pspace, pc, symtab, and line to the values
9059 corresponding to the last call to print_frame_info.
9060 Be sure to reinitialize LINE with NOTCURRENT == 0
9061 as the breakpoint line number is inappropriate otherwise.
9062 find_pc_line would adjust PC, re-set it back. */
9063 symtab_and_line sal = get_last_displayed_sal ();
9064 CORE_ADDR pc = sal.pc;
9065
9066 sal = find_pc_line (pc, 0);
9067
9068 /* "break" without arguments is equivalent to "break *PC"
9069 where PC is the last displayed codepoint's address. So
9070 make sure to set sal.explicit_pc to prevent GDB from
9071 trying to expand the list of sals to include all other
9072 instances with the same symtab and line. */
9073 sal.pc = pc;
9074 sal.explicit_pc = 1;
9075
9076 struct linespec_sals lsal;
9077 lsal.sals = {sal};
9078 lsal.canonical = NULL;
9079
9080 canonical->lsals.push_back (std::move (lsal));
9081 return;
9082 }
9083 else
9084 error (_("No default breakpoint address now."));
9085 }
9086 }
9087
9088 /* Force almost all breakpoints to be in terms of the
9089 current_source_symtab (which is decode_line_1's default).
9090 This should produce the results we want almost all of the
9091 time while leaving default_breakpoint_* alone.
9092
9093 ObjC: However, don't match an Objective-C method name which
9094 may have a '+' or '-' succeeded by a '['. */
9095 cursal = get_current_source_symtab_and_line ();
9096 if (last_displayed_sal_is_valid ())
9097 {
9098 const char *spec = NULL;
9099
9100 if (event_location_type (location) == LINESPEC_LOCATION)
9101 spec = get_linespec_location (location)->spec_string;
9102
9103 if (!cursal.symtab
9104 || (spec != NULL
9105 && strchr ("+-", spec[0]) != NULL
9106 && spec[1] != '['))
9107 {
9108 decode_line_full (location, DECODE_LINE_FUNFIRSTLINE, NULL,
9109 get_last_displayed_symtab (),
9110 get_last_displayed_line (),
9111 canonical, NULL, NULL);
9112 return;
9113 }
9114 }
9115
9116 decode_line_full (location, DECODE_LINE_FUNFIRSTLINE, NULL,
9117 cursal.symtab, cursal.line, canonical, NULL, NULL);
9118 }
9119
9120
9121 /* Convert each SAL into a real PC. Verify that the PC can be
9122 inserted as a breakpoint. If it can't throw an error. */
9123
9124 static void
9125 breakpoint_sals_to_pc (std::vector<symtab_and_line> &sals)
9126 {
9127 for (auto &sal : sals)
9128 resolve_sal_pc (&sal);
9129 }
9130
9131 /* Fast tracepoints may have restrictions on valid locations. For
9132 instance, a fast tracepoint using a jump instead of a trap will
9133 likely have to overwrite more bytes than a trap would, and so can
9134 only be placed where the instruction is longer than the jump, or a
9135 multi-instruction sequence does not have a jump into the middle of
9136 it, etc. */
9137
9138 static void
9139 check_fast_tracepoint_sals (struct gdbarch *gdbarch,
9140 gdb::array_view<const symtab_and_line> sals)
9141 {
9142 for (const auto &sal : sals)
9143 {
9144 struct gdbarch *sarch;
9145
9146 sarch = get_sal_arch (sal);
9147 /* We fall back to GDBARCH if there is no architecture
9148 associated with SAL. */
9149 if (sarch == NULL)
9150 sarch = gdbarch;
9151 std::string msg;
9152 if (!gdbarch_fast_tracepoint_valid_at (sarch, sal.pc, &msg))
9153 error (_("May not have a fast tracepoint at %s%s"),
9154 paddress (sarch, sal.pc), msg.c_str ());
9155 }
9156 }
9157
9158 /* Given TOK, a string specification of condition and thread, as
9159 accepted by the 'break' command, extract the condition
9160 string and thread number and set *COND_STRING and *THREAD.
9161 PC identifies the context at which the condition should be parsed.
9162 If no condition is found, *COND_STRING is set to NULL.
9163 If no thread is found, *THREAD is set to -1. */
9164
9165 static void
9166 find_condition_and_thread (const char *tok, CORE_ADDR pc,
9167 char **cond_string, int *thread, int *task,
9168 char **rest)
9169 {
9170 *cond_string = NULL;
9171 *thread = -1;
9172 *task = 0;
9173 *rest = NULL;
9174
9175 while (tok && *tok)
9176 {
9177 const char *end_tok;
9178 int toklen;
9179 const char *cond_start = NULL;
9180 const char *cond_end = NULL;
9181
9182 tok = skip_spaces (tok);
9183
9184 if ((*tok == '"' || *tok == ',') && rest)
9185 {
9186 *rest = savestring (tok, strlen (tok));
9187 return;
9188 }
9189
9190 end_tok = skip_to_space (tok);
9191
9192 toklen = end_tok - tok;
9193
9194 if (toklen >= 1 && strncmp (tok, "if", toklen) == 0)
9195 {
9196 tok = cond_start = end_tok + 1;
9197 parse_exp_1 (&tok, pc, block_for_pc (pc), 0);
9198 cond_end = tok;
9199 *cond_string = savestring (cond_start, cond_end - cond_start);
9200 }
9201 else if (toklen >= 1 && strncmp (tok, "thread", toklen) == 0)
9202 {
9203 const char *tmptok;
9204 struct thread_info *thr;
9205
9206 tok = end_tok + 1;
9207 thr = parse_thread_id (tok, &tmptok);
9208 if (tok == tmptok)
9209 error (_("Junk after thread keyword."));
9210 *thread = thr->global_num;
9211 tok = tmptok;
9212 }
9213 else if (toklen >= 1 && strncmp (tok, "task", toklen) == 0)
9214 {
9215 char *tmptok;
9216
9217 tok = end_tok + 1;
9218 *task = strtol (tok, &tmptok, 0);
9219 if (tok == tmptok)
9220 error (_("Junk after task keyword."));
9221 if (!valid_task_id (*task))
9222 error (_("Unknown task %d."), *task);
9223 tok = tmptok;
9224 }
9225 else if (rest)
9226 {
9227 *rest = savestring (tok, strlen (tok));
9228 return;
9229 }
9230 else
9231 error (_("Junk at end of arguments."));
9232 }
9233 }
9234
9235 /* Decode a static tracepoint marker spec. */
9236
9237 static std::vector<symtab_and_line>
9238 decode_static_tracepoint_spec (const char **arg_p)
9239 {
9240 const char *p = &(*arg_p)[3];
9241 const char *endp;
9242
9243 p = skip_spaces (p);
9244
9245 endp = skip_to_space (p);
9246
9247 std::string marker_str (p, endp - p);
9248
9249 std::vector<static_tracepoint_marker> markers
9250 = target_static_tracepoint_markers_by_strid (marker_str.c_str ());
9251 if (markers.empty ())
9252 error (_("No known static tracepoint marker named %s"),
9253 marker_str.c_str ());
9254
9255 std::vector<symtab_and_line> sals;
9256 sals.reserve (markers.size ());
9257
9258 for (const static_tracepoint_marker &marker : markers)
9259 {
9260 symtab_and_line sal = find_pc_line (marker.address, 0);
9261 sal.pc = marker.address;
9262 sals.push_back (sal);
9263 }
9264
9265 *arg_p = endp;
9266 return sals;
9267 }
9268
9269 /* See breakpoint.h. */
9270
9271 int
9272 create_breakpoint (struct gdbarch *gdbarch,
9273 const struct event_location *location,
9274 const char *cond_string,
9275 int thread, const char *extra_string,
9276 int parse_extra,
9277 int tempflag, enum bptype type_wanted,
9278 int ignore_count,
9279 enum auto_boolean pending_break_support,
9280 const struct breakpoint_ops *ops,
9281 int from_tty, int enabled, int internal,
9282 unsigned flags)
9283 {
9284 struct linespec_result canonical;
9285 struct cleanup *bkpt_chain = NULL;
9286 int pending = 0;
9287 int task = 0;
9288 int prev_bkpt_count = breakpoint_count;
9289
9290 gdb_assert (ops != NULL);
9291
9292 /* If extra_string isn't useful, set it to NULL. */
9293 if (extra_string != NULL && *extra_string == '\0')
9294 extra_string = NULL;
9295
9296 TRY
9297 {
9298 ops->create_sals_from_location (location, &canonical, type_wanted);
9299 }
9300 CATCH (e, RETURN_MASK_ERROR)
9301 {
9302 /* If caller is interested in rc value from parse, set
9303 value. */
9304 if (e.error == NOT_FOUND_ERROR)
9305 {
9306 /* If pending breakpoint support is turned off, throw
9307 error. */
9308
9309 if (pending_break_support == AUTO_BOOLEAN_FALSE)
9310 throw_exception (e);
9311
9312 exception_print (gdb_stderr, e);
9313
9314 /* If pending breakpoint support is auto query and the user
9315 selects no, then simply return the error code. */
9316 if (pending_break_support == AUTO_BOOLEAN_AUTO
9317 && !nquery (_("Make %s pending on future shared library load? "),
9318 bptype_string (type_wanted)))
9319 return 0;
9320
9321 /* At this point, either the user was queried about setting
9322 a pending breakpoint and selected yes, or pending
9323 breakpoint behavior is on and thus a pending breakpoint
9324 is defaulted on behalf of the user. */
9325 pending = 1;
9326 }
9327 else
9328 throw_exception (e);
9329 }
9330 END_CATCH
9331
9332 if (!pending && canonical.lsals.empty ())
9333 return 0;
9334
9335 /* ----------------------------- SNIP -----------------------------
9336 Anything added to the cleanup chain beyond this point is assumed
9337 to be part of a breakpoint. If the breakpoint create succeeds
9338 then the memory is not reclaimed. */
9339 bkpt_chain = make_cleanup (null_cleanup, 0);
9340
9341 /* Resolve all line numbers to PC's and verify that the addresses
9342 are ok for the target. */
9343 if (!pending)
9344 {
9345 for (auto &lsal : canonical.lsals)
9346 breakpoint_sals_to_pc (lsal.sals);
9347 }
9348
9349 /* Fast tracepoints may have additional restrictions on location. */
9350 if (!pending && type_wanted == bp_fast_tracepoint)
9351 {
9352 for (const auto &lsal : canonical.lsals)
9353 check_fast_tracepoint_sals (gdbarch, lsal.sals);
9354 }
9355
9356 /* Verify that condition can be parsed, before setting any
9357 breakpoints. Allocate a separate condition expression for each
9358 breakpoint. */
9359 if (!pending)
9360 {
9361 gdb::unique_xmalloc_ptr<char> cond_string_copy;
9362 gdb::unique_xmalloc_ptr<char> extra_string_copy;
9363
9364 if (parse_extra)
9365 {
9366 char *rest;
9367 char *cond;
9368
9369 const linespec_sals &lsal = canonical.lsals[0];
9370
9371 /* Here we only parse 'arg' to separate condition
9372 from thread number, so parsing in context of first
9373 sal is OK. When setting the breakpoint we'll
9374 re-parse it in context of each sal. */
9375
9376 find_condition_and_thread (extra_string, lsal.sals[0].pc,
9377 &cond, &thread, &task, &rest);
9378 cond_string_copy.reset (cond);
9379 extra_string_copy.reset (rest);
9380 }
9381 else
9382 {
9383 if (type_wanted != bp_dprintf
9384 && extra_string != NULL && *extra_string != '\0')
9385 error (_("Garbage '%s' at end of location"), extra_string);
9386
9387 /* Create a private copy of condition string. */
9388 if (cond_string)
9389 cond_string_copy.reset (xstrdup (cond_string));
9390 /* Create a private copy of any extra string. */
9391 if (extra_string)
9392 extra_string_copy.reset (xstrdup (extra_string));
9393 }
9394
9395 ops->create_breakpoints_sal (gdbarch, &canonical,
9396 std::move (cond_string_copy),
9397 std::move (extra_string_copy),
9398 type_wanted,
9399 tempflag ? disp_del : disp_donttouch,
9400 thread, task, ignore_count, ops,
9401 from_tty, enabled, internal, flags);
9402 }
9403 else
9404 {
9405 std::unique_ptr <breakpoint> b = new_breakpoint_from_type (type_wanted);
9406
9407 init_raw_breakpoint_without_location (b.get (), gdbarch, type_wanted, ops);
9408 b->location = copy_event_location (location);
9409
9410 if (parse_extra)
9411 b->cond_string = NULL;
9412 else
9413 {
9414 /* Create a private copy of condition string. */
9415 b->cond_string = cond_string != NULL ? xstrdup (cond_string) : NULL;
9416 b->thread = thread;
9417 }
9418
9419 /* Create a private copy of any extra string. */
9420 b->extra_string = extra_string != NULL ? xstrdup (extra_string) : NULL;
9421 b->ignore_count = ignore_count;
9422 b->disposition = tempflag ? disp_del : disp_donttouch;
9423 b->condition_not_parsed = 1;
9424 b->enable_state = enabled ? bp_enabled : bp_disabled;
9425 if ((type_wanted != bp_breakpoint
9426 && type_wanted != bp_hardware_breakpoint) || thread != -1)
9427 b->pspace = current_program_space;
9428
9429 install_breakpoint (internal, std::move (b), 0);
9430 }
9431
9432 if (canonical.lsals.size () > 1)
9433 {
9434 warning (_("Multiple breakpoints were set.\nUse the "
9435 "\"delete\" command to delete unwanted breakpoints."));
9436 prev_breakpoint_count = prev_bkpt_count;
9437 }
9438
9439 /* That's it. Discard the cleanups for data inserted into the
9440 breakpoint. */
9441 discard_cleanups (bkpt_chain);
9442
9443 /* error call may happen here - have BKPT_CHAIN already discarded. */
9444 update_global_location_list (UGLL_MAY_INSERT);
9445
9446 return 1;
9447 }
9448
9449 /* Set a breakpoint.
9450 ARG is a string describing breakpoint address,
9451 condition, and thread.
9452 FLAG specifies if a breakpoint is hardware on,
9453 and if breakpoint is temporary, using BP_HARDWARE_FLAG
9454 and BP_TEMPFLAG. */
9455
9456 static void
9457 break_command_1 (const char *arg, int flag, int from_tty)
9458 {
9459 int tempflag = flag & BP_TEMPFLAG;
9460 enum bptype type_wanted = (flag & BP_HARDWAREFLAG
9461 ? bp_hardware_breakpoint
9462 : bp_breakpoint);
9463 struct breakpoint_ops *ops;
9464
9465 event_location_up location = string_to_event_location (&arg, current_language);
9466
9467 /* Matching breakpoints on probes. */
9468 if (location != NULL
9469 && event_location_type (location.get ()) == PROBE_LOCATION)
9470 ops = &bkpt_probe_breakpoint_ops;
9471 else
9472 ops = &bkpt_breakpoint_ops;
9473
9474 create_breakpoint (get_current_arch (),
9475 location.get (),
9476 NULL, 0, arg, 1 /* parse arg */,
9477 tempflag, type_wanted,
9478 0 /* Ignore count */,
9479 pending_break_support,
9480 ops,
9481 from_tty,
9482 1 /* enabled */,
9483 0 /* internal */,
9484 0);
9485 }
9486
9487 /* Helper function for break_command_1 and disassemble_command. */
9488
9489 void
9490 resolve_sal_pc (struct symtab_and_line *sal)
9491 {
9492 CORE_ADDR pc;
9493
9494 if (sal->pc == 0 && sal->symtab != NULL)
9495 {
9496 if (!find_line_pc (sal->symtab, sal->line, &pc))
9497 error (_("No line %d in file \"%s\"."),
9498 sal->line, symtab_to_filename_for_display (sal->symtab));
9499 sal->pc = pc;
9500
9501 /* If this SAL corresponds to a breakpoint inserted using a line
9502 number, then skip the function prologue if necessary. */
9503 if (sal->explicit_line)
9504 skip_prologue_sal (sal);
9505 }
9506
9507 if (sal->section == 0 && sal->symtab != NULL)
9508 {
9509 const struct blockvector *bv;
9510 const struct block *b;
9511 struct symbol *sym;
9512
9513 bv = blockvector_for_pc_sect (sal->pc, 0, &b,
9514 SYMTAB_COMPUNIT (sal->symtab));
9515 if (bv != NULL)
9516 {
9517 sym = block_linkage_function (b);
9518 if (sym != NULL)
9519 {
9520 fixup_symbol_section (sym, SYMTAB_OBJFILE (sal->symtab));
9521 sal->section = SYMBOL_OBJ_SECTION (SYMTAB_OBJFILE (sal->symtab),
9522 sym);
9523 }
9524 else
9525 {
9526 /* It really is worthwhile to have the section, so we'll
9527 just have to look harder. This case can be executed
9528 if we have line numbers but no functions (as can
9529 happen in assembly source). */
9530
9531 scoped_restore_current_pspace_and_thread restore_pspace_thread;
9532 switch_to_program_space_and_thread (sal->pspace);
9533
9534 bound_minimal_symbol msym = lookup_minimal_symbol_by_pc (sal->pc);
9535 if (msym.minsym)
9536 sal->section = MSYMBOL_OBJ_SECTION (msym.objfile, msym.minsym);
9537 }
9538 }
9539 }
9540 }
9541
9542 void
9543 break_command (const char *arg, int from_tty)
9544 {
9545 break_command_1 (arg, 0, from_tty);
9546 }
9547
9548 void
9549 tbreak_command (const char *arg, int from_tty)
9550 {
9551 break_command_1 (arg, BP_TEMPFLAG, from_tty);
9552 }
9553
9554 static void
9555 hbreak_command (const char *arg, int from_tty)
9556 {
9557 break_command_1 (arg, BP_HARDWAREFLAG, from_tty);
9558 }
9559
9560 static void
9561 thbreak_command (const char *arg, int from_tty)
9562 {
9563 break_command_1 (arg, (BP_TEMPFLAG | BP_HARDWAREFLAG), from_tty);
9564 }
9565
9566 static void
9567 stop_command (const char *arg, int from_tty)
9568 {
9569 printf_filtered (_("Specify the type of breakpoint to set.\n\
9570 Usage: stop in <function | address>\n\
9571 stop at <line>\n"));
9572 }
9573
9574 static void
9575 stopin_command (const char *arg, int from_tty)
9576 {
9577 int badInput = 0;
9578
9579 if (arg == (char *) NULL)
9580 badInput = 1;
9581 else if (*arg != '*')
9582 {
9583 const char *argptr = arg;
9584 int hasColon = 0;
9585
9586 /* Look for a ':'. If this is a line number specification, then
9587 say it is bad, otherwise, it should be an address or
9588 function/method name. */
9589 while (*argptr && !hasColon)
9590 {
9591 hasColon = (*argptr == ':');
9592 argptr++;
9593 }
9594
9595 if (hasColon)
9596 badInput = (*argptr != ':'); /* Not a class::method */
9597 else
9598 badInput = isdigit (*arg); /* a simple line number */
9599 }
9600
9601 if (badInput)
9602 printf_filtered (_("Usage: stop in <function | address>\n"));
9603 else
9604 break_command_1 (arg, 0, from_tty);
9605 }
9606
9607 static void
9608 stopat_command (const char *arg, int from_tty)
9609 {
9610 int badInput = 0;
9611
9612 if (arg == (char *) NULL || *arg == '*') /* no line number */
9613 badInput = 1;
9614 else
9615 {
9616 const char *argptr = arg;
9617 int hasColon = 0;
9618
9619 /* Look for a ':'. If there is a '::' then get out, otherwise
9620 it is probably a line number. */
9621 while (*argptr && !hasColon)
9622 {
9623 hasColon = (*argptr == ':');
9624 argptr++;
9625 }
9626
9627 if (hasColon)
9628 badInput = (*argptr == ':'); /* we have class::method */
9629 else
9630 badInput = !isdigit (*arg); /* not a line number */
9631 }
9632
9633 if (badInput)
9634 printf_filtered (_("Usage: stop at <line>\n"));
9635 else
9636 break_command_1 (arg, 0, from_tty);
9637 }
9638
9639 /* The dynamic printf command is mostly like a regular breakpoint, but
9640 with a prewired command list consisting of a single output command,
9641 built from extra arguments supplied on the dprintf command
9642 line. */
9643
9644 static void
9645 dprintf_command (const char *arg, int from_tty)
9646 {
9647 event_location_up location = string_to_event_location (&arg, current_language);
9648
9649 /* If non-NULL, ARG should have been advanced past the location;
9650 the next character must be ','. */
9651 if (arg != NULL)
9652 {
9653 if (arg[0] != ',' || arg[1] == '\0')
9654 error (_("Format string required"));
9655 else
9656 {
9657 /* Skip the comma. */
9658 ++arg;
9659 }
9660 }
9661
9662 create_breakpoint (get_current_arch (),
9663 location.get (),
9664 NULL, 0, arg, 1 /* parse arg */,
9665 0, bp_dprintf,
9666 0 /* Ignore count */,
9667 pending_break_support,
9668 &dprintf_breakpoint_ops,
9669 from_tty,
9670 1 /* enabled */,
9671 0 /* internal */,
9672 0);
9673 }
9674
9675 static void
9676 agent_printf_command (const char *arg, int from_tty)
9677 {
9678 error (_("May only run agent-printf on the target"));
9679 }
9680
9681 /* Implement the "breakpoint_hit" breakpoint_ops method for
9682 ranged breakpoints. */
9683
9684 static int
9685 breakpoint_hit_ranged_breakpoint (const struct bp_location *bl,
9686 const address_space *aspace,
9687 CORE_ADDR bp_addr,
9688 const struct target_waitstatus *ws)
9689 {
9690 if (ws->kind != TARGET_WAITKIND_STOPPED
9691 || ws->value.sig != GDB_SIGNAL_TRAP)
9692 return 0;
9693
9694 return breakpoint_address_match_range (bl->pspace->aspace, bl->address,
9695 bl->length, aspace, bp_addr);
9696 }
9697
9698 /* Implement the "resources_needed" breakpoint_ops method for
9699 ranged breakpoints. */
9700
9701 static int
9702 resources_needed_ranged_breakpoint (const struct bp_location *bl)
9703 {
9704 return target_ranged_break_num_registers ();
9705 }
9706
9707 /* Implement the "print_it" breakpoint_ops method for
9708 ranged breakpoints. */
9709
9710 static enum print_stop_action
9711 print_it_ranged_breakpoint (bpstat bs)
9712 {
9713 struct breakpoint *b = bs->breakpoint_at;
9714 struct bp_location *bl = b->loc;
9715 struct ui_out *uiout = current_uiout;
9716
9717 gdb_assert (b->type == bp_hardware_breakpoint);
9718
9719 /* Ranged breakpoints have only one location. */
9720 gdb_assert (bl && bl->next == NULL);
9721
9722 annotate_breakpoint (b->number);
9723
9724 maybe_print_thread_hit_breakpoint (uiout);
9725
9726 if (b->disposition == disp_del)
9727 uiout->text ("Temporary ranged breakpoint ");
9728 else
9729 uiout->text ("Ranged breakpoint ");
9730 if (uiout->is_mi_like_p ())
9731 {
9732 uiout->field_string ("reason",
9733 async_reason_lookup (EXEC_ASYNC_BREAKPOINT_HIT));
9734 uiout->field_string ("disp", bpdisp_text (b->disposition));
9735 }
9736 uiout->field_int ("bkptno", b->number);
9737 uiout->text (", ");
9738
9739 return PRINT_SRC_AND_LOC;
9740 }
9741
9742 /* Implement the "print_one" breakpoint_ops method for
9743 ranged breakpoints. */
9744
9745 static void
9746 print_one_ranged_breakpoint (struct breakpoint *b,
9747 struct bp_location **last_loc)
9748 {
9749 struct bp_location *bl = b->loc;
9750 struct value_print_options opts;
9751 struct ui_out *uiout = current_uiout;
9752
9753 /* Ranged breakpoints have only one location. */
9754 gdb_assert (bl && bl->next == NULL);
9755
9756 get_user_print_options (&opts);
9757
9758 if (opts.addressprint)
9759 /* We don't print the address range here, it will be printed later
9760 by print_one_detail_ranged_breakpoint. */
9761 uiout->field_skip ("addr");
9762 annotate_field (5);
9763 print_breakpoint_location (b, bl);
9764 *last_loc = bl;
9765 }
9766
9767 /* Implement the "print_one_detail" breakpoint_ops method for
9768 ranged breakpoints. */
9769
9770 static void
9771 print_one_detail_ranged_breakpoint (const struct breakpoint *b,
9772 struct ui_out *uiout)
9773 {
9774 CORE_ADDR address_start, address_end;
9775 struct bp_location *bl = b->loc;
9776 string_file stb;
9777
9778 gdb_assert (bl);
9779
9780 address_start = bl->address;
9781 address_end = address_start + bl->length - 1;
9782
9783 uiout->text ("\taddress range: ");
9784 stb.printf ("[%s, %s]",
9785 print_core_address (bl->gdbarch, address_start),
9786 print_core_address (bl->gdbarch, address_end));
9787 uiout->field_stream ("addr", stb);
9788 uiout->text ("\n");
9789 }
9790
9791 /* Implement the "print_mention" breakpoint_ops method for
9792 ranged breakpoints. */
9793
9794 static void
9795 print_mention_ranged_breakpoint (struct breakpoint *b)
9796 {
9797 struct bp_location *bl = b->loc;
9798 struct ui_out *uiout = current_uiout;
9799
9800 gdb_assert (bl);
9801 gdb_assert (b->type == bp_hardware_breakpoint);
9802
9803 if (uiout->is_mi_like_p ())
9804 return;
9805
9806 printf_filtered (_("Hardware assisted ranged breakpoint %d from %s to %s."),
9807 b->number, paddress (bl->gdbarch, bl->address),
9808 paddress (bl->gdbarch, bl->address + bl->length - 1));
9809 }
9810
9811 /* Implement the "print_recreate" breakpoint_ops method for
9812 ranged breakpoints. */
9813
9814 static void
9815 print_recreate_ranged_breakpoint (struct breakpoint *b, struct ui_file *fp)
9816 {
9817 fprintf_unfiltered (fp, "break-range %s, %s",
9818 event_location_to_string (b->location.get ()),
9819 event_location_to_string (b->location_range_end.get ()));
9820 print_recreate_thread (b, fp);
9821 }
9822
9823 /* The breakpoint_ops structure to be used in ranged breakpoints. */
9824
9825 static struct breakpoint_ops ranged_breakpoint_ops;
9826
9827 /* Find the address where the end of the breakpoint range should be
9828 placed, given the SAL of the end of the range. This is so that if
9829 the user provides a line number, the end of the range is set to the
9830 last instruction of the given line. */
9831
9832 static CORE_ADDR
9833 find_breakpoint_range_end (struct symtab_and_line sal)
9834 {
9835 CORE_ADDR end;
9836
9837 /* If the user provided a PC value, use it. Otherwise,
9838 find the address of the end of the given location. */
9839 if (sal.explicit_pc)
9840 end = sal.pc;
9841 else
9842 {
9843 int ret;
9844 CORE_ADDR start;
9845
9846 ret = find_line_pc_range (sal, &start, &end);
9847 if (!ret)
9848 error (_("Could not find location of the end of the range."));
9849
9850 /* find_line_pc_range returns the start of the next line. */
9851 end--;
9852 }
9853
9854 return end;
9855 }
9856
9857 /* Implement the "break-range" CLI command. */
9858
9859 static void
9860 break_range_command (const char *arg, int from_tty)
9861 {
9862 const char *arg_start;
9863 struct linespec_result canonical_start, canonical_end;
9864 int bp_count, can_use_bp, length;
9865 CORE_ADDR end;
9866 struct breakpoint *b;
9867
9868 /* We don't support software ranged breakpoints. */
9869 if (target_ranged_break_num_registers () < 0)
9870 error (_("This target does not support hardware ranged breakpoints."));
9871
9872 bp_count = hw_breakpoint_used_count ();
9873 bp_count += target_ranged_break_num_registers ();
9874 can_use_bp = target_can_use_hardware_watchpoint (bp_hardware_breakpoint,
9875 bp_count, 0);
9876 if (can_use_bp < 0)
9877 error (_("Hardware breakpoints used exceeds limit."));
9878
9879 arg = skip_spaces (arg);
9880 if (arg == NULL || arg[0] == '\0')
9881 error(_("No address range specified."));
9882
9883 arg_start = arg;
9884 event_location_up start_location = string_to_event_location (&arg,
9885 current_language);
9886 parse_breakpoint_sals (start_location.get (), &canonical_start);
9887
9888 if (arg[0] != ',')
9889 error (_("Too few arguments."));
9890 else if (canonical_start.lsals.empty ())
9891 error (_("Could not find location of the beginning of the range."));
9892
9893 const linespec_sals &lsal_start = canonical_start.lsals[0];
9894
9895 if (canonical_start.lsals.size () > 1
9896 || lsal_start.sals.size () != 1)
9897 error (_("Cannot create a ranged breakpoint with multiple locations."));
9898
9899 const symtab_and_line &sal_start = lsal_start.sals[0];
9900 std::string addr_string_start (arg_start, arg - arg_start);
9901
9902 arg++; /* Skip the comma. */
9903 arg = skip_spaces (arg);
9904
9905 /* Parse the end location. */
9906
9907 arg_start = arg;
9908
9909 /* We call decode_line_full directly here instead of using
9910 parse_breakpoint_sals because we need to specify the start location's
9911 symtab and line as the default symtab and line for the end of the
9912 range. This makes it possible to have ranges like "foo.c:27, +14",
9913 where +14 means 14 lines from the start location. */
9914 event_location_up end_location = string_to_event_location (&arg,
9915 current_language);
9916 decode_line_full (end_location.get (), DECODE_LINE_FUNFIRSTLINE, NULL,
9917 sal_start.symtab, sal_start.line,
9918 &canonical_end, NULL, NULL);
9919
9920 if (canonical_end.lsals.empty ())
9921 error (_("Could not find location of the end of the range."));
9922
9923 const linespec_sals &lsal_end = canonical_end.lsals[0];
9924 if (canonical_end.lsals.size () > 1
9925 || lsal_end.sals.size () != 1)
9926 error (_("Cannot create a ranged breakpoint with multiple locations."));
9927
9928 const symtab_and_line &sal_end = lsal_end.sals[0];
9929
9930 end = find_breakpoint_range_end (sal_end);
9931 if (sal_start.pc > end)
9932 error (_("Invalid address range, end precedes start."));
9933
9934 length = end - sal_start.pc + 1;
9935 if (length < 0)
9936 /* Length overflowed. */
9937 error (_("Address range too large."));
9938 else if (length == 1)
9939 {
9940 /* This range is simple enough to be handled by
9941 the `hbreak' command. */
9942 hbreak_command (&addr_string_start[0], 1);
9943
9944 return;
9945 }
9946
9947 /* Now set up the breakpoint. */
9948 b = set_raw_breakpoint (get_current_arch (), sal_start,
9949 bp_hardware_breakpoint, &ranged_breakpoint_ops);
9950 set_breakpoint_count (breakpoint_count + 1);
9951 b->number = breakpoint_count;
9952 b->disposition = disp_donttouch;
9953 b->location = std::move (start_location);
9954 b->location_range_end = std::move (end_location);
9955 b->loc->length = length;
9956
9957 mention (b);
9958 gdb::observers::breakpoint_created.notify (b);
9959 update_global_location_list (UGLL_MAY_INSERT);
9960 }
9961
9962 /* Return non-zero if EXP is verified as constant. Returned zero
9963 means EXP is variable. Also the constant detection may fail for
9964 some constant expressions and in such case still falsely return
9965 zero. */
9966
9967 static int
9968 watchpoint_exp_is_const (const struct expression *exp)
9969 {
9970 int i = exp->nelts;
9971
9972 while (i > 0)
9973 {
9974 int oplenp, argsp;
9975
9976 /* We are only interested in the descriptor of each element. */
9977 operator_length (exp, i, &oplenp, &argsp);
9978 i -= oplenp;
9979
9980 switch (exp->elts[i].opcode)
9981 {
9982 case BINOP_ADD:
9983 case BINOP_SUB:
9984 case BINOP_MUL:
9985 case BINOP_DIV:
9986 case BINOP_REM:
9987 case BINOP_MOD:
9988 case BINOP_LSH:
9989 case BINOP_RSH:
9990 case BINOP_LOGICAL_AND:
9991 case BINOP_LOGICAL_OR:
9992 case BINOP_BITWISE_AND:
9993 case BINOP_BITWISE_IOR:
9994 case BINOP_BITWISE_XOR:
9995 case BINOP_EQUAL:
9996 case BINOP_NOTEQUAL:
9997 case BINOP_LESS:
9998 case BINOP_GTR:
9999 case BINOP_LEQ:
10000 case BINOP_GEQ:
10001 case BINOP_REPEAT:
10002 case BINOP_COMMA:
10003 case BINOP_EXP:
10004 case BINOP_MIN:
10005 case BINOP_MAX:
10006 case BINOP_INTDIV:
10007 case BINOP_CONCAT:
10008 case TERNOP_COND:
10009 case TERNOP_SLICE:
10010
10011 case OP_LONG:
10012 case OP_FLOAT:
10013 case OP_LAST:
10014 case OP_COMPLEX:
10015 case OP_STRING:
10016 case OP_ARRAY:
10017 case OP_TYPE:
10018 case OP_TYPEOF:
10019 case OP_DECLTYPE:
10020 case OP_TYPEID:
10021 case OP_NAME:
10022 case OP_OBJC_NSSTRING:
10023
10024 case UNOP_NEG:
10025 case UNOP_LOGICAL_NOT:
10026 case UNOP_COMPLEMENT:
10027 case UNOP_ADDR:
10028 case UNOP_HIGH:
10029 case UNOP_CAST:
10030
10031 case UNOP_CAST_TYPE:
10032 case UNOP_REINTERPRET_CAST:
10033 case UNOP_DYNAMIC_CAST:
10034 /* Unary, binary and ternary operators: We have to check
10035 their operands. If they are constant, then so is the
10036 result of that operation. For instance, if A and B are
10037 determined to be constants, then so is "A + B".
10038
10039 UNOP_IND is one exception to the rule above, because the
10040 value of *ADDR is not necessarily a constant, even when
10041 ADDR is. */
10042 break;
10043
10044 case OP_VAR_VALUE:
10045 /* Check whether the associated symbol is a constant.
10046
10047 We use SYMBOL_CLASS rather than TYPE_CONST because it's
10048 possible that a buggy compiler could mark a variable as
10049 constant even when it is not, and TYPE_CONST would return
10050 true in this case, while SYMBOL_CLASS wouldn't.
10051
10052 We also have to check for function symbols because they
10053 are always constant. */
10054 {
10055 struct symbol *s = exp->elts[i + 2].symbol;
10056
10057 if (SYMBOL_CLASS (s) != LOC_BLOCK
10058 && SYMBOL_CLASS (s) != LOC_CONST
10059 && SYMBOL_CLASS (s) != LOC_CONST_BYTES)
10060 return 0;
10061 break;
10062 }
10063
10064 /* The default action is to return 0 because we are using
10065 the optimistic approach here: If we don't know something,
10066 then it is not a constant. */
10067 default:
10068 return 0;
10069 }
10070 }
10071
10072 return 1;
10073 }
10074
10075 /* Watchpoint destructor. */
10076
10077 watchpoint::~watchpoint ()
10078 {
10079 xfree (this->exp_string);
10080 xfree (this->exp_string_reparse);
10081 }
10082
10083 /* Implement the "re_set" breakpoint_ops method for watchpoints. */
10084
10085 static void
10086 re_set_watchpoint (struct breakpoint *b)
10087 {
10088 struct watchpoint *w = (struct watchpoint *) b;
10089
10090 /* Watchpoint can be either on expression using entirely global
10091 variables, or it can be on local variables.
10092
10093 Watchpoints of the first kind are never auto-deleted, and even
10094 persist across program restarts. Since they can use variables
10095 from shared libraries, we need to reparse expression as libraries
10096 are loaded and unloaded.
10097
10098 Watchpoints on local variables can also change meaning as result
10099 of solib event. For example, if a watchpoint uses both a local
10100 and a global variables in expression, it's a local watchpoint,
10101 but unloading of a shared library will make the expression
10102 invalid. This is not a very common use case, but we still
10103 re-evaluate expression, to avoid surprises to the user.
10104
10105 Note that for local watchpoints, we re-evaluate it only if
10106 watchpoints frame id is still valid. If it's not, it means the
10107 watchpoint is out of scope and will be deleted soon. In fact,
10108 I'm not sure we'll ever be called in this case.
10109
10110 If a local watchpoint's frame id is still valid, then
10111 w->exp_valid_block is likewise valid, and we can safely use it.
10112
10113 Don't do anything about disabled watchpoints, since they will be
10114 reevaluated again when enabled. */
10115 update_watchpoint (w, 1 /* reparse */);
10116 }
10117
10118 /* Implement the "insert" breakpoint_ops method for hardware watchpoints. */
10119
10120 static int
10121 insert_watchpoint (struct bp_location *bl)
10122 {
10123 struct watchpoint *w = (struct watchpoint *) bl->owner;
10124 int length = w->exact ? 1 : bl->length;
10125
10126 return target_insert_watchpoint (bl->address, length, bl->watchpoint_type,
10127 w->cond_exp.get ());
10128 }
10129
10130 /* Implement the "remove" breakpoint_ops method for hardware watchpoints. */
10131
10132 static int
10133 remove_watchpoint (struct bp_location *bl, enum remove_bp_reason reason)
10134 {
10135 struct watchpoint *w = (struct watchpoint *) bl->owner;
10136 int length = w->exact ? 1 : bl->length;
10137
10138 return target_remove_watchpoint (bl->address, length, bl->watchpoint_type,
10139 w->cond_exp.get ());
10140 }
10141
10142 static int
10143 breakpoint_hit_watchpoint (const struct bp_location *bl,
10144 const address_space *aspace, CORE_ADDR bp_addr,
10145 const struct target_waitstatus *ws)
10146 {
10147 struct breakpoint *b = bl->owner;
10148 struct watchpoint *w = (struct watchpoint *) b;
10149
10150 /* Continuable hardware watchpoints are treated as non-existent if the
10151 reason we stopped wasn't a hardware watchpoint (we didn't stop on
10152 some data address). Otherwise gdb won't stop on a break instruction
10153 in the code (not from a breakpoint) when a hardware watchpoint has
10154 been defined. Also skip watchpoints which we know did not trigger
10155 (did not match the data address). */
10156 if (is_hardware_watchpoint (b)
10157 && w->watchpoint_triggered == watch_triggered_no)
10158 return 0;
10159
10160 return 1;
10161 }
10162
10163 static void
10164 check_status_watchpoint (bpstat bs)
10165 {
10166 gdb_assert (is_watchpoint (bs->breakpoint_at));
10167
10168 bpstat_check_watchpoint (bs);
10169 }
10170
10171 /* Implement the "resources_needed" breakpoint_ops method for
10172 hardware watchpoints. */
10173
10174 static int
10175 resources_needed_watchpoint (const struct bp_location *bl)
10176 {
10177 struct watchpoint *w = (struct watchpoint *) bl->owner;
10178 int length = w->exact? 1 : bl->length;
10179
10180 return target_region_ok_for_hw_watchpoint (bl->address, length);
10181 }
10182
10183 /* Implement the "works_in_software_mode" breakpoint_ops method for
10184 hardware watchpoints. */
10185
10186 static int
10187 works_in_software_mode_watchpoint (const struct breakpoint *b)
10188 {
10189 /* Read and access watchpoints only work with hardware support. */
10190 return b->type == bp_watchpoint || b->type == bp_hardware_watchpoint;
10191 }
10192
10193 static enum print_stop_action
10194 print_it_watchpoint (bpstat bs)
10195 {
10196 struct breakpoint *b;
10197 enum print_stop_action result;
10198 struct watchpoint *w;
10199 struct ui_out *uiout = current_uiout;
10200
10201 gdb_assert (bs->bp_location_at != NULL);
10202
10203 b = bs->breakpoint_at;
10204 w = (struct watchpoint *) b;
10205
10206 annotate_watchpoint (b->number);
10207 maybe_print_thread_hit_breakpoint (uiout);
10208
10209 string_file stb;
10210
10211 gdb::optional<ui_out_emit_tuple> tuple_emitter;
10212 switch (b->type)
10213 {
10214 case bp_watchpoint:
10215 case bp_hardware_watchpoint:
10216 if (uiout->is_mi_like_p ())
10217 uiout->field_string
10218 ("reason", async_reason_lookup (EXEC_ASYNC_WATCHPOINT_TRIGGER));
10219 mention (b);
10220 tuple_emitter.emplace (uiout, "value");
10221 uiout->text ("\nOld value = ");
10222 watchpoint_value_print (bs->old_val.get (), &stb);
10223 uiout->field_stream ("old", stb);
10224 uiout->text ("\nNew value = ");
10225 watchpoint_value_print (w->val.get (), &stb);
10226 uiout->field_stream ("new", stb);
10227 uiout->text ("\n");
10228 /* More than one watchpoint may have been triggered. */
10229 result = PRINT_UNKNOWN;
10230 break;
10231
10232 case bp_read_watchpoint:
10233 if (uiout->is_mi_like_p ())
10234 uiout->field_string
10235 ("reason", async_reason_lookup (EXEC_ASYNC_READ_WATCHPOINT_TRIGGER));
10236 mention (b);
10237 tuple_emitter.emplace (uiout, "value");
10238 uiout->text ("\nValue = ");
10239 watchpoint_value_print (w->val.get (), &stb);
10240 uiout->field_stream ("value", stb);
10241 uiout->text ("\n");
10242 result = PRINT_UNKNOWN;
10243 break;
10244
10245 case bp_access_watchpoint:
10246 if (bs->old_val != NULL)
10247 {
10248 if (uiout->is_mi_like_p ())
10249 uiout->field_string
10250 ("reason",
10251 async_reason_lookup (EXEC_ASYNC_ACCESS_WATCHPOINT_TRIGGER));
10252 mention (b);
10253 tuple_emitter.emplace (uiout, "value");
10254 uiout->text ("\nOld value = ");
10255 watchpoint_value_print (bs->old_val.get (), &stb);
10256 uiout->field_stream ("old", stb);
10257 uiout->text ("\nNew value = ");
10258 }
10259 else
10260 {
10261 mention (b);
10262 if (uiout->is_mi_like_p ())
10263 uiout->field_string
10264 ("reason",
10265 async_reason_lookup (EXEC_ASYNC_ACCESS_WATCHPOINT_TRIGGER));
10266 tuple_emitter.emplace (uiout, "value");
10267 uiout->text ("\nValue = ");
10268 }
10269 watchpoint_value_print (w->val.get (), &stb);
10270 uiout->field_stream ("new", stb);
10271 uiout->text ("\n");
10272 result = PRINT_UNKNOWN;
10273 break;
10274 default:
10275 result = PRINT_UNKNOWN;
10276 }
10277
10278 return result;
10279 }
10280
10281 /* Implement the "print_mention" breakpoint_ops method for hardware
10282 watchpoints. */
10283
10284 static void
10285 print_mention_watchpoint (struct breakpoint *b)
10286 {
10287 struct watchpoint *w = (struct watchpoint *) b;
10288 struct ui_out *uiout = current_uiout;
10289 const char *tuple_name;
10290
10291 switch (b->type)
10292 {
10293 case bp_watchpoint:
10294 uiout->text ("Watchpoint ");
10295 tuple_name = "wpt";
10296 break;
10297 case bp_hardware_watchpoint:
10298 uiout->text ("Hardware watchpoint ");
10299 tuple_name = "wpt";
10300 break;
10301 case bp_read_watchpoint:
10302 uiout->text ("Hardware read watchpoint ");
10303 tuple_name = "hw-rwpt";
10304 break;
10305 case bp_access_watchpoint:
10306 uiout->text ("Hardware access (read/write) watchpoint ");
10307 tuple_name = "hw-awpt";
10308 break;
10309 default:
10310 internal_error (__FILE__, __LINE__,
10311 _("Invalid hardware watchpoint type."));
10312 }
10313
10314 ui_out_emit_tuple tuple_emitter (uiout, tuple_name);
10315 uiout->field_int ("number", b->number);
10316 uiout->text (": ");
10317 uiout->field_string ("exp", w->exp_string);
10318 }
10319
10320 /* Implement the "print_recreate" breakpoint_ops method for
10321 watchpoints. */
10322
10323 static void
10324 print_recreate_watchpoint (struct breakpoint *b, struct ui_file *fp)
10325 {
10326 struct watchpoint *w = (struct watchpoint *) b;
10327
10328 switch (b->type)
10329 {
10330 case bp_watchpoint:
10331 case bp_hardware_watchpoint:
10332 fprintf_unfiltered (fp, "watch");
10333 break;
10334 case bp_read_watchpoint:
10335 fprintf_unfiltered (fp, "rwatch");
10336 break;
10337 case bp_access_watchpoint:
10338 fprintf_unfiltered (fp, "awatch");
10339 break;
10340 default:
10341 internal_error (__FILE__, __LINE__,
10342 _("Invalid watchpoint type."));
10343 }
10344
10345 fprintf_unfiltered (fp, " %s", w->exp_string);
10346 print_recreate_thread (b, fp);
10347 }
10348
10349 /* Implement the "explains_signal" breakpoint_ops method for
10350 watchpoints. */
10351
10352 static int
10353 explains_signal_watchpoint (struct breakpoint *b, enum gdb_signal sig)
10354 {
10355 /* A software watchpoint cannot cause a signal other than
10356 GDB_SIGNAL_TRAP. */
10357 if (b->type == bp_watchpoint && sig != GDB_SIGNAL_TRAP)
10358 return 0;
10359
10360 return 1;
10361 }
10362
10363 /* The breakpoint_ops structure to be used in hardware watchpoints. */
10364
10365 static struct breakpoint_ops watchpoint_breakpoint_ops;
10366
10367 /* Implement the "insert" breakpoint_ops method for
10368 masked hardware watchpoints. */
10369
10370 static int
10371 insert_masked_watchpoint (struct bp_location *bl)
10372 {
10373 struct watchpoint *w = (struct watchpoint *) bl->owner;
10374
10375 return target_insert_mask_watchpoint (bl->address, w->hw_wp_mask,
10376 bl->watchpoint_type);
10377 }
10378
10379 /* Implement the "remove" breakpoint_ops method for
10380 masked hardware watchpoints. */
10381
10382 static int
10383 remove_masked_watchpoint (struct bp_location *bl, enum remove_bp_reason reason)
10384 {
10385 struct watchpoint *w = (struct watchpoint *) bl->owner;
10386
10387 return target_remove_mask_watchpoint (bl->address, w->hw_wp_mask,
10388 bl->watchpoint_type);
10389 }
10390
10391 /* Implement the "resources_needed" breakpoint_ops method for
10392 masked hardware watchpoints. */
10393
10394 static int
10395 resources_needed_masked_watchpoint (const struct bp_location *bl)
10396 {
10397 struct watchpoint *w = (struct watchpoint *) bl->owner;
10398
10399 return target_masked_watch_num_registers (bl->address, w->hw_wp_mask);
10400 }
10401
10402 /* Implement the "works_in_software_mode" breakpoint_ops method for
10403 masked hardware watchpoints. */
10404
10405 static int
10406 works_in_software_mode_masked_watchpoint (const struct breakpoint *b)
10407 {
10408 return 0;
10409 }
10410
10411 /* Implement the "print_it" breakpoint_ops method for
10412 masked hardware watchpoints. */
10413
10414 static enum print_stop_action
10415 print_it_masked_watchpoint (bpstat bs)
10416 {
10417 struct breakpoint *b = bs->breakpoint_at;
10418 struct ui_out *uiout = current_uiout;
10419
10420 /* Masked watchpoints have only one location. */
10421 gdb_assert (b->loc && b->loc->next == NULL);
10422
10423 annotate_watchpoint (b->number);
10424 maybe_print_thread_hit_breakpoint (uiout);
10425
10426 switch (b->type)
10427 {
10428 case bp_hardware_watchpoint:
10429 if (uiout->is_mi_like_p ())
10430 uiout->field_string
10431 ("reason", async_reason_lookup (EXEC_ASYNC_WATCHPOINT_TRIGGER));
10432 break;
10433
10434 case bp_read_watchpoint:
10435 if (uiout->is_mi_like_p ())
10436 uiout->field_string
10437 ("reason", async_reason_lookup (EXEC_ASYNC_READ_WATCHPOINT_TRIGGER));
10438 break;
10439
10440 case bp_access_watchpoint:
10441 if (uiout->is_mi_like_p ())
10442 uiout->field_string
10443 ("reason",
10444 async_reason_lookup (EXEC_ASYNC_ACCESS_WATCHPOINT_TRIGGER));
10445 break;
10446 default:
10447 internal_error (__FILE__, __LINE__,
10448 _("Invalid hardware watchpoint type."));
10449 }
10450
10451 mention (b);
10452 uiout->text (_("\n\
10453 Check the underlying instruction at PC for the memory\n\
10454 address and value which triggered this watchpoint.\n"));
10455 uiout->text ("\n");
10456
10457 /* More than one watchpoint may have been triggered. */
10458 return PRINT_UNKNOWN;
10459 }
10460
10461 /* Implement the "print_one_detail" breakpoint_ops method for
10462 masked hardware watchpoints. */
10463
10464 static void
10465 print_one_detail_masked_watchpoint (const struct breakpoint *b,
10466 struct ui_out *uiout)
10467 {
10468 struct watchpoint *w = (struct watchpoint *) b;
10469
10470 /* Masked watchpoints have only one location. */
10471 gdb_assert (b->loc && b->loc->next == NULL);
10472
10473 uiout->text ("\tmask ");
10474 uiout->field_core_addr ("mask", b->loc->gdbarch, w->hw_wp_mask);
10475 uiout->text ("\n");
10476 }
10477
10478 /* Implement the "print_mention" breakpoint_ops method for
10479 masked hardware watchpoints. */
10480
10481 static void
10482 print_mention_masked_watchpoint (struct breakpoint *b)
10483 {
10484 struct watchpoint *w = (struct watchpoint *) b;
10485 struct ui_out *uiout = current_uiout;
10486 const char *tuple_name;
10487
10488 switch (b->type)
10489 {
10490 case bp_hardware_watchpoint:
10491 uiout->text ("Masked hardware watchpoint ");
10492 tuple_name = "wpt";
10493 break;
10494 case bp_read_watchpoint:
10495 uiout->text ("Masked hardware read watchpoint ");
10496 tuple_name = "hw-rwpt";
10497 break;
10498 case bp_access_watchpoint:
10499 uiout->text ("Masked hardware access (read/write) watchpoint ");
10500 tuple_name = "hw-awpt";
10501 break;
10502 default:
10503 internal_error (__FILE__, __LINE__,
10504 _("Invalid hardware watchpoint type."));
10505 }
10506
10507 ui_out_emit_tuple tuple_emitter (uiout, tuple_name);
10508 uiout->field_int ("number", b->number);
10509 uiout->text (": ");
10510 uiout->field_string ("exp", w->exp_string);
10511 }
10512
10513 /* Implement the "print_recreate" breakpoint_ops method for
10514 masked hardware watchpoints. */
10515
10516 static void
10517 print_recreate_masked_watchpoint (struct breakpoint *b, struct ui_file *fp)
10518 {
10519 struct watchpoint *w = (struct watchpoint *) b;
10520 char tmp[40];
10521
10522 switch (b->type)
10523 {
10524 case bp_hardware_watchpoint:
10525 fprintf_unfiltered (fp, "watch");
10526 break;
10527 case bp_read_watchpoint:
10528 fprintf_unfiltered (fp, "rwatch");
10529 break;
10530 case bp_access_watchpoint:
10531 fprintf_unfiltered (fp, "awatch");
10532 break;
10533 default:
10534 internal_error (__FILE__, __LINE__,
10535 _("Invalid hardware watchpoint type."));
10536 }
10537
10538 sprintf_vma (tmp, w->hw_wp_mask);
10539 fprintf_unfiltered (fp, " %s mask 0x%s", w->exp_string, tmp);
10540 print_recreate_thread (b, fp);
10541 }
10542
10543 /* The breakpoint_ops structure to be used in masked hardware watchpoints. */
10544
10545 static struct breakpoint_ops masked_watchpoint_breakpoint_ops;
10546
10547 /* Tell whether the given watchpoint is a masked hardware watchpoint. */
10548
10549 static int
10550 is_masked_watchpoint (const struct breakpoint *b)
10551 {
10552 return b->ops == &masked_watchpoint_breakpoint_ops;
10553 }
10554
10555 /* accessflag: hw_write: watch write,
10556 hw_read: watch read,
10557 hw_access: watch access (read or write) */
10558 static void
10559 watch_command_1 (const char *arg, int accessflag, int from_tty,
10560 int just_location, int internal)
10561 {
10562 struct breakpoint *scope_breakpoint = NULL;
10563 const struct block *exp_valid_block = NULL, *cond_exp_valid_block = NULL;
10564 struct value *mark, *result;
10565 int saved_bitpos = 0, saved_bitsize = 0;
10566 const char *exp_start = NULL;
10567 const char *exp_end = NULL;
10568 const char *tok, *end_tok;
10569 int toklen = -1;
10570 const char *cond_start = NULL;
10571 const char *cond_end = NULL;
10572 enum bptype bp_type;
10573 int thread = -1;
10574 int pc = 0;
10575 /* Flag to indicate whether we are going to use masks for
10576 the hardware watchpoint. */
10577 int use_mask = 0;
10578 CORE_ADDR mask = 0;
10579
10580 /* Make sure that we actually have parameters to parse. */
10581 if (arg != NULL && arg[0] != '\0')
10582 {
10583 const char *value_start;
10584
10585 exp_end = arg + strlen (arg);
10586
10587 /* Look for "parameter value" pairs at the end
10588 of the arguments string. */
10589 for (tok = exp_end - 1; tok > arg; tok--)
10590 {
10591 /* Skip whitespace at the end of the argument list. */
10592 while (tok > arg && (*tok == ' ' || *tok == '\t'))
10593 tok--;
10594
10595 /* Find the beginning of the last token.
10596 This is the value of the parameter. */
10597 while (tok > arg && (*tok != ' ' && *tok != '\t'))
10598 tok--;
10599 value_start = tok + 1;
10600
10601 /* Skip whitespace. */
10602 while (tok > arg && (*tok == ' ' || *tok == '\t'))
10603 tok--;
10604
10605 end_tok = tok;
10606
10607 /* Find the beginning of the second to last token.
10608 This is the parameter itself. */
10609 while (tok > arg && (*tok != ' ' && *tok != '\t'))
10610 tok--;
10611 tok++;
10612 toklen = end_tok - tok + 1;
10613
10614 if (toklen == 6 && startswith (tok, "thread"))
10615 {
10616 struct thread_info *thr;
10617 /* At this point we've found a "thread" token, which means
10618 the user is trying to set a watchpoint that triggers
10619 only in a specific thread. */
10620 const char *endp;
10621
10622 if (thread != -1)
10623 error(_("You can specify only one thread."));
10624
10625 /* Extract the thread ID from the next token. */
10626 thr = parse_thread_id (value_start, &endp);
10627
10628 /* Check if the user provided a valid thread ID. */
10629 if (*endp != ' ' && *endp != '\t' && *endp != '\0')
10630 invalid_thread_id_error (value_start);
10631
10632 thread = thr->global_num;
10633 }
10634 else if (toklen == 4 && startswith (tok, "mask"))
10635 {
10636 /* We've found a "mask" token, which means the user wants to
10637 create a hardware watchpoint that is going to have the mask
10638 facility. */
10639 struct value *mask_value, *mark;
10640
10641 if (use_mask)
10642 error(_("You can specify only one mask."));
10643
10644 use_mask = just_location = 1;
10645
10646 mark = value_mark ();
10647 mask_value = parse_to_comma_and_eval (&value_start);
10648 mask = value_as_address (mask_value);
10649 value_free_to_mark (mark);
10650 }
10651 else
10652 /* We didn't recognize what we found. We should stop here. */
10653 break;
10654
10655 /* Truncate the string and get rid of the "parameter value" pair before
10656 the arguments string is parsed by the parse_exp_1 function. */
10657 exp_end = tok;
10658 }
10659 }
10660 else
10661 exp_end = arg;
10662
10663 /* Parse the rest of the arguments. From here on out, everything
10664 is in terms of a newly allocated string instead of the original
10665 ARG. */
10666 innermost_block.reset ();
10667 std::string expression (arg, exp_end - arg);
10668 exp_start = arg = expression.c_str ();
10669 expression_up exp = parse_exp_1 (&arg, 0, 0, 0);
10670 exp_end = arg;
10671 /* Remove trailing whitespace from the expression before saving it.
10672 This makes the eventual display of the expression string a bit
10673 prettier. */
10674 while (exp_end > exp_start && (exp_end[-1] == ' ' || exp_end[-1] == '\t'))
10675 --exp_end;
10676
10677 /* Checking if the expression is not constant. */
10678 if (watchpoint_exp_is_const (exp.get ()))
10679 {
10680 int len;
10681
10682 len = exp_end - exp_start;
10683 while (len > 0 && isspace (exp_start[len - 1]))
10684 len--;
10685 error (_("Cannot watch constant value `%.*s'."), len, exp_start);
10686 }
10687
10688 exp_valid_block = innermost_block.block ();
10689 mark = value_mark ();
10690 struct value *val_as_value = nullptr;
10691 fetch_subexp_value (exp.get (), &pc, &val_as_value, &result, NULL,
10692 just_location);
10693
10694 if (val_as_value != NULL && just_location)
10695 {
10696 saved_bitpos = value_bitpos (val_as_value);
10697 saved_bitsize = value_bitsize (val_as_value);
10698 }
10699
10700 value_ref_ptr val;
10701 if (just_location)
10702 {
10703 int ret;
10704
10705 exp_valid_block = NULL;
10706 val = release_value (value_addr (result));
10707 value_free_to_mark (mark);
10708
10709 if (use_mask)
10710 {
10711 ret = target_masked_watch_num_registers (value_as_address (val.get ()),
10712 mask);
10713 if (ret == -1)
10714 error (_("This target does not support masked watchpoints."));
10715 else if (ret == -2)
10716 error (_("Invalid mask or memory region."));
10717 }
10718 }
10719 else if (val_as_value != NULL)
10720 val = release_value (val_as_value);
10721
10722 tok = skip_spaces (arg);
10723 end_tok = skip_to_space (tok);
10724
10725 toklen = end_tok - tok;
10726 if (toklen >= 1 && strncmp (tok, "if", toklen) == 0)
10727 {
10728 innermost_block.reset ();
10729 tok = cond_start = end_tok + 1;
10730 parse_exp_1 (&tok, 0, 0, 0);
10731
10732 /* The watchpoint expression may not be local, but the condition
10733 may still be. E.g.: `watch global if local > 0'. */
10734 cond_exp_valid_block = innermost_block.block ();
10735
10736 cond_end = tok;
10737 }
10738 if (*tok)
10739 error (_("Junk at end of command."));
10740
10741 frame_info *wp_frame = block_innermost_frame (exp_valid_block);
10742
10743 /* Save this because create_internal_breakpoint below invalidates
10744 'wp_frame'. */
10745 frame_id watchpoint_frame = get_frame_id (wp_frame);
10746
10747 /* If the expression is "local", then set up a "watchpoint scope"
10748 breakpoint at the point where we've left the scope of the watchpoint
10749 expression. Create the scope breakpoint before the watchpoint, so
10750 that we will encounter it first in bpstat_stop_status. */
10751 if (exp_valid_block != NULL && wp_frame != NULL)
10752 {
10753 frame_id caller_frame_id = frame_unwind_caller_id (wp_frame);
10754
10755 if (frame_id_p (caller_frame_id))
10756 {
10757 gdbarch *caller_arch = frame_unwind_caller_arch (wp_frame);
10758 CORE_ADDR caller_pc = frame_unwind_caller_pc (wp_frame);
10759
10760 scope_breakpoint
10761 = create_internal_breakpoint (caller_arch, caller_pc,
10762 bp_watchpoint_scope,
10763 &momentary_breakpoint_ops);
10764
10765 /* create_internal_breakpoint could invalidate WP_FRAME. */
10766 wp_frame = NULL;
10767
10768 scope_breakpoint->enable_state = bp_enabled;
10769
10770 /* Automatically delete the breakpoint when it hits. */
10771 scope_breakpoint->disposition = disp_del;
10772
10773 /* Only break in the proper frame (help with recursion). */
10774 scope_breakpoint->frame_id = caller_frame_id;
10775
10776 /* Set the address at which we will stop. */
10777 scope_breakpoint->loc->gdbarch = caller_arch;
10778 scope_breakpoint->loc->requested_address = caller_pc;
10779 scope_breakpoint->loc->address
10780 = adjust_breakpoint_address (scope_breakpoint->loc->gdbarch,
10781 scope_breakpoint->loc->requested_address,
10782 scope_breakpoint->type);
10783 }
10784 }
10785
10786 /* Now set up the breakpoint. We create all watchpoints as hardware
10787 watchpoints here even if hardware watchpoints are turned off, a call
10788 to update_watchpoint later in this function will cause the type to
10789 drop back to bp_watchpoint (software watchpoint) if required. */
10790
10791 if (accessflag == hw_read)
10792 bp_type = bp_read_watchpoint;
10793 else if (accessflag == hw_access)
10794 bp_type = bp_access_watchpoint;
10795 else
10796 bp_type = bp_hardware_watchpoint;
10797
10798 std::unique_ptr<watchpoint> w (new watchpoint ());
10799
10800 if (use_mask)
10801 init_raw_breakpoint_without_location (w.get (), NULL, bp_type,
10802 &masked_watchpoint_breakpoint_ops);
10803 else
10804 init_raw_breakpoint_without_location (w.get (), NULL, bp_type,
10805 &watchpoint_breakpoint_ops);
10806 w->thread = thread;
10807 w->disposition = disp_donttouch;
10808 w->pspace = current_program_space;
10809 w->exp = std::move (exp);
10810 w->exp_valid_block = exp_valid_block;
10811 w->cond_exp_valid_block = cond_exp_valid_block;
10812 if (just_location)
10813 {
10814 struct type *t = value_type (val.get ());
10815 CORE_ADDR addr = value_as_address (val.get ());
10816
10817 w->exp_string_reparse
10818 = current_language->la_watch_location_expression (t, addr).release ();
10819
10820 w->exp_string = xstrprintf ("-location %.*s",
10821 (int) (exp_end - exp_start), exp_start);
10822 }
10823 else
10824 w->exp_string = savestring (exp_start, exp_end - exp_start);
10825
10826 if (use_mask)
10827 {
10828 w->hw_wp_mask = mask;
10829 }
10830 else
10831 {
10832 w->val = val;
10833 w->val_bitpos = saved_bitpos;
10834 w->val_bitsize = saved_bitsize;
10835 w->val_valid = 1;
10836 }
10837
10838 if (cond_start)
10839 w->cond_string = savestring (cond_start, cond_end - cond_start);
10840 else
10841 w->cond_string = 0;
10842
10843 if (frame_id_p (watchpoint_frame))
10844 {
10845 w->watchpoint_frame = watchpoint_frame;
10846 w->watchpoint_thread = inferior_ptid;
10847 }
10848 else
10849 {
10850 w->watchpoint_frame = null_frame_id;
10851 w->watchpoint_thread = null_ptid;
10852 }
10853
10854 if (scope_breakpoint != NULL)
10855 {
10856 /* The scope breakpoint is related to the watchpoint. We will
10857 need to act on them together. */
10858 w->related_breakpoint = scope_breakpoint;
10859 scope_breakpoint->related_breakpoint = w.get ();
10860 }
10861
10862 if (!just_location)
10863 value_free_to_mark (mark);
10864
10865 /* Finally update the new watchpoint. This creates the locations
10866 that should be inserted. */
10867 update_watchpoint (w.get (), 1);
10868
10869 install_breakpoint (internal, std::move (w), 1);
10870 }
10871
10872 /* Return count of debug registers needed to watch the given expression.
10873 If the watchpoint cannot be handled in hardware return zero. */
10874
10875 static int
10876 can_use_hardware_watchpoint (const std::vector<value_ref_ptr> &vals)
10877 {
10878 int found_memory_cnt = 0;
10879
10880 /* Did the user specifically forbid us to use hardware watchpoints? */
10881 if (!can_use_hw_watchpoints)
10882 return 0;
10883
10884 gdb_assert (!vals.empty ());
10885 struct value *head = vals[0].get ();
10886
10887 /* Make sure that the value of the expression depends only upon
10888 memory contents, and values computed from them within GDB. If we
10889 find any register references or function calls, we can't use a
10890 hardware watchpoint.
10891
10892 The idea here is that evaluating an expression generates a series
10893 of values, one holding the value of every subexpression. (The
10894 expression a*b+c has five subexpressions: a, b, a*b, c, and
10895 a*b+c.) GDB's values hold almost enough information to establish
10896 the criteria given above --- they identify memory lvalues,
10897 register lvalues, computed values, etcetera. So we can evaluate
10898 the expression, and then scan the chain of values that leaves
10899 behind to decide whether we can detect any possible change to the
10900 expression's final value using only hardware watchpoints.
10901
10902 However, I don't think that the values returned by inferior
10903 function calls are special in any way. So this function may not
10904 notice that an expression involving an inferior function call
10905 can't be watched with hardware watchpoints. FIXME. */
10906 for (const value_ref_ptr &iter : vals)
10907 {
10908 struct value *v = iter.get ();
10909
10910 if (VALUE_LVAL (v) == lval_memory)
10911 {
10912 if (v != head && value_lazy (v))
10913 /* A lazy memory lvalue in the chain is one that GDB never
10914 needed to fetch; we either just used its address (e.g.,
10915 `a' in `a.b') or we never needed it at all (e.g., `a'
10916 in `a,b'). This doesn't apply to HEAD; if that is
10917 lazy then it was not readable, but watch it anyway. */
10918 ;
10919 else
10920 {
10921 /* Ahh, memory we actually used! Check if we can cover
10922 it with hardware watchpoints. */
10923 struct type *vtype = check_typedef (value_type (v));
10924
10925 /* We only watch structs and arrays if user asked for it
10926 explicitly, never if they just happen to appear in a
10927 middle of some value chain. */
10928 if (v == head
10929 || (TYPE_CODE (vtype) != TYPE_CODE_STRUCT
10930 && TYPE_CODE (vtype) != TYPE_CODE_ARRAY))
10931 {
10932 CORE_ADDR vaddr = value_address (v);
10933 int len;
10934 int num_regs;
10935
10936 len = (target_exact_watchpoints
10937 && is_scalar_type_recursive (vtype))?
10938 1 : TYPE_LENGTH (value_type (v));
10939
10940 num_regs = target_region_ok_for_hw_watchpoint (vaddr, len);
10941 if (!num_regs)
10942 return 0;
10943 else
10944 found_memory_cnt += num_regs;
10945 }
10946 }
10947 }
10948 else if (VALUE_LVAL (v) != not_lval
10949 && deprecated_value_modifiable (v) == 0)
10950 return 0; /* These are values from the history (e.g., $1). */
10951 else if (VALUE_LVAL (v) == lval_register)
10952 return 0; /* Cannot watch a register with a HW watchpoint. */
10953 }
10954
10955 /* The expression itself looks suitable for using a hardware
10956 watchpoint, but give the target machine a chance to reject it. */
10957 return found_memory_cnt;
10958 }
10959
10960 void
10961 watch_command_wrapper (const char *arg, int from_tty, int internal)
10962 {
10963 watch_command_1 (arg, hw_write, from_tty, 0, internal);
10964 }
10965
10966 /* A helper function that looks for the "-location" argument and then
10967 calls watch_command_1. */
10968
10969 static void
10970 watch_maybe_just_location (const char *arg, int accessflag, int from_tty)
10971 {
10972 int just_location = 0;
10973
10974 if (arg
10975 && (check_for_argument (&arg, "-location", sizeof ("-location") - 1)
10976 || check_for_argument (&arg, "-l", sizeof ("-l") - 1)))
10977 {
10978 arg = skip_spaces (arg);
10979 just_location = 1;
10980 }
10981
10982 watch_command_1 (arg, accessflag, from_tty, just_location, 0);
10983 }
10984
10985 static void
10986 watch_command (const char *arg, int from_tty)
10987 {
10988 watch_maybe_just_location (arg, hw_write, from_tty);
10989 }
10990
10991 void
10992 rwatch_command_wrapper (const char *arg, int from_tty, int internal)
10993 {
10994 watch_command_1 (arg, hw_read, from_tty, 0, internal);
10995 }
10996
10997 static void
10998 rwatch_command (const char *arg, int from_tty)
10999 {
11000 watch_maybe_just_location (arg, hw_read, from_tty);
11001 }
11002
11003 void
11004 awatch_command_wrapper (const char *arg, int from_tty, int internal)
11005 {
11006 watch_command_1 (arg, hw_access, from_tty, 0, internal);
11007 }
11008
11009 static void
11010 awatch_command (const char *arg, int from_tty)
11011 {
11012 watch_maybe_just_location (arg, hw_access, from_tty);
11013 }
11014 \f
11015
11016 /* Data for the FSM that manages the until(location)/advance commands
11017 in infcmd.c. Here because it uses the mechanisms of
11018 breakpoints. */
11019
11020 struct until_break_fsm
11021 {
11022 /* The base class. */
11023 struct thread_fsm thread_fsm;
11024
11025 /* The thread that as current when the command was executed. */
11026 int thread;
11027
11028 /* The breakpoint set at the destination location. */
11029 struct breakpoint *location_breakpoint;
11030
11031 /* Breakpoint set at the return address in the caller frame. May be
11032 NULL. */
11033 struct breakpoint *caller_breakpoint;
11034 };
11035
11036 static void until_break_fsm_clean_up (struct thread_fsm *self,
11037 struct thread_info *thread);
11038 static int until_break_fsm_should_stop (struct thread_fsm *self,
11039 struct thread_info *thread);
11040 static enum async_reply_reason
11041 until_break_fsm_async_reply_reason (struct thread_fsm *self);
11042
11043 /* until_break_fsm's vtable. */
11044
11045 static struct thread_fsm_ops until_break_fsm_ops =
11046 {
11047 NULL, /* dtor */
11048 until_break_fsm_clean_up,
11049 until_break_fsm_should_stop,
11050 NULL, /* return_value */
11051 until_break_fsm_async_reply_reason,
11052 };
11053
11054 /* Allocate a new until_break_command_fsm. */
11055
11056 static struct until_break_fsm *
11057 new_until_break_fsm (struct interp *cmd_interp, int thread,
11058 breakpoint_up &&location_breakpoint,
11059 breakpoint_up &&caller_breakpoint)
11060 {
11061 struct until_break_fsm *sm;
11062
11063 sm = XCNEW (struct until_break_fsm);
11064 thread_fsm_ctor (&sm->thread_fsm, &until_break_fsm_ops, cmd_interp);
11065
11066 sm->thread = thread;
11067 sm->location_breakpoint = location_breakpoint.release ();
11068 sm->caller_breakpoint = caller_breakpoint.release ();
11069
11070 return sm;
11071 }
11072
11073 /* Implementation of the 'should_stop' FSM method for the
11074 until(location)/advance commands. */
11075
11076 static int
11077 until_break_fsm_should_stop (struct thread_fsm *self,
11078 struct thread_info *tp)
11079 {
11080 struct until_break_fsm *sm = (struct until_break_fsm *) self;
11081
11082 if (bpstat_find_breakpoint (tp->control.stop_bpstat,
11083 sm->location_breakpoint) != NULL
11084 || (sm->caller_breakpoint != NULL
11085 && bpstat_find_breakpoint (tp->control.stop_bpstat,
11086 sm->caller_breakpoint) != NULL))
11087 thread_fsm_set_finished (self);
11088
11089 return 1;
11090 }
11091
11092 /* Implementation of the 'clean_up' FSM method for the
11093 until(location)/advance commands. */
11094
11095 static void
11096 until_break_fsm_clean_up (struct thread_fsm *self,
11097 struct thread_info *thread)
11098 {
11099 struct until_break_fsm *sm = (struct until_break_fsm *) self;
11100
11101 /* Clean up our temporary breakpoints. */
11102 if (sm->location_breakpoint != NULL)
11103 {
11104 delete_breakpoint (sm->location_breakpoint);
11105 sm->location_breakpoint = NULL;
11106 }
11107 if (sm->caller_breakpoint != NULL)
11108 {
11109 delete_breakpoint (sm->caller_breakpoint);
11110 sm->caller_breakpoint = NULL;
11111 }
11112 delete_longjmp_breakpoint (sm->thread);
11113 }
11114
11115 /* Implementation of the 'async_reply_reason' FSM method for the
11116 until(location)/advance commands. */
11117
11118 static enum async_reply_reason
11119 until_break_fsm_async_reply_reason (struct thread_fsm *self)
11120 {
11121 return EXEC_ASYNC_LOCATION_REACHED;
11122 }
11123
11124 void
11125 until_break_command (const char *arg, int from_tty, int anywhere)
11126 {
11127 struct frame_info *frame;
11128 struct gdbarch *frame_gdbarch;
11129 struct frame_id stack_frame_id;
11130 struct frame_id caller_frame_id;
11131 struct cleanup *old_chain;
11132 int thread;
11133 struct thread_info *tp;
11134 struct until_break_fsm *sm;
11135
11136 clear_proceed_status (0);
11137
11138 /* Set a breakpoint where the user wants it and at return from
11139 this function. */
11140
11141 event_location_up location = string_to_event_location (&arg, current_language);
11142
11143 std::vector<symtab_and_line> sals
11144 = (last_displayed_sal_is_valid ()
11145 ? decode_line_1 (location.get (), DECODE_LINE_FUNFIRSTLINE, NULL,
11146 get_last_displayed_symtab (),
11147 get_last_displayed_line ())
11148 : decode_line_1 (location.get (), DECODE_LINE_FUNFIRSTLINE,
11149 NULL, (struct symtab *) NULL, 0));
11150
11151 if (sals.size () != 1)
11152 error (_("Couldn't get information on specified line."));
11153
11154 symtab_and_line &sal = sals[0];
11155
11156 if (*arg)
11157 error (_("Junk at end of arguments."));
11158
11159 resolve_sal_pc (&sal);
11160
11161 tp = inferior_thread ();
11162 thread = tp->global_num;
11163
11164 old_chain = make_cleanup (null_cleanup, NULL);
11165
11166 /* Note linespec handling above invalidates the frame chain.
11167 Installing a breakpoint also invalidates the frame chain (as it
11168 may need to switch threads), so do any frame handling before
11169 that. */
11170
11171 frame = get_selected_frame (NULL);
11172 frame_gdbarch = get_frame_arch (frame);
11173 stack_frame_id = get_stack_frame_id (frame);
11174 caller_frame_id = frame_unwind_caller_id (frame);
11175
11176 /* Keep within the current frame, or in frames called by the current
11177 one. */
11178
11179 breakpoint_up caller_breakpoint;
11180 if (frame_id_p (caller_frame_id))
11181 {
11182 struct symtab_and_line sal2;
11183 struct gdbarch *caller_gdbarch;
11184
11185 sal2 = find_pc_line (frame_unwind_caller_pc (frame), 0);
11186 sal2.pc = frame_unwind_caller_pc (frame);
11187 caller_gdbarch = frame_unwind_caller_arch (frame);
11188 caller_breakpoint = set_momentary_breakpoint (caller_gdbarch,
11189 sal2,
11190 caller_frame_id,
11191 bp_until);
11192
11193 set_longjmp_breakpoint (tp, caller_frame_id);
11194 make_cleanup (delete_longjmp_breakpoint_cleanup, &thread);
11195 }
11196
11197 /* set_momentary_breakpoint could invalidate FRAME. */
11198 frame = NULL;
11199
11200 breakpoint_up location_breakpoint;
11201 if (anywhere)
11202 /* If the user told us to continue until a specified location,
11203 we don't specify a frame at which we need to stop. */
11204 location_breakpoint = set_momentary_breakpoint (frame_gdbarch, sal,
11205 null_frame_id, bp_until);
11206 else
11207 /* Otherwise, specify the selected frame, because we want to stop
11208 only at the very same frame. */
11209 location_breakpoint = set_momentary_breakpoint (frame_gdbarch, sal,
11210 stack_frame_id, bp_until);
11211
11212 sm = new_until_break_fsm (command_interp (), tp->global_num,
11213 std::move (location_breakpoint),
11214 std::move (caller_breakpoint));
11215 tp->thread_fsm = &sm->thread_fsm;
11216
11217 discard_cleanups (old_chain);
11218
11219 proceed (-1, GDB_SIGNAL_DEFAULT);
11220 }
11221
11222 /* This function attempts to parse an optional "if <cond>" clause
11223 from the arg string. If one is not found, it returns NULL.
11224
11225 Else, it returns a pointer to the condition string. (It does not
11226 attempt to evaluate the string against a particular block.) And,
11227 it updates arg to point to the first character following the parsed
11228 if clause in the arg string. */
11229
11230 const char *
11231 ep_parse_optional_if_clause (const char **arg)
11232 {
11233 const char *cond_string;
11234
11235 if (((*arg)[0] != 'i') || ((*arg)[1] != 'f') || !isspace ((*arg)[2]))
11236 return NULL;
11237
11238 /* Skip the "if" keyword. */
11239 (*arg) += 2;
11240
11241 /* Skip any extra leading whitespace, and record the start of the
11242 condition string. */
11243 *arg = skip_spaces (*arg);
11244 cond_string = *arg;
11245
11246 /* Assume that the condition occupies the remainder of the arg
11247 string. */
11248 (*arg) += strlen (cond_string);
11249
11250 return cond_string;
11251 }
11252
11253 /* Commands to deal with catching events, such as signals, exceptions,
11254 process start/exit, etc. */
11255
11256 typedef enum
11257 {
11258 catch_fork_temporary, catch_vfork_temporary,
11259 catch_fork_permanent, catch_vfork_permanent
11260 }
11261 catch_fork_kind;
11262
11263 static void
11264 catch_fork_command_1 (const char *arg, int from_tty,
11265 struct cmd_list_element *command)
11266 {
11267 struct gdbarch *gdbarch = get_current_arch ();
11268 const char *cond_string = NULL;
11269 catch_fork_kind fork_kind;
11270 int tempflag;
11271
11272 fork_kind = (catch_fork_kind) (uintptr_t) get_cmd_context (command);
11273 tempflag = (fork_kind == catch_fork_temporary
11274 || fork_kind == catch_vfork_temporary);
11275
11276 if (!arg)
11277 arg = "";
11278 arg = skip_spaces (arg);
11279
11280 /* The allowed syntax is:
11281 catch [v]fork
11282 catch [v]fork if <cond>
11283
11284 First, check if there's an if clause. */
11285 cond_string = ep_parse_optional_if_clause (&arg);
11286
11287 if ((*arg != '\0') && !isspace (*arg))
11288 error (_("Junk at end of arguments."));
11289
11290 /* If this target supports it, create a fork or vfork catchpoint
11291 and enable reporting of such events. */
11292 switch (fork_kind)
11293 {
11294 case catch_fork_temporary:
11295 case catch_fork_permanent:
11296 create_fork_vfork_event_catchpoint (gdbarch, tempflag, cond_string,
11297 &catch_fork_breakpoint_ops);
11298 break;
11299 case catch_vfork_temporary:
11300 case catch_vfork_permanent:
11301 create_fork_vfork_event_catchpoint (gdbarch, tempflag, cond_string,
11302 &catch_vfork_breakpoint_ops);
11303 break;
11304 default:
11305 error (_("unsupported or unknown fork kind; cannot catch it"));
11306 break;
11307 }
11308 }
11309
11310 static void
11311 catch_exec_command_1 (const char *arg, int from_tty,
11312 struct cmd_list_element *command)
11313 {
11314 struct gdbarch *gdbarch = get_current_arch ();
11315 int tempflag;
11316 const char *cond_string = NULL;
11317
11318 tempflag = get_cmd_context (command) == CATCH_TEMPORARY;
11319
11320 if (!arg)
11321 arg = "";
11322 arg = skip_spaces (arg);
11323
11324 /* The allowed syntax is:
11325 catch exec
11326 catch exec if <cond>
11327
11328 First, check if there's an if clause. */
11329 cond_string = ep_parse_optional_if_clause (&arg);
11330
11331 if ((*arg != '\0') && !isspace (*arg))
11332 error (_("Junk at end of arguments."));
11333
11334 std::unique_ptr<exec_catchpoint> c (new exec_catchpoint ());
11335 init_catchpoint (c.get (), gdbarch, tempflag, cond_string,
11336 &catch_exec_breakpoint_ops);
11337 c->exec_pathname = NULL;
11338
11339 install_breakpoint (0, std::move (c), 1);
11340 }
11341
11342 void
11343 init_ada_exception_breakpoint (struct breakpoint *b,
11344 struct gdbarch *gdbarch,
11345 struct symtab_and_line sal,
11346 const char *addr_string,
11347 const struct breakpoint_ops *ops,
11348 int tempflag,
11349 int enabled,
11350 int from_tty)
11351 {
11352 if (from_tty)
11353 {
11354 struct gdbarch *loc_gdbarch = get_sal_arch (sal);
11355 if (!loc_gdbarch)
11356 loc_gdbarch = gdbarch;
11357
11358 describe_other_breakpoints (loc_gdbarch,
11359 sal.pspace, sal.pc, sal.section, -1);
11360 /* FIXME: brobecker/2006-12-28: Actually, re-implement a special
11361 version for exception catchpoints, because two catchpoints
11362 used for different exception names will use the same address.
11363 In this case, a "breakpoint ... also set at..." warning is
11364 unproductive. Besides, the warning phrasing is also a bit
11365 inappropriate, we should use the word catchpoint, and tell
11366 the user what type of catchpoint it is. The above is good
11367 enough for now, though. */
11368 }
11369
11370 init_raw_breakpoint (b, gdbarch, sal, bp_breakpoint, ops);
11371
11372 b->enable_state = enabled ? bp_enabled : bp_disabled;
11373 b->disposition = tempflag ? disp_del : disp_donttouch;
11374 b->location = string_to_event_location (&addr_string,
11375 language_def (language_ada));
11376 b->language = language_ada;
11377 }
11378
11379 static void
11380 catch_command (const char *arg, int from_tty)
11381 {
11382 error (_("Catch requires an event name."));
11383 }
11384 \f
11385
11386 static void
11387 tcatch_command (const char *arg, int from_tty)
11388 {
11389 error (_("Catch requires an event name."));
11390 }
11391
11392 /* Compare two breakpoints and return a strcmp-like result. */
11393
11394 static int
11395 compare_breakpoints (const breakpoint *a, const breakpoint *b)
11396 {
11397 uintptr_t ua = (uintptr_t) a;
11398 uintptr_t ub = (uintptr_t) b;
11399
11400 if (a->number < b->number)
11401 return -1;
11402 else if (a->number > b->number)
11403 return 1;
11404
11405 /* Now sort by address, in case we see, e..g, two breakpoints with
11406 the number 0. */
11407 if (ua < ub)
11408 return -1;
11409 return ua > ub ? 1 : 0;
11410 }
11411
11412 /* Delete breakpoints by address or line. */
11413
11414 static void
11415 clear_command (const char *arg, int from_tty)
11416 {
11417 struct breakpoint *b;
11418 int default_match;
11419
11420 std::vector<symtab_and_line> decoded_sals;
11421 symtab_and_line last_sal;
11422 gdb::array_view<symtab_and_line> sals;
11423 if (arg)
11424 {
11425 decoded_sals
11426 = decode_line_with_current_source (arg,
11427 (DECODE_LINE_FUNFIRSTLINE
11428 | DECODE_LINE_LIST_MODE));
11429 default_match = 0;
11430 sals = decoded_sals;
11431 }
11432 else
11433 {
11434 /* Set sal's line, symtab, pc, and pspace to the values
11435 corresponding to the last call to print_frame_info. If the
11436 codepoint is not valid, this will set all the fields to 0. */
11437 last_sal = get_last_displayed_sal ();
11438 if (last_sal.symtab == 0)
11439 error (_("No source file specified."));
11440
11441 default_match = 1;
11442 sals = last_sal;
11443 }
11444
11445 /* We don't call resolve_sal_pc here. That's not as bad as it
11446 seems, because all existing breakpoints typically have both
11447 file/line and pc set. So, if clear is given file/line, we can
11448 match this to existing breakpoint without obtaining pc at all.
11449
11450 We only support clearing given the address explicitly
11451 present in breakpoint table. Say, we've set breakpoint
11452 at file:line. There were several PC values for that file:line,
11453 due to optimization, all in one block.
11454
11455 We've picked one PC value. If "clear" is issued with another
11456 PC corresponding to the same file:line, the breakpoint won't
11457 be cleared. We probably can still clear the breakpoint, but
11458 since the other PC value is never presented to user, user
11459 can only find it by guessing, and it does not seem important
11460 to support that. */
11461
11462 /* For each line spec given, delete bps which correspond to it. Do
11463 it in two passes, solely to preserve the current behavior that
11464 from_tty is forced true if we delete more than one
11465 breakpoint. */
11466
11467 std::vector<struct breakpoint *> found;
11468 for (const auto &sal : sals)
11469 {
11470 const char *sal_fullname;
11471
11472 /* If exact pc given, clear bpts at that pc.
11473 If line given (pc == 0), clear all bpts on specified line.
11474 If defaulting, clear all bpts on default line
11475 or at default pc.
11476
11477 defaulting sal.pc != 0 tests to do
11478
11479 0 1 pc
11480 1 1 pc _and_ line
11481 0 0 line
11482 1 0 <can't happen> */
11483
11484 sal_fullname = (sal.symtab == NULL
11485 ? NULL : symtab_to_fullname (sal.symtab));
11486
11487 /* Find all matching breakpoints and add them to 'found'. */
11488 ALL_BREAKPOINTS (b)
11489 {
11490 int match = 0;
11491 /* Are we going to delete b? */
11492 if (b->type != bp_none && !is_watchpoint (b))
11493 {
11494 struct bp_location *loc = b->loc;
11495 for (; loc; loc = loc->next)
11496 {
11497 /* If the user specified file:line, don't allow a PC
11498 match. This matches historical gdb behavior. */
11499 int pc_match = (!sal.explicit_line
11500 && sal.pc
11501 && (loc->pspace == sal.pspace)
11502 && (loc->address == sal.pc)
11503 && (!section_is_overlay (loc->section)
11504 || loc->section == sal.section));
11505 int line_match = 0;
11506
11507 if ((default_match || sal.explicit_line)
11508 && loc->symtab != NULL
11509 && sal_fullname != NULL
11510 && sal.pspace == loc->pspace
11511 && loc->line_number == sal.line
11512 && filename_cmp (symtab_to_fullname (loc->symtab),
11513 sal_fullname) == 0)
11514 line_match = 1;
11515
11516 if (pc_match || line_match)
11517 {
11518 match = 1;
11519 break;
11520 }
11521 }
11522 }
11523
11524 if (match)
11525 found.push_back (b);
11526 }
11527 }
11528
11529 /* Now go thru the 'found' chain and delete them. */
11530 if (found.empty ())
11531 {
11532 if (arg)
11533 error (_("No breakpoint at %s."), arg);
11534 else
11535 error (_("No breakpoint at this line."));
11536 }
11537
11538 /* Remove duplicates from the vec. */
11539 std::sort (found.begin (), found.end (),
11540 [] (const breakpoint *a, const breakpoint *b)
11541 {
11542 return compare_breakpoints (a, b) < 0;
11543 });
11544 found.erase (std::unique (found.begin (), found.end (),
11545 [] (const breakpoint *a, const breakpoint *b)
11546 {
11547 return compare_breakpoints (a, b) == 0;
11548 }),
11549 found.end ());
11550
11551 if (found.size () > 1)
11552 from_tty = 1; /* Always report if deleted more than one. */
11553 if (from_tty)
11554 {
11555 if (found.size () == 1)
11556 printf_unfiltered (_("Deleted breakpoint "));
11557 else
11558 printf_unfiltered (_("Deleted breakpoints "));
11559 }
11560
11561 for (breakpoint *iter : found)
11562 {
11563 if (from_tty)
11564 printf_unfiltered ("%d ", iter->number);
11565 delete_breakpoint (iter);
11566 }
11567 if (from_tty)
11568 putchar_unfiltered ('\n');
11569 }
11570 \f
11571 /* Delete breakpoint in BS if they are `delete' breakpoints and
11572 all breakpoints that are marked for deletion, whether hit or not.
11573 This is called after any breakpoint is hit, or after errors. */
11574
11575 void
11576 breakpoint_auto_delete (bpstat bs)
11577 {
11578 struct breakpoint *b, *b_tmp;
11579
11580 for (; bs; bs = bs->next)
11581 if (bs->breakpoint_at
11582 && bs->breakpoint_at->disposition == disp_del
11583 && bs->stop)
11584 delete_breakpoint (bs->breakpoint_at);
11585
11586 ALL_BREAKPOINTS_SAFE (b, b_tmp)
11587 {
11588 if (b->disposition == disp_del_at_next_stop)
11589 delete_breakpoint (b);
11590 }
11591 }
11592
11593 /* A comparison function for bp_location AP and BP being interfaced to
11594 qsort. Sort elements primarily by their ADDRESS (no matter what
11595 does breakpoint_address_is_meaningful say for its OWNER),
11596 secondarily by ordering first permanent elements and
11597 terciarily just ensuring the array is sorted stable way despite
11598 qsort being an unstable algorithm. */
11599
11600 static int
11601 bp_locations_compare (const void *ap, const void *bp)
11602 {
11603 const struct bp_location *a = *(const struct bp_location **) ap;
11604 const struct bp_location *b = *(const struct bp_location **) bp;
11605
11606 if (a->address != b->address)
11607 return (a->address > b->address) - (a->address < b->address);
11608
11609 /* Sort locations at the same address by their pspace number, keeping
11610 locations of the same inferior (in a multi-inferior environment)
11611 grouped. */
11612
11613 if (a->pspace->num != b->pspace->num)
11614 return ((a->pspace->num > b->pspace->num)
11615 - (a->pspace->num < b->pspace->num));
11616
11617 /* Sort permanent breakpoints first. */
11618 if (a->permanent != b->permanent)
11619 return (a->permanent < b->permanent) - (a->permanent > b->permanent);
11620
11621 /* Make the internal GDB representation stable across GDB runs
11622 where A and B memory inside GDB can differ. Breakpoint locations of
11623 the same type at the same address can be sorted in arbitrary order. */
11624
11625 if (a->owner->number != b->owner->number)
11626 return ((a->owner->number > b->owner->number)
11627 - (a->owner->number < b->owner->number));
11628
11629 return (a > b) - (a < b);
11630 }
11631
11632 /* Set bp_locations_placed_address_before_address_max and
11633 bp_locations_shadow_len_after_address_max according to the current
11634 content of the bp_locations array. */
11635
11636 static void
11637 bp_locations_target_extensions_update (void)
11638 {
11639 struct bp_location *bl, **blp_tmp;
11640
11641 bp_locations_placed_address_before_address_max = 0;
11642 bp_locations_shadow_len_after_address_max = 0;
11643
11644 ALL_BP_LOCATIONS (bl, blp_tmp)
11645 {
11646 CORE_ADDR start, end, addr;
11647
11648 if (!bp_location_has_shadow (bl))
11649 continue;
11650
11651 start = bl->target_info.placed_address;
11652 end = start + bl->target_info.shadow_len;
11653
11654 gdb_assert (bl->address >= start);
11655 addr = bl->address - start;
11656 if (addr > bp_locations_placed_address_before_address_max)
11657 bp_locations_placed_address_before_address_max = addr;
11658
11659 /* Zero SHADOW_LEN would not pass bp_location_has_shadow. */
11660
11661 gdb_assert (bl->address < end);
11662 addr = end - bl->address;
11663 if (addr > bp_locations_shadow_len_after_address_max)
11664 bp_locations_shadow_len_after_address_max = addr;
11665 }
11666 }
11667
11668 /* Download tracepoint locations if they haven't been. */
11669
11670 static void
11671 download_tracepoint_locations (void)
11672 {
11673 struct breakpoint *b;
11674 enum tribool can_download_tracepoint = TRIBOOL_UNKNOWN;
11675
11676 scoped_restore_current_pspace_and_thread restore_pspace_thread;
11677
11678 ALL_TRACEPOINTS (b)
11679 {
11680 struct bp_location *bl;
11681 struct tracepoint *t;
11682 int bp_location_downloaded = 0;
11683
11684 if ((b->type == bp_fast_tracepoint
11685 ? !may_insert_fast_tracepoints
11686 : !may_insert_tracepoints))
11687 continue;
11688
11689 if (can_download_tracepoint == TRIBOOL_UNKNOWN)
11690 {
11691 if (target_can_download_tracepoint ())
11692 can_download_tracepoint = TRIBOOL_TRUE;
11693 else
11694 can_download_tracepoint = TRIBOOL_FALSE;
11695 }
11696
11697 if (can_download_tracepoint == TRIBOOL_FALSE)
11698 break;
11699
11700 for (bl = b->loc; bl; bl = bl->next)
11701 {
11702 /* In tracepoint, locations are _never_ duplicated, so
11703 should_be_inserted is equivalent to
11704 unduplicated_should_be_inserted. */
11705 if (!should_be_inserted (bl) || bl->inserted)
11706 continue;
11707
11708 switch_to_program_space_and_thread (bl->pspace);
11709
11710 target_download_tracepoint (bl);
11711
11712 bl->inserted = 1;
11713 bp_location_downloaded = 1;
11714 }
11715 t = (struct tracepoint *) b;
11716 t->number_on_target = b->number;
11717 if (bp_location_downloaded)
11718 gdb::observers::breakpoint_modified.notify (b);
11719 }
11720 }
11721
11722 /* Swap the insertion/duplication state between two locations. */
11723
11724 static void
11725 swap_insertion (struct bp_location *left, struct bp_location *right)
11726 {
11727 const int left_inserted = left->inserted;
11728 const int left_duplicate = left->duplicate;
11729 const int left_needs_update = left->needs_update;
11730 const struct bp_target_info left_target_info = left->target_info;
11731
11732 /* Locations of tracepoints can never be duplicated. */
11733 if (is_tracepoint (left->owner))
11734 gdb_assert (!left->duplicate);
11735 if (is_tracepoint (right->owner))
11736 gdb_assert (!right->duplicate);
11737
11738 left->inserted = right->inserted;
11739 left->duplicate = right->duplicate;
11740 left->needs_update = right->needs_update;
11741 left->target_info = right->target_info;
11742 right->inserted = left_inserted;
11743 right->duplicate = left_duplicate;
11744 right->needs_update = left_needs_update;
11745 right->target_info = left_target_info;
11746 }
11747
11748 /* Force the re-insertion of the locations at ADDRESS. This is called
11749 once a new/deleted/modified duplicate location is found and we are evaluating
11750 conditions on the target's side. Such conditions need to be updated on
11751 the target. */
11752
11753 static void
11754 force_breakpoint_reinsertion (struct bp_location *bl)
11755 {
11756 struct bp_location **locp = NULL, **loc2p;
11757 struct bp_location *loc;
11758 CORE_ADDR address = 0;
11759 int pspace_num;
11760
11761 address = bl->address;
11762 pspace_num = bl->pspace->num;
11763
11764 /* This is only meaningful if the target is
11765 evaluating conditions and if the user has
11766 opted for condition evaluation on the target's
11767 side. */
11768 if (gdb_evaluates_breakpoint_condition_p ()
11769 || !target_supports_evaluation_of_breakpoint_conditions ())
11770 return;
11771
11772 /* Flag all breakpoint locations with this address and
11773 the same program space as the location
11774 as "its condition has changed". We need to
11775 update the conditions on the target's side. */
11776 ALL_BP_LOCATIONS_AT_ADDR (loc2p, locp, address)
11777 {
11778 loc = *loc2p;
11779
11780 if (!is_breakpoint (loc->owner)
11781 || pspace_num != loc->pspace->num)
11782 continue;
11783
11784 /* Flag the location appropriately. We use a different state to
11785 let everyone know that we already updated the set of locations
11786 with addr bl->address and program space bl->pspace. This is so
11787 we don't have to keep calling these functions just to mark locations
11788 that have already been marked. */
11789 loc->condition_changed = condition_updated;
11790
11791 /* Free the agent expression bytecode as well. We will compute
11792 it later on. */
11793 loc->cond_bytecode.reset ();
11794 }
11795 }
11796 /* Called whether new breakpoints are created, or existing breakpoints
11797 deleted, to update the global location list and recompute which
11798 locations are duplicate of which.
11799
11800 The INSERT_MODE flag determines whether locations may not, may, or
11801 shall be inserted now. See 'enum ugll_insert_mode' for more
11802 info. */
11803
11804 static void
11805 update_global_location_list (enum ugll_insert_mode insert_mode)
11806 {
11807 struct breakpoint *b;
11808 struct bp_location **locp, *loc;
11809 /* Last breakpoint location address that was marked for update. */
11810 CORE_ADDR last_addr = 0;
11811 /* Last breakpoint location program space that was marked for update. */
11812 int last_pspace_num = -1;
11813
11814 /* Used in the duplicates detection below. When iterating over all
11815 bp_locations, points to the first bp_location of a given address.
11816 Breakpoints and watchpoints of different types are never
11817 duplicates of each other. Keep one pointer for each type of
11818 breakpoint/watchpoint, so we only need to loop over all locations
11819 once. */
11820 struct bp_location *bp_loc_first; /* breakpoint */
11821 struct bp_location *wp_loc_first; /* hardware watchpoint */
11822 struct bp_location *awp_loc_first; /* access watchpoint */
11823 struct bp_location *rwp_loc_first; /* read watchpoint */
11824
11825 /* Saved former bp_locations array which we compare against the newly
11826 built bp_locations from the current state of ALL_BREAKPOINTS. */
11827 struct bp_location **old_locp;
11828 unsigned old_locations_count;
11829 gdb::unique_xmalloc_ptr<struct bp_location *> old_locations (bp_locations);
11830
11831 old_locations_count = bp_locations_count;
11832 bp_locations = NULL;
11833 bp_locations_count = 0;
11834
11835 ALL_BREAKPOINTS (b)
11836 for (loc = b->loc; loc; loc = loc->next)
11837 bp_locations_count++;
11838
11839 bp_locations = XNEWVEC (struct bp_location *, bp_locations_count);
11840 locp = bp_locations;
11841 ALL_BREAKPOINTS (b)
11842 for (loc = b->loc; loc; loc = loc->next)
11843 *locp++ = loc;
11844 qsort (bp_locations, bp_locations_count, sizeof (*bp_locations),
11845 bp_locations_compare);
11846
11847 bp_locations_target_extensions_update ();
11848
11849 /* Identify bp_location instances that are no longer present in the
11850 new list, and therefore should be freed. Note that it's not
11851 necessary that those locations should be removed from inferior --
11852 if there's another location at the same address (previously
11853 marked as duplicate), we don't need to remove/insert the
11854 location.
11855
11856 LOCP is kept in sync with OLD_LOCP, each pointing to the current
11857 and former bp_location array state respectively. */
11858
11859 locp = bp_locations;
11860 for (old_locp = old_locations.get ();
11861 old_locp < old_locations.get () + old_locations_count;
11862 old_locp++)
11863 {
11864 struct bp_location *old_loc = *old_locp;
11865 struct bp_location **loc2p;
11866
11867 /* Tells if 'old_loc' is found among the new locations. If
11868 not, we have to free it. */
11869 int found_object = 0;
11870 /* Tells if the location should remain inserted in the target. */
11871 int keep_in_target = 0;
11872 int removed = 0;
11873
11874 /* Skip LOCP entries which will definitely never be needed.
11875 Stop either at or being the one matching OLD_LOC. */
11876 while (locp < bp_locations + bp_locations_count
11877 && (*locp)->address < old_loc->address)
11878 locp++;
11879
11880 for (loc2p = locp;
11881 (loc2p < bp_locations + bp_locations_count
11882 && (*loc2p)->address == old_loc->address);
11883 loc2p++)
11884 {
11885 /* Check if this is a new/duplicated location or a duplicated
11886 location that had its condition modified. If so, we want to send
11887 its condition to the target if evaluation of conditions is taking
11888 place there. */
11889 if ((*loc2p)->condition_changed == condition_modified
11890 && (last_addr != old_loc->address
11891 || last_pspace_num != old_loc->pspace->num))
11892 {
11893 force_breakpoint_reinsertion (*loc2p);
11894 last_pspace_num = old_loc->pspace->num;
11895 }
11896
11897 if (*loc2p == old_loc)
11898 found_object = 1;
11899 }
11900
11901 /* We have already handled this address, update it so that we don't
11902 have to go through updates again. */
11903 last_addr = old_loc->address;
11904
11905 /* Target-side condition evaluation: Handle deleted locations. */
11906 if (!found_object)
11907 force_breakpoint_reinsertion (old_loc);
11908
11909 /* If this location is no longer present, and inserted, look if
11910 there's maybe a new location at the same address. If so,
11911 mark that one inserted, and don't remove this one. This is
11912 needed so that we don't have a time window where a breakpoint
11913 at certain location is not inserted. */
11914
11915 if (old_loc->inserted)
11916 {
11917 /* If the location is inserted now, we might have to remove
11918 it. */
11919
11920 if (found_object && should_be_inserted (old_loc))
11921 {
11922 /* The location is still present in the location list,
11923 and still should be inserted. Don't do anything. */
11924 keep_in_target = 1;
11925 }
11926 else
11927 {
11928 /* This location still exists, but it won't be kept in the
11929 target since it may have been disabled. We proceed to
11930 remove its target-side condition. */
11931
11932 /* The location is either no longer present, or got
11933 disabled. See if there's another location at the
11934 same address, in which case we don't need to remove
11935 this one from the target. */
11936
11937 /* OLD_LOC comes from existing struct breakpoint. */
11938 if (breakpoint_address_is_meaningful (old_loc->owner))
11939 {
11940 for (loc2p = locp;
11941 (loc2p < bp_locations + bp_locations_count
11942 && (*loc2p)->address == old_loc->address);
11943 loc2p++)
11944 {
11945 struct bp_location *loc2 = *loc2p;
11946
11947 if (breakpoint_locations_match (loc2, old_loc))
11948 {
11949 /* Read watchpoint locations are switched to
11950 access watchpoints, if the former are not
11951 supported, but the latter are. */
11952 if (is_hardware_watchpoint (old_loc->owner))
11953 {
11954 gdb_assert (is_hardware_watchpoint (loc2->owner));
11955 loc2->watchpoint_type = old_loc->watchpoint_type;
11956 }
11957
11958 /* loc2 is a duplicated location. We need to check
11959 if it should be inserted in case it will be
11960 unduplicated. */
11961 if (loc2 != old_loc
11962 && unduplicated_should_be_inserted (loc2))
11963 {
11964 swap_insertion (old_loc, loc2);
11965 keep_in_target = 1;
11966 break;
11967 }
11968 }
11969 }
11970 }
11971 }
11972
11973 if (!keep_in_target)
11974 {
11975 if (remove_breakpoint (old_loc))
11976 {
11977 /* This is just about all we can do. We could keep
11978 this location on the global list, and try to
11979 remove it next time, but there's no particular
11980 reason why we will succeed next time.
11981
11982 Note that at this point, old_loc->owner is still
11983 valid, as delete_breakpoint frees the breakpoint
11984 only after calling us. */
11985 printf_filtered (_("warning: Error removing "
11986 "breakpoint %d\n"),
11987 old_loc->owner->number);
11988 }
11989 removed = 1;
11990 }
11991 }
11992
11993 if (!found_object)
11994 {
11995 if (removed && target_is_non_stop_p ()
11996 && need_moribund_for_location_type (old_loc))
11997 {
11998 /* This location was removed from the target. In
11999 non-stop mode, a race condition is possible where
12000 we've removed a breakpoint, but stop events for that
12001 breakpoint are already queued and will arrive later.
12002 We apply an heuristic to be able to distinguish such
12003 SIGTRAPs from other random SIGTRAPs: we keep this
12004 breakpoint location for a bit, and will retire it
12005 after we see some number of events. The theory here
12006 is that reporting of events should, "on the average",
12007 be fair, so after a while we'll see events from all
12008 threads that have anything of interest, and no longer
12009 need to keep this breakpoint location around. We
12010 don't hold locations forever so to reduce chances of
12011 mistaking a non-breakpoint SIGTRAP for a breakpoint
12012 SIGTRAP.
12013
12014 The heuristic failing can be disastrous on
12015 decr_pc_after_break targets.
12016
12017 On decr_pc_after_break targets, like e.g., x86-linux,
12018 if we fail to recognize a late breakpoint SIGTRAP,
12019 because events_till_retirement has reached 0 too
12020 soon, we'll fail to do the PC adjustment, and report
12021 a random SIGTRAP to the user. When the user resumes
12022 the inferior, it will most likely immediately crash
12023 with SIGILL/SIGBUS/SIGSEGV, or worse, get silently
12024 corrupted, because of being resumed e.g., in the
12025 middle of a multi-byte instruction, or skipped a
12026 one-byte instruction. This was actually seen happen
12027 on native x86-linux, and should be less rare on
12028 targets that do not support new thread events, like
12029 remote, due to the heuristic depending on
12030 thread_count.
12031
12032 Mistaking a random SIGTRAP for a breakpoint trap
12033 causes similar symptoms (PC adjustment applied when
12034 it shouldn't), but then again, playing with SIGTRAPs
12035 behind the debugger's back is asking for trouble.
12036
12037 Since hardware watchpoint traps are always
12038 distinguishable from other traps, so we don't need to
12039 apply keep hardware watchpoint moribund locations
12040 around. We simply always ignore hardware watchpoint
12041 traps we can no longer explain. */
12042
12043 old_loc->events_till_retirement = 3 * (thread_count () + 1);
12044 old_loc->owner = NULL;
12045
12046 VEC_safe_push (bp_location_p, moribund_locations, old_loc);
12047 }
12048 else
12049 {
12050 old_loc->owner = NULL;
12051 decref_bp_location (&old_loc);
12052 }
12053 }
12054 }
12055
12056 /* Rescan breakpoints at the same address and section, marking the
12057 first one as "first" and any others as "duplicates". This is so
12058 that the bpt instruction is only inserted once. If we have a
12059 permanent breakpoint at the same place as BPT, make that one the
12060 official one, and the rest as duplicates. Permanent breakpoints
12061 are sorted first for the same address.
12062
12063 Do the same for hardware watchpoints, but also considering the
12064 watchpoint's type (regular/access/read) and length. */
12065
12066 bp_loc_first = NULL;
12067 wp_loc_first = NULL;
12068 awp_loc_first = NULL;
12069 rwp_loc_first = NULL;
12070 ALL_BP_LOCATIONS (loc, locp)
12071 {
12072 /* ALL_BP_LOCATIONS bp_location has LOC->OWNER always
12073 non-NULL. */
12074 struct bp_location **loc_first_p;
12075 b = loc->owner;
12076
12077 if (!unduplicated_should_be_inserted (loc)
12078 || !breakpoint_address_is_meaningful (b)
12079 /* Don't detect duplicate for tracepoint locations because they are
12080 never duplicated. See the comments in field `duplicate' of
12081 `struct bp_location'. */
12082 || is_tracepoint (b))
12083 {
12084 /* Clear the condition modification flag. */
12085 loc->condition_changed = condition_unchanged;
12086 continue;
12087 }
12088
12089 if (b->type == bp_hardware_watchpoint)
12090 loc_first_p = &wp_loc_first;
12091 else if (b->type == bp_read_watchpoint)
12092 loc_first_p = &rwp_loc_first;
12093 else if (b->type == bp_access_watchpoint)
12094 loc_first_p = &awp_loc_first;
12095 else
12096 loc_first_p = &bp_loc_first;
12097
12098 if (*loc_first_p == NULL
12099 || (overlay_debugging && loc->section != (*loc_first_p)->section)
12100 || !breakpoint_locations_match (loc, *loc_first_p))
12101 {
12102 *loc_first_p = loc;
12103 loc->duplicate = 0;
12104
12105 if (is_breakpoint (loc->owner) && loc->condition_changed)
12106 {
12107 loc->needs_update = 1;
12108 /* Clear the condition modification flag. */
12109 loc->condition_changed = condition_unchanged;
12110 }
12111 continue;
12112 }
12113
12114
12115 /* This and the above ensure the invariant that the first location
12116 is not duplicated, and is the inserted one.
12117 All following are marked as duplicated, and are not inserted. */
12118 if (loc->inserted)
12119 swap_insertion (loc, *loc_first_p);
12120 loc->duplicate = 1;
12121
12122 /* Clear the condition modification flag. */
12123 loc->condition_changed = condition_unchanged;
12124 }
12125
12126 if (insert_mode == UGLL_INSERT || breakpoints_should_be_inserted_now ())
12127 {
12128 if (insert_mode != UGLL_DONT_INSERT)
12129 insert_breakpoint_locations ();
12130 else
12131 {
12132 /* Even though the caller told us to not insert new
12133 locations, we may still need to update conditions on the
12134 target's side of breakpoints that were already inserted
12135 if the target is evaluating breakpoint conditions. We
12136 only update conditions for locations that are marked
12137 "needs_update". */
12138 update_inserted_breakpoint_locations ();
12139 }
12140 }
12141
12142 if (insert_mode != UGLL_DONT_INSERT)
12143 download_tracepoint_locations ();
12144 }
12145
12146 void
12147 breakpoint_retire_moribund (void)
12148 {
12149 struct bp_location *loc;
12150 int ix;
12151
12152 for (ix = 0; VEC_iterate (bp_location_p, moribund_locations, ix, loc); ++ix)
12153 if (--(loc->events_till_retirement) == 0)
12154 {
12155 decref_bp_location (&loc);
12156 VEC_unordered_remove (bp_location_p, moribund_locations, ix);
12157 --ix;
12158 }
12159 }
12160
12161 static void
12162 update_global_location_list_nothrow (enum ugll_insert_mode insert_mode)
12163 {
12164
12165 TRY
12166 {
12167 update_global_location_list (insert_mode);
12168 }
12169 CATCH (e, RETURN_MASK_ERROR)
12170 {
12171 }
12172 END_CATCH
12173 }
12174
12175 /* Clear BKP from a BPS. */
12176
12177 static void
12178 bpstat_remove_bp_location (bpstat bps, struct breakpoint *bpt)
12179 {
12180 bpstat bs;
12181
12182 for (bs = bps; bs; bs = bs->next)
12183 if (bs->breakpoint_at == bpt)
12184 {
12185 bs->breakpoint_at = NULL;
12186 bs->old_val = NULL;
12187 /* bs->commands will be freed later. */
12188 }
12189 }
12190
12191 /* Callback for iterate_over_threads. */
12192 static int
12193 bpstat_remove_breakpoint_callback (struct thread_info *th, void *data)
12194 {
12195 struct breakpoint *bpt = (struct breakpoint *) data;
12196
12197 bpstat_remove_bp_location (th->control.stop_bpstat, bpt);
12198 return 0;
12199 }
12200
12201 /* Helper for breakpoint and tracepoint breakpoint_ops->mention
12202 callbacks. */
12203
12204 static void
12205 say_where (struct breakpoint *b)
12206 {
12207 struct value_print_options opts;
12208
12209 get_user_print_options (&opts);
12210
12211 /* i18n: cagney/2005-02-11: Below needs to be merged into a
12212 single string. */
12213 if (b->loc == NULL)
12214 {
12215 /* For pending locations, the output differs slightly based
12216 on b->extra_string. If this is non-NULL, it contains either
12217 a condition or dprintf arguments. */
12218 if (b->extra_string == NULL)
12219 {
12220 printf_filtered (_(" (%s) pending."),
12221 event_location_to_string (b->location.get ()));
12222 }
12223 else if (b->type == bp_dprintf)
12224 {
12225 printf_filtered (_(" (%s,%s) pending."),
12226 event_location_to_string (b->location.get ()),
12227 b->extra_string);
12228 }
12229 else
12230 {
12231 printf_filtered (_(" (%s %s) pending."),
12232 event_location_to_string (b->location.get ()),
12233 b->extra_string);
12234 }
12235 }
12236 else
12237 {
12238 if (opts.addressprint || b->loc->symtab == NULL)
12239 {
12240 printf_filtered (" at ");
12241 fputs_filtered (paddress (b->loc->gdbarch, b->loc->address),
12242 gdb_stdout);
12243 }
12244 if (b->loc->symtab != NULL)
12245 {
12246 /* If there is a single location, we can print the location
12247 more nicely. */
12248 if (b->loc->next == NULL)
12249 printf_filtered (": file %s, line %d.",
12250 symtab_to_filename_for_display (b->loc->symtab),
12251 b->loc->line_number);
12252 else
12253 /* This is not ideal, but each location may have a
12254 different file name, and this at least reflects the
12255 real situation somewhat. */
12256 printf_filtered (": %s.",
12257 event_location_to_string (b->location.get ()));
12258 }
12259
12260 if (b->loc->next)
12261 {
12262 struct bp_location *loc = b->loc;
12263 int n = 0;
12264 for (; loc; loc = loc->next)
12265 ++n;
12266 printf_filtered (" (%d locations)", n);
12267 }
12268 }
12269 }
12270
12271 /* Default bp_location_ops methods. */
12272
12273 static void
12274 bp_location_dtor (struct bp_location *self)
12275 {
12276 xfree (self->function_name);
12277 }
12278
12279 static const struct bp_location_ops bp_location_ops =
12280 {
12281 bp_location_dtor
12282 };
12283
12284 /* Destructor for the breakpoint base class. */
12285
12286 breakpoint::~breakpoint ()
12287 {
12288 xfree (this->cond_string);
12289 xfree (this->extra_string);
12290 xfree (this->filter);
12291 }
12292
12293 static struct bp_location *
12294 base_breakpoint_allocate_location (struct breakpoint *self)
12295 {
12296 return new bp_location (&bp_location_ops, self);
12297 }
12298
12299 static void
12300 base_breakpoint_re_set (struct breakpoint *b)
12301 {
12302 /* Nothing to re-set. */
12303 }
12304
12305 #define internal_error_pure_virtual_called() \
12306 gdb_assert_not_reached ("pure virtual function called")
12307
12308 static int
12309 base_breakpoint_insert_location (struct bp_location *bl)
12310 {
12311 internal_error_pure_virtual_called ();
12312 }
12313
12314 static int
12315 base_breakpoint_remove_location (struct bp_location *bl,
12316 enum remove_bp_reason reason)
12317 {
12318 internal_error_pure_virtual_called ();
12319 }
12320
12321 static int
12322 base_breakpoint_breakpoint_hit (const struct bp_location *bl,
12323 const address_space *aspace,
12324 CORE_ADDR bp_addr,
12325 const struct target_waitstatus *ws)
12326 {
12327 internal_error_pure_virtual_called ();
12328 }
12329
12330 static void
12331 base_breakpoint_check_status (bpstat bs)
12332 {
12333 /* Always stop. */
12334 }
12335
12336 /* A "works_in_software_mode" breakpoint_ops method that just internal
12337 errors. */
12338
12339 static int
12340 base_breakpoint_works_in_software_mode (const struct breakpoint *b)
12341 {
12342 internal_error_pure_virtual_called ();
12343 }
12344
12345 /* A "resources_needed" breakpoint_ops method that just internal
12346 errors. */
12347
12348 static int
12349 base_breakpoint_resources_needed (const struct bp_location *bl)
12350 {
12351 internal_error_pure_virtual_called ();
12352 }
12353
12354 static enum print_stop_action
12355 base_breakpoint_print_it (bpstat bs)
12356 {
12357 internal_error_pure_virtual_called ();
12358 }
12359
12360 static void
12361 base_breakpoint_print_one_detail (const struct breakpoint *self,
12362 struct ui_out *uiout)
12363 {
12364 /* nothing */
12365 }
12366
12367 static void
12368 base_breakpoint_print_mention (struct breakpoint *b)
12369 {
12370 internal_error_pure_virtual_called ();
12371 }
12372
12373 static void
12374 base_breakpoint_print_recreate (struct breakpoint *b, struct ui_file *fp)
12375 {
12376 internal_error_pure_virtual_called ();
12377 }
12378
12379 static void
12380 base_breakpoint_create_sals_from_location
12381 (const struct event_location *location,
12382 struct linespec_result *canonical,
12383 enum bptype type_wanted)
12384 {
12385 internal_error_pure_virtual_called ();
12386 }
12387
12388 static void
12389 base_breakpoint_create_breakpoints_sal (struct gdbarch *gdbarch,
12390 struct linespec_result *c,
12391 gdb::unique_xmalloc_ptr<char> cond_string,
12392 gdb::unique_xmalloc_ptr<char> extra_string,
12393 enum bptype type_wanted,
12394 enum bpdisp disposition,
12395 int thread,
12396 int task, int ignore_count,
12397 const struct breakpoint_ops *o,
12398 int from_tty, int enabled,
12399 int internal, unsigned flags)
12400 {
12401 internal_error_pure_virtual_called ();
12402 }
12403
12404 static std::vector<symtab_and_line>
12405 base_breakpoint_decode_location (struct breakpoint *b,
12406 const struct event_location *location,
12407 struct program_space *search_pspace)
12408 {
12409 internal_error_pure_virtual_called ();
12410 }
12411
12412 /* The default 'explains_signal' method. */
12413
12414 static int
12415 base_breakpoint_explains_signal (struct breakpoint *b, enum gdb_signal sig)
12416 {
12417 return 1;
12418 }
12419
12420 /* The default "after_condition_true" method. */
12421
12422 static void
12423 base_breakpoint_after_condition_true (struct bpstats *bs)
12424 {
12425 /* Nothing to do. */
12426 }
12427
12428 struct breakpoint_ops base_breakpoint_ops =
12429 {
12430 base_breakpoint_allocate_location,
12431 base_breakpoint_re_set,
12432 base_breakpoint_insert_location,
12433 base_breakpoint_remove_location,
12434 base_breakpoint_breakpoint_hit,
12435 base_breakpoint_check_status,
12436 base_breakpoint_resources_needed,
12437 base_breakpoint_works_in_software_mode,
12438 base_breakpoint_print_it,
12439 NULL,
12440 base_breakpoint_print_one_detail,
12441 base_breakpoint_print_mention,
12442 base_breakpoint_print_recreate,
12443 base_breakpoint_create_sals_from_location,
12444 base_breakpoint_create_breakpoints_sal,
12445 base_breakpoint_decode_location,
12446 base_breakpoint_explains_signal,
12447 base_breakpoint_after_condition_true,
12448 };
12449
12450 /* Default breakpoint_ops methods. */
12451
12452 static void
12453 bkpt_re_set (struct breakpoint *b)
12454 {
12455 /* FIXME: is this still reachable? */
12456 if (breakpoint_event_location_empty_p (b))
12457 {
12458 /* Anything without a location can't be re-set. */
12459 delete_breakpoint (b);
12460 return;
12461 }
12462
12463 breakpoint_re_set_default (b);
12464 }
12465
12466 static int
12467 bkpt_insert_location (struct bp_location *bl)
12468 {
12469 CORE_ADDR addr = bl->target_info.reqstd_address;
12470
12471 bl->target_info.kind = breakpoint_kind (bl, &addr);
12472 bl->target_info.placed_address = addr;
12473
12474 if (bl->loc_type == bp_loc_hardware_breakpoint)
12475 return target_insert_hw_breakpoint (bl->gdbarch, &bl->target_info);
12476 else
12477 return target_insert_breakpoint (bl->gdbarch, &bl->target_info);
12478 }
12479
12480 static int
12481 bkpt_remove_location (struct bp_location *bl, enum remove_bp_reason reason)
12482 {
12483 if (bl->loc_type == bp_loc_hardware_breakpoint)
12484 return target_remove_hw_breakpoint (bl->gdbarch, &bl->target_info);
12485 else
12486 return target_remove_breakpoint (bl->gdbarch, &bl->target_info, reason);
12487 }
12488
12489 static int
12490 bkpt_breakpoint_hit (const struct bp_location *bl,
12491 const address_space *aspace, CORE_ADDR bp_addr,
12492 const struct target_waitstatus *ws)
12493 {
12494 if (ws->kind != TARGET_WAITKIND_STOPPED
12495 || ws->value.sig != GDB_SIGNAL_TRAP)
12496 return 0;
12497
12498 if (!breakpoint_address_match (bl->pspace->aspace, bl->address,
12499 aspace, bp_addr))
12500 return 0;
12501
12502 if (overlay_debugging /* unmapped overlay section */
12503 && section_is_overlay (bl->section)
12504 && !section_is_mapped (bl->section))
12505 return 0;
12506
12507 return 1;
12508 }
12509
12510 static int
12511 dprintf_breakpoint_hit (const struct bp_location *bl,
12512 const address_space *aspace, CORE_ADDR bp_addr,
12513 const struct target_waitstatus *ws)
12514 {
12515 if (dprintf_style == dprintf_style_agent
12516 && target_can_run_breakpoint_commands ())
12517 {
12518 /* An agent-style dprintf never causes a stop. If we see a trap
12519 for this address it must be for a breakpoint that happens to
12520 be set at the same address. */
12521 return 0;
12522 }
12523
12524 return bkpt_breakpoint_hit (bl, aspace, bp_addr, ws);
12525 }
12526
12527 static int
12528 bkpt_resources_needed (const struct bp_location *bl)
12529 {
12530 gdb_assert (bl->owner->type == bp_hardware_breakpoint);
12531
12532 return 1;
12533 }
12534
12535 static enum print_stop_action
12536 bkpt_print_it (bpstat bs)
12537 {
12538 struct breakpoint *b;
12539 const struct bp_location *bl;
12540 int bp_temp;
12541 struct ui_out *uiout = current_uiout;
12542
12543 gdb_assert (bs->bp_location_at != NULL);
12544
12545 bl = bs->bp_location_at;
12546 b = bs->breakpoint_at;
12547
12548 bp_temp = b->disposition == disp_del;
12549 if (bl->address != bl->requested_address)
12550 breakpoint_adjustment_warning (bl->requested_address,
12551 bl->address,
12552 b->number, 1);
12553 annotate_breakpoint (b->number);
12554 maybe_print_thread_hit_breakpoint (uiout);
12555
12556 if (bp_temp)
12557 uiout->text ("Temporary breakpoint ");
12558 else
12559 uiout->text ("Breakpoint ");
12560 if (uiout->is_mi_like_p ())
12561 {
12562 uiout->field_string ("reason",
12563 async_reason_lookup (EXEC_ASYNC_BREAKPOINT_HIT));
12564 uiout->field_string ("disp", bpdisp_text (b->disposition));
12565 }
12566 uiout->field_int ("bkptno", b->number);
12567 uiout->text (", ");
12568
12569 return PRINT_SRC_AND_LOC;
12570 }
12571
12572 static void
12573 bkpt_print_mention (struct breakpoint *b)
12574 {
12575 if (current_uiout->is_mi_like_p ())
12576 return;
12577
12578 switch (b->type)
12579 {
12580 case bp_breakpoint:
12581 case bp_gnu_ifunc_resolver:
12582 if (b->disposition == disp_del)
12583 printf_filtered (_("Temporary breakpoint"));
12584 else
12585 printf_filtered (_("Breakpoint"));
12586 printf_filtered (_(" %d"), b->number);
12587 if (b->type == bp_gnu_ifunc_resolver)
12588 printf_filtered (_(" at gnu-indirect-function resolver"));
12589 break;
12590 case bp_hardware_breakpoint:
12591 printf_filtered (_("Hardware assisted breakpoint %d"), b->number);
12592 break;
12593 case bp_dprintf:
12594 printf_filtered (_("Dprintf %d"), b->number);
12595 break;
12596 }
12597
12598 say_where (b);
12599 }
12600
12601 static void
12602 bkpt_print_recreate (struct breakpoint *tp, struct ui_file *fp)
12603 {
12604 if (tp->type == bp_breakpoint && tp->disposition == disp_del)
12605 fprintf_unfiltered (fp, "tbreak");
12606 else if (tp->type == bp_breakpoint)
12607 fprintf_unfiltered (fp, "break");
12608 else if (tp->type == bp_hardware_breakpoint
12609 && tp->disposition == disp_del)
12610 fprintf_unfiltered (fp, "thbreak");
12611 else if (tp->type == bp_hardware_breakpoint)
12612 fprintf_unfiltered (fp, "hbreak");
12613 else
12614 internal_error (__FILE__, __LINE__,
12615 _("unhandled breakpoint type %d"), (int) tp->type);
12616
12617 fprintf_unfiltered (fp, " %s",
12618 event_location_to_string (tp->location.get ()));
12619
12620 /* Print out extra_string if this breakpoint is pending. It might
12621 contain, for example, conditions that were set by the user. */
12622 if (tp->loc == NULL && tp->extra_string != NULL)
12623 fprintf_unfiltered (fp, " %s", tp->extra_string);
12624
12625 print_recreate_thread (tp, fp);
12626 }
12627
12628 static void
12629 bkpt_create_sals_from_location (const struct event_location *location,
12630 struct linespec_result *canonical,
12631 enum bptype type_wanted)
12632 {
12633 create_sals_from_location_default (location, canonical, type_wanted);
12634 }
12635
12636 static void
12637 bkpt_create_breakpoints_sal (struct gdbarch *gdbarch,
12638 struct linespec_result *canonical,
12639 gdb::unique_xmalloc_ptr<char> cond_string,
12640 gdb::unique_xmalloc_ptr<char> extra_string,
12641 enum bptype type_wanted,
12642 enum bpdisp disposition,
12643 int thread,
12644 int task, int ignore_count,
12645 const struct breakpoint_ops *ops,
12646 int from_tty, int enabled,
12647 int internal, unsigned flags)
12648 {
12649 create_breakpoints_sal_default (gdbarch, canonical,
12650 std::move (cond_string),
12651 std::move (extra_string),
12652 type_wanted,
12653 disposition, thread, task,
12654 ignore_count, ops, from_tty,
12655 enabled, internal, flags);
12656 }
12657
12658 static std::vector<symtab_and_line>
12659 bkpt_decode_location (struct breakpoint *b,
12660 const struct event_location *location,
12661 struct program_space *search_pspace)
12662 {
12663 return decode_location_default (b, location, search_pspace);
12664 }
12665
12666 /* Virtual table for internal breakpoints. */
12667
12668 static void
12669 internal_bkpt_re_set (struct breakpoint *b)
12670 {
12671 switch (b->type)
12672 {
12673 /* Delete overlay event and longjmp master breakpoints; they
12674 will be reset later by breakpoint_re_set. */
12675 case bp_overlay_event:
12676 case bp_longjmp_master:
12677 case bp_std_terminate_master:
12678 case bp_exception_master:
12679 delete_breakpoint (b);
12680 break;
12681
12682 /* This breakpoint is special, it's set up when the inferior
12683 starts and we really don't want to touch it. */
12684 case bp_shlib_event:
12685
12686 /* Like bp_shlib_event, this breakpoint type is special. Once
12687 it is set up, we do not want to touch it. */
12688 case bp_thread_event:
12689 break;
12690 }
12691 }
12692
12693 static void
12694 internal_bkpt_check_status (bpstat bs)
12695 {
12696 if (bs->breakpoint_at->type == bp_shlib_event)
12697 {
12698 /* If requested, stop when the dynamic linker notifies GDB of
12699 events. This allows the user to get control and place
12700 breakpoints in initializer routines for dynamically loaded
12701 objects (among other things). */
12702 bs->stop = stop_on_solib_events;
12703 bs->print = stop_on_solib_events;
12704 }
12705 else
12706 bs->stop = 0;
12707 }
12708
12709 static enum print_stop_action
12710 internal_bkpt_print_it (bpstat bs)
12711 {
12712 struct breakpoint *b;
12713
12714 b = bs->breakpoint_at;
12715
12716 switch (b->type)
12717 {
12718 case bp_shlib_event:
12719 /* Did we stop because the user set the stop_on_solib_events
12720 variable? (If so, we report this as a generic, "Stopped due
12721 to shlib event" message.) */
12722 print_solib_event (0);
12723 break;
12724
12725 case bp_thread_event:
12726 /* Not sure how we will get here.
12727 GDB should not stop for these breakpoints. */
12728 printf_filtered (_("Thread Event Breakpoint: gdb should not stop!\n"));
12729 break;
12730
12731 case bp_overlay_event:
12732 /* By analogy with the thread event, GDB should not stop for these. */
12733 printf_filtered (_("Overlay Event Breakpoint: gdb should not stop!\n"));
12734 break;
12735
12736 case bp_longjmp_master:
12737 /* These should never be enabled. */
12738 printf_filtered (_("Longjmp Master Breakpoint: gdb should not stop!\n"));
12739 break;
12740
12741 case bp_std_terminate_master:
12742 /* These should never be enabled. */
12743 printf_filtered (_("std::terminate Master Breakpoint: "
12744 "gdb should not stop!\n"));
12745 break;
12746
12747 case bp_exception_master:
12748 /* These should never be enabled. */
12749 printf_filtered (_("Exception Master Breakpoint: "
12750 "gdb should not stop!\n"));
12751 break;
12752 }
12753
12754 return PRINT_NOTHING;
12755 }
12756
12757 static void
12758 internal_bkpt_print_mention (struct breakpoint *b)
12759 {
12760 /* Nothing to mention. These breakpoints are internal. */
12761 }
12762
12763 /* Virtual table for momentary breakpoints */
12764
12765 static void
12766 momentary_bkpt_re_set (struct breakpoint *b)
12767 {
12768 /* Keep temporary breakpoints, which can be encountered when we step
12769 over a dlopen call and solib_add is resetting the breakpoints.
12770 Otherwise these should have been blown away via the cleanup chain
12771 or by breakpoint_init_inferior when we rerun the executable. */
12772 }
12773
12774 static void
12775 momentary_bkpt_check_status (bpstat bs)
12776 {
12777 /* Nothing. The point of these breakpoints is causing a stop. */
12778 }
12779
12780 static enum print_stop_action
12781 momentary_bkpt_print_it (bpstat bs)
12782 {
12783 return PRINT_UNKNOWN;
12784 }
12785
12786 static void
12787 momentary_bkpt_print_mention (struct breakpoint *b)
12788 {
12789 /* Nothing to mention. These breakpoints are internal. */
12790 }
12791
12792 /* Ensure INITIATING_FRAME is cleared when no such breakpoint exists.
12793
12794 It gets cleared already on the removal of the first one of such placed
12795 breakpoints. This is OK as they get all removed altogether. */
12796
12797 longjmp_breakpoint::~longjmp_breakpoint ()
12798 {
12799 thread_info *tp = find_thread_global_id (this->thread);
12800
12801 if (tp != NULL)
12802 tp->initiating_frame = null_frame_id;
12803 }
12804
12805 /* Specific methods for probe breakpoints. */
12806
12807 static int
12808 bkpt_probe_insert_location (struct bp_location *bl)
12809 {
12810 int v = bkpt_insert_location (bl);
12811
12812 if (v == 0)
12813 {
12814 /* The insertion was successful, now let's set the probe's semaphore
12815 if needed. */
12816 bl->probe.prob->set_semaphore (bl->probe.objfile, bl->gdbarch);
12817 }
12818
12819 return v;
12820 }
12821
12822 static int
12823 bkpt_probe_remove_location (struct bp_location *bl,
12824 enum remove_bp_reason reason)
12825 {
12826 /* Let's clear the semaphore before removing the location. */
12827 bl->probe.prob->clear_semaphore (bl->probe.objfile, bl->gdbarch);
12828
12829 return bkpt_remove_location (bl, reason);
12830 }
12831
12832 static void
12833 bkpt_probe_create_sals_from_location (const struct event_location *location,
12834 struct linespec_result *canonical,
12835 enum bptype type_wanted)
12836 {
12837 struct linespec_sals lsal;
12838
12839 lsal.sals = parse_probes (location, NULL, canonical);
12840 lsal.canonical
12841 = xstrdup (event_location_to_string (canonical->location.get ()));
12842 canonical->lsals.push_back (std::move (lsal));
12843 }
12844
12845 static std::vector<symtab_and_line>
12846 bkpt_probe_decode_location (struct breakpoint *b,
12847 const struct event_location *location,
12848 struct program_space *search_pspace)
12849 {
12850 std::vector<symtab_and_line> sals = parse_probes (location, search_pspace, NULL);
12851 if (sals.empty ())
12852 error (_("probe not found"));
12853 return sals;
12854 }
12855
12856 /* The breakpoint_ops structure to be used in tracepoints. */
12857
12858 static void
12859 tracepoint_re_set (struct breakpoint *b)
12860 {
12861 breakpoint_re_set_default (b);
12862 }
12863
12864 static int
12865 tracepoint_breakpoint_hit (const struct bp_location *bl,
12866 const address_space *aspace, CORE_ADDR bp_addr,
12867 const struct target_waitstatus *ws)
12868 {
12869 /* By definition, the inferior does not report stops at
12870 tracepoints. */
12871 return 0;
12872 }
12873
12874 static void
12875 tracepoint_print_one_detail (const struct breakpoint *self,
12876 struct ui_out *uiout)
12877 {
12878 struct tracepoint *tp = (struct tracepoint *) self;
12879 if (!tp->static_trace_marker_id.empty ())
12880 {
12881 gdb_assert (self->type == bp_static_tracepoint);
12882
12883 uiout->text ("\tmarker id is ");
12884 uiout->field_string ("static-tracepoint-marker-string-id",
12885 tp->static_trace_marker_id);
12886 uiout->text ("\n");
12887 }
12888 }
12889
12890 static void
12891 tracepoint_print_mention (struct breakpoint *b)
12892 {
12893 if (current_uiout->is_mi_like_p ())
12894 return;
12895
12896 switch (b->type)
12897 {
12898 case bp_tracepoint:
12899 printf_filtered (_("Tracepoint"));
12900 printf_filtered (_(" %d"), b->number);
12901 break;
12902 case bp_fast_tracepoint:
12903 printf_filtered (_("Fast tracepoint"));
12904 printf_filtered (_(" %d"), b->number);
12905 break;
12906 case bp_static_tracepoint:
12907 printf_filtered (_("Static tracepoint"));
12908 printf_filtered (_(" %d"), b->number);
12909 break;
12910 default:
12911 internal_error (__FILE__, __LINE__,
12912 _("unhandled tracepoint type %d"), (int) b->type);
12913 }
12914
12915 say_where (b);
12916 }
12917
12918 static void
12919 tracepoint_print_recreate (struct breakpoint *self, struct ui_file *fp)
12920 {
12921 struct tracepoint *tp = (struct tracepoint *) self;
12922
12923 if (self->type == bp_fast_tracepoint)
12924 fprintf_unfiltered (fp, "ftrace");
12925 else if (self->type == bp_static_tracepoint)
12926 fprintf_unfiltered (fp, "strace");
12927 else if (self->type == bp_tracepoint)
12928 fprintf_unfiltered (fp, "trace");
12929 else
12930 internal_error (__FILE__, __LINE__,
12931 _("unhandled tracepoint type %d"), (int) self->type);
12932
12933 fprintf_unfiltered (fp, " %s",
12934 event_location_to_string (self->location.get ()));
12935 print_recreate_thread (self, fp);
12936
12937 if (tp->pass_count)
12938 fprintf_unfiltered (fp, " passcount %d\n", tp->pass_count);
12939 }
12940
12941 static void
12942 tracepoint_create_sals_from_location (const struct event_location *location,
12943 struct linespec_result *canonical,
12944 enum bptype type_wanted)
12945 {
12946 create_sals_from_location_default (location, canonical, type_wanted);
12947 }
12948
12949 static void
12950 tracepoint_create_breakpoints_sal (struct gdbarch *gdbarch,
12951 struct linespec_result *canonical,
12952 gdb::unique_xmalloc_ptr<char> cond_string,
12953 gdb::unique_xmalloc_ptr<char> extra_string,
12954 enum bptype type_wanted,
12955 enum bpdisp disposition,
12956 int thread,
12957 int task, int ignore_count,
12958 const struct breakpoint_ops *ops,
12959 int from_tty, int enabled,
12960 int internal, unsigned flags)
12961 {
12962 create_breakpoints_sal_default (gdbarch, canonical,
12963 std::move (cond_string),
12964 std::move (extra_string),
12965 type_wanted,
12966 disposition, thread, task,
12967 ignore_count, ops, from_tty,
12968 enabled, internal, flags);
12969 }
12970
12971 static std::vector<symtab_and_line>
12972 tracepoint_decode_location (struct breakpoint *b,
12973 const struct event_location *location,
12974 struct program_space *search_pspace)
12975 {
12976 return decode_location_default (b, location, search_pspace);
12977 }
12978
12979 struct breakpoint_ops tracepoint_breakpoint_ops;
12980
12981 /* The breakpoint_ops structure to be use on tracepoints placed in a
12982 static probe. */
12983
12984 static void
12985 tracepoint_probe_create_sals_from_location
12986 (const struct event_location *location,
12987 struct linespec_result *canonical,
12988 enum bptype type_wanted)
12989 {
12990 /* We use the same method for breakpoint on probes. */
12991 bkpt_probe_create_sals_from_location (location, canonical, type_wanted);
12992 }
12993
12994 static std::vector<symtab_and_line>
12995 tracepoint_probe_decode_location (struct breakpoint *b,
12996 const struct event_location *location,
12997 struct program_space *search_pspace)
12998 {
12999 /* We use the same method for breakpoint on probes. */
13000 return bkpt_probe_decode_location (b, location, search_pspace);
13001 }
13002
13003 static struct breakpoint_ops tracepoint_probe_breakpoint_ops;
13004
13005 /* Dprintf breakpoint_ops methods. */
13006
13007 static void
13008 dprintf_re_set (struct breakpoint *b)
13009 {
13010 breakpoint_re_set_default (b);
13011
13012 /* extra_string should never be non-NULL for dprintf. */
13013 gdb_assert (b->extra_string != NULL);
13014
13015 /* 1 - connect to target 1, that can run breakpoint commands.
13016 2 - create a dprintf, which resolves fine.
13017 3 - disconnect from target 1
13018 4 - connect to target 2, that can NOT run breakpoint commands.
13019
13020 After steps #3/#4, you'll want the dprintf command list to
13021 be updated, because target 1 and 2 may well return different
13022 answers for target_can_run_breakpoint_commands().
13023 Given absence of finer grained resetting, we get to do
13024 it all the time. */
13025 if (b->extra_string != NULL)
13026 update_dprintf_command_list (b);
13027 }
13028
13029 /* Implement the "print_recreate" breakpoint_ops method for dprintf. */
13030
13031 static void
13032 dprintf_print_recreate (struct breakpoint *tp, struct ui_file *fp)
13033 {
13034 fprintf_unfiltered (fp, "dprintf %s,%s",
13035 event_location_to_string (tp->location.get ()),
13036 tp->extra_string);
13037 print_recreate_thread (tp, fp);
13038 }
13039
13040 /* Implement the "after_condition_true" breakpoint_ops method for
13041 dprintf.
13042
13043 dprintf's are implemented with regular commands in their command
13044 list, but we run the commands here instead of before presenting the
13045 stop to the user, as dprintf's don't actually cause a stop. This
13046 also makes it so that the commands of multiple dprintfs at the same
13047 address are all handled. */
13048
13049 static void
13050 dprintf_after_condition_true (struct bpstats *bs)
13051 {
13052 struct bpstats tmp_bs;
13053 struct bpstats *tmp_bs_p = &tmp_bs;
13054
13055 /* dprintf's never cause a stop. This wasn't set in the
13056 check_status hook instead because that would make the dprintf's
13057 condition not be evaluated. */
13058 bs->stop = 0;
13059
13060 /* Run the command list here. Take ownership of it instead of
13061 copying. We never want these commands to run later in
13062 bpstat_do_actions, if a breakpoint that causes a stop happens to
13063 be set at same address as this dprintf, or even if running the
13064 commands here throws. */
13065 tmp_bs.commands = bs->commands;
13066 bs->commands = NULL;
13067
13068 bpstat_do_actions_1 (&tmp_bs_p);
13069
13070 /* 'tmp_bs.commands' will usually be NULL by now, but
13071 bpstat_do_actions_1 may return early without processing the whole
13072 list. */
13073 }
13074
13075 /* The breakpoint_ops structure to be used on static tracepoints with
13076 markers (`-m'). */
13077
13078 static void
13079 strace_marker_create_sals_from_location (const struct event_location *location,
13080 struct linespec_result *canonical,
13081 enum bptype type_wanted)
13082 {
13083 struct linespec_sals lsal;
13084 const char *arg_start, *arg;
13085
13086 arg = arg_start = get_linespec_location (location)->spec_string;
13087 lsal.sals = decode_static_tracepoint_spec (&arg);
13088
13089 std::string str (arg_start, arg - arg_start);
13090 const char *ptr = str.c_str ();
13091 canonical->location
13092 = new_linespec_location (&ptr, symbol_name_match_type::FULL);
13093
13094 lsal.canonical
13095 = xstrdup (event_location_to_string (canonical->location.get ()));
13096 canonical->lsals.push_back (std::move (lsal));
13097 }
13098
13099 static void
13100 strace_marker_create_breakpoints_sal (struct gdbarch *gdbarch,
13101 struct linespec_result *canonical,
13102 gdb::unique_xmalloc_ptr<char> cond_string,
13103 gdb::unique_xmalloc_ptr<char> extra_string,
13104 enum bptype type_wanted,
13105 enum bpdisp disposition,
13106 int thread,
13107 int task, int ignore_count,
13108 const struct breakpoint_ops *ops,
13109 int from_tty, int enabled,
13110 int internal, unsigned flags)
13111 {
13112 const linespec_sals &lsal = canonical->lsals[0];
13113
13114 /* If the user is creating a static tracepoint by marker id
13115 (strace -m MARKER_ID), then store the sals index, so that
13116 breakpoint_re_set can try to match up which of the newly
13117 found markers corresponds to this one, and, don't try to
13118 expand multiple locations for each sal, given than SALS
13119 already should contain all sals for MARKER_ID. */
13120
13121 for (size_t i = 0; i < lsal.sals.size (); i++)
13122 {
13123 event_location_up location
13124 = copy_event_location (canonical->location.get ());
13125
13126 std::unique_ptr<tracepoint> tp (new tracepoint ());
13127 init_breakpoint_sal (tp.get (), gdbarch, lsal.sals[i],
13128 std::move (location), NULL,
13129 std::move (cond_string),
13130 std::move (extra_string),
13131 type_wanted, disposition,
13132 thread, task, ignore_count, ops,
13133 from_tty, enabled, internal, flags,
13134 canonical->special_display);
13135 /* Given that its possible to have multiple markers with
13136 the same string id, if the user is creating a static
13137 tracepoint by marker id ("strace -m MARKER_ID"), then
13138 store the sals index, so that breakpoint_re_set can
13139 try to match up which of the newly found markers
13140 corresponds to this one */
13141 tp->static_trace_marker_id_idx = i;
13142
13143 install_breakpoint (internal, std::move (tp), 0);
13144 }
13145 }
13146
13147 static std::vector<symtab_and_line>
13148 strace_marker_decode_location (struct breakpoint *b,
13149 const struct event_location *location,
13150 struct program_space *search_pspace)
13151 {
13152 struct tracepoint *tp = (struct tracepoint *) b;
13153 const char *s = get_linespec_location (location)->spec_string;
13154
13155 std::vector<symtab_and_line> sals = decode_static_tracepoint_spec (&s);
13156 if (sals.size () > tp->static_trace_marker_id_idx)
13157 {
13158 sals[0] = sals[tp->static_trace_marker_id_idx];
13159 sals.resize (1);
13160 return sals;
13161 }
13162 else
13163 error (_("marker %s not found"), tp->static_trace_marker_id.c_str ());
13164 }
13165
13166 static struct breakpoint_ops strace_marker_breakpoint_ops;
13167
13168 static int
13169 strace_marker_p (struct breakpoint *b)
13170 {
13171 return b->ops == &strace_marker_breakpoint_ops;
13172 }
13173
13174 /* Delete a breakpoint and clean up all traces of it in the data
13175 structures. */
13176
13177 void
13178 delete_breakpoint (struct breakpoint *bpt)
13179 {
13180 struct breakpoint *b;
13181
13182 gdb_assert (bpt != NULL);
13183
13184 /* Has this bp already been deleted? This can happen because
13185 multiple lists can hold pointers to bp's. bpstat lists are
13186 especial culprits.
13187
13188 One example of this happening is a watchpoint's scope bp. When
13189 the scope bp triggers, we notice that the watchpoint is out of
13190 scope, and delete it. We also delete its scope bp. But the
13191 scope bp is marked "auto-deleting", and is already on a bpstat.
13192 That bpstat is then checked for auto-deleting bp's, which are
13193 deleted.
13194
13195 A real solution to this problem might involve reference counts in
13196 bp's, and/or giving them pointers back to their referencing
13197 bpstat's, and teaching delete_breakpoint to only free a bp's
13198 storage when no more references were extent. A cheaper bandaid
13199 was chosen. */
13200 if (bpt->type == bp_none)
13201 return;
13202
13203 /* At least avoid this stale reference until the reference counting
13204 of breakpoints gets resolved. */
13205 if (bpt->related_breakpoint != bpt)
13206 {
13207 struct breakpoint *related;
13208 struct watchpoint *w;
13209
13210 if (bpt->type == bp_watchpoint_scope)
13211 w = (struct watchpoint *) bpt->related_breakpoint;
13212 else if (bpt->related_breakpoint->type == bp_watchpoint_scope)
13213 w = (struct watchpoint *) bpt;
13214 else
13215 w = NULL;
13216 if (w != NULL)
13217 watchpoint_del_at_next_stop (w);
13218
13219 /* Unlink bpt from the bpt->related_breakpoint ring. */
13220 for (related = bpt; related->related_breakpoint != bpt;
13221 related = related->related_breakpoint);
13222 related->related_breakpoint = bpt->related_breakpoint;
13223 bpt->related_breakpoint = bpt;
13224 }
13225
13226 /* watch_command_1 creates a watchpoint but only sets its number if
13227 update_watchpoint succeeds in creating its bp_locations. If there's
13228 a problem in that process, we'll be asked to delete the half-created
13229 watchpoint. In that case, don't announce the deletion. */
13230 if (bpt->number)
13231 gdb::observers::breakpoint_deleted.notify (bpt);
13232
13233 if (breakpoint_chain == bpt)
13234 breakpoint_chain = bpt->next;
13235
13236 ALL_BREAKPOINTS (b)
13237 if (b->next == bpt)
13238 {
13239 b->next = bpt->next;
13240 break;
13241 }
13242
13243 /* Be sure no bpstat's are pointing at the breakpoint after it's
13244 been freed. */
13245 /* FIXME, how can we find all bpstat's? We just check stop_bpstat
13246 in all threads for now. Note that we cannot just remove bpstats
13247 pointing at bpt from the stop_bpstat list entirely, as breakpoint
13248 commands are associated with the bpstat; if we remove it here,
13249 then the later call to bpstat_do_actions (&stop_bpstat); in
13250 event-top.c won't do anything, and temporary breakpoints with
13251 commands won't work. */
13252
13253 iterate_over_threads (bpstat_remove_breakpoint_callback, bpt);
13254
13255 /* Now that breakpoint is removed from breakpoint list, update the
13256 global location list. This will remove locations that used to
13257 belong to this breakpoint. Do this before freeing the breakpoint
13258 itself, since remove_breakpoint looks at location's owner. It
13259 might be better design to have location completely
13260 self-contained, but it's not the case now. */
13261 update_global_location_list (UGLL_DONT_INSERT);
13262
13263 /* On the chance that someone will soon try again to delete this
13264 same bp, we mark it as deleted before freeing its storage. */
13265 bpt->type = bp_none;
13266 delete bpt;
13267 }
13268
13269 /* Iterator function to call a user-provided callback function once
13270 for each of B and its related breakpoints. */
13271
13272 static void
13273 iterate_over_related_breakpoints (struct breakpoint *b,
13274 gdb::function_view<void (breakpoint *)> function)
13275 {
13276 struct breakpoint *related;
13277
13278 related = b;
13279 do
13280 {
13281 struct breakpoint *next;
13282
13283 /* FUNCTION may delete RELATED. */
13284 next = related->related_breakpoint;
13285
13286 if (next == related)
13287 {
13288 /* RELATED is the last ring entry. */
13289 function (related);
13290
13291 /* FUNCTION may have deleted it, so we'd never reach back to
13292 B. There's nothing left to do anyway, so just break
13293 out. */
13294 break;
13295 }
13296 else
13297 function (related);
13298
13299 related = next;
13300 }
13301 while (related != b);
13302 }
13303
13304 static void
13305 delete_command (const char *arg, int from_tty)
13306 {
13307 struct breakpoint *b, *b_tmp;
13308
13309 dont_repeat ();
13310
13311 if (arg == 0)
13312 {
13313 int breaks_to_delete = 0;
13314
13315 /* Delete all breakpoints if no argument. Do not delete
13316 internal breakpoints, these have to be deleted with an
13317 explicit breakpoint number argument. */
13318 ALL_BREAKPOINTS (b)
13319 if (user_breakpoint_p (b))
13320 {
13321 breaks_to_delete = 1;
13322 break;
13323 }
13324
13325 /* Ask user only if there are some breakpoints to delete. */
13326 if (!from_tty
13327 || (breaks_to_delete && query (_("Delete all breakpoints? "))))
13328 {
13329 ALL_BREAKPOINTS_SAFE (b, b_tmp)
13330 if (user_breakpoint_p (b))
13331 delete_breakpoint (b);
13332 }
13333 }
13334 else
13335 map_breakpoint_numbers
13336 (arg, [&] (breakpoint *b)
13337 {
13338 iterate_over_related_breakpoints (b, delete_breakpoint);
13339 });
13340 }
13341
13342 /* Return true if all locations of B bound to PSPACE are pending. If
13343 PSPACE is NULL, all locations of all program spaces are
13344 considered. */
13345
13346 static int
13347 all_locations_are_pending (struct breakpoint *b, struct program_space *pspace)
13348 {
13349 struct bp_location *loc;
13350
13351 for (loc = b->loc; loc != NULL; loc = loc->next)
13352 if ((pspace == NULL
13353 || loc->pspace == pspace)
13354 && !loc->shlib_disabled
13355 && !loc->pspace->executing_startup)
13356 return 0;
13357 return 1;
13358 }
13359
13360 /* Subroutine of update_breakpoint_locations to simplify it.
13361 Return non-zero if multiple fns in list LOC have the same name.
13362 Null names are ignored. */
13363
13364 static int
13365 ambiguous_names_p (struct bp_location *loc)
13366 {
13367 struct bp_location *l;
13368 htab_t htab = htab_create_alloc (13, htab_hash_string, streq_hash, NULL,
13369 xcalloc, xfree);
13370
13371 for (l = loc; l != NULL; l = l->next)
13372 {
13373 const char **slot;
13374 const char *name = l->function_name;
13375
13376 /* Allow for some names to be NULL, ignore them. */
13377 if (name == NULL)
13378 continue;
13379
13380 slot = (const char **) htab_find_slot (htab, (const void *) name,
13381 INSERT);
13382 /* NOTE: We can assume slot != NULL here because xcalloc never
13383 returns NULL. */
13384 if (*slot != NULL)
13385 {
13386 htab_delete (htab);
13387 return 1;
13388 }
13389 *slot = name;
13390 }
13391
13392 htab_delete (htab);
13393 return 0;
13394 }
13395
13396 /* When symbols change, it probably means the sources changed as well,
13397 and it might mean the static tracepoint markers are no longer at
13398 the same address or line numbers they used to be at last we
13399 checked. Losing your static tracepoints whenever you rebuild is
13400 undesirable. This function tries to resync/rematch gdb static
13401 tracepoints with the markers on the target, for static tracepoints
13402 that have not been set by marker id. Static tracepoint that have
13403 been set by marker id are reset by marker id in breakpoint_re_set.
13404 The heuristic is:
13405
13406 1) For a tracepoint set at a specific address, look for a marker at
13407 the old PC. If one is found there, assume to be the same marker.
13408 If the name / string id of the marker found is different from the
13409 previous known name, assume that means the user renamed the marker
13410 in the sources, and output a warning.
13411
13412 2) For a tracepoint set at a given line number, look for a marker
13413 at the new address of the old line number. If one is found there,
13414 assume to be the same marker. If the name / string id of the
13415 marker found is different from the previous known name, assume that
13416 means the user renamed the marker in the sources, and output a
13417 warning.
13418
13419 3) If a marker is no longer found at the same address or line, it
13420 may mean the marker no longer exists. But it may also just mean
13421 the code changed a bit. Maybe the user added a few lines of code
13422 that made the marker move up or down (in line number terms). Ask
13423 the target for info about the marker with the string id as we knew
13424 it. If found, update line number and address in the matching
13425 static tracepoint. This will get confused if there's more than one
13426 marker with the same ID (possible in UST, although unadvised
13427 precisely because it confuses tools). */
13428
13429 static struct symtab_and_line
13430 update_static_tracepoint (struct breakpoint *b, struct symtab_and_line sal)
13431 {
13432 struct tracepoint *tp = (struct tracepoint *) b;
13433 struct static_tracepoint_marker marker;
13434 CORE_ADDR pc;
13435
13436 pc = sal.pc;
13437 if (sal.line)
13438 find_line_pc (sal.symtab, sal.line, &pc);
13439
13440 if (target_static_tracepoint_marker_at (pc, &marker))
13441 {
13442 if (tp->static_trace_marker_id != marker.str_id)
13443 warning (_("static tracepoint %d changed probed marker from %s to %s"),
13444 b->number, tp->static_trace_marker_id.c_str (),
13445 marker.str_id.c_str ());
13446
13447 tp->static_trace_marker_id = std::move (marker.str_id);
13448
13449 return sal;
13450 }
13451
13452 /* Old marker wasn't found on target at lineno. Try looking it up
13453 by string ID. */
13454 if (!sal.explicit_pc
13455 && sal.line != 0
13456 && sal.symtab != NULL
13457 && !tp->static_trace_marker_id.empty ())
13458 {
13459 std::vector<static_tracepoint_marker> markers
13460 = target_static_tracepoint_markers_by_strid
13461 (tp->static_trace_marker_id.c_str ());
13462
13463 if (!markers.empty ())
13464 {
13465 struct symbol *sym;
13466 struct static_tracepoint_marker *tpmarker;
13467 struct ui_out *uiout = current_uiout;
13468 struct explicit_location explicit_loc;
13469
13470 tpmarker = &markers[0];
13471
13472 tp->static_trace_marker_id = std::move (tpmarker->str_id);
13473
13474 warning (_("marker for static tracepoint %d (%s) not "
13475 "found at previous line number"),
13476 b->number, tp->static_trace_marker_id.c_str ());
13477
13478 symtab_and_line sal2 = find_pc_line (tpmarker->address, 0);
13479 sym = find_pc_sect_function (tpmarker->address, NULL);
13480 uiout->text ("Now in ");
13481 if (sym)
13482 {
13483 uiout->field_string ("func", SYMBOL_PRINT_NAME (sym));
13484 uiout->text (" at ");
13485 }
13486 uiout->field_string ("file",
13487 symtab_to_filename_for_display (sal2.symtab));
13488 uiout->text (":");
13489
13490 if (uiout->is_mi_like_p ())
13491 {
13492 const char *fullname = symtab_to_fullname (sal2.symtab);
13493
13494 uiout->field_string ("fullname", fullname);
13495 }
13496
13497 uiout->field_int ("line", sal2.line);
13498 uiout->text ("\n");
13499
13500 b->loc->line_number = sal2.line;
13501 b->loc->symtab = sym != NULL ? sal2.symtab : NULL;
13502
13503 b->location.reset (NULL);
13504 initialize_explicit_location (&explicit_loc);
13505 explicit_loc.source_filename
13506 = ASTRDUP (symtab_to_filename_for_display (sal2.symtab));
13507 explicit_loc.line_offset.offset = b->loc->line_number;
13508 explicit_loc.line_offset.sign = LINE_OFFSET_NONE;
13509 b->location = new_explicit_location (&explicit_loc);
13510
13511 /* Might be nice to check if function changed, and warn if
13512 so. */
13513 }
13514 }
13515 return sal;
13516 }
13517
13518 /* Returns 1 iff locations A and B are sufficiently same that
13519 we don't need to report breakpoint as changed. */
13520
13521 static int
13522 locations_are_equal (struct bp_location *a, struct bp_location *b)
13523 {
13524 while (a && b)
13525 {
13526 if (a->address != b->address)
13527 return 0;
13528
13529 if (a->shlib_disabled != b->shlib_disabled)
13530 return 0;
13531
13532 if (a->enabled != b->enabled)
13533 return 0;
13534
13535 a = a->next;
13536 b = b->next;
13537 }
13538
13539 if ((a == NULL) != (b == NULL))
13540 return 0;
13541
13542 return 1;
13543 }
13544
13545 /* Split all locations of B that are bound to PSPACE out of B's
13546 location list to a separate list and return that list's head. If
13547 PSPACE is NULL, hoist out all locations of B. */
13548
13549 static struct bp_location *
13550 hoist_existing_locations (struct breakpoint *b, struct program_space *pspace)
13551 {
13552 struct bp_location head;
13553 struct bp_location *i = b->loc;
13554 struct bp_location **i_link = &b->loc;
13555 struct bp_location *hoisted = &head;
13556
13557 if (pspace == NULL)
13558 {
13559 i = b->loc;
13560 b->loc = NULL;
13561 return i;
13562 }
13563
13564 head.next = NULL;
13565
13566 while (i != NULL)
13567 {
13568 if (i->pspace == pspace)
13569 {
13570 *i_link = i->next;
13571 i->next = NULL;
13572 hoisted->next = i;
13573 hoisted = i;
13574 }
13575 else
13576 i_link = &i->next;
13577 i = *i_link;
13578 }
13579
13580 return head.next;
13581 }
13582
13583 /* Create new breakpoint locations for B (a hardware or software
13584 breakpoint) based on SALS and SALS_END. If SALS_END.NELTS is not
13585 zero, then B is a ranged breakpoint. Only recreates locations for
13586 FILTER_PSPACE. Locations of other program spaces are left
13587 untouched. */
13588
13589 void
13590 update_breakpoint_locations (struct breakpoint *b,
13591 struct program_space *filter_pspace,
13592 gdb::array_view<const symtab_and_line> sals,
13593 gdb::array_view<const symtab_and_line> sals_end)
13594 {
13595 struct bp_location *existing_locations;
13596
13597 if (!sals_end.empty () && (sals.size () != 1 || sals_end.size () != 1))
13598 {
13599 /* Ranged breakpoints have only one start location and one end
13600 location. */
13601 b->enable_state = bp_disabled;
13602 printf_unfiltered (_("Could not reset ranged breakpoint %d: "
13603 "multiple locations found\n"),
13604 b->number);
13605 return;
13606 }
13607
13608 /* If there's no new locations, and all existing locations are
13609 pending, don't do anything. This optimizes the common case where
13610 all locations are in the same shared library, that was unloaded.
13611 We'd like to retain the location, so that when the library is
13612 loaded again, we don't loose the enabled/disabled status of the
13613 individual locations. */
13614 if (all_locations_are_pending (b, filter_pspace) && sals.empty ())
13615 return;
13616
13617 existing_locations = hoist_existing_locations (b, filter_pspace);
13618
13619 for (const auto &sal : sals)
13620 {
13621 struct bp_location *new_loc;
13622
13623 switch_to_program_space_and_thread (sal.pspace);
13624
13625 new_loc = add_location_to_breakpoint (b, &sal);
13626
13627 /* Reparse conditions, they might contain references to the
13628 old symtab. */
13629 if (b->cond_string != NULL)
13630 {
13631 const char *s;
13632
13633 s = b->cond_string;
13634 TRY
13635 {
13636 new_loc->cond = parse_exp_1 (&s, sal.pc,
13637 block_for_pc (sal.pc),
13638 0);
13639 }
13640 CATCH (e, RETURN_MASK_ERROR)
13641 {
13642 warning (_("failed to reevaluate condition "
13643 "for breakpoint %d: %s"),
13644 b->number, e.message);
13645 new_loc->enabled = 0;
13646 }
13647 END_CATCH
13648 }
13649
13650 if (!sals_end.empty ())
13651 {
13652 CORE_ADDR end = find_breakpoint_range_end (sals_end[0]);
13653
13654 new_loc->length = end - sals[0].pc + 1;
13655 }
13656 }
13657
13658 /* If possible, carry over 'disable' status from existing
13659 breakpoints. */
13660 {
13661 struct bp_location *e = existing_locations;
13662 /* If there are multiple breakpoints with the same function name,
13663 e.g. for inline functions, comparing function names won't work.
13664 Instead compare pc addresses; this is just a heuristic as things
13665 may have moved, but in practice it gives the correct answer
13666 often enough until a better solution is found. */
13667 int have_ambiguous_names = ambiguous_names_p (b->loc);
13668
13669 for (; e; e = e->next)
13670 {
13671 if (!e->enabled && e->function_name)
13672 {
13673 struct bp_location *l = b->loc;
13674 if (have_ambiguous_names)
13675 {
13676 for (; l; l = l->next)
13677 if (breakpoint_locations_match (e, l))
13678 {
13679 l->enabled = 0;
13680 break;
13681 }
13682 }
13683 else
13684 {
13685 for (; l; l = l->next)
13686 if (l->function_name
13687 && strcmp (e->function_name, l->function_name) == 0)
13688 {
13689 l->enabled = 0;
13690 break;
13691 }
13692 }
13693 }
13694 }
13695 }
13696
13697 if (!locations_are_equal (existing_locations, b->loc))
13698 gdb::observers::breakpoint_modified.notify (b);
13699 }
13700
13701 /* Find the SaL locations corresponding to the given LOCATION.
13702 On return, FOUND will be 1 if any SaL was found, zero otherwise. */
13703
13704 static std::vector<symtab_and_line>
13705 location_to_sals (struct breakpoint *b, struct event_location *location,
13706 struct program_space *search_pspace, int *found)
13707 {
13708 struct gdb_exception exception = exception_none;
13709
13710 gdb_assert (b->ops != NULL);
13711
13712 std::vector<symtab_and_line> sals;
13713
13714 TRY
13715 {
13716 sals = b->ops->decode_location (b, location, search_pspace);
13717 }
13718 CATCH (e, RETURN_MASK_ERROR)
13719 {
13720 int not_found_and_ok = 0;
13721
13722 exception = e;
13723
13724 /* For pending breakpoints, it's expected that parsing will
13725 fail until the right shared library is loaded. User has
13726 already told to create pending breakpoints and don't need
13727 extra messages. If breakpoint is in bp_shlib_disabled
13728 state, then user already saw the message about that
13729 breakpoint being disabled, and don't want to see more
13730 errors. */
13731 if (e.error == NOT_FOUND_ERROR
13732 && (b->condition_not_parsed
13733 || (b->loc != NULL
13734 && search_pspace != NULL
13735 && b->loc->pspace != search_pspace)
13736 || (b->loc && b->loc->shlib_disabled)
13737 || (b->loc && b->loc->pspace->executing_startup)
13738 || b->enable_state == bp_disabled))
13739 not_found_and_ok = 1;
13740
13741 if (!not_found_and_ok)
13742 {
13743 /* We surely don't want to warn about the same breakpoint
13744 10 times. One solution, implemented here, is disable
13745 the breakpoint on error. Another solution would be to
13746 have separate 'warning emitted' flag. Since this
13747 happens only when a binary has changed, I don't know
13748 which approach is better. */
13749 b->enable_state = bp_disabled;
13750 throw_exception (e);
13751 }
13752 }
13753 END_CATCH
13754
13755 if (exception.reason == 0 || exception.error != NOT_FOUND_ERROR)
13756 {
13757 for (auto &sal : sals)
13758 resolve_sal_pc (&sal);
13759 if (b->condition_not_parsed && b->extra_string != NULL)
13760 {
13761 char *cond_string, *extra_string;
13762 int thread, task;
13763
13764 find_condition_and_thread (b->extra_string, sals[0].pc,
13765 &cond_string, &thread, &task,
13766 &extra_string);
13767 gdb_assert (b->cond_string == NULL);
13768 if (cond_string)
13769 b->cond_string = cond_string;
13770 b->thread = thread;
13771 b->task = task;
13772 if (extra_string)
13773 {
13774 xfree (b->extra_string);
13775 b->extra_string = extra_string;
13776 }
13777 b->condition_not_parsed = 0;
13778 }
13779
13780 if (b->type == bp_static_tracepoint && !strace_marker_p (b))
13781 sals[0] = update_static_tracepoint (b, sals[0]);
13782
13783 *found = 1;
13784 }
13785 else
13786 *found = 0;
13787
13788 return sals;
13789 }
13790
13791 /* The default re_set method, for typical hardware or software
13792 breakpoints. Reevaluate the breakpoint and recreate its
13793 locations. */
13794
13795 static void
13796 breakpoint_re_set_default (struct breakpoint *b)
13797 {
13798 struct program_space *filter_pspace = current_program_space;
13799 std::vector<symtab_and_line> expanded, expanded_end;
13800
13801 int found;
13802 std::vector<symtab_and_line> sals = location_to_sals (b, b->location.get (),
13803 filter_pspace, &found);
13804 if (found)
13805 expanded = std::move (sals);
13806
13807 if (b->location_range_end != NULL)
13808 {
13809 std::vector<symtab_and_line> sals_end
13810 = location_to_sals (b, b->location_range_end.get (),
13811 filter_pspace, &found);
13812 if (found)
13813 expanded_end = std::move (sals_end);
13814 }
13815
13816 update_breakpoint_locations (b, filter_pspace, expanded, expanded_end);
13817 }
13818
13819 /* Default method for creating SALs from an address string. It basically
13820 calls parse_breakpoint_sals. Return 1 for success, zero for failure. */
13821
13822 static void
13823 create_sals_from_location_default (const struct event_location *location,
13824 struct linespec_result *canonical,
13825 enum bptype type_wanted)
13826 {
13827 parse_breakpoint_sals (location, canonical);
13828 }
13829
13830 /* Call create_breakpoints_sal for the given arguments. This is the default
13831 function for the `create_breakpoints_sal' method of
13832 breakpoint_ops. */
13833
13834 static void
13835 create_breakpoints_sal_default (struct gdbarch *gdbarch,
13836 struct linespec_result *canonical,
13837 gdb::unique_xmalloc_ptr<char> cond_string,
13838 gdb::unique_xmalloc_ptr<char> extra_string,
13839 enum bptype type_wanted,
13840 enum bpdisp disposition,
13841 int thread,
13842 int task, int ignore_count,
13843 const struct breakpoint_ops *ops,
13844 int from_tty, int enabled,
13845 int internal, unsigned flags)
13846 {
13847 create_breakpoints_sal (gdbarch, canonical,
13848 std::move (cond_string),
13849 std::move (extra_string),
13850 type_wanted, disposition,
13851 thread, task, ignore_count, ops, from_tty,
13852 enabled, internal, flags);
13853 }
13854
13855 /* Decode the line represented by S by calling decode_line_full. This is the
13856 default function for the `decode_location' method of breakpoint_ops. */
13857
13858 static std::vector<symtab_and_line>
13859 decode_location_default (struct breakpoint *b,
13860 const struct event_location *location,
13861 struct program_space *search_pspace)
13862 {
13863 struct linespec_result canonical;
13864
13865 decode_line_full (location, DECODE_LINE_FUNFIRSTLINE, search_pspace,
13866 (struct symtab *) NULL, 0,
13867 &canonical, multiple_symbols_all,
13868 b->filter);
13869
13870 /* We should get 0 or 1 resulting SALs. */
13871 gdb_assert (canonical.lsals.size () < 2);
13872
13873 if (!canonical.lsals.empty ())
13874 {
13875 const linespec_sals &lsal = canonical.lsals[0];
13876 return std::move (lsal.sals);
13877 }
13878 return {};
13879 }
13880
13881 /* Reset a breakpoint. */
13882
13883 static void
13884 breakpoint_re_set_one (breakpoint *b)
13885 {
13886 input_radix = b->input_radix;
13887 set_language (b->language);
13888
13889 b->ops->re_set (b);
13890 }
13891
13892 /* Re-set breakpoint locations for the current program space.
13893 Locations bound to other program spaces are left untouched. */
13894
13895 void
13896 breakpoint_re_set (void)
13897 {
13898 struct breakpoint *b, *b_tmp;
13899
13900 {
13901 scoped_restore_current_language save_language;
13902 scoped_restore save_input_radix = make_scoped_restore (&input_radix);
13903 scoped_restore_current_pspace_and_thread restore_pspace_thread;
13904
13905 /* Note: we must not try to insert locations until after all
13906 breakpoints have been re-set. Otherwise, e.g., when re-setting
13907 breakpoint 1, we'd insert the locations of breakpoint 2, which
13908 hadn't been re-set yet, and thus may have stale locations. */
13909
13910 ALL_BREAKPOINTS_SAFE (b, b_tmp)
13911 {
13912 TRY
13913 {
13914 breakpoint_re_set_one (b);
13915 }
13916 CATCH (ex, RETURN_MASK_ALL)
13917 {
13918 exception_fprintf (gdb_stderr, ex,
13919 "Error in re-setting breakpoint %d: ",
13920 b->number);
13921 }
13922 END_CATCH
13923 }
13924
13925 jit_breakpoint_re_set ();
13926 }
13927
13928 create_overlay_event_breakpoint ();
13929 create_longjmp_master_breakpoint ();
13930 create_std_terminate_master_breakpoint ();
13931 create_exception_master_breakpoint ();
13932
13933 /* Now we can insert. */
13934 update_global_location_list (UGLL_MAY_INSERT);
13935 }
13936 \f
13937 /* Reset the thread number of this breakpoint:
13938
13939 - If the breakpoint is for all threads, leave it as-is.
13940 - Else, reset it to the current thread for inferior_ptid. */
13941 void
13942 breakpoint_re_set_thread (struct breakpoint *b)
13943 {
13944 if (b->thread != -1)
13945 {
13946 if (in_thread_list (inferior_ptid))
13947 b->thread = ptid_to_global_thread_id (inferior_ptid);
13948
13949 /* We're being called after following a fork. The new fork is
13950 selected as current, and unless this was a vfork will have a
13951 different program space from the original thread. Reset that
13952 as well. */
13953 b->loc->pspace = current_program_space;
13954 }
13955 }
13956
13957 /* Set ignore-count of breakpoint number BPTNUM to COUNT.
13958 If from_tty is nonzero, it prints a message to that effect,
13959 which ends with a period (no newline). */
13960
13961 void
13962 set_ignore_count (int bptnum, int count, int from_tty)
13963 {
13964 struct breakpoint *b;
13965
13966 if (count < 0)
13967 count = 0;
13968
13969 ALL_BREAKPOINTS (b)
13970 if (b->number == bptnum)
13971 {
13972 if (is_tracepoint (b))
13973 {
13974 if (from_tty && count != 0)
13975 printf_filtered (_("Ignore count ignored for tracepoint %d."),
13976 bptnum);
13977 return;
13978 }
13979
13980 b->ignore_count = count;
13981 if (from_tty)
13982 {
13983 if (count == 0)
13984 printf_filtered (_("Will stop next time "
13985 "breakpoint %d is reached."),
13986 bptnum);
13987 else if (count == 1)
13988 printf_filtered (_("Will ignore next crossing of breakpoint %d."),
13989 bptnum);
13990 else
13991 printf_filtered (_("Will ignore next %d "
13992 "crossings of breakpoint %d."),
13993 count, bptnum);
13994 }
13995 gdb::observers::breakpoint_modified.notify (b);
13996 return;
13997 }
13998
13999 error (_("No breakpoint number %d."), bptnum);
14000 }
14001
14002 /* Command to set ignore-count of breakpoint N to COUNT. */
14003
14004 static void
14005 ignore_command (const char *args, int from_tty)
14006 {
14007 const char *p = args;
14008 int num;
14009
14010 if (p == 0)
14011 error_no_arg (_("a breakpoint number"));
14012
14013 num = get_number (&p);
14014 if (num == 0)
14015 error (_("bad breakpoint number: '%s'"), args);
14016 if (*p == 0)
14017 error (_("Second argument (specified ignore-count) is missing."));
14018
14019 set_ignore_count (num,
14020 longest_to_int (value_as_long (parse_and_eval (p))),
14021 from_tty);
14022 if (from_tty)
14023 printf_filtered ("\n");
14024 }
14025 \f
14026
14027 /* Call FUNCTION on each of the breakpoints with numbers in the range
14028 defined by BP_NUM_RANGE (an inclusive range). */
14029
14030 static void
14031 map_breakpoint_number_range (std::pair<int, int> bp_num_range,
14032 gdb::function_view<void (breakpoint *)> function)
14033 {
14034 if (bp_num_range.first == 0)
14035 {
14036 warning (_("bad breakpoint number at or near '%d'"),
14037 bp_num_range.first);
14038 }
14039 else
14040 {
14041 struct breakpoint *b, *tmp;
14042
14043 for (int i = bp_num_range.first; i <= bp_num_range.second; i++)
14044 {
14045 bool match = false;
14046
14047 ALL_BREAKPOINTS_SAFE (b, tmp)
14048 if (b->number == i)
14049 {
14050 match = true;
14051 function (b);
14052 break;
14053 }
14054 if (!match)
14055 printf_unfiltered (_("No breakpoint number %d.\n"), i);
14056 }
14057 }
14058 }
14059
14060 /* Call FUNCTION on each of the breakpoints whose numbers are given in
14061 ARGS. */
14062
14063 static void
14064 map_breakpoint_numbers (const char *args,
14065 gdb::function_view<void (breakpoint *)> function)
14066 {
14067 if (args == NULL || *args == '\0')
14068 error_no_arg (_("one or more breakpoint numbers"));
14069
14070 number_or_range_parser parser (args);
14071
14072 while (!parser.finished ())
14073 {
14074 int num = parser.get_number ();
14075 map_breakpoint_number_range (std::make_pair (num, num), function);
14076 }
14077 }
14078
14079 /* Return the breakpoint location structure corresponding to the
14080 BP_NUM and LOC_NUM values. */
14081
14082 static struct bp_location *
14083 find_location_by_number (int bp_num, int loc_num)
14084 {
14085 struct breakpoint *b;
14086
14087 ALL_BREAKPOINTS (b)
14088 if (b->number == bp_num)
14089 {
14090 break;
14091 }
14092
14093 if (!b || b->number != bp_num)
14094 error (_("Bad breakpoint number '%d'"), bp_num);
14095
14096 if (loc_num == 0)
14097 error (_("Bad breakpoint location number '%d'"), loc_num);
14098
14099 int n = 0;
14100 for (bp_location *loc = b->loc; loc != NULL; loc = loc->next)
14101 if (++n == loc_num)
14102 return loc;
14103
14104 error (_("Bad breakpoint location number '%d'"), loc_num);
14105 }
14106
14107 /* Modes of operation for extract_bp_num. */
14108 enum class extract_bp_kind
14109 {
14110 /* Extracting a breakpoint number. */
14111 bp,
14112
14113 /* Extracting a location number. */
14114 loc,
14115 };
14116
14117 /* Extract a breakpoint or location number (as determined by KIND)
14118 from the string starting at START. TRAILER is a character which
14119 can be found after the number. If you don't want a trailer, use
14120 '\0'. If END_OUT is not NULL, it is set to point after the parsed
14121 string. This always returns a positive integer. */
14122
14123 static int
14124 extract_bp_num (extract_bp_kind kind, const char *start,
14125 int trailer, const char **end_out = NULL)
14126 {
14127 const char *end = start;
14128 int num = get_number_trailer (&end, trailer);
14129 if (num < 0)
14130 error (kind == extract_bp_kind::bp
14131 ? _("Negative breakpoint number '%.*s'")
14132 : _("Negative breakpoint location number '%.*s'"),
14133 int (end - start), start);
14134 if (num == 0)
14135 error (kind == extract_bp_kind::bp
14136 ? _("Bad breakpoint number '%.*s'")
14137 : _("Bad breakpoint location number '%.*s'"),
14138 int (end - start), start);
14139
14140 if (end_out != NULL)
14141 *end_out = end;
14142 return num;
14143 }
14144
14145 /* Extract a breakpoint or location range (as determined by KIND) in
14146 the form NUM1-NUM2 stored at &ARG[arg_offset]. Returns a std::pair
14147 representing the (inclusive) range. The returned pair's elements
14148 are always positive integers. */
14149
14150 static std::pair<int, int>
14151 extract_bp_or_bp_range (extract_bp_kind kind,
14152 const std::string &arg,
14153 std::string::size_type arg_offset)
14154 {
14155 std::pair<int, int> range;
14156 const char *bp_loc = &arg[arg_offset];
14157 std::string::size_type dash = arg.find ('-', arg_offset);
14158 if (dash != std::string::npos)
14159 {
14160 /* bp_loc is a range (x-z). */
14161 if (arg.length () == dash + 1)
14162 error (kind == extract_bp_kind::bp
14163 ? _("Bad breakpoint number at or near: '%s'")
14164 : _("Bad breakpoint location number at or near: '%s'"),
14165 bp_loc);
14166
14167 const char *end;
14168 const char *start_first = bp_loc;
14169 const char *start_second = &arg[dash + 1];
14170 range.first = extract_bp_num (kind, start_first, '-');
14171 range.second = extract_bp_num (kind, start_second, '\0', &end);
14172
14173 if (range.first > range.second)
14174 error (kind == extract_bp_kind::bp
14175 ? _("Inverted breakpoint range at '%.*s'")
14176 : _("Inverted breakpoint location range at '%.*s'"),
14177 int (end - start_first), start_first);
14178 }
14179 else
14180 {
14181 /* bp_loc is a single value. */
14182 range.first = extract_bp_num (kind, bp_loc, '\0');
14183 range.second = range.first;
14184 }
14185 return range;
14186 }
14187
14188 /* Extract the breakpoint/location range specified by ARG. Returns
14189 the breakpoint range in BP_NUM_RANGE, and the location range in
14190 BP_LOC_RANGE.
14191
14192 ARG may be in any of the following forms:
14193
14194 x where 'x' is a breakpoint number.
14195 x-y where 'x' and 'y' specify a breakpoint numbers range.
14196 x.y where 'x' is a breakpoint number and 'y' a location number.
14197 x.y-z where 'x' is a breakpoint number and 'y' and 'z' specify a
14198 location number range.
14199 */
14200
14201 static void
14202 extract_bp_number_and_location (const std::string &arg,
14203 std::pair<int, int> &bp_num_range,
14204 std::pair<int, int> &bp_loc_range)
14205 {
14206 std::string::size_type dot = arg.find ('.');
14207
14208 if (dot != std::string::npos)
14209 {
14210 /* Handle 'x.y' and 'x.y-z' cases. */
14211
14212 if (arg.length () == dot + 1 || dot == 0)
14213 error (_("Bad breakpoint number at or near: '%s'"), arg.c_str ());
14214
14215 bp_num_range.first
14216 = extract_bp_num (extract_bp_kind::bp, arg.c_str (), '.');
14217 bp_num_range.second = bp_num_range.first;
14218
14219 bp_loc_range = extract_bp_or_bp_range (extract_bp_kind::loc,
14220 arg, dot + 1);
14221 }
14222 else
14223 {
14224 /* Handle x and x-y cases. */
14225
14226 bp_num_range = extract_bp_or_bp_range (extract_bp_kind::bp, arg, 0);
14227 bp_loc_range.first = 0;
14228 bp_loc_range.second = 0;
14229 }
14230 }
14231
14232 /* Enable or disable a breakpoint location BP_NUM.LOC_NUM. ENABLE
14233 specifies whether to enable or disable. */
14234
14235 static void
14236 enable_disable_bp_num_loc (int bp_num, int loc_num, bool enable)
14237 {
14238 struct bp_location *loc = find_location_by_number (bp_num, loc_num);
14239 if (loc != NULL)
14240 {
14241 if (loc->enabled != enable)
14242 {
14243 loc->enabled = enable;
14244 mark_breakpoint_location_modified (loc);
14245 }
14246 if (target_supports_enable_disable_tracepoint ()
14247 && current_trace_status ()->running && loc->owner
14248 && is_tracepoint (loc->owner))
14249 target_disable_tracepoint (loc);
14250 }
14251 update_global_location_list (UGLL_DONT_INSERT);
14252 }
14253
14254 /* Enable or disable a range of breakpoint locations. BP_NUM is the
14255 number of the breakpoint, and BP_LOC_RANGE specifies the
14256 (inclusive) range of location numbers of that breakpoint to
14257 enable/disable. ENABLE specifies whether to enable or disable the
14258 location. */
14259
14260 static void
14261 enable_disable_breakpoint_location_range (int bp_num,
14262 std::pair<int, int> &bp_loc_range,
14263 bool enable)
14264 {
14265 for (int i = bp_loc_range.first; i <= bp_loc_range.second; i++)
14266 enable_disable_bp_num_loc (bp_num, i, enable);
14267 }
14268
14269 /* Set ignore-count of breakpoint number BPTNUM to COUNT.
14270 If from_tty is nonzero, it prints a message to that effect,
14271 which ends with a period (no newline). */
14272
14273 void
14274 disable_breakpoint (struct breakpoint *bpt)
14275 {
14276 /* Never disable a watchpoint scope breakpoint; we want to
14277 hit them when we leave scope so we can delete both the
14278 watchpoint and its scope breakpoint at that time. */
14279 if (bpt->type == bp_watchpoint_scope)
14280 return;
14281
14282 bpt->enable_state = bp_disabled;
14283
14284 /* Mark breakpoint locations modified. */
14285 mark_breakpoint_modified (bpt);
14286
14287 if (target_supports_enable_disable_tracepoint ()
14288 && current_trace_status ()->running && is_tracepoint (bpt))
14289 {
14290 struct bp_location *location;
14291
14292 for (location = bpt->loc; location; location = location->next)
14293 target_disable_tracepoint (location);
14294 }
14295
14296 update_global_location_list (UGLL_DONT_INSERT);
14297
14298 gdb::observers::breakpoint_modified.notify (bpt);
14299 }
14300
14301 /* Enable or disable the breakpoint(s) or breakpoint location(s)
14302 specified in ARGS. ARGS may be in any of the formats handled by
14303 extract_bp_number_and_location. ENABLE specifies whether to enable
14304 or disable the breakpoints/locations. */
14305
14306 static void
14307 enable_disable_command (const char *args, int from_tty, bool enable)
14308 {
14309 if (args == 0)
14310 {
14311 struct breakpoint *bpt;
14312
14313 ALL_BREAKPOINTS (bpt)
14314 if (user_breakpoint_p (bpt))
14315 {
14316 if (enable)
14317 enable_breakpoint (bpt);
14318 else
14319 disable_breakpoint (bpt);
14320 }
14321 }
14322 else
14323 {
14324 std::string num = extract_arg (&args);
14325
14326 while (!num.empty ())
14327 {
14328 std::pair<int, int> bp_num_range, bp_loc_range;
14329
14330 extract_bp_number_and_location (num, bp_num_range, bp_loc_range);
14331
14332 if (bp_loc_range.first == bp_loc_range.second
14333 && bp_loc_range.first == 0)
14334 {
14335 /* Handle breakpoint ids with formats 'x' or 'x-z'. */
14336 map_breakpoint_number_range (bp_num_range,
14337 enable
14338 ? enable_breakpoint
14339 : disable_breakpoint);
14340 }
14341 else
14342 {
14343 /* Handle breakpoint ids with formats 'x.y' or
14344 'x.y-z'. */
14345 enable_disable_breakpoint_location_range
14346 (bp_num_range.first, bp_loc_range, enable);
14347 }
14348 num = extract_arg (&args);
14349 }
14350 }
14351 }
14352
14353 /* The disable command disables the specified breakpoints/locations
14354 (or all defined breakpoints) so they're no longer effective in
14355 stopping the inferior. ARGS may be in any of the forms defined in
14356 extract_bp_number_and_location. */
14357
14358 static void
14359 disable_command (const char *args, int from_tty)
14360 {
14361 enable_disable_command (args, from_tty, false);
14362 }
14363
14364 static void
14365 enable_breakpoint_disp (struct breakpoint *bpt, enum bpdisp disposition,
14366 int count)
14367 {
14368 int target_resources_ok;
14369
14370 if (bpt->type == bp_hardware_breakpoint)
14371 {
14372 int i;
14373 i = hw_breakpoint_used_count ();
14374 target_resources_ok =
14375 target_can_use_hardware_watchpoint (bp_hardware_breakpoint,
14376 i + 1, 0);
14377 if (target_resources_ok == 0)
14378 error (_("No hardware breakpoint support in the target."));
14379 else if (target_resources_ok < 0)
14380 error (_("Hardware breakpoints used exceeds limit."));
14381 }
14382
14383 if (is_watchpoint (bpt))
14384 {
14385 /* Initialize it just to avoid a GCC false warning. */
14386 enum enable_state orig_enable_state = bp_disabled;
14387
14388 TRY
14389 {
14390 struct watchpoint *w = (struct watchpoint *) bpt;
14391
14392 orig_enable_state = bpt->enable_state;
14393 bpt->enable_state = bp_enabled;
14394 update_watchpoint (w, 1 /* reparse */);
14395 }
14396 CATCH (e, RETURN_MASK_ALL)
14397 {
14398 bpt->enable_state = orig_enable_state;
14399 exception_fprintf (gdb_stderr, e, _("Cannot enable watchpoint %d: "),
14400 bpt->number);
14401 return;
14402 }
14403 END_CATCH
14404 }
14405
14406 bpt->enable_state = bp_enabled;
14407
14408 /* Mark breakpoint locations modified. */
14409 mark_breakpoint_modified (bpt);
14410
14411 if (target_supports_enable_disable_tracepoint ()
14412 && current_trace_status ()->running && is_tracepoint (bpt))
14413 {
14414 struct bp_location *location;
14415
14416 for (location = bpt->loc; location; location = location->next)
14417 target_enable_tracepoint (location);
14418 }
14419
14420 bpt->disposition = disposition;
14421 bpt->enable_count = count;
14422 update_global_location_list (UGLL_MAY_INSERT);
14423
14424 gdb::observers::breakpoint_modified.notify (bpt);
14425 }
14426
14427
14428 void
14429 enable_breakpoint (struct breakpoint *bpt)
14430 {
14431 enable_breakpoint_disp (bpt, bpt->disposition, 0);
14432 }
14433
14434 /* The enable command enables the specified breakpoints/locations (or
14435 all defined breakpoints) so they once again become (or continue to
14436 be) effective in stopping the inferior. ARGS may be in any of the
14437 forms defined in extract_bp_number_and_location. */
14438
14439 static void
14440 enable_command (const char *args, int from_tty)
14441 {
14442 enable_disable_command (args, from_tty, true);
14443 }
14444
14445 static void
14446 enable_once_command (const char *args, int from_tty)
14447 {
14448 map_breakpoint_numbers
14449 (args, [&] (breakpoint *b)
14450 {
14451 iterate_over_related_breakpoints
14452 (b, [&] (breakpoint *bpt)
14453 {
14454 enable_breakpoint_disp (bpt, disp_disable, 1);
14455 });
14456 });
14457 }
14458
14459 static void
14460 enable_count_command (const char *args, int from_tty)
14461 {
14462 int count;
14463
14464 if (args == NULL)
14465 error_no_arg (_("hit count"));
14466
14467 count = get_number (&args);
14468
14469 map_breakpoint_numbers
14470 (args, [&] (breakpoint *b)
14471 {
14472 iterate_over_related_breakpoints
14473 (b, [&] (breakpoint *bpt)
14474 {
14475 enable_breakpoint_disp (bpt, disp_disable, count);
14476 });
14477 });
14478 }
14479
14480 static void
14481 enable_delete_command (const char *args, int from_tty)
14482 {
14483 map_breakpoint_numbers
14484 (args, [&] (breakpoint *b)
14485 {
14486 iterate_over_related_breakpoints
14487 (b, [&] (breakpoint *bpt)
14488 {
14489 enable_breakpoint_disp (bpt, disp_del, 1);
14490 });
14491 });
14492 }
14493 \f
14494 static void
14495 set_breakpoint_cmd (const char *args, int from_tty)
14496 {
14497 }
14498
14499 static void
14500 show_breakpoint_cmd (const char *args, int from_tty)
14501 {
14502 }
14503
14504 /* Invalidate last known value of any hardware watchpoint if
14505 the memory which that value represents has been written to by
14506 GDB itself. */
14507
14508 static void
14509 invalidate_bp_value_on_memory_change (struct inferior *inferior,
14510 CORE_ADDR addr, ssize_t len,
14511 const bfd_byte *data)
14512 {
14513 struct breakpoint *bp;
14514
14515 ALL_BREAKPOINTS (bp)
14516 if (bp->enable_state == bp_enabled
14517 && bp->type == bp_hardware_watchpoint)
14518 {
14519 struct watchpoint *wp = (struct watchpoint *) bp;
14520
14521 if (wp->val_valid && wp->val != nullptr)
14522 {
14523 struct bp_location *loc;
14524
14525 for (loc = bp->loc; loc != NULL; loc = loc->next)
14526 if (loc->loc_type == bp_loc_hardware_watchpoint
14527 && loc->address + loc->length > addr
14528 && addr + len > loc->address)
14529 {
14530 wp->val = NULL;
14531 wp->val_valid = 0;
14532 }
14533 }
14534 }
14535 }
14536
14537 /* Create and insert a breakpoint for software single step. */
14538
14539 void
14540 insert_single_step_breakpoint (struct gdbarch *gdbarch,
14541 const address_space *aspace,
14542 CORE_ADDR next_pc)
14543 {
14544 struct thread_info *tp = inferior_thread ();
14545 struct symtab_and_line sal;
14546 CORE_ADDR pc = next_pc;
14547
14548 if (tp->control.single_step_breakpoints == NULL)
14549 {
14550 tp->control.single_step_breakpoints
14551 = new_single_step_breakpoint (tp->global_num, gdbarch);
14552 }
14553
14554 sal = find_pc_line (pc, 0);
14555 sal.pc = pc;
14556 sal.section = find_pc_overlay (pc);
14557 sal.explicit_pc = 1;
14558 add_location_to_breakpoint (tp->control.single_step_breakpoints, &sal);
14559
14560 update_global_location_list (UGLL_INSERT);
14561 }
14562
14563 /* Insert single step breakpoints according to the current state. */
14564
14565 int
14566 insert_single_step_breakpoints (struct gdbarch *gdbarch)
14567 {
14568 struct regcache *regcache = get_current_regcache ();
14569 std::vector<CORE_ADDR> next_pcs;
14570
14571 next_pcs = gdbarch_software_single_step (gdbarch, regcache);
14572
14573 if (!next_pcs.empty ())
14574 {
14575 struct frame_info *frame = get_current_frame ();
14576 const address_space *aspace = get_frame_address_space (frame);
14577
14578 for (CORE_ADDR pc : next_pcs)
14579 insert_single_step_breakpoint (gdbarch, aspace, pc);
14580
14581 return 1;
14582 }
14583 else
14584 return 0;
14585 }
14586
14587 /* See breakpoint.h. */
14588
14589 int
14590 breakpoint_has_location_inserted_here (struct breakpoint *bp,
14591 const address_space *aspace,
14592 CORE_ADDR pc)
14593 {
14594 struct bp_location *loc;
14595
14596 for (loc = bp->loc; loc != NULL; loc = loc->next)
14597 if (loc->inserted
14598 && breakpoint_location_address_match (loc, aspace, pc))
14599 return 1;
14600
14601 return 0;
14602 }
14603
14604 /* Check whether a software single-step breakpoint is inserted at
14605 PC. */
14606
14607 int
14608 single_step_breakpoint_inserted_here_p (const address_space *aspace,
14609 CORE_ADDR pc)
14610 {
14611 struct breakpoint *bpt;
14612
14613 ALL_BREAKPOINTS (bpt)
14614 {
14615 if (bpt->type == bp_single_step
14616 && breakpoint_has_location_inserted_here (bpt, aspace, pc))
14617 return 1;
14618 }
14619 return 0;
14620 }
14621
14622 /* Tracepoint-specific operations. */
14623
14624 /* Set tracepoint count to NUM. */
14625 static void
14626 set_tracepoint_count (int num)
14627 {
14628 tracepoint_count = num;
14629 set_internalvar_integer (lookup_internalvar ("tpnum"), num);
14630 }
14631
14632 static void
14633 trace_command (const char *arg, int from_tty)
14634 {
14635 struct breakpoint_ops *ops;
14636
14637 event_location_up location = string_to_event_location (&arg,
14638 current_language);
14639 if (location != NULL
14640 && event_location_type (location.get ()) == PROBE_LOCATION)
14641 ops = &tracepoint_probe_breakpoint_ops;
14642 else
14643 ops = &tracepoint_breakpoint_ops;
14644
14645 create_breakpoint (get_current_arch (),
14646 location.get (),
14647 NULL, 0, arg, 1 /* parse arg */,
14648 0 /* tempflag */,
14649 bp_tracepoint /* type_wanted */,
14650 0 /* Ignore count */,
14651 pending_break_support,
14652 ops,
14653 from_tty,
14654 1 /* enabled */,
14655 0 /* internal */, 0);
14656 }
14657
14658 static void
14659 ftrace_command (const char *arg, int from_tty)
14660 {
14661 event_location_up location = string_to_event_location (&arg,
14662 current_language);
14663 create_breakpoint (get_current_arch (),
14664 location.get (),
14665 NULL, 0, arg, 1 /* parse arg */,
14666 0 /* tempflag */,
14667 bp_fast_tracepoint /* type_wanted */,
14668 0 /* Ignore count */,
14669 pending_break_support,
14670 &tracepoint_breakpoint_ops,
14671 from_tty,
14672 1 /* enabled */,
14673 0 /* internal */, 0);
14674 }
14675
14676 /* strace command implementation. Creates a static tracepoint. */
14677
14678 static void
14679 strace_command (const char *arg, int from_tty)
14680 {
14681 struct breakpoint_ops *ops;
14682 event_location_up location;
14683
14684 /* Decide if we are dealing with a static tracepoint marker (`-m'),
14685 or with a normal static tracepoint. */
14686 if (arg && startswith (arg, "-m") && isspace (arg[2]))
14687 {
14688 ops = &strace_marker_breakpoint_ops;
14689 location = new_linespec_location (&arg, symbol_name_match_type::FULL);
14690 }
14691 else
14692 {
14693 ops = &tracepoint_breakpoint_ops;
14694 location = string_to_event_location (&arg, current_language);
14695 }
14696
14697 create_breakpoint (get_current_arch (),
14698 location.get (),
14699 NULL, 0, arg, 1 /* parse arg */,
14700 0 /* tempflag */,
14701 bp_static_tracepoint /* type_wanted */,
14702 0 /* Ignore count */,
14703 pending_break_support,
14704 ops,
14705 from_tty,
14706 1 /* enabled */,
14707 0 /* internal */, 0);
14708 }
14709
14710 /* Set up a fake reader function that gets command lines from a linked
14711 list that was acquired during tracepoint uploading. */
14712
14713 static struct uploaded_tp *this_utp;
14714 static int next_cmd;
14715
14716 static char *
14717 read_uploaded_action (void)
14718 {
14719 char *rslt = nullptr;
14720
14721 if (next_cmd < this_utp->cmd_strings.size ())
14722 {
14723 rslt = this_utp->cmd_strings[next_cmd];
14724 next_cmd++;
14725 }
14726
14727 return rslt;
14728 }
14729
14730 /* Given information about a tracepoint as recorded on a target (which
14731 can be either a live system or a trace file), attempt to create an
14732 equivalent GDB tracepoint. This is not a reliable process, since
14733 the target does not necessarily have all the information used when
14734 the tracepoint was originally defined. */
14735
14736 struct tracepoint *
14737 create_tracepoint_from_upload (struct uploaded_tp *utp)
14738 {
14739 const char *addr_str;
14740 char small_buf[100];
14741 struct tracepoint *tp;
14742
14743 if (utp->at_string)
14744 addr_str = utp->at_string;
14745 else
14746 {
14747 /* In the absence of a source location, fall back to raw
14748 address. Since there is no way to confirm that the address
14749 means the same thing as when the trace was started, warn the
14750 user. */
14751 warning (_("Uploaded tracepoint %d has no "
14752 "source location, using raw address"),
14753 utp->number);
14754 xsnprintf (small_buf, sizeof (small_buf), "*%s", hex_string (utp->addr));
14755 addr_str = small_buf;
14756 }
14757
14758 /* There's not much we can do with a sequence of bytecodes. */
14759 if (utp->cond && !utp->cond_string)
14760 warning (_("Uploaded tracepoint %d condition "
14761 "has no source form, ignoring it"),
14762 utp->number);
14763
14764 event_location_up location = string_to_event_location (&addr_str,
14765 current_language);
14766 if (!create_breakpoint (get_current_arch (),
14767 location.get (),
14768 utp->cond_string, -1, addr_str,
14769 0 /* parse cond/thread */,
14770 0 /* tempflag */,
14771 utp->type /* type_wanted */,
14772 0 /* Ignore count */,
14773 pending_break_support,
14774 &tracepoint_breakpoint_ops,
14775 0 /* from_tty */,
14776 utp->enabled /* enabled */,
14777 0 /* internal */,
14778 CREATE_BREAKPOINT_FLAGS_INSERTED))
14779 return NULL;
14780
14781 /* Get the tracepoint we just created. */
14782 tp = get_tracepoint (tracepoint_count);
14783 gdb_assert (tp != NULL);
14784
14785 if (utp->pass > 0)
14786 {
14787 xsnprintf (small_buf, sizeof (small_buf), "%d %d", utp->pass,
14788 tp->number);
14789
14790 trace_pass_command (small_buf, 0);
14791 }
14792
14793 /* If we have uploaded versions of the original commands, set up a
14794 special-purpose "reader" function and call the usual command line
14795 reader, then pass the result to the breakpoint command-setting
14796 function. */
14797 if (!utp->cmd_strings.empty ())
14798 {
14799 command_line_up cmd_list;
14800
14801 this_utp = utp;
14802 next_cmd = 0;
14803
14804 cmd_list = read_command_lines_1 (read_uploaded_action, 1, NULL, NULL);
14805
14806 breakpoint_set_commands (tp, std::move (cmd_list));
14807 }
14808 else if (!utp->actions.empty ()
14809 || !utp->step_actions.empty ())
14810 warning (_("Uploaded tracepoint %d actions "
14811 "have no source form, ignoring them"),
14812 utp->number);
14813
14814 /* Copy any status information that might be available. */
14815 tp->hit_count = utp->hit_count;
14816 tp->traceframe_usage = utp->traceframe_usage;
14817
14818 return tp;
14819 }
14820
14821 /* Print information on tracepoint number TPNUM_EXP, or all if
14822 omitted. */
14823
14824 static void
14825 info_tracepoints_command (const char *args, int from_tty)
14826 {
14827 struct ui_out *uiout = current_uiout;
14828 int num_printed;
14829
14830 num_printed = breakpoint_1 (args, 0, is_tracepoint);
14831
14832 if (num_printed == 0)
14833 {
14834 if (args == NULL || *args == '\0')
14835 uiout->message ("No tracepoints.\n");
14836 else
14837 uiout->message ("No tracepoint matching '%s'.\n", args);
14838 }
14839
14840 default_collect_info ();
14841 }
14842
14843 /* The 'enable trace' command enables tracepoints.
14844 Not supported by all targets. */
14845 static void
14846 enable_trace_command (const char *args, int from_tty)
14847 {
14848 enable_command (args, from_tty);
14849 }
14850
14851 /* The 'disable trace' command disables tracepoints.
14852 Not supported by all targets. */
14853 static void
14854 disable_trace_command (const char *args, int from_tty)
14855 {
14856 disable_command (args, from_tty);
14857 }
14858
14859 /* Remove a tracepoint (or all if no argument). */
14860 static void
14861 delete_trace_command (const char *arg, int from_tty)
14862 {
14863 struct breakpoint *b, *b_tmp;
14864
14865 dont_repeat ();
14866
14867 if (arg == 0)
14868 {
14869 int breaks_to_delete = 0;
14870
14871 /* Delete all breakpoints if no argument.
14872 Do not delete internal or call-dummy breakpoints, these
14873 have to be deleted with an explicit breakpoint number
14874 argument. */
14875 ALL_TRACEPOINTS (b)
14876 if (is_tracepoint (b) && user_breakpoint_p (b))
14877 {
14878 breaks_to_delete = 1;
14879 break;
14880 }
14881
14882 /* Ask user only if there are some breakpoints to delete. */
14883 if (!from_tty
14884 || (breaks_to_delete && query (_("Delete all tracepoints? "))))
14885 {
14886 ALL_BREAKPOINTS_SAFE (b, b_tmp)
14887 if (is_tracepoint (b) && user_breakpoint_p (b))
14888 delete_breakpoint (b);
14889 }
14890 }
14891 else
14892 map_breakpoint_numbers
14893 (arg, [&] (breakpoint *b)
14894 {
14895 iterate_over_related_breakpoints (b, delete_breakpoint);
14896 });
14897 }
14898
14899 /* Helper function for trace_pass_command. */
14900
14901 static void
14902 trace_pass_set_count (struct tracepoint *tp, int count, int from_tty)
14903 {
14904 tp->pass_count = count;
14905 gdb::observers::breakpoint_modified.notify (tp);
14906 if (from_tty)
14907 printf_filtered (_("Setting tracepoint %d's passcount to %d\n"),
14908 tp->number, count);
14909 }
14910
14911 /* Set passcount for tracepoint.
14912
14913 First command argument is passcount, second is tracepoint number.
14914 If tracepoint number omitted, apply to most recently defined.
14915 Also accepts special argument "all". */
14916
14917 static void
14918 trace_pass_command (const char *args, int from_tty)
14919 {
14920 struct tracepoint *t1;
14921 ULONGEST count;
14922
14923 if (args == 0 || *args == 0)
14924 error (_("passcount command requires an "
14925 "argument (count + optional TP num)"));
14926
14927 count = strtoulst (args, &args, 10); /* Count comes first, then TP num. */
14928
14929 args = skip_spaces (args);
14930 if (*args && strncasecmp (args, "all", 3) == 0)
14931 {
14932 struct breakpoint *b;
14933
14934 args += 3; /* Skip special argument "all". */
14935 if (*args)
14936 error (_("Junk at end of arguments."));
14937
14938 ALL_TRACEPOINTS (b)
14939 {
14940 t1 = (struct tracepoint *) b;
14941 trace_pass_set_count (t1, count, from_tty);
14942 }
14943 }
14944 else if (*args == '\0')
14945 {
14946 t1 = get_tracepoint_by_number (&args, NULL);
14947 if (t1)
14948 trace_pass_set_count (t1, count, from_tty);
14949 }
14950 else
14951 {
14952 number_or_range_parser parser (args);
14953 while (!parser.finished ())
14954 {
14955 t1 = get_tracepoint_by_number (&args, &parser);
14956 if (t1)
14957 trace_pass_set_count (t1, count, from_tty);
14958 }
14959 }
14960 }
14961
14962 struct tracepoint *
14963 get_tracepoint (int num)
14964 {
14965 struct breakpoint *t;
14966
14967 ALL_TRACEPOINTS (t)
14968 if (t->number == num)
14969 return (struct tracepoint *) t;
14970
14971 return NULL;
14972 }
14973
14974 /* Find the tracepoint with the given target-side number (which may be
14975 different from the tracepoint number after disconnecting and
14976 reconnecting). */
14977
14978 struct tracepoint *
14979 get_tracepoint_by_number_on_target (int num)
14980 {
14981 struct breakpoint *b;
14982
14983 ALL_TRACEPOINTS (b)
14984 {
14985 struct tracepoint *t = (struct tracepoint *) b;
14986
14987 if (t->number_on_target == num)
14988 return t;
14989 }
14990
14991 return NULL;
14992 }
14993
14994 /* Utility: parse a tracepoint number and look it up in the list.
14995 If STATE is not NULL, use, get_number_or_range_state and ignore ARG.
14996 If the argument is missing, the most recent tracepoint
14997 (tracepoint_count) is returned. */
14998
14999 struct tracepoint *
15000 get_tracepoint_by_number (const char **arg,
15001 number_or_range_parser *parser)
15002 {
15003 struct breakpoint *t;
15004 int tpnum;
15005 const char *instring = arg == NULL ? NULL : *arg;
15006
15007 if (parser != NULL)
15008 {
15009 gdb_assert (!parser->finished ());
15010 tpnum = parser->get_number ();
15011 }
15012 else if (arg == NULL || *arg == NULL || ! **arg)
15013 tpnum = tracepoint_count;
15014 else
15015 tpnum = get_number (arg);
15016
15017 if (tpnum <= 0)
15018 {
15019 if (instring && *instring)
15020 printf_filtered (_("bad tracepoint number at or near '%s'\n"),
15021 instring);
15022 else
15023 printf_filtered (_("No previous tracepoint\n"));
15024 return NULL;
15025 }
15026
15027 ALL_TRACEPOINTS (t)
15028 if (t->number == tpnum)
15029 {
15030 return (struct tracepoint *) t;
15031 }
15032
15033 printf_unfiltered ("No tracepoint number %d.\n", tpnum);
15034 return NULL;
15035 }
15036
15037 void
15038 print_recreate_thread (struct breakpoint *b, struct ui_file *fp)
15039 {
15040 if (b->thread != -1)
15041 fprintf_unfiltered (fp, " thread %d", b->thread);
15042
15043 if (b->task != 0)
15044 fprintf_unfiltered (fp, " task %d", b->task);
15045
15046 fprintf_unfiltered (fp, "\n");
15047 }
15048
15049 /* Save information on user settable breakpoints (watchpoints, etc) to
15050 a new script file named FILENAME. If FILTER is non-NULL, call it
15051 on each breakpoint and only include the ones for which it returns
15052 non-zero. */
15053
15054 static void
15055 save_breakpoints (const char *filename, int from_tty,
15056 int (*filter) (const struct breakpoint *))
15057 {
15058 struct breakpoint *tp;
15059 int any = 0;
15060 int extra_trace_bits = 0;
15061
15062 if (filename == 0 || *filename == 0)
15063 error (_("Argument required (file name in which to save)"));
15064
15065 /* See if we have anything to save. */
15066 ALL_BREAKPOINTS (tp)
15067 {
15068 /* Skip internal and momentary breakpoints. */
15069 if (!user_breakpoint_p (tp))
15070 continue;
15071
15072 /* If we have a filter, only save the breakpoints it accepts. */
15073 if (filter && !filter (tp))
15074 continue;
15075
15076 any = 1;
15077
15078 if (is_tracepoint (tp))
15079 {
15080 extra_trace_bits = 1;
15081
15082 /* We can stop searching. */
15083 break;
15084 }
15085 }
15086
15087 if (!any)
15088 {
15089 warning (_("Nothing to save."));
15090 return;
15091 }
15092
15093 gdb::unique_xmalloc_ptr<char> expanded_filename (tilde_expand (filename));
15094
15095 stdio_file fp;
15096
15097 if (!fp.open (expanded_filename.get (), "w"))
15098 error (_("Unable to open file '%s' for saving (%s)"),
15099 expanded_filename.get (), safe_strerror (errno));
15100
15101 if (extra_trace_bits)
15102 save_trace_state_variables (&fp);
15103
15104 ALL_BREAKPOINTS (tp)
15105 {
15106 /* Skip internal and momentary breakpoints. */
15107 if (!user_breakpoint_p (tp))
15108 continue;
15109
15110 /* If we have a filter, only save the breakpoints it accepts. */
15111 if (filter && !filter (tp))
15112 continue;
15113
15114 tp->ops->print_recreate (tp, &fp);
15115
15116 /* Note, we can't rely on tp->number for anything, as we can't
15117 assume the recreated breakpoint numbers will match. Use $bpnum
15118 instead. */
15119
15120 if (tp->cond_string)
15121 fp.printf (" condition $bpnum %s\n", tp->cond_string);
15122
15123 if (tp->ignore_count)
15124 fp.printf (" ignore $bpnum %d\n", tp->ignore_count);
15125
15126 if (tp->type != bp_dprintf && tp->commands)
15127 {
15128 fp.puts (" commands\n");
15129
15130 current_uiout->redirect (&fp);
15131 TRY
15132 {
15133 print_command_lines (current_uiout, tp->commands.get (), 2);
15134 }
15135 CATCH (ex, RETURN_MASK_ALL)
15136 {
15137 current_uiout->redirect (NULL);
15138 throw_exception (ex);
15139 }
15140 END_CATCH
15141
15142 current_uiout->redirect (NULL);
15143 fp.puts (" end\n");
15144 }
15145
15146 if (tp->enable_state == bp_disabled)
15147 fp.puts ("disable $bpnum\n");
15148
15149 /* If this is a multi-location breakpoint, check if the locations
15150 should be individually disabled. Watchpoint locations are
15151 special, and not user visible. */
15152 if (!is_watchpoint (tp) && tp->loc && tp->loc->next)
15153 {
15154 struct bp_location *loc;
15155 int n = 1;
15156
15157 for (loc = tp->loc; loc != NULL; loc = loc->next, n++)
15158 if (!loc->enabled)
15159 fp.printf ("disable $bpnum.%d\n", n);
15160 }
15161 }
15162
15163 if (extra_trace_bits && *default_collect)
15164 fp.printf ("set default-collect %s\n", default_collect);
15165
15166 if (from_tty)
15167 printf_filtered (_("Saved to file '%s'.\n"), expanded_filename.get ());
15168 }
15169
15170 /* The `save breakpoints' command. */
15171
15172 static void
15173 save_breakpoints_command (const char *args, int from_tty)
15174 {
15175 save_breakpoints (args, from_tty, NULL);
15176 }
15177
15178 /* The `save tracepoints' command. */
15179
15180 static void
15181 save_tracepoints_command (const char *args, int from_tty)
15182 {
15183 save_breakpoints (args, from_tty, is_tracepoint);
15184 }
15185
15186 /* Create a vector of all tracepoints. */
15187
15188 VEC(breakpoint_p) *
15189 all_tracepoints (void)
15190 {
15191 VEC(breakpoint_p) *tp_vec = 0;
15192 struct breakpoint *tp;
15193
15194 ALL_TRACEPOINTS (tp)
15195 {
15196 VEC_safe_push (breakpoint_p, tp_vec, tp);
15197 }
15198
15199 return tp_vec;
15200 }
15201
15202 \f
15203 /* This help string is used to consolidate all the help string for specifying
15204 locations used by several commands. */
15205
15206 #define LOCATION_HELP_STRING \
15207 "Linespecs are colon-separated lists of location parameters, such as\n\
15208 source filename, function name, label name, and line number.\n\
15209 Example: To specify the start of a label named \"the_top\" in the\n\
15210 function \"fact\" in the file \"factorial.c\", use\n\
15211 \"factorial.c:fact:the_top\".\n\
15212 \n\
15213 Address locations begin with \"*\" and specify an exact address in the\n\
15214 program. Example: To specify the fourth byte past the start function\n\
15215 \"main\", use \"*main + 4\".\n\
15216 \n\
15217 Explicit locations are similar to linespecs but use an option/argument\n\
15218 syntax to specify location parameters.\n\
15219 Example: To specify the start of the label named \"the_top\" in the\n\
15220 function \"fact\" in the file \"factorial.c\", use \"-source factorial.c\n\
15221 -function fact -label the_top\".\n\
15222 \n\
15223 By default, a specified function is matched against the program's\n\
15224 functions in all scopes. For C++, this means in all namespaces and\n\
15225 classes. For Ada, this means in all packages. E.g., in C++,\n\
15226 \"func()\" matches \"A::func()\", \"A::B::func()\", etc. The\n\
15227 \"-qualified\" flag overrides this behavior, making GDB interpret the\n\
15228 specified name as a complete fully-qualified name instead.\n"
15229
15230 /* This help string is used for the break, hbreak, tbreak and thbreak
15231 commands. It is defined as a macro to prevent duplication.
15232 COMMAND should be a string constant containing the name of the
15233 command. */
15234
15235 #define BREAK_ARGS_HELP(command) \
15236 command" [PROBE_MODIFIER] [LOCATION] [thread THREADNUM] [if CONDITION]\n\
15237 PROBE_MODIFIER shall be present if the command is to be placed in a\n\
15238 probe point. Accepted values are `-probe' (for a generic, automatically\n\
15239 guessed probe type), `-probe-stap' (for a SystemTap probe) or \n\
15240 `-probe-dtrace' (for a DTrace probe).\n\
15241 LOCATION may be a linespec, address, or explicit location as described\n\
15242 below.\n\
15243 \n\
15244 With no LOCATION, uses current execution address of the selected\n\
15245 stack frame. This is useful for breaking on return to a stack frame.\n\
15246 \n\
15247 THREADNUM is the number from \"info threads\".\n\
15248 CONDITION is a boolean expression.\n\
15249 \n" LOCATION_HELP_STRING "\n\
15250 Multiple breakpoints at one place are permitted, and useful if their\n\
15251 conditions are different.\n\
15252 \n\
15253 Do \"help breakpoints\" for info on other commands dealing with breakpoints."
15254
15255 /* List of subcommands for "catch". */
15256 static struct cmd_list_element *catch_cmdlist;
15257
15258 /* List of subcommands for "tcatch". */
15259 static struct cmd_list_element *tcatch_cmdlist;
15260
15261 void
15262 add_catch_command (const char *name, const char *docstring,
15263 cmd_const_sfunc_ftype *sfunc,
15264 completer_ftype *completer,
15265 void *user_data_catch,
15266 void *user_data_tcatch)
15267 {
15268 struct cmd_list_element *command;
15269
15270 command = add_cmd (name, class_breakpoint, docstring,
15271 &catch_cmdlist);
15272 set_cmd_sfunc (command, sfunc);
15273 set_cmd_context (command, user_data_catch);
15274 set_cmd_completer (command, completer);
15275
15276 command = add_cmd (name, class_breakpoint, docstring,
15277 &tcatch_cmdlist);
15278 set_cmd_sfunc (command, sfunc);
15279 set_cmd_context (command, user_data_tcatch);
15280 set_cmd_completer (command, completer);
15281 }
15282
15283 static void
15284 save_command (const char *arg, int from_tty)
15285 {
15286 printf_unfiltered (_("\"save\" must be followed by "
15287 "the name of a save subcommand.\n"));
15288 help_list (save_cmdlist, "save ", all_commands, gdb_stdout);
15289 }
15290
15291 struct breakpoint *
15292 iterate_over_breakpoints (int (*callback) (struct breakpoint *, void *),
15293 void *data)
15294 {
15295 struct breakpoint *b, *b_tmp;
15296
15297 ALL_BREAKPOINTS_SAFE (b, b_tmp)
15298 {
15299 if ((*callback) (b, data))
15300 return b;
15301 }
15302
15303 return NULL;
15304 }
15305
15306 /* Zero if any of the breakpoint's locations could be a location where
15307 functions have been inlined, nonzero otherwise. */
15308
15309 static int
15310 is_non_inline_function (struct breakpoint *b)
15311 {
15312 /* The shared library event breakpoint is set on the address of a
15313 non-inline function. */
15314 if (b->type == bp_shlib_event)
15315 return 1;
15316
15317 return 0;
15318 }
15319
15320 /* Nonzero if the specified PC cannot be a location where functions
15321 have been inlined. */
15322
15323 int
15324 pc_at_non_inline_function (const address_space *aspace, CORE_ADDR pc,
15325 const struct target_waitstatus *ws)
15326 {
15327 struct breakpoint *b;
15328 struct bp_location *bl;
15329
15330 ALL_BREAKPOINTS (b)
15331 {
15332 if (!is_non_inline_function (b))
15333 continue;
15334
15335 for (bl = b->loc; bl != NULL; bl = bl->next)
15336 {
15337 if (!bl->shlib_disabled
15338 && bpstat_check_location (bl, aspace, pc, ws))
15339 return 1;
15340 }
15341 }
15342
15343 return 0;
15344 }
15345
15346 /* Remove any references to OBJFILE which is going to be freed. */
15347
15348 void
15349 breakpoint_free_objfile (struct objfile *objfile)
15350 {
15351 struct bp_location **locp, *loc;
15352
15353 ALL_BP_LOCATIONS (loc, locp)
15354 if (loc->symtab != NULL && SYMTAB_OBJFILE (loc->symtab) == objfile)
15355 loc->symtab = NULL;
15356 }
15357
15358 void
15359 initialize_breakpoint_ops (void)
15360 {
15361 static int initialized = 0;
15362
15363 struct breakpoint_ops *ops;
15364
15365 if (initialized)
15366 return;
15367 initialized = 1;
15368
15369 /* The breakpoint_ops structure to be inherit by all kinds of
15370 breakpoints (real breakpoints, i.e., user "break" breakpoints,
15371 internal and momentary breakpoints, etc.). */
15372 ops = &bkpt_base_breakpoint_ops;
15373 *ops = base_breakpoint_ops;
15374 ops->re_set = bkpt_re_set;
15375 ops->insert_location = bkpt_insert_location;
15376 ops->remove_location = bkpt_remove_location;
15377 ops->breakpoint_hit = bkpt_breakpoint_hit;
15378 ops->create_sals_from_location = bkpt_create_sals_from_location;
15379 ops->create_breakpoints_sal = bkpt_create_breakpoints_sal;
15380 ops->decode_location = bkpt_decode_location;
15381
15382 /* The breakpoint_ops structure to be used in regular breakpoints. */
15383 ops = &bkpt_breakpoint_ops;
15384 *ops = bkpt_base_breakpoint_ops;
15385 ops->re_set = bkpt_re_set;
15386 ops->resources_needed = bkpt_resources_needed;
15387 ops->print_it = bkpt_print_it;
15388 ops->print_mention = bkpt_print_mention;
15389 ops->print_recreate = bkpt_print_recreate;
15390
15391 /* Ranged breakpoints. */
15392 ops = &ranged_breakpoint_ops;
15393 *ops = bkpt_breakpoint_ops;
15394 ops->breakpoint_hit = breakpoint_hit_ranged_breakpoint;
15395 ops->resources_needed = resources_needed_ranged_breakpoint;
15396 ops->print_it = print_it_ranged_breakpoint;
15397 ops->print_one = print_one_ranged_breakpoint;
15398 ops->print_one_detail = print_one_detail_ranged_breakpoint;
15399 ops->print_mention = print_mention_ranged_breakpoint;
15400 ops->print_recreate = print_recreate_ranged_breakpoint;
15401
15402 /* Internal breakpoints. */
15403 ops = &internal_breakpoint_ops;
15404 *ops = bkpt_base_breakpoint_ops;
15405 ops->re_set = internal_bkpt_re_set;
15406 ops->check_status = internal_bkpt_check_status;
15407 ops->print_it = internal_bkpt_print_it;
15408 ops->print_mention = internal_bkpt_print_mention;
15409
15410 /* Momentary breakpoints. */
15411 ops = &momentary_breakpoint_ops;
15412 *ops = bkpt_base_breakpoint_ops;
15413 ops->re_set = momentary_bkpt_re_set;
15414 ops->check_status = momentary_bkpt_check_status;
15415 ops->print_it = momentary_bkpt_print_it;
15416 ops->print_mention = momentary_bkpt_print_mention;
15417
15418 /* Probe breakpoints. */
15419 ops = &bkpt_probe_breakpoint_ops;
15420 *ops = bkpt_breakpoint_ops;
15421 ops->insert_location = bkpt_probe_insert_location;
15422 ops->remove_location = bkpt_probe_remove_location;
15423 ops->create_sals_from_location = bkpt_probe_create_sals_from_location;
15424 ops->decode_location = bkpt_probe_decode_location;
15425
15426 /* Watchpoints. */
15427 ops = &watchpoint_breakpoint_ops;
15428 *ops = base_breakpoint_ops;
15429 ops->re_set = re_set_watchpoint;
15430 ops->insert_location = insert_watchpoint;
15431 ops->remove_location = remove_watchpoint;
15432 ops->breakpoint_hit = breakpoint_hit_watchpoint;
15433 ops->check_status = check_status_watchpoint;
15434 ops->resources_needed = resources_needed_watchpoint;
15435 ops->works_in_software_mode = works_in_software_mode_watchpoint;
15436 ops->print_it = print_it_watchpoint;
15437 ops->print_mention = print_mention_watchpoint;
15438 ops->print_recreate = print_recreate_watchpoint;
15439 ops->explains_signal = explains_signal_watchpoint;
15440
15441 /* Masked watchpoints. */
15442 ops = &masked_watchpoint_breakpoint_ops;
15443 *ops = watchpoint_breakpoint_ops;
15444 ops->insert_location = insert_masked_watchpoint;
15445 ops->remove_location = remove_masked_watchpoint;
15446 ops->resources_needed = resources_needed_masked_watchpoint;
15447 ops->works_in_software_mode = works_in_software_mode_masked_watchpoint;
15448 ops->print_it = print_it_masked_watchpoint;
15449 ops->print_one_detail = print_one_detail_masked_watchpoint;
15450 ops->print_mention = print_mention_masked_watchpoint;
15451 ops->print_recreate = print_recreate_masked_watchpoint;
15452
15453 /* Tracepoints. */
15454 ops = &tracepoint_breakpoint_ops;
15455 *ops = base_breakpoint_ops;
15456 ops->re_set = tracepoint_re_set;
15457 ops->breakpoint_hit = tracepoint_breakpoint_hit;
15458 ops->print_one_detail = tracepoint_print_one_detail;
15459 ops->print_mention = tracepoint_print_mention;
15460 ops->print_recreate = tracepoint_print_recreate;
15461 ops->create_sals_from_location = tracepoint_create_sals_from_location;
15462 ops->create_breakpoints_sal = tracepoint_create_breakpoints_sal;
15463 ops->decode_location = tracepoint_decode_location;
15464
15465 /* Probe tracepoints. */
15466 ops = &tracepoint_probe_breakpoint_ops;
15467 *ops = tracepoint_breakpoint_ops;
15468 ops->create_sals_from_location = tracepoint_probe_create_sals_from_location;
15469 ops->decode_location = tracepoint_probe_decode_location;
15470
15471 /* Static tracepoints with marker (`-m'). */
15472 ops = &strace_marker_breakpoint_ops;
15473 *ops = tracepoint_breakpoint_ops;
15474 ops->create_sals_from_location = strace_marker_create_sals_from_location;
15475 ops->create_breakpoints_sal = strace_marker_create_breakpoints_sal;
15476 ops->decode_location = strace_marker_decode_location;
15477
15478 /* Fork catchpoints. */
15479 ops = &catch_fork_breakpoint_ops;
15480 *ops = base_breakpoint_ops;
15481 ops->insert_location = insert_catch_fork;
15482 ops->remove_location = remove_catch_fork;
15483 ops->breakpoint_hit = breakpoint_hit_catch_fork;
15484 ops->print_it = print_it_catch_fork;
15485 ops->print_one = print_one_catch_fork;
15486 ops->print_mention = print_mention_catch_fork;
15487 ops->print_recreate = print_recreate_catch_fork;
15488
15489 /* Vfork catchpoints. */
15490 ops = &catch_vfork_breakpoint_ops;
15491 *ops = base_breakpoint_ops;
15492 ops->insert_location = insert_catch_vfork;
15493 ops->remove_location = remove_catch_vfork;
15494 ops->breakpoint_hit = breakpoint_hit_catch_vfork;
15495 ops->print_it = print_it_catch_vfork;
15496 ops->print_one = print_one_catch_vfork;
15497 ops->print_mention = print_mention_catch_vfork;
15498 ops->print_recreate = print_recreate_catch_vfork;
15499
15500 /* Exec catchpoints. */
15501 ops = &catch_exec_breakpoint_ops;
15502 *ops = base_breakpoint_ops;
15503 ops->insert_location = insert_catch_exec;
15504 ops->remove_location = remove_catch_exec;
15505 ops->breakpoint_hit = breakpoint_hit_catch_exec;
15506 ops->print_it = print_it_catch_exec;
15507 ops->print_one = print_one_catch_exec;
15508 ops->print_mention = print_mention_catch_exec;
15509 ops->print_recreate = print_recreate_catch_exec;
15510
15511 /* Solib-related catchpoints. */
15512 ops = &catch_solib_breakpoint_ops;
15513 *ops = base_breakpoint_ops;
15514 ops->insert_location = insert_catch_solib;
15515 ops->remove_location = remove_catch_solib;
15516 ops->breakpoint_hit = breakpoint_hit_catch_solib;
15517 ops->check_status = check_status_catch_solib;
15518 ops->print_it = print_it_catch_solib;
15519 ops->print_one = print_one_catch_solib;
15520 ops->print_mention = print_mention_catch_solib;
15521 ops->print_recreate = print_recreate_catch_solib;
15522
15523 ops = &dprintf_breakpoint_ops;
15524 *ops = bkpt_base_breakpoint_ops;
15525 ops->re_set = dprintf_re_set;
15526 ops->resources_needed = bkpt_resources_needed;
15527 ops->print_it = bkpt_print_it;
15528 ops->print_mention = bkpt_print_mention;
15529 ops->print_recreate = dprintf_print_recreate;
15530 ops->after_condition_true = dprintf_after_condition_true;
15531 ops->breakpoint_hit = dprintf_breakpoint_hit;
15532 }
15533
15534 /* Chain containing all defined "enable breakpoint" subcommands. */
15535
15536 static struct cmd_list_element *enablebreaklist = NULL;
15537
15538 void
15539 _initialize_breakpoint (void)
15540 {
15541 struct cmd_list_element *c;
15542
15543 initialize_breakpoint_ops ();
15544
15545 gdb::observers::solib_unloaded.attach (disable_breakpoints_in_unloaded_shlib);
15546 gdb::observers::free_objfile.attach (disable_breakpoints_in_freed_objfile);
15547 gdb::observers::memory_changed.attach (invalidate_bp_value_on_memory_change);
15548
15549 breakpoint_objfile_key
15550 = register_objfile_data_with_cleanup (NULL, free_breakpoint_objfile_data);
15551
15552 breakpoint_chain = 0;
15553 /* Don't bother to call set_breakpoint_count. $bpnum isn't useful
15554 before a breakpoint is set. */
15555 breakpoint_count = 0;
15556
15557 tracepoint_count = 0;
15558
15559 add_com ("ignore", class_breakpoint, ignore_command, _("\
15560 Set ignore-count of breakpoint number N to COUNT.\n\
15561 Usage is `ignore N COUNT'."));
15562
15563 add_com ("commands", class_breakpoint, commands_command, _("\
15564 Set commands to be executed when the given breakpoints are hit.\n\
15565 Give a space-separated breakpoint list as argument after \"commands\".\n\
15566 A list element can be a breakpoint number (e.g. `5') or a range of numbers\n\
15567 (e.g. `5-7').\n\
15568 With no argument, the targeted breakpoint is the last one set.\n\
15569 The commands themselves follow starting on the next line.\n\
15570 Type a line containing \"end\" to indicate the end of them.\n\
15571 Give \"silent\" as the first line to make the breakpoint silent;\n\
15572 then no output is printed when it is hit, except what the commands print."));
15573
15574 c = add_com ("condition", class_breakpoint, condition_command, _("\
15575 Specify breakpoint number N to break only if COND is true.\n\
15576 Usage is `condition N COND', where N is an integer and COND is an\n\
15577 expression to be evaluated whenever breakpoint N is reached."));
15578 set_cmd_completer (c, condition_completer);
15579
15580 c = add_com ("tbreak", class_breakpoint, tbreak_command, _("\
15581 Set a temporary breakpoint.\n\
15582 Like \"break\" except the breakpoint is only temporary,\n\
15583 so it will be deleted when hit. Equivalent to \"break\" followed\n\
15584 by using \"enable delete\" on the breakpoint number.\n\
15585 \n"
15586 BREAK_ARGS_HELP ("tbreak")));
15587 set_cmd_completer (c, location_completer);
15588
15589 c = add_com ("hbreak", class_breakpoint, hbreak_command, _("\
15590 Set a hardware assisted breakpoint.\n\
15591 Like \"break\" except the breakpoint requires hardware support,\n\
15592 some target hardware may not have this support.\n\
15593 \n"
15594 BREAK_ARGS_HELP ("hbreak")));
15595 set_cmd_completer (c, location_completer);
15596
15597 c = add_com ("thbreak", class_breakpoint, thbreak_command, _("\
15598 Set a temporary hardware assisted breakpoint.\n\
15599 Like \"hbreak\" except the breakpoint is only temporary,\n\
15600 so it will be deleted when hit.\n\
15601 \n"
15602 BREAK_ARGS_HELP ("thbreak")));
15603 set_cmd_completer (c, location_completer);
15604
15605 add_prefix_cmd ("enable", class_breakpoint, enable_command, _("\
15606 Enable some breakpoints.\n\
15607 Give breakpoint numbers (separated by spaces) as arguments.\n\
15608 With no subcommand, breakpoints are enabled until you command otherwise.\n\
15609 This is used to cancel the effect of the \"disable\" command.\n\
15610 With a subcommand you can enable temporarily."),
15611 &enablelist, "enable ", 1, &cmdlist);
15612
15613 add_com_alias ("en", "enable", class_breakpoint, 1);
15614
15615 add_prefix_cmd ("breakpoints", class_breakpoint, enable_command, _("\
15616 Enable some breakpoints.\n\
15617 Give breakpoint numbers (separated by spaces) as arguments.\n\
15618 This is used to cancel the effect of the \"disable\" command.\n\
15619 May be abbreviated to simply \"enable\".\n"),
15620 &enablebreaklist, "enable breakpoints ", 1, &enablelist);
15621
15622 add_cmd ("once", no_class, enable_once_command, _("\
15623 Enable breakpoints for one hit. Give breakpoint numbers.\n\
15624 If a breakpoint is hit while enabled in this fashion, it becomes disabled."),
15625 &enablebreaklist);
15626
15627 add_cmd ("delete", no_class, enable_delete_command, _("\
15628 Enable breakpoints and delete when hit. Give breakpoint numbers.\n\
15629 If a breakpoint is hit while enabled in this fashion, it is deleted."),
15630 &enablebreaklist);
15631
15632 add_cmd ("count", no_class, enable_count_command, _("\
15633 Enable breakpoints for COUNT hits. Give count and then breakpoint numbers.\n\
15634 If a breakpoint is hit while enabled in this fashion,\n\
15635 the count is decremented; when it reaches zero, the breakpoint is disabled."),
15636 &enablebreaklist);
15637
15638 add_cmd ("delete", no_class, enable_delete_command, _("\
15639 Enable breakpoints and delete when hit. Give breakpoint numbers.\n\
15640 If a breakpoint is hit while enabled in this fashion, it is deleted."),
15641 &enablelist);
15642
15643 add_cmd ("once", no_class, enable_once_command, _("\
15644 Enable breakpoints for one hit. Give breakpoint numbers.\n\
15645 If a breakpoint is hit while enabled in this fashion, it becomes disabled."),
15646 &enablelist);
15647
15648 add_cmd ("count", no_class, enable_count_command, _("\
15649 Enable breakpoints for COUNT hits. Give count and then breakpoint numbers.\n\
15650 If a breakpoint is hit while enabled in this fashion,\n\
15651 the count is decremented; when it reaches zero, the breakpoint is disabled."),
15652 &enablelist);
15653
15654 add_prefix_cmd ("disable", class_breakpoint, disable_command, _("\
15655 Disable some breakpoints.\n\
15656 Arguments are breakpoint numbers with spaces in between.\n\
15657 To disable all breakpoints, give no argument.\n\
15658 A disabled breakpoint is not forgotten, but has no effect until re-enabled."),
15659 &disablelist, "disable ", 1, &cmdlist);
15660 add_com_alias ("dis", "disable", class_breakpoint, 1);
15661 add_com_alias ("disa", "disable", class_breakpoint, 1);
15662
15663 add_cmd ("breakpoints", class_alias, disable_command, _("\
15664 Disable some breakpoints.\n\
15665 Arguments are breakpoint numbers with spaces in between.\n\
15666 To disable all breakpoints, give no argument.\n\
15667 A disabled breakpoint is not forgotten, but has no effect until re-enabled.\n\
15668 This command may be abbreviated \"disable\"."),
15669 &disablelist);
15670
15671 add_prefix_cmd ("delete", class_breakpoint, delete_command, _("\
15672 Delete some breakpoints or auto-display expressions.\n\
15673 Arguments are breakpoint numbers with spaces in between.\n\
15674 To delete all breakpoints, give no argument.\n\
15675 \n\
15676 Also a prefix command for deletion of other GDB objects.\n\
15677 The \"unset\" command is also an alias for \"delete\"."),
15678 &deletelist, "delete ", 1, &cmdlist);
15679 add_com_alias ("d", "delete", class_breakpoint, 1);
15680 add_com_alias ("del", "delete", class_breakpoint, 1);
15681
15682 add_cmd ("breakpoints", class_alias, delete_command, _("\
15683 Delete some breakpoints or auto-display expressions.\n\
15684 Arguments are breakpoint numbers with spaces in between.\n\
15685 To delete all breakpoints, give no argument.\n\
15686 This command may be abbreviated \"delete\"."),
15687 &deletelist);
15688
15689 add_com ("clear", class_breakpoint, clear_command, _("\
15690 Clear breakpoint at specified location.\n\
15691 Argument may be a linespec, explicit, or address location as described below.\n\
15692 \n\
15693 With no argument, clears all breakpoints in the line that the selected frame\n\
15694 is executing in.\n"
15695 "\n" LOCATION_HELP_STRING "\n\
15696 See also the \"delete\" command which clears breakpoints by number."));
15697 add_com_alias ("cl", "clear", class_breakpoint, 1);
15698
15699 c = add_com ("break", class_breakpoint, break_command, _("\
15700 Set breakpoint at specified location.\n"
15701 BREAK_ARGS_HELP ("break")));
15702 set_cmd_completer (c, location_completer);
15703
15704 add_com_alias ("b", "break", class_run, 1);
15705 add_com_alias ("br", "break", class_run, 1);
15706 add_com_alias ("bre", "break", class_run, 1);
15707 add_com_alias ("brea", "break", class_run, 1);
15708
15709 if (dbx_commands)
15710 {
15711 add_abbrev_prefix_cmd ("stop", class_breakpoint, stop_command, _("\
15712 Break in function/address or break at a line in the current file."),
15713 &stoplist, "stop ", 1, &cmdlist);
15714 add_cmd ("in", class_breakpoint, stopin_command,
15715 _("Break in function or address."), &stoplist);
15716 add_cmd ("at", class_breakpoint, stopat_command,
15717 _("Break at a line in the current file."), &stoplist);
15718 add_com ("status", class_info, info_breakpoints_command, _("\
15719 Status of user-settable breakpoints, or breakpoint number NUMBER.\n\
15720 The \"Type\" column indicates one of:\n\
15721 \tbreakpoint - normal breakpoint\n\
15722 \twatchpoint - watchpoint\n\
15723 The \"Disp\" column contains one of \"keep\", \"del\", or \"dis\" to indicate\n\
15724 the disposition of the breakpoint after it gets hit. \"dis\" means that the\n\
15725 breakpoint will be disabled. The \"Address\" and \"What\" columns indicate the\n\
15726 address and file/line number respectively.\n\
15727 \n\
15728 Convenience variable \"$_\" and default examine address for \"x\"\n\
15729 are set to the address of the last breakpoint listed unless the command\n\
15730 is prefixed with \"server \".\n\n\
15731 Convenience variable \"$bpnum\" contains the number of the last\n\
15732 breakpoint set."));
15733 }
15734
15735 add_info ("breakpoints", info_breakpoints_command, _("\
15736 Status of specified breakpoints (all user-settable breakpoints if no argument).\n\
15737 The \"Type\" column indicates one of:\n\
15738 \tbreakpoint - normal breakpoint\n\
15739 \twatchpoint - watchpoint\n\
15740 The \"Disp\" column contains one of \"keep\", \"del\", or \"dis\" to indicate\n\
15741 the disposition of the breakpoint after it gets hit. \"dis\" means that the\n\
15742 breakpoint will be disabled. The \"Address\" and \"What\" columns indicate the\n\
15743 address and file/line number respectively.\n\
15744 \n\
15745 Convenience variable \"$_\" and default examine address for \"x\"\n\
15746 are set to the address of the last breakpoint listed unless the command\n\
15747 is prefixed with \"server \".\n\n\
15748 Convenience variable \"$bpnum\" contains the number of the last\n\
15749 breakpoint set."));
15750
15751 add_info_alias ("b", "breakpoints", 1);
15752
15753 add_cmd ("breakpoints", class_maintenance, maintenance_info_breakpoints, _("\
15754 Status of all breakpoints, or breakpoint number NUMBER.\n\
15755 The \"Type\" column indicates one of:\n\
15756 \tbreakpoint - normal breakpoint\n\
15757 \twatchpoint - watchpoint\n\
15758 \tlongjmp - internal breakpoint used to step through longjmp()\n\
15759 \tlongjmp resume - internal breakpoint at the target of longjmp()\n\
15760 \tuntil - internal breakpoint used by the \"until\" command\n\
15761 \tfinish - internal breakpoint used by the \"finish\" command\n\
15762 The \"Disp\" column contains one of \"keep\", \"del\", or \"dis\" to indicate\n\
15763 the disposition of the breakpoint after it gets hit. \"dis\" means that the\n\
15764 breakpoint will be disabled. The \"Address\" and \"What\" columns indicate the\n\
15765 address and file/line number respectively.\n\
15766 \n\
15767 Convenience variable \"$_\" and default examine address for \"x\"\n\
15768 are set to the address of the last breakpoint listed unless the command\n\
15769 is prefixed with \"server \".\n\n\
15770 Convenience variable \"$bpnum\" contains the number of the last\n\
15771 breakpoint set."),
15772 &maintenanceinfolist);
15773
15774 add_prefix_cmd ("catch", class_breakpoint, catch_command, _("\
15775 Set catchpoints to catch events."),
15776 &catch_cmdlist, "catch ",
15777 0/*allow-unknown*/, &cmdlist);
15778
15779 add_prefix_cmd ("tcatch", class_breakpoint, tcatch_command, _("\
15780 Set temporary catchpoints to catch events."),
15781 &tcatch_cmdlist, "tcatch ",
15782 0/*allow-unknown*/, &cmdlist);
15783
15784 add_catch_command ("fork", _("Catch calls to fork."),
15785 catch_fork_command_1,
15786 NULL,
15787 (void *) (uintptr_t) catch_fork_permanent,
15788 (void *) (uintptr_t) catch_fork_temporary);
15789 add_catch_command ("vfork", _("Catch calls to vfork."),
15790 catch_fork_command_1,
15791 NULL,
15792 (void *) (uintptr_t) catch_vfork_permanent,
15793 (void *) (uintptr_t) catch_vfork_temporary);
15794 add_catch_command ("exec", _("Catch calls to exec."),
15795 catch_exec_command_1,
15796 NULL,
15797 CATCH_PERMANENT,
15798 CATCH_TEMPORARY);
15799 add_catch_command ("load", _("Catch loads of shared libraries.\n\
15800 Usage: catch load [REGEX]\n\
15801 If REGEX is given, only stop for libraries matching the regular expression."),
15802 catch_load_command_1,
15803 NULL,
15804 CATCH_PERMANENT,
15805 CATCH_TEMPORARY);
15806 add_catch_command ("unload", _("Catch unloads of shared libraries.\n\
15807 Usage: catch unload [REGEX]\n\
15808 If REGEX is given, only stop for libraries matching the regular expression."),
15809 catch_unload_command_1,
15810 NULL,
15811 CATCH_PERMANENT,
15812 CATCH_TEMPORARY);
15813
15814 c = add_com ("watch", class_breakpoint, watch_command, _("\
15815 Set a watchpoint for an expression.\n\
15816 Usage: watch [-l|-location] EXPRESSION\n\
15817 A watchpoint stops execution of your program whenever the value of\n\
15818 an expression changes.\n\
15819 If -l or -location is given, this evaluates EXPRESSION and watches\n\
15820 the memory to which it refers."));
15821 set_cmd_completer (c, expression_completer);
15822
15823 c = add_com ("rwatch", class_breakpoint, rwatch_command, _("\
15824 Set a read watchpoint for an expression.\n\
15825 Usage: rwatch [-l|-location] EXPRESSION\n\
15826 A watchpoint stops execution of your program whenever the value of\n\
15827 an expression is read.\n\
15828 If -l or -location is given, this evaluates EXPRESSION and watches\n\
15829 the memory to which it refers."));
15830 set_cmd_completer (c, expression_completer);
15831
15832 c = add_com ("awatch", class_breakpoint, awatch_command, _("\
15833 Set a watchpoint for an expression.\n\
15834 Usage: awatch [-l|-location] EXPRESSION\n\
15835 A watchpoint stops execution of your program whenever the value of\n\
15836 an expression is either read or written.\n\
15837 If -l or -location is given, this evaluates EXPRESSION and watches\n\
15838 the memory to which it refers."));
15839 set_cmd_completer (c, expression_completer);
15840
15841 add_info ("watchpoints", info_watchpoints_command, _("\
15842 Status of specified watchpoints (all watchpoints if no argument)."));
15843
15844 /* XXX: cagney/2005-02-23: This should be a boolean, and should
15845 respond to changes - contrary to the description. */
15846 add_setshow_zinteger_cmd ("can-use-hw-watchpoints", class_support,
15847 &can_use_hw_watchpoints, _("\
15848 Set debugger's willingness to use watchpoint hardware."), _("\
15849 Show debugger's willingness to use watchpoint hardware."), _("\
15850 If zero, gdb will not use hardware for new watchpoints, even if\n\
15851 such is available. (However, any hardware watchpoints that were\n\
15852 created before setting this to nonzero, will continue to use watchpoint\n\
15853 hardware.)"),
15854 NULL,
15855 show_can_use_hw_watchpoints,
15856 &setlist, &showlist);
15857
15858 can_use_hw_watchpoints = 1;
15859
15860 /* Tracepoint manipulation commands. */
15861
15862 c = add_com ("trace", class_breakpoint, trace_command, _("\
15863 Set a tracepoint at specified location.\n\
15864 \n"
15865 BREAK_ARGS_HELP ("trace") "\n\
15866 Do \"help tracepoints\" for info on other tracepoint commands."));
15867 set_cmd_completer (c, location_completer);
15868
15869 add_com_alias ("tp", "trace", class_alias, 0);
15870 add_com_alias ("tr", "trace", class_alias, 1);
15871 add_com_alias ("tra", "trace", class_alias, 1);
15872 add_com_alias ("trac", "trace", class_alias, 1);
15873
15874 c = add_com ("ftrace", class_breakpoint, ftrace_command, _("\
15875 Set a fast tracepoint at specified location.\n\
15876 \n"
15877 BREAK_ARGS_HELP ("ftrace") "\n\
15878 Do \"help tracepoints\" for info on other tracepoint commands."));
15879 set_cmd_completer (c, location_completer);
15880
15881 c = add_com ("strace", class_breakpoint, strace_command, _("\
15882 Set a static tracepoint at location or marker.\n\
15883 \n\
15884 strace [LOCATION] [if CONDITION]\n\
15885 LOCATION may be a linespec, explicit, or address location (described below) \n\
15886 or -m MARKER_ID.\n\n\
15887 If a marker id is specified, probe the marker with that name. With\n\
15888 no LOCATION, uses current execution address of the selected stack frame.\n\
15889 Static tracepoints accept an extra collect action -- ``collect $_sdata''.\n\
15890 This collects arbitrary user data passed in the probe point call to the\n\
15891 tracing library. You can inspect it when analyzing the trace buffer,\n\
15892 by printing the $_sdata variable like any other convenience variable.\n\
15893 \n\
15894 CONDITION is a boolean expression.\n\
15895 \n" LOCATION_HELP_STRING "\n\
15896 Multiple tracepoints at one place are permitted, and useful if their\n\
15897 conditions are different.\n\
15898 \n\
15899 Do \"help breakpoints\" for info on other commands dealing with breakpoints.\n\
15900 Do \"help tracepoints\" for info on other tracepoint commands."));
15901 set_cmd_completer (c, location_completer);
15902
15903 add_info ("tracepoints", info_tracepoints_command, _("\
15904 Status of specified tracepoints (all tracepoints if no argument).\n\
15905 Convenience variable \"$tpnum\" contains the number of the\n\
15906 last tracepoint set."));
15907
15908 add_info_alias ("tp", "tracepoints", 1);
15909
15910 add_cmd ("tracepoints", class_trace, delete_trace_command, _("\
15911 Delete specified tracepoints.\n\
15912 Arguments are tracepoint numbers, separated by spaces.\n\
15913 No argument means delete all tracepoints."),
15914 &deletelist);
15915 add_alias_cmd ("tr", "tracepoints", class_trace, 1, &deletelist);
15916
15917 c = add_cmd ("tracepoints", class_trace, disable_trace_command, _("\
15918 Disable specified tracepoints.\n\
15919 Arguments are tracepoint numbers, separated by spaces.\n\
15920 No argument means disable all tracepoints."),
15921 &disablelist);
15922 deprecate_cmd (c, "disable");
15923
15924 c = add_cmd ("tracepoints", class_trace, enable_trace_command, _("\
15925 Enable specified tracepoints.\n\
15926 Arguments are tracepoint numbers, separated by spaces.\n\
15927 No argument means enable all tracepoints."),
15928 &enablelist);
15929 deprecate_cmd (c, "enable");
15930
15931 add_com ("passcount", class_trace, trace_pass_command, _("\
15932 Set the passcount for a tracepoint.\n\
15933 The trace will end when the tracepoint has been passed 'count' times.\n\
15934 Usage: passcount COUNT TPNUM, where TPNUM may also be \"all\";\n\
15935 if TPNUM is omitted, passcount refers to the last tracepoint defined."));
15936
15937 add_prefix_cmd ("save", class_breakpoint, save_command,
15938 _("Save breakpoint definitions as a script."),
15939 &save_cmdlist, "save ",
15940 0/*allow-unknown*/, &cmdlist);
15941
15942 c = add_cmd ("breakpoints", class_breakpoint, save_breakpoints_command, _("\
15943 Save current breakpoint definitions as a script.\n\
15944 This includes all types of breakpoints (breakpoints, watchpoints,\n\
15945 catchpoints, tracepoints). Use the 'source' command in another debug\n\
15946 session to restore them."),
15947 &save_cmdlist);
15948 set_cmd_completer (c, filename_completer);
15949
15950 c = add_cmd ("tracepoints", class_trace, save_tracepoints_command, _("\
15951 Save current tracepoint definitions as a script.\n\
15952 Use the 'source' command in another debug session to restore them."),
15953 &save_cmdlist);
15954 set_cmd_completer (c, filename_completer);
15955
15956 c = add_com_alias ("save-tracepoints", "save tracepoints", class_trace, 0);
15957 deprecate_cmd (c, "save tracepoints");
15958
15959 add_prefix_cmd ("breakpoint", class_maintenance, set_breakpoint_cmd, _("\
15960 Breakpoint specific settings\n\
15961 Configure various breakpoint-specific variables such as\n\
15962 pending breakpoint behavior"),
15963 &breakpoint_set_cmdlist, "set breakpoint ",
15964 0/*allow-unknown*/, &setlist);
15965 add_prefix_cmd ("breakpoint", class_maintenance, show_breakpoint_cmd, _("\
15966 Breakpoint specific settings\n\
15967 Configure various breakpoint-specific variables such as\n\
15968 pending breakpoint behavior"),
15969 &breakpoint_show_cmdlist, "show breakpoint ",
15970 0/*allow-unknown*/, &showlist);
15971
15972 add_setshow_auto_boolean_cmd ("pending", no_class,
15973 &pending_break_support, _("\
15974 Set debugger's behavior regarding pending breakpoints."), _("\
15975 Show debugger's behavior regarding pending breakpoints."), _("\
15976 If on, an unrecognized breakpoint location will cause gdb to create a\n\
15977 pending breakpoint. If off, an unrecognized breakpoint location results in\n\
15978 an error. If auto, an unrecognized breakpoint location results in a\n\
15979 user-query to see if a pending breakpoint should be created."),
15980 NULL,
15981 show_pending_break_support,
15982 &breakpoint_set_cmdlist,
15983 &breakpoint_show_cmdlist);
15984
15985 pending_break_support = AUTO_BOOLEAN_AUTO;
15986
15987 add_setshow_boolean_cmd ("auto-hw", no_class,
15988 &automatic_hardware_breakpoints, _("\
15989 Set automatic usage of hardware breakpoints."), _("\
15990 Show automatic usage of hardware breakpoints."), _("\
15991 If set, the debugger will automatically use hardware breakpoints for\n\
15992 breakpoints set with \"break\" but falling in read-only memory. If not set,\n\
15993 a warning will be emitted for such breakpoints."),
15994 NULL,
15995 show_automatic_hardware_breakpoints,
15996 &breakpoint_set_cmdlist,
15997 &breakpoint_show_cmdlist);
15998
15999 add_setshow_boolean_cmd ("always-inserted", class_support,
16000 &always_inserted_mode, _("\
16001 Set mode for inserting breakpoints."), _("\
16002 Show mode for inserting breakpoints."), _("\
16003 When this mode is on, breakpoints are inserted immediately as soon as\n\
16004 they're created, kept inserted even when execution stops, and removed\n\
16005 only when the user deletes them. When this mode is off (the default),\n\
16006 breakpoints are inserted only when execution continues, and removed\n\
16007 when execution stops."),
16008 NULL,
16009 &show_always_inserted_mode,
16010 &breakpoint_set_cmdlist,
16011 &breakpoint_show_cmdlist);
16012
16013 add_setshow_enum_cmd ("condition-evaluation", class_breakpoint,
16014 condition_evaluation_enums,
16015 &condition_evaluation_mode_1, _("\
16016 Set mode of breakpoint condition evaluation."), _("\
16017 Show mode of breakpoint condition evaluation."), _("\
16018 When this is set to \"host\", breakpoint conditions will be\n\
16019 evaluated on the host's side by GDB. When it is set to \"target\",\n\
16020 breakpoint conditions will be downloaded to the target (if the target\n\
16021 supports such feature) and conditions will be evaluated on the target's side.\n\
16022 If this is set to \"auto\" (default), this will be automatically set to\n\
16023 \"target\" if it supports condition evaluation, otherwise it will\n\
16024 be set to \"gdb\""),
16025 &set_condition_evaluation_mode,
16026 &show_condition_evaluation_mode,
16027 &breakpoint_set_cmdlist,
16028 &breakpoint_show_cmdlist);
16029
16030 add_com ("break-range", class_breakpoint, break_range_command, _("\
16031 Set a breakpoint for an address range.\n\
16032 break-range START-LOCATION, END-LOCATION\n\
16033 where START-LOCATION and END-LOCATION can be one of the following:\n\
16034 LINENUM, for that line in the current file,\n\
16035 FILE:LINENUM, for that line in that file,\n\
16036 +OFFSET, for that number of lines after the current line\n\
16037 or the start of the range\n\
16038 FUNCTION, for the first line in that function,\n\
16039 FILE:FUNCTION, to distinguish among like-named static functions.\n\
16040 *ADDRESS, for the instruction at that address.\n\
16041 \n\
16042 The breakpoint will stop execution of the inferior whenever it executes\n\
16043 an instruction at any address within the [START-LOCATION, END-LOCATION]\n\
16044 range (including START-LOCATION and END-LOCATION)."));
16045
16046 c = add_com ("dprintf", class_breakpoint, dprintf_command, _("\
16047 Set a dynamic printf at specified location.\n\
16048 dprintf location,format string,arg1,arg2,...\n\
16049 location may be a linespec, explicit, or address location.\n"
16050 "\n" LOCATION_HELP_STRING));
16051 set_cmd_completer (c, location_completer);
16052
16053 add_setshow_enum_cmd ("dprintf-style", class_support,
16054 dprintf_style_enums, &dprintf_style, _("\
16055 Set the style of usage for dynamic printf."), _("\
16056 Show the style of usage for dynamic printf."), _("\
16057 This setting chooses how GDB will do a dynamic printf.\n\
16058 If the value is \"gdb\", then the printing is done by GDB to its own\n\
16059 console, as with the \"printf\" command.\n\
16060 If the value is \"call\", the print is done by calling a function in your\n\
16061 program; by default printf(), but you can choose a different function or\n\
16062 output stream by setting dprintf-function and dprintf-channel."),
16063 update_dprintf_commands, NULL,
16064 &setlist, &showlist);
16065
16066 dprintf_function = xstrdup ("printf");
16067 add_setshow_string_cmd ("dprintf-function", class_support,
16068 &dprintf_function, _("\
16069 Set the function to use for dynamic printf"), _("\
16070 Show the function to use for dynamic printf"), NULL,
16071 update_dprintf_commands, NULL,
16072 &setlist, &showlist);
16073
16074 dprintf_channel = xstrdup ("");
16075 add_setshow_string_cmd ("dprintf-channel", class_support,
16076 &dprintf_channel, _("\
16077 Set the channel to use for dynamic printf"), _("\
16078 Show the channel to use for dynamic printf"), NULL,
16079 update_dprintf_commands, NULL,
16080 &setlist, &showlist);
16081
16082 add_setshow_boolean_cmd ("disconnected-dprintf", no_class,
16083 &disconnected_dprintf, _("\
16084 Set whether dprintf continues after GDB disconnects."), _("\
16085 Show whether dprintf continues after GDB disconnects."), _("\
16086 Use this to let dprintf commands continue to hit and produce output\n\
16087 even if GDB disconnects or detaches from the target."),
16088 NULL,
16089 NULL,
16090 &setlist, &showlist);
16091
16092 add_com ("agent-printf", class_vars, agent_printf_command, _("\
16093 agent-printf \"printf format string\", arg1, arg2, arg3, ..., argn\n\
16094 (target agent only) This is useful for formatted output in user-defined commands."));
16095
16096 automatic_hardware_breakpoints = 1;
16097
16098 gdb::observers::about_to_proceed.attach (breakpoint_about_to_proceed);
16099 gdb::observers::thread_exit.attach (remove_threaded_breakpoints);
16100 }
This page took 0.381577 seconds and 3 git commands to generate.