Don't suppress errors inserting/removing hardware breakpoints in shared
[deliverable/binutils-gdb.git] / gdb / breakpoint.c
1 /* Everything about breakpoints, for GDB.
2
3 Copyright (C) 1986-2014 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20 #include "defs.h"
21 #include "arch-utils.h"
22 #include <ctype.h>
23 #include "hashtab.h"
24 #include "symtab.h"
25 #include "frame.h"
26 #include "breakpoint.h"
27 #include "tracepoint.h"
28 #include "gdbtypes.h"
29 #include "expression.h"
30 #include "gdbcore.h"
31 #include "gdbcmd.h"
32 #include "value.h"
33 #include "command.h"
34 #include "inferior.h"
35 #include "gdbthread.h"
36 #include "target.h"
37 #include "language.h"
38 #include <string.h>
39 #include "gdb-demangle.h"
40 #include "filenames.h"
41 #include "annotate.h"
42 #include "symfile.h"
43 #include "objfiles.h"
44 #include "source.h"
45 #include "linespec.h"
46 #include "completer.h"
47 #include "gdb.h"
48 #include "ui-out.h"
49 #include "cli/cli-script.h"
50 #include "gdb_assert.h"
51 #include "block.h"
52 #include "solib.h"
53 #include "solist.h"
54 #include "observer.h"
55 #include "exceptions.h"
56 #include "memattr.h"
57 #include "ada-lang.h"
58 #include "top.h"
59 #include "valprint.h"
60 #include "jit.h"
61 #include "xml-syscall.h"
62 #include "parser-defs.h"
63 #include "gdb_regex.h"
64 #include "probe.h"
65 #include "cli/cli-utils.h"
66 #include "continuations.h"
67 #include "stack.h"
68 #include "skip.h"
69 #include "ax-gdb.h"
70 #include "dummy-frame.h"
71
72 #include "format.h"
73
74 /* readline include files */
75 #include "readline/readline.h"
76 #include "readline/history.h"
77
78 /* readline defines this. */
79 #undef savestring
80
81 #include "mi/mi-common.h"
82 #include "extension.h"
83
84 /* Enums for exception-handling support. */
85 enum exception_event_kind
86 {
87 EX_EVENT_THROW,
88 EX_EVENT_RETHROW,
89 EX_EVENT_CATCH
90 };
91
92 /* Prototypes for local functions. */
93
94 static void enable_delete_command (char *, int);
95
96 static void enable_once_command (char *, int);
97
98 static void enable_count_command (char *, int);
99
100 static void disable_command (char *, int);
101
102 static void enable_command (char *, int);
103
104 static void map_breakpoint_numbers (char *, void (*) (struct breakpoint *,
105 void *),
106 void *);
107
108 static void ignore_command (char *, int);
109
110 static int breakpoint_re_set_one (void *);
111
112 static void breakpoint_re_set_default (struct breakpoint *);
113
114 static void create_sals_from_address_default (char **,
115 struct linespec_result *,
116 enum bptype, char *,
117 char **);
118
119 static void create_breakpoints_sal_default (struct gdbarch *,
120 struct linespec_result *,
121 char *, char *, enum bptype,
122 enum bpdisp, int, int,
123 int,
124 const struct breakpoint_ops *,
125 int, int, int, unsigned);
126
127 static void decode_linespec_default (struct breakpoint *, char **,
128 struct symtabs_and_lines *);
129
130 static void clear_command (char *, int);
131
132 static void catch_command (char *, int);
133
134 static int can_use_hardware_watchpoint (struct value *);
135
136 static void break_command_1 (char *, int, int);
137
138 static void mention (struct breakpoint *);
139
140 static struct breakpoint *set_raw_breakpoint_without_location (struct gdbarch *,
141 enum bptype,
142 const struct breakpoint_ops *);
143 static struct bp_location *add_location_to_breakpoint (struct breakpoint *,
144 const struct symtab_and_line *);
145
146 /* This function is used in gdbtk sources and thus can not be made
147 static. */
148 struct breakpoint *set_raw_breakpoint (struct gdbarch *gdbarch,
149 struct symtab_and_line,
150 enum bptype,
151 const struct breakpoint_ops *);
152
153 static struct breakpoint *
154 momentary_breakpoint_from_master (struct breakpoint *orig,
155 enum bptype type,
156 const struct breakpoint_ops *ops);
157
158 static void breakpoint_adjustment_warning (CORE_ADDR, CORE_ADDR, int, int);
159
160 static CORE_ADDR adjust_breakpoint_address (struct gdbarch *gdbarch,
161 CORE_ADDR bpaddr,
162 enum bptype bptype);
163
164 static void describe_other_breakpoints (struct gdbarch *,
165 struct program_space *, CORE_ADDR,
166 struct obj_section *, int);
167
168 static int watchpoint_locations_match (struct bp_location *loc1,
169 struct bp_location *loc2);
170
171 static int breakpoint_location_address_match (struct bp_location *bl,
172 struct address_space *aspace,
173 CORE_ADDR addr);
174
175 static void breakpoints_info (char *, int);
176
177 static void watchpoints_info (char *, int);
178
179 static int breakpoint_1 (char *, int,
180 int (*) (const struct breakpoint *));
181
182 static int breakpoint_cond_eval (void *);
183
184 static void cleanup_executing_breakpoints (void *);
185
186 static void commands_command (char *, int);
187
188 static void condition_command (char *, int);
189
190 typedef enum
191 {
192 mark_inserted,
193 mark_uninserted
194 }
195 insertion_state_t;
196
197 static int remove_breakpoint (struct bp_location *, insertion_state_t);
198 static int remove_breakpoint_1 (struct bp_location *, insertion_state_t);
199
200 static enum print_stop_action print_bp_stop_message (bpstat bs);
201
202 static int watchpoint_check (void *);
203
204 static void maintenance_info_breakpoints (char *, int);
205
206 static int hw_breakpoint_used_count (void);
207
208 static int hw_watchpoint_use_count (struct breakpoint *);
209
210 static int hw_watchpoint_used_count_others (struct breakpoint *except,
211 enum bptype type,
212 int *other_type_used);
213
214 static void hbreak_command (char *, int);
215
216 static void thbreak_command (char *, int);
217
218 static void enable_breakpoint_disp (struct breakpoint *, enum bpdisp,
219 int count);
220
221 static void stop_command (char *arg, int from_tty);
222
223 static void stopin_command (char *arg, int from_tty);
224
225 static void stopat_command (char *arg, int from_tty);
226
227 static void tcatch_command (char *arg, int from_tty);
228
229 static void detach_single_step_breakpoints (void);
230
231 static void free_bp_location (struct bp_location *loc);
232 static void incref_bp_location (struct bp_location *loc);
233 static void decref_bp_location (struct bp_location **loc);
234
235 static struct bp_location *allocate_bp_location (struct breakpoint *bpt);
236
237 static void update_global_location_list (int);
238
239 static void update_global_location_list_nothrow (int);
240
241 static int is_hardware_watchpoint (const struct breakpoint *bpt);
242
243 static void insert_breakpoint_locations (void);
244
245 static int syscall_catchpoint_p (struct breakpoint *b);
246
247 static void tracepoints_info (char *, int);
248
249 static void delete_trace_command (char *, int);
250
251 static void enable_trace_command (char *, int);
252
253 static void disable_trace_command (char *, int);
254
255 static void trace_pass_command (char *, int);
256
257 static void set_tracepoint_count (int num);
258
259 static int is_masked_watchpoint (const struct breakpoint *b);
260
261 static struct bp_location **get_first_locp_gte_addr (CORE_ADDR address);
262
263 /* Return 1 if B refers to a static tracepoint set by marker ("-m"), zero
264 otherwise. */
265
266 static int strace_marker_p (struct breakpoint *b);
267
268 /* The abstract base class all breakpoint_ops structures inherit
269 from. */
270 struct breakpoint_ops base_breakpoint_ops;
271
272 /* The breakpoint_ops structure to be inherited by all breakpoint_ops
273 that are implemented on top of software or hardware breakpoints
274 (user breakpoints, internal and momentary breakpoints, etc.). */
275 static struct breakpoint_ops bkpt_base_breakpoint_ops;
276
277 /* Internal breakpoints class type. */
278 static struct breakpoint_ops internal_breakpoint_ops;
279
280 /* Momentary breakpoints class type. */
281 static struct breakpoint_ops momentary_breakpoint_ops;
282
283 /* Momentary breakpoints for bp_longjmp and bp_exception class type. */
284 static struct breakpoint_ops longjmp_breakpoint_ops;
285
286 /* The breakpoint_ops structure to be used in regular user created
287 breakpoints. */
288 struct breakpoint_ops bkpt_breakpoint_ops;
289
290 /* Breakpoints set on probes. */
291 static struct breakpoint_ops bkpt_probe_breakpoint_ops;
292
293 /* Dynamic printf class type. */
294 struct breakpoint_ops dprintf_breakpoint_ops;
295
296 /* One (or perhaps two) breakpoints used for software single
297 stepping. */
298
299 static void *single_step_breakpoints[2];
300 static struct gdbarch *single_step_gdbarch[2];
301
302 /* The style in which to perform a dynamic printf. This is a user
303 option because different output options have different tradeoffs;
304 if GDB does the printing, there is better error handling if there
305 is a problem with any of the arguments, but using an inferior
306 function lets you have special-purpose printers and sending of
307 output to the same place as compiled-in print functions. */
308
309 static const char dprintf_style_gdb[] = "gdb";
310 static const char dprintf_style_call[] = "call";
311 static const char dprintf_style_agent[] = "agent";
312 static const char *const dprintf_style_enums[] = {
313 dprintf_style_gdb,
314 dprintf_style_call,
315 dprintf_style_agent,
316 NULL
317 };
318 static const char *dprintf_style = dprintf_style_gdb;
319
320 /* The function to use for dynamic printf if the preferred style is to
321 call into the inferior. The value is simply a string that is
322 copied into the command, so it can be anything that GDB can
323 evaluate to a callable address, not necessarily a function name. */
324
325 static char *dprintf_function = "";
326
327 /* The channel to use for dynamic printf if the preferred style is to
328 call into the inferior; if a nonempty string, it will be passed to
329 the call as the first argument, with the format string as the
330 second. As with the dprintf function, this can be anything that
331 GDB knows how to evaluate, so in addition to common choices like
332 "stderr", this could be an app-specific expression like
333 "mystreams[curlogger]". */
334
335 static char *dprintf_channel = "";
336
337 /* True if dprintf commands should continue to operate even if GDB
338 has disconnected. */
339 static int disconnected_dprintf = 1;
340
341 /* A reference-counted struct command_line. This lets multiple
342 breakpoints share a single command list. */
343 struct counted_command_line
344 {
345 /* The reference count. */
346 int refc;
347
348 /* The command list. */
349 struct command_line *commands;
350 };
351
352 struct command_line *
353 breakpoint_commands (struct breakpoint *b)
354 {
355 return b->commands ? b->commands->commands : NULL;
356 }
357
358 /* Flag indicating that a command has proceeded the inferior past the
359 current breakpoint. */
360
361 static int breakpoint_proceeded;
362
363 const char *
364 bpdisp_text (enum bpdisp disp)
365 {
366 /* NOTE: the following values are a part of MI protocol and
367 represent values of 'disp' field returned when inferior stops at
368 a breakpoint. */
369 static const char * const bpdisps[] = {"del", "dstp", "dis", "keep"};
370
371 return bpdisps[(int) disp];
372 }
373
374 /* Prototypes for exported functions. */
375 /* If FALSE, gdb will not use hardware support for watchpoints, even
376 if such is available. */
377 static int can_use_hw_watchpoints;
378
379 static void
380 show_can_use_hw_watchpoints (struct ui_file *file, int from_tty,
381 struct cmd_list_element *c,
382 const char *value)
383 {
384 fprintf_filtered (file,
385 _("Debugger's willingness to use "
386 "watchpoint hardware is %s.\n"),
387 value);
388 }
389
390 /* If AUTO_BOOLEAN_FALSE, gdb will not attempt to create pending breakpoints.
391 If AUTO_BOOLEAN_TRUE, gdb will automatically create pending breakpoints
392 for unrecognized breakpoint locations.
393 If AUTO_BOOLEAN_AUTO, gdb will query when breakpoints are unrecognized. */
394 static enum auto_boolean pending_break_support;
395 static void
396 show_pending_break_support (struct ui_file *file, int from_tty,
397 struct cmd_list_element *c,
398 const char *value)
399 {
400 fprintf_filtered (file,
401 _("Debugger's behavior regarding "
402 "pending breakpoints is %s.\n"),
403 value);
404 }
405
406 /* If 1, gdb will automatically use hardware breakpoints for breakpoints
407 set with "break" but falling in read-only memory.
408 If 0, gdb will warn about such breakpoints, but won't automatically
409 use hardware breakpoints. */
410 static int automatic_hardware_breakpoints;
411 static void
412 show_automatic_hardware_breakpoints (struct ui_file *file, int from_tty,
413 struct cmd_list_element *c,
414 const char *value)
415 {
416 fprintf_filtered (file,
417 _("Automatic usage of hardware breakpoints is %s.\n"),
418 value);
419 }
420
421 /* If on, gdb will keep breakpoints inserted even as inferior is
422 stopped, and immediately insert any new breakpoints. If off, gdb
423 will insert breakpoints into inferior only when resuming it, and
424 will remove breakpoints upon stop. If auto, GDB will behave as ON
425 if in non-stop mode, and as OFF if all-stop mode.*/
426
427 static enum auto_boolean always_inserted_mode = AUTO_BOOLEAN_AUTO;
428
429 static void
430 show_always_inserted_mode (struct ui_file *file, int from_tty,
431 struct cmd_list_element *c, const char *value)
432 {
433 if (always_inserted_mode == AUTO_BOOLEAN_AUTO)
434 fprintf_filtered (file,
435 _("Always inserted breakpoint "
436 "mode is %s (currently %s).\n"),
437 value,
438 breakpoints_always_inserted_mode () ? "on" : "off");
439 else
440 fprintf_filtered (file, _("Always inserted breakpoint mode is %s.\n"),
441 value);
442 }
443
444 int
445 breakpoints_always_inserted_mode (void)
446 {
447 return (always_inserted_mode == AUTO_BOOLEAN_TRUE
448 || (always_inserted_mode == AUTO_BOOLEAN_AUTO && non_stop));
449 }
450
451 static const char condition_evaluation_both[] = "host or target";
452
453 /* Modes for breakpoint condition evaluation. */
454 static const char condition_evaluation_auto[] = "auto";
455 static const char condition_evaluation_host[] = "host";
456 static const char condition_evaluation_target[] = "target";
457 static const char *const condition_evaluation_enums[] = {
458 condition_evaluation_auto,
459 condition_evaluation_host,
460 condition_evaluation_target,
461 NULL
462 };
463
464 /* Global that holds the current mode for breakpoint condition evaluation. */
465 static const char *condition_evaluation_mode_1 = condition_evaluation_auto;
466
467 /* Global that we use to display information to the user (gets its value from
468 condition_evaluation_mode_1. */
469 static const char *condition_evaluation_mode = condition_evaluation_auto;
470
471 /* Translate a condition evaluation mode MODE into either "host"
472 or "target". This is used mostly to translate from "auto" to the
473 real setting that is being used. It returns the translated
474 evaluation mode. */
475
476 static const char *
477 translate_condition_evaluation_mode (const char *mode)
478 {
479 if (mode == condition_evaluation_auto)
480 {
481 if (target_supports_evaluation_of_breakpoint_conditions ())
482 return condition_evaluation_target;
483 else
484 return condition_evaluation_host;
485 }
486 else
487 return mode;
488 }
489
490 /* Discovers what condition_evaluation_auto translates to. */
491
492 static const char *
493 breakpoint_condition_evaluation_mode (void)
494 {
495 return translate_condition_evaluation_mode (condition_evaluation_mode);
496 }
497
498 /* Return true if GDB should evaluate breakpoint conditions or false
499 otherwise. */
500
501 static int
502 gdb_evaluates_breakpoint_condition_p (void)
503 {
504 const char *mode = breakpoint_condition_evaluation_mode ();
505
506 return (mode == condition_evaluation_host);
507 }
508
509 void _initialize_breakpoint (void);
510
511 /* Are we executing breakpoint commands? */
512 static int executing_breakpoint_commands;
513
514 /* Are overlay event breakpoints enabled? */
515 static int overlay_events_enabled;
516
517 /* See description in breakpoint.h. */
518 int target_exact_watchpoints = 0;
519
520 /* Walk the following statement or block through all breakpoints.
521 ALL_BREAKPOINTS_SAFE does so even if the statement deletes the
522 current breakpoint. */
523
524 #define ALL_BREAKPOINTS(B) for (B = breakpoint_chain; B; B = B->next)
525
526 #define ALL_BREAKPOINTS_SAFE(B,TMP) \
527 for (B = breakpoint_chain; \
528 B ? (TMP=B->next, 1): 0; \
529 B = TMP)
530
531 /* Similar iterator for the low-level breakpoints. SAFE variant is
532 not provided so update_global_location_list must not be called
533 while executing the block of ALL_BP_LOCATIONS. */
534
535 #define ALL_BP_LOCATIONS(B,BP_TMP) \
536 for (BP_TMP = bp_location; \
537 BP_TMP < bp_location + bp_location_count && (B = *BP_TMP); \
538 BP_TMP++)
539
540 /* Iterates through locations with address ADDRESS for the currently selected
541 program space. BP_LOCP_TMP points to each object. BP_LOCP_START points
542 to where the loop should start from.
543 If BP_LOCP_START is a NULL pointer, the macro automatically seeks the
544 appropriate location to start with. */
545
546 #define ALL_BP_LOCATIONS_AT_ADDR(BP_LOCP_TMP, BP_LOCP_START, ADDRESS) \
547 for (BP_LOCP_START = BP_LOCP_START == NULL ? get_first_locp_gte_addr (ADDRESS) : BP_LOCP_START, \
548 BP_LOCP_TMP = BP_LOCP_START; \
549 BP_LOCP_START \
550 && (BP_LOCP_TMP < bp_location + bp_location_count \
551 && (*BP_LOCP_TMP)->address == ADDRESS); \
552 BP_LOCP_TMP++)
553
554 /* Iterator for tracepoints only. */
555
556 #define ALL_TRACEPOINTS(B) \
557 for (B = breakpoint_chain; B; B = B->next) \
558 if (is_tracepoint (B))
559
560 /* Chains of all breakpoints defined. */
561
562 struct breakpoint *breakpoint_chain;
563
564 /* Array is sorted by bp_location_compare - primarily by the ADDRESS. */
565
566 static struct bp_location **bp_location;
567
568 /* Number of elements of BP_LOCATION. */
569
570 static unsigned bp_location_count;
571
572 /* Maximum alignment offset between bp_target_info.PLACED_ADDRESS and
573 ADDRESS for the current elements of BP_LOCATION which get a valid
574 result from bp_location_has_shadow. You can use it for roughly
575 limiting the subrange of BP_LOCATION to scan for shadow bytes for
576 an address you need to read. */
577
578 static CORE_ADDR bp_location_placed_address_before_address_max;
579
580 /* Maximum offset plus alignment between bp_target_info.PLACED_ADDRESS
581 + bp_target_info.SHADOW_LEN and ADDRESS for the current elements of
582 BP_LOCATION which get a valid result from bp_location_has_shadow.
583 You can use it for roughly limiting the subrange of BP_LOCATION to
584 scan for shadow bytes for an address you need to read. */
585
586 static CORE_ADDR bp_location_shadow_len_after_address_max;
587
588 /* The locations that no longer correspond to any breakpoint, unlinked
589 from bp_location array, but for which a hit may still be reported
590 by a target. */
591 VEC(bp_location_p) *moribund_locations = NULL;
592
593 /* Number of last breakpoint made. */
594
595 static int breakpoint_count;
596
597 /* The value of `breakpoint_count' before the last command that
598 created breakpoints. If the last (break-like) command created more
599 than one breakpoint, then the difference between BREAKPOINT_COUNT
600 and PREV_BREAKPOINT_COUNT is more than one. */
601 static int prev_breakpoint_count;
602
603 /* Number of last tracepoint made. */
604
605 static int tracepoint_count;
606
607 static struct cmd_list_element *breakpoint_set_cmdlist;
608 static struct cmd_list_element *breakpoint_show_cmdlist;
609 struct cmd_list_element *save_cmdlist;
610
611 /* Return whether a breakpoint is an active enabled breakpoint. */
612 static int
613 breakpoint_enabled (struct breakpoint *b)
614 {
615 return (b->enable_state == bp_enabled);
616 }
617
618 /* Set breakpoint count to NUM. */
619
620 static void
621 set_breakpoint_count (int num)
622 {
623 prev_breakpoint_count = breakpoint_count;
624 breakpoint_count = num;
625 set_internalvar_integer (lookup_internalvar ("bpnum"), num);
626 }
627
628 /* Used by `start_rbreak_breakpoints' below, to record the current
629 breakpoint count before "rbreak" creates any breakpoint. */
630 static int rbreak_start_breakpoint_count;
631
632 /* Called at the start an "rbreak" command to record the first
633 breakpoint made. */
634
635 void
636 start_rbreak_breakpoints (void)
637 {
638 rbreak_start_breakpoint_count = breakpoint_count;
639 }
640
641 /* Called at the end of an "rbreak" command to record the last
642 breakpoint made. */
643
644 void
645 end_rbreak_breakpoints (void)
646 {
647 prev_breakpoint_count = rbreak_start_breakpoint_count;
648 }
649
650 /* Used in run_command to zero the hit count when a new run starts. */
651
652 void
653 clear_breakpoint_hit_counts (void)
654 {
655 struct breakpoint *b;
656
657 ALL_BREAKPOINTS (b)
658 b->hit_count = 0;
659 }
660
661 /* Allocate a new counted_command_line with reference count of 1.
662 The new structure owns COMMANDS. */
663
664 static struct counted_command_line *
665 alloc_counted_command_line (struct command_line *commands)
666 {
667 struct counted_command_line *result
668 = xmalloc (sizeof (struct counted_command_line));
669
670 result->refc = 1;
671 result->commands = commands;
672 return result;
673 }
674
675 /* Increment reference count. This does nothing if CMD is NULL. */
676
677 static void
678 incref_counted_command_line (struct counted_command_line *cmd)
679 {
680 if (cmd)
681 ++cmd->refc;
682 }
683
684 /* Decrement reference count. If the reference count reaches 0,
685 destroy the counted_command_line. Sets *CMDP to NULL. This does
686 nothing if *CMDP is NULL. */
687
688 static void
689 decref_counted_command_line (struct counted_command_line **cmdp)
690 {
691 if (*cmdp)
692 {
693 if (--(*cmdp)->refc == 0)
694 {
695 free_command_lines (&(*cmdp)->commands);
696 xfree (*cmdp);
697 }
698 *cmdp = NULL;
699 }
700 }
701
702 /* A cleanup function that calls decref_counted_command_line. */
703
704 static void
705 do_cleanup_counted_command_line (void *arg)
706 {
707 decref_counted_command_line (arg);
708 }
709
710 /* Create a cleanup that calls decref_counted_command_line on the
711 argument. */
712
713 static struct cleanup *
714 make_cleanup_decref_counted_command_line (struct counted_command_line **cmdp)
715 {
716 return make_cleanup (do_cleanup_counted_command_line, cmdp);
717 }
718
719 \f
720 /* Return the breakpoint with the specified number, or NULL
721 if the number does not refer to an existing breakpoint. */
722
723 struct breakpoint *
724 get_breakpoint (int num)
725 {
726 struct breakpoint *b;
727
728 ALL_BREAKPOINTS (b)
729 if (b->number == num)
730 return b;
731
732 return NULL;
733 }
734
735 \f
736
737 /* Mark locations as "conditions have changed" in case the target supports
738 evaluating conditions on its side. */
739
740 static void
741 mark_breakpoint_modified (struct breakpoint *b)
742 {
743 struct bp_location *loc;
744
745 /* This is only meaningful if the target is
746 evaluating conditions and if the user has
747 opted for condition evaluation on the target's
748 side. */
749 if (gdb_evaluates_breakpoint_condition_p ()
750 || !target_supports_evaluation_of_breakpoint_conditions ())
751 return;
752
753 if (!is_breakpoint (b))
754 return;
755
756 for (loc = b->loc; loc; loc = loc->next)
757 loc->condition_changed = condition_modified;
758 }
759
760 /* Mark location as "conditions have changed" in case the target supports
761 evaluating conditions on its side. */
762
763 static void
764 mark_breakpoint_location_modified (struct bp_location *loc)
765 {
766 /* This is only meaningful if the target is
767 evaluating conditions and if the user has
768 opted for condition evaluation on the target's
769 side. */
770 if (gdb_evaluates_breakpoint_condition_p ()
771 || !target_supports_evaluation_of_breakpoint_conditions ())
772
773 return;
774
775 if (!is_breakpoint (loc->owner))
776 return;
777
778 loc->condition_changed = condition_modified;
779 }
780
781 /* Sets the condition-evaluation mode using the static global
782 condition_evaluation_mode. */
783
784 static void
785 set_condition_evaluation_mode (char *args, int from_tty,
786 struct cmd_list_element *c)
787 {
788 const char *old_mode, *new_mode;
789
790 if ((condition_evaluation_mode_1 == condition_evaluation_target)
791 && !target_supports_evaluation_of_breakpoint_conditions ())
792 {
793 condition_evaluation_mode_1 = condition_evaluation_mode;
794 warning (_("Target does not support breakpoint condition evaluation.\n"
795 "Using host evaluation mode instead."));
796 return;
797 }
798
799 new_mode = translate_condition_evaluation_mode (condition_evaluation_mode_1);
800 old_mode = translate_condition_evaluation_mode (condition_evaluation_mode);
801
802 /* Flip the switch. Flip it even if OLD_MODE == NEW_MODE as one of the
803 settings was "auto". */
804 condition_evaluation_mode = condition_evaluation_mode_1;
805
806 /* Only update the mode if the user picked a different one. */
807 if (new_mode != old_mode)
808 {
809 struct bp_location *loc, **loc_tmp;
810 /* If the user switched to a different evaluation mode, we
811 need to synch the changes with the target as follows:
812
813 "host" -> "target": Send all (valid) conditions to the target.
814 "target" -> "host": Remove all the conditions from the target.
815 */
816
817 if (new_mode == condition_evaluation_target)
818 {
819 /* Mark everything modified and synch conditions with the
820 target. */
821 ALL_BP_LOCATIONS (loc, loc_tmp)
822 mark_breakpoint_location_modified (loc);
823 }
824 else
825 {
826 /* Manually mark non-duplicate locations to synch conditions
827 with the target. We do this to remove all the conditions the
828 target knows about. */
829 ALL_BP_LOCATIONS (loc, loc_tmp)
830 if (is_breakpoint (loc->owner) && loc->inserted)
831 loc->needs_update = 1;
832 }
833
834 /* Do the update. */
835 update_global_location_list (1);
836 }
837
838 return;
839 }
840
841 /* Shows the current mode of breakpoint condition evaluation. Explicitly shows
842 what "auto" is translating to. */
843
844 static void
845 show_condition_evaluation_mode (struct ui_file *file, int from_tty,
846 struct cmd_list_element *c, const char *value)
847 {
848 if (condition_evaluation_mode == condition_evaluation_auto)
849 fprintf_filtered (file,
850 _("Breakpoint condition evaluation "
851 "mode is %s (currently %s).\n"),
852 value,
853 breakpoint_condition_evaluation_mode ());
854 else
855 fprintf_filtered (file, _("Breakpoint condition evaluation mode is %s.\n"),
856 value);
857 }
858
859 /* A comparison function for bp_location AP and BP that is used by
860 bsearch. This comparison function only cares about addresses, unlike
861 the more general bp_location_compare function. */
862
863 static int
864 bp_location_compare_addrs (const void *ap, const void *bp)
865 {
866 struct bp_location *a = *(void **) ap;
867 struct bp_location *b = *(void **) bp;
868
869 if (a->address == b->address)
870 return 0;
871 else
872 return ((a->address > b->address) - (a->address < b->address));
873 }
874
875 /* Helper function to skip all bp_locations with addresses
876 less than ADDRESS. It returns the first bp_location that
877 is greater than or equal to ADDRESS. If none is found, just
878 return NULL. */
879
880 static struct bp_location **
881 get_first_locp_gte_addr (CORE_ADDR address)
882 {
883 struct bp_location dummy_loc;
884 struct bp_location *dummy_locp = &dummy_loc;
885 struct bp_location **locp_found = NULL;
886
887 /* Initialize the dummy location's address field. */
888 memset (&dummy_loc, 0, sizeof (struct bp_location));
889 dummy_loc.address = address;
890
891 /* Find a close match to the first location at ADDRESS. */
892 locp_found = bsearch (&dummy_locp, bp_location, bp_location_count,
893 sizeof (struct bp_location **),
894 bp_location_compare_addrs);
895
896 /* Nothing was found, nothing left to do. */
897 if (locp_found == NULL)
898 return NULL;
899
900 /* We may have found a location that is at ADDRESS but is not the first in the
901 location's list. Go backwards (if possible) and locate the first one. */
902 while ((locp_found - 1) >= bp_location
903 && (*(locp_found - 1))->address == address)
904 locp_found--;
905
906 return locp_found;
907 }
908
909 void
910 set_breakpoint_condition (struct breakpoint *b, char *exp,
911 int from_tty)
912 {
913 xfree (b->cond_string);
914 b->cond_string = NULL;
915
916 if (is_watchpoint (b))
917 {
918 struct watchpoint *w = (struct watchpoint *) b;
919
920 xfree (w->cond_exp);
921 w->cond_exp = NULL;
922 }
923 else
924 {
925 struct bp_location *loc;
926
927 for (loc = b->loc; loc; loc = loc->next)
928 {
929 xfree (loc->cond);
930 loc->cond = NULL;
931
932 /* No need to free the condition agent expression
933 bytecode (if we have one). We will handle this
934 when we go through update_global_location_list. */
935 }
936 }
937
938 if (*exp == 0)
939 {
940 if (from_tty)
941 printf_filtered (_("Breakpoint %d now unconditional.\n"), b->number);
942 }
943 else
944 {
945 const char *arg = exp;
946
947 /* I don't know if it matters whether this is the string the user
948 typed in or the decompiled expression. */
949 b->cond_string = xstrdup (arg);
950 b->condition_not_parsed = 0;
951
952 if (is_watchpoint (b))
953 {
954 struct watchpoint *w = (struct watchpoint *) b;
955
956 innermost_block = NULL;
957 arg = exp;
958 w->cond_exp = parse_exp_1 (&arg, 0, 0, 0);
959 if (*arg)
960 error (_("Junk at end of expression"));
961 w->cond_exp_valid_block = innermost_block;
962 }
963 else
964 {
965 struct bp_location *loc;
966
967 for (loc = b->loc; loc; loc = loc->next)
968 {
969 arg = exp;
970 loc->cond =
971 parse_exp_1 (&arg, loc->address,
972 block_for_pc (loc->address), 0);
973 if (*arg)
974 error (_("Junk at end of expression"));
975 }
976 }
977 }
978 mark_breakpoint_modified (b);
979
980 observer_notify_breakpoint_modified (b);
981 }
982
983 /* Completion for the "condition" command. */
984
985 static VEC (char_ptr) *
986 condition_completer (struct cmd_list_element *cmd,
987 const char *text, const char *word)
988 {
989 const char *space;
990
991 text = skip_spaces_const (text);
992 space = skip_to_space_const (text);
993 if (*space == '\0')
994 {
995 int len;
996 struct breakpoint *b;
997 VEC (char_ptr) *result = NULL;
998
999 if (text[0] == '$')
1000 {
1001 /* We don't support completion of history indices. */
1002 if (isdigit (text[1]))
1003 return NULL;
1004 return complete_internalvar (&text[1]);
1005 }
1006
1007 /* We're completing the breakpoint number. */
1008 len = strlen (text);
1009
1010 ALL_BREAKPOINTS (b)
1011 {
1012 char number[50];
1013
1014 xsnprintf (number, sizeof (number), "%d", b->number);
1015
1016 if (strncmp (number, text, len) == 0)
1017 VEC_safe_push (char_ptr, result, xstrdup (number));
1018 }
1019
1020 return result;
1021 }
1022
1023 /* We're completing the expression part. */
1024 text = skip_spaces_const (space);
1025 return expression_completer (cmd, text, word);
1026 }
1027
1028 /* condition N EXP -- set break condition of breakpoint N to EXP. */
1029
1030 static void
1031 condition_command (char *arg, int from_tty)
1032 {
1033 struct breakpoint *b;
1034 char *p;
1035 int bnum;
1036
1037 if (arg == 0)
1038 error_no_arg (_("breakpoint number"));
1039
1040 p = arg;
1041 bnum = get_number (&p);
1042 if (bnum == 0)
1043 error (_("Bad breakpoint argument: '%s'"), arg);
1044
1045 ALL_BREAKPOINTS (b)
1046 if (b->number == bnum)
1047 {
1048 /* Check if this breakpoint has a "stop" method implemented in an
1049 extension language. This method and conditions entered into GDB
1050 from the CLI are mutually exclusive. */
1051 const struct extension_language_defn *extlang
1052 = get_breakpoint_cond_ext_lang (b, EXT_LANG_NONE);
1053
1054 if (extlang != NULL)
1055 {
1056 error (_("Only one stop condition allowed. There is currently"
1057 " a %s stop condition defined for this breakpoint."),
1058 ext_lang_capitalized_name (extlang));
1059 }
1060 set_breakpoint_condition (b, p, from_tty);
1061
1062 if (is_breakpoint (b))
1063 update_global_location_list (1);
1064
1065 return;
1066 }
1067
1068 error (_("No breakpoint number %d."), bnum);
1069 }
1070
1071 /* Check that COMMAND do not contain commands that are suitable
1072 only for tracepoints and not suitable for ordinary breakpoints.
1073 Throw if any such commands is found. */
1074
1075 static void
1076 check_no_tracepoint_commands (struct command_line *commands)
1077 {
1078 struct command_line *c;
1079
1080 for (c = commands; c; c = c->next)
1081 {
1082 int i;
1083
1084 if (c->control_type == while_stepping_control)
1085 error (_("The 'while-stepping' command can "
1086 "only be used for tracepoints"));
1087
1088 for (i = 0; i < c->body_count; ++i)
1089 check_no_tracepoint_commands ((c->body_list)[i]);
1090
1091 /* Not that command parsing removes leading whitespace and comment
1092 lines and also empty lines. So, we only need to check for
1093 command directly. */
1094 if (strstr (c->line, "collect ") == c->line)
1095 error (_("The 'collect' command can only be used for tracepoints"));
1096
1097 if (strstr (c->line, "teval ") == c->line)
1098 error (_("The 'teval' command can only be used for tracepoints"));
1099 }
1100 }
1101
1102 /* Encapsulate tests for different types of tracepoints. */
1103
1104 static int
1105 is_tracepoint_type (enum bptype type)
1106 {
1107 return (type == bp_tracepoint
1108 || type == bp_fast_tracepoint
1109 || type == bp_static_tracepoint);
1110 }
1111
1112 int
1113 is_tracepoint (const struct breakpoint *b)
1114 {
1115 return is_tracepoint_type (b->type);
1116 }
1117
1118 /* A helper function that validates that COMMANDS are valid for a
1119 breakpoint. This function will throw an exception if a problem is
1120 found. */
1121
1122 static void
1123 validate_commands_for_breakpoint (struct breakpoint *b,
1124 struct command_line *commands)
1125 {
1126 if (is_tracepoint (b))
1127 {
1128 struct tracepoint *t = (struct tracepoint *) b;
1129 struct command_line *c;
1130 struct command_line *while_stepping = 0;
1131
1132 /* Reset the while-stepping step count. The previous commands
1133 might have included a while-stepping action, while the new
1134 ones might not. */
1135 t->step_count = 0;
1136
1137 /* We need to verify that each top-level element of commands is
1138 valid for tracepoints, that there's at most one
1139 while-stepping element, and that the while-stepping's body
1140 has valid tracing commands excluding nested while-stepping.
1141 We also need to validate the tracepoint action line in the
1142 context of the tracepoint --- validate_actionline actually
1143 has side effects, like setting the tracepoint's
1144 while-stepping STEP_COUNT, in addition to checking if the
1145 collect/teval actions parse and make sense in the
1146 tracepoint's context. */
1147 for (c = commands; c; c = c->next)
1148 {
1149 if (c->control_type == while_stepping_control)
1150 {
1151 if (b->type == bp_fast_tracepoint)
1152 error (_("The 'while-stepping' command "
1153 "cannot be used for fast tracepoint"));
1154 else if (b->type == bp_static_tracepoint)
1155 error (_("The 'while-stepping' command "
1156 "cannot be used for static tracepoint"));
1157
1158 if (while_stepping)
1159 error (_("The 'while-stepping' command "
1160 "can be used only once"));
1161 else
1162 while_stepping = c;
1163 }
1164
1165 validate_actionline (c->line, b);
1166 }
1167 if (while_stepping)
1168 {
1169 struct command_line *c2;
1170
1171 gdb_assert (while_stepping->body_count == 1);
1172 c2 = while_stepping->body_list[0];
1173 for (; c2; c2 = c2->next)
1174 {
1175 if (c2->control_type == while_stepping_control)
1176 error (_("The 'while-stepping' command cannot be nested"));
1177 }
1178 }
1179 }
1180 else
1181 {
1182 check_no_tracepoint_commands (commands);
1183 }
1184 }
1185
1186 /* Return a vector of all the static tracepoints set at ADDR. The
1187 caller is responsible for releasing the vector. */
1188
1189 VEC(breakpoint_p) *
1190 static_tracepoints_here (CORE_ADDR addr)
1191 {
1192 struct breakpoint *b;
1193 VEC(breakpoint_p) *found = 0;
1194 struct bp_location *loc;
1195
1196 ALL_BREAKPOINTS (b)
1197 if (b->type == bp_static_tracepoint)
1198 {
1199 for (loc = b->loc; loc; loc = loc->next)
1200 if (loc->address == addr)
1201 VEC_safe_push(breakpoint_p, found, b);
1202 }
1203
1204 return found;
1205 }
1206
1207 /* Set the command list of B to COMMANDS. If breakpoint is tracepoint,
1208 validate that only allowed commands are included. */
1209
1210 void
1211 breakpoint_set_commands (struct breakpoint *b,
1212 struct command_line *commands)
1213 {
1214 validate_commands_for_breakpoint (b, commands);
1215
1216 decref_counted_command_line (&b->commands);
1217 b->commands = alloc_counted_command_line (commands);
1218 observer_notify_breakpoint_modified (b);
1219 }
1220
1221 /* Set the internal `silent' flag on the breakpoint. Note that this
1222 is not the same as the "silent" that may appear in the breakpoint's
1223 commands. */
1224
1225 void
1226 breakpoint_set_silent (struct breakpoint *b, int silent)
1227 {
1228 int old_silent = b->silent;
1229
1230 b->silent = silent;
1231 if (old_silent != silent)
1232 observer_notify_breakpoint_modified (b);
1233 }
1234
1235 /* Set the thread for this breakpoint. If THREAD is -1, make the
1236 breakpoint work for any thread. */
1237
1238 void
1239 breakpoint_set_thread (struct breakpoint *b, int thread)
1240 {
1241 int old_thread = b->thread;
1242
1243 b->thread = thread;
1244 if (old_thread != thread)
1245 observer_notify_breakpoint_modified (b);
1246 }
1247
1248 /* Set the task for this breakpoint. If TASK is 0, make the
1249 breakpoint work for any task. */
1250
1251 void
1252 breakpoint_set_task (struct breakpoint *b, int task)
1253 {
1254 int old_task = b->task;
1255
1256 b->task = task;
1257 if (old_task != task)
1258 observer_notify_breakpoint_modified (b);
1259 }
1260
1261 void
1262 check_tracepoint_command (char *line, void *closure)
1263 {
1264 struct breakpoint *b = closure;
1265
1266 validate_actionline (line, b);
1267 }
1268
1269 /* A structure used to pass information through
1270 map_breakpoint_numbers. */
1271
1272 struct commands_info
1273 {
1274 /* True if the command was typed at a tty. */
1275 int from_tty;
1276
1277 /* The breakpoint range spec. */
1278 char *arg;
1279
1280 /* Non-NULL if the body of the commands are being read from this
1281 already-parsed command. */
1282 struct command_line *control;
1283
1284 /* The command lines read from the user, or NULL if they have not
1285 yet been read. */
1286 struct counted_command_line *cmd;
1287 };
1288
1289 /* A callback for map_breakpoint_numbers that sets the commands for
1290 commands_command. */
1291
1292 static void
1293 do_map_commands_command (struct breakpoint *b, void *data)
1294 {
1295 struct commands_info *info = data;
1296
1297 if (info->cmd == NULL)
1298 {
1299 struct command_line *l;
1300
1301 if (info->control != NULL)
1302 l = copy_command_lines (info->control->body_list[0]);
1303 else
1304 {
1305 struct cleanup *old_chain;
1306 char *str;
1307
1308 str = xstrprintf (_("Type commands for breakpoint(s) "
1309 "%s, one per line."),
1310 info->arg);
1311
1312 old_chain = make_cleanup (xfree, str);
1313
1314 l = read_command_lines (str,
1315 info->from_tty, 1,
1316 (is_tracepoint (b)
1317 ? check_tracepoint_command : 0),
1318 b);
1319
1320 do_cleanups (old_chain);
1321 }
1322
1323 info->cmd = alloc_counted_command_line (l);
1324 }
1325
1326 /* If a breakpoint was on the list more than once, we don't need to
1327 do anything. */
1328 if (b->commands != info->cmd)
1329 {
1330 validate_commands_for_breakpoint (b, info->cmd->commands);
1331 incref_counted_command_line (info->cmd);
1332 decref_counted_command_line (&b->commands);
1333 b->commands = info->cmd;
1334 observer_notify_breakpoint_modified (b);
1335 }
1336 }
1337
1338 static void
1339 commands_command_1 (char *arg, int from_tty,
1340 struct command_line *control)
1341 {
1342 struct cleanup *cleanups;
1343 struct commands_info info;
1344
1345 info.from_tty = from_tty;
1346 info.control = control;
1347 info.cmd = NULL;
1348 /* If we read command lines from the user, then `info' will hold an
1349 extra reference to the commands that we must clean up. */
1350 cleanups = make_cleanup_decref_counted_command_line (&info.cmd);
1351
1352 if (arg == NULL || !*arg)
1353 {
1354 if (breakpoint_count - prev_breakpoint_count > 1)
1355 arg = xstrprintf ("%d-%d", prev_breakpoint_count + 1,
1356 breakpoint_count);
1357 else if (breakpoint_count > 0)
1358 arg = xstrprintf ("%d", breakpoint_count);
1359 else
1360 {
1361 /* So that we don't try to free the incoming non-NULL
1362 argument in the cleanup below. Mapping breakpoint
1363 numbers will fail in this case. */
1364 arg = NULL;
1365 }
1366 }
1367 else
1368 /* The command loop has some static state, so we need to preserve
1369 our argument. */
1370 arg = xstrdup (arg);
1371
1372 if (arg != NULL)
1373 make_cleanup (xfree, arg);
1374
1375 info.arg = arg;
1376
1377 map_breakpoint_numbers (arg, do_map_commands_command, &info);
1378
1379 if (info.cmd == NULL)
1380 error (_("No breakpoints specified."));
1381
1382 do_cleanups (cleanups);
1383 }
1384
1385 static void
1386 commands_command (char *arg, int from_tty)
1387 {
1388 commands_command_1 (arg, from_tty, NULL);
1389 }
1390
1391 /* Like commands_command, but instead of reading the commands from
1392 input stream, takes them from an already parsed command structure.
1393
1394 This is used by cli-script.c to DTRT with breakpoint commands
1395 that are part of if and while bodies. */
1396 enum command_control_type
1397 commands_from_control_command (char *arg, struct command_line *cmd)
1398 {
1399 commands_command_1 (arg, 0, cmd);
1400 return simple_control;
1401 }
1402
1403 /* Return non-zero if BL->TARGET_INFO contains valid information. */
1404
1405 static int
1406 bp_location_has_shadow (struct bp_location *bl)
1407 {
1408 if (bl->loc_type != bp_loc_software_breakpoint)
1409 return 0;
1410 if (!bl->inserted)
1411 return 0;
1412 if (bl->target_info.shadow_len == 0)
1413 /* BL isn't valid, or doesn't shadow memory. */
1414 return 0;
1415 return 1;
1416 }
1417
1418 /* Update BUF, which is LEN bytes read from the target address
1419 MEMADDR, by replacing a memory breakpoint with its shadowed
1420 contents.
1421
1422 If READBUF is not NULL, this buffer must not overlap with the of
1423 the breakpoint location's shadow_contents buffer. Otherwise, a
1424 failed assertion internal error will be raised. */
1425
1426 static void
1427 one_breakpoint_xfer_memory (gdb_byte *readbuf, gdb_byte *writebuf,
1428 const gdb_byte *writebuf_org,
1429 ULONGEST memaddr, LONGEST len,
1430 struct bp_target_info *target_info,
1431 struct gdbarch *gdbarch)
1432 {
1433 /* Now do full processing of the found relevant range of elements. */
1434 CORE_ADDR bp_addr = 0;
1435 int bp_size = 0;
1436 int bptoffset = 0;
1437
1438 if (!breakpoint_address_match (target_info->placed_address_space, 0,
1439 current_program_space->aspace, 0))
1440 {
1441 /* The breakpoint is inserted in a different address space. */
1442 return;
1443 }
1444
1445 /* Addresses and length of the part of the breakpoint that
1446 we need to copy. */
1447 bp_addr = target_info->placed_address;
1448 bp_size = target_info->shadow_len;
1449
1450 if (bp_addr + bp_size <= memaddr)
1451 {
1452 /* The breakpoint is entirely before the chunk of memory we are
1453 reading. */
1454 return;
1455 }
1456
1457 if (bp_addr >= memaddr + len)
1458 {
1459 /* The breakpoint is entirely after the chunk of memory we are
1460 reading. */
1461 return;
1462 }
1463
1464 /* Offset within shadow_contents. */
1465 if (bp_addr < memaddr)
1466 {
1467 /* Only copy the second part of the breakpoint. */
1468 bp_size -= memaddr - bp_addr;
1469 bptoffset = memaddr - bp_addr;
1470 bp_addr = memaddr;
1471 }
1472
1473 if (bp_addr + bp_size > memaddr + len)
1474 {
1475 /* Only copy the first part of the breakpoint. */
1476 bp_size -= (bp_addr + bp_size) - (memaddr + len);
1477 }
1478
1479 if (readbuf != NULL)
1480 {
1481 /* Verify that the readbuf buffer does not overlap with the
1482 shadow_contents buffer. */
1483 gdb_assert (target_info->shadow_contents >= readbuf + len
1484 || readbuf >= (target_info->shadow_contents
1485 + target_info->shadow_len));
1486
1487 /* Update the read buffer with this inserted breakpoint's
1488 shadow. */
1489 memcpy (readbuf + bp_addr - memaddr,
1490 target_info->shadow_contents + bptoffset, bp_size);
1491 }
1492 else
1493 {
1494 const unsigned char *bp;
1495 CORE_ADDR placed_address = target_info->placed_address;
1496 int placed_size = target_info->placed_size;
1497
1498 /* Update the shadow with what we want to write to memory. */
1499 memcpy (target_info->shadow_contents + bptoffset,
1500 writebuf_org + bp_addr - memaddr, bp_size);
1501
1502 /* Determine appropriate breakpoint contents and size for this
1503 address. */
1504 bp = gdbarch_breakpoint_from_pc (gdbarch, &placed_address, &placed_size);
1505
1506 /* Update the final write buffer with this inserted
1507 breakpoint's INSN. */
1508 memcpy (writebuf + bp_addr - memaddr, bp + bptoffset, bp_size);
1509 }
1510 }
1511
1512 /* Update BUF, which is LEN bytes read from the target address MEMADDR,
1513 by replacing any memory breakpoints with their shadowed contents.
1514
1515 If READBUF is not NULL, this buffer must not overlap with any of
1516 the breakpoint location's shadow_contents buffers. Otherwise,
1517 a failed assertion internal error will be raised.
1518
1519 The range of shadowed area by each bp_location is:
1520 bl->address - bp_location_placed_address_before_address_max
1521 up to bl->address + bp_location_shadow_len_after_address_max
1522 The range we were requested to resolve shadows for is:
1523 memaddr ... memaddr + len
1524 Thus the safe cutoff boundaries for performance optimization are
1525 memaddr + len <= (bl->address
1526 - bp_location_placed_address_before_address_max)
1527 and:
1528 bl->address + bp_location_shadow_len_after_address_max <= memaddr */
1529
1530 void
1531 breakpoint_xfer_memory (gdb_byte *readbuf, gdb_byte *writebuf,
1532 const gdb_byte *writebuf_org,
1533 ULONGEST memaddr, LONGEST len)
1534 {
1535 /* Left boundary, right boundary and median element of our binary
1536 search. */
1537 unsigned bc_l, bc_r, bc;
1538 size_t i;
1539
1540 /* Find BC_L which is a leftmost element which may affect BUF
1541 content. It is safe to report lower value but a failure to
1542 report higher one. */
1543
1544 bc_l = 0;
1545 bc_r = bp_location_count;
1546 while (bc_l + 1 < bc_r)
1547 {
1548 struct bp_location *bl;
1549
1550 bc = (bc_l + bc_r) / 2;
1551 bl = bp_location[bc];
1552
1553 /* Check first BL->ADDRESS will not overflow due to the added
1554 constant. Then advance the left boundary only if we are sure
1555 the BC element can in no way affect the BUF content (MEMADDR
1556 to MEMADDR + LEN range).
1557
1558 Use the BP_LOCATION_SHADOW_LEN_AFTER_ADDRESS_MAX safety
1559 offset so that we cannot miss a breakpoint with its shadow
1560 range tail still reaching MEMADDR. */
1561
1562 if ((bl->address + bp_location_shadow_len_after_address_max
1563 >= bl->address)
1564 && (bl->address + bp_location_shadow_len_after_address_max
1565 <= memaddr))
1566 bc_l = bc;
1567 else
1568 bc_r = bc;
1569 }
1570
1571 /* Due to the binary search above, we need to make sure we pick the
1572 first location that's at BC_L's address. E.g., if there are
1573 multiple locations at the same address, BC_L may end up pointing
1574 at a duplicate location, and miss the "master"/"inserted"
1575 location. Say, given locations L1, L2 and L3 at addresses A and
1576 B:
1577
1578 L1@A, L2@A, L3@B, ...
1579
1580 BC_L could end up pointing at location L2, while the "master"
1581 location could be L1. Since the `loc->inserted' flag is only set
1582 on "master" locations, we'd forget to restore the shadow of L1
1583 and L2. */
1584 while (bc_l > 0
1585 && bp_location[bc_l]->address == bp_location[bc_l - 1]->address)
1586 bc_l--;
1587
1588 /* Now do full processing of the found relevant range of elements. */
1589
1590 for (bc = bc_l; bc < bp_location_count; bc++)
1591 {
1592 struct bp_location *bl = bp_location[bc];
1593 CORE_ADDR bp_addr = 0;
1594 int bp_size = 0;
1595 int bptoffset = 0;
1596
1597 /* bp_location array has BL->OWNER always non-NULL. */
1598 if (bl->owner->type == bp_none)
1599 warning (_("reading through apparently deleted breakpoint #%d?"),
1600 bl->owner->number);
1601
1602 /* Performance optimization: any further element can no longer affect BUF
1603 content. */
1604
1605 if (bl->address >= bp_location_placed_address_before_address_max
1606 && memaddr + len <= (bl->address
1607 - bp_location_placed_address_before_address_max))
1608 break;
1609
1610 if (!bp_location_has_shadow (bl))
1611 continue;
1612
1613 one_breakpoint_xfer_memory (readbuf, writebuf, writebuf_org,
1614 memaddr, len, &bl->target_info, bl->gdbarch);
1615 }
1616
1617 /* Now process single-step breakpoints. These are not found in the
1618 bp_location array. */
1619 for (i = 0; i < 2; i++)
1620 {
1621 struct bp_target_info *bp_tgt = single_step_breakpoints[i];
1622
1623 if (bp_tgt != NULL)
1624 {
1625 struct gdbarch *gdbarch = single_step_gdbarch[i];
1626
1627 one_breakpoint_xfer_memory (readbuf, writebuf, writebuf_org,
1628 memaddr, len, bp_tgt, gdbarch);
1629 }
1630 }
1631 }
1632
1633 \f
1634
1635 /* Return true if BPT is either a software breakpoint or a hardware
1636 breakpoint. */
1637
1638 int
1639 is_breakpoint (const struct breakpoint *bpt)
1640 {
1641 return (bpt->type == bp_breakpoint
1642 || bpt->type == bp_hardware_breakpoint
1643 || bpt->type == bp_dprintf);
1644 }
1645
1646 /* Return true if BPT is of any hardware watchpoint kind. */
1647
1648 static int
1649 is_hardware_watchpoint (const struct breakpoint *bpt)
1650 {
1651 return (bpt->type == bp_hardware_watchpoint
1652 || bpt->type == bp_read_watchpoint
1653 || bpt->type == bp_access_watchpoint);
1654 }
1655
1656 /* Return true if BPT is of any watchpoint kind, hardware or
1657 software. */
1658
1659 int
1660 is_watchpoint (const struct breakpoint *bpt)
1661 {
1662 return (is_hardware_watchpoint (bpt)
1663 || bpt->type == bp_watchpoint);
1664 }
1665
1666 /* Returns true if the current thread and its running state are safe
1667 to evaluate or update watchpoint B. Watchpoints on local
1668 expressions need to be evaluated in the context of the thread that
1669 was current when the watchpoint was created, and, that thread needs
1670 to be stopped to be able to select the correct frame context.
1671 Watchpoints on global expressions can be evaluated on any thread,
1672 and in any state. It is presently left to the target allowing
1673 memory accesses when threads are running. */
1674
1675 static int
1676 watchpoint_in_thread_scope (struct watchpoint *b)
1677 {
1678 return (b->base.pspace == current_program_space
1679 && (ptid_equal (b->watchpoint_thread, null_ptid)
1680 || (ptid_equal (inferior_ptid, b->watchpoint_thread)
1681 && !is_executing (inferior_ptid))));
1682 }
1683
1684 /* Set watchpoint B to disp_del_at_next_stop, even including its possible
1685 associated bp_watchpoint_scope breakpoint. */
1686
1687 static void
1688 watchpoint_del_at_next_stop (struct watchpoint *w)
1689 {
1690 struct breakpoint *b = &w->base;
1691
1692 if (b->related_breakpoint != b)
1693 {
1694 gdb_assert (b->related_breakpoint->type == bp_watchpoint_scope);
1695 gdb_assert (b->related_breakpoint->related_breakpoint == b);
1696 b->related_breakpoint->disposition = disp_del_at_next_stop;
1697 b->related_breakpoint->related_breakpoint = b->related_breakpoint;
1698 b->related_breakpoint = b;
1699 }
1700 b->disposition = disp_del_at_next_stop;
1701 }
1702
1703 /* Assuming that B is a watchpoint:
1704 - Reparse watchpoint expression, if REPARSE is non-zero
1705 - Evaluate expression and store the result in B->val
1706 - Evaluate the condition if there is one, and store the result
1707 in b->loc->cond.
1708 - Update the list of values that must be watched in B->loc.
1709
1710 If the watchpoint disposition is disp_del_at_next_stop, then do
1711 nothing. If this is local watchpoint that is out of scope, delete
1712 it.
1713
1714 Even with `set breakpoint always-inserted on' the watchpoints are
1715 removed + inserted on each stop here. Normal breakpoints must
1716 never be removed because they might be missed by a running thread
1717 when debugging in non-stop mode. On the other hand, hardware
1718 watchpoints (is_hardware_watchpoint; processed here) are specific
1719 to each LWP since they are stored in each LWP's hardware debug
1720 registers. Therefore, such LWP must be stopped first in order to
1721 be able to modify its hardware watchpoints.
1722
1723 Hardware watchpoints must be reset exactly once after being
1724 presented to the user. It cannot be done sooner, because it would
1725 reset the data used to present the watchpoint hit to the user. And
1726 it must not be done later because it could display the same single
1727 watchpoint hit during multiple GDB stops. Note that the latter is
1728 relevant only to the hardware watchpoint types bp_read_watchpoint
1729 and bp_access_watchpoint. False hit by bp_hardware_watchpoint is
1730 not user-visible - its hit is suppressed if the memory content has
1731 not changed.
1732
1733 The following constraints influence the location where we can reset
1734 hardware watchpoints:
1735
1736 * target_stopped_by_watchpoint and target_stopped_data_address are
1737 called several times when GDB stops.
1738
1739 [linux]
1740 * Multiple hardware watchpoints can be hit at the same time,
1741 causing GDB to stop. GDB only presents one hardware watchpoint
1742 hit at a time as the reason for stopping, and all the other hits
1743 are presented later, one after the other, each time the user
1744 requests the execution to be resumed. Execution is not resumed
1745 for the threads still having pending hit event stored in
1746 LWP_INFO->STATUS. While the watchpoint is already removed from
1747 the inferior on the first stop the thread hit event is kept being
1748 reported from its cached value by linux_nat_stopped_data_address
1749 until the real thread resume happens after the watchpoint gets
1750 presented and thus its LWP_INFO->STATUS gets reset.
1751
1752 Therefore the hardware watchpoint hit can get safely reset on the
1753 watchpoint removal from inferior. */
1754
1755 static void
1756 update_watchpoint (struct watchpoint *b, int reparse)
1757 {
1758 int within_current_scope;
1759 struct frame_id saved_frame_id;
1760 int frame_saved;
1761
1762 /* If this is a local watchpoint, we only want to check if the
1763 watchpoint frame is in scope if the current thread is the thread
1764 that was used to create the watchpoint. */
1765 if (!watchpoint_in_thread_scope (b))
1766 return;
1767
1768 if (b->base.disposition == disp_del_at_next_stop)
1769 return;
1770
1771 frame_saved = 0;
1772
1773 /* Determine if the watchpoint is within scope. */
1774 if (b->exp_valid_block == NULL)
1775 within_current_scope = 1;
1776 else
1777 {
1778 struct frame_info *fi = get_current_frame ();
1779 struct gdbarch *frame_arch = get_frame_arch (fi);
1780 CORE_ADDR frame_pc = get_frame_pc (fi);
1781
1782 /* If we're in a function epilogue, unwinding may not work
1783 properly, so do not attempt to recreate locations at this
1784 point. See similar comments in watchpoint_check. */
1785 if (gdbarch_in_function_epilogue_p (frame_arch, frame_pc))
1786 return;
1787
1788 /* Save the current frame's ID so we can restore it after
1789 evaluating the watchpoint expression on its own frame. */
1790 /* FIXME drow/2003-09-09: It would be nice if evaluate_expression
1791 took a frame parameter, so that we didn't have to change the
1792 selected frame. */
1793 frame_saved = 1;
1794 saved_frame_id = get_frame_id (get_selected_frame (NULL));
1795
1796 fi = frame_find_by_id (b->watchpoint_frame);
1797 within_current_scope = (fi != NULL);
1798 if (within_current_scope)
1799 select_frame (fi);
1800 }
1801
1802 /* We don't free locations. They are stored in the bp_location array
1803 and update_global_location_list will eventually delete them and
1804 remove breakpoints if needed. */
1805 b->base.loc = NULL;
1806
1807 if (within_current_scope && reparse)
1808 {
1809 const char *s;
1810
1811 if (b->exp)
1812 {
1813 xfree (b->exp);
1814 b->exp = NULL;
1815 }
1816 s = b->exp_string_reparse ? b->exp_string_reparse : b->exp_string;
1817 b->exp = parse_exp_1 (&s, 0, b->exp_valid_block, 0);
1818 /* If the meaning of expression itself changed, the old value is
1819 no longer relevant. We don't want to report a watchpoint hit
1820 to the user when the old value and the new value may actually
1821 be completely different objects. */
1822 value_free (b->val);
1823 b->val = NULL;
1824 b->val_valid = 0;
1825
1826 /* Note that unlike with breakpoints, the watchpoint's condition
1827 expression is stored in the breakpoint object, not in the
1828 locations (re)created below. */
1829 if (b->base.cond_string != NULL)
1830 {
1831 if (b->cond_exp != NULL)
1832 {
1833 xfree (b->cond_exp);
1834 b->cond_exp = NULL;
1835 }
1836
1837 s = b->base.cond_string;
1838 b->cond_exp = parse_exp_1 (&s, 0, b->cond_exp_valid_block, 0);
1839 }
1840 }
1841
1842 /* If we failed to parse the expression, for example because
1843 it refers to a global variable in a not-yet-loaded shared library,
1844 don't try to insert watchpoint. We don't automatically delete
1845 such watchpoint, though, since failure to parse expression
1846 is different from out-of-scope watchpoint. */
1847 if (!target_has_execution)
1848 {
1849 /* Without execution, memory can't change. No use to try and
1850 set watchpoint locations. The watchpoint will be reset when
1851 the target gains execution, through breakpoint_re_set. */
1852 if (!can_use_hw_watchpoints)
1853 {
1854 if (b->base.ops->works_in_software_mode (&b->base))
1855 b->base.type = bp_watchpoint;
1856 else
1857 error (_("Can't set read/access watchpoint when "
1858 "hardware watchpoints are disabled."));
1859 }
1860 }
1861 else if (within_current_scope && b->exp)
1862 {
1863 int pc = 0;
1864 struct value *val_chain, *v, *result, *next;
1865 struct program_space *frame_pspace;
1866
1867 fetch_subexp_value (b->exp, &pc, &v, &result, &val_chain, 0);
1868
1869 /* Avoid setting b->val if it's already set. The meaning of
1870 b->val is 'the last value' user saw, and we should update
1871 it only if we reported that last value to user. As it
1872 happens, the code that reports it updates b->val directly.
1873 We don't keep track of the memory value for masked
1874 watchpoints. */
1875 if (!b->val_valid && !is_masked_watchpoint (&b->base))
1876 {
1877 b->val = v;
1878 b->val_valid = 1;
1879 }
1880
1881 frame_pspace = get_frame_program_space (get_selected_frame (NULL));
1882
1883 /* Look at each value on the value chain. */
1884 for (v = val_chain; v; v = value_next (v))
1885 {
1886 /* If it's a memory location, and GDB actually needed
1887 its contents to evaluate the expression, then we
1888 must watch it. If the first value returned is
1889 still lazy, that means an error occurred reading it;
1890 watch it anyway in case it becomes readable. */
1891 if (VALUE_LVAL (v) == lval_memory
1892 && (v == val_chain || ! value_lazy (v)))
1893 {
1894 struct type *vtype = check_typedef (value_type (v));
1895
1896 /* We only watch structs and arrays if user asked
1897 for it explicitly, never if they just happen to
1898 appear in the middle of some value chain. */
1899 if (v == result
1900 || (TYPE_CODE (vtype) != TYPE_CODE_STRUCT
1901 && TYPE_CODE (vtype) != TYPE_CODE_ARRAY))
1902 {
1903 CORE_ADDR addr;
1904 int type;
1905 struct bp_location *loc, **tmp;
1906
1907 addr = value_address (v);
1908 type = hw_write;
1909 if (b->base.type == bp_read_watchpoint)
1910 type = hw_read;
1911 else if (b->base.type == bp_access_watchpoint)
1912 type = hw_access;
1913
1914 loc = allocate_bp_location (&b->base);
1915 for (tmp = &(b->base.loc); *tmp != NULL; tmp = &((*tmp)->next))
1916 ;
1917 *tmp = loc;
1918 loc->gdbarch = get_type_arch (value_type (v));
1919
1920 loc->pspace = frame_pspace;
1921 loc->address = addr;
1922 loc->length = TYPE_LENGTH (value_type (v));
1923 loc->watchpoint_type = type;
1924 }
1925 }
1926 }
1927
1928 /* Change the type of breakpoint between hardware assisted or
1929 an ordinary watchpoint depending on the hardware support
1930 and free hardware slots. REPARSE is set when the inferior
1931 is started. */
1932 if (reparse)
1933 {
1934 int reg_cnt;
1935 enum bp_loc_type loc_type;
1936 struct bp_location *bl;
1937
1938 reg_cnt = can_use_hardware_watchpoint (val_chain);
1939
1940 if (reg_cnt)
1941 {
1942 int i, target_resources_ok, other_type_used;
1943 enum bptype type;
1944
1945 /* Use an exact watchpoint when there's only one memory region to be
1946 watched, and only one debug register is needed to watch it. */
1947 b->exact = target_exact_watchpoints && reg_cnt == 1;
1948
1949 /* We need to determine how many resources are already
1950 used for all other hardware watchpoints plus this one
1951 to see if we still have enough resources to also fit
1952 this watchpoint in as well. */
1953
1954 /* If this is a software watchpoint, we try to turn it
1955 to a hardware one -- count resources as if B was of
1956 hardware watchpoint type. */
1957 type = b->base.type;
1958 if (type == bp_watchpoint)
1959 type = bp_hardware_watchpoint;
1960
1961 /* This watchpoint may or may not have been placed on
1962 the list yet at this point (it won't be in the list
1963 if we're trying to create it for the first time,
1964 through watch_command), so always account for it
1965 manually. */
1966
1967 /* Count resources used by all watchpoints except B. */
1968 i = hw_watchpoint_used_count_others (&b->base, type, &other_type_used);
1969
1970 /* Add in the resources needed for B. */
1971 i += hw_watchpoint_use_count (&b->base);
1972
1973 target_resources_ok
1974 = target_can_use_hardware_watchpoint (type, i, other_type_used);
1975 if (target_resources_ok <= 0)
1976 {
1977 int sw_mode = b->base.ops->works_in_software_mode (&b->base);
1978
1979 if (target_resources_ok == 0 && !sw_mode)
1980 error (_("Target does not support this type of "
1981 "hardware watchpoint."));
1982 else if (target_resources_ok < 0 && !sw_mode)
1983 error (_("There are not enough available hardware "
1984 "resources for this watchpoint."));
1985
1986 /* Downgrade to software watchpoint. */
1987 b->base.type = bp_watchpoint;
1988 }
1989 else
1990 {
1991 /* If this was a software watchpoint, we've just
1992 found we have enough resources to turn it to a
1993 hardware watchpoint. Otherwise, this is a
1994 nop. */
1995 b->base.type = type;
1996 }
1997 }
1998 else if (!b->base.ops->works_in_software_mode (&b->base))
1999 {
2000 if (!can_use_hw_watchpoints)
2001 error (_("Can't set read/access watchpoint when "
2002 "hardware watchpoints are disabled."));
2003 else
2004 error (_("Expression cannot be implemented with "
2005 "read/access watchpoint."));
2006 }
2007 else
2008 b->base.type = bp_watchpoint;
2009
2010 loc_type = (b->base.type == bp_watchpoint? bp_loc_other
2011 : bp_loc_hardware_watchpoint);
2012 for (bl = b->base.loc; bl; bl = bl->next)
2013 bl->loc_type = loc_type;
2014 }
2015
2016 for (v = val_chain; v; v = next)
2017 {
2018 next = value_next (v);
2019 if (v != b->val)
2020 value_free (v);
2021 }
2022
2023 /* If a software watchpoint is not watching any memory, then the
2024 above left it without any location set up. But,
2025 bpstat_stop_status requires a location to be able to report
2026 stops, so make sure there's at least a dummy one. */
2027 if (b->base.type == bp_watchpoint && b->base.loc == NULL)
2028 {
2029 struct breakpoint *base = &b->base;
2030 base->loc = allocate_bp_location (base);
2031 base->loc->pspace = frame_pspace;
2032 base->loc->address = -1;
2033 base->loc->length = -1;
2034 base->loc->watchpoint_type = -1;
2035 }
2036 }
2037 else if (!within_current_scope)
2038 {
2039 printf_filtered (_("\
2040 Watchpoint %d deleted because the program has left the block\n\
2041 in which its expression is valid.\n"),
2042 b->base.number);
2043 watchpoint_del_at_next_stop (b);
2044 }
2045
2046 /* Restore the selected frame. */
2047 if (frame_saved)
2048 select_frame (frame_find_by_id (saved_frame_id));
2049 }
2050
2051
2052 /* Returns 1 iff breakpoint location should be
2053 inserted in the inferior. We don't differentiate the type of BL's owner
2054 (breakpoint vs. tracepoint), although insert_location in tracepoint's
2055 breakpoint_ops is not defined, because in insert_bp_location,
2056 tracepoint's insert_location will not be called. */
2057 static int
2058 should_be_inserted (struct bp_location *bl)
2059 {
2060 if (bl->owner == NULL || !breakpoint_enabled (bl->owner))
2061 return 0;
2062
2063 if (bl->owner->disposition == disp_del_at_next_stop)
2064 return 0;
2065
2066 if (!bl->enabled || bl->shlib_disabled || bl->duplicate)
2067 return 0;
2068
2069 if (user_breakpoint_p (bl->owner) && bl->pspace->executing_startup)
2070 return 0;
2071
2072 /* This is set for example, when we're attached to the parent of a
2073 vfork, and have detached from the child. The child is running
2074 free, and we expect it to do an exec or exit, at which point the
2075 OS makes the parent schedulable again (and the target reports
2076 that the vfork is done). Until the child is done with the shared
2077 memory region, do not insert breakpoints in the parent, otherwise
2078 the child could still trip on the parent's breakpoints. Since
2079 the parent is blocked anyway, it won't miss any breakpoint. */
2080 if (bl->pspace->breakpoints_not_allowed)
2081 return 0;
2082
2083 /* Don't insert a breakpoint if we're trying to step past its
2084 location. */
2085 if ((bl->loc_type == bp_loc_software_breakpoint
2086 || bl->loc_type == bp_loc_hardware_breakpoint)
2087 && stepping_past_instruction_at (bl->pspace->aspace,
2088 bl->address))
2089 return 0;
2090
2091 return 1;
2092 }
2093
2094 /* Same as should_be_inserted but does the check assuming
2095 that the location is not duplicated. */
2096
2097 static int
2098 unduplicated_should_be_inserted (struct bp_location *bl)
2099 {
2100 int result;
2101 const int save_duplicate = bl->duplicate;
2102
2103 bl->duplicate = 0;
2104 result = should_be_inserted (bl);
2105 bl->duplicate = save_duplicate;
2106 return result;
2107 }
2108
2109 /* Parses a conditional described by an expression COND into an
2110 agent expression bytecode suitable for evaluation
2111 by the bytecode interpreter. Return NULL if there was
2112 any error during parsing. */
2113
2114 static struct agent_expr *
2115 parse_cond_to_aexpr (CORE_ADDR scope, struct expression *cond)
2116 {
2117 struct agent_expr *aexpr = NULL;
2118 volatile struct gdb_exception ex;
2119
2120 if (!cond)
2121 return NULL;
2122
2123 /* We don't want to stop processing, so catch any errors
2124 that may show up. */
2125 TRY_CATCH (ex, RETURN_MASK_ERROR)
2126 {
2127 aexpr = gen_eval_for_expr (scope, cond);
2128 }
2129
2130 if (ex.reason < 0)
2131 {
2132 /* If we got here, it means the condition could not be parsed to a valid
2133 bytecode expression and thus can't be evaluated on the target's side.
2134 It's no use iterating through the conditions. */
2135 return NULL;
2136 }
2137
2138 /* We have a valid agent expression. */
2139 return aexpr;
2140 }
2141
2142 /* Based on location BL, create a list of breakpoint conditions to be
2143 passed on to the target. If we have duplicated locations with different
2144 conditions, we will add such conditions to the list. The idea is that the
2145 target will evaluate the list of conditions and will only notify GDB when
2146 one of them is true. */
2147
2148 static void
2149 build_target_condition_list (struct bp_location *bl)
2150 {
2151 struct bp_location **locp = NULL, **loc2p;
2152 int null_condition_or_parse_error = 0;
2153 int modified = bl->needs_update;
2154 struct bp_location *loc;
2155
2156 /* Release conditions left over from a previous insert. */
2157 VEC_free (agent_expr_p, bl->target_info.conditions);
2158
2159 /* This is only meaningful if the target is
2160 evaluating conditions and if the user has
2161 opted for condition evaluation on the target's
2162 side. */
2163 if (gdb_evaluates_breakpoint_condition_p ()
2164 || !target_supports_evaluation_of_breakpoint_conditions ())
2165 return;
2166
2167 /* Do a first pass to check for locations with no assigned
2168 conditions or conditions that fail to parse to a valid agent expression
2169 bytecode. If any of these happen, then it's no use to send conditions
2170 to the target since this location will always trigger and generate a
2171 response back to GDB. */
2172 ALL_BP_LOCATIONS_AT_ADDR (loc2p, locp, bl->address)
2173 {
2174 loc = (*loc2p);
2175 if (is_breakpoint (loc->owner) && loc->pspace->num == bl->pspace->num)
2176 {
2177 if (modified)
2178 {
2179 struct agent_expr *aexpr;
2180
2181 /* Re-parse the conditions since something changed. In that
2182 case we already freed the condition bytecodes (see
2183 force_breakpoint_reinsertion). We just
2184 need to parse the condition to bytecodes again. */
2185 aexpr = parse_cond_to_aexpr (bl->address, loc->cond);
2186 loc->cond_bytecode = aexpr;
2187
2188 /* Check if we managed to parse the conditional expression
2189 correctly. If not, we will not send this condition
2190 to the target. */
2191 if (aexpr)
2192 continue;
2193 }
2194
2195 /* If we have a NULL bytecode expression, it means something
2196 went wrong or we have a null condition expression. */
2197 if (!loc->cond_bytecode)
2198 {
2199 null_condition_or_parse_error = 1;
2200 break;
2201 }
2202 }
2203 }
2204
2205 /* If any of these happened, it means we will have to evaluate the conditions
2206 for the location's address on gdb's side. It is no use keeping bytecodes
2207 for all the other duplicate locations, thus we free all of them here.
2208
2209 This is so we have a finer control over which locations' conditions are
2210 being evaluated by GDB or the remote stub. */
2211 if (null_condition_or_parse_error)
2212 {
2213 ALL_BP_LOCATIONS_AT_ADDR (loc2p, locp, bl->address)
2214 {
2215 loc = (*loc2p);
2216 if (is_breakpoint (loc->owner) && loc->pspace->num == bl->pspace->num)
2217 {
2218 /* Only go as far as the first NULL bytecode is
2219 located. */
2220 if (!loc->cond_bytecode)
2221 return;
2222
2223 free_agent_expr (loc->cond_bytecode);
2224 loc->cond_bytecode = NULL;
2225 }
2226 }
2227 }
2228
2229 /* No NULL conditions or failed bytecode generation. Build a condition list
2230 for this location's address. */
2231 ALL_BP_LOCATIONS_AT_ADDR (loc2p, locp, bl->address)
2232 {
2233 loc = (*loc2p);
2234 if (loc->cond
2235 && is_breakpoint (loc->owner)
2236 && loc->pspace->num == bl->pspace->num
2237 && loc->owner->enable_state == bp_enabled
2238 && loc->enabled)
2239 /* Add the condition to the vector. This will be used later to send the
2240 conditions to the target. */
2241 VEC_safe_push (agent_expr_p, bl->target_info.conditions,
2242 loc->cond_bytecode);
2243 }
2244
2245 return;
2246 }
2247
2248 /* Parses a command described by string CMD into an agent expression
2249 bytecode suitable for evaluation by the bytecode interpreter.
2250 Return NULL if there was any error during parsing. */
2251
2252 static struct agent_expr *
2253 parse_cmd_to_aexpr (CORE_ADDR scope, char *cmd)
2254 {
2255 struct cleanup *old_cleanups = 0;
2256 struct expression *expr, **argvec;
2257 struct agent_expr *aexpr = NULL;
2258 volatile struct gdb_exception ex;
2259 const char *cmdrest;
2260 const char *format_start, *format_end;
2261 struct format_piece *fpieces;
2262 int nargs;
2263 struct gdbarch *gdbarch = get_current_arch ();
2264
2265 if (!cmd)
2266 return NULL;
2267
2268 cmdrest = cmd;
2269
2270 if (*cmdrest == ',')
2271 ++cmdrest;
2272 cmdrest = skip_spaces_const (cmdrest);
2273
2274 if (*cmdrest++ != '"')
2275 error (_("No format string following the location"));
2276
2277 format_start = cmdrest;
2278
2279 fpieces = parse_format_string (&cmdrest);
2280
2281 old_cleanups = make_cleanup (free_format_pieces_cleanup, &fpieces);
2282
2283 format_end = cmdrest;
2284
2285 if (*cmdrest++ != '"')
2286 error (_("Bad format string, non-terminated '\"'."));
2287
2288 cmdrest = skip_spaces_const (cmdrest);
2289
2290 if (!(*cmdrest == ',' || *cmdrest == '\0'))
2291 error (_("Invalid argument syntax"));
2292
2293 if (*cmdrest == ',')
2294 cmdrest++;
2295 cmdrest = skip_spaces_const (cmdrest);
2296
2297 /* For each argument, make an expression. */
2298
2299 argvec = (struct expression **) alloca (strlen (cmd)
2300 * sizeof (struct expression *));
2301
2302 nargs = 0;
2303 while (*cmdrest != '\0')
2304 {
2305 const char *cmd1;
2306
2307 cmd1 = cmdrest;
2308 expr = parse_exp_1 (&cmd1, scope, block_for_pc (scope), 1);
2309 argvec[nargs++] = expr;
2310 cmdrest = cmd1;
2311 if (*cmdrest == ',')
2312 ++cmdrest;
2313 }
2314
2315 /* We don't want to stop processing, so catch any errors
2316 that may show up. */
2317 TRY_CATCH (ex, RETURN_MASK_ERROR)
2318 {
2319 aexpr = gen_printf (scope, gdbarch, 0, 0,
2320 format_start, format_end - format_start,
2321 fpieces, nargs, argvec);
2322 }
2323
2324 do_cleanups (old_cleanups);
2325
2326 if (ex.reason < 0)
2327 {
2328 /* If we got here, it means the command could not be parsed to a valid
2329 bytecode expression and thus can't be evaluated on the target's side.
2330 It's no use iterating through the other commands. */
2331 return NULL;
2332 }
2333
2334 /* We have a valid agent expression, return it. */
2335 return aexpr;
2336 }
2337
2338 /* Based on location BL, create a list of breakpoint commands to be
2339 passed on to the target. If we have duplicated locations with
2340 different commands, we will add any such to the list. */
2341
2342 static void
2343 build_target_command_list (struct bp_location *bl)
2344 {
2345 struct bp_location **locp = NULL, **loc2p;
2346 int null_command_or_parse_error = 0;
2347 int modified = bl->needs_update;
2348 struct bp_location *loc;
2349
2350 /* Release commands left over from a previous insert. */
2351 VEC_free (agent_expr_p, bl->target_info.tcommands);
2352
2353 /* For now, limit to agent-style dprintf breakpoints. */
2354 if (bl->owner->type != bp_dprintf
2355 || strcmp (dprintf_style, dprintf_style_agent) != 0)
2356 return;
2357
2358 if (!target_can_run_breakpoint_commands ())
2359 return;
2360
2361 /* Do a first pass to check for locations with no assigned
2362 conditions or conditions that fail to parse to a valid agent expression
2363 bytecode. If any of these happen, then it's no use to send conditions
2364 to the target since this location will always trigger and generate a
2365 response back to GDB. */
2366 ALL_BP_LOCATIONS_AT_ADDR (loc2p, locp, bl->address)
2367 {
2368 loc = (*loc2p);
2369 if (is_breakpoint (loc->owner) && loc->pspace->num == bl->pspace->num)
2370 {
2371 if (modified)
2372 {
2373 struct agent_expr *aexpr;
2374
2375 /* Re-parse the commands since something changed. In that
2376 case we already freed the command bytecodes (see
2377 force_breakpoint_reinsertion). We just
2378 need to parse the command to bytecodes again. */
2379 aexpr = parse_cmd_to_aexpr (bl->address,
2380 loc->owner->extra_string);
2381 loc->cmd_bytecode = aexpr;
2382
2383 if (!aexpr)
2384 continue;
2385 }
2386
2387 /* If we have a NULL bytecode expression, it means something
2388 went wrong or we have a null command expression. */
2389 if (!loc->cmd_bytecode)
2390 {
2391 null_command_or_parse_error = 1;
2392 break;
2393 }
2394 }
2395 }
2396
2397 /* If anything failed, then we're not doing target-side commands,
2398 and so clean up. */
2399 if (null_command_or_parse_error)
2400 {
2401 ALL_BP_LOCATIONS_AT_ADDR (loc2p, locp, bl->address)
2402 {
2403 loc = (*loc2p);
2404 if (is_breakpoint (loc->owner)
2405 && loc->pspace->num == bl->pspace->num)
2406 {
2407 /* Only go as far as the first NULL bytecode is
2408 located. */
2409 if (loc->cmd_bytecode == NULL)
2410 return;
2411
2412 free_agent_expr (loc->cmd_bytecode);
2413 loc->cmd_bytecode = NULL;
2414 }
2415 }
2416 }
2417
2418 /* No NULL commands or failed bytecode generation. Build a command list
2419 for this location's address. */
2420 ALL_BP_LOCATIONS_AT_ADDR (loc2p, locp, bl->address)
2421 {
2422 loc = (*loc2p);
2423 if (loc->owner->extra_string
2424 && is_breakpoint (loc->owner)
2425 && loc->pspace->num == bl->pspace->num
2426 && loc->owner->enable_state == bp_enabled
2427 && loc->enabled)
2428 /* Add the command to the vector. This will be used later
2429 to send the commands to the target. */
2430 VEC_safe_push (agent_expr_p, bl->target_info.tcommands,
2431 loc->cmd_bytecode);
2432 }
2433
2434 bl->target_info.persist = 0;
2435 /* Maybe flag this location as persistent. */
2436 if (bl->owner->type == bp_dprintf && disconnected_dprintf)
2437 bl->target_info.persist = 1;
2438 }
2439
2440 /* Insert a low-level "breakpoint" of some type. BL is the breakpoint
2441 location. Any error messages are printed to TMP_ERROR_STREAM; and
2442 DISABLED_BREAKS, and HW_BREAKPOINT_ERROR are used to report problems.
2443 Returns 0 for success, 1 if the bp_location type is not supported or
2444 -1 for failure.
2445
2446 NOTE drow/2003-09-09: This routine could be broken down to an
2447 object-style method for each breakpoint or catchpoint type. */
2448 static int
2449 insert_bp_location (struct bp_location *bl,
2450 struct ui_file *tmp_error_stream,
2451 int *disabled_breaks,
2452 int *hw_breakpoint_error,
2453 int *hw_bp_error_explained_already)
2454 {
2455 enum errors bp_err = GDB_NO_ERROR;
2456 const char *bp_err_message = NULL;
2457 volatile struct gdb_exception e;
2458
2459 if (!should_be_inserted (bl) || (bl->inserted && !bl->needs_update))
2460 return 0;
2461
2462 /* Note we don't initialize bl->target_info, as that wipes out
2463 the breakpoint location's shadow_contents if the breakpoint
2464 is still inserted at that location. This in turn breaks
2465 target_read_memory which depends on these buffers when
2466 a memory read is requested at the breakpoint location:
2467 Once the target_info has been wiped, we fail to see that
2468 we have a breakpoint inserted at that address and thus
2469 read the breakpoint instead of returning the data saved in
2470 the breakpoint location's shadow contents. */
2471 bl->target_info.placed_address = bl->address;
2472 bl->target_info.placed_address_space = bl->pspace->aspace;
2473 bl->target_info.length = bl->length;
2474
2475 /* When working with target-side conditions, we must pass all the conditions
2476 for the same breakpoint address down to the target since GDB will not
2477 insert those locations. With a list of breakpoint conditions, the target
2478 can decide when to stop and notify GDB. */
2479
2480 if (is_breakpoint (bl->owner))
2481 {
2482 build_target_condition_list (bl);
2483 build_target_command_list (bl);
2484 /* Reset the modification marker. */
2485 bl->needs_update = 0;
2486 }
2487
2488 if (bl->loc_type == bp_loc_software_breakpoint
2489 || bl->loc_type == bp_loc_hardware_breakpoint)
2490 {
2491 if (bl->owner->type != bp_hardware_breakpoint)
2492 {
2493 /* If the explicitly specified breakpoint type
2494 is not hardware breakpoint, check the memory map to see
2495 if the breakpoint address is in read only memory or not.
2496
2497 Two important cases are:
2498 - location type is not hardware breakpoint, memory
2499 is readonly. We change the type of the location to
2500 hardware breakpoint.
2501 - location type is hardware breakpoint, memory is
2502 read-write. This means we've previously made the
2503 location hardware one, but then the memory map changed,
2504 so we undo.
2505
2506 When breakpoints are removed, remove_breakpoints will use
2507 location types we've just set here, the only possible
2508 problem is that memory map has changed during running
2509 program, but it's not going to work anyway with current
2510 gdb. */
2511 struct mem_region *mr
2512 = lookup_mem_region (bl->target_info.placed_address);
2513
2514 if (mr)
2515 {
2516 if (automatic_hardware_breakpoints)
2517 {
2518 enum bp_loc_type new_type;
2519
2520 if (mr->attrib.mode != MEM_RW)
2521 new_type = bp_loc_hardware_breakpoint;
2522 else
2523 new_type = bp_loc_software_breakpoint;
2524
2525 if (new_type != bl->loc_type)
2526 {
2527 static int said = 0;
2528
2529 bl->loc_type = new_type;
2530 if (!said)
2531 {
2532 fprintf_filtered (gdb_stdout,
2533 _("Note: automatically using "
2534 "hardware breakpoints for "
2535 "read-only addresses.\n"));
2536 said = 1;
2537 }
2538 }
2539 }
2540 else if (bl->loc_type == bp_loc_software_breakpoint
2541 && mr->attrib.mode != MEM_RW)
2542 warning (_("cannot set software breakpoint "
2543 "at readonly address %s"),
2544 paddress (bl->gdbarch, bl->address));
2545 }
2546 }
2547
2548 /* First check to see if we have to handle an overlay. */
2549 if (overlay_debugging == ovly_off
2550 || bl->section == NULL
2551 || !(section_is_overlay (bl->section)))
2552 {
2553 /* No overlay handling: just set the breakpoint. */
2554 TRY_CATCH (e, RETURN_MASK_ALL)
2555 {
2556 int val;
2557
2558 val = bl->owner->ops->insert_location (bl);
2559 if (val)
2560 bp_err = GENERIC_ERROR;
2561 }
2562 if (e.reason < 0)
2563 {
2564 bp_err = e.error;
2565 bp_err_message = e.message;
2566 }
2567 }
2568 else
2569 {
2570 /* This breakpoint is in an overlay section.
2571 Shall we set a breakpoint at the LMA? */
2572 if (!overlay_events_enabled)
2573 {
2574 /* Yes -- overlay event support is not active,
2575 so we must try to set a breakpoint at the LMA.
2576 This will not work for a hardware breakpoint. */
2577 if (bl->loc_type == bp_loc_hardware_breakpoint)
2578 warning (_("hardware breakpoint %d not supported in overlay!"),
2579 bl->owner->number);
2580 else
2581 {
2582 CORE_ADDR addr = overlay_unmapped_address (bl->address,
2583 bl->section);
2584 /* Set a software (trap) breakpoint at the LMA. */
2585 bl->overlay_target_info = bl->target_info;
2586 bl->overlay_target_info.placed_address = addr;
2587
2588 /* No overlay handling: just set the breakpoint. */
2589 TRY_CATCH (e, RETURN_MASK_ALL)
2590 {
2591 int val;
2592
2593 val = target_insert_breakpoint (bl->gdbarch,
2594 &bl->overlay_target_info);
2595 if (val)
2596 bp_err = GENERIC_ERROR;
2597 }
2598 if (e.reason < 0)
2599 {
2600 bp_err = e.error;
2601 bp_err_message = e.message;
2602 }
2603
2604 if (bp_err != GDB_NO_ERROR)
2605 fprintf_unfiltered (tmp_error_stream,
2606 "Overlay breakpoint %d "
2607 "failed: in ROM?\n",
2608 bl->owner->number);
2609 }
2610 }
2611 /* Shall we set a breakpoint at the VMA? */
2612 if (section_is_mapped (bl->section))
2613 {
2614 /* Yes. This overlay section is mapped into memory. */
2615 TRY_CATCH (e, RETURN_MASK_ALL)
2616 {
2617 int val;
2618
2619 val = bl->owner->ops->insert_location (bl);
2620 if (val)
2621 bp_err = GENERIC_ERROR;
2622 }
2623 if (e.reason < 0)
2624 {
2625 bp_err = e.error;
2626 bp_err_message = e.message;
2627 }
2628 }
2629 else
2630 {
2631 /* No. This breakpoint will not be inserted.
2632 No error, but do not mark the bp as 'inserted'. */
2633 return 0;
2634 }
2635 }
2636
2637 if (bp_err != GDB_NO_ERROR)
2638 {
2639 /* Can't set the breakpoint. */
2640
2641 /* In some cases, we might not be able to insert a
2642 breakpoint in a shared library that has already been
2643 removed, but we have not yet processed the shlib unload
2644 event. Unfortunately, some targets that implement
2645 breakpoint insertion themselves can't tell why the
2646 breakpoint insertion failed (e.g., the remote target
2647 doesn't define error codes), so we must treat generic
2648 errors as memory errors. */
2649 if ((bp_err == GENERIC_ERROR || bp_err == MEMORY_ERROR)
2650 && bl->loc_type == bp_loc_software_breakpoint
2651 && solib_name_from_address (bl->pspace, bl->address))
2652 {
2653 /* See also: disable_breakpoints_in_shlibs. */
2654 bl->shlib_disabled = 1;
2655 observer_notify_breakpoint_modified (bl->owner);
2656 if (!*disabled_breaks)
2657 {
2658 fprintf_unfiltered (tmp_error_stream,
2659 "Cannot insert breakpoint %d.\n",
2660 bl->owner->number);
2661 fprintf_unfiltered (tmp_error_stream,
2662 "Temporarily disabling shared "
2663 "library breakpoints:\n");
2664 }
2665 *disabled_breaks = 1;
2666 fprintf_unfiltered (tmp_error_stream,
2667 "breakpoint #%d\n", bl->owner->number);
2668 return 0;
2669 }
2670 else
2671 {
2672 if (bl->loc_type == bp_loc_hardware_breakpoint)
2673 {
2674 *hw_breakpoint_error = 1;
2675 *hw_bp_error_explained_already = bp_err_message != NULL;
2676 fprintf_unfiltered (tmp_error_stream,
2677 "Cannot insert hardware breakpoint %d%s",
2678 bl->owner->number, bp_err_message ? ":" : ".\n");
2679 if (bp_err_message != NULL)
2680 fprintf_unfiltered (tmp_error_stream, "%s.\n", bp_err_message);
2681 }
2682 else
2683 {
2684 if (bp_err_message == NULL)
2685 {
2686 char *message
2687 = memory_error_message (TARGET_XFER_E_IO,
2688 bl->gdbarch, bl->address);
2689 struct cleanup *old_chain = make_cleanup (xfree, message);
2690
2691 fprintf_unfiltered (tmp_error_stream,
2692 "Cannot insert breakpoint %d.\n"
2693 "%s\n",
2694 bl->owner->number, message);
2695 do_cleanups (old_chain);
2696 }
2697 else
2698 {
2699 fprintf_unfiltered (tmp_error_stream,
2700 "Cannot insert breakpoint %d: %s\n",
2701 bl->owner->number,
2702 bp_err_message);
2703 }
2704 }
2705 return 1;
2706
2707 }
2708 }
2709 else
2710 bl->inserted = 1;
2711
2712 return 0;
2713 }
2714
2715 else if (bl->loc_type == bp_loc_hardware_watchpoint
2716 /* NOTE drow/2003-09-08: This state only exists for removing
2717 watchpoints. It's not clear that it's necessary... */
2718 && bl->owner->disposition != disp_del_at_next_stop)
2719 {
2720 int val;
2721
2722 gdb_assert (bl->owner->ops != NULL
2723 && bl->owner->ops->insert_location != NULL);
2724
2725 val = bl->owner->ops->insert_location (bl);
2726
2727 /* If trying to set a read-watchpoint, and it turns out it's not
2728 supported, try emulating one with an access watchpoint. */
2729 if (val == 1 && bl->watchpoint_type == hw_read)
2730 {
2731 struct bp_location *loc, **loc_temp;
2732
2733 /* But don't try to insert it, if there's already another
2734 hw_access location that would be considered a duplicate
2735 of this one. */
2736 ALL_BP_LOCATIONS (loc, loc_temp)
2737 if (loc != bl
2738 && loc->watchpoint_type == hw_access
2739 && watchpoint_locations_match (bl, loc))
2740 {
2741 bl->duplicate = 1;
2742 bl->inserted = 1;
2743 bl->target_info = loc->target_info;
2744 bl->watchpoint_type = hw_access;
2745 val = 0;
2746 break;
2747 }
2748
2749 if (val == 1)
2750 {
2751 bl->watchpoint_type = hw_access;
2752 val = bl->owner->ops->insert_location (bl);
2753
2754 if (val)
2755 /* Back to the original value. */
2756 bl->watchpoint_type = hw_read;
2757 }
2758 }
2759
2760 bl->inserted = (val == 0);
2761 }
2762
2763 else if (bl->owner->type == bp_catchpoint)
2764 {
2765 int val;
2766
2767 gdb_assert (bl->owner->ops != NULL
2768 && bl->owner->ops->insert_location != NULL);
2769
2770 val = bl->owner->ops->insert_location (bl);
2771 if (val)
2772 {
2773 bl->owner->enable_state = bp_disabled;
2774
2775 if (val == 1)
2776 warning (_("\
2777 Error inserting catchpoint %d: Your system does not support this type\n\
2778 of catchpoint."), bl->owner->number);
2779 else
2780 warning (_("Error inserting catchpoint %d."), bl->owner->number);
2781 }
2782
2783 bl->inserted = (val == 0);
2784
2785 /* We've already printed an error message if there was a problem
2786 inserting this catchpoint, and we've disabled the catchpoint,
2787 so just return success. */
2788 return 0;
2789 }
2790
2791 return 0;
2792 }
2793
2794 /* This function is called when program space PSPACE is about to be
2795 deleted. It takes care of updating breakpoints to not reference
2796 PSPACE anymore. */
2797
2798 void
2799 breakpoint_program_space_exit (struct program_space *pspace)
2800 {
2801 struct breakpoint *b, *b_temp;
2802 struct bp_location *loc, **loc_temp;
2803
2804 /* Remove any breakpoint that was set through this program space. */
2805 ALL_BREAKPOINTS_SAFE (b, b_temp)
2806 {
2807 if (b->pspace == pspace)
2808 delete_breakpoint (b);
2809 }
2810
2811 /* Breakpoints set through other program spaces could have locations
2812 bound to PSPACE as well. Remove those. */
2813 ALL_BP_LOCATIONS (loc, loc_temp)
2814 {
2815 struct bp_location *tmp;
2816
2817 if (loc->pspace == pspace)
2818 {
2819 /* ALL_BP_LOCATIONS bp_location has LOC->OWNER always non-NULL. */
2820 if (loc->owner->loc == loc)
2821 loc->owner->loc = loc->next;
2822 else
2823 for (tmp = loc->owner->loc; tmp->next != NULL; tmp = tmp->next)
2824 if (tmp->next == loc)
2825 {
2826 tmp->next = loc->next;
2827 break;
2828 }
2829 }
2830 }
2831
2832 /* Now update the global location list to permanently delete the
2833 removed locations above. */
2834 update_global_location_list (0);
2835 }
2836
2837 /* Make sure all breakpoints are inserted in inferior.
2838 Throws exception on any error.
2839 A breakpoint that is already inserted won't be inserted
2840 again, so calling this function twice is safe. */
2841 void
2842 insert_breakpoints (void)
2843 {
2844 struct breakpoint *bpt;
2845
2846 ALL_BREAKPOINTS (bpt)
2847 if (is_hardware_watchpoint (bpt))
2848 {
2849 struct watchpoint *w = (struct watchpoint *) bpt;
2850
2851 update_watchpoint (w, 0 /* don't reparse. */);
2852 }
2853
2854 update_global_location_list (1);
2855
2856 /* update_global_location_list does not insert breakpoints when
2857 always_inserted_mode is not enabled. Explicitly insert them
2858 now. */
2859 if (!breakpoints_always_inserted_mode ())
2860 insert_breakpoint_locations ();
2861 }
2862
2863 /* Invoke CALLBACK for each of bp_location. */
2864
2865 void
2866 iterate_over_bp_locations (walk_bp_location_callback callback)
2867 {
2868 struct bp_location *loc, **loc_tmp;
2869
2870 ALL_BP_LOCATIONS (loc, loc_tmp)
2871 {
2872 callback (loc, NULL);
2873 }
2874 }
2875
2876 /* This is used when we need to synch breakpoint conditions between GDB and the
2877 target. It is the case with deleting and disabling of breakpoints when using
2878 always-inserted mode. */
2879
2880 static void
2881 update_inserted_breakpoint_locations (void)
2882 {
2883 struct bp_location *bl, **blp_tmp;
2884 int error_flag = 0;
2885 int val = 0;
2886 int disabled_breaks = 0;
2887 int hw_breakpoint_error = 0;
2888 int hw_bp_details_reported = 0;
2889
2890 struct ui_file *tmp_error_stream = mem_fileopen ();
2891 struct cleanup *cleanups = make_cleanup_ui_file_delete (tmp_error_stream);
2892
2893 /* Explicitly mark the warning -- this will only be printed if
2894 there was an error. */
2895 fprintf_unfiltered (tmp_error_stream, "Warning:\n");
2896
2897 save_current_space_and_thread ();
2898
2899 ALL_BP_LOCATIONS (bl, blp_tmp)
2900 {
2901 /* We only want to update software breakpoints and hardware
2902 breakpoints. */
2903 if (!is_breakpoint (bl->owner))
2904 continue;
2905
2906 /* We only want to update locations that are already inserted
2907 and need updating. This is to avoid unwanted insertion during
2908 deletion of breakpoints. */
2909 if (!bl->inserted || (bl->inserted && !bl->needs_update))
2910 continue;
2911
2912 switch_to_program_space_and_thread (bl->pspace);
2913
2914 /* For targets that support global breakpoints, there's no need
2915 to select an inferior to insert breakpoint to. In fact, even
2916 if we aren't attached to any process yet, we should still
2917 insert breakpoints. */
2918 if (!gdbarch_has_global_breakpoints (target_gdbarch ())
2919 && ptid_equal (inferior_ptid, null_ptid))
2920 continue;
2921
2922 val = insert_bp_location (bl, tmp_error_stream, &disabled_breaks,
2923 &hw_breakpoint_error, &hw_bp_details_reported);
2924 if (val)
2925 error_flag = val;
2926 }
2927
2928 if (error_flag)
2929 {
2930 target_terminal_ours_for_output ();
2931 error_stream (tmp_error_stream);
2932 }
2933
2934 do_cleanups (cleanups);
2935 }
2936
2937 /* Used when starting or continuing the program. */
2938
2939 static void
2940 insert_breakpoint_locations (void)
2941 {
2942 struct breakpoint *bpt;
2943 struct bp_location *bl, **blp_tmp;
2944 int error_flag = 0;
2945 int val = 0;
2946 int disabled_breaks = 0;
2947 int hw_breakpoint_error = 0;
2948 int hw_bp_error_explained_already = 0;
2949
2950 struct ui_file *tmp_error_stream = mem_fileopen ();
2951 struct cleanup *cleanups = make_cleanup_ui_file_delete (tmp_error_stream);
2952
2953 /* Explicitly mark the warning -- this will only be printed if
2954 there was an error. */
2955 fprintf_unfiltered (tmp_error_stream, "Warning:\n");
2956
2957 save_current_space_and_thread ();
2958
2959 ALL_BP_LOCATIONS (bl, blp_tmp)
2960 {
2961 if (!should_be_inserted (bl) || (bl->inserted && !bl->needs_update))
2962 continue;
2963
2964 /* There is no point inserting thread-specific breakpoints if
2965 the thread no longer exists. ALL_BP_LOCATIONS bp_location
2966 has BL->OWNER always non-NULL. */
2967 if (bl->owner->thread != -1
2968 && !valid_thread_id (bl->owner->thread))
2969 continue;
2970
2971 switch_to_program_space_and_thread (bl->pspace);
2972
2973 /* For targets that support global breakpoints, there's no need
2974 to select an inferior to insert breakpoint to. In fact, even
2975 if we aren't attached to any process yet, we should still
2976 insert breakpoints. */
2977 if (!gdbarch_has_global_breakpoints (target_gdbarch ())
2978 && ptid_equal (inferior_ptid, null_ptid))
2979 continue;
2980
2981 val = insert_bp_location (bl, tmp_error_stream, &disabled_breaks,
2982 &hw_breakpoint_error, &hw_bp_error_explained_already);
2983 if (val)
2984 error_flag = val;
2985 }
2986
2987 /* If we failed to insert all locations of a watchpoint, remove
2988 them, as half-inserted watchpoint is of limited use. */
2989 ALL_BREAKPOINTS (bpt)
2990 {
2991 int some_failed = 0;
2992 struct bp_location *loc;
2993
2994 if (!is_hardware_watchpoint (bpt))
2995 continue;
2996
2997 if (!breakpoint_enabled (bpt))
2998 continue;
2999
3000 if (bpt->disposition == disp_del_at_next_stop)
3001 continue;
3002
3003 for (loc = bpt->loc; loc; loc = loc->next)
3004 if (!loc->inserted && should_be_inserted (loc))
3005 {
3006 some_failed = 1;
3007 break;
3008 }
3009 if (some_failed)
3010 {
3011 for (loc = bpt->loc; loc; loc = loc->next)
3012 if (loc->inserted)
3013 remove_breakpoint (loc, mark_uninserted);
3014
3015 hw_breakpoint_error = 1;
3016 fprintf_unfiltered (tmp_error_stream,
3017 "Could not insert hardware watchpoint %d.\n",
3018 bpt->number);
3019 error_flag = -1;
3020 }
3021 }
3022
3023 if (error_flag)
3024 {
3025 /* If a hardware breakpoint or watchpoint was inserted, add a
3026 message about possibly exhausted resources. */
3027 if (hw_breakpoint_error && !hw_bp_error_explained_already)
3028 {
3029 fprintf_unfiltered (tmp_error_stream,
3030 "Could not insert hardware breakpoints:\n\
3031 You may have requested too many hardware breakpoints/watchpoints.\n");
3032 }
3033 target_terminal_ours_for_output ();
3034 error_stream (tmp_error_stream);
3035 }
3036
3037 do_cleanups (cleanups);
3038 }
3039
3040 /* Used when the program stops.
3041 Returns zero if successful, or non-zero if there was a problem
3042 removing a breakpoint location. */
3043
3044 int
3045 remove_breakpoints (void)
3046 {
3047 struct bp_location *bl, **blp_tmp;
3048 int val = 0;
3049
3050 ALL_BP_LOCATIONS (bl, blp_tmp)
3051 {
3052 if (bl->inserted && !is_tracepoint (bl->owner))
3053 val |= remove_breakpoint (bl, mark_uninserted);
3054 }
3055 return val;
3056 }
3057
3058 /* When a thread exits, remove breakpoints that are related to
3059 that thread. */
3060
3061 static void
3062 remove_threaded_breakpoints (struct thread_info *tp, int silent)
3063 {
3064 struct breakpoint *b, *b_tmp;
3065
3066 ALL_BREAKPOINTS_SAFE (b, b_tmp)
3067 {
3068 if (b->thread == tp->num && user_breakpoint_p (b))
3069 {
3070 b->disposition = disp_del_at_next_stop;
3071
3072 printf_filtered (_("\
3073 Thread-specific breakpoint %d deleted - thread %d no longer in the thread list.\n"),
3074 b->number, tp->num);
3075
3076 /* Hide it from the user. */
3077 b->number = 0;
3078 }
3079 }
3080 }
3081
3082 /* Remove breakpoints of process PID. */
3083
3084 int
3085 remove_breakpoints_pid (int pid)
3086 {
3087 struct bp_location *bl, **blp_tmp;
3088 int val;
3089 struct inferior *inf = find_inferior_pid (pid);
3090
3091 ALL_BP_LOCATIONS (bl, blp_tmp)
3092 {
3093 if (bl->pspace != inf->pspace)
3094 continue;
3095
3096 if (bl->owner->type == bp_dprintf)
3097 continue;
3098
3099 if (bl->inserted)
3100 {
3101 val = remove_breakpoint (bl, mark_uninserted);
3102 if (val != 0)
3103 return val;
3104 }
3105 }
3106 return 0;
3107 }
3108
3109 int
3110 reattach_breakpoints (int pid)
3111 {
3112 struct cleanup *old_chain;
3113 struct bp_location *bl, **blp_tmp;
3114 int val;
3115 struct ui_file *tmp_error_stream;
3116 int dummy1 = 0, dummy2 = 0, dummy3 = 0;
3117 struct inferior *inf;
3118 struct thread_info *tp;
3119
3120 tp = any_live_thread_of_process (pid);
3121 if (tp == NULL)
3122 return 1;
3123
3124 inf = find_inferior_pid (pid);
3125 old_chain = save_inferior_ptid ();
3126
3127 inferior_ptid = tp->ptid;
3128
3129 tmp_error_stream = mem_fileopen ();
3130 make_cleanup_ui_file_delete (tmp_error_stream);
3131
3132 ALL_BP_LOCATIONS (bl, blp_tmp)
3133 {
3134 if (bl->pspace != inf->pspace)
3135 continue;
3136
3137 if (bl->inserted)
3138 {
3139 bl->inserted = 0;
3140 val = insert_bp_location (bl, tmp_error_stream, &dummy1, &dummy2, &dummy3);
3141 if (val != 0)
3142 {
3143 do_cleanups (old_chain);
3144 return val;
3145 }
3146 }
3147 }
3148 do_cleanups (old_chain);
3149 return 0;
3150 }
3151
3152 static int internal_breakpoint_number = -1;
3153
3154 /* Set the breakpoint number of B, depending on the value of INTERNAL.
3155 If INTERNAL is non-zero, the breakpoint number will be populated
3156 from internal_breakpoint_number and that variable decremented.
3157 Otherwise the breakpoint number will be populated from
3158 breakpoint_count and that value incremented. Internal breakpoints
3159 do not set the internal var bpnum. */
3160 static void
3161 set_breakpoint_number (int internal, struct breakpoint *b)
3162 {
3163 if (internal)
3164 b->number = internal_breakpoint_number--;
3165 else
3166 {
3167 set_breakpoint_count (breakpoint_count + 1);
3168 b->number = breakpoint_count;
3169 }
3170 }
3171
3172 static struct breakpoint *
3173 create_internal_breakpoint (struct gdbarch *gdbarch,
3174 CORE_ADDR address, enum bptype type,
3175 const struct breakpoint_ops *ops)
3176 {
3177 struct symtab_and_line sal;
3178 struct breakpoint *b;
3179
3180 init_sal (&sal); /* Initialize to zeroes. */
3181
3182 sal.pc = address;
3183 sal.section = find_pc_overlay (sal.pc);
3184 sal.pspace = current_program_space;
3185
3186 b = set_raw_breakpoint (gdbarch, sal, type, ops);
3187 b->number = internal_breakpoint_number--;
3188 b->disposition = disp_donttouch;
3189
3190 return b;
3191 }
3192
3193 static const char *const longjmp_names[] =
3194 {
3195 "longjmp", "_longjmp", "siglongjmp", "_siglongjmp"
3196 };
3197 #define NUM_LONGJMP_NAMES ARRAY_SIZE(longjmp_names)
3198
3199 /* Per-objfile data private to breakpoint.c. */
3200 struct breakpoint_objfile_data
3201 {
3202 /* Minimal symbol for "_ovly_debug_event" (if any). */
3203 struct bound_minimal_symbol overlay_msym;
3204
3205 /* Minimal symbol(s) for "longjmp", "siglongjmp", etc. (if any). */
3206 struct bound_minimal_symbol longjmp_msym[NUM_LONGJMP_NAMES];
3207
3208 /* True if we have looked for longjmp probes. */
3209 int longjmp_searched;
3210
3211 /* SystemTap probe points for longjmp (if any). */
3212 VEC (probe_p) *longjmp_probes;
3213
3214 /* Minimal symbol for "std::terminate()" (if any). */
3215 struct bound_minimal_symbol terminate_msym;
3216
3217 /* Minimal symbol for "_Unwind_DebugHook" (if any). */
3218 struct bound_minimal_symbol exception_msym;
3219
3220 /* True if we have looked for exception probes. */
3221 int exception_searched;
3222
3223 /* SystemTap probe points for unwinding (if any). */
3224 VEC (probe_p) *exception_probes;
3225 };
3226
3227 static const struct objfile_data *breakpoint_objfile_key;
3228
3229 /* Minimal symbol not found sentinel. */
3230 static struct minimal_symbol msym_not_found;
3231
3232 /* Returns TRUE if MSYM point to the "not found" sentinel. */
3233
3234 static int
3235 msym_not_found_p (const struct minimal_symbol *msym)
3236 {
3237 return msym == &msym_not_found;
3238 }
3239
3240 /* Return per-objfile data needed by breakpoint.c.
3241 Allocate the data if necessary. */
3242
3243 static struct breakpoint_objfile_data *
3244 get_breakpoint_objfile_data (struct objfile *objfile)
3245 {
3246 struct breakpoint_objfile_data *bp_objfile_data;
3247
3248 bp_objfile_data = objfile_data (objfile, breakpoint_objfile_key);
3249 if (bp_objfile_data == NULL)
3250 {
3251 bp_objfile_data = obstack_alloc (&objfile->objfile_obstack,
3252 sizeof (*bp_objfile_data));
3253
3254 memset (bp_objfile_data, 0, sizeof (*bp_objfile_data));
3255 set_objfile_data (objfile, breakpoint_objfile_key, bp_objfile_data);
3256 }
3257 return bp_objfile_data;
3258 }
3259
3260 static void
3261 free_breakpoint_probes (struct objfile *obj, void *data)
3262 {
3263 struct breakpoint_objfile_data *bp_objfile_data = data;
3264
3265 VEC_free (probe_p, bp_objfile_data->longjmp_probes);
3266 VEC_free (probe_p, bp_objfile_data->exception_probes);
3267 }
3268
3269 static void
3270 create_overlay_event_breakpoint (void)
3271 {
3272 struct objfile *objfile;
3273 const char *const func_name = "_ovly_debug_event";
3274
3275 ALL_OBJFILES (objfile)
3276 {
3277 struct breakpoint *b;
3278 struct breakpoint_objfile_data *bp_objfile_data;
3279 CORE_ADDR addr;
3280
3281 bp_objfile_data = get_breakpoint_objfile_data (objfile);
3282
3283 if (msym_not_found_p (bp_objfile_data->overlay_msym.minsym))
3284 continue;
3285
3286 if (bp_objfile_data->overlay_msym.minsym == NULL)
3287 {
3288 struct bound_minimal_symbol m;
3289
3290 m = lookup_minimal_symbol_text (func_name, objfile);
3291 if (m.minsym == NULL)
3292 {
3293 /* Avoid future lookups in this objfile. */
3294 bp_objfile_data->overlay_msym.minsym = &msym_not_found;
3295 continue;
3296 }
3297 bp_objfile_data->overlay_msym = m;
3298 }
3299
3300 addr = BMSYMBOL_VALUE_ADDRESS (bp_objfile_data->overlay_msym);
3301 b = create_internal_breakpoint (get_objfile_arch (objfile), addr,
3302 bp_overlay_event,
3303 &internal_breakpoint_ops);
3304 b->addr_string = xstrdup (func_name);
3305
3306 if (overlay_debugging == ovly_auto)
3307 {
3308 b->enable_state = bp_enabled;
3309 overlay_events_enabled = 1;
3310 }
3311 else
3312 {
3313 b->enable_state = bp_disabled;
3314 overlay_events_enabled = 0;
3315 }
3316 }
3317 update_global_location_list (1);
3318 }
3319
3320 static void
3321 create_longjmp_master_breakpoint (void)
3322 {
3323 struct program_space *pspace;
3324 struct cleanup *old_chain;
3325
3326 old_chain = save_current_program_space ();
3327
3328 ALL_PSPACES (pspace)
3329 {
3330 struct objfile *objfile;
3331
3332 set_current_program_space (pspace);
3333
3334 ALL_OBJFILES (objfile)
3335 {
3336 int i;
3337 struct gdbarch *gdbarch;
3338 struct breakpoint_objfile_data *bp_objfile_data;
3339
3340 gdbarch = get_objfile_arch (objfile);
3341
3342 bp_objfile_data = get_breakpoint_objfile_data (objfile);
3343
3344 if (!bp_objfile_data->longjmp_searched)
3345 {
3346 VEC (probe_p) *ret;
3347
3348 ret = find_probes_in_objfile (objfile, "libc", "longjmp");
3349 if (ret != NULL)
3350 {
3351 /* We are only interested in checking one element. */
3352 struct probe *p = VEC_index (probe_p, ret, 0);
3353
3354 if (!can_evaluate_probe_arguments (p))
3355 {
3356 /* We cannot use the probe interface here, because it does
3357 not know how to evaluate arguments. */
3358 VEC_free (probe_p, ret);
3359 ret = NULL;
3360 }
3361 }
3362 bp_objfile_data->longjmp_probes = ret;
3363 bp_objfile_data->longjmp_searched = 1;
3364 }
3365
3366 if (bp_objfile_data->longjmp_probes != NULL)
3367 {
3368 int i;
3369 struct probe *probe;
3370 struct gdbarch *gdbarch = get_objfile_arch (objfile);
3371
3372 for (i = 0;
3373 VEC_iterate (probe_p,
3374 bp_objfile_data->longjmp_probes,
3375 i, probe);
3376 ++i)
3377 {
3378 struct breakpoint *b;
3379
3380 b = create_internal_breakpoint (gdbarch,
3381 get_probe_address (probe,
3382 objfile),
3383 bp_longjmp_master,
3384 &internal_breakpoint_ops);
3385 b->addr_string = xstrdup ("-probe-stap libc:longjmp");
3386 b->enable_state = bp_disabled;
3387 }
3388
3389 continue;
3390 }
3391
3392 if (!gdbarch_get_longjmp_target_p (gdbarch))
3393 continue;
3394
3395 for (i = 0; i < NUM_LONGJMP_NAMES; i++)
3396 {
3397 struct breakpoint *b;
3398 const char *func_name;
3399 CORE_ADDR addr;
3400
3401 if (msym_not_found_p (bp_objfile_data->longjmp_msym[i].minsym))
3402 continue;
3403
3404 func_name = longjmp_names[i];
3405 if (bp_objfile_data->longjmp_msym[i].minsym == NULL)
3406 {
3407 struct bound_minimal_symbol m;
3408
3409 m = lookup_minimal_symbol_text (func_name, objfile);
3410 if (m.minsym == NULL)
3411 {
3412 /* Prevent future lookups in this objfile. */
3413 bp_objfile_data->longjmp_msym[i].minsym = &msym_not_found;
3414 continue;
3415 }
3416 bp_objfile_data->longjmp_msym[i] = m;
3417 }
3418
3419 addr = BMSYMBOL_VALUE_ADDRESS (bp_objfile_data->longjmp_msym[i]);
3420 b = create_internal_breakpoint (gdbarch, addr, bp_longjmp_master,
3421 &internal_breakpoint_ops);
3422 b->addr_string = xstrdup (func_name);
3423 b->enable_state = bp_disabled;
3424 }
3425 }
3426 }
3427 update_global_location_list (1);
3428
3429 do_cleanups (old_chain);
3430 }
3431
3432 /* Create a master std::terminate breakpoint. */
3433 static void
3434 create_std_terminate_master_breakpoint (void)
3435 {
3436 struct program_space *pspace;
3437 struct cleanup *old_chain;
3438 const char *const func_name = "std::terminate()";
3439
3440 old_chain = save_current_program_space ();
3441
3442 ALL_PSPACES (pspace)
3443 {
3444 struct objfile *objfile;
3445 CORE_ADDR addr;
3446
3447 set_current_program_space (pspace);
3448
3449 ALL_OBJFILES (objfile)
3450 {
3451 struct breakpoint *b;
3452 struct breakpoint_objfile_data *bp_objfile_data;
3453
3454 bp_objfile_data = get_breakpoint_objfile_data (objfile);
3455
3456 if (msym_not_found_p (bp_objfile_data->terminate_msym.minsym))
3457 continue;
3458
3459 if (bp_objfile_data->terminate_msym.minsym == NULL)
3460 {
3461 struct bound_minimal_symbol m;
3462
3463 m = lookup_minimal_symbol (func_name, NULL, objfile);
3464 if (m.minsym == NULL || (MSYMBOL_TYPE (m.minsym) != mst_text
3465 && MSYMBOL_TYPE (m.minsym) != mst_file_text))
3466 {
3467 /* Prevent future lookups in this objfile. */
3468 bp_objfile_data->terminate_msym.minsym = &msym_not_found;
3469 continue;
3470 }
3471 bp_objfile_data->terminate_msym = m;
3472 }
3473
3474 addr = BMSYMBOL_VALUE_ADDRESS (bp_objfile_data->terminate_msym);
3475 b = create_internal_breakpoint (get_objfile_arch (objfile), addr,
3476 bp_std_terminate_master,
3477 &internal_breakpoint_ops);
3478 b->addr_string = xstrdup (func_name);
3479 b->enable_state = bp_disabled;
3480 }
3481 }
3482
3483 update_global_location_list (1);
3484
3485 do_cleanups (old_chain);
3486 }
3487
3488 /* Install a master breakpoint on the unwinder's debug hook. */
3489
3490 static void
3491 create_exception_master_breakpoint (void)
3492 {
3493 struct objfile *objfile;
3494 const char *const func_name = "_Unwind_DebugHook";
3495
3496 ALL_OBJFILES (objfile)
3497 {
3498 struct breakpoint *b;
3499 struct gdbarch *gdbarch;
3500 struct breakpoint_objfile_data *bp_objfile_data;
3501 CORE_ADDR addr;
3502
3503 bp_objfile_data = get_breakpoint_objfile_data (objfile);
3504
3505 /* We prefer the SystemTap probe point if it exists. */
3506 if (!bp_objfile_data->exception_searched)
3507 {
3508 VEC (probe_p) *ret;
3509
3510 ret = find_probes_in_objfile (objfile, "libgcc", "unwind");
3511
3512 if (ret != NULL)
3513 {
3514 /* We are only interested in checking one element. */
3515 struct probe *p = VEC_index (probe_p, ret, 0);
3516
3517 if (!can_evaluate_probe_arguments (p))
3518 {
3519 /* We cannot use the probe interface here, because it does
3520 not know how to evaluate arguments. */
3521 VEC_free (probe_p, ret);
3522 ret = NULL;
3523 }
3524 }
3525 bp_objfile_data->exception_probes = ret;
3526 bp_objfile_data->exception_searched = 1;
3527 }
3528
3529 if (bp_objfile_data->exception_probes != NULL)
3530 {
3531 struct gdbarch *gdbarch = get_objfile_arch (objfile);
3532 int i;
3533 struct probe *probe;
3534
3535 for (i = 0;
3536 VEC_iterate (probe_p,
3537 bp_objfile_data->exception_probes,
3538 i, probe);
3539 ++i)
3540 {
3541 struct breakpoint *b;
3542
3543 b = create_internal_breakpoint (gdbarch,
3544 get_probe_address (probe,
3545 objfile),
3546 bp_exception_master,
3547 &internal_breakpoint_ops);
3548 b->addr_string = xstrdup ("-probe-stap libgcc:unwind");
3549 b->enable_state = bp_disabled;
3550 }
3551
3552 continue;
3553 }
3554
3555 /* Otherwise, try the hook function. */
3556
3557 if (msym_not_found_p (bp_objfile_data->exception_msym.minsym))
3558 continue;
3559
3560 gdbarch = get_objfile_arch (objfile);
3561
3562 if (bp_objfile_data->exception_msym.minsym == NULL)
3563 {
3564 struct bound_minimal_symbol debug_hook;
3565
3566 debug_hook = lookup_minimal_symbol (func_name, NULL, objfile);
3567 if (debug_hook.minsym == NULL)
3568 {
3569 bp_objfile_data->exception_msym.minsym = &msym_not_found;
3570 continue;
3571 }
3572
3573 bp_objfile_data->exception_msym = debug_hook;
3574 }
3575
3576 addr = BMSYMBOL_VALUE_ADDRESS (bp_objfile_data->exception_msym);
3577 addr = gdbarch_convert_from_func_ptr_addr (gdbarch, addr,
3578 &current_target);
3579 b = create_internal_breakpoint (gdbarch, addr, bp_exception_master,
3580 &internal_breakpoint_ops);
3581 b->addr_string = xstrdup (func_name);
3582 b->enable_state = bp_disabled;
3583 }
3584
3585 update_global_location_list (1);
3586 }
3587
3588 void
3589 update_breakpoints_after_exec (void)
3590 {
3591 struct breakpoint *b, *b_tmp;
3592 struct bp_location *bploc, **bplocp_tmp;
3593
3594 /* We're about to delete breakpoints from GDB's lists. If the
3595 INSERTED flag is true, GDB will try to lift the breakpoints by
3596 writing the breakpoints' "shadow contents" back into memory. The
3597 "shadow contents" are NOT valid after an exec, so GDB should not
3598 do that. Instead, the target is responsible from marking
3599 breakpoints out as soon as it detects an exec. We don't do that
3600 here instead, because there may be other attempts to delete
3601 breakpoints after detecting an exec and before reaching here. */
3602 ALL_BP_LOCATIONS (bploc, bplocp_tmp)
3603 if (bploc->pspace == current_program_space)
3604 gdb_assert (!bploc->inserted);
3605
3606 ALL_BREAKPOINTS_SAFE (b, b_tmp)
3607 {
3608 if (b->pspace != current_program_space)
3609 continue;
3610
3611 /* Solib breakpoints must be explicitly reset after an exec(). */
3612 if (b->type == bp_shlib_event)
3613 {
3614 delete_breakpoint (b);
3615 continue;
3616 }
3617
3618 /* JIT breakpoints must be explicitly reset after an exec(). */
3619 if (b->type == bp_jit_event)
3620 {
3621 delete_breakpoint (b);
3622 continue;
3623 }
3624
3625 /* Thread event breakpoints must be set anew after an exec(),
3626 as must overlay event and longjmp master breakpoints. */
3627 if (b->type == bp_thread_event || b->type == bp_overlay_event
3628 || b->type == bp_longjmp_master || b->type == bp_std_terminate_master
3629 || b->type == bp_exception_master)
3630 {
3631 delete_breakpoint (b);
3632 continue;
3633 }
3634
3635 /* Step-resume breakpoints are meaningless after an exec(). */
3636 if (b->type == bp_step_resume || b->type == bp_hp_step_resume)
3637 {
3638 delete_breakpoint (b);
3639 continue;
3640 }
3641
3642 /* Longjmp and longjmp-resume breakpoints are also meaningless
3643 after an exec. */
3644 if (b->type == bp_longjmp || b->type == bp_longjmp_resume
3645 || b->type == bp_longjmp_call_dummy
3646 || b->type == bp_exception || b->type == bp_exception_resume)
3647 {
3648 delete_breakpoint (b);
3649 continue;
3650 }
3651
3652 if (b->type == bp_catchpoint)
3653 {
3654 /* For now, none of the bp_catchpoint breakpoints need to
3655 do anything at this point. In the future, if some of
3656 the catchpoints need to something, we will need to add
3657 a new method, and call this method from here. */
3658 continue;
3659 }
3660
3661 /* bp_finish is a special case. The only way we ought to be able
3662 to see one of these when an exec() has happened, is if the user
3663 caught a vfork, and then said "finish". Ordinarily a finish just
3664 carries them to the call-site of the current callee, by setting
3665 a temporary bp there and resuming. But in this case, the finish
3666 will carry them entirely through the vfork & exec.
3667
3668 We don't want to allow a bp_finish to remain inserted now. But
3669 we can't safely delete it, 'cause finish_command has a handle to
3670 the bp on a bpstat, and will later want to delete it. There's a
3671 chance (and I've seen it happen) that if we delete the bp_finish
3672 here, that its storage will get reused by the time finish_command
3673 gets 'round to deleting the "use to be a bp_finish" breakpoint.
3674 We really must allow finish_command to delete a bp_finish.
3675
3676 In the absence of a general solution for the "how do we know
3677 it's safe to delete something others may have handles to?"
3678 problem, what we'll do here is just uninsert the bp_finish, and
3679 let finish_command delete it.
3680
3681 (We know the bp_finish is "doomed" in the sense that it's
3682 momentary, and will be deleted as soon as finish_command sees
3683 the inferior stopped. So it doesn't matter that the bp's
3684 address is probably bogus in the new a.out, unlike e.g., the
3685 solib breakpoints.) */
3686
3687 if (b->type == bp_finish)
3688 {
3689 continue;
3690 }
3691
3692 /* Without a symbolic address, we have little hope of the
3693 pre-exec() address meaning the same thing in the post-exec()
3694 a.out. */
3695 if (b->addr_string == NULL)
3696 {
3697 delete_breakpoint (b);
3698 continue;
3699 }
3700 }
3701 /* FIXME what about longjmp breakpoints? Re-create them here? */
3702 create_overlay_event_breakpoint ();
3703 create_longjmp_master_breakpoint ();
3704 create_std_terminate_master_breakpoint ();
3705 create_exception_master_breakpoint ();
3706 }
3707
3708 int
3709 detach_breakpoints (ptid_t ptid)
3710 {
3711 struct bp_location *bl, **blp_tmp;
3712 int val = 0;
3713 struct cleanup *old_chain = save_inferior_ptid ();
3714 struct inferior *inf = current_inferior ();
3715
3716 if (ptid_get_pid (ptid) == ptid_get_pid (inferior_ptid))
3717 error (_("Cannot detach breakpoints of inferior_ptid"));
3718
3719 /* Set inferior_ptid; remove_breakpoint_1 uses this global. */
3720 inferior_ptid = ptid;
3721 ALL_BP_LOCATIONS (bl, blp_tmp)
3722 {
3723 if (bl->pspace != inf->pspace)
3724 continue;
3725
3726 /* This function must physically remove breakpoints locations
3727 from the specified ptid, without modifying the breakpoint
3728 package's state. Locations of type bp_loc_other are only
3729 maintained at GDB side. So, there is no need to remove
3730 these bp_loc_other locations. Moreover, removing these
3731 would modify the breakpoint package's state. */
3732 if (bl->loc_type == bp_loc_other)
3733 continue;
3734
3735 if (bl->inserted)
3736 val |= remove_breakpoint_1 (bl, mark_inserted);
3737 }
3738
3739 /* Detach single-step breakpoints as well. */
3740 detach_single_step_breakpoints ();
3741
3742 do_cleanups (old_chain);
3743 return val;
3744 }
3745
3746 /* Remove the breakpoint location BL from the current address space.
3747 Note that this is used to detach breakpoints from a child fork.
3748 When we get here, the child isn't in the inferior list, and neither
3749 do we have objects to represent its address space --- we should
3750 *not* look at bl->pspace->aspace here. */
3751
3752 static int
3753 remove_breakpoint_1 (struct bp_location *bl, insertion_state_t is)
3754 {
3755 int val;
3756
3757 /* BL is never in moribund_locations by our callers. */
3758 gdb_assert (bl->owner != NULL);
3759
3760 if (bl->owner->enable_state == bp_permanent)
3761 /* Permanent breakpoints cannot be inserted or removed. */
3762 return 0;
3763
3764 /* The type of none suggests that owner is actually deleted.
3765 This should not ever happen. */
3766 gdb_assert (bl->owner->type != bp_none);
3767
3768 if (bl->loc_type == bp_loc_software_breakpoint
3769 || bl->loc_type == bp_loc_hardware_breakpoint)
3770 {
3771 /* "Normal" instruction breakpoint: either the standard
3772 trap-instruction bp (bp_breakpoint), or a
3773 bp_hardware_breakpoint. */
3774
3775 /* First check to see if we have to handle an overlay. */
3776 if (overlay_debugging == ovly_off
3777 || bl->section == NULL
3778 || !(section_is_overlay (bl->section)))
3779 {
3780 /* No overlay handling: just remove the breakpoint. */
3781 val = bl->owner->ops->remove_location (bl);
3782 }
3783 else
3784 {
3785 /* This breakpoint is in an overlay section.
3786 Did we set a breakpoint at the LMA? */
3787 if (!overlay_events_enabled)
3788 {
3789 /* Yes -- overlay event support is not active, so we
3790 should have set a breakpoint at the LMA. Remove it.
3791 */
3792 /* Ignore any failures: if the LMA is in ROM, we will
3793 have already warned when we failed to insert it. */
3794 if (bl->loc_type == bp_loc_hardware_breakpoint)
3795 target_remove_hw_breakpoint (bl->gdbarch,
3796 &bl->overlay_target_info);
3797 else
3798 target_remove_breakpoint (bl->gdbarch,
3799 &bl->overlay_target_info);
3800 }
3801 /* Did we set a breakpoint at the VMA?
3802 If so, we will have marked the breakpoint 'inserted'. */
3803 if (bl->inserted)
3804 {
3805 /* Yes -- remove it. Previously we did not bother to
3806 remove the breakpoint if the section had been
3807 unmapped, but let's not rely on that being safe. We
3808 don't know what the overlay manager might do. */
3809
3810 /* However, we should remove *software* breakpoints only
3811 if the section is still mapped, or else we overwrite
3812 wrong code with the saved shadow contents. */
3813 if (bl->loc_type == bp_loc_hardware_breakpoint
3814 || section_is_mapped (bl->section))
3815 val = bl->owner->ops->remove_location (bl);
3816 else
3817 val = 0;
3818 }
3819 else
3820 {
3821 /* No -- not inserted, so no need to remove. No error. */
3822 val = 0;
3823 }
3824 }
3825
3826 /* In some cases, we might not be able to remove a breakpoint
3827 in a shared library that has already been removed, but we
3828 have not yet processed the shlib unload event. */
3829 if (val
3830 && bl->loc_type == bp_loc_software_breakpoint
3831 && solib_name_from_address (bl->pspace, bl->address))
3832 val = 0;
3833
3834 if (val)
3835 return val;
3836 bl->inserted = (is == mark_inserted);
3837 }
3838 else if (bl->loc_type == bp_loc_hardware_watchpoint)
3839 {
3840 gdb_assert (bl->owner->ops != NULL
3841 && bl->owner->ops->remove_location != NULL);
3842
3843 bl->inserted = (is == mark_inserted);
3844 bl->owner->ops->remove_location (bl);
3845
3846 /* Failure to remove any of the hardware watchpoints comes here. */
3847 if ((is == mark_uninserted) && (bl->inserted))
3848 warning (_("Could not remove hardware watchpoint %d."),
3849 bl->owner->number);
3850 }
3851 else if (bl->owner->type == bp_catchpoint
3852 && breakpoint_enabled (bl->owner)
3853 && !bl->duplicate)
3854 {
3855 gdb_assert (bl->owner->ops != NULL
3856 && bl->owner->ops->remove_location != NULL);
3857
3858 val = bl->owner->ops->remove_location (bl);
3859 if (val)
3860 return val;
3861
3862 bl->inserted = (is == mark_inserted);
3863 }
3864
3865 return 0;
3866 }
3867
3868 static int
3869 remove_breakpoint (struct bp_location *bl, insertion_state_t is)
3870 {
3871 int ret;
3872 struct cleanup *old_chain;
3873
3874 /* BL is never in moribund_locations by our callers. */
3875 gdb_assert (bl->owner != NULL);
3876
3877 if (bl->owner->enable_state == bp_permanent)
3878 /* Permanent breakpoints cannot be inserted or removed. */
3879 return 0;
3880
3881 /* The type of none suggests that owner is actually deleted.
3882 This should not ever happen. */
3883 gdb_assert (bl->owner->type != bp_none);
3884
3885 old_chain = save_current_space_and_thread ();
3886
3887 switch_to_program_space_and_thread (bl->pspace);
3888
3889 ret = remove_breakpoint_1 (bl, is);
3890
3891 do_cleanups (old_chain);
3892 return ret;
3893 }
3894
3895 /* Clear the "inserted" flag in all breakpoints. */
3896
3897 void
3898 mark_breakpoints_out (void)
3899 {
3900 struct bp_location *bl, **blp_tmp;
3901
3902 ALL_BP_LOCATIONS (bl, blp_tmp)
3903 if (bl->pspace == current_program_space)
3904 bl->inserted = 0;
3905 }
3906
3907 /* Clear the "inserted" flag in all breakpoints and delete any
3908 breakpoints which should go away between runs of the program.
3909
3910 Plus other such housekeeping that has to be done for breakpoints
3911 between runs.
3912
3913 Note: this function gets called at the end of a run (by
3914 generic_mourn_inferior) and when a run begins (by
3915 init_wait_for_inferior). */
3916
3917
3918
3919 void
3920 breakpoint_init_inferior (enum inf_context context)
3921 {
3922 struct breakpoint *b, *b_tmp;
3923 struct bp_location *bl, **blp_tmp;
3924 int ix;
3925 struct program_space *pspace = current_program_space;
3926
3927 /* If breakpoint locations are shared across processes, then there's
3928 nothing to do. */
3929 if (gdbarch_has_global_breakpoints (target_gdbarch ()))
3930 return;
3931
3932 ALL_BP_LOCATIONS (bl, blp_tmp)
3933 {
3934 /* ALL_BP_LOCATIONS bp_location has BL->OWNER always non-NULL. */
3935 if (bl->pspace == pspace
3936 && bl->owner->enable_state != bp_permanent)
3937 bl->inserted = 0;
3938 }
3939
3940 ALL_BREAKPOINTS_SAFE (b, b_tmp)
3941 {
3942 if (b->loc && b->loc->pspace != pspace)
3943 continue;
3944
3945 switch (b->type)
3946 {
3947 case bp_call_dummy:
3948 case bp_longjmp_call_dummy:
3949
3950 /* If the call dummy breakpoint is at the entry point it will
3951 cause problems when the inferior is rerun, so we better get
3952 rid of it. */
3953
3954 case bp_watchpoint_scope:
3955
3956 /* Also get rid of scope breakpoints. */
3957
3958 case bp_shlib_event:
3959
3960 /* Also remove solib event breakpoints. Their addresses may
3961 have changed since the last time we ran the program.
3962 Actually we may now be debugging against different target;
3963 and so the solib backend that installed this breakpoint may
3964 not be used in by the target. E.g.,
3965
3966 (gdb) file prog-linux
3967 (gdb) run # native linux target
3968 ...
3969 (gdb) kill
3970 (gdb) file prog-win.exe
3971 (gdb) tar rem :9999 # remote Windows gdbserver.
3972 */
3973
3974 case bp_step_resume:
3975
3976 /* Also remove step-resume breakpoints. */
3977
3978 delete_breakpoint (b);
3979 break;
3980
3981 case bp_watchpoint:
3982 case bp_hardware_watchpoint:
3983 case bp_read_watchpoint:
3984 case bp_access_watchpoint:
3985 {
3986 struct watchpoint *w = (struct watchpoint *) b;
3987
3988 /* Likewise for watchpoints on local expressions. */
3989 if (w->exp_valid_block != NULL)
3990 delete_breakpoint (b);
3991 else if (context == inf_starting)
3992 {
3993 /* Reset val field to force reread of starting value in
3994 insert_breakpoints. */
3995 if (w->val)
3996 value_free (w->val);
3997 w->val = NULL;
3998 w->val_valid = 0;
3999 }
4000 }
4001 break;
4002 default:
4003 break;
4004 }
4005 }
4006
4007 /* Get rid of the moribund locations. */
4008 for (ix = 0; VEC_iterate (bp_location_p, moribund_locations, ix, bl); ++ix)
4009 decref_bp_location (&bl);
4010 VEC_free (bp_location_p, moribund_locations);
4011 }
4012
4013 /* These functions concern about actual breakpoints inserted in the
4014 target --- to e.g. check if we need to do decr_pc adjustment or if
4015 we need to hop over the bkpt --- so we check for address space
4016 match, not program space. */
4017
4018 /* breakpoint_here_p (PC) returns non-zero if an enabled breakpoint
4019 exists at PC. It returns ordinary_breakpoint_here if it's an
4020 ordinary breakpoint, or permanent_breakpoint_here if it's a
4021 permanent breakpoint.
4022 - When continuing from a location with an ordinary breakpoint, we
4023 actually single step once before calling insert_breakpoints.
4024 - When continuing from a location with a permanent breakpoint, we
4025 need to use the `SKIP_PERMANENT_BREAKPOINT' macro, provided by
4026 the target, to advance the PC past the breakpoint. */
4027
4028 enum breakpoint_here
4029 breakpoint_here_p (struct address_space *aspace, CORE_ADDR pc)
4030 {
4031 struct bp_location *bl, **blp_tmp;
4032 int any_breakpoint_here = 0;
4033
4034 ALL_BP_LOCATIONS (bl, blp_tmp)
4035 {
4036 if (bl->loc_type != bp_loc_software_breakpoint
4037 && bl->loc_type != bp_loc_hardware_breakpoint)
4038 continue;
4039
4040 /* ALL_BP_LOCATIONS bp_location has BL->OWNER always non-NULL. */
4041 if ((breakpoint_enabled (bl->owner)
4042 || bl->owner->enable_state == bp_permanent)
4043 && breakpoint_location_address_match (bl, aspace, pc))
4044 {
4045 if (overlay_debugging
4046 && section_is_overlay (bl->section)
4047 && !section_is_mapped (bl->section))
4048 continue; /* unmapped overlay -- can't be a match */
4049 else if (bl->owner->enable_state == bp_permanent)
4050 return permanent_breakpoint_here;
4051 else
4052 any_breakpoint_here = 1;
4053 }
4054 }
4055
4056 return any_breakpoint_here ? ordinary_breakpoint_here : 0;
4057 }
4058
4059 /* Return true if there's a moribund breakpoint at PC. */
4060
4061 int
4062 moribund_breakpoint_here_p (struct address_space *aspace, CORE_ADDR pc)
4063 {
4064 struct bp_location *loc;
4065 int ix;
4066
4067 for (ix = 0; VEC_iterate (bp_location_p, moribund_locations, ix, loc); ++ix)
4068 if (breakpoint_location_address_match (loc, aspace, pc))
4069 return 1;
4070
4071 return 0;
4072 }
4073
4074 /* Returns non-zero if there's a breakpoint inserted at PC, which is
4075 inserted using regular breakpoint_chain / bp_location array
4076 mechanism. This does not check for single-step breakpoints, which
4077 are inserted and removed using direct target manipulation. */
4078
4079 int
4080 regular_breakpoint_inserted_here_p (struct address_space *aspace,
4081 CORE_ADDR pc)
4082 {
4083 struct bp_location *bl, **blp_tmp;
4084
4085 ALL_BP_LOCATIONS (bl, blp_tmp)
4086 {
4087 if (bl->loc_type != bp_loc_software_breakpoint
4088 && bl->loc_type != bp_loc_hardware_breakpoint)
4089 continue;
4090
4091 if (bl->inserted
4092 && breakpoint_location_address_match (bl, aspace, pc))
4093 {
4094 if (overlay_debugging
4095 && section_is_overlay (bl->section)
4096 && !section_is_mapped (bl->section))
4097 continue; /* unmapped overlay -- can't be a match */
4098 else
4099 return 1;
4100 }
4101 }
4102 return 0;
4103 }
4104
4105 /* Returns non-zero iff there's either regular breakpoint
4106 or a single step breakpoint inserted at PC. */
4107
4108 int
4109 breakpoint_inserted_here_p (struct address_space *aspace, CORE_ADDR pc)
4110 {
4111 if (regular_breakpoint_inserted_here_p (aspace, pc))
4112 return 1;
4113
4114 if (single_step_breakpoint_inserted_here_p (aspace, pc))
4115 return 1;
4116
4117 return 0;
4118 }
4119
4120 /* This function returns non-zero iff there is a software breakpoint
4121 inserted at PC. */
4122
4123 int
4124 software_breakpoint_inserted_here_p (struct address_space *aspace,
4125 CORE_ADDR pc)
4126 {
4127 struct bp_location *bl, **blp_tmp;
4128
4129 ALL_BP_LOCATIONS (bl, blp_tmp)
4130 {
4131 if (bl->loc_type != bp_loc_software_breakpoint)
4132 continue;
4133
4134 if (bl->inserted
4135 && breakpoint_address_match (bl->pspace->aspace, bl->address,
4136 aspace, pc))
4137 {
4138 if (overlay_debugging
4139 && section_is_overlay (bl->section)
4140 && !section_is_mapped (bl->section))
4141 continue; /* unmapped overlay -- can't be a match */
4142 else
4143 return 1;
4144 }
4145 }
4146
4147 /* Also check for software single-step breakpoints. */
4148 if (single_step_breakpoint_inserted_here_p (aspace, pc))
4149 return 1;
4150
4151 return 0;
4152 }
4153
4154 int
4155 hardware_watchpoint_inserted_in_range (struct address_space *aspace,
4156 CORE_ADDR addr, ULONGEST len)
4157 {
4158 struct breakpoint *bpt;
4159
4160 ALL_BREAKPOINTS (bpt)
4161 {
4162 struct bp_location *loc;
4163
4164 if (bpt->type != bp_hardware_watchpoint
4165 && bpt->type != bp_access_watchpoint)
4166 continue;
4167
4168 if (!breakpoint_enabled (bpt))
4169 continue;
4170
4171 for (loc = bpt->loc; loc; loc = loc->next)
4172 if (loc->pspace->aspace == aspace && loc->inserted)
4173 {
4174 CORE_ADDR l, h;
4175
4176 /* Check for intersection. */
4177 l = max (loc->address, addr);
4178 h = min (loc->address + loc->length, addr + len);
4179 if (l < h)
4180 return 1;
4181 }
4182 }
4183 return 0;
4184 }
4185
4186 /* breakpoint_thread_match (PC, PTID) returns true if the breakpoint at
4187 PC is valid for process/thread PTID. */
4188
4189 int
4190 breakpoint_thread_match (struct address_space *aspace, CORE_ADDR pc,
4191 ptid_t ptid)
4192 {
4193 struct bp_location *bl, **blp_tmp;
4194 /* The thread and task IDs associated to PTID, computed lazily. */
4195 int thread = -1;
4196 int task = 0;
4197
4198 ALL_BP_LOCATIONS (bl, blp_tmp)
4199 {
4200 if (bl->loc_type != bp_loc_software_breakpoint
4201 && bl->loc_type != bp_loc_hardware_breakpoint)
4202 continue;
4203
4204 /* ALL_BP_LOCATIONS bp_location has bl->OWNER always non-NULL. */
4205 if (!breakpoint_enabled (bl->owner)
4206 && bl->owner->enable_state != bp_permanent)
4207 continue;
4208
4209 if (!breakpoint_location_address_match (bl, aspace, pc))
4210 continue;
4211
4212 if (bl->owner->thread != -1)
4213 {
4214 /* This is a thread-specific breakpoint. Check that ptid
4215 matches that thread. If thread hasn't been computed yet,
4216 it is now time to do so. */
4217 if (thread == -1)
4218 thread = pid_to_thread_id (ptid);
4219 if (bl->owner->thread != thread)
4220 continue;
4221 }
4222
4223 if (bl->owner->task != 0)
4224 {
4225 /* This is a task-specific breakpoint. Check that ptid
4226 matches that task. If task hasn't been computed yet,
4227 it is now time to do so. */
4228 if (task == 0)
4229 task = ada_get_task_number (ptid);
4230 if (bl->owner->task != task)
4231 continue;
4232 }
4233
4234 if (overlay_debugging
4235 && section_is_overlay (bl->section)
4236 && !section_is_mapped (bl->section))
4237 continue; /* unmapped overlay -- can't be a match */
4238
4239 return 1;
4240 }
4241
4242 return 0;
4243 }
4244 \f
4245
4246 /* bpstat stuff. External routines' interfaces are documented
4247 in breakpoint.h. */
4248
4249 int
4250 is_catchpoint (struct breakpoint *ep)
4251 {
4252 return (ep->type == bp_catchpoint);
4253 }
4254
4255 /* Frees any storage that is part of a bpstat. Does not walk the
4256 'next' chain. */
4257
4258 static void
4259 bpstat_free (bpstat bs)
4260 {
4261 if (bs->old_val != NULL)
4262 value_free (bs->old_val);
4263 decref_counted_command_line (&bs->commands);
4264 decref_bp_location (&bs->bp_location_at);
4265 xfree (bs);
4266 }
4267
4268 /* Clear a bpstat so that it says we are not at any breakpoint.
4269 Also free any storage that is part of a bpstat. */
4270
4271 void
4272 bpstat_clear (bpstat *bsp)
4273 {
4274 bpstat p;
4275 bpstat q;
4276
4277 if (bsp == 0)
4278 return;
4279 p = *bsp;
4280 while (p != NULL)
4281 {
4282 q = p->next;
4283 bpstat_free (p);
4284 p = q;
4285 }
4286 *bsp = NULL;
4287 }
4288
4289 /* Return a copy of a bpstat. Like "bs1 = bs2" but all storage that
4290 is part of the bpstat is copied as well. */
4291
4292 bpstat
4293 bpstat_copy (bpstat bs)
4294 {
4295 bpstat p = NULL;
4296 bpstat tmp;
4297 bpstat retval = NULL;
4298
4299 if (bs == NULL)
4300 return bs;
4301
4302 for (; bs != NULL; bs = bs->next)
4303 {
4304 tmp = (bpstat) xmalloc (sizeof (*tmp));
4305 memcpy (tmp, bs, sizeof (*tmp));
4306 incref_counted_command_line (tmp->commands);
4307 incref_bp_location (tmp->bp_location_at);
4308 if (bs->old_val != NULL)
4309 {
4310 tmp->old_val = value_copy (bs->old_val);
4311 release_value (tmp->old_val);
4312 }
4313
4314 if (p == NULL)
4315 /* This is the first thing in the chain. */
4316 retval = tmp;
4317 else
4318 p->next = tmp;
4319 p = tmp;
4320 }
4321 p->next = NULL;
4322 return retval;
4323 }
4324
4325 /* Find the bpstat associated with this breakpoint. */
4326
4327 bpstat
4328 bpstat_find_breakpoint (bpstat bsp, struct breakpoint *breakpoint)
4329 {
4330 if (bsp == NULL)
4331 return NULL;
4332
4333 for (; bsp != NULL; bsp = bsp->next)
4334 {
4335 if (bsp->breakpoint_at == breakpoint)
4336 return bsp;
4337 }
4338 return NULL;
4339 }
4340
4341 /* See breakpoint.h. */
4342
4343 int
4344 bpstat_explains_signal (bpstat bsp, enum gdb_signal sig)
4345 {
4346 for (; bsp != NULL; bsp = bsp->next)
4347 {
4348 if (bsp->breakpoint_at == NULL)
4349 {
4350 /* A moribund location can never explain a signal other than
4351 GDB_SIGNAL_TRAP. */
4352 if (sig == GDB_SIGNAL_TRAP)
4353 return 1;
4354 }
4355 else
4356 {
4357 if (bsp->breakpoint_at->ops->explains_signal (bsp->breakpoint_at,
4358 sig))
4359 return 1;
4360 }
4361 }
4362
4363 return 0;
4364 }
4365
4366 /* Put in *NUM the breakpoint number of the first breakpoint we are
4367 stopped at. *BSP upon return is a bpstat which points to the
4368 remaining breakpoints stopped at (but which is not guaranteed to be
4369 good for anything but further calls to bpstat_num).
4370
4371 Return 0 if passed a bpstat which does not indicate any breakpoints.
4372 Return -1 if stopped at a breakpoint that has been deleted since
4373 we set it.
4374 Return 1 otherwise. */
4375
4376 int
4377 bpstat_num (bpstat *bsp, int *num)
4378 {
4379 struct breakpoint *b;
4380
4381 if ((*bsp) == NULL)
4382 return 0; /* No more breakpoint values */
4383
4384 /* We assume we'll never have several bpstats that correspond to a
4385 single breakpoint -- otherwise, this function might return the
4386 same number more than once and this will look ugly. */
4387 b = (*bsp)->breakpoint_at;
4388 *bsp = (*bsp)->next;
4389 if (b == NULL)
4390 return -1; /* breakpoint that's been deleted since */
4391
4392 *num = b->number; /* We have its number */
4393 return 1;
4394 }
4395
4396 /* See breakpoint.h. */
4397
4398 void
4399 bpstat_clear_actions (void)
4400 {
4401 struct thread_info *tp;
4402 bpstat bs;
4403
4404 if (ptid_equal (inferior_ptid, null_ptid))
4405 return;
4406
4407 tp = find_thread_ptid (inferior_ptid);
4408 if (tp == NULL)
4409 return;
4410
4411 for (bs = tp->control.stop_bpstat; bs != NULL; bs = bs->next)
4412 {
4413 decref_counted_command_line (&bs->commands);
4414
4415 if (bs->old_val != NULL)
4416 {
4417 value_free (bs->old_val);
4418 bs->old_val = NULL;
4419 }
4420 }
4421 }
4422
4423 /* Called when a command is about to proceed the inferior. */
4424
4425 static void
4426 breakpoint_about_to_proceed (void)
4427 {
4428 if (!ptid_equal (inferior_ptid, null_ptid))
4429 {
4430 struct thread_info *tp = inferior_thread ();
4431
4432 /* Allow inferior function calls in breakpoint commands to not
4433 interrupt the command list. When the call finishes
4434 successfully, the inferior will be standing at the same
4435 breakpoint as if nothing happened. */
4436 if (tp->control.in_infcall)
4437 return;
4438 }
4439
4440 breakpoint_proceeded = 1;
4441 }
4442
4443 /* Stub for cleaning up our state if we error-out of a breakpoint
4444 command. */
4445 static void
4446 cleanup_executing_breakpoints (void *ignore)
4447 {
4448 executing_breakpoint_commands = 0;
4449 }
4450
4451 /* Return non-zero iff CMD as the first line of a command sequence is `silent'
4452 or its equivalent. */
4453
4454 static int
4455 command_line_is_silent (struct command_line *cmd)
4456 {
4457 return cmd && (strcmp ("silent", cmd->line) == 0
4458 || (xdb_commands && strcmp ("Q", cmd->line) == 0));
4459 }
4460
4461 /* Execute all the commands associated with all the breakpoints at
4462 this location. Any of these commands could cause the process to
4463 proceed beyond this point, etc. We look out for such changes by
4464 checking the global "breakpoint_proceeded" after each command.
4465
4466 Returns true if a breakpoint command resumed the inferior. In that
4467 case, it is the caller's responsibility to recall it again with the
4468 bpstat of the current thread. */
4469
4470 static int
4471 bpstat_do_actions_1 (bpstat *bsp)
4472 {
4473 bpstat bs;
4474 struct cleanup *old_chain;
4475 int again = 0;
4476
4477 /* Avoid endless recursion if a `source' command is contained
4478 in bs->commands. */
4479 if (executing_breakpoint_commands)
4480 return 0;
4481
4482 executing_breakpoint_commands = 1;
4483 old_chain = make_cleanup (cleanup_executing_breakpoints, 0);
4484
4485 prevent_dont_repeat ();
4486
4487 /* This pointer will iterate over the list of bpstat's. */
4488 bs = *bsp;
4489
4490 breakpoint_proceeded = 0;
4491 for (; bs != NULL; bs = bs->next)
4492 {
4493 struct counted_command_line *ccmd;
4494 struct command_line *cmd;
4495 struct cleanup *this_cmd_tree_chain;
4496
4497 /* Take ownership of the BSP's command tree, if it has one.
4498
4499 The command tree could legitimately contain commands like
4500 'step' and 'next', which call clear_proceed_status, which
4501 frees stop_bpstat's command tree. To make sure this doesn't
4502 free the tree we're executing out from under us, we need to
4503 take ownership of the tree ourselves. Since a given bpstat's
4504 commands are only executed once, we don't need to copy it; we
4505 can clear the pointer in the bpstat, and make sure we free
4506 the tree when we're done. */
4507 ccmd = bs->commands;
4508 bs->commands = NULL;
4509 this_cmd_tree_chain = make_cleanup_decref_counted_command_line (&ccmd);
4510 cmd = ccmd ? ccmd->commands : NULL;
4511 if (command_line_is_silent (cmd))
4512 {
4513 /* The action has been already done by bpstat_stop_status. */
4514 cmd = cmd->next;
4515 }
4516
4517 while (cmd != NULL)
4518 {
4519 execute_control_command (cmd);
4520
4521 if (breakpoint_proceeded)
4522 break;
4523 else
4524 cmd = cmd->next;
4525 }
4526
4527 /* We can free this command tree now. */
4528 do_cleanups (this_cmd_tree_chain);
4529
4530 if (breakpoint_proceeded)
4531 {
4532 if (target_can_async_p ())
4533 /* If we are in async mode, then the target might be still
4534 running, not stopped at any breakpoint, so nothing for
4535 us to do here -- just return to the event loop. */
4536 ;
4537 else
4538 /* In sync mode, when execute_control_command returns
4539 we're already standing on the next breakpoint.
4540 Breakpoint commands for that stop were not run, since
4541 execute_command does not run breakpoint commands --
4542 only command_line_handler does, but that one is not
4543 involved in execution of breakpoint commands. So, we
4544 can now execute breakpoint commands. It should be
4545 noted that making execute_command do bpstat actions is
4546 not an option -- in this case we'll have recursive
4547 invocation of bpstat for each breakpoint with a
4548 command, and can easily blow up GDB stack. Instead, we
4549 return true, which will trigger the caller to recall us
4550 with the new stop_bpstat. */
4551 again = 1;
4552 break;
4553 }
4554 }
4555 do_cleanups (old_chain);
4556 return again;
4557 }
4558
4559 void
4560 bpstat_do_actions (void)
4561 {
4562 struct cleanup *cleanup_if_error = make_bpstat_clear_actions_cleanup ();
4563
4564 /* Do any commands attached to breakpoint we are stopped at. */
4565 while (!ptid_equal (inferior_ptid, null_ptid)
4566 && target_has_execution
4567 && !is_exited (inferior_ptid)
4568 && !is_executing (inferior_ptid))
4569 /* Since in sync mode, bpstat_do_actions may resume the inferior,
4570 and only return when it is stopped at the next breakpoint, we
4571 keep doing breakpoint actions until it returns false to
4572 indicate the inferior was not resumed. */
4573 if (!bpstat_do_actions_1 (&inferior_thread ()->control.stop_bpstat))
4574 break;
4575
4576 discard_cleanups (cleanup_if_error);
4577 }
4578
4579 /* Print out the (old or new) value associated with a watchpoint. */
4580
4581 static void
4582 watchpoint_value_print (struct value *val, struct ui_file *stream)
4583 {
4584 if (val == NULL)
4585 fprintf_unfiltered (stream, _("<unreadable>"));
4586 else
4587 {
4588 struct value_print_options opts;
4589 get_user_print_options (&opts);
4590 value_print (val, stream, &opts);
4591 }
4592 }
4593
4594 /* Generic routine for printing messages indicating why we
4595 stopped. The behavior of this function depends on the value
4596 'print_it' in the bpstat structure. Under some circumstances we
4597 may decide not to print anything here and delegate the task to
4598 normal_stop(). */
4599
4600 static enum print_stop_action
4601 print_bp_stop_message (bpstat bs)
4602 {
4603 switch (bs->print_it)
4604 {
4605 case print_it_noop:
4606 /* Nothing should be printed for this bpstat entry. */
4607 return PRINT_UNKNOWN;
4608 break;
4609
4610 case print_it_done:
4611 /* We still want to print the frame, but we already printed the
4612 relevant messages. */
4613 return PRINT_SRC_AND_LOC;
4614 break;
4615
4616 case print_it_normal:
4617 {
4618 struct breakpoint *b = bs->breakpoint_at;
4619
4620 /* bs->breakpoint_at can be NULL if it was a momentary breakpoint
4621 which has since been deleted. */
4622 if (b == NULL)
4623 return PRINT_UNKNOWN;
4624
4625 /* Normal case. Call the breakpoint's print_it method. */
4626 return b->ops->print_it (bs);
4627 }
4628 break;
4629
4630 default:
4631 internal_error (__FILE__, __LINE__,
4632 _("print_bp_stop_message: unrecognized enum value"));
4633 break;
4634 }
4635 }
4636
4637 /* A helper function that prints a shared library stopped event. */
4638
4639 static void
4640 print_solib_event (int is_catchpoint)
4641 {
4642 int any_deleted
4643 = !VEC_empty (char_ptr, current_program_space->deleted_solibs);
4644 int any_added
4645 = !VEC_empty (so_list_ptr, current_program_space->added_solibs);
4646
4647 if (!is_catchpoint)
4648 {
4649 if (any_added || any_deleted)
4650 ui_out_text (current_uiout,
4651 _("Stopped due to shared library event:\n"));
4652 else
4653 ui_out_text (current_uiout,
4654 _("Stopped due to shared library event (no "
4655 "libraries added or removed)\n"));
4656 }
4657
4658 if (ui_out_is_mi_like_p (current_uiout))
4659 ui_out_field_string (current_uiout, "reason",
4660 async_reason_lookup (EXEC_ASYNC_SOLIB_EVENT));
4661
4662 if (any_deleted)
4663 {
4664 struct cleanup *cleanup;
4665 char *name;
4666 int ix;
4667
4668 ui_out_text (current_uiout, _(" Inferior unloaded "));
4669 cleanup = make_cleanup_ui_out_list_begin_end (current_uiout,
4670 "removed");
4671 for (ix = 0;
4672 VEC_iterate (char_ptr, current_program_space->deleted_solibs,
4673 ix, name);
4674 ++ix)
4675 {
4676 if (ix > 0)
4677 ui_out_text (current_uiout, " ");
4678 ui_out_field_string (current_uiout, "library", name);
4679 ui_out_text (current_uiout, "\n");
4680 }
4681
4682 do_cleanups (cleanup);
4683 }
4684
4685 if (any_added)
4686 {
4687 struct so_list *iter;
4688 int ix;
4689 struct cleanup *cleanup;
4690
4691 ui_out_text (current_uiout, _(" Inferior loaded "));
4692 cleanup = make_cleanup_ui_out_list_begin_end (current_uiout,
4693 "added");
4694 for (ix = 0;
4695 VEC_iterate (so_list_ptr, current_program_space->added_solibs,
4696 ix, iter);
4697 ++ix)
4698 {
4699 if (ix > 0)
4700 ui_out_text (current_uiout, " ");
4701 ui_out_field_string (current_uiout, "library", iter->so_name);
4702 ui_out_text (current_uiout, "\n");
4703 }
4704
4705 do_cleanups (cleanup);
4706 }
4707 }
4708
4709 /* Print a message indicating what happened. This is called from
4710 normal_stop(). The input to this routine is the head of the bpstat
4711 list - a list of the eventpoints that caused this stop. KIND is
4712 the target_waitkind for the stopping event. This
4713 routine calls the generic print routine for printing a message
4714 about reasons for stopping. This will print (for example) the
4715 "Breakpoint n," part of the output. The return value of this
4716 routine is one of:
4717
4718 PRINT_UNKNOWN: Means we printed nothing.
4719 PRINT_SRC_AND_LOC: Means we printed something, and expect subsequent
4720 code to print the location. An example is
4721 "Breakpoint 1, " which should be followed by
4722 the location.
4723 PRINT_SRC_ONLY: Means we printed something, but there is no need
4724 to also print the location part of the message.
4725 An example is the catch/throw messages, which
4726 don't require a location appended to the end.
4727 PRINT_NOTHING: We have done some printing and we don't need any
4728 further info to be printed. */
4729
4730 enum print_stop_action
4731 bpstat_print (bpstat bs, int kind)
4732 {
4733 int val;
4734
4735 /* Maybe another breakpoint in the chain caused us to stop.
4736 (Currently all watchpoints go on the bpstat whether hit or not.
4737 That probably could (should) be changed, provided care is taken
4738 with respect to bpstat_explains_signal). */
4739 for (; bs; bs = bs->next)
4740 {
4741 val = print_bp_stop_message (bs);
4742 if (val == PRINT_SRC_ONLY
4743 || val == PRINT_SRC_AND_LOC
4744 || val == PRINT_NOTHING)
4745 return val;
4746 }
4747
4748 /* If we had hit a shared library event breakpoint,
4749 print_bp_stop_message would print out this message. If we hit an
4750 OS-level shared library event, do the same thing. */
4751 if (kind == TARGET_WAITKIND_LOADED)
4752 {
4753 print_solib_event (0);
4754 return PRINT_NOTHING;
4755 }
4756
4757 /* We reached the end of the chain, or we got a null BS to start
4758 with and nothing was printed. */
4759 return PRINT_UNKNOWN;
4760 }
4761
4762 /* Evaluate the expression EXP and return 1 if value is zero.
4763 This returns the inverse of the condition because it is called
4764 from catch_errors which returns 0 if an exception happened, and if an
4765 exception happens we want execution to stop.
4766 The argument is a "struct expression *" that has been cast to a
4767 "void *" to make it pass through catch_errors. */
4768
4769 static int
4770 breakpoint_cond_eval (void *exp)
4771 {
4772 struct value *mark = value_mark ();
4773 int i = !value_true (evaluate_expression ((struct expression *) exp));
4774
4775 value_free_to_mark (mark);
4776 return i;
4777 }
4778
4779 /* Allocate a new bpstat. Link it to the FIFO list by BS_LINK_POINTER. */
4780
4781 static bpstat
4782 bpstat_alloc (struct bp_location *bl, bpstat **bs_link_pointer)
4783 {
4784 bpstat bs;
4785
4786 bs = (bpstat) xmalloc (sizeof (*bs));
4787 bs->next = NULL;
4788 **bs_link_pointer = bs;
4789 *bs_link_pointer = &bs->next;
4790 bs->breakpoint_at = bl->owner;
4791 bs->bp_location_at = bl;
4792 incref_bp_location (bl);
4793 /* If the condition is false, etc., don't do the commands. */
4794 bs->commands = NULL;
4795 bs->old_val = NULL;
4796 bs->print_it = print_it_normal;
4797 return bs;
4798 }
4799 \f
4800 /* The target has stopped with waitstatus WS. Check if any hardware
4801 watchpoints have triggered, according to the target. */
4802
4803 int
4804 watchpoints_triggered (struct target_waitstatus *ws)
4805 {
4806 int stopped_by_watchpoint = target_stopped_by_watchpoint ();
4807 CORE_ADDR addr;
4808 struct breakpoint *b;
4809
4810 if (!stopped_by_watchpoint)
4811 {
4812 /* We were not stopped by a watchpoint. Mark all watchpoints
4813 as not triggered. */
4814 ALL_BREAKPOINTS (b)
4815 if (is_hardware_watchpoint (b))
4816 {
4817 struct watchpoint *w = (struct watchpoint *) b;
4818
4819 w->watchpoint_triggered = watch_triggered_no;
4820 }
4821
4822 return 0;
4823 }
4824
4825 if (!target_stopped_data_address (&current_target, &addr))
4826 {
4827 /* We were stopped by a watchpoint, but we don't know where.
4828 Mark all watchpoints as unknown. */
4829 ALL_BREAKPOINTS (b)
4830 if (is_hardware_watchpoint (b))
4831 {
4832 struct watchpoint *w = (struct watchpoint *) b;
4833
4834 w->watchpoint_triggered = watch_triggered_unknown;
4835 }
4836
4837 return 1;
4838 }
4839
4840 /* The target could report the data address. Mark watchpoints
4841 affected by this data address as triggered, and all others as not
4842 triggered. */
4843
4844 ALL_BREAKPOINTS (b)
4845 if (is_hardware_watchpoint (b))
4846 {
4847 struct watchpoint *w = (struct watchpoint *) b;
4848 struct bp_location *loc;
4849
4850 w->watchpoint_triggered = watch_triggered_no;
4851 for (loc = b->loc; loc; loc = loc->next)
4852 {
4853 if (is_masked_watchpoint (b))
4854 {
4855 CORE_ADDR newaddr = addr & w->hw_wp_mask;
4856 CORE_ADDR start = loc->address & w->hw_wp_mask;
4857
4858 if (newaddr == start)
4859 {
4860 w->watchpoint_triggered = watch_triggered_yes;
4861 break;
4862 }
4863 }
4864 /* Exact match not required. Within range is sufficient. */
4865 else if (target_watchpoint_addr_within_range (&current_target,
4866 addr, loc->address,
4867 loc->length))
4868 {
4869 w->watchpoint_triggered = watch_triggered_yes;
4870 break;
4871 }
4872 }
4873 }
4874
4875 return 1;
4876 }
4877
4878 /* Possible return values for watchpoint_check (this can't be an enum
4879 because of check_errors). */
4880 /* The watchpoint has been deleted. */
4881 #define WP_DELETED 1
4882 /* The value has changed. */
4883 #define WP_VALUE_CHANGED 2
4884 /* The value has not changed. */
4885 #define WP_VALUE_NOT_CHANGED 3
4886 /* Ignore this watchpoint, no matter if the value changed or not. */
4887 #define WP_IGNORE 4
4888
4889 #define BP_TEMPFLAG 1
4890 #define BP_HARDWAREFLAG 2
4891
4892 /* Evaluate watchpoint condition expression and check if its value
4893 changed.
4894
4895 P should be a pointer to struct bpstat, but is defined as a void *
4896 in order for this function to be usable with catch_errors. */
4897
4898 static int
4899 watchpoint_check (void *p)
4900 {
4901 bpstat bs = (bpstat) p;
4902 struct watchpoint *b;
4903 struct frame_info *fr;
4904 int within_current_scope;
4905
4906 /* BS is built from an existing struct breakpoint. */
4907 gdb_assert (bs->breakpoint_at != NULL);
4908 b = (struct watchpoint *) bs->breakpoint_at;
4909
4910 /* If this is a local watchpoint, we only want to check if the
4911 watchpoint frame is in scope if the current thread is the thread
4912 that was used to create the watchpoint. */
4913 if (!watchpoint_in_thread_scope (b))
4914 return WP_IGNORE;
4915
4916 if (b->exp_valid_block == NULL)
4917 within_current_scope = 1;
4918 else
4919 {
4920 struct frame_info *frame = get_current_frame ();
4921 struct gdbarch *frame_arch = get_frame_arch (frame);
4922 CORE_ADDR frame_pc = get_frame_pc (frame);
4923
4924 /* in_function_epilogue_p() returns a non-zero value if we're
4925 still in the function but the stack frame has already been
4926 invalidated. Since we can't rely on the values of local
4927 variables after the stack has been destroyed, we are treating
4928 the watchpoint in that state as `not changed' without further
4929 checking. Don't mark watchpoints as changed if the current
4930 frame is in an epilogue - even if they are in some other
4931 frame, our view of the stack is likely to be wrong and
4932 frame_find_by_id could error out. */
4933 if (gdbarch_in_function_epilogue_p (frame_arch, frame_pc))
4934 return WP_IGNORE;
4935
4936 fr = frame_find_by_id (b->watchpoint_frame);
4937 within_current_scope = (fr != NULL);
4938
4939 /* If we've gotten confused in the unwinder, we might have
4940 returned a frame that can't describe this variable. */
4941 if (within_current_scope)
4942 {
4943 struct symbol *function;
4944
4945 function = get_frame_function (fr);
4946 if (function == NULL
4947 || !contained_in (b->exp_valid_block,
4948 SYMBOL_BLOCK_VALUE (function)))
4949 within_current_scope = 0;
4950 }
4951
4952 if (within_current_scope)
4953 /* If we end up stopping, the current frame will get selected
4954 in normal_stop. So this call to select_frame won't affect
4955 the user. */
4956 select_frame (fr);
4957 }
4958
4959 if (within_current_scope)
4960 {
4961 /* We use value_{,free_to_}mark because it could be a *long*
4962 time before we return to the command level and call
4963 free_all_values. We can't call free_all_values because we
4964 might be in the middle of evaluating a function call. */
4965
4966 int pc = 0;
4967 struct value *mark;
4968 struct value *new_val;
4969
4970 if (is_masked_watchpoint (&b->base))
4971 /* Since we don't know the exact trigger address (from
4972 stopped_data_address), just tell the user we've triggered
4973 a mask watchpoint. */
4974 return WP_VALUE_CHANGED;
4975
4976 mark = value_mark ();
4977 fetch_subexp_value (b->exp, &pc, &new_val, NULL, NULL, 0);
4978
4979 /* We use value_equal_contents instead of value_equal because
4980 the latter coerces an array to a pointer, thus comparing just
4981 the address of the array instead of its contents. This is
4982 not what we want. */
4983 if ((b->val != NULL) != (new_val != NULL)
4984 || (b->val != NULL && !value_equal_contents (b->val, new_val)))
4985 {
4986 if (new_val != NULL)
4987 {
4988 release_value (new_val);
4989 value_free_to_mark (mark);
4990 }
4991 bs->old_val = b->val;
4992 b->val = new_val;
4993 b->val_valid = 1;
4994 return WP_VALUE_CHANGED;
4995 }
4996 else
4997 {
4998 /* Nothing changed. */
4999 value_free_to_mark (mark);
5000 return WP_VALUE_NOT_CHANGED;
5001 }
5002 }
5003 else
5004 {
5005 struct ui_out *uiout = current_uiout;
5006
5007 /* This seems like the only logical thing to do because
5008 if we temporarily ignored the watchpoint, then when
5009 we reenter the block in which it is valid it contains
5010 garbage (in the case of a function, it may have two
5011 garbage values, one before and one after the prologue).
5012 So we can't even detect the first assignment to it and
5013 watch after that (since the garbage may or may not equal
5014 the first value assigned). */
5015 /* We print all the stop information in
5016 breakpoint_ops->print_it, but in this case, by the time we
5017 call breakpoint_ops->print_it this bp will be deleted
5018 already. So we have no choice but print the information
5019 here. */
5020 if (ui_out_is_mi_like_p (uiout))
5021 ui_out_field_string
5022 (uiout, "reason", async_reason_lookup (EXEC_ASYNC_WATCHPOINT_SCOPE));
5023 ui_out_text (uiout, "\nWatchpoint ");
5024 ui_out_field_int (uiout, "wpnum", b->base.number);
5025 ui_out_text (uiout,
5026 " deleted because the program has left the block in\n\
5027 which its expression is valid.\n");
5028
5029 /* Make sure the watchpoint's commands aren't executed. */
5030 decref_counted_command_line (&b->base.commands);
5031 watchpoint_del_at_next_stop (b);
5032
5033 return WP_DELETED;
5034 }
5035 }
5036
5037 /* Return true if it looks like target has stopped due to hitting
5038 breakpoint location BL. This function does not check if we should
5039 stop, only if BL explains the stop. */
5040
5041 static int
5042 bpstat_check_location (const struct bp_location *bl,
5043 struct address_space *aspace, CORE_ADDR bp_addr,
5044 const struct target_waitstatus *ws)
5045 {
5046 struct breakpoint *b = bl->owner;
5047
5048 /* BL is from an existing breakpoint. */
5049 gdb_assert (b != NULL);
5050
5051 return b->ops->breakpoint_hit (bl, aspace, bp_addr, ws);
5052 }
5053
5054 /* Determine if the watched values have actually changed, and we
5055 should stop. If not, set BS->stop to 0. */
5056
5057 static void
5058 bpstat_check_watchpoint (bpstat bs)
5059 {
5060 const struct bp_location *bl;
5061 struct watchpoint *b;
5062
5063 /* BS is built for existing struct breakpoint. */
5064 bl = bs->bp_location_at;
5065 gdb_assert (bl != NULL);
5066 b = (struct watchpoint *) bs->breakpoint_at;
5067 gdb_assert (b != NULL);
5068
5069 {
5070 int must_check_value = 0;
5071
5072 if (b->base.type == bp_watchpoint)
5073 /* For a software watchpoint, we must always check the
5074 watched value. */
5075 must_check_value = 1;
5076 else if (b->watchpoint_triggered == watch_triggered_yes)
5077 /* We have a hardware watchpoint (read, write, or access)
5078 and the target earlier reported an address watched by
5079 this watchpoint. */
5080 must_check_value = 1;
5081 else if (b->watchpoint_triggered == watch_triggered_unknown
5082 && b->base.type == bp_hardware_watchpoint)
5083 /* We were stopped by a hardware watchpoint, but the target could
5084 not report the data address. We must check the watchpoint's
5085 value. Access and read watchpoints are out of luck; without
5086 a data address, we can't figure it out. */
5087 must_check_value = 1;
5088
5089 if (must_check_value)
5090 {
5091 char *message
5092 = xstrprintf ("Error evaluating expression for watchpoint %d\n",
5093 b->base.number);
5094 struct cleanup *cleanups = make_cleanup (xfree, message);
5095 int e = catch_errors (watchpoint_check, bs, message,
5096 RETURN_MASK_ALL);
5097 do_cleanups (cleanups);
5098 switch (e)
5099 {
5100 case WP_DELETED:
5101 /* We've already printed what needs to be printed. */
5102 bs->print_it = print_it_done;
5103 /* Stop. */
5104 break;
5105 case WP_IGNORE:
5106 bs->print_it = print_it_noop;
5107 bs->stop = 0;
5108 break;
5109 case WP_VALUE_CHANGED:
5110 if (b->base.type == bp_read_watchpoint)
5111 {
5112 /* There are two cases to consider here:
5113
5114 1. We're watching the triggered memory for reads.
5115 In that case, trust the target, and always report
5116 the watchpoint hit to the user. Even though
5117 reads don't cause value changes, the value may
5118 have changed since the last time it was read, and
5119 since we're not trapping writes, we will not see
5120 those, and as such we should ignore our notion of
5121 old value.
5122
5123 2. We're watching the triggered memory for both
5124 reads and writes. There are two ways this may
5125 happen:
5126
5127 2.1. This is a target that can't break on data
5128 reads only, but can break on accesses (reads or
5129 writes), such as e.g., x86. We detect this case
5130 at the time we try to insert read watchpoints.
5131
5132 2.2. Otherwise, the target supports read
5133 watchpoints, but, the user set an access or write
5134 watchpoint watching the same memory as this read
5135 watchpoint.
5136
5137 If we're watching memory writes as well as reads,
5138 ignore watchpoint hits when we find that the
5139 value hasn't changed, as reads don't cause
5140 changes. This still gives false positives when
5141 the program writes the same value to memory as
5142 what there was already in memory (we will confuse
5143 it for a read), but it's much better than
5144 nothing. */
5145
5146 int other_write_watchpoint = 0;
5147
5148 if (bl->watchpoint_type == hw_read)
5149 {
5150 struct breakpoint *other_b;
5151
5152 ALL_BREAKPOINTS (other_b)
5153 if (other_b->type == bp_hardware_watchpoint
5154 || other_b->type == bp_access_watchpoint)
5155 {
5156 struct watchpoint *other_w =
5157 (struct watchpoint *) other_b;
5158
5159 if (other_w->watchpoint_triggered
5160 == watch_triggered_yes)
5161 {
5162 other_write_watchpoint = 1;
5163 break;
5164 }
5165 }
5166 }
5167
5168 if (other_write_watchpoint
5169 || bl->watchpoint_type == hw_access)
5170 {
5171 /* We're watching the same memory for writes,
5172 and the value changed since the last time we
5173 updated it, so this trap must be for a write.
5174 Ignore it. */
5175 bs->print_it = print_it_noop;
5176 bs->stop = 0;
5177 }
5178 }
5179 break;
5180 case WP_VALUE_NOT_CHANGED:
5181 if (b->base.type == bp_hardware_watchpoint
5182 || b->base.type == bp_watchpoint)
5183 {
5184 /* Don't stop: write watchpoints shouldn't fire if
5185 the value hasn't changed. */
5186 bs->print_it = print_it_noop;
5187 bs->stop = 0;
5188 }
5189 /* Stop. */
5190 break;
5191 default:
5192 /* Can't happen. */
5193 case 0:
5194 /* Error from catch_errors. */
5195 printf_filtered (_("Watchpoint %d deleted.\n"), b->base.number);
5196 watchpoint_del_at_next_stop (b);
5197 /* We've already printed what needs to be printed. */
5198 bs->print_it = print_it_done;
5199 break;
5200 }
5201 }
5202 else /* must_check_value == 0 */
5203 {
5204 /* This is a case where some watchpoint(s) triggered, but
5205 not at the address of this watchpoint, or else no
5206 watchpoint triggered after all. So don't print
5207 anything for this watchpoint. */
5208 bs->print_it = print_it_noop;
5209 bs->stop = 0;
5210 }
5211 }
5212 }
5213
5214 /* For breakpoints that are currently marked as telling gdb to stop,
5215 check conditions (condition proper, frame, thread and ignore count)
5216 of breakpoint referred to by BS. If we should not stop for this
5217 breakpoint, set BS->stop to 0. */
5218
5219 static void
5220 bpstat_check_breakpoint_conditions (bpstat bs, ptid_t ptid)
5221 {
5222 const struct bp_location *bl;
5223 struct breakpoint *b;
5224 int value_is_zero = 0;
5225 struct expression *cond;
5226
5227 gdb_assert (bs->stop);
5228
5229 /* BS is built for existing struct breakpoint. */
5230 bl = bs->bp_location_at;
5231 gdb_assert (bl != NULL);
5232 b = bs->breakpoint_at;
5233 gdb_assert (b != NULL);
5234
5235 /* Even if the target evaluated the condition on its end and notified GDB, we
5236 need to do so again since GDB does not know if we stopped due to a
5237 breakpoint or a single step breakpoint. */
5238
5239 if (frame_id_p (b->frame_id)
5240 && !frame_id_eq (b->frame_id, get_stack_frame_id (get_current_frame ())))
5241 {
5242 bs->stop = 0;
5243 return;
5244 }
5245
5246 /* If this is a thread/task-specific breakpoint, don't waste cpu
5247 evaluating the condition if this isn't the specified
5248 thread/task. */
5249 if ((b->thread != -1 && b->thread != pid_to_thread_id (ptid))
5250 || (b->task != 0 && b->task != ada_get_task_number (ptid)))
5251
5252 {
5253 bs->stop = 0;
5254 return;
5255 }
5256
5257 /* Evaluate extension language breakpoints that have a "stop" method
5258 implemented. */
5259 bs->stop = breakpoint_ext_lang_cond_says_stop (b);
5260
5261 if (is_watchpoint (b))
5262 {
5263 struct watchpoint *w = (struct watchpoint *) b;
5264
5265 cond = w->cond_exp;
5266 }
5267 else
5268 cond = bl->cond;
5269
5270 if (cond && b->disposition != disp_del_at_next_stop)
5271 {
5272 int within_current_scope = 1;
5273 struct watchpoint * w;
5274
5275 /* We use value_mark and value_free_to_mark because it could
5276 be a long time before we return to the command level and
5277 call free_all_values. We can't call free_all_values
5278 because we might be in the middle of evaluating a
5279 function call. */
5280 struct value *mark = value_mark ();
5281
5282 if (is_watchpoint (b))
5283 w = (struct watchpoint *) b;
5284 else
5285 w = NULL;
5286
5287 /* Need to select the frame, with all that implies so that
5288 the conditions will have the right context. Because we
5289 use the frame, we will not see an inlined function's
5290 variables when we arrive at a breakpoint at the start
5291 of the inlined function; the current frame will be the
5292 call site. */
5293 if (w == NULL || w->cond_exp_valid_block == NULL)
5294 select_frame (get_current_frame ());
5295 else
5296 {
5297 struct frame_info *frame;
5298
5299 /* For local watchpoint expressions, which particular
5300 instance of a local is being watched matters, so we
5301 keep track of the frame to evaluate the expression
5302 in. To evaluate the condition however, it doesn't
5303 really matter which instantiation of the function
5304 where the condition makes sense triggers the
5305 watchpoint. This allows an expression like "watch
5306 global if q > 10" set in `func', catch writes to
5307 global on all threads that call `func', or catch
5308 writes on all recursive calls of `func' by a single
5309 thread. We simply always evaluate the condition in
5310 the innermost frame that's executing where it makes
5311 sense to evaluate the condition. It seems
5312 intuitive. */
5313 frame = block_innermost_frame (w->cond_exp_valid_block);
5314 if (frame != NULL)
5315 select_frame (frame);
5316 else
5317 within_current_scope = 0;
5318 }
5319 if (within_current_scope)
5320 value_is_zero
5321 = catch_errors (breakpoint_cond_eval, cond,
5322 "Error in testing breakpoint condition:\n",
5323 RETURN_MASK_ALL);
5324 else
5325 {
5326 warning (_("Watchpoint condition cannot be tested "
5327 "in the current scope"));
5328 /* If we failed to set the right context for this
5329 watchpoint, unconditionally report it. */
5330 value_is_zero = 0;
5331 }
5332 /* FIXME-someday, should give breakpoint #. */
5333 value_free_to_mark (mark);
5334 }
5335
5336 if (cond && value_is_zero)
5337 {
5338 bs->stop = 0;
5339 }
5340 else if (b->ignore_count > 0)
5341 {
5342 b->ignore_count--;
5343 bs->stop = 0;
5344 /* Increase the hit count even though we don't stop. */
5345 ++(b->hit_count);
5346 observer_notify_breakpoint_modified (b);
5347 }
5348 }
5349
5350
5351 /* Get a bpstat associated with having just stopped at address
5352 BP_ADDR in thread PTID.
5353
5354 Determine whether we stopped at a breakpoint, etc, or whether we
5355 don't understand this stop. Result is a chain of bpstat's such
5356 that:
5357
5358 if we don't understand the stop, the result is a null pointer.
5359
5360 if we understand why we stopped, the result is not null.
5361
5362 Each element of the chain refers to a particular breakpoint or
5363 watchpoint at which we have stopped. (We may have stopped for
5364 several reasons concurrently.)
5365
5366 Each element of the chain has valid next, breakpoint_at,
5367 commands, FIXME??? fields. */
5368
5369 bpstat
5370 bpstat_stop_status (struct address_space *aspace,
5371 CORE_ADDR bp_addr, ptid_t ptid,
5372 const struct target_waitstatus *ws)
5373 {
5374 struct breakpoint *b = NULL;
5375 struct bp_location *bl;
5376 struct bp_location *loc;
5377 /* First item of allocated bpstat's. */
5378 bpstat bs_head = NULL, *bs_link = &bs_head;
5379 /* Pointer to the last thing in the chain currently. */
5380 bpstat bs;
5381 int ix;
5382 int need_remove_insert;
5383 int removed_any;
5384
5385 /* First, build the bpstat chain with locations that explain a
5386 target stop, while being careful to not set the target running,
5387 as that may invalidate locations (in particular watchpoint
5388 locations are recreated). Resuming will happen here with
5389 breakpoint conditions or watchpoint expressions that include
5390 inferior function calls. */
5391
5392 ALL_BREAKPOINTS (b)
5393 {
5394 if (!breakpoint_enabled (b) && b->enable_state != bp_permanent)
5395 continue;
5396
5397 for (bl = b->loc; bl != NULL; bl = bl->next)
5398 {
5399 /* For hardware watchpoints, we look only at the first
5400 location. The watchpoint_check function will work on the
5401 entire expression, not the individual locations. For
5402 read watchpoints, the watchpoints_triggered function has
5403 checked all locations already. */
5404 if (b->type == bp_hardware_watchpoint && bl != b->loc)
5405 break;
5406
5407 if (!bl->enabled || bl->shlib_disabled)
5408 continue;
5409
5410 if (!bpstat_check_location (bl, aspace, bp_addr, ws))
5411 continue;
5412
5413 /* Come here if it's a watchpoint, or if the break address
5414 matches. */
5415
5416 bs = bpstat_alloc (bl, &bs_link); /* Alloc a bpstat to
5417 explain stop. */
5418
5419 /* Assume we stop. Should we find a watchpoint that is not
5420 actually triggered, or if the condition of the breakpoint
5421 evaluates as false, we'll reset 'stop' to 0. */
5422 bs->stop = 1;
5423 bs->print = 1;
5424
5425 /* If this is a scope breakpoint, mark the associated
5426 watchpoint as triggered so that we will handle the
5427 out-of-scope event. We'll get to the watchpoint next
5428 iteration. */
5429 if (b->type == bp_watchpoint_scope && b->related_breakpoint != b)
5430 {
5431 struct watchpoint *w = (struct watchpoint *) b->related_breakpoint;
5432
5433 w->watchpoint_triggered = watch_triggered_yes;
5434 }
5435 }
5436 }
5437
5438 for (ix = 0; VEC_iterate (bp_location_p, moribund_locations, ix, loc); ++ix)
5439 {
5440 if (breakpoint_location_address_match (loc, aspace, bp_addr))
5441 {
5442 bs = bpstat_alloc (loc, &bs_link);
5443 /* For hits of moribund locations, we should just proceed. */
5444 bs->stop = 0;
5445 bs->print = 0;
5446 bs->print_it = print_it_noop;
5447 }
5448 }
5449
5450 /* A bit of special processing for shlib breakpoints. We need to
5451 process solib loading here, so that the lists of loaded and
5452 unloaded libraries are correct before we handle "catch load" and
5453 "catch unload". */
5454 for (bs = bs_head; bs != NULL; bs = bs->next)
5455 {
5456 if (bs->breakpoint_at && bs->breakpoint_at->type == bp_shlib_event)
5457 {
5458 handle_solib_event ();
5459 break;
5460 }
5461 }
5462
5463 /* Now go through the locations that caused the target to stop, and
5464 check whether we're interested in reporting this stop to higher
5465 layers, or whether we should resume the target transparently. */
5466
5467 removed_any = 0;
5468
5469 for (bs = bs_head; bs != NULL; bs = bs->next)
5470 {
5471 if (!bs->stop)
5472 continue;
5473
5474 b = bs->breakpoint_at;
5475 b->ops->check_status (bs);
5476 if (bs->stop)
5477 {
5478 bpstat_check_breakpoint_conditions (bs, ptid);
5479
5480 if (bs->stop)
5481 {
5482 ++(b->hit_count);
5483 observer_notify_breakpoint_modified (b);
5484
5485 /* We will stop here. */
5486 if (b->disposition == disp_disable)
5487 {
5488 --(b->enable_count);
5489 if (b->enable_count <= 0
5490 && b->enable_state != bp_permanent)
5491 b->enable_state = bp_disabled;
5492 removed_any = 1;
5493 }
5494 if (b->silent)
5495 bs->print = 0;
5496 bs->commands = b->commands;
5497 incref_counted_command_line (bs->commands);
5498 if (command_line_is_silent (bs->commands
5499 ? bs->commands->commands : NULL))
5500 bs->print = 0;
5501
5502 b->ops->after_condition_true (bs);
5503 }
5504
5505 }
5506
5507 /* Print nothing for this entry if we don't stop or don't
5508 print. */
5509 if (!bs->stop || !bs->print)
5510 bs->print_it = print_it_noop;
5511 }
5512
5513 /* If we aren't stopping, the value of some hardware watchpoint may
5514 not have changed, but the intermediate memory locations we are
5515 watching may have. Don't bother if we're stopping; this will get
5516 done later. */
5517 need_remove_insert = 0;
5518 if (! bpstat_causes_stop (bs_head))
5519 for (bs = bs_head; bs != NULL; bs = bs->next)
5520 if (!bs->stop
5521 && bs->breakpoint_at
5522 && is_hardware_watchpoint (bs->breakpoint_at))
5523 {
5524 struct watchpoint *w = (struct watchpoint *) bs->breakpoint_at;
5525
5526 update_watchpoint (w, 0 /* don't reparse. */);
5527 need_remove_insert = 1;
5528 }
5529
5530 if (need_remove_insert)
5531 update_global_location_list (1);
5532 else if (removed_any)
5533 update_global_location_list (0);
5534
5535 return bs_head;
5536 }
5537
5538 static void
5539 handle_jit_event (void)
5540 {
5541 struct frame_info *frame;
5542 struct gdbarch *gdbarch;
5543
5544 /* Switch terminal for any messages produced by
5545 breakpoint_re_set. */
5546 target_terminal_ours_for_output ();
5547
5548 frame = get_current_frame ();
5549 gdbarch = get_frame_arch (frame);
5550
5551 jit_event_handler (gdbarch);
5552
5553 target_terminal_inferior ();
5554 }
5555
5556 /* Prepare WHAT final decision for infrun. */
5557
5558 /* Decide what infrun needs to do with this bpstat. */
5559
5560 struct bpstat_what
5561 bpstat_what (bpstat bs_head)
5562 {
5563 struct bpstat_what retval;
5564 int jit_event = 0;
5565 bpstat bs;
5566
5567 retval.main_action = BPSTAT_WHAT_KEEP_CHECKING;
5568 retval.call_dummy = STOP_NONE;
5569 retval.is_longjmp = 0;
5570
5571 for (bs = bs_head; bs != NULL; bs = bs->next)
5572 {
5573 /* Extract this BS's action. After processing each BS, we check
5574 if its action overrides all we've seem so far. */
5575 enum bpstat_what_main_action this_action = BPSTAT_WHAT_KEEP_CHECKING;
5576 enum bptype bptype;
5577
5578 if (bs->breakpoint_at == NULL)
5579 {
5580 /* I suspect this can happen if it was a momentary
5581 breakpoint which has since been deleted. */
5582 bptype = bp_none;
5583 }
5584 else
5585 bptype = bs->breakpoint_at->type;
5586
5587 switch (bptype)
5588 {
5589 case bp_none:
5590 break;
5591 case bp_breakpoint:
5592 case bp_hardware_breakpoint:
5593 case bp_until:
5594 case bp_finish:
5595 case bp_shlib_event:
5596 if (bs->stop)
5597 {
5598 if (bs->print)
5599 this_action = BPSTAT_WHAT_STOP_NOISY;
5600 else
5601 this_action = BPSTAT_WHAT_STOP_SILENT;
5602 }
5603 else
5604 this_action = BPSTAT_WHAT_SINGLE;
5605 break;
5606 case bp_watchpoint:
5607 case bp_hardware_watchpoint:
5608 case bp_read_watchpoint:
5609 case bp_access_watchpoint:
5610 if (bs->stop)
5611 {
5612 if (bs->print)
5613 this_action = BPSTAT_WHAT_STOP_NOISY;
5614 else
5615 this_action = BPSTAT_WHAT_STOP_SILENT;
5616 }
5617 else
5618 {
5619 /* There was a watchpoint, but we're not stopping.
5620 This requires no further action. */
5621 }
5622 break;
5623 case bp_longjmp:
5624 case bp_longjmp_call_dummy:
5625 case bp_exception:
5626 this_action = BPSTAT_WHAT_SET_LONGJMP_RESUME;
5627 retval.is_longjmp = bptype != bp_exception;
5628 break;
5629 case bp_longjmp_resume:
5630 case bp_exception_resume:
5631 this_action = BPSTAT_WHAT_CLEAR_LONGJMP_RESUME;
5632 retval.is_longjmp = bptype == bp_longjmp_resume;
5633 break;
5634 case bp_step_resume:
5635 if (bs->stop)
5636 this_action = BPSTAT_WHAT_STEP_RESUME;
5637 else
5638 {
5639 /* It is for the wrong frame. */
5640 this_action = BPSTAT_WHAT_SINGLE;
5641 }
5642 break;
5643 case bp_hp_step_resume:
5644 if (bs->stop)
5645 this_action = BPSTAT_WHAT_HP_STEP_RESUME;
5646 else
5647 {
5648 /* It is for the wrong frame. */
5649 this_action = BPSTAT_WHAT_SINGLE;
5650 }
5651 break;
5652 case bp_watchpoint_scope:
5653 case bp_thread_event:
5654 case bp_overlay_event:
5655 case bp_longjmp_master:
5656 case bp_std_terminate_master:
5657 case bp_exception_master:
5658 this_action = BPSTAT_WHAT_SINGLE;
5659 break;
5660 case bp_catchpoint:
5661 if (bs->stop)
5662 {
5663 if (bs->print)
5664 this_action = BPSTAT_WHAT_STOP_NOISY;
5665 else
5666 this_action = BPSTAT_WHAT_STOP_SILENT;
5667 }
5668 else
5669 {
5670 /* There was a catchpoint, but we're not stopping.
5671 This requires no further action. */
5672 }
5673 break;
5674 case bp_jit_event:
5675 jit_event = 1;
5676 this_action = BPSTAT_WHAT_SINGLE;
5677 break;
5678 case bp_call_dummy:
5679 /* Make sure the action is stop (silent or noisy),
5680 so infrun.c pops the dummy frame. */
5681 retval.call_dummy = STOP_STACK_DUMMY;
5682 this_action = BPSTAT_WHAT_STOP_SILENT;
5683 break;
5684 case bp_std_terminate:
5685 /* Make sure the action is stop (silent or noisy),
5686 so infrun.c pops the dummy frame. */
5687 retval.call_dummy = STOP_STD_TERMINATE;
5688 this_action = BPSTAT_WHAT_STOP_SILENT;
5689 break;
5690 case bp_tracepoint:
5691 case bp_fast_tracepoint:
5692 case bp_static_tracepoint:
5693 /* Tracepoint hits should not be reported back to GDB, and
5694 if one got through somehow, it should have been filtered
5695 out already. */
5696 internal_error (__FILE__, __LINE__,
5697 _("bpstat_what: tracepoint encountered"));
5698 break;
5699 case bp_gnu_ifunc_resolver:
5700 /* Step over it (and insert bp_gnu_ifunc_resolver_return). */
5701 this_action = BPSTAT_WHAT_SINGLE;
5702 break;
5703 case bp_gnu_ifunc_resolver_return:
5704 /* The breakpoint will be removed, execution will restart from the
5705 PC of the former breakpoint. */
5706 this_action = BPSTAT_WHAT_KEEP_CHECKING;
5707 break;
5708
5709 case bp_dprintf:
5710 if (bs->stop)
5711 this_action = BPSTAT_WHAT_STOP_SILENT;
5712 else
5713 this_action = BPSTAT_WHAT_SINGLE;
5714 break;
5715
5716 default:
5717 internal_error (__FILE__, __LINE__,
5718 _("bpstat_what: unhandled bptype %d"), (int) bptype);
5719 }
5720
5721 retval.main_action = max (retval.main_action, this_action);
5722 }
5723
5724 /* These operations may affect the bs->breakpoint_at state so they are
5725 delayed after MAIN_ACTION is decided above. */
5726
5727 if (jit_event)
5728 {
5729 if (debug_infrun)
5730 fprintf_unfiltered (gdb_stdlog, "bpstat_what: bp_jit_event\n");
5731
5732 handle_jit_event ();
5733 }
5734
5735 for (bs = bs_head; bs != NULL; bs = bs->next)
5736 {
5737 struct breakpoint *b = bs->breakpoint_at;
5738
5739 if (b == NULL)
5740 continue;
5741 switch (b->type)
5742 {
5743 case bp_gnu_ifunc_resolver:
5744 gnu_ifunc_resolver_stop (b);
5745 break;
5746 case bp_gnu_ifunc_resolver_return:
5747 gnu_ifunc_resolver_return_stop (b);
5748 break;
5749 }
5750 }
5751
5752 return retval;
5753 }
5754
5755 /* Nonzero if we should step constantly (e.g. watchpoints on machines
5756 without hardware support). This isn't related to a specific bpstat,
5757 just to things like whether watchpoints are set. */
5758
5759 int
5760 bpstat_should_step (void)
5761 {
5762 struct breakpoint *b;
5763
5764 ALL_BREAKPOINTS (b)
5765 if (breakpoint_enabled (b) && b->type == bp_watchpoint && b->loc != NULL)
5766 return 1;
5767 return 0;
5768 }
5769
5770 int
5771 bpstat_causes_stop (bpstat bs)
5772 {
5773 for (; bs != NULL; bs = bs->next)
5774 if (bs->stop)
5775 return 1;
5776
5777 return 0;
5778 }
5779
5780 \f
5781
5782 /* Compute a string of spaces suitable to indent the next line
5783 so it starts at the position corresponding to the table column
5784 named COL_NAME in the currently active table of UIOUT. */
5785
5786 static char *
5787 wrap_indent_at_field (struct ui_out *uiout, const char *col_name)
5788 {
5789 static char wrap_indent[80];
5790 int i, total_width, width, align;
5791 char *text;
5792
5793 total_width = 0;
5794 for (i = 1; ui_out_query_field (uiout, i, &width, &align, &text); i++)
5795 {
5796 if (strcmp (text, col_name) == 0)
5797 {
5798 gdb_assert (total_width < sizeof wrap_indent);
5799 memset (wrap_indent, ' ', total_width);
5800 wrap_indent[total_width] = 0;
5801
5802 return wrap_indent;
5803 }
5804
5805 total_width += width + 1;
5806 }
5807
5808 return NULL;
5809 }
5810
5811 /* Determine if the locations of this breakpoint will have their conditions
5812 evaluated by the target, host or a mix of both. Returns the following:
5813
5814 "host": Host evals condition.
5815 "host or target": Host or Target evals condition.
5816 "target": Target evals condition.
5817 */
5818
5819 static const char *
5820 bp_condition_evaluator (struct breakpoint *b)
5821 {
5822 struct bp_location *bl;
5823 char host_evals = 0;
5824 char target_evals = 0;
5825
5826 if (!b)
5827 return NULL;
5828
5829 if (!is_breakpoint (b))
5830 return NULL;
5831
5832 if (gdb_evaluates_breakpoint_condition_p ()
5833 || !target_supports_evaluation_of_breakpoint_conditions ())
5834 return condition_evaluation_host;
5835
5836 for (bl = b->loc; bl; bl = bl->next)
5837 {
5838 if (bl->cond_bytecode)
5839 target_evals++;
5840 else
5841 host_evals++;
5842 }
5843
5844 if (host_evals && target_evals)
5845 return condition_evaluation_both;
5846 else if (target_evals)
5847 return condition_evaluation_target;
5848 else
5849 return condition_evaluation_host;
5850 }
5851
5852 /* Determine the breakpoint location's condition evaluator. This is
5853 similar to bp_condition_evaluator, but for locations. */
5854
5855 static const char *
5856 bp_location_condition_evaluator (struct bp_location *bl)
5857 {
5858 if (bl && !is_breakpoint (bl->owner))
5859 return NULL;
5860
5861 if (gdb_evaluates_breakpoint_condition_p ()
5862 || !target_supports_evaluation_of_breakpoint_conditions ())
5863 return condition_evaluation_host;
5864
5865 if (bl && bl->cond_bytecode)
5866 return condition_evaluation_target;
5867 else
5868 return condition_evaluation_host;
5869 }
5870
5871 /* Print the LOC location out of the list of B->LOC locations. */
5872
5873 static void
5874 print_breakpoint_location (struct breakpoint *b,
5875 struct bp_location *loc)
5876 {
5877 struct ui_out *uiout = current_uiout;
5878 struct cleanup *old_chain = save_current_program_space ();
5879
5880 if (loc != NULL && loc->shlib_disabled)
5881 loc = NULL;
5882
5883 if (loc != NULL)
5884 set_current_program_space (loc->pspace);
5885
5886 if (b->display_canonical)
5887 ui_out_field_string (uiout, "what", b->addr_string);
5888 else if (loc && loc->symtab)
5889 {
5890 struct symbol *sym
5891 = find_pc_sect_function (loc->address, loc->section);
5892 if (sym)
5893 {
5894 ui_out_text (uiout, "in ");
5895 ui_out_field_string (uiout, "func",
5896 SYMBOL_PRINT_NAME (sym));
5897 ui_out_text (uiout, " ");
5898 ui_out_wrap_hint (uiout, wrap_indent_at_field (uiout, "what"));
5899 ui_out_text (uiout, "at ");
5900 }
5901 ui_out_field_string (uiout, "file",
5902 symtab_to_filename_for_display (loc->symtab));
5903 ui_out_text (uiout, ":");
5904
5905 if (ui_out_is_mi_like_p (uiout))
5906 ui_out_field_string (uiout, "fullname",
5907 symtab_to_fullname (loc->symtab));
5908
5909 ui_out_field_int (uiout, "line", loc->line_number);
5910 }
5911 else if (loc)
5912 {
5913 struct ui_file *stb = mem_fileopen ();
5914 struct cleanup *stb_chain = make_cleanup_ui_file_delete (stb);
5915
5916 print_address_symbolic (loc->gdbarch, loc->address, stb,
5917 demangle, "");
5918 ui_out_field_stream (uiout, "at", stb);
5919
5920 do_cleanups (stb_chain);
5921 }
5922 else
5923 ui_out_field_string (uiout, "pending", b->addr_string);
5924
5925 if (loc && is_breakpoint (b)
5926 && breakpoint_condition_evaluation_mode () == condition_evaluation_target
5927 && bp_condition_evaluator (b) == condition_evaluation_both)
5928 {
5929 ui_out_text (uiout, " (");
5930 ui_out_field_string (uiout, "evaluated-by",
5931 bp_location_condition_evaluator (loc));
5932 ui_out_text (uiout, ")");
5933 }
5934
5935 do_cleanups (old_chain);
5936 }
5937
5938 static const char *
5939 bptype_string (enum bptype type)
5940 {
5941 struct ep_type_description
5942 {
5943 enum bptype type;
5944 char *description;
5945 };
5946 static struct ep_type_description bptypes[] =
5947 {
5948 {bp_none, "?deleted?"},
5949 {bp_breakpoint, "breakpoint"},
5950 {bp_hardware_breakpoint, "hw breakpoint"},
5951 {bp_until, "until"},
5952 {bp_finish, "finish"},
5953 {bp_watchpoint, "watchpoint"},
5954 {bp_hardware_watchpoint, "hw watchpoint"},
5955 {bp_read_watchpoint, "read watchpoint"},
5956 {bp_access_watchpoint, "acc watchpoint"},
5957 {bp_longjmp, "longjmp"},
5958 {bp_longjmp_resume, "longjmp resume"},
5959 {bp_longjmp_call_dummy, "longjmp for call dummy"},
5960 {bp_exception, "exception"},
5961 {bp_exception_resume, "exception resume"},
5962 {bp_step_resume, "step resume"},
5963 {bp_hp_step_resume, "high-priority step resume"},
5964 {bp_watchpoint_scope, "watchpoint scope"},
5965 {bp_call_dummy, "call dummy"},
5966 {bp_std_terminate, "std::terminate"},
5967 {bp_shlib_event, "shlib events"},
5968 {bp_thread_event, "thread events"},
5969 {bp_overlay_event, "overlay events"},
5970 {bp_longjmp_master, "longjmp master"},
5971 {bp_std_terminate_master, "std::terminate master"},
5972 {bp_exception_master, "exception master"},
5973 {bp_catchpoint, "catchpoint"},
5974 {bp_tracepoint, "tracepoint"},
5975 {bp_fast_tracepoint, "fast tracepoint"},
5976 {bp_static_tracepoint, "static tracepoint"},
5977 {bp_dprintf, "dprintf"},
5978 {bp_jit_event, "jit events"},
5979 {bp_gnu_ifunc_resolver, "STT_GNU_IFUNC resolver"},
5980 {bp_gnu_ifunc_resolver_return, "STT_GNU_IFUNC resolver return"},
5981 };
5982
5983 if (((int) type >= (sizeof (bptypes) / sizeof (bptypes[0])))
5984 || ((int) type != bptypes[(int) type].type))
5985 internal_error (__FILE__, __LINE__,
5986 _("bptypes table does not describe type #%d."),
5987 (int) type);
5988
5989 return bptypes[(int) type].description;
5990 }
5991
5992 /* For MI, output a field named 'thread-groups' with a list as the value.
5993 For CLI, prefix the list with the string 'inf'. */
5994
5995 static void
5996 output_thread_groups (struct ui_out *uiout,
5997 const char *field_name,
5998 VEC(int) *inf_num,
5999 int mi_only)
6000 {
6001 struct cleanup *back_to;
6002 int is_mi = ui_out_is_mi_like_p (uiout);
6003 int inf;
6004 int i;
6005
6006 /* For backward compatibility, don't display inferiors in CLI unless
6007 there are several. Always display them for MI. */
6008 if (!is_mi && mi_only)
6009 return;
6010
6011 back_to = make_cleanup_ui_out_list_begin_end (uiout, field_name);
6012
6013 for (i = 0; VEC_iterate (int, inf_num, i, inf); ++i)
6014 {
6015 if (is_mi)
6016 {
6017 char mi_group[10];
6018
6019 xsnprintf (mi_group, sizeof (mi_group), "i%d", inf);
6020 ui_out_field_string (uiout, NULL, mi_group);
6021 }
6022 else
6023 {
6024 if (i == 0)
6025 ui_out_text (uiout, " inf ");
6026 else
6027 ui_out_text (uiout, ", ");
6028
6029 ui_out_text (uiout, plongest (inf));
6030 }
6031 }
6032
6033 do_cleanups (back_to);
6034 }
6035
6036 /* Print B to gdb_stdout. */
6037
6038 static void
6039 print_one_breakpoint_location (struct breakpoint *b,
6040 struct bp_location *loc,
6041 int loc_number,
6042 struct bp_location **last_loc,
6043 int allflag)
6044 {
6045 struct command_line *l;
6046 static char bpenables[] = "nynny";
6047
6048 struct ui_out *uiout = current_uiout;
6049 int header_of_multiple = 0;
6050 int part_of_multiple = (loc != NULL);
6051 struct value_print_options opts;
6052
6053 get_user_print_options (&opts);
6054
6055 gdb_assert (!loc || loc_number != 0);
6056 /* See comment in print_one_breakpoint concerning treatment of
6057 breakpoints with single disabled location. */
6058 if (loc == NULL
6059 && (b->loc != NULL
6060 && (b->loc->next != NULL || !b->loc->enabled)))
6061 header_of_multiple = 1;
6062 if (loc == NULL)
6063 loc = b->loc;
6064
6065 annotate_record ();
6066
6067 /* 1 */
6068 annotate_field (0);
6069 if (part_of_multiple)
6070 {
6071 char *formatted;
6072 formatted = xstrprintf ("%d.%d", b->number, loc_number);
6073 ui_out_field_string (uiout, "number", formatted);
6074 xfree (formatted);
6075 }
6076 else
6077 {
6078 ui_out_field_int (uiout, "number", b->number);
6079 }
6080
6081 /* 2 */
6082 annotate_field (1);
6083 if (part_of_multiple)
6084 ui_out_field_skip (uiout, "type");
6085 else
6086 ui_out_field_string (uiout, "type", bptype_string (b->type));
6087
6088 /* 3 */
6089 annotate_field (2);
6090 if (part_of_multiple)
6091 ui_out_field_skip (uiout, "disp");
6092 else
6093 ui_out_field_string (uiout, "disp", bpdisp_text (b->disposition));
6094
6095
6096 /* 4 */
6097 annotate_field (3);
6098 if (part_of_multiple)
6099 ui_out_field_string (uiout, "enabled", loc->enabled ? "y" : "n");
6100 else
6101 ui_out_field_fmt (uiout, "enabled", "%c",
6102 bpenables[(int) b->enable_state]);
6103 ui_out_spaces (uiout, 2);
6104
6105
6106 /* 5 and 6 */
6107 if (b->ops != NULL && b->ops->print_one != NULL)
6108 {
6109 /* Although the print_one can possibly print all locations,
6110 calling it here is not likely to get any nice result. So,
6111 make sure there's just one location. */
6112 gdb_assert (b->loc == NULL || b->loc->next == NULL);
6113 b->ops->print_one (b, last_loc);
6114 }
6115 else
6116 switch (b->type)
6117 {
6118 case bp_none:
6119 internal_error (__FILE__, __LINE__,
6120 _("print_one_breakpoint: bp_none encountered\n"));
6121 break;
6122
6123 case bp_watchpoint:
6124 case bp_hardware_watchpoint:
6125 case bp_read_watchpoint:
6126 case bp_access_watchpoint:
6127 {
6128 struct watchpoint *w = (struct watchpoint *) b;
6129
6130 /* Field 4, the address, is omitted (which makes the columns
6131 not line up too nicely with the headers, but the effect
6132 is relatively readable). */
6133 if (opts.addressprint)
6134 ui_out_field_skip (uiout, "addr");
6135 annotate_field (5);
6136 ui_out_field_string (uiout, "what", w->exp_string);
6137 }
6138 break;
6139
6140 case bp_breakpoint:
6141 case bp_hardware_breakpoint:
6142 case bp_until:
6143 case bp_finish:
6144 case bp_longjmp:
6145 case bp_longjmp_resume:
6146 case bp_longjmp_call_dummy:
6147 case bp_exception:
6148 case bp_exception_resume:
6149 case bp_step_resume:
6150 case bp_hp_step_resume:
6151 case bp_watchpoint_scope:
6152 case bp_call_dummy:
6153 case bp_std_terminate:
6154 case bp_shlib_event:
6155 case bp_thread_event:
6156 case bp_overlay_event:
6157 case bp_longjmp_master:
6158 case bp_std_terminate_master:
6159 case bp_exception_master:
6160 case bp_tracepoint:
6161 case bp_fast_tracepoint:
6162 case bp_static_tracepoint:
6163 case bp_dprintf:
6164 case bp_jit_event:
6165 case bp_gnu_ifunc_resolver:
6166 case bp_gnu_ifunc_resolver_return:
6167 if (opts.addressprint)
6168 {
6169 annotate_field (4);
6170 if (header_of_multiple)
6171 ui_out_field_string (uiout, "addr", "<MULTIPLE>");
6172 else if (b->loc == NULL || loc->shlib_disabled)
6173 ui_out_field_string (uiout, "addr", "<PENDING>");
6174 else
6175 ui_out_field_core_addr (uiout, "addr",
6176 loc->gdbarch, loc->address);
6177 }
6178 annotate_field (5);
6179 if (!header_of_multiple)
6180 print_breakpoint_location (b, loc);
6181 if (b->loc)
6182 *last_loc = b->loc;
6183 break;
6184 }
6185
6186
6187 if (loc != NULL && !header_of_multiple)
6188 {
6189 struct inferior *inf;
6190 VEC(int) *inf_num = NULL;
6191 int mi_only = 1;
6192
6193 ALL_INFERIORS (inf)
6194 {
6195 if (inf->pspace == loc->pspace)
6196 VEC_safe_push (int, inf_num, inf->num);
6197 }
6198
6199 /* For backward compatibility, don't display inferiors in CLI unless
6200 there are several. Always display for MI. */
6201 if (allflag
6202 || (!gdbarch_has_global_breakpoints (target_gdbarch ())
6203 && (number_of_program_spaces () > 1
6204 || number_of_inferiors () > 1)
6205 /* LOC is for existing B, it cannot be in
6206 moribund_locations and thus having NULL OWNER. */
6207 && loc->owner->type != bp_catchpoint))
6208 mi_only = 0;
6209 output_thread_groups (uiout, "thread-groups", inf_num, mi_only);
6210 VEC_free (int, inf_num);
6211 }
6212
6213 if (!part_of_multiple)
6214 {
6215 if (b->thread != -1)
6216 {
6217 /* FIXME: This seems to be redundant and lost here; see the
6218 "stop only in" line a little further down. */
6219 ui_out_text (uiout, " thread ");
6220 ui_out_field_int (uiout, "thread", b->thread);
6221 }
6222 else if (b->task != 0)
6223 {
6224 ui_out_text (uiout, " task ");
6225 ui_out_field_int (uiout, "task", b->task);
6226 }
6227 }
6228
6229 ui_out_text (uiout, "\n");
6230
6231 if (!part_of_multiple)
6232 b->ops->print_one_detail (b, uiout);
6233
6234 if (part_of_multiple && frame_id_p (b->frame_id))
6235 {
6236 annotate_field (6);
6237 ui_out_text (uiout, "\tstop only in stack frame at ");
6238 /* FIXME: cagney/2002-12-01: Shouldn't be poking around inside
6239 the frame ID. */
6240 ui_out_field_core_addr (uiout, "frame",
6241 b->gdbarch, b->frame_id.stack_addr);
6242 ui_out_text (uiout, "\n");
6243 }
6244
6245 if (!part_of_multiple && b->cond_string)
6246 {
6247 annotate_field (7);
6248 if (is_tracepoint (b))
6249 ui_out_text (uiout, "\ttrace only if ");
6250 else
6251 ui_out_text (uiout, "\tstop only if ");
6252 ui_out_field_string (uiout, "cond", b->cond_string);
6253
6254 /* Print whether the target is doing the breakpoint's condition
6255 evaluation. If GDB is doing the evaluation, don't print anything. */
6256 if (is_breakpoint (b)
6257 && breakpoint_condition_evaluation_mode ()
6258 == condition_evaluation_target)
6259 {
6260 ui_out_text (uiout, " (");
6261 ui_out_field_string (uiout, "evaluated-by",
6262 bp_condition_evaluator (b));
6263 ui_out_text (uiout, " evals)");
6264 }
6265 ui_out_text (uiout, "\n");
6266 }
6267
6268 if (!part_of_multiple && b->thread != -1)
6269 {
6270 /* FIXME should make an annotation for this. */
6271 ui_out_text (uiout, "\tstop only in thread ");
6272 ui_out_field_int (uiout, "thread", b->thread);
6273 ui_out_text (uiout, "\n");
6274 }
6275
6276 if (!part_of_multiple)
6277 {
6278 if (b->hit_count)
6279 {
6280 /* FIXME should make an annotation for this. */
6281 if (is_catchpoint (b))
6282 ui_out_text (uiout, "\tcatchpoint");
6283 else if (is_tracepoint (b))
6284 ui_out_text (uiout, "\ttracepoint");
6285 else
6286 ui_out_text (uiout, "\tbreakpoint");
6287 ui_out_text (uiout, " already hit ");
6288 ui_out_field_int (uiout, "times", b->hit_count);
6289 if (b->hit_count == 1)
6290 ui_out_text (uiout, " time\n");
6291 else
6292 ui_out_text (uiout, " times\n");
6293 }
6294 else
6295 {
6296 /* Output the count also if it is zero, but only if this is mi. */
6297 if (ui_out_is_mi_like_p (uiout))
6298 ui_out_field_int (uiout, "times", b->hit_count);
6299 }
6300 }
6301
6302 if (!part_of_multiple && b->ignore_count)
6303 {
6304 annotate_field (8);
6305 ui_out_text (uiout, "\tignore next ");
6306 ui_out_field_int (uiout, "ignore", b->ignore_count);
6307 ui_out_text (uiout, " hits\n");
6308 }
6309
6310 /* Note that an enable count of 1 corresponds to "enable once"
6311 behavior, which is reported by the combination of enablement and
6312 disposition, so we don't need to mention it here. */
6313 if (!part_of_multiple && b->enable_count > 1)
6314 {
6315 annotate_field (8);
6316 ui_out_text (uiout, "\tdisable after ");
6317 /* Tweak the wording to clarify that ignore and enable counts
6318 are distinct, and have additive effect. */
6319 if (b->ignore_count)
6320 ui_out_text (uiout, "additional ");
6321 else
6322 ui_out_text (uiout, "next ");
6323 ui_out_field_int (uiout, "enable", b->enable_count);
6324 ui_out_text (uiout, " hits\n");
6325 }
6326
6327 if (!part_of_multiple && is_tracepoint (b))
6328 {
6329 struct tracepoint *tp = (struct tracepoint *) b;
6330
6331 if (tp->traceframe_usage)
6332 {
6333 ui_out_text (uiout, "\ttrace buffer usage ");
6334 ui_out_field_int (uiout, "traceframe-usage", tp->traceframe_usage);
6335 ui_out_text (uiout, " bytes\n");
6336 }
6337 }
6338
6339 l = b->commands ? b->commands->commands : NULL;
6340 if (!part_of_multiple && l)
6341 {
6342 struct cleanup *script_chain;
6343
6344 annotate_field (9);
6345 script_chain = make_cleanup_ui_out_tuple_begin_end (uiout, "script");
6346 print_command_lines (uiout, l, 4);
6347 do_cleanups (script_chain);
6348 }
6349
6350 if (is_tracepoint (b))
6351 {
6352 struct tracepoint *t = (struct tracepoint *) b;
6353
6354 if (!part_of_multiple && t->pass_count)
6355 {
6356 annotate_field (10);
6357 ui_out_text (uiout, "\tpass count ");
6358 ui_out_field_int (uiout, "pass", t->pass_count);
6359 ui_out_text (uiout, " \n");
6360 }
6361
6362 /* Don't display it when tracepoint or tracepoint location is
6363 pending. */
6364 if (!header_of_multiple && loc != NULL && !loc->shlib_disabled)
6365 {
6366 annotate_field (11);
6367
6368 if (ui_out_is_mi_like_p (uiout))
6369 ui_out_field_string (uiout, "installed",
6370 loc->inserted ? "y" : "n");
6371 else
6372 {
6373 if (loc->inserted)
6374 ui_out_text (uiout, "\t");
6375 else
6376 ui_out_text (uiout, "\tnot ");
6377 ui_out_text (uiout, "installed on target\n");
6378 }
6379 }
6380 }
6381
6382 if (ui_out_is_mi_like_p (uiout) && !part_of_multiple)
6383 {
6384 if (is_watchpoint (b))
6385 {
6386 struct watchpoint *w = (struct watchpoint *) b;
6387
6388 ui_out_field_string (uiout, "original-location", w->exp_string);
6389 }
6390 else if (b->addr_string)
6391 ui_out_field_string (uiout, "original-location", b->addr_string);
6392 }
6393 }
6394
6395 static void
6396 print_one_breakpoint (struct breakpoint *b,
6397 struct bp_location **last_loc,
6398 int allflag)
6399 {
6400 struct cleanup *bkpt_chain;
6401 struct ui_out *uiout = current_uiout;
6402
6403 bkpt_chain = make_cleanup_ui_out_tuple_begin_end (uiout, "bkpt");
6404
6405 print_one_breakpoint_location (b, NULL, 0, last_loc, allflag);
6406 do_cleanups (bkpt_chain);
6407
6408 /* If this breakpoint has custom print function,
6409 it's already printed. Otherwise, print individual
6410 locations, if any. */
6411 if (b->ops == NULL || b->ops->print_one == NULL)
6412 {
6413 /* If breakpoint has a single location that is disabled, we
6414 print it as if it had several locations, since otherwise it's
6415 hard to represent "breakpoint enabled, location disabled"
6416 situation.
6417
6418 Note that while hardware watchpoints have several locations
6419 internally, that's not a property exposed to user. */
6420 if (b->loc
6421 && !is_hardware_watchpoint (b)
6422 && (b->loc->next || !b->loc->enabled))
6423 {
6424 struct bp_location *loc;
6425 int n = 1;
6426
6427 for (loc = b->loc; loc; loc = loc->next, ++n)
6428 {
6429 struct cleanup *inner2 =
6430 make_cleanup_ui_out_tuple_begin_end (uiout, NULL);
6431 print_one_breakpoint_location (b, loc, n, last_loc, allflag);
6432 do_cleanups (inner2);
6433 }
6434 }
6435 }
6436 }
6437
6438 static int
6439 breakpoint_address_bits (struct breakpoint *b)
6440 {
6441 int print_address_bits = 0;
6442 struct bp_location *loc;
6443
6444 for (loc = b->loc; loc; loc = loc->next)
6445 {
6446 int addr_bit;
6447
6448 /* Software watchpoints that aren't watching memory don't have
6449 an address to print. */
6450 if (b->type == bp_watchpoint && loc->watchpoint_type == -1)
6451 continue;
6452
6453 addr_bit = gdbarch_addr_bit (loc->gdbarch);
6454 if (addr_bit > print_address_bits)
6455 print_address_bits = addr_bit;
6456 }
6457
6458 return print_address_bits;
6459 }
6460
6461 struct captured_breakpoint_query_args
6462 {
6463 int bnum;
6464 };
6465
6466 static int
6467 do_captured_breakpoint_query (struct ui_out *uiout, void *data)
6468 {
6469 struct captured_breakpoint_query_args *args = data;
6470 struct breakpoint *b;
6471 struct bp_location *dummy_loc = NULL;
6472
6473 ALL_BREAKPOINTS (b)
6474 {
6475 if (args->bnum == b->number)
6476 {
6477 print_one_breakpoint (b, &dummy_loc, 0);
6478 return GDB_RC_OK;
6479 }
6480 }
6481 return GDB_RC_NONE;
6482 }
6483
6484 enum gdb_rc
6485 gdb_breakpoint_query (struct ui_out *uiout, int bnum,
6486 char **error_message)
6487 {
6488 struct captured_breakpoint_query_args args;
6489
6490 args.bnum = bnum;
6491 /* For the moment we don't trust print_one_breakpoint() to not throw
6492 an error. */
6493 if (catch_exceptions_with_msg (uiout, do_captured_breakpoint_query, &args,
6494 error_message, RETURN_MASK_ALL) < 0)
6495 return GDB_RC_FAIL;
6496 else
6497 return GDB_RC_OK;
6498 }
6499
6500 /* Return true if this breakpoint was set by the user, false if it is
6501 internal or momentary. */
6502
6503 int
6504 user_breakpoint_p (struct breakpoint *b)
6505 {
6506 return b->number > 0;
6507 }
6508
6509 /* Print information on user settable breakpoint (watchpoint, etc)
6510 number BNUM. If BNUM is -1 print all user-settable breakpoints.
6511 If ALLFLAG is non-zero, include non-user-settable breakpoints. If
6512 FILTER is non-NULL, call it on each breakpoint and only include the
6513 ones for which it returns non-zero. Return the total number of
6514 breakpoints listed. */
6515
6516 static int
6517 breakpoint_1 (char *args, int allflag,
6518 int (*filter) (const struct breakpoint *))
6519 {
6520 struct breakpoint *b;
6521 struct bp_location *last_loc = NULL;
6522 int nr_printable_breakpoints;
6523 struct cleanup *bkpttbl_chain;
6524 struct value_print_options opts;
6525 int print_address_bits = 0;
6526 int print_type_col_width = 14;
6527 struct ui_out *uiout = current_uiout;
6528
6529 get_user_print_options (&opts);
6530
6531 /* Compute the number of rows in the table, as well as the size
6532 required for address fields. */
6533 nr_printable_breakpoints = 0;
6534 ALL_BREAKPOINTS (b)
6535 {
6536 /* If we have a filter, only list the breakpoints it accepts. */
6537 if (filter && !filter (b))
6538 continue;
6539
6540 /* If we have an "args" string, it is a list of breakpoints to
6541 accept. Skip the others. */
6542 if (args != NULL && *args != '\0')
6543 {
6544 if (allflag && parse_and_eval_long (args) != b->number)
6545 continue;
6546 if (!allflag && !number_is_in_list (args, b->number))
6547 continue;
6548 }
6549
6550 if (allflag || user_breakpoint_p (b))
6551 {
6552 int addr_bit, type_len;
6553
6554 addr_bit = breakpoint_address_bits (b);
6555 if (addr_bit > print_address_bits)
6556 print_address_bits = addr_bit;
6557
6558 type_len = strlen (bptype_string (b->type));
6559 if (type_len > print_type_col_width)
6560 print_type_col_width = type_len;
6561
6562 nr_printable_breakpoints++;
6563 }
6564 }
6565
6566 if (opts.addressprint)
6567 bkpttbl_chain
6568 = make_cleanup_ui_out_table_begin_end (uiout, 6,
6569 nr_printable_breakpoints,
6570 "BreakpointTable");
6571 else
6572 bkpttbl_chain
6573 = make_cleanup_ui_out_table_begin_end (uiout, 5,
6574 nr_printable_breakpoints,
6575 "BreakpointTable");
6576
6577 if (nr_printable_breakpoints > 0)
6578 annotate_breakpoints_headers ();
6579 if (nr_printable_breakpoints > 0)
6580 annotate_field (0);
6581 ui_out_table_header (uiout, 7, ui_left, "number", "Num"); /* 1 */
6582 if (nr_printable_breakpoints > 0)
6583 annotate_field (1);
6584 ui_out_table_header (uiout, print_type_col_width, ui_left,
6585 "type", "Type"); /* 2 */
6586 if (nr_printable_breakpoints > 0)
6587 annotate_field (2);
6588 ui_out_table_header (uiout, 4, ui_left, "disp", "Disp"); /* 3 */
6589 if (nr_printable_breakpoints > 0)
6590 annotate_field (3);
6591 ui_out_table_header (uiout, 3, ui_left, "enabled", "Enb"); /* 4 */
6592 if (opts.addressprint)
6593 {
6594 if (nr_printable_breakpoints > 0)
6595 annotate_field (4);
6596 if (print_address_bits <= 32)
6597 ui_out_table_header (uiout, 10, ui_left,
6598 "addr", "Address"); /* 5 */
6599 else
6600 ui_out_table_header (uiout, 18, ui_left,
6601 "addr", "Address"); /* 5 */
6602 }
6603 if (nr_printable_breakpoints > 0)
6604 annotate_field (5);
6605 ui_out_table_header (uiout, 40, ui_noalign, "what", "What"); /* 6 */
6606 ui_out_table_body (uiout);
6607 if (nr_printable_breakpoints > 0)
6608 annotate_breakpoints_table ();
6609
6610 ALL_BREAKPOINTS (b)
6611 {
6612 QUIT;
6613 /* If we have a filter, only list the breakpoints it accepts. */
6614 if (filter && !filter (b))
6615 continue;
6616
6617 /* If we have an "args" string, it is a list of breakpoints to
6618 accept. Skip the others. */
6619
6620 if (args != NULL && *args != '\0')
6621 {
6622 if (allflag) /* maintenance info breakpoint */
6623 {
6624 if (parse_and_eval_long (args) != b->number)
6625 continue;
6626 }
6627 else /* all others */
6628 {
6629 if (!number_is_in_list (args, b->number))
6630 continue;
6631 }
6632 }
6633 /* We only print out user settable breakpoints unless the
6634 allflag is set. */
6635 if (allflag || user_breakpoint_p (b))
6636 print_one_breakpoint (b, &last_loc, allflag);
6637 }
6638
6639 do_cleanups (bkpttbl_chain);
6640
6641 if (nr_printable_breakpoints == 0)
6642 {
6643 /* If there's a filter, let the caller decide how to report
6644 empty list. */
6645 if (!filter)
6646 {
6647 if (args == NULL || *args == '\0')
6648 ui_out_message (uiout, 0, "No breakpoints or watchpoints.\n");
6649 else
6650 ui_out_message (uiout, 0,
6651 "No breakpoint or watchpoint matching '%s'.\n",
6652 args);
6653 }
6654 }
6655 else
6656 {
6657 if (last_loc && !server_command)
6658 set_next_address (last_loc->gdbarch, last_loc->address);
6659 }
6660
6661 /* FIXME? Should this be moved up so that it is only called when
6662 there have been breakpoints? */
6663 annotate_breakpoints_table_end ();
6664
6665 return nr_printable_breakpoints;
6666 }
6667
6668 /* Display the value of default-collect in a way that is generally
6669 compatible with the breakpoint list. */
6670
6671 static void
6672 default_collect_info (void)
6673 {
6674 struct ui_out *uiout = current_uiout;
6675
6676 /* If it has no value (which is frequently the case), say nothing; a
6677 message like "No default-collect." gets in user's face when it's
6678 not wanted. */
6679 if (!*default_collect)
6680 return;
6681
6682 /* The following phrase lines up nicely with per-tracepoint collect
6683 actions. */
6684 ui_out_text (uiout, "default collect ");
6685 ui_out_field_string (uiout, "default-collect", default_collect);
6686 ui_out_text (uiout, " \n");
6687 }
6688
6689 static void
6690 breakpoints_info (char *args, int from_tty)
6691 {
6692 breakpoint_1 (args, 0, NULL);
6693
6694 default_collect_info ();
6695 }
6696
6697 static void
6698 watchpoints_info (char *args, int from_tty)
6699 {
6700 int num_printed = breakpoint_1 (args, 0, is_watchpoint);
6701 struct ui_out *uiout = current_uiout;
6702
6703 if (num_printed == 0)
6704 {
6705 if (args == NULL || *args == '\0')
6706 ui_out_message (uiout, 0, "No watchpoints.\n");
6707 else
6708 ui_out_message (uiout, 0, "No watchpoint matching '%s'.\n", args);
6709 }
6710 }
6711
6712 static void
6713 maintenance_info_breakpoints (char *args, int from_tty)
6714 {
6715 breakpoint_1 (args, 1, NULL);
6716
6717 default_collect_info ();
6718 }
6719
6720 static int
6721 breakpoint_has_pc (struct breakpoint *b,
6722 struct program_space *pspace,
6723 CORE_ADDR pc, struct obj_section *section)
6724 {
6725 struct bp_location *bl = b->loc;
6726
6727 for (; bl; bl = bl->next)
6728 {
6729 if (bl->pspace == pspace
6730 && bl->address == pc
6731 && (!overlay_debugging || bl->section == section))
6732 return 1;
6733 }
6734 return 0;
6735 }
6736
6737 /* Print a message describing any user-breakpoints set at PC. This
6738 concerns with logical breakpoints, so we match program spaces, not
6739 address spaces. */
6740
6741 static void
6742 describe_other_breakpoints (struct gdbarch *gdbarch,
6743 struct program_space *pspace, CORE_ADDR pc,
6744 struct obj_section *section, int thread)
6745 {
6746 int others = 0;
6747 struct breakpoint *b;
6748
6749 ALL_BREAKPOINTS (b)
6750 others += (user_breakpoint_p (b)
6751 && breakpoint_has_pc (b, pspace, pc, section));
6752 if (others > 0)
6753 {
6754 if (others == 1)
6755 printf_filtered (_("Note: breakpoint "));
6756 else /* if (others == ???) */
6757 printf_filtered (_("Note: breakpoints "));
6758 ALL_BREAKPOINTS (b)
6759 if (user_breakpoint_p (b) && breakpoint_has_pc (b, pspace, pc, section))
6760 {
6761 others--;
6762 printf_filtered ("%d", b->number);
6763 if (b->thread == -1 && thread != -1)
6764 printf_filtered (" (all threads)");
6765 else if (b->thread != -1)
6766 printf_filtered (" (thread %d)", b->thread);
6767 printf_filtered ("%s%s ",
6768 ((b->enable_state == bp_disabled
6769 || b->enable_state == bp_call_disabled)
6770 ? " (disabled)"
6771 : b->enable_state == bp_permanent
6772 ? " (permanent)"
6773 : ""),
6774 (others > 1) ? ","
6775 : ((others == 1) ? " and" : ""));
6776 }
6777 printf_filtered (_("also set at pc "));
6778 fputs_filtered (paddress (gdbarch, pc), gdb_stdout);
6779 printf_filtered (".\n");
6780 }
6781 }
6782 \f
6783
6784 /* Return true iff it is meaningful to use the address member of
6785 BPT. For some breakpoint types, the address member is irrelevant
6786 and it makes no sense to attempt to compare it to other addresses
6787 (or use it for any other purpose either).
6788
6789 More specifically, each of the following breakpoint types will
6790 always have a zero valued address and we don't want to mark
6791 breakpoints of any of these types to be a duplicate of an actual
6792 breakpoint at address zero:
6793
6794 bp_watchpoint
6795 bp_catchpoint
6796
6797 */
6798
6799 static int
6800 breakpoint_address_is_meaningful (struct breakpoint *bpt)
6801 {
6802 enum bptype type = bpt->type;
6803
6804 return (type != bp_watchpoint && type != bp_catchpoint);
6805 }
6806
6807 /* Assuming LOC1 and LOC2's owners are hardware watchpoints, returns
6808 true if LOC1 and LOC2 represent the same watchpoint location. */
6809
6810 static int
6811 watchpoint_locations_match (struct bp_location *loc1,
6812 struct bp_location *loc2)
6813 {
6814 struct watchpoint *w1 = (struct watchpoint *) loc1->owner;
6815 struct watchpoint *w2 = (struct watchpoint *) loc2->owner;
6816
6817 /* Both of them must exist. */
6818 gdb_assert (w1 != NULL);
6819 gdb_assert (w2 != NULL);
6820
6821 /* If the target can evaluate the condition expression in hardware,
6822 then we we need to insert both watchpoints even if they are at
6823 the same place. Otherwise the watchpoint will only trigger when
6824 the condition of whichever watchpoint was inserted evaluates to
6825 true, not giving a chance for GDB to check the condition of the
6826 other watchpoint. */
6827 if ((w1->cond_exp
6828 && target_can_accel_watchpoint_condition (loc1->address,
6829 loc1->length,
6830 loc1->watchpoint_type,
6831 w1->cond_exp))
6832 || (w2->cond_exp
6833 && target_can_accel_watchpoint_condition (loc2->address,
6834 loc2->length,
6835 loc2->watchpoint_type,
6836 w2->cond_exp)))
6837 return 0;
6838
6839 /* Note that this checks the owner's type, not the location's. In
6840 case the target does not support read watchpoints, but does
6841 support access watchpoints, we'll have bp_read_watchpoint
6842 watchpoints with hw_access locations. Those should be considered
6843 duplicates of hw_read locations. The hw_read locations will
6844 become hw_access locations later. */
6845 return (loc1->owner->type == loc2->owner->type
6846 && loc1->pspace->aspace == loc2->pspace->aspace
6847 && loc1->address == loc2->address
6848 && loc1->length == loc2->length);
6849 }
6850
6851 /* See breakpoint.h. */
6852
6853 int
6854 breakpoint_address_match (struct address_space *aspace1, CORE_ADDR addr1,
6855 struct address_space *aspace2, CORE_ADDR addr2)
6856 {
6857 return ((gdbarch_has_global_breakpoints (target_gdbarch ())
6858 || aspace1 == aspace2)
6859 && addr1 == addr2);
6860 }
6861
6862 /* Returns true if {ASPACE2,ADDR2} falls within the range determined by
6863 {ASPACE1,ADDR1,LEN1}. In most targets, this can only be true if ASPACE1
6864 matches ASPACE2. On targets that have global breakpoints, the address
6865 space doesn't really matter. */
6866
6867 static int
6868 breakpoint_address_match_range (struct address_space *aspace1, CORE_ADDR addr1,
6869 int len1, struct address_space *aspace2,
6870 CORE_ADDR addr2)
6871 {
6872 return ((gdbarch_has_global_breakpoints (target_gdbarch ())
6873 || aspace1 == aspace2)
6874 && addr2 >= addr1 && addr2 < addr1 + len1);
6875 }
6876
6877 /* Returns true if {ASPACE,ADDR} matches the breakpoint BL. BL may be
6878 a ranged breakpoint. In most targets, a match happens only if ASPACE
6879 matches the breakpoint's address space. On targets that have global
6880 breakpoints, the address space doesn't really matter. */
6881
6882 static int
6883 breakpoint_location_address_match (struct bp_location *bl,
6884 struct address_space *aspace,
6885 CORE_ADDR addr)
6886 {
6887 return (breakpoint_address_match (bl->pspace->aspace, bl->address,
6888 aspace, addr)
6889 || (bl->length
6890 && breakpoint_address_match_range (bl->pspace->aspace,
6891 bl->address, bl->length,
6892 aspace, addr)));
6893 }
6894
6895 /* If LOC1 and LOC2's owners are not tracepoints, returns false directly.
6896 Then, if LOC1 and LOC2 represent the same tracepoint location, returns
6897 true, otherwise returns false. */
6898
6899 static int
6900 tracepoint_locations_match (struct bp_location *loc1,
6901 struct bp_location *loc2)
6902 {
6903 if (is_tracepoint (loc1->owner) && is_tracepoint (loc2->owner))
6904 /* Since tracepoint locations are never duplicated with others', tracepoint
6905 locations at the same address of different tracepoints are regarded as
6906 different locations. */
6907 return (loc1->address == loc2->address && loc1->owner == loc2->owner);
6908 else
6909 return 0;
6910 }
6911
6912 /* Assuming LOC1 and LOC2's types' have meaningful target addresses
6913 (breakpoint_address_is_meaningful), returns true if LOC1 and LOC2
6914 represent the same location. */
6915
6916 static int
6917 breakpoint_locations_match (struct bp_location *loc1,
6918 struct bp_location *loc2)
6919 {
6920 int hw_point1, hw_point2;
6921
6922 /* Both of them must not be in moribund_locations. */
6923 gdb_assert (loc1->owner != NULL);
6924 gdb_assert (loc2->owner != NULL);
6925
6926 hw_point1 = is_hardware_watchpoint (loc1->owner);
6927 hw_point2 = is_hardware_watchpoint (loc2->owner);
6928
6929 if (hw_point1 != hw_point2)
6930 return 0;
6931 else if (hw_point1)
6932 return watchpoint_locations_match (loc1, loc2);
6933 else if (is_tracepoint (loc1->owner) || is_tracepoint (loc2->owner))
6934 return tracepoint_locations_match (loc1, loc2);
6935 else
6936 /* We compare bp_location.length in order to cover ranged breakpoints. */
6937 return (breakpoint_address_match (loc1->pspace->aspace, loc1->address,
6938 loc2->pspace->aspace, loc2->address)
6939 && loc1->length == loc2->length);
6940 }
6941
6942 static void
6943 breakpoint_adjustment_warning (CORE_ADDR from_addr, CORE_ADDR to_addr,
6944 int bnum, int have_bnum)
6945 {
6946 /* The longest string possibly returned by hex_string_custom
6947 is 50 chars. These must be at least that big for safety. */
6948 char astr1[64];
6949 char astr2[64];
6950
6951 strcpy (astr1, hex_string_custom ((unsigned long) from_addr, 8));
6952 strcpy (astr2, hex_string_custom ((unsigned long) to_addr, 8));
6953 if (have_bnum)
6954 warning (_("Breakpoint %d address previously adjusted from %s to %s."),
6955 bnum, astr1, astr2);
6956 else
6957 warning (_("Breakpoint address adjusted from %s to %s."), astr1, astr2);
6958 }
6959
6960 /* Adjust a breakpoint's address to account for architectural
6961 constraints on breakpoint placement. Return the adjusted address.
6962 Note: Very few targets require this kind of adjustment. For most
6963 targets, this function is simply the identity function. */
6964
6965 static CORE_ADDR
6966 adjust_breakpoint_address (struct gdbarch *gdbarch,
6967 CORE_ADDR bpaddr, enum bptype bptype)
6968 {
6969 if (!gdbarch_adjust_breakpoint_address_p (gdbarch))
6970 {
6971 /* Very few targets need any kind of breakpoint adjustment. */
6972 return bpaddr;
6973 }
6974 else if (bptype == bp_watchpoint
6975 || bptype == bp_hardware_watchpoint
6976 || bptype == bp_read_watchpoint
6977 || bptype == bp_access_watchpoint
6978 || bptype == bp_catchpoint)
6979 {
6980 /* Watchpoints and the various bp_catch_* eventpoints should not
6981 have their addresses modified. */
6982 return bpaddr;
6983 }
6984 else
6985 {
6986 CORE_ADDR adjusted_bpaddr;
6987
6988 /* Some targets have architectural constraints on the placement
6989 of breakpoint instructions. Obtain the adjusted address. */
6990 adjusted_bpaddr = gdbarch_adjust_breakpoint_address (gdbarch, bpaddr);
6991
6992 /* An adjusted breakpoint address can significantly alter
6993 a user's expectations. Print a warning if an adjustment
6994 is required. */
6995 if (adjusted_bpaddr != bpaddr)
6996 breakpoint_adjustment_warning (bpaddr, adjusted_bpaddr, 0, 0);
6997
6998 return adjusted_bpaddr;
6999 }
7000 }
7001
7002 void
7003 init_bp_location (struct bp_location *loc, const struct bp_location_ops *ops,
7004 struct breakpoint *owner)
7005 {
7006 memset (loc, 0, sizeof (*loc));
7007
7008 gdb_assert (ops != NULL);
7009
7010 loc->ops = ops;
7011 loc->owner = owner;
7012 loc->cond = NULL;
7013 loc->cond_bytecode = NULL;
7014 loc->shlib_disabled = 0;
7015 loc->enabled = 1;
7016
7017 switch (owner->type)
7018 {
7019 case bp_breakpoint:
7020 case bp_until:
7021 case bp_finish:
7022 case bp_longjmp:
7023 case bp_longjmp_resume:
7024 case bp_longjmp_call_dummy:
7025 case bp_exception:
7026 case bp_exception_resume:
7027 case bp_step_resume:
7028 case bp_hp_step_resume:
7029 case bp_watchpoint_scope:
7030 case bp_call_dummy:
7031 case bp_std_terminate:
7032 case bp_shlib_event:
7033 case bp_thread_event:
7034 case bp_overlay_event:
7035 case bp_jit_event:
7036 case bp_longjmp_master:
7037 case bp_std_terminate_master:
7038 case bp_exception_master:
7039 case bp_gnu_ifunc_resolver:
7040 case bp_gnu_ifunc_resolver_return:
7041 case bp_dprintf:
7042 loc->loc_type = bp_loc_software_breakpoint;
7043 mark_breakpoint_location_modified (loc);
7044 break;
7045 case bp_hardware_breakpoint:
7046 loc->loc_type = bp_loc_hardware_breakpoint;
7047 mark_breakpoint_location_modified (loc);
7048 break;
7049 case bp_hardware_watchpoint:
7050 case bp_read_watchpoint:
7051 case bp_access_watchpoint:
7052 loc->loc_type = bp_loc_hardware_watchpoint;
7053 break;
7054 case bp_watchpoint:
7055 case bp_catchpoint:
7056 case bp_tracepoint:
7057 case bp_fast_tracepoint:
7058 case bp_static_tracepoint:
7059 loc->loc_type = bp_loc_other;
7060 break;
7061 default:
7062 internal_error (__FILE__, __LINE__, _("unknown breakpoint type"));
7063 }
7064
7065 loc->refc = 1;
7066 }
7067
7068 /* Allocate a struct bp_location. */
7069
7070 static struct bp_location *
7071 allocate_bp_location (struct breakpoint *bpt)
7072 {
7073 return bpt->ops->allocate_location (bpt);
7074 }
7075
7076 static void
7077 free_bp_location (struct bp_location *loc)
7078 {
7079 loc->ops->dtor (loc);
7080 xfree (loc);
7081 }
7082
7083 /* Increment reference count. */
7084
7085 static void
7086 incref_bp_location (struct bp_location *bl)
7087 {
7088 ++bl->refc;
7089 }
7090
7091 /* Decrement reference count. If the reference count reaches 0,
7092 destroy the bp_location. Sets *BLP to NULL. */
7093
7094 static void
7095 decref_bp_location (struct bp_location **blp)
7096 {
7097 gdb_assert ((*blp)->refc > 0);
7098
7099 if (--(*blp)->refc == 0)
7100 free_bp_location (*blp);
7101 *blp = NULL;
7102 }
7103
7104 /* Add breakpoint B at the end of the global breakpoint chain. */
7105
7106 static void
7107 add_to_breakpoint_chain (struct breakpoint *b)
7108 {
7109 struct breakpoint *b1;
7110
7111 /* Add this breakpoint to the end of the chain so that a list of
7112 breakpoints will come out in order of increasing numbers. */
7113
7114 b1 = breakpoint_chain;
7115 if (b1 == 0)
7116 breakpoint_chain = b;
7117 else
7118 {
7119 while (b1->next)
7120 b1 = b1->next;
7121 b1->next = b;
7122 }
7123 }
7124
7125 /* Initializes breakpoint B with type BPTYPE and no locations yet. */
7126
7127 static void
7128 init_raw_breakpoint_without_location (struct breakpoint *b,
7129 struct gdbarch *gdbarch,
7130 enum bptype bptype,
7131 const struct breakpoint_ops *ops)
7132 {
7133 memset (b, 0, sizeof (*b));
7134
7135 gdb_assert (ops != NULL);
7136
7137 b->ops = ops;
7138 b->type = bptype;
7139 b->gdbarch = gdbarch;
7140 b->language = current_language->la_language;
7141 b->input_radix = input_radix;
7142 b->thread = -1;
7143 b->enable_state = bp_enabled;
7144 b->next = 0;
7145 b->silent = 0;
7146 b->ignore_count = 0;
7147 b->commands = NULL;
7148 b->frame_id = null_frame_id;
7149 b->condition_not_parsed = 0;
7150 b->py_bp_object = NULL;
7151 b->related_breakpoint = b;
7152 }
7153
7154 /* Helper to set_raw_breakpoint below. Creates a breakpoint
7155 that has type BPTYPE and has no locations as yet. */
7156
7157 static struct breakpoint *
7158 set_raw_breakpoint_without_location (struct gdbarch *gdbarch,
7159 enum bptype bptype,
7160 const struct breakpoint_ops *ops)
7161 {
7162 struct breakpoint *b = XNEW (struct breakpoint);
7163
7164 init_raw_breakpoint_without_location (b, gdbarch, bptype, ops);
7165 add_to_breakpoint_chain (b);
7166 return b;
7167 }
7168
7169 /* Initialize loc->function_name. EXPLICIT_LOC says no indirect function
7170 resolutions should be made as the user specified the location explicitly
7171 enough. */
7172
7173 static void
7174 set_breakpoint_location_function (struct bp_location *loc, int explicit_loc)
7175 {
7176 gdb_assert (loc->owner != NULL);
7177
7178 if (loc->owner->type == bp_breakpoint
7179 || loc->owner->type == bp_hardware_breakpoint
7180 || is_tracepoint (loc->owner))
7181 {
7182 int is_gnu_ifunc;
7183 const char *function_name;
7184 CORE_ADDR func_addr;
7185
7186 find_pc_partial_function_gnu_ifunc (loc->address, &function_name,
7187 &func_addr, NULL, &is_gnu_ifunc);
7188
7189 if (is_gnu_ifunc && !explicit_loc)
7190 {
7191 struct breakpoint *b = loc->owner;
7192
7193 gdb_assert (loc->pspace == current_program_space);
7194 if (gnu_ifunc_resolve_name (function_name,
7195 &loc->requested_address))
7196 {
7197 /* Recalculate ADDRESS based on new REQUESTED_ADDRESS. */
7198 loc->address = adjust_breakpoint_address (loc->gdbarch,
7199 loc->requested_address,
7200 b->type);
7201 }
7202 else if (b->type == bp_breakpoint && b->loc == loc
7203 && loc->next == NULL && b->related_breakpoint == b)
7204 {
7205 /* Create only the whole new breakpoint of this type but do not
7206 mess more complicated breakpoints with multiple locations. */
7207 b->type = bp_gnu_ifunc_resolver;
7208 /* Remember the resolver's address for use by the return
7209 breakpoint. */
7210 loc->related_address = func_addr;
7211 }
7212 }
7213
7214 if (function_name)
7215 loc->function_name = xstrdup (function_name);
7216 }
7217 }
7218
7219 /* Attempt to determine architecture of location identified by SAL. */
7220 struct gdbarch *
7221 get_sal_arch (struct symtab_and_line sal)
7222 {
7223 if (sal.section)
7224 return get_objfile_arch (sal.section->objfile);
7225 if (sal.symtab)
7226 return get_objfile_arch (sal.symtab->objfile);
7227
7228 return NULL;
7229 }
7230
7231 /* Low level routine for partially initializing a breakpoint of type
7232 BPTYPE. The newly created breakpoint's address, section, source
7233 file name, and line number are provided by SAL.
7234
7235 It is expected that the caller will complete the initialization of
7236 the newly created breakpoint struct as well as output any status
7237 information regarding the creation of a new breakpoint. */
7238
7239 static void
7240 init_raw_breakpoint (struct breakpoint *b, struct gdbarch *gdbarch,
7241 struct symtab_and_line sal, enum bptype bptype,
7242 const struct breakpoint_ops *ops)
7243 {
7244 init_raw_breakpoint_without_location (b, gdbarch, bptype, ops);
7245
7246 add_location_to_breakpoint (b, &sal);
7247
7248 if (bptype != bp_catchpoint)
7249 gdb_assert (sal.pspace != NULL);
7250
7251 /* Store the program space that was used to set the breakpoint,
7252 except for ordinary breakpoints, which are independent of the
7253 program space. */
7254 if (bptype != bp_breakpoint && bptype != bp_hardware_breakpoint)
7255 b->pspace = sal.pspace;
7256 }
7257
7258 /* set_raw_breakpoint is a low level routine for allocating and
7259 partially initializing a breakpoint of type BPTYPE. The newly
7260 created breakpoint's address, section, source file name, and line
7261 number are provided by SAL. The newly created and partially
7262 initialized breakpoint is added to the breakpoint chain and
7263 is also returned as the value of this function.
7264
7265 It is expected that the caller will complete the initialization of
7266 the newly created breakpoint struct as well as output any status
7267 information regarding the creation of a new breakpoint. In
7268 particular, set_raw_breakpoint does NOT set the breakpoint
7269 number! Care should be taken to not allow an error to occur
7270 prior to completing the initialization of the breakpoint. If this
7271 should happen, a bogus breakpoint will be left on the chain. */
7272
7273 struct breakpoint *
7274 set_raw_breakpoint (struct gdbarch *gdbarch,
7275 struct symtab_and_line sal, enum bptype bptype,
7276 const struct breakpoint_ops *ops)
7277 {
7278 struct breakpoint *b = XNEW (struct breakpoint);
7279
7280 init_raw_breakpoint (b, gdbarch, sal, bptype, ops);
7281 add_to_breakpoint_chain (b);
7282 return b;
7283 }
7284
7285
7286 /* Note that the breakpoint object B describes a permanent breakpoint
7287 instruction, hard-wired into the inferior's code. */
7288 void
7289 make_breakpoint_permanent (struct breakpoint *b)
7290 {
7291 struct bp_location *bl;
7292
7293 b->enable_state = bp_permanent;
7294
7295 /* By definition, permanent breakpoints are already present in the
7296 code. Mark all locations as inserted. For now,
7297 make_breakpoint_permanent is called in just one place, so it's
7298 hard to say if it's reasonable to have permanent breakpoint with
7299 multiple locations or not, but it's easy to implement. */
7300 for (bl = b->loc; bl; bl = bl->next)
7301 bl->inserted = 1;
7302 }
7303
7304 /* Call this routine when stepping and nexting to enable a breakpoint
7305 if we do a longjmp() or 'throw' in TP. FRAME is the frame which
7306 initiated the operation. */
7307
7308 void
7309 set_longjmp_breakpoint (struct thread_info *tp, struct frame_id frame)
7310 {
7311 struct breakpoint *b, *b_tmp;
7312 int thread = tp->num;
7313
7314 /* To avoid having to rescan all objfile symbols at every step,
7315 we maintain a list of continually-inserted but always disabled
7316 longjmp "master" breakpoints. Here, we simply create momentary
7317 clones of those and enable them for the requested thread. */
7318 ALL_BREAKPOINTS_SAFE (b, b_tmp)
7319 if (b->pspace == current_program_space
7320 && (b->type == bp_longjmp_master
7321 || b->type == bp_exception_master))
7322 {
7323 enum bptype type = b->type == bp_longjmp_master ? bp_longjmp : bp_exception;
7324 struct breakpoint *clone;
7325
7326 /* longjmp_breakpoint_ops ensures INITIATING_FRAME is cleared again
7327 after their removal. */
7328 clone = momentary_breakpoint_from_master (b, type,
7329 &longjmp_breakpoint_ops);
7330 clone->thread = thread;
7331 }
7332
7333 tp->initiating_frame = frame;
7334 }
7335
7336 /* Delete all longjmp breakpoints from THREAD. */
7337 void
7338 delete_longjmp_breakpoint (int thread)
7339 {
7340 struct breakpoint *b, *b_tmp;
7341
7342 ALL_BREAKPOINTS_SAFE (b, b_tmp)
7343 if (b->type == bp_longjmp || b->type == bp_exception)
7344 {
7345 if (b->thread == thread)
7346 delete_breakpoint (b);
7347 }
7348 }
7349
7350 void
7351 delete_longjmp_breakpoint_at_next_stop (int thread)
7352 {
7353 struct breakpoint *b, *b_tmp;
7354
7355 ALL_BREAKPOINTS_SAFE (b, b_tmp)
7356 if (b->type == bp_longjmp || b->type == bp_exception)
7357 {
7358 if (b->thread == thread)
7359 b->disposition = disp_del_at_next_stop;
7360 }
7361 }
7362
7363 /* Place breakpoints of type bp_longjmp_call_dummy to catch longjmp for
7364 INFERIOR_PTID thread. Chain them all by RELATED_BREAKPOINT and return
7365 pointer to any of them. Return NULL if this system cannot place longjmp
7366 breakpoints. */
7367
7368 struct breakpoint *
7369 set_longjmp_breakpoint_for_call_dummy (void)
7370 {
7371 struct breakpoint *b, *retval = NULL;
7372
7373 ALL_BREAKPOINTS (b)
7374 if (b->pspace == current_program_space && b->type == bp_longjmp_master)
7375 {
7376 struct breakpoint *new_b;
7377
7378 new_b = momentary_breakpoint_from_master (b, bp_longjmp_call_dummy,
7379 &momentary_breakpoint_ops);
7380 new_b->thread = pid_to_thread_id (inferior_ptid);
7381
7382 /* Link NEW_B into the chain of RETVAL breakpoints. */
7383
7384 gdb_assert (new_b->related_breakpoint == new_b);
7385 if (retval == NULL)
7386 retval = new_b;
7387 new_b->related_breakpoint = retval;
7388 while (retval->related_breakpoint != new_b->related_breakpoint)
7389 retval = retval->related_breakpoint;
7390 retval->related_breakpoint = new_b;
7391 }
7392
7393 return retval;
7394 }
7395
7396 /* Verify all existing dummy frames and their associated breakpoints for
7397 THREAD. Remove those which can no longer be found in the current frame
7398 stack.
7399
7400 You should call this function only at places where it is safe to currently
7401 unwind the whole stack. Failed stack unwind would discard live dummy
7402 frames. */
7403
7404 void
7405 check_longjmp_breakpoint_for_call_dummy (int thread)
7406 {
7407 struct breakpoint *b, *b_tmp;
7408
7409 ALL_BREAKPOINTS_SAFE (b, b_tmp)
7410 if (b->type == bp_longjmp_call_dummy && b->thread == thread)
7411 {
7412 struct breakpoint *dummy_b = b->related_breakpoint;
7413
7414 while (dummy_b != b && dummy_b->type != bp_call_dummy)
7415 dummy_b = dummy_b->related_breakpoint;
7416 if (dummy_b->type != bp_call_dummy
7417 || frame_find_by_id (dummy_b->frame_id) != NULL)
7418 continue;
7419
7420 dummy_frame_discard (dummy_b->frame_id);
7421
7422 while (b->related_breakpoint != b)
7423 {
7424 if (b_tmp == b->related_breakpoint)
7425 b_tmp = b->related_breakpoint->next;
7426 delete_breakpoint (b->related_breakpoint);
7427 }
7428 delete_breakpoint (b);
7429 }
7430 }
7431
7432 void
7433 enable_overlay_breakpoints (void)
7434 {
7435 struct breakpoint *b;
7436
7437 ALL_BREAKPOINTS (b)
7438 if (b->type == bp_overlay_event)
7439 {
7440 b->enable_state = bp_enabled;
7441 update_global_location_list (1);
7442 overlay_events_enabled = 1;
7443 }
7444 }
7445
7446 void
7447 disable_overlay_breakpoints (void)
7448 {
7449 struct breakpoint *b;
7450
7451 ALL_BREAKPOINTS (b)
7452 if (b->type == bp_overlay_event)
7453 {
7454 b->enable_state = bp_disabled;
7455 update_global_location_list (0);
7456 overlay_events_enabled = 0;
7457 }
7458 }
7459
7460 /* Set an active std::terminate breakpoint for each std::terminate
7461 master breakpoint. */
7462 void
7463 set_std_terminate_breakpoint (void)
7464 {
7465 struct breakpoint *b, *b_tmp;
7466
7467 ALL_BREAKPOINTS_SAFE (b, b_tmp)
7468 if (b->pspace == current_program_space
7469 && b->type == bp_std_terminate_master)
7470 {
7471 momentary_breakpoint_from_master (b, bp_std_terminate,
7472 &momentary_breakpoint_ops);
7473 }
7474 }
7475
7476 /* Delete all the std::terminate breakpoints. */
7477 void
7478 delete_std_terminate_breakpoint (void)
7479 {
7480 struct breakpoint *b, *b_tmp;
7481
7482 ALL_BREAKPOINTS_SAFE (b, b_tmp)
7483 if (b->type == bp_std_terminate)
7484 delete_breakpoint (b);
7485 }
7486
7487 struct breakpoint *
7488 create_thread_event_breakpoint (struct gdbarch *gdbarch, CORE_ADDR address)
7489 {
7490 struct breakpoint *b;
7491
7492 b = create_internal_breakpoint (gdbarch, address, bp_thread_event,
7493 &internal_breakpoint_ops);
7494
7495 b->enable_state = bp_enabled;
7496 /* addr_string has to be used or breakpoint_re_set will delete me. */
7497 b->addr_string
7498 = xstrprintf ("*%s", paddress (b->loc->gdbarch, b->loc->address));
7499
7500 update_global_location_list_nothrow (1);
7501
7502 return b;
7503 }
7504
7505 void
7506 remove_thread_event_breakpoints (void)
7507 {
7508 struct breakpoint *b, *b_tmp;
7509
7510 ALL_BREAKPOINTS_SAFE (b, b_tmp)
7511 if (b->type == bp_thread_event
7512 && b->loc->pspace == current_program_space)
7513 delete_breakpoint (b);
7514 }
7515
7516 struct lang_and_radix
7517 {
7518 enum language lang;
7519 int radix;
7520 };
7521
7522 /* Create a breakpoint for JIT code registration and unregistration. */
7523
7524 struct breakpoint *
7525 create_jit_event_breakpoint (struct gdbarch *gdbarch, CORE_ADDR address)
7526 {
7527 struct breakpoint *b;
7528
7529 b = create_internal_breakpoint (gdbarch, address, bp_jit_event,
7530 &internal_breakpoint_ops);
7531 update_global_location_list_nothrow (1);
7532 return b;
7533 }
7534
7535 /* Remove JIT code registration and unregistration breakpoint(s). */
7536
7537 void
7538 remove_jit_event_breakpoints (void)
7539 {
7540 struct breakpoint *b, *b_tmp;
7541
7542 ALL_BREAKPOINTS_SAFE (b, b_tmp)
7543 if (b->type == bp_jit_event
7544 && b->loc->pspace == current_program_space)
7545 delete_breakpoint (b);
7546 }
7547
7548 void
7549 remove_solib_event_breakpoints (void)
7550 {
7551 struct breakpoint *b, *b_tmp;
7552
7553 ALL_BREAKPOINTS_SAFE (b, b_tmp)
7554 if (b->type == bp_shlib_event
7555 && b->loc->pspace == current_program_space)
7556 delete_breakpoint (b);
7557 }
7558
7559 struct breakpoint *
7560 create_solib_event_breakpoint (struct gdbarch *gdbarch, CORE_ADDR address)
7561 {
7562 struct breakpoint *b;
7563
7564 b = create_internal_breakpoint (gdbarch, address, bp_shlib_event,
7565 &internal_breakpoint_ops);
7566 update_global_location_list_nothrow (1);
7567 return b;
7568 }
7569
7570 /* Disable any breakpoints that are on code in shared libraries. Only
7571 apply to enabled breakpoints, disabled ones can just stay disabled. */
7572
7573 void
7574 disable_breakpoints_in_shlibs (void)
7575 {
7576 struct bp_location *loc, **locp_tmp;
7577
7578 ALL_BP_LOCATIONS (loc, locp_tmp)
7579 {
7580 /* ALL_BP_LOCATIONS bp_location has LOC->OWNER always non-NULL. */
7581 struct breakpoint *b = loc->owner;
7582
7583 /* We apply the check to all breakpoints, including disabled for
7584 those with loc->duplicate set. This is so that when breakpoint
7585 becomes enabled, or the duplicate is removed, gdb will try to
7586 insert all breakpoints. If we don't set shlib_disabled here,
7587 we'll try to insert those breakpoints and fail. */
7588 if (((b->type == bp_breakpoint)
7589 || (b->type == bp_jit_event)
7590 || (b->type == bp_hardware_breakpoint)
7591 || (is_tracepoint (b)))
7592 && loc->pspace == current_program_space
7593 && !loc->shlib_disabled
7594 && solib_name_from_address (loc->pspace, loc->address)
7595 )
7596 {
7597 loc->shlib_disabled = 1;
7598 }
7599 }
7600 }
7601
7602 /* Disable any breakpoints and tracepoints that are in SOLIB upon
7603 notification of unloaded_shlib. Only apply to enabled breakpoints,
7604 disabled ones can just stay disabled. */
7605
7606 static void
7607 disable_breakpoints_in_unloaded_shlib (struct so_list *solib)
7608 {
7609 struct bp_location *loc, **locp_tmp;
7610 int disabled_shlib_breaks = 0;
7611
7612 /* SunOS a.out shared libraries are always mapped, so do not
7613 disable breakpoints; they will only be reported as unloaded
7614 through clear_solib when GDB discards its shared library
7615 list. See clear_solib for more information. */
7616 if (exec_bfd != NULL
7617 && bfd_get_flavour (exec_bfd) == bfd_target_aout_flavour)
7618 return;
7619
7620 ALL_BP_LOCATIONS (loc, locp_tmp)
7621 {
7622 /* ALL_BP_LOCATIONS bp_location has LOC->OWNER always non-NULL. */
7623 struct breakpoint *b = loc->owner;
7624
7625 if (solib->pspace == loc->pspace
7626 && !loc->shlib_disabled
7627 && (((b->type == bp_breakpoint
7628 || b->type == bp_jit_event
7629 || b->type == bp_hardware_breakpoint)
7630 && (loc->loc_type == bp_loc_hardware_breakpoint
7631 || loc->loc_type == bp_loc_software_breakpoint))
7632 || is_tracepoint (b))
7633 && solib_contains_address_p (solib, loc->address))
7634 {
7635 loc->shlib_disabled = 1;
7636 /* At this point, we cannot rely on remove_breakpoint
7637 succeeding so we must mark the breakpoint as not inserted
7638 to prevent future errors occurring in remove_breakpoints. */
7639 loc->inserted = 0;
7640
7641 /* This may cause duplicate notifications for the same breakpoint. */
7642 observer_notify_breakpoint_modified (b);
7643
7644 if (!disabled_shlib_breaks)
7645 {
7646 target_terminal_ours_for_output ();
7647 warning (_("Temporarily disabling breakpoints "
7648 "for unloaded shared library \"%s\""),
7649 solib->so_name);
7650 }
7651 disabled_shlib_breaks = 1;
7652 }
7653 }
7654 }
7655
7656 /* Disable any breakpoints and tracepoints in OBJFILE upon
7657 notification of free_objfile. Only apply to enabled breakpoints,
7658 disabled ones can just stay disabled. */
7659
7660 static void
7661 disable_breakpoints_in_freed_objfile (struct objfile *objfile)
7662 {
7663 struct breakpoint *b;
7664
7665 if (objfile == NULL)
7666 return;
7667
7668 /* If the file is a shared library not loaded by the user then
7669 solib_unloaded was notified and disable_breakpoints_in_unloaded_shlib
7670 was called. In that case there is no need to take action again. */
7671 if ((objfile->flags & OBJF_SHARED) && !(objfile->flags & OBJF_USERLOADED))
7672 return;
7673
7674 ALL_BREAKPOINTS (b)
7675 {
7676 struct bp_location *loc;
7677 int bp_modified = 0;
7678
7679 if (!is_breakpoint (b) && !is_tracepoint (b))
7680 continue;
7681
7682 for (loc = b->loc; loc != NULL; loc = loc->next)
7683 {
7684 CORE_ADDR loc_addr = loc->address;
7685
7686 if (loc->loc_type != bp_loc_hardware_breakpoint
7687 && loc->loc_type != bp_loc_software_breakpoint)
7688 continue;
7689
7690 if (loc->shlib_disabled != 0)
7691 continue;
7692
7693 if (objfile->pspace != loc->pspace)
7694 continue;
7695
7696 if (loc->loc_type != bp_loc_hardware_breakpoint
7697 && loc->loc_type != bp_loc_software_breakpoint)
7698 continue;
7699
7700 if (is_addr_in_objfile (loc_addr, objfile))
7701 {
7702 loc->shlib_disabled = 1;
7703 loc->inserted = 0;
7704
7705 mark_breakpoint_location_modified (loc);
7706
7707 bp_modified = 1;
7708 }
7709 }
7710
7711 if (bp_modified)
7712 observer_notify_breakpoint_modified (b);
7713 }
7714 }
7715
7716 /* FORK & VFORK catchpoints. */
7717
7718 /* An instance of this type is used to represent a fork or vfork
7719 catchpoint. It includes a "struct breakpoint" as a kind of base
7720 class; users downcast to "struct breakpoint *" when needed. A
7721 breakpoint is really of this type iff its ops pointer points to
7722 CATCH_FORK_BREAKPOINT_OPS. */
7723
7724 struct fork_catchpoint
7725 {
7726 /* The base class. */
7727 struct breakpoint base;
7728
7729 /* Process id of a child process whose forking triggered this
7730 catchpoint. This field is only valid immediately after this
7731 catchpoint has triggered. */
7732 ptid_t forked_inferior_pid;
7733 };
7734
7735 /* Implement the "insert" breakpoint_ops method for fork
7736 catchpoints. */
7737
7738 static int
7739 insert_catch_fork (struct bp_location *bl)
7740 {
7741 return target_insert_fork_catchpoint (ptid_get_pid (inferior_ptid));
7742 }
7743
7744 /* Implement the "remove" breakpoint_ops method for fork
7745 catchpoints. */
7746
7747 static int
7748 remove_catch_fork (struct bp_location *bl)
7749 {
7750 return target_remove_fork_catchpoint (ptid_get_pid (inferior_ptid));
7751 }
7752
7753 /* Implement the "breakpoint_hit" breakpoint_ops method for fork
7754 catchpoints. */
7755
7756 static int
7757 breakpoint_hit_catch_fork (const struct bp_location *bl,
7758 struct address_space *aspace, CORE_ADDR bp_addr,
7759 const struct target_waitstatus *ws)
7760 {
7761 struct fork_catchpoint *c = (struct fork_catchpoint *) bl->owner;
7762
7763 if (ws->kind != TARGET_WAITKIND_FORKED)
7764 return 0;
7765
7766 c->forked_inferior_pid = ws->value.related_pid;
7767 return 1;
7768 }
7769
7770 /* Implement the "print_it" breakpoint_ops method for fork
7771 catchpoints. */
7772
7773 static enum print_stop_action
7774 print_it_catch_fork (bpstat bs)
7775 {
7776 struct ui_out *uiout = current_uiout;
7777 struct breakpoint *b = bs->breakpoint_at;
7778 struct fork_catchpoint *c = (struct fork_catchpoint *) bs->breakpoint_at;
7779
7780 annotate_catchpoint (b->number);
7781 if (b->disposition == disp_del)
7782 ui_out_text (uiout, "\nTemporary catchpoint ");
7783 else
7784 ui_out_text (uiout, "\nCatchpoint ");
7785 if (ui_out_is_mi_like_p (uiout))
7786 {
7787 ui_out_field_string (uiout, "reason",
7788 async_reason_lookup (EXEC_ASYNC_FORK));
7789 ui_out_field_string (uiout, "disp", bpdisp_text (b->disposition));
7790 }
7791 ui_out_field_int (uiout, "bkptno", b->number);
7792 ui_out_text (uiout, " (forked process ");
7793 ui_out_field_int (uiout, "newpid", ptid_get_pid (c->forked_inferior_pid));
7794 ui_out_text (uiout, "), ");
7795 return PRINT_SRC_AND_LOC;
7796 }
7797
7798 /* Implement the "print_one" breakpoint_ops method for fork
7799 catchpoints. */
7800
7801 static void
7802 print_one_catch_fork (struct breakpoint *b, struct bp_location **last_loc)
7803 {
7804 struct fork_catchpoint *c = (struct fork_catchpoint *) b;
7805 struct value_print_options opts;
7806 struct ui_out *uiout = current_uiout;
7807
7808 get_user_print_options (&opts);
7809
7810 /* Field 4, the address, is omitted (which makes the columns not
7811 line up too nicely with the headers, but the effect is relatively
7812 readable). */
7813 if (opts.addressprint)
7814 ui_out_field_skip (uiout, "addr");
7815 annotate_field (5);
7816 ui_out_text (uiout, "fork");
7817 if (!ptid_equal (c->forked_inferior_pid, null_ptid))
7818 {
7819 ui_out_text (uiout, ", process ");
7820 ui_out_field_int (uiout, "what",
7821 ptid_get_pid (c->forked_inferior_pid));
7822 ui_out_spaces (uiout, 1);
7823 }
7824
7825 if (ui_out_is_mi_like_p (uiout))
7826 ui_out_field_string (uiout, "catch-type", "fork");
7827 }
7828
7829 /* Implement the "print_mention" breakpoint_ops method for fork
7830 catchpoints. */
7831
7832 static void
7833 print_mention_catch_fork (struct breakpoint *b)
7834 {
7835 printf_filtered (_("Catchpoint %d (fork)"), b->number);
7836 }
7837
7838 /* Implement the "print_recreate" breakpoint_ops method for fork
7839 catchpoints. */
7840
7841 static void
7842 print_recreate_catch_fork (struct breakpoint *b, struct ui_file *fp)
7843 {
7844 fprintf_unfiltered (fp, "catch fork");
7845 print_recreate_thread (b, fp);
7846 }
7847
7848 /* The breakpoint_ops structure to be used in fork catchpoints. */
7849
7850 static struct breakpoint_ops catch_fork_breakpoint_ops;
7851
7852 /* Implement the "insert" breakpoint_ops method for vfork
7853 catchpoints. */
7854
7855 static int
7856 insert_catch_vfork (struct bp_location *bl)
7857 {
7858 return target_insert_vfork_catchpoint (ptid_get_pid (inferior_ptid));
7859 }
7860
7861 /* Implement the "remove" breakpoint_ops method for vfork
7862 catchpoints. */
7863
7864 static int
7865 remove_catch_vfork (struct bp_location *bl)
7866 {
7867 return target_remove_vfork_catchpoint (ptid_get_pid (inferior_ptid));
7868 }
7869
7870 /* Implement the "breakpoint_hit" breakpoint_ops method for vfork
7871 catchpoints. */
7872
7873 static int
7874 breakpoint_hit_catch_vfork (const struct bp_location *bl,
7875 struct address_space *aspace, CORE_ADDR bp_addr,
7876 const struct target_waitstatus *ws)
7877 {
7878 struct fork_catchpoint *c = (struct fork_catchpoint *) bl->owner;
7879
7880 if (ws->kind != TARGET_WAITKIND_VFORKED)
7881 return 0;
7882
7883 c->forked_inferior_pid = ws->value.related_pid;
7884 return 1;
7885 }
7886
7887 /* Implement the "print_it" breakpoint_ops method for vfork
7888 catchpoints. */
7889
7890 static enum print_stop_action
7891 print_it_catch_vfork (bpstat bs)
7892 {
7893 struct ui_out *uiout = current_uiout;
7894 struct breakpoint *b = bs->breakpoint_at;
7895 struct fork_catchpoint *c = (struct fork_catchpoint *) b;
7896
7897 annotate_catchpoint (b->number);
7898 if (b->disposition == disp_del)
7899 ui_out_text (uiout, "\nTemporary catchpoint ");
7900 else
7901 ui_out_text (uiout, "\nCatchpoint ");
7902 if (ui_out_is_mi_like_p (uiout))
7903 {
7904 ui_out_field_string (uiout, "reason",
7905 async_reason_lookup (EXEC_ASYNC_VFORK));
7906 ui_out_field_string (uiout, "disp", bpdisp_text (b->disposition));
7907 }
7908 ui_out_field_int (uiout, "bkptno", b->number);
7909 ui_out_text (uiout, " (vforked process ");
7910 ui_out_field_int (uiout, "newpid", ptid_get_pid (c->forked_inferior_pid));
7911 ui_out_text (uiout, "), ");
7912 return PRINT_SRC_AND_LOC;
7913 }
7914
7915 /* Implement the "print_one" breakpoint_ops method for vfork
7916 catchpoints. */
7917
7918 static void
7919 print_one_catch_vfork (struct breakpoint *b, struct bp_location **last_loc)
7920 {
7921 struct fork_catchpoint *c = (struct fork_catchpoint *) b;
7922 struct value_print_options opts;
7923 struct ui_out *uiout = current_uiout;
7924
7925 get_user_print_options (&opts);
7926 /* Field 4, the address, is omitted (which makes the columns not
7927 line up too nicely with the headers, but the effect is relatively
7928 readable). */
7929 if (opts.addressprint)
7930 ui_out_field_skip (uiout, "addr");
7931 annotate_field (5);
7932 ui_out_text (uiout, "vfork");
7933 if (!ptid_equal (c->forked_inferior_pid, null_ptid))
7934 {
7935 ui_out_text (uiout, ", process ");
7936 ui_out_field_int (uiout, "what",
7937 ptid_get_pid (c->forked_inferior_pid));
7938 ui_out_spaces (uiout, 1);
7939 }
7940
7941 if (ui_out_is_mi_like_p (uiout))
7942 ui_out_field_string (uiout, "catch-type", "vfork");
7943 }
7944
7945 /* Implement the "print_mention" breakpoint_ops method for vfork
7946 catchpoints. */
7947
7948 static void
7949 print_mention_catch_vfork (struct breakpoint *b)
7950 {
7951 printf_filtered (_("Catchpoint %d (vfork)"), b->number);
7952 }
7953
7954 /* Implement the "print_recreate" breakpoint_ops method for vfork
7955 catchpoints. */
7956
7957 static void
7958 print_recreate_catch_vfork (struct breakpoint *b, struct ui_file *fp)
7959 {
7960 fprintf_unfiltered (fp, "catch vfork");
7961 print_recreate_thread (b, fp);
7962 }
7963
7964 /* The breakpoint_ops structure to be used in vfork catchpoints. */
7965
7966 static struct breakpoint_ops catch_vfork_breakpoint_ops;
7967
7968 /* An instance of this type is used to represent an solib catchpoint.
7969 It includes a "struct breakpoint" as a kind of base class; users
7970 downcast to "struct breakpoint *" when needed. A breakpoint is
7971 really of this type iff its ops pointer points to
7972 CATCH_SOLIB_BREAKPOINT_OPS. */
7973
7974 struct solib_catchpoint
7975 {
7976 /* The base class. */
7977 struct breakpoint base;
7978
7979 /* True for "catch load", false for "catch unload". */
7980 unsigned char is_load;
7981
7982 /* Regular expression to match, if any. COMPILED is only valid when
7983 REGEX is non-NULL. */
7984 char *regex;
7985 regex_t compiled;
7986 };
7987
7988 static void
7989 dtor_catch_solib (struct breakpoint *b)
7990 {
7991 struct solib_catchpoint *self = (struct solib_catchpoint *) b;
7992
7993 if (self->regex)
7994 regfree (&self->compiled);
7995 xfree (self->regex);
7996
7997 base_breakpoint_ops.dtor (b);
7998 }
7999
8000 static int
8001 insert_catch_solib (struct bp_location *ignore)
8002 {
8003 return 0;
8004 }
8005
8006 static int
8007 remove_catch_solib (struct bp_location *ignore)
8008 {
8009 return 0;
8010 }
8011
8012 static int
8013 breakpoint_hit_catch_solib (const struct bp_location *bl,
8014 struct address_space *aspace,
8015 CORE_ADDR bp_addr,
8016 const struct target_waitstatus *ws)
8017 {
8018 struct solib_catchpoint *self = (struct solib_catchpoint *) bl->owner;
8019 struct breakpoint *other;
8020
8021 if (ws->kind == TARGET_WAITKIND_LOADED)
8022 return 1;
8023
8024 ALL_BREAKPOINTS (other)
8025 {
8026 struct bp_location *other_bl;
8027
8028 if (other == bl->owner)
8029 continue;
8030
8031 if (other->type != bp_shlib_event)
8032 continue;
8033
8034 if (self->base.pspace != NULL && other->pspace != self->base.pspace)
8035 continue;
8036
8037 for (other_bl = other->loc; other_bl != NULL; other_bl = other_bl->next)
8038 {
8039 if (other->ops->breakpoint_hit (other_bl, aspace, bp_addr, ws))
8040 return 1;
8041 }
8042 }
8043
8044 return 0;
8045 }
8046
8047 static void
8048 check_status_catch_solib (struct bpstats *bs)
8049 {
8050 struct solib_catchpoint *self
8051 = (struct solib_catchpoint *) bs->breakpoint_at;
8052 int ix;
8053
8054 if (self->is_load)
8055 {
8056 struct so_list *iter;
8057
8058 for (ix = 0;
8059 VEC_iterate (so_list_ptr, current_program_space->added_solibs,
8060 ix, iter);
8061 ++ix)
8062 {
8063 if (!self->regex
8064 || regexec (&self->compiled, iter->so_name, 0, NULL, 0) == 0)
8065 return;
8066 }
8067 }
8068 else
8069 {
8070 char *iter;
8071
8072 for (ix = 0;
8073 VEC_iterate (char_ptr, current_program_space->deleted_solibs,
8074 ix, iter);
8075 ++ix)
8076 {
8077 if (!self->regex
8078 || regexec (&self->compiled, iter, 0, NULL, 0) == 0)
8079 return;
8080 }
8081 }
8082
8083 bs->stop = 0;
8084 bs->print_it = print_it_noop;
8085 }
8086
8087 static enum print_stop_action
8088 print_it_catch_solib (bpstat bs)
8089 {
8090 struct breakpoint *b = bs->breakpoint_at;
8091 struct ui_out *uiout = current_uiout;
8092
8093 annotate_catchpoint (b->number);
8094 if (b->disposition == disp_del)
8095 ui_out_text (uiout, "\nTemporary catchpoint ");
8096 else
8097 ui_out_text (uiout, "\nCatchpoint ");
8098 ui_out_field_int (uiout, "bkptno", b->number);
8099 ui_out_text (uiout, "\n");
8100 if (ui_out_is_mi_like_p (uiout))
8101 ui_out_field_string (uiout, "disp", bpdisp_text (b->disposition));
8102 print_solib_event (1);
8103 return PRINT_SRC_AND_LOC;
8104 }
8105
8106 static void
8107 print_one_catch_solib (struct breakpoint *b, struct bp_location **locs)
8108 {
8109 struct solib_catchpoint *self = (struct solib_catchpoint *) b;
8110 struct value_print_options opts;
8111 struct ui_out *uiout = current_uiout;
8112 char *msg;
8113
8114 get_user_print_options (&opts);
8115 /* Field 4, the address, is omitted (which makes the columns not
8116 line up too nicely with the headers, but the effect is relatively
8117 readable). */
8118 if (opts.addressprint)
8119 {
8120 annotate_field (4);
8121 ui_out_field_skip (uiout, "addr");
8122 }
8123
8124 annotate_field (5);
8125 if (self->is_load)
8126 {
8127 if (self->regex)
8128 msg = xstrprintf (_("load of library matching %s"), self->regex);
8129 else
8130 msg = xstrdup (_("load of library"));
8131 }
8132 else
8133 {
8134 if (self->regex)
8135 msg = xstrprintf (_("unload of library matching %s"), self->regex);
8136 else
8137 msg = xstrdup (_("unload of library"));
8138 }
8139 ui_out_field_string (uiout, "what", msg);
8140 xfree (msg);
8141
8142 if (ui_out_is_mi_like_p (uiout))
8143 ui_out_field_string (uiout, "catch-type",
8144 self->is_load ? "load" : "unload");
8145 }
8146
8147 static void
8148 print_mention_catch_solib (struct breakpoint *b)
8149 {
8150 struct solib_catchpoint *self = (struct solib_catchpoint *) b;
8151
8152 printf_filtered (_("Catchpoint %d (%s)"), b->number,
8153 self->is_load ? "load" : "unload");
8154 }
8155
8156 static void
8157 print_recreate_catch_solib (struct breakpoint *b, struct ui_file *fp)
8158 {
8159 struct solib_catchpoint *self = (struct solib_catchpoint *) b;
8160
8161 fprintf_unfiltered (fp, "%s %s",
8162 b->disposition == disp_del ? "tcatch" : "catch",
8163 self->is_load ? "load" : "unload");
8164 if (self->regex)
8165 fprintf_unfiltered (fp, " %s", self->regex);
8166 fprintf_unfiltered (fp, "\n");
8167 }
8168
8169 static struct breakpoint_ops catch_solib_breakpoint_ops;
8170
8171 /* Shared helper function (MI and CLI) for creating and installing
8172 a shared object event catchpoint. If IS_LOAD is non-zero then
8173 the events to be caught are load events, otherwise they are
8174 unload events. If IS_TEMP is non-zero the catchpoint is a
8175 temporary one. If ENABLED is non-zero the catchpoint is
8176 created in an enabled state. */
8177
8178 void
8179 add_solib_catchpoint (char *arg, int is_load, int is_temp, int enabled)
8180 {
8181 struct solib_catchpoint *c;
8182 struct gdbarch *gdbarch = get_current_arch ();
8183 struct cleanup *cleanup;
8184
8185 if (!arg)
8186 arg = "";
8187 arg = skip_spaces (arg);
8188
8189 c = XCNEW (struct solib_catchpoint);
8190 cleanup = make_cleanup (xfree, c);
8191
8192 if (*arg != '\0')
8193 {
8194 int errcode;
8195
8196 errcode = regcomp (&c->compiled, arg, REG_NOSUB);
8197 if (errcode != 0)
8198 {
8199 char *err = get_regcomp_error (errcode, &c->compiled);
8200
8201 make_cleanup (xfree, err);
8202 error (_("Invalid regexp (%s): %s"), err, arg);
8203 }
8204 c->regex = xstrdup (arg);
8205 }
8206
8207 c->is_load = is_load;
8208 init_catchpoint (&c->base, gdbarch, is_temp, NULL,
8209 &catch_solib_breakpoint_ops);
8210
8211 c->base.enable_state = enabled ? bp_enabled : bp_disabled;
8212
8213 discard_cleanups (cleanup);
8214 install_breakpoint (0, &c->base, 1);
8215 }
8216
8217 /* A helper function that does all the work for "catch load" and
8218 "catch unload". */
8219
8220 static void
8221 catch_load_or_unload (char *arg, int from_tty, int is_load,
8222 struct cmd_list_element *command)
8223 {
8224 int tempflag;
8225 const int enabled = 1;
8226
8227 tempflag = get_cmd_context (command) == CATCH_TEMPORARY;
8228
8229 add_solib_catchpoint (arg, is_load, tempflag, enabled);
8230 }
8231
8232 static void
8233 catch_load_command_1 (char *arg, int from_tty,
8234 struct cmd_list_element *command)
8235 {
8236 catch_load_or_unload (arg, from_tty, 1, command);
8237 }
8238
8239 static void
8240 catch_unload_command_1 (char *arg, int from_tty,
8241 struct cmd_list_element *command)
8242 {
8243 catch_load_or_unload (arg, from_tty, 0, command);
8244 }
8245
8246 /* An instance of this type is used to represent a syscall catchpoint.
8247 It includes a "struct breakpoint" as a kind of base class; users
8248 downcast to "struct breakpoint *" when needed. A breakpoint is
8249 really of this type iff its ops pointer points to
8250 CATCH_SYSCALL_BREAKPOINT_OPS. */
8251
8252 struct syscall_catchpoint
8253 {
8254 /* The base class. */
8255 struct breakpoint base;
8256
8257 /* Syscall numbers used for the 'catch syscall' feature. If no
8258 syscall has been specified for filtering, its value is NULL.
8259 Otherwise, it holds a list of all syscalls to be caught. The
8260 list elements are allocated with xmalloc. */
8261 VEC(int) *syscalls_to_be_caught;
8262 };
8263
8264 /* Implement the "dtor" breakpoint_ops method for syscall
8265 catchpoints. */
8266
8267 static void
8268 dtor_catch_syscall (struct breakpoint *b)
8269 {
8270 struct syscall_catchpoint *c = (struct syscall_catchpoint *) b;
8271
8272 VEC_free (int, c->syscalls_to_be_caught);
8273
8274 base_breakpoint_ops.dtor (b);
8275 }
8276
8277 static const struct inferior_data *catch_syscall_inferior_data = NULL;
8278
8279 struct catch_syscall_inferior_data
8280 {
8281 /* We keep a count of the number of times the user has requested a
8282 particular syscall to be tracked, and pass this information to the
8283 target. This lets capable targets implement filtering directly. */
8284
8285 /* Number of times that "any" syscall is requested. */
8286 int any_syscall_count;
8287
8288 /* Count of each system call. */
8289 VEC(int) *syscalls_counts;
8290
8291 /* This counts all syscall catch requests, so we can readily determine
8292 if any catching is necessary. */
8293 int total_syscalls_count;
8294 };
8295
8296 static struct catch_syscall_inferior_data*
8297 get_catch_syscall_inferior_data (struct inferior *inf)
8298 {
8299 struct catch_syscall_inferior_data *inf_data;
8300
8301 inf_data = inferior_data (inf, catch_syscall_inferior_data);
8302 if (inf_data == NULL)
8303 {
8304 inf_data = XCNEW (struct catch_syscall_inferior_data);
8305 set_inferior_data (inf, catch_syscall_inferior_data, inf_data);
8306 }
8307
8308 return inf_data;
8309 }
8310
8311 static void
8312 catch_syscall_inferior_data_cleanup (struct inferior *inf, void *arg)
8313 {
8314 xfree (arg);
8315 }
8316
8317
8318 /* Implement the "insert" breakpoint_ops method for syscall
8319 catchpoints. */
8320
8321 static int
8322 insert_catch_syscall (struct bp_location *bl)
8323 {
8324 struct syscall_catchpoint *c = (struct syscall_catchpoint *) bl->owner;
8325 struct inferior *inf = current_inferior ();
8326 struct catch_syscall_inferior_data *inf_data
8327 = get_catch_syscall_inferior_data (inf);
8328
8329 ++inf_data->total_syscalls_count;
8330 if (!c->syscalls_to_be_caught)
8331 ++inf_data->any_syscall_count;
8332 else
8333 {
8334 int i, iter;
8335
8336 for (i = 0;
8337 VEC_iterate (int, c->syscalls_to_be_caught, i, iter);
8338 i++)
8339 {
8340 int elem;
8341
8342 if (iter >= VEC_length (int, inf_data->syscalls_counts))
8343 {
8344 int old_size = VEC_length (int, inf_data->syscalls_counts);
8345 uintptr_t vec_addr_offset
8346 = old_size * ((uintptr_t) sizeof (int));
8347 uintptr_t vec_addr;
8348 VEC_safe_grow (int, inf_data->syscalls_counts, iter + 1);
8349 vec_addr = ((uintptr_t) VEC_address (int,
8350 inf_data->syscalls_counts)
8351 + vec_addr_offset);
8352 memset ((void *) vec_addr, 0,
8353 (iter + 1 - old_size) * sizeof (int));
8354 }
8355 elem = VEC_index (int, inf_data->syscalls_counts, iter);
8356 VEC_replace (int, inf_data->syscalls_counts, iter, ++elem);
8357 }
8358 }
8359
8360 return target_set_syscall_catchpoint (ptid_get_pid (inferior_ptid),
8361 inf_data->total_syscalls_count != 0,
8362 inf_data->any_syscall_count,
8363 VEC_length (int,
8364 inf_data->syscalls_counts),
8365 VEC_address (int,
8366 inf_data->syscalls_counts));
8367 }
8368
8369 /* Implement the "remove" breakpoint_ops method for syscall
8370 catchpoints. */
8371
8372 static int
8373 remove_catch_syscall (struct bp_location *bl)
8374 {
8375 struct syscall_catchpoint *c = (struct syscall_catchpoint *) bl->owner;
8376 struct inferior *inf = current_inferior ();
8377 struct catch_syscall_inferior_data *inf_data
8378 = get_catch_syscall_inferior_data (inf);
8379
8380 --inf_data->total_syscalls_count;
8381 if (!c->syscalls_to_be_caught)
8382 --inf_data->any_syscall_count;
8383 else
8384 {
8385 int i, iter;
8386
8387 for (i = 0;
8388 VEC_iterate (int, c->syscalls_to_be_caught, i, iter);
8389 i++)
8390 {
8391 int elem;
8392 if (iter >= VEC_length (int, inf_data->syscalls_counts))
8393 /* Shouldn't happen. */
8394 continue;
8395 elem = VEC_index (int, inf_data->syscalls_counts, iter);
8396 VEC_replace (int, inf_data->syscalls_counts, iter, --elem);
8397 }
8398 }
8399
8400 return target_set_syscall_catchpoint (ptid_get_pid (inferior_ptid),
8401 inf_data->total_syscalls_count != 0,
8402 inf_data->any_syscall_count,
8403 VEC_length (int,
8404 inf_data->syscalls_counts),
8405 VEC_address (int,
8406 inf_data->syscalls_counts));
8407 }
8408
8409 /* Implement the "breakpoint_hit" breakpoint_ops method for syscall
8410 catchpoints. */
8411
8412 static int
8413 breakpoint_hit_catch_syscall (const struct bp_location *bl,
8414 struct address_space *aspace, CORE_ADDR bp_addr,
8415 const struct target_waitstatus *ws)
8416 {
8417 /* We must check if we are catching specific syscalls in this
8418 breakpoint. If we are, then we must guarantee that the called
8419 syscall is the same syscall we are catching. */
8420 int syscall_number = 0;
8421 const struct syscall_catchpoint *c
8422 = (const struct syscall_catchpoint *) bl->owner;
8423
8424 if (ws->kind != TARGET_WAITKIND_SYSCALL_ENTRY
8425 && ws->kind != TARGET_WAITKIND_SYSCALL_RETURN)
8426 return 0;
8427
8428 syscall_number = ws->value.syscall_number;
8429
8430 /* Now, checking if the syscall is the same. */
8431 if (c->syscalls_to_be_caught)
8432 {
8433 int i, iter;
8434
8435 for (i = 0;
8436 VEC_iterate (int, c->syscalls_to_be_caught, i, iter);
8437 i++)
8438 if (syscall_number == iter)
8439 return 1;
8440
8441 return 0;
8442 }
8443
8444 return 1;
8445 }
8446
8447 /* Implement the "print_it" breakpoint_ops method for syscall
8448 catchpoints. */
8449
8450 static enum print_stop_action
8451 print_it_catch_syscall (bpstat bs)
8452 {
8453 struct ui_out *uiout = current_uiout;
8454 struct breakpoint *b = bs->breakpoint_at;
8455 /* These are needed because we want to know in which state a
8456 syscall is. It can be in the TARGET_WAITKIND_SYSCALL_ENTRY
8457 or TARGET_WAITKIND_SYSCALL_RETURN, and depending on it we
8458 must print "called syscall" or "returned from syscall". */
8459 ptid_t ptid;
8460 struct target_waitstatus last;
8461 struct syscall s;
8462
8463 get_last_target_status (&ptid, &last);
8464
8465 get_syscall_by_number (last.value.syscall_number, &s);
8466
8467 annotate_catchpoint (b->number);
8468
8469 if (b->disposition == disp_del)
8470 ui_out_text (uiout, "\nTemporary catchpoint ");
8471 else
8472 ui_out_text (uiout, "\nCatchpoint ");
8473 if (ui_out_is_mi_like_p (uiout))
8474 {
8475 ui_out_field_string (uiout, "reason",
8476 async_reason_lookup (last.kind == TARGET_WAITKIND_SYSCALL_ENTRY
8477 ? EXEC_ASYNC_SYSCALL_ENTRY
8478 : EXEC_ASYNC_SYSCALL_RETURN));
8479 ui_out_field_string (uiout, "disp", bpdisp_text (b->disposition));
8480 }
8481 ui_out_field_int (uiout, "bkptno", b->number);
8482
8483 if (last.kind == TARGET_WAITKIND_SYSCALL_ENTRY)
8484 ui_out_text (uiout, " (call to syscall ");
8485 else
8486 ui_out_text (uiout, " (returned from syscall ");
8487
8488 if (s.name == NULL || ui_out_is_mi_like_p (uiout))
8489 ui_out_field_int (uiout, "syscall-number", last.value.syscall_number);
8490 if (s.name != NULL)
8491 ui_out_field_string (uiout, "syscall-name", s.name);
8492
8493 ui_out_text (uiout, "), ");
8494
8495 return PRINT_SRC_AND_LOC;
8496 }
8497
8498 /* Implement the "print_one" breakpoint_ops method for syscall
8499 catchpoints. */
8500
8501 static void
8502 print_one_catch_syscall (struct breakpoint *b,
8503 struct bp_location **last_loc)
8504 {
8505 struct syscall_catchpoint *c = (struct syscall_catchpoint *) b;
8506 struct value_print_options opts;
8507 struct ui_out *uiout = current_uiout;
8508
8509 get_user_print_options (&opts);
8510 /* Field 4, the address, is omitted (which makes the columns not
8511 line up too nicely with the headers, but the effect is relatively
8512 readable). */
8513 if (opts.addressprint)
8514 ui_out_field_skip (uiout, "addr");
8515 annotate_field (5);
8516
8517 if (c->syscalls_to_be_caught
8518 && VEC_length (int, c->syscalls_to_be_caught) > 1)
8519 ui_out_text (uiout, "syscalls \"");
8520 else
8521 ui_out_text (uiout, "syscall \"");
8522
8523 if (c->syscalls_to_be_caught)
8524 {
8525 int i, iter;
8526 char *text = xstrprintf ("%s", "");
8527
8528 for (i = 0;
8529 VEC_iterate (int, c->syscalls_to_be_caught, i, iter);
8530 i++)
8531 {
8532 char *x = text;
8533 struct syscall s;
8534 get_syscall_by_number (iter, &s);
8535
8536 if (s.name != NULL)
8537 text = xstrprintf ("%s%s, ", text, s.name);
8538 else
8539 text = xstrprintf ("%s%d, ", text, iter);
8540
8541 /* We have to xfree the last 'text' (now stored at 'x')
8542 because xstrprintf dynamically allocates new space for it
8543 on every call. */
8544 xfree (x);
8545 }
8546 /* Remove the last comma. */
8547 text[strlen (text) - 2] = '\0';
8548 ui_out_field_string (uiout, "what", text);
8549 }
8550 else
8551 ui_out_field_string (uiout, "what", "<any syscall>");
8552 ui_out_text (uiout, "\" ");
8553
8554 if (ui_out_is_mi_like_p (uiout))
8555 ui_out_field_string (uiout, "catch-type", "syscall");
8556 }
8557
8558 /* Implement the "print_mention" breakpoint_ops method for syscall
8559 catchpoints. */
8560
8561 static void
8562 print_mention_catch_syscall (struct breakpoint *b)
8563 {
8564 struct syscall_catchpoint *c = (struct syscall_catchpoint *) b;
8565
8566 if (c->syscalls_to_be_caught)
8567 {
8568 int i, iter;
8569
8570 if (VEC_length (int, c->syscalls_to_be_caught) > 1)
8571 printf_filtered (_("Catchpoint %d (syscalls"), b->number);
8572 else
8573 printf_filtered (_("Catchpoint %d (syscall"), b->number);
8574
8575 for (i = 0;
8576 VEC_iterate (int, c->syscalls_to_be_caught, i, iter);
8577 i++)
8578 {
8579 struct syscall s;
8580 get_syscall_by_number (iter, &s);
8581
8582 if (s.name)
8583 printf_filtered (" '%s' [%d]", s.name, s.number);
8584 else
8585 printf_filtered (" %d", s.number);
8586 }
8587 printf_filtered (")");
8588 }
8589 else
8590 printf_filtered (_("Catchpoint %d (any syscall)"),
8591 b->number);
8592 }
8593
8594 /* Implement the "print_recreate" breakpoint_ops method for syscall
8595 catchpoints. */
8596
8597 static void
8598 print_recreate_catch_syscall (struct breakpoint *b, struct ui_file *fp)
8599 {
8600 struct syscall_catchpoint *c = (struct syscall_catchpoint *) b;
8601
8602 fprintf_unfiltered (fp, "catch syscall");
8603
8604 if (c->syscalls_to_be_caught)
8605 {
8606 int i, iter;
8607
8608 for (i = 0;
8609 VEC_iterate (int, c->syscalls_to_be_caught, i, iter);
8610 i++)
8611 {
8612 struct syscall s;
8613
8614 get_syscall_by_number (iter, &s);
8615 if (s.name)
8616 fprintf_unfiltered (fp, " %s", s.name);
8617 else
8618 fprintf_unfiltered (fp, " %d", s.number);
8619 }
8620 }
8621 print_recreate_thread (b, fp);
8622 }
8623
8624 /* The breakpoint_ops structure to be used in syscall catchpoints. */
8625
8626 static struct breakpoint_ops catch_syscall_breakpoint_ops;
8627
8628 /* Returns non-zero if 'b' is a syscall catchpoint. */
8629
8630 static int
8631 syscall_catchpoint_p (struct breakpoint *b)
8632 {
8633 return (b->ops == &catch_syscall_breakpoint_ops);
8634 }
8635
8636 /* Initialize a new breakpoint of the bp_catchpoint kind. If TEMPFLAG
8637 is non-zero, then make the breakpoint temporary. If COND_STRING is
8638 not NULL, then store it in the breakpoint. OPS, if not NULL, is
8639 the breakpoint_ops structure associated to the catchpoint. */
8640
8641 void
8642 init_catchpoint (struct breakpoint *b,
8643 struct gdbarch *gdbarch, int tempflag,
8644 char *cond_string,
8645 const struct breakpoint_ops *ops)
8646 {
8647 struct symtab_and_line sal;
8648
8649 init_sal (&sal);
8650 sal.pspace = current_program_space;
8651
8652 init_raw_breakpoint (b, gdbarch, sal, bp_catchpoint, ops);
8653
8654 b->cond_string = (cond_string == NULL) ? NULL : xstrdup (cond_string);
8655 b->disposition = tempflag ? disp_del : disp_donttouch;
8656 }
8657
8658 void
8659 install_breakpoint (int internal, struct breakpoint *b, int update_gll)
8660 {
8661 add_to_breakpoint_chain (b);
8662 set_breakpoint_number (internal, b);
8663 if (is_tracepoint (b))
8664 set_tracepoint_count (breakpoint_count);
8665 if (!internal)
8666 mention (b);
8667 observer_notify_breakpoint_created (b);
8668
8669 if (update_gll)
8670 update_global_location_list (1);
8671 }
8672
8673 static void
8674 create_fork_vfork_event_catchpoint (struct gdbarch *gdbarch,
8675 int tempflag, char *cond_string,
8676 const struct breakpoint_ops *ops)
8677 {
8678 struct fork_catchpoint *c = XNEW (struct fork_catchpoint);
8679
8680 init_catchpoint (&c->base, gdbarch, tempflag, cond_string, ops);
8681
8682 c->forked_inferior_pid = null_ptid;
8683
8684 install_breakpoint (0, &c->base, 1);
8685 }
8686
8687 /* Exec catchpoints. */
8688
8689 /* An instance of this type is used to represent an exec catchpoint.
8690 It includes a "struct breakpoint" as a kind of base class; users
8691 downcast to "struct breakpoint *" when needed. A breakpoint is
8692 really of this type iff its ops pointer points to
8693 CATCH_EXEC_BREAKPOINT_OPS. */
8694
8695 struct exec_catchpoint
8696 {
8697 /* The base class. */
8698 struct breakpoint base;
8699
8700 /* Filename of a program whose exec triggered this catchpoint.
8701 This field is only valid immediately after this catchpoint has
8702 triggered. */
8703 char *exec_pathname;
8704 };
8705
8706 /* Implement the "dtor" breakpoint_ops method for exec
8707 catchpoints. */
8708
8709 static void
8710 dtor_catch_exec (struct breakpoint *b)
8711 {
8712 struct exec_catchpoint *c = (struct exec_catchpoint *) b;
8713
8714 xfree (c->exec_pathname);
8715
8716 base_breakpoint_ops.dtor (b);
8717 }
8718
8719 static int
8720 insert_catch_exec (struct bp_location *bl)
8721 {
8722 return target_insert_exec_catchpoint (ptid_get_pid (inferior_ptid));
8723 }
8724
8725 static int
8726 remove_catch_exec (struct bp_location *bl)
8727 {
8728 return target_remove_exec_catchpoint (ptid_get_pid (inferior_ptid));
8729 }
8730
8731 static int
8732 breakpoint_hit_catch_exec (const struct bp_location *bl,
8733 struct address_space *aspace, CORE_ADDR bp_addr,
8734 const struct target_waitstatus *ws)
8735 {
8736 struct exec_catchpoint *c = (struct exec_catchpoint *) bl->owner;
8737
8738 if (ws->kind != TARGET_WAITKIND_EXECD)
8739 return 0;
8740
8741 c->exec_pathname = xstrdup (ws->value.execd_pathname);
8742 return 1;
8743 }
8744
8745 static enum print_stop_action
8746 print_it_catch_exec (bpstat bs)
8747 {
8748 struct ui_out *uiout = current_uiout;
8749 struct breakpoint *b = bs->breakpoint_at;
8750 struct exec_catchpoint *c = (struct exec_catchpoint *) b;
8751
8752 annotate_catchpoint (b->number);
8753 if (b->disposition == disp_del)
8754 ui_out_text (uiout, "\nTemporary catchpoint ");
8755 else
8756 ui_out_text (uiout, "\nCatchpoint ");
8757 if (ui_out_is_mi_like_p (uiout))
8758 {
8759 ui_out_field_string (uiout, "reason",
8760 async_reason_lookup (EXEC_ASYNC_EXEC));
8761 ui_out_field_string (uiout, "disp", bpdisp_text (b->disposition));
8762 }
8763 ui_out_field_int (uiout, "bkptno", b->number);
8764 ui_out_text (uiout, " (exec'd ");
8765 ui_out_field_string (uiout, "new-exec", c->exec_pathname);
8766 ui_out_text (uiout, "), ");
8767
8768 return PRINT_SRC_AND_LOC;
8769 }
8770
8771 static void
8772 print_one_catch_exec (struct breakpoint *b, struct bp_location **last_loc)
8773 {
8774 struct exec_catchpoint *c = (struct exec_catchpoint *) b;
8775 struct value_print_options opts;
8776 struct ui_out *uiout = current_uiout;
8777
8778 get_user_print_options (&opts);
8779
8780 /* Field 4, the address, is omitted (which makes the columns
8781 not line up too nicely with the headers, but the effect
8782 is relatively readable). */
8783 if (opts.addressprint)
8784 ui_out_field_skip (uiout, "addr");
8785 annotate_field (5);
8786 ui_out_text (uiout, "exec");
8787 if (c->exec_pathname != NULL)
8788 {
8789 ui_out_text (uiout, ", program \"");
8790 ui_out_field_string (uiout, "what", c->exec_pathname);
8791 ui_out_text (uiout, "\" ");
8792 }
8793
8794 if (ui_out_is_mi_like_p (uiout))
8795 ui_out_field_string (uiout, "catch-type", "exec");
8796 }
8797
8798 static void
8799 print_mention_catch_exec (struct breakpoint *b)
8800 {
8801 printf_filtered (_("Catchpoint %d (exec)"), b->number);
8802 }
8803
8804 /* Implement the "print_recreate" breakpoint_ops method for exec
8805 catchpoints. */
8806
8807 static void
8808 print_recreate_catch_exec (struct breakpoint *b, struct ui_file *fp)
8809 {
8810 fprintf_unfiltered (fp, "catch exec");
8811 print_recreate_thread (b, fp);
8812 }
8813
8814 static struct breakpoint_ops catch_exec_breakpoint_ops;
8815
8816 static void
8817 create_syscall_event_catchpoint (int tempflag, VEC(int) *filter,
8818 const struct breakpoint_ops *ops)
8819 {
8820 struct syscall_catchpoint *c;
8821 struct gdbarch *gdbarch = get_current_arch ();
8822
8823 c = XNEW (struct syscall_catchpoint);
8824 init_catchpoint (&c->base, gdbarch, tempflag, NULL, ops);
8825 c->syscalls_to_be_caught = filter;
8826
8827 install_breakpoint (0, &c->base, 1);
8828 }
8829
8830 static int
8831 hw_breakpoint_used_count (void)
8832 {
8833 int i = 0;
8834 struct breakpoint *b;
8835 struct bp_location *bl;
8836
8837 ALL_BREAKPOINTS (b)
8838 {
8839 if (b->type == bp_hardware_breakpoint && breakpoint_enabled (b))
8840 for (bl = b->loc; bl; bl = bl->next)
8841 {
8842 /* Special types of hardware breakpoints may use more than
8843 one register. */
8844 i += b->ops->resources_needed (bl);
8845 }
8846 }
8847
8848 return i;
8849 }
8850
8851 /* Returns the resources B would use if it were a hardware
8852 watchpoint. */
8853
8854 static int
8855 hw_watchpoint_use_count (struct breakpoint *b)
8856 {
8857 int i = 0;
8858 struct bp_location *bl;
8859
8860 if (!breakpoint_enabled (b))
8861 return 0;
8862
8863 for (bl = b->loc; bl; bl = bl->next)
8864 {
8865 /* Special types of hardware watchpoints may use more than
8866 one register. */
8867 i += b->ops->resources_needed (bl);
8868 }
8869
8870 return i;
8871 }
8872
8873 /* Returns the sum the used resources of all hardware watchpoints of
8874 type TYPE in the breakpoints list. Also returns in OTHER_TYPE_USED
8875 the sum of the used resources of all hardware watchpoints of other
8876 types _not_ TYPE. */
8877
8878 static int
8879 hw_watchpoint_used_count_others (struct breakpoint *except,
8880 enum bptype type, int *other_type_used)
8881 {
8882 int i = 0;
8883 struct breakpoint *b;
8884
8885 *other_type_used = 0;
8886 ALL_BREAKPOINTS (b)
8887 {
8888 if (b == except)
8889 continue;
8890 if (!breakpoint_enabled (b))
8891 continue;
8892
8893 if (b->type == type)
8894 i += hw_watchpoint_use_count (b);
8895 else if (is_hardware_watchpoint (b))
8896 *other_type_used = 1;
8897 }
8898
8899 return i;
8900 }
8901
8902 void
8903 disable_watchpoints_before_interactive_call_start (void)
8904 {
8905 struct breakpoint *b;
8906
8907 ALL_BREAKPOINTS (b)
8908 {
8909 if (is_watchpoint (b) && breakpoint_enabled (b))
8910 {
8911 b->enable_state = bp_call_disabled;
8912 update_global_location_list (0);
8913 }
8914 }
8915 }
8916
8917 void
8918 enable_watchpoints_after_interactive_call_stop (void)
8919 {
8920 struct breakpoint *b;
8921
8922 ALL_BREAKPOINTS (b)
8923 {
8924 if (is_watchpoint (b) && b->enable_state == bp_call_disabled)
8925 {
8926 b->enable_state = bp_enabled;
8927 update_global_location_list (1);
8928 }
8929 }
8930 }
8931
8932 void
8933 disable_breakpoints_before_startup (void)
8934 {
8935 current_program_space->executing_startup = 1;
8936 update_global_location_list (0);
8937 }
8938
8939 void
8940 enable_breakpoints_after_startup (void)
8941 {
8942 current_program_space->executing_startup = 0;
8943 breakpoint_re_set ();
8944 }
8945
8946
8947 /* Set a breakpoint that will evaporate an end of command
8948 at address specified by SAL.
8949 Restrict it to frame FRAME if FRAME is nonzero. */
8950
8951 struct breakpoint *
8952 set_momentary_breakpoint (struct gdbarch *gdbarch, struct symtab_and_line sal,
8953 struct frame_id frame_id, enum bptype type)
8954 {
8955 struct breakpoint *b;
8956
8957 /* If FRAME_ID is valid, it should be a real frame, not an inlined or
8958 tail-called one. */
8959 gdb_assert (!frame_id_artificial_p (frame_id));
8960
8961 b = set_raw_breakpoint (gdbarch, sal, type, &momentary_breakpoint_ops);
8962 b->enable_state = bp_enabled;
8963 b->disposition = disp_donttouch;
8964 b->frame_id = frame_id;
8965
8966 /* If we're debugging a multi-threaded program, then we want
8967 momentary breakpoints to be active in only a single thread of
8968 control. */
8969 if (in_thread_list (inferior_ptid))
8970 b->thread = pid_to_thread_id (inferior_ptid);
8971
8972 update_global_location_list_nothrow (1);
8973
8974 return b;
8975 }
8976
8977 /* Make a momentary breakpoint based on the master breakpoint ORIG.
8978 The new breakpoint will have type TYPE, and use OPS as it
8979 breakpoint_ops. */
8980
8981 static struct breakpoint *
8982 momentary_breakpoint_from_master (struct breakpoint *orig,
8983 enum bptype type,
8984 const struct breakpoint_ops *ops)
8985 {
8986 struct breakpoint *copy;
8987
8988 copy = set_raw_breakpoint_without_location (orig->gdbarch, type, ops);
8989 copy->loc = allocate_bp_location (copy);
8990 set_breakpoint_location_function (copy->loc, 1);
8991
8992 copy->loc->gdbarch = orig->loc->gdbarch;
8993 copy->loc->requested_address = orig->loc->requested_address;
8994 copy->loc->address = orig->loc->address;
8995 copy->loc->section = orig->loc->section;
8996 copy->loc->pspace = orig->loc->pspace;
8997 copy->loc->probe = orig->loc->probe;
8998 copy->loc->line_number = orig->loc->line_number;
8999 copy->loc->symtab = orig->loc->symtab;
9000 copy->frame_id = orig->frame_id;
9001 copy->thread = orig->thread;
9002 copy->pspace = orig->pspace;
9003
9004 copy->enable_state = bp_enabled;
9005 copy->disposition = disp_donttouch;
9006 copy->number = internal_breakpoint_number--;
9007
9008 update_global_location_list_nothrow (0);
9009 return copy;
9010 }
9011
9012 /* Make a deep copy of momentary breakpoint ORIG. Returns NULL if
9013 ORIG is NULL. */
9014
9015 struct breakpoint *
9016 clone_momentary_breakpoint (struct breakpoint *orig)
9017 {
9018 /* If there's nothing to clone, then return nothing. */
9019 if (orig == NULL)
9020 return NULL;
9021
9022 return momentary_breakpoint_from_master (orig, orig->type, orig->ops);
9023 }
9024
9025 struct breakpoint *
9026 set_momentary_breakpoint_at_pc (struct gdbarch *gdbarch, CORE_ADDR pc,
9027 enum bptype type)
9028 {
9029 struct symtab_and_line sal;
9030
9031 sal = find_pc_line (pc, 0);
9032 sal.pc = pc;
9033 sal.section = find_pc_overlay (pc);
9034 sal.explicit_pc = 1;
9035
9036 return set_momentary_breakpoint (gdbarch, sal, null_frame_id, type);
9037 }
9038 \f
9039
9040 /* Tell the user we have just set a breakpoint B. */
9041
9042 static void
9043 mention (struct breakpoint *b)
9044 {
9045 b->ops->print_mention (b);
9046 if (ui_out_is_mi_like_p (current_uiout))
9047 return;
9048 printf_filtered ("\n");
9049 }
9050 \f
9051
9052 static struct bp_location *
9053 add_location_to_breakpoint (struct breakpoint *b,
9054 const struct symtab_and_line *sal)
9055 {
9056 struct bp_location *loc, **tmp;
9057 CORE_ADDR adjusted_address;
9058 struct gdbarch *loc_gdbarch = get_sal_arch (*sal);
9059
9060 if (loc_gdbarch == NULL)
9061 loc_gdbarch = b->gdbarch;
9062
9063 /* Adjust the breakpoint's address prior to allocating a location.
9064 Once we call allocate_bp_location(), that mostly uninitialized
9065 location will be placed on the location chain. Adjustment of the
9066 breakpoint may cause target_read_memory() to be called and we do
9067 not want its scan of the location chain to find a breakpoint and
9068 location that's only been partially initialized. */
9069 adjusted_address = adjust_breakpoint_address (loc_gdbarch,
9070 sal->pc, b->type);
9071
9072 /* Sort the locations by their ADDRESS. */
9073 loc = allocate_bp_location (b);
9074 for (tmp = &(b->loc); *tmp != NULL && (*tmp)->address <= adjusted_address;
9075 tmp = &((*tmp)->next))
9076 ;
9077 loc->next = *tmp;
9078 *tmp = loc;
9079
9080 loc->requested_address = sal->pc;
9081 loc->address = adjusted_address;
9082 loc->pspace = sal->pspace;
9083 loc->probe.probe = sal->probe;
9084 loc->probe.objfile = sal->objfile;
9085 gdb_assert (loc->pspace != NULL);
9086 loc->section = sal->section;
9087 loc->gdbarch = loc_gdbarch;
9088 loc->line_number = sal->line;
9089 loc->symtab = sal->symtab;
9090
9091 set_breakpoint_location_function (loc,
9092 sal->explicit_pc || sal->explicit_line);
9093 return loc;
9094 }
9095 \f
9096
9097 /* Return 1 if LOC is pointing to a permanent breakpoint,
9098 return 0 otherwise. */
9099
9100 static int
9101 bp_loc_is_permanent (struct bp_location *loc)
9102 {
9103 int len;
9104 CORE_ADDR addr;
9105 const gdb_byte *bpoint;
9106 gdb_byte *target_mem;
9107 struct cleanup *cleanup;
9108 int retval = 0;
9109
9110 gdb_assert (loc != NULL);
9111
9112 addr = loc->address;
9113 bpoint = gdbarch_breakpoint_from_pc (loc->gdbarch, &addr, &len);
9114
9115 /* Software breakpoints unsupported? */
9116 if (bpoint == NULL)
9117 return 0;
9118
9119 target_mem = alloca (len);
9120
9121 /* Enable the automatic memory restoration from breakpoints while
9122 we read the memory. Otherwise we could say about our temporary
9123 breakpoints they are permanent. */
9124 cleanup = save_current_space_and_thread ();
9125
9126 switch_to_program_space_and_thread (loc->pspace);
9127 make_show_memory_breakpoints_cleanup (0);
9128
9129 if (target_read_memory (loc->address, target_mem, len) == 0
9130 && memcmp (target_mem, bpoint, len) == 0)
9131 retval = 1;
9132
9133 do_cleanups (cleanup);
9134
9135 return retval;
9136 }
9137
9138 /* Build a command list for the dprintf corresponding to the current
9139 settings of the dprintf style options. */
9140
9141 static void
9142 update_dprintf_command_list (struct breakpoint *b)
9143 {
9144 char *dprintf_args = b->extra_string;
9145 char *printf_line = NULL;
9146
9147 if (!dprintf_args)
9148 return;
9149
9150 dprintf_args = skip_spaces (dprintf_args);
9151
9152 /* Allow a comma, as it may have terminated a location, but don't
9153 insist on it. */
9154 if (*dprintf_args == ',')
9155 ++dprintf_args;
9156 dprintf_args = skip_spaces (dprintf_args);
9157
9158 if (*dprintf_args != '"')
9159 error (_("Bad format string, missing '\"'."));
9160
9161 if (strcmp (dprintf_style, dprintf_style_gdb) == 0)
9162 printf_line = xstrprintf ("printf %s", dprintf_args);
9163 else if (strcmp (dprintf_style, dprintf_style_call) == 0)
9164 {
9165 if (!dprintf_function)
9166 error (_("No function supplied for dprintf call"));
9167
9168 if (dprintf_channel && strlen (dprintf_channel) > 0)
9169 printf_line = xstrprintf ("call (void) %s (%s,%s)",
9170 dprintf_function,
9171 dprintf_channel,
9172 dprintf_args);
9173 else
9174 printf_line = xstrprintf ("call (void) %s (%s)",
9175 dprintf_function,
9176 dprintf_args);
9177 }
9178 else if (strcmp (dprintf_style, dprintf_style_agent) == 0)
9179 {
9180 if (target_can_run_breakpoint_commands ())
9181 printf_line = xstrprintf ("agent-printf %s", dprintf_args);
9182 else
9183 {
9184 warning (_("Target cannot run dprintf commands, falling back to GDB printf"));
9185 printf_line = xstrprintf ("printf %s", dprintf_args);
9186 }
9187 }
9188 else
9189 internal_error (__FILE__, __LINE__,
9190 _("Invalid dprintf style."));
9191
9192 gdb_assert (printf_line != NULL);
9193 /* Manufacture a printf sequence. */
9194 {
9195 struct command_line *printf_cmd_line
9196 = xmalloc (sizeof (struct command_line));
9197
9198 printf_cmd_line = xmalloc (sizeof (struct command_line));
9199 printf_cmd_line->control_type = simple_control;
9200 printf_cmd_line->body_count = 0;
9201 printf_cmd_line->body_list = NULL;
9202 printf_cmd_line->next = NULL;
9203 printf_cmd_line->line = printf_line;
9204
9205 breakpoint_set_commands (b, printf_cmd_line);
9206 }
9207 }
9208
9209 /* Update all dprintf commands, making their command lists reflect
9210 current style settings. */
9211
9212 static void
9213 update_dprintf_commands (char *args, int from_tty,
9214 struct cmd_list_element *c)
9215 {
9216 struct breakpoint *b;
9217
9218 ALL_BREAKPOINTS (b)
9219 {
9220 if (b->type == bp_dprintf)
9221 update_dprintf_command_list (b);
9222 }
9223 }
9224
9225 /* Create a breakpoint with SAL as location. Use ADDR_STRING
9226 as textual description of the location, and COND_STRING
9227 as condition expression. */
9228
9229 static void
9230 init_breakpoint_sal (struct breakpoint *b, struct gdbarch *gdbarch,
9231 struct symtabs_and_lines sals, char *addr_string,
9232 char *filter, char *cond_string,
9233 char *extra_string,
9234 enum bptype type, enum bpdisp disposition,
9235 int thread, int task, int ignore_count,
9236 const struct breakpoint_ops *ops, int from_tty,
9237 int enabled, int internal, unsigned flags,
9238 int display_canonical)
9239 {
9240 int i;
9241
9242 if (type == bp_hardware_breakpoint)
9243 {
9244 int target_resources_ok;
9245
9246 i = hw_breakpoint_used_count ();
9247 target_resources_ok =
9248 target_can_use_hardware_watchpoint (bp_hardware_breakpoint,
9249 i + 1, 0);
9250 if (target_resources_ok == 0)
9251 error (_("No hardware breakpoint support in the target."));
9252 else if (target_resources_ok < 0)
9253 error (_("Hardware breakpoints used exceeds limit."));
9254 }
9255
9256 gdb_assert (sals.nelts > 0);
9257
9258 for (i = 0; i < sals.nelts; ++i)
9259 {
9260 struct symtab_and_line sal = sals.sals[i];
9261 struct bp_location *loc;
9262
9263 if (from_tty)
9264 {
9265 struct gdbarch *loc_gdbarch = get_sal_arch (sal);
9266 if (!loc_gdbarch)
9267 loc_gdbarch = gdbarch;
9268
9269 describe_other_breakpoints (loc_gdbarch,
9270 sal.pspace, sal.pc, sal.section, thread);
9271 }
9272
9273 if (i == 0)
9274 {
9275 init_raw_breakpoint (b, gdbarch, sal, type, ops);
9276 b->thread = thread;
9277 b->task = task;
9278
9279 b->cond_string = cond_string;
9280 b->extra_string = extra_string;
9281 b->ignore_count = ignore_count;
9282 b->enable_state = enabled ? bp_enabled : bp_disabled;
9283 b->disposition = disposition;
9284
9285 if ((flags & CREATE_BREAKPOINT_FLAGS_INSERTED) != 0)
9286 b->loc->inserted = 1;
9287
9288 if (type == bp_static_tracepoint)
9289 {
9290 struct tracepoint *t = (struct tracepoint *) b;
9291 struct static_tracepoint_marker marker;
9292
9293 if (strace_marker_p (b))
9294 {
9295 /* We already know the marker exists, otherwise, we
9296 wouldn't see a sal for it. */
9297 char *p = &addr_string[3];
9298 char *endp;
9299 char *marker_str;
9300
9301 p = skip_spaces (p);
9302
9303 endp = skip_to_space (p);
9304
9305 marker_str = savestring (p, endp - p);
9306 t->static_trace_marker_id = marker_str;
9307
9308 printf_filtered (_("Probed static tracepoint "
9309 "marker \"%s\"\n"),
9310 t->static_trace_marker_id);
9311 }
9312 else if (target_static_tracepoint_marker_at (sal.pc, &marker))
9313 {
9314 t->static_trace_marker_id = xstrdup (marker.str_id);
9315 release_static_tracepoint_marker (&marker);
9316
9317 printf_filtered (_("Probed static tracepoint "
9318 "marker \"%s\"\n"),
9319 t->static_trace_marker_id);
9320 }
9321 else
9322 warning (_("Couldn't determine the static "
9323 "tracepoint marker to probe"));
9324 }
9325
9326 loc = b->loc;
9327 }
9328 else
9329 {
9330 loc = add_location_to_breakpoint (b, &sal);
9331 if ((flags & CREATE_BREAKPOINT_FLAGS_INSERTED) != 0)
9332 loc->inserted = 1;
9333 }
9334
9335 if (bp_loc_is_permanent (loc))
9336 make_breakpoint_permanent (b);
9337
9338 if (b->cond_string)
9339 {
9340 const char *arg = b->cond_string;
9341
9342 loc->cond = parse_exp_1 (&arg, loc->address,
9343 block_for_pc (loc->address), 0);
9344 if (*arg)
9345 error (_("Garbage '%s' follows condition"), arg);
9346 }
9347
9348 /* Dynamic printf requires and uses additional arguments on the
9349 command line, otherwise it's an error. */
9350 if (type == bp_dprintf)
9351 {
9352 if (b->extra_string)
9353 update_dprintf_command_list (b);
9354 else
9355 error (_("Format string required"));
9356 }
9357 else if (b->extra_string)
9358 error (_("Garbage '%s' at end of command"), b->extra_string);
9359 }
9360
9361 b->display_canonical = display_canonical;
9362 if (addr_string)
9363 b->addr_string = addr_string;
9364 else
9365 /* addr_string has to be used or breakpoint_re_set will delete
9366 me. */
9367 b->addr_string
9368 = xstrprintf ("*%s", paddress (b->loc->gdbarch, b->loc->address));
9369 b->filter = filter;
9370 }
9371
9372 static void
9373 create_breakpoint_sal (struct gdbarch *gdbarch,
9374 struct symtabs_and_lines sals, char *addr_string,
9375 char *filter, char *cond_string,
9376 char *extra_string,
9377 enum bptype type, enum bpdisp disposition,
9378 int thread, int task, int ignore_count,
9379 const struct breakpoint_ops *ops, int from_tty,
9380 int enabled, int internal, unsigned flags,
9381 int display_canonical)
9382 {
9383 struct breakpoint *b;
9384 struct cleanup *old_chain;
9385
9386 if (is_tracepoint_type (type))
9387 {
9388 struct tracepoint *t;
9389
9390 t = XCNEW (struct tracepoint);
9391 b = &t->base;
9392 }
9393 else
9394 b = XNEW (struct breakpoint);
9395
9396 old_chain = make_cleanup (xfree, b);
9397
9398 init_breakpoint_sal (b, gdbarch,
9399 sals, addr_string,
9400 filter, cond_string, extra_string,
9401 type, disposition,
9402 thread, task, ignore_count,
9403 ops, from_tty,
9404 enabled, internal, flags,
9405 display_canonical);
9406 discard_cleanups (old_chain);
9407
9408 install_breakpoint (internal, b, 0);
9409 }
9410
9411 /* Add SALS.nelts breakpoints to the breakpoint table. For each
9412 SALS.sal[i] breakpoint, include the corresponding ADDR_STRING[i]
9413 value. COND_STRING, if not NULL, specified the condition to be
9414 used for all breakpoints. Essentially the only case where
9415 SALS.nelts is not 1 is when we set a breakpoint on an overloaded
9416 function. In that case, it's still not possible to specify
9417 separate conditions for different overloaded functions, so
9418 we take just a single condition string.
9419
9420 NOTE: If the function succeeds, the caller is expected to cleanup
9421 the arrays ADDR_STRING, COND_STRING, and SALS (but not the
9422 array contents). If the function fails (error() is called), the
9423 caller is expected to cleanups both the ADDR_STRING, COND_STRING,
9424 COND and SALS arrays and each of those arrays contents. */
9425
9426 static void
9427 create_breakpoints_sal (struct gdbarch *gdbarch,
9428 struct linespec_result *canonical,
9429 char *cond_string, char *extra_string,
9430 enum bptype type, enum bpdisp disposition,
9431 int thread, int task, int ignore_count,
9432 const struct breakpoint_ops *ops, int from_tty,
9433 int enabled, int internal, unsigned flags)
9434 {
9435 int i;
9436 struct linespec_sals *lsal;
9437
9438 if (canonical->pre_expanded)
9439 gdb_assert (VEC_length (linespec_sals, canonical->sals) == 1);
9440
9441 for (i = 0; VEC_iterate (linespec_sals, canonical->sals, i, lsal); ++i)
9442 {
9443 /* Note that 'addr_string' can be NULL in the case of a plain
9444 'break', without arguments. */
9445 char *addr_string = (canonical->addr_string
9446 ? xstrdup (canonical->addr_string)
9447 : NULL);
9448 char *filter_string = lsal->canonical ? xstrdup (lsal->canonical) : NULL;
9449 struct cleanup *inner = make_cleanup (xfree, addr_string);
9450
9451 make_cleanup (xfree, filter_string);
9452 create_breakpoint_sal (gdbarch, lsal->sals,
9453 addr_string,
9454 filter_string,
9455 cond_string, extra_string,
9456 type, disposition,
9457 thread, task, ignore_count, ops,
9458 from_tty, enabled, internal, flags,
9459 canonical->special_display);
9460 discard_cleanups (inner);
9461 }
9462 }
9463
9464 /* Parse ADDRESS which is assumed to be a SAL specification possibly
9465 followed by conditionals. On return, SALS contains an array of SAL
9466 addresses found. ADDR_STRING contains a vector of (canonical)
9467 address strings. ADDRESS points to the end of the SAL.
9468
9469 The array and the line spec strings are allocated on the heap, it is
9470 the caller's responsibility to free them. */
9471
9472 static void
9473 parse_breakpoint_sals (char **address,
9474 struct linespec_result *canonical)
9475 {
9476 /* If no arg given, or if first arg is 'if ', use the default
9477 breakpoint. */
9478 if ((*address) == NULL
9479 || (strncmp ((*address), "if", 2) == 0 && isspace ((*address)[2])))
9480 {
9481 /* The last displayed codepoint, if it's valid, is our default breakpoint
9482 address. */
9483 if (last_displayed_sal_is_valid ())
9484 {
9485 struct linespec_sals lsal;
9486 struct symtab_and_line sal;
9487 CORE_ADDR pc;
9488
9489 init_sal (&sal); /* Initialize to zeroes. */
9490 lsal.sals.sals = (struct symtab_and_line *)
9491 xmalloc (sizeof (struct symtab_and_line));
9492
9493 /* Set sal's pspace, pc, symtab, and line to the values
9494 corresponding to the last call to print_frame_info.
9495 Be sure to reinitialize LINE with NOTCURRENT == 0
9496 as the breakpoint line number is inappropriate otherwise.
9497 find_pc_line would adjust PC, re-set it back. */
9498 get_last_displayed_sal (&sal);
9499 pc = sal.pc;
9500 sal = find_pc_line (pc, 0);
9501
9502 /* "break" without arguments is equivalent to "break *PC"
9503 where PC is the last displayed codepoint's address. So
9504 make sure to set sal.explicit_pc to prevent GDB from
9505 trying to expand the list of sals to include all other
9506 instances with the same symtab and line. */
9507 sal.pc = pc;
9508 sal.explicit_pc = 1;
9509
9510 lsal.sals.sals[0] = sal;
9511 lsal.sals.nelts = 1;
9512 lsal.canonical = NULL;
9513
9514 VEC_safe_push (linespec_sals, canonical->sals, &lsal);
9515 }
9516 else
9517 error (_("No default breakpoint address now."));
9518 }
9519 else
9520 {
9521 struct symtab_and_line cursal = get_current_source_symtab_and_line ();
9522
9523 /* Force almost all breakpoints to be in terms of the
9524 current_source_symtab (which is decode_line_1's default).
9525 This should produce the results we want almost all of the
9526 time while leaving default_breakpoint_* alone.
9527
9528 ObjC: However, don't match an Objective-C method name which
9529 may have a '+' or '-' succeeded by a '['. */
9530 if (last_displayed_sal_is_valid ()
9531 && (!cursal.symtab
9532 || ((strchr ("+-", (*address)[0]) != NULL)
9533 && ((*address)[1] != '['))))
9534 decode_line_full (address, DECODE_LINE_FUNFIRSTLINE,
9535 get_last_displayed_symtab (),
9536 get_last_displayed_line (),
9537 canonical, NULL, NULL);
9538 else
9539 decode_line_full (address, DECODE_LINE_FUNFIRSTLINE,
9540 cursal.symtab, cursal.line, canonical, NULL, NULL);
9541 }
9542 }
9543
9544
9545 /* Convert each SAL into a real PC. Verify that the PC can be
9546 inserted as a breakpoint. If it can't throw an error. */
9547
9548 static void
9549 breakpoint_sals_to_pc (struct symtabs_and_lines *sals)
9550 {
9551 int i;
9552
9553 for (i = 0; i < sals->nelts; i++)
9554 resolve_sal_pc (&sals->sals[i]);
9555 }
9556
9557 /* Fast tracepoints may have restrictions on valid locations. For
9558 instance, a fast tracepoint using a jump instead of a trap will
9559 likely have to overwrite more bytes than a trap would, and so can
9560 only be placed where the instruction is longer than the jump, or a
9561 multi-instruction sequence does not have a jump into the middle of
9562 it, etc. */
9563
9564 static void
9565 check_fast_tracepoint_sals (struct gdbarch *gdbarch,
9566 struct symtabs_and_lines *sals)
9567 {
9568 int i, rslt;
9569 struct symtab_and_line *sal;
9570 char *msg;
9571 struct cleanup *old_chain;
9572
9573 for (i = 0; i < sals->nelts; i++)
9574 {
9575 struct gdbarch *sarch;
9576
9577 sal = &sals->sals[i];
9578
9579 sarch = get_sal_arch (*sal);
9580 /* We fall back to GDBARCH if there is no architecture
9581 associated with SAL. */
9582 if (sarch == NULL)
9583 sarch = gdbarch;
9584 rslt = gdbarch_fast_tracepoint_valid_at (sarch, sal->pc,
9585 NULL, &msg);
9586 old_chain = make_cleanup (xfree, msg);
9587
9588 if (!rslt)
9589 error (_("May not have a fast tracepoint at 0x%s%s"),
9590 paddress (sarch, sal->pc), (msg ? msg : ""));
9591
9592 do_cleanups (old_chain);
9593 }
9594 }
9595
9596 /* Issue an invalid thread ID error. */
9597
9598 static void ATTRIBUTE_NORETURN
9599 invalid_thread_id_error (int id)
9600 {
9601 error (_("Unknown thread %d."), id);
9602 }
9603
9604 /* Given TOK, a string specification of condition and thread, as
9605 accepted by the 'break' command, extract the condition
9606 string and thread number and set *COND_STRING and *THREAD.
9607 PC identifies the context at which the condition should be parsed.
9608 If no condition is found, *COND_STRING is set to NULL.
9609 If no thread is found, *THREAD is set to -1. */
9610
9611 static void
9612 find_condition_and_thread (const char *tok, CORE_ADDR pc,
9613 char **cond_string, int *thread, int *task,
9614 char **rest)
9615 {
9616 *cond_string = NULL;
9617 *thread = -1;
9618 *task = 0;
9619 *rest = NULL;
9620
9621 while (tok && *tok)
9622 {
9623 const char *end_tok;
9624 int toklen;
9625 const char *cond_start = NULL;
9626 const char *cond_end = NULL;
9627
9628 tok = skip_spaces_const (tok);
9629
9630 if ((*tok == '"' || *tok == ',') && rest)
9631 {
9632 *rest = savestring (tok, strlen (tok));
9633 return;
9634 }
9635
9636 end_tok = skip_to_space_const (tok);
9637
9638 toklen = end_tok - tok;
9639
9640 if (toklen >= 1 && strncmp (tok, "if", toklen) == 0)
9641 {
9642 struct expression *expr;
9643
9644 tok = cond_start = end_tok + 1;
9645 expr = parse_exp_1 (&tok, pc, block_for_pc (pc), 0);
9646 xfree (expr);
9647 cond_end = tok;
9648 *cond_string = savestring (cond_start, cond_end - cond_start);
9649 }
9650 else if (toklen >= 1 && strncmp (tok, "thread", toklen) == 0)
9651 {
9652 char *tmptok;
9653
9654 tok = end_tok + 1;
9655 *thread = strtol (tok, &tmptok, 0);
9656 if (tok == tmptok)
9657 error (_("Junk after thread keyword."));
9658 if (!valid_thread_id (*thread))
9659 invalid_thread_id_error (*thread);
9660 tok = tmptok;
9661 }
9662 else if (toklen >= 1 && strncmp (tok, "task", toklen) == 0)
9663 {
9664 char *tmptok;
9665
9666 tok = end_tok + 1;
9667 *task = strtol (tok, &tmptok, 0);
9668 if (tok == tmptok)
9669 error (_("Junk after task keyword."));
9670 if (!valid_task_id (*task))
9671 error (_("Unknown task %d."), *task);
9672 tok = tmptok;
9673 }
9674 else if (rest)
9675 {
9676 *rest = savestring (tok, strlen (tok));
9677 return;
9678 }
9679 else
9680 error (_("Junk at end of arguments."));
9681 }
9682 }
9683
9684 /* Decode a static tracepoint marker spec. */
9685
9686 static struct symtabs_and_lines
9687 decode_static_tracepoint_spec (char **arg_p)
9688 {
9689 VEC(static_tracepoint_marker_p) *markers = NULL;
9690 struct symtabs_and_lines sals;
9691 struct cleanup *old_chain;
9692 char *p = &(*arg_p)[3];
9693 char *endp;
9694 char *marker_str;
9695 int i;
9696
9697 p = skip_spaces (p);
9698
9699 endp = skip_to_space (p);
9700
9701 marker_str = savestring (p, endp - p);
9702 old_chain = make_cleanup (xfree, marker_str);
9703
9704 markers = target_static_tracepoint_markers_by_strid (marker_str);
9705 if (VEC_empty(static_tracepoint_marker_p, markers))
9706 error (_("No known static tracepoint marker named %s"), marker_str);
9707
9708 sals.nelts = VEC_length(static_tracepoint_marker_p, markers);
9709 sals.sals = xmalloc (sizeof *sals.sals * sals.nelts);
9710
9711 for (i = 0; i < sals.nelts; i++)
9712 {
9713 struct static_tracepoint_marker *marker;
9714
9715 marker = VEC_index (static_tracepoint_marker_p, markers, i);
9716
9717 init_sal (&sals.sals[i]);
9718
9719 sals.sals[i] = find_pc_line (marker->address, 0);
9720 sals.sals[i].pc = marker->address;
9721
9722 release_static_tracepoint_marker (marker);
9723 }
9724
9725 do_cleanups (old_chain);
9726
9727 *arg_p = endp;
9728 return sals;
9729 }
9730
9731 /* Set a breakpoint. This function is shared between CLI and MI
9732 functions for setting a breakpoint. This function has two major
9733 modes of operations, selected by the PARSE_ARG parameter. If
9734 non-zero, the function will parse ARG, extracting location,
9735 condition, thread and extra string. Otherwise, ARG is just the
9736 breakpoint's location, with condition, thread, and extra string
9737 specified by the COND_STRING, THREAD and EXTRA_STRING parameters.
9738 If INTERNAL is non-zero, the breakpoint number will be allocated
9739 from the internal breakpoint count. Returns true if any breakpoint
9740 was created; false otherwise. */
9741
9742 int
9743 create_breakpoint (struct gdbarch *gdbarch,
9744 char *arg, char *cond_string,
9745 int thread, char *extra_string,
9746 int parse_arg,
9747 int tempflag, enum bptype type_wanted,
9748 int ignore_count,
9749 enum auto_boolean pending_break_support,
9750 const struct breakpoint_ops *ops,
9751 int from_tty, int enabled, int internal,
9752 unsigned flags)
9753 {
9754 volatile struct gdb_exception e;
9755 char *copy_arg = NULL;
9756 char *addr_start = arg;
9757 struct linespec_result canonical;
9758 struct cleanup *old_chain;
9759 struct cleanup *bkpt_chain = NULL;
9760 int pending = 0;
9761 int task = 0;
9762 int prev_bkpt_count = breakpoint_count;
9763
9764 gdb_assert (ops != NULL);
9765
9766 init_linespec_result (&canonical);
9767
9768 TRY_CATCH (e, RETURN_MASK_ALL)
9769 {
9770 ops->create_sals_from_address (&arg, &canonical, type_wanted,
9771 addr_start, &copy_arg);
9772 }
9773
9774 /* If caller is interested in rc value from parse, set value. */
9775 switch (e.reason)
9776 {
9777 case GDB_NO_ERROR:
9778 if (VEC_empty (linespec_sals, canonical.sals))
9779 return 0;
9780 break;
9781 case RETURN_ERROR:
9782 switch (e.error)
9783 {
9784 case NOT_FOUND_ERROR:
9785
9786 /* If pending breakpoint support is turned off, throw
9787 error. */
9788
9789 if (pending_break_support == AUTO_BOOLEAN_FALSE)
9790 throw_exception (e);
9791
9792 exception_print (gdb_stderr, e);
9793
9794 /* If pending breakpoint support is auto query and the user
9795 selects no, then simply return the error code. */
9796 if (pending_break_support == AUTO_BOOLEAN_AUTO
9797 && !nquery (_("Make %s pending on future shared library load? "),
9798 bptype_string (type_wanted)))
9799 return 0;
9800
9801 /* At this point, either the user was queried about setting
9802 a pending breakpoint and selected yes, or pending
9803 breakpoint behavior is on and thus a pending breakpoint
9804 is defaulted on behalf of the user. */
9805 {
9806 struct linespec_sals lsal;
9807
9808 copy_arg = xstrdup (addr_start);
9809 lsal.canonical = xstrdup (copy_arg);
9810 lsal.sals.nelts = 1;
9811 lsal.sals.sals = XNEW (struct symtab_and_line);
9812 init_sal (&lsal.sals.sals[0]);
9813 pending = 1;
9814 VEC_safe_push (linespec_sals, canonical.sals, &lsal);
9815 }
9816 break;
9817 default:
9818 throw_exception (e);
9819 }
9820 break;
9821 default:
9822 throw_exception (e);
9823 }
9824
9825 /* Create a chain of things that always need to be cleaned up. */
9826 old_chain = make_cleanup_destroy_linespec_result (&canonical);
9827
9828 /* ----------------------------- SNIP -----------------------------
9829 Anything added to the cleanup chain beyond this point is assumed
9830 to be part of a breakpoint. If the breakpoint create succeeds
9831 then the memory is not reclaimed. */
9832 bkpt_chain = make_cleanup (null_cleanup, 0);
9833
9834 /* Resolve all line numbers to PC's and verify that the addresses
9835 are ok for the target. */
9836 if (!pending)
9837 {
9838 int ix;
9839 struct linespec_sals *iter;
9840
9841 for (ix = 0; VEC_iterate (linespec_sals, canonical.sals, ix, iter); ++ix)
9842 breakpoint_sals_to_pc (&iter->sals);
9843 }
9844
9845 /* Fast tracepoints may have additional restrictions on location. */
9846 if (!pending && type_wanted == bp_fast_tracepoint)
9847 {
9848 int ix;
9849 struct linespec_sals *iter;
9850
9851 for (ix = 0; VEC_iterate (linespec_sals, canonical.sals, ix, iter); ++ix)
9852 check_fast_tracepoint_sals (gdbarch, &iter->sals);
9853 }
9854
9855 /* Verify that condition can be parsed, before setting any
9856 breakpoints. Allocate a separate condition expression for each
9857 breakpoint. */
9858 if (!pending)
9859 {
9860 if (parse_arg)
9861 {
9862 char *rest;
9863 struct linespec_sals *lsal;
9864
9865 lsal = VEC_index (linespec_sals, canonical.sals, 0);
9866
9867 /* Here we only parse 'arg' to separate condition
9868 from thread number, so parsing in context of first
9869 sal is OK. When setting the breakpoint we'll
9870 re-parse it in context of each sal. */
9871
9872 find_condition_and_thread (arg, lsal->sals.sals[0].pc, &cond_string,
9873 &thread, &task, &rest);
9874 if (cond_string)
9875 make_cleanup (xfree, cond_string);
9876 if (rest)
9877 make_cleanup (xfree, rest);
9878 if (rest)
9879 extra_string = rest;
9880 }
9881 else
9882 {
9883 if (*arg != '\0')
9884 error (_("Garbage '%s' at end of location"), arg);
9885
9886 /* Create a private copy of condition string. */
9887 if (cond_string)
9888 {
9889 cond_string = xstrdup (cond_string);
9890 make_cleanup (xfree, cond_string);
9891 }
9892 /* Create a private copy of any extra string. */
9893 if (extra_string)
9894 {
9895 extra_string = xstrdup (extra_string);
9896 make_cleanup (xfree, extra_string);
9897 }
9898 }
9899
9900 ops->create_breakpoints_sal (gdbarch, &canonical,
9901 cond_string, extra_string, type_wanted,
9902 tempflag ? disp_del : disp_donttouch,
9903 thread, task, ignore_count, ops,
9904 from_tty, enabled, internal, flags);
9905 }
9906 else
9907 {
9908 struct breakpoint *b;
9909
9910 make_cleanup (xfree, copy_arg);
9911
9912 if (is_tracepoint_type (type_wanted))
9913 {
9914 struct tracepoint *t;
9915
9916 t = XCNEW (struct tracepoint);
9917 b = &t->base;
9918 }
9919 else
9920 b = XNEW (struct breakpoint);
9921
9922 init_raw_breakpoint_without_location (b, gdbarch, type_wanted, ops);
9923
9924 b->addr_string = copy_arg;
9925 if (parse_arg)
9926 b->cond_string = NULL;
9927 else
9928 {
9929 /* Create a private copy of condition string. */
9930 if (cond_string)
9931 {
9932 cond_string = xstrdup (cond_string);
9933 make_cleanup (xfree, cond_string);
9934 }
9935 b->cond_string = cond_string;
9936 }
9937 b->extra_string = NULL;
9938 b->ignore_count = ignore_count;
9939 b->disposition = tempflag ? disp_del : disp_donttouch;
9940 b->condition_not_parsed = 1;
9941 b->enable_state = enabled ? bp_enabled : bp_disabled;
9942 if ((type_wanted != bp_breakpoint
9943 && type_wanted != bp_hardware_breakpoint) || thread != -1)
9944 b->pspace = current_program_space;
9945
9946 install_breakpoint (internal, b, 0);
9947 }
9948
9949 if (VEC_length (linespec_sals, canonical.sals) > 1)
9950 {
9951 warning (_("Multiple breakpoints were set.\nUse the "
9952 "\"delete\" command to delete unwanted breakpoints."));
9953 prev_breakpoint_count = prev_bkpt_count;
9954 }
9955
9956 /* That's it. Discard the cleanups for data inserted into the
9957 breakpoint. */
9958 discard_cleanups (bkpt_chain);
9959 /* But cleanup everything else. */
9960 do_cleanups (old_chain);
9961
9962 /* error call may happen here - have BKPT_CHAIN already discarded. */
9963 update_global_location_list (1);
9964
9965 return 1;
9966 }
9967
9968 /* Set a breakpoint.
9969 ARG is a string describing breakpoint address,
9970 condition, and thread.
9971 FLAG specifies if a breakpoint is hardware on,
9972 and if breakpoint is temporary, using BP_HARDWARE_FLAG
9973 and BP_TEMPFLAG. */
9974
9975 static void
9976 break_command_1 (char *arg, int flag, int from_tty)
9977 {
9978 int tempflag = flag & BP_TEMPFLAG;
9979 enum bptype type_wanted = (flag & BP_HARDWAREFLAG
9980 ? bp_hardware_breakpoint
9981 : bp_breakpoint);
9982 struct breakpoint_ops *ops;
9983 const char *arg_cp = arg;
9984
9985 /* Matching breakpoints on probes. */
9986 if (arg && probe_linespec_to_ops (&arg_cp) != NULL)
9987 ops = &bkpt_probe_breakpoint_ops;
9988 else
9989 ops = &bkpt_breakpoint_ops;
9990
9991 create_breakpoint (get_current_arch (),
9992 arg,
9993 NULL, 0, NULL, 1 /* parse arg */,
9994 tempflag, type_wanted,
9995 0 /* Ignore count */,
9996 pending_break_support,
9997 ops,
9998 from_tty,
9999 1 /* enabled */,
10000 0 /* internal */,
10001 0);
10002 }
10003
10004 /* Helper function for break_command_1 and disassemble_command. */
10005
10006 void
10007 resolve_sal_pc (struct symtab_and_line *sal)
10008 {
10009 CORE_ADDR pc;
10010
10011 if (sal->pc == 0 && sal->symtab != NULL)
10012 {
10013 if (!find_line_pc (sal->symtab, sal->line, &pc))
10014 error (_("No line %d in file \"%s\"."),
10015 sal->line, symtab_to_filename_for_display (sal->symtab));
10016 sal->pc = pc;
10017
10018 /* If this SAL corresponds to a breakpoint inserted using a line
10019 number, then skip the function prologue if necessary. */
10020 if (sal->explicit_line)
10021 skip_prologue_sal (sal);
10022 }
10023
10024 if (sal->section == 0 && sal->symtab != NULL)
10025 {
10026 struct blockvector *bv;
10027 struct block *b;
10028 struct symbol *sym;
10029
10030 bv = blockvector_for_pc_sect (sal->pc, 0, &b, sal->symtab);
10031 if (bv != NULL)
10032 {
10033 sym = block_linkage_function (b);
10034 if (sym != NULL)
10035 {
10036 fixup_symbol_section (sym, sal->symtab->objfile);
10037 sal->section = SYMBOL_OBJ_SECTION (sal->symtab->objfile, sym);
10038 }
10039 else
10040 {
10041 /* It really is worthwhile to have the section, so we'll
10042 just have to look harder. This case can be executed
10043 if we have line numbers but no functions (as can
10044 happen in assembly source). */
10045
10046 struct bound_minimal_symbol msym;
10047 struct cleanup *old_chain = save_current_space_and_thread ();
10048
10049 switch_to_program_space_and_thread (sal->pspace);
10050
10051 msym = lookup_minimal_symbol_by_pc (sal->pc);
10052 if (msym.minsym)
10053 sal->section = MSYMBOL_OBJ_SECTION (msym.objfile, msym.minsym);
10054
10055 do_cleanups (old_chain);
10056 }
10057 }
10058 }
10059 }
10060
10061 void
10062 break_command (char *arg, int from_tty)
10063 {
10064 break_command_1 (arg, 0, from_tty);
10065 }
10066
10067 void
10068 tbreak_command (char *arg, int from_tty)
10069 {
10070 break_command_1 (arg, BP_TEMPFLAG, from_tty);
10071 }
10072
10073 static void
10074 hbreak_command (char *arg, int from_tty)
10075 {
10076 break_command_1 (arg, BP_HARDWAREFLAG, from_tty);
10077 }
10078
10079 static void
10080 thbreak_command (char *arg, int from_tty)
10081 {
10082 break_command_1 (arg, (BP_TEMPFLAG | BP_HARDWAREFLAG), from_tty);
10083 }
10084
10085 static void
10086 stop_command (char *arg, int from_tty)
10087 {
10088 printf_filtered (_("Specify the type of breakpoint to set.\n\
10089 Usage: stop in <function | address>\n\
10090 stop at <line>\n"));
10091 }
10092
10093 static void
10094 stopin_command (char *arg, int from_tty)
10095 {
10096 int badInput = 0;
10097
10098 if (arg == (char *) NULL)
10099 badInput = 1;
10100 else if (*arg != '*')
10101 {
10102 char *argptr = arg;
10103 int hasColon = 0;
10104
10105 /* Look for a ':'. If this is a line number specification, then
10106 say it is bad, otherwise, it should be an address or
10107 function/method name. */
10108 while (*argptr && !hasColon)
10109 {
10110 hasColon = (*argptr == ':');
10111 argptr++;
10112 }
10113
10114 if (hasColon)
10115 badInput = (*argptr != ':'); /* Not a class::method */
10116 else
10117 badInput = isdigit (*arg); /* a simple line number */
10118 }
10119
10120 if (badInput)
10121 printf_filtered (_("Usage: stop in <function | address>\n"));
10122 else
10123 break_command_1 (arg, 0, from_tty);
10124 }
10125
10126 static void
10127 stopat_command (char *arg, int from_tty)
10128 {
10129 int badInput = 0;
10130
10131 if (arg == (char *) NULL || *arg == '*') /* no line number */
10132 badInput = 1;
10133 else
10134 {
10135 char *argptr = arg;
10136 int hasColon = 0;
10137
10138 /* Look for a ':'. If there is a '::' then get out, otherwise
10139 it is probably a line number. */
10140 while (*argptr && !hasColon)
10141 {
10142 hasColon = (*argptr == ':');
10143 argptr++;
10144 }
10145
10146 if (hasColon)
10147 badInput = (*argptr == ':'); /* we have class::method */
10148 else
10149 badInput = !isdigit (*arg); /* not a line number */
10150 }
10151
10152 if (badInput)
10153 printf_filtered (_("Usage: stop at <line>\n"));
10154 else
10155 break_command_1 (arg, 0, from_tty);
10156 }
10157
10158 /* The dynamic printf command is mostly like a regular breakpoint, but
10159 with a prewired command list consisting of a single output command,
10160 built from extra arguments supplied on the dprintf command
10161 line. */
10162
10163 static void
10164 dprintf_command (char *arg, int from_tty)
10165 {
10166 create_breakpoint (get_current_arch (),
10167 arg,
10168 NULL, 0, NULL, 1 /* parse arg */,
10169 0, bp_dprintf,
10170 0 /* Ignore count */,
10171 pending_break_support,
10172 &dprintf_breakpoint_ops,
10173 from_tty,
10174 1 /* enabled */,
10175 0 /* internal */,
10176 0);
10177 }
10178
10179 static void
10180 agent_printf_command (char *arg, int from_tty)
10181 {
10182 error (_("May only run agent-printf on the target"));
10183 }
10184
10185 /* Implement the "breakpoint_hit" breakpoint_ops method for
10186 ranged breakpoints. */
10187
10188 static int
10189 breakpoint_hit_ranged_breakpoint (const struct bp_location *bl,
10190 struct address_space *aspace,
10191 CORE_ADDR bp_addr,
10192 const struct target_waitstatus *ws)
10193 {
10194 if (ws->kind != TARGET_WAITKIND_STOPPED
10195 || ws->value.sig != GDB_SIGNAL_TRAP)
10196 return 0;
10197
10198 return breakpoint_address_match_range (bl->pspace->aspace, bl->address,
10199 bl->length, aspace, bp_addr);
10200 }
10201
10202 /* Implement the "resources_needed" breakpoint_ops method for
10203 ranged breakpoints. */
10204
10205 static int
10206 resources_needed_ranged_breakpoint (const struct bp_location *bl)
10207 {
10208 return target_ranged_break_num_registers ();
10209 }
10210
10211 /* Implement the "print_it" breakpoint_ops method for
10212 ranged breakpoints. */
10213
10214 static enum print_stop_action
10215 print_it_ranged_breakpoint (bpstat bs)
10216 {
10217 struct breakpoint *b = bs->breakpoint_at;
10218 struct bp_location *bl = b->loc;
10219 struct ui_out *uiout = current_uiout;
10220
10221 gdb_assert (b->type == bp_hardware_breakpoint);
10222
10223 /* Ranged breakpoints have only one location. */
10224 gdb_assert (bl && bl->next == NULL);
10225
10226 annotate_breakpoint (b->number);
10227 if (b->disposition == disp_del)
10228 ui_out_text (uiout, "\nTemporary ranged breakpoint ");
10229 else
10230 ui_out_text (uiout, "\nRanged breakpoint ");
10231 if (ui_out_is_mi_like_p (uiout))
10232 {
10233 ui_out_field_string (uiout, "reason",
10234 async_reason_lookup (EXEC_ASYNC_BREAKPOINT_HIT));
10235 ui_out_field_string (uiout, "disp", bpdisp_text (b->disposition));
10236 }
10237 ui_out_field_int (uiout, "bkptno", b->number);
10238 ui_out_text (uiout, ", ");
10239
10240 return PRINT_SRC_AND_LOC;
10241 }
10242
10243 /* Implement the "print_one" breakpoint_ops method for
10244 ranged breakpoints. */
10245
10246 static void
10247 print_one_ranged_breakpoint (struct breakpoint *b,
10248 struct bp_location **last_loc)
10249 {
10250 struct bp_location *bl = b->loc;
10251 struct value_print_options opts;
10252 struct ui_out *uiout = current_uiout;
10253
10254 /* Ranged breakpoints have only one location. */
10255 gdb_assert (bl && bl->next == NULL);
10256
10257 get_user_print_options (&opts);
10258
10259 if (opts.addressprint)
10260 /* We don't print the address range here, it will be printed later
10261 by print_one_detail_ranged_breakpoint. */
10262 ui_out_field_skip (uiout, "addr");
10263 annotate_field (5);
10264 print_breakpoint_location (b, bl);
10265 *last_loc = bl;
10266 }
10267
10268 /* Implement the "print_one_detail" breakpoint_ops method for
10269 ranged breakpoints. */
10270
10271 static void
10272 print_one_detail_ranged_breakpoint (const struct breakpoint *b,
10273 struct ui_out *uiout)
10274 {
10275 CORE_ADDR address_start, address_end;
10276 struct bp_location *bl = b->loc;
10277 struct ui_file *stb = mem_fileopen ();
10278 struct cleanup *cleanup = make_cleanup_ui_file_delete (stb);
10279
10280 gdb_assert (bl);
10281
10282 address_start = bl->address;
10283 address_end = address_start + bl->length - 1;
10284
10285 ui_out_text (uiout, "\taddress range: ");
10286 fprintf_unfiltered (stb, "[%s, %s]",
10287 print_core_address (bl->gdbarch, address_start),
10288 print_core_address (bl->gdbarch, address_end));
10289 ui_out_field_stream (uiout, "addr", stb);
10290 ui_out_text (uiout, "\n");
10291
10292 do_cleanups (cleanup);
10293 }
10294
10295 /* Implement the "print_mention" breakpoint_ops method for
10296 ranged breakpoints. */
10297
10298 static void
10299 print_mention_ranged_breakpoint (struct breakpoint *b)
10300 {
10301 struct bp_location *bl = b->loc;
10302 struct ui_out *uiout = current_uiout;
10303
10304 gdb_assert (bl);
10305 gdb_assert (b->type == bp_hardware_breakpoint);
10306
10307 if (ui_out_is_mi_like_p (uiout))
10308 return;
10309
10310 printf_filtered (_("Hardware assisted ranged breakpoint %d from %s to %s."),
10311 b->number, paddress (bl->gdbarch, bl->address),
10312 paddress (bl->gdbarch, bl->address + bl->length - 1));
10313 }
10314
10315 /* Implement the "print_recreate" breakpoint_ops method for
10316 ranged breakpoints. */
10317
10318 static void
10319 print_recreate_ranged_breakpoint (struct breakpoint *b, struct ui_file *fp)
10320 {
10321 fprintf_unfiltered (fp, "break-range %s, %s", b->addr_string,
10322 b->addr_string_range_end);
10323 print_recreate_thread (b, fp);
10324 }
10325
10326 /* The breakpoint_ops structure to be used in ranged breakpoints. */
10327
10328 static struct breakpoint_ops ranged_breakpoint_ops;
10329
10330 /* Find the address where the end of the breakpoint range should be
10331 placed, given the SAL of the end of the range. This is so that if
10332 the user provides a line number, the end of the range is set to the
10333 last instruction of the given line. */
10334
10335 static CORE_ADDR
10336 find_breakpoint_range_end (struct symtab_and_line sal)
10337 {
10338 CORE_ADDR end;
10339
10340 /* If the user provided a PC value, use it. Otherwise,
10341 find the address of the end of the given location. */
10342 if (sal.explicit_pc)
10343 end = sal.pc;
10344 else
10345 {
10346 int ret;
10347 CORE_ADDR start;
10348
10349 ret = find_line_pc_range (sal, &start, &end);
10350 if (!ret)
10351 error (_("Could not find location of the end of the range."));
10352
10353 /* find_line_pc_range returns the start of the next line. */
10354 end--;
10355 }
10356
10357 return end;
10358 }
10359
10360 /* Implement the "break-range" CLI command. */
10361
10362 static void
10363 break_range_command (char *arg, int from_tty)
10364 {
10365 char *arg_start, *addr_string_start, *addr_string_end;
10366 struct linespec_result canonical_start, canonical_end;
10367 int bp_count, can_use_bp, length;
10368 CORE_ADDR end;
10369 struct breakpoint *b;
10370 struct symtab_and_line sal_start, sal_end;
10371 struct cleanup *cleanup_bkpt;
10372 struct linespec_sals *lsal_start, *lsal_end;
10373
10374 /* We don't support software ranged breakpoints. */
10375 if (target_ranged_break_num_registers () < 0)
10376 error (_("This target does not support hardware ranged breakpoints."));
10377
10378 bp_count = hw_breakpoint_used_count ();
10379 bp_count += target_ranged_break_num_registers ();
10380 can_use_bp = target_can_use_hardware_watchpoint (bp_hardware_breakpoint,
10381 bp_count, 0);
10382 if (can_use_bp < 0)
10383 error (_("Hardware breakpoints used exceeds limit."));
10384
10385 arg = skip_spaces (arg);
10386 if (arg == NULL || arg[0] == '\0')
10387 error(_("No address range specified."));
10388
10389 init_linespec_result (&canonical_start);
10390
10391 arg_start = arg;
10392 parse_breakpoint_sals (&arg, &canonical_start);
10393
10394 cleanup_bkpt = make_cleanup_destroy_linespec_result (&canonical_start);
10395
10396 if (arg[0] != ',')
10397 error (_("Too few arguments."));
10398 else if (VEC_empty (linespec_sals, canonical_start.sals))
10399 error (_("Could not find location of the beginning of the range."));
10400
10401 lsal_start = VEC_index (linespec_sals, canonical_start.sals, 0);
10402
10403 if (VEC_length (linespec_sals, canonical_start.sals) > 1
10404 || lsal_start->sals.nelts != 1)
10405 error (_("Cannot create a ranged breakpoint with multiple locations."));
10406
10407 sal_start = lsal_start->sals.sals[0];
10408 addr_string_start = savestring (arg_start, arg - arg_start);
10409 make_cleanup (xfree, addr_string_start);
10410
10411 arg++; /* Skip the comma. */
10412 arg = skip_spaces (arg);
10413
10414 /* Parse the end location. */
10415
10416 init_linespec_result (&canonical_end);
10417 arg_start = arg;
10418
10419 /* We call decode_line_full directly here instead of using
10420 parse_breakpoint_sals because we need to specify the start location's
10421 symtab and line as the default symtab and line for the end of the
10422 range. This makes it possible to have ranges like "foo.c:27, +14",
10423 where +14 means 14 lines from the start location. */
10424 decode_line_full (&arg, DECODE_LINE_FUNFIRSTLINE,
10425 sal_start.symtab, sal_start.line,
10426 &canonical_end, NULL, NULL);
10427
10428 make_cleanup_destroy_linespec_result (&canonical_end);
10429
10430 if (VEC_empty (linespec_sals, canonical_end.sals))
10431 error (_("Could not find location of the end of the range."));
10432
10433 lsal_end = VEC_index (linespec_sals, canonical_end.sals, 0);
10434 if (VEC_length (linespec_sals, canonical_end.sals) > 1
10435 || lsal_end->sals.nelts != 1)
10436 error (_("Cannot create a ranged breakpoint with multiple locations."));
10437
10438 sal_end = lsal_end->sals.sals[0];
10439 addr_string_end = savestring (arg_start, arg - arg_start);
10440 make_cleanup (xfree, addr_string_end);
10441
10442 end = find_breakpoint_range_end (sal_end);
10443 if (sal_start.pc > end)
10444 error (_("Invalid address range, end precedes start."));
10445
10446 length = end - sal_start.pc + 1;
10447 if (length < 0)
10448 /* Length overflowed. */
10449 error (_("Address range too large."));
10450 else if (length == 1)
10451 {
10452 /* This range is simple enough to be handled by
10453 the `hbreak' command. */
10454 hbreak_command (addr_string_start, 1);
10455
10456 do_cleanups (cleanup_bkpt);
10457
10458 return;
10459 }
10460
10461 /* Now set up the breakpoint. */
10462 b = set_raw_breakpoint (get_current_arch (), sal_start,
10463 bp_hardware_breakpoint, &ranged_breakpoint_ops);
10464 set_breakpoint_count (breakpoint_count + 1);
10465 b->number = breakpoint_count;
10466 b->disposition = disp_donttouch;
10467 b->addr_string = xstrdup (addr_string_start);
10468 b->addr_string_range_end = xstrdup (addr_string_end);
10469 b->loc->length = length;
10470
10471 do_cleanups (cleanup_bkpt);
10472
10473 mention (b);
10474 observer_notify_breakpoint_created (b);
10475 update_global_location_list (1);
10476 }
10477
10478 /* Return non-zero if EXP is verified as constant. Returned zero
10479 means EXP is variable. Also the constant detection may fail for
10480 some constant expressions and in such case still falsely return
10481 zero. */
10482
10483 static int
10484 watchpoint_exp_is_const (const struct expression *exp)
10485 {
10486 int i = exp->nelts;
10487
10488 while (i > 0)
10489 {
10490 int oplenp, argsp;
10491
10492 /* We are only interested in the descriptor of each element. */
10493 operator_length (exp, i, &oplenp, &argsp);
10494 i -= oplenp;
10495
10496 switch (exp->elts[i].opcode)
10497 {
10498 case BINOP_ADD:
10499 case BINOP_SUB:
10500 case BINOP_MUL:
10501 case BINOP_DIV:
10502 case BINOP_REM:
10503 case BINOP_MOD:
10504 case BINOP_LSH:
10505 case BINOP_RSH:
10506 case BINOP_LOGICAL_AND:
10507 case BINOP_LOGICAL_OR:
10508 case BINOP_BITWISE_AND:
10509 case BINOP_BITWISE_IOR:
10510 case BINOP_BITWISE_XOR:
10511 case BINOP_EQUAL:
10512 case BINOP_NOTEQUAL:
10513 case BINOP_LESS:
10514 case BINOP_GTR:
10515 case BINOP_LEQ:
10516 case BINOP_GEQ:
10517 case BINOP_REPEAT:
10518 case BINOP_COMMA:
10519 case BINOP_EXP:
10520 case BINOP_MIN:
10521 case BINOP_MAX:
10522 case BINOP_INTDIV:
10523 case BINOP_CONCAT:
10524 case BINOP_IN:
10525 case BINOP_RANGE:
10526 case TERNOP_COND:
10527 case TERNOP_SLICE:
10528
10529 case OP_LONG:
10530 case OP_DOUBLE:
10531 case OP_DECFLOAT:
10532 case OP_LAST:
10533 case OP_COMPLEX:
10534 case OP_STRING:
10535 case OP_ARRAY:
10536 case OP_TYPE:
10537 case OP_TYPEOF:
10538 case OP_DECLTYPE:
10539 case OP_TYPEID:
10540 case OP_NAME:
10541 case OP_OBJC_NSSTRING:
10542
10543 case UNOP_NEG:
10544 case UNOP_LOGICAL_NOT:
10545 case UNOP_COMPLEMENT:
10546 case UNOP_ADDR:
10547 case UNOP_HIGH:
10548 case UNOP_CAST:
10549
10550 case UNOP_CAST_TYPE:
10551 case UNOP_REINTERPRET_CAST:
10552 case UNOP_DYNAMIC_CAST:
10553 /* Unary, binary and ternary operators: We have to check
10554 their operands. If they are constant, then so is the
10555 result of that operation. For instance, if A and B are
10556 determined to be constants, then so is "A + B".
10557
10558 UNOP_IND is one exception to the rule above, because the
10559 value of *ADDR is not necessarily a constant, even when
10560 ADDR is. */
10561 break;
10562
10563 case OP_VAR_VALUE:
10564 /* Check whether the associated symbol is a constant.
10565
10566 We use SYMBOL_CLASS rather than TYPE_CONST because it's
10567 possible that a buggy compiler could mark a variable as
10568 constant even when it is not, and TYPE_CONST would return
10569 true in this case, while SYMBOL_CLASS wouldn't.
10570
10571 We also have to check for function symbols because they
10572 are always constant. */
10573 {
10574 struct symbol *s = exp->elts[i + 2].symbol;
10575
10576 if (SYMBOL_CLASS (s) != LOC_BLOCK
10577 && SYMBOL_CLASS (s) != LOC_CONST
10578 && SYMBOL_CLASS (s) != LOC_CONST_BYTES)
10579 return 0;
10580 break;
10581 }
10582
10583 /* The default action is to return 0 because we are using
10584 the optimistic approach here: If we don't know something,
10585 then it is not a constant. */
10586 default:
10587 return 0;
10588 }
10589 }
10590
10591 return 1;
10592 }
10593
10594 /* Implement the "dtor" breakpoint_ops method for watchpoints. */
10595
10596 static void
10597 dtor_watchpoint (struct breakpoint *self)
10598 {
10599 struct watchpoint *w = (struct watchpoint *) self;
10600
10601 xfree (w->cond_exp);
10602 xfree (w->exp);
10603 xfree (w->exp_string);
10604 xfree (w->exp_string_reparse);
10605 value_free (w->val);
10606
10607 base_breakpoint_ops.dtor (self);
10608 }
10609
10610 /* Implement the "re_set" breakpoint_ops method for watchpoints. */
10611
10612 static void
10613 re_set_watchpoint (struct breakpoint *b)
10614 {
10615 struct watchpoint *w = (struct watchpoint *) b;
10616
10617 /* Watchpoint can be either on expression using entirely global
10618 variables, or it can be on local variables.
10619
10620 Watchpoints of the first kind are never auto-deleted, and even
10621 persist across program restarts. Since they can use variables
10622 from shared libraries, we need to reparse expression as libraries
10623 are loaded and unloaded.
10624
10625 Watchpoints on local variables can also change meaning as result
10626 of solib event. For example, if a watchpoint uses both a local
10627 and a global variables in expression, it's a local watchpoint,
10628 but unloading of a shared library will make the expression
10629 invalid. This is not a very common use case, but we still
10630 re-evaluate expression, to avoid surprises to the user.
10631
10632 Note that for local watchpoints, we re-evaluate it only if
10633 watchpoints frame id is still valid. If it's not, it means the
10634 watchpoint is out of scope and will be deleted soon. In fact,
10635 I'm not sure we'll ever be called in this case.
10636
10637 If a local watchpoint's frame id is still valid, then
10638 w->exp_valid_block is likewise valid, and we can safely use it.
10639
10640 Don't do anything about disabled watchpoints, since they will be
10641 reevaluated again when enabled. */
10642 update_watchpoint (w, 1 /* reparse */);
10643 }
10644
10645 /* Implement the "insert" breakpoint_ops method for hardware watchpoints. */
10646
10647 static int
10648 insert_watchpoint (struct bp_location *bl)
10649 {
10650 struct watchpoint *w = (struct watchpoint *) bl->owner;
10651 int length = w->exact ? 1 : bl->length;
10652
10653 return target_insert_watchpoint (bl->address, length, bl->watchpoint_type,
10654 w->cond_exp);
10655 }
10656
10657 /* Implement the "remove" breakpoint_ops method for hardware watchpoints. */
10658
10659 static int
10660 remove_watchpoint (struct bp_location *bl)
10661 {
10662 struct watchpoint *w = (struct watchpoint *) bl->owner;
10663 int length = w->exact ? 1 : bl->length;
10664
10665 return target_remove_watchpoint (bl->address, length, bl->watchpoint_type,
10666 w->cond_exp);
10667 }
10668
10669 static int
10670 breakpoint_hit_watchpoint (const struct bp_location *bl,
10671 struct address_space *aspace, CORE_ADDR bp_addr,
10672 const struct target_waitstatus *ws)
10673 {
10674 struct breakpoint *b = bl->owner;
10675 struct watchpoint *w = (struct watchpoint *) b;
10676
10677 /* Continuable hardware watchpoints are treated as non-existent if the
10678 reason we stopped wasn't a hardware watchpoint (we didn't stop on
10679 some data address). Otherwise gdb won't stop on a break instruction
10680 in the code (not from a breakpoint) when a hardware watchpoint has
10681 been defined. Also skip watchpoints which we know did not trigger
10682 (did not match the data address). */
10683 if (is_hardware_watchpoint (b)
10684 && w->watchpoint_triggered == watch_triggered_no)
10685 return 0;
10686
10687 return 1;
10688 }
10689
10690 static void
10691 check_status_watchpoint (bpstat bs)
10692 {
10693 gdb_assert (is_watchpoint (bs->breakpoint_at));
10694
10695 bpstat_check_watchpoint (bs);
10696 }
10697
10698 /* Implement the "resources_needed" breakpoint_ops method for
10699 hardware watchpoints. */
10700
10701 static int
10702 resources_needed_watchpoint (const struct bp_location *bl)
10703 {
10704 struct watchpoint *w = (struct watchpoint *) bl->owner;
10705 int length = w->exact? 1 : bl->length;
10706
10707 return target_region_ok_for_hw_watchpoint (bl->address, length);
10708 }
10709
10710 /* Implement the "works_in_software_mode" breakpoint_ops method for
10711 hardware watchpoints. */
10712
10713 static int
10714 works_in_software_mode_watchpoint (const struct breakpoint *b)
10715 {
10716 /* Read and access watchpoints only work with hardware support. */
10717 return b->type == bp_watchpoint || b->type == bp_hardware_watchpoint;
10718 }
10719
10720 static enum print_stop_action
10721 print_it_watchpoint (bpstat bs)
10722 {
10723 struct cleanup *old_chain;
10724 struct breakpoint *b;
10725 struct ui_file *stb;
10726 enum print_stop_action result;
10727 struct watchpoint *w;
10728 struct ui_out *uiout = current_uiout;
10729
10730 gdb_assert (bs->bp_location_at != NULL);
10731
10732 b = bs->breakpoint_at;
10733 w = (struct watchpoint *) b;
10734
10735 stb = mem_fileopen ();
10736 old_chain = make_cleanup_ui_file_delete (stb);
10737
10738 switch (b->type)
10739 {
10740 case bp_watchpoint:
10741 case bp_hardware_watchpoint:
10742 annotate_watchpoint (b->number);
10743 if (ui_out_is_mi_like_p (uiout))
10744 ui_out_field_string
10745 (uiout, "reason",
10746 async_reason_lookup (EXEC_ASYNC_WATCHPOINT_TRIGGER));
10747 mention (b);
10748 make_cleanup_ui_out_tuple_begin_end (uiout, "value");
10749 ui_out_text (uiout, "\nOld value = ");
10750 watchpoint_value_print (bs->old_val, stb);
10751 ui_out_field_stream (uiout, "old", stb);
10752 ui_out_text (uiout, "\nNew value = ");
10753 watchpoint_value_print (w->val, stb);
10754 ui_out_field_stream (uiout, "new", stb);
10755 ui_out_text (uiout, "\n");
10756 /* More than one watchpoint may have been triggered. */
10757 result = PRINT_UNKNOWN;
10758 break;
10759
10760 case bp_read_watchpoint:
10761 if (ui_out_is_mi_like_p (uiout))
10762 ui_out_field_string
10763 (uiout, "reason",
10764 async_reason_lookup (EXEC_ASYNC_READ_WATCHPOINT_TRIGGER));
10765 mention (b);
10766 make_cleanup_ui_out_tuple_begin_end (uiout, "value");
10767 ui_out_text (uiout, "\nValue = ");
10768 watchpoint_value_print (w->val, stb);
10769 ui_out_field_stream (uiout, "value", stb);
10770 ui_out_text (uiout, "\n");
10771 result = PRINT_UNKNOWN;
10772 break;
10773
10774 case bp_access_watchpoint:
10775 if (bs->old_val != NULL)
10776 {
10777 annotate_watchpoint (b->number);
10778 if (ui_out_is_mi_like_p (uiout))
10779 ui_out_field_string
10780 (uiout, "reason",
10781 async_reason_lookup (EXEC_ASYNC_ACCESS_WATCHPOINT_TRIGGER));
10782 mention (b);
10783 make_cleanup_ui_out_tuple_begin_end (uiout, "value");
10784 ui_out_text (uiout, "\nOld value = ");
10785 watchpoint_value_print (bs->old_val, stb);
10786 ui_out_field_stream (uiout, "old", stb);
10787 ui_out_text (uiout, "\nNew value = ");
10788 }
10789 else
10790 {
10791 mention (b);
10792 if (ui_out_is_mi_like_p (uiout))
10793 ui_out_field_string
10794 (uiout, "reason",
10795 async_reason_lookup (EXEC_ASYNC_ACCESS_WATCHPOINT_TRIGGER));
10796 make_cleanup_ui_out_tuple_begin_end (uiout, "value");
10797 ui_out_text (uiout, "\nValue = ");
10798 }
10799 watchpoint_value_print (w->val, stb);
10800 ui_out_field_stream (uiout, "new", stb);
10801 ui_out_text (uiout, "\n");
10802 result = PRINT_UNKNOWN;
10803 break;
10804 default:
10805 result = PRINT_UNKNOWN;
10806 }
10807
10808 do_cleanups (old_chain);
10809 return result;
10810 }
10811
10812 /* Implement the "print_mention" breakpoint_ops method for hardware
10813 watchpoints. */
10814
10815 static void
10816 print_mention_watchpoint (struct breakpoint *b)
10817 {
10818 struct cleanup *ui_out_chain;
10819 struct watchpoint *w = (struct watchpoint *) b;
10820 struct ui_out *uiout = current_uiout;
10821
10822 switch (b->type)
10823 {
10824 case bp_watchpoint:
10825 ui_out_text (uiout, "Watchpoint ");
10826 ui_out_chain = make_cleanup_ui_out_tuple_begin_end (uiout, "wpt");
10827 break;
10828 case bp_hardware_watchpoint:
10829 ui_out_text (uiout, "Hardware watchpoint ");
10830 ui_out_chain = make_cleanup_ui_out_tuple_begin_end (uiout, "wpt");
10831 break;
10832 case bp_read_watchpoint:
10833 ui_out_text (uiout, "Hardware read watchpoint ");
10834 ui_out_chain = make_cleanup_ui_out_tuple_begin_end (uiout, "hw-rwpt");
10835 break;
10836 case bp_access_watchpoint:
10837 ui_out_text (uiout, "Hardware access (read/write) watchpoint ");
10838 ui_out_chain = make_cleanup_ui_out_tuple_begin_end (uiout, "hw-awpt");
10839 break;
10840 default:
10841 internal_error (__FILE__, __LINE__,
10842 _("Invalid hardware watchpoint type."));
10843 }
10844
10845 ui_out_field_int (uiout, "number", b->number);
10846 ui_out_text (uiout, ": ");
10847 ui_out_field_string (uiout, "exp", w->exp_string);
10848 do_cleanups (ui_out_chain);
10849 }
10850
10851 /* Implement the "print_recreate" breakpoint_ops method for
10852 watchpoints. */
10853
10854 static void
10855 print_recreate_watchpoint (struct breakpoint *b, struct ui_file *fp)
10856 {
10857 struct watchpoint *w = (struct watchpoint *) b;
10858
10859 switch (b->type)
10860 {
10861 case bp_watchpoint:
10862 case bp_hardware_watchpoint:
10863 fprintf_unfiltered (fp, "watch");
10864 break;
10865 case bp_read_watchpoint:
10866 fprintf_unfiltered (fp, "rwatch");
10867 break;
10868 case bp_access_watchpoint:
10869 fprintf_unfiltered (fp, "awatch");
10870 break;
10871 default:
10872 internal_error (__FILE__, __LINE__,
10873 _("Invalid watchpoint type."));
10874 }
10875
10876 fprintf_unfiltered (fp, " %s", w->exp_string);
10877 print_recreate_thread (b, fp);
10878 }
10879
10880 /* Implement the "explains_signal" breakpoint_ops method for
10881 watchpoints. */
10882
10883 static int
10884 explains_signal_watchpoint (struct breakpoint *b, enum gdb_signal sig)
10885 {
10886 /* A software watchpoint cannot cause a signal other than
10887 GDB_SIGNAL_TRAP. */
10888 if (b->type == bp_watchpoint && sig != GDB_SIGNAL_TRAP)
10889 return 0;
10890
10891 return 1;
10892 }
10893
10894 /* The breakpoint_ops structure to be used in hardware watchpoints. */
10895
10896 static struct breakpoint_ops watchpoint_breakpoint_ops;
10897
10898 /* Implement the "insert" breakpoint_ops method for
10899 masked hardware watchpoints. */
10900
10901 static int
10902 insert_masked_watchpoint (struct bp_location *bl)
10903 {
10904 struct watchpoint *w = (struct watchpoint *) bl->owner;
10905
10906 return target_insert_mask_watchpoint (bl->address, w->hw_wp_mask,
10907 bl->watchpoint_type);
10908 }
10909
10910 /* Implement the "remove" breakpoint_ops method for
10911 masked hardware watchpoints. */
10912
10913 static int
10914 remove_masked_watchpoint (struct bp_location *bl)
10915 {
10916 struct watchpoint *w = (struct watchpoint *) bl->owner;
10917
10918 return target_remove_mask_watchpoint (bl->address, w->hw_wp_mask,
10919 bl->watchpoint_type);
10920 }
10921
10922 /* Implement the "resources_needed" breakpoint_ops method for
10923 masked hardware watchpoints. */
10924
10925 static int
10926 resources_needed_masked_watchpoint (const struct bp_location *bl)
10927 {
10928 struct watchpoint *w = (struct watchpoint *) bl->owner;
10929
10930 return target_masked_watch_num_registers (bl->address, w->hw_wp_mask);
10931 }
10932
10933 /* Implement the "works_in_software_mode" breakpoint_ops method for
10934 masked hardware watchpoints. */
10935
10936 static int
10937 works_in_software_mode_masked_watchpoint (const struct breakpoint *b)
10938 {
10939 return 0;
10940 }
10941
10942 /* Implement the "print_it" breakpoint_ops method for
10943 masked hardware watchpoints. */
10944
10945 static enum print_stop_action
10946 print_it_masked_watchpoint (bpstat bs)
10947 {
10948 struct breakpoint *b = bs->breakpoint_at;
10949 struct ui_out *uiout = current_uiout;
10950
10951 /* Masked watchpoints have only one location. */
10952 gdb_assert (b->loc && b->loc->next == NULL);
10953
10954 switch (b->type)
10955 {
10956 case bp_hardware_watchpoint:
10957 annotate_watchpoint (b->number);
10958 if (ui_out_is_mi_like_p (uiout))
10959 ui_out_field_string
10960 (uiout, "reason",
10961 async_reason_lookup (EXEC_ASYNC_WATCHPOINT_TRIGGER));
10962 break;
10963
10964 case bp_read_watchpoint:
10965 if (ui_out_is_mi_like_p (uiout))
10966 ui_out_field_string
10967 (uiout, "reason",
10968 async_reason_lookup (EXEC_ASYNC_READ_WATCHPOINT_TRIGGER));
10969 break;
10970
10971 case bp_access_watchpoint:
10972 if (ui_out_is_mi_like_p (uiout))
10973 ui_out_field_string
10974 (uiout, "reason",
10975 async_reason_lookup (EXEC_ASYNC_ACCESS_WATCHPOINT_TRIGGER));
10976 break;
10977 default:
10978 internal_error (__FILE__, __LINE__,
10979 _("Invalid hardware watchpoint type."));
10980 }
10981
10982 mention (b);
10983 ui_out_text (uiout, _("\n\
10984 Check the underlying instruction at PC for the memory\n\
10985 address and value which triggered this watchpoint.\n"));
10986 ui_out_text (uiout, "\n");
10987
10988 /* More than one watchpoint may have been triggered. */
10989 return PRINT_UNKNOWN;
10990 }
10991
10992 /* Implement the "print_one_detail" breakpoint_ops method for
10993 masked hardware watchpoints. */
10994
10995 static void
10996 print_one_detail_masked_watchpoint (const struct breakpoint *b,
10997 struct ui_out *uiout)
10998 {
10999 struct watchpoint *w = (struct watchpoint *) b;
11000
11001 /* Masked watchpoints have only one location. */
11002 gdb_assert (b->loc && b->loc->next == NULL);
11003
11004 ui_out_text (uiout, "\tmask ");
11005 ui_out_field_core_addr (uiout, "mask", b->loc->gdbarch, w->hw_wp_mask);
11006 ui_out_text (uiout, "\n");
11007 }
11008
11009 /* Implement the "print_mention" breakpoint_ops method for
11010 masked hardware watchpoints. */
11011
11012 static void
11013 print_mention_masked_watchpoint (struct breakpoint *b)
11014 {
11015 struct watchpoint *w = (struct watchpoint *) b;
11016 struct ui_out *uiout = current_uiout;
11017 struct cleanup *ui_out_chain;
11018
11019 switch (b->type)
11020 {
11021 case bp_hardware_watchpoint:
11022 ui_out_text (uiout, "Masked hardware watchpoint ");
11023 ui_out_chain = make_cleanup_ui_out_tuple_begin_end (uiout, "wpt");
11024 break;
11025 case bp_read_watchpoint:
11026 ui_out_text (uiout, "Masked hardware read watchpoint ");
11027 ui_out_chain = make_cleanup_ui_out_tuple_begin_end (uiout, "hw-rwpt");
11028 break;
11029 case bp_access_watchpoint:
11030 ui_out_text (uiout, "Masked hardware access (read/write) watchpoint ");
11031 ui_out_chain = make_cleanup_ui_out_tuple_begin_end (uiout, "hw-awpt");
11032 break;
11033 default:
11034 internal_error (__FILE__, __LINE__,
11035 _("Invalid hardware watchpoint type."));
11036 }
11037
11038 ui_out_field_int (uiout, "number", b->number);
11039 ui_out_text (uiout, ": ");
11040 ui_out_field_string (uiout, "exp", w->exp_string);
11041 do_cleanups (ui_out_chain);
11042 }
11043
11044 /* Implement the "print_recreate" breakpoint_ops method for
11045 masked hardware watchpoints. */
11046
11047 static void
11048 print_recreate_masked_watchpoint (struct breakpoint *b, struct ui_file *fp)
11049 {
11050 struct watchpoint *w = (struct watchpoint *) b;
11051 char tmp[40];
11052
11053 switch (b->type)
11054 {
11055 case bp_hardware_watchpoint:
11056 fprintf_unfiltered (fp, "watch");
11057 break;
11058 case bp_read_watchpoint:
11059 fprintf_unfiltered (fp, "rwatch");
11060 break;
11061 case bp_access_watchpoint:
11062 fprintf_unfiltered (fp, "awatch");
11063 break;
11064 default:
11065 internal_error (__FILE__, __LINE__,
11066 _("Invalid hardware watchpoint type."));
11067 }
11068
11069 sprintf_vma (tmp, w->hw_wp_mask);
11070 fprintf_unfiltered (fp, " %s mask 0x%s", w->exp_string, tmp);
11071 print_recreate_thread (b, fp);
11072 }
11073
11074 /* The breakpoint_ops structure to be used in masked hardware watchpoints. */
11075
11076 static struct breakpoint_ops masked_watchpoint_breakpoint_ops;
11077
11078 /* Tell whether the given watchpoint is a masked hardware watchpoint. */
11079
11080 static int
11081 is_masked_watchpoint (const struct breakpoint *b)
11082 {
11083 return b->ops == &masked_watchpoint_breakpoint_ops;
11084 }
11085
11086 /* accessflag: hw_write: watch write,
11087 hw_read: watch read,
11088 hw_access: watch access (read or write) */
11089 static void
11090 watch_command_1 (const char *arg, int accessflag, int from_tty,
11091 int just_location, int internal)
11092 {
11093 volatile struct gdb_exception e;
11094 struct breakpoint *b, *scope_breakpoint = NULL;
11095 struct expression *exp;
11096 const struct block *exp_valid_block = NULL, *cond_exp_valid_block = NULL;
11097 struct value *val, *mark, *result;
11098 struct frame_info *frame;
11099 const char *exp_start = NULL;
11100 const char *exp_end = NULL;
11101 const char *tok, *end_tok;
11102 int toklen = -1;
11103 const char *cond_start = NULL;
11104 const char *cond_end = NULL;
11105 enum bptype bp_type;
11106 int thread = -1;
11107 int pc = 0;
11108 /* Flag to indicate whether we are going to use masks for
11109 the hardware watchpoint. */
11110 int use_mask = 0;
11111 CORE_ADDR mask = 0;
11112 struct watchpoint *w;
11113 char *expression;
11114 struct cleanup *back_to;
11115
11116 /* Make sure that we actually have parameters to parse. */
11117 if (arg != NULL && arg[0] != '\0')
11118 {
11119 const char *value_start;
11120
11121 exp_end = arg + strlen (arg);
11122
11123 /* Look for "parameter value" pairs at the end
11124 of the arguments string. */
11125 for (tok = exp_end - 1; tok > arg; tok--)
11126 {
11127 /* Skip whitespace at the end of the argument list. */
11128 while (tok > arg && (*tok == ' ' || *tok == '\t'))
11129 tok--;
11130
11131 /* Find the beginning of the last token.
11132 This is the value of the parameter. */
11133 while (tok > arg && (*tok != ' ' && *tok != '\t'))
11134 tok--;
11135 value_start = tok + 1;
11136
11137 /* Skip whitespace. */
11138 while (tok > arg && (*tok == ' ' || *tok == '\t'))
11139 tok--;
11140
11141 end_tok = tok;
11142
11143 /* Find the beginning of the second to last token.
11144 This is the parameter itself. */
11145 while (tok > arg && (*tok != ' ' && *tok != '\t'))
11146 tok--;
11147 tok++;
11148 toklen = end_tok - tok + 1;
11149
11150 if (toklen == 6 && !strncmp (tok, "thread", 6))
11151 {
11152 /* At this point we've found a "thread" token, which means
11153 the user is trying to set a watchpoint that triggers
11154 only in a specific thread. */
11155 char *endp;
11156
11157 if (thread != -1)
11158 error(_("You can specify only one thread."));
11159
11160 /* Extract the thread ID from the next token. */
11161 thread = strtol (value_start, &endp, 0);
11162
11163 /* Check if the user provided a valid numeric value for the
11164 thread ID. */
11165 if (*endp != ' ' && *endp != '\t' && *endp != '\0')
11166 error (_("Invalid thread ID specification %s."), value_start);
11167
11168 /* Check if the thread actually exists. */
11169 if (!valid_thread_id (thread))
11170 invalid_thread_id_error (thread);
11171 }
11172 else if (toklen == 4 && !strncmp (tok, "mask", 4))
11173 {
11174 /* We've found a "mask" token, which means the user wants to
11175 create a hardware watchpoint that is going to have the mask
11176 facility. */
11177 struct value *mask_value, *mark;
11178
11179 if (use_mask)
11180 error(_("You can specify only one mask."));
11181
11182 use_mask = just_location = 1;
11183
11184 mark = value_mark ();
11185 mask_value = parse_to_comma_and_eval (&value_start);
11186 mask = value_as_address (mask_value);
11187 value_free_to_mark (mark);
11188 }
11189 else
11190 /* We didn't recognize what we found. We should stop here. */
11191 break;
11192
11193 /* Truncate the string and get rid of the "parameter value" pair before
11194 the arguments string is parsed by the parse_exp_1 function. */
11195 exp_end = tok;
11196 }
11197 }
11198 else
11199 exp_end = arg;
11200
11201 /* Parse the rest of the arguments. From here on out, everything
11202 is in terms of a newly allocated string instead of the original
11203 ARG. */
11204 innermost_block = NULL;
11205 expression = savestring (arg, exp_end - arg);
11206 back_to = make_cleanup (xfree, expression);
11207 exp_start = arg = expression;
11208 exp = parse_exp_1 (&arg, 0, 0, 0);
11209 exp_end = arg;
11210 /* Remove trailing whitespace from the expression before saving it.
11211 This makes the eventual display of the expression string a bit
11212 prettier. */
11213 while (exp_end > exp_start && (exp_end[-1] == ' ' || exp_end[-1] == '\t'))
11214 --exp_end;
11215
11216 /* Checking if the expression is not constant. */
11217 if (watchpoint_exp_is_const (exp))
11218 {
11219 int len;
11220
11221 len = exp_end - exp_start;
11222 while (len > 0 && isspace (exp_start[len - 1]))
11223 len--;
11224 error (_("Cannot watch constant value `%.*s'."), len, exp_start);
11225 }
11226
11227 exp_valid_block = innermost_block;
11228 mark = value_mark ();
11229 fetch_subexp_value (exp, &pc, &val, &result, NULL, just_location);
11230
11231 if (just_location)
11232 {
11233 int ret;
11234
11235 exp_valid_block = NULL;
11236 val = value_addr (result);
11237 release_value (val);
11238 value_free_to_mark (mark);
11239
11240 if (use_mask)
11241 {
11242 ret = target_masked_watch_num_registers (value_as_address (val),
11243 mask);
11244 if (ret == -1)
11245 error (_("This target does not support masked watchpoints."));
11246 else if (ret == -2)
11247 error (_("Invalid mask or memory region."));
11248 }
11249 }
11250 else if (val != NULL)
11251 release_value (val);
11252
11253 tok = skip_spaces_const (arg);
11254 end_tok = skip_to_space_const (tok);
11255
11256 toklen = end_tok - tok;
11257 if (toklen >= 1 && strncmp (tok, "if", toklen) == 0)
11258 {
11259 struct expression *cond;
11260
11261 innermost_block = NULL;
11262 tok = cond_start = end_tok + 1;
11263 cond = parse_exp_1 (&tok, 0, 0, 0);
11264
11265 /* The watchpoint expression may not be local, but the condition
11266 may still be. E.g.: `watch global if local > 0'. */
11267 cond_exp_valid_block = innermost_block;
11268
11269 xfree (cond);
11270 cond_end = tok;
11271 }
11272 if (*tok)
11273 error (_("Junk at end of command."));
11274
11275 frame = block_innermost_frame (exp_valid_block);
11276
11277 /* If the expression is "local", then set up a "watchpoint scope"
11278 breakpoint at the point where we've left the scope of the watchpoint
11279 expression. Create the scope breakpoint before the watchpoint, so
11280 that we will encounter it first in bpstat_stop_status. */
11281 if (exp_valid_block && frame)
11282 {
11283 if (frame_id_p (frame_unwind_caller_id (frame)))
11284 {
11285 scope_breakpoint
11286 = create_internal_breakpoint (frame_unwind_caller_arch (frame),
11287 frame_unwind_caller_pc (frame),
11288 bp_watchpoint_scope,
11289 &momentary_breakpoint_ops);
11290
11291 scope_breakpoint->enable_state = bp_enabled;
11292
11293 /* Automatically delete the breakpoint when it hits. */
11294 scope_breakpoint->disposition = disp_del;
11295
11296 /* Only break in the proper frame (help with recursion). */
11297 scope_breakpoint->frame_id = frame_unwind_caller_id (frame);
11298
11299 /* Set the address at which we will stop. */
11300 scope_breakpoint->loc->gdbarch
11301 = frame_unwind_caller_arch (frame);
11302 scope_breakpoint->loc->requested_address
11303 = frame_unwind_caller_pc (frame);
11304 scope_breakpoint->loc->address
11305 = adjust_breakpoint_address (scope_breakpoint->loc->gdbarch,
11306 scope_breakpoint->loc->requested_address,
11307 scope_breakpoint->type);
11308 }
11309 }
11310
11311 /* Now set up the breakpoint. We create all watchpoints as hardware
11312 watchpoints here even if hardware watchpoints are turned off, a call
11313 to update_watchpoint later in this function will cause the type to
11314 drop back to bp_watchpoint (software watchpoint) if required. */
11315
11316 if (accessflag == hw_read)
11317 bp_type = bp_read_watchpoint;
11318 else if (accessflag == hw_access)
11319 bp_type = bp_access_watchpoint;
11320 else
11321 bp_type = bp_hardware_watchpoint;
11322
11323 w = XCNEW (struct watchpoint);
11324 b = &w->base;
11325 if (use_mask)
11326 init_raw_breakpoint_without_location (b, NULL, bp_type,
11327 &masked_watchpoint_breakpoint_ops);
11328 else
11329 init_raw_breakpoint_without_location (b, NULL, bp_type,
11330 &watchpoint_breakpoint_ops);
11331 b->thread = thread;
11332 b->disposition = disp_donttouch;
11333 b->pspace = current_program_space;
11334 w->exp = exp;
11335 w->exp_valid_block = exp_valid_block;
11336 w->cond_exp_valid_block = cond_exp_valid_block;
11337 if (just_location)
11338 {
11339 struct type *t = value_type (val);
11340 CORE_ADDR addr = value_as_address (val);
11341 char *name;
11342
11343 t = check_typedef (TYPE_TARGET_TYPE (check_typedef (t)));
11344 name = type_to_string (t);
11345
11346 w->exp_string_reparse = xstrprintf ("* (%s *) %s", name,
11347 core_addr_to_string (addr));
11348 xfree (name);
11349
11350 w->exp_string = xstrprintf ("-location %.*s",
11351 (int) (exp_end - exp_start), exp_start);
11352
11353 /* The above expression is in C. */
11354 b->language = language_c;
11355 }
11356 else
11357 w->exp_string = savestring (exp_start, exp_end - exp_start);
11358
11359 if (use_mask)
11360 {
11361 w->hw_wp_mask = mask;
11362 }
11363 else
11364 {
11365 w->val = val;
11366 w->val_valid = 1;
11367 }
11368
11369 if (cond_start)
11370 b->cond_string = savestring (cond_start, cond_end - cond_start);
11371 else
11372 b->cond_string = 0;
11373
11374 if (frame)
11375 {
11376 w->watchpoint_frame = get_frame_id (frame);
11377 w->watchpoint_thread = inferior_ptid;
11378 }
11379 else
11380 {
11381 w->watchpoint_frame = null_frame_id;
11382 w->watchpoint_thread = null_ptid;
11383 }
11384
11385 if (scope_breakpoint != NULL)
11386 {
11387 /* The scope breakpoint is related to the watchpoint. We will
11388 need to act on them together. */
11389 b->related_breakpoint = scope_breakpoint;
11390 scope_breakpoint->related_breakpoint = b;
11391 }
11392
11393 if (!just_location)
11394 value_free_to_mark (mark);
11395
11396 TRY_CATCH (e, RETURN_MASK_ALL)
11397 {
11398 /* Finally update the new watchpoint. This creates the locations
11399 that should be inserted. */
11400 update_watchpoint (w, 1);
11401 }
11402 if (e.reason < 0)
11403 {
11404 delete_breakpoint (b);
11405 throw_exception (e);
11406 }
11407
11408 install_breakpoint (internal, b, 1);
11409 do_cleanups (back_to);
11410 }
11411
11412 /* Return count of debug registers needed to watch the given expression.
11413 If the watchpoint cannot be handled in hardware return zero. */
11414
11415 static int
11416 can_use_hardware_watchpoint (struct value *v)
11417 {
11418 int found_memory_cnt = 0;
11419 struct value *head = v;
11420
11421 /* Did the user specifically forbid us to use hardware watchpoints? */
11422 if (!can_use_hw_watchpoints)
11423 return 0;
11424
11425 /* Make sure that the value of the expression depends only upon
11426 memory contents, and values computed from them within GDB. If we
11427 find any register references or function calls, we can't use a
11428 hardware watchpoint.
11429
11430 The idea here is that evaluating an expression generates a series
11431 of values, one holding the value of every subexpression. (The
11432 expression a*b+c has five subexpressions: a, b, a*b, c, and
11433 a*b+c.) GDB's values hold almost enough information to establish
11434 the criteria given above --- they identify memory lvalues,
11435 register lvalues, computed values, etcetera. So we can evaluate
11436 the expression, and then scan the chain of values that leaves
11437 behind to decide whether we can detect any possible change to the
11438 expression's final value using only hardware watchpoints.
11439
11440 However, I don't think that the values returned by inferior
11441 function calls are special in any way. So this function may not
11442 notice that an expression involving an inferior function call
11443 can't be watched with hardware watchpoints. FIXME. */
11444 for (; v; v = value_next (v))
11445 {
11446 if (VALUE_LVAL (v) == lval_memory)
11447 {
11448 if (v != head && value_lazy (v))
11449 /* A lazy memory lvalue in the chain is one that GDB never
11450 needed to fetch; we either just used its address (e.g.,
11451 `a' in `a.b') or we never needed it at all (e.g., `a'
11452 in `a,b'). This doesn't apply to HEAD; if that is
11453 lazy then it was not readable, but watch it anyway. */
11454 ;
11455 else
11456 {
11457 /* Ahh, memory we actually used! Check if we can cover
11458 it with hardware watchpoints. */
11459 struct type *vtype = check_typedef (value_type (v));
11460
11461 /* We only watch structs and arrays if user asked for it
11462 explicitly, never if they just happen to appear in a
11463 middle of some value chain. */
11464 if (v == head
11465 || (TYPE_CODE (vtype) != TYPE_CODE_STRUCT
11466 && TYPE_CODE (vtype) != TYPE_CODE_ARRAY))
11467 {
11468 CORE_ADDR vaddr = value_address (v);
11469 int len;
11470 int num_regs;
11471
11472 len = (target_exact_watchpoints
11473 && is_scalar_type_recursive (vtype))?
11474 1 : TYPE_LENGTH (value_type (v));
11475
11476 num_regs = target_region_ok_for_hw_watchpoint (vaddr, len);
11477 if (!num_regs)
11478 return 0;
11479 else
11480 found_memory_cnt += num_regs;
11481 }
11482 }
11483 }
11484 else if (VALUE_LVAL (v) != not_lval
11485 && deprecated_value_modifiable (v) == 0)
11486 return 0; /* These are values from the history (e.g., $1). */
11487 else if (VALUE_LVAL (v) == lval_register)
11488 return 0; /* Cannot watch a register with a HW watchpoint. */
11489 }
11490
11491 /* The expression itself looks suitable for using a hardware
11492 watchpoint, but give the target machine a chance to reject it. */
11493 return found_memory_cnt;
11494 }
11495
11496 void
11497 watch_command_wrapper (char *arg, int from_tty, int internal)
11498 {
11499 watch_command_1 (arg, hw_write, from_tty, 0, internal);
11500 }
11501
11502 /* A helper function that looks for the "-location" argument and then
11503 calls watch_command_1. */
11504
11505 static void
11506 watch_maybe_just_location (char *arg, int accessflag, int from_tty)
11507 {
11508 int just_location = 0;
11509
11510 if (arg
11511 && (check_for_argument (&arg, "-location", sizeof ("-location") - 1)
11512 || check_for_argument (&arg, "-l", sizeof ("-l") - 1)))
11513 {
11514 arg = skip_spaces (arg);
11515 just_location = 1;
11516 }
11517
11518 watch_command_1 (arg, accessflag, from_tty, just_location, 0);
11519 }
11520
11521 static void
11522 watch_command (char *arg, int from_tty)
11523 {
11524 watch_maybe_just_location (arg, hw_write, from_tty);
11525 }
11526
11527 void
11528 rwatch_command_wrapper (char *arg, int from_tty, int internal)
11529 {
11530 watch_command_1 (arg, hw_read, from_tty, 0, internal);
11531 }
11532
11533 static void
11534 rwatch_command (char *arg, int from_tty)
11535 {
11536 watch_maybe_just_location (arg, hw_read, from_tty);
11537 }
11538
11539 void
11540 awatch_command_wrapper (char *arg, int from_tty, int internal)
11541 {
11542 watch_command_1 (arg, hw_access, from_tty, 0, internal);
11543 }
11544
11545 static void
11546 awatch_command (char *arg, int from_tty)
11547 {
11548 watch_maybe_just_location (arg, hw_access, from_tty);
11549 }
11550 \f
11551
11552 /* Helper routines for the until_command routine in infcmd.c. Here
11553 because it uses the mechanisms of breakpoints. */
11554
11555 struct until_break_command_continuation_args
11556 {
11557 struct breakpoint *breakpoint;
11558 struct breakpoint *breakpoint2;
11559 int thread_num;
11560 };
11561
11562 /* This function is called by fetch_inferior_event via the
11563 cmd_continuation pointer, to complete the until command. It takes
11564 care of cleaning up the temporary breakpoints set up by the until
11565 command. */
11566 static void
11567 until_break_command_continuation (void *arg, int err)
11568 {
11569 struct until_break_command_continuation_args *a = arg;
11570
11571 delete_breakpoint (a->breakpoint);
11572 if (a->breakpoint2)
11573 delete_breakpoint (a->breakpoint2);
11574 delete_longjmp_breakpoint (a->thread_num);
11575 }
11576
11577 void
11578 until_break_command (char *arg, int from_tty, int anywhere)
11579 {
11580 struct symtabs_and_lines sals;
11581 struct symtab_and_line sal;
11582 struct frame_info *frame;
11583 struct gdbarch *frame_gdbarch;
11584 struct frame_id stack_frame_id;
11585 struct frame_id caller_frame_id;
11586 struct breakpoint *breakpoint;
11587 struct breakpoint *breakpoint2 = NULL;
11588 struct cleanup *old_chain;
11589 int thread;
11590 struct thread_info *tp;
11591
11592 clear_proceed_status ();
11593
11594 /* Set a breakpoint where the user wants it and at return from
11595 this function. */
11596
11597 if (last_displayed_sal_is_valid ())
11598 sals = decode_line_1 (&arg, DECODE_LINE_FUNFIRSTLINE,
11599 get_last_displayed_symtab (),
11600 get_last_displayed_line ());
11601 else
11602 sals = decode_line_1 (&arg, DECODE_LINE_FUNFIRSTLINE,
11603 (struct symtab *) NULL, 0);
11604
11605 if (sals.nelts != 1)
11606 error (_("Couldn't get information on specified line."));
11607
11608 sal = sals.sals[0];
11609 xfree (sals.sals); /* malloc'd, so freed. */
11610
11611 if (*arg)
11612 error (_("Junk at end of arguments."));
11613
11614 resolve_sal_pc (&sal);
11615
11616 tp = inferior_thread ();
11617 thread = tp->num;
11618
11619 old_chain = make_cleanup (null_cleanup, NULL);
11620
11621 /* Note linespec handling above invalidates the frame chain.
11622 Installing a breakpoint also invalidates the frame chain (as it
11623 may need to switch threads), so do any frame handling before
11624 that. */
11625
11626 frame = get_selected_frame (NULL);
11627 frame_gdbarch = get_frame_arch (frame);
11628 stack_frame_id = get_stack_frame_id (frame);
11629 caller_frame_id = frame_unwind_caller_id (frame);
11630
11631 /* Keep within the current frame, or in frames called by the current
11632 one. */
11633
11634 if (frame_id_p (caller_frame_id))
11635 {
11636 struct symtab_and_line sal2;
11637
11638 sal2 = find_pc_line (frame_unwind_caller_pc (frame), 0);
11639 sal2.pc = frame_unwind_caller_pc (frame);
11640 breakpoint2 = set_momentary_breakpoint (frame_unwind_caller_arch (frame),
11641 sal2,
11642 caller_frame_id,
11643 bp_until);
11644 make_cleanup_delete_breakpoint (breakpoint2);
11645
11646 set_longjmp_breakpoint (tp, caller_frame_id);
11647 make_cleanup (delete_longjmp_breakpoint_cleanup, &thread);
11648 }
11649
11650 /* set_momentary_breakpoint could invalidate FRAME. */
11651 frame = NULL;
11652
11653 if (anywhere)
11654 /* If the user told us to continue until a specified location,
11655 we don't specify a frame at which we need to stop. */
11656 breakpoint = set_momentary_breakpoint (frame_gdbarch, sal,
11657 null_frame_id, bp_until);
11658 else
11659 /* Otherwise, specify the selected frame, because we want to stop
11660 only at the very same frame. */
11661 breakpoint = set_momentary_breakpoint (frame_gdbarch, sal,
11662 stack_frame_id, bp_until);
11663 make_cleanup_delete_breakpoint (breakpoint);
11664
11665 proceed (-1, GDB_SIGNAL_DEFAULT, 0);
11666
11667 /* If we are running asynchronously, and proceed call above has
11668 actually managed to start the target, arrange for breakpoints to
11669 be deleted when the target stops. Otherwise, we're already
11670 stopped and delete breakpoints via cleanup chain. */
11671
11672 if (target_can_async_p () && is_running (inferior_ptid))
11673 {
11674 struct until_break_command_continuation_args *args;
11675 args = xmalloc (sizeof (*args));
11676
11677 args->breakpoint = breakpoint;
11678 args->breakpoint2 = breakpoint2;
11679 args->thread_num = thread;
11680
11681 discard_cleanups (old_chain);
11682 add_continuation (inferior_thread (),
11683 until_break_command_continuation, args,
11684 xfree);
11685 }
11686 else
11687 do_cleanups (old_chain);
11688 }
11689
11690 /* This function attempts to parse an optional "if <cond>" clause
11691 from the arg string. If one is not found, it returns NULL.
11692
11693 Else, it returns a pointer to the condition string. (It does not
11694 attempt to evaluate the string against a particular block.) And,
11695 it updates arg to point to the first character following the parsed
11696 if clause in the arg string. */
11697
11698 char *
11699 ep_parse_optional_if_clause (char **arg)
11700 {
11701 char *cond_string;
11702
11703 if (((*arg)[0] != 'i') || ((*arg)[1] != 'f') || !isspace ((*arg)[2]))
11704 return NULL;
11705
11706 /* Skip the "if" keyword. */
11707 (*arg) += 2;
11708
11709 /* Skip any extra leading whitespace, and record the start of the
11710 condition string. */
11711 *arg = skip_spaces (*arg);
11712 cond_string = *arg;
11713
11714 /* Assume that the condition occupies the remainder of the arg
11715 string. */
11716 (*arg) += strlen (cond_string);
11717
11718 return cond_string;
11719 }
11720
11721 /* Commands to deal with catching events, such as signals, exceptions,
11722 process start/exit, etc. */
11723
11724 typedef enum
11725 {
11726 catch_fork_temporary, catch_vfork_temporary,
11727 catch_fork_permanent, catch_vfork_permanent
11728 }
11729 catch_fork_kind;
11730
11731 static void
11732 catch_fork_command_1 (char *arg, int from_tty,
11733 struct cmd_list_element *command)
11734 {
11735 struct gdbarch *gdbarch = get_current_arch ();
11736 char *cond_string = NULL;
11737 catch_fork_kind fork_kind;
11738 int tempflag;
11739
11740 fork_kind = (catch_fork_kind) (uintptr_t) get_cmd_context (command);
11741 tempflag = (fork_kind == catch_fork_temporary
11742 || fork_kind == catch_vfork_temporary);
11743
11744 if (!arg)
11745 arg = "";
11746 arg = skip_spaces (arg);
11747
11748 /* The allowed syntax is:
11749 catch [v]fork
11750 catch [v]fork if <cond>
11751
11752 First, check if there's an if clause. */
11753 cond_string = ep_parse_optional_if_clause (&arg);
11754
11755 if ((*arg != '\0') && !isspace (*arg))
11756 error (_("Junk at end of arguments."));
11757
11758 /* If this target supports it, create a fork or vfork catchpoint
11759 and enable reporting of such events. */
11760 switch (fork_kind)
11761 {
11762 case catch_fork_temporary:
11763 case catch_fork_permanent:
11764 create_fork_vfork_event_catchpoint (gdbarch, tempflag, cond_string,
11765 &catch_fork_breakpoint_ops);
11766 break;
11767 case catch_vfork_temporary:
11768 case catch_vfork_permanent:
11769 create_fork_vfork_event_catchpoint (gdbarch, tempflag, cond_string,
11770 &catch_vfork_breakpoint_ops);
11771 break;
11772 default:
11773 error (_("unsupported or unknown fork kind; cannot catch it"));
11774 break;
11775 }
11776 }
11777
11778 static void
11779 catch_exec_command_1 (char *arg, int from_tty,
11780 struct cmd_list_element *command)
11781 {
11782 struct exec_catchpoint *c;
11783 struct gdbarch *gdbarch = get_current_arch ();
11784 int tempflag;
11785 char *cond_string = NULL;
11786
11787 tempflag = get_cmd_context (command) == CATCH_TEMPORARY;
11788
11789 if (!arg)
11790 arg = "";
11791 arg = skip_spaces (arg);
11792
11793 /* The allowed syntax is:
11794 catch exec
11795 catch exec if <cond>
11796
11797 First, check if there's an if clause. */
11798 cond_string = ep_parse_optional_if_clause (&arg);
11799
11800 if ((*arg != '\0') && !isspace (*arg))
11801 error (_("Junk at end of arguments."));
11802
11803 c = XNEW (struct exec_catchpoint);
11804 init_catchpoint (&c->base, gdbarch, tempflag, cond_string,
11805 &catch_exec_breakpoint_ops);
11806 c->exec_pathname = NULL;
11807
11808 install_breakpoint (0, &c->base, 1);
11809 }
11810
11811 void
11812 init_ada_exception_breakpoint (struct breakpoint *b,
11813 struct gdbarch *gdbarch,
11814 struct symtab_and_line sal,
11815 char *addr_string,
11816 const struct breakpoint_ops *ops,
11817 int tempflag,
11818 int enabled,
11819 int from_tty)
11820 {
11821 if (from_tty)
11822 {
11823 struct gdbarch *loc_gdbarch = get_sal_arch (sal);
11824 if (!loc_gdbarch)
11825 loc_gdbarch = gdbarch;
11826
11827 describe_other_breakpoints (loc_gdbarch,
11828 sal.pspace, sal.pc, sal.section, -1);
11829 /* FIXME: brobecker/2006-12-28: Actually, re-implement a special
11830 version for exception catchpoints, because two catchpoints
11831 used for different exception names will use the same address.
11832 In this case, a "breakpoint ... also set at..." warning is
11833 unproductive. Besides, the warning phrasing is also a bit
11834 inappropriate, we should use the word catchpoint, and tell
11835 the user what type of catchpoint it is. The above is good
11836 enough for now, though. */
11837 }
11838
11839 init_raw_breakpoint (b, gdbarch, sal, bp_breakpoint, ops);
11840
11841 b->enable_state = enabled ? bp_enabled : bp_disabled;
11842 b->disposition = tempflag ? disp_del : disp_donttouch;
11843 b->addr_string = addr_string;
11844 b->language = language_ada;
11845 }
11846
11847 /* Splits the argument using space as delimiter. Returns an xmalloc'd
11848 filter list, or NULL if no filtering is required. */
11849 static VEC(int) *
11850 catch_syscall_split_args (char *arg)
11851 {
11852 VEC(int) *result = NULL;
11853 struct cleanup *cleanup = make_cleanup (VEC_cleanup (int), &result);
11854
11855 while (*arg != '\0')
11856 {
11857 int i, syscall_number;
11858 char *endptr;
11859 char cur_name[128];
11860 struct syscall s;
11861
11862 /* Skip whitespace. */
11863 arg = skip_spaces (arg);
11864
11865 for (i = 0; i < 127 && arg[i] && !isspace (arg[i]); ++i)
11866 cur_name[i] = arg[i];
11867 cur_name[i] = '\0';
11868 arg += i;
11869
11870 /* Check if the user provided a syscall name or a number. */
11871 syscall_number = (int) strtol (cur_name, &endptr, 0);
11872 if (*endptr == '\0')
11873 get_syscall_by_number (syscall_number, &s);
11874 else
11875 {
11876 /* We have a name. Let's check if it's valid and convert it
11877 to a number. */
11878 get_syscall_by_name (cur_name, &s);
11879
11880 if (s.number == UNKNOWN_SYSCALL)
11881 /* Here we have to issue an error instead of a warning,
11882 because GDB cannot do anything useful if there's no
11883 syscall number to be caught. */
11884 error (_("Unknown syscall name '%s'."), cur_name);
11885 }
11886
11887 /* Ok, it's valid. */
11888 VEC_safe_push (int, result, s.number);
11889 }
11890
11891 discard_cleanups (cleanup);
11892 return result;
11893 }
11894
11895 /* Implement the "catch syscall" command. */
11896
11897 static void
11898 catch_syscall_command_1 (char *arg, int from_tty,
11899 struct cmd_list_element *command)
11900 {
11901 int tempflag;
11902 VEC(int) *filter;
11903 struct syscall s;
11904 struct gdbarch *gdbarch = get_current_arch ();
11905
11906 /* Checking if the feature if supported. */
11907 if (gdbarch_get_syscall_number_p (gdbarch) == 0)
11908 error (_("The feature 'catch syscall' is not supported on \
11909 this architecture yet."));
11910
11911 tempflag = get_cmd_context (command) == CATCH_TEMPORARY;
11912
11913 arg = skip_spaces (arg);
11914
11915 /* We need to do this first "dummy" translation in order
11916 to get the syscall XML file loaded or, most important,
11917 to display a warning to the user if there's no XML file
11918 for his/her architecture. */
11919 get_syscall_by_number (0, &s);
11920
11921 /* The allowed syntax is:
11922 catch syscall
11923 catch syscall <name | number> [<name | number> ... <name | number>]
11924
11925 Let's check if there's a syscall name. */
11926
11927 if (arg != NULL)
11928 filter = catch_syscall_split_args (arg);
11929 else
11930 filter = NULL;
11931
11932 create_syscall_event_catchpoint (tempflag, filter,
11933 &catch_syscall_breakpoint_ops);
11934 }
11935
11936 static void
11937 catch_command (char *arg, int from_tty)
11938 {
11939 error (_("Catch requires an event name."));
11940 }
11941 \f
11942
11943 static void
11944 tcatch_command (char *arg, int from_tty)
11945 {
11946 error (_("Catch requires an event name."));
11947 }
11948
11949 /* A qsort comparison function that sorts breakpoints in order. */
11950
11951 static int
11952 compare_breakpoints (const void *a, const void *b)
11953 {
11954 const breakpoint_p *ba = a;
11955 uintptr_t ua = (uintptr_t) *ba;
11956 const breakpoint_p *bb = b;
11957 uintptr_t ub = (uintptr_t) *bb;
11958
11959 if ((*ba)->number < (*bb)->number)
11960 return -1;
11961 else if ((*ba)->number > (*bb)->number)
11962 return 1;
11963
11964 /* Now sort by address, in case we see, e..g, two breakpoints with
11965 the number 0. */
11966 if (ua < ub)
11967 return -1;
11968 return ua > ub ? 1 : 0;
11969 }
11970
11971 /* Delete breakpoints by address or line. */
11972
11973 static void
11974 clear_command (char *arg, int from_tty)
11975 {
11976 struct breakpoint *b, *prev;
11977 VEC(breakpoint_p) *found = 0;
11978 int ix;
11979 int default_match;
11980 struct symtabs_and_lines sals;
11981 struct symtab_and_line sal;
11982 int i;
11983 struct cleanup *cleanups = make_cleanup (null_cleanup, NULL);
11984
11985 if (arg)
11986 {
11987 sals = decode_line_with_current_source (arg,
11988 (DECODE_LINE_FUNFIRSTLINE
11989 | DECODE_LINE_LIST_MODE));
11990 make_cleanup (xfree, sals.sals);
11991 default_match = 0;
11992 }
11993 else
11994 {
11995 sals.sals = (struct symtab_and_line *)
11996 xmalloc (sizeof (struct symtab_and_line));
11997 make_cleanup (xfree, sals.sals);
11998 init_sal (&sal); /* Initialize to zeroes. */
11999
12000 /* Set sal's line, symtab, pc, and pspace to the values
12001 corresponding to the last call to print_frame_info. If the
12002 codepoint is not valid, this will set all the fields to 0. */
12003 get_last_displayed_sal (&sal);
12004 if (sal.symtab == 0)
12005 error (_("No source file specified."));
12006
12007 sals.sals[0] = sal;
12008 sals.nelts = 1;
12009
12010 default_match = 1;
12011 }
12012
12013 /* We don't call resolve_sal_pc here. That's not as bad as it
12014 seems, because all existing breakpoints typically have both
12015 file/line and pc set. So, if clear is given file/line, we can
12016 match this to existing breakpoint without obtaining pc at all.
12017
12018 We only support clearing given the address explicitly
12019 present in breakpoint table. Say, we've set breakpoint
12020 at file:line. There were several PC values for that file:line,
12021 due to optimization, all in one block.
12022
12023 We've picked one PC value. If "clear" is issued with another
12024 PC corresponding to the same file:line, the breakpoint won't
12025 be cleared. We probably can still clear the breakpoint, but
12026 since the other PC value is never presented to user, user
12027 can only find it by guessing, and it does not seem important
12028 to support that. */
12029
12030 /* For each line spec given, delete bps which correspond to it. Do
12031 it in two passes, solely to preserve the current behavior that
12032 from_tty is forced true if we delete more than one
12033 breakpoint. */
12034
12035 found = NULL;
12036 make_cleanup (VEC_cleanup (breakpoint_p), &found);
12037 for (i = 0; i < sals.nelts; i++)
12038 {
12039 const char *sal_fullname;
12040
12041 /* If exact pc given, clear bpts at that pc.
12042 If line given (pc == 0), clear all bpts on specified line.
12043 If defaulting, clear all bpts on default line
12044 or at default pc.
12045
12046 defaulting sal.pc != 0 tests to do
12047
12048 0 1 pc
12049 1 1 pc _and_ line
12050 0 0 line
12051 1 0 <can't happen> */
12052
12053 sal = sals.sals[i];
12054 sal_fullname = (sal.symtab == NULL
12055 ? NULL : symtab_to_fullname (sal.symtab));
12056
12057 /* Find all matching breakpoints and add them to 'found'. */
12058 ALL_BREAKPOINTS (b)
12059 {
12060 int match = 0;
12061 /* Are we going to delete b? */
12062 if (b->type != bp_none && !is_watchpoint (b))
12063 {
12064 struct bp_location *loc = b->loc;
12065 for (; loc; loc = loc->next)
12066 {
12067 /* If the user specified file:line, don't allow a PC
12068 match. This matches historical gdb behavior. */
12069 int pc_match = (!sal.explicit_line
12070 && sal.pc
12071 && (loc->pspace == sal.pspace)
12072 && (loc->address == sal.pc)
12073 && (!section_is_overlay (loc->section)
12074 || loc->section == sal.section));
12075 int line_match = 0;
12076
12077 if ((default_match || sal.explicit_line)
12078 && loc->symtab != NULL
12079 && sal_fullname != NULL
12080 && sal.pspace == loc->pspace
12081 && loc->line_number == sal.line
12082 && filename_cmp (symtab_to_fullname (loc->symtab),
12083 sal_fullname) == 0)
12084 line_match = 1;
12085
12086 if (pc_match || line_match)
12087 {
12088 match = 1;
12089 break;
12090 }
12091 }
12092 }
12093
12094 if (match)
12095 VEC_safe_push(breakpoint_p, found, b);
12096 }
12097 }
12098
12099 /* Now go thru the 'found' chain and delete them. */
12100 if (VEC_empty(breakpoint_p, found))
12101 {
12102 if (arg)
12103 error (_("No breakpoint at %s."), arg);
12104 else
12105 error (_("No breakpoint at this line."));
12106 }
12107
12108 /* Remove duplicates from the vec. */
12109 qsort (VEC_address (breakpoint_p, found),
12110 VEC_length (breakpoint_p, found),
12111 sizeof (breakpoint_p),
12112 compare_breakpoints);
12113 prev = VEC_index (breakpoint_p, found, 0);
12114 for (ix = 1; VEC_iterate (breakpoint_p, found, ix, b); ++ix)
12115 {
12116 if (b == prev)
12117 {
12118 VEC_ordered_remove (breakpoint_p, found, ix);
12119 --ix;
12120 }
12121 }
12122
12123 if (VEC_length(breakpoint_p, found) > 1)
12124 from_tty = 1; /* Always report if deleted more than one. */
12125 if (from_tty)
12126 {
12127 if (VEC_length(breakpoint_p, found) == 1)
12128 printf_unfiltered (_("Deleted breakpoint "));
12129 else
12130 printf_unfiltered (_("Deleted breakpoints "));
12131 }
12132
12133 for (ix = 0; VEC_iterate(breakpoint_p, found, ix, b); ix++)
12134 {
12135 if (from_tty)
12136 printf_unfiltered ("%d ", b->number);
12137 delete_breakpoint (b);
12138 }
12139 if (from_tty)
12140 putchar_unfiltered ('\n');
12141
12142 do_cleanups (cleanups);
12143 }
12144 \f
12145 /* Delete breakpoint in BS if they are `delete' breakpoints and
12146 all breakpoints that are marked for deletion, whether hit or not.
12147 This is called after any breakpoint is hit, or after errors. */
12148
12149 void
12150 breakpoint_auto_delete (bpstat bs)
12151 {
12152 struct breakpoint *b, *b_tmp;
12153
12154 for (; bs; bs = bs->next)
12155 if (bs->breakpoint_at
12156 && bs->breakpoint_at->disposition == disp_del
12157 && bs->stop)
12158 delete_breakpoint (bs->breakpoint_at);
12159
12160 ALL_BREAKPOINTS_SAFE (b, b_tmp)
12161 {
12162 if (b->disposition == disp_del_at_next_stop)
12163 delete_breakpoint (b);
12164 }
12165 }
12166
12167 /* A comparison function for bp_location AP and BP being interfaced to
12168 qsort. Sort elements primarily by their ADDRESS (no matter what
12169 does breakpoint_address_is_meaningful say for its OWNER),
12170 secondarily by ordering first bp_permanent OWNERed elements and
12171 terciarily just ensuring the array is sorted stable way despite
12172 qsort being an unstable algorithm. */
12173
12174 static int
12175 bp_location_compare (const void *ap, const void *bp)
12176 {
12177 struct bp_location *a = *(void **) ap;
12178 struct bp_location *b = *(void **) bp;
12179 /* A and B come from existing breakpoints having non-NULL OWNER. */
12180 int a_perm = a->owner->enable_state == bp_permanent;
12181 int b_perm = b->owner->enable_state == bp_permanent;
12182
12183 if (a->address != b->address)
12184 return (a->address > b->address) - (a->address < b->address);
12185
12186 /* Sort locations at the same address by their pspace number, keeping
12187 locations of the same inferior (in a multi-inferior environment)
12188 grouped. */
12189
12190 if (a->pspace->num != b->pspace->num)
12191 return ((a->pspace->num > b->pspace->num)
12192 - (a->pspace->num < b->pspace->num));
12193
12194 /* Sort permanent breakpoints first. */
12195 if (a_perm != b_perm)
12196 return (a_perm < b_perm) - (a_perm > b_perm);
12197
12198 /* Make the internal GDB representation stable across GDB runs
12199 where A and B memory inside GDB can differ. Breakpoint locations of
12200 the same type at the same address can be sorted in arbitrary order. */
12201
12202 if (a->owner->number != b->owner->number)
12203 return ((a->owner->number > b->owner->number)
12204 - (a->owner->number < b->owner->number));
12205
12206 return (a > b) - (a < b);
12207 }
12208
12209 /* Set bp_location_placed_address_before_address_max and
12210 bp_location_shadow_len_after_address_max according to the current
12211 content of the bp_location array. */
12212
12213 static void
12214 bp_location_target_extensions_update (void)
12215 {
12216 struct bp_location *bl, **blp_tmp;
12217
12218 bp_location_placed_address_before_address_max = 0;
12219 bp_location_shadow_len_after_address_max = 0;
12220
12221 ALL_BP_LOCATIONS (bl, blp_tmp)
12222 {
12223 CORE_ADDR start, end, addr;
12224
12225 if (!bp_location_has_shadow (bl))
12226 continue;
12227
12228 start = bl->target_info.placed_address;
12229 end = start + bl->target_info.shadow_len;
12230
12231 gdb_assert (bl->address >= start);
12232 addr = bl->address - start;
12233 if (addr > bp_location_placed_address_before_address_max)
12234 bp_location_placed_address_before_address_max = addr;
12235
12236 /* Zero SHADOW_LEN would not pass bp_location_has_shadow. */
12237
12238 gdb_assert (bl->address < end);
12239 addr = end - bl->address;
12240 if (addr > bp_location_shadow_len_after_address_max)
12241 bp_location_shadow_len_after_address_max = addr;
12242 }
12243 }
12244
12245 /* Download tracepoint locations if they haven't been. */
12246
12247 static void
12248 download_tracepoint_locations (void)
12249 {
12250 struct breakpoint *b;
12251 struct cleanup *old_chain;
12252
12253 if (!target_can_download_tracepoint ())
12254 return;
12255
12256 old_chain = save_current_space_and_thread ();
12257
12258 ALL_TRACEPOINTS (b)
12259 {
12260 struct bp_location *bl;
12261 struct tracepoint *t;
12262 int bp_location_downloaded = 0;
12263
12264 if ((b->type == bp_fast_tracepoint
12265 ? !may_insert_fast_tracepoints
12266 : !may_insert_tracepoints))
12267 continue;
12268
12269 for (bl = b->loc; bl; bl = bl->next)
12270 {
12271 /* In tracepoint, locations are _never_ duplicated, so
12272 should_be_inserted is equivalent to
12273 unduplicated_should_be_inserted. */
12274 if (!should_be_inserted (bl) || bl->inserted)
12275 continue;
12276
12277 switch_to_program_space_and_thread (bl->pspace);
12278
12279 target_download_tracepoint (bl);
12280
12281 bl->inserted = 1;
12282 bp_location_downloaded = 1;
12283 }
12284 t = (struct tracepoint *) b;
12285 t->number_on_target = b->number;
12286 if (bp_location_downloaded)
12287 observer_notify_breakpoint_modified (b);
12288 }
12289
12290 do_cleanups (old_chain);
12291 }
12292
12293 /* Swap the insertion/duplication state between two locations. */
12294
12295 static void
12296 swap_insertion (struct bp_location *left, struct bp_location *right)
12297 {
12298 const int left_inserted = left->inserted;
12299 const int left_duplicate = left->duplicate;
12300 const int left_needs_update = left->needs_update;
12301 const struct bp_target_info left_target_info = left->target_info;
12302
12303 /* Locations of tracepoints can never be duplicated. */
12304 if (is_tracepoint (left->owner))
12305 gdb_assert (!left->duplicate);
12306 if (is_tracepoint (right->owner))
12307 gdb_assert (!right->duplicate);
12308
12309 left->inserted = right->inserted;
12310 left->duplicate = right->duplicate;
12311 left->needs_update = right->needs_update;
12312 left->target_info = right->target_info;
12313 right->inserted = left_inserted;
12314 right->duplicate = left_duplicate;
12315 right->needs_update = left_needs_update;
12316 right->target_info = left_target_info;
12317 }
12318
12319 /* Force the re-insertion of the locations at ADDRESS. This is called
12320 once a new/deleted/modified duplicate location is found and we are evaluating
12321 conditions on the target's side. Such conditions need to be updated on
12322 the target. */
12323
12324 static void
12325 force_breakpoint_reinsertion (struct bp_location *bl)
12326 {
12327 struct bp_location **locp = NULL, **loc2p;
12328 struct bp_location *loc;
12329 CORE_ADDR address = 0;
12330 int pspace_num;
12331
12332 address = bl->address;
12333 pspace_num = bl->pspace->num;
12334
12335 /* This is only meaningful if the target is
12336 evaluating conditions and if the user has
12337 opted for condition evaluation on the target's
12338 side. */
12339 if (gdb_evaluates_breakpoint_condition_p ()
12340 || !target_supports_evaluation_of_breakpoint_conditions ())
12341 return;
12342
12343 /* Flag all breakpoint locations with this address and
12344 the same program space as the location
12345 as "its condition has changed". We need to
12346 update the conditions on the target's side. */
12347 ALL_BP_LOCATIONS_AT_ADDR (loc2p, locp, address)
12348 {
12349 loc = *loc2p;
12350
12351 if (!is_breakpoint (loc->owner)
12352 || pspace_num != loc->pspace->num)
12353 continue;
12354
12355 /* Flag the location appropriately. We use a different state to
12356 let everyone know that we already updated the set of locations
12357 with addr bl->address and program space bl->pspace. This is so
12358 we don't have to keep calling these functions just to mark locations
12359 that have already been marked. */
12360 loc->condition_changed = condition_updated;
12361
12362 /* Free the agent expression bytecode as well. We will compute
12363 it later on. */
12364 if (loc->cond_bytecode)
12365 {
12366 free_agent_expr (loc->cond_bytecode);
12367 loc->cond_bytecode = NULL;
12368 }
12369 }
12370 }
12371
12372 /* If SHOULD_INSERT is false, do not insert any breakpoint locations
12373 into the inferior, only remove already-inserted locations that no
12374 longer should be inserted. Functions that delete a breakpoint or
12375 breakpoints should pass false, so that deleting a breakpoint
12376 doesn't have the side effect of inserting the locations of other
12377 breakpoints that are marked not-inserted, but should_be_inserted
12378 returns true on them.
12379
12380 This behaviour is useful is situations close to tear-down -- e.g.,
12381 after an exec, while the target still has execution, but breakpoint
12382 shadows of the previous executable image should *NOT* be restored
12383 to the new image; or before detaching, where the target still has
12384 execution and wants to delete breakpoints from GDB's lists, and all
12385 breakpoints had already been removed from the inferior. */
12386
12387 static void
12388 update_global_location_list (int should_insert)
12389 {
12390 struct breakpoint *b;
12391 struct bp_location **locp, *loc;
12392 struct cleanup *cleanups;
12393 /* Last breakpoint location address that was marked for update. */
12394 CORE_ADDR last_addr = 0;
12395 /* Last breakpoint location program space that was marked for update. */
12396 int last_pspace_num = -1;
12397
12398 /* Used in the duplicates detection below. When iterating over all
12399 bp_locations, points to the first bp_location of a given address.
12400 Breakpoints and watchpoints of different types are never
12401 duplicates of each other. Keep one pointer for each type of
12402 breakpoint/watchpoint, so we only need to loop over all locations
12403 once. */
12404 struct bp_location *bp_loc_first; /* breakpoint */
12405 struct bp_location *wp_loc_first; /* hardware watchpoint */
12406 struct bp_location *awp_loc_first; /* access watchpoint */
12407 struct bp_location *rwp_loc_first; /* read watchpoint */
12408
12409 /* Saved former bp_location array which we compare against the newly
12410 built bp_location from the current state of ALL_BREAKPOINTS. */
12411 struct bp_location **old_location, **old_locp;
12412 unsigned old_location_count;
12413
12414 old_location = bp_location;
12415 old_location_count = bp_location_count;
12416 bp_location = NULL;
12417 bp_location_count = 0;
12418 cleanups = make_cleanup (xfree, old_location);
12419
12420 ALL_BREAKPOINTS (b)
12421 for (loc = b->loc; loc; loc = loc->next)
12422 bp_location_count++;
12423
12424 bp_location = xmalloc (sizeof (*bp_location) * bp_location_count);
12425 locp = bp_location;
12426 ALL_BREAKPOINTS (b)
12427 for (loc = b->loc; loc; loc = loc->next)
12428 *locp++ = loc;
12429 qsort (bp_location, bp_location_count, sizeof (*bp_location),
12430 bp_location_compare);
12431
12432 bp_location_target_extensions_update ();
12433
12434 /* Identify bp_location instances that are no longer present in the
12435 new list, and therefore should be freed. Note that it's not
12436 necessary that those locations should be removed from inferior --
12437 if there's another location at the same address (previously
12438 marked as duplicate), we don't need to remove/insert the
12439 location.
12440
12441 LOCP is kept in sync with OLD_LOCP, each pointing to the current
12442 and former bp_location array state respectively. */
12443
12444 locp = bp_location;
12445 for (old_locp = old_location; old_locp < old_location + old_location_count;
12446 old_locp++)
12447 {
12448 struct bp_location *old_loc = *old_locp;
12449 struct bp_location **loc2p;
12450
12451 /* Tells if 'old_loc' is found among the new locations. If
12452 not, we have to free it. */
12453 int found_object = 0;
12454 /* Tells if the location should remain inserted in the target. */
12455 int keep_in_target = 0;
12456 int removed = 0;
12457
12458 /* Skip LOCP entries which will definitely never be needed.
12459 Stop either at or being the one matching OLD_LOC. */
12460 while (locp < bp_location + bp_location_count
12461 && (*locp)->address < old_loc->address)
12462 locp++;
12463
12464 for (loc2p = locp;
12465 (loc2p < bp_location + bp_location_count
12466 && (*loc2p)->address == old_loc->address);
12467 loc2p++)
12468 {
12469 /* Check if this is a new/duplicated location or a duplicated
12470 location that had its condition modified. If so, we want to send
12471 its condition to the target if evaluation of conditions is taking
12472 place there. */
12473 if ((*loc2p)->condition_changed == condition_modified
12474 && (last_addr != old_loc->address
12475 || last_pspace_num != old_loc->pspace->num))
12476 {
12477 force_breakpoint_reinsertion (*loc2p);
12478 last_pspace_num = old_loc->pspace->num;
12479 }
12480
12481 if (*loc2p == old_loc)
12482 found_object = 1;
12483 }
12484
12485 /* We have already handled this address, update it so that we don't
12486 have to go through updates again. */
12487 last_addr = old_loc->address;
12488
12489 /* Target-side condition evaluation: Handle deleted locations. */
12490 if (!found_object)
12491 force_breakpoint_reinsertion (old_loc);
12492
12493 /* If this location is no longer present, and inserted, look if
12494 there's maybe a new location at the same address. If so,
12495 mark that one inserted, and don't remove this one. This is
12496 needed so that we don't have a time window where a breakpoint
12497 at certain location is not inserted. */
12498
12499 if (old_loc->inserted)
12500 {
12501 /* If the location is inserted now, we might have to remove
12502 it. */
12503
12504 if (found_object && should_be_inserted (old_loc))
12505 {
12506 /* The location is still present in the location list,
12507 and still should be inserted. Don't do anything. */
12508 keep_in_target = 1;
12509 }
12510 else
12511 {
12512 /* This location still exists, but it won't be kept in the
12513 target since it may have been disabled. We proceed to
12514 remove its target-side condition. */
12515
12516 /* The location is either no longer present, or got
12517 disabled. See if there's another location at the
12518 same address, in which case we don't need to remove
12519 this one from the target. */
12520
12521 /* OLD_LOC comes from existing struct breakpoint. */
12522 if (breakpoint_address_is_meaningful (old_loc->owner))
12523 {
12524 for (loc2p = locp;
12525 (loc2p < bp_location + bp_location_count
12526 && (*loc2p)->address == old_loc->address);
12527 loc2p++)
12528 {
12529 struct bp_location *loc2 = *loc2p;
12530
12531 if (breakpoint_locations_match (loc2, old_loc))
12532 {
12533 /* Read watchpoint locations are switched to
12534 access watchpoints, if the former are not
12535 supported, but the latter are. */
12536 if (is_hardware_watchpoint (old_loc->owner))
12537 {
12538 gdb_assert (is_hardware_watchpoint (loc2->owner));
12539 loc2->watchpoint_type = old_loc->watchpoint_type;
12540 }
12541
12542 /* loc2 is a duplicated location. We need to check
12543 if it should be inserted in case it will be
12544 unduplicated. */
12545 if (loc2 != old_loc
12546 && unduplicated_should_be_inserted (loc2))
12547 {
12548 swap_insertion (old_loc, loc2);
12549 keep_in_target = 1;
12550 break;
12551 }
12552 }
12553 }
12554 }
12555 }
12556
12557 if (!keep_in_target)
12558 {
12559 if (remove_breakpoint (old_loc, mark_uninserted))
12560 {
12561 /* This is just about all we can do. We could keep
12562 this location on the global list, and try to
12563 remove it next time, but there's no particular
12564 reason why we will succeed next time.
12565
12566 Note that at this point, old_loc->owner is still
12567 valid, as delete_breakpoint frees the breakpoint
12568 only after calling us. */
12569 printf_filtered (_("warning: Error removing "
12570 "breakpoint %d\n"),
12571 old_loc->owner->number);
12572 }
12573 removed = 1;
12574 }
12575 }
12576
12577 if (!found_object)
12578 {
12579 if (removed && non_stop
12580 && breakpoint_address_is_meaningful (old_loc->owner)
12581 && !is_hardware_watchpoint (old_loc->owner))
12582 {
12583 /* This location was removed from the target. In
12584 non-stop mode, a race condition is possible where
12585 we've removed a breakpoint, but stop events for that
12586 breakpoint are already queued and will arrive later.
12587 We apply an heuristic to be able to distinguish such
12588 SIGTRAPs from other random SIGTRAPs: we keep this
12589 breakpoint location for a bit, and will retire it
12590 after we see some number of events. The theory here
12591 is that reporting of events should, "on the average",
12592 be fair, so after a while we'll see events from all
12593 threads that have anything of interest, and no longer
12594 need to keep this breakpoint location around. We
12595 don't hold locations forever so to reduce chances of
12596 mistaking a non-breakpoint SIGTRAP for a breakpoint
12597 SIGTRAP.
12598
12599 The heuristic failing can be disastrous on
12600 decr_pc_after_break targets.
12601
12602 On decr_pc_after_break targets, like e.g., x86-linux,
12603 if we fail to recognize a late breakpoint SIGTRAP,
12604 because events_till_retirement has reached 0 too
12605 soon, we'll fail to do the PC adjustment, and report
12606 a random SIGTRAP to the user. When the user resumes
12607 the inferior, it will most likely immediately crash
12608 with SIGILL/SIGBUS/SIGSEGV, or worse, get silently
12609 corrupted, because of being resumed e.g., in the
12610 middle of a multi-byte instruction, or skipped a
12611 one-byte instruction. This was actually seen happen
12612 on native x86-linux, and should be less rare on
12613 targets that do not support new thread events, like
12614 remote, due to the heuristic depending on
12615 thread_count.
12616
12617 Mistaking a random SIGTRAP for a breakpoint trap
12618 causes similar symptoms (PC adjustment applied when
12619 it shouldn't), but then again, playing with SIGTRAPs
12620 behind the debugger's back is asking for trouble.
12621
12622 Since hardware watchpoint traps are always
12623 distinguishable from other traps, so we don't need to
12624 apply keep hardware watchpoint moribund locations
12625 around. We simply always ignore hardware watchpoint
12626 traps we can no longer explain. */
12627
12628 old_loc->events_till_retirement = 3 * (thread_count () + 1);
12629 old_loc->owner = NULL;
12630
12631 VEC_safe_push (bp_location_p, moribund_locations, old_loc);
12632 }
12633 else
12634 {
12635 old_loc->owner = NULL;
12636 decref_bp_location (&old_loc);
12637 }
12638 }
12639 }
12640
12641 /* Rescan breakpoints at the same address and section, marking the
12642 first one as "first" and any others as "duplicates". This is so
12643 that the bpt instruction is only inserted once. If we have a
12644 permanent breakpoint at the same place as BPT, make that one the
12645 official one, and the rest as duplicates. Permanent breakpoints
12646 are sorted first for the same address.
12647
12648 Do the same for hardware watchpoints, but also considering the
12649 watchpoint's type (regular/access/read) and length. */
12650
12651 bp_loc_first = NULL;
12652 wp_loc_first = NULL;
12653 awp_loc_first = NULL;
12654 rwp_loc_first = NULL;
12655 ALL_BP_LOCATIONS (loc, locp)
12656 {
12657 /* ALL_BP_LOCATIONS bp_location has LOC->OWNER always
12658 non-NULL. */
12659 struct bp_location **loc_first_p;
12660 b = loc->owner;
12661
12662 if (!unduplicated_should_be_inserted (loc)
12663 || !breakpoint_address_is_meaningful (b)
12664 /* Don't detect duplicate for tracepoint locations because they are
12665 never duplicated. See the comments in field `duplicate' of
12666 `struct bp_location'. */
12667 || is_tracepoint (b))
12668 {
12669 /* Clear the condition modification flag. */
12670 loc->condition_changed = condition_unchanged;
12671 continue;
12672 }
12673
12674 /* Permanent breakpoint should always be inserted. */
12675 if (b->enable_state == bp_permanent && ! loc->inserted)
12676 internal_error (__FILE__, __LINE__,
12677 _("allegedly permanent breakpoint is not "
12678 "actually inserted"));
12679
12680 if (b->type == bp_hardware_watchpoint)
12681 loc_first_p = &wp_loc_first;
12682 else if (b->type == bp_read_watchpoint)
12683 loc_first_p = &rwp_loc_first;
12684 else if (b->type == bp_access_watchpoint)
12685 loc_first_p = &awp_loc_first;
12686 else
12687 loc_first_p = &bp_loc_first;
12688
12689 if (*loc_first_p == NULL
12690 || (overlay_debugging && loc->section != (*loc_first_p)->section)
12691 || !breakpoint_locations_match (loc, *loc_first_p))
12692 {
12693 *loc_first_p = loc;
12694 loc->duplicate = 0;
12695
12696 if (is_breakpoint (loc->owner) && loc->condition_changed)
12697 {
12698 loc->needs_update = 1;
12699 /* Clear the condition modification flag. */
12700 loc->condition_changed = condition_unchanged;
12701 }
12702 continue;
12703 }
12704
12705
12706 /* This and the above ensure the invariant that the first location
12707 is not duplicated, and is the inserted one.
12708 All following are marked as duplicated, and are not inserted. */
12709 if (loc->inserted)
12710 swap_insertion (loc, *loc_first_p);
12711 loc->duplicate = 1;
12712
12713 /* Clear the condition modification flag. */
12714 loc->condition_changed = condition_unchanged;
12715
12716 if ((*loc_first_p)->owner->enable_state == bp_permanent && loc->inserted
12717 && b->enable_state != bp_permanent)
12718 internal_error (__FILE__, __LINE__,
12719 _("another breakpoint was inserted on top of "
12720 "a permanent breakpoint"));
12721 }
12722
12723 if (breakpoints_always_inserted_mode ()
12724 && (have_live_inferiors ()
12725 || (gdbarch_has_global_breakpoints (target_gdbarch ()))))
12726 {
12727 if (should_insert)
12728 insert_breakpoint_locations ();
12729 else
12730 {
12731 /* Though should_insert is false, we may need to update conditions
12732 on the target's side if it is evaluating such conditions. We
12733 only update conditions for locations that are marked
12734 "needs_update". */
12735 update_inserted_breakpoint_locations ();
12736 }
12737 }
12738
12739 if (should_insert)
12740 download_tracepoint_locations ();
12741
12742 do_cleanups (cleanups);
12743 }
12744
12745 void
12746 breakpoint_retire_moribund (void)
12747 {
12748 struct bp_location *loc;
12749 int ix;
12750
12751 for (ix = 0; VEC_iterate (bp_location_p, moribund_locations, ix, loc); ++ix)
12752 if (--(loc->events_till_retirement) == 0)
12753 {
12754 decref_bp_location (&loc);
12755 VEC_unordered_remove (bp_location_p, moribund_locations, ix);
12756 --ix;
12757 }
12758 }
12759
12760 static void
12761 update_global_location_list_nothrow (int inserting)
12762 {
12763 volatile struct gdb_exception e;
12764
12765 TRY_CATCH (e, RETURN_MASK_ERROR)
12766 update_global_location_list (inserting);
12767 }
12768
12769 /* Clear BKP from a BPS. */
12770
12771 static void
12772 bpstat_remove_bp_location (bpstat bps, struct breakpoint *bpt)
12773 {
12774 bpstat bs;
12775
12776 for (bs = bps; bs; bs = bs->next)
12777 if (bs->breakpoint_at == bpt)
12778 {
12779 bs->breakpoint_at = NULL;
12780 bs->old_val = NULL;
12781 /* bs->commands will be freed later. */
12782 }
12783 }
12784
12785 /* Callback for iterate_over_threads. */
12786 static int
12787 bpstat_remove_breakpoint_callback (struct thread_info *th, void *data)
12788 {
12789 struct breakpoint *bpt = data;
12790
12791 bpstat_remove_bp_location (th->control.stop_bpstat, bpt);
12792 return 0;
12793 }
12794
12795 /* Helper for breakpoint and tracepoint breakpoint_ops->mention
12796 callbacks. */
12797
12798 static void
12799 say_where (struct breakpoint *b)
12800 {
12801 struct value_print_options opts;
12802
12803 get_user_print_options (&opts);
12804
12805 /* i18n: cagney/2005-02-11: Below needs to be merged into a
12806 single string. */
12807 if (b->loc == NULL)
12808 {
12809 printf_filtered (_(" (%s) pending."), b->addr_string);
12810 }
12811 else
12812 {
12813 if (opts.addressprint || b->loc->symtab == NULL)
12814 {
12815 printf_filtered (" at ");
12816 fputs_filtered (paddress (b->loc->gdbarch, b->loc->address),
12817 gdb_stdout);
12818 }
12819 if (b->loc->symtab != NULL)
12820 {
12821 /* If there is a single location, we can print the location
12822 more nicely. */
12823 if (b->loc->next == NULL)
12824 printf_filtered (": file %s, line %d.",
12825 symtab_to_filename_for_display (b->loc->symtab),
12826 b->loc->line_number);
12827 else
12828 /* This is not ideal, but each location may have a
12829 different file name, and this at least reflects the
12830 real situation somewhat. */
12831 printf_filtered (": %s.", b->addr_string);
12832 }
12833
12834 if (b->loc->next)
12835 {
12836 struct bp_location *loc = b->loc;
12837 int n = 0;
12838 for (; loc; loc = loc->next)
12839 ++n;
12840 printf_filtered (" (%d locations)", n);
12841 }
12842 }
12843 }
12844
12845 /* Default bp_location_ops methods. */
12846
12847 static void
12848 bp_location_dtor (struct bp_location *self)
12849 {
12850 xfree (self->cond);
12851 if (self->cond_bytecode)
12852 free_agent_expr (self->cond_bytecode);
12853 xfree (self->function_name);
12854
12855 VEC_free (agent_expr_p, self->target_info.conditions);
12856 VEC_free (agent_expr_p, self->target_info.tcommands);
12857 }
12858
12859 static const struct bp_location_ops bp_location_ops =
12860 {
12861 bp_location_dtor
12862 };
12863
12864 /* Default breakpoint_ops methods all breakpoint_ops ultimately
12865 inherit from. */
12866
12867 static void
12868 base_breakpoint_dtor (struct breakpoint *self)
12869 {
12870 decref_counted_command_line (&self->commands);
12871 xfree (self->cond_string);
12872 xfree (self->extra_string);
12873 xfree (self->addr_string);
12874 xfree (self->filter);
12875 xfree (self->addr_string_range_end);
12876 }
12877
12878 static struct bp_location *
12879 base_breakpoint_allocate_location (struct breakpoint *self)
12880 {
12881 struct bp_location *loc;
12882
12883 loc = XNEW (struct bp_location);
12884 init_bp_location (loc, &bp_location_ops, self);
12885 return loc;
12886 }
12887
12888 static void
12889 base_breakpoint_re_set (struct breakpoint *b)
12890 {
12891 /* Nothing to re-set. */
12892 }
12893
12894 #define internal_error_pure_virtual_called() \
12895 gdb_assert_not_reached ("pure virtual function called")
12896
12897 static int
12898 base_breakpoint_insert_location (struct bp_location *bl)
12899 {
12900 internal_error_pure_virtual_called ();
12901 }
12902
12903 static int
12904 base_breakpoint_remove_location (struct bp_location *bl)
12905 {
12906 internal_error_pure_virtual_called ();
12907 }
12908
12909 static int
12910 base_breakpoint_breakpoint_hit (const struct bp_location *bl,
12911 struct address_space *aspace,
12912 CORE_ADDR bp_addr,
12913 const struct target_waitstatus *ws)
12914 {
12915 internal_error_pure_virtual_called ();
12916 }
12917
12918 static void
12919 base_breakpoint_check_status (bpstat bs)
12920 {
12921 /* Always stop. */
12922 }
12923
12924 /* A "works_in_software_mode" breakpoint_ops method that just internal
12925 errors. */
12926
12927 static int
12928 base_breakpoint_works_in_software_mode (const struct breakpoint *b)
12929 {
12930 internal_error_pure_virtual_called ();
12931 }
12932
12933 /* A "resources_needed" breakpoint_ops method that just internal
12934 errors. */
12935
12936 static int
12937 base_breakpoint_resources_needed (const struct bp_location *bl)
12938 {
12939 internal_error_pure_virtual_called ();
12940 }
12941
12942 static enum print_stop_action
12943 base_breakpoint_print_it (bpstat bs)
12944 {
12945 internal_error_pure_virtual_called ();
12946 }
12947
12948 static void
12949 base_breakpoint_print_one_detail (const struct breakpoint *self,
12950 struct ui_out *uiout)
12951 {
12952 /* nothing */
12953 }
12954
12955 static void
12956 base_breakpoint_print_mention (struct breakpoint *b)
12957 {
12958 internal_error_pure_virtual_called ();
12959 }
12960
12961 static void
12962 base_breakpoint_print_recreate (struct breakpoint *b, struct ui_file *fp)
12963 {
12964 internal_error_pure_virtual_called ();
12965 }
12966
12967 static void
12968 base_breakpoint_create_sals_from_address (char **arg,
12969 struct linespec_result *canonical,
12970 enum bptype type_wanted,
12971 char *addr_start,
12972 char **copy_arg)
12973 {
12974 internal_error_pure_virtual_called ();
12975 }
12976
12977 static void
12978 base_breakpoint_create_breakpoints_sal (struct gdbarch *gdbarch,
12979 struct linespec_result *c,
12980 char *cond_string,
12981 char *extra_string,
12982 enum bptype type_wanted,
12983 enum bpdisp disposition,
12984 int thread,
12985 int task, int ignore_count,
12986 const struct breakpoint_ops *o,
12987 int from_tty, int enabled,
12988 int internal, unsigned flags)
12989 {
12990 internal_error_pure_virtual_called ();
12991 }
12992
12993 static void
12994 base_breakpoint_decode_linespec (struct breakpoint *b, char **s,
12995 struct symtabs_and_lines *sals)
12996 {
12997 internal_error_pure_virtual_called ();
12998 }
12999
13000 /* The default 'explains_signal' method. */
13001
13002 static int
13003 base_breakpoint_explains_signal (struct breakpoint *b, enum gdb_signal sig)
13004 {
13005 return 1;
13006 }
13007
13008 /* The default "after_condition_true" method. */
13009
13010 static void
13011 base_breakpoint_after_condition_true (struct bpstats *bs)
13012 {
13013 /* Nothing to do. */
13014 }
13015
13016 struct breakpoint_ops base_breakpoint_ops =
13017 {
13018 base_breakpoint_dtor,
13019 base_breakpoint_allocate_location,
13020 base_breakpoint_re_set,
13021 base_breakpoint_insert_location,
13022 base_breakpoint_remove_location,
13023 base_breakpoint_breakpoint_hit,
13024 base_breakpoint_check_status,
13025 base_breakpoint_resources_needed,
13026 base_breakpoint_works_in_software_mode,
13027 base_breakpoint_print_it,
13028 NULL,
13029 base_breakpoint_print_one_detail,
13030 base_breakpoint_print_mention,
13031 base_breakpoint_print_recreate,
13032 base_breakpoint_create_sals_from_address,
13033 base_breakpoint_create_breakpoints_sal,
13034 base_breakpoint_decode_linespec,
13035 base_breakpoint_explains_signal,
13036 base_breakpoint_after_condition_true,
13037 };
13038
13039 /* Default breakpoint_ops methods. */
13040
13041 static void
13042 bkpt_re_set (struct breakpoint *b)
13043 {
13044 /* FIXME: is this still reachable? */
13045 if (b->addr_string == NULL)
13046 {
13047 /* Anything without a string can't be re-set. */
13048 delete_breakpoint (b);
13049 return;
13050 }
13051
13052 breakpoint_re_set_default (b);
13053 }
13054
13055 static int
13056 bkpt_insert_location (struct bp_location *bl)
13057 {
13058 if (bl->loc_type == bp_loc_hardware_breakpoint)
13059 return target_insert_hw_breakpoint (bl->gdbarch,
13060 &bl->target_info);
13061 else
13062 return target_insert_breakpoint (bl->gdbarch,
13063 &bl->target_info);
13064 }
13065
13066 static int
13067 bkpt_remove_location (struct bp_location *bl)
13068 {
13069 if (bl->loc_type == bp_loc_hardware_breakpoint)
13070 return target_remove_hw_breakpoint (bl->gdbarch, &bl->target_info);
13071 else
13072 return target_remove_breakpoint (bl->gdbarch, &bl->target_info);
13073 }
13074
13075 static int
13076 bkpt_breakpoint_hit (const struct bp_location *bl,
13077 struct address_space *aspace, CORE_ADDR bp_addr,
13078 const struct target_waitstatus *ws)
13079 {
13080 if (ws->kind != TARGET_WAITKIND_STOPPED
13081 || ws->value.sig != GDB_SIGNAL_TRAP)
13082 return 0;
13083
13084 if (!breakpoint_address_match (bl->pspace->aspace, bl->address,
13085 aspace, bp_addr))
13086 return 0;
13087
13088 if (overlay_debugging /* unmapped overlay section */
13089 && section_is_overlay (bl->section)
13090 && !section_is_mapped (bl->section))
13091 return 0;
13092
13093 return 1;
13094 }
13095
13096 static int
13097 bkpt_resources_needed (const struct bp_location *bl)
13098 {
13099 gdb_assert (bl->owner->type == bp_hardware_breakpoint);
13100
13101 return 1;
13102 }
13103
13104 static enum print_stop_action
13105 bkpt_print_it (bpstat bs)
13106 {
13107 struct breakpoint *b;
13108 const struct bp_location *bl;
13109 int bp_temp;
13110 struct ui_out *uiout = current_uiout;
13111
13112 gdb_assert (bs->bp_location_at != NULL);
13113
13114 bl = bs->bp_location_at;
13115 b = bs->breakpoint_at;
13116
13117 bp_temp = b->disposition == disp_del;
13118 if (bl->address != bl->requested_address)
13119 breakpoint_adjustment_warning (bl->requested_address,
13120 bl->address,
13121 b->number, 1);
13122 annotate_breakpoint (b->number);
13123 if (bp_temp)
13124 ui_out_text (uiout, "\nTemporary breakpoint ");
13125 else
13126 ui_out_text (uiout, "\nBreakpoint ");
13127 if (ui_out_is_mi_like_p (uiout))
13128 {
13129 ui_out_field_string (uiout, "reason",
13130 async_reason_lookup (EXEC_ASYNC_BREAKPOINT_HIT));
13131 ui_out_field_string (uiout, "disp", bpdisp_text (b->disposition));
13132 }
13133 ui_out_field_int (uiout, "bkptno", b->number);
13134 ui_out_text (uiout, ", ");
13135
13136 return PRINT_SRC_AND_LOC;
13137 }
13138
13139 static void
13140 bkpt_print_mention (struct breakpoint *b)
13141 {
13142 if (ui_out_is_mi_like_p (current_uiout))
13143 return;
13144
13145 switch (b->type)
13146 {
13147 case bp_breakpoint:
13148 case bp_gnu_ifunc_resolver:
13149 if (b->disposition == disp_del)
13150 printf_filtered (_("Temporary breakpoint"));
13151 else
13152 printf_filtered (_("Breakpoint"));
13153 printf_filtered (_(" %d"), b->number);
13154 if (b->type == bp_gnu_ifunc_resolver)
13155 printf_filtered (_(" at gnu-indirect-function resolver"));
13156 break;
13157 case bp_hardware_breakpoint:
13158 printf_filtered (_("Hardware assisted breakpoint %d"), b->number);
13159 break;
13160 case bp_dprintf:
13161 printf_filtered (_("Dprintf %d"), b->number);
13162 break;
13163 }
13164
13165 say_where (b);
13166 }
13167
13168 static void
13169 bkpt_print_recreate (struct breakpoint *tp, struct ui_file *fp)
13170 {
13171 if (tp->type == bp_breakpoint && tp->disposition == disp_del)
13172 fprintf_unfiltered (fp, "tbreak");
13173 else if (tp->type == bp_breakpoint)
13174 fprintf_unfiltered (fp, "break");
13175 else if (tp->type == bp_hardware_breakpoint
13176 && tp->disposition == disp_del)
13177 fprintf_unfiltered (fp, "thbreak");
13178 else if (tp->type == bp_hardware_breakpoint)
13179 fprintf_unfiltered (fp, "hbreak");
13180 else
13181 internal_error (__FILE__, __LINE__,
13182 _("unhandled breakpoint type %d"), (int) tp->type);
13183
13184 fprintf_unfiltered (fp, " %s", tp->addr_string);
13185 print_recreate_thread (tp, fp);
13186 }
13187
13188 static void
13189 bkpt_create_sals_from_address (char **arg,
13190 struct linespec_result *canonical,
13191 enum bptype type_wanted,
13192 char *addr_start, char **copy_arg)
13193 {
13194 create_sals_from_address_default (arg, canonical, type_wanted,
13195 addr_start, copy_arg);
13196 }
13197
13198 static void
13199 bkpt_create_breakpoints_sal (struct gdbarch *gdbarch,
13200 struct linespec_result *canonical,
13201 char *cond_string,
13202 char *extra_string,
13203 enum bptype type_wanted,
13204 enum bpdisp disposition,
13205 int thread,
13206 int task, int ignore_count,
13207 const struct breakpoint_ops *ops,
13208 int from_tty, int enabled,
13209 int internal, unsigned flags)
13210 {
13211 create_breakpoints_sal_default (gdbarch, canonical,
13212 cond_string, extra_string,
13213 type_wanted,
13214 disposition, thread, task,
13215 ignore_count, ops, from_tty,
13216 enabled, internal, flags);
13217 }
13218
13219 static void
13220 bkpt_decode_linespec (struct breakpoint *b, char **s,
13221 struct symtabs_and_lines *sals)
13222 {
13223 decode_linespec_default (b, s, sals);
13224 }
13225
13226 /* Virtual table for internal breakpoints. */
13227
13228 static void
13229 internal_bkpt_re_set (struct breakpoint *b)
13230 {
13231 switch (b->type)
13232 {
13233 /* Delete overlay event and longjmp master breakpoints; they
13234 will be reset later by breakpoint_re_set. */
13235 case bp_overlay_event:
13236 case bp_longjmp_master:
13237 case bp_std_terminate_master:
13238 case bp_exception_master:
13239 delete_breakpoint (b);
13240 break;
13241
13242 /* This breakpoint is special, it's set up when the inferior
13243 starts and we really don't want to touch it. */
13244 case bp_shlib_event:
13245
13246 /* Like bp_shlib_event, this breakpoint type is special. Once
13247 it is set up, we do not want to touch it. */
13248 case bp_thread_event:
13249 break;
13250 }
13251 }
13252
13253 static void
13254 internal_bkpt_check_status (bpstat bs)
13255 {
13256 if (bs->breakpoint_at->type == bp_shlib_event)
13257 {
13258 /* If requested, stop when the dynamic linker notifies GDB of
13259 events. This allows the user to get control and place
13260 breakpoints in initializer routines for dynamically loaded
13261 objects (among other things). */
13262 bs->stop = stop_on_solib_events;
13263 bs->print = stop_on_solib_events;
13264 }
13265 else
13266 bs->stop = 0;
13267 }
13268
13269 static enum print_stop_action
13270 internal_bkpt_print_it (bpstat bs)
13271 {
13272 struct breakpoint *b;
13273
13274 b = bs->breakpoint_at;
13275
13276 switch (b->type)
13277 {
13278 case bp_shlib_event:
13279 /* Did we stop because the user set the stop_on_solib_events
13280 variable? (If so, we report this as a generic, "Stopped due
13281 to shlib event" message.) */
13282 print_solib_event (0);
13283 break;
13284
13285 case bp_thread_event:
13286 /* Not sure how we will get here.
13287 GDB should not stop for these breakpoints. */
13288 printf_filtered (_("Thread Event Breakpoint: gdb should not stop!\n"));
13289 break;
13290
13291 case bp_overlay_event:
13292 /* By analogy with the thread event, GDB should not stop for these. */
13293 printf_filtered (_("Overlay Event Breakpoint: gdb should not stop!\n"));
13294 break;
13295
13296 case bp_longjmp_master:
13297 /* These should never be enabled. */
13298 printf_filtered (_("Longjmp Master Breakpoint: gdb should not stop!\n"));
13299 break;
13300
13301 case bp_std_terminate_master:
13302 /* These should never be enabled. */
13303 printf_filtered (_("std::terminate Master Breakpoint: "
13304 "gdb should not stop!\n"));
13305 break;
13306
13307 case bp_exception_master:
13308 /* These should never be enabled. */
13309 printf_filtered (_("Exception Master Breakpoint: "
13310 "gdb should not stop!\n"));
13311 break;
13312 }
13313
13314 return PRINT_NOTHING;
13315 }
13316
13317 static void
13318 internal_bkpt_print_mention (struct breakpoint *b)
13319 {
13320 /* Nothing to mention. These breakpoints are internal. */
13321 }
13322
13323 /* Virtual table for momentary breakpoints */
13324
13325 static void
13326 momentary_bkpt_re_set (struct breakpoint *b)
13327 {
13328 /* Keep temporary breakpoints, which can be encountered when we step
13329 over a dlopen call and solib_add is resetting the breakpoints.
13330 Otherwise these should have been blown away via the cleanup chain
13331 or by breakpoint_init_inferior when we rerun the executable. */
13332 }
13333
13334 static void
13335 momentary_bkpt_check_status (bpstat bs)
13336 {
13337 /* Nothing. The point of these breakpoints is causing a stop. */
13338 }
13339
13340 static enum print_stop_action
13341 momentary_bkpt_print_it (bpstat bs)
13342 {
13343 struct ui_out *uiout = current_uiout;
13344
13345 if (ui_out_is_mi_like_p (uiout))
13346 {
13347 struct breakpoint *b = bs->breakpoint_at;
13348
13349 switch (b->type)
13350 {
13351 case bp_finish:
13352 ui_out_field_string
13353 (uiout, "reason",
13354 async_reason_lookup (EXEC_ASYNC_FUNCTION_FINISHED));
13355 break;
13356
13357 case bp_until:
13358 ui_out_field_string
13359 (uiout, "reason",
13360 async_reason_lookup (EXEC_ASYNC_LOCATION_REACHED));
13361 break;
13362 }
13363 }
13364
13365 return PRINT_UNKNOWN;
13366 }
13367
13368 static void
13369 momentary_bkpt_print_mention (struct breakpoint *b)
13370 {
13371 /* Nothing to mention. These breakpoints are internal. */
13372 }
13373
13374 /* Ensure INITIATING_FRAME is cleared when no such breakpoint exists.
13375
13376 It gets cleared already on the removal of the first one of such placed
13377 breakpoints. This is OK as they get all removed altogether. */
13378
13379 static void
13380 longjmp_bkpt_dtor (struct breakpoint *self)
13381 {
13382 struct thread_info *tp = find_thread_id (self->thread);
13383
13384 if (tp)
13385 tp->initiating_frame = null_frame_id;
13386
13387 momentary_breakpoint_ops.dtor (self);
13388 }
13389
13390 /* Specific methods for probe breakpoints. */
13391
13392 static int
13393 bkpt_probe_insert_location (struct bp_location *bl)
13394 {
13395 int v = bkpt_insert_location (bl);
13396
13397 if (v == 0)
13398 {
13399 /* The insertion was successful, now let's set the probe's semaphore
13400 if needed. */
13401 bl->probe.probe->pops->set_semaphore (bl->probe.probe,
13402 bl->probe.objfile,
13403 bl->gdbarch);
13404 }
13405
13406 return v;
13407 }
13408
13409 static int
13410 bkpt_probe_remove_location (struct bp_location *bl)
13411 {
13412 /* Let's clear the semaphore before removing the location. */
13413 bl->probe.probe->pops->clear_semaphore (bl->probe.probe,
13414 bl->probe.objfile,
13415 bl->gdbarch);
13416
13417 return bkpt_remove_location (bl);
13418 }
13419
13420 static void
13421 bkpt_probe_create_sals_from_address (char **arg,
13422 struct linespec_result *canonical,
13423 enum bptype type_wanted,
13424 char *addr_start, char **copy_arg)
13425 {
13426 struct linespec_sals lsal;
13427
13428 lsal.sals = parse_probes (arg, canonical);
13429
13430 *copy_arg = xstrdup (canonical->addr_string);
13431 lsal.canonical = xstrdup (*copy_arg);
13432
13433 VEC_safe_push (linespec_sals, canonical->sals, &lsal);
13434 }
13435
13436 static void
13437 bkpt_probe_decode_linespec (struct breakpoint *b, char **s,
13438 struct symtabs_and_lines *sals)
13439 {
13440 *sals = parse_probes (s, NULL);
13441 if (!sals->sals)
13442 error (_("probe not found"));
13443 }
13444
13445 /* The breakpoint_ops structure to be used in tracepoints. */
13446
13447 static void
13448 tracepoint_re_set (struct breakpoint *b)
13449 {
13450 breakpoint_re_set_default (b);
13451 }
13452
13453 static int
13454 tracepoint_breakpoint_hit (const struct bp_location *bl,
13455 struct address_space *aspace, CORE_ADDR bp_addr,
13456 const struct target_waitstatus *ws)
13457 {
13458 /* By definition, the inferior does not report stops at
13459 tracepoints. */
13460 return 0;
13461 }
13462
13463 static void
13464 tracepoint_print_one_detail (const struct breakpoint *self,
13465 struct ui_out *uiout)
13466 {
13467 struct tracepoint *tp = (struct tracepoint *) self;
13468 if (tp->static_trace_marker_id)
13469 {
13470 gdb_assert (self->type == bp_static_tracepoint);
13471
13472 ui_out_text (uiout, "\tmarker id is ");
13473 ui_out_field_string (uiout, "static-tracepoint-marker-string-id",
13474 tp->static_trace_marker_id);
13475 ui_out_text (uiout, "\n");
13476 }
13477 }
13478
13479 static void
13480 tracepoint_print_mention (struct breakpoint *b)
13481 {
13482 if (ui_out_is_mi_like_p (current_uiout))
13483 return;
13484
13485 switch (b->type)
13486 {
13487 case bp_tracepoint:
13488 printf_filtered (_("Tracepoint"));
13489 printf_filtered (_(" %d"), b->number);
13490 break;
13491 case bp_fast_tracepoint:
13492 printf_filtered (_("Fast tracepoint"));
13493 printf_filtered (_(" %d"), b->number);
13494 break;
13495 case bp_static_tracepoint:
13496 printf_filtered (_("Static tracepoint"));
13497 printf_filtered (_(" %d"), b->number);
13498 break;
13499 default:
13500 internal_error (__FILE__, __LINE__,
13501 _("unhandled tracepoint type %d"), (int) b->type);
13502 }
13503
13504 say_where (b);
13505 }
13506
13507 static void
13508 tracepoint_print_recreate (struct breakpoint *self, struct ui_file *fp)
13509 {
13510 struct tracepoint *tp = (struct tracepoint *) self;
13511
13512 if (self->type == bp_fast_tracepoint)
13513 fprintf_unfiltered (fp, "ftrace");
13514 if (self->type == bp_static_tracepoint)
13515 fprintf_unfiltered (fp, "strace");
13516 else if (self->type == bp_tracepoint)
13517 fprintf_unfiltered (fp, "trace");
13518 else
13519 internal_error (__FILE__, __LINE__,
13520 _("unhandled tracepoint type %d"), (int) self->type);
13521
13522 fprintf_unfiltered (fp, " %s", self->addr_string);
13523 print_recreate_thread (self, fp);
13524
13525 if (tp->pass_count)
13526 fprintf_unfiltered (fp, " passcount %d\n", tp->pass_count);
13527 }
13528
13529 static void
13530 tracepoint_create_sals_from_address (char **arg,
13531 struct linespec_result *canonical,
13532 enum bptype type_wanted,
13533 char *addr_start, char **copy_arg)
13534 {
13535 create_sals_from_address_default (arg, canonical, type_wanted,
13536 addr_start, copy_arg);
13537 }
13538
13539 static void
13540 tracepoint_create_breakpoints_sal (struct gdbarch *gdbarch,
13541 struct linespec_result *canonical,
13542 char *cond_string,
13543 char *extra_string,
13544 enum bptype type_wanted,
13545 enum bpdisp disposition,
13546 int thread,
13547 int task, int ignore_count,
13548 const struct breakpoint_ops *ops,
13549 int from_tty, int enabled,
13550 int internal, unsigned flags)
13551 {
13552 create_breakpoints_sal_default (gdbarch, canonical,
13553 cond_string, extra_string,
13554 type_wanted,
13555 disposition, thread, task,
13556 ignore_count, ops, from_tty,
13557 enabled, internal, flags);
13558 }
13559
13560 static void
13561 tracepoint_decode_linespec (struct breakpoint *b, char **s,
13562 struct symtabs_and_lines *sals)
13563 {
13564 decode_linespec_default (b, s, sals);
13565 }
13566
13567 struct breakpoint_ops tracepoint_breakpoint_ops;
13568
13569 /* The breakpoint_ops structure to be use on tracepoints placed in a
13570 static probe. */
13571
13572 static void
13573 tracepoint_probe_create_sals_from_address (char **arg,
13574 struct linespec_result *canonical,
13575 enum bptype type_wanted,
13576 char *addr_start, char **copy_arg)
13577 {
13578 /* We use the same method for breakpoint on probes. */
13579 bkpt_probe_create_sals_from_address (arg, canonical, type_wanted,
13580 addr_start, copy_arg);
13581 }
13582
13583 static void
13584 tracepoint_probe_decode_linespec (struct breakpoint *b, char **s,
13585 struct symtabs_and_lines *sals)
13586 {
13587 /* We use the same method for breakpoint on probes. */
13588 bkpt_probe_decode_linespec (b, s, sals);
13589 }
13590
13591 static struct breakpoint_ops tracepoint_probe_breakpoint_ops;
13592
13593 /* Dprintf breakpoint_ops methods. */
13594
13595 static void
13596 dprintf_re_set (struct breakpoint *b)
13597 {
13598 breakpoint_re_set_default (b);
13599
13600 /* This breakpoint could have been pending, and be resolved now, and
13601 if so, we should now have the extra string. If we don't, the
13602 dprintf was malformed when created, but we couldn't tell because
13603 we can't extract the extra string until the location is
13604 resolved. */
13605 if (b->loc != NULL && b->extra_string == NULL)
13606 error (_("Format string required"));
13607
13608 /* 1 - connect to target 1, that can run breakpoint commands.
13609 2 - create a dprintf, which resolves fine.
13610 3 - disconnect from target 1
13611 4 - connect to target 2, that can NOT run breakpoint commands.
13612
13613 After steps #3/#4, you'll want the dprintf command list to
13614 be updated, because target 1 and 2 may well return different
13615 answers for target_can_run_breakpoint_commands().
13616 Given absence of finer grained resetting, we get to do
13617 it all the time. */
13618 if (b->extra_string != NULL)
13619 update_dprintf_command_list (b);
13620 }
13621
13622 /* Implement the "print_recreate" breakpoint_ops method for dprintf. */
13623
13624 static void
13625 dprintf_print_recreate (struct breakpoint *tp, struct ui_file *fp)
13626 {
13627 fprintf_unfiltered (fp, "dprintf %s%s", tp->addr_string,
13628 tp->extra_string);
13629 print_recreate_thread (tp, fp);
13630 }
13631
13632 /* Implement the "after_condition_true" breakpoint_ops method for
13633 dprintf.
13634
13635 dprintf's are implemented with regular commands in their command
13636 list, but we run the commands here instead of before presenting the
13637 stop to the user, as dprintf's don't actually cause a stop. This
13638 also makes it so that the commands of multiple dprintfs at the same
13639 address are all handled. */
13640
13641 static void
13642 dprintf_after_condition_true (struct bpstats *bs)
13643 {
13644 struct cleanup *old_chain;
13645 struct bpstats tmp_bs = { NULL };
13646 struct bpstats *tmp_bs_p = &tmp_bs;
13647
13648 /* dprintf's never cause a stop. This wasn't set in the
13649 check_status hook instead because that would make the dprintf's
13650 condition not be evaluated. */
13651 bs->stop = 0;
13652
13653 /* Run the command list here. Take ownership of it instead of
13654 copying. We never want these commands to run later in
13655 bpstat_do_actions, if a breakpoint that causes a stop happens to
13656 be set at same address as this dprintf, or even if running the
13657 commands here throws. */
13658 tmp_bs.commands = bs->commands;
13659 bs->commands = NULL;
13660 old_chain = make_cleanup_decref_counted_command_line (&tmp_bs.commands);
13661
13662 bpstat_do_actions_1 (&tmp_bs_p);
13663
13664 /* 'tmp_bs.commands' will usually be NULL by now, but
13665 bpstat_do_actions_1 may return early without processing the whole
13666 list. */
13667 do_cleanups (old_chain);
13668 }
13669
13670 /* The breakpoint_ops structure to be used on static tracepoints with
13671 markers (`-m'). */
13672
13673 static void
13674 strace_marker_create_sals_from_address (char **arg,
13675 struct linespec_result *canonical,
13676 enum bptype type_wanted,
13677 char *addr_start, char **copy_arg)
13678 {
13679 struct linespec_sals lsal;
13680
13681 lsal.sals = decode_static_tracepoint_spec (arg);
13682
13683 *copy_arg = savestring (addr_start, *arg - addr_start);
13684
13685 canonical->addr_string = xstrdup (*copy_arg);
13686 lsal.canonical = xstrdup (*copy_arg);
13687 VEC_safe_push (linespec_sals, canonical->sals, &lsal);
13688 }
13689
13690 static void
13691 strace_marker_create_breakpoints_sal (struct gdbarch *gdbarch,
13692 struct linespec_result *canonical,
13693 char *cond_string,
13694 char *extra_string,
13695 enum bptype type_wanted,
13696 enum bpdisp disposition,
13697 int thread,
13698 int task, int ignore_count,
13699 const struct breakpoint_ops *ops,
13700 int from_tty, int enabled,
13701 int internal, unsigned flags)
13702 {
13703 int i;
13704 struct linespec_sals *lsal = VEC_index (linespec_sals,
13705 canonical->sals, 0);
13706
13707 /* If the user is creating a static tracepoint by marker id
13708 (strace -m MARKER_ID), then store the sals index, so that
13709 breakpoint_re_set can try to match up which of the newly
13710 found markers corresponds to this one, and, don't try to
13711 expand multiple locations for each sal, given than SALS
13712 already should contain all sals for MARKER_ID. */
13713
13714 for (i = 0; i < lsal->sals.nelts; ++i)
13715 {
13716 struct symtabs_and_lines expanded;
13717 struct tracepoint *tp;
13718 struct cleanup *old_chain;
13719 char *addr_string;
13720
13721 expanded.nelts = 1;
13722 expanded.sals = &lsal->sals.sals[i];
13723
13724 addr_string = xstrdup (canonical->addr_string);
13725 old_chain = make_cleanup (xfree, addr_string);
13726
13727 tp = XCNEW (struct tracepoint);
13728 init_breakpoint_sal (&tp->base, gdbarch, expanded,
13729 addr_string, NULL,
13730 cond_string, extra_string,
13731 type_wanted, disposition,
13732 thread, task, ignore_count, ops,
13733 from_tty, enabled, internal, flags,
13734 canonical->special_display);
13735 /* Given that its possible to have multiple markers with
13736 the same string id, if the user is creating a static
13737 tracepoint by marker id ("strace -m MARKER_ID"), then
13738 store the sals index, so that breakpoint_re_set can
13739 try to match up which of the newly found markers
13740 corresponds to this one */
13741 tp->static_trace_marker_id_idx = i;
13742
13743 install_breakpoint (internal, &tp->base, 0);
13744
13745 discard_cleanups (old_chain);
13746 }
13747 }
13748
13749 static void
13750 strace_marker_decode_linespec (struct breakpoint *b, char **s,
13751 struct symtabs_and_lines *sals)
13752 {
13753 struct tracepoint *tp = (struct tracepoint *) b;
13754
13755 *sals = decode_static_tracepoint_spec (s);
13756 if (sals->nelts > tp->static_trace_marker_id_idx)
13757 {
13758 sals->sals[0] = sals->sals[tp->static_trace_marker_id_idx];
13759 sals->nelts = 1;
13760 }
13761 else
13762 error (_("marker %s not found"), tp->static_trace_marker_id);
13763 }
13764
13765 static struct breakpoint_ops strace_marker_breakpoint_ops;
13766
13767 static int
13768 strace_marker_p (struct breakpoint *b)
13769 {
13770 return b->ops == &strace_marker_breakpoint_ops;
13771 }
13772
13773 /* Delete a breakpoint and clean up all traces of it in the data
13774 structures. */
13775
13776 void
13777 delete_breakpoint (struct breakpoint *bpt)
13778 {
13779 struct breakpoint *b;
13780
13781 gdb_assert (bpt != NULL);
13782
13783 /* Has this bp already been deleted? This can happen because
13784 multiple lists can hold pointers to bp's. bpstat lists are
13785 especial culprits.
13786
13787 One example of this happening is a watchpoint's scope bp. When
13788 the scope bp triggers, we notice that the watchpoint is out of
13789 scope, and delete it. We also delete its scope bp. But the
13790 scope bp is marked "auto-deleting", and is already on a bpstat.
13791 That bpstat is then checked for auto-deleting bp's, which are
13792 deleted.
13793
13794 A real solution to this problem might involve reference counts in
13795 bp's, and/or giving them pointers back to their referencing
13796 bpstat's, and teaching delete_breakpoint to only free a bp's
13797 storage when no more references were extent. A cheaper bandaid
13798 was chosen. */
13799 if (bpt->type == bp_none)
13800 return;
13801
13802 /* At least avoid this stale reference until the reference counting
13803 of breakpoints gets resolved. */
13804 if (bpt->related_breakpoint != bpt)
13805 {
13806 struct breakpoint *related;
13807 struct watchpoint *w;
13808
13809 if (bpt->type == bp_watchpoint_scope)
13810 w = (struct watchpoint *) bpt->related_breakpoint;
13811 else if (bpt->related_breakpoint->type == bp_watchpoint_scope)
13812 w = (struct watchpoint *) bpt;
13813 else
13814 w = NULL;
13815 if (w != NULL)
13816 watchpoint_del_at_next_stop (w);
13817
13818 /* Unlink bpt from the bpt->related_breakpoint ring. */
13819 for (related = bpt; related->related_breakpoint != bpt;
13820 related = related->related_breakpoint);
13821 related->related_breakpoint = bpt->related_breakpoint;
13822 bpt->related_breakpoint = bpt;
13823 }
13824
13825 /* watch_command_1 creates a watchpoint but only sets its number if
13826 update_watchpoint succeeds in creating its bp_locations. If there's
13827 a problem in that process, we'll be asked to delete the half-created
13828 watchpoint. In that case, don't announce the deletion. */
13829 if (bpt->number)
13830 observer_notify_breakpoint_deleted (bpt);
13831
13832 if (breakpoint_chain == bpt)
13833 breakpoint_chain = bpt->next;
13834
13835 ALL_BREAKPOINTS (b)
13836 if (b->next == bpt)
13837 {
13838 b->next = bpt->next;
13839 break;
13840 }
13841
13842 /* Be sure no bpstat's are pointing at the breakpoint after it's
13843 been freed. */
13844 /* FIXME, how can we find all bpstat's? We just check stop_bpstat
13845 in all threads for now. Note that we cannot just remove bpstats
13846 pointing at bpt from the stop_bpstat list entirely, as breakpoint
13847 commands are associated with the bpstat; if we remove it here,
13848 then the later call to bpstat_do_actions (&stop_bpstat); in
13849 event-top.c won't do anything, and temporary breakpoints with
13850 commands won't work. */
13851
13852 iterate_over_threads (bpstat_remove_breakpoint_callback, bpt);
13853
13854 /* Now that breakpoint is removed from breakpoint list, update the
13855 global location list. This will remove locations that used to
13856 belong to this breakpoint. Do this before freeing the breakpoint
13857 itself, since remove_breakpoint looks at location's owner. It
13858 might be better design to have location completely
13859 self-contained, but it's not the case now. */
13860 update_global_location_list (0);
13861
13862 bpt->ops->dtor (bpt);
13863 /* On the chance that someone will soon try again to delete this
13864 same bp, we mark it as deleted before freeing its storage. */
13865 bpt->type = bp_none;
13866 xfree (bpt);
13867 }
13868
13869 static void
13870 do_delete_breakpoint_cleanup (void *b)
13871 {
13872 delete_breakpoint (b);
13873 }
13874
13875 struct cleanup *
13876 make_cleanup_delete_breakpoint (struct breakpoint *b)
13877 {
13878 return make_cleanup (do_delete_breakpoint_cleanup, b);
13879 }
13880
13881 /* Iterator function to call a user-provided callback function once
13882 for each of B and its related breakpoints. */
13883
13884 static void
13885 iterate_over_related_breakpoints (struct breakpoint *b,
13886 void (*function) (struct breakpoint *,
13887 void *),
13888 void *data)
13889 {
13890 struct breakpoint *related;
13891
13892 related = b;
13893 do
13894 {
13895 struct breakpoint *next;
13896
13897 /* FUNCTION may delete RELATED. */
13898 next = related->related_breakpoint;
13899
13900 if (next == related)
13901 {
13902 /* RELATED is the last ring entry. */
13903 function (related, data);
13904
13905 /* FUNCTION may have deleted it, so we'd never reach back to
13906 B. There's nothing left to do anyway, so just break
13907 out. */
13908 break;
13909 }
13910 else
13911 function (related, data);
13912
13913 related = next;
13914 }
13915 while (related != b);
13916 }
13917
13918 static void
13919 do_delete_breakpoint (struct breakpoint *b, void *ignore)
13920 {
13921 delete_breakpoint (b);
13922 }
13923
13924 /* A callback for map_breakpoint_numbers that calls
13925 delete_breakpoint. */
13926
13927 static void
13928 do_map_delete_breakpoint (struct breakpoint *b, void *ignore)
13929 {
13930 iterate_over_related_breakpoints (b, do_delete_breakpoint, NULL);
13931 }
13932
13933 void
13934 delete_command (char *arg, int from_tty)
13935 {
13936 struct breakpoint *b, *b_tmp;
13937
13938 dont_repeat ();
13939
13940 if (arg == 0)
13941 {
13942 int breaks_to_delete = 0;
13943
13944 /* Delete all breakpoints if no argument. Do not delete
13945 internal breakpoints, these have to be deleted with an
13946 explicit breakpoint number argument. */
13947 ALL_BREAKPOINTS (b)
13948 if (user_breakpoint_p (b))
13949 {
13950 breaks_to_delete = 1;
13951 break;
13952 }
13953
13954 /* Ask user only if there are some breakpoints to delete. */
13955 if (!from_tty
13956 || (breaks_to_delete && query (_("Delete all breakpoints? "))))
13957 {
13958 ALL_BREAKPOINTS_SAFE (b, b_tmp)
13959 if (user_breakpoint_p (b))
13960 delete_breakpoint (b);
13961 }
13962 }
13963 else
13964 map_breakpoint_numbers (arg, do_map_delete_breakpoint, NULL);
13965 }
13966
13967 static int
13968 all_locations_are_pending (struct bp_location *loc)
13969 {
13970 for (; loc; loc = loc->next)
13971 if (!loc->shlib_disabled
13972 && !loc->pspace->executing_startup)
13973 return 0;
13974 return 1;
13975 }
13976
13977 /* Subroutine of update_breakpoint_locations to simplify it.
13978 Return non-zero if multiple fns in list LOC have the same name.
13979 Null names are ignored. */
13980
13981 static int
13982 ambiguous_names_p (struct bp_location *loc)
13983 {
13984 struct bp_location *l;
13985 htab_t htab = htab_create_alloc (13, htab_hash_string,
13986 (int (*) (const void *,
13987 const void *)) streq,
13988 NULL, xcalloc, xfree);
13989
13990 for (l = loc; l != NULL; l = l->next)
13991 {
13992 const char **slot;
13993 const char *name = l->function_name;
13994
13995 /* Allow for some names to be NULL, ignore them. */
13996 if (name == NULL)
13997 continue;
13998
13999 slot = (const char **) htab_find_slot (htab, (const void *) name,
14000 INSERT);
14001 /* NOTE: We can assume slot != NULL here because xcalloc never
14002 returns NULL. */
14003 if (*slot != NULL)
14004 {
14005 htab_delete (htab);
14006 return 1;
14007 }
14008 *slot = name;
14009 }
14010
14011 htab_delete (htab);
14012 return 0;
14013 }
14014
14015 /* When symbols change, it probably means the sources changed as well,
14016 and it might mean the static tracepoint markers are no longer at
14017 the same address or line numbers they used to be at last we
14018 checked. Losing your static tracepoints whenever you rebuild is
14019 undesirable. This function tries to resync/rematch gdb static
14020 tracepoints with the markers on the target, for static tracepoints
14021 that have not been set by marker id. Static tracepoint that have
14022 been set by marker id are reset by marker id in breakpoint_re_set.
14023 The heuristic is:
14024
14025 1) For a tracepoint set at a specific address, look for a marker at
14026 the old PC. If one is found there, assume to be the same marker.
14027 If the name / string id of the marker found is different from the
14028 previous known name, assume that means the user renamed the marker
14029 in the sources, and output a warning.
14030
14031 2) For a tracepoint set at a given line number, look for a marker
14032 at the new address of the old line number. If one is found there,
14033 assume to be the same marker. If the name / string id of the
14034 marker found is different from the previous known name, assume that
14035 means the user renamed the marker in the sources, and output a
14036 warning.
14037
14038 3) If a marker is no longer found at the same address or line, it
14039 may mean the marker no longer exists. But it may also just mean
14040 the code changed a bit. Maybe the user added a few lines of code
14041 that made the marker move up or down (in line number terms). Ask
14042 the target for info about the marker with the string id as we knew
14043 it. If found, update line number and address in the matching
14044 static tracepoint. This will get confused if there's more than one
14045 marker with the same ID (possible in UST, although unadvised
14046 precisely because it confuses tools). */
14047
14048 static struct symtab_and_line
14049 update_static_tracepoint (struct breakpoint *b, struct symtab_and_line sal)
14050 {
14051 struct tracepoint *tp = (struct tracepoint *) b;
14052 struct static_tracepoint_marker marker;
14053 CORE_ADDR pc;
14054
14055 pc = sal.pc;
14056 if (sal.line)
14057 find_line_pc (sal.symtab, sal.line, &pc);
14058
14059 if (target_static_tracepoint_marker_at (pc, &marker))
14060 {
14061 if (strcmp (tp->static_trace_marker_id, marker.str_id) != 0)
14062 warning (_("static tracepoint %d changed probed marker from %s to %s"),
14063 b->number,
14064 tp->static_trace_marker_id, marker.str_id);
14065
14066 xfree (tp->static_trace_marker_id);
14067 tp->static_trace_marker_id = xstrdup (marker.str_id);
14068 release_static_tracepoint_marker (&marker);
14069
14070 return sal;
14071 }
14072
14073 /* Old marker wasn't found on target at lineno. Try looking it up
14074 by string ID. */
14075 if (!sal.explicit_pc
14076 && sal.line != 0
14077 && sal.symtab != NULL
14078 && tp->static_trace_marker_id != NULL)
14079 {
14080 VEC(static_tracepoint_marker_p) *markers;
14081
14082 markers
14083 = target_static_tracepoint_markers_by_strid (tp->static_trace_marker_id);
14084
14085 if (!VEC_empty(static_tracepoint_marker_p, markers))
14086 {
14087 struct symtab_and_line sal2;
14088 struct symbol *sym;
14089 struct static_tracepoint_marker *tpmarker;
14090 struct ui_out *uiout = current_uiout;
14091
14092 tpmarker = VEC_index (static_tracepoint_marker_p, markers, 0);
14093
14094 xfree (tp->static_trace_marker_id);
14095 tp->static_trace_marker_id = xstrdup (tpmarker->str_id);
14096
14097 warning (_("marker for static tracepoint %d (%s) not "
14098 "found at previous line number"),
14099 b->number, tp->static_trace_marker_id);
14100
14101 init_sal (&sal2);
14102
14103 sal2.pc = tpmarker->address;
14104
14105 sal2 = find_pc_line (tpmarker->address, 0);
14106 sym = find_pc_sect_function (tpmarker->address, NULL);
14107 ui_out_text (uiout, "Now in ");
14108 if (sym)
14109 {
14110 ui_out_field_string (uiout, "func",
14111 SYMBOL_PRINT_NAME (sym));
14112 ui_out_text (uiout, " at ");
14113 }
14114 ui_out_field_string (uiout, "file",
14115 symtab_to_filename_for_display (sal2.symtab));
14116 ui_out_text (uiout, ":");
14117
14118 if (ui_out_is_mi_like_p (uiout))
14119 {
14120 const char *fullname = symtab_to_fullname (sal2.symtab);
14121
14122 ui_out_field_string (uiout, "fullname", fullname);
14123 }
14124
14125 ui_out_field_int (uiout, "line", sal2.line);
14126 ui_out_text (uiout, "\n");
14127
14128 b->loc->line_number = sal2.line;
14129 b->loc->symtab = sym != NULL ? sal2.symtab : NULL;
14130
14131 xfree (b->addr_string);
14132 b->addr_string = xstrprintf ("%s:%d",
14133 symtab_to_filename_for_display (sal2.symtab),
14134 b->loc->line_number);
14135
14136 /* Might be nice to check if function changed, and warn if
14137 so. */
14138
14139 release_static_tracepoint_marker (tpmarker);
14140 }
14141 }
14142 return sal;
14143 }
14144
14145 /* Returns 1 iff locations A and B are sufficiently same that
14146 we don't need to report breakpoint as changed. */
14147
14148 static int
14149 locations_are_equal (struct bp_location *a, struct bp_location *b)
14150 {
14151 while (a && b)
14152 {
14153 if (a->address != b->address)
14154 return 0;
14155
14156 if (a->shlib_disabled != b->shlib_disabled)
14157 return 0;
14158
14159 if (a->enabled != b->enabled)
14160 return 0;
14161
14162 a = a->next;
14163 b = b->next;
14164 }
14165
14166 if ((a == NULL) != (b == NULL))
14167 return 0;
14168
14169 return 1;
14170 }
14171
14172 /* Create new breakpoint locations for B (a hardware or software breakpoint)
14173 based on SALS and SALS_END. If SALS_END.NELTS is not zero, then B is
14174 a ranged breakpoint. */
14175
14176 void
14177 update_breakpoint_locations (struct breakpoint *b,
14178 struct symtabs_and_lines sals,
14179 struct symtabs_and_lines sals_end)
14180 {
14181 int i;
14182 struct bp_location *existing_locations = b->loc;
14183
14184 if (sals_end.nelts != 0 && (sals.nelts != 1 || sals_end.nelts != 1))
14185 {
14186 /* Ranged breakpoints have only one start location and one end
14187 location. */
14188 b->enable_state = bp_disabled;
14189 update_global_location_list (1);
14190 printf_unfiltered (_("Could not reset ranged breakpoint %d: "
14191 "multiple locations found\n"),
14192 b->number);
14193 return;
14194 }
14195
14196 /* If there's no new locations, and all existing locations are
14197 pending, don't do anything. This optimizes the common case where
14198 all locations are in the same shared library, that was unloaded.
14199 We'd like to retain the location, so that when the library is
14200 loaded again, we don't loose the enabled/disabled status of the
14201 individual locations. */
14202 if (all_locations_are_pending (existing_locations) && sals.nelts == 0)
14203 return;
14204
14205 b->loc = NULL;
14206
14207 for (i = 0; i < sals.nelts; ++i)
14208 {
14209 struct bp_location *new_loc;
14210
14211 switch_to_program_space_and_thread (sals.sals[i].pspace);
14212
14213 new_loc = add_location_to_breakpoint (b, &(sals.sals[i]));
14214
14215 /* Reparse conditions, they might contain references to the
14216 old symtab. */
14217 if (b->cond_string != NULL)
14218 {
14219 const char *s;
14220 volatile struct gdb_exception e;
14221
14222 s = b->cond_string;
14223 TRY_CATCH (e, RETURN_MASK_ERROR)
14224 {
14225 new_loc->cond = parse_exp_1 (&s, sals.sals[i].pc,
14226 block_for_pc (sals.sals[i].pc),
14227 0);
14228 }
14229 if (e.reason < 0)
14230 {
14231 warning (_("failed to reevaluate condition "
14232 "for breakpoint %d: %s"),
14233 b->number, e.message);
14234 new_loc->enabled = 0;
14235 }
14236 }
14237
14238 if (sals_end.nelts)
14239 {
14240 CORE_ADDR end = find_breakpoint_range_end (sals_end.sals[0]);
14241
14242 new_loc->length = end - sals.sals[0].pc + 1;
14243 }
14244 }
14245
14246 /* Update locations of permanent breakpoints. */
14247 if (b->enable_state == bp_permanent)
14248 make_breakpoint_permanent (b);
14249
14250 /* If possible, carry over 'disable' status from existing
14251 breakpoints. */
14252 {
14253 struct bp_location *e = existing_locations;
14254 /* If there are multiple breakpoints with the same function name,
14255 e.g. for inline functions, comparing function names won't work.
14256 Instead compare pc addresses; this is just a heuristic as things
14257 may have moved, but in practice it gives the correct answer
14258 often enough until a better solution is found. */
14259 int have_ambiguous_names = ambiguous_names_p (b->loc);
14260
14261 for (; e; e = e->next)
14262 {
14263 if (!e->enabled && e->function_name)
14264 {
14265 struct bp_location *l = b->loc;
14266 if (have_ambiguous_names)
14267 {
14268 for (; l; l = l->next)
14269 if (breakpoint_locations_match (e, l))
14270 {
14271 l->enabled = 0;
14272 break;
14273 }
14274 }
14275 else
14276 {
14277 for (; l; l = l->next)
14278 if (l->function_name
14279 && strcmp (e->function_name, l->function_name) == 0)
14280 {
14281 l->enabled = 0;
14282 break;
14283 }
14284 }
14285 }
14286 }
14287 }
14288
14289 if (!locations_are_equal (existing_locations, b->loc))
14290 observer_notify_breakpoint_modified (b);
14291
14292 update_global_location_list (1);
14293 }
14294
14295 /* Find the SaL locations corresponding to the given ADDR_STRING.
14296 On return, FOUND will be 1 if any SaL was found, zero otherwise. */
14297
14298 static struct symtabs_and_lines
14299 addr_string_to_sals (struct breakpoint *b, char *addr_string, int *found)
14300 {
14301 char *s;
14302 struct symtabs_and_lines sals = {0};
14303 volatile struct gdb_exception e;
14304
14305 gdb_assert (b->ops != NULL);
14306 s = addr_string;
14307
14308 TRY_CATCH (e, RETURN_MASK_ERROR)
14309 {
14310 b->ops->decode_linespec (b, &s, &sals);
14311 }
14312 if (e.reason < 0)
14313 {
14314 int not_found_and_ok = 0;
14315 /* For pending breakpoints, it's expected that parsing will
14316 fail until the right shared library is loaded. User has
14317 already told to create pending breakpoints and don't need
14318 extra messages. If breakpoint is in bp_shlib_disabled
14319 state, then user already saw the message about that
14320 breakpoint being disabled, and don't want to see more
14321 errors. */
14322 if (e.error == NOT_FOUND_ERROR
14323 && (b->condition_not_parsed
14324 || (b->loc && b->loc->shlib_disabled)
14325 || (b->loc && b->loc->pspace->executing_startup)
14326 || b->enable_state == bp_disabled))
14327 not_found_and_ok = 1;
14328
14329 if (!not_found_and_ok)
14330 {
14331 /* We surely don't want to warn about the same breakpoint
14332 10 times. One solution, implemented here, is disable
14333 the breakpoint on error. Another solution would be to
14334 have separate 'warning emitted' flag. Since this
14335 happens only when a binary has changed, I don't know
14336 which approach is better. */
14337 b->enable_state = bp_disabled;
14338 throw_exception (e);
14339 }
14340 }
14341
14342 if (e.reason == 0 || e.error != NOT_FOUND_ERROR)
14343 {
14344 int i;
14345
14346 for (i = 0; i < sals.nelts; ++i)
14347 resolve_sal_pc (&sals.sals[i]);
14348 if (b->condition_not_parsed && s && s[0])
14349 {
14350 char *cond_string, *extra_string;
14351 int thread, task;
14352
14353 find_condition_and_thread (s, sals.sals[0].pc,
14354 &cond_string, &thread, &task,
14355 &extra_string);
14356 if (cond_string)
14357 b->cond_string = cond_string;
14358 b->thread = thread;
14359 b->task = task;
14360 if (extra_string)
14361 b->extra_string = extra_string;
14362 b->condition_not_parsed = 0;
14363 }
14364
14365 if (b->type == bp_static_tracepoint && !strace_marker_p (b))
14366 sals.sals[0] = update_static_tracepoint (b, sals.sals[0]);
14367
14368 *found = 1;
14369 }
14370 else
14371 *found = 0;
14372
14373 return sals;
14374 }
14375
14376 /* The default re_set method, for typical hardware or software
14377 breakpoints. Reevaluate the breakpoint and recreate its
14378 locations. */
14379
14380 static void
14381 breakpoint_re_set_default (struct breakpoint *b)
14382 {
14383 int found;
14384 struct symtabs_and_lines sals, sals_end;
14385 struct symtabs_and_lines expanded = {0};
14386 struct symtabs_and_lines expanded_end = {0};
14387
14388 sals = addr_string_to_sals (b, b->addr_string, &found);
14389 if (found)
14390 {
14391 make_cleanup (xfree, sals.sals);
14392 expanded = sals;
14393 }
14394
14395 if (b->addr_string_range_end)
14396 {
14397 sals_end = addr_string_to_sals (b, b->addr_string_range_end, &found);
14398 if (found)
14399 {
14400 make_cleanup (xfree, sals_end.sals);
14401 expanded_end = sals_end;
14402 }
14403 }
14404
14405 update_breakpoint_locations (b, expanded, expanded_end);
14406 }
14407
14408 /* Default method for creating SALs from an address string. It basically
14409 calls parse_breakpoint_sals. Return 1 for success, zero for failure. */
14410
14411 static void
14412 create_sals_from_address_default (char **arg,
14413 struct linespec_result *canonical,
14414 enum bptype type_wanted,
14415 char *addr_start, char **copy_arg)
14416 {
14417 parse_breakpoint_sals (arg, canonical);
14418 }
14419
14420 /* Call create_breakpoints_sal for the given arguments. This is the default
14421 function for the `create_breakpoints_sal' method of
14422 breakpoint_ops. */
14423
14424 static void
14425 create_breakpoints_sal_default (struct gdbarch *gdbarch,
14426 struct linespec_result *canonical,
14427 char *cond_string,
14428 char *extra_string,
14429 enum bptype type_wanted,
14430 enum bpdisp disposition,
14431 int thread,
14432 int task, int ignore_count,
14433 const struct breakpoint_ops *ops,
14434 int from_tty, int enabled,
14435 int internal, unsigned flags)
14436 {
14437 create_breakpoints_sal (gdbarch, canonical, cond_string,
14438 extra_string,
14439 type_wanted, disposition,
14440 thread, task, ignore_count, ops, from_tty,
14441 enabled, internal, flags);
14442 }
14443
14444 /* Decode the line represented by S by calling decode_line_full. This is the
14445 default function for the `decode_linespec' method of breakpoint_ops. */
14446
14447 static void
14448 decode_linespec_default (struct breakpoint *b, char **s,
14449 struct symtabs_and_lines *sals)
14450 {
14451 struct linespec_result canonical;
14452
14453 init_linespec_result (&canonical);
14454 decode_line_full (s, DECODE_LINE_FUNFIRSTLINE,
14455 (struct symtab *) NULL, 0,
14456 &canonical, multiple_symbols_all,
14457 b->filter);
14458
14459 /* We should get 0 or 1 resulting SALs. */
14460 gdb_assert (VEC_length (linespec_sals, canonical.sals) < 2);
14461
14462 if (VEC_length (linespec_sals, canonical.sals) > 0)
14463 {
14464 struct linespec_sals *lsal;
14465
14466 lsal = VEC_index (linespec_sals, canonical.sals, 0);
14467 *sals = lsal->sals;
14468 /* Arrange it so the destructor does not free the
14469 contents. */
14470 lsal->sals.sals = NULL;
14471 }
14472
14473 destroy_linespec_result (&canonical);
14474 }
14475
14476 /* Prepare the global context for a re-set of breakpoint B. */
14477
14478 static struct cleanup *
14479 prepare_re_set_context (struct breakpoint *b)
14480 {
14481 struct cleanup *cleanups;
14482
14483 input_radix = b->input_radix;
14484 cleanups = save_current_space_and_thread ();
14485 if (b->pspace != NULL)
14486 switch_to_program_space_and_thread (b->pspace);
14487 set_language (b->language);
14488
14489 return cleanups;
14490 }
14491
14492 /* Reset a breakpoint given it's struct breakpoint * BINT.
14493 The value we return ends up being the return value from catch_errors.
14494 Unused in this case. */
14495
14496 static int
14497 breakpoint_re_set_one (void *bint)
14498 {
14499 /* Get past catch_errs. */
14500 struct breakpoint *b = (struct breakpoint *) bint;
14501 struct cleanup *cleanups;
14502
14503 cleanups = prepare_re_set_context (b);
14504 b->ops->re_set (b);
14505 do_cleanups (cleanups);
14506 return 0;
14507 }
14508
14509 /* Re-set all breakpoints after symbols have been re-loaded. */
14510 void
14511 breakpoint_re_set (void)
14512 {
14513 struct breakpoint *b, *b_tmp;
14514 enum language save_language;
14515 int save_input_radix;
14516 struct cleanup *old_chain;
14517
14518 save_language = current_language->la_language;
14519 save_input_radix = input_radix;
14520 old_chain = save_current_program_space ();
14521
14522 ALL_BREAKPOINTS_SAFE (b, b_tmp)
14523 {
14524 /* Format possible error msg. */
14525 char *message = xstrprintf ("Error in re-setting breakpoint %d: ",
14526 b->number);
14527 struct cleanup *cleanups = make_cleanup (xfree, message);
14528 catch_errors (breakpoint_re_set_one, b, message, RETURN_MASK_ALL);
14529 do_cleanups (cleanups);
14530 }
14531 set_language (save_language);
14532 input_radix = save_input_radix;
14533
14534 jit_breakpoint_re_set ();
14535
14536 do_cleanups (old_chain);
14537
14538 create_overlay_event_breakpoint ();
14539 create_longjmp_master_breakpoint ();
14540 create_std_terminate_master_breakpoint ();
14541 create_exception_master_breakpoint ();
14542 }
14543 \f
14544 /* Reset the thread number of this breakpoint:
14545
14546 - If the breakpoint is for all threads, leave it as-is.
14547 - Else, reset it to the current thread for inferior_ptid. */
14548 void
14549 breakpoint_re_set_thread (struct breakpoint *b)
14550 {
14551 if (b->thread != -1)
14552 {
14553 if (in_thread_list (inferior_ptid))
14554 b->thread = pid_to_thread_id (inferior_ptid);
14555
14556 /* We're being called after following a fork. The new fork is
14557 selected as current, and unless this was a vfork will have a
14558 different program space from the original thread. Reset that
14559 as well. */
14560 b->loc->pspace = current_program_space;
14561 }
14562 }
14563
14564 /* Set ignore-count of breakpoint number BPTNUM to COUNT.
14565 If from_tty is nonzero, it prints a message to that effect,
14566 which ends with a period (no newline). */
14567
14568 void
14569 set_ignore_count (int bptnum, int count, int from_tty)
14570 {
14571 struct breakpoint *b;
14572
14573 if (count < 0)
14574 count = 0;
14575
14576 ALL_BREAKPOINTS (b)
14577 if (b->number == bptnum)
14578 {
14579 if (is_tracepoint (b))
14580 {
14581 if (from_tty && count != 0)
14582 printf_filtered (_("Ignore count ignored for tracepoint %d."),
14583 bptnum);
14584 return;
14585 }
14586
14587 b->ignore_count = count;
14588 if (from_tty)
14589 {
14590 if (count == 0)
14591 printf_filtered (_("Will stop next time "
14592 "breakpoint %d is reached."),
14593 bptnum);
14594 else if (count == 1)
14595 printf_filtered (_("Will ignore next crossing of breakpoint %d."),
14596 bptnum);
14597 else
14598 printf_filtered (_("Will ignore next %d "
14599 "crossings of breakpoint %d."),
14600 count, bptnum);
14601 }
14602 observer_notify_breakpoint_modified (b);
14603 return;
14604 }
14605
14606 error (_("No breakpoint number %d."), bptnum);
14607 }
14608
14609 /* Command to set ignore-count of breakpoint N to COUNT. */
14610
14611 static void
14612 ignore_command (char *args, int from_tty)
14613 {
14614 char *p = args;
14615 int num;
14616
14617 if (p == 0)
14618 error_no_arg (_("a breakpoint number"));
14619
14620 num = get_number (&p);
14621 if (num == 0)
14622 error (_("bad breakpoint number: '%s'"), args);
14623 if (*p == 0)
14624 error (_("Second argument (specified ignore-count) is missing."));
14625
14626 set_ignore_count (num,
14627 longest_to_int (value_as_long (parse_and_eval (p))),
14628 from_tty);
14629 if (from_tty)
14630 printf_filtered ("\n");
14631 }
14632 \f
14633 /* Call FUNCTION on each of the breakpoints
14634 whose numbers are given in ARGS. */
14635
14636 static void
14637 map_breakpoint_numbers (char *args, void (*function) (struct breakpoint *,
14638 void *),
14639 void *data)
14640 {
14641 int num;
14642 struct breakpoint *b, *tmp;
14643 int match;
14644 struct get_number_or_range_state state;
14645
14646 if (args == 0)
14647 error_no_arg (_("one or more breakpoint numbers"));
14648
14649 init_number_or_range (&state, args);
14650
14651 while (!state.finished)
14652 {
14653 char *p = state.string;
14654
14655 match = 0;
14656
14657 num = get_number_or_range (&state);
14658 if (num == 0)
14659 {
14660 warning (_("bad breakpoint number at or near '%s'"), p);
14661 }
14662 else
14663 {
14664 ALL_BREAKPOINTS_SAFE (b, tmp)
14665 if (b->number == num)
14666 {
14667 match = 1;
14668 function (b, data);
14669 break;
14670 }
14671 if (match == 0)
14672 printf_unfiltered (_("No breakpoint number %d.\n"), num);
14673 }
14674 }
14675 }
14676
14677 static struct bp_location *
14678 find_location_by_number (char *number)
14679 {
14680 char *dot = strchr (number, '.');
14681 char *p1;
14682 int bp_num;
14683 int loc_num;
14684 struct breakpoint *b;
14685 struct bp_location *loc;
14686
14687 *dot = '\0';
14688
14689 p1 = number;
14690 bp_num = get_number (&p1);
14691 if (bp_num == 0)
14692 error (_("Bad breakpoint number '%s'"), number);
14693
14694 ALL_BREAKPOINTS (b)
14695 if (b->number == bp_num)
14696 {
14697 break;
14698 }
14699
14700 if (!b || b->number != bp_num)
14701 error (_("Bad breakpoint number '%s'"), number);
14702
14703 p1 = dot+1;
14704 loc_num = get_number (&p1);
14705 if (loc_num == 0)
14706 error (_("Bad breakpoint location number '%s'"), number);
14707
14708 --loc_num;
14709 loc = b->loc;
14710 for (;loc_num && loc; --loc_num, loc = loc->next)
14711 ;
14712 if (!loc)
14713 error (_("Bad breakpoint location number '%s'"), dot+1);
14714
14715 return loc;
14716 }
14717
14718
14719 /* Set ignore-count of breakpoint number BPTNUM to COUNT.
14720 If from_tty is nonzero, it prints a message to that effect,
14721 which ends with a period (no newline). */
14722
14723 void
14724 disable_breakpoint (struct breakpoint *bpt)
14725 {
14726 /* Never disable a watchpoint scope breakpoint; we want to
14727 hit them when we leave scope so we can delete both the
14728 watchpoint and its scope breakpoint at that time. */
14729 if (bpt->type == bp_watchpoint_scope)
14730 return;
14731
14732 /* You can't disable permanent breakpoints. */
14733 if (bpt->enable_state == bp_permanent)
14734 return;
14735
14736 bpt->enable_state = bp_disabled;
14737
14738 /* Mark breakpoint locations modified. */
14739 mark_breakpoint_modified (bpt);
14740
14741 if (target_supports_enable_disable_tracepoint ()
14742 && current_trace_status ()->running && is_tracepoint (bpt))
14743 {
14744 struct bp_location *location;
14745
14746 for (location = bpt->loc; location; location = location->next)
14747 target_disable_tracepoint (location);
14748 }
14749
14750 update_global_location_list (0);
14751
14752 observer_notify_breakpoint_modified (bpt);
14753 }
14754
14755 /* A callback for iterate_over_related_breakpoints. */
14756
14757 static void
14758 do_disable_breakpoint (struct breakpoint *b, void *ignore)
14759 {
14760 disable_breakpoint (b);
14761 }
14762
14763 /* A callback for map_breakpoint_numbers that calls
14764 disable_breakpoint. */
14765
14766 static void
14767 do_map_disable_breakpoint (struct breakpoint *b, void *ignore)
14768 {
14769 iterate_over_related_breakpoints (b, do_disable_breakpoint, NULL);
14770 }
14771
14772 static void
14773 disable_command (char *args, int from_tty)
14774 {
14775 if (args == 0)
14776 {
14777 struct breakpoint *bpt;
14778
14779 ALL_BREAKPOINTS (bpt)
14780 if (user_breakpoint_p (bpt))
14781 disable_breakpoint (bpt);
14782 }
14783 else
14784 {
14785 char *num = extract_arg (&args);
14786
14787 while (num)
14788 {
14789 if (strchr (num, '.'))
14790 {
14791 struct bp_location *loc = find_location_by_number (num);
14792
14793 if (loc)
14794 {
14795 if (loc->enabled)
14796 {
14797 loc->enabled = 0;
14798 mark_breakpoint_location_modified (loc);
14799 }
14800 if (target_supports_enable_disable_tracepoint ()
14801 && current_trace_status ()->running && loc->owner
14802 && is_tracepoint (loc->owner))
14803 target_disable_tracepoint (loc);
14804 }
14805 update_global_location_list (0);
14806 }
14807 else
14808 map_breakpoint_numbers (num, do_map_disable_breakpoint, NULL);
14809 num = extract_arg (&args);
14810 }
14811 }
14812 }
14813
14814 static void
14815 enable_breakpoint_disp (struct breakpoint *bpt, enum bpdisp disposition,
14816 int count)
14817 {
14818 int target_resources_ok;
14819
14820 if (bpt->type == bp_hardware_breakpoint)
14821 {
14822 int i;
14823 i = hw_breakpoint_used_count ();
14824 target_resources_ok =
14825 target_can_use_hardware_watchpoint (bp_hardware_breakpoint,
14826 i + 1, 0);
14827 if (target_resources_ok == 0)
14828 error (_("No hardware breakpoint support in the target."));
14829 else if (target_resources_ok < 0)
14830 error (_("Hardware breakpoints used exceeds limit."));
14831 }
14832
14833 if (is_watchpoint (bpt))
14834 {
14835 /* Initialize it just to avoid a GCC false warning. */
14836 enum enable_state orig_enable_state = 0;
14837 volatile struct gdb_exception e;
14838
14839 TRY_CATCH (e, RETURN_MASK_ALL)
14840 {
14841 struct watchpoint *w = (struct watchpoint *) bpt;
14842
14843 orig_enable_state = bpt->enable_state;
14844 bpt->enable_state = bp_enabled;
14845 update_watchpoint (w, 1 /* reparse */);
14846 }
14847 if (e.reason < 0)
14848 {
14849 bpt->enable_state = orig_enable_state;
14850 exception_fprintf (gdb_stderr, e, _("Cannot enable watchpoint %d: "),
14851 bpt->number);
14852 return;
14853 }
14854 }
14855
14856 if (bpt->enable_state != bp_permanent)
14857 bpt->enable_state = bp_enabled;
14858
14859 bpt->enable_state = bp_enabled;
14860
14861 /* Mark breakpoint locations modified. */
14862 mark_breakpoint_modified (bpt);
14863
14864 if (target_supports_enable_disable_tracepoint ()
14865 && current_trace_status ()->running && is_tracepoint (bpt))
14866 {
14867 struct bp_location *location;
14868
14869 for (location = bpt->loc; location; location = location->next)
14870 target_enable_tracepoint (location);
14871 }
14872
14873 bpt->disposition = disposition;
14874 bpt->enable_count = count;
14875 update_global_location_list (1);
14876
14877 observer_notify_breakpoint_modified (bpt);
14878 }
14879
14880
14881 void
14882 enable_breakpoint (struct breakpoint *bpt)
14883 {
14884 enable_breakpoint_disp (bpt, bpt->disposition, 0);
14885 }
14886
14887 static void
14888 do_enable_breakpoint (struct breakpoint *bpt, void *arg)
14889 {
14890 enable_breakpoint (bpt);
14891 }
14892
14893 /* A callback for map_breakpoint_numbers that calls
14894 enable_breakpoint. */
14895
14896 static void
14897 do_map_enable_breakpoint (struct breakpoint *b, void *ignore)
14898 {
14899 iterate_over_related_breakpoints (b, do_enable_breakpoint, NULL);
14900 }
14901
14902 /* The enable command enables the specified breakpoints (or all defined
14903 breakpoints) so they once again become (or continue to be) effective
14904 in stopping the inferior. */
14905
14906 static void
14907 enable_command (char *args, int from_tty)
14908 {
14909 if (args == 0)
14910 {
14911 struct breakpoint *bpt;
14912
14913 ALL_BREAKPOINTS (bpt)
14914 if (user_breakpoint_p (bpt))
14915 enable_breakpoint (bpt);
14916 }
14917 else
14918 {
14919 char *num = extract_arg (&args);
14920
14921 while (num)
14922 {
14923 if (strchr (num, '.'))
14924 {
14925 struct bp_location *loc = find_location_by_number (num);
14926
14927 if (loc)
14928 {
14929 if (!loc->enabled)
14930 {
14931 loc->enabled = 1;
14932 mark_breakpoint_location_modified (loc);
14933 }
14934 if (target_supports_enable_disable_tracepoint ()
14935 && current_trace_status ()->running && loc->owner
14936 && is_tracepoint (loc->owner))
14937 target_enable_tracepoint (loc);
14938 }
14939 update_global_location_list (1);
14940 }
14941 else
14942 map_breakpoint_numbers (num, do_map_enable_breakpoint, NULL);
14943 num = extract_arg (&args);
14944 }
14945 }
14946 }
14947
14948 /* This struct packages up disposition data for application to multiple
14949 breakpoints. */
14950
14951 struct disp_data
14952 {
14953 enum bpdisp disp;
14954 int count;
14955 };
14956
14957 static void
14958 do_enable_breakpoint_disp (struct breakpoint *bpt, void *arg)
14959 {
14960 struct disp_data disp_data = *(struct disp_data *) arg;
14961
14962 enable_breakpoint_disp (bpt, disp_data.disp, disp_data.count);
14963 }
14964
14965 static void
14966 do_map_enable_once_breakpoint (struct breakpoint *bpt, void *ignore)
14967 {
14968 struct disp_data disp = { disp_disable, 1 };
14969
14970 iterate_over_related_breakpoints (bpt, do_enable_breakpoint_disp, &disp);
14971 }
14972
14973 static void
14974 enable_once_command (char *args, int from_tty)
14975 {
14976 map_breakpoint_numbers (args, do_map_enable_once_breakpoint, NULL);
14977 }
14978
14979 static void
14980 do_map_enable_count_breakpoint (struct breakpoint *bpt, void *countptr)
14981 {
14982 struct disp_data disp = { disp_disable, *(int *) countptr };
14983
14984 iterate_over_related_breakpoints (bpt, do_enable_breakpoint_disp, &disp);
14985 }
14986
14987 static void
14988 enable_count_command (char *args, int from_tty)
14989 {
14990 int count = get_number (&args);
14991
14992 map_breakpoint_numbers (args, do_map_enable_count_breakpoint, &count);
14993 }
14994
14995 static void
14996 do_map_enable_delete_breakpoint (struct breakpoint *bpt, void *ignore)
14997 {
14998 struct disp_data disp = { disp_del, 1 };
14999
15000 iterate_over_related_breakpoints (bpt, do_enable_breakpoint_disp, &disp);
15001 }
15002
15003 static void
15004 enable_delete_command (char *args, int from_tty)
15005 {
15006 map_breakpoint_numbers (args, do_map_enable_delete_breakpoint, NULL);
15007 }
15008 \f
15009 static void
15010 set_breakpoint_cmd (char *args, int from_tty)
15011 {
15012 }
15013
15014 static void
15015 show_breakpoint_cmd (char *args, int from_tty)
15016 {
15017 }
15018
15019 /* Invalidate last known value of any hardware watchpoint if
15020 the memory which that value represents has been written to by
15021 GDB itself. */
15022
15023 static void
15024 invalidate_bp_value_on_memory_change (struct inferior *inferior,
15025 CORE_ADDR addr, ssize_t len,
15026 const bfd_byte *data)
15027 {
15028 struct breakpoint *bp;
15029
15030 ALL_BREAKPOINTS (bp)
15031 if (bp->enable_state == bp_enabled
15032 && bp->type == bp_hardware_watchpoint)
15033 {
15034 struct watchpoint *wp = (struct watchpoint *) bp;
15035
15036 if (wp->val_valid && wp->val)
15037 {
15038 struct bp_location *loc;
15039
15040 for (loc = bp->loc; loc != NULL; loc = loc->next)
15041 if (loc->loc_type == bp_loc_hardware_watchpoint
15042 && loc->address + loc->length > addr
15043 && addr + len > loc->address)
15044 {
15045 value_free (wp->val);
15046 wp->val = NULL;
15047 wp->val_valid = 0;
15048 }
15049 }
15050 }
15051 }
15052
15053 /* Create and insert a raw software breakpoint at PC. Return an
15054 identifier, which should be used to remove the breakpoint later.
15055 In general, places which call this should be using something on the
15056 breakpoint chain instead; this function should be eliminated
15057 someday. */
15058
15059 void *
15060 deprecated_insert_raw_breakpoint (struct gdbarch *gdbarch,
15061 struct address_space *aspace, CORE_ADDR pc)
15062 {
15063 struct bp_target_info *bp_tgt;
15064
15065 bp_tgt = XCNEW (struct bp_target_info);
15066
15067 bp_tgt->placed_address_space = aspace;
15068 bp_tgt->placed_address = pc;
15069
15070 if (target_insert_breakpoint (gdbarch, bp_tgt) != 0)
15071 {
15072 /* Could not insert the breakpoint. */
15073 xfree (bp_tgt);
15074 return NULL;
15075 }
15076
15077 return bp_tgt;
15078 }
15079
15080 /* Remove a breakpoint BP inserted by
15081 deprecated_insert_raw_breakpoint. */
15082
15083 int
15084 deprecated_remove_raw_breakpoint (struct gdbarch *gdbarch, void *bp)
15085 {
15086 struct bp_target_info *bp_tgt = bp;
15087 int ret;
15088
15089 ret = target_remove_breakpoint (gdbarch, bp_tgt);
15090 xfree (bp_tgt);
15091
15092 return ret;
15093 }
15094
15095 /* Create and insert a breakpoint for software single step. */
15096
15097 void
15098 insert_single_step_breakpoint (struct gdbarch *gdbarch,
15099 struct address_space *aspace,
15100 CORE_ADDR next_pc)
15101 {
15102 void **bpt_p;
15103
15104 if (single_step_breakpoints[0] == NULL)
15105 {
15106 bpt_p = &single_step_breakpoints[0];
15107 single_step_gdbarch[0] = gdbarch;
15108 }
15109 else
15110 {
15111 gdb_assert (single_step_breakpoints[1] == NULL);
15112 bpt_p = &single_step_breakpoints[1];
15113 single_step_gdbarch[1] = gdbarch;
15114 }
15115
15116 /* NOTE drow/2006-04-11: A future improvement to this function would
15117 be to only create the breakpoints once, and actually put them on
15118 the breakpoint chain. That would let us use set_raw_breakpoint.
15119 We could adjust the addresses each time they were needed. Doing
15120 this requires corresponding changes elsewhere where single step
15121 breakpoints are handled, however. So, for now, we use this. */
15122
15123 *bpt_p = deprecated_insert_raw_breakpoint (gdbarch, aspace, next_pc);
15124 if (*bpt_p == NULL)
15125 error (_("Could not insert single-step breakpoint at %s"),
15126 paddress (gdbarch, next_pc));
15127 }
15128
15129 /* Check if the breakpoints used for software single stepping
15130 were inserted or not. */
15131
15132 int
15133 single_step_breakpoints_inserted (void)
15134 {
15135 return (single_step_breakpoints[0] != NULL
15136 || single_step_breakpoints[1] != NULL);
15137 }
15138
15139 /* Remove and delete any breakpoints used for software single step. */
15140
15141 void
15142 remove_single_step_breakpoints (void)
15143 {
15144 gdb_assert (single_step_breakpoints[0] != NULL);
15145
15146 /* See insert_single_step_breakpoint for more about this deprecated
15147 call. */
15148 deprecated_remove_raw_breakpoint (single_step_gdbarch[0],
15149 single_step_breakpoints[0]);
15150 single_step_gdbarch[0] = NULL;
15151 single_step_breakpoints[0] = NULL;
15152
15153 if (single_step_breakpoints[1] != NULL)
15154 {
15155 deprecated_remove_raw_breakpoint (single_step_gdbarch[1],
15156 single_step_breakpoints[1]);
15157 single_step_gdbarch[1] = NULL;
15158 single_step_breakpoints[1] = NULL;
15159 }
15160 }
15161
15162 /* Delete software single step breakpoints without removing them from
15163 the inferior. This is intended to be used if the inferior's address
15164 space where they were inserted is already gone, e.g. after exit or
15165 exec. */
15166
15167 void
15168 cancel_single_step_breakpoints (void)
15169 {
15170 int i;
15171
15172 for (i = 0; i < 2; i++)
15173 if (single_step_breakpoints[i])
15174 {
15175 xfree (single_step_breakpoints[i]);
15176 single_step_breakpoints[i] = NULL;
15177 single_step_gdbarch[i] = NULL;
15178 }
15179 }
15180
15181 /* Detach software single-step breakpoints from INFERIOR_PTID without
15182 removing them. */
15183
15184 static void
15185 detach_single_step_breakpoints (void)
15186 {
15187 int i;
15188
15189 for (i = 0; i < 2; i++)
15190 if (single_step_breakpoints[i])
15191 target_remove_breakpoint (single_step_gdbarch[i],
15192 single_step_breakpoints[i]);
15193 }
15194
15195 /* Check whether a software single-step breakpoint is inserted at
15196 PC. */
15197
15198 int
15199 single_step_breakpoint_inserted_here_p (struct address_space *aspace,
15200 CORE_ADDR pc)
15201 {
15202 int i;
15203
15204 for (i = 0; i < 2; i++)
15205 {
15206 struct bp_target_info *bp_tgt = single_step_breakpoints[i];
15207 if (bp_tgt
15208 && breakpoint_address_match (bp_tgt->placed_address_space,
15209 bp_tgt->placed_address,
15210 aspace, pc))
15211 return 1;
15212 }
15213
15214 return 0;
15215 }
15216
15217 /* Returns 0 if 'bp' is NOT a syscall catchpoint,
15218 non-zero otherwise. */
15219 static int
15220 is_syscall_catchpoint_enabled (struct breakpoint *bp)
15221 {
15222 if (syscall_catchpoint_p (bp)
15223 && bp->enable_state != bp_disabled
15224 && bp->enable_state != bp_call_disabled)
15225 return 1;
15226 else
15227 return 0;
15228 }
15229
15230 int
15231 catch_syscall_enabled (void)
15232 {
15233 struct catch_syscall_inferior_data *inf_data
15234 = get_catch_syscall_inferior_data (current_inferior ());
15235
15236 return inf_data->total_syscalls_count != 0;
15237 }
15238
15239 int
15240 catching_syscall_number (int syscall_number)
15241 {
15242 struct breakpoint *bp;
15243
15244 ALL_BREAKPOINTS (bp)
15245 if (is_syscall_catchpoint_enabled (bp))
15246 {
15247 struct syscall_catchpoint *c = (struct syscall_catchpoint *) bp;
15248
15249 if (c->syscalls_to_be_caught)
15250 {
15251 int i, iter;
15252 for (i = 0;
15253 VEC_iterate (int, c->syscalls_to_be_caught, i, iter);
15254 i++)
15255 if (syscall_number == iter)
15256 return 1;
15257 }
15258 else
15259 return 1;
15260 }
15261
15262 return 0;
15263 }
15264
15265 /* Complete syscall names. Used by "catch syscall". */
15266 static VEC (char_ptr) *
15267 catch_syscall_completer (struct cmd_list_element *cmd,
15268 const char *text, const char *word)
15269 {
15270 const char **list = get_syscall_names ();
15271 VEC (char_ptr) *retlist
15272 = (list == NULL) ? NULL : complete_on_enum (list, word, word);
15273
15274 xfree (list);
15275 return retlist;
15276 }
15277
15278 /* Tracepoint-specific operations. */
15279
15280 /* Set tracepoint count to NUM. */
15281 static void
15282 set_tracepoint_count (int num)
15283 {
15284 tracepoint_count = num;
15285 set_internalvar_integer (lookup_internalvar ("tpnum"), num);
15286 }
15287
15288 static void
15289 trace_command (char *arg, int from_tty)
15290 {
15291 struct breakpoint_ops *ops;
15292 const char *arg_cp = arg;
15293
15294 if (arg && probe_linespec_to_ops (&arg_cp))
15295 ops = &tracepoint_probe_breakpoint_ops;
15296 else
15297 ops = &tracepoint_breakpoint_ops;
15298
15299 create_breakpoint (get_current_arch (),
15300 arg,
15301 NULL, 0, NULL, 1 /* parse arg */,
15302 0 /* tempflag */,
15303 bp_tracepoint /* type_wanted */,
15304 0 /* Ignore count */,
15305 pending_break_support,
15306 ops,
15307 from_tty,
15308 1 /* enabled */,
15309 0 /* internal */, 0);
15310 }
15311
15312 static void
15313 ftrace_command (char *arg, int from_tty)
15314 {
15315 create_breakpoint (get_current_arch (),
15316 arg,
15317 NULL, 0, NULL, 1 /* parse arg */,
15318 0 /* tempflag */,
15319 bp_fast_tracepoint /* type_wanted */,
15320 0 /* Ignore count */,
15321 pending_break_support,
15322 &tracepoint_breakpoint_ops,
15323 from_tty,
15324 1 /* enabled */,
15325 0 /* internal */, 0);
15326 }
15327
15328 /* strace command implementation. Creates a static tracepoint. */
15329
15330 static void
15331 strace_command (char *arg, int from_tty)
15332 {
15333 struct breakpoint_ops *ops;
15334
15335 /* Decide if we are dealing with a static tracepoint marker (`-m'),
15336 or with a normal static tracepoint. */
15337 if (arg && strncmp (arg, "-m", 2) == 0 && isspace (arg[2]))
15338 ops = &strace_marker_breakpoint_ops;
15339 else
15340 ops = &tracepoint_breakpoint_ops;
15341
15342 create_breakpoint (get_current_arch (),
15343 arg,
15344 NULL, 0, NULL, 1 /* parse arg */,
15345 0 /* tempflag */,
15346 bp_static_tracepoint /* type_wanted */,
15347 0 /* Ignore count */,
15348 pending_break_support,
15349 ops,
15350 from_tty,
15351 1 /* enabled */,
15352 0 /* internal */, 0);
15353 }
15354
15355 /* Set up a fake reader function that gets command lines from a linked
15356 list that was acquired during tracepoint uploading. */
15357
15358 static struct uploaded_tp *this_utp;
15359 static int next_cmd;
15360
15361 static char *
15362 read_uploaded_action (void)
15363 {
15364 char *rslt;
15365
15366 VEC_iterate (char_ptr, this_utp->cmd_strings, next_cmd, rslt);
15367
15368 next_cmd++;
15369
15370 return rslt;
15371 }
15372
15373 /* Given information about a tracepoint as recorded on a target (which
15374 can be either a live system or a trace file), attempt to create an
15375 equivalent GDB tracepoint. This is not a reliable process, since
15376 the target does not necessarily have all the information used when
15377 the tracepoint was originally defined. */
15378
15379 struct tracepoint *
15380 create_tracepoint_from_upload (struct uploaded_tp *utp)
15381 {
15382 char *addr_str, small_buf[100];
15383 struct tracepoint *tp;
15384
15385 if (utp->at_string)
15386 addr_str = utp->at_string;
15387 else
15388 {
15389 /* In the absence of a source location, fall back to raw
15390 address. Since there is no way to confirm that the address
15391 means the same thing as when the trace was started, warn the
15392 user. */
15393 warning (_("Uploaded tracepoint %d has no "
15394 "source location, using raw address"),
15395 utp->number);
15396 xsnprintf (small_buf, sizeof (small_buf), "*%s", hex_string (utp->addr));
15397 addr_str = small_buf;
15398 }
15399
15400 /* There's not much we can do with a sequence of bytecodes. */
15401 if (utp->cond && !utp->cond_string)
15402 warning (_("Uploaded tracepoint %d condition "
15403 "has no source form, ignoring it"),
15404 utp->number);
15405
15406 if (!create_breakpoint (get_current_arch (),
15407 addr_str,
15408 utp->cond_string, -1, NULL,
15409 0 /* parse cond/thread */,
15410 0 /* tempflag */,
15411 utp->type /* type_wanted */,
15412 0 /* Ignore count */,
15413 pending_break_support,
15414 &tracepoint_breakpoint_ops,
15415 0 /* from_tty */,
15416 utp->enabled /* enabled */,
15417 0 /* internal */,
15418 CREATE_BREAKPOINT_FLAGS_INSERTED))
15419 return NULL;
15420
15421 /* Get the tracepoint we just created. */
15422 tp = get_tracepoint (tracepoint_count);
15423 gdb_assert (tp != NULL);
15424
15425 if (utp->pass > 0)
15426 {
15427 xsnprintf (small_buf, sizeof (small_buf), "%d %d", utp->pass,
15428 tp->base.number);
15429
15430 trace_pass_command (small_buf, 0);
15431 }
15432
15433 /* If we have uploaded versions of the original commands, set up a
15434 special-purpose "reader" function and call the usual command line
15435 reader, then pass the result to the breakpoint command-setting
15436 function. */
15437 if (!VEC_empty (char_ptr, utp->cmd_strings))
15438 {
15439 struct command_line *cmd_list;
15440
15441 this_utp = utp;
15442 next_cmd = 0;
15443
15444 cmd_list = read_command_lines_1 (read_uploaded_action, 1, NULL, NULL);
15445
15446 breakpoint_set_commands (&tp->base, cmd_list);
15447 }
15448 else if (!VEC_empty (char_ptr, utp->actions)
15449 || !VEC_empty (char_ptr, utp->step_actions))
15450 warning (_("Uploaded tracepoint %d actions "
15451 "have no source form, ignoring them"),
15452 utp->number);
15453
15454 /* Copy any status information that might be available. */
15455 tp->base.hit_count = utp->hit_count;
15456 tp->traceframe_usage = utp->traceframe_usage;
15457
15458 return tp;
15459 }
15460
15461 /* Print information on tracepoint number TPNUM_EXP, or all if
15462 omitted. */
15463
15464 static void
15465 tracepoints_info (char *args, int from_tty)
15466 {
15467 struct ui_out *uiout = current_uiout;
15468 int num_printed;
15469
15470 num_printed = breakpoint_1 (args, 0, is_tracepoint);
15471
15472 if (num_printed == 0)
15473 {
15474 if (args == NULL || *args == '\0')
15475 ui_out_message (uiout, 0, "No tracepoints.\n");
15476 else
15477 ui_out_message (uiout, 0, "No tracepoint matching '%s'.\n", args);
15478 }
15479
15480 default_collect_info ();
15481 }
15482
15483 /* The 'enable trace' command enables tracepoints.
15484 Not supported by all targets. */
15485 static void
15486 enable_trace_command (char *args, int from_tty)
15487 {
15488 enable_command (args, from_tty);
15489 }
15490
15491 /* The 'disable trace' command disables tracepoints.
15492 Not supported by all targets. */
15493 static void
15494 disable_trace_command (char *args, int from_tty)
15495 {
15496 disable_command (args, from_tty);
15497 }
15498
15499 /* Remove a tracepoint (or all if no argument). */
15500 static void
15501 delete_trace_command (char *arg, int from_tty)
15502 {
15503 struct breakpoint *b, *b_tmp;
15504
15505 dont_repeat ();
15506
15507 if (arg == 0)
15508 {
15509 int breaks_to_delete = 0;
15510
15511 /* Delete all breakpoints if no argument.
15512 Do not delete internal or call-dummy breakpoints, these
15513 have to be deleted with an explicit breakpoint number
15514 argument. */
15515 ALL_TRACEPOINTS (b)
15516 if (is_tracepoint (b) && user_breakpoint_p (b))
15517 {
15518 breaks_to_delete = 1;
15519 break;
15520 }
15521
15522 /* Ask user only if there are some breakpoints to delete. */
15523 if (!from_tty
15524 || (breaks_to_delete && query (_("Delete all tracepoints? "))))
15525 {
15526 ALL_BREAKPOINTS_SAFE (b, b_tmp)
15527 if (is_tracepoint (b) && user_breakpoint_p (b))
15528 delete_breakpoint (b);
15529 }
15530 }
15531 else
15532 map_breakpoint_numbers (arg, do_map_delete_breakpoint, NULL);
15533 }
15534
15535 /* Helper function for trace_pass_command. */
15536
15537 static void
15538 trace_pass_set_count (struct tracepoint *tp, int count, int from_tty)
15539 {
15540 tp->pass_count = count;
15541 observer_notify_breakpoint_modified (&tp->base);
15542 if (from_tty)
15543 printf_filtered (_("Setting tracepoint %d's passcount to %d\n"),
15544 tp->base.number, count);
15545 }
15546
15547 /* Set passcount for tracepoint.
15548
15549 First command argument is passcount, second is tracepoint number.
15550 If tracepoint number omitted, apply to most recently defined.
15551 Also accepts special argument "all". */
15552
15553 static void
15554 trace_pass_command (char *args, int from_tty)
15555 {
15556 struct tracepoint *t1;
15557 unsigned int count;
15558
15559 if (args == 0 || *args == 0)
15560 error (_("passcount command requires an "
15561 "argument (count + optional TP num)"));
15562
15563 count = strtoul (args, &args, 10); /* Count comes first, then TP num. */
15564
15565 args = skip_spaces (args);
15566 if (*args && strncasecmp (args, "all", 3) == 0)
15567 {
15568 struct breakpoint *b;
15569
15570 args += 3; /* Skip special argument "all". */
15571 if (*args)
15572 error (_("Junk at end of arguments."));
15573
15574 ALL_TRACEPOINTS (b)
15575 {
15576 t1 = (struct tracepoint *) b;
15577 trace_pass_set_count (t1, count, from_tty);
15578 }
15579 }
15580 else if (*args == '\0')
15581 {
15582 t1 = get_tracepoint_by_number (&args, NULL);
15583 if (t1)
15584 trace_pass_set_count (t1, count, from_tty);
15585 }
15586 else
15587 {
15588 struct get_number_or_range_state state;
15589
15590 init_number_or_range (&state, args);
15591 while (!state.finished)
15592 {
15593 t1 = get_tracepoint_by_number (&args, &state);
15594 if (t1)
15595 trace_pass_set_count (t1, count, from_tty);
15596 }
15597 }
15598 }
15599
15600 struct tracepoint *
15601 get_tracepoint (int num)
15602 {
15603 struct breakpoint *t;
15604
15605 ALL_TRACEPOINTS (t)
15606 if (t->number == num)
15607 return (struct tracepoint *) t;
15608
15609 return NULL;
15610 }
15611
15612 /* Find the tracepoint with the given target-side number (which may be
15613 different from the tracepoint number after disconnecting and
15614 reconnecting). */
15615
15616 struct tracepoint *
15617 get_tracepoint_by_number_on_target (int num)
15618 {
15619 struct breakpoint *b;
15620
15621 ALL_TRACEPOINTS (b)
15622 {
15623 struct tracepoint *t = (struct tracepoint *) b;
15624
15625 if (t->number_on_target == num)
15626 return t;
15627 }
15628
15629 return NULL;
15630 }
15631
15632 /* Utility: parse a tracepoint number and look it up in the list.
15633 If STATE is not NULL, use, get_number_or_range_state and ignore ARG.
15634 If the argument is missing, the most recent tracepoint
15635 (tracepoint_count) is returned. */
15636
15637 struct tracepoint *
15638 get_tracepoint_by_number (char **arg,
15639 struct get_number_or_range_state *state)
15640 {
15641 struct breakpoint *t;
15642 int tpnum;
15643 char *instring = arg == NULL ? NULL : *arg;
15644
15645 if (state)
15646 {
15647 gdb_assert (!state->finished);
15648 tpnum = get_number_or_range (state);
15649 }
15650 else if (arg == NULL || *arg == NULL || ! **arg)
15651 tpnum = tracepoint_count;
15652 else
15653 tpnum = get_number (arg);
15654
15655 if (tpnum <= 0)
15656 {
15657 if (instring && *instring)
15658 printf_filtered (_("bad tracepoint number at or near '%s'\n"),
15659 instring);
15660 else
15661 printf_filtered (_("No previous tracepoint\n"));
15662 return NULL;
15663 }
15664
15665 ALL_TRACEPOINTS (t)
15666 if (t->number == tpnum)
15667 {
15668 return (struct tracepoint *) t;
15669 }
15670
15671 printf_unfiltered ("No tracepoint number %d.\n", tpnum);
15672 return NULL;
15673 }
15674
15675 void
15676 print_recreate_thread (struct breakpoint *b, struct ui_file *fp)
15677 {
15678 if (b->thread != -1)
15679 fprintf_unfiltered (fp, " thread %d", b->thread);
15680
15681 if (b->task != 0)
15682 fprintf_unfiltered (fp, " task %d", b->task);
15683
15684 fprintf_unfiltered (fp, "\n");
15685 }
15686
15687 /* Save information on user settable breakpoints (watchpoints, etc) to
15688 a new script file named FILENAME. If FILTER is non-NULL, call it
15689 on each breakpoint and only include the ones for which it returns
15690 non-zero. */
15691
15692 static void
15693 save_breakpoints (char *filename, int from_tty,
15694 int (*filter) (const struct breakpoint *))
15695 {
15696 struct breakpoint *tp;
15697 int any = 0;
15698 struct cleanup *cleanup;
15699 struct ui_file *fp;
15700 int extra_trace_bits = 0;
15701
15702 if (filename == 0 || *filename == 0)
15703 error (_("Argument required (file name in which to save)"));
15704
15705 /* See if we have anything to save. */
15706 ALL_BREAKPOINTS (tp)
15707 {
15708 /* Skip internal and momentary breakpoints. */
15709 if (!user_breakpoint_p (tp))
15710 continue;
15711
15712 /* If we have a filter, only save the breakpoints it accepts. */
15713 if (filter && !filter (tp))
15714 continue;
15715
15716 any = 1;
15717
15718 if (is_tracepoint (tp))
15719 {
15720 extra_trace_bits = 1;
15721
15722 /* We can stop searching. */
15723 break;
15724 }
15725 }
15726
15727 if (!any)
15728 {
15729 warning (_("Nothing to save."));
15730 return;
15731 }
15732
15733 filename = tilde_expand (filename);
15734 cleanup = make_cleanup (xfree, filename);
15735 fp = gdb_fopen (filename, "w");
15736 if (!fp)
15737 error (_("Unable to open file '%s' for saving (%s)"),
15738 filename, safe_strerror (errno));
15739 make_cleanup_ui_file_delete (fp);
15740
15741 if (extra_trace_bits)
15742 save_trace_state_variables (fp);
15743
15744 ALL_BREAKPOINTS (tp)
15745 {
15746 /* Skip internal and momentary breakpoints. */
15747 if (!user_breakpoint_p (tp))
15748 continue;
15749
15750 /* If we have a filter, only save the breakpoints it accepts. */
15751 if (filter && !filter (tp))
15752 continue;
15753
15754 tp->ops->print_recreate (tp, fp);
15755
15756 /* Note, we can't rely on tp->number for anything, as we can't
15757 assume the recreated breakpoint numbers will match. Use $bpnum
15758 instead. */
15759
15760 if (tp->cond_string)
15761 fprintf_unfiltered (fp, " condition $bpnum %s\n", tp->cond_string);
15762
15763 if (tp->ignore_count)
15764 fprintf_unfiltered (fp, " ignore $bpnum %d\n", tp->ignore_count);
15765
15766 if (tp->type != bp_dprintf && tp->commands)
15767 {
15768 volatile struct gdb_exception ex;
15769
15770 fprintf_unfiltered (fp, " commands\n");
15771
15772 ui_out_redirect (current_uiout, fp);
15773 TRY_CATCH (ex, RETURN_MASK_ALL)
15774 {
15775 print_command_lines (current_uiout, tp->commands->commands, 2);
15776 }
15777 ui_out_redirect (current_uiout, NULL);
15778
15779 if (ex.reason < 0)
15780 throw_exception (ex);
15781
15782 fprintf_unfiltered (fp, " end\n");
15783 }
15784
15785 if (tp->enable_state == bp_disabled)
15786 fprintf_unfiltered (fp, "disable\n");
15787
15788 /* If this is a multi-location breakpoint, check if the locations
15789 should be individually disabled. Watchpoint locations are
15790 special, and not user visible. */
15791 if (!is_watchpoint (tp) && tp->loc && tp->loc->next)
15792 {
15793 struct bp_location *loc;
15794 int n = 1;
15795
15796 for (loc = tp->loc; loc != NULL; loc = loc->next, n++)
15797 if (!loc->enabled)
15798 fprintf_unfiltered (fp, "disable $bpnum.%d\n", n);
15799 }
15800 }
15801
15802 if (extra_trace_bits && *default_collect)
15803 fprintf_unfiltered (fp, "set default-collect %s\n", default_collect);
15804
15805 if (from_tty)
15806 printf_filtered (_("Saved to file '%s'.\n"), filename);
15807 do_cleanups (cleanup);
15808 }
15809
15810 /* The `save breakpoints' command. */
15811
15812 static void
15813 save_breakpoints_command (char *args, int from_tty)
15814 {
15815 save_breakpoints (args, from_tty, NULL);
15816 }
15817
15818 /* The `save tracepoints' command. */
15819
15820 static void
15821 save_tracepoints_command (char *args, int from_tty)
15822 {
15823 save_breakpoints (args, from_tty, is_tracepoint);
15824 }
15825
15826 /* Create a vector of all tracepoints. */
15827
15828 VEC(breakpoint_p) *
15829 all_tracepoints (void)
15830 {
15831 VEC(breakpoint_p) *tp_vec = 0;
15832 struct breakpoint *tp;
15833
15834 ALL_TRACEPOINTS (tp)
15835 {
15836 VEC_safe_push (breakpoint_p, tp_vec, tp);
15837 }
15838
15839 return tp_vec;
15840 }
15841
15842 \f
15843 /* This help string is used for the break, hbreak, tbreak and thbreak
15844 commands. It is defined as a macro to prevent duplication.
15845 COMMAND should be a string constant containing the name of the
15846 command. */
15847 #define BREAK_ARGS_HELP(command) \
15848 command" [PROBE_MODIFIER] [LOCATION] [thread THREADNUM] [if CONDITION]\n\
15849 PROBE_MODIFIER shall be present if the command is to be placed in a\n\
15850 probe point. Accepted values are `-probe' (for a generic, automatically\n\
15851 guessed probe type) or `-probe-stap' (for a SystemTap probe).\n\
15852 LOCATION may be a line number, function name, or \"*\" and an address.\n\
15853 If a line number is specified, break at start of code for that line.\n\
15854 If a function is specified, break at start of code for that function.\n\
15855 If an address is specified, break at that exact address.\n\
15856 With no LOCATION, uses current execution address of the selected\n\
15857 stack frame. This is useful for breaking on return to a stack frame.\n\
15858 \n\
15859 THREADNUM is the number from \"info threads\".\n\
15860 CONDITION is a boolean expression.\n\
15861 \n\
15862 Multiple breakpoints at one place are permitted, and useful if their\n\
15863 conditions are different.\n\
15864 \n\
15865 Do \"help breakpoints\" for info on other commands dealing with breakpoints."
15866
15867 /* List of subcommands for "catch". */
15868 static struct cmd_list_element *catch_cmdlist;
15869
15870 /* List of subcommands for "tcatch". */
15871 static struct cmd_list_element *tcatch_cmdlist;
15872
15873 void
15874 add_catch_command (char *name, char *docstring,
15875 void (*sfunc) (char *args, int from_tty,
15876 struct cmd_list_element *command),
15877 completer_ftype *completer,
15878 void *user_data_catch,
15879 void *user_data_tcatch)
15880 {
15881 struct cmd_list_element *command;
15882
15883 command = add_cmd (name, class_breakpoint, NULL, docstring,
15884 &catch_cmdlist);
15885 set_cmd_sfunc (command, sfunc);
15886 set_cmd_context (command, user_data_catch);
15887 set_cmd_completer (command, completer);
15888
15889 command = add_cmd (name, class_breakpoint, NULL, docstring,
15890 &tcatch_cmdlist);
15891 set_cmd_sfunc (command, sfunc);
15892 set_cmd_context (command, user_data_tcatch);
15893 set_cmd_completer (command, completer);
15894 }
15895
15896 static void
15897 clear_syscall_counts (struct inferior *inf)
15898 {
15899 struct catch_syscall_inferior_data *inf_data
15900 = get_catch_syscall_inferior_data (inf);
15901
15902 inf_data->total_syscalls_count = 0;
15903 inf_data->any_syscall_count = 0;
15904 VEC_free (int, inf_data->syscalls_counts);
15905 }
15906
15907 static void
15908 save_command (char *arg, int from_tty)
15909 {
15910 printf_unfiltered (_("\"save\" must be followed by "
15911 "the name of a save subcommand.\n"));
15912 help_list (save_cmdlist, "save ", -1, gdb_stdout);
15913 }
15914
15915 struct breakpoint *
15916 iterate_over_breakpoints (int (*callback) (struct breakpoint *, void *),
15917 void *data)
15918 {
15919 struct breakpoint *b, *b_tmp;
15920
15921 ALL_BREAKPOINTS_SAFE (b, b_tmp)
15922 {
15923 if ((*callback) (b, data))
15924 return b;
15925 }
15926
15927 return NULL;
15928 }
15929
15930 /* Zero if any of the breakpoint's locations could be a location where
15931 functions have been inlined, nonzero otherwise. */
15932
15933 static int
15934 is_non_inline_function (struct breakpoint *b)
15935 {
15936 /* The shared library event breakpoint is set on the address of a
15937 non-inline function. */
15938 if (b->type == bp_shlib_event)
15939 return 1;
15940
15941 return 0;
15942 }
15943
15944 /* Nonzero if the specified PC cannot be a location where functions
15945 have been inlined. */
15946
15947 int
15948 pc_at_non_inline_function (struct address_space *aspace, CORE_ADDR pc,
15949 const struct target_waitstatus *ws)
15950 {
15951 struct breakpoint *b;
15952 struct bp_location *bl;
15953
15954 ALL_BREAKPOINTS (b)
15955 {
15956 if (!is_non_inline_function (b))
15957 continue;
15958
15959 for (bl = b->loc; bl != NULL; bl = bl->next)
15960 {
15961 if (!bl->shlib_disabled
15962 && bpstat_check_location (bl, aspace, pc, ws))
15963 return 1;
15964 }
15965 }
15966
15967 return 0;
15968 }
15969
15970 /* Remove any references to OBJFILE which is going to be freed. */
15971
15972 void
15973 breakpoint_free_objfile (struct objfile *objfile)
15974 {
15975 struct bp_location **locp, *loc;
15976
15977 ALL_BP_LOCATIONS (loc, locp)
15978 if (loc->symtab != NULL && loc->symtab->objfile == objfile)
15979 loc->symtab = NULL;
15980 }
15981
15982 void
15983 initialize_breakpoint_ops (void)
15984 {
15985 static int initialized = 0;
15986
15987 struct breakpoint_ops *ops;
15988
15989 if (initialized)
15990 return;
15991 initialized = 1;
15992
15993 /* The breakpoint_ops structure to be inherit by all kinds of
15994 breakpoints (real breakpoints, i.e., user "break" breakpoints,
15995 internal and momentary breakpoints, etc.). */
15996 ops = &bkpt_base_breakpoint_ops;
15997 *ops = base_breakpoint_ops;
15998 ops->re_set = bkpt_re_set;
15999 ops->insert_location = bkpt_insert_location;
16000 ops->remove_location = bkpt_remove_location;
16001 ops->breakpoint_hit = bkpt_breakpoint_hit;
16002 ops->create_sals_from_address = bkpt_create_sals_from_address;
16003 ops->create_breakpoints_sal = bkpt_create_breakpoints_sal;
16004 ops->decode_linespec = bkpt_decode_linespec;
16005
16006 /* The breakpoint_ops structure to be used in regular breakpoints. */
16007 ops = &bkpt_breakpoint_ops;
16008 *ops = bkpt_base_breakpoint_ops;
16009 ops->re_set = bkpt_re_set;
16010 ops->resources_needed = bkpt_resources_needed;
16011 ops->print_it = bkpt_print_it;
16012 ops->print_mention = bkpt_print_mention;
16013 ops->print_recreate = bkpt_print_recreate;
16014
16015 /* Ranged breakpoints. */
16016 ops = &ranged_breakpoint_ops;
16017 *ops = bkpt_breakpoint_ops;
16018 ops->breakpoint_hit = breakpoint_hit_ranged_breakpoint;
16019 ops->resources_needed = resources_needed_ranged_breakpoint;
16020 ops->print_it = print_it_ranged_breakpoint;
16021 ops->print_one = print_one_ranged_breakpoint;
16022 ops->print_one_detail = print_one_detail_ranged_breakpoint;
16023 ops->print_mention = print_mention_ranged_breakpoint;
16024 ops->print_recreate = print_recreate_ranged_breakpoint;
16025
16026 /* Internal breakpoints. */
16027 ops = &internal_breakpoint_ops;
16028 *ops = bkpt_base_breakpoint_ops;
16029 ops->re_set = internal_bkpt_re_set;
16030 ops->check_status = internal_bkpt_check_status;
16031 ops->print_it = internal_bkpt_print_it;
16032 ops->print_mention = internal_bkpt_print_mention;
16033
16034 /* Momentary breakpoints. */
16035 ops = &momentary_breakpoint_ops;
16036 *ops = bkpt_base_breakpoint_ops;
16037 ops->re_set = momentary_bkpt_re_set;
16038 ops->check_status = momentary_bkpt_check_status;
16039 ops->print_it = momentary_bkpt_print_it;
16040 ops->print_mention = momentary_bkpt_print_mention;
16041
16042 /* Momentary breakpoints for bp_longjmp and bp_exception. */
16043 ops = &longjmp_breakpoint_ops;
16044 *ops = momentary_breakpoint_ops;
16045 ops->dtor = longjmp_bkpt_dtor;
16046
16047 /* Probe breakpoints. */
16048 ops = &bkpt_probe_breakpoint_ops;
16049 *ops = bkpt_breakpoint_ops;
16050 ops->insert_location = bkpt_probe_insert_location;
16051 ops->remove_location = bkpt_probe_remove_location;
16052 ops->create_sals_from_address = bkpt_probe_create_sals_from_address;
16053 ops->decode_linespec = bkpt_probe_decode_linespec;
16054
16055 /* Watchpoints. */
16056 ops = &watchpoint_breakpoint_ops;
16057 *ops = base_breakpoint_ops;
16058 ops->dtor = dtor_watchpoint;
16059 ops->re_set = re_set_watchpoint;
16060 ops->insert_location = insert_watchpoint;
16061 ops->remove_location = remove_watchpoint;
16062 ops->breakpoint_hit = breakpoint_hit_watchpoint;
16063 ops->check_status = check_status_watchpoint;
16064 ops->resources_needed = resources_needed_watchpoint;
16065 ops->works_in_software_mode = works_in_software_mode_watchpoint;
16066 ops->print_it = print_it_watchpoint;
16067 ops->print_mention = print_mention_watchpoint;
16068 ops->print_recreate = print_recreate_watchpoint;
16069 ops->explains_signal = explains_signal_watchpoint;
16070
16071 /* Masked watchpoints. */
16072 ops = &masked_watchpoint_breakpoint_ops;
16073 *ops = watchpoint_breakpoint_ops;
16074 ops->insert_location = insert_masked_watchpoint;
16075 ops->remove_location = remove_masked_watchpoint;
16076 ops->resources_needed = resources_needed_masked_watchpoint;
16077 ops->works_in_software_mode = works_in_software_mode_masked_watchpoint;
16078 ops->print_it = print_it_masked_watchpoint;
16079 ops->print_one_detail = print_one_detail_masked_watchpoint;
16080 ops->print_mention = print_mention_masked_watchpoint;
16081 ops->print_recreate = print_recreate_masked_watchpoint;
16082
16083 /* Tracepoints. */
16084 ops = &tracepoint_breakpoint_ops;
16085 *ops = base_breakpoint_ops;
16086 ops->re_set = tracepoint_re_set;
16087 ops->breakpoint_hit = tracepoint_breakpoint_hit;
16088 ops->print_one_detail = tracepoint_print_one_detail;
16089 ops->print_mention = tracepoint_print_mention;
16090 ops->print_recreate = tracepoint_print_recreate;
16091 ops->create_sals_from_address = tracepoint_create_sals_from_address;
16092 ops->create_breakpoints_sal = tracepoint_create_breakpoints_sal;
16093 ops->decode_linespec = tracepoint_decode_linespec;
16094
16095 /* Probe tracepoints. */
16096 ops = &tracepoint_probe_breakpoint_ops;
16097 *ops = tracepoint_breakpoint_ops;
16098 ops->create_sals_from_address = tracepoint_probe_create_sals_from_address;
16099 ops->decode_linespec = tracepoint_probe_decode_linespec;
16100
16101 /* Static tracepoints with marker (`-m'). */
16102 ops = &strace_marker_breakpoint_ops;
16103 *ops = tracepoint_breakpoint_ops;
16104 ops->create_sals_from_address = strace_marker_create_sals_from_address;
16105 ops->create_breakpoints_sal = strace_marker_create_breakpoints_sal;
16106 ops->decode_linespec = strace_marker_decode_linespec;
16107
16108 /* Fork catchpoints. */
16109 ops = &catch_fork_breakpoint_ops;
16110 *ops = base_breakpoint_ops;
16111 ops->insert_location = insert_catch_fork;
16112 ops->remove_location = remove_catch_fork;
16113 ops->breakpoint_hit = breakpoint_hit_catch_fork;
16114 ops->print_it = print_it_catch_fork;
16115 ops->print_one = print_one_catch_fork;
16116 ops->print_mention = print_mention_catch_fork;
16117 ops->print_recreate = print_recreate_catch_fork;
16118
16119 /* Vfork catchpoints. */
16120 ops = &catch_vfork_breakpoint_ops;
16121 *ops = base_breakpoint_ops;
16122 ops->insert_location = insert_catch_vfork;
16123 ops->remove_location = remove_catch_vfork;
16124 ops->breakpoint_hit = breakpoint_hit_catch_vfork;
16125 ops->print_it = print_it_catch_vfork;
16126 ops->print_one = print_one_catch_vfork;
16127 ops->print_mention = print_mention_catch_vfork;
16128 ops->print_recreate = print_recreate_catch_vfork;
16129
16130 /* Exec catchpoints. */
16131 ops = &catch_exec_breakpoint_ops;
16132 *ops = base_breakpoint_ops;
16133 ops->dtor = dtor_catch_exec;
16134 ops->insert_location = insert_catch_exec;
16135 ops->remove_location = remove_catch_exec;
16136 ops->breakpoint_hit = breakpoint_hit_catch_exec;
16137 ops->print_it = print_it_catch_exec;
16138 ops->print_one = print_one_catch_exec;
16139 ops->print_mention = print_mention_catch_exec;
16140 ops->print_recreate = print_recreate_catch_exec;
16141
16142 /* Syscall catchpoints. */
16143 ops = &catch_syscall_breakpoint_ops;
16144 *ops = base_breakpoint_ops;
16145 ops->dtor = dtor_catch_syscall;
16146 ops->insert_location = insert_catch_syscall;
16147 ops->remove_location = remove_catch_syscall;
16148 ops->breakpoint_hit = breakpoint_hit_catch_syscall;
16149 ops->print_it = print_it_catch_syscall;
16150 ops->print_one = print_one_catch_syscall;
16151 ops->print_mention = print_mention_catch_syscall;
16152 ops->print_recreate = print_recreate_catch_syscall;
16153
16154 /* Solib-related catchpoints. */
16155 ops = &catch_solib_breakpoint_ops;
16156 *ops = base_breakpoint_ops;
16157 ops->dtor = dtor_catch_solib;
16158 ops->insert_location = insert_catch_solib;
16159 ops->remove_location = remove_catch_solib;
16160 ops->breakpoint_hit = breakpoint_hit_catch_solib;
16161 ops->check_status = check_status_catch_solib;
16162 ops->print_it = print_it_catch_solib;
16163 ops->print_one = print_one_catch_solib;
16164 ops->print_mention = print_mention_catch_solib;
16165 ops->print_recreate = print_recreate_catch_solib;
16166
16167 ops = &dprintf_breakpoint_ops;
16168 *ops = bkpt_base_breakpoint_ops;
16169 ops->re_set = dprintf_re_set;
16170 ops->resources_needed = bkpt_resources_needed;
16171 ops->print_it = bkpt_print_it;
16172 ops->print_mention = bkpt_print_mention;
16173 ops->print_recreate = dprintf_print_recreate;
16174 ops->after_condition_true = dprintf_after_condition_true;
16175 }
16176
16177 /* Chain containing all defined "enable breakpoint" subcommands. */
16178
16179 static struct cmd_list_element *enablebreaklist = NULL;
16180
16181 void
16182 _initialize_breakpoint (void)
16183 {
16184 struct cmd_list_element *c;
16185
16186 initialize_breakpoint_ops ();
16187
16188 observer_attach_solib_unloaded (disable_breakpoints_in_unloaded_shlib);
16189 observer_attach_free_objfile (disable_breakpoints_in_freed_objfile);
16190 observer_attach_inferior_exit (clear_syscall_counts);
16191 observer_attach_memory_changed (invalidate_bp_value_on_memory_change);
16192
16193 breakpoint_objfile_key
16194 = register_objfile_data_with_cleanup (NULL, free_breakpoint_probes);
16195
16196 catch_syscall_inferior_data
16197 = register_inferior_data_with_cleanup (NULL,
16198 catch_syscall_inferior_data_cleanup);
16199
16200 breakpoint_chain = 0;
16201 /* Don't bother to call set_breakpoint_count. $bpnum isn't useful
16202 before a breakpoint is set. */
16203 breakpoint_count = 0;
16204
16205 tracepoint_count = 0;
16206
16207 add_com ("ignore", class_breakpoint, ignore_command, _("\
16208 Set ignore-count of breakpoint number N to COUNT.\n\
16209 Usage is `ignore N COUNT'."));
16210 if (xdb_commands)
16211 add_com_alias ("bc", "ignore", class_breakpoint, 1);
16212
16213 add_com ("commands", class_breakpoint, commands_command, _("\
16214 Set commands to be executed when a breakpoint is hit.\n\
16215 Give breakpoint number as argument after \"commands\".\n\
16216 With no argument, the targeted breakpoint is the last one set.\n\
16217 The commands themselves follow starting on the next line.\n\
16218 Type a line containing \"end\" to indicate the end of them.\n\
16219 Give \"silent\" as the first line to make the breakpoint silent;\n\
16220 then no output is printed when it is hit, except what the commands print."));
16221
16222 c = add_com ("condition", class_breakpoint, condition_command, _("\
16223 Specify breakpoint number N to break only if COND is true.\n\
16224 Usage is `condition N COND', where N is an integer and COND is an\n\
16225 expression to be evaluated whenever breakpoint N is reached."));
16226 set_cmd_completer (c, condition_completer);
16227
16228 c = add_com ("tbreak", class_breakpoint, tbreak_command, _("\
16229 Set a temporary breakpoint.\n\
16230 Like \"break\" except the breakpoint is only temporary,\n\
16231 so it will be deleted when hit. Equivalent to \"break\" followed\n\
16232 by using \"enable delete\" on the breakpoint number.\n\
16233 \n"
16234 BREAK_ARGS_HELP ("tbreak")));
16235 set_cmd_completer (c, location_completer);
16236
16237 c = add_com ("hbreak", class_breakpoint, hbreak_command, _("\
16238 Set a hardware assisted breakpoint.\n\
16239 Like \"break\" except the breakpoint requires hardware support,\n\
16240 some target hardware may not have this support.\n\
16241 \n"
16242 BREAK_ARGS_HELP ("hbreak")));
16243 set_cmd_completer (c, location_completer);
16244
16245 c = add_com ("thbreak", class_breakpoint, thbreak_command, _("\
16246 Set a temporary hardware assisted breakpoint.\n\
16247 Like \"hbreak\" except the breakpoint is only temporary,\n\
16248 so it will be deleted when hit.\n\
16249 \n"
16250 BREAK_ARGS_HELP ("thbreak")));
16251 set_cmd_completer (c, location_completer);
16252
16253 add_prefix_cmd ("enable", class_breakpoint, enable_command, _("\
16254 Enable some breakpoints.\n\
16255 Give breakpoint numbers (separated by spaces) as arguments.\n\
16256 With no subcommand, breakpoints are enabled until you command otherwise.\n\
16257 This is used to cancel the effect of the \"disable\" command.\n\
16258 With a subcommand you can enable temporarily."),
16259 &enablelist, "enable ", 1, &cmdlist);
16260 if (xdb_commands)
16261 add_com ("ab", class_breakpoint, enable_command, _("\
16262 Enable some breakpoints.\n\
16263 Give breakpoint numbers (separated by spaces) as arguments.\n\
16264 With no subcommand, breakpoints are enabled until you command otherwise.\n\
16265 This is used to cancel the effect of the \"disable\" command.\n\
16266 With a subcommand you can enable temporarily."));
16267
16268 add_com_alias ("en", "enable", class_breakpoint, 1);
16269
16270 add_prefix_cmd ("breakpoints", class_breakpoint, enable_command, _("\
16271 Enable some breakpoints.\n\
16272 Give breakpoint numbers (separated by spaces) as arguments.\n\
16273 This is used to cancel the effect of the \"disable\" command.\n\
16274 May be abbreviated to simply \"enable\".\n"),
16275 &enablebreaklist, "enable breakpoints ", 1, &enablelist);
16276
16277 add_cmd ("once", no_class, enable_once_command, _("\
16278 Enable breakpoints for one hit. Give breakpoint numbers.\n\
16279 If a breakpoint is hit while enabled in this fashion, it becomes disabled."),
16280 &enablebreaklist);
16281
16282 add_cmd ("delete", no_class, enable_delete_command, _("\
16283 Enable breakpoints and delete when hit. Give breakpoint numbers.\n\
16284 If a breakpoint is hit while enabled in this fashion, it is deleted."),
16285 &enablebreaklist);
16286
16287 add_cmd ("count", no_class, enable_count_command, _("\
16288 Enable breakpoints for COUNT hits. Give count and then breakpoint numbers.\n\
16289 If a breakpoint is hit while enabled in this fashion,\n\
16290 the count is decremented; when it reaches zero, the breakpoint is disabled."),
16291 &enablebreaklist);
16292
16293 add_cmd ("delete", no_class, enable_delete_command, _("\
16294 Enable breakpoints and delete when hit. Give breakpoint numbers.\n\
16295 If a breakpoint is hit while enabled in this fashion, it is deleted."),
16296 &enablelist);
16297
16298 add_cmd ("once", no_class, enable_once_command, _("\
16299 Enable breakpoints for one hit. Give breakpoint numbers.\n\
16300 If a breakpoint is hit while enabled in this fashion, it becomes disabled."),
16301 &enablelist);
16302
16303 add_cmd ("count", no_class, enable_count_command, _("\
16304 Enable breakpoints for COUNT hits. Give count and then breakpoint numbers.\n\
16305 If a breakpoint is hit while enabled in this fashion,\n\
16306 the count is decremented; when it reaches zero, the breakpoint is disabled."),
16307 &enablelist);
16308
16309 add_prefix_cmd ("disable", class_breakpoint, disable_command, _("\
16310 Disable some breakpoints.\n\
16311 Arguments are breakpoint numbers with spaces in between.\n\
16312 To disable all breakpoints, give no argument.\n\
16313 A disabled breakpoint is not forgotten, but has no effect until re-enabled."),
16314 &disablelist, "disable ", 1, &cmdlist);
16315 add_com_alias ("dis", "disable", class_breakpoint, 1);
16316 add_com_alias ("disa", "disable", class_breakpoint, 1);
16317 if (xdb_commands)
16318 add_com ("sb", class_breakpoint, disable_command, _("\
16319 Disable some breakpoints.\n\
16320 Arguments are breakpoint numbers with spaces in between.\n\
16321 To disable all breakpoints, give no argument.\n\
16322 A disabled breakpoint is not forgotten, but has no effect until re-enabled."));
16323
16324 add_cmd ("breakpoints", class_alias, disable_command, _("\
16325 Disable some breakpoints.\n\
16326 Arguments are breakpoint numbers with spaces in between.\n\
16327 To disable all breakpoints, give no argument.\n\
16328 A disabled breakpoint is not forgotten, but has no effect until re-enabled.\n\
16329 This command may be abbreviated \"disable\"."),
16330 &disablelist);
16331
16332 add_prefix_cmd ("delete", class_breakpoint, delete_command, _("\
16333 Delete some breakpoints or auto-display expressions.\n\
16334 Arguments are breakpoint numbers with spaces in between.\n\
16335 To delete all breakpoints, give no argument.\n\
16336 \n\
16337 Also a prefix command for deletion of other GDB objects.\n\
16338 The \"unset\" command is also an alias for \"delete\"."),
16339 &deletelist, "delete ", 1, &cmdlist);
16340 add_com_alias ("d", "delete", class_breakpoint, 1);
16341 add_com_alias ("del", "delete", class_breakpoint, 1);
16342 if (xdb_commands)
16343 add_com ("db", class_breakpoint, delete_command, _("\
16344 Delete some breakpoints.\n\
16345 Arguments are breakpoint numbers with spaces in between.\n\
16346 To delete all breakpoints, give no argument.\n"));
16347
16348 add_cmd ("breakpoints", class_alias, delete_command, _("\
16349 Delete some breakpoints or auto-display expressions.\n\
16350 Arguments are breakpoint numbers with spaces in between.\n\
16351 To delete all breakpoints, give no argument.\n\
16352 This command may be abbreviated \"delete\"."),
16353 &deletelist);
16354
16355 add_com ("clear", class_breakpoint, clear_command, _("\
16356 Clear breakpoint at specified line or function.\n\
16357 Argument may be line number, function name, or \"*\" and an address.\n\
16358 If line number is specified, all breakpoints in that line are cleared.\n\
16359 If function is specified, breakpoints at beginning of function are cleared.\n\
16360 If an address is specified, breakpoints at that address are cleared.\n\
16361 \n\
16362 With no argument, clears all breakpoints in the line that the selected frame\n\
16363 is executing in.\n\
16364 \n\
16365 See also the \"delete\" command which clears breakpoints by number."));
16366 add_com_alias ("cl", "clear", class_breakpoint, 1);
16367
16368 c = add_com ("break", class_breakpoint, break_command, _("\
16369 Set breakpoint at specified line or function.\n"
16370 BREAK_ARGS_HELP ("break")));
16371 set_cmd_completer (c, location_completer);
16372
16373 add_com_alias ("b", "break", class_run, 1);
16374 add_com_alias ("br", "break", class_run, 1);
16375 add_com_alias ("bre", "break", class_run, 1);
16376 add_com_alias ("brea", "break", class_run, 1);
16377
16378 if (xdb_commands)
16379 add_com_alias ("ba", "break", class_breakpoint, 1);
16380
16381 if (dbx_commands)
16382 {
16383 add_abbrev_prefix_cmd ("stop", class_breakpoint, stop_command, _("\
16384 Break in function/address or break at a line in the current file."),
16385 &stoplist, "stop ", 1, &cmdlist);
16386 add_cmd ("in", class_breakpoint, stopin_command,
16387 _("Break in function or address."), &stoplist);
16388 add_cmd ("at", class_breakpoint, stopat_command,
16389 _("Break at a line in the current file."), &stoplist);
16390 add_com ("status", class_info, breakpoints_info, _("\
16391 Status of user-settable breakpoints, or breakpoint number NUMBER.\n\
16392 The \"Type\" column indicates one of:\n\
16393 \tbreakpoint - normal breakpoint\n\
16394 \twatchpoint - watchpoint\n\
16395 The \"Disp\" column contains one of \"keep\", \"del\", or \"dis\" to indicate\n\
16396 the disposition of the breakpoint after it gets hit. \"dis\" means that the\n\
16397 breakpoint will be disabled. The \"Address\" and \"What\" columns indicate the\n\
16398 address and file/line number respectively.\n\
16399 \n\
16400 Convenience variable \"$_\" and default examine address for \"x\"\n\
16401 are set to the address of the last breakpoint listed unless the command\n\
16402 is prefixed with \"server \".\n\n\
16403 Convenience variable \"$bpnum\" contains the number of the last\n\
16404 breakpoint set."));
16405 }
16406
16407 add_info ("breakpoints", breakpoints_info, _("\
16408 Status of specified breakpoints (all user-settable breakpoints if no argument).\n\
16409 The \"Type\" column indicates one of:\n\
16410 \tbreakpoint - normal breakpoint\n\
16411 \twatchpoint - watchpoint\n\
16412 The \"Disp\" column contains one of \"keep\", \"del\", or \"dis\" to indicate\n\
16413 the disposition of the breakpoint after it gets hit. \"dis\" means that the\n\
16414 breakpoint will be disabled. The \"Address\" and \"What\" columns indicate the\n\
16415 address and file/line number respectively.\n\
16416 \n\
16417 Convenience variable \"$_\" and default examine address for \"x\"\n\
16418 are set to the address of the last breakpoint listed unless the command\n\
16419 is prefixed with \"server \".\n\n\
16420 Convenience variable \"$bpnum\" contains the number of the last\n\
16421 breakpoint set."));
16422
16423 add_info_alias ("b", "breakpoints", 1);
16424
16425 if (xdb_commands)
16426 add_com ("lb", class_breakpoint, breakpoints_info, _("\
16427 Status of user-settable breakpoints, or breakpoint number NUMBER.\n\
16428 The \"Type\" column indicates one of:\n\
16429 \tbreakpoint - normal breakpoint\n\
16430 \twatchpoint - watchpoint\n\
16431 The \"Disp\" column contains one of \"keep\", \"del\", or \"dis\" to indicate\n\
16432 the disposition of the breakpoint after it gets hit. \"dis\" means that the\n\
16433 breakpoint will be disabled. The \"Address\" and \"What\" columns indicate the\n\
16434 address and file/line number respectively.\n\
16435 \n\
16436 Convenience variable \"$_\" and default examine address for \"x\"\n\
16437 are set to the address of the last breakpoint listed unless the command\n\
16438 is prefixed with \"server \".\n\n\
16439 Convenience variable \"$bpnum\" contains the number of the last\n\
16440 breakpoint set."));
16441
16442 add_cmd ("breakpoints", class_maintenance, maintenance_info_breakpoints, _("\
16443 Status of all breakpoints, or breakpoint number NUMBER.\n\
16444 The \"Type\" column indicates one of:\n\
16445 \tbreakpoint - normal breakpoint\n\
16446 \twatchpoint - watchpoint\n\
16447 \tlongjmp - internal breakpoint used to step through longjmp()\n\
16448 \tlongjmp resume - internal breakpoint at the target of longjmp()\n\
16449 \tuntil - internal breakpoint used by the \"until\" command\n\
16450 \tfinish - internal breakpoint used by the \"finish\" command\n\
16451 The \"Disp\" column contains one of \"keep\", \"del\", or \"dis\" to indicate\n\
16452 the disposition of the breakpoint after it gets hit. \"dis\" means that the\n\
16453 breakpoint will be disabled. The \"Address\" and \"What\" columns indicate the\n\
16454 address and file/line number respectively.\n\
16455 \n\
16456 Convenience variable \"$_\" and default examine address for \"x\"\n\
16457 are set to the address of the last breakpoint listed unless the command\n\
16458 is prefixed with \"server \".\n\n\
16459 Convenience variable \"$bpnum\" contains the number of the last\n\
16460 breakpoint set."),
16461 &maintenanceinfolist);
16462
16463 add_prefix_cmd ("catch", class_breakpoint, catch_command, _("\
16464 Set catchpoints to catch events."),
16465 &catch_cmdlist, "catch ",
16466 0/*allow-unknown*/, &cmdlist);
16467
16468 add_prefix_cmd ("tcatch", class_breakpoint, tcatch_command, _("\
16469 Set temporary catchpoints to catch events."),
16470 &tcatch_cmdlist, "tcatch ",
16471 0/*allow-unknown*/, &cmdlist);
16472
16473 add_catch_command ("fork", _("Catch calls to fork."),
16474 catch_fork_command_1,
16475 NULL,
16476 (void *) (uintptr_t) catch_fork_permanent,
16477 (void *) (uintptr_t) catch_fork_temporary);
16478 add_catch_command ("vfork", _("Catch calls to vfork."),
16479 catch_fork_command_1,
16480 NULL,
16481 (void *) (uintptr_t) catch_vfork_permanent,
16482 (void *) (uintptr_t) catch_vfork_temporary);
16483 add_catch_command ("exec", _("Catch calls to exec."),
16484 catch_exec_command_1,
16485 NULL,
16486 CATCH_PERMANENT,
16487 CATCH_TEMPORARY);
16488 add_catch_command ("load", _("Catch loads of shared libraries.\n\
16489 Usage: catch load [REGEX]\n\
16490 If REGEX is given, only stop for libraries matching the regular expression."),
16491 catch_load_command_1,
16492 NULL,
16493 CATCH_PERMANENT,
16494 CATCH_TEMPORARY);
16495 add_catch_command ("unload", _("Catch unloads of shared libraries.\n\
16496 Usage: catch unload [REGEX]\n\
16497 If REGEX is given, only stop for libraries matching the regular expression."),
16498 catch_unload_command_1,
16499 NULL,
16500 CATCH_PERMANENT,
16501 CATCH_TEMPORARY);
16502 add_catch_command ("syscall", _("\
16503 Catch system calls by their names and/or numbers.\n\
16504 Arguments say which system calls to catch. If no arguments\n\
16505 are given, every system call will be caught.\n\
16506 Arguments, if given, should be one or more system call names\n\
16507 (if your system supports that), or system call numbers."),
16508 catch_syscall_command_1,
16509 catch_syscall_completer,
16510 CATCH_PERMANENT,
16511 CATCH_TEMPORARY);
16512
16513 c = add_com ("watch", class_breakpoint, watch_command, _("\
16514 Set a watchpoint for an expression.\n\
16515 Usage: watch [-l|-location] EXPRESSION\n\
16516 A watchpoint stops execution of your program whenever the value of\n\
16517 an expression changes.\n\
16518 If -l or -location is given, this evaluates EXPRESSION and watches\n\
16519 the memory to which it refers."));
16520 set_cmd_completer (c, expression_completer);
16521
16522 c = add_com ("rwatch", class_breakpoint, rwatch_command, _("\
16523 Set a read watchpoint for an expression.\n\
16524 Usage: rwatch [-l|-location] EXPRESSION\n\
16525 A watchpoint stops execution of your program whenever the value of\n\
16526 an expression is read.\n\
16527 If -l or -location is given, this evaluates EXPRESSION and watches\n\
16528 the memory to which it refers."));
16529 set_cmd_completer (c, expression_completer);
16530
16531 c = add_com ("awatch", class_breakpoint, awatch_command, _("\
16532 Set a watchpoint for an expression.\n\
16533 Usage: awatch [-l|-location] EXPRESSION\n\
16534 A watchpoint stops execution of your program whenever the value of\n\
16535 an expression is either read or written.\n\
16536 If -l or -location is given, this evaluates EXPRESSION and watches\n\
16537 the memory to which it refers."));
16538 set_cmd_completer (c, expression_completer);
16539
16540 add_info ("watchpoints", watchpoints_info, _("\
16541 Status of specified watchpoints (all watchpoints if no argument)."));
16542
16543 /* XXX: cagney/2005-02-23: This should be a boolean, and should
16544 respond to changes - contrary to the description. */
16545 add_setshow_zinteger_cmd ("can-use-hw-watchpoints", class_support,
16546 &can_use_hw_watchpoints, _("\
16547 Set debugger's willingness to use watchpoint hardware."), _("\
16548 Show debugger's willingness to use watchpoint hardware."), _("\
16549 If zero, gdb will not use hardware for new watchpoints, even if\n\
16550 such is available. (However, any hardware watchpoints that were\n\
16551 created before setting this to nonzero, will continue to use watchpoint\n\
16552 hardware.)"),
16553 NULL,
16554 show_can_use_hw_watchpoints,
16555 &setlist, &showlist);
16556
16557 can_use_hw_watchpoints = 1;
16558
16559 /* Tracepoint manipulation commands. */
16560
16561 c = add_com ("trace", class_breakpoint, trace_command, _("\
16562 Set a tracepoint at specified line or function.\n\
16563 \n"
16564 BREAK_ARGS_HELP ("trace") "\n\
16565 Do \"help tracepoints\" for info on other tracepoint commands."));
16566 set_cmd_completer (c, location_completer);
16567
16568 add_com_alias ("tp", "trace", class_alias, 0);
16569 add_com_alias ("tr", "trace", class_alias, 1);
16570 add_com_alias ("tra", "trace", class_alias, 1);
16571 add_com_alias ("trac", "trace", class_alias, 1);
16572
16573 c = add_com ("ftrace", class_breakpoint, ftrace_command, _("\
16574 Set a fast tracepoint at specified line or function.\n\
16575 \n"
16576 BREAK_ARGS_HELP ("ftrace") "\n\
16577 Do \"help tracepoints\" for info on other tracepoint commands."));
16578 set_cmd_completer (c, location_completer);
16579
16580 c = add_com ("strace", class_breakpoint, strace_command, _("\
16581 Set a static tracepoint at specified line, function or marker.\n\
16582 \n\
16583 strace [LOCATION] [if CONDITION]\n\
16584 LOCATION may be a line number, function name, \"*\" and an address,\n\
16585 or -m MARKER_ID.\n\
16586 If a line number is specified, probe the marker at start of code\n\
16587 for that line. If a function is specified, probe the marker at start\n\
16588 of code for that function. If an address is specified, probe the marker\n\
16589 at that exact address. If a marker id is specified, probe the marker\n\
16590 with that name. With no LOCATION, uses current execution address of\n\
16591 the selected stack frame.\n\
16592 Static tracepoints accept an extra collect action -- ``collect $_sdata''.\n\
16593 This collects arbitrary user data passed in the probe point call to the\n\
16594 tracing library. You can inspect it when analyzing the trace buffer,\n\
16595 by printing the $_sdata variable like any other convenience variable.\n\
16596 \n\
16597 CONDITION is a boolean expression.\n\
16598 \n\
16599 Multiple tracepoints at one place are permitted, and useful if their\n\
16600 conditions are different.\n\
16601 \n\
16602 Do \"help breakpoints\" for info on other commands dealing with breakpoints.\n\
16603 Do \"help tracepoints\" for info on other tracepoint commands."));
16604 set_cmd_completer (c, location_completer);
16605
16606 add_info ("tracepoints", tracepoints_info, _("\
16607 Status of specified tracepoints (all tracepoints if no argument).\n\
16608 Convenience variable \"$tpnum\" contains the number of the\n\
16609 last tracepoint set."));
16610
16611 add_info_alias ("tp", "tracepoints", 1);
16612
16613 add_cmd ("tracepoints", class_trace, delete_trace_command, _("\
16614 Delete specified tracepoints.\n\
16615 Arguments are tracepoint numbers, separated by spaces.\n\
16616 No argument means delete all tracepoints."),
16617 &deletelist);
16618 add_alias_cmd ("tr", "tracepoints", class_trace, 1, &deletelist);
16619
16620 c = add_cmd ("tracepoints", class_trace, disable_trace_command, _("\
16621 Disable specified tracepoints.\n\
16622 Arguments are tracepoint numbers, separated by spaces.\n\
16623 No argument means disable all tracepoints."),
16624 &disablelist);
16625 deprecate_cmd (c, "disable");
16626
16627 c = add_cmd ("tracepoints", class_trace, enable_trace_command, _("\
16628 Enable specified tracepoints.\n\
16629 Arguments are tracepoint numbers, separated by spaces.\n\
16630 No argument means enable all tracepoints."),
16631 &enablelist);
16632 deprecate_cmd (c, "enable");
16633
16634 add_com ("passcount", class_trace, trace_pass_command, _("\
16635 Set the passcount for a tracepoint.\n\
16636 The trace will end when the tracepoint has been passed 'count' times.\n\
16637 Usage: passcount COUNT TPNUM, where TPNUM may also be \"all\";\n\
16638 if TPNUM is omitted, passcount refers to the last tracepoint defined."));
16639
16640 add_prefix_cmd ("save", class_breakpoint, save_command,
16641 _("Save breakpoint definitions as a script."),
16642 &save_cmdlist, "save ",
16643 0/*allow-unknown*/, &cmdlist);
16644
16645 c = add_cmd ("breakpoints", class_breakpoint, save_breakpoints_command, _("\
16646 Save current breakpoint definitions as a script.\n\
16647 This includes all types of breakpoints (breakpoints, watchpoints,\n\
16648 catchpoints, tracepoints). Use the 'source' command in another debug\n\
16649 session to restore them."),
16650 &save_cmdlist);
16651 set_cmd_completer (c, filename_completer);
16652
16653 c = add_cmd ("tracepoints", class_trace, save_tracepoints_command, _("\
16654 Save current tracepoint definitions as a script.\n\
16655 Use the 'source' command in another debug session to restore them."),
16656 &save_cmdlist);
16657 set_cmd_completer (c, filename_completer);
16658
16659 c = add_com_alias ("save-tracepoints", "save tracepoints", class_trace, 0);
16660 deprecate_cmd (c, "save tracepoints");
16661
16662 add_prefix_cmd ("breakpoint", class_maintenance, set_breakpoint_cmd, _("\
16663 Breakpoint specific settings\n\
16664 Configure various breakpoint-specific variables such as\n\
16665 pending breakpoint behavior"),
16666 &breakpoint_set_cmdlist, "set breakpoint ",
16667 0/*allow-unknown*/, &setlist);
16668 add_prefix_cmd ("breakpoint", class_maintenance, show_breakpoint_cmd, _("\
16669 Breakpoint specific settings\n\
16670 Configure various breakpoint-specific variables such as\n\
16671 pending breakpoint behavior"),
16672 &breakpoint_show_cmdlist, "show breakpoint ",
16673 0/*allow-unknown*/, &showlist);
16674
16675 add_setshow_auto_boolean_cmd ("pending", no_class,
16676 &pending_break_support, _("\
16677 Set debugger's behavior regarding pending breakpoints."), _("\
16678 Show debugger's behavior regarding pending breakpoints."), _("\
16679 If on, an unrecognized breakpoint location will cause gdb to create a\n\
16680 pending breakpoint. If off, an unrecognized breakpoint location results in\n\
16681 an error. If auto, an unrecognized breakpoint location results in a\n\
16682 user-query to see if a pending breakpoint should be created."),
16683 NULL,
16684 show_pending_break_support,
16685 &breakpoint_set_cmdlist,
16686 &breakpoint_show_cmdlist);
16687
16688 pending_break_support = AUTO_BOOLEAN_AUTO;
16689
16690 add_setshow_boolean_cmd ("auto-hw", no_class,
16691 &automatic_hardware_breakpoints, _("\
16692 Set automatic usage of hardware breakpoints."), _("\
16693 Show automatic usage of hardware breakpoints."), _("\
16694 If set, the debugger will automatically use hardware breakpoints for\n\
16695 breakpoints set with \"break\" but falling in read-only memory. If not set,\n\
16696 a warning will be emitted for such breakpoints."),
16697 NULL,
16698 show_automatic_hardware_breakpoints,
16699 &breakpoint_set_cmdlist,
16700 &breakpoint_show_cmdlist);
16701
16702 add_setshow_auto_boolean_cmd ("always-inserted", class_support,
16703 &always_inserted_mode, _("\
16704 Set mode for inserting breakpoints."), _("\
16705 Show mode for inserting breakpoints."), _("\
16706 When this mode is off, breakpoints are inserted in inferior when it is\n\
16707 resumed, and removed when execution stops. When this mode is on,\n\
16708 breakpoints are inserted immediately and removed only when the user\n\
16709 deletes the breakpoint. When this mode is auto (which is the default),\n\
16710 the behaviour depends on the non-stop setting (see help set non-stop).\n\
16711 In this case, if gdb is controlling the inferior in non-stop mode, gdb\n\
16712 behaves as if always-inserted mode is on; if gdb is controlling the\n\
16713 inferior in all-stop mode, gdb behaves as if always-inserted mode is off."),
16714 NULL,
16715 &show_always_inserted_mode,
16716 &breakpoint_set_cmdlist,
16717 &breakpoint_show_cmdlist);
16718
16719 add_setshow_enum_cmd ("condition-evaluation", class_breakpoint,
16720 condition_evaluation_enums,
16721 &condition_evaluation_mode_1, _("\
16722 Set mode of breakpoint condition evaluation."), _("\
16723 Show mode of breakpoint condition evaluation."), _("\
16724 When this is set to \"host\", breakpoint conditions will be\n\
16725 evaluated on the host's side by GDB. When it is set to \"target\",\n\
16726 breakpoint conditions will be downloaded to the target (if the target\n\
16727 supports such feature) and conditions will be evaluated on the target's side.\n\
16728 If this is set to \"auto\" (default), this will be automatically set to\n\
16729 \"target\" if it supports condition evaluation, otherwise it will\n\
16730 be set to \"gdb\""),
16731 &set_condition_evaluation_mode,
16732 &show_condition_evaluation_mode,
16733 &breakpoint_set_cmdlist,
16734 &breakpoint_show_cmdlist);
16735
16736 add_com ("break-range", class_breakpoint, break_range_command, _("\
16737 Set a breakpoint for an address range.\n\
16738 break-range START-LOCATION, END-LOCATION\n\
16739 where START-LOCATION and END-LOCATION can be one of the following:\n\
16740 LINENUM, for that line in the current file,\n\
16741 FILE:LINENUM, for that line in that file,\n\
16742 +OFFSET, for that number of lines after the current line\n\
16743 or the start of the range\n\
16744 FUNCTION, for the first line in that function,\n\
16745 FILE:FUNCTION, to distinguish among like-named static functions.\n\
16746 *ADDRESS, for the instruction at that address.\n\
16747 \n\
16748 The breakpoint will stop execution of the inferior whenever it executes\n\
16749 an instruction at any address within the [START-LOCATION, END-LOCATION]\n\
16750 range (including START-LOCATION and END-LOCATION)."));
16751
16752 c = add_com ("dprintf", class_breakpoint, dprintf_command, _("\
16753 Set a dynamic printf at specified line or function.\n\
16754 dprintf location,format string,arg1,arg2,...\n\
16755 location may be a line number, function name, or \"*\" and an address.\n\
16756 If a line number is specified, break at start of code for that line.\n\
16757 If a function is specified, break at start of code for that function."));
16758 set_cmd_completer (c, location_completer);
16759
16760 add_setshow_enum_cmd ("dprintf-style", class_support,
16761 dprintf_style_enums, &dprintf_style, _("\
16762 Set the style of usage for dynamic printf."), _("\
16763 Show the style of usage for dynamic printf."), _("\
16764 This setting chooses how GDB will do a dynamic printf.\n\
16765 If the value is \"gdb\", then the printing is done by GDB to its own\n\
16766 console, as with the \"printf\" command.\n\
16767 If the value is \"call\", the print is done by calling a function in your\n\
16768 program; by default printf(), but you can choose a different function or\n\
16769 output stream by setting dprintf-function and dprintf-channel."),
16770 update_dprintf_commands, NULL,
16771 &setlist, &showlist);
16772
16773 dprintf_function = xstrdup ("printf");
16774 add_setshow_string_cmd ("dprintf-function", class_support,
16775 &dprintf_function, _("\
16776 Set the function to use for dynamic printf"), _("\
16777 Show the function to use for dynamic printf"), NULL,
16778 update_dprintf_commands, NULL,
16779 &setlist, &showlist);
16780
16781 dprintf_channel = xstrdup ("");
16782 add_setshow_string_cmd ("dprintf-channel", class_support,
16783 &dprintf_channel, _("\
16784 Set the channel to use for dynamic printf"), _("\
16785 Show the channel to use for dynamic printf"), NULL,
16786 update_dprintf_commands, NULL,
16787 &setlist, &showlist);
16788
16789 add_setshow_boolean_cmd ("disconnected-dprintf", no_class,
16790 &disconnected_dprintf, _("\
16791 Set whether dprintf continues after GDB disconnects."), _("\
16792 Show whether dprintf continues after GDB disconnects."), _("\
16793 Use this to let dprintf commands continue to hit and produce output\n\
16794 even if GDB disconnects or detaches from the target."),
16795 NULL,
16796 NULL,
16797 &setlist, &showlist);
16798
16799 add_com ("agent-printf", class_vars, agent_printf_command, _("\
16800 agent-printf \"printf format string\", arg1, arg2, arg3, ..., argn\n\
16801 (target agent only) This is useful for formatted output in user-defined commands."));
16802
16803 automatic_hardware_breakpoints = 1;
16804
16805 observer_attach_about_to_proceed (breakpoint_about_to_proceed);
16806 observer_attach_thread_exit (remove_threaded_breakpoints);
16807 }
This page took 0.489135 seconds and 4 git commands to generate.