Avoid "Invalid parameter passed to C runtime function" warning
[deliverable/binutils-gdb.git] / gdb / breakpoint.c
1 /* Everything about breakpoints, for GDB.
2
3 Copyright (C) 1986-2018 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20 #include "defs.h"
21 #include "arch-utils.h"
22 #include <ctype.h>
23 #include "hashtab.h"
24 #include "symtab.h"
25 #include "frame.h"
26 #include "breakpoint.h"
27 #include "tracepoint.h"
28 #include "gdbtypes.h"
29 #include "expression.h"
30 #include "gdbcore.h"
31 #include "gdbcmd.h"
32 #include "value.h"
33 #include "command.h"
34 #include "inferior.h"
35 #include "infrun.h"
36 #include "gdbthread.h"
37 #include "target.h"
38 #include "language.h"
39 #include "gdb-demangle.h"
40 #include "filenames.h"
41 #include "annotate.h"
42 #include "symfile.h"
43 #include "objfiles.h"
44 #include "source.h"
45 #include "linespec.h"
46 #include "completer.h"
47 #include "ui-out.h"
48 #include "cli/cli-script.h"
49 #include "block.h"
50 #include "solib.h"
51 #include "solist.h"
52 #include "observable.h"
53 #include "memattr.h"
54 #include "ada-lang.h"
55 #include "top.h"
56 #include "valprint.h"
57 #include "jit.h"
58 #include "parser-defs.h"
59 #include "gdb_regex.h"
60 #include "probe.h"
61 #include "cli/cli-utils.h"
62 #include "continuations.h"
63 #include "stack.h"
64 #include "skip.h"
65 #include "ax-gdb.h"
66 #include "dummy-frame.h"
67 #include "interps.h"
68 #include "format.h"
69 #include "thread-fsm.h"
70 #include "tid-parse.h"
71
72 /* readline include files */
73 #include "readline/readline.h"
74 #include "readline/history.h"
75
76 /* readline defines this. */
77 #undef savestring
78
79 #include "mi/mi-common.h"
80 #include "extension.h"
81 #include <algorithm>
82 #include "progspace-and-thread.h"
83 #include "common/array-view.h"
84 #include "common/gdb_optional.h"
85
86 /* Enums for exception-handling support. */
87 enum exception_event_kind
88 {
89 EX_EVENT_THROW,
90 EX_EVENT_RETHROW,
91 EX_EVENT_CATCH
92 };
93
94 /* Prototypes for local functions. */
95
96 static void map_breakpoint_numbers (const char *,
97 gdb::function_view<void (breakpoint *)>);
98
99 static void breakpoint_re_set_default (struct breakpoint *);
100
101 static void
102 create_sals_from_location_default (const struct event_location *location,
103 struct linespec_result *canonical,
104 enum bptype type_wanted);
105
106 static void create_breakpoints_sal_default (struct gdbarch *,
107 struct linespec_result *,
108 gdb::unique_xmalloc_ptr<char>,
109 gdb::unique_xmalloc_ptr<char>,
110 enum bptype,
111 enum bpdisp, int, int,
112 int,
113 const struct breakpoint_ops *,
114 int, int, int, unsigned);
115
116 static std::vector<symtab_and_line> decode_location_default
117 (struct breakpoint *b, const struct event_location *location,
118 struct program_space *search_pspace);
119
120 static int can_use_hardware_watchpoint
121 (const std::vector<value_ref_ptr> &vals);
122
123 static void mention (struct breakpoint *);
124
125 static struct breakpoint *set_raw_breakpoint_without_location (struct gdbarch *,
126 enum bptype,
127 const struct breakpoint_ops *);
128 static struct bp_location *add_location_to_breakpoint (struct breakpoint *,
129 const struct symtab_and_line *);
130
131 /* This function is used in gdbtk sources and thus can not be made
132 static. */
133 struct breakpoint *set_raw_breakpoint (struct gdbarch *gdbarch,
134 struct symtab_and_line,
135 enum bptype,
136 const struct breakpoint_ops *);
137
138 static struct breakpoint *
139 momentary_breakpoint_from_master (struct breakpoint *orig,
140 enum bptype type,
141 const struct breakpoint_ops *ops,
142 int loc_enabled);
143
144 static void breakpoint_adjustment_warning (CORE_ADDR, CORE_ADDR, int, int);
145
146 static CORE_ADDR adjust_breakpoint_address (struct gdbarch *gdbarch,
147 CORE_ADDR bpaddr,
148 enum bptype bptype);
149
150 static void describe_other_breakpoints (struct gdbarch *,
151 struct program_space *, CORE_ADDR,
152 struct obj_section *, int);
153
154 static int watchpoint_locations_match (struct bp_location *loc1,
155 struct bp_location *loc2);
156
157 static int breakpoint_location_address_match (struct bp_location *bl,
158 const struct address_space *aspace,
159 CORE_ADDR addr);
160
161 static int breakpoint_location_address_range_overlap (struct bp_location *,
162 const address_space *,
163 CORE_ADDR, int);
164
165 static int remove_breakpoint (struct bp_location *);
166 static int remove_breakpoint_1 (struct bp_location *, enum remove_bp_reason);
167
168 static enum print_stop_action print_bp_stop_message (bpstat bs);
169
170 static int hw_breakpoint_used_count (void);
171
172 static int hw_watchpoint_use_count (struct breakpoint *);
173
174 static int hw_watchpoint_used_count_others (struct breakpoint *except,
175 enum bptype type,
176 int *other_type_used);
177
178 static void enable_breakpoint_disp (struct breakpoint *, enum bpdisp,
179 int count);
180
181 static void free_bp_location (struct bp_location *loc);
182 static void incref_bp_location (struct bp_location *loc);
183 static void decref_bp_location (struct bp_location **loc);
184
185 static struct bp_location *allocate_bp_location (struct breakpoint *bpt);
186
187 /* update_global_location_list's modes of operation wrt to whether to
188 insert locations now. */
189 enum ugll_insert_mode
190 {
191 /* Don't insert any breakpoint locations into the inferior, only
192 remove already-inserted locations that no longer should be
193 inserted. Functions that delete a breakpoint or breakpoints
194 should specify this mode, so that deleting a breakpoint doesn't
195 have the side effect of inserting the locations of other
196 breakpoints that are marked not-inserted, but should_be_inserted
197 returns true on them.
198
199 This behavior is useful is situations close to tear-down -- e.g.,
200 after an exec, while the target still has execution, but
201 breakpoint shadows of the previous executable image should *NOT*
202 be restored to the new image; or before detaching, where the
203 target still has execution and wants to delete breakpoints from
204 GDB's lists, and all breakpoints had already been removed from
205 the inferior. */
206 UGLL_DONT_INSERT,
207
208 /* May insert breakpoints iff breakpoints_should_be_inserted_now
209 claims breakpoints should be inserted now. */
210 UGLL_MAY_INSERT,
211
212 /* Insert locations now, irrespective of
213 breakpoints_should_be_inserted_now. E.g., say all threads are
214 stopped right now, and the user did "continue". We need to
215 insert breakpoints _before_ resuming the target, but
216 UGLL_MAY_INSERT wouldn't insert them, because
217 breakpoints_should_be_inserted_now returns false at that point,
218 as no thread is running yet. */
219 UGLL_INSERT
220 };
221
222 static void update_global_location_list (enum ugll_insert_mode);
223
224 static void update_global_location_list_nothrow (enum ugll_insert_mode);
225
226 static int is_hardware_watchpoint (const struct breakpoint *bpt);
227
228 static void insert_breakpoint_locations (void);
229
230 static void trace_pass_command (const char *, int);
231
232 static void set_tracepoint_count (int num);
233
234 static int is_masked_watchpoint (const struct breakpoint *b);
235
236 static struct bp_location **get_first_locp_gte_addr (CORE_ADDR address);
237
238 /* Return 1 if B refers to a static tracepoint set by marker ("-m"), zero
239 otherwise. */
240
241 static int strace_marker_p (struct breakpoint *b);
242
243 /* The breakpoint_ops structure to be inherited by all breakpoint_ops
244 that are implemented on top of software or hardware breakpoints
245 (user breakpoints, internal and momentary breakpoints, etc.). */
246 static struct breakpoint_ops bkpt_base_breakpoint_ops;
247
248 /* Internal breakpoints class type. */
249 static struct breakpoint_ops internal_breakpoint_ops;
250
251 /* Momentary breakpoints class type. */
252 static struct breakpoint_ops momentary_breakpoint_ops;
253
254 /* The breakpoint_ops structure to be used in regular user created
255 breakpoints. */
256 struct breakpoint_ops bkpt_breakpoint_ops;
257
258 /* Breakpoints set on probes. */
259 static struct breakpoint_ops bkpt_probe_breakpoint_ops;
260
261 /* Dynamic printf class type. */
262 struct breakpoint_ops dprintf_breakpoint_ops;
263
264 /* The style in which to perform a dynamic printf. This is a user
265 option because different output options have different tradeoffs;
266 if GDB does the printing, there is better error handling if there
267 is a problem with any of the arguments, but using an inferior
268 function lets you have special-purpose printers and sending of
269 output to the same place as compiled-in print functions. */
270
271 static const char dprintf_style_gdb[] = "gdb";
272 static const char dprintf_style_call[] = "call";
273 static const char dprintf_style_agent[] = "agent";
274 static const char *const dprintf_style_enums[] = {
275 dprintf_style_gdb,
276 dprintf_style_call,
277 dprintf_style_agent,
278 NULL
279 };
280 static const char *dprintf_style = dprintf_style_gdb;
281
282 /* The function to use for dynamic printf if the preferred style is to
283 call into the inferior. The value is simply a string that is
284 copied into the command, so it can be anything that GDB can
285 evaluate to a callable address, not necessarily a function name. */
286
287 static char *dprintf_function;
288
289 /* The channel to use for dynamic printf if the preferred style is to
290 call into the inferior; if a nonempty string, it will be passed to
291 the call as the first argument, with the format string as the
292 second. As with the dprintf function, this can be anything that
293 GDB knows how to evaluate, so in addition to common choices like
294 "stderr", this could be an app-specific expression like
295 "mystreams[curlogger]". */
296
297 static char *dprintf_channel;
298
299 /* True if dprintf commands should continue to operate even if GDB
300 has disconnected. */
301 static int disconnected_dprintf = 1;
302
303 struct command_line *
304 breakpoint_commands (struct breakpoint *b)
305 {
306 return b->commands ? b->commands.get () : NULL;
307 }
308
309 /* Flag indicating that a command has proceeded the inferior past the
310 current breakpoint. */
311
312 static int breakpoint_proceeded;
313
314 const char *
315 bpdisp_text (enum bpdisp disp)
316 {
317 /* NOTE: the following values are a part of MI protocol and
318 represent values of 'disp' field returned when inferior stops at
319 a breakpoint. */
320 static const char * const bpdisps[] = {"del", "dstp", "dis", "keep"};
321
322 return bpdisps[(int) disp];
323 }
324
325 /* Prototypes for exported functions. */
326 /* If FALSE, gdb will not use hardware support for watchpoints, even
327 if such is available. */
328 static int can_use_hw_watchpoints;
329
330 static void
331 show_can_use_hw_watchpoints (struct ui_file *file, int from_tty,
332 struct cmd_list_element *c,
333 const char *value)
334 {
335 fprintf_filtered (file,
336 _("Debugger's willingness to use "
337 "watchpoint hardware is %s.\n"),
338 value);
339 }
340
341 /* If AUTO_BOOLEAN_FALSE, gdb will not attempt to create pending breakpoints.
342 If AUTO_BOOLEAN_TRUE, gdb will automatically create pending breakpoints
343 for unrecognized breakpoint locations.
344 If AUTO_BOOLEAN_AUTO, gdb will query when breakpoints are unrecognized. */
345 static enum auto_boolean pending_break_support;
346 static void
347 show_pending_break_support (struct ui_file *file, int from_tty,
348 struct cmd_list_element *c,
349 const char *value)
350 {
351 fprintf_filtered (file,
352 _("Debugger's behavior regarding "
353 "pending breakpoints is %s.\n"),
354 value);
355 }
356
357 /* If 1, gdb will automatically use hardware breakpoints for breakpoints
358 set with "break" but falling in read-only memory.
359 If 0, gdb will warn about such breakpoints, but won't automatically
360 use hardware breakpoints. */
361 static int automatic_hardware_breakpoints;
362 static void
363 show_automatic_hardware_breakpoints (struct ui_file *file, int from_tty,
364 struct cmd_list_element *c,
365 const char *value)
366 {
367 fprintf_filtered (file,
368 _("Automatic usage of hardware breakpoints is %s.\n"),
369 value);
370 }
371
372 /* If on, GDB keeps breakpoints inserted even if the inferior is
373 stopped, and immediately inserts any new breakpoints as soon as
374 they're created. If off (default), GDB keeps breakpoints off of
375 the target as long as possible. That is, it delays inserting
376 breakpoints until the next resume, and removes them again when the
377 target fully stops. This is a bit safer in case GDB crashes while
378 processing user input. */
379 static int always_inserted_mode = 0;
380
381 static void
382 show_always_inserted_mode (struct ui_file *file, int from_tty,
383 struct cmd_list_element *c, const char *value)
384 {
385 fprintf_filtered (file, _("Always inserted breakpoint mode is %s.\n"),
386 value);
387 }
388
389 /* See breakpoint.h. */
390
391 int
392 breakpoints_should_be_inserted_now (void)
393 {
394 if (gdbarch_has_global_breakpoints (target_gdbarch ()))
395 {
396 /* If breakpoints are global, they should be inserted even if no
397 thread under gdb's control is running, or even if there are
398 no threads under GDB's control yet. */
399 return 1;
400 }
401 else if (target_has_execution)
402 {
403 struct thread_info *tp;
404
405 if (always_inserted_mode)
406 {
407 /* The user wants breakpoints inserted even if all threads
408 are stopped. */
409 return 1;
410 }
411
412 if (threads_are_executing ())
413 return 1;
414
415 /* Don't remove breakpoints yet if, even though all threads are
416 stopped, we still have events to process. */
417 ALL_NON_EXITED_THREADS (tp)
418 if (tp->resumed
419 && tp->suspend.waitstatus_pending_p)
420 return 1;
421 }
422 return 0;
423 }
424
425 static const char condition_evaluation_both[] = "host or target";
426
427 /* Modes for breakpoint condition evaluation. */
428 static const char condition_evaluation_auto[] = "auto";
429 static const char condition_evaluation_host[] = "host";
430 static const char condition_evaluation_target[] = "target";
431 static const char *const condition_evaluation_enums[] = {
432 condition_evaluation_auto,
433 condition_evaluation_host,
434 condition_evaluation_target,
435 NULL
436 };
437
438 /* Global that holds the current mode for breakpoint condition evaluation. */
439 static const char *condition_evaluation_mode_1 = condition_evaluation_auto;
440
441 /* Global that we use to display information to the user (gets its value from
442 condition_evaluation_mode_1. */
443 static const char *condition_evaluation_mode = condition_evaluation_auto;
444
445 /* Translate a condition evaluation mode MODE into either "host"
446 or "target". This is used mostly to translate from "auto" to the
447 real setting that is being used. It returns the translated
448 evaluation mode. */
449
450 static const char *
451 translate_condition_evaluation_mode (const char *mode)
452 {
453 if (mode == condition_evaluation_auto)
454 {
455 if (target_supports_evaluation_of_breakpoint_conditions ())
456 return condition_evaluation_target;
457 else
458 return condition_evaluation_host;
459 }
460 else
461 return mode;
462 }
463
464 /* Discovers what condition_evaluation_auto translates to. */
465
466 static const char *
467 breakpoint_condition_evaluation_mode (void)
468 {
469 return translate_condition_evaluation_mode (condition_evaluation_mode);
470 }
471
472 /* Return true if GDB should evaluate breakpoint conditions or false
473 otherwise. */
474
475 static int
476 gdb_evaluates_breakpoint_condition_p (void)
477 {
478 const char *mode = breakpoint_condition_evaluation_mode ();
479
480 return (mode == condition_evaluation_host);
481 }
482
483 /* Are we executing breakpoint commands? */
484 static int executing_breakpoint_commands;
485
486 /* Are overlay event breakpoints enabled? */
487 static int overlay_events_enabled;
488
489 /* See description in breakpoint.h. */
490 int target_exact_watchpoints = 0;
491
492 /* Walk the following statement or block through all breakpoints.
493 ALL_BREAKPOINTS_SAFE does so even if the statement deletes the
494 current breakpoint. */
495
496 #define ALL_BREAKPOINTS(B) for (B = breakpoint_chain; B; B = B->next)
497
498 #define ALL_BREAKPOINTS_SAFE(B,TMP) \
499 for (B = breakpoint_chain; \
500 B ? (TMP=B->next, 1): 0; \
501 B = TMP)
502
503 /* Similar iterator for the low-level breakpoints. SAFE variant is
504 not provided so update_global_location_list must not be called
505 while executing the block of ALL_BP_LOCATIONS. */
506
507 #define ALL_BP_LOCATIONS(B,BP_TMP) \
508 for (BP_TMP = bp_locations; \
509 BP_TMP < bp_locations + bp_locations_count && (B = *BP_TMP);\
510 BP_TMP++)
511
512 /* Iterates through locations with address ADDRESS for the currently selected
513 program space. BP_LOCP_TMP points to each object. BP_LOCP_START points
514 to where the loop should start from.
515 If BP_LOCP_START is a NULL pointer, the macro automatically seeks the
516 appropriate location to start with. */
517
518 #define ALL_BP_LOCATIONS_AT_ADDR(BP_LOCP_TMP, BP_LOCP_START, ADDRESS) \
519 for (BP_LOCP_START = BP_LOCP_START == NULL ? get_first_locp_gte_addr (ADDRESS) : BP_LOCP_START, \
520 BP_LOCP_TMP = BP_LOCP_START; \
521 BP_LOCP_START \
522 && (BP_LOCP_TMP < bp_locations + bp_locations_count \
523 && (*BP_LOCP_TMP)->address == ADDRESS); \
524 BP_LOCP_TMP++)
525
526 /* Iterator for tracepoints only. */
527
528 #define ALL_TRACEPOINTS(B) \
529 for (B = breakpoint_chain; B; B = B->next) \
530 if (is_tracepoint (B))
531
532 /* Chains of all breakpoints defined. */
533
534 struct breakpoint *breakpoint_chain;
535
536 /* Array is sorted by bp_locations_compare - primarily by the ADDRESS. */
537
538 static struct bp_location **bp_locations;
539
540 /* Number of elements of BP_LOCATIONS. */
541
542 static unsigned bp_locations_count;
543
544 /* Maximum alignment offset between bp_target_info.PLACED_ADDRESS and
545 ADDRESS for the current elements of BP_LOCATIONS which get a valid
546 result from bp_location_has_shadow. You can use it for roughly
547 limiting the subrange of BP_LOCATIONS to scan for shadow bytes for
548 an address you need to read. */
549
550 static CORE_ADDR bp_locations_placed_address_before_address_max;
551
552 /* Maximum offset plus alignment between bp_target_info.PLACED_ADDRESS
553 + bp_target_info.SHADOW_LEN and ADDRESS for the current elements of
554 BP_LOCATIONS which get a valid result from bp_location_has_shadow.
555 You can use it for roughly limiting the subrange of BP_LOCATIONS to
556 scan for shadow bytes for an address you need to read. */
557
558 static CORE_ADDR bp_locations_shadow_len_after_address_max;
559
560 /* The locations that no longer correspond to any breakpoint, unlinked
561 from the bp_locations array, but for which a hit may still be
562 reported by a target. */
563 static std::vector<bp_location *> moribund_locations;
564
565 /* Number of last breakpoint made. */
566
567 static int breakpoint_count;
568
569 /* The value of `breakpoint_count' before the last command that
570 created breakpoints. If the last (break-like) command created more
571 than one breakpoint, then the difference between BREAKPOINT_COUNT
572 and PREV_BREAKPOINT_COUNT is more than one. */
573 static int prev_breakpoint_count;
574
575 /* Number of last tracepoint made. */
576
577 static int tracepoint_count;
578
579 static struct cmd_list_element *breakpoint_set_cmdlist;
580 static struct cmd_list_element *breakpoint_show_cmdlist;
581 struct cmd_list_element *save_cmdlist;
582
583 /* See declaration at breakpoint.h. */
584
585 struct breakpoint *
586 breakpoint_find_if (int (*func) (struct breakpoint *b, void *d),
587 void *user_data)
588 {
589 struct breakpoint *b = NULL;
590
591 ALL_BREAKPOINTS (b)
592 {
593 if (func (b, user_data) != 0)
594 break;
595 }
596
597 return b;
598 }
599
600 /* Return whether a breakpoint is an active enabled breakpoint. */
601 static int
602 breakpoint_enabled (struct breakpoint *b)
603 {
604 return (b->enable_state == bp_enabled);
605 }
606
607 /* Set breakpoint count to NUM. */
608
609 static void
610 set_breakpoint_count (int num)
611 {
612 prev_breakpoint_count = breakpoint_count;
613 breakpoint_count = num;
614 set_internalvar_integer (lookup_internalvar ("bpnum"), num);
615 }
616
617 /* Used by `start_rbreak_breakpoints' below, to record the current
618 breakpoint count before "rbreak" creates any breakpoint. */
619 static int rbreak_start_breakpoint_count;
620
621 /* Called at the start an "rbreak" command to record the first
622 breakpoint made. */
623
624 scoped_rbreak_breakpoints::scoped_rbreak_breakpoints ()
625 {
626 rbreak_start_breakpoint_count = breakpoint_count;
627 }
628
629 /* Called at the end of an "rbreak" command to record the last
630 breakpoint made. */
631
632 scoped_rbreak_breakpoints::~scoped_rbreak_breakpoints ()
633 {
634 prev_breakpoint_count = rbreak_start_breakpoint_count;
635 }
636
637 /* Used in run_command to zero the hit count when a new run starts. */
638
639 void
640 clear_breakpoint_hit_counts (void)
641 {
642 struct breakpoint *b;
643
644 ALL_BREAKPOINTS (b)
645 b->hit_count = 0;
646 }
647
648 \f
649 /* Return the breakpoint with the specified number, or NULL
650 if the number does not refer to an existing breakpoint. */
651
652 struct breakpoint *
653 get_breakpoint (int num)
654 {
655 struct breakpoint *b;
656
657 ALL_BREAKPOINTS (b)
658 if (b->number == num)
659 return b;
660
661 return NULL;
662 }
663
664 \f
665
666 /* Mark locations as "conditions have changed" in case the target supports
667 evaluating conditions on its side. */
668
669 static void
670 mark_breakpoint_modified (struct breakpoint *b)
671 {
672 struct bp_location *loc;
673
674 /* This is only meaningful if the target is
675 evaluating conditions and if the user has
676 opted for condition evaluation on the target's
677 side. */
678 if (gdb_evaluates_breakpoint_condition_p ()
679 || !target_supports_evaluation_of_breakpoint_conditions ())
680 return;
681
682 if (!is_breakpoint (b))
683 return;
684
685 for (loc = b->loc; loc; loc = loc->next)
686 loc->condition_changed = condition_modified;
687 }
688
689 /* Mark location as "conditions have changed" in case the target supports
690 evaluating conditions on its side. */
691
692 static void
693 mark_breakpoint_location_modified (struct bp_location *loc)
694 {
695 /* This is only meaningful if the target is
696 evaluating conditions and if the user has
697 opted for condition evaluation on the target's
698 side. */
699 if (gdb_evaluates_breakpoint_condition_p ()
700 || !target_supports_evaluation_of_breakpoint_conditions ())
701
702 return;
703
704 if (!is_breakpoint (loc->owner))
705 return;
706
707 loc->condition_changed = condition_modified;
708 }
709
710 /* Sets the condition-evaluation mode using the static global
711 condition_evaluation_mode. */
712
713 static void
714 set_condition_evaluation_mode (const char *args, int from_tty,
715 struct cmd_list_element *c)
716 {
717 const char *old_mode, *new_mode;
718
719 if ((condition_evaluation_mode_1 == condition_evaluation_target)
720 && !target_supports_evaluation_of_breakpoint_conditions ())
721 {
722 condition_evaluation_mode_1 = condition_evaluation_mode;
723 warning (_("Target does not support breakpoint condition evaluation.\n"
724 "Using host evaluation mode instead."));
725 return;
726 }
727
728 new_mode = translate_condition_evaluation_mode (condition_evaluation_mode_1);
729 old_mode = translate_condition_evaluation_mode (condition_evaluation_mode);
730
731 /* Flip the switch. Flip it even if OLD_MODE == NEW_MODE as one of the
732 settings was "auto". */
733 condition_evaluation_mode = condition_evaluation_mode_1;
734
735 /* Only update the mode if the user picked a different one. */
736 if (new_mode != old_mode)
737 {
738 struct bp_location *loc, **loc_tmp;
739 /* If the user switched to a different evaluation mode, we
740 need to synch the changes with the target as follows:
741
742 "host" -> "target": Send all (valid) conditions to the target.
743 "target" -> "host": Remove all the conditions from the target.
744 */
745
746 if (new_mode == condition_evaluation_target)
747 {
748 /* Mark everything modified and synch conditions with the
749 target. */
750 ALL_BP_LOCATIONS (loc, loc_tmp)
751 mark_breakpoint_location_modified (loc);
752 }
753 else
754 {
755 /* Manually mark non-duplicate locations to synch conditions
756 with the target. We do this to remove all the conditions the
757 target knows about. */
758 ALL_BP_LOCATIONS (loc, loc_tmp)
759 if (is_breakpoint (loc->owner) && loc->inserted)
760 loc->needs_update = 1;
761 }
762
763 /* Do the update. */
764 update_global_location_list (UGLL_MAY_INSERT);
765 }
766
767 return;
768 }
769
770 /* Shows the current mode of breakpoint condition evaluation. Explicitly shows
771 what "auto" is translating to. */
772
773 static void
774 show_condition_evaluation_mode (struct ui_file *file, int from_tty,
775 struct cmd_list_element *c, const char *value)
776 {
777 if (condition_evaluation_mode == condition_evaluation_auto)
778 fprintf_filtered (file,
779 _("Breakpoint condition evaluation "
780 "mode is %s (currently %s).\n"),
781 value,
782 breakpoint_condition_evaluation_mode ());
783 else
784 fprintf_filtered (file, _("Breakpoint condition evaluation mode is %s.\n"),
785 value);
786 }
787
788 /* A comparison function for bp_location AP and BP that is used by
789 bsearch. This comparison function only cares about addresses, unlike
790 the more general bp_locations_compare function. */
791
792 static int
793 bp_locations_compare_addrs (const void *ap, const void *bp)
794 {
795 const struct bp_location *a = *(const struct bp_location **) ap;
796 const struct bp_location *b = *(const struct bp_location **) bp;
797
798 if (a->address == b->address)
799 return 0;
800 else
801 return ((a->address > b->address) - (a->address < b->address));
802 }
803
804 /* Helper function to skip all bp_locations with addresses
805 less than ADDRESS. It returns the first bp_location that
806 is greater than or equal to ADDRESS. If none is found, just
807 return NULL. */
808
809 static struct bp_location **
810 get_first_locp_gte_addr (CORE_ADDR address)
811 {
812 struct bp_location dummy_loc;
813 struct bp_location *dummy_locp = &dummy_loc;
814 struct bp_location **locp_found = NULL;
815
816 /* Initialize the dummy location's address field. */
817 dummy_loc.address = address;
818
819 /* Find a close match to the first location at ADDRESS. */
820 locp_found = ((struct bp_location **)
821 bsearch (&dummy_locp, bp_locations, bp_locations_count,
822 sizeof (struct bp_location **),
823 bp_locations_compare_addrs));
824
825 /* Nothing was found, nothing left to do. */
826 if (locp_found == NULL)
827 return NULL;
828
829 /* We may have found a location that is at ADDRESS but is not the first in the
830 location's list. Go backwards (if possible) and locate the first one. */
831 while ((locp_found - 1) >= bp_locations
832 && (*(locp_found - 1))->address == address)
833 locp_found--;
834
835 return locp_found;
836 }
837
838 void
839 set_breakpoint_condition (struct breakpoint *b, const char *exp,
840 int from_tty)
841 {
842 xfree (b->cond_string);
843 b->cond_string = NULL;
844
845 if (is_watchpoint (b))
846 {
847 struct watchpoint *w = (struct watchpoint *) b;
848
849 w->cond_exp.reset ();
850 }
851 else
852 {
853 struct bp_location *loc;
854
855 for (loc = b->loc; loc; loc = loc->next)
856 {
857 loc->cond.reset ();
858
859 /* No need to free the condition agent expression
860 bytecode (if we have one). We will handle this
861 when we go through update_global_location_list. */
862 }
863 }
864
865 if (*exp == 0)
866 {
867 if (from_tty)
868 printf_filtered (_("Breakpoint %d now unconditional.\n"), b->number);
869 }
870 else
871 {
872 const char *arg = exp;
873
874 /* I don't know if it matters whether this is the string the user
875 typed in or the decompiled expression. */
876 b->cond_string = xstrdup (arg);
877 b->condition_not_parsed = 0;
878
879 if (is_watchpoint (b))
880 {
881 struct watchpoint *w = (struct watchpoint *) b;
882
883 innermost_block.reset ();
884 arg = exp;
885 w->cond_exp = parse_exp_1 (&arg, 0, 0, 0);
886 if (*arg)
887 error (_("Junk at end of expression"));
888 w->cond_exp_valid_block = innermost_block.block ();
889 }
890 else
891 {
892 struct bp_location *loc;
893
894 for (loc = b->loc; loc; loc = loc->next)
895 {
896 arg = exp;
897 loc->cond =
898 parse_exp_1 (&arg, loc->address,
899 block_for_pc (loc->address), 0);
900 if (*arg)
901 error (_("Junk at end of expression"));
902 }
903 }
904 }
905 mark_breakpoint_modified (b);
906
907 gdb::observers::breakpoint_modified.notify (b);
908 }
909
910 /* Completion for the "condition" command. */
911
912 static void
913 condition_completer (struct cmd_list_element *cmd,
914 completion_tracker &tracker,
915 const char *text, const char *word)
916 {
917 const char *space;
918
919 text = skip_spaces (text);
920 space = skip_to_space (text);
921 if (*space == '\0')
922 {
923 int len;
924 struct breakpoint *b;
925
926 if (text[0] == '$')
927 {
928 /* We don't support completion of history indices. */
929 if (!isdigit (text[1]))
930 complete_internalvar (tracker, &text[1]);
931 return;
932 }
933
934 /* We're completing the breakpoint number. */
935 len = strlen (text);
936
937 ALL_BREAKPOINTS (b)
938 {
939 char number[50];
940
941 xsnprintf (number, sizeof (number), "%d", b->number);
942
943 if (strncmp (number, text, len) == 0)
944 {
945 gdb::unique_xmalloc_ptr<char> copy (xstrdup (number));
946 tracker.add_completion (std::move (copy));
947 }
948 }
949
950 return;
951 }
952
953 /* We're completing the expression part. */
954 text = skip_spaces (space);
955 expression_completer (cmd, tracker, text, word);
956 }
957
958 /* condition N EXP -- set break condition of breakpoint N to EXP. */
959
960 static void
961 condition_command (const char *arg, int from_tty)
962 {
963 struct breakpoint *b;
964 const char *p;
965 int bnum;
966
967 if (arg == 0)
968 error_no_arg (_("breakpoint number"));
969
970 p = arg;
971 bnum = get_number (&p);
972 if (bnum == 0)
973 error (_("Bad breakpoint argument: '%s'"), arg);
974
975 ALL_BREAKPOINTS (b)
976 if (b->number == bnum)
977 {
978 /* Check if this breakpoint has a "stop" method implemented in an
979 extension language. This method and conditions entered into GDB
980 from the CLI are mutually exclusive. */
981 const struct extension_language_defn *extlang
982 = get_breakpoint_cond_ext_lang (b, EXT_LANG_NONE);
983
984 if (extlang != NULL)
985 {
986 error (_("Only one stop condition allowed. There is currently"
987 " a %s stop condition defined for this breakpoint."),
988 ext_lang_capitalized_name (extlang));
989 }
990 set_breakpoint_condition (b, p, from_tty);
991
992 if (is_breakpoint (b))
993 update_global_location_list (UGLL_MAY_INSERT);
994
995 return;
996 }
997
998 error (_("No breakpoint number %d."), bnum);
999 }
1000
1001 /* Check that COMMAND do not contain commands that are suitable
1002 only for tracepoints and not suitable for ordinary breakpoints.
1003 Throw if any such commands is found. */
1004
1005 static void
1006 check_no_tracepoint_commands (struct command_line *commands)
1007 {
1008 struct command_line *c;
1009
1010 for (c = commands; c; c = c->next)
1011 {
1012 if (c->control_type == while_stepping_control)
1013 error (_("The 'while-stepping' command can "
1014 "only be used for tracepoints"));
1015
1016 check_no_tracepoint_commands (c->body_list_0.get ());
1017 check_no_tracepoint_commands (c->body_list_1.get ());
1018
1019 /* Not that command parsing removes leading whitespace and comment
1020 lines and also empty lines. So, we only need to check for
1021 command directly. */
1022 if (strstr (c->line, "collect ") == c->line)
1023 error (_("The 'collect' command can only be used for tracepoints"));
1024
1025 if (strstr (c->line, "teval ") == c->line)
1026 error (_("The 'teval' command can only be used for tracepoints"));
1027 }
1028 }
1029
1030 struct longjmp_breakpoint : public breakpoint
1031 {
1032 ~longjmp_breakpoint () override;
1033 };
1034
1035 /* Encapsulate tests for different types of tracepoints. */
1036
1037 static bool
1038 is_tracepoint_type (bptype type)
1039 {
1040 return (type == bp_tracepoint
1041 || type == bp_fast_tracepoint
1042 || type == bp_static_tracepoint);
1043 }
1044
1045 static bool
1046 is_longjmp_type (bptype type)
1047 {
1048 return type == bp_longjmp || type == bp_exception;
1049 }
1050
1051 int
1052 is_tracepoint (const struct breakpoint *b)
1053 {
1054 return is_tracepoint_type (b->type);
1055 }
1056
1057 /* Factory function to create an appropriate instance of breakpoint given
1058 TYPE. */
1059
1060 static std::unique_ptr<breakpoint>
1061 new_breakpoint_from_type (bptype type)
1062 {
1063 breakpoint *b;
1064
1065 if (is_tracepoint_type (type))
1066 b = new tracepoint ();
1067 else if (is_longjmp_type (type))
1068 b = new longjmp_breakpoint ();
1069 else
1070 b = new breakpoint ();
1071
1072 return std::unique_ptr<breakpoint> (b);
1073 }
1074
1075 /* A helper function that validates that COMMANDS are valid for a
1076 breakpoint. This function will throw an exception if a problem is
1077 found. */
1078
1079 static void
1080 validate_commands_for_breakpoint (struct breakpoint *b,
1081 struct command_line *commands)
1082 {
1083 if (is_tracepoint (b))
1084 {
1085 struct tracepoint *t = (struct tracepoint *) b;
1086 struct command_line *c;
1087 struct command_line *while_stepping = 0;
1088
1089 /* Reset the while-stepping step count. The previous commands
1090 might have included a while-stepping action, while the new
1091 ones might not. */
1092 t->step_count = 0;
1093
1094 /* We need to verify that each top-level element of commands is
1095 valid for tracepoints, that there's at most one
1096 while-stepping element, and that the while-stepping's body
1097 has valid tracing commands excluding nested while-stepping.
1098 We also need to validate the tracepoint action line in the
1099 context of the tracepoint --- validate_actionline actually
1100 has side effects, like setting the tracepoint's
1101 while-stepping STEP_COUNT, in addition to checking if the
1102 collect/teval actions parse and make sense in the
1103 tracepoint's context. */
1104 for (c = commands; c; c = c->next)
1105 {
1106 if (c->control_type == while_stepping_control)
1107 {
1108 if (b->type == bp_fast_tracepoint)
1109 error (_("The 'while-stepping' command "
1110 "cannot be used for fast tracepoint"));
1111 else if (b->type == bp_static_tracepoint)
1112 error (_("The 'while-stepping' command "
1113 "cannot be used for static tracepoint"));
1114
1115 if (while_stepping)
1116 error (_("The 'while-stepping' command "
1117 "can be used only once"));
1118 else
1119 while_stepping = c;
1120 }
1121
1122 validate_actionline (c->line, b);
1123 }
1124 if (while_stepping)
1125 {
1126 struct command_line *c2;
1127
1128 gdb_assert (while_stepping->body_list_1 == nullptr);
1129 c2 = while_stepping->body_list_0.get ();
1130 for (; c2; c2 = c2->next)
1131 {
1132 if (c2->control_type == while_stepping_control)
1133 error (_("The 'while-stepping' command cannot be nested"));
1134 }
1135 }
1136 }
1137 else
1138 {
1139 check_no_tracepoint_commands (commands);
1140 }
1141 }
1142
1143 /* Return a vector of all the static tracepoints set at ADDR. The
1144 caller is responsible for releasing the vector. */
1145
1146 std::vector<breakpoint *>
1147 static_tracepoints_here (CORE_ADDR addr)
1148 {
1149 struct breakpoint *b;
1150 std::vector<breakpoint *> found;
1151 struct bp_location *loc;
1152
1153 ALL_BREAKPOINTS (b)
1154 if (b->type == bp_static_tracepoint)
1155 {
1156 for (loc = b->loc; loc; loc = loc->next)
1157 if (loc->address == addr)
1158 found.push_back (b);
1159 }
1160
1161 return found;
1162 }
1163
1164 /* Set the command list of B to COMMANDS. If breakpoint is tracepoint,
1165 validate that only allowed commands are included. */
1166
1167 void
1168 breakpoint_set_commands (struct breakpoint *b,
1169 counted_command_line &&commands)
1170 {
1171 validate_commands_for_breakpoint (b, commands.get ());
1172
1173 b->commands = std::move (commands);
1174 gdb::observers::breakpoint_modified.notify (b);
1175 }
1176
1177 /* Set the internal `silent' flag on the breakpoint. Note that this
1178 is not the same as the "silent" that may appear in the breakpoint's
1179 commands. */
1180
1181 void
1182 breakpoint_set_silent (struct breakpoint *b, int silent)
1183 {
1184 int old_silent = b->silent;
1185
1186 b->silent = silent;
1187 if (old_silent != silent)
1188 gdb::observers::breakpoint_modified.notify (b);
1189 }
1190
1191 /* Set the thread for this breakpoint. If THREAD is -1, make the
1192 breakpoint work for any thread. */
1193
1194 void
1195 breakpoint_set_thread (struct breakpoint *b, int thread)
1196 {
1197 int old_thread = b->thread;
1198
1199 b->thread = thread;
1200 if (old_thread != thread)
1201 gdb::observers::breakpoint_modified.notify (b);
1202 }
1203
1204 /* Set the task for this breakpoint. If TASK is 0, make the
1205 breakpoint work for any task. */
1206
1207 void
1208 breakpoint_set_task (struct breakpoint *b, int task)
1209 {
1210 int old_task = b->task;
1211
1212 b->task = task;
1213 if (old_task != task)
1214 gdb::observers::breakpoint_modified.notify (b);
1215 }
1216
1217 static void
1218 commands_command_1 (const char *arg, int from_tty,
1219 struct command_line *control)
1220 {
1221 counted_command_line cmd;
1222 /* cmd_read will be true once we have read cmd. Note that cmd might still be
1223 NULL after the call to read_command_lines if the user provides an empty
1224 list of command by just typing "end". */
1225 bool cmd_read = false;
1226
1227 std::string new_arg;
1228
1229 if (arg == NULL || !*arg)
1230 {
1231 if (breakpoint_count - prev_breakpoint_count > 1)
1232 new_arg = string_printf ("%d-%d", prev_breakpoint_count + 1,
1233 breakpoint_count);
1234 else if (breakpoint_count > 0)
1235 new_arg = string_printf ("%d", breakpoint_count);
1236 arg = new_arg.c_str ();
1237 }
1238
1239 map_breakpoint_numbers
1240 (arg, [&] (breakpoint *b)
1241 {
1242 if (!cmd_read)
1243 {
1244 gdb_assert (cmd == NULL);
1245 if (control != NULL)
1246 cmd = control->body_list_0;
1247 else
1248 {
1249 std::string str
1250 = string_printf (_("Type commands for breakpoint(s) "
1251 "%s, one per line."),
1252 arg);
1253
1254 auto do_validate = [=] (const char *line)
1255 {
1256 validate_actionline (line, b);
1257 };
1258 gdb::function_view<void (const char *)> validator;
1259 if (is_tracepoint (b))
1260 validator = do_validate;
1261
1262 cmd = read_command_lines (str.c_str (), from_tty, 1, validator);
1263 }
1264 cmd_read = true;
1265 }
1266
1267 /* If a breakpoint was on the list more than once, we don't need to
1268 do anything. */
1269 if (b->commands != cmd)
1270 {
1271 validate_commands_for_breakpoint (b, cmd.get ());
1272 b->commands = cmd;
1273 gdb::observers::breakpoint_modified.notify (b);
1274 }
1275 });
1276 }
1277
1278 static void
1279 commands_command (const char *arg, int from_tty)
1280 {
1281 commands_command_1 (arg, from_tty, NULL);
1282 }
1283
1284 /* Like commands_command, but instead of reading the commands from
1285 input stream, takes them from an already parsed command structure.
1286
1287 This is used by cli-script.c to DTRT with breakpoint commands
1288 that are part of if and while bodies. */
1289 enum command_control_type
1290 commands_from_control_command (const char *arg, struct command_line *cmd)
1291 {
1292 commands_command_1 (arg, 0, cmd);
1293 return simple_control;
1294 }
1295
1296 /* Return non-zero if BL->TARGET_INFO contains valid information. */
1297
1298 static int
1299 bp_location_has_shadow (struct bp_location *bl)
1300 {
1301 if (bl->loc_type != bp_loc_software_breakpoint)
1302 return 0;
1303 if (!bl->inserted)
1304 return 0;
1305 if (bl->target_info.shadow_len == 0)
1306 /* BL isn't valid, or doesn't shadow memory. */
1307 return 0;
1308 return 1;
1309 }
1310
1311 /* Update BUF, which is LEN bytes read from the target address
1312 MEMADDR, by replacing a memory breakpoint with its shadowed
1313 contents.
1314
1315 If READBUF is not NULL, this buffer must not overlap with the of
1316 the breakpoint location's shadow_contents buffer. Otherwise, a
1317 failed assertion internal error will be raised. */
1318
1319 static void
1320 one_breakpoint_xfer_memory (gdb_byte *readbuf, gdb_byte *writebuf,
1321 const gdb_byte *writebuf_org,
1322 ULONGEST memaddr, LONGEST len,
1323 struct bp_target_info *target_info,
1324 struct gdbarch *gdbarch)
1325 {
1326 /* Now do full processing of the found relevant range of elements. */
1327 CORE_ADDR bp_addr = 0;
1328 int bp_size = 0;
1329 int bptoffset = 0;
1330
1331 if (!breakpoint_address_match (target_info->placed_address_space, 0,
1332 current_program_space->aspace, 0))
1333 {
1334 /* The breakpoint is inserted in a different address space. */
1335 return;
1336 }
1337
1338 /* Addresses and length of the part of the breakpoint that
1339 we need to copy. */
1340 bp_addr = target_info->placed_address;
1341 bp_size = target_info->shadow_len;
1342
1343 if (bp_addr + bp_size <= memaddr)
1344 {
1345 /* The breakpoint is entirely before the chunk of memory we are
1346 reading. */
1347 return;
1348 }
1349
1350 if (bp_addr >= memaddr + len)
1351 {
1352 /* The breakpoint is entirely after the chunk of memory we are
1353 reading. */
1354 return;
1355 }
1356
1357 /* Offset within shadow_contents. */
1358 if (bp_addr < memaddr)
1359 {
1360 /* Only copy the second part of the breakpoint. */
1361 bp_size -= memaddr - bp_addr;
1362 bptoffset = memaddr - bp_addr;
1363 bp_addr = memaddr;
1364 }
1365
1366 if (bp_addr + bp_size > memaddr + len)
1367 {
1368 /* Only copy the first part of the breakpoint. */
1369 bp_size -= (bp_addr + bp_size) - (memaddr + len);
1370 }
1371
1372 if (readbuf != NULL)
1373 {
1374 /* Verify that the readbuf buffer does not overlap with the
1375 shadow_contents buffer. */
1376 gdb_assert (target_info->shadow_contents >= readbuf + len
1377 || readbuf >= (target_info->shadow_contents
1378 + target_info->shadow_len));
1379
1380 /* Update the read buffer with this inserted breakpoint's
1381 shadow. */
1382 memcpy (readbuf + bp_addr - memaddr,
1383 target_info->shadow_contents + bptoffset, bp_size);
1384 }
1385 else
1386 {
1387 const unsigned char *bp;
1388 CORE_ADDR addr = target_info->reqstd_address;
1389 int placed_size;
1390
1391 /* Update the shadow with what we want to write to memory. */
1392 memcpy (target_info->shadow_contents + bptoffset,
1393 writebuf_org + bp_addr - memaddr, bp_size);
1394
1395 /* Determine appropriate breakpoint contents and size for this
1396 address. */
1397 bp = gdbarch_breakpoint_from_pc (gdbarch, &addr, &placed_size);
1398
1399 /* Update the final write buffer with this inserted
1400 breakpoint's INSN. */
1401 memcpy (writebuf + bp_addr - memaddr, bp + bptoffset, bp_size);
1402 }
1403 }
1404
1405 /* Update BUF, which is LEN bytes read from the target address MEMADDR,
1406 by replacing any memory breakpoints with their shadowed contents.
1407
1408 If READBUF is not NULL, this buffer must not overlap with any of
1409 the breakpoint location's shadow_contents buffers. Otherwise,
1410 a failed assertion internal error will be raised.
1411
1412 The range of shadowed area by each bp_location is:
1413 bl->address - bp_locations_placed_address_before_address_max
1414 up to bl->address + bp_locations_shadow_len_after_address_max
1415 The range we were requested to resolve shadows for is:
1416 memaddr ... memaddr + len
1417 Thus the safe cutoff boundaries for performance optimization are
1418 memaddr + len <= (bl->address
1419 - bp_locations_placed_address_before_address_max)
1420 and:
1421 bl->address + bp_locations_shadow_len_after_address_max <= memaddr */
1422
1423 void
1424 breakpoint_xfer_memory (gdb_byte *readbuf, gdb_byte *writebuf,
1425 const gdb_byte *writebuf_org,
1426 ULONGEST memaddr, LONGEST len)
1427 {
1428 /* Left boundary, right boundary and median element of our binary
1429 search. */
1430 unsigned bc_l, bc_r, bc;
1431
1432 /* Find BC_L which is a leftmost element which may affect BUF
1433 content. It is safe to report lower value but a failure to
1434 report higher one. */
1435
1436 bc_l = 0;
1437 bc_r = bp_locations_count;
1438 while (bc_l + 1 < bc_r)
1439 {
1440 struct bp_location *bl;
1441
1442 bc = (bc_l + bc_r) / 2;
1443 bl = bp_locations[bc];
1444
1445 /* Check first BL->ADDRESS will not overflow due to the added
1446 constant. Then advance the left boundary only if we are sure
1447 the BC element can in no way affect the BUF content (MEMADDR
1448 to MEMADDR + LEN range).
1449
1450 Use the BP_LOCATIONS_SHADOW_LEN_AFTER_ADDRESS_MAX safety
1451 offset so that we cannot miss a breakpoint with its shadow
1452 range tail still reaching MEMADDR. */
1453
1454 if ((bl->address + bp_locations_shadow_len_after_address_max
1455 >= bl->address)
1456 && (bl->address + bp_locations_shadow_len_after_address_max
1457 <= memaddr))
1458 bc_l = bc;
1459 else
1460 bc_r = bc;
1461 }
1462
1463 /* Due to the binary search above, we need to make sure we pick the
1464 first location that's at BC_L's address. E.g., if there are
1465 multiple locations at the same address, BC_L may end up pointing
1466 at a duplicate location, and miss the "master"/"inserted"
1467 location. Say, given locations L1, L2 and L3 at addresses A and
1468 B:
1469
1470 L1@A, L2@A, L3@B, ...
1471
1472 BC_L could end up pointing at location L2, while the "master"
1473 location could be L1. Since the `loc->inserted' flag is only set
1474 on "master" locations, we'd forget to restore the shadow of L1
1475 and L2. */
1476 while (bc_l > 0
1477 && bp_locations[bc_l]->address == bp_locations[bc_l - 1]->address)
1478 bc_l--;
1479
1480 /* Now do full processing of the found relevant range of elements. */
1481
1482 for (bc = bc_l; bc < bp_locations_count; bc++)
1483 {
1484 struct bp_location *bl = bp_locations[bc];
1485
1486 /* bp_location array has BL->OWNER always non-NULL. */
1487 if (bl->owner->type == bp_none)
1488 warning (_("reading through apparently deleted breakpoint #%d?"),
1489 bl->owner->number);
1490
1491 /* Performance optimization: any further element can no longer affect BUF
1492 content. */
1493
1494 if (bl->address >= bp_locations_placed_address_before_address_max
1495 && memaddr + len <= (bl->address
1496 - bp_locations_placed_address_before_address_max))
1497 break;
1498
1499 if (!bp_location_has_shadow (bl))
1500 continue;
1501
1502 one_breakpoint_xfer_memory (readbuf, writebuf, writebuf_org,
1503 memaddr, len, &bl->target_info, bl->gdbarch);
1504 }
1505 }
1506
1507 \f
1508
1509 /* Return true if BPT is either a software breakpoint or a hardware
1510 breakpoint. */
1511
1512 int
1513 is_breakpoint (const struct breakpoint *bpt)
1514 {
1515 return (bpt->type == bp_breakpoint
1516 || bpt->type == bp_hardware_breakpoint
1517 || bpt->type == bp_dprintf);
1518 }
1519
1520 /* Return true if BPT is of any hardware watchpoint kind. */
1521
1522 static int
1523 is_hardware_watchpoint (const struct breakpoint *bpt)
1524 {
1525 return (bpt->type == bp_hardware_watchpoint
1526 || bpt->type == bp_read_watchpoint
1527 || bpt->type == bp_access_watchpoint);
1528 }
1529
1530 /* Return true if BPT is of any watchpoint kind, hardware or
1531 software. */
1532
1533 int
1534 is_watchpoint (const struct breakpoint *bpt)
1535 {
1536 return (is_hardware_watchpoint (bpt)
1537 || bpt->type == bp_watchpoint);
1538 }
1539
1540 /* Returns true if the current thread and its running state are safe
1541 to evaluate or update watchpoint B. Watchpoints on local
1542 expressions need to be evaluated in the context of the thread that
1543 was current when the watchpoint was created, and, that thread needs
1544 to be stopped to be able to select the correct frame context.
1545 Watchpoints on global expressions can be evaluated on any thread,
1546 and in any state. It is presently left to the target allowing
1547 memory accesses when threads are running. */
1548
1549 static int
1550 watchpoint_in_thread_scope (struct watchpoint *b)
1551 {
1552 return (b->pspace == current_program_space
1553 && (b->watchpoint_thread == null_ptid
1554 || (inferior_ptid == b->watchpoint_thread
1555 && !inferior_thread ()->executing)));
1556 }
1557
1558 /* Set watchpoint B to disp_del_at_next_stop, even including its possible
1559 associated bp_watchpoint_scope breakpoint. */
1560
1561 static void
1562 watchpoint_del_at_next_stop (struct watchpoint *w)
1563 {
1564 if (w->related_breakpoint != w)
1565 {
1566 gdb_assert (w->related_breakpoint->type == bp_watchpoint_scope);
1567 gdb_assert (w->related_breakpoint->related_breakpoint == w);
1568 w->related_breakpoint->disposition = disp_del_at_next_stop;
1569 w->related_breakpoint->related_breakpoint = w->related_breakpoint;
1570 w->related_breakpoint = w;
1571 }
1572 w->disposition = disp_del_at_next_stop;
1573 }
1574
1575 /* Extract a bitfield value from value VAL using the bit parameters contained in
1576 watchpoint W. */
1577
1578 static struct value *
1579 extract_bitfield_from_watchpoint_value (struct watchpoint *w, struct value *val)
1580 {
1581 struct value *bit_val;
1582
1583 if (val == NULL)
1584 return NULL;
1585
1586 bit_val = allocate_value (value_type (val));
1587
1588 unpack_value_bitfield (bit_val,
1589 w->val_bitpos,
1590 w->val_bitsize,
1591 value_contents_for_printing (val),
1592 value_offset (val),
1593 val);
1594
1595 return bit_val;
1596 }
1597
1598 /* Allocate a dummy location and add it to B, which must be a software
1599 watchpoint. This is required because even if a software watchpoint
1600 is not watching any memory, bpstat_stop_status requires a location
1601 to be able to report stops. */
1602
1603 static void
1604 software_watchpoint_add_no_memory_location (struct breakpoint *b,
1605 struct program_space *pspace)
1606 {
1607 gdb_assert (b->type == bp_watchpoint && b->loc == NULL);
1608
1609 b->loc = allocate_bp_location (b);
1610 b->loc->pspace = pspace;
1611 b->loc->address = -1;
1612 b->loc->length = -1;
1613 }
1614
1615 /* Returns true if B is a software watchpoint that is not watching any
1616 memory (e.g., "watch $pc"). */
1617
1618 static int
1619 is_no_memory_software_watchpoint (struct breakpoint *b)
1620 {
1621 return (b->type == bp_watchpoint
1622 && b->loc != NULL
1623 && b->loc->next == NULL
1624 && b->loc->address == -1
1625 && b->loc->length == -1);
1626 }
1627
1628 /* Assuming that B is a watchpoint:
1629 - Reparse watchpoint expression, if REPARSE is non-zero
1630 - Evaluate expression and store the result in B->val
1631 - Evaluate the condition if there is one, and store the result
1632 in b->loc->cond.
1633 - Update the list of values that must be watched in B->loc.
1634
1635 If the watchpoint disposition is disp_del_at_next_stop, then do
1636 nothing. If this is local watchpoint that is out of scope, delete
1637 it.
1638
1639 Even with `set breakpoint always-inserted on' the watchpoints are
1640 removed + inserted on each stop here. Normal breakpoints must
1641 never be removed because they might be missed by a running thread
1642 when debugging in non-stop mode. On the other hand, hardware
1643 watchpoints (is_hardware_watchpoint; processed here) are specific
1644 to each LWP since they are stored in each LWP's hardware debug
1645 registers. Therefore, such LWP must be stopped first in order to
1646 be able to modify its hardware watchpoints.
1647
1648 Hardware watchpoints must be reset exactly once after being
1649 presented to the user. It cannot be done sooner, because it would
1650 reset the data used to present the watchpoint hit to the user. And
1651 it must not be done later because it could display the same single
1652 watchpoint hit during multiple GDB stops. Note that the latter is
1653 relevant only to the hardware watchpoint types bp_read_watchpoint
1654 and bp_access_watchpoint. False hit by bp_hardware_watchpoint is
1655 not user-visible - its hit is suppressed if the memory content has
1656 not changed.
1657
1658 The following constraints influence the location where we can reset
1659 hardware watchpoints:
1660
1661 * target_stopped_by_watchpoint and target_stopped_data_address are
1662 called several times when GDB stops.
1663
1664 [linux]
1665 * Multiple hardware watchpoints can be hit at the same time,
1666 causing GDB to stop. GDB only presents one hardware watchpoint
1667 hit at a time as the reason for stopping, and all the other hits
1668 are presented later, one after the other, each time the user
1669 requests the execution to be resumed. Execution is not resumed
1670 for the threads still having pending hit event stored in
1671 LWP_INFO->STATUS. While the watchpoint is already removed from
1672 the inferior on the first stop the thread hit event is kept being
1673 reported from its cached value by linux_nat_stopped_data_address
1674 until the real thread resume happens after the watchpoint gets
1675 presented and thus its LWP_INFO->STATUS gets reset.
1676
1677 Therefore the hardware watchpoint hit can get safely reset on the
1678 watchpoint removal from inferior. */
1679
1680 static void
1681 update_watchpoint (struct watchpoint *b, int reparse)
1682 {
1683 int within_current_scope;
1684 struct frame_id saved_frame_id;
1685 int frame_saved;
1686
1687 /* If this is a local watchpoint, we only want to check if the
1688 watchpoint frame is in scope if the current thread is the thread
1689 that was used to create the watchpoint. */
1690 if (!watchpoint_in_thread_scope (b))
1691 return;
1692
1693 if (b->disposition == disp_del_at_next_stop)
1694 return;
1695
1696 frame_saved = 0;
1697
1698 /* Determine if the watchpoint is within scope. */
1699 if (b->exp_valid_block == NULL)
1700 within_current_scope = 1;
1701 else
1702 {
1703 struct frame_info *fi = get_current_frame ();
1704 struct gdbarch *frame_arch = get_frame_arch (fi);
1705 CORE_ADDR frame_pc = get_frame_pc (fi);
1706
1707 /* If we're at a point where the stack has been destroyed
1708 (e.g. in a function epilogue), unwinding may not work
1709 properly. Do not attempt to recreate locations at this
1710 point. See similar comments in watchpoint_check. */
1711 if (gdbarch_stack_frame_destroyed_p (frame_arch, frame_pc))
1712 return;
1713
1714 /* Save the current frame's ID so we can restore it after
1715 evaluating the watchpoint expression on its own frame. */
1716 /* FIXME drow/2003-09-09: It would be nice if evaluate_expression
1717 took a frame parameter, so that we didn't have to change the
1718 selected frame. */
1719 frame_saved = 1;
1720 saved_frame_id = get_frame_id (get_selected_frame (NULL));
1721
1722 fi = frame_find_by_id (b->watchpoint_frame);
1723 within_current_scope = (fi != NULL);
1724 if (within_current_scope)
1725 select_frame (fi);
1726 }
1727
1728 /* We don't free locations. They are stored in the bp_location array
1729 and update_global_location_list will eventually delete them and
1730 remove breakpoints if needed. */
1731 b->loc = NULL;
1732
1733 if (within_current_scope && reparse)
1734 {
1735 const char *s;
1736
1737 b->exp.reset ();
1738 s = b->exp_string_reparse ? b->exp_string_reparse : b->exp_string;
1739 b->exp = parse_exp_1 (&s, 0, b->exp_valid_block, 0);
1740 /* If the meaning of expression itself changed, the old value is
1741 no longer relevant. We don't want to report a watchpoint hit
1742 to the user when the old value and the new value may actually
1743 be completely different objects. */
1744 b->val = NULL;
1745 b->val_valid = 0;
1746
1747 /* Note that unlike with breakpoints, the watchpoint's condition
1748 expression is stored in the breakpoint object, not in the
1749 locations (re)created below. */
1750 if (b->cond_string != NULL)
1751 {
1752 b->cond_exp.reset ();
1753
1754 s = b->cond_string;
1755 b->cond_exp = parse_exp_1 (&s, 0, b->cond_exp_valid_block, 0);
1756 }
1757 }
1758
1759 /* If we failed to parse the expression, for example because
1760 it refers to a global variable in a not-yet-loaded shared library,
1761 don't try to insert watchpoint. We don't automatically delete
1762 such watchpoint, though, since failure to parse expression
1763 is different from out-of-scope watchpoint. */
1764 if (!target_has_execution)
1765 {
1766 /* Without execution, memory can't change. No use to try and
1767 set watchpoint locations. The watchpoint will be reset when
1768 the target gains execution, through breakpoint_re_set. */
1769 if (!can_use_hw_watchpoints)
1770 {
1771 if (b->ops->works_in_software_mode (b))
1772 b->type = bp_watchpoint;
1773 else
1774 error (_("Can't set read/access watchpoint when "
1775 "hardware watchpoints are disabled."));
1776 }
1777 }
1778 else if (within_current_scope && b->exp)
1779 {
1780 int pc = 0;
1781 std::vector<value_ref_ptr> val_chain;
1782 struct value *v, *result;
1783 struct program_space *frame_pspace;
1784
1785 fetch_subexp_value (b->exp.get (), &pc, &v, &result, &val_chain, 0);
1786
1787 /* Avoid setting b->val if it's already set. The meaning of
1788 b->val is 'the last value' user saw, and we should update
1789 it only if we reported that last value to user. As it
1790 happens, the code that reports it updates b->val directly.
1791 We don't keep track of the memory value for masked
1792 watchpoints. */
1793 if (!b->val_valid && !is_masked_watchpoint (b))
1794 {
1795 if (b->val_bitsize != 0)
1796 v = extract_bitfield_from_watchpoint_value (b, v);
1797 b->val = release_value (v);
1798 b->val_valid = 1;
1799 }
1800
1801 frame_pspace = get_frame_program_space (get_selected_frame (NULL));
1802
1803 /* Look at each value on the value chain. */
1804 gdb_assert (!val_chain.empty ());
1805 for (const value_ref_ptr &iter : val_chain)
1806 {
1807 v = iter.get ();
1808
1809 /* If it's a memory location, and GDB actually needed
1810 its contents to evaluate the expression, then we
1811 must watch it. If the first value returned is
1812 still lazy, that means an error occurred reading it;
1813 watch it anyway in case it becomes readable. */
1814 if (VALUE_LVAL (v) == lval_memory
1815 && (v == val_chain[0] || ! value_lazy (v)))
1816 {
1817 struct type *vtype = check_typedef (value_type (v));
1818
1819 /* We only watch structs and arrays if user asked
1820 for it explicitly, never if they just happen to
1821 appear in the middle of some value chain. */
1822 if (v == result
1823 || (TYPE_CODE (vtype) != TYPE_CODE_STRUCT
1824 && TYPE_CODE (vtype) != TYPE_CODE_ARRAY))
1825 {
1826 CORE_ADDR addr;
1827 enum target_hw_bp_type type;
1828 struct bp_location *loc, **tmp;
1829 int bitpos = 0, bitsize = 0;
1830
1831 if (value_bitsize (v) != 0)
1832 {
1833 /* Extract the bit parameters out from the bitfield
1834 sub-expression. */
1835 bitpos = value_bitpos (v);
1836 bitsize = value_bitsize (v);
1837 }
1838 else if (v == result && b->val_bitsize != 0)
1839 {
1840 /* If VAL_BITSIZE != 0 then RESULT is actually a bitfield
1841 lvalue whose bit parameters are saved in the fields
1842 VAL_BITPOS and VAL_BITSIZE. */
1843 bitpos = b->val_bitpos;
1844 bitsize = b->val_bitsize;
1845 }
1846
1847 addr = value_address (v);
1848 if (bitsize != 0)
1849 {
1850 /* Skip the bytes that don't contain the bitfield. */
1851 addr += bitpos / 8;
1852 }
1853
1854 type = hw_write;
1855 if (b->type == bp_read_watchpoint)
1856 type = hw_read;
1857 else if (b->type == bp_access_watchpoint)
1858 type = hw_access;
1859
1860 loc = allocate_bp_location (b);
1861 for (tmp = &(b->loc); *tmp != NULL; tmp = &((*tmp)->next))
1862 ;
1863 *tmp = loc;
1864 loc->gdbarch = get_type_arch (value_type (v));
1865
1866 loc->pspace = frame_pspace;
1867 loc->address = address_significant (loc->gdbarch, addr);
1868
1869 if (bitsize != 0)
1870 {
1871 /* Just cover the bytes that make up the bitfield. */
1872 loc->length = ((bitpos % 8) + bitsize + 7) / 8;
1873 }
1874 else
1875 loc->length = TYPE_LENGTH (value_type (v));
1876
1877 loc->watchpoint_type = type;
1878 }
1879 }
1880 }
1881
1882 /* Change the type of breakpoint between hardware assisted or
1883 an ordinary watchpoint depending on the hardware support
1884 and free hardware slots. REPARSE is set when the inferior
1885 is started. */
1886 if (reparse)
1887 {
1888 int reg_cnt;
1889 enum bp_loc_type loc_type;
1890 struct bp_location *bl;
1891
1892 reg_cnt = can_use_hardware_watchpoint (val_chain);
1893
1894 if (reg_cnt)
1895 {
1896 int i, target_resources_ok, other_type_used;
1897 enum bptype type;
1898
1899 /* Use an exact watchpoint when there's only one memory region to be
1900 watched, and only one debug register is needed to watch it. */
1901 b->exact = target_exact_watchpoints && reg_cnt == 1;
1902
1903 /* We need to determine how many resources are already
1904 used for all other hardware watchpoints plus this one
1905 to see if we still have enough resources to also fit
1906 this watchpoint in as well. */
1907
1908 /* If this is a software watchpoint, we try to turn it
1909 to a hardware one -- count resources as if B was of
1910 hardware watchpoint type. */
1911 type = b->type;
1912 if (type == bp_watchpoint)
1913 type = bp_hardware_watchpoint;
1914
1915 /* This watchpoint may or may not have been placed on
1916 the list yet at this point (it won't be in the list
1917 if we're trying to create it for the first time,
1918 through watch_command), so always account for it
1919 manually. */
1920
1921 /* Count resources used by all watchpoints except B. */
1922 i = hw_watchpoint_used_count_others (b, type, &other_type_used);
1923
1924 /* Add in the resources needed for B. */
1925 i += hw_watchpoint_use_count (b);
1926
1927 target_resources_ok
1928 = target_can_use_hardware_watchpoint (type, i, other_type_used);
1929 if (target_resources_ok <= 0)
1930 {
1931 int sw_mode = b->ops->works_in_software_mode (b);
1932
1933 if (target_resources_ok == 0 && !sw_mode)
1934 error (_("Target does not support this type of "
1935 "hardware watchpoint."));
1936 else if (target_resources_ok < 0 && !sw_mode)
1937 error (_("There are not enough available hardware "
1938 "resources for this watchpoint."));
1939
1940 /* Downgrade to software watchpoint. */
1941 b->type = bp_watchpoint;
1942 }
1943 else
1944 {
1945 /* If this was a software watchpoint, we've just
1946 found we have enough resources to turn it to a
1947 hardware watchpoint. Otherwise, this is a
1948 nop. */
1949 b->type = type;
1950 }
1951 }
1952 else if (!b->ops->works_in_software_mode (b))
1953 {
1954 if (!can_use_hw_watchpoints)
1955 error (_("Can't set read/access watchpoint when "
1956 "hardware watchpoints are disabled."));
1957 else
1958 error (_("Expression cannot be implemented with "
1959 "read/access watchpoint."));
1960 }
1961 else
1962 b->type = bp_watchpoint;
1963
1964 loc_type = (b->type == bp_watchpoint? bp_loc_other
1965 : bp_loc_hardware_watchpoint);
1966 for (bl = b->loc; bl; bl = bl->next)
1967 bl->loc_type = loc_type;
1968 }
1969
1970 /* If a software watchpoint is not watching any memory, then the
1971 above left it without any location set up. But,
1972 bpstat_stop_status requires a location to be able to report
1973 stops, so make sure there's at least a dummy one. */
1974 if (b->type == bp_watchpoint && b->loc == NULL)
1975 software_watchpoint_add_no_memory_location (b, frame_pspace);
1976 }
1977 else if (!within_current_scope)
1978 {
1979 printf_filtered (_("\
1980 Watchpoint %d deleted because the program has left the block\n\
1981 in which its expression is valid.\n"),
1982 b->number);
1983 watchpoint_del_at_next_stop (b);
1984 }
1985
1986 /* Restore the selected frame. */
1987 if (frame_saved)
1988 select_frame (frame_find_by_id (saved_frame_id));
1989 }
1990
1991
1992 /* Returns 1 iff breakpoint location should be
1993 inserted in the inferior. We don't differentiate the type of BL's owner
1994 (breakpoint vs. tracepoint), although insert_location in tracepoint's
1995 breakpoint_ops is not defined, because in insert_bp_location,
1996 tracepoint's insert_location will not be called. */
1997 static int
1998 should_be_inserted (struct bp_location *bl)
1999 {
2000 if (bl->owner == NULL || !breakpoint_enabled (bl->owner))
2001 return 0;
2002
2003 if (bl->owner->disposition == disp_del_at_next_stop)
2004 return 0;
2005
2006 if (!bl->enabled || bl->shlib_disabled || bl->duplicate)
2007 return 0;
2008
2009 if (user_breakpoint_p (bl->owner) && bl->pspace->executing_startup)
2010 return 0;
2011
2012 /* This is set for example, when we're attached to the parent of a
2013 vfork, and have detached from the child. The child is running
2014 free, and we expect it to do an exec or exit, at which point the
2015 OS makes the parent schedulable again (and the target reports
2016 that the vfork is done). Until the child is done with the shared
2017 memory region, do not insert breakpoints in the parent, otherwise
2018 the child could still trip on the parent's breakpoints. Since
2019 the parent is blocked anyway, it won't miss any breakpoint. */
2020 if (bl->pspace->breakpoints_not_allowed)
2021 return 0;
2022
2023 /* Don't insert a breakpoint if we're trying to step past its
2024 location, except if the breakpoint is a single-step breakpoint,
2025 and the breakpoint's thread is the thread which is stepping past
2026 a breakpoint. */
2027 if ((bl->loc_type == bp_loc_software_breakpoint
2028 || bl->loc_type == bp_loc_hardware_breakpoint)
2029 && stepping_past_instruction_at (bl->pspace->aspace,
2030 bl->address)
2031 /* The single-step breakpoint may be inserted at the location
2032 we're trying to step if the instruction branches to itself.
2033 However, the instruction won't be executed at all and it may
2034 break the semantics of the instruction, for example, the
2035 instruction is a conditional branch or updates some flags.
2036 We can't fix it unless GDB is able to emulate the instruction
2037 or switch to displaced stepping. */
2038 && !(bl->owner->type == bp_single_step
2039 && thread_is_stepping_over_breakpoint (bl->owner->thread)))
2040 {
2041 if (debug_infrun)
2042 {
2043 fprintf_unfiltered (gdb_stdlog,
2044 "infrun: skipping breakpoint: "
2045 "stepping past insn at: %s\n",
2046 paddress (bl->gdbarch, bl->address));
2047 }
2048 return 0;
2049 }
2050
2051 /* Don't insert watchpoints if we're trying to step past the
2052 instruction that triggered one. */
2053 if ((bl->loc_type == bp_loc_hardware_watchpoint)
2054 && stepping_past_nonsteppable_watchpoint ())
2055 {
2056 if (debug_infrun)
2057 {
2058 fprintf_unfiltered (gdb_stdlog,
2059 "infrun: stepping past non-steppable watchpoint. "
2060 "skipping watchpoint at %s:%d\n",
2061 paddress (bl->gdbarch, bl->address),
2062 bl->length);
2063 }
2064 return 0;
2065 }
2066
2067 return 1;
2068 }
2069
2070 /* Same as should_be_inserted but does the check assuming
2071 that the location is not duplicated. */
2072
2073 static int
2074 unduplicated_should_be_inserted (struct bp_location *bl)
2075 {
2076 int result;
2077 const int save_duplicate = bl->duplicate;
2078
2079 bl->duplicate = 0;
2080 result = should_be_inserted (bl);
2081 bl->duplicate = save_duplicate;
2082 return result;
2083 }
2084
2085 /* Parses a conditional described by an expression COND into an
2086 agent expression bytecode suitable for evaluation
2087 by the bytecode interpreter. Return NULL if there was
2088 any error during parsing. */
2089
2090 static agent_expr_up
2091 parse_cond_to_aexpr (CORE_ADDR scope, struct expression *cond)
2092 {
2093 if (cond == NULL)
2094 return NULL;
2095
2096 agent_expr_up aexpr;
2097
2098 /* We don't want to stop processing, so catch any errors
2099 that may show up. */
2100 TRY
2101 {
2102 aexpr = gen_eval_for_expr (scope, cond);
2103 }
2104
2105 CATCH (ex, RETURN_MASK_ERROR)
2106 {
2107 /* If we got here, it means the condition could not be parsed to a valid
2108 bytecode expression and thus can't be evaluated on the target's side.
2109 It's no use iterating through the conditions. */
2110 }
2111 END_CATCH
2112
2113 /* We have a valid agent expression. */
2114 return aexpr;
2115 }
2116
2117 /* Based on location BL, create a list of breakpoint conditions to be
2118 passed on to the target. If we have duplicated locations with different
2119 conditions, we will add such conditions to the list. The idea is that the
2120 target will evaluate the list of conditions and will only notify GDB when
2121 one of them is true. */
2122
2123 static void
2124 build_target_condition_list (struct bp_location *bl)
2125 {
2126 struct bp_location **locp = NULL, **loc2p;
2127 int null_condition_or_parse_error = 0;
2128 int modified = bl->needs_update;
2129 struct bp_location *loc;
2130
2131 /* Release conditions left over from a previous insert. */
2132 bl->target_info.conditions.clear ();
2133
2134 /* This is only meaningful if the target is
2135 evaluating conditions and if the user has
2136 opted for condition evaluation on the target's
2137 side. */
2138 if (gdb_evaluates_breakpoint_condition_p ()
2139 || !target_supports_evaluation_of_breakpoint_conditions ())
2140 return;
2141
2142 /* Do a first pass to check for locations with no assigned
2143 conditions or conditions that fail to parse to a valid agent expression
2144 bytecode. If any of these happen, then it's no use to send conditions
2145 to the target since this location will always trigger and generate a
2146 response back to GDB. */
2147 ALL_BP_LOCATIONS_AT_ADDR (loc2p, locp, bl->address)
2148 {
2149 loc = (*loc2p);
2150 if (is_breakpoint (loc->owner) && loc->pspace->num == bl->pspace->num)
2151 {
2152 if (modified)
2153 {
2154 /* Re-parse the conditions since something changed. In that
2155 case we already freed the condition bytecodes (see
2156 force_breakpoint_reinsertion). We just
2157 need to parse the condition to bytecodes again. */
2158 loc->cond_bytecode = parse_cond_to_aexpr (bl->address,
2159 loc->cond.get ());
2160 }
2161
2162 /* If we have a NULL bytecode expression, it means something
2163 went wrong or we have a null condition expression. */
2164 if (!loc->cond_bytecode)
2165 {
2166 null_condition_or_parse_error = 1;
2167 break;
2168 }
2169 }
2170 }
2171
2172 /* If any of these happened, it means we will have to evaluate the conditions
2173 for the location's address on gdb's side. It is no use keeping bytecodes
2174 for all the other duplicate locations, thus we free all of them here.
2175
2176 This is so we have a finer control over which locations' conditions are
2177 being evaluated by GDB or the remote stub. */
2178 if (null_condition_or_parse_error)
2179 {
2180 ALL_BP_LOCATIONS_AT_ADDR (loc2p, locp, bl->address)
2181 {
2182 loc = (*loc2p);
2183 if (is_breakpoint (loc->owner) && loc->pspace->num == bl->pspace->num)
2184 {
2185 /* Only go as far as the first NULL bytecode is
2186 located. */
2187 if (!loc->cond_bytecode)
2188 return;
2189
2190 loc->cond_bytecode.reset ();
2191 }
2192 }
2193 }
2194
2195 /* No NULL conditions or failed bytecode generation. Build a condition list
2196 for this location's address. */
2197 ALL_BP_LOCATIONS_AT_ADDR (loc2p, locp, bl->address)
2198 {
2199 loc = (*loc2p);
2200 if (loc->cond
2201 && is_breakpoint (loc->owner)
2202 && loc->pspace->num == bl->pspace->num
2203 && loc->owner->enable_state == bp_enabled
2204 && loc->enabled)
2205 {
2206 /* Add the condition to the vector. This will be used later
2207 to send the conditions to the target. */
2208 bl->target_info.conditions.push_back (loc->cond_bytecode.get ());
2209 }
2210 }
2211
2212 return;
2213 }
2214
2215 /* Parses a command described by string CMD into an agent expression
2216 bytecode suitable for evaluation by the bytecode interpreter.
2217 Return NULL if there was any error during parsing. */
2218
2219 static agent_expr_up
2220 parse_cmd_to_aexpr (CORE_ADDR scope, char *cmd)
2221 {
2222 const char *cmdrest;
2223 const char *format_start, *format_end;
2224 struct gdbarch *gdbarch = get_current_arch ();
2225
2226 if (cmd == NULL)
2227 return NULL;
2228
2229 cmdrest = cmd;
2230
2231 if (*cmdrest == ',')
2232 ++cmdrest;
2233 cmdrest = skip_spaces (cmdrest);
2234
2235 if (*cmdrest++ != '"')
2236 error (_("No format string following the location"));
2237
2238 format_start = cmdrest;
2239
2240 format_pieces fpieces (&cmdrest);
2241
2242 format_end = cmdrest;
2243
2244 if (*cmdrest++ != '"')
2245 error (_("Bad format string, non-terminated '\"'."));
2246
2247 cmdrest = skip_spaces (cmdrest);
2248
2249 if (!(*cmdrest == ',' || *cmdrest == '\0'))
2250 error (_("Invalid argument syntax"));
2251
2252 if (*cmdrest == ',')
2253 cmdrest++;
2254 cmdrest = skip_spaces (cmdrest);
2255
2256 /* For each argument, make an expression. */
2257
2258 std::vector<struct expression *> argvec;
2259 while (*cmdrest != '\0')
2260 {
2261 const char *cmd1;
2262
2263 cmd1 = cmdrest;
2264 expression_up expr = parse_exp_1 (&cmd1, scope, block_for_pc (scope), 1);
2265 argvec.push_back (expr.release ());
2266 cmdrest = cmd1;
2267 if (*cmdrest == ',')
2268 ++cmdrest;
2269 }
2270
2271 agent_expr_up aexpr;
2272
2273 /* We don't want to stop processing, so catch any errors
2274 that may show up. */
2275 TRY
2276 {
2277 aexpr = gen_printf (scope, gdbarch, 0, 0,
2278 format_start, format_end - format_start,
2279 argvec.size (), argvec.data ());
2280 }
2281 CATCH (ex, RETURN_MASK_ERROR)
2282 {
2283 /* If we got here, it means the command could not be parsed to a valid
2284 bytecode expression and thus can't be evaluated on the target's side.
2285 It's no use iterating through the other commands. */
2286 }
2287 END_CATCH
2288
2289 /* We have a valid agent expression, return it. */
2290 return aexpr;
2291 }
2292
2293 /* Based on location BL, create a list of breakpoint commands to be
2294 passed on to the target. If we have duplicated locations with
2295 different commands, we will add any such to the list. */
2296
2297 static void
2298 build_target_command_list (struct bp_location *bl)
2299 {
2300 struct bp_location **locp = NULL, **loc2p;
2301 int null_command_or_parse_error = 0;
2302 int modified = bl->needs_update;
2303 struct bp_location *loc;
2304
2305 /* Clear commands left over from a previous insert. */
2306 bl->target_info.tcommands.clear ();
2307
2308 if (!target_can_run_breakpoint_commands ())
2309 return;
2310
2311 /* For now, limit to agent-style dprintf breakpoints. */
2312 if (dprintf_style != dprintf_style_agent)
2313 return;
2314
2315 /* For now, if we have any duplicate location that isn't a dprintf,
2316 don't install the target-side commands, as that would make the
2317 breakpoint not be reported to the core, and we'd lose
2318 control. */
2319 ALL_BP_LOCATIONS_AT_ADDR (loc2p, locp, bl->address)
2320 {
2321 loc = (*loc2p);
2322 if (is_breakpoint (loc->owner)
2323 && loc->pspace->num == bl->pspace->num
2324 && loc->owner->type != bp_dprintf)
2325 return;
2326 }
2327
2328 /* Do a first pass to check for locations with no assigned
2329 conditions or conditions that fail to parse to a valid agent expression
2330 bytecode. If any of these happen, then it's no use to send conditions
2331 to the target since this location will always trigger and generate a
2332 response back to GDB. */
2333 ALL_BP_LOCATIONS_AT_ADDR (loc2p, locp, bl->address)
2334 {
2335 loc = (*loc2p);
2336 if (is_breakpoint (loc->owner) && loc->pspace->num == bl->pspace->num)
2337 {
2338 if (modified)
2339 {
2340 /* Re-parse the commands since something changed. In that
2341 case we already freed the command bytecodes (see
2342 force_breakpoint_reinsertion). We just
2343 need to parse the command to bytecodes again. */
2344 loc->cmd_bytecode
2345 = parse_cmd_to_aexpr (bl->address,
2346 loc->owner->extra_string);
2347 }
2348
2349 /* If we have a NULL bytecode expression, it means something
2350 went wrong or we have a null command expression. */
2351 if (!loc->cmd_bytecode)
2352 {
2353 null_command_or_parse_error = 1;
2354 break;
2355 }
2356 }
2357 }
2358
2359 /* If anything failed, then we're not doing target-side commands,
2360 and so clean up. */
2361 if (null_command_or_parse_error)
2362 {
2363 ALL_BP_LOCATIONS_AT_ADDR (loc2p, locp, bl->address)
2364 {
2365 loc = (*loc2p);
2366 if (is_breakpoint (loc->owner)
2367 && loc->pspace->num == bl->pspace->num)
2368 {
2369 /* Only go as far as the first NULL bytecode is
2370 located. */
2371 if (loc->cmd_bytecode == NULL)
2372 return;
2373
2374 loc->cmd_bytecode.reset ();
2375 }
2376 }
2377 }
2378
2379 /* No NULL commands or failed bytecode generation. Build a command list
2380 for this location's address. */
2381 ALL_BP_LOCATIONS_AT_ADDR (loc2p, locp, bl->address)
2382 {
2383 loc = (*loc2p);
2384 if (loc->owner->extra_string
2385 && is_breakpoint (loc->owner)
2386 && loc->pspace->num == bl->pspace->num
2387 && loc->owner->enable_state == bp_enabled
2388 && loc->enabled)
2389 {
2390 /* Add the command to the vector. This will be used later
2391 to send the commands to the target. */
2392 bl->target_info.tcommands.push_back (loc->cmd_bytecode.get ());
2393 }
2394 }
2395
2396 bl->target_info.persist = 0;
2397 /* Maybe flag this location as persistent. */
2398 if (bl->owner->type == bp_dprintf && disconnected_dprintf)
2399 bl->target_info.persist = 1;
2400 }
2401
2402 /* Return the kind of breakpoint on address *ADDR. Get the kind
2403 of breakpoint according to ADDR except single-step breakpoint.
2404 Get the kind of single-step breakpoint according to the current
2405 registers state. */
2406
2407 static int
2408 breakpoint_kind (struct bp_location *bl, CORE_ADDR *addr)
2409 {
2410 if (bl->owner->type == bp_single_step)
2411 {
2412 struct thread_info *thr = find_thread_global_id (bl->owner->thread);
2413 struct regcache *regcache;
2414
2415 regcache = get_thread_regcache (thr);
2416
2417 return gdbarch_breakpoint_kind_from_current_state (bl->gdbarch,
2418 regcache, addr);
2419 }
2420 else
2421 return gdbarch_breakpoint_kind_from_pc (bl->gdbarch, addr);
2422 }
2423
2424 /* Insert a low-level "breakpoint" of some type. BL is the breakpoint
2425 location. Any error messages are printed to TMP_ERROR_STREAM; and
2426 DISABLED_BREAKS, and HW_BREAKPOINT_ERROR are used to report problems.
2427 Returns 0 for success, 1 if the bp_location type is not supported or
2428 -1 for failure.
2429
2430 NOTE drow/2003-09-09: This routine could be broken down to an
2431 object-style method for each breakpoint or catchpoint type. */
2432 static int
2433 insert_bp_location (struct bp_location *bl,
2434 struct ui_file *tmp_error_stream,
2435 int *disabled_breaks,
2436 int *hw_breakpoint_error,
2437 int *hw_bp_error_explained_already)
2438 {
2439 gdb_exception bp_excpt = exception_none;
2440
2441 if (!should_be_inserted (bl) || (bl->inserted && !bl->needs_update))
2442 return 0;
2443
2444 /* Note we don't initialize bl->target_info, as that wipes out
2445 the breakpoint location's shadow_contents if the breakpoint
2446 is still inserted at that location. This in turn breaks
2447 target_read_memory which depends on these buffers when
2448 a memory read is requested at the breakpoint location:
2449 Once the target_info has been wiped, we fail to see that
2450 we have a breakpoint inserted at that address and thus
2451 read the breakpoint instead of returning the data saved in
2452 the breakpoint location's shadow contents. */
2453 bl->target_info.reqstd_address = bl->address;
2454 bl->target_info.placed_address_space = bl->pspace->aspace;
2455 bl->target_info.length = bl->length;
2456
2457 /* When working with target-side conditions, we must pass all the conditions
2458 for the same breakpoint address down to the target since GDB will not
2459 insert those locations. With a list of breakpoint conditions, the target
2460 can decide when to stop and notify GDB. */
2461
2462 if (is_breakpoint (bl->owner))
2463 {
2464 build_target_condition_list (bl);
2465 build_target_command_list (bl);
2466 /* Reset the modification marker. */
2467 bl->needs_update = 0;
2468 }
2469
2470 if (bl->loc_type == bp_loc_software_breakpoint
2471 || bl->loc_type == bp_loc_hardware_breakpoint)
2472 {
2473 if (bl->owner->type != bp_hardware_breakpoint)
2474 {
2475 /* If the explicitly specified breakpoint type
2476 is not hardware breakpoint, check the memory map to see
2477 if the breakpoint address is in read only memory or not.
2478
2479 Two important cases are:
2480 - location type is not hardware breakpoint, memory
2481 is readonly. We change the type of the location to
2482 hardware breakpoint.
2483 - location type is hardware breakpoint, memory is
2484 read-write. This means we've previously made the
2485 location hardware one, but then the memory map changed,
2486 so we undo.
2487
2488 When breakpoints are removed, remove_breakpoints will use
2489 location types we've just set here, the only possible
2490 problem is that memory map has changed during running
2491 program, but it's not going to work anyway with current
2492 gdb. */
2493 struct mem_region *mr
2494 = lookup_mem_region (bl->target_info.reqstd_address);
2495
2496 if (mr)
2497 {
2498 if (automatic_hardware_breakpoints)
2499 {
2500 enum bp_loc_type new_type;
2501
2502 if (mr->attrib.mode != MEM_RW)
2503 new_type = bp_loc_hardware_breakpoint;
2504 else
2505 new_type = bp_loc_software_breakpoint;
2506
2507 if (new_type != bl->loc_type)
2508 {
2509 static int said = 0;
2510
2511 bl->loc_type = new_type;
2512 if (!said)
2513 {
2514 fprintf_filtered (gdb_stdout,
2515 _("Note: automatically using "
2516 "hardware breakpoints for "
2517 "read-only addresses.\n"));
2518 said = 1;
2519 }
2520 }
2521 }
2522 else if (bl->loc_type == bp_loc_software_breakpoint
2523 && mr->attrib.mode != MEM_RW)
2524 {
2525 fprintf_unfiltered (tmp_error_stream,
2526 _("Cannot insert breakpoint %d.\n"
2527 "Cannot set software breakpoint "
2528 "at read-only address %s\n"),
2529 bl->owner->number,
2530 paddress (bl->gdbarch, bl->address));
2531 return 1;
2532 }
2533 }
2534 }
2535
2536 /* First check to see if we have to handle an overlay. */
2537 if (overlay_debugging == ovly_off
2538 || bl->section == NULL
2539 || !(section_is_overlay (bl->section)))
2540 {
2541 /* No overlay handling: just set the breakpoint. */
2542 TRY
2543 {
2544 int val;
2545
2546 val = bl->owner->ops->insert_location (bl);
2547 if (val)
2548 bp_excpt = gdb_exception {RETURN_ERROR, GENERIC_ERROR};
2549 }
2550 CATCH (e, RETURN_MASK_ALL)
2551 {
2552 bp_excpt = e;
2553 }
2554 END_CATCH
2555 }
2556 else
2557 {
2558 /* This breakpoint is in an overlay section.
2559 Shall we set a breakpoint at the LMA? */
2560 if (!overlay_events_enabled)
2561 {
2562 /* Yes -- overlay event support is not active,
2563 so we must try to set a breakpoint at the LMA.
2564 This will not work for a hardware breakpoint. */
2565 if (bl->loc_type == bp_loc_hardware_breakpoint)
2566 warning (_("hardware breakpoint %d not supported in overlay!"),
2567 bl->owner->number);
2568 else
2569 {
2570 CORE_ADDR addr = overlay_unmapped_address (bl->address,
2571 bl->section);
2572 /* Set a software (trap) breakpoint at the LMA. */
2573 bl->overlay_target_info = bl->target_info;
2574 bl->overlay_target_info.reqstd_address = addr;
2575
2576 /* No overlay handling: just set the breakpoint. */
2577 TRY
2578 {
2579 int val;
2580
2581 bl->overlay_target_info.kind
2582 = breakpoint_kind (bl, &addr);
2583 bl->overlay_target_info.placed_address = addr;
2584 val = target_insert_breakpoint (bl->gdbarch,
2585 &bl->overlay_target_info);
2586 if (val)
2587 bp_excpt
2588 = gdb_exception {RETURN_ERROR, GENERIC_ERROR};
2589 }
2590 CATCH (e, RETURN_MASK_ALL)
2591 {
2592 bp_excpt = e;
2593 }
2594 END_CATCH
2595
2596 if (bp_excpt.reason != 0)
2597 fprintf_unfiltered (tmp_error_stream,
2598 "Overlay breakpoint %d "
2599 "failed: in ROM?\n",
2600 bl->owner->number);
2601 }
2602 }
2603 /* Shall we set a breakpoint at the VMA? */
2604 if (section_is_mapped (bl->section))
2605 {
2606 /* Yes. This overlay section is mapped into memory. */
2607 TRY
2608 {
2609 int val;
2610
2611 val = bl->owner->ops->insert_location (bl);
2612 if (val)
2613 bp_excpt = gdb_exception {RETURN_ERROR, GENERIC_ERROR};
2614 }
2615 CATCH (e, RETURN_MASK_ALL)
2616 {
2617 bp_excpt = e;
2618 }
2619 END_CATCH
2620 }
2621 else
2622 {
2623 /* No. This breakpoint will not be inserted.
2624 No error, but do not mark the bp as 'inserted'. */
2625 return 0;
2626 }
2627 }
2628
2629 if (bp_excpt.reason != 0)
2630 {
2631 /* Can't set the breakpoint. */
2632
2633 /* In some cases, we might not be able to insert a
2634 breakpoint in a shared library that has already been
2635 removed, but we have not yet processed the shlib unload
2636 event. Unfortunately, some targets that implement
2637 breakpoint insertion themselves can't tell why the
2638 breakpoint insertion failed (e.g., the remote target
2639 doesn't define error codes), so we must treat generic
2640 errors as memory errors. */
2641 if (bp_excpt.reason == RETURN_ERROR
2642 && (bp_excpt.error == GENERIC_ERROR
2643 || bp_excpt.error == MEMORY_ERROR)
2644 && bl->loc_type == bp_loc_software_breakpoint
2645 && (solib_name_from_address (bl->pspace, bl->address)
2646 || shared_objfile_contains_address_p (bl->pspace,
2647 bl->address)))
2648 {
2649 /* See also: disable_breakpoints_in_shlibs. */
2650 bl->shlib_disabled = 1;
2651 gdb::observers::breakpoint_modified.notify (bl->owner);
2652 if (!*disabled_breaks)
2653 {
2654 fprintf_unfiltered (tmp_error_stream,
2655 "Cannot insert breakpoint %d.\n",
2656 bl->owner->number);
2657 fprintf_unfiltered (tmp_error_stream,
2658 "Temporarily disabling shared "
2659 "library breakpoints:\n");
2660 }
2661 *disabled_breaks = 1;
2662 fprintf_unfiltered (tmp_error_stream,
2663 "breakpoint #%d\n", bl->owner->number);
2664 return 0;
2665 }
2666 else
2667 {
2668 if (bl->loc_type == bp_loc_hardware_breakpoint)
2669 {
2670 *hw_breakpoint_error = 1;
2671 *hw_bp_error_explained_already = bp_excpt.message != NULL;
2672 fprintf_unfiltered (tmp_error_stream,
2673 "Cannot insert hardware breakpoint %d%s",
2674 bl->owner->number,
2675 bp_excpt.message ? ":" : ".\n");
2676 if (bp_excpt.message != NULL)
2677 fprintf_unfiltered (tmp_error_stream, "%s.\n",
2678 bp_excpt.message);
2679 }
2680 else
2681 {
2682 if (bp_excpt.message == NULL)
2683 {
2684 std::string message
2685 = memory_error_message (TARGET_XFER_E_IO,
2686 bl->gdbarch, bl->address);
2687
2688 fprintf_unfiltered (tmp_error_stream,
2689 "Cannot insert breakpoint %d.\n"
2690 "%s\n",
2691 bl->owner->number, message.c_str ());
2692 }
2693 else
2694 {
2695 fprintf_unfiltered (tmp_error_stream,
2696 "Cannot insert breakpoint %d: %s\n",
2697 bl->owner->number,
2698 bp_excpt.message);
2699 }
2700 }
2701 return 1;
2702
2703 }
2704 }
2705 else
2706 bl->inserted = 1;
2707
2708 return 0;
2709 }
2710
2711 else if (bl->loc_type == bp_loc_hardware_watchpoint
2712 /* NOTE drow/2003-09-08: This state only exists for removing
2713 watchpoints. It's not clear that it's necessary... */
2714 && bl->owner->disposition != disp_del_at_next_stop)
2715 {
2716 int val;
2717
2718 gdb_assert (bl->owner->ops != NULL
2719 && bl->owner->ops->insert_location != NULL);
2720
2721 val = bl->owner->ops->insert_location (bl);
2722
2723 /* If trying to set a read-watchpoint, and it turns out it's not
2724 supported, try emulating one with an access watchpoint. */
2725 if (val == 1 && bl->watchpoint_type == hw_read)
2726 {
2727 struct bp_location *loc, **loc_temp;
2728
2729 /* But don't try to insert it, if there's already another
2730 hw_access location that would be considered a duplicate
2731 of this one. */
2732 ALL_BP_LOCATIONS (loc, loc_temp)
2733 if (loc != bl
2734 && loc->watchpoint_type == hw_access
2735 && watchpoint_locations_match (bl, loc))
2736 {
2737 bl->duplicate = 1;
2738 bl->inserted = 1;
2739 bl->target_info = loc->target_info;
2740 bl->watchpoint_type = hw_access;
2741 val = 0;
2742 break;
2743 }
2744
2745 if (val == 1)
2746 {
2747 bl->watchpoint_type = hw_access;
2748 val = bl->owner->ops->insert_location (bl);
2749
2750 if (val)
2751 /* Back to the original value. */
2752 bl->watchpoint_type = hw_read;
2753 }
2754 }
2755
2756 bl->inserted = (val == 0);
2757 }
2758
2759 else if (bl->owner->type == bp_catchpoint)
2760 {
2761 int val;
2762
2763 gdb_assert (bl->owner->ops != NULL
2764 && bl->owner->ops->insert_location != NULL);
2765
2766 val = bl->owner->ops->insert_location (bl);
2767 if (val)
2768 {
2769 bl->owner->enable_state = bp_disabled;
2770
2771 if (val == 1)
2772 warning (_("\
2773 Error inserting catchpoint %d: Your system does not support this type\n\
2774 of catchpoint."), bl->owner->number);
2775 else
2776 warning (_("Error inserting catchpoint %d."), bl->owner->number);
2777 }
2778
2779 bl->inserted = (val == 0);
2780
2781 /* We've already printed an error message if there was a problem
2782 inserting this catchpoint, and we've disabled the catchpoint,
2783 so just return success. */
2784 return 0;
2785 }
2786
2787 return 0;
2788 }
2789
2790 /* This function is called when program space PSPACE is about to be
2791 deleted. It takes care of updating breakpoints to not reference
2792 PSPACE anymore. */
2793
2794 void
2795 breakpoint_program_space_exit (struct program_space *pspace)
2796 {
2797 struct breakpoint *b, *b_temp;
2798 struct bp_location *loc, **loc_temp;
2799
2800 /* Remove any breakpoint that was set through this program space. */
2801 ALL_BREAKPOINTS_SAFE (b, b_temp)
2802 {
2803 if (b->pspace == pspace)
2804 delete_breakpoint (b);
2805 }
2806
2807 /* Breakpoints set through other program spaces could have locations
2808 bound to PSPACE as well. Remove those. */
2809 ALL_BP_LOCATIONS (loc, loc_temp)
2810 {
2811 struct bp_location *tmp;
2812
2813 if (loc->pspace == pspace)
2814 {
2815 /* ALL_BP_LOCATIONS bp_location has LOC->OWNER always non-NULL. */
2816 if (loc->owner->loc == loc)
2817 loc->owner->loc = loc->next;
2818 else
2819 for (tmp = loc->owner->loc; tmp->next != NULL; tmp = tmp->next)
2820 if (tmp->next == loc)
2821 {
2822 tmp->next = loc->next;
2823 break;
2824 }
2825 }
2826 }
2827
2828 /* Now update the global location list to permanently delete the
2829 removed locations above. */
2830 update_global_location_list (UGLL_DONT_INSERT);
2831 }
2832
2833 /* Make sure all breakpoints are inserted in inferior.
2834 Throws exception on any error.
2835 A breakpoint that is already inserted won't be inserted
2836 again, so calling this function twice is safe. */
2837 void
2838 insert_breakpoints (void)
2839 {
2840 struct breakpoint *bpt;
2841
2842 ALL_BREAKPOINTS (bpt)
2843 if (is_hardware_watchpoint (bpt))
2844 {
2845 struct watchpoint *w = (struct watchpoint *) bpt;
2846
2847 update_watchpoint (w, 0 /* don't reparse. */);
2848 }
2849
2850 /* Updating watchpoints creates new locations, so update the global
2851 location list. Explicitly tell ugll to insert locations and
2852 ignore breakpoints_always_inserted_mode. */
2853 update_global_location_list (UGLL_INSERT);
2854 }
2855
2856 /* Invoke CALLBACK for each of bp_location. */
2857
2858 void
2859 iterate_over_bp_locations (walk_bp_location_callback callback)
2860 {
2861 struct bp_location *loc, **loc_tmp;
2862
2863 ALL_BP_LOCATIONS (loc, loc_tmp)
2864 {
2865 callback (loc, NULL);
2866 }
2867 }
2868
2869 /* This is used when we need to synch breakpoint conditions between GDB and the
2870 target. It is the case with deleting and disabling of breakpoints when using
2871 always-inserted mode. */
2872
2873 static void
2874 update_inserted_breakpoint_locations (void)
2875 {
2876 struct bp_location *bl, **blp_tmp;
2877 int error_flag = 0;
2878 int val = 0;
2879 int disabled_breaks = 0;
2880 int hw_breakpoint_error = 0;
2881 int hw_bp_details_reported = 0;
2882
2883 string_file tmp_error_stream;
2884
2885 /* Explicitly mark the warning -- this will only be printed if
2886 there was an error. */
2887 tmp_error_stream.puts ("Warning:\n");
2888
2889 scoped_restore_current_pspace_and_thread restore_pspace_thread;
2890
2891 ALL_BP_LOCATIONS (bl, blp_tmp)
2892 {
2893 /* We only want to update software breakpoints and hardware
2894 breakpoints. */
2895 if (!is_breakpoint (bl->owner))
2896 continue;
2897
2898 /* We only want to update locations that are already inserted
2899 and need updating. This is to avoid unwanted insertion during
2900 deletion of breakpoints. */
2901 if (!bl->inserted || !bl->needs_update)
2902 continue;
2903
2904 switch_to_program_space_and_thread (bl->pspace);
2905
2906 /* For targets that support global breakpoints, there's no need
2907 to select an inferior to insert breakpoint to. In fact, even
2908 if we aren't attached to any process yet, we should still
2909 insert breakpoints. */
2910 if (!gdbarch_has_global_breakpoints (target_gdbarch ())
2911 && inferior_ptid == null_ptid)
2912 continue;
2913
2914 val = insert_bp_location (bl, &tmp_error_stream, &disabled_breaks,
2915 &hw_breakpoint_error, &hw_bp_details_reported);
2916 if (val)
2917 error_flag = val;
2918 }
2919
2920 if (error_flag)
2921 {
2922 target_terminal::ours_for_output ();
2923 error_stream (tmp_error_stream);
2924 }
2925 }
2926
2927 /* Used when starting or continuing the program. */
2928
2929 static void
2930 insert_breakpoint_locations (void)
2931 {
2932 struct breakpoint *bpt;
2933 struct bp_location *bl, **blp_tmp;
2934 int error_flag = 0;
2935 int val = 0;
2936 int disabled_breaks = 0;
2937 int hw_breakpoint_error = 0;
2938 int hw_bp_error_explained_already = 0;
2939
2940 string_file tmp_error_stream;
2941
2942 /* Explicitly mark the warning -- this will only be printed if
2943 there was an error. */
2944 tmp_error_stream.puts ("Warning:\n");
2945
2946 scoped_restore_current_pspace_and_thread restore_pspace_thread;
2947
2948 ALL_BP_LOCATIONS (bl, blp_tmp)
2949 {
2950 if (!should_be_inserted (bl) || (bl->inserted && !bl->needs_update))
2951 continue;
2952
2953 /* There is no point inserting thread-specific breakpoints if
2954 the thread no longer exists. ALL_BP_LOCATIONS bp_location
2955 has BL->OWNER always non-NULL. */
2956 if (bl->owner->thread != -1
2957 && !valid_global_thread_id (bl->owner->thread))
2958 continue;
2959
2960 switch_to_program_space_and_thread (bl->pspace);
2961
2962 /* For targets that support global breakpoints, there's no need
2963 to select an inferior to insert breakpoint to. In fact, even
2964 if we aren't attached to any process yet, we should still
2965 insert breakpoints. */
2966 if (!gdbarch_has_global_breakpoints (target_gdbarch ())
2967 && inferior_ptid == null_ptid)
2968 continue;
2969
2970 val = insert_bp_location (bl, &tmp_error_stream, &disabled_breaks,
2971 &hw_breakpoint_error, &hw_bp_error_explained_already);
2972 if (val)
2973 error_flag = val;
2974 }
2975
2976 /* If we failed to insert all locations of a watchpoint, remove
2977 them, as half-inserted watchpoint is of limited use. */
2978 ALL_BREAKPOINTS (bpt)
2979 {
2980 int some_failed = 0;
2981 struct bp_location *loc;
2982
2983 if (!is_hardware_watchpoint (bpt))
2984 continue;
2985
2986 if (!breakpoint_enabled (bpt))
2987 continue;
2988
2989 if (bpt->disposition == disp_del_at_next_stop)
2990 continue;
2991
2992 for (loc = bpt->loc; loc; loc = loc->next)
2993 if (!loc->inserted && should_be_inserted (loc))
2994 {
2995 some_failed = 1;
2996 break;
2997 }
2998 if (some_failed)
2999 {
3000 for (loc = bpt->loc; loc; loc = loc->next)
3001 if (loc->inserted)
3002 remove_breakpoint (loc);
3003
3004 hw_breakpoint_error = 1;
3005 tmp_error_stream.printf ("Could not insert "
3006 "hardware watchpoint %d.\n",
3007 bpt->number);
3008 error_flag = -1;
3009 }
3010 }
3011
3012 if (error_flag)
3013 {
3014 /* If a hardware breakpoint or watchpoint was inserted, add a
3015 message about possibly exhausted resources. */
3016 if (hw_breakpoint_error && !hw_bp_error_explained_already)
3017 {
3018 tmp_error_stream.printf ("Could not insert hardware breakpoints:\n\
3019 You may have requested too many hardware breakpoints/watchpoints.\n");
3020 }
3021 target_terminal::ours_for_output ();
3022 error_stream (tmp_error_stream);
3023 }
3024 }
3025
3026 /* Used when the program stops.
3027 Returns zero if successful, or non-zero if there was a problem
3028 removing a breakpoint location. */
3029
3030 int
3031 remove_breakpoints (void)
3032 {
3033 struct bp_location *bl, **blp_tmp;
3034 int val = 0;
3035
3036 ALL_BP_LOCATIONS (bl, blp_tmp)
3037 {
3038 if (bl->inserted && !is_tracepoint (bl->owner))
3039 val |= remove_breakpoint (bl);
3040 }
3041 return val;
3042 }
3043
3044 /* When a thread exits, remove breakpoints that are related to
3045 that thread. */
3046
3047 static void
3048 remove_threaded_breakpoints (struct thread_info *tp, int silent)
3049 {
3050 struct breakpoint *b, *b_tmp;
3051
3052 ALL_BREAKPOINTS_SAFE (b, b_tmp)
3053 {
3054 if (b->thread == tp->global_num && user_breakpoint_p (b))
3055 {
3056 b->disposition = disp_del_at_next_stop;
3057
3058 printf_filtered (_("\
3059 Thread-specific breakpoint %d deleted - thread %s no longer in the thread list.\n"),
3060 b->number, print_thread_id (tp));
3061
3062 /* Hide it from the user. */
3063 b->number = 0;
3064 }
3065 }
3066 }
3067
3068 /* Remove breakpoints of inferior INF. */
3069
3070 int
3071 remove_breakpoints_inf (inferior *inf)
3072 {
3073 struct bp_location *bl, **blp_tmp;
3074 int val;
3075
3076 ALL_BP_LOCATIONS (bl, blp_tmp)
3077 {
3078 if (bl->pspace != inf->pspace)
3079 continue;
3080
3081 if (bl->inserted && !bl->target_info.persist)
3082 {
3083 val = remove_breakpoint (bl);
3084 if (val != 0)
3085 return val;
3086 }
3087 }
3088 return 0;
3089 }
3090
3091 static int internal_breakpoint_number = -1;
3092
3093 /* Set the breakpoint number of B, depending on the value of INTERNAL.
3094 If INTERNAL is non-zero, the breakpoint number will be populated
3095 from internal_breakpoint_number and that variable decremented.
3096 Otherwise the breakpoint number will be populated from
3097 breakpoint_count and that value incremented. Internal breakpoints
3098 do not set the internal var bpnum. */
3099 static void
3100 set_breakpoint_number (int internal, struct breakpoint *b)
3101 {
3102 if (internal)
3103 b->number = internal_breakpoint_number--;
3104 else
3105 {
3106 set_breakpoint_count (breakpoint_count + 1);
3107 b->number = breakpoint_count;
3108 }
3109 }
3110
3111 static struct breakpoint *
3112 create_internal_breakpoint (struct gdbarch *gdbarch,
3113 CORE_ADDR address, enum bptype type,
3114 const struct breakpoint_ops *ops)
3115 {
3116 symtab_and_line sal;
3117 sal.pc = address;
3118 sal.section = find_pc_overlay (sal.pc);
3119 sal.pspace = current_program_space;
3120
3121 breakpoint *b = set_raw_breakpoint (gdbarch, sal, type, ops);
3122 b->number = internal_breakpoint_number--;
3123 b->disposition = disp_donttouch;
3124
3125 return b;
3126 }
3127
3128 static const char *const longjmp_names[] =
3129 {
3130 "longjmp", "_longjmp", "siglongjmp", "_siglongjmp"
3131 };
3132 #define NUM_LONGJMP_NAMES ARRAY_SIZE(longjmp_names)
3133
3134 /* Per-objfile data private to breakpoint.c. */
3135 struct breakpoint_objfile_data
3136 {
3137 /* Minimal symbol for "_ovly_debug_event" (if any). */
3138 struct bound_minimal_symbol overlay_msym {};
3139
3140 /* Minimal symbol(s) for "longjmp", "siglongjmp", etc. (if any). */
3141 struct bound_minimal_symbol longjmp_msym[NUM_LONGJMP_NAMES] {};
3142
3143 /* True if we have looked for longjmp probes. */
3144 int longjmp_searched = 0;
3145
3146 /* SystemTap probe points for longjmp (if any). These are non-owning
3147 references. */
3148 std::vector<probe *> longjmp_probes;
3149
3150 /* Minimal symbol for "std::terminate()" (if any). */
3151 struct bound_minimal_symbol terminate_msym {};
3152
3153 /* Minimal symbol for "_Unwind_DebugHook" (if any). */
3154 struct bound_minimal_symbol exception_msym {};
3155
3156 /* True if we have looked for exception probes. */
3157 int exception_searched = 0;
3158
3159 /* SystemTap probe points for unwinding (if any). These are non-owning
3160 references. */
3161 std::vector<probe *> exception_probes;
3162 };
3163
3164 static const struct objfile_data *breakpoint_objfile_key;
3165
3166 /* Minimal symbol not found sentinel. */
3167 static struct minimal_symbol msym_not_found;
3168
3169 /* Returns TRUE if MSYM point to the "not found" sentinel. */
3170
3171 static int
3172 msym_not_found_p (const struct minimal_symbol *msym)
3173 {
3174 return msym == &msym_not_found;
3175 }
3176
3177 /* Return per-objfile data needed by breakpoint.c.
3178 Allocate the data if necessary. */
3179
3180 static struct breakpoint_objfile_data *
3181 get_breakpoint_objfile_data (struct objfile *objfile)
3182 {
3183 struct breakpoint_objfile_data *bp_objfile_data;
3184
3185 bp_objfile_data = ((struct breakpoint_objfile_data *)
3186 objfile_data (objfile, breakpoint_objfile_key));
3187 if (bp_objfile_data == NULL)
3188 {
3189 bp_objfile_data = new breakpoint_objfile_data ();
3190 set_objfile_data (objfile, breakpoint_objfile_key, bp_objfile_data);
3191 }
3192 return bp_objfile_data;
3193 }
3194
3195 static void
3196 free_breakpoint_objfile_data (struct objfile *obj, void *data)
3197 {
3198 struct breakpoint_objfile_data *bp_objfile_data
3199 = (struct breakpoint_objfile_data *) data;
3200
3201 delete bp_objfile_data;
3202 }
3203
3204 static void
3205 create_overlay_event_breakpoint (void)
3206 {
3207 struct objfile *objfile;
3208 const char *const func_name = "_ovly_debug_event";
3209
3210 ALL_OBJFILES (objfile)
3211 {
3212 struct breakpoint *b;
3213 struct breakpoint_objfile_data *bp_objfile_data;
3214 CORE_ADDR addr;
3215 struct explicit_location explicit_loc;
3216
3217 bp_objfile_data = get_breakpoint_objfile_data (objfile);
3218
3219 if (msym_not_found_p (bp_objfile_data->overlay_msym.minsym))
3220 continue;
3221
3222 if (bp_objfile_data->overlay_msym.minsym == NULL)
3223 {
3224 struct bound_minimal_symbol m;
3225
3226 m = lookup_minimal_symbol_text (func_name, objfile);
3227 if (m.minsym == NULL)
3228 {
3229 /* Avoid future lookups in this objfile. */
3230 bp_objfile_data->overlay_msym.minsym = &msym_not_found;
3231 continue;
3232 }
3233 bp_objfile_data->overlay_msym = m;
3234 }
3235
3236 addr = BMSYMBOL_VALUE_ADDRESS (bp_objfile_data->overlay_msym);
3237 b = create_internal_breakpoint (get_objfile_arch (objfile), addr,
3238 bp_overlay_event,
3239 &internal_breakpoint_ops);
3240 initialize_explicit_location (&explicit_loc);
3241 explicit_loc.function_name = ASTRDUP (func_name);
3242 b->location = new_explicit_location (&explicit_loc);
3243
3244 if (overlay_debugging == ovly_auto)
3245 {
3246 b->enable_state = bp_enabled;
3247 overlay_events_enabled = 1;
3248 }
3249 else
3250 {
3251 b->enable_state = bp_disabled;
3252 overlay_events_enabled = 0;
3253 }
3254 }
3255 }
3256
3257 static void
3258 create_longjmp_master_breakpoint (void)
3259 {
3260 struct program_space *pspace;
3261
3262 scoped_restore_current_program_space restore_pspace;
3263
3264 ALL_PSPACES (pspace)
3265 {
3266 struct objfile *objfile;
3267
3268 set_current_program_space (pspace);
3269
3270 ALL_OBJFILES (objfile)
3271 {
3272 int i;
3273 struct gdbarch *gdbarch;
3274 struct breakpoint_objfile_data *bp_objfile_data;
3275
3276 gdbarch = get_objfile_arch (objfile);
3277
3278 bp_objfile_data = get_breakpoint_objfile_data (objfile);
3279
3280 if (!bp_objfile_data->longjmp_searched)
3281 {
3282 std::vector<probe *> ret
3283 = find_probes_in_objfile (objfile, "libc", "longjmp");
3284
3285 if (!ret.empty ())
3286 {
3287 /* We are only interested in checking one element. */
3288 probe *p = ret[0];
3289
3290 if (!p->can_evaluate_arguments ())
3291 {
3292 /* We cannot use the probe interface here, because it does
3293 not know how to evaluate arguments. */
3294 ret.clear ();
3295 }
3296 }
3297 bp_objfile_data->longjmp_probes = ret;
3298 bp_objfile_data->longjmp_searched = 1;
3299 }
3300
3301 if (!bp_objfile_data->longjmp_probes.empty ())
3302 {
3303 for (probe *p : bp_objfile_data->longjmp_probes)
3304 {
3305 struct breakpoint *b;
3306
3307 b = create_internal_breakpoint (gdbarch,
3308 p->get_relocated_address (objfile),
3309 bp_longjmp_master,
3310 &internal_breakpoint_ops);
3311 b->location = new_probe_location ("-probe-stap libc:longjmp");
3312 b->enable_state = bp_disabled;
3313 }
3314
3315 continue;
3316 }
3317
3318 if (!gdbarch_get_longjmp_target_p (gdbarch))
3319 continue;
3320
3321 for (i = 0; i < NUM_LONGJMP_NAMES; i++)
3322 {
3323 struct breakpoint *b;
3324 const char *func_name;
3325 CORE_ADDR addr;
3326 struct explicit_location explicit_loc;
3327
3328 if (msym_not_found_p (bp_objfile_data->longjmp_msym[i].minsym))
3329 continue;
3330
3331 func_name = longjmp_names[i];
3332 if (bp_objfile_data->longjmp_msym[i].minsym == NULL)
3333 {
3334 struct bound_minimal_symbol m;
3335
3336 m = lookup_minimal_symbol_text (func_name, objfile);
3337 if (m.minsym == NULL)
3338 {
3339 /* Prevent future lookups in this objfile. */
3340 bp_objfile_data->longjmp_msym[i].minsym = &msym_not_found;
3341 continue;
3342 }
3343 bp_objfile_data->longjmp_msym[i] = m;
3344 }
3345
3346 addr = BMSYMBOL_VALUE_ADDRESS (bp_objfile_data->longjmp_msym[i]);
3347 b = create_internal_breakpoint (gdbarch, addr, bp_longjmp_master,
3348 &internal_breakpoint_ops);
3349 initialize_explicit_location (&explicit_loc);
3350 explicit_loc.function_name = ASTRDUP (func_name);
3351 b->location = new_explicit_location (&explicit_loc);
3352 b->enable_state = bp_disabled;
3353 }
3354 }
3355 }
3356 }
3357
3358 /* Create a master std::terminate breakpoint. */
3359 static void
3360 create_std_terminate_master_breakpoint (void)
3361 {
3362 struct program_space *pspace;
3363 const char *const func_name = "std::terminate()";
3364
3365 scoped_restore_current_program_space restore_pspace;
3366
3367 ALL_PSPACES (pspace)
3368 {
3369 struct objfile *objfile;
3370 CORE_ADDR addr;
3371
3372 set_current_program_space (pspace);
3373
3374 ALL_OBJFILES (objfile)
3375 {
3376 struct breakpoint *b;
3377 struct breakpoint_objfile_data *bp_objfile_data;
3378 struct explicit_location explicit_loc;
3379
3380 bp_objfile_data = get_breakpoint_objfile_data (objfile);
3381
3382 if (msym_not_found_p (bp_objfile_data->terminate_msym.minsym))
3383 continue;
3384
3385 if (bp_objfile_data->terminate_msym.minsym == NULL)
3386 {
3387 struct bound_minimal_symbol m;
3388
3389 m = lookup_minimal_symbol (func_name, NULL, objfile);
3390 if (m.minsym == NULL || (MSYMBOL_TYPE (m.minsym) != mst_text
3391 && MSYMBOL_TYPE (m.minsym) != mst_file_text))
3392 {
3393 /* Prevent future lookups in this objfile. */
3394 bp_objfile_data->terminate_msym.minsym = &msym_not_found;
3395 continue;
3396 }
3397 bp_objfile_data->terminate_msym = m;
3398 }
3399
3400 addr = BMSYMBOL_VALUE_ADDRESS (bp_objfile_data->terminate_msym);
3401 b = create_internal_breakpoint (get_objfile_arch (objfile), addr,
3402 bp_std_terminate_master,
3403 &internal_breakpoint_ops);
3404 initialize_explicit_location (&explicit_loc);
3405 explicit_loc.function_name = ASTRDUP (func_name);
3406 b->location = new_explicit_location (&explicit_loc);
3407 b->enable_state = bp_disabled;
3408 }
3409 }
3410 }
3411
3412 /* Install a master breakpoint on the unwinder's debug hook. */
3413
3414 static void
3415 create_exception_master_breakpoint (void)
3416 {
3417 struct objfile *objfile;
3418 const char *const func_name = "_Unwind_DebugHook";
3419
3420 ALL_OBJFILES (objfile)
3421 {
3422 struct breakpoint *b;
3423 struct gdbarch *gdbarch;
3424 struct breakpoint_objfile_data *bp_objfile_data;
3425 CORE_ADDR addr;
3426 struct explicit_location explicit_loc;
3427
3428 bp_objfile_data = get_breakpoint_objfile_data (objfile);
3429
3430 /* We prefer the SystemTap probe point if it exists. */
3431 if (!bp_objfile_data->exception_searched)
3432 {
3433 std::vector<probe *> ret
3434 = find_probes_in_objfile (objfile, "libgcc", "unwind");
3435
3436 if (!ret.empty ())
3437 {
3438 /* We are only interested in checking one element. */
3439 probe *p = ret[0];
3440
3441 if (!p->can_evaluate_arguments ())
3442 {
3443 /* We cannot use the probe interface here, because it does
3444 not know how to evaluate arguments. */
3445 ret.clear ();
3446 }
3447 }
3448 bp_objfile_data->exception_probes = ret;
3449 bp_objfile_data->exception_searched = 1;
3450 }
3451
3452 if (!bp_objfile_data->exception_probes.empty ())
3453 {
3454 gdbarch = get_objfile_arch (objfile);
3455
3456 for (probe *p : bp_objfile_data->exception_probes)
3457 {
3458 b = create_internal_breakpoint (gdbarch,
3459 p->get_relocated_address (objfile),
3460 bp_exception_master,
3461 &internal_breakpoint_ops);
3462 b->location = new_probe_location ("-probe-stap libgcc:unwind");
3463 b->enable_state = bp_disabled;
3464 }
3465
3466 continue;
3467 }
3468
3469 /* Otherwise, try the hook function. */
3470
3471 if (msym_not_found_p (bp_objfile_data->exception_msym.minsym))
3472 continue;
3473
3474 gdbarch = get_objfile_arch (objfile);
3475
3476 if (bp_objfile_data->exception_msym.minsym == NULL)
3477 {
3478 struct bound_minimal_symbol debug_hook;
3479
3480 debug_hook = lookup_minimal_symbol (func_name, NULL, objfile);
3481 if (debug_hook.minsym == NULL)
3482 {
3483 bp_objfile_data->exception_msym.minsym = &msym_not_found;
3484 continue;
3485 }
3486
3487 bp_objfile_data->exception_msym = debug_hook;
3488 }
3489
3490 addr = BMSYMBOL_VALUE_ADDRESS (bp_objfile_data->exception_msym);
3491 addr = gdbarch_convert_from_func_ptr_addr (gdbarch, addr,
3492 current_top_target ());
3493 b = create_internal_breakpoint (gdbarch, addr, bp_exception_master,
3494 &internal_breakpoint_ops);
3495 initialize_explicit_location (&explicit_loc);
3496 explicit_loc.function_name = ASTRDUP (func_name);
3497 b->location = new_explicit_location (&explicit_loc);
3498 b->enable_state = bp_disabled;
3499 }
3500 }
3501
3502 /* Does B have a location spec? */
3503
3504 static int
3505 breakpoint_event_location_empty_p (const struct breakpoint *b)
3506 {
3507 return b->location != NULL && event_location_empty_p (b->location.get ());
3508 }
3509
3510 void
3511 update_breakpoints_after_exec (void)
3512 {
3513 struct breakpoint *b, *b_tmp;
3514 struct bp_location *bploc, **bplocp_tmp;
3515
3516 /* We're about to delete breakpoints from GDB's lists. If the
3517 INSERTED flag is true, GDB will try to lift the breakpoints by
3518 writing the breakpoints' "shadow contents" back into memory. The
3519 "shadow contents" are NOT valid after an exec, so GDB should not
3520 do that. Instead, the target is responsible from marking
3521 breakpoints out as soon as it detects an exec. We don't do that
3522 here instead, because there may be other attempts to delete
3523 breakpoints after detecting an exec and before reaching here. */
3524 ALL_BP_LOCATIONS (bploc, bplocp_tmp)
3525 if (bploc->pspace == current_program_space)
3526 gdb_assert (!bploc->inserted);
3527
3528 ALL_BREAKPOINTS_SAFE (b, b_tmp)
3529 {
3530 if (b->pspace != current_program_space)
3531 continue;
3532
3533 /* Solib breakpoints must be explicitly reset after an exec(). */
3534 if (b->type == bp_shlib_event)
3535 {
3536 delete_breakpoint (b);
3537 continue;
3538 }
3539
3540 /* JIT breakpoints must be explicitly reset after an exec(). */
3541 if (b->type == bp_jit_event)
3542 {
3543 delete_breakpoint (b);
3544 continue;
3545 }
3546
3547 /* Thread event breakpoints must be set anew after an exec(),
3548 as must overlay event and longjmp master breakpoints. */
3549 if (b->type == bp_thread_event || b->type == bp_overlay_event
3550 || b->type == bp_longjmp_master || b->type == bp_std_terminate_master
3551 || b->type == bp_exception_master)
3552 {
3553 delete_breakpoint (b);
3554 continue;
3555 }
3556
3557 /* Step-resume breakpoints are meaningless after an exec(). */
3558 if (b->type == bp_step_resume || b->type == bp_hp_step_resume)
3559 {
3560 delete_breakpoint (b);
3561 continue;
3562 }
3563
3564 /* Just like single-step breakpoints. */
3565 if (b->type == bp_single_step)
3566 {
3567 delete_breakpoint (b);
3568 continue;
3569 }
3570
3571 /* Longjmp and longjmp-resume breakpoints are also meaningless
3572 after an exec. */
3573 if (b->type == bp_longjmp || b->type == bp_longjmp_resume
3574 || b->type == bp_longjmp_call_dummy
3575 || b->type == bp_exception || b->type == bp_exception_resume)
3576 {
3577 delete_breakpoint (b);
3578 continue;
3579 }
3580
3581 if (b->type == bp_catchpoint)
3582 {
3583 /* For now, none of the bp_catchpoint breakpoints need to
3584 do anything at this point. In the future, if some of
3585 the catchpoints need to something, we will need to add
3586 a new method, and call this method from here. */
3587 continue;
3588 }
3589
3590 /* bp_finish is a special case. The only way we ought to be able
3591 to see one of these when an exec() has happened, is if the user
3592 caught a vfork, and then said "finish". Ordinarily a finish just
3593 carries them to the call-site of the current callee, by setting
3594 a temporary bp there and resuming. But in this case, the finish
3595 will carry them entirely through the vfork & exec.
3596
3597 We don't want to allow a bp_finish to remain inserted now. But
3598 we can't safely delete it, 'cause finish_command has a handle to
3599 the bp on a bpstat, and will later want to delete it. There's a
3600 chance (and I've seen it happen) that if we delete the bp_finish
3601 here, that its storage will get reused by the time finish_command
3602 gets 'round to deleting the "use to be a bp_finish" breakpoint.
3603 We really must allow finish_command to delete a bp_finish.
3604
3605 In the absence of a general solution for the "how do we know
3606 it's safe to delete something others may have handles to?"
3607 problem, what we'll do here is just uninsert the bp_finish, and
3608 let finish_command delete it.
3609
3610 (We know the bp_finish is "doomed" in the sense that it's
3611 momentary, and will be deleted as soon as finish_command sees
3612 the inferior stopped. So it doesn't matter that the bp's
3613 address is probably bogus in the new a.out, unlike e.g., the
3614 solib breakpoints.) */
3615
3616 if (b->type == bp_finish)
3617 {
3618 continue;
3619 }
3620
3621 /* Without a symbolic address, we have little hope of the
3622 pre-exec() address meaning the same thing in the post-exec()
3623 a.out. */
3624 if (breakpoint_event_location_empty_p (b))
3625 {
3626 delete_breakpoint (b);
3627 continue;
3628 }
3629 }
3630 }
3631
3632 int
3633 detach_breakpoints (ptid_t ptid)
3634 {
3635 struct bp_location *bl, **blp_tmp;
3636 int val = 0;
3637 scoped_restore save_inferior_ptid = make_scoped_restore (&inferior_ptid);
3638 struct inferior *inf = current_inferior ();
3639
3640 if (ptid.pid () == inferior_ptid.pid ())
3641 error (_("Cannot detach breakpoints of inferior_ptid"));
3642
3643 /* Set inferior_ptid; remove_breakpoint_1 uses this global. */
3644 inferior_ptid = ptid;
3645 ALL_BP_LOCATIONS (bl, blp_tmp)
3646 {
3647 if (bl->pspace != inf->pspace)
3648 continue;
3649
3650 /* This function must physically remove breakpoints locations
3651 from the specified ptid, without modifying the breakpoint
3652 package's state. Locations of type bp_loc_other are only
3653 maintained at GDB side. So, there is no need to remove
3654 these bp_loc_other locations. Moreover, removing these
3655 would modify the breakpoint package's state. */
3656 if (bl->loc_type == bp_loc_other)
3657 continue;
3658
3659 if (bl->inserted)
3660 val |= remove_breakpoint_1 (bl, DETACH_BREAKPOINT);
3661 }
3662
3663 return val;
3664 }
3665
3666 /* Remove the breakpoint location BL from the current address space.
3667 Note that this is used to detach breakpoints from a child fork.
3668 When we get here, the child isn't in the inferior list, and neither
3669 do we have objects to represent its address space --- we should
3670 *not* look at bl->pspace->aspace here. */
3671
3672 static int
3673 remove_breakpoint_1 (struct bp_location *bl, enum remove_bp_reason reason)
3674 {
3675 int val;
3676
3677 /* BL is never in moribund_locations by our callers. */
3678 gdb_assert (bl->owner != NULL);
3679
3680 /* The type of none suggests that owner is actually deleted.
3681 This should not ever happen. */
3682 gdb_assert (bl->owner->type != bp_none);
3683
3684 if (bl->loc_type == bp_loc_software_breakpoint
3685 || bl->loc_type == bp_loc_hardware_breakpoint)
3686 {
3687 /* "Normal" instruction breakpoint: either the standard
3688 trap-instruction bp (bp_breakpoint), or a
3689 bp_hardware_breakpoint. */
3690
3691 /* First check to see if we have to handle an overlay. */
3692 if (overlay_debugging == ovly_off
3693 || bl->section == NULL
3694 || !(section_is_overlay (bl->section)))
3695 {
3696 /* No overlay handling: just remove the breakpoint. */
3697
3698 /* If we're trying to uninsert a memory breakpoint that we
3699 know is set in a dynamic object that is marked
3700 shlib_disabled, then either the dynamic object was
3701 removed with "remove-symbol-file" or with
3702 "nosharedlibrary". In the former case, we don't know
3703 whether another dynamic object might have loaded over the
3704 breakpoint's address -- the user might well let us know
3705 about it next with add-symbol-file (the whole point of
3706 add-symbol-file is letting the user manually maintain a
3707 list of dynamically loaded objects). If we have the
3708 breakpoint's shadow memory, that is, this is a software
3709 breakpoint managed by GDB, check whether the breakpoint
3710 is still inserted in memory, to avoid overwriting wrong
3711 code with stale saved shadow contents. Note that HW
3712 breakpoints don't have shadow memory, as they're
3713 implemented using a mechanism that is not dependent on
3714 being able to modify the target's memory, and as such
3715 they should always be removed. */
3716 if (bl->shlib_disabled
3717 && bl->target_info.shadow_len != 0
3718 && !memory_validate_breakpoint (bl->gdbarch, &bl->target_info))
3719 val = 0;
3720 else
3721 val = bl->owner->ops->remove_location (bl, reason);
3722 }
3723 else
3724 {
3725 /* This breakpoint is in an overlay section.
3726 Did we set a breakpoint at the LMA? */
3727 if (!overlay_events_enabled)
3728 {
3729 /* Yes -- overlay event support is not active, so we
3730 should have set a breakpoint at the LMA. Remove it.
3731 */
3732 /* Ignore any failures: if the LMA is in ROM, we will
3733 have already warned when we failed to insert it. */
3734 if (bl->loc_type == bp_loc_hardware_breakpoint)
3735 target_remove_hw_breakpoint (bl->gdbarch,
3736 &bl->overlay_target_info);
3737 else
3738 target_remove_breakpoint (bl->gdbarch,
3739 &bl->overlay_target_info,
3740 reason);
3741 }
3742 /* Did we set a breakpoint at the VMA?
3743 If so, we will have marked the breakpoint 'inserted'. */
3744 if (bl->inserted)
3745 {
3746 /* Yes -- remove it. Previously we did not bother to
3747 remove the breakpoint if the section had been
3748 unmapped, but let's not rely on that being safe. We
3749 don't know what the overlay manager might do. */
3750
3751 /* However, we should remove *software* breakpoints only
3752 if the section is still mapped, or else we overwrite
3753 wrong code with the saved shadow contents. */
3754 if (bl->loc_type == bp_loc_hardware_breakpoint
3755 || section_is_mapped (bl->section))
3756 val = bl->owner->ops->remove_location (bl, reason);
3757 else
3758 val = 0;
3759 }
3760 else
3761 {
3762 /* No -- not inserted, so no need to remove. No error. */
3763 val = 0;
3764 }
3765 }
3766
3767 /* In some cases, we might not be able to remove a breakpoint in
3768 a shared library that has already been removed, but we have
3769 not yet processed the shlib unload event. Similarly for an
3770 unloaded add-symbol-file object - the user might not yet have
3771 had the chance to remove-symbol-file it. shlib_disabled will
3772 be set if the library/object has already been removed, but
3773 the breakpoint hasn't been uninserted yet, e.g., after
3774 "nosharedlibrary" or "remove-symbol-file" with breakpoints
3775 always-inserted mode. */
3776 if (val
3777 && (bl->loc_type == bp_loc_software_breakpoint
3778 && (bl->shlib_disabled
3779 || solib_name_from_address (bl->pspace, bl->address)
3780 || shared_objfile_contains_address_p (bl->pspace,
3781 bl->address))))
3782 val = 0;
3783
3784 if (val)
3785 return val;
3786 bl->inserted = (reason == DETACH_BREAKPOINT);
3787 }
3788 else if (bl->loc_type == bp_loc_hardware_watchpoint)
3789 {
3790 gdb_assert (bl->owner->ops != NULL
3791 && bl->owner->ops->remove_location != NULL);
3792
3793 bl->inserted = (reason == DETACH_BREAKPOINT);
3794 bl->owner->ops->remove_location (bl, reason);
3795
3796 /* Failure to remove any of the hardware watchpoints comes here. */
3797 if (reason == REMOVE_BREAKPOINT && bl->inserted)
3798 warning (_("Could not remove hardware watchpoint %d."),
3799 bl->owner->number);
3800 }
3801 else if (bl->owner->type == bp_catchpoint
3802 && breakpoint_enabled (bl->owner)
3803 && !bl->duplicate)
3804 {
3805 gdb_assert (bl->owner->ops != NULL
3806 && bl->owner->ops->remove_location != NULL);
3807
3808 val = bl->owner->ops->remove_location (bl, reason);
3809 if (val)
3810 return val;
3811
3812 bl->inserted = (reason == DETACH_BREAKPOINT);
3813 }
3814
3815 return 0;
3816 }
3817
3818 static int
3819 remove_breakpoint (struct bp_location *bl)
3820 {
3821 /* BL is never in moribund_locations by our callers. */
3822 gdb_assert (bl->owner != NULL);
3823
3824 /* The type of none suggests that owner is actually deleted.
3825 This should not ever happen. */
3826 gdb_assert (bl->owner->type != bp_none);
3827
3828 scoped_restore_current_pspace_and_thread restore_pspace_thread;
3829
3830 switch_to_program_space_and_thread (bl->pspace);
3831
3832 return remove_breakpoint_1 (bl, REMOVE_BREAKPOINT);
3833 }
3834
3835 /* Clear the "inserted" flag in all breakpoints. */
3836
3837 void
3838 mark_breakpoints_out (void)
3839 {
3840 struct bp_location *bl, **blp_tmp;
3841
3842 ALL_BP_LOCATIONS (bl, blp_tmp)
3843 if (bl->pspace == current_program_space)
3844 bl->inserted = 0;
3845 }
3846
3847 /* Clear the "inserted" flag in all breakpoints and delete any
3848 breakpoints which should go away between runs of the program.
3849
3850 Plus other such housekeeping that has to be done for breakpoints
3851 between runs.
3852
3853 Note: this function gets called at the end of a run (by
3854 generic_mourn_inferior) and when a run begins (by
3855 init_wait_for_inferior). */
3856
3857
3858
3859 void
3860 breakpoint_init_inferior (enum inf_context context)
3861 {
3862 struct breakpoint *b, *b_tmp;
3863 struct program_space *pspace = current_program_space;
3864
3865 /* If breakpoint locations are shared across processes, then there's
3866 nothing to do. */
3867 if (gdbarch_has_global_breakpoints (target_gdbarch ()))
3868 return;
3869
3870 mark_breakpoints_out ();
3871
3872 ALL_BREAKPOINTS_SAFE (b, b_tmp)
3873 {
3874 if (b->loc && b->loc->pspace != pspace)
3875 continue;
3876
3877 switch (b->type)
3878 {
3879 case bp_call_dummy:
3880 case bp_longjmp_call_dummy:
3881
3882 /* If the call dummy breakpoint is at the entry point it will
3883 cause problems when the inferior is rerun, so we better get
3884 rid of it. */
3885
3886 case bp_watchpoint_scope:
3887
3888 /* Also get rid of scope breakpoints. */
3889
3890 case bp_shlib_event:
3891
3892 /* Also remove solib event breakpoints. Their addresses may
3893 have changed since the last time we ran the program.
3894 Actually we may now be debugging against different target;
3895 and so the solib backend that installed this breakpoint may
3896 not be used in by the target. E.g.,
3897
3898 (gdb) file prog-linux
3899 (gdb) run # native linux target
3900 ...
3901 (gdb) kill
3902 (gdb) file prog-win.exe
3903 (gdb) tar rem :9999 # remote Windows gdbserver.
3904 */
3905
3906 case bp_step_resume:
3907
3908 /* Also remove step-resume breakpoints. */
3909
3910 case bp_single_step:
3911
3912 /* Also remove single-step breakpoints. */
3913
3914 delete_breakpoint (b);
3915 break;
3916
3917 case bp_watchpoint:
3918 case bp_hardware_watchpoint:
3919 case bp_read_watchpoint:
3920 case bp_access_watchpoint:
3921 {
3922 struct watchpoint *w = (struct watchpoint *) b;
3923
3924 /* Likewise for watchpoints on local expressions. */
3925 if (w->exp_valid_block != NULL)
3926 delete_breakpoint (b);
3927 else
3928 {
3929 /* Get rid of existing locations, which are no longer
3930 valid. New ones will be created in
3931 update_watchpoint, when the inferior is restarted.
3932 The next update_global_location_list call will
3933 garbage collect them. */
3934 b->loc = NULL;
3935
3936 if (context == inf_starting)
3937 {
3938 /* Reset val field to force reread of starting value in
3939 insert_breakpoints. */
3940 w->val.reset (nullptr);
3941 w->val_valid = 0;
3942 }
3943 }
3944 }
3945 break;
3946 default:
3947 break;
3948 }
3949 }
3950
3951 /* Get rid of the moribund locations. */
3952 for (bp_location *bl : moribund_locations)
3953 decref_bp_location (&bl);
3954 moribund_locations.clear ();
3955 }
3956
3957 /* These functions concern about actual breakpoints inserted in the
3958 target --- to e.g. check if we need to do decr_pc adjustment or if
3959 we need to hop over the bkpt --- so we check for address space
3960 match, not program space. */
3961
3962 /* breakpoint_here_p (PC) returns non-zero if an enabled breakpoint
3963 exists at PC. It returns ordinary_breakpoint_here if it's an
3964 ordinary breakpoint, or permanent_breakpoint_here if it's a
3965 permanent breakpoint.
3966 - When continuing from a location with an ordinary breakpoint, we
3967 actually single step once before calling insert_breakpoints.
3968 - When continuing from a location with a permanent breakpoint, we
3969 need to use the `SKIP_PERMANENT_BREAKPOINT' macro, provided by
3970 the target, to advance the PC past the breakpoint. */
3971
3972 enum breakpoint_here
3973 breakpoint_here_p (const address_space *aspace, CORE_ADDR pc)
3974 {
3975 struct bp_location *bl, **blp_tmp;
3976 int any_breakpoint_here = 0;
3977
3978 ALL_BP_LOCATIONS (bl, blp_tmp)
3979 {
3980 if (bl->loc_type != bp_loc_software_breakpoint
3981 && bl->loc_type != bp_loc_hardware_breakpoint)
3982 continue;
3983
3984 /* ALL_BP_LOCATIONS bp_location has BL->OWNER always non-NULL. */
3985 if ((breakpoint_enabled (bl->owner)
3986 || bl->permanent)
3987 && breakpoint_location_address_match (bl, aspace, pc))
3988 {
3989 if (overlay_debugging
3990 && section_is_overlay (bl->section)
3991 && !section_is_mapped (bl->section))
3992 continue; /* unmapped overlay -- can't be a match */
3993 else if (bl->permanent)
3994 return permanent_breakpoint_here;
3995 else
3996 any_breakpoint_here = 1;
3997 }
3998 }
3999
4000 return any_breakpoint_here ? ordinary_breakpoint_here : no_breakpoint_here;
4001 }
4002
4003 /* See breakpoint.h. */
4004
4005 int
4006 breakpoint_in_range_p (const address_space *aspace,
4007 CORE_ADDR addr, ULONGEST len)
4008 {
4009 struct bp_location *bl, **blp_tmp;
4010
4011 ALL_BP_LOCATIONS (bl, blp_tmp)
4012 {
4013 if (bl->loc_type != bp_loc_software_breakpoint
4014 && bl->loc_type != bp_loc_hardware_breakpoint)
4015 continue;
4016
4017 if ((breakpoint_enabled (bl->owner)
4018 || bl->permanent)
4019 && breakpoint_location_address_range_overlap (bl, aspace,
4020 addr, len))
4021 {
4022 if (overlay_debugging
4023 && section_is_overlay (bl->section)
4024 && !section_is_mapped (bl->section))
4025 {
4026 /* Unmapped overlay -- can't be a match. */
4027 continue;
4028 }
4029
4030 return 1;
4031 }
4032 }
4033
4034 return 0;
4035 }
4036
4037 /* Return true if there's a moribund breakpoint at PC. */
4038
4039 int
4040 moribund_breakpoint_here_p (const address_space *aspace, CORE_ADDR pc)
4041 {
4042 for (bp_location *loc : moribund_locations)
4043 if (breakpoint_location_address_match (loc, aspace, pc))
4044 return 1;
4045
4046 return 0;
4047 }
4048
4049 /* Returns non-zero iff BL is inserted at PC, in address space
4050 ASPACE. */
4051
4052 static int
4053 bp_location_inserted_here_p (struct bp_location *bl,
4054 const address_space *aspace, CORE_ADDR pc)
4055 {
4056 if (bl->inserted
4057 && breakpoint_address_match (bl->pspace->aspace, bl->address,
4058 aspace, pc))
4059 {
4060 if (overlay_debugging
4061 && section_is_overlay (bl->section)
4062 && !section_is_mapped (bl->section))
4063 return 0; /* unmapped overlay -- can't be a match */
4064 else
4065 return 1;
4066 }
4067 return 0;
4068 }
4069
4070 /* Returns non-zero iff there's a breakpoint inserted at PC. */
4071
4072 int
4073 breakpoint_inserted_here_p (const address_space *aspace, CORE_ADDR pc)
4074 {
4075 struct bp_location **blp, **blp_tmp = NULL;
4076
4077 ALL_BP_LOCATIONS_AT_ADDR (blp, blp_tmp, pc)
4078 {
4079 struct bp_location *bl = *blp;
4080
4081 if (bl->loc_type != bp_loc_software_breakpoint
4082 && bl->loc_type != bp_loc_hardware_breakpoint)
4083 continue;
4084
4085 if (bp_location_inserted_here_p (bl, aspace, pc))
4086 return 1;
4087 }
4088 return 0;
4089 }
4090
4091 /* This function returns non-zero iff there is a software breakpoint
4092 inserted at PC. */
4093
4094 int
4095 software_breakpoint_inserted_here_p (const address_space *aspace,
4096 CORE_ADDR pc)
4097 {
4098 struct bp_location **blp, **blp_tmp = NULL;
4099
4100 ALL_BP_LOCATIONS_AT_ADDR (blp, blp_tmp, pc)
4101 {
4102 struct bp_location *bl = *blp;
4103
4104 if (bl->loc_type != bp_loc_software_breakpoint)
4105 continue;
4106
4107 if (bp_location_inserted_here_p (bl, aspace, pc))
4108 return 1;
4109 }
4110
4111 return 0;
4112 }
4113
4114 /* See breakpoint.h. */
4115
4116 int
4117 hardware_breakpoint_inserted_here_p (const address_space *aspace,
4118 CORE_ADDR pc)
4119 {
4120 struct bp_location **blp, **blp_tmp = NULL;
4121
4122 ALL_BP_LOCATIONS_AT_ADDR (blp, blp_tmp, pc)
4123 {
4124 struct bp_location *bl = *blp;
4125
4126 if (bl->loc_type != bp_loc_hardware_breakpoint)
4127 continue;
4128
4129 if (bp_location_inserted_here_p (bl, aspace, pc))
4130 return 1;
4131 }
4132
4133 return 0;
4134 }
4135
4136 int
4137 hardware_watchpoint_inserted_in_range (const address_space *aspace,
4138 CORE_ADDR addr, ULONGEST len)
4139 {
4140 struct breakpoint *bpt;
4141
4142 ALL_BREAKPOINTS (bpt)
4143 {
4144 struct bp_location *loc;
4145
4146 if (bpt->type != bp_hardware_watchpoint
4147 && bpt->type != bp_access_watchpoint)
4148 continue;
4149
4150 if (!breakpoint_enabled (bpt))
4151 continue;
4152
4153 for (loc = bpt->loc; loc; loc = loc->next)
4154 if (loc->pspace->aspace == aspace && loc->inserted)
4155 {
4156 CORE_ADDR l, h;
4157
4158 /* Check for intersection. */
4159 l = std::max<CORE_ADDR> (loc->address, addr);
4160 h = std::min<CORE_ADDR> (loc->address + loc->length, addr + len);
4161 if (l < h)
4162 return 1;
4163 }
4164 }
4165 return 0;
4166 }
4167 \f
4168
4169 /* bpstat stuff. External routines' interfaces are documented
4170 in breakpoint.h. */
4171
4172 int
4173 is_catchpoint (struct breakpoint *ep)
4174 {
4175 return (ep->type == bp_catchpoint);
4176 }
4177
4178 /* Frees any storage that is part of a bpstat. Does not walk the
4179 'next' chain. */
4180
4181 bpstats::~bpstats ()
4182 {
4183 if (bp_location_at != NULL)
4184 decref_bp_location (&bp_location_at);
4185 }
4186
4187 /* Clear a bpstat so that it says we are not at any breakpoint.
4188 Also free any storage that is part of a bpstat. */
4189
4190 void
4191 bpstat_clear (bpstat *bsp)
4192 {
4193 bpstat p;
4194 bpstat q;
4195
4196 if (bsp == 0)
4197 return;
4198 p = *bsp;
4199 while (p != NULL)
4200 {
4201 q = p->next;
4202 delete p;
4203 p = q;
4204 }
4205 *bsp = NULL;
4206 }
4207
4208 bpstats::bpstats (const bpstats &other)
4209 : next (NULL),
4210 bp_location_at (other.bp_location_at),
4211 breakpoint_at (other.breakpoint_at),
4212 commands (other.commands),
4213 print (other.print),
4214 stop (other.stop),
4215 print_it (other.print_it)
4216 {
4217 if (other.old_val != NULL)
4218 old_val = release_value (value_copy (other.old_val.get ()));
4219 incref_bp_location (bp_location_at);
4220 }
4221
4222 /* Return a copy of a bpstat. Like "bs1 = bs2" but all storage that
4223 is part of the bpstat is copied as well. */
4224
4225 bpstat
4226 bpstat_copy (bpstat bs)
4227 {
4228 bpstat p = NULL;
4229 bpstat tmp;
4230 bpstat retval = NULL;
4231
4232 if (bs == NULL)
4233 return bs;
4234
4235 for (; bs != NULL; bs = bs->next)
4236 {
4237 tmp = new bpstats (*bs);
4238
4239 if (p == NULL)
4240 /* This is the first thing in the chain. */
4241 retval = tmp;
4242 else
4243 p->next = tmp;
4244 p = tmp;
4245 }
4246 p->next = NULL;
4247 return retval;
4248 }
4249
4250 /* Find the bpstat associated with this breakpoint. */
4251
4252 bpstat
4253 bpstat_find_breakpoint (bpstat bsp, struct breakpoint *breakpoint)
4254 {
4255 if (bsp == NULL)
4256 return NULL;
4257
4258 for (; bsp != NULL; bsp = bsp->next)
4259 {
4260 if (bsp->breakpoint_at == breakpoint)
4261 return bsp;
4262 }
4263 return NULL;
4264 }
4265
4266 /* See breakpoint.h. */
4267
4268 int
4269 bpstat_explains_signal (bpstat bsp, enum gdb_signal sig)
4270 {
4271 for (; bsp != NULL; bsp = bsp->next)
4272 {
4273 if (bsp->breakpoint_at == NULL)
4274 {
4275 /* A moribund location can never explain a signal other than
4276 GDB_SIGNAL_TRAP. */
4277 if (sig == GDB_SIGNAL_TRAP)
4278 return 1;
4279 }
4280 else
4281 {
4282 if (bsp->breakpoint_at->ops->explains_signal (bsp->breakpoint_at,
4283 sig))
4284 return 1;
4285 }
4286 }
4287
4288 return 0;
4289 }
4290
4291 /* Put in *NUM the breakpoint number of the first breakpoint we are
4292 stopped at. *BSP upon return is a bpstat which points to the
4293 remaining breakpoints stopped at (but which is not guaranteed to be
4294 good for anything but further calls to bpstat_num).
4295
4296 Return 0 if passed a bpstat which does not indicate any breakpoints.
4297 Return -1 if stopped at a breakpoint that has been deleted since
4298 we set it.
4299 Return 1 otherwise. */
4300
4301 int
4302 bpstat_num (bpstat *bsp, int *num)
4303 {
4304 struct breakpoint *b;
4305
4306 if ((*bsp) == NULL)
4307 return 0; /* No more breakpoint values */
4308
4309 /* We assume we'll never have several bpstats that correspond to a
4310 single breakpoint -- otherwise, this function might return the
4311 same number more than once and this will look ugly. */
4312 b = (*bsp)->breakpoint_at;
4313 *bsp = (*bsp)->next;
4314 if (b == NULL)
4315 return -1; /* breakpoint that's been deleted since */
4316
4317 *num = b->number; /* We have its number */
4318 return 1;
4319 }
4320
4321 /* See breakpoint.h. */
4322
4323 void
4324 bpstat_clear_actions (void)
4325 {
4326 bpstat bs;
4327
4328 if (inferior_ptid == null_ptid)
4329 return;
4330
4331 thread_info *tp = inferior_thread ();
4332 for (bs = tp->control.stop_bpstat; bs != NULL; bs = bs->next)
4333 {
4334 bs->commands = NULL;
4335 bs->old_val.reset (nullptr);
4336 }
4337 }
4338
4339 /* Called when a command is about to proceed the inferior. */
4340
4341 static void
4342 breakpoint_about_to_proceed (void)
4343 {
4344 if (inferior_ptid != null_ptid)
4345 {
4346 struct thread_info *tp = inferior_thread ();
4347
4348 /* Allow inferior function calls in breakpoint commands to not
4349 interrupt the command list. When the call finishes
4350 successfully, the inferior will be standing at the same
4351 breakpoint as if nothing happened. */
4352 if (tp->control.in_infcall)
4353 return;
4354 }
4355
4356 breakpoint_proceeded = 1;
4357 }
4358
4359 /* Return non-zero iff CMD as the first line of a command sequence is `silent'
4360 or its equivalent. */
4361
4362 static int
4363 command_line_is_silent (struct command_line *cmd)
4364 {
4365 return cmd && (strcmp ("silent", cmd->line) == 0);
4366 }
4367
4368 /* Execute all the commands associated with all the breakpoints at
4369 this location. Any of these commands could cause the process to
4370 proceed beyond this point, etc. We look out for such changes by
4371 checking the global "breakpoint_proceeded" after each command.
4372
4373 Returns true if a breakpoint command resumed the inferior. In that
4374 case, it is the caller's responsibility to recall it again with the
4375 bpstat of the current thread. */
4376
4377 static int
4378 bpstat_do_actions_1 (bpstat *bsp)
4379 {
4380 bpstat bs;
4381 int again = 0;
4382
4383 /* Avoid endless recursion if a `source' command is contained
4384 in bs->commands. */
4385 if (executing_breakpoint_commands)
4386 return 0;
4387
4388 scoped_restore save_executing
4389 = make_scoped_restore (&executing_breakpoint_commands, 1);
4390
4391 scoped_restore preventer = prevent_dont_repeat ();
4392
4393 /* This pointer will iterate over the list of bpstat's. */
4394 bs = *bsp;
4395
4396 breakpoint_proceeded = 0;
4397 for (; bs != NULL; bs = bs->next)
4398 {
4399 struct command_line *cmd = NULL;
4400
4401 /* Take ownership of the BSP's command tree, if it has one.
4402
4403 The command tree could legitimately contain commands like
4404 'step' and 'next', which call clear_proceed_status, which
4405 frees stop_bpstat's command tree. To make sure this doesn't
4406 free the tree we're executing out from under us, we need to
4407 take ownership of the tree ourselves. Since a given bpstat's
4408 commands are only executed once, we don't need to copy it; we
4409 can clear the pointer in the bpstat, and make sure we free
4410 the tree when we're done. */
4411 counted_command_line ccmd = bs->commands;
4412 bs->commands = NULL;
4413 if (ccmd != NULL)
4414 cmd = ccmd.get ();
4415 if (command_line_is_silent (cmd))
4416 {
4417 /* The action has been already done by bpstat_stop_status. */
4418 cmd = cmd->next;
4419 }
4420
4421 while (cmd != NULL)
4422 {
4423 execute_control_command (cmd);
4424
4425 if (breakpoint_proceeded)
4426 break;
4427 else
4428 cmd = cmd->next;
4429 }
4430
4431 if (breakpoint_proceeded)
4432 {
4433 if (current_ui->async)
4434 /* If we are in async mode, then the target might be still
4435 running, not stopped at any breakpoint, so nothing for
4436 us to do here -- just return to the event loop. */
4437 ;
4438 else
4439 /* In sync mode, when execute_control_command returns
4440 we're already standing on the next breakpoint.
4441 Breakpoint commands for that stop were not run, since
4442 execute_command does not run breakpoint commands --
4443 only command_line_handler does, but that one is not
4444 involved in execution of breakpoint commands. So, we
4445 can now execute breakpoint commands. It should be
4446 noted that making execute_command do bpstat actions is
4447 not an option -- in this case we'll have recursive
4448 invocation of bpstat for each breakpoint with a
4449 command, and can easily blow up GDB stack. Instead, we
4450 return true, which will trigger the caller to recall us
4451 with the new stop_bpstat. */
4452 again = 1;
4453 break;
4454 }
4455 }
4456 return again;
4457 }
4458
4459 /* Helper for bpstat_do_actions. Get the current thread, if there's
4460 one, is alive and has execution. Return NULL otherwise. */
4461
4462 static thread_info *
4463 get_bpstat_thread ()
4464 {
4465 if (inferior_ptid == null_ptid || !target_has_execution)
4466 return NULL;
4467
4468 thread_info *tp = inferior_thread ();
4469 if (tp->state == THREAD_EXITED || tp->executing)
4470 return NULL;
4471 return tp;
4472 }
4473
4474 void
4475 bpstat_do_actions (void)
4476 {
4477 struct cleanup *cleanup_if_error = make_bpstat_clear_actions_cleanup ();
4478 thread_info *tp;
4479
4480 /* Do any commands attached to breakpoint we are stopped at. */
4481 while ((tp = get_bpstat_thread ()) != NULL)
4482 {
4483 /* Since in sync mode, bpstat_do_actions may resume the
4484 inferior, and only return when it is stopped at the next
4485 breakpoint, we keep doing breakpoint actions until it returns
4486 false to indicate the inferior was not resumed. */
4487 if (!bpstat_do_actions_1 (&tp->control.stop_bpstat))
4488 break;
4489 }
4490
4491 discard_cleanups (cleanup_if_error);
4492 }
4493
4494 /* Print out the (old or new) value associated with a watchpoint. */
4495
4496 static void
4497 watchpoint_value_print (struct value *val, struct ui_file *stream)
4498 {
4499 if (val == NULL)
4500 fprintf_unfiltered (stream, _("<unreadable>"));
4501 else
4502 {
4503 struct value_print_options opts;
4504 get_user_print_options (&opts);
4505 value_print (val, stream, &opts);
4506 }
4507 }
4508
4509 /* Print the "Thread ID hit" part of "Thread ID hit Breakpoint N" if
4510 debugging multiple threads. */
4511
4512 void
4513 maybe_print_thread_hit_breakpoint (struct ui_out *uiout)
4514 {
4515 if (uiout->is_mi_like_p ())
4516 return;
4517
4518 uiout->text ("\n");
4519
4520 if (show_thread_that_caused_stop ())
4521 {
4522 const char *name;
4523 struct thread_info *thr = inferior_thread ();
4524
4525 uiout->text ("Thread ");
4526 uiout->field_fmt ("thread-id", "%s", print_thread_id (thr));
4527
4528 name = thr->name != NULL ? thr->name : target_thread_name (thr);
4529 if (name != NULL)
4530 {
4531 uiout->text (" \"");
4532 uiout->field_fmt ("name", "%s", name);
4533 uiout->text ("\"");
4534 }
4535
4536 uiout->text (" hit ");
4537 }
4538 }
4539
4540 /* Generic routine for printing messages indicating why we
4541 stopped. The behavior of this function depends on the value
4542 'print_it' in the bpstat structure. Under some circumstances we
4543 may decide not to print anything here and delegate the task to
4544 normal_stop(). */
4545
4546 static enum print_stop_action
4547 print_bp_stop_message (bpstat bs)
4548 {
4549 switch (bs->print_it)
4550 {
4551 case print_it_noop:
4552 /* Nothing should be printed for this bpstat entry. */
4553 return PRINT_UNKNOWN;
4554 break;
4555
4556 case print_it_done:
4557 /* We still want to print the frame, but we already printed the
4558 relevant messages. */
4559 return PRINT_SRC_AND_LOC;
4560 break;
4561
4562 case print_it_normal:
4563 {
4564 struct breakpoint *b = bs->breakpoint_at;
4565
4566 /* bs->breakpoint_at can be NULL if it was a momentary breakpoint
4567 which has since been deleted. */
4568 if (b == NULL)
4569 return PRINT_UNKNOWN;
4570
4571 /* Normal case. Call the breakpoint's print_it method. */
4572 return b->ops->print_it (bs);
4573 }
4574 break;
4575
4576 default:
4577 internal_error (__FILE__, __LINE__,
4578 _("print_bp_stop_message: unrecognized enum value"));
4579 break;
4580 }
4581 }
4582
4583 /* A helper function that prints a shared library stopped event. */
4584
4585 static void
4586 print_solib_event (int is_catchpoint)
4587 {
4588 bool any_deleted = !current_program_space->deleted_solibs.empty ();
4589 bool any_added = !current_program_space->added_solibs.empty ();
4590
4591 if (!is_catchpoint)
4592 {
4593 if (any_added || any_deleted)
4594 current_uiout->text (_("Stopped due to shared library event:\n"));
4595 else
4596 current_uiout->text (_("Stopped due to shared library event (no "
4597 "libraries added or removed)\n"));
4598 }
4599
4600 if (current_uiout->is_mi_like_p ())
4601 current_uiout->field_string ("reason",
4602 async_reason_lookup (EXEC_ASYNC_SOLIB_EVENT));
4603
4604 if (any_deleted)
4605 {
4606 current_uiout->text (_(" Inferior unloaded "));
4607 ui_out_emit_list list_emitter (current_uiout, "removed");
4608 for (int ix = 0; ix < current_program_space->deleted_solibs.size (); ix++)
4609 {
4610 const std::string &name = current_program_space->deleted_solibs[ix];
4611
4612 if (ix > 0)
4613 current_uiout->text (" ");
4614 current_uiout->field_string ("library", name);
4615 current_uiout->text ("\n");
4616 }
4617 }
4618
4619 if (any_added)
4620 {
4621 current_uiout->text (_(" Inferior loaded "));
4622 ui_out_emit_list list_emitter (current_uiout, "added");
4623 bool first = true;
4624 for (so_list *iter : current_program_space->added_solibs)
4625 {
4626 if (!first)
4627 current_uiout->text (" ");
4628 first = false;
4629 current_uiout->field_string ("library", iter->so_name);
4630 current_uiout->text ("\n");
4631 }
4632 }
4633 }
4634
4635 /* Print a message indicating what happened. This is called from
4636 normal_stop(). The input to this routine is the head of the bpstat
4637 list - a list of the eventpoints that caused this stop. KIND is
4638 the target_waitkind for the stopping event. This
4639 routine calls the generic print routine for printing a message
4640 about reasons for stopping. This will print (for example) the
4641 "Breakpoint n," part of the output. The return value of this
4642 routine is one of:
4643
4644 PRINT_UNKNOWN: Means we printed nothing.
4645 PRINT_SRC_AND_LOC: Means we printed something, and expect subsequent
4646 code to print the location. An example is
4647 "Breakpoint 1, " which should be followed by
4648 the location.
4649 PRINT_SRC_ONLY: Means we printed something, but there is no need
4650 to also print the location part of the message.
4651 An example is the catch/throw messages, which
4652 don't require a location appended to the end.
4653 PRINT_NOTHING: We have done some printing and we don't need any
4654 further info to be printed. */
4655
4656 enum print_stop_action
4657 bpstat_print (bpstat bs, int kind)
4658 {
4659 enum print_stop_action val;
4660
4661 /* Maybe another breakpoint in the chain caused us to stop.
4662 (Currently all watchpoints go on the bpstat whether hit or not.
4663 That probably could (should) be changed, provided care is taken
4664 with respect to bpstat_explains_signal). */
4665 for (; bs; bs = bs->next)
4666 {
4667 val = print_bp_stop_message (bs);
4668 if (val == PRINT_SRC_ONLY
4669 || val == PRINT_SRC_AND_LOC
4670 || val == PRINT_NOTHING)
4671 return val;
4672 }
4673
4674 /* If we had hit a shared library event breakpoint,
4675 print_bp_stop_message would print out this message. If we hit an
4676 OS-level shared library event, do the same thing. */
4677 if (kind == TARGET_WAITKIND_LOADED)
4678 {
4679 print_solib_event (0);
4680 return PRINT_NOTHING;
4681 }
4682
4683 /* We reached the end of the chain, or we got a null BS to start
4684 with and nothing was printed. */
4685 return PRINT_UNKNOWN;
4686 }
4687
4688 /* Evaluate the boolean expression EXP and return the result. */
4689
4690 static bool
4691 breakpoint_cond_eval (expression *exp)
4692 {
4693 struct value *mark = value_mark ();
4694 bool res = value_true (evaluate_expression (exp));
4695
4696 value_free_to_mark (mark);
4697 return res;
4698 }
4699
4700 /* Allocate a new bpstat. Link it to the FIFO list by BS_LINK_POINTER. */
4701
4702 bpstats::bpstats (struct bp_location *bl, bpstat **bs_link_pointer)
4703 : next (NULL),
4704 bp_location_at (bl),
4705 breakpoint_at (bl->owner),
4706 commands (NULL),
4707 print (0),
4708 stop (0),
4709 print_it (print_it_normal)
4710 {
4711 incref_bp_location (bl);
4712 **bs_link_pointer = this;
4713 *bs_link_pointer = &next;
4714 }
4715
4716 bpstats::bpstats ()
4717 : next (NULL),
4718 bp_location_at (NULL),
4719 breakpoint_at (NULL),
4720 commands (NULL),
4721 print (0),
4722 stop (0),
4723 print_it (print_it_normal)
4724 {
4725 }
4726 \f
4727 /* The target has stopped with waitstatus WS. Check if any hardware
4728 watchpoints have triggered, according to the target. */
4729
4730 int
4731 watchpoints_triggered (struct target_waitstatus *ws)
4732 {
4733 bool stopped_by_watchpoint = target_stopped_by_watchpoint ();
4734 CORE_ADDR addr;
4735 struct breakpoint *b;
4736
4737 if (!stopped_by_watchpoint)
4738 {
4739 /* We were not stopped by a watchpoint. Mark all watchpoints
4740 as not triggered. */
4741 ALL_BREAKPOINTS (b)
4742 if (is_hardware_watchpoint (b))
4743 {
4744 struct watchpoint *w = (struct watchpoint *) b;
4745
4746 w->watchpoint_triggered = watch_triggered_no;
4747 }
4748
4749 return 0;
4750 }
4751
4752 if (!target_stopped_data_address (current_top_target (), &addr))
4753 {
4754 /* We were stopped by a watchpoint, but we don't know where.
4755 Mark all watchpoints as unknown. */
4756 ALL_BREAKPOINTS (b)
4757 if (is_hardware_watchpoint (b))
4758 {
4759 struct watchpoint *w = (struct watchpoint *) b;
4760
4761 w->watchpoint_triggered = watch_triggered_unknown;
4762 }
4763
4764 return 1;
4765 }
4766
4767 /* The target could report the data address. Mark watchpoints
4768 affected by this data address as triggered, and all others as not
4769 triggered. */
4770
4771 ALL_BREAKPOINTS (b)
4772 if (is_hardware_watchpoint (b))
4773 {
4774 struct watchpoint *w = (struct watchpoint *) b;
4775 struct bp_location *loc;
4776
4777 w->watchpoint_triggered = watch_triggered_no;
4778 for (loc = b->loc; loc; loc = loc->next)
4779 {
4780 if (is_masked_watchpoint (b))
4781 {
4782 CORE_ADDR newaddr = addr & w->hw_wp_mask;
4783 CORE_ADDR start = loc->address & w->hw_wp_mask;
4784
4785 if (newaddr == start)
4786 {
4787 w->watchpoint_triggered = watch_triggered_yes;
4788 break;
4789 }
4790 }
4791 /* Exact match not required. Within range is sufficient. */
4792 else if (target_watchpoint_addr_within_range (current_top_target (),
4793 addr, loc->address,
4794 loc->length))
4795 {
4796 w->watchpoint_triggered = watch_triggered_yes;
4797 break;
4798 }
4799 }
4800 }
4801
4802 return 1;
4803 }
4804
4805 /* Possible return values for watchpoint_check. */
4806 enum wp_check_result
4807 {
4808 /* The watchpoint has been deleted. */
4809 WP_DELETED = 1,
4810
4811 /* The value has changed. */
4812 WP_VALUE_CHANGED = 2,
4813
4814 /* The value has not changed. */
4815 WP_VALUE_NOT_CHANGED = 3,
4816
4817 /* Ignore this watchpoint, no matter if the value changed or not. */
4818 WP_IGNORE = 4,
4819 };
4820
4821 #define BP_TEMPFLAG 1
4822 #define BP_HARDWAREFLAG 2
4823
4824 /* Evaluate watchpoint condition expression and check if its value
4825 changed. */
4826
4827 static wp_check_result
4828 watchpoint_check (bpstat bs)
4829 {
4830 struct watchpoint *b;
4831 struct frame_info *fr;
4832 int within_current_scope;
4833
4834 /* BS is built from an existing struct breakpoint. */
4835 gdb_assert (bs->breakpoint_at != NULL);
4836 b = (struct watchpoint *) bs->breakpoint_at;
4837
4838 /* If this is a local watchpoint, we only want to check if the
4839 watchpoint frame is in scope if the current thread is the thread
4840 that was used to create the watchpoint. */
4841 if (!watchpoint_in_thread_scope (b))
4842 return WP_IGNORE;
4843
4844 if (b->exp_valid_block == NULL)
4845 within_current_scope = 1;
4846 else
4847 {
4848 struct frame_info *frame = get_current_frame ();
4849 struct gdbarch *frame_arch = get_frame_arch (frame);
4850 CORE_ADDR frame_pc = get_frame_pc (frame);
4851
4852 /* stack_frame_destroyed_p() returns a non-zero value if we're
4853 still in the function but the stack frame has already been
4854 invalidated. Since we can't rely on the values of local
4855 variables after the stack has been destroyed, we are treating
4856 the watchpoint in that state as `not changed' without further
4857 checking. Don't mark watchpoints as changed if the current
4858 frame is in an epilogue - even if they are in some other
4859 frame, our view of the stack is likely to be wrong and
4860 frame_find_by_id could error out. */
4861 if (gdbarch_stack_frame_destroyed_p (frame_arch, frame_pc))
4862 return WP_IGNORE;
4863
4864 fr = frame_find_by_id (b->watchpoint_frame);
4865 within_current_scope = (fr != NULL);
4866
4867 /* If we've gotten confused in the unwinder, we might have
4868 returned a frame that can't describe this variable. */
4869 if (within_current_scope)
4870 {
4871 struct symbol *function;
4872
4873 function = get_frame_function (fr);
4874 if (function == NULL
4875 || !contained_in (b->exp_valid_block,
4876 SYMBOL_BLOCK_VALUE (function)))
4877 within_current_scope = 0;
4878 }
4879
4880 if (within_current_scope)
4881 /* If we end up stopping, the current frame will get selected
4882 in normal_stop. So this call to select_frame won't affect
4883 the user. */
4884 select_frame (fr);
4885 }
4886
4887 if (within_current_scope)
4888 {
4889 /* We use value_{,free_to_}mark because it could be a *long*
4890 time before we return to the command level and call
4891 free_all_values. We can't call free_all_values because we
4892 might be in the middle of evaluating a function call. */
4893
4894 int pc = 0;
4895 struct value *mark;
4896 struct value *new_val;
4897
4898 if (is_masked_watchpoint (b))
4899 /* Since we don't know the exact trigger address (from
4900 stopped_data_address), just tell the user we've triggered
4901 a mask watchpoint. */
4902 return WP_VALUE_CHANGED;
4903
4904 mark = value_mark ();
4905 fetch_subexp_value (b->exp.get (), &pc, &new_val, NULL, NULL, 0);
4906
4907 if (b->val_bitsize != 0)
4908 new_val = extract_bitfield_from_watchpoint_value (b, new_val);
4909
4910 /* We use value_equal_contents instead of value_equal because
4911 the latter coerces an array to a pointer, thus comparing just
4912 the address of the array instead of its contents. This is
4913 not what we want. */
4914 if ((b->val != NULL) != (new_val != NULL)
4915 || (b->val != NULL && !value_equal_contents (b->val.get (),
4916 new_val)))
4917 {
4918 bs->old_val = b->val;
4919 b->val = release_value (new_val);
4920 b->val_valid = 1;
4921 if (new_val != NULL)
4922 value_free_to_mark (mark);
4923 return WP_VALUE_CHANGED;
4924 }
4925 else
4926 {
4927 /* Nothing changed. */
4928 value_free_to_mark (mark);
4929 return WP_VALUE_NOT_CHANGED;
4930 }
4931 }
4932 else
4933 {
4934 /* This seems like the only logical thing to do because
4935 if we temporarily ignored the watchpoint, then when
4936 we reenter the block in which it is valid it contains
4937 garbage (in the case of a function, it may have two
4938 garbage values, one before and one after the prologue).
4939 So we can't even detect the first assignment to it and
4940 watch after that (since the garbage may or may not equal
4941 the first value assigned). */
4942 /* We print all the stop information in
4943 breakpoint_ops->print_it, but in this case, by the time we
4944 call breakpoint_ops->print_it this bp will be deleted
4945 already. So we have no choice but print the information
4946 here. */
4947
4948 SWITCH_THRU_ALL_UIS ()
4949 {
4950 struct ui_out *uiout = current_uiout;
4951
4952 if (uiout->is_mi_like_p ())
4953 uiout->field_string
4954 ("reason", async_reason_lookup (EXEC_ASYNC_WATCHPOINT_SCOPE));
4955 uiout->text ("\nWatchpoint ");
4956 uiout->field_int ("wpnum", b->number);
4957 uiout->text (" deleted because the program has left the block in\n"
4958 "which its expression is valid.\n");
4959 }
4960
4961 /* Make sure the watchpoint's commands aren't executed. */
4962 b->commands = NULL;
4963 watchpoint_del_at_next_stop (b);
4964
4965 return WP_DELETED;
4966 }
4967 }
4968
4969 /* Return true if it looks like target has stopped due to hitting
4970 breakpoint location BL. This function does not check if we should
4971 stop, only if BL explains the stop. */
4972
4973 static int
4974 bpstat_check_location (const struct bp_location *bl,
4975 const address_space *aspace, CORE_ADDR bp_addr,
4976 const struct target_waitstatus *ws)
4977 {
4978 struct breakpoint *b = bl->owner;
4979
4980 /* BL is from an existing breakpoint. */
4981 gdb_assert (b != NULL);
4982
4983 return b->ops->breakpoint_hit (bl, aspace, bp_addr, ws);
4984 }
4985
4986 /* Determine if the watched values have actually changed, and we
4987 should stop. If not, set BS->stop to 0. */
4988
4989 static void
4990 bpstat_check_watchpoint (bpstat bs)
4991 {
4992 const struct bp_location *bl;
4993 struct watchpoint *b;
4994
4995 /* BS is built for existing struct breakpoint. */
4996 bl = bs->bp_location_at;
4997 gdb_assert (bl != NULL);
4998 b = (struct watchpoint *) bs->breakpoint_at;
4999 gdb_assert (b != NULL);
5000
5001 {
5002 int must_check_value = 0;
5003
5004 if (b->type == bp_watchpoint)
5005 /* For a software watchpoint, we must always check the
5006 watched value. */
5007 must_check_value = 1;
5008 else if (b->watchpoint_triggered == watch_triggered_yes)
5009 /* We have a hardware watchpoint (read, write, or access)
5010 and the target earlier reported an address watched by
5011 this watchpoint. */
5012 must_check_value = 1;
5013 else if (b->watchpoint_triggered == watch_triggered_unknown
5014 && b->type == bp_hardware_watchpoint)
5015 /* We were stopped by a hardware watchpoint, but the target could
5016 not report the data address. We must check the watchpoint's
5017 value. Access and read watchpoints are out of luck; without
5018 a data address, we can't figure it out. */
5019 must_check_value = 1;
5020
5021 if (must_check_value)
5022 {
5023 wp_check_result e;
5024
5025 TRY
5026 {
5027 e = watchpoint_check (bs);
5028 }
5029 CATCH (ex, RETURN_MASK_ALL)
5030 {
5031 exception_fprintf (gdb_stderr, ex,
5032 "Error evaluating expression "
5033 "for watchpoint %d\n",
5034 b->number);
5035
5036 SWITCH_THRU_ALL_UIS ()
5037 {
5038 printf_filtered (_("Watchpoint %d deleted.\n"),
5039 b->number);
5040 }
5041 watchpoint_del_at_next_stop (b);
5042 e = WP_DELETED;
5043 }
5044 END_CATCH
5045
5046 switch (e)
5047 {
5048 case WP_DELETED:
5049 /* We've already printed what needs to be printed. */
5050 bs->print_it = print_it_done;
5051 /* Stop. */
5052 break;
5053 case WP_IGNORE:
5054 bs->print_it = print_it_noop;
5055 bs->stop = 0;
5056 break;
5057 case WP_VALUE_CHANGED:
5058 if (b->type == bp_read_watchpoint)
5059 {
5060 /* There are two cases to consider here:
5061
5062 1. We're watching the triggered memory for reads.
5063 In that case, trust the target, and always report
5064 the watchpoint hit to the user. Even though
5065 reads don't cause value changes, the value may
5066 have changed since the last time it was read, and
5067 since we're not trapping writes, we will not see
5068 those, and as such we should ignore our notion of
5069 old value.
5070
5071 2. We're watching the triggered memory for both
5072 reads and writes. There are two ways this may
5073 happen:
5074
5075 2.1. This is a target that can't break on data
5076 reads only, but can break on accesses (reads or
5077 writes), such as e.g., x86. We detect this case
5078 at the time we try to insert read watchpoints.
5079
5080 2.2. Otherwise, the target supports read
5081 watchpoints, but, the user set an access or write
5082 watchpoint watching the same memory as this read
5083 watchpoint.
5084
5085 If we're watching memory writes as well as reads,
5086 ignore watchpoint hits when we find that the
5087 value hasn't changed, as reads don't cause
5088 changes. This still gives false positives when
5089 the program writes the same value to memory as
5090 what there was already in memory (we will confuse
5091 it for a read), but it's much better than
5092 nothing. */
5093
5094 int other_write_watchpoint = 0;
5095
5096 if (bl->watchpoint_type == hw_read)
5097 {
5098 struct breakpoint *other_b;
5099
5100 ALL_BREAKPOINTS (other_b)
5101 if (other_b->type == bp_hardware_watchpoint
5102 || other_b->type == bp_access_watchpoint)
5103 {
5104 struct watchpoint *other_w =
5105 (struct watchpoint *) other_b;
5106
5107 if (other_w->watchpoint_triggered
5108 == watch_triggered_yes)
5109 {
5110 other_write_watchpoint = 1;
5111 break;
5112 }
5113 }
5114 }
5115
5116 if (other_write_watchpoint
5117 || bl->watchpoint_type == hw_access)
5118 {
5119 /* We're watching the same memory for writes,
5120 and the value changed since the last time we
5121 updated it, so this trap must be for a write.
5122 Ignore it. */
5123 bs->print_it = print_it_noop;
5124 bs->stop = 0;
5125 }
5126 }
5127 break;
5128 case WP_VALUE_NOT_CHANGED:
5129 if (b->type == bp_hardware_watchpoint
5130 || b->type == bp_watchpoint)
5131 {
5132 /* Don't stop: write watchpoints shouldn't fire if
5133 the value hasn't changed. */
5134 bs->print_it = print_it_noop;
5135 bs->stop = 0;
5136 }
5137 /* Stop. */
5138 break;
5139 default:
5140 /* Can't happen. */
5141 break;
5142 }
5143 }
5144 else /* must_check_value == 0 */
5145 {
5146 /* This is a case where some watchpoint(s) triggered, but
5147 not at the address of this watchpoint, or else no
5148 watchpoint triggered after all. So don't print
5149 anything for this watchpoint. */
5150 bs->print_it = print_it_noop;
5151 bs->stop = 0;
5152 }
5153 }
5154 }
5155
5156 /* For breakpoints that are currently marked as telling gdb to stop,
5157 check conditions (condition proper, frame, thread and ignore count)
5158 of breakpoint referred to by BS. If we should not stop for this
5159 breakpoint, set BS->stop to 0. */
5160
5161 static void
5162 bpstat_check_breakpoint_conditions (bpstat bs, thread_info *thread)
5163 {
5164 const struct bp_location *bl;
5165 struct breakpoint *b;
5166 /* Assume stop. */
5167 bool condition_result = true;
5168 struct expression *cond;
5169
5170 gdb_assert (bs->stop);
5171
5172 /* BS is built for existing struct breakpoint. */
5173 bl = bs->bp_location_at;
5174 gdb_assert (bl != NULL);
5175 b = bs->breakpoint_at;
5176 gdb_assert (b != NULL);
5177
5178 /* Even if the target evaluated the condition on its end and notified GDB, we
5179 need to do so again since GDB does not know if we stopped due to a
5180 breakpoint or a single step breakpoint. */
5181
5182 if (frame_id_p (b->frame_id)
5183 && !frame_id_eq (b->frame_id, get_stack_frame_id (get_current_frame ())))
5184 {
5185 bs->stop = 0;
5186 return;
5187 }
5188
5189 /* If this is a thread/task-specific breakpoint, don't waste cpu
5190 evaluating the condition if this isn't the specified
5191 thread/task. */
5192 if ((b->thread != -1 && b->thread != thread->global_num)
5193 || (b->task != 0 && b->task != ada_get_task_number (thread)))
5194 {
5195 bs->stop = 0;
5196 return;
5197 }
5198
5199 /* Evaluate extension language breakpoints that have a "stop" method
5200 implemented. */
5201 bs->stop = breakpoint_ext_lang_cond_says_stop (b);
5202
5203 if (is_watchpoint (b))
5204 {
5205 struct watchpoint *w = (struct watchpoint *) b;
5206
5207 cond = w->cond_exp.get ();
5208 }
5209 else
5210 cond = bl->cond.get ();
5211
5212 if (cond && b->disposition != disp_del_at_next_stop)
5213 {
5214 int within_current_scope = 1;
5215 struct watchpoint * w;
5216
5217 /* We use value_mark and value_free_to_mark because it could
5218 be a long time before we return to the command level and
5219 call free_all_values. We can't call free_all_values
5220 because we might be in the middle of evaluating a
5221 function call. */
5222 struct value *mark = value_mark ();
5223
5224 if (is_watchpoint (b))
5225 w = (struct watchpoint *) b;
5226 else
5227 w = NULL;
5228
5229 /* Need to select the frame, with all that implies so that
5230 the conditions will have the right context. Because we
5231 use the frame, we will not see an inlined function's
5232 variables when we arrive at a breakpoint at the start
5233 of the inlined function; the current frame will be the
5234 call site. */
5235 if (w == NULL || w->cond_exp_valid_block == NULL)
5236 select_frame (get_current_frame ());
5237 else
5238 {
5239 struct frame_info *frame;
5240
5241 /* For local watchpoint expressions, which particular
5242 instance of a local is being watched matters, so we
5243 keep track of the frame to evaluate the expression
5244 in. To evaluate the condition however, it doesn't
5245 really matter which instantiation of the function
5246 where the condition makes sense triggers the
5247 watchpoint. This allows an expression like "watch
5248 global if q > 10" set in `func', catch writes to
5249 global on all threads that call `func', or catch
5250 writes on all recursive calls of `func' by a single
5251 thread. We simply always evaluate the condition in
5252 the innermost frame that's executing where it makes
5253 sense to evaluate the condition. It seems
5254 intuitive. */
5255 frame = block_innermost_frame (w->cond_exp_valid_block);
5256 if (frame != NULL)
5257 select_frame (frame);
5258 else
5259 within_current_scope = 0;
5260 }
5261 if (within_current_scope)
5262 {
5263 TRY
5264 {
5265 condition_result = breakpoint_cond_eval (cond);
5266 }
5267 CATCH (ex, RETURN_MASK_ALL)
5268 {
5269 exception_fprintf (gdb_stderr, ex,
5270 "Error in testing breakpoint condition:\n");
5271 }
5272 END_CATCH
5273 }
5274 else
5275 {
5276 warning (_("Watchpoint condition cannot be tested "
5277 "in the current scope"));
5278 /* If we failed to set the right context for this
5279 watchpoint, unconditionally report it. */
5280 }
5281 /* FIXME-someday, should give breakpoint #. */
5282 value_free_to_mark (mark);
5283 }
5284
5285 if (cond && !condition_result)
5286 {
5287 bs->stop = 0;
5288 }
5289 else if (b->ignore_count > 0)
5290 {
5291 b->ignore_count--;
5292 bs->stop = 0;
5293 /* Increase the hit count even though we don't stop. */
5294 ++(b->hit_count);
5295 gdb::observers::breakpoint_modified.notify (b);
5296 }
5297 }
5298
5299 /* Returns true if we need to track moribund locations of LOC's type
5300 on the current target. */
5301
5302 static int
5303 need_moribund_for_location_type (struct bp_location *loc)
5304 {
5305 return ((loc->loc_type == bp_loc_software_breakpoint
5306 && !target_supports_stopped_by_sw_breakpoint ())
5307 || (loc->loc_type == bp_loc_hardware_breakpoint
5308 && !target_supports_stopped_by_hw_breakpoint ()));
5309 }
5310
5311 /* See breakpoint.h. */
5312
5313 bpstat
5314 build_bpstat_chain (const address_space *aspace, CORE_ADDR bp_addr,
5315 const struct target_waitstatus *ws)
5316 {
5317 struct breakpoint *b;
5318 bpstat bs_head = NULL, *bs_link = &bs_head;
5319
5320 ALL_BREAKPOINTS (b)
5321 {
5322 if (!breakpoint_enabled (b))
5323 continue;
5324
5325 for (bp_location *bl = b->loc; bl != NULL; bl = bl->next)
5326 {
5327 /* For hardware watchpoints, we look only at the first
5328 location. The watchpoint_check function will work on the
5329 entire expression, not the individual locations. For
5330 read watchpoints, the watchpoints_triggered function has
5331 checked all locations already. */
5332 if (b->type == bp_hardware_watchpoint && bl != b->loc)
5333 break;
5334
5335 if (!bl->enabled || bl->shlib_disabled)
5336 continue;
5337
5338 if (!bpstat_check_location (bl, aspace, bp_addr, ws))
5339 continue;
5340
5341 /* Come here if it's a watchpoint, or if the break address
5342 matches. */
5343
5344 bpstat bs = new bpstats (bl, &bs_link); /* Alloc a bpstat to
5345 explain stop. */
5346
5347 /* Assume we stop. Should we find a watchpoint that is not
5348 actually triggered, or if the condition of the breakpoint
5349 evaluates as false, we'll reset 'stop' to 0. */
5350 bs->stop = 1;
5351 bs->print = 1;
5352
5353 /* If this is a scope breakpoint, mark the associated
5354 watchpoint as triggered so that we will handle the
5355 out-of-scope event. We'll get to the watchpoint next
5356 iteration. */
5357 if (b->type == bp_watchpoint_scope && b->related_breakpoint != b)
5358 {
5359 struct watchpoint *w = (struct watchpoint *) b->related_breakpoint;
5360
5361 w->watchpoint_triggered = watch_triggered_yes;
5362 }
5363 }
5364 }
5365
5366 /* Check if a moribund breakpoint explains the stop. */
5367 if (!target_supports_stopped_by_sw_breakpoint ()
5368 || !target_supports_stopped_by_hw_breakpoint ())
5369 {
5370 for (bp_location *loc : moribund_locations)
5371 {
5372 if (breakpoint_location_address_match (loc, aspace, bp_addr)
5373 && need_moribund_for_location_type (loc))
5374 {
5375 bpstat bs = new bpstats (loc, &bs_link);
5376 /* For hits of moribund locations, we should just proceed. */
5377 bs->stop = 0;
5378 bs->print = 0;
5379 bs->print_it = print_it_noop;
5380 }
5381 }
5382 }
5383
5384 return bs_head;
5385 }
5386
5387 /* See breakpoint.h. */
5388
5389 bpstat
5390 bpstat_stop_status (const address_space *aspace,
5391 CORE_ADDR bp_addr, thread_info *thread,
5392 const struct target_waitstatus *ws,
5393 bpstat stop_chain)
5394 {
5395 struct breakpoint *b = NULL;
5396 /* First item of allocated bpstat's. */
5397 bpstat bs_head = stop_chain;
5398 bpstat bs;
5399 int need_remove_insert;
5400 int removed_any;
5401
5402 /* First, build the bpstat chain with locations that explain a
5403 target stop, while being careful to not set the target running,
5404 as that may invalidate locations (in particular watchpoint
5405 locations are recreated). Resuming will happen here with
5406 breakpoint conditions or watchpoint expressions that include
5407 inferior function calls. */
5408 if (bs_head == NULL)
5409 bs_head = build_bpstat_chain (aspace, bp_addr, ws);
5410
5411 /* A bit of special processing for shlib breakpoints. We need to
5412 process solib loading here, so that the lists of loaded and
5413 unloaded libraries are correct before we handle "catch load" and
5414 "catch unload". */
5415 for (bs = bs_head; bs != NULL; bs = bs->next)
5416 {
5417 if (bs->breakpoint_at && bs->breakpoint_at->type == bp_shlib_event)
5418 {
5419 handle_solib_event ();
5420 break;
5421 }
5422 }
5423
5424 /* Now go through the locations that caused the target to stop, and
5425 check whether we're interested in reporting this stop to higher
5426 layers, or whether we should resume the target transparently. */
5427
5428 removed_any = 0;
5429
5430 for (bs = bs_head; bs != NULL; bs = bs->next)
5431 {
5432 if (!bs->stop)
5433 continue;
5434
5435 b = bs->breakpoint_at;
5436 b->ops->check_status (bs);
5437 if (bs->stop)
5438 {
5439 bpstat_check_breakpoint_conditions (bs, thread);
5440
5441 if (bs->stop)
5442 {
5443 ++(b->hit_count);
5444 gdb::observers::breakpoint_modified.notify (b);
5445
5446 /* We will stop here. */
5447 if (b->disposition == disp_disable)
5448 {
5449 --(b->enable_count);
5450 if (b->enable_count <= 0)
5451 b->enable_state = bp_disabled;
5452 removed_any = 1;
5453 }
5454 if (b->silent)
5455 bs->print = 0;
5456 bs->commands = b->commands;
5457 if (command_line_is_silent (bs->commands
5458 ? bs->commands.get () : NULL))
5459 bs->print = 0;
5460
5461 b->ops->after_condition_true (bs);
5462 }
5463
5464 }
5465
5466 /* Print nothing for this entry if we don't stop or don't
5467 print. */
5468 if (!bs->stop || !bs->print)
5469 bs->print_it = print_it_noop;
5470 }
5471
5472 /* If we aren't stopping, the value of some hardware watchpoint may
5473 not have changed, but the intermediate memory locations we are
5474 watching may have. Don't bother if we're stopping; this will get
5475 done later. */
5476 need_remove_insert = 0;
5477 if (! bpstat_causes_stop (bs_head))
5478 for (bs = bs_head; bs != NULL; bs = bs->next)
5479 if (!bs->stop
5480 && bs->breakpoint_at
5481 && is_hardware_watchpoint (bs->breakpoint_at))
5482 {
5483 struct watchpoint *w = (struct watchpoint *) bs->breakpoint_at;
5484
5485 update_watchpoint (w, 0 /* don't reparse. */);
5486 need_remove_insert = 1;
5487 }
5488
5489 if (need_remove_insert)
5490 update_global_location_list (UGLL_MAY_INSERT);
5491 else if (removed_any)
5492 update_global_location_list (UGLL_DONT_INSERT);
5493
5494 return bs_head;
5495 }
5496
5497 static void
5498 handle_jit_event (void)
5499 {
5500 struct frame_info *frame;
5501 struct gdbarch *gdbarch;
5502
5503 if (debug_infrun)
5504 fprintf_unfiltered (gdb_stdlog, "handling bp_jit_event\n");
5505
5506 /* Switch terminal for any messages produced by
5507 breakpoint_re_set. */
5508 target_terminal::ours_for_output ();
5509
5510 frame = get_current_frame ();
5511 gdbarch = get_frame_arch (frame);
5512
5513 jit_event_handler (gdbarch);
5514
5515 target_terminal::inferior ();
5516 }
5517
5518 /* Prepare WHAT final decision for infrun. */
5519
5520 /* Decide what infrun needs to do with this bpstat. */
5521
5522 struct bpstat_what
5523 bpstat_what (bpstat bs_head)
5524 {
5525 struct bpstat_what retval;
5526 bpstat bs;
5527
5528 retval.main_action = BPSTAT_WHAT_KEEP_CHECKING;
5529 retval.call_dummy = STOP_NONE;
5530 retval.is_longjmp = 0;
5531
5532 for (bs = bs_head; bs != NULL; bs = bs->next)
5533 {
5534 /* Extract this BS's action. After processing each BS, we check
5535 if its action overrides all we've seem so far. */
5536 enum bpstat_what_main_action this_action = BPSTAT_WHAT_KEEP_CHECKING;
5537 enum bptype bptype;
5538
5539 if (bs->breakpoint_at == NULL)
5540 {
5541 /* I suspect this can happen if it was a momentary
5542 breakpoint which has since been deleted. */
5543 bptype = bp_none;
5544 }
5545 else
5546 bptype = bs->breakpoint_at->type;
5547
5548 switch (bptype)
5549 {
5550 case bp_none:
5551 break;
5552 case bp_breakpoint:
5553 case bp_hardware_breakpoint:
5554 case bp_single_step:
5555 case bp_until:
5556 case bp_finish:
5557 case bp_shlib_event:
5558 if (bs->stop)
5559 {
5560 if (bs->print)
5561 this_action = BPSTAT_WHAT_STOP_NOISY;
5562 else
5563 this_action = BPSTAT_WHAT_STOP_SILENT;
5564 }
5565 else
5566 this_action = BPSTAT_WHAT_SINGLE;
5567 break;
5568 case bp_watchpoint:
5569 case bp_hardware_watchpoint:
5570 case bp_read_watchpoint:
5571 case bp_access_watchpoint:
5572 if (bs->stop)
5573 {
5574 if (bs->print)
5575 this_action = BPSTAT_WHAT_STOP_NOISY;
5576 else
5577 this_action = BPSTAT_WHAT_STOP_SILENT;
5578 }
5579 else
5580 {
5581 /* There was a watchpoint, but we're not stopping.
5582 This requires no further action. */
5583 }
5584 break;
5585 case bp_longjmp:
5586 case bp_longjmp_call_dummy:
5587 case bp_exception:
5588 if (bs->stop)
5589 {
5590 this_action = BPSTAT_WHAT_SET_LONGJMP_RESUME;
5591 retval.is_longjmp = bptype != bp_exception;
5592 }
5593 else
5594 this_action = BPSTAT_WHAT_SINGLE;
5595 break;
5596 case bp_longjmp_resume:
5597 case bp_exception_resume:
5598 if (bs->stop)
5599 {
5600 this_action = BPSTAT_WHAT_CLEAR_LONGJMP_RESUME;
5601 retval.is_longjmp = bptype == bp_longjmp_resume;
5602 }
5603 else
5604 this_action = BPSTAT_WHAT_SINGLE;
5605 break;
5606 case bp_step_resume:
5607 if (bs->stop)
5608 this_action = BPSTAT_WHAT_STEP_RESUME;
5609 else
5610 {
5611 /* It is for the wrong frame. */
5612 this_action = BPSTAT_WHAT_SINGLE;
5613 }
5614 break;
5615 case bp_hp_step_resume:
5616 if (bs->stop)
5617 this_action = BPSTAT_WHAT_HP_STEP_RESUME;
5618 else
5619 {
5620 /* It is for the wrong frame. */
5621 this_action = BPSTAT_WHAT_SINGLE;
5622 }
5623 break;
5624 case bp_watchpoint_scope:
5625 case bp_thread_event:
5626 case bp_overlay_event:
5627 case bp_longjmp_master:
5628 case bp_std_terminate_master:
5629 case bp_exception_master:
5630 this_action = BPSTAT_WHAT_SINGLE;
5631 break;
5632 case bp_catchpoint:
5633 if (bs->stop)
5634 {
5635 if (bs->print)
5636 this_action = BPSTAT_WHAT_STOP_NOISY;
5637 else
5638 this_action = BPSTAT_WHAT_STOP_SILENT;
5639 }
5640 else
5641 {
5642 /* There was a catchpoint, but we're not stopping.
5643 This requires no further action. */
5644 }
5645 break;
5646 case bp_jit_event:
5647 this_action = BPSTAT_WHAT_SINGLE;
5648 break;
5649 case bp_call_dummy:
5650 /* Make sure the action is stop (silent or noisy),
5651 so infrun.c pops the dummy frame. */
5652 retval.call_dummy = STOP_STACK_DUMMY;
5653 this_action = BPSTAT_WHAT_STOP_SILENT;
5654 break;
5655 case bp_std_terminate:
5656 /* Make sure the action is stop (silent or noisy),
5657 so infrun.c pops the dummy frame. */
5658 retval.call_dummy = STOP_STD_TERMINATE;
5659 this_action = BPSTAT_WHAT_STOP_SILENT;
5660 break;
5661 case bp_tracepoint:
5662 case bp_fast_tracepoint:
5663 case bp_static_tracepoint:
5664 /* Tracepoint hits should not be reported back to GDB, and
5665 if one got through somehow, it should have been filtered
5666 out already. */
5667 internal_error (__FILE__, __LINE__,
5668 _("bpstat_what: tracepoint encountered"));
5669 break;
5670 case bp_gnu_ifunc_resolver:
5671 /* Step over it (and insert bp_gnu_ifunc_resolver_return). */
5672 this_action = BPSTAT_WHAT_SINGLE;
5673 break;
5674 case bp_gnu_ifunc_resolver_return:
5675 /* The breakpoint will be removed, execution will restart from the
5676 PC of the former breakpoint. */
5677 this_action = BPSTAT_WHAT_KEEP_CHECKING;
5678 break;
5679
5680 case bp_dprintf:
5681 if (bs->stop)
5682 this_action = BPSTAT_WHAT_STOP_SILENT;
5683 else
5684 this_action = BPSTAT_WHAT_SINGLE;
5685 break;
5686
5687 default:
5688 internal_error (__FILE__, __LINE__,
5689 _("bpstat_what: unhandled bptype %d"), (int) bptype);
5690 }
5691
5692 retval.main_action = std::max (retval.main_action, this_action);
5693 }
5694
5695 return retval;
5696 }
5697
5698 void
5699 bpstat_run_callbacks (bpstat bs_head)
5700 {
5701 bpstat bs;
5702
5703 for (bs = bs_head; bs != NULL; bs = bs->next)
5704 {
5705 struct breakpoint *b = bs->breakpoint_at;
5706
5707 if (b == NULL)
5708 continue;
5709 switch (b->type)
5710 {
5711 case bp_jit_event:
5712 handle_jit_event ();
5713 break;
5714 case bp_gnu_ifunc_resolver:
5715 gnu_ifunc_resolver_stop (b);
5716 break;
5717 case bp_gnu_ifunc_resolver_return:
5718 gnu_ifunc_resolver_return_stop (b);
5719 break;
5720 }
5721 }
5722 }
5723
5724 /* Nonzero if we should step constantly (e.g. watchpoints on machines
5725 without hardware support). This isn't related to a specific bpstat,
5726 just to things like whether watchpoints are set. */
5727
5728 int
5729 bpstat_should_step (void)
5730 {
5731 struct breakpoint *b;
5732
5733 ALL_BREAKPOINTS (b)
5734 if (breakpoint_enabled (b) && b->type == bp_watchpoint && b->loc != NULL)
5735 return 1;
5736 return 0;
5737 }
5738
5739 int
5740 bpstat_causes_stop (bpstat bs)
5741 {
5742 for (; bs != NULL; bs = bs->next)
5743 if (bs->stop)
5744 return 1;
5745
5746 return 0;
5747 }
5748
5749 \f
5750
5751 /* Compute a string of spaces suitable to indent the next line
5752 so it starts at the position corresponding to the table column
5753 named COL_NAME in the currently active table of UIOUT. */
5754
5755 static char *
5756 wrap_indent_at_field (struct ui_out *uiout, const char *col_name)
5757 {
5758 static char wrap_indent[80];
5759 int i, total_width, width, align;
5760 const char *text;
5761
5762 total_width = 0;
5763 for (i = 1; uiout->query_table_field (i, &width, &align, &text); i++)
5764 {
5765 if (strcmp (text, col_name) == 0)
5766 {
5767 gdb_assert (total_width < sizeof wrap_indent);
5768 memset (wrap_indent, ' ', total_width);
5769 wrap_indent[total_width] = 0;
5770
5771 return wrap_indent;
5772 }
5773
5774 total_width += width + 1;
5775 }
5776
5777 return NULL;
5778 }
5779
5780 /* Determine if the locations of this breakpoint will have their conditions
5781 evaluated by the target, host or a mix of both. Returns the following:
5782
5783 "host": Host evals condition.
5784 "host or target": Host or Target evals condition.
5785 "target": Target evals condition.
5786 */
5787
5788 static const char *
5789 bp_condition_evaluator (struct breakpoint *b)
5790 {
5791 struct bp_location *bl;
5792 char host_evals = 0;
5793 char target_evals = 0;
5794
5795 if (!b)
5796 return NULL;
5797
5798 if (!is_breakpoint (b))
5799 return NULL;
5800
5801 if (gdb_evaluates_breakpoint_condition_p ()
5802 || !target_supports_evaluation_of_breakpoint_conditions ())
5803 return condition_evaluation_host;
5804
5805 for (bl = b->loc; bl; bl = bl->next)
5806 {
5807 if (bl->cond_bytecode)
5808 target_evals++;
5809 else
5810 host_evals++;
5811 }
5812
5813 if (host_evals && target_evals)
5814 return condition_evaluation_both;
5815 else if (target_evals)
5816 return condition_evaluation_target;
5817 else
5818 return condition_evaluation_host;
5819 }
5820
5821 /* Determine the breakpoint location's condition evaluator. This is
5822 similar to bp_condition_evaluator, but for locations. */
5823
5824 static const char *
5825 bp_location_condition_evaluator (struct bp_location *bl)
5826 {
5827 if (bl && !is_breakpoint (bl->owner))
5828 return NULL;
5829
5830 if (gdb_evaluates_breakpoint_condition_p ()
5831 || !target_supports_evaluation_of_breakpoint_conditions ())
5832 return condition_evaluation_host;
5833
5834 if (bl && bl->cond_bytecode)
5835 return condition_evaluation_target;
5836 else
5837 return condition_evaluation_host;
5838 }
5839
5840 /* Print the LOC location out of the list of B->LOC locations. */
5841
5842 static void
5843 print_breakpoint_location (struct breakpoint *b,
5844 struct bp_location *loc)
5845 {
5846 struct ui_out *uiout = current_uiout;
5847
5848 scoped_restore_current_program_space restore_pspace;
5849
5850 if (loc != NULL && loc->shlib_disabled)
5851 loc = NULL;
5852
5853 if (loc != NULL)
5854 set_current_program_space (loc->pspace);
5855
5856 if (b->display_canonical)
5857 uiout->field_string ("what", event_location_to_string (b->location.get ()));
5858 else if (loc && loc->symtab)
5859 {
5860 const struct symbol *sym = loc->symbol;
5861
5862 if (sym)
5863 {
5864 uiout->text ("in ");
5865 uiout->field_string ("func", SYMBOL_PRINT_NAME (sym));
5866 uiout->text (" ");
5867 uiout->wrap_hint (wrap_indent_at_field (uiout, "what"));
5868 uiout->text ("at ");
5869 }
5870 uiout->field_string ("file",
5871 symtab_to_filename_for_display (loc->symtab));
5872 uiout->text (":");
5873
5874 if (uiout->is_mi_like_p ())
5875 uiout->field_string ("fullname", symtab_to_fullname (loc->symtab));
5876
5877 uiout->field_int ("line", loc->line_number);
5878 }
5879 else if (loc)
5880 {
5881 string_file stb;
5882
5883 print_address_symbolic (loc->gdbarch, loc->address, &stb,
5884 demangle, "");
5885 uiout->field_stream ("at", stb);
5886 }
5887 else
5888 {
5889 uiout->field_string ("pending",
5890 event_location_to_string (b->location.get ()));
5891 /* If extra_string is available, it could be holding a condition
5892 or dprintf arguments. In either case, make sure it is printed,
5893 too, but only for non-MI streams. */
5894 if (!uiout->is_mi_like_p () && b->extra_string != NULL)
5895 {
5896 if (b->type == bp_dprintf)
5897 uiout->text (",");
5898 else
5899 uiout->text (" ");
5900 uiout->text (b->extra_string);
5901 }
5902 }
5903
5904 if (loc && is_breakpoint (b)
5905 && breakpoint_condition_evaluation_mode () == condition_evaluation_target
5906 && bp_condition_evaluator (b) == condition_evaluation_both)
5907 {
5908 uiout->text (" (");
5909 uiout->field_string ("evaluated-by",
5910 bp_location_condition_evaluator (loc));
5911 uiout->text (")");
5912 }
5913 }
5914
5915 static const char *
5916 bptype_string (enum bptype type)
5917 {
5918 struct ep_type_description
5919 {
5920 enum bptype type;
5921 const char *description;
5922 };
5923 static struct ep_type_description bptypes[] =
5924 {
5925 {bp_none, "?deleted?"},
5926 {bp_breakpoint, "breakpoint"},
5927 {bp_hardware_breakpoint, "hw breakpoint"},
5928 {bp_single_step, "sw single-step"},
5929 {bp_until, "until"},
5930 {bp_finish, "finish"},
5931 {bp_watchpoint, "watchpoint"},
5932 {bp_hardware_watchpoint, "hw watchpoint"},
5933 {bp_read_watchpoint, "read watchpoint"},
5934 {bp_access_watchpoint, "acc watchpoint"},
5935 {bp_longjmp, "longjmp"},
5936 {bp_longjmp_resume, "longjmp resume"},
5937 {bp_longjmp_call_dummy, "longjmp for call dummy"},
5938 {bp_exception, "exception"},
5939 {bp_exception_resume, "exception resume"},
5940 {bp_step_resume, "step resume"},
5941 {bp_hp_step_resume, "high-priority step resume"},
5942 {bp_watchpoint_scope, "watchpoint scope"},
5943 {bp_call_dummy, "call dummy"},
5944 {bp_std_terminate, "std::terminate"},
5945 {bp_shlib_event, "shlib events"},
5946 {bp_thread_event, "thread events"},
5947 {bp_overlay_event, "overlay events"},
5948 {bp_longjmp_master, "longjmp master"},
5949 {bp_std_terminate_master, "std::terminate master"},
5950 {bp_exception_master, "exception master"},
5951 {bp_catchpoint, "catchpoint"},
5952 {bp_tracepoint, "tracepoint"},
5953 {bp_fast_tracepoint, "fast tracepoint"},
5954 {bp_static_tracepoint, "static tracepoint"},
5955 {bp_dprintf, "dprintf"},
5956 {bp_jit_event, "jit events"},
5957 {bp_gnu_ifunc_resolver, "STT_GNU_IFUNC resolver"},
5958 {bp_gnu_ifunc_resolver_return, "STT_GNU_IFUNC resolver return"},
5959 };
5960
5961 if (((int) type >= (sizeof (bptypes) / sizeof (bptypes[0])))
5962 || ((int) type != bptypes[(int) type].type))
5963 internal_error (__FILE__, __LINE__,
5964 _("bptypes table does not describe type #%d."),
5965 (int) type);
5966
5967 return bptypes[(int) type].description;
5968 }
5969
5970 /* For MI, output a field named 'thread-groups' with a list as the value.
5971 For CLI, prefix the list with the string 'inf'. */
5972
5973 static void
5974 output_thread_groups (struct ui_out *uiout,
5975 const char *field_name,
5976 const std::vector<int> &inf_nums,
5977 int mi_only)
5978 {
5979 int is_mi = uiout->is_mi_like_p ();
5980
5981 /* For backward compatibility, don't display inferiors in CLI unless
5982 there are several. Always display them for MI. */
5983 if (!is_mi && mi_only)
5984 return;
5985
5986 ui_out_emit_list list_emitter (uiout, field_name);
5987
5988 for (size_t i = 0; i < inf_nums.size (); i++)
5989 {
5990 if (is_mi)
5991 {
5992 char mi_group[10];
5993
5994 xsnprintf (mi_group, sizeof (mi_group), "i%d", inf_nums[i]);
5995 uiout->field_string (NULL, mi_group);
5996 }
5997 else
5998 {
5999 if (i == 0)
6000 uiout->text (" inf ");
6001 else
6002 uiout->text (", ");
6003
6004 uiout->text (plongest (inf_nums[i]));
6005 }
6006 }
6007 }
6008
6009 /* Print B to gdb_stdout. */
6010
6011 static void
6012 print_one_breakpoint_location (struct breakpoint *b,
6013 struct bp_location *loc,
6014 int loc_number,
6015 struct bp_location **last_loc,
6016 int allflag)
6017 {
6018 struct command_line *l;
6019 static char bpenables[] = "nynny";
6020
6021 struct ui_out *uiout = current_uiout;
6022 int header_of_multiple = 0;
6023 int part_of_multiple = (loc != NULL);
6024 struct value_print_options opts;
6025
6026 get_user_print_options (&opts);
6027
6028 gdb_assert (!loc || loc_number != 0);
6029 /* See comment in print_one_breakpoint concerning treatment of
6030 breakpoints with single disabled location. */
6031 if (loc == NULL
6032 && (b->loc != NULL
6033 && (b->loc->next != NULL || !b->loc->enabled)))
6034 header_of_multiple = 1;
6035 if (loc == NULL)
6036 loc = b->loc;
6037
6038 annotate_record ();
6039
6040 /* 1 */
6041 annotate_field (0);
6042 if (part_of_multiple)
6043 uiout->field_fmt ("number", "%d.%d", b->number, loc_number);
6044 else
6045 uiout->field_int ("number", b->number);
6046
6047 /* 2 */
6048 annotate_field (1);
6049 if (part_of_multiple)
6050 uiout->field_skip ("type");
6051 else
6052 uiout->field_string ("type", bptype_string (b->type));
6053
6054 /* 3 */
6055 annotate_field (2);
6056 if (part_of_multiple)
6057 uiout->field_skip ("disp");
6058 else
6059 uiout->field_string ("disp", bpdisp_text (b->disposition));
6060
6061
6062 /* 4 */
6063 annotate_field (3);
6064 if (part_of_multiple)
6065 uiout->field_string ("enabled", loc->enabled ? "y" : "n");
6066 else
6067 uiout->field_fmt ("enabled", "%c", bpenables[(int) b->enable_state]);
6068 uiout->spaces (2);
6069
6070
6071 /* 5 and 6 */
6072 if (b->ops != NULL && b->ops->print_one != NULL)
6073 {
6074 /* Although the print_one can possibly print all locations,
6075 calling it here is not likely to get any nice result. So,
6076 make sure there's just one location. */
6077 gdb_assert (b->loc == NULL || b->loc->next == NULL);
6078 b->ops->print_one (b, last_loc);
6079 }
6080 else
6081 switch (b->type)
6082 {
6083 case bp_none:
6084 internal_error (__FILE__, __LINE__,
6085 _("print_one_breakpoint: bp_none encountered\n"));
6086 break;
6087
6088 case bp_watchpoint:
6089 case bp_hardware_watchpoint:
6090 case bp_read_watchpoint:
6091 case bp_access_watchpoint:
6092 {
6093 struct watchpoint *w = (struct watchpoint *) b;
6094
6095 /* Field 4, the address, is omitted (which makes the columns
6096 not line up too nicely with the headers, but the effect
6097 is relatively readable). */
6098 if (opts.addressprint)
6099 uiout->field_skip ("addr");
6100 annotate_field (5);
6101 uiout->field_string ("what", w->exp_string);
6102 }
6103 break;
6104
6105 case bp_breakpoint:
6106 case bp_hardware_breakpoint:
6107 case bp_single_step:
6108 case bp_until:
6109 case bp_finish:
6110 case bp_longjmp:
6111 case bp_longjmp_resume:
6112 case bp_longjmp_call_dummy:
6113 case bp_exception:
6114 case bp_exception_resume:
6115 case bp_step_resume:
6116 case bp_hp_step_resume:
6117 case bp_watchpoint_scope:
6118 case bp_call_dummy:
6119 case bp_std_terminate:
6120 case bp_shlib_event:
6121 case bp_thread_event:
6122 case bp_overlay_event:
6123 case bp_longjmp_master:
6124 case bp_std_terminate_master:
6125 case bp_exception_master:
6126 case bp_tracepoint:
6127 case bp_fast_tracepoint:
6128 case bp_static_tracepoint:
6129 case bp_dprintf:
6130 case bp_jit_event:
6131 case bp_gnu_ifunc_resolver:
6132 case bp_gnu_ifunc_resolver_return:
6133 if (opts.addressprint)
6134 {
6135 annotate_field (4);
6136 if (header_of_multiple)
6137 uiout->field_string ("addr", "<MULTIPLE>");
6138 else if (b->loc == NULL || loc->shlib_disabled)
6139 uiout->field_string ("addr", "<PENDING>");
6140 else
6141 uiout->field_core_addr ("addr",
6142 loc->gdbarch, loc->address);
6143 }
6144 annotate_field (5);
6145 if (!header_of_multiple)
6146 print_breakpoint_location (b, loc);
6147 if (b->loc)
6148 *last_loc = b->loc;
6149 break;
6150 }
6151
6152
6153 if (loc != NULL && !header_of_multiple)
6154 {
6155 struct inferior *inf;
6156 std::vector<int> inf_nums;
6157 int mi_only = 1;
6158
6159 ALL_INFERIORS (inf)
6160 {
6161 if (inf->pspace == loc->pspace)
6162 inf_nums.push_back (inf->num);
6163 }
6164
6165 /* For backward compatibility, don't display inferiors in CLI unless
6166 there are several. Always display for MI. */
6167 if (allflag
6168 || (!gdbarch_has_global_breakpoints (target_gdbarch ())
6169 && (number_of_program_spaces () > 1
6170 || number_of_inferiors () > 1)
6171 /* LOC is for existing B, it cannot be in
6172 moribund_locations and thus having NULL OWNER. */
6173 && loc->owner->type != bp_catchpoint))
6174 mi_only = 0;
6175 output_thread_groups (uiout, "thread-groups", inf_nums, mi_only);
6176 }
6177
6178 if (!part_of_multiple)
6179 {
6180 if (b->thread != -1)
6181 {
6182 /* FIXME: This seems to be redundant and lost here; see the
6183 "stop only in" line a little further down. */
6184 uiout->text (" thread ");
6185 uiout->field_int ("thread", b->thread);
6186 }
6187 else if (b->task != 0)
6188 {
6189 uiout->text (" task ");
6190 uiout->field_int ("task", b->task);
6191 }
6192 }
6193
6194 uiout->text ("\n");
6195
6196 if (!part_of_multiple)
6197 b->ops->print_one_detail (b, uiout);
6198
6199 if (part_of_multiple && frame_id_p (b->frame_id))
6200 {
6201 annotate_field (6);
6202 uiout->text ("\tstop only in stack frame at ");
6203 /* FIXME: cagney/2002-12-01: Shouldn't be poking around inside
6204 the frame ID. */
6205 uiout->field_core_addr ("frame",
6206 b->gdbarch, b->frame_id.stack_addr);
6207 uiout->text ("\n");
6208 }
6209
6210 if (!part_of_multiple && b->cond_string)
6211 {
6212 annotate_field (7);
6213 if (is_tracepoint (b))
6214 uiout->text ("\ttrace only if ");
6215 else
6216 uiout->text ("\tstop only if ");
6217 uiout->field_string ("cond", b->cond_string);
6218
6219 /* Print whether the target is doing the breakpoint's condition
6220 evaluation. If GDB is doing the evaluation, don't print anything. */
6221 if (is_breakpoint (b)
6222 && breakpoint_condition_evaluation_mode ()
6223 == condition_evaluation_target)
6224 {
6225 uiout->text (" (");
6226 uiout->field_string ("evaluated-by",
6227 bp_condition_evaluator (b));
6228 uiout->text (" evals)");
6229 }
6230 uiout->text ("\n");
6231 }
6232
6233 if (!part_of_multiple && b->thread != -1)
6234 {
6235 /* FIXME should make an annotation for this. */
6236 uiout->text ("\tstop only in thread ");
6237 if (uiout->is_mi_like_p ())
6238 uiout->field_int ("thread", b->thread);
6239 else
6240 {
6241 struct thread_info *thr = find_thread_global_id (b->thread);
6242
6243 uiout->field_string ("thread", print_thread_id (thr));
6244 }
6245 uiout->text ("\n");
6246 }
6247
6248 if (!part_of_multiple)
6249 {
6250 if (b->hit_count)
6251 {
6252 /* FIXME should make an annotation for this. */
6253 if (is_catchpoint (b))
6254 uiout->text ("\tcatchpoint");
6255 else if (is_tracepoint (b))
6256 uiout->text ("\ttracepoint");
6257 else
6258 uiout->text ("\tbreakpoint");
6259 uiout->text (" already hit ");
6260 uiout->field_int ("times", b->hit_count);
6261 if (b->hit_count == 1)
6262 uiout->text (" time\n");
6263 else
6264 uiout->text (" times\n");
6265 }
6266 else
6267 {
6268 /* Output the count also if it is zero, but only if this is mi. */
6269 if (uiout->is_mi_like_p ())
6270 uiout->field_int ("times", b->hit_count);
6271 }
6272 }
6273
6274 if (!part_of_multiple && b->ignore_count)
6275 {
6276 annotate_field (8);
6277 uiout->text ("\tignore next ");
6278 uiout->field_int ("ignore", b->ignore_count);
6279 uiout->text (" hits\n");
6280 }
6281
6282 /* Note that an enable count of 1 corresponds to "enable once"
6283 behavior, which is reported by the combination of enablement and
6284 disposition, so we don't need to mention it here. */
6285 if (!part_of_multiple && b->enable_count > 1)
6286 {
6287 annotate_field (8);
6288 uiout->text ("\tdisable after ");
6289 /* Tweak the wording to clarify that ignore and enable counts
6290 are distinct, and have additive effect. */
6291 if (b->ignore_count)
6292 uiout->text ("additional ");
6293 else
6294 uiout->text ("next ");
6295 uiout->field_int ("enable", b->enable_count);
6296 uiout->text (" hits\n");
6297 }
6298
6299 if (!part_of_multiple && is_tracepoint (b))
6300 {
6301 struct tracepoint *tp = (struct tracepoint *) b;
6302
6303 if (tp->traceframe_usage)
6304 {
6305 uiout->text ("\ttrace buffer usage ");
6306 uiout->field_int ("traceframe-usage", tp->traceframe_usage);
6307 uiout->text (" bytes\n");
6308 }
6309 }
6310
6311 l = b->commands ? b->commands.get () : NULL;
6312 if (!part_of_multiple && l)
6313 {
6314 annotate_field (9);
6315 ui_out_emit_tuple tuple_emitter (uiout, "script");
6316 print_command_lines (uiout, l, 4);
6317 }
6318
6319 if (is_tracepoint (b))
6320 {
6321 struct tracepoint *t = (struct tracepoint *) b;
6322
6323 if (!part_of_multiple && t->pass_count)
6324 {
6325 annotate_field (10);
6326 uiout->text ("\tpass count ");
6327 uiout->field_int ("pass", t->pass_count);
6328 uiout->text (" \n");
6329 }
6330
6331 /* Don't display it when tracepoint or tracepoint location is
6332 pending. */
6333 if (!header_of_multiple && loc != NULL && !loc->shlib_disabled)
6334 {
6335 annotate_field (11);
6336
6337 if (uiout->is_mi_like_p ())
6338 uiout->field_string ("installed",
6339 loc->inserted ? "y" : "n");
6340 else
6341 {
6342 if (loc->inserted)
6343 uiout->text ("\t");
6344 else
6345 uiout->text ("\tnot ");
6346 uiout->text ("installed on target\n");
6347 }
6348 }
6349 }
6350
6351 if (uiout->is_mi_like_p () && !part_of_multiple)
6352 {
6353 if (is_watchpoint (b))
6354 {
6355 struct watchpoint *w = (struct watchpoint *) b;
6356
6357 uiout->field_string ("original-location", w->exp_string);
6358 }
6359 else if (b->location != NULL
6360 && event_location_to_string (b->location.get ()) != NULL)
6361 uiout->field_string ("original-location",
6362 event_location_to_string (b->location.get ()));
6363 }
6364 }
6365
6366 static void
6367 print_one_breakpoint (struct breakpoint *b,
6368 struct bp_location **last_loc,
6369 int allflag)
6370 {
6371 struct ui_out *uiout = current_uiout;
6372
6373 {
6374 ui_out_emit_tuple tuple_emitter (uiout, "bkpt");
6375
6376 print_one_breakpoint_location (b, NULL, 0, last_loc, allflag);
6377 }
6378
6379 /* If this breakpoint has custom print function,
6380 it's already printed. Otherwise, print individual
6381 locations, if any. */
6382 if (b->ops == NULL || b->ops->print_one == NULL)
6383 {
6384 /* If breakpoint has a single location that is disabled, we
6385 print it as if it had several locations, since otherwise it's
6386 hard to represent "breakpoint enabled, location disabled"
6387 situation.
6388
6389 Note that while hardware watchpoints have several locations
6390 internally, that's not a property exposed to user. */
6391 if (b->loc
6392 && !is_hardware_watchpoint (b)
6393 && (b->loc->next || !b->loc->enabled))
6394 {
6395 struct bp_location *loc;
6396 int n = 1;
6397
6398 for (loc = b->loc; loc; loc = loc->next, ++n)
6399 {
6400 ui_out_emit_tuple tuple_emitter (uiout, NULL);
6401 print_one_breakpoint_location (b, loc, n, last_loc, allflag);
6402 }
6403 }
6404 }
6405 }
6406
6407 static int
6408 breakpoint_address_bits (struct breakpoint *b)
6409 {
6410 int print_address_bits = 0;
6411 struct bp_location *loc;
6412
6413 /* Software watchpoints that aren't watching memory don't have an
6414 address to print. */
6415 if (is_no_memory_software_watchpoint (b))
6416 return 0;
6417
6418 for (loc = b->loc; loc; loc = loc->next)
6419 {
6420 int addr_bit;
6421
6422 addr_bit = gdbarch_addr_bit (loc->gdbarch);
6423 if (addr_bit > print_address_bits)
6424 print_address_bits = addr_bit;
6425 }
6426
6427 return print_address_bits;
6428 }
6429
6430 /* See breakpoint.h. */
6431
6432 void
6433 print_breakpoint (breakpoint *b)
6434 {
6435 struct bp_location *dummy_loc = NULL;
6436 print_one_breakpoint (b, &dummy_loc, 0);
6437 }
6438
6439 /* Return true if this breakpoint was set by the user, false if it is
6440 internal or momentary. */
6441
6442 int
6443 user_breakpoint_p (struct breakpoint *b)
6444 {
6445 return b->number > 0;
6446 }
6447
6448 /* See breakpoint.h. */
6449
6450 int
6451 pending_breakpoint_p (struct breakpoint *b)
6452 {
6453 return b->loc == NULL;
6454 }
6455
6456 /* Print information on user settable breakpoint (watchpoint, etc)
6457 number BNUM. If BNUM is -1 print all user-settable breakpoints.
6458 If ALLFLAG is non-zero, include non-user-settable breakpoints. If
6459 FILTER is non-NULL, call it on each breakpoint and only include the
6460 ones for which it returns non-zero. Return the total number of
6461 breakpoints listed. */
6462
6463 static int
6464 breakpoint_1 (const char *args, int allflag,
6465 int (*filter) (const struct breakpoint *))
6466 {
6467 struct breakpoint *b;
6468 struct bp_location *last_loc = NULL;
6469 int nr_printable_breakpoints;
6470 struct value_print_options opts;
6471 int print_address_bits = 0;
6472 int print_type_col_width = 14;
6473 struct ui_out *uiout = current_uiout;
6474
6475 get_user_print_options (&opts);
6476
6477 /* Compute the number of rows in the table, as well as the size
6478 required for address fields. */
6479 nr_printable_breakpoints = 0;
6480 ALL_BREAKPOINTS (b)
6481 {
6482 /* If we have a filter, only list the breakpoints it accepts. */
6483 if (filter && !filter (b))
6484 continue;
6485
6486 /* If we have an "args" string, it is a list of breakpoints to
6487 accept. Skip the others. */
6488 if (args != NULL && *args != '\0')
6489 {
6490 if (allflag && parse_and_eval_long (args) != b->number)
6491 continue;
6492 if (!allflag && !number_is_in_list (args, b->number))
6493 continue;
6494 }
6495
6496 if (allflag || user_breakpoint_p (b))
6497 {
6498 int addr_bit, type_len;
6499
6500 addr_bit = breakpoint_address_bits (b);
6501 if (addr_bit > print_address_bits)
6502 print_address_bits = addr_bit;
6503
6504 type_len = strlen (bptype_string (b->type));
6505 if (type_len > print_type_col_width)
6506 print_type_col_width = type_len;
6507
6508 nr_printable_breakpoints++;
6509 }
6510 }
6511
6512 {
6513 ui_out_emit_table table_emitter (uiout,
6514 opts.addressprint ? 6 : 5,
6515 nr_printable_breakpoints,
6516 "BreakpointTable");
6517
6518 if (nr_printable_breakpoints > 0)
6519 annotate_breakpoints_headers ();
6520 if (nr_printable_breakpoints > 0)
6521 annotate_field (0);
6522 uiout->table_header (7, ui_left, "number", "Num"); /* 1 */
6523 if (nr_printable_breakpoints > 0)
6524 annotate_field (1);
6525 uiout->table_header (print_type_col_width, ui_left, "type", "Type"); /* 2 */
6526 if (nr_printable_breakpoints > 0)
6527 annotate_field (2);
6528 uiout->table_header (4, ui_left, "disp", "Disp"); /* 3 */
6529 if (nr_printable_breakpoints > 0)
6530 annotate_field (3);
6531 uiout->table_header (3, ui_left, "enabled", "Enb"); /* 4 */
6532 if (opts.addressprint)
6533 {
6534 if (nr_printable_breakpoints > 0)
6535 annotate_field (4);
6536 if (print_address_bits <= 32)
6537 uiout->table_header (10, ui_left, "addr", "Address"); /* 5 */
6538 else
6539 uiout->table_header (18, ui_left, "addr", "Address"); /* 5 */
6540 }
6541 if (nr_printable_breakpoints > 0)
6542 annotate_field (5);
6543 uiout->table_header (40, ui_noalign, "what", "What"); /* 6 */
6544 uiout->table_body ();
6545 if (nr_printable_breakpoints > 0)
6546 annotate_breakpoints_table ();
6547
6548 ALL_BREAKPOINTS (b)
6549 {
6550 QUIT;
6551 /* If we have a filter, only list the breakpoints it accepts. */
6552 if (filter && !filter (b))
6553 continue;
6554
6555 /* If we have an "args" string, it is a list of breakpoints to
6556 accept. Skip the others. */
6557
6558 if (args != NULL && *args != '\0')
6559 {
6560 if (allflag) /* maintenance info breakpoint */
6561 {
6562 if (parse_and_eval_long (args) != b->number)
6563 continue;
6564 }
6565 else /* all others */
6566 {
6567 if (!number_is_in_list (args, b->number))
6568 continue;
6569 }
6570 }
6571 /* We only print out user settable breakpoints unless the
6572 allflag is set. */
6573 if (allflag || user_breakpoint_p (b))
6574 print_one_breakpoint (b, &last_loc, allflag);
6575 }
6576 }
6577
6578 if (nr_printable_breakpoints == 0)
6579 {
6580 /* If there's a filter, let the caller decide how to report
6581 empty list. */
6582 if (!filter)
6583 {
6584 if (args == NULL || *args == '\0')
6585 uiout->message ("No breakpoints or watchpoints.\n");
6586 else
6587 uiout->message ("No breakpoint or watchpoint matching '%s'.\n",
6588 args);
6589 }
6590 }
6591 else
6592 {
6593 if (last_loc && !server_command)
6594 set_next_address (last_loc->gdbarch, last_loc->address);
6595 }
6596
6597 /* FIXME? Should this be moved up so that it is only called when
6598 there have been breakpoints? */
6599 annotate_breakpoints_table_end ();
6600
6601 return nr_printable_breakpoints;
6602 }
6603
6604 /* Display the value of default-collect in a way that is generally
6605 compatible with the breakpoint list. */
6606
6607 static void
6608 default_collect_info (void)
6609 {
6610 struct ui_out *uiout = current_uiout;
6611
6612 /* If it has no value (which is frequently the case), say nothing; a
6613 message like "No default-collect." gets in user's face when it's
6614 not wanted. */
6615 if (!*default_collect)
6616 return;
6617
6618 /* The following phrase lines up nicely with per-tracepoint collect
6619 actions. */
6620 uiout->text ("default collect ");
6621 uiout->field_string ("default-collect", default_collect);
6622 uiout->text (" \n");
6623 }
6624
6625 static void
6626 info_breakpoints_command (const char *args, int from_tty)
6627 {
6628 breakpoint_1 (args, 0, NULL);
6629
6630 default_collect_info ();
6631 }
6632
6633 static void
6634 info_watchpoints_command (const char *args, int from_tty)
6635 {
6636 int num_printed = breakpoint_1 (args, 0, is_watchpoint);
6637 struct ui_out *uiout = current_uiout;
6638
6639 if (num_printed == 0)
6640 {
6641 if (args == NULL || *args == '\0')
6642 uiout->message ("No watchpoints.\n");
6643 else
6644 uiout->message ("No watchpoint matching '%s'.\n", args);
6645 }
6646 }
6647
6648 static void
6649 maintenance_info_breakpoints (const char *args, int from_tty)
6650 {
6651 breakpoint_1 (args, 1, NULL);
6652
6653 default_collect_info ();
6654 }
6655
6656 static int
6657 breakpoint_has_pc (struct breakpoint *b,
6658 struct program_space *pspace,
6659 CORE_ADDR pc, struct obj_section *section)
6660 {
6661 struct bp_location *bl = b->loc;
6662
6663 for (; bl; bl = bl->next)
6664 {
6665 if (bl->pspace == pspace
6666 && bl->address == pc
6667 && (!overlay_debugging || bl->section == section))
6668 return 1;
6669 }
6670 return 0;
6671 }
6672
6673 /* Print a message describing any user-breakpoints set at PC. This
6674 concerns with logical breakpoints, so we match program spaces, not
6675 address spaces. */
6676
6677 static void
6678 describe_other_breakpoints (struct gdbarch *gdbarch,
6679 struct program_space *pspace, CORE_ADDR pc,
6680 struct obj_section *section, int thread)
6681 {
6682 int others = 0;
6683 struct breakpoint *b;
6684
6685 ALL_BREAKPOINTS (b)
6686 others += (user_breakpoint_p (b)
6687 && breakpoint_has_pc (b, pspace, pc, section));
6688 if (others > 0)
6689 {
6690 if (others == 1)
6691 printf_filtered (_("Note: breakpoint "));
6692 else /* if (others == ???) */
6693 printf_filtered (_("Note: breakpoints "));
6694 ALL_BREAKPOINTS (b)
6695 if (user_breakpoint_p (b) && breakpoint_has_pc (b, pspace, pc, section))
6696 {
6697 others--;
6698 printf_filtered ("%d", b->number);
6699 if (b->thread == -1 && thread != -1)
6700 printf_filtered (" (all threads)");
6701 else if (b->thread != -1)
6702 printf_filtered (" (thread %d)", b->thread);
6703 printf_filtered ("%s%s ",
6704 ((b->enable_state == bp_disabled
6705 || b->enable_state == bp_call_disabled)
6706 ? " (disabled)"
6707 : ""),
6708 (others > 1) ? ","
6709 : ((others == 1) ? " and" : ""));
6710 }
6711 printf_filtered (_("also set at pc "));
6712 fputs_filtered (paddress (gdbarch, pc), gdb_stdout);
6713 printf_filtered (".\n");
6714 }
6715 }
6716 \f
6717
6718 /* Return true iff it is meaningful to use the address member of
6719 BPT locations. For some breakpoint types, the locations' address members
6720 are irrelevant and it makes no sense to attempt to compare them to other
6721 addresses (or use them for any other purpose either).
6722
6723 More specifically, each of the following breakpoint types will
6724 always have a zero valued location address and we don't want to mark
6725 breakpoints of any of these types to be a duplicate of an actual
6726 breakpoint location at address zero:
6727
6728 bp_watchpoint
6729 bp_catchpoint
6730
6731 */
6732
6733 static int
6734 breakpoint_address_is_meaningful (struct breakpoint *bpt)
6735 {
6736 enum bptype type = bpt->type;
6737
6738 return (type != bp_watchpoint && type != bp_catchpoint);
6739 }
6740
6741 /* Assuming LOC1 and LOC2's owners are hardware watchpoints, returns
6742 true if LOC1 and LOC2 represent the same watchpoint location. */
6743
6744 static int
6745 watchpoint_locations_match (struct bp_location *loc1,
6746 struct bp_location *loc2)
6747 {
6748 struct watchpoint *w1 = (struct watchpoint *) loc1->owner;
6749 struct watchpoint *w2 = (struct watchpoint *) loc2->owner;
6750
6751 /* Both of them must exist. */
6752 gdb_assert (w1 != NULL);
6753 gdb_assert (w2 != NULL);
6754
6755 /* If the target can evaluate the condition expression in hardware,
6756 then we we need to insert both watchpoints even if they are at
6757 the same place. Otherwise the watchpoint will only trigger when
6758 the condition of whichever watchpoint was inserted evaluates to
6759 true, not giving a chance for GDB to check the condition of the
6760 other watchpoint. */
6761 if ((w1->cond_exp
6762 && target_can_accel_watchpoint_condition (loc1->address,
6763 loc1->length,
6764 loc1->watchpoint_type,
6765 w1->cond_exp.get ()))
6766 || (w2->cond_exp
6767 && target_can_accel_watchpoint_condition (loc2->address,
6768 loc2->length,
6769 loc2->watchpoint_type,
6770 w2->cond_exp.get ())))
6771 return 0;
6772
6773 /* Note that this checks the owner's type, not the location's. In
6774 case the target does not support read watchpoints, but does
6775 support access watchpoints, we'll have bp_read_watchpoint
6776 watchpoints with hw_access locations. Those should be considered
6777 duplicates of hw_read locations. The hw_read locations will
6778 become hw_access locations later. */
6779 return (loc1->owner->type == loc2->owner->type
6780 && loc1->pspace->aspace == loc2->pspace->aspace
6781 && loc1->address == loc2->address
6782 && loc1->length == loc2->length);
6783 }
6784
6785 /* See breakpoint.h. */
6786
6787 int
6788 breakpoint_address_match (const address_space *aspace1, CORE_ADDR addr1,
6789 const address_space *aspace2, CORE_ADDR addr2)
6790 {
6791 return ((gdbarch_has_global_breakpoints (target_gdbarch ())
6792 || aspace1 == aspace2)
6793 && addr1 == addr2);
6794 }
6795
6796 /* Returns true if {ASPACE2,ADDR2} falls within the range determined by
6797 {ASPACE1,ADDR1,LEN1}. In most targets, this can only be true if ASPACE1
6798 matches ASPACE2. On targets that have global breakpoints, the address
6799 space doesn't really matter. */
6800
6801 static int
6802 breakpoint_address_match_range (const address_space *aspace1,
6803 CORE_ADDR addr1,
6804 int len1, const address_space *aspace2,
6805 CORE_ADDR addr2)
6806 {
6807 return ((gdbarch_has_global_breakpoints (target_gdbarch ())
6808 || aspace1 == aspace2)
6809 && addr2 >= addr1 && addr2 < addr1 + len1);
6810 }
6811
6812 /* Returns true if {ASPACE,ADDR} matches the breakpoint BL. BL may be
6813 a ranged breakpoint. In most targets, a match happens only if ASPACE
6814 matches the breakpoint's address space. On targets that have global
6815 breakpoints, the address space doesn't really matter. */
6816
6817 static int
6818 breakpoint_location_address_match (struct bp_location *bl,
6819 const address_space *aspace,
6820 CORE_ADDR addr)
6821 {
6822 return (breakpoint_address_match (bl->pspace->aspace, bl->address,
6823 aspace, addr)
6824 || (bl->length
6825 && breakpoint_address_match_range (bl->pspace->aspace,
6826 bl->address, bl->length,
6827 aspace, addr)));
6828 }
6829
6830 /* Returns true if the [ADDR,ADDR+LEN) range in ASPACE overlaps
6831 breakpoint BL. BL may be a ranged breakpoint. In most targets, a
6832 match happens only if ASPACE matches the breakpoint's address
6833 space. On targets that have global breakpoints, the address space
6834 doesn't really matter. */
6835
6836 static int
6837 breakpoint_location_address_range_overlap (struct bp_location *bl,
6838 const address_space *aspace,
6839 CORE_ADDR addr, int len)
6840 {
6841 if (gdbarch_has_global_breakpoints (target_gdbarch ())
6842 || bl->pspace->aspace == aspace)
6843 {
6844 int bl_len = bl->length != 0 ? bl->length : 1;
6845
6846 if (mem_ranges_overlap (addr, len, bl->address, bl_len))
6847 return 1;
6848 }
6849 return 0;
6850 }
6851
6852 /* If LOC1 and LOC2's owners are not tracepoints, returns false directly.
6853 Then, if LOC1 and LOC2 represent the same tracepoint location, returns
6854 true, otherwise returns false. */
6855
6856 static int
6857 tracepoint_locations_match (struct bp_location *loc1,
6858 struct bp_location *loc2)
6859 {
6860 if (is_tracepoint (loc1->owner) && is_tracepoint (loc2->owner))
6861 /* Since tracepoint locations are never duplicated with others', tracepoint
6862 locations at the same address of different tracepoints are regarded as
6863 different locations. */
6864 return (loc1->address == loc2->address && loc1->owner == loc2->owner);
6865 else
6866 return 0;
6867 }
6868
6869 /* Assuming LOC1 and LOC2's types' have meaningful target addresses
6870 (breakpoint_address_is_meaningful), returns true if LOC1 and LOC2
6871 represent the same location. */
6872
6873 static int
6874 breakpoint_locations_match (struct bp_location *loc1,
6875 struct bp_location *loc2)
6876 {
6877 int hw_point1, hw_point2;
6878
6879 /* Both of them must not be in moribund_locations. */
6880 gdb_assert (loc1->owner != NULL);
6881 gdb_assert (loc2->owner != NULL);
6882
6883 hw_point1 = is_hardware_watchpoint (loc1->owner);
6884 hw_point2 = is_hardware_watchpoint (loc2->owner);
6885
6886 if (hw_point1 != hw_point2)
6887 return 0;
6888 else if (hw_point1)
6889 return watchpoint_locations_match (loc1, loc2);
6890 else if (is_tracepoint (loc1->owner) || is_tracepoint (loc2->owner))
6891 return tracepoint_locations_match (loc1, loc2);
6892 else
6893 /* We compare bp_location.length in order to cover ranged breakpoints. */
6894 return (breakpoint_address_match (loc1->pspace->aspace, loc1->address,
6895 loc2->pspace->aspace, loc2->address)
6896 && loc1->length == loc2->length);
6897 }
6898
6899 static void
6900 breakpoint_adjustment_warning (CORE_ADDR from_addr, CORE_ADDR to_addr,
6901 int bnum, int have_bnum)
6902 {
6903 /* The longest string possibly returned by hex_string_custom
6904 is 50 chars. These must be at least that big for safety. */
6905 char astr1[64];
6906 char astr2[64];
6907
6908 strcpy (astr1, hex_string_custom ((unsigned long) from_addr, 8));
6909 strcpy (astr2, hex_string_custom ((unsigned long) to_addr, 8));
6910 if (have_bnum)
6911 warning (_("Breakpoint %d address previously adjusted from %s to %s."),
6912 bnum, astr1, astr2);
6913 else
6914 warning (_("Breakpoint address adjusted from %s to %s."), astr1, astr2);
6915 }
6916
6917 /* Adjust a breakpoint's address to account for architectural
6918 constraints on breakpoint placement. Return the adjusted address.
6919 Note: Very few targets require this kind of adjustment. For most
6920 targets, this function is simply the identity function. */
6921
6922 static CORE_ADDR
6923 adjust_breakpoint_address (struct gdbarch *gdbarch,
6924 CORE_ADDR bpaddr, enum bptype bptype)
6925 {
6926 if (bptype == bp_watchpoint
6927 || bptype == bp_hardware_watchpoint
6928 || bptype == bp_read_watchpoint
6929 || bptype == bp_access_watchpoint
6930 || bptype == bp_catchpoint)
6931 {
6932 /* Watchpoints and the various bp_catch_* eventpoints should not
6933 have their addresses modified. */
6934 return bpaddr;
6935 }
6936 else if (bptype == bp_single_step)
6937 {
6938 /* Single-step breakpoints should not have their addresses
6939 modified. If there's any architectural constrain that
6940 applies to this address, then it should have already been
6941 taken into account when the breakpoint was created in the
6942 first place. If we didn't do this, stepping through e.g.,
6943 Thumb-2 IT blocks would break. */
6944 return bpaddr;
6945 }
6946 else
6947 {
6948 CORE_ADDR adjusted_bpaddr = bpaddr;
6949
6950 if (gdbarch_adjust_breakpoint_address_p (gdbarch))
6951 {
6952 /* Some targets have architectural constraints on the placement
6953 of breakpoint instructions. Obtain the adjusted address. */
6954 adjusted_bpaddr = gdbarch_adjust_breakpoint_address (gdbarch, bpaddr);
6955 }
6956
6957 adjusted_bpaddr = address_significant (gdbarch, adjusted_bpaddr);
6958
6959 /* An adjusted breakpoint address can significantly alter
6960 a user's expectations. Print a warning if an adjustment
6961 is required. */
6962 if (adjusted_bpaddr != bpaddr)
6963 breakpoint_adjustment_warning (bpaddr, adjusted_bpaddr, 0, 0);
6964
6965 return adjusted_bpaddr;
6966 }
6967 }
6968
6969 bp_location::bp_location (const bp_location_ops *ops, breakpoint *owner)
6970 {
6971 bp_location *loc = this;
6972
6973 gdb_assert (ops != NULL);
6974
6975 loc->ops = ops;
6976 loc->owner = owner;
6977 loc->cond_bytecode = NULL;
6978 loc->shlib_disabled = 0;
6979 loc->enabled = 1;
6980
6981 switch (owner->type)
6982 {
6983 case bp_breakpoint:
6984 case bp_single_step:
6985 case bp_until:
6986 case bp_finish:
6987 case bp_longjmp:
6988 case bp_longjmp_resume:
6989 case bp_longjmp_call_dummy:
6990 case bp_exception:
6991 case bp_exception_resume:
6992 case bp_step_resume:
6993 case bp_hp_step_resume:
6994 case bp_watchpoint_scope:
6995 case bp_call_dummy:
6996 case bp_std_terminate:
6997 case bp_shlib_event:
6998 case bp_thread_event:
6999 case bp_overlay_event:
7000 case bp_jit_event:
7001 case bp_longjmp_master:
7002 case bp_std_terminate_master:
7003 case bp_exception_master:
7004 case bp_gnu_ifunc_resolver:
7005 case bp_gnu_ifunc_resolver_return:
7006 case bp_dprintf:
7007 loc->loc_type = bp_loc_software_breakpoint;
7008 mark_breakpoint_location_modified (loc);
7009 break;
7010 case bp_hardware_breakpoint:
7011 loc->loc_type = bp_loc_hardware_breakpoint;
7012 mark_breakpoint_location_modified (loc);
7013 break;
7014 case bp_hardware_watchpoint:
7015 case bp_read_watchpoint:
7016 case bp_access_watchpoint:
7017 loc->loc_type = bp_loc_hardware_watchpoint;
7018 break;
7019 case bp_watchpoint:
7020 case bp_catchpoint:
7021 case bp_tracepoint:
7022 case bp_fast_tracepoint:
7023 case bp_static_tracepoint:
7024 loc->loc_type = bp_loc_other;
7025 break;
7026 default:
7027 internal_error (__FILE__, __LINE__, _("unknown breakpoint type"));
7028 }
7029
7030 loc->refc = 1;
7031 }
7032
7033 /* Allocate a struct bp_location. */
7034
7035 static struct bp_location *
7036 allocate_bp_location (struct breakpoint *bpt)
7037 {
7038 return bpt->ops->allocate_location (bpt);
7039 }
7040
7041 static void
7042 free_bp_location (struct bp_location *loc)
7043 {
7044 loc->ops->dtor (loc);
7045 delete loc;
7046 }
7047
7048 /* Increment reference count. */
7049
7050 static void
7051 incref_bp_location (struct bp_location *bl)
7052 {
7053 ++bl->refc;
7054 }
7055
7056 /* Decrement reference count. If the reference count reaches 0,
7057 destroy the bp_location. Sets *BLP to NULL. */
7058
7059 static void
7060 decref_bp_location (struct bp_location **blp)
7061 {
7062 gdb_assert ((*blp)->refc > 0);
7063
7064 if (--(*blp)->refc == 0)
7065 free_bp_location (*blp);
7066 *blp = NULL;
7067 }
7068
7069 /* Add breakpoint B at the end of the global breakpoint chain. */
7070
7071 static breakpoint *
7072 add_to_breakpoint_chain (std::unique_ptr<breakpoint> &&b)
7073 {
7074 struct breakpoint *b1;
7075 struct breakpoint *result = b.get ();
7076
7077 /* Add this breakpoint to the end of the chain so that a list of
7078 breakpoints will come out in order of increasing numbers. */
7079
7080 b1 = breakpoint_chain;
7081 if (b1 == 0)
7082 breakpoint_chain = b.release ();
7083 else
7084 {
7085 while (b1->next)
7086 b1 = b1->next;
7087 b1->next = b.release ();
7088 }
7089
7090 return result;
7091 }
7092
7093 /* Initializes breakpoint B with type BPTYPE and no locations yet. */
7094
7095 static void
7096 init_raw_breakpoint_without_location (struct breakpoint *b,
7097 struct gdbarch *gdbarch,
7098 enum bptype bptype,
7099 const struct breakpoint_ops *ops)
7100 {
7101 gdb_assert (ops != NULL);
7102
7103 b->ops = ops;
7104 b->type = bptype;
7105 b->gdbarch = gdbarch;
7106 b->language = current_language->la_language;
7107 b->input_radix = input_radix;
7108 b->related_breakpoint = b;
7109 }
7110
7111 /* Helper to set_raw_breakpoint below. Creates a breakpoint
7112 that has type BPTYPE and has no locations as yet. */
7113
7114 static struct breakpoint *
7115 set_raw_breakpoint_without_location (struct gdbarch *gdbarch,
7116 enum bptype bptype,
7117 const struct breakpoint_ops *ops)
7118 {
7119 std::unique_ptr<breakpoint> b = new_breakpoint_from_type (bptype);
7120
7121 init_raw_breakpoint_without_location (b.get (), gdbarch, bptype, ops);
7122 return add_to_breakpoint_chain (std::move (b));
7123 }
7124
7125 /* Initialize loc->function_name. EXPLICIT_LOC says no indirect function
7126 resolutions should be made as the user specified the location explicitly
7127 enough. */
7128
7129 static void
7130 set_breakpoint_location_function (struct bp_location *loc, int explicit_loc)
7131 {
7132 gdb_assert (loc->owner != NULL);
7133
7134 if (loc->owner->type == bp_breakpoint
7135 || loc->owner->type == bp_hardware_breakpoint
7136 || is_tracepoint (loc->owner))
7137 {
7138 const char *function_name;
7139
7140 if (loc->msymbol != NULL
7141 && (MSYMBOL_TYPE (loc->msymbol) == mst_text_gnu_ifunc
7142 || MSYMBOL_TYPE (loc->msymbol) == mst_data_gnu_ifunc)
7143 && !explicit_loc)
7144 {
7145 struct breakpoint *b = loc->owner;
7146
7147 function_name = MSYMBOL_LINKAGE_NAME (loc->msymbol);
7148
7149 if (b->type == bp_breakpoint && b->loc == loc
7150 && loc->next == NULL && b->related_breakpoint == b)
7151 {
7152 /* Create only the whole new breakpoint of this type but do not
7153 mess more complicated breakpoints with multiple locations. */
7154 b->type = bp_gnu_ifunc_resolver;
7155 /* Remember the resolver's address for use by the return
7156 breakpoint. */
7157 loc->related_address = loc->address;
7158 }
7159 }
7160 else
7161 find_pc_partial_function (loc->address, &function_name, NULL, NULL);
7162
7163 if (function_name)
7164 loc->function_name = xstrdup (function_name);
7165 }
7166 }
7167
7168 /* Attempt to determine architecture of location identified by SAL. */
7169 struct gdbarch *
7170 get_sal_arch (struct symtab_and_line sal)
7171 {
7172 if (sal.section)
7173 return get_objfile_arch (sal.section->objfile);
7174 if (sal.symtab)
7175 return get_objfile_arch (SYMTAB_OBJFILE (sal.symtab));
7176
7177 return NULL;
7178 }
7179
7180 /* Low level routine for partially initializing a breakpoint of type
7181 BPTYPE. The newly created breakpoint's address, section, source
7182 file name, and line number are provided by SAL.
7183
7184 It is expected that the caller will complete the initialization of
7185 the newly created breakpoint struct as well as output any status
7186 information regarding the creation of a new breakpoint. */
7187
7188 static void
7189 init_raw_breakpoint (struct breakpoint *b, struct gdbarch *gdbarch,
7190 struct symtab_and_line sal, enum bptype bptype,
7191 const struct breakpoint_ops *ops)
7192 {
7193 init_raw_breakpoint_without_location (b, gdbarch, bptype, ops);
7194
7195 add_location_to_breakpoint (b, &sal);
7196
7197 if (bptype != bp_catchpoint)
7198 gdb_assert (sal.pspace != NULL);
7199
7200 /* Store the program space that was used to set the breakpoint,
7201 except for ordinary breakpoints, which are independent of the
7202 program space. */
7203 if (bptype != bp_breakpoint && bptype != bp_hardware_breakpoint)
7204 b->pspace = sal.pspace;
7205 }
7206
7207 /* set_raw_breakpoint is a low level routine for allocating and
7208 partially initializing a breakpoint of type BPTYPE. The newly
7209 created breakpoint's address, section, source file name, and line
7210 number are provided by SAL. The newly created and partially
7211 initialized breakpoint is added to the breakpoint chain and
7212 is also returned as the value of this function.
7213
7214 It is expected that the caller will complete the initialization of
7215 the newly created breakpoint struct as well as output any status
7216 information regarding the creation of a new breakpoint. In
7217 particular, set_raw_breakpoint does NOT set the breakpoint
7218 number! Care should be taken to not allow an error to occur
7219 prior to completing the initialization of the breakpoint. If this
7220 should happen, a bogus breakpoint will be left on the chain. */
7221
7222 struct breakpoint *
7223 set_raw_breakpoint (struct gdbarch *gdbarch,
7224 struct symtab_and_line sal, enum bptype bptype,
7225 const struct breakpoint_ops *ops)
7226 {
7227 std::unique_ptr<breakpoint> b = new_breakpoint_from_type (bptype);
7228
7229 init_raw_breakpoint (b.get (), gdbarch, sal, bptype, ops);
7230 return add_to_breakpoint_chain (std::move (b));
7231 }
7232
7233 /* Call this routine when stepping and nexting to enable a breakpoint
7234 if we do a longjmp() or 'throw' in TP. FRAME is the frame which
7235 initiated the operation. */
7236
7237 void
7238 set_longjmp_breakpoint (struct thread_info *tp, struct frame_id frame)
7239 {
7240 struct breakpoint *b, *b_tmp;
7241 int thread = tp->global_num;
7242
7243 /* To avoid having to rescan all objfile symbols at every step,
7244 we maintain a list of continually-inserted but always disabled
7245 longjmp "master" breakpoints. Here, we simply create momentary
7246 clones of those and enable them for the requested thread. */
7247 ALL_BREAKPOINTS_SAFE (b, b_tmp)
7248 if (b->pspace == current_program_space
7249 && (b->type == bp_longjmp_master
7250 || b->type == bp_exception_master))
7251 {
7252 enum bptype type = b->type == bp_longjmp_master ? bp_longjmp : bp_exception;
7253 struct breakpoint *clone;
7254
7255 /* longjmp_breakpoint_ops ensures INITIATING_FRAME is cleared again
7256 after their removal. */
7257 clone = momentary_breakpoint_from_master (b, type,
7258 &momentary_breakpoint_ops, 1);
7259 clone->thread = thread;
7260 }
7261
7262 tp->initiating_frame = frame;
7263 }
7264
7265 /* Delete all longjmp breakpoints from THREAD. */
7266 void
7267 delete_longjmp_breakpoint (int thread)
7268 {
7269 struct breakpoint *b, *b_tmp;
7270
7271 ALL_BREAKPOINTS_SAFE (b, b_tmp)
7272 if (b->type == bp_longjmp || b->type == bp_exception)
7273 {
7274 if (b->thread == thread)
7275 delete_breakpoint (b);
7276 }
7277 }
7278
7279 void
7280 delete_longjmp_breakpoint_at_next_stop (int thread)
7281 {
7282 struct breakpoint *b, *b_tmp;
7283
7284 ALL_BREAKPOINTS_SAFE (b, b_tmp)
7285 if (b->type == bp_longjmp || b->type == bp_exception)
7286 {
7287 if (b->thread == thread)
7288 b->disposition = disp_del_at_next_stop;
7289 }
7290 }
7291
7292 /* Place breakpoints of type bp_longjmp_call_dummy to catch longjmp for
7293 INFERIOR_PTID thread. Chain them all by RELATED_BREAKPOINT and return
7294 pointer to any of them. Return NULL if this system cannot place longjmp
7295 breakpoints. */
7296
7297 struct breakpoint *
7298 set_longjmp_breakpoint_for_call_dummy (void)
7299 {
7300 struct breakpoint *b, *retval = NULL;
7301
7302 ALL_BREAKPOINTS (b)
7303 if (b->pspace == current_program_space && b->type == bp_longjmp_master)
7304 {
7305 struct breakpoint *new_b;
7306
7307 new_b = momentary_breakpoint_from_master (b, bp_longjmp_call_dummy,
7308 &momentary_breakpoint_ops,
7309 1);
7310 new_b->thread = inferior_thread ()->global_num;
7311
7312 /* Link NEW_B into the chain of RETVAL breakpoints. */
7313
7314 gdb_assert (new_b->related_breakpoint == new_b);
7315 if (retval == NULL)
7316 retval = new_b;
7317 new_b->related_breakpoint = retval;
7318 while (retval->related_breakpoint != new_b->related_breakpoint)
7319 retval = retval->related_breakpoint;
7320 retval->related_breakpoint = new_b;
7321 }
7322
7323 return retval;
7324 }
7325
7326 /* Verify all existing dummy frames and their associated breakpoints for
7327 TP. Remove those which can no longer be found in the current frame
7328 stack.
7329
7330 You should call this function only at places where it is safe to currently
7331 unwind the whole stack. Failed stack unwind would discard live dummy
7332 frames. */
7333
7334 void
7335 check_longjmp_breakpoint_for_call_dummy (struct thread_info *tp)
7336 {
7337 struct breakpoint *b, *b_tmp;
7338
7339 ALL_BREAKPOINTS_SAFE (b, b_tmp)
7340 if (b->type == bp_longjmp_call_dummy && b->thread == tp->global_num)
7341 {
7342 struct breakpoint *dummy_b = b->related_breakpoint;
7343
7344 while (dummy_b != b && dummy_b->type != bp_call_dummy)
7345 dummy_b = dummy_b->related_breakpoint;
7346 if (dummy_b->type != bp_call_dummy
7347 || frame_find_by_id (dummy_b->frame_id) != NULL)
7348 continue;
7349
7350 dummy_frame_discard (dummy_b->frame_id, tp);
7351
7352 while (b->related_breakpoint != b)
7353 {
7354 if (b_tmp == b->related_breakpoint)
7355 b_tmp = b->related_breakpoint->next;
7356 delete_breakpoint (b->related_breakpoint);
7357 }
7358 delete_breakpoint (b);
7359 }
7360 }
7361
7362 void
7363 enable_overlay_breakpoints (void)
7364 {
7365 struct breakpoint *b;
7366
7367 ALL_BREAKPOINTS (b)
7368 if (b->type == bp_overlay_event)
7369 {
7370 b->enable_state = bp_enabled;
7371 update_global_location_list (UGLL_MAY_INSERT);
7372 overlay_events_enabled = 1;
7373 }
7374 }
7375
7376 void
7377 disable_overlay_breakpoints (void)
7378 {
7379 struct breakpoint *b;
7380
7381 ALL_BREAKPOINTS (b)
7382 if (b->type == bp_overlay_event)
7383 {
7384 b->enable_state = bp_disabled;
7385 update_global_location_list (UGLL_DONT_INSERT);
7386 overlay_events_enabled = 0;
7387 }
7388 }
7389
7390 /* Set an active std::terminate breakpoint for each std::terminate
7391 master breakpoint. */
7392 void
7393 set_std_terminate_breakpoint (void)
7394 {
7395 struct breakpoint *b, *b_tmp;
7396
7397 ALL_BREAKPOINTS_SAFE (b, b_tmp)
7398 if (b->pspace == current_program_space
7399 && b->type == bp_std_terminate_master)
7400 {
7401 momentary_breakpoint_from_master (b, bp_std_terminate,
7402 &momentary_breakpoint_ops, 1);
7403 }
7404 }
7405
7406 /* Delete all the std::terminate breakpoints. */
7407 void
7408 delete_std_terminate_breakpoint (void)
7409 {
7410 struct breakpoint *b, *b_tmp;
7411
7412 ALL_BREAKPOINTS_SAFE (b, b_tmp)
7413 if (b->type == bp_std_terminate)
7414 delete_breakpoint (b);
7415 }
7416
7417 struct breakpoint *
7418 create_thread_event_breakpoint (struct gdbarch *gdbarch, CORE_ADDR address)
7419 {
7420 struct breakpoint *b;
7421
7422 b = create_internal_breakpoint (gdbarch, address, bp_thread_event,
7423 &internal_breakpoint_ops);
7424
7425 b->enable_state = bp_enabled;
7426 /* location has to be used or breakpoint_re_set will delete me. */
7427 b->location = new_address_location (b->loc->address, NULL, 0);
7428
7429 update_global_location_list_nothrow (UGLL_MAY_INSERT);
7430
7431 return b;
7432 }
7433
7434 struct lang_and_radix
7435 {
7436 enum language lang;
7437 int radix;
7438 };
7439
7440 /* Create a breakpoint for JIT code registration and unregistration. */
7441
7442 struct breakpoint *
7443 create_jit_event_breakpoint (struct gdbarch *gdbarch, CORE_ADDR address)
7444 {
7445 return create_internal_breakpoint (gdbarch, address, bp_jit_event,
7446 &internal_breakpoint_ops);
7447 }
7448
7449 /* Remove JIT code registration and unregistration breakpoint(s). */
7450
7451 void
7452 remove_jit_event_breakpoints (void)
7453 {
7454 struct breakpoint *b, *b_tmp;
7455
7456 ALL_BREAKPOINTS_SAFE (b, b_tmp)
7457 if (b->type == bp_jit_event
7458 && b->loc->pspace == current_program_space)
7459 delete_breakpoint (b);
7460 }
7461
7462 void
7463 remove_solib_event_breakpoints (void)
7464 {
7465 struct breakpoint *b, *b_tmp;
7466
7467 ALL_BREAKPOINTS_SAFE (b, b_tmp)
7468 if (b->type == bp_shlib_event
7469 && b->loc->pspace == current_program_space)
7470 delete_breakpoint (b);
7471 }
7472
7473 /* See breakpoint.h. */
7474
7475 void
7476 remove_solib_event_breakpoints_at_next_stop (void)
7477 {
7478 struct breakpoint *b, *b_tmp;
7479
7480 ALL_BREAKPOINTS_SAFE (b, b_tmp)
7481 if (b->type == bp_shlib_event
7482 && b->loc->pspace == current_program_space)
7483 b->disposition = disp_del_at_next_stop;
7484 }
7485
7486 /* Helper for create_solib_event_breakpoint /
7487 create_and_insert_solib_event_breakpoint. Allows specifying which
7488 INSERT_MODE to pass through to update_global_location_list. */
7489
7490 static struct breakpoint *
7491 create_solib_event_breakpoint_1 (struct gdbarch *gdbarch, CORE_ADDR address,
7492 enum ugll_insert_mode insert_mode)
7493 {
7494 struct breakpoint *b;
7495
7496 b = create_internal_breakpoint (gdbarch, address, bp_shlib_event,
7497 &internal_breakpoint_ops);
7498 update_global_location_list_nothrow (insert_mode);
7499 return b;
7500 }
7501
7502 struct breakpoint *
7503 create_solib_event_breakpoint (struct gdbarch *gdbarch, CORE_ADDR address)
7504 {
7505 return create_solib_event_breakpoint_1 (gdbarch, address, UGLL_MAY_INSERT);
7506 }
7507
7508 /* See breakpoint.h. */
7509
7510 struct breakpoint *
7511 create_and_insert_solib_event_breakpoint (struct gdbarch *gdbarch, CORE_ADDR address)
7512 {
7513 struct breakpoint *b;
7514
7515 /* Explicitly tell update_global_location_list to insert
7516 locations. */
7517 b = create_solib_event_breakpoint_1 (gdbarch, address, UGLL_INSERT);
7518 if (!b->loc->inserted)
7519 {
7520 delete_breakpoint (b);
7521 return NULL;
7522 }
7523 return b;
7524 }
7525
7526 /* Disable any breakpoints that are on code in shared libraries. Only
7527 apply to enabled breakpoints, disabled ones can just stay disabled. */
7528
7529 void
7530 disable_breakpoints_in_shlibs (void)
7531 {
7532 struct bp_location *loc, **locp_tmp;
7533
7534 ALL_BP_LOCATIONS (loc, locp_tmp)
7535 {
7536 /* ALL_BP_LOCATIONS bp_location has LOC->OWNER always non-NULL. */
7537 struct breakpoint *b = loc->owner;
7538
7539 /* We apply the check to all breakpoints, including disabled for
7540 those with loc->duplicate set. This is so that when breakpoint
7541 becomes enabled, or the duplicate is removed, gdb will try to
7542 insert all breakpoints. If we don't set shlib_disabled here,
7543 we'll try to insert those breakpoints and fail. */
7544 if (((b->type == bp_breakpoint)
7545 || (b->type == bp_jit_event)
7546 || (b->type == bp_hardware_breakpoint)
7547 || (is_tracepoint (b)))
7548 && loc->pspace == current_program_space
7549 && !loc->shlib_disabled
7550 && solib_name_from_address (loc->pspace, loc->address)
7551 )
7552 {
7553 loc->shlib_disabled = 1;
7554 }
7555 }
7556 }
7557
7558 /* Disable any breakpoints and tracepoints that are in SOLIB upon
7559 notification of unloaded_shlib. Only apply to enabled breakpoints,
7560 disabled ones can just stay disabled. */
7561
7562 static void
7563 disable_breakpoints_in_unloaded_shlib (struct so_list *solib)
7564 {
7565 struct bp_location *loc, **locp_tmp;
7566 int disabled_shlib_breaks = 0;
7567
7568 ALL_BP_LOCATIONS (loc, locp_tmp)
7569 {
7570 /* ALL_BP_LOCATIONS bp_location has LOC->OWNER always non-NULL. */
7571 struct breakpoint *b = loc->owner;
7572
7573 if (solib->pspace == loc->pspace
7574 && !loc->shlib_disabled
7575 && (((b->type == bp_breakpoint
7576 || b->type == bp_jit_event
7577 || b->type == bp_hardware_breakpoint)
7578 && (loc->loc_type == bp_loc_hardware_breakpoint
7579 || loc->loc_type == bp_loc_software_breakpoint))
7580 || is_tracepoint (b))
7581 && solib_contains_address_p (solib, loc->address))
7582 {
7583 loc->shlib_disabled = 1;
7584 /* At this point, we cannot rely on remove_breakpoint
7585 succeeding so we must mark the breakpoint as not inserted
7586 to prevent future errors occurring in remove_breakpoints. */
7587 loc->inserted = 0;
7588
7589 /* This may cause duplicate notifications for the same breakpoint. */
7590 gdb::observers::breakpoint_modified.notify (b);
7591
7592 if (!disabled_shlib_breaks)
7593 {
7594 target_terminal::ours_for_output ();
7595 warning (_("Temporarily disabling breakpoints "
7596 "for unloaded shared library \"%s\""),
7597 solib->so_name);
7598 }
7599 disabled_shlib_breaks = 1;
7600 }
7601 }
7602 }
7603
7604 /* Disable any breakpoints and tracepoints in OBJFILE upon
7605 notification of free_objfile. Only apply to enabled breakpoints,
7606 disabled ones can just stay disabled. */
7607
7608 static void
7609 disable_breakpoints_in_freed_objfile (struct objfile *objfile)
7610 {
7611 struct breakpoint *b;
7612
7613 if (objfile == NULL)
7614 return;
7615
7616 /* OBJF_SHARED|OBJF_USERLOADED objfiles are dynamic modules manually
7617 managed by the user with add-symbol-file/remove-symbol-file.
7618 Similarly to how breakpoints in shared libraries are handled in
7619 response to "nosharedlibrary", mark breakpoints in such modules
7620 shlib_disabled so they end up uninserted on the next global
7621 location list update. Shared libraries not loaded by the user
7622 aren't handled here -- they're already handled in
7623 disable_breakpoints_in_unloaded_shlib, called by solib.c's
7624 solib_unloaded observer. We skip objfiles that are not
7625 OBJF_SHARED as those aren't considered dynamic objects (e.g. the
7626 main objfile). */
7627 if ((objfile->flags & OBJF_SHARED) == 0
7628 || (objfile->flags & OBJF_USERLOADED) == 0)
7629 return;
7630
7631 ALL_BREAKPOINTS (b)
7632 {
7633 struct bp_location *loc;
7634 int bp_modified = 0;
7635
7636 if (!is_breakpoint (b) && !is_tracepoint (b))
7637 continue;
7638
7639 for (loc = b->loc; loc != NULL; loc = loc->next)
7640 {
7641 CORE_ADDR loc_addr = loc->address;
7642
7643 if (loc->loc_type != bp_loc_hardware_breakpoint
7644 && loc->loc_type != bp_loc_software_breakpoint)
7645 continue;
7646
7647 if (loc->shlib_disabled != 0)
7648 continue;
7649
7650 if (objfile->pspace != loc->pspace)
7651 continue;
7652
7653 if (loc->loc_type != bp_loc_hardware_breakpoint
7654 && loc->loc_type != bp_loc_software_breakpoint)
7655 continue;
7656
7657 if (is_addr_in_objfile (loc_addr, objfile))
7658 {
7659 loc->shlib_disabled = 1;
7660 /* At this point, we don't know whether the object was
7661 unmapped from the inferior or not, so leave the
7662 inserted flag alone. We'll handle failure to
7663 uninsert quietly, in case the object was indeed
7664 unmapped. */
7665
7666 mark_breakpoint_location_modified (loc);
7667
7668 bp_modified = 1;
7669 }
7670 }
7671
7672 if (bp_modified)
7673 gdb::observers::breakpoint_modified.notify (b);
7674 }
7675 }
7676
7677 /* FORK & VFORK catchpoints. */
7678
7679 /* An instance of this type is used to represent a fork or vfork
7680 catchpoint. A breakpoint is really of this type iff its ops pointer points
7681 to CATCH_FORK_BREAKPOINT_OPS. */
7682
7683 struct fork_catchpoint : public breakpoint
7684 {
7685 /* Process id of a child process whose forking triggered this
7686 catchpoint. This field is only valid immediately after this
7687 catchpoint has triggered. */
7688 ptid_t forked_inferior_pid;
7689 };
7690
7691 /* Implement the "insert" breakpoint_ops method for fork
7692 catchpoints. */
7693
7694 static int
7695 insert_catch_fork (struct bp_location *bl)
7696 {
7697 return target_insert_fork_catchpoint (inferior_ptid.pid ());
7698 }
7699
7700 /* Implement the "remove" breakpoint_ops method for fork
7701 catchpoints. */
7702
7703 static int
7704 remove_catch_fork (struct bp_location *bl, enum remove_bp_reason reason)
7705 {
7706 return target_remove_fork_catchpoint (inferior_ptid.pid ());
7707 }
7708
7709 /* Implement the "breakpoint_hit" breakpoint_ops method for fork
7710 catchpoints. */
7711
7712 static int
7713 breakpoint_hit_catch_fork (const struct bp_location *bl,
7714 const address_space *aspace, CORE_ADDR bp_addr,
7715 const struct target_waitstatus *ws)
7716 {
7717 struct fork_catchpoint *c = (struct fork_catchpoint *) bl->owner;
7718
7719 if (ws->kind != TARGET_WAITKIND_FORKED)
7720 return 0;
7721
7722 c->forked_inferior_pid = ws->value.related_pid;
7723 return 1;
7724 }
7725
7726 /* Implement the "print_it" breakpoint_ops method for fork
7727 catchpoints. */
7728
7729 static enum print_stop_action
7730 print_it_catch_fork (bpstat bs)
7731 {
7732 struct ui_out *uiout = current_uiout;
7733 struct breakpoint *b = bs->breakpoint_at;
7734 struct fork_catchpoint *c = (struct fork_catchpoint *) bs->breakpoint_at;
7735
7736 annotate_catchpoint (b->number);
7737 maybe_print_thread_hit_breakpoint (uiout);
7738 if (b->disposition == disp_del)
7739 uiout->text ("Temporary catchpoint ");
7740 else
7741 uiout->text ("Catchpoint ");
7742 if (uiout->is_mi_like_p ())
7743 {
7744 uiout->field_string ("reason", async_reason_lookup (EXEC_ASYNC_FORK));
7745 uiout->field_string ("disp", bpdisp_text (b->disposition));
7746 }
7747 uiout->field_int ("bkptno", b->number);
7748 uiout->text (" (forked process ");
7749 uiout->field_int ("newpid", c->forked_inferior_pid.pid ());
7750 uiout->text ("), ");
7751 return PRINT_SRC_AND_LOC;
7752 }
7753
7754 /* Implement the "print_one" breakpoint_ops method for fork
7755 catchpoints. */
7756
7757 static void
7758 print_one_catch_fork (struct breakpoint *b, struct bp_location **last_loc)
7759 {
7760 struct fork_catchpoint *c = (struct fork_catchpoint *) b;
7761 struct value_print_options opts;
7762 struct ui_out *uiout = current_uiout;
7763
7764 get_user_print_options (&opts);
7765
7766 /* Field 4, the address, is omitted (which makes the columns not
7767 line up too nicely with the headers, but the effect is relatively
7768 readable). */
7769 if (opts.addressprint)
7770 uiout->field_skip ("addr");
7771 annotate_field (5);
7772 uiout->text ("fork");
7773 if (c->forked_inferior_pid != null_ptid)
7774 {
7775 uiout->text (", process ");
7776 uiout->field_int ("what", c->forked_inferior_pid.pid ());
7777 uiout->spaces (1);
7778 }
7779
7780 if (uiout->is_mi_like_p ())
7781 uiout->field_string ("catch-type", "fork");
7782 }
7783
7784 /* Implement the "print_mention" breakpoint_ops method for fork
7785 catchpoints. */
7786
7787 static void
7788 print_mention_catch_fork (struct breakpoint *b)
7789 {
7790 printf_filtered (_("Catchpoint %d (fork)"), b->number);
7791 }
7792
7793 /* Implement the "print_recreate" breakpoint_ops method for fork
7794 catchpoints. */
7795
7796 static void
7797 print_recreate_catch_fork (struct breakpoint *b, struct ui_file *fp)
7798 {
7799 fprintf_unfiltered (fp, "catch fork");
7800 print_recreate_thread (b, fp);
7801 }
7802
7803 /* The breakpoint_ops structure to be used in fork catchpoints. */
7804
7805 static struct breakpoint_ops catch_fork_breakpoint_ops;
7806
7807 /* Implement the "insert" breakpoint_ops method for vfork
7808 catchpoints. */
7809
7810 static int
7811 insert_catch_vfork (struct bp_location *bl)
7812 {
7813 return target_insert_vfork_catchpoint (inferior_ptid.pid ());
7814 }
7815
7816 /* Implement the "remove" breakpoint_ops method for vfork
7817 catchpoints. */
7818
7819 static int
7820 remove_catch_vfork (struct bp_location *bl, enum remove_bp_reason reason)
7821 {
7822 return target_remove_vfork_catchpoint (inferior_ptid.pid ());
7823 }
7824
7825 /* Implement the "breakpoint_hit" breakpoint_ops method for vfork
7826 catchpoints. */
7827
7828 static int
7829 breakpoint_hit_catch_vfork (const struct bp_location *bl,
7830 const address_space *aspace, CORE_ADDR bp_addr,
7831 const struct target_waitstatus *ws)
7832 {
7833 struct fork_catchpoint *c = (struct fork_catchpoint *) bl->owner;
7834
7835 if (ws->kind != TARGET_WAITKIND_VFORKED)
7836 return 0;
7837
7838 c->forked_inferior_pid = ws->value.related_pid;
7839 return 1;
7840 }
7841
7842 /* Implement the "print_it" breakpoint_ops method for vfork
7843 catchpoints. */
7844
7845 static enum print_stop_action
7846 print_it_catch_vfork (bpstat bs)
7847 {
7848 struct ui_out *uiout = current_uiout;
7849 struct breakpoint *b = bs->breakpoint_at;
7850 struct fork_catchpoint *c = (struct fork_catchpoint *) b;
7851
7852 annotate_catchpoint (b->number);
7853 maybe_print_thread_hit_breakpoint (uiout);
7854 if (b->disposition == disp_del)
7855 uiout->text ("Temporary catchpoint ");
7856 else
7857 uiout->text ("Catchpoint ");
7858 if (uiout->is_mi_like_p ())
7859 {
7860 uiout->field_string ("reason", async_reason_lookup (EXEC_ASYNC_VFORK));
7861 uiout->field_string ("disp", bpdisp_text (b->disposition));
7862 }
7863 uiout->field_int ("bkptno", b->number);
7864 uiout->text (" (vforked process ");
7865 uiout->field_int ("newpid", c->forked_inferior_pid.pid ());
7866 uiout->text ("), ");
7867 return PRINT_SRC_AND_LOC;
7868 }
7869
7870 /* Implement the "print_one" breakpoint_ops method for vfork
7871 catchpoints. */
7872
7873 static void
7874 print_one_catch_vfork (struct breakpoint *b, struct bp_location **last_loc)
7875 {
7876 struct fork_catchpoint *c = (struct fork_catchpoint *) b;
7877 struct value_print_options opts;
7878 struct ui_out *uiout = current_uiout;
7879
7880 get_user_print_options (&opts);
7881 /* Field 4, the address, is omitted (which makes the columns not
7882 line up too nicely with the headers, but the effect is relatively
7883 readable). */
7884 if (opts.addressprint)
7885 uiout->field_skip ("addr");
7886 annotate_field (5);
7887 uiout->text ("vfork");
7888 if (c->forked_inferior_pid != null_ptid)
7889 {
7890 uiout->text (", process ");
7891 uiout->field_int ("what", c->forked_inferior_pid.pid ());
7892 uiout->spaces (1);
7893 }
7894
7895 if (uiout->is_mi_like_p ())
7896 uiout->field_string ("catch-type", "vfork");
7897 }
7898
7899 /* Implement the "print_mention" breakpoint_ops method for vfork
7900 catchpoints. */
7901
7902 static void
7903 print_mention_catch_vfork (struct breakpoint *b)
7904 {
7905 printf_filtered (_("Catchpoint %d (vfork)"), b->number);
7906 }
7907
7908 /* Implement the "print_recreate" breakpoint_ops method for vfork
7909 catchpoints. */
7910
7911 static void
7912 print_recreate_catch_vfork (struct breakpoint *b, struct ui_file *fp)
7913 {
7914 fprintf_unfiltered (fp, "catch vfork");
7915 print_recreate_thread (b, fp);
7916 }
7917
7918 /* The breakpoint_ops structure to be used in vfork catchpoints. */
7919
7920 static struct breakpoint_ops catch_vfork_breakpoint_ops;
7921
7922 /* An instance of this type is used to represent an solib catchpoint.
7923 A breakpoint is really of this type iff its ops pointer points to
7924 CATCH_SOLIB_BREAKPOINT_OPS. */
7925
7926 struct solib_catchpoint : public breakpoint
7927 {
7928 ~solib_catchpoint () override;
7929
7930 /* True for "catch load", false for "catch unload". */
7931 unsigned char is_load;
7932
7933 /* Regular expression to match, if any. COMPILED is only valid when
7934 REGEX is non-NULL. */
7935 char *regex;
7936 std::unique_ptr<compiled_regex> compiled;
7937 };
7938
7939 solib_catchpoint::~solib_catchpoint ()
7940 {
7941 xfree (this->regex);
7942 }
7943
7944 static int
7945 insert_catch_solib (struct bp_location *ignore)
7946 {
7947 return 0;
7948 }
7949
7950 static int
7951 remove_catch_solib (struct bp_location *ignore, enum remove_bp_reason reason)
7952 {
7953 return 0;
7954 }
7955
7956 static int
7957 breakpoint_hit_catch_solib (const struct bp_location *bl,
7958 const address_space *aspace,
7959 CORE_ADDR bp_addr,
7960 const struct target_waitstatus *ws)
7961 {
7962 struct solib_catchpoint *self = (struct solib_catchpoint *) bl->owner;
7963 struct breakpoint *other;
7964
7965 if (ws->kind == TARGET_WAITKIND_LOADED)
7966 return 1;
7967
7968 ALL_BREAKPOINTS (other)
7969 {
7970 struct bp_location *other_bl;
7971
7972 if (other == bl->owner)
7973 continue;
7974
7975 if (other->type != bp_shlib_event)
7976 continue;
7977
7978 if (self->pspace != NULL && other->pspace != self->pspace)
7979 continue;
7980
7981 for (other_bl = other->loc; other_bl != NULL; other_bl = other_bl->next)
7982 {
7983 if (other->ops->breakpoint_hit (other_bl, aspace, bp_addr, ws))
7984 return 1;
7985 }
7986 }
7987
7988 return 0;
7989 }
7990
7991 static void
7992 check_status_catch_solib (struct bpstats *bs)
7993 {
7994 struct solib_catchpoint *self
7995 = (struct solib_catchpoint *) bs->breakpoint_at;
7996
7997 if (self->is_load)
7998 {
7999 for (so_list *iter : current_program_space->added_solibs)
8000 {
8001 if (!self->regex
8002 || self->compiled->exec (iter->so_name, 0, NULL, 0) == 0)
8003 return;
8004 }
8005 }
8006 else
8007 {
8008 for (const std::string &iter : current_program_space->deleted_solibs)
8009 {
8010 if (!self->regex
8011 || self->compiled->exec (iter.c_str (), 0, NULL, 0) == 0)
8012 return;
8013 }
8014 }
8015
8016 bs->stop = 0;
8017 bs->print_it = print_it_noop;
8018 }
8019
8020 static enum print_stop_action
8021 print_it_catch_solib (bpstat bs)
8022 {
8023 struct breakpoint *b = bs->breakpoint_at;
8024 struct ui_out *uiout = current_uiout;
8025
8026 annotate_catchpoint (b->number);
8027 maybe_print_thread_hit_breakpoint (uiout);
8028 if (b->disposition == disp_del)
8029 uiout->text ("Temporary catchpoint ");
8030 else
8031 uiout->text ("Catchpoint ");
8032 uiout->field_int ("bkptno", b->number);
8033 uiout->text ("\n");
8034 if (uiout->is_mi_like_p ())
8035 uiout->field_string ("disp", bpdisp_text (b->disposition));
8036 print_solib_event (1);
8037 return PRINT_SRC_AND_LOC;
8038 }
8039
8040 static void
8041 print_one_catch_solib (struct breakpoint *b, struct bp_location **locs)
8042 {
8043 struct solib_catchpoint *self = (struct solib_catchpoint *) b;
8044 struct value_print_options opts;
8045 struct ui_out *uiout = current_uiout;
8046
8047 get_user_print_options (&opts);
8048 /* Field 4, the address, is omitted (which makes the columns not
8049 line up too nicely with the headers, but the effect is relatively
8050 readable). */
8051 if (opts.addressprint)
8052 {
8053 annotate_field (4);
8054 uiout->field_skip ("addr");
8055 }
8056
8057 std::string msg;
8058 annotate_field (5);
8059 if (self->is_load)
8060 {
8061 if (self->regex)
8062 msg = string_printf (_("load of library matching %s"), self->regex);
8063 else
8064 msg = _("load of library");
8065 }
8066 else
8067 {
8068 if (self->regex)
8069 msg = string_printf (_("unload of library matching %s"), self->regex);
8070 else
8071 msg = _("unload of library");
8072 }
8073 uiout->field_string ("what", msg);
8074
8075 if (uiout->is_mi_like_p ())
8076 uiout->field_string ("catch-type", self->is_load ? "load" : "unload");
8077 }
8078
8079 static void
8080 print_mention_catch_solib (struct breakpoint *b)
8081 {
8082 struct solib_catchpoint *self = (struct solib_catchpoint *) b;
8083
8084 printf_filtered (_("Catchpoint %d (%s)"), b->number,
8085 self->is_load ? "load" : "unload");
8086 }
8087
8088 static void
8089 print_recreate_catch_solib (struct breakpoint *b, struct ui_file *fp)
8090 {
8091 struct solib_catchpoint *self = (struct solib_catchpoint *) b;
8092
8093 fprintf_unfiltered (fp, "%s %s",
8094 b->disposition == disp_del ? "tcatch" : "catch",
8095 self->is_load ? "load" : "unload");
8096 if (self->regex)
8097 fprintf_unfiltered (fp, " %s", self->regex);
8098 fprintf_unfiltered (fp, "\n");
8099 }
8100
8101 static struct breakpoint_ops catch_solib_breakpoint_ops;
8102
8103 /* Shared helper function (MI and CLI) for creating and installing
8104 a shared object event catchpoint. If IS_LOAD is non-zero then
8105 the events to be caught are load events, otherwise they are
8106 unload events. If IS_TEMP is non-zero the catchpoint is a
8107 temporary one. If ENABLED is non-zero the catchpoint is
8108 created in an enabled state. */
8109
8110 void
8111 add_solib_catchpoint (const char *arg, int is_load, int is_temp, int enabled)
8112 {
8113 struct gdbarch *gdbarch = get_current_arch ();
8114
8115 if (!arg)
8116 arg = "";
8117 arg = skip_spaces (arg);
8118
8119 std::unique_ptr<solib_catchpoint> c (new solib_catchpoint ());
8120
8121 if (*arg != '\0')
8122 {
8123 c->compiled.reset (new compiled_regex (arg, REG_NOSUB,
8124 _("Invalid regexp")));
8125 c->regex = xstrdup (arg);
8126 }
8127
8128 c->is_load = is_load;
8129 init_catchpoint (c.get (), gdbarch, is_temp, NULL,
8130 &catch_solib_breakpoint_ops);
8131
8132 c->enable_state = enabled ? bp_enabled : bp_disabled;
8133
8134 install_breakpoint (0, std::move (c), 1);
8135 }
8136
8137 /* A helper function that does all the work for "catch load" and
8138 "catch unload". */
8139
8140 static void
8141 catch_load_or_unload (const char *arg, int from_tty, int is_load,
8142 struct cmd_list_element *command)
8143 {
8144 int tempflag;
8145 const int enabled = 1;
8146
8147 tempflag = get_cmd_context (command) == CATCH_TEMPORARY;
8148
8149 add_solib_catchpoint (arg, is_load, tempflag, enabled);
8150 }
8151
8152 static void
8153 catch_load_command_1 (const char *arg, int from_tty,
8154 struct cmd_list_element *command)
8155 {
8156 catch_load_or_unload (arg, from_tty, 1, command);
8157 }
8158
8159 static void
8160 catch_unload_command_1 (const char *arg, int from_tty,
8161 struct cmd_list_element *command)
8162 {
8163 catch_load_or_unload (arg, from_tty, 0, command);
8164 }
8165
8166 /* Initialize a new breakpoint of the bp_catchpoint kind. If TEMPFLAG
8167 is non-zero, then make the breakpoint temporary. If COND_STRING is
8168 not NULL, then store it in the breakpoint. OPS, if not NULL, is
8169 the breakpoint_ops structure associated to the catchpoint. */
8170
8171 void
8172 init_catchpoint (struct breakpoint *b,
8173 struct gdbarch *gdbarch, int tempflag,
8174 const char *cond_string,
8175 const struct breakpoint_ops *ops)
8176 {
8177 symtab_and_line sal;
8178 sal.pspace = current_program_space;
8179
8180 init_raw_breakpoint (b, gdbarch, sal, bp_catchpoint, ops);
8181
8182 b->cond_string = (cond_string == NULL) ? NULL : xstrdup (cond_string);
8183 b->disposition = tempflag ? disp_del : disp_donttouch;
8184 }
8185
8186 void
8187 install_breakpoint (int internal, std::unique_ptr<breakpoint> &&arg, int update_gll)
8188 {
8189 breakpoint *b = add_to_breakpoint_chain (std::move (arg));
8190 set_breakpoint_number (internal, b);
8191 if (is_tracepoint (b))
8192 set_tracepoint_count (breakpoint_count);
8193 if (!internal)
8194 mention (b);
8195 gdb::observers::breakpoint_created.notify (b);
8196
8197 if (update_gll)
8198 update_global_location_list (UGLL_MAY_INSERT);
8199 }
8200
8201 static void
8202 create_fork_vfork_event_catchpoint (struct gdbarch *gdbarch,
8203 int tempflag, const char *cond_string,
8204 const struct breakpoint_ops *ops)
8205 {
8206 std::unique_ptr<fork_catchpoint> c (new fork_catchpoint ());
8207
8208 init_catchpoint (c.get (), gdbarch, tempflag, cond_string, ops);
8209
8210 c->forked_inferior_pid = null_ptid;
8211
8212 install_breakpoint (0, std::move (c), 1);
8213 }
8214
8215 /* Exec catchpoints. */
8216
8217 /* An instance of this type is used to represent an exec catchpoint.
8218 A breakpoint is really of this type iff its ops pointer points to
8219 CATCH_EXEC_BREAKPOINT_OPS. */
8220
8221 struct exec_catchpoint : public breakpoint
8222 {
8223 ~exec_catchpoint () override;
8224
8225 /* Filename of a program whose exec triggered this catchpoint.
8226 This field is only valid immediately after this catchpoint has
8227 triggered. */
8228 char *exec_pathname;
8229 };
8230
8231 /* Exec catchpoint destructor. */
8232
8233 exec_catchpoint::~exec_catchpoint ()
8234 {
8235 xfree (this->exec_pathname);
8236 }
8237
8238 static int
8239 insert_catch_exec (struct bp_location *bl)
8240 {
8241 return target_insert_exec_catchpoint (inferior_ptid.pid ());
8242 }
8243
8244 static int
8245 remove_catch_exec (struct bp_location *bl, enum remove_bp_reason reason)
8246 {
8247 return target_remove_exec_catchpoint (inferior_ptid.pid ());
8248 }
8249
8250 static int
8251 breakpoint_hit_catch_exec (const struct bp_location *bl,
8252 const address_space *aspace, CORE_ADDR bp_addr,
8253 const struct target_waitstatus *ws)
8254 {
8255 struct exec_catchpoint *c = (struct exec_catchpoint *) bl->owner;
8256
8257 if (ws->kind != TARGET_WAITKIND_EXECD)
8258 return 0;
8259
8260 c->exec_pathname = xstrdup (ws->value.execd_pathname);
8261 return 1;
8262 }
8263
8264 static enum print_stop_action
8265 print_it_catch_exec (bpstat bs)
8266 {
8267 struct ui_out *uiout = current_uiout;
8268 struct breakpoint *b = bs->breakpoint_at;
8269 struct exec_catchpoint *c = (struct exec_catchpoint *) b;
8270
8271 annotate_catchpoint (b->number);
8272 maybe_print_thread_hit_breakpoint (uiout);
8273 if (b->disposition == disp_del)
8274 uiout->text ("Temporary catchpoint ");
8275 else
8276 uiout->text ("Catchpoint ");
8277 if (uiout->is_mi_like_p ())
8278 {
8279 uiout->field_string ("reason", async_reason_lookup (EXEC_ASYNC_EXEC));
8280 uiout->field_string ("disp", bpdisp_text (b->disposition));
8281 }
8282 uiout->field_int ("bkptno", b->number);
8283 uiout->text (" (exec'd ");
8284 uiout->field_string ("new-exec", c->exec_pathname);
8285 uiout->text ("), ");
8286
8287 return PRINT_SRC_AND_LOC;
8288 }
8289
8290 static void
8291 print_one_catch_exec (struct breakpoint *b, struct bp_location **last_loc)
8292 {
8293 struct exec_catchpoint *c = (struct exec_catchpoint *) b;
8294 struct value_print_options opts;
8295 struct ui_out *uiout = current_uiout;
8296
8297 get_user_print_options (&opts);
8298
8299 /* Field 4, the address, is omitted (which makes the columns
8300 not line up too nicely with the headers, but the effect
8301 is relatively readable). */
8302 if (opts.addressprint)
8303 uiout->field_skip ("addr");
8304 annotate_field (5);
8305 uiout->text ("exec");
8306 if (c->exec_pathname != NULL)
8307 {
8308 uiout->text (", program \"");
8309 uiout->field_string ("what", c->exec_pathname);
8310 uiout->text ("\" ");
8311 }
8312
8313 if (uiout->is_mi_like_p ())
8314 uiout->field_string ("catch-type", "exec");
8315 }
8316
8317 static void
8318 print_mention_catch_exec (struct breakpoint *b)
8319 {
8320 printf_filtered (_("Catchpoint %d (exec)"), b->number);
8321 }
8322
8323 /* Implement the "print_recreate" breakpoint_ops method for exec
8324 catchpoints. */
8325
8326 static void
8327 print_recreate_catch_exec (struct breakpoint *b, struct ui_file *fp)
8328 {
8329 fprintf_unfiltered (fp, "catch exec");
8330 print_recreate_thread (b, fp);
8331 }
8332
8333 static struct breakpoint_ops catch_exec_breakpoint_ops;
8334
8335 static int
8336 hw_breakpoint_used_count (void)
8337 {
8338 int i = 0;
8339 struct breakpoint *b;
8340 struct bp_location *bl;
8341
8342 ALL_BREAKPOINTS (b)
8343 {
8344 if (b->type == bp_hardware_breakpoint && breakpoint_enabled (b))
8345 for (bl = b->loc; bl; bl = bl->next)
8346 {
8347 /* Special types of hardware breakpoints may use more than
8348 one register. */
8349 i += b->ops->resources_needed (bl);
8350 }
8351 }
8352
8353 return i;
8354 }
8355
8356 /* Returns the resources B would use if it were a hardware
8357 watchpoint. */
8358
8359 static int
8360 hw_watchpoint_use_count (struct breakpoint *b)
8361 {
8362 int i = 0;
8363 struct bp_location *bl;
8364
8365 if (!breakpoint_enabled (b))
8366 return 0;
8367
8368 for (bl = b->loc; bl; bl = bl->next)
8369 {
8370 /* Special types of hardware watchpoints may use more than
8371 one register. */
8372 i += b->ops->resources_needed (bl);
8373 }
8374
8375 return i;
8376 }
8377
8378 /* Returns the sum the used resources of all hardware watchpoints of
8379 type TYPE in the breakpoints list. Also returns in OTHER_TYPE_USED
8380 the sum of the used resources of all hardware watchpoints of other
8381 types _not_ TYPE. */
8382
8383 static int
8384 hw_watchpoint_used_count_others (struct breakpoint *except,
8385 enum bptype type, int *other_type_used)
8386 {
8387 int i = 0;
8388 struct breakpoint *b;
8389
8390 *other_type_used = 0;
8391 ALL_BREAKPOINTS (b)
8392 {
8393 if (b == except)
8394 continue;
8395 if (!breakpoint_enabled (b))
8396 continue;
8397
8398 if (b->type == type)
8399 i += hw_watchpoint_use_count (b);
8400 else if (is_hardware_watchpoint (b))
8401 *other_type_used = 1;
8402 }
8403
8404 return i;
8405 }
8406
8407 void
8408 disable_watchpoints_before_interactive_call_start (void)
8409 {
8410 struct breakpoint *b;
8411
8412 ALL_BREAKPOINTS (b)
8413 {
8414 if (is_watchpoint (b) && breakpoint_enabled (b))
8415 {
8416 b->enable_state = bp_call_disabled;
8417 update_global_location_list (UGLL_DONT_INSERT);
8418 }
8419 }
8420 }
8421
8422 void
8423 enable_watchpoints_after_interactive_call_stop (void)
8424 {
8425 struct breakpoint *b;
8426
8427 ALL_BREAKPOINTS (b)
8428 {
8429 if (is_watchpoint (b) && b->enable_state == bp_call_disabled)
8430 {
8431 b->enable_state = bp_enabled;
8432 update_global_location_list (UGLL_MAY_INSERT);
8433 }
8434 }
8435 }
8436
8437 void
8438 disable_breakpoints_before_startup (void)
8439 {
8440 current_program_space->executing_startup = 1;
8441 update_global_location_list (UGLL_DONT_INSERT);
8442 }
8443
8444 void
8445 enable_breakpoints_after_startup (void)
8446 {
8447 current_program_space->executing_startup = 0;
8448 breakpoint_re_set ();
8449 }
8450
8451 /* Create a new single-step breakpoint for thread THREAD, with no
8452 locations. */
8453
8454 static struct breakpoint *
8455 new_single_step_breakpoint (int thread, struct gdbarch *gdbarch)
8456 {
8457 std::unique_ptr<breakpoint> b (new breakpoint ());
8458
8459 init_raw_breakpoint_without_location (b.get (), gdbarch, bp_single_step,
8460 &momentary_breakpoint_ops);
8461
8462 b->disposition = disp_donttouch;
8463 b->frame_id = null_frame_id;
8464
8465 b->thread = thread;
8466 gdb_assert (b->thread != 0);
8467
8468 return add_to_breakpoint_chain (std::move (b));
8469 }
8470
8471 /* Set a momentary breakpoint of type TYPE at address specified by
8472 SAL. If FRAME_ID is valid, the breakpoint is restricted to that
8473 frame. */
8474
8475 breakpoint_up
8476 set_momentary_breakpoint (struct gdbarch *gdbarch, struct symtab_and_line sal,
8477 struct frame_id frame_id, enum bptype type)
8478 {
8479 struct breakpoint *b;
8480
8481 /* If FRAME_ID is valid, it should be a real frame, not an inlined or
8482 tail-called one. */
8483 gdb_assert (!frame_id_artificial_p (frame_id));
8484
8485 b = set_raw_breakpoint (gdbarch, sal, type, &momentary_breakpoint_ops);
8486 b->enable_state = bp_enabled;
8487 b->disposition = disp_donttouch;
8488 b->frame_id = frame_id;
8489
8490 b->thread = inferior_thread ()->global_num;
8491
8492 update_global_location_list_nothrow (UGLL_MAY_INSERT);
8493
8494 return breakpoint_up (b);
8495 }
8496
8497 /* Make a momentary breakpoint based on the master breakpoint ORIG.
8498 The new breakpoint will have type TYPE, use OPS as its
8499 breakpoint_ops, and will set enabled to LOC_ENABLED. */
8500
8501 static struct breakpoint *
8502 momentary_breakpoint_from_master (struct breakpoint *orig,
8503 enum bptype type,
8504 const struct breakpoint_ops *ops,
8505 int loc_enabled)
8506 {
8507 struct breakpoint *copy;
8508
8509 copy = set_raw_breakpoint_without_location (orig->gdbarch, type, ops);
8510 copy->loc = allocate_bp_location (copy);
8511 set_breakpoint_location_function (copy->loc, 1);
8512
8513 copy->loc->gdbarch = orig->loc->gdbarch;
8514 copy->loc->requested_address = orig->loc->requested_address;
8515 copy->loc->address = orig->loc->address;
8516 copy->loc->section = orig->loc->section;
8517 copy->loc->pspace = orig->loc->pspace;
8518 copy->loc->probe = orig->loc->probe;
8519 copy->loc->line_number = orig->loc->line_number;
8520 copy->loc->symtab = orig->loc->symtab;
8521 copy->loc->enabled = loc_enabled;
8522 copy->frame_id = orig->frame_id;
8523 copy->thread = orig->thread;
8524 copy->pspace = orig->pspace;
8525
8526 copy->enable_state = bp_enabled;
8527 copy->disposition = disp_donttouch;
8528 copy->number = internal_breakpoint_number--;
8529
8530 update_global_location_list_nothrow (UGLL_DONT_INSERT);
8531 return copy;
8532 }
8533
8534 /* Make a deep copy of momentary breakpoint ORIG. Returns NULL if
8535 ORIG is NULL. */
8536
8537 struct breakpoint *
8538 clone_momentary_breakpoint (struct breakpoint *orig)
8539 {
8540 /* If there's nothing to clone, then return nothing. */
8541 if (orig == NULL)
8542 return NULL;
8543
8544 return momentary_breakpoint_from_master (orig, orig->type, orig->ops, 0);
8545 }
8546
8547 breakpoint_up
8548 set_momentary_breakpoint_at_pc (struct gdbarch *gdbarch, CORE_ADDR pc,
8549 enum bptype type)
8550 {
8551 struct symtab_and_line sal;
8552
8553 sal = find_pc_line (pc, 0);
8554 sal.pc = pc;
8555 sal.section = find_pc_overlay (pc);
8556 sal.explicit_pc = 1;
8557
8558 return set_momentary_breakpoint (gdbarch, sal, null_frame_id, type);
8559 }
8560 \f
8561
8562 /* Tell the user we have just set a breakpoint B. */
8563
8564 static void
8565 mention (struct breakpoint *b)
8566 {
8567 b->ops->print_mention (b);
8568 current_uiout->text ("\n");
8569 }
8570 \f
8571
8572 static int bp_loc_is_permanent (struct bp_location *loc);
8573
8574 static struct bp_location *
8575 add_location_to_breakpoint (struct breakpoint *b,
8576 const struct symtab_and_line *sal)
8577 {
8578 struct bp_location *loc, **tmp;
8579 CORE_ADDR adjusted_address;
8580 struct gdbarch *loc_gdbarch = get_sal_arch (*sal);
8581
8582 if (loc_gdbarch == NULL)
8583 loc_gdbarch = b->gdbarch;
8584
8585 /* Adjust the breakpoint's address prior to allocating a location.
8586 Once we call allocate_bp_location(), that mostly uninitialized
8587 location will be placed on the location chain. Adjustment of the
8588 breakpoint may cause target_read_memory() to be called and we do
8589 not want its scan of the location chain to find a breakpoint and
8590 location that's only been partially initialized. */
8591 adjusted_address = adjust_breakpoint_address (loc_gdbarch,
8592 sal->pc, b->type);
8593
8594 /* Sort the locations by their ADDRESS. */
8595 loc = allocate_bp_location (b);
8596 for (tmp = &(b->loc); *tmp != NULL && (*tmp)->address <= adjusted_address;
8597 tmp = &((*tmp)->next))
8598 ;
8599 loc->next = *tmp;
8600 *tmp = loc;
8601
8602 loc->requested_address = sal->pc;
8603 loc->address = adjusted_address;
8604 loc->pspace = sal->pspace;
8605 loc->probe.prob = sal->prob;
8606 loc->probe.objfile = sal->objfile;
8607 gdb_assert (loc->pspace != NULL);
8608 loc->section = sal->section;
8609 loc->gdbarch = loc_gdbarch;
8610 loc->line_number = sal->line;
8611 loc->symtab = sal->symtab;
8612 loc->symbol = sal->symbol;
8613 loc->msymbol = sal->msymbol;
8614 loc->objfile = sal->objfile;
8615
8616 set_breakpoint_location_function (loc,
8617 sal->explicit_pc || sal->explicit_line);
8618
8619 /* While by definition, permanent breakpoints are already present in the
8620 code, we don't mark the location as inserted. Normally one would expect
8621 that GDB could rely on that breakpoint instruction to stop the program,
8622 thus removing the need to insert its own breakpoint, except that executing
8623 the breakpoint instruction can kill the target instead of reporting a
8624 SIGTRAP. E.g., on SPARC, when interrupts are disabled, executing the
8625 instruction resets the CPU, so QEMU 2.0.0 for SPARC correspondingly dies
8626 with "Trap 0x02 while interrupts disabled, Error state". Letting the
8627 breakpoint be inserted normally results in QEMU knowing about the GDB
8628 breakpoint, and thus trap before the breakpoint instruction is executed.
8629 (If GDB later needs to continue execution past the permanent breakpoint,
8630 it manually increments the PC, thus avoiding executing the breakpoint
8631 instruction.) */
8632 if (bp_loc_is_permanent (loc))
8633 loc->permanent = 1;
8634
8635 return loc;
8636 }
8637 \f
8638
8639 /* See breakpoint.h. */
8640
8641 int
8642 program_breakpoint_here_p (struct gdbarch *gdbarch, CORE_ADDR address)
8643 {
8644 int len;
8645 CORE_ADDR addr;
8646 const gdb_byte *bpoint;
8647 gdb_byte *target_mem;
8648
8649 addr = address;
8650 bpoint = gdbarch_breakpoint_from_pc (gdbarch, &addr, &len);
8651
8652 /* Software breakpoints unsupported? */
8653 if (bpoint == NULL)
8654 return 0;
8655
8656 target_mem = (gdb_byte *) alloca (len);
8657
8658 /* Enable the automatic memory restoration from breakpoints while
8659 we read the memory. Otherwise we could say about our temporary
8660 breakpoints they are permanent. */
8661 scoped_restore restore_memory
8662 = make_scoped_restore_show_memory_breakpoints (0);
8663
8664 if (target_read_memory (address, target_mem, len) == 0
8665 && memcmp (target_mem, bpoint, len) == 0)
8666 return 1;
8667
8668 return 0;
8669 }
8670
8671 /* Return 1 if LOC is pointing to a permanent breakpoint,
8672 return 0 otherwise. */
8673
8674 static int
8675 bp_loc_is_permanent (struct bp_location *loc)
8676 {
8677 gdb_assert (loc != NULL);
8678
8679 /* If we have a catchpoint or a watchpoint, just return 0. We should not
8680 attempt to read from the addresses the locations of these breakpoint types
8681 point to. program_breakpoint_here_p, below, will attempt to read
8682 memory. */
8683 if (!breakpoint_address_is_meaningful (loc->owner))
8684 return 0;
8685
8686 scoped_restore_current_pspace_and_thread restore_pspace_thread;
8687 switch_to_program_space_and_thread (loc->pspace);
8688 return program_breakpoint_here_p (loc->gdbarch, loc->address);
8689 }
8690
8691 /* Build a command list for the dprintf corresponding to the current
8692 settings of the dprintf style options. */
8693
8694 static void
8695 update_dprintf_command_list (struct breakpoint *b)
8696 {
8697 char *dprintf_args = b->extra_string;
8698 char *printf_line = NULL;
8699
8700 if (!dprintf_args)
8701 return;
8702
8703 dprintf_args = skip_spaces (dprintf_args);
8704
8705 /* Allow a comma, as it may have terminated a location, but don't
8706 insist on it. */
8707 if (*dprintf_args == ',')
8708 ++dprintf_args;
8709 dprintf_args = skip_spaces (dprintf_args);
8710
8711 if (*dprintf_args != '"')
8712 error (_("Bad format string, missing '\"'."));
8713
8714 if (strcmp (dprintf_style, dprintf_style_gdb) == 0)
8715 printf_line = xstrprintf ("printf %s", dprintf_args);
8716 else if (strcmp (dprintf_style, dprintf_style_call) == 0)
8717 {
8718 if (!dprintf_function)
8719 error (_("No function supplied for dprintf call"));
8720
8721 if (dprintf_channel && strlen (dprintf_channel) > 0)
8722 printf_line = xstrprintf ("call (void) %s (%s,%s)",
8723 dprintf_function,
8724 dprintf_channel,
8725 dprintf_args);
8726 else
8727 printf_line = xstrprintf ("call (void) %s (%s)",
8728 dprintf_function,
8729 dprintf_args);
8730 }
8731 else if (strcmp (dprintf_style, dprintf_style_agent) == 0)
8732 {
8733 if (target_can_run_breakpoint_commands ())
8734 printf_line = xstrprintf ("agent-printf %s", dprintf_args);
8735 else
8736 {
8737 warning (_("Target cannot run dprintf commands, falling back to GDB printf"));
8738 printf_line = xstrprintf ("printf %s", dprintf_args);
8739 }
8740 }
8741 else
8742 internal_error (__FILE__, __LINE__,
8743 _("Invalid dprintf style."));
8744
8745 gdb_assert (printf_line != NULL);
8746
8747 /* Manufacture a printf sequence. */
8748 struct command_line *printf_cmd_line
8749 = new struct command_line (simple_control, printf_line);
8750 breakpoint_set_commands (b, counted_command_line (printf_cmd_line,
8751 command_lines_deleter ()));
8752 }
8753
8754 /* Update all dprintf commands, making their command lists reflect
8755 current style settings. */
8756
8757 static void
8758 update_dprintf_commands (const char *args, int from_tty,
8759 struct cmd_list_element *c)
8760 {
8761 struct breakpoint *b;
8762
8763 ALL_BREAKPOINTS (b)
8764 {
8765 if (b->type == bp_dprintf)
8766 update_dprintf_command_list (b);
8767 }
8768 }
8769
8770 /* Create a breakpoint with SAL as location. Use LOCATION
8771 as a description of the location, and COND_STRING
8772 as condition expression. If LOCATION is NULL then create an
8773 "address location" from the address in the SAL. */
8774
8775 static void
8776 init_breakpoint_sal (struct breakpoint *b, struct gdbarch *gdbarch,
8777 gdb::array_view<const symtab_and_line> sals,
8778 event_location_up &&location,
8779 gdb::unique_xmalloc_ptr<char> filter,
8780 gdb::unique_xmalloc_ptr<char> cond_string,
8781 gdb::unique_xmalloc_ptr<char> extra_string,
8782 enum bptype type, enum bpdisp disposition,
8783 int thread, int task, int ignore_count,
8784 const struct breakpoint_ops *ops, int from_tty,
8785 int enabled, int internal, unsigned flags,
8786 int display_canonical)
8787 {
8788 int i;
8789
8790 if (type == bp_hardware_breakpoint)
8791 {
8792 int target_resources_ok;
8793
8794 i = hw_breakpoint_used_count ();
8795 target_resources_ok =
8796 target_can_use_hardware_watchpoint (bp_hardware_breakpoint,
8797 i + 1, 0);
8798 if (target_resources_ok == 0)
8799 error (_("No hardware breakpoint support in the target."));
8800 else if (target_resources_ok < 0)
8801 error (_("Hardware breakpoints used exceeds limit."));
8802 }
8803
8804 gdb_assert (!sals.empty ());
8805
8806 for (const auto &sal : sals)
8807 {
8808 struct bp_location *loc;
8809
8810 if (from_tty)
8811 {
8812 struct gdbarch *loc_gdbarch = get_sal_arch (sal);
8813 if (!loc_gdbarch)
8814 loc_gdbarch = gdbarch;
8815
8816 describe_other_breakpoints (loc_gdbarch,
8817 sal.pspace, sal.pc, sal.section, thread);
8818 }
8819
8820 if (&sal == &sals[0])
8821 {
8822 init_raw_breakpoint (b, gdbarch, sal, type, ops);
8823 b->thread = thread;
8824 b->task = task;
8825
8826 b->cond_string = cond_string.release ();
8827 b->extra_string = extra_string.release ();
8828 b->ignore_count = ignore_count;
8829 b->enable_state = enabled ? bp_enabled : bp_disabled;
8830 b->disposition = disposition;
8831
8832 if ((flags & CREATE_BREAKPOINT_FLAGS_INSERTED) != 0)
8833 b->loc->inserted = 1;
8834
8835 if (type == bp_static_tracepoint)
8836 {
8837 struct tracepoint *t = (struct tracepoint *) b;
8838 struct static_tracepoint_marker marker;
8839
8840 if (strace_marker_p (b))
8841 {
8842 /* We already know the marker exists, otherwise, we
8843 wouldn't see a sal for it. */
8844 const char *p
8845 = &event_location_to_string (b->location.get ())[3];
8846 const char *endp;
8847
8848 p = skip_spaces (p);
8849
8850 endp = skip_to_space (p);
8851
8852 t->static_trace_marker_id.assign (p, endp - p);
8853
8854 printf_filtered (_("Probed static tracepoint "
8855 "marker \"%s\"\n"),
8856 t->static_trace_marker_id.c_str ());
8857 }
8858 else if (target_static_tracepoint_marker_at (sal.pc, &marker))
8859 {
8860 t->static_trace_marker_id = std::move (marker.str_id);
8861
8862 printf_filtered (_("Probed static tracepoint "
8863 "marker \"%s\"\n"),
8864 t->static_trace_marker_id.c_str ());
8865 }
8866 else
8867 warning (_("Couldn't determine the static "
8868 "tracepoint marker to probe"));
8869 }
8870
8871 loc = b->loc;
8872 }
8873 else
8874 {
8875 loc = add_location_to_breakpoint (b, &sal);
8876 if ((flags & CREATE_BREAKPOINT_FLAGS_INSERTED) != 0)
8877 loc->inserted = 1;
8878 }
8879
8880 if (b->cond_string)
8881 {
8882 const char *arg = b->cond_string;
8883
8884 loc->cond = parse_exp_1 (&arg, loc->address,
8885 block_for_pc (loc->address), 0);
8886 if (*arg)
8887 error (_("Garbage '%s' follows condition"), arg);
8888 }
8889
8890 /* Dynamic printf requires and uses additional arguments on the
8891 command line, otherwise it's an error. */
8892 if (type == bp_dprintf)
8893 {
8894 if (b->extra_string)
8895 update_dprintf_command_list (b);
8896 else
8897 error (_("Format string required"));
8898 }
8899 else if (b->extra_string)
8900 error (_("Garbage '%s' at end of command"), b->extra_string);
8901 }
8902
8903 b->display_canonical = display_canonical;
8904 if (location != NULL)
8905 b->location = std::move (location);
8906 else
8907 b->location = new_address_location (b->loc->address, NULL, 0);
8908 b->filter = filter.release ();
8909 }
8910
8911 static void
8912 create_breakpoint_sal (struct gdbarch *gdbarch,
8913 gdb::array_view<const symtab_and_line> sals,
8914 event_location_up &&location,
8915 gdb::unique_xmalloc_ptr<char> filter,
8916 gdb::unique_xmalloc_ptr<char> cond_string,
8917 gdb::unique_xmalloc_ptr<char> extra_string,
8918 enum bptype type, enum bpdisp disposition,
8919 int thread, int task, int ignore_count,
8920 const struct breakpoint_ops *ops, int from_tty,
8921 int enabled, int internal, unsigned flags,
8922 int display_canonical)
8923 {
8924 std::unique_ptr<breakpoint> b = new_breakpoint_from_type (type);
8925
8926 init_breakpoint_sal (b.get (), gdbarch,
8927 sals, std::move (location),
8928 std::move (filter),
8929 std::move (cond_string),
8930 std::move (extra_string),
8931 type, disposition,
8932 thread, task, ignore_count,
8933 ops, from_tty,
8934 enabled, internal, flags,
8935 display_canonical);
8936
8937 install_breakpoint (internal, std::move (b), 0);
8938 }
8939
8940 /* Add SALS.nelts breakpoints to the breakpoint table. For each
8941 SALS.sal[i] breakpoint, include the corresponding ADDR_STRING[i]
8942 value. COND_STRING, if not NULL, specified the condition to be
8943 used for all breakpoints. Essentially the only case where
8944 SALS.nelts is not 1 is when we set a breakpoint on an overloaded
8945 function. In that case, it's still not possible to specify
8946 separate conditions for different overloaded functions, so
8947 we take just a single condition string.
8948
8949 NOTE: If the function succeeds, the caller is expected to cleanup
8950 the arrays ADDR_STRING, COND_STRING, and SALS (but not the
8951 array contents). If the function fails (error() is called), the
8952 caller is expected to cleanups both the ADDR_STRING, COND_STRING,
8953 COND and SALS arrays and each of those arrays contents. */
8954
8955 static void
8956 create_breakpoints_sal (struct gdbarch *gdbarch,
8957 struct linespec_result *canonical,
8958 gdb::unique_xmalloc_ptr<char> cond_string,
8959 gdb::unique_xmalloc_ptr<char> extra_string,
8960 enum bptype type, enum bpdisp disposition,
8961 int thread, int task, int ignore_count,
8962 const struct breakpoint_ops *ops, int from_tty,
8963 int enabled, int internal, unsigned flags)
8964 {
8965 if (canonical->pre_expanded)
8966 gdb_assert (canonical->lsals.size () == 1);
8967
8968 for (const auto &lsal : canonical->lsals)
8969 {
8970 /* Note that 'location' can be NULL in the case of a plain
8971 'break', without arguments. */
8972 event_location_up location
8973 = (canonical->location != NULL
8974 ? copy_event_location (canonical->location.get ()) : NULL);
8975 gdb::unique_xmalloc_ptr<char> filter_string
8976 (lsal.canonical != NULL ? xstrdup (lsal.canonical) : NULL);
8977
8978 create_breakpoint_sal (gdbarch, lsal.sals,
8979 std::move (location),
8980 std::move (filter_string),
8981 std::move (cond_string),
8982 std::move (extra_string),
8983 type, disposition,
8984 thread, task, ignore_count, ops,
8985 from_tty, enabled, internal, flags,
8986 canonical->special_display);
8987 }
8988 }
8989
8990 /* Parse LOCATION which is assumed to be a SAL specification possibly
8991 followed by conditionals. On return, SALS contains an array of SAL
8992 addresses found. LOCATION points to the end of the SAL (for
8993 linespec locations).
8994
8995 The array and the line spec strings are allocated on the heap, it is
8996 the caller's responsibility to free them. */
8997
8998 static void
8999 parse_breakpoint_sals (const struct event_location *location,
9000 struct linespec_result *canonical)
9001 {
9002 struct symtab_and_line cursal;
9003
9004 if (event_location_type (location) == LINESPEC_LOCATION)
9005 {
9006 const char *spec = get_linespec_location (location)->spec_string;
9007
9008 if (spec == NULL)
9009 {
9010 /* The last displayed codepoint, if it's valid, is our default
9011 breakpoint address. */
9012 if (last_displayed_sal_is_valid ())
9013 {
9014 /* Set sal's pspace, pc, symtab, and line to the values
9015 corresponding to the last call to print_frame_info.
9016 Be sure to reinitialize LINE with NOTCURRENT == 0
9017 as the breakpoint line number is inappropriate otherwise.
9018 find_pc_line would adjust PC, re-set it back. */
9019 symtab_and_line sal = get_last_displayed_sal ();
9020 CORE_ADDR pc = sal.pc;
9021
9022 sal = find_pc_line (pc, 0);
9023
9024 /* "break" without arguments is equivalent to "break *PC"
9025 where PC is the last displayed codepoint's address. So
9026 make sure to set sal.explicit_pc to prevent GDB from
9027 trying to expand the list of sals to include all other
9028 instances with the same symtab and line. */
9029 sal.pc = pc;
9030 sal.explicit_pc = 1;
9031
9032 struct linespec_sals lsal;
9033 lsal.sals = {sal};
9034 lsal.canonical = NULL;
9035
9036 canonical->lsals.push_back (std::move (lsal));
9037 return;
9038 }
9039 else
9040 error (_("No default breakpoint address now."));
9041 }
9042 }
9043
9044 /* Force almost all breakpoints to be in terms of the
9045 current_source_symtab (which is decode_line_1's default).
9046 This should produce the results we want almost all of the
9047 time while leaving default_breakpoint_* alone.
9048
9049 ObjC: However, don't match an Objective-C method name which
9050 may have a '+' or '-' succeeded by a '['. */
9051 cursal = get_current_source_symtab_and_line ();
9052 if (last_displayed_sal_is_valid ())
9053 {
9054 const char *spec = NULL;
9055
9056 if (event_location_type (location) == LINESPEC_LOCATION)
9057 spec = get_linespec_location (location)->spec_string;
9058
9059 if (!cursal.symtab
9060 || (spec != NULL
9061 && strchr ("+-", spec[0]) != NULL
9062 && spec[1] != '['))
9063 {
9064 decode_line_full (location, DECODE_LINE_FUNFIRSTLINE, NULL,
9065 get_last_displayed_symtab (),
9066 get_last_displayed_line (),
9067 canonical, NULL, NULL);
9068 return;
9069 }
9070 }
9071
9072 decode_line_full (location, DECODE_LINE_FUNFIRSTLINE, NULL,
9073 cursal.symtab, cursal.line, canonical, NULL, NULL);
9074 }
9075
9076
9077 /* Convert each SAL into a real PC. Verify that the PC can be
9078 inserted as a breakpoint. If it can't throw an error. */
9079
9080 static void
9081 breakpoint_sals_to_pc (std::vector<symtab_and_line> &sals)
9082 {
9083 for (auto &sal : sals)
9084 resolve_sal_pc (&sal);
9085 }
9086
9087 /* Fast tracepoints may have restrictions on valid locations. For
9088 instance, a fast tracepoint using a jump instead of a trap will
9089 likely have to overwrite more bytes than a trap would, and so can
9090 only be placed where the instruction is longer than the jump, or a
9091 multi-instruction sequence does not have a jump into the middle of
9092 it, etc. */
9093
9094 static void
9095 check_fast_tracepoint_sals (struct gdbarch *gdbarch,
9096 gdb::array_view<const symtab_and_line> sals)
9097 {
9098 for (const auto &sal : sals)
9099 {
9100 struct gdbarch *sarch;
9101
9102 sarch = get_sal_arch (sal);
9103 /* We fall back to GDBARCH if there is no architecture
9104 associated with SAL. */
9105 if (sarch == NULL)
9106 sarch = gdbarch;
9107 std::string msg;
9108 if (!gdbarch_fast_tracepoint_valid_at (sarch, sal.pc, &msg))
9109 error (_("May not have a fast tracepoint at %s%s"),
9110 paddress (sarch, sal.pc), msg.c_str ());
9111 }
9112 }
9113
9114 /* Given TOK, a string specification of condition and thread, as
9115 accepted by the 'break' command, extract the condition
9116 string and thread number and set *COND_STRING and *THREAD.
9117 PC identifies the context at which the condition should be parsed.
9118 If no condition is found, *COND_STRING is set to NULL.
9119 If no thread is found, *THREAD is set to -1. */
9120
9121 static void
9122 find_condition_and_thread (const char *tok, CORE_ADDR pc,
9123 char **cond_string, int *thread, int *task,
9124 char **rest)
9125 {
9126 *cond_string = NULL;
9127 *thread = -1;
9128 *task = 0;
9129 *rest = NULL;
9130
9131 while (tok && *tok)
9132 {
9133 const char *end_tok;
9134 int toklen;
9135 const char *cond_start = NULL;
9136 const char *cond_end = NULL;
9137
9138 tok = skip_spaces (tok);
9139
9140 if ((*tok == '"' || *tok == ',') && rest)
9141 {
9142 *rest = savestring (tok, strlen (tok));
9143 return;
9144 }
9145
9146 end_tok = skip_to_space (tok);
9147
9148 toklen = end_tok - tok;
9149
9150 if (toklen >= 1 && strncmp (tok, "if", toklen) == 0)
9151 {
9152 tok = cond_start = end_tok + 1;
9153 parse_exp_1 (&tok, pc, block_for_pc (pc), 0);
9154 cond_end = tok;
9155 *cond_string = savestring (cond_start, cond_end - cond_start);
9156 }
9157 else if (toklen >= 1 && strncmp (tok, "thread", toklen) == 0)
9158 {
9159 const char *tmptok;
9160 struct thread_info *thr;
9161
9162 tok = end_tok + 1;
9163 thr = parse_thread_id (tok, &tmptok);
9164 if (tok == tmptok)
9165 error (_("Junk after thread keyword."));
9166 *thread = thr->global_num;
9167 tok = tmptok;
9168 }
9169 else if (toklen >= 1 && strncmp (tok, "task", toklen) == 0)
9170 {
9171 char *tmptok;
9172
9173 tok = end_tok + 1;
9174 *task = strtol (tok, &tmptok, 0);
9175 if (tok == tmptok)
9176 error (_("Junk after task keyword."));
9177 if (!valid_task_id (*task))
9178 error (_("Unknown task %d."), *task);
9179 tok = tmptok;
9180 }
9181 else if (rest)
9182 {
9183 *rest = savestring (tok, strlen (tok));
9184 return;
9185 }
9186 else
9187 error (_("Junk at end of arguments."));
9188 }
9189 }
9190
9191 /* Decode a static tracepoint marker spec. */
9192
9193 static std::vector<symtab_and_line>
9194 decode_static_tracepoint_spec (const char **arg_p)
9195 {
9196 const char *p = &(*arg_p)[3];
9197 const char *endp;
9198
9199 p = skip_spaces (p);
9200
9201 endp = skip_to_space (p);
9202
9203 std::string marker_str (p, endp - p);
9204
9205 std::vector<static_tracepoint_marker> markers
9206 = target_static_tracepoint_markers_by_strid (marker_str.c_str ());
9207 if (markers.empty ())
9208 error (_("No known static tracepoint marker named %s"),
9209 marker_str.c_str ());
9210
9211 std::vector<symtab_and_line> sals;
9212 sals.reserve (markers.size ());
9213
9214 for (const static_tracepoint_marker &marker : markers)
9215 {
9216 symtab_and_line sal = find_pc_line (marker.address, 0);
9217 sal.pc = marker.address;
9218 sals.push_back (sal);
9219 }
9220
9221 *arg_p = endp;
9222 return sals;
9223 }
9224
9225 /* See breakpoint.h. */
9226
9227 int
9228 create_breakpoint (struct gdbarch *gdbarch,
9229 const struct event_location *location,
9230 const char *cond_string,
9231 int thread, const char *extra_string,
9232 int parse_extra,
9233 int tempflag, enum bptype type_wanted,
9234 int ignore_count,
9235 enum auto_boolean pending_break_support,
9236 const struct breakpoint_ops *ops,
9237 int from_tty, int enabled, int internal,
9238 unsigned flags)
9239 {
9240 struct linespec_result canonical;
9241 struct cleanup *bkpt_chain = NULL;
9242 int pending = 0;
9243 int task = 0;
9244 int prev_bkpt_count = breakpoint_count;
9245
9246 gdb_assert (ops != NULL);
9247
9248 /* If extra_string isn't useful, set it to NULL. */
9249 if (extra_string != NULL && *extra_string == '\0')
9250 extra_string = NULL;
9251
9252 TRY
9253 {
9254 ops->create_sals_from_location (location, &canonical, type_wanted);
9255 }
9256 CATCH (e, RETURN_MASK_ERROR)
9257 {
9258 /* If caller is interested in rc value from parse, set
9259 value. */
9260 if (e.error == NOT_FOUND_ERROR)
9261 {
9262 /* If pending breakpoint support is turned off, throw
9263 error. */
9264
9265 if (pending_break_support == AUTO_BOOLEAN_FALSE)
9266 throw_exception (e);
9267
9268 exception_print (gdb_stderr, e);
9269
9270 /* If pending breakpoint support is auto query and the user
9271 selects no, then simply return the error code. */
9272 if (pending_break_support == AUTO_BOOLEAN_AUTO
9273 && !nquery (_("Make %s pending on future shared library load? "),
9274 bptype_string (type_wanted)))
9275 return 0;
9276
9277 /* At this point, either the user was queried about setting
9278 a pending breakpoint and selected yes, or pending
9279 breakpoint behavior is on and thus a pending breakpoint
9280 is defaulted on behalf of the user. */
9281 pending = 1;
9282 }
9283 else
9284 throw_exception (e);
9285 }
9286 END_CATCH
9287
9288 if (!pending && canonical.lsals.empty ())
9289 return 0;
9290
9291 /* ----------------------------- SNIP -----------------------------
9292 Anything added to the cleanup chain beyond this point is assumed
9293 to be part of a breakpoint. If the breakpoint create succeeds
9294 then the memory is not reclaimed. */
9295 bkpt_chain = make_cleanup (null_cleanup, 0);
9296
9297 /* Resolve all line numbers to PC's and verify that the addresses
9298 are ok for the target. */
9299 if (!pending)
9300 {
9301 for (auto &lsal : canonical.lsals)
9302 breakpoint_sals_to_pc (lsal.sals);
9303 }
9304
9305 /* Fast tracepoints may have additional restrictions on location. */
9306 if (!pending && type_wanted == bp_fast_tracepoint)
9307 {
9308 for (const auto &lsal : canonical.lsals)
9309 check_fast_tracepoint_sals (gdbarch, lsal.sals);
9310 }
9311
9312 /* Verify that condition can be parsed, before setting any
9313 breakpoints. Allocate a separate condition expression for each
9314 breakpoint. */
9315 if (!pending)
9316 {
9317 gdb::unique_xmalloc_ptr<char> cond_string_copy;
9318 gdb::unique_xmalloc_ptr<char> extra_string_copy;
9319
9320 if (parse_extra)
9321 {
9322 char *rest;
9323 char *cond;
9324
9325 const linespec_sals &lsal = canonical.lsals[0];
9326
9327 /* Here we only parse 'arg' to separate condition
9328 from thread number, so parsing in context of first
9329 sal is OK. When setting the breakpoint we'll
9330 re-parse it in context of each sal. */
9331
9332 find_condition_and_thread (extra_string, lsal.sals[0].pc,
9333 &cond, &thread, &task, &rest);
9334 cond_string_copy.reset (cond);
9335 extra_string_copy.reset (rest);
9336 }
9337 else
9338 {
9339 if (type_wanted != bp_dprintf
9340 && extra_string != NULL && *extra_string != '\0')
9341 error (_("Garbage '%s' at end of location"), extra_string);
9342
9343 /* Create a private copy of condition string. */
9344 if (cond_string)
9345 cond_string_copy.reset (xstrdup (cond_string));
9346 /* Create a private copy of any extra string. */
9347 if (extra_string)
9348 extra_string_copy.reset (xstrdup (extra_string));
9349 }
9350
9351 ops->create_breakpoints_sal (gdbarch, &canonical,
9352 std::move (cond_string_copy),
9353 std::move (extra_string_copy),
9354 type_wanted,
9355 tempflag ? disp_del : disp_donttouch,
9356 thread, task, ignore_count, ops,
9357 from_tty, enabled, internal, flags);
9358 }
9359 else
9360 {
9361 std::unique_ptr <breakpoint> b = new_breakpoint_from_type (type_wanted);
9362
9363 init_raw_breakpoint_without_location (b.get (), gdbarch, type_wanted, ops);
9364 b->location = copy_event_location (location);
9365
9366 if (parse_extra)
9367 b->cond_string = NULL;
9368 else
9369 {
9370 /* Create a private copy of condition string. */
9371 b->cond_string = cond_string != NULL ? xstrdup (cond_string) : NULL;
9372 b->thread = thread;
9373 }
9374
9375 /* Create a private copy of any extra string. */
9376 b->extra_string = extra_string != NULL ? xstrdup (extra_string) : NULL;
9377 b->ignore_count = ignore_count;
9378 b->disposition = tempflag ? disp_del : disp_donttouch;
9379 b->condition_not_parsed = 1;
9380 b->enable_state = enabled ? bp_enabled : bp_disabled;
9381 if ((type_wanted != bp_breakpoint
9382 && type_wanted != bp_hardware_breakpoint) || thread != -1)
9383 b->pspace = current_program_space;
9384
9385 install_breakpoint (internal, std::move (b), 0);
9386 }
9387
9388 if (canonical.lsals.size () > 1)
9389 {
9390 warning (_("Multiple breakpoints were set.\nUse the "
9391 "\"delete\" command to delete unwanted breakpoints."));
9392 prev_breakpoint_count = prev_bkpt_count;
9393 }
9394
9395 /* That's it. Discard the cleanups for data inserted into the
9396 breakpoint. */
9397 discard_cleanups (bkpt_chain);
9398
9399 /* error call may happen here - have BKPT_CHAIN already discarded. */
9400 update_global_location_list (UGLL_MAY_INSERT);
9401
9402 return 1;
9403 }
9404
9405 /* Set a breakpoint.
9406 ARG is a string describing breakpoint address,
9407 condition, and thread.
9408 FLAG specifies if a breakpoint is hardware on,
9409 and if breakpoint is temporary, using BP_HARDWARE_FLAG
9410 and BP_TEMPFLAG. */
9411
9412 static void
9413 break_command_1 (const char *arg, int flag, int from_tty)
9414 {
9415 int tempflag = flag & BP_TEMPFLAG;
9416 enum bptype type_wanted = (flag & BP_HARDWAREFLAG
9417 ? bp_hardware_breakpoint
9418 : bp_breakpoint);
9419 struct breakpoint_ops *ops;
9420
9421 event_location_up location = string_to_event_location (&arg, current_language);
9422
9423 /* Matching breakpoints on probes. */
9424 if (location != NULL
9425 && event_location_type (location.get ()) == PROBE_LOCATION)
9426 ops = &bkpt_probe_breakpoint_ops;
9427 else
9428 ops = &bkpt_breakpoint_ops;
9429
9430 create_breakpoint (get_current_arch (),
9431 location.get (),
9432 NULL, 0, arg, 1 /* parse arg */,
9433 tempflag, type_wanted,
9434 0 /* Ignore count */,
9435 pending_break_support,
9436 ops,
9437 from_tty,
9438 1 /* enabled */,
9439 0 /* internal */,
9440 0);
9441 }
9442
9443 /* Helper function for break_command_1 and disassemble_command. */
9444
9445 void
9446 resolve_sal_pc (struct symtab_and_line *sal)
9447 {
9448 CORE_ADDR pc;
9449
9450 if (sal->pc == 0 && sal->symtab != NULL)
9451 {
9452 if (!find_line_pc (sal->symtab, sal->line, &pc))
9453 error (_("No line %d in file \"%s\"."),
9454 sal->line, symtab_to_filename_for_display (sal->symtab));
9455 sal->pc = pc;
9456
9457 /* If this SAL corresponds to a breakpoint inserted using a line
9458 number, then skip the function prologue if necessary. */
9459 if (sal->explicit_line)
9460 skip_prologue_sal (sal);
9461 }
9462
9463 if (sal->section == 0 && sal->symtab != NULL)
9464 {
9465 const struct blockvector *bv;
9466 const struct block *b;
9467 struct symbol *sym;
9468
9469 bv = blockvector_for_pc_sect (sal->pc, 0, &b,
9470 SYMTAB_COMPUNIT (sal->symtab));
9471 if (bv != NULL)
9472 {
9473 sym = block_linkage_function (b);
9474 if (sym != NULL)
9475 {
9476 fixup_symbol_section (sym, SYMTAB_OBJFILE (sal->symtab));
9477 sal->section = SYMBOL_OBJ_SECTION (SYMTAB_OBJFILE (sal->symtab),
9478 sym);
9479 }
9480 else
9481 {
9482 /* It really is worthwhile to have the section, so we'll
9483 just have to look harder. This case can be executed
9484 if we have line numbers but no functions (as can
9485 happen in assembly source). */
9486
9487 scoped_restore_current_pspace_and_thread restore_pspace_thread;
9488 switch_to_program_space_and_thread (sal->pspace);
9489
9490 bound_minimal_symbol msym = lookup_minimal_symbol_by_pc (sal->pc);
9491 if (msym.minsym)
9492 sal->section = MSYMBOL_OBJ_SECTION (msym.objfile, msym.minsym);
9493 }
9494 }
9495 }
9496 }
9497
9498 void
9499 break_command (const char *arg, int from_tty)
9500 {
9501 break_command_1 (arg, 0, from_tty);
9502 }
9503
9504 void
9505 tbreak_command (const char *arg, int from_tty)
9506 {
9507 break_command_1 (arg, BP_TEMPFLAG, from_tty);
9508 }
9509
9510 static void
9511 hbreak_command (const char *arg, int from_tty)
9512 {
9513 break_command_1 (arg, BP_HARDWAREFLAG, from_tty);
9514 }
9515
9516 static void
9517 thbreak_command (const char *arg, int from_tty)
9518 {
9519 break_command_1 (arg, (BP_TEMPFLAG | BP_HARDWAREFLAG), from_tty);
9520 }
9521
9522 static void
9523 stop_command (const char *arg, int from_tty)
9524 {
9525 printf_filtered (_("Specify the type of breakpoint to set.\n\
9526 Usage: stop in <function | address>\n\
9527 stop at <line>\n"));
9528 }
9529
9530 static void
9531 stopin_command (const char *arg, int from_tty)
9532 {
9533 int badInput = 0;
9534
9535 if (arg == (char *) NULL)
9536 badInput = 1;
9537 else if (*arg != '*')
9538 {
9539 const char *argptr = arg;
9540 int hasColon = 0;
9541
9542 /* Look for a ':'. If this is a line number specification, then
9543 say it is bad, otherwise, it should be an address or
9544 function/method name. */
9545 while (*argptr && !hasColon)
9546 {
9547 hasColon = (*argptr == ':');
9548 argptr++;
9549 }
9550
9551 if (hasColon)
9552 badInput = (*argptr != ':'); /* Not a class::method */
9553 else
9554 badInput = isdigit (*arg); /* a simple line number */
9555 }
9556
9557 if (badInput)
9558 printf_filtered (_("Usage: stop in <function | address>\n"));
9559 else
9560 break_command_1 (arg, 0, from_tty);
9561 }
9562
9563 static void
9564 stopat_command (const char *arg, int from_tty)
9565 {
9566 int badInput = 0;
9567
9568 if (arg == (char *) NULL || *arg == '*') /* no line number */
9569 badInput = 1;
9570 else
9571 {
9572 const char *argptr = arg;
9573 int hasColon = 0;
9574
9575 /* Look for a ':'. If there is a '::' then get out, otherwise
9576 it is probably a line number. */
9577 while (*argptr && !hasColon)
9578 {
9579 hasColon = (*argptr == ':');
9580 argptr++;
9581 }
9582
9583 if (hasColon)
9584 badInput = (*argptr == ':'); /* we have class::method */
9585 else
9586 badInput = !isdigit (*arg); /* not a line number */
9587 }
9588
9589 if (badInput)
9590 printf_filtered (_("Usage: stop at LINE\n"));
9591 else
9592 break_command_1 (arg, 0, from_tty);
9593 }
9594
9595 /* The dynamic printf command is mostly like a regular breakpoint, but
9596 with a prewired command list consisting of a single output command,
9597 built from extra arguments supplied on the dprintf command
9598 line. */
9599
9600 static void
9601 dprintf_command (const char *arg, int from_tty)
9602 {
9603 event_location_up location = string_to_event_location (&arg, current_language);
9604
9605 /* If non-NULL, ARG should have been advanced past the location;
9606 the next character must be ','. */
9607 if (arg != NULL)
9608 {
9609 if (arg[0] != ',' || arg[1] == '\0')
9610 error (_("Format string required"));
9611 else
9612 {
9613 /* Skip the comma. */
9614 ++arg;
9615 }
9616 }
9617
9618 create_breakpoint (get_current_arch (),
9619 location.get (),
9620 NULL, 0, arg, 1 /* parse arg */,
9621 0, bp_dprintf,
9622 0 /* Ignore count */,
9623 pending_break_support,
9624 &dprintf_breakpoint_ops,
9625 from_tty,
9626 1 /* enabled */,
9627 0 /* internal */,
9628 0);
9629 }
9630
9631 static void
9632 agent_printf_command (const char *arg, int from_tty)
9633 {
9634 error (_("May only run agent-printf on the target"));
9635 }
9636
9637 /* Implement the "breakpoint_hit" breakpoint_ops method for
9638 ranged breakpoints. */
9639
9640 static int
9641 breakpoint_hit_ranged_breakpoint (const struct bp_location *bl,
9642 const address_space *aspace,
9643 CORE_ADDR bp_addr,
9644 const struct target_waitstatus *ws)
9645 {
9646 if (ws->kind != TARGET_WAITKIND_STOPPED
9647 || ws->value.sig != GDB_SIGNAL_TRAP)
9648 return 0;
9649
9650 return breakpoint_address_match_range (bl->pspace->aspace, bl->address,
9651 bl->length, aspace, bp_addr);
9652 }
9653
9654 /* Implement the "resources_needed" breakpoint_ops method for
9655 ranged breakpoints. */
9656
9657 static int
9658 resources_needed_ranged_breakpoint (const struct bp_location *bl)
9659 {
9660 return target_ranged_break_num_registers ();
9661 }
9662
9663 /* Implement the "print_it" breakpoint_ops method for
9664 ranged breakpoints. */
9665
9666 static enum print_stop_action
9667 print_it_ranged_breakpoint (bpstat bs)
9668 {
9669 struct breakpoint *b = bs->breakpoint_at;
9670 struct bp_location *bl = b->loc;
9671 struct ui_out *uiout = current_uiout;
9672
9673 gdb_assert (b->type == bp_hardware_breakpoint);
9674
9675 /* Ranged breakpoints have only one location. */
9676 gdb_assert (bl && bl->next == NULL);
9677
9678 annotate_breakpoint (b->number);
9679
9680 maybe_print_thread_hit_breakpoint (uiout);
9681
9682 if (b->disposition == disp_del)
9683 uiout->text ("Temporary ranged breakpoint ");
9684 else
9685 uiout->text ("Ranged breakpoint ");
9686 if (uiout->is_mi_like_p ())
9687 {
9688 uiout->field_string ("reason",
9689 async_reason_lookup (EXEC_ASYNC_BREAKPOINT_HIT));
9690 uiout->field_string ("disp", bpdisp_text (b->disposition));
9691 }
9692 uiout->field_int ("bkptno", b->number);
9693 uiout->text (", ");
9694
9695 return PRINT_SRC_AND_LOC;
9696 }
9697
9698 /* Implement the "print_one" breakpoint_ops method for
9699 ranged breakpoints. */
9700
9701 static void
9702 print_one_ranged_breakpoint (struct breakpoint *b,
9703 struct bp_location **last_loc)
9704 {
9705 struct bp_location *bl = b->loc;
9706 struct value_print_options opts;
9707 struct ui_out *uiout = current_uiout;
9708
9709 /* Ranged breakpoints have only one location. */
9710 gdb_assert (bl && bl->next == NULL);
9711
9712 get_user_print_options (&opts);
9713
9714 if (opts.addressprint)
9715 /* We don't print the address range here, it will be printed later
9716 by print_one_detail_ranged_breakpoint. */
9717 uiout->field_skip ("addr");
9718 annotate_field (5);
9719 print_breakpoint_location (b, bl);
9720 *last_loc = bl;
9721 }
9722
9723 /* Implement the "print_one_detail" breakpoint_ops method for
9724 ranged breakpoints. */
9725
9726 static void
9727 print_one_detail_ranged_breakpoint (const struct breakpoint *b,
9728 struct ui_out *uiout)
9729 {
9730 CORE_ADDR address_start, address_end;
9731 struct bp_location *bl = b->loc;
9732 string_file stb;
9733
9734 gdb_assert (bl);
9735
9736 address_start = bl->address;
9737 address_end = address_start + bl->length - 1;
9738
9739 uiout->text ("\taddress range: ");
9740 stb.printf ("[%s, %s]",
9741 print_core_address (bl->gdbarch, address_start),
9742 print_core_address (bl->gdbarch, address_end));
9743 uiout->field_stream ("addr", stb);
9744 uiout->text ("\n");
9745 }
9746
9747 /* Implement the "print_mention" breakpoint_ops method for
9748 ranged breakpoints. */
9749
9750 static void
9751 print_mention_ranged_breakpoint (struct breakpoint *b)
9752 {
9753 struct bp_location *bl = b->loc;
9754 struct ui_out *uiout = current_uiout;
9755
9756 gdb_assert (bl);
9757 gdb_assert (b->type == bp_hardware_breakpoint);
9758
9759 uiout->message (_("Hardware assisted ranged breakpoint %d from %s to %s."),
9760 b->number, paddress (bl->gdbarch, bl->address),
9761 paddress (bl->gdbarch, bl->address + bl->length - 1));
9762 }
9763
9764 /* Implement the "print_recreate" breakpoint_ops method for
9765 ranged breakpoints. */
9766
9767 static void
9768 print_recreate_ranged_breakpoint (struct breakpoint *b, struct ui_file *fp)
9769 {
9770 fprintf_unfiltered (fp, "break-range %s, %s",
9771 event_location_to_string (b->location.get ()),
9772 event_location_to_string (b->location_range_end.get ()));
9773 print_recreate_thread (b, fp);
9774 }
9775
9776 /* The breakpoint_ops structure to be used in ranged breakpoints. */
9777
9778 static struct breakpoint_ops ranged_breakpoint_ops;
9779
9780 /* Find the address where the end of the breakpoint range should be
9781 placed, given the SAL of the end of the range. This is so that if
9782 the user provides a line number, the end of the range is set to the
9783 last instruction of the given line. */
9784
9785 static CORE_ADDR
9786 find_breakpoint_range_end (struct symtab_and_line sal)
9787 {
9788 CORE_ADDR end;
9789
9790 /* If the user provided a PC value, use it. Otherwise,
9791 find the address of the end of the given location. */
9792 if (sal.explicit_pc)
9793 end = sal.pc;
9794 else
9795 {
9796 int ret;
9797 CORE_ADDR start;
9798
9799 ret = find_line_pc_range (sal, &start, &end);
9800 if (!ret)
9801 error (_("Could not find location of the end of the range."));
9802
9803 /* find_line_pc_range returns the start of the next line. */
9804 end--;
9805 }
9806
9807 return end;
9808 }
9809
9810 /* Implement the "break-range" CLI command. */
9811
9812 static void
9813 break_range_command (const char *arg, int from_tty)
9814 {
9815 const char *arg_start;
9816 struct linespec_result canonical_start, canonical_end;
9817 int bp_count, can_use_bp, length;
9818 CORE_ADDR end;
9819 struct breakpoint *b;
9820
9821 /* We don't support software ranged breakpoints. */
9822 if (target_ranged_break_num_registers () < 0)
9823 error (_("This target does not support hardware ranged breakpoints."));
9824
9825 bp_count = hw_breakpoint_used_count ();
9826 bp_count += target_ranged_break_num_registers ();
9827 can_use_bp = target_can_use_hardware_watchpoint (bp_hardware_breakpoint,
9828 bp_count, 0);
9829 if (can_use_bp < 0)
9830 error (_("Hardware breakpoints used exceeds limit."));
9831
9832 arg = skip_spaces (arg);
9833 if (arg == NULL || arg[0] == '\0')
9834 error(_("No address range specified."));
9835
9836 arg_start = arg;
9837 event_location_up start_location = string_to_event_location (&arg,
9838 current_language);
9839 parse_breakpoint_sals (start_location.get (), &canonical_start);
9840
9841 if (arg[0] != ',')
9842 error (_("Too few arguments."));
9843 else if (canonical_start.lsals.empty ())
9844 error (_("Could not find location of the beginning of the range."));
9845
9846 const linespec_sals &lsal_start = canonical_start.lsals[0];
9847
9848 if (canonical_start.lsals.size () > 1
9849 || lsal_start.sals.size () != 1)
9850 error (_("Cannot create a ranged breakpoint with multiple locations."));
9851
9852 const symtab_and_line &sal_start = lsal_start.sals[0];
9853 std::string addr_string_start (arg_start, arg - arg_start);
9854
9855 arg++; /* Skip the comma. */
9856 arg = skip_spaces (arg);
9857
9858 /* Parse the end location. */
9859
9860 arg_start = arg;
9861
9862 /* We call decode_line_full directly here instead of using
9863 parse_breakpoint_sals because we need to specify the start location's
9864 symtab and line as the default symtab and line for the end of the
9865 range. This makes it possible to have ranges like "foo.c:27, +14",
9866 where +14 means 14 lines from the start location. */
9867 event_location_up end_location = string_to_event_location (&arg,
9868 current_language);
9869 decode_line_full (end_location.get (), DECODE_LINE_FUNFIRSTLINE, NULL,
9870 sal_start.symtab, sal_start.line,
9871 &canonical_end, NULL, NULL);
9872
9873 if (canonical_end.lsals.empty ())
9874 error (_("Could not find location of the end of the range."));
9875
9876 const linespec_sals &lsal_end = canonical_end.lsals[0];
9877 if (canonical_end.lsals.size () > 1
9878 || lsal_end.sals.size () != 1)
9879 error (_("Cannot create a ranged breakpoint with multiple locations."));
9880
9881 const symtab_and_line &sal_end = lsal_end.sals[0];
9882
9883 end = find_breakpoint_range_end (sal_end);
9884 if (sal_start.pc > end)
9885 error (_("Invalid address range, end precedes start."));
9886
9887 length = end - sal_start.pc + 1;
9888 if (length < 0)
9889 /* Length overflowed. */
9890 error (_("Address range too large."));
9891 else if (length == 1)
9892 {
9893 /* This range is simple enough to be handled by
9894 the `hbreak' command. */
9895 hbreak_command (&addr_string_start[0], 1);
9896
9897 return;
9898 }
9899
9900 /* Now set up the breakpoint. */
9901 b = set_raw_breakpoint (get_current_arch (), sal_start,
9902 bp_hardware_breakpoint, &ranged_breakpoint_ops);
9903 set_breakpoint_count (breakpoint_count + 1);
9904 b->number = breakpoint_count;
9905 b->disposition = disp_donttouch;
9906 b->location = std::move (start_location);
9907 b->location_range_end = std::move (end_location);
9908 b->loc->length = length;
9909
9910 mention (b);
9911 gdb::observers::breakpoint_created.notify (b);
9912 update_global_location_list (UGLL_MAY_INSERT);
9913 }
9914
9915 /* Return non-zero if EXP is verified as constant. Returned zero
9916 means EXP is variable. Also the constant detection may fail for
9917 some constant expressions and in such case still falsely return
9918 zero. */
9919
9920 static int
9921 watchpoint_exp_is_const (const struct expression *exp)
9922 {
9923 int i = exp->nelts;
9924
9925 while (i > 0)
9926 {
9927 int oplenp, argsp;
9928
9929 /* We are only interested in the descriptor of each element. */
9930 operator_length (exp, i, &oplenp, &argsp);
9931 i -= oplenp;
9932
9933 switch (exp->elts[i].opcode)
9934 {
9935 case BINOP_ADD:
9936 case BINOP_SUB:
9937 case BINOP_MUL:
9938 case BINOP_DIV:
9939 case BINOP_REM:
9940 case BINOP_MOD:
9941 case BINOP_LSH:
9942 case BINOP_RSH:
9943 case BINOP_LOGICAL_AND:
9944 case BINOP_LOGICAL_OR:
9945 case BINOP_BITWISE_AND:
9946 case BINOP_BITWISE_IOR:
9947 case BINOP_BITWISE_XOR:
9948 case BINOP_EQUAL:
9949 case BINOP_NOTEQUAL:
9950 case BINOP_LESS:
9951 case BINOP_GTR:
9952 case BINOP_LEQ:
9953 case BINOP_GEQ:
9954 case BINOP_REPEAT:
9955 case BINOP_COMMA:
9956 case BINOP_EXP:
9957 case BINOP_MIN:
9958 case BINOP_MAX:
9959 case BINOP_INTDIV:
9960 case BINOP_CONCAT:
9961 case TERNOP_COND:
9962 case TERNOP_SLICE:
9963
9964 case OP_LONG:
9965 case OP_FLOAT:
9966 case OP_LAST:
9967 case OP_COMPLEX:
9968 case OP_STRING:
9969 case OP_ARRAY:
9970 case OP_TYPE:
9971 case OP_TYPEOF:
9972 case OP_DECLTYPE:
9973 case OP_TYPEID:
9974 case OP_NAME:
9975 case OP_OBJC_NSSTRING:
9976
9977 case UNOP_NEG:
9978 case UNOP_LOGICAL_NOT:
9979 case UNOP_COMPLEMENT:
9980 case UNOP_ADDR:
9981 case UNOP_HIGH:
9982 case UNOP_CAST:
9983
9984 case UNOP_CAST_TYPE:
9985 case UNOP_REINTERPRET_CAST:
9986 case UNOP_DYNAMIC_CAST:
9987 /* Unary, binary and ternary operators: We have to check
9988 their operands. If they are constant, then so is the
9989 result of that operation. For instance, if A and B are
9990 determined to be constants, then so is "A + B".
9991
9992 UNOP_IND is one exception to the rule above, because the
9993 value of *ADDR is not necessarily a constant, even when
9994 ADDR is. */
9995 break;
9996
9997 case OP_VAR_VALUE:
9998 /* Check whether the associated symbol is a constant.
9999
10000 We use SYMBOL_CLASS rather than TYPE_CONST because it's
10001 possible that a buggy compiler could mark a variable as
10002 constant even when it is not, and TYPE_CONST would return
10003 true in this case, while SYMBOL_CLASS wouldn't.
10004
10005 We also have to check for function symbols because they
10006 are always constant. */
10007 {
10008 struct symbol *s = exp->elts[i + 2].symbol;
10009
10010 if (SYMBOL_CLASS (s) != LOC_BLOCK
10011 && SYMBOL_CLASS (s) != LOC_CONST
10012 && SYMBOL_CLASS (s) != LOC_CONST_BYTES)
10013 return 0;
10014 break;
10015 }
10016
10017 /* The default action is to return 0 because we are using
10018 the optimistic approach here: If we don't know something,
10019 then it is not a constant. */
10020 default:
10021 return 0;
10022 }
10023 }
10024
10025 return 1;
10026 }
10027
10028 /* Watchpoint destructor. */
10029
10030 watchpoint::~watchpoint ()
10031 {
10032 xfree (this->exp_string);
10033 xfree (this->exp_string_reparse);
10034 }
10035
10036 /* Implement the "re_set" breakpoint_ops method for watchpoints. */
10037
10038 static void
10039 re_set_watchpoint (struct breakpoint *b)
10040 {
10041 struct watchpoint *w = (struct watchpoint *) b;
10042
10043 /* Watchpoint can be either on expression using entirely global
10044 variables, or it can be on local variables.
10045
10046 Watchpoints of the first kind are never auto-deleted, and even
10047 persist across program restarts. Since they can use variables
10048 from shared libraries, we need to reparse expression as libraries
10049 are loaded and unloaded.
10050
10051 Watchpoints on local variables can also change meaning as result
10052 of solib event. For example, if a watchpoint uses both a local
10053 and a global variables in expression, it's a local watchpoint,
10054 but unloading of a shared library will make the expression
10055 invalid. This is not a very common use case, but we still
10056 re-evaluate expression, to avoid surprises to the user.
10057
10058 Note that for local watchpoints, we re-evaluate it only if
10059 watchpoints frame id is still valid. If it's not, it means the
10060 watchpoint is out of scope and will be deleted soon. In fact,
10061 I'm not sure we'll ever be called in this case.
10062
10063 If a local watchpoint's frame id is still valid, then
10064 w->exp_valid_block is likewise valid, and we can safely use it.
10065
10066 Don't do anything about disabled watchpoints, since they will be
10067 reevaluated again when enabled. */
10068 update_watchpoint (w, 1 /* reparse */);
10069 }
10070
10071 /* Implement the "insert" breakpoint_ops method for hardware watchpoints. */
10072
10073 static int
10074 insert_watchpoint (struct bp_location *bl)
10075 {
10076 struct watchpoint *w = (struct watchpoint *) bl->owner;
10077 int length = w->exact ? 1 : bl->length;
10078
10079 return target_insert_watchpoint (bl->address, length, bl->watchpoint_type,
10080 w->cond_exp.get ());
10081 }
10082
10083 /* Implement the "remove" breakpoint_ops method for hardware watchpoints. */
10084
10085 static int
10086 remove_watchpoint (struct bp_location *bl, enum remove_bp_reason reason)
10087 {
10088 struct watchpoint *w = (struct watchpoint *) bl->owner;
10089 int length = w->exact ? 1 : bl->length;
10090
10091 return target_remove_watchpoint (bl->address, length, bl->watchpoint_type,
10092 w->cond_exp.get ());
10093 }
10094
10095 static int
10096 breakpoint_hit_watchpoint (const struct bp_location *bl,
10097 const address_space *aspace, CORE_ADDR bp_addr,
10098 const struct target_waitstatus *ws)
10099 {
10100 struct breakpoint *b = bl->owner;
10101 struct watchpoint *w = (struct watchpoint *) b;
10102
10103 /* Continuable hardware watchpoints are treated as non-existent if the
10104 reason we stopped wasn't a hardware watchpoint (we didn't stop on
10105 some data address). Otherwise gdb won't stop on a break instruction
10106 in the code (not from a breakpoint) when a hardware watchpoint has
10107 been defined. Also skip watchpoints which we know did not trigger
10108 (did not match the data address). */
10109 if (is_hardware_watchpoint (b)
10110 && w->watchpoint_triggered == watch_triggered_no)
10111 return 0;
10112
10113 return 1;
10114 }
10115
10116 static void
10117 check_status_watchpoint (bpstat bs)
10118 {
10119 gdb_assert (is_watchpoint (bs->breakpoint_at));
10120
10121 bpstat_check_watchpoint (bs);
10122 }
10123
10124 /* Implement the "resources_needed" breakpoint_ops method for
10125 hardware watchpoints. */
10126
10127 static int
10128 resources_needed_watchpoint (const struct bp_location *bl)
10129 {
10130 struct watchpoint *w = (struct watchpoint *) bl->owner;
10131 int length = w->exact? 1 : bl->length;
10132
10133 return target_region_ok_for_hw_watchpoint (bl->address, length);
10134 }
10135
10136 /* Implement the "works_in_software_mode" breakpoint_ops method for
10137 hardware watchpoints. */
10138
10139 static int
10140 works_in_software_mode_watchpoint (const struct breakpoint *b)
10141 {
10142 /* Read and access watchpoints only work with hardware support. */
10143 return b->type == bp_watchpoint || b->type == bp_hardware_watchpoint;
10144 }
10145
10146 static enum print_stop_action
10147 print_it_watchpoint (bpstat bs)
10148 {
10149 struct breakpoint *b;
10150 enum print_stop_action result;
10151 struct watchpoint *w;
10152 struct ui_out *uiout = current_uiout;
10153
10154 gdb_assert (bs->bp_location_at != NULL);
10155
10156 b = bs->breakpoint_at;
10157 w = (struct watchpoint *) b;
10158
10159 annotate_watchpoint (b->number);
10160 maybe_print_thread_hit_breakpoint (uiout);
10161
10162 string_file stb;
10163
10164 gdb::optional<ui_out_emit_tuple> tuple_emitter;
10165 switch (b->type)
10166 {
10167 case bp_watchpoint:
10168 case bp_hardware_watchpoint:
10169 if (uiout->is_mi_like_p ())
10170 uiout->field_string
10171 ("reason", async_reason_lookup (EXEC_ASYNC_WATCHPOINT_TRIGGER));
10172 mention (b);
10173 tuple_emitter.emplace (uiout, "value");
10174 uiout->text ("\nOld value = ");
10175 watchpoint_value_print (bs->old_val.get (), &stb);
10176 uiout->field_stream ("old", stb);
10177 uiout->text ("\nNew value = ");
10178 watchpoint_value_print (w->val.get (), &stb);
10179 uiout->field_stream ("new", stb);
10180 uiout->text ("\n");
10181 /* More than one watchpoint may have been triggered. */
10182 result = PRINT_UNKNOWN;
10183 break;
10184
10185 case bp_read_watchpoint:
10186 if (uiout->is_mi_like_p ())
10187 uiout->field_string
10188 ("reason", async_reason_lookup (EXEC_ASYNC_READ_WATCHPOINT_TRIGGER));
10189 mention (b);
10190 tuple_emitter.emplace (uiout, "value");
10191 uiout->text ("\nValue = ");
10192 watchpoint_value_print (w->val.get (), &stb);
10193 uiout->field_stream ("value", stb);
10194 uiout->text ("\n");
10195 result = PRINT_UNKNOWN;
10196 break;
10197
10198 case bp_access_watchpoint:
10199 if (bs->old_val != NULL)
10200 {
10201 if (uiout->is_mi_like_p ())
10202 uiout->field_string
10203 ("reason",
10204 async_reason_lookup (EXEC_ASYNC_ACCESS_WATCHPOINT_TRIGGER));
10205 mention (b);
10206 tuple_emitter.emplace (uiout, "value");
10207 uiout->text ("\nOld value = ");
10208 watchpoint_value_print (bs->old_val.get (), &stb);
10209 uiout->field_stream ("old", stb);
10210 uiout->text ("\nNew value = ");
10211 }
10212 else
10213 {
10214 mention (b);
10215 if (uiout->is_mi_like_p ())
10216 uiout->field_string
10217 ("reason",
10218 async_reason_lookup (EXEC_ASYNC_ACCESS_WATCHPOINT_TRIGGER));
10219 tuple_emitter.emplace (uiout, "value");
10220 uiout->text ("\nValue = ");
10221 }
10222 watchpoint_value_print (w->val.get (), &stb);
10223 uiout->field_stream ("new", stb);
10224 uiout->text ("\n");
10225 result = PRINT_UNKNOWN;
10226 break;
10227 default:
10228 result = PRINT_UNKNOWN;
10229 }
10230
10231 return result;
10232 }
10233
10234 /* Implement the "print_mention" breakpoint_ops method for hardware
10235 watchpoints. */
10236
10237 static void
10238 print_mention_watchpoint (struct breakpoint *b)
10239 {
10240 struct watchpoint *w = (struct watchpoint *) b;
10241 struct ui_out *uiout = current_uiout;
10242 const char *tuple_name;
10243
10244 switch (b->type)
10245 {
10246 case bp_watchpoint:
10247 uiout->text ("Watchpoint ");
10248 tuple_name = "wpt";
10249 break;
10250 case bp_hardware_watchpoint:
10251 uiout->text ("Hardware watchpoint ");
10252 tuple_name = "wpt";
10253 break;
10254 case bp_read_watchpoint:
10255 uiout->text ("Hardware read watchpoint ");
10256 tuple_name = "hw-rwpt";
10257 break;
10258 case bp_access_watchpoint:
10259 uiout->text ("Hardware access (read/write) watchpoint ");
10260 tuple_name = "hw-awpt";
10261 break;
10262 default:
10263 internal_error (__FILE__, __LINE__,
10264 _("Invalid hardware watchpoint type."));
10265 }
10266
10267 ui_out_emit_tuple tuple_emitter (uiout, tuple_name);
10268 uiout->field_int ("number", b->number);
10269 uiout->text (": ");
10270 uiout->field_string ("exp", w->exp_string);
10271 }
10272
10273 /* Implement the "print_recreate" breakpoint_ops method for
10274 watchpoints. */
10275
10276 static void
10277 print_recreate_watchpoint (struct breakpoint *b, struct ui_file *fp)
10278 {
10279 struct watchpoint *w = (struct watchpoint *) b;
10280
10281 switch (b->type)
10282 {
10283 case bp_watchpoint:
10284 case bp_hardware_watchpoint:
10285 fprintf_unfiltered (fp, "watch");
10286 break;
10287 case bp_read_watchpoint:
10288 fprintf_unfiltered (fp, "rwatch");
10289 break;
10290 case bp_access_watchpoint:
10291 fprintf_unfiltered (fp, "awatch");
10292 break;
10293 default:
10294 internal_error (__FILE__, __LINE__,
10295 _("Invalid watchpoint type."));
10296 }
10297
10298 fprintf_unfiltered (fp, " %s", w->exp_string);
10299 print_recreate_thread (b, fp);
10300 }
10301
10302 /* Implement the "explains_signal" breakpoint_ops method for
10303 watchpoints. */
10304
10305 static int
10306 explains_signal_watchpoint (struct breakpoint *b, enum gdb_signal sig)
10307 {
10308 /* A software watchpoint cannot cause a signal other than
10309 GDB_SIGNAL_TRAP. */
10310 if (b->type == bp_watchpoint && sig != GDB_SIGNAL_TRAP)
10311 return 0;
10312
10313 return 1;
10314 }
10315
10316 /* The breakpoint_ops structure to be used in hardware watchpoints. */
10317
10318 static struct breakpoint_ops watchpoint_breakpoint_ops;
10319
10320 /* Implement the "insert" breakpoint_ops method for
10321 masked hardware watchpoints. */
10322
10323 static int
10324 insert_masked_watchpoint (struct bp_location *bl)
10325 {
10326 struct watchpoint *w = (struct watchpoint *) bl->owner;
10327
10328 return target_insert_mask_watchpoint (bl->address, w->hw_wp_mask,
10329 bl->watchpoint_type);
10330 }
10331
10332 /* Implement the "remove" breakpoint_ops method for
10333 masked hardware watchpoints. */
10334
10335 static int
10336 remove_masked_watchpoint (struct bp_location *bl, enum remove_bp_reason reason)
10337 {
10338 struct watchpoint *w = (struct watchpoint *) bl->owner;
10339
10340 return target_remove_mask_watchpoint (bl->address, w->hw_wp_mask,
10341 bl->watchpoint_type);
10342 }
10343
10344 /* Implement the "resources_needed" breakpoint_ops method for
10345 masked hardware watchpoints. */
10346
10347 static int
10348 resources_needed_masked_watchpoint (const struct bp_location *bl)
10349 {
10350 struct watchpoint *w = (struct watchpoint *) bl->owner;
10351
10352 return target_masked_watch_num_registers (bl->address, w->hw_wp_mask);
10353 }
10354
10355 /* Implement the "works_in_software_mode" breakpoint_ops method for
10356 masked hardware watchpoints. */
10357
10358 static int
10359 works_in_software_mode_masked_watchpoint (const struct breakpoint *b)
10360 {
10361 return 0;
10362 }
10363
10364 /* Implement the "print_it" breakpoint_ops method for
10365 masked hardware watchpoints. */
10366
10367 static enum print_stop_action
10368 print_it_masked_watchpoint (bpstat bs)
10369 {
10370 struct breakpoint *b = bs->breakpoint_at;
10371 struct ui_out *uiout = current_uiout;
10372
10373 /* Masked watchpoints have only one location. */
10374 gdb_assert (b->loc && b->loc->next == NULL);
10375
10376 annotate_watchpoint (b->number);
10377 maybe_print_thread_hit_breakpoint (uiout);
10378
10379 switch (b->type)
10380 {
10381 case bp_hardware_watchpoint:
10382 if (uiout->is_mi_like_p ())
10383 uiout->field_string
10384 ("reason", async_reason_lookup (EXEC_ASYNC_WATCHPOINT_TRIGGER));
10385 break;
10386
10387 case bp_read_watchpoint:
10388 if (uiout->is_mi_like_p ())
10389 uiout->field_string
10390 ("reason", async_reason_lookup (EXEC_ASYNC_READ_WATCHPOINT_TRIGGER));
10391 break;
10392
10393 case bp_access_watchpoint:
10394 if (uiout->is_mi_like_p ())
10395 uiout->field_string
10396 ("reason",
10397 async_reason_lookup (EXEC_ASYNC_ACCESS_WATCHPOINT_TRIGGER));
10398 break;
10399 default:
10400 internal_error (__FILE__, __LINE__,
10401 _("Invalid hardware watchpoint type."));
10402 }
10403
10404 mention (b);
10405 uiout->text (_("\n\
10406 Check the underlying instruction at PC for the memory\n\
10407 address and value which triggered this watchpoint.\n"));
10408 uiout->text ("\n");
10409
10410 /* More than one watchpoint may have been triggered. */
10411 return PRINT_UNKNOWN;
10412 }
10413
10414 /* Implement the "print_one_detail" breakpoint_ops method for
10415 masked hardware watchpoints. */
10416
10417 static void
10418 print_one_detail_masked_watchpoint (const struct breakpoint *b,
10419 struct ui_out *uiout)
10420 {
10421 struct watchpoint *w = (struct watchpoint *) b;
10422
10423 /* Masked watchpoints have only one location. */
10424 gdb_assert (b->loc && b->loc->next == NULL);
10425
10426 uiout->text ("\tmask ");
10427 uiout->field_core_addr ("mask", b->loc->gdbarch, w->hw_wp_mask);
10428 uiout->text ("\n");
10429 }
10430
10431 /* Implement the "print_mention" breakpoint_ops method for
10432 masked hardware watchpoints. */
10433
10434 static void
10435 print_mention_masked_watchpoint (struct breakpoint *b)
10436 {
10437 struct watchpoint *w = (struct watchpoint *) b;
10438 struct ui_out *uiout = current_uiout;
10439 const char *tuple_name;
10440
10441 switch (b->type)
10442 {
10443 case bp_hardware_watchpoint:
10444 uiout->text ("Masked hardware watchpoint ");
10445 tuple_name = "wpt";
10446 break;
10447 case bp_read_watchpoint:
10448 uiout->text ("Masked hardware read watchpoint ");
10449 tuple_name = "hw-rwpt";
10450 break;
10451 case bp_access_watchpoint:
10452 uiout->text ("Masked hardware access (read/write) watchpoint ");
10453 tuple_name = "hw-awpt";
10454 break;
10455 default:
10456 internal_error (__FILE__, __LINE__,
10457 _("Invalid hardware watchpoint type."));
10458 }
10459
10460 ui_out_emit_tuple tuple_emitter (uiout, tuple_name);
10461 uiout->field_int ("number", b->number);
10462 uiout->text (": ");
10463 uiout->field_string ("exp", w->exp_string);
10464 }
10465
10466 /* Implement the "print_recreate" breakpoint_ops method for
10467 masked hardware watchpoints. */
10468
10469 static void
10470 print_recreate_masked_watchpoint (struct breakpoint *b, struct ui_file *fp)
10471 {
10472 struct watchpoint *w = (struct watchpoint *) b;
10473 char tmp[40];
10474
10475 switch (b->type)
10476 {
10477 case bp_hardware_watchpoint:
10478 fprintf_unfiltered (fp, "watch");
10479 break;
10480 case bp_read_watchpoint:
10481 fprintf_unfiltered (fp, "rwatch");
10482 break;
10483 case bp_access_watchpoint:
10484 fprintf_unfiltered (fp, "awatch");
10485 break;
10486 default:
10487 internal_error (__FILE__, __LINE__,
10488 _("Invalid hardware watchpoint type."));
10489 }
10490
10491 sprintf_vma (tmp, w->hw_wp_mask);
10492 fprintf_unfiltered (fp, " %s mask 0x%s", w->exp_string, tmp);
10493 print_recreate_thread (b, fp);
10494 }
10495
10496 /* The breakpoint_ops structure to be used in masked hardware watchpoints. */
10497
10498 static struct breakpoint_ops masked_watchpoint_breakpoint_ops;
10499
10500 /* Tell whether the given watchpoint is a masked hardware watchpoint. */
10501
10502 static int
10503 is_masked_watchpoint (const struct breakpoint *b)
10504 {
10505 return b->ops == &masked_watchpoint_breakpoint_ops;
10506 }
10507
10508 /* accessflag: hw_write: watch write,
10509 hw_read: watch read,
10510 hw_access: watch access (read or write) */
10511 static void
10512 watch_command_1 (const char *arg, int accessflag, int from_tty,
10513 int just_location, int internal)
10514 {
10515 struct breakpoint *scope_breakpoint = NULL;
10516 const struct block *exp_valid_block = NULL, *cond_exp_valid_block = NULL;
10517 struct value *result;
10518 int saved_bitpos = 0, saved_bitsize = 0;
10519 const char *exp_start = NULL;
10520 const char *exp_end = NULL;
10521 const char *tok, *end_tok;
10522 int toklen = -1;
10523 const char *cond_start = NULL;
10524 const char *cond_end = NULL;
10525 enum bptype bp_type;
10526 int thread = -1;
10527 int pc = 0;
10528 /* Flag to indicate whether we are going to use masks for
10529 the hardware watchpoint. */
10530 int use_mask = 0;
10531 CORE_ADDR mask = 0;
10532
10533 /* Make sure that we actually have parameters to parse. */
10534 if (arg != NULL && arg[0] != '\0')
10535 {
10536 const char *value_start;
10537
10538 exp_end = arg + strlen (arg);
10539
10540 /* Look for "parameter value" pairs at the end
10541 of the arguments string. */
10542 for (tok = exp_end - 1; tok > arg; tok--)
10543 {
10544 /* Skip whitespace at the end of the argument list. */
10545 while (tok > arg && (*tok == ' ' || *tok == '\t'))
10546 tok--;
10547
10548 /* Find the beginning of the last token.
10549 This is the value of the parameter. */
10550 while (tok > arg && (*tok != ' ' && *tok != '\t'))
10551 tok--;
10552 value_start = tok + 1;
10553
10554 /* Skip whitespace. */
10555 while (tok > arg && (*tok == ' ' || *tok == '\t'))
10556 tok--;
10557
10558 end_tok = tok;
10559
10560 /* Find the beginning of the second to last token.
10561 This is the parameter itself. */
10562 while (tok > arg && (*tok != ' ' && *tok != '\t'))
10563 tok--;
10564 tok++;
10565 toklen = end_tok - tok + 1;
10566
10567 if (toklen == 6 && startswith (tok, "thread"))
10568 {
10569 struct thread_info *thr;
10570 /* At this point we've found a "thread" token, which means
10571 the user is trying to set a watchpoint that triggers
10572 only in a specific thread. */
10573 const char *endp;
10574
10575 if (thread != -1)
10576 error(_("You can specify only one thread."));
10577
10578 /* Extract the thread ID from the next token. */
10579 thr = parse_thread_id (value_start, &endp);
10580
10581 /* Check if the user provided a valid thread ID. */
10582 if (*endp != ' ' && *endp != '\t' && *endp != '\0')
10583 invalid_thread_id_error (value_start);
10584
10585 thread = thr->global_num;
10586 }
10587 else if (toklen == 4 && startswith (tok, "mask"))
10588 {
10589 /* We've found a "mask" token, which means the user wants to
10590 create a hardware watchpoint that is going to have the mask
10591 facility. */
10592 struct value *mask_value, *mark;
10593
10594 if (use_mask)
10595 error(_("You can specify only one mask."));
10596
10597 use_mask = just_location = 1;
10598
10599 mark = value_mark ();
10600 mask_value = parse_to_comma_and_eval (&value_start);
10601 mask = value_as_address (mask_value);
10602 value_free_to_mark (mark);
10603 }
10604 else
10605 /* We didn't recognize what we found. We should stop here. */
10606 break;
10607
10608 /* Truncate the string and get rid of the "parameter value" pair before
10609 the arguments string is parsed by the parse_exp_1 function. */
10610 exp_end = tok;
10611 }
10612 }
10613 else
10614 exp_end = arg;
10615
10616 /* Parse the rest of the arguments. From here on out, everything
10617 is in terms of a newly allocated string instead of the original
10618 ARG. */
10619 innermost_block.reset ();
10620 std::string expression (arg, exp_end - arg);
10621 exp_start = arg = expression.c_str ();
10622 expression_up exp = parse_exp_1 (&arg, 0, 0, 0);
10623 exp_end = arg;
10624 /* Remove trailing whitespace from the expression before saving it.
10625 This makes the eventual display of the expression string a bit
10626 prettier. */
10627 while (exp_end > exp_start && (exp_end[-1] == ' ' || exp_end[-1] == '\t'))
10628 --exp_end;
10629
10630 /* Checking if the expression is not constant. */
10631 if (watchpoint_exp_is_const (exp.get ()))
10632 {
10633 int len;
10634
10635 len = exp_end - exp_start;
10636 while (len > 0 && isspace (exp_start[len - 1]))
10637 len--;
10638 error (_("Cannot watch constant value `%.*s'."), len, exp_start);
10639 }
10640
10641 exp_valid_block = innermost_block.block ();
10642 struct value *mark = value_mark ();
10643 struct value *val_as_value = nullptr;
10644 fetch_subexp_value (exp.get (), &pc, &val_as_value, &result, NULL,
10645 just_location);
10646
10647 if (val_as_value != NULL && just_location)
10648 {
10649 saved_bitpos = value_bitpos (val_as_value);
10650 saved_bitsize = value_bitsize (val_as_value);
10651 }
10652
10653 value_ref_ptr val;
10654 if (just_location)
10655 {
10656 int ret;
10657
10658 exp_valid_block = NULL;
10659 val = release_value (value_addr (result));
10660 value_free_to_mark (mark);
10661
10662 if (use_mask)
10663 {
10664 ret = target_masked_watch_num_registers (value_as_address (val.get ()),
10665 mask);
10666 if (ret == -1)
10667 error (_("This target does not support masked watchpoints."));
10668 else if (ret == -2)
10669 error (_("Invalid mask or memory region."));
10670 }
10671 }
10672 else if (val_as_value != NULL)
10673 val = release_value (val_as_value);
10674
10675 tok = skip_spaces (arg);
10676 end_tok = skip_to_space (tok);
10677
10678 toklen = end_tok - tok;
10679 if (toklen >= 1 && strncmp (tok, "if", toklen) == 0)
10680 {
10681 innermost_block.reset ();
10682 tok = cond_start = end_tok + 1;
10683 parse_exp_1 (&tok, 0, 0, 0);
10684
10685 /* The watchpoint expression may not be local, but the condition
10686 may still be. E.g.: `watch global if local > 0'. */
10687 cond_exp_valid_block = innermost_block.block ();
10688
10689 cond_end = tok;
10690 }
10691 if (*tok)
10692 error (_("Junk at end of command."));
10693
10694 frame_info *wp_frame = block_innermost_frame (exp_valid_block);
10695
10696 /* Save this because create_internal_breakpoint below invalidates
10697 'wp_frame'. */
10698 frame_id watchpoint_frame = get_frame_id (wp_frame);
10699
10700 /* If the expression is "local", then set up a "watchpoint scope"
10701 breakpoint at the point where we've left the scope of the watchpoint
10702 expression. Create the scope breakpoint before the watchpoint, so
10703 that we will encounter it first in bpstat_stop_status. */
10704 if (exp_valid_block != NULL && wp_frame != NULL)
10705 {
10706 frame_id caller_frame_id = frame_unwind_caller_id (wp_frame);
10707
10708 if (frame_id_p (caller_frame_id))
10709 {
10710 gdbarch *caller_arch = frame_unwind_caller_arch (wp_frame);
10711 CORE_ADDR caller_pc = frame_unwind_caller_pc (wp_frame);
10712
10713 scope_breakpoint
10714 = create_internal_breakpoint (caller_arch, caller_pc,
10715 bp_watchpoint_scope,
10716 &momentary_breakpoint_ops);
10717
10718 /* create_internal_breakpoint could invalidate WP_FRAME. */
10719 wp_frame = NULL;
10720
10721 scope_breakpoint->enable_state = bp_enabled;
10722
10723 /* Automatically delete the breakpoint when it hits. */
10724 scope_breakpoint->disposition = disp_del;
10725
10726 /* Only break in the proper frame (help with recursion). */
10727 scope_breakpoint->frame_id = caller_frame_id;
10728
10729 /* Set the address at which we will stop. */
10730 scope_breakpoint->loc->gdbarch = caller_arch;
10731 scope_breakpoint->loc->requested_address = caller_pc;
10732 scope_breakpoint->loc->address
10733 = adjust_breakpoint_address (scope_breakpoint->loc->gdbarch,
10734 scope_breakpoint->loc->requested_address,
10735 scope_breakpoint->type);
10736 }
10737 }
10738
10739 /* Now set up the breakpoint. We create all watchpoints as hardware
10740 watchpoints here even if hardware watchpoints are turned off, a call
10741 to update_watchpoint later in this function will cause the type to
10742 drop back to bp_watchpoint (software watchpoint) if required. */
10743
10744 if (accessflag == hw_read)
10745 bp_type = bp_read_watchpoint;
10746 else if (accessflag == hw_access)
10747 bp_type = bp_access_watchpoint;
10748 else
10749 bp_type = bp_hardware_watchpoint;
10750
10751 std::unique_ptr<watchpoint> w (new watchpoint ());
10752
10753 if (use_mask)
10754 init_raw_breakpoint_without_location (w.get (), NULL, bp_type,
10755 &masked_watchpoint_breakpoint_ops);
10756 else
10757 init_raw_breakpoint_without_location (w.get (), NULL, bp_type,
10758 &watchpoint_breakpoint_ops);
10759 w->thread = thread;
10760 w->disposition = disp_donttouch;
10761 w->pspace = current_program_space;
10762 w->exp = std::move (exp);
10763 w->exp_valid_block = exp_valid_block;
10764 w->cond_exp_valid_block = cond_exp_valid_block;
10765 if (just_location)
10766 {
10767 struct type *t = value_type (val.get ());
10768 CORE_ADDR addr = value_as_address (val.get ());
10769
10770 w->exp_string_reparse
10771 = current_language->la_watch_location_expression (t, addr).release ();
10772
10773 w->exp_string = xstrprintf ("-location %.*s",
10774 (int) (exp_end - exp_start), exp_start);
10775 }
10776 else
10777 w->exp_string = savestring (exp_start, exp_end - exp_start);
10778
10779 if (use_mask)
10780 {
10781 w->hw_wp_mask = mask;
10782 }
10783 else
10784 {
10785 w->val = val;
10786 w->val_bitpos = saved_bitpos;
10787 w->val_bitsize = saved_bitsize;
10788 w->val_valid = 1;
10789 }
10790
10791 if (cond_start)
10792 w->cond_string = savestring (cond_start, cond_end - cond_start);
10793 else
10794 w->cond_string = 0;
10795
10796 if (frame_id_p (watchpoint_frame))
10797 {
10798 w->watchpoint_frame = watchpoint_frame;
10799 w->watchpoint_thread = inferior_ptid;
10800 }
10801 else
10802 {
10803 w->watchpoint_frame = null_frame_id;
10804 w->watchpoint_thread = null_ptid;
10805 }
10806
10807 if (scope_breakpoint != NULL)
10808 {
10809 /* The scope breakpoint is related to the watchpoint. We will
10810 need to act on them together. */
10811 w->related_breakpoint = scope_breakpoint;
10812 scope_breakpoint->related_breakpoint = w.get ();
10813 }
10814
10815 if (!just_location)
10816 value_free_to_mark (mark);
10817
10818 /* Finally update the new watchpoint. This creates the locations
10819 that should be inserted. */
10820 update_watchpoint (w.get (), 1);
10821
10822 install_breakpoint (internal, std::move (w), 1);
10823 }
10824
10825 /* Return count of debug registers needed to watch the given expression.
10826 If the watchpoint cannot be handled in hardware return zero. */
10827
10828 static int
10829 can_use_hardware_watchpoint (const std::vector<value_ref_ptr> &vals)
10830 {
10831 int found_memory_cnt = 0;
10832
10833 /* Did the user specifically forbid us to use hardware watchpoints? */
10834 if (!can_use_hw_watchpoints)
10835 return 0;
10836
10837 gdb_assert (!vals.empty ());
10838 struct value *head = vals[0].get ();
10839
10840 /* Make sure that the value of the expression depends only upon
10841 memory contents, and values computed from them within GDB. If we
10842 find any register references or function calls, we can't use a
10843 hardware watchpoint.
10844
10845 The idea here is that evaluating an expression generates a series
10846 of values, one holding the value of every subexpression. (The
10847 expression a*b+c has five subexpressions: a, b, a*b, c, and
10848 a*b+c.) GDB's values hold almost enough information to establish
10849 the criteria given above --- they identify memory lvalues,
10850 register lvalues, computed values, etcetera. So we can evaluate
10851 the expression, and then scan the chain of values that leaves
10852 behind to decide whether we can detect any possible change to the
10853 expression's final value using only hardware watchpoints.
10854
10855 However, I don't think that the values returned by inferior
10856 function calls are special in any way. So this function may not
10857 notice that an expression involving an inferior function call
10858 can't be watched with hardware watchpoints. FIXME. */
10859 for (const value_ref_ptr &iter : vals)
10860 {
10861 struct value *v = iter.get ();
10862
10863 if (VALUE_LVAL (v) == lval_memory)
10864 {
10865 if (v != head && value_lazy (v))
10866 /* A lazy memory lvalue in the chain is one that GDB never
10867 needed to fetch; we either just used its address (e.g.,
10868 `a' in `a.b') or we never needed it at all (e.g., `a'
10869 in `a,b'). This doesn't apply to HEAD; if that is
10870 lazy then it was not readable, but watch it anyway. */
10871 ;
10872 else
10873 {
10874 /* Ahh, memory we actually used! Check if we can cover
10875 it with hardware watchpoints. */
10876 struct type *vtype = check_typedef (value_type (v));
10877
10878 /* We only watch structs and arrays if user asked for it
10879 explicitly, never if they just happen to appear in a
10880 middle of some value chain. */
10881 if (v == head
10882 || (TYPE_CODE (vtype) != TYPE_CODE_STRUCT
10883 && TYPE_CODE (vtype) != TYPE_CODE_ARRAY))
10884 {
10885 CORE_ADDR vaddr = value_address (v);
10886 int len;
10887 int num_regs;
10888
10889 len = (target_exact_watchpoints
10890 && is_scalar_type_recursive (vtype))?
10891 1 : TYPE_LENGTH (value_type (v));
10892
10893 num_regs = target_region_ok_for_hw_watchpoint (vaddr, len);
10894 if (!num_regs)
10895 return 0;
10896 else
10897 found_memory_cnt += num_regs;
10898 }
10899 }
10900 }
10901 else if (VALUE_LVAL (v) != not_lval
10902 && deprecated_value_modifiable (v) == 0)
10903 return 0; /* These are values from the history (e.g., $1). */
10904 else if (VALUE_LVAL (v) == lval_register)
10905 return 0; /* Cannot watch a register with a HW watchpoint. */
10906 }
10907
10908 /* The expression itself looks suitable for using a hardware
10909 watchpoint, but give the target machine a chance to reject it. */
10910 return found_memory_cnt;
10911 }
10912
10913 void
10914 watch_command_wrapper (const char *arg, int from_tty, int internal)
10915 {
10916 watch_command_1 (arg, hw_write, from_tty, 0, internal);
10917 }
10918
10919 /* A helper function that looks for the "-location" argument and then
10920 calls watch_command_1. */
10921
10922 static void
10923 watch_maybe_just_location (const char *arg, int accessflag, int from_tty)
10924 {
10925 int just_location = 0;
10926
10927 if (arg
10928 && (check_for_argument (&arg, "-location", sizeof ("-location") - 1)
10929 || check_for_argument (&arg, "-l", sizeof ("-l") - 1)))
10930 {
10931 arg = skip_spaces (arg);
10932 just_location = 1;
10933 }
10934
10935 watch_command_1 (arg, accessflag, from_tty, just_location, 0);
10936 }
10937
10938 static void
10939 watch_command (const char *arg, int from_tty)
10940 {
10941 watch_maybe_just_location (arg, hw_write, from_tty);
10942 }
10943
10944 void
10945 rwatch_command_wrapper (const char *arg, int from_tty, int internal)
10946 {
10947 watch_command_1 (arg, hw_read, from_tty, 0, internal);
10948 }
10949
10950 static void
10951 rwatch_command (const char *arg, int from_tty)
10952 {
10953 watch_maybe_just_location (arg, hw_read, from_tty);
10954 }
10955
10956 void
10957 awatch_command_wrapper (const char *arg, int from_tty, int internal)
10958 {
10959 watch_command_1 (arg, hw_access, from_tty, 0, internal);
10960 }
10961
10962 static void
10963 awatch_command (const char *arg, int from_tty)
10964 {
10965 watch_maybe_just_location (arg, hw_access, from_tty);
10966 }
10967 \f
10968
10969 /* Data for the FSM that manages the until(location)/advance commands
10970 in infcmd.c. Here because it uses the mechanisms of
10971 breakpoints. */
10972
10973 struct until_break_fsm
10974 {
10975 /* The base class. */
10976 struct thread_fsm thread_fsm;
10977
10978 /* The thread that as current when the command was executed. */
10979 int thread;
10980
10981 /* The breakpoint set at the destination location. */
10982 struct breakpoint *location_breakpoint;
10983
10984 /* Breakpoint set at the return address in the caller frame. May be
10985 NULL. */
10986 struct breakpoint *caller_breakpoint;
10987 };
10988
10989 static void until_break_fsm_clean_up (struct thread_fsm *self,
10990 struct thread_info *thread);
10991 static int until_break_fsm_should_stop (struct thread_fsm *self,
10992 struct thread_info *thread);
10993 static enum async_reply_reason
10994 until_break_fsm_async_reply_reason (struct thread_fsm *self);
10995
10996 /* until_break_fsm's vtable. */
10997
10998 static struct thread_fsm_ops until_break_fsm_ops =
10999 {
11000 NULL, /* dtor */
11001 until_break_fsm_clean_up,
11002 until_break_fsm_should_stop,
11003 NULL, /* return_value */
11004 until_break_fsm_async_reply_reason,
11005 };
11006
11007 /* Allocate a new until_break_command_fsm. */
11008
11009 static struct until_break_fsm *
11010 new_until_break_fsm (struct interp *cmd_interp, int thread,
11011 breakpoint_up &&location_breakpoint,
11012 breakpoint_up &&caller_breakpoint)
11013 {
11014 struct until_break_fsm *sm;
11015
11016 sm = XCNEW (struct until_break_fsm);
11017 thread_fsm_ctor (&sm->thread_fsm, &until_break_fsm_ops, cmd_interp);
11018
11019 sm->thread = thread;
11020 sm->location_breakpoint = location_breakpoint.release ();
11021 sm->caller_breakpoint = caller_breakpoint.release ();
11022
11023 return sm;
11024 }
11025
11026 /* Implementation of the 'should_stop' FSM method for the
11027 until(location)/advance commands. */
11028
11029 static int
11030 until_break_fsm_should_stop (struct thread_fsm *self,
11031 struct thread_info *tp)
11032 {
11033 struct until_break_fsm *sm = (struct until_break_fsm *) self;
11034
11035 if (bpstat_find_breakpoint (tp->control.stop_bpstat,
11036 sm->location_breakpoint) != NULL
11037 || (sm->caller_breakpoint != NULL
11038 && bpstat_find_breakpoint (tp->control.stop_bpstat,
11039 sm->caller_breakpoint) != NULL))
11040 thread_fsm_set_finished (self);
11041
11042 return 1;
11043 }
11044
11045 /* Implementation of the 'clean_up' FSM method for the
11046 until(location)/advance commands. */
11047
11048 static void
11049 until_break_fsm_clean_up (struct thread_fsm *self,
11050 struct thread_info *thread)
11051 {
11052 struct until_break_fsm *sm = (struct until_break_fsm *) self;
11053
11054 /* Clean up our temporary breakpoints. */
11055 if (sm->location_breakpoint != NULL)
11056 {
11057 delete_breakpoint (sm->location_breakpoint);
11058 sm->location_breakpoint = NULL;
11059 }
11060 if (sm->caller_breakpoint != NULL)
11061 {
11062 delete_breakpoint (sm->caller_breakpoint);
11063 sm->caller_breakpoint = NULL;
11064 }
11065 delete_longjmp_breakpoint (sm->thread);
11066 }
11067
11068 /* Implementation of the 'async_reply_reason' FSM method for the
11069 until(location)/advance commands. */
11070
11071 static enum async_reply_reason
11072 until_break_fsm_async_reply_reason (struct thread_fsm *self)
11073 {
11074 return EXEC_ASYNC_LOCATION_REACHED;
11075 }
11076
11077 void
11078 until_break_command (const char *arg, int from_tty, int anywhere)
11079 {
11080 struct frame_info *frame;
11081 struct gdbarch *frame_gdbarch;
11082 struct frame_id stack_frame_id;
11083 struct frame_id caller_frame_id;
11084 struct cleanup *old_chain;
11085 int thread;
11086 struct thread_info *tp;
11087 struct until_break_fsm *sm;
11088
11089 clear_proceed_status (0);
11090
11091 /* Set a breakpoint where the user wants it and at return from
11092 this function. */
11093
11094 event_location_up location = string_to_event_location (&arg, current_language);
11095
11096 std::vector<symtab_and_line> sals
11097 = (last_displayed_sal_is_valid ()
11098 ? decode_line_1 (location.get (), DECODE_LINE_FUNFIRSTLINE, NULL,
11099 get_last_displayed_symtab (),
11100 get_last_displayed_line ())
11101 : decode_line_1 (location.get (), DECODE_LINE_FUNFIRSTLINE,
11102 NULL, (struct symtab *) NULL, 0));
11103
11104 if (sals.size () != 1)
11105 error (_("Couldn't get information on specified line."));
11106
11107 symtab_and_line &sal = sals[0];
11108
11109 if (*arg)
11110 error (_("Junk at end of arguments."));
11111
11112 resolve_sal_pc (&sal);
11113
11114 tp = inferior_thread ();
11115 thread = tp->global_num;
11116
11117 old_chain = make_cleanup (null_cleanup, NULL);
11118
11119 /* Note linespec handling above invalidates the frame chain.
11120 Installing a breakpoint also invalidates the frame chain (as it
11121 may need to switch threads), so do any frame handling before
11122 that. */
11123
11124 frame = get_selected_frame (NULL);
11125 frame_gdbarch = get_frame_arch (frame);
11126 stack_frame_id = get_stack_frame_id (frame);
11127 caller_frame_id = frame_unwind_caller_id (frame);
11128
11129 /* Keep within the current frame, or in frames called by the current
11130 one. */
11131
11132 breakpoint_up caller_breakpoint;
11133 if (frame_id_p (caller_frame_id))
11134 {
11135 struct symtab_and_line sal2;
11136 struct gdbarch *caller_gdbarch;
11137
11138 sal2 = find_pc_line (frame_unwind_caller_pc (frame), 0);
11139 sal2.pc = frame_unwind_caller_pc (frame);
11140 caller_gdbarch = frame_unwind_caller_arch (frame);
11141 caller_breakpoint = set_momentary_breakpoint (caller_gdbarch,
11142 sal2,
11143 caller_frame_id,
11144 bp_until);
11145
11146 set_longjmp_breakpoint (tp, caller_frame_id);
11147 make_cleanup (delete_longjmp_breakpoint_cleanup, &thread);
11148 }
11149
11150 /* set_momentary_breakpoint could invalidate FRAME. */
11151 frame = NULL;
11152
11153 breakpoint_up location_breakpoint;
11154 if (anywhere)
11155 /* If the user told us to continue until a specified location,
11156 we don't specify a frame at which we need to stop. */
11157 location_breakpoint = set_momentary_breakpoint (frame_gdbarch, sal,
11158 null_frame_id, bp_until);
11159 else
11160 /* Otherwise, specify the selected frame, because we want to stop
11161 only at the very same frame. */
11162 location_breakpoint = set_momentary_breakpoint (frame_gdbarch, sal,
11163 stack_frame_id, bp_until);
11164
11165 sm = new_until_break_fsm (command_interp (), tp->global_num,
11166 std::move (location_breakpoint),
11167 std::move (caller_breakpoint));
11168 tp->thread_fsm = &sm->thread_fsm;
11169
11170 discard_cleanups (old_chain);
11171
11172 proceed (-1, GDB_SIGNAL_DEFAULT);
11173 }
11174
11175 /* This function attempts to parse an optional "if <cond>" clause
11176 from the arg string. If one is not found, it returns NULL.
11177
11178 Else, it returns a pointer to the condition string. (It does not
11179 attempt to evaluate the string against a particular block.) And,
11180 it updates arg to point to the first character following the parsed
11181 if clause in the arg string. */
11182
11183 const char *
11184 ep_parse_optional_if_clause (const char **arg)
11185 {
11186 const char *cond_string;
11187
11188 if (((*arg)[0] != 'i') || ((*arg)[1] != 'f') || !isspace ((*arg)[2]))
11189 return NULL;
11190
11191 /* Skip the "if" keyword. */
11192 (*arg) += 2;
11193
11194 /* Skip any extra leading whitespace, and record the start of the
11195 condition string. */
11196 *arg = skip_spaces (*arg);
11197 cond_string = *arg;
11198
11199 /* Assume that the condition occupies the remainder of the arg
11200 string. */
11201 (*arg) += strlen (cond_string);
11202
11203 return cond_string;
11204 }
11205
11206 /* Commands to deal with catching events, such as signals, exceptions,
11207 process start/exit, etc. */
11208
11209 typedef enum
11210 {
11211 catch_fork_temporary, catch_vfork_temporary,
11212 catch_fork_permanent, catch_vfork_permanent
11213 }
11214 catch_fork_kind;
11215
11216 static void
11217 catch_fork_command_1 (const char *arg, int from_tty,
11218 struct cmd_list_element *command)
11219 {
11220 struct gdbarch *gdbarch = get_current_arch ();
11221 const char *cond_string = NULL;
11222 catch_fork_kind fork_kind;
11223 int tempflag;
11224
11225 fork_kind = (catch_fork_kind) (uintptr_t) get_cmd_context (command);
11226 tempflag = (fork_kind == catch_fork_temporary
11227 || fork_kind == catch_vfork_temporary);
11228
11229 if (!arg)
11230 arg = "";
11231 arg = skip_spaces (arg);
11232
11233 /* The allowed syntax is:
11234 catch [v]fork
11235 catch [v]fork if <cond>
11236
11237 First, check if there's an if clause. */
11238 cond_string = ep_parse_optional_if_clause (&arg);
11239
11240 if ((*arg != '\0') && !isspace (*arg))
11241 error (_("Junk at end of arguments."));
11242
11243 /* If this target supports it, create a fork or vfork catchpoint
11244 and enable reporting of such events. */
11245 switch (fork_kind)
11246 {
11247 case catch_fork_temporary:
11248 case catch_fork_permanent:
11249 create_fork_vfork_event_catchpoint (gdbarch, tempflag, cond_string,
11250 &catch_fork_breakpoint_ops);
11251 break;
11252 case catch_vfork_temporary:
11253 case catch_vfork_permanent:
11254 create_fork_vfork_event_catchpoint (gdbarch, tempflag, cond_string,
11255 &catch_vfork_breakpoint_ops);
11256 break;
11257 default:
11258 error (_("unsupported or unknown fork kind; cannot catch it"));
11259 break;
11260 }
11261 }
11262
11263 static void
11264 catch_exec_command_1 (const char *arg, int from_tty,
11265 struct cmd_list_element *command)
11266 {
11267 struct gdbarch *gdbarch = get_current_arch ();
11268 int tempflag;
11269 const char *cond_string = NULL;
11270
11271 tempflag = get_cmd_context (command) == CATCH_TEMPORARY;
11272
11273 if (!arg)
11274 arg = "";
11275 arg = skip_spaces (arg);
11276
11277 /* The allowed syntax is:
11278 catch exec
11279 catch exec if <cond>
11280
11281 First, check if there's an if clause. */
11282 cond_string = ep_parse_optional_if_clause (&arg);
11283
11284 if ((*arg != '\0') && !isspace (*arg))
11285 error (_("Junk at end of arguments."));
11286
11287 std::unique_ptr<exec_catchpoint> c (new exec_catchpoint ());
11288 init_catchpoint (c.get (), gdbarch, tempflag, cond_string,
11289 &catch_exec_breakpoint_ops);
11290 c->exec_pathname = NULL;
11291
11292 install_breakpoint (0, std::move (c), 1);
11293 }
11294
11295 void
11296 init_ada_exception_breakpoint (struct breakpoint *b,
11297 struct gdbarch *gdbarch,
11298 struct symtab_and_line sal,
11299 const char *addr_string,
11300 const struct breakpoint_ops *ops,
11301 int tempflag,
11302 int enabled,
11303 int from_tty)
11304 {
11305 if (from_tty)
11306 {
11307 struct gdbarch *loc_gdbarch = get_sal_arch (sal);
11308 if (!loc_gdbarch)
11309 loc_gdbarch = gdbarch;
11310
11311 describe_other_breakpoints (loc_gdbarch,
11312 sal.pspace, sal.pc, sal.section, -1);
11313 /* FIXME: brobecker/2006-12-28: Actually, re-implement a special
11314 version for exception catchpoints, because two catchpoints
11315 used for different exception names will use the same address.
11316 In this case, a "breakpoint ... also set at..." warning is
11317 unproductive. Besides, the warning phrasing is also a bit
11318 inappropriate, we should use the word catchpoint, and tell
11319 the user what type of catchpoint it is. The above is good
11320 enough for now, though. */
11321 }
11322
11323 init_raw_breakpoint (b, gdbarch, sal, bp_breakpoint, ops);
11324
11325 b->enable_state = enabled ? bp_enabled : bp_disabled;
11326 b->disposition = tempflag ? disp_del : disp_donttouch;
11327 b->location = string_to_event_location (&addr_string,
11328 language_def (language_ada));
11329 b->language = language_ada;
11330 }
11331
11332 static void
11333 catch_command (const char *arg, int from_tty)
11334 {
11335 error (_("Catch requires an event name."));
11336 }
11337 \f
11338
11339 static void
11340 tcatch_command (const char *arg, int from_tty)
11341 {
11342 error (_("Catch requires an event name."));
11343 }
11344
11345 /* Compare two breakpoints and return a strcmp-like result. */
11346
11347 static int
11348 compare_breakpoints (const breakpoint *a, const breakpoint *b)
11349 {
11350 uintptr_t ua = (uintptr_t) a;
11351 uintptr_t ub = (uintptr_t) b;
11352
11353 if (a->number < b->number)
11354 return -1;
11355 else if (a->number > b->number)
11356 return 1;
11357
11358 /* Now sort by address, in case we see, e..g, two breakpoints with
11359 the number 0. */
11360 if (ua < ub)
11361 return -1;
11362 return ua > ub ? 1 : 0;
11363 }
11364
11365 /* Delete breakpoints by address or line. */
11366
11367 static void
11368 clear_command (const char *arg, int from_tty)
11369 {
11370 struct breakpoint *b;
11371 int default_match;
11372
11373 std::vector<symtab_and_line> decoded_sals;
11374 symtab_and_line last_sal;
11375 gdb::array_view<symtab_and_line> sals;
11376 if (arg)
11377 {
11378 decoded_sals
11379 = decode_line_with_current_source (arg,
11380 (DECODE_LINE_FUNFIRSTLINE
11381 | DECODE_LINE_LIST_MODE));
11382 default_match = 0;
11383 sals = decoded_sals;
11384 }
11385 else
11386 {
11387 /* Set sal's line, symtab, pc, and pspace to the values
11388 corresponding to the last call to print_frame_info. If the
11389 codepoint is not valid, this will set all the fields to 0. */
11390 last_sal = get_last_displayed_sal ();
11391 if (last_sal.symtab == 0)
11392 error (_("No source file specified."));
11393
11394 default_match = 1;
11395 sals = last_sal;
11396 }
11397
11398 /* We don't call resolve_sal_pc here. That's not as bad as it
11399 seems, because all existing breakpoints typically have both
11400 file/line and pc set. So, if clear is given file/line, we can
11401 match this to existing breakpoint without obtaining pc at all.
11402
11403 We only support clearing given the address explicitly
11404 present in breakpoint table. Say, we've set breakpoint
11405 at file:line. There were several PC values for that file:line,
11406 due to optimization, all in one block.
11407
11408 We've picked one PC value. If "clear" is issued with another
11409 PC corresponding to the same file:line, the breakpoint won't
11410 be cleared. We probably can still clear the breakpoint, but
11411 since the other PC value is never presented to user, user
11412 can only find it by guessing, and it does not seem important
11413 to support that. */
11414
11415 /* For each line spec given, delete bps which correspond to it. Do
11416 it in two passes, solely to preserve the current behavior that
11417 from_tty is forced true if we delete more than one
11418 breakpoint. */
11419
11420 std::vector<struct breakpoint *> found;
11421 for (const auto &sal : sals)
11422 {
11423 const char *sal_fullname;
11424
11425 /* If exact pc given, clear bpts at that pc.
11426 If line given (pc == 0), clear all bpts on specified line.
11427 If defaulting, clear all bpts on default line
11428 or at default pc.
11429
11430 defaulting sal.pc != 0 tests to do
11431
11432 0 1 pc
11433 1 1 pc _and_ line
11434 0 0 line
11435 1 0 <can't happen> */
11436
11437 sal_fullname = (sal.symtab == NULL
11438 ? NULL : symtab_to_fullname (sal.symtab));
11439
11440 /* Find all matching breakpoints and add them to 'found'. */
11441 ALL_BREAKPOINTS (b)
11442 {
11443 int match = 0;
11444 /* Are we going to delete b? */
11445 if (b->type != bp_none && !is_watchpoint (b))
11446 {
11447 struct bp_location *loc = b->loc;
11448 for (; loc; loc = loc->next)
11449 {
11450 /* If the user specified file:line, don't allow a PC
11451 match. This matches historical gdb behavior. */
11452 int pc_match = (!sal.explicit_line
11453 && sal.pc
11454 && (loc->pspace == sal.pspace)
11455 && (loc->address == sal.pc)
11456 && (!section_is_overlay (loc->section)
11457 || loc->section == sal.section));
11458 int line_match = 0;
11459
11460 if ((default_match || sal.explicit_line)
11461 && loc->symtab != NULL
11462 && sal_fullname != NULL
11463 && sal.pspace == loc->pspace
11464 && loc->line_number == sal.line
11465 && filename_cmp (symtab_to_fullname (loc->symtab),
11466 sal_fullname) == 0)
11467 line_match = 1;
11468
11469 if (pc_match || line_match)
11470 {
11471 match = 1;
11472 break;
11473 }
11474 }
11475 }
11476
11477 if (match)
11478 found.push_back (b);
11479 }
11480 }
11481
11482 /* Now go thru the 'found' chain and delete them. */
11483 if (found.empty ())
11484 {
11485 if (arg)
11486 error (_("No breakpoint at %s."), arg);
11487 else
11488 error (_("No breakpoint at this line."));
11489 }
11490
11491 /* Remove duplicates from the vec. */
11492 std::sort (found.begin (), found.end (),
11493 [] (const breakpoint *bp_a, const breakpoint *bp_b)
11494 {
11495 return compare_breakpoints (bp_a, bp_b) < 0;
11496 });
11497 found.erase (std::unique (found.begin (), found.end (),
11498 [] (const breakpoint *bp_a, const breakpoint *bp_b)
11499 {
11500 return compare_breakpoints (bp_a, bp_b) == 0;
11501 }),
11502 found.end ());
11503
11504 if (found.size () > 1)
11505 from_tty = 1; /* Always report if deleted more than one. */
11506 if (from_tty)
11507 {
11508 if (found.size () == 1)
11509 printf_unfiltered (_("Deleted breakpoint "));
11510 else
11511 printf_unfiltered (_("Deleted breakpoints "));
11512 }
11513
11514 for (breakpoint *iter : found)
11515 {
11516 if (from_tty)
11517 printf_unfiltered ("%d ", iter->number);
11518 delete_breakpoint (iter);
11519 }
11520 if (from_tty)
11521 putchar_unfiltered ('\n');
11522 }
11523 \f
11524 /* Delete breakpoint in BS if they are `delete' breakpoints and
11525 all breakpoints that are marked for deletion, whether hit or not.
11526 This is called after any breakpoint is hit, or after errors. */
11527
11528 void
11529 breakpoint_auto_delete (bpstat bs)
11530 {
11531 struct breakpoint *b, *b_tmp;
11532
11533 for (; bs; bs = bs->next)
11534 if (bs->breakpoint_at
11535 && bs->breakpoint_at->disposition == disp_del
11536 && bs->stop)
11537 delete_breakpoint (bs->breakpoint_at);
11538
11539 ALL_BREAKPOINTS_SAFE (b, b_tmp)
11540 {
11541 if (b->disposition == disp_del_at_next_stop)
11542 delete_breakpoint (b);
11543 }
11544 }
11545
11546 /* A comparison function for bp_location AP and BP being interfaced to
11547 qsort. Sort elements primarily by their ADDRESS (no matter what
11548 does breakpoint_address_is_meaningful say for its OWNER),
11549 secondarily by ordering first permanent elements and
11550 terciarily just ensuring the array is sorted stable way despite
11551 qsort being an unstable algorithm. */
11552
11553 static int
11554 bp_locations_compare (const void *ap, const void *bp)
11555 {
11556 const struct bp_location *a = *(const struct bp_location **) ap;
11557 const struct bp_location *b = *(const struct bp_location **) bp;
11558
11559 if (a->address != b->address)
11560 return (a->address > b->address) - (a->address < b->address);
11561
11562 /* Sort locations at the same address by their pspace number, keeping
11563 locations of the same inferior (in a multi-inferior environment)
11564 grouped. */
11565
11566 if (a->pspace->num != b->pspace->num)
11567 return ((a->pspace->num > b->pspace->num)
11568 - (a->pspace->num < b->pspace->num));
11569
11570 /* Sort permanent breakpoints first. */
11571 if (a->permanent != b->permanent)
11572 return (a->permanent < b->permanent) - (a->permanent > b->permanent);
11573
11574 /* Make the internal GDB representation stable across GDB runs
11575 where A and B memory inside GDB can differ. Breakpoint locations of
11576 the same type at the same address can be sorted in arbitrary order. */
11577
11578 if (a->owner->number != b->owner->number)
11579 return ((a->owner->number > b->owner->number)
11580 - (a->owner->number < b->owner->number));
11581
11582 return (a > b) - (a < b);
11583 }
11584
11585 /* Set bp_locations_placed_address_before_address_max and
11586 bp_locations_shadow_len_after_address_max according to the current
11587 content of the bp_locations array. */
11588
11589 static void
11590 bp_locations_target_extensions_update (void)
11591 {
11592 struct bp_location *bl, **blp_tmp;
11593
11594 bp_locations_placed_address_before_address_max = 0;
11595 bp_locations_shadow_len_after_address_max = 0;
11596
11597 ALL_BP_LOCATIONS (bl, blp_tmp)
11598 {
11599 CORE_ADDR start, end, addr;
11600
11601 if (!bp_location_has_shadow (bl))
11602 continue;
11603
11604 start = bl->target_info.placed_address;
11605 end = start + bl->target_info.shadow_len;
11606
11607 gdb_assert (bl->address >= start);
11608 addr = bl->address - start;
11609 if (addr > bp_locations_placed_address_before_address_max)
11610 bp_locations_placed_address_before_address_max = addr;
11611
11612 /* Zero SHADOW_LEN would not pass bp_location_has_shadow. */
11613
11614 gdb_assert (bl->address < end);
11615 addr = end - bl->address;
11616 if (addr > bp_locations_shadow_len_after_address_max)
11617 bp_locations_shadow_len_after_address_max = addr;
11618 }
11619 }
11620
11621 /* Download tracepoint locations if they haven't been. */
11622
11623 static void
11624 download_tracepoint_locations (void)
11625 {
11626 struct breakpoint *b;
11627 enum tribool can_download_tracepoint = TRIBOOL_UNKNOWN;
11628
11629 scoped_restore_current_pspace_and_thread restore_pspace_thread;
11630
11631 ALL_TRACEPOINTS (b)
11632 {
11633 struct bp_location *bl;
11634 struct tracepoint *t;
11635 int bp_location_downloaded = 0;
11636
11637 if ((b->type == bp_fast_tracepoint
11638 ? !may_insert_fast_tracepoints
11639 : !may_insert_tracepoints))
11640 continue;
11641
11642 if (can_download_tracepoint == TRIBOOL_UNKNOWN)
11643 {
11644 if (target_can_download_tracepoint ())
11645 can_download_tracepoint = TRIBOOL_TRUE;
11646 else
11647 can_download_tracepoint = TRIBOOL_FALSE;
11648 }
11649
11650 if (can_download_tracepoint == TRIBOOL_FALSE)
11651 break;
11652
11653 for (bl = b->loc; bl; bl = bl->next)
11654 {
11655 /* In tracepoint, locations are _never_ duplicated, so
11656 should_be_inserted is equivalent to
11657 unduplicated_should_be_inserted. */
11658 if (!should_be_inserted (bl) || bl->inserted)
11659 continue;
11660
11661 switch_to_program_space_and_thread (bl->pspace);
11662
11663 target_download_tracepoint (bl);
11664
11665 bl->inserted = 1;
11666 bp_location_downloaded = 1;
11667 }
11668 t = (struct tracepoint *) b;
11669 t->number_on_target = b->number;
11670 if (bp_location_downloaded)
11671 gdb::observers::breakpoint_modified.notify (b);
11672 }
11673 }
11674
11675 /* Swap the insertion/duplication state between two locations. */
11676
11677 static void
11678 swap_insertion (struct bp_location *left, struct bp_location *right)
11679 {
11680 const int left_inserted = left->inserted;
11681 const int left_duplicate = left->duplicate;
11682 const int left_needs_update = left->needs_update;
11683 const struct bp_target_info left_target_info = left->target_info;
11684
11685 /* Locations of tracepoints can never be duplicated. */
11686 if (is_tracepoint (left->owner))
11687 gdb_assert (!left->duplicate);
11688 if (is_tracepoint (right->owner))
11689 gdb_assert (!right->duplicate);
11690
11691 left->inserted = right->inserted;
11692 left->duplicate = right->duplicate;
11693 left->needs_update = right->needs_update;
11694 left->target_info = right->target_info;
11695 right->inserted = left_inserted;
11696 right->duplicate = left_duplicate;
11697 right->needs_update = left_needs_update;
11698 right->target_info = left_target_info;
11699 }
11700
11701 /* Force the re-insertion of the locations at ADDRESS. This is called
11702 once a new/deleted/modified duplicate location is found and we are evaluating
11703 conditions on the target's side. Such conditions need to be updated on
11704 the target. */
11705
11706 static void
11707 force_breakpoint_reinsertion (struct bp_location *bl)
11708 {
11709 struct bp_location **locp = NULL, **loc2p;
11710 struct bp_location *loc;
11711 CORE_ADDR address = 0;
11712 int pspace_num;
11713
11714 address = bl->address;
11715 pspace_num = bl->pspace->num;
11716
11717 /* This is only meaningful if the target is
11718 evaluating conditions and if the user has
11719 opted for condition evaluation on the target's
11720 side. */
11721 if (gdb_evaluates_breakpoint_condition_p ()
11722 || !target_supports_evaluation_of_breakpoint_conditions ())
11723 return;
11724
11725 /* Flag all breakpoint locations with this address and
11726 the same program space as the location
11727 as "its condition has changed". We need to
11728 update the conditions on the target's side. */
11729 ALL_BP_LOCATIONS_AT_ADDR (loc2p, locp, address)
11730 {
11731 loc = *loc2p;
11732
11733 if (!is_breakpoint (loc->owner)
11734 || pspace_num != loc->pspace->num)
11735 continue;
11736
11737 /* Flag the location appropriately. We use a different state to
11738 let everyone know that we already updated the set of locations
11739 with addr bl->address and program space bl->pspace. This is so
11740 we don't have to keep calling these functions just to mark locations
11741 that have already been marked. */
11742 loc->condition_changed = condition_updated;
11743
11744 /* Free the agent expression bytecode as well. We will compute
11745 it later on. */
11746 loc->cond_bytecode.reset ();
11747 }
11748 }
11749 /* Called whether new breakpoints are created, or existing breakpoints
11750 deleted, to update the global location list and recompute which
11751 locations are duplicate of which.
11752
11753 The INSERT_MODE flag determines whether locations may not, may, or
11754 shall be inserted now. See 'enum ugll_insert_mode' for more
11755 info. */
11756
11757 static void
11758 update_global_location_list (enum ugll_insert_mode insert_mode)
11759 {
11760 struct breakpoint *b;
11761 struct bp_location **locp, *loc;
11762 /* Last breakpoint location address that was marked for update. */
11763 CORE_ADDR last_addr = 0;
11764 /* Last breakpoint location program space that was marked for update. */
11765 int last_pspace_num = -1;
11766
11767 /* Used in the duplicates detection below. When iterating over all
11768 bp_locations, points to the first bp_location of a given address.
11769 Breakpoints and watchpoints of different types are never
11770 duplicates of each other. Keep one pointer for each type of
11771 breakpoint/watchpoint, so we only need to loop over all locations
11772 once. */
11773 struct bp_location *bp_loc_first; /* breakpoint */
11774 struct bp_location *wp_loc_first; /* hardware watchpoint */
11775 struct bp_location *awp_loc_first; /* access watchpoint */
11776 struct bp_location *rwp_loc_first; /* read watchpoint */
11777
11778 /* Saved former bp_locations array which we compare against the newly
11779 built bp_locations from the current state of ALL_BREAKPOINTS. */
11780 struct bp_location **old_locp;
11781 unsigned old_locations_count;
11782 gdb::unique_xmalloc_ptr<struct bp_location *> old_locations (bp_locations);
11783
11784 old_locations_count = bp_locations_count;
11785 bp_locations = NULL;
11786 bp_locations_count = 0;
11787
11788 ALL_BREAKPOINTS (b)
11789 for (loc = b->loc; loc; loc = loc->next)
11790 bp_locations_count++;
11791
11792 bp_locations = XNEWVEC (struct bp_location *, bp_locations_count);
11793 locp = bp_locations;
11794 ALL_BREAKPOINTS (b)
11795 for (loc = b->loc; loc; loc = loc->next)
11796 *locp++ = loc;
11797 qsort (bp_locations, bp_locations_count, sizeof (*bp_locations),
11798 bp_locations_compare);
11799
11800 bp_locations_target_extensions_update ();
11801
11802 /* Identify bp_location instances that are no longer present in the
11803 new list, and therefore should be freed. Note that it's not
11804 necessary that those locations should be removed from inferior --
11805 if there's another location at the same address (previously
11806 marked as duplicate), we don't need to remove/insert the
11807 location.
11808
11809 LOCP is kept in sync with OLD_LOCP, each pointing to the current
11810 and former bp_location array state respectively. */
11811
11812 locp = bp_locations;
11813 for (old_locp = old_locations.get ();
11814 old_locp < old_locations.get () + old_locations_count;
11815 old_locp++)
11816 {
11817 struct bp_location *old_loc = *old_locp;
11818 struct bp_location **loc2p;
11819
11820 /* Tells if 'old_loc' is found among the new locations. If
11821 not, we have to free it. */
11822 int found_object = 0;
11823 /* Tells if the location should remain inserted in the target. */
11824 int keep_in_target = 0;
11825 int removed = 0;
11826
11827 /* Skip LOCP entries which will definitely never be needed.
11828 Stop either at or being the one matching OLD_LOC. */
11829 while (locp < bp_locations + bp_locations_count
11830 && (*locp)->address < old_loc->address)
11831 locp++;
11832
11833 for (loc2p = locp;
11834 (loc2p < bp_locations + bp_locations_count
11835 && (*loc2p)->address == old_loc->address);
11836 loc2p++)
11837 {
11838 /* Check if this is a new/duplicated location or a duplicated
11839 location that had its condition modified. If so, we want to send
11840 its condition to the target if evaluation of conditions is taking
11841 place there. */
11842 if ((*loc2p)->condition_changed == condition_modified
11843 && (last_addr != old_loc->address
11844 || last_pspace_num != old_loc->pspace->num))
11845 {
11846 force_breakpoint_reinsertion (*loc2p);
11847 last_pspace_num = old_loc->pspace->num;
11848 }
11849
11850 if (*loc2p == old_loc)
11851 found_object = 1;
11852 }
11853
11854 /* We have already handled this address, update it so that we don't
11855 have to go through updates again. */
11856 last_addr = old_loc->address;
11857
11858 /* Target-side condition evaluation: Handle deleted locations. */
11859 if (!found_object)
11860 force_breakpoint_reinsertion (old_loc);
11861
11862 /* If this location is no longer present, and inserted, look if
11863 there's maybe a new location at the same address. If so,
11864 mark that one inserted, and don't remove this one. This is
11865 needed so that we don't have a time window where a breakpoint
11866 at certain location is not inserted. */
11867
11868 if (old_loc->inserted)
11869 {
11870 /* If the location is inserted now, we might have to remove
11871 it. */
11872
11873 if (found_object && should_be_inserted (old_loc))
11874 {
11875 /* The location is still present in the location list,
11876 and still should be inserted. Don't do anything. */
11877 keep_in_target = 1;
11878 }
11879 else
11880 {
11881 /* This location still exists, but it won't be kept in the
11882 target since it may have been disabled. We proceed to
11883 remove its target-side condition. */
11884
11885 /* The location is either no longer present, or got
11886 disabled. See if there's another location at the
11887 same address, in which case we don't need to remove
11888 this one from the target. */
11889
11890 /* OLD_LOC comes from existing struct breakpoint. */
11891 if (breakpoint_address_is_meaningful (old_loc->owner))
11892 {
11893 for (loc2p = locp;
11894 (loc2p < bp_locations + bp_locations_count
11895 && (*loc2p)->address == old_loc->address);
11896 loc2p++)
11897 {
11898 struct bp_location *loc2 = *loc2p;
11899
11900 if (breakpoint_locations_match (loc2, old_loc))
11901 {
11902 /* Read watchpoint locations are switched to
11903 access watchpoints, if the former are not
11904 supported, but the latter are. */
11905 if (is_hardware_watchpoint (old_loc->owner))
11906 {
11907 gdb_assert (is_hardware_watchpoint (loc2->owner));
11908 loc2->watchpoint_type = old_loc->watchpoint_type;
11909 }
11910
11911 /* loc2 is a duplicated location. We need to check
11912 if it should be inserted in case it will be
11913 unduplicated. */
11914 if (loc2 != old_loc
11915 && unduplicated_should_be_inserted (loc2))
11916 {
11917 swap_insertion (old_loc, loc2);
11918 keep_in_target = 1;
11919 break;
11920 }
11921 }
11922 }
11923 }
11924 }
11925
11926 if (!keep_in_target)
11927 {
11928 if (remove_breakpoint (old_loc))
11929 {
11930 /* This is just about all we can do. We could keep
11931 this location on the global list, and try to
11932 remove it next time, but there's no particular
11933 reason why we will succeed next time.
11934
11935 Note that at this point, old_loc->owner is still
11936 valid, as delete_breakpoint frees the breakpoint
11937 only after calling us. */
11938 printf_filtered (_("warning: Error removing "
11939 "breakpoint %d\n"),
11940 old_loc->owner->number);
11941 }
11942 removed = 1;
11943 }
11944 }
11945
11946 if (!found_object)
11947 {
11948 if (removed && target_is_non_stop_p ()
11949 && need_moribund_for_location_type (old_loc))
11950 {
11951 /* This location was removed from the target. In
11952 non-stop mode, a race condition is possible where
11953 we've removed a breakpoint, but stop events for that
11954 breakpoint are already queued and will arrive later.
11955 We apply an heuristic to be able to distinguish such
11956 SIGTRAPs from other random SIGTRAPs: we keep this
11957 breakpoint location for a bit, and will retire it
11958 after we see some number of events. The theory here
11959 is that reporting of events should, "on the average",
11960 be fair, so after a while we'll see events from all
11961 threads that have anything of interest, and no longer
11962 need to keep this breakpoint location around. We
11963 don't hold locations forever so to reduce chances of
11964 mistaking a non-breakpoint SIGTRAP for a breakpoint
11965 SIGTRAP.
11966
11967 The heuristic failing can be disastrous on
11968 decr_pc_after_break targets.
11969
11970 On decr_pc_after_break targets, like e.g., x86-linux,
11971 if we fail to recognize a late breakpoint SIGTRAP,
11972 because events_till_retirement has reached 0 too
11973 soon, we'll fail to do the PC adjustment, and report
11974 a random SIGTRAP to the user. When the user resumes
11975 the inferior, it will most likely immediately crash
11976 with SIGILL/SIGBUS/SIGSEGV, or worse, get silently
11977 corrupted, because of being resumed e.g., in the
11978 middle of a multi-byte instruction, or skipped a
11979 one-byte instruction. This was actually seen happen
11980 on native x86-linux, and should be less rare on
11981 targets that do not support new thread events, like
11982 remote, due to the heuristic depending on
11983 thread_count.
11984
11985 Mistaking a random SIGTRAP for a breakpoint trap
11986 causes similar symptoms (PC adjustment applied when
11987 it shouldn't), but then again, playing with SIGTRAPs
11988 behind the debugger's back is asking for trouble.
11989
11990 Since hardware watchpoint traps are always
11991 distinguishable from other traps, so we don't need to
11992 apply keep hardware watchpoint moribund locations
11993 around. We simply always ignore hardware watchpoint
11994 traps we can no longer explain. */
11995
11996 old_loc->events_till_retirement = 3 * (thread_count () + 1);
11997 old_loc->owner = NULL;
11998
11999 moribund_locations.push_back (old_loc);
12000 }
12001 else
12002 {
12003 old_loc->owner = NULL;
12004 decref_bp_location (&old_loc);
12005 }
12006 }
12007 }
12008
12009 /* Rescan breakpoints at the same address and section, marking the
12010 first one as "first" and any others as "duplicates". This is so
12011 that the bpt instruction is only inserted once. If we have a
12012 permanent breakpoint at the same place as BPT, make that one the
12013 official one, and the rest as duplicates. Permanent breakpoints
12014 are sorted first for the same address.
12015
12016 Do the same for hardware watchpoints, but also considering the
12017 watchpoint's type (regular/access/read) and length. */
12018
12019 bp_loc_first = NULL;
12020 wp_loc_first = NULL;
12021 awp_loc_first = NULL;
12022 rwp_loc_first = NULL;
12023 ALL_BP_LOCATIONS (loc, locp)
12024 {
12025 /* ALL_BP_LOCATIONS bp_location has LOC->OWNER always
12026 non-NULL. */
12027 struct bp_location **loc_first_p;
12028 b = loc->owner;
12029
12030 if (!unduplicated_should_be_inserted (loc)
12031 || !breakpoint_address_is_meaningful (b)
12032 /* Don't detect duplicate for tracepoint locations because they are
12033 never duplicated. See the comments in field `duplicate' of
12034 `struct bp_location'. */
12035 || is_tracepoint (b))
12036 {
12037 /* Clear the condition modification flag. */
12038 loc->condition_changed = condition_unchanged;
12039 continue;
12040 }
12041
12042 if (b->type == bp_hardware_watchpoint)
12043 loc_first_p = &wp_loc_first;
12044 else if (b->type == bp_read_watchpoint)
12045 loc_first_p = &rwp_loc_first;
12046 else if (b->type == bp_access_watchpoint)
12047 loc_first_p = &awp_loc_first;
12048 else
12049 loc_first_p = &bp_loc_first;
12050
12051 if (*loc_first_p == NULL
12052 || (overlay_debugging && loc->section != (*loc_first_p)->section)
12053 || !breakpoint_locations_match (loc, *loc_first_p))
12054 {
12055 *loc_first_p = loc;
12056 loc->duplicate = 0;
12057
12058 if (is_breakpoint (loc->owner) && loc->condition_changed)
12059 {
12060 loc->needs_update = 1;
12061 /* Clear the condition modification flag. */
12062 loc->condition_changed = condition_unchanged;
12063 }
12064 continue;
12065 }
12066
12067
12068 /* This and the above ensure the invariant that the first location
12069 is not duplicated, and is the inserted one.
12070 All following are marked as duplicated, and are not inserted. */
12071 if (loc->inserted)
12072 swap_insertion (loc, *loc_first_p);
12073 loc->duplicate = 1;
12074
12075 /* Clear the condition modification flag. */
12076 loc->condition_changed = condition_unchanged;
12077 }
12078
12079 if (insert_mode == UGLL_INSERT || breakpoints_should_be_inserted_now ())
12080 {
12081 if (insert_mode != UGLL_DONT_INSERT)
12082 insert_breakpoint_locations ();
12083 else
12084 {
12085 /* Even though the caller told us to not insert new
12086 locations, we may still need to update conditions on the
12087 target's side of breakpoints that were already inserted
12088 if the target is evaluating breakpoint conditions. We
12089 only update conditions for locations that are marked
12090 "needs_update". */
12091 update_inserted_breakpoint_locations ();
12092 }
12093 }
12094
12095 if (insert_mode != UGLL_DONT_INSERT)
12096 download_tracepoint_locations ();
12097 }
12098
12099 void
12100 breakpoint_retire_moribund (void)
12101 {
12102 for (int ix = 0; ix < moribund_locations.size (); ++ix)
12103 {
12104 struct bp_location *loc = moribund_locations[ix];
12105 if (--(loc->events_till_retirement) == 0)
12106 {
12107 decref_bp_location (&loc);
12108 unordered_remove (moribund_locations, ix);
12109 --ix;
12110 }
12111 }
12112 }
12113
12114 static void
12115 update_global_location_list_nothrow (enum ugll_insert_mode insert_mode)
12116 {
12117
12118 TRY
12119 {
12120 update_global_location_list (insert_mode);
12121 }
12122 CATCH (e, RETURN_MASK_ERROR)
12123 {
12124 }
12125 END_CATCH
12126 }
12127
12128 /* Clear BKP from a BPS. */
12129
12130 static void
12131 bpstat_remove_bp_location (bpstat bps, struct breakpoint *bpt)
12132 {
12133 bpstat bs;
12134
12135 for (bs = bps; bs; bs = bs->next)
12136 if (bs->breakpoint_at == bpt)
12137 {
12138 bs->breakpoint_at = NULL;
12139 bs->old_val = NULL;
12140 /* bs->commands will be freed later. */
12141 }
12142 }
12143
12144 /* Callback for iterate_over_threads. */
12145 static int
12146 bpstat_remove_breakpoint_callback (struct thread_info *th, void *data)
12147 {
12148 struct breakpoint *bpt = (struct breakpoint *) data;
12149
12150 bpstat_remove_bp_location (th->control.stop_bpstat, bpt);
12151 return 0;
12152 }
12153
12154 /* Helper for breakpoint and tracepoint breakpoint_ops->mention
12155 callbacks. */
12156
12157 static void
12158 say_where (struct breakpoint *b)
12159 {
12160 struct value_print_options opts;
12161
12162 get_user_print_options (&opts);
12163
12164 /* i18n: cagney/2005-02-11: Below needs to be merged into a
12165 single string. */
12166 if (b->loc == NULL)
12167 {
12168 /* For pending locations, the output differs slightly based
12169 on b->extra_string. If this is non-NULL, it contains either
12170 a condition or dprintf arguments. */
12171 if (b->extra_string == NULL)
12172 {
12173 printf_filtered (_(" (%s) pending."),
12174 event_location_to_string (b->location.get ()));
12175 }
12176 else if (b->type == bp_dprintf)
12177 {
12178 printf_filtered (_(" (%s,%s) pending."),
12179 event_location_to_string (b->location.get ()),
12180 b->extra_string);
12181 }
12182 else
12183 {
12184 printf_filtered (_(" (%s %s) pending."),
12185 event_location_to_string (b->location.get ()),
12186 b->extra_string);
12187 }
12188 }
12189 else
12190 {
12191 if (opts.addressprint || b->loc->symtab == NULL)
12192 {
12193 printf_filtered (" at ");
12194 fputs_filtered (paddress (b->loc->gdbarch, b->loc->address),
12195 gdb_stdout);
12196 }
12197 if (b->loc->symtab != NULL)
12198 {
12199 /* If there is a single location, we can print the location
12200 more nicely. */
12201 if (b->loc->next == NULL)
12202 printf_filtered (": file %s, line %d.",
12203 symtab_to_filename_for_display (b->loc->symtab),
12204 b->loc->line_number);
12205 else
12206 /* This is not ideal, but each location may have a
12207 different file name, and this at least reflects the
12208 real situation somewhat. */
12209 printf_filtered (": %s.",
12210 event_location_to_string (b->location.get ()));
12211 }
12212
12213 if (b->loc->next)
12214 {
12215 struct bp_location *loc = b->loc;
12216 int n = 0;
12217 for (; loc; loc = loc->next)
12218 ++n;
12219 printf_filtered (" (%d locations)", n);
12220 }
12221 }
12222 }
12223
12224 /* Default bp_location_ops methods. */
12225
12226 static void
12227 bp_location_dtor (struct bp_location *self)
12228 {
12229 xfree (self->function_name);
12230 }
12231
12232 static const struct bp_location_ops bp_location_ops =
12233 {
12234 bp_location_dtor
12235 };
12236
12237 /* Destructor for the breakpoint base class. */
12238
12239 breakpoint::~breakpoint ()
12240 {
12241 xfree (this->cond_string);
12242 xfree (this->extra_string);
12243 xfree (this->filter);
12244 }
12245
12246 static struct bp_location *
12247 base_breakpoint_allocate_location (struct breakpoint *self)
12248 {
12249 return new bp_location (&bp_location_ops, self);
12250 }
12251
12252 static void
12253 base_breakpoint_re_set (struct breakpoint *b)
12254 {
12255 /* Nothing to re-set. */
12256 }
12257
12258 #define internal_error_pure_virtual_called() \
12259 gdb_assert_not_reached ("pure virtual function called")
12260
12261 static int
12262 base_breakpoint_insert_location (struct bp_location *bl)
12263 {
12264 internal_error_pure_virtual_called ();
12265 }
12266
12267 static int
12268 base_breakpoint_remove_location (struct bp_location *bl,
12269 enum remove_bp_reason reason)
12270 {
12271 internal_error_pure_virtual_called ();
12272 }
12273
12274 static int
12275 base_breakpoint_breakpoint_hit (const struct bp_location *bl,
12276 const address_space *aspace,
12277 CORE_ADDR bp_addr,
12278 const struct target_waitstatus *ws)
12279 {
12280 internal_error_pure_virtual_called ();
12281 }
12282
12283 static void
12284 base_breakpoint_check_status (bpstat bs)
12285 {
12286 /* Always stop. */
12287 }
12288
12289 /* A "works_in_software_mode" breakpoint_ops method that just internal
12290 errors. */
12291
12292 static int
12293 base_breakpoint_works_in_software_mode (const struct breakpoint *b)
12294 {
12295 internal_error_pure_virtual_called ();
12296 }
12297
12298 /* A "resources_needed" breakpoint_ops method that just internal
12299 errors. */
12300
12301 static int
12302 base_breakpoint_resources_needed (const struct bp_location *bl)
12303 {
12304 internal_error_pure_virtual_called ();
12305 }
12306
12307 static enum print_stop_action
12308 base_breakpoint_print_it (bpstat bs)
12309 {
12310 internal_error_pure_virtual_called ();
12311 }
12312
12313 static void
12314 base_breakpoint_print_one_detail (const struct breakpoint *self,
12315 struct ui_out *uiout)
12316 {
12317 /* nothing */
12318 }
12319
12320 static void
12321 base_breakpoint_print_mention (struct breakpoint *b)
12322 {
12323 internal_error_pure_virtual_called ();
12324 }
12325
12326 static void
12327 base_breakpoint_print_recreate (struct breakpoint *b, struct ui_file *fp)
12328 {
12329 internal_error_pure_virtual_called ();
12330 }
12331
12332 static void
12333 base_breakpoint_create_sals_from_location
12334 (const struct event_location *location,
12335 struct linespec_result *canonical,
12336 enum bptype type_wanted)
12337 {
12338 internal_error_pure_virtual_called ();
12339 }
12340
12341 static void
12342 base_breakpoint_create_breakpoints_sal (struct gdbarch *gdbarch,
12343 struct linespec_result *c,
12344 gdb::unique_xmalloc_ptr<char> cond_string,
12345 gdb::unique_xmalloc_ptr<char> extra_string,
12346 enum bptype type_wanted,
12347 enum bpdisp disposition,
12348 int thread,
12349 int task, int ignore_count,
12350 const struct breakpoint_ops *o,
12351 int from_tty, int enabled,
12352 int internal, unsigned flags)
12353 {
12354 internal_error_pure_virtual_called ();
12355 }
12356
12357 static std::vector<symtab_and_line>
12358 base_breakpoint_decode_location (struct breakpoint *b,
12359 const struct event_location *location,
12360 struct program_space *search_pspace)
12361 {
12362 internal_error_pure_virtual_called ();
12363 }
12364
12365 /* The default 'explains_signal' method. */
12366
12367 static int
12368 base_breakpoint_explains_signal (struct breakpoint *b, enum gdb_signal sig)
12369 {
12370 return 1;
12371 }
12372
12373 /* The default "after_condition_true" method. */
12374
12375 static void
12376 base_breakpoint_after_condition_true (struct bpstats *bs)
12377 {
12378 /* Nothing to do. */
12379 }
12380
12381 struct breakpoint_ops base_breakpoint_ops =
12382 {
12383 base_breakpoint_allocate_location,
12384 base_breakpoint_re_set,
12385 base_breakpoint_insert_location,
12386 base_breakpoint_remove_location,
12387 base_breakpoint_breakpoint_hit,
12388 base_breakpoint_check_status,
12389 base_breakpoint_resources_needed,
12390 base_breakpoint_works_in_software_mode,
12391 base_breakpoint_print_it,
12392 NULL,
12393 base_breakpoint_print_one_detail,
12394 base_breakpoint_print_mention,
12395 base_breakpoint_print_recreate,
12396 base_breakpoint_create_sals_from_location,
12397 base_breakpoint_create_breakpoints_sal,
12398 base_breakpoint_decode_location,
12399 base_breakpoint_explains_signal,
12400 base_breakpoint_after_condition_true,
12401 };
12402
12403 /* Default breakpoint_ops methods. */
12404
12405 static void
12406 bkpt_re_set (struct breakpoint *b)
12407 {
12408 /* FIXME: is this still reachable? */
12409 if (breakpoint_event_location_empty_p (b))
12410 {
12411 /* Anything without a location can't be re-set. */
12412 delete_breakpoint (b);
12413 return;
12414 }
12415
12416 breakpoint_re_set_default (b);
12417 }
12418
12419 static int
12420 bkpt_insert_location (struct bp_location *bl)
12421 {
12422 CORE_ADDR addr = bl->target_info.reqstd_address;
12423
12424 bl->target_info.kind = breakpoint_kind (bl, &addr);
12425 bl->target_info.placed_address = addr;
12426
12427 if (bl->loc_type == bp_loc_hardware_breakpoint)
12428 return target_insert_hw_breakpoint (bl->gdbarch, &bl->target_info);
12429 else
12430 return target_insert_breakpoint (bl->gdbarch, &bl->target_info);
12431 }
12432
12433 static int
12434 bkpt_remove_location (struct bp_location *bl, enum remove_bp_reason reason)
12435 {
12436 if (bl->loc_type == bp_loc_hardware_breakpoint)
12437 return target_remove_hw_breakpoint (bl->gdbarch, &bl->target_info);
12438 else
12439 return target_remove_breakpoint (bl->gdbarch, &bl->target_info, reason);
12440 }
12441
12442 static int
12443 bkpt_breakpoint_hit (const struct bp_location *bl,
12444 const address_space *aspace, CORE_ADDR bp_addr,
12445 const struct target_waitstatus *ws)
12446 {
12447 if (ws->kind != TARGET_WAITKIND_STOPPED
12448 || ws->value.sig != GDB_SIGNAL_TRAP)
12449 return 0;
12450
12451 if (!breakpoint_address_match (bl->pspace->aspace, bl->address,
12452 aspace, bp_addr))
12453 return 0;
12454
12455 if (overlay_debugging /* unmapped overlay section */
12456 && section_is_overlay (bl->section)
12457 && !section_is_mapped (bl->section))
12458 return 0;
12459
12460 return 1;
12461 }
12462
12463 static int
12464 dprintf_breakpoint_hit (const struct bp_location *bl,
12465 const address_space *aspace, CORE_ADDR bp_addr,
12466 const struct target_waitstatus *ws)
12467 {
12468 if (dprintf_style == dprintf_style_agent
12469 && target_can_run_breakpoint_commands ())
12470 {
12471 /* An agent-style dprintf never causes a stop. If we see a trap
12472 for this address it must be for a breakpoint that happens to
12473 be set at the same address. */
12474 return 0;
12475 }
12476
12477 return bkpt_breakpoint_hit (bl, aspace, bp_addr, ws);
12478 }
12479
12480 static int
12481 bkpt_resources_needed (const struct bp_location *bl)
12482 {
12483 gdb_assert (bl->owner->type == bp_hardware_breakpoint);
12484
12485 return 1;
12486 }
12487
12488 static enum print_stop_action
12489 bkpt_print_it (bpstat bs)
12490 {
12491 struct breakpoint *b;
12492 const struct bp_location *bl;
12493 int bp_temp;
12494 struct ui_out *uiout = current_uiout;
12495
12496 gdb_assert (bs->bp_location_at != NULL);
12497
12498 bl = bs->bp_location_at;
12499 b = bs->breakpoint_at;
12500
12501 bp_temp = b->disposition == disp_del;
12502 if (bl->address != bl->requested_address)
12503 breakpoint_adjustment_warning (bl->requested_address,
12504 bl->address,
12505 b->number, 1);
12506 annotate_breakpoint (b->number);
12507 maybe_print_thread_hit_breakpoint (uiout);
12508
12509 if (bp_temp)
12510 uiout->text ("Temporary breakpoint ");
12511 else
12512 uiout->text ("Breakpoint ");
12513 if (uiout->is_mi_like_p ())
12514 {
12515 uiout->field_string ("reason",
12516 async_reason_lookup (EXEC_ASYNC_BREAKPOINT_HIT));
12517 uiout->field_string ("disp", bpdisp_text (b->disposition));
12518 }
12519 uiout->field_int ("bkptno", b->number);
12520 uiout->text (", ");
12521
12522 return PRINT_SRC_AND_LOC;
12523 }
12524
12525 static void
12526 bkpt_print_mention (struct breakpoint *b)
12527 {
12528 if (current_uiout->is_mi_like_p ())
12529 return;
12530
12531 switch (b->type)
12532 {
12533 case bp_breakpoint:
12534 case bp_gnu_ifunc_resolver:
12535 if (b->disposition == disp_del)
12536 printf_filtered (_("Temporary breakpoint"));
12537 else
12538 printf_filtered (_("Breakpoint"));
12539 printf_filtered (_(" %d"), b->number);
12540 if (b->type == bp_gnu_ifunc_resolver)
12541 printf_filtered (_(" at gnu-indirect-function resolver"));
12542 break;
12543 case bp_hardware_breakpoint:
12544 printf_filtered (_("Hardware assisted breakpoint %d"), b->number);
12545 break;
12546 case bp_dprintf:
12547 printf_filtered (_("Dprintf %d"), b->number);
12548 break;
12549 }
12550
12551 say_where (b);
12552 }
12553
12554 static void
12555 bkpt_print_recreate (struct breakpoint *tp, struct ui_file *fp)
12556 {
12557 if (tp->type == bp_breakpoint && tp->disposition == disp_del)
12558 fprintf_unfiltered (fp, "tbreak");
12559 else if (tp->type == bp_breakpoint)
12560 fprintf_unfiltered (fp, "break");
12561 else if (tp->type == bp_hardware_breakpoint
12562 && tp->disposition == disp_del)
12563 fprintf_unfiltered (fp, "thbreak");
12564 else if (tp->type == bp_hardware_breakpoint)
12565 fprintf_unfiltered (fp, "hbreak");
12566 else
12567 internal_error (__FILE__, __LINE__,
12568 _("unhandled breakpoint type %d"), (int) tp->type);
12569
12570 fprintf_unfiltered (fp, " %s",
12571 event_location_to_string (tp->location.get ()));
12572
12573 /* Print out extra_string if this breakpoint is pending. It might
12574 contain, for example, conditions that were set by the user. */
12575 if (tp->loc == NULL && tp->extra_string != NULL)
12576 fprintf_unfiltered (fp, " %s", tp->extra_string);
12577
12578 print_recreate_thread (tp, fp);
12579 }
12580
12581 static void
12582 bkpt_create_sals_from_location (const struct event_location *location,
12583 struct linespec_result *canonical,
12584 enum bptype type_wanted)
12585 {
12586 create_sals_from_location_default (location, canonical, type_wanted);
12587 }
12588
12589 static void
12590 bkpt_create_breakpoints_sal (struct gdbarch *gdbarch,
12591 struct linespec_result *canonical,
12592 gdb::unique_xmalloc_ptr<char> cond_string,
12593 gdb::unique_xmalloc_ptr<char> extra_string,
12594 enum bptype type_wanted,
12595 enum bpdisp disposition,
12596 int thread,
12597 int task, int ignore_count,
12598 const struct breakpoint_ops *ops,
12599 int from_tty, int enabled,
12600 int internal, unsigned flags)
12601 {
12602 create_breakpoints_sal_default (gdbarch, canonical,
12603 std::move (cond_string),
12604 std::move (extra_string),
12605 type_wanted,
12606 disposition, thread, task,
12607 ignore_count, ops, from_tty,
12608 enabled, internal, flags);
12609 }
12610
12611 static std::vector<symtab_and_line>
12612 bkpt_decode_location (struct breakpoint *b,
12613 const struct event_location *location,
12614 struct program_space *search_pspace)
12615 {
12616 return decode_location_default (b, location, search_pspace);
12617 }
12618
12619 /* Virtual table for internal breakpoints. */
12620
12621 static void
12622 internal_bkpt_re_set (struct breakpoint *b)
12623 {
12624 switch (b->type)
12625 {
12626 /* Delete overlay event and longjmp master breakpoints; they
12627 will be reset later by breakpoint_re_set. */
12628 case bp_overlay_event:
12629 case bp_longjmp_master:
12630 case bp_std_terminate_master:
12631 case bp_exception_master:
12632 delete_breakpoint (b);
12633 break;
12634
12635 /* This breakpoint is special, it's set up when the inferior
12636 starts and we really don't want to touch it. */
12637 case bp_shlib_event:
12638
12639 /* Like bp_shlib_event, this breakpoint type is special. Once
12640 it is set up, we do not want to touch it. */
12641 case bp_thread_event:
12642 break;
12643 }
12644 }
12645
12646 static void
12647 internal_bkpt_check_status (bpstat bs)
12648 {
12649 if (bs->breakpoint_at->type == bp_shlib_event)
12650 {
12651 /* If requested, stop when the dynamic linker notifies GDB of
12652 events. This allows the user to get control and place
12653 breakpoints in initializer routines for dynamically loaded
12654 objects (among other things). */
12655 bs->stop = stop_on_solib_events;
12656 bs->print = stop_on_solib_events;
12657 }
12658 else
12659 bs->stop = 0;
12660 }
12661
12662 static enum print_stop_action
12663 internal_bkpt_print_it (bpstat bs)
12664 {
12665 struct breakpoint *b;
12666
12667 b = bs->breakpoint_at;
12668
12669 switch (b->type)
12670 {
12671 case bp_shlib_event:
12672 /* Did we stop because the user set the stop_on_solib_events
12673 variable? (If so, we report this as a generic, "Stopped due
12674 to shlib event" message.) */
12675 print_solib_event (0);
12676 break;
12677
12678 case bp_thread_event:
12679 /* Not sure how we will get here.
12680 GDB should not stop for these breakpoints. */
12681 printf_filtered (_("Thread Event Breakpoint: gdb should not stop!\n"));
12682 break;
12683
12684 case bp_overlay_event:
12685 /* By analogy with the thread event, GDB should not stop for these. */
12686 printf_filtered (_("Overlay Event Breakpoint: gdb should not stop!\n"));
12687 break;
12688
12689 case bp_longjmp_master:
12690 /* These should never be enabled. */
12691 printf_filtered (_("Longjmp Master Breakpoint: gdb should not stop!\n"));
12692 break;
12693
12694 case bp_std_terminate_master:
12695 /* These should never be enabled. */
12696 printf_filtered (_("std::terminate Master Breakpoint: "
12697 "gdb should not stop!\n"));
12698 break;
12699
12700 case bp_exception_master:
12701 /* These should never be enabled. */
12702 printf_filtered (_("Exception Master Breakpoint: "
12703 "gdb should not stop!\n"));
12704 break;
12705 }
12706
12707 return PRINT_NOTHING;
12708 }
12709
12710 static void
12711 internal_bkpt_print_mention (struct breakpoint *b)
12712 {
12713 /* Nothing to mention. These breakpoints are internal. */
12714 }
12715
12716 /* Virtual table for momentary breakpoints */
12717
12718 static void
12719 momentary_bkpt_re_set (struct breakpoint *b)
12720 {
12721 /* Keep temporary breakpoints, which can be encountered when we step
12722 over a dlopen call and solib_add is resetting the breakpoints.
12723 Otherwise these should have been blown away via the cleanup chain
12724 or by breakpoint_init_inferior when we rerun the executable. */
12725 }
12726
12727 static void
12728 momentary_bkpt_check_status (bpstat bs)
12729 {
12730 /* Nothing. The point of these breakpoints is causing a stop. */
12731 }
12732
12733 static enum print_stop_action
12734 momentary_bkpt_print_it (bpstat bs)
12735 {
12736 return PRINT_UNKNOWN;
12737 }
12738
12739 static void
12740 momentary_bkpt_print_mention (struct breakpoint *b)
12741 {
12742 /* Nothing to mention. These breakpoints are internal. */
12743 }
12744
12745 /* Ensure INITIATING_FRAME is cleared when no such breakpoint exists.
12746
12747 It gets cleared already on the removal of the first one of such placed
12748 breakpoints. This is OK as they get all removed altogether. */
12749
12750 longjmp_breakpoint::~longjmp_breakpoint ()
12751 {
12752 thread_info *tp = find_thread_global_id (this->thread);
12753
12754 if (tp != NULL)
12755 tp->initiating_frame = null_frame_id;
12756 }
12757
12758 /* Specific methods for probe breakpoints. */
12759
12760 static int
12761 bkpt_probe_insert_location (struct bp_location *bl)
12762 {
12763 int v = bkpt_insert_location (bl);
12764
12765 if (v == 0)
12766 {
12767 /* The insertion was successful, now let's set the probe's semaphore
12768 if needed. */
12769 bl->probe.prob->set_semaphore (bl->probe.objfile, bl->gdbarch);
12770 }
12771
12772 return v;
12773 }
12774
12775 static int
12776 bkpt_probe_remove_location (struct bp_location *bl,
12777 enum remove_bp_reason reason)
12778 {
12779 /* Let's clear the semaphore before removing the location. */
12780 bl->probe.prob->clear_semaphore (bl->probe.objfile, bl->gdbarch);
12781
12782 return bkpt_remove_location (bl, reason);
12783 }
12784
12785 static void
12786 bkpt_probe_create_sals_from_location (const struct event_location *location,
12787 struct linespec_result *canonical,
12788 enum bptype type_wanted)
12789 {
12790 struct linespec_sals lsal;
12791
12792 lsal.sals = parse_probes (location, NULL, canonical);
12793 lsal.canonical
12794 = xstrdup (event_location_to_string (canonical->location.get ()));
12795 canonical->lsals.push_back (std::move (lsal));
12796 }
12797
12798 static std::vector<symtab_and_line>
12799 bkpt_probe_decode_location (struct breakpoint *b,
12800 const struct event_location *location,
12801 struct program_space *search_pspace)
12802 {
12803 std::vector<symtab_and_line> sals = parse_probes (location, search_pspace, NULL);
12804 if (sals.empty ())
12805 error (_("probe not found"));
12806 return sals;
12807 }
12808
12809 /* The breakpoint_ops structure to be used in tracepoints. */
12810
12811 static void
12812 tracepoint_re_set (struct breakpoint *b)
12813 {
12814 breakpoint_re_set_default (b);
12815 }
12816
12817 static int
12818 tracepoint_breakpoint_hit (const struct bp_location *bl,
12819 const address_space *aspace, CORE_ADDR bp_addr,
12820 const struct target_waitstatus *ws)
12821 {
12822 /* By definition, the inferior does not report stops at
12823 tracepoints. */
12824 return 0;
12825 }
12826
12827 static void
12828 tracepoint_print_one_detail (const struct breakpoint *self,
12829 struct ui_out *uiout)
12830 {
12831 struct tracepoint *tp = (struct tracepoint *) self;
12832 if (!tp->static_trace_marker_id.empty ())
12833 {
12834 gdb_assert (self->type == bp_static_tracepoint);
12835
12836 uiout->text ("\tmarker id is ");
12837 uiout->field_string ("static-tracepoint-marker-string-id",
12838 tp->static_trace_marker_id);
12839 uiout->text ("\n");
12840 }
12841 }
12842
12843 static void
12844 tracepoint_print_mention (struct breakpoint *b)
12845 {
12846 if (current_uiout->is_mi_like_p ())
12847 return;
12848
12849 switch (b->type)
12850 {
12851 case bp_tracepoint:
12852 printf_filtered (_("Tracepoint"));
12853 printf_filtered (_(" %d"), b->number);
12854 break;
12855 case bp_fast_tracepoint:
12856 printf_filtered (_("Fast tracepoint"));
12857 printf_filtered (_(" %d"), b->number);
12858 break;
12859 case bp_static_tracepoint:
12860 printf_filtered (_("Static tracepoint"));
12861 printf_filtered (_(" %d"), b->number);
12862 break;
12863 default:
12864 internal_error (__FILE__, __LINE__,
12865 _("unhandled tracepoint type %d"), (int) b->type);
12866 }
12867
12868 say_where (b);
12869 }
12870
12871 static void
12872 tracepoint_print_recreate (struct breakpoint *self, struct ui_file *fp)
12873 {
12874 struct tracepoint *tp = (struct tracepoint *) self;
12875
12876 if (self->type == bp_fast_tracepoint)
12877 fprintf_unfiltered (fp, "ftrace");
12878 else if (self->type == bp_static_tracepoint)
12879 fprintf_unfiltered (fp, "strace");
12880 else if (self->type == bp_tracepoint)
12881 fprintf_unfiltered (fp, "trace");
12882 else
12883 internal_error (__FILE__, __LINE__,
12884 _("unhandled tracepoint type %d"), (int) self->type);
12885
12886 fprintf_unfiltered (fp, " %s",
12887 event_location_to_string (self->location.get ()));
12888 print_recreate_thread (self, fp);
12889
12890 if (tp->pass_count)
12891 fprintf_unfiltered (fp, " passcount %d\n", tp->pass_count);
12892 }
12893
12894 static void
12895 tracepoint_create_sals_from_location (const struct event_location *location,
12896 struct linespec_result *canonical,
12897 enum bptype type_wanted)
12898 {
12899 create_sals_from_location_default (location, canonical, type_wanted);
12900 }
12901
12902 static void
12903 tracepoint_create_breakpoints_sal (struct gdbarch *gdbarch,
12904 struct linespec_result *canonical,
12905 gdb::unique_xmalloc_ptr<char> cond_string,
12906 gdb::unique_xmalloc_ptr<char> extra_string,
12907 enum bptype type_wanted,
12908 enum bpdisp disposition,
12909 int thread,
12910 int task, int ignore_count,
12911 const struct breakpoint_ops *ops,
12912 int from_tty, int enabled,
12913 int internal, unsigned flags)
12914 {
12915 create_breakpoints_sal_default (gdbarch, canonical,
12916 std::move (cond_string),
12917 std::move (extra_string),
12918 type_wanted,
12919 disposition, thread, task,
12920 ignore_count, ops, from_tty,
12921 enabled, internal, flags);
12922 }
12923
12924 static std::vector<symtab_and_line>
12925 tracepoint_decode_location (struct breakpoint *b,
12926 const struct event_location *location,
12927 struct program_space *search_pspace)
12928 {
12929 return decode_location_default (b, location, search_pspace);
12930 }
12931
12932 struct breakpoint_ops tracepoint_breakpoint_ops;
12933
12934 /* The breakpoint_ops structure to be use on tracepoints placed in a
12935 static probe. */
12936
12937 static void
12938 tracepoint_probe_create_sals_from_location
12939 (const struct event_location *location,
12940 struct linespec_result *canonical,
12941 enum bptype type_wanted)
12942 {
12943 /* We use the same method for breakpoint on probes. */
12944 bkpt_probe_create_sals_from_location (location, canonical, type_wanted);
12945 }
12946
12947 static std::vector<symtab_and_line>
12948 tracepoint_probe_decode_location (struct breakpoint *b,
12949 const struct event_location *location,
12950 struct program_space *search_pspace)
12951 {
12952 /* We use the same method for breakpoint on probes. */
12953 return bkpt_probe_decode_location (b, location, search_pspace);
12954 }
12955
12956 static struct breakpoint_ops tracepoint_probe_breakpoint_ops;
12957
12958 /* Dprintf breakpoint_ops methods. */
12959
12960 static void
12961 dprintf_re_set (struct breakpoint *b)
12962 {
12963 breakpoint_re_set_default (b);
12964
12965 /* extra_string should never be non-NULL for dprintf. */
12966 gdb_assert (b->extra_string != NULL);
12967
12968 /* 1 - connect to target 1, that can run breakpoint commands.
12969 2 - create a dprintf, which resolves fine.
12970 3 - disconnect from target 1
12971 4 - connect to target 2, that can NOT run breakpoint commands.
12972
12973 After steps #3/#4, you'll want the dprintf command list to
12974 be updated, because target 1 and 2 may well return different
12975 answers for target_can_run_breakpoint_commands().
12976 Given absence of finer grained resetting, we get to do
12977 it all the time. */
12978 if (b->extra_string != NULL)
12979 update_dprintf_command_list (b);
12980 }
12981
12982 /* Implement the "print_recreate" breakpoint_ops method for dprintf. */
12983
12984 static void
12985 dprintf_print_recreate (struct breakpoint *tp, struct ui_file *fp)
12986 {
12987 fprintf_unfiltered (fp, "dprintf %s,%s",
12988 event_location_to_string (tp->location.get ()),
12989 tp->extra_string);
12990 print_recreate_thread (tp, fp);
12991 }
12992
12993 /* Implement the "after_condition_true" breakpoint_ops method for
12994 dprintf.
12995
12996 dprintf's are implemented with regular commands in their command
12997 list, but we run the commands here instead of before presenting the
12998 stop to the user, as dprintf's don't actually cause a stop. This
12999 also makes it so that the commands of multiple dprintfs at the same
13000 address are all handled. */
13001
13002 static void
13003 dprintf_after_condition_true (struct bpstats *bs)
13004 {
13005 struct bpstats tmp_bs;
13006 struct bpstats *tmp_bs_p = &tmp_bs;
13007
13008 /* dprintf's never cause a stop. This wasn't set in the
13009 check_status hook instead because that would make the dprintf's
13010 condition not be evaluated. */
13011 bs->stop = 0;
13012
13013 /* Run the command list here. Take ownership of it instead of
13014 copying. We never want these commands to run later in
13015 bpstat_do_actions, if a breakpoint that causes a stop happens to
13016 be set at same address as this dprintf, or even if running the
13017 commands here throws. */
13018 tmp_bs.commands = bs->commands;
13019 bs->commands = NULL;
13020
13021 bpstat_do_actions_1 (&tmp_bs_p);
13022
13023 /* 'tmp_bs.commands' will usually be NULL by now, but
13024 bpstat_do_actions_1 may return early without processing the whole
13025 list. */
13026 }
13027
13028 /* The breakpoint_ops structure to be used on static tracepoints with
13029 markers (`-m'). */
13030
13031 static void
13032 strace_marker_create_sals_from_location (const struct event_location *location,
13033 struct linespec_result *canonical,
13034 enum bptype type_wanted)
13035 {
13036 struct linespec_sals lsal;
13037 const char *arg_start, *arg;
13038
13039 arg = arg_start = get_linespec_location (location)->spec_string;
13040 lsal.sals = decode_static_tracepoint_spec (&arg);
13041
13042 std::string str (arg_start, arg - arg_start);
13043 const char *ptr = str.c_str ();
13044 canonical->location
13045 = new_linespec_location (&ptr, symbol_name_match_type::FULL);
13046
13047 lsal.canonical
13048 = xstrdup (event_location_to_string (canonical->location.get ()));
13049 canonical->lsals.push_back (std::move (lsal));
13050 }
13051
13052 static void
13053 strace_marker_create_breakpoints_sal (struct gdbarch *gdbarch,
13054 struct linespec_result *canonical,
13055 gdb::unique_xmalloc_ptr<char> cond_string,
13056 gdb::unique_xmalloc_ptr<char> extra_string,
13057 enum bptype type_wanted,
13058 enum bpdisp disposition,
13059 int thread,
13060 int task, int ignore_count,
13061 const struct breakpoint_ops *ops,
13062 int from_tty, int enabled,
13063 int internal, unsigned flags)
13064 {
13065 const linespec_sals &lsal = canonical->lsals[0];
13066
13067 /* If the user is creating a static tracepoint by marker id
13068 (strace -m MARKER_ID), then store the sals index, so that
13069 breakpoint_re_set can try to match up which of the newly
13070 found markers corresponds to this one, and, don't try to
13071 expand multiple locations for each sal, given than SALS
13072 already should contain all sals for MARKER_ID. */
13073
13074 for (size_t i = 0; i < lsal.sals.size (); i++)
13075 {
13076 event_location_up location
13077 = copy_event_location (canonical->location.get ());
13078
13079 std::unique_ptr<tracepoint> tp (new tracepoint ());
13080 init_breakpoint_sal (tp.get (), gdbarch, lsal.sals[i],
13081 std::move (location), NULL,
13082 std::move (cond_string),
13083 std::move (extra_string),
13084 type_wanted, disposition,
13085 thread, task, ignore_count, ops,
13086 from_tty, enabled, internal, flags,
13087 canonical->special_display);
13088 /* Given that its possible to have multiple markers with
13089 the same string id, if the user is creating a static
13090 tracepoint by marker id ("strace -m MARKER_ID"), then
13091 store the sals index, so that breakpoint_re_set can
13092 try to match up which of the newly found markers
13093 corresponds to this one */
13094 tp->static_trace_marker_id_idx = i;
13095
13096 install_breakpoint (internal, std::move (tp), 0);
13097 }
13098 }
13099
13100 static std::vector<symtab_and_line>
13101 strace_marker_decode_location (struct breakpoint *b,
13102 const struct event_location *location,
13103 struct program_space *search_pspace)
13104 {
13105 struct tracepoint *tp = (struct tracepoint *) b;
13106 const char *s = get_linespec_location (location)->spec_string;
13107
13108 std::vector<symtab_and_line> sals = decode_static_tracepoint_spec (&s);
13109 if (sals.size () > tp->static_trace_marker_id_idx)
13110 {
13111 sals[0] = sals[tp->static_trace_marker_id_idx];
13112 sals.resize (1);
13113 return sals;
13114 }
13115 else
13116 error (_("marker %s not found"), tp->static_trace_marker_id.c_str ());
13117 }
13118
13119 static struct breakpoint_ops strace_marker_breakpoint_ops;
13120
13121 static int
13122 strace_marker_p (struct breakpoint *b)
13123 {
13124 return b->ops == &strace_marker_breakpoint_ops;
13125 }
13126
13127 /* Delete a breakpoint and clean up all traces of it in the data
13128 structures. */
13129
13130 void
13131 delete_breakpoint (struct breakpoint *bpt)
13132 {
13133 struct breakpoint *b;
13134
13135 gdb_assert (bpt != NULL);
13136
13137 /* Has this bp already been deleted? This can happen because
13138 multiple lists can hold pointers to bp's. bpstat lists are
13139 especial culprits.
13140
13141 One example of this happening is a watchpoint's scope bp. When
13142 the scope bp triggers, we notice that the watchpoint is out of
13143 scope, and delete it. We also delete its scope bp. But the
13144 scope bp is marked "auto-deleting", and is already on a bpstat.
13145 That bpstat is then checked for auto-deleting bp's, which are
13146 deleted.
13147
13148 A real solution to this problem might involve reference counts in
13149 bp's, and/or giving them pointers back to their referencing
13150 bpstat's, and teaching delete_breakpoint to only free a bp's
13151 storage when no more references were extent. A cheaper bandaid
13152 was chosen. */
13153 if (bpt->type == bp_none)
13154 return;
13155
13156 /* At least avoid this stale reference until the reference counting
13157 of breakpoints gets resolved. */
13158 if (bpt->related_breakpoint != bpt)
13159 {
13160 struct breakpoint *related;
13161 struct watchpoint *w;
13162
13163 if (bpt->type == bp_watchpoint_scope)
13164 w = (struct watchpoint *) bpt->related_breakpoint;
13165 else if (bpt->related_breakpoint->type == bp_watchpoint_scope)
13166 w = (struct watchpoint *) bpt;
13167 else
13168 w = NULL;
13169 if (w != NULL)
13170 watchpoint_del_at_next_stop (w);
13171
13172 /* Unlink bpt from the bpt->related_breakpoint ring. */
13173 for (related = bpt; related->related_breakpoint != bpt;
13174 related = related->related_breakpoint);
13175 related->related_breakpoint = bpt->related_breakpoint;
13176 bpt->related_breakpoint = bpt;
13177 }
13178
13179 /* watch_command_1 creates a watchpoint but only sets its number if
13180 update_watchpoint succeeds in creating its bp_locations. If there's
13181 a problem in that process, we'll be asked to delete the half-created
13182 watchpoint. In that case, don't announce the deletion. */
13183 if (bpt->number)
13184 gdb::observers::breakpoint_deleted.notify (bpt);
13185
13186 if (breakpoint_chain == bpt)
13187 breakpoint_chain = bpt->next;
13188
13189 ALL_BREAKPOINTS (b)
13190 if (b->next == bpt)
13191 {
13192 b->next = bpt->next;
13193 break;
13194 }
13195
13196 /* Be sure no bpstat's are pointing at the breakpoint after it's
13197 been freed. */
13198 /* FIXME, how can we find all bpstat's? We just check stop_bpstat
13199 in all threads for now. Note that we cannot just remove bpstats
13200 pointing at bpt from the stop_bpstat list entirely, as breakpoint
13201 commands are associated with the bpstat; if we remove it here,
13202 then the later call to bpstat_do_actions (&stop_bpstat); in
13203 event-top.c won't do anything, and temporary breakpoints with
13204 commands won't work. */
13205
13206 iterate_over_threads (bpstat_remove_breakpoint_callback, bpt);
13207
13208 /* Now that breakpoint is removed from breakpoint list, update the
13209 global location list. This will remove locations that used to
13210 belong to this breakpoint. Do this before freeing the breakpoint
13211 itself, since remove_breakpoint looks at location's owner. It
13212 might be better design to have location completely
13213 self-contained, but it's not the case now. */
13214 update_global_location_list (UGLL_DONT_INSERT);
13215
13216 /* On the chance that someone will soon try again to delete this
13217 same bp, we mark it as deleted before freeing its storage. */
13218 bpt->type = bp_none;
13219 delete bpt;
13220 }
13221
13222 /* Iterator function to call a user-provided callback function once
13223 for each of B and its related breakpoints. */
13224
13225 static void
13226 iterate_over_related_breakpoints (struct breakpoint *b,
13227 gdb::function_view<void (breakpoint *)> function)
13228 {
13229 struct breakpoint *related;
13230
13231 related = b;
13232 do
13233 {
13234 struct breakpoint *next;
13235
13236 /* FUNCTION may delete RELATED. */
13237 next = related->related_breakpoint;
13238
13239 if (next == related)
13240 {
13241 /* RELATED is the last ring entry. */
13242 function (related);
13243
13244 /* FUNCTION may have deleted it, so we'd never reach back to
13245 B. There's nothing left to do anyway, so just break
13246 out. */
13247 break;
13248 }
13249 else
13250 function (related);
13251
13252 related = next;
13253 }
13254 while (related != b);
13255 }
13256
13257 static void
13258 delete_command (const char *arg, int from_tty)
13259 {
13260 struct breakpoint *b, *b_tmp;
13261
13262 dont_repeat ();
13263
13264 if (arg == 0)
13265 {
13266 int breaks_to_delete = 0;
13267
13268 /* Delete all breakpoints if no argument. Do not delete
13269 internal breakpoints, these have to be deleted with an
13270 explicit breakpoint number argument. */
13271 ALL_BREAKPOINTS (b)
13272 if (user_breakpoint_p (b))
13273 {
13274 breaks_to_delete = 1;
13275 break;
13276 }
13277
13278 /* Ask user only if there are some breakpoints to delete. */
13279 if (!from_tty
13280 || (breaks_to_delete && query (_("Delete all breakpoints? "))))
13281 {
13282 ALL_BREAKPOINTS_SAFE (b, b_tmp)
13283 if (user_breakpoint_p (b))
13284 delete_breakpoint (b);
13285 }
13286 }
13287 else
13288 map_breakpoint_numbers
13289 (arg, [&] (breakpoint *br)
13290 {
13291 iterate_over_related_breakpoints (br, delete_breakpoint);
13292 });
13293 }
13294
13295 /* Return true if all locations of B bound to PSPACE are pending. If
13296 PSPACE is NULL, all locations of all program spaces are
13297 considered. */
13298
13299 static int
13300 all_locations_are_pending (struct breakpoint *b, struct program_space *pspace)
13301 {
13302 struct bp_location *loc;
13303
13304 for (loc = b->loc; loc != NULL; loc = loc->next)
13305 if ((pspace == NULL
13306 || loc->pspace == pspace)
13307 && !loc->shlib_disabled
13308 && !loc->pspace->executing_startup)
13309 return 0;
13310 return 1;
13311 }
13312
13313 /* Subroutine of update_breakpoint_locations to simplify it.
13314 Return non-zero if multiple fns in list LOC have the same name.
13315 Null names are ignored. */
13316
13317 static int
13318 ambiguous_names_p (struct bp_location *loc)
13319 {
13320 struct bp_location *l;
13321 htab_t htab = htab_create_alloc (13, htab_hash_string, streq_hash, NULL,
13322 xcalloc, xfree);
13323
13324 for (l = loc; l != NULL; l = l->next)
13325 {
13326 const char **slot;
13327 const char *name = l->function_name;
13328
13329 /* Allow for some names to be NULL, ignore them. */
13330 if (name == NULL)
13331 continue;
13332
13333 slot = (const char **) htab_find_slot (htab, (const void *) name,
13334 INSERT);
13335 /* NOTE: We can assume slot != NULL here because xcalloc never
13336 returns NULL. */
13337 if (*slot != NULL)
13338 {
13339 htab_delete (htab);
13340 return 1;
13341 }
13342 *slot = name;
13343 }
13344
13345 htab_delete (htab);
13346 return 0;
13347 }
13348
13349 /* When symbols change, it probably means the sources changed as well,
13350 and it might mean the static tracepoint markers are no longer at
13351 the same address or line numbers they used to be at last we
13352 checked. Losing your static tracepoints whenever you rebuild is
13353 undesirable. This function tries to resync/rematch gdb static
13354 tracepoints with the markers on the target, for static tracepoints
13355 that have not been set by marker id. Static tracepoint that have
13356 been set by marker id are reset by marker id in breakpoint_re_set.
13357 The heuristic is:
13358
13359 1) For a tracepoint set at a specific address, look for a marker at
13360 the old PC. If one is found there, assume to be the same marker.
13361 If the name / string id of the marker found is different from the
13362 previous known name, assume that means the user renamed the marker
13363 in the sources, and output a warning.
13364
13365 2) For a tracepoint set at a given line number, look for a marker
13366 at the new address of the old line number. If one is found there,
13367 assume to be the same marker. If the name / string id of the
13368 marker found is different from the previous known name, assume that
13369 means the user renamed the marker in the sources, and output a
13370 warning.
13371
13372 3) If a marker is no longer found at the same address or line, it
13373 may mean the marker no longer exists. But it may also just mean
13374 the code changed a bit. Maybe the user added a few lines of code
13375 that made the marker move up or down (in line number terms). Ask
13376 the target for info about the marker with the string id as we knew
13377 it. If found, update line number and address in the matching
13378 static tracepoint. This will get confused if there's more than one
13379 marker with the same ID (possible in UST, although unadvised
13380 precisely because it confuses tools). */
13381
13382 static struct symtab_and_line
13383 update_static_tracepoint (struct breakpoint *b, struct symtab_and_line sal)
13384 {
13385 struct tracepoint *tp = (struct tracepoint *) b;
13386 struct static_tracepoint_marker marker;
13387 CORE_ADDR pc;
13388
13389 pc = sal.pc;
13390 if (sal.line)
13391 find_line_pc (sal.symtab, sal.line, &pc);
13392
13393 if (target_static_tracepoint_marker_at (pc, &marker))
13394 {
13395 if (tp->static_trace_marker_id != marker.str_id)
13396 warning (_("static tracepoint %d changed probed marker from %s to %s"),
13397 b->number, tp->static_trace_marker_id.c_str (),
13398 marker.str_id.c_str ());
13399
13400 tp->static_trace_marker_id = std::move (marker.str_id);
13401
13402 return sal;
13403 }
13404
13405 /* Old marker wasn't found on target at lineno. Try looking it up
13406 by string ID. */
13407 if (!sal.explicit_pc
13408 && sal.line != 0
13409 && sal.symtab != NULL
13410 && !tp->static_trace_marker_id.empty ())
13411 {
13412 std::vector<static_tracepoint_marker> markers
13413 = target_static_tracepoint_markers_by_strid
13414 (tp->static_trace_marker_id.c_str ());
13415
13416 if (!markers.empty ())
13417 {
13418 struct symbol *sym;
13419 struct static_tracepoint_marker *tpmarker;
13420 struct ui_out *uiout = current_uiout;
13421 struct explicit_location explicit_loc;
13422
13423 tpmarker = &markers[0];
13424
13425 tp->static_trace_marker_id = std::move (tpmarker->str_id);
13426
13427 warning (_("marker for static tracepoint %d (%s) not "
13428 "found at previous line number"),
13429 b->number, tp->static_trace_marker_id.c_str ());
13430
13431 symtab_and_line sal2 = find_pc_line (tpmarker->address, 0);
13432 sym = find_pc_sect_function (tpmarker->address, NULL);
13433 uiout->text ("Now in ");
13434 if (sym)
13435 {
13436 uiout->field_string ("func", SYMBOL_PRINT_NAME (sym));
13437 uiout->text (" at ");
13438 }
13439 uiout->field_string ("file",
13440 symtab_to_filename_for_display (sal2.symtab));
13441 uiout->text (":");
13442
13443 if (uiout->is_mi_like_p ())
13444 {
13445 const char *fullname = symtab_to_fullname (sal2.symtab);
13446
13447 uiout->field_string ("fullname", fullname);
13448 }
13449
13450 uiout->field_int ("line", sal2.line);
13451 uiout->text ("\n");
13452
13453 b->loc->line_number = sal2.line;
13454 b->loc->symtab = sym != NULL ? sal2.symtab : NULL;
13455
13456 b->location.reset (NULL);
13457 initialize_explicit_location (&explicit_loc);
13458 explicit_loc.source_filename
13459 = ASTRDUP (symtab_to_filename_for_display (sal2.symtab));
13460 explicit_loc.line_offset.offset = b->loc->line_number;
13461 explicit_loc.line_offset.sign = LINE_OFFSET_NONE;
13462 b->location = new_explicit_location (&explicit_loc);
13463
13464 /* Might be nice to check if function changed, and warn if
13465 so. */
13466 }
13467 }
13468 return sal;
13469 }
13470
13471 /* Returns 1 iff locations A and B are sufficiently same that
13472 we don't need to report breakpoint as changed. */
13473
13474 static int
13475 locations_are_equal (struct bp_location *a, struct bp_location *b)
13476 {
13477 while (a && b)
13478 {
13479 if (a->address != b->address)
13480 return 0;
13481
13482 if (a->shlib_disabled != b->shlib_disabled)
13483 return 0;
13484
13485 if (a->enabled != b->enabled)
13486 return 0;
13487
13488 a = a->next;
13489 b = b->next;
13490 }
13491
13492 if ((a == NULL) != (b == NULL))
13493 return 0;
13494
13495 return 1;
13496 }
13497
13498 /* Split all locations of B that are bound to PSPACE out of B's
13499 location list to a separate list and return that list's head. If
13500 PSPACE is NULL, hoist out all locations of B. */
13501
13502 static struct bp_location *
13503 hoist_existing_locations (struct breakpoint *b, struct program_space *pspace)
13504 {
13505 struct bp_location head;
13506 struct bp_location *i = b->loc;
13507 struct bp_location **i_link = &b->loc;
13508 struct bp_location *hoisted = &head;
13509
13510 if (pspace == NULL)
13511 {
13512 i = b->loc;
13513 b->loc = NULL;
13514 return i;
13515 }
13516
13517 head.next = NULL;
13518
13519 while (i != NULL)
13520 {
13521 if (i->pspace == pspace)
13522 {
13523 *i_link = i->next;
13524 i->next = NULL;
13525 hoisted->next = i;
13526 hoisted = i;
13527 }
13528 else
13529 i_link = &i->next;
13530 i = *i_link;
13531 }
13532
13533 return head.next;
13534 }
13535
13536 /* Create new breakpoint locations for B (a hardware or software
13537 breakpoint) based on SALS and SALS_END. If SALS_END.NELTS is not
13538 zero, then B is a ranged breakpoint. Only recreates locations for
13539 FILTER_PSPACE. Locations of other program spaces are left
13540 untouched. */
13541
13542 void
13543 update_breakpoint_locations (struct breakpoint *b,
13544 struct program_space *filter_pspace,
13545 gdb::array_view<const symtab_and_line> sals,
13546 gdb::array_view<const symtab_and_line> sals_end)
13547 {
13548 struct bp_location *existing_locations;
13549
13550 if (!sals_end.empty () && (sals.size () != 1 || sals_end.size () != 1))
13551 {
13552 /* Ranged breakpoints have only one start location and one end
13553 location. */
13554 b->enable_state = bp_disabled;
13555 printf_unfiltered (_("Could not reset ranged breakpoint %d: "
13556 "multiple locations found\n"),
13557 b->number);
13558 return;
13559 }
13560
13561 /* If there's no new locations, and all existing locations are
13562 pending, don't do anything. This optimizes the common case where
13563 all locations are in the same shared library, that was unloaded.
13564 We'd like to retain the location, so that when the library is
13565 loaded again, we don't loose the enabled/disabled status of the
13566 individual locations. */
13567 if (all_locations_are_pending (b, filter_pspace) && sals.empty ())
13568 return;
13569
13570 existing_locations = hoist_existing_locations (b, filter_pspace);
13571
13572 for (const auto &sal : sals)
13573 {
13574 struct bp_location *new_loc;
13575
13576 switch_to_program_space_and_thread (sal.pspace);
13577
13578 new_loc = add_location_to_breakpoint (b, &sal);
13579
13580 /* Reparse conditions, they might contain references to the
13581 old symtab. */
13582 if (b->cond_string != NULL)
13583 {
13584 const char *s;
13585
13586 s = b->cond_string;
13587 TRY
13588 {
13589 new_loc->cond = parse_exp_1 (&s, sal.pc,
13590 block_for_pc (sal.pc),
13591 0);
13592 }
13593 CATCH (e, RETURN_MASK_ERROR)
13594 {
13595 warning (_("failed to reevaluate condition "
13596 "for breakpoint %d: %s"),
13597 b->number, e.message);
13598 new_loc->enabled = 0;
13599 }
13600 END_CATCH
13601 }
13602
13603 if (!sals_end.empty ())
13604 {
13605 CORE_ADDR end = find_breakpoint_range_end (sals_end[0]);
13606
13607 new_loc->length = end - sals[0].pc + 1;
13608 }
13609 }
13610
13611 /* If possible, carry over 'disable' status from existing
13612 breakpoints. */
13613 {
13614 struct bp_location *e = existing_locations;
13615 /* If there are multiple breakpoints with the same function name,
13616 e.g. for inline functions, comparing function names won't work.
13617 Instead compare pc addresses; this is just a heuristic as things
13618 may have moved, but in practice it gives the correct answer
13619 often enough until a better solution is found. */
13620 int have_ambiguous_names = ambiguous_names_p (b->loc);
13621
13622 for (; e; e = e->next)
13623 {
13624 if (!e->enabled && e->function_name)
13625 {
13626 struct bp_location *l = b->loc;
13627 if (have_ambiguous_names)
13628 {
13629 for (; l; l = l->next)
13630 if (breakpoint_locations_match (e, l))
13631 {
13632 l->enabled = 0;
13633 break;
13634 }
13635 }
13636 else
13637 {
13638 for (; l; l = l->next)
13639 if (l->function_name
13640 && strcmp (e->function_name, l->function_name) == 0)
13641 {
13642 l->enabled = 0;
13643 break;
13644 }
13645 }
13646 }
13647 }
13648 }
13649
13650 if (!locations_are_equal (existing_locations, b->loc))
13651 gdb::observers::breakpoint_modified.notify (b);
13652 }
13653
13654 /* Find the SaL locations corresponding to the given LOCATION.
13655 On return, FOUND will be 1 if any SaL was found, zero otherwise. */
13656
13657 static std::vector<symtab_and_line>
13658 location_to_sals (struct breakpoint *b, struct event_location *location,
13659 struct program_space *search_pspace, int *found)
13660 {
13661 struct gdb_exception exception = exception_none;
13662
13663 gdb_assert (b->ops != NULL);
13664
13665 std::vector<symtab_and_line> sals;
13666
13667 TRY
13668 {
13669 sals = b->ops->decode_location (b, location, search_pspace);
13670 }
13671 CATCH (e, RETURN_MASK_ERROR)
13672 {
13673 int not_found_and_ok = 0;
13674
13675 exception = e;
13676
13677 /* For pending breakpoints, it's expected that parsing will
13678 fail until the right shared library is loaded. User has
13679 already told to create pending breakpoints and don't need
13680 extra messages. If breakpoint is in bp_shlib_disabled
13681 state, then user already saw the message about that
13682 breakpoint being disabled, and don't want to see more
13683 errors. */
13684 if (e.error == NOT_FOUND_ERROR
13685 && (b->condition_not_parsed
13686 || (b->loc != NULL
13687 && search_pspace != NULL
13688 && b->loc->pspace != search_pspace)
13689 || (b->loc && b->loc->shlib_disabled)
13690 || (b->loc && b->loc->pspace->executing_startup)
13691 || b->enable_state == bp_disabled))
13692 not_found_and_ok = 1;
13693
13694 if (!not_found_and_ok)
13695 {
13696 /* We surely don't want to warn about the same breakpoint
13697 10 times. One solution, implemented here, is disable
13698 the breakpoint on error. Another solution would be to
13699 have separate 'warning emitted' flag. Since this
13700 happens only when a binary has changed, I don't know
13701 which approach is better. */
13702 b->enable_state = bp_disabled;
13703 throw_exception (e);
13704 }
13705 }
13706 END_CATCH
13707
13708 if (exception.reason == 0 || exception.error != NOT_FOUND_ERROR)
13709 {
13710 for (auto &sal : sals)
13711 resolve_sal_pc (&sal);
13712 if (b->condition_not_parsed && b->extra_string != NULL)
13713 {
13714 char *cond_string, *extra_string;
13715 int thread, task;
13716
13717 find_condition_and_thread (b->extra_string, sals[0].pc,
13718 &cond_string, &thread, &task,
13719 &extra_string);
13720 gdb_assert (b->cond_string == NULL);
13721 if (cond_string)
13722 b->cond_string = cond_string;
13723 b->thread = thread;
13724 b->task = task;
13725 if (extra_string)
13726 {
13727 xfree (b->extra_string);
13728 b->extra_string = extra_string;
13729 }
13730 b->condition_not_parsed = 0;
13731 }
13732
13733 if (b->type == bp_static_tracepoint && !strace_marker_p (b))
13734 sals[0] = update_static_tracepoint (b, sals[0]);
13735
13736 *found = 1;
13737 }
13738 else
13739 *found = 0;
13740
13741 return sals;
13742 }
13743
13744 /* The default re_set method, for typical hardware or software
13745 breakpoints. Reevaluate the breakpoint and recreate its
13746 locations. */
13747
13748 static void
13749 breakpoint_re_set_default (struct breakpoint *b)
13750 {
13751 struct program_space *filter_pspace = current_program_space;
13752 std::vector<symtab_and_line> expanded, expanded_end;
13753
13754 int found;
13755 std::vector<symtab_and_line> sals = location_to_sals (b, b->location.get (),
13756 filter_pspace, &found);
13757 if (found)
13758 expanded = std::move (sals);
13759
13760 if (b->location_range_end != NULL)
13761 {
13762 std::vector<symtab_and_line> sals_end
13763 = location_to_sals (b, b->location_range_end.get (),
13764 filter_pspace, &found);
13765 if (found)
13766 expanded_end = std::move (sals_end);
13767 }
13768
13769 update_breakpoint_locations (b, filter_pspace, expanded, expanded_end);
13770 }
13771
13772 /* Default method for creating SALs from an address string. It basically
13773 calls parse_breakpoint_sals. Return 1 for success, zero for failure. */
13774
13775 static void
13776 create_sals_from_location_default (const struct event_location *location,
13777 struct linespec_result *canonical,
13778 enum bptype type_wanted)
13779 {
13780 parse_breakpoint_sals (location, canonical);
13781 }
13782
13783 /* Call create_breakpoints_sal for the given arguments. This is the default
13784 function for the `create_breakpoints_sal' method of
13785 breakpoint_ops. */
13786
13787 static void
13788 create_breakpoints_sal_default (struct gdbarch *gdbarch,
13789 struct linespec_result *canonical,
13790 gdb::unique_xmalloc_ptr<char> cond_string,
13791 gdb::unique_xmalloc_ptr<char> extra_string,
13792 enum bptype type_wanted,
13793 enum bpdisp disposition,
13794 int thread,
13795 int task, int ignore_count,
13796 const struct breakpoint_ops *ops,
13797 int from_tty, int enabled,
13798 int internal, unsigned flags)
13799 {
13800 create_breakpoints_sal (gdbarch, canonical,
13801 std::move (cond_string),
13802 std::move (extra_string),
13803 type_wanted, disposition,
13804 thread, task, ignore_count, ops, from_tty,
13805 enabled, internal, flags);
13806 }
13807
13808 /* Decode the line represented by S by calling decode_line_full. This is the
13809 default function for the `decode_location' method of breakpoint_ops. */
13810
13811 static std::vector<symtab_and_line>
13812 decode_location_default (struct breakpoint *b,
13813 const struct event_location *location,
13814 struct program_space *search_pspace)
13815 {
13816 struct linespec_result canonical;
13817
13818 decode_line_full (location, DECODE_LINE_FUNFIRSTLINE, search_pspace,
13819 (struct symtab *) NULL, 0,
13820 &canonical, multiple_symbols_all,
13821 b->filter);
13822
13823 /* We should get 0 or 1 resulting SALs. */
13824 gdb_assert (canonical.lsals.size () < 2);
13825
13826 if (!canonical.lsals.empty ())
13827 {
13828 const linespec_sals &lsal = canonical.lsals[0];
13829 return std::move (lsal.sals);
13830 }
13831 return {};
13832 }
13833
13834 /* Reset a breakpoint. */
13835
13836 static void
13837 breakpoint_re_set_one (breakpoint *b)
13838 {
13839 input_radix = b->input_radix;
13840 set_language (b->language);
13841
13842 b->ops->re_set (b);
13843 }
13844
13845 /* Re-set breakpoint locations for the current program space.
13846 Locations bound to other program spaces are left untouched. */
13847
13848 void
13849 breakpoint_re_set (void)
13850 {
13851 struct breakpoint *b, *b_tmp;
13852
13853 {
13854 scoped_restore_current_language save_language;
13855 scoped_restore save_input_radix = make_scoped_restore (&input_radix);
13856 scoped_restore_current_pspace_and_thread restore_pspace_thread;
13857
13858 /* breakpoint_re_set_one sets the current_language to the language
13859 of the breakpoint it is resetting (see prepare_re_set_context)
13860 before re-evaluating the breakpoint's location. This change can
13861 unfortunately get undone by accident if the language_mode is set
13862 to auto, and we either switch frames, or more likely in this context,
13863 we select the current frame.
13864
13865 We prevent this by temporarily turning the language_mode to
13866 language_mode_manual. We restore it once all breakpoints
13867 have been reset. */
13868 scoped_restore save_language_mode = make_scoped_restore (&language_mode);
13869 language_mode = language_mode_manual;
13870
13871 /* Note: we must not try to insert locations until after all
13872 breakpoints have been re-set. Otherwise, e.g., when re-setting
13873 breakpoint 1, we'd insert the locations of breakpoint 2, which
13874 hadn't been re-set yet, and thus may have stale locations. */
13875
13876 ALL_BREAKPOINTS_SAFE (b, b_tmp)
13877 {
13878 TRY
13879 {
13880 breakpoint_re_set_one (b);
13881 }
13882 CATCH (ex, RETURN_MASK_ALL)
13883 {
13884 exception_fprintf (gdb_stderr, ex,
13885 "Error in re-setting breakpoint %d: ",
13886 b->number);
13887 }
13888 END_CATCH
13889 }
13890
13891 jit_breakpoint_re_set ();
13892 }
13893
13894 create_overlay_event_breakpoint ();
13895 create_longjmp_master_breakpoint ();
13896 create_std_terminate_master_breakpoint ();
13897 create_exception_master_breakpoint ();
13898
13899 /* Now we can insert. */
13900 update_global_location_list (UGLL_MAY_INSERT);
13901 }
13902 \f
13903 /* Reset the thread number of this breakpoint:
13904
13905 - If the breakpoint is for all threads, leave it as-is.
13906 - Else, reset it to the current thread for inferior_ptid. */
13907 void
13908 breakpoint_re_set_thread (struct breakpoint *b)
13909 {
13910 if (b->thread != -1)
13911 {
13912 b->thread = inferior_thread ()->global_num;
13913
13914 /* We're being called after following a fork. The new fork is
13915 selected as current, and unless this was a vfork will have a
13916 different program space from the original thread. Reset that
13917 as well. */
13918 b->loc->pspace = current_program_space;
13919 }
13920 }
13921
13922 /* Set ignore-count of breakpoint number BPTNUM to COUNT.
13923 If from_tty is nonzero, it prints a message to that effect,
13924 which ends with a period (no newline). */
13925
13926 void
13927 set_ignore_count (int bptnum, int count, int from_tty)
13928 {
13929 struct breakpoint *b;
13930
13931 if (count < 0)
13932 count = 0;
13933
13934 ALL_BREAKPOINTS (b)
13935 if (b->number == bptnum)
13936 {
13937 if (is_tracepoint (b))
13938 {
13939 if (from_tty && count != 0)
13940 printf_filtered (_("Ignore count ignored for tracepoint %d."),
13941 bptnum);
13942 return;
13943 }
13944
13945 b->ignore_count = count;
13946 if (from_tty)
13947 {
13948 if (count == 0)
13949 printf_filtered (_("Will stop next time "
13950 "breakpoint %d is reached."),
13951 bptnum);
13952 else if (count == 1)
13953 printf_filtered (_("Will ignore next crossing of breakpoint %d."),
13954 bptnum);
13955 else
13956 printf_filtered (_("Will ignore next %d "
13957 "crossings of breakpoint %d."),
13958 count, bptnum);
13959 }
13960 gdb::observers::breakpoint_modified.notify (b);
13961 return;
13962 }
13963
13964 error (_("No breakpoint number %d."), bptnum);
13965 }
13966
13967 /* Command to set ignore-count of breakpoint N to COUNT. */
13968
13969 static void
13970 ignore_command (const char *args, int from_tty)
13971 {
13972 const char *p = args;
13973 int num;
13974
13975 if (p == 0)
13976 error_no_arg (_("a breakpoint number"));
13977
13978 num = get_number (&p);
13979 if (num == 0)
13980 error (_("bad breakpoint number: '%s'"), args);
13981 if (*p == 0)
13982 error (_("Second argument (specified ignore-count) is missing."));
13983
13984 set_ignore_count (num,
13985 longest_to_int (value_as_long (parse_and_eval (p))),
13986 from_tty);
13987 if (from_tty)
13988 printf_filtered ("\n");
13989 }
13990 \f
13991
13992 /* Call FUNCTION on each of the breakpoints with numbers in the range
13993 defined by BP_NUM_RANGE (an inclusive range). */
13994
13995 static void
13996 map_breakpoint_number_range (std::pair<int, int> bp_num_range,
13997 gdb::function_view<void (breakpoint *)> function)
13998 {
13999 if (bp_num_range.first == 0)
14000 {
14001 warning (_("bad breakpoint number at or near '%d'"),
14002 bp_num_range.first);
14003 }
14004 else
14005 {
14006 struct breakpoint *b, *tmp;
14007
14008 for (int i = bp_num_range.first; i <= bp_num_range.second; i++)
14009 {
14010 bool match = false;
14011
14012 ALL_BREAKPOINTS_SAFE (b, tmp)
14013 if (b->number == i)
14014 {
14015 match = true;
14016 function (b);
14017 break;
14018 }
14019 if (!match)
14020 printf_unfiltered (_("No breakpoint number %d.\n"), i);
14021 }
14022 }
14023 }
14024
14025 /* Call FUNCTION on each of the breakpoints whose numbers are given in
14026 ARGS. */
14027
14028 static void
14029 map_breakpoint_numbers (const char *args,
14030 gdb::function_view<void (breakpoint *)> function)
14031 {
14032 if (args == NULL || *args == '\0')
14033 error_no_arg (_("one or more breakpoint numbers"));
14034
14035 number_or_range_parser parser (args);
14036
14037 while (!parser.finished ())
14038 {
14039 int num = parser.get_number ();
14040 map_breakpoint_number_range (std::make_pair (num, num), function);
14041 }
14042 }
14043
14044 /* Return the breakpoint location structure corresponding to the
14045 BP_NUM and LOC_NUM values. */
14046
14047 static struct bp_location *
14048 find_location_by_number (int bp_num, int loc_num)
14049 {
14050 struct breakpoint *b;
14051
14052 ALL_BREAKPOINTS (b)
14053 if (b->number == bp_num)
14054 {
14055 break;
14056 }
14057
14058 if (!b || b->number != bp_num)
14059 error (_("Bad breakpoint number '%d'"), bp_num);
14060
14061 if (loc_num == 0)
14062 error (_("Bad breakpoint location number '%d'"), loc_num);
14063
14064 int n = 0;
14065 for (bp_location *loc = b->loc; loc != NULL; loc = loc->next)
14066 if (++n == loc_num)
14067 return loc;
14068
14069 error (_("Bad breakpoint location number '%d'"), loc_num);
14070 }
14071
14072 /* Modes of operation for extract_bp_num. */
14073 enum class extract_bp_kind
14074 {
14075 /* Extracting a breakpoint number. */
14076 bp,
14077
14078 /* Extracting a location number. */
14079 loc,
14080 };
14081
14082 /* Extract a breakpoint or location number (as determined by KIND)
14083 from the string starting at START. TRAILER is a character which
14084 can be found after the number. If you don't want a trailer, use
14085 '\0'. If END_OUT is not NULL, it is set to point after the parsed
14086 string. This always returns a positive integer. */
14087
14088 static int
14089 extract_bp_num (extract_bp_kind kind, const char *start,
14090 int trailer, const char **end_out = NULL)
14091 {
14092 const char *end = start;
14093 int num = get_number_trailer (&end, trailer);
14094 if (num < 0)
14095 error (kind == extract_bp_kind::bp
14096 ? _("Negative breakpoint number '%.*s'")
14097 : _("Negative breakpoint location number '%.*s'"),
14098 int (end - start), start);
14099 if (num == 0)
14100 error (kind == extract_bp_kind::bp
14101 ? _("Bad breakpoint number '%.*s'")
14102 : _("Bad breakpoint location number '%.*s'"),
14103 int (end - start), start);
14104
14105 if (end_out != NULL)
14106 *end_out = end;
14107 return num;
14108 }
14109
14110 /* Extract a breakpoint or location range (as determined by KIND) in
14111 the form NUM1-NUM2 stored at &ARG[arg_offset]. Returns a std::pair
14112 representing the (inclusive) range. The returned pair's elements
14113 are always positive integers. */
14114
14115 static std::pair<int, int>
14116 extract_bp_or_bp_range (extract_bp_kind kind,
14117 const std::string &arg,
14118 std::string::size_type arg_offset)
14119 {
14120 std::pair<int, int> range;
14121 const char *bp_loc = &arg[arg_offset];
14122 std::string::size_type dash = arg.find ('-', arg_offset);
14123 if (dash != std::string::npos)
14124 {
14125 /* bp_loc is a range (x-z). */
14126 if (arg.length () == dash + 1)
14127 error (kind == extract_bp_kind::bp
14128 ? _("Bad breakpoint number at or near: '%s'")
14129 : _("Bad breakpoint location number at or near: '%s'"),
14130 bp_loc);
14131
14132 const char *end;
14133 const char *start_first = bp_loc;
14134 const char *start_second = &arg[dash + 1];
14135 range.first = extract_bp_num (kind, start_first, '-');
14136 range.second = extract_bp_num (kind, start_second, '\0', &end);
14137
14138 if (range.first > range.second)
14139 error (kind == extract_bp_kind::bp
14140 ? _("Inverted breakpoint range at '%.*s'")
14141 : _("Inverted breakpoint location range at '%.*s'"),
14142 int (end - start_first), start_first);
14143 }
14144 else
14145 {
14146 /* bp_loc is a single value. */
14147 range.first = extract_bp_num (kind, bp_loc, '\0');
14148 range.second = range.first;
14149 }
14150 return range;
14151 }
14152
14153 /* Extract the breakpoint/location range specified by ARG. Returns
14154 the breakpoint range in BP_NUM_RANGE, and the location range in
14155 BP_LOC_RANGE.
14156
14157 ARG may be in any of the following forms:
14158
14159 x where 'x' is a breakpoint number.
14160 x-y where 'x' and 'y' specify a breakpoint numbers range.
14161 x.y where 'x' is a breakpoint number and 'y' a location number.
14162 x.y-z where 'x' is a breakpoint number and 'y' and 'z' specify a
14163 location number range.
14164 */
14165
14166 static void
14167 extract_bp_number_and_location (const std::string &arg,
14168 std::pair<int, int> &bp_num_range,
14169 std::pair<int, int> &bp_loc_range)
14170 {
14171 std::string::size_type dot = arg.find ('.');
14172
14173 if (dot != std::string::npos)
14174 {
14175 /* Handle 'x.y' and 'x.y-z' cases. */
14176
14177 if (arg.length () == dot + 1 || dot == 0)
14178 error (_("Bad breakpoint number at or near: '%s'"), arg.c_str ());
14179
14180 bp_num_range.first
14181 = extract_bp_num (extract_bp_kind::bp, arg.c_str (), '.');
14182 bp_num_range.second = bp_num_range.first;
14183
14184 bp_loc_range = extract_bp_or_bp_range (extract_bp_kind::loc,
14185 arg, dot + 1);
14186 }
14187 else
14188 {
14189 /* Handle x and x-y cases. */
14190
14191 bp_num_range = extract_bp_or_bp_range (extract_bp_kind::bp, arg, 0);
14192 bp_loc_range.first = 0;
14193 bp_loc_range.second = 0;
14194 }
14195 }
14196
14197 /* Enable or disable a breakpoint location BP_NUM.LOC_NUM. ENABLE
14198 specifies whether to enable or disable. */
14199
14200 static void
14201 enable_disable_bp_num_loc (int bp_num, int loc_num, bool enable)
14202 {
14203 struct bp_location *loc = find_location_by_number (bp_num, loc_num);
14204 if (loc != NULL)
14205 {
14206 if (loc->enabled != enable)
14207 {
14208 loc->enabled = enable;
14209 mark_breakpoint_location_modified (loc);
14210 }
14211 if (target_supports_enable_disable_tracepoint ()
14212 && current_trace_status ()->running && loc->owner
14213 && is_tracepoint (loc->owner))
14214 target_disable_tracepoint (loc);
14215 }
14216 update_global_location_list (UGLL_DONT_INSERT);
14217
14218 gdb::observers::breakpoint_modified.notify (loc->owner);
14219 }
14220
14221 /* Enable or disable a range of breakpoint locations. BP_NUM is the
14222 number of the breakpoint, and BP_LOC_RANGE specifies the
14223 (inclusive) range of location numbers of that breakpoint to
14224 enable/disable. ENABLE specifies whether to enable or disable the
14225 location. */
14226
14227 static void
14228 enable_disable_breakpoint_location_range (int bp_num,
14229 std::pair<int, int> &bp_loc_range,
14230 bool enable)
14231 {
14232 for (int i = bp_loc_range.first; i <= bp_loc_range.second; i++)
14233 enable_disable_bp_num_loc (bp_num, i, enable);
14234 }
14235
14236 /* Set ignore-count of breakpoint number BPTNUM to COUNT.
14237 If from_tty is nonzero, it prints a message to that effect,
14238 which ends with a period (no newline). */
14239
14240 void
14241 disable_breakpoint (struct breakpoint *bpt)
14242 {
14243 /* Never disable a watchpoint scope breakpoint; we want to
14244 hit them when we leave scope so we can delete both the
14245 watchpoint and its scope breakpoint at that time. */
14246 if (bpt->type == bp_watchpoint_scope)
14247 return;
14248
14249 bpt->enable_state = bp_disabled;
14250
14251 /* Mark breakpoint locations modified. */
14252 mark_breakpoint_modified (bpt);
14253
14254 if (target_supports_enable_disable_tracepoint ()
14255 && current_trace_status ()->running && is_tracepoint (bpt))
14256 {
14257 struct bp_location *location;
14258
14259 for (location = bpt->loc; location; location = location->next)
14260 target_disable_tracepoint (location);
14261 }
14262
14263 update_global_location_list (UGLL_DONT_INSERT);
14264
14265 gdb::observers::breakpoint_modified.notify (bpt);
14266 }
14267
14268 /* Enable or disable the breakpoint(s) or breakpoint location(s)
14269 specified in ARGS. ARGS may be in any of the formats handled by
14270 extract_bp_number_and_location. ENABLE specifies whether to enable
14271 or disable the breakpoints/locations. */
14272
14273 static void
14274 enable_disable_command (const char *args, int from_tty, bool enable)
14275 {
14276 if (args == 0)
14277 {
14278 struct breakpoint *bpt;
14279
14280 ALL_BREAKPOINTS (bpt)
14281 if (user_breakpoint_p (bpt))
14282 {
14283 if (enable)
14284 enable_breakpoint (bpt);
14285 else
14286 disable_breakpoint (bpt);
14287 }
14288 }
14289 else
14290 {
14291 std::string num = extract_arg (&args);
14292
14293 while (!num.empty ())
14294 {
14295 std::pair<int, int> bp_num_range, bp_loc_range;
14296
14297 extract_bp_number_and_location (num, bp_num_range, bp_loc_range);
14298
14299 if (bp_loc_range.first == bp_loc_range.second
14300 && bp_loc_range.first == 0)
14301 {
14302 /* Handle breakpoint ids with formats 'x' or 'x-z'. */
14303 map_breakpoint_number_range (bp_num_range,
14304 enable
14305 ? enable_breakpoint
14306 : disable_breakpoint);
14307 }
14308 else
14309 {
14310 /* Handle breakpoint ids with formats 'x.y' or
14311 'x.y-z'. */
14312 enable_disable_breakpoint_location_range
14313 (bp_num_range.first, bp_loc_range, enable);
14314 }
14315 num = extract_arg (&args);
14316 }
14317 }
14318 }
14319
14320 /* The disable command disables the specified breakpoints/locations
14321 (or all defined breakpoints) so they're no longer effective in
14322 stopping the inferior. ARGS may be in any of the forms defined in
14323 extract_bp_number_and_location. */
14324
14325 static void
14326 disable_command (const char *args, int from_tty)
14327 {
14328 enable_disable_command (args, from_tty, false);
14329 }
14330
14331 static void
14332 enable_breakpoint_disp (struct breakpoint *bpt, enum bpdisp disposition,
14333 int count)
14334 {
14335 int target_resources_ok;
14336
14337 if (bpt->type == bp_hardware_breakpoint)
14338 {
14339 int i;
14340 i = hw_breakpoint_used_count ();
14341 target_resources_ok =
14342 target_can_use_hardware_watchpoint (bp_hardware_breakpoint,
14343 i + 1, 0);
14344 if (target_resources_ok == 0)
14345 error (_("No hardware breakpoint support in the target."));
14346 else if (target_resources_ok < 0)
14347 error (_("Hardware breakpoints used exceeds limit."));
14348 }
14349
14350 if (is_watchpoint (bpt))
14351 {
14352 /* Initialize it just to avoid a GCC false warning. */
14353 enum enable_state orig_enable_state = bp_disabled;
14354
14355 TRY
14356 {
14357 struct watchpoint *w = (struct watchpoint *) bpt;
14358
14359 orig_enable_state = bpt->enable_state;
14360 bpt->enable_state = bp_enabled;
14361 update_watchpoint (w, 1 /* reparse */);
14362 }
14363 CATCH (e, RETURN_MASK_ALL)
14364 {
14365 bpt->enable_state = orig_enable_state;
14366 exception_fprintf (gdb_stderr, e, _("Cannot enable watchpoint %d: "),
14367 bpt->number);
14368 return;
14369 }
14370 END_CATCH
14371 }
14372
14373 bpt->enable_state = bp_enabled;
14374
14375 /* Mark breakpoint locations modified. */
14376 mark_breakpoint_modified (bpt);
14377
14378 if (target_supports_enable_disable_tracepoint ()
14379 && current_trace_status ()->running && is_tracepoint (bpt))
14380 {
14381 struct bp_location *location;
14382
14383 for (location = bpt->loc; location; location = location->next)
14384 target_enable_tracepoint (location);
14385 }
14386
14387 bpt->disposition = disposition;
14388 bpt->enable_count = count;
14389 update_global_location_list (UGLL_MAY_INSERT);
14390
14391 gdb::observers::breakpoint_modified.notify (bpt);
14392 }
14393
14394
14395 void
14396 enable_breakpoint (struct breakpoint *bpt)
14397 {
14398 enable_breakpoint_disp (bpt, bpt->disposition, 0);
14399 }
14400
14401 /* The enable command enables the specified breakpoints/locations (or
14402 all defined breakpoints) so they once again become (or continue to
14403 be) effective in stopping the inferior. ARGS may be in any of the
14404 forms defined in extract_bp_number_and_location. */
14405
14406 static void
14407 enable_command (const char *args, int from_tty)
14408 {
14409 enable_disable_command (args, from_tty, true);
14410 }
14411
14412 static void
14413 enable_once_command (const char *args, int from_tty)
14414 {
14415 map_breakpoint_numbers
14416 (args, [&] (breakpoint *b)
14417 {
14418 iterate_over_related_breakpoints
14419 (b, [&] (breakpoint *bpt)
14420 {
14421 enable_breakpoint_disp (bpt, disp_disable, 1);
14422 });
14423 });
14424 }
14425
14426 static void
14427 enable_count_command (const char *args, int from_tty)
14428 {
14429 int count;
14430
14431 if (args == NULL)
14432 error_no_arg (_("hit count"));
14433
14434 count = get_number (&args);
14435
14436 map_breakpoint_numbers
14437 (args, [&] (breakpoint *b)
14438 {
14439 iterate_over_related_breakpoints
14440 (b, [&] (breakpoint *bpt)
14441 {
14442 enable_breakpoint_disp (bpt, disp_disable, count);
14443 });
14444 });
14445 }
14446
14447 static void
14448 enable_delete_command (const char *args, int from_tty)
14449 {
14450 map_breakpoint_numbers
14451 (args, [&] (breakpoint *b)
14452 {
14453 iterate_over_related_breakpoints
14454 (b, [&] (breakpoint *bpt)
14455 {
14456 enable_breakpoint_disp (bpt, disp_del, 1);
14457 });
14458 });
14459 }
14460 \f
14461 static void
14462 set_breakpoint_cmd (const char *args, int from_tty)
14463 {
14464 }
14465
14466 static void
14467 show_breakpoint_cmd (const char *args, int from_tty)
14468 {
14469 }
14470
14471 /* Invalidate last known value of any hardware watchpoint if
14472 the memory which that value represents has been written to by
14473 GDB itself. */
14474
14475 static void
14476 invalidate_bp_value_on_memory_change (struct inferior *inferior,
14477 CORE_ADDR addr, ssize_t len,
14478 const bfd_byte *data)
14479 {
14480 struct breakpoint *bp;
14481
14482 ALL_BREAKPOINTS (bp)
14483 if (bp->enable_state == bp_enabled
14484 && bp->type == bp_hardware_watchpoint)
14485 {
14486 struct watchpoint *wp = (struct watchpoint *) bp;
14487
14488 if (wp->val_valid && wp->val != nullptr)
14489 {
14490 struct bp_location *loc;
14491
14492 for (loc = bp->loc; loc != NULL; loc = loc->next)
14493 if (loc->loc_type == bp_loc_hardware_watchpoint
14494 && loc->address + loc->length > addr
14495 && addr + len > loc->address)
14496 {
14497 wp->val = NULL;
14498 wp->val_valid = 0;
14499 }
14500 }
14501 }
14502 }
14503
14504 /* Create and insert a breakpoint for software single step. */
14505
14506 void
14507 insert_single_step_breakpoint (struct gdbarch *gdbarch,
14508 const address_space *aspace,
14509 CORE_ADDR next_pc)
14510 {
14511 struct thread_info *tp = inferior_thread ();
14512 struct symtab_and_line sal;
14513 CORE_ADDR pc = next_pc;
14514
14515 if (tp->control.single_step_breakpoints == NULL)
14516 {
14517 tp->control.single_step_breakpoints
14518 = new_single_step_breakpoint (tp->global_num, gdbarch);
14519 }
14520
14521 sal = find_pc_line (pc, 0);
14522 sal.pc = pc;
14523 sal.section = find_pc_overlay (pc);
14524 sal.explicit_pc = 1;
14525 add_location_to_breakpoint (tp->control.single_step_breakpoints, &sal);
14526
14527 update_global_location_list (UGLL_INSERT);
14528 }
14529
14530 /* Insert single step breakpoints according to the current state. */
14531
14532 int
14533 insert_single_step_breakpoints (struct gdbarch *gdbarch)
14534 {
14535 struct regcache *regcache = get_current_regcache ();
14536 std::vector<CORE_ADDR> next_pcs;
14537
14538 next_pcs = gdbarch_software_single_step (gdbarch, regcache);
14539
14540 if (!next_pcs.empty ())
14541 {
14542 struct frame_info *frame = get_current_frame ();
14543 const address_space *aspace = get_frame_address_space (frame);
14544
14545 for (CORE_ADDR pc : next_pcs)
14546 insert_single_step_breakpoint (gdbarch, aspace, pc);
14547
14548 return 1;
14549 }
14550 else
14551 return 0;
14552 }
14553
14554 /* See breakpoint.h. */
14555
14556 int
14557 breakpoint_has_location_inserted_here (struct breakpoint *bp,
14558 const address_space *aspace,
14559 CORE_ADDR pc)
14560 {
14561 struct bp_location *loc;
14562
14563 for (loc = bp->loc; loc != NULL; loc = loc->next)
14564 if (loc->inserted
14565 && breakpoint_location_address_match (loc, aspace, pc))
14566 return 1;
14567
14568 return 0;
14569 }
14570
14571 /* Check whether a software single-step breakpoint is inserted at
14572 PC. */
14573
14574 int
14575 single_step_breakpoint_inserted_here_p (const address_space *aspace,
14576 CORE_ADDR pc)
14577 {
14578 struct breakpoint *bpt;
14579
14580 ALL_BREAKPOINTS (bpt)
14581 {
14582 if (bpt->type == bp_single_step
14583 && breakpoint_has_location_inserted_here (bpt, aspace, pc))
14584 return 1;
14585 }
14586 return 0;
14587 }
14588
14589 /* Tracepoint-specific operations. */
14590
14591 /* Set tracepoint count to NUM. */
14592 static void
14593 set_tracepoint_count (int num)
14594 {
14595 tracepoint_count = num;
14596 set_internalvar_integer (lookup_internalvar ("tpnum"), num);
14597 }
14598
14599 static void
14600 trace_command (const char *arg, int from_tty)
14601 {
14602 struct breakpoint_ops *ops;
14603
14604 event_location_up location = string_to_event_location (&arg,
14605 current_language);
14606 if (location != NULL
14607 && event_location_type (location.get ()) == PROBE_LOCATION)
14608 ops = &tracepoint_probe_breakpoint_ops;
14609 else
14610 ops = &tracepoint_breakpoint_ops;
14611
14612 create_breakpoint (get_current_arch (),
14613 location.get (),
14614 NULL, 0, arg, 1 /* parse arg */,
14615 0 /* tempflag */,
14616 bp_tracepoint /* type_wanted */,
14617 0 /* Ignore count */,
14618 pending_break_support,
14619 ops,
14620 from_tty,
14621 1 /* enabled */,
14622 0 /* internal */, 0);
14623 }
14624
14625 static void
14626 ftrace_command (const char *arg, int from_tty)
14627 {
14628 event_location_up location = string_to_event_location (&arg,
14629 current_language);
14630 create_breakpoint (get_current_arch (),
14631 location.get (),
14632 NULL, 0, arg, 1 /* parse arg */,
14633 0 /* tempflag */,
14634 bp_fast_tracepoint /* type_wanted */,
14635 0 /* Ignore count */,
14636 pending_break_support,
14637 &tracepoint_breakpoint_ops,
14638 from_tty,
14639 1 /* enabled */,
14640 0 /* internal */, 0);
14641 }
14642
14643 /* strace command implementation. Creates a static tracepoint. */
14644
14645 static void
14646 strace_command (const char *arg, int from_tty)
14647 {
14648 struct breakpoint_ops *ops;
14649 event_location_up location;
14650
14651 /* Decide if we are dealing with a static tracepoint marker (`-m'),
14652 or with a normal static tracepoint. */
14653 if (arg && startswith (arg, "-m") && isspace (arg[2]))
14654 {
14655 ops = &strace_marker_breakpoint_ops;
14656 location = new_linespec_location (&arg, symbol_name_match_type::FULL);
14657 }
14658 else
14659 {
14660 ops = &tracepoint_breakpoint_ops;
14661 location = string_to_event_location (&arg, current_language);
14662 }
14663
14664 create_breakpoint (get_current_arch (),
14665 location.get (),
14666 NULL, 0, arg, 1 /* parse arg */,
14667 0 /* tempflag */,
14668 bp_static_tracepoint /* type_wanted */,
14669 0 /* Ignore count */,
14670 pending_break_support,
14671 ops,
14672 from_tty,
14673 1 /* enabled */,
14674 0 /* internal */, 0);
14675 }
14676
14677 /* Set up a fake reader function that gets command lines from a linked
14678 list that was acquired during tracepoint uploading. */
14679
14680 static struct uploaded_tp *this_utp;
14681 static int next_cmd;
14682
14683 static char *
14684 read_uploaded_action (void)
14685 {
14686 char *rslt = nullptr;
14687
14688 if (next_cmd < this_utp->cmd_strings.size ())
14689 {
14690 rslt = this_utp->cmd_strings[next_cmd];
14691 next_cmd++;
14692 }
14693
14694 return rslt;
14695 }
14696
14697 /* Given information about a tracepoint as recorded on a target (which
14698 can be either a live system or a trace file), attempt to create an
14699 equivalent GDB tracepoint. This is not a reliable process, since
14700 the target does not necessarily have all the information used when
14701 the tracepoint was originally defined. */
14702
14703 struct tracepoint *
14704 create_tracepoint_from_upload (struct uploaded_tp *utp)
14705 {
14706 const char *addr_str;
14707 char small_buf[100];
14708 struct tracepoint *tp;
14709
14710 if (utp->at_string)
14711 addr_str = utp->at_string;
14712 else
14713 {
14714 /* In the absence of a source location, fall back to raw
14715 address. Since there is no way to confirm that the address
14716 means the same thing as when the trace was started, warn the
14717 user. */
14718 warning (_("Uploaded tracepoint %d has no "
14719 "source location, using raw address"),
14720 utp->number);
14721 xsnprintf (small_buf, sizeof (small_buf), "*%s", hex_string (utp->addr));
14722 addr_str = small_buf;
14723 }
14724
14725 /* There's not much we can do with a sequence of bytecodes. */
14726 if (utp->cond && !utp->cond_string)
14727 warning (_("Uploaded tracepoint %d condition "
14728 "has no source form, ignoring it"),
14729 utp->number);
14730
14731 event_location_up location = string_to_event_location (&addr_str,
14732 current_language);
14733 if (!create_breakpoint (get_current_arch (),
14734 location.get (),
14735 utp->cond_string, -1, addr_str,
14736 0 /* parse cond/thread */,
14737 0 /* tempflag */,
14738 utp->type /* type_wanted */,
14739 0 /* Ignore count */,
14740 pending_break_support,
14741 &tracepoint_breakpoint_ops,
14742 0 /* from_tty */,
14743 utp->enabled /* enabled */,
14744 0 /* internal */,
14745 CREATE_BREAKPOINT_FLAGS_INSERTED))
14746 return NULL;
14747
14748 /* Get the tracepoint we just created. */
14749 tp = get_tracepoint (tracepoint_count);
14750 gdb_assert (tp != NULL);
14751
14752 if (utp->pass > 0)
14753 {
14754 xsnprintf (small_buf, sizeof (small_buf), "%d %d", utp->pass,
14755 tp->number);
14756
14757 trace_pass_command (small_buf, 0);
14758 }
14759
14760 /* If we have uploaded versions of the original commands, set up a
14761 special-purpose "reader" function and call the usual command line
14762 reader, then pass the result to the breakpoint command-setting
14763 function. */
14764 if (!utp->cmd_strings.empty ())
14765 {
14766 counted_command_line cmd_list;
14767
14768 this_utp = utp;
14769 next_cmd = 0;
14770
14771 cmd_list = read_command_lines_1 (read_uploaded_action, 1, NULL);
14772
14773 breakpoint_set_commands (tp, std::move (cmd_list));
14774 }
14775 else if (!utp->actions.empty ()
14776 || !utp->step_actions.empty ())
14777 warning (_("Uploaded tracepoint %d actions "
14778 "have no source form, ignoring them"),
14779 utp->number);
14780
14781 /* Copy any status information that might be available. */
14782 tp->hit_count = utp->hit_count;
14783 tp->traceframe_usage = utp->traceframe_usage;
14784
14785 return tp;
14786 }
14787
14788 /* Print information on tracepoint number TPNUM_EXP, or all if
14789 omitted. */
14790
14791 static void
14792 info_tracepoints_command (const char *args, int from_tty)
14793 {
14794 struct ui_out *uiout = current_uiout;
14795 int num_printed;
14796
14797 num_printed = breakpoint_1 (args, 0, is_tracepoint);
14798
14799 if (num_printed == 0)
14800 {
14801 if (args == NULL || *args == '\0')
14802 uiout->message ("No tracepoints.\n");
14803 else
14804 uiout->message ("No tracepoint matching '%s'.\n", args);
14805 }
14806
14807 default_collect_info ();
14808 }
14809
14810 /* The 'enable trace' command enables tracepoints.
14811 Not supported by all targets. */
14812 static void
14813 enable_trace_command (const char *args, int from_tty)
14814 {
14815 enable_command (args, from_tty);
14816 }
14817
14818 /* The 'disable trace' command disables tracepoints.
14819 Not supported by all targets. */
14820 static void
14821 disable_trace_command (const char *args, int from_tty)
14822 {
14823 disable_command (args, from_tty);
14824 }
14825
14826 /* Remove a tracepoint (or all if no argument). */
14827 static void
14828 delete_trace_command (const char *arg, int from_tty)
14829 {
14830 struct breakpoint *b, *b_tmp;
14831
14832 dont_repeat ();
14833
14834 if (arg == 0)
14835 {
14836 int breaks_to_delete = 0;
14837
14838 /* Delete all breakpoints if no argument.
14839 Do not delete internal or call-dummy breakpoints, these
14840 have to be deleted with an explicit breakpoint number
14841 argument. */
14842 ALL_TRACEPOINTS (b)
14843 if (is_tracepoint (b) && user_breakpoint_p (b))
14844 {
14845 breaks_to_delete = 1;
14846 break;
14847 }
14848
14849 /* Ask user only if there are some breakpoints to delete. */
14850 if (!from_tty
14851 || (breaks_to_delete && query (_("Delete all tracepoints? "))))
14852 {
14853 ALL_BREAKPOINTS_SAFE (b, b_tmp)
14854 if (is_tracepoint (b) && user_breakpoint_p (b))
14855 delete_breakpoint (b);
14856 }
14857 }
14858 else
14859 map_breakpoint_numbers
14860 (arg, [&] (breakpoint *br)
14861 {
14862 iterate_over_related_breakpoints (br, delete_breakpoint);
14863 });
14864 }
14865
14866 /* Helper function for trace_pass_command. */
14867
14868 static void
14869 trace_pass_set_count (struct tracepoint *tp, int count, int from_tty)
14870 {
14871 tp->pass_count = count;
14872 gdb::observers::breakpoint_modified.notify (tp);
14873 if (from_tty)
14874 printf_filtered (_("Setting tracepoint %d's passcount to %d\n"),
14875 tp->number, count);
14876 }
14877
14878 /* Set passcount for tracepoint.
14879
14880 First command argument is passcount, second is tracepoint number.
14881 If tracepoint number omitted, apply to most recently defined.
14882 Also accepts special argument "all". */
14883
14884 static void
14885 trace_pass_command (const char *args, int from_tty)
14886 {
14887 struct tracepoint *t1;
14888 ULONGEST count;
14889
14890 if (args == 0 || *args == 0)
14891 error (_("passcount command requires an "
14892 "argument (count + optional TP num)"));
14893
14894 count = strtoulst (args, &args, 10); /* Count comes first, then TP num. */
14895
14896 args = skip_spaces (args);
14897 if (*args && strncasecmp (args, "all", 3) == 0)
14898 {
14899 struct breakpoint *b;
14900
14901 args += 3; /* Skip special argument "all". */
14902 if (*args)
14903 error (_("Junk at end of arguments."));
14904
14905 ALL_TRACEPOINTS (b)
14906 {
14907 t1 = (struct tracepoint *) b;
14908 trace_pass_set_count (t1, count, from_tty);
14909 }
14910 }
14911 else if (*args == '\0')
14912 {
14913 t1 = get_tracepoint_by_number (&args, NULL);
14914 if (t1)
14915 trace_pass_set_count (t1, count, from_tty);
14916 }
14917 else
14918 {
14919 number_or_range_parser parser (args);
14920 while (!parser.finished ())
14921 {
14922 t1 = get_tracepoint_by_number (&args, &parser);
14923 if (t1)
14924 trace_pass_set_count (t1, count, from_tty);
14925 }
14926 }
14927 }
14928
14929 struct tracepoint *
14930 get_tracepoint (int num)
14931 {
14932 struct breakpoint *t;
14933
14934 ALL_TRACEPOINTS (t)
14935 if (t->number == num)
14936 return (struct tracepoint *) t;
14937
14938 return NULL;
14939 }
14940
14941 /* Find the tracepoint with the given target-side number (which may be
14942 different from the tracepoint number after disconnecting and
14943 reconnecting). */
14944
14945 struct tracepoint *
14946 get_tracepoint_by_number_on_target (int num)
14947 {
14948 struct breakpoint *b;
14949
14950 ALL_TRACEPOINTS (b)
14951 {
14952 struct tracepoint *t = (struct tracepoint *) b;
14953
14954 if (t->number_on_target == num)
14955 return t;
14956 }
14957
14958 return NULL;
14959 }
14960
14961 /* Utility: parse a tracepoint number and look it up in the list.
14962 If STATE is not NULL, use, get_number_or_range_state and ignore ARG.
14963 If the argument is missing, the most recent tracepoint
14964 (tracepoint_count) is returned. */
14965
14966 struct tracepoint *
14967 get_tracepoint_by_number (const char **arg,
14968 number_or_range_parser *parser)
14969 {
14970 struct breakpoint *t;
14971 int tpnum;
14972 const char *instring = arg == NULL ? NULL : *arg;
14973
14974 if (parser != NULL)
14975 {
14976 gdb_assert (!parser->finished ());
14977 tpnum = parser->get_number ();
14978 }
14979 else if (arg == NULL || *arg == NULL || ! **arg)
14980 tpnum = tracepoint_count;
14981 else
14982 tpnum = get_number (arg);
14983
14984 if (tpnum <= 0)
14985 {
14986 if (instring && *instring)
14987 printf_filtered (_("bad tracepoint number at or near '%s'\n"),
14988 instring);
14989 else
14990 printf_filtered (_("No previous tracepoint\n"));
14991 return NULL;
14992 }
14993
14994 ALL_TRACEPOINTS (t)
14995 if (t->number == tpnum)
14996 {
14997 return (struct tracepoint *) t;
14998 }
14999
15000 printf_unfiltered ("No tracepoint number %d.\n", tpnum);
15001 return NULL;
15002 }
15003
15004 void
15005 print_recreate_thread (struct breakpoint *b, struct ui_file *fp)
15006 {
15007 if (b->thread != -1)
15008 fprintf_unfiltered (fp, " thread %d", b->thread);
15009
15010 if (b->task != 0)
15011 fprintf_unfiltered (fp, " task %d", b->task);
15012
15013 fprintf_unfiltered (fp, "\n");
15014 }
15015
15016 /* Save information on user settable breakpoints (watchpoints, etc) to
15017 a new script file named FILENAME. If FILTER is non-NULL, call it
15018 on each breakpoint and only include the ones for which it returns
15019 non-zero. */
15020
15021 static void
15022 save_breakpoints (const char *filename, int from_tty,
15023 int (*filter) (const struct breakpoint *))
15024 {
15025 struct breakpoint *tp;
15026 int any = 0;
15027 int extra_trace_bits = 0;
15028
15029 if (filename == 0 || *filename == 0)
15030 error (_("Argument required (file name in which to save)"));
15031
15032 /* See if we have anything to save. */
15033 ALL_BREAKPOINTS (tp)
15034 {
15035 /* Skip internal and momentary breakpoints. */
15036 if (!user_breakpoint_p (tp))
15037 continue;
15038
15039 /* If we have a filter, only save the breakpoints it accepts. */
15040 if (filter && !filter (tp))
15041 continue;
15042
15043 any = 1;
15044
15045 if (is_tracepoint (tp))
15046 {
15047 extra_trace_bits = 1;
15048
15049 /* We can stop searching. */
15050 break;
15051 }
15052 }
15053
15054 if (!any)
15055 {
15056 warning (_("Nothing to save."));
15057 return;
15058 }
15059
15060 gdb::unique_xmalloc_ptr<char> expanded_filename (tilde_expand (filename));
15061
15062 stdio_file fp;
15063
15064 if (!fp.open (expanded_filename.get (), "w"))
15065 error (_("Unable to open file '%s' for saving (%s)"),
15066 expanded_filename.get (), safe_strerror (errno));
15067
15068 if (extra_trace_bits)
15069 save_trace_state_variables (&fp);
15070
15071 ALL_BREAKPOINTS (tp)
15072 {
15073 /* Skip internal and momentary breakpoints. */
15074 if (!user_breakpoint_p (tp))
15075 continue;
15076
15077 /* If we have a filter, only save the breakpoints it accepts. */
15078 if (filter && !filter (tp))
15079 continue;
15080
15081 tp->ops->print_recreate (tp, &fp);
15082
15083 /* Note, we can't rely on tp->number for anything, as we can't
15084 assume the recreated breakpoint numbers will match. Use $bpnum
15085 instead. */
15086
15087 if (tp->cond_string)
15088 fp.printf (" condition $bpnum %s\n", tp->cond_string);
15089
15090 if (tp->ignore_count)
15091 fp.printf (" ignore $bpnum %d\n", tp->ignore_count);
15092
15093 if (tp->type != bp_dprintf && tp->commands)
15094 {
15095 fp.puts (" commands\n");
15096
15097 current_uiout->redirect (&fp);
15098 TRY
15099 {
15100 print_command_lines (current_uiout, tp->commands.get (), 2);
15101 }
15102 CATCH (ex, RETURN_MASK_ALL)
15103 {
15104 current_uiout->redirect (NULL);
15105 throw_exception (ex);
15106 }
15107 END_CATCH
15108
15109 current_uiout->redirect (NULL);
15110 fp.puts (" end\n");
15111 }
15112
15113 if (tp->enable_state == bp_disabled)
15114 fp.puts ("disable $bpnum\n");
15115
15116 /* If this is a multi-location breakpoint, check if the locations
15117 should be individually disabled. Watchpoint locations are
15118 special, and not user visible. */
15119 if (!is_watchpoint (tp) && tp->loc && tp->loc->next)
15120 {
15121 struct bp_location *loc;
15122 int n = 1;
15123
15124 for (loc = tp->loc; loc != NULL; loc = loc->next, n++)
15125 if (!loc->enabled)
15126 fp.printf ("disable $bpnum.%d\n", n);
15127 }
15128 }
15129
15130 if (extra_trace_bits && *default_collect)
15131 fp.printf ("set default-collect %s\n", default_collect);
15132
15133 if (from_tty)
15134 printf_filtered (_("Saved to file '%s'.\n"), expanded_filename.get ());
15135 }
15136
15137 /* The `save breakpoints' command. */
15138
15139 static void
15140 save_breakpoints_command (const char *args, int from_tty)
15141 {
15142 save_breakpoints (args, from_tty, NULL);
15143 }
15144
15145 /* The `save tracepoints' command. */
15146
15147 static void
15148 save_tracepoints_command (const char *args, int from_tty)
15149 {
15150 save_breakpoints (args, from_tty, is_tracepoint);
15151 }
15152
15153 /* Create a vector of all tracepoints. */
15154
15155 std::vector<breakpoint *>
15156 all_tracepoints (void)
15157 {
15158 std::vector<breakpoint *> tp_vec;
15159 struct breakpoint *tp;
15160
15161 ALL_TRACEPOINTS (tp)
15162 {
15163 tp_vec.push_back (tp);
15164 }
15165
15166 return tp_vec;
15167 }
15168
15169 \f
15170 /* This help string is used to consolidate all the help string for specifying
15171 locations used by several commands. */
15172
15173 #define LOCATION_HELP_STRING \
15174 "Linespecs are colon-separated lists of location parameters, such as\n\
15175 source filename, function name, label name, and line number.\n\
15176 Example: To specify the start of a label named \"the_top\" in the\n\
15177 function \"fact\" in the file \"factorial.c\", use\n\
15178 \"factorial.c:fact:the_top\".\n\
15179 \n\
15180 Address locations begin with \"*\" and specify an exact address in the\n\
15181 program. Example: To specify the fourth byte past the start function\n\
15182 \"main\", use \"*main + 4\".\n\
15183 \n\
15184 Explicit locations are similar to linespecs but use an option/argument\n\
15185 syntax to specify location parameters.\n\
15186 Example: To specify the start of the label named \"the_top\" in the\n\
15187 function \"fact\" in the file \"factorial.c\", use \"-source factorial.c\n\
15188 -function fact -label the_top\".\n\
15189 \n\
15190 By default, a specified function is matched against the program's\n\
15191 functions in all scopes. For C++, this means in all namespaces and\n\
15192 classes. For Ada, this means in all packages. E.g., in C++,\n\
15193 \"func()\" matches \"A::func()\", \"A::B::func()\", etc. The\n\
15194 \"-qualified\" flag overrides this behavior, making GDB interpret the\n\
15195 specified name as a complete fully-qualified name instead.\n"
15196
15197 /* This help string is used for the break, hbreak, tbreak and thbreak
15198 commands. It is defined as a macro to prevent duplication.
15199 COMMAND should be a string constant containing the name of the
15200 command. */
15201
15202 #define BREAK_ARGS_HELP(command) \
15203 command" [PROBE_MODIFIER] [LOCATION] [thread THREADNUM] [if CONDITION]\n\
15204 PROBE_MODIFIER shall be present if the command is to be placed in a\n\
15205 probe point. Accepted values are `-probe' (for a generic, automatically\n\
15206 guessed probe type), `-probe-stap' (for a SystemTap probe) or \n\
15207 `-probe-dtrace' (for a DTrace probe).\n\
15208 LOCATION may be a linespec, address, or explicit location as described\n\
15209 below.\n\
15210 \n\
15211 With no LOCATION, uses current execution address of the selected\n\
15212 stack frame. This is useful for breaking on return to a stack frame.\n\
15213 \n\
15214 THREADNUM is the number from \"info threads\".\n\
15215 CONDITION is a boolean expression.\n\
15216 \n" LOCATION_HELP_STRING "\n\
15217 Multiple breakpoints at one place are permitted, and useful if their\n\
15218 conditions are different.\n\
15219 \n\
15220 Do \"help breakpoints\" for info on other commands dealing with breakpoints."
15221
15222 /* List of subcommands for "catch". */
15223 static struct cmd_list_element *catch_cmdlist;
15224
15225 /* List of subcommands for "tcatch". */
15226 static struct cmd_list_element *tcatch_cmdlist;
15227
15228 void
15229 add_catch_command (const char *name, const char *docstring,
15230 cmd_const_sfunc_ftype *sfunc,
15231 completer_ftype *completer,
15232 void *user_data_catch,
15233 void *user_data_tcatch)
15234 {
15235 struct cmd_list_element *command;
15236
15237 command = add_cmd (name, class_breakpoint, docstring,
15238 &catch_cmdlist);
15239 set_cmd_sfunc (command, sfunc);
15240 set_cmd_context (command, user_data_catch);
15241 set_cmd_completer (command, completer);
15242
15243 command = add_cmd (name, class_breakpoint, docstring,
15244 &tcatch_cmdlist);
15245 set_cmd_sfunc (command, sfunc);
15246 set_cmd_context (command, user_data_tcatch);
15247 set_cmd_completer (command, completer);
15248 }
15249
15250 static void
15251 save_command (const char *arg, int from_tty)
15252 {
15253 printf_unfiltered (_("\"save\" must be followed by "
15254 "the name of a save subcommand.\n"));
15255 help_list (save_cmdlist, "save ", all_commands, gdb_stdout);
15256 }
15257
15258 struct breakpoint *
15259 iterate_over_breakpoints (int (*callback) (struct breakpoint *, void *),
15260 void *data)
15261 {
15262 struct breakpoint *b, *b_tmp;
15263
15264 ALL_BREAKPOINTS_SAFE (b, b_tmp)
15265 {
15266 if ((*callback) (b, data))
15267 return b;
15268 }
15269
15270 return NULL;
15271 }
15272
15273 /* Zero if any of the breakpoint's locations could be a location where
15274 functions have been inlined, nonzero otherwise. */
15275
15276 static int
15277 is_non_inline_function (struct breakpoint *b)
15278 {
15279 /* The shared library event breakpoint is set on the address of a
15280 non-inline function. */
15281 if (b->type == bp_shlib_event)
15282 return 1;
15283
15284 return 0;
15285 }
15286
15287 /* Nonzero if the specified PC cannot be a location where functions
15288 have been inlined. */
15289
15290 int
15291 pc_at_non_inline_function (const address_space *aspace, CORE_ADDR pc,
15292 const struct target_waitstatus *ws)
15293 {
15294 struct breakpoint *b;
15295 struct bp_location *bl;
15296
15297 ALL_BREAKPOINTS (b)
15298 {
15299 if (!is_non_inline_function (b))
15300 continue;
15301
15302 for (bl = b->loc; bl != NULL; bl = bl->next)
15303 {
15304 if (!bl->shlib_disabled
15305 && bpstat_check_location (bl, aspace, pc, ws))
15306 return 1;
15307 }
15308 }
15309
15310 return 0;
15311 }
15312
15313 /* Remove any references to OBJFILE which is going to be freed. */
15314
15315 void
15316 breakpoint_free_objfile (struct objfile *objfile)
15317 {
15318 struct bp_location **locp, *loc;
15319
15320 ALL_BP_LOCATIONS (loc, locp)
15321 if (loc->symtab != NULL && SYMTAB_OBJFILE (loc->symtab) == objfile)
15322 loc->symtab = NULL;
15323 }
15324
15325 void
15326 initialize_breakpoint_ops (void)
15327 {
15328 static int initialized = 0;
15329
15330 struct breakpoint_ops *ops;
15331
15332 if (initialized)
15333 return;
15334 initialized = 1;
15335
15336 /* The breakpoint_ops structure to be inherit by all kinds of
15337 breakpoints (real breakpoints, i.e., user "break" breakpoints,
15338 internal and momentary breakpoints, etc.). */
15339 ops = &bkpt_base_breakpoint_ops;
15340 *ops = base_breakpoint_ops;
15341 ops->re_set = bkpt_re_set;
15342 ops->insert_location = bkpt_insert_location;
15343 ops->remove_location = bkpt_remove_location;
15344 ops->breakpoint_hit = bkpt_breakpoint_hit;
15345 ops->create_sals_from_location = bkpt_create_sals_from_location;
15346 ops->create_breakpoints_sal = bkpt_create_breakpoints_sal;
15347 ops->decode_location = bkpt_decode_location;
15348
15349 /* The breakpoint_ops structure to be used in regular breakpoints. */
15350 ops = &bkpt_breakpoint_ops;
15351 *ops = bkpt_base_breakpoint_ops;
15352 ops->re_set = bkpt_re_set;
15353 ops->resources_needed = bkpt_resources_needed;
15354 ops->print_it = bkpt_print_it;
15355 ops->print_mention = bkpt_print_mention;
15356 ops->print_recreate = bkpt_print_recreate;
15357
15358 /* Ranged breakpoints. */
15359 ops = &ranged_breakpoint_ops;
15360 *ops = bkpt_breakpoint_ops;
15361 ops->breakpoint_hit = breakpoint_hit_ranged_breakpoint;
15362 ops->resources_needed = resources_needed_ranged_breakpoint;
15363 ops->print_it = print_it_ranged_breakpoint;
15364 ops->print_one = print_one_ranged_breakpoint;
15365 ops->print_one_detail = print_one_detail_ranged_breakpoint;
15366 ops->print_mention = print_mention_ranged_breakpoint;
15367 ops->print_recreate = print_recreate_ranged_breakpoint;
15368
15369 /* Internal breakpoints. */
15370 ops = &internal_breakpoint_ops;
15371 *ops = bkpt_base_breakpoint_ops;
15372 ops->re_set = internal_bkpt_re_set;
15373 ops->check_status = internal_bkpt_check_status;
15374 ops->print_it = internal_bkpt_print_it;
15375 ops->print_mention = internal_bkpt_print_mention;
15376
15377 /* Momentary breakpoints. */
15378 ops = &momentary_breakpoint_ops;
15379 *ops = bkpt_base_breakpoint_ops;
15380 ops->re_set = momentary_bkpt_re_set;
15381 ops->check_status = momentary_bkpt_check_status;
15382 ops->print_it = momentary_bkpt_print_it;
15383 ops->print_mention = momentary_bkpt_print_mention;
15384
15385 /* Probe breakpoints. */
15386 ops = &bkpt_probe_breakpoint_ops;
15387 *ops = bkpt_breakpoint_ops;
15388 ops->insert_location = bkpt_probe_insert_location;
15389 ops->remove_location = bkpt_probe_remove_location;
15390 ops->create_sals_from_location = bkpt_probe_create_sals_from_location;
15391 ops->decode_location = bkpt_probe_decode_location;
15392
15393 /* Watchpoints. */
15394 ops = &watchpoint_breakpoint_ops;
15395 *ops = base_breakpoint_ops;
15396 ops->re_set = re_set_watchpoint;
15397 ops->insert_location = insert_watchpoint;
15398 ops->remove_location = remove_watchpoint;
15399 ops->breakpoint_hit = breakpoint_hit_watchpoint;
15400 ops->check_status = check_status_watchpoint;
15401 ops->resources_needed = resources_needed_watchpoint;
15402 ops->works_in_software_mode = works_in_software_mode_watchpoint;
15403 ops->print_it = print_it_watchpoint;
15404 ops->print_mention = print_mention_watchpoint;
15405 ops->print_recreate = print_recreate_watchpoint;
15406 ops->explains_signal = explains_signal_watchpoint;
15407
15408 /* Masked watchpoints. */
15409 ops = &masked_watchpoint_breakpoint_ops;
15410 *ops = watchpoint_breakpoint_ops;
15411 ops->insert_location = insert_masked_watchpoint;
15412 ops->remove_location = remove_masked_watchpoint;
15413 ops->resources_needed = resources_needed_masked_watchpoint;
15414 ops->works_in_software_mode = works_in_software_mode_masked_watchpoint;
15415 ops->print_it = print_it_masked_watchpoint;
15416 ops->print_one_detail = print_one_detail_masked_watchpoint;
15417 ops->print_mention = print_mention_masked_watchpoint;
15418 ops->print_recreate = print_recreate_masked_watchpoint;
15419
15420 /* Tracepoints. */
15421 ops = &tracepoint_breakpoint_ops;
15422 *ops = base_breakpoint_ops;
15423 ops->re_set = tracepoint_re_set;
15424 ops->breakpoint_hit = tracepoint_breakpoint_hit;
15425 ops->print_one_detail = tracepoint_print_one_detail;
15426 ops->print_mention = tracepoint_print_mention;
15427 ops->print_recreate = tracepoint_print_recreate;
15428 ops->create_sals_from_location = tracepoint_create_sals_from_location;
15429 ops->create_breakpoints_sal = tracepoint_create_breakpoints_sal;
15430 ops->decode_location = tracepoint_decode_location;
15431
15432 /* Probe tracepoints. */
15433 ops = &tracepoint_probe_breakpoint_ops;
15434 *ops = tracepoint_breakpoint_ops;
15435 ops->create_sals_from_location = tracepoint_probe_create_sals_from_location;
15436 ops->decode_location = tracepoint_probe_decode_location;
15437
15438 /* Static tracepoints with marker (`-m'). */
15439 ops = &strace_marker_breakpoint_ops;
15440 *ops = tracepoint_breakpoint_ops;
15441 ops->create_sals_from_location = strace_marker_create_sals_from_location;
15442 ops->create_breakpoints_sal = strace_marker_create_breakpoints_sal;
15443 ops->decode_location = strace_marker_decode_location;
15444
15445 /* Fork catchpoints. */
15446 ops = &catch_fork_breakpoint_ops;
15447 *ops = base_breakpoint_ops;
15448 ops->insert_location = insert_catch_fork;
15449 ops->remove_location = remove_catch_fork;
15450 ops->breakpoint_hit = breakpoint_hit_catch_fork;
15451 ops->print_it = print_it_catch_fork;
15452 ops->print_one = print_one_catch_fork;
15453 ops->print_mention = print_mention_catch_fork;
15454 ops->print_recreate = print_recreate_catch_fork;
15455
15456 /* Vfork catchpoints. */
15457 ops = &catch_vfork_breakpoint_ops;
15458 *ops = base_breakpoint_ops;
15459 ops->insert_location = insert_catch_vfork;
15460 ops->remove_location = remove_catch_vfork;
15461 ops->breakpoint_hit = breakpoint_hit_catch_vfork;
15462 ops->print_it = print_it_catch_vfork;
15463 ops->print_one = print_one_catch_vfork;
15464 ops->print_mention = print_mention_catch_vfork;
15465 ops->print_recreate = print_recreate_catch_vfork;
15466
15467 /* Exec catchpoints. */
15468 ops = &catch_exec_breakpoint_ops;
15469 *ops = base_breakpoint_ops;
15470 ops->insert_location = insert_catch_exec;
15471 ops->remove_location = remove_catch_exec;
15472 ops->breakpoint_hit = breakpoint_hit_catch_exec;
15473 ops->print_it = print_it_catch_exec;
15474 ops->print_one = print_one_catch_exec;
15475 ops->print_mention = print_mention_catch_exec;
15476 ops->print_recreate = print_recreate_catch_exec;
15477
15478 /* Solib-related catchpoints. */
15479 ops = &catch_solib_breakpoint_ops;
15480 *ops = base_breakpoint_ops;
15481 ops->insert_location = insert_catch_solib;
15482 ops->remove_location = remove_catch_solib;
15483 ops->breakpoint_hit = breakpoint_hit_catch_solib;
15484 ops->check_status = check_status_catch_solib;
15485 ops->print_it = print_it_catch_solib;
15486 ops->print_one = print_one_catch_solib;
15487 ops->print_mention = print_mention_catch_solib;
15488 ops->print_recreate = print_recreate_catch_solib;
15489
15490 ops = &dprintf_breakpoint_ops;
15491 *ops = bkpt_base_breakpoint_ops;
15492 ops->re_set = dprintf_re_set;
15493 ops->resources_needed = bkpt_resources_needed;
15494 ops->print_it = bkpt_print_it;
15495 ops->print_mention = bkpt_print_mention;
15496 ops->print_recreate = dprintf_print_recreate;
15497 ops->after_condition_true = dprintf_after_condition_true;
15498 ops->breakpoint_hit = dprintf_breakpoint_hit;
15499 }
15500
15501 /* Chain containing all defined "enable breakpoint" subcommands. */
15502
15503 static struct cmd_list_element *enablebreaklist = NULL;
15504
15505 /* See breakpoint.h. */
15506
15507 cmd_list_element *commands_cmd_element = nullptr;
15508
15509 void
15510 _initialize_breakpoint (void)
15511 {
15512 struct cmd_list_element *c;
15513
15514 initialize_breakpoint_ops ();
15515
15516 gdb::observers::solib_unloaded.attach (disable_breakpoints_in_unloaded_shlib);
15517 gdb::observers::free_objfile.attach (disable_breakpoints_in_freed_objfile);
15518 gdb::observers::memory_changed.attach (invalidate_bp_value_on_memory_change);
15519
15520 breakpoint_objfile_key
15521 = register_objfile_data_with_cleanup (NULL, free_breakpoint_objfile_data);
15522
15523 breakpoint_chain = 0;
15524 /* Don't bother to call set_breakpoint_count. $bpnum isn't useful
15525 before a breakpoint is set. */
15526 breakpoint_count = 0;
15527
15528 tracepoint_count = 0;
15529
15530 add_com ("ignore", class_breakpoint, ignore_command, _("\
15531 Set ignore-count of breakpoint number N to COUNT.\n\
15532 Usage is `ignore N COUNT'."));
15533
15534 commands_cmd_element = add_com ("commands", class_breakpoint,
15535 commands_command, _("\
15536 Set commands to be executed when the given breakpoints are hit.\n\
15537 Give a space-separated breakpoint list as argument after \"commands\".\n\
15538 A list element can be a breakpoint number (e.g. `5') or a range of numbers\n\
15539 (e.g. `5-7').\n\
15540 With no argument, the targeted breakpoint is the last one set.\n\
15541 The commands themselves follow starting on the next line.\n\
15542 Type a line containing \"end\" to indicate the end of them.\n\
15543 Give \"silent\" as the first line to make the breakpoint silent;\n\
15544 then no output is printed when it is hit, except what the commands print."));
15545
15546 c = add_com ("condition", class_breakpoint, condition_command, _("\
15547 Specify breakpoint number N to break only if COND is true.\n\
15548 Usage is `condition N COND', where N is an integer and COND is an\n\
15549 expression to be evaluated whenever breakpoint N is reached."));
15550 set_cmd_completer (c, condition_completer);
15551
15552 c = add_com ("tbreak", class_breakpoint, tbreak_command, _("\
15553 Set a temporary breakpoint.\n\
15554 Like \"break\" except the breakpoint is only temporary,\n\
15555 so it will be deleted when hit. Equivalent to \"break\" followed\n\
15556 by using \"enable delete\" on the breakpoint number.\n\
15557 \n"
15558 BREAK_ARGS_HELP ("tbreak")));
15559 set_cmd_completer (c, location_completer);
15560
15561 c = add_com ("hbreak", class_breakpoint, hbreak_command, _("\
15562 Set a hardware assisted breakpoint.\n\
15563 Like \"break\" except the breakpoint requires hardware support,\n\
15564 some target hardware may not have this support.\n\
15565 \n"
15566 BREAK_ARGS_HELP ("hbreak")));
15567 set_cmd_completer (c, location_completer);
15568
15569 c = add_com ("thbreak", class_breakpoint, thbreak_command, _("\
15570 Set a temporary hardware assisted breakpoint.\n\
15571 Like \"hbreak\" except the breakpoint is only temporary,\n\
15572 so it will be deleted when hit.\n\
15573 \n"
15574 BREAK_ARGS_HELP ("thbreak")));
15575 set_cmd_completer (c, location_completer);
15576
15577 add_prefix_cmd ("enable", class_breakpoint, enable_command, _("\
15578 Enable some breakpoints.\n\
15579 Give breakpoint numbers (separated by spaces) as arguments.\n\
15580 With no subcommand, breakpoints are enabled until you command otherwise.\n\
15581 This is used to cancel the effect of the \"disable\" command.\n\
15582 With a subcommand you can enable temporarily."),
15583 &enablelist, "enable ", 1, &cmdlist);
15584
15585 add_com_alias ("en", "enable", class_breakpoint, 1);
15586
15587 add_prefix_cmd ("breakpoints", class_breakpoint, enable_command, _("\
15588 Enable some breakpoints.\n\
15589 Give breakpoint numbers (separated by spaces) as arguments.\n\
15590 This is used to cancel the effect of the \"disable\" command.\n\
15591 May be abbreviated to simply \"enable\".\n"),
15592 &enablebreaklist, "enable breakpoints ", 1, &enablelist);
15593
15594 add_cmd ("once", no_class, enable_once_command, _("\
15595 Enable breakpoints for one hit. Give breakpoint numbers.\n\
15596 If a breakpoint is hit while enabled in this fashion, it becomes disabled."),
15597 &enablebreaklist);
15598
15599 add_cmd ("delete", no_class, enable_delete_command, _("\
15600 Enable breakpoints and delete when hit. Give breakpoint numbers.\n\
15601 If a breakpoint is hit while enabled in this fashion, it is deleted."),
15602 &enablebreaklist);
15603
15604 add_cmd ("count", no_class, enable_count_command, _("\
15605 Enable breakpoints for COUNT hits. Give count and then breakpoint numbers.\n\
15606 If a breakpoint is hit while enabled in this fashion,\n\
15607 the count is decremented; when it reaches zero, the breakpoint is disabled."),
15608 &enablebreaklist);
15609
15610 add_cmd ("delete", no_class, enable_delete_command, _("\
15611 Enable breakpoints and delete when hit. Give breakpoint numbers.\n\
15612 If a breakpoint is hit while enabled in this fashion, it is deleted."),
15613 &enablelist);
15614
15615 add_cmd ("once", no_class, enable_once_command, _("\
15616 Enable breakpoints for one hit. Give breakpoint numbers.\n\
15617 If a breakpoint is hit while enabled in this fashion, it becomes disabled."),
15618 &enablelist);
15619
15620 add_cmd ("count", no_class, enable_count_command, _("\
15621 Enable breakpoints for COUNT hits. Give count and then breakpoint numbers.\n\
15622 If a breakpoint is hit while enabled in this fashion,\n\
15623 the count is decremented; when it reaches zero, the breakpoint is disabled."),
15624 &enablelist);
15625
15626 add_prefix_cmd ("disable", class_breakpoint, disable_command, _("\
15627 Disable some breakpoints.\n\
15628 Arguments are breakpoint numbers with spaces in between.\n\
15629 To disable all breakpoints, give no argument.\n\
15630 A disabled breakpoint is not forgotten, but has no effect until re-enabled."),
15631 &disablelist, "disable ", 1, &cmdlist);
15632 add_com_alias ("dis", "disable", class_breakpoint, 1);
15633 add_com_alias ("disa", "disable", class_breakpoint, 1);
15634
15635 add_cmd ("breakpoints", class_alias, disable_command, _("\
15636 Disable some breakpoints.\n\
15637 Arguments are breakpoint numbers with spaces in between.\n\
15638 To disable all breakpoints, give no argument.\n\
15639 A disabled breakpoint is not forgotten, but has no effect until re-enabled.\n\
15640 This command may be abbreviated \"disable\"."),
15641 &disablelist);
15642
15643 add_prefix_cmd ("delete", class_breakpoint, delete_command, _("\
15644 Delete some breakpoints or auto-display expressions.\n\
15645 Arguments are breakpoint numbers with spaces in between.\n\
15646 To delete all breakpoints, give no argument.\n\
15647 \n\
15648 Also a prefix command for deletion of other GDB objects.\n\
15649 The \"unset\" command is also an alias for \"delete\"."),
15650 &deletelist, "delete ", 1, &cmdlist);
15651 add_com_alias ("d", "delete", class_breakpoint, 1);
15652 add_com_alias ("del", "delete", class_breakpoint, 1);
15653
15654 add_cmd ("breakpoints", class_alias, delete_command, _("\
15655 Delete some breakpoints or auto-display expressions.\n\
15656 Arguments are breakpoint numbers with spaces in between.\n\
15657 To delete all breakpoints, give no argument.\n\
15658 This command may be abbreviated \"delete\"."),
15659 &deletelist);
15660
15661 add_com ("clear", class_breakpoint, clear_command, _("\
15662 Clear breakpoint at specified location.\n\
15663 Argument may be a linespec, explicit, or address location as described below.\n\
15664 \n\
15665 With no argument, clears all breakpoints in the line that the selected frame\n\
15666 is executing in.\n"
15667 "\n" LOCATION_HELP_STRING "\n\
15668 See also the \"delete\" command which clears breakpoints by number."));
15669 add_com_alias ("cl", "clear", class_breakpoint, 1);
15670
15671 c = add_com ("break", class_breakpoint, break_command, _("\
15672 Set breakpoint at specified location.\n"
15673 BREAK_ARGS_HELP ("break")));
15674 set_cmd_completer (c, location_completer);
15675
15676 add_com_alias ("b", "break", class_run, 1);
15677 add_com_alias ("br", "break", class_run, 1);
15678 add_com_alias ("bre", "break", class_run, 1);
15679 add_com_alias ("brea", "break", class_run, 1);
15680
15681 if (dbx_commands)
15682 {
15683 add_abbrev_prefix_cmd ("stop", class_breakpoint, stop_command, _("\
15684 Break in function/address or break at a line in the current file."),
15685 &stoplist, "stop ", 1, &cmdlist);
15686 add_cmd ("in", class_breakpoint, stopin_command,
15687 _("Break in function or address."), &stoplist);
15688 add_cmd ("at", class_breakpoint, stopat_command,
15689 _("Break at a line in the current file."), &stoplist);
15690 add_com ("status", class_info, info_breakpoints_command, _("\
15691 Status of user-settable breakpoints, or breakpoint number NUMBER.\n\
15692 The \"Type\" column indicates one of:\n\
15693 \tbreakpoint - normal breakpoint\n\
15694 \twatchpoint - watchpoint\n\
15695 The \"Disp\" column contains one of \"keep\", \"del\", or \"dis\" to indicate\n\
15696 the disposition of the breakpoint after it gets hit. \"dis\" means that the\n\
15697 breakpoint will be disabled. The \"Address\" and \"What\" columns indicate the\n\
15698 address and file/line number respectively.\n\
15699 \n\
15700 Convenience variable \"$_\" and default examine address for \"x\"\n\
15701 are set to the address of the last breakpoint listed unless the command\n\
15702 is prefixed with \"server \".\n\n\
15703 Convenience variable \"$bpnum\" contains the number of the last\n\
15704 breakpoint set."));
15705 }
15706
15707 add_info ("breakpoints", info_breakpoints_command, _("\
15708 Status of specified breakpoints (all user-settable breakpoints if no argument).\n\
15709 The \"Type\" column indicates one of:\n\
15710 \tbreakpoint - normal breakpoint\n\
15711 \twatchpoint - watchpoint\n\
15712 The \"Disp\" column contains one of \"keep\", \"del\", or \"dis\" to indicate\n\
15713 the disposition of the breakpoint after it gets hit. \"dis\" means that the\n\
15714 breakpoint will be disabled. The \"Address\" and \"What\" columns indicate the\n\
15715 address and file/line number respectively.\n\
15716 \n\
15717 Convenience variable \"$_\" and default examine address for \"x\"\n\
15718 are set to the address of the last breakpoint listed unless the command\n\
15719 is prefixed with \"server \".\n\n\
15720 Convenience variable \"$bpnum\" contains the number of the last\n\
15721 breakpoint set."));
15722
15723 add_info_alias ("b", "breakpoints", 1);
15724
15725 add_cmd ("breakpoints", class_maintenance, maintenance_info_breakpoints, _("\
15726 Status of all breakpoints, or breakpoint number NUMBER.\n\
15727 The \"Type\" column indicates one of:\n\
15728 \tbreakpoint - normal breakpoint\n\
15729 \twatchpoint - watchpoint\n\
15730 \tlongjmp - internal breakpoint used to step through longjmp()\n\
15731 \tlongjmp resume - internal breakpoint at the target of longjmp()\n\
15732 \tuntil - internal breakpoint used by the \"until\" command\n\
15733 \tfinish - internal breakpoint used by the \"finish\" command\n\
15734 The \"Disp\" column contains one of \"keep\", \"del\", or \"dis\" to indicate\n\
15735 the disposition of the breakpoint after it gets hit. \"dis\" means that the\n\
15736 breakpoint will be disabled. The \"Address\" and \"What\" columns indicate the\n\
15737 address and file/line number respectively.\n\
15738 \n\
15739 Convenience variable \"$_\" and default examine address for \"x\"\n\
15740 are set to the address of the last breakpoint listed unless the command\n\
15741 is prefixed with \"server \".\n\n\
15742 Convenience variable \"$bpnum\" contains the number of the last\n\
15743 breakpoint set."),
15744 &maintenanceinfolist);
15745
15746 add_prefix_cmd ("catch", class_breakpoint, catch_command, _("\
15747 Set catchpoints to catch events."),
15748 &catch_cmdlist, "catch ",
15749 0/*allow-unknown*/, &cmdlist);
15750
15751 add_prefix_cmd ("tcatch", class_breakpoint, tcatch_command, _("\
15752 Set temporary catchpoints to catch events."),
15753 &tcatch_cmdlist, "tcatch ",
15754 0/*allow-unknown*/, &cmdlist);
15755
15756 add_catch_command ("fork", _("Catch calls to fork."),
15757 catch_fork_command_1,
15758 NULL,
15759 (void *) (uintptr_t) catch_fork_permanent,
15760 (void *) (uintptr_t) catch_fork_temporary);
15761 add_catch_command ("vfork", _("Catch calls to vfork."),
15762 catch_fork_command_1,
15763 NULL,
15764 (void *) (uintptr_t) catch_vfork_permanent,
15765 (void *) (uintptr_t) catch_vfork_temporary);
15766 add_catch_command ("exec", _("Catch calls to exec."),
15767 catch_exec_command_1,
15768 NULL,
15769 CATCH_PERMANENT,
15770 CATCH_TEMPORARY);
15771 add_catch_command ("load", _("Catch loads of shared libraries.\n\
15772 Usage: catch load [REGEX]\n\
15773 If REGEX is given, only stop for libraries matching the regular expression."),
15774 catch_load_command_1,
15775 NULL,
15776 CATCH_PERMANENT,
15777 CATCH_TEMPORARY);
15778 add_catch_command ("unload", _("Catch unloads of shared libraries.\n\
15779 Usage: catch unload [REGEX]\n\
15780 If REGEX is given, only stop for libraries matching the regular expression."),
15781 catch_unload_command_1,
15782 NULL,
15783 CATCH_PERMANENT,
15784 CATCH_TEMPORARY);
15785
15786 c = add_com ("watch", class_breakpoint, watch_command, _("\
15787 Set a watchpoint for an expression.\n\
15788 Usage: watch [-l|-location] EXPRESSION\n\
15789 A watchpoint stops execution of your program whenever the value of\n\
15790 an expression changes.\n\
15791 If -l or -location is given, this evaluates EXPRESSION and watches\n\
15792 the memory to which it refers."));
15793 set_cmd_completer (c, expression_completer);
15794
15795 c = add_com ("rwatch", class_breakpoint, rwatch_command, _("\
15796 Set a read watchpoint for an expression.\n\
15797 Usage: rwatch [-l|-location] EXPRESSION\n\
15798 A watchpoint stops execution of your program whenever the value of\n\
15799 an expression is read.\n\
15800 If -l or -location is given, this evaluates EXPRESSION and watches\n\
15801 the memory to which it refers."));
15802 set_cmd_completer (c, expression_completer);
15803
15804 c = add_com ("awatch", class_breakpoint, awatch_command, _("\
15805 Set a watchpoint for an expression.\n\
15806 Usage: awatch [-l|-location] EXPRESSION\n\
15807 A watchpoint stops execution of your program whenever the value of\n\
15808 an expression is either read or written.\n\
15809 If -l or -location is given, this evaluates EXPRESSION and watches\n\
15810 the memory to which it refers."));
15811 set_cmd_completer (c, expression_completer);
15812
15813 add_info ("watchpoints", info_watchpoints_command, _("\
15814 Status of specified watchpoints (all watchpoints if no argument)."));
15815
15816 /* XXX: cagney/2005-02-23: This should be a boolean, and should
15817 respond to changes - contrary to the description. */
15818 add_setshow_zinteger_cmd ("can-use-hw-watchpoints", class_support,
15819 &can_use_hw_watchpoints, _("\
15820 Set debugger's willingness to use watchpoint hardware."), _("\
15821 Show debugger's willingness to use watchpoint hardware."), _("\
15822 If zero, gdb will not use hardware for new watchpoints, even if\n\
15823 such is available. (However, any hardware watchpoints that were\n\
15824 created before setting this to nonzero, will continue to use watchpoint\n\
15825 hardware.)"),
15826 NULL,
15827 show_can_use_hw_watchpoints,
15828 &setlist, &showlist);
15829
15830 can_use_hw_watchpoints = 1;
15831
15832 /* Tracepoint manipulation commands. */
15833
15834 c = add_com ("trace", class_breakpoint, trace_command, _("\
15835 Set a tracepoint at specified location.\n\
15836 \n"
15837 BREAK_ARGS_HELP ("trace") "\n\
15838 Do \"help tracepoints\" for info on other tracepoint commands."));
15839 set_cmd_completer (c, location_completer);
15840
15841 add_com_alias ("tp", "trace", class_alias, 0);
15842 add_com_alias ("tr", "trace", class_alias, 1);
15843 add_com_alias ("tra", "trace", class_alias, 1);
15844 add_com_alias ("trac", "trace", class_alias, 1);
15845
15846 c = add_com ("ftrace", class_breakpoint, ftrace_command, _("\
15847 Set a fast tracepoint at specified location.\n\
15848 \n"
15849 BREAK_ARGS_HELP ("ftrace") "\n\
15850 Do \"help tracepoints\" for info on other tracepoint commands."));
15851 set_cmd_completer (c, location_completer);
15852
15853 c = add_com ("strace", class_breakpoint, strace_command, _("\
15854 Set a static tracepoint at location or marker.\n\
15855 \n\
15856 strace [LOCATION] [if CONDITION]\n\
15857 LOCATION may be a linespec, explicit, or address location (described below) \n\
15858 or -m MARKER_ID.\n\n\
15859 If a marker id is specified, probe the marker with that name. With\n\
15860 no LOCATION, uses current execution address of the selected stack frame.\n\
15861 Static tracepoints accept an extra collect action -- ``collect $_sdata''.\n\
15862 This collects arbitrary user data passed in the probe point call to the\n\
15863 tracing library. You can inspect it when analyzing the trace buffer,\n\
15864 by printing the $_sdata variable like any other convenience variable.\n\
15865 \n\
15866 CONDITION is a boolean expression.\n\
15867 \n" LOCATION_HELP_STRING "\n\
15868 Multiple tracepoints at one place are permitted, and useful if their\n\
15869 conditions are different.\n\
15870 \n\
15871 Do \"help breakpoints\" for info on other commands dealing with breakpoints.\n\
15872 Do \"help tracepoints\" for info on other tracepoint commands."));
15873 set_cmd_completer (c, location_completer);
15874
15875 add_info ("tracepoints", info_tracepoints_command, _("\
15876 Status of specified tracepoints (all tracepoints if no argument).\n\
15877 Convenience variable \"$tpnum\" contains the number of the\n\
15878 last tracepoint set."));
15879
15880 add_info_alias ("tp", "tracepoints", 1);
15881
15882 add_cmd ("tracepoints", class_trace, delete_trace_command, _("\
15883 Delete specified tracepoints.\n\
15884 Arguments are tracepoint numbers, separated by spaces.\n\
15885 No argument means delete all tracepoints."),
15886 &deletelist);
15887 add_alias_cmd ("tr", "tracepoints", class_trace, 1, &deletelist);
15888
15889 c = add_cmd ("tracepoints", class_trace, disable_trace_command, _("\
15890 Disable specified tracepoints.\n\
15891 Arguments are tracepoint numbers, separated by spaces.\n\
15892 No argument means disable all tracepoints."),
15893 &disablelist);
15894 deprecate_cmd (c, "disable");
15895
15896 c = add_cmd ("tracepoints", class_trace, enable_trace_command, _("\
15897 Enable specified tracepoints.\n\
15898 Arguments are tracepoint numbers, separated by spaces.\n\
15899 No argument means enable all tracepoints."),
15900 &enablelist);
15901 deprecate_cmd (c, "enable");
15902
15903 add_com ("passcount", class_trace, trace_pass_command, _("\
15904 Set the passcount for a tracepoint.\n\
15905 The trace will end when the tracepoint has been passed 'count' times.\n\
15906 Usage: passcount COUNT TPNUM, where TPNUM may also be \"all\";\n\
15907 if TPNUM is omitted, passcount refers to the last tracepoint defined."));
15908
15909 add_prefix_cmd ("save", class_breakpoint, save_command,
15910 _("Save breakpoint definitions as a script."),
15911 &save_cmdlist, "save ",
15912 0/*allow-unknown*/, &cmdlist);
15913
15914 c = add_cmd ("breakpoints", class_breakpoint, save_breakpoints_command, _("\
15915 Save current breakpoint definitions as a script.\n\
15916 This includes all types of breakpoints (breakpoints, watchpoints,\n\
15917 catchpoints, tracepoints). Use the 'source' command in another debug\n\
15918 session to restore them."),
15919 &save_cmdlist);
15920 set_cmd_completer (c, filename_completer);
15921
15922 c = add_cmd ("tracepoints", class_trace, save_tracepoints_command, _("\
15923 Save current tracepoint definitions as a script.\n\
15924 Use the 'source' command in another debug session to restore them."),
15925 &save_cmdlist);
15926 set_cmd_completer (c, filename_completer);
15927
15928 c = add_com_alias ("save-tracepoints", "save tracepoints", class_trace, 0);
15929 deprecate_cmd (c, "save tracepoints");
15930
15931 add_prefix_cmd ("breakpoint", class_maintenance, set_breakpoint_cmd, _("\
15932 Breakpoint specific settings\n\
15933 Configure various breakpoint-specific variables such as\n\
15934 pending breakpoint behavior"),
15935 &breakpoint_set_cmdlist, "set breakpoint ",
15936 0/*allow-unknown*/, &setlist);
15937 add_prefix_cmd ("breakpoint", class_maintenance, show_breakpoint_cmd, _("\
15938 Breakpoint specific settings\n\
15939 Configure various breakpoint-specific variables such as\n\
15940 pending breakpoint behavior"),
15941 &breakpoint_show_cmdlist, "show breakpoint ",
15942 0/*allow-unknown*/, &showlist);
15943
15944 add_setshow_auto_boolean_cmd ("pending", no_class,
15945 &pending_break_support, _("\
15946 Set debugger's behavior regarding pending breakpoints."), _("\
15947 Show debugger's behavior regarding pending breakpoints."), _("\
15948 If on, an unrecognized breakpoint location will cause gdb to create a\n\
15949 pending breakpoint. If off, an unrecognized breakpoint location results in\n\
15950 an error. If auto, an unrecognized breakpoint location results in a\n\
15951 user-query to see if a pending breakpoint should be created."),
15952 NULL,
15953 show_pending_break_support,
15954 &breakpoint_set_cmdlist,
15955 &breakpoint_show_cmdlist);
15956
15957 pending_break_support = AUTO_BOOLEAN_AUTO;
15958
15959 add_setshow_boolean_cmd ("auto-hw", no_class,
15960 &automatic_hardware_breakpoints, _("\
15961 Set automatic usage of hardware breakpoints."), _("\
15962 Show automatic usage of hardware breakpoints."), _("\
15963 If set, the debugger will automatically use hardware breakpoints for\n\
15964 breakpoints set with \"break\" but falling in read-only memory. If not set,\n\
15965 a warning will be emitted for such breakpoints."),
15966 NULL,
15967 show_automatic_hardware_breakpoints,
15968 &breakpoint_set_cmdlist,
15969 &breakpoint_show_cmdlist);
15970
15971 add_setshow_boolean_cmd ("always-inserted", class_support,
15972 &always_inserted_mode, _("\
15973 Set mode for inserting breakpoints."), _("\
15974 Show mode for inserting breakpoints."), _("\
15975 When this mode is on, breakpoints are inserted immediately as soon as\n\
15976 they're created, kept inserted even when execution stops, and removed\n\
15977 only when the user deletes them. When this mode is off (the default),\n\
15978 breakpoints are inserted only when execution continues, and removed\n\
15979 when execution stops."),
15980 NULL,
15981 &show_always_inserted_mode,
15982 &breakpoint_set_cmdlist,
15983 &breakpoint_show_cmdlist);
15984
15985 add_setshow_enum_cmd ("condition-evaluation", class_breakpoint,
15986 condition_evaluation_enums,
15987 &condition_evaluation_mode_1, _("\
15988 Set mode of breakpoint condition evaluation."), _("\
15989 Show mode of breakpoint condition evaluation."), _("\
15990 When this is set to \"host\", breakpoint conditions will be\n\
15991 evaluated on the host's side by GDB. When it is set to \"target\",\n\
15992 breakpoint conditions will be downloaded to the target (if the target\n\
15993 supports such feature) and conditions will be evaluated on the target's side.\n\
15994 If this is set to \"auto\" (default), this will be automatically set to\n\
15995 \"target\" if it supports condition evaluation, otherwise it will\n\
15996 be set to \"gdb\""),
15997 &set_condition_evaluation_mode,
15998 &show_condition_evaluation_mode,
15999 &breakpoint_set_cmdlist,
16000 &breakpoint_show_cmdlist);
16001
16002 add_com ("break-range", class_breakpoint, break_range_command, _("\
16003 Set a breakpoint for an address range.\n\
16004 break-range START-LOCATION, END-LOCATION\n\
16005 where START-LOCATION and END-LOCATION can be one of the following:\n\
16006 LINENUM, for that line in the current file,\n\
16007 FILE:LINENUM, for that line in that file,\n\
16008 +OFFSET, for that number of lines after the current line\n\
16009 or the start of the range\n\
16010 FUNCTION, for the first line in that function,\n\
16011 FILE:FUNCTION, to distinguish among like-named static functions.\n\
16012 *ADDRESS, for the instruction at that address.\n\
16013 \n\
16014 The breakpoint will stop execution of the inferior whenever it executes\n\
16015 an instruction at any address within the [START-LOCATION, END-LOCATION]\n\
16016 range (including START-LOCATION and END-LOCATION)."));
16017
16018 c = add_com ("dprintf", class_breakpoint, dprintf_command, _("\
16019 Set a dynamic printf at specified location.\n\
16020 dprintf location,format string,arg1,arg2,...\n\
16021 location may be a linespec, explicit, or address location.\n"
16022 "\n" LOCATION_HELP_STRING));
16023 set_cmd_completer (c, location_completer);
16024
16025 add_setshow_enum_cmd ("dprintf-style", class_support,
16026 dprintf_style_enums, &dprintf_style, _("\
16027 Set the style of usage for dynamic printf."), _("\
16028 Show the style of usage for dynamic printf."), _("\
16029 This setting chooses how GDB will do a dynamic printf.\n\
16030 If the value is \"gdb\", then the printing is done by GDB to its own\n\
16031 console, as with the \"printf\" command.\n\
16032 If the value is \"call\", the print is done by calling a function in your\n\
16033 program; by default printf(), but you can choose a different function or\n\
16034 output stream by setting dprintf-function and dprintf-channel."),
16035 update_dprintf_commands, NULL,
16036 &setlist, &showlist);
16037
16038 dprintf_function = xstrdup ("printf");
16039 add_setshow_string_cmd ("dprintf-function", class_support,
16040 &dprintf_function, _("\
16041 Set the function to use for dynamic printf"), _("\
16042 Show the function to use for dynamic printf"), NULL,
16043 update_dprintf_commands, NULL,
16044 &setlist, &showlist);
16045
16046 dprintf_channel = xstrdup ("");
16047 add_setshow_string_cmd ("dprintf-channel", class_support,
16048 &dprintf_channel, _("\
16049 Set the channel to use for dynamic printf"), _("\
16050 Show the channel to use for dynamic printf"), NULL,
16051 update_dprintf_commands, NULL,
16052 &setlist, &showlist);
16053
16054 add_setshow_boolean_cmd ("disconnected-dprintf", no_class,
16055 &disconnected_dprintf, _("\
16056 Set whether dprintf continues after GDB disconnects."), _("\
16057 Show whether dprintf continues after GDB disconnects."), _("\
16058 Use this to let dprintf commands continue to hit and produce output\n\
16059 even if GDB disconnects or detaches from the target."),
16060 NULL,
16061 NULL,
16062 &setlist, &showlist);
16063
16064 add_com ("agent-printf", class_vars, agent_printf_command, _("\
16065 agent-printf \"printf format string\", arg1, arg2, arg3, ..., argn\n\
16066 (target agent only) This is useful for formatted output in user-defined commands."));
16067
16068 automatic_hardware_breakpoints = 1;
16069
16070 gdb::observers::about_to_proceed.attach (breakpoint_about_to_proceed);
16071 gdb::observers::thread_exit.attach (remove_threaded_breakpoints);
16072 }
This page took 0.865514 seconds and 4 git commands to generate.