Handle the case of a remote target supporting target side commands, but not on softwa...
[deliverable/binutils-gdb.git] / gdb / breakpoint.c
1 /* Everything about breakpoints, for GDB.
2
3 Copyright (C) 1986-2014 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20 #include "defs.h"
21 #include "arch-utils.h"
22 #include <ctype.h>
23 #include "hashtab.h"
24 #include "symtab.h"
25 #include "frame.h"
26 #include "breakpoint.h"
27 #include "tracepoint.h"
28 #include "gdbtypes.h"
29 #include "expression.h"
30 #include "gdbcore.h"
31 #include "gdbcmd.h"
32 #include "value.h"
33 #include "command.h"
34 #include "inferior.h"
35 #include "gdbthread.h"
36 #include "target.h"
37 #include "language.h"
38 #include <string.h>
39 #include "gdb-demangle.h"
40 #include "filenames.h"
41 #include "annotate.h"
42 #include "symfile.h"
43 #include "objfiles.h"
44 #include "source.h"
45 #include "linespec.h"
46 #include "completer.h"
47 #include "gdb.h"
48 #include "ui-out.h"
49 #include "cli/cli-script.h"
50 #include "gdb_assert.h"
51 #include "block.h"
52 #include "solib.h"
53 #include "solist.h"
54 #include "observer.h"
55 #include "exceptions.h"
56 #include "memattr.h"
57 #include "ada-lang.h"
58 #include "top.h"
59 #include "valprint.h"
60 #include "jit.h"
61 #include "xml-syscall.h"
62 #include "parser-defs.h"
63 #include "gdb_regex.h"
64 #include "probe.h"
65 #include "cli/cli-utils.h"
66 #include "continuations.h"
67 #include "stack.h"
68 #include "skip.h"
69 #include "ax-gdb.h"
70 #include "dummy-frame.h"
71
72 #include "format.h"
73
74 /* readline include files */
75 #include "readline/readline.h"
76 #include "readline/history.h"
77
78 /* readline defines this. */
79 #undef savestring
80
81 #include "mi/mi-common.h"
82 #include "python/python.h"
83
84 /* Enums for exception-handling support. */
85 enum exception_event_kind
86 {
87 EX_EVENT_THROW,
88 EX_EVENT_RETHROW,
89 EX_EVENT_CATCH
90 };
91
92 /* Prototypes for local functions. */
93
94 static void enable_delete_command (char *, int);
95
96 static void enable_once_command (char *, int);
97
98 static void enable_count_command (char *, int);
99
100 static void disable_command (char *, int);
101
102 static void enable_command (char *, int);
103
104 static void map_breakpoint_numbers (char *, void (*) (struct breakpoint *,
105 void *),
106 void *);
107
108 static void ignore_command (char *, int);
109
110 static int breakpoint_re_set_one (void *);
111
112 static void breakpoint_re_set_default (struct breakpoint *);
113
114 static void create_sals_from_address_default (char **,
115 struct linespec_result *,
116 enum bptype, char *,
117 char **);
118
119 static void create_breakpoints_sal_default (struct gdbarch *,
120 struct linespec_result *,
121 char *, char *, enum bptype,
122 enum bpdisp, int, int,
123 int,
124 const struct breakpoint_ops *,
125 int, int, int, unsigned);
126
127 static void decode_linespec_default (struct breakpoint *, char **,
128 struct symtabs_and_lines *);
129
130 static void clear_command (char *, int);
131
132 static void catch_command (char *, int);
133
134 static int can_use_hardware_watchpoint (struct value *);
135
136 static void break_command_1 (char *, int, int);
137
138 static void mention (struct breakpoint *);
139
140 static struct breakpoint *set_raw_breakpoint_without_location (struct gdbarch *,
141 enum bptype,
142 const struct breakpoint_ops *);
143 static struct bp_location *add_location_to_breakpoint (struct breakpoint *,
144 const struct symtab_and_line *);
145
146 /* This function is used in gdbtk sources and thus can not be made
147 static. */
148 struct breakpoint *set_raw_breakpoint (struct gdbarch *gdbarch,
149 struct symtab_and_line,
150 enum bptype,
151 const struct breakpoint_ops *);
152
153 static struct breakpoint *
154 momentary_breakpoint_from_master (struct breakpoint *orig,
155 enum bptype type,
156 const struct breakpoint_ops *ops);
157
158 static void breakpoint_adjustment_warning (CORE_ADDR, CORE_ADDR, int, int);
159
160 static CORE_ADDR adjust_breakpoint_address (struct gdbarch *gdbarch,
161 CORE_ADDR bpaddr,
162 enum bptype bptype);
163
164 static void describe_other_breakpoints (struct gdbarch *,
165 struct program_space *, CORE_ADDR,
166 struct obj_section *, int);
167
168 static int breakpoint_address_match (struct address_space *aspace1,
169 CORE_ADDR addr1,
170 struct address_space *aspace2,
171 CORE_ADDR addr2);
172
173 static int watchpoint_locations_match (struct bp_location *loc1,
174 struct bp_location *loc2);
175
176 static int breakpoint_location_address_match (struct bp_location *bl,
177 struct address_space *aspace,
178 CORE_ADDR addr);
179
180 static void breakpoints_info (char *, int);
181
182 static void watchpoints_info (char *, int);
183
184 static int breakpoint_1 (char *, int,
185 int (*) (const struct breakpoint *));
186
187 static int breakpoint_cond_eval (void *);
188
189 static void cleanup_executing_breakpoints (void *);
190
191 static void commands_command (char *, int);
192
193 static void condition_command (char *, int);
194
195 typedef enum
196 {
197 mark_inserted,
198 mark_uninserted
199 }
200 insertion_state_t;
201
202 static int remove_breakpoint (struct bp_location *, insertion_state_t);
203 static int remove_breakpoint_1 (struct bp_location *, insertion_state_t);
204
205 static enum print_stop_action print_bp_stop_message (bpstat bs);
206
207 static int watchpoint_check (void *);
208
209 static void maintenance_info_breakpoints (char *, int);
210
211 static int hw_breakpoint_used_count (void);
212
213 static int hw_watchpoint_use_count (struct breakpoint *);
214
215 static int hw_watchpoint_used_count_others (struct breakpoint *except,
216 enum bptype type,
217 int *other_type_used);
218
219 static void hbreak_command (char *, int);
220
221 static void thbreak_command (char *, int);
222
223 static void enable_breakpoint_disp (struct breakpoint *, enum bpdisp,
224 int count);
225
226 static void stop_command (char *arg, int from_tty);
227
228 static void stopin_command (char *arg, int from_tty);
229
230 static void stopat_command (char *arg, int from_tty);
231
232 static void tcatch_command (char *arg, int from_tty);
233
234 static void detach_single_step_breakpoints (void);
235
236 static int single_step_breakpoint_inserted_here_p (struct address_space *,
237 CORE_ADDR pc);
238
239 static void free_bp_location (struct bp_location *loc);
240 static void incref_bp_location (struct bp_location *loc);
241 static void decref_bp_location (struct bp_location **loc);
242
243 static struct bp_location *allocate_bp_location (struct breakpoint *bpt);
244
245 static void update_global_location_list (int);
246
247 static void update_global_location_list_nothrow (int);
248
249 static int is_hardware_watchpoint (const struct breakpoint *bpt);
250
251 static void insert_breakpoint_locations (void);
252
253 static int syscall_catchpoint_p (struct breakpoint *b);
254
255 static void tracepoints_info (char *, int);
256
257 static void delete_trace_command (char *, int);
258
259 static void enable_trace_command (char *, int);
260
261 static void disable_trace_command (char *, int);
262
263 static void trace_pass_command (char *, int);
264
265 static void set_tracepoint_count (int num);
266
267 static int is_masked_watchpoint (const struct breakpoint *b);
268
269 static struct bp_location **get_first_locp_gte_addr (CORE_ADDR address);
270
271 /* Return 1 if B refers to a static tracepoint set by marker ("-m"), zero
272 otherwise. */
273
274 static int strace_marker_p (struct breakpoint *b);
275
276 /* The abstract base class all breakpoint_ops structures inherit
277 from. */
278 struct breakpoint_ops base_breakpoint_ops;
279
280 /* The breakpoint_ops structure to be inherited by all breakpoint_ops
281 that are implemented on top of software or hardware breakpoints
282 (user breakpoints, internal and momentary breakpoints, etc.). */
283 static struct breakpoint_ops bkpt_base_breakpoint_ops;
284
285 /* Internal breakpoints class type. */
286 static struct breakpoint_ops internal_breakpoint_ops;
287
288 /* Momentary breakpoints class type. */
289 static struct breakpoint_ops momentary_breakpoint_ops;
290
291 /* Momentary breakpoints for bp_longjmp and bp_exception class type. */
292 static struct breakpoint_ops longjmp_breakpoint_ops;
293
294 /* The breakpoint_ops structure to be used in regular user created
295 breakpoints. */
296 struct breakpoint_ops bkpt_breakpoint_ops;
297
298 /* Breakpoints set on probes. */
299 static struct breakpoint_ops bkpt_probe_breakpoint_ops;
300
301 /* Dynamic printf class type. */
302 struct breakpoint_ops dprintf_breakpoint_ops;
303
304 /* The style in which to perform a dynamic printf. This is a user
305 option because different output options have different tradeoffs;
306 if GDB does the printing, there is better error handling if there
307 is a problem with any of the arguments, but using an inferior
308 function lets you have special-purpose printers and sending of
309 output to the same place as compiled-in print functions. */
310
311 static const char dprintf_style_gdb[] = "gdb";
312 static const char dprintf_style_call[] = "call";
313 static const char dprintf_style_agent[] = "agent";
314 static const char *const dprintf_style_enums[] = {
315 dprintf_style_gdb,
316 dprintf_style_call,
317 dprintf_style_agent,
318 NULL
319 };
320 static const char *dprintf_style = dprintf_style_gdb;
321
322 /* The function to use for dynamic printf if the preferred style is to
323 call into the inferior. The value is simply a string that is
324 copied into the command, so it can be anything that GDB can
325 evaluate to a callable address, not necessarily a function name. */
326
327 static char *dprintf_function = "";
328
329 /* The channel to use for dynamic printf if the preferred style is to
330 call into the inferior; if a nonempty string, it will be passed to
331 the call as the first argument, with the format string as the
332 second. As with the dprintf function, this can be anything that
333 GDB knows how to evaluate, so in addition to common choices like
334 "stderr", this could be an app-specific expression like
335 "mystreams[curlogger]". */
336
337 static char *dprintf_channel = "";
338
339 /* True if dprintf commands should continue to operate even if GDB
340 has disconnected. */
341 static int disconnected_dprintf = 1;
342
343 /* A reference-counted struct command_line. This lets multiple
344 breakpoints share a single command list. */
345 struct counted_command_line
346 {
347 /* The reference count. */
348 int refc;
349
350 /* The command list. */
351 struct command_line *commands;
352 };
353
354 struct command_line *
355 breakpoint_commands (struct breakpoint *b)
356 {
357 return b->commands ? b->commands->commands : NULL;
358 }
359
360 /* Flag indicating that a command has proceeded the inferior past the
361 current breakpoint. */
362
363 static int breakpoint_proceeded;
364
365 const char *
366 bpdisp_text (enum bpdisp disp)
367 {
368 /* NOTE: the following values are a part of MI protocol and
369 represent values of 'disp' field returned when inferior stops at
370 a breakpoint. */
371 static const char * const bpdisps[] = {"del", "dstp", "dis", "keep"};
372
373 return bpdisps[(int) disp];
374 }
375
376 /* Prototypes for exported functions. */
377 /* If FALSE, gdb will not use hardware support for watchpoints, even
378 if such is available. */
379 static int can_use_hw_watchpoints;
380
381 static void
382 show_can_use_hw_watchpoints (struct ui_file *file, int from_tty,
383 struct cmd_list_element *c,
384 const char *value)
385 {
386 fprintf_filtered (file,
387 _("Debugger's willingness to use "
388 "watchpoint hardware is %s.\n"),
389 value);
390 }
391
392 /* If AUTO_BOOLEAN_FALSE, gdb will not attempt to create pending breakpoints.
393 If AUTO_BOOLEAN_TRUE, gdb will automatically create pending breakpoints
394 for unrecognized breakpoint locations.
395 If AUTO_BOOLEAN_AUTO, gdb will query when breakpoints are unrecognized. */
396 static enum auto_boolean pending_break_support;
397 static void
398 show_pending_break_support (struct ui_file *file, int from_tty,
399 struct cmd_list_element *c,
400 const char *value)
401 {
402 fprintf_filtered (file,
403 _("Debugger's behavior regarding "
404 "pending breakpoints is %s.\n"),
405 value);
406 }
407
408 /* If 1, gdb will automatically use hardware breakpoints for breakpoints
409 set with "break" but falling in read-only memory.
410 If 0, gdb will warn about such breakpoints, but won't automatically
411 use hardware breakpoints. */
412 static int automatic_hardware_breakpoints;
413 static void
414 show_automatic_hardware_breakpoints (struct ui_file *file, int from_tty,
415 struct cmd_list_element *c,
416 const char *value)
417 {
418 fprintf_filtered (file,
419 _("Automatic usage of hardware breakpoints is %s.\n"),
420 value);
421 }
422
423 /* If on, gdb will keep breakpoints inserted even as inferior is
424 stopped, and immediately insert any new breakpoints. If off, gdb
425 will insert breakpoints into inferior only when resuming it, and
426 will remove breakpoints upon stop. If auto, GDB will behave as ON
427 if in non-stop mode, and as OFF if all-stop mode.*/
428
429 static enum auto_boolean always_inserted_mode = AUTO_BOOLEAN_AUTO;
430
431 static void
432 show_always_inserted_mode (struct ui_file *file, int from_tty,
433 struct cmd_list_element *c, const char *value)
434 {
435 if (always_inserted_mode == AUTO_BOOLEAN_AUTO)
436 fprintf_filtered (file,
437 _("Always inserted breakpoint "
438 "mode is %s (currently %s).\n"),
439 value,
440 breakpoints_always_inserted_mode () ? "on" : "off");
441 else
442 fprintf_filtered (file, _("Always inserted breakpoint mode is %s.\n"),
443 value);
444 }
445
446 int
447 breakpoints_always_inserted_mode (void)
448 {
449 return (always_inserted_mode == AUTO_BOOLEAN_TRUE
450 || (always_inserted_mode == AUTO_BOOLEAN_AUTO && non_stop));
451 }
452
453 static const char condition_evaluation_both[] = "host or target";
454
455 /* Modes for breakpoint condition evaluation. */
456 static const char condition_evaluation_auto[] = "auto";
457 static const char condition_evaluation_host[] = "host";
458 static const char condition_evaluation_target[] = "target";
459 static const char *const condition_evaluation_enums[] = {
460 condition_evaluation_auto,
461 condition_evaluation_host,
462 condition_evaluation_target,
463 NULL
464 };
465
466 /* Global that holds the current mode for breakpoint condition evaluation. */
467 static const char *condition_evaluation_mode_1 = condition_evaluation_auto;
468
469 /* Global that we use to display information to the user (gets its value from
470 condition_evaluation_mode_1. */
471 static const char *condition_evaluation_mode = condition_evaluation_auto;
472
473 /* Translate a condition evaluation mode MODE into either "host"
474 or "target". This is used mostly to translate from "auto" to the
475 real setting that is being used. It returns the translated
476 evaluation mode. */
477
478 static const char *
479 translate_condition_evaluation_mode (const char *mode)
480 {
481 if (mode == condition_evaluation_auto)
482 {
483 if (target_supports_evaluation_of_breakpoint_conditions ())
484 return condition_evaluation_target;
485 else
486 return condition_evaluation_host;
487 }
488 else
489 return mode;
490 }
491
492 /* Discovers what condition_evaluation_auto translates to. */
493
494 static const char *
495 breakpoint_condition_evaluation_mode (void)
496 {
497 return translate_condition_evaluation_mode (condition_evaluation_mode);
498 }
499
500 /* Return true if GDB should evaluate breakpoint conditions or false
501 otherwise. */
502
503 static int
504 gdb_evaluates_breakpoint_condition_p (void)
505 {
506 const char *mode = breakpoint_condition_evaluation_mode ();
507
508 return (mode == condition_evaluation_host);
509 }
510
511 void _initialize_breakpoint (void);
512
513 /* Are we executing breakpoint commands? */
514 static int executing_breakpoint_commands;
515
516 /* Are overlay event breakpoints enabled? */
517 static int overlay_events_enabled;
518
519 /* See description in breakpoint.h. */
520 int target_exact_watchpoints = 0;
521
522 /* Walk the following statement or block through all breakpoints.
523 ALL_BREAKPOINTS_SAFE does so even if the statement deletes the
524 current breakpoint. */
525
526 #define ALL_BREAKPOINTS(B) for (B = breakpoint_chain; B; B = B->next)
527
528 #define ALL_BREAKPOINTS_SAFE(B,TMP) \
529 for (B = breakpoint_chain; \
530 B ? (TMP=B->next, 1): 0; \
531 B = TMP)
532
533 /* Similar iterator for the low-level breakpoints. SAFE variant is
534 not provided so update_global_location_list must not be called
535 while executing the block of ALL_BP_LOCATIONS. */
536
537 #define ALL_BP_LOCATIONS(B,BP_TMP) \
538 for (BP_TMP = bp_location; \
539 BP_TMP < bp_location + bp_location_count && (B = *BP_TMP); \
540 BP_TMP++)
541
542 /* Iterates through locations with address ADDRESS for the currently selected
543 program space. BP_LOCP_TMP points to each object. BP_LOCP_START points
544 to where the loop should start from.
545 If BP_LOCP_START is a NULL pointer, the macro automatically seeks the
546 appropriate location to start with. */
547
548 #define ALL_BP_LOCATIONS_AT_ADDR(BP_LOCP_TMP, BP_LOCP_START, ADDRESS) \
549 for (BP_LOCP_START = BP_LOCP_START == NULL ? get_first_locp_gte_addr (ADDRESS) : BP_LOCP_START, \
550 BP_LOCP_TMP = BP_LOCP_START; \
551 BP_LOCP_START \
552 && (BP_LOCP_TMP < bp_location + bp_location_count \
553 && (*BP_LOCP_TMP)->address == ADDRESS); \
554 BP_LOCP_TMP++)
555
556 /* Iterator for tracepoints only. */
557
558 #define ALL_TRACEPOINTS(B) \
559 for (B = breakpoint_chain; B; B = B->next) \
560 if (is_tracepoint (B))
561
562 /* Chains of all breakpoints defined. */
563
564 struct breakpoint *breakpoint_chain;
565
566 /* Array is sorted by bp_location_compare - primarily by the ADDRESS. */
567
568 static struct bp_location **bp_location;
569
570 /* Number of elements of BP_LOCATION. */
571
572 static unsigned bp_location_count;
573
574 /* Maximum alignment offset between bp_target_info.PLACED_ADDRESS and
575 ADDRESS for the current elements of BP_LOCATION which get a valid
576 result from bp_location_has_shadow. You can use it for roughly
577 limiting the subrange of BP_LOCATION to scan for shadow bytes for
578 an address you need to read. */
579
580 static CORE_ADDR bp_location_placed_address_before_address_max;
581
582 /* Maximum offset plus alignment between bp_target_info.PLACED_ADDRESS
583 + bp_target_info.SHADOW_LEN and ADDRESS for the current elements of
584 BP_LOCATION which get a valid result from bp_location_has_shadow.
585 You can use it for roughly limiting the subrange of BP_LOCATION to
586 scan for shadow bytes for an address you need to read. */
587
588 static CORE_ADDR bp_location_shadow_len_after_address_max;
589
590 /* The locations that no longer correspond to any breakpoint, unlinked
591 from bp_location array, but for which a hit may still be reported
592 by a target. */
593 VEC(bp_location_p) *moribund_locations = NULL;
594
595 /* Number of last breakpoint made. */
596
597 static int breakpoint_count;
598
599 /* The value of `breakpoint_count' before the last command that
600 created breakpoints. If the last (break-like) command created more
601 than one breakpoint, then the difference between BREAKPOINT_COUNT
602 and PREV_BREAKPOINT_COUNT is more than one. */
603 static int prev_breakpoint_count;
604
605 /* Number of last tracepoint made. */
606
607 static int tracepoint_count;
608
609 static struct cmd_list_element *breakpoint_set_cmdlist;
610 static struct cmd_list_element *breakpoint_show_cmdlist;
611 struct cmd_list_element *save_cmdlist;
612
613 /* Return whether a breakpoint is an active enabled breakpoint. */
614 static int
615 breakpoint_enabled (struct breakpoint *b)
616 {
617 return (b->enable_state == bp_enabled);
618 }
619
620 /* Set breakpoint count to NUM. */
621
622 static void
623 set_breakpoint_count (int num)
624 {
625 prev_breakpoint_count = breakpoint_count;
626 breakpoint_count = num;
627 set_internalvar_integer (lookup_internalvar ("bpnum"), num);
628 }
629
630 /* Used by `start_rbreak_breakpoints' below, to record the current
631 breakpoint count before "rbreak" creates any breakpoint. */
632 static int rbreak_start_breakpoint_count;
633
634 /* Called at the start an "rbreak" command to record the first
635 breakpoint made. */
636
637 void
638 start_rbreak_breakpoints (void)
639 {
640 rbreak_start_breakpoint_count = breakpoint_count;
641 }
642
643 /* Called at the end of an "rbreak" command to record the last
644 breakpoint made. */
645
646 void
647 end_rbreak_breakpoints (void)
648 {
649 prev_breakpoint_count = rbreak_start_breakpoint_count;
650 }
651
652 /* Used in run_command to zero the hit count when a new run starts. */
653
654 void
655 clear_breakpoint_hit_counts (void)
656 {
657 struct breakpoint *b;
658
659 ALL_BREAKPOINTS (b)
660 b->hit_count = 0;
661 }
662
663 /* Allocate a new counted_command_line with reference count of 1.
664 The new structure owns COMMANDS. */
665
666 static struct counted_command_line *
667 alloc_counted_command_line (struct command_line *commands)
668 {
669 struct counted_command_line *result
670 = xmalloc (sizeof (struct counted_command_line));
671
672 result->refc = 1;
673 result->commands = commands;
674 return result;
675 }
676
677 /* Increment reference count. This does nothing if CMD is NULL. */
678
679 static void
680 incref_counted_command_line (struct counted_command_line *cmd)
681 {
682 if (cmd)
683 ++cmd->refc;
684 }
685
686 /* Decrement reference count. If the reference count reaches 0,
687 destroy the counted_command_line. Sets *CMDP to NULL. This does
688 nothing if *CMDP is NULL. */
689
690 static void
691 decref_counted_command_line (struct counted_command_line **cmdp)
692 {
693 if (*cmdp)
694 {
695 if (--(*cmdp)->refc == 0)
696 {
697 free_command_lines (&(*cmdp)->commands);
698 xfree (*cmdp);
699 }
700 *cmdp = NULL;
701 }
702 }
703
704 /* A cleanup function that calls decref_counted_command_line. */
705
706 static void
707 do_cleanup_counted_command_line (void *arg)
708 {
709 decref_counted_command_line (arg);
710 }
711
712 /* Create a cleanup that calls decref_counted_command_line on the
713 argument. */
714
715 static struct cleanup *
716 make_cleanup_decref_counted_command_line (struct counted_command_line **cmdp)
717 {
718 return make_cleanup (do_cleanup_counted_command_line, cmdp);
719 }
720
721 \f
722 /* Return the breakpoint with the specified number, or NULL
723 if the number does not refer to an existing breakpoint. */
724
725 struct breakpoint *
726 get_breakpoint (int num)
727 {
728 struct breakpoint *b;
729
730 ALL_BREAKPOINTS (b)
731 if (b->number == num)
732 return b;
733
734 return NULL;
735 }
736
737 \f
738
739 /* Mark locations as "conditions have changed" in case the target supports
740 evaluating conditions on its side. */
741
742 static void
743 mark_breakpoint_modified (struct breakpoint *b)
744 {
745 struct bp_location *loc;
746
747 /* This is only meaningful if the target is
748 evaluating conditions and if the user has
749 opted for condition evaluation on the target's
750 side. */
751 if (gdb_evaluates_breakpoint_condition_p ()
752 || !target_supports_evaluation_of_breakpoint_conditions ())
753 return;
754
755 if (!is_breakpoint (b))
756 return;
757
758 for (loc = b->loc; loc; loc = loc->next)
759 loc->condition_changed = condition_modified;
760 }
761
762 /* Mark location as "conditions have changed" in case the target supports
763 evaluating conditions on its side. */
764
765 static void
766 mark_breakpoint_location_modified (struct bp_location *loc)
767 {
768 /* This is only meaningful if the target is
769 evaluating conditions and if the user has
770 opted for condition evaluation on the target's
771 side. */
772 if (gdb_evaluates_breakpoint_condition_p ()
773 || !target_supports_evaluation_of_breakpoint_conditions ())
774
775 return;
776
777 if (!is_breakpoint (loc->owner))
778 return;
779
780 loc->condition_changed = condition_modified;
781 }
782
783 /* Sets the condition-evaluation mode using the static global
784 condition_evaluation_mode. */
785
786 static void
787 set_condition_evaluation_mode (char *args, int from_tty,
788 struct cmd_list_element *c)
789 {
790 const char *old_mode, *new_mode;
791
792 if ((condition_evaluation_mode_1 == condition_evaluation_target)
793 && !target_supports_evaluation_of_breakpoint_conditions ())
794 {
795 condition_evaluation_mode_1 = condition_evaluation_mode;
796 warning (_("Target does not support breakpoint condition evaluation.\n"
797 "Using host evaluation mode instead."));
798 return;
799 }
800
801 new_mode = translate_condition_evaluation_mode (condition_evaluation_mode_1);
802 old_mode = translate_condition_evaluation_mode (condition_evaluation_mode);
803
804 /* Flip the switch. Flip it even if OLD_MODE == NEW_MODE as one of the
805 settings was "auto". */
806 condition_evaluation_mode = condition_evaluation_mode_1;
807
808 /* Only update the mode if the user picked a different one. */
809 if (new_mode != old_mode)
810 {
811 struct bp_location *loc, **loc_tmp;
812 /* If the user switched to a different evaluation mode, we
813 need to synch the changes with the target as follows:
814
815 "host" -> "target": Send all (valid) conditions to the target.
816 "target" -> "host": Remove all the conditions from the target.
817 */
818
819 if (new_mode == condition_evaluation_target)
820 {
821 /* Mark everything modified and synch conditions with the
822 target. */
823 ALL_BP_LOCATIONS (loc, loc_tmp)
824 mark_breakpoint_location_modified (loc);
825 }
826 else
827 {
828 /* Manually mark non-duplicate locations to synch conditions
829 with the target. We do this to remove all the conditions the
830 target knows about. */
831 ALL_BP_LOCATIONS (loc, loc_tmp)
832 if (is_breakpoint (loc->owner) && loc->inserted)
833 loc->needs_update = 1;
834 }
835
836 /* Do the update. */
837 update_global_location_list (1);
838 }
839
840 return;
841 }
842
843 /* Shows the current mode of breakpoint condition evaluation. Explicitly shows
844 what "auto" is translating to. */
845
846 static void
847 show_condition_evaluation_mode (struct ui_file *file, int from_tty,
848 struct cmd_list_element *c, const char *value)
849 {
850 if (condition_evaluation_mode == condition_evaluation_auto)
851 fprintf_filtered (file,
852 _("Breakpoint condition evaluation "
853 "mode is %s (currently %s).\n"),
854 value,
855 breakpoint_condition_evaluation_mode ());
856 else
857 fprintf_filtered (file, _("Breakpoint condition evaluation mode is %s.\n"),
858 value);
859 }
860
861 /* A comparison function for bp_location AP and BP that is used by
862 bsearch. This comparison function only cares about addresses, unlike
863 the more general bp_location_compare function. */
864
865 static int
866 bp_location_compare_addrs (const void *ap, const void *bp)
867 {
868 struct bp_location *a = *(void **) ap;
869 struct bp_location *b = *(void **) bp;
870
871 if (a->address == b->address)
872 return 0;
873 else
874 return ((a->address > b->address) - (a->address < b->address));
875 }
876
877 /* Helper function to skip all bp_locations with addresses
878 less than ADDRESS. It returns the first bp_location that
879 is greater than or equal to ADDRESS. If none is found, just
880 return NULL. */
881
882 static struct bp_location **
883 get_first_locp_gte_addr (CORE_ADDR address)
884 {
885 struct bp_location dummy_loc;
886 struct bp_location *dummy_locp = &dummy_loc;
887 struct bp_location **locp_found = NULL;
888
889 /* Initialize the dummy location's address field. */
890 memset (&dummy_loc, 0, sizeof (struct bp_location));
891 dummy_loc.address = address;
892
893 /* Find a close match to the first location at ADDRESS. */
894 locp_found = bsearch (&dummy_locp, bp_location, bp_location_count,
895 sizeof (struct bp_location **),
896 bp_location_compare_addrs);
897
898 /* Nothing was found, nothing left to do. */
899 if (locp_found == NULL)
900 return NULL;
901
902 /* We may have found a location that is at ADDRESS but is not the first in the
903 location's list. Go backwards (if possible) and locate the first one. */
904 while ((locp_found - 1) >= bp_location
905 && (*(locp_found - 1))->address == address)
906 locp_found--;
907
908 return locp_found;
909 }
910
911 void
912 set_breakpoint_condition (struct breakpoint *b, char *exp,
913 int from_tty)
914 {
915 xfree (b->cond_string);
916 b->cond_string = NULL;
917
918 if (is_watchpoint (b))
919 {
920 struct watchpoint *w = (struct watchpoint *) b;
921
922 xfree (w->cond_exp);
923 w->cond_exp = NULL;
924 }
925 else
926 {
927 struct bp_location *loc;
928
929 for (loc = b->loc; loc; loc = loc->next)
930 {
931 xfree (loc->cond);
932 loc->cond = NULL;
933
934 /* No need to free the condition agent expression
935 bytecode (if we have one). We will handle this
936 when we go through update_global_location_list. */
937 }
938 }
939
940 if (*exp == 0)
941 {
942 if (from_tty)
943 printf_filtered (_("Breakpoint %d now unconditional.\n"), b->number);
944 }
945 else
946 {
947 const char *arg = exp;
948
949 /* I don't know if it matters whether this is the string the user
950 typed in or the decompiled expression. */
951 b->cond_string = xstrdup (arg);
952 b->condition_not_parsed = 0;
953
954 if (is_watchpoint (b))
955 {
956 struct watchpoint *w = (struct watchpoint *) b;
957
958 innermost_block = NULL;
959 arg = exp;
960 w->cond_exp = parse_exp_1 (&arg, 0, 0, 0);
961 if (*arg)
962 error (_("Junk at end of expression"));
963 w->cond_exp_valid_block = innermost_block;
964 }
965 else
966 {
967 struct bp_location *loc;
968
969 for (loc = b->loc; loc; loc = loc->next)
970 {
971 arg = exp;
972 loc->cond =
973 parse_exp_1 (&arg, loc->address,
974 block_for_pc (loc->address), 0);
975 if (*arg)
976 error (_("Junk at end of expression"));
977 }
978 }
979 }
980 mark_breakpoint_modified (b);
981
982 observer_notify_breakpoint_modified (b);
983 }
984
985 /* Completion for the "condition" command. */
986
987 static VEC (char_ptr) *
988 condition_completer (struct cmd_list_element *cmd,
989 const char *text, const char *word)
990 {
991 const char *space;
992
993 text = skip_spaces_const (text);
994 space = skip_to_space_const (text);
995 if (*space == '\0')
996 {
997 int len;
998 struct breakpoint *b;
999 VEC (char_ptr) *result = NULL;
1000
1001 if (text[0] == '$')
1002 {
1003 /* We don't support completion of history indices. */
1004 if (isdigit (text[1]))
1005 return NULL;
1006 return complete_internalvar (&text[1]);
1007 }
1008
1009 /* We're completing the breakpoint number. */
1010 len = strlen (text);
1011
1012 ALL_BREAKPOINTS (b)
1013 {
1014 char number[50];
1015
1016 xsnprintf (number, sizeof (number), "%d", b->number);
1017
1018 if (strncmp (number, text, len) == 0)
1019 VEC_safe_push (char_ptr, result, xstrdup (number));
1020 }
1021
1022 return result;
1023 }
1024
1025 /* We're completing the expression part. */
1026 text = skip_spaces_const (space);
1027 return expression_completer (cmd, text, word);
1028 }
1029
1030 /* condition N EXP -- set break condition of breakpoint N to EXP. */
1031
1032 static void
1033 condition_command (char *arg, int from_tty)
1034 {
1035 struct breakpoint *b;
1036 char *p;
1037 int bnum;
1038
1039 if (arg == 0)
1040 error_no_arg (_("breakpoint number"));
1041
1042 p = arg;
1043 bnum = get_number (&p);
1044 if (bnum == 0)
1045 error (_("Bad breakpoint argument: '%s'"), arg);
1046
1047 ALL_BREAKPOINTS (b)
1048 if (b->number == bnum)
1049 {
1050 /* Check if this breakpoint has a Python object assigned to
1051 it, and if it has a definition of the "stop"
1052 method. This method and conditions entered into GDB from
1053 the CLI are mutually exclusive. */
1054 if (b->py_bp_object
1055 && gdbpy_breakpoint_has_py_cond (b->py_bp_object))
1056 error (_("Cannot set a condition where a Python 'stop' "
1057 "method has been defined in the breakpoint."));
1058 set_breakpoint_condition (b, p, from_tty);
1059
1060 if (is_breakpoint (b))
1061 update_global_location_list (1);
1062
1063 return;
1064 }
1065
1066 error (_("No breakpoint number %d."), bnum);
1067 }
1068
1069 /* Check that COMMAND do not contain commands that are suitable
1070 only for tracepoints and not suitable for ordinary breakpoints.
1071 Throw if any such commands is found. */
1072
1073 static void
1074 check_no_tracepoint_commands (struct command_line *commands)
1075 {
1076 struct command_line *c;
1077
1078 for (c = commands; c; c = c->next)
1079 {
1080 int i;
1081
1082 if (c->control_type == while_stepping_control)
1083 error (_("The 'while-stepping' command can "
1084 "only be used for tracepoints"));
1085
1086 for (i = 0; i < c->body_count; ++i)
1087 check_no_tracepoint_commands ((c->body_list)[i]);
1088
1089 /* Not that command parsing removes leading whitespace and comment
1090 lines and also empty lines. So, we only need to check for
1091 command directly. */
1092 if (strstr (c->line, "collect ") == c->line)
1093 error (_("The 'collect' command can only be used for tracepoints"));
1094
1095 if (strstr (c->line, "teval ") == c->line)
1096 error (_("The 'teval' command can only be used for tracepoints"));
1097 }
1098 }
1099
1100 /* Encapsulate tests for different types of tracepoints. */
1101
1102 static int
1103 is_tracepoint_type (enum bptype type)
1104 {
1105 return (type == bp_tracepoint
1106 || type == bp_fast_tracepoint
1107 || type == bp_static_tracepoint);
1108 }
1109
1110 int
1111 is_tracepoint (const struct breakpoint *b)
1112 {
1113 return is_tracepoint_type (b->type);
1114 }
1115
1116 /* A helper function that validates that COMMANDS are valid for a
1117 breakpoint. This function will throw an exception if a problem is
1118 found. */
1119
1120 static void
1121 validate_commands_for_breakpoint (struct breakpoint *b,
1122 struct command_line *commands)
1123 {
1124 if (is_tracepoint (b))
1125 {
1126 struct tracepoint *t = (struct tracepoint *) b;
1127 struct command_line *c;
1128 struct command_line *while_stepping = 0;
1129
1130 /* Reset the while-stepping step count. The previous commands
1131 might have included a while-stepping action, while the new
1132 ones might not. */
1133 t->step_count = 0;
1134
1135 /* We need to verify that each top-level element of commands is
1136 valid for tracepoints, that there's at most one
1137 while-stepping element, and that the while-stepping's body
1138 has valid tracing commands excluding nested while-stepping.
1139 We also need to validate the tracepoint action line in the
1140 context of the tracepoint --- validate_actionline actually
1141 has side effects, like setting the tracepoint's
1142 while-stepping STEP_COUNT, in addition to checking if the
1143 collect/teval actions parse and make sense in the
1144 tracepoint's context. */
1145 for (c = commands; c; c = c->next)
1146 {
1147 if (c->control_type == while_stepping_control)
1148 {
1149 if (b->type == bp_fast_tracepoint)
1150 error (_("The 'while-stepping' command "
1151 "cannot be used for fast tracepoint"));
1152 else if (b->type == bp_static_tracepoint)
1153 error (_("The 'while-stepping' command "
1154 "cannot be used for static tracepoint"));
1155
1156 if (while_stepping)
1157 error (_("The 'while-stepping' command "
1158 "can be used only once"));
1159 else
1160 while_stepping = c;
1161 }
1162
1163 validate_actionline (c->line, b);
1164 }
1165 if (while_stepping)
1166 {
1167 struct command_line *c2;
1168
1169 gdb_assert (while_stepping->body_count == 1);
1170 c2 = while_stepping->body_list[0];
1171 for (; c2; c2 = c2->next)
1172 {
1173 if (c2->control_type == while_stepping_control)
1174 error (_("The 'while-stepping' command cannot be nested"));
1175 }
1176 }
1177 }
1178 else
1179 {
1180 check_no_tracepoint_commands (commands);
1181 }
1182 }
1183
1184 /* Return a vector of all the static tracepoints set at ADDR. The
1185 caller is responsible for releasing the vector. */
1186
1187 VEC(breakpoint_p) *
1188 static_tracepoints_here (CORE_ADDR addr)
1189 {
1190 struct breakpoint *b;
1191 VEC(breakpoint_p) *found = 0;
1192 struct bp_location *loc;
1193
1194 ALL_BREAKPOINTS (b)
1195 if (b->type == bp_static_tracepoint)
1196 {
1197 for (loc = b->loc; loc; loc = loc->next)
1198 if (loc->address == addr)
1199 VEC_safe_push(breakpoint_p, found, b);
1200 }
1201
1202 return found;
1203 }
1204
1205 /* Set the command list of B to COMMANDS. If breakpoint is tracepoint,
1206 validate that only allowed commands are included. */
1207
1208 void
1209 breakpoint_set_commands (struct breakpoint *b,
1210 struct command_line *commands)
1211 {
1212 validate_commands_for_breakpoint (b, commands);
1213
1214 decref_counted_command_line (&b->commands);
1215 b->commands = alloc_counted_command_line (commands);
1216 observer_notify_breakpoint_modified (b);
1217 }
1218
1219 /* Set the internal `silent' flag on the breakpoint. Note that this
1220 is not the same as the "silent" that may appear in the breakpoint's
1221 commands. */
1222
1223 void
1224 breakpoint_set_silent (struct breakpoint *b, int silent)
1225 {
1226 int old_silent = b->silent;
1227
1228 b->silent = silent;
1229 if (old_silent != silent)
1230 observer_notify_breakpoint_modified (b);
1231 }
1232
1233 /* Set the thread for this breakpoint. If THREAD is -1, make the
1234 breakpoint work for any thread. */
1235
1236 void
1237 breakpoint_set_thread (struct breakpoint *b, int thread)
1238 {
1239 int old_thread = b->thread;
1240
1241 b->thread = thread;
1242 if (old_thread != thread)
1243 observer_notify_breakpoint_modified (b);
1244 }
1245
1246 /* Set the task for this breakpoint. If TASK is 0, make the
1247 breakpoint work for any task. */
1248
1249 void
1250 breakpoint_set_task (struct breakpoint *b, int task)
1251 {
1252 int old_task = b->task;
1253
1254 b->task = task;
1255 if (old_task != task)
1256 observer_notify_breakpoint_modified (b);
1257 }
1258
1259 void
1260 check_tracepoint_command (char *line, void *closure)
1261 {
1262 struct breakpoint *b = closure;
1263
1264 validate_actionline (line, b);
1265 }
1266
1267 /* A structure used to pass information through
1268 map_breakpoint_numbers. */
1269
1270 struct commands_info
1271 {
1272 /* True if the command was typed at a tty. */
1273 int from_tty;
1274
1275 /* The breakpoint range spec. */
1276 char *arg;
1277
1278 /* Non-NULL if the body of the commands are being read from this
1279 already-parsed command. */
1280 struct command_line *control;
1281
1282 /* The command lines read from the user, or NULL if they have not
1283 yet been read. */
1284 struct counted_command_line *cmd;
1285 };
1286
1287 /* A callback for map_breakpoint_numbers that sets the commands for
1288 commands_command. */
1289
1290 static void
1291 do_map_commands_command (struct breakpoint *b, void *data)
1292 {
1293 struct commands_info *info = data;
1294
1295 if (info->cmd == NULL)
1296 {
1297 struct command_line *l;
1298
1299 if (info->control != NULL)
1300 l = copy_command_lines (info->control->body_list[0]);
1301 else
1302 {
1303 struct cleanup *old_chain;
1304 char *str;
1305
1306 str = xstrprintf (_("Type commands for breakpoint(s) "
1307 "%s, one per line."),
1308 info->arg);
1309
1310 old_chain = make_cleanup (xfree, str);
1311
1312 l = read_command_lines (str,
1313 info->from_tty, 1,
1314 (is_tracepoint (b)
1315 ? check_tracepoint_command : 0),
1316 b);
1317
1318 do_cleanups (old_chain);
1319 }
1320
1321 info->cmd = alloc_counted_command_line (l);
1322 }
1323
1324 /* If a breakpoint was on the list more than once, we don't need to
1325 do anything. */
1326 if (b->commands != info->cmd)
1327 {
1328 validate_commands_for_breakpoint (b, info->cmd->commands);
1329 incref_counted_command_line (info->cmd);
1330 decref_counted_command_line (&b->commands);
1331 b->commands = info->cmd;
1332 observer_notify_breakpoint_modified (b);
1333 }
1334 }
1335
1336 static void
1337 commands_command_1 (char *arg, int from_tty,
1338 struct command_line *control)
1339 {
1340 struct cleanup *cleanups;
1341 struct commands_info info;
1342
1343 info.from_tty = from_tty;
1344 info.control = control;
1345 info.cmd = NULL;
1346 /* If we read command lines from the user, then `info' will hold an
1347 extra reference to the commands that we must clean up. */
1348 cleanups = make_cleanup_decref_counted_command_line (&info.cmd);
1349
1350 if (arg == NULL || !*arg)
1351 {
1352 if (breakpoint_count - prev_breakpoint_count > 1)
1353 arg = xstrprintf ("%d-%d", prev_breakpoint_count + 1,
1354 breakpoint_count);
1355 else if (breakpoint_count > 0)
1356 arg = xstrprintf ("%d", breakpoint_count);
1357 else
1358 {
1359 /* So that we don't try to free the incoming non-NULL
1360 argument in the cleanup below. Mapping breakpoint
1361 numbers will fail in this case. */
1362 arg = NULL;
1363 }
1364 }
1365 else
1366 /* The command loop has some static state, so we need to preserve
1367 our argument. */
1368 arg = xstrdup (arg);
1369
1370 if (arg != NULL)
1371 make_cleanup (xfree, arg);
1372
1373 info.arg = arg;
1374
1375 map_breakpoint_numbers (arg, do_map_commands_command, &info);
1376
1377 if (info.cmd == NULL)
1378 error (_("No breakpoints specified."));
1379
1380 do_cleanups (cleanups);
1381 }
1382
1383 static void
1384 commands_command (char *arg, int from_tty)
1385 {
1386 commands_command_1 (arg, from_tty, NULL);
1387 }
1388
1389 /* Like commands_command, but instead of reading the commands from
1390 input stream, takes them from an already parsed command structure.
1391
1392 This is used by cli-script.c to DTRT with breakpoint commands
1393 that are part of if and while bodies. */
1394 enum command_control_type
1395 commands_from_control_command (char *arg, struct command_line *cmd)
1396 {
1397 commands_command_1 (arg, 0, cmd);
1398 return simple_control;
1399 }
1400
1401 /* Return non-zero if BL->TARGET_INFO contains valid information. */
1402
1403 static int
1404 bp_location_has_shadow (struct bp_location *bl)
1405 {
1406 if (bl->loc_type != bp_loc_software_breakpoint)
1407 return 0;
1408 if (!bl->inserted)
1409 return 0;
1410 if (bl->target_info.shadow_len == 0)
1411 /* BL isn't valid, or doesn't shadow memory. */
1412 return 0;
1413 return 1;
1414 }
1415
1416 /* Update BUF, which is LEN bytes read from the target address MEMADDR,
1417 by replacing any memory breakpoints with their shadowed contents.
1418
1419 If READBUF is not NULL, this buffer must not overlap with any of
1420 the breakpoint location's shadow_contents buffers. Otherwise,
1421 a failed assertion internal error will be raised.
1422
1423 The range of shadowed area by each bp_location is:
1424 bl->address - bp_location_placed_address_before_address_max
1425 up to bl->address + bp_location_shadow_len_after_address_max
1426 The range we were requested to resolve shadows for is:
1427 memaddr ... memaddr + len
1428 Thus the safe cutoff boundaries for performance optimization are
1429 memaddr + len <= (bl->address
1430 - bp_location_placed_address_before_address_max)
1431 and:
1432 bl->address + bp_location_shadow_len_after_address_max <= memaddr */
1433
1434 void
1435 breakpoint_xfer_memory (gdb_byte *readbuf, gdb_byte *writebuf,
1436 const gdb_byte *writebuf_org,
1437 ULONGEST memaddr, LONGEST len)
1438 {
1439 /* Left boundary, right boundary and median element of our binary
1440 search. */
1441 unsigned bc_l, bc_r, bc;
1442
1443 /* Find BC_L which is a leftmost element which may affect BUF
1444 content. It is safe to report lower value but a failure to
1445 report higher one. */
1446
1447 bc_l = 0;
1448 bc_r = bp_location_count;
1449 while (bc_l + 1 < bc_r)
1450 {
1451 struct bp_location *bl;
1452
1453 bc = (bc_l + bc_r) / 2;
1454 bl = bp_location[bc];
1455
1456 /* Check first BL->ADDRESS will not overflow due to the added
1457 constant. Then advance the left boundary only if we are sure
1458 the BC element can in no way affect the BUF content (MEMADDR
1459 to MEMADDR + LEN range).
1460
1461 Use the BP_LOCATION_SHADOW_LEN_AFTER_ADDRESS_MAX safety
1462 offset so that we cannot miss a breakpoint with its shadow
1463 range tail still reaching MEMADDR. */
1464
1465 if ((bl->address + bp_location_shadow_len_after_address_max
1466 >= bl->address)
1467 && (bl->address + bp_location_shadow_len_after_address_max
1468 <= memaddr))
1469 bc_l = bc;
1470 else
1471 bc_r = bc;
1472 }
1473
1474 /* Due to the binary search above, we need to make sure we pick the
1475 first location that's at BC_L's address. E.g., if there are
1476 multiple locations at the same address, BC_L may end up pointing
1477 at a duplicate location, and miss the "master"/"inserted"
1478 location. Say, given locations L1, L2 and L3 at addresses A and
1479 B:
1480
1481 L1@A, L2@A, L3@B, ...
1482
1483 BC_L could end up pointing at location L2, while the "master"
1484 location could be L1. Since the `loc->inserted' flag is only set
1485 on "master" locations, we'd forget to restore the shadow of L1
1486 and L2. */
1487 while (bc_l > 0
1488 && bp_location[bc_l]->address == bp_location[bc_l - 1]->address)
1489 bc_l--;
1490
1491 /* Now do full processing of the found relevant range of elements. */
1492
1493 for (bc = bc_l; bc < bp_location_count; bc++)
1494 {
1495 struct bp_location *bl = bp_location[bc];
1496 CORE_ADDR bp_addr = 0;
1497 int bp_size = 0;
1498 int bptoffset = 0;
1499
1500 /* bp_location array has BL->OWNER always non-NULL. */
1501 if (bl->owner->type == bp_none)
1502 warning (_("reading through apparently deleted breakpoint #%d?"),
1503 bl->owner->number);
1504
1505 /* Performance optimization: any further element can no longer affect BUF
1506 content. */
1507
1508 if (bl->address >= bp_location_placed_address_before_address_max
1509 && memaddr + len <= (bl->address
1510 - bp_location_placed_address_before_address_max))
1511 break;
1512
1513 if (!bp_location_has_shadow (bl))
1514 continue;
1515 if (!breakpoint_address_match (bl->target_info.placed_address_space, 0,
1516 current_program_space->aspace, 0))
1517 continue;
1518
1519 /* Addresses and length of the part of the breakpoint that
1520 we need to copy. */
1521 bp_addr = bl->target_info.placed_address;
1522 bp_size = bl->target_info.shadow_len;
1523
1524 if (bp_addr + bp_size <= memaddr)
1525 /* The breakpoint is entirely before the chunk of memory we
1526 are reading. */
1527 continue;
1528
1529 if (bp_addr >= memaddr + len)
1530 /* The breakpoint is entirely after the chunk of memory we are
1531 reading. */
1532 continue;
1533
1534 /* Offset within shadow_contents. */
1535 if (bp_addr < memaddr)
1536 {
1537 /* Only copy the second part of the breakpoint. */
1538 bp_size -= memaddr - bp_addr;
1539 bptoffset = memaddr - bp_addr;
1540 bp_addr = memaddr;
1541 }
1542
1543 if (bp_addr + bp_size > memaddr + len)
1544 {
1545 /* Only copy the first part of the breakpoint. */
1546 bp_size -= (bp_addr + bp_size) - (memaddr + len);
1547 }
1548
1549 if (readbuf != NULL)
1550 {
1551 /* Verify that the readbuf buffer does not overlap with
1552 the shadow_contents buffer. */
1553 gdb_assert (bl->target_info.shadow_contents >= readbuf + len
1554 || readbuf >= (bl->target_info.shadow_contents
1555 + bl->target_info.shadow_len));
1556
1557 /* Update the read buffer with this inserted breakpoint's
1558 shadow. */
1559 memcpy (readbuf + bp_addr - memaddr,
1560 bl->target_info.shadow_contents + bptoffset, bp_size);
1561 }
1562 else
1563 {
1564 struct gdbarch *gdbarch = bl->gdbarch;
1565 const unsigned char *bp;
1566 CORE_ADDR placed_address = bl->target_info.placed_address;
1567 int placed_size = bl->target_info.placed_size;
1568
1569 /* Update the shadow with what we want to write to memory. */
1570 memcpy (bl->target_info.shadow_contents + bptoffset,
1571 writebuf_org + bp_addr - memaddr, bp_size);
1572
1573 /* Determine appropriate breakpoint contents and size for this
1574 address. */
1575 bp = gdbarch_breakpoint_from_pc (gdbarch, &placed_address, &placed_size);
1576
1577 /* Update the final write buffer with this inserted
1578 breakpoint's INSN. */
1579 memcpy (writebuf + bp_addr - memaddr, bp + bptoffset, bp_size);
1580 }
1581 }
1582 }
1583 \f
1584
1585 /* Return true if BPT is either a software breakpoint or a hardware
1586 breakpoint. */
1587
1588 int
1589 is_breakpoint (const struct breakpoint *bpt)
1590 {
1591 return (bpt->type == bp_breakpoint
1592 || bpt->type == bp_hardware_breakpoint
1593 || bpt->type == bp_dprintf);
1594 }
1595
1596 /* Return true if BPT is of any hardware watchpoint kind. */
1597
1598 static int
1599 is_hardware_watchpoint (const struct breakpoint *bpt)
1600 {
1601 return (bpt->type == bp_hardware_watchpoint
1602 || bpt->type == bp_read_watchpoint
1603 || bpt->type == bp_access_watchpoint);
1604 }
1605
1606 /* Return true if BPT is of any watchpoint kind, hardware or
1607 software. */
1608
1609 int
1610 is_watchpoint (const struct breakpoint *bpt)
1611 {
1612 return (is_hardware_watchpoint (bpt)
1613 || bpt->type == bp_watchpoint);
1614 }
1615
1616 /* Returns true if the current thread and its running state are safe
1617 to evaluate or update watchpoint B. Watchpoints on local
1618 expressions need to be evaluated in the context of the thread that
1619 was current when the watchpoint was created, and, that thread needs
1620 to be stopped to be able to select the correct frame context.
1621 Watchpoints on global expressions can be evaluated on any thread,
1622 and in any state. It is presently left to the target allowing
1623 memory accesses when threads are running. */
1624
1625 static int
1626 watchpoint_in_thread_scope (struct watchpoint *b)
1627 {
1628 return (b->base.pspace == current_program_space
1629 && (ptid_equal (b->watchpoint_thread, null_ptid)
1630 || (ptid_equal (inferior_ptid, b->watchpoint_thread)
1631 && !is_executing (inferior_ptid))));
1632 }
1633
1634 /* Set watchpoint B to disp_del_at_next_stop, even including its possible
1635 associated bp_watchpoint_scope breakpoint. */
1636
1637 static void
1638 watchpoint_del_at_next_stop (struct watchpoint *w)
1639 {
1640 struct breakpoint *b = &w->base;
1641
1642 if (b->related_breakpoint != b)
1643 {
1644 gdb_assert (b->related_breakpoint->type == bp_watchpoint_scope);
1645 gdb_assert (b->related_breakpoint->related_breakpoint == b);
1646 b->related_breakpoint->disposition = disp_del_at_next_stop;
1647 b->related_breakpoint->related_breakpoint = b->related_breakpoint;
1648 b->related_breakpoint = b;
1649 }
1650 b->disposition = disp_del_at_next_stop;
1651 }
1652
1653 /* Assuming that B is a watchpoint:
1654 - Reparse watchpoint expression, if REPARSE is non-zero
1655 - Evaluate expression and store the result in B->val
1656 - Evaluate the condition if there is one, and store the result
1657 in b->loc->cond.
1658 - Update the list of values that must be watched in B->loc.
1659
1660 If the watchpoint disposition is disp_del_at_next_stop, then do
1661 nothing. If this is local watchpoint that is out of scope, delete
1662 it.
1663
1664 Even with `set breakpoint always-inserted on' the watchpoints are
1665 removed + inserted on each stop here. Normal breakpoints must
1666 never be removed because they might be missed by a running thread
1667 when debugging in non-stop mode. On the other hand, hardware
1668 watchpoints (is_hardware_watchpoint; processed here) are specific
1669 to each LWP since they are stored in each LWP's hardware debug
1670 registers. Therefore, such LWP must be stopped first in order to
1671 be able to modify its hardware watchpoints.
1672
1673 Hardware watchpoints must be reset exactly once after being
1674 presented to the user. It cannot be done sooner, because it would
1675 reset the data used to present the watchpoint hit to the user. And
1676 it must not be done later because it could display the same single
1677 watchpoint hit during multiple GDB stops. Note that the latter is
1678 relevant only to the hardware watchpoint types bp_read_watchpoint
1679 and bp_access_watchpoint. False hit by bp_hardware_watchpoint is
1680 not user-visible - its hit is suppressed if the memory content has
1681 not changed.
1682
1683 The following constraints influence the location where we can reset
1684 hardware watchpoints:
1685
1686 * target_stopped_by_watchpoint and target_stopped_data_address are
1687 called several times when GDB stops.
1688
1689 [linux]
1690 * Multiple hardware watchpoints can be hit at the same time,
1691 causing GDB to stop. GDB only presents one hardware watchpoint
1692 hit at a time as the reason for stopping, and all the other hits
1693 are presented later, one after the other, each time the user
1694 requests the execution to be resumed. Execution is not resumed
1695 for the threads still having pending hit event stored in
1696 LWP_INFO->STATUS. While the watchpoint is already removed from
1697 the inferior on the first stop the thread hit event is kept being
1698 reported from its cached value by linux_nat_stopped_data_address
1699 until the real thread resume happens after the watchpoint gets
1700 presented and thus its LWP_INFO->STATUS gets reset.
1701
1702 Therefore the hardware watchpoint hit can get safely reset on the
1703 watchpoint removal from inferior. */
1704
1705 static void
1706 update_watchpoint (struct watchpoint *b, int reparse)
1707 {
1708 int within_current_scope;
1709 struct frame_id saved_frame_id;
1710 int frame_saved;
1711
1712 /* If this is a local watchpoint, we only want to check if the
1713 watchpoint frame is in scope if the current thread is the thread
1714 that was used to create the watchpoint. */
1715 if (!watchpoint_in_thread_scope (b))
1716 return;
1717
1718 if (b->base.disposition == disp_del_at_next_stop)
1719 return;
1720
1721 frame_saved = 0;
1722
1723 /* Determine if the watchpoint is within scope. */
1724 if (b->exp_valid_block == NULL)
1725 within_current_scope = 1;
1726 else
1727 {
1728 struct frame_info *fi = get_current_frame ();
1729 struct gdbarch *frame_arch = get_frame_arch (fi);
1730 CORE_ADDR frame_pc = get_frame_pc (fi);
1731
1732 /* If we're in a function epilogue, unwinding may not work
1733 properly, so do not attempt to recreate locations at this
1734 point. See similar comments in watchpoint_check. */
1735 if (gdbarch_in_function_epilogue_p (frame_arch, frame_pc))
1736 return;
1737
1738 /* Save the current frame's ID so we can restore it after
1739 evaluating the watchpoint expression on its own frame. */
1740 /* FIXME drow/2003-09-09: It would be nice if evaluate_expression
1741 took a frame parameter, so that we didn't have to change the
1742 selected frame. */
1743 frame_saved = 1;
1744 saved_frame_id = get_frame_id (get_selected_frame (NULL));
1745
1746 fi = frame_find_by_id (b->watchpoint_frame);
1747 within_current_scope = (fi != NULL);
1748 if (within_current_scope)
1749 select_frame (fi);
1750 }
1751
1752 /* We don't free locations. They are stored in the bp_location array
1753 and update_global_location_list will eventually delete them and
1754 remove breakpoints if needed. */
1755 b->base.loc = NULL;
1756
1757 if (within_current_scope && reparse)
1758 {
1759 const char *s;
1760
1761 if (b->exp)
1762 {
1763 xfree (b->exp);
1764 b->exp = NULL;
1765 }
1766 s = b->exp_string_reparse ? b->exp_string_reparse : b->exp_string;
1767 b->exp = parse_exp_1 (&s, 0, b->exp_valid_block, 0);
1768 /* If the meaning of expression itself changed, the old value is
1769 no longer relevant. We don't want to report a watchpoint hit
1770 to the user when the old value and the new value may actually
1771 be completely different objects. */
1772 value_free (b->val);
1773 b->val = NULL;
1774 b->val_valid = 0;
1775
1776 /* Note that unlike with breakpoints, the watchpoint's condition
1777 expression is stored in the breakpoint object, not in the
1778 locations (re)created below. */
1779 if (b->base.cond_string != NULL)
1780 {
1781 if (b->cond_exp != NULL)
1782 {
1783 xfree (b->cond_exp);
1784 b->cond_exp = NULL;
1785 }
1786
1787 s = b->base.cond_string;
1788 b->cond_exp = parse_exp_1 (&s, 0, b->cond_exp_valid_block, 0);
1789 }
1790 }
1791
1792 /* If we failed to parse the expression, for example because
1793 it refers to a global variable in a not-yet-loaded shared library,
1794 don't try to insert watchpoint. We don't automatically delete
1795 such watchpoint, though, since failure to parse expression
1796 is different from out-of-scope watchpoint. */
1797 if (!target_has_execution)
1798 {
1799 /* Without execution, memory can't change. No use to try and
1800 set watchpoint locations. The watchpoint will be reset when
1801 the target gains execution, through breakpoint_re_set. */
1802 if (!can_use_hw_watchpoints)
1803 {
1804 if (b->base.ops->works_in_software_mode (&b->base))
1805 b->base.type = bp_watchpoint;
1806 else
1807 error (_("Can't set read/access watchpoint when "
1808 "hardware watchpoints are disabled."));
1809 }
1810 }
1811 else if (within_current_scope && b->exp)
1812 {
1813 int pc = 0;
1814 struct value *val_chain, *v, *result, *next;
1815 struct program_space *frame_pspace;
1816
1817 fetch_subexp_value (b->exp, &pc, &v, &result, &val_chain, 0);
1818
1819 /* Avoid setting b->val if it's already set. The meaning of
1820 b->val is 'the last value' user saw, and we should update
1821 it only if we reported that last value to user. As it
1822 happens, the code that reports it updates b->val directly.
1823 We don't keep track of the memory value for masked
1824 watchpoints. */
1825 if (!b->val_valid && !is_masked_watchpoint (&b->base))
1826 {
1827 b->val = v;
1828 b->val_valid = 1;
1829 }
1830
1831 frame_pspace = get_frame_program_space (get_selected_frame (NULL));
1832
1833 /* Look at each value on the value chain. */
1834 for (v = val_chain; v; v = value_next (v))
1835 {
1836 /* If it's a memory location, and GDB actually needed
1837 its contents to evaluate the expression, then we
1838 must watch it. If the first value returned is
1839 still lazy, that means an error occurred reading it;
1840 watch it anyway in case it becomes readable. */
1841 if (VALUE_LVAL (v) == lval_memory
1842 && (v == val_chain || ! value_lazy (v)))
1843 {
1844 struct type *vtype = check_typedef (value_type (v));
1845
1846 /* We only watch structs and arrays if user asked
1847 for it explicitly, never if they just happen to
1848 appear in the middle of some value chain. */
1849 if (v == result
1850 || (TYPE_CODE (vtype) != TYPE_CODE_STRUCT
1851 && TYPE_CODE (vtype) != TYPE_CODE_ARRAY))
1852 {
1853 CORE_ADDR addr;
1854 int type;
1855 struct bp_location *loc, **tmp;
1856
1857 addr = value_address (v);
1858 type = hw_write;
1859 if (b->base.type == bp_read_watchpoint)
1860 type = hw_read;
1861 else if (b->base.type == bp_access_watchpoint)
1862 type = hw_access;
1863
1864 loc = allocate_bp_location (&b->base);
1865 for (tmp = &(b->base.loc); *tmp != NULL; tmp = &((*tmp)->next))
1866 ;
1867 *tmp = loc;
1868 loc->gdbarch = get_type_arch (value_type (v));
1869
1870 loc->pspace = frame_pspace;
1871 loc->address = addr;
1872 loc->length = TYPE_LENGTH (value_type (v));
1873 loc->watchpoint_type = type;
1874 }
1875 }
1876 }
1877
1878 /* Change the type of breakpoint between hardware assisted or
1879 an ordinary watchpoint depending on the hardware support
1880 and free hardware slots. REPARSE is set when the inferior
1881 is started. */
1882 if (reparse)
1883 {
1884 int reg_cnt;
1885 enum bp_loc_type loc_type;
1886 struct bp_location *bl;
1887
1888 reg_cnt = can_use_hardware_watchpoint (val_chain);
1889
1890 if (reg_cnt)
1891 {
1892 int i, target_resources_ok, other_type_used;
1893 enum bptype type;
1894
1895 /* Use an exact watchpoint when there's only one memory region to be
1896 watched, and only one debug register is needed to watch it. */
1897 b->exact = target_exact_watchpoints && reg_cnt == 1;
1898
1899 /* We need to determine how many resources are already
1900 used for all other hardware watchpoints plus this one
1901 to see if we still have enough resources to also fit
1902 this watchpoint in as well. */
1903
1904 /* If this is a software watchpoint, we try to turn it
1905 to a hardware one -- count resources as if B was of
1906 hardware watchpoint type. */
1907 type = b->base.type;
1908 if (type == bp_watchpoint)
1909 type = bp_hardware_watchpoint;
1910
1911 /* This watchpoint may or may not have been placed on
1912 the list yet at this point (it won't be in the list
1913 if we're trying to create it for the first time,
1914 through watch_command), so always account for it
1915 manually. */
1916
1917 /* Count resources used by all watchpoints except B. */
1918 i = hw_watchpoint_used_count_others (&b->base, type, &other_type_used);
1919
1920 /* Add in the resources needed for B. */
1921 i += hw_watchpoint_use_count (&b->base);
1922
1923 target_resources_ok
1924 = target_can_use_hardware_watchpoint (type, i, other_type_used);
1925 if (target_resources_ok <= 0)
1926 {
1927 int sw_mode = b->base.ops->works_in_software_mode (&b->base);
1928
1929 if (target_resources_ok == 0 && !sw_mode)
1930 error (_("Target does not support this type of "
1931 "hardware watchpoint."));
1932 else if (target_resources_ok < 0 && !sw_mode)
1933 error (_("There are not enough available hardware "
1934 "resources for this watchpoint."));
1935
1936 /* Downgrade to software watchpoint. */
1937 b->base.type = bp_watchpoint;
1938 }
1939 else
1940 {
1941 /* If this was a software watchpoint, we've just
1942 found we have enough resources to turn it to a
1943 hardware watchpoint. Otherwise, this is a
1944 nop. */
1945 b->base.type = type;
1946 }
1947 }
1948 else if (!b->base.ops->works_in_software_mode (&b->base))
1949 {
1950 if (!can_use_hw_watchpoints)
1951 error (_("Can't set read/access watchpoint when "
1952 "hardware watchpoints are disabled."));
1953 else
1954 error (_("Expression cannot be implemented with "
1955 "read/access watchpoint."));
1956 }
1957 else
1958 b->base.type = bp_watchpoint;
1959
1960 loc_type = (b->base.type == bp_watchpoint? bp_loc_other
1961 : bp_loc_hardware_watchpoint);
1962 for (bl = b->base.loc; bl; bl = bl->next)
1963 bl->loc_type = loc_type;
1964 }
1965
1966 for (v = val_chain; v; v = next)
1967 {
1968 next = value_next (v);
1969 if (v != b->val)
1970 value_free (v);
1971 }
1972
1973 /* If a software watchpoint is not watching any memory, then the
1974 above left it without any location set up. But,
1975 bpstat_stop_status requires a location to be able to report
1976 stops, so make sure there's at least a dummy one. */
1977 if (b->base.type == bp_watchpoint && b->base.loc == NULL)
1978 {
1979 struct breakpoint *base = &b->base;
1980 base->loc = allocate_bp_location (base);
1981 base->loc->pspace = frame_pspace;
1982 base->loc->address = -1;
1983 base->loc->length = -1;
1984 base->loc->watchpoint_type = -1;
1985 }
1986 }
1987 else if (!within_current_scope)
1988 {
1989 printf_filtered (_("\
1990 Watchpoint %d deleted because the program has left the block\n\
1991 in which its expression is valid.\n"),
1992 b->base.number);
1993 watchpoint_del_at_next_stop (b);
1994 }
1995
1996 /* Restore the selected frame. */
1997 if (frame_saved)
1998 select_frame (frame_find_by_id (saved_frame_id));
1999 }
2000
2001
2002 /* Returns 1 iff breakpoint location should be
2003 inserted in the inferior. We don't differentiate the type of BL's owner
2004 (breakpoint vs. tracepoint), although insert_location in tracepoint's
2005 breakpoint_ops is not defined, because in insert_bp_location,
2006 tracepoint's insert_location will not be called. */
2007 static int
2008 should_be_inserted (struct bp_location *bl)
2009 {
2010 if (bl->owner == NULL || !breakpoint_enabled (bl->owner))
2011 return 0;
2012
2013 if (bl->owner->disposition == disp_del_at_next_stop)
2014 return 0;
2015
2016 if (!bl->enabled || bl->shlib_disabled || bl->duplicate)
2017 return 0;
2018
2019 if (user_breakpoint_p (bl->owner) && bl->pspace->executing_startup)
2020 return 0;
2021
2022 /* This is set for example, when we're attached to the parent of a
2023 vfork, and have detached from the child. The child is running
2024 free, and we expect it to do an exec or exit, at which point the
2025 OS makes the parent schedulable again (and the target reports
2026 that the vfork is done). Until the child is done with the shared
2027 memory region, do not insert breakpoints in the parent, otherwise
2028 the child could still trip on the parent's breakpoints. Since
2029 the parent is blocked anyway, it won't miss any breakpoint. */
2030 if (bl->pspace->breakpoints_not_allowed)
2031 return 0;
2032
2033 return 1;
2034 }
2035
2036 /* Same as should_be_inserted but does the check assuming
2037 that the location is not duplicated. */
2038
2039 static int
2040 unduplicated_should_be_inserted (struct bp_location *bl)
2041 {
2042 int result;
2043 const int save_duplicate = bl->duplicate;
2044
2045 bl->duplicate = 0;
2046 result = should_be_inserted (bl);
2047 bl->duplicate = save_duplicate;
2048 return result;
2049 }
2050
2051 /* Parses a conditional described by an expression COND into an
2052 agent expression bytecode suitable for evaluation
2053 by the bytecode interpreter. Return NULL if there was
2054 any error during parsing. */
2055
2056 static struct agent_expr *
2057 parse_cond_to_aexpr (CORE_ADDR scope, struct expression *cond)
2058 {
2059 struct agent_expr *aexpr = NULL;
2060 volatile struct gdb_exception ex;
2061
2062 if (!cond)
2063 return NULL;
2064
2065 /* We don't want to stop processing, so catch any errors
2066 that may show up. */
2067 TRY_CATCH (ex, RETURN_MASK_ERROR)
2068 {
2069 aexpr = gen_eval_for_expr (scope, cond);
2070 }
2071
2072 if (ex.reason < 0)
2073 {
2074 /* If we got here, it means the condition could not be parsed to a valid
2075 bytecode expression and thus can't be evaluated on the target's side.
2076 It's no use iterating through the conditions. */
2077 return NULL;
2078 }
2079
2080 /* We have a valid agent expression. */
2081 return aexpr;
2082 }
2083
2084 /* Based on location BL, create a list of breakpoint conditions to be
2085 passed on to the target. If we have duplicated locations with different
2086 conditions, we will add such conditions to the list. The idea is that the
2087 target will evaluate the list of conditions and will only notify GDB when
2088 one of them is true. */
2089
2090 static void
2091 build_target_condition_list (struct bp_location *bl)
2092 {
2093 struct bp_location **locp = NULL, **loc2p;
2094 int null_condition_or_parse_error = 0;
2095 int modified = bl->needs_update;
2096 struct bp_location *loc;
2097
2098 /* Release conditions left over from a previous insert. */
2099 VEC_free (agent_expr_p, bl->target_info.conditions);
2100
2101 /* This is only meaningful if the target is
2102 evaluating conditions and if the user has
2103 opted for condition evaluation on the target's
2104 side. */
2105 if (gdb_evaluates_breakpoint_condition_p ()
2106 || !target_supports_evaluation_of_breakpoint_conditions ())
2107 return;
2108
2109 /* Do a first pass to check for locations with no assigned
2110 conditions or conditions that fail to parse to a valid agent expression
2111 bytecode. If any of these happen, then it's no use to send conditions
2112 to the target since this location will always trigger and generate a
2113 response back to GDB. */
2114 ALL_BP_LOCATIONS_AT_ADDR (loc2p, locp, bl->address)
2115 {
2116 loc = (*loc2p);
2117 if (is_breakpoint (loc->owner) && loc->pspace->num == bl->pspace->num)
2118 {
2119 if (modified)
2120 {
2121 struct agent_expr *aexpr;
2122
2123 /* Re-parse the conditions since something changed. In that
2124 case we already freed the condition bytecodes (see
2125 force_breakpoint_reinsertion). We just
2126 need to parse the condition to bytecodes again. */
2127 aexpr = parse_cond_to_aexpr (bl->address, loc->cond);
2128 loc->cond_bytecode = aexpr;
2129
2130 /* Check if we managed to parse the conditional expression
2131 correctly. If not, we will not send this condition
2132 to the target. */
2133 if (aexpr)
2134 continue;
2135 }
2136
2137 /* If we have a NULL bytecode expression, it means something
2138 went wrong or we have a null condition expression. */
2139 if (!loc->cond_bytecode)
2140 {
2141 null_condition_or_parse_error = 1;
2142 break;
2143 }
2144 }
2145 }
2146
2147 /* If any of these happened, it means we will have to evaluate the conditions
2148 for the location's address on gdb's side. It is no use keeping bytecodes
2149 for all the other duplicate locations, thus we free all of them here.
2150
2151 This is so we have a finer control over which locations' conditions are
2152 being evaluated by GDB or the remote stub. */
2153 if (null_condition_or_parse_error)
2154 {
2155 ALL_BP_LOCATIONS_AT_ADDR (loc2p, locp, bl->address)
2156 {
2157 loc = (*loc2p);
2158 if (is_breakpoint (loc->owner) && loc->pspace->num == bl->pspace->num)
2159 {
2160 /* Only go as far as the first NULL bytecode is
2161 located. */
2162 if (!loc->cond_bytecode)
2163 return;
2164
2165 free_agent_expr (loc->cond_bytecode);
2166 loc->cond_bytecode = NULL;
2167 }
2168 }
2169 }
2170
2171 /* No NULL conditions or failed bytecode generation. Build a condition list
2172 for this location's address. */
2173 ALL_BP_LOCATIONS_AT_ADDR (loc2p, locp, bl->address)
2174 {
2175 loc = (*loc2p);
2176 if (loc->cond
2177 && is_breakpoint (loc->owner)
2178 && loc->pspace->num == bl->pspace->num
2179 && loc->owner->enable_state == bp_enabled
2180 && loc->enabled)
2181 /* Add the condition to the vector. This will be used later to send the
2182 conditions to the target. */
2183 VEC_safe_push (agent_expr_p, bl->target_info.conditions,
2184 loc->cond_bytecode);
2185 }
2186
2187 return;
2188 }
2189
2190 /* Parses a command described by string CMD into an agent expression
2191 bytecode suitable for evaluation by the bytecode interpreter.
2192 Return NULL if there was any error during parsing. */
2193
2194 static struct agent_expr *
2195 parse_cmd_to_aexpr (CORE_ADDR scope, char *cmd)
2196 {
2197 struct cleanup *old_cleanups = 0;
2198 struct expression *expr, **argvec;
2199 struct agent_expr *aexpr = NULL;
2200 volatile struct gdb_exception ex;
2201 const char *cmdrest;
2202 const char *format_start, *format_end;
2203 struct format_piece *fpieces;
2204 int nargs;
2205 struct gdbarch *gdbarch = get_current_arch ();
2206
2207 if (!cmd)
2208 return NULL;
2209
2210 cmdrest = cmd;
2211
2212 if (*cmdrest == ',')
2213 ++cmdrest;
2214 cmdrest = skip_spaces_const (cmdrest);
2215
2216 if (*cmdrest++ != '"')
2217 error (_("No format string following the location"));
2218
2219 format_start = cmdrest;
2220
2221 fpieces = parse_format_string (&cmdrest);
2222
2223 old_cleanups = make_cleanup (free_format_pieces_cleanup, &fpieces);
2224
2225 format_end = cmdrest;
2226
2227 if (*cmdrest++ != '"')
2228 error (_("Bad format string, non-terminated '\"'."));
2229
2230 cmdrest = skip_spaces_const (cmdrest);
2231
2232 if (!(*cmdrest == ',' || *cmdrest == '\0'))
2233 error (_("Invalid argument syntax"));
2234
2235 if (*cmdrest == ',')
2236 cmdrest++;
2237 cmdrest = skip_spaces_const (cmdrest);
2238
2239 /* For each argument, make an expression. */
2240
2241 argvec = (struct expression **) alloca (strlen (cmd)
2242 * sizeof (struct expression *));
2243
2244 nargs = 0;
2245 while (*cmdrest != '\0')
2246 {
2247 const char *cmd1;
2248
2249 cmd1 = cmdrest;
2250 expr = parse_exp_1 (&cmd1, scope, block_for_pc (scope), 1);
2251 argvec[nargs++] = expr;
2252 cmdrest = cmd1;
2253 if (*cmdrest == ',')
2254 ++cmdrest;
2255 }
2256
2257 /* We don't want to stop processing, so catch any errors
2258 that may show up. */
2259 TRY_CATCH (ex, RETURN_MASK_ERROR)
2260 {
2261 aexpr = gen_printf (scope, gdbarch, 0, 0,
2262 format_start, format_end - format_start,
2263 fpieces, nargs, argvec);
2264 }
2265
2266 do_cleanups (old_cleanups);
2267
2268 if (ex.reason < 0)
2269 {
2270 /* If we got here, it means the command could not be parsed to a valid
2271 bytecode expression and thus can't be evaluated on the target's side.
2272 It's no use iterating through the other commands. */
2273 return NULL;
2274 }
2275
2276 /* We have a valid agent expression, return it. */
2277 return aexpr;
2278 }
2279
2280 /* Based on location BL, create a list of breakpoint commands to be
2281 passed on to the target. If we have duplicated locations with
2282 different commands, we will add any such to the list. */
2283
2284 static void
2285 build_target_command_list (struct bp_location *bl)
2286 {
2287 struct bp_location **locp = NULL, **loc2p;
2288 int null_command_or_parse_error = 0;
2289 int modified = bl->needs_update;
2290 struct bp_location *loc;
2291
2292 /* Release commands left over from a previous insert. */
2293 VEC_free (agent_expr_p, bl->target_info.tcommands);
2294
2295 /* For now, limit to agent-style dprintf breakpoints. */
2296 if (bl->owner->type != bp_dprintf
2297 || strcmp (dprintf_style, dprintf_style_agent) != 0)
2298 return;
2299
2300 if (!target_can_run_breakpoint_commands ())
2301 return;
2302
2303 /* Do a first pass to check for locations with no assigned
2304 conditions or conditions that fail to parse to a valid agent expression
2305 bytecode. If any of these happen, then it's no use to send conditions
2306 to the target since this location will always trigger and generate a
2307 response back to GDB. */
2308 ALL_BP_LOCATIONS_AT_ADDR (loc2p, locp, bl->address)
2309 {
2310 loc = (*loc2p);
2311 if (is_breakpoint (loc->owner) && loc->pspace->num == bl->pspace->num)
2312 {
2313 if (modified)
2314 {
2315 struct agent_expr *aexpr;
2316
2317 /* Re-parse the commands since something changed. In that
2318 case we already freed the command bytecodes (see
2319 force_breakpoint_reinsertion). We just
2320 need to parse the command to bytecodes again. */
2321 aexpr = parse_cmd_to_aexpr (bl->address,
2322 loc->owner->extra_string);
2323 loc->cmd_bytecode = aexpr;
2324
2325 if (!aexpr)
2326 continue;
2327 }
2328
2329 /* If we have a NULL bytecode expression, it means something
2330 went wrong or we have a null command expression. */
2331 if (!loc->cmd_bytecode)
2332 {
2333 null_command_or_parse_error = 1;
2334 break;
2335 }
2336 }
2337 }
2338
2339 /* If anything failed, then we're not doing target-side commands,
2340 and so clean up. */
2341 if (null_command_or_parse_error)
2342 {
2343 ALL_BP_LOCATIONS_AT_ADDR (loc2p, locp, bl->address)
2344 {
2345 loc = (*loc2p);
2346 if (is_breakpoint (loc->owner)
2347 && loc->pspace->num == bl->pspace->num)
2348 {
2349 /* Only go as far as the first NULL bytecode is
2350 located. */
2351 if (loc->cmd_bytecode == NULL)
2352 return;
2353
2354 free_agent_expr (loc->cmd_bytecode);
2355 loc->cmd_bytecode = NULL;
2356 }
2357 }
2358 }
2359
2360 /* No NULL commands or failed bytecode generation. Build a command list
2361 for this location's address. */
2362 ALL_BP_LOCATIONS_AT_ADDR (loc2p, locp, bl->address)
2363 {
2364 loc = (*loc2p);
2365 if (loc->owner->extra_string
2366 && is_breakpoint (loc->owner)
2367 && loc->pspace->num == bl->pspace->num
2368 && loc->owner->enable_state == bp_enabled
2369 && loc->enabled)
2370 /* Add the command to the vector. This will be used later
2371 to send the commands to the target. */
2372 VEC_safe_push (agent_expr_p, bl->target_info.tcommands,
2373 loc->cmd_bytecode);
2374 }
2375
2376 bl->target_info.persist = 0;
2377 /* Maybe flag this location as persistent. */
2378 if (bl->owner->type == bp_dprintf && disconnected_dprintf)
2379 bl->target_info.persist = 1;
2380 }
2381
2382 /* Insert a low-level "breakpoint" of some type. BL is the breakpoint
2383 location. Any error messages are printed to TMP_ERROR_STREAM; and
2384 DISABLED_BREAKS, and HW_BREAKPOINT_ERROR are used to report problems.
2385 Returns 0 for success, 1 if the bp_location type is not supported or
2386 -1 for failure.
2387
2388 NOTE drow/2003-09-09: This routine could be broken down to an
2389 object-style method for each breakpoint or catchpoint type. */
2390 static int
2391 insert_bp_location (struct bp_location *bl,
2392 struct ui_file *tmp_error_stream,
2393 int *disabled_breaks,
2394 int *hw_breakpoint_error,
2395 int *hw_bp_error_explained_already)
2396 {
2397 enum errors bp_err = GDB_NO_ERROR;
2398 const char *bp_err_message = NULL;
2399 struct gdb_exception e;
2400
2401 if (!should_be_inserted (bl) || (bl->inserted && !bl->needs_update))
2402 return 0;
2403
2404 /* Note we don't initialize bl->target_info, as that wipes out
2405 the breakpoint location's shadow_contents if the breakpoint
2406 is still inserted at that location. This in turn breaks
2407 target_read_memory which depends on these buffers when
2408 a memory read is requested at the breakpoint location:
2409 Once the target_info has been wiped, we fail to see that
2410 we have a breakpoint inserted at that address and thus
2411 read the breakpoint instead of returning the data saved in
2412 the breakpoint location's shadow contents. */
2413 bl->target_info.placed_address = bl->address;
2414 bl->target_info.placed_address_space = bl->pspace->aspace;
2415 bl->target_info.length = bl->length;
2416
2417 /* When working with target-side conditions, we must pass all the conditions
2418 for the same breakpoint address down to the target since GDB will not
2419 insert those locations. With a list of breakpoint conditions, the target
2420 can decide when to stop and notify GDB. */
2421
2422 if (is_breakpoint (bl->owner))
2423 {
2424 build_target_condition_list (bl);
2425 build_target_command_list (bl);
2426 /* Reset the modification marker. */
2427 bl->needs_update = 0;
2428 }
2429
2430 if (bl->loc_type == bp_loc_software_breakpoint
2431 || bl->loc_type == bp_loc_hardware_breakpoint)
2432 {
2433 if (bl->owner->type != bp_hardware_breakpoint)
2434 {
2435 /* If the explicitly specified breakpoint type
2436 is not hardware breakpoint, check the memory map to see
2437 if the breakpoint address is in read only memory or not.
2438
2439 Two important cases are:
2440 - location type is not hardware breakpoint, memory
2441 is readonly. We change the type of the location to
2442 hardware breakpoint.
2443 - location type is hardware breakpoint, memory is
2444 read-write. This means we've previously made the
2445 location hardware one, but then the memory map changed,
2446 so we undo.
2447
2448 When breakpoints are removed, remove_breakpoints will use
2449 location types we've just set here, the only possible
2450 problem is that memory map has changed during running
2451 program, but it's not going to work anyway with current
2452 gdb. */
2453 struct mem_region *mr
2454 = lookup_mem_region (bl->target_info.placed_address);
2455
2456 if (mr)
2457 {
2458 if (automatic_hardware_breakpoints)
2459 {
2460 enum bp_loc_type new_type;
2461
2462 if (mr->attrib.mode != MEM_RW)
2463 new_type = bp_loc_hardware_breakpoint;
2464 else
2465 new_type = bp_loc_software_breakpoint;
2466
2467 if (new_type != bl->loc_type)
2468 {
2469 static int said = 0;
2470
2471 bl->loc_type = new_type;
2472 if (!said)
2473 {
2474 fprintf_filtered (gdb_stdout,
2475 _("Note: automatically using "
2476 "hardware breakpoints for "
2477 "read-only addresses.\n"));
2478 said = 1;
2479 }
2480 }
2481 }
2482 else if (bl->loc_type == bp_loc_software_breakpoint
2483 && mr->attrib.mode != MEM_RW)
2484 warning (_("cannot set software breakpoint "
2485 "at readonly address %s"),
2486 paddress (bl->gdbarch, bl->address));
2487 }
2488 }
2489
2490 /* First check to see if we have to handle an overlay. */
2491 if (overlay_debugging == ovly_off
2492 || bl->section == NULL
2493 || !(section_is_overlay (bl->section)))
2494 {
2495 /* No overlay handling: just set the breakpoint. */
2496 TRY_CATCH (e, RETURN_MASK_ALL)
2497 {
2498 int val;
2499
2500 val = bl->owner->ops->insert_location (bl);
2501 if (val)
2502 bp_err = GENERIC_ERROR;
2503 }
2504 if (e.reason < 0)
2505 {
2506 bp_err = e.error;
2507 bp_err_message = e.message;
2508 }
2509 }
2510 else
2511 {
2512 /* This breakpoint is in an overlay section.
2513 Shall we set a breakpoint at the LMA? */
2514 if (!overlay_events_enabled)
2515 {
2516 /* Yes -- overlay event support is not active,
2517 so we must try to set a breakpoint at the LMA.
2518 This will not work for a hardware breakpoint. */
2519 if (bl->loc_type == bp_loc_hardware_breakpoint)
2520 warning (_("hardware breakpoint %d not supported in overlay!"),
2521 bl->owner->number);
2522 else
2523 {
2524 CORE_ADDR addr = overlay_unmapped_address (bl->address,
2525 bl->section);
2526 /* Set a software (trap) breakpoint at the LMA. */
2527 bl->overlay_target_info = bl->target_info;
2528 bl->overlay_target_info.placed_address = addr;
2529
2530 /* No overlay handling: just set the breakpoint. */
2531 TRY_CATCH (e, RETURN_MASK_ALL)
2532 {
2533 int val;
2534
2535 val = target_insert_breakpoint (bl->gdbarch,
2536 &bl->overlay_target_info);
2537 if (val)
2538 bp_err = GENERIC_ERROR;
2539 }
2540 if (e.reason < 0)
2541 {
2542 bp_err = e.error;
2543 bp_err_message = e.message;
2544 }
2545
2546 if (bp_err != GDB_NO_ERROR)
2547 fprintf_unfiltered (tmp_error_stream,
2548 "Overlay breakpoint %d "
2549 "failed: in ROM?\n",
2550 bl->owner->number);
2551 }
2552 }
2553 /* Shall we set a breakpoint at the VMA? */
2554 if (section_is_mapped (bl->section))
2555 {
2556 /* Yes. This overlay section is mapped into memory. */
2557 TRY_CATCH (e, RETURN_MASK_ALL)
2558 {
2559 int val;
2560
2561 val = bl->owner->ops->insert_location (bl);
2562 if (val)
2563 bp_err = GENERIC_ERROR;
2564 }
2565 if (e.reason < 0)
2566 {
2567 bp_err = e.error;
2568 bp_err_message = e.message;
2569 }
2570 }
2571 else
2572 {
2573 /* No. This breakpoint will not be inserted.
2574 No error, but do not mark the bp as 'inserted'. */
2575 return 0;
2576 }
2577 }
2578
2579 if (bp_err != GDB_NO_ERROR)
2580 {
2581 /* Can't set the breakpoint. */
2582
2583 /* In some cases, we might not be able to insert a
2584 breakpoint in a shared library that has already been
2585 removed, but we have not yet processed the shlib unload
2586 event. Unfortunately, some targets that implement
2587 breakpoint insertion themselves (necessary if this is a
2588 HW breakpoint, but SW breakpoints likewise) can't tell
2589 why the breakpoint insertion failed (e.g., the remote
2590 target doesn't define error codes), so we must treat
2591 generic errors as memory errors. */
2592 if ((bp_err == GENERIC_ERROR || bp_err == MEMORY_ERROR)
2593 && solib_name_from_address (bl->pspace, bl->address))
2594 {
2595 /* See also: disable_breakpoints_in_shlibs. */
2596 bl->shlib_disabled = 1;
2597 observer_notify_breakpoint_modified (bl->owner);
2598 if (!*disabled_breaks)
2599 {
2600 fprintf_unfiltered (tmp_error_stream,
2601 "Cannot insert breakpoint %d.\n",
2602 bl->owner->number);
2603 fprintf_unfiltered (tmp_error_stream,
2604 "Temporarily disabling shared "
2605 "library breakpoints:\n");
2606 }
2607 *disabled_breaks = 1;
2608 fprintf_unfiltered (tmp_error_stream,
2609 "breakpoint #%d\n", bl->owner->number);
2610 return 0;
2611 }
2612 else
2613 {
2614 if (bl->loc_type == bp_loc_hardware_breakpoint)
2615 {
2616 *hw_breakpoint_error = 1;
2617 *hw_bp_error_explained_already = bp_err_message != NULL;
2618 fprintf_unfiltered (tmp_error_stream,
2619 "Cannot insert hardware breakpoint %d%s",
2620 bl->owner->number, bp_err_message ? ":" : ".\n");
2621 if (bp_err_message != NULL)
2622 fprintf_unfiltered (tmp_error_stream, "%s.\n", bp_err_message);
2623 }
2624 else
2625 {
2626 if (bp_err_message == NULL)
2627 {
2628 char *message
2629 = memory_error_message (TARGET_XFER_E_IO,
2630 bl->gdbarch, bl->address);
2631 struct cleanup *old_chain = make_cleanup (xfree, message);
2632
2633 fprintf_unfiltered (tmp_error_stream,
2634 "Cannot insert breakpoint %d.\n"
2635 "%s\n",
2636 bl->owner->number, message);
2637 do_cleanups (old_chain);
2638 }
2639 else
2640 {
2641 fprintf_unfiltered (tmp_error_stream,
2642 "Cannot insert breakpoint %d: %s\n",
2643 bl->owner->number,
2644 bp_err_message);
2645 }
2646 }
2647 return 1;
2648
2649 }
2650 }
2651 else
2652 bl->inserted = 1;
2653
2654 return 0;
2655 }
2656
2657 else if (bl->loc_type == bp_loc_hardware_watchpoint
2658 /* NOTE drow/2003-09-08: This state only exists for removing
2659 watchpoints. It's not clear that it's necessary... */
2660 && bl->owner->disposition != disp_del_at_next_stop)
2661 {
2662 int val;
2663
2664 gdb_assert (bl->owner->ops != NULL
2665 && bl->owner->ops->insert_location != NULL);
2666
2667 val = bl->owner->ops->insert_location (bl);
2668
2669 /* If trying to set a read-watchpoint, and it turns out it's not
2670 supported, try emulating one with an access watchpoint. */
2671 if (val == 1 && bl->watchpoint_type == hw_read)
2672 {
2673 struct bp_location *loc, **loc_temp;
2674
2675 /* But don't try to insert it, if there's already another
2676 hw_access location that would be considered a duplicate
2677 of this one. */
2678 ALL_BP_LOCATIONS (loc, loc_temp)
2679 if (loc != bl
2680 && loc->watchpoint_type == hw_access
2681 && watchpoint_locations_match (bl, loc))
2682 {
2683 bl->duplicate = 1;
2684 bl->inserted = 1;
2685 bl->target_info = loc->target_info;
2686 bl->watchpoint_type = hw_access;
2687 val = 0;
2688 break;
2689 }
2690
2691 if (val == 1)
2692 {
2693 bl->watchpoint_type = hw_access;
2694 val = bl->owner->ops->insert_location (bl);
2695
2696 if (val)
2697 /* Back to the original value. */
2698 bl->watchpoint_type = hw_read;
2699 }
2700 }
2701
2702 bl->inserted = (val == 0);
2703 }
2704
2705 else if (bl->owner->type == bp_catchpoint)
2706 {
2707 int val;
2708
2709 gdb_assert (bl->owner->ops != NULL
2710 && bl->owner->ops->insert_location != NULL);
2711
2712 val = bl->owner->ops->insert_location (bl);
2713 if (val)
2714 {
2715 bl->owner->enable_state = bp_disabled;
2716
2717 if (val == 1)
2718 warning (_("\
2719 Error inserting catchpoint %d: Your system does not support this type\n\
2720 of catchpoint."), bl->owner->number);
2721 else
2722 warning (_("Error inserting catchpoint %d."), bl->owner->number);
2723 }
2724
2725 bl->inserted = (val == 0);
2726
2727 /* We've already printed an error message if there was a problem
2728 inserting this catchpoint, and we've disabled the catchpoint,
2729 so just return success. */
2730 return 0;
2731 }
2732
2733 return 0;
2734 }
2735
2736 /* This function is called when program space PSPACE is about to be
2737 deleted. It takes care of updating breakpoints to not reference
2738 PSPACE anymore. */
2739
2740 void
2741 breakpoint_program_space_exit (struct program_space *pspace)
2742 {
2743 struct breakpoint *b, *b_temp;
2744 struct bp_location *loc, **loc_temp;
2745
2746 /* Remove any breakpoint that was set through this program space. */
2747 ALL_BREAKPOINTS_SAFE (b, b_temp)
2748 {
2749 if (b->pspace == pspace)
2750 delete_breakpoint (b);
2751 }
2752
2753 /* Breakpoints set through other program spaces could have locations
2754 bound to PSPACE as well. Remove those. */
2755 ALL_BP_LOCATIONS (loc, loc_temp)
2756 {
2757 struct bp_location *tmp;
2758
2759 if (loc->pspace == pspace)
2760 {
2761 /* ALL_BP_LOCATIONS bp_location has LOC->OWNER always non-NULL. */
2762 if (loc->owner->loc == loc)
2763 loc->owner->loc = loc->next;
2764 else
2765 for (tmp = loc->owner->loc; tmp->next != NULL; tmp = tmp->next)
2766 if (tmp->next == loc)
2767 {
2768 tmp->next = loc->next;
2769 break;
2770 }
2771 }
2772 }
2773
2774 /* Now update the global location list to permanently delete the
2775 removed locations above. */
2776 update_global_location_list (0);
2777 }
2778
2779 /* Make sure all breakpoints are inserted in inferior.
2780 Throws exception on any error.
2781 A breakpoint that is already inserted won't be inserted
2782 again, so calling this function twice is safe. */
2783 void
2784 insert_breakpoints (void)
2785 {
2786 struct breakpoint *bpt;
2787
2788 ALL_BREAKPOINTS (bpt)
2789 if (is_hardware_watchpoint (bpt))
2790 {
2791 struct watchpoint *w = (struct watchpoint *) bpt;
2792
2793 update_watchpoint (w, 0 /* don't reparse. */);
2794 }
2795
2796 update_global_location_list (1);
2797
2798 /* update_global_location_list does not insert breakpoints when
2799 always_inserted_mode is not enabled. Explicitly insert them
2800 now. */
2801 if (!breakpoints_always_inserted_mode ())
2802 insert_breakpoint_locations ();
2803 }
2804
2805 /* Invoke CALLBACK for each of bp_location. */
2806
2807 void
2808 iterate_over_bp_locations (walk_bp_location_callback callback)
2809 {
2810 struct bp_location *loc, **loc_tmp;
2811
2812 ALL_BP_LOCATIONS (loc, loc_tmp)
2813 {
2814 callback (loc, NULL);
2815 }
2816 }
2817
2818 /* This is used when we need to synch breakpoint conditions between GDB and the
2819 target. It is the case with deleting and disabling of breakpoints when using
2820 always-inserted mode. */
2821
2822 static void
2823 update_inserted_breakpoint_locations (void)
2824 {
2825 struct bp_location *bl, **blp_tmp;
2826 int error_flag = 0;
2827 int val = 0;
2828 int disabled_breaks = 0;
2829 int hw_breakpoint_error = 0;
2830 int hw_bp_details_reported = 0;
2831
2832 struct ui_file *tmp_error_stream = mem_fileopen ();
2833 struct cleanup *cleanups = make_cleanup_ui_file_delete (tmp_error_stream);
2834
2835 /* Explicitly mark the warning -- this will only be printed if
2836 there was an error. */
2837 fprintf_unfiltered (tmp_error_stream, "Warning:\n");
2838
2839 save_current_space_and_thread ();
2840
2841 ALL_BP_LOCATIONS (bl, blp_tmp)
2842 {
2843 /* We only want to update software breakpoints and hardware
2844 breakpoints. */
2845 if (!is_breakpoint (bl->owner))
2846 continue;
2847
2848 /* We only want to update locations that are already inserted
2849 and need updating. This is to avoid unwanted insertion during
2850 deletion of breakpoints. */
2851 if (!bl->inserted || (bl->inserted && !bl->needs_update))
2852 continue;
2853
2854 switch_to_program_space_and_thread (bl->pspace);
2855
2856 /* For targets that support global breakpoints, there's no need
2857 to select an inferior to insert breakpoint to. In fact, even
2858 if we aren't attached to any process yet, we should still
2859 insert breakpoints. */
2860 if (!gdbarch_has_global_breakpoints (target_gdbarch ())
2861 && ptid_equal (inferior_ptid, null_ptid))
2862 continue;
2863
2864 val = insert_bp_location (bl, tmp_error_stream, &disabled_breaks,
2865 &hw_breakpoint_error, &hw_bp_details_reported);
2866 if (val)
2867 error_flag = val;
2868 }
2869
2870 if (error_flag)
2871 {
2872 target_terminal_ours_for_output ();
2873 error_stream (tmp_error_stream);
2874 }
2875
2876 do_cleanups (cleanups);
2877 }
2878
2879 /* Used when starting or continuing the program. */
2880
2881 static void
2882 insert_breakpoint_locations (void)
2883 {
2884 struct breakpoint *bpt;
2885 struct bp_location *bl, **blp_tmp;
2886 int error_flag = 0;
2887 int val = 0;
2888 int disabled_breaks = 0;
2889 int hw_breakpoint_error = 0;
2890 int hw_bp_error_explained_already = 0;
2891
2892 struct ui_file *tmp_error_stream = mem_fileopen ();
2893 struct cleanup *cleanups = make_cleanup_ui_file_delete (tmp_error_stream);
2894
2895 /* Explicitly mark the warning -- this will only be printed if
2896 there was an error. */
2897 fprintf_unfiltered (tmp_error_stream, "Warning:\n");
2898
2899 save_current_space_and_thread ();
2900
2901 ALL_BP_LOCATIONS (bl, blp_tmp)
2902 {
2903 if (!should_be_inserted (bl) || (bl->inserted && !bl->needs_update))
2904 continue;
2905
2906 /* There is no point inserting thread-specific breakpoints if
2907 the thread no longer exists. ALL_BP_LOCATIONS bp_location
2908 has BL->OWNER always non-NULL. */
2909 if (bl->owner->thread != -1
2910 && !valid_thread_id (bl->owner->thread))
2911 continue;
2912
2913 switch_to_program_space_and_thread (bl->pspace);
2914
2915 /* For targets that support global breakpoints, there's no need
2916 to select an inferior to insert breakpoint to. In fact, even
2917 if we aren't attached to any process yet, we should still
2918 insert breakpoints. */
2919 if (!gdbarch_has_global_breakpoints (target_gdbarch ())
2920 && ptid_equal (inferior_ptid, null_ptid))
2921 continue;
2922
2923 val = insert_bp_location (bl, tmp_error_stream, &disabled_breaks,
2924 &hw_breakpoint_error, &hw_bp_error_explained_already);
2925 if (val)
2926 error_flag = val;
2927 }
2928
2929 /* If we failed to insert all locations of a watchpoint, remove
2930 them, as half-inserted watchpoint is of limited use. */
2931 ALL_BREAKPOINTS (bpt)
2932 {
2933 int some_failed = 0;
2934 struct bp_location *loc;
2935
2936 if (!is_hardware_watchpoint (bpt))
2937 continue;
2938
2939 if (!breakpoint_enabled (bpt))
2940 continue;
2941
2942 if (bpt->disposition == disp_del_at_next_stop)
2943 continue;
2944
2945 for (loc = bpt->loc; loc; loc = loc->next)
2946 if (!loc->inserted && should_be_inserted (loc))
2947 {
2948 some_failed = 1;
2949 break;
2950 }
2951 if (some_failed)
2952 {
2953 for (loc = bpt->loc; loc; loc = loc->next)
2954 if (loc->inserted)
2955 remove_breakpoint (loc, mark_uninserted);
2956
2957 hw_breakpoint_error = 1;
2958 fprintf_unfiltered (tmp_error_stream,
2959 "Could not insert hardware watchpoint %d.\n",
2960 bpt->number);
2961 error_flag = -1;
2962 }
2963 }
2964
2965 if (error_flag)
2966 {
2967 /* If a hardware breakpoint or watchpoint was inserted, add a
2968 message about possibly exhausted resources. */
2969 if (hw_breakpoint_error && !hw_bp_error_explained_already)
2970 {
2971 fprintf_unfiltered (tmp_error_stream,
2972 "Could not insert hardware breakpoints:\n\
2973 You may have requested too many hardware breakpoints/watchpoints.\n");
2974 }
2975 target_terminal_ours_for_output ();
2976 error_stream (tmp_error_stream);
2977 }
2978
2979 do_cleanups (cleanups);
2980 }
2981
2982 /* Used when the program stops.
2983 Returns zero if successful, or non-zero if there was a problem
2984 removing a breakpoint location. */
2985
2986 int
2987 remove_breakpoints (void)
2988 {
2989 struct bp_location *bl, **blp_tmp;
2990 int val = 0;
2991
2992 ALL_BP_LOCATIONS (bl, blp_tmp)
2993 {
2994 if (bl->inserted && !is_tracepoint (bl->owner))
2995 val |= remove_breakpoint (bl, mark_uninserted);
2996 }
2997 return val;
2998 }
2999
3000 /* When a thread exits, remove breakpoints that are related to
3001 that thread. */
3002
3003 static void
3004 remove_threaded_breakpoints (struct thread_info *tp, int silent)
3005 {
3006 struct breakpoint *b, *b_tmp;
3007
3008 ALL_BREAKPOINTS_SAFE (b, b_tmp)
3009 {
3010 if (b->thread == tp->num && user_breakpoint_p (b))
3011 {
3012 b->disposition = disp_del_at_next_stop;
3013
3014 printf_filtered (_("\
3015 Thread-specific breakpoint %d deleted - thread %d no longer in the thread list.\n"),
3016 b->number, tp->num);
3017
3018 /* Hide it from the user. */
3019 b->number = 0;
3020 }
3021 }
3022 }
3023
3024 /* Remove breakpoints of process PID. */
3025
3026 int
3027 remove_breakpoints_pid (int pid)
3028 {
3029 struct bp_location *bl, **blp_tmp;
3030 int val;
3031 struct inferior *inf = find_inferior_pid (pid);
3032
3033 ALL_BP_LOCATIONS (bl, blp_tmp)
3034 {
3035 if (bl->pspace != inf->pspace)
3036 continue;
3037
3038 if (bl->owner->type == bp_dprintf)
3039 continue;
3040
3041 if (bl->inserted)
3042 {
3043 val = remove_breakpoint (bl, mark_uninserted);
3044 if (val != 0)
3045 return val;
3046 }
3047 }
3048 return 0;
3049 }
3050
3051 int
3052 reattach_breakpoints (int pid)
3053 {
3054 struct cleanup *old_chain;
3055 struct bp_location *bl, **blp_tmp;
3056 int val;
3057 struct ui_file *tmp_error_stream;
3058 int dummy1 = 0, dummy2 = 0, dummy3 = 0;
3059 struct inferior *inf;
3060 struct thread_info *tp;
3061
3062 tp = any_live_thread_of_process (pid);
3063 if (tp == NULL)
3064 return 1;
3065
3066 inf = find_inferior_pid (pid);
3067 old_chain = save_inferior_ptid ();
3068
3069 inferior_ptid = tp->ptid;
3070
3071 tmp_error_stream = mem_fileopen ();
3072 make_cleanup_ui_file_delete (tmp_error_stream);
3073
3074 ALL_BP_LOCATIONS (bl, blp_tmp)
3075 {
3076 if (bl->pspace != inf->pspace)
3077 continue;
3078
3079 if (bl->inserted)
3080 {
3081 bl->inserted = 0;
3082 val = insert_bp_location (bl, tmp_error_stream, &dummy1, &dummy2, &dummy3);
3083 if (val != 0)
3084 {
3085 do_cleanups (old_chain);
3086 return val;
3087 }
3088 }
3089 }
3090 do_cleanups (old_chain);
3091 return 0;
3092 }
3093
3094 static int internal_breakpoint_number = -1;
3095
3096 /* Set the breakpoint number of B, depending on the value of INTERNAL.
3097 If INTERNAL is non-zero, the breakpoint number will be populated
3098 from internal_breakpoint_number and that variable decremented.
3099 Otherwise the breakpoint number will be populated from
3100 breakpoint_count and that value incremented. Internal breakpoints
3101 do not set the internal var bpnum. */
3102 static void
3103 set_breakpoint_number (int internal, struct breakpoint *b)
3104 {
3105 if (internal)
3106 b->number = internal_breakpoint_number--;
3107 else
3108 {
3109 set_breakpoint_count (breakpoint_count + 1);
3110 b->number = breakpoint_count;
3111 }
3112 }
3113
3114 static struct breakpoint *
3115 create_internal_breakpoint (struct gdbarch *gdbarch,
3116 CORE_ADDR address, enum bptype type,
3117 const struct breakpoint_ops *ops)
3118 {
3119 struct symtab_and_line sal;
3120 struct breakpoint *b;
3121
3122 init_sal (&sal); /* Initialize to zeroes. */
3123
3124 sal.pc = address;
3125 sal.section = find_pc_overlay (sal.pc);
3126 sal.pspace = current_program_space;
3127
3128 b = set_raw_breakpoint (gdbarch, sal, type, ops);
3129 b->number = internal_breakpoint_number--;
3130 b->disposition = disp_donttouch;
3131
3132 return b;
3133 }
3134
3135 static const char *const longjmp_names[] =
3136 {
3137 "longjmp", "_longjmp", "siglongjmp", "_siglongjmp"
3138 };
3139 #define NUM_LONGJMP_NAMES ARRAY_SIZE(longjmp_names)
3140
3141 /* Per-objfile data private to breakpoint.c. */
3142 struct breakpoint_objfile_data
3143 {
3144 /* Minimal symbol for "_ovly_debug_event" (if any). */
3145 struct minimal_symbol *overlay_msym;
3146
3147 /* Minimal symbol(s) for "longjmp", "siglongjmp", etc. (if any). */
3148 struct minimal_symbol *longjmp_msym[NUM_LONGJMP_NAMES];
3149
3150 /* True if we have looked for longjmp probes. */
3151 int longjmp_searched;
3152
3153 /* SystemTap probe points for longjmp (if any). */
3154 VEC (probe_p) *longjmp_probes;
3155
3156 /* Minimal symbol for "std::terminate()" (if any). */
3157 struct minimal_symbol *terminate_msym;
3158
3159 /* Minimal symbol for "_Unwind_DebugHook" (if any). */
3160 struct minimal_symbol *exception_msym;
3161
3162 /* True if we have looked for exception probes. */
3163 int exception_searched;
3164
3165 /* SystemTap probe points for unwinding (if any). */
3166 VEC (probe_p) *exception_probes;
3167 };
3168
3169 static const struct objfile_data *breakpoint_objfile_key;
3170
3171 /* Minimal symbol not found sentinel. */
3172 static struct minimal_symbol msym_not_found;
3173
3174 /* Returns TRUE if MSYM point to the "not found" sentinel. */
3175
3176 static int
3177 msym_not_found_p (const struct minimal_symbol *msym)
3178 {
3179 return msym == &msym_not_found;
3180 }
3181
3182 /* Return per-objfile data needed by breakpoint.c.
3183 Allocate the data if necessary. */
3184
3185 static struct breakpoint_objfile_data *
3186 get_breakpoint_objfile_data (struct objfile *objfile)
3187 {
3188 struct breakpoint_objfile_data *bp_objfile_data;
3189
3190 bp_objfile_data = objfile_data (objfile, breakpoint_objfile_key);
3191 if (bp_objfile_data == NULL)
3192 {
3193 bp_objfile_data = obstack_alloc (&objfile->objfile_obstack,
3194 sizeof (*bp_objfile_data));
3195
3196 memset (bp_objfile_data, 0, sizeof (*bp_objfile_data));
3197 set_objfile_data (objfile, breakpoint_objfile_key, bp_objfile_data);
3198 }
3199 return bp_objfile_data;
3200 }
3201
3202 static void
3203 free_breakpoint_probes (struct objfile *obj, void *data)
3204 {
3205 struct breakpoint_objfile_data *bp_objfile_data = data;
3206
3207 VEC_free (probe_p, bp_objfile_data->longjmp_probes);
3208 VEC_free (probe_p, bp_objfile_data->exception_probes);
3209 }
3210
3211 static void
3212 create_overlay_event_breakpoint (void)
3213 {
3214 struct objfile *objfile;
3215 const char *const func_name = "_ovly_debug_event";
3216
3217 ALL_OBJFILES (objfile)
3218 {
3219 struct breakpoint *b;
3220 struct breakpoint_objfile_data *bp_objfile_data;
3221 CORE_ADDR addr;
3222
3223 bp_objfile_data = get_breakpoint_objfile_data (objfile);
3224
3225 if (msym_not_found_p (bp_objfile_data->overlay_msym))
3226 continue;
3227
3228 if (bp_objfile_data->overlay_msym == NULL)
3229 {
3230 struct minimal_symbol *m;
3231
3232 m = lookup_minimal_symbol_text (func_name, objfile);
3233 if (m == NULL)
3234 {
3235 /* Avoid future lookups in this objfile. */
3236 bp_objfile_data->overlay_msym = &msym_not_found;
3237 continue;
3238 }
3239 bp_objfile_data->overlay_msym = m;
3240 }
3241
3242 addr = SYMBOL_VALUE_ADDRESS (bp_objfile_data->overlay_msym);
3243 b = create_internal_breakpoint (get_objfile_arch (objfile), addr,
3244 bp_overlay_event,
3245 &internal_breakpoint_ops);
3246 b->addr_string = xstrdup (func_name);
3247
3248 if (overlay_debugging == ovly_auto)
3249 {
3250 b->enable_state = bp_enabled;
3251 overlay_events_enabled = 1;
3252 }
3253 else
3254 {
3255 b->enable_state = bp_disabled;
3256 overlay_events_enabled = 0;
3257 }
3258 }
3259 update_global_location_list (1);
3260 }
3261
3262 static void
3263 create_longjmp_master_breakpoint (void)
3264 {
3265 struct program_space *pspace;
3266 struct cleanup *old_chain;
3267
3268 old_chain = save_current_program_space ();
3269
3270 ALL_PSPACES (pspace)
3271 {
3272 struct objfile *objfile;
3273
3274 set_current_program_space (pspace);
3275
3276 ALL_OBJFILES (objfile)
3277 {
3278 int i;
3279 struct gdbarch *gdbarch;
3280 struct breakpoint_objfile_data *bp_objfile_data;
3281
3282 gdbarch = get_objfile_arch (objfile);
3283
3284 bp_objfile_data = get_breakpoint_objfile_data (objfile);
3285
3286 if (!bp_objfile_data->longjmp_searched)
3287 {
3288 VEC (probe_p) *ret;
3289
3290 ret = find_probes_in_objfile (objfile, "libc", "longjmp");
3291 if (ret != NULL)
3292 {
3293 /* We are only interested in checking one element. */
3294 struct probe *p = VEC_index (probe_p, ret, 0);
3295
3296 if (!can_evaluate_probe_arguments (p))
3297 {
3298 /* We cannot use the probe interface here, because it does
3299 not know how to evaluate arguments. */
3300 VEC_free (probe_p, ret);
3301 ret = NULL;
3302 }
3303 }
3304 bp_objfile_data->longjmp_probes = ret;
3305 bp_objfile_data->longjmp_searched = 1;
3306 }
3307
3308 if (bp_objfile_data->longjmp_probes != NULL)
3309 {
3310 int i;
3311 struct probe *probe;
3312 struct gdbarch *gdbarch = get_objfile_arch (objfile);
3313
3314 for (i = 0;
3315 VEC_iterate (probe_p,
3316 bp_objfile_data->longjmp_probes,
3317 i, probe);
3318 ++i)
3319 {
3320 struct breakpoint *b;
3321
3322 b = create_internal_breakpoint (gdbarch, probe->address,
3323 bp_longjmp_master,
3324 &internal_breakpoint_ops);
3325 b->addr_string = xstrdup ("-probe-stap libc:longjmp");
3326 b->enable_state = bp_disabled;
3327 }
3328
3329 continue;
3330 }
3331
3332 if (!gdbarch_get_longjmp_target_p (gdbarch))
3333 continue;
3334
3335 for (i = 0; i < NUM_LONGJMP_NAMES; i++)
3336 {
3337 struct breakpoint *b;
3338 const char *func_name;
3339 CORE_ADDR addr;
3340
3341 if (msym_not_found_p (bp_objfile_data->longjmp_msym[i]))
3342 continue;
3343
3344 func_name = longjmp_names[i];
3345 if (bp_objfile_data->longjmp_msym[i] == NULL)
3346 {
3347 struct minimal_symbol *m;
3348
3349 m = lookup_minimal_symbol_text (func_name, objfile);
3350 if (m == NULL)
3351 {
3352 /* Prevent future lookups in this objfile. */
3353 bp_objfile_data->longjmp_msym[i] = &msym_not_found;
3354 continue;
3355 }
3356 bp_objfile_data->longjmp_msym[i] = m;
3357 }
3358
3359 addr = SYMBOL_VALUE_ADDRESS (bp_objfile_data->longjmp_msym[i]);
3360 b = create_internal_breakpoint (gdbarch, addr, bp_longjmp_master,
3361 &internal_breakpoint_ops);
3362 b->addr_string = xstrdup (func_name);
3363 b->enable_state = bp_disabled;
3364 }
3365 }
3366 }
3367 update_global_location_list (1);
3368
3369 do_cleanups (old_chain);
3370 }
3371
3372 /* Create a master std::terminate breakpoint. */
3373 static void
3374 create_std_terminate_master_breakpoint (void)
3375 {
3376 struct program_space *pspace;
3377 struct cleanup *old_chain;
3378 const char *const func_name = "std::terminate()";
3379
3380 old_chain = save_current_program_space ();
3381
3382 ALL_PSPACES (pspace)
3383 {
3384 struct objfile *objfile;
3385 CORE_ADDR addr;
3386
3387 set_current_program_space (pspace);
3388
3389 ALL_OBJFILES (objfile)
3390 {
3391 struct breakpoint *b;
3392 struct breakpoint_objfile_data *bp_objfile_data;
3393
3394 bp_objfile_data = get_breakpoint_objfile_data (objfile);
3395
3396 if (msym_not_found_p (bp_objfile_data->terminate_msym))
3397 continue;
3398
3399 if (bp_objfile_data->terminate_msym == NULL)
3400 {
3401 struct minimal_symbol *m;
3402
3403 m = lookup_minimal_symbol (func_name, NULL, objfile);
3404 if (m == NULL || (MSYMBOL_TYPE (m) != mst_text
3405 && MSYMBOL_TYPE (m) != mst_file_text))
3406 {
3407 /* Prevent future lookups in this objfile. */
3408 bp_objfile_data->terminate_msym = &msym_not_found;
3409 continue;
3410 }
3411 bp_objfile_data->terminate_msym = m;
3412 }
3413
3414 addr = SYMBOL_VALUE_ADDRESS (bp_objfile_data->terminate_msym);
3415 b = create_internal_breakpoint (get_objfile_arch (objfile), addr,
3416 bp_std_terminate_master,
3417 &internal_breakpoint_ops);
3418 b->addr_string = xstrdup (func_name);
3419 b->enable_state = bp_disabled;
3420 }
3421 }
3422
3423 update_global_location_list (1);
3424
3425 do_cleanups (old_chain);
3426 }
3427
3428 /* Install a master breakpoint on the unwinder's debug hook. */
3429
3430 static void
3431 create_exception_master_breakpoint (void)
3432 {
3433 struct objfile *objfile;
3434 const char *const func_name = "_Unwind_DebugHook";
3435
3436 ALL_OBJFILES (objfile)
3437 {
3438 struct breakpoint *b;
3439 struct gdbarch *gdbarch;
3440 struct breakpoint_objfile_data *bp_objfile_data;
3441 CORE_ADDR addr;
3442
3443 bp_objfile_data = get_breakpoint_objfile_data (objfile);
3444
3445 /* We prefer the SystemTap probe point if it exists. */
3446 if (!bp_objfile_data->exception_searched)
3447 {
3448 VEC (probe_p) *ret;
3449
3450 ret = find_probes_in_objfile (objfile, "libgcc", "unwind");
3451
3452 if (ret != NULL)
3453 {
3454 /* We are only interested in checking one element. */
3455 struct probe *p = VEC_index (probe_p, ret, 0);
3456
3457 if (!can_evaluate_probe_arguments (p))
3458 {
3459 /* We cannot use the probe interface here, because it does
3460 not know how to evaluate arguments. */
3461 VEC_free (probe_p, ret);
3462 ret = NULL;
3463 }
3464 }
3465 bp_objfile_data->exception_probes = ret;
3466 bp_objfile_data->exception_searched = 1;
3467 }
3468
3469 if (bp_objfile_data->exception_probes != NULL)
3470 {
3471 struct gdbarch *gdbarch = get_objfile_arch (objfile);
3472 int i;
3473 struct probe *probe;
3474
3475 for (i = 0;
3476 VEC_iterate (probe_p,
3477 bp_objfile_data->exception_probes,
3478 i, probe);
3479 ++i)
3480 {
3481 struct breakpoint *b;
3482
3483 b = create_internal_breakpoint (gdbarch, probe->address,
3484 bp_exception_master,
3485 &internal_breakpoint_ops);
3486 b->addr_string = xstrdup ("-probe-stap libgcc:unwind");
3487 b->enable_state = bp_disabled;
3488 }
3489
3490 continue;
3491 }
3492
3493 /* Otherwise, try the hook function. */
3494
3495 if (msym_not_found_p (bp_objfile_data->exception_msym))
3496 continue;
3497
3498 gdbarch = get_objfile_arch (objfile);
3499
3500 if (bp_objfile_data->exception_msym == NULL)
3501 {
3502 struct minimal_symbol *debug_hook;
3503
3504 debug_hook = lookup_minimal_symbol (func_name, NULL, objfile);
3505 if (debug_hook == NULL)
3506 {
3507 bp_objfile_data->exception_msym = &msym_not_found;
3508 continue;
3509 }
3510
3511 bp_objfile_data->exception_msym = debug_hook;
3512 }
3513
3514 addr = SYMBOL_VALUE_ADDRESS (bp_objfile_data->exception_msym);
3515 addr = gdbarch_convert_from_func_ptr_addr (gdbarch, addr,
3516 &current_target);
3517 b = create_internal_breakpoint (gdbarch, addr, bp_exception_master,
3518 &internal_breakpoint_ops);
3519 b->addr_string = xstrdup (func_name);
3520 b->enable_state = bp_disabled;
3521 }
3522
3523 update_global_location_list (1);
3524 }
3525
3526 void
3527 update_breakpoints_after_exec (void)
3528 {
3529 struct breakpoint *b, *b_tmp;
3530 struct bp_location *bploc, **bplocp_tmp;
3531
3532 /* We're about to delete breakpoints from GDB's lists. If the
3533 INSERTED flag is true, GDB will try to lift the breakpoints by
3534 writing the breakpoints' "shadow contents" back into memory. The
3535 "shadow contents" are NOT valid after an exec, so GDB should not
3536 do that. Instead, the target is responsible from marking
3537 breakpoints out as soon as it detects an exec. We don't do that
3538 here instead, because there may be other attempts to delete
3539 breakpoints after detecting an exec and before reaching here. */
3540 ALL_BP_LOCATIONS (bploc, bplocp_tmp)
3541 if (bploc->pspace == current_program_space)
3542 gdb_assert (!bploc->inserted);
3543
3544 ALL_BREAKPOINTS_SAFE (b, b_tmp)
3545 {
3546 if (b->pspace != current_program_space)
3547 continue;
3548
3549 /* Solib breakpoints must be explicitly reset after an exec(). */
3550 if (b->type == bp_shlib_event)
3551 {
3552 delete_breakpoint (b);
3553 continue;
3554 }
3555
3556 /* JIT breakpoints must be explicitly reset after an exec(). */
3557 if (b->type == bp_jit_event)
3558 {
3559 delete_breakpoint (b);
3560 continue;
3561 }
3562
3563 /* Thread event breakpoints must be set anew after an exec(),
3564 as must overlay event and longjmp master breakpoints. */
3565 if (b->type == bp_thread_event || b->type == bp_overlay_event
3566 || b->type == bp_longjmp_master || b->type == bp_std_terminate_master
3567 || b->type == bp_exception_master)
3568 {
3569 delete_breakpoint (b);
3570 continue;
3571 }
3572
3573 /* Step-resume breakpoints are meaningless after an exec(). */
3574 if (b->type == bp_step_resume || b->type == bp_hp_step_resume)
3575 {
3576 delete_breakpoint (b);
3577 continue;
3578 }
3579
3580 /* Longjmp and longjmp-resume breakpoints are also meaningless
3581 after an exec. */
3582 if (b->type == bp_longjmp || b->type == bp_longjmp_resume
3583 || b->type == bp_longjmp_call_dummy
3584 || b->type == bp_exception || b->type == bp_exception_resume)
3585 {
3586 delete_breakpoint (b);
3587 continue;
3588 }
3589
3590 if (b->type == bp_catchpoint)
3591 {
3592 /* For now, none of the bp_catchpoint breakpoints need to
3593 do anything at this point. In the future, if some of
3594 the catchpoints need to something, we will need to add
3595 a new method, and call this method from here. */
3596 continue;
3597 }
3598
3599 /* bp_finish is a special case. The only way we ought to be able
3600 to see one of these when an exec() has happened, is if the user
3601 caught a vfork, and then said "finish". Ordinarily a finish just
3602 carries them to the call-site of the current callee, by setting
3603 a temporary bp there and resuming. But in this case, the finish
3604 will carry them entirely through the vfork & exec.
3605
3606 We don't want to allow a bp_finish to remain inserted now. But
3607 we can't safely delete it, 'cause finish_command has a handle to
3608 the bp on a bpstat, and will later want to delete it. There's a
3609 chance (and I've seen it happen) that if we delete the bp_finish
3610 here, that its storage will get reused by the time finish_command
3611 gets 'round to deleting the "use to be a bp_finish" breakpoint.
3612 We really must allow finish_command to delete a bp_finish.
3613
3614 In the absence of a general solution for the "how do we know
3615 it's safe to delete something others may have handles to?"
3616 problem, what we'll do here is just uninsert the bp_finish, and
3617 let finish_command delete it.
3618
3619 (We know the bp_finish is "doomed" in the sense that it's
3620 momentary, and will be deleted as soon as finish_command sees
3621 the inferior stopped. So it doesn't matter that the bp's
3622 address is probably bogus in the new a.out, unlike e.g., the
3623 solib breakpoints.) */
3624
3625 if (b->type == bp_finish)
3626 {
3627 continue;
3628 }
3629
3630 /* Without a symbolic address, we have little hope of the
3631 pre-exec() address meaning the same thing in the post-exec()
3632 a.out. */
3633 if (b->addr_string == NULL)
3634 {
3635 delete_breakpoint (b);
3636 continue;
3637 }
3638 }
3639 /* FIXME what about longjmp breakpoints? Re-create them here? */
3640 create_overlay_event_breakpoint ();
3641 create_longjmp_master_breakpoint ();
3642 create_std_terminate_master_breakpoint ();
3643 create_exception_master_breakpoint ();
3644 }
3645
3646 int
3647 detach_breakpoints (ptid_t ptid)
3648 {
3649 struct bp_location *bl, **blp_tmp;
3650 int val = 0;
3651 struct cleanup *old_chain = save_inferior_ptid ();
3652 struct inferior *inf = current_inferior ();
3653
3654 if (ptid_get_pid (ptid) == ptid_get_pid (inferior_ptid))
3655 error (_("Cannot detach breakpoints of inferior_ptid"));
3656
3657 /* Set inferior_ptid; remove_breakpoint_1 uses this global. */
3658 inferior_ptid = ptid;
3659 ALL_BP_LOCATIONS (bl, blp_tmp)
3660 {
3661 if (bl->pspace != inf->pspace)
3662 continue;
3663
3664 /* This function must physically remove breakpoints locations
3665 from the specified ptid, without modifying the breakpoint
3666 package's state. Locations of type bp_loc_other are only
3667 maintained at GDB side. So, there is no need to remove
3668 these bp_loc_other locations. Moreover, removing these
3669 would modify the breakpoint package's state. */
3670 if (bl->loc_type == bp_loc_other)
3671 continue;
3672
3673 if (bl->inserted)
3674 val |= remove_breakpoint_1 (bl, mark_inserted);
3675 }
3676
3677 /* Detach single-step breakpoints as well. */
3678 detach_single_step_breakpoints ();
3679
3680 do_cleanups (old_chain);
3681 return val;
3682 }
3683
3684 /* Remove the breakpoint location BL from the current address space.
3685 Note that this is used to detach breakpoints from a child fork.
3686 When we get here, the child isn't in the inferior list, and neither
3687 do we have objects to represent its address space --- we should
3688 *not* look at bl->pspace->aspace here. */
3689
3690 static int
3691 remove_breakpoint_1 (struct bp_location *bl, insertion_state_t is)
3692 {
3693 int val;
3694
3695 /* BL is never in moribund_locations by our callers. */
3696 gdb_assert (bl->owner != NULL);
3697
3698 if (bl->owner->enable_state == bp_permanent)
3699 /* Permanent breakpoints cannot be inserted or removed. */
3700 return 0;
3701
3702 /* The type of none suggests that owner is actually deleted.
3703 This should not ever happen. */
3704 gdb_assert (bl->owner->type != bp_none);
3705
3706 if (bl->loc_type == bp_loc_software_breakpoint
3707 || bl->loc_type == bp_loc_hardware_breakpoint)
3708 {
3709 /* "Normal" instruction breakpoint: either the standard
3710 trap-instruction bp (bp_breakpoint), or a
3711 bp_hardware_breakpoint. */
3712
3713 /* First check to see if we have to handle an overlay. */
3714 if (overlay_debugging == ovly_off
3715 || bl->section == NULL
3716 || !(section_is_overlay (bl->section)))
3717 {
3718 /* No overlay handling: just remove the breakpoint. */
3719 val = bl->owner->ops->remove_location (bl);
3720 }
3721 else
3722 {
3723 /* This breakpoint is in an overlay section.
3724 Did we set a breakpoint at the LMA? */
3725 if (!overlay_events_enabled)
3726 {
3727 /* Yes -- overlay event support is not active, so we
3728 should have set a breakpoint at the LMA. Remove it.
3729 */
3730 /* Ignore any failures: if the LMA is in ROM, we will
3731 have already warned when we failed to insert it. */
3732 if (bl->loc_type == bp_loc_hardware_breakpoint)
3733 target_remove_hw_breakpoint (bl->gdbarch,
3734 &bl->overlay_target_info);
3735 else
3736 target_remove_breakpoint (bl->gdbarch,
3737 &bl->overlay_target_info);
3738 }
3739 /* Did we set a breakpoint at the VMA?
3740 If so, we will have marked the breakpoint 'inserted'. */
3741 if (bl->inserted)
3742 {
3743 /* Yes -- remove it. Previously we did not bother to
3744 remove the breakpoint if the section had been
3745 unmapped, but let's not rely on that being safe. We
3746 don't know what the overlay manager might do. */
3747
3748 /* However, we should remove *software* breakpoints only
3749 if the section is still mapped, or else we overwrite
3750 wrong code with the saved shadow contents. */
3751 if (bl->loc_type == bp_loc_hardware_breakpoint
3752 || section_is_mapped (bl->section))
3753 val = bl->owner->ops->remove_location (bl);
3754 else
3755 val = 0;
3756 }
3757 else
3758 {
3759 /* No -- not inserted, so no need to remove. No error. */
3760 val = 0;
3761 }
3762 }
3763
3764 /* In some cases, we might not be able to remove a breakpoint
3765 in a shared library that has already been removed, but we
3766 have not yet processed the shlib unload event. */
3767 if (val && solib_name_from_address (bl->pspace, bl->address))
3768 val = 0;
3769
3770 if (val)
3771 return val;
3772 bl->inserted = (is == mark_inserted);
3773 }
3774 else if (bl->loc_type == bp_loc_hardware_watchpoint)
3775 {
3776 gdb_assert (bl->owner->ops != NULL
3777 && bl->owner->ops->remove_location != NULL);
3778
3779 bl->inserted = (is == mark_inserted);
3780 bl->owner->ops->remove_location (bl);
3781
3782 /* Failure to remove any of the hardware watchpoints comes here. */
3783 if ((is == mark_uninserted) && (bl->inserted))
3784 warning (_("Could not remove hardware watchpoint %d."),
3785 bl->owner->number);
3786 }
3787 else if (bl->owner->type == bp_catchpoint
3788 && breakpoint_enabled (bl->owner)
3789 && !bl->duplicate)
3790 {
3791 gdb_assert (bl->owner->ops != NULL
3792 && bl->owner->ops->remove_location != NULL);
3793
3794 val = bl->owner->ops->remove_location (bl);
3795 if (val)
3796 return val;
3797
3798 bl->inserted = (is == mark_inserted);
3799 }
3800
3801 return 0;
3802 }
3803
3804 static int
3805 remove_breakpoint (struct bp_location *bl, insertion_state_t is)
3806 {
3807 int ret;
3808 struct cleanup *old_chain;
3809
3810 /* BL is never in moribund_locations by our callers. */
3811 gdb_assert (bl->owner != NULL);
3812
3813 if (bl->owner->enable_state == bp_permanent)
3814 /* Permanent breakpoints cannot be inserted or removed. */
3815 return 0;
3816
3817 /* The type of none suggests that owner is actually deleted.
3818 This should not ever happen. */
3819 gdb_assert (bl->owner->type != bp_none);
3820
3821 old_chain = save_current_space_and_thread ();
3822
3823 switch_to_program_space_and_thread (bl->pspace);
3824
3825 ret = remove_breakpoint_1 (bl, is);
3826
3827 do_cleanups (old_chain);
3828 return ret;
3829 }
3830
3831 /* Clear the "inserted" flag in all breakpoints. */
3832
3833 void
3834 mark_breakpoints_out (void)
3835 {
3836 struct bp_location *bl, **blp_tmp;
3837
3838 ALL_BP_LOCATIONS (bl, blp_tmp)
3839 if (bl->pspace == current_program_space)
3840 bl->inserted = 0;
3841 }
3842
3843 /* Clear the "inserted" flag in all breakpoints and delete any
3844 breakpoints which should go away between runs of the program.
3845
3846 Plus other such housekeeping that has to be done for breakpoints
3847 between runs.
3848
3849 Note: this function gets called at the end of a run (by
3850 generic_mourn_inferior) and when a run begins (by
3851 init_wait_for_inferior). */
3852
3853
3854
3855 void
3856 breakpoint_init_inferior (enum inf_context context)
3857 {
3858 struct breakpoint *b, *b_tmp;
3859 struct bp_location *bl, **blp_tmp;
3860 int ix;
3861 struct program_space *pspace = current_program_space;
3862
3863 /* If breakpoint locations are shared across processes, then there's
3864 nothing to do. */
3865 if (gdbarch_has_global_breakpoints (target_gdbarch ()))
3866 return;
3867
3868 ALL_BP_LOCATIONS (bl, blp_tmp)
3869 {
3870 /* ALL_BP_LOCATIONS bp_location has BL->OWNER always non-NULL. */
3871 if (bl->pspace == pspace
3872 && bl->owner->enable_state != bp_permanent)
3873 bl->inserted = 0;
3874 }
3875
3876 ALL_BREAKPOINTS_SAFE (b, b_tmp)
3877 {
3878 if (b->loc && b->loc->pspace != pspace)
3879 continue;
3880
3881 switch (b->type)
3882 {
3883 case bp_call_dummy:
3884 case bp_longjmp_call_dummy:
3885
3886 /* If the call dummy breakpoint is at the entry point it will
3887 cause problems when the inferior is rerun, so we better get
3888 rid of it. */
3889
3890 case bp_watchpoint_scope:
3891
3892 /* Also get rid of scope breakpoints. */
3893
3894 case bp_shlib_event:
3895
3896 /* Also remove solib event breakpoints. Their addresses may
3897 have changed since the last time we ran the program.
3898 Actually we may now be debugging against different target;
3899 and so the solib backend that installed this breakpoint may
3900 not be used in by the target. E.g.,
3901
3902 (gdb) file prog-linux
3903 (gdb) run # native linux target
3904 ...
3905 (gdb) kill
3906 (gdb) file prog-win.exe
3907 (gdb) tar rem :9999 # remote Windows gdbserver.
3908 */
3909
3910 case bp_step_resume:
3911
3912 /* Also remove step-resume breakpoints. */
3913
3914 delete_breakpoint (b);
3915 break;
3916
3917 case bp_watchpoint:
3918 case bp_hardware_watchpoint:
3919 case bp_read_watchpoint:
3920 case bp_access_watchpoint:
3921 {
3922 struct watchpoint *w = (struct watchpoint *) b;
3923
3924 /* Likewise for watchpoints on local expressions. */
3925 if (w->exp_valid_block != NULL)
3926 delete_breakpoint (b);
3927 else if (context == inf_starting)
3928 {
3929 /* Reset val field to force reread of starting value in
3930 insert_breakpoints. */
3931 if (w->val)
3932 value_free (w->val);
3933 w->val = NULL;
3934 w->val_valid = 0;
3935 }
3936 }
3937 break;
3938 default:
3939 break;
3940 }
3941 }
3942
3943 /* Get rid of the moribund locations. */
3944 for (ix = 0; VEC_iterate (bp_location_p, moribund_locations, ix, bl); ++ix)
3945 decref_bp_location (&bl);
3946 VEC_free (bp_location_p, moribund_locations);
3947 }
3948
3949 /* These functions concern about actual breakpoints inserted in the
3950 target --- to e.g. check if we need to do decr_pc adjustment or if
3951 we need to hop over the bkpt --- so we check for address space
3952 match, not program space. */
3953
3954 /* breakpoint_here_p (PC) returns non-zero if an enabled breakpoint
3955 exists at PC. It returns ordinary_breakpoint_here if it's an
3956 ordinary breakpoint, or permanent_breakpoint_here if it's a
3957 permanent breakpoint.
3958 - When continuing from a location with an ordinary breakpoint, we
3959 actually single step once before calling insert_breakpoints.
3960 - When continuing from a location with a permanent breakpoint, we
3961 need to use the `SKIP_PERMANENT_BREAKPOINT' macro, provided by
3962 the target, to advance the PC past the breakpoint. */
3963
3964 enum breakpoint_here
3965 breakpoint_here_p (struct address_space *aspace, CORE_ADDR pc)
3966 {
3967 struct bp_location *bl, **blp_tmp;
3968 int any_breakpoint_here = 0;
3969
3970 ALL_BP_LOCATIONS (bl, blp_tmp)
3971 {
3972 if (bl->loc_type != bp_loc_software_breakpoint
3973 && bl->loc_type != bp_loc_hardware_breakpoint)
3974 continue;
3975
3976 /* ALL_BP_LOCATIONS bp_location has BL->OWNER always non-NULL. */
3977 if ((breakpoint_enabled (bl->owner)
3978 || bl->owner->enable_state == bp_permanent)
3979 && breakpoint_location_address_match (bl, aspace, pc))
3980 {
3981 if (overlay_debugging
3982 && section_is_overlay (bl->section)
3983 && !section_is_mapped (bl->section))
3984 continue; /* unmapped overlay -- can't be a match */
3985 else if (bl->owner->enable_state == bp_permanent)
3986 return permanent_breakpoint_here;
3987 else
3988 any_breakpoint_here = 1;
3989 }
3990 }
3991
3992 return any_breakpoint_here ? ordinary_breakpoint_here : 0;
3993 }
3994
3995 /* Return true if there's a moribund breakpoint at PC. */
3996
3997 int
3998 moribund_breakpoint_here_p (struct address_space *aspace, CORE_ADDR pc)
3999 {
4000 struct bp_location *loc;
4001 int ix;
4002
4003 for (ix = 0; VEC_iterate (bp_location_p, moribund_locations, ix, loc); ++ix)
4004 if (breakpoint_location_address_match (loc, aspace, pc))
4005 return 1;
4006
4007 return 0;
4008 }
4009
4010 /* Returns non-zero if there's a breakpoint inserted at PC, which is
4011 inserted using regular breakpoint_chain / bp_location array
4012 mechanism. This does not check for single-step breakpoints, which
4013 are inserted and removed using direct target manipulation. */
4014
4015 int
4016 regular_breakpoint_inserted_here_p (struct address_space *aspace,
4017 CORE_ADDR pc)
4018 {
4019 struct bp_location *bl, **blp_tmp;
4020
4021 ALL_BP_LOCATIONS (bl, blp_tmp)
4022 {
4023 if (bl->loc_type != bp_loc_software_breakpoint
4024 && bl->loc_type != bp_loc_hardware_breakpoint)
4025 continue;
4026
4027 if (bl->inserted
4028 && breakpoint_location_address_match (bl, aspace, pc))
4029 {
4030 if (overlay_debugging
4031 && section_is_overlay (bl->section)
4032 && !section_is_mapped (bl->section))
4033 continue; /* unmapped overlay -- can't be a match */
4034 else
4035 return 1;
4036 }
4037 }
4038 return 0;
4039 }
4040
4041 /* Returns non-zero iff there's either regular breakpoint
4042 or a single step breakpoint inserted at PC. */
4043
4044 int
4045 breakpoint_inserted_here_p (struct address_space *aspace, CORE_ADDR pc)
4046 {
4047 if (regular_breakpoint_inserted_here_p (aspace, pc))
4048 return 1;
4049
4050 if (single_step_breakpoint_inserted_here_p (aspace, pc))
4051 return 1;
4052
4053 return 0;
4054 }
4055
4056 /* This function returns non-zero iff there is a software breakpoint
4057 inserted at PC. */
4058
4059 int
4060 software_breakpoint_inserted_here_p (struct address_space *aspace,
4061 CORE_ADDR pc)
4062 {
4063 struct bp_location *bl, **blp_tmp;
4064
4065 ALL_BP_LOCATIONS (bl, blp_tmp)
4066 {
4067 if (bl->loc_type != bp_loc_software_breakpoint)
4068 continue;
4069
4070 if (bl->inserted
4071 && breakpoint_address_match (bl->pspace->aspace, bl->address,
4072 aspace, pc))
4073 {
4074 if (overlay_debugging
4075 && section_is_overlay (bl->section)
4076 && !section_is_mapped (bl->section))
4077 continue; /* unmapped overlay -- can't be a match */
4078 else
4079 return 1;
4080 }
4081 }
4082
4083 /* Also check for software single-step breakpoints. */
4084 if (single_step_breakpoint_inserted_here_p (aspace, pc))
4085 return 1;
4086
4087 return 0;
4088 }
4089
4090 int
4091 hardware_watchpoint_inserted_in_range (struct address_space *aspace,
4092 CORE_ADDR addr, ULONGEST len)
4093 {
4094 struct breakpoint *bpt;
4095
4096 ALL_BREAKPOINTS (bpt)
4097 {
4098 struct bp_location *loc;
4099
4100 if (bpt->type != bp_hardware_watchpoint
4101 && bpt->type != bp_access_watchpoint)
4102 continue;
4103
4104 if (!breakpoint_enabled (bpt))
4105 continue;
4106
4107 for (loc = bpt->loc; loc; loc = loc->next)
4108 if (loc->pspace->aspace == aspace && loc->inserted)
4109 {
4110 CORE_ADDR l, h;
4111
4112 /* Check for intersection. */
4113 l = max (loc->address, addr);
4114 h = min (loc->address + loc->length, addr + len);
4115 if (l < h)
4116 return 1;
4117 }
4118 }
4119 return 0;
4120 }
4121
4122 /* breakpoint_thread_match (PC, PTID) returns true if the breakpoint at
4123 PC is valid for process/thread PTID. */
4124
4125 int
4126 breakpoint_thread_match (struct address_space *aspace, CORE_ADDR pc,
4127 ptid_t ptid)
4128 {
4129 struct bp_location *bl, **blp_tmp;
4130 /* The thread and task IDs associated to PTID, computed lazily. */
4131 int thread = -1;
4132 int task = 0;
4133
4134 ALL_BP_LOCATIONS (bl, blp_tmp)
4135 {
4136 if (bl->loc_type != bp_loc_software_breakpoint
4137 && bl->loc_type != bp_loc_hardware_breakpoint)
4138 continue;
4139
4140 /* ALL_BP_LOCATIONS bp_location has bl->OWNER always non-NULL. */
4141 if (!breakpoint_enabled (bl->owner)
4142 && bl->owner->enable_state != bp_permanent)
4143 continue;
4144
4145 if (!breakpoint_location_address_match (bl, aspace, pc))
4146 continue;
4147
4148 if (bl->owner->thread != -1)
4149 {
4150 /* This is a thread-specific breakpoint. Check that ptid
4151 matches that thread. If thread hasn't been computed yet,
4152 it is now time to do so. */
4153 if (thread == -1)
4154 thread = pid_to_thread_id (ptid);
4155 if (bl->owner->thread != thread)
4156 continue;
4157 }
4158
4159 if (bl->owner->task != 0)
4160 {
4161 /* This is a task-specific breakpoint. Check that ptid
4162 matches that task. If task hasn't been computed yet,
4163 it is now time to do so. */
4164 if (task == 0)
4165 task = ada_get_task_number (ptid);
4166 if (bl->owner->task != task)
4167 continue;
4168 }
4169
4170 if (overlay_debugging
4171 && section_is_overlay (bl->section)
4172 && !section_is_mapped (bl->section))
4173 continue; /* unmapped overlay -- can't be a match */
4174
4175 return 1;
4176 }
4177
4178 return 0;
4179 }
4180 \f
4181
4182 /* bpstat stuff. External routines' interfaces are documented
4183 in breakpoint.h. */
4184
4185 int
4186 is_catchpoint (struct breakpoint *ep)
4187 {
4188 return (ep->type == bp_catchpoint);
4189 }
4190
4191 /* Frees any storage that is part of a bpstat. Does not walk the
4192 'next' chain. */
4193
4194 static void
4195 bpstat_free (bpstat bs)
4196 {
4197 if (bs->old_val != NULL)
4198 value_free (bs->old_val);
4199 decref_counted_command_line (&bs->commands);
4200 decref_bp_location (&bs->bp_location_at);
4201 xfree (bs);
4202 }
4203
4204 /* Clear a bpstat so that it says we are not at any breakpoint.
4205 Also free any storage that is part of a bpstat. */
4206
4207 void
4208 bpstat_clear (bpstat *bsp)
4209 {
4210 bpstat p;
4211 bpstat q;
4212
4213 if (bsp == 0)
4214 return;
4215 p = *bsp;
4216 while (p != NULL)
4217 {
4218 q = p->next;
4219 bpstat_free (p);
4220 p = q;
4221 }
4222 *bsp = NULL;
4223 }
4224
4225 /* Return a copy of a bpstat. Like "bs1 = bs2" but all storage that
4226 is part of the bpstat is copied as well. */
4227
4228 bpstat
4229 bpstat_copy (bpstat bs)
4230 {
4231 bpstat p = NULL;
4232 bpstat tmp;
4233 bpstat retval = NULL;
4234
4235 if (bs == NULL)
4236 return bs;
4237
4238 for (; bs != NULL; bs = bs->next)
4239 {
4240 tmp = (bpstat) xmalloc (sizeof (*tmp));
4241 memcpy (tmp, bs, sizeof (*tmp));
4242 incref_counted_command_line (tmp->commands);
4243 incref_bp_location (tmp->bp_location_at);
4244 if (bs->old_val != NULL)
4245 {
4246 tmp->old_val = value_copy (bs->old_val);
4247 release_value (tmp->old_val);
4248 }
4249
4250 if (p == NULL)
4251 /* This is the first thing in the chain. */
4252 retval = tmp;
4253 else
4254 p->next = tmp;
4255 p = tmp;
4256 }
4257 p->next = NULL;
4258 return retval;
4259 }
4260
4261 /* Find the bpstat associated with this breakpoint. */
4262
4263 bpstat
4264 bpstat_find_breakpoint (bpstat bsp, struct breakpoint *breakpoint)
4265 {
4266 if (bsp == NULL)
4267 return NULL;
4268
4269 for (; bsp != NULL; bsp = bsp->next)
4270 {
4271 if (bsp->breakpoint_at == breakpoint)
4272 return bsp;
4273 }
4274 return NULL;
4275 }
4276
4277 /* See breakpoint.h. */
4278
4279 int
4280 bpstat_explains_signal (bpstat bsp, enum gdb_signal sig)
4281 {
4282 for (; bsp != NULL; bsp = bsp->next)
4283 {
4284 if (bsp->breakpoint_at == NULL)
4285 {
4286 /* A moribund location can never explain a signal other than
4287 GDB_SIGNAL_TRAP. */
4288 if (sig == GDB_SIGNAL_TRAP)
4289 return 1;
4290 }
4291 else
4292 {
4293 if (bsp->breakpoint_at->ops->explains_signal (bsp->breakpoint_at,
4294 sig))
4295 return 1;
4296 }
4297 }
4298
4299 return 0;
4300 }
4301
4302 /* Put in *NUM the breakpoint number of the first breakpoint we are
4303 stopped at. *BSP upon return is a bpstat which points to the
4304 remaining breakpoints stopped at (but which is not guaranteed to be
4305 good for anything but further calls to bpstat_num).
4306
4307 Return 0 if passed a bpstat which does not indicate any breakpoints.
4308 Return -1 if stopped at a breakpoint that has been deleted since
4309 we set it.
4310 Return 1 otherwise. */
4311
4312 int
4313 bpstat_num (bpstat *bsp, int *num)
4314 {
4315 struct breakpoint *b;
4316
4317 if ((*bsp) == NULL)
4318 return 0; /* No more breakpoint values */
4319
4320 /* We assume we'll never have several bpstats that correspond to a
4321 single breakpoint -- otherwise, this function might return the
4322 same number more than once and this will look ugly. */
4323 b = (*bsp)->breakpoint_at;
4324 *bsp = (*bsp)->next;
4325 if (b == NULL)
4326 return -1; /* breakpoint that's been deleted since */
4327
4328 *num = b->number; /* We have its number */
4329 return 1;
4330 }
4331
4332 /* See breakpoint.h. */
4333
4334 void
4335 bpstat_clear_actions (void)
4336 {
4337 struct thread_info *tp;
4338 bpstat bs;
4339
4340 if (ptid_equal (inferior_ptid, null_ptid))
4341 return;
4342
4343 tp = find_thread_ptid (inferior_ptid);
4344 if (tp == NULL)
4345 return;
4346
4347 for (bs = tp->control.stop_bpstat; bs != NULL; bs = bs->next)
4348 {
4349 decref_counted_command_line (&bs->commands);
4350
4351 if (bs->old_val != NULL)
4352 {
4353 value_free (bs->old_val);
4354 bs->old_val = NULL;
4355 }
4356 }
4357 }
4358
4359 /* Called when a command is about to proceed the inferior. */
4360
4361 static void
4362 breakpoint_about_to_proceed (void)
4363 {
4364 if (!ptid_equal (inferior_ptid, null_ptid))
4365 {
4366 struct thread_info *tp = inferior_thread ();
4367
4368 /* Allow inferior function calls in breakpoint commands to not
4369 interrupt the command list. When the call finishes
4370 successfully, the inferior will be standing at the same
4371 breakpoint as if nothing happened. */
4372 if (tp->control.in_infcall)
4373 return;
4374 }
4375
4376 breakpoint_proceeded = 1;
4377 }
4378
4379 /* Stub for cleaning up our state if we error-out of a breakpoint
4380 command. */
4381 static void
4382 cleanup_executing_breakpoints (void *ignore)
4383 {
4384 executing_breakpoint_commands = 0;
4385 }
4386
4387 /* Return non-zero iff CMD as the first line of a command sequence is `silent'
4388 or its equivalent. */
4389
4390 static int
4391 command_line_is_silent (struct command_line *cmd)
4392 {
4393 return cmd && (strcmp ("silent", cmd->line) == 0
4394 || (xdb_commands && strcmp ("Q", cmd->line) == 0));
4395 }
4396
4397 /* Execute all the commands associated with all the breakpoints at
4398 this location. Any of these commands could cause the process to
4399 proceed beyond this point, etc. We look out for such changes by
4400 checking the global "breakpoint_proceeded" after each command.
4401
4402 Returns true if a breakpoint command resumed the inferior. In that
4403 case, it is the caller's responsibility to recall it again with the
4404 bpstat of the current thread. */
4405
4406 static int
4407 bpstat_do_actions_1 (bpstat *bsp)
4408 {
4409 bpstat bs;
4410 struct cleanup *old_chain;
4411 int again = 0;
4412
4413 /* Avoid endless recursion if a `source' command is contained
4414 in bs->commands. */
4415 if (executing_breakpoint_commands)
4416 return 0;
4417
4418 executing_breakpoint_commands = 1;
4419 old_chain = make_cleanup (cleanup_executing_breakpoints, 0);
4420
4421 prevent_dont_repeat ();
4422
4423 /* This pointer will iterate over the list of bpstat's. */
4424 bs = *bsp;
4425
4426 breakpoint_proceeded = 0;
4427 for (; bs != NULL; bs = bs->next)
4428 {
4429 struct counted_command_line *ccmd;
4430 struct command_line *cmd;
4431 struct cleanup *this_cmd_tree_chain;
4432
4433 /* Take ownership of the BSP's command tree, if it has one.
4434
4435 The command tree could legitimately contain commands like
4436 'step' and 'next', which call clear_proceed_status, which
4437 frees stop_bpstat's command tree. To make sure this doesn't
4438 free the tree we're executing out from under us, we need to
4439 take ownership of the tree ourselves. Since a given bpstat's
4440 commands are only executed once, we don't need to copy it; we
4441 can clear the pointer in the bpstat, and make sure we free
4442 the tree when we're done. */
4443 ccmd = bs->commands;
4444 bs->commands = NULL;
4445 this_cmd_tree_chain = make_cleanup_decref_counted_command_line (&ccmd);
4446 cmd = ccmd ? ccmd->commands : NULL;
4447 if (command_line_is_silent (cmd))
4448 {
4449 /* The action has been already done by bpstat_stop_status. */
4450 cmd = cmd->next;
4451 }
4452
4453 while (cmd != NULL)
4454 {
4455 execute_control_command (cmd);
4456
4457 if (breakpoint_proceeded)
4458 break;
4459 else
4460 cmd = cmd->next;
4461 }
4462
4463 /* We can free this command tree now. */
4464 do_cleanups (this_cmd_tree_chain);
4465
4466 if (breakpoint_proceeded)
4467 {
4468 if (target_can_async_p ())
4469 /* If we are in async mode, then the target might be still
4470 running, not stopped at any breakpoint, so nothing for
4471 us to do here -- just return to the event loop. */
4472 ;
4473 else
4474 /* In sync mode, when execute_control_command returns
4475 we're already standing on the next breakpoint.
4476 Breakpoint commands for that stop were not run, since
4477 execute_command does not run breakpoint commands --
4478 only command_line_handler does, but that one is not
4479 involved in execution of breakpoint commands. So, we
4480 can now execute breakpoint commands. It should be
4481 noted that making execute_command do bpstat actions is
4482 not an option -- in this case we'll have recursive
4483 invocation of bpstat for each breakpoint with a
4484 command, and can easily blow up GDB stack. Instead, we
4485 return true, which will trigger the caller to recall us
4486 with the new stop_bpstat. */
4487 again = 1;
4488 break;
4489 }
4490 }
4491 do_cleanups (old_chain);
4492 return again;
4493 }
4494
4495 void
4496 bpstat_do_actions (void)
4497 {
4498 struct cleanup *cleanup_if_error = make_bpstat_clear_actions_cleanup ();
4499
4500 /* Do any commands attached to breakpoint we are stopped at. */
4501 while (!ptid_equal (inferior_ptid, null_ptid)
4502 && target_has_execution
4503 && !is_exited (inferior_ptid)
4504 && !is_executing (inferior_ptid))
4505 /* Since in sync mode, bpstat_do_actions may resume the inferior,
4506 and only return when it is stopped at the next breakpoint, we
4507 keep doing breakpoint actions until it returns false to
4508 indicate the inferior was not resumed. */
4509 if (!bpstat_do_actions_1 (&inferior_thread ()->control.stop_bpstat))
4510 break;
4511
4512 discard_cleanups (cleanup_if_error);
4513 }
4514
4515 /* Print out the (old or new) value associated with a watchpoint. */
4516
4517 static void
4518 watchpoint_value_print (struct value *val, struct ui_file *stream)
4519 {
4520 if (val == NULL)
4521 fprintf_unfiltered (stream, _("<unreadable>"));
4522 else
4523 {
4524 struct value_print_options opts;
4525 get_user_print_options (&opts);
4526 value_print (val, stream, &opts);
4527 }
4528 }
4529
4530 /* Generic routine for printing messages indicating why we
4531 stopped. The behavior of this function depends on the value
4532 'print_it' in the bpstat structure. Under some circumstances we
4533 may decide not to print anything here and delegate the task to
4534 normal_stop(). */
4535
4536 static enum print_stop_action
4537 print_bp_stop_message (bpstat bs)
4538 {
4539 switch (bs->print_it)
4540 {
4541 case print_it_noop:
4542 /* Nothing should be printed for this bpstat entry. */
4543 return PRINT_UNKNOWN;
4544 break;
4545
4546 case print_it_done:
4547 /* We still want to print the frame, but we already printed the
4548 relevant messages. */
4549 return PRINT_SRC_AND_LOC;
4550 break;
4551
4552 case print_it_normal:
4553 {
4554 struct breakpoint *b = bs->breakpoint_at;
4555
4556 /* bs->breakpoint_at can be NULL if it was a momentary breakpoint
4557 which has since been deleted. */
4558 if (b == NULL)
4559 return PRINT_UNKNOWN;
4560
4561 /* Normal case. Call the breakpoint's print_it method. */
4562 return b->ops->print_it (bs);
4563 }
4564 break;
4565
4566 default:
4567 internal_error (__FILE__, __LINE__,
4568 _("print_bp_stop_message: unrecognized enum value"));
4569 break;
4570 }
4571 }
4572
4573 /* A helper function that prints a shared library stopped event. */
4574
4575 static void
4576 print_solib_event (int is_catchpoint)
4577 {
4578 int any_deleted
4579 = !VEC_empty (char_ptr, current_program_space->deleted_solibs);
4580 int any_added
4581 = !VEC_empty (so_list_ptr, current_program_space->added_solibs);
4582
4583 if (!is_catchpoint)
4584 {
4585 if (any_added || any_deleted)
4586 ui_out_text (current_uiout,
4587 _("Stopped due to shared library event:\n"));
4588 else
4589 ui_out_text (current_uiout,
4590 _("Stopped due to shared library event (no "
4591 "libraries added or removed)\n"));
4592 }
4593
4594 if (ui_out_is_mi_like_p (current_uiout))
4595 ui_out_field_string (current_uiout, "reason",
4596 async_reason_lookup (EXEC_ASYNC_SOLIB_EVENT));
4597
4598 if (any_deleted)
4599 {
4600 struct cleanup *cleanup;
4601 char *name;
4602 int ix;
4603
4604 ui_out_text (current_uiout, _(" Inferior unloaded "));
4605 cleanup = make_cleanup_ui_out_list_begin_end (current_uiout,
4606 "removed");
4607 for (ix = 0;
4608 VEC_iterate (char_ptr, current_program_space->deleted_solibs,
4609 ix, name);
4610 ++ix)
4611 {
4612 if (ix > 0)
4613 ui_out_text (current_uiout, " ");
4614 ui_out_field_string (current_uiout, "library", name);
4615 ui_out_text (current_uiout, "\n");
4616 }
4617
4618 do_cleanups (cleanup);
4619 }
4620
4621 if (any_added)
4622 {
4623 struct so_list *iter;
4624 int ix;
4625 struct cleanup *cleanup;
4626
4627 ui_out_text (current_uiout, _(" Inferior loaded "));
4628 cleanup = make_cleanup_ui_out_list_begin_end (current_uiout,
4629 "added");
4630 for (ix = 0;
4631 VEC_iterate (so_list_ptr, current_program_space->added_solibs,
4632 ix, iter);
4633 ++ix)
4634 {
4635 if (ix > 0)
4636 ui_out_text (current_uiout, " ");
4637 ui_out_field_string (current_uiout, "library", iter->so_name);
4638 ui_out_text (current_uiout, "\n");
4639 }
4640
4641 do_cleanups (cleanup);
4642 }
4643 }
4644
4645 /* Print a message indicating what happened. This is called from
4646 normal_stop(). The input to this routine is the head of the bpstat
4647 list - a list of the eventpoints that caused this stop. KIND is
4648 the target_waitkind for the stopping event. This
4649 routine calls the generic print routine for printing a message
4650 about reasons for stopping. This will print (for example) the
4651 "Breakpoint n," part of the output. The return value of this
4652 routine is one of:
4653
4654 PRINT_UNKNOWN: Means we printed nothing.
4655 PRINT_SRC_AND_LOC: Means we printed something, and expect subsequent
4656 code to print the location. An example is
4657 "Breakpoint 1, " which should be followed by
4658 the location.
4659 PRINT_SRC_ONLY: Means we printed something, but there is no need
4660 to also print the location part of the message.
4661 An example is the catch/throw messages, which
4662 don't require a location appended to the end.
4663 PRINT_NOTHING: We have done some printing and we don't need any
4664 further info to be printed. */
4665
4666 enum print_stop_action
4667 bpstat_print (bpstat bs, int kind)
4668 {
4669 int val;
4670
4671 /* Maybe another breakpoint in the chain caused us to stop.
4672 (Currently all watchpoints go on the bpstat whether hit or not.
4673 That probably could (should) be changed, provided care is taken
4674 with respect to bpstat_explains_signal). */
4675 for (; bs; bs = bs->next)
4676 {
4677 val = print_bp_stop_message (bs);
4678 if (val == PRINT_SRC_ONLY
4679 || val == PRINT_SRC_AND_LOC
4680 || val == PRINT_NOTHING)
4681 return val;
4682 }
4683
4684 /* If we had hit a shared library event breakpoint,
4685 print_bp_stop_message would print out this message. If we hit an
4686 OS-level shared library event, do the same thing. */
4687 if (kind == TARGET_WAITKIND_LOADED)
4688 {
4689 print_solib_event (0);
4690 return PRINT_NOTHING;
4691 }
4692
4693 /* We reached the end of the chain, or we got a null BS to start
4694 with and nothing was printed. */
4695 return PRINT_UNKNOWN;
4696 }
4697
4698 /* Evaluate the expression EXP and return 1 if value is zero.
4699 This returns the inverse of the condition because it is called
4700 from catch_errors which returns 0 if an exception happened, and if an
4701 exception happens we want execution to stop.
4702 The argument is a "struct expression *" that has been cast to a
4703 "void *" to make it pass through catch_errors. */
4704
4705 static int
4706 breakpoint_cond_eval (void *exp)
4707 {
4708 struct value *mark = value_mark ();
4709 int i = !value_true (evaluate_expression ((struct expression *) exp));
4710
4711 value_free_to_mark (mark);
4712 return i;
4713 }
4714
4715 /* Allocate a new bpstat. Link it to the FIFO list by BS_LINK_POINTER. */
4716
4717 static bpstat
4718 bpstat_alloc (struct bp_location *bl, bpstat **bs_link_pointer)
4719 {
4720 bpstat bs;
4721
4722 bs = (bpstat) xmalloc (sizeof (*bs));
4723 bs->next = NULL;
4724 **bs_link_pointer = bs;
4725 *bs_link_pointer = &bs->next;
4726 bs->breakpoint_at = bl->owner;
4727 bs->bp_location_at = bl;
4728 incref_bp_location (bl);
4729 /* If the condition is false, etc., don't do the commands. */
4730 bs->commands = NULL;
4731 bs->old_val = NULL;
4732 bs->print_it = print_it_normal;
4733 return bs;
4734 }
4735 \f
4736 /* The target has stopped with waitstatus WS. Check if any hardware
4737 watchpoints have triggered, according to the target. */
4738
4739 int
4740 watchpoints_triggered (struct target_waitstatus *ws)
4741 {
4742 int stopped_by_watchpoint = target_stopped_by_watchpoint ();
4743 CORE_ADDR addr;
4744 struct breakpoint *b;
4745
4746 if (!stopped_by_watchpoint)
4747 {
4748 /* We were not stopped by a watchpoint. Mark all watchpoints
4749 as not triggered. */
4750 ALL_BREAKPOINTS (b)
4751 if (is_hardware_watchpoint (b))
4752 {
4753 struct watchpoint *w = (struct watchpoint *) b;
4754
4755 w->watchpoint_triggered = watch_triggered_no;
4756 }
4757
4758 return 0;
4759 }
4760
4761 if (!target_stopped_data_address (&current_target, &addr))
4762 {
4763 /* We were stopped by a watchpoint, but we don't know where.
4764 Mark all watchpoints as unknown. */
4765 ALL_BREAKPOINTS (b)
4766 if (is_hardware_watchpoint (b))
4767 {
4768 struct watchpoint *w = (struct watchpoint *) b;
4769
4770 w->watchpoint_triggered = watch_triggered_unknown;
4771 }
4772
4773 return 1;
4774 }
4775
4776 /* The target could report the data address. Mark watchpoints
4777 affected by this data address as triggered, and all others as not
4778 triggered. */
4779
4780 ALL_BREAKPOINTS (b)
4781 if (is_hardware_watchpoint (b))
4782 {
4783 struct watchpoint *w = (struct watchpoint *) b;
4784 struct bp_location *loc;
4785
4786 w->watchpoint_triggered = watch_triggered_no;
4787 for (loc = b->loc; loc; loc = loc->next)
4788 {
4789 if (is_masked_watchpoint (b))
4790 {
4791 CORE_ADDR newaddr = addr & w->hw_wp_mask;
4792 CORE_ADDR start = loc->address & w->hw_wp_mask;
4793
4794 if (newaddr == start)
4795 {
4796 w->watchpoint_triggered = watch_triggered_yes;
4797 break;
4798 }
4799 }
4800 /* Exact match not required. Within range is sufficient. */
4801 else if (target_watchpoint_addr_within_range (&current_target,
4802 addr, loc->address,
4803 loc->length))
4804 {
4805 w->watchpoint_triggered = watch_triggered_yes;
4806 break;
4807 }
4808 }
4809 }
4810
4811 return 1;
4812 }
4813
4814 /* Possible return values for watchpoint_check (this can't be an enum
4815 because of check_errors). */
4816 /* The watchpoint has been deleted. */
4817 #define WP_DELETED 1
4818 /* The value has changed. */
4819 #define WP_VALUE_CHANGED 2
4820 /* The value has not changed. */
4821 #define WP_VALUE_NOT_CHANGED 3
4822 /* Ignore this watchpoint, no matter if the value changed or not. */
4823 #define WP_IGNORE 4
4824
4825 #define BP_TEMPFLAG 1
4826 #define BP_HARDWAREFLAG 2
4827
4828 /* Evaluate watchpoint condition expression and check if its value
4829 changed.
4830
4831 P should be a pointer to struct bpstat, but is defined as a void *
4832 in order for this function to be usable with catch_errors. */
4833
4834 static int
4835 watchpoint_check (void *p)
4836 {
4837 bpstat bs = (bpstat) p;
4838 struct watchpoint *b;
4839 struct frame_info *fr;
4840 int within_current_scope;
4841
4842 /* BS is built from an existing struct breakpoint. */
4843 gdb_assert (bs->breakpoint_at != NULL);
4844 b = (struct watchpoint *) bs->breakpoint_at;
4845
4846 /* If this is a local watchpoint, we only want to check if the
4847 watchpoint frame is in scope if the current thread is the thread
4848 that was used to create the watchpoint. */
4849 if (!watchpoint_in_thread_scope (b))
4850 return WP_IGNORE;
4851
4852 if (b->exp_valid_block == NULL)
4853 within_current_scope = 1;
4854 else
4855 {
4856 struct frame_info *frame = get_current_frame ();
4857 struct gdbarch *frame_arch = get_frame_arch (frame);
4858 CORE_ADDR frame_pc = get_frame_pc (frame);
4859
4860 /* in_function_epilogue_p() returns a non-zero value if we're
4861 still in the function but the stack frame has already been
4862 invalidated. Since we can't rely on the values of local
4863 variables after the stack has been destroyed, we are treating
4864 the watchpoint in that state as `not changed' without further
4865 checking. Don't mark watchpoints as changed if the current
4866 frame is in an epilogue - even if they are in some other
4867 frame, our view of the stack is likely to be wrong and
4868 frame_find_by_id could error out. */
4869 if (gdbarch_in_function_epilogue_p (frame_arch, frame_pc))
4870 return WP_IGNORE;
4871
4872 fr = frame_find_by_id (b->watchpoint_frame);
4873 within_current_scope = (fr != NULL);
4874
4875 /* If we've gotten confused in the unwinder, we might have
4876 returned a frame that can't describe this variable. */
4877 if (within_current_scope)
4878 {
4879 struct symbol *function;
4880
4881 function = get_frame_function (fr);
4882 if (function == NULL
4883 || !contained_in (b->exp_valid_block,
4884 SYMBOL_BLOCK_VALUE (function)))
4885 within_current_scope = 0;
4886 }
4887
4888 if (within_current_scope)
4889 /* If we end up stopping, the current frame will get selected
4890 in normal_stop. So this call to select_frame won't affect
4891 the user. */
4892 select_frame (fr);
4893 }
4894
4895 if (within_current_scope)
4896 {
4897 /* We use value_{,free_to_}mark because it could be a *long*
4898 time before we return to the command level and call
4899 free_all_values. We can't call free_all_values because we
4900 might be in the middle of evaluating a function call. */
4901
4902 int pc = 0;
4903 struct value *mark;
4904 struct value *new_val;
4905
4906 if (is_masked_watchpoint (&b->base))
4907 /* Since we don't know the exact trigger address (from
4908 stopped_data_address), just tell the user we've triggered
4909 a mask watchpoint. */
4910 return WP_VALUE_CHANGED;
4911
4912 mark = value_mark ();
4913 fetch_subexp_value (b->exp, &pc, &new_val, NULL, NULL, 0);
4914
4915 /* We use value_equal_contents instead of value_equal because
4916 the latter coerces an array to a pointer, thus comparing just
4917 the address of the array instead of its contents. This is
4918 not what we want. */
4919 if ((b->val != NULL) != (new_val != NULL)
4920 || (b->val != NULL && !value_equal_contents (b->val, new_val)))
4921 {
4922 if (new_val != NULL)
4923 {
4924 release_value (new_val);
4925 value_free_to_mark (mark);
4926 }
4927 bs->old_val = b->val;
4928 b->val = new_val;
4929 b->val_valid = 1;
4930 return WP_VALUE_CHANGED;
4931 }
4932 else
4933 {
4934 /* Nothing changed. */
4935 value_free_to_mark (mark);
4936 return WP_VALUE_NOT_CHANGED;
4937 }
4938 }
4939 else
4940 {
4941 struct ui_out *uiout = current_uiout;
4942
4943 /* This seems like the only logical thing to do because
4944 if we temporarily ignored the watchpoint, then when
4945 we reenter the block in which it is valid it contains
4946 garbage (in the case of a function, it may have two
4947 garbage values, one before and one after the prologue).
4948 So we can't even detect the first assignment to it and
4949 watch after that (since the garbage may or may not equal
4950 the first value assigned). */
4951 /* We print all the stop information in
4952 breakpoint_ops->print_it, but in this case, by the time we
4953 call breakpoint_ops->print_it this bp will be deleted
4954 already. So we have no choice but print the information
4955 here. */
4956 if (ui_out_is_mi_like_p (uiout))
4957 ui_out_field_string
4958 (uiout, "reason", async_reason_lookup (EXEC_ASYNC_WATCHPOINT_SCOPE));
4959 ui_out_text (uiout, "\nWatchpoint ");
4960 ui_out_field_int (uiout, "wpnum", b->base.number);
4961 ui_out_text (uiout,
4962 " deleted because the program has left the block in\n\
4963 which its expression is valid.\n");
4964
4965 /* Make sure the watchpoint's commands aren't executed. */
4966 decref_counted_command_line (&b->base.commands);
4967 watchpoint_del_at_next_stop (b);
4968
4969 return WP_DELETED;
4970 }
4971 }
4972
4973 /* Return true if it looks like target has stopped due to hitting
4974 breakpoint location BL. This function does not check if we should
4975 stop, only if BL explains the stop. */
4976
4977 static int
4978 bpstat_check_location (const struct bp_location *bl,
4979 struct address_space *aspace, CORE_ADDR bp_addr,
4980 const struct target_waitstatus *ws)
4981 {
4982 struct breakpoint *b = bl->owner;
4983
4984 /* BL is from an existing breakpoint. */
4985 gdb_assert (b != NULL);
4986
4987 return b->ops->breakpoint_hit (bl, aspace, bp_addr, ws);
4988 }
4989
4990 /* Determine if the watched values have actually changed, and we
4991 should stop. If not, set BS->stop to 0. */
4992
4993 static void
4994 bpstat_check_watchpoint (bpstat bs)
4995 {
4996 const struct bp_location *bl;
4997 struct watchpoint *b;
4998
4999 /* BS is built for existing struct breakpoint. */
5000 bl = bs->bp_location_at;
5001 gdb_assert (bl != NULL);
5002 b = (struct watchpoint *) bs->breakpoint_at;
5003 gdb_assert (b != NULL);
5004
5005 {
5006 int must_check_value = 0;
5007
5008 if (b->base.type == bp_watchpoint)
5009 /* For a software watchpoint, we must always check the
5010 watched value. */
5011 must_check_value = 1;
5012 else if (b->watchpoint_triggered == watch_triggered_yes)
5013 /* We have a hardware watchpoint (read, write, or access)
5014 and the target earlier reported an address watched by
5015 this watchpoint. */
5016 must_check_value = 1;
5017 else if (b->watchpoint_triggered == watch_triggered_unknown
5018 && b->base.type == bp_hardware_watchpoint)
5019 /* We were stopped by a hardware watchpoint, but the target could
5020 not report the data address. We must check the watchpoint's
5021 value. Access and read watchpoints are out of luck; without
5022 a data address, we can't figure it out. */
5023 must_check_value = 1;
5024
5025 if (must_check_value)
5026 {
5027 char *message
5028 = xstrprintf ("Error evaluating expression for watchpoint %d\n",
5029 b->base.number);
5030 struct cleanup *cleanups = make_cleanup (xfree, message);
5031 int e = catch_errors (watchpoint_check, bs, message,
5032 RETURN_MASK_ALL);
5033 do_cleanups (cleanups);
5034 switch (e)
5035 {
5036 case WP_DELETED:
5037 /* We've already printed what needs to be printed. */
5038 bs->print_it = print_it_done;
5039 /* Stop. */
5040 break;
5041 case WP_IGNORE:
5042 bs->print_it = print_it_noop;
5043 bs->stop = 0;
5044 break;
5045 case WP_VALUE_CHANGED:
5046 if (b->base.type == bp_read_watchpoint)
5047 {
5048 /* There are two cases to consider here:
5049
5050 1. We're watching the triggered memory for reads.
5051 In that case, trust the target, and always report
5052 the watchpoint hit to the user. Even though
5053 reads don't cause value changes, the value may
5054 have changed since the last time it was read, and
5055 since we're not trapping writes, we will not see
5056 those, and as such we should ignore our notion of
5057 old value.
5058
5059 2. We're watching the triggered memory for both
5060 reads and writes. There are two ways this may
5061 happen:
5062
5063 2.1. This is a target that can't break on data
5064 reads only, but can break on accesses (reads or
5065 writes), such as e.g., x86. We detect this case
5066 at the time we try to insert read watchpoints.
5067
5068 2.2. Otherwise, the target supports read
5069 watchpoints, but, the user set an access or write
5070 watchpoint watching the same memory as this read
5071 watchpoint.
5072
5073 If we're watching memory writes as well as reads,
5074 ignore watchpoint hits when we find that the
5075 value hasn't changed, as reads don't cause
5076 changes. This still gives false positives when
5077 the program writes the same value to memory as
5078 what there was already in memory (we will confuse
5079 it for a read), but it's much better than
5080 nothing. */
5081
5082 int other_write_watchpoint = 0;
5083
5084 if (bl->watchpoint_type == hw_read)
5085 {
5086 struct breakpoint *other_b;
5087
5088 ALL_BREAKPOINTS (other_b)
5089 if (other_b->type == bp_hardware_watchpoint
5090 || other_b->type == bp_access_watchpoint)
5091 {
5092 struct watchpoint *other_w =
5093 (struct watchpoint *) other_b;
5094
5095 if (other_w->watchpoint_triggered
5096 == watch_triggered_yes)
5097 {
5098 other_write_watchpoint = 1;
5099 break;
5100 }
5101 }
5102 }
5103
5104 if (other_write_watchpoint
5105 || bl->watchpoint_type == hw_access)
5106 {
5107 /* We're watching the same memory for writes,
5108 and the value changed since the last time we
5109 updated it, so this trap must be for a write.
5110 Ignore it. */
5111 bs->print_it = print_it_noop;
5112 bs->stop = 0;
5113 }
5114 }
5115 break;
5116 case WP_VALUE_NOT_CHANGED:
5117 if (b->base.type == bp_hardware_watchpoint
5118 || b->base.type == bp_watchpoint)
5119 {
5120 /* Don't stop: write watchpoints shouldn't fire if
5121 the value hasn't changed. */
5122 bs->print_it = print_it_noop;
5123 bs->stop = 0;
5124 }
5125 /* Stop. */
5126 break;
5127 default:
5128 /* Can't happen. */
5129 case 0:
5130 /* Error from catch_errors. */
5131 printf_filtered (_("Watchpoint %d deleted.\n"), b->base.number);
5132 watchpoint_del_at_next_stop (b);
5133 /* We've already printed what needs to be printed. */
5134 bs->print_it = print_it_done;
5135 break;
5136 }
5137 }
5138 else /* must_check_value == 0 */
5139 {
5140 /* This is a case where some watchpoint(s) triggered, but
5141 not at the address of this watchpoint, or else no
5142 watchpoint triggered after all. So don't print
5143 anything for this watchpoint. */
5144 bs->print_it = print_it_noop;
5145 bs->stop = 0;
5146 }
5147 }
5148 }
5149
5150 /* For breakpoints that are currently marked as telling gdb to stop,
5151 check conditions (condition proper, frame, thread and ignore count)
5152 of breakpoint referred to by BS. If we should not stop for this
5153 breakpoint, set BS->stop to 0. */
5154
5155 static void
5156 bpstat_check_breakpoint_conditions (bpstat bs, ptid_t ptid)
5157 {
5158 int thread_id = pid_to_thread_id (ptid);
5159 const struct bp_location *bl;
5160 struct breakpoint *b;
5161 int value_is_zero = 0;
5162 struct expression *cond;
5163
5164 gdb_assert (bs->stop);
5165
5166 /* BS is built for existing struct breakpoint. */
5167 bl = bs->bp_location_at;
5168 gdb_assert (bl != NULL);
5169 b = bs->breakpoint_at;
5170 gdb_assert (b != NULL);
5171
5172 /* Even if the target evaluated the condition on its end and notified GDB, we
5173 need to do so again since GDB does not know if we stopped due to a
5174 breakpoint or a single step breakpoint. */
5175
5176 if (frame_id_p (b->frame_id)
5177 && !frame_id_eq (b->frame_id, get_stack_frame_id (get_current_frame ())))
5178 {
5179 bs->stop = 0;
5180 return;
5181 }
5182
5183 /* If this is a thread-specific breakpoint, don't waste cpu evaluating the
5184 condition if this isn't the specified thread. */
5185 if (b->thread != -1 && b->thread != thread_id)
5186 {
5187 bs->stop = 0;
5188 return;
5189 }
5190
5191 /* Evaluate Python breakpoints that have a "stop" method implemented. */
5192 if (b->py_bp_object)
5193 bs->stop = gdbpy_should_stop (b->py_bp_object);
5194
5195 if (is_watchpoint (b))
5196 {
5197 struct watchpoint *w = (struct watchpoint *) b;
5198
5199 cond = w->cond_exp;
5200 }
5201 else
5202 cond = bl->cond;
5203
5204 if (cond && b->disposition != disp_del_at_next_stop)
5205 {
5206 int within_current_scope = 1;
5207 struct watchpoint * w;
5208
5209 /* We use value_mark and value_free_to_mark because it could
5210 be a long time before we return to the command level and
5211 call free_all_values. We can't call free_all_values
5212 because we might be in the middle of evaluating a
5213 function call. */
5214 struct value *mark = value_mark ();
5215
5216 if (is_watchpoint (b))
5217 w = (struct watchpoint *) b;
5218 else
5219 w = NULL;
5220
5221 /* Need to select the frame, with all that implies so that
5222 the conditions will have the right context. Because we
5223 use the frame, we will not see an inlined function's
5224 variables when we arrive at a breakpoint at the start
5225 of the inlined function; the current frame will be the
5226 call site. */
5227 if (w == NULL || w->cond_exp_valid_block == NULL)
5228 select_frame (get_current_frame ());
5229 else
5230 {
5231 struct frame_info *frame;
5232
5233 /* For local watchpoint expressions, which particular
5234 instance of a local is being watched matters, so we
5235 keep track of the frame to evaluate the expression
5236 in. To evaluate the condition however, it doesn't
5237 really matter which instantiation of the function
5238 where the condition makes sense triggers the
5239 watchpoint. This allows an expression like "watch
5240 global if q > 10" set in `func', catch writes to
5241 global on all threads that call `func', or catch
5242 writes on all recursive calls of `func' by a single
5243 thread. We simply always evaluate the condition in
5244 the innermost frame that's executing where it makes
5245 sense to evaluate the condition. It seems
5246 intuitive. */
5247 frame = block_innermost_frame (w->cond_exp_valid_block);
5248 if (frame != NULL)
5249 select_frame (frame);
5250 else
5251 within_current_scope = 0;
5252 }
5253 if (within_current_scope)
5254 value_is_zero
5255 = catch_errors (breakpoint_cond_eval, cond,
5256 "Error in testing breakpoint condition:\n",
5257 RETURN_MASK_ALL);
5258 else
5259 {
5260 warning (_("Watchpoint condition cannot be tested "
5261 "in the current scope"));
5262 /* If we failed to set the right context for this
5263 watchpoint, unconditionally report it. */
5264 value_is_zero = 0;
5265 }
5266 /* FIXME-someday, should give breakpoint #. */
5267 value_free_to_mark (mark);
5268 }
5269
5270 if (cond && value_is_zero)
5271 {
5272 bs->stop = 0;
5273 }
5274 else if (b->ignore_count > 0)
5275 {
5276 b->ignore_count--;
5277 bs->stop = 0;
5278 /* Increase the hit count even though we don't stop. */
5279 ++(b->hit_count);
5280 observer_notify_breakpoint_modified (b);
5281 }
5282 }
5283
5284
5285 /* Get a bpstat associated with having just stopped at address
5286 BP_ADDR in thread PTID.
5287
5288 Determine whether we stopped at a breakpoint, etc, or whether we
5289 don't understand this stop. Result is a chain of bpstat's such
5290 that:
5291
5292 if we don't understand the stop, the result is a null pointer.
5293
5294 if we understand why we stopped, the result is not null.
5295
5296 Each element of the chain refers to a particular breakpoint or
5297 watchpoint at which we have stopped. (We may have stopped for
5298 several reasons concurrently.)
5299
5300 Each element of the chain has valid next, breakpoint_at,
5301 commands, FIXME??? fields. */
5302
5303 bpstat
5304 bpstat_stop_status (struct address_space *aspace,
5305 CORE_ADDR bp_addr, ptid_t ptid,
5306 const struct target_waitstatus *ws)
5307 {
5308 struct breakpoint *b = NULL;
5309 struct bp_location *bl;
5310 struct bp_location *loc;
5311 /* First item of allocated bpstat's. */
5312 bpstat bs_head = NULL, *bs_link = &bs_head;
5313 /* Pointer to the last thing in the chain currently. */
5314 bpstat bs;
5315 int ix;
5316 int need_remove_insert;
5317 int removed_any;
5318
5319 /* First, build the bpstat chain with locations that explain a
5320 target stop, while being careful to not set the target running,
5321 as that may invalidate locations (in particular watchpoint
5322 locations are recreated). Resuming will happen here with
5323 breakpoint conditions or watchpoint expressions that include
5324 inferior function calls. */
5325
5326 ALL_BREAKPOINTS (b)
5327 {
5328 if (!breakpoint_enabled (b) && b->enable_state != bp_permanent)
5329 continue;
5330
5331 for (bl = b->loc; bl != NULL; bl = bl->next)
5332 {
5333 /* For hardware watchpoints, we look only at the first
5334 location. The watchpoint_check function will work on the
5335 entire expression, not the individual locations. For
5336 read watchpoints, the watchpoints_triggered function has
5337 checked all locations already. */
5338 if (b->type == bp_hardware_watchpoint && bl != b->loc)
5339 break;
5340
5341 if (!bl->enabled || bl->shlib_disabled)
5342 continue;
5343
5344 if (!bpstat_check_location (bl, aspace, bp_addr, ws))
5345 continue;
5346
5347 /* Come here if it's a watchpoint, or if the break address
5348 matches. */
5349
5350 bs = bpstat_alloc (bl, &bs_link); /* Alloc a bpstat to
5351 explain stop. */
5352
5353 /* Assume we stop. Should we find a watchpoint that is not
5354 actually triggered, or if the condition of the breakpoint
5355 evaluates as false, we'll reset 'stop' to 0. */
5356 bs->stop = 1;
5357 bs->print = 1;
5358
5359 /* If this is a scope breakpoint, mark the associated
5360 watchpoint as triggered so that we will handle the
5361 out-of-scope event. We'll get to the watchpoint next
5362 iteration. */
5363 if (b->type == bp_watchpoint_scope && b->related_breakpoint != b)
5364 {
5365 struct watchpoint *w = (struct watchpoint *) b->related_breakpoint;
5366
5367 w->watchpoint_triggered = watch_triggered_yes;
5368 }
5369 }
5370 }
5371
5372 for (ix = 0; VEC_iterate (bp_location_p, moribund_locations, ix, loc); ++ix)
5373 {
5374 if (breakpoint_location_address_match (loc, aspace, bp_addr))
5375 {
5376 bs = bpstat_alloc (loc, &bs_link);
5377 /* For hits of moribund locations, we should just proceed. */
5378 bs->stop = 0;
5379 bs->print = 0;
5380 bs->print_it = print_it_noop;
5381 }
5382 }
5383
5384 /* A bit of special processing for shlib breakpoints. We need to
5385 process solib loading here, so that the lists of loaded and
5386 unloaded libraries are correct before we handle "catch load" and
5387 "catch unload". */
5388 for (bs = bs_head; bs != NULL; bs = bs->next)
5389 {
5390 if (bs->breakpoint_at && bs->breakpoint_at->type == bp_shlib_event)
5391 {
5392 handle_solib_event ();
5393 break;
5394 }
5395 }
5396
5397 /* Now go through the locations that caused the target to stop, and
5398 check whether we're interested in reporting this stop to higher
5399 layers, or whether we should resume the target transparently. */
5400
5401 removed_any = 0;
5402
5403 for (bs = bs_head; bs != NULL; bs = bs->next)
5404 {
5405 if (!bs->stop)
5406 continue;
5407
5408 b = bs->breakpoint_at;
5409 b->ops->check_status (bs);
5410 if (bs->stop)
5411 {
5412 bpstat_check_breakpoint_conditions (bs, ptid);
5413
5414 if (bs->stop)
5415 {
5416 ++(b->hit_count);
5417 observer_notify_breakpoint_modified (b);
5418
5419 /* We will stop here. */
5420 if (b->disposition == disp_disable)
5421 {
5422 --(b->enable_count);
5423 if (b->enable_count <= 0
5424 && b->enable_state != bp_permanent)
5425 b->enable_state = bp_disabled;
5426 removed_any = 1;
5427 }
5428 if (b->silent)
5429 bs->print = 0;
5430 bs->commands = b->commands;
5431 incref_counted_command_line (bs->commands);
5432 if (command_line_is_silent (bs->commands
5433 ? bs->commands->commands : NULL))
5434 bs->print = 0;
5435
5436 b->ops->after_condition_true (bs);
5437 }
5438
5439 }
5440
5441 /* Print nothing for this entry if we don't stop or don't
5442 print. */
5443 if (!bs->stop || !bs->print)
5444 bs->print_it = print_it_noop;
5445 }
5446
5447 /* If we aren't stopping, the value of some hardware watchpoint may
5448 not have changed, but the intermediate memory locations we are
5449 watching may have. Don't bother if we're stopping; this will get
5450 done later. */
5451 need_remove_insert = 0;
5452 if (! bpstat_causes_stop (bs_head))
5453 for (bs = bs_head; bs != NULL; bs = bs->next)
5454 if (!bs->stop
5455 && bs->breakpoint_at
5456 && is_hardware_watchpoint (bs->breakpoint_at))
5457 {
5458 struct watchpoint *w = (struct watchpoint *) bs->breakpoint_at;
5459
5460 update_watchpoint (w, 0 /* don't reparse. */);
5461 need_remove_insert = 1;
5462 }
5463
5464 if (need_remove_insert)
5465 update_global_location_list (1);
5466 else if (removed_any)
5467 update_global_location_list (0);
5468
5469 return bs_head;
5470 }
5471
5472 static void
5473 handle_jit_event (void)
5474 {
5475 struct frame_info *frame;
5476 struct gdbarch *gdbarch;
5477
5478 /* Switch terminal for any messages produced by
5479 breakpoint_re_set. */
5480 target_terminal_ours_for_output ();
5481
5482 frame = get_current_frame ();
5483 gdbarch = get_frame_arch (frame);
5484
5485 jit_event_handler (gdbarch);
5486
5487 target_terminal_inferior ();
5488 }
5489
5490 /* Prepare WHAT final decision for infrun. */
5491
5492 /* Decide what infrun needs to do with this bpstat. */
5493
5494 struct bpstat_what
5495 bpstat_what (bpstat bs_head)
5496 {
5497 struct bpstat_what retval;
5498 int jit_event = 0;
5499 bpstat bs;
5500
5501 retval.main_action = BPSTAT_WHAT_KEEP_CHECKING;
5502 retval.call_dummy = STOP_NONE;
5503 retval.is_longjmp = 0;
5504
5505 for (bs = bs_head; bs != NULL; bs = bs->next)
5506 {
5507 /* Extract this BS's action. After processing each BS, we check
5508 if its action overrides all we've seem so far. */
5509 enum bpstat_what_main_action this_action = BPSTAT_WHAT_KEEP_CHECKING;
5510 enum bptype bptype;
5511
5512 if (bs->breakpoint_at == NULL)
5513 {
5514 /* I suspect this can happen if it was a momentary
5515 breakpoint which has since been deleted. */
5516 bptype = bp_none;
5517 }
5518 else
5519 bptype = bs->breakpoint_at->type;
5520
5521 switch (bptype)
5522 {
5523 case bp_none:
5524 break;
5525 case bp_breakpoint:
5526 case bp_hardware_breakpoint:
5527 case bp_until:
5528 case bp_finish:
5529 case bp_shlib_event:
5530 if (bs->stop)
5531 {
5532 if (bs->print)
5533 this_action = BPSTAT_WHAT_STOP_NOISY;
5534 else
5535 this_action = BPSTAT_WHAT_STOP_SILENT;
5536 }
5537 else
5538 this_action = BPSTAT_WHAT_SINGLE;
5539 break;
5540 case bp_watchpoint:
5541 case bp_hardware_watchpoint:
5542 case bp_read_watchpoint:
5543 case bp_access_watchpoint:
5544 if (bs->stop)
5545 {
5546 if (bs->print)
5547 this_action = BPSTAT_WHAT_STOP_NOISY;
5548 else
5549 this_action = BPSTAT_WHAT_STOP_SILENT;
5550 }
5551 else
5552 {
5553 /* There was a watchpoint, but we're not stopping.
5554 This requires no further action. */
5555 }
5556 break;
5557 case bp_longjmp:
5558 case bp_longjmp_call_dummy:
5559 case bp_exception:
5560 this_action = BPSTAT_WHAT_SET_LONGJMP_RESUME;
5561 retval.is_longjmp = bptype != bp_exception;
5562 break;
5563 case bp_longjmp_resume:
5564 case bp_exception_resume:
5565 this_action = BPSTAT_WHAT_CLEAR_LONGJMP_RESUME;
5566 retval.is_longjmp = bptype == bp_longjmp_resume;
5567 break;
5568 case bp_step_resume:
5569 if (bs->stop)
5570 this_action = BPSTAT_WHAT_STEP_RESUME;
5571 else
5572 {
5573 /* It is for the wrong frame. */
5574 this_action = BPSTAT_WHAT_SINGLE;
5575 }
5576 break;
5577 case bp_hp_step_resume:
5578 if (bs->stop)
5579 this_action = BPSTAT_WHAT_HP_STEP_RESUME;
5580 else
5581 {
5582 /* It is for the wrong frame. */
5583 this_action = BPSTAT_WHAT_SINGLE;
5584 }
5585 break;
5586 case bp_watchpoint_scope:
5587 case bp_thread_event:
5588 case bp_overlay_event:
5589 case bp_longjmp_master:
5590 case bp_std_terminate_master:
5591 case bp_exception_master:
5592 this_action = BPSTAT_WHAT_SINGLE;
5593 break;
5594 case bp_catchpoint:
5595 if (bs->stop)
5596 {
5597 if (bs->print)
5598 this_action = BPSTAT_WHAT_STOP_NOISY;
5599 else
5600 this_action = BPSTAT_WHAT_STOP_SILENT;
5601 }
5602 else
5603 {
5604 /* There was a catchpoint, but we're not stopping.
5605 This requires no further action. */
5606 }
5607 break;
5608 case bp_jit_event:
5609 jit_event = 1;
5610 this_action = BPSTAT_WHAT_SINGLE;
5611 break;
5612 case bp_call_dummy:
5613 /* Make sure the action is stop (silent or noisy),
5614 so infrun.c pops the dummy frame. */
5615 retval.call_dummy = STOP_STACK_DUMMY;
5616 this_action = BPSTAT_WHAT_STOP_SILENT;
5617 break;
5618 case bp_std_terminate:
5619 /* Make sure the action is stop (silent or noisy),
5620 so infrun.c pops the dummy frame. */
5621 retval.call_dummy = STOP_STD_TERMINATE;
5622 this_action = BPSTAT_WHAT_STOP_SILENT;
5623 break;
5624 case bp_tracepoint:
5625 case bp_fast_tracepoint:
5626 case bp_static_tracepoint:
5627 /* Tracepoint hits should not be reported back to GDB, and
5628 if one got through somehow, it should have been filtered
5629 out already. */
5630 internal_error (__FILE__, __LINE__,
5631 _("bpstat_what: tracepoint encountered"));
5632 break;
5633 case bp_gnu_ifunc_resolver:
5634 /* Step over it (and insert bp_gnu_ifunc_resolver_return). */
5635 this_action = BPSTAT_WHAT_SINGLE;
5636 break;
5637 case bp_gnu_ifunc_resolver_return:
5638 /* The breakpoint will be removed, execution will restart from the
5639 PC of the former breakpoint. */
5640 this_action = BPSTAT_WHAT_KEEP_CHECKING;
5641 break;
5642
5643 case bp_dprintf:
5644 if (bs->stop)
5645 this_action = BPSTAT_WHAT_STOP_SILENT;
5646 else
5647 this_action = BPSTAT_WHAT_SINGLE;
5648 break;
5649
5650 default:
5651 internal_error (__FILE__, __LINE__,
5652 _("bpstat_what: unhandled bptype %d"), (int) bptype);
5653 }
5654
5655 retval.main_action = max (retval.main_action, this_action);
5656 }
5657
5658 /* These operations may affect the bs->breakpoint_at state so they are
5659 delayed after MAIN_ACTION is decided above. */
5660
5661 if (jit_event)
5662 {
5663 if (debug_infrun)
5664 fprintf_unfiltered (gdb_stdlog, "bpstat_what: bp_jit_event\n");
5665
5666 handle_jit_event ();
5667 }
5668
5669 for (bs = bs_head; bs != NULL; bs = bs->next)
5670 {
5671 struct breakpoint *b = bs->breakpoint_at;
5672
5673 if (b == NULL)
5674 continue;
5675 switch (b->type)
5676 {
5677 case bp_gnu_ifunc_resolver:
5678 gnu_ifunc_resolver_stop (b);
5679 break;
5680 case bp_gnu_ifunc_resolver_return:
5681 gnu_ifunc_resolver_return_stop (b);
5682 break;
5683 }
5684 }
5685
5686 return retval;
5687 }
5688
5689 /* Nonzero if we should step constantly (e.g. watchpoints on machines
5690 without hardware support). This isn't related to a specific bpstat,
5691 just to things like whether watchpoints are set. */
5692
5693 int
5694 bpstat_should_step (void)
5695 {
5696 struct breakpoint *b;
5697
5698 ALL_BREAKPOINTS (b)
5699 if (breakpoint_enabled (b) && b->type == bp_watchpoint && b->loc != NULL)
5700 return 1;
5701 return 0;
5702 }
5703
5704 int
5705 bpstat_causes_stop (bpstat bs)
5706 {
5707 for (; bs != NULL; bs = bs->next)
5708 if (bs->stop)
5709 return 1;
5710
5711 return 0;
5712 }
5713
5714 \f
5715
5716 /* Compute a string of spaces suitable to indent the next line
5717 so it starts at the position corresponding to the table column
5718 named COL_NAME in the currently active table of UIOUT. */
5719
5720 static char *
5721 wrap_indent_at_field (struct ui_out *uiout, const char *col_name)
5722 {
5723 static char wrap_indent[80];
5724 int i, total_width, width, align;
5725 char *text;
5726
5727 total_width = 0;
5728 for (i = 1; ui_out_query_field (uiout, i, &width, &align, &text); i++)
5729 {
5730 if (strcmp (text, col_name) == 0)
5731 {
5732 gdb_assert (total_width < sizeof wrap_indent);
5733 memset (wrap_indent, ' ', total_width);
5734 wrap_indent[total_width] = 0;
5735
5736 return wrap_indent;
5737 }
5738
5739 total_width += width + 1;
5740 }
5741
5742 return NULL;
5743 }
5744
5745 /* Determine if the locations of this breakpoint will have their conditions
5746 evaluated by the target, host or a mix of both. Returns the following:
5747
5748 "host": Host evals condition.
5749 "host or target": Host or Target evals condition.
5750 "target": Target evals condition.
5751 */
5752
5753 static const char *
5754 bp_condition_evaluator (struct breakpoint *b)
5755 {
5756 struct bp_location *bl;
5757 char host_evals = 0;
5758 char target_evals = 0;
5759
5760 if (!b)
5761 return NULL;
5762
5763 if (!is_breakpoint (b))
5764 return NULL;
5765
5766 if (gdb_evaluates_breakpoint_condition_p ()
5767 || !target_supports_evaluation_of_breakpoint_conditions ())
5768 return condition_evaluation_host;
5769
5770 for (bl = b->loc; bl; bl = bl->next)
5771 {
5772 if (bl->cond_bytecode)
5773 target_evals++;
5774 else
5775 host_evals++;
5776 }
5777
5778 if (host_evals && target_evals)
5779 return condition_evaluation_both;
5780 else if (target_evals)
5781 return condition_evaluation_target;
5782 else
5783 return condition_evaluation_host;
5784 }
5785
5786 /* Determine the breakpoint location's condition evaluator. This is
5787 similar to bp_condition_evaluator, but for locations. */
5788
5789 static const char *
5790 bp_location_condition_evaluator (struct bp_location *bl)
5791 {
5792 if (bl && !is_breakpoint (bl->owner))
5793 return NULL;
5794
5795 if (gdb_evaluates_breakpoint_condition_p ()
5796 || !target_supports_evaluation_of_breakpoint_conditions ())
5797 return condition_evaluation_host;
5798
5799 if (bl && bl->cond_bytecode)
5800 return condition_evaluation_target;
5801 else
5802 return condition_evaluation_host;
5803 }
5804
5805 /* Print the LOC location out of the list of B->LOC locations. */
5806
5807 static void
5808 print_breakpoint_location (struct breakpoint *b,
5809 struct bp_location *loc)
5810 {
5811 struct ui_out *uiout = current_uiout;
5812 struct cleanup *old_chain = save_current_program_space ();
5813
5814 if (loc != NULL && loc->shlib_disabled)
5815 loc = NULL;
5816
5817 if (loc != NULL)
5818 set_current_program_space (loc->pspace);
5819
5820 if (b->display_canonical)
5821 ui_out_field_string (uiout, "what", b->addr_string);
5822 else if (loc && loc->symtab)
5823 {
5824 struct symbol *sym
5825 = find_pc_sect_function (loc->address, loc->section);
5826 if (sym)
5827 {
5828 ui_out_text (uiout, "in ");
5829 ui_out_field_string (uiout, "func",
5830 SYMBOL_PRINT_NAME (sym));
5831 ui_out_text (uiout, " ");
5832 ui_out_wrap_hint (uiout, wrap_indent_at_field (uiout, "what"));
5833 ui_out_text (uiout, "at ");
5834 }
5835 ui_out_field_string (uiout, "file",
5836 symtab_to_filename_for_display (loc->symtab));
5837 ui_out_text (uiout, ":");
5838
5839 if (ui_out_is_mi_like_p (uiout))
5840 ui_out_field_string (uiout, "fullname",
5841 symtab_to_fullname (loc->symtab));
5842
5843 ui_out_field_int (uiout, "line", loc->line_number);
5844 }
5845 else if (loc)
5846 {
5847 struct ui_file *stb = mem_fileopen ();
5848 struct cleanup *stb_chain = make_cleanup_ui_file_delete (stb);
5849
5850 print_address_symbolic (loc->gdbarch, loc->address, stb,
5851 demangle, "");
5852 ui_out_field_stream (uiout, "at", stb);
5853
5854 do_cleanups (stb_chain);
5855 }
5856 else
5857 ui_out_field_string (uiout, "pending", b->addr_string);
5858
5859 if (loc && is_breakpoint (b)
5860 && breakpoint_condition_evaluation_mode () == condition_evaluation_target
5861 && bp_condition_evaluator (b) == condition_evaluation_both)
5862 {
5863 ui_out_text (uiout, " (");
5864 ui_out_field_string (uiout, "evaluated-by",
5865 bp_location_condition_evaluator (loc));
5866 ui_out_text (uiout, ")");
5867 }
5868
5869 do_cleanups (old_chain);
5870 }
5871
5872 static const char *
5873 bptype_string (enum bptype type)
5874 {
5875 struct ep_type_description
5876 {
5877 enum bptype type;
5878 char *description;
5879 };
5880 static struct ep_type_description bptypes[] =
5881 {
5882 {bp_none, "?deleted?"},
5883 {bp_breakpoint, "breakpoint"},
5884 {bp_hardware_breakpoint, "hw breakpoint"},
5885 {bp_until, "until"},
5886 {bp_finish, "finish"},
5887 {bp_watchpoint, "watchpoint"},
5888 {bp_hardware_watchpoint, "hw watchpoint"},
5889 {bp_read_watchpoint, "read watchpoint"},
5890 {bp_access_watchpoint, "acc watchpoint"},
5891 {bp_longjmp, "longjmp"},
5892 {bp_longjmp_resume, "longjmp resume"},
5893 {bp_longjmp_call_dummy, "longjmp for call dummy"},
5894 {bp_exception, "exception"},
5895 {bp_exception_resume, "exception resume"},
5896 {bp_step_resume, "step resume"},
5897 {bp_hp_step_resume, "high-priority step resume"},
5898 {bp_watchpoint_scope, "watchpoint scope"},
5899 {bp_call_dummy, "call dummy"},
5900 {bp_std_terminate, "std::terminate"},
5901 {bp_shlib_event, "shlib events"},
5902 {bp_thread_event, "thread events"},
5903 {bp_overlay_event, "overlay events"},
5904 {bp_longjmp_master, "longjmp master"},
5905 {bp_std_terminate_master, "std::terminate master"},
5906 {bp_exception_master, "exception master"},
5907 {bp_catchpoint, "catchpoint"},
5908 {bp_tracepoint, "tracepoint"},
5909 {bp_fast_tracepoint, "fast tracepoint"},
5910 {bp_static_tracepoint, "static tracepoint"},
5911 {bp_dprintf, "dprintf"},
5912 {bp_jit_event, "jit events"},
5913 {bp_gnu_ifunc_resolver, "STT_GNU_IFUNC resolver"},
5914 {bp_gnu_ifunc_resolver_return, "STT_GNU_IFUNC resolver return"},
5915 };
5916
5917 if (((int) type >= (sizeof (bptypes) / sizeof (bptypes[0])))
5918 || ((int) type != bptypes[(int) type].type))
5919 internal_error (__FILE__, __LINE__,
5920 _("bptypes table does not describe type #%d."),
5921 (int) type);
5922
5923 return bptypes[(int) type].description;
5924 }
5925
5926 /* For MI, output a field named 'thread-groups' with a list as the value.
5927 For CLI, prefix the list with the string 'inf'. */
5928
5929 static void
5930 output_thread_groups (struct ui_out *uiout,
5931 const char *field_name,
5932 VEC(int) *inf_num,
5933 int mi_only)
5934 {
5935 struct cleanup *back_to;
5936 int is_mi = ui_out_is_mi_like_p (uiout);
5937 int inf;
5938 int i;
5939
5940 /* For backward compatibility, don't display inferiors in CLI unless
5941 there are several. Always display them for MI. */
5942 if (!is_mi && mi_only)
5943 return;
5944
5945 back_to = make_cleanup_ui_out_list_begin_end (uiout, field_name);
5946
5947 for (i = 0; VEC_iterate (int, inf_num, i, inf); ++i)
5948 {
5949 if (is_mi)
5950 {
5951 char mi_group[10];
5952
5953 xsnprintf (mi_group, sizeof (mi_group), "i%d", inf);
5954 ui_out_field_string (uiout, NULL, mi_group);
5955 }
5956 else
5957 {
5958 if (i == 0)
5959 ui_out_text (uiout, " inf ");
5960 else
5961 ui_out_text (uiout, ", ");
5962
5963 ui_out_text (uiout, plongest (inf));
5964 }
5965 }
5966
5967 do_cleanups (back_to);
5968 }
5969
5970 /* Print B to gdb_stdout. */
5971
5972 static void
5973 print_one_breakpoint_location (struct breakpoint *b,
5974 struct bp_location *loc,
5975 int loc_number,
5976 struct bp_location **last_loc,
5977 int allflag)
5978 {
5979 struct command_line *l;
5980 static char bpenables[] = "nynny";
5981
5982 struct ui_out *uiout = current_uiout;
5983 int header_of_multiple = 0;
5984 int part_of_multiple = (loc != NULL);
5985 struct value_print_options opts;
5986
5987 get_user_print_options (&opts);
5988
5989 gdb_assert (!loc || loc_number != 0);
5990 /* See comment in print_one_breakpoint concerning treatment of
5991 breakpoints with single disabled location. */
5992 if (loc == NULL
5993 && (b->loc != NULL
5994 && (b->loc->next != NULL || !b->loc->enabled)))
5995 header_of_multiple = 1;
5996 if (loc == NULL)
5997 loc = b->loc;
5998
5999 annotate_record ();
6000
6001 /* 1 */
6002 annotate_field (0);
6003 if (part_of_multiple)
6004 {
6005 char *formatted;
6006 formatted = xstrprintf ("%d.%d", b->number, loc_number);
6007 ui_out_field_string (uiout, "number", formatted);
6008 xfree (formatted);
6009 }
6010 else
6011 {
6012 ui_out_field_int (uiout, "number", b->number);
6013 }
6014
6015 /* 2 */
6016 annotate_field (1);
6017 if (part_of_multiple)
6018 ui_out_field_skip (uiout, "type");
6019 else
6020 ui_out_field_string (uiout, "type", bptype_string (b->type));
6021
6022 /* 3 */
6023 annotate_field (2);
6024 if (part_of_multiple)
6025 ui_out_field_skip (uiout, "disp");
6026 else
6027 ui_out_field_string (uiout, "disp", bpdisp_text (b->disposition));
6028
6029
6030 /* 4 */
6031 annotate_field (3);
6032 if (part_of_multiple)
6033 ui_out_field_string (uiout, "enabled", loc->enabled ? "y" : "n");
6034 else
6035 ui_out_field_fmt (uiout, "enabled", "%c",
6036 bpenables[(int) b->enable_state]);
6037 ui_out_spaces (uiout, 2);
6038
6039
6040 /* 5 and 6 */
6041 if (b->ops != NULL && b->ops->print_one != NULL)
6042 {
6043 /* Although the print_one can possibly print all locations,
6044 calling it here is not likely to get any nice result. So,
6045 make sure there's just one location. */
6046 gdb_assert (b->loc == NULL || b->loc->next == NULL);
6047 b->ops->print_one (b, last_loc);
6048 }
6049 else
6050 switch (b->type)
6051 {
6052 case bp_none:
6053 internal_error (__FILE__, __LINE__,
6054 _("print_one_breakpoint: bp_none encountered\n"));
6055 break;
6056
6057 case bp_watchpoint:
6058 case bp_hardware_watchpoint:
6059 case bp_read_watchpoint:
6060 case bp_access_watchpoint:
6061 {
6062 struct watchpoint *w = (struct watchpoint *) b;
6063
6064 /* Field 4, the address, is omitted (which makes the columns
6065 not line up too nicely with the headers, but the effect
6066 is relatively readable). */
6067 if (opts.addressprint)
6068 ui_out_field_skip (uiout, "addr");
6069 annotate_field (5);
6070 ui_out_field_string (uiout, "what", w->exp_string);
6071 }
6072 break;
6073
6074 case bp_breakpoint:
6075 case bp_hardware_breakpoint:
6076 case bp_until:
6077 case bp_finish:
6078 case bp_longjmp:
6079 case bp_longjmp_resume:
6080 case bp_longjmp_call_dummy:
6081 case bp_exception:
6082 case bp_exception_resume:
6083 case bp_step_resume:
6084 case bp_hp_step_resume:
6085 case bp_watchpoint_scope:
6086 case bp_call_dummy:
6087 case bp_std_terminate:
6088 case bp_shlib_event:
6089 case bp_thread_event:
6090 case bp_overlay_event:
6091 case bp_longjmp_master:
6092 case bp_std_terminate_master:
6093 case bp_exception_master:
6094 case bp_tracepoint:
6095 case bp_fast_tracepoint:
6096 case bp_static_tracepoint:
6097 case bp_dprintf:
6098 case bp_jit_event:
6099 case bp_gnu_ifunc_resolver:
6100 case bp_gnu_ifunc_resolver_return:
6101 if (opts.addressprint)
6102 {
6103 annotate_field (4);
6104 if (header_of_multiple)
6105 ui_out_field_string (uiout, "addr", "<MULTIPLE>");
6106 else if (b->loc == NULL || loc->shlib_disabled)
6107 ui_out_field_string (uiout, "addr", "<PENDING>");
6108 else
6109 ui_out_field_core_addr (uiout, "addr",
6110 loc->gdbarch, loc->address);
6111 }
6112 annotate_field (5);
6113 if (!header_of_multiple)
6114 print_breakpoint_location (b, loc);
6115 if (b->loc)
6116 *last_loc = b->loc;
6117 break;
6118 }
6119
6120
6121 if (loc != NULL && !header_of_multiple)
6122 {
6123 struct inferior *inf;
6124 VEC(int) *inf_num = NULL;
6125 int mi_only = 1;
6126
6127 ALL_INFERIORS (inf)
6128 {
6129 if (inf->pspace == loc->pspace)
6130 VEC_safe_push (int, inf_num, inf->num);
6131 }
6132
6133 /* For backward compatibility, don't display inferiors in CLI unless
6134 there are several. Always display for MI. */
6135 if (allflag
6136 || (!gdbarch_has_global_breakpoints (target_gdbarch ())
6137 && (number_of_program_spaces () > 1
6138 || number_of_inferiors () > 1)
6139 /* LOC is for existing B, it cannot be in
6140 moribund_locations and thus having NULL OWNER. */
6141 && loc->owner->type != bp_catchpoint))
6142 mi_only = 0;
6143 output_thread_groups (uiout, "thread-groups", inf_num, mi_only);
6144 VEC_free (int, inf_num);
6145 }
6146
6147 if (!part_of_multiple)
6148 {
6149 if (b->thread != -1)
6150 {
6151 /* FIXME: This seems to be redundant and lost here; see the
6152 "stop only in" line a little further down. */
6153 ui_out_text (uiout, " thread ");
6154 ui_out_field_int (uiout, "thread", b->thread);
6155 }
6156 else if (b->task != 0)
6157 {
6158 ui_out_text (uiout, " task ");
6159 ui_out_field_int (uiout, "task", b->task);
6160 }
6161 }
6162
6163 ui_out_text (uiout, "\n");
6164
6165 if (!part_of_multiple)
6166 b->ops->print_one_detail (b, uiout);
6167
6168 if (part_of_multiple && frame_id_p (b->frame_id))
6169 {
6170 annotate_field (6);
6171 ui_out_text (uiout, "\tstop only in stack frame at ");
6172 /* FIXME: cagney/2002-12-01: Shouldn't be poking around inside
6173 the frame ID. */
6174 ui_out_field_core_addr (uiout, "frame",
6175 b->gdbarch, b->frame_id.stack_addr);
6176 ui_out_text (uiout, "\n");
6177 }
6178
6179 if (!part_of_multiple && b->cond_string)
6180 {
6181 annotate_field (7);
6182 if (is_tracepoint (b))
6183 ui_out_text (uiout, "\ttrace only if ");
6184 else
6185 ui_out_text (uiout, "\tstop only if ");
6186 ui_out_field_string (uiout, "cond", b->cond_string);
6187
6188 /* Print whether the target is doing the breakpoint's condition
6189 evaluation. If GDB is doing the evaluation, don't print anything. */
6190 if (is_breakpoint (b)
6191 && breakpoint_condition_evaluation_mode ()
6192 == condition_evaluation_target)
6193 {
6194 ui_out_text (uiout, " (");
6195 ui_out_field_string (uiout, "evaluated-by",
6196 bp_condition_evaluator (b));
6197 ui_out_text (uiout, " evals)");
6198 }
6199 ui_out_text (uiout, "\n");
6200 }
6201
6202 if (!part_of_multiple && b->thread != -1)
6203 {
6204 /* FIXME should make an annotation for this. */
6205 ui_out_text (uiout, "\tstop only in thread ");
6206 ui_out_field_int (uiout, "thread", b->thread);
6207 ui_out_text (uiout, "\n");
6208 }
6209
6210 if (!part_of_multiple)
6211 {
6212 if (b->hit_count)
6213 {
6214 /* FIXME should make an annotation for this. */
6215 if (is_catchpoint (b))
6216 ui_out_text (uiout, "\tcatchpoint");
6217 else if (is_tracepoint (b))
6218 ui_out_text (uiout, "\ttracepoint");
6219 else
6220 ui_out_text (uiout, "\tbreakpoint");
6221 ui_out_text (uiout, " already hit ");
6222 ui_out_field_int (uiout, "times", b->hit_count);
6223 if (b->hit_count == 1)
6224 ui_out_text (uiout, " time\n");
6225 else
6226 ui_out_text (uiout, " times\n");
6227 }
6228 else
6229 {
6230 /* Output the count also if it is zero, but only if this is mi. */
6231 if (ui_out_is_mi_like_p (uiout))
6232 ui_out_field_int (uiout, "times", b->hit_count);
6233 }
6234 }
6235
6236 if (!part_of_multiple && b->ignore_count)
6237 {
6238 annotate_field (8);
6239 ui_out_text (uiout, "\tignore next ");
6240 ui_out_field_int (uiout, "ignore", b->ignore_count);
6241 ui_out_text (uiout, " hits\n");
6242 }
6243
6244 /* Note that an enable count of 1 corresponds to "enable once"
6245 behavior, which is reported by the combination of enablement and
6246 disposition, so we don't need to mention it here. */
6247 if (!part_of_multiple && b->enable_count > 1)
6248 {
6249 annotate_field (8);
6250 ui_out_text (uiout, "\tdisable after ");
6251 /* Tweak the wording to clarify that ignore and enable counts
6252 are distinct, and have additive effect. */
6253 if (b->ignore_count)
6254 ui_out_text (uiout, "additional ");
6255 else
6256 ui_out_text (uiout, "next ");
6257 ui_out_field_int (uiout, "enable", b->enable_count);
6258 ui_out_text (uiout, " hits\n");
6259 }
6260
6261 if (!part_of_multiple && is_tracepoint (b))
6262 {
6263 struct tracepoint *tp = (struct tracepoint *) b;
6264
6265 if (tp->traceframe_usage)
6266 {
6267 ui_out_text (uiout, "\ttrace buffer usage ");
6268 ui_out_field_int (uiout, "traceframe-usage", tp->traceframe_usage);
6269 ui_out_text (uiout, " bytes\n");
6270 }
6271 }
6272
6273 l = b->commands ? b->commands->commands : NULL;
6274 if (!part_of_multiple && l)
6275 {
6276 struct cleanup *script_chain;
6277
6278 annotate_field (9);
6279 script_chain = make_cleanup_ui_out_tuple_begin_end (uiout, "script");
6280 print_command_lines (uiout, l, 4);
6281 do_cleanups (script_chain);
6282 }
6283
6284 if (is_tracepoint (b))
6285 {
6286 struct tracepoint *t = (struct tracepoint *) b;
6287
6288 if (!part_of_multiple && t->pass_count)
6289 {
6290 annotate_field (10);
6291 ui_out_text (uiout, "\tpass count ");
6292 ui_out_field_int (uiout, "pass", t->pass_count);
6293 ui_out_text (uiout, " \n");
6294 }
6295
6296 /* Don't display it when tracepoint or tracepoint location is
6297 pending. */
6298 if (!header_of_multiple && loc != NULL && !loc->shlib_disabled)
6299 {
6300 annotate_field (11);
6301
6302 if (ui_out_is_mi_like_p (uiout))
6303 ui_out_field_string (uiout, "installed",
6304 loc->inserted ? "y" : "n");
6305 else
6306 {
6307 if (loc->inserted)
6308 ui_out_text (uiout, "\t");
6309 else
6310 ui_out_text (uiout, "\tnot ");
6311 ui_out_text (uiout, "installed on target\n");
6312 }
6313 }
6314 }
6315
6316 if (ui_out_is_mi_like_p (uiout) && !part_of_multiple)
6317 {
6318 if (is_watchpoint (b))
6319 {
6320 struct watchpoint *w = (struct watchpoint *) b;
6321
6322 ui_out_field_string (uiout, "original-location", w->exp_string);
6323 }
6324 else if (b->addr_string)
6325 ui_out_field_string (uiout, "original-location", b->addr_string);
6326 }
6327 }
6328
6329 static void
6330 print_one_breakpoint (struct breakpoint *b,
6331 struct bp_location **last_loc,
6332 int allflag)
6333 {
6334 struct cleanup *bkpt_chain;
6335 struct ui_out *uiout = current_uiout;
6336
6337 bkpt_chain = make_cleanup_ui_out_tuple_begin_end (uiout, "bkpt");
6338
6339 print_one_breakpoint_location (b, NULL, 0, last_loc, allflag);
6340 do_cleanups (bkpt_chain);
6341
6342 /* If this breakpoint has custom print function,
6343 it's already printed. Otherwise, print individual
6344 locations, if any. */
6345 if (b->ops == NULL || b->ops->print_one == NULL)
6346 {
6347 /* If breakpoint has a single location that is disabled, we
6348 print it as if it had several locations, since otherwise it's
6349 hard to represent "breakpoint enabled, location disabled"
6350 situation.
6351
6352 Note that while hardware watchpoints have several locations
6353 internally, that's not a property exposed to user. */
6354 if (b->loc
6355 && !is_hardware_watchpoint (b)
6356 && (b->loc->next || !b->loc->enabled))
6357 {
6358 struct bp_location *loc;
6359 int n = 1;
6360
6361 for (loc = b->loc; loc; loc = loc->next, ++n)
6362 {
6363 struct cleanup *inner2 =
6364 make_cleanup_ui_out_tuple_begin_end (uiout, NULL);
6365 print_one_breakpoint_location (b, loc, n, last_loc, allflag);
6366 do_cleanups (inner2);
6367 }
6368 }
6369 }
6370 }
6371
6372 static int
6373 breakpoint_address_bits (struct breakpoint *b)
6374 {
6375 int print_address_bits = 0;
6376 struct bp_location *loc;
6377
6378 for (loc = b->loc; loc; loc = loc->next)
6379 {
6380 int addr_bit;
6381
6382 /* Software watchpoints that aren't watching memory don't have
6383 an address to print. */
6384 if (b->type == bp_watchpoint && loc->watchpoint_type == -1)
6385 continue;
6386
6387 addr_bit = gdbarch_addr_bit (loc->gdbarch);
6388 if (addr_bit > print_address_bits)
6389 print_address_bits = addr_bit;
6390 }
6391
6392 return print_address_bits;
6393 }
6394
6395 struct captured_breakpoint_query_args
6396 {
6397 int bnum;
6398 };
6399
6400 static int
6401 do_captured_breakpoint_query (struct ui_out *uiout, void *data)
6402 {
6403 struct captured_breakpoint_query_args *args = data;
6404 struct breakpoint *b;
6405 struct bp_location *dummy_loc = NULL;
6406
6407 ALL_BREAKPOINTS (b)
6408 {
6409 if (args->bnum == b->number)
6410 {
6411 print_one_breakpoint (b, &dummy_loc, 0);
6412 return GDB_RC_OK;
6413 }
6414 }
6415 return GDB_RC_NONE;
6416 }
6417
6418 enum gdb_rc
6419 gdb_breakpoint_query (struct ui_out *uiout, int bnum,
6420 char **error_message)
6421 {
6422 struct captured_breakpoint_query_args args;
6423
6424 args.bnum = bnum;
6425 /* For the moment we don't trust print_one_breakpoint() to not throw
6426 an error. */
6427 if (catch_exceptions_with_msg (uiout, do_captured_breakpoint_query, &args,
6428 error_message, RETURN_MASK_ALL) < 0)
6429 return GDB_RC_FAIL;
6430 else
6431 return GDB_RC_OK;
6432 }
6433
6434 /* Return true if this breakpoint was set by the user, false if it is
6435 internal or momentary. */
6436
6437 int
6438 user_breakpoint_p (struct breakpoint *b)
6439 {
6440 return b->number > 0;
6441 }
6442
6443 /* Print information on user settable breakpoint (watchpoint, etc)
6444 number BNUM. If BNUM is -1 print all user-settable breakpoints.
6445 If ALLFLAG is non-zero, include non-user-settable breakpoints. If
6446 FILTER is non-NULL, call it on each breakpoint and only include the
6447 ones for which it returns non-zero. Return the total number of
6448 breakpoints listed. */
6449
6450 static int
6451 breakpoint_1 (char *args, int allflag,
6452 int (*filter) (const struct breakpoint *))
6453 {
6454 struct breakpoint *b;
6455 struct bp_location *last_loc = NULL;
6456 int nr_printable_breakpoints;
6457 struct cleanup *bkpttbl_chain;
6458 struct value_print_options opts;
6459 int print_address_bits = 0;
6460 int print_type_col_width = 14;
6461 struct ui_out *uiout = current_uiout;
6462
6463 get_user_print_options (&opts);
6464
6465 /* Compute the number of rows in the table, as well as the size
6466 required for address fields. */
6467 nr_printable_breakpoints = 0;
6468 ALL_BREAKPOINTS (b)
6469 {
6470 /* If we have a filter, only list the breakpoints it accepts. */
6471 if (filter && !filter (b))
6472 continue;
6473
6474 /* If we have an "args" string, it is a list of breakpoints to
6475 accept. Skip the others. */
6476 if (args != NULL && *args != '\0')
6477 {
6478 if (allflag && parse_and_eval_long (args) != b->number)
6479 continue;
6480 if (!allflag && !number_is_in_list (args, b->number))
6481 continue;
6482 }
6483
6484 if (allflag || user_breakpoint_p (b))
6485 {
6486 int addr_bit, type_len;
6487
6488 addr_bit = breakpoint_address_bits (b);
6489 if (addr_bit > print_address_bits)
6490 print_address_bits = addr_bit;
6491
6492 type_len = strlen (bptype_string (b->type));
6493 if (type_len > print_type_col_width)
6494 print_type_col_width = type_len;
6495
6496 nr_printable_breakpoints++;
6497 }
6498 }
6499
6500 if (opts.addressprint)
6501 bkpttbl_chain
6502 = make_cleanup_ui_out_table_begin_end (uiout, 6,
6503 nr_printable_breakpoints,
6504 "BreakpointTable");
6505 else
6506 bkpttbl_chain
6507 = make_cleanup_ui_out_table_begin_end (uiout, 5,
6508 nr_printable_breakpoints,
6509 "BreakpointTable");
6510
6511 if (nr_printable_breakpoints > 0)
6512 annotate_breakpoints_headers ();
6513 if (nr_printable_breakpoints > 0)
6514 annotate_field (0);
6515 ui_out_table_header (uiout, 7, ui_left, "number", "Num"); /* 1 */
6516 if (nr_printable_breakpoints > 0)
6517 annotate_field (1);
6518 ui_out_table_header (uiout, print_type_col_width, ui_left,
6519 "type", "Type"); /* 2 */
6520 if (nr_printable_breakpoints > 0)
6521 annotate_field (2);
6522 ui_out_table_header (uiout, 4, ui_left, "disp", "Disp"); /* 3 */
6523 if (nr_printable_breakpoints > 0)
6524 annotate_field (3);
6525 ui_out_table_header (uiout, 3, ui_left, "enabled", "Enb"); /* 4 */
6526 if (opts.addressprint)
6527 {
6528 if (nr_printable_breakpoints > 0)
6529 annotate_field (4);
6530 if (print_address_bits <= 32)
6531 ui_out_table_header (uiout, 10, ui_left,
6532 "addr", "Address"); /* 5 */
6533 else
6534 ui_out_table_header (uiout, 18, ui_left,
6535 "addr", "Address"); /* 5 */
6536 }
6537 if (nr_printable_breakpoints > 0)
6538 annotate_field (5);
6539 ui_out_table_header (uiout, 40, ui_noalign, "what", "What"); /* 6 */
6540 ui_out_table_body (uiout);
6541 if (nr_printable_breakpoints > 0)
6542 annotate_breakpoints_table ();
6543
6544 ALL_BREAKPOINTS (b)
6545 {
6546 QUIT;
6547 /* If we have a filter, only list the breakpoints it accepts. */
6548 if (filter && !filter (b))
6549 continue;
6550
6551 /* If we have an "args" string, it is a list of breakpoints to
6552 accept. Skip the others. */
6553
6554 if (args != NULL && *args != '\0')
6555 {
6556 if (allflag) /* maintenance info breakpoint */
6557 {
6558 if (parse_and_eval_long (args) != b->number)
6559 continue;
6560 }
6561 else /* all others */
6562 {
6563 if (!number_is_in_list (args, b->number))
6564 continue;
6565 }
6566 }
6567 /* We only print out user settable breakpoints unless the
6568 allflag is set. */
6569 if (allflag || user_breakpoint_p (b))
6570 print_one_breakpoint (b, &last_loc, allflag);
6571 }
6572
6573 do_cleanups (bkpttbl_chain);
6574
6575 if (nr_printable_breakpoints == 0)
6576 {
6577 /* If there's a filter, let the caller decide how to report
6578 empty list. */
6579 if (!filter)
6580 {
6581 if (args == NULL || *args == '\0')
6582 ui_out_message (uiout, 0, "No breakpoints or watchpoints.\n");
6583 else
6584 ui_out_message (uiout, 0,
6585 "No breakpoint or watchpoint matching '%s'.\n",
6586 args);
6587 }
6588 }
6589 else
6590 {
6591 if (last_loc && !server_command)
6592 set_next_address (last_loc->gdbarch, last_loc->address);
6593 }
6594
6595 /* FIXME? Should this be moved up so that it is only called when
6596 there have been breakpoints? */
6597 annotate_breakpoints_table_end ();
6598
6599 return nr_printable_breakpoints;
6600 }
6601
6602 /* Display the value of default-collect in a way that is generally
6603 compatible with the breakpoint list. */
6604
6605 static void
6606 default_collect_info (void)
6607 {
6608 struct ui_out *uiout = current_uiout;
6609
6610 /* If it has no value (which is frequently the case), say nothing; a
6611 message like "No default-collect." gets in user's face when it's
6612 not wanted. */
6613 if (!*default_collect)
6614 return;
6615
6616 /* The following phrase lines up nicely with per-tracepoint collect
6617 actions. */
6618 ui_out_text (uiout, "default collect ");
6619 ui_out_field_string (uiout, "default-collect", default_collect);
6620 ui_out_text (uiout, " \n");
6621 }
6622
6623 static void
6624 breakpoints_info (char *args, int from_tty)
6625 {
6626 breakpoint_1 (args, 0, NULL);
6627
6628 default_collect_info ();
6629 }
6630
6631 static void
6632 watchpoints_info (char *args, int from_tty)
6633 {
6634 int num_printed = breakpoint_1 (args, 0, is_watchpoint);
6635 struct ui_out *uiout = current_uiout;
6636
6637 if (num_printed == 0)
6638 {
6639 if (args == NULL || *args == '\0')
6640 ui_out_message (uiout, 0, "No watchpoints.\n");
6641 else
6642 ui_out_message (uiout, 0, "No watchpoint matching '%s'.\n", args);
6643 }
6644 }
6645
6646 static void
6647 maintenance_info_breakpoints (char *args, int from_tty)
6648 {
6649 breakpoint_1 (args, 1, NULL);
6650
6651 default_collect_info ();
6652 }
6653
6654 static int
6655 breakpoint_has_pc (struct breakpoint *b,
6656 struct program_space *pspace,
6657 CORE_ADDR pc, struct obj_section *section)
6658 {
6659 struct bp_location *bl = b->loc;
6660
6661 for (; bl; bl = bl->next)
6662 {
6663 if (bl->pspace == pspace
6664 && bl->address == pc
6665 && (!overlay_debugging || bl->section == section))
6666 return 1;
6667 }
6668 return 0;
6669 }
6670
6671 /* Print a message describing any user-breakpoints set at PC. This
6672 concerns with logical breakpoints, so we match program spaces, not
6673 address spaces. */
6674
6675 static void
6676 describe_other_breakpoints (struct gdbarch *gdbarch,
6677 struct program_space *pspace, CORE_ADDR pc,
6678 struct obj_section *section, int thread)
6679 {
6680 int others = 0;
6681 struct breakpoint *b;
6682
6683 ALL_BREAKPOINTS (b)
6684 others += (user_breakpoint_p (b)
6685 && breakpoint_has_pc (b, pspace, pc, section));
6686 if (others > 0)
6687 {
6688 if (others == 1)
6689 printf_filtered (_("Note: breakpoint "));
6690 else /* if (others == ???) */
6691 printf_filtered (_("Note: breakpoints "));
6692 ALL_BREAKPOINTS (b)
6693 if (user_breakpoint_p (b) && breakpoint_has_pc (b, pspace, pc, section))
6694 {
6695 others--;
6696 printf_filtered ("%d", b->number);
6697 if (b->thread == -1 && thread != -1)
6698 printf_filtered (" (all threads)");
6699 else if (b->thread != -1)
6700 printf_filtered (" (thread %d)", b->thread);
6701 printf_filtered ("%s%s ",
6702 ((b->enable_state == bp_disabled
6703 || b->enable_state == bp_call_disabled)
6704 ? " (disabled)"
6705 : b->enable_state == bp_permanent
6706 ? " (permanent)"
6707 : ""),
6708 (others > 1) ? ","
6709 : ((others == 1) ? " and" : ""));
6710 }
6711 printf_filtered (_("also set at pc "));
6712 fputs_filtered (paddress (gdbarch, pc), gdb_stdout);
6713 printf_filtered (".\n");
6714 }
6715 }
6716 \f
6717
6718 /* Return true iff it is meaningful to use the address member of
6719 BPT. For some breakpoint types, the address member is irrelevant
6720 and it makes no sense to attempt to compare it to other addresses
6721 (or use it for any other purpose either).
6722
6723 More specifically, each of the following breakpoint types will
6724 always have a zero valued address and we don't want to mark
6725 breakpoints of any of these types to be a duplicate of an actual
6726 breakpoint at address zero:
6727
6728 bp_watchpoint
6729 bp_catchpoint
6730
6731 */
6732
6733 static int
6734 breakpoint_address_is_meaningful (struct breakpoint *bpt)
6735 {
6736 enum bptype type = bpt->type;
6737
6738 return (type != bp_watchpoint && type != bp_catchpoint);
6739 }
6740
6741 /* Assuming LOC1 and LOC2's owners are hardware watchpoints, returns
6742 true if LOC1 and LOC2 represent the same watchpoint location. */
6743
6744 static int
6745 watchpoint_locations_match (struct bp_location *loc1,
6746 struct bp_location *loc2)
6747 {
6748 struct watchpoint *w1 = (struct watchpoint *) loc1->owner;
6749 struct watchpoint *w2 = (struct watchpoint *) loc2->owner;
6750
6751 /* Both of them must exist. */
6752 gdb_assert (w1 != NULL);
6753 gdb_assert (w2 != NULL);
6754
6755 /* If the target can evaluate the condition expression in hardware,
6756 then we we need to insert both watchpoints even if they are at
6757 the same place. Otherwise the watchpoint will only trigger when
6758 the condition of whichever watchpoint was inserted evaluates to
6759 true, not giving a chance for GDB to check the condition of the
6760 other watchpoint. */
6761 if ((w1->cond_exp
6762 && target_can_accel_watchpoint_condition (loc1->address,
6763 loc1->length,
6764 loc1->watchpoint_type,
6765 w1->cond_exp))
6766 || (w2->cond_exp
6767 && target_can_accel_watchpoint_condition (loc2->address,
6768 loc2->length,
6769 loc2->watchpoint_type,
6770 w2->cond_exp)))
6771 return 0;
6772
6773 /* Note that this checks the owner's type, not the location's. In
6774 case the target does not support read watchpoints, but does
6775 support access watchpoints, we'll have bp_read_watchpoint
6776 watchpoints with hw_access locations. Those should be considered
6777 duplicates of hw_read locations. The hw_read locations will
6778 become hw_access locations later. */
6779 return (loc1->owner->type == loc2->owner->type
6780 && loc1->pspace->aspace == loc2->pspace->aspace
6781 && loc1->address == loc2->address
6782 && loc1->length == loc2->length);
6783 }
6784
6785 /* Returns true if {ASPACE1,ADDR1} and {ASPACE2,ADDR2} represent the
6786 same breakpoint location. In most targets, this can only be true
6787 if ASPACE1 matches ASPACE2. On targets that have global
6788 breakpoints, the address space doesn't really matter. */
6789
6790 static int
6791 breakpoint_address_match (struct address_space *aspace1, CORE_ADDR addr1,
6792 struct address_space *aspace2, CORE_ADDR addr2)
6793 {
6794 return ((gdbarch_has_global_breakpoints (target_gdbarch ())
6795 || aspace1 == aspace2)
6796 && addr1 == addr2);
6797 }
6798
6799 /* Returns true if {ASPACE2,ADDR2} falls within the range determined by
6800 {ASPACE1,ADDR1,LEN1}. In most targets, this can only be true if ASPACE1
6801 matches ASPACE2. On targets that have global breakpoints, the address
6802 space doesn't really matter. */
6803
6804 static int
6805 breakpoint_address_match_range (struct address_space *aspace1, CORE_ADDR addr1,
6806 int len1, struct address_space *aspace2,
6807 CORE_ADDR addr2)
6808 {
6809 return ((gdbarch_has_global_breakpoints (target_gdbarch ())
6810 || aspace1 == aspace2)
6811 && addr2 >= addr1 && addr2 < addr1 + len1);
6812 }
6813
6814 /* Returns true if {ASPACE,ADDR} matches the breakpoint BL. BL may be
6815 a ranged breakpoint. In most targets, a match happens only if ASPACE
6816 matches the breakpoint's address space. On targets that have global
6817 breakpoints, the address space doesn't really matter. */
6818
6819 static int
6820 breakpoint_location_address_match (struct bp_location *bl,
6821 struct address_space *aspace,
6822 CORE_ADDR addr)
6823 {
6824 return (breakpoint_address_match (bl->pspace->aspace, bl->address,
6825 aspace, addr)
6826 || (bl->length
6827 && breakpoint_address_match_range (bl->pspace->aspace,
6828 bl->address, bl->length,
6829 aspace, addr)));
6830 }
6831
6832 /* If LOC1 and LOC2's owners are not tracepoints, returns false directly.
6833 Then, if LOC1 and LOC2 represent the same tracepoint location, returns
6834 true, otherwise returns false. */
6835
6836 static int
6837 tracepoint_locations_match (struct bp_location *loc1,
6838 struct bp_location *loc2)
6839 {
6840 if (is_tracepoint (loc1->owner) && is_tracepoint (loc2->owner))
6841 /* Since tracepoint locations are never duplicated with others', tracepoint
6842 locations at the same address of different tracepoints are regarded as
6843 different locations. */
6844 return (loc1->address == loc2->address && loc1->owner == loc2->owner);
6845 else
6846 return 0;
6847 }
6848
6849 /* Assuming LOC1 and LOC2's types' have meaningful target addresses
6850 (breakpoint_address_is_meaningful), returns true if LOC1 and LOC2
6851 represent the same location. */
6852
6853 static int
6854 breakpoint_locations_match (struct bp_location *loc1,
6855 struct bp_location *loc2)
6856 {
6857 int hw_point1, hw_point2;
6858
6859 /* Both of them must not be in moribund_locations. */
6860 gdb_assert (loc1->owner != NULL);
6861 gdb_assert (loc2->owner != NULL);
6862
6863 hw_point1 = is_hardware_watchpoint (loc1->owner);
6864 hw_point2 = is_hardware_watchpoint (loc2->owner);
6865
6866 if (hw_point1 != hw_point2)
6867 return 0;
6868 else if (hw_point1)
6869 return watchpoint_locations_match (loc1, loc2);
6870 else if (is_tracepoint (loc1->owner) || is_tracepoint (loc2->owner))
6871 return tracepoint_locations_match (loc1, loc2);
6872 else
6873 /* We compare bp_location.length in order to cover ranged breakpoints. */
6874 return (breakpoint_address_match (loc1->pspace->aspace, loc1->address,
6875 loc2->pspace->aspace, loc2->address)
6876 && loc1->length == loc2->length);
6877 }
6878
6879 static void
6880 breakpoint_adjustment_warning (CORE_ADDR from_addr, CORE_ADDR to_addr,
6881 int bnum, int have_bnum)
6882 {
6883 /* The longest string possibly returned by hex_string_custom
6884 is 50 chars. These must be at least that big for safety. */
6885 char astr1[64];
6886 char astr2[64];
6887
6888 strcpy (astr1, hex_string_custom ((unsigned long) from_addr, 8));
6889 strcpy (astr2, hex_string_custom ((unsigned long) to_addr, 8));
6890 if (have_bnum)
6891 warning (_("Breakpoint %d address previously adjusted from %s to %s."),
6892 bnum, astr1, astr2);
6893 else
6894 warning (_("Breakpoint address adjusted from %s to %s."), astr1, astr2);
6895 }
6896
6897 /* Adjust a breakpoint's address to account for architectural
6898 constraints on breakpoint placement. Return the adjusted address.
6899 Note: Very few targets require this kind of adjustment. For most
6900 targets, this function is simply the identity function. */
6901
6902 static CORE_ADDR
6903 adjust_breakpoint_address (struct gdbarch *gdbarch,
6904 CORE_ADDR bpaddr, enum bptype bptype)
6905 {
6906 if (!gdbarch_adjust_breakpoint_address_p (gdbarch))
6907 {
6908 /* Very few targets need any kind of breakpoint adjustment. */
6909 return bpaddr;
6910 }
6911 else if (bptype == bp_watchpoint
6912 || bptype == bp_hardware_watchpoint
6913 || bptype == bp_read_watchpoint
6914 || bptype == bp_access_watchpoint
6915 || bptype == bp_catchpoint)
6916 {
6917 /* Watchpoints and the various bp_catch_* eventpoints should not
6918 have their addresses modified. */
6919 return bpaddr;
6920 }
6921 else
6922 {
6923 CORE_ADDR adjusted_bpaddr;
6924
6925 /* Some targets have architectural constraints on the placement
6926 of breakpoint instructions. Obtain the adjusted address. */
6927 adjusted_bpaddr = gdbarch_adjust_breakpoint_address (gdbarch, bpaddr);
6928
6929 /* An adjusted breakpoint address can significantly alter
6930 a user's expectations. Print a warning if an adjustment
6931 is required. */
6932 if (adjusted_bpaddr != bpaddr)
6933 breakpoint_adjustment_warning (bpaddr, adjusted_bpaddr, 0, 0);
6934
6935 return adjusted_bpaddr;
6936 }
6937 }
6938
6939 void
6940 init_bp_location (struct bp_location *loc, const struct bp_location_ops *ops,
6941 struct breakpoint *owner)
6942 {
6943 memset (loc, 0, sizeof (*loc));
6944
6945 gdb_assert (ops != NULL);
6946
6947 loc->ops = ops;
6948 loc->owner = owner;
6949 loc->cond = NULL;
6950 loc->cond_bytecode = NULL;
6951 loc->shlib_disabled = 0;
6952 loc->enabled = 1;
6953
6954 switch (owner->type)
6955 {
6956 case bp_breakpoint:
6957 case bp_until:
6958 case bp_finish:
6959 case bp_longjmp:
6960 case bp_longjmp_resume:
6961 case bp_longjmp_call_dummy:
6962 case bp_exception:
6963 case bp_exception_resume:
6964 case bp_step_resume:
6965 case bp_hp_step_resume:
6966 case bp_watchpoint_scope:
6967 case bp_call_dummy:
6968 case bp_std_terminate:
6969 case bp_shlib_event:
6970 case bp_thread_event:
6971 case bp_overlay_event:
6972 case bp_jit_event:
6973 case bp_longjmp_master:
6974 case bp_std_terminate_master:
6975 case bp_exception_master:
6976 case bp_gnu_ifunc_resolver:
6977 case bp_gnu_ifunc_resolver_return:
6978 case bp_dprintf:
6979 loc->loc_type = bp_loc_software_breakpoint;
6980 mark_breakpoint_location_modified (loc);
6981 break;
6982 case bp_hardware_breakpoint:
6983 loc->loc_type = bp_loc_hardware_breakpoint;
6984 mark_breakpoint_location_modified (loc);
6985 break;
6986 case bp_hardware_watchpoint:
6987 case bp_read_watchpoint:
6988 case bp_access_watchpoint:
6989 loc->loc_type = bp_loc_hardware_watchpoint;
6990 break;
6991 case bp_watchpoint:
6992 case bp_catchpoint:
6993 case bp_tracepoint:
6994 case bp_fast_tracepoint:
6995 case bp_static_tracepoint:
6996 loc->loc_type = bp_loc_other;
6997 break;
6998 default:
6999 internal_error (__FILE__, __LINE__, _("unknown breakpoint type"));
7000 }
7001
7002 loc->refc = 1;
7003 }
7004
7005 /* Allocate a struct bp_location. */
7006
7007 static struct bp_location *
7008 allocate_bp_location (struct breakpoint *bpt)
7009 {
7010 return bpt->ops->allocate_location (bpt);
7011 }
7012
7013 static void
7014 free_bp_location (struct bp_location *loc)
7015 {
7016 loc->ops->dtor (loc);
7017 xfree (loc);
7018 }
7019
7020 /* Increment reference count. */
7021
7022 static void
7023 incref_bp_location (struct bp_location *bl)
7024 {
7025 ++bl->refc;
7026 }
7027
7028 /* Decrement reference count. If the reference count reaches 0,
7029 destroy the bp_location. Sets *BLP to NULL. */
7030
7031 static void
7032 decref_bp_location (struct bp_location **blp)
7033 {
7034 gdb_assert ((*blp)->refc > 0);
7035
7036 if (--(*blp)->refc == 0)
7037 free_bp_location (*blp);
7038 *blp = NULL;
7039 }
7040
7041 /* Add breakpoint B at the end of the global breakpoint chain. */
7042
7043 static void
7044 add_to_breakpoint_chain (struct breakpoint *b)
7045 {
7046 struct breakpoint *b1;
7047
7048 /* Add this breakpoint to the end of the chain so that a list of
7049 breakpoints will come out in order of increasing numbers. */
7050
7051 b1 = breakpoint_chain;
7052 if (b1 == 0)
7053 breakpoint_chain = b;
7054 else
7055 {
7056 while (b1->next)
7057 b1 = b1->next;
7058 b1->next = b;
7059 }
7060 }
7061
7062 /* Initializes breakpoint B with type BPTYPE and no locations yet. */
7063
7064 static void
7065 init_raw_breakpoint_without_location (struct breakpoint *b,
7066 struct gdbarch *gdbarch,
7067 enum bptype bptype,
7068 const struct breakpoint_ops *ops)
7069 {
7070 memset (b, 0, sizeof (*b));
7071
7072 gdb_assert (ops != NULL);
7073
7074 b->ops = ops;
7075 b->type = bptype;
7076 b->gdbarch = gdbarch;
7077 b->language = current_language->la_language;
7078 b->input_radix = input_radix;
7079 b->thread = -1;
7080 b->enable_state = bp_enabled;
7081 b->next = 0;
7082 b->silent = 0;
7083 b->ignore_count = 0;
7084 b->commands = NULL;
7085 b->frame_id = null_frame_id;
7086 b->condition_not_parsed = 0;
7087 b->py_bp_object = NULL;
7088 b->related_breakpoint = b;
7089 }
7090
7091 /* Helper to set_raw_breakpoint below. Creates a breakpoint
7092 that has type BPTYPE and has no locations as yet. */
7093
7094 static struct breakpoint *
7095 set_raw_breakpoint_without_location (struct gdbarch *gdbarch,
7096 enum bptype bptype,
7097 const struct breakpoint_ops *ops)
7098 {
7099 struct breakpoint *b = XNEW (struct breakpoint);
7100
7101 init_raw_breakpoint_without_location (b, gdbarch, bptype, ops);
7102 add_to_breakpoint_chain (b);
7103 return b;
7104 }
7105
7106 /* Initialize loc->function_name. EXPLICIT_LOC says no indirect function
7107 resolutions should be made as the user specified the location explicitly
7108 enough. */
7109
7110 static void
7111 set_breakpoint_location_function (struct bp_location *loc, int explicit_loc)
7112 {
7113 gdb_assert (loc->owner != NULL);
7114
7115 if (loc->owner->type == bp_breakpoint
7116 || loc->owner->type == bp_hardware_breakpoint
7117 || is_tracepoint (loc->owner))
7118 {
7119 int is_gnu_ifunc;
7120 const char *function_name;
7121 CORE_ADDR func_addr;
7122
7123 find_pc_partial_function_gnu_ifunc (loc->address, &function_name,
7124 &func_addr, NULL, &is_gnu_ifunc);
7125
7126 if (is_gnu_ifunc && !explicit_loc)
7127 {
7128 struct breakpoint *b = loc->owner;
7129
7130 gdb_assert (loc->pspace == current_program_space);
7131 if (gnu_ifunc_resolve_name (function_name,
7132 &loc->requested_address))
7133 {
7134 /* Recalculate ADDRESS based on new REQUESTED_ADDRESS. */
7135 loc->address = adjust_breakpoint_address (loc->gdbarch,
7136 loc->requested_address,
7137 b->type);
7138 }
7139 else if (b->type == bp_breakpoint && b->loc == loc
7140 && loc->next == NULL && b->related_breakpoint == b)
7141 {
7142 /* Create only the whole new breakpoint of this type but do not
7143 mess more complicated breakpoints with multiple locations. */
7144 b->type = bp_gnu_ifunc_resolver;
7145 /* Remember the resolver's address for use by the return
7146 breakpoint. */
7147 loc->related_address = func_addr;
7148 }
7149 }
7150
7151 if (function_name)
7152 loc->function_name = xstrdup (function_name);
7153 }
7154 }
7155
7156 /* Attempt to determine architecture of location identified by SAL. */
7157 struct gdbarch *
7158 get_sal_arch (struct symtab_and_line sal)
7159 {
7160 if (sal.section)
7161 return get_objfile_arch (sal.section->objfile);
7162 if (sal.symtab)
7163 return get_objfile_arch (sal.symtab->objfile);
7164
7165 return NULL;
7166 }
7167
7168 /* Low level routine for partially initializing a breakpoint of type
7169 BPTYPE. The newly created breakpoint's address, section, source
7170 file name, and line number are provided by SAL.
7171
7172 It is expected that the caller will complete the initialization of
7173 the newly created breakpoint struct as well as output any status
7174 information regarding the creation of a new breakpoint. */
7175
7176 static void
7177 init_raw_breakpoint (struct breakpoint *b, struct gdbarch *gdbarch,
7178 struct symtab_and_line sal, enum bptype bptype,
7179 const struct breakpoint_ops *ops)
7180 {
7181 init_raw_breakpoint_without_location (b, gdbarch, bptype, ops);
7182
7183 add_location_to_breakpoint (b, &sal);
7184
7185 if (bptype != bp_catchpoint)
7186 gdb_assert (sal.pspace != NULL);
7187
7188 /* Store the program space that was used to set the breakpoint,
7189 except for ordinary breakpoints, which are independent of the
7190 program space. */
7191 if (bptype != bp_breakpoint && bptype != bp_hardware_breakpoint)
7192 b->pspace = sal.pspace;
7193 }
7194
7195 /* set_raw_breakpoint is a low level routine for allocating and
7196 partially initializing a breakpoint of type BPTYPE. The newly
7197 created breakpoint's address, section, source file name, and line
7198 number are provided by SAL. The newly created and partially
7199 initialized breakpoint is added to the breakpoint chain and
7200 is also returned as the value of this function.
7201
7202 It is expected that the caller will complete the initialization of
7203 the newly created breakpoint struct as well as output any status
7204 information regarding the creation of a new breakpoint. In
7205 particular, set_raw_breakpoint does NOT set the breakpoint
7206 number! Care should be taken to not allow an error to occur
7207 prior to completing the initialization of the breakpoint. If this
7208 should happen, a bogus breakpoint will be left on the chain. */
7209
7210 struct breakpoint *
7211 set_raw_breakpoint (struct gdbarch *gdbarch,
7212 struct symtab_and_line sal, enum bptype bptype,
7213 const struct breakpoint_ops *ops)
7214 {
7215 struct breakpoint *b = XNEW (struct breakpoint);
7216
7217 init_raw_breakpoint (b, gdbarch, sal, bptype, ops);
7218 add_to_breakpoint_chain (b);
7219 return b;
7220 }
7221
7222
7223 /* Note that the breakpoint object B describes a permanent breakpoint
7224 instruction, hard-wired into the inferior's code. */
7225 void
7226 make_breakpoint_permanent (struct breakpoint *b)
7227 {
7228 struct bp_location *bl;
7229
7230 b->enable_state = bp_permanent;
7231
7232 /* By definition, permanent breakpoints are already present in the
7233 code. Mark all locations as inserted. For now,
7234 make_breakpoint_permanent is called in just one place, so it's
7235 hard to say if it's reasonable to have permanent breakpoint with
7236 multiple locations or not, but it's easy to implement. */
7237 for (bl = b->loc; bl; bl = bl->next)
7238 bl->inserted = 1;
7239 }
7240
7241 /* Call this routine when stepping and nexting to enable a breakpoint
7242 if we do a longjmp() or 'throw' in TP. FRAME is the frame which
7243 initiated the operation. */
7244
7245 void
7246 set_longjmp_breakpoint (struct thread_info *tp, struct frame_id frame)
7247 {
7248 struct breakpoint *b, *b_tmp;
7249 int thread = tp->num;
7250
7251 /* To avoid having to rescan all objfile symbols at every step,
7252 we maintain a list of continually-inserted but always disabled
7253 longjmp "master" breakpoints. Here, we simply create momentary
7254 clones of those and enable them for the requested thread. */
7255 ALL_BREAKPOINTS_SAFE (b, b_tmp)
7256 if (b->pspace == current_program_space
7257 && (b->type == bp_longjmp_master
7258 || b->type == bp_exception_master))
7259 {
7260 enum bptype type = b->type == bp_longjmp_master ? bp_longjmp : bp_exception;
7261 struct breakpoint *clone;
7262
7263 /* longjmp_breakpoint_ops ensures INITIATING_FRAME is cleared again
7264 after their removal. */
7265 clone = momentary_breakpoint_from_master (b, type,
7266 &longjmp_breakpoint_ops);
7267 clone->thread = thread;
7268 }
7269
7270 tp->initiating_frame = frame;
7271 }
7272
7273 /* Delete all longjmp breakpoints from THREAD. */
7274 void
7275 delete_longjmp_breakpoint (int thread)
7276 {
7277 struct breakpoint *b, *b_tmp;
7278
7279 ALL_BREAKPOINTS_SAFE (b, b_tmp)
7280 if (b->type == bp_longjmp || b->type == bp_exception)
7281 {
7282 if (b->thread == thread)
7283 delete_breakpoint (b);
7284 }
7285 }
7286
7287 void
7288 delete_longjmp_breakpoint_at_next_stop (int thread)
7289 {
7290 struct breakpoint *b, *b_tmp;
7291
7292 ALL_BREAKPOINTS_SAFE (b, b_tmp)
7293 if (b->type == bp_longjmp || b->type == bp_exception)
7294 {
7295 if (b->thread == thread)
7296 b->disposition = disp_del_at_next_stop;
7297 }
7298 }
7299
7300 /* Place breakpoints of type bp_longjmp_call_dummy to catch longjmp for
7301 INFERIOR_PTID thread. Chain them all by RELATED_BREAKPOINT and return
7302 pointer to any of them. Return NULL if this system cannot place longjmp
7303 breakpoints. */
7304
7305 struct breakpoint *
7306 set_longjmp_breakpoint_for_call_dummy (void)
7307 {
7308 struct breakpoint *b, *retval = NULL;
7309
7310 ALL_BREAKPOINTS (b)
7311 if (b->pspace == current_program_space && b->type == bp_longjmp_master)
7312 {
7313 struct breakpoint *new_b;
7314
7315 new_b = momentary_breakpoint_from_master (b, bp_longjmp_call_dummy,
7316 &momentary_breakpoint_ops);
7317 new_b->thread = pid_to_thread_id (inferior_ptid);
7318
7319 /* Link NEW_B into the chain of RETVAL breakpoints. */
7320
7321 gdb_assert (new_b->related_breakpoint == new_b);
7322 if (retval == NULL)
7323 retval = new_b;
7324 new_b->related_breakpoint = retval;
7325 while (retval->related_breakpoint != new_b->related_breakpoint)
7326 retval = retval->related_breakpoint;
7327 retval->related_breakpoint = new_b;
7328 }
7329
7330 return retval;
7331 }
7332
7333 /* Verify all existing dummy frames and their associated breakpoints for
7334 THREAD. Remove those which can no longer be found in the current frame
7335 stack.
7336
7337 You should call this function only at places where it is safe to currently
7338 unwind the whole stack. Failed stack unwind would discard live dummy
7339 frames. */
7340
7341 void
7342 check_longjmp_breakpoint_for_call_dummy (int thread)
7343 {
7344 struct breakpoint *b, *b_tmp;
7345
7346 ALL_BREAKPOINTS_SAFE (b, b_tmp)
7347 if (b->type == bp_longjmp_call_dummy && b->thread == thread)
7348 {
7349 struct breakpoint *dummy_b = b->related_breakpoint;
7350
7351 while (dummy_b != b && dummy_b->type != bp_call_dummy)
7352 dummy_b = dummy_b->related_breakpoint;
7353 if (dummy_b->type != bp_call_dummy
7354 || frame_find_by_id (dummy_b->frame_id) != NULL)
7355 continue;
7356
7357 dummy_frame_discard (dummy_b->frame_id);
7358
7359 while (b->related_breakpoint != b)
7360 {
7361 if (b_tmp == b->related_breakpoint)
7362 b_tmp = b->related_breakpoint->next;
7363 delete_breakpoint (b->related_breakpoint);
7364 }
7365 delete_breakpoint (b);
7366 }
7367 }
7368
7369 void
7370 enable_overlay_breakpoints (void)
7371 {
7372 struct breakpoint *b;
7373
7374 ALL_BREAKPOINTS (b)
7375 if (b->type == bp_overlay_event)
7376 {
7377 b->enable_state = bp_enabled;
7378 update_global_location_list (1);
7379 overlay_events_enabled = 1;
7380 }
7381 }
7382
7383 void
7384 disable_overlay_breakpoints (void)
7385 {
7386 struct breakpoint *b;
7387
7388 ALL_BREAKPOINTS (b)
7389 if (b->type == bp_overlay_event)
7390 {
7391 b->enable_state = bp_disabled;
7392 update_global_location_list (0);
7393 overlay_events_enabled = 0;
7394 }
7395 }
7396
7397 /* Set an active std::terminate breakpoint for each std::terminate
7398 master breakpoint. */
7399 void
7400 set_std_terminate_breakpoint (void)
7401 {
7402 struct breakpoint *b, *b_tmp;
7403
7404 ALL_BREAKPOINTS_SAFE (b, b_tmp)
7405 if (b->pspace == current_program_space
7406 && b->type == bp_std_terminate_master)
7407 {
7408 momentary_breakpoint_from_master (b, bp_std_terminate,
7409 &momentary_breakpoint_ops);
7410 }
7411 }
7412
7413 /* Delete all the std::terminate breakpoints. */
7414 void
7415 delete_std_terminate_breakpoint (void)
7416 {
7417 struct breakpoint *b, *b_tmp;
7418
7419 ALL_BREAKPOINTS_SAFE (b, b_tmp)
7420 if (b->type == bp_std_terminate)
7421 delete_breakpoint (b);
7422 }
7423
7424 struct breakpoint *
7425 create_thread_event_breakpoint (struct gdbarch *gdbarch, CORE_ADDR address)
7426 {
7427 struct breakpoint *b;
7428
7429 b = create_internal_breakpoint (gdbarch, address, bp_thread_event,
7430 &internal_breakpoint_ops);
7431
7432 b->enable_state = bp_enabled;
7433 /* addr_string has to be used or breakpoint_re_set will delete me. */
7434 b->addr_string
7435 = xstrprintf ("*%s", paddress (b->loc->gdbarch, b->loc->address));
7436
7437 update_global_location_list_nothrow (1);
7438
7439 return b;
7440 }
7441
7442 void
7443 remove_thread_event_breakpoints (void)
7444 {
7445 struct breakpoint *b, *b_tmp;
7446
7447 ALL_BREAKPOINTS_SAFE (b, b_tmp)
7448 if (b->type == bp_thread_event
7449 && b->loc->pspace == current_program_space)
7450 delete_breakpoint (b);
7451 }
7452
7453 struct lang_and_radix
7454 {
7455 enum language lang;
7456 int radix;
7457 };
7458
7459 /* Create a breakpoint for JIT code registration and unregistration. */
7460
7461 struct breakpoint *
7462 create_jit_event_breakpoint (struct gdbarch *gdbarch, CORE_ADDR address)
7463 {
7464 struct breakpoint *b;
7465
7466 b = create_internal_breakpoint (gdbarch, address, bp_jit_event,
7467 &internal_breakpoint_ops);
7468 update_global_location_list_nothrow (1);
7469 return b;
7470 }
7471
7472 /* Remove JIT code registration and unregistration breakpoint(s). */
7473
7474 void
7475 remove_jit_event_breakpoints (void)
7476 {
7477 struct breakpoint *b, *b_tmp;
7478
7479 ALL_BREAKPOINTS_SAFE (b, b_tmp)
7480 if (b->type == bp_jit_event
7481 && b->loc->pspace == current_program_space)
7482 delete_breakpoint (b);
7483 }
7484
7485 void
7486 remove_solib_event_breakpoints (void)
7487 {
7488 struct breakpoint *b, *b_tmp;
7489
7490 ALL_BREAKPOINTS_SAFE (b, b_tmp)
7491 if (b->type == bp_shlib_event
7492 && b->loc->pspace == current_program_space)
7493 delete_breakpoint (b);
7494 }
7495
7496 struct breakpoint *
7497 create_solib_event_breakpoint (struct gdbarch *gdbarch, CORE_ADDR address)
7498 {
7499 struct breakpoint *b;
7500
7501 b = create_internal_breakpoint (gdbarch, address, bp_shlib_event,
7502 &internal_breakpoint_ops);
7503 update_global_location_list_nothrow (1);
7504 return b;
7505 }
7506
7507 /* Disable any breakpoints that are on code in shared libraries. Only
7508 apply to enabled breakpoints, disabled ones can just stay disabled. */
7509
7510 void
7511 disable_breakpoints_in_shlibs (void)
7512 {
7513 struct bp_location *loc, **locp_tmp;
7514
7515 ALL_BP_LOCATIONS (loc, locp_tmp)
7516 {
7517 /* ALL_BP_LOCATIONS bp_location has LOC->OWNER always non-NULL. */
7518 struct breakpoint *b = loc->owner;
7519
7520 /* We apply the check to all breakpoints, including disabled for
7521 those with loc->duplicate set. This is so that when breakpoint
7522 becomes enabled, or the duplicate is removed, gdb will try to
7523 insert all breakpoints. If we don't set shlib_disabled here,
7524 we'll try to insert those breakpoints and fail. */
7525 if (((b->type == bp_breakpoint)
7526 || (b->type == bp_jit_event)
7527 || (b->type == bp_hardware_breakpoint)
7528 || (is_tracepoint (b)))
7529 && loc->pspace == current_program_space
7530 && !loc->shlib_disabled
7531 && solib_name_from_address (loc->pspace, loc->address)
7532 )
7533 {
7534 loc->shlib_disabled = 1;
7535 }
7536 }
7537 }
7538
7539 /* Disable any breakpoints and tracepoints that are in SOLIB upon
7540 notification of unloaded_shlib. Only apply to enabled breakpoints,
7541 disabled ones can just stay disabled. */
7542
7543 static void
7544 disable_breakpoints_in_unloaded_shlib (struct so_list *solib)
7545 {
7546 struct bp_location *loc, **locp_tmp;
7547 int disabled_shlib_breaks = 0;
7548
7549 /* SunOS a.out shared libraries are always mapped, so do not
7550 disable breakpoints; they will only be reported as unloaded
7551 through clear_solib when GDB discards its shared library
7552 list. See clear_solib for more information. */
7553 if (exec_bfd != NULL
7554 && bfd_get_flavour (exec_bfd) == bfd_target_aout_flavour)
7555 return;
7556
7557 ALL_BP_LOCATIONS (loc, locp_tmp)
7558 {
7559 /* ALL_BP_LOCATIONS bp_location has LOC->OWNER always non-NULL. */
7560 struct breakpoint *b = loc->owner;
7561
7562 if (solib->pspace == loc->pspace
7563 && !loc->shlib_disabled
7564 && (((b->type == bp_breakpoint
7565 || b->type == bp_jit_event
7566 || b->type == bp_hardware_breakpoint)
7567 && (loc->loc_type == bp_loc_hardware_breakpoint
7568 || loc->loc_type == bp_loc_software_breakpoint))
7569 || is_tracepoint (b))
7570 && solib_contains_address_p (solib, loc->address))
7571 {
7572 loc->shlib_disabled = 1;
7573 /* At this point, we cannot rely on remove_breakpoint
7574 succeeding so we must mark the breakpoint as not inserted
7575 to prevent future errors occurring in remove_breakpoints. */
7576 loc->inserted = 0;
7577
7578 /* This may cause duplicate notifications for the same breakpoint. */
7579 observer_notify_breakpoint_modified (b);
7580
7581 if (!disabled_shlib_breaks)
7582 {
7583 target_terminal_ours_for_output ();
7584 warning (_("Temporarily disabling breakpoints "
7585 "for unloaded shared library \"%s\""),
7586 solib->so_name);
7587 }
7588 disabled_shlib_breaks = 1;
7589 }
7590 }
7591 }
7592
7593 /* Disable any breakpoints and tracepoints in OBJFILE upon
7594 notification of free_objfile. Only apply to enabled breakpoints,
7595 disabled ones can just stay disabled. */
7596
7597 static void
7598 disable_breakpoints_in_freed_objfile (struct objfile *objfile)
7599 {
7600 struct breakpoint *b;
7601
7602 if (objfile == NULL)
7603 return;
7604
7605 /* If the file is a shared library not loaded by the user then
7606 solib_unloaded was notified and disable_breakpoints_in_unloaded_shlib
7607 was called. In that case there is no need to take action again. */
7608 if ((objfile->flags & OBJF_SHARED) && !(objfile->flags & OBJF_USERLOADED))
7609 return;
7610
7611 ALL_BREAKPOINTS (b)
7612 {
7613 struct bp_location *loc;
7614 int bp_modified = 0;
7615
7616 if (!is_breakpoint (b) && !is_tracepoint (b))
7617 continue;
7618
7619 for (loc = b->loc; loc != NULL; loc = loc->next)
7620 {
7621 CORE_ADDR loc_addr = loc->address;
7622
7623 if (loc->loc_type != bp_loc_hardware_breakpoint
7624 && loc->loc_type != bp_loc_software_breakpoint)
7625 continue;
7626
7627 if (loc->shlib_disabled != 0)
7628 continue;
7629
7630 if (objfile->pspace != loc->pspace)
7631 continue;
7632
7633 if (loc->loc_type != bp_loc_hardware_breakpoint
7634 && loc->loc_type != bp_loc_software_breakpoint)
7635 continue;
7636
7637 if (is_addr_in_objfile (loc_addr, objfile))
7638 {
7639 loc->shlib_disabled = 1;
7640 loc->inserted = 0;
7641
7642 mark_breakpoint_location_modified (loc);
7643
7644 bp_modified = 1;
7645 }
7646 }
7647
7648 if (bp_modified)
7649 observer_notify_breakpoint_modified (b);
7650 }
7651 }
7652
7653 /* FORK & VFORK catchpoints. */
7654
7655 /* An instance of this type is used to represent a fork or vfork
7656 catchpoint. It includes a "struct breakpoint" as a kind of base
7657 class; users downcast to "struct breakpoint *" when needed. A
7658 breakpoint is really of this type iff its ops pointer points to
7659 CATCH_FORK_BREAKPOINT_OPS. */
7660
7661 struct fork_catchpoint
7662 {
7663 /* The base class. */
7664 struct breakpoint base;
7665
7666 /* Process id of a child process whose forking triggered this
7667 catchpoint. This field is only valid immediately after this
7668 catchpoint has triggered. */
7669 ptid_t forked_inferior_pid;
7670 };
7671
7672 /* Implement the "insert" breakpoint_ops method for fork
7673 catchpoints. */
7674
7675 static int
7676 insert_catch_fork (struct bp_location *bl)
7677 {
7678 return target_insert_fork_catchpoint (ptid_get_pid (inferior_ptid));
7679 }
7680
7681 /* Implement the "remove" breakpoint_ops method for fork
7682 catchpoints. */
7683
7684 static int
7685 remove_catch_fork (struct bp_location *bl)
7686 {
7687 return target_remove_fork_catchpoint (ptid_get_pid (inferior_ptid));
7688 }
7689
7690 /* Implement the "breakpoint_hit" breakpoint_ops method for fork
7691 catchpoints. */
7692
7693 static int
7694 breakpoint_hit_catch_fork (const struct bp_location *bl,
7695 struct address_space *aspace, CORE_ADDR bp_addr,
7696 const struct target_waitstatus *ws)
7697 {
7698 struct fork_catchpoint *c = (struct fork_catchpoint *) bl->owner;
7699
7700 if (ws->kind != TARGET_WAITKIND_FORKED)
7701 return 0;
7702
7703 c->forked_inferior_pid = ws->value.related_pid;
7704 return 1;
7705 }
7706
7707 /* Implement the "print_it" breakpoint_ops method for fork
7708 catchpoints. */
7709
7710 static enum print_stop_action
7711 print_it_catch_fork (bpstat bs)
7712 {
7713 struct ui_out *uiout = current_uiout;
7714 struct breakpoint *b = bs->breakpoint_at;
7715 struct fork_catchpoint *c = (struct fork_catchpoint *) bs->breakpoint_at;
7716
7717 annotate_catchpoint (b->number);
7718 if (b->disposition == disp_del)
7719 ui_out_text (uiout, "\nTemporary catchpoint ");
7720 else
7721 ui_out_text (uiout, "\nCatchpoint ");
7722 if (ui_out_is_mi_like_p (uiout))
7723 {
7724 ui_out_field_string (uiout, "reason",
7725 async_reason_lookup (EXEC_ASYNC_FORK));
7726 ui_out_field_string (uiout, "disp", bpdisp_text (b->disposition));
7727 }
7728 ui_out_field_int (uiout, "bkptno", b->number);
7729 ui_out_text (uiout, " (forked process ");
7730 ui_out_field_int (uiout, "newpid", ptid_get_pid (c->forked_inferior_pid));
7731 ui_out_text (uiout, "), ");
7732 return PRINT_SRC_AND_LOC;
7733 }
7734
7735 /* Implement the "print_one" breakpoint_ops method for fork
7736 catchpoints. */
7737
7738 static void
7739 print_one_catch_fork (struct breakpoint *b, struct bp_location **last_loc)
7740 {
7741 struct fork_catchpoint *c = (struct fork_catchpoint *) b;
7742 struct value_print_options opts;
7743 struct ui_out *uiout = current_uiout;
7744
7745 get_user_print_options (&opts);
7746
7747 /* Field 4, the address, is omitted (which makes the columns not
7748 line up too nicely with the headers, but the effect is relatively
7749 readable). */
7750 if (opts.addressprint)
7751 ui_out_field_skip (uiout, "addr");
7752 annotate_field (5);
7753 ui_out_text (uiout, "fork");
7754 if (!ptid_equal (c->forked_inferior_pid, null_ptid))
7755 {
7756 ui_out_text (uiout, ", process ");
7757 ui_out_field_int (uiout, "what",
7758 ptid_get_pid (c->forked_inferior_pid));
7759 ui_out_spaces (uiout, 1);
7760 }
7761
7762 if (ui_out_is_mi_like_p (uiout))
7763 ui_out_field_string (uiout, "catch-type", "fork");
7764 }
7765
7766 /* Implement the "print_mention" breakpoint_ops method for fork
7767 catchpoints. */
7768
7769 static void
7770 print_mention_catch_fork (struct breakpoint *b)
7771 {
7772 printf_filtered (_("Catchpoint %d (fork)"), b->number);
7773 }
7774
7775 /* Implement the "print_recreate" breakpoint_ops method for fork
7776 catchpoints. */
7777
7778 static void
7779 print_recreate_catch_fork (struct breakpoint *b, struct ui_file *fp)
7780 {
7781 fprintf_unfiltered (fp, "catch fork");
7782 print_recreate_thread (b, fp);
7783 }
7784
7785 /* The breakpoint_ops structure to be used in fork catchpoints. */
7786
7787 static struct breakpoint_ops catch_fork_breakpoint_ops;
7788
7789 /* Implement the "insert" breakpoint_ops method for vfork
7790 catchpoints. */
7791
7792 static int
7793 insert_catch_vfork (struct bp_location *bl)
7794 {
7795 return target_insert_vfork_catchpoint (ptid_get_pid (inferior_ptid));
7796 }
7797
7798 /* Implement the "remove" breakpoint_ops method for vfork
7799 catchpoints. */
7800
7801 static int
7802 remove_catch_vfork (struct bp_location *bl)
7803 {
7804 return target_remove_vfork_catchpoint (ptid_get_pid (inferior_ptid));
7805 }
7806
7807 /* Implement the "breakpoint_hit" breakpoint_ops method for vfork
7808 catchpoints. */
7809
7810 static int
7811 breakpoint_hit_catch_vfork (const struct bp_location *bl,
7812 struct address_space *aspace, CORE_ADDR bp_addr,
7813 const struct target_waitstatus *ws)
7814 {
7815 struct fork_catchpoint *c = (struct fork_catchpoint *) bl->owner;
7816
7817 if (ws->kind != TARGET_WAITKIND_VFORKED)
7818 return 0;
7819
7820 c->forked_inferior_pid = ws->value.related_pid;
7821 return 1;
7822 }
7823
7824 /* Implement the "print_it" breakpoint_ops method for vfork
7825 catchpoints. */
7826
7827 static enum print_stop_action
7828 print_it_catch_vfork (bpstat bs)
7829 {
7830 struct ui_out *uiout = current_uiout;
7831 struct breakpoint *b = bs->breakpoint_at;
7832 struct fork_catchpoint *c = (struct fork_catchpoint *) b;
7833
7834 annotate_catchpoint (b->number);
7835 if (b->disposition == disp_del)
7836 ui_out_text (uiout, "\nTemporary catchpoint ");
7837 else
7838 ui_out_text (uiout, "\nCatchpoint ");
7839 if (ui_out_is_mi_like_p (uiout))
7840 {
7841 ui_out_field_string (uiout, "reason",
7842 async_reason_lookup (EXEC_ASYNC_VFORK));
7843 ui_out_field_string (uiout, "disp", bpdisp_text (b->disposition));
7844 }
7845 ui_out_field_int (uiout, "bkptno", b->number);
7846 ui_out_text (uiout, " (vforked process ");
7847 ui_out_field_int (uiout, "newpid", ptid_get_pid (c->forked_inferior_pid));
7848 ui_out_text (uiout, "), ");
7849 return PRINT_SRC_AND_LOC;
7850 }
7851
7852 /* Implement the "print_one" breakpoint_ops method for vfork
7853 catchpoints. */
7854
7855 static void
7856 print_one_catch_vfork (struct breakpoint *b, struct bp_location **last_loc)
7857 {
7858 struct fork_catchpoint *c = (struct fork_catchpoint *) b;
7859 struct value_print_options opts;
7860 struct ui_out *uiout = current_uiout;
7861
7862 get_user_print_options (&opts);
7863 /* Field 4, the address, is omitted (which makes the columns not
7864 line up too nicely with the headers, but the effect is relatively
7865 readable). */
7866 if (opts.addressprint)
7867 ui_out_field_skip (uiout, "addr");
7868 annotate_field (5);
7869 ui_out_text (uiout, "vfork");
7870 if (!ptid_equal (c->forked_inferior_pid, null_ptid))
7871 {
7872 ui_out_text (uiout, ", process ");
7873 ui_out_field_int (uiout, "what",
7874 ptid_get_pid (c->forked_inferior_pid));
7875 ui_out_spaces (uiout, 1);
7876 }
7877
7878 if (ui_out_is_mi_like_p (uiout))
7879 ui_out_field_string (uiout, "catch-type", "vfork");
7880 }
7881
7882 /* Implement the "print_mention" breakpoint_ops method for vfork
7883 catchpoints. */
7884
7885 static void
7886 print_mention_catch_vfork (struct breakpoint *b)
7887 {
7888 printf_filtered (_("Catchpoint %d (vfork)"), b->number);
7889 }
7890
7891 /* Implement the "print_recreate" breakpoint_ops method for vfork
7892 catchpoints. */
7893
7894 static void
7895 print_recreate_catch_vfork (struct breakpoint *b, struct ui_file *fp)
7896 {
7897 fprintf_unfiltered (fp, "catch vfork");
7898 print_recreate_thread (b, fp);
7899 }
7900
7901 /* The breakpoint_ops structure to be used in vfork catchpoints. */
7902
7903 static struct breakpoint_ops catch_vfork_breakpoint_ops;
7904
7905 /* An instance of this type is used to represent an solib catchpoint.
7906 It includes a "struct breakpoint" as a kind of base class; users
7907 downcast to "struct breakpoint *" when needed. A breakpoint is
7908 really of this type iff its ops pointer points to
7909 CATCH_SOLIB_BREAKPOINT_OPS. */
7910
7911 struct solib_catchpoint
7912 {
7913 /* The base class. */
7914 struct breakpoint base;
7915
7916 /* True for "catch load", false for "catch unload". */
7917 unsigned char is_load;
7918
7919 /* Regular expression to match, if any. COMPILED is only valid when
7920 REGEX is non-NULL. */
7921 char *regex;
7922 regex_t compiled;
7923 };
7924
7925 static void
7926 dtor_catch_solib (struct breakpoint *b)
7927 {
7928 struct solib_catchpoint *self = (struct solib_catchpoint *) b;
7929
7930 if (self->regex)
7931 regfree (&self->compiled);
7932 xfree (self->regex);
7933
7934 base_breakpoint_ops.dtor (b);
7935 }
7936
7937 static int
7938 insert_catch_solib (struct bp_location *ignore)
7939 {
7940 return 0;
7941 }
7942
7943 static int
7944 remove_catch_solib (struct bp_location *ignore)
7945 {
7946 return 0;
7947 }
7948
7949 static int
7950 breakpoint_hit_catch_solib (const struct bp_location *bl,
7951 struct address_space *aspace,
7952 CORE_ADDR bp_addr,
7953 const struct target_waitstatus *ws)
7954 {
7955 struct solib_catchpoint *self = (struct solib_catchpoint *) bl->owner;
7956 struct breakpoint *other;
7957
7958 if (ws->kind == TARGET_WAITKIND_LOADED)
7959 return 1;
7960
7961 ALL_BREAKPOINTS (other)
7962 {
7963 struct bp_location *other_bl;
7964
7965 if (other == bl->owner)
7966 continue;
7967
7968 if (other->type != bp_shlib_event)
7969 continue;
7970
7971 if (self->base.pspace != NULL && other->pspace != self->base.pspace)
7972 continue;
7973
7974 for (other_bl = other->loc; other_bl != NULL; other_bl = other_bl->next)
7975 {
7976 if (other->ops->breakpoint_hit (other_bl, aspace, bp_addr, ws))
7977 return 1;
7978 }
7979 }
7980
7981 return 0;
7982 }
7983
7984 static void
7985 check_status_catch_solib (struct bpstats *bs)
7986 {
7987 struct solib_catchpoint *self
7988 = (struct solib_catchpoint *) bs->breakpoint_at;
7989 int ix;
7990
7991 if (self->is_load)
7992 {
7993 struct so_list *iter;
7994
7995 for (ix = 0;
7996 VEC_iterate (so_list_ptr, current_program_space->added_solibs,
7997 ix, iter);
7998 ++ix)
7999 {
8000 if (!self->regex
8001 || regexec (&self->compiled, iter->so_name, 0, NULL, 0) == 0)
8002 return;
8003 }
8004 }
8005 else
8006 {
8007 char *iter;
8008
8009 for (ix = 0;
8010 VEC_iterate (char_ptr, current_program_space->deleted_solibs,
8011 ix, iter);
8012 ++ix)
8013 {
8014 if (!self->regex
8015 || regexec (&self->compiled, iter, 0, NULL, 0) == 0)
8016 return;
8017 }
8018 }
8019
8020 bs->stop = 0;
8021 bs->print_it = print_it_noop;
8022 }
8023
8024 static enum print_stop_action
8025 print_it_catch_solib (bpstat bs)
8026 {
8027 struct breakpoint *b = bs->breakpoint_at;
8028 struct ui_out *uiout = current_uiout;
8029
8030 annotate_catchpoint (b->number);
8031 if (b->disposition == disp_del)
8032 ui_out_text (uiout, "\nTemporary catchpoint ");
8033 else
8034 ui_out_text (uiout, "\nCatchpoint ");
8035 ui_out_field_int (uiout, "bkptno", b->number);
8036 ui_out_text (uiout, "\n");
8037 if (ui_out_is_mi_like_p (uiout))
8038 ui_out_field_string (uiout, "disp", bpdisp_text (b->disposition));
8039 print_solib_event (1);
8040 return PRINT_SRC_AND_LOC;
8041 }
8042
8043 static void
8044 print_one_catch_solib (struct breakpoint *b, struct bp_location **locs)
8045 {
8046 struct solib_catchpoint *self = (struct solib_catchpoint *) b;
8047 struct value_print_options opts;
8048 struct ui_out *uiout = current_uiout;
8049 char *msg;
8050
8051 get_user_print_options (&opts);
8052 /* Field 4, the address, is omitted (which makes the columns not
8053 line up too nicely with the headers, but the effect is relatively
8054 readable). */
8055 if (opts.addressprint)
8056 {
8057 annotate_field (4);
8058 ui_out_field_skip (uiout, "addr");
8059 }
8060
8061 annotate_field (5);
8062 if (self->is_load)
8063 {
8064 if (self->regex)
8065 msg = xstrprintf (_("load of library matching %s"), self->regex);
8066 else
8067 msg = xstrdup (_("load of library"));
8068 }
8069 else
8070 {
8071 if (self->regex)
8072 msg = xstrprintf (_("unload of library matching %s"), self->regex);
8073 else
8074 msg = xstrdup (_("unload of library"));
8075 }
8076 ui_out_field_string (uiout, "what", msg);
8077 xfree (msg);
8078
8079 if (ui_out_is_mi_like_p (uiout))
8080 ui_out_field_string (uiout, "catch-type",
8081 self->is_load ? "load" : "unload");
8082 }
8083
8084 static void
8085 print_mention_catch_solib (struct breakpoint *b)
8086 {
8087 struct solib_catchpoint *self = (struct solib_catchpoint *) b;
8088
8089 printf_filtered (_("Catchpoint %d (%s)"), b->number,
8090 self->is_load ? "load" : "unload");
8091 }
8092
8093 static void
8094 print_recreate_catch_solib (struct breakpoint *b, struct ui_file *fp)
8095 {
8096 struct solib_catchpoint *self = (struct solib_catchpoint *) b;
8097
8098 fprintf_unfiltered (fp, "%s %s",
8099 b->disposition == disp_del ? "tcatch" : "catch",
8100 self->is_load ? "load" : "unload");
8101 if (self->regex)
8102 fprintf_unfiltered (fp, " %s", self->regex);
8103 fprintf_unfiltered (fp, "\n");
8104 }
8105
8106 static struct breakpoint_ops catch_solib_breakpoint_ops;
8107
8108 /* Shared helper function (MI and CLI) for creating and installing
8109 a shared object event catchpoint. If IS_LOAD is non-zero then
8110 the events to be caught are load events, otherwise they are
8111 unload events. If IS_TEMP is non-zero the catchpoint is a
8112 temporary one. If ENABLED is non-zero the catchpoint is
8113 created in an enabled state. */
8114
8115 void
8116 add_solib_catchpoint (char *arg, int is_load, int is_temp, int enabled)
8117 {
8118 struct solib_catchpoint *c;
8119 struct gdbarch *gdbarch = get_current_arch ();
8120 struct cleanup *cleanup;
8121
8122 if (!arg)
8123 arg = "";
8124 arg = skip_spaces (arg);
8125
8126 c = XCNEW (struct solib_catchpoint);
8127 cleanup = make_cleanup (xfree, c);
8128
8129 if (*arg != '\0')
8130 {
8131 int errcode;
8132
8133 errcode = regcomp (&c->compiled, arg, REG_NOSUB);
8134 if (errcode != 0)
8135 {
8136 char *err = get_regcomp_error (errcode, &c->compiled);
8137
8138 make_cleanup (xfree, err);
8139 error (_("Invalid regexp (%s): %s"), err, arg);
8140 }
8141 c->regex = xstrdup (arg);
8142 }
8143
8144 c->is_load = is_load;
8145 init_catchpoint (&c->base, gdbarch, is_temp, NULL,
8146 &catch_solib_breakpoint_ops);
8147
8148 c->base.enable_state = enabled ? bp_enabled : bp_disabled;
8149
8150 discard_cleanups (cleanup);
8151 install_breakpoint (0, &c->base, 1);
8152 }
8153
8154 /* A helper function that does all the work for "catch load" and
8155 "catch unload". */
8156
8157 static void
8158 catch_load_or_unload (char *arg, int from_tty, int is_load,
8159 struct cmd_list_element *command)
8160 {
8161 int tempflag;
8162 const int enabled = 1;
8163
8164 tempflag = get_cmd_context (command) == CATCH_TEMPORARY;
8165
8166 add_solib_catchpoint (arg, is_load, tempflag, enabled);
8167 }
8168
8169 static void
8170 catch_load_command_1 (char *arg, int from_tty,
8171 struct cmd_list_element *command)
8172 {
8173 catch_load_or_unload (arg, from_tty, 1, command);
8174 }
8175
8176 static void
8177 catch_unload_command_1 (char *arg, int from_tty,
8178 struct cmd_list_element *command)
8179 {
8180 catch_load_or_unload (arg, from_tty, 0, command);
8181 }
8182
8183 /* An instance of this type is used to represent a syscall catchpoint.
8184 It includes a "struct breakpoint" as a kind of base class; users
8185 downcast to "struct breakpoint *" when needed. A breakpoint is
8186 really of this type iff its ops pointer points to
8187 CATCH_SYSCALL_BREAKPOINT_OPS. */
8188
8189 struct syscall_catchpoint
8190 {
8191 /* The base class. */
8192 struct breakpoint base;
8193
8194 /* Syscall numbers used for the 'catch syscall' feature. If no
8195 syscall has been specified for filtering, its value is NULL.
8196 Otherwise, it holds a list of all syscalls to be caught. The
8197 list elements are allocated with xmalloc. */
8198 VEC(int) *syscalls_to_be_caught;
8199 };
8200
8201 /* Implement the "dtor" breakpoint_ops method for syscall
8202 catchpoints. */
8203
8204 static void
8205 dtor_catch_syscall (struct breakpoint *b)
8206 {
8207 struct syscall_catchpoint *c = (struct syscall_catchpoint *) b;
8208
8209 VEC_free (int, c->syscalls_to_be_caught);
8210
8211 base_breakpoint_ops.dtor (b);
8212 }
8213
8214 static const struct inferior_data *catch_syscall_inferior_data = NULL;
8215
8216 struct catch_syscall_inferior_data
8217 {
8218 /* We keep a count of the number of times the user has requested a
8219 particular syscall to be tracked, and pass this information to the
8220 target. This lets capable targets implement filtering directly. */
8221
8222 /* Number of times that "any" syscall is requested. */
8223 int any_syscall_count;
8224
8225 /* Count of each system call. */
8226 VEC(int) *syscalls_counts;
8227
8228 /* This counts all syscall catch requests, so we can readily determine
8229 if any catching is necessary. */
8230 int total_syscalls_count;
8231 };
8232
8233 static struct catch_syscall_inferior_data*
8234 get_catch_syscall_inferior_data (struct inferior *inf)
8235 {
8236 struct catch_syscall_inferior_data *inf_data;
8237
8238 inf_data = inferior_data (inf, catch_syscall_inferior_data);
8239 if (inf_data == NULL)
8240 {
8241 inf_data = XZALLOC (struct catch_syscall_inferior_data);
8242 set_inferior_data (inf, catch_syscall_inferior_data, inf_data);
8243 }
8244
8245 return inf_data;
8246 }
8247
8248 static void
8249 catch_syscall_inferior_data_cleanup (struct inferior *inf, void *arg)
8250 {
8251 xfree (arg);
8252 }
8253
8254
8255 /* Implement the "insert" breakpoint_ops method for syscall
8256 catchpoints. */
8257
8258 static int
8259 insert_catch_syscall (struct bp_location *bl)
8260 {
8261 struct syscall_catchpoint *c = (struct syscall_catchpoint *) bl->owner;
8262 struct inferior *inf = current_inferior ();
8263 struct catch_syscall_inferior_data *inf_data
8264 = get_catch_syscall_inferior_data (inf);
8265
8266 ++inf_data->total_syscalls_count;
8267 if (!c->syscalls_to_be_caught)
8268 ++inf_data->any_syscall_count;
8269 else
8270 {
8271 int i, iter;
8272
8273 for (i = 0;
8274 VEC_iterate (int, c->syscalls_to_be_caught, i, iter);
8275 i++)
8276 {
8277 int elem;
8278
8279 if (iter >= VEC_length (int, inf_data->syscalls_counts))
8280 {
8281 int old_size = VEC_length (int, inf_data->syscalls_counts);
8282 uintptr_t vec_addr_offset
8283 = old_size * ((uintptr_t) sizeof (int));
8284 uintptr_t vec_addr;
8285 VEC_safe_grow (int, inf_data->syscalls_counts, iter + 1);
8286 vec_addr = ((uintptr_t) VEC_address (int,
8287 inf_data->syscalls_counts)
8288 + vec_addr_offset);
8289 memset ((void *) vec_addr, 0,
8290 (iter + 1 - old_size) * sizeof (int));
8291 }
8292 elem = VEC_index (int, inf_data->syscalls_counts, iter);
8293 VEC_replace (int, inf_data->syscalls_counts, iter, ++elem);
8294 }
8295 }
8296
8297 return target_set_syscall_catchpoint (ptid_get_pid (inferior_ptid),
8298 inf_data->total_syscalls_count != 0,
8299 inf_data->any_syscall_count,
8300 VEC_length (int,
8301 inf_data->syscalls_counts),
8302 VEC_address (int,
8303 inf_data->syscalls_counts));
8304 }
8305
8306 /* Implement the "remove" breakpoint_ops method for syscall
8307 catchpoints. */
8308
8309 static int
8310 remove_catch_syscall (struct bp_location *bl)
8311 {
8312 struct syscall_catchpoint *c = (struct syscall_catchpoint *) bl->owner;
8313 struct inferior *inf = current_inferior ();
8314 struct catch_syscall_inferior_data *inf_data
8315 = get_catch_syscall_inferior_data (inf);
8316
8317 --inf_data->total_syscalls_count;
8318 if (!c->syscalls_to_be_caught)
8319 --inf_data->any_syscall_count;
8320 else
8321 {
8322 int i, iter;
8323
8324 for (i = 0;
8325 VEC_iterate (int, c->syscalls_to_be_caught, i, iter);
8326 i++)
8327 {
8328 int elem;
8329 if (iter >= VEC_length (int, inf_data->syscalls_counts))
8330 /* Shouldn't happen. */
8331 continue;
8332 elem = VEC_index (int, inf_data->syscalls_counts, iter);
8333 VEC_replace (int, inf_data->syscalls_counts, iter, --elem);
8334 }
8335 }
8336
8337 return target_set_syscall_catchpoint (ptid_get_pid (inferior_ptid),
8338 inf_data->total_syscalls_count != 0,
8339 inf_data->any_syscall_count,
8340 VEC_length (int,
8341 inf_data->syscalls_counts),
8342 VEC_address (int,
8343 inf_data->syscalls_counts));
8344 }
8345
8346 /* Implement the "breakpoint_hit" breakpoint_ops method for syscall
8347 catchpoints. */
8348
8349 static int
8350 breakpoint_hit_catch_syscall (const struct bp_location *bl,
8351 struct address_space *aspace, CORE_ADDR bp_addr,
8352 const struct target_waitstatus *ws)
8353 {
8354 /* We must check if we are catching specific syscalls in this
8355 breakpoint. If we are, then we must guarantee that the called
8356 syscall is the same syscall we are catching. */
8357 int syscall_number = 0;
8358 const struct syscall_catchpoint *c
8359 = (const struct syscall_catchpoint *) bl->owner;
8360
8361 if (ws->kind != TARGET_WAITKIND_SYSCALL_ENTRY
8362 && ws->kind != TARGET_WAITKIND_SYSCALL_RETURN)
8363 return 0;
8364
8365 syscall_number = ws->value.syscall_number;
8366
8367 /* Now, checking if the syscall is the same. */
8368 if (c->syscalls_to_be_caught)
8369 {
8370 int i, iter;
8371
8372 for (i = 0;
8373 VEC_iterate (int, c->syscalls_to_be_caught, i, iter);
8374 i++)
8375 if (syscall_number == iter)
8376 return 1;
8377
8378 return 0;
8379 }
8380
8381 return 1;
8382 }
8383
8384 /* Implement the "print_it" breakpoint_ops method for syscall
8385 catchpoints. */
8386
8387 static enum print_stop_action
8388 print_it_catch_syscall (bpstat bs)
8389 {
8390 struct ui_out *uiout = current_uiout;
8391 struct breakpoint *b = bs->breakpoint_at;
8392 /* These are needed because we want to know in which state a
8393 syscall is. It can be in the TARGET_WAITKIND_SYSCALL_ENTRY
8394 or TARGET_WAITKIND_SYSCALL_RETURN, and depending on it we
8395 must print "called syscall" or "returned from syscall". */
8396 ptid_t ptid;
8397 struct target_waitstatus last;
8398 struct syscall s;
8399
8400 get_last_target_status (&ptid, &last);
8401
8402 get_syscall_by_number (last.value.syscall_number, &s);
8403
8404 annotate_catchpoint (b->number);
8405
8406 if (b->disposition == disp_del)
8407 ui_out_text (uiout, "\nTemporary catchpoint ");
8408 else
8409 ui_out_text (uiout, "\nCatchpoint ");
8410 if (ui_out_is_mi_like_p (uiout))
8411 {
8412 ui_out_field_string (uiout, "reason",
8413 async_reason_lookup (last.kind == TARGET_WAITKIND_SYSCALL_ENTRY
8414 ? EXEC_ASYNC_SYSCALL_ENTRY
8415 : EXEC_ASYNC_SYSCALL_RETURN));
8416 ui_out_field_string (uiout, "disp", bpdisp_text (b->disposition));
8417 }
8418 ui_out_field_int (uiout, "bkptno", b->number);
8419
8420 if (last.kind == TARGET_WAITKIND_SYSCALL_ENTRY)
8421 ui_out_text (uiout, " (call to syscall ");
8422 else
8423 ui_out_text (uiout, " (returned from syscall ");
8424
8425 if (s.name == NULL || ui_out_is_mi_like_p (uiout))
8426 ui_out_field_int (uiout, "syscall-number", last.value.syscall_number);
8427 if (s.name != NULL)
8428 ui_out_field_string (uiout, "syscall-name", s.name);
8429
8430 ui_out_text (uiout, "), ");
8431
8432 return PRINT_SRC_AND_LOC;
8433 }
8434
8435 /* Implement the "print_one" breakpoint_ops method for syscall
8436 catchpoints. */
8437
8438 static void
8439 print_one_catch_syscall (struct breakpoint *b,
8440 struct bp_location **last_loc)
8441 {
8442 struct syscall_catchpoint *c = (struct syscall_catchpoint *) b;
8443 struct value_print_options opts;
8444 struct ui_out *uiout = current_uiout;
8445
8446 get_user_print_options (&opts);
8447 /* Field 4, the address, is omitted (which makes the columns not
8448 line up too nicely with the headers, but the effect is relatively
8449 readable). */
8450 if (opts.addressprint)
8451 ui_out_field_skip (uiout, "addr");
8452 annotate_field (5);
8453
8454 if (c->syscalls_to_be_caught
8455 && VEC_length (int, c->syscalls_to_be_caught) > 1)
8456 ui_out_text (uiout, "syscalls \"");
8457 else
8458 ui_out_text (uiout, "syscall \"");
8459
8460 if (c->syscalls_to_be_caught)
8461 {
8462 int i, iter;
8463 char *text = xstrprintf ("%s", "");
8464
8465 for (i = 0;
8466 VEC_iterate (int, c->syscalls_to_be_caught, i, iter);
8467 i++)
8468 {
8469 char *x = text;
8470 struct syscall s;
8471 get_syscall_by_number (iter, &s);
8472
8473 if (s.name != NULL)
8474 text = xstrprintf ("%s%s, ", text, s.name);
8475 else
8476 text = xstrprintf ("%s%d, ", text, iter);
8477
8478 /* We have to xfree the last 'text' (now stored at 'x')
8479 because xstrprintf dynamically allocates new space for it
8480 on every call. */
8481 xfree (x);
8482 }
8483 /* Remove the last comma. */
8484 text[strlen (text) - 2] = '\0';
8485 ui_out_field_string (uiout, "what", text);
8486 }
8487 else
8488 ui_out_field_string (uiout, "what", "<any syscall>");
8489 ui_out_text (uiout, "\" ");
8490
8491 if (ui_out_is_mi_like_p (uiout))
8492 ui_out_field_string (uiout, "catch-type", "syscall");
8493 }
8494
8495 /* Implement the "print_mention" breakpoint_ops method for syscall
8496 catchpoints. */
8497
8498 static void
8499 print_mention_catch_syscall (struct breakpoint *b)
8500 {
8501 struct syscall_catchpoint *c = (struct syscall_catchpoint *) b;
8502
8503 if (c->syscalls_to_be_caught)
8504 {
8505 int i, iter;
8506
8507 if (VEC_length (int, c->syscalls_to_be_caught) > 1)
8508 printf_filtered (_("Catchpoint %d (syscalls"), b->number);
8509 else
8510 printf_filtered (_("Catchpoint %d (syscall"), b->number);
8511
8512 for (i = 0;
8513 VEC_iterate (int, c->syscalls_to_be_caught, i, iter);
8514 i++)
8515 {
8516 struct syscall s;
8517 get_syscall_by_number (iter, &s);
8518
8519 if (s.name)
8520 printf_filtered (" '%s' [%d]", s.name, s.number);
8521 else
8522 printf_filtered (" %d", s.number);
8523 }
8524 printf_filtered (")");
8525 }
8526 else
8527 printf_filtered (_("Catchpoint %d (any syscall)"),
8528 b->number);
8529 }
8530
8531 /* Implement the "print_recreate" breakpoint_ops method for syscall
8532 catchpoints. */
8533
8534 static void
8535 print_recreate_catch_syscall (struct breakpoint *b, struct ui_file *fp)
8536 {
8537 struct syscall_catchpoint *c = (struct syscall_catchpoint *) b;
8538
8539 fprintf_unfiltered (fp, "catch syscall");
8540
8541 if (c->syscalls_to_be_caught)
8542 {
8543 int i, iter;
8544
8545 for (i = 0;
8546 VEC_iterate (int, c->syscalls_to_be_caught, i, iter);
8547 i++)
8548 {
8549 struct syscall s;
8550
8551 get_syscall_by_number (iter, &s);
8552 if (s.name)
8553 fprintf_unfiltered (fp, " %s", s.name);
8554 else
8555 fprintf_unfiltered (fp, " %d", s.number);
8556 }
8557 }
8558 print_recreate_thread (b, fp);
8559 }
8560
8561 /* The breakpoint_ops structure to be used in syscall catchpoints. */
8562
8563 static struct breakpoint_ops catch_syscall_breakpoint_ops;
8564
8565 /* Returns non-zero if 'b' is a syscall catchpoint. */
8566
8567 static int
8568 syscall_catchpoint_p (struct breakpoint *b)
8569 {
8570 return (b->ops == &catch_syscall_breakpoint_ops);
8571 }
8572
8573 /* Initialize a new breakpoint of the bp_catchpoint kind. If TEMPFLAG
8574 is non-zero, then make the breakpoint temporary. If COND_STRING is
8575 not NULL, then store it in the breakpoint. OPS, if not NULL, is
8576 the breakpoint_ops structure associated to the catchpoint. */
8577
8578 void
8579 init_catchpoint (struct breakpoint *b,
8580 struct gdbarch *gdbarch, int tempflag,
8581 char *cond_string,
8582 const struct breakpoint_ops *ops)
8583 {
8584 struct symtab_and_line sal;
8585
8586 init_sal (&sal);
8587 sal.pspace = current_program_space;
8588
8589 init_raw_breakpoint (b, gdbarch, sal, bp_catchpoint, ops);
8590
8591 b->cond_string = (cond_string == NULL) ? NULL : xstrdup (cond_string);
8592 b->disposition = tempflag ? disp_del : disp_donttouch;
8593 }
8594
8595 void
8596 install_breakpoint (int internal, struct breakpoint *b, int update_gll)
8597 {
8598 add_to_breakpoint_chain (b);
8599 set_breakpoint_number (internal, b);
8600 if (is_tracepoint (b))
8601 set_tracepoint_count (breakpoint_count);
8602 if (!internal)
8603 mention (b);
8604 observer_notify_breakpoint_created (b);
8605
8606 if (update_gll)
8607 update_global_location_list (1);
8608 }
8609
8610 static void
8611 create_fork_vfork_event_catchpoint (struct gdbarch *gdbarch,
8612 int tempflag, char *cond_string,
8613 const struct breakpoint_ops *ops)
8614 {
8615 struct fork_catchpoint *c = XNEW (struct fork_catchpoint);
8616
8617 init_catchpoint (&c->base, gdbarch, tempflag, cond_string, ops);
8618
8619 c->forked_inferior_pid = null_ptid;
8620
8621 install_breakpoint (0, &c->base, 1);
8622 }
8623
8624 /* Exec catchpoints. */
8625
8626 /* An instance of this type is used to represent an exec catchpoint.
8627 It includes a "struct breakpoint" as a kind of base class; users
8628 downcast to "struct breakpoint *" when needed. A breakpoint is
8629 really of this type iff its ops pointer points to
8630 CATCH_EXEC_BREAKPOINT_OPS. */
8631
8632 struct exec_catchpoint
8633 {
8634 /* The base class. */
8635 struct breakpoint base;
8636
8637 /* Filename of a program whose exec triggered this catchpoint.
8638 This field is only valid immediately after this catchpoint has
8639 triggered. */
8640 char *exec_pathname;
8641 };
8642
8643 /* Implement the "dtor" breakpoint_ops method for exec
8644 catchpoints. */
8645
8646 static void
8647 dtor_catch_exec (struct breakpoint *b)
8648 {
8649 struct exec_catchpoint *c = (struct exec_catchpoint *) b;
8650
8651 xfree (c->exec_pathname);
8652
8653 base_breakpoint_ops.dtor (b);
8654 }
8655
8656 static int
8657 insert_catch_exec (struct bp_location *bl)
8658 {
8659 return target_insert_exec_catchpoint (ptid_get_pid (inferior_ptid));
8660 }
8661
8662 static int
8663 remove_catch_exec (struct bp_location *bl)
8664 {
8665 return target_remove_exec_catchpoint (ptid_get_pid (inferior_ptid));
8666 }
8667
8668 static int
8669 breakpoint_hit_catch_exec (const struct bp_location *bl,
8670 struct address_space *aspace, CORE_ADDR bp_addr,
8671 const struct target_waitstatus *ws)
8672 {
8673 struct exec_catchpoint *c = (struct exec_catchpoint *) bl->owner;
8674
8675 if (ws->kind != TARGET_WAITKIND_EXECD)
8676 return 0;
8677
8678 c->exec_pathname = xstrdup (ws->value.execd_pathname);
8679 return 1;
8680 }
8681
8682 static enum print_stop_action
8683 print_it_catch_exec (bpstat bs)
8684 {
8685 struct ui_out *uiout = current_uiout;
8686 struct breakpoint *b = bs->breakpoint_at;
8687 struct exec_catchpoint *c = (struct exec_catchpoint *) b;
8688
8689 annotate_catchpoint (b->number);
8690 if (b->disposition == disp_del)
8691 ui_out_text (uiout, "\nTemporary catchpoint ");
8692 else
8693 ui_out_text (uiout, "\nCatchpoint ");
8694 if (ui_out_is_mi_like_p (uiout))
8695 {
8696 ui_out_field_string (uiout, "reason",
8697 async_reason_lookup (EXEC_ASYNC_EXEC));
8698 ui_out_field_string (uiout, "disp", bpdisp_text (b->disposition));
8699 }
8700 ui_out_field_int (uiout, "bkptno", b->number);
8701 ui_out_text (uiout, " (exec'd ");
8702 ui_out_field_string (uiout, "new-exec", c->exec_pathname);
8703 ui_out_text (uiout, "), ");
8704
8705 return PRINT_SRC_AND_LOC;
8706 }
8707
8708 static void
8709 print_one_catch_exec (struct breakpoint *b, struct bp_location **last_loc)
8710 {
8711 struct exec_catchpoint *c = (struct exec_catchpoint *) b;
8712 struct value_print_options opts;
8713 struct ui_out *uiout = current_uiout;
8714
8715 get_user_print_options (&opts);
8716
8717 /* Field 4, the address, is omitted (which makes the columns
8718 not line up too nicely with the headers, but the effect
8719 is relatively readable). */
8720 if (opts.addressprint)
8721 ui_out_field_skip (uiout, "addr");
8722 annotate_field (5);
8723 ui_out_text (uiout, "exec");
8724 if (c->exec_pathname != NULL)
8725 {
8726 ui_out_text (uiout, ", program \"");
8727 ui_out_field_string (uiout, "what", c->exec_pathname);
8728 ui_out_text (uiout, "\" ");
8729 }
8730
8731 if (ui_out_is_mi_like_p (uiout))
8732 ui_out_field_string (uiout, "catch-type", "exec");
8733 }
8734
8735 static void
8736 print_mention_catch_exec (struct breakpoint *b)
8737 {
8738 printf_filtered (_("Catchpoint %d (exec)"), b->number);
8739 }
8740
8741 /* Implement the "print_recreate" breakpoint_ops method for exec
8742 catchpoints. */
8743
8744 static void
8745 print_recreate_catch_exec (struct breakpoint *b, struct ui_file *fp)
8746 {
8747 fprintf_unfiltered (fp, "catch exec");
8748 print_recreate_thread (b, fp);
8749 }
8750
8751 static struct breakpoint_ops catch_exec_breakpoint_ops;
8752
8753 static void
8754 create_syscall_event_catchpoint (int tempflag, VEC(int) *filter,
8755 const struct breakpoint_ops *ops)
8756 {
8757 struct syscall_catchpoint *c;
8758 struct gdbarch *gdbarch = get_current_arch ();
8759
8760 c = XNEW (struct syscall_catchpoint);
8761 init_catchpoint (&c->base, gdbarch, tempflag, NULL, ops);
8762 c->syscalls_to_be_caught = filter;
8763
8764 install_breakpoint (0, &c->base, 1);
8765 }
8766
8767 static int
8768 hw_breakpoint_used_count (void)
8769 {
8770 int i = 0;
8771 struct breakpoint *b;
8772 struct bp_location *bl;
8773
8774 ALL_BREAKPOINTS (b)
8775 {
8776 if (b->type == bp_hardware_breakpoint && breakpoint_enabled (b))
8777 for (bl = b->loc; bl; bl = bl->next)
8778 {
8779 /* Special types of hardware breakpoints may use more than
8780 one register. */
8781 i += b->ops->resources_needed (bl);
8782 }
8783 }
8784
8785 return i;
8786 }
8787
8788 /* Returns the resources B would use if it were a hardware
8789 watchpoint. */
8790
8791 static int
8792 hw_watchpoint_use_count (struct breakpoint *b)
8793 {
8794 int i = 0;
8795 struct bp_location *bl;
8796
8797 if (!breakpoint_enabled (b))
8798 return 0;
8799
8800 for (bl = b->loc; bl; bl = bl->next)
8801 {
8802 /* Special types of hardware watchpoints may use more than
8803 one register. */
8804 i += b->ops->resources_needed (bl);
8805 }
8806
8807 return i;
8808 }
8809
8810 /* Returns the sum the used resources of all hardware watchpoints of
8811 type TYPE in the breakpoints list. Also returns in OTHER_TYPE_USED
8812 the sum of the used resources of all hardware watchpoints of other
8813 types _not_ TYPE. */
8814
8815 static int
8816 hw_watchpoint_used_count_others (struct breakpoint *except,
8817 enum bptype type, int *other_type_used)
8818 {
8819 int i = 0;
8820 struct breakpoint *b;
8821
8822 *other_type_used = 0;
8823 ALL_BREAKPOINTS (b)
8824 {
8825 if (b == except)
8826 continue;
8827 if (!breakpoint_enabled (b))
8828 continue;
8829
8830 if (b->type == type)
8831 i += hw_watchpoint_use_count (b);
8832 else if (is_hardware_watchpoint (b))
8833 *other_type_used = 1;
8834 }
8835
8836 return i;
8837 }
8838
8839 void
8840 disable_watchpoints_before_interactive_call_start (void)
8841 {
8842 struct breakpoint *b;
8843
8844 ALL_BREAKPOINTS (b)
8845 {
8846 if (is_watchpoint (b) && breakpoint_enabled (b))
8847 {
8848 b->enable_state = bp_call_disabled;
8849 update_global_location_list (0);
8850 }
8851 }
8852 }
8853
8854 void
8855 enable_watchpoints_after_interactive_call_stop (void)
8856 {
8857 struct breakpoint *b;
8858
8859 ALL_BREAKPOINTS (b)
8860 {
8861 if (is_watchpoint (b) && b->enable_state == bp_call_disabled)
8862 {
8863 b->enable_state = bp_enabled;
8864 update_global_location_list (1);
8865 }
8866 }
8867 }
8868
8869 void
8870 disable_breakpoints_before_startup (void)
8871 {
8872 current_program_space->executing_startup = 1;
8873 update_global_location_list (0);
8874 }
8875
8876 void
8877 enable_breakpoints_after_startup (void)
8878 {
8879 current_program_space->executing_startup = 0;
8880 breakpoint_re_set ();
8881 }
8882
8883
8884 /* Set a breakpoint that will evaporate an end of command
8885 at address specified by SAL.
8886 Restrict it to frame FRAME if FRAME is nonzero. */
8887
8888 struct breakpoint *
8889 set_momentary_breakpoint (struct gdbarch *gdbarch, struct symtab_and_line sal,
8890 struct frame_id frame_id, enum bptype type)
8891 {
8892 struct breakpoint *b;
8893
8894 /* If FRAME_ID is valid, it should be a real frame, not an inlined or
8895 tail-called one. */
8896 gdb_assert (!frame_id_artificial_p (frame_id));
8897
8898 b = set_raw_breakpoint (gdbarch, sal, type, &momentary_breakpoint_ops);
8899 b->enable_state = bp_enabled;
8900 b->disposition = disp_donttouch;
8901 b->frame_id = frame_id;
8902
8903 /* If we're debugging a multi-threaded program, then we want
8904 momentary breakpoints to be active in only a single thread of
8905 control. */
8906 if (in_thread_list (inferior_ptid))
8907 b->thread = pid_to_thread_id (inferior_ptid);
8908
8909 update_global_location_list_nothrow (1);
8910
8911 return b;
8912 }
8913
8914 /* Make a momentary breakpoint based on the master breakpoint ORIG.
8915 The new breakpoint will have type TYPE, and use OPS as it
8916 breakpoint_ops. */
8917
8918 static struct breakpoint *
8919 momentary_breakpoint_from_master (struct breakpoint *orig,
8920 enum bptype type,
8921 const struct breakpoint_ops *ops)
8922 {
8923 struct breakpoint *copy;
8924
8925 copy = set_raw_breakpoint_without_location (orig->gdbarch, type, ops);
8926 copy->loc = allocate_bp_location (copy);
8927 set_breakpoint_location_function (copy->loc, 1);
8928
8929 copy->loc->gdbarch = orig->loc->gdbarch;
8930 copy->loc->requested_address = orig->loc->requested_address;
8931 copy->loc->address = orig->loc->address;
8932 copy->loc->section = orig->loc->section;
8933 copy->loc->pspace = orig->loc->pspace;
8934 copy->loc->probe = orig->loc->probe;
8935 copy->loc->line_number = orig->loc->line_number;
8936 copy->loc->symtab = orig->loc->symtab;
8937 copy->frame_id = orig->frame_id;
8938 copy->thread = orig->thread;
8939 copy->pspace = orig->pspace;
8940
8941 copy->enable_state = bp_enabled;
8942 copy->disposition = disp_donttouch;
8943 copy->number = internal_breakpoint_number--;
8944
8945 update_global_location_list_nothrow (0);
8946 return copy;
8947 }
8948
8949 /* Make a deep copy of momentary breakpoint ORIG. Returns NULL if
8950 ORIG is NULL. */
8951
8952 struct breakpoint *
8953 clone_momentary_breakpoint (struct breakpoint *orig)
8954 {
8955 /* If there's nothing to clone, then return nothing. */
8956 if (orig == NULL)
8957 return NULL;
8958
8959 return momentary_breakpoint_from_master (orig, orig->type, orig->ops);
8960 }
8961
8962 struct breakpoint *
8963 set_momentary_breakpoint_at_pc (struct gdbarch *gdbarch, CORE_ADDR pc,
8964 enum bptype type)
8965 {
8966 struct symtab_and_line sal;
8967
8968 sal = find_pc_line (pc, 0);
8969 sal.pc = pc;
8970 sal.section = find_pc_overlay (pc);
8971 sal.explicit_pc = 1;
8972
8973 return set_momentary_breakpoint (gdbarch, sal, null_frame_id, type);
8974 }
8975 \f
8976
8977 /* Tell the user we have just set a breakpoint B. */
8978
8979 static void
8980 mention (struct breakpoint *b)
8981 {
8982 b->ops->print_mention (b);
8983 if (ui_out_is_mi_like_p (current_uiout))
8984 return;
8985 printf_filtered ("\n");
8986 }
8987 \f
8988
8989 static struct bp_location *
8990 add_location_to_breakpoint (struct breakpoint *b,
8991 const struct symtab_and_line *sal)
8992 {
8993 struct bp_location *loc, **tmp;
8994 CORE_ADDR adjusted_address;
8995 struct gdbarch *loc_gdbarch = get_sal_arch (*sal);
8996
8997 if (loc_gdbarch == NULL)
8998 loc_gdbarch = b->gdbarch;
8999
9000 /* Adjust the breakpoint's address prior to allocating a location.
9001 Once we call allocate_bp_location(), that mostly uninitialized
9002 location will be placed on the location chain. Adjustment of the
9003 breakpoint may cause target_read_memory() to be called and we do
9004 not want its scan of the location chain to find a breakpoint and
9005 location that's only been partially initialized. */
9006 adjusted_address = adjust_breakpoint_address (loc_gdbarch,
9007 sal->pc, b->type);
9008
9009 /* Sort the locations by their ADDRESS. */
9010 loc = allocate_bp_location (b);
9011 for (tmp = &(b->loc); *tmp != NULL && (*tmp)->address <= adjusted_address;
9012 tmp = &((*tmp)->next))
9013 ;
9014 loc->next = *tmp;
9015 *tmp = loc;
9016
9017 loc->requested_address = sal->pc;
9018 loc->address = adjusted_address;
9019 loc->pspace = sal->pspace;
9020 loc->probe = sal->probe;
9021 gdb_assert (loc->pspace != NULL);
9022 loc->section = sal->section;
9023 loc->gdbarch = loc_gdbarch;
9024 loc->line_number = sal->line;
9025 loc->symtab = sal->symtab;
9026
9027 set_breakpoint_location_function (loc,
9028 sal->explicit_pc || sal->explicit_line);
9029 return loc;
9030 }
9031 \f
9032
9033 /* Return 1 if LOC is pointing to a permanent breakpoint,
9034 return 0 otherwise. */
9035
9036 static int
9037 bp_loc_is_permanent (struct bp_location *loc)
9038 {
9039 int len;
9040 CORE_ADDR addr;
9041 const gdb_byte *bpoint;
9042 gdb_byte *target_mem;
9043 struct cleanup *cleanup;
9044 int retval = 0;
9045
9046 gdb_assert (loc != NULL);
9047
9048 addr = loc->address;
9049 bpoint = gdbarch_breakpoint_from_pc (loc->gdbarch, &addr, &len);
9050
9051 /* Software breakpoints unsupported? */
9052 if (bpoint == NULL)
9053 return 0;
9054
9055 target_mem = alloca (len);
9056
9057 /* Enable the automatic memory restoration from breakpoints while
9058 we read the memory. Otherwise we could say about our temporary
9059 breakpoints they are permanent. */
9060 cleanup = save_current_space_and_thread ();
9061
9062 switch_to_program_space_and_thread (loc->pspace);
9063 make_show_memory_breakpoints_cleanup (0);
9064
9065 if (target_read_memory (loc->address, target_mem, len) == 0
9066 && memcmp (target_mem, bpoint, len) == 0)
9067 retval = 1;
9068
9069 do_cleanups (cleanup);
9070
9071 return retval;
9072 }
9073
9074 /* Build a command list for the dprintf corresponding to the current
9075 settings of the dprintf style options. */
9076
9077 static void
9078 update_dprintf_command_list (struct breakpoint *b)
9079 {
9080 char *dprintf_args = b->extra_string;
9081 char *printf_line = NULL;
9082
9083 if (!dprintf_args)
9084 return;
9085
9086 dprintf_args = skip_spaces (dprintf_args);
9087
9088 /* Allow a comma, as it may have terminated a location, but don't
9089 insist on it. */
9090 if (*dprintf_args == ',')
9091 ++dprintf_args;
9092 dprintf_args = skip_spaces (dprintf_args);
9093
9094 if (*dprintf_args != '"')
9095 error (_("Bad format string, missing '\"'."));
9096
9097 if (strcmp (dprintf_style, dprintf_style_gdb) == 0)
9098 printf_line = xstrprintf ("printf %s", dprintf_args);
9099 else if (strcmp (dprintf_style, dprintf_style_call) == 0)
9100 {
9101 if (!dprintf_function)
9102 error (_("No function supplied for dprintf call"));
9103
9104 if (dprintf_channel && strlen (dprintf_channel) > 0)
9105 printf_line = xstrprintf ("call (void) %s (%s,%s)",
9106 dprintf_function,
9107 dprintf_channel,
9108 dprintf_args);
9109 else
9110 printf_line = xstrprintf ("call (void) %s (%s)",
9111 dprintf_function,
9112 dprintf_args);
9113 }
9114 else if (strcmp (dprintf_style, dprintf_style_agent) == 0)
9115 {
9116 if (target_can_run_breakpoint_commands ())
9117 printf_line = xstrprintf ("agent-printf %s", dprintf_args);
9118 else
9119 {
9120 warning (_("Target cannot run dprintf commands, falling back to GDB printf"));
9121 printf_line = xstrprintf ("printf %s", dprintf_args);
9122 }
9123 }
9124 else
9125 internal_error (__FILE__, __LINE__,
9126 _("Invalid dprintf style."));
9127
9128 gdb_assert (printf_line != NULL);
9129 /* Manufacture a printf sequence. */
9130 {
9131 struct command_line *printf_cmd_line
9132 = xmalloc (sizeof (struct command_line));
9133
9134 printf_cmd_line = xmalloc (sizeof (struct command_line));
9135 printf_cmd_line->control_type = simple_control;
9136 printf_cmd_line->body_count = 0;
9137 printf_cmd_line->body_list = NULL;
9138 printf_cmd_line->next = NULL;
9139 printf_cmd_line->line = printf_line;
9140
9141 breakpoint_set_commands (b, printf_cmd_line);
9142 }
9143 }
9144
9145 /* Update all dprintf commands, making their command lists reflect
9146 current style settings. */
9147
9148 static void
9149 update_dprintf_commands (char *args, int from_tty,
9150 struct cmd_list_element *c)
9151 {
9152 struct breakpoint *b;
9153
9154 ALL_BREAKPOINTS (b)
9155 {
9156 if (b->type == bp_dprintf)
9157 update_dprintf_command_list (b);
9158 }
9159 }
9160
9161 /* Create a breakpoint with SAL as location. Use ADDR_STRING
9162 as textual description of the location, and COND_STRING
9163 as condition expression. */
9164
9165 static void
9166 init_breakpoint_sal (struct breakpoint *b, struct gdbarch *gdbarch,
9167 struct symtabs_and_lines sals, char *addr_string,
9168 char *filter, char *cond_string,
9169 char *extra_string,
9170 enum bptype type, enum bpdisp disposition,
9171 int thread, int task, int ignore_count,
9172 const struct breakpoint_ops *ops, int from_tty,
9173 int enabled, int internal, unsigned flags,
9174 int display_canonical)
9175 {
9176 int i;
9177
9178 if (type == bp_hardware_breakpoint)
9179 {
9180 int target_resources_ok;
9181
9182 i = hw_breakpoint_used_count ();
9183 target_resources_ok =
9184 target_can_use_hardware_watchpoint (bp_hardware_breakpoint,
9185 i + 1, 0);
9186 if (target_resources_ok == 0)
9187 error (_("No hardware breakpoint support in the target."));
9188 else if (target_resources_ok < 0)
9189 error (_("Hardware breakpoints used exceeds limit."));
9190 }
9191
9192 gdb_assert (sals.nelts > 0);
9193
9194 for (i = 0; i < sals.nelts; ++i)
9195 {
9196 struct symtab_and_line sal = sals.sals[i];
9197 struct bp_location *loc;
9198
9199 if (from_tty)
9200 {
9201 struct gdbarch *loc_gdbarch = get_sal_arch (sal);
9202 if (!loc_gdbarch)
9203 loc_gdbarch = gdbarch;
9204
9205 describe_other_breakpoints (loc_gdbarch,
9206 sal.pspace, sal.pc, sal.section, thread);
9207 }
9208
9209 if (i == 0)
9210 {
9211 init_raw_breakpoint (b, gdbarch, sal, type, ops);
9212 b->thread = thread;
9213 b->task = task;
9214
9215 b->cond_string = cond_string;
9216 b->extra_string = extra_string;
9217 b->ignore_count = ignore_count;
9218 b->enable_state = enabled ? bp_enabled : bp_disabled;
9219 b->disposition = disposition;
9220
9221 if ((flags & CREATE_BREAKPOINT_FLAGS_INSERTED) != 0)
9222 b->loc->inserted = 1;
9223
9224 if (type == bp_static_tracepoint)
9225 {
9226 struct tracepoint *t = (struct tracepoint *) b;
9227 struct static_tracepoint_marker marker;
9228
9229 if (strace_marker_p (b))
9230 {
9231 /* We already know the marker exists, otherwise, we
9232 wouldn't see a sal for it. */
9233 char *p = &addr_string[3];
9234 char *endp;
9235 char *marker_str;
9236
9237 p = skip_spaces (p);
9238
9239 endp = skip_to_space (p);
9240
9241 marker_str = savestring (p, endp - p);
9242 t->static_trace_marker_id = marker_str;
9243
9244 printf_filtered (_("Probed static tracepoint "
9245 "marker \"%s\"\n"),
9246 t->static_trace_marker_id);
9247 }
9248 else if (target_static_tracepoint_marker_at (sal.pc, &marker))
9249 {
9250 t->static_trace_marker_id = xstrdup (marker.str_id);
9251 release_static_tracepoint_marker (&marker);
9252
9253 printf_filtered (_("Probed static tracepoint "
9254 "marker \"%s\"\n"),
9255 t->static_trace_marker_id);
9256 }
9257 else
9258 warning (_("Couldn't determine the static "
9259 "tracepoint marker to probe"));
9260 }
9261
9262 loc = b->loc;
9263 }
9264 else
9265 {
9266 loc = add_location_to_breakpoint (b, &sal);
9267 if ((flags & CREATE_BREAKPOINT_FLAGS_INSERTED) != 0)
9268 loc->inserted = 1;
9269 }
9270
9271 if (bp_loc_is_permanent (loc))
9272 make_breakpoint_permanent (b);
9273
9274 if (b->cond_string)
9275 {
9276 const char *arg = b->cond_string;
9277
9278 loc->cond = parse_exp_1 (&arg, loc->address,
9279 block_for_pc (loc->address), 0);
9280 if (*arg)
9281 error (_("Garbage '%s' follows condition"), arg);
9282 }
9283
9284 /* Dynamic printf requires and uses additional arguments on the
9285 command line, otherwise it's an error. */
9286 if (type == bp_dprintf)
9287 {
9288 if (b->extra_string)
9289 update_dprintf_command_list (b);
9290 else
9291 error (_("Format string required"));
9292 }
9293 else if (b->extra_string)
9294 error (_("Garbage '%s' at end of command"), b->extra_string);
9295 }
9296
9297 b->display_canonical = display_canonical;
9298 if (addr_string)
9299 b->addr_string = addr_string;
9300 else
9301 /* addr_string has to be used or breakpoint_re_set will delete
9302 me. */
9303 b->addr_string
9304 = xstrprintf ("*%s", paddress (b->loc->gdbarch, b->loc->address));
9305 b->filter = filter;
9306 }
9307
9308 static void
9309 create_breakpoint_sal (struct gdbarch *gdbarch,
9310 struct symtabs_and_lines sals, char *addr_string,
9311 char *filter, char *cond_string,
9312 char *extra_string,
9313 enum bptype type, enum bpdisp disposition,
9314 int thread, int task, int ignore_count,
9315 const struct breakpoint_ops *ops, int from_tty,
9316 int enabled, int internal, unsigned flags,
9317 int display_canonical)
9318 {
9319 struct breakpoint *b;
9320 struct cleanup *old_chain;
9321
9322 if (is_tracepoint_type (type))
9323 {
9324 struct tracepoint *t;
9325
9326 t = XCNEW (struct tracepoint);
9327 b = &t->base;
9328 }
9329 else
9330 b = XNEW (struct breakpoint);
9331
9332 old_chain = make_cleanup (xfree, b);
9333
9334 init_breakpoint_sal (b, gdbarch,
9335 sals, addr_string,
9336 filter, cond_string, extra_string,
9337 type, disposition,
9338 thread, task, ignore_count,
9339 ops, from_tty,
9340 enabled, internal, flags,
9341 display_canonical);
9342 discard_cleanups (old_chain);
9343
9344 install_breakpoint (internal, b, 0);
9345 }
9346
9347 /* Add SALS.nelts breakpoints to the breakpoint table. For each
9348 SALS.sal[i] breakpoint, include the corresponding ADDR_STRING[i]
9349 value. COND_STRING, if not NULL, specified the condition to be
9350 used for all breakpoints. Essentially the only case where
9351 SALS.nelts is not 1 is when we set a breakpoint on an overloaded
9352 function. In that case, it's still not possible to specify
9353 separate conditions for different overloaded functions, so
9354 we take just a single condition string.
9355
9356 NOTE: If the function succeeds, the caller is expected to cleanup
9357 the arrays ADDR_STRING, COND_STRING, and SALS (but not the
9358 array contents). If the function fails (error() is called), the
9359 caller is expected to cleanups both the ADDR_STRING, COND_STRING,
9360 COND and SALS arrays and each of those arrays contents. */
9361
9362 static void
9363 create_breakpoints_sal (struct gdbarch *gdbarch,
9364 struct linespec_result *canonical,
9365 char *cond_string, char *extra_string,
9366 enum bptype type, enum bpdisp disposition,
9367 int thread, int task, int ignore_count,
9368 const struct breakpoint_ops *ops, int from_tty,
9369 int enabled, int internal, unsigned flags)
9370 {
9371 int i;
9372 struct linespec_sals *lsal;
9373
9374 if (canonical->pre_expanded)
9375 gdb_assert (VEC_length (linespec_sals, canonical->sals) == 1);
9376
9377 for (i = 0; VEC_iterate (linespec_sals, canonical->sals, i, lsal); ++i)
9378 {
9379 /* Note that 'addr_string' can be NULL in the case of a plain
9380 'break', without arguments. */
9381 char *addr_string = (canonical->addr_string
9382 ? xstrdup (canonical->addr_string)
9383 : NULL);
9384 char *filter_string = lsal->canonical ? xstrdup (lsal->canonical) : NULL;
9385 struct cleanup *inner = make_cleanup (xfree, addr_string);
9386
9387 make_cleanup (xfree, filter_string);
9388 create_breakpoint_sal (gdbarch, lsal->sals,
9389 addr_string,
9390 filter_string,
9391 cond_string, extra_string,
9392 type, disposition,
9393 thread, task, ignore_count, ops,
9394 from_tty, enabled, internal, flags,
9395 canonical->special_display);
9396 discard_cleanups (inner);
9397 }
9398 }
9399
9400 /* Parse ADDRESS which is assumed to be a SAL specification possibly
9401 followed by conditionals. On return, SALS contains an array of SAL
9402 addresses found. ADDR_STRING contains a vector of (canonical)
9403 address strings. ADDRESS points to the end of the SAL.
9404
9405 The array and the line spec strings are allocated on the heap, it is
9406 the caller's responsibility to free them. */
9407
9408 static void
9409 parse_breakpoint_sals (char **address,
9410 struct linespec_result *canonical)
9411 {
9412 /* If no arg given, or if first arg is 'if ', use the default
9413 breakpoint. */
9414 if ((*address) == NULL
9415 || (strncmp ((*address), "if", 2) == 0 && isspace ((*address)[2])))
9416 {
9417 /* The last displayed codepoint, if it's valid, is our default breakpoint
9418 address. */
9419 if (last_displayed_sal_is_valid ())
9420 {
9421 struct linespec_sals lsal;
9422 struct symtab_and_line sal;
9423 CORE_ADDR pc;
9424
9425 init_sal (&sal); /* Initialize to zeroes. */
9426 lsal.sals.sals = (struct symtab_and_line *)
9427 xmalloc (sizeof (struct symtab_and_line));
9428
9429 /* Set sal's pspace, pc, symtab, and line to the values
9430 corresponding to the last call to print_frame_info.
9431 Be sure to reinitialize LINE with NOTCURRENT == 0
9432 as the breakpoint line number is inappropriate otherwise.
9433 find_pc_line would adjust PC, re-set it back. */
9434 get_last_displayed_sal (&sal);
9435 pc = sal.pc;
9436 sal = find_pc_line (pc, 0);
9437
9438 /* "break" without arguments is equivalent to "break *PC"
9439 where PC is the last displayed codepoint's address. So
9440 make sure to set sal.explicit_pc to prevent GDB from
9441 trying to expand the list of sals to include all other
9442 instances with the same symtab and line. */
9443 sal.pc = pc;
9444 sal.explicit_pc = 1;
9445
9446 lsal.sals.sals[0] = sal;
9447 lsal.sals.nelts = 1;
9448 lsal.canonical = NULL;
9449
9450 VEC_safe_push (linespec_sals, canonical->sals, &lsal);
9451 }
9452 else
9453 error (_("No default breakpoint address now."));
9454 }
9455 else
9456 {
9457 struct symtab_and_line cursal = get_current_source_symtab_and_line ();
9458
9459 /* Force almost all breakpoints to be in terms of the
9460 current_source_symtab (which is decode_line_1's default).
9461 This should produce the results we want almost all of the
9462 time while leaving default_breakpoint_* alone.
9463
9464 ObjC: However, don't match an Objective-C method name which
9465 may have a '+' or '-' succeeded by a '['. */
9466 if (last_displayed_sal_is_valid ()
9467 && (!cursal.symtab
9468 || ((strchr ("+-", (*address)[0]) != NULL)
9469 && ((*address)[1] != '['))))
9470 decode_line_full (address, DECODE_LINE_FUNFIRSTLINE,
9471 get_last_displayed_symtab (),
9472 get_last_displayed_line (),
9473 canonical, NULL, NULL);
9474 else
9475 decode_line_full (address, DECODE_LINE_FUNFIRSTLINE,
9476 cursal.symtab, cursal.line, canonical, NULL, NULL);
9477 }
9478 }
9479
9480
9481 /* Convert each SAL into a real PC. Verify that the PC can be
9482 inserted as a breakpoint. If it can't throw an error. */
9483
9484 static void
9485 breakpoint_sals_to_pc (struct symtabs_and_lines *sals)
9486 {
9487 int i;
9488
9489 for (i = 0; i < sals->nelts; i++)
9490 resolve_sal_pc (&sals->sals[i]);
9491 }
9492
9493 /* Fast tracepoints may have restrictions on valid locations. For
9494 instance, a fast tracepoint using a jump instead of a trap will
9495 likely have to overwrite more bytes than a trap would, and so can
9496 only be placed where the instruction is longer than the jump, or a
9497 multi-instruction sequence does not have a jump into the middle of
9498 it, etc. */
9499
9500 static void
9501 check_fast_tracepoint_sals (struct gdbarch *gdbarch,
9502 struct symtabs_and_lines *sals)
9503 {
9504 int i, rslt;
9505 struct symtab_and_line *sal;
9506 char *msg;
9507 struct cleanup *old_chain;
9508
9509 for (i = 0; i < sals->nelts; i++)
9510 {
9511 struct gdbarch *sarch;
9512
9513 sal = &sals->sals[i];
9514
9515 sarch = get_sal_arch (*sal);
9516 /* We fall back to GDBARCH if there is no architecture
9517 associated with SAL. */
9518 if (sarch == NULL)
9519 sarch = gdbarch;
9520 rslt = gdbarch_fast_tracepoint_valid_at (sarch, sal->pc,
9521 NULL, &msg);
9522 old_chain = make_cleanup (xfree, msg);
9523
9524 if (!rslt)
9525 error (_("May not have a fast tracepoint at 0x%s%s"),
9526 paddress (sarch, sal->pc), (msg ? msg : ""));
9527
9528 do_cleanups (old_chain);
9529 }
9530 }
9531
9532 /* Issue an invalid thread ID error. */
9533
9534 static void ATTRIBUTE_NORETURN
9535 invalid_thread_id_error (int id)
9536 {
9537 error (_("Unknown thread %d."), id);
9538 }
9539
9540 /* Given TOK, a string specification of condition and thread, as
9541 accepted by the 'break' command, extract the condition
9542 string and thread number and set *COND_STRING and *THREAD.
9543 PC identifies the context at which the condition should be parsed.
9544 If no condition is found, *COND_STRING is set to NULL.
9545 If no thread is found, *THREAD is set to -1. */
9546
9547 static void
9548 find_condition_and_thread (const char *tok, CORE_ADDR pc,
9549 char **cond_string, int *thread, int *task,
9550 char **rest)
9551 {
9552 *cond_string = NULL;
9553 *thread = -1;
9554 *task = 0;
9555 *rest = NULL;
9556
9557 while (tok && *tok)
9558 {
9559 const char *end_tok;
9560 int toklen;
9561 const char *cond_start = NULL;
9562 const char *cond_end = NULL;
9563
9564 tok = skip_spaces_const (tok);
9565
9566 if ((*tok == '"' || *tok == ',') && rest)
9567 {
9568 *rest = savestring (tok, strlen (tok));
9569 return;
9570 }
9571
9572 end_tok = skip_to_space_const (tok);
9573
9574 toklen = end_tok - tok;
9575
9576 if (toklen >= 1 && strncmp (tok, "if", toklen) == 0)
9577 {
9578 struct expression *expr;
9579
9580 tok = cond_start = end_tok + 1;
9581 expr = parse_exp_1 (&tok, pc, block_for_pc (pc), 0);
9582 xfree (expr);
9583 cond_end = tok;
9584 *cond_string = savestring (cond_start, cond_end - cond_start);
9585 }
9586 else if (toklen >= 1 && strncmp (tok, "thread", toklen) == 0)
9587 {
9588 char *tmptok;
9589
9590 tok = end_tok + 1;
9591 *thread = strtol (tok, &tmptok, 0);
9592 if (tok == tmptok)
9593 error (_("Junk after thread keyword."));
9594 if (!valid_thread_id (*thread))
9595 invalid_thread_id_error (*thread);
9596 tok = tmptok;
9597 }
9598 else if (toklen >= 1 && strncmp (tok, "task", toklen) == 0)
9599 {
9600 char *tmptok;
9601
9602 tok = end_tok + 1;
9603 *task = strtol (tok, &tmptok, 0);
9604 if (tok == tmptok)
9605 error (_("Junk after task keyword."));
9606 if (!valid_task_id (*task))
9607 error (_("Unknown task %d."), *task);
9608 tok = tmptok;
9609 }
9610 else if (rest)
9611 {
9612 *rest = savestring (tok, strlen (tok));
9613 return;
9614 }
9615 else
9616 error (_("Junk at end of arguments."));
9617 }
9618 }
9619
9620 /* Decode a static tracepoint marker spec. */
9621
9622 static struct symtabs_and_lines
9623 decode_static_tracepoint_spec (char **arg_p)
9624 {
9625 VEC(static_tracepoint_marker_p) *markers = NULL;
9626 struct symtabs_and_lines sals;
9627 struct cleanup *old_chain;
9628 char *p = &(*arg_p)[3];
9629 char *endp;
9630 char *marker_str;
9631 int i;
9632
9633 p = skip_spaces (p);
9634
9635 endp = skip_to_space (p);
9636
9637 marker_str = savestring (p, endp - p);
9638 old_chain = make_cleanup (xfree, marker_str);
9639
9640 markers = target_static_tracepoint_markers_by_strid (marker_str);
9641 if (VEC_empty(static_tracepoint_marker_p, markers))
9642 error (_("No known static tracepoint marker named %s"), marker_str);
9643
9644 sals.nelts = VEC_length(static_tracepoint_marker_p, markers);
9645 sals.sals = xmalloc (sizeof *sals.sals * sals.nelts);
9646
9647 for (i = 0; i < sals.nelts; i++)
9648 {
9649 struct static_tracepoint_marker *marker;
9650
9651 marker = VEC_index (static_tracepoint_marker_p, markers, i);
9652
9653 init_sal (&sals.sals[i]);
9654
9655 sals.sals[i] = find_pc_line (marker->address, 0);
9656 sals.sals[i].pc = marker->address;
9657
9658 release_static_tracepoint_marker (marker);
9659 }
9660
9661 do_cleanups (old_chain);
9662
9663 *arg_p = endp;
9664 return sals;
9665 }
9666
9667 /* Set a breakpoint. This function is shared between CLI and MI
9668 functions for setting a breakpoint. This function has two major
9669 modes of operations, selected by the PARSE_ARG parameter. If
9670 non-zero, the function will parse ARG, extracting location,
9671 condition, thread and extra string. Otherwise, ARG is just the
9672 breakpoint's location, with condition, thread, and extra string
9673 specified by the COND_STRING, THREAD and EXTRA_STRING parameters.
9674 If INTERNAL is non-zero, the breakpoint number will be allocated
9675 from the internal breakpoint count. Returns true if any breakpoint
9676 was created; false otherwise. */
9677
9678 int
9679 create_breakpoint (struct gdbarch *gdbarch,
9680 char *arg, char *cond_string,
9681 int thread, char *extra_string,
9682 int parse_arg,
9683 int tempflag, enum bptype type_wanted,
9684 int ignore_count,
9685 enum auto_boolean pending_break_support,
9686 const struct breakpoint_ops *ops,
9687 int from_tty, int enabled, int internal,
9688 unsigned flags)
9689 {
9690 volatile struct gdb_exception e;
9691 char *copy_arg = NULL;
9692 char *addr_start = arg;
9693 struct linespec_result canonical;
9694 struct cleanup *old_chain;
9695 struct cleanup *bkpt_chain = NULL;
9696 int pending = 0;
9697 int task = 0;
9698 int prev_bkpt_count = breakpoint_count;
9699
9700 gdb_assert (ops != NULL);
9701
9702 init_linespec_result (&canonical);
9703
9704 TRY_CATCH (e, RETURN_MASK_ALL)
9705 {
9706 ops->create_sals_from_address (&arg, &canonical, type_wanted,
9707 addr_start, &copy_arg);
9708 }
9709
9710 /* If caller is interested in rc value from parse, set value. */
9711 switch (e.reason)
9712 {
9713 case GDB_NO_ERROR:
9714 if (VEC_empty (linespec_sals, canonical.sals))
9715 return 0;
9716 break;
9717 case RETURN_ERROR:
9718 switch (e.error)
9719 {
9720 case NOT_FOUND_ERROR:
9721
9722 /* If pending breakpoint support is turned off, throw
9723 error. */
9724
9725 if (pending_break_support == AUTO_BOOLEAN_FALSE)
9726 throw_exception (e);
9727
9728 exception_print (gdb_stderr, e);
9729
9730 /* If pending breakpoint support is auto query and the user
9731 selects no, then simply return the error code. */
9732 if (pending_break_support == AUTO_BOOLEAN_AUTO
9733 && !nquery (_("Make %s pending on future shared library load? "),
9734 bptype_string (type_wanted)))
9735 return 0;
9736
9737 /* At this point, either the user was queried about setting
9738 a pending breakpoint and selected yes, or pending
9739 breakpoint behavior is on and thus a pending breakpoint
9740 is defaulted on behalf of the user. */
9741 {
9742 struct linespec_sals lsal;
9743
9744 copy_arg = xstrdup (addr_start);
9745 lsal.canonical = xstrdup (copy_arg);
9746 lsal.sals.nelts = 1;
9747 lsal.sals.sals = XNEW (struct symtab_and_line);
9748 init_sal (&lsal.sals.sals[0]);
9749 pending = 1;
9750 VEC_safe_push (linespec_sals, canonical.sals, &lsal);
9751 }
9752 break;
9753 default:
9754 throw_exception (e);
9755 }
9756 break;
9757 default:
9758 throw_exception (e);
9759 }
9760
9761 /* Create a chain of things that always need to be cleaned up. */
9762 old_chain = make_cleanup_destroy_linespec_result (&canonical);
9763
9764 /* ----------------------------- SNIP -----------------------------
9765 Anything added to the cleanup chain beyond this point is assumed
9766 to be part of a breakpoint. If the breakpoint create succeeds
9767 then the memory is not reclaimed. */
9768 bkpt_chain = make_cleanup (null_cleanup, 0);
9769
9770 /* Resolve all line numbers to PC's and verify that the addresses
9771 are ok for the target. */
9772 if (!pending)
9773 {
9774 int ix;
9775 struct linespec_sals *iter;
9776
9777 for (ix = 0; VEC_iterate (linespec_sals, canonical.sals, ix, iter); ++ix)
9778 breakpoint_sals_to_pc (&iter->sals);
9779 }
9780
9781 /* Fast tracepoints may have additional restrictions on location. */
9782 if (!pending && type_wanted == bp_fast_tracepoint)
9783 {
9784 int ix;
9785 struct linespec_sals *iter;
9786
9787 for (ix = 0; VEC_iterate (linespec_sals, canonical.sals, ix, iter); ++ix)
9788 check_fast_tracepoint_sals (gdbarch, &iter->sals);
9789 }
9790
9791 /* Verify that condition can be parsed, before setting any
9792 breakpoints. Allocate a separate condition expression for each
9793 breakpoint. */
9794 if (!pending)
9795 {
9796 if (parse_arg)
9797 {
9798 char *rest;
9799 struct linespec_sals *lsal;
9800
9801 lsal = VEC_index (linespec_sals, canonical.sals, 0);
9802
9803 /* Here we only parse 'arg' to separate condition
9804 from thread number, so parsing in context of first
9805 sal is OK. When setting the breakpoint we'll
9806 re-parse it in context of each sal. */
9807
9808 find_condition_and_thread (arg, lsal->sals.sals[0].pc, &cond_string,
9809 &thread, &task, &rest);
9810 if (cond_string)
9811 make_cleanup (xfree, cond_string);
9812 if (rest)
9813 make_cleanup (xfree, rest);
9814 if (rest)
9815 extra_string = rest;
9816 }
9817 else
9818 {
9819 if (*arg != '\0')
9820 error (_("Garbage '%s' at end of location"), arg);
9821
9822 /* Create a private copy of condition string. */
9823 if (cond_string)
9824 {
9825 cond_string = xstrdup (cond_string);
9826 make_cleanup (xfree, cond_string);
9827 }
9828 /* Create a private copy of any extra string. */
9829 if (extra_string)
9830 {
9831 extra_string = xstrdup (extra_string);
9832 make_cleanup (xfree, extra_string);
9833 }
9834 }
9835
9836 ops->create_breakpoints_sal (gdbarch, &canonical,
9837 cond_string, extra_string, type_wanted,
9838 tempflag ? disp_del : disp_donttouch,
9839 thread, task, ignore_count, ops,
9840 from_tty, enabled, internal, flags);
9841 }
9842 else
9843 {
9844 struct breakpoint *b;
9845
9846 make_cleanup (xfree, copy_arg);
9847
9848 if (is_tracepoint_type (type_wanted))
9849 {
9850 struct tracepoint *t;
9851
9852 t = XCNEW (struct tracepoint);
9853 b = &t->base;
9854 }
9855 else
9856 b = XNEW (struct breakpoint);
9857
9858 init_raw_breakpoint_without_location (b, gdbarch, type_wanted, ops);
9859
9860 b->addr_string = copy_arg;
9861 if (parse_arg)
9862 b->cond_string = NULL;
9863 else
9864 {
9865 /* Create a private copy of condition string. */
9866 if (cond_string)
9867 {
9868 cond_string = xstrdup (cond_string);
9869 make_cleanup (xfree, cond_string);
9870 }
9871 b->cond_string = cond_string;
9872 }
9873 b->extra_string = NULL;
9874 b->ignore_count = ignore_count;
9875 b->disposition = tempflag ? disp_del : disp_donttouch;
9876 b->condition_not_parsed = 1;
9877 b->enable_state = enabled ? bp_enabled : bp_disabled;
9878 if ((type_wanted != bp_breakpoint
9879 && type_wanted != bp_hardware_breakpoint) || thread != -1)
9880 b->pspace = current_program_space;
9881
9882 install_breakpoint (internal, b, 0);
9883 }
9884
9885 if (VEC_length (linespec_sals, canonical.sals) > 1)
9886 {
9887 warning (_("Multiple breakpoints were set.\nUse the "
9888 "\"delete\" command to delete unwanted breakpoints."));
9889 prev_breakpoint_count = prev_bkpt_count;
9890 }
9891
9892 /* That's it. Discard the cleanups for data inserted into the
9893 breakpoint. */
9894 discard_cleanups (bkpt_chain);
9895 /* But cleanup everything else. */
9896 do_cleanups (old_chain);
9897
9898 /* error call may happen here - have BKPT_CHAIN already discarded. */
9899 update_global_location_list (1);
9900
9901 return 1;
9902 }
9903
9904 /* Set a breakpoint.
9905 ARG is a string describing breakpoint address,
9906 condition, and thread.
9907 FLAG specifies if a breakpoint is hardware on,
9908 and if breakpoint is temporary, using BP_HARDWARE_FLAG
9909 and BP_TEMPFLAG. */
9910
9911 static void
9912 break_command_1 (char *arg, int flag, int from_tty)
9913 {
9914 int tempflag = flag & BP_TEMPFLAG;
9915 enum bptype type_wanted = (flag & BP_HARDWAREFLAG
9916 ? bp_hardware_breakpoint
9917 : bp_breakpoint);
9918 struct breakpoint_ops *ops;
9919 const char *arg_cp = arg;
9920
9921 /* Matching breakpoints on probes. */
9922 if (arg && probe_linespec_to_ops (&arg_cp) != NULL)
9923 ops = &bkpt_probe_breakpoint_ops;
9924 else
9925 ops = &bkpt_breakpoint_ops;
9926
9927 create_breakpoint (get_current_arch (),
9928 arg,
9929 NULL, 0, NULL, 1 /* parse arg */,
9930 tempflag, type_wanted,
9931 0 /* Ignore count */,
9932 pending_break_support,
9933 ops,
9934 from_tty,
9935 1 /* enabled */,
9936 0 /* internal */,
9937 0);
9938 }
9939
9940 /* Helper function for break_command_1 and disassemble_command. */
9941
9942 void
9943 resolve_sal_pc (struct symtab_and_line *sal)
9944 {
9945 CORE_ADDR pc;
9946
9947 if (sal->pc == 0 && sal->symtab != NULL)
9948 {
9949 if (!find_line_pc (sal->symtab, sal->line, &pc))
9950 error (_("No line %d in file \"%s\"."),
9951 sal->line, symtab_to_filename_for_display (sal->symtab));
9952 sal->pc = pc;
9953
9954 /* If this SAL corresponds to a breakpoint inserted using a line
9955 number, then skip the function prologue if necessary. */
9956 if (sal->explicit_line)
9957 skip_prologue_sal (sal);
9958 }
9959
9960 if (sal->section == 0 && sal->symtab != NULL)
9961 {
9962 struct blockvector *bv;
9963 struct block *b;
9964 struct symbol *sym;
9965
9966 bv = blockvector_for_pc_sect (sal->pc, 0, &b, sal->symtab);
9967 if (bv != NULL)
9968 {
9969 sym = block_linkage_function (b);
9970 if (sym != NULL)
9971 {
9972 fixup_symbol_section (sym, sal->symtab->objfile);
9973 sal->section = SYMBOL_OBJ_SECTION (sal->symtab->objfile, sym);
9974 }
9975 else
9976 {
9977 /* It really is worthwhile to have the section, so we'll
9978 just have to look harder. This case can be executed
9979 if we have line numbers but no functions (as can
9980 happen in assembly source). */
9981
9982 struct bound_minimal_symbol msym;
9983 struct cleanup *old_chain = save_current_space_and_thread ();
9984
9985 switch_to_program_space_and_thread (sal->pspace);
9986
9987 msym = lookup_minimal_symbol_by_pc (sal->pc);
9988 if (msym.minsym)
9989 sal->section = SYMBOL_OBJ_SECTION (msym.objfile, msym.minsym);
9990
9991 do_cleanups (old_chain);
9992 }
9993 }
9994 }
9995 }
9996
9997 void
9998 break_command (char *arg, int from_tty)
9999 {
10000 break_command_1 (arg, 0, from_tty);
10001 }
10002
10003 void
10004 tbreak_command (char *arg, int from_tty)
10005 {
10006 break_command_1 (arg, BP_TEMPFLAG, from_tty);
10007 }
10008
10009 static void
10010 hbreak_command (char *arg, int from_tty)
10011 {
10012 break_command_1 (arg, BP_HARDWAREFLAG, from_tty);
10013 }
10014
10015 static void
10016 thbreak_command (char *arg, int from_tty)
10017 {
10018 break_command_1 (arg, (BP_TEMPFLAG | BP_HARDWAREFLAG), from_tty);
10019 }
10020
10021 static void
10022 stop_command (char *arg, int from_tty)
10023 {
10024 printf_filtered (_("Specify the type of breakpoint to set.\n\
10025 Usage: stop in <function | address>\n\
10026 stop at <line>\n"));
10027 }
10028
10029 static void
10030 stopin_command (char *arg, int from_tty)
10031 {
10032 int badInput = 0;
10033
10034 if (arg == (char *) NULL)
10035 badInput = 1;
10036 else if (*arg != '*')
10037 {
10038 char *argptr = arg;
10039 int hasColon = 0;
10040
10041 /* Look for a ':'. If this is a line number specification, then
10042 say it is bad, otherwise, it should be an address or
10043 function/method name. */
10044 while (*argptr && !hasColon)
10045 {
10046 hasColon = (*argptr == ':');
10047 argptr++;
10048 }
10049
10050 if (hasColon)
10051 badInput = (*argptr != ':'); /* Not a class::method */
10052 else
10053 badInput = isdigit (*arg); /* a simple line number */
10054 }
10055
10056 if (badInput)
10057 printf_filtered (_("Usage: stop in <function | address>\n"));
10058 else
10059 break_command_1 (arg, 0, from_tty);
10060 }
10061
10062 static void
10063 stopat_command (char *arg, int from_tty)
10064 {
10065 int badInput = 0;
10066
10067 if (arg == (char *) NULL || *arg == '*') /* no line number */
10068 badInput = 1;
10069 else
10070 {
10071 char *argptr = arg;
10072 int hasColon = 0;
10073
10074 /* Look for a ':'. If there is a '::' then get out, otherwise
10075 it is probably a line number. */
10076 while (*argptr && !hasColon)
10077 {
10078 hasColon = (*argptr == ':');
10079 argptr++;
10080 }
10081
10082 if (hasColon)
10083 badInput = (*argptr == ':'); /* we have class::method */
10084 else
10085 badInput = !isdigit (*arg); /* not a line number */
10086 }
10087
10088 if (badInput)
10089 printf_filtered (_("Usage: stop at <line>\n"));
10090 else
10091 break_command_1 (arg, 0, from_tty);
10092 }
10093
10094 /* The dynamic printf command is mostly like a regular breakpoint, but
10095 with a prewired command list consisting of a single output command,
10096 built from extra arguments supplied on the dprintf command
10097 line. */
10098
10099 static void
10100 dprintf_command (char *arg, int from_tty)
10101 {
10102 create_breakpoint (get_current_arch (),
10103 arg,
10104 NULL, 0, NULL, 1 /* parse arg */,
10105 0, bp_dprintf,
10106 0 /* Ignore count */,
10107 pending_break_support,
10108 &dprintf_breakpoint_ops,
10109 from_tty,
10110 1 /* enabled */,
10111 0 /* internal */,
10112 0);
10113 }
10114
10115 static void
10116 agent_printf_command (char *arg, int from_tty)
10117 {
10118 error (_("May only run agent-printf on the target"));
10119 }
10120
10121 /* Implement the "breakpoint_hit" breakpoint_ops method for
10122 ranged breakpoints. */
10123
10124 static int
10125 breakpoint_hit_ranged_breakpoint (const struct bp_location *bl,
10126 struct address_space *aspace,
10127 CORE_ADDR bp_addr,
10128 const struct target_waitstatus *ws)
10129 {
10130 if (ws->kind != TARGET_WAITKIND_STOPPED
10131 || ws->value.sig != GDB_SIGNAL_TRAP)
10132 return 0;
10133
10134 return breakpoint_address_match_range (bl->pspace->aspace, bl->address,
10135 bl->length, aspace, bp_addr);
10136 }
10137
10138 /* Implement the "resources_needed" breakpoint_ops method for
10139 ranged breakpoints. */
10140
10141 static int
10142 resources_needed_ranged_breakpoint (const struct bp_location *bl)
10143 {
10144 return target_ranged_break_num_registers ();
10145 }
10146
10147 /* Implement the "print_it" breakpoint_ops method for
10148 ranged breakpoints. */
10149
10150 static enum print_stop_action
10151 print_it_ranged_breakpoint (bpstat bs)
10152 {
10153 struct breakpoint *b = bs->breakpoint_at;
10154 struct bp_location *bl = b->loc;
10155 struct ui_out *uiout = current_uiout;
10156
10157 gdb_assert (b->type == bp_hardware_breakpoint);
10158
10159 /* Ranged breakpoints have only one location. */
10160 gdb_assert (bl && bl->next == NULL);
10161
10162 annotate_breakpoint (b->number);
10163 if (b->disposition == disp_del)
10164 ui_out_text (uiout, "\nTemporary ranged breakpoint ");
10165 else
10166 ui_out_text (uiout, "\nRanged breakpoint ");
10167 if (ui_out_is_mi_like_p (uiout))
10168 {
10169 ui_out_field_string (uiout, "reason",
10170 async_reason_lookup (EXEC_ASYNC_BREAKPOINT_HIT));
10171 ui_out_field_string (uiout, "disp", bpdisp_text (b->disposition));
10172 }
10173 ui_out_field_int (uiout, "bkptno", b->number);
10174 ui_out_text (uiout, ", ");
10175
10176 return PRINT_SRC_AND_LOC;
10177 }
10178
10179 /* Implement the "print_one" breakpoint_ops method for
10180 ranged breakpoints. */
10181
10182 static void
10183 print_one_ranged_breakpoint (struct breakpoint *b,
10184 struct bp_location **last_loc)
10185 {
10186 struct bp_location *bl = b->loc;
10187 struct value_print_options opts;
10188 struct ui_out *uiout = current_uiout;
10189
10190 /* Ranged breakpoints have only one location. */
10191 gdb_assert (bl && bl->next == NULL);
10192
10193 get_user_print_options (&opts);
10194
10195 if (opts.addressprint)
10196 /* We don't print the address range here, it will be printed later
10197 by print_one_detail_ranged_breakpoint. */
10198 ui_out_field_skip (uiout, "addr");
10199 annotate_field (5);
10200 print_breakpoint_location (b, bl);
10201 *last_loc = bl;
10202 }
10203
10204 /* Implement the "print_one_detail" breakpoint_ops method for
10205 ranged breakpoints. */
10206
10207 static void
10208 print_one_detail_ranged_breakpoint (const struct breakpoint *b,
10209 struct ui_out *uiout)
10210 {
10211 CORE_ADDR address_start, address_end;
10212 struct bp_location *bl = b->loc;
10213 struct ui_file *stb = mem_fileopen ();
10214 struct cleanup *cleanup = make_cleanup_ui_file_delete (stb);
10215
10216 gdb_assert (bl);
10217
10218 address_start = bl->address;
10219 address_end = address_start + bl->length - 1;
10220
10221 ui_out_text (uiout, "\taddress range: ");
10222 fprintf_unfiltered (stb, "[%s, %s]",
10223 print_core_address (bl->gdbarch, address_start),
10224 print_core_address (bl->gdbarch, address_end));
10225 ui_out_field_stream (uiout, "addr", stb);
10226 ui_out_text (uiout, "\n");
10227
10228 do_cleanups (cleanup);
10229 }
10230
10231 /* Implement the "print_mention" breakpoint_ops method for
10232 ranged breakpoints. */
10233
10234 static void
10235 print_mention_ranged_breakpoint (struct breakpoint *b)
10236 {
10237 struct bp_location *bl = b->loc;
10238 struct ui_out *uiout = current_uiout;
10239
10240 gdb_assert (bl);
10241 gdb_assert (b->type == bp_hardware_breakpoint);
10242
10243 if (ui_out_is_mi_like_p (uiout))
10244 return;
10245
10246 printf_filtered (_("Hardware assisted ranged breakpoint %d from %s to %s."),
10247 b->number, paddress (bl->gdbarch, bl->address),
10248 paddress (bl->gdbarch, bl->address + bl->length - 1));
10249 }
10250
10251 /* Implement the "print_recreate" breakpoint_ops method for
10252 ranged breakpoints. */
10253
10254 static void
10255 print_recreate_ranged_breakpoint (struct breakpoint *b, struct ui_file *fp)
10256 {
10257 fprintf_unfiltered (fp, "break-range %s, %s", b->addr_string,
10258 b->addr_string_range_end);
10259 print_recreate_thread (b, fp);
10260 }
10261
10262 /* The breakpoint_ops structure to be used in ranged breakpoints. */
10263
10264 static struct breakpoint_ops ranged_breakpoint_ops;
10265
10266 /* Find the address where the end of the breakpoint range should be
10267 placed, given the SAL of the end of the range. This is so that if
10268 the user provides a line number, the end of the range is set to the
10269 last instruction of the given line. */
10270
10271 static CORE_ADDR
10272 find_breakpoint_range_end (struct symtab_and_line sal)
10273 {
10274 CORE_ADDR end;
10275
10276 /* If the user provided a PC value, use it. Otherwise,
10277 find the address of the end of the given location. */
10278 if (sal.explicit_pc)
10279 end = sal.pc;
10280 else
10281 {
10282 int ret;
10283 CORE_ADDR start;
10284
10285 ret = find_line_pc_range (sal, &start, &end);
10286 if (!ret)
10287 error (_("Could not find location of the end of the range."));
10288
10289 /* find_line_pc_range returns the start of the next line. */
10290 end--;
10291 }
10292
10293 return end;
10294 }
10295
10296 /* Implement the "break-range" CLI command. */
10297
10298 static void
10299 break_range_command (char *arg, int from_tty)
10300 {
10301 char *arg_start, *addr_string_start, *addr_string_end;
10302 struct linespec_result canonical_start, canonical_end;
10303 int bp_count, can_use_bp, length;
10304 CORE_ADDR end;
10305 struct breakpoint *b;
10306 struct symtab_and_line sal_start, sal_end;
10307 struct cleanup *cleanup_bkpt;
10308 struct linespec_sals *lsal_start, *lsal_end;
10309
10310 /* We don't support software ranged breakpoints. */
10311 if (target_ranged_break_num_registers () < 0)
10312 error (_("This target does not support hardware ranged breakpoints."));
10313
10314 bp_count = hw_breakpoint_used_count ();
10315 bp_count += target_ranged_break_num_registers ();
10316 can_use_bp = target_can_use_hardware_watchpoint (bp_hardware_breakpoint,
10317 bp_count, 0);
10318 if (can_use_bp < 0)
10319 error (_("Hardware breakpoints used exceeds limit."));
10320
10321 arg = skip_spaces (arg);
10322 if (arg == NULL || arg[0] == '\0')
10323 error(_("No address range specified."));
10324
10325 init_linespec_result (&canonical_start);
10326
10327 arg_start = arg;
10328 parse_breakpoint_sals (&arg, &canonical_start);
10329
10330 cleanup_bkpt = make_cleanup_destroy_linespec_result (&canonical_start);
10331
10332 if (arg[0] != ',')
10333 error (_("Too few arguments."));
10334 else if (VEC_empty (linespec_sals, canonical_start.sals))
10335 error (_("Could not find location of the beginning of the range."));
10336
10337 lsal_start = VEC_index (linespec_sals, canonical_start.sals, 0);
10338
10339 if (VEC_length (linespec_sals, canonical_start.sals) > 1
10340 || lsal_start->sals.nelts != 1)
10341 error (_("Cannot create a ranged breakpoint with multiple locations."));
10342
10343 sal_start = lsal_start->sals.sals[0];
10344 addr_string_start = savestring (arg_start, arg - arg_start);
10345 make_cleanup (xfree, addr_string_start);
10346
10347 arg++; /* Skip the comma. */
10348 arg = skip_spaces (arg);
10349
10350 /* Parse the end location. */
10351
10352 init_linespec_result (&canonical_end);
10353 arg_start = arg;
10354
10355 /* We call decode_line_full directly here instead of using
10356 parse_breakpoint_sals because we need to specify the start location's
10357 symtab and line as the default symtab and line for the end of the
10358 range. This makes it possible to have ranges like "foo.c:27, +14",
10359 where +14 means 14 lines from the start location. */
10360 decode_line_full (&arg, DECODE_LINE_FUNFIRSTLINE,
10361 sal_start.symtab, sal_start.line,
10362 &canonical_end, NULL, NULL);
10363
10364 make_cleanup_destroy_linespec_result (&canonical_end);
10365
10366 if (VEC_empty (linespec_sals, canonical_end.sals))
10367 error (_("Could not find location of the end of the range."));
10368
10369 lsal_end = VEC_index (linespec_sals, canonical_end.sals, 0);
10370 if (VEC_length (linespec_sals, canonical_end.sals) > 1
10371 || lsal_end->sals.nelts != 1)
10372 error (_("Cannot create a ranged breakpoint with multiple locations."));
10373
10374 sal_end = lsal_end->sals.sals[0];
10375 addr_string_end = savestring (arg_start, arg - arg_start);
10376 make_cleanup (xfree, addr_string_end);
10377
10378 end = find_breakpoint_range_end (sal_end);
10379 if (sal_start.pc > end)
10380 error (_("Invalid address range, end precedes start."));
10381
10382 length = end - sal_start.pc + 1;
10383 if (length < 0)
10384 /* Length overflowed. */
10385 error (_("Address range too large."));
10386 else if (length == 1)
10387 {
10388 /* This range is simple enough to be handled by
10389 the `hbreak' command. */
10390 hbreak_command (addr_string_start, 1);
10391
10392 do_cleanups (cleanup_bkpt);
10393
10394 return;
10395 }
10396
10397 /* Now set up the breakpoint. */
10398 b = set_raw_breakpoint (get_current_arch (), sal_start,
10399 bp_hardware_breakpoint, &ranged_breakpoint_ops);
10400 set_breakpoint_count (breakpoint_count + 1);
10401 b->number = breakpoint_count;
10402 b->disposition = disp_donttouch;
10403 b->addr_string = xstrdup (addr_string_start);
10404 b->addr_string_range_end = xstrdup (addr_string_end);
10405 b->loc->length = length;
10406
10407 do_cleanups (cleanup_bkpt);
10408
10409 mention (b);
10410 observer_notify_breakpoint_created (b);
10411 update_global_location_list (1);
10412 }
10413
10414 /* Return non-zero if EXP is verified as constant. Returned zero
10415 means EXP is variable. Also the constant detection may fail for
10416 some constant expressions and in such case still falsely return
10417 zero. */
10418
10419 static int
10420 watchpoint_exp_is_const (const struct expression *exp)
10421 {
10422 int i = exp->nelts;
10423
10424 while (i > 0)
10425 {
10426 int oplenp, argsp;
10427
10428 /* We are only interested in the descriptor of each element. */
10429 operator_length (exp, i, &oplenp, &argsp);
10430 i -= oplenp;
10431
10432 switch (exp->elts[i].opcode)
10433 {
10434 case BINOP_ADD:
10435 case BINOP_SUB:
10436 case BINOP_MUL:
10437 case BINOP_DIV:
10438 case BINOP_REM:
10439 case BINOP_MOD:
10440 case BINOP_LSH:
10441 case BINOP_RSH:
10442 case BINOP_LOGICAL_AND:
10443 case BINOP_LOGICAL_OR:
10444 case BINOP_BITWISE_AND:
10445 case BINOP_BITWISE_IOR:
10446 case BINOP_BITWISE_XOR:
10447 case BINOP_EQUAL:
10448 case BINOP_NOTEQUAL:
10449 case BINOP_LESS:
10450 case BINOP_GTR:
10451 case BINOP_LEQ:
10452 case BINOP_GEQ:
10453 case BINOP_REPEAT:
10454 case BINOP_COMMA:
10455 case BINOP_EXP:
10456 case BINOP_MIN:
10457 case BINOP_MAX:
10458 case BINOP_INTDIV:
10459 case BINOP_CONCAT:
10460 case BINOP_IN:
10461 case BINOP_RANGE:
10462 case TERNOP_COND:
10463 case TERNOP_SLICE:
10464
10465 case OP_LONG:
10466 case OP_DOUBLE:
10467 case OP_DECFLOAT:
10468 case OP_LAST:
10469 case OP_COMPLEX:
10470 case OP_STRING:
10471 case OP_ARRAY:
10472 case OP_TYPE:
10473 case OP_TYPEOF:
10474 case OP_DECLTYPE:
10475 case OP_TYPEID:
10476 case OP_NAME:
10477 case OP_OBJC_NSSTRING:
10478
10479 case UNOP_NEG:
10480 case UNOP_LOGICAL_NOT:
10481 case UNOP_COMPLEMENT:
10482 case UNOP_ADDR:
10483 case UNOP_HIGH:
10484 case UNOP_CAST:
10485
10486 case UNOP_CAST_TYPE:
10487 case UNOP_REINTERPRET_CAST:
10488 case UNOP_DYNAMIC_CAST:
10489 /* Unary, binary and ternary operators: We have to check
10490 their operands. If they are constant, then so is the
10491 result of that operation. For instance, if A and B are
10492 determined to be constants, then so is "A + B".
10493
10494 UNOP_IND is one exception to the rule above, because the
10495 value of *ADDR is not necessarily a constant, even when
10496 ADDR is. */
10497 break;
10498
10499 case OP_VAR_VALUE:
10500 /* Check whether the associated symbol is a constant.
10501
10502 We use SYMBOL_CLASS rather than TYPE_CONST because it's
10503 possible that a buggy compiler could mark a variable as
10504 constant even when it is not, and TYPE_CONST would return
10505 true in this case, while SYMBOL_CLASS wouldn't.
10506
10507 We also have to check for function symbols because they
10508 are always constant. */
10509 {
10510 struct symbol *s = exp->elts[i + 2].symbol;
10511
10512 if (SYMBOL_CLASS (s) != LOC_BLOCK
10513 && SYMBOL_CLASS (s) != LOC_CONST
10514 && SYMBOL_CLASS (s) != LOC_CONST_BYTES)
10515 return 0;
10516 break;
10517 }
10518
10519 /* The default action is to return 0 because we are using
10520 the optimistic approach here: If we don't know something,
10521 then it is not a constant. */
10522 default:
10523 return 0;
10524 }
10525 }
10526
10527 return 1;
10528 }
10529
10530 /* Implement the "dtor" breakpoint_ops method for watchpoints. */
10531
10532 static void
10533 dtor_watchpoint (struct breakpoint *self)
10534 {
10535 struct watchpoint *w = (struct watchpoint *) self;
10536
10537 xfree (w->cond_exp);
10538 xfree (w->exp);
10539 xfree (w->exp_string);
10540 xfree (w->exp_string_reparse);
10541 value_free (w->val);
10542
10543 base_breakpoint_ops.dtor (self);
10544 }
10545
10546 /* Implement the "re_set" breakpoint_ops method for watchpoints. */
10547
10548 static void
10549 re_set_watchpoint (struct breakpoint *b)
10550 {
10551 struct watchpoint *w = (struct watchpoint *) b;
10552
10553 /* Watchpoint can be either on expression using entirely global
10554 variables, or it can be on local variables.
10555
10556 Watchpoints of the first kind are never auto-deleted, and even
10557 persist across program restarts. Since they can use variables
10558 from shared libraries, we need to reparse expression as libraries
10559 are loaded and unloaded.
10560
10561 Watchpoints on local variables can also change meaning as result
10562 of solib event. For example, if a watchpoint uses both a local
10563 and a global variables in expression, it's a local watchpoint,
10564 but unloading of a shared library will make the expression
10565 invalid. This is not a very common use case, but we still
10566 re-evaluate expression, to avoid surprises to the user.
10567
10568 Note that for local watchpoints, we re-evaluate it only if
10569 watchpoints frame id is still valid. If it's not, it means the
10570 watchpoint is out of scope and will be deleted soon. In fact,
10571 I'm not sure we'll ever be called in this case.
10572
10573 If a local watchpoint's frame id is still valid, then
10574 w->exp_valid_block is likewise valid, and we can safely use it.
10575
10576 Don't do anything about disabled watchpoints, since they will be
10577 reevaluated again when enabled. */
10578 update_watchpoint (w, 1 /* reparse */);
10579 }
10580
10581 /* Implement the "insert" breakpoint_ops method for hardware watchpoints. */
10582
10583 static int
10584 insert_watchpoint (struct bp_location *bl)
10585 {
10586 struct watchpoint *w = (struct watchpoint *) bl->owner;
10587 int length = w->exact ? 1 : bl->length;
10588
10589 return target_insert_watchpoint (bl->address, length, bl->watchpoint_type,
10590 w->cond_exp);
10591 }
10592
10593 /* Implement the "remove" breakpoint_ops method for hardware watchpoints. */
10594
10595 static int
10596 remove_watchpoint (struct bp_location *bl)
10597 {
10598 struct watchpoint *w = (struct watchpoint *) bl->owner;
10599 int length = w->exact ? 1 : bl->length;
10600
10601 return target_remove_watchpoint (bl->address, length, bl->watchpoint_type,
10602 w->cond_exp);
10603 }
10604
10605 static int
10606 breakpoint_hit_watchpoint (const struct bp_location *bl,
10607 struct address_space *aspace, CORE_ADDR bp_addr,
10608 const struct target_waitstatus *ws)
10609 {
10610 struct breakpoint *b = bl->owner;
10611 struct watchpoint *w = (struct watchpoint *) b;
10612
10613 /* Continuable hardware watchpoints are treated as non-existent if the
10614 reason we stopped wasn't a hardware watchpoint (we didn't stop on
10615 some data address). Otherwise gdb won't stop on a break instruction
10616 in the code (not from a breakpoint) when a hardware watchpoint has
10617 been defined. Also skip watchpoints which we know did not trigger
10618 (did not match the data address). */
10619 if (is_hardware_watchpoint (b)
10620 && w->watchpoint_triggered == watch_triggered_no)
10621 return 0;
10622
10623 return 1;
10624 }
10625
10626 static void
10627 check_status_watchpoint (bpstat bs)
10628 {
10629 gdb_assert (is_watchpoint (bs->breakpoint_at));
10630
10631 bpstat_check_watchpoint (bs);
10632 }
10633
10634 /* Implement the "resources_needed" breakpoint_ops method for
10635 hardware watchpoints. */
10636
10637 static int
10638 resources_needed_watchpoint (const struct bp_location *bl)
10639 {
10640 struct watchpoint *w = (struct watchpoint *) bl->owner;
10641 int length = w->exact? 1 : bl->length;
10642
10643 return target_region_ok_for_hw_watchpoint (bl->address, length);
10644 }
10645
10646 /* Implement the "works_in_software_mode" breakpoint_ops method for
10647 hardware watchpoints. */
10648
10649 static int
10650 works_in_software_mode_watchpoint (const struct breakpoint *b)
10651 {
10652 /* Read and access watchpoints only work with hardware support. */
10653 return b->type == bp_watchpoint || b->type == bp_hardware_watchpoint;
10654 }
10655
10656 static enum print_stop_action
10657 print_it_watchpoint (bpstat bs)
10658 {
10659 struct cleanup *old_chain;
10660 struct breakpoint *b;
10661 struct ui_file *stb;
10662 enum print_stop_action result;
10663 struct watchpoint *w;
10664 struct ui_out *uiout = current_uiout;
10665
10666 gdb_assert (bs->bp_location_at != NULL);
10667
10668 b = bs->breakpoint_at;
10669 w = (struct watchpoint *) b;
10670
10671 stb = mem_fileopen ();
10672 old_chain = make_cleanup_ui_file_delete (stb);
10673
10674 switch (b->type)
10675 {
10676 case bp_watchpoint:
10677 case bp_hardware_watchpoint:
10678 annotate_watchpoint (b->number);
10679 if (ui_out_is_mi_like_p (uiout))
10680 ui_out_field_string
10681 (uiout, "reason",
10682 async_reason_lookup (EXEC_ASYNC_WATCHPOINT_TRIGGER));
10683 mention (b);
10684 make_cleanup_ui_out_tuple_begin_end (uiout, "value");
10685 ui_out_text (uiout, "\nOld value = ");
10686 watchpoint_value_print (bs->old_val, stb);
10687 ui_out_field_stream (uiout, "old", stb);
10688 ui_out_text (uiout, "\nNew value = ");
10689 watchpoint_value_print (w->val, stb);
10690 ui_out_field_stream (uiout, "new", stb);
10691 ui_out_text (uiout, "\n");
10692 /* More than one watchpoint may have been triggered. */
10693 result = PRINT_UNKNOWN;
10694 break;
10695
10696 case bp_read_watchpoint:
10697 if (ui_out_is_mi_like_p (uiout))
10698 ui_out_field_string
10699 (uiout, "reason",
10700 async_reason_lookup (EXEC_ASYNC_READ_WATCHPOINT_TRIGGER));
10701 mention (b);
10702 make_cleanup_ui_out_tuple_begin_end (uiout, "value");
10703 ui_out_text (uiout, "\nValue = ");
10704 watchpoint_value_print (w->val, stb);
10705 ui_out_field_stream (uiout, "value", stb);
10706 ui_out_text (uiout, "\n");
10707 result = PRINT_UNKNOWN;
10708 break;
10709
10710 case bp_access_watchpoint:
10711 if (bs->old_val != NULL)
10712 {
10713 annotate_watchpoint (b->number);
10714 if (ui_out_is_mi_like_p (uiout))
10715 ui_out_field_string
10716 (uiout, "reason",
10717 async_reason_lookup (EXEC_ASYNC_ACCESS_WATCHPOINT_TRIGGER));
10718 mention (b);
10719 make_cleanup_ui_out_tuple_begin_end (uiout, "value");
10720 ui_out_text (uiout, "\nOld value = ");
10721 watchpoint_value_print (bs->old_val, stb);
10722 ui_out_field_stream (uiout, "old", stb);
10723 ui_out_text (uiout, "\nNew value = ");
10724 }
10725 else
10726 {
10727 mention (b);
10728 if (ui_out_is_mi_like_p (uiout))
10729 ui_out_field_string
10730 (uiout, "reason",
10731 async_reason_lookup (EXEC_ASYNC_ACCESS_WATCHPOINT_TRIGGER));
10732 make_cleanup_ui_out_tuple_begin_end (uiout, "value");
10733 ui_out_text (uiout, "\nValue = ");
10734 }
10735 watchpoint_value_print (w->val, stb);
10736 ui_out_field_stream (uiout, "new", stb);
10737 ui_out_text (uiout, "\n");
10738 result = PRINT_UNKNOWN;
10739 break;
10740 default:
10741 result = PRINT_UNKNOWN;
10742 }
10743
10744 do_cleanups (old_chain);
10745 return result;
10746 }
10747
10748 /* Implement the "print_mention" breakpoint_ops method for hardware
10749 watchpoints. */
10750
10751 static void
10752 print_mention_watchpoint (struct breakpoint *b)
10753 {
10754 struct cleanup *ui_out_chain;
10755 struct watchpoint *w = (struct watchpoint *) b;
10756 struct ui_out *uiout = current_uiout;
10757
10758 switch (b->type)
10759 {
10760 case bp_watchpoint:
10761 ui_out_text (uiout, "Watchpoint ");
10762 ui_out_chain = make_cleanup_ui_out_tuple_begin_end (uiout, "wpt");
10763 break;
10764 case bp_hardware_watchpoint:
10765 ui_out_text (uiout, "Hardware watchpoint ");
10766 ui_out_chain = make_cleanup_ui_out_tuple_begin_end (uiout, "wpt");
10767 break;
10768 case bp_read_watchpoint:
10769 ui_out_text (uiout, "Hardware read watchpoint ");
10770 ui_out_chain = make_cleanup_ui_out_tuple_begin_end (uiout, "hw-rwpt");
10771 break;
10772 case bp_access_watchpoint:
10773 ui_out_text (uiout, "Hardware access (read/write) watchpoint ");
10774 ui_out_chain = make_cleanup_ui_out_tuple_begin_end (uiout, "hw-awpt");
10775 break;
10776 default:
10777 internal_error (__FILE__, __LINE__,
10778 _("Invalid hardware watchpoint type."));
10779 }
10780
10781 ui_out_field_int (uiout, "number", b->number);
10782 ui_out_text (uiout, ": ");
10783 ui_out_field_string (uiout, "exp", w->exp_string);
10784 do_cleanups (ui_out_chain);
10785 }
10786
10787 /* Implement the "print_recreate" breakpoint_ops method for
10788 watchpoints. */
10789
10790 static void
10791 print_recreate_watchpoint (struct breakpoint *b, struct ui_file *fp)
10792 {
10793 struct watchpoint *w = (struct watchpoint *) b;
10794
10795 switch (b->type)
10796 {
10797 case bp_watchpoint:
10798 case bp_hardware_watchpoint:
10799 fprintf_unfiltered (fp, "watch");
10800 break;
10801 case bp_read_watchpoint:
10802 fprintf_unfiltered (fp, "rwatch");
10803 break;
10804 case bp_access_watchpoint:
10805 fprintf_unfiltered (fp, "awatch");
10806 break;
10807 default:
10808 internal_error (__FILE__, __LINE__,
10809 _("Invalid watchpoint type."));
10810 }
10811
10812 fprintf_unfiltered (fp, " %s", w->exp_string);
10813 print_recreate_thread (b, fp);
10814 }
10815
10816 /* Implement the "explains_signal" breakpoint_ops method for
10817 watchpoints. */
10818
10819 static int
10820 explains_signal_watchpoint (struct breakpoint *b, enum gdb_signal sig)
10821 {
10822 /* A software watchpoint cannot cause a signal other than
10823 GDB_SIGNAL_TRAP. */
10824 if (b->type == bp_watchpoint && sig != GDB_SIGNAL_TRAP)
10825 return 0;
10826
10827 return 1;
10828 }
10829
10830 /* The breakpoint_ops structure to be used in hardware watchpoints. */
10831
10832 static struct breakpoint_ops watchpoint_breakpoint_ops;
10833
10834 /* Implement the "insert" breakpoint_ops method for
10835 masked hardware watchpoints. */
10836
10837 static int
10838 insert_masked_watchpoint (struct bp_location *bl)
10839 {
10840 struct watchpoint *w = (struct watchpoint *) bl->owner;
10841
10842 return target_insert_mask_watchpoint (bl->address, w->hw_wp_mask,
10843 bl->watchpoint_type);
10844 }
10845
10846 /* Implement the "remove" breakpoint_ops method for
10847 masked hardware watchpoints. */
10848
10849 static int
10850 remove_masked_watchpoint (struct bp_location *bl)
10851 {
10852 struct watchpoint *w = (struct watchpoint *) bl->owner;
10853
10854 return target_remove_mask_watchpoint (bl->address, w->hw_wp_mask,
10855 bl->watchpoint_type);
10856 }
10857
10858 /* Implement the "resources_needed" breakpoint_ops method for
10859 masked hardware watchpoints. */
10860
10861 static int
10862 resources_needed_masked_watchpoint (const struct bp_location *bl)
10863 {
10864 struct watchpoint *w = (struct watchpoint *) bl->owner;
10865
10866 return target_masked_watch_num_registers (bl->address, w->hw_wp_mask);
10867 }
10868
10869 /* Implement the "works_in_software_mode" breakpoint_ops method for
10870 masked hardware watchpoints. */
10871
10872 static int
10873 works_in_software_mode_masked_watchpoint (const struct breakpoint *b)
10874 {
10875 return 0;
10876 }
10877
10878 /* Implement the "print_it" breakpoint_ops method for
10879 masked hardware watchpoints. */
10880
10881 static enum print_stop_action
10882 print_it_masked_watchpoint (bpstat bs)
10883 {
10884 struct breakpoint *b = bs->breakpoint_at;
10885 struct ui_out *uiout = current_uiout;
10886
10887 /* Masked watchpoints have only one location. */
10888 gdb_assert (b->loc && b->loc->next == NULL);
10889
10890 switch (b->type)
10891 {
10892 case bp_hardware_watchpoint:
10893 annotate_watchpoint (b->number);
10894 if (ui_out_is_mi_like_p (uiout))
10895 ui_out_field_string
10896 (uiout, "reason",
10897 async_reason_lookup (EXEC_ASYNC_WATCHPOINT_TRIGGER));
10898 break;
10899
10900 case bp_read_watchpoint:
10901 if (ui_out_is_mi_like_p (uiout))
10902 ui_out_field_string
10903 (uiout, "reason",
10904 async_reason_lookup (EXEC_ASYNC_READ_WATCHPOINT_TRIGGER));
10905 break;
10906
10907 case bp_access_watchpoint:
10908 if (ui_out_is_mi_like_p (uiout))
10909 ui_out_field_string
10910 (uiout, "reason",
10911 async_reason_lookup (EXEC_ASYNC_ACCESS_WATCHPOINT_TRIGGER));
10912 break;
10913 default:
10914 internal_error (__FILE__, __LINE__,
10915 _("Invalid hardware watchpoint type."));
10916 }
10917
10918 mention (b);
10919 ui_out_text (uiout, _("\n\
10920 Check the underlying instruction at PC for the memory\n\
10921 address and value which triggered this watchpoint.\n"));
10922 ui_out_text (uiout, "\n");
10923
10924 /* More than one watchpoint may have been triggered. */
10925 return PRINT_UNKNOWN;
10926 }
10927
10928 /* Implement the "print_one_detail" breakpoint_ops method for
10929 masked hardware watchpoints. */
10930
10931 static void
10932 print_one_detail_masked_watchpoint (const struct breakpoint *b,
10933 struct ui_out *uiout)
10934 {
10935 struct watchpoint *w = (struct watchpoint *) b;
10936
10937 /* Masked watchpoints have only one location. */
10938 gdb_assert (b->loc && b->loc->next == NULL);
10939
10940 ui_out_text (uiout, "\tmask ");
10941 ui_out_field_core_addr (uiout, "mask", b->loc->gdbarch, w->hw_wp_mask);
10942 ui_out_text (uiout, "\n");
10943 }
10944
10945 /* Implement the "print_mention" breakpoint_ops method for
10946 masked hardware watchpoints. */
10947
10948 static void
10949 print_mention_masked_watchpoint (struct breakpoint *b)
10950 {
10951 struct watchpoint *w = (struct watchpoint *) b;
10952 struct ui_out *uiout = current_uiout;
10953 struct cleanup *ui_out_chain;
10954
10955 switch (b->type)
10956 {
10957 case bp_hardware_watchpoint:
10958 ui_out_text (uiout, "Masked hardware watchpoint ");
10959 ui_out_chain = make_cleanup_ui_out_tuple_begin_end (uiout, "wpt");
10960 break;
10961 case bp_read_watchpoint:
10962 ui_out_text (uiout, "Masked hardware read watchpoint ");
10963 ui_out_chain = make_cleanup_ui_out_tuple_begin_end (uiout, "hw-rwpt");
10964 break;
10965 case bp_access_watchpoint:
10966 ui_out_text (uiout, "Masked hardware access (read/write) watchpoint ");
10967 ui_out_chain = make_cleanup_ui_out_tuple_begin_end (uiout, "hw-awpt");
10968 break;
10969 default:
10970 internal_error (__FILE__, __LINE__,
10971 _("Invalid hardware watchpoint type."));
10972 }
10973
10974 ui_out_field_int (uiout, "number", b->number);
10975 ui_out_text (uiout, ": ");
10976 ui_out_field_string (uiout, "exp", w->exp_string);
10977 do_cleanups (ui_out_chain);
10978 }
10979
10980 /* Implement the "print_recreate" breakpoint_ops method for
10981 masked hardware watchpoints. */
10982
10983 static void
10984 print_recreate_masked_watchpoint (struct breakpoint *b, struct ui_file *fp)
10985 {
10986 struct watchpoint *w = (struct watchpoint *) b;
10987 char tmp[40];
10988
10989 switch (b->type)
10990 {
10991 case bp_hardware_watchpoint:
10992 fprintf_unfiltered (fp, "watch");
10993 break;
10994 case bp_read_watchpoint:
10995 fprintf_unfiltered (fp, "rwatch");
10996 break;
10997 case bp_access_watchpoint:
10998 fprintf_unfiltered (fp, "awatch");
10999 break;
11000 default:
11001 internal_error (__FILE__, __LINE__,
11002 _("Invalid hardware watchpoint type."));
11003 }
11004
11005 sprintf_vma (tmp, w->hw_wp_mask);
11006 fprintf_unfiltered (fp, " %s mask 0x%s", w->exp_string, tmp);
11007 print_recreate_thread (b, fp);
11008 }
11009
11010 /* The breakpoint_ops structure to be used in masked hardware watchpoints. */
11011
11012 static struct breakpoint_ops masked_watchpoint_breakpoint_ops;
11013
11014 /* Tell whether the given watchpoint is a masked hardware watchpoint. */
11015
11016 static int
11017 is_masked_watchpoint (const struct breakpoint *b)
11018 {
11019 return b->ops == &masked_watchpoint_breakpoint_ops;
11020 }
11021
11022 /* accessflag: hw_write: watch write,
11023 hw_read: watch read,
11024 hw_access: watch access (read or write) */
11025 static void
11026 watch_command_1 (const char *arg, int accessflag, int from_tty,
11027 int just_location, int internal)
11028 {
11029 volatile struct gdb_exception e;
11030 struct breakpoint *b, *scope_breakpoint = NULL;
11031 struct expression *exp;
11032 const struct block *exp_valid_block = NULL, *cond_exp_valid_block = NULL;
11033 struct value *val, *mark, *result;
11034 struct frame_info *frame;
11035 const char *exp_start = NULL;
11036 const char *exp_end = NULL;
11037 const char *tok, *end_tok;
11038 int toklen = -1;
11039 const char *cond_start = NULL;
11040 const char *cond_end = NULL;
11041 enum bptype bp_type;
11042 int thread = -1;
11043 int pc = 0;
11044 /* Flag to indicate whether we are going to use masks for
11045 the hardware watchpoint. */
11046 int use_mask = 0;
11047 CORE_ADDR mask = 0;
11048 struct watchpoint *w;
11049 char *expression;
11050 struct cleanup *back_to;
11051
11052 /* Make sure that we actually have parameters to parse. */
11053 if (arg != NULL && arg[0] != '\0')
11054 {
11055 const char *value_start;
11056
11057 exp_end = arg + strlen (arg);
11058
11059 /* Look for "parameter value" pairs at the end
11060 of the arguments string. */
11061 for (tok = exp_end - 1; tok > arg; tok--)
11062 {
11063 /* Skip whitespace at the end of the argument list. */
11064 while (tok > arg && (*tok == ' ' || *tok == '\t'))
11065 tok--;
11066
11067 /* Find the beginning of the last token.
11068 This is the value of the parameter. */
11069 while (tok > arg && (*tok != ' ' && *tok != '\t'))
11070 tok--;
11071 value_start = tok + 1;
11072
11073 /* Skip whitespace. */
11074 while (tok > arg && (*tok == ' ' || *tok == '\t'))
11075 tok--;
11076
11077 end_tok = tok;
11078
11079 /* Find the beginning of the second to last token.
11080 This is the parameter itself. */
11081 while (tok > arg && (*tok != ' ' && *tok != '\t'))
11082 tok--;
11083 tok++;
11084 toklen = end_tok - tok + 1;
11085
11086 if (toklen == 6 && !strncmp (tok, "thread", 6))
11087 {
11088 /* At this point we've found a "thread" token, which means
11089 the user is trying to set a watchpoint that triggers
11090 only in a specific thread. */
11091 char *endp;
11092
11093 if (thread != -1)
11094 error(_("You can specify only one thread."));
11095
11096 /* Extract the thread ID from the next token. */
11097 thread = strtol (value_start, &endp, 0);
11098
11099 /* Check if the user provided a valid numeric value for the
11100 thread ID. */
11101 if (*endp != ' ' && *endp != '\t' && *endp != '\0')
11102 error (_("Invalid thread ID specification %s."), value_start);
11103
11104 /* Check if the thread actually exists. */
11105 if (!valid_thread_id (thread))
11106 invalid_thread_id_error (thread);
11107 }
11108 else if (toklen == 4 && !strncmp (tok, "mask", 4))
11109 {
11110 /* We've found a "mask" token, which means the user wants to
11111 create a hardware watchpoint that is going to have the mask
11112 facility. */
11113 struct value *mask_value, *mark;
11114
11115 if (use_mask)
11116 error(_("You can specify only one mask."));
11117
11118 use_mask = just_location = 1;
11119
11120 mark = value_mark ();
11121 mask_value = parse_to_comma_and_eval (&value_start);
11122 mask = value_as_address (mask_value);
11123 value_free_to_mark (mark);
11124 }
11125 else
11126 /* We didn't recognize what we found. We should stop here. */
11127 break;
11128
11129 /* Truncate the string and get rid of the "parameter value" pair before
11130 the arguments string is parsed by the parse_exp_1 function. */
11131 exp_end = tok;
11132 }
11133 }
11134 else
11135 exp_end = arg;
11136
11137 /* Parse the rest of the arguments. From here on out, everything
11138 is in terms of a newly allocated string instead of the original
11139 ARG. */
11140 innermost_block = NULL;
11141 expression = savestring (arg, exp_end - arg);
11142 back_to = make_cleanup (xfree, expression);
11143 exp_start = arg = expression;
11144 exp = parse_exp_1 (&arg, 0, 0, 0);
11145 exp_end = arg;
11146 /* Remove trailing whitespace from the expression before saving it.
11147 This makes the eventual display of the expression string a bit
11148 prettier. */
11149 while (exp_end > exp_start && (exp_end[-1] == ' ' || exp_end[-1] == '\t'))
11150 --exp_end;
11151
11152 /* Checking if the expression is not constant. */
11153 if (watchpoint_exp_is_const (exp))
11154 {
11155 int len;
11156
11157 len = exp_end - exp_start;
11158 while (len > 0 && isspace (exp_start[len - 1]))
11159 len--;
11160 error (_("Cannot watch constant value `%.*s'."), len, exp_start);
11161 }
11162
11163 exp_valid_block = innermost_block;
11164 mark = value_mark ();
11165 fetch_subexp_value (exp, &pc, &val, &result, NULL, just_location);
11166
11167 if (just_location)
11168 {
11169 int ret;
11170
11171 exp_valid_block = NULL;
11172 val = value_addr (result);
11173 release_value (val);
11174 value_free_to_mark (mark);
11175
11176 if (use_mask)
11177 {
11178 ret = target_masked_watch_num_registers (value_as_address (val),
11179 mask);
11180 if (ret == -1)
11181 error (_("This target does not support masked watchpoints."));
11182 else if (ret == -2)
11183 error (_("Invalid mask or memory region."));
11184 }
11185 }
11186 else if (val != NULL)
11187 release_value (val);
11188
11189 tok = skip_spaces_const (arg);
11190 end_tok = skip_to_space_const (tok);
11191
11192 toklen = end_tok - tok;
11193 if (toklen >= 1 && strncmp (tok, "if", toklen) == 0)
11194 {
11195 struct expression *cond;
11196
11197 innermost_block = NULL;
11198 tok = cond_start = end_tok + 1;
11199 cond = parse_exp_1 (&tok, 0, 0, 0);
11200
11201 /* The watchpoint expression may not be local, but the condition
11202 may still be. E.g.: `watch global if local > 0'. */
11203 cond_exp_valid_block = innermost_block;
11204
11205 xfree (cond);
11206 cond_end = tok;
11207 }
11208 if (*tok)
11209 error (_("Junk at end of command."));
11210
11211 frame = block_innermost_frame (exp_valid_block);
11212
11213 /* If the expression is "local", then set up a "watchpoint scope"
11214 breakpoint at the point where we've left the scope of the watchpoint
11215 expression. Create the scope breakpoint before the watchpoint, so
11216 that we will encounter it first in bpstat_stop_status. */
11217 if (exp_valid_block && frame)
11218 {
11219 if (frame_id_p (frame_unwind_caller_id (frame)))
11220 {
11221 scope_breakpoint
11222 = create_internal_breakpoint (frame_unwind_caller_arch (frame),
11223 frame_unwind_caller_pc (frame),
11224 bp_watchpoint_scope,
11225 &momentary_breakpoint_ops);
11226
11227 scope_breakpoint->enable_state = bp_enabled;
11228
11229 /* Automatically delete the breakpoint when it hits. */
11230 scope_breakpoint->disposition = disp_del;
11231
11232 /* Only break in the proper frame (help with recursion). */
11233 scope_breakpoint->frame_id = frame_unwind_caller_id (frame);
11234
11235 /* Set the address at which we will stop. */
11236 scope_breakpoint->loc->gdbarch
11237 = frame_unwind_caller_arch (frame);
11238 scope_breakpoint->loc->requested_address
11239 = frame_unwind_caller_pc (frame);
11240 scope_breakpoint->loc->address
11241 = adjust_breakpoint_address (scope_breakpoint->loc->gdbarch,
11242 scope_breakpoint->loc->requested_address,
11243 scope_breakpoint->type);
11244 }
11245 }
11246
11247 /* Now set up the breakpoint. We create all watchpoints as hardware
11248 watchpoints here even if hardware watchpoints are turned off, a call
11249 to update_watchpoint later in this function will cause the type to
11250 drop back to bp_watchpoint (software watchpoint) if required. */
11251
11252 if (accessflag == hw_read)
11253 bp_type = bp_read_watchpoint;
11254 else if (accessflag == hw_access)
11255 bp_type = bp_access_watchpoint;
11256 else
11257 bp_type = bp_hardware_watchpoint;
11258
11259 w = XCNEW (struct watchpoint);
11260 b = &w->base;
11261 if (use_mask)
11262 init_raw_breakpoint_without_location (b, NULL, bp_type,
11263 &masked_watchpoint_breakpoint_ops);
11264 else
11265 init_raw_breakpoint_without_location (b, NULL, bp_type,
11266 &watchpoint_breakpoint_ops);
11267 b->thread = thread;
11268 b->disposition = disp_donttouch;
11269 b->pspace = current_program_space;
11270 w->exp = exp;
11271 w->exp_valid_block = exp_valid_block;
11272 w->cond_exp_valid_block = cond_exp_valid_block;
11273 if (just_location)
11274 {
11275 struct type *t = value_type (val);
11276 CORE_ADDR addr = value_as_address (val);
11277 char *name;
11278
11279 t = check_typedef (TYPE_TARGET_TYPE (check_typedef (t)));
11280 name = type_to_string (t);
11281
11282 w->exp_string_reparse = xstrprintf ("* (%s *) %s", name,
11283 core_addr_to_string (addr));
11284 xfree (name);
11285
11286 w->exp_string = xstrprintf ("-location %.*s",
11287 (int) (exp_end - exp_start), exp_start);
11288
11289 /* The above expression is in C. */
11290 b->language = language_c;
11291 }
11292 else
11293 w->exp_string = savestring (exp_start, exp_end - exp_start);
11294
11295 if (use_mask)
11296 {
11297 w->hw_wp_mask = mask;
11298 }
11299 else
11300 {
11301 w->val = val;
11302 w->val_valid = 1;
11303 }
11304
11305 if (cond_start)
11306 b->cond_string = savestring (cond_start, cond_end - cond_start);
11307 else
11308 b->cond_string = 0;
11309
11310 if (frame)
11311 {
11312 w->watchpoint_frame = get_frame_id (frame);
11313 w->watchpoint_thread = inferior_ptid;
11314 }
11315 else
11316 {
11317 w->watchpoint_frame = null_frame_id;
11318 w->watchpoint_thread = null_ptid;
11319 }
11320
11321 if (scope_breakpoint != NULL)
11322 {
11323 /* The scope breakpoint is related to the watchpoint. We will
11324 need to act on them together. */
11325 b->related_breakpoint = scope_breakpoint;
11326 scope_breakpoint->related_breakpoint = b;
11327 }
11328
11329 if (!just_location)
11330 value_free_to_mark (mark);
11331
11332 TRY_CATCH (e, RETURN_MASK_ALL)
11333 {
11334 /* Finally update the new watchpoint. This creates the locations
11335 that should be inserted. */
11336 update_watchpoint (w, 1);
11337 }
11338 if (e.reason < 0)
11339 {
11340 delete_breakpoint (b);
11341 throw_exception (e);
11342 }
11343
11344 install_breakpoint (internal, b, 1);
11345 do_cleanups (back_to);
11346 }
11347
11348 /* Return count of debug registers needed to watch the given expression.
11349 If the watchpoint cannot be handled in hardware return zero. */
11350
11351 static int
11352 can_use_hardware_watchpoint (struct value *v)
11353 {
11354 int found_memory_cnt = 0;
11355 struct value *head = v;
11356
11357 /* Did the user specifically forbid us to use hardware watchpoints? */
11358 if (!can_use_hw_watchpoints)
11359 return 0;
11360
11361 /* Make sure that the value of the expression depends only upon
11362 memory contents, and values computed from them within GDB. If we
11363 find any register references or function calls, we can't use a
11364 hardware watchpoint.
11365
11366 The idea here is that evaluating an expression generates a series
11367 of values, one holding the value of every subexpression. (The
11368 expression a*b+c has five subexpressions: a, b, a*b, c, and
11369 a*b+c.) GDB's values hold almost enough information to establish
11370 the criteria given above --- they identify memory lvalues,
11371 register lvalues, computed values, etcetera. So we can evaluate
11372 the expression, and then scan the chain of values that leaves
11373 behind to decide whether we can detect any possible change to the
11374 expression's final value using only hardware watchpoints.
11375
11376 However, I don't think that the values returned by inferior
11377 function calls are special in any way. So this function may not
11378 notice that an expression involving an inferior function call
11379 can't be watched with hardware watchpoints. FIXME. */
11380 for (; v; v = value_next (v))
11381 {
11382 if (VALUE_LVAL (v) == lval_memory)
11383 {
11384 if (v != head && value_lazy (v))
11385 /* A lazy memory lvalue in the chain is one that GDB never
11386 needed to fetch; we either just used its address (e.g.,
11387 `a' in `a.b') or we never needed it at all (e.g., `a'
11388 in `a,b'). This doesn't apply to HEAD; if that is
11389 lazy then it was not readable, but watch it anyway. */
11390 ;
11391 else
11392 {
11393 /* Ahh, memory we actually used! Check if we can cover
11394 it with hardware watchpoints. */
11395 struct type *vtype = check_typedef (value_type (v));
11396
11397 /* We only watch structs and arrays if user asked for it
11398 explicitly, never if they just happen to appear in a
11399 middle of some value chain. */
11400 if (v == head
11401 || (TYPE_CODE (vtype) != TYPE_CODE_STRUCT
11402 && TYPE_CODE (vtype) != TYPE_CODE_ARRAY))
11403 {
11404 CORE_ADDR vaddr = value_address (v);
11405 int len;
11406 int num_regs;
11407
11408 len = (target_exact_watchpoints
11409 && is_scalar_type_recursive (vtype))?
11410 1 : TYPE_LENGTH (value_type (v));
11411
11412 num_regs = target_region_ok_for_hw_watchpoint (vaddr, len);
11413 if (!num_regs)
11414 return 0;
11415 else
11416 found_memory_cnt += num_regs;
11417 }
11418 }
11419 }
11420 else if (VALUE_LVAL (v) != not_lval
11421 && deprecated_value_modifiable (v) == 0)
11422 return 0; /* These are values from the history (e.g., $1). */
11423 else if (VALUE_LVAL (v) == lval_register)
11424 return 0; /* Cannot watch a register with a HW watchpoint. */
11425 }
11426
11427 /* The expression itself looks suitable for using a hardware
11428 watchpoint, but give the target machine a chance to reject it. */
11429 return found_memory_cnt;
11430 }
11431
11432 void
11433 watch_command_wrapper (char *arg, int from_tty, int internal)
11434 {
11435 watch_command_1 (arg, hw_write, from_tty, 0, internal);
11436 }
11437
11438 /* A helper function that looks for the "-location" argument and then
11439 calls watch_command_1. */
11440
11441 static void
11442 watch_maybe_just_location (char *arg, int accessflag, int from_tty)
11443 {
11444 int just_location = 0;
11445
11446 if (arg
11447 && (check_for_argument (&arg, "-location", sizeof ("-location") - 1)
11448 || check_for_argument (&arg, "-l", sizeof ("-l") - 1)))
11449 {
11450 arg = skip_spaces (arg);
11451 just_location = 1;
11452 }
11453
11454 watch_command_1 (arg, accessflag, from_tty, just_location, 0);
11455 }
11456
11457 static void
11458 watch_command (char *arg, int from_tty)
11459 {
11460 watch_maybe_just_location (arg, hw_write, from_tty);
11461 }
11462
11463 void
11464 rwatch_command_wrapper (char *arg, int from_tty, int internal)
11465 {
11466 watch_command_1 (arg, hw_read, from_tty, 0, internal);
11467 }
11468
11469 static void
11470 rwatch_command (char *arg, int from_tty)
11471 {
11472 watch_maybe_just_location (arg, hw_read, from_tty);
11473 }
11474
11475 void
11476 awatch_command_wrapper (char *arg, int from_tty, int internal)
11477 {
11478 watch_command_1 (arg, hw_access, from_tty, 0, internal);
11479 }
11480
11481 static void
11482 awatch_command (char *arg, int from_tty)
11483 {
11484 watch_maybe_just_location (arg, hw_access, from_tty);
11485 }
11486 \f
11487
11488 /* Helper routines for the until_command routine in infcmd.c. Here
11489 because it uses the mechanisms of breakpoints. */
11490
11491 struct until_break_command_continuation_args
11492 {
11493 struct breakpoint *breakpoint;
11494 struct breakpoint *breakpoint2;
11495 int thread_num;
11496 };
11497
11498 /* This function is called by fetch_inferior_event via the
11499 cmd_continuation pointer, to complete the until command. It takes
11500 care of cleaning up the temporary breakpoints set up by the until
11501 command. */
11502 static void
11503 until_break_command_continuation (void *arg, int err)
11504 {
11505 struct until_break_command_continuation_args *a = arg;
11506
11507 delete_breakpoint (a->breakpoint);
11508 if (a->breakpoint2)
11509 delete_breakpoint (a->breakpoint2);
11510 delete_longjmp_breakpoint (a->thread_num);
11511 }
11512
11513 void
11514 until_break_command (char *arg, int from_tty, int anywhere)
11515 {
11516 struct symtabs_and_lines sals;
11517 struct symtab_and_line sal;
11518 struct frame_info *frame;
11519 struct gdbarch *frame_gdbarch;
11520 struct frame_id stack_frame_id;
11521 struct frame_id caller_frame_id;
11522 struct breakpoint *breakpoint;
11523 struct breakpoint *breakpoint2 = NULL;
11524 struct cleanup *old_chain;
11525 int thread;
11526 struct thread_info *tp;
11527
11528 clear_proceed_status ();
11529
11530 /* Set a breakpoint where the user wants it and at return from
11531 this function. */
11532
11533 if (last_displayed_sal_is_valid ())
11534 sals = decode_line_1 (&arg, DECODE_LINE_FUNFIRSTLINE,
11535 get_last_displayed_symtab (),
11536 get_last_displayed_line ());
11537 else
11538 sals = decode_line_1 (&arg, DECODE_LINE_FUNFIRSTLINE,
11539 (struct symtab *) NULL, 0);
11540
11541 if (sals.nelts != 1)
11542 error (_("Couldn't get information on specified line."));
11543
11544 sal = sals.sals[0];
11545 xfree (sals.sals); /* malloc'd, so freed. */
11546
11547 if (*arg)
11548 error (_("Junk at end of arguments."));
11549
11550 resolve_sal_pc (&sal);
11551
11552 tp = inferior_thread ();
11553 thread = tp->num;
11554
11555 old_chain = make_cleanup (null_cleanup, NULL);
11556
11557 /* Note linespec handling above invalidates the frame chain.
11558 Installing a breakpoint also invalidates the frame chain (as it
11559 may need to switch threads), so do any frame handling before
11560 that. */
11561
11562 frame = get_selected_frame (NULL);
11563 frame_gdbarch = get_frame_arch (frame);
11564 stack_frame_id = get_stack_frame_id (frame);
11565 caller_frame_id = frame_unwind_caller_id (frame);
11566
11567 /* Keep within the current frame, or in frames called by the current
11568 one. */
11569
11570 if (frame_id_p (caller_frame_id))
11571 {
11572 struct symtab_and_line sal2;
11573
11574 sal2 = find_pc_line (frame_unwind_caller_pc (frame), 0);
11575 sal2.pc = frame_unwind_caller_pc (frame);
11576 breakpoint2 = set_momentary_breakpoint (frame_unwind_caller_arch (frame),
11577 sal2,
11578 caller_frame_id,
11579 bp_until);
11580 make_cleanup_delete_breakpoint (breakpoint2);
11581
11582 set_longjmp_breakpoint (tp, caller_frame_id);
11583 make_cleanup (delete_longjmp_breakpoint_cleanup, &thread);
11584 }
11585
11586 /* set_momentary_breakpoint could invalidate FRAME. */
11587 frame = NULL;
11588
11589 if (anywhere)
11590 /* If the user told us to continue until a specified location,
11591 we don't specify a frame at which we need to stop. */
11592 breakpoint = set_momentary_breakpoint (frame_gdbarch, sal,
11593 null_frame_id, bp_until);
11594 else
11595 /* Otherwise, specify the selected frame, because we want to stop
11596 only at the very same frame. */
11597 breakpoint = set_momentary_breakpoint (frame_gdbarch, sal,
11598 stack_frame_id, bp_until);
11599 make_cleanup_delete_breakpoint (breakpoint);
11600
11601 proceed (-1, GDB_SIGNAL_DEFAULT, 0);
11602
11603 /* If we are running asynchronously, and proceed call above has
11604 actually managed to start the target, arrange for breakpoints to
11605 be deleted when the target stops. Otherwise, we're already
11606 stopped and delete breakpoints via cleanup chain. */
11607
11608 if (target_can_async_p () && is_running (inferior_ptid))
11609 {
11610 struct until_break_command_continuation_args *args;
11611 args = xmalloc (sizeof (*args));
11612
11613 args->breakpoint = breakpoint;
11614 args->breakpoint2 = breakpoint2;
11615 args->thread_num = thread;
11616
11617 discard_cleanups (old_chain);
11618 add_continuation (inferior_thread (),
11619 until_break_command_continuation, args,
11620 xfree);
11621 }
11622 else
11623 do_cleanups (old_chain);
11624 }
11625
11626 /* This function attempts to parse an optional "if <cond>" clause
11627 from the arg string. If one is not found, it returns NULL.
11628
11629 Else, it returns a pointer to the condition string. (It does not
11630 attempt to evaluate the string against a particular block.) And,
11631 it updates arg to point to the first character following the parsed
11632 if clause in the arg string. */
11633
11634 char *
11635 ep_parse_optional_if_clause (char **arg)
11636 {
11637 char *cond_string;
11638
11639 if (((*arg)[0] != 'i') || ((*arg)[1] != 'f') || !isspace ((*arg)[2]))
11640 return NULL;
11641
11642 /* Skip the "if" keyword. */
11643 (*arg) += 2;
11644
11645 /* Skip any extra leading whitespace, and record the start of the
11646 condition string. */
11647 *arg = skip_spaces (*arg);
11648 cond_string = *arg;
11649
11650 /* Assume that the condition occupies the remainder of the arg
11651 string. */
11652 (*arg) += strlen (cond_string);
11653
11654 return cond_string;
11655 }
11656
11657 /* Commands to deal with catching events, such as signals, exceptions,
11658 process start/exit, etc. */
11659
11660 typedef enum
11661 {
11662 catch_fork_temporary, catch_vfork_temporary,
11663 catch_fork_permanent, catch_vfork_permanent
11664 }
11665 catch_fork_kind;
11666
11667 static void
11668 catch_fork_command_1 (char *arg, int from_tty,
11669 struct cmd_list_element *command)
11670 {
11671 struct gdbarch *gdbarch = get_current_arch ();
11672 char *cond_string = NULL;
11673 catch_fork_kind fork_kind;
11674 int tempflag;
11675
11676 fork_kind = (catch_fork_kind) (uintptr_t) get_cmd_context (command);
11677 tempflag = (fork_kind == catch_fork_temporary
11678 || fork_kind == catch_vfork_temporary);
11679
11680 if (!arg)
11681 arg = "";
11682 arg = skip_spaces (arg);
11683
11684 /* The allowed syntax is:
11685 catch [v]fork
11686 catch [v]fork if <cond>
11687
11688 First, check if there's an if clause. */
11689 cond_string = ep_parse_optional_if_clause (&arg);
11690
11691 if ((*arg != '\0') && !isspace (*arg))
11692 error (_("Junk at end of arguments."));
11693
11694 /* If this target supports it, create a fork or vfork catchpoint
11695 and enable reporting of such events. */
11696 switch (fork_kind)
11697 {
11698 case catch_fork_temporary:
11699 case catch_fork_permanent:
11700 create_fork_vfork_event_catchpoint (gdbarch, tempflag, cond_string,
11701 &catch_fork_breakpoint_ops);
11702 break;
11703 case catch_vfork_temporary:
11704 case catch_vfork_permanent:
11705 create_fork_vfork_event_catchpoint (gdbarch, tempflag, cond_string,
11706 &catch_vfork_breakpoint_ops);
11707 break;
11708 default:
11709 error (_("unsupported or unknown fork kind; cannot catch it"));
11710 break;
11711 }
11712 }
11713
11714 static void
11715 catch_exec_command_1 (char *arg, int from_tty,
11716 struct cmd_list_element *command)
11717 {
11718 struct exec_catchpoint *c;
11719 struct gdbarch *gdbarch = get_current_arch ();
11720 int tempflag;
11721 char *cond_string = NULL;
11722
11723 tempflag = get_cmd_context (command) == CATCH_TEMPORARY;
11724
11725 if (!arg)
11726 arg = "";
11727 arg = skip_spaces (arg);
11728
11729 /* The allowed syntax is:
11730 catch exec
11731 catch exec if <cond>
11732
11733 First, check if there's an if clause. */
11734 cond_string = ep_parse_optional_if_clause (&arg);
11735
11736 if ((*arg != '\0') && !isspace (*arg))
11737 error (_("Junk at end of arguments."));
11738
11739 c = XNEW (struct exec_catchpoint);
11740 init_catchpoint (&c->base, gdbarch, tempflag, cond_string,
11741 &catch_exec_breakpoint_ops);
11742 c->exec_pathname = NULL;
11743
11744 install_breakpoint (0, &c->base, 1);
11745 }
11746
11747 void
11748 init_ada_exception_breakpoint (struct breakpoint *b,
11749 struct gdbarch *gdbarch,
11750 struct symtab_and_line sal,
11751 char *addr_string,
11752 const struct breakpoint_ops *ops,
11753 int tempflag,
11754 int enabled,
11755 int from_tty)
11756 {
11757 if (from_tty)
11758 {
11759 struct gdbarch *loc_gdbarch = get_sal_arch (sal);
11760 if (!loc_gdbarch)
11761 loc_gdbarch = gdbarch;
11762
11763 describe_other_breakpoints (loc_gdbarch,
11764 sal.pspace, sal.pc, sal.section, -1);
11765 /* FIXME: brobecker/2006-12-28: Actually, re-implement a special
11766 version for exception catchpoints, because two catchpoints
11767 used for different exception names will use the same address.
11768 In this case, a "breakpoint ... also set at..." warning is
11769 unproductive. Besides, the warning phrasing is also a bit
11770 inappropriate, we should use the word catchpoint, and tell
11771 the user what type of catchpoint it is. The above is good
11772 enough for now, though. */
11773 }
11774
11775 init_raw_breakpoint (b, gdbarch, sal, bp_breakpoint, ops);
11776
11777 b->enable_state = enabled ? bp_enabled : bp_disabled;
11778 b->disposition = tempflag ? disp_del : disp_donttouch;
11779 b->addr_string = addr_string;
11780 b->language = language_ada;
11781 }
11782
11783 /* Splits the argument using space as delimiter. Returns an xmalloc'd
11784 filter list, or NULL if no filtering is required. */
11785 static VEC(int) *
11786 catch_syscall_split_args (char *arg)
11787 {
11788 VEC(int) *result = NULL;
11789 struct cleanup *cleanup = make_cleanup (VEC_cleanup (int), &result);
11790
11791 while (*arg != '\0')
11792 {
11793 int i, syscall_number;
11794 char *endptr;
11795 char cur_name[128];
11796 struct syscall s;
11797
11798 /* Skip whitespace. */
11799 arg = skip_spaces (arg);
11800
11801 for (i = 0; i < 127 && arg[i] && !isspace (arg[i]); ++i)
11802 cur_name[i] = arg[i];
11803 cur_name[i] = '\0';
11804 arg += i;
11805
11806 /* Check if the user provided a syscall name or a number. */
11807 syscall_number = (int) strtol (cur_name, &endptr, 0);
11808 if (*endptr == '\0')
11809 get_syscall_by_number (syscall_number, &s);
11810 else
11811 {
11812 /* We have a name. Let's check if it's valid and convert it
11813 to a number. */
11814 get_syscall_by_name (cur_name, &s);
11815
11816 if (s.number == UNKNOWN_SYSCALL)
11817 /* Here we have to issue an error instead of a warning,
11818 because GDB cannot do anything useful if there's no
11819 syscall number to be caught. */
11820 error (_("Unknown syscall name '%s'."), cur_name);
11821 }
11822
11823 /* Ok, it's valid. */
11824 VEC_safe_push (int, result, s.number);
11825 }
11826
11827 discard_cleanups (cleanup);
11828 return result;
11829 }
11830
11831 /* Implement the "catch syscall" command. */
11832
11833 static void
11834 catch_syscall_command_1 (char *arg, int from_tty,
11835 struct cmd_list_element *command)
11836 {
11837 int tempflag;
11838 VEC(int) *filter;
11839 struct syscall s;
11840 struct gdbarch *gdbarch = get_current_arch ();
11841
11842 /* Checking if the feature if supported. */
11843 if (gdbarch_get_syscall_number_p (gdbarch) == 0)
11844 error (_("The feature 'catch syscall' is not supported on \
11845 this architecture yet."));
11846
11847 tempflag = get_cmd_context (command) == CATCH_TEMPORARY;
11848
11849 arg = skip_spaces (arg);
11850
11851 /* We need to do this first "dummy" translation in order
11852 to get the syscall XML file loaded or, most important,
11853 to display a warning to the user if there's no XML file
11854 for his/her architecture. */
11855 get_syscall_by_number (0, &s);
11856
11857 /* The allowed syntax is:
11858 catch syscall
11859 catch syscall <name | number> [<name | number> ... <name | number>]
11860
11861 Let's check if there's a syscall name. */
11862
11863 if (arg != NULL)
11864 filter = catch_syscall_split_args (arg);
11865 else
11866 filter = NULL;
11867
11868 create_syscall_event_catchpoint (tempflag, filter,
11869 &catch_syscall_breakpoint_ops);
11870 }
11871
11872 static void
11873 catch_command (char *arg, int from_tty)
11874 {
11875 error (_("Catch requires an event name."));
11876 }
11877 \f
11878
11879 static void
11880 tcatch_command (char *arg, int from_tty)
11881 {
11882 error (_("Catch requires an event name."));
11883 }
11884
11885 /* A qsort comparison function that sorts breakpoints in order. */
11886
11887 static int
11888 compare_breakpoints (const void *a, const void *b)
11889 {
11890 const breakpoint_p *ba = a;
11891 uintptr_t ua = (uintptr_t) *ba;
11892 const breakpoint_p *bb = b;
11893 uintptr_t ub = (uintptr_t) *bb;
11894
11895 if ((*ba)->number < (*bb)->number)
11896 return -1;
11897 else if ((*ba)->number > (*bb)->number)
11898 return 1;
11899
11900 /* Now sort by address, in case we see, e..g, two breakpoints with
11901 the number 0. */
11902 if (ua < ub)
11903 return -1;
11904 return ua > ub ? 1 : 0;
11905 }
11906
11907 /* Delete breakpoints by address or line. */
11908
11909 static void
11910 clear_command (char *arg, int from_tty)
11911 {
11912 struct breakpoint *b, *prev;
11913 VEC(breakpoint_p) *found = 0;
11914 int ix;
11915 int default_match;
11916 struct symtabs_and_lines sals;
11917 struct symtab_and_line sal;
11918 int i;
11919 struct cleanup *cleanups = make_cleanup (null_cleanup, NULL);
11920
11921 if (arg)
11922 {
11923 sals = decode_line_with_current_source (arg,
11924 (DECODE_LINE_FUNFIRSTLINE
11925 | DECODE_LINE_LIST_MODE));
11926 make_cleanup (xfree, sals.sals);
11927 default_match = 0;
11928 }
11929 else
11930 {
11931 sals.sals = (struct symtab_and_line *)
11932 xmalloc (sizeof (struct symtab_and_line));
11933 make_cleanup (xfree, sals.sals);
11934 init_sal (&sal); /* Initialize to zeroes. */
11935
11936 /* Set sal's line, symtab, pc, and pspace to the values
11937 corresponding to the last call to print_frame_info. If the
11938 codepoint is not valid, this will set all the fields to 0. */
11939 get_last_displayed_sal (&sal);
11940 if (sal.symtab == 0)
11941 error (_("No source file specified."));
11942
11943 sals.sals[0] = sal;
11944 sals.nelts = 1;
11945
11946 default_match = 1;
11947 }
11948
11949 /* We don't call resolve_sal_pc here. That's not as bad as it
11950 seems, because all existing breakpoints typically have both
11951 file/line and pc set. So, if clear is given file/line, we can
11952 match this to existing breakpoint without obtaining pc at all.
11953
11954 We only support clearing given the address explicitly
11955 present in breakpoint table. Say, we've set breakpoint
11956 at file:line. There were several PC values for that file:line,
11957 due to optimization, all in one block.
11958
11959 We've picked one PC value. If "clear" is issued with another
11960 PC corresponding to the same file:line, the breakpoint won't
11961 be cleared. We probably can still clear the breakpoint, but
11962 since the other PC value is never presented to user, user
11963 can only find it by guessing, and it does not seem important
11964 to support that. */
11965
11966 /* For each line spec given, delete bps which correspond to it. Do
11967 it in two passes, solely to preserve the current behavior that
11968 from_tty is forced true if we delete more than one
11969 breakpoint. */
11970
11971 found = NULL;
11972 make_cleanup (VEC_cleanup (breakpoint_p), &found);
11973 for (i = 0; i < sals.nelts; i++)
11974 {
11975 const char *sal_fullname;
11976
11977 /* If exact pc given, clear bpts at that pc.
11978 If line given (pc == 0), clear all bpts on specified line.
11979 If defaulting, clear all bpts on default line
11980 or at default pc.
11981
11982 defaulting sal.pc != 0 tests to do
11983
11984 0 1 pc
11985 1 1 pc _and_ line
11986 0 0 line
11987 1 0 <can't happen> */
11988
11989 sal = sals.sals[i];
11990 sal_fullname = (sal.symtab == NULL
11991 ? NULL : symtab_to_fullname (sal.symtab));
11992
11993 /* Find all matching breakpoints and add them to 'found'. */
11994 ALL_BREAKPOINTS (b)
11995 {
11996 int match = 0;
11997 /* Are we going to delete b? */
11998 if (b->type != bp_none && !is_watchpoint (b))
11999 {
12000 struct bp_location *loc = b->loc;
12001 for (; loc; loc = loc->next)
12002 {
12003 /* If the user specified file:line, don't allow a PC
12004 match. This matches historical gdb behavior. */
12005 int pc_match = (!sal.explicit_line
12006 && sal.pc
12007 && (loc->pspace == sal.pspace)
12008 && (loc->address == sal.pc)
12009 && (!section_is_overlay (loc->section)
12010 || loc->section == sal.section));
12011 int line_match = 0;
12012
12013 if ((default_match || sal.explicit_line)
12014 && loc->symtab != NULL
12015 && sal_fullname != NULL
12016 && sal.pspace == loc->pspace
12017 && loc->line_number == sal.line
12018 && filename_cmp (symtab_to_fullname (loc->symtab),
12019 sal_fullname) == 0)
12020 line_match = 1;
12021
12022 if (pc_match || line_match)
12023 {
12024 match = 1;
12025 break;
12026 }
12027 }
12028 }
12029
12030 if (match)
12031 VEC_safe_push(breakpoint_p, found, b);
12032 }
12033 }
12034
12035 /* Now go thru the 'found' chain and delete them. */
12036 if (VEC_empty(breakpoint_p, found))
12037 {
12038 if (arg)
12039 error (_("No breakpoint at %s."), arg);
12040 else
12041 error (_("No breakpoint at this line."));
12042 }
12043
12044 /* Remove duplicates from the vec. */
12045 qsort (VEC_address (breakpoint_p, found),
12046 VEC_length (breakpoint_p, found),
12047 sizeof (breakpoint_p),
12048 compare_breakpoints);
12049 prev = VEC_index (breakpoint_p, found, 0);
12050 for (ix = 1; VEC_iterate (breakpoint_p, found, ix, b); ++ix)
12051 {
12052 if (b == prev)
12053 {
12054 VEC_ordered_remove (breakpoint_p, found, ix);
12055 --ix;
12056 }
12057 }
12058
12059 if (VEC_length(breakpoint_p, found) > 1)
12060 from_tty = 1; /* Always report if deleted more than one. */
12061 if (from_tty)
12062 {
12063 if (VEC_length(breakpoint_p, found) == 1)
12064 printf_unfiltered (_("Deleted breakpoint "));
12065 else
12066 printf_unfiltered (_("Deleted breakpoints "));
12067 }
12068
12069 for (ix = 0; VEC_iterate(breakpoint_p, found, ix, b); ix++)
12070 {
12071 if (from_tty)
12072 printf_unfiltered ("%d ", b->number);
12073 delete_breakpoint (b);
12074 }
12075 if (from_tty)
12076 putchar_unfiltered ('\n');
12077
12078 do_cleanups (cleanups);
12079 }
12080 \f
12081 /* Delete breakpoint in BS if they are `delete' breakpoints and
12082 all breakpoints that are marked for deletion, whether hit or not.
12083 This is called after any breakpoint is hit, or after errors. */
12084
12085 void
12086 breakpoint_auto_delete (bpstat bs)
12087 {
12088 struct breakpoint *b, *b_tmp;
12089
12090 for (; bs; bs = bs->next)
12091 if (bs->breakpoint_at
12092 && bs->breakpoint_at->disposition == disp_del
12093 && bs->stop)
12094 delete_breakpoint (bs->breakpoint_at);
12095
12096 ALL_BREAKPOINTS_SAFE (b, b_tmp)
12097 {
12098 if (b->disposition == disp_del_at_next_stop)
12099 delete_breakpoint (b);
12100 }
12101 }
12102
12103 /* A comparison function for bp_location AP and BP being interfaced to
12104 qsort. Sort elements primarily by their ADDRESS (no matter what
12105 does breakpoint_address_is_meaningful say for its OWNER),
12106 secondarily by ordering first bp_permanent OWNERed elements and
12107 terciarily just ensuring the array is sorted stable way despite
12108 qsort being an unstable algorithm. */
12109
12110 static int
12111 bp_location_compare (const void *ap, const void *bp)
12112 {
12113 struct bp_location *a = *(void **) ap;
12114 struct bp_location *b = *(void **) bp;
12115 /* A and B come from existing breakpoints having non-NULL OWNER. */
12116 int a_perm = a->owner->enable_state == bp_permanent;
12117 int b_perm = b->owner->enable_state == bp_permanent;
12118
12119 if (a->address != b->address)
12120 return (a->address > b->address) - (a->address < b->address);
12121
12122 /* Sort locations at the same address by their pspace number, keeping
12123 locations of the same inferior (in a multi-inferior environment)
12124 grouped. */
12125
12126 if (a->pspace->num != b->pspace->num)
12127 return ((a->pspace->num > b->pspace->num)
12128 - (a->pspace->num < b->pspace->num));
12129
12130 /* Sort permanent breakpoints first. */
12131 if (a_perm != b_perm)
12132 return (a_perm < b_perm) - (a_perm > b_perm);
12133
12134 /* Make the internal GDB representation stable across GDB runs
12135 where A and B memory inside GDB can differ. Breakpoint locations of
12136 the same type at the same address can be sorted in arbitrary order. */
12137
12138 if (a->owner->number != b->owner->number)
12139 return ((a->owner->number > b->owner->number)
12140 - (a->owner->number < b->owner->number));
12141
12142 return (a > b) - (a < b);
12143 }
12144
12145 /* Set bp_location_placed_address_before_address_max and
12146 bp_location_shadow_len_after_address_max according to the current
12147 content of the bp_location array. */
12148
12149 static void
12150 bp_location_target_extensions_update (void)
12151 {
12152 struct bp_location *bl, **blp_tmp;
12153
12154 bp_location_placed_address_before_address_max = 0;
12155 bp_location_shadow_len_after_address_max = 0;
12156
12157 ALL_BP_LOCATIONS (bl, blp_tmp)
12158 {
12159 CORE_ADDR start, end, addr;
12160
12161 if (!bp_location_has_shadow (bl))
12162 continue;
12163
12164 start = bl->target_info.placed_address;
12165 end = start + bl->target_info.shadow_len;
12166
12167 gdb_assert (bl->address >= start);
12168 addr = bl->address - start;
12169 if (addr > bp_location_placed_address_before_address_max)
12170 bp_location_placed_address_before_address_max = addr;
12171
12172 /* Zero SHADOW_LEN would not pass bp_location_has_shadow. */
12173
12174 gdb_assert (bl->address < end);
12175 addr = end - bl->address;
12176 if (addr > bp_location_shadow_len_after_address_max)
12177 bp_location_shadow_len_after_address_max = addr;
12178 }
12179 }
12180
12181 /* Download tracepoint locations if they haven't been. */
12182
12183 static void
12184 download_tracepoint_locations (void)
12185 {
12186 struct breakpoint *b;
12187 struct cleanup *old_chain;
12188
12189 if (!target_can_download_tracepoint ())
12190 return;
12191
12192 old_chain = save_current_space_and_thread ();
12193
12194 ALL_TRACEPOINTS (b)
12195 {
12196 struct bp_location *bl;
12197 struct tracepoint *t;
12198 int bp_location_downloaded = 0;
12199
12200 if ((b->type == bp_fast_tracepoint
12201 ? !may_insert_fast_tracepoints
12202 : !may_insert_tracepoints))
12203 continue;
12204
12205 for (bl = b->loc; bl; bl = bl->next)
12206 {
12207 /* In tracepoint, locations are _never_ duplicated, so
12208 should_be_inserted is equivalent to
12209 unduplicated_should_be_inserted. */
12210 if (!should_be_inserted (bl) || bl->inserted)
12211 continue;
12212
12213 switch_to_program_space_and_thread (bl->pspace);
12214
12215 target_download_tracepoint (bl);
12216
12217 bl->inserted = 1;
12218 bp_location_downloaded = 1;
12219 }
12220 t = (struct tracepoint *) b;
12221 t->number_on_target = b->number;
12222 if (bp_location_downloaded)
12223 observer_notify_breakpoint_modified (b);
12224 }
12225
12226 do_cleanups (old_chain);
12227 }
12228
12229 /* Swap the insertion/duplication state between two locations. */
12230
12231 static void
12232 swap_insertion (struct bp_location *left, struct bp_location *right)
12233 {
12234 const int left_inserted = left->inserted;
12235 const int left_duplicate = left->duplicate;
12236 const int left_needs_update = left->needs_update;
12237 const struct bp_target_info left_target_info = left->target_info;
12238
12239 /* Locations of tracepoints can never be duplicated. */
12240 if (is_tracepoint (left->owner))
12241 gdb_assert (!left->duplicate);
12242 if (is_tracepoint (right->owner))
12243 gdb_assert (!right->duplicate);
12244
12245 left->inserted = right->inserted;
12246 left->duplicate = right->duplicate;
12247 left->needs_update = right->needs_update;
12248 left->target_info = right->target_info;
12249 right->inserted = left_inserted;
12250 right->duplicate = left_duplicate;
12251 right->needs_update = left_needs_update;
12252 right->target_info = left_target_info;
12253 }
12254
12255 /* Force the re-insertion of the locations at ADDRESS. This is called
12256 once a new/deleted/modified duplicate location is found and we are evaluating
12257 conditions on the target's side. Such conditions need to be updated on
12258 the target. */
12259
12260 static void
12261 force_breakpoint_reinsertion (struct bp_location *bl)
12262 {
12263 struct bp_location **locp = NULL, **loc2p;
12264 struct bp_location *loc;
12265 CORE_ADDR address = 0;
12266 int pspace_num;
12267
12268 address = bl->address;
12269 pspace_num = bl->pspace->num;
12270
12271 /* This is only meaningful if the target is
12272 evaluating conditions and if the user has
12273 opted for condition evaluation on the target's
12274 side. */
12275 if (gdb_evaluates_breakpoint_condition_p ()
12276 || !target_supports_evaluation_of_breakpoint_conditions ())
12277 return;
12278
12279 /* Flag all breakpoint locations with this address and
12280 the same program space as the location
12281 as "its condition has changed". We need to
12282 update the conditions on the target's side. */
12283 ALL_BP_LOCATIONS_AT_ADDR (loc2p, locp, address)
12284 {
12285 loc = *loc2p;
12286
12287 if (!is_breakpoint (loc->owner)
12288 || pspace_num != loc->pspace->num)
12289 continue;
12290
12291 /* Flag the location appropriately. We use a different state to
12292 let everyone know that we already updated the set of locations
12293 with addr bl->address and program space bl->pspace. This is so
12294 we don't have to keep calling these functions just to mark locations
12295 that have already been marked. */
12296 loc->condition_changed = condition_updated;
12297
12298 /* Free the agent expression bytecode as well. We will compute
12299 it later on. */
12300 if (loc->cond_bytecode)
12301 {
12302 free_agent_expr (loc->cond_bytecode);
12303 loc->cond_bytecode = NULL;
12304 }
12305 }
12306 }
12307
12308 /* If SHOULD_INSERT is false, do not insert any breakpoint locations
12309 into the inferior, only remove already-inserted locations that no
12310 longer should be inserted. Functions that delete a breakpoint or
12311 breakpoints should pass false, so that deleting a breakpoint
12312 doesn't have the side effect of inserting the locations of other
12313 breakpoints that are marked not-inserted, but should_be_inserted
12314 returns true on them.
12315
12316 This behaviour is useful is situations close to tear-down -- e.g.,
12317 after an exec, while the target still has execution, but breakpoint
12318 shadows of the previous executable image should *NOT* be restored
12319 to the new image; or before detaching, where the target still has
12320 execution and wants to delete breakpoints from GDB's lists, and all
12321 breakpoints had already been removed from the inferior. */
12322
12323 static void
12324 update_global_location_list (int should_insert)
12325 {
12326 struct breakpoint *b;
12327 struct bp_location **locp, *loc;
12328 struct cleanup *cleanups;
12329 /* Last breakpoint location address that was marked for update. */
12330 CORE_ADDR last_addr = 0;
12331 /* Last breakpoint location program space that was marked for update. */
12332 int last_pspace_num = -1;
12333
12334 /* Used in the duplicates detection below. When iterating over all
12335 bp_locations, points to the first bp_location of a given address.
12336 Breakpoints and watchpoints of different types are never
12337 duplicates of each other. Keep one pointer for each type of
12338 breakpoint/watchpoint, so we only need to loop over all locations
12339 once. */
12340 struct bp_location *bp_loc_first; /* breakpoint */
12341 struct bp_location *wp_loc_first; /* hardware watchpoint */
12342 struct bp_location *awp_loc_first; /* access watchpoint */
12343 struct bp_location *rwp_loc_first; /* read watchpoint */
12344
12345 /* Saved former bp_location array which we compare against the newly
12346 built bp_location from the current state of ALL_BREAKPOINTS. */
12347 struct bp_location **old_location, **old_locp;
12348 unsigned old_location_count;
12349
12350 old_location = bp_location;
12351 old_location_count = bp_location_count;
12352 bp_location = NULL;
12353 bp_location_count = 0;
12354 cleanups = make_cleanup (xfree, old_location);
12355
12356 ALL_BREAKPOINTS (b)
12357 for (loc = b->loc; loc; loc = loc->next)
12358 bp_location_count++;
12359
12360 bp_location = xmalloc (sizeof (*bp_location) * bp_location_count);
12361 locp = bp_location;
12362 ALL_BREAKPOINTS (b)
12363 for (loc = b->loc; loc; loc = loc->next)
12364 *locp++ = loc;
12365 qsort (bp_location, bp_location_count, sizeof (*bp_location),
12366 bp_location_compare);
12367
12368 bp_location_target_extensions_update ();
12369
12370 /* Identify bp_location instances that are no longer present in the
12371 new list, and therefore should be freed. Note that it's not
12372 necessary that those locations should be removed from inferior --
12373 if there's another location at the same address (previously
12374 marked as duplicate), we don't need to remove/insert the
12375 location.
12376
12377 LOCP is kept in sync with OLD_LOCP, each pointing to the current
12378 and former bp_location array state respectively. */
12379
12380 locp = bp_location;
12381 for (old_locp = old_location; old_locp < old_location + old_location_count;
12382 old_locp++)
12383 {
12384 struct bp_location *old_loc = *old_locp;
12385 struct bp_location **loc2p;
12386
12387 /* Tells if 'old_loc' is found among the new locations. If
12388 not, we have to free it. */
12389 int found_object = 0;
12390 /* Tells if the location should remain inserted in the target. */
12391 int keep_in_target = 0;
12392 int removed = 0;
12393
12394 /* Skip LOCP entries which will definitely never be needed.
12395 Stop either at or being the one matching OLD_LOC. */
12396 while (locp < bp_location + bp_location_count
12397 && (*locp)->address < old_loc->address)
12398 locp++;
12399
12400 for (loc2p = locp;
12401 (loc2p < bp_location + bp_location_count
12402 && (*loc2p)->address == old_loc->address);
12403 loc2p++)
12404 {
12405 /* Check if this is a new/duplicated location or a duplicated
12406 location that had its condition modified. If so, we want to send
12407 its condition to the target if evaluation of conditions is taking
12408 place there. */
12409 if ((*loc2p)->condition_changed == condition_modified
12410 && (last_addr != old_loc->address
12411 || last_pspace_num != old_loc->pspace->num))
12412 {
12413 force_breakpoint_reinsertion (*loc2p);
12414 last_pspace_num = old_loc->pspace->num;
12415 }
12416
12417 if (*loc2p == old_loc)
12418 found_object = 1;
12419 }
12420
12421 /* We have already handled this address, update it so that we don't
12422 have to go through updates again. */
12423 last_addr = old_loc->address;
12424
12425 /* Target-side condition evaluation: Handle deleted locations. */
12426 if (!found_object)
12427 force_breakpoint_reinsertion (old_loc);
12428
12429 /* If this location is no longer present, and inserted, look if
12430 there's maybe a new location at the same address. If so,
12431 mark that one inserted, and don't remove this one. This is
12432 needed so that we don't have a time window where a breakpoint
12433 at certain location is not inserted. */
12434
12435 if (old_loc->inserted)
12436 {
12437 /* If the location is inserted now, we might have to remove
12438 it. */
12439
12440 if (found_object && should_be_inserted (old_loc))
12441 {
12442 /* The location is still present in the location list,
12443 and still should be inserted. Don't do anything. */
12444 keep_in_target = 1;
12445 }
12446 else
12447 {
12448 /* This location still exists, but it won't be kept in the
12449 target since it may have been disabled. We proceed to
12450 remove its target-side condition. */
12451
12452 /* The location is either no longer present, or got
12453 disabled. See if there's another location at the
12454 same address, in which case we don't need to remove
12455 this one from the target. */
12456
12457 /* OLD_LOC comes from existing struct breakpoint. */
12458 if (breakpoint_address_is_meaningful (old_loc->owner))
12459 {
12460 for (loc2p = locp;
12461 (loc2p < bp_location + bp_location_count
12462 && (*loc2p)->address == old_loc->address);
12463 loc2p++)
12464 {
12465 struct bp_location *loc2 = *loc2p;
12466
12467 if (breakpoint_locations_match (loc2, old_loc))
12468 {
12469 /* Read watchpoint locations are switched to
12470 access watchpoints, if the former are not
12471 supported, but the latter are. */
12472 if (is_hardware_watchpoint (old_loc->owner))
12473 {
12474 gdb_assert (is_hardware_watchpoint (loc2->owner));
12475 loc2->watchpoint_type = old_loc->watchpoint_type;
12476 }
12477
12478 /* loc2 is a duplicated location. We need to check
12479 if it should be inserted in case it will be
12480 unduplicated. */
12481 if (loc2 != old_loc
12482 && unduplicated_should_be_inserted (loc2))
12483 {
12484 swap_insertion (old_loc, loc2);
12485 keep_in_target = 1;
12486 break;
12487 }
12488 }
12489 }
12490 }
12491 }
12492
12493 if (!keep_in_target)
12494 {
12495 if (remove_breakpoint (old_loc, mark_uninserted))
12496 {
12497 /* This is just about all we can do. We could keep
12498 this location on the global list, and try to
12499 remove it next time, but there's no particular
12500 reason why we will succeed next time.
12501
12502 Note that at this point, old_loc->owner is still
12503 valid, as delete_breakpoint frees the breakpoint
12504 only after calling us. */
12505 printf_filtered (_("warning: Error removing "
12506 "breakpoint %d\n"),
12507 old_loc->owner->number);
12508 }
12509 removed = 1;
12510 }
12511 }
12512
12513 if (!found_object)
12514 {
12515 if (removed && non_stop
12516 && breakpoint_address_is_meaningful (old_loc->owner)
12517 && !is_hardware_watchpoint (old_loc->owner))
12518 {
12519 /* This location was removed from the target. In
12520 non-stop mode, a race condition is possible where
12521 we've removed a breakpoint, but stop events for that
12522 breakpoint are already queued and will arrive later.
12523 We apply an heuristic to be able to distinguish such
12524 SIGTRAPs from other random SIGTRAPs: we keep this
12525 breakpoint location for a bit, and will retire it
12526 after we see some number of events. The theory here
12527 is that reporting of events should, "on the average",
12528 be fair, so after a while we'll see events from all
12529 threads that have anything of interest, and no longer
12530 need to keep this breakpoint location around. We
12531 don't hold locations forever so to reduce chances of
12532 mistaking a non-breakpoint SIGTRAP for a breakpoint
12533 SIGTRAP.
12534
12535 The heuristic failing can be disastrous on
12536 decr_pc_after_break targets.
12537
12538 On decr_pc_after_break targets, like e.g., x86-linux,
12539 if we fail to recognize a late breakpoint SIGTRAP,
12540 because events_till_retirement has reached 0 too
12541 soon, we'll fail to do the PC adjustment, and report
12542 a random SIGTRAP to the user. When the user resumes
12543 the inferior, it will most likely immediately crash
12544 with SIGILL/SIGBUS/SIGSEGV, or worse, get silently
12545 corrupted, because of being resumed e.g., in the
12546 middle of a multi-byte instruction, or skipped a
12547 one-byte instruction. This was actually seen happen
12548 on native x86-linux, and should be less rare on
12549 targets that do not support new thread events, like
12550 remote, due to the heuristic depending on
12551 thread_count.
12552
12553 Mistaking a random SIGTRAP for a breakpoint trap
12554 causes similar symptoms (PC adjustment applied when
12555 it shouldn't), but then again, playing with SIGTRAPs
12556 behind the debugger's back is asking for trouble.
12557
12558 Since hardware watchpoint traps are always
12559 distinguishable from other traps, so we don't need to
12560 apply keep hardware watchpoint moribund locations
12561 around. We simply always ignore hardware watchpoint
12562 traps we can no longer explain. */
12563
12564 old_loc->events_till_retirement = 3 * (thread_count () + 1);
12565 old_loc->owner = NULL;
12566
12567 VEC_safe_push (bp_location_p, moribund_locations, old_loc);
12568 }
12569 else
12570 {
12571 old_loc->owner = NULL;
12572 decref_bp_location (&old_loc);
12573 }
12574 }
12575 }
12576
12577 /* Rescan breakpoints at the same address and section, marking the
12578 first one as "first" and any others as "duplicates". This is so
12579 that the bpt instruction is only inserted once. If we have a
12580 permanent breakpoint at the same place as BPT, make that one the
12581 official one, and the rest as duplicates. Permanent breakpoints
12582 are sorted first for the same address.
12583
12584 Do the same for hardware watchpoints, but also considering the
12585 watchpoint's type (regular/access/read) and length. */
12586
12587 bp_loc_first = NULL;
12588 wp_loc_first = NULL;
12589 awp_loc_first = NULL;
12590 rwp_loc_first = NULL;
12591 ALL_BP_LOCATIONS (loc, locp)
12592 {
12593 /* ALL_BP_LOCATIONS bp_location has LOC->OWNER always
12594 non-NULL. */
12595 struct bp_location **loc_first_p;
12596 b = loc->owner;
12597
12598 if (!unduplicated_should_be_inserted (loc)
12599 || !breakpoint_address_is_meaningful (b)
12600 /* Don't detect duplicate for tracepoint locations because they are
12601 never duplicated. See the comments in field `duplicate' of
12602 `struct bp_location'. */
12603 || is_tracepoint (b))
12604 {
12605 /* Clear the condition modification flag. */
12606 loc->condition_changed = condition_unchanged;
12607 continue;
12608 }
12609
12610 /* Permanent breakpoint should always be inserted. */
12611 if (b->enable_state == bp_permanent && ! loc->inserted)
12612 internal_error (__FILE__, __LINE__,
12613 _("allegedly permanent breakpoint is not "
12614 "actually inserted"));
12615
12616 if (b->type == bp_hardware_watchpoint)
12617 loc_first_p = &wp_loc_first;
12618 else if (b->type == bp_read_watchpoint)
12619 loc_first_p = &rwp_loc_first;
12620 else if (b->type == bp_access_watchpoint)
12621 loc_first_p = &awp_loc_first;
12622 else
12623 loc_first_p = &bp_loc_first;
12624
12625 if (*loc_first_p == NULL
12626 || (overlay_debugging && loc->section != (*loc_first_p)->section)
12627 || !breakpoint_locations_match (loc, *loc_first_p))
12628 {
12629 *loc_first_p = loc;
12630 loc->duplicate = 0;
12631
12632 if (is_breakpoint (loc->owner) && loc->condition_changed)
12633 {
12634 loc->needs_update = 1;
12635 /* Clear the condition modification flag. */
12636 loc->condition_changed = condition_unchanged;
12637 }
12638 continue;
12639 }
12640
12641
12642 /* This and the above ensure the invariant that the first location
12643 is not duplicated, and is the inserted one.
12644 All following are marked as duplicated, and are not inserted. */
12645 if (loc->inserted)
12646 swap_insertion (loc, *loc_first_p);
12647 loc->duplicate = 1;
12648
12649 /* Clear the condition modification flag. */
12650 loc->condition_changed = condition_unchanged;
12651
12652 if ((*loc_first_p)->owner->enable_state == bp_permanent && loc->inserted
12653 && b->enable_state != bp_permanent)
12654 internal_error (__FILE__, __LINE__,
12655 _("another breakpoint was inserted on top of "
12656 "a permanent breakpoint"));
12657 }
12658
12659 if (breakpoints_always_inserted_mode ()
12660 && (have_live_inferiors ()
12661 || (gdbarch_has_global_breakpoints (target_gdbarch ()))))
12662 {
12663 if (should_insert)
12664 insert_breakpoint_locations ();
12665 else
12666 {
12667 /* Though should_insert is false, we may need to update conditions
12668 on the target's side if it is evaluating such conditions. We
12669 only update conditions for locations that are marked
12670 "needs_update". */
12671 update_inserted_breakpoint_locations ();
12672 }
12673 }
12674
12675 if (should_insert)
12676 download_tracepoint_locations ();
12677
12678 do_cleanups (cleanups);
12679 }
12680
12681 void
12682 breakpoint_retire_moribund (void)
12683 {
12684 struct bp_location *loc;
12685 int ix;
12686
12687 for (ix = 0; VEC_iterate (bp_location_p, moribund_locations, ix, loc); ++ix)
12688 if (--(loc->events_till_retirement) == 0)
12689 {
12690 decref_bp_location (&loc);
12691 VEC_unordered_remove (bp_location_p, moribund_locations, ix);
12692 --ix;
12693 }
12694 }
12695
12696 static void
12697 update_global_location_list_nothrow (int inserting)
12698 {
12699 volatile struct gdb_exception e;
12700
12701 TRY_CATCH (e, RETURN_MASK_ERROR)
12702 update_global_location_list (inserting);
12703 }
12704
12705 /* Clear BKP from a BPS. */
12706
12707 static void
12708 bpstat_remove_bp_location (bpstat bps, struct breakpoint *bpt)
12709 {
12710 bpstat bs;
12711
12712 for (bs = bps; bs; bs = bs->next)
12713 if (bs->breakpoint_at == bpt)
12714 {
12715 bs->breakpoint_at = NULL;
12716 bs->old_val = NULL;
12717 /* bs->commands will be freed later. */
12718 }
12719 }
12720
12721 /* Callback for iterate_over_threads. */
12722 static int
12723 bpstat_remove_breakpoint_callback (struct thread_info *th, void *data)
12724 {
12725 struct breakpoint *bpt = data;
12726
12727 bpstat_remove_bp_location (th->control.stop_bpstat, bpt);
12728 return 0;
12729 }
12730
12731 /* Helper for breakpoint and tracepoint breakpoint_ops->mention
12732 callbacks. */
12733
12734 static void
12735 say_where (struct breakpoint *b)
12736 {
12737 struct value_print_options opts;
12738
12739 get_user_print_options (&opts);
12740
12741 /* i18n: cagney/2005-02-11: Below needs to be merged into a
12742 single string. */
12743 if (b->loc == NULL)
12744 {
12745 printf_filtered (_(" (%s) pending."), b->addr_string);
12746 }
12747 else
12748 {
12749 if (opts.addressprint || b->loc->symtab == NULL)
12750 {
12751 printf_filtered (" at ");
12752 fputs_filtered (paddress (b->loc->gdbarch, b->loc->address),
12753 gdb_stdout);
12754 }
12755 if (b->loc->symtab != NULL)
12756 {
12757 /* If there is a single location, we can print the location
12758 more nicely. */
12759 if (b->loc->next == NULL)
12760 printf_filtered (": file %s, line %d.",
12761 symtab_to_filename_for_display (b->loc->symtab),
12762 b->loc->line_number);
12763 else
12764 /* This is not ideal, but each location may have a
12765 different file name, and this at least reflects the
12766 real situation somewhat. */
12767 printf_filtered (": %s.", b->addr_string);
12768 }
12769
12770 if (b->loc->next)
12771 {
12772 struct bp_location *loc = b->loc;
12773 int n = 0;
12774 for (; loc; loc = loc->next)
12775 ++n;
12776 printf_filtered (" (%d locations)", n);
12777 }
12778 }
12779 }
12780
12781 /* Default bp_location_ops methods. */
12782
12783 static void
12784 bp_location_dtor (struct bp_location *self)
12785 {
12786 xfree (self->cond);
12787 if (self->cond_bytecode)
12788 free_agent_expr (self->cond_bytecode);
12789 xfree (self->function_name);
12790
12791 VEC_free (agent_expr_p, self->target_info.conditions);
12792 VEC_free (agent_expr_p, self->target_info.tcommands);
12793 }
12794
12795 static const struct bp_location_ops bp_location_ops =
12796 {
12797 bp_location_dtor
12798 };
12799
12800 /* Default breakpoint_ops methods all breakpoint_ops ultimately
12801 inherit from. */
12802
12803 static void
12804 base_breakpoint_dtor (struct breakpoint *self)
12805 {
12806 decref_counted_command_line (&self->commands);
12807 xfree (self->cond_string);
12808 xfree (self->extra_string);
12809 xfree (self->addr_string);
12810 xfree (self->filter);
12811 xfree (self->addr_string_range_end);
12812 }
12813
12814 static struct bp_location *
12815 base_breakpoint_allocate_location (struct breakpoint *self)
12816 {
12817 struct bp_location *loc;
12818
12819 loc = XNEW (struct bp_location);
12820 init_bp_location (loc, &bp_location_ops, self);
12821 return loc;
12822 }
12823
12824 static void
12825 base_breakpoint_re_set (struct breakpoint *b)
12826 {
12827 /* Nothing to re-set. */
12828 }
12829
12830 #define internal_error_pure_virtual_called() \
12831 gdb_assert_not_reached ("pure virtual function called")
12832
12833 static int
12834 base_breakpoint_insert_location (struct bp_location *bl)
12835 {
12836 internal_error_pure_virtual_called ();
12837 }
12838
12839 static int
12840 base_breakpoint_remove_location (struct bp_location *bl)
12841 {
12842 internal_error_pure_virtual_called ();
12843 }
12844
12845 static int
12846 base_breakpoint_breakpoint_hit (const struct bp_location *bl,
12847 struct address_space *aspace,
12848 CORE_ADDR bp_addr,
12849 const struct target_waitstatus *ws)
12850 {
12851 internal_error_pure_virtual_called ();
12852 }
12853
12854 static void
12855 base_breakpoint_check_status (bpstat bs)
12856 {
12857 /* Always stop. */
12858 }
12859
12860 /* A "works_in_software_mode" breakpoint_ops method that just internal
12861 errors. */
12862
12863 static int
12864 base_breakpoint_works_in_software_mode (const struct breakpoint *b)
12865 {
12866 internal_error_pure_virtual_called ();
12867 }
12868
12869 /* A "resources_needed" breakpoint_ops method that just internal
12870 errors. */
12871
12872 static int
12873 base_breakpoint_resources_needed (const struct bp_location *bl)
12874 {
12875 internal_error_pure_virtual_called ();
12876 }
12877
12878 static enum print_stop_action
12879 base_breakpoint_print_it (bpstat bs)
12880 {
12881 internal_error_pure_virtual_called ();
12882 }
12883
12884 static void
12885 base_breakpoint_print_one_detail (const struct breakpoint *self,
12886 struct ui_out *uiout)
12887 {
12888 /* nothing */
12889 }
12890
12891 static void
12892 base_breakpoint_print_mention (struct breakpoint *b)
12893 {
12894 internal_error_pure_virtual_called ();
12895 }
12896
12897 static void
12898 base_breakpoint_print_recreate (struct breakpoint *b, struct ui_file *fp)
12899 {
12900 internal_error_pure_virtual_called ();
12901 }
12902
12903 static void
12904 base_breakpoint_create_sals_from_address (char **arg,
12905 struct linespec_result *canonical,
12906 enum bptype type_wanted,
12907 char *addr_start,
12908 char **copy_arg)
12909 {
12910 internal_error_pure_virtual_called ();
12911 }
12912
12913 static void
12914 base_breakpoint_create_breakpoints_sal (struct gdbarch *gdbarch,
12915 struct linespec_result *c,
12916 char *cond_string,
12917 char *extra_string,
12918 enum bptype type_wanted,
12919 enum bpdisp disposition,
12920 int thread,
12921 int task, int ignore_count,
12922 const struct breakpoint_ops *o,
12923 int from_tty, int enabled,
12924 int internal, unsigned flags)
12925 {
12926 internal_error_pure_virtual_called ();
12927 }
12928
12929 static void
12930 base_breakpoint_decode_linespec (struct breakpoint *b, char **s,
12931 struct symtabs_and_lines *sals)
12932 {
12933 internal_error_pure_virtual_called ();
12934 }
12935
12936 /* The default 'explains_signal' method. */
12937
12938 static int
12939 base_breakpoint_explains_signal (struct breakpoint *b, enum gdb_signal sig)
12940 {
12941 return 1;
12942 }
12943
12944 /* The default "after_condition_true" method. */
12945
12946 static void
12947 base_breakpoint_after_condition_true (struct bpstats *bs)
12948 {
12949 /* Nothing to do. */
12950 }
12951
12952 struct breakpoint_ops base_breakpoint_ops =
12953 {
12954 base_breakpoint_dtor,
12955 base_breakpoint_allocate_location,
12956 base_breakpoint_re_set,
12957 base_breakpoint_insert_location,
12958 base_breakpoint_remove_location,
12959 base_breakpoint_breakpoint_hit,
12960 base_breakpoint_check_status,
12961 base_breakpoint_resources_needed,
12962 base_breakpoint_works_in_software_mode,
12963 base_breakpoint_print_it,
12964 NULL,
12965 base_breakpoint_print_one_detail,
12966 base_breakpoint_print_mention,
12967 base_breakpoint_print_recreate,
12968 base_breakpoint_create_sals_from_address,
12969 base_breakpoint_create_breakpoints_sal,
12970 base_breakpoint_decode_linespec,
12971 base_breakpoint_explains_signal,
12972 base_breakpoint_after_condition_true,
12973 };
12974
12975 /* Default breakpoint_ops methods. */
12976
12977 static void
12978 bkpt_re_set (struct breakpoint *b)
12979 {
12980 /* FIXME: is this still reachable? */
12981 if (b->addr_string == NULL)
12982 {
12983 /* Anything without a string can't be re-set. */
12984 delete_breakpoint (b);
12985 return;
12986 }
12987
12988 breakpoint_re_set_default (b);
12989 }
12990
12991 static int
12992 bkpt_insert_location (struct bp_location *bl)
12993 {
12994 if (bl->loc_type == bp_loc_hardware_breakpoint)
12995 return target_insert_hw_breakpoint (bl->gdbarch,
12996 &bl->target_info);
12997 else
12998 return target_insert_breakpoint (bl->gdbarch,
12999 &bl->target_info);
13000 }
13001
13002 static int
13003 bkpt_remove_location (struct bp_location *bl)
13004 {
13005 if (bl->loc_type == bp_loc_hardware_breakpoint)
13006 return target_remove_hw_breakpoint (bl->gdbarch, &bl->target_info);
13007 else
13008 return target_remove_breakpoint (bl->gdbarch, &bl->target_info);
13009 }
13010
13011 static int
13012 bkpt_breakpoint_hit (const struct bp_location *bl,
13013 struct address_space *aspace, CORE_ADDR bp_addr,
13014 const struct target_waitstatus *ws)
13015 {
13016 if (ws->kind != TARGET_WAITKIND_STOPPED
13017 || ws->value.sig != GDB_SIGNAL_TRAP)
13018 return 0;
13019
13020 if (!breakpoint_address_match (bl->pspace->aspace, bl->address,
13021 aspace, bp_addr))
13022 return 0;
13023
13024 if (overlay_debugging /* unmapped overlay section */
13025 && section_is_overlay (bl->section)
13026 && !section_is_mapped (bl->section))
13027 return 0;
13028
13029 return 1;
13030 }
13031
13032 static int
13033 bkpt_resources_needed (const struct bp_location *bl)
13034 {
13035 gdb_assert (bl->owner->type == bp_hardware_breakpoint);
13036
13037 return 1;
13038 }
13039
13040 static enum print_stop_action
13041 bkpt_print_it (bpstat bs)
13042 {
13043 struct breakpoint *b;
13044 const struct bp_location *bl;
13045 int bp_temp;
13046 struct ui_out *uiout = current_uiout;
13047
13048 gdb_assert (bs->bp_location_at != NULL);
13049
13050 bl = bs->bp_location_at;
13051 b = bs->breakpoint_at;
13052
13053 bp_temp = b->disposition == disp_del;
13054 if (bl->address != bl->requested_address)
13055 breakpoint_adjustment_warning (bl->requested_address,
13056 bl->address,
13057 b->number, 1);
13058 annotate_breakpoint (b->number);
13059 if (bp_temp)
13060 ui_out_text (uiout, "\nTemporary breakpoint ");
13061 else
13062 ui_out_text (uiout, "\nBreakpoint ");
13063 if (ui_out_is_mi_like_p (uiout))
13064 {
13065 ui_out_field_string (uiout, "reason",
13066 async_reason_lookup (EXEC_ASYNC_BREAKPOINT_HIT));
13067 ui_out_field_string (uiout, "disp", bpdisp_text (b->disposition));
13068 }
13069 ui_out_field_int (uiout, "bkptno", b->number);
13070 ui_out_text (uiout, ", ");
13071
13072 return PRINT_SRC_AND_LOC;
13073 }
13074
13075 static void
13076 bkpt_print_mention (struct breakpoint *b)
13077 {
13078 if (ui_out_is_mi_like_p (current_uiout))
13079 return;
13080
13081 switch (b->type)
13082 {
13083 case bp_breakpoint:
13084 case bp_gnu_ifunc_resolver:
13085 if (b->disposition == disp_del)
13086 printf_filtered (_("Temporary breakpoint"));
13087 else
13088 printf_filtered (_("Breakpoint"));
13089 printf_filtered (_(" %d"), b->number);
13090 if (b->type == bp_gnu_ifunc_resolver)
13091 printf_filtered (_(" at gnu-indirect-function resolver"));
13092 break;
13093 case bp_hardware_breakpoint:
13094 printf_filtered (_("Hardware assisted breakpoint %d"), b->number);
13095 break;
13096 case bp_dprintf:
13097 printf_filtered (_("Dprintf %d"), b->number);
13098 break;
13099 }
13100
13101 say_where (b);
13102 }
13103
13104 static void
13105 bkpt_print_recreate (struct breakpoint *tp, struct ui_file *fp)
13106 {
13107 if (tp->type == bp_breakpoint && tp->disposition == disp_del)
13108 fprintf_unfiltered (fp, "tbreak");
13109 else if (tp->type == bp_breakpoint)
13110 fprintf_unfiltered (fp, "break");
13111 else if (tp->type == bp_hardware_breakpoint
13112 && tp->disposition == disp_del)
13113 fprintf_unfiltered (fp, "thbreak");
13114 else if (tp->type == bp_hardware_breakpoint)
13115 fprintf_unfiltered (fp, "hbreak");
13116 else
13117 internal_error (__FILE__, __LINE__,
13118 _("unhandled breakpoint type %d"), (int) tp->type);
13119
13120 fprintf_unfiltered (fp, " %s", tp->addr_string);
13121 print_recreate_thread (tp, fp);
13122 }
13123
13124 static void
13125 bkpt_create_sals_from_address (char **arg,
13126 struct linespec_result *canonical,
13127 enum bptype type_wanted,
13128 char *addr_start, char **copy_arg)
13129 {
13130 create_sals_from_address_default (arg, canonical, type_wanted,
13131 addr_start, copy_arg);
13132 }
13133
13134 static void
13135 bkpt_create_breakpoints_sal (struct gdbarch *gdbarch,
13136 struct linespec_result *canonical,
13137 char *cond_string,
13138 char *extra_string,
13139 enum bptype type_wanted,
13140 enum bpdisp disposition,
13141 int thread,
13142 int task, int ignore_count,
13143 const struct breakpoint_ops *ops,
13144 int from_tty, int enabled,
13145 int internal, unsigned flags)
13146 {
13147 create_breakpoints_sal_default (gdbarch, canonical,
13148 cond_string, extra_string,
13149 type_wanted,
13150 disposition, thread, task,
13151 ignore_count, ops, from_tty,
13152 enabled, internal, flags);
13153 }
13154
13155 static void
13156 bkpt_decode_linespec (struct breakpoint *b, char **s,
13157 struct symtabs_and_lines *sals)
13158 {
13159 decode_linespec_default (b, s, sals);
13160 }
13161
13162 /* Virtual table for internal breakpoints. */
13163
13164 static void
13165 internal_bkpt_re_set (struct breakpoint *b)
13166 {
13167 switch (b->type)
13168 {
13169 /* Delete overlay event and longjmp master breakpoints; they
13170 will be reset later by breakpoint_re_set. */
13171 case bp_overlay_event:
13172 case bp_longjmp_master:
13173 case bp_std_terminate_master:
13174 case bp_exception_master:
13175 delete_breakpoint (b);
13176 break;
13177
13178 /* This breakpoint is special, it's set up when the inferior
13179 starts and we really don't want to touch it. */
13180 case bp_shlib_event:
13181
13182 /* Like bp_shlib_event, this breakpoint type is special. Once
13183 it is set up, we do not want to touch it. */
13184 case bp_thread_event:
13185 break;
13186 }
13187 }
13188
13189 static void
13190 internal_bkpt_check_status (bpstat bs)
13191 {
13192 if (bs->breakpoint_at->type == bp_shlib_event)
13193 {
13194 /* If requested, stop when the dynamic linker notifies GDB of
13195 events. This allows the user to get control and place
13196 breakpoints in initializer routines for dynamically loaded
13197 objects (among other things). */
13198 bs->stop = stop_on_solib_events;
13199 bs->print = stop_on_solib_events;
13200 }
13201 else
13202 bs->stop = 0;
13203 }
13204
13205 static enum print_stop_action
13206 internal_bkpt_print_it (bpstat bs)
13207 {
13208 struct breakpoint *b;
13209
13210 b = bs->breakpoint_at;
13211
13212 switch (b->type)
13213 {
13214 case bp_shlib_event:
13215 /* Did we stop because the user set the stop_on_solib_events
13216 variable? (If so, we report this as a generic, "Stopped due
13217 to shlib event" message.) */
13218 print_solib_event (0);
13219 break;
13220
13221 case bp_thread_event:
13222 /* Not sure how we will get here.
13223 GDB should not stop for these breakpoints. */
13224 printf_filtered (_("Thread Event Breakpoint: gdb should not stop!\n"));
13225 break;
13226
13227 case bp_overlay_event:
13228 /* By analogy with the thread event, GDB should not stop for these. */
13229 printf_filtered (_("Overlay Event Breakpoint: gdb should not stop!\n"));
13230 break;
13231
13232 case bp_longjmp_master:
13233 /* These should never be enabled. */
13234 printf_filtered (_("Longjmp Master Breakpoint: gdb should not stop!\n"));
13235 break;
13236
13237 case bp_std_terminate_master:
13238 /* These should never be enabled. */
13239 printf_filtered (_("std::terminate Master Breakpoint: "
13240 "gdb should not stop!\n"));
13241 break;
13242
13243 case bp_exception_master:
13244 /* These should never be enabled. */
13245 printf_filtered (_("Exception Master Breakpoint: "
13246 "gdb should not stop!\n"));
13247 break;
13248 }
13249
13250 return PRINT_NOTHING;
13251 }
13252
13253 static void
13254 internal_bkpt_print_mention (struct breakpoint *b)
13255 {
13256 /* Nothing to mention. These breakpoints are internal. */
13257 }
13258
13259 /* Virtual table for momentary breakpoints */
13260
13261 static void
13262 momentary_bkpt_re_set (struct breakpoint *b)
13263 {
13264 /* Keep temporary breakpoints, which can be encountered when we step
13265 over a dlopen call and solib_add is resetting the breakpoints.
13266 Otherwise these should have been blown away via the cleanup chain
13267 or by breakpoint_init_inferior when we rerun the executable. */
13268 }
13269
13270 static void
13271 momentary_bkpt_check_status (bpstat bs)
13272 {
13273 /* Nothing. The point of these breakpoints is causing a stop. */
13274 }
13275
13276 static enum print_stop_action
13277 momentary_bkpt_print_it (bpstat bs)
13278 {
13279 struct ui_out *uiout = current_uiout;
13280
13281 if (ui_out_is_mi_like_p (uiout))
13282 {
13283 struct breakpoint *b = bs->breakpoint_at;
13284
13285 switch (b->type)
13286 {
13287 case bp_finish:
13288 ui_out_field_string
13289 (uiout, "reason",
13290 async_reason_lookup (EXEC_ASYNC_FUNCTION_FINISHED));
13291 break;
13292
13293 case bp_until:
13294 ui_out_field_string
13295 (uiout, "reason",
13296 async_reason_lookup (EXEC_ASYNC_LOCATION_REACHED));
13297 break;
13298 }
13299 }
13300
13301 return PRINT_UNKNOWN;
13302 }
13303
13304 static void
13305 momentary_bkpt_print_mention (struct breakpoint *b)
13306 {
13307 /* Nothing to mention. These breakpoints are internal. */
13308 }
13309
13310 /* Ensure INITIATING_FRAME is cleared when no such breakpoint exists.
13311
13312 It gets cleared already on the removal of the first one of such placed
13313 breakpoints. This is OK as they get all removed altogether. */
13314
13315 static void
13316 longjmp_bkpt_dtor (struct breakpoint *self)
13317 {
13318 struct thread_info *tp = find_thread_id (self->thread);
13319
13320 if (tp)
13321 tp->initiating_frame = null_frame_id;
13322
13323 momentary_breakpoint_ops.dtor (self);
13324 }
13325
13326 /* Specific methods for probe breakpoints. */
13327
13328 static int
13329 bkpt_probe_insert_location (struct bp_location *bl)
13330 {
13331 int v = bkpt_insert_location (bl);
13332
13333 if (v == 0)
13334 {
13335 /* The insertion was successful, now let's set the probe's semaphore
13336 if needed. */
13337 bl->probe->pops->set_semaphore (bl->probe, bl->gdbarch);
13338 }
13339
13340 return v;
13341 }
13342
13343 static int
13344 bkpt_probe_remove_location (struct bp_location *bl)
13345 {
13346 /* Let's clear the semaphore before removing the location. */
13347 bl->probe->pops->clear_semaphore (bl->probe, bl->gdbarch);
13348
13349 return bkpt_remove_location (bl);
13350 }
13351
13352 static void
13353 bkpt_probe_create_sals_from_address (char **arg,
13354 struct linespec_result *canonical,
13355 enum bptype type_wanted,
13356 char *addr_start, char **copy_arg)
13357 {
13358 struct linespec_sals lsal;
13359
13360 lsal.sals = parse_probes (arg, canonical);
13361
13362 *copy_arg = xstrdup (canonical->addr_string);
13363 lsal.canonical = xstrdup (*copy_arg);
13364
13365 VEC_safe_push (linespec_sals, canonical->sals, &lsal);
13366 }
13367
13368 static void
13369 bkpt_probe_decode_linespec (struct breakpoint *b, char **s,
13370 struct symtabs_and_lines *sals)
13371 {
13372 *sals = parse_probes (s, NULL);
13373 if (!sals->sals)
13374 error (_("probe not found"));
13375 }
13376
13377 /* The breakpoint_ops structure to be used in tracepoints. */
13378
13379 static void
13380 tracepoint_re_set (struct breakpoint *b)
13381 {
13382 breakpoint_re_set_default (b);
13383 }
13384
13385 static int
13386 tracepoint_breakpoint_hit (const struct bp_location *bl,
13387 struct address_space *aspace, CORE_ADDR bp_addr,
13388 const struct target_waitstatus *ws)
13389 {
13390 /* By definition, the inferior does not report stops at
13391 tracepoints. */
13392 return 0;
13393 }
13394
13395 static void
13396 tracepoint_print_one_detail (const struct breakpoint *self,
13397 struct ui_out *uiout)
13398 {
13399 struct tracepoint *tp = (struct tracepoint *) self;
13400 if (tp->static_trace_marker_id)
13401 {
13402 gdb_assert (self->type == bp_static_tracepoint);
13403
13404 ui_out_text (uiout, "\tmarker id is ");
13405 ui_out_field_string (uiout, "static-tracepoint-marker-string-id",
13406 tp->static_trace_marker_id);
13407 ui_out_text (uiout, "\n");
13408 }
13409 }
13410
13411 static void
13412 tracepoint_print_mention (struct breakpoint *b)
13413 {
13414 if (ui_out_is_mi_like_p (current_uiout))
13415 return;
13416
13417 switch (b->type)
13418 {
13419 case bp_tracepoint:
13420 printf_filtered (_("Tracepoint"));
13421 printf_filtered (_(" %d"), b->number);
13422 break;
13423 case bp_fast_tracepoint:
13424 printf_filtered (_("Fast tracepoint"));
13425 printf_filtered (_(" %d"), b->number);
13426 break;
13427 case bp_static_tracepoint:
13428 printf_filtered (_("Static tracepoint"));
13429 printf_filtered (_(" %d"), b->number);
13430 break;
13431 default:
13432 internal_error (__FILE__, __LINE__,
13433 _("unhandled tracepoint type %d"), (int) b->type);
13434 }
13435
13436 say_where (b);
13437 }
13438
13439 static void
13440 tracepoint_print_recreate (struct breakpoint *self, struct ui_file *fp)
13441 {
13442 struct tracepoint *tp = (struct tracepoint *) self;
13443
13444 if (self->type == bp_fast_tracepoint)
13445 fprintf_unfiltered (fp, "ftrace");
13446 if (self->type == bp_static_tracepoint)
13447 fprintf_unfiltered (fp, "strace");
13448 else if (self->type == bp_tracepoint)
13449 fprintf_unfiltered (fp, "trace");
13450 else
13451 internal_error (__FILE__, __LINE__,
13452 _("unhandled tracepoint type %d"), (int) self->type);
13453
13454 fprintf_unfiltered (fp, " %s", self->addr_string);
13455 print_recreate_thread (self, fp);
13456
13457 if (tp->pass_count)
13458 fprintf_unfiltered (fp, " passcount %d\n", tp->pass_count);
13459 }
13460
13461 static void
13462 tracepoint_create_sals_from_address (char **arg,
13463 struct linespec_result *canonical,
13464 enum bptype type_wanted,
13465 char *addr_start, char **copy_arg)
13466 {
13467 create_sals_from_address_default (arg, canonical, type_wanted,
13468 addr_start, copy_arg);
13469 }
13470
13471 static void
13472 tracepoint_create_breakpoints_sal (struct gdbarch *gdbarch,
13473 struct linespec_result *canonical,
13474 char *cond_string,
13475 char *extra_string,
13476 enum bptype type_wanted,
13477 enum bpdisp disposition,
13478 int thread,
13479 int task, int ignore_count,
13480 const struct breakpoint_ops *ops,
13481 int from_tty, int enabled,
13482 int internal, unsigned flags)
13483 {
13484 create_breakpoints_sal_default (gdbarch, canonical,
13485 cond_string, extra_string,
13486 type_wanted,
13487 disposition, thread, task,
13488 ignore_count, ops, from_tty,
13489 enabled, internal, flags);
13490 }
13491
13492 static void
13493 tracepoint_decode_linespec (struct breakpoint *b, char **s,
13494 struct symtabs_and_lines *sals)
13495 {
13496 decode_linespec_default (b, s, sals);
13497 }
13498
13499 struct breakpoint_ops tracepoint_breakpoint_ops;
13500
13501 /* The breakpoint_ops structure to be use on tracepoints placed in a
13502 static probe. */
13503
13504 static void
13505 tracepoint_probe_create_sals_from_address (char **arg,
13506 struct linespec_result *canonical,
13507 enum bptype type_wanted,
13508 char *addr_start, char **copy_arg)
13509 {
13510 /* We use the same method for breakpoint on probes. */
13511 bkpt_probe_create_sals_from_address (arg, canonical, type_wanted,
13512 addr_start, copy_arg);
13513 }
13514
13515 static void
13516 tracepoint_probe_decode_linespec (struct breakpoint *b, char **s,
13517 struct symtabs_and_lines *sals)
13518 {
13519 /* We use the same method for breakpoint on probes. */
13520 bkpt_probe_decode_linespec (b, s, sals);
13521 }
13522
13523 static struct breakpoint_ops tracepoint_probe_breakpoint_ops;
13524
13525 /* Dprintf breakpoint_ops methods. */
13526
13527 static void
13528 dprintf_re_set (struct breakpoint *b)
13529 {
13530 breakpoint_re_set_default (b);
13531
13532 /* This breakpoint could have been pending, and be resolved now, and
13533 if so, we should now have the extra string. If we don't, the
13534 dprintf was malformed when created, but we couldn't tell because
13535 we can't extract the extra string until the location is
13536 resolved. */
13537 if (b->loc != NULL && b->extra_string == NULL)
13538 error (_("Format string required"));
13539
13540 /* 1 - connect to target 1, that can run breakpoint commands.
13541 2 - create a dprintf, which resolves fine.
13542 3 - disconnect from target 1
13543 4 - connect to target 2, that can NOT run breakpoint commands.
13544
13545 After steps #3/#4, you'll want the dprintf command list to
13546 be updated, because target 1 and 2 may well return different
13547 answers for target_can_run_breakpoint_commands().
13548 Given absence of finer grained resetting, we get to do
13549 it all the time. */
13550 if (b->extra_string != NULL)
13551 update_dprintf_command_list (b);
13552 }
13553
13554 /* Implement the "print_recreate" breakpoint_ops method for dprintf. */
13555
13556 static void
13557 dprintf_print_recreate (struct breakpoint *tp, struct ui_file *fp)
13558 {
13559 fprintf_unfiltered (fp, "dprintf %s%s", tp->addr_string,
13560 tp->extra_string);
13561 print_recreate_thread (tp, fp);
13562 }
13563
13564 /* Implement the "after_condition_true" breakpoint_ops method for
13565 dprintf.
13566
13567 dprintf's are implemented with regular commands in their command
13568 list, but we run the commands here instead of before presenting the
13569 stop to the user, as dprintf's don't actually cause a stop. This
13570 also makes it so that the commands of multiple dprintfs at the same
13571 address are all handled. */
13572
13573 static void
13574 dprintf_after_condition_true (struct bpstats *bs)
13575 {
13576 struct cleanup *old_chain;
13577 struct bpstats tmp_bs = { NULL };
13578 struct bpstats *tmp_bs_p = &tmp_bs;
13579
13580 /* dprintf's never cause a stop. This wasn't set in the
13581 check_status hook instead because that would make the dprintf's
13582 condition not be evaluated. */
13583 bs->stop = 0;
13584
13585 /* Run the command list here. Take ownership of it instead of
13586 copying. We never want these commands to run later in
13587 bpstat_do_actions, if a breakpoint that causes a stop happens to
13588 be set at same address as this dprintf, or even if running the
13589 commands here throws. */
13590 tmp_bs.commands = bs->commands;
13591 bs->commands = NULL;
13592 old_chain = make_cleanup_decref_counted_command_line (&tmp_bs.commands);
13593
13594 bpstat_do_actions_1 (&tmp_bs_p);
13595
13596 /* 'tmp_bs.commands' will usually be NULL by now, but
13597 bpstat_do_actions_1 may return early without processing the whole
13598 list. */
13599 do_cleanups (old_chain);
13600 }
13601
13602 /* The breakpoint_ops structure to be used on static tracepoints with
13603 markers (`-m'). */
13604
13605 static void
13606 strace_marker_create_sals_from_address (char **arg,
13607 struct linespec_result *canonical,
13608 enum bptype type_wanted,
13609 char *addr_start, char **copy_arg)
13610 {
13611 struct linespec_sals lsal;
13612
13613 lsal.sals = decode_static_tracepoint_spec (arg);
13614
13615 *copy_arg = savestring (addr_start, *arg - addr_start);
13616
13617 canonical->addr_string = xstrdup (*copy_arg);
13618 lsal.canonical = xstrdup (*copy_arg);
13619 VEC_safe_push (linespec_sals, canonical->sals, &lsal);
13620 }
13621
13622 static void
13623 strace_marker_create_breakpoints_sal (struct gdbarch *gdbarch,
13624 struct linespec_result *canonical,
13625 char *cond_string,
13626 char *extra_string,
13627 enum bptype type_wanted,
13628 enum bpdisp disposition,
13629 int thread,
13630 int task, int ignore_count,
13631 const struct breakpoint_ops *ops,
13632 int from_tty, int enabled,
13633 int internal, unsigned flags)
13634 {
13635 int i;
13636 struct linespec_sals *lsal = VEC_index (linespec_sals,
13637 canonical->sals, 0);
13638
13639 /* If the user is creating a static tracepoint by marker id
13640 (strace -m MARKER_ID), then store the sals index, so that
13641 breakpoint_re_set can try to match up which of the newly
13642 found markers corresponds to this one, and, don't try to
13643 expand multiple locations for each sal, given than SALS
13644 already should contain all sals for MARKER_ID. */
13645
13646 for (i = 0; i < lsal->sals.nelts; ++i)
13647 {
13648 struct symtabs_and_lines expanded;
13649 struct tracepoint *tp;
13650 struct cleanup *old_chain;
13651 char *addr_string;
13652
13653 expanded.nelts = 1;
13654 expanded.sals = &lsal->sals.sals[i];
13655
13656 addr_string = xstrdup (canonical->addr_string);
13657 old_chain = make_cleanup (xfree, addr_string);
13658
13659 tp = XCNEW (struct tracepoint);
13660 init_breakpoint_sal (&tp->base, gdbarch, expanded,
13661 addr_string, NULL,
13662 cond_string, extra_string,
13663 type_wanted, disposition,
13664 thread, task, ignore_count, ops,
13665 from_tty, enabled, internal, flags,
13666 canonical->special_display);
13667 /* Given that its possible to have multiple markers with
13668 the same string id, if the user is creating a static
13669 tracepoint by marker id ("strace -m MARKER_ID"), then
13670 store the sals index, so that breakpoint_re_set can
13671 try to match up which of the newly found markers
13672 corresponds to this one */
13673 tp->static_trace_marker_id_idx = i;
13674
13675 install_breakpoint (internal, &tp->base, 0);
13676
13677 discard_cleanups (old_chain);
13678 }
13679 }
13680
13681 static void
13682 strace_marker_decode_linespec (struct breakpoint *b, char **s,
13683 struct symtabs_and_lines *sals)
13684 {
13685 struct tracepoint *tp = (struct tracepoint *) b;
13686
13687 *sals = decode_static_tracepoint_spec (s);
13688 if (sals->nelts > tp->static_trace_marker_id_idx)
13689 {
13690 sals->sals[0] = sals->sals[tp->static_trace_marker_id_idx];
13691 sals->nelts = 1;
13692 }
13693 else
13694 error (_("marker %s not found"), tp->static_trace_marker_id);
13695 }
13696
13697 static struct breakpoint_ops strace_marker_breakpoint_ops;
13698
13699 static int
13700 strace_marker_p (struct breakpoint *b)
13701 {
13702 return b->ops == &strace_marker_breakpoint_ops;
13703 }
13704
13705 /* Delete a breakpoint and clean up all traces of it in the data
13706 structures. */
13707
13708 void
13709 delete_breakpoint (struct breakpoint *bpt)
13710 {
13711 struct breakpoint *b;
13712
13713 gdb_assert (bpt != NULL);
13714
13715 /* Has this bp already been deleted? This can happen because
13716 multiple lists can hold pointers to bp's. bpstat lists are
13717 especial culprits.
13718
13719 One example of this happening is a watchpoint's scope bp. When
13720 the scope bp triggers, we notice that the watchpoint is out of
13721 scope, and delete it. We also delete its scope bp. But the
13722 scope bp is marked "auto-deleting", and is already on a bpstat.
13723 That bpstat is then checked for auto-deleting bp's, which are
13724 deleted.
13725
13726 A real solution to this problem might involve reference counts in
13727 bp's, and/or giving them pointers back to their referencing
13728 bpstat's, and teaching delete_breakpoint to only free a bp's
13729 storage when no more references were extent. A cheaper bandaid
13730 was chosen. */
13731 if (bpt->type == bp_none)
13732 return;
13733
13734 /* At least avoid this stale reference until the reference counting
13735 of breakpoints gets resolved. */
13736 if (bpt->related_breakpoint != bpt)
13737 {
13738 struct breakpoint *related;
13739 struct watchpoint *w;
13740
13741 if (bpt->type == bp_watchpoint_scope)
13742 w = (struct watchpoint *) bpt->related_breakpoint;
13743 else if (bpt->related_breakpoint->type == bp_watchpoint_scope)
13744 w = (struct watchpoint *) bpt;
13745 else
13746 w = NULL;
13747 if (w != NULL)
13748 watchpoint_del_at_next_stop (w);
13749
13750 /* Unlink bpt from the bpt->related_breakpoint ring. */
13751 for (related = bpt; related->related_breakpoint != bpt;
13752 related = related->related_breakpoint);
13753 related->related_breakpoint = bpt->related_breakpoint;
13754 bpt->related_breakpoint = bpt;
13755 }
13756
13757 /* watch_command_1 creates a watchpoint but only sets its number if
13758 update_watchpoint succeeds in creating its bp_locations. If there's
13759 a problem in that process, we'll be asked to delete the half-created
13760 watchpoint. In that case, don't announce the deletion. */
13761 if (bpt->number)
13762 observer_notify_breakpoint_deleted (bpt);
13763
13764 if (breakpoint_chain == bpt)
13765 breakpoint_chain = bpt->next;
13766
13767 ALL_BREAKPOINTS (b)
13768 if (b->next == bpt)
13769 {
13770 b->next = bpt->next;
13771 break;
13772 }
13773
13774 /* Be sure no bpstat's are pointing at the breakpoint after it's
13775 been freed. */
13776 /* FIXME, how can we find all bpstat's? We just check stop_bpstat
13777 in all threads for now. Note that we cannot just remove bpstats
13778 pointing at bpt from the stop_bpstat list entirely, as breakpoint
13779 commands are associated with the bpstat; if we remove it here,
13780 then the later call to bpstat_do_actions (&stop_bpstat); in
13781 event-top.c won't do anything, and temporary breakpoints with
13782 commands won't work. */
13783
13784 iterate_over_threads (bpstat_remove_breakpoint_callback, bpt);
13785
13786 /* Now that breakpoint is removed from breakpoint list, update the
13787 global location list. This will remove locations that used to
13788 belong to this breakpoint. Do this before freeing the breakpoint
13789 itself, since remove_breakpoint looks at location's owner. It
13790 might be better design to have location completely
13791 self-contained, but it's not the case now. */
13792 update_global_location_list (0);
13793
13794 bpt->ops->dtor (bpt);
13795 /* On the chance that someone will soon try again to delete this
13796 same bp, we mark it as deleted before freeing its storage. */
13797 bpt->type = bp_none;
13798 xfree (bpt);
13799 }
13800
13801 static void
13802 do_delete_breakpoint_cleanup (void *b)
13803 {
13804 delete_breakpoint (b);
13805 }
13806
13807 struct cleanup *
13808 make_cleanup_delete_breakpoint (struct breakpoint *b)
13809 {
13810 return make_cleanup (do_delete_breakpoint_cleanup, b);
13811 }
13812
13813 /* Iterator function to call a user-provided callback function once
13814 for each of B and its related breakpoints. */
13815
13816 static void
13817 iterate_over_related_breakpoints (struct breakpoint *b,
13818 void (*function) (struct breakpoint *,
13819 void *),
13820 void *data)
13821 {
13822 struct breakpoint *related;
13823
13824 related = b;
13825 do
13826 {
13827 struct breakpoint *next;
13828
13829 /* FUNCTION may delete RELATED. */
13830 next = related->related_breakpoint;
13831
13832 if (next == related)
13833 {
13834 /* RELATED is the last ring entry. */
13835 function (related, data);
13836
13837 /* FUNCTION may have deleted it, so we'd never reach back to
13838 B. There's nothing left to do anyway, so just break
13839 out. */
13840 break;
13841 }
13842 else
13843 function (related, data);
13844
13845 related = next;
13846 }
13847 while (related != b);
13848 }
13849
13850 static void
13851 do_delete_breakpoint (struct breakpoint *b, void *ignore)
13852 {
13853 delete_breakpoint (b);
13854 }
13855
13856 /* A callback for map_breakpoint_numbers that calls
13857 delete_breakpoint. */
13858
13859 static void
13860 do_map_delete_breakpoint (struct breakpoint *b, void *ignore)
13861 {
13862 iterate_over_related_breakpoints (b, do_delete_breakpoint, NULL);
13863 }
13864
13865 void
13866 delete_command (char *arg, int from_tty)
13867 {
13868 struct breakpoint *b, *b_tmp;
13869
13870 dont_repeat ();
13871
13872 if (arg == 0)
13873 {
13874 int breaks_to_delete = 0;
13875
13876 /* Delete all breakpoints if no argument. Do not delete
13877 internal breakpoints, these have to be deleted with an
13878 explicit breakpoint number argument. */
13879 ALL_BREAKPOINTS (b)
13880 if (user_breakpoint_p (b))
13881 {
13882 breaks_to_delete = 1;
13883 break;
13884 }
13885
13886 /* Ask user only if there are some breakpoints to delete. */
13887 if (!from_tty
13888 || (breaks_to_delete && query (_("Delete all breakpoints? "))))
13889 {
13890 ALL_BREAKPOINTS_SAFE (b, b_tmp)
13891 if (user_breakpoint_p (b))
13892 delete_breakpoint (b);
13893 }
13894 }
13895 else
13896 map_breakpoint_numbers (arg, do_map_delete_breakpoint, NULL);
13897 }
13898
13899 static int
13900 all_locations_are_pending (struct bp_location *loc)
13901 {
13902 for (; loc; loc = loc->next)
13903 if (!loc->shlib_disabled
13904 && !loc->pspace->executing_startup)
13905 return 0;
13906 return 1;
13907 }
13908
13909 /* Subroutine of update_breakpoint_locations to simplify it.
13910 Return non-zero if multiple fns in list LOC have the same name.
13911 Null names are ignored. */
13912
13913 static int
13914 ambiguous_names_p (struct bp_location *loc)
13915 {
13916 struct bp_location *l;
13917 htab_t htab = htab_create_alloc (13, htab_hash_string,
13918 (int (*) (const void *,
13919 const void *)) streq,
13920 NULL, xcalloc, xfree);
13921
13922 for (l = loc; l != NULL; l = l->next)
13923 {
13924 const char **slot;
13925 const char *name = l->function_name;
13926
13927 /* Allow for some names to be NULL, ignore them. */
13928 if (name == NULL)
13929 continue;
13930
13931 slot = (const char **) htab_find_slot (htab, (const void *) name,
13932 INSERT);
13933 /* NOTE: We can assume slot != NULL here because xcalloc never
13934 returns NULL. */
13935 if (*slot != NULL)
13936 {
13937 htab_delete (htab);
13938 return 1;
13939 }
13940 *slot = name;
13941 }
13942
13943 htab_delete (htab);
13944 return 0;
13945 }
13946
13947 /* When symbols change, it probably means the sources changed as well,
13948 and it might mean the static tracepoint markers are no longer at
13949 the same address or line numbers they used to be at last we
13950 checked. Losing your static tracepoints whenever you rebuild is
13951 undesirable. This function tries to resync/rematch gdb static
13952 tracepoints with the markers on the target, for static tracepoints
13953 that have not been set by marker id. Static tracepoint that have
13954 been set by marker id are reset by marker id in breakpoint_re_set.
13955 The heuristic is:
13956
13957 1) For a tracepoint set at a specific address, look for a marker at
13958 the old PC. If one is found there, assume to be the same marker.
13959 If the name / string id of the marker found is different from the
13960 previous known name, assume that means the user renamed the marker
13961 in the sources, and output a warning.
13962
13963 2) For a tracepoint set at a given line number, look for a marker
13964 at the new address of the old line number. If one is found there,
13965 assume to be the same marker. If the name / string id of the
13966 marker found is different from the previous known name, assume that
13967 means the user renamed the marker in the sources, and output a
13968 warning.
13969
13970 3) If a marker is no longer found at the same address or line, it
13971 may mean the marker no longer exists. But it may also just mean
13972 the code changed a bit. Maybe the user added a few lines of code
13973 that made the marker move up or down (in line number terms). Ask
13974 the target for info about the marker with the string id as we knew
13975 it. If found, update line number and address in the matching
13976 static tracepoint. This will get confused if there's more than one
13977 marker with the same ID (possible in UST, although unadvised
13978 precisely because it confuses tools). */
13979
13980 static struct symtab_and_line
13981 update_static_tracepoint (struct breakpoint *b, struct symtab_and_line sal)
13982 {
13983 struct tracepoint *tp = (struct tracepoint *) b;
13984 struct static_tracepoint_marker marker;
13985 CORE_ADDR pc;
13986
13987 pc = sal.pc;
13988 if (sal.line)
13989 find_line_pc (sal.symtab, sal.line, &pc);
13990
13991 if (target_static_tracepoint_marker_at (pc, &marker))
13992 {
13993 if (strcmp (tp->static_trace_marker_id, marker.str_id) != 0)
13994 warning (_("static tracepoint %d changed probed marker from %s to %s"),
13995 b->number,
13996 tp->static_trace_marker_id, marker.str_id);
13997
13998 xfree (tp->static_trace_marker_id);
13999 tp->static_trace_marker_id = xstrdup (marker.str_id);
14000 release_static_tracepoint_marker (&marker);
14001
14002 return sal;
14003 }
14004
14005 /* Old marker wasn't found on target at lineno. Try looking it up
14006 by string ID. */
14007 if (!sal.explicit_pc
14008 && sal.line != 0
14009 && sal.symtab != NULL
14010 && tp->static_trace_marker_id != NULL)
14011 {
14012 VEC(static_tracepoint_marker_p) *markers;
14013
14014 markers
14015 = target_static_tracepoint_markers_by_strid (tp->static_trace_marker_id);
14016
14017 if (!VEC_empty(static_tracepoint_marker_p, markers))
14018 {
14019 struct symtab_and_line sal2;
14020 struct symbol *sym;
14021 struct static_tracepoint_marker *tpmarker;
14022 struct ui_out *uiout = current_uiout;
14023
14024 tpmarker = VEC_index (static_tracepoint_marker_p, markers, 0);
14025
14026 xfree (tp->static_trace_marker_id);
14027 tp->static_trace_marker_id = xstrdup (tpmarker->str_id);
14028
14029 warning (_("marker for static tracepoint %d (%s) not "
14030 "found at previous line number"),
14031 b->number, tp->static_trace_marker_id);
14032
14033 init_sal (&sal2);
14034
14035 sal2.pc = tpmarker->address;
14036
14037 sal2 = find_pc_line (tpmarker->address, 0);
14038 sym = find_pc_sect_function (tpmarker->address, NULL);
14039 ui_out_text (uiout, "Now in ");
14040 if (sym)
14041 {
14042 ui_out_field_string (uiout, "func",
14043 SYMBOL_PRINT_NAME (sym));
14044 ui_out_text (uiout, " at ");
14045 }
14046 ui_out_field_string (uiout, "file",
14047 symtab_to_filename_for_display (sal2.symtab));
14048 ui_out_text (uiout, ":");
14049
14050 if (ui_out_is_mi_like_p (uiout))
14051 {
14052 const char *fullname = symtab_to_fullname (sal2.symtab);
14053
14054 ui_out_field_string (uiout, "fullname", fullname);
14055 }
14056
14057 ui_out_field_int (uiout, "line", sal2.line);
14058 ui_out_text (uiout, "\n");
14059
14060 b->loc->line_number = sal2.line;
14061 b->loc->symtab = sym != NULL ? sal2.symtab : NULL;
14062
14063 xfree (b->addr_string);
14064 b->addr_string = xstrprintf ("%s:%d",
14065 symtab_to_filename_for_display (sal2.symtab),
14066 b->loc->line_number);
14067
14068 /* Might be nice to check if function changed, and warn if
14069 so. */
14070
14071 release_static_tracepoint_marker (tpmarker);
14072 }
14073 }
14074 return sal;
14075 }
14076
14077 /* Returns 1 iff locations A and B are sufficiently same that
14078 we don't need to report breakpoint as changed. */
14079
14080 static int
14081 locations_are_equal (struct bp_location *a, struct bp_location *b)
14082 {
14083 while (a && b)
14084 {
14085 if (a->address != b->address)
14086 return 0;
14087
14088 if (a->shlib_disabled != b->shlib_disabled)
14089 return 0;
14090
14091 if (a->enabled != b->enabled)
14092 return 0;
14093
14094 a = a->next;
14095 b = b->next;
14096 }
14097
14098 if ((a == NULL) != (b == NULL))
14099 return 0;
14100
14101 return 1;
14102 }
14103
14104 /* Create new breakpoint locations for B (a hardware or software breakpoint)
14105 based on SALS and SALS_END. If SALS_END.NELTS is not zero, then B is
14106 a ranged breakpoint. */
14107
14108 void
14109 update_breakpoint_locations (struct breakpoint *b,
14110 struct symtabs_and_lines sals,
14111 struct symtabs_and_lines sals_end)
14112 {
14113 int i;
14114 struct bp_location *existing_locations = b->loc;
14115
14116 if (sals_end.nelts != 0 && (sals.nelts != 1 || sals_end.nelts != 1))
14117 {
14118 /* Ranged breakpoints have only one start location and one end
14119 location. */
14120 b->enable_state = bp_disabled;
14121 update_global_location_list (1);
14122 printf_unfiltered (_("Could not reset ranged breakpoint %d: "
14123 "multiple locations found\n"),
14124 b->number);
14125 return;
14126 }
14127
14128 /* If there's no new locations, and all existing locations are
14129 pending, don't do anything. This optimizes the common case where
14130 all locations are in the same shared library, that was unloaded.
14131 We'd like to retain the location, so that when the library is
14132 loaded again, we don't loose the enabled/disabled status of the
14133 individual locations. */
14134 if (all_locations_are_pending (existing_locations) && sals.nelts == 0)
14135 return;
14136
14137 b->loc = NULL;
14138
14139 for (i = 0; i < sals.nelts; ++i)
14140 {
14141 struct bp_location *new_loc;
14142
14143 switch_to_program_space_and_thread (sals.sals[i].pspace);
14144
14145 new_loc = add_location_to_breakpoint (b, &(sals.sals[i]));
14146
14147 /* Reparse conditions, they might contain references to the
14148 old symtab. */
14149 if (b->cond_string != NULL)
14150 {
14151 const char *s;
14152 volatile struct gdb_exception e;
14153
14154 s = b->cond_string;
14155 TRY_CATCH (e, RETURN_MASK_ERROR)
14156 {
14157 new_loc->cond = parse_exp_1 (&s, sals.sals[i].pc,
14158 block_for_pc (sals.sals[i].pc),
14159 0);
14160 }
14161 if (e.reason < 0)
14162 {
14163 warning (_("failed to reevaluate condition "
14164 "for breakpoint %d: %s"),
14165 b->number, e.message);
14166 new_loc->enabled = 0;
14167 }
14168 }
14169
14170 if (sals_end.nelts)
14171 {
14172 CORE_ADDR end = find_breakpoint_range_end (sals_end.sals[0]);
14173
14174 new_loc->length = end - sals.sals[0].pc + 1;
14175 }
14176 }
14177
14178 /* Update locations of permanent breakpoints. */
14179 if (b->enable_state == bp_permanent)
14180 make_breakpoint_permanent (b);
14181
14182 /* If possible, carry over 'disable' status from existing
14183 breakpoints. */
14184 {
14185 struct bp_location *e = existing_locations;
14186 /* If there are multiple breakpoints with the same function name,
14187 e.g. for inline functions, comparing function names won't work.
14188 Instead compare pc addresses; this is just a heuristic as things
14189 may have moved, but in practice it gives the correct answer
14190 often enough until a better solution is found. */
14191 int have_ambiguous_names = ambiguous_names_p (b->loc);
14192
14193 for (; e; e = e->next)
14194 {
14195 if (!e->enabled && e->function_name)
14196 {
14197 struct bp_location *l = b->loc;
14198 if (have_ambiguous_names)
14199 {
14200 for (; l; l = l->next)
14201 if (breakpoint_locations_match (e, l))
14202 {
14203 l->enabled = 0;
14204 break;
14205 }
14206 }
14207 else
14208 {
14209 for (; l; l = l->next)
14210 if (l->function_name
14211 && strcmp (e->function_name, l->function_name) == 0)
14212 {
14213 l->enabled = 0;
14214 break;
14215 }
14216 }
14217 }
14218 }
14219 }
14220
14221 if (!locations_are_equal (existing_locations, b->loc))
14222 observer_notify_breakpoint_modified (b);
14223
14224 update_global_location_list (1);
14225 }
14226
14227 /* Find the SaL locations corresponding to the given ADDR_STRING.
14228 On return, FOUND will be 1 if any SaL was found, zero otherwise. */
14229
14230 static struct symtabs_and_lines
14231 addr_string_to_sals (struct breakpoint *b, char *addr_string, int *found)
14232 {
14233 char *s;
14234 struct symtabs_and_lines sals = {0};
14235 volatile struct gdb_exception e;
14236
14237 gdb_assert (b->ops != NULL);
14238 s = addr_string;
14239
14240 TRY_CATCH (e, RETURN_MASK_ERROR)
14241 {
14242 b->ops->decode_linespec (b, &s, &sals);
14243 }
14244 if (e.reason < 0)
14245 {
14246 int not_found_and_ok = 0;
14247 /* For pending breakpoints, it's expected that parsing will
14248 fail until the right shared library is loaded. User has
14249 already told to create pending breakpoints and don't need
14250 extra messages. If breakpoint is in bp_shlib_disabled
14251 state, then user already saw the message about that
14252 breakpoint being disabled, and don't want to see more
14253 errors. */
14254 if (e.error == NOT_FOUND_ERROR
14255 && (b->condition_not_parsed
14256 || (b->loc && b->loc->shlib_disabled)
14257 || (b->loc && b->loc->pspace->executing_startup)
14258 || b->enable_state == bp_disabled))
14259 not_found_and_ok = 1;
14260
14261 if (!not_found_and_ok)
14262 {
14263 /* We surely don't want to warn about the same breakpoint
14264 10 times. One solution, implemented here, is disable
14265 the breakpoint on error. Another solution would be to
14266 have separate 'warning emitted' flag. Since this
14267 happens only when a binary has changed, I don't know
14268 which approach is better. */
14269 b->enable_state = bp_disabled;
14270 throw_exception (e);
14271 }
14272 }
14273
14274 if (e.reason == 0 || e.error != NOT_FOUND_ERROR)
14275 {
14276 int i;
14277
14278 for (i = 0; i < sals.nelts; ++i)
14279 resolve_sal_pc (&sals.sals[i]);
14280 if (b->condition_not_parsed && s && s[0])
14281 {
14282 char *cond_string, *extra_string;
14283 int thread, task;
14284
14285 find_condition_and_thread (s, sals.sals[0].pc,
14286 &cond_string, &thread, &task,
14287 &extra_string);
14288 if (cond_string)
14289 b->cond_string = cond_string;
14290 b->thread = thread;
14291 b->task = task;
14292 if (extra_string)
14293 b->extra_string = extra_string;
14294 b->condition_not_parsed = 0;
14295 }
14296
14297 if (b->type == bp_static_tracepoint && !strace_marker_p (b))
14298 sals.sals[0] = update_static_tracepoint (b, sals.sals[0]);
14299
14300 *found = 1;
14301 }
14302 else
14303 *found = 0;
14304
14305 return sals;
14306 }
14307
14308 /* The default re_set method, for typical hardware or software
14309 breakpoints. Reevaluate the breakpoint and recreate its
14310 locations. */
14311
14312 static void
14313 breakpoint_re_set_default (struct breakpoint *b)
14314 {
14315 int found;
14316 struct symtabs_and_lines sals, sals_end;
14317 struct symtabs_and_lines expanded = {0};
14318 struct symtabs_and_lines expanded_end = {0};
14319
14320 sals = addr_string_to_sals (b, b->addr_string, &found);
14321 if (found)
14322 {
14323 make_cleanup (xfree, sals.sals);
14324 expanded = sals;
14325 }
14326
14327 if (b->addr_string_range_end)
14328 {
14329 sals_end = addr_string_to_sals (b, b->addr_string_range_end, &found);
14330 if (found)
14331 {
14332 make_cleanup (xfree, sals_end.sals);
14333 expanded_end = sals_end;
14334 }
14335 }
14336
14337 update_breakpoint_locations (b, expanded, expanded_end);
14338 }
14339
14340 /* Default method for creating SALs from an address string. It basically
14341 calls parse_breakpoint_sals. Return 1 for success, zero for failure. */
14342
14343 static void
14344 create_sals_from_address_default (char **arg,
14345 struct linespec_result *canonical,
14346 enum bptype type_wanted,
14347 char *addr_start, char **copy_arg)
14348 {
14349 parse_breakpoint_sals (arg, canonical);
14350 }
14351
14352 /* Call create_breakpoints_sal for the given arguments. This is the default
14353 function for the `create_breakpoints_sal' method of
14354 breakpoint_ops. */
14355
14356 static void
14357 create_breakpoints_sal_default (struct gdbarch *gdbarch,
14358 struct linespec_result *canonical,
14359 char *cond_string,
14360 char *extra_string,
14361 enum bptype type_wanted,
14362 enum bpdisp disposition,
14363 int thread,
14364 int task, int ignore_count,
14365 const struct breakpoint_ops *ops,
14366 int from_tty, int enabled,
14367 int internal, unsigned flags)
14368 {
14369 create_breakpoints_sal (gdbarch, canonical, cond_string,
14370 extra_string,
14371 type_wanted, disposition,
14372 thread, task, ignore_count, ops, from_tty,
14373 enabled, internal, flags);
14374 }
14375
14376 /* Decode the line represented by S by calling decode_line_full. This is the
14377 default function for the `decode_linespec' method of breakpoint_ops. */
14378
14379 static void
14380 decode_linespec_default (struct breakpoint *b, char **s,
14381 struct symtabs_and_lines *sals)
14382 {
14383 struct linespec_result canonical;
14384
14385 init_linespec_result (&canonical);
14386 decode_line_full (s, DECODE_LINE_FUNFIRSTLINE,
14387 (struct symtab *) NULL, 0,
14388 &canonical, multiple_symbols_all,
14389 b->filter);
14390
14391 /* We should get 0 or 1 resulting SALs. */
14392 gdb_assert (VEC_length (linespec_sals, canonical.sals) < 2);
14393
14394 if (VEC_length (linespec_sals, canonical.sals) > 0)
14395 {
14396 struct linespec_sals *lsal;
14397
14398 lsal = VEC_index (linespec_sals, canonical.sals, 0);
14399 *sals = lsal->sals;
14400 /* Arrange it so the destructor does not free the
14401 contents. */
14402 lsal->sals.sals = NULL;
14403 }
14404
14405 destroy_linespec_result (&canonical);
14406 }
14407
14408 /* Prepare the global context for a re-set of breakpoint B. */
14409
14410 static struct cleanup *
14411 prepare_re_set_context (struct breakpoint *b)
14412 {
14413 struct cleanup *cleanups;
14414
14415 input_radix = b->input_radix;
14416 cleanups = save_current_space_and_thread ();
14417 if (b->pspace != NULL)
14418 switch_to_program_space_and_thread (b->pspace);
14419 set_language (b->language);
14420
14421 return cleanups;
14422 }
14423
14424 /* Reset a breakpoint given it's struct breakpoint * BINT.
14425 The value we return ends up being the return value from catch_errors.
14426 Unused in this case. */
14427
14428 static int
14429 breakpoint_re_set_one (void *bint)
14430 {
14431 /* Get past catch_errs. */
14432 struct breakpoint *b = (struct breakpoint *) bint;
14433 struct cleanup *cleanups;
14434
14435 cleanups = prepare_re_set_context (b);
14436 b->ops->re_set (b);
14437 do_cleanups (cleanups);
14438 return 0;
14439 }
14440
14441 /* Re-set all breakpoints after symbols have been re-loaded. */
14442 void
14443 breakpoint_re_set (void)
14444 {
14445 struct breakpoint *b, *b_tmp;
14446 enum language save_language;
14447 int save_input_radix;
14448 struct cleanup *old_chain;
14449
14450 save_language = current_language->la_language;
14451 save_input_radix = input_radix;
14452 old_chain = save_current_program_space ();
14453
14454 ALL_BREAKPOINTS_SAFE (b, b_tmp)
14455 {
14456 /* Format possible error msg. */
14457 char *message = xstrprintf ("Error in re-setting breakpoint %d: ",
14458 b->number);
14459 struct cleanup *cleanups = make_cleanup (xfree, message);
14460 catch_errors (breakpoint_re_set_one, b, message, RETURN_MASK_ALL);
14461 do_cleanups (cleanups);
14462 }
14463 set_language (save_language);
14464 input_radix = save_input_radix;
14465
14466 jit_breakpoint_re_set ();
14467
14468 do_cleanups (old_chain);
14469
14470 create_overlay_event_breakpoint ();
14471 create_longjmp_master_breakpoint ();
14472 create_std_terminate_master_breakpoint ();
14473 create_exception_master_breakpoint ();
14474 }
14475 \f
14476 /* Reset the thread number of this breakpoint:
14477
14478 - If the breakpoint is for all threads, leave it as-is.
14479 - Else, reset it to the current thread for inferior_ptid. */
14480 void
14481 breakpoint_re_set_thread (struct breakpoint *b)
14482 {
14483 if (b->thread != -1)
14484 {
14485 if (in_thread_list (inferior_ptid))
14486 b->thread = pid_to_thread_id (inferior_ptid);
14487
14488 /* We're being called after following a fork. The new fork is
14489 selected as current, and unless this was a vfork will have a
14490 different program space from the original thread. Reset that
14491 as well. */
14492 b->loc->pspace = current_program_space;
14493 }
14494 }
14495
14496 /* Set ignore-count of breakpoint number BPTNUM to COUNT.
14497 If from_tty is nonzero, it prints a message to that effect,
14498 which ends with a period (no newline). */
14499
14500 void
14501 set_ignore_count (int bptnum, int count, int from_tty)
14502 {
14503 struct breakpoint *b;
14504
14505 if (count < 0)
14506 count = 0;
14507
14508 ALL_BREAKPOINTS (b)
14509 if (b->number == bptnum)
14510 {
14511 if (is_tracepoint (b))
14512 {
14513 if (from_tty && count != 0)
14514 printf_filtered (_("Ignore count ignored for tracepoint %d."),
14515 bptnum);
14516 return;
14517 }
14518
14519 b->ignore_count = count;
14520 if (from_tty)
14521 {
14522 if (count == 0)
14523 printf_filtered (_("Will stop next time "
14524 "breakpoint %d is reached."),
14525 bptnum);
14526 else if (count == 1)
14527 printf_filtered (_("Will ignore next crossing of breakpoint %d."),
14528 bptnum);
14529 else
14530 printf_filtered (_("Will ignore next %d "
14531 "crossings of breakpoint %d."),
14532 count, bptnum);
14533 }
14534 observer_notify_breakpoint_modified (b);
14535 return;
14536 }
14537
14538 error (_("No breakpoint number %d."), bptnum);
14539 }
14540
14541 /* Command to set ignore-count of breakpoint N to COUNT. */
14542
14543 static void
14544 ignore_command (char *args, int from_tty)
14545 {
14546 char *p = args;
14547 int num;
14548
14549 if (p == 0)
14550 error_no_arg (_("a breakpoint number"));
14551
14552 num = get_number (&p);
14553 if (num == 0)
14554 error (_("bad breakpoint number: '%s'"), args);
14555 if (*p == 0)
14556 error (_("Second argument (specified ignore-count) is missing."));
14557
14558 set_ignore_count (num,
14559 longest_to_int (value_as_long (parse_and_eval (p))),
14560 from_tty);
14561 if (from_tty)
14562 printf_filtered ("\n");
14563 }
14564 \f
14565 /* Call FUNCTION on each of the breakpoints
14566 whose numbers are given in ARGS. */
14567
14568 static void
14569 map_breakpoint_numbers (char *args, void (*function) (struct breakpoint *,
14570 void *),
14571 void *data)
14572 {
14573 int num;
14574 struct breakpoint *b, *tmp;
14575 int match;
14576 struct get_number_or_range_state state;
14577
14578 if (args == 0)
14579 error_no_arg (_("one or more breakpoint numbers"));
14580
14581 init_number_or_range (&state, args);
14582
14583 while (!state.finished)
14584 {
14585 char *p = state.string;
14586
14587 match = 0;
14588
14589 num = get_number_or_range (&state);
14590 if (num == 0)
14591 {
14592 warning (_("bad breakpoint number at or near '%s'"), p);
14593 }
14594 else
14595 {
14596 ALL_BREAKPOINTS_SAFE (b, tmp)
14597 if (b->number == num)
14598 {
14599 match = 1;
14600 function (b, data);
14601 break;
14602 }
14603 if (match == 0)
14604 printf_unfiltered (_("No breakpoint number %d.\n"), num);
14605 }
14606 }
14607 }
14608
14609 static struct bp_location *
14610 find_location_by_number (char *number)
14611 {
14612 char *dot = strchr (number, '.');
14613 char *p1;
14614 int bp_num;
14615 int loc_num;
14616 struct breakpoint *b;
14617 struct bp_location *loc;
14618
14619 *dot = '\0';
14620
14621 p1 = number;
14622 bp_num = get_number (&p1);
14623 if (bp_num == 0)
14624 error (_("Bad breakpoint number '%s'"), number);
14625
14626 ALL_BREAKPOINTS (b)
14627 if (b->number == bp_num)
14628 {
14629 break;
14630 }
14631
14632 if (!b || b->number != bp_num)
14633 error (_("Bad breakpoint number '%s'"), number);
14634
14635 p1 = dot+1;
14636 loc_num = get_number (&p1);
14637 if (loc_num == 0)
14638 error (_("Bad breakpoint location number '%s'"), number);
14639
14640 --loc_num;
14641 loc = b->loc;
14642 for (;loc_num && loc; --loc_num, loc = loc->next)
14643 ;
14644 if (!loc)
14645 error (_("Bad breakpoint location number '%s'"), dot+1);
14646
14647 return loc;
14648 }
14649
14650
14651 /* Set ignore-count of breakpoint number BPTNUM to COUNT.
14652 If from_tty is nonzero, it prints a message to that effect,
14653 which ends with a period (no newline). */
14654
14655 void
14656 disable_breakpoint (struct breakpoint *bpt)
14657 {
14658 /* Never disable a watchpoint scope breakpoint; we want to
14659 hit them when we leave scope so we can delete both the
14660 watchpoint and its scope breakpoint at that time. */
14661 if (bpt->type == bp_watchpoint_scope)
14662 return;
14663
14664 /* You can't disable permanent breakpoints. */
14665 if (bpt->enable_state == bp_permanent)
14666 return;
14667
14668 bpt->enable_state = bp_disabled;
14669
14670 /* Mark breakpoint locations modified. */
14671 mark_breakpoint_modified (bpt);
14672
14673 if (target_supports_enable_disable_tracepoint ()
14674 && current_trace_status ()->running && is_tracepoint (bpt))
14675 {
14676 struct bp_location *location;
14677
14678 for (location = bpt->loc; location; location = location->next)
14679 target_disable_tracepoint (location);
14680 }
14681
14682 update_global_location_list (0);
14683
14684 observer_notify_breakpoint_modified (bpt);
14685 }
14686
14687 /* A callback for iterate_over_related_breakpoints. */
14688
14689 static void
14690 do_disable_breakpoint (struct breakpoint *b, void *ignore)
14691 {
14692 disable_breakpoint (b);
14693 }
14694
14695 /* A callback for map_breakpoint_numbers that calls
14696 disable_breakpoint. */
14697
14698 static void
14699 do_map_disable_breakpoint (struct breakpoint *b, void *ignore)
14700 {
14701 iterate_over_related_breakpoints (b, do_disable_breakpoint, NULL);
14702 }
14703
14704 static void
14705 disable_command (char *args, int from_tty)
14706 {
14707 if (args == 0)
14708 {
14709 struct breakpoint *bpt;
14710
14711 ALL_BREAKPOINTS (bpt)
14712 if (user_breakpoint_p (bpt))
14713 disable_breakpoint (bpt);
14714 }
14715 else
14716 {
14717 char *num = extract_arg (&args);
14718
14719 while (num)
14720 {
14721 if (strchr (num, '.'))
14722 {
14723 struct bp_location *loc = find_location_by_number (num);
14724
14725 if (loc)
14726 {
14727 if (loc->enabled)
14728 {
14729 loc->enabled = 0;
14730 mark_breakpoint_location_modified (loc);
14731 }
14732 if (target_supports_enable_disable_tracepoint ()
14733 && current_trace_status ()->running && loc->owner
14734 && is_tracepoint (loc->owner))
14735 target_disable_tracepoint (loc);
14736 }
14737 update_global_location_list (0);
14738 }
14739 else
14740 map_breakpoint_numbers (num, do_map_disable_breakpoint, NULL);
14741 num = extract_arg (&args);
14742 }
14743 }
14744 }
14745
14746 static void
14747 enable_breakpoint_disp (struct breakpoint *bpt, enum bpdisp disposition,
14748 int count)
14749 {
14750 int target_resources_ok;
14751
14752 if (bpt->type == bp_hardware_breakpoint)
14753 {
14754 int i;
14755 i = hw_breakpoint_used_count ();
14756 target_resources_ok =
14757 target_can_use_hardware_watchpoint (bp_hardware_breakpoint,
14758 i + 1, 0);
14759 if (target_resources_ok == 0)
14760 error (_("No hardware breakpoint support in the target."));
14761 else if (target_resources_ok < 0)
14762 error (_("Hardware breakpoints used exceeds limit."));
14763 }
14764
14765 if (is_watchpoint (bpt))
14766 {
14767 /* Initialize it just to avoid a GCC false warning. */
14768 enum enable_state orig_enable_state = 0;
14769 volatile struct gdb_exception e;
14770
14771 TRY_CATCH (e, RETURN_MASK_ALL)
14772 {
14773 struct watchpoint *w = (struct watchpoint *) bpt;
14774
14775 orig_enable_state = bpt->enable_state;
14776 bpt->enable_state = bp_enabled;
14777 update_watchpoint (w, 1 /* reparse */);
14778 }
14779 if (e.reason < 0)
14780 {
14781 bpt->enable_state = orig_enable_state;
14782 exception_fprintf (gdb_stderr, e, _("Cannot enable watchpoint %d: "),
14783 bpt->number);
14784 return;
14785 }
14786 }
14787
14788 if (bpt->enable_state != bp_permanent)
14789 bpt->enable_state = bp_enabled;
14790
14791 bpt->enable_state = bp_enabled;
14792
14793 /* Mark breakpoint locations modified. */
14794 mark_breakpoint_modified (bpt);
14795
14796 if (target_supports_enable_disable_tracepoint ()
14797 && current_trace_status ()->running && is_tracepoint (bpt))
14798 {
14799 struct bp_location *location;
14800
14801 for (location = bpt->loc; location; location = location->next)
14802 target_enable_tracepoint (location);
14803 }
14804
14805 bpt->disposition = disposition;
14806 bpt->enable_count = count;
14807 update_global_location_list (1);
14808
14809 observer_notify_breakpoint_modified (bpt);
14810 }
14811
14812
14813 void
14814 enable_breakpoint (struct breakpoint *bpt)
14815 {
14816 enable_breakpoint_disp (bpt, bpt->disposition, 0);
14817 }
14818
14819 static void
14820 do_enable_breakpoint (struct breakpoint *bpt, void *arg)
14821 {
14822 enable_breakpoint (bpt);
14823 }
14824
14825 /* A callback for map_breakpoint_numbers that calls
14826 enable_breakpoint. */
14827
14828 static void
14829 do_map_enable_breakpoint (struct breakpoint *b, void *ignore)
14830 {
14831 iterate_over_related_breakpoints (b, do_enable_breakpoint, NULL);
14832 }
14833
14834 /* The enable command enables the specified breakpoints (or all defined
14835 breakpoints) so they once again become (or continue to be) effective
14836 in stopping the inferior. */
14837
14838 static void
14839 enable_command (char *args, int from_tty)
14840 {
14841 if (args == 0)
14842 {
14843 struct breakpoint *bpt;
14844
14845 ALL_BREAKPOINTS (bpt)
14846 if (user_breakpoint_p (bpt))
14847 enable_breakpoint (bpt);
14848 }
14849 else
14850 {
14851 char *num = extract_arg (&args);
14852
14853 while (num)
14854 {
14855 if (strchr (num, '.'))
14856 {
14857 struct bp_location *loc = find_location_by_number (num);
14858
14859 if (loc)
14860 {
14861 if (!loc->enabled)
14862 {
14863 loc->enabled = 1;
14864 mark_breakpoint_location_modified (loc);
14865 }
14866 if (target_supports_enable_disable_tracepoint ()
14867 && current_trace_status ()->running && loc->owner
14868 && is_tracepoint (loc->owner))
14869 target_enable_tracepoint (loc);
14870 }
14871 update_global_location_list (1);
14872 }
14873 else
14874 map_breakpoint_numbers (num, do_map_enable_breakpoint, NULL);
14875 num = extract_arg (&args);
14876 }
14877 }
14878 }
14879
14880 /* This struct packages up disposition data for application to multiple
14881 breakpoints. */
14882
14883 struct disp_data
14884 {
14885 enum bpdisp disp;
14886 int count;
14887 };
14888
14889 static void
14890 do_enable_breakpoint_disp (struct breakpoint *bpt, void *arg)
14891 {
14892 struct disp_data disp_data = *(struct disp_data *) arg;
14893
14894 enable_breakpoint_disp (bpt, disp_data.disp, disp_data.count);
14895 }
14896
14897 static void
14898 do_map_enable_once_breakpoint (struct breakpoint *bpt, void *ignore)
14899 {
14900 struct disp_data disp = { disp_disable, 1 };
14901
14902 iterate_over_related_breakpoints (bpt, do_enable_breakpoint_disp, &disp);
14903 }
14904
14905 static void
14906 enable_once_command (char *args, int from_tty)
14907 {
14908 map_breakpoint_numbers (args, do_map_enable_once_breakpoint, NULL);
14909 }
14910
14911 static void
14912 do_map_enable_count_breakpoint (struct breakpoint *bpt, void *countptr)
14913 {
14914 struct disp_data disp = { disp_disable, *(int *) countptr };
14915
14916 iterate_over_related_breakpoints (bpt, do_enable_breakpoint_disp, &disp);
14917 }
14918
14919 static void
14920 enable_count_command (char *args, int from_tty)
14921 {
14922 int count = get_number (&args);
14923
14924 map_breakpoint_numbers (args, do_map_enable_count_breakpoint, &count);
14925 }
14926
14927 static void
14928 do_map_enable_delete_breakpoint (struct breakpoint *bpt, void *ignore)
14929 {
14930 struct disp_data disp = { disp_del, 1 };
14931
14932 iterate_over_related_breakpoints (bpt, do_enable_breakpoint_disp, &disp);
14933 }
14934
14935 static void
14936 enable_delete_command (char *args, int from_tty)
14937 {
14938 map_breakpoint_numbers (args, do_map_enable_delete_breakpoint, NULL);
14939 }
14940 \f
14941 static void
14942 set_breakpoint_cmd (char *args, int from_tty)
14943 {
14944 }
14945
14946 static void
14947 show_breakpoint_cmd (char *args, int from_tty)
14948 {
14949 }
14950
14951 /* Invalidate last known value of any hardware watchpoint if
14952 the memory which that value represents has been written to by
14953 GDB itself. */
14954
14955 static void
14956 invalidate_bp_value_on_memory_change (struct inferior *inferior,
14957 CORE_ADDR addr, ssize_t len,
14958 const bfd_byte *data)
14959 {
14960 struct breakpoint *bp;
14961
14962 ALL_BREAKPOINTS (bp)
14963 if (bp->enable_state == bp_enabled
14964 && bp->type == bp_hardware_watchpoint)
14965 {
14966 struct watchpoint *wp = (struct watchpoint *) bp;
14967
14968 if (wp->val_valid && wp->val)
14969 {
14970 struct bp_location *loc;
14971
14972 for (loc = bp->loc; loc != NULL; loc = loc->next)
14973 if (loc->loc_type == bp_loc_hardware_watchpoint
14974 && loc->address + loc->length > addr
14975 && addr + len > loc->address)
14976 {
14977 value_free (wp->val);
14978 wp->val = NULL;
14979 wp->val_valid = 0;
14980 }
14981 }
14982 }
14983 }
14984
14985 /* Create and insert a raw software breakpoint at PC. Return an
14986 identifier, which should be used to remove the breakpoint later.
14987 In general, places which call this should be using something on the
14988 breakpoint chain instead; this function should be eliminated
14989 someday. */
14990
14991 void *
14992 deprecated_insert_raw_breakpoint (struct gdbarch *gdbarch,
14993 struct address_space *aspace, CORE_ADDR pc)
14994 {
14995 struct bp_target_info *bp_tgt;
14996
14997 bp_tgt = XZALLOC (struct bp_target_info);
14998
14999 bp_tgt->placed_address_space = aspace;
15000 bp_tgt->placed_address = pc;
15001
15002 if (target_insert_breakpoint (gdbarch, bp_tgt) != 0)
15003 {
15004 /* Could not insert the breakpoint. */
15005 xfree (bp_tgt);
15006 return NULL;
15007 }
15008
15009 return bp_tgt;
15010 }
15011
15012 /* Remove a breakpoint BP inserted by
15013 deprecated_insert_raw_breakpoint. */
15014
15015 int
15016 deprecated_remove_raw_breakpoint (struct gdbarch *gdbarch, void *bp)
15017 {
15018 struct bp_target_info *bp_tgt = bp;
15019 int ret;
15020
15021 ret = target_remove_breakpoint (gdbarch, bp_tgt);
15022 xfree (bp_tgt);
15023
15024 return ret;
15025 }
15026
15027 /* One (or perhaps two) breakpoints used for software single
15028 stepping. */
15029
15030 static void *single_step_breakpoints[2];
15031 static struct gdbarch *single_step_gdbarch[2];
15032
15033 /* Create and insert a breakpoint for software single step. */
15034
15035 void
15036 insert_single_step_breakpoint (struct gdbarch *gdbarch,
15037 struct address_space *aspace,
15038 CORE_ADDR next_pc)
15039 {
15040 void **bpt_p;
15041
15042 if (single_step_breakpoints[0] == NULL)
15043 {
15044 bpt_p = &single_step_breakpoints[0];
15045 single_step_gdbarch[0] = gdbarch;
15046 }
15047 else
15048 {
15049 gdb_assert (single_step_breakpoints[1] == NULL);
15050 bpt_p = &single_step_breakpoints[1];
15051 single_step_gdbarch[1] = gdbarch;
15052 }
15053
15054 /* NOTE drow/2006-04-11: A future improvement to this function would
15055 be to only create the breakpoints once, and actually put them on
15056 the breakpoint chain. That would let us use set_raw_breakpoint.
15057 We could adjust the addresses each time they were needed. Doing
15058 this requires corresponding changes elsewhere where single step
15059 breakpoints are handled, however. So, for now, we use this. */
15060
15061 *bpt_p = deprecated_insert_raw_breakpoint (gdbarch, aspace, next_pc);
15062 if (*bpt_p == NULL)
15063 error (_("Could not insert single-step breakpoint at %s"),
15064 paddress (gdbarch, next_pc));
15065 }
15066
15067 /* Check if the breakpoints used for software single stepping
15068 were inserted or not. */
15069
15070 int
15071 single_step_breakpoints_inserted (void)
15072 {
15073 return (single_step_breakpoints[0] != NULL
15074 || single_step_breakpoints[1] != NULL);
15075 }
15076
15077 /* Remove and delete any breakpoints used for software single step. */
15078
15079 void
15080 remove_single_step_breakpoints (void)
15081 {
15082 gdb_assert (single_step_breakpoints[0] != NULL);
15083
15084 /* See insert_single_step_breakpoint for more about this deprecated
15085 call. */
15086 deprecated_remove_raw_breakpoint (single_step_gdbarch[0],
15087 single_step_breakpoints[0]);
15088 single_step_gdbarch[0] = NULL;
15089 single_step_breakpoints[0] = NULL;
15090
15091 if (single_step_breakpoints[1] != NULL)
15092 {
15093 deprecated_remove_raw_breakpoint (single_step_gdbarch[1],
15094 single_step_breakpoints[1]);
15095 single_step_gdbarch[1] = NULL;
15096 single_step_breakpoints[1] = NULL;
15097 }
15098 }
15099
15100 /* Delete software single step breakpoints without removing them from
15101 the inferior. This is intended to be used if the inferior's address
15102 space where they were inserted is already gone, e.g. after exit or
15103 exec. */
15104
15105 void
15106 cancel_single_step_breakpoints (void)
15107 {
15108 int i;
15109
15110 for (i = 0; i < 2; i++)
15111 if (single_step_breakpoints[i])
15112 {
15113 xfree (single_step_breakpoints[i]);
15114 single_step_breakpoints[i] = NULL;
15115 single_step_gdbarch[i] = NULL;
15116 }
15117 }
15118
15119 /* Detach software single-step breakpoints from INFERIOR_PTID without
15120 removing them. */
15121
15122 static void
15123 detach_single_step_breakpoints (void)
15124 {
15125 int i;
15126
15127 for (i = 0; i < 2; i++)
15128 if (single_step_breakpoints[i])
15129 target_remove_breakpoint (single_step_gdbarch[i],
15130 single_step_breakpoints[i]);
15131 }
15132
15133 /* Check whether a software single-step breakpoint is inserted at
15134 PC. */
15135
15136 static int
15137 single_step_breakpoint_inserted_here_p (struct address_space *aspace,
15138 CORE_ADDR pc)
15139 {
15140 int i;
15141
15142 for (i = 0; i < 2; i++)
15143 {
15144 struct bp_target_info *bp_tgt = single_step_breakpoints[i];
15145 if (bp_tgt
15146 && breakpoint_address_match (bp_tgt->placed_address_space,
15147 bp_tgt->placed_address,
15148 aspace, pc))
15149 return 1;
15150 }
15151
15152 return 0;
15153 }
15154
15155 /* Returns 0 if 'bp' is NOT a syscall catchpoint,
15156 non-zero otherwise. */
15157 static int
15158 is_syscall_catchpoint_enabled (struct breakpoint *bp)
15159 {
15160 if (syscall_catchpoint_p (bp)
15161 && bp->enable_state != bp_disabled
15162 && bp->enable_state != bp_call_disabled)
15163 return 1;
15164 else
15165 return 0;
15166 }
15167
15168 int
15169 catch_syscall_enabled (void)
15170 {
15171 struct catch_syscall_inferior_data *inf_data
15172 = get_catch_syscall_inferior_data (current_inferior ());
15173
15174 return inf_data->total_syscalls_count != 0;
15175 }
15176
15177 int
15178 catching_syscall_number (int syscall_number)
15179 {
15180 struct breakpoint *bp;
15181
15182 ALL_BREAKPOINTS (bp)
15183 if (is_syscall_catchpoint_enabled (bp))
15184 {
15185 struct syscall_catchpoint *c = (struct syscall_catchpoint *) bp;
15186
15187 if (c->syscalls_to_be_caught)
15188 {
15189 int i, iter;
15190 for (i = 0;
15191 VEC_iterate (int, c->syscalls_to_be_caught, i, iter);
15192 i++)
15193 if (syscall_number == iter)
15194 return 1;
15195 }
15196 else
15197 return 1;
15198 }
15199
15200 return 0;
15201 }
15202
15203 /* Complete syscall names. Used by "catch syscall". */
15204 static VEC (char_ptr) *
15205 catch_syscall_completer (struct cmd_list_element *cmd,
15206 const char *text, const char *word)
15207 {
15208 const char **list = get_syscall_names ();
15209 VEC (char_ptr) *retlist
15210 = (list == NULL) ? NULL : complete_on_enum (list, word, word);
15211
15212 xfree (list);
15213 return retlist;
15214 }
15215
15216 /* Tracepoint-specific operations. */
15217
15218 /* Set tracepoint count to NUM. */
15219 static void
15220 set_tracepoint_count (int num)
15221 {
15222 tracepoint_count = num;
15223 set_internalvar_integer (lookup_internalvar ("tpnum"), num);
15224 }
15225
15226 static void
15227 trace_command (char *arg, int from_tty)
15228 {
15229 struct breakpoint_ops *ops;
15230 const char *arg_cp = arg;
15231
15232 if (arg && probe_linespec_to_ops (&arg_cp))
15233 ops = &tracepoint_probe_breakpoint_ops;
15234 else
15235 ops = &tracepoint_breakpoint_ops;
15236
15237 create_breakpoint (get_current_arch (),
15238 arg,
15239 NULL, 0, NULL, 1 /* parse arg */,
15240 0 /* tempflag */,
15241 bp_tracepoint /* type_wanted */,
15242 0 /* Ignore count */,
15243 pending_break_support,
15244 ops,
15245 from_tty,
15246 1 /* enabled */,
15247 0 /* internal */, 0);
15248 }
15249
15250 static void
15251 ftrace_command (char *arg, int from_tty)
15252 {
15253 create_breakpoint (get_current_arch (),
15254 arg,
15255 NULL, 0, NULL, 1 /* parse arg */,
15256 0 /* tempflag */,
15257 bp_fast_tracepoint /* type_wanted */,
15258 0 /* Ignore count */,
15259 pending_break_support,
15260 &tracepoint_breakpoint_ops,
15261 from_tty,
15262 1 /* enabled */,
15263 0 /* internal */, 0);
15264 }
15265
15266 /* strace command implementation. Creates a static tracepoint. */
15267
15268 static void
15269 strace_command (char *arg, int from_tty)
15270 {
15271 struct breakpoint_ops *ops;
15272
15273 /* Decide if we are dealing with a static tracepoint marker (`-m'),
15274 or with a normal static tracepoint. */
15275 if (arg && strncmp (arg, "-m", 2) == 0 && isspace (arg[2]))
15276 ops = &strace_marker_breakpoint_ops;
15277 else
15278 ops = &tracepoint_breakpoint_ops;
15279
15280 create_breakpoint (get_current_arch (),
15281 arg,
15282 NULL, 0, NULL, 1 /* parse arg */,
15283 0 /* tempflag */,
15284 bp_static_tracepoint /* type_wanted */,
15285 0 /* Ignore count */,
15286 pending_break_support,
15287 ops,
15288 from_tty,
15289 1 /* enabled */,
15290 0 /* internal */, 0);
15291 }
15292
15293 /* Set up a fake reader function that gets command lines from a linked
15294 list that was acquired during tracepoint uploading. */
15295
15296 static struct uploaded_tp *this_utp;
15297 static int next_cmd;
15298
15299 static char *
15300 read_uploaded_action (void)
15301 {
15302 char *rslt;
15303
15304 VEC_iterate (char_ptr, this_utp->cmd_strings, next_cmd, rslt);
15305
15306 next_cmd++;
15307
15308 return rslt;
15309 }
15310
15311 /* Given information about a tracepoint as recorded on a target (which
15312 can be either a live system or a trace file), attempt to create an
15313 equivalent GDB tracepoint. This is not a reliable process, since
15314 the target does not necessarily have all the information used when
15315 the tracepoint was originally defined. */
15316
15317 struct tracepoint *
15318 create_tracepoint_from_upload (struct uploaded_tp *utp)
15319 {
15320 char *addr_str, small_buf[100];
15321 struct tracepoint *tp;
15322
15323 if (utp->at_string)
15324 addr_str = utp->at_string;
15325 else
15326 {
15327 /* In the absence of a source location, fall back to raw
15328 address. Since there is no way to confirm that the address
15329 means the same thing as when the trace was started, warn the
15330 user. */
15331 warning (_("Uploaded tracepoint %d has no "
15332 "source location, using raw address"),
15333 utp->number);
15334 xsnprintf (small_buf, sizeof (small_buf), "*%s", hex_string (utp->addr));
15335 addr_str = small_buf;
15336 }
15337
15338 /* There's not much we can do with a sequence of bytecodes. */
15339 if (utp->cond && !utp->cond_string)
15340 warning (_("Uploaded tracepoint %d condition "
15341 "has no source form, ignoring it"),
15342 utp->number);
15343
15344 if (!create_breakpoint (get_current_arch (),
15345 addr_str,
15346 utp->cond_string, -1, NULL,
15347 0 /* parse cond/thread */,
15348 0 /* tempflag */,
15349 utp->type /* type_wanted */,
15350 0 /* Ignore count */,
15351 pending_break_support,
15352 &tracepoint_breakpoint_ops,
15353 0 /* from_tty */,
15354 utp->enabled /* enabled */,
15355 0 /* internal */,
15356 CREATE_BREAKPOINT_FLAGS_INSERTED))
15357 return NULL;
15358
15359 /* Get the tracepoint we just created. */
15360 tp = get_tracepoint (tracepoint_count);
15361 gdb_assert (tp != NULL);
15362
15363 if (utp->pass > 0)
15364 {
15365 xsnprintf (small_buf, sizeof (small_buf), "%d %d", utp->pass,
15366 tp->base.number);
15367
15368 trace_pass_command (small_buf, 0);
15369 }
15370
15371 /* If we have uploaded versions of the original commands, set up a
15372 special-purpose "reader" function and call the usual command line
15373 reader, then pass the result to the breakpoint command-setting
15374 function. */
15375 if (!VEC_empty (char_ptr, utp->cmd_strings))
15376 {
15377 struct command_line *cmd_list;
15378
15379 this_utp = utp;
15380 next_cmd = 0;
15381
15382 cmd_list = read_command_lines_1 (read_uploaded_action, 1, NULL, NULL);
15383
15384 breakpoint_set_commands (&tp->base, cmd_list);
15385 }
15386 else if (!VEC_empty (char_ptr, utp->actions)
15387 || !VEC_empty (char_ptr, utp->step_actions))
15388 warning (_("Uploaded tracepoint %d actions "
15389 "have no source form, ignoring them"),
15390 utp->number);
15391
15392 /* Copy any status information that might be available. */
15393 tp->base.hit_count = utp->hit_count;
15394 tp->traceframe_usage = utp->traceframe_usage;
15395
15396 return tp;
15397 }
15398
15399 /* Print information on tracepoint number TPNUM_EXP, or all if
15400 omitted. */
15401
15402 static void
15403 tracepoints_info (char *args, int from_tty)
15404 {
15405 struct ui_out *uiout = current_uiout;
15406 int num_printed;
15407
15408 num_printed = breakpoint_1 (args, 0, is_tracepoint);
15409
15410 if (num_printed == 0)
15411 {
15412 if (args == NULL || *args == '\0')
15413 ui_out_message (uiout, 0, "No tracepoints.\n");
15414 else
15415 ui_out_message (uiout, 0, "No tracepoint matching '%s'.\n", args);
15416 }
15417
15418 default_collect_info ();
15419 }
15420
15421 /* The 'enable trace' command enables tracepoints.
15422 Not supported by all targets. */
15423 static void
15424 enable_trace_command (char *args, int from_tty)
15425 {
15426 enable_command (args, from_tty);
15427 }
15428
15429 /* The 'disable trace' command disables tracepoints.
15430 Not supported by all targets. */
15431 static void
15432 disable_trace_command (char *args, int from_tty)
15433 {
15434 disable_command (args, from_tty);
15435 }
15436
15437 /* Remove a tracepoint (or all if no argument). */
15438 static void
15439 delete_trace_command (char *arg, int from_tty)
15440 {
15441 struct breakpoint *b, *b_tmp;
15442
15443 dont_repeat ();
15444
15445 if (arg == 0)
15446 {
15447 int breaks_to_delete = 0;
15448
15449 /* Delete all breakpoints if no argument.
15450 Do not delete internal or call-dummy breakpoints, these
15451 have to be deleted with an explicit breakpoint number
15452 argument. */
15453 ALL_TRACEPOINTS (b)
15454 if (is_tracepoint (b) && user_breakpoint_p (b))
15455 {
15456 breaks_to_delete = 1;
15457 break;
15458 }
15459
15460 /* Ask user only if there are some breakpoints to delete. */
15461 if (!from_tty
15462 || (breaks_to_delete && query (_("Delete all tracepoints? "))))
15463 {
15464 ALL_BREAKPOINTS_SAFE (b, b_tmp)
15465 if (is_tracepoint (b) && user_breakpoint_p (b))
15466 delete_breakpoint (b);
15467 }
15468 }
15469 else
15470 map_breakpoint_numbers (arg, do_map_delete_breakpoint, NULL);
15471 }
15472
15473 /* Helper function for trace_pass_command. */
15474
15475 static void
15476 trace_pass_set_count (struct tracepoint *tp, int count, int from_tty)
15477 {
15478 tp->pass_count = count;
15479 observer_notify_breakpoint_modified (&tp->base);
15480 if (from_tty)
15481 printf_filtered (_("Setting tracepoint %d's passcount to %d\n"),
15482 tp->base.number, count);
15483 }
15484
15485 /* Set passcount for tracepoint.
15486
15487 First command argument is passcount, second is tracepoint number.
15488 If tracepoint number omitted, apply to most recently defined.
15489 Also accepts special argument "all". */
15490
15491 static void
15492 trace_pass_command (char *args, int from_tty)
15493 {
15494 struct tracepoint *t1;
15495 unsigned int count;
15496
15497 if (args == 0 || *args == 0)
15498 error (_("passcount command requires an "
15499 "argument (count + optional TP num)"));
15500
15501 count = strtoul (args, &args, 10); /* Count comes first, then TP num. */
15502
15503 args = skip_spaces (args);
15504 if (*args && strncasecmp (args, "all", 3) == 0)
15505 {
15506 struct breakpoint *b;
15507
15508 args += 3; /* Skip special argument "all". */
15509 if (*args)
15510 error (_("Junk at end of arguments."));
15511
15512 ALL_TRACEPOINTS (b)
15513 {
15514 t1 = (struct tracepoint *) b;
15515 trace_pass_set_count (t1, count, from_tty);
15516 }
15517 }
15518 else if (*args == '\0')
15519 {
15520 t1 = get_tracepoint_by_number (&args, NULL, 1);
15521 if (t1)
15522 trace_pass_set_count (t1, count, from_tty);
15523 }
15524 else
15525 {
15526 struct get_number_or_range_state state;
15527
15528 init_number_or_range (&state, args);
15529 while (!state.finished)
15530 {
15531 t1 = get_tracepoint_by_number (&args, &state, 1);
15532 if (t1)
15533 trace_pass_set_count (t1, count, from_tty);
15534 }
15535 }
15536 }
15537
15538 struct tracepoint *
15539 get_tracepoint (int num)
15540 {
15541 struct breakpoint *t;
15542
15543 ALL_TRACEPOINTS (t)
15544 if (t->number == num)
15545 return (struct tracepoint *) t;
15546
15547 return NULL;
15548 }
15549
15550 /* Find the tracepoint with the given target-side number (which may be
15551 different from the tracepoint number after disconnecting and
15552 reconnecting). */
15553
15554 struct tracepoint *
15555 get_tracepoint_by_number_on_target (int num)
15556 {
15557 struct breakpoint *b;
15558
15559 ALL_TRACEPOINTS (b)
15560 {
15561 struct tracepoint *t = (struct tracepoint *) b;
15562
15563 if (t->number_on_target == num)
15564 return t;
15565 }
15566
15567 return NULL;
15568 }
15569
15570 /* Utility: parse a tracepoint number and look it up in the list.
15571 If STATE is not NULL, use, get_number_or_range_state and ignore ARG.
15572 If OPTIONAL_P is true, then if the argument is missing, the most
15573 recent tracepoint (tracepoint_count) is returned. */
15574 struct tracepoint *
15575 get_tracepoint_by_number (char **arg,
15576 struct get_number_or_range_state *state,
15577 int optional_p)
15578 {
15579 struct breakpoint *t;
15580 int tpnum;
15581 char *instring = arg == NULL ? NULL : *arg;
15582
15583 if (state)
15584 {
15585 gdb_assert (!state->finished);
15586 tpnum = get_number_or_range (state);
15587 }
15588 else if (arg == NULL || *arg == NULL || ! **arg)
15589 {
15590 if (optional_p)
15591 tpnum = tracepoint_count;
15592 else
15593 error_no_arg (_("tracepoint number"));
15594 }
15595 else
15596 tpnum = get_number (arg);
15597
15598 if (tpnum <= 0)
15599 {
15600 if (instring && *instring)
15601 printf_filtered (_("bad tracepoint number at or near '%s'\n"),
15602 instring);
15603 else
15604 printf_filtered (_("Tracepoint argument missing "
15605 "and no previous tracepoint\n"));
15606 return NULL;
15607 }
15608
15609 ALL_TRACEPOINTS (t)
15610 if (t->number == tpnum)
15611 {
15612 return (struct tracepoint *) t;
15613 }
15614
15615 printf_unfiltered ("No tracepoint number %d.\n", tpnum);
15616 return NULL;
15617 }
15618
15619 void
15620 print_recreate_thread (struct breakpoint *b, struct ui_file *fp)
15621 {
15622 if (b->thread != -1)
15623 fprintf_unfiltered (fp, " thread %d", b->thread);
15624
15625 if (b->task != 0)
15626 fprintf_unfiltered (fp, " task %d", b->task);
15627
15628 fprintf_unfiltered (fp, "\n");
15629 }
15630
15631 /* Save information on user settable breakpoints (watchpoints, etc) to
15632 a new script file named FILENAME. If FILTER is non-NULL, call it
15633 on each breakpoint and only include the ones for which it returns
15634 non-zero. */
15635
15636 static void
15637 save_breakpoints (char *filename, int from_tty,
15638 int (*filter) (const struct breakpoint *))
15639 {
15640 struct breakpoint *tp;
15641 int any = 0;
15642 struct cleanup *cleanup;
15643 struct ui_file *fp;
15644 int extra_trace_bits = 0;
15645
15646 if (filename == 0 || *filename == 0)
15647 error (_("Argument required (file name in which to save)"));
15648
15649 /* See if we have anything to save. */
15650 ALL_BREAKPOINTS (tp)
15651 {
15652 /* Skip internal and momentary breakpoints. */
15653 if (!user_breakpoint_p (tp))
15654 continue;
15655
15656 /* If we have a filter, only save the breakpoints it accepts. */
15657 if (filter && !filter (tp))
15658 continue;
15659
15660 any = 1;
15661
15662 if (is_tracepoint (tp))
15663 {
15664 extra_trace_bits = 1;
15665
15666 /* We can stop searching. */
15667 break;
15668 }
15669 }
15670
15671 if (!any)
15672 {
15673 warning (_("Nothing to save."));
15674 return;
15675 }
15676
15677 filename = tilde_expand (filename);
15678 cleanup = make_cleanup (xfree, filename);
15679 fp = gdb_fopen (filename, "w");
15680 if (!fp)
15681 error (_("Unable to open file '%s' for saving (%s)"),
15682 filename, safe_strerror (errno));
15683 make_cleanup_ui_file_delete (fp);
15684
15685 if (extra_trace_bits)
15686 save_trace_state_variables (fp);
15687
15688 ALL_BREAKPOINTS (tp)
15689 {
15690 /* Skip internal and momentary breakpoints. */
15691 if (!user_breakpoint_p (tp))
15692 continue;
15693
15694 /* If we have a filter, only save the breakpoints it accepts. */
15695 if (filter && !filter (tp))
15696 continue;
15697
15698 tp->ops->print_recreate (tp, fp);
15699
15700 /* Note, we can't rely on tp->number for anything, as we can't
15701 assume the recreated breakpoint numbers will match. Use $bpnum
15702 instead. */
15703
15704 if (tp->cond_string)
15705 fprintf_unfiltered (fp, " condition $bpnum %s\n", tp->cond_string);
15706
15707 if (tp->ignore_count)
15708 fprintf_unfiltered (fp, " ignore $bpnum %d\n", tp->ignore_count);
15709
15710 if (tp->type != bp_dprintf && tp->commands)
15711 {
15712 volatile struct gdb_exception ex;
15713
15714 fprintf_unfiltered (fp, " commands\n");
15715
15716 ui_out_redirect (current_uiout, fp);
15717 TRY_CATCH (ex, RETURN_MASK_ALL)
15718 {
15719 print_command_lines (current_uiout, tp->commands->commands, 2);
15720 }
15721 ui_out_redirect (current_uiout, NULL);
15722
15723 if (ex.reason < 0)
15724 throw_exception (ex);
15725
15726 fprintf_unfiltered (fp, " end\n");
15727 }
15728
15729 if (tp->enable_state == bp_disabled)
15730 fprintf_unfiltered (fp, "disable\n");
15731
15732 /* If this is a multi-location breakpoint, check if the locations
15733 should be individually disabled. Watchpoint locations are
15734 special, and not user visible. */
15735 if (!is_watchpoint (tp) && tp->loc && tp->loc->next)
15736 {
15737 struct bp_location *loc;
15738 int n = 1;
15739
15740 for (loc = tp->loc; loc != NULL; loc = loc->next, n++)
15741 if (!loc->enabled)
15742 fprintf_unfiltered (fp, "disable $bpnum.%d\n", n);
15743 }
15744 }
15745
15746 if (extra_trace_bits && *default_collect)
15747 fprintf_unfiltered (fp, "set default-collect %s\n", default_collect);
15748
15749 if (from_tty)
15750 printf_filtered (_("Saved to file '%s'.\n"), filename);
15751 do_cleanups (cleanup);
15752 }
15753
15754 /* The `save breakpoints' command. */
15755
15756 static void
15757 save_breakpoints_command (char *args, int from_tty)
15758 {
15759 save_breakpoints (args, from_tty, NULL);
15760 }
15761
15762 /* The `save tracepoints' command. */
15763
15764 static void
15765 save_tracepoints_command (char *args, int from_tty)
15766 {
15767 save_breakpoints (args, from_tty, is_tracepoint);
15768 }
15769
15770 /* Create a vector of all tracepoints. */
15771
15772 VEC(breakpoint_p) *
15773 all_tracepoints (void)
15774 {
15775 VEC(breakpoint_p) *tp_vec = 0;
15776 struct breakpoint *tp;
15777
15778 ALL_TRACEPOINTS (tp)
15779 {
15780 VEC_safe_push (breakpoint_p, tp_vec, tp);
15781 }
15782
15783 return tp_vec;
15784 }
15785
15786 \f
15787 /* This help string is used for the break, hbreak, tbreak and thbreak
15788 commands. It is defined as a macro to prevent duplication.
15789 COMMAND should be a string constant containing the name of the
15790 command. */
15791 #define BREAK_ARGS_HELP(command) \
15792 command" [PROBE_MODIFIER] [LOCATION] [thread THREADNUM] [if CONDITION]\n\
15793 PROBE_MODIFIER shall be present if the command is to be placed in a\n\
15794 probe point. Accepted values are `-probe' (for a generic, automatically\n\
15795 guessed probe type) or `-probe-stap' (for a SystemTap probe).\n\
15796 LOCATION may be a line number, function name, or \"*\" and an address.\n\
15797 If a line number is specified, break at start of code for that line.\n\
15798 If a function is specified, break at start of code for that function.\n\
15799 If an address is specified, break at that exact address.\n\
15800 With no LOCATION, uses current execution address of the selected\n\
15801 stack frame. This is useful for breaking on return to a stack frame.\n\
15802 \n\
15803 THREADNUM is the number from \"info threads\".\n\
15804 CONDITION is a boolean expression.\n\
15805 \n\
15806 Multiple breakpoints at one place are permitted, and useful if their\n\
15807 conditions are different.\n\
15808 \n\
15809 Do \"help breakpoints\" for info on other commands dealing with breakpoints."
15810
15811 /* List of subcommands for "catch". */
15812 static struct cmd_list_element *catch_cmdlist;
15813
15814 /* List of subcommands for "tcatch". */
15815 static struct cmd_list_element *tcatch_cmdlist;
15816
15817 void
15818 add_catch_command (char *name, char *docstring,
15819 void (*sfunc) (char *args, int from_tty,
15820 struct cmd_list_element *command),
15821 completer_ftype *completer,
15822 void *user_data_catch,
15823 void *user_data_tcatch)
15824 {
15825 struct cmd_list_element *command;
15826
15827 command = add_cmd (name, class_breakpoint, NULL, docstring,
15828 &catch_cmdlist);
15829 set_cmd_sfunc (command, sfunc);
15830 set_cmd_context (command, user_data_catch);
15831 set_cmd_completer (command, completer);
15832
15833 command = add_cmd (name, class_breakpoint, NULL, docstring,
15834 &tcatch_cmdlist);
15835 set_cmd_sfunc (command, sfunc);
15836 set_cmd_context (command, user_data_tcatch);
15837 set_cmd_completer (command, completer);
15838 }
15839
15840 static void
15841 clear_syscall_counts (struct inferior *inf)
15842 {
15843 struct catch_syscall_inferior_data *inf_data
15844 = get_catch_syscall_inferior_data (inf);
15845
15846 inf_data->total_syscalls_count = 0;
15847 inf_data->any_syscall_count = 0;
15848 VEC_free (int, inf_data->syscalls_counts);
15849 }
15850
15851 static void
15852 save_command (char *arg, int from_tty)
15853 {
15854 printf_unfiltered (_("\"save\" must be followed by "
15855 "the name of a save subcommand.\n"));
15856 help_list (save_cmdlist, "save ", -1, gdb_stdout);
15857 }
15858
15859 struct breakpoint *
15860 iterate_over_breakpoints (int (*callback) (struct breakpoint *, void *),
15861 void *data)
15862 {
15863 struct breakpoint *b, *b_tmp;
15864
15865 ALL_BREAKPOINTS_SAFE (b, b_tmp)
15866 {
15867 if ((*callback) (b, data))
15868 return b;
15869 }
15870
15871 return NULL;
15872 }
15873
15874 /* Zero if any of the breakpoint's locations could be a location where
15875 functions have been inlined, nonzero otherwise. */
15876
15877 static int
15878 is_non_inline_function (struct breakpoint *b)
15879 {
15880 /* The shared library event breakpoint is set on the address of a
15881 non-inline function. */
15882 if (b->type == bp_shlib_event)
15883 return 1;
15884
15885 return 0;
15886 }
15887
15888 /* Nonzero if the specified PC cannot be a location where functions
15889 have been inlined. */
15890
15891 int
15892 pc_at_non_inline_function (struct address_space *aspace, CORE_ADDR pc,
15893 const struct target_waitstatus *ws)
15894 {
15895 struct breakpoint *b;
15896 struct bp_location *bl;
15897
15898 ALL_BREAKPOINTS (b)
15899 {
15900 if (!is_non_inline_function (b))
15901 continue;
15902
15903 for (bl = b->loc; bl != NULL; bl = bl->next)
15904 {
15905 if (!bl->shlib_disabled
15906 && bpstat_check_location (bl, aspace, pc, ws))
15907 return 1;
15908 }
15909 }
15910
15911 return 0;
15912 }
15913
15914 /* Remove any references to OBJFILE which is going to be freed. */
15915
15916 void
15917 breakpoint_free_objfile (struct objfile *objfile)
15918 {
15919 struct bp_location **locp, *loc;
15920
15921 ALL_BP_LOCATIONS (loc, locp)
15922 if (loc->symtab != NULL && loc->symtab->objfile == objfile)
15923 loc->symtab = NULL;
15924 }
15925
15926 void
15927 initialize_breakpoint_ops (void)
15928 {
15929 static int initialized = 0;
15930
15931 struct breakpoint_ops *ops;
15932
15933 if (initialized)
15934 return;
15935 initialized = 1;
15936
15937 /* The breakpoint_ops structure to be inherit by all kinds of
15938 breakpoints (real breakpoints, i.e., user "break" breakpoints,
15939 internal and momentary breakpoints, etc.). */
15940 ops = &bkpt_base_breakpoint_ops;
15941 *ops = base_breakpoint_ops;
15942 ops->re_set = bkpt_re_set;
15943 ops->insert_location = bkpt_insert_location;
15944 ops->remove_location = bkpt_remove_location;
15945 ops->breakpoint_hit = bkpt_breakpoint_hit;
15946 ops->create_sals_from_address = bkpt_create_sals_from_address;
15947 ops->create_breakpoints_sal = bkpt_create_breakpoints_sal;
15948 ops->decode_linespec = bkpt_decode_linespec;
15949
15950 /* The breakpoint_ops structure to be used in regular breakpoints. */
15951 ops = &bkpt_breakpoint_ops;
15952 *ops = bkpt_base_breakpoint_ops;
15953 ops->re_set = bkpt_re_set;
15954 ops->resources_needed = bkpt_resources_needed;
15955 ops->print_it = bkpt_print_it;
15956 ops->print_mention = bkpt_print_mention;
15957 ops->print_recreate = bkpt_print_recreate;
15958
15959 /* Ranged breakpoints. */
15960 ops = &ranged_breakpoint_ops;
15961 *ops = bkpt_breakpoint_ops;
15962 ops->breakpoint_hit = breakpoint_hit_ranged_breakpoint;
15963 ops->resources_needed = resources_needed_ranged_breakpoint;
15964 ops->print_it = print_it_ranged_breakpoint;
15965 ops->print_one = print_one_ranged_breakpoint;
15966 ops->print_one_detail = print_one_detail_ranged_breakpoint;
15967 ops->print_mention = print_mention_ranged_breakpoint;
15968 ops->print_recreate = print_recreate_ranged_breakpoint;
15969
15970 /* Internal breakpoints. */
15971 ops = &internal_breakpoint_ops;
15972 *ops = bkpt_base_breakpoint_ops;
15973 ops->re_set = internal_bkpt_re_set;
15974 ops->check_status = internal_bkpt_check_status;
15975 ops->print_it = internal_bkpt_print_it;
15976 ops->print_mention = internal_bkpt_print_mention;
15977
15978 /* Momentary breakpoints. */
15979 ops = &momentary_breakpoint_ops;
15980 *ops = bkpt_base_breakpoint_ops;
15981 ops->re_set = momentary_bkpt_re_set;
15982 ops->check_status = momentary_bkpt_check_status;
15983 ops->print_it = momentary_bkpt_print_it;
15984 ops->print_mention = momentary_bkpt_print_mention;
15985
15986 /* Momentary breakpoints for bp_longjmp and bp_exception. */
15987 ops = &longjmp_breakpoint_ops;
15988 *ops = momentary_breakpoint_ops;
15989 ops->dtor = longjmp_bkpt_dtor;
15990
15991 /* Probe breakpoints. */
15992 ops = &bkpt_probe_breakpoint_ops;
15993 *ops = bkpt_breakpoint_ops;
15994 ops->insert_location = bkpt_probe_insert_location;
15995 ops->remove_location = bkpt_probe_remove_location;
15996 ops->create_sals_from_address = bkpt_probe_create_sals_from_address;
15997 ops->decode_linespec = bkpt_probe_decode_linespec;
15998
15999 /* Watchpoints. */
16000 ops = &watchpoint_breakpoint_ops;
16001 *ops = base_breakpoint_ops;
16002 ops->dtor = dtor_watchpoint;
16003 ops->re_set = re_set_watchpoint;
16004 ops->insert_location = insert_watchpoint;
16005 ops->remove_location = remove_watchpoint;
16006 ops->breakpoint_hit = breakpoint_hit_watchpoint;
16007 ops->check_status = check_status_watchpoint;
16008 ops->resources_needed = resources_needed_watchpoint;
16009 ops->works_in_software_mode = works_in_software_mode_watchpoint;
16010 ops->print_it = print_it_watchpoint;
16011 ops->print_mention = print_mention_watchpoint;
16012 ops->print_recreate = print_recreate_watchpoint;
16013 ops->explains_signal = explains_signal_watchpoint;
16014
16015 /* Masked watchpoints. */
16016 ops = &masked_watchpoint_breakpoint_ops;
16017 *ops = watchpoint_breakpoint_ops;
16018 ops->insert_location = insert_masked_watchpoint;
16019 ops->remove_location = remove_masked_watchpoint;
16020 ops->resources_needed = resources_needed_masked_watchpoint;
16021 ops->works_in_software_mode = works_in_software_mode_masked_watchpoint;
16022 ops->print_it = print_it_masked_watchpoint;
16023 ops->print_one_detail = print_one_detail_masked_watchpoint;
16024 ops->print_mention = print_mention_masked_watchpoint;
16025 ops->print_recreate = print_recreate_masked_watchpoint;
16026
16027 /* Tracepoints. */
16028 ops = &tracepoint_breakpoint_ops;
16029 *ops = base_breakpoint_ops;
16030 ops->re_set = tracepoint_re_set;
16031 ops->breakpoint_hit = tracepoint_breakpoint_hit;
16032 ops->print_one_detail = tracepoint_print_one_detail;
16033 ops->print_mention = tracepoint_print_mention;
16034 ops->print_recreate = tracepoint_print_recreate;
16035 ops->create_sals_from_address = tracepoint_create_sals_from_address;
16036 ops->create_breakpoints_sal = tracepoint_create_breakpoints_sal;
16037 ops->decode_linespec = tracepoint_decode_linespec;
16038
16039 /* Probe tracepoints. */
16040 ops = &tracepoint_probe_breakpoint_ops;
16041 *ops = tracepoint_breakpoint_ops;
16042 ops->create_sals_from_address = tracepoint_probe_create_sals_from_address;
16043 ops->decode_linespec = tracepoint_probe_decode_linespec;
16044
16045 /* Static tracepoints with marker (`-m'). */
16046 ops = &strace_marker_breakpoint_ops;
16047 *ops = tracepoint_breakpoint_ops;
16048 ops->create_sals_from_address = strace_marker_create_sals_from_address;
16049 ops->create_breakpoints_sal = strace_marker_create_breakpoints_sal;
16050 ops->decode_linespec = strace_marker_decode_linespec;
16051
16052 /* Fork catchpoints. */
16053 ops = &catch_fork_breakpoint_ops;
16054 *ops = base_breakpoint_ops;
16055 ops->insert_location = insert_catch_fork;
16056 ops->remove_location = remove_catch_fork;
16057 ops->breakpoint_hit = breakpoint_hit_catch_fork;
16058 ops->print_it = print_it_catch_fork;
16059 ops->print_one = print_one_catch_fork;
16060 ops->print_mention = print_mention_catch_fork;
16061 ops->print_recreate = print_recreate_catch_fork;
16062
16063 /* Vfork catchpoints. */
16064 ops = &catch_vfork_breakpoint_ops;
16065 *ops = base_breakpoint_ops;
16066 ops->insert_location = insert_catch_vfork;
16067 ops->remove_location = remove_catch_vfork;
16068 ops->breakpoint_hit = breakpoint_hit_catch_vfork;
16069 ops->print_it = print_it_catch_vfork;
16070 ops->print_one = print_one_catch_vfork;
16071 ops->print_mention = print_mention_catch_vfork;
16072 ops->print_recreate = print_recreate_catch_vfork;
16073
16074 /* Exec catchpoints. */
16075 ops = &catch_exec_breakpoint_ops;
16076 *ops = base_breakpoint_ops;
16077 ops->dtor = dtor_catch_exec;
16078 ops->insert_location = insert_catch_exec;
16079 ops->remove_location = remove_catch_exec;
16080 ops->breakpoint_hit = breakpoint_hit_catch_exec;
16081 ops->print_it = print_it_catch_exec;
16082 ops->print_one = print_one_catch_exec;
16083 ops->print_mention = print_mention_catch_exec;
16084 ops->print_recreate = print_recreate_catch_exec;
16085
16086 /* Syscall catchpoints. */
16087 ops = &catch_syscall_breakpoint_ops;
16088 *ops = base_breakpoint_ops;
16089 ops->dtor = dtor_catch_syscall;
16090 ops->insert_location = insert_catch_syscall;
16091 ops->remove_location = remove_catch_syscall;
16092 ops->breakpoint_hit = breakpoint_hit_catch_syscall;
16093 ops->print_it = print_it_catch_syscall;
16094 ops->print_one = print_one_catch_syscall;
16095 ops->print_mention = print_mention_catch_syscall;
16096 ops->print_recreate = print_recreate_catch_syscall;
16097
16098 /* Solib-related catchpoints. */
16099 ops = &catch_solib_breakpoint_ops;
16100 *ops = base_breakpoint_ops;
16101 ops->dtor = dtor_catch_solib;
16102 ops->insert_location = insert_catch_solib;
16103 ops->remove_location = remove_catch_solib;
16104 ops->breakpoint_hit = breakpoint_hit_catch_solib;
16105 ops->check_status = check_status_catch_solib;
16106 ops->print_it = print_it_catch_solib;
16107 ops->print_one = print_one_catch_solib;
16108 ops->print_mention = print_mention_catch_solib;
16109 ops->print_recreate = print_recreate_catch_solib;
16110
16111 ops = &dprintf_breakpoint_ops;
16112 *ops = bkpt_base_breakpoint_ops;
16113 ops->re_set = dprintf_re_set;
16114 ops->resources_needed = bkpt_resources_needed;
16115 ops->print_it = bkpt_print_it;
16116 ops->print_mention = bkpt_print_mention;
16117 ops->print_recreate = dprintf_print_recreate;
16118 ops->after_condition_true = dprintf_after_condition_true;
16119 }
16120
16121 /* Chain containing all defined "enable breakpoint" subcommands. */
16122
16123 static struct cmd_list_element *enablebreaklist = NULL;
16124
16125 void
16126 _initialize_breakpoint (void)
16127 {
16128 struct cmd_list_element *c;
16129
16130 initialize_breakpoint_ops ();
16131
16132 observer_attach_solib_unloaded (disable_breakpoints_in_unloaded_shlib);
16133 observer_attach_free_objfile (disable_breakpoints_in_freed_objfile);
16134 observer_attach_inferior_exit (clear_syscall_counts);
16135 observer_attach_memory_changed (invalidate_bp_value_on_memory_change);
16136
16137 breakpoint_objfile_key
16138 = register_objfile_data_with_cleanup (NULL, free_breakpoint_probes);
16139
16140 catch_syscall_inferior_data
16141 = register_inferior_data_with_cleanup (NULL,
16142 catch_syscall_inferior_data_cleanup);
16143
16144 breakpoint_chain = 0;
16145 /* Don't bother to call set_breakpoint_count. $bpnum isn't useful
16146 before a breakpoint is set. */
16147 breakpoint_count = 0;
16148
16149 tracepoint_count = 0;
16150
16151 add_com ("ignore", class_breakpoint, ignore_command, _("\
16152 Set ignore-count of breakpoint number N to COUNT.\n\
16153 Usage is `ignore N COUNT'."));
16154 if (xdb_commands)
16155 add_com_alias ("bc", "ignore", class_breakpoint, 1);
16156
16157 add_com ("commands", class_breakpoint, commands_command, _("\
16158 Set commands to be executed when a breakpoint is hit.\n\
16159 Give breakpoint number as argument after \"commands\".\n\
16160 With no argument, the targeted breakpoint is the last one set.\n\
16161 The commands themselves follow starting on the next line.\n\
16162 Type a line containing \"end\" to indicate the end of them.\n\
16163 Give \"silent\" as the first line to make the breakpoint silent;\n\
16164 then no output is printed when it is hit, except what the commands print."));
16165
16166 c = add_com ("condition", class_breakpoint, condition_command, _("\
16167 Specify breakpoint number N to break only if COND is true.\n\
16168 Usage is `condition N COND', where N is an integer and COND is an\n\
16169 expression to be evaluated whenever breakpoint N is reached."));
16170 set_cmd_completer (c, condition_completer);
16171
16172 c = add_com ("tbreak", class_breakpoint, tbreak_command, _("\
16173 Set a temporary breakpoint.\n\
16174 Like \"break\" except the breakpoint is only temporary,\n\
16175 so it will be deleted when hit. Equivalent to \"break\" followed\n\
16176 by using \"enable delete\" on the breakpoint number.\n\
16177 \n"
16178 BREAK_ARGS_HELP ("tbreak")));
16179 set_cmd_completer (c, location_completer);
16180
16181 c = add_com ("hbreak", class_breakpoint, hbreak_command, _("\
16182 Set a hardware assisted breakpoint.\n\
16183 Like \"break\" except the breakpoint requires hardware support,\n\
16184 some target hardware may not have this support.\n\
16185 \n"
16186 BREAK_ARGS_HELP ("hbreak")));
16187 set_cmd_completer (c, location_completer);
16188
16189 c = add_com ("thbreak", class_breakpoint, thbreak_command, _("\
16190 Set a temporary hardware assisted breakpoint.\n\
16191 Like \"hbreak\" except the breakpoint is only temporary,\n\
16192 so it will be deleted when hit.\n\
16193 \n"
16194 BREAK_ARGS_HELP ("thbreak")));
16195 set_cmd_completer (c, location_completer);
16196
16197 add_prefix_cmd ("enable", class_breakpoint, enable_command, _("\
16198 Enable some breakpoints.\n\
16199 Give breakpoint numbers (separated by spaces) as arguments.\n\
16200 With no subcommand, breakpoints are enabled until you command otherwise.\n\
16201 This is used to cancel the effect of the \"disable\" command.\n\
16202 With a subcommand you can enable temporarily."),
16203 &enablelist, "enable ", 1, &cmdlist);
16204 if (xdb_commands)
16205 add_com ("ab", class_breakpoint, enable_command, _("\
16206 Enable some breakpoints.\n\
16207 Give breakpoint numbers (separated by spaces) as arguments.\n\
16208 With no subcommand, breakpoints are enabled until you command otherwise.\n\
16209 This is used to cancel the effect of the \"disable\" command.\n\
16210 With a subcommand you can enable temporarily."));
16211
16212 add_com_alias ("en", "enable", class_breakpoint, 1);
16213
16214 add_prefix_cmd ("breakpoints", class_breakpoint, enable_command, _("\
16215 Enable some breakpoints.\n\
16216 Give breakpoint numbers (separated by spaces) as arguments.\n\
16217 This is used to cancel the effect of the \"disable\" command.\n\
16218 May be abbreviated to simply \"enable\".\n"),
16219 &enablebreaklist, "enable breakpoints ", 1, &enablelist);
16220
16221 add_cmd ("once", no_class, enable_once_command, _("\
16222 Enable breakpoints for one hit. Give breakpoint numbers.\n\
16223 If a breakpoint is hit while enabled in this fashion, it becomes disabled."),
16224 &enablebreaklist);
16225
16226 add_cmd ("delete", no_class, enable_delete_command, _("\
16227 Enable breakpoints and delete when hit. Give breakpoint numbers.\n\
16228 If a breakpoint is hit while enabled in this fashion, it is deleted."),
16229 &enablebreaklist);
16230
16231 add_cmd ("count", no_class, enable_count_command, _("\
16232 Enable breakpoints for COUNT hits. Give count and then breakpoint numbers.\n\
16233 If a breakpoint is hit while enabled in this fashion,\n\
16234 the count is decremented; when it reaches zero, the breakpoint is disabled."),
16235 &enablebreaklist);
16236
16237 add_cmd ("delete", no_class, enable_delete_command, _("\
16238 Enable breakpoints and delete when hit. Give breakpoint numbers.\n\
16239 If a breakpoint is hit while enabled in this fashion, it is deleted."),
16240 &enablelist);
16241
16242 add_cmd ("once", no_class, enable_once_command, _("\
16243 Enable breakpoints for one hit. Give breakpoint numbers.\n\
16244 If a breakpoint is hit while enabled in this fashion, it becomes disabled."),
16245 &enablelist);
16246
16247 add_cmd ("count", no_class, enable_count_command, _("\
16248 Enable breakpoints for COUNT hits. Give count and then breakpoint numbers.\n\
16249 If a breakpoint is hit while enabled in this fashion,\n\
16250 the count is decremented; when it reaches zero, the breakpoint is disabled."),
16251 &enablelist);
16252
16253 add_prefix_cmd ("disable", class_breakpoint, disable_command, _("\
16254 Disable some breakpoints.\n\
16255 Arguments are breakpoint numbers with spaces in between.\n\
16256 To disable all breakpoints, give no argument.\n\
16257 A disabled breakpoint is not forgotten, but has no effect until re-enabled."),
16258 &disablelist, "disable ", 1, &cmdlist);
16259 add_com_alias ("dis", "disable", class_breakpoint, 1);
16260 add_com_alias ("disa", "disable", class_breakpoint, 1);
16261 if (xdb_commands)
16262 add_com ("sb", class_breakpoint, disable_command, _("\
16263 Disable some breakpoints.\n\
16264 Arguments are breakpoint numbers with spaces in between.\n\
16265 To disable all breakpoints, give no argument.\n\
16266 A disabled breakpoint is not forgotten, but has no effect until re-enabled."));
16267
16268 add_cmd ("breakpoints", class_alias, disable_command, _("\
16269 Disable some breakpoints.\n\
16270 Arguments are breakpoint numbers with spaces in between.\n\
16271 To disable all breakpoints, give no argument.\n\
16272 A disabled breakpoint is not forgotten, but has no effect until re-enabled.\n\
16273 This command may be abbreviated \"disable\"."),
16274 &disablelist);
16275
16276 add_prefix_cmd ("delete", class_breakpoint, delete_command, _("\
16277 Delete some breakpoints or auto-display expressions.\n\
16278 Arguments are breakpoint numbers with spaces in between.\n\
16279 To delete all breakpoints, give no argument.\n\
16280 \n\
16281 Also a prefix command for deletion of other GDB objects.\n\
16282 The \"unset\" command is also an alias for \"delete\"."),
16283 &deletelist, "delete ", 1, &cmdlist);
16284 add_com_alias ("d", "delete", class_breakpoint, 1);
16285 add_com_alias ("del", "delete", class_breakpoint, 1);
16286 if (xdb_commands)
16287 add_com ("db", class_breakpoint, delete_command, _("\
16288 Delete some breakpoints.\n\
16289 Arguments are breakpoint numbers with spaces in between.\n\
16290 To delete all breakpoints, give no argument.\n"));
16291
16292 add_cmd ("breakpoints", class_alias, delete_command, _("\
16293 Delete some breakpoints or auto-display expressions.\n\
16294 Arguments are breakpoint numbers with spaces in between.\n\
16295 To delete all breakpoints, give no argument.\n\
16296 This command may be abbreviated \"delete\"."),
16297 &deletelist);
16298
16299 add_com ("clear", class_breakpoint, clear_command, _("\
16300 Clear breakpoint at specified line or function.\n\
16301 Argument may be line number, function name, or \"*\" and an address.\n\
16302 If line number is specified, all breakpoints in that line are cleared.\n\
16303 If function is specified, breakpoints at beginning of function are cleared.\n\
16304 If an address is specified, breakpoints at that address are cleared.\n\
16305 \n\
16306 With no argument, clears all breakpoints in the line that the selected frame\n\
16307 is executing in.\n\
16308 \n\
16309 See also the \"delete\" command which clears breakpoints by number."));
16310 add_com_alias ("cl", "clear", class_breakpoint, 1);
16311
16312 c = add_com ("break", class_breakpoint, break_command, _("\
16313 Set breakpoint at specified line or function.\n"
16314 BREAK_ARGS_HELP ("break")));
16315 set_cmd_completer (c, location_completer);
16316
16317 add_com_alias ("b", "break", class_run, 1);
16318 add_com_alias ("br", "break", class_run, 1);
16319 add_com_alias ("bre", "break", class_run, 1);
16320 add_com_alias ("brea", "break", class_run, 1);
16321
16322 if (xdb_commands)
16323 add_com_alias ("ba", "break", class_breakpoint, 1);
16324
16325 if (dbx_commands)
16326 {
16327 add_abbrev_prefix_cmd ("stop", class_breakpoint, stop_command, _("\
16328 Break in function/address or break at a line in the current file."),
16329 &stoplist, "stop ", 1, &cmdlist);
16330 add_cmd ("in", class_breakpoint, stopin_command,
16331 _("Break in function or address."), &stoplist);
16332 add_cmd ("at", class_breakpoint, stopat_command,
16333 _("Break at a line in the current file."), &stoplist);
16334 add_com ("status", class_info, breakpoints_info, _("\
16335 Status of user-settable breakpoints, or breakpoint number NUMBER.\n\
16336 The \"Type\" column indicates one of:\n\
16337 \tbreakpoint - normal breakpoint\n\
16338 \twatchpoint - watchpoint\n\
16339 The \"Disp\" column contains one of \"keep\", \"del\", or \"dis\" to indicate\n\
16340 the disposition of the breakpoint after it gets hit. \"dis\" means that the\n\
16341 breakpoint will be disabled. The \"Address\" and \"What\" columns indicate the\n\
16342 address and file/line number respectively.\n\
16343 \n\
16344 Convenience variable \"$_\" and default examine address for \"x\"\n\
16345 are set to the address of the last breakpoint listed unless the command\n\
16346 is prefixed with \"server \".\n\n\
16347 Convenience variable \"$bpnum\" contains the number of the last\n\
16348 breakpoint set."));
16349 }
16350
16351 add_info ("breakpoints", breakpoints_info, _("\
16352 Status of specified breakpoints (all user-settable breakpoints if no argument).\n\
16353 The \"Type\" column indicates one of:\n\
16354 \tbreakpoint - normal breakpoint\n\
16355 \twatchpoint - watchpoint\n\
16356 The \"Disp\" column contains one of \"keep\", \"del\", or \"dis\" to indicate\n\
16357 the disposition of the breakpoint after it gets hit. \"dis\" means that the\n\
16358 breakpoint will be disabled. The \"Address\" and \"What\" columns indicate the\n\
16359 address and file/line number respectively.\n\
16360 \n\
16361 Convenience variable \"$_\" and default examine address for \"x\"\n\
16362 are set to the address of the last breakpoint listed unless the command\n\
16363 is prefixed with \"server \".\n\n\
16364 Convenience variable \"$bpnum\" contains the number of the last\n\
16365 breakpoint set."));
16366
16367 add_info_alias ("b", "breakpoints", 1);
16368
16369 if (xdb_commands)
16370 add_com ("lb", class_breakpoint, breakpoints_info, _("\
16371 Status of user-settable breakpoints, or breakpoint number NUMBER.\n\
16372 The \"Type\" column indicates one of:\n\
16373 \tbreakpoint - normal breakpoint\n\
16374 \twatchpoint - watchpoint\n\
16375 The \"Disp\" column contains one of \"keep\", \"del\", or \"dis\" to indicate\n\
16376 the disposition of the breakpoint after it gets hit. \"dis\" means that the\n\
16377 breakpoint will be disabled. The \"Address\" and \"What\" columns indicate the\n\
16378 address and file/line number respectively.\n\
16379 \n\
16380 Convenience variable \"$_\" and default examine address for \"x\"\n\
16381 are set to the address of the last breakpoint listed unless the command\n\
16382 is prefixed with \"server \".\n\n\
16383 Convenience variable \"$bpnum\" contains the number of the last\n\
16384 breakpoint set."));
16385
16386 add_cmd ("breakpoints", class_maintenance, maintenance_info_breakpoints, _("\
16387 Status of all breakpoints, or breakpoint number NUMBER.\n\
16388 The \"Type\" column indicates one of:\n\
16389 \tbreakpoint - normal breakpoint\n\
16390 \twatchpoint - watchpoint\n\
16391 \tlongjmp - internal breakpoint used to step through longjmp()\n\
16392 \tlongjmp resume - internal breakpoint at the target of longjmp()\n\
16393 \tuntil - internal breakpoint used by the \"until\" command\n\
16394 \tfinish - internal breakpoint used by the \"finish\" command\n\
16395 The \"Disp\" column contains one of \"keep\", \"del\", or \"dis\" to indicate\n\
16396 the disposition of the breakpoint after it gets hit. \"dis\" means that the\n\
16397 breakpoint will be disabled. The \"Address\" and \"What\" columns indicate the\n\
16398 address and file/line number respectively.\n\
16399 \n\
16400 Convenience variable \"$_\" and default examine address for \"x\"\n\
16401 are set to the address of the last breakpoint listed unless the command\n\
16402 is prefixed with \"server \".\n\n\
16403 Convenience variable \"$bpnum\" contains the number of the last\n\
16404 breakpoint set."),
16405 &maintenanceinfolist);
16406
16407 add_prefix_cmd ("catch", class_breakpoint, catch_command, _("\
16408 Set catchpoints to catch events."),
16409 &catch_cmdlist, "catch ",
16410 0/*allow-unknown*/, &cmdlist);
16411
16412 add_prefix_cmd ("tcatch", class_breakpoint, tcatch_command, _("\
16413 Set temporary catchpoints to catch events."),
16414 &tcatch_cmdlist, "tcatch ",
16415 0/*allow-unknown*/, &cmdlist);
16416
16417 add_catch_command ("fork", _("Catch calls to fork."),
16418 catch_fork_command_1,
16419 NULL,
16420 (void *) (uintptr_t) catch_fork_permanent,
16421 (void *) (uintptr_t) catch_fork_temporary);
16422 add_catch_command ("vfork", _("Catch calls to vfork."),
16423 catch_fork_command_1,
16424 NULL,
16425 (void *) (uintptr_t) catch_vfork_permanent,
16426 (void *) (uintptr_t) catch_vfork_temporary);
16427 add_catch_command ("exec", _("Catch calls to exec."),
16428 catch_exec_command_1,
16429 NULL,
16430 CATCH_PERMANENT,
16431 CATCH_TEMPORARY);
16432 add_catch_command ("load", _("Catch loads of shared libraries.\n\
16433 Usage: catch load [REGEX]\n\
16434 If REGEX is given, only stop for libraries matching the regular expression."),
16435 catch_load_command_1,
16436 NULL,
16437 CATCH_PERMANENT,
16438 CATCH_TEMPORARY);
16439 add_catch_command ("unload", _("Catch unloads of shared libraries.\n\
16440 Usage: catch unload [REGEX]\n\
16441 If REGEX is given, only stop for libraries matching the regular expression."),
16442 catch_unload_command_1,
16443 NULL,
16444 CATCH_PERMANENT,
16445 CATCH_TEMPORARY);
16446 add_catch_command ("syscall", _("\
16447 Catch system calls by their names and/or numbers.\n\
16448 Arguments say which system calls to catch. If no arguments\n\
16449 are given, every system call will be caught.\n\
16450 Arguments, if given, should be one or more system call names\n\
16451 (if your system supports that), or system call numbers."),
16452 catch_syscall_command_1,
16453 catch_syscall_completer,
16454 CATCH_PERMANENT,
16455 CATCH_TEMPORARY);
16456
16457 c = add_com ("watch", class_breakpoint, watch_command, _("\
16458 Set a watchpoint for an expression.\n\
16459 Usage: watch [-l|-location] EXPRESSION\n\
16460 A watchpoint stops execution of your program whenever the value of\n\
16461 an expression changes.\n\
16462 If -l or -location is given, this evaluates EXPRESSION and watches\n\
16463 the memory to which it refers."));
16464 set_cmd_completer (c, expression_completer);
16465
16466 c = add_com ("rwatch", class_breakpoint, rwatch_command, _("\
16467 Set a read watchpoint for an expression.\n\
16468 Usage: rwatch [-l|-location] EXPRESSION\n\
16469 A watchpoint stops execution of your program whenever the value of\n\
16470 an expression is read.\n\
16471 If -l or -location is given, this evaluates EXPRESSION and watches\n\
16472 the memory to which it refers."));
16473 set_cmd_completer (c, expression_completer);
16474
16475 c = add_com ("awatch", class_breakpoint, awatch_command, _("\
16476 Set a watchpoint for an expression.\n\
16477 Usage: awatch [-l|-location] EXPRESSION\n\
16478 A watchpoint stops execution of your program whenever the value of\n\
16479 an expression is either read or written.\n\
16480 If -l or -location is given, this evaluates EXPRESSION and watches\n\
16481 the memory to which it refers."));
16482 set_cmd_completer (c, expression_completer);
16483
16484 add_info ("watchpoints", watchpoints_info, _("\
16485 Status of specified watchpoints (all watchpoints if no argument)."));
16486
16487 /* XXX: cagney/2005-02-23: This should be a boolean, and should
16488 respond to changes - contrary to the description. */
16489 add_setshow_zinteger_cmd ("can-use-hw-watchpoints", class_support,
16490 &can_use_hw_watchpoints, _("\
16491 Set debugger's willingness to use watchpoint hardware."), _("\
16492 Show debugger's willingness to use watchpoint hardware."), _("\
16493 If zero, gdb will not use hardware for new watchpoints, even if\n\
16494 such is available. (However, any hardware watchpoints that were\n\
16495 created before setting this to nonzero, will continue to use watchpoint\n\
16496 hardware.)"),
16497 NULL,
16498 show_can_use_hw_watchpoints,
16499 &setlist, &showlist);
16500
16501 can_use_hw_watchpoints = 1;
16502
16503 /* Tracepoint manipulation commands. */
16504
16505 c = add_com ("trace", class_breakpoint, trace_command, _("\
16506 Set a tracepoint at specified line or function.\n\
16507 \n"
16508 BREAK_ARGS_HELP ("trace") "\n\
16509 Do \"help tracepoints\" for info on other tracepoint commands."));
16510 set_cmd_completer (c, location_completer);
16511
16512 add_com_alias ("tp", "trace", class_alias, 0);
16513 add_com_alias ("tr", "trace", class_alias, 1);
16514 add_com_alias ("tra", "trace", class_alias, 1);
16515 add_com_alias ("trac", "trace", class_alias, 1);
16516
16517 c = add_com ("ftrace", class_breakpoint, ftrace_command, _("\
16518 Set a fast tracepoint at specified line or function.\n\
16519 \n"
16520 BREAK_ARGS_HELP ("ftrace") "\n\
16521 Do \"help tracepoints\" for info on other tracepoint commands."));
16522 set_cmd_completer (c, location_completer);
16523
16524 c = add_com ("strace", class_breakpoint, strace_command, _("\
16525 Set a static tracepoint at specified line, function or marker.\n\
16526 \n\
16527 strace [LOCATION] [if CONDITION]\n\
16528 LOCATION may be a line number, function name, \"*\" and an address,\n\
16529 or -m MARKER_ID.\n\
16530 If a line number is specified, probe the marker at start of code\n\
16531 for that line. If a function is specified, probe the marker at start\n\
16532 of code for that function. If an address is specified, probe the marker\n\
16533 at that exact address. If a marker id is specified, probe the marker\n\
16534 with that name. With no LOCATION, uses current execution address of\n\
16535 the selected stack frame.\n\
16536 Static tracepoints accept an extra collect action -- ``collect $_sdata''.\n\
16537 This collects arbitrary user data passed in the probe point call to the\n\
16538 tracing library. You can inspect it when analyzing the trace buffer,\n\
16539 by printing the $_sdata variable like any other convenience variable.\n\
16540 \n\
16541 CONDITION is a boolean expression.\n\
16542 \n\
16543 Multiple tracepoints at one place are permitted, and useful if their\n\
16544 conditions are different.\n\
16545 \n\
16546 Do \"help breakpoints\" for info on other commands dealing with breakpoints.\n\
16547 Do \"help tracepoints\" for info on other tracepoint commands."));
16548 set_cmd_completer (c, location_completer);
16549
16550 add_info ("tracepoints", tracepoints_info, _("\
16551 Status of specified tracepoints (all tracepoints if no argument).\n\
16552 Convenience variable \"$tpnum\" contains the number of the\n\
16553 last tracepoint set."));
16554
16555 add_info_alias ("tp", "tracepoints", 1);
16556
16557 add_cmd ("tracepoints", class_trace, delete_trace_command, _("\
16558 Delete specified tracepoints.\n\
16559 Arguments are tracepoint numbers, separated by spaces.\n\
16560 No argument means delete all tracepoints."),
16561 &deletelist);
16562 add_alias_cmd ("tr", "tracepoints", class_trace, 1, &deletelist);
16563
16564 c = add_cmd ("tracepoints", class_trace, disable_trace_command, _("\
16565 Disable specified tracepoints.\n\
16566 Arguments are tracepoint numbers, separated by spaces.\n\
16567 No argument means disable all tracepoints."),
16568 &disablelist);
16569 deprecate_cmd (c, "disable");
16570
16571 c = add_cmd ("tracepoints", class_trace, enable_trace_command, _("\
16572 Enable specified tracepoints.\n\
16573 Arguments are tracepoint numbers, separated by spaces.\n\
16574 No argument means enable all tracepoints."),
16575 &enablelist);
16576 deprecate_cmd (c, "enable");
16577
16578 add_com ("passcount", class_trace, trace_pass_command, _("\
16579 Set the passcount for a tracepoint.\n\
16580 The trace will end when the tracepoint has been passed 'count' times.\n\
16581 Usage: passcount COUNT TPNUM, where TPNUM may also be \"all\";\n\
16582 if TPNUM is omitted, passcount refers to the last tracepoint defined."));
16583
16584 add_prefix_cmd ("save", class_breakpoint, save_command,
16585 _("Save breakpoint definitions as a script."),
16586 &save_cmdlist, "save ",
16587 0/*allow-unknown*/, &cmdlist);
16588
16589 c = add_cmd ("breakpoints", class_breakpoint, save_breakpoints_command, _("\
16590 Save current breakpoint definitions as a script.\n\
16591 This includes all types of breakpoints (breakpoints, watchpoints,\n\
16592 catchpoints, tracepoints). Use the 'source' command in another debug\n\
16593 session to restore them."),
16594 &save_cmdlist);
16595 set_cmd_completer (c, filename_completer);
16596
16597 c = add_cmd ("tracepoints", class_trace, save_tracepoints_command, _("\
16598 Save current tracepoint definitions as a script.\n\
16599 Use the 'source' command in another debug session to restore them."),
16600 &save_cmdlist);
16601 set_cmd_completer (c, filename_completer);
16602
16603 c = add_com_alias ("save-tracepoints", "save tracepoints", class_trace, 0);
16604 deprecate_cmd (c, "save tracepoints");
16605
16606 add_prefix_cmd ("breakpoint", class_maintenance, set_breakpoint_cmd, _("\
16607 Breakpoint specific settings\n\
16608 Configure various breakpoint-specific variables such as\n\
16609 pending breakpoint behavior"),
16610 &breakpoint_set_cmdlist, "set breakpoint ",
16611 0/*allow-unknown*/, &setlist);
16612 add_prefix_cmd ("breakpoint", class_maintenance, show_breakpoint_cmd, _("\
16613 Breakpoint specific settings\n\
16614 Configure various breakpoint-specific variables such as\n\
16615 pending breakpoint behavior"),
16616 &breakpoint_show_cmdlist, "show breakpoint ",
16617 0/*allow-unknown*/, &showlist);
16618
16619 add_setshow_auto_boolean_cmd ("pending", no_class,
16620 &pending_break_support, _("\
16621 Set debugger's behavior regarding pending breakpoints."), _("\
16622 Show debugger's behavior regarding pending breakpoints."), _("\
16623 If on, an unrecognized breakpoint location will cause gdb to create a\n\
16624 pending breakpoint. If off, an unrecognized breakpoint location results in\n\
16625 an error. If auto, an unrecognized breakpoint location results in a\n\
16626 user-query to see if a pending breakpoint should be created."),
16627 NULL,
16628 show_pending_break_support,
16629 &breakpoint_set_cmdlist,
16630 &breakpoint_show_cmdlist);
16631
16632 pending_break_support = AUTO_BOOLEAN_AUTO;
16633
16634 add_setshow_boolean_cmd ("auto-hw", no_class,
16635 &automatic_hardware_breakpoints, _("\
16636 Set automatic usage of hardware breakpoints."), _("\
16637 Show automatic usage of hardware breakpoints."), _("\
16638 If set, the debugger will automatically use hardware breakpoints for\n\
16639 breakpoints set with \"break\" but falling in read-only memory. If not set,\n\
16640 a warning will be emitted for such breakpoints."),
16641 NULL,
16642 show_automatic_hardware_breakpoints,
16643 &breakpoint_set_cmdlist,
16644 &breakpoint_show_cmdlist);
16645
16646 add_setshow_auto_boolean_cmd ("always-inserted", class_support,
16647 &always_inserted_mode, _("\
16648 Set mode for inserting breakpoints."), _("\
16649 Show mode for inserting breakpoints."), _("\
16650 When this mode is off, breakpoints are inserted in inferior when it is\n\
16651 resumed, and removed when execution stops. When this mode is on,\n\
16652 breakpoints are inserted immediately and removed only when the user\n\
16653 deletes the breakpoint. When this mode is auto (which is the default),\n\
16654 the behaviour depends on the non-stop setting (see help set non-stop).\n\
16655 In this case, if gdb is controlling the inferior in non-stop mode, gdb\n\
16656 behaves as if always-inserted mode is on; if gdb is controlling the\n\
16657 inferior in all-stop mode, gdb behaves as if always-inserted mode is off."),
16658 NULL,
16659 &show_always_inserted_mode,
16660 &breakpoint_set_cmdlist,
16661 &breakpoint_show_cmdlist);
16662
16663 add_setshow_enum_cmd ("condition-evaluation", class_breakpoint,
16664 condition_evaluation_enums,
16665 &condition_evaluation_mode_1, _("\
16666 Set mode of breakpoint condition evaluation."), _("\
16667 Show mode of breakpoint condition evaluation."), _("\
16668 When this is set to \"host\", breakpoint conditions will be\n\
16669 evaluated on the host's side by GDB. When it is set to \"target\",\n\
16670 breakpoint conditions will be downloaded to the target (if the target\n\
16671 supports such feature) and conditions will be evaluated on the target's side.\n\
16672 If this is set to \"auto\" (default), this will be automatically set to\n\
16673 \"target\" if it supports condition evaluation, otherwise it will\n\
16674 be set to \"gdb\""),
16675 &set_condition_evaluation_mode,
16676 &show_condition_evaluation_mode,
16677 &breakpoint_set_cmdlist,
16678 &breakpoint_show_cmdlist);
16679
16680 add_com ("break-range", class_breakpoint, break_range_command, _("\
16681 Set a breakpoint for an address range.\n\
16682 break-range START-LOCATION, END-LOCATION\n\
16683 where START-LOCATION and END-LOCATION can be one of the following:\n\
16684 LINENUM, for that line in the current file,\n\
16685 FILE:LINENUM, for that line in that file,\n\
16686 +OFFSET, for that number of lines after the current line\n\
16687 or the start of the range\n\
16688 FUNCTION, for the first line in that function,\n\
16689 FILE:FUNCTION, to distinguish among like-named static functions.\n\
16690 *ADDRESS, for the instruction at that address.\n\
16691 \n\
16692 The breakpoint will stop execution of the inferior whenever it executes\n\
16693 an instruction at any address within the [START-LOCATION, END-LOCATION]\n\
16694 range (including START-LOCATION and END-LOCATION)."));
16695
16696 c = add_com ("dprintf", class_breakpoint, dprintf_command, _("\
16697 Set a dynamic printf at specified line or function.\n\
16698 dprintf location,format string,arg1,arg2,...\n\
16699 location may be a line number, function name, or \"*\" and an address.\n\
16700 If a line number is specified, break at start of code for that line.\n\
16701 If a function is specified, break at start of code for that function."));
16702 set_cmd_completer (c, location_completer);
16703
16704 add_setshow_enum_cmd ("dprintf-style", class_support,
16705 dprintf_style_enums, &dprintf_style, _("\
16706 Set the style of usage for dynamic printf."), _("\
16707 Show the style of usage for dynamic printf."), _("\
16708 This setting chooses how GDB will do a dynamic printf.\n\
16709 If the value is \"gdb\", then the printing is done by GDB to its own\n\
16710 console, as with the \"printf\" command.\n\
16711 If the value is \"call\", the print is done by calling a function in your\n\
16712 program; by default printf(), but you can choose a different function or\n\
16713 output stream by setting dprintf-function and dprintf-channel."),
16714 update_dprintf_commands, NULL,
16715 &setlist, &showlist);
16716
16717 dprintf_function = xstrdup ("printf");
16718 add_setshow_string_cmd ("dprintf-function", class_support,
16719 &dprintf_function, _("\
16720 Set the function to use for dynamic printf"), _("\
16721 Show the function to use for dynamic printf"), NULL,
16722 update_dprintf_commands, NULL,
16723 &setlist, &showlist);
16724
16725 dprintf_channel = xstrdup ("");
16726 add_setshow_string_cmd ("dprintf-channel", class_support,
16727 &dprintf_channel, _("\
16728 Set the channel to use for dynamic printf"), _("\
16729 Show the channel to use for dynamic printf"), NULL,
16730 update_dprintf_commands, NULL,
16731 &setlist, &showlist);
16732
16733 add_setshow_boolean_cmd ("disconnected-dprintf", no_class,
16734 &disconnected_dprintf, _("\
16735 Set whether dprintf continues after GDB disconnects."), _("\
16736 Show whether dprintf continues after GDB disconnects."), _("\
16737 Use this to let dprintf commands continue to hit and produce output\n\
16738 even if GDB disconnects or detaches from the target."),
16739 NULL,
16740 NULL,
16741 &setlist, &showlist);
16742
16743 add_com ("agent-printf", class_vars, agent_printf_command, _("\
16744 agent-printf \"printf format string\", arg1, arg2, arg3, ..., argn\n\
16745 (target agent only) This is useful for formatted output in user-defined commands."));
16746
16747 automatic_hardware_breakpoints = 1;
16748
16749 observer_attach_about_to_proceed (breakpoint_about_to_proceed);
16750 observer_attach_thread_exit (remove_threaded_breakpoints);
16751 }
This page took 0.537307 seconds and 4 git commands to generate.