42f344aa0ab4545ce0c5091542bac55038b70dd9
[deliverable/binutils-gdb.git] / gdb / breakpoint.c
1 /* Everything about breakpoints, for GDB.
2
3 Copyright (C) 1986-2017 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20 #include "defs.h"
21 #include "arch-utils.h"
22 #include <ctype.h>
23 #include "hashtab.h"
24 #include "symtab.h"
25 #include "frame.h"
26 #include "breakpoint.h"
27 #include "tracepoint.h"
28 #include "gdbtypes.h"
29 #include "expression.h"
30 #include "gdbcore.h"
31 #include "gdbcmd.h"
32 #include "value.h"
33 #include "command.h"
34 #include "inferior.h"
35 #include "infrun.h"
36 #include "gdbthread.h"
37 #include "target.h"
38 #include "language.h"
39 #include "gdb-demangle.h"
40 #include "filenames.h"
41 #include "annotate.h"
42 #include "symfile.h"
43 #include "objfiles.h"
44 #include "source.h"
45 #include "linespec.h"
46 #include "completer.h"
47 #include "gdb.h"
48 #include "ui-out.h"
49 #include "cli/cli-script.h"
50 #include "block.h"
51 #include "solib.h"
52 #include "solist.h"
53 #include "observer.h"
54 #include "memattr.h"
55 #include "ada-lang.h"
56 #include "top.h"
57 #include "valprint.h"
58 #include "jit.h"
59 #include "parser-defs.h"
60 #include "gdb_regex.h"
61 #include "probe.h"
62 #include "cli/cli-utils.h"
63 #include "continuations.h"
64 #include "stack.h"
65 #include "skip.h"
66 #include "ax-gdb.h"
67 #include "dummy-frame.h"
68 #include "interps.h"
69 #include "format.h"
70 #include "thread-fsm.h"
71 #include "tid-parse.h"
72
73 /* readline include files */
74 #include "readline/readline.h"
75 #include "readline/history.h"
76
77 /* readline defines this. */
78 #undef savestring
79
80 #include "mi/mi-common.h"
81 #include "extension.h"
82 #include <algorithm>
83
84 /* Enums for exception-handling support. */
85 enum exception_event_kind
86 {
87 EX_EVENT_THROW,
88 EX_EVENT_RETHROW,
89 EX_EVENT_CATCH
90 };
91
92 /* Prototypes for local functions. */
93
94 static void enable_delete_command (char *, int);
95
96 static void enable_once_command (char *, int);
97
98 static void enable_count_command (char *, int);
99
100 static void disable_command (char *, int);
101
102 static void enable_command (char *, int);
103
104 static void map_breakpoint_numbers (const char *,
105 void (*) (struct breakpoint *,
106 void *),
107 void *);
108
109 static void ignore_command (char *, int);
110
111 static int breakpoint_re_set_one (void *);
112
113 static void breakpoint_re_set_default (struct breakpoint *);
114
115 static void
116 create_sals_from_location_default (const struct event_location *location,
117 struct linespec_result *canonical,
118 enum bptype type_wanted);
119
120 static void create_breakpoints_sal_default (struct gdbarch *,
121 struct linespec_result *,
122 char *, char *, enum bptype,
123 enum bpdisp, int, int,
124 int,
125 const struct breakpoint_ops *,
126 int, int, int, unsigned);
127
128 static void decode_location_default (struct breakpoint *b,
129 const struct event_location *location,
130 struct program_space *search_pspace,
131 struct symtabs_and_lines *sals);
132
133 static void clear_command (char *, int);
134
135 static void catch_command (char *, int);
136
137 static int can_use_hardware_watchpoint (struct value *);
138
139 static void break_command_1 (char *, int, int);
140
141 static void mention (struct breakpoint *);
142
143 static struct breakpoint *set_raw_breakpoint_without_location (struct gdbarch *,
144 enum bptype,
145 const struct breakpoint_ops *);
146 static struct bp_location *add_location_to_breakpoint (struct breakpoint *,
147 const struct symtab_and_line *);
148
149 /* This function is used in gdbtk sources and thus can not be made
150 static. */
151 struct breakpoint *set_raw_breakpoint (struct gdbarch *gdbarch,
152 struct symtab_and_line,
153 enum bptype,
154 const struct breakpoint_ops *);
155
156 static struct breakpoint *
157 momentary_breakpoint_from_master (struct breakpoint *orig,
158 enum bptype type,
159 const struct breakpoint_ops *ops,
160 int loc_enabled);
161
162 static void breakpoint_adjustment_warning (CORE_ADDR, CORE_ADDR, int, int);
163
164 static CORE_ADDR adjust_breakpoint_address (struct gdbarch *gdbarch,
165 CORE_ADDR bpaddr,
166 enum bptype bptype);
167
168 static void describe_other_breakpoints (struct gdbarch *,
169 struct program_space *, CORE_ADDR,
170 struct obj_section *, int);
171
172 static int watchpoint_locations_match (struct bp_location *loc1,
173 struct bp_location *loc2);
174
175 static int breakpoint_location_address_match (struct bp_location *bl,
176 struct address_space *aspace,
177 CORE_ADDR addr);
178
179 static int breakpoint_location_address_range_overlap (struct bp_location *,
180 struct address_space *,
181 CORE_ADDR, int);
182
183 static void breakpoints_info (char *, int);
184
185 static void watchpoints_info (char *, int);
186
187 static int breakpoint_1 (char *, int,
188 int (*) (const struct breakpoint *));
189
190 static int breakpoint_cond_eval (void *);
191
192 static void cleanup_executing_breakpoints (void *);
193
194 static void commands_command (char *, int);
195
196 static void condition_command (char *, int);
197
198 static int remove_breakpoint (struct bp_location *);
199 static int remove_breakpoint_1 (struct bp_location *, enum remove_bp_reason);
200
201 static enum print_stop_action print_bp_stop_message (bpstat bs);
202
203 static int watchpoint_check (void *);
204
205 static void maintenance_info_breakpoints (char *, int);
206
207 static int hw_breakpoint_used_count (void);
208
209 static int hw_watchpoint_use_count (struct breakpoint *);
210
211 static int hw_watchpoint_used_count_others (struct breakpoint *except,
212 enum bptype type,
213 int *other_type_used);
214
215 static void hbreak_command (char *, int);
216
217 static void thbreak_command (char *, int);
218
219 static void enable_breakpoint_disp (struct breakpoint *, enum bpdisp,
220 int count);
221
222 static void stop_command (char *arg, int from_tty);
223
224 static void stopin_command (char *arg, int from_tty);
225
226 static void stopat_command (char *arg, int from_tty);
227
228 static void tcatch_command (char *arg, int from_tty);
229
230 static void free_bp_location (struct bp_location *loc);
231 static void incref_bp_location (struct bp_location *loc);
232 static void decref_bp_location (struct bp_location **loc);
233
234 static struct bp_location *allocate_bp_location (struct breakpoint *bpt);
235
236 /* update_global_location_list's modes of operation wrt to whether to
237 insert locations now. */
238 enum ugll_insert_mode
239 {
240 /* Don't insert any breakpoint locations into the inferior, only
241 remove already-inserted locations that no longer should be
242 inserted. Functions that delete a breakpoint or breakpoints
243 should specify this mode, so that deleting a breakpoint doesn't
244 have the side effect of inserting the locations of other
245 breakpoints that are marked not-inserted, but should_be_inserted
246 returns true on them.
247
248 This behavior is useful is situations close to tear-down -- e.g.,
249 after an exec, while the target still has execution, but
250 breakpoint shadows of the previous executable image should *NOT*
251 be restored to the new image; or before detaching, where the
252 target still has execution and wants to delete breakpoints from
253 GDB's lists, and all breakpoints had already been removed from
254 the inferior. */
255 UGLL_DONT_INSERT,
256
257 /* May insert breakpoints iff breakpoints_should_be_inserted_now
258 claims breakpoints should be inserted now. */
259 UGLL_MAY_INSERT,
260
261 /* Insert locations now, irrespective of
262 breakpoints_should_be_inserted_now. E.g., say all threads are
263 stopped right now, and the user did "continue". We need to
264 insert breakpoints _before_ resuming the target, but
265 UGLL_MAY_INSERT wouldn't insert them, because
266 breakpoints_should_be_inserted_now returns false at that point,
267 as no thread is running yet. */
268 UGLL_INSERT
269 };
270
271 static void update_global_location_list (enum ugll_insert_mode);
272
273 static void update_global_location_list_nothrow (enum ugll_insert_mode);
274
275 static int is_hardware_watchpoint (const struct breakpoint *bpt);
276
277 static void insert_breakpoint_locations (void);
278
279 static void tracepoints_info (char *, int);
280
281 static void delete_trace_command (char *, int);
282
283 static void enable_trace_command (char *, int);
284
285 static void disable_trace_command (char *, int);
286
287 static void trace_pass_command (char *, int);
288
289 static void set_tracepoint_count (int num);
290
291 static int is_masked_watchpoint (const struct breakpoint *b);
292
293 static struct bp_location **get_first_locp_gte_addr (CORE_ADDR address);
294
295 /* Return 1 if B refers to a static tracepoint set by marker ("-m"), zero
296 otherwise. */
297
298 static int strace_marker_p (struct breakpoint *b);
299
300 /* The breakpoint_ops structure to be inherited by all breakpoint_ops
301 that are implemented on top of software or hardware breakpoints
302 (user breakpoints, internal and momentary breakpoints, etc.). */
303 static struct breakpoint_ops bkpt_base_breakpoint_ops;
304
305 /* Internal breakpoints class type. */
306 static struct breakpoint_ops internal_breakpoint_ops;
307
308 /* Momentary breakpoints class type. */
309 static struct breakpoint_ops momentary_breakpoint_ops;
310
311 /* Momentary breakpoints for bp_longjmp and bp_exception class type. */
312 static struct breakpoint_ops longjmp_breakpoint_ops;
313
314 /* The breakpoint_ops structure to be used in regular user created
315 breakpoints. */
316 struct breakpoint_ops bkpt_breakpoint_ops;
317
318 /* Breakpoints set on probes. */
319 static struct breakpoint_ops bkpt_probe_breakpoint_ops;
320
321 /* Dynamic printf class type. */
322 struct breakpoint_ops dprintf_breakpoint_ops;
323
324 /* The style in which to perform a dynamic printf. This is a user
325 option because different output options have different tradeoffs;
326 if GDB does the printing, there is better error handling if there
327 is a problem with any of the arguments, but using an inferior
328 function lets you have special-purpose printers and sending of
329 output to the same place as compiled-in print functions. */
330
331 static const char dprintf_style_gdb[] = "gdb";
332 static const char dprintf_style_call[] = "call";
333 static const char dprintf_style_agent[] = "agent";
334 static const char *const dprintf_style_enums[] = {
335 dprintf_style_gdb,
336 dprintf_style_call,
337 dprintf_style_agent,
338 NULL
339 };
340 static const char *dprintf_style = dprintf_style_gdb;
341
342 /* The function to use for dynamic printf if the preferred style is to
343 call into the inferior. The value is simply a string that is
344 copied into the command, so it can be anything that GDB can
345 evaluate to a callable address, not necessarily a function name. */
346
347 static char *dprintf_function;
348
349 /* The channel to use for dynamic printf if the preferred style is to
350 call into the inferior; if a nonempty string, it will be passed to
351 the call as the first argument, with the format string as the
352 second. As with the dprintf function, this can be anything that
353 GDB knows how to evaluate, so in addition to common choices like
354 "stderr", this could be an app-specific expression like
355 "mystreams[curlogger]". */
356
357 static char *dprintf_channel;
358
359 /* True if dprintf commands should continue to operate even if GDB
360 has disconnected. */
361 static int disconnected_dprintf = 1;
362
363 /* A reference-counted struct command_line. This lets multiple
364 breakpoints share a single command list. */
365 struct counted_command_line
366 {
367 /* The reference count. */
368 int refc;
369
370 /* The command list. */
371 struct command_line *commands;
372 };
373
374 struct command_line *
375 breakpoint_commands (struct breakpoint *b)
376 {
377 return b->commands ? b->commands->commands : NULL;
378 }
379
380 /* Flag indicating that a command has proceeded the inferior past the
381 current breakpoint. */
382
383 static int breakpoint_proceeded;
384
385 const char *
386 bpdisp_text (enum bpdisp disp)
387 {
388 /* NOTE: the following values are a part of MI protocol and
389 represent values of 'disp' field returned when inferior stops at
390 a breakpoint. */
391 static const char * const bpdisps[] = {"del", "dstp", "dis", "keep"};
392
393 return bpdisps[(int) disp];
394 }
395
396 /* Prototypes for exported functions. */
397 /* If FALSE, gdb will not use hardware support for watchpoints, even
398 if such is available. */
399 static int can_use_hw_watchpoints;
400
401 static void
402 show_can_use_hw_watchpoints (struct ui_file *file, int from_tty,
403 struct cmd_list_element *c,
404 const char *value)
405 {
406 fprintf_filtered (file,
407 _("Debugger's willingness to use "
408 "watchpoint hardware is %s.\n"),
409 value);
410 }
411
412 /* If AUTO_BOOLEAN_FALSE, gdb will not attempt to create pending breakpoints.
413 If AUTO_BOOLEAN_TRUE, gdb will automatically create pending breakpoints
414 for unrecognized breakpoint locations.
415 If AUTO_BOOLEAN_AUTO, gdb will query when breakpoints are unrecognized. */
416 static enum auto_boolean pending_break_support;
417 static void
418 show_pending_break_support (struct ui_file *file, int from_tty,
419 struct cmd_list_element *c,
420 const char *value)
421 {
422 fprintf_filtered (file,
423 _("Debugger's behavior regarding "
424 "pending breakpoints is %s.\n"),
425 value);
426 }
427
428 /* If 1, gdb will automatically use hardware breakpoints for breakpoints
429 set with "break" but falling in read-only memory.
430 If 0, gdb will warn about such breakpoints, but won't automatically
431 use hardware breakpoints. */
432 static int automatic_hardware_breakpoints;
433 static void
434 show_automatic_hardware_breakpoints (struct ui_file *file, int from_tty,
435 struct cmd_list_element *c,
436 const char *value)
437 {
438 fprintf_filtered (file,
439 _("Automatic usage of hardware breakpoints is %s.\n"),
440 value);
441 }
442
443 /* If on, GDB keeps breakpoints inserted even if the inferior is
444 stopped, and immediately inserts any new breakpoints as soon as
445 they're created. If off (default), GDB keeps breakpoints off of
446 the target as long as possible. That is, it delays inserting
447 breakpoints until the next resume, and removes them again when the
448 target fully stops. This is a bit safer in case GDB crashes while
449 processing user input. */
450 static int always_inserted_mode = 0;
451
452 static void
453 show_always_inserted_mode (struct ui_file *file, int from_tty,
454 struct cmd_list_element *c, const char *value)
455 {
456 fprintf_filtered (file, _("Always inserted breakpoint mode is %s.\n"),
457 value);
458 }
459
460 /* See breakpoint.h. */
461
462 int
463 breakpoints_should_be_inserted_now (void)
464 {
465 if (gdbarch_has_global_breakpoints (target_gdbarch ()))
466 {
467 /* If breakpoints are global, they should be inserted even if no
468 thread under gdb's control is running, or even if there are
469 no threads under GDB's control yet. */
470 return 1;
471 }
472 else if (target_has_execution)
473 {
474 struct thread_info *tp;
475
476 if (always_inserted_mode)
477 {
478 /* The user wants breakpoints inserted even if all threads
479 are stopped. */
480 return 1;
481 }
482
483 if (threads_are_executing ())
484 return 1;
485
486 /* Don't remove breakpoints yet if, even though all threads are
487 stopped, we still have events to process. */
488 ALL_NON_EXITED_THREADS (tp)
489 if (tp->resumed
490 && tp->suspend.waitstatus_pending_p)
491 return 1;
492 }
493 return 0;
494 }
495
496 static const char condition_evaluation_both[] = "host or target";
497
498 /* Modes for breakpoint condition evaluation. */
499 static const char condition_evaluation_auto[] = "auto";
500 static const char condition_evaluation_host[] = "host";
501 static const char condition_evaluation_target[] = "target";
502 static const char *const condition_evaluation_enums[] = {
503 condition_evaluation_auto,
504 condition_evaluation_host,
505 condition_evaluation_target,
506 NULL
507 };
508
509 /* Global that holds the current mode for breakpoint condition evaluation. */
510 static const char *condition_evaluation_mode_1 = condition_evaluation_auto;
511
512 /* Global that we use to display information to the user (gets its value from
513 condition_evaluation_mode_1. */
514 static const char *condition_evaluation_mode = condition_evaluation_auto;
515
516 /* Translate a condition evaluation mode MODE into either "host"
517 or "target". This is used mostly to translate from "auto" to the
518 real setting that is being used. It returns the translated
519 evaluation mode. */
520
521 static const char *
522 translate_condition_evaluation_mode (const char *mode)
523 {
524 if (mode == condition_evaluation_auto)
525 {
526 if (target_supports_evaluation_of_breakpoint_conditions ())
527 return condition_evaluation_target;
528 else
529 return condition_evaluation_host;
530 }
531 else
532 return mode;
533 }
534
535 /* Discovers what condition_evaluation_auto translates to. */
536
537 static const char *
538 breakpoint_condition_evaluation_mode (void)
539 {
540 return translate_condition_evaluation_mode (condition_evaluation_mode);
541 }
542
543 /* Return true if GDB should evaluate breakpoint conditions or false
544 otherwise. */
545
546 static int
547 gdb_evaluates_breakpoint_condition_p (void)
548 {
549 const char *mode = breakpoint_condition_evaluation_mode ();
550
551 return (mode == condition_evaluation_host);
552 }
553
554 void _initialize_breakpoint (void);
555
556 /* Are we executing breakpoint commands? */
557 static int executing_breakpoint_commands;
558
559 /* Are overlay event breakpoints enabled? */
560 static int overlay_events_enabled;
561
562 /* See description in breakpoint.h. */
563 int target_exact_watchpoints = 0;
564
565 /* Walk the following statement or block through all breakpoints.
566 ALL_BREAKPOINTS_SAFE does so even if the statement deletes the
567 current breakpoint. */
568
569 #define ALL_BREAKPOINTS(B) for (B = breakpoint_chain; B; B = B->next)
570
571 #define ALL_BREAKPOINTS_SAFE(B,TMP) \
572 for (B = breakpoint_chain; \
573 B ? (TMP=B->next, 1): 0; \
574 B = TMP)
575
576 /* Similar iterator for the low-level breakpoints. SAFE variant is
577 not provided so update_global_location_list must not be called
578 while executing the block of ALL_BP_LOCATIONS. */
579
580 #define ALL_BP_LOCATIONS(B,BP_TMP) \
581 for (BP_TMP = bp_location; \
582 BP_TMP < bp_location + bp_location_count && (B = *BP_TMP); \
583 BP_TMP++)
584
585 /* Iterates through locations with address ADDRESS for the currently selected
586 program space. BP_LOCP_TMP points to each object. BP_LOCP_START points
587 to where the loop should start from.
588 If BP_LOCP_START is a NULL pointer, the macro automatically seeks the
589 appropriate location to start with. */
590
591 #define ALL_BP_LOCATIONS_AT_ADDR(BP_LOCP_TMP, BP_LOCP_START, ADDRESS) \
592 for (BP_LOCP_START = BP_LOCP_START == NULL ? get_first_locp_gte_addr (ADDRESS) : BP_LOCP_START, \
593 BP_LOCP_TMP = BP_LOCP_START; \
594 BP_LOCP_START \
595 && (BP_LOCP_TMP < bp_location + bp_location_count \
596 && (*BP_LOCP_TMP)->address == ADDRESS); \
597 BP_LOCP_TMP++)
598
599 /* Iterator for tracepoints only. */
600
601 #define ALL_TRACEPOINTS(B) \
602 for (B = breakpoint_chain; B; B = B->next) \
603 if (is_tracepoint (B))
604
605 /* Chains of all breakpoints defined. */
606
607 struct breakpoint *breakpoint_chain;
608
609 /* Array is sorted by bp_location_compare - primarily by the ADDRESS. */
610
611 static struct bp_location **bp_location;
612
613 /* Number of elements of BP_LOCATION. */
614
615 static unsigned bp_location_count;
616
617 /* Maximum alignment offset between bp_target_info.PLACED_ADDRESS and
618 ADDRESS for the current elements of BP_LOCATION which get a valid
619 result from bp_location_has_shadow. You can use it for roughly
620 limiting the subrange of BP_LOCATION to scan for shadow bytes for
621 an address you need to read. */
622
623 static CORE_ADDR bp_location_placed_address_before_address_max;
624
625 /* Maximum offset plus alignment between bp_target_info.PLACED_ADDRESS
626 + bp_target_info.SHADOW_LEN and ADDRESS for the current elements of
627 BP_LOCATION which get a valid result from bp_location_has_shadow.
628 You can use it for roughly limiting the subrange of BP_LOCATION to
629 scan for shadow bytes for an address you need to read. */
630
631 static CORE_ADDR bp_location_shadow_len_after_address_max;
632
633 /* The locations that no longer correspond to any breakpoint, unlinked
634 from bp_location array, but for which a hit may still be reported
635 by a target. */
636 VEC(bp_location_p) *moribund_locations = NULL;
637
638 /* Number of last breakpoint made. */
639
640 static int breakpoint_count;
641
642 /* The value of `breakpoint_count' before the last command that
643 created breakpoints. If the last (break-like) command created more
644 than one breakpoint, then the difference between BREAKPOINT_COUNT
645 and PREV_BREAKPOINT_COUNT is more than one. */
646 static int prev_breakpoint_count;
647
648 /* Number of last tracepoint made. */
649
650 static int tracepoint_count;
651
652 static struct cmd_list_element *breakpoint_set_cmdlist;
653 static struct cmd_list_element *breakpoint_show_cmdlist;
654 struct cmd_list_element *save_cmdlist;
655
656 /* See declaration at breakpoint.h. */
657
658 struct breakpoint *
659 breakpoint_find_if (int (*func) (struct breakpoint *b, void *d),
660 void *user_data)
661 {
662 struct breakpoint *b = NULL;
663
664 ALL_BREAKPOINTS (b)
665 {
666 if (func (b, user_data) != 0)
667 break;
668 }
669
670 return b;
671 }
672
673 /* Return whether a breakpoint is an active enabled breakpoint. */
674 static int
675 breakpoint_enabled (struct breakpoint *b)
676 {
677 return (b->enable_state == bp_enabled);
678 }
679
680 /* Set breakpoint count to NUM. */
681
682 static void
683 set_breakpoint_count (int num)
684 {
685 prev_breakpoint_count = breakpoint_count;
686 breakpoint_count = num;
687 set_internalvar_integer (lookup_internalvar ("bpnum"), num);
688 }
689
690 /* Used by `start_rbreak_breakpoints' below, to record the current
691 breakpoint count before "rbreak" creates any breakpoint. */
692 static int rbreak_start_breakpoint_count;
693
694 /* Called at the start an "rbreak" command to record the first
695 breakpoint made. */
696
697 void
698 start_rbreak_breakpoints (void)
699 {
700 rbreak_start_breakpoint_count = breakpoint_count;
701 }
702
703 /* Called at the end of an "rbreak" command to record the last
704 breakpoint made. */
705
706 void
707 end_rbreak_breakpoints (void)
708 {
709 prev_breakpoint_count = rbreak_start_breakpoint_count;
710 }
711
712 /* Used in run_command to zero the hit count when a new run starts. */
713
714 void
715 clear_breakpoint_hit_counts (void)
716 {
717 struct breakpoint *b;
718
719 ALL_BREAKPOINTS (b)
720 b->hit_count = 0;
721 }
722
723 /* Allocate a new counted_command_line with reference count of 1.
724 The new structure owns COMMANDS. */
725
726 static struct counted_command_line *
727 alloc_counted_command_line (struct command_line *commands)
728 {
729 struct counted_command_line *result = XNEW (struct counted_command_line);
730
731 result->refc = 1;
732 result->commands = commands;
733
734 return result;
735 }
736
737 /* Increment reference count. This does nothing if CMD is NULL. */
738
739 static void
740 incref_counted_command_line (struct counted_command_line *cmd)
741 {
742 if (cmd)
743 ++cmd->refc;
744 }
745
746 /* Decrement reference count. If the reference count reaches 0,
747 destroy the counted_command_line. Sets *CMDP to NULL. This does
748 nothing if *CMDP is NULL. */
749
750 static void
751 decref_counted_command_line (struct counted_command_line **cmdp)
752 {
753 if (*cmdp)
754 {
755 if (--(*cmdp)->refc == 0)
756 {
757 free_command_lines (&(*cmdp)->commands);
758 xfree (*cmdp);
759 }
760 *cmdp = NULL;
761 }
762 }
763
764 /* A cleanup function that calls decref_counted_command_line. */
765
766 static void
767 do_cleanup_counted_command_line (void *arg)
768 {
769 decref_counted_command_line ((struct counted_command_line **) arg);
770 }
771
772 /* Create a cleanup that calls decref_counted_command_line on the
773 argument. */
774
775 static struct cleanup *
776 make_cleanup_decref_counted_command_line (struct counted_command_line **cmdp)
777 {
778 return make_cleanup (do_cleanup_counted_command_line, cmdp);
779 }
780
781 \f
782 /* Return the breakpoint with the specified number, or NULL
783 if the number does not refer to an existing breakpoint. */
784
785 struct breakpoint *
786 get_breakpoint (int num)
787 {
788 struct breakpoint *b;
789
790 ALL_BREAKPOINTS (b)
791 if (b->number == num)
792 return b;
793
794 return NULL;
795 }
796
797 \f
798
799 /* Mark locations as "conditions have changed" in case the target supports
800 evaluating conditions on its side. */
801
802 static void
803 mark_breakpoint_modified (struct breakpoint *b)
804 {
805 struct bp_location *loc;
806
807 /* This is only meaningful if the target is
808 evaluating conditions and if the user has
809 opted for condition evaluation on the target's
810 side. */
811 if (gdb_evaluates_breakpoint_condition_p ()
812 || !target_supports_evaluation_of_breakpoint_conditions ())
813 return;
814
815 if (!is_breakpoint (b))
816 return;
817
818 for (loc = b->loc; loc; loc = loc->next)
819 loc->condition_changed = condition_modified;
820 }
821
822 /* Mark location as "conditions have changed" in case the target supports
823 evaluating conditions on its side. */
824
825 static void
826 mark_breakpoint_location_modified (struct bp_location *loc)
827 {
828 /* This is only meaningful if the target is
829 evaluating conditions and if the user has
830 opted for condition evaluation on the target's
831 side. */
832 if (gdb_evaluates_breakpoint_condition_p ()
833 || !target_supports_evaluation_of_breakpoint_conditions ())
834
835 return;
836
837 if (!is_breakpoint (loc->owner))
838 return;
839
840 loc->condition_changed = condition_modified;
841 }
842
843 /* Sets the condition-evaluation mode using the static global
844 condition_evaluation_mode. */
845
846 static void
847 set_condition_evaluation_mode (char *args, int from_tty,
848 struct cmd_list_element *c)
849 {
850 const char *old_mode, *new_mode;
851
852 if ((condition_evaluation_mode_1 == condition_evaluation_target)
853 && !target_supports_evaluation_of_breakpoint_conditions ())
854 {
855 condition_evaluation_mode_1 = condition_evaluation_mode;
856 warning (_("Target does not support breakpoint condition evaluation.\n"
857 "Using host evaluation mode instead."));
858 return;
859 }
860
861 new_mode = translate_condition_evaluation_mode (condition_evaluation_mode_1);
862 old_mode = translate_condition_evaluation_mode (condition_evaluation_mode);
863
864 /* Flip the switch. Flip it even if OLD_MODE == NEW_MODE as one of the
865 settings was "auto". */
866 condition_evaluation_mode = condition_evaluation_mode_1;
867
868 /* Only update the mode if the user picked a different one. */
869 if (new_mode != old_mode)
870 {
871 struct bp_location *loc, **loc_tmp;
872 /* If the user switched to a different evaluation mode, we
873 need to synch the changes with the target as follows:
874
875 "host" -> "target": Send all (valid) conditions to the target.
876 "target" -> "host": Remove all the conditions from the target.
877 */
878
879 if (new_mode == condition_evaluation_target)
880 {
881 /* Mark everything modified and synch conditions with the
882 target. */
883 ALL_BP_LOCATIONS (loc, loc_tmp)
884 mark_breakpoint_location_modified (loc);
885 }
886 else
887 {
888 /* Manually mark non-duplicate locations to synch conditions
889 with the target. We do this to remove all the conditions the
890 target knows about. */
891 ALL_BP_LOCATIONS (loc, loc_tmp)
892 if (is_breakpoint (loc->owner) && loc->inserted)
893 loc->needs_update = 1;
894 }
895
896 /* Do the update. */
897 update_global_location_list (UGLL_MAY_INSERT);
898 }
899
900 return;
901 }
902
903 /* Shows the current mode of breakpoint condition evaluation. Explicitly shows
904 what "auto" is translating to. */
905
906 static void
907 show_condition_evaluation_mode (struct ui_file *file, int from_tty,
908 struct cmd_list_element *c, const char *value)
909 {
910 if (condition_evaluation_mode == condition_evaluation_auto)
911 fprintf_filtered (file,
912 _("Breakpoint condition evaluation "
913 "mode is %s (currently %s).\n"),
914 value,
915 breakpoint_condition_evaluation_mode ());
916 else
917 fprintf_filtered (file, _("Breakpoint condition evaluation mode is %s.\n"),
918 value);
919 }
920
921 /* A comparison function for bp_location AP and BP that is used by
922 bsearch. This comparison function only cares about addresses, unlike
923 the more general bp_location_compare function. */
924
925 static int
926 bp_location_compare_addrs (const void *ap, const void *bp)
927 {
928 const struct bp_location *a = *(const struct bp_location **) ap;
929 const struct bp_location *b = *(const struct bp_location **) bp;
930
931 if (a->address == b->address)
932 return 0;
933 else
934 return ((a->address > b->address) - (a->address < b->address));
935 }
936
937 /* Helper function to skip all bp_locations with addresses
938 less than ADDRESS. It returns the first bp_location that
939 is greater than or equal to ADDRESS. If none is found, just
940 return NULL. */
941
942 static struct bp_location **
943 get_first_locp_gte_addr (CORE_ADDR address)
944 {
945 struct bp_location dummy_loc;
946 struct bp_location *dummy_locp = &dummy_loc;
947 struct bp_location **locp_found = NULL;
948
949 /* Initialize the dummy location's address field. */
950 memset (&dummy_loc, 0, sizeof (struct bp_location));
951 dummy_loc.address = address;
952
953 /* Find a close match to the first location at ADDRESS. */
954 locp_found = ((struct bp_location **)
955 bsearch (&dummy_locp, bp_location, bp_location_count,
956 sizeof (struct bp_location **),
957 bp_location_compare_addrs));
958
959 /* Nothing was found, nothing left to do. */
960 if (locp_found == NULL)
961 return NULL;
962
963 /* We may have found a location that is at ADDRESS but is not the first in the
964 location's list. Go backwards (if possible) and locate the first one. */
965 while ((locp_found - 1) >= bp_location
966 && (*(locp_found - 1))->address == address)
967 locp_found--;
968
969 return locp_found;
970 }
971
972 void
973 set_breakpoint_condition (struct breakpoint *b, const char *exp,
974 int from_tty)
975 {
976 xfree (b->cond_string);
977 b->cond_string = NULL;
978
979 if (is_watchpoint (b))
980 {
981 struct watchpoint *w = (struct watchpoint *) b;
982
983 w->cond_exp.reset ();
984 }
985 else
986 {
987 struct bp_location *loc;
988
989 for (loc = b->loc; loc; loc = loc->next)
990 {
991 loc->cond.reset ();
992
993 /* No need to free the condition agent expression
994 bytecode (if we have one). We will handle this
995 when we go through update_global_location_list. */
996 }
997 }
998
999 if (*exp == 0)
1000 {
1001 if (from_tty)
1002 printf_filtered (_("Breakpoint %d now unconditional.\n"), b->number);
1003 }
1004 else
1005 {
1006 const char *arg = exp;
1007
1008 /* I don't know if it matters whether this is the string the user
1009 typed in or the decompiled expression. */
1010 b->cond_string = xstrdup (arg);
1011 b->condition_not_parsed = 0;
1012
1013 if (is_watchpoint (b))
1014 {
1015 struct watchpoint *w = (struct watchpoint *) b;
1016
1017 innermost_block = NULL;
1018 arg = exp;
1019 w->cond_exp = parse_exp_1 (&arg, 0, 0, 0);
1020 if (*arg)
1021 error (_("Junk at end of expression"));
1022 w->cond_exp_valid_block = innermost_block;
1023 }
1024 else
1025 {
1026 struct bp_location *loc;
1027
1028 for (loc = b->loc; loc; loc = loc->next)
1029 {
1030 arg = exp;
1031 loc->cond =
1032 parse_exp_1 (&arg, loc->address,
1033 block_for_pc (loc->address), 0);
1034 if (*arg)
1035 error (_("Junk at end of expression"));
1036 }
1037 }
1038 }
1039 mark_breakpoint_modified (b);
1040
1041 observer_notify_breakpoint_modified (b);
1042 }
1043
1044 /* Completion for the "condition" command. */
1045
1046 static VEC (char_ptr) *
1047 condition_completer (struct cmd_list_element *cmd,
1048 const char *text, const char *word)
1049 {
1050 const char *space;
1051
1052 text = skip_spaces_const (text);
1053 space = skip_to_space_const (text);
1054 if (*space == '\0')
1055 {
1056 int len;
1057 struct breakpoint *b;
1058 VEC (char_ptr) *result = NULL;
1059
1060 if (text[0] == '$')
1061 {
1062 /* We don't support completion of history indices. */
1063 if (isdigit (text[1]))
1064 return NULL;
1065 return complete_internalvar (&text[1]);
1066 }
1067
1068 /* We're completing the breakpoint number. */
1069 len = strlen (text);
1070
1071 ALL_BREAKPOINTS (b)
1072 {
1073 char number[50];
1074
1075 xsnprintf (number, sizeof (number), "%d", b->number);
1076
1077 if (strncmp (number, text, len) == 0)
1078 VEC_safe_push (char_ptr, result, xstrdup (number));
1079 }
1080
1081 return result;
1082 }
1083
1084 /* We're completing the expression part. */
1085 text = skip_spaces_const (space);
1086 return expression_completer (cmd, text, word);
1087 }
1088
1089 /* condition N EXP -- set break condition of breakpoint N to EXP. */
1090
1091 static void
1092 condition_command (char *arg, int from_tty)
1093 {
1094 struct breakpoint *b;
1095 char *p;
1096 int bnum;
1097
1098 if (arg == 0)
1099 error_no_arg (_("breakpoint number"));
1100
1101 p = arg;
1102 bnum = get_number (&p);
1103 if (bnum == 0)
1104 error (_("Bad breakpoint argument: '%s'"), arg);
1105
1106 ALL_BREAKPOINTS (b)
1107 if (b->number == bnum)
1108 {
1109 /* Check if this breakpoint has a "stop" method implemented in an
1110 extension language. This method and conditions entered into GDB
1111 from the CLI are mutually exclusive. */
1112 const struct extension_language_defn *extlang
1113 = get_breakpoint_cond_ext_lang (b, EXT_LANG_NONE);
1114
1115 if (extlang != NULL)
1116 {
1117 error (_("Only one stop condition allowed. There is currently"
1118 " a %s stop condition defined for this breakpoint."),
1119 ext_lang_capitalized_name (extlang));
1120 }
1121 set_breakpoint_condition (b, p, from_tty);
1122
1123 if (is_breakpoint (b))
1124 update_global_location_list (UGLL_MAY_INSERT);
1125
1126 return;
1127 }
1128
1129 error (_("No breakpoint number %d."), bnum);
1130 }
1131
1132 /* Check that COMMAND do not contain commands that are suitable
1133 only for tracepoints and not suitable for ordinary breakpoints.
1134 Throw if any such commands is found. */
1135
1136 static void
1137 check_no_tracepoint_commands (struct command_line *commands)
1138 {
1139 struct command_line *c;
1140
1141 for (c = commands; c; c = c->next)
1142 {
1143 int i;
1144
1145 if (c->control_type == while_stepping_control)
1146 error (_("The 'while-stepping' command can "
1147 "only be used for tracepoints"));
1148
1149 for (i = 0; i < c->body_count; ++i)
1150 check_no_tracepoint_commands ((c->body_list)[i]);
1151
1152 /* Not that command parsing removes leading whitespace and comment
1153 lines and also empty lines. So, we only need to check for
1154 command directly. */
1155 if (strstr (c->line, "collect ") == c->line)
1156 error (_("The 'collect' command can only be used for tracepoints"));
1157
1158 if (strstr (c->line, "teval ") == c->line)
1159 error (_("The 'teval' command can only be used for tracepoints"));
1160 }
1161 }
1162
1163 /* Encapsulate tests for different types of tracepoints. */
1164
1165 static int
1166 is_tracepoint_type (enum bptype type)
1167 {
1168 return (type == bp_tracepoint
1169 || type == bp_fast_tracepoint
1170 || type == bp_static_tracepoint);
1171 }
1172
1173 int
1174 is_tracepoint (const struct breakpoint *b)
1175 {
1176 return is_tracepoint_type (b->type);
1177 }
1178
1179 /* A helper function that validates that COMMANDS are valid for a
1180 breakpoint. This function will throw an exception if a problem is
1181 found. */
1182
1183 static void
1184 validate_commands_for_breakpoint (struct breakpoint *b,
1185 struct command_line *commands)
1186 {
1187 if (is_tracepoint (b))
1188 {
1189 struct tracepoint *t = (struct tracepoint *) b;
1190 struct command_line *c;
1191 struct command_line *while_stepping = 0;
1192
1193 /* Reset the while-stepping step count. The previous commands
1194 might have included a while-stepping action, while the new
1195 ones might not. */
1196 t->step_count = 0;
1197
1198 /* We need to verify that each top-level element of commands is
1199 valid for tracepoints, that there's at most one
1200 while-stepping element, and that the while-stepping's body
1201 has valid tracing commands excluding nested while-stepping.
1202 We also need to validate the tracepoint action line in the
1203 context of the tracepoint --- validate_actionline actually
1204 has side effects, like setting the tracepoint's
1205 while-stepping STEP_COUNT, in addition to checking if the
1206 collect/teval actions parse and make sense in the
1207 tracepoint's context. */
1208 for (c = commands; c; c = c->next)
1209 {
1210 if (c->control_type == while_stepping_control)
1211 {
1212 if (b->type == bp_fast_tracepoint)
1213 error (_("The 'while-stepping' command "
1214 "cannot be used for fast tracepoint"));
1215 else if (b->type == bp_static_tracepoint)
1216 error (_("The 'while-stepping' command "
1217 "cannot be used for static tracepoint"));
1218
1219 if (while_stepping)
1220 error (_("The 'while-stepping' command "
1221 "can be used only once"));
1222 else
1223 while_stepping = c;
1224 }
1225
1226 validate_actionline (c->line, b);
1227 }
1228 if (while_stepping)
1229 {
1230 struct command_line *c2;
1231
1232 gdb_assert (while_stepping->body_count == 1);
1233 c2 = while_stepping->body_list[0];
1234 for (; c2; c2 = c2->next)
1235 {
1236 if (c2->control_type == while_stepping_control)
1237 error (_("The 'while-stepping' command cannot be nested"));
1238 }
1239 }
1240 }
1241 else
1242 {
1243 check_no_tracepoint_commands (commands);
1244 }
1245 }
1246
1247 /* Return a vector of all the static tracepoints set at ADDR. The
1248 caller is responsible for releasing the vector. */
1249
1250 VEC(breakpoint_p) *
1251 static_tracepoints_here (CORE_ADDR addr)
1252 {
1253 struct breakpoint *b;
1254 VEC(breakpoint_p) *found = 0;
1255 struct bp_location *loc;
1256
1257 ALL_BREAKPOINTS (b)
1258 if (b->type == bp_static_tracepoint)
1259 {
1260 for (loc = b->loc; loc; loc = loc->next)
1261 if (loc->address == addr)
1262 VEC_safe_push(breakpoint_p, found, b);
1263 }
1264
1265 return found;
1266 }
1267
1268 /* Set the command list of B to COMMANDS. If breakpoint is tracepoint,
1269 validate that only allowed commands are included. */
1270
1271 void
1272 breakpoint_set_commands (struct breakpoint *b,
1273 command_line_up &&commands)
1274 {
1275 validate_commands_for_breakpoint (b, commands.get ());
1276
1277 decref_counted_command_line (&b->commands);
1278 b->commands = alloc_counted_command_line (commands.release ());
1279 observer_notify_breakpoint_modified (b);
1280 }
1281
1282 /* Set the internal `silent' flag on the breakpoint. Note that this
1283 is not the same as the "silent" that may appear in the breakpoint's
1284 commands. */
1285
1286 void
1287 breakpoint_set_silent (struct breakpoint *b, int silent)
1288 {
1289 int old_silent = b->silent;
1290
1291 b->silent = silent;
1292 if (old_silent != silent)
1293 observer_notify_breakpoint_modified (b);
1294 }
1295
1296 /* Set the thread for this breakpoint. If THREAD is -1, make the
1297 breakpoint work for any thread. */
1298
1299 void
1300 breakpoint_set_thread (struct breakpoint *b, int thread)
1301 {
1302 int old_thread = b->thread;
1303
1304 b->thread = thread;
1305 if (old_thread != thread)
1306 observer_notify_breakpoint_modified (b);
1307 }
1308
1309 /* Set the task for this breakpoint. If TASK is 0, make the
1310 breakpoint work for any task. */
1311
1312 void
1313 breakpoint_set_task (struct breakpoint *b, int task)
1314 {
1315 int old_task = b->task;
1316
1317 b->task = task;
1318 if (old_task != task)
1319 observer_notify_breakpoint_modified (b);
1320 }
1321
1322 void
1323 check_tracepoint_command (char *line, void *closure)
1324 {
1325 struct breakpoint *b = (struct breakpoint *) closure;
1326
1327 validate_actionline (line, b);
1328 }
1329
1330 /* A structure used to pass information through
1331 map_breakpoint_numbers. */
1332
1333 struct commands_info
1334 {
1335 /* True if the command was typed at a tty. */
1336 int from_tty;
1337
1338 /* The breakpoint range spec. */
1339 const char *arg;
1340
1341 /* Non-NULL if the body of the commands are being read from this
1342 already-parsed command. */
1343 struct command_line *control;
1344
1345 /* The command lines read from the user, or NULL if they have not
1346 yet been read. */
1347 struct counted_command_line *cmd;
1348 };
1349
1350 /* A callback for map_breakpoint_numbers that sets the commands for
1351 commands_command. */
1352
1353 static void
1354 do_map_commands_command (struct breakpoint *b, void *data)
1355 {
1356 struct commands_info *info = (struct commands_info *) data;
1357
1358 if (info->cmd == NULL)
1359 {
1360 command_line_up l;
1361
1362 if (info->control != NULL)
1363 l = copy_command_lines (info->control->body_list[0]);
1364 else
1365 {
1366 struct cleanup *old_chain;
1367 char *str;
1368
1369 str = xstrprintf (_("Type commands for breakpoint(s) "
1370 "%s, one per line."),
1371 info->arg);
1372
1373 old_chain = make_cleanup (xfree, str);
1374
1375 l = read_command_lines (str,
1376 info->from_tty, 1,
1377 (is_tracepoint (b)
1378 ? check_tracepoint_command : 0),
1379 b);
1380
1381 do_cleanups (old_chain);
1382 }
1383
1384 info->cmd = alloc_counted_command_line (l.release ());
1385 }
1386
1387 /* If a breakpoint was on the list more than once, we don't need to
1388 do anything. */
1389 if (b->commands != info->cmd)
1390 {
1391 validate_commands_for_breakpoint (b, info->cmd->commands);
1392 incref_counted_command_line (info->cmd);
1393 decref_counted_command_line (&b->commands);
1394 b->commands = info->cmd;
1395 observer_notify_breakpoint_modified (b);
1396 }
1397 }
1398
1399 static void
1400 commands_command_1 (const char *arg, int from_tty,
1401 struct command_line *control)
1402 {
1403 struct cleanup *cleanups;
1404 struct commands_info info;
1405
1406 info.from_tty = from_tty;
1407 info.control = control;
1408 info.cmd = NULL;
1409 /* If we read command lines from the user, then `info' will hold an
1410 extra reference to the commands that we must clean up. */
1411 cleanups = make_cleanup_decref_counted_command_line (&info.cmd);
1412
1413 std::string new_arg;
1414
1415 if (arg == NULL || !*arg)
1416 {
1417 if (breakpoint_count - prev_breakpoint_count > 1)
1418 new_arg = string_printf ("%d-%d", prev_breakpoint_count + 1,
1419 breakpoint_count);
1420 else if (breakpoint_count > 0)
1421 new_arg = string_printf ("%d", breakpoint_count);
1422 }
1423 else
1424 new_arg = arg;
1425
1426 info.arg = new_arg.c_str ();
1427
1428 map_breakpoint_numbers (info.arg, do_map_commands_command, &info);
1429
1430 if (info.cmd == NULL)
1431 error (_("No breakpoints specified."));
1432
1433 do_cleanups (cleanups);
1434 }
1435
1436 static void
1437 commands_command (char *arg, int from_tty)
1438 {
1439 commands_command_1 (arg, from_tty, NULL);
1440 }
1441
1442 /* Like commands_command, but instead of reading the commands from
1443 input stream, takes them from an already parsed command structure.
1444
1445 This is used by cli-script.c to DTRT with breakpoint commands
1446 that are part of if and while bodies. */
1447 enum command_control_type
1448 commands_from_control_command (const char *arg, struct command_line *cmd)
1449 {
1450 commands_command_1 (arg, 0, cmd);
1451 return simple_control;
1452 }
1453
1454 /* Return non-zero if BL->TARGET_INFO contains valid information. */
1455
1456 static int
1457 bp_location_has_shadow (struct bp_location *bl)
1458 {
1459 if (bl->loc_type != bp_loc_software_breakpoint)
1460 return 0;
1461 if (!bl->inserted)
1462 return 0;
1463 if (bl->target_info.shadow_len == 0)
1464 /* BL isn't valid, or doesn't shadow memory. */
1465 return 0;
1466 return 1;
1467 }
1468
1469 /* Update BUF, which is LEN bytes read from the target address
1470 MEMADDR, by replacing a memory breakpoint with its shadowed
1471 contents.
1472
1473 If READBUF is not NULL, this buffer must not overlap with the of
1474 the breakpoint location's shadow_contents buffer. Otherwise, a
1475 failed assertion internal error will be raised. */
1476
1477 static void
1478 one_breakpoint_xfer_memory (gdb_byte *readbuf, gdb_byte *writebuf,
1479 const gdb_byte *writebuf_org,
1480 ULONGEST memaddr, LONGEST len,
1481 struct bp_target_info *target_info,
1482 struct gdbarch *gdbarch)
1483 {
1484 /* Now do full processing of the found relevant range of elements. */
1485 CORE_ADDR bp_addr = 0;
1486 int bp_size = 0;
1487 int bptoffset = 0;
1488
1489 if (!breakpoint_address_match (target_info->placed_address_space, 0,
1490 current_program_space->aspace, 0))
1491 {
1492 /* The breakpoint is inserted in a different address space. */
1493 return;
1494 }
1495
1496 /* Addresses and length of the part of the breakpoint that
1497 we need to copy. */
1498 bp_addr = target_info->placed_address;
1499 bp_size = target_info->shadow_len;
1500
1501 if (bp_addr + bp_size <= memaddr)
1502 {
1503 /* The breakpoint is entirely before the chunk of memory we are
1504 reading. */
1505 return;
1506 }
1507
1508 if (bp_addr >= memaddr + len)
1509 {
1510 /* The breakpoint is entirely after the chunk of memory we are
1511 reading. */
1512 return;
1513 }
1514
1515 /* Offset within shadow_contents. */
1516 if (bp_addr < memaddr)
1517 {
1518 /* Only copy the second part of the breakpoint. */
1519 bp_size -= memaddr - bp_addr;
1520 bptoffset = memaddr - bp_addr;
1521 bp_addr = memaddr;
1522 }
1523
1524 if (bp_addr + bp_size > memaddr + len)
1525 {
1526 /* Only copy the first part of the breakpoint. */
1527 bp_size -= (bp_addr + bp_size) - (memaddr + len);
1528 }
1529
1530 if (readbuf != NULL)
1531 {
1532 /* Verify that the readbuf buffer does not overlap with the
1533 shadow_contents buffer. */
1534 gdb_assert (target_info->shadow_contents >= readbuf + len
1535 || readbuf >= (target_info->shadow_contents
1536 + target_info->shadow_len));
1537
1538 /* Update the read buffer with this inserted breakpoint's
1539 shadow. */
1540 memcpy (readbuf + bp_addr - memaddr,
1541 target_info->shadow_contents + bptoffset, bp_size);
1542 }
1543 else
1544 {
1545 const unsigned char *bp;
1546 CORE_ADDR addr = target_info->reqstd_address;
1547 int placed_size;
1548
1549 /* Update the shadow with what we want to write to memory. */
1550 memcpy (target_info->shadow_contents + bptoffset,
1551 writebuf_org + bp_addr - memaddr, bp_size);
1552
1553 /* Determine appropriate breakpoint contents and size for this
1554 address. */
1555 bp = gdbarch_breakpoint_from_pc (gdbarch, &addr, &placed_size);
1556
1557 /* Update the final write buffer with this inserted
1558 breakpoint's INSN. */
1559 memcpy (writebuf + bp_addr - memaddr, bp + bptoffset, bp_size);
1560 }
1561 }
1562
1563 /* Update BUF, which is LEN bytes read from the target address MEMADDR,
1564 by replacing any memory breakpoints with their shadowed contents.
1565
1566 If READBUF is not NULL, this buffer must not overlap with any of
1567 the breakpoint location's shadow_contents buffers. Otherwise,
1568 a failed assertion internal error will be raised.
1569
1570 The range of shadowed area by each bp_location is:
1571 bl->address - bp_location_placed_address_before_address_max
1572 up to bl->address + bp_location_shadow_len_after_address_max
1573 The range we were requested to resolve shadows for is:
1574 memaddr ... memaddr + len
1575 Thus the safe cutoff boundaries for performance optimization are
1576 memaddr + len <= (bl->address
1577 - bp_location_placed_address_before_address_max)
1578 and:
1579 bl->address + bp_location_shadow_len_after_address_max <= memaddr */
1580
1581 void
1582 breakpoint_xfer_memory (gdb_byte *readbuf, gdb_byte *writebuf,
1583 const gdb_byte *writebuf_org,
1584 ULONGEST memaddr, LONGEST len)
1585 {
1586 /* Left boundary, right boundary and median element of our binary
1587 search. */
1588 unsigned bc_l, bc_r, bc;
1589
1590 /* Find BC_L which is a leftmost element which may affect BUF
1591 content. It is safe to report lower value but a failure to
1592 report higher one. */
1593
1594 bc_l = 0;
1595 bc_r = bp_location_count;
1596 while (bc_l + 1 < bc_r)
1597 {
1598 struct bp_location *bl;
1599
1600 bc = (bc_l + bc_r) / 2;
1601 bl = bp_location[bc];
1602
1603 /* Check first BL->ADDRESS will not overflow due to the added
1604 constant. Then advance the left boundary only if we are sure
1605 the BC element can in no way affect the BUF content (MEMADDR
1606 to MEMADDR + LEN range).
1607
1608 Use the BP_LOCATION_SHADOW_LEN_AFTER_ADDRESS_MAX safety
1609 offset so that we cannot miss a breakpoint with its shadow
1610 range tail still reaching MEMADDR. */
1611
1612 if ((bl->address + bp_location_shadow_len_after_address_max
1613 >= bl->address)
1614 && (bl->address + bp_location_shadow_len_after_address_max
1615 <= memaddr))
1616 bc_l = bc;
1617 else
1618 bc_r = bc;
1619 }
1620
1621 /* Due to the binary search above, we need to make sure we pick the
1622 first location that's at BC_L's address. E.g., if there are
1623 multiple locations at the same address, BC_L may end up pointing
1624 at a duplicate location, and miss the "master"/"inserted"
1625 location. Say, given locations L1, L2 and L3 at addresses A and
1626 B:
1627
1628 L1@A, L2@A, L3@B, ...
1629
1630 BC_L could end up pointing at location L2, while the "master"
1631 location could be L1. Since the `loc->inserted' flag is only set
1632 on "master" locations, we'd forget to restore the shadow of L1
1633 and L2. */
1634 while (bc_l > 0
1635 && bp_location[bc_l]->address == bp_location[bc_l - 1]->address)
1636 bc_l--;
1637
1638 /* Now do full processing of the found relevant range of elements. */
1639
1640 for (bc = bc_l; bc < bp_location_count; bc++)
1641 {
1642 struct bp_location *bl = bp_location[bc];
1643
1644 /* bp_location array has BL->OWNER always non-NULL. */
1645 if (bl->owner->type == bp_none)
1646 warning (_("reading through apparently deleted breakpoint #%d?"),
1647 bl->owner->number);
1648
1649 /* Performance optimization: any further element can no longer affect BUF
1650 content. */
1651
1652 if (bl->address >= bp_location_placed_address_before_address_max
1653 && memaddr + len <= (bl->address
1654 - bp_location_placed_address_before_address_max))
1655 break;
1656
1657 if (!bp_location_has_shadow (bl))
1658 continue;
1659
1660 one_breakpoint_xfer_memory (readbuf, writebuf, writebuf_org,
1661 memaddr, len, &bl->target_info, bl->gdbarch);
1662 }
1663 }
1664
1665 \f
1666
1667 /* Return true if BPT is either a software breakpoint or a hardware
1668 breakpoint. */
1669
1670 int
1671 is_breakpoint (const struct breakpoint *bpt)
1672 {
1673 return (bpt->type == bp_breakpoint
1674 || bpt->type == bp_hardware_breakpoint
1675 || bpt->type == bp_dprintf);
1676 }
1677
1678 /* Return true if BPT is of any hardware watchpoint kind. */
1679
1680 static int
1681 is_hardware_watchpoint (const struct breakpoint *bpt)
1682 {
1683 return (bpt->type == bp_hardware_watchpoint
1684 || bpt->type == bp_read_watchpoint
1685 || bpt->type == bp_access_watchpoint);
1686 }
1687
1688 /* Return true if BPT is of any watchpoint kind, hardware or
1689 software. */
1690
1691 int
1692 is_watchpoint (const struct breakpoint *bpt)
1693 {
1694 return (is_hardware_watchpoint (bpt)
1695 || bpt->type == bp_watchpoint);
1696 }
1697
1698 /* Returns true if the current thread and its running state are safe
1699 to evaluate or update watchpoint B. Watchpoints on local
1700 expressions need to be evaluated in the context of the thread that
1701 was current when the watchpoint was created, and, that thread needs
1702 to be stopped to be able to select the correct frame context.
1703 Watchpoints on global expressions can be evaluated on any thread,
1704 and in any state. It is presently left to the target allowing
1705 memory accesses when threads are running. */
1706
1707 static int
1708 watchpoint_in_thread_scope (struct watchpoint *b)
1709 {
1710 return (b->base.pspace == current_program_space
1711 && (ptid_equal (b->watchpoint_thread, null_ptid)
1712 || (ptid_equal (inferior_ptid, b->watchpoint_thread)
1713 && !is_executing (inferior_ptid))));
1714 }
1715
1716 /* Set watchpoint B to disp_del_at_next_stop, even including its possible
1717 associated bp_watchpoint_scope breakpoint. */
1718
1719 static void
1720 watchpoint_del_at_next_stop (struct watchpoint *w)
1721 {
1722 struct breakpoint *b = &w->base;
1723
1724 if (b->related_breakpoint != b)
1725 {
1726 gdb_assert (b->related_breakpoint->type == bp_watchpoint_scope);
1727 gdb_assert (b->related_breakpoint->related_breakpoint == b);
1728 b->related_breakpoint->disposition = disp_del_at_next_stop;
1729 b->related_breakpoint->related_breakpoint = b->related_breakpoint;
1730 b->related_breakpoint = b;
1731 }
1732 b->disposition = disp_del_at_next_stop;
1733 }
1734
1735 /* Extract a bitfield value from value VAL using the bit parameters contained in
1736 watchpoint W. */
1737
1738 static struct value *
1739 extract_bitfield_from_watchpoint_value (struct watchpoint *w, struct value *val)
1740 {
1741 struct value *bit_val;
1742
1743 if (val == NULL)
1744 return NULL;
1745
1746 bit_val = allocate_value (value_type (val));
1747
1748 unpack_value_bitfield (bit_val,
1749 w->val_bitpos,
1750 w->val_bitsize,
1751 value_contents_for_printing (val),
1752 value_offset (val),
1753 val);
1754
1755 return bit_val;
1756 }
1757
1758 /* Allocate a dummy location and add it to B, which must be a software
1759 watchpoint. This is required because even if a software watchpoint
1760 is not watching any memory, bpstat_stop_status requires a location
1761 to be able to report stops. */
1762
1763 static void
1764 software_watchpoint_add_no_memory_location (struct breakpoint *b,
1765 struct program_space *pspace)
1766 {
1767 gdb_assert (b->type == bp_watchpoint && b->loc == NULL);
1768
1769 b->loc = allocate_bp_location (b);
1770 b->loc->pspace = pspace;
1771 b->loc->address = -1;
1772 b->loc->length = -1;
1773 }
1774
1775 /* Returns true if B is a software watchpoint that is not watching any
1776 memory (e.g., "watch $pc"). */
1777
1778 static int
1779 is_no_memory_software_watchpoint (struct breakpoint *b)
1780 {
1781 return (b->type == bp_watchpoint
1782 && b->loc != NULL
1783 && b->loc->next == NULL
1784 && b->loc->address == -1
1785 && b->loc->length == -1);
1786 }
1787
1788 /* Assuming that B is a watchpoint:
1789 - Reparse watchpoint expression, if REPARSE is non-zero
1790 - Evaluate expression and store the result in B->val
1791 - Evaluate the condition if there is one, and store the result
1792 in b->loc->cond.
1793 - Update the list of values that must be watched in B->loc.
1794
1795 If the watchpoint disposition is disp_del_at_next_stop, then do
1796 nothing. If this is local watchpoint that is out of scope, delete
1797 it.
1798
1799 Even with `set breakpoint always-inserted on' the watchpoints are
1800 removed + inserted on each stop here. Normal breakpoints must
1801 never be removed because they might be missed by a running thread
1802 when debugging in non-stop mode. On the other hand, hardware
1803 watchpoints (is_hardware_watchpoint; processed here) are specific
1804 to each LWP since they are stored in each LWP's hardware debug
1805 registers. Therefore, such LWP must be stopped first in order to
1806 be able to modify its hardware watchpoints.
1807
1808 Hardware watchpoints must be reset exactly once after being
1809 presented to the user. It cannot be done sooner, because it would
1810 reset the data used to present the watchpoint hit to the user. And
1811 it must not be done later because it could display the same single
1812 watchpoint hit during multiple GDB stops. Note that the latter is
1813 relevant only to the hardware watchpoint types bp_read_watchpoint
1814 and bp_access_watchpoint. False hit by bp_hardware_watchpoint is
1815 not user-visible - its hit is suppressed if the memory content has
1816 not changed.
1817
1818 The following constraints influence the location where we can reset
1819 hardware watchpoints:
1820
1821 * target_stopped_by_watchpoint and target_stopped_data_address are
1822 called several times when GDB stops.
1823
1824 [linux]
1825 * Multiple hardware watchpoints can be hit at the same time,
1826 causing GDB to stop. GDB only presents one hardware watchpoint
1827 hit at a time as the reason for stopping, and all the other hits
1828 are presented later, one after the other, each time the user
1829 requests the execution to be resumed. Execution is not resumed
1830 for the threads still having pending hit event stored in
1831 LWP_INFO->STATUS. While the watchpoint is already removed from
1832 the inferior on the first stop the thread hit event is kept being
1833 reported from its cached value by linux_nat_stopped_data_address
1834 until the real thread resume happens after the watchpoint gets
1835 presented and thus its LWP_INFO->STATUS gets reset.
1836
1837 Therefore the hardware watchpoint hit can get safely reset on the
1838 watchpoint removal from inferior. */
1839
1840 static void
1841 update_watchpoint (struct watchpoint *b, int reparse)
1842 {
1843 int within_current_scope;
1844 struct frame_id saved_frame_id;
1845 int frame_saved;
1846
1847 /* If this is a local watchpoint, we only want to check if the
1848 watchpoint frame is in scope if the current thread is the thread
1849 that was used to create the watchpoint. */
1850 if (!watchpoint_in_thread_scope (b))
1851 return;
1852
1853 if (b->base.disposition == disp_del_at_next_stop)
1854 return;
1855
1856 frame_saved = 0;
1857
1858 /* Determine if the watchpoint is within scope. */
1859 if (b->exp_valid_block == NULL)
1860 within_current_scope = 1;
1861 else
1862 {
1863 struct frame_info *fi = get_current_frame ();
1864 struct gdbarch *frame_arch = get_frame_arch (fi);
1865 CORE_ADDR frame_pc = get_frame_pc (fi);
1866
1867 /* If we're at a point where the stack has been destroyed
1868 (e.g. in a function epilogue), unwinding may not work
1869 properly. Do not attempt to recreate locations at this
1870 point. See similar comments in watchpoint_check. */
1871 if (gdbarch_stack_frame_destroyed_p (frame_arch, frame_pc))
1872 return;
1873
1874 /* Save the current frame's ID so we can restore it after
1875 evaluating the watchpoint expression on its own frame. */
1876 /* FIXME drow/2003-09-09: It would be nice if evaluate_expression
1877 took a frame parameter, so that we didn't have to change the
1878 selected frame. */
1879 frame_saved = 1;
1880 saved_frame_id = get_frame_id (get_selected_frame (NULL));
1881
1882 fi = frame_find_by_id (b->watchpoint_frame);
1883 within_current_scope = (fi != NULL);
1884 if (within_current_scope)
1885 select_frame (fi);
1886 }
1887
1888 /* We don't free locations. They are stored in the bp_location array
1889 and update_global_location_list will eventually delete them and
1890 remove breakpoints if needed. */
1891 b->base.loc = NULL;
1892
1893 if (within_current_scope && reparse)
1894 {
1895 const char *s;
1896
1897 b->exp.reset ();
1898 s = b->exp_string_reparse ? b->exp_string_reparse : b->exp_string;
1899 b->exp = parse_exp_1 (&s, 0, b->exp_valid_block, 0);
1900 /* If the meaning of expression itself changed, the old value is
1901 no longer relevant. We don't want to report a watchpoint hit
1902 to the user when the old value and the new value may actually
1903 be completely different objects. */
1904 value_free (b->val);
1905 b->val = NULL;
1906 b->val_valid = 0;
1907
1908 /* Note that unlike with breakpoints, the watchpoint's condition
1909 expression is stored in the breakpoint object, not in the
1910 locations (re)created below. */
1911 if (b->base.cond_string != NULL)
1912 {
1913 b->cond_exp.reset ();
1914
1915 s = b->base.cond_string;
1916 b->cond_exp = parse_exp_1 (&s, 0, b->cond_exp_valid_block, 0);
1917 }
1918 }
1919
1920 /* If we failed to parse the expression, for example because
1921 it refers to a global variable in a not-yet-loaded shared library,
1922 don't try to insert watchpoint. We don't automatically delete
1923 such watchpoint, though, since failure to parse expression
1924 is different from out-of-scope watchpoint. */
1925 if (!target_has_execution)
1926 {
1927 /* Without execution, memory can't change. No use to try and
1928 set watchpoint locations. The watchpoint will be reset when
1929 the target gains execution, through breakpoint_re_set. */
1930 if (!can_use_hw_watchpoints)
1931 {
1932 if (b->base.ops->works_in_software_mode (&b->base))
1933 b->base.type = bp_watchpoint;
1934 else
1935 error (_("Can't set read/access watchpoint when "
1936 "hardware watchpoints are disabled."));
1937 }
1938 }
1939 else if (within_current_scope && b->exp)
1940 {
1941 int pc = 0;
1942 struct value *val_chain, *v, *result, *next;
1943 struct program_space *frame_pspace;
1944
1945 fetch_subexp_value (b->exp.get (), &pc, &v, &result, &val_chain, 0);
1946
1947 /* Avoid setting b->val if it's already set. The meaning of
1948 b->val is 'the last value' user saw, and we should update
1949 it only if we reported that last value to user. As it
1950 happens, the code that reports it updates b->val directly.
1951 We don't keep track of the memory value for masked
1952 watchpoints. */
1953 if (!b->val_valid && !is_masked_watchpoint (&b->base))
1954 {
1955 if (b->val_bitsize != 0)
1956 {
1957 v = extract_bitfield_from_watchpoint_value (b, v);
1958 if (v != NULL)
1959 release_value (v);
1960 }
1961 b->val = v;
1962 b->val_valid = 1;
1963 }
1964
1965 frame_pspace = get_frame_program_space (get_selected_frame (NULL));
1966
1967 /* Look at each value on the value chain. */
1968 for (v = val_chain; v; v = value_next (v))
1969 {
1970 /* If it's a memory location, and GDB actually needed
1971 its contents to evaluate the expression, then we
1972 must watch it. If the first value returned is
1973 still lazy, that means an error occurred reading it;
1974 watch it anyway in case it becomes readable. */
1975 if (VALUE_LVAL (v) == lval_memory
1976 && (v == val_chain || ! value_lazy (v)))
1977 {
1978 struct type *vtype = check_typedef (value_type (v));
1979
1980 /* We only watch structs and arrays if user asked
1981 for it explicitly, never if they just happen to
1982 appear in the middle of some value chain. */
1983 if (v == result
1984 || (TYPE_CODE (vtype) != TYPE_CODE_STRUCT
1985 && TYPE_CODE (vtype) != TYPE_CODE_ARRAY))
1986 {
1987 CORE_ADDR addr;
1988 enum target_hw_bp_type type;
1989 struct bp_location *loc, **tmp;
1990 int bitpos = 0, bitsize = 0;
1991
1992 if (value_bitsize (v) != 0)
1993 {
1994 /* Extract the bit parameters out from the bitfield
1995 sub-expression. */
1996 bitpos = value_bitpos (v);
1997 bitsize = value_bitsize (v);
1998 }
1999 else if (v == result && b->val_bitsize != 0)
2000 {
2001 /* If VAL_BITSIZE != 0 then RESULT is actually a bitfield
2002 lvalue whose bit parameters are saved in the fields
2003 VAL_BITPOS and VAL_BITSIZE. */
2004 bitpos = b->val_bitpos;
2005 bitsize = b->val_bitsize;
2006 }
2007
2008 addr = value_address (v);
2009 if (bitsize != 0)
2010 {
2011 /* Skip the bytes that don't contain the bitfield. */
2012 addr += bitpos / 8;
2013 }
2014
2015 type = hw_write;
2016 if (b->base.type == bp_read_watchpoint)
2017 type = hw_read;
2018 else if (b->base.type == bp_access_watchpoint)
2019 type = hw_access;
2020
2021 loc = allocate_bp_location (&b->base);
2022 for (tmp = &(b->base.loc); *tmp != NULL; tmp = &((*tmp)->next))
2023 ;
2024 *tmp = loc;
2025 loc->gdbarch = get_type_arch (value_type (v));
2026
2027 loc->pspace = frame_pspace;
2028 loc->address = addr;
2029
2030 if (bitsize != 0)
2031 {
2032 /* Just cover the bytes that make up the bitfield. */
2033 loc->length = ((bitpos % 8) + bitsize + 7) / 8;
2034 }
2035 else
2036 loc->length = TYPE_LENGTH (value_type (v));
2037
2038 loc->watchpoint_type = type;
2039 }
2040 }
2041 }
2042
2043 /* Change the type of breakpoint between hardware assisted or
2044 an ordinary watchpoint depending on the hardware support
2045 and free hardware slots. REPARSE is set when the inferior
2046 is started. */
2047 if (reparse)
2048 {
2049 int reg_cnt;
2050 enum bp_loc_type loc_type;
2051 struct bp_location *bl;
2052
2053 reg_cnt = can_use_hardware_watchpoint (val_chain);
2054
2055 if (reg_cnt)
2056 {
2057 int i, target_resources_ok, other_type_used;
2058 enum bptype type;
2059
2060 /* Use an exact watchpoint when there's only one memory region to be
2061 watched, and only one debug register is needed to watch it. */
2062 b->exact = target_exact_watchpoints && reg_cnt == 1;
2063
2064 /* We need to determine how many resources are already
2065 used for all other hardware watchpoints plus this one
2066 to see if we still have enough resources to also fit
2067 this watchpoint in as well. */
2068
2069 /* If this is a software watchpoint, we try to turn it
2070 to a hardware one -- count resources as if B was of
2071 hardware watchpoint type. */
2072 type = b->base.type;
2073 if (type == bp_watchpoint)
2074 type = bp_hardware_watchpoint;
2075
2076 /* This watchpoint may or may not have been placed on
2077 the list yet at this point (it won't be in the list
2078 if we're trying to create it for the first time,
2079 through watch_command), so always account for it
2080 manually. */
2081
2082 /* Count resources used by all watchpoints except B. */
2083 i = hw_watchpoint_used_count_others (&b->base, type, &other_type_used);
2084
2085 /* Add in the resources needed for B. */
2086 i += hw_watchpoint_use_count (&b->base);
2087
2088 target_resources_ok
2089 = target_can_use_hardware_watchpoint (type, i, other_type_used);
2090 if (target_resources_ok <= 0)
2091 {
2092 int sw_mode = b->base.ops->works_in_software_mode (&b->base);
2093
2094 if (target_resources_ok == 0 && !sw_mode)
2095 error (_("Target does not support this type of "
2096 "hardware watchpoint."));
2097 else if (target_resources_ok < 0 && !sw_mode)
2098 error (_("There are not enough available hardware "
2099 "resources for this watchpoint."));
2100
2101 /* Downgrade to software watchpoint. */
2102 b->base.type = bp_watchpoint;
2103 }
2104 else
2105 {
2106 /* If this was a software watchpoint, we've just
2107 found we have enough resources to turn it to a
2108 hardware watchpoint. Otherwise, this is a
2109 nop. */
2110 b->base.type = type;
2111 }
2112 }
2113 else if (!b->base.ops->works_in_software_mode (&b->base))
2114 {
2115 if (!can_use_hw_watchpoints)
2116 error (_("Can't set read/access watchpoint when "
2117 "hardware watchpoints are disabled."));
2118 else
2119 error (_("Expression cannot be implemented with "
2120 "read/access watchpoint."));
2121 }
2122 else
2123 b->base.type = bp_watchpoint;
2124
2125 loc_type = (b->base.type == bp_watchpoint? bp_loc_other
2126 : bp_loc_hardware_watchpoint);
2127 for (bl = b->base.loc; bl; bl = bl->next)
2128 bl->loc_type = loc_type;
2129 }
2130
2131 for (v = val_chain; v; v = next)
2132 {
2133 next = value_next (v);
2134 if (v != b->val)
2135 value_free (v);
2136 }
2137
2138 /* If a software watchpoint is not watching any memory, then the
2139 above left it without any location set up. But,
2140 bpstat_stop_status requires a location to be able to report
2141 stops, so make sure there's at least a dummy one. */
2142 if (b->base.type == bp_watchpoint && b->base.loc == NULL)
2143 software_watchpoint_add_no_memory_location (&b->base, frame_pspace);
2144 }
2145 else if (!within_current_scope)
2146 {
2147 printf_filtered (_("\
2148 Watchpoint %d deleted because the program has left the block\n\
2149 in which its expression is valid.\n"),
2150 b->base.number);
2151 watchpoint_del_at_next_stop (b);
2152 }
2153
2154 /* Restore the selected frame. */
2155 if (frame_saved)
2156 select_frame (frame_find_by_id (saved_frame_id));
2157 }
2158
2159
2160 /* Returns 1 iff breakpoint location should be
2161 inserted in the inferior. We don't differentiate the type of BL's owner
2162 (breakpoint vs. tracepoint), although insert_location in tracepoint's
2163 breakpoint_ops is not defined, because in insert_bp_location,
2164 tracepoint's insert_location will not be called. */
2165 static int
2166 should_be_inserted (struct bp_location *bl)
2167 {
2168 if (bl->owner == NULL || !breakpoint_enabled (bl->owner))
2169 return 0;
2170
2171 if (bl->owner->disposition == disp_del_at_next_stop)
2172 return 0;
2173
2174 if (!bl->enabled || bl->shlib_disabled || bl->duplicate)
2175 return 0;
2176
2177 if (user_breakpoint_p (bl->owner) && bl->pspace->executing_startup)
2178 return 0;
2179
2180 /* This is set for example, when we're attached to the parent of a
2181 vfork, and have detached from the child. The child is running
2182 free, and we expect it to do an exec or exit, at which point the
2183 OS makes the parent schedulable again (and the target reports
2184 that the vfork is done). Until the child is done with the shared
2185 memory region, do not insert breakpoints in the parent, otherwise
2186 the child could still trip on the parent's breakpoints. Since
2187 the parent is blocked anyway, it won't miss any breakpoint. */
2188 if (bl->pspace->breakpoints_not_allowed)
2189 return 0;
2190
2191 /* Don't insert a breakpoint if we're trying to step past its
2192 location, except if the breakpoint is a single-step breakpoint,
2193 and the breakpoint's thread is the thread which is stepping past
2194 a breakpoint. */
2195 if ((bl->loc_type == bp_loc_software_breakpoint
2196 || bl->loc_type == bp_loc_hardware_breakpoint)
2197 && stepping_past_instruction_at (bl->pspace->aspace,
2198 bl->address)
2199 /* The single-step breakpoint may be inserted at the location
2200 we're trying to step if the instruction branches to itself.
2201 However, the instruction won't be executed at all and it may
2202 break the semantics of the instruction, for example, the
2203 instruction is a conditional branch or updates some flags.
2204 We can't fix it unless GDB is able to emulate the instruction
2205 or switch to displaced stepping. */
2206 && !(bl->owner->type == bp_single_step
2207 && thread_is_stepping_over_breakpoint (bl->owner->thread)))
2208 {
2209 if (debug_infrun)
2210 {
2211 fprintf_unfiltered (gdb_stdlog,
2212 "infrun: skipping breakpoint: "
2213 "stepping past insn at: %s\n",
2214 paddress (bl->gdbarch, bl->address));
2215 }
2216 return 0;
2217 }
2218
2219 /* Don't insert watchpoints if we're trying to step past the
2220 instruction that triggered one. */
2221 if ((bl->loc_type == bp_loc_hardware_watchpoint)
2222 && stepping_past_nonsteppable_watchpoint ())
2223 {
2224 if (debug_infrun)
2225 {
2226 fprintf_unfiltered (gdb_stdlog,
2227 "infrun: stepping past non-steppable watchpoint. "
2228 "skipping watchpoint at %s:%d\n",
2229 paddress (bl->gdbarch, bl->address),
2230 bl->length);
2231 }
2232 return 0;
2233 }
2234
2235 return 1;
2236 }
2237
2238 /* Same as should_be_inserted but does the check assuming
2239 that the location is not duplicated. */
2240
2241 static int
2242 unduplicated_should_be_inserted (struct bp_location *bl)
2243 {
2244 int result;
2245 const int save_duplicate = bl->duplicate;
2246
2247 bl->duplicate = 0;
2248 result = should_be_inserted (bl);
2249 bl->duplicate = save_duplicate;
2250 return result;
2251 }
2252
2253 /* Parses a conditional described by an expression COND into an
2254 agent expression bytecode suitable for evaluation
2255 by the bytecode interpreter. Return NULL if there was
2256 any error during parsing. */
2257
2258 static agent_expr_up
2259 parse_cond_to_aexpr (CORE_ADDR scope, struct expression *cond)
2260 {
2261 if (cond == NULL)
2262 return NULL;
2263
2264 agent_expr_up aexpr;
2265
2266 /* We don't want to stop processing, so catch any errors
2267 that may show up. */
2268 TRY
2269 {
2270 aexpr = gen_eval_for_expr (scope, cond);
2271 }
2272
2273 CATCH (ex, RETURN_MASK_ERROR)
2274 {
2275 /* If we got here, it means the condition could not be parsed to a valid
2276 bytecode expression and thus can't be evaluated on the target's side.
2277 It's no use iterating through the conditions. */
2278 }
2279 END_CATCH
2280
2281 /* We have a valid agent expression. */
2282 return aexpr;
2283 }
2284
2285 /* Based on location BL, create a list of breakpoint conditions to be
2286 passed on to the target. If we have duplicated locations with different
2287 conditions, we will add such conditions to the list. The idea is that the
2288 target will evaluate the list of conditions and will only notify GDB when
2289 one of them is true. */
2290
2291 static void
2292 build_target_condition_list (struct bp_location *bl)
2293 {
2294 struct bp_location **locp = NULL, **loc2p;
2295 int null_condition_or_parse_error = 0;
2296 int modified = bl->needs_update;
2297 struct bp_location *loc;
2298
2299 /* Release conditions left over from a previous insert. */
2300 bl->target_info.conditions.clear ();
2301
2302 /* This is only meaningful if the target is
2303 evaluating conditions and if the user has
2304 opted for condition evaluation on the target's
2305 side. */
2306 if (gdb_evaluates_breakpoint_condition_p ()
2307 || !target_supports_evaluation_of_breakpoint_conditions ())
2308 return;
2309
2310 /* Do a first pass to check for locations with no assigned
2311 conditions or conditions that fail to parse to a valid agent expression
2312 bytecode. If any of these happen, then it's no use to send conditions
2313 to the target since this location will always trigger and generate a
2314 response back to GDB. */
2315 ALL_BP_LOCATIONS_AT_ADDR (loc2p, locp, bl->address)
2316 {
2317 loc = (*loc2p);
2318 if (is_breakpoint (loc->owner) && loc->pspace->num == bl->pspace->num)
2319 {
2320 if (modified)
2321 {
2322 /* Re-parse the conditions since something changed. In that
2323 case we already freed the condition bytecodes (see
2324 force_breakpoint_reinsertion). We just
2325 need to parse the condition to bytecodes again. */
2326 loc->cond_bytecode = parse_cond_to_aexpr (bl->address,
2327 loc->cond.get ());
2328 }
2329
2330 /* If we have a NULL bytecode expression, it means something
2331 went wrong or we have a null condition expression. */
2332 if (!loc->cond_bytecode)
2333 {
2334 null_condition_or_parse_error = 1;
2335 break;
2336 }
2337 }
2338 }
2339
2340 /* If any of these happened, it means we will have to evaluate the conditions
2341 for the location's address on gdb's side. It is no use keeping bytecodes
2342 for all the other duplicate locations, thus we free all of them here.
2343
2344 This is so we have a finer control over which locations' conditions are
2345 being evaluated by GDB or the remote stub. */
2346 if (null_condition_or_parse_error)
2347 {
2348 ALL_BP_LOCATIONS_AT_ADDR (loc2p, locp, bl->address)
2349 {
2350 loc = (*loc2p);
2351 if (is_breakpoint (loc->owner) && loc->pspace->num == bl->pspace->num)
2352 {
2353 /* Only go as far as the first NULL bytecode is
2354 located. */
2355 if (!loc->cond_bytecode)
2356 return;
2357
2358 loc->cond_bytecode.reset ();
2359 }
2360 }
2361 }
2362
2363 /* No NULL conditions or failed bytecode generation. Build a condition list
2364 for this location's address. */
2365 ALL_BP_LOCATIONS_AT_ADDR (loc2p, locp, bl->address)
2366 {
2367 loc = (*loc2p);
2368 if (loc->cond
2369 && is_breakpoint (loc->owner)
2370 && loc->pspace->num == bl->pspace->num
2371 && loc->owner->enable_state == bp_enabled
2372 && loc->enabled)
2373 {
2374 /* Add the condition to the vector. This will be used later
2375 to send the conditions to the target. */
2376 bl->target_info.conditions.push_back (loc->cond_bytecode.get ());
2377 }
2378 }
2379
2380 return;
2381 }
2382
2383 /* Parses a command described by string CMD into an agent expression
2384 bytecode suitable for evaluation by the bytecode interpreter.
2385 Return NULL if there was any error during parsing. */
2386
2387 static agent_expr_up
2388 parse_cmd_to_aexpr (CORE_ADDR scope, char *cmd)
2389 {
2390 struct cleanup *old_cleanups = 0;
2391 struct expression **argvec;
2392 const char *cmdrest;
2393 const char *format_start, *format_end;
2394 struct format_piece *fpieces;
2395 int nargs;
2396 struct gdbarch *gdbarch = get_current_arch ();
2397
2398 if (cmd == NULL)
2399 return NULL;
2400
2401 cmdrest = cmd;
2402
2403 if (*cmdrest == ',')
2404 ++cmdrest;
2405 cmdrest = skip_spaces_const (cmdrest);
2406
2407 if (*cmdrest++ != '"')
2408 error (_("No format string following the location"));
2409
2410 format_start = cmdrest;
2411
2412 fpieces = parse_format_string (&cmdrest);
2413
2414 old_cleanups = make_cleanup (free_format_pieces_cleanup, &fpieces);
2415
2416 format_end = cmdrest;
2417
2418 if (*cmdrest++ != '"')
2419 error (_("Bad format string, non-terminated '\"'."));
2420
2421 cmdrest = skip_spaces_const (cmdrest);
2422
2423 if (!(*cmdrest == ',' || *cmdrest == '\0'))
2424 error (_("Invalid argument syntax"));
2425
2426 if (*cmdrest == ',')
2427 cmdrest++;
2428 cmdrest = skip_spaces_const (cmdrest);
2429
2430 /* For each argument, make an expression. */
2431
2432 argvec = (struct expression **) alloca (strlen (cmd)
2433 * sizeof (struct expression *));
2434
2435 nargs = 0;
2436 while (*cmdrest != '\0')
2437 {
2438 const char *cmd1;
2439
2440 cmd1 = cmdrest;
2441 expression_up expr = parse_exp_1 (&cmd1, scope, block_for_pc (scope), 1);
2442 argvec[nargs++] = expr.release ();
2443 cmdrest = cmd1;
2444 if (*cmdrest == ',')
2445 ++cmdrest;
2446 }
2447
2448 agent_expr_up aexpr;
2449
2450 /* We don't want to stop processing, so catch any errors
2451 that may show up. */
2452 TRY
2453 {
2454 aexpr = gen_printf (scope, gdbarch, 0, 0,
2455 format_start, format_end - format_start,
2456 fpieces, nargs, argvec);
2457 }
2458 CATCH (ex, RETURN_MASK_ERROR)
2459 {
2460 /* If we got here, it means the command could not be parsed to a valid
2461 bytecode expression and thus can't be evaluated on the target's side.
2462 It's no use iterating through the other commands. */
2463 }
2464 END_CATCH
2465
2466 do_cleanups (old_cleanups);
2467
2468 /* We have a valid agent expression, return it. */
2469 return aexpr;
2470 }
2471
2472 /* Based on location BL, create a list of breakpoint commands to be
2473 passed on to the target. If we have duplicated locations with
2474 different commands, we will add any such to the list. */
2475
2476 static void
2477 build_target_command_list (struct bp_location *bl)
2478 {
2479 struct bp_location **locp = NULL, **loc2p;
2480 int null_command_or_parse_error = 0;
2481 int modified = bl->needs_update;
2482 struct bp_location *loc;
2483
2484 /* Clear commands left over from a previous insert. */
2485 bl->target_info.tcommands.clear ();
2486
2487 if (!target_can_run_breakpoint_commands ())
2488 return;
2489
2490 /* For now, limit to agent-style dprintf breakpoints. */
2491 if (dprintf_style != dprintf_style_agent)
2492 return;
2493
2494 /* For now, if we have any duplicate location that isn't a dprintf,
2495 don't install the target-side commands, as that would make the
2496 breakpoint not be reported to the core, and we'd lose
2497 control. */
2498 ALL_BP_LOCATIONS_AT_ADDR (loc2p, locp, bl->address)
2499 {
2500 loc = (*loc2p);
2501 if (is_breakpoint (loc->owner)
2502 && loc->pspace->num == bl->pspace->num
2503 && loc->owner->type != bp_dprintf)
2504 return;
2505 }
2506
2507 /* Do a first pass to check for locations with no assigned
2508 conditions or conditions that fail to parse to a valid agent expression
2509 bytecode. If any of these happen, then it's no use to send conditions
2510 to the target since this location will always trigger and generate a
2511 response back to GDB. */
2512 ALL_BP_LOCATIONS_AT_ADDR (loc2p, locp, bl->address)
2513 {
2514 loc = (*loc2p);
2515 if (is_breakpoint (loc->owner) && loc->pspace->num == bl->pspace->num)
2516 {
2517 if (modified)
2518 {
2519 /* Re-parse the commands since something changed. In that
2520 case we already freed the command bytecodes (see
2521 force_breakpoint_reinsertion). We just
2522 need to parse the command to bytecodes again. */
2523 loc->cmd_bytecode
2524 = parse_cmd_to_aexpr (bl->address,
2525 loc->owner->extra_string);
2526 }
2527
2528 /* If we have a NULL bytecode expression, it means something
2529 went wrong or we have a null command expression. */
2530 if (!loc->cmd_bytecode)
2531 {
2532 null_command_or_parse_error = 1;
2533 break;
2534 }
2535 }
2536 }
2537
2538 /* If anything failed, then we're not doing target-side commands,
2539 and so clean up. */
2540 if (null_command_or_parse_error)
2541 {
2542 ALL_BP_LOCATIONS_AT_ADDR (loc2p, locp, bl->address)
2543 {
2544 loc = (*loc2p);
2545 if (is_breakpoint (loc->owner)
2546 && loc->pspace->num == bl->pspace->num)
2547 {
2548 /* Only go as far as the first NULL bytecode is
2549 located. */
2550 if (loc->cmd_bytecode == NULL)
2551 return;
2552
2553 loc->cmd_bytecode.reset ();
2554 }
2555 }
2556 }
2557
2558 /* No NULL commands or failed bytecode generation. Build a command list
2559 for this location's address. */
2560 ALL_BP_LOCATIONS_AT_ADDR (loc2p, locp, bl->address)
2561 {
2562 loc = (*loc2p);
2563 if (loc->owner->extra_string
2564 && is_breakpoint (loc->owner)
2565 && loc->pspace->num == bl->pspace->num
2566 && loc->owner->enable_state == bp_enabled
2567 && loc->enabled)
2568 {
2569 /* Add the command to the vector. This will be used later
2570 to send the commands to the target. */
2571 bl->target_info.tcommands.push_back (loc->cmd_bytecode.get ());
2572 }
2573 }
2574
2575 bl->target_info.persist = 0;
2576 /* Maybe flag this location as persistent. */
2577 if (bl->owner->type == bp_dprintf && disconnected_dprintf)
2578 bl->target_info.persist = 1;
2579 }
2580
2581 /* Return the kind of breakpoint on address *ADDR. Get the kind
2582 of breakpoint according to ADDR except single-step breakpoint.
2583 Get the kind of single-step breakpoint according to the current
2584 registers state. */
2585
2586 static int
2587 breakpoint_kind (struct bp_location *bl, CORE_ADDR *addr)
2588 {
2589 if (bl->owner->type == bp_single_step)
2590 {
2591 struct thread_info *thr = find_thread_global_id (bl->owner->thread);
2592 struct regcache *regcache;
2593
2594 regcache = get_thread_regcache (thr->ptid);
2595
2596 return gdbarch_breakpoint_kind_from_current_state (bl->gdbarch,
2597 regcache, addr);
2598 }
2599 else
2600 return gdbarch_breakpoint_kind_from_pc (bl->gdbarch, addr);
2601 }
2602
2603 /* Insert a low-level "breakpoint" of some type. BL is the breakpoint
2604 location. Any error messages are printed to TMP_ERROR_STREAM; and
2605 DISABLED_BREAKS, and HW_BREAKPOINT_ERROR are used to report problems.
2606 Returns 0 for success, 1 if the bp_location type is not supported or
2607 -1 for failure.
2608
2609 NOTE drow/2003-09-09: This routine could be broken down to an
2610 object-style method for each breakpoint or catchpoint type. */
2611 static int
2612 insert_bp_location (struct bp_location *bl,
2613 struct ui_file *tmp_error_stream,
2614 int *disabled_breaks,
2615 int *hw_breakpoint_error,
2616 int *hw_bp_error_explained_already)
2617 {
2618 enum errors bp_err = GDB_NO_ERROR;
2619 const char *bp_err_message = NULL;
2620
2621 if (!should_be_inserted (bl) || (bl->inserted && !bl->needs_update))
2622 return 0;
2623
2624 /* Note we don't initialize bl->target_info, as that wipes out
2625 the breakpoint location's shadow_contents if the breakpoint
2626 is still inserted at that location. This in turn breaks
2627 target_read_memory which depends on these buffers when
2628 a memory read is requested at the breakpoint location:
2629 Once the target_info has been wiped, we fail to see that
2630 we have a breakpoint inserted at that address and thus
2631 read the breakpoint instead of returning the data saved in
2632 the breakpoint location's shadow contents. */
2633 bl->target_info.reqstd_address = bl->address;
2634 bl->target_info.placed_address_space = bl->pspace->aspace;
2635 bl->target_info.length = bl->length;
2636
2637 /* When working with target-side conditions, we must pass all the conditions
2638 for the same breakpoint address down to the target since GDB will not
2639 insert those locations. With a list of breakpoint conditions, the target
2640 can decide when to stop and notify GDB. */
2641
2642 if (is_breakpoint (bl->owner))
2643 {
2644 build_target_condition_list (bl);
2645 build_target_command_list (bl);
2646 /* Reset the modification marker. */
2647 bl->needs_update = 0;
2648 }
2649
2650 if (bl->loc_type == bp_loc_software_breakpoint
2651 || bl->loc_type == bp_loc_hardware_breakpoint)
2652 {
2653 if (bl->owner->type != bp_hardware_breakpoint)
2654 {
2655 /* If the explicitly specified breakpoint type
2656 is not hardware breakpoint, check the memory map to see
2657 if the breakpoint address is in read only memory or not.
2658
2659 Two important cases are:
2660 - location type is not hardware breakpoint, memory
2661 is readonly. We change the type of the location to
2662 hardware breakpoint.
2663 - location type is hardware breakpoint, memory is
2664 read-write. This means we've previously made the
2665 location hardware one, but then the memory map changed,
2666 so we undo.
2667
2668 When breakpoints are removed, remove_breakpoints will use
2669 location types we've just set here, the only possible
2670 problem is that memory map has changed during running
2671 program, but it's not going to work anyway with current
2672 gdb. */
2673 struct mem_region *mr
2674 = lookup_mem_region (bl->target_info.reqstd_address);
2675
2676 if (mr)
2677 {
2678 if (automatic_hardware_breakpoints)
2679 {
2680 enum bp_loc_type new_type;
2681
2682 if (mr->attrib.mode != MEM_RW)
2683 new_type = bp_loc_hardware_breakpoint;
2684 else
2685 new_type = bp_loc_software_breakpoint;
2686
2687 if (new_type != bl->loc_type)
2688 {
2689 static int said = 0;
2690
2691 bl->loc_type = new_type;
2692 if (!said)
2693 {
2694 fprintf_filtered (gdb_stdout,
2695 _("Note: automatically using "
2696 "hardware breakpoints for "
2697 "read-only addresses.\n"));
2698 said = 1;
2699 }
2700 }
2701 }
2702 else if (bl->loc_type == bp_loc_software_breakpoint
2703 && mr->attrib.mode != MEM_RW)
2704 {
2705 fprintf_unfiltered (tmp_error_stream,
2706 _("Cannot insert breakpoint %d.\n"
2707 "Cannot set software breakpoint "
2708 "at read-only address %s\n"),
2709 bl->owner->number,
2710 paddress (bl->gdbarch, bl->address));
2711 return 1;
2712 }
2713 }
2714 }
2715
2716 /* First check to see if we have to handle an overlay. */
2717 if (overlay_debugging == ovly_off
2718 || bl->section == NULL
2719 || !(section_is_overlay (bl->section)))
2720 {
2721 /* No overlay handling: just set the breakpoint. */
2722 TRY
2723 {
2724 int val;
2725
2726 val = bl->owner->ops->insert_location (bl);
2727 if (val)
2728 bp_err = GENERIC_ERROR;
2729 }
2730 CATCH (e, RETURN_MASK_ALL)
2731 {
2732 bp_err = e.error;
2733 bp_err_message = e.message;
2734 }
2735 END_CATCH
2736 }
2737 else
2738 {
2739 /* This breakpoint is in an overlay section.
2740 Shall we set a breakpoint at the LMA? */
2741 if (!overlay_events_enabled)
2742 {
2743 /* Yes -- overlay event support is not active,
2744 so we must try to set a breakpoint at the LMA.
2745 This will not work for a hardware breakpoint. */
2746 if (bl->loc_type == bp_loc_hardware_breakpoint)
2747 warning (_("hardware breakpoint %d not supported in overlay!"),
2748 bl->owner->number);
2749 else
2750 {
2751 CORE_ADDR addr = overlay_unmapped_address (bl->address,
2752 bl->section);
2753 /* Set a software (trap) breakpoint at the LMA. */
2754 bl->overlay_target_info = bl->target_info;
2755 bl->overlay_target_info.reqstd_address = addr;
2756
2757 /* No overlay handling: just set the breakpoint. */
2758 TRY
2759 {
2760 int val;
2761
2762 bl->overlay_target_info.kind
2763 = breakpoint_kind (bl, &addr);
2764 bl->overlay_target_info.placed_address = addr;
2765 val = target_insert_breakpoint (bl->gdbarch,
2766 &bl->overlay_target_info);
2767 if (val)
2768 bp_err = GENERIC_ERROR;
2769 }
2770 CATCH (e, RETURN_MASK_ALL)
2771 {
2772 bp_err = e.error;
2773 bp_err_message = e.message;
2774 }
2775 END_CATCH
2776
2777 if (bp_err != GDB_NO_ERROR)
2778 fprintf_unfiltered (tmp_error_stream,
2779 "Overlay breakpoint %d "
2780 "failed: in ROM?\n",
2781 bl->owner->number);
2782 }
2783 }
2784 /* Shall we set a breakpoint at the VMA? */
2785 if (section_is_mapped (bl->section))
2786 {
2787 /* Yes. This overlay section is mapped into memory. */
2788 TRY
2789 {
2790 int val;
2791
2792 val = bl->owner->ops->insert_location (bl);
2793 if (val)
2794 bp_err = GENERIC_ERROR;
2795 }
2796 CATCH (e, RETURN_MASK_ALL)
2797 {
2798 bp_err = e.error;
2799 bp_err_message = e.message;
2800 }
2801 END_CATCH
2802 }
2803 else
2804 {
2805 /* No. This breakpoint will not be inserted.
2806 No error, but do not mark the bp as 'inserted'. */
2807 return 0;
2808 }
2809 }
2810
2811 if (bp_err != GDB_NO_ERROR)
2812 {
2813 /* Can't set the breakpoint. */
2814
2815 /* In some cases, we might not be able to insert a
2816 breakpoint in a shared library that has already been
2817 removed, but we have not yet processed the shlib unload
2818 event. Unfortunately, some targets that implement
2819 breakpoint insertion themselves can't tell why the
2820 breakpoint insertion failed (e.g., the remote target
2821 doesn't define error codes), so we must treat generic
2822 errors as memory errors. */
2823 if ((bp_err == GENERIC_ERROR || bp_err == MEMORY_ERROR)
2824 && bl->loc_type == bp_loc_software_breakpoint
2825 && (solib_name_from_address (bl->pspace, bl->address)
2826 || shared_objfile_contains_address_p (bl->pspace,
2827 bl->address)))
2828 {
2829 /* See also: disable_breakpoints_in_shlibs. */
2830 bl->shlib_disabled = 1;
2831 observer_notify_breakpoint_modified (bl->owner);
2832 if (!*disabled_breaks)
2833 {
2834 fprintf_unfiltered (tmp_error_stream,
2835 "Cannot insert breakpoint %d.\n",
2836 bl->owner->number);
2837 fprintf_unfiltered (tmp_error_stream,
2838 "Temporarily disabling shared "
2839 "library breakpoints:\n");
2840 }
2841 *disabled_breaks = 1;
2842 fprintf_unfiltered (tmp_error_stream,
2843 "breakpoint #%d\n", bl->owner->number);
2844 return 0;
2845 }
2846 else
2847 {
2848 if (bl->loc_type == bp_loc_hardware_breakpoint)
2849 {
2850 *hw_breakpoint_error = 1;
2851 *hw_bp_error_explained_already = bp_err_message != NULL;
2852 fprintf_unfiltered (tmp_error_stream,
2853 "Cannot insert hardware breakpoint %d%s",
2854 bl->owner->number, bp_err_message ? ":" : ".\n");
2855 if (bp_err_message != NULL)
2856 fprintf_unfiltered (tmp_error_stream, "%s.\n", bp_err_message);
2857 }
2858 else
2859 {
2860 if (bp_err_message == NULL)
2861 {
2862 char *message
2863 = memory_error_message (TARGET_XFER_E_IO,
2864 bl->gdbarch, bl->address);
2865 struct cleanup *old_chain = make_cleanup (xfree, message);
2866
2867 fprintf_unfiltered (tmp_error_stream,
2868 "Cannot insert breakpoint %d.\n"
2869 "%s\n",
2870 bl->owner->number, message);
2871 do_cleanups (old_chain);
2872 }
2873 else
2874 {
2875 fprintf_unfiltered (tmp_error_stream,
2876 "Cannot insert breakpoint %d: %s\n",
2877 bl->owner->number,
2878 bp_err_message);
2879 }
2880 }
2881 return 1;
2882
2883 }
2884 }
2885 else
2886 bl->inserted = 1;
2887
2888 return 0;
2889 }
2890
2891 else if (bl->loc_type == bp_loc_hardware_watchpoint
2892 /* NOTE drow/2003-09-08: This state only exists for removing
2893 watchpoints. It's not clear that it's necessary... */
2894 && bl->owner->disposition != disp_del_at_next_stop)
2895 {
2896 int val;
2897
2898 gdb_assert (bl->owner->ops != NULL
2899 && bl->owner->ops->insert_location != NULL);
2900
2901 val = bl->owner->ops->insert_location (bl);
2902
2903 /* If trying to set a read-watchpoint, and it turns out it's not
2904 supported, try emulating one with an access watchpoint. */
2905 if (val == 1 && bl->watchpoint_type == hw_read)
2906 {
2907 struct bp_location *loc, **loc_temp;
2908
2909 /* But don't try to insert it, if there's already another
2910 hw_access location that would be considered a duplicate
2911 of this one. */
2912 ALL_BP_LOCATIONS (loc, loc_temp)
2913 if (loc != bl
2914 && loc->watchpoint_type == hw_access
2915 && watchpoint_locations_match (bl, loc))
2916 {
2917 bl->duplicate = 1;
2918 bl->inserted = 1;
2919 bl->target_info = loc->target_info;
2920 bl->watchpoint_type = hw_access;
2921 val = 0;
2922 break;
2923 }
2924
2925 if (val == 1)
2926 {
2927 bl->watchpoint_type = hw_access;
2928 val = bl->owner->ops->insert_location (bl);
2929
2930 if (val)
2931 /* Back to the original value. */
2932 bl->watchpoint_type = hw_read;
2933 }
2934 }
2935
2936 bl->inserted = (val == 0);
2937 }
2938
2939 else if (bl->owner->type == bp_catchpoint)
2940 {
2941 int val;
2942
2943 gdb_assert (bl->owner->ops != NULL
2944 && bl->owner->ops->insert_location != NULL);
2945
2946 val = bl->owner->ops->insert_location (bl);
2947 if (val)
2948 {
2949 bl->owner->enable_state = bp_disabled;
2950
2951 if (val == 1)
2952 warning (_("\
2953 Error inserting catchpoint %d: Your system does not support this type\n\
2954 of catchpoint."), bl->owner->number);
2955 else
2956 warning (_("Error inserting catchpoint %d."), bl->owner->number);
2957 }
2958
2959 bl->inserted = (val == 0);
2960
2961 /* We've already printed an error message if there was a problem
2962 inserting this catchpoint, and we've disabled the catchpoint,
2963 so just return success. */
2964 return 0;
2965 }
2966
2967 return 0;
2968 }
2969
2970 /* This function is called when program space PSPACE is about to be
2971 deleted. It takes care of updating breakpoints to not reference
2972 PSPACE anymore. */
2973
2974 void
2975 breakpoint_program_space_exit (struct program_space *pspace)
2976 {
2977 struct breakpoint *b, *b_temp;
2978 struct bp_location *loc, **loc_temp;
2979
2980 /* Remove any breakpoint that was set through this program space. */
2981 ALL_BREAKPOINTS_SAFE (b, b_temp)
2982 {
2983 if (b->pspace == pspace)
2984 delete_breakpoint (b);
2985 }
2986
2987 /* Breakpoints set through other program spaces could have locations
2988 bound to PSPACE as well. Remove those. */
2989 ALL_BP_LOCATIONS (loc, loc_temp)
2990 {
2991 struct bp_location *tmp;
2992
2993 if (loc->pspace == pspace)
2994 {
2995 /* ALL_BP_LOCATIONS bp_location has LOC->OWNER always non-NULL. */
2996 if (loc->owner->loc == loc)
2997 loc->owner->loc = loc->next;
2998 else
2999 for (tmp = loc->owner->loc; tmp->next != NULL; tmp = tmp->next)
3000 if (tmp->next == loc)
3001 {
3002 tmp->next = loc->next;
3003 break;
3004 }
3005 }
3006 }
3007
3008 /* Now update the global location list to permanently delete the
3009 removed locations above. */
3010 update_global_location_list (UGLL_DONT_INSERT);
3011 }
3012
3013 /* Make sure all breakpoints are inserted in inferior.
3014 Throws exception on any error.
3015 A breakpoint that is already inserted won't be inserted
3016 again, so calling this function twice is safe. */
3017 void
3018 insert_breakpoints (void)
3019 {
3020 struct breakpoint *bpt;
3021
3022 ALL_BREAKPOINTS (bpt)
3023 if (is_hardware_watchpoint (bpt))
3024 {
3025 struct watchpoint *w = (struct watchpoint *) bpt;
3026
3027 update_watchpoint (w, 0 /* don't reparse. */);
3028 }
3029
3030 /* Updating watchpoints creates new locations, so update the global
3031 location list. Explicitly tell ugll to insert locations and
3032 ignore breakpoints_always_inserted_mode. */
3033 update_global_location_list (UGLL_INSERT);
3034 }
3035
3036 /* Invoke CALLBACK for each of bp_location. */
3037
3038 void
3039 iterate_over_bp_locations (walk_bp_location_callback callback)
3040 {
3041 struct bp_location *loc, **loc_tmp;
3042
3043 ALL_BP_LOCATIONS (loc, loc_tmp)
3044 {
3045 callback (loc, NULL);
3046 }
3047 }
3048
3049 /* This is used when we need to synch breakpoint conditions between GDB and the
3050 target. It is the case with deleting and disabling of breakpoints when using
3051 always-inserted mode. */
3052
3053 static void
3054 update_inserted_breakpoint_locations (void)
3055 {
3056 struct bp_location *bl, **blp_tmp;
3057 int error_flag = 0;
3058 int val = 0;
3059 int disabled_breaks = 0;
3060 int hw_breakpoint_error = 0;
3061 int hw_bp_details_reported = 0;
3062
3063 string_file tmp_error_stream;
3064
3065 /* Explicitly mark the warning -- this will only be printed if
3066 there was an error. */
3067 tmp_error_stream.puts ("Warning:\n");
3068
3069 struct cleanup *cleanups = save_current_space_and_thread ();
3070
3071 ALL_BP_LOCATIONS (bl, blp_tmp)
3072 {
3073 /* We only want to update software breakpoints and hardware
3074 breakpoints. */
3075 if (!is_breakpoint (bl->owner))
3076 continue;
3077
3078 /* We only want to update locations that are already inserted
3079 and need updating. This is to avoid unwanted insertion during
3080 deletion of breakpoints. */
3081 if (!bl->inserted || (bl->inserted && !bl->needs_update))
3082 continue;
3083
3084 switch_to_program_space_and_thread (bl->pspace);
3085
3086 /* For targets that support global breakpoints, there's no need
3087 to select an inferior to insert breakpoint to. In fact, even
3088 if we aren't attached to any process yet, we should still
3089 insert breakpoints. */
3090 if (!gdbarch_has_global_breakpoints (target_gdbarch ())
3091 && ptid_equal (inferior_ptid, null_ptid))
3092 continue;
3093
3094 val = insert_bp_location (bl, &tmp_error_stream, &disabled_breaks,
3095 &hw_breakpoint_error, &hw_bp_details_reported);
3096 if (val)
3097 error_flag = val;
3098 }
3099
3100 if (error_flag)
3101 {
3102 target_terminal_ours_for_output ();
3103 error_stream (tmp_error_stream);
3104 }
3105
3106 do_cleanups (cleanups);
3107 }
3108
3109 /* Used when starting or continuing the program. */
3110
3111 static void
3112 insert_breakpoint_locations (void)
3113 {
3114 struct breakpoint *bpt;
3115 struct bp_location *bl, **blp_tmp;
3116 int error_flag = 0;
3117 int val = 0;
3118 int disabled_breaks = 0;
3119 int hw_breakpoint_error = 0;
3120 int hw_bp_error_explained_already = 0;
3121
3122 string_file tmp_error_stream;
3123
3124 /* Explicitly mark the warning -- this will only be printed if
3125 there was an error. */
3126 tmp_error_stream.puts ("Warning:\n");
3127
3128 struct cleanup *cleanups = save_current_space_and_thread ();
3129
3130 ALL_BP_LOCATIONS (bl, blp_tmp)
3131 {
3132 if (!should_be_inserted (bl) || (bl->inserted && !bl->needs_update))
3133 continue;
3134
3135 /* There is no point inserting thread-specific breakpoints if
3136 the thread no longer exists. ALL_BP_LOCATIONS bp_location
3137 has BL->OWNER always non-NULL. */
3138 if (bl->owner->thread != -1
3139 && !valid_global_thread_id (bl->owner->thread))
3140 continue;
3141
3142 switch_to_program_space_and_thread (bl->pspace);
3143
3144 /* For targets that support global breakpoints, there's no need
3145 to select an inferior to insert breakpoint to. In fact, even
3146 if we aren't attached to any process yet, we should still
3147 insert breakpoints. */
3148 if (!gdbarch_has_global_breakpoints (target_gdbarch ())
3149 && ptid_equal (inferior_ptid, null_ptid))
3150 continue;
3151
3152 val = insert_bp_location (bl, &tmp_error_stream, &disabled_breaks,
3153 &hw_breakpoint_error, &hw_bp_error_explained_already);
3154 if (val)
3155 error_flag = val;
3156 }
3157
3158 /* If we failed to insert all locations of a watchpoint, remove
3159 them, as half-inserted watchpoint is of limited use. */
3160 ALL_BREAKPOINTS (bpt)
3161 {
3162 int some_failed = 0;
3163 struct bp_location *loc;
3164
3165 if (!is_hardware_watchpoint (bpt))
3166 continue;
3167
3168 if (!breakpoint_enabled (bpt))
3169 continue;
3170
3171 if (bpt->disposition == disp_del_at_next_stop)
3172 continue;
3173
3174 for (loc = bpt->loc; loc; loc = loc->next)
3175 if (!loc->inserted && should_be_inserted (loc))
3176 {
3177 some_failed = 1;
3178 break;
3179 }
3180 if (some_failed)
3181 {
3182 for (loc = bpt->loc; loc; loc = loc->next)
3183 if (loc->inserted)
3184 remove_breakpoint (loc);
3185
3186 hw_breakpoint_error = 1;
3187 tmp_error_stream.printf ("Could not insert "
3188 "hardware watchpoint %d.\n",
3189 bpt->number);
3190 error_flag = -1;
3191 }
3192 }
3193
3194 if (error_flag)
3195 {
3196 /* If a hardware breakpoint or watchpoint was inserted, add a
3197 message about possibly exhausted resources. */
3198 if (hw_breakpoint_error && !hw_bp_error_explained_already)
3199 {
3200 tmp_error_stream.printf ("Could not insert hardware breakpoints:\n\
3201 You may have requested too many hardware breakpoints/watchpoints.\n");
3202 }
3203 target_terminal_ours_for_output ();
3204 error_stream (tmp_error_stream);
3205 }
3206
3207 do_cleanups (cleanups);
3208 }
3209
3210 /* Used when the program stops.
3211 Returns zero if successful, or non-zero if there was a problem
3212 removing a breakpoint location. */
3213
3214 int
3215 remove_breakpoints (void)
3216 {
3217 struct bp_location *bl, **blp_tmp;
3218 int val = 0;
3219
3220 ALL_BP_LOCATIONS (bl, blp_tmp)
3221 {
3222 if (bl->inserted && !is_tracepoint (bl->owner))
3223 val |= remove_breakpoint (bl);
3224 }
3225 return val;
3226 }
3227
3228 /* When a thread exits, remove breakpoints that are related to
3229 that thread. */
3230
3231 static void
3232 remove_threaded_breakpoints (struct thread_info *tp, int silent)
3233 {
3234 struct breakpoint *b, *b_tmp;
3235
3236 ALL_BREAKPOINTS_SAFE (b, b_tmp)
3237 {
3238 if (b->thread == tp->global_num && user_breakpoint_p (b))
3239 {
3240 b->disposition = disp_del_at_next_stop;
3241
3242 printf_filtered (_("\
3243 Thread-specific breakpoint %d deleted - thread %s no longer in the thread list.\n"),
3244 b->number, print_thread_id (tp));
3245
3246 /* Hide it from the user. */
3247 b->number = 0;
3248 }
3249 }
3250 }
3251
3252 /* Remove breakpoints of process PID. */
3253
3254 int
3255 remove_breakpoints_pid (int pid)
3256 {
3257 struct bp_location *bl, **blp_tmp;
3258 int val;
3259 struct inferior *inf = find_inferior_pid (pid);
3260
3261 ALL_BP_LOCATIONS (bl, blp_tmp)
3262 {
3263 if (bl->pspace != inf->pspace)
3264 continue;
3265
3266 if (bl->inserted && !bl->target_info.persist)
3267 {
3268 val = remove_breakpoint (bl);
3269 if (val != 0)
3270 return val;
3271 }
3272 }
3273 return 0;
3274 }
3275
3276 int
3277 reattach_breakpoints (int pid)
3278 {
3279 struct cleanup *old_chain;
3280 struct bp_location *bl, **blp_tmp;
3281 int val;
3282 int dummy1 = 0, dummy2 = 0, dummy3 = 0;
3283 struct inferior *inf;
3284 struct thread_info *tp;
3285
3286 tp = any_live_thread_of_process (pid);
3287 if (tp == NULL)
3288 return 1;
3289
3290 inf = find_inferior_pid (pid);
3291 old_chain = save_inferior_ptid ();
3292
3293 inferior_ptid = tp->ptid;
3294
3295 string_file tmp_error_stream;
3296
3297 ALL_BP_LOCATIONS (bl, blp_tmp)
3298 {
3299 if (bl->pspace != inf->pspace)
3300 continue;
3301
3302 if (bl->inserted)
3303 {
3304 bl->inserted = 0;
3305 val = insert_bp_location (bl, &tmp_error_stream, &dummy1, &dummy2, &dummy3);
3306 if (val != 0)
3307 {
3308 do_cleanups (old_chain);
3309 return val;
3310 }
3311 }
3312 }
3313 do_cleanups (old_chain);
3314 return 0;
3315 }
3316
3317 static int internal_breakpoint_number = -1;
3318
3319 /* Set the breakpoint number of B, depending on the value of INTERNAL.
3320 If INTERNAL is non-zero, the breakpoint number will be populated
3321 from internal_breakpoint_number and that variable decremented.
3322 Otherwise the breakpoint number will be populated from
3323 breakpoint_count and that value incremented. Internal breakpoints
3324 do not set the internal var bpnum. */
3325 static void
3326 set_breakpoint_number (int internal, struct breakpoint *b)
3327 {
3328 if (internal)
3329 b->number = internal_breakpoint_number--;
3330 else
3331 {
3332 set_breakpoint_count (breakpoint_count + 1);
3333 b->number = breakpoint_count;
3334 }
3335 }
3336
3337 static struct breakpoint *
3338 create_internal_breakpoint (struct gdbarch *gdbarch,
3339 CORE_ADDR address, enum bptype type,
3340 const struct breakpoint_ops *ops)
3341 {
3342 struct symtab_and_line sal;
3343 struct breakpoint *b;
3344
3345 init_sal (&sal); /* Initialize to zeroes. */
3346
3347 sal.pc = address;
3348 sal.section = find_pc_overlay (sal.pc);
3349 sal.pspace = current_program_space;
3350
3351 b = set_raw_breakpoint (gdbarch, sal, type, ops);
3352 b->number = internal_breakpoint_number--;
3353 b->disposition = disp_donttouch;
3354
3355 return b;
3356 }
3357
3358 static const char *const longjmp_names[] =
3359 {
3360 "longjmp", "_longjmp", "siglongjmp", "_siglongjmp"
3361 };
3362 #define NUM_LONGJMP_NAMES ARRAY_SIZE(longjmp_names)
3363
3364 /* Per-objfile data private to breakpoint.c. */
3365 struct breakpoint_objfile_data
3366 {
3367 /* Minimal symbol for "_ovly_debug_event" (if any). */
3368 struct bound_minimal_symbol overlay_msym;
3369
3370 /* Minimal symbol(s) for "longjmp", "siglongjmp", etc. (if any). */
3371 struct bound_minimal_symbol longjmp_msym[NUM_LONGJMP_NAMES];
3372
3373 /* True if we have looked for longjmp probes. */
3374 int longjmp_searched;
3375
3376 /* SystemTap probe points for longjmp (if any). */
3377 VEC (probe_p) *longjmp_probes;
3378
3379 /* Minimal symbol for "std::terminate()" (if any). */
3380 struct bound_minimal_symbol terminate_msym;
3381
3382 /* Minimal symbol for "_Unwind_DebugHook" (if any). */
3383 struct bound_minimal_symbol exception_msym;
3384
3385 /* True if we have looked for exception probes. */
3386 int exception_searched;
3387
3388 /* SystemTap probe points for unwinding (if any). */
3389 VEC (probe_p) *exception_probes;
3390 };
3391
3392 static const struct objfile_data *breakpoint_objfile_key;
3393
3394 /* Minimal symbol not found sentinel. */
3395 static struct minimal_symbol msym_not_found;
3396
3397 /* Returns TRUE if MSYM point to the "not found" sentinel. */
3398
3399 static int
3400 msym_not_found_p (const struct minimal_symbol *msym)
3401 {
3402 return msym == &msym_not_found;
3403 }
3404
3405 /* Return per-objfile data needed by breakpoint.c.
3406 Allocate the data if necessary. */
3407
3408 static struct breakpoint_objfile_data *
3409 get_breakpoint_objfile_data (struct objfile *objfile)
3410 {
3411 struct breakpoint_objfile_data *bp_objfile_data;
3412
3413 bp_objfile_data = ((struct breakpoint_objfile_data *)
3414 objfile_data (objfile, breakpoint_objfile_key));
3415 if (bp_objfile_data == NULL)
3416 {
3417 bp_objfile_data =
3418 XOBNEW (&objfile->objfile_obstack, struct breakpoint_objfile_data);
3419
3420 memset (bp_objfile_data, 0, sizeof (*bp_objfile_data));
3421 set_objfile_data (objfile, breakpoint_objfile_key, bp_objfile_data);
3422 }
3423 return bp_objfile_data;
3424 }
3425
3426 static void
3427 free_breakpoint_probes (struct objfile *obj, void *data)
3428 {
3429 struct breakpoint_objfile_data *bp_objfile_data
3430 = (struct breakpoint_objfile_data *) data;
3431
3432 VEC_free (probe_p, bp_objfile_data->longjmp_probes);
3433 VEC_free (probe_p, bp_objfile_data->exception_probes);
3434 }
3435
3436 static void
3437 create_overlay_event_breakpoint (void)
3438 {
3439 struct objfile *objfile;
3440 const char *const func_name = "_ovly_debug_event";
3441
3442 ALL_OBJFILES (objfile)
3443 {
3444 struct breakpoint *b;
3445 struct breakpoint_objfile_data *bp_objfile_data;
3446 CORE_ADDR addr;
3447 struct explicit_location explicit_loc;
3448
3449 bp_objfile_data = get_breakpoint_objfile_data (objfile);
3450
3451 if (msym_not_found_p (bp_objfile_data->overlay_msym.minsym))
3452 continue;
3453
3454 if (bp_objfile_data->overlay_msym.minsym == NULL)
3455 {
3456 struct bound_minimal_symbol m;
3457
3458 m = lookup_minimal_symbol_text (func_name, objfile);
3459 if (m.minsym == NULL)
3460 {
3461 /* Avoid future lookups in this objfile. */
3462 bp_objfile_data->overlay_msym.minsym = &msym_not_found;
3463 continue;
3464 }
3465 bp_objfile_data->overlay_msym = m;
3466 }
3467
3468 addr = BMSYMBOL_VALUE_ADDRESS (bp_objfile_data->overlay_msym);
3469 b = create_internal_breakpoint (get_objfile_arch (objfile), addr,
3470 bp_overlay_event,
3471 &internal_breakpoint_ops);
3472 initialize_explicit_location (&explicit_loc);
3473 explicit_loc.function_name = ASTRDUP (func_name);
3474 b->location = new_explicit_location (&explicit_loc);
3475
3476 if (overlay_debugging == ovly_auto)
3477 {
3478 b->enable_state = bp_enabled;
3479 overlay_events_enabled = 1;
3480 }
3481 else
3482 {
3483 b->enable_state = bp_disabled;
3484 overlay_events_enabled = 0;
3485 }
3486 }
3487 }
3488
3489 static void
3490 create_longjmp_master_breakpoint (void)
3491 {
3492 struct program_space *pspace;
3493 struct cleanup *old_chain;
3494
3495 old_chain = save_current_program_space ();
3496
3497 ALL_PSPACES (pspace)
3498 {
3499 struct objfile *objfile;
3500
3501 set_current_program_space (pspace);
3502
3503 ALL_OBJFILES (objfile)
3504 {
3505 int i;
3506 struct gdbarch *gdbarch;
3507 struct breakpoint_objfile_data *bp_objfile_data;
3508
3509 gdbarch = get_objfile_arch (objfile);
3510
3511 bp_objfile_data = get_breakpoint_objfile_data (objfile);
3512
3513 if (!bp_objfile_data->longjmp_searched)
3514 {
3515 VEC (probe_p) *ret;
3516
3517 ret = find_probes_in_objfile (objfile, "libc", "longjmp");
3518 if (ret != NULL)
3519 {
3520 /* We are only interested in checking one element. */
3521 struct probe *p = VEC_index (probe_p, ret, 0);
3522
3523 if (!can_evaluate_probe_arguments (p))
3524 {
3525 /* We cannot use the probe interface here, because it does
3526 not know how to evaluate arguments. */
3527 VEC_free (probe_p, ret);
3528 ret = NULL;
3529 }
3530 }
3531 bp_objfile_data->longjmp_probes = ret;
3532 bp_objfile_data->longjmp_searched = 1;
3533 }
3534
3535 if (bp_objfile_data->longjmp_probes != NULL)
3536 {
3537 int i;
3538 struct probe *probe;
3539 struct gdbarch *gdbarch = get_objfile_arch (objfile);
3540
3541 for (i = 0;
3542 VEC_iterate (probe_p,
3543 bp_objfile_data->longjmp_probes,
3544 i, probe);
3545 ++i)
3546 {
3547 struct breakpoint *b;
3548
3549 b = create_internal_breakpoint (gdbarch,
3550 get_probe_address (probe,
3551 objfile),
3552 bp_longjmp_master,
3553 &internal_breakpoint_ops);
3554 b->location = new_probe_location ("-probe-stap libc:longjmp");
3555 b->enable_state = bp_disabled;
3556 }
3557
3558 continue;
3559 }
3560
3561 if (!gdbarch_get_longjmp_target_p (gdbarch))
3562 continue;
3563
3564 for (i = 0; i < NUM_LONGJMP_NAMES; i++)
3565 {
3566 struct breakpoint *b;
3567 const char *func_name;
3568 CORE_ADDR addr;
3569 struct explicit_location explicit_loc;
3570
3571 if (msym_not_found_p (bp_objfile_data->longjmp_msym[i].minsym))
3572 continue;
3573
3574 func_name = longjmp_names[i];
3575 if (bp_objfile_data->longjmp_msym[i].minsym == NULL)
3576 {
3577 struct bound_minimal_symbol m;
3578
3579 m = lookup_minimal_symbol_text (func_name, objfile);
3580 if (m.minsym == NULL)
3581 {
3582 /* Prevent future lookups in this objfile. */
3583 bp_objfile_data->longjmp_msym[i].minsym = &msym_not_found;
3584 continue;
3585 }
3586 bp_objfile_data->longjmp_msym[i] = m;
3587 }
3588
3589 addr = BMSYMBOL_VALUE_ADDRESS (bp_objfile_data->longjmp_msym[i]);
3590 b = create_internal_breakpoint (gdbarch, addr, bp_longjmp_master,
3591 &internal_breakpoint_ops);
3592 initialize_explicit_location (&explicit_loc);
3593 explicit_loc.function_name = ASTRDUP (func_name);
3594 b->location = new_explicit_location (&explicit_loc);
3595 b->enable_state = bp_disabled;
3596 }
3597 }
3598 }
3599
3600 do_cleanups (old_chain);
3601 }
3602
3603 /* Create a master std::terminate breakpoint. */
3604 static void
3605 create_std_terminate_master_breakpoint (void)
3606 {
3607 struct program_space *pspace;
3608 struct cleanup *old_chain;
3609 const char *const func_name = "std::terminate()";
3610
3611 old_chain = save_current_program_space ();
3612
3613 ALL_PSPACES (pspace)
3614 {
3615 struct objfile *objfile;
3616 CORE_ADDR addr;
3617
3618 set_current_program_space (pspace);
3619
3620 ALL_OBJFILES (objfile)
3621 {
3622 struct breakpoint *b;
3623 struct breakpoint_objfile_data *bp_objfile_data;
3624 struct explicit_location explicit_loc;
3625
3626 bp_objfile_data = get_breakpoint_objfile_data (objfile);
3627
3628 if (msym_not_found_p (bp_objfile_data->terminate_msym.minsym))
3629 continue;
3630
3631 if (bp_objfile_data->terminate_msym.minsym == NULL)
3632 {
3633 struct bound_minimal_symbol m;
3634
3635 m = lookup_minimal_symbol (func_name, NULL, objfile);
3636 if (m.minsym == NULL || (MSYMBOL_TYPE (m.minsym) != mst_text
3637 && MSYMBOL_TYPE (m.minsym) != mst_file_text))
3638 {
3639 /* Prevent future lookups in this objfile. */
3640 bp_objfile_data->terminate_msym.minsym = &msym_not_found;
3641 continue;
3642 }
3643 bp_objfile_data->terminate_msym = m;
3644 }
3645
3646 addr = BMSYMBOL_VALUE_ADDRESS (bp_objfile_data->terminate_msym);
3647 b = create_internal_breakpoint (get_objfile_arch (objfile), addr,
3648 bp_std_terminate_master,
3649 &internal_breakpoint_ops);
3650 initialize_explicit_location (&explicit_loc);
3651 explicit_loc.function_name = ASTRDUP (func_name);
3652 b->location = new_explicit_location (&explicit_loc);
3653 b->enable_state = bp_disabled;
3654 }
3655 }
3656
3657 do_cleanups (old_chain);
3658 }
3659
3660 /* Install a master breakpoint on the unwinder's debug hook. */
3661
3662 static void
3663 create_exception_master_breakpoint (void)
3664 {
3665 struct objfile *objfile;
3666 const char *const func_name = "_Unwind_DebugHook";
3667
3668 ALL_OBJFILES (objfile)
3669 {
3670 struct breakpoint *b;
3671 struct gdbarch *gdbarch;
3672 struct breakpoint_objfile_data *bp_objfile_data;
3673 CORE_ADDR addr;
3674 struct explicit_location explicit_loc;
3675
3676 bp_objfile_data = get_breakpoint_objfile_data (objfile);
3677
3678 /* We prefer the SystemTap probe point if it exists. */
3679 if (!bp_objfile_data->exception_searched)
3680 {
3681 VEC (probe_p) *ret;
3682
3683 ret = find_probes_in_objfile (objfile, "libgcc", "unwind");
3684
3685 if (ret != NULL)
3686 {
3687 /* We are only interested in checking one element. */
3688 struct probe *p = VEC_index (probe_p, ret, 0);
3689
3690 if (!can_evaluate_probe_arguments (p))
3691 {
3692 /* We cannot use the probe interface here, because it does
3693 not know how to evaluate arguments. */
3694 VEC_free (probe_p, ret);
3695 ret = NULL;
3696 }
3697 }
3698 bp_objfile_data->exception_probes = ret;
3699 bp_objfile_data->exception_searched = 1;
3700 }
3701
3702 if (bp_objfile_data->exception_probes != NULL)
3703 {
3704 struct gdbarch *gdbarch = get_objfile_arch (objfile);
3705 int i;
3706 struct probe *probe;
3707
3708 for (i = 0;
3709 VEC_iterate (probe_p,
3710 bp_objfile_data->exception_probes,
3711 i, probe);
3712 ++i)
3713 {
3714 struct breakpoint *b;
3715
3716 b = create_internal_breakpoint (gdbarch,
3717 get_probe_address (probe,
3718 objfile),
3719 bp_exception_master,
3720 &internal_breakpoint_ops);
3721 b->location = new_probe_location ("-probe-stap libgcc:unwind");
3722 b->enable_state = bp_disabled;
3723 }
3724
3725 continue;
3726 }
3727
3728 /* Otherwise, try the hook function. */
3729
3730 if (msym_not_found_p (bp_objfile_data->exception_msym.minsym))
3731 continue;
3732
3733 gdbarch = get_objfile_arch (objfile);
3734
3735 if (bp_objfile_data->exception_msym.minsym == NULL)
3736 {
3737 struct bound_minimal_symbol debug_hook;
3738
3739 debug_hook = lookup_minimal_symbol (func_name, NULL, objfile);
3740 if (debug_hook.minsym == NULL)
3741 {
3742 bp_objfile_data->exception_msym.minsym = &msym_not_found;
3743 continue;
3744 }
3745
3746 bp_objfile_data->exception_msym = debug_hook;
3747 }
3748
3749 addr = BMSYMBOL_VALUE_ADDRESS (bp_objfile_data->exception_msym);
3750 addr = gdbarch_convert_from_func_ptr_addr (gdbarch, addr,
3751 &current_target);
3752 b = create_internal_breakpoint (gdbarch, addr, bp_exception_master,
3753 &internal_breakpoint_ops);
3754 initialize_explicit_location (&explicit_loc);
3755 explicit_loc.function_name = ASTRDUP (func_name);
3756 b->location = new_explicit_location (&explicit_loc);
3757 b->enable_state = bp_disabled;
3758 }
3759 }
3760
3761 /* Does B have a location spec? */
3762
3763 static int
3764 breakpoint_event_location_empty_p (const struct breakpoint *b)
3765 {
3766 return b->location != NULL && event_location_empty_p (b->location.get ());
3767 }
3768
3769 void
3770 update_breakpoints_after_exec (void)
3771 {
3772 struct breakpoint *b, *b_tmp;
3773 struct bp_location *bploc, **bplocp_tmp;
3774
3775 /* We're about to delete breakpoints from GDB's lists. If the
3776 INSERTED flag is true, GDB will try to lift the breakpoints by
3777 writing the breakpoints' "shadow contents" back into memory. The
3778 "shadow contents" are NOT valid after an exec, so GDB should not
3779 do that. Instead, the target is responsible from marking
3780 breakpoints out as soon as it detects an exec. We don't do that
3781 here instead, because there may be other attempts to delete
3782 breakpoints after detecting an exec and before reaching here. */
3783 ALL_BP_LOCATIONS (bploc, bplocp_tmp)
3784 if (bploc->pspace == current_program_space)
3785 gdb_assert (!bploc->inserted);
3786
3787 ALL_BREAKPOINTS_SAFE (b, b_tmp)
3788 {
3789 if (b->pspace != current_program_space)
3790 continue;
3791
3792 /* Solib breakpoints must be explicitly reset after an exec(). */
3793 if (b->type == bp_shlib_event)
3794 {
3795 delete_breakpoint (b);
3796 continue;
3797 }
3798
3799 /* JIT breakpoints must be explicitly reset after an exec(). */
3800 if (b->type == bp_jit_event)
3801 {
3802 delete_breakpoint (b);
3803 continue;
3804 }
3805
3806 /* Thread event breakpoints must be set anew after an exec(),
3807 as must overlay event and longjmp master breakpoints. */
3808 if (b->type == bp_thread_event || b->type == bp_overlay_event
3809 || b->type == bp_longjmp_master || b->type == bp_std_terminate_master
3810 || b->type == bp_exception_master)
3811 {
3812 delete_breakpoint (b);
3813 continue;
3814 }
3815
3816 /* Step-resume breakpoints are meaningless after an exec(). */
3817 if (b->type == bp_step_resume || b->type == bp_hp_step_resume)
3818 {
3819 delete_breakpoint (b);
3820 continue;
3821 }
3822
3823 /* Just like single-step breakpoints. */
3824 if (b->type == bp_single_step)
3825 {
3826 delete_breakpoint (b);
3827 continue;
3828 }
3829
3830 /* Longjmp and longjmp-resume breakpoints are also meaningless
3831 after an exec. */
3832 if (b->type == bp_longjmp || b->type == bp_longjmp_resume
3833 || b->type == bp_longjmp_call_dummy
3834 || b->type == bp_exception || b->type == bp_exception_resume)
3835 {
3836 delete_breakpoint (b);
3837 continue;
3838 }
3839
3840 if (b->type == bp_catchpoint)
3841 {
3842 /* For now, none of the bp_catchpoint breakpoints need to
3843 do anything at this point. In the future, if some of
3844 the catchpoints need to something, we will need to add
3845 a new method, and call this method from here. */
3846 continue;
3847 }
3848
3849 /* bp_finish is a special case. The only way we ought to be able
3850 to see one of these when an exec() has happened, is if the user
3851 caught a vfork, and then said "finish". Ordinarily a finish just
3852 carries them to the call-site of the current callee, by setting
3853 a temporary bp there and resuming. But in this case, the finish
3854 will carry them entirely through the vfork & exec.
3855
3856 We don't want to allow a bp_finish to remain inserted now. But
3857 we can't safely delete it, 'cause finish_command has a handle to
3858 the bp on a bpstat, and will later want to delete it. There's a
3859 chance (and I've seen it happen) that if we delete the bp_finish
3860 here, that its storage will get reused by the time finish_command
3861 gets 'round to deleting the "use to be a bp_finish" breakpoint.
3862 We really must allow finish_command to delete a bp_finish.
3863
3864 In the absence of a general solution for the "how do we know
3865 it's safe to delete something others may have handles to?"
3866 problem, what we'll do here is just uninsert the bp_finish, and
3867 let finish_command delete it.
3868
3869 (We know the bp_finish is "doomed" in the sense that it's
3870 momentary, and will be deleted as soon as finish_command sees
3871 the inferior stopped. So it doesn't matter that the bp's
3872 address is probably bogus in the new a.out, unlike e.g., the
3873 solib breakpoints.) */
3874
3875 if (b->type == bp_finish)
3876 {
3877 continue;
3878 }
3879
3880 /* Without a symbolic address, we have little hope of the
3881 pre-exec() address meaning the same thing in the post-exec()
3882 a.out. */
3883 if (breakpoint_event_location_empty_p (b))
3884 {
3885 delete_breakpoint (b);
3886 continue;
3887 }
3888 }
3889 }
3890
3891 int
3892 detach_breakpoints (ptid_t ptid)
3893 {
3894 struct bp_location *bl, **blp_tmp;
3895 int val = 0;
3896 struct cleanup *old_chain = save_inferior_ptid ();
3897 struct inferior *inf = current_inferior ();
3898
3899 if (ptid_get_pid (ptid) == ptid_get_pid (inferior_ptid))
3900 error (_("Cannot detach breakpoints of inferior_ptid"));
3901
3902 /* Set inferior_ptid; remove_breakpoint_1 uses this global. */
3903 inferior_ptid = ptid;
3904 ALL_BP_LOCATIONS (bl, blp_tmp)
3905 {
3906 if (bl->pspace != inf->pspace)
3907 continue;
3908
3909 /* This function must physically remove breakpoints locations
3910 from the specified ptid, without modifying the breakpoint
3911 package's state. Locations of type bp_loc_other are only
3912 maintained at GDB side. So, there is no need to remove
3913 these bp_loc_other locations. Moreover, removing these
3914 would modify the breakpoint package's state. */
3915 if (bl->loc_type == bp_loc_other)
3916 continue;
3917
3918 if (bl->inserted)
3919 val |= remove_breakpoint_1 (bl, DETACH_BREAKPOINT);
3920 }
3921
3922 do_cleanups (old_chain);
3923 return val;
3924 }
3925
3926 /* Remove the breakpoint location BL from the current address space.
3927 Note that this is used to detach breakpoints from a child fork.
3928 When we get here, the child isn't in the inferior list, and neither
3929 do we have objects to represent its address space --- we should
3930 *not* look at bl->pspace->aspace here. */
3931
3932 static int
3933 remove_breakpoint_1 (struct bp_location *bl, enum remove_bp_reason reason)
3934 {
3935 int val;
3936
3937 /* BL is never in moribund_locations by our callers. */
3938 gdb_assert (bl->owner != NULL);
3939
3940 /* The type of none suggests that owner is actually deleted.
3941 This should not ever happen. */
3942 gdb_assert (bl->owner->type != bp_none);
3943
3944 if (bl->loc_type == bp_loc_software_breakpoint
3945 || bl->loc_type == bp_loc_hardware_breakpoint)
3946 {
3947 /* "Normal" instruction breakpoint: either the standard
3948 trap-instruction bp (bp_breakpoint), or a
3949 bp_hardware_breakpoint. */
3950
3951 /* First check to see if we have to handle an overlay. */
3952 if (overlay_debugging == ovly_off
3953 || bl->section == NULL
3954 || !(section_is_overlay (bl->section)))
3955 {
3956 /* No overlay handling: just remove the breakpoint. */
3957
3958 /* If we're trying to uninsert a memory breakpoint that we
3959 know is set in a dynamic object that is marked
3960 shlib_disabled, then either the dynamic object was
3961 removed with "remove-symbol-file" or with
3962 "nosharedlibrary". In the former case, we don't know
3963 whether another dynamic object might have loaded over the
3964 breakpoint's address -- the user might well let us know
3965 about it next with add-symbol-file (the whole point of
3966 add-symbol-file is letting the user manually maintain a
3967 list of dynamically loaded objects). If we have the
3968 breakpoint's shadow memory, that is, this is a software
3969 breakpoint managed by GDB, check whether the breakpoint
3970 is still inserted in memory, to avoid overwriting wrong
3971 code with stale saved shadow contents. Note that HW
3972 breakpoints don't have shadow memory, as they're
3973 implemented using a mechanism that is not dependent on
3974 being able to modify the target's memory, and as such
3975 they should always be removed. */
3976 if (bl->shlib_disabled
3977 && bl->target_info.shadow_len != 0
3978 && !memory_validate_breakpoint (bl->gdbarch, &bl->target_info))
3979 val = 0;
3980 else
3981 val = bl->owner->ops->remove_location (bl, reason);
3982 }
3983 else
3984 {
3985 /* This breakpoint is in an overlay section.
3986 Did we set a breakpoint at the LMA? */
3987 if (!overlay_events_enabled)
3988 {
3989 /* Yes -- overlay event support is not active, so we
3990 should have set a breakpoint at the LMA. Remove it.
3991 */
3992 /* Ignore any failures: if the LMA is in ROM, we will
3993 have already warned when we failed to insert it. */
3994 if (bl->loc_type == bp_loc_hardware_breakpoint)
3995 target_remove_hw_breakpoint (bl->gdbarch,
3996 &bl->overlay_target_info);
3997 else
3998 target_remove_breakpoint (bl->gdbarch,
3999 &bl->overlay_target_info,
4000 reason);
4001 }
4002 /* Did we set a breakpoint at the VMA?
4003 If so, we will have marked the breakpoint 'inserted'. */
4004 if (bl->inserted)
4005 {
4006 /* Yes -- remove it. Previously we did not bother to
4007 remove the breakpoint if the section had been
4008 unmapped, but let's not rely on that being safe. We
4009 don't know what the overlay manager might do. */
4010
4011 /* However, we should remove *software* breakpoints only
4012 if the section is still mapped, or else we overwrite
4013 wrong code with the saved shadow contents. */
4014 if (bl->loc_type == bp_loc_hardware_breakpoint
4015 || section_is_mapped (bl->section))
4016 val = bl->owner->ops->remove_location (bl, reason);
4017 else
4018 val = 0;
4019 }
4020 else
4021 {
4022 /* No -- not inserted, so no need to remove. No error. */
4023 val = 0;
4024 }
4025 }
4026
4027 /* In some cases, we might not be able to remove a breakpoint in
4028 a shared library that has already been removed, but we have
4029 not yet processed the shlib unload event. Similarly for an
4030 unloaded add-symbol-file object - the user might not yet have
4031 had the chance to remove-symbol-file it. shlib_disabled will
4032 be set if the library/object has already been removed, but
4033 the breakpoint hasn't been uninserted yet, e.g., after
4034 "nosharedlibrary" or "remove-symbol-file" with breakpoints
4035 always-inserted mode. */
4036 if (val
4037 && (bl->loc_type == bp_loc_software_breakpoint
4038 && (bl->shlib_disabled
4039 || solib_name_from_address (bl->pspace, bl->address)
4040 || shared_objfile_contains_address_p (bl->pspace,
4041 bl->address))))
4042 val = 0;
4043
4044 if (val)
4045 return val;
4046 bl->inserted = (reason == DETACH_BREAKPOINT);
4047 }
4048 else if (bl->loc_type == bp_loc_hardware_watchpoint)
4049 {
4050 gdb_assert (bl->owner->ops != NULL
4051 && bl->owner->ops->remove_location != NULL);
4052
4053 bl->inserted = (reason == DETACH_BREAKPOINT);
4054 bl->owner->ops->remove_location (bl, reason);
4055
4056 /* Failure to remove any of the hardware watchpoints comes here. */
4057 if (reason == REMOVE_BREAKPOINT && bl->inserted)
4058 warning (_("Could not remove hardware watchpoint %d."),
4059 bl->owner->number);
4060 }
4061 else if (bl->owner->type == bp_catchpoint
4062 && breakpoint_enabled (bl->owner)
4063 && !bl->duplicate)
4064 {
4065 gdb_assert (bl->owner->ops != NULL
4066 && bl->owner->ops->remove_location != NULL);
4067
4068 val = bl->owner->ops->remove_location (bl, reason);
4069 if (val)
4070 return val;
4071
4072 bl->inserted = (reason == DETACH_BREAKPOINT);
4073 }
4074
4075 return 0;
4076 }
4077
4078 static int
4079 remove_breakpoint (struct bp_location *bl)
4080 {
4081 int ret;
4082 struct cleanup *old_chain;
4083
4084 /* BL is never in moribund_locations by our callers. */
4085 gdb_assert (bl->owner != NULL);
4086
4087 /* The type of none suggests that owner is actually deleted.
4088 This should not ever happen. */
4089 gdb_assert (bl->owner->type != bp_none);
4090
4091 old_chain = save_current_space_and_thread ();
4092
4093 switch_to_program_space_and_thread (bl->pspace);
4094
4095 ret = remove_breakpoint_1 (bl, REMOVE_BREAKPOINT);
4096
4097 do_cleanups (old_chain);
4098 return ret;
4099 }
4100
4101 /* Clear the "inserted" flag in all breakpoints. */
4102
4103 void
4104 mark_breakpoints_out (void)
4105 {
4106 struct bp_location *bl, **blp_tmp;
4107
4108 ALL_BP_LOCATIONS (bl, blp_tmp)
4109 if (bl->pspace == current_program_space)
4110 bl->inserted = 0;
4111 }
4112
4113 /* Clear the "inserted" flag in all breakpoints and delete any
4114 breakpoints which should go away between runs of the program.
4115
4116 Plus other such housekeeping that has to be done for breakpoints
4117 between runs.
4118
4119 Note: this function gets called at the end of a run (by
4120 generic_mourn_inferior) and when a run begins (by
4121 init_wait_for_inferior). */
4122
4123
4124
4125 void
4126 breakpoint_init_inferior (enum inf_context context)
4127 {
4128 struct breakpoint *b, *b_tmp;
4129 struct bp_location *bl;
4130 int ix;
4131 struct program_space *pspace = current_program_space;
4132
4133 /* If breakpoint locations are shared across processes, then there's
4134 nothing to do. */
4135 if (gdbarch_has_global_breakpoints (target_gdbarch ()))
4136 return;
4137
4138 mark_breakpoints_out ();
4139
4140 ALL_BREAKPOINTS_SAFE (b, b_tmp)
4141 {
4142 if (b->loc && b->loc->pspace != pspace)
4143 continue;
4144
4145 switch (b->type)
4146 {
4147 case bp_call_dummy:
4148 case bp_longjmp_call_dummy:
4149
4150 /* If the call dummy breakpoint is at the entry point it will
4151 cause problems when the inferior is rerun, so we better get
4152 rid of it. */
4153
4154 case bp_watchpoint_scope:
4155
4156 /* Also get rid of scope breakpoints. */
4157
4158 case bp_shlib_event:
4159
4160 /* Also remove solib event breakpoints. Their addresses may
4161 have changed since the last time we ran the program.
4162 Actually we may now be debugging against different target;
4163 and so the solib backend that installed this breakpoint may
4164 not be used in by the target. E.g.,
4165
4166 (gdb) file prog-linux
4167 (gdb) run # native linux target
4168 ...
4169 (gdb) kill
4170 (gdb) file prog-win.exe
4171 (gdb) tar rem :9999 # remote Windows gdbserver.
4172 */
4173
4174 case bp_step_resume:
4175
4176 /* Also remove step-resume breakpoints. */
4177
4178 case bp_single_step:
4179
4180 /* Also remove single-step breakpoints. */
4181
4182 delete_breakpoint (b);
4183 break;
4184
4185 case bp_watchpoint:
4186 case bp_hardware_watchpoint:
4187 case bp_read_watchpoint:
4188 case bp_access_watchpoint:
4189 {
4190 struct watchpoint *w = (struct watchpoint *) b;
4191
4192 /* Likewise for watchpoints on local expressions. */
4193 if (w->exp_valid_block != NULL)
4194 delete_breakpoint (b);
4195 else
4196 {
4197 /* Get rid of existing locations, which are no longer
4198 valid. New ones will be created in
4199 update_watchpoint, when the inferior is restarted.
4200 The next update_global_location_list call will
4201 garbage collect them. */
4202 b->loc = NULL;
4203
4204 if (context == inf_starting)
4205 {
4206 /* Reset val field to force reread of starting value in
4207 insert_breakpoints. */
4208 if (w->val)
4209 value_free (w->val);
4210 w->val = NULL;
4211 w->val_valid = 0;
4212 }
4213 }
4214 }
4215 break;
4216 default:
4217 break;
4218 }
4219 }
4220
4221 /* Get rid of the moribund locations. */
4222 for (ix = 0; VEC_iterate (bp_location_p, moribund_locations, ix, bl); ++ix)
4223 decref_bp_location (&bl);
4224 VEC_free (bp_location_p, moribund_locations);
4225 }
4226
4227 /* These functions concern about actual breakpoints inserted in the
4228 target --- to e.g. check if we need to do decr_pc adjustment or if
4229 we need to hop over the bkpt --- so we check for address space
4230 match, not program space. */
4231
4232 /* breakpoint_here_p (PC) returns non-zero if an enabled breakpoint
4233 exists at PC. It returns ordinary_breakpoint_here if it's an
4234 ordinary breakpoint, or permanent_breakpoint_here if it's a
4235 permanent breakpoint.
4236 - When continuing from a location with an ordinary breakpoint, we
4237 actually single step once before calling insert_breakpoints.
4238 - When continuing from a location with a permanent breakpoint, we
4239 need to use the `SKIP_PERMANENT_BREAKPOINT' macro, provided by
4240 the target, to advance the PC past the breakpoint. */
4241
4242 enum breakpoint_here
4243 breakpoint_here_p (struct address_space *aspace, CORE_ADDR pc)
4244 {
4245 struct bp_location *bl, **blp_tmp;
4246 int any_breakpoint_here = 0;
4247
4248 ALL_BP_LOCATIONS (bl, blp_tmp)
4249 {
4250 if (bl->loc_type != bp_loc_software_breakpoint
4251 && bl->loc_type != bp_loc_hardware_breakpoint)
4252 continue;
4253
4254 /* ALL_BP_LOCATIONS bp_location has BL->OWNER always non-NULL. */
4255 if ((breakpoint_enabled (bl->owner)
4256 || bl->permanent)
4257 && breakpoint_location_address_match (bl, aspace, pc))
4258 {
4259 if (overlay_debugging
4260 && section_is_overlay (bl->section)
4261 && !section_is_mapped (bl->section))
4262 continue; /* unmapped overlay -- can't be a match */
4263 else if (bl->permanent)
4264 return permanent_breakpoint_here;
4265 else
4266 any_breakpoint_here = 1;
4267 }
4268 }
4269
4270 return any_breakpoint_here ? ordinary_breakpoint_here : no_breakpoint_here;
4271 }
4272
4273 /* See breakpoint.h. */
4274
4275 int
4276 breakpoint_in_range_p (struct address_space *aspace,
4277 CORE_ADDR addr, ULONGEST len)
4278 {
4279 struct bp_location *bl, **blp_tmp;
4280
4281 ALL_BP_LOCATIONS (bl, blp_tmp)
4282 {
4283 if (bl->loc_type != bp_loc_software_breakpoint
4284 && bl->loc_type != bp_loc_hardware_breakpoint)
4285 continue;
4286
4287 if ((breakpoint_enabled (bl->owner)
4288 || bl->permanent)
4289 && breakpoint_location_address_range_overlap (bl, aspace,
4290 addr, len))
4291 {
4292 if (overlay_debugging
4293 && section_is_overlay (bl->section)
4294 && !section_is_mapped (bl->section))
4295 {
4296 /* Unmapped overlay -- can't be a match. */
4297 continue;
4298 }
4299
4300 return 1;
4301 }
4302 }
4303
4304 return 0;
4305 }
4306
4307 /* Return true if there's a moribund breakpoint at PC. */
4308
4309 int
4310 moribund_breakpoint_here_p (struct address_space *aspace, CORE_ADDR pc)
4311 {
4312 struct bp_location *loc;
4313 int ix;
4314
4315 for (ix = 0; VEC_iterate (bp_location_p, moribund_locations, ix, loc); ++ix)
4316 if (breakpoint_location_address_match (loc, aspace, pc))
4317 return 1;
4318
4319 return 0;
4320 }
4321
4322 /* Returns non-zero iff BL is inserted at PC, in address space
4323 ASPACE. */
4324
4325 static int
4326 bp_location_inserted_here_p (struct bp_location *bl,
4327 struct address_space *aspace, CORE_ADDR pc)
4328 {
4329 if (bl->inserted
4330 && breakpoint_address_match (bl->pspace->aspace, bl->address,
4331 aspace, pc))
4332 {
4333 if (overlay_debugging
4334 && section_is_overlay (bl->section)
4335 && !section_is_mapped (bl->section))
4336 return 0; /* unmapped overlay -- can't be a match */
4337 else
4338 return 1;
4339 }
4340 return 0;
4341 }
4342
4343 /* Returns non-zero iff there's a breakpoint inserted at PC. */
4344
4345 int
4346 breakpoint_inserted_here_p (struct address_space *aspace, CORE_ADDR pc)
4347 {
4348 struct bp_location **blp, **blp_tmp = NULL;
4349
4350 ALL_BP_LOCATIONS_AT_ADDR (blp, blp_tmp, pc)
4351 {
4352 struct bp_location *bl = *blp;
4353
4354 if (bl->loc_type != bp_loc_software_breakpoint
4355 && bl->loc_type != bp_loc_hardware_breakpoint)
4356 continue;
4357
4358 if (bp_location_inserted_here_p (bl, aspace, pc))
4359 return 1;
4360 }
4361 return 0;
4362 }
4363
4364 /* This function returns non-zero iff there is a software breakpoint
4365 inserted at PC. */
4366
4367 int
4368 software_breakpoint_inserted_here_p (struct address_space *aspace,
4369 CORE_ADDR pc)
4370 {
4371 struct bp_location **blp, **blp_tmp = NULL;
4372
4373 ALL_BP_LOCATIONS_AT_ADDR (blp, blp_tmp, pc)
4374 {
4375 struct bp_location *bl = *blp;
4376
4377 if (bl->loc_type != bp_loc_software_breakpoint)
4378 continue;
4379
4380 if (bp_location_inserted_here_p (bl, aspace, pc))
4381 return 1;
4382 }
4383
4384 return 0;
4385 }
4386
4387 /* See breakpoint.h. */
4388
4389 int
4390 hardware_breakpoint_inserted_here_p (struct address_space *aspace,
4391 CORE_ADDR pc)
4392 {
4393 struct bp_location **blp, **blp_tmp = NULL;
4394
4395 ALL_BP_LOCATIONS_AT_ADDR (blp, blp_tmp, pc)
4396 {
4397 struct bp_location *bl = *blp;
4398
4399 if (bl->loc_type != bp_loc_hardware_breakpoint)
4400 continue;
4401
4402 if (bp_location_inserted_here_p (bl, aspace, pc))
4403 return 1;
4404 }
4405
4406 return 0;
4407 }
4408
4409 int
4410 hardware_watchpoint_inserted_in_range (struct address_space *aspace,
4411 CORE_ADDR addr, ULONGEST len)
4412 {
4413 struct breakpoint *bpt;
4414
4415 ALL_BREAKPOINTS (bpt)
4416 {
4417 struct bp_location *loc;
4418
4419 if (bpt->type != bp_hardware_watchpoint
4420 && bpt->type != bp_access_watchpoint)
4421 continue;
4422
4423 if (!breakpoint_enabled (bpt))
4424 continue;
4425
4426 for (loc = bpt->loc; loc; loc = loc->next)
4427 if (loc->pspace->aspace == aspace && loc->inserted)
4428 {
4429 CORE_ADDR l, h;
4430
4431 /* Check for intersection. */
4432 l = std::max<CORE_ADDR> (loc->address, addr);
4433 h = std::min<CORE_ADDR> (loc->address + loc->length, addr + len);
4434 if (l < h)
4435 return 1;
4436 }
4437 }
4438 return 0;
4439 }
4440 \f
4441
4442 /* bpstat stuff. External routines' interfaces are documented
4443 in breakpoint.h. */
4444
4445 int
4446 is_catchpoint (struct breakpoint *ep)
4447 {
4448 return (ep->type == bp_catchpoint);
4449 }
4450
4451 /* Frees any storage that is part of a bpstat. Does not walk the
4452 'next' chain. */
4453
4454 static void
4455 bpstat_free (bpstat bs)
4456 {
4457 if (bs->old_val != NULL)
4458 value_free (bs->old_val);
4459 decref_counted_command_line (&bs->commands);
4460 decref_bp_location (&bs->bp_location_at);
4461 xfree (bs);
4462 }
4463
4464 /* Clear a bpstat so that it says we are not at any breakpoint.
4465 Also free any storage that is part of a bpstat. */
4466
4467 void
4468 bpstat_clear (bpstat *bsp)
4469 {
4470 bpstat p;
4471 bpstat q;
4472
4473 if (bsp == 0)
4474 return;
4475 p = *bsp;
4476 while (p != NULL)
4477 {
4478 q = p->next;
4479 bpstat_free (p);
4480 p = q;
4481 }
4482 *bsp = NULL;
4483 }
4484
4485 /* Return a copy of a bpstat. Like "bs1 = bs2" but all storage that
4486 is part of the bpstat is copied as well. */
4487
4488 bpstat
4489 bpstat_copy (bpstat bs)
4490 {
4491 bpstat p = NULL;
4492 bpstat tmp;
4493 bpstat retval = NULL;
4494
4495 if (bs == NULL)
4496 return bs;
4497
4498 for (; bs != NULL; bs = bs->next)
4499 {
4500 tmp = (bpstat) xmalloc (sizeof (*tmp));
4501 memcpy (tmp, bs, sizeof (*tmp));
4502 incref_counted_command_line (tmp->commands);
4503 incref_bp_location (tmp->bp_location_at);
4504 if (bs->old_val != NULL)
4505 {
4506 tmp->old_val = value_copy (bs->old_val);
4507 release_value (tmp->old_val);
4508 }
4509
4510 if (p == NULL)
4511 /* This is the first thing in the chain. */
4512 retval = tmp;
4513 else
4514 p->next = tmp;
4515 p = tmp;
4516 }
4517 p->next = NULL;
4518 return retval;
4519 }
4520
4521 /* Find the bpstat associated with this breakpoint. */
4522
4523 bpstat
4524 bpstat_find_breakpoint (bpstat bsp, struct breakpoint *breakpoint)
4525 {
4526 if (bsp == NULL)
4527 return NULL;
4528
4529 for (; bsp != NULL; bsp = bsp->next)
4530 {
4531 if (bsp->breakpoint_at == breakpoint)
4532 return bsp;
4533 }
4534 return NULL;
4535 }
4536
4537 /* See breakpoint.h. */
4538
4539 int
4540 bpstat_explains_signal (bpstat bsp, enum gdb_signal sig)
4541 {
4542 for (; bsp != NULL; bsp = bsp->next)
4543 {
4544 if (bsp->breakpoint_at == NULL)
4545 {
4546 /* A moribund location can never explain a signal other than
4547 GDB_SIGNAL_TRAP. */
4548 if (sig == GDB_SIGNAL_TRAP)
4549 return 1;
4550 }
4551 else
4552 {
4553 if (bsp->breakpoint_at->ops->explains_signal (bsp->breakpoint_at,
4554 sig))
4555 return 1;
4556 }
4557 }
4558
4559 return 0;
4560 }
4561
4562 /* Put in *NUM the breakpoint number of the first breakpoint we are
4563 stopped at. *BSP upon return is a bpstat which points to the
4564 remaining breakpoints stopped at (but which is not guaranteed to be
4565 good for anything but further calls to bpstat_num).
4566
4567 Return 0 if passed a bpstat which does not indicate any breakpoints.
4568 Return -1 if stopped at a breakpoint that has been deleted since
4569 we set it.
4570 Return 1 otherwise. */
4571
4572 int
4573 bpstat_num (bpstat *bsp, int *num)
4574 {
4575 struct breakpoint *b;
4576
4577 if ((*bsp) == NULL)
4578 return 0; /* No more breakpoint values */
4579
4580 /* We assume we'll never have several bpstats that correspond to a
4581 single breakpoint -- otherwise, this function might return the
4582 same number more than once and this will look ugly. */
4583 b = (*bsp)->breakpoint_at;
4584 *bsp = (*bsp)->next;
4585 if (b == NULL)
4586 return -1; /* breakpoint that's been deleted since */
4587
4588 *num = b->number; /* We have its number */
4589 return 1;
4590 }
4591
4592 /* See breakpoint.h. */
4593
4594 void
4595 bpstat_clear_actions (void)
4596 {
4597 struct thread_info *tp;
4598 bpstat bs;
4599
4600 if (ptid_equal (inferior_ptid, null_ptid))
4601 return;
4602
4603 tp = find_thread_ptid (inferior_ptid);
4604 if (tp == NULL)
4605 return;
4606
4607 for (bs = tp->control.stop_bpstat; bs != NULL; bs = bs->next)
4608 {
4609 decref_counted_command_line (&bs->commands);
4610
4611 if (bs->old_val != NULL)
4612 {
4613 value_free (bs->old_val);
4614 bs->old_val = NULL;
4615 }
4616 }
4617 }
4618
4619 /* Called when a command is about to proceed the inferior. */
4620
4621 static void
4622 breakpoint_about_to_proceed (void)
4623 {
4624 if (!ptid_equal (inferior_ptid, null_ptid))
4625 {
4626 struct thread_info *tp = inferior_thread ();
4627
4628 /* Allow inferior function calls in breakpoint commands to not
4629 interrupt the command list. When the call finishes
4630 successfully, the inferior will be standing at the same
4631 breakpoint as if nothing happened. */
4632 if (tp->control.in_infcall)
4633 return;
4634 }
4635
4636 breakpoint_proceeded = 1;
4637 }
4638
4639 /* Stub for cleaning up our state if we error-out of a breakpoint
4640 command. */
4641 static void
4642 cleanup_executing_breakpoints (void *ignore)
4643 {
4644 executing_breakpoint_commands = 0;
4645 }
4646
4647 /* Return non-zero iff CMD as the first line of a command sequence is `silent'
4648 or its equivalent. */
4649
4650 static int
4651 command_line_is_silent (struct command_line *cmd)
4652 {
4653 return cmd && (strcmp ("silent", cmd->line) == 0);
4654 }
4655
4656 /* Execute all the commands associated with all the breakpoints at
4657 this location. Any of these commands could cause the process to
4658 proceed beyond this point, etc. We look out for such changes by
4659 checking the global "breakpoint_proceeded" after each command.
4660
4661 Returns true if a breakpoint command resumed the inferior. In that
4662 case, it is the caller's responsibility to recall it again with the
4663 bpstat of the current thread. */
4664
4665 static int
4666 bpstat_do_actions_1 (bpstat *bsp)
4667 {
4668 bpstat bs;
4669 struct cleanup *old_chain;
4670 int again = 0;
4671
4672 /* Avoid endless recursion if a `source' command is contained
4673 in bs->commands. */
4674 if (executing_breakpoint_commands)
4675 return 0;
4676
4677 executing_breakpoint_commands = 1;
4678 old_chain = make_cleanup (cleanup_executing_breakpoints, 0);
4679
4680 scoped_restore preventer = prevent_dont_repeat ();
4681
4682 /* This pointer will iterate over the list of bpstat's. */
4683 bs = *bsp;
4684
4685 breakpoint_proceeded = 0;
4686 for (; bs != NULL; bs = bs->next)
4687 {
4688 struct counted_command_line *ccmd;
4689 struct command_line *cmd;
4690 struct cleanup *this_cmd_tree_chain;
4691
4692 /* Take ownership of the BSP's command tree, if it has one.
4693
4694 The command tree could legitimately contain commands like
4695 'step' and 'next', which call clear_proceed_status, which
4696 frees stop_bpstat's command tree. To make sure this doesn't
4697 free the tree we're executing out from under us, we need to
4698 take ownership of the tree ourselves. Since a given bpstat's
4699 commands are only executed once, we don't need to copy it; we
4700 can clear the pointer in the bpstat, and make sure we free
4701 the tree when we're done. */
4702 ccmd = bs->commands;
4703 bs->commands = NULL;
4704 this_cmd_tree_chain = make_cleanup_decref_counted_command_line (&ccmd);
4705 cmd = ccmd ? ccmd->commands : NULL;
4706 if (command_line_is_silent (cmd))
4707 {
4708 /* The action has been already done by bpstat_stop_status. */
4709 cmd = cmd->next;
4710 }
4711
4712 while (cmd != NULL)
4713 {
4714 execute_control_command (cmd);
4715
4716 if (breakpoint_proceeded)
4717 break;
4718 else
4719 cmd = cmd->next;
4720 }
4721
4722 /* We can free this command tree now. */
4723 do_cleanups (this_cmd_tree_chain);
4724
4725 if (breakpoint_proceeded)
4726 {
4727 if (current_ui->async)
4728 /* If we are in async mode, then the target might be still
4729 running, not stopped at any breakpoint, so nothing for
4730 us to do here -- just return to the event loop. */
4731 ;
4732 else
4733 /* In sync mode, when execute_control_command returns
4734 we're already standing on the next breakpoint.
4735 Breakpoint commands for that stop were not run, since
4736 execute_command does not run breakpoint commands --
4737 only command_line_handler does, but that one is not
4738 involved in execution of breakpoint commands. So, we
4739 can now execute breakpoint commands. It should be
4740 noted that making execute_command do bpstat actions is
4741 not an option -- in this case we'll have recursive
4742 invocation of bpstat for each breakpoint with a
4743 command, and can easily blow up GDB stack. Instead, we
4744 return true, which will trigger the caller to recall us
4745 with the new stop_bpstat. */
4746 again = 1;
4747 break;
4748 }
4749 }
4750 do_cleanups (old_chain);
4751 return again;
4752 }
4753
4754 void
4755 bpstat_do_actions (void)
4756 {
4757 struct cleanup *cleanup_if_error = make_bpstat_clear_actions_cleanup ();
4758
4759 /* Do any commands attached to breakpoint we are stopped at. */
4760 while (!ptid_equal (inferior_ptid, null_ptid)
4761 && target_has_execution
4762 && !is_exited (inferior_ptid)
4763 && !is_executing (inferior_ptid))
4764 /* Since in sync mode, bpstat_do_actions may resume the inferior,
4765 and only return when it is stopped at the next breakpoint, we
4766 keep doing breakpoint actions until it returns false to
4767 indicate the inferior was not resumed. */
4768 if (!bpstat_do_actions_1 (&inferior_thread ()->control.stop_bpstat))
4769 break;
4770
4771 discard_cleanups (cleanup_if_error);
4772 }
4773
4774 /* Print out the (old or new) value associated with a watchpoint. */
4775
4776 static void
4777 watchpoint_value_print (struct value *val, struct ui_file *stream)
4778 {
4779 if (val == NULL)
4780 fprintf_unfiltered (stream, _("<unreadable>"));
4781 else
4782 {
4783 struct value_print_options opts;
4784 get_user_print_options (&opts);
4785 value_print (val, stream, &opts);
4786 }
4787 }
4788
4789 /* Print the "Thread ID hit" part of "Thread ID hit Breakpoint N" if
4790 debugging multiple threads. */
4791
4792 void
4793 maybe_print_thread_hit_breakpoint (struct ui_out *uiout)
4794 {
4795 if (uiout->is_mi_like_p ())
4796 return;
4797
4798 uiout->text ("\n");
4799
4800 if (show_thread_that_caused_stop ())
4801 {
4802 const char *name;
4803 struct thread_info *thr = inferior_thread ();
4804
4805 uiout->text ("Thread ");
4806 uiout->field_fmt ("thread-id", "%s", print_thread_id (thr));
4807
4808 name = thr->name != NULL ? thr->name : target_thread_name (thr);
4809 if (name != NULL)
4810 {
4811 uiout->text (" \"");
4812 uiout->field_fmt ("name", "%s", name);
4813 uiout->text ("\"");
4814 }
4815
4816 uiout->text (" hit ");
4817 }
4818 }
4819
4820 /* Generic routine for printing messages indicating why we
4821 stopped. The behavior of this function depends on the value
4822 'print_it' in the bpstat structure. Under some circumstances we
4823 may decide not to print anything here and delegate the task to
4824 normal_stop(). */
4825
4826 static enum print_stop_action
4827 print_bp_stop_message (bpstat bs)
4828 {
4829 switch (bs->print_it)
4830 {
4831 case print_it_noop:
4832 /* Nothing should be printed for this bpstat entry. */
4833 return PRINT_UNKNOWN;
4834 break;
4835
4836 case print_it_done:
4837 /* We still want to print the frame, but we already printed the
4838 relevant messages. */
4839 return PRINT_SRC_AND_LOC;
4840 break;
4841
4842 case print_it_normal:
4843 {
4844 struct breakpoint *b = bs->breakpoint_at;
4845
4846 /* bs->breakpoint_at can be NULL if it was a momentary breakpoint
4847 which has since been deleted. */
4848 if (b == NULL)
4849 return PRINT_UNKNOWN;
4850
4851 /* Normal case. Call the breakpoint's print_it method. */
4852 return b->ops->print_it (bs);
4853 }
4854 break;
4855
4856 default:
4857 internal_error (__FILE__, __LINE__,
4858 _("print_bp_stop_message: unrecognized enum value"));
4859 break;
4860 }
4861 }
4862
4863 /* A helper function that prints a shared library stopped event. */
4864
4865 static void
4866 print_solib_event (int is_catchpoint)
4867 {
4868 int any_deleted
4869 = !VEC_empty (char_ptr, current_program_space->deleted_solibs);
4870 int any_added
4871 = !VEC_empty (so_list_ptr, current_program_space->added_solibs);
4872
4873 if (!is_catchpoint)
4874 {
4875 if (any_added || any_deleted)
4876 current_uiout->text (_("Stopped due to shared library event:\n"));
4877 else
4878 current_uiout->text (_("Stopped due to shared library event (no "
4879 "libraries added or removed)\n"));
4880 }
4881
4882 if (current_uiout->is_mi_like_p ())
4883 current_uiout->field_string ("reason",
4884 async_reason_lookup (EXEC_ASYNC_SOLIB_EVENT));
4885
4886 if (any_deleted)
4887 {
4888 struct cleanup *cleanup;
4889 char *name;
4890 int ix;
4891
4892 current_uiout->text (_(" Inferior unloaded "));
4893 cleanup = make_cleanup_ui_out_list_begin_end (current_uiout,
4894 "removed");
4895 for (ix = 0;
4896 VEC_iterate (char_ptr, current_program_space->deleted_solibs,
4897 ix, name);
4898 ++ix)
4899 {
4900 if (ix > 0)
4901 current_uiout->text (" ");
4902 current_uiout->field_string ("library", name);
4903 current_uiout->text ("\n");
4904 }
4905
4906 do_cleanups (cleanup);
4907 }
4908
4909 if (any_added)
4910 {
4911 struct so_list *iter;
4912 int ix;
4913 struct cleanup *cleanup;
4914
4915 current_uiout->text (_(" Inferior loaded "));
4916 cleanup = make_cleanup_ui_out_list_begin_end (current_uiout,
4917 "added");
4918 for (ix = 0;
4919 VEC_iterate (so_list_ptr, current_program_space->added_solibs,
4920 ix, iter);
4921 ++ix)
4922 {
4923 if (ix > 0)
4924 current_uiout->text (" ");
4925 current_uiout->field_string ("library", iter->so_name);
4926 current_uiout->text ("\n");
4927 }
4928
4929 do_cleanups (cleanup);
4930 }
4931 }
4932
4933 /* Print a message indicating what happened. This is called from
4934 normal_stop(). The input to this routine is the head of the bpstat
4935 list - a list of the eventpoints that caused this stop. KIND is
4936 the target_waitkind for the stopping event. This
4937 routine calls the generic print routine for printing a message
4938 about reasons for stopping. This will print (for example) the
4939 "Breakpoint n," part of the output. The return value of this
4940 routine is one of:
4941
4942 PRINT_UNKNOWN: Means we printed nothing.
4943 PRINT_SRC_AND_LOC: Means we printed something, and expect subsequent
4944 code to print the location. An example is
4945 "Breakpoint 1, " which should be followed by
4946 the location.
4947 PRINT_SRC_ONLY: Means we printed something, but there is no need
4948 to also print the location part of the message.
4949 An example is the catch/throw messages, which
4950 don't require a location appended to the end.
4951 PRINT_NOTHING: We have done some printing and we don't need any
4952 further info to be printed. */
4953
4954 enum print_stop_action
4955 bpstat_print (bpstat bs, int kind)
4956 {
4957 enum print_stop_action val;
4958
4959 /* Maybe another breakpoint in the chain caused us to stop.
4960 (Currently all watchpoints go on the bpstat whether hit or not.
4961 That probably could (should) be changed, provided care is taken
4962 with respect to bpstat_explains_signal). */
4963 for (; bs; bs = bs->next)
4964 {
4965 val = print_bp_stop_message (bs);
4966 if (val == PRINT_SRC_ONLY
4967 || val == PRINT_SRC_AND_LOC
4968 || val == PRINT_NOTHING)
4969 return val;
4970 }
4971
4972 /* If we had hit a shared library event breakpoint,
4973 print_bp_stop_message would print out this message. If we hit an
4974 OS-level shared library event, do the same thing. */
4975 if (kind == TARGET_WAITKIND_LOADED)
4976 {
4977 print_solib_event (0);
4978 return PRINT_NOTHING;
4979 }
4980
4981 /* We reached the end of the chain, or we got a null BS to start
4982 with and nothing was printed. */
4983 return PRINT_UNKNOWN;
4984 }
4985
4986 /* Evaluate the expression EXP and return 1 if value is zero.
4987 This returns the inverse of the condition because it is called
4988 from catch_errors which returns 0 if an exception happened, and if an
4989 exception happens we want execution to stop.
4990 The argument is a "struct expression *" that has been cast to a
4991 "void *" to make it pass through catch_errors. */
4992
4993 static int
4994 breakpoint_cond_eval (void *exp)
4995 {
4996 struct value *mark = value_mark ();
4997 int i = !value_true (evaluate_expression ((struct expression *) exp));
4998
4999 value_free_to_mark (mark);
5000 return i;
5001 }
5002
5003 /* Allocate a new bpstat. Link it to the FIFO list by BS_LINK_POINTER. */
5004
5005 static bpstat
5006 bpstat_alloc (struct bp_location *bl, bpstat **bs_link_pointer)
5007 {
5008 bpstat bs;
5009
5010 bs = (bpstat) xmalloc (sizeof (*bs));
5011 bs->next = NULL;
5012 **bs_link_pointer = bs;
5013 *bs_link_pointer = &bs->next;
5014 bs->breakpoint_at = bl->owner;
5015 bs->bp_location_at = bl;
5016 incref_bp_location (bl);
5017 /* If the condition is false, etc., don't do the commands. */
5018 bs->commands = NULL;
5019 bs->old_val = NULL;
5020 bs->print_it = print_it_normal;
5021 return bs;
5022 }
5023 \f
5024 /* The target has stopped with waitstatus WS. Check if any hardware
5025 watchpoints have triggered, according to the target. */
5026
5027 int
5028 watchpoints_triggered (struct target_waitstatus *ws)
5029 {
5030 int stopped_by_watchpoint = target_stopped_by_watchpoint ();
5031 CORE_ADDR addr;
5032 struct breakpoint *b;
5033
5034 if (!stopped_by_watchpoint)
5035 {
5036 /* We were not stopped by a watchpoint. Mark all watchpoints
5037 as not triggered. */
5038 ALL_BREAKPOINTS (b)
5039 if (is_hardware_watchpoint (b))
5040 {
5041 struct watchpoint *w = (struct watchpoint *) b;
5042
5043 w->watchpoint_triggered = watch_triggered_no;
5044 }
5045
5046 return 0;
5047 }
5048
5049 if (!target_stopped_data_address (&current_target, &addr))
5050 {
5051 /* We were stopped by a watchpoint, but we don't know where.
5052 Mark all watchpoints as unknown. */
5053 ALL_BREAKPOINTS (b)
5054 if (is_hardware_watchpoint (b))
5055 {
5056 struct watchpoint *w = (struct watchpoint *) b;
5057
5058 w->watchpoint_triggered = watch_triggered_unknown;
5059 }
5060
5061 return 1;
5062 }
5063
5064 /* The target could report the data address. Mark watchpoints
5065 affected by this data address as triggered, and all others as not
5066 triggered. */
5067
5068 ALL_BREAKPOINTS (b)
5069 if (is_hardware_watchpoint (b))
5070 {
5071 struct watchpoint *w = (struct watchpoint *) b;
5072 struct bp_location *loc;
5073
5074 w->watchpoint_triggered = watch_triggered_no;
5075 for (loc = b->loc; loc; loc = loc->next)
5076 {
5077 if (is_masked_watchpoint (b))
5078 {
5079 CORE_ADDR newaddr = addr & w->hw_wp_mask;
5080 CORE_ADDR start = loc->address & w->hw_wp_mask;
5081
5082 if (newaddr == start)
5083 {
5084 w->watchpoint_triggered = watch_triggered_yes;
5085 break;
5086 }
5087 }
5088 /* Exact match not required. Within range is sufficient. */
5089 else if (target_watchpoint_addr_within_range (&current_target,
5090 addr, loc->address,
5091 loc->length))
5092 {
5093 w->watchpoint_triggered = watch_triggered_yes;
5094 break;
5095 }
5096 }
5097 }
5098
5099 return 1;
5100 }
5101
5102 /* Possible return values for watchpoint_check (this can't be an enum
5103 because of check_errors). */
5104 /* The watchpoint has been deleted. */
5105 #define WP_DELETED 1
5106 /* The value has changed. */
5107 #define WP_VALUE_CHANGED 2
5108 /* The value has not changed. */
5109 #define WP_VALUE_NOT_CHANGED 3
5110 /* Ignore this watchpoint, no matter if the value changed or not. */
5111 #define WP_IGNORE 4
5112
5113 #define BP_TEMPFLAG 1
5114 #define BP_HARDWAREFLAG 2
5115
5116 /* Evaluate watchpoint condition expression and check if its value
5117 changed.
5118
5119 P should be a pointer to struct bpstat, but is defined as a void *
5120 in order for this function to be usable with catch_errors. */
5121
5122 static int
5123 watchpoint_check (void *p)
5124 {
5125 bpstat bs = (bpstat) p;
5126 struct watchpoint *b;
5127 struct frame_info *fr;
5128 int within_current_scope;
5129
5130 /* BS is built from an existing struct breakpoint. */
5131 gdb_assert (bs->breakpoint_at != NULL);
5132 b = (struct watchpoint *) bs->breakpoint_at;
5133
5134 /* If this is a local watchpoint, we only want to check if the
5135 watchpoint frame is in scope if the current thread is the thread
5136 that was used to create the watchpoint. */
5137 if (!watchpoint_in_thread_scope (b))
5138 return WP_IGNORE;
5139
5140 if (b->exp_valid_block == NULL)
5141 within_current_scope = 1;
5142 else
5143 {
5144 struct frame_info *frame = get_current_frame ();
5145 struct gdbarch *frame_arch = get_frame_arch (frame);
5146 CORE_ADDR frame_pc = get_frame_pc (frame);
5147
5148 /* stack_frame_destroyed_p() returns a non-zero value if we're
5149 still in the function but the stack frame has already been
5150 invalidated. Since we can't rely on the values of local
5151 variables after the stack has been destroyed, we are treating
5152 the watchpoint in that state as `not changed' without further
5153 checking. Don't mark watchpoints as changed if the current
5154 frame is in an epilogue - even if they are in some other
5155 frame, our view of the stack is likely to be wrong and
5156 frame_find_by_id could error out. */
5157 if (gdbarch_stack_frame_destroyed_p (frame_arch, frame_pc))
5158 return WP_IGNORE;
5159
5160 fr = frame_find_by_id (b->watchpoint_frame);
5161 within_current_scope = (fr != NULL);
5162
5163 /* If we've gotten confused in the unwinder, we might have
5164 returned a frame that can't describe this variable. */
5165 if (within_current_scope)
5166 {
5167 struct symbol *function;
5168
5169 function = get_frame_function (fr);
5170 if (function == NULL
5171 || !contained_in (b->exp_valid_block,
5172 SYMBOL_BLOCK_VALUE (function)))
5173 within_current_scope = 0;
5174 }
5175
5176 if (within_current_scope)
5177 /* If we end up stopping, the current frame will get selected
5178 in normal_stop. So this call to select_frame won't affect
5179 the user. */
5180 select_frame (fr);
5181 }
5182
5183 if (within_current_scope)
5184 {
5185 /* We use value_{,free_to_}mark because it could be a *long*
5186 time before we return to the command level and call
5187 free_all_values. We can't call free_all_values because we
5188 might be in the middle of evaluating a function call. */
5189
5190 int pc = 0;
5191 struct value *mark;
5192 struct value *new_val;
5193
5194 if (is_masked_watchpoint (&b->base))
5195 /* Since we don't know the exact trigger address (from
5196 stopped_data_address), just tell the user we've triggered
5197 a mask watchpoint. */
5198 return WP_VALUE_CHANGED;
5199
5200 mark = value_mark ();
5201 fetch_subexp_value (b->exp.get (), &pc, &new_val, NULL, NULL, 0);
5202
5203 if (b->val_bitsize != 0)
5204 new_val = extract_bitfield_from_watchpoint_value (b, new_val);
5205
5206 /* We use value_equal_contents instead of value_equal because
5207 the latter coerces an array to a pointer, thus comparing just
5208 the address of the array instead of its contents. This is
5209 not what we want. */
5210 if ((b->val != NULL) != (new_val != NULL)
5211 || (b->val != NULL && !value_equal_contents (b->val, new_val)))
5212 {
5213 if (new_val != NULL)
5214 {
5215 release_value (new_val);
5216 value_free_to_mark (mark);
5217 }
5218 bs->old_val = b->val;
5219 b->val = new_val;
5220 b->val_valid = 1;
5221 return WP_VALUE_CHANGED;
5222 }
5223 else
5224 {
5225 /* Nothing changed. */
5226 value_free_to_mark (mark);
5227 return WP_VALUE_NOT_CHANGED;
5228 }
5229 }
5230 else
5231 {
5232 /* This seems like the only logical thing to do because
5233 if we temporarily ignored the watchpoint, then when
5234 we reenter the block in which it is valid it contains
5235 garbage (in the case of a function, it may have two
5236 garbage values, one before and one after the prologue).
5237 So we can't even detect the first assignment to it and
5238 watch after that (since the garbage may or may not equal
5239 the first value assigned). */
5240 /* We print all the stop information in
5241 breakpoint_ops->print_it, but in this case, by the time we
5242 call breakpoint_ops->print_it this bp will be deleted
5243 already. So we have no choice but print the information
5244 here. */
5245
5246 SWITCH_THRU_ALL_UIS ()
5247 {
5248 struct ui_out *uiout = current_uiout;
5249
5250 if (uiout->is_mi_like_p ())
5251 uiout->field_string
5252 ("reason", async_reason_lookup (EXEC_ASYNC_WATCHPOINT_SCOPE));
5253 uiout->text ("\nWatchpoint ");
5254 uiout->field_int ("wpnum", b->base.number);
5255 uiout->text (" deleted because the program has left the block in\n"
5256 "which its expression is valid.\n");
5257 }
5258
5259 /* Make sure the watchpoint's commands aren't executed. */
5260 decref_counted_command_line (&b->base.commands);
5261 watchpoint_del_at_next_stop (b);
5262
5263 return WP_DELETED;
5264 }
5265 }
5266
5267 /* Return true if it looks like target has stopped due to hitting
5268 breakpoint location BL. This function does not check if we should
5269 stop, only if BL explains the stop. */
5270
5271 static int
5272 bpstat_check_location (const struct bp_location *bl,
5273 struct address_space *aspace, CORE_ADDR bp_addr,
5274 const struct target_waitstatus *ws)
5275 {
5276 struct breakpoint *b = bl->owner;
5277
5278 /* BL is from an existing breakpoint. */
5279 gdb_assert (b != NULL);
5280
5281 return b->ops->breakpoint_hit (bl, aspace, bp_addr, ws);
5282 }
5283
5284 /* Determine if the watched values have actually changed, and we
5285 should stop. If not, set BS->stop to 0. */
5286
5287 static void
5288 bpstat_check_watchpoint (bpstat bs)
5289 {
5290 const struct bp_location *bl;
5291 struct watchpoint *b;
5292
5293 /* BS is built for existing struct breakpoint. */
5294 bl = bs->bp_location_at;
5295 gdb_assert (bl != NULL);
5296 b = (struct watchpoint *) bs->breakpoint_at;
5297 gdb_assert (b != NULL);
5298
5299 {
5300 int must_check_value = 0;
5301
5302 if (b->base.type == bp_watchpoint)
5303 /* For a software watchpoint, we must always check the
5304 watched value. */
5305 must_check_value = 1;
5306 else if (b->watchpoint_triggered == watch_triggered_yes)
5307 /* We have a hardware watchpoint (read, write, or access)
5308 and the target earlier reported an address watched by
5309 this watchpoint. */
5310 must_check_value = 1;
5311 else if (b->watchpoint_triggered == watch_triggered_unknown
5312 && b->base.type == bp_hardware_watchpoint)
5313 /* We were stopped by a hardware watchpoint, but the target could
5314 not report the data address. We must check the watchpoint's
5315 value. Access and read watchpoints are out of luck; without
5316 a data address, we can't figure it out. */
5317 must_check_value = 1;
5318
5319 if (must_check_value)
5320 {
5321 char *message
5322 = xstrprintf ("Error evaluating expression for watchpoint %d\n",
5323 b->base.number);
5324 struct cleanup *cleanups = make_cleanup (xfree, message);
5325 int e = catch_errors (watchpoint_check, bs, message,
5326 RETURN_MASK_ALL);
5327 do_cleanups (cleanups);
5328 switch (e)
5329 {
5330 case WP_DELETED:
5331 /* We've already printed what needs to be printed. */
5332 bs->print_it = print_it_done;
5333 /* Stop. */
5334 break;
5335 case WP_IGNORE:
5336 bs->print_it = print_it_noop;
5337 bs->stop = 0;
5338 break;
5339 case WP_VALUE_CHANGED:
5340 if (b->base.type == bp_read_watchpoint)
5341 {
5342 /* There are two cases to consider here:
5343
5344 1. We're watching the triggered memory for reads.
5345 In that case, trust the target, and always report
5346 the watchpoint hit to the user. Even though
5347 reads don't cause value changes, the value may
5348 have changed since the last time it was read, and
5349 since we're not trapping writes, we will not see
5350 those, and as such we should ignore our notion of
5351 old value.
5352
5353 2. We're watching the triggered memory for both
5354 reads and writes. There are two ways this may
5355 happen:
5356
5357 2.1. This is a target that can't break on data
5358 reads only, but can break on accesses (reads or
5359 writes), such as e.g., x86. We detect this case
5360 at the time we try to insert read watchpoints.
5361
5362 2.2. Otherwise, the target supports read
5363 watchpoints, but, the user set an access or write
5364 watchpoint watching the same memory as this read
5365 watchpoint.
5366
5367 If we're watching memory writes as well as reads,
5368 ignore watchpoint hits when we find that the
5369 value hasn't changed, as reads don't cause
5370 changes. This still gives false positives when
5371 the program writes the same value to memory as
5372 what there was already in memory (we will confuse
5373 it for a read), but it's much better than
5374 nothing. */
5375
5376 int other_write_watchpoint = 0;
5377
5378 if (bl->watchpoint_type == hw_read)
5379 {
5380 struct breakpoint *other_b;
5381
5382 ALL_BREAKPOINTS (other_b)
5383 if (other_b->type == bp_hardware_watchpoint
5384 || other_b->type == bp_access_watchpoint)
5385 {
5386 struct watchpoint *other_w =
5387 (struct watchpoint *) other_b;
5388
5389 if (other_w->watchpoint_triggered
5390 == watch_triggered_yes)
5391 {
5392 other_write_watchpoint = 1;
5393 break;
5394 }
5395 }
5396 }
5397
5398 if (other_write_watchpoint
5399 || bl->watchpoint_type == hw_access)
5400 {
5401 /* We're watching the same memory for writes,
5402 and the value changed since the last time we
5403 updated it, so this trap must be for a write.
5404 Ignore it. */
5405 bs->print_it = print_it_noop;
5406 bs->stop = 0;
5407 }
5408 }
5409 break;
5410 case WP_VALUE_NOT_CHANGED:
5411 if (b->base.type == bp_hardware_watchpoint
5412 || b->base.type == bp_watchpoint)
5413 {
5414 /* Don't stop: write watchpoints shouldn't fire if
5415 the value hasn't changed. */
5416 bs->print_it = print_it_noop;
5417 bs->stop = 0;
5418 }
5419 /* Stop. */
5420 break;
5421 default:
5422 /* Can't happen. */
5423 case 0:
5424 /* Error from catch_errors. */
5425 {
5426 SWITCH_THRU_ALL_UIS ()
5427 {
5428 printf_filtered (_("Watchpoint %d deleted.\n"),
5429 b->base.number);
5430 }
5431 watchpoint_del_at_next_stop (b);
5432 /* We've already printed what needs to be printed. */
5433 bs->print_it = print_it_done;
5434 }
5435 break;
5436 }
5437 }
5438 else /* must_check_value == 0 */
5439 {
5440 /* This is a case where some watchpoint(s) triggered, but
5441 not at the address of this watchpoint, or else no
5442 watchpoint triggered after all. So don't print
5443 anything for this watchpoint. */
5444 bs->print_it = print_it_noop;
5445 bs->stop = 0;
5446 }
5447 }
5448 }
5449
5450 /* For breakpoints that are currently marked as telling gdb to stop,
5451 check conditions (condition proper, frame, thread and ignore count)
5452 of breakpoint referred to by BS. If we should not stop for this
5453 breakpoint, set BS->stop to 0. */
5454
5455 static void
5456 bpstat_check_breakpoint_conditions (bpstat bs, ptid_t ptid)
5457 {
5458 const struct bp_location *bl;
5459 struct breakpoint *b;
5460 int value_is_zero = 0;
5461 struct expression *cond;
5462
5463 gdb_assert (bs->stop);
5464
5465 /* BS is built for existing struct breakpoint. */
5466 bl = bs->bp_location_at;
5467 gdb_assert (bl != NULL);
5468 b = bs->breakpoint_at;
5469 gdb_assert (b != NULL);
5470
5471 /* Even if the target evaluated the condition on its end and notified GDB, we
5472 need to do so again since GDB does not know if we stopped due to a
5473 breakpoint or a single step breakpoint. */
5474
5475 if (frame_id_p (b->frame_id)
5476 && !frame_id_eq (b->frame_id, get_stack_frame_id (get_current_frame ())))
5477 {
5478 bs->stop = 0;
5479 return;
5480 }
5481
5482 /* If this is a thread/task-specific breakpoint, don't waste cpu
5483 evaluating the condition if this isn't the specified
5484 thread/task. */
5485 if ((b->thread != -1 && b->thread != ptid_to_global_thread_id (ptid))
5486 || (b->task != 0 && b->task != ada_get_task_number (ptid)))
5487
5488 {
5489 bs->stop = 0;
5490 return;
5491 }
5492
5493 /* Evaluate extension language breakpoints that have a "stop" method
5494 implemented. */
5495 bs->stop = breakpoint_ext_lang_cond_says_stop (b);
5496
5497 if (is_watchpoint (b))
5498 {
5499 struct watchpoint *w = (struct watchpoint *) b;
5500
5501 cond = w->cond_exp.get ();
5502 }
5503 else
5504 cond = bl->cond.get ();
5505
5506 if (cond && b->disposition != disp_del_at_next_stop)
5507 {
5508 int within_current_scope = 1;
5509 struct watchpoint * w;
5510
5511 /* We use value_mark and value_free_to_mark because it could
5512 be a long time before we return to the command level and
5513 call free_all_values. We can't call free_all_values
5514 because we might be in the middle of evaluating a
5515 function call. */
5516 struct value *mark = value_mark ();
5517
5518 if (is_watchpoint (b))
5519 w = (struct watchpoint *) b;
5520 else
5521 w = NULL;
5522
5523 /* Need to select the frame, with all that implies so that
5524 the conditions will have the right context. Because we
5525 use the frame, we will not see an inlined function's
5526 variables when we arrive at a breakpoint at the start
5527 of the inlined function; the current frame will be the
5528 call site. */
5529 if (w == NULL || w->cond_exp_valid_block == NULL)
5530 select_frame (get_current_frame ());
5531 else
5532 {
5533 struct frame_info *frame;
5534
5535 /* For local watchpoint expressions, which particular
5536 instance of a local is being watched matters, so we
5537 keep track of the frame to evaluate the expression
5538 in. To evaluate the condition however, it doesn't
5539 really matter which instantiation of the function
5540 where the condition makes sense triggers the
5541 watchpoint. This allows an expression like "watch
5542 global if q > 10" set in `func', catch writes to
5543 global on all threads that call `func', or catch
5544 writes on all recursive calls of `func' by a single
5545 thread. We simply always evaluate the condition in
5546 the innermost frame that's executing where it makes
5547 sense to evaluate the condition. It seems
5548 intuitive. */
5549 frame = block_innermost_frame (w->cond_exp_valid_block);
5550 if (frame != NULL)
5551 select_frame (frame);
5552 else
5553 within_current_scope = 0;
5554 }
5555 if (within_current_scope)
5556 value_is_zero
5557 = catch_errors (breakpoint_cond_eval, cond,
5558 "Error in testing breakpoint condition:\n",
5559 RETURN_MASK_ALL);
5560 else
5561 {
5562 warning (_("Watchpoint condition cannot be tested "
5563 "in the current scope"));
5564 /* If we failed to set the right context for this
5565 watchpoint, unconditionally report it. */
5566 value_is_zero = 0;
5567 }
5568 /* FIXME-someday, should give breakpoint #. */
5569 value_free_to_mark (mark);
5570 }
5571
5572 if (cond && value_is_zero)
5573 {
5574 bs->stop = 0;
5575 }
5576 else if (b->ignore_count > 0)
5577 {
5578 b->ignore_count--;
5579 bs->stop = 0;
5580 /* Increase the hit count even though we don't stop. */
5581 ++(b->hit_count);
5582 observer_notify_breakpoint_modified (b);
5583 }
5584 }
5585
5586 /* Returns true if we need to track moribund locations of LOC's type
5587 on the current target. */
5588
5589 static int
5590 need_moribund_for_location_type (struct bp_location *loc)
5591 {
5592 return ((loc->loc_type == bp_loc_software_breakpoint
5593 && !target_supports_stopped_by_sw_breakpoint ())
5594 || (loc->loc_type == bp_loc_hardware_breakpoint
5595 && !target_supports_stopped_by_hw_breakpoint ()));
5596 }
5597
5598
5599 /* Get a bpstat associated with having just stopped at address
5600 BP_ADDR in thread PTID.
5601
5602 Determine whether we stopped at a breakpoint, etc, or whether we
5603 don't understand this stop. Result is a chain of bpstat's such
5604 that:
5605
5606 if we don't understand the stop, the result is a null pointer.
5607
5608 if we understand why we stopped, the result is not null.
5609
5610 Each element of the chain refers to a particular breakpoint or
5611 watchpoint at which we have stopped. (We may have stopped for
5612 several reasons concurrently.)
5613
5614 Each element of the chain has valid next, breakpoint_at,
5615 commands, FIXME??? fields. */
5616
5617 bpstat
5618 bpstat_stop_status (struct address_space *aspace,
5619 CORE_ADDR bp_addr, ptid_t ptid,
5620 const struct target_waitstatus *ws)
5621 {
5622 struct breakpoint *b = NULL;
5623 struct bp_location *bl;
5624 struct bp_location *loc;
5625 /* First item of allocated bpstat's. */
5626 bpstat bs_head = NULL, *bs_link = &bs_head;
5627 /* Pointer to the last thing in the chain currently. */
5628 bpstat bs;
5629 int ix;
5630 int need_remove_insert;
5631 int removed_any;
5632
5633 /* First, build the bpstat chain with locations that explain a
5634 target stop, while being careful to not set the target running,
5635 as that may invalidate locations (in particular watchpoint
5636 locations are recreated). Resuming will happen here with
5637 breakpoint conditions or watchpoint expressions that include
5638 inferior function calls. */
5639
5640 ALL_BREAKPOINTS (b)
5641 {
5642 if (!breakpoint_enabled (b))
5643 continue;
5644
5645 for (bl = b->loc; bl != NULL; bl = bl->next)
5646 {
5647 /* For hardware watchpoints, we look only at the first
5648 location. The watchpoint_check function will work on the
5649 entire expression, not the individual locations. For
5650 read watchpoints, the watchpoints_triggered function has
5651 checked all locations already. */
5652 if (b->type == bp_hardware_watchpoint && bl != b->loc)
5653 break;
5654
5655 if (!bl->enabled || bl->shlib_disabled)
5656 continue;
5657
5658 if (!bpstat_check_location (bl, aspace, bp_addr, ws))
5659 continue;
5660
5661 /* Come here if it's a watchpoint, or if the break address
5662 matches. */
5663
5664 bs = bpstat_alloc (bl, &bs_link); /* Alloc a bpstat to
5665 explain stop. */
5666
5667 /* Assume we stop. Should we find a watchpoint that is not
5668 actually triggered, or if the condition of the breakpoint
5669 evaluates as false, we'll reset 'stop' to 0. */
5670 bs->stop = 1;
5671 bs->print = 1;
5672
5673 /* If this is a scope breakpoint, mark the associated
5674 watchpoint as triggered so that we will handle the
5675 out-of-scope event. We'll get to the watchpoint next
5676 iteration. */
5677 if (b->type == bp_watchpoint_scope && b->related_breakpoint != b)
5678 {
5679 struct watchpoint *w = (struct watchpoint *) b->related_breakpoint;
5680
5681 w->watchpoint_triggered = watch_triggered_yes;
5682 }
5683 }
5684 }
5685
5686 /* Check if a moribund breakpoint explains the stop. */
5687 if (!target_supports_stopped_by_sw_breakpoint ()
5688 || !target_supports_stopped_by_hw_breakpoint ())
5689 {
5690 for (ix = 0; VEC_iterate (bp_location_p, moribund_locations, ix, loc); ++ix)
5691 {
5692 if (breakpoint_location_address_match (loc, aspace, bp_addr)
5693 && need_moribund_for_location_type (loc))
5694 {
5695 bs = bpstat_alloc (loc, &bs_link);
5696 /* For hits of moribund locations, we should just proceed. */
5697 bs->stop = 0;
5698 bs->print = 0;
5699 bs->print_it = print_it_noop;
5700 }
5701 }
5702 }
5703
5704 /* A bit of special processing for shlib breakpoints. We need to
5705 process solib loading here, so that the lists of loaded and
5706 unloaded libraries are correct before we handle "catch load" and
5707 "catch unload". */
5708 for (bs = bs_head; bs != NULL; bs = bs->next)
5709 {
5710 if (bs->breakpoint_at && bs->breakpoint_at->type == bp_shlib_event)
5711 {
5712 handle_solib_event ();
5713 break;
5714 }
5715 }
5716
5717 /* Now go through the locations that caused the target to stop, and
5718 check whether we're interested in reporting this stop to higher
5719 layers, or whether we should resume the target transparently. */
5720
5721 removed_any = 0;
5722
5723 for (bs = bs_head; bs != NULL; bs = bs->next)
5724 {
5725 if (!bs->stop)
5726 continue;
5727
5728 b = bs->breakpoint_at;
5729 b->ops->check_status (bs);
5730 if (bs->stop)
5731 {
5732 bpstat_check_breakpoint_conditions (bs, ptid);
5733
5734 if (bs->stop)
5735 {
5736 ++(b->hit_count);
5737 observer_notify_breakpoint_modified (b);
5738
5739 /* We will stop here. */
5740 if (b->disposition == disp_disable)
5741 {
5742 --(b->enable_count);
5743 if (b->enable_count <= 0)
5744 b->enable_state = bp_disabled;
5745 removed_any = 1;
5746 }
5747 if (b->silent)
5748 bs->print = 0;
5749 bs->commands = b->commands;
5750 incref_counted_command_line (bs->commands);
5751 if (command_line_is_silent (bs->commands
5752 ? bs->commands->commands : NULL))
5753 bs->print = 0;
5754
5755 b->ops->after_condition_true (bs);
5756 }
5757
5758 }
5759
5760 /* Print nothing for this entry if we don't stop or don't
5761 print. */
5762 if (!bs->stop || !bs->print)
5763 bs->print_it = print_it_noop;
5764 }
5765
5766 /* If we aren't stopping, the value of some hardware watchpoint may
5767 not have changed, but the intermediate memory locations we are
5768 watching may have. Don't bother if we're stopping; this will get
5769 done later. */
5770 need_remove_insert = 0;
5771 if (! bpstat_causes_stop (bs_head))
5772 for (bs = bs_head; bs != NULL; bs = bs->next)
5773 if (!bs->stop
5774 && bs->breakpoint_at
5775 && is_hardware_watchpoint (bs->breakpoint_at))
5776 {
5777 struct watchpoint *w = (struct watchpoint *) bs->breakpoint_at;
5778
5779 update_watchpoint (w, 0 /* don't reparse. */);
5780 need_remove_insert = 1;
5781 }
5782
5783 if (need_remove_insert)
5784 update_global_location_list (UGLL_MAY_INSERT);
5785 else if (removed_any)
5786 update_global_location_list (UGLL_DONT_INSERT);
5787
5788 return bs_head;
5789 }
5790
5791 static void
5792 handle_jit_event (void)
5793 {
5794 struct frame_info *frame;
5795 struct gdbarch *gdbarch;
5796
5797 if (debug_infrun)
5798 fprintf_unfiltered (gdb_stdlog, "handling bp_jit_event\n");
5799
5800 /* Switch terminal for any messages produced by
5801 breakpoint_re_set. */
5802 target_terminal_ours_for_output ();
5803
5804 frame = get_current_frame ();
5805 gdbarch = get_frame_arch (frame);
5806
5807 jit_event_handler (gdbarch);
5808
5809 target_terminal_inferior ();
5810 }
5811
5812 /* Prepare WHAT final decision for infrun. */
5813
5814 /* Decide what infrun needs to do with this bpstat. */
5815
5816 struct bpstat_what
5817 bpstat_what (bpstat bs_head)
5818 {
5819 struct bpstat_what retval;
5820 bpstat bs;
5821
5822 retval.main_action = BPSTAT_WHAT_KEEP_CHECKING;
5823 retval.call_dummy = STOP_NONE;
5824 retval.is_longjmp = 0;
5825
5826 for (bs = bs_head; bs != NULL; bs = bs->next)
5827 {
5828 /* Extract this BS's action. After processing each BS, we check
5829 if its action overrides all we've seem so far. */
5830 enum bpstat_what_main_action this_action = BPSTAT_WHAT_KEEP_CHECKING;
5831 enum bptype bptype;
5832
5833 if (bs->breakpoint_at == NULL)
5834 {
5835 /* I suspect this can happen if it was a momentary
5836 breakpoint which has since been deleted. */
5837 bptype = bp_none;
5838 }
5839 else
5840 bptype = bs->breakpoint_at->type;
5841
5842 switch (bptype)
5843 {
5844 case bp_none:
5845 break;
5846 case bp_breakpoint:
5847 case bp_hardware_breakpoint:
5848 case bp_single_step:
5849 case bp_until:
5850 case bp_finish:
5851 case bp_shlib_event:
5852 if (bs->stop)
5853 {
5854 if (bs->print)
5855 this_action = BPSTAT_WHAT_STOP_NOISY;
5856 else
5857 this_action = BPSTAT_WHAT_STOP_SILENT;
5858 }
5859 else
5860 this_action = BPSTAT_WHAT_SINGLE;
5861 break;
5862 case bp_watchpoint:
5863 case bp_hardware_watchpoint:
5864 case bp_read_watchpoint:
5865 case bp_access_watchpoint:
5866 if (bs->stop)
5867 {
5868 if (bs->print)
5869 this_action = BPSTAT_WHAT_STOP_NOISY;
5870 else
5871 this_action = BPSTAT_WHAT_STOP_SILENT;
5872 }
5873 else
5874 {
5875 /* There was a watchpoint, but we're not stopping.
5876 This requires no further action. */
5877 }
5878 break;
5879 case bp_longjmp:
5880 case bp_longjmp_call_dummy:
5881 case bp_exception:
5882 if (bs->stop)
5883 {
5884 this_action = BPSTAT_WHAT_SET_LONGJMP_RESUME;
5885 retval.is_longjmp = bptype != bp_exception;
5886 }
5887 else
5888 this_action = BPSTAT_WHAT_SINGLE;
5889 break;
5890 case bp_longjmp_resume:
5891 case bp_exception_resume:
5892 if (bs->stop)
5893 {
5894 this_action = BPSTAT_WHAT_CLEAR_LONGJMP_RESUME;
5895 retval.is_longjmp = bptype == bp_longjmp_resume;
5896 }
5897 else
5898 this_action = BPSTAT_WHAT_SINGLE;
5899 break;
5900 case bp_step_resume:
5901 if (bs->stop)
5902 this_action = BPSTAT_WHAT_STEP_RESUME;
5903 else
5904 {
5905 /* It is for the wrong frame. */
5906 this_action = BPSTAT_WHAT_SINGLE;
5907 }
5908 break;
5909 case bp_hp_step_resume:
5910 if (bs->stop)
5911 this_action = BPSTAT_WHAT_HP_STEP_RESUME;
5912 else
5913 {
5914 /* It is for the wrong frame. */
5915 this_action = BPSTAT_WHAT_SINGLE;
5916 }
5917 break;
5918 case bp_watchpoint_scope:
5919 case bp_thread_event:
5920 case bp_overlay_event:
5921 case bp_longjmp_master:
5922 case bp_std_terminate_master:
5923 case bp_exception_master:
5924 this_action = BPSTAT_WHAT_SINGLE;
5925 break;
5926 case bp_catchpoint:
5927 if (bs->stop)
5928 {
5929 if (bs->print)
5930 this_action = BPSTAT_WHAT_STOP_NOISY;
5931 else
5932 this_action = BPSTAT_WHAT_STOP_SILENT;
5933 }
5934 else
5935 {
5936 /* There was a catchpoint, but we're not stopping.
5937 This requires no further action. */
5938 }
5939 break;
5940 case bp_jit_event:
5941 this_action = BPSTAT_WHAT_SINGLE;
5942 break;
5943 case bp_call_dummy:
5944 /* Make sure the action is stop (silent or noisy),
5945 so infrun.c pops the dummy frame. */
5946 retval.call_dummy = STOP_STACK_DUMMY;
5947 this_action = BPSTAT_WHAT_STOP_SILENT;
5948 break;
5949 case bp_std_terminate:
5950 /* Make sure the action is stop (silent or noisy),
5951 so infrun.c pops the dummy frame. */
5952 retval.call_dummy = STOP_STD_TERMINATE;
5953 this_action = BPSTAT_WHAT_STOP_SILENT;
5954 break;
5955 case bp_tracepoint:
5956 case bp_fast_tracepoint:
5957 case bp_static_tracepoint:
5958 /* Tracepoint hits should not be reported back to GDB, and
5959 if one got through somehow, it should have been filtered
5960 out already. */
5961 internal_error (__FILE__, __LINE__,
5962 _("bpstat_what: tracepoint encountered"));
5963 break;
5964 case bp_gnu_ifunc_resolver:
5965 /* Step over it (and insert bp_gnu_ifunc_resolver_return). */
5966 this_action = BPSTAT_WHAT_SINGLE;
5967 break;
5968 case bp_gnu_ifunc_resolver_return:
5969 /* The breakpoint will be removed, execution will restart from the
5970 PC of the former breakpoint. */
5971 this_action = BPSTAT_WHAT_KEEP_CHECKING;
5972 break;
5973
5974 case bp_dprintf:
5975 if (bs->stop)
5976 this_action = BPSTAT_WHAT_STOP_SILENT;
5977 else
5978 this_action = BPSTAT_WHAT_SINGLE;
5979 break;
5980
5981 default:
5982 internal_error (__FILE__, __LINE__,
5983 _("bpstat_what: unhandled bptype %d"), (int) bptype);
5984 }
5985
5986 retval.main_action = std::max (retval.main_action, this_action);
5987 }
5988
5989 return retval;
5990 }
5991
5992 void
5993 bpstat_run_callbacks (bpstat bs_head)
5994 {
5995 bpstat bs;
5996
5997 for (bs = bs_head; bs != NULL; bs = bs->next)
5998 {
5999 struct breakpoint *b = bs->breakpoint_at;
6000
6001 if (b == NULL)
6002 continue;
6003 switch (b->type)
6004 {
6005 case bp_jit_event:
6006 handle_jit_event ();
6007 break;
6008 case bp_gnu_ifunc_resolver:
6009 gnu_ifunc_resolver_stop (b);
6010 break;
6011 case bp_gnu_ifunc_resolver_return:
6012 gnu_ifunc_resolver_return_stop (b);
6013 break;
6014 }
6015 }
6016 }
6017
6018 /* Nonzero if we should step constantly (e.g. watchpoints on machines
6019 without hardware support). This isn't related to a specific bpstat,
6020 just to things like whether watchpoints are set. */
6021
6022 int
6023 bpstat_should_step (void)
6024 {
6025 struct breakpoint *b;
6026
6027 ALL_BREAKPOINTS (b)
6028 if (breakpoint_enabled (b) && b->type == bp_watchpoint && b->loc != NULL)
6029 return 1;
6030 return 0;
6031 }
6032
6033 int
6034 bpstat_causes_stop (bpstat bs)
6035 {
6036 for (; bs != NULL; bs = bs->next)
6037 if (bs->stop)
6038 return 1;
6039
6040 return 0;
6041 }
6042
6043 \f
6044
6045 /* Compute a string of spaces suitable to indent the next line
6046 so it starts at the position corresponding to the table column
6047 named COL_NAME in the currently active table of UIOUT. */
6048
6049 static char *
6050 wrap_indent_at_field (struct ui_out *uiout, const char *col_name)
6051 {
6052 static char wrap_indent[80];
6053 int i, total_width, width, align;
6054 const char *text;
6055
6056 total_width = 0;
6057 for (i = 1; uiout->query_table_field (i, &width, &align, &text); i++)
6058 {
6059 if (strcmp (text, col_name) == 0)
6060 {
6061 gdb_assert (total_width < sizeof wrap_indent);
6062 memset (wrap_indent, ' ', total_width);
6063 wrap_indent[total_width] = 0;
6064
6065 return wrap_indent;
6066 }
6067
6068 total_width += width + 1;
6069 }
6070
6071 return NULL;
6072 }
6073
6074 /* Determine if the locations of this breakpoint will have their conditions
6075 evaluated by the target, host or a mix of both. Returns the following:
6076
6077 "host": Host evals condition.
6078 "host or target": Host or Target evals condition.
6079 "target": Target evals condition.
6080 */
6081
6082 static const char *
6083 bp_condition_evaluator (struct breakpoint *b)
6084 {
6085 struct bp_location *bl;
6086 char host_evals = 0;
6087 char target_evals = 0;
6088
6089 if (!b)
6090 return NULL;
6091
6092 if (!is_breakpoint (b))
6093 return NULL;
6094
6095 if (gdb_evaluates_breakpoint_condition_p ()
6096 || !target_supports_evaluation_of_breakpoint_conditions ())
6097 return condition_evaluation_host;
6098
6099 for (bl = b->loc; bl; bl = bl->next)
6100 {
6101 if (bl->cond_bytecode)
6102 target_evals++;
6103 else
6104 host_evals++;
6105 }
6106
6107 if (host_evals && target_evals)
6108 return condition_evaluation_both;
6109 else if (target_evals)
6110 return condition_evaluation_target;
6111 else
6112 return condition_evaluation_host;
6113 }
6114
6115 /* Determine the breakpoint location's condition evaluator. This is
6116 similar to bp_condition_evaluator, but for locations. */
6117
6118 static const char *
6119 bp_location_condition_evaluator (struct bp_location *bl)
6120 {
6121 if (bl && !is_breakpoint (bl->owner))
6122 return NULL;
6123
6124 if (gdb_evaluates_breakpoint_condition_p ()
6125 || !target_supports_evaluation_of_breakpoint_conditions ())
6126 return condition_evaluation_host;
6127
6128 if (bl && bl->cond_bytecode)
6129 return condition_evaluation_target;
6130 else
6131 return condition_evaluation_host;
6132 }
6133
6134 /* Print the LOC location out of the list of B->LOC locations. */
6135
6136 static void
6137 print_breakpoint_location (struct breakpoint *b,
6138 struct bp_location *loc)
6139 {
6140 struct ui_out *uiout = current_uiout;
6141 struct cleanup *old_chain = save_current_program_space ();
6142
6143 if (loc != NULL && loc->shlib_disabled)
6144 loc = NULL;
6145
6146 if (loc != NULL)
6147 set_current_program_space (loc->pspace);
6148
6149 if (b->display_canonical)
6150 uiout->field_string ("what", event_location_to_string (b->location.get ()));
6151 else if (loc && loc->symtab)
6152 {
6153 struct symbol *sym
6154 = find_pc_sect_function (loc->address, loc->section);
6155 if (sym)
6156 {
6157 uiout->text ("in ");
6158 uiout->field_string ("func", SYMBOL_PRINT_NAME (sym));
6159 uiout->text (" ");
6160 uiout->wrap_hint (wrap_indent_at_field (uiout, "what"));
6161 uiout->text ("at ");
6162 }
6163 uiout->field_string ("file",
6164 symtab_to_filename_for_display (loc->symtab));
6165 uiout->text (":");
6166
6167 if (uiout->is_mi_like_p ())
6168 uiout->field_string ("fullname", symtab_to_fullname (loc->symtab));
6169
6170 uiout->field_int ("line", loc->line_number);
6171 }
6172 else if (loc)
6173 {
6174 string_file stb;
6175
6176 print_address_symbolic (loc->gdbarch, loc->address, &stb,
6177 demangle, "");
6178 uiout->field_stream ("at", stb);
6179 }
6180 else
6181 {
6182 uiout->field_string ("pending",
6183 event_location_to_string (b->location.get ()));
6184 /* If extra_string is available, it could be holding a condition
6185 or dprintf arguments. In either case, make sure it is printed,
6186 too, but only for non-MI streams. */
6187 if (!uiout->is_mi_like_p () && b->extra_string != NULL)
6188 {
6189 if (b->type == bp_dprintf)
6190 uiout->text (",");
6191 else
6192 uiout->text (" ");
6193 uiout->text (b->extra_string);
6194 }
6195 }
6196
6197 if (loc && is_breakpoint (b)
6198 && breakpoint_condition_evaluation_mode () == condition_evaluation_target
6199 && bp_condition_evaluator (b) == condition_evaluation_both)
6200 {
6201 uiout->text (" (");
6202 uiout->field_string ("evaluated-by",
6203 bp_location_condition_evaluator (loc));
6204 uiout->text (")");
6205 }
6206
6207 do_cleanups (old_chain);
6208 }
6209
6210 static const char *
6211 bptype_string (enum bptype type)
6212 {
6213 struct ep_type_description
6214 {
6215 enum bptype type;
6216 const char *description;
6217 };
6218 static struct ep_type_description bptypes[] =
6219 {
6220 {bp_none, "?deleted?"},
6221 {bp_breakpoint, "breakpoint"},
6222 {bp_hardware_breakpoint, "hw breakpoint"},
6223 {bp_single_step, "sw single-step"},
6224 {bp_until, "until"},
6225 {bp_finish, "finish"},
6226 {bp_watchpoint, "watchpoint"},
6227 {bp_hardware_watchpoint, "hw watchpoint"},
6228 {bp_read_watchpoint, "read watchpoint"},
6229 {bp_access_watchpoint, "acc watchpoint"},
6230 {bp_longjmp, "longjmp"},
6231 {bp_longjmp_resume, "longjmp resume"},
6232 {bp_longjmp_call_dummy, "longjmp for call dummy"},
6233 {bp_exception, "exception"},
6234 {bp_exception_resume, "exception resume"},
6235 {bp_step_resume, "step resume"},
6236 {bp_hp_step_resume, "high-priority step resume"},
6237 {bp_watchpoint_scope, "watchpoint scope"},
6238 {bp_call_dummy, "call dummy"},
6239 {bp_std_terminate, "std::terminate"},
6240 {bp_shlib_event, "shlib events"},
6241 {bp_thread_event, "thread events"},
6242 {bp_overlay_event, "overlay events"},
6243 {bp_longjmp_master, "longjmp master"},
6244 {bp_std_terminate_master, "std::terminate master"},
6245 {bp_exception_master, "exception master"},
6246 {bp_catchpoint, "catchpoint"},
6247 {bp_tracepoint, "tracepoint"},
6248 {bp_fast_tracepoint, "fast tracepoint"},
6249 {bp_static_tracepoint, "static tracepoint"},
6250 {bp_dprintf, "dprintf"},
6251 {bp_jit_event, "jit events"},
6252 {bp_gnu_ifunc_resolver, "STT_GNU_IFUNC resolver"},
6253 {bp_gnu_ifunc_resolver_return, "STT_GNU_IFUNC resolver return"},
6254 };
6255
6256 if (((int) type >= (sizeof (bptypes) / sizeof (bptypes[0])))
6257 || ((int) type != bptypes[(int) type].type))
6258 internal_error (__FILE__, __LINE__,
6259 _("bptypes table does not describe type #%d."),
6260 (int) type);
6261
6262 return bptypes[(int) type].description;
6263 }
6264
6265 /* For MI, output a field named 'thread-groups' with a list as the value.
6266 For CLI, prefix the list with the string 'inf'. */
6267
6268 static void
6269 output_thread_groups (struct ui_out *uiout,
6270 const char *field_name,
6271 VEC(int) *inf_num,
6272 int mi_only)
6273 {
6274 struct cleanup *back_to;
6275 int is_mi = uiout->is_mi_like_p ();
6276 int inf;
6277 int i;
6278
6279 /* For backward compatibility, don't display inferiors in CLI unless
6280 there are several. Always display them for MI. */
6281 if (!is_mi && mi_only)
6282 return;
6283
6284 back_to = make_cleanup_ui_out_list_begin_end (uiout, field_name);
6285
6286 for (i = 0; VEC_iterate (int, inf_num, i, inf); ++i)
6287 {
6288 if (is_mi)
6289 {
6290 char mi_group[10];
6291
6292 xsnprintf (mi_group, sizeof (mi_group), "i%d", inf);
6293 uiout->field_string (NULL, mi_group);
6294 }
6295 else
6296 {
6297 if (i == 0)
6298 uiout->text (" inf ");
6299 else
6300 uiout->text (", ");
6301
6302 uiout->text (plongest (inf));
6303 }
6304 }
6305
6306 do_cleanups (back_to);
6307 }
6308
6309 /* Print B to gdb_stdout. */
6310
6311 static void
6312 print_one_breakpoint_location (struct breakpoint *b,
6313 struct bp_location *loc,
6314 int loc_number,
6315 struct bp_location **last_loc,
6316 int allflag)
6317 {
6318 struct command_line *l;
6319 static char bpenables[] = "nynny";
6320
6321 struct ui_out *uiout = current_uiout;
6322 int header_of_multiple = 0;
6323 int part_of_multiple = (loc != NULL);
6324 struct value_print_options opts;
6325
6326 get_user_print_options (&opts);
6327
6328 gdb_assert (!loc || loc_number != 0);
6329 /* See comment in print_one_breakpoint concerning treatment of
6330 breakpoints with single disabled location. */
6331 if (loc == NULL
6332 && (b->loc != NULL
6333 && (b->loc->next != NULL || !b->loc->enabled)))
6334 header_of_multiple = 1;
6335 if (loc == NULL)
6336 loc = b->loc;
6337
6338 annotate_record ();
6339
6340 /* 1 */
6341 annotate_field (0);
6342 if (part_of_multiple)
6343 {
6344 char *formatted;
6345 formatted = xstrprintf ("%d.%d", b->number, loc_number);
6346 uiout->field_string ("number", formatted);
6347 xfree (formatted);
6348 }
6349 else
6350 {
6351 uiout->field_int ("number", b->number);
6352 }
6353
6354 /* 2 */
6355 annotate_field (1);
6356 if (part_of_multiple)
6357 uiout->field_skip ("type");
6358 else
6359 uiout->field_string ("type", bptype_string (b->type));
6360
6361 /* 3 */
6362 annotate_field (2);
6363 if (part_of_multiple)
6364 uiout->field_skip ("disp");
6365 else
6366 uiout->field_string ("disp", bpdisp_text (b->disposition));
6367
6368
6369 /* 4 */
6370 annotate_field (3);
6371 if (part_of_multiple)
6372 uiout->field_string ("enabled", loc->enabled ? "y" : "n");
6373 else
6374 uiout->field_fmt ("enabled", "%c", bpenables[(int) b->enable_state]);
6375 uiout->spaces (2);
6376
6377
6378 /* 5 and 6 */
6379 if (b->ops != NULL && b->ops->print_one != NULL)
6380 {
6381 /* Although the print_one can possibly print all locations,
6382 calling it here is not likely to get any nice result. So,
6383 make sure there's just one location. */
6384 gdb_assert (b->loc == NULL || b->loc->next == NULL);
6385 b->ops->print_one (b, last_loc);
6386 }
6387 else
6388 switch (b->type)
6389 {
6390 case bp_none:
6391 internal_error (__FILE__, __LINE__,
6392 _("print_one_breakpoint: bp_none encountered\n"));
6393 break;
6394
6395 case bp_watchpoint:
6396 case bp_hardware_watchpoint:
6397 case bp_read_watchpoint:
6398 case bp_access_watchpoint:
6399 {
6400 struct watchpoint *w = (struct watchpoint *) b;
6401
6402 /* Field 4, the address, is omitted (which makes the columns
6403 not line up too nicely with the headers, but the effect
6404 is relatively readable). */
6405 if (opts.addressprint)
6406 uiout->field_skip ("addr");
6407 annotate_field (5);
6408 uiout->field_string ("what", w->exp_string);
6409 }
6410 break;
6411
6412 case bp_breakpoint:
6413 case bp_hardware_breakpoint:
6414 case bp_single_step:
6415 case bp_until:
6416 case bp_finish:
6417 case bp_longjmp:
6418 case bp_longjmp_resume:
6419 case bp_longjmp_call_dummy:
6420 case bp_exception:
6421 case bp_exception_resume:
6422 case bp_step_resume:
6423 case bp_hp_step_resume:
6424 case bp_watchpoint_scope:
6425 case bp_call_dummy:
6426 case bp_std_terminate:
6427 case bp_shlib_event:
6428 case bp_thread_event:
6429 case bp_overlay_event:
6430 case bp_longjmp_master:
6431 case bp_std_terminate_master:
6432 case bp_exception_master:
6433 case bp_tracepoint:
6434 case bp_fast_tracepoint:
6435 case bp_static_tracepoint:
6436 case bp_dprintf:
6437 case bp_jit_event:
6438 case bp_gnu_ifunc_resolver:
6439 case bp_gnu_ifunc_resolver_return:
6440 if (opts.addressprint)
6441 {
6442 annotate_field (4);
6443 if (header_of_multiple)
6444 uiout->field_string ("addr", "<MULTIPLE>");
6445 else if (b->loc == NULL || loc->shlib_disabled)
6446 uiout->field_string ("addr", "<PENDING>");
6447 else
6448 uiout->field_core_addr ("addr",
6449 loc->gdbarch, loc->address);
6450 }
6451 annotate_field (5);
6452 if (!header_of_multiple)
6453 print_breakpoint_location (b, loc);
6454 if (b->loc)
6455 *last_loc = b->loc;
6456 break;
6457 }
6458
6459
6460 if (loc != NULL && !header_of_multiple)
6461 {
6462 struct inferior *inf;
6463 VEC(int) *inf_num = NULL;
6464 int mi_only = 1;
6465
6466 ALL_INFERIORS (inf)
6467 {
6468 if (inf->pspace == loc->pspace)
6469 VEC_safe_push (int, inf_num, inf->num);
6470 }
6471
6472 /* For backward compatibility, don't display inferiors in CLI unless
6473 there are several. Always display for MI. */
6474 if (allflag
6475 || (!gdbarch_has_global_breakpoints (target_gdbarch ())
6476 && (number_of_program_spaces () > 1
6477 || number_of_inferiors () > 1)
6478 /* LOC is for existing B, it cannot be in
6479 moribund_locations and thus having NULL OWNER. */
6480 && loc->owner->type != bp_catchpoint))
6481 mi_only = 0;
6482 output_thread_groups (uiout, "thread-groups", inf_num, mi_only);
6483 VEC_free (int, inf_num);
6484 }
6485
6486 if (!part_of_multiple)
6487 {
6488 if (b->thread != -1)
6489 {
6490 /* FIXME: This seems to be redundant and lost here; see the
6491 "stop only in" line a little further down. */
6492 uiout->text (" thread ");
6493 uiout->field_int ("thread", b->thread);
6494 }
6495 else if (b->task != 0)
6496 {
6497 uiout->text (" task ");
6498 uiout->field_int ("task", b->task);
6499 }
6500 }
6501
6502 uiout->text ("\n");
6503
6504 if (!part_of_multiple)
6505 b->ops->print_one_detail (b, uiout);
6506
6507 if (part_of_multiple && frame_id_p (b->frame_id))
6508 {
6509 annotate_field (6);
6510 uiout->text ("\tstop only in stack frame at ");
6511 /* FIXME: cagney/2002-12-01: Shouldn't be poking around inside
6512 the frame ID. */
6513 uiout->field_core_addr ("frame",
6514 b->gdbarch, b->frame_id.stack_addr);
6515 uiout->text ("\n");
6516 }
6517
6518 if (!part_of_multiple && b->cond_string)
6519 {
6520 annotate_field (7);
6521 if (is_tracepoint (b))
6522 uiout->text ("\ttrace only if ");
6523 else
6524 uiout->text ("\tstop only if ");
6525 uiout->field_string ("cond", b->cond_string);
6526
6527 /* Print whether the target is doing the breakpoint's condition
6528 evaluation. If GDB is doing the evaluation, don't print anything. */
6529 if (is_breakpoint (b)
6530 && breakpoint_condition_evaluation_mode ()
6531 == condition_evaluation_target)
6532 {
6533 uiout->text (" (");
6534 uiout->field_string ("evaluated-by",
6535 bp_condition_evaluator (b));
6536 uiout->text (" evals)");
6537 }
6538 uiout->text ("\n");
6539 }
6540
6541 if (!part_of_multiple && b->thread != -1)
6542 {
6543 /* FIXME should make an annotation for this. */
6544 uiout->text ("\tstop only in thread ");
6545 if (uiout->is_mi_like_p ())
6546 uiout->field_int ("thread", b->thread);
6547 else
6548 {
6549 struct thread_info *thr = find_thread_global_id (b->thread);
6550
6551 uiout->field_string ("thread", print_thread_id (thr));
6552 }
6553 uiout->text ("\n");
6554 }
6555
6556 if (!part_of_multiple)
6557 {
6558 if (b->hit_count)
6559 {
6560 /* FIXME should make an annotation for this. */
6561 if (is_catchpoint (b))
6562 uiout->text ("\tcatchpoint");
6563 else if (is_tracepoint (b))
6564 uiout->text ("\ttracepoint");
6565 else
6566 uiout->text ("\tbreakpoint");
6567 uiout->text (" already hit ");
6568 uiout->field_int ("times", b->hit_count);
6569 if (b->hit_count == 1)
6570 uiout->text (" time\n");
6571 else
6572 uiout->text (" times\n");
6573 }
6574 else
6575 {
6576 /* Output the count also if it is zero, but only if this is mi. */
6577 if (uiout->is_mi_like_p ())
6578 uiout->field_int ("times", b->hit_count);
6579 }
6580 }
6581
6582 if (!part_of_multiple && b->ignore_count)
6583 {
6584 annotate_field (8);
6585 uiout->text ("\tignore next ");
6586 uiout->field_int ("ignore", b->ignore_count);
6587 uiout->text (" hits\n");
6588 }
6589
6590 /* Note that an enable count of 1 corresponds to "enable once"
6591 behavior, which is reported by the combination of enablement and
6592 disposition, so we don't need to mention it here. */
6593 if (!part_of_multiple && b->enable_count > 1)
6594 {
6595 annotate_field (8);
6596 uiout->text ("\tdisable after ");
6597 /* Tweak the wording to clarify that ignore and enable counts
6598 are distinct, and have additive effect. */
6599 if (b->ignore_count)
6600 uiout->text ("additional ");
6601 else
6602 uiout->text ("next ");
6603 uiout->field_int ("enable", b->enable_count);
6604 uiout->text (" hits\n");
6605 }
6606
6607 if (!part_of_multiple && is_tracepoint (b))
6608 {
6609 struct tracepoint *tp = (struct tracepoint *) b;
6610
6611 if (tp->traceframe_usage)
6612 {
6613 uiout->text ("\ttrace buffer usage ");
6614 uiout->field_int ("traceframe-usage", tp->traceframe_usage);
6615 uiout->text (" bytes\n");
6616 }
6617 }
6618
6619 l = b->commands ? b->commands->commands : NULL;
6620 if (!part_of_multiple && l)
6621 {
6622 struct cleanup *script_chain;
6623
6624 annotate_field (9);
6625 script_chain = make_cleanup_ui_out_tuple_begin_end (uiout, "script");
6626 print_command_lines (uiout, l, 4);
6627 do_cleanups (script_chain);
6628 }
6629
6630 if (is_tracepoint (b))
6631 {
6632 struct tracepoint *t = (struct tracepoint *) b;
6633
6634 if (!part_of_multiple && t->pass_count)
6635 {
6636 annotate_field (10);
6637 uiout->text ("\tpass count ");
6638 uiout->field_int ("pass", t->pass_count);
6639 uiout->text (" \n");
6640 }
6641
6642 /* Don't display it when tracepoint or tracepoint location is
6643 pending. */
6644 if (!header_of_multiple && loc != NULL && !loc->shlib_disabled)
6645 {
6646 annotate_field (11);
6647
6648 if (uiout->is_mi_like_p ())
6649 uiout->field_string ("installed",
6650 loc->inserted ? "y" : "n");
6651 else
6652 {
6653 if (loc->inserted)
6654 uiout->text ("\t");
6655 else
6656 uiout->text ("\tnot ");
6657 uiout->text ("installed on target\n");
6658 }
6659 }
6660 }
6661
6662 if (uiout->is_mi_like_p () && !part_of_multiple)
6663 {
6664 if (is_watchpoint (b))
6665 {
6666 struct watchpoint *w = (struct watchpoint *) b;
6667
6668 uiout->field_string ("original-location", w->exp_string);
6669 }
6670 else if (b->location != NULL
6671 && event_location_to_string (b->location.get ()) != NULL)
6672 uiout->field_string ("original-location",
6673 event_location_to_string (b->location.get ()));
6674 }
6675 }
6676
6677 static void
6678 print_one_breakpoint (struct breakpoint *b,
6679 struct bp_location **last_loc,
6680 int allflag)
6681 {
6682 struct cleanup *bkpt_chain;
6683 struct ui_out *uiout = current_uiout;
6684
6685 bkpt_chain = make_cleanup_ui_out_tuple_begin_end (uiout, "bkpt");
6686
6687 print_one_breakpoint_location (b, NULL, 0, last_loc, allflag);
6688 do_cleanups (bkpt_chain);
6689
6690 /* If this breakpoint has custom print function,
6691 it's already printed. Otherwise, print individual
6692 locations, if any. */
6693 if (b->ops == NULL || b->ops->print_one == NULL)
6694 {
6695 /* If breakpoint has a single location that is disabled, we
6696 print it as if it had several locations, since otherwise it's
6697 hard to represent "breakpoint enabled, location disabled"
6698 situation.
6699
6700 Note that while hardware watchpoints have several locations
6701 internally, that's not a property exposed to user. */
6702 if (b->loc
6703 && !is_hardware_watchpoint (b)
6704 && (b->loc->next || !b->loc->enabled))
6705 {
6706 struct bp_location *loc;
6707 int n = 1;
6708
6709 for (loc = b->loc; loc; loc = loc->next, ++n)
6710 {
6711 struct cleanup *inner2 =
6712 make_cleanup_ui_out_tuple_begin_end (uiout, NULL);
6713 print_one_breakpoint_location (b, loc, n, last_loc, allflag);
6714 do_cleanups (inner2);
6715 }
6716 }
6717 }
6718 }
6719
6720 static int
6721 breakpoint_address_bits (struct breakpoint *b)
6722 {
6723 int print_address_bits = 0;
6724 struct bp_location *loc;
6725
6726 /* Software watchpoints that aren't watching memory don't have an
6727 address to print. */
6728 if (is_no_memory_software_watchpoint (b))
6729 return 0;
6730
6731 for (loc = b->loc; loc; loc = loc->next)
6732 {
6733 int addr_bit;
6734
6735 addr_bit = gdbarch_addr_bit (loc->gdbarch);
6736 if (addr_bit > print_address_bits)
6737 print_address_bits = addr_bit;
6738 }
6739
6740 return print_address_bits;
6741 }
6742
6743 struct captured_breakpoint_query_args
6744 {
6745 int bnum;
6746 };
6747
6748 static int
6749 do_captured_breakpoint_query (struct ui_out *uiout, void *data)
6750 {
6751 struct captured_breakpoint_query_args *args
6752 = (struct captured_breakpoint_query_args *) data;
6753 struct breakpoint *b;
6754 struct bp_location *dummy_loc = NULL;
6755
6756 ALL_BREAKPOINTS (b)
6757 {
6758 if (args->bnum == b->number)
6759 {
6760 print_one_breakpoint (b, &dummy_loc, 0);
6761 return GDB_RC_OK;
6762 }
6763 }
6764 return GDB_RC_NONE;
6765 }
6766
6767 enum gdb_rc
6768 gdb_breakpoint_query (struct ui_out *uiout, int bnum,
6769 char **error_message)
6770 {
6771 struct captured_breakpoint_query_args args;
6772
6773 args.bnum = bnum;
6774 /* For the moment we don't trust print_one_breakpoint() to not throw
6775 an error. */
6776 if (catch_exceptions_with_msg (uiout, do_captured_breakpoint_query, &args,
6777 error_message, RETURN_MASK_ALL) < 0)
6778 return GDB_RC_FAIL;
6779 else
6780 return GDB_RC_OK;
6781 }
6782
6783 /* Return true if this breakpoint was set by the user, false if it is
6784 internal or momentary. */
6785
6786 int
6787 user_breakpoint_p (struct breakpoint *b)
6788 {
6789 return b->number > 0;
6790 }
6791
6792 /* See breakpoint.h. */
6793
6794 int
6795 pending_breakpoint_p (struct breakpoint *b)
6796 {
6797 return b->loc == NULL;
6798 }
6799
6800 /* Print information on user settable breakpoint (watchpoint, etc)
6801 number BNUM. If BNUM is -1 print all user-settable breakpoints.
6802 If ALLFLAG is non-zero, include non-user-settable breakpoints. If
6803 FILTER is non-NULL, call it on each breakpoint and only include the
6804 ones for which it returns non-zero. Return the total number of
6805 breakpoints listed. */
6806
6807 static int
6808 breakpoint_1 (char *args, int allflag,
6809 int (*filter) (const struct breakpoint *))
6810 {
6811 struct breakpoint *b;
6812 struct bp_location *last_loc = NULL;
6813 int nr_printable_breakpoints;
6814 struct cleanup *bkpttbl_chain;
6815 struct value_print_options opts;
6816 int print_address_bits = 0;
6817 int print_type_col_width = 14;
6818 struct ui_out *uiout = current_uiout;
6819
6820 get_user_print_options (&opts);
6821
6822 /* Compute the number of rows in the table, as well as the size
6823 required for address fields. */
6824 nr_printable_breakpoints = 0;
6825 ALL_BREAKPOINTS (b)
6826 {
6827 /* If we have a filter, only list the breakpoints it accepts. */
6828 if (filter && !filter (b))
6829 continue;
6830
6831 /* If we have an "args" string, it is a list of breakpoints to
6832 accept. Skip the others. */
6833 if (args != NULL && *args != '\0')
6834 {
6835 if (allflag && parse_and_eval_long (args) != b->number)
6836 continue;
6837 if (!allflag && !number_is_in_list (args, b->number))
6838 continue;
6839 }
6840
6841 if (allflag || user_breakpoint_p (b))
6842 {
6843 int addr_bit, type_len;
6844
6845 addr_bit = breakpoint_address_bits (b);
6846 if (addr_bit > print_address_bits)
6847 print_address_bits = addr_bit;
6848
6849 type_len = strlen (bptype_string (b->type));
6850 if (type_len > print_type_col_width)
6851 print_type_col_width = type_len;
6852
6853 nr_printable_breakpoints++;
6854 }
6855 }
6856
6857 if (opts.addressprint)
6858 bkpttbl_chain
6859 = make_cleanup_ui_out_table_begin_end (uiout, 6,
6860 nr_printable_breakpoints,
6861 "BreakpointTable");
6862 else
6863 bkpttbl_chain
6864 = make_cleanup_ui_out_table_begin_end (uiout, 5,
6865 nr_printable_breakpoints,
6866 "BreakpointTable");
6867
6868 if (nr_printable_breakpoints > 0)
6869 annotate_breakpoints_headers ();
6870 if (nr_printable_breakpoints > 0)
6871 annotate_field (0);
6872 uiout->table_header (7, ui_left, "number", "Num"); /* 1 */
6873 if (nr_printable_breakpoints > 0)
6874 annotate_field (1);
6875 uiout->table_header (print_type_col_width, ui_left, "type", "Type"); /* 2 */
6876 if (nr_printable_breakpoints > 0)
6877 annotate_field (2);
6878 uiout->table_header (4, ui_left, "disp", "Disp"); /* 3 */
6879 if (nr_printable_breakpoints > 0)
6880 annotate_field (3);
6881 uiout->table_header (3, ui_left, "enabled", "Enb"); /* 4 */
6882 if (opts.addressprint)
6883 {
6884 if (nr_printable_breakpoints > 0)
6885 annotate_field (4);
6886 if (print_address_bits <= 32)
6887 uiout->table_header (10, ui_left, "addr", "Address"); /* 5 */
6888 else
6889 uiout->table_header (18, ui_left, "addr", "Address"); /* 5 */
6890 }
6891 if (nr_printable_breakpoints > 0)
6892 annotate_field (5);
6893 uiout->table_header (40, ui_noalign, "what", "What"); /* 6 */
6894 uiout->table_body ();
6895 if (nr_printable_breakpoints > 0)
6896 annotate_breakpoints_table ();
6897
6898 ALL_BREAKPOINTS (b)
6899 {
6900 QUIT;
6901 /* If we have a filter, only list the breakpoints it accepts. */
6902 if (filter && !filter (b))
6903 continue;
6904
6905 /* If we have an "args" string, it is a list of breakpoints to
6906 accept. Skip the others. */
6907
6908 if (args != NULL && *args != '\0')
6909 {
6910 if (allflag) /* maintenance info breakpoint */
6911 {
6912 if (parse_and_eval_long (args) != b->number)
6913 continue;
6914 }
6915 else /* all others */
6916 {
6917 if (!number_is_in_list (args, b->number))
6918 continue;
6919 }
6920 }
6921 /* We only print out user settable breakpoints unless the
6922 allflag is set. */
6923 if (allflag || user_breakpoint_p (b))
6924 print_one_breakpoint (b, &last_loc, allflag);
6925 }
6926
6927 do_cleanups (bkpttbl_chain);
6928
6929 if (nr_printable_breakpoints == 0)
6930 {
6931 /* If there's a filter, let the caller decide how to report
6932 empty list. */
6933 if (!filter)
6934 {
6935 if (args == NULL || *args == '\0')
6936 uiout->message ("No breakpoints or watchpoints.\n");
6937 else
6938 uiout->message ("No breakpoint or watchpoint matching '%s'.\n",
6939 args);
6940 }
6941 }
6942 else
6943 {
6944 if (last_loc && !server_command)
6945 set_next_address (last_loc->gdbarch, last_loc->address);
6946 }
6947
6948 /* FIXME? Should this be moved up so that it is only called when
6949 there have been breakpoints? */
6950 annotate_breakpoints_table_end ();
6951
6952 return nr_printable_breakpoints;
6953 }
6954
6955 /* Display the value of default-collect in a way that is generally
6956 compatible with the breakpoint list. */
6957
6958 static void
6959 default_collect_info (void)
6960 {
6961 struct ui_out *uiout = current_uiout;
6962
6963 /* If it has no value (which is frequently the case), say nothing; a
6964 message like "No default-collect." gets in user's face when it's
6965 not wanted. */
6966 if (!*default_collect)
6967 return;
6968
6969 /* The following phrase lines up nicely with per-tracepoint collect
6970 actions. */
6971 uiout->text ("default collect ");
6972 uiout->field_string ("default-collect", default_collect);
6973 uiout->text (" \n");
6974 }
6975
6976 static void
6977 breakpoints_info (char *args, int from_tty)
6978 {
6979 breakpoint_1 (args, 0, NULL);
6980
6981 default_collect_info ();
6982 }
6983
6984 static void
6985 watchpoints_info (char *args, int from_tty)
6986 {
6987 int num_printed = breakpoint_1 (args, 0, is_watchpoint);
6988 struct ui_out *uiout = current_uiout;
6989
6990 if (num_printed == 0)
6991 {
6992 if (args == NULL || *args == '\0')
6993 uiout->message ("No watchpoints.\n");
6994 else
6995 uiout->message ("No watchpoint matching '%s'.\n", args);
6996 }
6997 }
6998
6999 static void
7000 maintenance_info_breakpoints (char *args, int from_tty)
7001 {
7002 breakpoint_1 (args, 1, NULL);
7003
7004 default_collect_info ();
7005 }
7006
7007 static int
7008 breakpoint_has_pc (struct breakpoint *b,
7009 struct program_space *pspace,
7010 CORE_ADDR pc, struct obj_section *section)
7011 {
7012 struct bp_location *bl = b->loc;
7013
7014 for (; bl; bl = bl->next)
7015 {
7016 if (bl->pspace == pspace
7017 && bl->address == pc
7018 && (!overlay_debugging || bl->section == section))
7019 return 1;
7020 }
7021 return 0;
7022 }
7023
7024 /* Print a message describing any user-breakpoints set at PC. This
7025 concerns with logical breakpoints, so we match program spaces, not
7026 address spaces. */
7027
7028 static void
7029 describe_other_breakpoints (struct gdbarch *gdbarch,
7030 struct program_space *pspace, CORE_ADDR pc,
7031 struct obj_section *section, int thread)
7032 {
7033 int others = 0;
7034 struct breakpoint *b;
7035
7036 ALL_BREAKPOINTS (b)
7037 others += (user_breakpoint_p (b)
7038 && breakpoint_has_pc (b, pspace, pc, section));
7039 if (others > 0)
7040 {
7041 if (others == 1)
7042 printf_filtered (_("Note: breakpoint "));
7043 else /* if (others == ???) */
7044 printf_filtered (_("Note: breakpoints "));
7045 ALL_BREAKPOINTS (b)
7046 if (user_breakpoint_p (b) && breakpoint_has_pc (b, pspace, pc, section))
7047 {
7048 others--;
7049 printf_filtered ("%d", b->number);
7050 if (b->thread == -1 && thread != -1)
7051 printf_filtered (" (all threads)");
7052 else if (b->thread != -1)
7053 printf_filtered (" (thread %d)", b->thread);
7054 printf_filtered ("%s%s ",
7055 ((b->enable_state == bp_disabled
7056 || b->enable_state == bp_call_disabled)
7057 ? " (disabled)"
7058 : ""),
7059 (others > 1) ? ","
7060 : ((others == 1) ? " and" : ""));
7061 }
7062 printf_filtered (_("also set at pc "));
7063 fputs_filtered (paddress (gdbarch, pc), gdb_stdout);
7064 printf_filtered (".\n");
7065 }
7066 }
7067 \f
7068
7069 /* Return true iff it is meaningful to use the address member of
7070 BPT locations. For some breakpoint types, the locations' address members
7071 are irrelevant and it makes no sense to attempt to compare them to other
7072 addresses (or use them for any other purpose either).
7073
7074 More specifically, each of the following breakpoint types will
7075 always have a zero valued location address and we don't want to mark
7076 breakpoints of any of these types to be a duplicate of an actual
7077 breakpoint location at address zero:
7078
7079 bp_watchpoint
7080 bp_catchpoint
7081
7082 */
7083
7084 static int
7085 breakpoint_address_is_meaningful (struct breakpoint *bpt)
7086 {
7087 enum bptype type = bpt->type;
7088
7089 return (type != bp_watchpoint && type != bp_catchpoint);
7090 }
7091
7092 /* Assuming LOC1 and LOC2's owners are hardware watchpoints, returns
7093 true if LOC1 and LOC2 represent the same watchpoint location. */
7094
7095 static int
7096 watchpoint_locations_match (struct bp_location *loc1,
7097 struct bp_location *loc2)
7098 {
7099 struct watchpoint *w1 = (struct watchpoint *) loc1->owner;
7100 struct watchpoint *w2 = (struct watchpoint *) loc2->owner;
7101
7102 /* Both of them must exist. */
7103 gdb_assert (w1 != NULL);
7104 gdb_assert (w2 != NULL);
7105
7106 /* If the target can evaluate the condition expression in hardware,
7107 then we we need to insert both watchpoints even if they are at
7108 the same place. Otherwise the watchpoint will only trigger when
7109 the condition of whichever watchpoint was inserted evaluates to
7110 true, not giving a chance for GDB to check the condition of the
7111 other watchpoint. */
7112 if ((w1->cond_exp
7113 && target_can_accel_watchpoint_condition (loc1->address,
7114 loc1->length,
7115 loc1->watchpoint_type,
7116 w1->cond_exp.get ()))
7117 || (w2->cond_exp
7118 && target_can_accel_watchpoint_condition (loc2->address,
7119 loc2->length,
7120 loc2->watchpoint_type,
7121 w2->cond_exp.get ())))
7122 return 0;
7123
7124 /* Note that this checks the owner's type, not the location's. In
7125 case the target does not support read watchpoints, but does
7126 support access watchpoints, we'll have bp_read_watchpoint
7127 watchpoints with hw_access locations. Those should be considered
7128 duplicates of hw_read locations. The hw_read locations will
7129 become hw_access locations later. */
7130 return (loc1->owner->type == loc2->owner->type
7131 && loc1->pspace->aspace == loc2->pspace->aspace
7132 && loc1->address == loc2->address
7133 && loc1->length == loc2->length);
7134 }
7135
7136 /* See breakpoint.h. */
7137
7138 int
7139 breakpoint_address_match (struct address_space *aspace1, CORE_ADDR addr1,
7140 struct address_space *aspace2, CORE_ADDR addr2)
7141 {
7142 return ((gdbarch_has_global_breakpoints (target_gdbarch ())
7143 || aspace1 == aspace2)
7144 && addr1 == addr2);
7145 }
7146
7147 /* Returns true if {ASPACE2,ADDR2} falls within the range determined by
7148 {ASPACE1,ADDR1,LEN1}. In most targets, this can only be true if ASPACE1
7149 matches ASPACE2. On targets that have global breakpoints, the address
7150 space doesn't really matter. */
7151
7152 static int
7153 breakpoint_address_match_range (struct address_space *aspace1, CORE_ADDR addr1,
7154 int len1, struct address_space *aspace2,
7155 CORE_ADDR addr2)
7156 {
7157 return ((gdbarch_has_global_breakpoints (target_gdbarch ())
7158 || aspace1 == aspace2)
7159 && addr2 >= addr1 && addr2 < addr1 + len1);
7160 }
7161
7162 /* Returns true if {ASPACE,ADDR} matches the breakpoint BL. BL may be
7163 a ranged breakpoint. In most targets, a match happens only if ASPACE
7164 matches the breakpoint's address space. On targets that have global
7165 breakpoints, the address space doesn't really matter. */
7166
7167 static int
7168 breakpoint_location_address_match (struct bp_location *bl,
7169 struct address_space *aspace,
7170 CORE_ADDR addr)
7171 {
7172 return (breakpoint_address_match (bl->pspace->aspace, bl->address,
7173 aspace, addr)
7174 || (bl->length
7175 && breakpoint_address_match_range (bl->pspace->aspace,
7176 bl->address, bl->length,
7177 aspace, addr)));
7178 }
7179
7180 /* Returns true if the [ADDR,ADDR+LEN) range in ASPACE overlaps
7181 breakpoint BL. BL may be a ranged breakpoint. In most targets, a
7182 match happens only if ASPACE matches the breakpoint's address
7183 space. On targets that have global breakpoints, the address space
7184 doesn't really matter. */
7185
7186 static int
7187 breakpoint_location_address_range_overlap (struct bp_location *bl,
7188 struct address_space *aspace,
7189 CORE_ADDR addr, int len)
7190 {
7191 if (gdbarch_has_global_breakpoints (target_gdbarch ())
7192 || bl->pspace->aspace == aspace)
7193 {
7194 int bl_len = bl->length != 0 ? bl->length : 1;
7195
7196 if (mem_ranges_overlap (addr, len, bl->address, bl_len))
7197 return 1;
7198 }
7199 return 0;
7200 }
7201
7202 /* If LOC1 and LOC2's owners are not tracepoints, returns false directly.
7203 Then, if LOC1 and LOC2 represent the same tracepoint location, returns
7204 true, otherwise returns false. */
7205
7206 static int
7207 tracepoint_locations_match (struct bp_location *loc1,
7208 struct bp_location *loc2)
7209 {
7210 if (is_tracepoint (loc1->owner) && is_tracepoint (loc2->owner))
7211 /* Since tracepoint locations are never duplicated with others', tracepoint
7212 locations at the same address of different tracepoints are regarded as
7213 different locations. */
7214 return (loc1->address == loc2->address && loc1->owner == loc2->owner);
7215 else
7216 return 0;
7217 }
7218
7219 /* Assuming LOC1 and LOC2's types' have meaningful target addresses
7220 (breakpoint_address_is_meaningful), returns true if LOC1 and LOC2
7221 represent the same location. */
7222
7223 static int
7224 breakpoint_locations_match (struct bp_location *loc1,
7225 struct bp_location *loc2)
7226 {
7227 int hw_point1, hw_point2;
7228
7229 /* Both of them must not be in moribund_locations. */
7230 gdb_assert (loc1->owner != NULL);
7231 gdb_assert (loc2->owner != NULL);
7232
7233 hw_point1 = is_hardware_watchpoint (loc1->owner);
7234 hw_point2 = is_hardware_watchpoint (loc2->owner);
7235
7236 if (hw_point1 != hw_point2)
7237 return 0;
7238 else if (hw_point1)
7239 return watchpoint_locations_match (loc1, loc2);
7240 else if (is_tracepoint (loc1->owner) || is_tracepoint (loc2->owner))
7241 return tracepoint_locations_match (loc1, loc2);
7242 else
7243 /* We compare bp_location.length in order to cover ranged breakpoints. */
7244 return (breakpoint_address_match (loc1->pspace->aspace, loc1->address,
7245 loc2->pspace->aspace, loc2->address)
7246 && loc1->length == loc2->length);
7247 }
7248
7249 static void
7250 breakpoint_adjustment_warning (CORE_ADDR from_addr, CORE_ADDR to_addr,
7251 int bnum, int have_bnum)
7252 {
7253 /* The longest string possibly returned by hex_string_custom
7254 is 50 chars. These must be at least that big for safety. */
7255 char astr1[64];
7256 char astr2[64];
7257
7258 strcpy (astr1, hex_string_custom ((unsigned long) from_addr, 8));
7259 strcpy (astr2, hex_string_custom ((unsigned long) to_addr, 8));
7260 if (have_bnum)
7261 warning (_("Breakpoint %d address previously adjusted from %s to %s."),
7262 bnum, astr1, astr2);
7263 else
7264 warning (_("Breakpoint address adjusted from %s to %s."), astr1, astr2);
7265 }
7266
7267 /* Adjust a breakpoint's address to account for architectural
7268 constraints on breakpoint placement. Return the adjusted address.
7269 Note: Very few targets require this kind of adjustment. For most
7270 targets, this function is simply the identity function. */
7271
7272 static CORE_ADDR
7273 adjust_breakpoint_address (struct gdbarch *gdbarch,
7274 CORE_ADDR bpaddr, enum bptype bptype)
7275 {
7276 if (!gdbarch_adjust_breakpoint_address_p (gdbarch))
7277 {
7278 /* Very few targets need any kind of breakpoint adjustment. */
7279 return bpaddr;
7280 }
7281 else if (bptype == bp_watchpoint
7282 || bptype == bp_hardware_watchpoint
7283 || bptype == bp_read_watchpoint
7284 || bptype == bp_access_watchpoint
7285 || bptype == bp_catchpoint)
7286 {
7287 /* Watchpoints and the various bp_catch_* eventpoints should not
7288 have their addresses modified. */
7289 return bpaddr;
7290 }
7291 else if (bptype == bp_single_step)
7292 {
7293 /* Single-step breakpoints should not have their addresses
7294 modified. If there's any architectural constrain that
7295 applies to this address, then it should have already been
7296 taken into account when the breakpoint was created in the
7297 first place. If we didn't do this, stepping through e.g.,
7298 Thumb-2 IT blocks would break. */
7299 return bpaddr;
7300 }
7301 else
7302 {
7303 CORE_ADDR adjusted_bpaddr;
7304
7305 /* Some targets have architectural constraints on the placement
7306 of breakpoint instructions. Obtain the adjusted address. */
7307 adjusted_bpaddr = gdbarch_adjust_breakpoint_address (gdbarch, bpaddr);
7308
7309 /* An adjusted breakpoint address can significantly alter
7310 a user's expectations. Print a warning if an adjustment
7311 is required. */
7312 if (adjusted_bpaddr != bpaddr)
7313 breakpoint_adjustment_warning (bpaddr, adjusted_bpaddr, 0, 0);
7314
7315 return adjusted_bpaddr;
7316 }
7317 }
7318
7319 void
7320 init_bp_location (struct bp_location *loc, const struct bp_location_ops *ops,
7321 struct breakpoint *owner)
7322 {
7323 memset (loc, 0, sizeof (*loc));
7324
7325 gdb_assert (ops != NULL);
7326
7327 loc->ops = ops;
7328 loc->owner = owner;
7329 loc->cond_bytecode = NULL;
7330 loc->shlib_disabled = 0;
7331 loc->enabled = 1;
7332
7333 switch (owner->type)
7334 {
7335 case bp_breakpoint:
7336 case bp_single_step:
7337 case bp_until:
7338 case bp_finish:
7339 case bp_longjmp:
7340 case bp_longjmp_resume:
7341 case bp_longjmp_call_dummy:
7342 case bp_exception:
7343 case bp_exception_resume:
7344 case bp_step_resume:
7345 case bp_hp_step_resume:
7346 case bp_watchpoint_scope:
7347 case bp_call_dummy:
7348 case bp_std_terminate:
7349 case bp_shlib_event:
7350 case bp_thread_event:
7351 case bp_overlay_event:
7352 case bp_jit_event:
7353 case bp_longjmp_master:
7354 case bp_std_terminate_master:
7355 case bp_exception_master:
7356 case bp_gnu_ifunc_resolver:
7357 case bp_gnu_ifunc_resolver_return:
7358 case bp_dprintf:
7359 loc->loc_type = bp_loc_software_breakpoint;
7360 mark_breakpoint_location_modified (loc);
7361 break;
7362 case bp_hardware_breakpoint:
7363 loc->loc_type = bp_loc_hardware_breakpoint;
7364 mark_breakpoint_location_modified (loc);
7365 break;
7366 case bp_hardware_watchpoint:
7367 case bp_read_watchpoint:
7368 case bp_access_watchpoint:
7369 loc->loc_type = bp_loc_hardware_watchpoint;
7370 break;
7371 case bp_watchpoint:
7372 case bp_catchpoint:
7373 case bp_tracepoint:
7374 case bp_fast_tracepoint:
7375 case bp_static_tracepoint:
7376 loc->loc_type = bp_loc_other;
7377 break;
7378 default:
7379 internal_error (__FILE__, __LINE__, _("unknown breakpoint type"));
7380 }
7381
7382 loc->refc = 1;
7383 }
7384
7385 /* Allocate a struct bp_location. */
7386
7387 static struct bp_location *
7388 allocate_bp_location (struct breakpoint *bpt)
7389 {
7390 return bpt->ops->allocate_location (bpt);
7391 }
7392
7393 static void
7394 free_bp_location (struct bp_location *loc)
7395 {
7396 loc->ops->dtor (loc);
7397 delete loc;
7398 }
7399
7400 /* Increment reference count. */
7401
7402 static void
7403 incref_bp_location (struct bp_location *bl)
7404 {
7405 ++bl->refc;
7406 }
7407
7408 /* Decrement reference count. If the reference count reaches 0,
7409 destroy the bp_location. Sets *BLP to NULL. */
7410
7411 static void
7412 decref_bp_location (struct bp_location **blp)
7413 {
7414 gdb_assert ((*blp)->refc > 0);
7415
7416 if (--(*blp)->refc == 0)
7417 free_bp_location (*blp);
7418 *blp = NULL;
7419 }
7420
7421 /* Add breakpoint B at the end of the global breakpoint chain. */
7422
7423 static void
7424 add_to_breakpoint_chain (struct breakpoint *b)
7425 {
7426 struct breakpoint *b1;
7427
7428 /* Add this breakpoint to the end of the chain so that a list of
7429 breakpoints will come out in order of increasing numbers. */
7430
7431 b1 = breakpoint_chain;
7432 if (b1 == 0)
7433 breakpoint_chain = b;
7434 else
7435 {
7436 while (b1->next)
7437 b1 = b1->next;
7438 b1->next = b;
7439 }
7440 }
7441
7442 /* Initializes breakpoint B with type BPTYPE and no locations yet. */
7443
7444 static void
7445 init_raw_breakpoint_without_location (struct breakpoint *b,
7446 struct gdbarch *gdbarch,
7447 enum bptype bptype,
7448 const struct breakpoint_ops *ops)
7449 {
7450 memset (b, 0, sizeof (*b));
7451
7452 gdb_assert (ops != NULL);
7453
7454 b->ops = ops;
7455 b->type = bptype;
7456 b->gdbarch = gdbarch;
7457 b->language = current_language->la_language;
7458 b->input_radix = input_radix;
7459 b->thread = -1;
7460 b->enable_state = bp_enabled;
7461 b->next = 0;
7462 b->silent = 0;
7463 b->ignore_count = 0;
7464 b->commands = NULL;
7465 b->frame_id = null_frame_id;
7466 b->condition_not_parsed = 0;
7467 b->py_bp_object = NULL;
7468 b->related_breakpoint = b;
7469 b->location = NULL;
7470 }
7471
7472 /* Helper to set_raw_breakpoint below. Creates a breakpoint
7473 that has type BPTYPE and has no locations as yet. */
7474
7475 static struct breakpoint *
7476 set_raw_breakpoint_without_location (struct gdbarch *gdbarch,
7477 enum bptype bptype,
7478 const struct breakpoint_ops *ops)
7479 {
7480 struct breakpoint *b = new breakpoint ();
7481
7482 init_raw_breakpoint_without_location (b, gdbarch, bptype, ops);
7483 add_to_breakpoint_chain (b);
7484 return b;
7485 }
7486
7487 /* Initialize loc->function_name. EXPLICIT_LOC says no indirect function
7488 resolutions should be made as the user specified the location explicitly
7489 enough. */
7490
7491 static void
7492 set_breakpoint_location_function (struct bp_location *loc, int explicit_loc)
7493 {
7494 gdb_assert (loc->owner != NULL);
7495
7496 if (loc->owner->type == bp_breakpoint
7497 || loc->owner->type == bp_hardware_breakpoint
7498 || is_tracepoint (loc->owner))
7499 {
7500 int is_gnu_ifunc;
7501 const char *function_name;
7502 CORE_ADDR func_addr;
7503
7504 find_pc_partial_function_gnu_ifunc (loc->address, &function_name,
7505 &func_addr, NULL, &is_gnu_ifunc);
7506
7507 if (is_gnu_ifunc && !explicit_loc)
7508 {
7509 struct breakpoint *b = loc->owner;
7510
7511 gdb_assert (loc->pspace == current_program_space);
7512 if (gnu_ifunc_resolve_name (function_name,
7513 &loc->requested_address))
7514 {
7515 /* Recalculate ADDRESS based on new REQUESTED_ADDRESS. */
7516 loc->address = adjust_breakpoint_address (loc->gdbarch,
7517 loc->requested_address,
7518 b->type);
7519 }
7520 else if (b->type == bp_breakpoint && b->loc == loc
7521 && loc->next == NULL && b->related_breakpoint == b)
7522 {
7523 /* Create only the whole new breakpoint of this type but do not
7524 mess more complicated breakpoints with multiple locations. */
7525 b->type = bp_gnu_ifunc_resolver;
7526 /* Remember the resolver's address for use by the return
7527 breakpoint. */
7528 loc->related_address = func_addr;
7529 }
7530 }
7531
7532 if (function_name)
7533 loc->function_name = xstrdup (function_name);
7534 }
7535 }
7536
7537 /* Attempt to determine architecture of location identified by SAL. */
7538 struct gdbarch *
7539 get_sal_arch (struct symtab_and_line sal)
7540 {
7541 if (sal.section)
7542 return get_objfile_arch (sal.section->objfile);
7543 if (sal.symtab)
7544 return get_objfile_arch (SYMTAB_OBJFILE (sal.symtab));
7545
7546 return NULL;
7547 }
7548
7549 /* Low level routine for partially initializing a breakpoint of type
7550 BPTYPE. The newly created breakpoint's address, section, source
7551 file name, and line number are provided by SAL.
7552
7553 It is expected that the caller will complete the initialization of
7554 the newly created breakpoint struct as well as output any status
7555 information regarding the creation of a new breakpoint. */
7556
7557 static void
7558 init_raw_breakpoint (struct breakpoint *b, struct gdbarch *gdbarch,
7559 struct symtab_and_line sal, enum bptype bptype,
7560 const struct breakpoint_ops *ops)
7561 {
7562 init_raw_breakpoint_without_location (b, gdbarch, bptype, ops);
7563
7564 add_location_to_breakpoint (b, &sal);
7565
7566 if (bptype != bp_catchpoint)
7567 gdb_assert (sal.pspace != NULL);
7568
7569 /* Store the program space that was used to set the breakpoint,
7570 except for ordinary breakpoints, which are independent of the
7571 program space. */
7572 if (bptype != bp_breakpoint && bptype != bp_hardware_breakpoint)
7573 b->pspace = sal.pspace;
7574 }
7575
7576 /* set_raw_breakpoint is a low level routine for allocating and
7577 partially initializing a breakpoint of type BPTYPE. The newly
7578 created breakpoint's address, section, source file name, and line
7579 number are provided by SAL. The newly created and partially
7580 initialized breakpoint is added to the breakpoint chain and
7581 is also returned as the value of this function.
7582
7583 It is expected that the caller will complete the initialization of
7584 the newly created breakpoint struct as well as output any status
7585 information regarding the creation of a new breakpoint. In
7586 particular, set_raw_breakpoint does NOT set the breakpoint
7587 number! Care should be taken to not allow an error to occur
7588 prior to completing the initialization of the breakpoint. If this
7589 should happen, a bogus breakpoint will be left on the chain. */
7590
7591 struct breakpoint *
7592 set_raw_breakpoint (struct gdbarch *gdbarch,
7593 struct symtab_and_line sal, enum bptype bptype,
7594 const struct breakpoint_ops *ops)
7595 {
7596 struct breakpoint *b = new breakpoint ();
7597
7598 init_raw_breakpoint (b, gdbarch, sal, bptype, ops);
7599 add_to_breakpoint_chain (b);
7600 return b;
7601 }
7602
7603 /* Call this routine when stepping and nexting to enable a breakpoint
7604 if we do a longjmp() or 'throw' in TP. FRAME is the frame which
7605 initiated the operation. */
7606
7607 void
7608 set_longjmp_breakpoint (struct thread_info *tp, struct frame_id frame)
7609 {
7610 struct breakpoint *b, *b_tmp;
7611 int thread = tp->global_num;
7612
7613 /* To avoid having to rescan all objfile symbols at every step,
7614 we maintain a list of continually-inserted but always disabled
7615 longjmp "master" breakpoints. Here, we simply create momentary
7616 clones of those and enable them for the requested thread. */
7617 ALL_BREAKPOINTS_SAFE (b, b_tmp)
7618 if (b->pspace == current_program_space
7619 && (b->type == bp_longjmp_master
7620 || b->type == bp_exception_master))
7621 {
7622 enum bptype type = b->type == bp_longjmp_master ? bp_longjmp : bp_exception;
7623 struct breakpoint *clone;
7624
7625 /* longjmp_breakpoint_ops ensures INITIATING_FRAME is cleared again
7626 after their removal. */
7627 clone = momentary_breakpoint_from_master (b, type,
7628 &longjmp_breakpoint_ops, 1);
7629 clone->thread = thread;
7630 }
7631
7632 tp->initiating_frame = frame;
7633 }
7634
7635 /* Delete all longjmp breakpoints from THREAD. */
7636 void
7637 delete_longjmp_breakpoint (int thread)
7638 {
7639 struct breakpoint *b, *b_tmp;
7640
7641 ALL_BREAKPOINTS_SAFE (b, b_tmp)
7642 if (b->type == bp_longjmp || b->type == bp_exception)
7643 {
7644 if (b->thread == thread)
7645 delete_breakpoint (b);
7646 }
7647 }
7648
7649 void
7650 delete_longjmp_breakpoint_at_next_stop (int thread)
7651 {
7652 struct breakpoint *b, *b_tmp;
7653
7654 ALL_BREAKPOINTS_SAFE (b, b_tmp)
7655 if (b->type == bp_longjmp || b->type == bp_exception)
7656 {
7657 if (b->thread == thread)
7658 b->disposition = disp_del_at_next_stop;
7659 }
7660 }
7661
7662 /* Place breakpoints of type bp_longjmp_call_dummy to catch longjmp for
7663 INFERIOR_PTID thread. Chain them all by RELATED_BREAKPOINT and return
7664 pointer to any of them. Return NULL if this system cannot place longjmp
7665 breakpoints. */
7666
7667 struct breakpoint *
7668 set_longjmp_breakpoint_for_call_dummy (void)
7669 {
7670 struct breakpoint *b, *retval = NULL;
7671
7672 ALL_BREAKPOINTS (b)
7673 if (b->pspace == current_program_space && b->type == bp_longjmp_master)
7674 {
7675 struct breakpoint *new_b;
7676
7677 new_b = momentary_breakpoint_from_master (b, bp_longjmp_call_dummy,
7678 &momentary_breakpoint_ops,
7679 1);
7680 new_b->thread = ptid_to_global_thread_id (inferior_ptid);
7681
7682 /* Link NEW_B into the chain of RETVAL breakpoints. */
7683
7684 gdb_assert (new_b->related_breakpoint == new_b);
7685 if (retval == NULL)
7686 retval = new_b;
7687 new_b->related_breakpoint = retval;
7688 while (retval->related_breakpoint != new_b->related_breakpoint)
7689 retval = retval->related_breakpoint;
7690 retval->related_breakpoint = new_b;
7691 }
7692
7693 return retval;
7694 }
7695
7696 /* Verify all existing dummy frames and their associated breakpoints for
7697 TP. Remove those which can no longer be found in the current frame
7698 stack.
7699
7700 You should call this function only at places where it is safe to currently
7701 unwind the whole stack. Failed stack unwind would discard live dummy
7702 frames. */
7703
7704 void
7705 check_longjmp_breakpoint_for_call_dummy (struct thread_info *tp)
7706 {
7707 struct breakpoint *b, *b_tmp;
7708
7709 ALL_BREAKPOINTS_SAFE (b, b_tmp)
7710 if (b->type == bp_longjmp_call_dummy && b->thread == tp->global_num)
7711 {
7712 struct breakpoint *dummy_b = b->related_breakpoint;
7713
7714 while (dummy_b != b && dummy_b->type != bp_call_dummy)
7715 dummy_b = dummy_b->related_breakpoint;
7716 if (dummy_b->type != bp_call_dummy
7717 || frame_find_by_id (dummy_b->frame_id) != NULL)
7718 continue;
7719
7720 dummy_frame_discard (dummy_b->frame_id, tp->ptid);
7721
7722 while (b->related_breakpoint != b)
7723 {
7724 if (b_tmp == b->related_breakpoint)
7725 b_tmp = b->related_breakpoint->next;
7726 delete_breakpoint (b->related_breakpoint);
7727 }
7728 delete_breakpoint (b);
7729 }
7730 }
7731
7732 void
7733 enable_overlay_breakpoints (void)
7734 {
7735 struct breakpoint *b;
7736
7737 ALL_BREAKPOINTS (b)
7738 if (b->type == bp_overlay_event)
7739 {
7740 b->enable_state = bp_enabled;
7741 update_global_location_list (UGLL_MAY_INSERT);
7742 overlay_events_enabled = 1;
7743 }
7744 }
7745
7746 void
7747 disable_overlay_breakpoints (void)
7748 {
7749 struct breakpoint *b;
7750
7751 ALL_BREAKPOINTS (b)
7752 if (b->type == bp_overlay_event)
7753 {
7754 b->enable_state = bp_disabled;
7755 update_global_location_list (UGLL_DONT_INSERT);
7756 overlay_events_enabled = 0;
7757 }
7758 }
7759
7760 /* Set an active std::terminate breakpoint for each std::terminate
7761 master breakpoint. */
7762 void
7763 set_std_terminate_breakpoint (void)
7764 {
7765 struct breakpoint *b, *b_tmp;
7766
7767 ALL_BREAKPOINTS_SAFE (b, b_tmp)
7768 if (b->pspace == current_program_space
7769 && b->type == bp_std_terminate_master)
7770 {
7771 momentary_breakpoint_from_master (b, bp_std_terminate,
7772 &momentary_breakpoint_ops, 1);
7773 }
7774 }
7775
7776 /* Delete all the std::terminate breakpoints. */
7777 void
7778 delete_std_terminate_breakpoint (void)
7779 {
7780 struct breakpoint *b, *b_tmp;
7781
7782 ALL_BREAKPOINTS_SAFE (b, b_tmp)
7783 if (b->type == bp_std_terminate)
7784 delete_breakpoint (b);
7785 }
7786
7787 struct breakpoint *
7788 create_thread_event_breakpoint (struct gdbarch *gdbarch, CORE_ADDR address)
7789 {
7790 struct breakpoint *b;
7791
7792 b = create_internal_breakpoint (gdbarch, address, bp_thread_event,
7793 &internal_breakpoint_ops);
7794
7795 b->enable_state = bp_enabled;
7796 /* location has to be used or breakpoint_re_set will delete me. */
7797 b->location = new_address_location (b->loc->address, NULL, 0);
7798
7799 update_global_location_list_nothrow (UGLL_MAY_INSERT);
7800
7801 return b;
7802 }
7803
7804 struct lang_and_radix
7805 {
7806 enum language lang;
7807 int radix;
7808 };
7809
7810 /* Create a breakpoint for JIT code registration and unregistration. */
7811
7812 struct breakpoint *
7813 create_jit_event_breakpoint (struct gdbarch *gdbarch, CORE_ADDR address)
7814 {
7815 return create_internal_breakpoint (gdbarch, address, bp_jit_event,
7816 &internal_breakpoint_ops);
7817 }
7818
7819 /* Remove JIT code registration and unregistration breakpoint(s). */
7820
7821 void
7822 remove_jit_event_breakpoints (void)
7823 {
7824 struct breakpoint *b, *b_tmp;
7825
7826 ALL_BREAKPOINTS_SAFE (b, b_tmp)
7827 if (b->type == bp_jit_event
7828 && b->loc->pspace == current_program_space)
7829 delete_breakpoint (b);
7830 }
7831
7832 void
7833 remove_solib_event_breakpoints (void)
7834 {
7835 struct breakpoint *b, *b_tmp;
7836
7837 ALL_BREAKPOINTS_SAFE (b, b_tmp)
7838 if (b->type == bp_shlib_event
7839 && b->loc->pspace == current_program_space)
7840 delete_breakpoint (b);
7841 }
7842
7843 /* See breakpoint.h. */
7844
7845 void
7846 remove_solib_event_breakpoints_at_next_stop (void)
7847 {
7848 struct breakpoint *b, *b_tmp;
7849
7850 ALL_BREAKPOINTS_SAFE (b, b_tmp)
7851 if (b->type == bp_shlib_event
7852 && b->loc->pspace == current_program_space)
7853 b->disposition = disp_del_at_next_stop;
7854 }
7855
7856 /* Helper for create_solib_event_breakpoint /
7857 create_and_insert_solib_event_breakpoint. Allows specifying which
7858 INSERT_MODE to pass through to update_global_location_list. */
7859
7860 static struct breakpoint *
7861 create_solib_event_breakpoint_1 (struct gdbarch *gdbarch, CORE_ADDR address,
7862 enum ugll_insert_mode insert_mode)
7863 {
7864 struct breakpoint *b;
7865
7866 b = create_internal_breakpoint (gdbarch, address, bp_shlib_event,
7867 &internal_breakpoint_ops);
7868 update_global_location_list_nothrow (insert_mode);
7869 return b;
7870 }
7871
7872 struct breakpoint *
7873 create_solib_event_breakpoint (struct gdbarch *gdbarch, CORE_ADDR address)
7874 {
7875 return create_solib_event_breakpoint_1 (gdbarch, address, UGLL_MAY_INSERT);
7876 }
7877
7878 /* See breakpoint.h. */
7879
7880 struct breakpoint *
7881 create_and_insert_solib_event_breakpoint (struct gdbarch *gdbarch, CORE_ADDR address)
7882 {
7883 struct breakpoint *b;
7884
7885 /* Explicitly tell update_global_location_list to insert
7886 locations. */
7887 b = create_solib_event_breakpoint_1 (gdbarch, address, UGLL_INSERT);
7888 if (!b->loc->inserted)
7889 {
7890 delete_breakpoint (b);
7891 return NULL;
7892 }
7893 return b;
7894 }
7895
7896 /* Disable any breakpoints that are on code in shared libraries. Only
7897 apply to enabled breakpoints, disabled ones can just stay disabled. */
7898
7899 void
7900 disable_breakpoints_in_shlibs (void)
7901 {
7902 struct bp_location *loc, **locp_tmp;
7903
7904 ALL_BP_LOCATIONS (loc, locp_tmp)
7905 {
7906 /* ALL_BP_LOCATIONS bp_location has LOC->OWNER always non-NULL. */
7907 struct breakpoint *b = loc->owner;
7908
7909 /* We apply the check to all breakpoints, including disabled for
7910 those with loc->duplicate set. This is so that when breakpoint
7911 becomes enabled, or the duplicate is removed, gdb will try to
7912 insert all breakpoints. If we don't set shlib_disabled here,
7913 we'll try to insert those breakpoints and fail. */
7914 if (((b->type == bp_breakpoint)
7915 || (b->type == bp_jit_event)
7916 || (b->type == bp_hardware_breakpoint)
7917 || (is_tracepoint (b)))
7918 && loc->pspace == current_program_space
7919 && !loc->shlib_disabled
7920 && solib_name_from_address (loc->pspace, loc->address)
7921 )
7922 {
7923 loc->shlib_disabled = 1;
7924 }
7925 }
7926 }
7927
7928 /* Disable any breakpoints and tracepoints that are in SOLIB upon
7929 notification of unloaded_shlib. Only apply to enabled breakpoints,
7930 disabled ones can just stay disabled. */
7931
7932 static void
7933 disable_breakpoints_in_unloaded_shlib (struct so_list *solib)
7934 {
7935 struct bp_location *loc, **locp_tmp;
7936 int disabled_shlib_breaks = 0;
7937
7938 ALL_BP_LOCATIONS (loc, locp_tmp)
7939 {
7940 /* ALL_BP_LOCATIONS bp_location has LOC->OWNER always non-NULL. */
7941 struct breakpoint *b = loc->owner;
7942
7943 if (solib->pspace == loc->pspace
7944 && !loc->shlib_disabled
7945 && (((b->type == bp_breakpoint
7946 || b->type == bp_jit_event
7947 || b->type == bp_hardware_breakpoint)
7948 && (loc->loc_type == bp_loc_hardware_breakpoint
7949 || loc->loc_type == bp_loc_software_breakpoint))
7950 || is_tracepoint (b))
7951 && solib_contains_address_p (solib, loc->address))
7952 {
7953 loc->shlib_disabled = 1;
7954 /* At this point, we cannot rely on remove_breakpoint
7955 succeeding so we must mark the breakpoint as not inserted
7956 to prevent future errors occurring in remove_breakpoints. */
7957 loc->inserted = 0;
7958
7959 /* This may cause duplicate notifications for the same breakpoint. */
7960 observer_notify_breakpoint_modified (b);
7961
7962 if (!disabled_shlib_breaks)
7963 {
7964 target_terminal_ours_for_output ();
7965 warning (_("Temporarily disabling breakpoints "
7966 "for unloaded shared library \"%s\""),
7967 solib->so_name);
7968 }
7969 disabled_shlib_breaks = 1;
7970 }
7971 }
7972 }
7973
7974 /* Disable any breakpoints and tracepoints in OBJFILE upon
7975 notification of free_objfile. Only apply to enabled breakpoints,
7976 disabled ones can just stay disabled. */
7977
7978 static void
7979 disable_breakpoints_in_freed_objfile (struct objfile *objfile)
7980 {
7981 struct breakpoint *b;
7982
7983 if (objfile == NULL)
7984 return;
7985
7986 /* OBJF_SHARED|OBJF_USERLOADED objfiles are dynamic modules manually
7987 managed by the user with add-symbol-file/remove-symbol-file.
7988 Similarly to how breakpoints in shared libraries are handled in
7989 response to "nosharedlibrary", mark breakpoints in such modules
7990 shlib_disabled so they end up uninserted on the next global
7991 location list update. Shared libraries not loaded by the user
7992 aren't handled here -- they're already handled in
7993 disable_breakpoints_in_unloaded_shlib, called by solib.c's
7994 solib_unloaded observer. We skip objfiles that are not
7995 OBJF_SHARED as those aren't considered dynamic objects (e.g. the
7996 main objfile). */
7997 if ((objfile->flags & OBJF_SHARED) == 0
7998 || (objfile->flags & OBJF_USERLOADED) == 0)
7999 return;
8000
8001 ALL_BREAKPOINTS (b)
8002 {
8003 struct bp_location *loc;
8004 int bp_modified = 0;
8005
8006 if (!is_breakpoint (b) && !is_tracepoint (b))
8007 continue;
8008
8009 for (loc = b->loc; loc != NULL; loc = loc->next)
8010 {
8011 CORE_ADDR loc_addr = loc->address;
8012
8013 if (loc->loc_type != bp_loc_hardware_breakpoint
8014 && loc->loc_type != bp_loc_software_breakpoint)
8015 continue;
8016
8017 if (loc->shlib_disabled != 0)
8018 continue;
8019
8020 if (objfile->pspace != loc->pspace)
8021 continue;
8022
8023 if (loc->loc_type != bp_loc_hardware_breakpoint
8024 && loc->loc_type != bp_loc_software_breakpoint)
8025 continue;
8026
8027 if (is_addr_in_objfile (loc_addr, objfile))
8028 {
8029 loc->shlib_disabled = 1;
8030 /* At this point, we don't know whether the object was
8031 unmapped from the inferior or not, so leave the
8032 inserted flag alone. We'll handle failure to
8033 uninsert quietly, in case the object was indeed
8034 unmapped. */
8035
8036 mark_breakpoint_location_modified (loc);
8037
8038 bp_modified = 1;
8039 }
8040 }
8041
8042 if (bp_modified)
8043 observer_notify_breakpoint_modified (b);
8044 }
8045 }
8046
8047 /* FORK & VFORK catchpoints. */
8048
8049 /* An instance of this type is used to represent a fork or vfork
8050 catchpoint. It includes a "struct breakpoint" as a kind of base
8051 class; users downcast to "struct breakpoint *" when needed. A
8052 breakpoint is really of this type iff its ops pointer points to
8053 CATCH_FORK_BREAKPOINT_OPS. */
8054
8055 struct fork_catchpoint
8056 {
8057 /* The base class. */
8058 struct breakpoint base;
8059
8060 /* Process id of a child process whose forking triggered this
8061 catchpoint. This field is only valid immediately after this
8062 catchpoint has triggered. */
8063 ptid_t forked_inferior_pid;
8064 };
8065
8066 /* Implement the "insert" breakpoint_ops method for fork
8067 catchpoints. */
8068
8069 static int
8070 insert_catch_fork (struct bp_location *bl)
8071 {
8072 return target_insert_fork_catchpoint (ptid_get_pid (inferior_ptid));
8073 }
8074
8075 /* Implement the "remove" breakpoint_ops method for fork
8076 catchpoints. */
8077
8078 static int
8079 remove_catch_fork (struct bp_location *bl, enum remove_bp_reason reason)
8080 {
8081 return target_remove_fork_catchpoint (ptid_get_pid (inferior_ptid));
8082 }
8083
8084 /* Implement the "breakpoint_hit" breakpoint_ops method for fork
8085 catchpoints. */
8086
8087 static int
8088 breakpoint_hit_catch_fork (const struct bp_location *bl,
8089 struct address_space *aspace, CORE_ADDR bp_addr,
8090 const struct target_waitstatus *ws)
8091 {
8092 struct fork_catchpoint *c = (struct fork_catchpoint *) bl->owner;
8093
8094 if (ws->kind != TARGET_WAITKIND_FORKED)
8095 return 0;
8096
8097 c->forked_inferior_pid = ws->value.related_pid;
8098 return 1;
8099 }
8100
8101 /* Implement the "print_it" breakpoint_ops method for fork
8102 catchpoints. */
8103
8104 static enum print_stop_action
8105 print_it_catch_fork (bpstat bs)
8106 {
8107 struct ui_out *uiout = current_uiout;
8108 struct breakpoint *b = bs->breakpoint_at;
8109 struct fork_catchpoint *c = (struct fork_catchpoint *) bs->breakpoint_at;
8110
8111 annotate_catchpoint (b->number);
8112 maybe_print_thread_hit_breakpoint (uiout);
8113 if (b->disposition == disp_del)
8114 uiout->text ("Temporary catchpoint ");
8115 else
8116 uiout->text ("Catchpoint ");
8117 if (uiout->is_mi_like_p ())
8118 {
8119 uiout->field_string ("reason", async_reason_lookup (EXEC_ASYNC_FORK));
8120 uiout->field_string ("disp", bpdisp_text (b->disposition));
8121 }
8122 uiout->field_int ("bkptno", b->number);
8123 uiout->text (" (forked process ");
8124 uiout->field_int ("newpid", ptid_get_pid (c->forked_inferior_pid));
8125 uiout->text ("), ");
8126 return PRINT_SRC_AND_LOC;
8127 }
8128
8129 /* Implement the "print_one" breakpoint_ops method for fork
8130 catchpoints. */
8131
8132 static void
8133 print_one_catch_fork (struct breakpoint *b, struct bp_location **last_loc)
8134 {
8135 struct fork_catchpoint *c = (struct fork_catchpoint *) b;
8136 struct value_print_options opts;
8137 struct ui_out *uiout = current_uiout;
8138
8139 get_user_print_options (&opts);
8140
8141 /* Field 4, the address, is omitted (which makes the columns not
8142 line up too nicely with the headers, but the effect is relatively
8143 readable). */
8144 if (opts.addressprint)
8145 uiout->field_skip ("addr");
8146 annotate_field (5);
8147 uiout->text ("fork");
8148 if (!ptid_equal (c->forked_inferior_pid, null_ptid))
8149 {
8150 uiout->text (", process ");
8151 uiout->field_int ("what", ptid_get_pid (c->forked_inferior_pid));
8152 uiout->spaces (1);
8153 }
8154
8155 if (uiout->is_mi_like_p ())
8156 uiout->field_string ("catch-type", "fork");
8157 }
8158
8159 /* Implement the "print_mention" breakpoint_ops method for fork
8160 catchpoints. */
8161
8162 static void
8163 print_mention_catch_fork (struct breakpoint *b)
8164 {
8165 printf_filtered (_("Catchpoint %d (fork)"), b->number);
8166 }
8167
8168 /* Implement the "print_recreate" breakpoint_ops method for fork
8169 catchpoints. */
8170
8171 static void
8172 print_recreate_catch_fork (struct breakpoint *b, struct ui_file *fp)
8173 {
8174 fprintf_unfiltered (fp, "catch fork");
8175 print_recreate_thread (b, fp);
8176 }
8177
8178 /* The breakpoint_ops structure to be used in fork catchpoints. */
8179
8180 static struct breakpoint_ops catch_fork_breakpoint_ops;
8181
8182 /* Implement the "insert" breakpoint_ops method for vfork
8183 catchpoints. */
8184
8185 static int
8186 insert_catch_vfork (struct bp_location *bl)
8187 {
8188 return target_insert_vfork_catchpoint (ptid_get_pid (inferior_ptid));
8189 }
8190
8191 /* Implement the "remove" breakpoint_ops method for vfork
8192 catchpoints. */
8193
8194 static int
8195 remove_catch_vfork (struct bp_location *bl, enum remove_bp_reason reason)
8196 {
8197 return target_remove_vfork_catchpoint (ptid_get_pid (inferior_ptid));
8198 }
8199
8200 /* Implement the "breakpoint_hit" breakpoint_ops method for vfork
8201 catchpoints. */
8202
8203 static int
8204 breakpoint_hit_catch_vfork (const struct bp_location *bl,
8205 struct address_space *aspace, CORE_ADDR bp_addr,
8206 const struct target_waitstatus *ws)
8207 {
8208 struct fork_catchpoint *c = (struct fork_catchpoint *) bl->owner;
8209
8210 if (ws->kind != TARGET_WAITKIND_VFORKED)
8211 return 0;
8212
8213 c->forked_inferior_pid = ws->value.related_pid;
8214 return 1;
8215 }
8216
8217 /* Implement the "print_it" breakpoint_ops method for vfork
8218 catchpoints. */
8219
8220 static enum print_stop_action
8221 print_it_catch_vfork (bpstat bs)
8222 {
8223 struct ui_out *uiout = current_uiout;
8224 struct breakpoint *b = bs->breakpoint_at;
8225 struct fork_catchpoint *c = (struct fork_catchpoint *) b;
8226
8227 annotate_catchpoint (b->number);
8228 maybe_print_thread_hit_breakpoint (uiout);
8229 if (b->disposition == disp_del)
8230 uiout->text ("Temporary catchpoint ");
8231 else
8232 uiout->text ("Catchpoint ");
8233 if (uiout->is_mi_like_p ())
8234 {
8235 uiout->field_string ("reason", async_reason_lookup (EXEC_ASYNC_VFORK));
8236 uiout->field_string ("disp", bpdisp_text (b->disposition));
8237 }
8238 uiout->field_int ("bkptno", b->number);
8239 uiout->text (" (vforked process ");
8240 uiout->field_int ("newpid", ptid_get_pid (c->forked_inferior_pid));
8241 uiout->text ("), ");
8242 return PRINT_SRC_AND_LOC;
8243 }
8244
8245 /* Implement the "print_one" breakpoint_ops method for vfork
8246 catchpoints. */
8247
8248 static void
8249 print_one_catch_vfork (struct breakpoint *b, struct bp_location **last_loc)
8250 {
8251 struct fork_catchpoint *c = (struct fork_catchpoint *) b;
8252 struct value_print_options opts;
8253 struct ui_out *uiout = current_uiout;
8254
8255 get_user_print_options (&opts);
8256 /* Field 4, the address, is omitted (which makes the columns not
8257 line up too nicely with the headers, but the effect is relatively
8258 readable). */
8259 if (opts.addressprint)
8260 uiout->field_skip ("addr");
8261 annotate_field (5);
8262 uiout->text ("vfork");
8263 if (!ptid_equal (c->forked_inferior_pid, null_ptid))
8264 {
8265 uiout->text (", process ");
8266 uiout->field_int ("what", ptid_get_pid (c->forked_inferior_pid));
8267 uiout->spaces (1);
8268 }
8269
8270 if (uiout->is_mi_like_p ())
8271 uiout->field_string ("catch-type", "vfork");
8272 }
8273
8274 /* Implement the "print_mention" breakpoint_ops method for vfork
8275 catchpoints. */
8276
8277 static void
8278 print_mention_catch_vfork (struct breakpoint *b)
8279 {
8280 printf_filtered (_("Catchpoint %d (vfork)"), b->number);
8281 }
8282
8283 /* Implement the "print_recreate" breakpoint_ops method for vfork
8284 catchpoints. */
8285
8286 static void
8287 print_recreate_catch_vfork (struct breakpoint *b, struct ui_file *fp)
8288 {
8289 fprintf_unfiltered (fp, "catch vfork");
8290 print_recreate_thread (b, fp);
8291 }
8292
8293 /* The breakpoint_ops structure to be used in vfork catchpoints. */
8294
8295 static struct breakpoint_ops catch_vfork_breakpoint_ops;
8296
8297 /* An instance of this type is used to represent an solib catchpoint.
8298 It includes a "struct breakpoint" as a kind of base class; users
8299 downcast to "struct breakpoint *" when needed. A breakpoint is
8300 really of this type iff its ops pointer points to
8301 CATCH_SOLIB_BREAKPOINT_OPS. */
8302
8303 struct solib_catchpoint
8304 {
8305 /* The base class. */
8306 struct breakpoint base;
8307
8308 /* True for "catch load", false for "catch unload". */
8309 unsigned char is_load;
8310
8311 /* Regular expression to match, if any. COMPILED is only valid when
8312 REGEX is non-NULL. */
8313 char *regex;
8314 regex_t compiled;
8315 };
8316
8317 static void
8318 dtor_catch_solib (struct breakpoint *b)
8319 {
8320 struct solib_catchpoint *self = (struct solib_catchpoint *) b;
8321
8322 if (self->regex)
8323 regfree (&self->compiled);
8324 xfree (self->regex);
8325
8326 base_breakpoint_ops.dtor (b);
8327 }
8328
8329 static int
8330 insert_catch_solib (struct bp_location *ignore)
8331 {
8332 return 0;
8333 }
8334
8335 static int
8336 remove_catch_solib (struct bp_location *ignore, enum remove_bp_reason reason)
8337 {
8338 return 0;
8339 }
8340
8341 static int
8342 breakpoint_hit_catch_solib (const struct bp_location *bl,
8343 struct address_space *aspace,
8344 CORE_ADDR bp_addr,
8345 const struct target_waitstatus *ws)
8346 {
8347 struct solib_catchpoint *self = (struct solib_catchpoint *) bl->owner;
8348 struct breakpoint *other;
8349
8350 if (ws->kind == TARGET_WAITKIND_LOADED)
8351 return 1;
8352
8353 ALL_BREAKPOINTS (other)
8354 {
8355 struct bp_location *other_bl;
8356
8357 if (other == bl->owner)
8358 continue;
8359
8360 if (other->type != bp_shlib_event)
8361 continue;
8362
8363 if (self->base.pspace != NULL && other->pspace != self->base.pspace)
8364 continue;
8365
8366 for (other_bl = other->loc; other_bl != NULL; other_bl = other_bl->next)
8367 {
8368 if (other->ops->breakpoint_hit (other_bl, aspace, bp_addr, ws))
8369 return 1;
8370 }
8371 }
8372
8373 return 0;
8374 }
8375
8376 static void
8377 check_status_catch_solib (struct bpstats *bs)
8378 {
8379 struct solib_catchpoint *self
8380 = (struct solib_catchpoint *) bs->breakpoint_at;
8381 int ix;
8382
8383 if (self->is_load)
8384 {
8385 struct so_list *iter;
8386
8387 for (ix = 0;
8388 VEC_iterate (so_list_ptr, current_program_space->added_solibs,
8389 ix, iter);
8390 ++ix)
8391 {
8392 if (!self->regex
8393 || regexec (&self->compiled, iter->so_name, 0, NULL, 0) == 0)
8394 return;
8395 }
8396 }
8397 else
8398 {
8399 char *iter;
8400
8401 for (ix = 0;
8402 VEC_iterate (char_ptr, current_program_space->deleted_solibs,
8403 ix, iter);
8404 ++ix)
8405 {
8406 if (!self->regex
8407 || regexec (&self->compiled, iter, 0, NULL, 0) == 0)
8408 return;
8409 }
8410 }
8411
8412 bs->stop = 0;
8413 bs->print_it = print_it_noop;
8414 }
8415
8416 static enum print_stop_action
8417 print_it_catch_solib (bpstat bs)
8418 {
8419 struct breakpoint *b = bs->breakpoint_at;
8420 struct ui_out *uiout = current_uiout;
8421
8422 annotate_catchpoint (b->number);
8423 maybe_print_thread_hit_breakpoint (uiout);
8424 if (b->disposition == disp_del)
8425 uiout->text ("Temporary catchpoint ");
8426 else
8427 uiout->text ("Catchpoint ");
8428 uiout->field_int ("bkptno", b->number);
8429 uiout->text ("\n");
8430 if (uiout->is_mi_like_p ())
8431 uiout->field_string ("disp", bpdisp_text (b->disposition));
8432 print_solib_event (1);
8433 return PRINT_SRC_AND_LOC;
8434 }
8435
8436 static void
8437 print_one_catch_solib (struct breakpoint *b, struct bp_location **locs)
8438 {
8439 struct solib_catchpoint *self = (struct solib_catchpoint *) b;
8440 struct value_print_options opts;
8441 struct ui_out *uiout = current_uiout;
8442 char *msg;
8443
8444 get_user_print_options (&opts);
8445 /* Field 4, the address, is omitted (which makes the columns not
8446 line up too nicely with the headers, but the effect is relatively
8447 readable). */
8448 if (opts.addressprint)
8449 {
8450 annotate_field (4);
8451 uiout->field_skip ("addr");
8452 }
8453
8454 annotate_field (5);
8455 if (self->is_load)
8456 {
8457 if (self->regex)
8458 msg = xstrprintf (_("load of library matching %s"), self->regex);
8459 else
8460 msg = xstrdup (_("load of library"));
8461 }
8462 else
8463 {
8464 if (self->regex)
8465 msg = xstrprintf (_("unload of library matching %s"), self->regex);
8466 else
8467 msg = xstrdup (_("unload of library"));
8468 }
8469 uiout->field_string ("what", msg);
8470 xfree (msg);
8471
8472 if (uiout->is_mi_like_p ())
8473 uiout->field_string ("catch-type", self->is_load ? "load" : "unload");
8474 }
8475
8476 static void
8477 print_mention_catch_solib (struct breakpoint *b)
8478 {
8479 struct solib_catchpoint *self = (struct solib_catchpoint *) b;
8480
8481 printf_filtered (_("Catchpoint %d (%s)"), b->number,
8482 self->is_load ? "load" : "unload");
8483 }
8484
8485 static void
8486 print_recreate_catch_solib (struct breakpoint *b, struct ui_file *fp)
8487 {
8488 struct solib_catchpoint *self = (struct solib_catchpoint *) b;
8489
8490 fprintf_unfiltered (fp, "%s %s",
8491 b->disposition == disp_del ? "tcatch" : "catch",
8492 self->is_load ? "load" : "unload");
8493 if (self->regex)
8494 fprintf_unfiltered (fp, " %s", self->regex);
8495 fprintf_unfiltered (fp, "\n");
8496 }
8497
8498 static struct breakpoint_ops catch_solib_breakpoint_ops;
8499
8500 /* Shared helper function (MI and CLI) for creating and installing
8501 a shared object event catchpoint. If IS_LOAD is non-zero then
8502 the events to be caught are load events, otherwise they are
8503 unload events. If IS_TEMP is non-zero the catchpoint is a
8504 temporary one. If ENABLED is non-zero the catchpoint is
8505 created in an enabled state. */
8506
8507 void
8508 add_solib_catchpoint (const char *arg, int is_load, int is_temp, int enabled)
8509 {
8510 struct solib_catchpoint *c;
8511 struct gdbarch *gdbarch = get_current_arch ();
8512 struct cleanup *cleanup;
8513
8514 if (!arg)
8515 arg = "";
8516 arg = skip_spaces_const (arg);
8517
8518 c = new solib_catchpoint ();
8519 cleanup = make_cleanup (xfree, c);
8520
8521 if (*arg != '\0')
8522 {
8523 int errcode;
8524
8525 errcode = regcomp (&c->compiled, arg, REG_NOSUB);
8526 if (errcode != 0)
8527 {
8528 char *err = get_regcomp_error (errcode, &c->compiled);
8529
8530 make_cleanup (xfree, err);
8531 error (_("Invalid regexp (%s): %s"), err, arg);
8532 }
8533 c->regex = xstrdup (arg);
8534 }
8535
8536 c->is_load = is_load;
8537 init_catchpoint (&c->base, gdbarch, is_temp, NULL,
8538 &catch_solib_breakpoint_ops);
8539
8540 c->base.enable_state = enabled ? bp_enabled : bp_disabled;
8541
8542 discard_cleanups (cleanup);
8543 install_breakpoint (0, &c->base, 1);
8544 }
8545
8546 /* A helper function that does all the work for "catch load" and
8547 "catch unload". */
8548
8549 static void
8550 catch_load_or_unload (char *arg, int from_tty, int is_load,
8551 struct cmd_list_element *command)
8552 {
8553 int tempflag;
8554 const int enabled = 1;
8555
8556 tempflag = get_cmd_context (command) == CATCH_TEMPORARY;
8557
8558 add_solib_catchpoint (arg, is_load, tempflag, enabled);
8559 }
8560
8561 static void
8562 catch_load_command_1 (char *arg, int from_tty,
8563 struct cmd_list_element *command)
8564 {
8565 catch_load_or_unload (arg, from_tty, 1, command);
8566 }
8567
8568 static void
8569 catch_unload_command_1 (char *arg, int from_tty,
8570 struct cmd_list_element *command)
8571 {
8572 catch_load_or_unload (arg, from_tty, 0, command);
8573 }
8574
8575 /* Initialize a new breakpoint of the bp_catchpoint kind. If TEMPFLAG
8576 is non-zero, then make the breakpoint temporary. If COND_STRING is
8577 not NULL, then store it in the breakpoint. OPS, if not NULL, is
8578 the breakpoint_ops structure associated to the catchpoint. */
8579
8580 void
8581 init_catchpoint (struct breakpoint *b,
8582 struct gdbarch *gdbarch, int tempflag,
8583 const char *cond_string,
8584 const struct breakpoint_ops *ops)
8585 {
8586 struct symtab_and_line sal;
8587
8588 init_sal (&sal);
8589 sal.pspace = current_program_space;
8590
8591 init_raw_breakpoint (b, gdbarch, sal, bp_catchpoint, ops);
8592
8593 b->cond_string = (cond_string == NULL) ? NULL : xstrdup (cond_string);
8594 b->disposition = tempflag ? disp_del : disp_donttouch;
8595 }
8596
8597 void
8598 install_breakpoint (int internal, struct breakpoint *b, int update_gll)
8599 {
8600 add_to_breakpoint_chain (b);
8601 set_breakpoint_number (internal, b);
8602 if (is_tracepoint (b))
8603 set_tracepoint_count (breakpoint_count);
8604 if (!internal)
8605 mention (b);
8606 observer_notify_breakpoint_created (b);
8607
8608 if (update_gll)
8609 update_global_location_list (UGLL_MAY_INSERT);
8610 }
8611
8612 static void
8613 create_fork_vfork_event_catchpoint (struct gdbarch *gdbarch,
8614 int tempflag, const char *cond_string,
8615 const struct breakpoint_ops *ops)
8616 {
8617 struct fork_catchpoint *c = new fork_catchpoint ();
8618
8619 init_catchpoint (&c->base, gdbarch, tempflag, cond_string, ops);
8620
8621 c->forked_inferior_pid = null_ptid;
8622
8623 install_breakpoint (0, &c->base, 1);
8624 }
8625
8626 /* Exec catchpoints. */
8627
8628 /* An instance of this type is used to represent an exec catchpoint.
8629 It includes a "struct breakpoint" as a kind of base class; users
8630 downcast to "struct breakpoint *" when needed. A breakpoint is
8631 really of this type iff its ops pointer points to
8632 CATCH_EXEC_BREAKPOINT_OPS. */
8633
8634 struct exec_catchpoint
8635 {
8636 /* The base class. */
8637 struct breakpoint base;
8638
8639 /* Filename of a program whose exec triggered this catchpoint.
8640 This field is only valid immediately after this catchpoint has
8641 triggered. */
8642 char *exec_pathname;
8643 };
8644
8645 /* Implement the "dtor" breakpoint_ops method for exec
8646 catchpoints. */
8647
8648 static void
8649 dtor_catch_exec (struct breakpoint *b)
8650 {
8651 struct exec_catchpoint *c = (struct exec_catchpoint *) b;
8652
8653 xfree (c->exec_pathname);
8654
8655 base_breakpoint_ops.dtor (b);
8656 }
8657
8658 static int
8659 insert_catch_exec (struct bp_location *bl)
8660 {
8661 return target_insert_exec_catchpoint (ptid_get_pid (inferior_ptid));
8662 }
8663
8664 static int
8665 remove_catch_exec (struct bp_location *bl, enum remove_bp_reason reason)
8666 {
8667 return target_remove_exec_catchpoint (ptid_get_pid (inferior_ptid));
8668 }
8669
8670 static int
8671 breakpoint_hit_catch_exec (const struct bp_location *bl,
8672 struct address_space *aspace, CORE_ADDR bp_addr,
8673 const struct target_waitstatus *ws)
8674 {
8675 struct exec_catchpoint *c = (struct exec_catchpoint *) bl->owner;
8676
8677 if (ws->kind != TARGET_WAITKIND_EXECD)
8678 return 0;
8679
8680 c->exec_pathname = xstrdup (ws->value.execd_pathname);
8681 return 1;
8682 }
8683
8684 static enum print_stop_action
8685 print_it_catch_exec (bpstat bs)
8686 {
8687 struct ui_out *uiout = current_uiout;
8688 struct breakpoint *b = bs->breakpoint_at;
8689 struct exec_catchpoint *c = (struct exec_catchpoint *) b;
8690
8691 annotate_catchpoint (b->number);
8692 maybe_print_thread_hit_breakpoint (uiout);
8693 if (b->disposition == disp_del)
8694 uiout->text ("Temporary catchpoint ");
8695 else
8696 uiout->text ("Catchpoint ");
8697 if (uiout->is_mi_like_p ())
8698 {
8699 uiout->field_string ("reason", async_reason_lookup (EXEC_ASYNC_EXEC));
8700 uiout->field_string ("disp", bpdisp_text (b->disposition));
8701 }
8702 uiout->field_int ("bkptno", b->number);
8703 uiout->text (" (exec'd ");
8704 uiout->field_string ("new-exec", c->exec_pathname);
8705 uiout->text ("), ");
8706
8707 return PRINT_SRC_AND_LOC;
8708 }
8709
8710 static void
8711 print_one_catch_exec (struct breakpoint *b, struct bp_location **last_loc)
8712 {
8713 struct exec_catchpoint *c = (struct exec_catchpoint *) b;
8714 struct value_print_options opts;
8715 struct ui_out *uiout = current_uiout;
8716
8717 get_user_print_options (&opts);
8718
8719 /* Field 4, the address, is omitted (which makes the columns
8720 not line up too nicely with the headers, but the effect
8721 is relatively readable). */
8722 if (opts.addressprint)
8723 uiout->field_skip ("addr");
8724 annotate_field (5);
8725 uiout->text ("exec");
8726 if (c->exec_pathname != NULL)
8727 {
8728 uiout->text (", program \"");
8729 uiout->field_string ("what", c->exec_pathname);
8730 uiout->text ("\" ");
8731 }
8732
8733 if (uiout->is_mi_like_p ())
8734 uiout->field_string ("catch-type", "exec");
8735 }
8736
8737 static void
8738 print_mention_catch_exec (struct breakpoint *b)
8739 {
8740 printf_filtered (_("Catchpoint %d (exec)"), b->number);
8741 }
8742
8743 /* Implement the "print_recreate" breakpoint_ops method for exec
8744 catchpoints. */
8745
8746 static void
8747 print_recreate_catch_exec (struct breakpoint *b, struct ui_file *fp)
8748 {
8749 fprintf_unfiltered (fp, "catch exec");
8750 print_recreate_thread (b, fp);
8751 }
8752
8753 static struct breakpoint_ops catch_exec_breakpoint_ops;
8754
8755 static int
8756 hw_breakpoint_used_count (void)
8757 {
8758 int i = 0;
8759 struct breakpoint *b;
8760 struct bp_location *bl;
8761
8762 ALL_BREAKPOINTS (b)
8763 {
8764 if (b->type == bp_hardware_breakpoint && breakpoint_enabled (b))
8765 for (bl = b->loc; bl; bl = bl->next)
8766 {
8767 /* Special types of hardware breakpoints may use more than
8768 one register. */
8769 i += b->ops->resources_needed (bl);
8770 }
8771 }
8772
8773 return i;
8774 }
8775
8776 /* Returns the resources B would use if it were a hardware
8777 watchpoint. */
8778
8779 static int
8780 hw_watchpoint_use_count (struct breakpoint *b)
8781 {
8782 int i = 0;
8783 struct bp_location *bl;
8784
8785 if (!breakpoint_enabled (b))
8786 return 0;
8787
8788 for (bl = b->loc; bl; bl = bl->next)
8789 {
8790 /* Special types of hardware watchpoints may use more than
8791 one register. */
8792 i += b->ops->resources_needed (bl);
8793 }
8794
8795 return i;
8796 }
8797
8798 /* Returns the sum the used resources of all hardware watchpoints of
8799 type TYPE in the breakpoints list. Also returns in OTHER_TYPE_USED
8800 the sum of the used resources of all hardware watchpoints of other
8801 types _not_ TYPE. */
8802
8803 static int
8804 hw_watchpoint_used_count_others (struct breakpoint *except,
8805 enum bptype type, int *other_type_used)
8806 {
8807 int i = 0;
8808 struct breakpoint *b;
8809
8810 *other_type_used = 0;
8811 ALL_BREAKPOINTS (b)
8812 {
8813 if (b == except)
8814 continue;
8815 if (!breakpoint_enabled (b))
8816 continue;
8817
8818 if (b->type == type)
8819 i += hw_watchpoint_use_count (b);
8820 else if (is_hardware_watchpoint (b))
8821 *other_type_used = 1;
8822 }
8823
8824 return i;
8825 }
8826
8827 void
8828 disable_watchpoints_before_interactive_call_start (void)
8829 {
8830 struct breakpoint *b;
8831
8832 ALL_BREAKPOINTS (b)
8833 {
8834 if (is_watchpoint (b) && breakpoint_enabled (b))
8835 {
8836 b->enable_state = bp_call_disabled;
8837 update_global_location_list (UGLL_DONT_INSERT);
8838 }
8839 }
8840 }
8841
8842 void
8843 enable_watchpoints_after_interactive_call_stop (void)
8844 {
8845 struct breakpoint *b;
8846
8847 ALL_BREAKPOINTS (b)
8848 {
8849 if (is_watchpoint (b) && b->enable_state == bp_call_disabled)
8850 {
8851 b->enable_state = bp_enabled;
8852 update_global_location_list (UGLL_MAY_INSERT);
8853 }
8854 }
8855 }
8856
8857 void
8858 disable_breakpoints_before_startup (void)
8859 {
8860 current_program_space->executing_startup = 1;
8861 update_global_location_list (UGLL_DONT_INSERT);
8862 }
8863
8864 void
8865 enable_breakpoints_after_startup (void)
8866 {
8867 current_program_space->executing_startup = 0;
8868 breakpoint_re_set ();
8869 }
8870
8871 /* Create a new single-step breakpoint for thread THREAD, with no
8872 locations. */
8873
8874 static struct breakpoint *
8875 new_single_step_breakpoint (int thread, struct gdbarch *gdbarch)
8876 {
8877 struct breakpoint *b = new breakpoint ();
8878
8879 init_raw_breakpoint_without_location (b, gdbarch, bp_single_step,
8880 &momentary_breakpoint_ops);
8881
8882 b->disposition = disp_donttouch;
8883 b->frame_id = null_frame_id;
8884
8885 b->thread = thread;
8886 gdb_assert (b->thread != 0);
8887
8888 add_to_breakpoint_chain (b);
8889
8890 return b;
8891 }
8892
8893 /* Set a momentary breakpoint of type TYPE at address specified by
8894 SAL. If FRAME_ID is valid, the breakpoint is restricted to that
8895 frame. */
8896
8897 struct breakpoint *
8898 set_momentary_breakpoint (struct gdbarch *gdbarch, struct symtab_and_line sal,
8899 struct frame_id frame_id, enum bptype type)
8900 {
8901 struct breakpoint *b;
8902
8903 /* If FRAME_ID is valid, it should be a real frame, not an inlined or
8904 tail-called one. */
8905 gdb_assert (!frame_id_artificial_p (frame_id));
8906
8907 b = set_raw_breakpoint (gdbarch, sal, type, &momentary_breakpoint_ops);
8908 b->enable_state = bp_enabled;
8909 b->disposition = disp_donttouch;
8910 b->frame_id = frame_id;
8911
8912 /* If we're debugging a multi-threaded program, then we want
8913 momentary breakpoints to be active in only a single thread of
8914 control. */
8915 if (in_thread_list (inferior_ptid))
8916 b->thread = ptid_to_global_thread_id (inferior_ptid);
8917
8918 update_global_location_list_nothrow (UGLL_MAY_INSERT);
8919
8920 return b;
8921 }
8922
8923 /* Make a momentary breakpoint based on the master breakpoint ORIG.
8924 The new breakpoint will have type TYPE, use OPS as its
8925 breakpoint_ops, and will set enabled to LOC_ENABLED. */
8926
8927 static struct breakpoint *
8928 momentary_breakpoint_from_master (struct breakpoint *orig,
8929 enum bptype type,
8930 const struct breakpoint_ops *ops,
8931 int loc_enabled)
8932 {
8933 struct breakpoint *copy;
8934
8935 copy = set_raw_breakpoint_without_location (orig->gdbarch, type, ops);
8936 copy->loc = allocate_bp_location (copy);
8937 set_breakpoint_location_function (copy->loc, 1);
8938
8939 copy->loc->gdbarch = orig->loc->gdbarch;
8940 copy->loc->requested_address = orig->loc->requested_address;
8941 copy->loc->address = orig->loc->address;
8942 copy->loc->section = orig->loc->section;
8943 copy->loc->pspace = orig->loc->pspace;
8944 copy->loc->probe = orig->loc->probe;
8945 copy->loc->line_number = orig->loc->line_number;
8946 copy->loc->symtab = orig->loc->symtab;
8947 copy->loc->enabled = loc_enabled;
8948 copy->frame_id = orig->frame_id;
8949 copy->thread = orig->thread;
8950 copy->pspace = orig->pspace;
8951
8952 copy->enable_state = bp_enabled;
8953 copy->disposition = disp_donttouch;
8954 copy->number = internal_breakpoint_number--;
8955
8956 update_global_location_list_nothrow (UGLL_DONT_INSERT);
8957 return copy;
8958 }
8959
8960 /* Make a deep copy of momentary breakpoint ORIG. Returns NULL if
8961 ORIG is NULL. */
8962
8963 struct breakpoint *
8964 clone_momentary_breakpoint (struct breakpoint *orig)
8965 {
8966 /* If there's nothing to clone, then return nothing. */
8967 if (orig == NULL)
8968 return NULL;
8969
8970 return momentary_breakpoint_from_master (orig, orig->type, orig->ops, 0);
8971 }
8972
8973 struct breakpoint *
8974 set_momentary_breakpoint_at_pc (struct gdbarch *gdbarch, CORE_ADDR pc,
8975 enum bptype type)
8976 {
8977 struct symtab_and_line sal;
8978
8979 sal = find_pc_line (pc, 0);
8980 sal.pc = pc;
8981 sal.section = find_pc_overlay (pc);
8982 sal.explicit_pc = 1;
8983
8984 return set_momentary_breakpoint (gdbarch, sal, null_frame_id, type);
8985 }
8986 \f
8987
8988 /* Tell the user we have just set a breakpoint B. */
8989
8990 static void
8991 mention (struct breakpoint *b)
8992 {
8993 b->ops->print_mention (b);
8994 if (current_uiout->is_mi_like_p ())
8995 return;
8996 printf_filtered ("\n");
8997 }
8998 \f
8999
9000 static int bp_loc_is_permanent (struct bp_location *loc);
9001
9002 static struct bp_location *
9003 add_location_to_breakpoint (struct breakpoint *b,
9004 const struct symtab_and_line *sal)
9005 {
9006 struct bp_location *loc, **tmp;
9007 CORE_ADDR adjusted_address;
9008 struct gdbarch *loc_gdbarch = get_sal_arch (*sal);
9009
9010 if (loc_gdbarch == NULL)
9011 loc_gdbarch = b->gdbarch;
9012
9013 /* Adjust the breakpoint's address prior to allocating a location.
9014 Once we call allocate_bp_location(), that mostly uninitialized
9015 location will be placed on the location chain. Adjustment of the
9016 breakpoint may cause target_read_memory() to be called and we do
9017 not want its scan of the location chain to find a breakpoint and
9018 location that's only been partially initialized. */
9019 adjusted_address = adjust_breakpoint_address (loc_gdbarch,
9020 sal->pc, b->type);
9021
9022 /* Sort the locations by their ADDRESS. */
9023 loc = allocate_bp_location (b);
9024 for (tmp = &(b->loc); *tmp != NULL && (*tmp)->address <= adjusted_address;
9025 tmp = &((*tmp)->next))
9026 ;
9027 loc->next = *tmp;
9028 *tmp = loc;
9029
9030 loc->requested_address = sal->pc;
9031 loc->address = adjusted_address;
9032 loc->pspace = sal->pspace;
9033 loc->probe.probe = sal->probe;
9034 loc->probe.objfile = sal->objfile;
9035 gdb_assert (loc->pspace != NULL);
9036 loc->section = sal->section;
9037 loc->gdbarch = loc_gdbarch;
9038 loc->line_number = sal->line;
9039 loc->symtab = sal->symtab;
9040
9041 set_breakpoint_location_function (loc,
9042 sal->explicit_pc || sal->explicit_line);
9043
9044 /* While by definition, permanent breakpoints are already present in the
9045 code, we don't mark the location as inserted. Normally one would expect
9046 that GDB could rely on that breakpoint instruction to stop the program,
9047 thus removing the need to insert its own breakpoint, except that executing
9048 the breakpoint instruction can kill the target instead of reporting a
9049 SIGTRAP. E.g., on SPARC, when interrupts are disabled, executing the
9050 instruction resets the CPU, so QEMU 2.0.0 for SPARC correspondingly dies
9051 with "Trap 0x02 while interrupts disabled, Error state". Letting the
9052 breakpoint be inserted normally results in QEMU knowing about the GDB
9053 breakpoint, and thus trap before the breakpoint instruction is executed.
9054 (If GDB later needs to continue execution past the permanent breakpoint,
9055 it manually increments the PC, thus avoiding executing the breakpoint
9056 instruction.) */
9057 if (bp_loc_is_permanent (loc))
9058 loc->permanent = 1;
9059
9060 return loc;
9061 }
9062 \f
9063
9064 /* See breakpoint.h. */
9065
9066 int
9067 program_breakpoint_here_p (struct gdbarch *gdbarch, CORE_ADDR address)
9068 {
9069 int len;
9070 CORE_ADDR addr;
9071 const gdb_byte *bpoint;
9072 gdb_byte *target_mem;
9073 struct cleanup *cleanup;
9074 int retval = 0;
9075
9076 addr = address;
9077 bpoint = gdbarch_breakpoint_from_pc (gdbarch, &addr, &len);
9078
9079 /* Software breakpoints unsupported? */
9080 if (bpoint == NULL)
9081 return 0;
9082
9083 target_mem = (gdb_byte *) alloca (len);
9084
9085 /* Enable the automatic memory restoration from breakpoints while
9086 we read the memory. Otherwise we could say about our temporary
9087 breakpoints they are permanent. */
9088 cleanup = make_show_memory_breakpoints_cleanup (0);
9089
9090 if (target_read_memory (address, target_mem, len) == 0
9091 && memcmp (target_mem, bpoint, len) == 0)
9092 retval = 1;
9093
9094 do_cleanups (cleanup);
9095
9096 return retval;
9097 }
9098
9099 /* Return 1 if LOC is pointing to a permanent breakpoint,
9100 return 0 otherwise. */
9101
9102 static int
9103 bp_loc_is_permanent (struct bp_location *loc)
9104 {
9105 struct cleanup *cleanup;
9106 int retval;
9107
9108 gdb_assert (loc != NULL);
9109
9110 /* If we have a catchpoint or a watchpoint, just return 0. We should not
9111 attempt to read from the addresses the locations of these breakpoint types
9112 point to. program_breakpoint_here_p, below, will attempt to read
9113 memory. */
9114 if (!breakpoint_address_is_meaningful (loc->owner))
9115 return 0;
9116
9117 cleanup = save_current_space_and_thread ();
9118 switch_to_program_space_and_thread (loc->pspace);
9119
9120 retval = program_breakpoint_here_p (loc->gdbarch, loc->address);
9121
9122 do_cleanups (cleanup);
9123
9124 return retval;
9125 }
9126
9127 /* Build a command list for the dprintf corresponding to the current
9128 settings of the dprintf style options. */
9129
9130 static void
9131 update_dprintf_command_list (struct breakpoint *b)
9132 {
9133 char *dprintf_args = b->extra_string;
9134 char *printf_line = NULL;
9135
9136 if (!dprintf_args)
9137 return;
9138
9139 dprintf_args = skip_spaces (dprintf_args);
9140
9141 /* Allow a comma, as it may have terminated a location, but don't
9142 insist on it. */
9143 if (*dprintf_args == ',')
9144 ++dprintf_args;
9145 dprintf_args = skip_spaces (dprintf_args);
9146
9147 if (*dprintf_args != '"')
9148 error (_("Bad format string, missing '\"'."));
9149
9150 if (strcmp (dprintf_style, dprintf_style_gdb) == 0)
9151 printf_line = xstrprintf ("printf %s", dprintf_args);
9152 else if (strcmp (dprintf_style, dprintf_style_call) == 0)
9153 {
9154 if (!dprintf_function)
9155 error (_("No function supplied for dprintf call"));
9156
9157 if (dprintf_channel && strlen (dprintf_channel) > 0)
9158 printf_line = xstrprintf ("call (void) %s (%s,%s)",
9159 dprintf_function,
9160 dprintf_channel,
9161 dprintf_args);
9162 else
9163 printf_line = xstrprintf ("call (void) %s (%s)",
9164 dprintf_function,
9165 dprintf_args);
9166 }
9167 else if (strcmp (dprintf_style, dprintf_style_agent) == 0)
9168 {
9169 if (target_can_run_breakpoint_commands ())
9170 printf_line = xstrprintf ("agent-printf %s", dprintf_args);
9171 else
9172 {
9173 warning (_("Target cannot run dprintf commands, falling back to GDB printf"));
9174 printf_line = xstrprintf ("printf %s", dprintf_args);
9175 }
9176 }
9177 else
9178 internal_error (__FILE__, __LINE__,
9179 _("Invalid dprintf style."));
9180
9181 gdb_assert (printf_line != NULL);
9182 /* Manufacture a printf sequence. */
9183 {
9184 struct command_line *printf_cmd_line = XNEW (struct command_line);
9185
9186 printf_cmd_line->control_type = simple_control;
9187 printf_cmd_line->body_count = 0;
9188 printf_cmd_line->body_list = NULL;
9189 printf_cmd_line->next = NULL;
9190 printf_cmd_line->line = printf_line;
9191
9192 breakpoint_set_commands (b, command_line_up (printf_cmd_line));
9193 }
9194 }
9195
9196 /* Update all dprintf commands, making their command lists reflect
9197 current style settings. */
9198
9199 static void
9200 update_dprintf_commands (char *args, int from_tty,
9201 struct cmd_list_element *c)
9202 {
9203 struct breakpoint *b;
9204
9205 ALL_BREAKPOINTS (b)
9206 {
9207 if (b->type == bp_dprintf)
9208 update_dprintf_command_list (b);
9209 }
9210 }
9211
9212 /* Create a breakpoint with SAL as location. Use LOCATION
9213 as a description of the location, and COND_STRING
9214 as condition expression. If LOCATION is NULL then create an
9215 "address location" from the address in the SAL. */
9216
9217 static void
9218 init_breakpoint_sal (struct breakpoint *b, struct gdbarch *gdbarch,
9219 struct symtabs_and_lines sals,
9220 event_location_up &&location,
9221 char *filter, char *cond_string,
9222 char *extra_string,
9223 enum bptype type, enum bpdisp disposition,
9224 int thread, int task, int ignore_count,
9225 const struct breakpoint_ops *ops, int from_tty,
9226 int enabled, int internal, unsigned flags,
9227 int display_canonical)
9228 {
9229 int i;
9230
9231 if (type == bp_hardware_breakpoint)
9232 {
9233 int target_resources_ok;
9234
9235 i = hw_breakpoint_used_count ();
9236 target_resources_ok =
9237 target_can_use_hardware_watchpoint (bp_hardware_breakpoint,
9238 i + 1, 0);
9239 if (target_resources_ok == 0)
9240 error (_("No hardware breakpoint support in the target."));
9241 else if (target_resources_ok < 0)
9242 error (_("Hardware breakpoints used exceeds limit."));
9243 }
9244
9245 gdb_assert (sals.nelts > 0);
9246
9247 for (i = 0; i < sals.nelts; ++i)
9248 {
9249 struct symtab_and_line sal = sals.sals[i];
9250 struct bp_location *loc;
9251
9252 if (from_tty)
9253 {
9254 struct gdbarch *loc_gdbarch = get_sal_arch (sal);
9255 if (!loc_gdbarch)
9256 loc_gdbarch = gdbarch;
9257
9258 describe_other_breakpoints (loc_gdbarch,
9259 sal.pspace, sal.pc, sal.section, thread);
9260 }
9261
9262 if (i == 0)
9263 {
9264 init_raw_breakpoint (b, gdbarch, sal, type, ops);
9265 b->thread = thread;
9266 b->task = task;
9267
9268 b->cond_string = cond_string;
9269 b->extra_string = extra_string;
9270 b->ignore_count = ignore_count;
9271 b->enable_state = enabled ? bp_enabled : bp_disabled;
9272 b->disposition = disposition;
9273
9274 if ((flags & CREATE_BREAKPOINT_FLAGS_INSERTED) != 0)
9275 b->loc->inserted = 1;
9276
9277 if (type == bp_static_tracepoint)
9278 {
9279 struct tracepoint *t = (struct tracepoint *) b;
9280 struct static_tracepoint_marker marker;
9281
9282 if (strace_marker_p (b))
9283 {
9284 /* We already know the marker exists, otherwise, we
9285 wouldn't see a sal for it. */
9286 const char *p
9287 = &event_location_to_string (b->location.get ())[3];
9288 const char *endp;
9289 char *marker_str;
9290
9291 p = skip_spaces_const (p);
9292
9293 endp = skip_to_space_const (p);
9294
9295 marker_str = savestring (p, endp - p);
9296 t->static_trace_marker_id = marker_str;
9297
9298 printf_filtered (_("Probed static tracepoint "
9299 "marker \"%s\"\n"),
9300 t->static_trace_marker_id);
9301 }
9302 else if (target_static_tracepoint_marker_at (sal.pc, &marker))
9303 {
9304 t->static_trace_marker_id = xstrdup (marker.str_id);
9305 release_static_tracepoint_marker (&marker);
9306
9307 printf_filtered (_("Probed static tracepoint "
9308 "marker \"%s\"\n"),
9309 t->static_trace_marker_id);
9310 }
9311 else
9312 warning (_("Couldn't determine the static "
9313 "tracepoint marker to probe"));
9314 }
9315
9316 loc = b->loc;
9317 }
9318 else
9319 {
9320 loc = add_location_to_breakpoint (b, &sal);
9321 if ((flags & CREATE_BREAKPOINT_FLAGS_INSERTED) != 0)
9322 loc->inserted = 1;
9323 }
9324
9325 if (b->cond_string)
9326 {
9327 const char *arg = b->cond_string;
9328
9329 loc->cond = parse_exp_1 (&arg, loc->address,
9330 block_for_pc (loc->address), 0);
9331 if (*arg)
9332 error (_("Garbage '%s' follows condition"), arg);
9333 }
9334
9335 /* Dynamic printf requires and uses additional arguments on the
9336 command line, otherwise it's an error. */
9337 if (type == bp_dprintf)
9338 {
9339 if (b->extra_string)
9340 update_dprintf_command_list (b);
9341 else
9342 error (_("Format string required"));
9343 }
9344 else if (b->extra_string)
9345 error (_("Garbage '%s' at end of command"), b->extra_string);
9346 }
9347
9348 b->display_canonical = display_canonical;
9349 if (location != NULL)
9350 b->location = std::move (location);
9351 else
9352 b->location = new_address_location (b->loc->address, NULL, 0);
9353 b->filter = filter;
9354 }
9355
9356 static void
9357 create_breakpoint_sal (struct gdbarch *gdbarch,
9358 struct symtabs_and_lines sals,
9359 event_location_up &&location,
9360 char *filter, char *cond_string,
9361 char *extra_string,
9362 enum bptype type, enum bpdisp disposition,
9363 int thread, int task, int ignore_count,
9364 const struct breakpoint_ops *ops, int from_tty,
9365 int enabled, int internal, unsigned flags,
9366 int display_canonical)
9367 {
9368 struct breakpoint *b;
9369 struct cleanup *old_chain;
9370
9371 if (is_tracepoint_type (type))
9372 {
9373 struct tracepoint *t;
9374
9375 t = new tracepoint ();
9376 b = &t->base;
9377 }
9378 else
9379 b = new breakpoint ();
9380
9381 old_chain = make_cleanup (xfree, b);
9382
9383 init_breakpoint_sal (b, gdbarch,
9384 sals, std::move (location),
9385 filter, cond_string, extra_string,
9386 type, disposition,
9387 thread, task, ignore_count,
9388 ops, from_tty,
9389 enabled, internal, flags,
9390 display_canonical);
9391 discard_cleanups (old_chain);
9392
9393 install_breakpoint (internal, b, 0);
9394 }
9395
9396 /* Add SALS.nelts breakpoints to the breakpoint table. For each
9397 SALS.sal[i] breakpoint, include the corresponding ADDR_STRING[i]
9398 value. COND_STRING, if not NULL, specified the condition to be
9399 used for all breakpoints. Essentially the only case where
9400 SALS.nelts is not 1 is when we set a breakpoint on an overloaded
9401 function. In that case, it's still not possible to specify
9402 separate conditions for different overloaded functions, so
9403 we take just a single condition string.
9404
9405 NOTE: If the function succeeds, the caller is expected to cleanup
9406 the arrays ADDR_STRING, COND_STRING, and SALS (but not the
9407 array contents). If the function fails (error() is called), the
9408 caller is expected to cleanups both the ADDR_STRING, COND_STRING,
9409 COND and SALS arrays and each of those arrays contents. */
9410
9411 static void
9412 create_breakpoints_sal (struct gdbarch *gdbarch,
9413 struct linespec_result *canonical,
9414 char *cond_string, char *extra_string,
9415 enum bptype type, enum bpdisp disposition,
9416 int thread, int task, int ignore_count,
9417 const struct breakpoint_ops *ops, int from_tty,
9418 int enabled, int internal, unsigned flags)
9419 {
9420 int i;
9421 struct linespec_sals *lsal;
9422
9423 if (canonical->pre_expanded)
9424 gdb_assert (VEC_length (linespec_sals, canonical->sals) == 1);
9425
9426 for (i = 0; VEC_iterate (linespec_sals, canonical->sals, i, lsal); ++i)
9427 {
9428 /* Note that 'location' can be NULL in the case of a plain
9429 'break', without arguments. */
9430 event_location_up location
9431 = (canonical->location != NULL
9432 ? copy_event_location (canonical->location) : NULL);
9433 char *filter_string = lsal->canonical ? xstrdup (lsal->canonical) : NULL;
9434
9435 make_cleanup (xfree, filter_string);
9436 create_breakpoint_sal (gdbarch, lsal->sals,
9437 std::move (location),
9438 filter_string,
9439 cond_string, extra_string,
9440 type, disposition,
9441 thread, task, ignore_count, ops,
9442 from_tty, enabled, internal, flags,
9443 canonical->special_display);
9444 }
9445 }
9446
9447 /* Parse LOCATION which is assumed to be a SAL specification possibly
9448 followed by conditionals. On return, SALS contains an array of SAL
9449 addresses found. LOCATION points to the end of the SAL (for
9450 linespec locations).
9451
9452 The array and the line spec strings are allocated on the heap, it is
9453 the caller's responsibility to free them. */
9454
9455 static void
9456 parse_breakpoint_sals (const struct event_location *location,
9457 struct linespec_result *canonical)
9458 {
9459 struct symtab_and_line cursal;
9460
9461 if (event_location_type (location) == LINESPEC_LOCATION)
9462 {
9463 const char *address = get_linespec_location (location);
9464
9465 if (address == NULL)
9466 {
9467 /* The last displayed codepoint, if it's valid, is our default
9468 breakpoint address. */
9469 if (last_displayed_sal_is_valid ())
9470 {
9471 struct linespec_sals lsal;
9472 struct symtab_and_line sal;
9473 CORE_ADDR pc;
9474
9475 init_sal (&sal); /* Initialize to zeroes. */
9476 lsal.sals.sals = XNEW (struct symtab_and_line);
9477
9478 /* Set sal's pspace, pc, symtab, and line to the values
9479 corresponding to the last call to print_frame_info.
9480 Be sure to reinitialize LINE with NOTCURRENT == 0
9481 as the breakpoint line number is inappropriate otherwise.
9482 find_pc_line would adjust PC, re-set it back. */
9483 get_last_displayed_sal (&sal);
9484 pc = sal.pc;
9485 sal = find_pc_line (pc, 0);
9486
9487 /* "break" without arguments is equivalent to "break *PC"
9488 where PC is the last displayed codepoint's address. So
9489 make sure to set sal.explicit_pc to prevent GDB from
9490 trying to expand the list of sals to include all other
9491 instances with the same symtab and line. */
9492 sal.pc = pc;
9493 sal.explicit_pc = 1;
9494
9495 lsal.sals.sals[0] = sal;
9496 lsal.sals.nelts = 1;
9497 lsal.canonical = NULL;
9498
9499 VEC_safe_push (linespec_sals, canonical->sals, &lsal);
9500 return;
9501 }
9502 else
9503 error (_("No default breakpoint address now."));
9504 }
9505 }
9506
9507 /* Force almost all breakpoints to be in terms of the
9508 current_source_symtab (which is decode_line_1's default).
9509 This should produce the results we want almost all of the
9510 time while leaving default_breakpoint_* alone.
9511
9512 ObjC: However, don't match an Objective-C method name which
9513 may have a '+' or '-' succeeded by a '['. */
9514 cursal = get_current_source_symtab_and_line ();
9515 if (last_displayed_sal_is_valid ())
9516 {
9517 const char *address = NULL;
9518
9519 if (event_location_type (location) == LINESPEC_LOCATION)
9520 address = get_linespec_location (location);
9521
9522 if (!cursal.symtab
9523 || (address != NULL
9524 && strchr ("+-", address[0]) != NULL
9525 && address[1] != '['))
9526 {
9527 decode_line_full (location, DECODE_LINE_FUNFIRSTLINE, NULL,
9528 get_last_displayed_symtab (),
9529 get_last_displayed_line (),
9530 canonical, NULL, NULL);
9531 return;
9532 }
9533 }
9534
9535 decode_line_full (location, DECODE_LINE_FUNFIRSTLINE, NULL,
9536 cursal.symtab, cursal.line, canonical, NULL, NULL);
9537 }
9538
9539
9540 /* Convert each SAL into a real PC. Verify that the PC can be
9541 inserted as a breakpoint. If it can't throw an error. */
9542
9543 static void
9544 breakpoint_sals_to_pc (struct symtabs_and_lines *sals)
9545 {
9546 int i;
9547
9548 for (i = 0; i < sals->nelts; i++)
9549 resolve_sal_pc (&sals->sals[i]);
9550 }
9551
9552 /* Fast tracepoints may have restrictions on valid locations. For
9553 instance, a fast tracepoint using a jump instead of a trap will
9554 likely have to overwrite more bytes than a trap would, and so can
9555 only be placed where the instruction is longer than the jump, or a
9556 multi-instruction sequence does not have a jump into the middle of
9557 it, etc. */
9558
9559 static void
9560 check_fast_tracepoint_sals (struct gdbarch *gdbarch,
9561 struct symtabs_and_lines *sals)
9562 {
9563 int i, rslt;
9564 struct symtab_and_line *sal;
9565 char *msg;
9566 struct cleanup *old_chain;
9567
9568 for (i = 0; i < sals->nelts; i++)
9569 {
9570 struct gdbarch *sarch;
9571
9572 sal = &sals->sals[i];
9573
9574 sarch = get_sal_arch (*sal);
9575 /* We fall back to GDBARCH if there is no architecture
9576 associated with SAL. */
9577 if (sarch == NULL)
9578 sarch = gdbarch;
9579 rslt = gdbarch_fast_tracepoint_valid_at (sarch, sal->pc, &msg);
9580 old_chain = make_cleanup (xfree, msg);
9581
9582 if (!rslt)
9583 error (_("May not have a fast tracepoint at %s%s"),
9584 paddress (sarch, sal->pc), (msg ? msg : ""));
9585
9586 do_cleanups (old_chain);
9587 }
9588 }
9589
9590 /* Given TOK, a string specification of condition and thread, as
9591 accepted by the 'break' command, extract the condition
9592 string and thread number and set *COND_STRING and *THREAD.
9593 PC identifies the context at which the condition should be parsed.
9594 If no condition is found, *COND_STRING is set to NULL.
9595 If no thread is found, *THREAD is set to -1. */
9596
9597 static void
9598 find_condition_and_thread (const char *tok, CORE_ADDR pc,
9599 char **cond_string, int *thread, int *task,
9600 char **rest)
9601 {
9602 *cond_string = NULL;
9603 *thread = -1;
9604 *task = 0;
9605 *rest = NULL;
9606
9607 while (tok && *tok)
9608 {
9609 const char *end_tok;
9610 int toklen;
9611 const char *cond_start = NULL;
9612 const char *cond_end = NULL;
9613
9614 tok = skip_spaces_const (tok);
9615
9616 if ((*tok == '"' || *tok == ',') && rest)
9617 {
9618 *rest = savestring (tok, strlen (tok));
9619 return;
9620 }
9621
9622 end_tok = skip_to_space_const (tok);
9623
9624 toklen = end_tok - tok;
9625
9626 if (toklen >= 1 && strncmp (tok, "if", toklen) == 0)
9627 {
9628 tok = cond_start = end_tok + 1;
9629 parse_exp_1 (&tok, pc, block_for_pc (pc), 0);
9630 cond_end = tok;
9631 *cond_string = savestring (cond_start, cond_end - cond_start);
9632 }
9633 else if (toklen >= 1 && strncmp (tok, "thread", toklen) == 0)
9634 {
9635 const char *tmptok;
9636 struct thread_info *thr;
9637
9638 tok = end_tok + 1;
9639 thr = parse_thread_id (tok, &tmptok);
9640 if (tok == tmptok)
9641 error (_("Junk after thread keyword."));
9642 *thread = thr->global_num;
9643 tok = tmptok;
9644 }
9645 else if (toklen >= 1 && strncmp (tok, "task", toklen) == 0)
9646 {
9647 char *tmptok;
9648
9649 tok = end_tok + 1;
9650 *task = strtol (tok, &tmptok, 0);
9651 if (tok == tmptok)
9652 error (_("Junk after task keyword."));
9653 if (!valid_task_id (*task))
9654 error (_("Unknown task %d."), *task);
9655 tok = tmptok;
9656 }
9657 else if (rest)
9658 {
9659 *rest = savestring (tok, strlen (tok));
9660 return;
9661 }
9662 else
9663 error (_("Junk at end of arguments."));
9664 }
9665 }
9666
9667 /* Decode a static tracepoint marker spec. */
9668
9669 static struct symtabs_and_lines
9670 decode_static_tracepoint_spec (const char **arg_p)
9671 {
9672 VEC(static_tracepoint_marker_p) *markers = NULL;
9673 struct symtabs_and_lines sals;
9674 struct cleanup *old_chain;
9675 const char *p = &(*arg_p)[3];
9676 const char *endp;
9677 char *marker_str;
9678 int i;
9679
9680 p = skip_spaces_const (p);
9681
9682 endp = skip_to_space_const (p);
9683
9684 marker_str = savestring (p, endp - p);
9685 old_chain = make_cleanup (xfree, marker_str);
9686
9687 markers = target_static_tracepoint_markers_by_strid (marker_str);
9688 if (VEC_empty(static_tracepoint_marker_p, markers))
9689 error (_("No known static tracepoint marker named %s"), marker_str);
9690
9691 sals.nelts = VEC_length(static_tracepoint_marker_p, markers);
9692 sals.sals = XNEWVEC (struct symtab_and_line, sals.nelts);
9693
9694 for (i = 0; i < sals.nelts; i++)
9695 {
9696 struct static_tracepoint_marker *marker;
9697
9698 marker = VEC_index (static_tracepoint_marker_p, markers, i);
9699
9700 init_sal (&sals.sals[i]);
9701
9702 sals.sals[i] = find_pc_line (marker->address, 0);
9703 sals.sals[i].pc = marker->address;
9704
9705 release_static_tracepoint_marker (marker);
9706 }
9707
9708 do_cleanups (old_chain);
9709
9710 *arg_p = endp;
9711 return sals;
9712 }
9713
9714 /* See breakpoint.h. */
9715
9716 int
9717 create_breakpoint (struct gdbarch *gdbarch,
9718 const struct event_location *location, char *cond_string,
9719 int thread, char *extra_string,
9720 int parse_extra,
9721 int tempflag, enum bptype type_wanted,
9722 int ignore_count,
9723 enum auto_boolean pending_break_support,
9724 const struct breakpoint_ops *ops,
9725 int from_tty, int enabled, int internal,
9726 unsigned flags)
9727 {
9728 struct linespec_result canonical;
9729 struct cleanup *bkpt_chain = NULL;
9730 int pending = 0;
9731 int task = 0;
9732 int prev_bkpt_count = breakpoint_count;
9733
9734 gdb_assert (ops != NULL);
9735
9736 /* If extra_string isn't useful, set it to NULL. */
9737 if (extra_string != NULL && *extra_string == '\0')
9738 extra_string = NULL;
9739
9740 TRY
9741 {
9742 ops->create_sals_from_location (location, &canonical, type_wanted);
9743 }
9744 CATCH (e, RETURN_MASK_ERROR)
9745 {
9746 /* If caller is interested in rc value from parse, set
9747 value. */
9748 if (e.error == NOT_FOUND_ERROR)
9749 {
9750 /* If pending breakpoint support is turned off, throw
9751 error. */
9752
9753 if (pending_break_support == AUTO_BOOLEAN_FALSE)
9754 throw_exception (e);
9755
9756 exception_print (gdb_stderr, e);
9757
9758 /* If pending breakpoint support is auto query and the user
9759 selects no, then simply return the error code. */
9760 if (pending_break_support == AUTO_BOOLEAN_AUTO
9761 && !nquery (_("Make %s pending on future shared library load? "),
9762 bptype_string (type_wanted)))
9763 return 0;
9764
9765 /* At this point, either the user was queried about setting
9766 a pending breakpoint and selected yes, or pending
9767 breakpoint behavior is on and thus a pending breakpoint
9768 is defaulted on behalf of the user. */
9769 pending = 1;
9770 }
9771 else
9772 throw_exception (e);
9773 }
9774 END_CATCH
9775
9776 if (!pending && VEC_empty (linespec_sals, canonical.sals))
9777 return 0;
9778
9779 /* ----------------------------- SNIP -----------------------------
9780 Anything added to the cleanup chain beyond this point is assumed
9781 to be part of a breakpoint. If the breakpoint create succeeds
9782 then the memory is not reclaimed. */
9783 bkpt_chain = make_cleanup (null_cleanup, 0);
9784
9785 /* Resolve all line numbers to PC's and verify that the addresses
9786 are ok for the target. */
9787 if (!pending)
9788 {
9789 int ix;
9790 struct linespec_sals *iter;
9791
9792 for (ix = 0; VEC_iterate (linespec_sals, canonical.sals, ix, iter); ++ix)
9793 breakpoint_sals_to_pc (&iter->sals);
9794 }
9795
9796 /* Fast tracepoints may have additional restrictions on location. */
9797 if (!pending && type_wanted == bp_fast_tracepoint)
9798 {
9799 int ix;
9800 struct linespec_sals *iter;
9801
9802 for (ix = 0; VEC_iterate (linespec_sals, canonical.sals, ix, iter); ++ix)
9803 check_fast_tracepoint_sals (gdbarch, &iter->sals);
9804 }
9805
9806 /* Verify that condition can be parsed, before setting any
9807 breakpoints. Allocate a separate condition expression for each
9808 breakpoint. */
9809 if (!pending)
9810 {
9811 if (parse_extra)
9812 {
9813 char *rest;
9814 struct linespec_sals *lsal;
9815
9816 lsal = VEC_index (linespec_sals, canonical.sals, 0);
9817
9818 /* Here we only parse 'arg' to separate condition
9819 from thread number, so parsing in context of first
9820 sal is OK. When setting the breakpoint we'll
9821 re-parse it in context of each sal. */
9822
9823 find_condition_and_thread (extra_string, lsal->sals.sals[0].pc,
9824 &cond_string, &thread, &task, &rest);
9825 if (cond_string)
9826 make_cleanup (xfree, cond_string);
9827 if (rest)
9828 make_cleanup (xfree, rest);
9829 if (rest)
9830 extra_string = rest;
9831 else
9832 extra_string = NULL;
9833 }
9834 else
9835 {
9836 if (type_wanted != bp_dprintf
9837 && extra_string != NULL && *extra_string != '\0')
9838 error (_("Garbage '%s' at end of location"), extra_string);
9839
9840 /* Create a private copy of condition string. */
9841 if (cond_string)
9842 {
9843 cond_string = xstrdup (cond_string);
9844 make_cleanup (xfree, cond_string);
9845 }
9846 /* Create a private copy of any extra string. */
9847 if (extra_string)
9848 {
9849 extra_string = xstrdup (extra_string);
9850 make_cleanup (xfree, extra_string);
9851 }
9852 }
9853
9854 ops->create_breakpoints_sal (gdbarch, &canonical,
9855 cond_string, extra_string, type_wanted,
9856 tempflag ? disp_del : disp_donttouch,
9857 thread, task, ignore_count, ops,
9858 from_tty, enabled, internal, flags);
9859 }
9860 else
9861 {
9862 struct breakpoint *b;
9863
9864 if (is_tracepoint_type (type_wanted))
9865 {
9866 struct tracepoint *t;
9867
9868 t = new tracepoint ();
9869 b = &t->base;
9870 }
9871 else
9872 b = new breakpoint ();
9873
9874 init_raw_breakpoint_without_location (b, gdbarch, type_wanted, ops);
9875 b->location = copy_event_location (location);
9876
9877 if (parse_extra)
9878 b->cond_string = NULL;
9879 else
9880 {
9881 /* Create a private copy of condition string. */
9882 if (cond_string)
9883 {
9884 cond_string = xstrdup (cond_string);
9885 make_cleanup (xfree, cond_string);
9886 }
9887 b->cond_string = cond_string;
9888 b->thread = thread;
9889 }
9890
9891 /* Create a private copy of any extra string. */
9892 if (extra_string != NULL)
9893 {
9894 extra_string = xstrdup (extra_string);
9895 make_cleanup (xfree, extra_string);
9896 }
9897 b->extra_string = extra_string;
9898 b->ignore_count = ignore_count;
9899 b->disposition = tempflag ? disp_del : disp_donttouch;
9900 b->condition_not_parsed = 1;
9901 b->enable_state = enabled ? bp_enabled : bp_disabled;
9902 if ((type_wanted != bp_breakpoint
9903 && type_wanted != bp_hardware_breakpoint) || thread != -1)
9904 b->pspace = current_program_space;
9905
9906 install_breakpoint (internal, b, 0);
9907 }
9908
9909 if (VEC_length (linespec_sals, canonical.sals) > 1)
9910 {
9911 warning (_("Multiple breakpoints were set.\nUse the "
9912 "\"delete\" command to delete unwanted breakpoints."));
9913 prev_breakpoint_count = prev_bkpt_count;
9914 }
9915
9916 /* That's it. Discard the cleanups for data inserted into the
9917 breakpoint. */
9918 discard_cleanups (bkpt_chain);
9919
9920 /* error call may happen here - have BKPT_CHAIN already discarded. */
9921 update_global_location_list (UGLL_MAY_INSERT);
9922
9923 return 1;
9924 }
9925
9926 /* Set a breakpoint.
9927 ARG is a string describing breakpoint address,
9928 condition, and thread.
9929 FLAG specifies if a breakpoint is hardware on,
9930 and if breakpoint is temporary, using BP_HARDWARE_FLAG
9931 and BP_TEMPFLAG. */
9932
9933 static void
9934 break_command_1 (char *arg, int flag, int from_tty)
9935 {
9936 int tempflag = flag & BP_TEMPFLAG;
9937 enum bptype type_wanted = (flag & BP_HARDWAREFLAG
9938 ? bp_hardware_breakpoint
9939 : bp_breakpoint);
9940 struct breakpoint_ops *ops;
9941
9942 event_location_up location = string_to_event_location (&arg, current_language);
9943
9944 /* Matching breakpoints on probes. */
9945 if (location != NULL
9946 && event_location_type (location.get ()) == PROBE_LOCATION)
9947 ops = &bkpt_probe_breakpoint_ops;
9948 else
9949 ops = &bkpt_breakpoint_ops;
9950
9951 create_breakpoint (get_current_arch (),
9952 location.get (),
9953 NULL, 0, arg, 1 /* parse arg */,
9954 tempflag, type_wanted,
9955 0 /* Ignore count */,
9956 pending_break_support,
9957 ops,
9958 from_tty,
9959 1 /* enabled */,
9960 0 /* internal */,
9961 0);
9962 }
9963
9964 /* Helper function for break_command_1 and disassemble_command. */
9965
9966 void
9967 resolve_sal_pc (struct symtab_and_line *sal)
9968 {
9969 CORE_ADDR pc;
9970
9971 if (sal->pc == 0 && sal->symtab != NULL)
9972 {
9973 if (!find_line_pc (sal->symtab, sal->line, &pc))
9974 error (_("No line %d in file \"%s\"."),
9975 sal->line, symtab_to_filename_for_display (sal->symtab));
9976 sal->pc = pc;
9977
9978 /* If this SAL corresponds to a breakpoint inserted using a line
9979 number, then skip the function prologue if necessary. */
9980 if (sal->explicit_line)
9981 skip_prologue_sal (sal);
9982 }
9983
9984 if (sal->section == 0 && sal->symtab != NULL)
9985 {
9986 const struct blockvector *bv;
9987 const struct block *b;
9988 struct symbol *sym;
9989
9990 bv = blockvector_for_pc_sect (sal->pc, 0, &b,
9991 SYMTAB_COMPUNIT (sal->symtab));
9992 if (bv != NULL)
9993 {
9994 sym = block_linkage_function (b);
9995 if (sym != NULL)
9996 {
9997 fixup_symbol_section (sym, SYMTAB_OBJFILE (sal->symtab));
9998 sal->section = SYMBOL_OBJ_SECTION (SYMTAB_OBJFILE (sal->symtab),
9999 sym);
10000 }
10001 else
10002 {
10003 /* It really is worthwhile to have the section, so we'll
10004 just have to look harder. This case can be executed
10005 if we have line numbers but no functions (as can
10006 happen in assembly source). */
10007
10008 struct bound_minimal_symbol msym;
10009 struct cleanup *old_chain = save_current_space_and_thread ();
10010
10011 switch_to_program_space_and_thread (sal->pspace);
10012
10013 msym = lookup_minimal_symbol_by_pc (sal->pc);
10014 if (msym.minsym)
10015 sal->section = MSYMBOL_OBJ_SECTION (msym.objfile, msym.minsym);
10016
10017 do_cleanups (old_chain);
10018 }
10019 }
10020 }
10021 }
10022
10023 void
10024 break_command (char *arg, int from_tty)
10025 {
10026 break_command_1 (arg, 0, from_tty);
10027 }
10028
10029 void
10030 tbreak_command (char *arg, int from_tty)
10031 {
10032 break_command_1 (arg, BP_TEMPFLAG, from_tty);
10033 }
10034
10035 static void
10036 hbreak_command (char *arg, int from_tty)
10037 {
10038 break_command_1 (arg, BP_HARDWAREFLAG, from_tty);
10039 }
10040
10041 static void
10042 thbreak_command (char *arg, int from_tty)
10043 {
10044 break_command_1 (arg, (BP_TEMPFLAG | BP_HARDWAREFLAG), from_tty);
10045 }
10046
10047 static void
10048 stop_command (char *arg, int from_tty)
10049 {
10050 printf_filtered (_("Specify the type of breakpoint to set.\n\
10051 Usage: stop in <function | address>\n\
10052 stop at <line>\n"));
10053 }
10054
10055 static void
10056 stopin_command (char *arg, int from_tty)
10057 {
10058 int badInput = 0;
10059
10060 if (arg == (char *) NULL)
10061 badInput = 1;
10062 else if (*arg != '*')
10063 {
10064 char *argptr = arg;
10065 int hasColon = 0;
10066
10067 /* Look for a ':'. If this is a line number specification, then
10068 say it is bad, otherwise, it should be an address or
10069 function/method name. */
10070 while (*argptr && !hasColon)
10071 {
10072 hasColon = (*argptr == ':');
10073 argptr++;
10074 }
10075
10076 if (hasColon)
10077 badInput = (*argptr != ':'); /* Not a class::method */
10078 else
10079 badInput = isdigit (*arg); /* a simple line number */
10080 }
10081
10082 if (badInput)
10083 printf_filtered (_("Usage: stop in <function | address>\n"));
10084 else
10085 break_command_1 (arg, 0, from_tty);
10086 }
10087
10088 static void
10089 stopat_command (char *arg, int from_tty)
10090 {
10091 int badInput = 0;
10092
10093 if (arg == (char *) NULL || *arg == '*') /* no line number */
10094 badInput = 1;
10095 else
10096 {
10097 char *argptr = arg;
10098 int hasColon = 0;
10099
10100 /* Look for a ':'. If there is a '::' then get out, otherwise
10101 it is probably a line number. */
10102 while (*argptr && !hasColon)
10103 {
10104 hasColon = (*argptr == ':');
10105 argptr++;
10106 }
10107
10108 if (hasColon)
10109 badInput = (*argptr == ':'); /* we have class::method */
10110 else
10111 badInput = !isdigit (*arg); /* not a line number */
10112 }
10113
10114 if (badInput)
10115 printf_filtered (_("Usage: stop at <line>\n"));
10116 else
10117 break_command_1 (arg, 0, from_tty);
10118 }
10119
10120 /* The dynamic printf command is mostly like a regular breakpoint, but
10121 with a prewired command list consisting of a single output command,
10122 built from extra arguments supplied on the dprintf command
10123 line. */
10124
10125 static void
10126 dprintf_command (char *arg, int from_tty)
10127 {
10128 event_location_up location = string_to_event_location (&arg, current_language);
10129
10130 /* If non-NULL, ARG should have been advanced past the location;
10131 the next character must be ','. */
10132 if (arg != NULL)
10133 {
10134 if (arg[0] != ',' || arg[1] == '\0')
10135 error (_("Format string required"));
10136 else
10137 {
10138 /* Skip the comma. */
10139 ++arg;
10140 }
10141 }
10142
10143 create_breakpoint (get_current_arch (),
10144 location.get (),
10145 NULL, 0, arg, 1 /* parse arg */,
10146 0, bp_dprintf,
10147 0 /* Ignore count */,
10148 pending_break_support,
10149 &dprintf_breakpoint_ops,
10150 from_tty,
10151 1 /* enabled */,
10152 0 /* internal */,
10153 0);
10154 }
10155
10156 static void
10157 agent_printf_command (char *arg, int from_tty)
10158 {
10159 error (_("May only run agent-printf on the target"));
10160 }
10161
10162 /* Implement the "breakpoint_hit" breakpoint_ops method for
10163 ranged breakpoints. */
10164
10165 static int
10166 breakpoint_hit_ranged_breakpoint (const struct bp_location *bl,
10167 struct address_space *aspace,
10168 CORE_ADDR bp_addr,
10169 const struct target_waitstatus *ws)
10170 {
10171 if (ws->kind != TARGET_WAITKIND_STOPPED
10172 || ws->value.sig != GDB_SIGNAL_TRAP)
10173 return 0;
10174
10175 return breakpoint_address_match_range (bl->pspace->aspace, bl->address,
10176 bl->length, aspace, bp_addr);
10177 }
10178
10179 /* Implement the "resources_needed" breakpoint_ops method for
10180 ranged breakpoints. */
10181
10182 static int
10183 resources_needed_ranged_breakpoint (const struct bp_location *bl)
10184 {
10185 return target_ranged_break_num_registers ();
10186 }
10187
10188 /* Implement the "print_it" breakpoint_ops method for
10189 ranged breakpoints. */
10190
10191 static enum print_stop_action
10192 print_it_ranged_breakpoint (bpstat bs)
10193 {
10194 struct breakpoint *b = bs->breakpoint_at;
10195 struct bp_location *bl = b->loc;
10196 struct ui_out *uiout = current_uiout;
10197
10198 gdb_assert (b->type == bp_hardware_breakpoint);
10199
10200 /* Ranged breakpoints have only one location. */
10201 gdb_assert (bl && bl->next == NULL);
10202
10203 annotate_breakpoint (b->number);
10204
10205 maybe_print_thread_hit_breakpoint (uiout);
10206
10207 if (b->disposition == disp_del)
10208 uiout->text ("Temporary ranged breakpoint ");
10209 else
10210 uiout->text ("Ranged breakpoint ");
10211 if (uiout->is_mi_like_p ())
10212 {
10213 uiout->field_string ("reason",
10214 async_reason_lookup (EXEC_ASYNC_BREAKPOINT_HIT));
10215 uiout->field_string ("disp", bpdisp_text (b->disposition));
10216 }
10217 uiout->field_int ("bkptno", b->number);
10218 uiout->text (", ");
10219
10220 return PRINT_SRC_AND_LOC;
10221 }
10222
10223 /* Implement the "print_one" breakpoint_ops method for
10224 ranged breakpoints. */
10225
10226 static void
10227 print_one_ranged_breakpoint (struct breakpoint *b,
10228 struct bp_location **last_loc)
10229 {
10230 struct bp_location *bl = b->loc;
10231 struct value_print_options opts;
10232 struct ui_out *uiout = current_uiout;
10233
10234 /* Ranged breakpoints have only one location. */
10235 gdb_assert (bl && bl->next == NULL);
10236
10237 get_user_print_options (&opts);
10238
10239 if (opts.addressprint)
10240 /* We don't print the address range here, it will be printed later
10241 by print_one_detail_ranged_breakpoint. */
10242 uiout->field_skip ("addr");
10243 annotate_field (5);
10244 print_breakpoint_location (b, bl);
10245 *last_loc = bl;
10246 }
10247
10248 /* Implement the "print_one_detail" breakpoint_ops method for
10249 ranged breakpoints. */
10250
10251 static void
10252 print_one_detail_ranged_breakpoint (const struct breakpoint *b,
10253 struct ui_out *uiout)
10254 {
10255 CORE_ADDR address_start, address_end;
10256 struct bp_location *bl = b->loc;
10257 string_file stb;
10258
10259 gdb_assert (bl);
10260
10261 address_start = bl->address;
10262 address_end = address_start + bl->length - 1;
10263
10264 uiout->text ("\taddress range: ");
10265 stb.printf ("[%s, %s]",
10266 print_core_address (bl->gdbarch, address_start),
10267 print_core_address (bl->gdbarch, address_end));
10268 uiout->field_stream ("addr", stb);
10269 uiout->text ("\n");
10270 }
10271
10272 /* Implement the "print_mention" breakpoint_ops method for
10273 ranged breakpoints. */
10274
10275 static void
10276 print_mention_ranged_breakpoint (struct breakpoint *b)
10277 {
10278 struct bp_location *bl = b->loc;
10279 struct ui_out *uiout = current_uiout;
10280
10281 gdb_assert (bl);
10282 gdb_assert (b->type == bp_hardware_breakpoint);
10283
10284 if (uiout->is_mi_like_p ())
10285 return;
10286
10287 printf_filtered (_("Hardware assisted ranged breakpoint %d from %s to %s."),
10288 b->number, paddress (bl->gdbarch, bl->address),
10289 paddress (bl->gdbarch, bl->address + bl->length - 1));
10290 }
10291
10292 /* Implement the "print_recreate" breakpoint_ops method for
10293 ranged breakpoints. */
10294
10295 static void
10296 print_recreate_ranged_breakpoint (struct breakpoint *b, struct ui_file *fp)
10297 {
10298 fprintf_unfiltered (fp, "break-range %s, %s",
10299 event_location_to_string (b->location.get ()),
10300 event_location_to_string (b->location_range_end.get ()));
10301 print_recreate_thread (b, fp);
10302 }
10303
10304 /* The breakpoint_ops structure to be used in ranged breakpoints. */
10305
10306 static struct breakpoint_ops ranged_breakpoint_ops;
10307
10308 /* Find the address where the end of the breakpoint range should be
10309 placed, given the SAL of the end of the range. This is so that if
10310 the user provides a line number, the end of the range is set to the
10311 last instruction of the given line. */
10312
10313 static CORE_ADDR
10314 find_breakpoint_range_end (struct symtab_and_line sal)
10315 {
10316 CORE_ADDR end;
10317
10318 /* If the user provided a PC value, use it. Otherwise,
10319 find the address of the end of the given location. */
10320 if (sal.explicit_pc)
10321 end = sal.pc;
10322 else
10323 {
10324 int ret;
10325 CORE_ADDR start;
10326
10327 ret = find_line_pc_range (sal, &start, &end);
10328 if (!ret)
10329 error (_("Could not find location of the end of the range."));
10330
10331 /* find_line_pc_range returns the start of the next line. */
10332 end--;
10333 }
10334
10335 return end;
10336 }
10337
10338 /* Implement the "break-range" CLI command. */
10339
10340 static void
10341 break_range_command (char *arg, int from_tty)
10342 {
10343 char *arg_start, *addr_string_start;
10344 struct linespec_result canonical_start, canonical_end;
10345 int bp_count, can_use_bp, length;
10346 CORE_ADDR end;
10347 struct breakpoint *b;
10348 struct symtab_and_line sal_start, sal_end;
10349 struct cleanup *cleanup_bkpt;
10350 struct linespec_sals *lsal_start, *lsal_end;
10351
10352 /* We don't support software ranged breakpoints. */
10353 if (target_ranged_break_num_registers () < 0)
10354 error (_("This target does not support hardware ranged breakpoints."));
10355
10356 bp_count = hw_breakpoint_used_count ();
10357 bp_count += target_ranged_break_num_registers ();
10358 can_use_bp = target_can_use_hardware_watchpoint (bp_hardware_breakpoint,
10359 bp_count, 0);
10360 if (can_use_bp < 0)
10361 error (_("Hardware breakpoints used exceeds limit."));
10362
10363 arg = skip_spaces (arg);
10364 if (arg == NULL || arg[0] == '\0')
10365 error(_("No address range specified."));
10366
10367 arg_start = arg;
10368 event_location_up start_location = string_to_event_location (&arg,
10369 current_language);
10370 parse_breakpoint_sals (start_location.get (), &canonical_start);
10371
10372 if (arg[0] != ',')
10373 error (_("Too few arguments."));
10374 else if (VEC_empty (linespec_sals, canonical_start.sals))
10375 error (_("Could not find location of the beginning of the range."));
10376
10377 lsal_start = VEC_index (linespec_sals, canonical_start.sals, 0);
10378
10379 if (VEC_length (linespec_sals, canonical_start.sals) > 1
10380 || lsal_start->sals.nelts != 1)
10381 error (_("Cannot create a ranged breakpoint with multiple locations."));
10382
10383 sal_start = lsal_start->sals.sals[0];
10384 addr_string_start = savestring (arg_start, arg - arg_start);
10385 cleanup_bkpt = make_cleanup (xfree, addr_string_start);
10386
10387 arg++; /* Skip the comma. */
10388 arg = skip_spaces (arg);
10389
10390 /* Parse the end location. */
10391
10392 arg_start = arg;
10393
10394 /* We call decode_line_full directly here instead of using
10395 parse_breakpoint_sals because we need to specify the start location's
10396 symtab and line as the default symtab and line for the end of the
10397 range. This makes it possible to have ranges like "foo.c:27, +14",
10398 where +14 means 14 lines from the start location. */
10399 event_location_up end_location = string_to_event_location (&arg,
10400 current_language);
10401 decode_line_full (end_location.get (), DECODE_LINE_FUNFIRSTLINE, NULL,
10402 sal_start.symtab, sal_start.line,
10403 &canonical_end, NULL, NULL);
10404
10405 if (VEC_empty (linespec_sals, canonical_end.sals))
10406 error (_("Could not find location of the end of the range."));
10407
10408 lsal_end = VEC_index (linespec_sals, canonical_end.sals, 0);
10409 if (VEC_length (linespec_sals, canonical_end.sals) > 1
10410 || lsal_end->sals.nelts != 1)
10411 error (_("Cannot create a ranged breakpoint with multiple locations."));
10412
10413 sal_end = lsal_end->sals.sals[0];
10414
10415 end = find_breakpoint_range_end (sal_end);
10416 if (sal_start.pc > end)
10417 error (_("Invalid address range, end precedes start."));
10418
10419 length = end - sal_start.pc + 1;
10420 if (length < 0)
10421 /* Length overflowed. */
10422 error (_("Address range too large."));
10423 else if (length == 1)
10424 {
10425 /* This range is simple enough to be handled by
10426 the `hbreak' command. */
10427 hbreak_command (addr_string_start, 1);
10428
10429 do_cleanups (cleanup_bkpt);
10430
10431 return;
10432 }
10433
10434 /* Now set up the breakpoint. */
10435 b = set_raw_breakpoint (get_current_arch (), sal_start,
10436 bp_hardware_breakpoint, &ranged_breakpoint_ops);
10437 set_breakpoint_count (breakpoint_count + 1);
10438 b->number = breakpoint_count;
10439 b->disposition = disp_donttouch;
10440 b->location = std::move (start_location);
10441 b->location_range_end = std::move (end_location);
10442 b->loc->length = length;
10443
10444 do_cleanups (cleanup_bkpt);
10445
10446 mention (b);
10447 observer_notify_breakpoint_created (b);
10448 update_global_location_list (UGLL_MAY_INSERT);
10449 }
10450
10451 /* Return non-zero if EXP is verified as constant. Returned zero
10452 means EXP is variable. Also the constant detection may fail for
10453 some constant expressions and in such case still falsely return
10454 zero. */
10455
10456 static int
10457 watchpoint_exp_is_const (const struct expression *exp)
10458 {
10459 int i = exp->nelts;
10460
10461 while (i > 0)
10462 {
10463 int oplenp, argsp;
10464
10465 /* We are only interested in the descriptor of each element. */
10466 operator_length (exp, i, &oplenp, &argsp);
10467 i -= oplenp;
10468
10469 switch (exp->elts[i].opcode)
10470 {
10471 case BINOP_ADD:
10472 case BINOP_SUB:
10473 case BINOP_MUL:
10474 case BINOP_DIV:
10475 case BINOP_REM:
10476 case BINOP_MOD:
10477 case BINOP_LSH:
10478 case BINOP_RSH:
10479 case BINOP_LOGICAL_AND:
10480 case BINOP_LOGICAL_OR:
10481 case BINOP_BITWISE_AND:
10482 case BINOP_BITWISE_IOR:
10483 case BINOP_BITWISE_XOR:
10484 case BINOP_EQUAL:
10485 case BINOP_NOTEQUAL:
10486 case BINOP_LESS:
10487 case BINOP_GTR:
10488 case BINOP_LEQ:
10489 case BINOP_GEQ:
10490 case BINOP_REPEAT:
10491 case BINOP_COMMA:
10492 case BINOP_EXP:
10493 case BINOP_MIN:
10494 case BINOP_MAX:
10495 case BINOP_INTDIV:
10496 case BINOP_CONCAT:
10497 case TERNOP_COND:
10498 case TERNOP_SLICE:
10499
10500 case OP_LONG:
10501 case OP_DOUBLE:
10502 case OP_DECFLOAT:
10503 case OP_LAST:
10504 case OP_COMPLEX:
10505 case OP_STRING:
10506 case OP_ARRAY:
10507 case OP_TYPE:
10508 case OP_TYPEOF:
10509 case OP_DECLTYPE:
10510 case OP_TYPEID:
10511 case OP_NAME:
10512 case OP_OBJC_NSSTRING:
10513
10514 case UNOP_NEG:
10515 case UNOP_LOGICAL_NOT:
10516 case UNOP_COMPLEMENT:
10517 case UNOP_ADDR:
10518 case UNOP_HIGH:
10519 case UNOP_CAST:
10520
10521 case UNOP_CAST_TYPE:
10522 case UNOP_REINTERPRET_CAST:
10523 case UNOP_DYNAMIC_CAST:
10524 /* Unary, binary and ternary operators: We have to check
10525 their operands. If they are constant, then so is the
10526 result of that operation. For instance, if A and B are
10527 determined to be constants, then so is "A + B".
10528
10529 UNOP_IND is one exception to the rule above, because the
10530 value of *ADDR is not necessarily a constant, even when
10531 ADDR is. */
10532 break;
10533
10534 case OP_VAR_VALUE:
10535 /* Check whether the associated symbol is a constant.
10536
10537 We use SYMBOL_CLASS rather than TYPE_CONST because it's
10538 possible that a buggy compiler could mark a variable as
10539 constant even when it is not, and TYPE_CONST would return
10540 true in this case, while SYMBOL_CLASS wouldn't.
10541
10542 We also have to check for function symbols because they
10543 are always constant. */
10544 {
10545 struct symbol *s = exp->elts[i + 2].symbol;
10546
10547 if (SYMBOL_CLASS (s) != LOC_BLOCK
10548 && SYMBOL_CLASS (s) != LOC_CONST
10549 && SYMBOL_CLASS (s) != LOC_CONST_BYTES)
10550 return 0;
10551 break;
10552 }
10553
10554 /* The default action is to return 0 because we are using
10555 the optimistic approach here: If we don't know something,
10556 then it is not a constant. */
10557 default:
10558 return 0;
10559 }
10560 }
10561
10562 return 1;
10563 }
10564
10565 /* Implement the "dtor" breakpoint_ops method for watchpoints. */
10566
10567 static void
10568 dtor_watchpoint (struct breakpoint *self)
10569 {
10570 struct watchpoint *w = (struct watchpoint *) self;
10571
10572 xfree (w->exp_string);
10573 xfree (w->exp_string_reparse);
10574 value_free (w->val);
10575
10576 base_breakpoint_ops.dtor (self);
10577 }
10578
10579 /* Implement the "re_set" breakpoint_ops method for watchpoints. */
10580
10581 static void
10582 re_set_watchpoint (struct breakpoint *b)
10583 {
10584 struct watchpoint *w = (struct watchpoint *) b;
10585
10586 /* Watchpoint can be either on expression using entirely global
10587 variables, or it can be on local variables.
10588
10589 Watchpoints of the first kind are never auto-deleted, and even
10590 persist across program restarts. Since they can use variables
10591 from shared libraries, we need to reparse expression as libraries
10592 are loaded and unloaded.
10593
10594 Watchpoints on local variables can also change meaning as result
10595 of solib event. For example, if a watchpoint uses both a local
10596 and a global variables in expression, it's a local watchpoint,
10597 but unloading of a shared library will make the expression
10598 invalid. This is not a very common use case, but we still
10599 re-evaluate expression, to avoid surprises to the user.
10600
10601 Note that for local watchpoints, we re-evaluate it only if
10602 watchpoints frame id is still valid. If it's not, it means the
10603 watchpoint is out of scope and will be deleted soon. In fact,
10604 I'm not sure we'll ever be called in this case.
10605
10606 If a local watchpoint's frame id is still valid, then
10607 w->exp_valid_block is likewise valid, and we can safely use it.
10608
10609 Don't do anything about disabled watchpoints, since they will be
10610 reevaluated again when enabled. */
10611 update_watchpoint (w, 1 /* reparse */);
10612 }
10613
10614 /* Implement the "insert" breakpoint_ops method for hardware watchpoints. */
10615
10616 static int
10617 insert_watchpoint (struct bp_location *bl)
10618 {
10619 struct watchpoint *w = (struct watchpoint *) bl->owner;
10620 int length = w->exact ? 1 : bl->length;
10621
10622 return target_insert_watchpoint (bl->address, length, bl->watchpoint_type,
10623 w->cond_exp.get ());
10624 }
10625
10626 /* Implement the "remove" breakpoint_ops method for hardware watchpoints. */
10627
10628 static int
10629 remove_watchpoint (struct bp_location *bl, enum remove_bp_reason reason)
10630 {
10631 struct watchpoint *w = (struct watchpoint *) bl->owner;
10632 int length = w->exact ? 1 : bl->length;
10633
10634 return target_remove_watchpoint (bl->address, length, bl->watchpoint_type,
10635 w->cond_exp.get ());
10636 }
10637
10638 static int
10639 breakpoint_hit_watchpoint (const struct bp_location *bl,
10640 struct address_space *aspace, CORE_ADDR bp_addr,
10641 const struct target_waitstatus *ws)
10642 {
10643 struct breakpoint *b = bl->owner;
10644 struct watchpoint *w = (struct watchpoint *) b;
10645
10646 /* Continuable hardware watchpoints are treated as non-existent if the
10647 reason we stopped wasn't a hardware watchpoint (we didn't stop on
10648 some data address). Otherwise gdb won't stop on a break instruction
10649 in the code (not from a breakpoint) when a hardware watchpoint has
10650 been defined. Also skip watchpoints which we know did not trigger
10651 (did not match the data address). */
10652 if (is_hardware_watchpoint (b)
10653 && w->watchpoint_triggered == watch_triggered_no)
10654 return 0;
10655
10656 return 1;
10657 }
10658
10659 static void
10660 check_status_watchpoint (bpstat bs)
10661 {
10662 gdb_assert (is_watchpoint (bs->breakpoint_at));
10663
10664 bpstat_check_watchpoint (bs);
10665 }
10666
10667 /* Implement the "resources_needed" breakpoint_ops method for
10668 hardware watchpoints. */
10669
10670 static int
10671 resources_needed_watchpoint (const struct bp_location *bl)
10672 {
10673 struct watchpoint *w = (struct watchpoint *) bl->owner;
10674 int length = w->exact? 1 : bl->length;
10675
10676 return target_region_ok_for_hw_watchpoint (bl->address, length);
10677 }
10678
10679 /* Implement the "works_in_software_mode" breakpoint_ops method for
10680 hardware watchpoints. */
10681
10682 static int
10683 works_in_software_mode_watchpoint (const struct breakpoint *b)
10684 {
10685 /* Read and access watchpoints only work with hardware support. */
10686 return b->type == bp_watchpoint || b->type == bp_hardware_watchpoint;
10687 }
10688
10689 static enum print_stop_action
10690 print_it_watchpoint (bpstat bs)
10691 {
10692 struct cleanup *old_chain;
10693 struct breakpoint *b;
10694 enum print_stop_action result;
10695 struct watchpoint *w;
10696 struct ui_out *uiout = current_uiout;
10697
10698 gdb_assert (bs->bp_location_at != NULL);
10699
10700 b = bs->breakpoint_at;
10701 w = (struct watchpoint *) b;
10702
10703 old_chain = make_cleanup (null_cleanup, NULL);
10704
10705 annotate_watchpoint (b->number);
10706 maybe_print_thread_hit_breakpoint (uiout);
10707
10708 string_file stb;
10709
10710 switch (b->type)
10711 {
10712 case bp_watchpoint:
10713 case bp_hardware_watchpoint:
10714 if (uiout->is_mi_like_p ())
10715 uiout->field_string
10716 ("reason", async_reason_lookup (EXEC_ASYNC_WATCHPOINT_TRIGGER));
10717 mention (b);
10718 make_cleanup_ui_out_tuple_begin_end (uiout, "value");
10719 uiout->text ("\nOld value = ");
10720 watchpoint_value_print (bs->old_val, &stb);
10721 uiout->field_stream ("old", stb);
10722 uiout->text ("\nNew value = ");
10723 watchpoint_value_print (w->val, &stb);
10724 uiout->field_stream ("new", stb);
10725 uiout->text ("\n");
10726 /* More than one watchpoint may have been triggered. */
10727 result = PRINT_UNKNOWN;
10728 break;
10729
10730 case bp_read_watchpoint:
10731 if (uiout->is_mi_like_p ())
10732 uiout->field_string
10733 ("reason", async_reason_lookup (EXEC_ASYNC_READ_WATCHPOINT_TRIGGER));
10734 mention (b);
10735 make_cleanup_ui_out_tuple_begin_end (uiout, "value");
10736 uiout->text ("\nValue = ");
10737 watchpoint_value_print (w->val, &stb);
10738 uiout->field_stream ("value", stb);
10739 uiout->text ("\n");
10740 result = PRINT_UNKNOWN;
10741 break;
10742
10743 case bp_access_watchpoint:
10744 if (bs->old_val != NULL)
10745 {
10746 if (uiout->is_mi_like_p ())
10747 uiout->field_string
10748 ("reason",
10749 async_reason_lookup (EXEC_ASYNC_ACCESS_WATCHPOINT_TRIGGER));
10750 mention (b);
10751 make_cleanup_ui_out_tuple_begin_end (uiout, "value");
10752 uiout->text ("\nOld value = ");
10753 watchpoint_value_print (bs->old_val, &stb);
10754 uiout->field_stream ("old", stb);
10755 uiout->text ("\nNew value = ");
10756 }
10757 else
10758 {
10759 mention (b);
10760 if (uiout->is_mi_like_p ())
10761 uiout->field_string
10762 ("reason",
10763 async_reason_lookup (EXEC_ASYNC_ACCESS_WATCHPOINT_TRIGGER));
10764 make_cleanup_ui_out_tuple_begin_end (uiout, "value");
10765 uiout->text ("\nValue = ");
10766 }
10767 watchpoint_value_print (w->val, &stb);
10768 uiout->field_stream ("new", stb);
10769 uiout->text ("\n");
10770 result = PRINT_UNKNOWN;
10771 break;
10772 default:
10773 result = PRINT_UNKNOWN;
10774 }
10775
10776 do_cleanups (old_chain);
10777 return result;
10778 }
10779
10780 /* Implement the "print_mention" breakpoint_ops method for hardware
10781 watchpoints. */
10782
10783 static void
10784 print_mention_watchpoint (struct breakpoint *b)
10785 {
10786 struct cleanup *ui_out_chain;
10787 struct watchpoint *w = (struct watchpoint *) b;
10788 struct ui_out *uiout = current_uiout;
10789
10790 switch (b->type)
10791 {
10792 case bp_watchpoint:
10793 uiout->text ("Watchpoint ");
10794 ui_out_chain = make_cleanup_ui_out_tuple_begin_end (uiout, "wpt");
10795 break;
10796 case bp_hardware_watchpoint:
10797 uiout->text ("Hardware watchpoint ");
10798 ui_out_chain = make_cleanup_ui_out_tuple_begin_end (uiout, "wpt");
10799 break;
10800 case bp_read_watchpoint:
10801 uiout->text ("Hardware read watchpoint ");
10802 ui_out_chain = make_cleanup_ui_out_tuple_begin_end (uiout, "hw-rwpt");
10803 break;
10804 case bp_access_watchpoint:
10805 uiout->text ("Hardware access (read/write) watchpoint ");
10806 ui_out_chain = make_cleanup_ui_out_tuple_begin_end (uiout, "hw-awpt");
10807 break;
10808 default:
10809 internal_error (__FILE__, __LINE__,
10810 _("Invalid hardware watchpoint type."));
10811 }
10812
10813 uiout->field_int ("number", b->number);
10814 uiout->text (": ");
10815 uiout->field_string ("exp", w->exp_string);
10816 do_cleanups (ui_out_chain);
10817 }
10818
10819 /* Implement the "print_recreate" breakpoint_ops method for
10820 watchpoints. */
10821
10822 static void
10823 print_recreate_watchpoint (struct breakpoint *b, struct ui_file *fp)
10824 {
10825 struct watchpoint *w = (struct watchpoint *) b;
10826
10827 switch (b->type)
10828 {
10829 case bp_watchpoint:
10830 case bp_hardware_watchpoint:
10831 fprintf_unfiltered (fp, "watch");
10832 break;
10833 case bp_read_watchpoint:
10834 fprintf_unfiltered (fp, "rwatch");
10835 break;
10836 case bp_access_watchpoint:
10837 fprintf_unfiltered (fp, "awatch");
10838 break;
10839 default:
10840 internal_error (__FILE__, __LINE__,
10841 _("Invalid watchpoint type."));
10842 }
10843
10844 fprintf_unfiltered (fp, " %s", w->exp_string);
10845 print_recreate_thread (b, fp);
10846 }
10847
10848 /* Implement the "explains_signal" breakpoint_ops method for
10849 watchpoints. */
10850
10851 static int
10852 explains_signal_watchpoint (struct breakpoint *b, enum gdb_signal sig)
10853 {
10854 /* A software watchpoint cannot cause a signal other than
10855 GDB_SIGNAL_TRAP. */
10856 if (b->type == bp_watchpoint && sig != GDB_SIGNAL_TRAP)
10857 return 0;
10858
10859 return 1;
10860 }
10861
10862 /* The breakpoint_ops structure to be used in hardware watchpoints. */
10863
10864 static struct breakpoint_ops watchpoint_breakpoint_ops;
10865
10866 /* Implement the "insert" breakpoint_ops method for
10867 masked hardware watchpoints. */
10868
10869 static int
10870 insert_masked_watchpoint (struct bp_location *bl)
10871 {
10872 struct watchpoint *w = (struct watchpoint *) bl->owner;
10873
10874 return target_insert_mask_watchpoint (bl->address, w->hw_wp_mask,
10875 bl->watchpoint_type);
10876 }
10877
10878 /* Implement the "remove" breakpoint_ops method for
10879 masked hardware watchpoints. */
10880
10881 static int
10882 remove_masked_watchpoint (struct bp_location *bl, enum remove_bp_reason reason)
10883 {
10884 struct watchpoint *w = (struct watchpoint *) bl->owner;
10885
10886 return target_remove_mask_watchpoint (bl->address, w->hw_wp_mask,
10887 bl->watchpoint_type);
10888 }
10889
10890 /* Implement the "resources_needed" breakpoint_ops method for
10891 masked hardware watchpoints. */
10892
10893 static int
10894 resources_needed_masked_watchpoint (const struct bp_location *bl)
10895 {
10896 struct watchpoint *w = (struct watchpoint *) bl->owner;
10897
10898 return target_masked_watch_num_registers (bl->address, w->hw_wp_mask);
10899 }
10900
10901 /* Implement the "works_in_software_mode" breakpoint_ops method for
10902 masked hardware watchpoints. */
10903
10904 static int
10905 works_in_software_mode_masked_watchpoint (const struct breakpoint *b)
10906 {
10907 return 0;
10908 }
10909
10910 /* Implement the "print_it" breakpoint_ops method for
10911 masked hardware watchpoints. */
10912
10913 static enum print_stop_action
10914 print_it_masked_watchpoint (bpstat bs)
10915 {
10916 struct breakpoint *b = bs->breakpoint_at;
10917 struct ui_out *uiout = current_uiout;
10918
10919 /* Masked watchpoints have only one location. */
10920 gdb_assert (b->loc && b->loc->next == NULL);
10921
10922 annotate_watchpoint (b->number);
10923 maybe_print_thread_hit_breakpoint (uiout);
10924
10925 switch (b->type)
10926 {
10927 case bp_hardware_watchpoint:
10928 if (uiout->is_mi_like_p ())
10929 uiout->field_string
10930 ("reason", async_reason_lookup (EXEC_ASYNC_WATCHPOINT_TRIGGER));
10931 break;
10932
10933 case bp_read_watchpoint:
10934 if (uiout->is_mi_like_p ())
10935 uiout->field_string
10936 ("reason", async_reason_lookup (EXEC_ASYNC_READ_WATCHPOINT_TRIGGER));
10937 break;
10938
10939 case bp_access_watchpoint:
10940 if (uiout->is_mi_like_p ())
10941 uiout->field_string
10942 ("reason",
10943 async_reason_lookup (EXEC_ASYNC_ACCESS_WATCHPOINT_TRIGGER));
10944 break;
10945 default:
10946 internal_error (__FILE__, __LINE__,
10947 _("Invalid hardware watchpoint type."));
10948 }
10949
10950 mention (b);
10951 uiout->text (_("\n\
10952 Check the underlying instruction at PC for the memory\n\
10953 address and value which triggered this watchpoint.\n"));
10954 uiout->text ("\n");
10955
10956 /* More than one watchpoint may have been triggered. */
10957 return PRINT_UNKNOWN;
10958 }
10959
10960 /* Implement the "print_one_detail" breakpoint_ops method for
10961 masked hardware watchpoints. */
10962
10963 static void
10964 print_one_detail_masked_watchpoint (const struct breakpoint *b,
10965 struct ui_out *uiout)
10966 {
10967 struct watchpoint *w = (struct watchpoint *) b;
10968
10969 /* Masked watchpoints have only one location. */
10970 gdb_assert (b->loc && b->loc->next == NULL);
10971
10972 uiout->text ("\tmask ");
10973 uiout->field_core_addr ("mask", b->loc->gdbarch, w->hw_wp_mask);
10974 uiout->text ("\n");
10975 }
10976
10977 /* Implement the "print_mention" breakpoint_ops method for
10978 masked hardware watchpoints. */
10979
10980 static void
10981 print_mention_masked_watchpoint (struct breakpoint *b)
10982 {
10983 struct watchpoint *w = (struct watchpoint *) b;
10984 struct ui_out *uiout = current_uiout;
10985 struct cleanup *ui_out_chain;
10986
10987 switch (b->type)
10988 {
10989 case bp_hardware_watchpoint:
10990 uiout->text ("Masked hardware watchpoint ");
10991 ui_out_chain = make_cleanup_ui_out_tuple_begin_end (uiout, "wpt");
10992 break;
10993 case bp_read_watchpoint:
10994 uiout->text ("Masked hardware read watchpoint ");
10995 ui_out_chain = make_cleanup_ui_out_tuple_begin_end (uiout, "hw-rwpt");
10996 break;
10997 case bp_access_watchpoint:
10998 uiout->text ("Masked hardware access (read/write) watchpoint ");
10999 ui_out_chain = make_cleanup_ui_out_tuple_begin_end (uiout, "hw-awpt");
11000 break;
11001 default:
11002 internal_error (__FILE__, __LINE__,
11003 _("Invalid hardware watchpoint type."));
11004 }
11005
11006 uiout->field_int ("number", b->number);
11007 uiout->text (": ");
11008 uiout->field_string ("exp", w->exp_string);
11009 do_cleanups (ui_out_chain);
11010 }
11011
11012 /* Implement the "print_recreate" breakpoint_ops method for
11013 masked hardware watchpoints. */
11014
11015 static void
11016 print_recreate_masked_watchpoint (struct breakpoint *b, struct ui_file *fp)
11017 {
11018 struct watchpoint *w = (struct watchpoint *) b;
11019 char tmp[40];
11020
11021 switch (b->type)
11022 {
11023 case bp_hardware_watchpoint:
11024 fprintf_unfiltered (fp, "watch");
11025 break;
11026 case bp_read_watchpoint:
11027 fprintf_unfiltered (fp, "rwatch");
11028 break;
11029 case bp_access_watchpoint:
11030 fprintf_unfiltered (fp, "awatch");
11031 break;
11032 default:
11033 internal_error (__FILE__, __LINE__,
11034 _("Invalid hardware watchpoint type."));
11035 }
11036
11037 sprintf_vma (tmp, w->hw_wp_mask);
11038 fprintf_unfiltered (fp, " %s mask 0x%s", w->exp_string, tmp);
11039 print_recreate_thread (b, fp);
11040 }
11041
11042 /* The breakpoint_ops structure to be used in masked hardware watchpoints. */
11043
11044 static struct breakpoint_ops masked_watchpoint_breakpoint_ops;
11045
11046 /* Tell whether the given watchpoint is a masked hardware watchpoint. */
11047
11048 static int
11049 is_masked_watchpoint (const struct breakpoint *b)
11050 {
11051 return b->ops == &masked_watchpoint_breakpoint_ops;
11052 }
11053
11054 /* accessflag: hw_write: watch write,
11055 hw_read: watch read,
11056 hw_access: watch access (read or write) */
11057 static void
11058 watch_command_1 (const char *arg, int accessflag, int from_tty,
11059 int just_location, int internal)
11060 {
11061 struct breakpoint *b, *scope_breakpoint = NULL;
11062 const struct block *exp_valid_block = NULL, *cond_exp_valid_block = NULL;
11063 struct value *val, *mark, *result;
11064 int saved_bitpos = 0, saved_bitsize = 0;
11065 struct frame_info *frame;
11066 const char *exp_start = NULL;
11067 const char *exp_end = NULL;
11068 const char *tok, *end_tok;
11069 int toklen = -1;
11070 const char *cond_start = NULL;
11071 const char *cond_end = NULL;
11072 enum bptype bp_type;
11073 int thread = -1;
11074 int pc = 0;
11075 /* Flag to indicate whether we are going to use masks for
11076 the hardware watchpoint. */
11077 int use_mask = 0;
11078 CORE_ADDR mask = 0;
11079 struct watchpoint *w;
11080 char *expression;
11081 struct cleanup *back_to;
11082
11083 /* Make sure that we actually have parameters to parse. */
11084 if (arg != NULL && arg[0] != '\0')
11085 {
11086 const char *value_start;
11087
11088 exp_end = arg + strlen (arg);
11089
11090 /* Look for "parameter value" pairs at the end
11091 of the arguments string. */
11092 for (tok = exp_end - 1; tok > arg; tok--)
11093 {
11094 /* Skip whitespace at the end of the argument list. */
11095 while (tok > arg && (*tok == ' ' || *tok == '\t'))
11096 tok--;
11097
11098 /* Find the beginning of the last token.
11099 This is the value of the parameter. */
11100 while (tok > arg && (*tok != ' ' && *tok != '\t'))
11101 tok--;
11102 value_start = tok + 1;
11103
11104 /* Skip whitespace. */
11105 while (tok > arg && (*tok == ' ' || *tok == '\t'))
11106 tok--;
11107
11108 end_tok = tok;
11109
11110 /* Find the beginning of the second to last token.
11111 This is the parameter itself. */
11112 while (tok > arg && (*tok != ' ' && *tok != '\t'))
11113 tok--;
11114 tok++;
11115 toklen = end_tok - tok + 1;
11116
11117 if (toklen == 6 && startswith (tok, "thread"))
11118 {
11119 struct thread_info *thr;
11120 /* At this point we've found a "thread" token, which means
11121 the user is trying to set a watchpoint that triggers
11122 only in a specific thread. */
11123 const char *endp;
11124
11125 if (thread != -1)
11126 error(_("You can specify only one thread."));
11127
11128 /* Extract the thread ID from the next token. */
11129 thr = parse_thread_id (value_start, &endp);
11130
11131 /* Check if the user provided a valid thread ID. */
11132 if (*endp != ' ' && *endp != '\t' && *endp != '\0')
11133 invalid_thread_id_error (value_start);
11134
11135 thread = thr->global_num;
11136 }
11137 else if (toklen == 4 && startswith (tok, "mask"))
11138 {
11139 /* We've found a "mask" token, which means the user wants to
11140 create a hardware watchpoint that is going to have the mask
11141 facility. */
11142 struct value *mask_value, *mark;
11143
11144 if (use_mask)
11145 error(_("You can specify only one mask."));
11146
11147 use_mask = just_location = 1;
11148
11149 mark = value_mark ();
11150 mask_value = parse_to_comma_and_eval (&value_start);
11151 mask = value_as_address (mask_value);
11152 value_free_to_mark (mark);
11153 }
11154 else
11155 /* We didn't recognize what we found. We should stop here. */
11156 break;
11157
11158 /* Truncate the string and get rid of the "parameter value" pair before
11159 the arguments string is parsed by the parse_exp_1 function. */
11160 exp_end = tok;
11161 }
11162 }
11163 else
11164 exp_end = arg;
11165
11166 /* Parse the rest of the arguments. From here on out, everything
11167 is in terms of a newly allocated string instead of the original
11168 ARG. */
11169 innermost_block = NULL;
11170 expression = savestring (arg, exp_end - arg);
11171 back_to = make_cleanup (xfree, expression);
11172 exp_start = arg = expression;
11173 expression_up exp = parse_exp_1 (&arg, 0, 0, 0);
11174 exp_end = arg;
11175 /* Remove trailing whitespace from the expression before saving it.
11176 This makes the eventual display of the expression string a bit
11177 prettier. */
11178 while (exp_end > exp_start && (exp_end[-1] == ' ' || exp_end[-1] == '\t'))
11179 --exp_end;
11180
11181 /* Checking if the expression is not constant. */
11182 if (watchpoint_exp_is_const (exp.get ()))
11183 {
11184 int len;
11185
11186 len = exp_end - exp_start;
11187 while (len > 0 && isspace (exp_start[len - 1]))
11188 len--;
11189 error (_("Cannot watch constant value `%.*s'."), len, exp_start);
11190 }
11191
11192 exp_valid_block = innermost_block;
11193 mark = value_mark ();
11194 fetch_subexp_value (exp.get (), &pc, &val, &result, NULL, just_location);
11195
11196 if (val != NULL && just_location)
11197 {
11198 saved_bitpos = value_bitpos (val);
11199 saved_bitsize = value_bitsize (val);
11200 }
11201
11202 if (just_location)
11203 {
11204 int ret;
11205
11206 exp_valid_block = NULL;
11207 val = value_addr (result);
11208 release_value (val);
11209 value_free_to_mark (mark);
11210
11211 if (use_mask)
11212 {
11213 ret = target_masked_watch_num_registers (value_as_address (val),
11214 mask);
11215 if (ret == -1)
11216 error (_("This target does not support masked watchpoints."));
11217 else if (ret == -2)
11218 error (_("Invalid mask or memory region."));
11219 }
11220 }
11221 else if (val != NULL)
11222 release_value (val);
11223
11224 tok = skip_spaces_const (arg);
11225 end_tok = skip_to_space_const (tok);
11226
11227 toklen = end_tok - tok;
11228 if (toklen >= 1 && strncmp (tok, "if", toklen) == 0)
11229 {
11230 innermost_block = NULL;
11231 tok = cond_start = end_tok + 1;
11232 parse_exp_1 (&tok, 0, 0, 0);
11233
11234 /* The watchpoint expression may not be local, but the condition
11235 may still be. E.g.: `watch global if local > 0'. */
11236 cond_exp_valid_block = innermost_block;
11237
11238 cond_end = tok;
11239 }
11240 if (*tok)
11241 error (_("Junk at end of command."));
11242
11243 frame = block_innermost_frame (exp_valid_block);
11244
11245 /* If the expression is "local", then set up a "watchpoint scope"
11246 breakpoint at the point where we've left the scope of the watchpoint
11247 expression. Create the scope breakpoint before the watchpoint, so
11248 that we will encounter it first in bpstat_stop_status. */
11249 if (exp_valid_block && frame)
11250 {
11251 if (frame_id_p (frame_unwind_caller_id (frame)))
11252 {
11253 scope_breakpoint
11254 = create_internal_breakpoint (frame_unwind_caller_arch (frame),
11255 frame_unwind_caller_pc (frame),
11256 bp_watchpoint_scope,
11257 &momentary_breakpoint_ops);
11258
11259 scope_breakpoint->enable_state = bp_enabled;
11260
11261 /* Automatically delete the breakpoint when it hits. */
11262 scope_breakpoint->disposition = disp_del;
11263
11264 /* Only break in the proper frame (help with recursion). */
11265 scope_breakpoint->frame_id = frame_unwind_caller_id (frame);
11266
11267 /* Set the address at which we will stop. */
11268 scope_breakpoint->loc->gdbarch
11269 = frame_unwind_caller_arch (frame);
11270 scope_breakpoint->loc->requested_address
11271 = frame_unwind_caller_pc (frame);
11272 scope_breakpoint->loc->address
11273 = adjust_breakpoint_address (scope_breakpoint->loc->gdbarch,
11274 scope_breakpoint->loc->requested_address,
11275 scope_breakpoint->type);
11276 }
11277 }
11278
11279 /* Now set up the breakpoint. We create all watchpoints as hardware
11280 watchpoints here even if hardware watchpoints are turned off, a call
11281 to update_watchpoint later in this function will cause the type to
11282 drop back to bp_watchpoint (software watchpoint) if required. */
11283
11284 if (accessflag == hw_read)
11285 bp_type = bp_read_watchpoint;
11286 else if (accessflag == hw_access)
11287 bp_type = bp_access_watchpoint;
11288 else
11289 bp_type = bp_hardware_watchpoint;
11290
11291 w = new watchpoint ();
11292 b = &w->base;
11293 if (use_mask)
11294 init_raw_breakpoint_without_location (b, NULL, bp_type,
11295 &masked_watchpoint_breakpoint_ops);
11296 else
11297 init_raw_breakpoint_without_location (b, NULL, bp_type,
11298 &watchpoint_breakpoint_ops);
11299 b->thread = thread;
11300 b->disposition = disp_donttouch;
11301 b->pspace = current_program_space;
11302 w->exp = std::move (exp);
11303 w->exp_valid_block = exp_valid_block;
11304 w->cond_exp_valid_block = cond_exp_valid_block;
11305 if (just_location)
11306 {
11307 struct type *t = value_type (val);
11308 CORE_ADDR addr = value_as_address (val);
11309
11310 t = check_typedef (TYPE_TARGET_TYPE (check_typedef (t)));
11311
11312 std::string name = type_to_string (t);
11313
11314 w->exp_string_reparse = xstrprintf ("* (%s *) %s", name.c_str (),
11315 core_addr_to_string (addr));
11316
11317 w->exp_string = xstrprintf ("-location %.*s",
11318 (int) (exp_end - exp_start), exp_start);
11319
11320 /* The above expression is in C. */
11321 b->language = language_c;
11322 }
11323 else
11324 w->exp_string = savestring (exp_start, exp_end - exp_start);
11325
11326 if (use_mask)
11327 {
11328 w->hw_wp_mask = mask;
11329 }
11330 else
11331 {
11332 w->val = val;
11333 w->val_bitpos = saved_bitpos;
11334 w->val_bitsize = saved_bitsize;
11335 w->val_valid = 1;
11336 }
11337
11338 if (cond_start)
11339 b->cond_string = savestring (cond_start, cond_end - cond_start);
11340 else
11341 b->cond_string = 0;
11342
11343 if (frame)
11344 {
11345 w->watchpoint_frame = get_frame_id (frame);
11346 w->watchpoint_thread = inferior_ptid;
11347 }
11348 else
11349 {
11350 w->watchpoint_frame = null_frame_id;
11351 w->watchpoint_thread = null_ptid;
11352 }
11353
11354 if (scope_breakpoint != NULL)
11355 {
11356 /* The scope breakpoint is related to the watchpoint. We will
11357 need to act on them together. */
11358 b->related_breakpoint = scope_breakpoint;
11359 scope_breakpoint->related_breakpoint = b;
11360 }
11361
11362 if (!just_location)
11363 value_free_to_mark (mark);
11364
11365 TRY
11366 {
11367 /* Finally update the new watchpoint. This creates the locations
11368 that should be inserted. */
11369 update_watchpoint (w, 1);
11370 }
11371 CATCH (e, RETURN_MASK_ALL)
11372 {
11373 delete_breakpoint (b);
11374 throw_exception (e);
11375 }
11376 END_CATCH
11377
11378 install_breakpoint (internal, b, 1);
11379 do_cleanups (back_to);
11380 }
11381
11382 /* Return count of debug registers needed to watch the given expression.
11383 If the watchpoint cannot be handled in hardware return zero. */
11384
11385 static int
11386 can_use_hardware_watchpoint (struct value *v)
11387 {
11388 int found_memory_cnt = 0;
11389 struct value *head = v;
11390
11391 /* Did the user specifically forbid us to use hardware watchpoints? */
11392 if (!can_use_hw_watchpoints)
11393 return 0;
11394
11395 /* Make sure that the value of the expression depends only upon
11396 memory contents, and values computed from them within GDB. If we
11397 find any register references or function calls, we can't use a
11398 hardware watchpoint.
11399
11400 The idea here is that evaluating an expression generates a series
11401 of values, one holding the value of every subexpression. (The
11402 expression a*b+c has five subexpressions: a, b, a*b, c, and
11403 a*b+c.) GDB's values hold almost enough information to establish
11404 the criteria given above --- they identify memory lvalues,
11405 register lvalues, computed values, etcetera. So we can evaluate
11406 the expression, and then scan the chain of values that leaves
11407 behind to decide whether we can detect any possible change to the
11408 expression's final value using only hardware watchpoints.
11409
11410 However, I don't think that the values returned by inferior
11411 function calls are special in any way. So this function may not
11412 notice that an expression involving an inferior function call
11413 can't be watched with hardware watchpoints. FIXME. */
11414 for (; v; v = value_next (v))
11415 {
11416 if (VALUE_LVAL (v) == lval_memory)
11417 {
11418 if (v != head && value_lazy (v))
11419 /* A lazy memory lvalue in the chain is one that GDB never
11420 needed to fetch; we either just used its address (e.g.,
11421 `a' in `a.b') or we never needed it at all (e.g., `a'
11422 in `a,b'). This doesn't apply to HEAD; if that is
11423 lazy then it was not readable, but watch it anyway. */
11424 ;
11425 else
11426 {
11427 /* Ahh, memory we actually used! Check if we can cover
11428 it with hardware watchpoints. */
11429 struct type *vtype = check_typedef (value_type (v));
11430
11431 /* We only watch structs and arrays if user asked for it
11432 explicitly, never if they just happen to appear in a
11433 middle of some value chain. */
11434 if (v == head
11435 || (TYPE_CODE (vtype) != TYPE_CODE_STRUCT
11436 && TYPE_CODE (vtype) != TYPE_CODE_ARRAY))
11437 {
11438 CORE_ADDR vaddr = value_address (v);
11439 int len;
11440 int num_regs;
11441
11442 len = (target_exact_watchpoints
11443 && is_scalar_type_recursive (vtype))?
11444 1 : TYPE_LENGTH (value_type (v));
11445
11446 num_regs = target_region_ok_for_hw_watchpoint (vaddr, len);
11447 if (!num_regs)
11448 return 0;
11449 else
11450 found_memory_cnt += num_regs;
11451 }
11452 }
11453 }
11454 else if (VALUE_LVAL (v) != not_lval
11455 && deprecated_value_modifiable (v) == 0)
11456 return 0; /* These are values from the history (e.g., $1). */
11457 else if (VALUE_LVAL (v) == lval_register)
11458 return 0; /* Cannot watch a register with a HW watchpoint. */
11459 }
11460
11461 /* The expression itself looks suitable for using a hardware
11462 watchpoint, but give the target machine a chance to reject it. */
11463 return found_memory_cnt;
11464 }
11465
11466 void
11467 watch_command_wrapper (char *arg, int from_tty, int internal)
11468 {
11469 watch_command_1 (arg, hw_write, from_tty, 0, internal);
11470 }
11471
11472 /* A helper function that looks for the "-location" argument and then
11473 calls watch_command_1. */
11474
11475 static void
11476 watch_maybe_just_location (char *arg, int accessflag, int from_tty)
11477 {
11478 int just_location = 0;
11479
11480 if (arg
11481 && (check_for_argument (&arg, "-location", sizeof ("-location") - 1)
11482 || check_for_argument (&arg, "-l", sizeof ("-l") - 1)))
11483 {
11484 arg = skip_spaces (arg);
11485 just_location = 1;
11486 }
11487
11488 watch_command_1 (arg, accessflag, from_tty, just_location, 0);
11489 }
11490
11491 static void
11492 watch_command (char *arg, int from_tty)
11493 {
11494 watch_maybe_just_location (arg, hw_write, from_tty);
11495 }
11496
11497 void
11498 rwatch_command_wrapper (char *arg, int from_tty, int internal)
11499 {
11500 watch_command_1 (arg, hw_read, from_tty, 0, internal);
11501 }
11502
11503 static void
11504 rwatch_command (char *arg, int from_tty)
11505 {
11506 watch_maybe_just_location (arg, hw_read, from_tty);
11507 }
11508
11509 void
11510 awatch_command_wrapper (char *arg, int from_tty, int internal)
11511 {
11512 watch_command_1 (arg, hw_access, from_tty, 0, internal);
11513 }
11514
11515 static void
11516 awatch_command (char *arg, int from_tty)
11517 {
11518 watch_maybe_just_location (arg, hw_access, from_tty);
11519 }
11520 \f
11521
11522 /* Data for the FSM that manages the until(location)/advance commands
11523 in infcmd.c. Here because it uses the mechanisms of
11524 breakpoints. */
11525
11526 struct until_break_fsm
11527 {
11528 /* The base class. */
11529 struct thread_fsm thread_fsm;
11530
11531 /* The thread that as current when the command was executed. */
11532 int thread;
11533
11534 /* The breakpoint set at the destination location. */
11535 struct breakpoint *location_breakpoint;
11536
11537 /* Breakpoint set at the return address in the caller frame. May be
11538 NULL. */
11539 struct breakpoint *caller_breakpoint;
11540 };
11541
11542 static void until_break_fsm_clean_up (struct thread_fsm *self,
11543 struct thread_info *thread);
11544 static int until_break_fsm_should_stop (struct thread_fsm *self,
11545 struct thread_info *thread);
11546 static enum async_reply_reason
11547 until_break_fsm_async_reply_reason (struct thread_fsm *self);
11548
11549 /* until_break_fsm's vtable. */
11550
11551 static struct thread_fsm_ops until_break_fsm_ops =
11552 {
11553 NULL, /* dtor */
11554 until_break_fsm_clean_up,
11555 until_break_fsm_should_stop,
11556 NULL, /* return_value */
11557 until_break_fsm_async_reply_reason,
11558 };
11559
11560 /* Allocate a new until_break_command_fsm. */
11561
11562 static struct until_break_fsm *
11563 new_until_break_fsm (struct interp *cmd_interp, int thread,
11564 struct breakpoint *location_breakpoint,
11565 struct breakpoint *caller_breakpoint)
11566 {
11567 struct until_break_fsm *sm;
11568
11569 sm = XCNEW (struct until_break_fsm);
11570 thread_fsm_ctor (&sm->thread_fsm, &until_break_fsm_ops, cmd_interp);
11571
11572 sm->thread = thread;
11573 sm->location_breakpoint = location_breakpoint;
11574 sm->caller_breakpoint = caller_breakpoint;
11575
11576 return sm;
11577 }
11578
11579 /* Implementation of the 'should_stop' FSM method for the
11580 until(location)/advance commands. */
11581
11582 static int
11583 until_break_fsm_should_stop (struct thread_fsm *self,
11584 struct thread_info *tp)
11585 {
11586 struct until_break_fsm *sm = (struct until_break_fsm *) self;
11587
11588 if (bpstat_find_breakpoint (tp->control.stop_bpstat,
11589 sm->location_breakpoint) != NULL
11590 || (sm->caller_breakpoint != NULL
11591 && bpstat_find_breakpoint (tp->control.stop_bpstat,
11592 sm->caller_breakpoint) != NULL))
11593 thread_fsm_set_finished (self);
11594
11595 return 1;
11596 }
11597
11598 /* Implementation of the 'clean_up' FSM method for the
11599 until(location)/advance commands. */
11600
11601 static void
11602 until_break_fsm_clean_up (struct thread_fsm *self,
11603 struct thread_info *thread)
11604 {
11605 struct until_break_fsm *sm = (struct until_break_fsm *) self;
11606
11607 /* Clean up our temporary breakpoints. */
11608 if (sm->location_breakpoint != NULL)
11609 {
11610 delete_breakpoint (sm->location_breakpoint);
11611 sm->location_breakpoint = NULL;
11612 }
11613 if (sm->caller_breakpoint != NULL)
11614 {
11615 delete_breakpoint (sm->caller_breakpoint);
11616 sm->caller_breakpoint = NULL;
11617 }
11618 delete_longjmp_breakpoint (sm->thread);
11619 }
11620
11621 /* Implementation of the 'async_reply_reason' FSM method for the
11622 until(location)/advance commands. */
11623
11624 static enum async_reply_reason
11625 until_break_fsm_async_reply_reason (struct thread_fsm *self)
11626 {
11627 return EXEC_ASYNC_LOCATION_REACHED;
11628 }
11629
11630 void
11631 until_break_command (char *arg, int from_tty, int anywhere)
11632 {
11633 struct symtabs_and_lines sals;
11634 struct symtab_and_line sal;
11635 struct frame_info *frame;
11636 struct gdbarch *frame_gdbarch;
11637 struct frame_id stack_frame_id;
11638 struct frame_id caller_frame_id;
11639 struct breakpoint *location_breakpoint;
11640 struct breakpoint *caller_breakpoint = NULL;
11641 struct cleanup *old_chain;
11642 int thread;
11643 struct thread_info *tp;
11644 struct until_break_fsm *sm;
11645
11646 clear_proceed_status (0);
11647
11648 /* Set a breakpoint where the user wants it and at return from
11649 this function. */
11650
11651 event_location_up location = string_to_event_location (&arg, current_language);
11652
11653 if (last_displayed_sal_is_valid ())
11654 sals = decode_line_1 (location.get (), DECODE_LINE_FUNFIRSTLINE, NULL,
11655 get_last_displayed_symtab (),
11656 get_last_displayed_line ());
11657 else
11658 sals = decode_line_1 (location.get (), DECODE_LINE_FUNFIRSTLINE,
11659 NULL, (struct symtab *) NULL, 0);
11660
11661 if (sals.nelts != 1)
11662 error (_("Couldn't get information on specified line."));
11663
11664 sal = sals.sals[0];
11665 xfree (sals.sals); /* malloc'd, so freed. */
11666
11667 if (*arg)
11668 error (_("Junk at end of arguments."));
11669
11670 resolve_sal_pc (&sal);
11671
11672 tp = inferior_thread ();
11673 thread = tp->global_num;
11674
11675 old_chain = make_cleanup (null_cleanup, NULL);
11676
11677 /* Note linespec handling above invalidates the frame chain.
11678 Installing a breakpoint also invalidates the frame chain (as it
11679 may need to switch threads), so do any frame handling before
11680 that. */
11681
11682 frame = get_selected_frame (NULL);
11683 frame_gdbarch = get_frame_arch (frame);
11684 stack_frame_id = get_stack_frame_id (frame);
11685 caller_frame_id = frame_unwind_caller_id (frame);
11686
11687 /* Keep within the current frame, or in frames called by the current
11688 one. */
11689
11690 if (frame_id_p (caller_frame_id))
11691 {
11692 struct symtab_and_line sal2;
11693 struct gdbarch *caller_gdbarch;
11694
11695 sal2 = find_pc_line (frame_unwind_caller_pc (frame), 0);
11696 sal2.pc = frame_unwind_caller_pc (frame);
11697 caller_gdbarch = frame_unwind_caller_arch (frame);
11698 caller_breakpoint = set_momentary_breakpoint (caller_gdbarch,
11699 sal2,
11700 caller_frame_id,
11701 bp_until);
11702 make_cleanup_delete_breakpoint (caller_breakpoint);
11703
11704 set_longjmp_breakpoint (tp, caller_frame_id);
11705 make_cleanup (delete_longjmp_breakpoint_cleanup, &thread);
11706 }
11707
11708 /* set_momentary_breakpoint could invalidate FRAME. */
11709 frame = NULL;
11710
11711 if (anywhere)
11712 /* If the user told us to continue until a specified location,
11713 we don't specify a frame at which we need to stop. */
11714 location_breakpoint = set_momentary_breakpoint (frame_gdbarch, sal,
11715 null_frame_id, bp_until);
11716 else
11717 /* Otherwise, specify the selected frame, because we want to stop
11718 only at the very same frame. */
11719 location_breakpoint = set_momentary_breakpoint (frame_gdbarch, sal,
11720 stack_frame_id, bp_until);
11721 make_cleanup_delete_breakpoint (location_breakpoint);
11722
11723 sm = new_until_break_fsm (command_interp (), tp->global_num,
11724 location_breakpoint, caller_breakpoint);
11725 tp->thread_fsm = &sm->thread_fsm;
11726
11727 discard_cleanups (old_chain);
11728
11729 proceed (-1, GDB_SIGNAL_DEFAULT);
11730 }
11731
11732 /* This function attempts to parse an optional "if <cond>" clause
11733 from the arg string. If one is not found, it returns NULL.
11734
11735 Else, it returns a pointer to the condition string. (It does not
11736 attempt to evaluate the string against a particular block.) And,
11737 it updates arg to point to the first character following the parsed
11738 if clause in the arg string. */
11739
11740 const char *
11741 ep_parse_optional_if_clause (const char **arg)
11742 {
11743 const char *cond_string;
11744
11745 if (((*arg)[0] != 'i') || ((*arg)[1] != 'f') || !isspace ((*arg)[2]))
11746 return NULL;
11747
11748 /* Skip the "if" keyword. */
11749 (*arg) += 2;
11750
11751 /* Skip any extra leading whitespace, and record the start of the
11752 condition string. */
11753 *arg = skip_spaces_const (*arg);
11754 cond_string = *arg;
11755
11756 /* Assume that the condition occupies the remainder of the arg
11757 string. */
11758 (*arg) += strlen (cond_string);
11759
11760 return cond_string;
11761 }
11762
11763 /* Commands to deal with catching events, such as signals, exceptions,
11764 process start/exit, etc. */
11765
11766 typedef enum
11767 {
11768 catch_fork_temporary, catch_vfork_temporary,
11769 catch_fork_permanent, catch_vfork_permanent
11770 }
11771 catch_fork_kind;
11772
11773 static void
11774 catch_fork_command_1 (char *arg_entry, int from_tty,
11775 struct cmd_list_element *command)
11776 {
11777 const char *arg = arg_entry;
11778 struct gdbarch *gdbarch = get_current_arch ();
11779 const char *cond_string = NULL;
11780 catch_fork_kind fork_kind;
11781 int tempflag;
11782
11783 fork_kind = (catch_fork_kind) (uintptr_t) get_cmd_context (command);
11784 tempflag = (fork_kind == catch_fork_temporary
11785 || fork_kind == catch_vfork_temporary);
11786
11787 if (!arg)
11788 arg = "";
11789 arg = skip_spaces_const (arg);
11790
11791 /* The allowed syntax is:
11792 catch [v]fork
11793 catch [v]fork if <cond>
11794
11795 First, check if there's an if clause. */
11796 cond_string = ep_parse_optional_if_clause (&arg);
11797
11798 if ((*arg != '\0') && !isspace (*arg))
11799 error (_("Junk at end of arguments."));
11800
11801 /* If this target supports it, create a fork or vfork catchpoint
11802 and enable reporting of such events. */
11803 switch (fork_kind)
11804 {
11805 case catch_fork_temporary:
11806 case catch_fork_permanent:
11807 create_fork_vfork_event_catchpoint (gdbarch, tempflag, cond_string,
11808 &catch_fork_breakpoint_ops);
11809 break;
11810 case catch_vfork_temporary:
11811 case catch_vfork_permanent:
11812 create_fork_vfork_event_catchpoint (gdbarch, tempflag, cond_string,
11813 &catch_vfork_breakpoint_ops);
11814 break;
11815 default:
11816 error (_("unsupported or unknown fork kind; cannot catch it"));
11817 break;
11818 }
11819 }
11820
11821 static void
11822 catch_exec_command_1 (char *arg_entry, int from_tty,
11823 struct cmd_list_element *command)
11824 {
11825 const char *arg = arg_entry;
11826 struct exec_catchpoint *c;
11827 struct gdbarch *gdbarch = get_current_arch ();
11828 int tempflag;
11829 const char *cond_string = NULL;
11830
11831 tempflag = get_cmd_context (command) == CATCH_TEMPORARY;
11832
11833 if (!arg)
11834 arg = "";
11835 arg = skip_spaces_const (arg);
11836
11837 /* The allowed syntax is:
11838 catch exec
11839 catch exec if <cond>
11840
11841 First, check if there's an if clause. */
11842 cond_string = ep_parse_optional_if_clause (&arg);
11843
11844 if ((*arg != '\0') && !isspace (*arg))
11845 error (_("Junk at end of arguments."));
11846
11847 c = new exec_catchpoint ();
11848 init_catchpoint (&c->base, gdbarch, tempflag, cond_string,
11849 &catch_exec_breakpoint_ops);
11850 c->exec_pathname = NULL;
11851
11852 install_breakpoint (0, &c->base, 1);
11853 }
11854
11855 void
11856 init_ada_exception_breakpoint (struct breakpoint *b,
11857 struct gdbarch *gdbarch,
11858 struct symtab_and_line sal,
11859 char *addr_string,
11860 const struct breakpoint_ops *ops,
11861 int tempflag,
11862 int enabled,
11863 int from_tty)
11864 {
11865 if (from_tty)
11866 {
11867 struct gdbarch *loc_gdbarch = get_sal_arch (sal);
11868 if (!loc_gdbarch)
11869 loc_gdbarch = gdbarch;
11870
11871 describe_other_breakpoints (loc_gdbarch,
11872 sal.pspace, sal.pc, sal.section, -1);
11873 /* FIXME: brobecker/2006-12-28: Actually, re-implement a special
11874 version for exception catchpoints, because two catchpoints
11875 used for different exception names will use the same address.
11876 In this case, a "breakpoint ... also set at..." warning is
11877 unproductive. Besides, the warning phrasing is also a bit
11878 inappropriate, we should use the word catchpoint, and tell
11879 the user what type of catchpoint it is. The above is good
11880 enough for now, though. */
11881 }
11882
11883 init_raw_breakpoint (b, gdbarch, sal, bp_breakpoint, ops);
11884
11885 b->enable_state = enabled ? bp_enabled : bp_disabled;
11886 b->disposition = tempflag ? disp_del : disp_donttouch;
11887 b->location = string_to_event_location (&addr_string,
11888 language_def (language_ada));
11889 b->language = language_ada;
11890 }
11891
11892 static void
11893 catch_command (char *arg, int from_tty)
11894 {
11895 error (_("Catch requires an event name."));
11896 }
11897 \f
11898
11899 static void
11900 tcatch_command (char *arg, int from_tty)
11901 {
11902 error (_("Catch requires an event name."));
11903 }
11904
11905 /* A qsort comparison function that sorts breakpoints in order. */
11906
11907 static int
11908 compare_breakpoints (const void *a, const void *b)
11909 {
11910 const breakpoint_p *ba = (const breakpoint_p *) a;
11911 uintptr_t ua = (uintptr_t) *ba;
11912 const breakpoint_p *bb = (const breakpoint_p *) b;
11913 uintptr_t ub = (uintptr_t) *bb;
11914
11915 if ((*ba)->number < (*bb)->number)
11916 return -1;
11917 else if ((*ba)->number > (*bb)->number)
11918 return 1;
11919
11920 /* Now sort by address, in case we see, e..g, two breakpoints with
11921 the number 0. */
11922 if (ua < ub)
11923 return -1;
11924 return ua > ub ? 1 : 0;
11925 }
11926
11927 /* Delete breakpoints by address or line. */
11928
11929 static void
11930 clear_command (char *arg, int from_tty)
11931 {
11932 struct breakpoint *b, *prev;
11933 VEC(breakpoint_p) *found = 0;
11934 int ix;
11935 int default_match;
11936 struct symtabs_and_lines sals;
11937 struct symtab_and_line sal;
11938 int i;
11939 struct cleanup *cleanups = make_cleanup (null_cleanup, NULL);
11940
11941 if (arg)
11942 {
11943 sals = decode_line_with_current_source (arg,
11944 (DECODE_LINE_FUNFIRSTLINE
11945 | DECODE_LINE_LIST_MODE));
11946 make_cleanup (xfree, sals.sals);
11947 default_match = 0;
11948 }
11949 else
11950 {
11951 sals.sals = XNEW (struct symtab_and_line);
11952 make_cleanup (xfree, sals.sals);
11953 init_sal (&sal); /* Initialize to zeroes. */
11954
11955 /* Set sal's line, symtab, pc, and pspace to the values
11956 corresponding to the last call to print_frame_info. If the
11957 codepoint is not valid, this will set all the fields to 0. */
11958 get_last_displayed_sal (&sal);
11959 if (sal.symtab == 0)
11960 error (_("No source file specified."));
11961
11962 sals.sals[0] = sal;
11963 sals.nelts = 1;
11964
11965 default_match = 1;
11966 }
11967
11968 /* We don't call resolve_sal_pc here. That's not as bad as it
11969 seems, because all existing breakpoints typically have both
11970 file/line and pc set. So, if clear is given file/line, we can
11971 match this to existing breakpoint without obtaining pc at all.
11972
11973 We only support clearing given the address explicitly
11974 present in breakpoint table. Say, we've set breakpoint
11975 at file:line. There were several PC values for that file:line,
11976 due to optimization, all in one block.
11977
11978 We've picked one PC value. If "clear" is issued with another
11979 PC corresponding to the same file:line, the breakpoint won't
11980 be cleared. We probably can still clear the breakpoint, but
11981 since the other PC value is never presented to user, user
11982 can only find it by guessing, and it does not seem important
11983 to support that. */
11984
11985 /* For each line spec given, delete bps which correspond to it. Do
11986 it in two passes, solely to preserve the current behavior that
11987 from_tty is forced true if we delete more than one
11988 breakpoint. */
11989
11990 found = NULL;
11991 make_cleanup (VEC_cleanup (breakpoint_p), &found);
11992 for (i = 0; i < sals.nelts; i++)
11993 {
11994 const char *sal_fullname;
11995
11996 /* If exact pc given, clear bpts at that pc.
11997 If line given (pc == 0), clear all bpts on specified line.
11998 If defaulting, clear all bpts on default line
11999 or at default pc.
12000
12001 defaulting sal.pc != 0 tests to do
12002
12003 0 1 pc
12004 1 1 pc _and_ line
12005 0 0 line
12006 1 0 <can't happen> */
12007
12008 sal = sals.sals[i];
12009 sal_fullname = (sal.symtab == NULL
12010 ? NULL : symtab_to_fullname (sal.symtab));
12011
12012 /* Find all matching breakpoints and add them to 'found'. */
12013 ALL_BREAKPOINTS (b)
12014 {
12015 int match = 0;
12016 /* Are we going to delete b? */
12017 if (b->type != bp_none && !is_watchpoint (b))
12018 {
12019 struct bp_location *loc = b->loc;
12020 for (; loc; loc = loc->next)
12021 {
12022 /* If the user specified file:line, don't allow a PC
12023 match. This matches historical gdb behavior. */
12024 int pc_match = (!sal.explicit_line
12025 && sal.pc
12026 && (loc->pspace == sal.pspace)
12027 && (loc->address == sal.pc)
12028 && (!section_is_overlay (loc->section)
12029 || loc->section == sal.section));
12030 int line_match = 0;
12031
12032 if ((default_match || sal.explicit_line)
12033 && loc->symtab != NULL
12034 && sal_fullname != NULL
12035 && sal.pspace == loc->pspace
12036 && loc->line_number == sal.line
12037 && filename_cmp (symtab_to_fullname (loc->symtab),
12038 sal_fullname) == 0)
12039 line_match = 1;
12040
12041 if (pc_match || line_match)
12042 {
12043 match = 1;
12044 break;
12045 }
12046 }
12047 }
12048
12049 if (match)
12050 VEC_safe_push(breakpoint_p, found, b);
12051 }
12052 }
12053
12054 /* Now go thru the 'found' chain and delete them. */
12055 if (VEC_empty(breakpoint_p, found))
12056 {
12057 if (arg)
12058 error (_("No breakpoint at %s."), arg);
12059 else
12060 error (_("No breakpoint at this line."));
12061 }
12062
12063 /* Remove duplicates from the vec. */
12064 qsort (VEC_address (breakpoint_p, found),
12065 VEC_length (breakpoint_p, found),
12066 sizeof (breakpoint_p),
12067 compare_breakpoints);
12068 prev = VEC_index (breakpoint_p, found, 0);
12069 for (ix = 1; VEC_iterate (breakpoint_p, found, ix, b); ++ix)
12070 {
12071 if (b == prev)
12072 {
12073 VEC_ordered_remove (breakpoint_p, found, ix);
12074 --ix;
12075 }
12076 }
12077
12078 if (VEC_length(breakpoint_p, found) > 1)
12079 from_tty = 1; /* Always report if deleted more than one. */
12080 if (from_tty)
12081 {
12082 if (VEC_length(breakpoint_p, found) == 1)
12083 printf_unfiltered (_("Deleted breakpoint "));
12084 else
12085 printf_unfiltered (_("Deleted breakpoints "));
12086 }
12087
12088 for (ix = 0; VEC_iterate(breakpoint_p, found, ix, b); ix++)
12089 {
12090 if (from_tty)
12091 printf_unfiltered ("%d ", b->number);
12092 delete_breakpoint (b);
12093 }
12094 if (from_tty)
12095 putchar_unfiltered ('\n');
12096
12097 do_cleanups (cleanups);
12098 }
12099 \f
12100 /* Delete breakpoint in BS if they are `delete' breakpoints and
12101 all breakpoints that are marked for deletion, whether hit or not.
12102 This is called after any breakpoint is hit, or after errors. */
12103
12104 void
12105 breakpoint_auto_delete (bpstat bs)
12106 {
12107 struct breakpoint *b, *b_tmp;
12108
12109 for (; bs; bs = bs->next)
12110 if (bs->breakpoint_at
12111 && bs->breakpoint_at->disposition == disp_del
12112 && bs->stop)
12113 delete_breakpoint (bs->breakpoint_at);
12114
12115 ALL_BREAKPOINTS_SAFE (b, b_tmp)
12116 {
12117 if (b->disposition == disp_del_at_next_stop)
12118 delete_breakpoint (b);
12119 }
12120 }
12121
12122 /* A comparison function for bp_location AP and BP being interfaced to
12123 qsort. Sort elements primarily by their ADDRESS (no matter what
12124 does breakpoint_address_is_meaningful say for its OWNER),
12125 secondarily by ordering first permanent elements and
12126 terciarily just ensuring the array is sorted stable way despite
12127 qsort being an unstable algorithm. */
12128
12129 static int
12130 bp_location_compare (const void *ap, const void *bp)
12131 {
12132 const struct bp_location *a = *(const struct bp_location **) ap;
12133 const struct bp_location *b = *(const struct bp_location **) bp;
12134
12135 if (a->address != b->address)
12136 return (a->address > b->address) - (a->address < b->address);
12137
12138 /* Sort locations at the same address by their pspace number, keeping
12139 locations of the same inferior (in a multi-inferior environment)
12140 grouped. */
12141
12142 if (a->pspace->num != b->pspace->num)
12143 return ((a->pspace->num > b->pspace->num)
12144 - (a->pspace->num < b->pspace->num));
12145
12146 /* Sort permanent breakpoints first. */
12147 if (a->permanent != b->permanent)
12148 return (a->permanent < b->permanent) - (a->permanent > b->permanent);
12149
12150 /* Make the internal GDB representation stable across GDB runs
12151 where A and B memory inside GDB can differ. Breakpoint locations of
12152 the same type at the same address can be sorted in arbitrary order. */
12153
12154 if (a->owner->number != b->owner->number)
12155 return ((a->owner->number > b->owner->number)
12156 - (a->owner->number < b->owner->number));
12157
12158 return (a > b) - (a < b);
12159 }
12160
12161 /* Set bp_location_placed_address_before_address_max and
12162 bp_location_shadow_len_after_address_max according to the current
12163 content of the bp_location array. */
12164
12165 static void
12166 bp_location_target_extensions_update (void)
12167 {
12168 struct bp_location *bl, **blp_tmp;
12169
12170 bp_location_placed_address_before_address_max = 0;
12171 bp_location_shadow_len_after_address_max = 0;
12172
12173 ALL_BP_LOCATIONS (bl, blp_tmp)
12174 {
12175 CORE_ADDR start, end, addr;
12176
12177 if (!bp_location_has_shadow (bl))
12178 continue;
12179
12180 start = bl->target_info.placed_address;
12181 end = start + bl->target_info.shadow_len;
12182
12183 gdb_assert (bl->address >= start);
12184 addr = bl->address - start;
12185 if (addr > bp_location_placed_address_before_address_max)
12186 bp_location_placed_address_before_address_max = addr;
12187
12188 /* Zero SHADOW_LEN would not pass bp_location_has_shadow. */
12189
12190 gdb_assert (bl->address < end);
12191 addr = end - bl->address;
12192 if (addr > bp_location_shadow_len_after_address_max)
12193 bp_location_shadow_len_after_address_max = addr;
12194 }
12195 }
12196
12197 /* Download tracepoint locations if they haven't been. */
12198
12199 static void
12200 download_tracepoint_locations (void)
12201 {
12202 struct breakpoint *b;
12203 struct cleanup *old_chain;
12204 enum tribool can_download_tracepoint = TRIBOOL_UNKNOWN;
12205
12206 old_chain = save_current_space_and_thread ();
12207
12208 ALL_TRACEPOINTS (b)
12209 {
12210 struct bp_location *bl;
12211 struct tracepoint *t;
12212 int bp_location_downloaded = 0;
12213
12214 if ((b->type == bp_fast_tracepoint
12215 ? !may_insert_fast_tracepoints
12216 : !may_insert_tracepoints))
12217 continue;
12218
12219 if (can_download_tracepoint == TRIBOOL_UNKNOWN)
12220 {
12221 if (target_can_download_tracepoint ())
12222 can_download_tracepoint = TRIBOOL_TRUE;
12223 else
12224 can_download_tracepoint = TRIBOOL_FALSE;
12225 }
12226
12227 if (can_download_tracepoint == TRIBOOL_FALSE)
12228 break;
12229
12230 for (bl = b->loc; bl; bl = bl->next)
12231 {
12232 /* In tracepoint, locations are _never_ duplicated, so
12233 should_be_inserted is equivalent to
12234 unduplicated_should_be_inserted. */
12235 if (!should_be_inserted (bl) || bl->inserted)
12236 continue;
12237
12238 switch_to_program_space_and_thread (bl->pspace);
12239
12240 target_download_tracepoint (bl);
12241
12242 bl->inserted = 1;
12243 bp_location_downloaded = 1;
12244 }
12245 t = (struct tracepoint *) b;
12246 t->number_on_target = b->number;
12247 if (bp_location_downloaded)
12248 observer_notify_breakpoint_modified (b);
12249 }
12250
12251 do_cleanups (old_chain);
12252 }
12253
12254 /* Swap the insertion/duplication state between two locations. */
12255
12256 static void
12257 swap_insertion (struct bp_location *left, struct bp_location *right)
12258 {
12259 const int left_inserted = left->inserted;
12260 const int left_duplicate = left->duplicate;
12261 const int left_needs_update = left->needs_update;
12262 const struct bp_target_info left_target_info = left->target_info;
12263
12264 /* Locations of tracepoints can never be duplicated. */
12265 if (is_tracepoint (left->owner))
12266 gdb_assert (!left->duplicate);
12267 if (is_tracepoint (right->owner))
12268 gdb_assert (!right->duplicate);
12269
12270 left->inserted = right->inserted;
12271 left->duplicate = right->duplicate;
12272 left->needs_update = right->needs_update;
12273 left->target_info = right->target_info;
12274 right->inserted = left_inserted;
12275 right->duplicate = left_duplicate;
12276 right->needs_update = left_needs_update;
12277 right->target_info = left_target_info;
12278 }
12279
12280 /* Force the re-insertion of the locations at ADDRESS. This is called
12281 once a new/deleted/modified duplicate location is found and we are evaluating
12282 conditions on the target's side. Such conditions need to be updated on
12283 the target. */
12284
12285 static void
12286 force_breakpoint_reinsertion (struct bp_location *bl)
12287 {
12288 struct bp_location **locp = NULL, **loc2p;
12289 struct bp_location *loc;
12290 CORE_ADDR address = 0;
12291 int pspace_num;
12292
12293 address = bl->address;
12294 pspace_num = bl->pspace->num;
12295
12296 /* This is only meaningful if the target is
12297 evaluating conditions and if the user has
12298 opted for condition evaluation on the target's
12299 side. */
12300 if (gdb_evaluates_breakpoint_condition_p ()
12301 || !target_supports_evaluation_of_breakpoint_conditions ())
12302 return;
12303
12304 /* Flag all breakpoint locations with this address and
12305 the same program space as the location
12306 as "its condition has changed". We need to
12307 update the conditions on the target's side. */
12308 ALL_BP_LOCATIONS_AT_ADDR (loc2p, locp, address)
12309 {
12310 loc = *loc2p;
12311
12312 if (!is_breakpoint (loc->owner)
12313 || pspace_num != loc->pspace->num)
12314 continue;
12315
12316 /* Flag the location appropriately. We use a different state to
12317 let everyone know that we already updated the set of locations
12318 with addr bl->address and program space bl->pspace. This is so
12319 we don't have to keep calling these functions just to mark locations
12320 that have already been marked. */
12321 loc->condition_changed = condition_updated;
12322
12323 /* Free the agent expression bytecode as well. We will compute
12324 it later on. */
12325 loc->cond_bytecode.reset ();
12326 }
12327 }
12328 /* Called whether new breakpoints are created, or existing breakpoints
12329 deleted, to update the global location list and recompute which
12330 locations are duplicate of which.
12331
12332 The INSERT_MODE flag determines whether locations may not, may, or
12333 shall be inserted now. See 'enum ugll_insert_mode' for more
12334 info. */
12335
12336 static void
12337 update_global_location_list (enum ugll_insert_mode insert_mode)
12338 {
12339 struct breakpoint *b;
12340 struct bp_location **locp, *loc;
12341 struct cleanup *cleanups;
12342 /* Last breakpoint location address that was marked for update. */
12343 CORE_ADDR last_addr = 0;
12344 /* Last breakpoint location program space that was marked for update. */
12345 int last_pspace_num = -1;
12346
12347 /* Used in the duplicates detection below. When iterating over all
12348 bp_locations, points to the first bp_location of a given address.
12349 Breakpoints and watchpoints of different types are never
12350 duplicates of each other. Keep one pointer for each type of
12351 breakpoint/watchpoint, so we only need to loop over all locations
12352 once. */
12353 struct bp_location *bp_loc_first; /* breakpoint */
12354 struct bp_location *wp_loc_first; /* hardware watchpoint */
12355 struct bp_location *awp_loc_first; /* access watchpoint */
12356 struct bp_location *rwp_loc_first; /* read watchpoint */
12357
12358 /* Saved former bp_location array which we compare against the newly
12359 built bp_location from the current state of ALL_BREAKPOINTS. */
12360 struct bp_location **old_location, **old_locp;
12361 unsigned old_location_count;
12362
12363 old_location = bp_location;
12364 old_location_count = bp_location_count;
12365 bp_location = NULL;
12366 bp_location_count = 0;
12367 cleanups = make_cleanup (xfree, old_location);
12368
12369 ALL_BREAKPOINTS (b)
12370 for (loc = b->loc; loc; loc = loc->next)
12371 bp_location_count++;
12372
12373 bp_location = XNEWVEC (struct bp_location *, bp_location_count);
12374 locp = bp_location;
12375 ALL_BREAKPOINTS (b)
12376 for (loc = b->loc; loc; loc = loc->next)
12377 *locp++ = loc;
12378 qsort (bp_location, bp_location_count, sizeof (*bp_location),
12379 bp_location_compare);
12380
12381 bp_location_target_extensions_update ();
12382
12383 /* Identify bp_location instances that are no longer present in the
12384 new list, and therefore should be freed. Note that it's not
12385 necessary that those locations should be removed from inferior --
12386 if there's another location at the same address (previously
12387 marked as duplicate), we don't need to remove/insert the
12388 location.
12389
12390 LOCP is kept in sync with OLD_LOCP, each pointing to the current
12391 and former bp_location array state respectively. */
12392
12393 locp = bp_location;
12394 for (old_locp = old_location; old_locp < old_location + old_location_count;
12395 old_locp++)
12396 {
12397 struct bp_location *old_loc = *old_locp;
12398 struct bp_location **loc2p;
12399
12400 /* Tells if 'old_loc' is found among the new locations. If
12401 not, we have to free it. */
12402 int found_object = 0;
12403 /* Tells if the location should remain inserted in the target. */
12404 int keep_in_target = 0;
12405 int removed = 0;
12406
12407 /* Skip LOCP entries which will definitely never be needed.
12408 Stop either at or being the one matching OLD_LOC. */
12409 while (locp < bp_location + bp_location_count
12410 && (*locp)->address < old_loc->address)
12411 locp++;
12412
12413 for (loc2p = locp;
12414 (loc2p < bp_location + bp_location_count
12415 && (*loc2p)->address == old_loc->address);
12416 loc2p++)
12417 {
12418 /* Check if this is a new/duplicated location or a duplicated
12419 location that had its condition modified. If so, we want to send
12420 its condition to the target if evaluation of conditions is taking
12421 place there. */
12422 if ((*loc2p)->condition_changed == condition_modified
12423 && (last_addr != old_loc->address
12424 || last_pspace_num != old_loc->pspace->num))
12425 {
12426 force_breakpoint_reinsertion (*loc2p);
12427 last_pspace_num = old_loc->pspace->num;
12428 }
12429
12430 if (*loc2p == old_loc)
12431 found_object = 1;
12432 }
12433
12434 /* We have already handled this address, update it so that we don't
12435 have to go through updates again. */
12436 last_addr = old_loc->address;
12437
12438 /* Target-side condition evaluation: Handle deleted locations. */
12439 if (!found_object)
12440 force_breakpoint_reinsertion (old_loc);
12441
12442 /* If this location is no longer present, and inserted, look if
12443 there's maybe a new location at the same address. If so,
12444 mark that one inserted, and don't remove this one. This is
12445 needed so that we don't have a time window where a breakpoint
12446 at certain location is not inserted. */
12447
12448 if (old_loc->inserted)
12449 {
12450 /* If the location is inserted now, we might have to remove
12451 it. */
12452
12453 if (found_object && should_be_inserted (old_loc))
12454 {
12455 /* The location is still present in the location list,
12456 and still should be inserted. Don't do anything. */
12457 keep_in_target = 1;
12458 }
12459 else
12460 {
12461 /* This location still exists, but it won't be kept in the
12462 target since it may have been disabled. We proceed to
12463 remove its target-side condition. */
12464
12465 /* The location is either no longer present, or got
12466 disabled. See if there's another location at the
12467 same address, in which case we don't need to remove
12468 this one from the target. */
12469
12470 /* OLD_LOC comes from existing struct breakpoint. */
12471 if (breakpoint_address_is_meaningful (old_loc->owner))
12472 {
12473 for (loc2p = locp;
12474 (loc2p < bp_location + bp_location_count
12475 && (*loc2p)->address == old_loc->address);
12476 loc2p++)
12477 {
12478 struct bp_location *loc2 = *loc2p;
12479
12480 if (breakpoint_locations_match (loc2, old_loc))
12481 {
12482 /* Read watchpoint locations are switched to
12483 access watchpoints, if the former are not
12484 supported, but the latter are. */
12485 if (is_hardware_watchpoint (old_loc->owner))
12486 {
12487 gdb_assert (is_hardware_watchpoint (loc2->owner));
12488 loc2->watchpoint_type = old_loc->watchpoint_type;
12489 }
12490
12491 /* loc2 is a duplicated location. We need to check
12492 if it should be inserted in case it will be
12493 unduplicated. */
12494 if (loc2 != old_loc
12495 && unduplicated_should_be_inserted (loc2))
12496 {
12497 swap_insertion (old_loc, loc2);
12498 keep_in_target = 1;
12499 break;
12500 }
12501 }
12502 }
12503 }
12504 }
12505
12506 if (!keep_in_target)
12507 {
12508 if (remove_breakpoint (old_loc))
12509 {
12510 /* This is just about all we can do. We could keep
12511 this location on the global list, and try to
12512 remove it next time, but there's no particular
12513 reason why we will succeed next time.
12514
12515 Note that at this point, old_loc->owner is still
12516 valid, as delete_breakpoint frees the breakpoint
12517 only after calling us. */
12518 printf_filtered (_("warning: Error removing "
12519 "breakpoint %d\n"),
12520 old_loc->owner->number);
12521 }
12522 removed = 1;
12523 }
12524 }
12525
12526 if (!found_object)
12527 {
12528 if (removed && target_is_non_stop_p ()
12529 && need_moribund_for_location_type (old_loc))
12530 {
12531 /* This location was removed from the target. In
12532 non-stop mode, a race condition is possible where
12533 we've removed a breakpoint, but stop events for that
12534 breakpoint are already queued and will arrive later.
12535 We apply an heuristic to be able to distinguish such
12536 SIGTRAPs from other random SIGTRAPs: we keep this
12537 breakpoint location for a bit, and will retire it
12538 after we see some number of events. The theory here
12539 is that reporting of events should, "on the average",
12540 be fair, so after a while we'll see events from all
12541 threads that have anything of interest, and no longer
12542 need to keep this breakpoint location around. We
12543 don't hold locations forever so to reduce chances of
12544 mistaking a non-breakpoint SIGTRAP for a breakpoint
12545 SIGTRAP.
12546
12547 The heuristic failing can be disastrous on
12548 decr_pc_after_break targets.
12549
12550 On decr_pc_after_break targets, like e.g., x86-linux,
12551 if we fail to recognize a late breakpoint SIGTRAP,
12552 because events_till_retirement has reached 0 too
12553 soon, we'll fail to do the PC adjustment, and report
12554 a random SIGTRAP to the user. When the user resumes
12555 the inferior, it will most likely immediately crash
12556 with SIGILL/SIGBUS/SIGSEGV, or worse, get silently
12557 corrupted, because of being resumed e.g., in the
12558 middle of a multi-byte instruction, or skipped a
12559 one-byte instruction. This was actually seen happen
12560 on native x86-linux, and should be less rare on
12561 targets that do not support new thread events, like
12562 remote, due to the heuristic depending on
12563 thread_count.
12564
12565 Mistaking a random SIGTRAP for a breakpoint trap
12566 causes similar symptoms (PC adjustment applied when
12567 it shouldn't), but then again, playing with SIGTRAPs
12568 behind the debugger's back is asking for trouble.
12569
12570 Since hardware watchpoint traps are always
12571 distinguishable from other traps, so we don't need to
12572 apply keep hardware watchpoint moribund locations
12573 around. We simply always ignore hardware watchpoint
12574 traps we can no longer explain. */
12575
12576 old_loc->events_till_retirement = 3 * (thread_count () + 1);
12577 old_loc->owner = NULL;
12578
12579 VEC_safe_push (bp_location_p, moribund_locations, old_loc);
12580 }
12581 else
12582 {
12583 old_loc->owner = NULL;
12584 decref_bp_location (&old_loc);
12585 }
12586 }
12587 }
12588
12589 /* Rescan breakpoints at the same address and section, marking the
12590 first one as "first" and any others as "duplicates". This is so
12591 that the bpt instruction is only inserted once. If we have a
12592 permanent breakpoint at the same place as BPT, make that one the
12593 official one, and the rest as duplicates. Permanent breakpoints
12594 are sorted first for the same address.
12595
12596 Do the same for hardware watchpoints, but also considering the
12597 watchpoint's type (regular/access/read) and length. */
12598
12599 bp_loc_first = NULL;
12600 wp_loc_first = NULL;
12601 awp_loc_first = NULL;
12602 rwp_loc_first = NULL;
12603 ALL_BP_LOCATIONS (loc, locp)
12604 {
12605 /* ALL_BP_LOCATIONS bp_location has LOC->OWNER always
12606 non-NULL. */
12607 struct bp_location **loc_first_p;
12608 b = loc->owner;
12609
12610 if (!unduplicated_should_be_inserted (loc)
12611 || !breakpoint_address_is_meaningful (b)
12612 /* Don't detect duplicate for tracepoint locations because they are
12613 never duplicated. See the comments in field `duplicate' of
12614 `struct bp_location'. */
12615 || is_tracepoint (b))
12616 {
12617 /* Clear the condition modification flag. */
12618 loc->condition_changed = condition_unchanged;
12619 continue;
12620 }
12621
12622 if (b->type == bp_hardware_watchpoint)
12623 loc_first_p = &wp_loc_first;
12624 else if (b->type == bp_read_watchpoint)
12625 loc_first_p = &rwp_loc_first;
12626 else if (b->type == bp_access_watchpoint)
12627 loc_first_p = &awp_loc_first;
12628 else
12629 loc_first_p = &bp_loc_first;
12630
12631 if (*loc_first_p == NULL
12632 || (overlay_debugging && loc->section != (*loc_first_p)->section)
12633 || !breakpoint_locations_match (loc, *loc_first_p))
12634 {
12635 *loc_first_p = loc;
12636 loc->duplicate = 0;
12637
12638 if (is_breakpoint (loc->owner) && loc->condition_changed)
12639 {
12640 loc->needs_update = 1;
12641 /* Clear the condition modification flag. */
12642 loc->condition_changed = condition_unchanged;
12643 }
12644 continue;
12645 }
12646
12647
12648 /* This and the above ensure the invariant that the first location
12649 is not duplicated, and is the inserted one.
12650 All following are marked as duplicated, and are not inserted. */
12651 if (loc->inserted)
12652 swap_insertion (loc, *loc_first_p);
12653 loc->duplicate = 1;
12654
12655 /* Clear the condition modification flag. */
12656 loc->condition_changed = condition_unchanged;
12657 }
12658
12659 if (insert_mode == UGLL_INSERT || breakpoints_should_be_inserted_now ())
12660 {
12661 if (insert_mode != UGLL_DONT_INSERT)
12662 insert_breakpoint_locations ();
12663 else
12664 {
12665 /* Even though the caller told us to not insert new
12666 locations, we may still need to update conditions on the
12667 target's side of breakpoints that were already inserted
12668 if the target is evaluating breakpoint conditions. We
12669 only update conditions for locations that are marked
12670 "needs_update". */
12671 update_inserted_breakpoint_locations ();
12672 }
12673 }
12674
12675 if (insert_mode != UGLL_DONT_INSERT)
12676 download_tracepoint_locations ();
12677
12678 do_cleanups (cleanups);
12679 }
12680
12681 void
12682 breakpoint_retire_moribund (void)
12683 {
12684 struct bp_location *loc;
12685 int ix;
12686
12687 for (ix = 0; VEC_iterate (bp_location_p, moribund_locations, ix, loc); ++ix)
12688 if (--(loc->events_till_retirement) == 0)
12689 {
12690 decref_bp_location (&loc);
12691 VEC_unordered_remove (bp_location_p, moribund_locations, ix);
12692 --ix;
12693 }
12694 }
12695
12696 static void
12697 update_global_location_list_nothrow (enum ugll_insert_mode insert_mode)
12698 {
12699
12700 TRY
12701 {
12702 update_global_location_list (insert_mode);
12703 }
12704 CATCH (e, RETURN_MASK_ERROR)
12705 {
12706 }
12707 END_CATCH
12708 }
12709
12710 /* Clear BKP from a BPS. */
12711
12712 static void
12713 bpstat_remove_bp_location (bpstat bps, struct breakpoint *bpt)
12714 {
12715 bpstat bs;
12716
12717 for (bs = bps; bs; bs = bs->next)
12718 if (bs->breakpoint_at == bpt)
12719 {
12720 bs->breakpoint_at = NULL;
12721 bs->old_val = NULL;
12722 /* bs->commands will be freed later. */
12723 }
12724 }
12725
12726 /* Callback for iterate_over_threads. */
12727 static int
12728 bpstat_remove_breakpoint_callback (struct thread_info *th, void *data)
12729 {
12730 struct breakpoint *bpt = (struct breakpoint *) data;
12731
12732 bpstat_remove_bp_location (th->control.stop_bpstat, bpt);
12733 return 0;
12734 }
12735
12736 /* Helper for breakpoint and tracepoint breakpoint_ops->mention
12737 callbacks. */
12738
12739 static void
12740 say_where (struct breakpoint *b)
12741 {
12742 struct value_print_options opts;
12743
12744 get_user_print_options (&opts);
12745
12746 /* i18n: cagney/2005-02-11: Below needs to be merged into a
12747 single string. */
12748 if (b->loc == NULL)
12749 {
12750 /* For pending locations, the output differs slightly based
12751 on b->extra_string. If this is non-NULL, it contains either
12752 a condition or dprintf arguments. */
12753 if (b->extra_string == NULL)
12754 {
12755 printf_filtered (_(" (%s) pending."),
12756 event_location_to_string (b->location.get ()));
12757 }
12758 else if (b->type == bp_dprintf)
12759 {
12760 printf_filtered (_(" (%s,%s) pending."),
12761 event_location_to_string (b->location.get ()),
12762 b->extra_string);
12763 }
12764 else
12765 {
12766 printf_filtered (_(" (%s %s) pending."),
12767 event_location_to_string (b->location.get ()),
12768 b->extra_string);
12769 }
12770 }
12771 else
12772 {
12773 if (opts.addressprint || b->loc->symtab == NULL)
12774 {
12775 printf_filtered (" at ");
12776 fputs_filtered (paddress (b->loc->gdbarch, b->loc->address),
12777 gdb_stdout);
12778 }
12779 if (b->loc->symtab != NULL)
12780 {
12781 /* If there is a single location, we can print the location
12782 more nicely. */
12783 if (b->loc->next == NULL)
12784 printf_filtered (": file %s, line %d.",
12785 symtab_to_filename_for_display (b->loc->symtab),
12786 b->loc->line_number);
12787 else
12788 /* This is not ideal, but each location may have a
12789 different file name, and this at least reflects the
12790 real situation somewhat. */
12791 printf_filtered (": %s.",
12792 event_location_to_string (b->location.get ()));
12793 }
12794
12795 if (b->loc->next)
12796 {
12797 struct bp_location *loc = b->loc;
12798 int n = 0;
12799 for (; loc; loc = loc->next)
12800 ++n;
12801 printf_filtered (" (%d locations)", n);
12802 }
12803 }
12804 }
12805
12806 /* Default bp_location_ops methods. */
12807
12808 static void
12809 bp_location_dtor (struct bp_location *self)
12810 {
12811 xfree (self->function_name);
12812 }
12813
12814 static const struct bp_location_ops bp_location_ops =
12815 {
12816 bp_location_dtor
12817 };
12818
12819 /* Default breakpoint_ops methods all breakpoint_ops ultimately
12820 inherit from. */
12821
12822 static void
12823 base_breakpoint_dtor (struct breakpoint *self)
12824 {
12825 decref_counted_command_line (&self->commands);
12826 xfree (self->cond_string);
12827 xfree (self->extra_string);
12828 xfree (self->filter);
12829 }
12830
12831 static struct bp_location *
12832 base_breakpoint_allocate_location (struct breakpoint *self)
12833 {
12834 struct bp_location *loc;
12835
12836 loc = new struct bp_location ();
12837 init_bp_location (loc, &bp_location_ops, self);
12838 return loc;
12839 }
12840
12841 static void
12842 base_breakpoint_re_set (struct breakpoint *b)
12843 {
12844 /* Nothing to re-set. */
12845 }
12846
12847 #define internal_error_pure_virtual_called() \
12848 gdb_assert_not_reached ("pure virtual function called")
12849
12850 static int
12851 base_breakpoint_insert_location (struct bp_location *bl)
12852 {
12853 internal_error_pure_virtual_called ();
12854 }
12855
12856 static int
12857 base_breakpoint_remove_location (struct bp_location *bl,
12858 enum remove_bp_reason reason)
12859 {
12860 internal_error_pure_virtual_called ();
12861 }
12862
12863 static int
12864 base_breakpoint_breakpoint_hit (const struct bp_location *bl,
12865 struct address_space *aspace,
12866 CORE_ADDR bp_addr,
12867 const struct target_waitstatus *ws)
12868 {
12869 internal_error_pure_virtual_called ();
12870 }
12871
12872 static void
12873 base_breakpoint_check_status (bpstat bs)
12874 {
12875 /* Always stop. */
12876 }
12877
12878 /* A "works_in_software_mode" breakpoint_ops method that just internal
12879 errors. */
12880
12881 static int
12882 base_breakpoint_works_in_software_mode (const struct breakpoint *b)
12883 {
12884 internal_error_pure_virtual_called ();
12885 }
12886
12887 /* A "resources_needed" breakpoint_ops method that just internal
12888 errors. */
12889
12890 static int
12891 base_breakpoint_resources_needed (const struct bp_location *bl)
12892 {
12893 internal_error_pure_virtual_called ();
12894 }
12895
12896 static enum print_stop_action
12897 base_breakpoint_print_it (bpstat bs)
12898 {
12899 internal_error_pure_virtual_called ();
12900 }
12901
12902 static void
12903 base_breakpoint_print_one_detail (const struct breakpoint *self,
12904 struct ui_out *uiout)
12905 {
12906 /* nothing */
12907 }
12908
12909 static void
12910 base_breakpoint_print_mention (struct breakpoint *b)
12911 {
12912 internal_error_pure_virtual_called ();
12913 }
12914
12915 static void
12916 base_breakpoint_print_recreate (struct breakpoint *b, struct ui_file *fp)
12917 {
12918 internal_error_pure_virtual_called ();
12919 }
12920
12921 static void
12922 base_breakpoint_create_sals_from_location
12923 (const struct event_location *location,
12924 struct linespec_result *canonical,
12925 enum bptype type_wanted)
12926 {
12927 internal_error_pure_virtual_called ();
12928 }
12929
12930 static void
12931 base_breakpoint_create_breakpoints_sal (struct gdbarch *gdbarch,
12932 struct linespec_result *c,
12933 char *cond_string,
12934 char *extra_string,
12935 enum bptype type_wanted,
12936 enum bpdisp disposition,
12937 int thread,
12938 int task, int ignore_count,
12939 const struct breakpoint_ops *o,
12940 int from_tty, int enabled,
12941 int internal, unsigned flags)
12942 {
12943 internal_error_pure_virtual_called ();
12944 }
12945
12946 static void
12947 base_breakpoint_decode_location (struct breakpoint *b,
12948 const struct event_location *location,
12949 struct program_space *search_pspace,
12950 struct symtabs_and_lines *sals)
12951 {
12952 internal_error_pure_virtual_called ();
12953 }
12954
12955 /* The default 'explains_signal' method. */
12956
12957 static int
12958 base_breakpoint_explains_signal (struct breakpoint *b, enum gdb_signal sig)
12959 {
12960 return 1;
12961 }
12962
12963 /* The default "after_condition_true" method. */
12964
12965 static void
12966 base_breakpoint_after_condition_true (struct bpstats *bs)
12967 {
12968 /* Nothing to do. */
12969 }
12970
12971 struct breakpoint_ops base_breakpoint_ops =
12972 {
12973 base_breakpoint_dtor,
12974 base_breakpoint_allocate_location,
12975 base_breakpoint_re_set,
12976 base_breakpoint_insert_location,
12977 base_breakpoint_remove_location,
12978 base_breakpoint_breakpoint_hit,
12979 base_breakpoint_check_status,
12980 base_breakpoint_resources_needed,
12981 base_breakpoint_works_in_software_mode,
12982 base_breakpoint_print_it,
12983 NULL,
12984 base_breakpoint_print_one_detail,
12985 base_breakpoint_print_mention,
12986 base_breakpoint_print_recreate,
12987 base_breakpoint_create_sals_from_location,
12988 base_breakpoint_create_breakpoints_sal,
12989 base_breakpoint_decode_location,
12990 base_breakpoint_explains_signal,
12991 base_breakpoint_after_condition_true,
12992 };
12993
12994 /* Default breakpoint_ops methods. */
12995
12996 static void
12997 bkpt_re_set (struct breakpoint *b)
12998 {
12999 /* FIXME: is this still reachable? */
13000 if (breakpoint_event_location_empty_p (b))
13001 {
13002 /* Anything without a location can't be re-set. */
13003 delete_breakpoint (b);
13004 return;
13005 }
13006
13007 breakpoint_re_set_default (b);
13008 }
13009
13010 static int
13011 bkpt_insert_location (struct bp_location *bl)
13012 {
13013 CORE_ADDR addr = bl->target_info.reqstd_address;
13014
13015 bl->target_info.kind = breakpoint_kind (bl, &addr);
13016 bl->target_info.placed_address = addr;
13017
13018 if (bl->loc_type == bp_loc_hardware_breakpoint)
13019 return target_insert_hw_breakpoint (bl->gdbarch, &bl->target_info);
13020 else
13021 return target_insert_breakpoint (bl->gdbarch, &bl->target_info);
13022 }
13023
13024 static int
13025 bkpt_remove_location (struct bp_location *bl, enum remove_bp_reason reason)
13026 {
13027 if (bl->loc_type == bp_loc_hardware_breakpoint)
13028 return target_remove_hw_breakpoint (bl->gdbarch, &bl->target_info);
13029 else
13030 return target_remove_breakpoint (bl->gdbarch, &bl->target_info, reason);
13031 }
13032
13033 static int
13034 bkpt_breakpoint_hit (const struct bp_location *bl,
13035 struct address_space *aspace, CORE_ADDR bp_addr,
13036 const struct target_waitstatus *ws)
13037 {
13038 if (ws->kind != TARGET_WAITKIND_STOPPED
13039 || ws->value.sig != GDB_SIGNAL_TRAP)
13040 return 0;
13041
13042 if (!breakpoint_address_match (bl->pspace->aspace, bl->address,
13043 aspace, bp_addr))
13044 return 0;
13045
13046 if (overlay_debugging /* unmapped overlay section */
13047 && section_is_overlay (bl->section)
13048 && !section_is_mapped (bl->section))
13049 return 0;
13050
13051 return 1;
13052 }
13053
13054 static int
13055 dprintf_breakpoint_hit (const struct bp_location *bl,
13056 struct address_space *aspace, CORE_ADDR bp_addr,
13057 const struct target_waitstatus *ws)
13058 {
13059 if (dprintf_style == dprintf_style_agent
13060 && target_can_run_breakpoint_commands ())
13061 {
13062 /* An agent-style dprintf never causes a stop. If we see a trap
13063 for this address it must be for a breakpoint that happens to
13064 be set at the same address. */
13065 return 0;
13066 }
13067
13068 return bkpt_breakpoint_hit (bl, aspace, bp_addr, ws);
13069 }
13070
13071 static int
13072 bkpt_resources_needed (const struct bp_location *bl)
13073 {
13074 gdb_assert (bl->owner->type == bp_hardware_breakpoint);
13075
13076 return 1;
13077 }
13078
13079 static enum print_stop_action
13080 bkpt_print_it (bpstat bs)
13081 {
13082 struct breakpoint *b;
13083 const struct bp_location *bl;
13084 int bp_temp;
13085 struct ui_out *uiout = current_uiout;
13086
13087 gdb_assert (bs->bp_location_at != NULL);
13088
13089 bl = bs->bp_location_at;
13090 b = bs->breakpoint_at;
13091
13092 bp_temp = b->disposition == disp_del;
13093 if (bl->address != bl->requested_address)
13094 breakpoint_adjustment_warning (bl->requested_address,
13095 bl->address,
13096 b->number, 1);
13097 annotate_breakpoint (b->number);
13098 maybe_print_thread_hit_breakpoint (uiout);
13099
13100 if (bp_temp)
13101 uiout->text ("Temporary breakpoint ");
13102 else
13103 uiout->text ("Breakpoint ");
13104 if (uiout->is_mi_like_p ())
13105 {
13106 uiout->field_string ("reason",
13107 async_reason_lookup (EXEC_ASYNC_BREAKPOINT_HIT));
13108 uiout->field_string ("disp", bpdisp_text (b->disposition));
13109 }
13110 uiout->field_int ("bkptno", b->number);
13111 uiout->text (", ");
13112
13113 return PRINT_SRC_AND_LOC;
13114 }
13115
13116 static void
13117 bkpt_print_mention (struct breakpoint *b)
13118 {
13119 if (current_uiout->is_mi_like_p ())
13120 return;
13121
13122 switch (b->type)
13123 {
13124 case bp_breakpoint:
13125 case bp_gnu_ifunc_resolver:
13126 if (b->disposition == disp_del)
13127 printf_filtered (_("Temporary breakpoint"));
13128 else
13129 printf_filtered (_("Breakpoint"));
13130 printf_filtered (_(" %d"), b->number);
13131 if (b->type == bp_gnu_ifunc_resolver)
13132 printf_filtered (_(" at gnu-indirect-function resolver"));
13133 break;
13134 case bp_hardware_breakpoint:
13135 printf_filtered (_("Hardware assisted breakpoint %d"), b->number);
13136 break;
13137 case bp_dprintf:
13138 printf_filtered (_("Dprintf %d"), b->number);
13139 break;
13140 }
13141
13142 say_where (b);
13143 }
13144
13145 static void
13146 bkpt_print_recreate (struct breakpoint *tp, struct ui_file *fp)
13147 {
13148 if (tp->type == bp_breakpoint && tp->disposition == disp_del)
13149 fprintf_unfiltered (fp, "tbreak");
13150 else if (tp->type == bp_breakpoint)
13151 fprintf_unfiltered (fp, "break");
13152 else if (tp->type == bp_hardware_breakpoint
13153 && tp->disposition == disp_del)
13154 fprintf_unfiltered (fp, "thbreak");
13155 else if (tp->type == bp_hardware_breakpoint)
13156 fprintf_unfiltered (fp, "hbreak");
13157 else
13158 internal_error (__FILE__, __LINE__,
13159 _("unhandled breakpoint type %d"), (int) tp->type);
13160
13161 fprintf_unfiltered (fp, " %s",
13162 event_location_to_string (tp->location.get ()));
13163
13164 /* Print out extra_string if this breakpoint is pending. It might
13165 contain, for example, conditions that were set by the user. */
13166 if (tp->loc == NULL && tp->extra_string != NULL)
13167 fprintf_unfiltered (fp, " %s", tp->extra_string);
13168
13169 print_recreate_thread (tp, fp);
13170 }
13171
13172 static void
13173 bkpt_create_sals_from_location (const struct event_location *location,
13174 struct linespec_result *canonical,
13175 enum bptype type_wanted)
13176 {
13177 create_sals_from_location_default (location, canonical, type_wanted);
13178 }
13179
13180 static void
13181 bkpt_create_breakpoints_sal (struct gdbarch *gdbarch,
13182 struct linespec_result *canonical,
13183 char *cond_string,
13184 char *extra_string,
13185 enum bptype type_wanted,
13186 enum bpdisp disposition,
13187 int thread,
13188 int task, int ignore_count,
13189 const struct breakpoint_ops *ops,
13190 int from_tty, int enabled,
13191 int internal, unsigned flags)
13192 {
13193 create_breakpoints_sal_default (gdbarch, canonical,
13194 cond_string, extra_string,
13195 type_wanted,
13196 disposition, thread, task,
13197 ignore_count, ops, from_tty,
13198 enabled, internal, flags);
13199 }
13200
13201 static void
13202 bkpt_decode_location (struct breakpoint *b,
13203 const struct event_location *location,
13204 struct program_space *search_pspace,
13205 struct symtabs_and_lines *sals)
13206 {
13207 decode_location_default (b, location, search_pspace, sals);
13208 }
13209
13210 /* Virtual table for internal breakpoints. */
13211
13212 static void
13213 internal_bkpt_re_set (struct breakpoint *b)
13214 {
13215 switch (b->type)
13216 {
13217 /* Delete overlay event and longjmp master breakpoints; they
13218 will be reset later by breakpoint_re_set. */
13219 case bp_overlay_event:
13220 case bp_longjmp_master:
13221 case bp_std_terminate_master:
13222 case bp_exception_master:
13223 delete_breakpoint (b);
13224 break;
13225
13226 /* This breakpoint is special, it's set up when the inferior
13227 starts and we really don't want to touch it. */
13228 case bp_shlib_event:
13229
13230 /* Like bp_shlib_event, this breakpoint type is special. Once
13231 it is set up, we do not want to touch it. */
13232 case bp_thread_event:
13233 break;
13234 }
13235 }
13236
13237 static void
13238 internal_bkpt_check_status (bpstat bs)
13239 {
13240 if (bs->breakpoint_at->type == bp_shlib_event)
13241 {
13242 /* If requested, stop when the dynamic linker notifies GDB of
13243 events. This allows the user to get control and place
13244 breakpoints in initializer routines for dynamically loaded
13245 objects (among other things). */
13246 bs->stop = stop_on_solib_events;
13247 bs->print = stop_on_solib_events;
13248 }
13249 else
13250 bs->stop = 0;
13251 }
13252
13253 static enum print_stop_action
13254 internal_bkpt_print_it (bpstat bs)
13255 {
13256 struct breakpoint *b;
13257
13258 b = bs->breakpoint_at;
13259
13260 switch (b->type)
13261 {
13262 case bp_shlib_event:
13263 /* Did we stop because the user set the stop_on_solib_events
13264 variable? (If so, we report this as a generic, "Stopped due
13265 to shlib event" message.) */
13266 print_solib_event (0);
13267 break;
13268
13269 case bp_thread_event:
13270 /* Not sure how we will get here.
13271 GDB should not stop for these breakpoints. */
13272 printf_filtered (_("Thread Event Breakpoint: gdb should not stop!\n"));
13273 break;
13274
13275 case bp_overlay_event:
13276 /* By analogy with the thread event, GDB should not stop for these. */
13277 printf_filtered (_("Overlay Event Breakpoint: gdb should not stop!\n"));
13278 break;
13279
13280 case bp_longjmp_master:
13281 /* These should never be enabled. */
13282 printf_filtered (_("Longjmp Master Breakpoint: gdb should not stop!\n"));
13283 break;
13284
13285 case bp_std_terminate_master:
13286 /* These should never be enabled. */
13287 printf_filtered (_("std::terminate Master Breakpoint: "
13288 "gdb should not stop!\n"));
13289 break;
13290
13291 case bp_exception_master:
13292 /* These should never be enabled. */
13293 printf_filtered (_("Exception Master Breakpoint: "
13294 "gdb should not stop!\n"));
13295 break;
13296 }
13297
13298 return PRINT_NOTHING;
13299 }
13300
13301 static void
13302 internal_bkpt_print_mention (struct breakpoint *b)
13303 {
13304 /* Nothing to mention. These breakpoints are internal. */
13305 }
13306
13307 /* Virtual table for momentary breakpoints */
13308
13309 static void
13310 momentary_bkpt_re_set (struct breakpoint *b)
13311 {
13312 /* Keep temporary breakpoints, which can be encountered when we step
13313 over a dlopen call and solib_add is resetting the breakpoints.
13314 Otherwise these should have been blown away via the cleanup chain
13315 or by breakpoint_init_inferior when we rerun the executable. */
13316 }
13317
13318 static void
13319 momentary_bkpt_check_status (bpstat bs)
13320 {
13321 /* Nothing. The point of these breakpoints is causing a stop. */
13322 }
13323
13324 static enum print_stop_action
13325 momentary_bkpt_print_it (bpstat bs)
13326 {
13327 return PRINT_UNKNOWN;
13328 }
13329
13330 static void
13331 momentary_bkpt_print_mention (struct breakpoint *b)
13332 {
13333 /* Nothing to mention. These breakpoints are internal. */
13334 }
13335
13336 /* Ensure INITIATING_FRAME is cleared when no such breakpoint exists.
13337
13338 It gets cleared already on the removal of the first one of such placed
13339 breakpoints. This is OK as they get all removed altogether. */
13340
13341 static void
13342 longjmp_bkpt_dtor (struct breakpoint *self)
13343 {
13344 struct thread_info *tp = find_thread_global_id (self->thread);
13345
13346 if (tp)
13347 tp->initiating_frame = null_frame_id;
13348
13349 momentary_breakpoint_ops.dtor (self);
13350 }
13351
13352 /* Specific methods for probe breakpoints. */
13353
13354 static int
13355 bkpt_probe_insert_location (struct bp_location *bl)
13356 {
13357 int v = bkpt_insert_location (bl);
13358
13359 if (v == 0)
13360 {
13361 /* The insertion was successful, now let's set the probe's semaphore
13362 if needed. */
13363 if (bl->probe.probe->pops->set_semaphore != NULL)
13364 bl->probe.probe->pops->set_semaphore (bl->probe.probe,
13365 bl->probe.objfile,
13366 bl->gdbarch);
13367 }
13368
13369 return v;
13370 }
13371
13372 static int
13373 bkpt_probe_remove_location (struct bp_location *bl,
13374 enum remove_bp_reason reason)
13375 {
13376 /* Let's clear the semaphore before removing the location. */
13377 if (bl->probe.probe->pops->clear_semaphore != NULL)
13378 bl->probe.probe->pops->clear_semaphore (bl->probe.probe,
13379 bl->probe.objfile,
13380 bl->gdbarch);
13381
13382 return bkpt_remove_location (bl, reason);
13383 }
13384
13385 static void
13386 bkpt_probe_create_sals_from_location (const struct event_location *location,
13387 struct linespec_result *canonical,
13388 enum bptype type_wanted)
13389 {
13390 struct linespec_sals lsal;
13391
13392 lsal.sals = parse_probes (location, NULL, canonical);
13393 lsal.canonical = xstrdup (event_location_to_string (canonical->location));
13394 VEC_safe_push (linespec_sals, canonical->sals, &lsal);
13395 }
13396
13397 static void
13398 bkpt_probe_decode_location (struct breakpoint *b,
13399 const struct event_location *location,
13400 struct program_space *search_pspace,
13401 struct symtabs_and_lines *sals)
13402 {
13403 *sals = parse_probes (location, search_pspace, NULL);
13404 if (!sals->sals)
13405 error (_("probe not found"));
13406 }
13407
13408 /* The breakpoint_ops structure to be used in tracepoints. */
13409
13410 static void
13411 tracepoint_re_set (struct breakpoint *b)
13412 {
13413 breakpoint_re_set_default (b);
13414 }
13415
13416 static int
13417 tracepoint_breakpoint_hit (const struct bp_location *bl,
13418 struct address_space *aspace, CORE_ADDR bp_addr,
13419 const struct target_waitstatus *ws)
13420 {
13421 /* By definition, the inferior does not report stops at
13422 tracepoints. */
13423 return 0;
13424 }
13425
13426 static void
13427 tracepoint_print_one_detail (const struct breakpoint *self,
13428 struct ui_out *uiout)
13429 {
13430 struct tracepoint *tp = (struct tracepoint *) self;
13431 if (tp->static_trace_marker_id)
13432 {
13433 gdb_assert (self->type == bp_static_tracepoint);
13434
13435 uiout->text ("\tmarker id is ");
13436 uiout->field_string ("static-tracepoint-marker-string-id",
13437 tp->static_trace_marker_id);
13438 uiout->text ("\n");
13439 }
13440 }
13441
13442 static void
13443 tracepoint_print_mention (struct breakpoint *b)
13444 {
13445 if (current_uiout->is_mi_like_p ())
13446 return;
13447
13448 switch (b->type)
13449 {
13450 case bp_tracepoint:
13451 printf_filtered (_("Tracepoint"));
13452 printf_filtered (_(" %d"), b->number);
13453 break;
13454 case bp_fast_tracepoint:
13455 printf_filtered (_("Fast tracepoint"));
13456 printf_filtered (_(" %d"), b->number);
13457 break;
13458 case bp_static_tracepoint:
13459 printf_filtered (_("Static tracepoint"));
13460 printf_filtered (_(" %d"), b->number);
13461 break;
13462 default:
13463 internal_error (__FILE__, __LINE__,
13464 _("unhandled tracepoint type %d"), (int) b->type);
13465 }
13466
13467 say_where (b);
13468 }
13469
13470 static void
13471 tracepoint_print_recreate (struct breakpoint *self, struct ui_file *fp)
13472 {
13473 struct tracepoint *tp = (struct tracepoint *) self;
13474
13475 if (self->type == bp_fast_tracepoint)
13476 fprintf_unfiltered (fp, "ftrace");
13477 else if (self->type == bp_static_tracepoint)
13478 fprintf_unfiltered (fp, "strace");
13479 else if (self->type == bp_tracepoint)
13480 fprintf_unfiltered (fp, "trace");
13481 else
13482 internal_error (__FILE__, __LINE__,
13483 _("unhandled tracepoint type %d"), (int) self->type);
13484
13485 fprintf_unfiltered (fp, " %s",
13486 event_location_to_string (self->location.get ()));
13487 print_recreate_thread (self, fp);
13488
13489 if (tp->pass_count)
13490 fprintf_unfiltered (fp, " passcount %d\n", tp->pass_count);
13491 }
13492
13493 static void
13494 tracepoint_create_sals_from_location (const struct event_location *location,
13495 struct linespec_result *canonical,
13496 enum bptype type_wanted)
13497 {
13498 create_sals_from_location_default (location, canonical, type_wanted);
13499 }
13500
13501 static void
13502 tracepoint_create_breakpoints_sal (struct gdbarch *gdbarch,
13503 struct linespec_result *canonical,
13504 char *cond_string,
13505 char *extra_string,
13506 enum bptype type_wanted,
13507 enum bpdisp disposition,
13508 int thread,
13509 int task, int ignore_count,
13510 const struct breakpoint_ops *ops,
13511 int from_tty, int enabled,
13512 int internal, unsigned flags)
13513 {
13514 create_breakpoints_sal_default (gdbarch, canonical,
13515 cond_string, extra_string,
13516 type_wanted,
13517 disposition, thread, task,
13518 ignore_count, ops, from_tty,
13519 enabled, internal, flags);
13520 }
13521
13522 static void
13523 tracepoint_decode_location (struct breakpoint *b,
13524 const struct event_location *location,
13525 struct program_space *search_pspace,
13526 struct symtabs_and_lines *sals)
13527 {
13528 decode_location_default (b, location, search_pspace, sals);
13529 }
13530
13531 struct breakpoint_ops tracepoint_breakpoint_ops;
13532
13533 /* The breakpoint_ops structure to be use on tracepoints placed in a
13534 static probe. */
13535
13536 static void
13537 tracepoint_probe_create_sals_from_location
13538 (const struct event_location *location,
13539 struct linespec_result *canonical,
13540 enum bptype type_wanted)
13541 {
13542 /* We use the same method for breakpoint on probes. */
13543 bkpt_probe_create_sals_from_location (location, canonical, type_wanted);
13544 }
13545
13546 static void
13547 tracepoint_probe_decode_location (struct breakpoint *b,
13548 const struct event_location *location,
13549 struct program_space *search_pspace,
13550 struct symtabs_and_lines *sals)
13551 {
13552 /* We use the same method for breakpoint on probes. */
13553 bkpt_probe_decode_location (b, location, search_pspace, sals);
13554 }
13555
13556 static struct breakpoint_ops tracepoint_probe_breakpoint_ops;
13557
13558 /* Dprintf breakpoint_ops methods. */
13559
13560 static void
13561 dprintf_re_set (struct breakpoint *b)
13562 {
13563 breakpoint_re_set_default (b);
13564
13565 /* extra_string should never be non-NULL for dprintf. */
13566 gdb_assert (b->extra_string != NULL);
13567
13568 /* 1 - connect to target 1, that can run breakpoint commands.
13569 2 - create a dprintf, which resolves fine.
13570 3 - disconnect from target 1
13571 4 - connect to target 2, that can NOT run breakpoint commands.
13572
13573 After steps #3/#4, you'll want the dprintf command list to
13574 be updated, because target 1 and 2 may well return different
13575 answers for target_can_run_breakpoint_commands().
13576 Given absence of finer grained resetting, we get to do
13577 it all the time. */
13578 if (b->extra_string != NULL)
13579 update_dprintf_command_list (b);
13580 }
13581
13582 /* Implement the "print_recreate" breakpoint_ops method for dprintf. */
13583
13584 static void
13585 dprintf_print_recreate (struct breakpoint *tp, struct ui_file *fp)
13586 {
13587 fprintf_unfiltered (fp, "dprintf %s,%s",
13588 event_location_to_string (tp->location.get ()),
13589 tp->extra_string);
13590 print_recreate_thread (tp, fp);
13591 }
13592
13593 /* Implement the "after_condition_true" breakpoint_ops method for
13594 dprintf.
13595
13596 dprintf's are implemented with regular commands in their command
13597 list, but we run the commands here instead of before presenting the
13598 stop to the user, as dprintf's don't actually cause a stop. This
13599 also makes it so that the commands of multiple dprintfs at the same
13600 address are all handled. */
13601
13602 static void
13603 dprintf_after_condition_true (struct bpstats *bs)
13604 {
13605 struct cleanup *old_chain;
13606 struct bpstats tmp_bs = { NULL };
13607 struct bpstats *tmp_bs_p = &tmp_bs;
13608
13609 /* dprintf's never cause a stop. This wasn't set in the
13610 check_status hook instead because that would make the dprintf's
13611 condition not be evaluated. */
13612 bs->stop = 0;
13613
13614 /* Run the command list here. Take ownership of it instead of
13615 copying. We never want these commands to run later in
13616 bpstat_do_actions, if a breakpoint that causes a stop happens to
13617 be set at same address as this dprintf, or even if running the
13618 commands here throws. */
13619 tmp_bs.commands = bs->commands;
13620 bs->commands = NULL;
13621 old_chain = make_cleanup_decref_counted_command_line (&tmp_bs.commands);
13622
13623 bpstat_do_actions_1 (&tmp_bs_p);
13624
13625 /* 'tmp_bs.commands' will usually be NULL by now, but
13626 bpstat_do_actions_1 may return early without processing the whole
13627 list. */
13628 do_cleanups (old_chain);
13629 }
13630
13631 /* The breakpoint_ops structure to be used on static tracepoints with
13632 markers (`-m'). */
13633
13634 static void
13635 strace_marker_create_sals_from_location (const struct event_location *location,
13636 struct linespec_result *canonical,
13637 enum bptype type_wanted)
13638 {
13639 struct linespec_sals lsal;
13640 const char *arg_start, *arg;
13641 char *str;
13642 struct cleanup *cleanup;
13643
13644 arg = arg_start = get_linespec_location (location);
13645 lsal.sals = decode_static_tracepoint_spec (&arg);
13646
13647 str = savestring (arg_start, arg - arg_start);
13648 cleanup = make_cleanup (xfree, str);
13649 canonical->location = new_linespec_location (&str).release ();
13650 do_cleanups (cleanup);
13651
13652 lsal.canonical = xstrdup (event_location_to_string (canonical->location));
13653 VEC_safe_push (linespec_sals, canonical->sals, &lsal);
13654 }
13655
13656 static void
13657 strace_marker_create_breakpoints_sal (struct gdbarch *gdbarch,
13658 struct linespec_result *canonical,
13659 char *cond_string,
13660 char *extra_string,
13661 enum bptype type_wanted,
13662 enum bpdisp disposition,
13663 int thread,
13664 int task, int ignore_count,
13665 const struct breakpoint_ops *ops,
13666 int from_tty, int enabled,
13667 int internal, unsigned flags)
13668 {
13669 int i;
13670 struct linespec_sals *lsal = VEC_index (linespec_sals,
13671 canonical->sals, 0);
13672
13673 /* If the user is creating a static tracepoint by marker id
13674 (strace -m MARKER_ID), then store the sals index, so that
13675 breakpoint_re_set can try to match up which of the newly
13676 found markers corresponds to this one, and, don't try to
13677 expand multiple locations for each sal, given than SALS
13678 already should contain all sals for MARKER_ID. */
13679
13680 for (i = 0; i < lsal->sals.nelts; ++i)
13681 {
13682 struct symtabs_and_lines expanded;
13683 struct tracepoint *tp;
13684 event_location_up location;
13685
13686 expanded.nelts = 1;
13687 expanded.sals = &lsal->sals.sals[i];
13688
13689 location = copy_event_location (canonical->location);
13690
13691 tp = new tracepoint ();
13692 init_breakpoint_sal (&tp->base, gdbarch, expanded,
13693 std::move (location), NULL,
13694 cond_string, extra_string,
13695 type_wanted, disposition,
13696 thread, task, ignore_count, ops,
13697 from_tty, enabled, internal, flags,
13698 canonical->special_display);
13699 /* Given that its possible to have multiple markers with
13700 the same string id, if the user is creating a static
13701 tracepoint by marker id ("strace -m MARKER_ID"), then
13702 store the sals index, so that breakpoint_re_set can
13703 try to match up which of the newly found markers
13704 corresponds to this one */
13705 tp->static_trace_marker_id_idx = i;
13706
13707 install_breakpoint (internal, &tp->base, 0);
13708 }
13709 }
13710
13711 static void
13712 strace_marker_decode_location (struct breakpoint *b,
13713 const struct event_location *location,
13714 struct program_space *search_pspace,
13715 struct symtabs_and_lines *sals)
13716 {
13717 struct tracepoint *tp = (struct tracepoint *) b;
13718 const char *s = get_linespec_location (location);
13719
13720 *sals = decode_static_tracepoint_spec (&s);
13721 if (sals->nelts > tp->static_trace_marker_id_idx)
13722 {
13723 sals->sals[0] = sals->sals[tp->static_trace_marker_id_idx];
13724 sals->nelts = 1;
13725 }
13726 else
13727 error (_("marker %s not found"), tp->static_trace_marker_id);
13728 }
13729
13730 static struct breakpoint_ops strace_marker_breakpoint_ops;
13731
13732 static int
13733 strace_marker_p (struct breakpoint *b)
13734 {
13735 return b->ops == &strace_marker_breakpoint_ops;
13736 }
13737
13738 /* Delete a breakpoint and clean up all traces of it in the data
13739 structures. */
13740
13741 void
13742 delete_breakpoint (struct breakpoint *bpt)
13743 {
13744 struct breakpoint *b;
13745
13746 gdb_assert (bpt != NULL);
13747
13748 /* Has this bp already been deleted? This can happen because
13749 multiple lists can hold pointers to bp's. bpstat lists are
13750 especial culprits.
13751
13752 One example of this happening is a watchpoint's scope bp. When
13753 the scope bp triggers, we notice that the watchpoint is out of
13754 scope, and delete it. We also delete its scope bp. But the
13755 scope bp is marked "auto-deleting", and is already on a bpstat.
13756 That bpstat is then checked for auto-deleting bp's, which are
13757 deleted.
13758
13759 A real solution to this problem might involve reference counts in
13760 bp's, and/or giving them pointers back to their referencing
13761 bpstat's, and teaching delete_breakpoint to only free a bp's
13762 storage when no more references were extent. A cheaper bandaid
13763 was chosen. */
13764 if (bpt->type == bp_none)
13765 return;
13766
13767 /* At least avoid this stale reference until the reference counting
13768 of breakpoints gets resolved. */
13769 if (bpt->related_breakpoint != bpt)
13770 {
13771 struct breakpoint *related;
13772 struct watchpoint *w;
13773
13774 if (bpt->type == bp_watchpoint_scope)
13775 w = (struct watchpoint *) bpt->related_breakpoint;
13776 else if (bpt->related_breakpoint->type == bp_watchpoint_scope)
13777 w = (struct watchpoint *) bpt;
13778 else
13779 w = NULL;
13780 if (w != NULL)
13781 watchpoint_del_at_next_stop (w);
13782
13783 /* Unlink bpt from the bpt->related_breakpoint ring. */
13784 for (related = bpt; related->related_breakpoint != bpt;
13785 related = related->related_breakpoint);
13786 related->related_breakpoint = bpt->related_breakpoint;
13787 bpt->related_breakpoint = bpt;
13788 }
13789
13790 /* watch_command_1 creates a watchpoint but only sets its number if
13791 update_watchpoint succeeds in creating its bp_locations. If there's
13792 a problem in that process, we'll be asked to delete the half-created
13793 watchpoint. In that case, don't announce the deletion. */
13794 if (bpt->number)
13795 observer_notify_breakpoint_deleted (bpt);
13796
13797 if (breakpoint_chain == bpt)
13798 breakpoint_chain = bpt->next;
13799
13800 ALL_BREAKPOINTS (b)
13801 if (b->next == bpt)
13802 {
13803 b->next = bpt->next;
13804 break;
13805 }
13806
13807 /* Be sure no bpstat's are pointing at the breakpoint after it's
13808 been freed. */
13809 /* FIXME, how can we find all bpstat's? We just check stop_bpstat
13810 in all threads for now. Note that we cannot just remove bpstats
13811 pointing at bpt from the stop_bpstat list entirely, as breakpoint
13812 commands are associated with the bpstat; if we remove it here,
13813 then the later call to bpstat_do_actions (&stop_bpstat); in
13814 event-top.c won't do anything, and temporary breakpoints with
13815 commands won't work. */
13816
13817 iterate_over_threads (bpstat_remove_breakpoint_callback, bpt);
13818
13819 /* Now that breakpoint is removed from breakpoint list, update the
13820 global location list. This will remove locations that used to
13821 belong to this breakpoint. Do this before freeing the breakpoint
13822 itself, since remove_breakpoint looks at location's owner. It
13823 might be better design to have location completely
13824 self-contained, but it's not the case now. */
13825 update_global_location_list (UGLL_DONT_INSERT);
13826
13827 bpt->ops->dtor (bpt);
13828 /* On the chance that someone will soon try again to delete this
13829 same bp, we mark it as deleted before freeing its storage. */
13830 bpt->type = bp_none;
13831 delete bpt;
13832 }
13833
13834 static void
13835 do_delete_breakpoint_cleanup (void *b)
13836 {
13837 delete_breakpoint ((struct breakpoint *) b);
13838 }
13839
13840 struct cleanup *
13841 make_cleanup_delete_breakpoint (struct breakpoint *b)
13842 {
13843 return make_cleanup (do_delete_breakpoint_cleanup, b);
13844 }
13845
13846 /* Iterator function to call a user-provided callback function once
13847 for each of B and its related breakpoints. */
13848
13849 static void
13850 iterate_over_related_breakpoints (struct breakpoint *b,
13851 void (*function) (struct breakpoint *,
13852 void *),
13853 void *data)
13854 {
13855 struct breakpoint *related;
13856
13857 related = b;
13858 do
13859 {
13860 struct breakpoint *next;
13861
13862 /* FUNCTION may delete RELATED. */
13863 next = related->related_breakpoint;
13864
13865 if (next == related)
13866 {
13867 /* RELATED is the last ring entry. */
13868 function (related, data);
13869
13870 /* FUNCTION may have deleted it, so we'd never reach back to
13871 B. There's nothing left to do anyway, so just break
13872 out. */
13873 break;
13874 }
13875 else
13876 function (related, data);
13877
13878 related = next;
13879 }
13880 while (related != b);
13881 }
13882
13883 static void
13884 do_delete_breakpoint (struct breakpoint *b, void *ignore)
13885 {
13886 delete_breakpoint (b);
13887 }
13888
13889 /* A callback for map_breakpoint_numbers that calls
13890 delete_breakpoint. */
13891
13892 static void
13893 do_map_delete_breakpoint (struct breakpoint *b, void *ignore)
13894 {
13895 iterate_over_related_breakpoints (b, do_delete_breakpoint, NULL);
13896 }
13897
13898 void
13899 delete_command (char *arg, int from_tty)
13900 {
13901 struct breakpoint *b, *b_tmp;
13902
13903 dont_repeat ();
13904
13905 if (arg == 0)
13906 {
13907 int breaks_to_delete = 0;
13908
13909 /* Delete all breakpoints if no argument. Do not delete
13910 internal breakpoints, these have to be deleted with an
13911 explicit breakpoint number argument. */
13912 ALL_BREAKPOINTS (b)
13913 if (user_breakpoint_p (b))
13914 {
13915 breaks_to_delete = 1;
13916 break;
13917 }
13918
13919 /* Ask user only if there are some breakpoints to delete. */
13920 if (!from_tty
13921 || (breaks_to_delete && query (_("Delete all breakpoints? "))))
13922 {
13923 ALL_BREAKPOINTS_SAFE (b, b_tmp)
13924 if (user_breakpoint_p (b))
13925 delete_breakpoint (b);
13926 }
13927 }
13928 else
13929 map_breakpoint_numbers (arg, do_map_delete_breakpoint, NULL);
13930 }
13931
13932 /* Return true if all locations of B bound to PSPACE are pending. If
13933 PSPACE is NULL, all locations of all program spaces are
13934 considered. */
13935
13936 static int
13937 all_locations_are_pending (struct breakpoint *b, struct program_space *pspace)
13938 {
13939 struct bp_location *loc;
13940
13941 for (loc = b->loc; loc != NULL; loc = loc->next)
13942 if ((pspace == NULL
13943 || loc->pspace == pspace)
13944 && !loc->shlib_disabled
13945 && !loc->pspace->executing_startup)
13946 return 0;
13947 return 1;
13948 }
13949
13950 /* Subroutine of update_breakpoint_locations to simplify it.
13951 Return non-zero if multiple fns in list LOC have the same name.
13952 Null names are ignored. */
13953
13954 static int
13955 ambiguous_names_p (struct bp_location *loc)
13956 {
13957 struct bp_location *l;
13958 htab_t htab = htab_create_alloc (13, htab_hash_string,
13959 (int (*) (const void *,
13960 const void *)) streq,
13961 NULL, xcalloc, xfree);
13962
13963 for (l = loc; l != NULL; l = l->next)
13964 {
13965 const char **slot;
13966 const char *name = l->function_name;
13967
13968 /* Allow for some names to be NULL, ignore them. */
13969 if (name == NULL)
13970 continue;
13971
13972 slot = (const char **) htab_find_slot (htab, (const void *) name,
13973 INSERT);
13974 /* NOTE: We can assume slot != NULL here because xcalloc never
13975 returns NULL. */
13976 if (*slot != NULL)
13977 {
13978 htab_delete (htab);
13979 return 1;
13980 }
13981 *slot = name;
13982 }
13983
13984 htab_delete (htab);
13985 return 0;
13986 }
13987
13988 /* When symbols change, it probably means the sources changed as well,
13989 and it might mean the static tracepoint markers are no longer at
13990 the same address or line numbers they used to be at last we
13991 checked. Losing your static tracepoints whenever you rebuild is
13992 undesirable. This function tries to resync/rematch gdb static
13993 tracepoints with the markers on the target, for static tracepoints
13994 that have not been set by marker id. Static tracepoint that have
13995 been set by marker id are reset by marker id in breakpoint_re_set.
13996 The heuristic is:
13997
13998 1) For a tracepoint set at a specific address, look for a marker at
13999 the old PC. If one is found there, assume to be the same marker.
14000 If the name / string id of the marker found is different from the
14001 previous known name, assume that means the user renamed the marker
14002 in the sources, and output a warning.
14003
14004 2) For a tracepoint set at a given line number, look for a marker
14005 at the new address of the old line number. If one is found there,
14006 assume to be the same marker. If the name / string id of the
14007 marker found is different from the previous known name, assume that
14008 means the user renamed the marker in the sources, and output a
14009 warning.
14010
14011 3) If a marker is no longer found at the same address or line, it
14012 may mean the marker no longer exists. But it may also just mean
14013 the code changed a bit. Maybe the user added a few lines of code
14014 that made the marker move up or down (in line number terms). Ask
14015 the target for info about the marker with the string id as we knew
14016 it. If found, update line number and address in the matching
14017 static tracepoint. This will get confused if there's more than one
14018 marker with the same ID (possible in UST, although unadvised
14019 precisely because it confuses tools). */
14020
14021 static struct symtab_and_line
14022 update_static_tracepoint (struct breakpoint *b, struct symtab_and_line sal)
14023 {
14024 struct tracepoint *tp = (struct tracepoint *) b;
14025 struct static_tracepoint_marker marker;
14026 CORE_ADDR pc;
14027
14028 pc = sal.pc;
14029 if (sal.line)
14030 find_line_pc (sal.symtab, sal.line, &pc);
14031
14032 if (target_static_tracepoint_marker_at (pc, &marker))
14033 {
14034 if (strcmp (tp->static_trace_marker_id, marker.str_id) != 0)
14035 warning (_("static tracepoint %d changed probed marker from %s to %s"),
14036 b->number,
14037 tp->static_trace_marker_id, marker.str_id);
14038
14039 xfree (tp->static_trace_marker_id);
14040 tp->static_trace_marker_id = xstrdup (marker.str_id);
14041 release_static_tracepoint_marker (&marker);
14042
14043 return sal;
14044 }
14045
14046 /* Old marker wasn't found on target at lineno. Try looking it up
14047 by string ID. */
14048 if (!sal.explicit_pc
14049 && sal.line != 0
14050 && sal.symtab != NULL
14051 && tp->static_trace_marker_id != NULL)
14052 {
14053 VEC(static_tracepoint_marker_p) *markers;
14054
14055 markers
14056 = target_static_tracepoint_markers_by_strid (tp->static_trace_marker_id);
14057
14058 if (!VEC_empty(static_tracepoint_marker_p, markers))
14059 {
14060 struct symtab_and_line sal2;
14061 struct symbol *sym;
14062 struct static_tracepoint_marker *tpmarker;
14063 struct ui_out *uiout = current_uiout;
14064 struct explicit_location explicit_loc;
14065
14066 tpmarker = VEC_index (static_tracepoint_marker_p, markers, 0);
14067
14068 xfree (tp->static_trace_marker_id);
14069 tp->static_trace_marker_id = xstrdup (tpmarker->str_id);
14070
14071 warning (_("marker for static tracepoint %d (%s) not "
14072 "found at previous line number"),
14073 b->number, tp->static_trace_marker_id);
14074
14075 init_sal (&sal2);
14076
14077 sal2.pc = tpmarker->address;
14078
14079 sal2 = find_pc_line (tpmarker->address, 0);
14080 sym = find_pc_sect_function (tpmarker->address, NULL);
14081 uiout->text ("Now in ");
14082 if (sym)
14083 {
14084 uiout->field_string ("func", SYMBOL_PRINT_NAME (sym));
14085 uiout->text (" at ");
14086 }
14087 uiout->field_string ("file",
14088 symtab_to_filename_for_display (sal2.symtab));
14089 uiout->text (":");
14090
14091 if (uiout->is_mi_like_p ())
14092 {
14093 const char *fullname = symtab_to_fullname (sal2.symtab);
14094
14095 uiout->field_string ("fullname", fullname);
14096 }
14097
14098 uiout->field_int ("line", sal2.line);
14099 uiout->text ("\n");
14100
14101 b->loc->line_number = sal2.line;
14102 b->loc->symtab = sym != NULL ? sal2.symtab : NULL;
14103
14104 b->location.reset (NULL);
14105 initialize_explicit_location (&explicit_loc);
14106 explicit_loc.source_filename
14107 = ASTRDUP (symtab_to_filename_for_display (sal2.symtab));
14108 explicit_loc.line_offset.offset = b->loc->line_number;
14109 explicit_loc.line_offset.sign = LINE_OFFSET_NONE;
14110 b->location = new_explicit_location (&explicit_loc);
14111
14112 /* Might be nice to check if function changed, and warn if
14113 so. */
14114
14115 release_static_tracepoint_marker (tpmarker);
14116 }
14117 }
14118 return sal;
14119 }
14120
14121 /* Returns 1 iff locations A and B are sufficiently same that
14122 we don't need to report breakpoint as changed. */
14123
14124 static int
14125 locations_are_equal (struct bp_location *a, struct bp_location *b)
14126 {
14127 while (a && b)
14128 {
14129 if (a->address != b->address)
14130 return 0;
14131
14132 if (a->shlib_disabled != b->shlib_disabled)
14133 return 0;
14134
14135 if (a->enabled != b->enabled)
14136 return 0;
14137
14138 a = a->next;
14139 b = b->next;
14140 }
14141
14142 if ((a == NULL) != (b == NULL))
14143 return 0;
14144
14145 return 1;
14146 }
14147
14148 /* Split all locations of B that are bound to PSPACE out of B's
14149 location list to a separate list and return that list's head. If
14150 PSPACE is NULL, hoist out all locations of B. */
14151
14152 static struct bp_location *
14153 hoist_existing_locations (struct breakpoint *b, struct program_space *pspace)
14154 {
14155 struct bp_location head;
14156 struct bp_location *i = b->loc;
14157 struct bp_location **i_link = &b->loc;
14158 struct bp_location *hoisted = &head;
14159
14160 if (pspace == NULL)
14161 {
14162 i = b->loc;
14163 b->loc = NULL;
14164 return i;
14165 }
14166
14167 head.next = NULL;
14168
14169 while (i != NULL)
14170 {
14171 if (i->pspace == pspace)
14172 {
14173 *i_link = i->next;
14174 i->next = NULL;
14175 hoisted->next = i;
14176 hoisted = i;
14177 }
14178 else
14179 i_link = &i->next;
14180 i = *i_link;
14181 }
14182
14183 return head.next;
14184 }
14185
14186 /* Create new breakpoint locations for B (a hardware or software
14187 breakpoint) based on SALS and SALS_END. If SALS_END.NELTS is not
14188 zero, then B is a ranged breakpoint. Only recreates locations for
14189 FILTER_PSPACE. Locations of other program spaces are left
14190 untouched. */
14191
14192 void
14193 update_breakpoint_locations (struct breakpoint *b,
14194 struct program_space *filter_pspace,
14195 struct symtabs_and_lines sals,
14196 struct symtabs_and_lines sals_end)
14197 {
14198 int i;
14199 struct bp_location *existing_locations;
14200
14201 if (sals_end.nelts != 0 && (sals.nelts != 1 || sals_end.nelts != 1))
14202 {
14203 /* Ranged breakpoints have only one start location and one end
14204 location. */
14205 b->enable_state = bp_disabled;
14206 printf_unfiltered (_("Could not reset ranged breakpoint %d: "
14207 "multiple locations found\n"),
14208 b->number);
14209 return;
14210 }
14211
14212 /* If there's no new locations, and all existing locations are
14213 pending, don't do anything. This optimizes the common case where
14214 all locations are in the same shared library, that was unloaded.
14215 We'd like to retain the location, so that when the library is
14216 loaded again, we don't loose the enabled/disabled status of the
14217 individual locations. */
14218 if (all_locations_are_pending (b, filter_pspace) && sals.nelts == 0)
14219 return;
14220
14221 existing_locations = hoist_existing_locations (b, filter_pspace);
14222
14223 for (i = 0; i < sals.nelts; ++i)
14224 {
14225 struct bp_location *new_loc;
14226
14227 switch_to_program_space_and_thread (sals.sals[i].pspace);
14228
14229 new_loc = add_location_to_breakpoint (b, &(sals.sals[i]));
14230
14231 /* Reparse conditions, they might contain references to the
14232 old symtab. */
14233 if (b->cond_string != NULL)
14234 {
14235 const char *s;
14236
14237 s = b->cond_string;
14238 TRY
14239 {
14240 new_loc->cond = parse_exp_1 (&s, sals.sals[i].pc,
14241 block_for_pc (sals.sals[i].pc),
14242 0);
14243 }
14244 CATCH (e, RETURN_MASK_ERROR)
14245 {
14246 warning (_("failed to reevaluate condition "
14247 "for breakpoint %d: %s"),
14248 b->number, e.message);
14249 new_loc->enabled = 0;
14250 }
14251 END_CATCH
14252 }
14253
14254 if (sals_end.nelts)
14255 {
14256 CORE_ADDR end = find_breakpoint_range_end (sals_end.sals[0]);
14257
14258 new_loc->length = end - sals.sals[0].pc + 1;
14259 }
14260 }
14261
14262 /* If possible, carry over 'disable' status from existing
14263 breakpoints. */
14264 {
14265 struct bp_location *e = existing_locations;
14266 /* If there are multiple breakpoints with the same function name,
14267 e.g. for inline functions, comparing function names won't work.
14268 Instead compare pc addresses; this is just a heuristic as things
14269 may have moved, but in practice it gives the correct answer
14270 often enough until a better solution is found. */
14271 int have_ambiguous_names = ambiguous_names_p (b->loc);
14272
14273 for (; e; e = e->next)
14274 {
14275 if (!e->enabled && e->function_name)
14276 {
14277 struct bp_location *l = b->loc;
14278 if (have_ambiguous_names)
14279 {
14280 for (; l; l = l->next)
14281 if (breakpoint_locations_match (e, l))
14282 {
14283 l->enabled = 0;
14284 break;
14285 }
14286 }
14287 else
14288 {
14289 for (; l; l = l->next)
14290 if (l->function_name
14291 && strcmp (e->function_name, l->function_name) == 0)
14292 {
14293 l->enabled = 0;
14294 break;
14295 }
14296 }
14297 }
14298 }
14299 }
14300
14301 if (!locations_are_equal (existing_locations, b->loc))
14302 observer_notify_breakpoint_modified (b);
14303 }
14304
14305 /* Find the SaL locations corresponding to the given LOCATION.
14306 On return, FOUND will be 1 if any SaL was found, zero otherwise. */
14307
14308 static struct symtabs_and_lines
14309 location_to_sals (struct breakpoint *b, struct event_location *location,
14310 struct program_space *search_pspace, int *found)
14311 {
14312 struct symtabs_and_lines sals = {0};
14313 struct gdb_exception exception = exception_none;
14314
14315 gdb_assert (b->ops != NULL);
14316
14317 TRY
14318 {
14319 b->ops->decode_location (b, location, search_pspace, &sals);
14320 }
14321 CATCH (e, RETURN_MASK_ERROR)
14322 {
14323 int not_found_and_ok = 0;
14324
14325 exception = e;
14326
14327 /* For pending breakpoints, it's expected that parsing will
14328 fail until the right shared library is loaded. User has
14329 already told to create pending breakpoints and don't need
14330 extra messages. If breakpoint is in bp_shlib_disabled
14331 state, then user already saw the message about that
14332 breakpoint being disabled, and don't want to see more
14333 errors. */
14334 if (e.error == NOT_FOUND_ERROR
14335 && (b->condition_not_parsed
14336 || (b->loc != NULL
14337 && search_pspace != NULL
14338 && b->loc->pspace != search_pspace)
14339 || (b->loc && b->loc->shlib_disabled)
14340 || (b->loc && b->loc->pspace->executing_startup)
14341 || b->enable_state == bp_disabled))
14342 not_found_and_ok = 1;
14343
14344 if (!not_found_and_ok)
14345 {
14346 /* We surely don't want to warn about the same breakpoint
14347 10 times. One solution, implemented here, is disable
14348 the breakpoint on error. Another solution would be to
14349 have separate 'warning emitted' flag. Since this
14350 happens only when a binary has changed, I don't know
14351 which approach is better. */
14352 b->enable_state = bp_disabled;
14353 throw_exception (e);
14354 }
14355 }
14356 END_CATCH
14357
14358 if (exception.reason == 0 || exception.error != NOT_FOUND_ERROR)
14359 {
14360 int i;
14361
14362 for (i = 0; i < sals.nelts; ++i)
14363 resolve_sal_pc (&sals.sals[i]);
14364 if (b->condition_not_parsed && b->extra_string != NULL)
14365 {
14366 char *cond_string, *extra_string;
14367 int thread, task;
14368
14369 find_condition_and_thread (b->extra_string, sals.sals[0].pc,
14370 &cond_string, &thread, &task,
14371 &extra_string);
14372 gdb_assert (b->cond_string == NULL);
14373 if (cond_string)
14374 b->cond_string = cond_string;
14375 b->thread = thread;
14376 b->task = task;
14377 if (extra_string)
14378 {
14379 xfree (b->extra_string);
14380 b->extra_string = extra_string;
14381 }
14382 b->condition_not_parsed = 0;
14383 }
14384
14385 if (b->type == bp_static_tracepoint && !strace_marker_p (b))
14386 sals.sals[0] = update_static_tracepoint (b, sals.sals[0]);
14387
14388 *found = 1;
14389 }
14390 else
14391 *found = 0;
14392
14393 return sals;
14394 }
14395
14396 /* The default re_set method, for typical hardware or software
14397 breakpoints. Reevaluate the breakpoint and recreate its
14398 locations. */
14399
14400 static void
14401 breakpoint_re_set_default (struct breakpoint *b)
14402 {
14403 int found;
14404 struct symtabs_and_lines sals, sals_end;
14405 struct symtabs_and_lines expanded = {0};
14406 struct symtabs_and_lines expanded_end = {0};
14407 struct program_space *filter_pspace = current_program_space;
14408
14409 sals = location_to_sals (b, b->location.get (), filter_pspace, &found);
14410 if (found)
14411 {
14412 make_cleanup (xfree, sals.sals);
14413 expanded = sals;
14414 }
14415
14416 if (b->location_range_end != NULL)
14417 {
14418 sals_end = location_to_sals (b, b->location_range_end.get (),
14419 filter_pspace, &found);
14420 if (found)
14421 {
14422 make_cleanup (xfree, sals_end.sals);
14423 expanded_end = sals_end;
14424 }
14425 }
14426
14427 update_breakpoint_locations (b, filter_pspace, expanded, expanded_end);
14428 }
14429
14430 /* Default method for creating SALs from an address string. It basically
14431 calls parse_breakpoint_sals. Return 1 for success, zero for failure. */
14432
14433 static void
14434 create_sals_from_location_default (const struct event_location *location,
14435 struct linespec_result *canonical,
14436 enum bptype type_wanted)
14437 {
14438 parse_breakpoint_sals (location, canonical);
14439 }
14440
14441 /* Call create_breakpoints_sal for the given arguments. This is the default
14442 function for the `create_breakpoints_sal' method of
14443 breakpoint_ops. */
14444
14445 static void
14446 create_breakpoints_sal_default (struct gdbarch *gdbarch,
14447 struct linespec_result *canonical,
14448 char *cond_string,
14449 char *extra_string,
14450 enum bptype type_wanted,
14451 enum bpdisp disposition,
14452 int thread,
14453 int task, int ignore_count,
14454 const struct breakpoint_ops *ops,
14455 int from_tty, int enabled,
14456 int internal, unsigned flags)
14457 {
14458 create_breakpoints_sal (gdbarch, canonical, cond_string,
14459 extra_string,
14460 type_wanted, disposition,
14461 thread, task, ignore_count, ops, from_tty,
14462 enabled, internal, flags);
14463 }
14464
14465 /* Decode the line represented by S by calling decode_line_full. This is the
14466 default function for the `decode_location' method of breakpoint_ops. */
14467
14468 static void
14469 decode_location_default (struct breakpoint *b,
14470 const struct event_location *location,
14471 struct program_space *search_pspace,
14472 struct symtabs_and_lines *sals)
14473 {
14474 struct linespec_result canonical;
14475
14476 decode_line_full (location, DECODE_LINE_FUNFIRSTLINE, search_pspace,
14477 (struct symtab *) NULL, 0,
14478 &canonical, multiple_symbols_all,
14479 b->filter);
14480
14481 /* We should get 0 or 1 resulting SALs. */
14482 gdb_assert (VEC_length (linespec_sals, canonical.sals) < 2);
14483
14484 if (VEC_length (linespec_sals, canonical.sals) > 0)
14485 {
14486 struct linespec_sals *lsal;
14487
14488 lsal = VEC_index (linespec_sals, canonical.sals, 0);
14489 *sals = lsal->sals;
14490 /* Arrange it so the destructor does not free the
14491 contents. */
14492 lsal->sals.sals = NULL;
14493 }
14494 }
14495
14496 /* Prepare the global context for a re-set of breakpoint B. */
14497
14498 static struct cleanup *
14499 prepare_re_set_context (struct breakpoint *b)
14500 {
14501 input_radix = b->input_radix;
14502 set_language (b->language);
14503
14504 return make_cleanup (null_cleanup, NULL);
14505 }
14506
14507 /* Reset a breakpoint given it's struct breakpoint * BINT.
14508 The value we return ends up being the return value from catch_errors.
14509 Unused in this case. */
14510
14511 static int
14512 breakpoint_re_set_one (void *bint)
14513 {
14514 /* Get past catch_errs. */
14515 struct breakpoint *b = (struct breakpoint *) bint;
14516 struct cleanup *cleanups;
14517
14518 cleanups = prepare_re_set_context (b);
14519 b->ops->re_set (b);
14520 do_cleanups (cleanups);
14521 return 0;
14522 }
14523
14524 /* Re-set breakpoint locations for the current program space.
14525 Locations bound to other program spaces are left untouched. */
14526
14527 void
14528 breakpoint_re_set (void)
14529 {
14530 struct breakpoint *b, *b_tmp;
14531 enum language save_language;
14532 int save_input_radix;
14533 struct cleanup *old_chain;
14534
14535 save_language = current_language->la_language;
14536 save_input_radix = input_radix;
14537 old_chain = save_current_space_and_thread ();
14538
14539 /* Note: we must not try to insert locations until after all
14540 breakpoints have been re-set. Otherwise, e.g., when re-setting
14541 breakpoint 1, we'd insert the locations of breakpoint 2, which
14542 hadn't been re-set yet, and thus may have stale locations. */
14543
14544 ALL_BREAKPOINTS_SAFE (b, b_tmp)
14545 {
14546 /* Format possible error msg. */
14547 char *message = xstrprintf ("Error in re-setting breakpoint %d: ",
14548 b->number);
14549 struct cleanup *cleanups = make_cleanup (xfree, message);
14550 catch_errors (breakpoint_re_set_one, b, message, RETURN_MASK_ALL);
14551 do_cleanups (cleanups);
14552 }
14553 set_language (save_language);
14554 input_radix = save_input_radix;
14555
14556 jit_breakpoint_re_set ();
14557
14558 do_cleanups (old_chain);
14559
14560 create_overlay_event_breakpoint ();
14561 create_longjmp_master_breakpoint ();
14562 create_std_terminate_master_breakpoint ();
14563 create_exception_master_breakpoint ();
14564
14565 /* Now we can insert. */
14566 update_global_location_list (UGLL_MAY_INSERT);
14567 }
14568 \f
14569 /* Reset the thread number of this breakpoint:
14570
14571 - If the breakpoint is for all threads, leave it as-is.
14572 - Else, reset it to the current thread for inferior_ptid. */
14573 void
14574 breakpoint_re_set_thread (struct breakpoint *b)
14575 {
14576 if (b->thread != -1)
14577 {
14578 if (in_thread_list (inferior_ptid))
14579 b->thread = ptid_to_global_thread_id (inferior_ptid);
14580
14581 /* We're being called after following a fork. The new fork is
14582 selected as current, and unless this was a vfork will have a
14583 different program space from the original thread. Reset that
14584 as well. */
14585 b->loc->pspace = current_program_space;
14586 }
14587 }
14588
14589 /* Set ignore-count of breakpoint number BPTNUM to COUNT.
14590 If from_tty is nonzero, it prints a message to that effect,
14591 which ends with a period (no newline). */
14592
14593 void
14594 set_ignore_count (int bptnum, int count, int from_tty)
14595 {
14596 struct breakpoint *b;
14597
14598 if (count < 0)
14599 count = 0;
14600
14601 ALL_BREAKPOINTS (b)
14602 if (b->number == bptnum)
14603 {
14604 if (is_tracepoint (b))
14605 {
14606 if (from_tty && count != 0)
14607 printf_filtered (_("Ignore count ignored for tracepoint %d."),
14608 bptnum);
14609 return;
14610 }
14611
14612 b->ignore_count = count;
14613 if (from_tty)
14614 {
14615 if (count == 0)
14616 printf_filtered (_("Will stop next time "
14617 "breakpoint %d is reached."),
14618 bptnum);
14619 else if (count == 1)
14620 printf_filtered (_("Will ignore next crossing of breakpoint %d."),
14621 bptnum);
14622 else
14623 printf_filtered (_("Will ignore next %d "
14624 "crossings of breakpoint %d."),
14625 count, bptnum);
14626 }
14627 observer_notify_breakpoint_modified (b);
14628 return;
14629 }
14630
14631 error (_("No breakpoint number %d."), bptnum);
14632 }
14633
14634 /* Command to set ignore-count of breakpoint N to COUNT. */
14635
14636 static void
14637 ignore_command (char *args, int from_tty)
14638 {
14639 char *p = args;
14640 int num;
14641
14642 if (p == 0)
14643 error_no_arg (_("a breakpoint number"));
14644
14645 num = get_number (&p);
14646 if (num == 0)
14647 error (_("bad breakpoint number: '%s'"), args);
14648 if (*p == 0)
14649 error (_("Second argument (specified ignore-count) is missing."));
14650
14651 set_ignore_count (num,
14652 longest_to_int (value_as_long (parse_and_eval (p))),
14653 from_tty);
14654 if (from_tty)
14655 printf_filtered ("\n");
14656 }
14657 \f
14658 /* Call FUNCTION on each of the breakpoints
14659 whose numbers are given in ARGS. */
14660
14661 static void
14662 map_breakpoint_numbers (const char *args,
14663 void (*function) (struct breakpoint *,
14664 void *),
14665 void *data)
14666 {
14667 int num;
14668 struct breakpoint *b, *tmp;
14669
14670 if (args == 0 || *args == '\0')
14671 error_no_arg (_("one or more breakpoint numbers"));
14672
14673 number_or_range_parser parser (args);
14674
14675 while (!parser.finished ())
14676 {
14677 const char *p = parser.cur_tok ();
14678 bool match = false;
14679
14680 num = parser.get_number ();
14681 if (num == 0)
14682 {
14683 warning (_("bad breakpoint number at or near '%s'"), p);
14684 }
14685 else
14686 {
14687 ALL_BREAKPOINTS_SAFE (b, tmp)
14688 if (b->number == num)
14689 {
14690 match = true;
14691 function (b, data);
14692 break;
14693 }
14694 if (!match)
14695 printf_unfiltered (_("No breakpoint number %d.\n"), num);
14696 }
14697 }
14698 }
14699
14700 static struct bp_location *
14701 find_location_by_number (char *number)
14702 {
14703 char *dot = strchr (number, '.');
14704 char *p1;
14705 int bp_num;
14706 int loc_num;
14707 struct breakpoint *b;
14708 struct bp_location *loc;
14709
14710 *dot = '\0';
14711
14712 p1 = number;
14713 bp_num = get_number (&p1);
14714 if (bp_num == 0)
14715 error (_("Bad breakpoint number '%s'"), number);
14716
14717 ALL_BREAKPOINTS (b)
14718 if (b->number == bp_num)
14719 {
14720 break;
14721 }
14722
14723 if (!b || b->number != bp_num)
14724 error (_("Bad breakpoint number '%s'"), number);
14725
14726 p1 = dot+1;
14727 loc_num = get_number (&p1);
14728 if (loc_num == 0)
14729 error (_("Bad breakpoint location number '%s'"), number);
14730
14731 --loc_num;
14732 loc = b->loc;
14733 for (;loc_num && loc; --loc_num, loc = loc->next)
14734 ;
14735 if (!loc)
14736 error (_("Bad breakpoint location number '%s'"), dot+1);
14737
14738 return loc;
14739 }
14740
14741
14742 /* Set ignore-count of breakpoint number BPTNUM to COUNT.
14743 If from_tty is nonzero, it prints a message to that effect,
14744 which ends with a period (no newline). */
14745
14746 void
14747 disable_breakpoint (struct breakpoint *bpt)
14748 {
14749 /* Never disable a watchpoint scope breakpoint; we want to
14750 hit them when we leave scope so we can delete both the
14751 watchpoint and its scope breakpoint at that time. */
14752 if (bpt->type == bp_watchpoint_scope)
14753 return;
14754
14755 bpt->enable_state = bp_disabled;
14756
14757 /* Mark breakpoint locations modified. */
14758 mark_breakpoint_modified (bpt);
14759
14760 if (target_supports_enable_disable_tracepoint ()
14761 && current_trace_status ()->running && is_tracepoint (bpt))
14762 {
14763 struct bp_location *location;
14764
14765 for (location = bpt->loc; location; location = location->next)
14766 target_disable_tracepoint (location);
14767 }
14768
14769 update_global_location_list (UGLL_DONT_INSERT);
14770
14771 observer_notify_breakpoint_modified (bpt);
14772 }
14773
14774 /* A callback for iterate_over_related_breakpoints. */
14775
14776 static void
14777 do_disable_breakpoint (struct breakpoint *b, void *ignore)
14778 {
14779 disable_breakpoint (b);
14780 }
14781
14782 /* A callback for map_breakpoint_numbers that calls
14783 disable_breakpoint. */
14784
14785 static void
14786 do_map_disable_breakpoint (struct breakpoint *b, void *ignore)
14787 {
14788 iterate_over_related_breakpoints (b, do_disable_breakpoint, NULL);
14789 }
14790
14791 static void
14792 disable_command (char *args, int from_tty)
14793 {
14794 if (args == 0)
14795 {
14796 struct breakpoint *bpt;
14797
14798 ALL_BREAKPOINTS (bpt)
14799 if (user_breakpoint_p (bpt))
14800 disable_breakpoint (bpt);
14801 }
14802 else
14803 {
14804 char *num = extract_arg (&args);
14805
14806 while (num)
14807 {
14808 if (strchr (num, '.'))
14809 {
14810 struct bp_location *loc = find_location_by_number (num);
14811
14812 if (loc)
14813 {
14814 if (loc->enabled)
14815 {
14816 loc->enabled = 0;
14817 mark_breakpoint_location_modified (loc);
14818 }
14819 if (target_supports_enable_disable_tracepoint ()
14820 && current_trace_status ()->running && loc->owner
14821 && is_tracepoint (loc->owner))
14822 target_disable_tracepoint (loc);
14823 }
14824 update_global_location_list (UGLL_DONT_INSERT);
14825 }
14826 else
14827 map_breakpoint_numbers (num, do_map_disable_breakpoint, NULL);
14828 num = extract_arg (&args);
14829 }
14830 }
14831 }
14832
14833 static void
14834 enable_breakpoint_disp (struct breakpoint *bpt, enum bpdisp disposition,
14835 int count)
14836 {
14837 int target_resources_ok;
14838
14839 if (bpt->type == bp_hardware_breakpoint)
14840 {
14841 int i;
14842 i = hw_breakpoint_used_count ();
14843 target_resources_ok =
14844 target_can_use_hardware_watchpoint (bp_hardware_breakpoint,
14845 i + 1, 0);
14846 if (target_resources_ok == 0)
14847 error (_("No hardware breakpoint support in the target."));
14848 else if (target_resources_ok < 0)
14849 error (_("Hardware breakpoints used exceeds limit."));
14850 }
14851
14852 if (is_watchpoint (bpt))
14853 {
14854 /* Initialize it just to avoid a GCC false warning. */
14855 enum enable_state orig_enable_state = bp_disabled;
14856
14857 TRY
14858 {
14859 struct watchpoint *w = (struct watchpoint *) bpt;
14860
14861 orig_enable_state = bpt->enable_state;
14862 bpt->enable_state = bp_enabled;
14863 update_watchpoint (w, 1 /* reparse */);
14864 }
14865 CATCH (e, RETURN_MASK_ALL)
14866 {
14867 bpt->enable_state = orig_enable_state;
14868 exception_fprintf (gdb_stderr, e, _("Cannot enable watchpoint %d: "),
14869 bpt->number);
14870 return;
14871 }
14872 END_CATCH
14873 }
14874
14875 bpt->enable_state = bp_enabled;
14876
14877 /* Mark breakpoint locations modified. */
14878 mark_breakpoint_modified (bpt);
14879
14880 if (target_supports_enable_disable_tracepoint ()
14881 && current_trace_status ()->running && is_tracepoint (bpt))
14882 {
14883 struct bp_location *location;
14884
14885 for (location = bpt->loc; location; location = location->next)
14886 target_enable_tracepoint (location);
14887 }
14888
14889 bpt->disposition = disposition;
14890 bpt->enable_count = count;
14891 update_global_location_list (UGLL_MAY_INSERT);
14892
14893 observer_notify_breakpoint_modified (bpt);
14894 }
14895
14896
14897 void
14898 enable_breakpoint (struct breakpoint *bpt)
14899 {
14900 enable_breakpoint_disp (bpt, bpt->disposition, 0);
14901 }
14902
14903 static void
14904 do_enable_breakpoint (struct breakpoint *bpt, void *arg)
14905 {
14906 enable_breakpoint (bpt);
14907 }
14908
14909 /* A callback for map_breakpoint_numbers that calls
14910 enable_breakpoint. */
14911
14912 static void
14913 do_map_enable_breakpoint (struct breakpoint *b, void *ignore)
14914 {
14915 iterate_over_related_breakpoints (b, do_enable_breakpoint, NULL);
14916 }
14917
14918 /* The enable command enables the specified breakpoints (or all defined
14919 breakpoints) so they once again become (or continue to be) effective
14920 in stopping the inferior. */
14921
14922 static void
14923 enable_command (char *args, int from_tty)
14924 {
14925 if (args == 0)
14926 {
14927 struct breakpoint *bpt;
14928
14929 ALL_BREAKPOINTS (bpt)
14930 if (user_breakpoint_p (bpt))
14931 enable_breakpoint (bpt);
14932 }
14933 else
14934 {
14935 char *num = extract_arg (&args);
14936
14937 while (num)
14938 {
14939 if (strchr (num, '.'))
14940 {
14941 struct bp_location *loc = find_location_by_number (num);
14942
14943 if (loc)
14944 {
14945 if (!loc->enabled)
14946 {
14947 loc->enabled = 1;
14948 mark_breakpoint_location_modified (loc);
14949 }
14950 if (target_supports_enable_disable_tracepoint ()
14951 && current_trace_status ()->running && loc->owner
14952 && is_tracepoint (loc->owner))
14953 target_enable_tracepoint (loc);
14954 }
14955 update_global_location_list (UGLL_MAY_INSERT);
14956 }
14957 else
14958 map_breakpoint_numbers (num, do_map_enable_breakpoint, NULL);
14959 num = extract_arg (&args);
14960 }
14961 }
14962 }
14963
14964 /* This struct packages up disposition data for application to multiple
14965 breakpoints. */
14966
14967 struct disp_data
14968 {
14969 enum bpdisp disp;
14970 int count;
14971 };
14972
14973 static void
14974 do_enable_breakpoint_disp (struct breakpoint *bpt, void *arg)
14975 {
14976 struct disp_data disp_data = *(struct disp_data *) arg;
14977
14978 enable_breakpoint_disp (bpt, disp_data.disp, disp_data.count);
14979 }
14980
14981 static void
14982 do_map_enable_once_breakpoint (struct breakpoint *bpt, void *ignore)
14983 {
14984 struct disp_data disp = { disp_disable, 1 };
14985
14986 iterate_over_related_breakpoints (bpt, do_enable_breakpoint_disp, &disp);
14987 }
14988
14989 static void
14990 enable_once_command (char *args, int from_tty)
14991 {
14992 map_breakpoint_numbers (args, do_map_enable_once_breakpoint, NULL);
14993 }
14994
14995 static void
14996 do_map_enable_count_breakpoint (struct breakpoint *bpt, void *countptr)
14997 {
14998 struct disp_data disp = { disp_disable, *(int *) countptr };
14999
15000 iterate_over_related_breakpoints (bpt, do_enable_breakpoint_disp, &disp);
15001 }
15002
15003 static void
15004 enable_count_command (char *args, int from_tty)
15005 {
15006 int count;
15007
15008 if (args == NULL)
15009 error_no_arg (_("hit count"));
15010
15011 count = get_number (&args);
15012
15013 map_breakpoint_numbers (args, do_map_enable_count_breakpoint, &count);
15014 }
15015
15016 static void
15017 do_map_enable_delete_breakpoint (struct breakpoint *bpt, void *ignore)
15018 {
15019 struct disp_data disp = { disp_del, 1 };
15020
15021 iterate_over_related_breakpoints (bpt, do_enable_breakpoint_disp, &disp);
15022 }
15023
15024 static void
15025 enable_delete_command (char *args, int from_tty)
15026 {
15027 map_breakpoint_numbers (args, do_map_enable_delete_breakpoint, NULL);
15028 }
15029 \f
15030 static void
15031 set_breakpoint_cmd (char *args, int from_tty)
15032 {
15033 }
15034
15035 static void
15036 show_breakpoint_cmd (char *args, int from_tty)
15037 {
15038 }
15039
15040 /* Invalidate last known value of any hardware watchpoint if
15041 the memory which that value represents has been written to by
15042 GDB itself. */
15043
15044 static void
15045 invalidate_bp_value_on_memory_change (struct inferior *inferior,
15046 CORE_ADDR addr, ssize_t len,
15047 const bfd_byte *data)
15048 {
15049 struct breakpoint *bp;
15050
15051 ALL_BREAKPOINTS (bp)
15052 if (bp->enable_state == bp_enabled
15053 && bp->type == bp_hardware_watchpoint)
15054 {
15055 struct watchpoint *wp = (struct watchpoint *) bp;
15056
15057 if (wp->val_valid && wp->val)
15058 {
15059 struct bp_location *loc;
15060
15061 for (loc = bp->loc; loc != NULL; loc = loc->next)
15062 if (loc->loc_type == bp_loc_hardware_watchpoint
15063 && loc->address + loc->length > addr
15064 && addr + len > loc->address)
15065 {
15066 value_free (wp->val);
15067 wp->val = NULL;
15068 wp->val_valid = 0;
15069 }
15070 }
15071 }
15072 }
15073
15074 /* Create and insert a breakpoint for software single step. */
15075
15076 void
15077 insert_single_step_breakpoint (struct gdbarch *gdbarch,
15078 struct address_space *aspace,
15079 CORE_ADDR next_pc)
15080 {
15081 struct thread_info *tp = inferior_thread ();
15082 struct symtab_and_line sal;
15083 CORE_ADDR pc = next_pc;
15084
15085 if (tp->control.single_step_breakpoints == NULL)
15086 {
15087 tp->control.single_step_breakpoints
15088 = new_single_step_breakpoint (tp->global_num, gdbarch);
15089 }
15090
15091 sal = find_pc_line (pc, 0);
15092 sal.pc = pc;
15093 sal.section = find_pc_overlay (pc);
15094 sal.explicit_pc = 1;
15095 add_location_to_breakpoint (tp->control.single_step_breakpoints, &sal);
15096
15097 update_global_location_list (UGLL_INSERT);
15098 }
15099
15100 /* Insert single step breakpoints according to the current state. */
15101
15102 int
15103 insert_single_step_breakpoints (struct gdbarch *gdbarch)
15104 {
15105 struct regcache *regcache = get_current_regcache ();
15106 VEC (CORE_ADDR) * next_pcs;
15107
15108 next_pcs = gdbarch_software_single_step (gdbarch, regcache);
15109
15110 if (next_pcs != NULL)
15111 {
15112 int i;
15113 CORE_ADDR pc;
15114 struct frame_info *frame = get_current_frame ();
15115 struct address_space *aspace = get_frame_address_space (frame);
15116
15117 for (i = 0; VEC_iterate (CORE_ADDR, next_pcs, i, pc); i++)
15118 insert_single_step_breakpoint (gdbarch, aspace, pc);
15119
15120 VEC_free (CORE_ADDR, next_pcs);
15121
15122 return 1;
15123 }
15124 else
15125 return 0;
15126 }
15127
15128 /* See breakpoint.h. */
15129
15130 int
15131 breakpoint_has_location_inserted_here (struct breakpoint *bp,
15132 struct address_space *aspace,
15133 CORE_ADDR pc)
15134 {
15135 struct bp_location *loc;
15136
15137 for (loc = bp->loc; loc != NULL; loc = loc->next)
15138 if (loc->inserted
15139 && breakpoint_location_address_match (loc, aspace, pc))
15140 return 1;
15141
15142 return 0;
15143 }
15144
15145 /* Check whether a software single-step breakpoint is inserted at
15146 PC. */
15147
15148 int
15149 single_step_breakpoint_inserted_here_p (struct address_space *aspace,
15150 CORE_ADDR pc)
15151 {
15152 struct breakpoint *bpt;
15153
15154 ALL_BREAKPOINTS (bpt)
15155 {
15156 if (bpt->type == bp_single_step
15157 && breakpoint_has_location_inserted_here (bpt, aspace, pc))
15158 return 1;
15159 }
15160 return 0;
15161 }
15162
15163 /* Tracepoint-specific operations. */
15164
15165 /* Set tracepoint count to NUM. */
15166 static void
15167 set_tracepoint_count (int num)
15168 {
15169 tracepoint_count = num;
15170 set_internalvar_integer (lookup_internalvar ("tpnum"), num);
15171 }
15172
15173 static void
15174 trace_command (char *arg, int from_tty)
15175 {
15176 struct breakpoint_ops *ops;
15177
15178 event_location_up location = string_to_event_location (&arg,
15179 current_language);
15180 if (location != NULL
15181 && event_location_type (location.get ()) == PROBE_LOCATION)
15182 ops = &tracepoint_probe_breakpoint_ops;
15183 else
15184 ops = &tracepoint_breakpoint_ops;
15185
15186 create_breakpoint (get_current_arch (),
15187 location.get (),
15188 NULL, 0, arg, 1 /* parse arg */,
15189 0 /* tempflag */,
15190 bp_tracepoint /* type_wanted */,
15191 0 /* Ignore count */,
15192 pending_break_support,
15193 ops,
15194 from_tty,
15195 1 /* enabled */,
15196 0 /* internal */, 0);
15197 }
15198
15199 static void
15200 ftrace_command (char *arg, int from_tty)
15201 {
15202 event_location_up location = string_to_event_location (&arg,
15203 current_language);
15204 create_breakpoint (get_current_arch (),
15205 location.get (),
15206 NULL, 0, arg, 1 /* parse arg */,
15207 0 /* tempflag */,
15208 bp_fast_tracepoint /* type_wanted */,
15209 0 /* Ignore count */,
15210 pending_break_support,
15211 &tracepoint_breakpoint_ops,
15212 from_tty,
15213 1 /* enabled */,
15214 0 /* internal */, 0);
15215 }
15216
15217 /* strace command implementation. Creates a static tracepoint. */
15218
15219 static void
15220 strace_command (char *arg, int from_tty)
15221 {
15222 struct breakpoint_ops *ops;
15223 event_location_up location;
15224 struct cleanup *back_to;
15225
15226 /* Decide if we are dealing with a static tracepoint marker (`-m'),
15227 or with a normal static tracepoint. */
15228 if (arg && startswith (arg, "-m") && isspace (arg[2]))
15229 {
15230 ops = &strace_marker_breakpoint_ops;
15231 location = new_linespec_location (&arg);
15232 }
15233 else
15234 {
15235 ops = &tracepoint_breakpoint_ops;
15236 location = string_to_event_location (&arg, current_language);
15237 }
15238
15239 create_breakpoint (get_current_arch (),
15240 location.get (),
15241 NULL, 0, arg, 1 /* parse arg */,
15242 0 /* tempflag */,
15243 bp_static_tracepoint /* type_wanted */,
15244 0 /* Ignore count */,
15245 pending_break_support,
15246 ops,
15247 from_tty,
15248 1 /* enabled */,
15249 0 /* internal */, 0);
15250 }
15251
15252 /* Set up a fake reader function that gets command lines from a linked
15253 list that was acquired during tracepoint uploading. */
15254
15255 static struct uploaded_tp *this_utp;
15256 static int next_cmd;
15257
15258 static char *
15259 read_uploaded_action (void)
15260 {
15261 char *rslt;
15262
15263 VEC_iterate (char_ptr, this_utp->cmd_strings, next_cmd, rslt);
15264
15265 next_cmd++;
15266
15267 return rslt;
15268 }
15269
15270 /* Given information about a tracepoint as recorded on a target (which
15271 can be either a live system or a trace file), attempt to create an
15272 equivalent GDB tracepoint. This is not a reliable process, since
15273 the target does not necessarily have all the information used when
15274 the tracepoint was originally defined. */
15275
15276 struct tracepoint *
15277 create_tracepoint_from_upload (struct uploaded_tp *utp)
15278 {
15279 char *addr_str, small_buf[100];
15280 struct tracepoint *tp;
15281
15282 if (utp->at_string)
15283 addr_str = utp->at_string;
15284 else
15285 {
15286 /* In the absence of a source location, fall back to raw
15287 address. Since there is no way to confirm that the address
15288 means the same thing as when the trace was started, warn the
15289 user. */
15290 warning (_("Uploaded tracepoint %d has no "
15291 "source location, using raw address"),
15292 utp->number);
15293 xsnprintf (small_buf, sizeof (small_buf), "*%s", hex_string (utp->addr));
15294 addr_str = small_buf;
15295 }
15296
15297 /* There's not much we can do with a sequence of bytecodes. */
15298 if (utp->cond && !utp->cond_string)
15299 warning (_("Uploaded tracepoint %d condition "
15300 "has no source form, ignoring it"),
15301 utp->number);
15302
15303 event_location_up location = string_to_event_location (&addr_str,
15304 current_language);
15305 if (!create_breakpoint (get_current_arch (),
15306 location.get (),
15307 utp->cond_string, -1, addr_str,
15308 0 /* parse cond/thread */,
15309 0 /* tempflag */,
15310 utp->type /* type_wanted */,
15311 0 /* Ignore count */,
15312 pending_break_support,
15313 &tracepoint_breakpoint_ops,
15314 0 /* from_tty */,
15315 utp->enabled /* enabled */,
15316 0 /* internal */,
15317 CREATE_BREAKPOINT_FLAGS_INSERTED))
15318 return NULL;
15319
15320 /* Get the tracepoint we just created. */
15321 tp = get_tracepoint (tracepoint_count);
15322 gdb_assert (tp != NULL);
15323
15324 if (utp->pass > 0)
15325 {
15326 xsnprintf (small_buf, sizeof (small_buf), "%d %d", utp->pass,
15327 tp->base.number);
15328
15329 trace_pass_command (small_buf, 0);
15330 }
15331
15332 /* If we have uploaded versions of the original commands, set up a
15333 special-purpose "reader" function and call the usual command line
15334 reader, then pass the result to the breakpoint command-setting
15335 function. */
15336 if (!VEC_empty (char_ptr, utp->cmd_strings))
15337 {
15338 command_line_up cmd_list;
15339
15340 this_utp = utp;
15341 next_cmd = 0;
15342
15343 cmd_list = read_command_lines_1 (read_uploaded_action, 1, NULL, NULL);
15344
15345 breakpoint_set_commands (&tp->base, std::move (cmd_list));
15346 }
15347 else if (!VEC_empty (char_ptr, utp->actions)
15348 || !VEC_empty (char_ptr, utp->step_actions))
15349 warning (_("Uploaded tracepoint %d actions "
15350 "have no source form, ignoring them"),
15351 utp->number);
15352
15353 /* Copy any status information that might be available. */
15354 tp->base.hit_count = utp->hit_count;
15355 tp->traceframe_usage = utp->traceframe_usage;
15356
15357 return tp;
15358 }
15359
15360 /* Print information on tracepoint number TPNUM_EXP, or all if
15361 omitted. */
15362
15363 static void
15364 tracepoints_info (char *args, int from_tty)
15365 {
15366 struct ui_out *uiout = current_uiout;
15367 int num_printed;
15368
15369 num_printed = breakpoint_1 (args, 0, is_tracepoint);
15370
15371 if (num_printed == 0)
15372 {
15373 if (args == NULL || *args == '\0')
15374 uiout->message ("No tracepoints.\n");
15375 else
15376 uiout->message ("No tracepoint matching '%s'.\n", args);
15377 }
15378
15379 default_collect_info ();
15380 }
15381
15382 /* The 'enable trace' command enables tracepoints.
15383 Not supported by all targets. */
15384 static void
15385 enable_trace_command (char *args, int from_tty)
15386 {
15387 enable_command (args, from_tty);
15388 }
15389
15390 /* The 'disable trace' command disables tracepoints.
15391 Not supported by all targets. */
15392 static void
15393 disable_trace_command (char *args, int from_tty)
15394 {
15395 disable_command (args, from_tty);
15396 }
15397
15398 /* Remove a tracepoint (or all if no argument). */
15399 static void
15400 delete_trace_command (char *arg, int from_tty)
15401 {
15402 struct breakpoint *b, *b_tmp;
15403
15404 dont_repeat ();
15405
15406 if (arg == 0)
15407 {
15408 int breaks_to_delete = 0;
15409
15410 /* Delete all breakpoints if no argument.
15411 Do not delete internal or call-dummy breakpoints, these
15412 have to be deleted with an explicit breakpoint number
15413 argument. */
15414 ALL_TRACEPOINTS (b)
15415 if (is_tracepoint (b) && user_breakpoint_p (b))
15416 {
15417 breaks_to_delete = 1;
15418 break;
15419 }
15420
15421 /* Ask user only if there are some breakpoints to delete. */
15422 if (!from_tty
15423 || (breaks_to_delete && query (_("Delete all tracepoints? "))))
15424 {
15425 ALL_BREAKPOINTS_SAFE (b, b_tmp)
15426 if (is_tracepoint (b) && user_breakpoint_p (b))
15427 delete_breakpoint (b);
15428 }
15429 }
15430 else
15431 map_breakpoint_numbers (arg, do_map_delete_breakpoint, NULL);
15432 }
15433
15434 /* Helper function for trace_pass_command. */
15435
15436 static void
15437 trace_pass_set_count (struct tracepoint *tp, int count, int from_tty)
15438 {
15439 tp->pass_count = count;
15440 observer_notify_breakpoint_modified (&tp->base);
15441 if (from_tty)
15442 printf_filtered (_("Setting tracepoint %d's passcount to %d\n"),
15443 tp->base.number, count);
15444 }
15445
15446 /* Set passcount for tracepoint.
15447
15448 First command argument is passcount, second is tracepoint number.
15449 If tracepoint number omitted, apply to most recently defined.
15450 Also accepts special argument "all". */
15451
15452 static void
15453 trace_pass_command (char *args, int from_tty)
15454 {
15455 struct tracepoint *t1;
15456 unsigned int count;
15457
15458 if (args == 0 || *args == 0)
15459 error (_("passcount command requires an "
15460 "argument (count + optional TP num)"));
15461
15462 count = strtoul (args, &args, 10); /* Count comes first, then TP num. */
15463
15464 args = skip_spaces (args);
15465 if (*args && strncasecmp (args, "all", 3) == 0)
15466 {
15467 struct breakpoint *b;
15468
15469 args += 3; /* Skip special argument "all". */
15470 if (*args)
15471 error (_("Junk at end of arguments."));
15472
15473 ALL_TRACEPOINTS (b)
15474 {
15475 t1 = (struct tracepoint *) b;
15476 trace_pass_set_count (t1, count, from_tty);
15477 }
15478 }
15479 else if (*args == '\0')
15480 {
15481 t1 = get_tracepoint_by_number (&args, NULL);
15482 if (t1)
15483 trace_pass_set_count (t1, count, from_tty);
15484 }
15485 else
15486 {
15487 number_or_range_parser parser (args);
15488 while (!parser.finished ())
15489 {
15490 t1 = get_tracepoint_by_number (&args, &parser);
15491 if (t1)
15492 trace_pass_set_count (t1, count, from_tty);
15493 }
15494 }
15495 }
15496
15497 struct tracepoint *
15498 get_tracepoint (int num)
15499 {
15500 struct breakpoint *t;
15501
15502 ALL_TRACEPOINTS (t)
15503 if (t->number == num)
15504 return (struct tracepoint *) t;
15505
15506 return NULL;
15507 }
15508
15509 /* Find the tracepoint with the given target-side number (which may be
15510 different from the tracepoint number after disconnecting and
15511 reconnecting). */
15512
15513 struct tracepoint *
15514 get_tracepoint_by_number_on_target (int num)
15515 {
15516 struct breakpoint *b;
15517
15518 ALL_TRACEPOINTS (b)
15519 {
15520 struct tracepoint *t = (struct tracepoint *) b;
15521
15522 if (t->number_on_target == num)
15523 return t;
15524 }
15525
15526 return NULL;
15527 }
15528
15529 /* Utility: parse a tracepoint number and look it up in the list.
15530 If STATE is not NULL, use, get_number_or_range_state and ignore ARG.
15531 If the argument is missing, the most recent tracepoint
15532 (tracepoint_count) is returned. */
15533
15534 struct tracepoint *
15535 get_tracepoint_by_number (char **arg,
15536 number_or_range_parser *parser)
15537 {
15538 struct breakpoint *t;
15539 int tpnum;
15540 char *instring = arg == NULL ? NULL : *arg;
15541
15542 if (parser != NULL)
15543 {
15544 gdb_assert (!parser->finished ());
15545 tpnum = parser->get_number ();
15546 }
15547 else if (arg == NULL || *arg == NULL || ! **arg)
15548 tpnum = tracepoint_count;
15549 else
15550 tpnum = get_number (arg);
15551
15552 if (tpnum <= 0)
15553 {
15554 if (instring && *instring)
15555 printf_filtered (_("bad tracepoint number at or near '%s'\n"),
15556 instring);
15557 else
15558 printf_filtered (_("No previous tracepoint\n"));
15559 return NULL;
15560 }
15561
15562 ALL_TRACEPOINTS (t)
15563 if (t->number == tpnum)
15564 {
15565 return (struct tracepoint *) t;
15566 }
15567
15568 printf_unfiltered ("No tracepoint number %d.\n", tpnum);
15569 return NULL;
15570 }
15571
15572 void
15573 print_recreate_thread (struct breakpoint *b, struct ui_file *fp)
15574 {
15575 if (b->thread != -1)
15576 fprintf_unfiltered (fp, " thread %d", b->thread);
15577
15578 if (b->task != 0)
15579 fprintf_unfiltered (fp, " task %d", b->task);
15580
15581 fprintf_unfiltered (fp, "\n");
15582 }
15583
15584 /* Save information on user settable breakpoints (watchpoints, etc) to
15585 a new script file named FILENAME. If FILTER is non-NULL, call it
15586 on each breakpoint and only include the ones for which it returns
15587 non-zero. */
15588
15589 static void
15590 save_breakpoints (char *filename, int from_tty,
15591 int (*filter) (const struct breakpoint *))
15592 {
15593 struct breakpoint *tp;
15594 int any = 0;
15595 struct cleanup *cleanup;
15596 int extra_trace_bits = 0;
15597
15598 if (filename == 0 || *filename == 0)
15599 error (_("Argument required (file name in which to save)"));
15600
15601 /* See if we have anything to save. */
15602 ALL_BREAKPOINTS (tp)
15603 {
15604 /* Skip internal and momentary breakpoints. */
15605 if (!user_breakpoint_p (tp))
15606 continue;
15607
15608 /* If we have a filter, only save the breakpoints it accepts. */
15609 if (filter && !filter (tp))
15610 continue;
15611
15612 any = 1;
15613
15614 if (is_tracepoint (tp))
15615 {
15616 extra_trace_bits = 1;
15617
15618 /* We can stop searching. */
15619 break;
15620 }
15621 }
15622
15623 if (!any)
15624 {
15625 warning (_("Nothing to save."));
15626 return;
15627 }
15628
15629 filename = tilde_expand (filename);
15630 cleanup = make_cleanup (xfree, filename);
15631
15632 stdio_file fp;
15633
15634 if (!fp.open (filename, "w"))
15635 error (_("Unable to open file '%s' for saving (%s)"),
15636 filename, safe_strerror (errno));
15637
15638 if (extra_trace_bits)
15639 save_trace_state_variables (&fp);
15640
15641 ALL_BREAKPOINTS (tp)
15642 {
15643 /* Skip internal and momentary breakpoints. */
15644 if (!user_breakpoint_p (tp))
15645 continue;
15646
15647 /* If we have a filter, only save the breakpoints it accepts. */
15648 if (filter && !filter (tp))
15649 continue;
15650
15651 tp->ops->print_recreate (tp, &fp);
15652
15653 /* Note, we can't rely on tp->number for anything, as we can't
15654 assume the recreated breakpoint numbers will match. Use $bpnum
15655 instead. */
15656
15657 if (tp->cond_string)
15658 fp.printf (" condition $bpnum %s\n", tp->cond_string);
15659
15660 if (tp->ignore_count)
15661 fp.printf (" ignore $bpnum %d\n", tp->ignore_count);
15662
15663 if (tp->type != bp_dprintf && tp->commands)
15664 {
15665 fp.puts (" commands\n");
15666
15667 current_uiout->redirect (&fp);
15668 TRY
15669 {
15670 print_command_lines (current_uiout, tp->commands->commands, 2);
15671 }
15672 CATCH (ex, RETURN_MASK_ALL)
15673 {
15674 current_uiout->redirect (NULL);
15675 throw_exception (ex);
15676 }
15677 END_CATCH
15678
15679 current_uiout->redirect (NULL);
15680 fp.puts (" end\n");
15681 }
15682
15683 if (tp->enable_state == bp_disabled)
15684 fp.puts ("disable $bpnum\n");
15685
15686 /* If this is a multi-location breakpoint, check if the locations
15687 should be individually disabled. Watchpoint locations are
15688 special, and not user visible. */
15689 if (!is_watchpoint (tp) && tp->loc && tp->loc->next)
15690 {
15691 struct bp_location *loc;
15692 int n = 1;
15693
15694 for (loc = tp->loc; loc != NULL; loc = loc->next, n++)
15695 if (!loc->enabled)
15696 fp.printf ("disable $bpnum.%d\n", n);
15697 }
15698 }
15699
15700 if (extra_trace_bits && *default_collect)
15701 fp.printf ("set default-collect %s\n", default_collect);
15702
15703 if (from_tty)
15704 printf_filtered (_("Saved to file '%s'.\n"), filename);
15705 do_cleanups (cleanup);
15706 }
15707
15708 /* The `save breakpoints' command. */
15709
15710 static void
15711 save_breakpoints_command (char *args, int from_tty)
15712 {
15713 save_breakpoints (args, from_tty, NULL);
15714 }
15715
15716 /* The `save tracepoints' command. */
15717
15718 static void
15719 save_tracepoints_command (char *args, int from_tty)
15720 {
15721 save_breakpoints (args, from_tty, is_tracepoint);
15722 }
15723
15724 /* Create a vector of all tracepoints. */
15725
15726 VEC(breakpoint_p) *
15727 all_tracepoints (void)
15728 {
15729 VEC(breakpoint_p) *tp_vec = 0;
15730 struct breakpoint *tp;
15731
15732 ALL_TRACEPOINTS (tp)
15733 {
15734 VEC_safe_push (breakpoint_p, tp_vec, tp);
15735 }
15736
15737 return tp_vec;
15738 }
15739
15740 \f
15741 /* This help string is used to consolidate all the help string for specifying
15742 locations used by several commands. */
15743
15744 #define LOCATION_HELP_STRING \
15745 "Linespecs are colon-separated lists of location parameters, such as\n\
15746 source filename, function name, label name, and line number.\n\
15747 Example: To specify the start of a label named \"the_top\" in the\n\
15748 function \"fact\" in the file \"factorial.c\", use\n\
15749 \"factorial.c:fact:the_top\".\n\
15750 \n\
15751 Address locations begin with \"*\" and specify an exact address in the\n\
15752 program. Example: To specify the fourth byte past the start function\n\
15753 \"main\", use \"*main + 4\".\n\
15754 \n\
15755 Explicit locations are similar to linespecs but use an option/argument\n\
15756 syntax to specify location parameters.\n\
15757 Example: To specify the start of the label named \"the_top\" in the\n\
15758 function \"fact\" in the file \"factorial.c\", use \"-source factorial.c\n\
15759 -function fact -label the_top\".\n"
15760
15761 /* This help string is used for the break, hbreak, tbreak and thbreak
15762 commands. It is defined as a macro to prevent duplication.
15763 COMMAND should be a string constant containing the name of the
15764 command. */
15765
15766 #define BREAK_ARGS_HELP(command) \
15767 command" [PROBE_MODIFIER] [LOCATION] [thread THREADNUM] [if CONDITION]\n\
15768 PROBE_MODIFIER shall be present if the command is to be placed in a\n\
15769 probe point. Accepted values are `-probe' (for a generic, automatically\n\
15770 guessed probe type), `-probe-stap' (for a SystemTap probe) or \n\
15771 `-probe-dtrace' (for a DTrace probe).\n\
15772 LOCATION may be a linespec, address, or explicit location as described\n\
15773 below.\n\
15774 \n\
15775 With no LOCATION, uses current execution address of the selected\n\
15776 stack frame. This is useful for breaking on return to a stack frame.\n\
15777 \n\
15778 THREADNUM is the number from \"info threads\".\n\
15779 CONDITION is a boolean expression.\n\
15780 \n" LOCATION_HELP_STRING "\n\
15781 Multiple breakpoints at one place are permitted, and useful if their\n\
15782 conditions are different.\n\
15783 \n\
15784 Do \"help breakpoints\" for info on other commands dealing with breakpoints."
15785
15786 /* List of subcommands for "catch". */
15787 static struct cmd_list_element *catch_cmdlist;
15788
15789 /* List of subcommands for "tcatch". */
15790 static struct cmd_list_element *tcatch_cmdlist;
15791
15792 void
15793 add_catch_command (const char *name, const char *docstring,
15794 cmd_sfunc_ftype *sfunc,
15795 completer_ftype *completer,
15796 void *user_data_catch,
15797 void *user_data_tcatch)
15798 {
15799 struct cmd_list_element *command;
15800
15801 command = add_cmd (name, class_breakpoint, NULL, docstring,
15802 &catch_cmdlist);
15803 set_cmd_sfunc (command, sfunc);
15804 set_cmd_context (command, user_data_catch);
15805 set_cmd_completer (command, completer);
15806
15807 command = add_cmd (name, class_breakpoint, NULL, docstring,
15808 &tcatch_cmdlist);
15809 set_cmd_sfunc (command, sfunc);
15810 set_cmd_context (command, user_data_tcatch);
15811 set_cmd_completer (command, completer);
15812 }
15813
15814 static void
15815 save_command (char *arg, int from_tty)
15816 {
15817 printf_unfiltered (_("\"save\" must be followed by "
15818 "the name of a save subcommand.\n"));
15819 help_list (save_cmdlist, "save ", all_commands, gdb_stdout);
15820 }
15821
15822 struct breakpoint *
15823 iterate_over_breakpoints (int (*callback) (struct breakpoint *, void *),
15824 void *data)
15825 {
15826 struct breakpoint *b, *b_tmp;
15827
15828 ALL_BREAKPOINTS_SAFE (b, b_tmp)
15829 {
15830 if ((*callback) (b, data))
15831 return b;
15832 }
15833
15834 return NULL;
15835 }
15836
15837 /* Zero if any of the breakpoint's locations could be a location where
15838 functions have been inlined, nonzero otherwise. */
15839
15840 static int
15841 is_non_inline_function (struct breakpoint *b)
15842 {
15843 /* The shared library event breakpoint is set on the address of a
15844 non-inline function. */
15845 if (b->type == bp_shlib_event)
15846 return 1;
15847
15848 return 0;
15849 }
15850
15851 /* Nonzero if the specified PC cannot be a location where functions
15852 have been inlined. */
15853
15854 int
15855 pc_at_non_inline_function (struct address_space *aspace, CORE_ADDR pc,
15856 const struct target_waitstatus *ws)
15857 {
15858 struct breakpoint *b;
15859 struct bp_location *bl;
15860
15861 ALL_BREAKPOINTS (b)
15862 {
15863 if (!is_non_inline_function (b))
15864 continue;
15865
15866 for (bl = b->loc; bl != NULL; bl = bl->next)
15867 {
15868 if (!bl->shlib_disabled
15869 && bpstat_check_location (bl, aspace, pc, ws))
15870 return 1;
15871 }
15872 }
15873
15874 return 0;
15875 }
15876
15877 /* Remove any references to OBJFILE which is going to be freed. */
15878
15879 void
15880 breakpoint_free_objfile (struct objfile *objfile)
15881 {
15882 struct bp_location **locp, *loc;
15883
15884 ALL_BP_LOCATIONS (loc, locp)
15885 if (loc->symtab != NULL && SYMTAB_OBJFILE (loc->symtab) == objfile)
15886 loc->symtab = NULL;
15887 }
15888
15889 void
15890 initialize_breakpoint_ops (void)
15891 {
15892 static int initialized = 0;
15893
15894 struct breakpoint_ops *ops;
15895
15896 if (initialized)
15897 return;
15898 initialized = 1;
15899
15900 /* The breakpoint_ops structure to be inherit by all kinds of
15901 breakpoints (real breakpoints, i.e., user "break" breakpoints,
15902 internal and momentary breakpoints, etc.). */
15903 ops = &bkpt_base_breakpoint_ops;
15904 *ops = base_breakpoint_ops;
15905 ops->re_set = bkpt_re_set;
15906 ops->insert_location = bkpt_insert_location;
15907 ops->remove_location = bkpt_remove_location;
15908 ops->breakpoint_hit = bkpt_breakpoint_hit;
15909 ops->create_sals_from_location = bkpt_create_sals_from_location;
15910 ops->create_breakpoints_sal = bkpt_create_breakpoints_sal;
15911 ops->decode_location = bkpt_decode_location;
15912
15913 /* The breakpoint_ops structure to be used in regular breakpoints. */
15914 ops = &bkpt_breakpoint_ops;
15915 *ops = bkpt_base_breakpoint_ops;
15916 ops->re_set = bkpt_re_set;
15917 ops->resources_needed = bkpt_resources_needed;
15918 ops->print_it = bkpt_print_it;
15919 ops->print_mention = bkpt_print_mention;
15920 ops->print_recreate = bkpt_print_recreate;
15921
15922 /* Ranged breakpoints. */
15923 ops = &ranged_breakpoint_ops;
15924 *ops = bkpt_breakpoint_ops;
15925 ops->breakpoint_hit = breakpoint_hit_ranged_breakpoint;
15926 ops->resources_needed = resources_needed_ranged_breakpoint;
15927 ops->print_it = print_it_ranged_breakpoint;
15928 ops->print_one = print_one_ranged_breakpoint;
15929 ops->print_one_detail = print_one_detail_ranged_breakpoint;
15930 ops->print_mention = print_mention_ranged_breakpoint;
15931 ops->print_recreate = print_recreate_ranged_breakpoint;
15932
15933 /* Internal breakpoints. */
15934 ops = &internal_breakpoint_ops;
15935 *ops = bkpt_base_breakpoint_ops;
15936 ops->re_set = internal_bkpt_re_set;
15937 ops->check_status = internal_bkpt_check_status;
15938 ops->print_it = internal_bkpt_print_it;
15939 ops->print_mention = internal_bkpt_print_mention;
15940
15941 /* Momentary breakpoints. */
15942 ops = &momentary_breakpoint_ops;
15943 *ops = bkpt_base_breakpoint_ops;
15944 ops->re_set = momentary_bkpt_re_set;
15945 ops->check_status = momentary_bkpt_check_status;
15946 ops->print_it = momentary_bkpt_print_it;
15947 ops->print_mention = momentary_bkpt_print_mention;
15948
15949 /* Momentary breakpoints for bp_longjmp and bp_exception. */
15950 ops = &longjmp_breakpoint_ops;
15951 *ops = momentary_breakpoint_ops;
15952 ops->dtor = longjmp_bkpt_dtor;
15953
15954 /* Probe breakpoints. */
15955 ops = &bkpt_probe_breakpoint_ops;
15956 *ops = bkpt_breakpoint_ops;
15957 ops->insert_location = bkpt_probe_insert_location;
15958 ops->remove_location = bkpt_probe_remove_location;
15959 ops->create_sals_from_location = bkpt_probe_create_sals_from_location;
15960 ops->decode_location = bkpt_probe_decode_location;
15961
15962 /* Watchpoints. */
15963 ops = &watchpoint_breakpoint_ops;
15964 *ops = base_breakpoint_ops;
15965 ops->dtor = dtor_watchpoint;
15966 ops->re_set = re_set_watchpoint;
15967 ops->insert_location = insert_watchpoint;
15968 ops->remove_location = remove_watchpoint;
15969 ops->breakpoint_hit = breakpoint_hit_watchpoint;
15970 ops->check_status = check_status_watchpoint;
15971 ops->resources_needed = resources_needed_watchpoint;
15972 ops->works_in_software_mode = works_in_software_mode_watchpoint;
15973 ops->print_it = print_it_watchpoint;
15974 ops->print_mention = print_mention_watchpoint;
15975 ops->print_recreate = print_recreate_watchpoint;
15976 ops->explains_signal = explains_signal_watchpoint;
15977
15978 /* Masked watchpoints. */
15979 ops = &masked_watchpoint_breakpoint_ops;
15980 *ops = watchpoint_breakpoint_ops;
15981 ops->insert_location = insert_masked_watchpoint;
15982 ops->remove_location = remove_masked_watchpoint;
15983 ops->resources_needed = resources_needed_masked_watchpoint;
15984 ops->works_in_software_mode = works_in_software_mode_masked_watchpoint;
15985 ops->print_it = print_it_masked_watchpoint;
15986 ops->print_one_detail = print_one_detail_masked_watchpoint;
15987 ops->print_mention = print_mention_masked_watchpoint;
15988 ops->print_recreate = print_recreate_masked_watchpoint;
15989
15990 /* Tracepoints. */
15991 ops = &tracepoint_breakpoint_ops;
15992 *ops = base_breakpoint_ops;
15993 ops->re_set = tracepoint_re_set;
15994 ops->breakpoint_hit = tracepoint_breakpoint_hit;
15995 ops->print_one_detail = tracepoint_print_one_detail;
15996 ops->print_mention = tracepoint_print_mention;
15997 ops->print_recreate = tracepoint_print_recreate;
15998 ops->create_sals_from_location = tracepoint_create_sals_from_location;
15999 ops->create_breakpoints_sal = tracepoint_create_breakpoints_sal;
16000 ops->decode_location = tracepoint_decode_location;
16001
16002 /* Probe tracepoints. */
16003 ops = &tracepoint_probe_breakpoint_ops;
16004 *ops = tracepoint_breakpoint_ops;
16005 ops->create_sals_from_location = tracepoint_probe_create_sals_from_location;
16006 ops->decode_location = tracepoint_probe_decode_location;
16007
16008 /* Static tracepoints with marker (`-m'). */
16009 ops = &strace_marker_breakpoint_ops;
16010 *ops = tracepoint_breakpoint_ops;
16011 ops->create_sals_from_location = strace_marker_create_sals_from_location;
16012 ops->create_breakpoints_sal = strace_marker_create_breakpoints_sal;
16013 ops->decode_location = strace_marker_decode_location;
16014
16015 /* Fork catchpoints. */
16016 ops = &catch_fork_breakpoint_ops;
16017 *ops = base_breakpoint_ops;
16018 ops->insert_location = insert_catch_fork;
16019 ops->remove_location = remove_catch_fork;
16020 ops->breakpoint_hit = breakpoint_hit_catch_fork;
16021 ops->print_it = print_it_catch_fork;
16022 ops->print_one = print_one_catch_fork;
16023 ops->print_mention = print_mention_catch_fork;
16024 ops->print_recreate = print_recreate_catch_fork;
16025
16026 /* Vfork catchpoints. */
16027 ops = &catch_vfork_breakpoint_ops;
16028 *ops = base_breakpoint_ops;
16029 ops->insert_location = insert_catch_vfork;
16030 ops->remove_location = remove_catch_vfork;
16031 ops->breakpoint_hit = breakpoint_hit_catch_vfork;
16032 ops->print_it = print_it_catch_vfork;
16033 ops->print_one = print_one_catch_vfork;
16034 ops->print_mention = print_mention_catch_vfork;
16035 ops->print_recreate = print_recreate_catch_vfork;
16036
16037 /* Exec catchpoints. */
16038 ops = &catch_exec_breakpoint_ops;
16039 *ops = base_breakpoint_ops;
16040 ops->dtor = dtor_catch_exec;
16041 ops->insert_location = insert_catch_exec;
16042 ops->remove_location = remove_catch_exec;
16043 ops->breakpoint_hit = breakpoint_hit_catch_exec;
16044 ops->print_it = print_it_catch_exec;
16045 ops->print_one = print_one_catch_exec;
16046 ops->print_mention = print_mention_catch_exec;
16047 ops->print_recreate = print_recreate_catch_exec;
16048
16049 /* Solib-related catchpoints. */
16050 ops = &catch_solib_breakpoint_ops;
16051 *ops = base_breakpoint_ops;
16052 ops->dtor = dtor_catch_solib;
16053 ops->insert_location = insert_catch_solib;
16054 ops->remove_location = remove_catch_solib;
16055 ops->breakpoint_hit = breakpoint_hit_catch_solib;
16056 ops->check_status = check_status_catch_solib;
16057 ops->print_it = print_it_catch_solib;
16058 ops->print_one = print_one_catch_solib;
16059 ops->print_mention = print_mention_catch_solib;
16060 ops->print_recreate = print_recreate_catch_solib;
16061
16062 ops = &dprintf_breakpoint_ops;
16063 *ops = bkpt_base_breakpoint_ops;
16064 ops->re_set = dprintf_re_set;
16065 ops->resources_needed = bkpt_resources_needed;
16066 ops->print_it = bkpt_print_it;
16067 ops->print_mention = bkpt_print_mention;
16068 ops->print_recreate = dprintf_print_recreate;
16069 ops->after_condition_true = dprintf_after_condition_true;
16070 ops->breakpoint_hit = dprintf_breakpoint_hit;
16071 }
16072
16073 /* Chain containing all defined "enable breakpoint" subcommands. */
16074
16075 static struct cmd_list_element *enablebreaklist = NULL;
16076
16077 void
16078 _initialize_breakpoint (void)
16079 {
16080 struct cmd_list_element *c;
16081
16082 initialize_breakpoint_ops ();
16083
16084 observer_attach_solib_unloaded (disable_breakpoints_in_unloaded_shlib);
16085 observer_attach_free_objfile (disable_breakpoints_in_freed_objfile);
16086 observer_attach_memory_changed (invalidate_bp_value_on_memory_change);
16087
16088 breakpoint_objfile_key
16089 = register_objfile_data_with_cleanup (NULL, free_breakpoint_probes);
16090
16091 breakpoint_chain = 0;
16092 /* Don't bother to call set_breakpoint_count. $bpnum isn't useful
16093 before a breakpoint is set. */
16094 breakpoint_count = 0;
16095
16096 tracepoint_count = 0;
16097
16098 add_com ("ignore", class_breakpoint, ignore_command, _("\
16099 Set ignore-count of breakpoint number N to COUNT.\n\
16100 Usage is `ignore N COUNT'."));
16101
16102 add_com ("commands", class_breakpoint, commands_command, _("\
16103 Set commands to be executed when the given breakpoints are hit.\n\
16104 Give a space-separated breakpoint list as argument after \"commands\".\n\
16105 A list element can be a breakpoint number (e.g. `5') or a range of numbers\n\
16106 (e.g. `5-7').\n\
16107 With no argument, the targeted breakpoint is the last one set.\n\
16108 The commands themselves follow starting on the next line.\n\
16109 Type a line containing \"end\" to indicate the end of them.\n\
16110 Give \"silent\" as the first line to make the breakpoint silent;\n\
16111 then no output is printed when it is hit, except what the commands print."));
16112
16113 c = add_com ("condition", class_breakpoint, condition_command, _("\
16114 Specify breakpoint number N to break only if COND is true.\n\
16115 Usage is `condition N COND', where N is an integer and COND is an\n\
16116 expression to be evaluated whenever breakpoint N is reached."));
16117 set_cmd_completer (c, condition_completer);
16118
16119 c = add_com ("tbreak", class_breakpoint, tbreak_command, _("\
16120 Set a temporary breakpoint.\n\
16121 Like \"break\" except the breakpoint is only temporary,\n\
16122 so it will be deleted when hit. Equivalent to \"break\" followed\n\
16123 by using \"enable delete\" on the breakpoint number.\n\
16124 \n"
16125 BREAK_ARGS_HELP ("tbreak")));
16126 set_cmd_completer (c, location_completer);
16127
16128 c = add_com ("hbreak", class_breakpoint, hbreak_command, _("\
16129 Set a hardware assisted breakpoint.\n\
16130 Like \"break\" except the breakpoint requires hardware support,\n\
16131 some target hardware may not have this support.\n\
16132 \n"
16133 BREAK_ARGS_HELP ("hbreak")));
16134 set_cmd_completer (c, location_completer);
16135
16136 c = add_com ("thbreak", class_breakpoint, thbreak_command, _("\
16137 Set a temporary hardware assisted breakpoint.\n\
16138 Like \"hbreak\" except the breakpoint is only temporary,\n\
16139 so it will be deleted when hit.\n\
16140 \n"
16141 BREAK_ARGS_HELP ("thbreak")));
16142 set_cmd_completer (c, location_completer);
16143
16144 add_prefix_cmd ("enable", class_breakpoint, enable_command, _("\
16145 Enable some breakpoints.\n\
16146 Give breakpoint numbers (separated by spaces) as arguments.\n\
16147 With no subcommand, breakpoints are enabled until you command otherwise.\n\
16148 This is used to cancel the effect of the \"disable\" command.\n\
16149 With a subcommand you can enable temporarily."),
16150 &enablelist, "enable ", 1, &cmdlist);
16151
16152 add_com_alias ("en", "enable", class_breakpoint, 1);
16153
16154 add_prefix_cmd ("breakpoints", class_breakpoint, enable_command, _("\
16155 Enable some breakpoints.\n\
16156 Give breakpoint numbers (separated by spaces) as arguments.\n\
16157 This is used to cancel the effect of the \"disable\" command.\n\
16158 May be abbreviated to simply \"enable\".\n"),
16159 &enablebreaklist, "enable breakpoints ", 1, &enablelist);
16160
16161 add_cmd ("once", no_class, enable_once_command, _("\
16162 Enable breakpoints for one hit. Give breakpoint numbers.\n\
16163 If a breakpoint is hit while enabled in this fashion, it becomes disabled."),
16164 &enablebreaklist);
16165
16166 add_cmd ("delete", no_class, enable_delete_command, _("\
16167 Enable breakpoints and delete when hit. Give breakpoint numbers.\n\
16168 If a breakpoint is hit while enabled in this fashion, it is deleted."),
16169 &enablebreaklist);
16170
16171 add_cmd ("count", no_class, enable_count_command, _("\
16172 Enable breakpoints for COUNT hits. Give count and then breakpoint numbers.\n\
16173 If a breakpoint is hit while enabled in this fashion,\n\
16174 the count is decremented; when it reaches zero, the breakpoint is disabled."),
16175 &enablebreaklist);
16176
16177 add_cmd ("delete", no_class, enable_delete_command, _("\
16178 Enable breakpoints and delete when hit. Give breakpoint numbers.\n\
16179 If a breakpoint is hit while enabled in this fashion, it is deleted."),
16180 &enablelist);
16181
16182 add_cmd ("once", no_class, enable_once_command, _("\
16183 Enable breakpoints for one hit. Give breakpoint numbers.\n\
16184 If a breakpoint is hit while enabled in this fashion, it becomes disabled."),
16185 &enablelist);
16186
16187 add_cmd ("count", no_class, enable_count_command, _("\
16188 Enable breakpoints for COUNT hits. Give count and then breakpoint numbers.\n\
16189 If a breakpoint is hit while enabled in this fashion,\n\
16190 the count is decremented; when it reaches zero, the breakpoint is disabled."),
16191 &enablelist);
16192
16193 add_prefix_cmd ("disable", class_breakpoint, disable_command, _("\
16194 Disable some breakpoints.\n\
16195 Arguments are breakpoint numbers with spaces in between.\n\
16196 To disable all breakpoints, give no argument.\n\
16197 A disabled breakpoint is not forgotten, but has no effect until re-enabled."),
16198 &disablelist, "disable ", 1, &cmdlist);
16199 add_com_alias ("dis", "disable", class_breakpoint, 1);
16200 add_com_alias ("disa", "disable", class_breakpoint, 1);
16201
16202 add_cmd ("breakpoints", class_alias, disable_command, _("\
16203 Disable some breakpoints.\n\
16204 Arguments are breakpoint numbers with spaces in between.\n\
16205 To disable all breakpoints, give no argument.\n\
16206 A disabled breakpoint is not forgotten, but has no effect until re-enabled.\n\
16207 This command may be abbreviated \"disable\"."),
16208 &disablelist);
16209
16210 add_prefix_cmd ("delete", class_breakpoint, delete_command, _("\
16211 Delete some breakpoints or auto-display expressions.\n\
16212 Arguments are breakpoint numbers with spaces in between.\n\
16213 To delete all breakpoints, give no argument.\n\
16214 \n\
16215 Also a prefix command for deletion of other GDB objects.\n\
16216 The \"unset\" command is also an alias for \"delete\"."),
16217 &deletelist, "delete ", 1, &cmdlist);
16218 add_com_alias ("d", "delete", class_breakpoint, 1);
16219 add_com_alias ("del", "delete", class_breakpoint, 1);
16220
16221 add_cmd ("breakpoints", class_alias, delete_command, _("\
16222 Delete some breakpoints or auto-display expressions.\n\
16223 Arguments are breakpoint numbers with spaces in between.\n\
16224 To delete all breakpoints, give no argument.\n\
16225 This command may be abbreviated \"delete\"."),
16226 &deletelist);
16227
16228 add_com ("clear", class_breakpoint, clear_command, _("\
16229 Clear breakpoint at specified location.\n\
16230 Argument may be a linespec, explicit, or address location as described below.\n\
16231 \n\
16232 With no argument, clears all breakpoints in the line that the selected frame\n\
16233 is executing in.\n"
16234 "\n" LOCATION_HELP_STRING "\n\
16235 See also the \"delete\" command which clears breakpoints by number."));
16236 add_com_alias ("cl", "clear", class_breakpoint, 1);
16237
16238 c = add_com ("break", class_breakpoint, break_command, _("\
16239 Set breakpoint at specified location.\n"
16240 BREAK_ARGS_HELP ("break")));
16241 set_cmd_completer (c, location_completer);
16242
16243 add_com_alias ("b", "break", class_run, 1);
16244 add_com_alias ("br", "break", class_run, 1);
16245 add_com_alias ("bre", "break", class_run, 1);
16246 add_com_alias ("brea", "break", class_run, 1);
16247
16248 if (dbx_commands)
16249 {
16250 add_abbrev_prefix_cmd ("stop", class_breakpoint, stop_command, _("\
16251 Break in function/address or break at a line in the current file."),
16252 &stoplist, "stop ", 1, &cmdlist);
16253 add_cmd ("in", class_breakpoint, stopin_command,
16254 _("Break in function or address."), &stoplist);
16255 add_cmd ("at", class_breakpoint, stopat_command,
16256 _("Break at a line in the current file."), &stoplist);
16257 add_com ("status", class_info, breakpoints_info, _("\
16258 Status of user-settable breakpoints, or breakpoint number NUMBER.\n\
16259 The \"Type\" column indicates one of:\n\
16260 \tbreakpoint - normal breakpoint\n\
16261 \twatchpoint - watchpoint\n\
16262 The \"Disp\" column contains one of \"keep\", \"del\", or \"dis\" to indicate\n\
16263 the disposition of the breakpoint after it gets hit. \"dis\" means that the\n\
16264 breakpoint will be disabled. The \"Address\" and \"What\" columns indicate the\n\
16265 address and file/line number respectively.\n\
16266 \n\
16267 Convenience variable \"$_\" and default examine address for \"x\"\n\
16268 are set to the address of the last breakpoint listed unless the command\n\
16269 is prefixed with \"server \".\n\n\
16270 Convenience variable \"$bpnum\" contains the number of the last\n\
16271 breakpoint set."));
16272 }
16273
16274 add_info ("breakpoints", breakpoints_info, _("\
16275 Status of specified breakpoints (all user-settable breakpoints if no argument).\n\
16276 The \"Type\" column indicates one of:\n\
16277 \tbreakpoint - normal breakpoint\n\
16278 \twatchpoint - watchpoint\n\
16279 The \"Disp\" column contains one of \"keep\", \"del\", or \"dis\" to indicate\n\
16280 the disposition of the breakpoint after it gets hit. \"dis\" means that the\n\
16281 breakpoint will be disabled. The \"Address\" and \"What\" columns indicate the\n\
16282 address and file/line number respectively.\n\
16283 \n\
16284 Convenience variable \"$_\" and default examine address for \"x\"\n\
16285 are set to the address of the last breakpoint listed unless the command\n\
16286 is prefixed with \"server \".\n\n\
16287 Convenience variable \"$bpnum\" contains the number of the last\n\
16288 breakpoint set."));
16289
16290 add_info_alias ("b", "breakpoints", 1);
16291
16292 add_cmd ("breakpoints", class_maintenance, maintenance_info_breakpoints, _("\
16293 Status of all breakpoints, or breakpoint number NUMBER.\n\
16294 The \"Type\" column indicates one of:\n\
16295 \tbreakpoint - normal breakpoint\n\
16296 \twatchpoint - watchpoint\n\
16297 \tlongjmp - internal breakpoint used to step through longjmp()\n\
16298 \tlongjmp resume - internal breakpoint at the target of longjmp()\n\
16299 \tuntil - internal breakpoint used by the \"until\" command\n\
16300 \tfinish - internal breakpoint used by the \"finish\" command\n\
16301 The \"Disp\" column contains one of \"keep\", \"del\", or \"dis\" to indicate\n\
16302 the disposition of the breakpoint after it gets hit. \"dis\" means that the\n\
16303 breakpoint will be disabled. The \"Address\" and \"What\" columns indicate the\n\
16304 address and file/line number respectively.\n\
16305 \n\
16306 Convenience variable \"$_\" and default examine address for \"x\"\n\
16307 are set to the address of the last breakpoint listed unless the command\n\
16308 is prefixed with \"server \".\n\n\
16309 Convenience variable \"$bpnum\" contains the number of the last\n\
16310 breakpoint set."),
16311 &maintenanceinfolist);
16312
16313 add_prefix_cmd ("catch", class_breakpoint, catch_command, _("\
16314 Set catchpoints to catch events."),
16315 &catch_cmdlist, "catch ",
16316 0/*allow-unknown*/, &cmdlist);
16317
16318 add_prefix_cmd ("tcatch", class_breakpoint, tcatch_command, _("\
16319 Set temporary catchpoints to catch events."),
16320 &tcatch_cmdlist, "tcatch ",
16321 0/*allow-unknown*/, &cmdlist);
16322
16323 add_catch_command ("fork", _("Catch calls to fork."),
16324 catch_fork_command_1,
16325 NULL,
16326 (void *) (uintptr_t) catch_fork_permanent,
16327 (void *) (uintptr_t) catch_fork_temporary);
16328 add_catch_command ("vfork", _("Catch calls to vfork."),
16329 catch_fork_command_1,
16330 NULL,
16331 (void *) (uintptr_t) catch_vfork_permanent,
16332 (void *) (uintptr_t) catch_vfork_temporary);
16333 add_catch_command ("exec", _("Catch calls to exec."),
16334 catch_exec_command_1,
16335 NULL,
16336 CATCH_PERMANENT,
16337 CATCH_TEMPORARY);
16338 add_catch_command ("load", _("Catch loads of shared libraries.\n\
16339 Usage: catch load [REGEX]\n\
16340 If REGEX is given, only stop for libraries matching the regular expression."),
16341 catch_load_command_1,
16342 NULL,
16343 CATCH_PERMANENT,
16344 CATCH_TEMPORARY);
16345 add_catch_command ("unload", _("Catch unloads of shared libraries.\n\
16346 Usage: catch unload [REGEX]\n\
16347 If REGEX is given, only stop for libraries matching the regular expression."),
16348 catch_unload_command_1,
16349 NULL,
16350 CATCH_PERMANENT,
16351 CATCH_TEMPORARY);
16352
16353 c = add_com ("watch", class_breakpoint, watch_command, _("\
16354 Set a watchpoint for an expression.\n\
16355 Usage: watch [-l|-location] EXPRESSION\n\
16356 A watchpoint stops execution of your program whenever the value of\n\
16357 an expression changes.\n\
16358 If -l or -location is given, this evaluates EXPRESSION and watches\n\
16359 the memory to which it refers."));
16360 set_cmd_completer (c, expression_completer);
16361
16362 c = add_com ("rwatch", class_breakpoint, rwatch_command, _("\
16363 Set a read watchpoint for an expression.\n\
16364 Usage: rwatch [-l|-location] EXPRESSION\n\
16365 A watchpoint stops execution of your program whenever the value of\n\
16366 an expression is read.\n\
16367 If -l or -location is given, this evaluates EXPRESSION and watches\n\
16368 the memory to which it refers."));
16369 set_cmd_completer (c, expression_completer);
16370
16371 c = add_com ("awatch", class_breakpoint, awatch_command, _("\
16372 Set a watchpoint for an expression.\n\
16373 Usage: awatch [-l|-location] EXPRESSION\n\
16374 A watchpoint stops execution of your program whenever the value of\n\
16375 an expression is either read or written.\n\
16376 If -l or -location is given, this evaluates EXPRESSION and watches\n\
16377 the memory to which it refers."));
16378 set_cmd_completer (c, expression_completer);
16379
16380 add_info ("watchpoints", watchpoints_info, _("\
16381 Status of specified watchpoints (all watchpoints if no argument)."));
16382
16383 /* XXX: cagney/2005-02-23: This should be a boolean, and should
16384 respond to changes - contrary to the description. */
16385 add_setshow_zinteger_cmd ("can-use-hw-watchpoints", class_support,
16386 &can_use_hw_watchpoints, _("\
16387 Set debugger's willingness to use watchpoint hardware."), _("\
16388 Show debugger's willingness to use watchpoint hardware."), _("\
16389 If zero, gdb will not use hardware for new watchpoints, even if\n\
16390 such is available. (However, any hardware watchpoints that were\n\
16391 created before setting this to nonzero, will continue to use watchpoint\n\
16392 hardware.)"),
16393 NULL,
16394 show_can_use_hw_watchpoints,
16395 &setlist, &showlist);
16396
16397 can_use_hw_watchpoints = 1;
16398
16399 /* Tracepoint manipulation commands. */
16400
16401 c = add_com ("trace", class_breakpoint, trace_command, _("\
16402 Set a tracepoint at specified location.\n\
16403 \n"
16404 BREAK_ARGS_HELP ("trace") "\n\
16405 Do \"help tracepoints\" for info on other tracepoint commands."));
16406 set_cmd_completer (c, location_completer);
16407
16408 add_com_alias ("tp", "trace", class_alias, 0);
16409 add_com_alias ("tr", "trace", class_alias, 1);
16410 add_com_alias ("tra", "trace", class_alias, 1);
16411 add_com_alias ("trac", "trace", class_alias, 1);
16412
16413 c = add_com ("ftrace", class_breakpoint, ftrace_command, _("\
16414 Set a fast tracepoint at specified location.\n\
16415 \n"
16416 BREAK_ARGS_HELP ("ftrace") "\n\
16417 Do \"help tracepoints\" for info on other tracepoint commands."));
16418 set_cmd_completer (c, location_completer);
16419
16420 c = add_com ("strace", class_breakpoint, strace_command, _("\
16421 Set a static tracepoint at location or marker.\n\
16422 \n\
16423 strace [LOCATION] [if CONDITION]\n\
16424 LOCATION may be a linespec, explicit, or address location (described below) \n\
16425 or -m MARKER_ID.\n\n\
16426 If a marker id is specified, probe the marker with that name. With\n\
16427 no LOCATION, uses current execution address of the selected stack frame.\n\
16428 Static tracepoints accept an extra collect action -- ``collect $_sdata''.\n\
16429 This collects arbitrary user data passed in the probe point call to the\n\
16430 tracing library. You can inspect it when analyzing the trace buffer,\n\
16431 by printing the $_sdata variable like any other convenience variable.\n\
16432 \n\
16433 CONDITION is a boolean expression.\n\
16434 \n" LOCATION_HELP_STRING "\n\
16435 Multiple tracepoints at one place are permitted, and useful if their\n\
16436 conditions are different.\n\
16437 \n\
16438 Do \"help breakpoints\" for info on other commands dealing with breakpoints.\n\
16439 Do \"help tracepoints\" for info on other tracepoint commands."));
16440 set_cmd_completer (c, location_completer);
16441
16442 add_info ("tracepoints", tracepoints_info, _("\
16443 Status of specified tracepoints (all tracepoints if no argument).\n\
16444 Convenience variable \"$tpnum\" contains the number of the\n\
16445 last tracepoint set."));
16446
16447 add_info_alias ("tp", "tracepoints", 1);
16448
16449 add_cmd ("tracepoints", class_trace, delete_trace_command, _("\
16450 Delete specified tracepoints.\n\
16451 Arguments are tracepoint numbers, separated by spaces.\n\
16452 No argument means delete all tracepoints."),
16453 &deletelist);
16454 add_alias_cmd ("tr", "tracepoints", class_trace, 1, &deletelist);
16455
16456 c = add_cmd ("tracepoints", class_trace, disable_trace_command, _("\
16457 Disable specified tracepoints.\n\
16458 Arguments are tracepoint numbers, separated by spaces.\n\
16459 No argument means disable all tracepoints."),
16460 &disablelist);
16461 deprecate_cmd (c, "disable");
16462
16463 c = add_cmd ("tracepoints", class_trace, enable_trace_command, _("\
16464 Enable specified tracepoints.\n\
16465 Arguments are tracepoint numbers, separated by spaces.\n\
16466 No argument means enable all tracepoints."),
16467 &enablelist);
16468 deprecate_cmd (c, "enable");
16469
16470 add_com ("passcount", class_trace, trace_pass_command, _("\
16471 Set the passcount for a tracepoint.\n\
16472 The trace will end when the tracepoint has been passed 'count' times.\n\
16473 Usage: passcount COUNT TPNUM, where TPNUM may also be \"all\";\n\
16474 if TPNUM is omitted, passcount refers to the last tracepoint defined."));
16475
16476 add_prefix_cmd ("save", class_breakpoint, save_command,
16477 _("Save breakpoint definitions as a script."),
16478 &save_cmdlist, "save ",
16479 0/*allow-unknown*/, &cmdlist);
16480
16481 c = add_cmd ("breakpoints", class_breakpoint, save_breakpoints_command, _("\
16482 Save current breakpoint definitions as a script.\n\
16483 This includes all types of breakpoints (breakpoints, watchpoints,\n\
16484 catchpoints, tracepoints). Use the 'source' command in another debug\n\
16485 session to restore them."),
16486 &save_cmdlist);
16487 set_cmd_completer (c, filename_completer);
16488
16489 c = add_cmd ("tracepoints", class_trace, save_tracepoints_command, _("\
16490 Save current tracepoint definitions as a script.\n\
16491 Use the 'source' command in another debug session to restore them."),
16492 &save_cmdlist);
16493 set_cmd_completer (c, filename_completer);
16494
16495 c = add_com_alias ("save-tracepoints", "save tracepoints", class_trace, 0);
16496 deprecate_cmd (c, "save tracepoints");
16497
16498 add_prefix_cmd ("breakpoint", class_maintenance, set_breakpoint_cmd, _("\
16499 Breakpoint specific settings\n\
16500 Configure various breakpoint-specific variables such as\n\
16501 pending breakpoint behavior"),
16502 &breakpoint_set_cmdlist, "set breakpoint ",
16503 0/*allow-unknown*/, &setlist);
16504 add_prefix_cmd ("breakpoint", class_maintenance, show_breakpoint_cmd, _("\
16505 Breakpoint specific settings\n\
16506 Configure various breakpoint-specific variables such as\n\
16507 pending breakpoint behavior"),
16508 &breakpoint_show_cmdlist, "show breakpoint ",
16509 0/*allow-unknown*/, &showlist);
16510
16511 add_setshow_auto_boolean_cmd ("pending", no_class,
16512 &pending_break_support, _("\
16513 Set debugger's behavior regarding pending breakpoints."), _("\
16514 Show debugger's behavior regarding pending breakpoints."), _("\
16515 If on, an unrecognized breakpoint location will cause gdb to create a\n\
16516 pending breakpoint. If off, an unrecognized breakpoint location results in\n\
16517 an error. If auto, an unrecognized breakpoint location results in a\n\
16518 user-query to see if a pending breakpoint should be created."),
16519 NULL,
16520 show_pending_break_support,
16521 &breakpoint_set_cmdlist,
16522 &breakpoint_show_cmdlist);
16523
16524 pending_break_support = AUTO_BOOLEAN_AUTO;
16525
16526 add_setshow_boolean_cmd ("auto-hw", no_class,
16527 &automatic_hardware_breakpoints, _("\
16528 Set automatic usage of hardware breakpoints."), _("\
16529 Show automatic usage of hardware breakpoints."), _("\
16530 If set, the debugger will automatically use hardware breakpoints for\n\
16531 breakpoints set with \"break\" but falling in read-only memory. If not set,\n\
16532 a warning will be emitted for such breakpoints."),
16533 NULL,
16534 show_automatic_hardware_breakpoints,
16535 &breakpoint_set_cmdlist,
16536 &breakpoint_show_cmdlist);
16537
16538 add_setshow_boolean_cmd ("always-inserted", class_support,
16539 &always_inserted_mode, _("\
16540 Set mode for inserting breakpoints."), _("\
16541 Show mode for inserting breakpoints."), _("\
16542 When this mode is on, breakpoints are inserted immediately as soon as\n\
16543 they're created, kept inserted even when execution stops, and removed\n\
16544 only when the user deletes them. When this mode is off (the default),\n\
16545 breakpoints are inserted only when execution continues, and removed\n\
16546 when execution stops."),
16547 NULL,
16548 &show_always_inserted_mode,
16549 &breakpoint_set_cmdlist,
16550 &breakpoint_show_cmdlist);
16551
16552 add_setshow_enum_cmd ("condition-evaluation", class_breakpoint,
16553 condition_evaluation_enums,
16554 &condition_evaluation_mode_1, _("\
16555 Set mode of breakpoint condition evaluation."), _("\
16556 Show mode of breakpoint condition evaluation."), _("\
16557 When this is set to \"host\", breakpoint conditions will be\n\
16558 evaluated on the host's side by GDB. When it is set to \"target\",\n\
16559 breakpoint conditions will be downloaded to the target (if the target\n\
16560 supports such feature) and conditions will be evaluated on the target's side.\n\
16561 If this is set to \"auto\" (default), this will be automatically set to\n\
16562 \"target\" if it supports condition evaluation, otherwise it will\n\
16563 be set to \"gdb\""),
16564 &set_condition_evaluation_mode,
16565 &show_condition_evaluation_mode,
16566 &breakpoint_set_cmdlist,
16567 &breakpoint_show_cmdlist);
16568
16569 add_com ("break-range", class_breakpoint, break_range_command, _("\
16570 Set a breakpoint for an address range.\n\
16571 break-range START-LOCATION, END-LOCATION\n\
16572 where START-LOCATION and END-LOCATION can be one of the following:\n\
16573 LINENUM, for that line in the current file,\n\
16574 FILE:LINENUM, for that line in that file,\n\
16575 +OFFSET, for that number of lines after the current line\n\
16576 or the start of the range\n\
16577 FUNCTION, for the first line in that function,\n\
16578 FILE:FUNCTION, to distinguish among like-named static functions.\n\
16579 *ADDRESS, for the instruction at that address.\n\
16580 \n\
16581 The breakpoint will stop execution of the inferior whenever it executes\n\
16582 an instruction at any address within the [START-LOCATION, END-LOCATION]\n\
16583 range (including START-LOCATION and END-LOCATION)."));
16584
16585 c = add_com ("dprintf", class_breakpoint, dprintf_command, _("\
16586 Set a dynamic printf at specified location.\n\
16587 dprintf location,format string,arg1,arg2,...\n\
16588 location may be a linespec, explicit, or address location.\n"
16589 "\n" LOCATION_HELP_STRING));
16590 set_cmd_completer (c, location_completer);
16591
16592 add_setshow_enum_cmd ("dprintf-style", class_support,
16593 dprintf_style_enums, &dprintf_style, _("\
16594 Set the style of usage for dynamic printf."), _("\
16595 Show the style of usage for dynamic printf."), _("\
16596 This setting chooses how GDB will do a dynamic printf.\n\
16597 If the value is \"gdb\", then the printing is done by GDB to its own\n\
16598 console, as with the \"printf\" command.\n\
16599 If the value is \"call\", the print is done by calling a function in your\n\
16600 program; by default printf(), but you can choose a different function or\n\
16601 output stream by setting dprintf-function and dprintf-channel."),
16602 update_dprintf_commands, NULL,
16603 &setlist, &showlist);
16604
16605 dprintf_function = xstrdup ("printf");
16606 add_setshow_string_cmd ("dprintf-function", class_support,
16607 &dprintf_function, _("\
16608 Set the function to use for dynamic printf"), _("\
16609 Show the function to use for dynamic printf"), NULL,
16610 update_dprintf_commands, NULL,
16611 &setlist, &showlist);
16612
16613 dprintf_channel = xstrdup ("");
16614 add_setshow_string_cmd ("dprintf-channel", class_support,
16615 &dprintf_channel, _("\
16616 Set the channel to use for dynamic printf"), _("\
16617 Show the channel to use for dynamic printf"), NULL,
16618 update_dprintf_commands, NULL,
16619 &setlist, &showlist);
16620
16621 add_setshow_boolean_cmd ("disconnected-dprintf", no_class,
16622 &disconnected_dprintf, _("\
16623 Set whether dprintf continues after GDB disconnects."), _("\
16624 Show whether dprintf continues after GDB disconnects."), _("\
16625 Use this to let dprintf commands continue to hit and produce output\n\
16626 even if GDB disconnects or detaches from the target."),
16627 NULL,
16628 NULL,
16629 &setlist, &showlist);
16630
16631 add_com ("agent-printf", class_vars, agent_printf_command, _("\
16632 agent-printf \"printf format string\", arg1, arg2, arg3, ..., argn\n\
16633 (target agent only) This is useful for formatted output in user-defined commands."));
16634
16635 automatic_hardware_breakpoints = 1;
16636
16637 observer_attach_about_to_proceed (breakpoint_about_to_proceed);
16638 observer_attach_thread_exit (remove_threaded_breakpoints);
16639 }
This page took 0.41356 seconds and 4 git commands to generate.