Really fail inserting software breakpoints on read-only regions
[deliverable/binutils-gdb.git] / gdb / breakpoint.c
1 /* Everything about breakpoints, for GDB.
2
3 Copyright (C) 1986-2014 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20 #include "defs.h"
21 #include "arch-utils.h"
22 #include <ctype.h>
23 #include "hashtab.h"
24 #include "symtab.h"
25 #include "frame.h"
26 #include "breakpoint.h"
27 #include "tracepoint.h"
28 #include "gdbtypes.h"
29 #include "expression.h"
30 #include "gdbcore.h"
31 #include "gdbcmd.h"
32 #include "value.h"
33 #include "command.h"
34 #include "inferior.h"
35 #include "infrun.h"
36 #include "gdbthread.h"
37 #include "target.h"
38 #include "language.h"
39 #include "gdb-demangle.h"
40 #include "filenames.h"
41 #include "annotate.h"
42 #include "symfile.h"
43 #include "objfiles.h"
44 #include "source.h"
45 #include "linespec.h"
46 #include "completer.h"
47 #include "gdb.h"
48 #include "ui-out.h"
49 #include "cli/cli-script.h"
50 #include "block.h"
51 #include "solib.h"
52 #include "solist.h"
53 #include "observer.h"
54 #include "exceptions.h"
55 #include "memattr.h"
56 #include "ada-lang.h"
57 #include "top.h"
58 #include "valprint.h"
59 #include "jit.h"
60 #include "xml-syscall.h"
61 #include "parser-defs.h"
62 #include "gdb_regex.h"
63 #include "probe.h"
64 #include "cli/cli-utils.h"
65 #include "continuations.h"
66 #include "stack.h"
67 #include "skip.h"
68 #include "ax-gdb.h"
69 #include "dummy-frame.h"
70
71 #include "format.h"
72
73 /* readline include files */
74 #include "readline/readline.h"
75 #include "readline/history.h"
76
77 /* readline defines this. */
78 #undef savestring
79
80 #include "mi/mi-common.h"
81 #include "extension.h"
82
83 /* Enums for exception-handling support. */
84 enum exception_event_kind
85 {
86 EX_EVENT_THROW,
87 EX_EVENT_RETHROW,
88 EX_EVENT_CATCH
89 };
90
91 /* Prototypes for local functions. */
92
93 static void enable_delete_command (char *, int);
94
95 static void enable_once_command (char *, int);
96
97 static void enable_count_command (char *, int);
98
99 static void disable_command (char *, int);
100
101 static void enable_command (char *, int);
102
103 static void map_breakpoint_numbers (char *, void (*) (struct breakpoint *,
104 void *),
105 void *);
106
107 static void ignore_command (char *, int);
108
109 static int breakpoint_re_set_one (void *);
110
111 static void breakpoint_re_set_default (struct breakpoint *);
112
113 static void create_sals_from_address_default (char **,
114 struct linespec_result *,
115 enum bptype, char *,
116 char **);
117
118 static void create_breakpoints_sal_default (struct gdbarch *,
119 struct linespec_result *,
120 char *, char *, enum bptype,
121 enum bpdisp, int, int,
122 int,
123 const struct breakpoint_ops *,
124 int, int, int, unsigned);
125
126 static void decode_linespec_default (struct breakpoint *, char **,
127 struct symtabs_and_lines *);
128
129 static void clear_command (char *, int);
130
131 static void catch_command (char *, int);
132
133 static int can_use_hardware_watchpoint (struct value *);
134
135 static void break_command_1 (char *, int, int);
136
137 static void mention (struct breakpoint *);
138
139 static struct breakpoint *set_raw_breakpoint_without_location (struct gdbarch *,
140 enum bptype,
141 const struct breakpoint_ops *);
142 static struct bp_location *add_location_to_breakpoint (struct breakpoint *,
143 const struct symtab_and_line *);
144
145 /* This function is used in gdbtk sources and thus can not be made
146 static. */
147 struct breakpoint *set_raw_breakpoint (struct gdbarch *gdbarch,
148 struct symtab_and_line,
149 enum bptype,
150 const struct breakpoint_ops *);
151
152 static struct breakpoint *
153 momentary_breakpoint_from_master (struct breakpoint *orig,
154 enum bptype type,
155 const struct breakpoint_ops *ops,
156 int loc_enabled);
157
158 static void breakpoint_adjustment_warning (CORE_ADDR, CORE_ADDR, int, int);
159
160 static CORE_ADDR adjust_breakpoint_address (struct gdbarch *gdbarch,
161 CORE_ADDR bpaddr,
162 enum bptype bptype);
163
164 static void describe_other_breakpoints (struct gdbarch *,
165 struct program_space *, CORE_ADDR,
166 struct obj_section *, int);
167
168 static int watchpoint_locations_match (struct bp_location *loc1,
169 struct bp_location *loc2);
170
171 static int breakpoint_location_address_match (struct bp_location *bl,
172 struct address_space *aspace,
173 CORE_ADDR addr);
174
175 static void breakpoints_info (char *, int);
176
177 static void watchpoints_info (char *, int);
178
179 static int breakpoint_1 (char *, int,
180 int (*) (const struct breakpoint *));
181
182 static int breakpoint_cond_eval (void *);
183
184 static void cleanup_executing_breakpoints (void *);
185
186 static void commands_command (char *, int);
187
188 static void condition_command (char *, int);
189
190 typedef enum
191 {
192 mark_inserted,
193 mark_uninserted
194 }
195 insertion_state_t;
196
197 static int remove_breakpoint (struct bp_location *, insertion_state_t);
198 static int remove_breakpoint_1 (struct bp_location *, insertion_state_t);
199
200 static enum print_stop_action print_bp_stop_message (bpstat bs);
201
202 static int watchpoint_check (void *);
203
204 static void maintenance_info_breakpoints (char *, int);
205
206 static int hw_breakpoint_used_count (void);
207
208 static int hw_watchpoint_use_count (struct breakpoint *);
209
210 static int hw_watchpoint_used_count_others (struct breakpoint *except,
211 enum bptype type,
212 int *other_type_used);
213
214 static void hbreak_command (char *, int);
215
216 static void thbreak_command (char *, int);
217
218 static void enable_breakpoint_disp (struct breakpoint *, enum bpdisp,
219 int count);
220
221 static void stop_command (char *arg, int from_tty);
222
223 static void stopin_command (char *arg, int from_tty);
224
225 static void stopat_command (char *arg, int from_tty);
226
227 static void tcatch_command (char *arg, int from_tty);
228
229 static void detach_single_step_breakpoints (void);
230
231 static int find_single_step_breakpoint (struct address_space *aspace,
232 CORE_ADDR pc);
233
234 static void free_bp_location (struct bp_location *loc);
235 static void incref_bp_location (struct bp_location *loc);
236 static void decref_bp_location (struct bp_location **loc);
237
238 static struct bp_location *allocate_bp_location (struct breakpoint *bpt);
239
240 /* update_global_location_list's modes of operation wrt to whether to
241 insert locations now. */
242 enum ugll_insert_mode
243 {
244 /* Don't insert any breakpoint locations into the inferior, only
245 remove already-inserted locations that no longer should be
246 inserted. Functions that delete a breakpoint or breakpoints
247 should specify this mode, so that deleting a breakpoint doesn't
248 have the side effect of inserting the locations of other
249 breakpoints that are marked not-inserted, but should_be_inserted
250 returns true on them.
251
252 This behavior is useful is situations close to tear-down -- e.g.,
253 after an exec, while the target still has execution, but
254 breakpoint shadows of the previous executable image should *NOT*
255 be restored to the new image; or before detaching, where the
256 target still has execution and wants to delete breakpoints from
257 GDB's lists, and all breakpoints had already been removed from
258 the inferior. */
259 UGLL_DONT_INSERT,
260
261 /* May insert breakpoints iff breakpoints_should_be_inserted_now
262 claims breakpoints should be inserted now. */
263 UGLL_MAY_INSERT,
264
265 /* Insert locations now, irrespective of
266 breakpoints_should_be_inserted_now. E.g., say all threads are
267 stopped right now, and the user did "continue". We need to
268 insert breakpoints _before_ resuming the target, but
269 UGLL_MAY_INSERT wouldn't insert them, because
270 breakpoints_should_be_inserted_now returns false at that point,
271 as no thread is running yet. */
272 UGLL_INSERT
273 };
274
275 static void update_global_location_list (enum ugll_insert_mode);
276
277 static void update_global_location_list_nothrow (enum ugll_insert_mode);
278
279 static int is_hardware_watchpoint (const struct breakpoint *bpt);
280
281 static void insert_breakpoint_locations (void);
282
283 static int syscall_catchpoint_p (struct breakpoint *b);
284
285 static void tracepoints_info (char *, int);
286
287 static void delete_trace_command (char *, int);
288
289 static void enable_trace_command (char *, int);
290
291 static void disable_trace_command (char *, int);
292
293 static void trace_pass_command (char *, int);
294
295 static void set_tracepoint_count (int num);
296
297 static int is_masked_watchpoint (const struct breakpoint *b);
298
299 static struct bp_location **get_first_locp_gte_addr (CORE_ADDR address);
300
301 /* Return 1 if B refers to a static tracepoint set by marker ("-m"), zero
302 otherwise. */
303
304 static int strace_marker_p (struct breakpoint *b);
305
306 /* The abstract base class all breakpoint_ops structures inherit
307 from. */
308 struct breakpoint_ops base_breakpoint_ops;
309
310 /* The breakpoint_ops structure to be inherited by all breakpoint_ops
311 that are implemented on top of software or hardware breakpoints
312 (user breakpoints, internal and momentary breakpoints, etc.). */
313 static struct breakpoint_ops bkpt_base_breakpoint_ops;
314
315 /* Internal breakpoints class type. */
316 static struct breakpoint_ops internal_breakpoint_ops;
317
318 /* Momentary breakpoints class type. */
319 static struct breakpoint_ops momentary_breakpoint_ops;
320
321 /* Momentary breakpoints for bp_longjmp and bp_exception class type. */
322 static struct breakpoint_ops longjmp_breakpoint_ops;
323
324 /* The breakpoint_ops structure to be used in regular user created
325 breakpoints. */
326 struct breakpoint_ops bkpt_breakpoint_ops;
327
328 /* Breakpoints set on probes. */
329 static struct breakpoint_ops bkpt_probe_breakpoint_ops;
330
331 /* Dynamic printf class type. */
332 struct breakpoint_ops dprintf_breakpoint_ops;
333
334 /* One (or perhaps two) breakpoints used for software single
335 stepping. */
336
337 static void *single_step_breakpoints[2];
338 static struct gdbarch *single_step_gdbarch[2];
339
340 /* The style in which to perform a dynamic printf. This is a user
341 option because different output options have different tradeoffs;
342 if GDB does the printing, there is better error handling if there
343 is a problem with any of the arguments, but using an inferior
344 function lets you have special-purpose printers and sending of
345 output to the same place as compiled-in print functions. */
346
347 static const char dprintf_style_gdb[] = "gdb";
348 static const char dprintf_style_call[] = "call";
349 static const char dprintf_style_agent[] = "agent";
350 static const char *const dprintf_style_enums[] = {
351 dprintf_style_gdb,
352 dprintf_style_call,
353 dprintf_style_agent,
354 NULL
355 };
356 static const char *dprintf_style = dprintf_style_gdb;
357
358 /* The function to use for dynamic printf if the preferred style is to
359 call into the inferior. The value is simply a string that is
360 copied into the command, so it can be anything that GDB can
361 evaluate to a callable address, not necessarily a function name. */
362
363 static char *dprintf_function = "";
364
365 /* The channel to use for dynamic printf if the preferred style is to
366 call into the inferior; if a nonempty string, it will be passed to
367 the call as the first argument, with the format string as the
368 second. As with the dprintf function, this can be anything that
369 GDB knows how to evaluate, so in addition to common choices like
370 "stderr", this could be an app-specific expression like
371 "mystreams[curlogger]". */
372
373 static char *dprintf_channel = "";
374
375 /* True if dprintf commands should continue to operate even if GDB
376 has disconnected. */
377 static int disconnected_dprintf = 1;
378
379 /* A reference-counted struct command_line. This lets multiple
380 breakpoints share a single command list. */
381 struct counted_command_line
382 {
383 /* The reference count. */
384 int refc;
385
386 /* The command list. */
387 struct command_line *commands;
388 };
389
390 struct command_line *
391 breakpoint_commands (struct breakpoint *b)
392 {
393 return b->commands ? b->commands->commands : NULL;
394 }
395
396 /* Flag indicating that a command has proceeded the inferior past the
397 current breakpoint. */
398
399 static int breakpoint_proceeded;
400
401 const char *
402 bpdisp_text (enum bpdisp disp)
403 {
404 /* NOTE: the following values are a part of MI protocol and
405 represent values of 'disp' field returned when inferior stops at
406 a breakpoint. */
407 static const char * const bpdisps[] = {"del", "dstp", "dis", "keep"};
408
409 return bpdisps[(int) disp];
410 }
411
412 /* Prototypes for exported functions. */
413 /* If FALSE, gdb will not use hardware support for watchpoints, even
414 if such is available. */
415 static int can_use_hw_watchpoints;
416
417 static void
418 show_can_use_hw_watchpoints (struct ui_file *file, int from_tty,
419 struct cmd_list_element *c,
420 const char *value)
421 {
422 fprintf_filtered (file,
423 _("Debugger's willingness to use "
424 "watchpoint hardware is %s.\n"),
425 value);
426 }
427
428 /* If AUTO_BOOLEAN_FALSE, gdb will not attempt to create pending breakpoints.
429 If AUTO_BOOLEAN_TRUE, gdb will automatically create pending breakpoints
430 for unrecognized breakpoint locations.
431 If AUTO_BOOLEAN_AUTO, gdb will query when breakpoints are unrecognized. */
432 static enum auto_boolean pending_break_support;
433 static void
434 show_pending_break_support (struct ui_file *file, int from_tty,
435 struct cmd_list_element *c,
436 const char *value)
437 {
438 fprintf_filtered (file,
439 _("Debugger's behavior regarding "
440 "pending breakpoints is %s.\n"),
441 value);
442 }
443
444 /* If 1, gdb will automatically use hardware breakpoints for breakpoints
445 set with "break" but falling in read-only memory.
446 If 0, gdb will warn about such breakpoints, but won't automatically
447 use hardware breakpoints. */
448 static int automatic_hardware_breakpoints;
449 static void
450 show_automatic_hardware_breakpoints (struct ui_file *file, int from_tty,
451 struct cmd_list_element *c,
452 const char *value)
453 {
454 fprintf_filtered (file,
455 _("Automatic usage of hardware breakpoints is %s.\n"),
456 value);
457 }
458
459 /* If on, GDB keeps breakpoints inserted even if the inferior is
460 stopped, and immediately inserts any new breakpoints as soon as
461 they're created. If off (default), GDB keeps breakpoints off of
462 the target as long as possible. That is, it delays inserting
463 breakpoints until the next resume, and removes them again when the
464 target fully stops. This is a bit safer in case GDB crashes while
465 processing user input. */
466 static int always_inserted_mode = 0;
467
468 static void
469 show_always_inserted_mode (struct ui_file *file, int from_tty,
470 struct cmd_list_element *c, const char *value)
471 {
472 fprintf_filtered (file, _("Always inserted breakpoint mode is %s.\n"),
473 value);
474 }
475
476 int
477 breakpoints_should_be_inserted_now (void)
478 {
479 if (gdbarch_has_global_breakpoints (target_gdbarch ()))
480 {
481 /* If breakpoints are global, they should be inserted even if no
482 thread under gdb's control is running, or even if there are
483 no threads under GDB's control yet. */
484 return 1;
485 }
486 else if (target_has_execution)
487 {
488 struct thread_info *tp;
489
490 if (always_inserted_mode)
491 {
492 /* The user wants breakpoints inserted even if all threads
493 are stopped. */
494 return 1;
495 }
496
497 ALL_NON_EXITED_THREADS (tp)
498 {
499 if (tp->executing)
500 return 1;
501 }
502 }
503 return 0;
504 }
505
506 static const char condition_evaluation_both[] = "host or target";
507
508 /* Modes for breakpoint condition evaluation. */
509 static const char condition_evaluation_auto[] = "auto";
510 static const char condition_evaluation_host[] = "host";
511 static const char condition_evaluation_target[] = "target";
512 static const char *const condition_evaluation_enums[] = {
513 condition_evaluation_auto,
514 condition_evaluation_host,
515 condition_evaluation_target,
516 NULL
517 };
518
519 /* Global that holds the current mode for breakpoint condition evaluation. */
520 static const char *condition_evaluation_mode_1 = condition_evaluation_auto;
521
522 /* Global that we use to display information to the user (gets its value from
523 condition_evaluation_mode_1. */
524 static const char *condition_evaluation_mode = condition_evaluation_auto;
525
526 /* Translate a condition evaluation mode MODE into either "host"
527 or "target". This is used mostly to translate from "auto" to the
528 real setting that is being used. It returns the translated
529 evaluation mode. */
530
531 static const char *
532 translate_condition_evaluation_mode (const char *mode)
533 {
534 if (mode == condition_evaluation_auto)
535 {
536 if (target_supports_evaluation_of_breakpoint_conditions ())
537 return condition_evaluation_target;
538 else
539 return condition_evaluation_host;
540 }
541 else
542 return mode;
543 }
544
545 /* Discovers what condition_evaluation_auto translates to. */
546
547 static const char *
548 breakpoint_condition_evaluation_mode (void)
549 {
550 return translate_condition_evaluation_mode (condition_evaluation_mode);
551 }
552
553 /* Return true if GDB should evaluate breakpoint conditions or false
554 otherwise. */
555
556 static int
557 gdb_evaluates_breakpoint_condition_p (void)
558 {
559 const char *mode = breakpoint_condition_evaluation_mode ();
560
561 return (mode == condition_evaluation_host);
562 }
563
564 void _initialize_breakpoint (void);
565
566 /* Are we executing breakpoint commands? */
567 static int executing_breakpoint_commands;
568
569 /* Are overlay event breakpoints enabled? */
570 static int overlay_events_enabled;
571
572 /* See description in breakpoint.h. */
573 int target_exact_watchpoints = 0;
574
575 /* Walk the following statement or block through all breakpoints.
576 ALL_BREAKPOINTS_SAFE does so even if the statement deletes the
577 current breakpoint. */
578
579 #define ALL_BREAKPOINTS(B) for (B = breakpoint_chain; B; B = B->next)
580
581 #define ALL_BREAKPOINTS_SAFE(B,TMP) \
582 for (B = breakpoint_chain; \
583 B ? (TMP=B->next, 1): 0; \
584 B = TMP)
585
586 /* Similar iterator for the low-level breakpoints. SAFE variant is
587 not provided so update_global_location_list must not be called
588 while executing the block of ALL_BP_LOCATIONS. */
589
590 #define ALL_BP_LOCATIONS(B,BP_TMP) \
591 for (BP_TMP = bp_location; \
592 BP_TMP < bp_location + bp_location_count && (B = *BP_TMP); \
593 BP_TMP++)
594
595 /* Iterates through locations with address ADDRESS for the currently selected
596 program space. BP_LOCP_TMP points to each object. BP_LOCP_START points
597 to where the loop should start from.
598 If BP_LOCP_START is a NULL pointer, the macro automatically seeks the
599 appropriate location to start with. */
600
601 #define ALL_BP_LOCATIONS_AT_ADDR(BP_LOCP_TMP, BP_LOCP_START, ADDRESS) \
602 for (BP_LOCP_START = BP_LOCP_START == NULL ? get_first_locp_gte_addr (ADDRESS) : BP_LOCP_START, \
603 BP_LOCP_TMP = BP_LOCP_START; \
604 BP_LOCP_START \
605 && (BP_LOCP_TMP < bp_location + bp_location_count \
606 && (*BP_LOCP_TMP)->address == ADDRESS); \
607 BP_LOCP_TMP++)
608
609 /* Iterator for tracepoints only. */
610
611 #define ALL_TRACEPOINTS(B) \
612 for (B = breakpoint_chain; B; B = B->next) \
613 if (is_tracepoint (B))
614
615 /* Chains of all breakpoints defined. */
616
617 struct breakpoint *breakpoint_chain;
618
619 /* Array is sorted by bp_location_compare - primarily by the ADDRESS. */
620
621 static struct bp_location **bp_location;
622
623 /* Number of elements of BP_LOCATION. */
624
625 static unsigned bp_location_count;
626
627 /* Maximum alignment offset between bp_target_info.PLACED_ADDRESS and
628 ADDRESS for the current elements of BP_LOCATION which get a valid
629 result from bp_location_has_shadow. You can use it for roughly
630 limiting the subrange of BP_LOCATION to scan for shadow bytes for
631 an address you need to read. */
632
633 static CORE_ADDR bp_location_placed_address_before_address_max;
634
635 /* Maximum offset plus alignment between bp_target_info.PLACED_ADDRESS
636 + bp_target_info.SHADOW_LEN and ADDRESS for the current elements of
637 BP_LOCATION which get a valid result from bp_location_has_shadow.
638 You can use it for roughly limiting the subrange of BP_LOCATION to
639 scan for shadow bytes for an address you need to read. */
640
641 static CORE_ADDR bp_location_shadow_len_after_address_max;
642
643 /* The locations that no longer correspond to any breakpoint, unlinked
644 from bp_location array, but for which a hit may still be reported
645 by a target. */
646 VEC(bp_location_p) *moribund_locations = NULL;
647
648 /* Number of last breakpoint made. */
649
650 static int breakpoint_count;
651
652 /* The value of `breakpoint_count' before the last command that
653 created breakpoints. If the last (break-like) command created more
654 than one breakpoint, then the difference between BREAKPOINT_COUNT
655 and PREV_BREAKPOINT_COUNT is more than one. */
656 static int prev_breakpoint_count;
657
658 /* Number of last tracepoint made. */
659
660 static int tracepoint_count;
661
662 static struct cmd_list_element *breakpoint_set_cmdlist;
663 static struct cmd_list_element *breakpoint_show_cmdlist;
664 struct cmd_list_element *save_cmdlist;
665
666 /* Return whether a breakpoint is an active enabled breakpoint. */
667 static int
668 breakpoint_enabled (struct breakpoint *b)
669 {
670 return (b->enable_state == bp_enabled);
671 }
672
673 /* Set breakpoint count to NUM. */
674
675 static void
676 set_breakpoint_count (int num)
677 {
678 prev_breakpoint_count = breakpoint_count;
679 breakpoint_count = num;
680 set_internalvar_integer (lookup_internalvar ("bpnum"), num);
681 }
682
683 /* Used by `start_rbreak_breakpoints' below, to record the current
684 breakpoint count before "rbreak" creates any breakpoint. */
685 static int rbreak_start_breakpoint_count;
686
687 /* Called at the start an "rbreak" command to record the first
688 breakpoint made. */
689
690 void
691 start_rbreak_breakpoints (void)
692 {
693 rbreak_start_breakpoint_count = breakpoint_count;
694 }
695
696 /* Called at the end of an "rbreak" command to record the last
697 breakpoint made. */
698
699 void
700 end_rbreak_breakpoints (void)
701 {
702 prev_breakpoint_count = rbreak_start_breakpoint_count;
703 }
704
705 /* Used in run_command to zero the hit count when a new run starts. */
706
707 void
708 clear_breakpoint_hit_counts (void)
709 {
710 struct breakpoint *b;
711
712 ALL_BREAKPOINTS (b)
713 b->hit_count = 0;
714 }
715
716 /* Allocate a new counted_command_line with reference count of 1.
717 The new structure owns COMMANDS. */
718
719 static struct counted_command_line *
720 alloc_counted_command_line (struct command_line *commands)
721 {
722 struct counted_command_line *result
723 = xmalloc (sizeof (struct counted_command_line));
724
725 result->refc = 1;
726 result->commands = commands;
727 return result;
728 }
729
730 /* Increment reference count. This does nothing if CMD is NULL. */
731
732 static void
733 incref_counted_command_line (struct counted_command_line *cmd)
734 {
735 if (cmd)
736 ++cmd->refc;
737 }
738
739 /* Decrement reference count. If the reference count reaches 0,
740 destroy the counted_command_line. Sets *CMDP to NULL. This does
741 nothing if *CMDP is NULL. */
742
743 static void
744 decref_counted_command_line (struct counted_command_line **cmdp)
745 {
746 if (*cmdp)
747 {
748 if (--(*cmdp)->refc == 0)
749 {
750 free_command_lines (&(*cmdp)->commands);
751 xfree (*cmdp);
752 }
753 *cmdp = NULL;
754 }
755 }
756
757 /* A cleanup function that calls decref_counted_command_line. */
758
759 static void
760 do_cleanup_counted_command_line (void *arg)
761 {
762 decref_counted_command_line (arg);
763 }
764
765 /* Create a cleanup that calls decref_counted_command_line on the
766 argument. */
767
768 static struct cleanup *
769 make_cleanup_decref_counted_command_line (struct counted_command_line **cmdp)
770 {
771 return make_cleanup (do_cleanup_counted_command_line, cmdp);
772 }
773
774 \f
775 /* Return the breakpoint with the specified number, or NULL
776 if the number does not refer to an existing breakpoint. */
777
778 struct breakpoint *
779 get_breakpoint (int num)
780 {
781 struct breakpoint *b;
782
783 ALL_BREAKPOINTS (b)
784 if (b->number == num)
785 return b;
786
787 return NULL;
788 }
789
790 \f
791
792 /* Mark locations as "conditions have changed" in case the target supports
793 evaluating conditions on its side. */
794
795 static void
796 mark_breakpoint_modified (struct breakpoint *b)
797 {
798 struct bp_location *loc;
799
800 /* This is only meaningful if the target is
801 evaluating conditions and if the user has
802 opted for condition evaluation on the target's
803 side. */
804 if (gdb_evaluates_breakpoint_condition_p ()
805 || !target_supports_evaluation_of_breakpoint_conditions ())
806 return;
807
808 if (!is_breakpoint (b))
809 return;
810
811 for (loc = b->loc; loc; loc = loc->next)
812 loc->condition_changed = condition_modified;
813 }
814
815 /* Mark location as "conditions have changed" in case the target supports
816 evaluating conditions on its side. */
817
818 static void
819 mark_breakpoint_location_modified (struct bp_location *loc)
820 {
821 /* This is only meaningful if the target is
822 evaluating conditions and if the user has
823 opted for condition evaluation on the target's
824 side. */
825 if (gdb_evaluates_breakpoint_condition_p ()
826 || !target_supports_evaluation_of_breakpoint_conditions ())
827
828 return;
829
830 if (!is_breakpoint (loc->owner))
831 return;
832
833 loc->condition_changed = condition_modified;
834 }
835
836 /* Sets the condition-evaluation mode using the static global
837 condition_evaluation_mode. */
838
839 static void
840 set_condition_evaluation_mode (char *args, int from_tty,
841 struct cmd_list_element *c)
842 {
843 const char *old_mode, *new_mode;
844
845 if ((condition_evaluation_mode_1 == condition_evaluation_target)
846 && !target_supports_evaluation_of_breakpoint_conditions ())
847 {
848 condition_evaluation_mode_1 = condition_evaluation_mode;
849 warning (_("Target does not support breakpoint condition evaluation.\n"
850 "Using host evaluation mode instead."));
851 return;
852 }
853
854 new_mode = translate_condition_evaluation_mode (condition_evaluation_mode_1);
855 old_mode = translate_condition_evaluation_mode (condition_evaluation_mode);
856
857 /* Flip the switch. Flip it even if OLD_MODE == NEW_MODE as one of the
858 settings was "auto". */
859 condition_evaluation_mode = condition_evaluation_mode_1;
860
861 /* Only update the mode if the user picked a different one. */
862 if (new_mode != old_mode)
863 {
864 struct bp_location *loc, **loc_tmp;
865 /* If the user switched to a different evaluation mode, we
866 need to synch the changes with the target as follows:
867
868 "host" -> "target": Send all (valid) conditions to the target.
869 "target" -> "host": Remove all the conditions from the target.
870 */
871
872 if (new_mode == condition_evaluation_target)
873 {
874 /* Mark everything modified and synch conditions with the
875 target. */
876 ALL_BP_LOCATIONS (loc, loc_tmp)
877 mark_breakpoint_location_modified (loc);
878 }
879 else
880 {
881 /* Manually mark non-duplicate locations to synch conditions
882 with the target. We do this to remove all the conditions the
883 target knows about. */
884 ALL_BP_LOCATIONS (loc, loc_tmp)
885 if (is_breakpoint (loc->owner) && loc->inserted)
886 loc->needs_update = 1;
887 }
888
889 /* Do the update. */
890 update_global_location_list (UGLL_MAY_INSERT);
891 }
892
893 return;
894 }
895
896 /* Shows the current mode of breakpoint condition evaluation. Explicitly shows
897 what "auto" is translating to. */
898
899 static void
900 show_condition_evaluation_mode (struct ui_file *file, int from_tty,
901 struct cmd_list_element *c, const char *value)
902 {
903 if (condition_evaluation_mode == condition_evaluation_auto)
904 fprintf_filtered (file,
905 _("Breakpoint condition evaluation "
906 "mode is %s (currently %s).\n"),
907 value,
908 breakpoint_condition_evaluation_mode ());
909 else
910 fprintf_filtered (file, _("Breakpoint condition evaluation mode is %s.\n"),
911 value);
912 }
913
914 /* A comparison function for bp_location AP and BP that is used by
915 bsearch. This comparison function only cares about addresses, unlike
916 the more general bp_location_compare function. */
917
918 static int
919 bp_location_compare_addrs (const void *ap, const void *bp)
920 {
921 struct bp_location *a = *(void **) ap;
922 struct bp_location *b = *(void **) bp;
923
924 if (a->address == b->address)
925 return 0;
926 else
927 return ((a->address > b->address) - (a->address < b->address));
928 }
929
930 /* Helper function to skip all bp_locations with addresses
931 less than ADDRESS. It returns the first bp_location that
932 is greater than or equal to ADDRESS. If none is found, just
933 return NULL. */
934
935 static struct bp_location **
936 get_first_locp_gte_addr (CORE_ADDR address)
937 {
938 struct bp_location dummy_loc;
939 struct bp_location *dummy_locp = &dummy_loc;
940 struct bp_location **locp_found = NULL;
941
942 /* Initialize the dummy location's address field. */
943 memset (&dummy_loc, 0, sizeof (struct bp_location));
944 dummy_loc.address = address;
945
946 /* Find a close match to the first location at ADDRESS. */
947 locp_found = bsearch (&dummy_locp, bp_location, bp_location_count,
948 sizeof (struct bp_location **),
949 bp_location_compare_addrs);
950
951 /* Nothing was found, nothing left to do. */
952 if (locp_found == NULL)
953 return NULL;
954
955 /* We may have found a location that is at ADDRESS but is not the first in the
956 location's list. Go backwards (if possible) and locate the first one. */
957 while ((locp_found - 1) >= bp_location
958 && (*(locp_found - 1))->address == address)
959 locp_found--;
960
961 return locp_found;
962 }
963
964 void
965 set_breakpoint_condition (struct breakpoint *b, char *exp,
966 int from_tty)
967 {
968 xfree (b->cond_string);
969 b->cond_string = NULL;
970
971 if (is_watchpoint (b))
972 {
973 struct watchpoint *w = (struct watchpoint *) b;
974
975 xfree (w->cond_exp);
976 w->cond_exp = NULL;
977 }
978 else
979 {
980 struct bp_location *loc;
981
982 for (loc = b->loc; loc; loc = loc->next)
983 {
984 xfree (loc->cond);
985 loc->cond = NULL;
986
987 /* No need to free the condition agent expression
988 bytecode (if we have one). We will handle this
989 when we go through update_global_location_list. */
990 }
991 }
992
993 if (*exp == 0)
994 {
995 if (from_tty)
996 printf_filtered (_("Breakpoint %d now unconditional.\n"), b->number);
997 }
998 else
999 {
1000 const char *arg = exp;
1001
1002 /* I don't know if it matters whether this is the string the user
1003 typed in or the decompiled expression. */
1004 b->cond_string = xstrdup (arg);
1005 b->condition_not_parsed = 0;
1006
1007 if (is_watchpoint (b))
1008 {
1009 struct watchpoint *w = (struct watchpoint *) b;
1010
1011 innermost_block = NULL;
1012 arg = exp;
1013 w->cond_exp = parse_exp_1 (&arg, 0, 0, 0);
1014 if (*arg)
1015 error (_("Junk at end of expression"));
1016 w->cond_exp_valid_block = innermost_block;
1017 }
1018 else
1019 {
1020 struct bp_location *loc;
1021
1022 for (loc = b->loc; loc; loc = loc->next)
1023 {
1024 arg = exp;
1025 loc->cond =
1026 parse_exp_1 (&arg, loc->address,
1027 block_for_pc (loc->address), 0);
1028 if (*arg)
1029 error (_("Junk at end of expression"));
1030 }
1031 }
1032 }
1033 mark_breakpoint_modified (b);
1034
1035 observer_notify_breakpoint_modified (b);
1036 }
1037
1038 /* Completion for the "condition" command. */
1039
1040 static VEC (char_ptr) *
1041 condition_completer (struct cmd_list_element *cmd,
1042 const char *text, const char *word)
1043 {
1044 const char *space;
1045
1046 text = skip_spaces_const (text);
1047 space = skip_to_space_const (text);
1048 if (*space == '\0')
1049 {
1050 int len;
1051 struct breakpoint *b;
1052 VEC (char_ptr) *result = NULL;
1053
1054 if (text[0] == '$')
1055 {
1056 /* We don't support completion of history indices. */
1057 if (isdigit (text[1]))
1058 return NULL;
1059 return complete_internalvar (&text[1]);
1060 }
1061
1062 /* We're completing the breakpoint number. */
1063 len = strlen (text);
1064
1065 ALL_BREAKPOINTS (b)
1066 {
1067 char number[50];
1068
1069 xsnprintf (number, sizeof (number), "%d", b->number);
1070
1071 if (strncmp (number, text, len) == 0)
1072 VEC_safe_push (char_ptr, result, xstrdup (number));
1073 }
1074
1075 return result;
1076 }
1077
1078 /* We're completing the expression part. */
1079 text = skip_spaces_const (space);
1080 return expression_completer (cmd, text, word);
1081 }
1082
1083 /* condition N EXP -- set break condition of breakpoint N to EXP. */
1084
1085 static void
1086 condition_command (char *arg, int from_tty)
1087 {
1088 struct breakpoint *b;
1089 char *p;
1090 int bnum;
1091
1092 if (arg == 0)
1093 error_no_arg (_("breakpoint number"));
1094
1095 p = arg;
1096 bnum = get_number (&p);
1097 if (bnum == 0)
1098 error (_("Bad breakpoint argument: '%s'"), arg);
1099
1100 ALL_BREAKPOINTS (b)
1101 if (b->number == bnum)
1102 {
1103 /* Check if this breakpoint has a "stop" method implemented in an
1104 extension language. This method and conditions entered into GDB
1105 from the CLI are mutually exclusive. */
1106 const struct extension_language_defn *extlang
1107 = get_breakpoint_cond_ext_lang (b, EXT_LANG_NONE);
1108
1109 if (extlang != NULL)
1110 {
1111 error (_("Only one stop condition allowed. There is currently"
1112 " a %s stop condition defined for this breakpoint."),
1113 ext_lang_capitalized_name (extlang));
1114 }
1115 set_breakpoint_condition (b, p, from_tty);
1116
1117 if (is_breakpoint (b))
1118 update_global_location_list (UGLL_MAY_INSERT);
1119
1120 return;
1121 }
1122
1123 error (_("No breakpoint number %d."), bnum);
1124 }
1125
1126 /* Check that COMMAND do not contain commands that are suitable
1127 only for tracepoints and not suitable for ordinary breakpoints.
1128 Throw if any such commands is found. */
1129
1130 static void
1131 check_no_tracepoint_commands (struct command_line *commands)
1132 {
1133 struct command_line *c;
1134
1135 for (c = commands; c; c = c->next)
1136 {
1137 int i;
1138
1139 if (c->control_type == while_stepping_control)
1140 error (_("The 'while-stepping' command can "
1141 "only be used for tracepoints"));
1142
1143 for (i = 0; i < c->body_count; ++i)
1144 check_no_tracepoint_commands ((c->body_list)[i]);
1145
1146 /* Not that command parsing removes leading whitespace and comment
1147 lines and also empty lines. So, we only need to check for
1148 command directly. */
1149 if (strstr (c->line, "collect ") == c->line)
1150 error (_("The 'collect' command can only be used for tracepoints"));
1151
1152 if (strstr (c->line, "teval ") == c->line)
1153 error (_("The 'teval' command can only be used for tracepoints"));
1154 }
1155 }
1156
1157 /* Encapsulate tests for different types of tracepoints. */
1158
1159 static int
1160 is_tracepoint_type (enum bptype type)
1161 {
1162 return (type == bp_tracepoint
1163 || type == bp_fast_tracepoint
1164 || type == bp_static_tracepoint);
1165 }
1166
1167 int
1168 is_tracepoint (const struct breakpoint *b)
1169 {
1170 return is_tracepoint_type (b->type);
1171 }
1172
1173 /* A helper function that validates that COMMANDS are valid for a
1174 breakpoint. This function will throw an exception if a problem is
1175 found. */
1176
1177 static void
1178 validate_commands_for_breakpoint (struct breakpoint *b,
1179 struct command_line *commands)
1180 {
1181 if (is_tracepoint (b))
1182 {
1183 struct tracepoint *t = (struct tracepoint *) b;
1184 struct command_line *c;
1185 struct command_line *while_stepping = 0;
1186
1187 /* Reset the while-stepping step count. The previous commands
1188 might have included a while-stepping action, while the new
1189 ones might not. */
1190 t->step_count = 0;
1191
1192 /* We need to verify that each top-level element of commands is
1193 valid for tracepoints, that there's at most one
1194 while-stepping element, and that the while-stepping's body
1195 has valid tracing commands excluding nested while-stepping.
1196 We also need to validate the tracepoint action line in the
1197 context of the tracepoint --- validate_actionline actually
1198 has side effects, like setting the tracepoint's
1199 while-stepping STEP_COUNT, in addition to checking if the
1200 collect/teval actions parse and make sense in the
1201 tracepoint's context. */
1202 for (c = commands; c; c = c->next)
1203 {
1204 if (c->control_type == while_stepping_control)
1205 {
1206 if (b->type == bp_fast_tracepoint)
1207 error (_("The 'while-stepping' command "
1208 "cannot be used for fast tracepoint"));
1209 else if (b->type == bp_static_tracepoint)
1210 error (_("The 'while-stepping' command "
1211 "cannot be used for static tracepoint"));
1212
1213 if (while_stepping)
1214 error (_("The 'while-stepping' command "
1215 "can be used only once"));
1216 else
1217 while_stepping = c;
1218 }
1219
1220 validate_actionline (c->line, b);
1221 }
1222 if (while_stepping)
1223 {
1224 struct command_line *c2;
1225
1226 gdb_assert (while_stepping->body_count == 1);
1227 c2 = while_stepping->body_list[0];
1228 for (; c2; c2 = c2->next)
1229 {
1230 if (c2->control_type == while_stepping_control)
1231 error (_("The 'while-stepping' command cannot be nested"));
1232 }
1233 }
1234 }
1235 else
1236 {
1237 check_no_tracepoint_commands (commands);
1238 }
1239 }
1240
1241 /* Return a vector of all the static tracepoints set at ADDR. The
1242 caller is responsible for releasing the vector. */
1243
1244 VEC(breakpoint_p) *
1245 static_tracepoints_here (CORE_ADDR addr)
1246 {
1247 struct breakpoint *b;
1248 VEC(breakpoint_p) *found = 0;
1249 struct bp_location *loc;
1250
1251 ALL_BREAKPOINTS (b)
1252 if (b->type == bp_static_tracepoint)
1253 {
1254 for (loc = b->loc; loc; loc = loc->next)
1255 if (loc->address == addr)
1256 VEC_safe_push(breakpoint_p, found, b);
1257 }
1258
1259 return found;
1260 }
1261
1262 /* Set the command list of B to COMMANDS. If breakpoint is tracepoint,
1263 validate that only allowed commands are included. */
1264
1265 void
1266 breakpoint_set_commands (struct breakpoint *b,
1267 struct command_line *commands)
1268 {
1269 validate_commands_for_breakpoint (b, commands);
1270
1271 decref_counted_command_line (&b->commands);
1272 b->commands = alloc_counted_command_line (commands);
1273 observer_notify_breakpoint_modified (b);
1274 }
1275
1276 /* Set the internal `silent' flag on the breakpoint. Note that this
1277 is not the same as the "silent" that may appear in the breakpoint's
1278 commands. */
1279
1280 void
1281 breakpoint_set_silent (struct breakpoint *b, int silent)
1282 {
1283 int old_silent = b->silent;
1284
1285 b->silent = silent;
1286 if (old_silent != silent)
1287 observer_notify_breakpoint_modified (b);
1288 }
1289
1290 /* Set the thread for this breakpoint. If THREAD is -1, make the
1291 breakpoint work for any thread. */
1292
1293 void
1294 breakpoint_set_thread (struct breakpoint *b, int thread)
1295 {
1296 int old_thread = b->thread;
1297
1298 b->thread = thread;
1299 if (old_thread != thread)
1300 observer_notify_breakpoint_modified (b);
1301 }
1302
1303 /* Set the task for this breakpoint. If TASK is 0, make the
1304 breakpoint work for any task. */
1305
1306 void
1307 breakpoint_set_task (struct breakpoint *b, int task)
1308 {
1309 int old_task = b->task;
1310
1311 b->task = task;
1312 if (old_task != task)
1313 observer_notify_breakpoint_modified (b);
1314 }
1315
1316 void
1317 check_tracepoint_command (char *line, void *closure)
1318 {
1319 struct breakpoint *b = closure;
1320
1321 validate_actionline (line, b);
1322 }
1323
1324 /* A structure used to pass information through
1325 map_breakpoint_numbers. */
1326
1327 struct commands_info
1328 {
1329 /* True if the command was typed at a tty. */
1330 int from_tty;
1331
1332 /* The breakpoint range spec. */
1333 char *arg;
1334
1335 /* Non-NULL if the body of the commands are being read from this
1336 already-parsed command. */
1337 struct command_line *control;
1338
1339 /* The command lines read from the user, or NULL if they have not
1340 yet been read. */
1341 struct counted_command_line *cmd;
1342 };
1343
1344 /* A callback for map_breakpoint_numbers that sets the commands for
1345 commands_command. */
1346
1347 static void
1348 do_map_commands_command (struct breakpoint *b, void *data)
1349 {
1350 struct commands_info *info = data;
1351
1352 if (info->cmd == NULL)
1353 {
1354 struct command_line *l;
1355
1356 if (info->control != NULL)
1357 l = copy_command_lines (info->control->body_list[0]);
1358 else
1359 {
1360 struct cleanup *old_chain;
1361 char *str;
1362
1363 str = xstrprintf (_("Type commands for breakpoint(s) "
1364 "%s, one per line."),
1365 info->arg);
1366
1367 old_chain = make_cleanup (xfree, str);
1368
1369 l = read_command_lines (str,
1370 info->from_tty, 1,
1371 (is_tracepoint (b)
1372 ? check_tracepoint_command : 0),
1373 b);
1374
1375 do_cleanups (old_chain);
1376 }
1377
1378 info->cmd = alloc_counted_command_line (l);
1379 }
1380
1381 /* If a breakpoint was on the list more than once, we don't need to
1382 do anything. */
1383 if (b->commands != info->cmd)
1384 {
1385 validate_commands_for_breakpoint (b, info->cmd->commands);
1386 incref_counted_command_line (info->cmd);
1387 decref_counted_command_line (&b->commands);
1388 b->commands = info->cmd;
1389 observer_notify_breakpoint_modified (b);
1390 }
1391 }
1392
1393 static void
1394 commands_command_1 (char *arg, int from_tty,
1395 struct command_line *control)
1396 {
1397 struct cleanup *cleanups;
1398 struct commands_info info;
1399
1400 info.from_tty = from_tty;
1401 info.control = control;
1402 info.cmd = NULL;
1403 /* If we read command lines from the user, then `info' will hold an
1404 extra reference to the commands that we must clean up. */
1405 cleanups = make_cleanup_decref_counted_command_line (&info.cmd);
1406
1407 if (arg == NULL || !*arg)
1408 {
1409 if (breakpoint_count - prev_breakpoint_count > 1)
1410 arg = xstrprintf ("%d-%d", prev_breakpoint_count + 1,
1411 breakpoint_count);
1412 else if (breakpoint_count > 0)
1413 arg = xstrprintf ("%d", breakpoint_count);
1414 else
1415 {
1416 /* So that we don't try to free the incoming non-NULL
1417 argument in the cleanup below. Mapping breakpoint
1418 numbers will fail in this case. */
1419 arg = NULL;
1420 }
1421 }
1422 else
1423 /* The command loop has some static state, so we need to preserve
1424 our argument. */
1425 arg = xstrdup (arg);
1426
1427 if (arg != NULL)
1428 make_cleanup (xfree, arg);
1429
1430 info.arg = arg;
1431
1432 map_breakpoint_numbers (arg, do_map_commands_command, &info);
1433
1434 if (info.cmd == NULL)
1435 error (_("No breakpoints specified."));
1436
1437 do_cleanups (cleanups);
1438 }
1439
1440 static void
1441 commands_command (char *arg, int from_tty)
1442 {
1443 commands_command_1 (arg, from_tty, NULL);
1444 }
1445
1446 /* Like commands_command, but instead of reading the commands from
1447 input stream, takes them from an already parsed command structure.
1448
1449 This is used by cli-script.c to DTRT with breakpoint commands
1450 that are part of if and while bodies. */
1451 enum command_control_type
1452 commands_from_control_command (char *arg, struct command_line *cmd)
1453 {
1454 commands_command_1 (arg, 0, cmd);
1455 return simple_control;
1456 }
1457
1458 /* Return non-zero if BL->TARGET_INFO contains valid information. */
1459
1460 static int
1461 bp_location_has_shadow (struct bp_location *bl)
1462 {
1463 if (bl->loc_type != bp_loc_software_breakpoint)
1464 return 0;
1465 if (!bl->inserted)
1466 return 0;
1467 if (bl->target_info.shadow_len == 0)
1468 /* BL isn't valid, or doesn't shadow memory. */
1469 return 0;
1470 return 1;
1471 }
1472
1473 /* Update BUF, which is LEN bytes read from the target address
1474 MEMADDR, by replacing a memory breakpoint with its shadowed
1475 contents.
1476
1477 If READBUF is not NULL, this buffer must not overlap with the of
1478 the breakpoint location's shadow_contents buffer. Otherwise, a
1479 failed assertion internal error will be raised. */
1480
1481 static void
1482 one_breakpoint_xfer_memory (gdb_byte *readbuf, gdb_byte *writebuf,
1483 const gdb_byte *writebuf_org,
1484 ULONGEST memaddr, LONGEST len,
1485 struct bp_target_info *target_info,
1486 struct gdbarch *gdbarch)
1487 {
1488 /* Now do full processing of the found relevant range of elements. */
1489 CORE_ADDR bp_addr = 0;
1490 int bp_size = 0;
1491 int bptoffset = 0;
1492
1493 if (!breakpoint_address_match (target_info->placed_address_space, 0,
1494 current_program_space->aspace, 0))
1495 {
1496 /* The breakpoint is inserted in a different address space. */
1497 return;
1498 }
1499
1500 /* Addresses and length of the part of the breakpoint that
1501 we need to copy. */
1502 bp_addr = target_info->placed_address;
1503 bp_size = target_info->shadow_len;
1504
1505 if (bp_addr + bp_size <= memaddr)
1506 {
1507 /* The breakpoint is entirely before the chunk of memory we are
1508 reading. */
1509 return;
1510 }
1511
1512 if (bp_addr >= memaddr + len)
1513 {
1514 /* The breakpoint is entirely after the chunk of memory we are
1515 reading. */
1516 return;
1517 }
1518
1519 /* Offset within shadow_contents. */
1520 if (bp_addr < memaddr)
1521 {
1522 /* Only copy the second part of the breakpoint. */
1523 bp_size -= memaddr - bp_addr;
1524 bptoffset = memaddr - bp_addr;
1525 bp_addr = memaddr;
1526 }
1527
1528 if (bp_addr + bp_size > memaddr + len)
1529 {
1530 /* Only copy the first part of the breakpoint. */
1531 bp_size -= (bp_addr + bp_size) - (memaddr + len);
1532 }
1533
1534 if (readbuf != NULL)
1535 {
1536 /* Verify that the readbuf buffer does not overlap with the
1537 shadow_contents buffer. */
1538 gdb_assert (target_info->shadow_contents >= readbuf + len
1539 || readbuf >= (target_info->shadow_contents
1540 + target_info->shadow_len));
1541
1542 /* Update the read buffer with this inserted breakpoint's
1543 shadow. */
1544 memcpy (readbuf + bp_addr - memaddr,
1545 target_info->shadow_contents + bptoffset, bp_size);
1546 }
1547 else
1548 {
1549 const unsigned char *bp;
1550 CORE_ADDR placed_address = target_info->placed_address;
1551 int placed_size = target_info->placed_size;
1552
1553 /* Update the shadow with what we want to write to memory. */
1554 memcpy (target_info->shadow_contents + bptoffset,
1555 writebuf_org + bp_addr - memaddr, bp_size);
1556
1557 /* Determine appropriate breakpoint contents and size for this
1558 address. */
1559 bp = gdbarch_breakpoint_from_pc (gdbarch, &placed_address, &placed_size);
1560
1561 /* Update the final write buffer with this inserted
1562 breakpoint's INSN. */
1563 memcpy (writebuf + bp_addr - memaddr, bp + bptoffset, bp_size);
1564 }
1565 }
1566
1567 /* Update BUF, which is LEN bytes read from the target address MEMADDR,
1568 by replacing any memory breakpoints with their shadowed contents.
1569
1570 If READBUF is not NULL, this buffer must not overlap with any of
1571 the breakpoint location's shadow_contents buffers. Otherwise,
1572 a failed assertion internal error will be raised.
1573
1574 The range of shadowed area by each bp_location is:
1575 bl->address - bp_location_placed_address_before_address_max
1576 up to bl->address + bp_location_shadow_len_after_address_max
1577 The range we were requested to resolve shadows for is:
1578 memaddr ... memaddr + len
1579 Thus the safe cutoff boundaries for performance optimization are
1580 memaddr + len <= (bl->address
1581 - bp_location_placed_address_before_address_max)
1582 and:
1583 bl->address + bp_location_shadow_len_after_address_max <= memaddr */
1584
1585 void
1586 breakpoint_xfer_memory (gdb_byte *readbuf, gdb_byte *writebuf,
1587 const gdb_byte *writebuf_org,
1588 ULONGEST memaddr, LONGEST len)
1589 {
1590 /* Left boundary, right boundary and median element of our binary
1591 search. */
1592 unsigned bc_l, bc_r, bc;
1593 size_t i;
1594
1595 /* Find BC_L which is a leftmost element which may affect BUF
1596 content. It is safe to report lower value but a failure to
1597 report higher one. */
1598
1599 bc_l = 0;
1600 bc_r = bp_location_count;
1601 while (bc_l + 1 < bc_r)
1602 {
1603 struct bp_location *bl;
1604
1605 bc = (bc_l + bc_r) / 2;
1606 bl = bp_location[bc];
1607
1608 /* Check first BL->ADDRESS will not overflow due to the added
1609 constant. Then advance the left boundary only if we are sure
1610 the BC element can in no way affect the BUF content (MEMADDR
1611 to MEMADDR + LEN range).
1612
1613 Use the BP_LOCATION_SHADOW_LEN_AFTER_ADDRESS_MAX safety
1614 offset so that we cannot miss a breakpoint with its shadow
1615 range tail still reaching MEMADDR. */
1616
1617 if ((bl->address + bp_location_shadow_len_after_address_max
1618 >= bl->address)
1619 && (bl->address + bp_location_shadow_len_after_address_max
1620 <= memaddr))
1621 bc_l = bc;
1622 else
1623 bc_r = bc;
1624 }
1625
1626 /* Due to the binary search above, we need to make sure we pick the
1627 first location that's at BC_L's address. E.g., if there are
1628 multiple locations at the same address, BC_L may end up pointing
1629 at a duplicate location, and miss the "master"/"inserted"
1630 location. Say, given locations L1, L2 and L3 at addresses A and
1631 B:
1632
1633 L1@A, L2@A, L3@B, ...
1634
1635 BC_L could end up pointing at location L2, while the "master"
1636 location could be L1. Since the `loc->inserted' flag is only set
1637 on "master" locations, we'd forget to restore the shadow of L1
1638 and L2. */
1639 while (bc_l > 0
1640 && bp_location[bc_l]->address == bp_location[bc_l - 1]->address)
1641 bc_l--;
1642
1643 /* Now do full processing of the found relevant range of elements. */
1644
1645 for (bc = bc_l; bc < bp_location_count; bc++)
1646 {
1647 struct bp_location *bl = bp_location[bc];
1648 CORE_ADDR bp_addr = 0;
1649 int bp_size = 0;
1650 int bptoffset = 0;
1651
1652 /* bp_location array has BL->OWNER always non-NULL. */
1653 if (bl->owner->type == bp_none)
1654 warning (_("reading through apparently deleted breakpoint #%d?"),
1655 bl->owner->number);
1656
1657 /* Performance optimization: any further element can no longer affect BUF
1658 content. */
1659
1660 if (bl->address >= bp_location_placed_address_before_address_max
1661 && memaddr + len <= (bl->address
1662 - bp_location_placed_address_before_address_max))
1663 break;
1664
1665 if (!bp_location_has_shadow (bl))
1666 continue;
1667
1668 one_breakpoint_xfer_memory (readbuf, writebuf, writebuf_org,
1669 memaddr, len, &bl->target_info, bl->gdbarch);
1670 }
1671
1672 /* Now process single-step breakpoints. These are not found in the
1673 bp_location array. */
1674 for (i = 0; i < 2; i++)
1675 {
1676 struct bp_target_info *bp_tgt = single_step_breakpoints[i];
1677
1678 if (bp_tgt != NULL)
1679 {
1680 struct gdbarch *gdbarch = single_step_gdbarch[i];
1681
1682 one_breakpoint_xfer_memory (readbuf, writebuf, writebuf_org,
1683 memaddr, len, bp_tgt, gdbarch);
1684 }
1685 }
1686 }
1687
1688 \f
1689
1690 /* Return true if BPT is either a software breakpoint or a hardware
1691 breakpoint. */
1692
1693 int
1694 is_breakpoint (const struct breakpoint *bpt)
1695 {
1696 return (bpt->type == bp_breakpoint
1697 || bpt->type == bp_hardware_breakpoint
1698 || bpt->type == bp_dprintf);
1699 }
1700
1701 /* Return true if BPT is of any hardware watchpoint kind. */
1702
1703 static int
1704 is_hardware_watchpoint (const struct breakpoint *bpt)
1705 {
1706 return (bpt->type == bp_hardware_watchpoint
1707 || bpt->type == bp_read_watchpoint
1708 || bpt->type == bp_access_watchpoint);
1709 }
1710
1711 /* Return true if BPT is of any watchpoint kind, hardware or
1712 software. */
1713
1714 int
1715 is_watchpoint (const struct breakpoint *bpt)
1716 {
1717 return (is_hardware_watchpoint (bpt)
1718 || bpt->type == bp_watchpoint);
1719 }
1720
1721 /* Returns true if the current thread and its running state are safe
1722 to evaluate or update watchpoint B. Watchpoints on local
1723 expressions need to be evaluated in the context of the thread that
1724 was current when the watchpoint was created, and, that thread needs
1725 to be stopped to be able to select the correct frame context.
1726 Watchpoints on global expressions can be evaluated on any thread,
1727 and in any state. It is presently left to the target allowing
1728 memory accesses when threads are running. */
1729
1730 static int
1731 watchpoint_in_thread_scope (struct watchpoint *b)
1732 {
1733 return (b->base.pspace == current_program_space
1734 && (ptid_equal (b->watchpoint_thread, null_ptid)
1735 || (ptid_equal (inferior_ptid, b->watchpoint_thread)
1736 && !is_executing (inferior_ptid))));
1737 }
1738
1739 /* Set watchpoint B to disp_del_at_next_stop, even including its possible
1740 associated bp_watchpoint_scope breakpoint. */
1741
1742 static void
1743 watchpoint_del_at_next_stop (struct watchpoint *w)
1744 {
1745 struct breakpoint *b = &w->base;
1746
1747 if (b->related_breakpoint != b)
1748 {
1749 gdb_assert (b->related_breakpoint->type == bp_watchpoint_scope);
1750 gdb_assert (b->related_breakpoint->related_breakpoint == b);
1751 b->related_breakpoint->disposition = disp_del_at_next_stop;
1752 b->related_breakpoint->related_breakpoint = b->related_breakpoint;
1753 b->related_breakpoint = b;
1754 }
1755 b->disposition = disp_del_at_next_stop;
1756 }
1757
1758 /* Extract a bitfield value from value VAL using the bit parameters contained in
1759 watchpoint W. */
1760
1761 static struct value *
1762 extract_bitfield_from_watchpoint_value (struct watchpoint *w, struct value *val)
1763 {
1764 struct value *bit_val;
1765
1766 if (val == NULL)
1767 return NULL;
1768
1769 bit_val = allocate_value (value_type (val));
1770
1771 unpack_value_bitfield (bit_val,
1772 w->val_bitpos,
1773 w->val_bitsize,
1774 value_contents_for_printing (val),
1775 value_offset (val),
1776 val);
1777
1778 return bit_val;
1779 }
1780
1781 /* Assuming that B is a watchpoint:
1782 - Reparse watchpoint expression, if REPARSE is non-zero
1783 - Evaluate expression and store the result in B->val
1784 - Evaluate the condition if there is one, and store the result
1785 in b->loc->cond.
1786 - Update the list of values that must be watched in B->loc.
1787
1788 If the watchpoint disposition is disp_del_at_next_stop, then do
1789 nothing. If this is local watchpoint that is out of scope, delete
1790 it.
1791
1792 Even with `set breakpoint always-inserted on' the watchpoints are
1793 removed + inserted on each stop here. Normal breakpoints must
1794 never be removed because they might be missed by a running thread
1795 when debugging in non-stop mode. On the other hand, hardware
1796 watchpoints (is_hardware_watchpoint; processed here) are specific
1797 to each LWP since they are stored in each LWP's hardware debug
1798 registers. Therefore, such LWP must be stopped first in order to
1799 be able to modify its hardware watchpoints.
1800
1801 Hardware watchpoints must be reset exactly once after being
1802 presented to the user. It cannot be done sooner, because it would
1803 reset the data used to present the watchpoint hit to the user. And
1804 it must not be done later because it could display the same single
1805 watchpoint hit during multiple GDB stops. Note that the latter is
1806 relevant only to the hardware watchpoint types bp_read_watchpoint
1807 and bp_access_watchpoint. False hit by bp_hardware_watchpoint is
1808 not user-visible - its hit is suppressed if the memory content has
1809 not changed.
1810
1811 The following constraints influence the location where we can reset
1812 hardware watchpoints:
1813
1814 * target_stopped_by_watchpoint and target_stopped_data_address are
1815 called several times when GDB stops.
1816
1817 [linux]
1818 * Multiple hardware watchpoints can be hit at the same time,
1819 causing GDB to stop. GDB only presents one hardware watchpoint
1820 hit at a time as the reason for stopping, and all the other hits
1821 are presented later, one after the other, each time the user
1822 requests the execution to be resumed. Execution is not resumed
1823 for the threads still having pending hit event stored in
1824 LWP_INFO->STATUS. While the watchpoint is already removed from
1825 the inferior on the first stop the thread hit event is kept being
1826 reported from its cached value by linux_nat_stopped_data_address
1827 until the real thread resume happens after the watchpoint gets
1828 presented and thus its LWP_INFO->STATUS gets reset.
1829
1830 Therefore the hardware watchpoint hit can get safely reset on the
1831 watchpoint removal from inferior. */
1832
1833 static void
1834 update_watchpoint (struct watchpoint *b, int reparse)
1835 {
1836 int within_current_scope;
1837 struct frame_id saved_frame_id;
1838 int frame_saved;
1839
1840 /* If this is a local watchpoint, we only want to check if the
1841 watchpoint frame is in scope if the current thread is the thread
1842 that was used to create the watchpoint. */
1843 if (!watchpoint_in_thread_scope (b))
1844 return;
1845
1846 if (b->base.disposition == disp_del_at_next_stop)
1847 return;
1848
1849 frame_saved = 0;
1850
1851 /* Determine if the watchpoint is within scope. */
1852 if (b->exp_valid_block == NULL)
1853 within_current_scope = 1;
1854 else
1855 {
1856 struct frame_info *fi = get_current_frame ();
1857 struct gdbarch *frame_arch = get_frame_arch (fi);
1858 CORE_ADDR frame_pc = get_frame_pc (fi);
1859
1860 /* If we're in a function epilogue, unwinding may not work
1861 properly, so do not attempt to recreate locations at this
1862 point. See similar comments in watchpoint_check. */
1863 if (gdbarch_in_function_epilogue_p (frame_arch, frame_pc))
1864 return;
1865
1866 /* Save the current frame's ID so we can restore it after
1867 evaluating the watchpoint expression on its own frame. */
1868 /* FIXME drow/2003-09-09: It would be nice if evaluate_expression
1869 took a frame parameter, so that we didn't have to change the
1870 selected frame. */
1871 frame_saved = 1;
1872 saved_frame_id = get_frame_id (get_selected_frame (NULL));
1873
1874 fi = frame_find_by_id (b->watchpoint_frame);
1875 within_current_scope = (fi != NULL);
1876 if (within_current_scope)
1877 select_frame (fi);
1878 }
1879
1880 /* We don't free locations. They are stored in the bp_location array
1881 and update_global_location_list will eventually delete them and
1882 remove breakpoints if needed. */
1883 b->base.loc = NULL;
1884
1885 if (within_current_scope && reparse)
1886 {
1887 const char *s;
1888
1889 if (b->exp)
1890 {
1891 xfree (b->exp);
1892 b->exp = NULL;
1893 }
1894 s = b->exp_string_reparse ? b->exp_string_reparse : b->exp_string;
1895 b->exp = parse_exp_1 (&s, 0, b->exp_valid_block, 0);
1896 /* If the meaning of expression itself changed, the old value is
1897 no longer relevant. We don't want to report a watchpoint hit
1898 to the user when the old value and the new value may actually
1899 be completely different objects. */
1900 value_free (b->val);
1901 b->val = NULL;
1902 b->val_valid = 0;
1903
1904 /* Note that unlike with breakpoints, the watchpoint's condition
1905 expression is stored in the breakpoint object, not in the
1906 locations (re)created below. */
1907 if (b->base.cond_string != NULL)
1908 {
1909 if (b->cond_exp != NULL)
1910 {
1911 xfree (b->cond_exp);
1912 b->cond_exp = NULL;
1913 }
1914
1915 s = b->base.cond_string;
1916 b->cond_exp = parse_exp_1 (&s, 0, b->cond_exp_valid_block, 0);
1917 }
1918 }
1919
1920 /* If we failed to parse the expression, for example because
1921 it refers to a global variable in a not-yet-loaded shared library,
1922 don't try to insert watchpoint. We don't automatically delete
1923 such watchpoint, though, since failure to parse expression
1924 is different from out-of-scope watchpoint. */
1925 if (!target_has_execution)
1926 {
1927 /* Without execution, memory can't change. No use to try and
1928 set watchpoint locations. The watchpoint will be reset when
1929 the target gains execution, through breakpoint_re_set. */
1930 if (!can_use_hw_watchpoints)
1931 {
1932 if (b->base.ops->works_in_software_mode (&b->base))
1933 b->base.type = bp_watchpoint;
1934 else
1935 error (_("Can't set read/access watchpoint when "
1936 "hardware watchpoints are disabled."));
1937 }
1938 }
1939 else if (within_current_scope && b->exp)
1940 {
1941 int pc = 0;
1942 struct value *val_chain, *v, *result, *next;
1943 struct program_space *frame_pspace;
1944
1945 fetch_subexp_value (b->exp, &pc, &v, &result, &val_chain, 0);
1946
1947 /* Avoid setting b->val if it's already set. The meaning of
1948 b->val is 'the last value' user saw, and we should update
1949 it only if we reported that last value to user. As it
1950 happens, the code that reports it updates b->val directly.
1951 We don't keep track of the memory value for masked
1952 watchpoints. */
1953 if (!b->val_valid && !is_masked_watchpoint (&b->base))
1954 {
1955 if (b->val_bitsize != 0)
1956 {
1957 v = extract_bitfield_from_watchpoint_value (b, v);
1958 if (v != NULL)
1959 release_value (v);
1960 }
1961 b->val = v;
1962 b->val_valid = 1;
1963 }
1964
1965 frame_pspace = get_frame_program_space (get_selected_frame (NULL));
1966
1967 /* Look at each value on the value chain. */
1968 for (v = val_chain; v; v = value_next (v))
1969 {
1970 /* If it's a memory location, and GDB actually needed
1971 its contents to evaluate the expression, then we
1972 must watch it. If the first value returned is
1973 still lazy, that means an error occurred reading it;
1974 watch it anyway in case it becomes readable. */
1975 if (VALUE_LVAL (v) == lval_memory
1976 && (v == val_chain || ! value_lazy (v)))
1977 {
1978 struct type *vtype = check_typedef (value_type (v));
1979
1980 /* We only watch structs and arrays if user asked
1981 for it explicitly, never if they just happen to
1982 appear in the middle of some value chain. */
1983 if (v == result
1984 || (TYPE_CODE (vtype) != TYPE_CODE_STRUCT
1985 && TYPE_CODE (vtype) != TYPE_CODE_ARRAY))
1986 {
1987 CORE_ADDR addr;
1988 int type;
1989 struct bp_location *loc, **tmp;
1990 int bitpos = 0, bitsize = 0;
1991
1992 if (value_bitsize (v) != 0)
1993 {
1994 /* Extract the bit parameters out from the bitfield
1995 sub-expression. */
1996 bitpos = value_bitpos (v);
1997 bitsize = value_bitsize (v);
1998 }
1999 else if (v == result && b->val_bitsize != 0)
2000 {
2001 /* If VAL_BITSIZE != 0 then RESULT is actually a bitfield
2002 lvalue whose bit parameters are saved in the fields
2003 VAL_BITPOS and VAL_BITSIZE. */
2004 bitpos = b->val_bitpos;
2005 bitsize = b->val_bitsize;
2006 }
2007
2008 addr = value_address (v);
2009 if (bitsize != 0)
2010 {
2011 /* Skip the bytes that don't contain the bitfield. */
2012 addr += bitpos / 8;
2013 }
2014
2015 type = hw_write;
2016 if (b->base.type == bp_read_watchpoint)
2017 type = hw_read;
2018 else if (b->base.type == bp_access_watchpoint)
2019 type = hw_access;
2020
2021 loc = allocate_bp_location (&b->base);
2022 for (tmp = &(b->base.loc); *tmp != NULL; tmp = &((*tmp)->next))
2023 ;
2024 *tmp = loc;
2025 loc->gdbarch = get_type_arch (value_type (v));
2026
2027 loc->pspace = frame_pspace;
2028 loc->address = addr;
2029
2030 if (bitsize != 0)
2031 {
2032 /* Just cover the bytes that make up the bitfield. */
2033 loc->length = ((bitpos % 8) + bitsize + 7) / 8;
2034 }
2035 else
2036 loc->length = TYPE_LENGTH (value_type (v));
2037
2038 loc->watchpoint_type = type;
2039 }
2040 }
2041 }
2042
2043 /* Change the type of breakpoint between hardware assisted or
2044 an ordinary watchpoint depending on the hardware support
2045 and free hardware slots. REPARSE is set when the inferior
2046 is started. */
2047 if (reparse)
2048 {
2049 int reg_cnt;
2050 enum bp_loc_type loc_type;
2051 struct bp_location *bl;
2052
2053 reg_cnt = can_use_hardware_watchpoint (val_chain);
2054
2055 if (reg_cnt)
2056 {
2057 int i, target_resources_ok, other_type_used;
2058 enum bptype type;
2059
2060 /* Use an exact watchpoint when there's only one memory region to be
2061 watched, and only one debug register is needed to watch it. */
2062 b->exact = target_exact_watchpoints && reg_cnt == 1;
2063
2064 /* We need to determine how many resources are already
2065 used for all other hardware watchpoints plus this one
2066 to see if we still have enough resources to also fit
2067 this watchpoint in as well. */
2068
2069 /* If this is a software watchpoint, we try to turn it
2070 to a hardware one -- count resources as if B was of
2071 hardware watchpoint type. */
2072 type = b->base.type;
2073 if (type == bp_watchpoint)
2074 type = bp_hardware_watchpoint;
2075
2076 /* This watchpoint may or may not have been placed on
2077 the list yet at this point (it won't be in the list
2078 if we're trying to create it for the first time,
2079 through watch_command), so always account for it
2080 manually. */
2081
2082 /* Count resources used by all watchpoints except B. */
2083 i = hw_watchpoint_used_count_others (&b->base, type, &other_type_used);
2084
2085 /* Add in the resources needed for B. */
2086 i += hw_watchpoint_use_count (&b->base);
2087
2088 target_resources_ok
2089 = target_can_use_hardware_watchpoint (type, i, other_type_used);
2090 if (target_resources_ok <= 0)
2091 {
2092 int sw_mode = b->base.ops->works_in_software_mode (&b->base);
2093
2094 if (target_resources_ok == 0 && !sw_mode)
2095 error (_("Target does not support this type of "
2096 "hardware watchpoint."));
2097 else if (target_resources_ok < 0 && !sw_mode)
2098 error (_("There are not enough available hardware "
2099 "resources for this watchpoint."));
2100
2101 /* Downgrade to software watchpoint. */
2102 b->base.type = bp_watchpoint;
2103 }
2104 else
2105 {
2106 /* If this was a software watchpoint, we've just
2107 found we have enough resources to turn it to a
2108 hardware watchpoint. Otherwise, this is a
2109 nop. */
2110 b->base.type = type;
2111 }
2112 }
2113 else if (!b->base.ops->works_in_software_mode (&b->base))
2114 {
2115 if (!can_use_hw_watchpoints)
2116 error (_("Can't set read/access watchpoint when "
2117 "hardware watchpoints are disabled."));
2118 else
2119 error (_("Expression cannot be implemented with "
2120 "read/access watchpoint."));
2121 }
2122 else
2123 b->base.type = bp_watchpoint;
2124
2125 loc_type = (b->base.type == bp_watchpoint? bp_loc_other
2126 : bp_loc_hardware_watchpoint);
2127 for (bl = b->base.loc; bl; bl = bl->next)
2128 bl->loc_type = loc_type;
2129 }
2130
2131 for (v = val_chain; v; v = next)
2132 {
2133 next = value_next (v);
2134 if (v != b->val)
2135 value_free (v);
2136 }
2137
2138 /* If a software watchpoint is not watching any memory, then the
2139 above left it without any location set up. But,
2140 bpstat_stop_status requires a location to be able to report
2141 stops, so make sure there's at least a dummy one. */
2142 if (b->base.type == bp_watchpoint && b->base.loc == NULL)
2143 {
2144 struct breakpoint *base = &b->base;
2145 base->loc = allocate_bp_location (base);
2146 base->loc->pspace = frame_pspace;
2147 base->loc->address = -1;
2148 base->loc->length = -1;
2149 base->loc->watchpoint_type = -1;
2150 }
2151 }
2152 else if (!within_current_scope)
2153 {
2154 printf_filtered (_("\
2155 Watchpoint %d deleted because the program has left the block\n\
2156 in which its expression is valid.\n"),
2157 b->base.number);
2158 watchpoint_del_at_next_stop (b);
2159 }
2160
2161 /* Restore the selected frame. */
2162 if (frame_saved)
2163 select_frame (frame_find_by_id (saved_frame_id));
2164 }
2165
2166
2167 /* Returns 1 iff breakpoint location should be
2168 inserted in the inferior. We don't differentiate the type of BL's owner
2169 (breakpoint vs. tracepoint), although insert_location in tracepoint's
2170 breakpoint_ops is not defined, because in insert_bp_location,
2171 tracepoint's insert_location will not be called. */
2172 static int
2173 should_be_inserted (struct bp_location *bl)
2174 {
2175 if (bl->owner == NULL || !breakpoint_enabled (bl->owner))
2176 return 0;
2177
2178 if (bl->owner->disposition == disp_del_at_next_stop)
2179 return 0;
2180
2181 if (!bl->enabled || bl->shlib_disabled || bl->duplicate)
2182 return 0;
2183
2184 if (user_breakpoint_p (bl->owner) && bl->pspace->executing_startup)
2185 return 0;
2186
2187 /* This is set for example, when we're attached to the parent of a
2188 vfork, and have detached from the child. The child is running
2189 free, and we expect it to do an exec or exit, at which point the
2190 OS makes the parent schedulable again (and the target reports
2191 that the vfork is done). Until the child is done with the shared
2192 memory region, do not insert breakpoints in the parent, otherwise
2193 the child could still trip on the parent's breakpoints. Since
2194 the parent is blocked anyway, it won't miss any breakpoint. */
2195 if (bl->pspace->breakpoints_not_allowed)
2196 return 0;
2197
2198 /* Don't insert a breakpoint if we're trying to step past its
2199 location. */
2200 if ((bl->loc_type == bp_loc_software_breakpoint
2201 || bl->loc_type == bp_loc_hardware_breakpoint)
2202 && stepping_past_instruction_at (bl->pspace->aspace,
2203 bl->address))
2204 {
2205 if (debug_infrun)
2206 {
2207 fprintf_unfiltered (gdb_stdlog,
2208 "infrun: skipping breakpoint: "
2209 "stepping past insn at: %s\n",
2210 paddress (bl->gdbarch, bl->address));
2211 }
2212 return 0;
2213 }
2214
2215 return 1;
2216 }
2217
2218 /* Same as should_be_inserted but does the check assuming
2219 that the location is not duplicated. */
2220
2221 static int
2222 unduplicated_should_be_inserted (struct bp_location *bl)
2223 {
2224 int result;
2225 const int save_duplicate = bl->duplicate;
2226
2227 bl->duplicate = 0;
2228 result = should_be_inserted (bl);
2229 bl->duplicate = save_duplicate;
2230 return result;
2231 }
2232
2233 /* Parses a conditional described by an expression COND into an
2234 agent expression bytecode suitable for evaluation
2235 by the bytecode interpreter. Return NULL if there was
2236 any error during parsing. */
2237
2238 static struct agent_expr *
2239 parse_cond_to_aexpr (CORE_ADDR scope, struct expression *cond)
2240 {
2241 struct agent_expr *aexpr = NULL;
2242 volatile struct gdb_exception ex;
2243
2244 if (!cond)
2245 return NULL;
2246
2247 /* We don't want to stop processing, so catch any errors
2248 that may show up. */
2249 TRY_CATCH (ex, RETURN_MASK_ERROR)
2250 {
2251 aexpr = gen_eval_for_expr (scope, cond);
2252 }
2253
2254 if (ex.reason < 0)
2255 {
2256 /* If we got here, it means the condition could not be parsed to a valid
2257 bytecode expression and thus can't be evaluated on the target's side.
2258 It's no use iterating through the conditions. */
2259 return NULL;
2260 }
2261
2262 /* We have a valid agent expression. */
2263 return aexpr;
2264 }
2265
2266 /* Based on location BL, create a list of breakpoint conditions to be
2267 passed on to the target. If we have duplicated locations with different
2268 conditions, we will add such conditions to the list. The idea is that the
2269 target will evaluate the list of conditions and will only notify GDB when
2270 one of them is true. */
2271
2272 static void
2273 build_target_condition_list (struct bp_location *bl)
2274 {
2275 struct bp_location **locp = NULL, **loc2p;
2276 int null_condition_or_parse_error = 0;
2277 int modified = bl->needs_update;
2278 struct bp_location *loc;
2279
2280 /* Release conditions left over from a previous insert. */
2281 VEC_free (agent_expr_p, bl->target_info.conditions);
2282
2283 /* This is only meaningful if the target is
2284 evaluating conditions and if the user has
2285 opted for condition evaluation on the target's
2286 side. */
2287 if (gdb_evaluates_breakpoint_condition_p ()
2288 || !target_supports_evaluation_of_breakpoint_conditions ())
2289 return;
2290
2291 /* Do a first pass to check for locations with no assigned
2292 conditions or conditions that fail to parse to a valid agent expression
2293 bytecode. If any of these happen, then it's no use to send conditions
2294 to the target since this location will always trigger and generate a
2295 response back to GDB. */
2296 ALL_BP_LOCATIONS_AT_ADDR (loc2p, locp, bl->address)
2297 {
2298 loc = (*loc2p);
2299 if (is_breakpoint (loc->owner) && loc->pspace->num == bl->pspace->num)
2300 {
2301 if (modified)
2302 {
2303 struct agent_expr *aexpr;
2304
2305 /* Re-parse the conditions since something changed. In that
2306 case we already freed the condition bytecodes (see
2307 force_breakpoint_reinsertion). We just
2308 need to parse the condition to bytecodes again. */
2309 aexpr = parse_cond_to_aexpr (bl->address, loc->cond);
2310 loc->cond_bytecode = aexpr;
2311
2312 /* Check if we managed to parse the conditional expression
2313 correctly. If not, we will not send this condition
2314 to the target. */
2315 if (aexpr)
2316 continue;
2317 }
2318
2319 /* If we have a NULL bytecode expression, it means something
2320 went wrong or we have a null condition expression. */
2321 if (!loc->cond_bytecode)
2322 {
2323 null_condition_or_parse_error = 1;
2324 break;
2325 }
2326 }
2327 }
2328
2329 /* If any of these happened, it means we will have to evaluate the conditions
2330 for the location's address on gdb's side. It is no use keeping bytecodes
2331 for all the other duplicate locations, thus we free all of them here.
2332
2333 This is so we have a finer control over which locations' conditions are
2334 being evaluated by GDB or the remote stub. */
2335 if (null_condition_or_parse_error)
2336 {
2337 ALL_BP_LOCATIONS_AT_ADDR (loc2p, locp, bl->address)
2338 {
2339 loc = (*loc2p);
2340 if (is_breakpoint (loc->owner) && loc->pspace->num == bl->pspace->num)
2341 {
2342 /* Only go as far as the first NULL bytecode is
2343 located. */
2344 if (!loc->cond_bytecode)
2345 return;
2346
2347 free_agent_expr (loc->cond_bytecode);
2348 loc->cond_bytecode = NULL;
2349 }
2350 }
2351 }
2352
2353 /* No NULL conditions or failed bytecode generation. Build a condition list
2354 for this location's address. */
2355 ALL_BP_LOCATIONS_AT_ADDR (loc2p, locp, bl->address)
2356 {
2357 loc = (*loc2p);
2358 if (loc->cond
2359 && is_breakpoint (loc->owner)
2360 && loc->pspace->num == bl->pspace->num
2361 && loc->owner->enable_state == bp_enabled
2362 && loc->enabled)
2363 /* Add the condition to the vector. This will be used later to send the
2364 conditions to the target. */
2365 VEC_safe_push (agent_expr_p, bl->target_info.conditions,
2366 loc->cond_bytecode);
2367 }
2368
2369 return;
2370 }
2371
2372 /* Parses a command described by string CMD into an agent expression
2373 bytecode suitable for evaluation by the bytecode interpreter.
2374 Return NULL if there was any error during parsing. */
2375
2376 static struct agent_expr *
2377 parse_cmd_to_aexpr (CORE_ADDR scope, char *cmd)
2378 {
2379 struct cleanup *old_cleanups = 0;
2380 struct expression *expr, **argvec;
2381 struct agent_expr *aexpr = NULL;
2382 volatile struct gdb_exception ex;
2383 const char *cmdrest;
2384 const char *format_start, *format_end;
2385 struct format_piece *fpieces;
2386 int nargs;
2387 struct gdbarch *gdbarch = get_current_arch ();
2388
2389 if (!cmd)
2390 return NULL;
2391
2392 cmdrest = cmd;
2393
2394 if (*cmdrest == ',')
2395 ++cmdrest;
2396 cmdrest = skip_spaces_const (cmdrest);
2397
2398 if (*cmdrest++ != '"')
2399 error (_("No format string following the location"));
2400
2401 format_start = cmdrest;
2402
2403 fpieces = parse_format_string (&cmdrest);
2404
2405 old_cleanups = make_cleanup (free_format_pieces_cleanup, &fpieces);
2406
2407 format_end = cmdrest;
2408
2409 if (*cmdrest++ != '"')
2410 error (_("Bad format string, non-terminated '\"'."));
2411
2412 cmdrest = skip_spaces_const (cmdrest);
2413
2414 if (!(*cmdrest == ',' || *cmdrest == '\0'))
2415 error (_("Invalid argument syntax"));
2416
2417 if (*cmdrest == ',')
2418 cmdrest++;
2419 cmdrest = skip_spaces_const (cmdrest);
2420
2421 /* For each argument, make an expression. */
2422
2423 argvec = (struct expression **) alloca (strlen (cmd)
2424 * sizeof (struct expression *));
2425
2426 nargs = 0;
2427 while (*cmdrest != '\0')
2428 {
2429 const char *cmd1;
2430
2431 cmd1 = cmdrest;
2432 expr = parse_exp_1 (&cmd1, scope, block_for_pc (scope), 1);
2433 argvec[nargs++] = expr;
2434 cmdrest = cmd1;
2435 if (*cmdrest == ',')
2436 ++cmdrest;
2437 }
2438
2439 /* We don't want to stop processing, so catch any errors
2440 that may show up. */
2441 TRY_CATCH (ex, RETURN_MASK_ERROR)
2442 {
2443 aexpr = gen_printf (scope, gdbarch, 0, 0,
2444 format_start, format_end - format_start,
2445 fpieces, nargs, argvec);
2446 }
2447
2448 do_cleanups (old_cleanups);
2449
2450 if (ex.reason < 0)
2451 {
2452 /* If we got here, it means the command could not be parsed to a valid
2453 bytecode expression and thus can't be evaluated on the target's side.
2454 It's no use iterating through the other commands. */
2455 return NULL;
2456 }
2457
2458 /* We have a valid agent expression, return it. */
2459 return aexpr;
2460 }
2461
2462 /* Based on location BL, create a list of breakpoint commands to be
2463 passed on to the target. If we have duplicated locations with
2464 different commands, we will add any such to the list. */
2465
2466 static void
2467 build_target_command_list (struct bp_location *bl)
2468 {
2469 struct bp_location **locp = NULL, **loc2p;
2470 int null_command_or_parse_error = 0;
2471 int modified = bl->needs_update;
2472 struct bp_location *loc;
2473
2474 /* Release commands left over from a previous insert. */
2475 VEC_free (agent_expr_p, bl->target_info.tcommands);
2476
2477 if (!target_can_run_breakpoint_commands ())
2478 return;
2479
2480 /* For now, limit to agent-style dprintf breakpoints. */
2481 if (dprintf_style != dprintf_style_agent)
2482 return;
2483
2484 /* For now, if we have any duplicate location that isn't a dprintf,
2485 don't install the target-side commands, as that would make the
2486 breakpoint not be reported to the core, and we'd lose
2487 control. */
2488 ALL_BP_LOCATIONS_AT_ADDR (loc2p, locp, bl->address)
2489 {
2490 loc = (*loc2p);
2491 if (is_breakpoint (loc->owner)
2492 && loc->pspace->num == bl->pspace->num
2493 && loc->owner->type != bp_dprintf)
2494 return;
2495 }
2496
2497 /* Do a first pass to check for locations with no assigned
2498 conditions or conditions that fail to parse to a valid agent expression
2499 bytecode. If any of these happen, then it's no use to send conditions
2500 to the target since this location will always trigger and generate a
2501 response back to GDB. */
2502 ALL_BP_LOCATIONS_AT_ADDR (loc2p, locp, bl->address)
2503 {
2504 loc = (*loc2p);
2505 if (is_breakpoint (loc->owner) && loc->pspace->num == bl->pspace->num)
2506 {
2507 if (modified)
2508 {
2509 struct agent_expr *aexpr;
2510
2511 /* Re-parse the commands since something changed. In that
2512 case we already freed the command bytecodes (see
2513 force_breakpoint_reinsertion). We just
2514 need to parse the command to bytecodes again. */
2515 aexpr = parse_cmd_to_aexpr (bl->address,
2516 loc->owner->extra_string);
2517 loc->cmd_bytecode = aexpr;
2518
2519 if (!aexpr)
2520 continue;
2521 }
2522
2523 /* If we have a NULL bytecode expression, it means something
2524 went wrong or we have a null command expression. */
2525 if (!loc->cmd_bytecode)
2526 {
2527 null_command_or_parse_error = 1;
2528 break;
2529 }
2530 }
2531 }
2532
2533 /* If anything failed, then we're not doing target-side commands,
2534 and so clean up. */
2535 if (null_command_or_parse_error)
2536 {
2537 ALL_BP_LOCATIONS_AT_ADDR (loc2p, locp, bl->address)
2538 {
2539 loc = (*loc2p);
2540 if (is_breakpoint (loc->owner)
2541 && loc->pspace->num == bl->pspace->num)
2542 {
2543 /* Only go as far as the first NULL bytecode is
2544 located. */
2545 if (loc->cmd_bytecode == NULL)
2546 return;
2547
2548 free_agent_expr (loc->cmd_bytecode);
2549 loc->cmd_bytecode = NULL;
2550 }
2551 }
2552 }
2553
2554 /* No NULL commands or failed bytecode generation. Build a command list
2555 for this location's address. */
2556 ALL_BP_LOCATIONS_AT_ADDR (loc2p, locp, bl->address)
2557 {
2558 loc = (*loc2p);
2559 if (loc->owner->extra_string
2560 && is_breakpoint (loc->owner)
2561 && loc->pspace->num == bl->pspace->num
2562 && loc->owner->enable_state == bp_enabled
2563 && loc->enabled)
2564 /* Add the command to the vector. This will be used later
2565 to send the commands to the target. */
2566 VEC_safe_push (agent_expr_p, bl->target_info.tcommands,
2567 loc->cmd_bytecode);
2568 }
2569
2570 bl->target_info.persist = 0;
2571 /* Maybe flag this location as persistent. */
2572 if (bl->owner->type == bp_dprintf && disconnected_dprintf)
2573 bl->target_info.persist = 1;
2574 }
2575
2576 /* Insert a low-level "breakpoint" of some type. BL is the breakpoint
2577 location. Any error messages are printed to TMP_ERROR_STREAM; and
2578 DISABLED_BREAKS, and HW_BREAKPOINT_ERROR are used to report problems.
2579 Returns 0 for success, 1 if the bp_location type is not supported or
2580 -1 for failure.
2581
2582 NOTE drow/2003-09-09: This routine could be broken down to an
2583 object-style method for each breakpoint or catchpoint type. */
2584 static int
2585 insert_bp_location (struct bp_location *bl,
2586 struct ui_file *tmp_error_stream,
2587 int *disabled_breaks,
2588 int *hw_breakpoint_error,
2589 int *hw_bp_error_explained_already)
2590 {
2591 enum errors bp_err = GDB_NO_ERROR;
2592 const char *bp_err_message = NULL;
2593 volatile struct gdb_exception e;
2594
2595 if (!should_be_inserted (bl) || (bl->inserted && !bl->needs_update))
2596 return 0;
2597
2598 /* Note we don't initialize bl->target_info, as that wipes out
2599 the breakpoint location's shadow_contents if the breakpoint
2600 is still inserted at that location. This in turn breaks
2601 target_read_memory which depends on these buffers when
2602 a memory read is requested at the breakpoint location:
2603 Once the target_info has been wiped, we fail to see that
2604 we have a breakpoint inserted at that address and thus
2605 read the breakpoint instead of returning the data saved in
2606 the breakpoint location's shadow contents. */
2607 bl->target_info.placed_address = bl->address;
2608 bl->target_info.placed_address_space = bl->pspace->aspace;
2609 bl->target_info.length = bl->length;
2610
2611 /* When working with target-side conditions, we must pass all the conditions
2612 for the same breakpoint address down to the target since GDB will not
2613 insert those locations. With a list of breakpoint conditions, the target
2614 can decide when to stop and notify GDB. */
2615
2616 if (is_breakpoint (bl->owner))
2617 {
2618 build_target_condition_list (bl);
2619 build_target_command_list (bl);
2620 /* Reset the modification marker. */
2621 bl->needs_update = 0;
2622 }
2623
2624 if (bl->loc_type == bp_loc_software_breakpoint
2625 || bl->loc_type == bp_loc_hardware_breakpoint)
2626 {
2627 if (bl->owner->type != bp_hardware_breakpoint)
2628 {
2629 /* If the explicitly specified breakpoint type
2630 is not hardware breakpoint, check the memory map to see
2631 if the breakpoint address is in read only memory or not.
2632
2633 Two important cases are:
2634 - location type is not hardware breakpoint, memory
2635 is readonly. We change the type of the location to
2636 hardware breakpoint.
2637 - location type is hardware breakpoint, memory is
2638 read-write. This means we've previously made the
2639 location hardware one, but then the memory map changed,
2640 so we undo.
2641
2642 When breakpoints are removed, remove_breakpoints will use
2643 location types we've just set here, the only possible
2644 problem is that memory map has changed during running
2645 program, but it's not going to work anyway with current
2646 gdb. */
2647 struct mem_region *mr
2648 = lookup_mem_region (bl->target_info.placed_address);
2649
2650 if (mr)
2651 {
2652 if (automatic_hardware_breakpoints)
2653 {
2654 enum bp_loc_type new_type;
2655
2656 if (mr->attrib.mode != MEM_RW)
2657 new_type = bp_loc_hardware_breakpoint;
2658 else
2659 new_type = bp_loc_software_breakpoint;
2660
2661 if (new_type != bl->loc_type)
2662 {
2663 static int said = 0;
2664
2665 bl->loc_type = new_type;
2666 if (!said)
2667 {
2668 fprintf_filtered (gdb_stdout,
2669 _("Note: automatically using "
2670 "hardware breakpoints for "
2671 "read-only addresses.\n"));
2672 said = 1;
2673 }
2674 }
2675 }
2676 else if (bl->loc_type == bp_loc_software_breakpoint
2677 && mr->attrib.mode != MEM_RW)
2678 {
2679 fprintf_unfiltered (tmp_error_stream,
2680 _("Cannot insert breakpoint %d.\n"
2681 "Cannot set software breakpoint "
2682 "at read-only address %s\n"),
2683 bl->owner->number,
2684 paddress (bl->gdbarch, bl->address));
2685 return 1;
2686 }
2687 }
2688 }
2689
2690 /* First check to see if we have to handle an overlay. */
2691 if (overlay_debugging == ovly_off
2692 || bl->section == NULL
2693 || !(section_is_overlay (bl->section)))
2694 {
2695 /* No overlay handling: just set the breakpoint. */
2696 TRY_CATCH (e, RETURN_MASK_ALL)
2697 {
2698 int val;
2699
2700 val = bl->owner->ops->insert_location (bl);
2701 if (val)
2702 bp_err = GENERIC_ERROR;
2703 }
2704 if (e.reason < 0)
2705 {
2706 bp_err = e.error;
2707 bp_err_message = e.message;
2708 }
2709 }
2710 else
2711 {
2712 /* This breakpoint is in an overlay section.
2713 Shall we set a breakpoint at the LMA? */
2714 if (!overlay_events_enabled)
2715 {
2716 /* Yes -- overlay event support is not active,
2717 so we must try to set a breakpoint at the LMA.
2718 This will not work for a hardware breakpoint. */
2719 if (bl->loc_type == bp_loc_hardware_breakpoint)
2720 warning (_("hardware breakpoint %d not supported in overlay!"),
2721 bl->owner->number);
2722 else
2723 {
2724 CORE_ADDR addr = overlay_unmapped_address (bl->address,
2725 bl->section);
2726 /* Set a software (trap) breakpoint at the LMA. */
2727 bl->overlay_target_info = bl->target_info;
2728 bl->overlay_target_info.placed_address = addr;
2729
2730 /* No overlay handling: just set the breakpoint. */
2731 TRY_CATCH (e, RETURN_MASK_ALL)
2732 {
2733 int val;
2734
2735 val = target_insert_breakpoint (bl->gdbarch,
2736 &bl->overlay_target_info);
2737 if (val)
2738 bp_err = GENERIC_ERROR;
2739 }
2740 if (e.reason < 0)
2741 {
2742 bp_err = e.error;
2743 bp_err_message = e.message;
2744 }
2745
2746 if (bp_err != GDB_NO_ERROR)
2747 fprintf_unfiltered (tmp_error_stream,
2748 "Overlay breakpoint %d "
2749 "failed: in ROM?\n",
2750 bl->owner->number);
2751 }
2752 }
2753 /* Shall we set a breakpoint at the VMA? */
2754 if (section_is_mapped (bl->section))
2755 {
2756 /* Yes. This overlay section is mapped into memory. */
2757 TRY_CATCH (e, RETURN_MASK_ALL)
2758 {
2759 int val;
2760
2761 val = bl->owner->ops->insert_location (bl);
2762 if (val)
2763 bp_err = GENERIC_ERROR;
2764 }
2765 if (e.reason < 0)
2766 {
2767 bp_err = e.error;
2768 bp_err_message = e.message;
2769 }
2770 }
2771 else
2772 {
2773 /* No. This breakpoint will not be inserted.
2774 No error, but do not mark the bp as 'inserted'. */
2775 return 0;
2776 }
2777 }
2778
2779 if (bp_err != GDB_NO_ERROR)
2780 {
2781 /* Can't set the breakpoint. */
2782
2783 /* In some cases, we might not be able to insert a
2784 breakpoint in a shared library that has already been
2785 removed, but we have not yet processed the shlib unload
2786 event. Unfortunately, some targets that implement
2787 breakpoint insertion themselves can't tell why the
2788 breakpoint insertion failed (e.g., the remote target
2789 doesn't define error codes), so we must treat generic
2790 errors as memory errors. */
2791 if ((bp_err == GENERIC_ERROR || bp_err == MEMORY_ERROR)
2792 && bl->loc_type == bp_loc_software_breakpoint
2793 && (solib_name_from_address (bl->pspace, bl->address)
2794 || shared_objfile_contains_address_p (bl->pspace,
2795 bl->address)))
2796 {
2797 /* See also: disable_breakpoints_in_shlibs. */
2798 bl->shlib_disabled = 1;
2799 observer_notify_breakpoint_modified (bl->owner);
2800 if (!*disabled_breaks)
2801 {
2802 fprintf_unfiltered (tmp_error_stream,
2803 "Cannot insert breakpoint %d.\n",
2804 bl->owner->number);
2805 fprintf_unfiltered (tmp_error_stream,
2806 "Temporarily disabling shared "
2807 "library breakpoints:\n");
2808 }
2809 *disabled_breaks = 1;
2810 fprintf_unfiltered (tmp_error_stream,
2811 "breakpoint #%d\n", bl->owner->number);
2812 return 0;
2813 }
2814 else
2815 {
2816 if (bl->loc_type == bp_loc_hardware_breakpoint)
2817 {
2818 *hw_breakpoint_error = 1;
2819 *hw_bp_error_explained_already = bp_err_message != NULL;
2820 fprintf_unfiltered (tmp_error_stream,
2821 "Cannot insert hardware breakpoint %d%s",
2822 bl->owner->number, bp_err_message ? ":" : ".\n");
2823 if (bp_err_message != NULL)
2824 fprintf_unfiltered (tmp_error_stream, "%s.\n", bp_err_message);
2825 }
2826 else
2827 {
2828 if (bp_err_message == NULL)
2829 {
2830 char *message
2831 = memory_error_message (TARGET_XFER_E_IO,
2832 bl->gdbarch, bl->address);
2833 struct cleanup *old_chain = make_cleanup (xfree, message);
2834
2835 fprintf_unfiltered (tmp_error_stream,
2836 "Cannot insert breakpoint %d.\n"
2837 "%s\n",
2838 bl->owner->number, message);
2839 do_cleanups (old_chain);
2840 }
2841 else
2842 {
2843 fprintf_unfiltered (tmp_error_stream,
2844 "Cannot insert breakpoint %d: %s\n",
2845 bl->owner->number,
2846 bp_err_message);
2847 }
2848 }
2849 return 1;
2850
2851 }
2852 }
2853 else
2854 bl->inserted = 1;
2855
2856 return 0;
2857 }
2858
2859 else if (bl->loc_type == bp_loc_hardware_watchpoint
2860 /* NOTE drow/2003-09-08: This state only exists for removing
2861 watchpoints. It's not clear that it's necessary... */
2862 && bl->owner->disposition != disp_del_at_next_stop)
2863 {
2864 int val;
2865
2866 gdb_assert (bl->owner->ops != NULL
2867 && bl->owner->ops->insert_location != NULL);
2868
2869 val = bl->owner->ops->insert_location (bl);
2870
2871 /* If trying to set a read-watchpoint, and it turns out it's not
2872 supported, try emulating one with an access watchpoint. */
2873 if (val == 1 && bl->watchpoint_type == hw_read)
2874 {
2875 struct bp_location *loc, **loc_temp;
2876
2877 /* But don't try to insert it, if there's already another
2878 hw_access location that would be considered a duplicate
2879 of this one. */
2880 ALL_BP_LOCATIONS (loc, loc_temp)
2881 if (loc != bl
2882 && loc->watchpoint_type == hw_access
2883 && watchpoint_locations_match (bl, loc))
2884 {
2885 bl->duplicate = 1;
2886 bl->inserted = 1;
2887 bl->target_info = loc->target_info;
2888 bl->watchpoint_type = hw_access;
2889 val = 0;
2890 break;
2891 }
2892
2893 if (val == 1)
2894 {
2895 bl->watchpoint_type = hw_access;
2896 val = bl->owner->ops->insert_location (bl);
2897
2898 if (val)
2899 /* Back to the original value. */
2900 bl->watchpoint_type = hw_read;
2901 }
2902 }
2903
2904 bl->inserted = (val == 0);
2905 }
2906
2907 else if (bl->owner->type == bp_catchpoint)
2908 {
2909 int val;
2910
2911 gdb_assert (bl->owner->ops != NULL
2912 && bl->owner->ops->insert_location != NULL);
2913
2914 val = bl->owner->ops->insert_location (bl);
2915 if (val)
2916 {
2917 bl->owner->enable_state = bp_disabled;
2918
2919 if (val == 1)
2920 warning (_("\
2921 Error inserting catchpoint %d: Your system does not support this type\n\
2922 of catchpoint."), bl->owner->number);
2923 else
2924 warning (_("Error inserting catchpoint %d."), bl->owner->number);
2925 }
2926
2927 bl->inserted = (val == 0);
2928
2929 /* We've already printed an error message if there was a problem
2930 inserting this catchpoint, and we've disabled the catchpoint,
2931 so just return success. */
2932 return 0;
2933 }
2934
2935 return 0;
2936 }
2937
2938 /* This function is called when program space PSPACE is about to be
2939 deleted. It takes care of updating breakpoints to not reference
2940 PSPACE anymore. */
2941
2942 void
2943 breakpoint_program_space_exit (struct program_space *pspace)
2944 {
2945 struct breakpoint *b, *b_temp;
2946 struct bp_location *loc, **loc_temp;
2947
2948 /* Remove any breakpoint that was set through this program space. */
2949 ALL_BREAKPOINTS_SAFE (b, b_temp)
2950 {
2951 if (b->pspace == pspace)
2952 delete_breakpoint (b);
2953 }
2954
2955 /* Breakpoints set through other program spaces could have locations
2956 bound to PSPACE as well. Remove those. */
2957 ALL_BP_LOCATIONS (loc, loc_temp)
2958 {
2959 struct bp_location *tmp;
2960
2961 if (loc->pspace == pspace)
2962 {
2963 /* ALL_BP_LOCATIONS bp_location has LOC->OWNER always non-NULL. */
2964 if (loc->owner->loc == loc)
2965 loc->owner->loc = loc->next;
2966 else
2967 for (tmp = loc->owner->loc; tmp->next != NULL; tmp = tmp->next)
2968 if (tmp->next == loc)
2969 {
2970 tmp->next = loc->next;
2971 break;
2972 }
2973 }
2974 }
2975
2976 /* Now update the global location list to permanently delete the
2977 removed locations above. */
2978 update_global_location_list (UGLL_DONT_INSERT);
2979 }
2980
2981 /* Make sure all breakpoints are inserted in inferior.
2982 Throws exception on any error.
2983 A breakpoint that is already inserted won't be inserted
2984 again, so calling this function twice is safe. */
2985 void
2986 insert_breakpoints (void)
2987 {
2988 struct breakpoint *bpt;
2989
2990 ALL_BREAKPOINTS (bpt)
2991 if (is_hardware_watchpoint (bpt))
2992 {
2993 struct watchpoint *w = (struct watchpoint *) bpt;
2994
2995 update_watchpoint (w, 0 /* don't reparse. */);
2996 }
2997
2998 /* Updating watchpoints creates new locations, so update the global
2999 location list. Explicitly tell ugll to insert locations and
3000 ignore breakpoints_always_inserted_mode. */
3001 update_global_location_list (UGLL_INSERT);
3002 }
3003
3004 /* Invoke CALLBACK for each of bp_location. */
3005
3006 void
3007 iterate_over_bp_locations (walk_bp_location_callback callback)
3008 {
3009 struct bp_location *loc, **loc_tmp;
3010
3011 ALL_BP_LOCATIONS (loc, loc_tmp)
3012 {
3013 callback (loc, NULL);
3014 }
3015 }
3016
3017 /* This is used when we need to synch breakpoint conditions between GDB and the
3018 target. It is the case with deleting and disabling of breakpoints when using
3019 always-inserted mode. */
3020
3021 static void
3022 update_inserted_breakpoint_locations (void)
3023 {
3024 struct bp_location *bl, **blp_tmp;
3025 int error_flag = 0;
3026 int val = 0;
3027 int disabled_breaks = 0;
3028 int hw_breakpoint_error = 0;
3029 int hw_bp_details_reported = 0;
3030
3031 struct ui_file *tmp_error_stream = mem_fileopen ();
3032 struct cleanup *cleanups = make_cleanup_ui_file_delete (tmp_error_stream);
3033
3034 /* Explicitly mark the warning -- this will only be printed if
3035 there was an error. */
3036 fprintf_unfiltered (tmp_error_stream, "Warning:\n");
3037
3038 save_current_space_and_thread ();
3039
3040 ALL_BP_LOCATIONS (bl, blp_tmp)
3041 {
3042 /* We only want to update software breakpoints and hardware
3043 breakpoints. */
3044 if (!is_breakpoint (bl->owner))
3045 continue;
3046
3047 /* We only want to update locations that are already inserted
3048 and need updating. This is to avoid unwanted insertion during
3049 deletion of breakpoints. */
3050 if (!bl->inserted || (bl->inserted && !bl->needs_update))
3051 continue;
3052
3053 switch_to_program_space_and_thread (bl->pspace);
3054
3055 /* For targets that support global breakpoints, there's no need
3056 to select an inferior to insert breakpoint to. In fact, even
3057 if we aren't attached to any process yet, we should still
3058 insert breakpoints. */
3059 if (!gdbarch_has_global_breakpoints (target_gdbarch ())
3060 && ptid_equal (inferior_ptid, null_ptid))
3061 continue;
3062
3063 val = insert_bp_location (bl, tmp_error_stream, &disabled_breaks,
3064 &hw_breakpoint_error, &hw_bp_details_reported);
3065 if (val)
3066 error_flag = val;
3067 }
3068
3069 if (error_flag)
3070 {
3071 target_terminal_ours_for_output ();
3072 error_stream (tmp_error_stream);
3073 }
3074
3075 do_cleanups (cleanups);
3076 }
3077
3078 /* Used when starting or continuing the program. */
3079
3080 static void
3081 insert_breakpoint_locations (void)
3082 {
3083 struct breakpoint *bpt;
3084 struct bp_location *bl, **blp_tmp;
3085 int error_flag = 0;
3086 int val = 0;
3087 int disabled_breaks = 0;
3088 int hw_breakpoint_error = 0;
3089 int hw_bp_error_explained_already = 0;
3090
3091 struct ui_file *tmp_error_stream = mem_fileopen ();
3092 struct cleanup *cleanups = make_cleanup_ui_file_delete (tmp_error_stream);
3093
3094 /* Explicitly mark the warning -- this will only be printed if
3095 there was an error. */
3096 fprintf_unfiltered (tmp_error_stream, "Warning:\n");
3097
3098 save_current_space_and_thread ();
3099
3100 ALL_BP_LOCATIONS (bl, blp_tmp)
3101 {
3102 if (!should_be_inserted (bl) || (bl->inserted && !bl->needs_update))
3103 continue;
3104
3105 /* There is no point inserting thread-specific breakpoints if
3106 the thread no longer exists. ALL_BP_LOCATIONS bp_location
3107 has BL->OWNER always non-NULL. */
3108 if (bl->owner->thread != -1
3109 && !valid_thread_id (bl->owner->thread))
3110 continue;
3111
3112 switch_to_program_space_and_thread (bl->pspace);
3113
3114 /* For targets that support global breakpoints, there's no need
3115 to select an inferior to insert breakpoint to. In fact, even
3116 if we aren't attached to any process yet, we should still
3117 insert breakpoints. */
3118 if (!gdbarch_has_global_breakpoints (target_gdbarch ())
3119 && ptid_equal (inferior_ptid, null_ptid))
3120 continue;
3121
3122 val = insert_bp_location (bl, tmp_error_stream, &disabled_breaks,
3123 &hw_breakpoint_error, &hw_bp_error_explained_already);
3124 if (val)
3125 error_flag = val;
3126 }
3127
3128 /* If we failed to insert all locations of a watchpoint, remove
3129 them, as half-inserted watchpoint is of limited use. */
3130 ALL_BREAKPOINTS (bpt)
3131 {
3132 int some_failed = 0;
3133 struct bp_location *loc;
3134
3135 if (!is_hardware_watchpoint (bpt))
3136 continue;
3137
3138 if (!breakpoint_enabled (bpt))
3139 continue;
3140
3141 if (bpt->disposition == disp_del_at_next_stop)
3142 continue;
3143
3144 for (loc = bpt->loc; loc; loc = loc->next)
3145 if (!loc->inserted && should_be_inserted (loc))
3146 {
3147 some_failed = 1;
3148 break;
3149 }
3150 if (some_failed)
3151 {
3152 for (loc = bpt->loc; loc; loc = loc->next)
3153 if (loc->inserted)
3154 remove_breakpoint (loc, mark_uninserted);
3155
3156 hw_breakpoint_error = 1;
3157 fprintf_unfiltered (tmp_error_stream,
3158 "Could not insert hardware watchpoint %d.\n",
3159 bpt->number);
3160 error_flag = -1;
3161 }
3162 }
3163
3164 if (error_flag)
3165 {
3166 /* If a hardware breakpoint or watchpoint was inserted, add a
3167 message about possibly exhausted resources. */
3168 if (hw_breakpoint_error && !hw_bp_error_explained_already)
3169 {
3170 fprintf_unfiltered (tmp_error_stream,
3171 "Could not insert hardware breakpoints:\n\
3172 You may have requested too many hardware breakpoints/watchpoints.\n");
3173 }
3174 target_terminal_ours_for_output ();
3175 error_stream (tmp_error_stream);
3176 }
3177
3178 do_cleanups (cleanups);
3179 }
3180
3181 /* Used when the program stops.
3182 Returns zero if successful, or non-zero if there was a problem
3183 removing a breakpoint location. */
3184
3185 int
3186 remove_breakpoints (void)
3187 {
3188 struct bp_location *bl, **blp_tmp;
3189 int val = 0;
3190
3191 ALL_BP_LOCATIONS (bl, blp_tmp)
3192 {
3193 if (bl->inserted && !is_tracepoint (bl->owner))
3194 val |= remove_breakpoint (bl, mark_uninserted);
3195 }
3196 return val;
3197 }
3198
3199 /* When a thread exits, remove breakpoints that are related to
3200 that thread. */
3201
3202 static void
3203 remove_threaded_breakpoints (struct thread_info *tp, int silent)
3204 {
3205 struct breakpoint *b, *b_tmp;
3206
3207 ALL_BREAKPOINTS_SAFE (b, b_tmp)
3208 {
3209 if (b->thread == tp->num && user_breakpoint_p (b))
3210 {
3211 b->disposition = disp_del_at_next_stop;
3212
3213 printf_filtered (_("\
3214 Thread-specific breakpoint %d deleted - thread %d no longer in the thread list.\n"),
3215 b->number, tp->num);
3216
3217 /* Hide it from the user. */
3218 b->number = 0;
3219 }
3220 }
3221 }
3222
3223 /* Remove breakpoints of process PID. */
3224
3225 int
3226 remove_breakpoints_pid (int pid)
3227 {
3228 struct bp_location *bl, **blp_tmp;
3229 int val;
3230 struct inferior *inf = find_inferior_pid (pid);
3231
3232 ALL_BP_LOCATIONS (bl, blp_tmp)
3233 {
3234 if (bl->pspace != inf->pspace)
3235 continue;
3236
3237 if (bl->owner->type == bp_dprintf)
3238 continue;
3239
3240 if (bl->inserted)
3241 {
3242 val = remove_breakpoint (bl, mark_uninserted);
3243 if (val != 0)
3244 return val;
3245 }
3246 }
3247 return 0;
3248 }
3249
3250 int
3251 reattach_breakpoints (int pid)
3252 {
3253 struct cleanup *old_chain;
3254 struct bp_location *bl, **blp_tmp;
3255 int val;
3256 struct ui_file *tmp_error_stream;
3257 int dummy1 = 0, dummy2 = 0, dummy3 = 0;
3258 struct inferior *inf;
3259 struct thread_info *tp;
3260
3261 tp = any_live_thread_of_process (pid);
3262 if (tp == NULL)
3263 return 1;
3264
3265 inf = find_inferior_pid (pid);
3266 old_chain = save_inferior_ptid ();
3267
3268 inferior_ptid = tp->ptid;
3269
3270 tmp_error_stream = mem_fileopen ();
3271 make_cleanup_ui_file_delete (tmp_error_stream);
3272
3273 ALL_BP_LOCATIONS (bl, blp_tmp)
3274 {
3275 if (bl->pspace != inf->pspace)
3276 continue;
3277
3278 if (bl->inserted)
3279 {
3280 bl->inserted = 0;
3281 val = insert_bp_location (bl, tmp_error_stream, &dummy1, &dummy2, &dummy3);
3282 if (val != 0)
3283 {
3284 do_cleanups (old_chain);
3285 return val;
3286 }
3287 }
3288 }
3289 do_cleanups (old_chain);
3290 return 0;
3291 }
3292
3293 static int internal_breakpoint_number = -1;
3294
3295 /* Set the breakpoint number of B, depending on the value of INTERNAL.
3296 If INTERNAL is non-zero, the breakpoint number will be populated
3297 from internal_breakpoint_number and that variable decremented.
3298 Otherwise the breakpoint number will be populated from
3299 breakpoint_count and that value incremented. Internal breakpoints
3300 do not set the internal var bpnum. */
3301 static void
3302 set_breakpoint_number (int internal, struct breakpoint *b)
3303 {
3304 if (internal)
3305 b->number = internal_breakpoint_number--;
3306 else
3307 {
3308 set_breakpoint_count (breakpoint_count + 1);
3309 b->number = breakpoint_count;
3310 }
3311 }
3312
3313 static struct breakpoint *
3314 create_internal_breakpoint (struct gdbarch *gdbarch,
3315 CORE_ADDR address, enum bptype type,
3316 const struct breakpoint_ops *ops)
3317 {
3318 struct symtab_and_line sal;
3319 struct breakpoint *b;
3320
3321 init_sal (&sal); /* Initialize to zeroes. */
3322
3323 sal.pc = address;
3324 sal.section = find_pc_overlay (sal.pc);
3325 sal.pspace = current_program_space;
3326
3327 b = set_raw_breakpoint (gdbarch, sal, type, ops);
3328 b->number = internal_breakpoint_number--;
3329 b->disposition = disp_donttouch;
3330
3331 return b;
3332 }
3333
3334 static const char *const longjmp_names[] =
3335 {
3336 "longjmp", "_longjmp", "siglongjmp", "_siglongjmp"
3337 };
3338 #define NUM_LONGJMP_NAMES ARRAY_SIZE(longjmp_names)
3339
3340 /* Per-objfile data private to breakpoint.c. */
3341 struct breakpoint_objfile_data
3342 {
3343 /* Minimal symbol for "_ovly_debug_event" (if any). */
3344 struct bound_minimal_symbol overlay_msym;
3345
3346 /* Minimal symbol(s) for "longjmp", "siglongjmp", etc. (if any). */
3347 struct bound_minimal_symbol longjmp_msym[NUM_LONGJMP_NAMES];
3348
3349 /* True if we have looked for longjmp probes. */
3350 int longjmp_searched;
3351
3352 /* SystemTap probe points for longjmp (if any). */
3353 VEC (probe_p) *longjmp_probes;
3354
3355 /* Minimal symbol for "std::terminate()" (if any). */
3356 struct bound_minimal_symbol terminate_msym;
3357
3358 /* Minimal symbol for "_Unwind_DebugHook" (if any). */
3359 struct bound_minimal_symbol exception_msym;
3360
3361 /* True if we have looked for exception probes. */
3362 int exception_searched;
3363
3364 /* SystemTap probe points for unwinding (if any). */
3365 VEC (probe_p) *exception_probes;
3366 };
3367
3368 static const struct objfile_data *breakpoint_objfile_key;
3369
3370 /* Minimal symbol not found sentinel. */
3371 static struct minimal_symbol msym_not_found;
3372
3373 /* Returns TRUE if MSYM point to the "not found" sentinel. */
3374
3375 static int
3376 msym_not_found_p (const struct minimal_symbol *msym)
3377 {
3378 return msym == &msym_not_found;
3379 }
3380
3381 /* Return per-objfile data needed by breakpoint.c.
3382 Allocate the data if necessary. */
3383
3384 static struct breakpoint_objfile_data *
3385 get_breakpoint_objfile_data (struct objfile *objfile)
3386 {
3387 struct breakpoint_objfile_data *bp_objfile_data;
3388
3389 bp_objfile_data = objfile_data (objfile, breakpoint_objfile_key);
3390 if (bp_objfile_data == NULL)
3391 {
3392 bp_objfile_data = obstack_alloc (&objfile->objfile_obstack,
3393 sizeof (*bp_objfile_data));
3394
3395 memset (bp_objfile_data, 0, sizeof (*bp_objfile_data));
3396 set_objfile_data (objfile, breakpoint_objfile_key, bp_objfile_data);
3397 }
3398 return bp_objfile_data;
3399 }
3400
3401 static void
3402 free_breakpoint_probes (struct objfile *obj, void *data)
3403 {
3404 struct breakpoint_objfile_data *bp_objfile_data = data;
3405
3406 VEC_free (probe_p, bp_objfile_data->longjmp_probes);
3407 VEC_free (probe_p, bp_objfile_data->exception_probes);
3408 }
3409
3410 static void
3411 create_overlay_event_breakpoint (void)
3412 {
3413 struct objfile *objfile;
3414 const char *const func_name = "_ovly_debug_event";
3415
3416 ALL_OBJFILES (objfile)
3417 {
3418 struct breakpoint *b;
3419 struct breakpoint_objfile_data *bp_objfile_data;
3420 CORE_ADDR addr;
3421
3422 bp_objfile_data = get_breakpoint_objfile_data (objfile);
3423
3424 if (msym_not_found_p (bp_objfile_data->overlay_msym.minsym))
3425 continue;
3426
3427 if (bp_objfile_data->overlay_msym.minsym == NULL)
3428 {
3429 struct bound_minimal_symbol m;
3430
3431 m = lookup_minimal_symbol_text (func_name, objfile);
3432 if (m.minsym == NULL)
3433 {
3434 /* Avoid future lookups in this objfile. */
3435 bp_objfile_data->overlay_msym.minsym = &msym_not_found;
3436 continue;
3437 }
3438 bp_objfile_data->overlay_msym = m;
3439 }
3440
3441 addr = BMSYMBOL_VALUE_ADDRESS (bp_objfile_data->overlay_msym);
3442 b = create_internal_breakpoint (get_objfile_arch (objfile), addr,
3443 bp_overlay_event,
3444 &internal_breakpoint_ops);
3445 b->addr_string = xstrdup (func_name);
3446
3447 if (overlay_debugging == ovly_auto)
3448 {
3449 b->enable_state = bp_enabled;
3450 overlay_events_enabled = 1;
3451 }
3452 else
3453 {
3454 b->enable_state = bp_disabled;
3455 overlay_events_enabled = 0;
3456 }
3457 }
3458 update_global_location_list (UGLL_MAY_INSERT);
3459 }
3460
3461 static void
3462 create_longjmp_master_breakpoint (void)
3463 {
3464 struct program_space *pspace;
3465 struct cleanup *old_chain;
3466
3467 old_chain = save_current_program_space ();
3468
3469 ALL_PSPACES (pspace)
3470 {
3471 struct objfile *objfile;
3472
3473 set_current_program_space (pspace);
3474
3475 ALL_OBJFILES (objfile)
3476 {
3477 int i;
3478 struct gdbarch *gdbarch;
3479 struct breakpoint_objfile_data *bp_objfile_data;
3480
3481 gdbarch = get_objfile_arch (objfile);
3482
3483 bp_objfile_data = get_breakpoint_objfile_data (objfile);
3484
3485 if (!bp_objfile_data->longjmp_searched)
3486 {
3487 VEC (probe_p) *ret;
3488
3489 ret = find_probes_in_objfile (objfile, "libc", "longjmp");
3490 if (ret != NULL)
3491 {
3492 /* We are only interested in checking one element. */
3493 struct probe *p = VEC_index (probe_p, ret, 0);
3494
3495 if (!can_evaluate_probe_arguments (p))
3496 {
3497 /* We cannot use the probe interface here, because it does
3498 not know how to evaluate arguments. */
3499 VEC_free (probe_p, ret);
3500 ret = NULL;
3501 }
3502 }
3503 bp_objfile_data->longjmp_probes = ret;
3504 bp_objfile_data->longjmp_searched = 1;
3505 }
3506
3507 if (bp_objfile_data->longjmp_probes != NULL)
3508 {
3509 int i;
3510 struct probe *probe;
3511 struct gdbarch *gdbarch = get_objfile_arch (objfile);
3512
3513 for (i = 0;
3514 VEC_iterate (probe_p,
3515 bp_objfile_data->longjmp_probes,
3516 i, probe);
3517 ++i)
3518 {
3519 struct breakpoint *b;
3520
3521 b = create_internal_breakpoint (gdbarch,
3522 get_probe_address (probe,
3523 objfile),
3524 bp_longjmp_master,
3525 &internal_breakpoint_ops);
3526 b->addr_string = xstrdup ("-probe-stap libc:longjmp");
3527 b->enable_state = bp_disabled;
3528 }
3529
3530 continue;
3531 }
3532
3533 if (!gdbarch_get_longjmp_target_p (gdbarch))
3534 continue;
3535
3536 for (i = 0; i < NUM_LONGJMP_NAMES; i++)
3537 {
3538 struct breakpoint *b;
3539 const char *func_name;
3540 CORE_ADDR addr;
3541
3542 if (msym_not_found_p (bp_objfile_data->longjmp_msym[i].minsym))
3543 continue;
3544
3545 func_name = longjmp_names[i];
3546 if (bp_objfile_data->longjmp_msym[i].minsym == NULL)
3547 {
3548 struct bound_minimal_symbol m;
3549
3550 m = lookup_minimal_symbol_text (func_name, objfile);
3551 if (m.minsym == NULL)
3552 {
3553 /* Prevent future lookups in this objfile. */
3554 bp_objfile_data->longjmp_msym[i].minsym = &msym_not_found;
3555 continue;
3556 }
3557 bp_objfile_data->longjmp_msym[i] = m;
3558 }
3559
3560 addr = BMSYMBOL_VALUE_ADDRESS (bp_objfile_data->longjmp_msym[i]);
3561 b = create_internal_breakpoint (gdbarch, addr, bp_longjmp_master,
3562 &internal_breakpoint_ops);
3563 b->addr_string = xstrdup (func_name);
3564 b->enable_state = bp_disabled;
3565 }
3566 }
3567 }
3568 update_global_location_list (UGLL_MAY_INSERT);
3569
3570 do_cleanups (old_chain);
3571 }
3572
3573 /* Create a master std::terminate breakpoint. */
3574 static void
3575 create_std_terminate_master_breakpoint (void)
3576 {
3577 struct program_space *pspace;
3578 struct cleanup *old_chain;
3579 const char *const func_name = "std::terminate()";
3580
3581 old_chain = save_current_program_space ();
3582
3583 ALL_PSPACES (pspace)
3584 {
3585 struct objfile *objfile;
3586 CORE_ADDR addr;
3587
3588 set_current_program_space (pspace);
3589
3590 ALL_OBJFILES (objfile)
3591 {
3592 struct breakpoint *b;
3593 struct breakpoint_objfile_data *bp_objfile_data;
3594
3595 bp_objfile_data = get_breakpoint_objfile_data (objfile);
3596
3597 if (msym_not_found_p (bp_objfile_data->terminate_msym.minsym))
3598 continue;
3599
3600 if (bp_objfile_data->terminate_msym.minsym == NULL)
3601 {
3602 struct bound_minimal_symbol m;
3603
3604 m = lookup_minimal_symbol (func_name, NULL, objfile);
3605 if (m.minsym == NULL || (MSYMBOL_TYPE (m.minsym) != mst_text
3606 && MSYMBOL_TYPE (m.minsym) != mst_file_text))
3607 {
3608 /* Prevent future lookups in this objfile. */
3609 bp_objfile_data->terminate_msym.minsym = &msym_not_found;
3610 continue;
3611 }
3612 bp_objfile_data->terminate_msym = m;
3613 }
3614
3615 addr = BMSYMBOL_VALUE_ADDRESS (bp_objfile_data->terminate_msym);
3616 b = create_internal_breakpoint (get_objfile_arch (objfile), addr,
3617 bp_std_terminate_master,
3618 &internal_breakpoint_ops);
3619 b->addr_string = xstrdup (func_name);
3620 b->enable_state = bp_disabled;
3621 }
3622 }
3623
3624 update_global_location_list (UGLL_MAY_INSERT);
3625
3626 do_cleanups (old_chain);
3627 }
3628
3629 /* Install a master breakpoint on the unwinder's debug hook. */
3630
3631 static void
3632 create_exception_master_breakpoint (void)
3633 {
3634 struct objfile *objfile;
3635 const char *const func_name = "_Unwind_DebugHook";
3636
3637 ALL_OBJFILES (objfile)
3638 {
3639 struct breakpoint *b;
3640 struct gdbarch *gdbarch;
3641 struct breakpoint_objfile_data *bp_objfile_data;
3642 CORE_ADDR addr;
3643
3644 bp_objfile_data = get_breakpoint_objfile_data (objfile);
3645
3646 /* We prefer the SystemTap probe point if it exists. */
3647 if (!bp_objfile_data->exception_searched)
3648 {
3649 VEC (probe_p) *ret;
3650
3651 ret = find_probes_in_objfile (objfile, "libgcc", "unwind");
3652
3653 if (ret != NULL)
3654 {
3655 /* We are only interested in checking one element. */
3656 struct probe *p = VEC_index (probe_p, ret, 0);
3657
3658 if (!can_evaluate_probe_arguments (p))
3659 {
3660 /* We cannot use the probe interface here, because it does
3661 not know how to evaluate arguments. */
3662 VEC_free (probe_p, ret);
3663 ret = NULL;
3664 }
3665 }
3666 bp_objfile_data->exception_probes = ret;
3667 bp_objfile_data->exception_searched = 1;
3668 }
3669
3670 if (bp_objfile_data->exception_probes != NULL)
3671 {
3672 struct gdbarch *gdbarch = get_objfile_arch (objfile);
3673 int i;
3674 struct probe *probe;
3675
3676 for (i = 0;
3677 VEC_iterate (probe_p,
3678 bp_objfile_data->exception_probes,
3679 i, probe);
3680 ++i)
3681 {
3682 struct breakpoint *b;
3683
3684 b = create_internal_breakpoint (gdbarch,
3685 get_probe_address (probe,
3686 objfile),
3687 bp_exception_master,
3688 &internal_breakpoint_ops);
3689 b->addr_string = xstrdup ("-probe-stap libgcc:unwind");
3690 b->enable_state = bp_disabled;
3691 }
3692
3693 continue;
3694 }
3695
3696 /* Otherwise, try the hook function. */
3697
3698 if (msym_not_found_p (bp_objfile_data->exception_msym.minsym))
3699 continue;
3700
3701 gdbarch = get_objfile_arch (objfile);
3702
3703 if (bp_objfile_data->exception_msym.minsym == NULL)
3704 {
3705 struct bound_minimal_symbol debug_hook;
3706
3707 debug_hook = lookup_minimal_symbol (func_name, NULL, objfile);
3708 if (debug_hook.minsym == NULL)
3709 {
3710 bp_objfile_data->exception_msym.minsym = &msym_not_found;
3711 continue;
3712 }
3713
3714 bp_objfile_data->exception_msym = debug_hook;
3715 }
3716
3717 addr = BMSYMBOL_VALUE_ADDRESS (bp_objfile_data->exception_msym);
3718 addr = gdbarch_convert_from_func_ptr_addr (gdbarch, addr,
3719 &current_target);
3720 b = create_internal_breakpoint (gdbarch, addr, bp_exception_master,
3721 &internal_breakpoint_ops);
3722 b->addr_string = xstrdup (func_name);
3723 b->enable_state = bp_disabled;
3724 }
3725
3726 update_global_location_list (UGLL_MAY_INSERT);
3727 }
3728
3729 void
3730 update_breakpoints_after_exec (void)
3731 {
3732 struct breakpoint *b, *b_tmp;
3733 struct bp_location *bploc, **bplocp_tmp;
3734
3735 /* We're about to delete breakpoints from GDB's lists. If the
3736 INSERTED flag is true, GDB will try to lift the breakpoints by
3737 writing the breakpoints' "shadow contents" back into memory. The
3738 "shadow contents" are NOT valid after an exec, so GDB should not
3739 do that. Instead, the target is responsible from marking
3740 breakpoints out as soon as it detects an exec. We don't do that
3741 here instead, because there may be other attempts to delete
3742 breakpoints after detecting an exec and before reaching here. */
3743 ALL_BP_LOCATIONS (bploc, bplocp_tmp)
3744 if (bploc->pspace == current_program_space)
3745 gdb_assert (!bploc->inserted);
3746
3747 ALL_BREAKPOINTS_SAFE (b, b_tmp)
3748 {
3749 if (b->pspace != current_program_space)
3750 continue;
3751
3752 /* Solib breakpoints must be explicitly reset after an exec(). */
3753 if (b->type == bp_shlib_event)
3754 {
3755 delete_breakpoint (b);
3756 continue;
3757 }
3758
3759 /* JIT breakpoints must be explicitly reset after an exec(). */
3760 if (b->type == bp_jit_event)
3761 {
3762 delete_breakpoint (b);
3763 continue;
3764 }
3765
3766 /* Thread event breakpoints must be set anew after an exec(),
3767 as must overlay event and longjmp master breakpoints. */
3768 if (b->type == bp_thread_event || b->type == bp_overlay_event
3769 || b->type == bp_longjmp_master || b->type == bp_std_terminate_master
3770 || b->type == bp_exception_master)
3771 {
3772 delete_breakpoint (b);
3773 continue;
3774 }
3775
3776 /* Step-resume breakpoints are meaningless after an exec(). */
3777 if (b->type == bp_step_resume || b->type == bp_hp_step_resume)
3778 {
3779 delete_breakpoint (b);
3780 continue;
3781 }
3782
3783 /* Longjmp and longjmp-resume breakpoints are also meaningless
3784 after an exec. */
3785 if (b->type == bp_longjmp || b->type == bp_longjmp_resume
3786 || b->type == bp_longjmp_call_dummy
3787 || b->type == bp_exception || b->type == bp_exception_resume)
3788 {
3789 delete_breakpoint (b);
3790 continue;
3791 }
3792
3793 if (b->type == bp_catchpoint)
3794 {
3795 /* For now, none of the bp_catchpoint breakpoints need to
3796 do anything at this point. In the future, if some of
3797 the catchpoints need to something, we will need to add
3798 a new method, and call this method from here. */
3799 continue;
3800 }
3801
3802 /* bp_finish is a special case. The only way we ought to be able
3803 to see one of these when an exec() has happened, is if the user
3804 caught a vfork, and then said "finish". Ordinarily a finish just
3805 carries them to the call-site of the current callee, by setting
3806 a temporary bp there and resuming. But in this case, the finish
3807 will carry them entirely through the vfork & exec.
3808
3809 We don't want to allow a bp_finish to remain inserted now. But
3810 we can't safely delete it, 'cause finish_command has a handle to
3811 the bp on a bpstat, and will later want to delete it. There's a
3812 chance (and I've seen it happen) that if we delete the bp_finish
3813 here, that its storage will get reused by the time finish_command
3814 gets 'round to deleting the "use to be a bp_finish" breakpoint.
3815 We really must allow finish_command to delete a bp_finish.
3816
3817 In the absence of a general solution for the "how do we know
3818 it's safe to delete something others may have handles to?"
3819 problem, what we'll do here is just uninsert the bp_finish, and
3820 let finish_command delete it.
3821
3822 (We know the bp_finish is "doomed" in the sense that it's
3823 momentary, and will be deleted as soon as finish_command sees
3824 the inferior stopped. So it doesn't matter that the bp's
3825 address is probably bogus in the new a.out, unlike e.g., the
3826 solib breakpoints.) */
3827
3828 if (b->type == bp_finish)
3829 {
3830 continue;
3831 }
3832
3833 /* Without a symbolic address, we have little hope of the
3834 pre-exec() address meaning the same thing in the post-exec()
3835 a.out. */
3836 if (b->addr_string == NULL)
3837 {
3838 delete_breakpoint (b);
3839 continue;
3840 }
3841 }
3842 /* FIXME what about longjmp breakpoints? Re-create them here? */
3843 create_overlay_event_breakpoint ();
3844 create_longjmp_master_breakpoint ();
3845 create_std_terminate_master_breakpoint ();
3846 create_exception_master_breakpoint ();
3847 }
3848
3849 int
3850 detach_breakpoints (ptid_t ptid)
3851 {
3852 struct bp_location *bl, **blp_tmp;
3853 int val = 0;
3854 struct cleanup *old_chain = save_inferior_ptid ();
3855 struct inferior *inf = current_inferior ();
3856
3857 if (ptid_get_pid (ptid) == ptid_get_pid (inferior_ptid))
3858 error (_("Cannot detach breakpoints of inferior_ptid"));
3859
3860 /* Set inferior_ptid; remove_breakpoint_1 uses this global. */
3861 inferior_ptid = ptid;
3862 ALL_BP_LOCATIONS (bl, blp_tmp)
3863 {
3864 if (bl->pspace != inf->pspace)
3865 continue;
3866
3867 /* This function must physically remove breakpoints locations
3868 from the specified ptid, without modifying the breakpoint
3869 package's state. Locations of type bp_loc_other are only
3870 maintained at GDB side. So, there is no need to remove
3871 these bp_loc_other locations. Moreover, removing these
3872 would modify the breakpoint package's state. */
3873 if (bl->loc_type == bp_loc_other)
3874 continue;
3875
3876 if (bl->inserted)
3877 val |= remove_breakpoint_1 (bl, mark_inserted);
3878 }
3879
3880 /* Detach single-step breakpoints as well. */
3881 detach_single_step_breakpoints ();
3882
3883 do_cleanups (old_chain);
3884 return val;
3885 }
3886
3887 /* Remove the breakpoint location BL from the current address space.
3888 Note that this is used to detach breakpoints from a child fork.
3889 When we get here, the child isn't in the inferior list, and neither
3890 do we have objects to represent its address space --- we should
3891 *not* look at bl->pspace->aspace here. */
3892
3893 static int
3894 remove_breakpoint_1 (struct bp_location *bl, insertion_state_t is)
3895 {
3896 int val;
3897
3898 /* BL is never in moribund_locations by our callers. */
3899 gdb_assert (bl->owner != NULL);
3900
3901 if (bl->owner->enable_state == bp_permanent)
3902 /* Permanent breakpoints cannot be inserted or removed. */
3903 return 0;
3904
3905 /* The type of none suggests that owner is actually deleted.
3906 This should not ever happen. */
3907 gdb_assert (bl->owner->type != bp_none);
3908
3909 if (bl->loc_type == bp_loc_software_breakpoint
3910 || bl->loc_type == bp_loc_hardware_breakpoint)
3911 {
3912 /* "Normal" instruction breakpoint: either the standard
3913 trap-instruction bp (bp_breakpoint), or a
3914 bp_hardware_breakpoint. */
3915
3916 /* First check to see if we have to handle an overlay. */
3917 if (overlay_debugging == ovly_off
3918 || bl->section == NULL
3919 || !(section_is_overlay (bl->section)))
3920 {
3921 /* No overlay handling: just remove the breakpoint. */
3922
3923 /* If we're trying to uninsert a memory breakpoint that we
3924 know is set in a dynamic object that is marked
3925 shlib_disabled, then either the dynamic object was
3926 removed with "remove-symbol-file" or with
3927 "nosharedlibrary". In the former case, we don't know
3928 whether another dynamic object might have loaded over the
3929 breakpoint's address -- the user might well let us know
3930 about it next with add-symbol-file (the whole point of
3931 add-symbol-file is letting the user manually maintain a
3932 list of dynamically loaded objects). If we have the
3933 breakpoint's shadow memory, that is, this is a software
3934 breakpoint managed by GDB, check whether the breakpoint
3935 is still inserted in memory, to avoid overwriting wrong
3936 code with stale saved shadow contents. Note that HW
3937 breakpoints don't have shadow memory, as they're
3938 implemented using a mechanism that is not dependent on
3939 being able to modify the target's memory, and as such
3940 they should always be removed. */
3941 if (bl->shlib_disabled
3942 && bl->target_info.shadow_len != 0
3943 && !memory_validate_breakpoint (bl->gdbarch, &bl->target_info))
3944 val = 0;
3945 else
3946 val = bl->owner->ops->remove_location (bl);
3947 }
3948 else
3949 {
3950 /* This breakpoint is in an overlay section.
3951 Did we set a breakpoint at the LMA? */
3952 if (!overlay_events_enabled)
3953 {
3954 /* Yes -- overlay event support is not active, so we
3955 should have set a breakpoint at the LMA. Remove it.
3956 */
3957 /* Ignore any failures: if the LMA is in ROM, we will
3958 have already warned when we failed to insert it. */
3959 if (bl->loc_type == bp_loc_hardware_breakpoint)
3960 target_remove_hw_breakpoint (bl->gdbarch,
3961 &bl->overlay_target_info);
3962 else
3963 target_remove_breakpoint (bl->gdbarch,
3964 &bl->overlay_target_info);
3965 }
3966 /* Did we set a breakpoint at the VMA?
3967 If so, we will have marked the breakpoint 'inserted'. */
3968 if (bl->inserted)
3969 {
3970 /* Yes -- remove it. Previously we did not bother to
3971 remove the breakpoint if the section had been
3972 unmapped, but let's not rely on that being safe. We
3973 don't know what the overlay manager might do. */
3974
3975 /* However, we should remove *software* breakpoints only
3976 if the section is still mapped, or else we overwrite
3977 wrong code with the saved shadow contents. */
3978 if (bl->loc_type == bp_loc_hardware_breakpoint
3979 || section_is_mapped (bl->section))
3980 val = bl->owner->ops->remove_location (bl);
3981 else
3982 val = 0;
3983 }
3984 else
3985 {
3986 /* No -- not inserted, so no need to remove. No error. */
3987 val = 0;
3988 }
3989 }
3990
3991 /* In some cases, we might not be able to remove a breakpoint in
3992 a shared library that has already been removed, but we have
3993 not yet processed the shlib unload event. Similarly for an
3994 unloaded add-symbol-file object - the user might not yet have
3995 had the chance to remove-symbol-file it. shlib_disabled will
3996 be set if the library/object has already been removed, but
3997 the breakpoint hasn't been uninserted yet, e.g., after
3998 "nosharedlibrary" or "remove-symbol-file" with breakpoints
3999 always-inserted mode. */
4000 if (val
4001 && (bl->loc_type == bp_loc_software_breakpoint
4002 && (bl->shlib_disabled
4003 || solib_name_from_address (bl->pspace, bl->address)
4004 || shared_objfile_contains_address_p (bl->pspace,
4005 bl->address))))
4006 val = 0;
4007
4008 if (val)
4009 return val;
4010 bl->inserted = (is == mark_inserted);
4011 }
4012 else if (bl->loc_type == bp_loc_hardware_watchpoint)
4013 {
4014 gdb_assert (bl->owner->ops != NULL
4015 && bl->owner->ops->remove_location != NULL);
4016
4017 bl->inserted = (is == mark_inserted);
4018 bl->owner->ops->remove_location (bl);
4019
4020 /* Failure to remove any of the hardware watchpoints comes here. */
4021 if ((is == mark_uninserted) && (bl->inserted))
4022 warning (_("Could not remove hardware watchpoint %d."),
4023 bl->owner->number);
4024 }
4025 else if (bl->owner->type == bp_catchpoint
4026 && breakpoint_enabled (bl->owner)
4027 && !bl->duplicate)
4028 {
4029 gdb_assert (bl->owner->ops != NULL
4030 && bl->owner->ops->remove_location != NULL);
4031
4032 val = bl->owner->ops->remove_location (bl);
4033 if (val)
4034 return val;
4035
4036 bl->inserted = (is == mark_inserted);
4037 }
4038
4039 return 0;
4040 }
4041
4042 static int
4043 remove_breakpoint (struct bp_location *bl, insertion_state_t is)
4044 {
4045 int ret;
4046 struct cleanup *old_chain;
4047
4048 /* BL is never in moribund_locations by our callers. */
4049 gdb_assert (bl->owner != NULL);
4050
4051 if (bl->owner->enable_state == bp_permanent)
4052 /* Permanent breakpoints cannot be inserted or removed. */
4053 return 0;
4054
4055 /* The type of none suggests that owner is actually deleted.
4056 This should not ever happen. */
4057 gdb_assert (bl->owner->type != bp_none);
4058
4059 old_chain = save_current_space_and_thread ();
4060
4061 switch_to_program_space_and_thread (bl->pspace);
4062
4063 ret = remove_breakpoint_1 (bl, is);
4064
4065 do_cleanups (old_chain);
4066 return ret;
4067 }
4068
4069 /* Clear the "inserted" flag in all breakpoints. */
4070
4071 void
4072 mark_breakpoints_out (void)
4073 {
4074 struct bp_location *bl, **blp_tmp;
4075
4076 ALL_BP_LOCATIONS (bl, blp_tmp)
4077 if (bl->pspace == current_program_space)
4078 bl->inserted = 0;
4079 }
4080
4081 /* Clear the "inserted" flag in all breakpoints and delete any
4082 breakpoints which should go away between runs of the program.
4083
4084 Plus other such housekeeping that has to be done for breakpoints
4085 between runs.
4086
4087 Note: this function gets called at the end of a run (by
4088 generic_mourn_inferior) and when a run begins (by
4089 init_wait_for_inferior). */
4090
4091
4092
4093 void
4094 breakpoint_init_inferior (enum inf_context context)
4095 {
4096 struct breakpoint *b, *b_tmp;
4097 struct bp_location *bl, **blp_tmp;
4098 int ix;
4099 struct program_space *pspace = current_program_space;
4100
4101 /* If breakpoint locations are shared across processes, then there's
4102 nothing to do. */
4103 if (gdbarch_has_global_breakpoints (target_gdbarch ()))
4104 return;
4105
4106 ALL_BP_LOCATIONS (bl, blp_tmp)
4107 {
4108 /* ALL_BP_LOCATIONS bp_location has BL->OWNER always non-NULL. */
4109 if (bl->pspace == pspace
4110 && bl->owner->enable_state != bp_permanent)
4111 bl->inserted = 0;
4112 }
4113
4114 ALL_BREAKPOINTS_SAFE (b, b_tmp)
4115 {
4116 if (b->loc && b->loc->pspace != pspace)
4117 continue;
4118
4119 switch (b->type)
4120 {
4121 case bp_call_dummy:
4122 case bp_longjmp_call_dummy:
4123
4124 /* If the call dummy breakpoint is at the entry point it will
4125 cause problems when the inferior is rerun, so we better get
4126 rid of it. */
4127
4128 case bp_watchpoint_scope:
4129
4130 /* Also get rid of scope breakpoints. */
4131
4132 case bp_shlib_event:
4133
4134 /* Also remove solib event breakpoints. Their addresses may
4135 have changed since the last time we ran the program.
4136 Actually we may now be debugging against different target;
4137 and so the solib backend that installed this breakpoint may
4138 not be used in by the target. E.g.,
4139
4140 (gdb) file prog-linux
4141 (gdb) run # native linux target
4142 ...
4143 (gdb) kill
4144 (gdb) file prog-win.exe
4145 (gdb) tar rem :9999 # remote Windows gdbserver.
4146 */
4147
4148 case bp_step_resume:
4149
4150 /* Also remove step-resume breakpoints. */
4151
4152 delete_breakpoint (b);
4153 break;
4154
4155 case bp_watchpoint:
4156 case bp_hardware_watchpoint:
4157 case bp_read_watchpoint:
4158 case bp_access_watchpoint:
4159 {
4160 struct watchpoint *w = (struct watchpoint *) b;
4161
4162 /* Likewise for watchpoints on local expressions. */
4163 if (w->exp_valid_block != NULL)
4164 delete_breakpoint (b);
4165 else if (context == inf_starting)
4166 {
4167 /* Reset val field to force reread of starting value in
4168 insert_breakpoints. */
4169 if (w->val)
4170 value_free (w->val);
4171 w->val = NULL;
4172 w->val_valid = 0;
4173 }
4174 }
4175 break;
4176 default:
4177 break;
4178 }
4179 }
4180
4181 /* Get rid of the moribund locations. */
4182 for (ix = 0; VEC_iterate (bp_location_p, moribund_locations, ix, bl); ++ix)
4183 decref_bp_location (&bl);
4184 VEC_free (bp_location_p, moribund_locations);
4185 }
4186
4187 /* These functions concern about actual breakpoints inserted in the
4188 target --- to e.g. check if we need to do decr_pc adjustment or if
4189 we need to hop over the bkpt --- so we check for address space
4190 match, not program space. */
4191
4192 /* breakpoint_here_p (PC) returns non-zero if an enabled breakpoint
4193 exists at PC. It returns ordinary_breakpoint_here if it's an
4194 ordinary breakpoint, or permanent_breakpoint_here if it's a
4195 permanent breakpoint.
4196 - When continuing from a location with an ordinary breakpoint, we
4197 actually single step once before calling insert_breakpoints.
4198 - When continuing from a location with a permanent breakpoint, we
4199 need to use the `SKIP_PERMANENT_BREAKPOINT' macro, provided by
4200 the target, to advance the PC past the breakpoint. */
4201
4202 enum breakpoint_here
4203 breakpoint_here_p (struct address_space *aspace, CORE_ADDR pc)
4204 {
4205 struct bp_location *bl, **blp_tmp;
4206 int any_breakpoint_here = 0;
4207
4208 ALL_BP_LOCATIONS (bl, blp_tmp)
4209 {
4210 if (bl->loc_type != bp_loc_software_breakpoint
4211 && bl->loc_type != bp_loc_hardware_breakpoint)
4212 continue;
4213
4214 /* ALL_BP_LOCATIONS bp_location has BL->OWNER always non-NULL. */
4215 if ((breakpoint_enabled (bl->owner)
4216 || bl->owner->enable_state == bp_permanent)
4217 && breakpoint_location_address_match (bl, aspace, pc))
4218 {
4219 if (overlay_debugging
4220 && section_is_overlay (bl->section)
4221 && !section_is_mapped (bl->section))
4222 continue; /* unmapped overlay -- can't be a match */
4223 else if (bl->owner->enable_state == bp_permanent)
4224 return permanent_breakpoint_here;
4225 else
4226 any_breakpoint_here = 1;
4227 }
4228 }
4229
4230 return any_breakpoint_here ? ordinary_breakpoint_here : 0;
4231 }
4232
4233 /* Return true if there's a moribund breakpoint at PC. */
4234
4235 int
4236 moribund_breakpoint_here_p (struct address_space *aspace, CORE_ADDR pc)
4237 {
4238 struct bp_location *loc;
4239 int ix;
4240
4241 for (ix = 0; VEC_iterate (bp_location_p, moribund_locations, ix, loc); ++ix)
4242 if (breakpoint_location_address_match (loc, aspace, pc))
4243 return 1;
4244
4245 return 0;
4246 }
4247
4248 /* Returns non-zero if there's a breakpoint inserted at PC, which is
4249 inserted using regular breakpoint_chain / bp_location array
4250 mechanism. This does not check for single-step breakpoints, which
4251 are inserted and removed using direct target manipulation. */
4252
4253 int
4254 regular_breakpoint_inserted_here_p (struct address_space *aspace,
4255 CORE_ADDR pc)
4256 {
4257 struct bp_location *bl, **blp_tmp;
4258
4259 ALL_BP_LOCATIONS (bl, blp_tmp)
4260 {
4261 if (bl->loc_type != bp_loc_software_breakpoint
4262 && bl->loc_type != bp_loc_hardware_breakpoint)
4263 continue;
4264
4265 if (bl->inserted
4266 && breakpoint_location_address_match (bl, aspace, pc))
4267 {
4268 if (overlay_debugging
4269 && section_is_overlay (bl->section)
4270 && !section_is_mapped (bl->section))
4271 continue; /* unmapped overlay -- can't be a match */
4272 else
4273 return 1;
4274 }
4275 }
4276 return 0;
4277 }
4278
4279 /* Returns non-zero iff there's either regular breakpoint
4280 or a single step breakpoint inserted at PC. */
4281
4282 int
4283 breakpoint_inserted_here_p (struct address_space *aspace, CORE_ADDR pc)
4284 {
4285 if (regular_breakpoint_inserted_here_p (aspace, pc))
4286 return 1;
4287
4288 if (single_step_breakpoint_inserted_here_p (aspace, pc))
4289 return 1;
4290
4291 return 0;
4292 }
4293
4294 /* Ignoring deprecated raw breakpoints, return non-zero iff there is a
4295 software breakpoint inserted at PC. */
4296
4297 static struct bp_location *
4298 find_non_raw_software_breakpoint_inserted_here (struct address_space *aspace,
4299 CORE_ADDR pc)
4300 {
4301 struct bp_location *bl, **blp_tmp;
4302
4303 ALL_BP_LOCATIONS (bl, blp_tmp)
4304 {
4305 if (bl->loc_type != bp_loc_software_breakpoint)
4306 continue;
4307
4308 if (bl->inserted
4309 && breakpoint_address_match (bl->pspace->aspace, bl->address,
4310 aspace, pc))
4311 {
4312 if (overlay_debugging
4313 && section_is_overlay (bl->section)
4314 && !section_is_mapped (bl->section))
4315 continue; /* unmapped overlay -- can't be a match */
4316 else
4317 return bl;
4318 }
4319 }
4320
4321 return NULL;
4322 }
4323
4324 /* This function returns non-zero iff there is a software breakpoint
4325 inserted at PC. */
4326
4327 int
4328 software_breakpoint_inserted_here_p (struct address_space *aspace,
4329 CORE_ADDR pc)
4330 {
4331 if (find_non_raw_software_breakpoint_inserted_here (aspace, pc) != NULL)
4332 return 1;
4333
4334 /* Also check for software single-step breakpoints. */
4335 if (single_step_breakpoint_inserted_here_p (aspace, pc))
4336 return 1;
4337
4338 return 0;
4339 }
4340
4341 int
4342 hardware_watchpoint_inserted_in_range (struct address_space *aspace,
4343 CORE_ADDR addr, ULONGEST len)
4344 {
4345 struct breakpoint *bpt;
4346
4347 ALL_BREAKPOINTS (bpt)
4348 {
4349 struct bp_location *loc;
4350
4351 if (bpt->type != bp_hardware_watchpoint
4352 && bpt->type != bp_access_watchpoint)
4353 continue;
4354
4355 if (!breakpoint_enabled (bpt))
4356 continue;
4357
4358 for (loc = bpt->loc; loc; loc = loc->next)
4359 if (loc->pspace->aspace == aspace && loc->inserted)
4360 {
4361 CORE_ADDR l, h;
4362
4363 /* Check for intersection. */
4364 l = max (loc->address, addr);
4365 h = min (loc->address + loc->length, addr + len);
4366 if (l < h)
4367 return 1;
4368 }
4369 }
4370 return 0;
4371 }
4372
4373 /* breakpoint_thread_match (PC, PTID) returns true if the breakpoint at
4374 PC is valid for process/thread PTID. */
4375
4376 int
4377 breakpoint_thread_match (struct address_space *aspace, CORE_ADDR pc,
4378 ptid_t ptid)
4379 {
4380 struct bp_location *bl, **blp_tmp;
4381 /* The thread and task IDs associated to PTID, computed lazily. */
4382 int thread = -1;
4383 int task = 0;
4384
4385 ALL_BP_LOCATIONS (bl, blp_tmp)
4386 {
4387 if (bl->loc_type != bp_loc_software_breakpoint
4388 && bl->loc_type != bp_loc_hardware_breakpoint)
4389 continue;
4390
4391 /* ALL_BP_LOCATIONS bp_location has bl->OWNER always non-NULL. */
4392 if (!breakpoint_enabled (bl->owner)
4393 && bl->owner->enable_state != bp_permanent)
4394 continue;
4395
4396 if (!breakpoint_location_address_match (bl, aspace, pc))
4397 continue;
4398
4399 if (bl->owner->thread != -1)
4400 {
4401 /* This is a thread-specific breakpoint. Check that ptid
4402 matches that thread. If thread hasn't been computed yet,
4403 it is now time to do so. */
4404 if (thread == -1)
4405 thread = pid_to_thread_id (ptid);
4406 if (bl->owner->thread != thread)
4407 continue;
4408 }
4409
4410 if (bl->owner->task != 0)
4411 {
4412 /* This is a task-specific breakpoint. Check that ptid
4413 matches that task. If task hasn't been computed yet,
4414 it is now time to do so. */
4415 if (task == 0)
4416 task = ada_get_task_number (ptid);
4417 if (bl->owner->task != task)
4418 continue;
4419 }
4420
4421 if (overlay_debugging
4422 && section_is_overlay (bl->section)
4423 && !section_is_mapped (bl->section))
4424 continue; /* unmapped overlay -- can't be a match */
4425
4426 return 1;
4427 }
4428
4429 return 0;
4430 }
4431 \f
4432
4433 /* bpstat stuff. External routines' interfaces are documented
4434 in breakpoint.h. */
4435
4436 int
4437 is_catchpoint (struct breakpoint *ep)
4438 {
4439 return (ep->type == bp_catchpoint);
4440 }
4441
4442 /* Frees any storage that is part of a bpstat. Does not walk the
4443 'next' chain. */
4444
4445 static void
4446 bpstat_free (bpstat bs)
4447 {
4448 if (bs->old_val != NULL)
4449 value_free (bs->old_val);
4450 decref_counted_command_line (&bs->commands);
4451 decref_bp_location (&bs->bp_location_at);
4452 xfree (bs);
4453 }
4454
4455 /* Clear a bpstat so that it says we are not at any breakpoint.
4456 Also free any storage that is part of a bpstat. */
4457
4458 void
4459 bpstat_clear (bpstat *bsp)
4460 {
4461 bpstat p;
4462 bpstat q;
4463
4464 if (bsp == 0)
4465 return;
4466 p = *bsp;
4467 while (p != NULL)
4468 {
4469 q = p->next;
4470 bpstat_free (p);
4471 p = q;
4472 }
4473 *bsp = NULL;
4474 }
4475
4476 /* Return a copy of a bpstat. Like "bs1 = bs2" but all storage that
4477 is part of the bpstat is copied as well. */
4478
4479 bpstat
4480 bpstat_copy (bpstat bs)
4481 {
4482 bpstat p = NULL;
4483 bpstat tmp;
4484 bpstat retval = NULL;
4485
4486 if (bs == NULL)
4487 return bs;
4488
4489 for (; bs != NULL; bs = bs->next)
4490 {
4491 tmp = (bpstat) xmalloc (sizeof (*tmp));
4492 memcpy (tmp, bs, sizeof (*tmp));
4493 incref_counted_command_line (tmp->commands);
4494 incref_bp_location (tmp->bp_location_at);
4495 if (bs->old_val != NULL)
4496 {
4497 tmp->old_val = value_copy (bs->old_val);
4498 release_value (tmp->old_val);
4499 }
4500
4501 if (p == NULL)
4502 /* This is the first thing in the chain. */
4503 retval = tmp;
4504 else
4505 p->next = tmp;
4506 p = tmp;
4507 }
4508 p->next = NULL;
4509 return retval;
4510 }
4511
4512 /* Find the bpstat associated with this breakpoint. */
4513
4514 bpstat
4515 bpstat_find_breakpoint (bpstat bsp, struct breakpoint *breakpoint)
4516 {
4517 if (bsp == NULL)
4518 return NULL;
4519
4520 for (; bsp != NULL; bsp = bsp->next)
4521 {
4522 if (bsp->breakpoint_at == breakpoint)
4523 return bsp;
4524 }
4525 return NULL;
4526 }
4527
4528 /* See breakpoint.h. */
4529
4530 int
4531 bpstat_explains_signal (bpstat bsp, enum gdb_signal sig)
4532 {
4533 for (; bsp != NULL; bsp = bsp->next)
4534 {
4535 if (bsp->breakpoint_at == NULL)
4536 {
4537 /* A moribund location can never explain a signal other than
4538 GDB_SIGNAL_TRAP. */
4539 if (sig == GDB_SIGNAL_TRAP)
4540 return 1;
4541 }
4542 else
4543 {
4544 if (bsp->breakpoint_at->ops->explains_signal (bsp->breakpoint_at,
4545 sig))
4546 return 1;
4547 }
4548 }
4549
4550 return 0;
4551 }
4552
4553 /* Put in *NUM the breakpoint number of the first breakpoint we are
4554 stopped at. *BSP upon return is a bpstat which points to the
4555 remaining breakpoints stopped at (but which is not guaranteed to be
4556 good for anything but further calls to bpstat_num).
4557
4558 Return 0 if passed a bpstat which does not indicate any breakpoints.
4559 Return -1 if stopped at a breakpoint that has been deleted since
4560 we set it.
4561 Return 1 otherwise. */
4562
4563 int
4564 bpstat_num (bpstat *bsp, int *num)
4565 {
4566 struct breakpoint *b;
4567
4568 if ((*bsp) == NULL)
4569 return 0; /* No more breakpoint values */
4570
4571 /* We assume we'll never have several bpstats that correspond to a
4572 single breakpoint -- otherwise, this function might return the
4573 same number more than once and this will look ugly. */
4574 b = (*bsp)->breakpoint_at;
4575 *bsp = (*bsp)->next;
4576 if (b == NULL)
4577 return -1; /* breakpoint that's been deleted since */
4578
4579 *num = b->number; /* We have its number */
4580 return 1;
4581 }
4582
4583 /* See breakpoint.h. */
4584
4585 void
4586 bpstat_clear_actions (void)
4587 {
4588 struct thread_info *tp;
4589 bpstat bs;
4590
4591 if (ptid_equal (inferior_ptid, null_ptid))
4592 return;
4593
4594 tp = find_thread_ptid (inferior_ptid);
4595 if (tp == NULL)
4596 return;
4597
4598 for (bs = tp->control.stop_bpstat; bs != NULL; bs = bs->next)
4599 {
4600 decref_counted_command_line (&bs->commands);
4601
4602 if (bs->old_val != NULL)
4603 {
4604 value_free (bs->old_val);
4605 bs->old_val = NULL;
4606 }
4607 }
4608 }
4609
4610 /* Called when a command is about to proceed the inferior. */
4611
4612 static void
4613 breakpoint_about_to_proceed (void)
4614 {
4615 if (!ptid_equal (inferior_ptid, null_ptid))
4616 {
4617 struct thread_info *tp = inferior_thread ();
4618
4619 /* Allow inferior function calls in breakpoint commands to not
4620 interrupt the command list. When the call finishes
4621 successfully, the inferior will be standing at the same
4622 breakpoint as if nothing happened. */
4623 if (tp->control.in_infcall)
4624 return;
4625 }
4626
4627 breakpoint_proceeded = 1;
4628 }
4629
4630 /* Stub for cleaning up our state if we error-out of a breakpoint
4631 command. */
4632 static void
4633 cleanup_executing_breakpoints (void *ignore)
4634 {
4635 executing_breakpoint_commands = 0;
4636 }
4637
4638 /* Return non-zero iff CMD as the first line of a command sequence is `silent'
4639 or its equivalent. */
4640
4641 static int
4642 command_line_is_silent (struct command_line *cmd)
4643 {
4644 return cmd && (strcmp ("silent", cmd->line) == 0
4645 || (xdb_commands && strcmp ("Q", cmd->line) == 0));
4646 }
4647
4648 /* Execute all the commands associated with all the breakpoints at
4649 this location. Any of these commands could cause the process to
4650 proceed beyond this point, etc. We look out for such changes by
4651 checking the global "breakpoint_proceeded" after each command.
4652
4653 Returns true if a breakpoint command resumed the inferior. In that
4654 case, it is the caller's responsibility to recall it again with the
4655 bpstat of the current thread. */
4656
4657 static int
4658 bpstat_do_actions_1 (bpstat *bsp)
4659 {
4660 bpstat bs;
4661 struct cleanup *old_chain;
4662 int again = 0;
4663
4664 /* Avoid endless recursion if a `source' command is contained
4665 in bs->commands. */
4666 if (executing_breakpoint_commands)
4667 return 0;
4668
4669 executing_breakpoint_commands = 1;
4670 old_chain = make_cleanup (cleanup_executing_breakpoints, 0);
4671
4672 prevent_dont_repeat ();
4673
4674 /* This pointer will iterate over the list of bpstat's. */
4675 bs = *bsp;
4676
4677 breakpoint_proceeded = 0;
4678 for (; bs != NULL; bs = bs->next)
4679 {
4680 struct counted_command_line *ccmd;
4681 struct command_line *cmd;
4682 struct cleanup *this_cmd_tree_chain;
4683
4684 /* Take ownership of the BSP's command tree, if it has one.
4685
4686 The command tree could legitimately contain commands like
4687 'step' and 'next', which call clear_proceed_status, which
4688 frees stop_bpstat's command tree. To make sure this doesn't
4689 free the tree we're executing out from under us, we need to
4690 take ownership of the tree ourselves. Since a given bpstat's
4691 commands are only executed once, we don't need to copy it; we
4692 can clear the pointer in the bpstat, and make sure we free
4693 the tree when we're done. */
4694 ccmd = bs->commands;
4695 bs->commands = NULL;
4696 this_cmd_tree_chain = make_cleanup_decref_counted_command_line (&ccmd);
4697 cmd = ccmd ? ccmd->commands : NULL;
4698 if (command_line_is_silent (cmd))
4699 {
4700 /* The action has been already done by bpstat_stop_status. */
4701 cmd = cmd->next;
4702 }
4703
4704 while (cmd != NULL)
4705 {
4706 execute_control_command (cmd);
4707
4708 if (breakpoint_proceeded)
4709 break;
4710 else
4711 cmd = cmd->next;
4712 }
4713
4714 /* We can free this command tree now. */
4715 do_cleanups (this_cmd_tree_chain);
4716
4717 if (breakpoint_proceeded)
4718 {
4719 if (target_can_async_p ())
4720 /* If we are in async mode, then the target might be still
4721 running, not stopped at any breakpoint, so nothing for
4722 us to do here -- just return to the event loop. */
4723 ;
4724 else
4725 /* In sync mode, when execute_control_command returns
4726 we're already standing on the next breakpoint.
4727 Breakpoint commands for that stop were not run, since
4728 execute_command does not run breakpoint commands --
4729 only command_line_handler does, but that one is not
4730 involved in execution of breakpoint commands. So, we
4731 can now execute breakpoint commands. It should be
4732 noted that making execute_command do bpstat actions is
4733 not an option -- in this case we'll have recursive
4734 invocation of bpstat for each breakpoint with a
4735 command, and can easily blow up GDB stack. Instead, we
4736 return true, which will trigger the caller to recall us
4737 with the new stop_bpstat. */
4738 again = 1;
4739 break;
4740 }
4741 }
4742 do_cleanups (old_chain);
4743 return again;
4744 }
4745
4746 void
4747 bpstat_do_actions (void)
4748 {
4749 struct cleanup *cleanup_if_error = make_bpstat_clear_actions_cleanup ();
4750
4751 /* Do any commands attached to breakpoint we are stopped at. */
4752 while (!ptid_equal (inferior_ptid, null_ptid)
4753 && target_has_execution
4754 && !is_exited (inferior_ptid)
4755 && !is_executing (inferior_ptid))
4756 /* Since in sync mode, bpstat_do_actions may resume the inferior,
4757 and only return when it is stopped at the next breakpoint, we
4758 keep doing breakpoint actions until it returns false to
4759 indicate the inferior was not resumed. */
4760 if (!bpstat_do_actions_1 (&inferior_thread ()->control.stop_bpstat))
4761 break;
4762
4763 discard_cleanups (cleanup_if_error);
4764 }
4765
4766 /* Print out the (old or new) value associated with a watchpoint. */
4767
4768 static void
4769 watchpoint_value_print (struct value *val, struct ui_file *stream)
4770 {
4771 if (val == NULL)
4772 fprintf_unfiltered (stream, _("<unreadable>"));
4773 else
4774 {
4775 struct value_print_options opts;
4776 get_user_print_options (&opts);
4777 value_print (val, stream, &opts);
4778 }
4779 }
4780
4781 /* Generic routine for printing messages indicating why we
4782 stopped. The behavior of this function depends on the value
4783 'print_it' in the bpstat structure. Under some circumstances we
4784 may decide not to print anything here and delegate the task to
4785 normal_stop(). */
4786
4787 static enum print_stop_action
4788 print_bp_stop_message (bpstat bs)
4789 {
4790 switch (bs->print_it)
4791 {
4792 case print_it_noop:
4793 /* Nothing should be printed for this bpstat entry. */
4794 return PRINT_UNKNOWN;
4795 break;
4796
4797 case print_it_done:
4798 /* We still want to print the frame, but we already printed the
4799 relevant messages. */
4800 return PRINT_SRC_AND_LOC;
4801 break;
4802
4803 case print_it_normal:
4804 {
4805 struct breakpoint *b = bs->breakpoint_at;
4806
4807 /* bs->breakpoint_at can be NULL if it was a momentary breakpoint
4808 which has since been deleted. */
4809 if (b == NULL)
4810 return PRINT_UNKNOWN;
4811
4812 /* Normal case. Call the breakpoint's print_it method. */
4813 return b->ops->print_it (bs);
4814 }
4815 break;
4816
4817 default:
4818 internal_error (__FILE__, __LINE__,
4819 _("print_bp_stop_message: unrecognized enum value"));
4820 break;
4821 }
4822 }
4823
4824 /* A helper function that prints a shared library stopped event. */
4825
4826 static void
4827 print_solib_event (int is_catchpoint)
4828 {
4829 int any_deleted
4830 = !VEC_empty (char_ptr, current_program_space->deleted_solibs);
4831 int any_added
4832 = !VEC_empty (so_list_ptr, current_program_space->added_solibs);
4833
4834 if (!is_catchpoint)
4835 {
4836 if (any_added || any_deleted)
4837 ui_out_text (current_uiout,
4838 _("Stopped due to shared library event:\n"));
4839 else
4840 ui_out_text (current_uiout,
4841 _("Stopped due to shared library event (no "
4842 "libraries added or removed)\n"));
4843 }
4844
4845 if (ui_out_is_mi_like_p (current_uiout))
4846 ui_out_field_string (current_uiout, "reason",
4847 async_reason_lookup (EXEC_ASYNC_SOLIB_EVENT));
4848
4849 if (any_deleted)
4850 {
4851 struct cleanup *cleanup;
4852 char *name;
4853 int ix;
4854
4855 ui_out_text (current_uiout, _(" Inferior unloaded "));
4856 cleanup = make_cleanup_ui_out_list_begin_end (current_uiout,
4857 "removed");
4858 for (ix = 0;
4859 VEC_iterate (char_ptr, current_program_space->deleted_solibs,
4860 ix, name);
4861 ++ix)
4862 {
4863 if (ix > 0)
4864 ui_out_text (current_uiout, " ");
4865 ui_out_field_string (current_uiout, "library", name);
4866 ui_out_text (current_uiout, "\n");
4867 }
4868
4869 do_cleanups (cleanup);
4870 }
4871
4872 if (any_added)
4873 {
4874 struct so_list *iter;
4875 int ix;
4876 struct cleanup *cleanup;
4877
4878 ui_out_text (current_uiout, _(" Inferior loaded "));
4879 cleanup = make_cleanup_ui_out_list_begin_end (current_uiout,
4880 "added");
4881 for (ix = 0;
4882 VEC_iterate (so_list_ptr, current_program_space->added_solibs,
4883 ix, iter);
4884 ++ix)
4885 {
4886 if (ix > 0)
4887 ui_out_text (current_uiout, " ");
4888 ui_out_field_string (current_uiout, "library", iter->so_name);
4889 ui_out_text (current_uiout, "\n");
4890 }
4891
4892 do_cleanups (cleanup);
4893 }
4894 }
4895
4896 /* Print a message indicating what happened. This is called from
4897 normal_stop(). The input to this routine is the head of the bpstat
4898 list - a list of the eventpoints that caused this stop. KIND is
4899 the target_waitkind for the stopping event. This
4900 routine calls the generic print routine for printing a message
4901 about reasons for stopping. This will print (for example) the
4902 "Breakpoint n," part of the output. The return value of this
4903 routine is one of:
4904
4905 PRINT_UNKNOWN: Means we printed nothing.
4906 PRINT_SRC_AND_LOC: Means we printed something, and expect subsequent
4907 code to print the location. An example is
4908 "Breakpoint 1, " which should be followed by
4909 the location.
4910 PRINT_SRC_ONLY: Means we printed something, but there is no need
4911 to also print the location part of the message.
4912 An example is the catch/throw messages, which
4913 don't require a location appended to the end.
4914 PRINT_NOTHING: We have done some printing and we don't need any
4915 further info to be printed. */
4916
4917 enum print_stop_action
4918 bpstat_print (bpstat bs, int kind)
4919 {
4920 int val;
4921
4922 /* Maybe another breakpoint in the chain caused us to stop.
4923 (Currently all watchpoints go on the bpstat whether hit or not.
4924 That probably could (should) be changed, provided care is taken
4925 with respect to bpstat_explains_signal). */
4926 for (; bs; bs = bs->next)
4927 {
4928 val = print_bp_stop_message (bs);
4929 if (val == PRINT_SRC_ONLY
4930 || val == PRINT_SRC_AND_LOC
4931 || val == PRINT_NOTHING)
4932 return val;
4933 }
4934
4935 /* If we had hit a shared library event breakpoint,
4936 print_bp_stop_message would print out this message. If we hit an
4937 OS-level shared library event, do the same thing. */
4938 if (kind == TARGET_WAITKIND_LOADED)
4939 {
4940 print_solib_event (0);
4941 return PRINT_NOTHING;
4942 }
4943
4944 /* We reached the end of the chain, or we got a null BS to start
4945 with and nothing was printed. */
4946 return PRINT_UNKNOWN;
4947 }
4948
4949 /* Evaluate the expression EXP and return 1 if value is zero.
4950 This returns the inverse of the condition because it is called
4951 from catch_errors which returns 0 if an exception happened, and if an
4952 exception happens we want execution to stop.
4953 The argument is a "struct expression *" that has been cast to a
4954 "void *" to make it pass through catch_errors. */
4955
4956 static int
4957 breakpoint_cond_eval (void *exp)
4958 {
4959 struct value *mark = value_mark ();
4960 int i = !value_true (evaluate_expression ((struct expression *) exp));
4961
4962 value_free_to_mark (mark);
4963 return i;
4964 }
4965
4966 /* Allocate a new bpstat. Link it to the FIFO list by BS_LINK_POINTER. */
4967
4968 static bpstat
4969 bpstat_alloc (struct bp_location *bl, bpstat **bs_link_pointer)
4970 {
4971 bpstat bs;
4972
4973 bs = (bpstat) xmalloc (sizeof (*bs));
4974 bs->next = NULL;
4975 **bs_link_pointer = bs;
4976 *bs_link_pointer = &bs->next;
4977 bs->breakpoint_at = bl->owner;
4978 bs->bp_location_at = bl;
4979 incref_bp_location (bl);
4980 /* If the condition is false, etc., don't do the commands. */
4981 bs->commands = NULL;
4982 bs->old_val = NULL;
4983 bs->print_it = print_it_normal;
4984 return bs;
4985 }
4986 \f
4987 /* The target has stopped with waitstatus WS. Check if any hardware
4988 watchpoints have triggered, according to the target. */
4989
4990 int
4991 watchpoints_triggered (struct target_waitstatus *ws)
4992 {
4993 int stopped_by_watchpoint = target_stopped_by_watchpoint ();
4994 CORE_ADDR addr;
4995 struct breakpoint *b;
4996
4997 if (!stopped_by_watchpoint)
4998 {
4999 /* We were not stopped by a watchpoint. Mark all watchpoints
5000 as not triggered. */
5001 ALL_BREAKPOINTS (b)
5002 if (is_hardware_watchpoint (b))
5003 {
5004 struct watchpoint *w = (struct watchpoint *) b;
5005
5006 w->watchpoint_triggered = watch_triggered_no;
5007 }
5008
5009 return 0;
5010 }
5011
5012 if (!target_stopped_data_address (&current_target, &addr))
5013 {
5014 /* We were stopped by a watchpoint, but we don't know where.
5015 Mark all watchpoints as unknown. */
5016 ALL_BREAKPOINTS (b)
5017 if (is_hardware_watchpoint (b))
5018 {
5019 struct watchpoint *w = (struct watchpoint *) b;
5020
5021 w->watchpoint_triggered = watch_triggered_unknown;
5022 }
5023
5024 return 1;
5025 }
5026
5027 /* The target could report the data address. Mark watchpoints
5028 affected by this data address as triggered, and all others as not
5029 triggered. */
5030
5031 ALL_BREAKPOINTS (b)
5032 if (is_hardware_watchpoint (b))
5033 {
5034 struct watchpoint *w = (struct watchpoint *) b;
5035 struct bp_location *loc;
5036
5037 w->watchpoint_triggered = watch_triggered_no;
5038 for (loc = b->loc; loc; loc = loc->next)
5039 {
5040 if (is_masked_watchpoint (b))
5041 {
5042 CORE_ADDR newaddr = addr & w->hw_wp_mask;
5043 CORE_ADDR start = loc->address & w->hw_wp_mask;
5044
5045 if (newaddr == start)
5046 {
5047 w->watchpoint_triggered = watch_triggered_yes;
5048 break;
5049 }
5050 }
5051 /* Exact match not required. Within range is sufficient. */
5052 else if (target_watchpoint_addr_within_range (&current_target,
5053 addr, loc->address,
5054 loc->length))
5055 {
5056 w->watchpoint_triggered = watch_triggered_yes;
5057 break;
5058 }
5059 }
5060 }
5061
5062 return 1;
5063 }
5064
5065 /* Possible return values for watchpoint_check (this can't be an enum
5066 because of check_errors). */
5067 /* The watchpoint has been deleted. */
5068 #define WP_DELETED 1
5069 /* The value has changed. */
5070 #define WP_VALUE_CHANGED 2
5071 /* The value has not changed. */
5072 #define WP_VALUE_NOT_CHANGED 3
5073 /* Ignore this watchpoint, no matter if the value changed or not. */
5074 #define WP_IGNORE 4
5075
5076 #define BP_TEMPFLAG 1
5077 #define BP_HARDWAREFLAG 2
5078
5079 /* Evaluate watchpoint condition expression and check if its value
5080 changed.
5081
5082 P should be a pointer to struct bpstat, but is defined as a void *
5083 in order for this function to be usable with catch_errors. */
5084
5085 static int
5086 watchpoint_check (void *p)
5087 {
5088 bpstat bs = (bpstat) p;
5089 struct watchpoint *b;
5090 struct frame_info *fr;
5091 int within_current_scope;
5092
5093 /* BS is built from an existing struct breakpoint. */
5094 gdb_assert (bs->breakpoint_at != NULL);
5095 b = (struct watchpoint *) bs->breakpoint_at;
5096
5097 /* If this is a local watchpoint, we only want to check if the
5098 watchpoint frame is in scope if the current thread is the thread
5099 that was used to create the watchpoint. */
5100 if (!watchpoint_in_thread_scope (b))
5101 return WP_IGNORE;
5102
5103 if (b->exp_valid_block == NULL)
5104 within_current_scope = 1;
5105 else
5106 {
5107 struct frame_info *frame = get_current_frame ();
5108 struct gdbarch *frame_arch = get_frame_arch (frame);
5109 CORE_ADDR frame_pc = get_frame_pc (frame);
5110
5111 /* in_function_epilogue_p() returns a non-zero value if we're
5112 still in the function but the stack frame has already been
5113 invalidated. Since we can't rely on the values of local
5114 variables after the stack has been destroyed, we are treating
5115 the watchpoint in that state as `not changed' without further
5116 checking. Don't mark watchpoints as changed if the current
5117 frame is in an epilogue - even if they are in some other
5118 frame, our view of the stack is likely to be wrong and
5119 frame_find_by_id could error out. */
5120 if (gdbarch_in_function_epilogue_p (frame_arch, frame_pc))
5121 return WP_IGNORE;
5122
5123 fr = frame_find_by_id (b->watchpoint_frame);
5124 within_current_scope = (fr != NULL);
5125
5126 /* If we've gotten confused in the unwinder, we might have
5127 returned a frame that can't describe this variable. */
5128 if (within_current_scope)
5129 {
5130 struct symbol *function;
5131
5132 function = get_frame_function (fr);
5133 if (function == NULL
5134 || !contained_in (b->exp_valid_block,
5135 SYMBOL_BLOCK_VALUE (function)))
5136 within_current_scope = 0;
5137 }
5138
5139 if (within_current_scope)
5140 /* If we end up stopping, the current frame will get selected
5141 in normal_stop. So this call to select_frame won't affect
5142 the user. */
5143 select_frame (fr);
5144 }
5145
5146 if (within_current_scope)
5147 {
5148 /* We use value_{,free_to_}mark because it could be a *long*
5149 time before we return to the command level and call
5150 free_all_values. We can't call free_all_values because we
5151 might be in the middle of evaluating a function call. */
5152
5153 int pc = 0;
5154 struct value *mark;
5155 struct value *new_val;
5156
5157 if (is_masked_watchpoint (&b->base))
5158 /* Since we don't know the exact trigger address (from
5159 stopped_data_address), just tell the user we've triggered
5160 a mask watchpoint. */
5161 return WP_VALUE_CHANGED;
5162
5163 mark = value_mark ();
5164 fetch_subexp_value (b->exp, &pc, &new_val, NULL, NULL, 0);
5165
5166 if (b->val_bitsize != 0)
5167 new_val = extract_bitfield_from_watchpoint_value (b, new_val);
5168
5169 /* We use value_equal_contents instead of value_equal because
5170 the latter coerces an array to a pointer, thus comparing just
5171 the address of the array instead of its contents. This is
5172 not what we want. */
5173 if ((b->val != NULL) != (new_val != NULL)
5174 || (b->val != NULL && !value_equal_contents (b->val, new_val)))
5175 {
5176 if (new_val != NULL)
5177 {
5178 release_value (new_val);
5179 value_free_to_mark (mark);
5180 }
5181 bs->old_val = b->val;
5182 b->val = new_val;
5183 b->val_valid = 1;
5184 return WP_VALUE_CHANGED;
5185 }
5186 else
5187 {
5188 /* Nothing changed. */
5189 value_free_to_mark (mark);
5190 return WP_VALUE_NOT_CHANGED;
5191 }
5192 }
5193 else
5194 {
5195 struct ui_out *uiout = current_uiout;
5196
5197 /* This seems like the only logical thing to do because
5198 if we temporarily ignored the watchpoint, then when
5199 we reenter the block in which it is valid it contains
5200 garbage (in the case of a function, it may have two
5201 garbage values, one before and one after the prologue).
5202 So we can't even detect the first assignment to it and
5203 watch after that (since the garbage may or may not equal
5204 the first value assigned). */
5205 /* We print all the stop information in
5206 breakpoint_ops->print_it, but in this case, by the time we
5207 call breakpoint_ops->print_it this bp will be deleted
5208 already. So we have no choice but print the information
5209 here. */
5210 if (ui_out_is_mi_like_p (uiout))
5211 ui_out_field_string
5212 (uiout, "reason", async_reason_lookup (EXEC_ASYNC_WATCHPOINT_SCOPE));
5213 ui_out_text (uiout, "\nWatchpoint ");
5214 ui_out_field_int (uiout, "wpnum", b->base.number);
5215 ui_out_text (uiout,
5216 " deleted because the program has left the block in\n\
5217 which its expression is valid.\n");
5218
5219 /* Make sure the watchpoint's commands aren't executed. */
5220 decref_counted_command_line (&b->base.commands);
5221 watchpoint_del_at_next_stop (b);
5222
5223 return WP_DELETED;
5224 }
5225 }
5226
5227 /* Return true if it looks like target has stopped due to hitting
5228 breakpoint location BL. This function does not check if we should
5229 stop, only if BL explains the stop. */
5230
5231 static int
5232 bpstat_check_location (const struct bp_location *bl,
5233 struct address_space *aspace, CORE_ADDR bp_addr,
5234 const struct target_waitstatus *ws)
5235 {
5236 struct breakpoint *b = bl->owner;
5237
5238 /* BL is from an existing breakpoint. */
5239 gdb_assert (b != NULL);
5240
5241 return b->ops->breakpoint_hit (bl, aspace, bp_addr, ws);
5242 }
5243
5244 /* Determine if the watched values have actually changed, and we
5245 should stop. If not, set BS->stop to 0. */
5246
5247 static void
5248 bpstat_check_watchpoint (bpstat bs)
5249 {
5250 const struct bp_location *bl;
5251 struct watchpoint *b;
5252
5253 /* BS is built for existing struct breakpoint. */
5254 bl = bs->bp_location_at;
5255 gdb_assert (bl != NULL);
5256 b = (struct watchpoint *) bs->breakpoint_at;
5257 gdb_assert (b != NULL);
5258
5259 {
5260 int must_check_value = 0;
5261
5262 if (b->base.type == bp_watchpoint)
5263 /* For a software watchpoint, we must always check the
5264 watched value. */
5265 must_check_value = 1;
5266 else if (b->watchpoint_triggered == watch_triggered_yes)
5267 /* We have a hardware watchpoint (read, write, or access)
5268 and the target earlier reported an address watched by
5269 this watchpoint. */
5270 must_check_value = 1;
5271 else if (b->watchpoint_triggered == watch_triggered_unknown
5272 && b->base.type == bp_hardware_watchpoint)
5273 /* We were stopped by a hardware watchpoint, but the target could
5274 not report the data address. We must check the watchpoint's
5275 value. Access and read watchpoints are out of luck; without
5276 a data address, we can't figure it out. */
5277 must_check_value = 1;
5278
5279 if (must_check_value)
5280 {
5281 char *message
5282 = xstrprintf ("Error evaluating expression for watchpoint %d\n",
5283 b->base.number);
5284 struct cleanup *cleanups = make_cleanup (xfree, message);
5285 int e = catch_errors (watchpoint_check, bs, message,
5286 RETURN_MASK_ALL);
5287 do_cleanups (cleanups);
5288 switch (e)
5289 {
5290 case WP_DELETED:
5291 /* We've already printed what needs to be printed. */
5292 bs->print_it = print_it_done;
5293 /* Stop. */
5294 break;
5295 case WP_IGNORE:
5296 bs->print_it = print_it_noop;
5297 bs->stop = 0;
5298 break;
5299 case WP_VALUE_CHANGED:
5300 if (b->base.type == bp_read_watchpoint)
5301 {
5302 /* There are two cases to consider here:
5303
5304 1. We're watching the triggered memory for reads.
5305 In that case, trust the target, and always report
5306 the watchpoint hit to the user. Even though
5307 reads don't cause value changes, the value may
5308 have changed since the last time it was read, and
5309 since we're not trapping writes, we will not see
5310 those, and as such we should ignore our notion of
5311 old value.
5312
5313 2. We're watching the triggered memory for both
5314 reads and writes. There are two ways this may
5315 happen:
5316
5317 2.1. This is a target that can't break on data
5318 reads only, but can break on accesses (reads or
5319 writes), such as e.g., x86. We detect this case
5320 at the time we try to insert read watchpoints.
5321
5322 2.2. Otherwise, the target supports read
5323 watchpoints, but, the user set an access or write
5324 watchpoint watching the same memory as this read
5325 watchpoint.
5326
5327 If we're watching memory writes as well as reads,
5328 ignore watchpoint hits when we find that the
5329 value hasn't changed, as reads don't cause
5330 changes. This still gives false positives when
5331 the program writes the same value to memory as
5332 what there was already in memory (we will confuse
5333 it for a read), but it's much better than
5334 nothing. */
5335
5336 int other_write_watchpoint = 0;
5337
5338 if (bl->watchpoint_type == hw_read)
5339 {
5340 struct breakpoint *other_b;
5341
5342 ALL_BREAKPOINTS (other_b)
5343 if (other_b->type == bp_hardware_watchpoint
5344 || other_b->type == bp_access_watchpoint)
5345 {
5346 struct watchpoint *other_w =
5347 (struct watchpoint *) other_b;
5348
5349 if (other_w->watchpoint_triggered
5350 == watch_triggered_yes)
5351 {
5352 other_write_watchpoint = 1;
5353 break;
5354 }
5355 }
5356 }
5357
5358 if (other_write_watchpoint
5359 || bl->watchpoint_type == hw_access)
5360 {
5361 /* We're watching the same memory for writes,
5362 and the value changed since the last time we
5363 updated it, so this trap must be for a write.
5364 Ignore it. */
5365 bs->print_it = print_it_noop;
5366 bs->stop = 0;
5367 }
5368 }
5369 break;
5370 case WP_VALUE_NOT_CHANGED:
5371 if (b->base.type == bp_hardware_watchpoint
5372 || b->base.type == bp_watchpoint)
5373 {
5374 /* Don't stop: write watchpoints shouldn't fire if
5375 the value hasn't changed. */
5376 bs->print_it = print_it_noop;
5377 bs->stop = 0;
5378 }
5379 /* Stop. */
5380 break;
5381 default:
5382 /* Can't happen. */
5383 case 0:
5384 /* Error from catch_errors. */
5385 printf_filtered (_("Watchpoint %d deleted.\n"), b->base.number);
5386 watchpoint_del_at_next_stop (b);
5387 /* We've already printed what needs to be printed. */
5388 bs->print_it = print_it_done;
5389 break;
5390 }
5391 }
5392 else /* must_check_value == 0 */
5393 {
5394 /* This is a case where some watchpoint(s) triggered, but
5395 not at the address of this watchpoint, or else no
5396 watchpoint triggered after all. So don't print
5397 anything for this watchpoint. */
5398 bs->print_it = print_it_noop;
5399 bs->stop = 0;
5400 }
5401 }
5402 }
5403
5404 /* For breakpoints that are currently marked as telling gdb to stop,
5405 check conditions (condition proper, frame, thread and ignore count)
5406 of breakpoint referred to by BS. If we should not stop for this
5407 breakpoint, set BS->stop to 0. */
5408
5409 static void
5410 bpstat_check_breakpoint_conditions (bpstat bs, ptid_t ptid)
5411 {
5412 const struct bp_location *bl;
5413 struct breakpoint *b;
5414 int value_is_zero = 0;
5415 struct expression *cond;
5416
5417 gdb_assert (bs->stop);
5418
5419 /* BS is built for existing struct breakpoint. */
5420 bl = bs->bp_location_at;
5421 gdb_assert (bl != NULL);
5422 b = bs->breakpoint_at;
5423 gdb_assert (b != NULL);
5424
5425 /* Even if the target evaluated the condition on its end and notified GDB, we
5426 need to do so again since GDB does not know if we stopped due to a
5427 breakpoint or a single step breakpoint. */
5428
5429 if (frame_id_p (b->frame_id)
5430 && !frame_id_eq (b->frame_id, get_stack_frame_id (get_current_frame ())))
5431 {
5432 bs->stop = 0;
5433 return;
5434 }
5435
5436 /* If this is a thread/task-specific breakpoint, don't waste cpu
5437 evaluating the condition if this isn't the specified
5438 thread/task. */
5439 if ((b->thread != -1 && b->thread != pid_to_thread_id (ptid))
5440 || (b->task != 0 && b->task != ada_get_task_number (ptid)))
5441
5442 {
5443 bs->stop = 0;
5444 return;
5445 }
5446
5447 /* Evaluate extension language breakpoints that have a "stop" method
5448 implemented. */
5449 bs->stop = breakpoint_ext_lang_cond_says_stop (b);
5450
5451 if (is_watchpoint (b))
5452 {
5453 struct watchpoint *w = (struct watchpoint *) b;
5454
5455 cond = w->cond_exp;
5456 }
5457 else
5458 cond = bl->cond;
5459
5460 if (cond && b->disposition != disp_del_at_next_stop)
5461 {
5462 int within_current_scope = 1;
5463 struct watchpoint * w;
5464
5465 /* We use value_mark and value_free_to_mark because it could
5466 be a long time before we return to the command level and
5467 call free_all_values. We can't call free_all_values
5468 because we might be in the middle of evaluating a
5469 function call. */
5470 struct value *mark = value_mark ();
5471
5472 if (is_watchpoint (b))
5473 w = (struct watchpoint *) b;
5474 else
5475 w = NULL;
5476
5477 /* Need to select the frame, with all that implies so that
5478 the conditions will have the right context. Because we
5479 use the frame, we will not see an inlined function's
5480 variables when we arrive at a breakpoint at the start
5481 of the inlined function; the current frame will be the
5482 call site. */
5483 if (w == NULL || w->cond_exp_valid_block == NULL)
5484 select_frame (get_current_frame ());
5485 else
5486 {
5487 struct frame_info *frame;
5488
5489 /* For local watchpoint expressions, which particular
5490 instance of a local is being watched matters, so we
5491 keep track of the frame to evaluate the expression
5492 in. To evaluate the condition however, it doesn't
5493 really matter which instantiation of the function
5494 where the condition makes sense triggers the
5495 watchpoint. This allows an expression like "watch
5496 global if q > 10" set in `func', catch writes to
5497 global on all threads that call `func', or catch
5498 writes on all recursive calls of `func' by a single
5499 thread. We simply always evaluate the condition in
5500 the innermost frame that's executing where it makes
5501 sense to evaluate the condition. It seems
5502 intuitive. */
5503 frame = block_innermost_frame (w->cond_exp_valid_block);
5504 if (frame != NULL)
5505 select_frame (frame);
5506 else
5507 within_current_scope = 0;
5508 }
5509 if (within_current_scope)
5510 value_is_zero
5511 = catch_errors (breakpoint_cond_eval, cond,
5512 "Error in testing breakpoint condition:\n",
5513 RETURN_MASK_ALL);
5514 else
5515 {
5516 warning (_("Watchpoint condition cannot be tested "
5517 "in the current scope"));
5518 /* If we failed to set the right context for this
5519 watchpoint, unconditionally report it. */
5520 value_is_zero = 0;
5521 }
5522 /* FIXME-someday, should give breakpoint #. */
5523 value_free_to_mark (mark);
5524 }
5525
5526 if (cond && value_is_zero)
5527 {
5528 bs->stop = 0;
5529 }
5530 else if (b->ignore_count > 0)
5531 {
5532 b->ignore_count--;
5533 bs->stop = 0;
5534 /* Increase the hit count even though we don't stop. */
5535 ++(b->hit_count);
5536 observer_notify_breakpoint_modified (b);
5537 }
5538 }
5539
5540
5541 /* Get a bpstat associated with having just stopped at address
5542 BP_ADDR in thread PTID.
5543
5544 Determine whether we stopped at a breakpoint, etc, or whether we
5545 don't understand this stop. Result is a chain of bpstat's such
5546 that:
5547
5548 if we don't understand the stop, the result is a null pointer.
5549
5550 if we understand why we stopped, the result is not null.
5551
5552 Each element of the chain refers to a particular breakpoint or
5553 watchpoint at which we have stopped. (We may have stopped for
5554 several reasons concurrently.)
5555
5556 Each element of the chain has valid next, breakpoint_at,
5557 commands, FIXME??? fields. */
5558
5559 bpstat
5560 bpstat_stop_status (struct address_space *aspace,
5561 CORE_ADDR bp_addr, ptid_t ptid,
5562 const struct target_waitstatus *ws)
5563 {
5564 struct breakpoint *b = NULL;
5565 struct bp_location *bl;
5566 struct bp_location *loc;
5567 /* First item of allocated bpstat's. */
5568 bpstat bs_head = NULL, *bs_link = &bs_head;
5569 /* Pointer to the last thing in the chain currently. */
5570 bpstat bs;
5571 int ix;
5572 int need_remove_insert;
5573 int removed_any;
5574
5575 /* First, build the bpstat chain with locations that explain a
5576 target stop, while being careful to not set the target running,
5577 as that may invalidate locations (in particular watchpoint
5578 locations are recreated). Resuming will happen here with
5579 breakpoint conditions or watchpoint expressions that include
5580 inferior function calls. */
5581
5582 ALL_BREAKPOINTS (b)
5583 {
5584 if (!breakpoint_enabled (b) && b->enable_state != bp_permanent)
5585 continue;
5586
5587 for (bl = b->loc; bl != NULL; bl = bl->next)
5588 {
5589 /* For hardware watchpoints, we look only at the first
5590 location. The watchpoint_check function will work on the
5591 entire expression, not the individual locations. For
5592 read watchpoints, the watchpoints_triggered function has
5593 checked all locations already. */
5594 if (b->type == bp_hardware_watchpoint && bl != b->loc)
5595 break;
5596
5597 if (!bl->enabled || bl->shlib_disabled)
5598 continue;
5599
5600 if (!bpstat_check_location (bl, aspace, bp_addr, ws))
5601 continue;
5602
5603 /* Come here if it's a watchpoint, or if the break address
5604 matches. */
5605
5606 bs = bpstat_alloc (bl, &bs_link); /* Alloc a bpstat to
5607 explain stop. */
5608
5609 /* Assume we stop. Should we find a watchpoint that is not
5610 actually triggered, or if the condition of the breakpoint
5611 evaluates as false, we'll reset 'stop' to 0. */
5612 bs->stop = 1;
5613 bs->print = 1;
5614
5615 /* If this is a scope breakpoint, mark the associated
5616 watchpoint as triggered so that we will handle the
5617 out-of-scope event. We'll get to the watchpoint next
5618 iteration. */
5619 if (b->type == bp_watchpoint_scope && b->related_breakpoint != b)
5620 {
5621 struct watchpoint *w = (struct watchpoint *) b->related_breakpoint;
5622
5623 w->watchpoint_triggered = watch_triggered_yes;
5624 }
5625 }
5626 }
5627
5628 for (ix = 0; VEC_iterate (bp_location_p, moribund_locations, ix, loc); ++ix)
5629 {
5630 if (breakpoint_location_address_match (loc, aspace, bp_addr))
5631 {
5632 bs = bpstat_alloc (loc, &bs_link);
5633 /* For hits of moribund locations, we should just proceed. */
5634 bs->stop = 0;
5635 bs->print = 0;
5636 bs->print_it = print_it_noop;
5637 }
5638 }
5639
5640 /* A bit of special processing for shlib breakpoints. We need to
5641 process solib loading here, so that the lists of loaded and
5642 unloaded libraries are correct before we handle "catch load" and
5643 "catch unload". */
5644 for (bs = bs_head; bs != NULL; bs = bs->next)
5645 {
5646 if (bs->breakpoint_at && bs->breakpoint_at->type == bp_shlib_event)
5647 {
5648 handle_solib_event ();
5649 break;
5650 }
5651 }
5652
5653 /* Now go through the locations that caused the target to stop, and
5654 check whether we're interested in reporting this stop to higher
5655 layers, or whether we should resume the target transparently. */
5656
5657 removed_any = 0;
5658
5659 for (bs = bs_head; bs != NULL; bs = bs->next)
5660 {
5661 if (!bs->stop)
5662 continue;
5663
5664 b = bs->breakpoint_at;
5665 b->ops->check_status (bs);
5666 if (bs->stop)
5667 {
5668 bpstat_check_breakpoint_conditions (bs, ptid);
5669
5670 if (bs->stop)
5671 {
5672 ++(b->hit_count);
5673 observer_notify_breakpoint_modified (b);
5674
5675 /* We will stop here. */
5676 if (b->disposition == disp_disable)
5677 {
5678 --(b->enable_count);
5679 if (b->enable_count <= 0
5680 && b->enable_state != bp_permanent)
5681 b->enable_state = bp_disabled;
5682 removed_any = 1;
5683 }
5684 if (b->silent)
5685 bs->print = 0;
5686 bs->commands = b->commands;
5687 incref_counted_command_line (bs->commands);
5688 if (command_line_is_silent (bs->commands
5689 ? bs->commands->commands : NULL))
5690 bs->print = 0;
5691
5692 b->ops->after_condition_true (bs);
5693 }
5694
5695 }
5696
5697 /* Print nothing for this entry if we don't stop or don't
5698 print. */
5699 if (!bs->stop || !bs->print)
5700 bs->print_it = print_it_noop;
5701 }
5702
5703 /* If we aren't stopping, the value of some hardware watchpoint may
5704 not have changed, but the intermediate memory locations we are
5705 watching may have. Don't bother if we're stopping; this will get
5706 done later. */
5707 need_remove_insert = 0;
5708 if (! bpstat_causes_stop (bs_head))
5709 for (bs = bs_head; bs != NULL; bs = bs->next)
5710 if (!bs->stop
5711 && bs->breakpoint_at
5712 && is_hardware_watchpoint (bs->breakpoint_at))
5713 {
5714 struct watchpoint *w = (struct watchpoint *) bs->breakpoint_at;
5715
5716 update_watchpoint (w, 0 /* don't reparse. */);
5717 need_remove_insert = 1;
5718 }
5719
5720 if (need_remove_insert)
5721 update_global_location_list (UGLL_MAY_INSERT);
5722 else if (removed_any)
5723 update_global_location_list (UGLL_DONT_INSERT);
5724
5725 return bs_head;
5726 }
5727
5728 static void
5729 handle_jit_event (void)
5730 {
5731 struct frame_info *frame;
5732 struct gdbarch *gdbarch;
5733
5734 /* Switch terminal for any messages produced by
5735 breakpoint_re_set. */
5736 target_terminal_ours_for_output ();
5737
5738 frame = get_current_frame ();
5739 gdbarch = get_frame_arch (frame);
5740
5741 jit_event_handler (gdbarch);
5742
5743 target_terminal_inferior ();
5744 }
5745
5746 /* Prepare WHAT final decision for infrun. */
5747
5748 /* Decide what infrun needs to do with this bpstat. */
5749
5750 struct bpstat_what
5751 bpstat_what (bpstat bs_head)
5752 {
5753 struct bpstat_what retval;
5754 int jit_event = 0;
5755 bpstat bs;
5756
5757 retval.main_action = BPSTAT_WHAT_KEEP_CHECKING;
5758 retval.call_dummy = STOP_NONE;
5759 retval.is_longjmp = 0;
5760
5761 for (bs = bs_head; bs != NULL; bs = bs->next)
5762 {
5763 /* Extract this BS's action. After processing each BS, we check
5764 if its action overrides all we've seem so far. */
5765 enum bpstat_what_main_action this_action = BPSTAT_WHAT_KEEP_CHECKING;
5766 enum bptype bptype;
5767
5768 if (bs->breakpoint_at == NULL)
5769 {
5770 /* I suspect this can happen if it was a momentary
5771 breakpoint which has since been deleted. */
5772 bptype = bp_none;
5773 }
5774 else
5775 bptype = bs->breakpoint_at->type;
5776
5777 switch (bptype)
5778 {
5779 case bp_none:
5780 break;
5781 case bp_breakpoint:
5782 case bp_hardware_breakpoint:
5783 case bp_until:
5784 case bp_finish:
5785 case bp_shlib_event:
5786 if (bs->stop)
5787 {
5788 if (bs->print)
5789 this_action = BPSTAT_WHAT_STOP_NOISY;
5790 else
5791 this_action = BPSTAT_WHAT_STOP_SILENT;
5792 }
5793 else
5794 this_action = BPSTAT_WHAT_SINGLE;
5795 break;
5796 case bp_watchpoint:
5797 case bp_hardware_watchpoint:
5798 case bp_read_watchpoint:
5799 case bp_access_watchpoint:
5800 if (bs->stop)
5801 {
5802 if (bs->print)
5803 this_action = BPSTAT_WHAT_STOP_NOISY;
5804 else
5805 this_action = BPSTAT_WHAT_STOP_SILENT;
5806 }
5807 else
5808 {
5809 /* There was a watchpoint, but we're not stopping.
5810 This requires no further action. */
5811 }
5812 break;
5813 case bp_longjmp:
5814 case bp_longjmp_call_dummy:
5815 case bp_exception:
5816 this_action = BPSTAT_WHAT_SET_LONGJMP_RESUME;
5817 retval.is_longjmp = bptype != bp_exception;
5818 break;
5819 case bp_longjmp_resume:
5820 case bp_exception_resume:
5821 this_action = BPSTAT_WHAT_CLEAR_LONGJMP_RESUME;
5822 retval.is_longjmp = bptype == bp_longjmp_resume;
5823 break;
5824 case bp_step_resume:
5825 if (bs->stop)
5826 this_action = BPSTAT_WHAT_STEP_RESUME;
5827 else
5828 {
5829 /* It is for the wrong frame. */
5830 this_action = BPSTAT_WHAT_SINGLE;
5831 }
5832 break;
5833 case bp_hp_step_resume:
5834 if (bs->stop)
5835 this_action = BPSTAT_WHAT_HP_STEP_RESUME;
5836 else
5837 {
5838 /* It is for the wrong frame. */
5839 this_action = BPSTAT_WHAT_SINGLE;
5840 }
5841 break;
5842 case bp_watchpoint_scope:
5843 case bp_thread_event:
5844 case bp_overlay_event:
5845 case bp_longjmp_master:
5846 case bp_std_terminate_master:
5847 case bp_exception_master:
5848 this_action = BPSTAT_WHAT_SINGLE;
5849 break;
5850 case bp_catchpoint:
5851 if (bs->stop)
5852 {
5853 if (bs->print)
5854 this_action = BPSTAT_WHAT_STOP_NOISY;
5855 else
5856 this_action = BPSTAT_WHAT_STOP_SILENT;
5857 }
5858 else
5859 {
5860 /* There was a catchpoint, but we're not stopping.
5861 This requires no further action. */
5862 }
5863 break;
5864 case bp_jit_event:
5865 jit_event = 1;
5866 this_action = BPSTAT_WHAT_SINGLE;
5867 break;
5868 case bp_call_dummy:
5869 /* Make sure the action is stop (silent or noisy),
5870 so infrun.c pops the dummy frame. */
5871 retval.call_dummy = STOP_STACK_DUMMY;
5872 this_action = BPSTAT_WHAT_STOP_SILENT;
5873 break;
5874 case bp_std_terminate:
5875 /* Make sure the action is stop (silent or noisy),
5876 so infrun.c pops the dummy frame. */
5877 retval.call_dummy = STOP_STD_TERMINATE;
5878 this_action = BPSTAT_WHAT_STOP_SILENT;
5879 break;
5880 case bp_tracepoint:
5881 case bp_fast_tracepoint:
5882 case bp_static_tracepoint:
5883 /* Tracepoint hits should not be reported back to GDB, and
5884 if one got through somehow, it should have been filtered
5885 out already. */
5886 internal_error (__FILE__, __LINE__,
5887 _("bpstat_what: tracepoint encountered"));
5888 break;
5889 case bp_gnu_ifunc_resolver:
5890 /* Step over it (and insert bp_gnu_ifunc_resolver_return). */
5891 this_action = BPSTAT_WHAT_SINGLE;
5892 break;
5893 case bp_gnu_ifunc_resolver_return:
5894 /* The breakpoint will be removed, execution will restart from the
5895 PC of the former breakpoint. */
5896 this_action = BPSTAT_WHAT_KEEP_CHECKING;
5897 break;
5898
5899 case bp_dprintf:
5900 if (bs->stop)
5901 this_action = BPSTAT_WHAT_STOP_SILENT;
5902 else
5903 this_action = BPSTAT_WHAT_SINGLE;
5904 break;
5905
5906 default:
5907 internal_error (__FILE__, __LINE__,
5908 _("bpstat_what: unhandled bptype %d"), (int) bptype);
5909 }
5910
5911 retval.main_action = max (retval.main_action, this_action);
5912 }
5913
5914 /* These operations may affect the bs->breakpoint_at state so they are
5915 delayed after MAIN_ACTION is decided above. */
5916
5917 if (jit_event)
5918 {
5919 if (debug_infrun)
5920 fprintf_unfiltered (gdb_stdlog, "bpstat_what: bp_jit_event\n");
5921
5922 handle_jit_event ();
5923 }
5924
5925 for (bs = bs_head; bs != NULL; bs = bs->next)
5926 {
5927 struct breakpoint *b = bs->breakpoint_at;
5928
5929 if (b == NULL)
5930 continue;
5931 switch (b->type)
5932 {
5933 case bp_gnu_ifunc_resolver:
5934 gnu_ifunc_resolver_stop (b);
5935 break;
5936 case bp_gnu_ifunc_resolver_return:
5937 gnu_ifunc_resolver_return_stop (b);
5938 break;
5939 }
5940 }
5941
5942 return retval;
5943 }
5944
5945 /* Nonzero if we should step constantly (e.g. watchpoints on machines
5946 without hardware support). This isn't related to a specific bpstat,
5947 just to things like whether watchpoints are set. */
5948
5949 int
5950 bpstat_should_step (void)
5951 {
5952 struct breakpoint *b;
5953
5954 ALL_BREAKPOINTS (b)
5955 if (breakpoint_enabled (b) && b->type == bp_watchpoint && b->loc != NULL)
5956 return 1;
5957 return 0;
5958 }
5959
5960 int
5961 bpstat_causes_stop (bpstat bs)
5962 {
5963 for (; bs != NULL; bs = bs->next)
5964 if (bs->stop)
5965 return 1;
5966
5967 return 0;
5968 }
5969
5970 \f
5971
5972 /* Compute a string of spaces suitable to indent the next line
5973 so it starts at the position corresponding to the table column
5974 named COL_NAME in the currently active table of UIOUT. */
5975
5976 static char *
5977 wrap_indent_at_field (struct ui_out *uiout, const char *col_name)
5978 {
5979 static char wrap_indent[80];
5980 int i, total_width, width, align;
5981 char *text;
5982
5983 total_width = 0;
5984 for (i = 1; ui_out_query_field (uiout, i, &width, &align, &text); i++)
5985 {
5986 if (strcmp (text, col_name) == 0)
5987 {
5988 gdb_assert (total_width < sizeof wrap_indent);
5989 memset (wrap_indent, ' ', total_width);
5990 wrap_indent[total_width] = 0;
5991
5992 return wrap_indent;
5993 }
5994
5995 total_width += width + 1;
5996 }
5997
5998 return NULL;
5999 }
6000
6001 /* Determine if the locations of this breakpoint will have their conditions
6002 evaluated by the target, host or a mix of both. Returns the following:
6003
6004 "host": Host evals condition.
6005 "host or target": Host or Target evals condition.
6006 "target": Target evals condition.
6007 */
6008
6009 static const char *
6010 bp_condition_evaluator (struct breakpoint *b)
6011 {
6012 struct bp_location *bl;
6013 char host_evals = 0;
6014 char target_evals = 0;
6015
6016 if (!b)
6017 return NULL;
6018
6019 if (!is_breakpoint (b))
6020 return NULL;
6021
6022 if (gdb_evaluates_breakpoint_condition_p ()
6023 || !target_supports_evaluation_of_breakpoint_conditions ())
6024 return condition_evaluation_host;
6025
6026 for (bl = b->loc; bl; bl = bl->next)
6027 {
6028 if (bl->cond_bytecode)
6029 target_evals++;
6030 else
6031 host_evals++;
6032 }
6033
6034 if (host_evals && target_evals)
6035 return condition_evaluation_both;
6036 else if (target_evals)
6037 return condition_evaluation_target;
6038 else
6039 return condition_evaluation_host;
6040 }
6041
6042 /* Determine the breakpoint location's condition evaluator. This is
6043 similar to bp_condition_evaluator, but for locations. */
6044
6045 static const char *
6046 bp_location_condition_evaluator (struct bp_location *bl)
6047 {
6048 if (bl && !is_breakpoint (bl->owner))
6049 return NULL;
6050
6051 if (gdb_evaluates_breakpoint_condition_p ()
6052 || !target_supports_evaluation_of_breakpoint_conditions ())
6053 return condition_evaluation_host;
6054
6055 if (bl && bl->cond_bytecode)
6056 return condition_evaluation_target;
6057 else
6058 return condition_evaluation_host;
6059 }
6060
6061 /* Print the LOC location out of the list of B->LOC locations. */
6062
6063 static void
6064 print_breakpoint_location (struct breakpoint *b,
6065 struct bp_location *loc)
6066 {
6067 struct ui_out *uiout = current_uiout;
6068 struct cleanup *old_chain = save_current_program_space ();
6069
6070 if (loc != NULL && loc->shlib_disabled)
6071 loc = NULL;
6072
6073 if (loc != NULL)
6074 set_current_program_space (loc->pspace);
6075
6076 if (b->display_canonical)
6077 ui_out_field_string (uiout, "what", b->addr_string);
6078 else if (loc && loc->symtab)
6079 {
6080 struct symbol *sym
6081 = find_pc_sect_function (loc->address, loc->section);
6082 if (sym)
6083 {
6084 ui_out_text (uiout, "in ");
6085 ui_out_field_string (uiout, "func",
6086 SYMBOL_PRINT_NAME (sym));
6087 ui_out_text (uiout, " ");
6088 ui_out_wrap_hint (uiout, wrap_indent_at_field (uiout, "what"));
6089 ui_out_text (uiout, "at ");
6090 }
6091 ui_out_field_string (uiout, "file",
6092 symtab_to_filename_for_display (loc->symtab));
6093 ui_out_text (uiout, ":");
6094
6095 if (ui_out_is_mi_like_p (uiout))
6096 ui_out_field_string (uiout, "fullname",
6097 symtab_to_fullname (loc->symtab));
6098
6099 ui_out_field_int (uiout, "line", loc->line_number);
6100 }
6101 else if (loc)
6102 {
6103 struct ui_file *stb = mem_fileopen ();
6104 struct cleanup *stb_chain = make_cleanup_ui_file_delete (stb);
6105
6106 print_address_symbolic (loc->gdbarch, loc->address, stb,
6107 demangle, "");
6108 ui_out_field_stream (uiout, "at", stb);
6109
6110 do_cleanups (stb_chain);
6111 }
6112 else
6113 ui_out_field_string (uiout, "pending", b->addr_string);
6114
6115 if (loc && is_breakpoint (b)
6116 && breakpoint_condition_evaluation_mode () == condition_evaluation_target
6117 && bp_condition_evaluator (b) == condition_evaluation_both)
6118 {
6119 ui_out_text (uiout, " (");
6120 ui_out_field_string (uiout, "evaluated-by",
6121 bp_location_condition_evaluator (loc));
6122 ui_out_text (uiout, ")");
6123 }
6124
6125 do_cleanups (old_chain);
6126 }
6127
6128 static const char *
6129 bptype_string (enum bptype type)
6130 {
6131 struct ep_type_description
6132 {
6133 enum bptype type;
6134 char *description;
6135 };
6136 static struct ep_type_description bptypes[] =
6137 {
6138 {bp_none, "?deleted?"},
6139 {bp_breakpoint, "breakpoint"},
6140 {bp_hardware_breakpoint, "hw breakpoint"},
6141 {bp_until, "until"},
6142 {bp_finish, "finish"},
6143 {bp_watchpoint, "watchpoint"},
6144 {bp_hardware_watchpoint, "hw watchpoint"},
6145 {bp_read_watchpoint, "read watchpoint"},
6146 {bp_access_watchpoint, "acc watchpoint"},
6147 {bp_longjmp, "longjmp"},
6148 {bp_longjmp_resume, "longjmp resume"},
6149 {bp_longjmp_call_dummy, "longjmp for call dummy"},
6150 {bp_exception, "exception"},
6151 {bp_exception_resume, "exception resume"},
6152 {bp_step_resume, "step resume"},
6153 {bp_hp_step_resume, "high-priority step resume"},
6154 {bp_watchpoint_scope, "watchpoint scope"},
6155 {bp_call_dummy, "call dummy"},
6156 {bp_std_terminate, "std::terminate"},
6157 {bp_shlib_event, "shlib events"},
6158 {bp_thread_event, "thread events"},
6159 {bp_overlay_event, "overlay events"},
6160 {bp_longjmp_master, "longjmp master"},
6161 {bp_std_terminate_master, "std::terminate master"},
6162 {bp_exception_master, "exception master"},
6163 {bp_catchpoint, "catchpoint"},
6164 {bp_tracepoint, "tracepoint"},
6165 {bp_fast_tracepoint, "fast tracepoint"},
6166 {bp_static_tracepoint, "static tracepoint"},
6167 {bp_dprintf, "dprintf"},
6168 {bp_jit_event, "jit events"},
6169 {bp_gnu_ifunc_resolver, "STT_GNU_IFUNC resolver"},
6170 {bp_gnu_ifunc_resolver_return, "STT_GNU_IFUNC resolver return"},
6171 };
6172
6173 if (((int) type >= (sizeof (bptypes) / sizeof (bptypes[0])))
6174 || ((int) type != bptypes[(int) type].type))
6175 internal_error (__FILE__, __LINE__,
6176 _("bptypes table does not describe type #%d."),
6177 (int) type);
6178
6179 return bptypes[(int) type].description;
6180 }
6181
6182 /* For MI, output a field named 'thread-groups' with a list as the value.
6183 For CLI, prefix the list with the string 'inf'. */
6184
6185 static void
6186 output_thread_groups (struct ui_out *uiout,
6187 const char *field_name,
6188 VEC(int) *inf_num,
6189 int mi_only)
6190 {
6191 struct cleanup *back_to;
6192 int is_mi = ui_out_is_mi_like_p (uiout);
6193 int inf;
6194 int i;
6195
6196 /* For backward compatibility, don't display inferiors in CLI unless
6197 there are several. Always display them for MI. */
6198 if (!is_mi && mi_only)
6199 return;
6200
6201 back_to = make_cleanup_ui_out_list_begin_end (uiout, field_name);
6202
6203 for (i = 0; VEC_iterate (int, inf_num, i, inf); ++i)
6204 {
6205 if (is_mi)
6206 {
6207 char mi_group[10];
6208
6209 xsnprintf (mi_group, sizeof (mi_group), "i%d", inf);
6210 ui_out_field_string (uiout, NULL, mi_group);
6211 }
6212 else
6213 {
6214 if (i == 0)
6215 ui_out_text (uiout, " inf ");
6216 else
6217 ui_out_text (uiout, ", ");
6218
6219 ui_out_text (uiout, plongest (inf));
6220 }
6221 }
6222
6223 do_cleanups (back_to);
6224 }
6225
6226 /* Print B to gdb_stdout. */
6227
6228 static void
6229 print_one_breakpoint_location (struct breakpoint *b,
6230 struct bp_location *loc,
6231 int loc_number,
6232 struct bp_location **last_loc,
6233 int allflag)
6234 {
6235 struct command_line *l;
6236 static char bpenables[] = "nynny";
6237
6238 struct ui_out *uiout = current_uiout;
6239 int header_of_multiple = 0;
6240 int part_of_multiple = (loc != NULL);
6241 struct value_print_options opts;
6242
6243 get_user_print_options (&opts);
6244
6245 gdb_assert (!loc || loc_number != 0);
6246 /* See comment in print_one_breakpoint concerning treatment of
6247 breakpoints with single disabled location. */
6248 if (loc == NULL
6249 && (b->loc != NULL
6250 && (b->loc->next != NULL || !b->loc->enabled)))
6251 header_of_multiple = 1;
6252 if (loc == NULL)
6253 loc = b->loc;
6254
6255 annotate_record ();
6256
6257 /* 1 */
6258 annotate_field (0);
6259 if (part_of_multiple)
6260 {
6261 char *formatted;
6262 formatted = xstrprintf ("%d.%d", b->number, loc_number);
6263 ui_out_field_string (uiout, "number", formatted);
6264 xfree (formatted);
6265 }
6266 else
6267 {
6268 ui_out_field_int (uiout, "number", b->number);
6269 }
6270
6271 /* 2 */
6272 annotate_field (1);
6273 if (part_of_multiple)
6274 ui_out_field_skip (uiout, "type");
6275 else
6276 ui_out_field_string (uiout, "type", bptype_string (b->type));
6277
6278 /* 3 */
6279 annotate_field (2);
6280 if (part_of_multiple)
6281 ui_out_field_skip (uiout, "disp");
6282 else
6283 ui_out_field_string (uiout, "disp", bpdisp_text (b->disposition));
6284
6285
6286 /* 4 */
6287 annotate_field (3);
6288 if (part_of_multiple)
6289 ui_out_field_string (uiout, "enabled", loc->enabled ? "y" : "n");
6290 else
6291 ui_out_field_fmt (uiout, "enabled", "%c",
6292 bpenables[(int) b->enable_state]);
6293 ui_out_spaces (uiout, 2);
6294
6295
6296 /* 5 and 6 */
6297 if (b->ops != NULL && b->ops->print_one != NULL)
6298 {
6299 /* Although the print_one can possibly print all locations,
6300 calling it here is not likely to get any nice result. So,
6301 make sure there's just one location. */
6302 gdb_assert (b->loc == NULL || b->loc->next == NULL);
6303 b->ops->print_one (b, last_loc);
6304 }
6305 else
6306 switch (b->type)
6307 {
6308 case bp_none:
6309 internal_error (__FILE__, __LINE__,
6310 _("print_one_breakpoint: bp_none encountered\n"));
6311 break;
6312
6313 case bp_watchpoint:
6314 case bp_hardware_watchpoint:
6315 case bp_read_watchpoint:
6316 case bp_access_watchpoint:
6317 {
6318 struct watchpoint *w = (struct watchpoint *) b;
6319
6320 /* Field 4, the address, is omitted (which makes the columns
6321 not line up too nicely with the headers, but the effect
6322 is relatively readable). */
6323 if (opts.addressprint)
6324 ui_out_field_skip (uiout, "addr");
6325 annotate_field (5);
6326 ui_out_field_string (uiout, "what", w->exp_string);
6327 }
6328 break;
6329
6330 case bp_breakpoint:
6331 case bp_hardware_breakpoint:
6332 case bp_until:
6333 case bp_finish:
6334 case bp_longjmp:
6335 case bp_longjmp_resume:
6336 case bp_longjmp_call_dummy:
6337 case bp_exception:
6338 case bp_exception_resume:
6339 case bp_step_resume:
6340 case bp_hp_step_resume:
6341 case bp_watchpoint_scope:
6342 case bp_call_dummy:
6343 case bp_std_terminate:
6344 case bp_shlib_event:
6345 case bp_thread_event:
6346 case bp_overlay_event:
6347 case bp_longjmp_master:
6348 case bp_std_terminate_master:
6349 case bp_exception_master:
6350 case bp_tracepoint:
6351 case bp_fast_tracepoint:
6352 case bp_static_tracepoint:
6353 case bp_dprintf:
6354 case bp_jit_event:
6355 case bp_gnu_ifunc_resolver:
6356 case bp_gnu_ifunc_resolver_return:
6357 if (opts.addressprint)
6358 {
6359 annotate_field (4);
6360 if (header_of_multiple)
6361 ui_out_field_string (uiout, "addr", "<MULTIPLE>");
6362 else if (b->loc == NULL || loc->shlib_disabled)
6363 ui_out_field_string (uiout, "addr", "<PENDING>");
6364 else
6365 ui_out_field_core_addr (uiout, "addr",
6366 loc->gdbarch, loc->address);
6367 }
6368 annotate_field (5);
6369 if (!header_of_multiple)
6370 print_breakpoint_location (b, loc);
6371 if (b->loc)
6372 *last_loc = b->loc;
6373 break;
6374 }
6375
6376
6377 if (loc != NULL && !header_of_multiple)
6378 {
6379 struct inferior *inf;
6380 VEC(int) *inf_num = NULL;
6381 int mi_only = 1;
6382
6383 ALL_INFERIORS (inf)
6384 {
6385 if (inf->pspace == loc->pspace)
6386 VEC_safe_push (int, inf_num, inf->num);
6387 }
6388
6389 /* For backward compatibility, don't display inferiors in CLI unless
6390 there are several. Always display for MI. */
6391 if (allflag
6392 || (!gdbarch_has_global_breakpoints (target_gdbarch ())
6393 && (number_of_program_spaces () > 1
6394 || number_of_inferiors () > 1)
6395 /* LOC is for existing B, it cannot be in
6396 moribund_locations and thus having NULL OWNER. */
6397 && loc->owner->type != bp_catchpoint))
6398 mi_only = 0;
6399 output_thread_groups (uiout, "thread-groups", inf_num, mi_only);
6400 VEC_free (int, inf_num);
6401 }
6402
6403 if (!part_of_multiple)
6404 {
6405 if (b->thread != -1)
6406 {
6407 /* FIXME: This seems to be redundant and lost here; see the
6408 "stop only in" line a little further down. */
6409 ui_out_text (uiout, " thread ");
6410 ui_out_field_int (uiout, "thread", b->thread);
6411 }
6412 else if (b->task != 0)
6413 {
6414 ui_out_text (uiout, " task ");
6415 ui_out_field_int (uiout, "task", b->task);
6416 }
6417 }
6418
6419 ui_out_text (uiout, "\n");
6420
6421 if (!part_of_multiple)
6422 b->ops->print_one_detail (b, uiout);
6423
6424 if (part_of_multiple && frame_id_p (b->frame_id))
6425 {
6426 annotate_field (6);
6427 ui_out_text (uiout, "\tstop only in stack frame at ");
6428 /* FIXME: cagney/2002-12-01: Shouldn't be poking around inside
6429 the frame ID. */
6430 ui_out_field_core_addr (uiout, "frame",
6431 b->gdbarch, b->frame_id.stack_addr);
6432 ui_out_text (uiout, "\n");
6433 }
6434
6435 if (!part_of_multiple && b->cond_string)
6436 {
6437 annotate_field (7);
6438 if (is_tracepoint (b))
6439 ui_out_text (uiout, "\ttrace only if ");
6440 else
6441 ui_out_text (uiout, "\tstop only if ");
6442 ui_out_field_string (uiout, "cond", b->cond_string);
6443
6444 /* Print whether the target is doing the breakpoint's condition
6445 evaluation. If GDB is doing the evaluation, don't print anything. */
6446 if (is_breakpoint (b)
6447 && breakpoint_condition_evaluation_mode ()
6448 == condition_evaluation_target)
6449 {
6450 ui_out_text (uiout, " (");
6451 ui_out_field_string (uiout, "evaluated-by",
6452 bp_condition_evaluator (b));
6453 ui_out_text (uiout, " evals)");
6454 }
6455 ui_out_text (uiout, "\n");
6456 }
6457
6458 if (!part_of_multiple && b->thread != -1)
6459 {
6460 /* FIXME should make an annotation for this. */
6461 ui_out_text (uiout, "\tstop only in thread ");
6462 ui_out_field_int (uiout, "thread", b->thread);
6463 ui_out_text (uiout, "\n");
6464 }
6465
6466 if (!part_of_multiple)
6467 {
6468 if (b->hit_count)
6469 {
6470 /* FIXME should make an annotation for this. */
6471 if (is_catchpoint (b))
6472 ui_out_text (uiout, "\tcatchpoint");
6473 else if (is_tracepoint (b))
6474 ui_out_text (uiout, "\ttracepoint");
6475 else
6476 ui_out_text (uiout, "\tbreakpoint");
6477 ui_out_text (uiout, " already hit ");
6478 ui_out_field_int (uiout, "times", b->hit_count);
6479 if (b->hit_count == 1)
6480 ui_out_text (uiout, " time\n");
6481 else
6482 ui_out_text (uiout, " times\n");
6483 }
6484 else
6485 {
6486 /* Output the count also if it is zero, but only if this is mi. */
6487 if (ui_out_is_mi_like_p (uiout))
6488 ui_out_field_int (uiout, "times", b->hit_count);
6489 }
6490 }
6491
6492 if (!part_of_multiple && b->ignore_count)
6493 {
6494 annotate_field (8);
6495 ui_out_text (uiout, "\tignore next ");
6496 ui_out_field_int (uiout, "ignore", b->ignore_count);
6497 ui_out_text (uiout, " hits\n");
6498 }
6499
6500 /* Note that an enable count of 1 corresponds to "enable once"
6501 behavior, which is reported by the combination of enablement and
6502 disposition, so we don't need to mention it here. */
6503 if (!part_of_multiple && b->enable_count > 1)
6504 {
6505 annotate_field (8);
6506 ui_out_text (uiout, "\tdisable after ");
6507 /* Tweak the wording to clarify that ignore and enable counts
6508 are distinct, and have additive effect. */
6509 if (b->ignore_count)
6510 ui_out_text (uiout, "additional ");
6511 else
6512 ui_out_text (uiout, "next ");
6513 ui_out_field_int (uiout, "enable", b->enable_count);
6514 ui_out_text (uiout, " hits\n");
6515 }
6516
6517 if (!part_of_multiple && is_tracepoint (b))
6518 {
6519 struct tracepoint *tp = (struct tracepoint *) b;
6520
6521 if (tp->traceframe_usage)
6522 {
6523 ui_out_text (uiout, "\ttrace buffer usage ");
6524 ui_out_field_int (uiout, "traceframe-usage", tp->traceframe_usage);
6525 ui_out_text (uiout, " bytes\n");
6526 }
6527 }
6528
6529 l = b->commands ? b->commands->commands : NULL;
6530 if (!part_of_multiple && l)
6531 {
6532 struct cleanup *script_chain;
6533
6534 annotate_field (9);
6535 script_chain = make_cleanup_ui_out_tuple_begin_end (uiout, "script");
6536 print_command_lines (uiout, l, 4);
6537 do_cleanups (script_chain);
6538 }
6539
6540 if (is_tracepoint (b))
6541 {
6542 struct tracepoint *t = (struct tracepoint *) b;
6543
6544 if (!part_of_multiple && t->pass_count)
6545 {
6546 annotate_field (10);
6547 ui_out_text (uiout, "\tpass count ");
6548 ui_out_field_int (uiout, "pass", t->pass_count);
6549 ui_out_text (uiout, " \n");
6550 }
6551
6552 /* Don't display it when tracepoint or tracepoint location is
6553 pending. */
6554 if (!header_of_multiple && loc != NULL && !loc->shlib_disabled)
6555 {
6556 annotate_field (11);
6557
6558 if (ui_out_is_mi_like_p (uiout))
6559 ui_out_field_string (uiout, "installed",
6560 loc->inserted ? "y" : "n");
6561 else
6562 {
6563 if (loc->inserted)
6564 ui_out_text (uiout, "\t");
6565 else
6566 ui_out_text (uiout, "\tnot ");
6567 ui_out_text (uiout, "installed on target\n");
6568 }
6569 }
6570 }
6571
6572 if (ui_out_is_mi_like_p (uiout) && !part_of_multiple)
6573 {
6574 if (is_watchpoint (b))
6575 {
6576 struct watchpoint *w = (struct watchpoint *) b;
6577
6578 ui_out_field_string (uiout, "original-location", w->exp_string);
6579 }
6580 else if (b->addr_string)
6581 ui_out_field_string (uiout, "original-location", b->addr_string);
6582 }
6583 }
6584
6585 static void
6586 print_one_breakpoint (struct breakpoint *b,
6587 struct bp_location **last_loc,
6588 int allflag)
6589 {
6590 struct cleanup *bkpt_chain;
6591 struct ui_out *uiout = current_uiout;
6592
6593 bkpt_chain = make_cleanup_ui_out_tuple_begin_end (uiout, "bkpt");
6594
6595 print_one_breakpoint_location (b, NULL, 0, last_loc, allflag);
6596 do_cleanups (bkpt_chain);
6597
6598 /* If this breakpoint has custom print function,
6599 it's already printed. Otherwise, print individual
6600 locations, if any. */
6601 if (b->ops == NULL || b->ops->print_one == NULL)
6602 {
6603 /* If breakpoint has a single location that is disabled, we
6604 print it as if it had several locations, since otherwise it's
6605 hard to represent "breakpoint enabled, location disabled"
6606 situation.
6607
6608 Note that while hardware watchpoints have several locations
6609 internally, that's not a property exposed to user. */
6610 if (b->loc
6611 && !is_hardware_watchpoint (b)
6612 && (b->loc->next || !b->loc->enabled))
6613 {
6614 struct bp_location *loc;
6615 int n = 1;
6616
6617 for (loc = b->loc; loc; loc = loc->next, ++n)
6618 {
6619 struct cleanup *inner2 =
6620 make_cleanup_ui_out_tuple_begin_end (uiout, NULL);
6621 print_one_breakpoint_location (b, loc, n, last_loc, allflag);
6622 do_cleanups (inner2);
6623 }
6624 }
6625 }
6626 }
6627
6628 static int
6629 breakpoint_address_bits (struct breakpoint *b)
6630 {
6631 int print_address_bits = 0;
6632 struct bp_location *loc;
6633
6634 for (loc = b->loc; loc; loc = loc->next)
6635 {
6636 int addr_bit;
6637
6638 /* Software watchpoints that aren't watching memory don't have
6639 an address to print. */
6640 if (b->type == bp_watchpoint && loc->watchpoint_type == -1)
6641 continue;
6642
6643 addr_bit = gdbarch_addr_bit (loc->gdbarch);
6644 if (addr_bit > print_address_bits)
6645 print_address_bits = addr_bit;
6646 }
6647
6648 return print_address_bits;
6649 }
6650
6651 struct captured_breakpoint_query_args
6652 {
6653 int bnum;
6654 };
6655
6656 static int
6657 do_captured_breakpoint_query (struct ui_out *uiout, void *data)
6658 {
6659 struct captured_breakpoint_query_args *args = data;
6660 struct breakpoint *b;
6661 struct bp_location *dummy_loc = NULL;
6662
6663 ALL_BREAKPOINTS (b)
6664 {
6665 if (args->bnum == b->number)
6666 {
6667 print_one_breakpoint (b, &dummy_loc, 0);
6668 return GDB_RC_OK;
6669 }
6670 }
6671 return GDB_RC_NONE;
6672 }
6673
6674 enum gdb_rc
6675 gdb_breakpoint_query (struct ui_out *uiout, int bnum,
6676 char **error_message)
6677 {
6678 struct captured_breakpoint_query_args args;
6679
6680 args.bnum = bnum;
6681 /* For the moment we don't trust print_one_breakpoint() to not throw
6682 an error. */
6683 if (catch_exceptions_with_msg (uiout, do_captured_breakpoint_query, &args,
6684 error_message, RETURN_MASK_ALL) < 0)
6685 return GDB_RC_FAIL;
6686 else
6687 return GDB_RC_OK;
6688 }
6689
6690 /* Return true if this breakpoint was set by the user, false if it is
6691 internal or momentary. */
6692
6693 int
6694 user_breakpoint_p (struct breakpoint *b)
6695 {
6696 return b->number > 0;
6697 }
6698
6699 /* Print information on user settable breakpoint (watchpoint, etc)
6700 number BNUM. If BNUM is -1 print all user-settable breakpoints.
6701 If ALLFLAG is non-zero, include non-user-settable breakpoints. If
6702 FILTER is non-NULL, call it on each breakpoint and only include the
6703 ones for which it returns non-zero. Return the total number of
6704 breakpoints listed. */
6705
6706 static int
6707 breakpoint_1 (char *args, int allflag,
6708 int (*filter) (const struct breakpoint *))
6709 {
6710 struct breakpoint *b;
6711 struct bp_location *last_loc = NULL;
6712 int nr_printable_breakpoints;
6713 struct cleanup *bkpttbl_chain;
6714 struct value_print_options opts;
6715 int print_address_bits = 0;
6716 int print_type_col_width = 14;
6717 struct ui_out *uiout = current_uiout;
6718
6719 get_user_print_options (&opts);
6720
6721 /* Compute the number of rows in the table, as well as the size
6722 required for address fields. */
6723 nr_printable_breakpoints = 0;
6724 ALL_BREAKPOINTS (b)
6725 {
6726 /* If we have a filter, only list the breakpoints it accepts. */
6727 if (filter && !filter (b))
6728 continue;
6729
6730 /* If we have an "args" string, it is a list of breakpoints to
6731 accept. Skip the others. */
6732 if (args != NULL && *args != '\0')
6733 {
6734 if (allflag && parse_and_eval_long (args) != b->number)
6735 continue;
6736 if (!allflag && !number_is_in_list (args, b->number))
6737 continue;
6738 }
6739
6740 if (allflag || user_breakpoint_p (b))
6741 {
6742 int addr_bit, type_len;
6743
6744 addr_bit = breakpoint_address_bits (b);
6745 if (addr_bit > print_address_bits)
6746 print_address_bits = addr_bit;
6747
6748 type_len = strlen (bptype_string (b->type));
6749 if (type_len > print_type_col_width)
6750 print_type_col_width = type_len;
6751
6752 nr_printable_breakpoints++;
6753 }
6754 }
6755
6756 if (opts.addressprint)
6757 bkpttbl_chain
6758 = make_cleanup_ui_out_table_begin_end (uiout, 6,
6759 nr_printable_breakpoints,
6760 "BreakpointTable");
6761 else
6762 bkpttbl_chain
6763 = make_cleanup_ui_out_table_begin_end (uiout, 5,
6764 nr_printable_breakpoints,
6765 "BreakpointTable");
6766
6767 if (nr_printable_breakpoints > 0)
6768 annotate_breakpoints_headers ();
6769 if (nr_printable_breakpoints > 0)
6770 annotate_field (0);
6771 ui_out_table_header (uiout, 7, ui_left, "number", "Num"); /* 1 */
6772 if (nr_printable_breakpoints > 0)
6773 annotate_field (1);
6774 ui_out_table_header (uiout, print_type_col_width, ui_left,
6775 "type", "Type"); /* 2 */
6776 if (nr_printable_breakpoints > 0)
6777 annotate_field (2);
6778 ui_out_table_header (uiout, 4, ui_left, "disp", "Disp"); /* 3 */
6779 if (nr_printable_breakpoints > 0)
6780 annotate_field (3);
6781 ui_out_table_header (uiout, 3, ui_left, "enabled", "Enb"); /* 4 */
6782 if (opts.addressprint)
6783 {
6784 if (nr_printable_breakpoints > 0)
6785 annotate_field (4);
6786 if (print_address_bits <= 32)
6787 ui_out_table_header (uiout, 10, ui_left,
6788 "addr", "Address"); /* 5 */
6789 else
6790 ui_out_table_header (uiout, 18, ui_left,
6791 "addr", "Address"); /* 5 */
6792 }
6793 if (nr_printable_breakpoints > 0)
6794 annotate_field (5);
6795 ui_out_table_header (uiout, 40, ui_noalign, "what", "What"); /* 6 */
6796 ui_out_table_body (uiout);
6797 if (nr_printable_breakpoints > 0)
6798 annotate_breakpoints_table ();
6799
6800 ALL_BREAKPOINTS (b)
6801 {
6802 QUIT;
6803 /* If we have a filter, only list the breakpoints it accepts. */
6804 if (filter && !filter (b))
6805 continue;
6806
6807 /* If we have an "args" string, it is a list of breakpoints to
6808 accept. Skip the others. */
6809
6810 if (args != NULL && *args != '\0')
6811 {
6812 if (allflag) /* maintenance info breakpoint */
6813 {
6814 if (parse_and_eval_long (args) != b->number)
6815 continue;
6816 }
6817 else /* all others */
6818 {
6819 if (!number_is_in_list (args, b->number))
6820 continue;
6821 }
6822 }
6823 /* We only print out user settable breakpoints unless the
6824 allflag is set. */
6825 if (allflag || user_breakpoint_p (b))
6826 print_one_breakpoint (b, &last_loc, allflag);
6827 }
6828
6829 do_cleanups (bkpttbl_chain);
6830
6831 if (nr_printable_breakpoints == 0)
6832 {
6833 /* If there's a filter, let the caller decide how to report
6834 empty list. */
6835 if (!filter)
6836 {
6837 if (args == NULL || *args == '\0')
6838 ui_out_message (uiout, 0, "No breakpoints or watchpoints.\n");
6839 else
6840 ui_out_message (uiout, 0,
6841 "No breakpoint or watchpoint matching '%s'.\n",
6842 args);
6843 }
6844 }
6845 else
6846 {
6847 if (last_loc && !server_command)
6848 set_next_address (last_loc->gdbarch, last_loc->address);
6849 }
6850
6851 /* FIXME? Should this be moved up so that it is only called when
6852 there have been breakpoints? */
6853 annotate_breakpoints_table_end ();
6854
6855 return nr_printable_breakpoints;
6856 }
6857
6858 /* Display the value of default-collect in a way that is generally
6859 compatible with the breakpoint list. */
6860
6861 static void
6862 default_collect_info (void)
6863 {
6864 struct ui_out *uiout = current_uiout;
6865
6866 /* If it has no value (which is frequently the case), say nothing; a
6867 message like "No default-collect." gets in user's face when it's
6868 not wanted. */
6869 if (!*default_collect)
6870 return;
6871
6872 /* The following phrase lines up nicely with per-tracepoint collect
6873 actions. */
6874 ui_out_text (uiout, "default collect ");
6875 ui_out_field_string (uiout, "default-collect", default_collect);
6876 ui_out_text (uiout, " \n");
6877 }
6878
6879 static void
6880 breakpoints_info (char *args, int from_tty)
6881 {
6882 breakpoint_1 (args, 0, NULL);
6883
6884 default_collect_info ();
6885 }
6886
6887 static void
6888 watchpoints_info (char *args, int from_tty)
6889 {
6890 int num_printed = breakpoint_1 (args, 0, is_watchpoint);
6891 struct ui_out *uiout = current_uiout;
6892
6893 if (num_printed == 0)
6894 {
6895 if (args == NULL || *args == '\0')
6896 ui_out_message (uiout, 0, "No watchpoints.\n");
6897 else
6898 ui_out_message (uiout, 0, "No watchpoint matching '%s'.\n", args);
6899 }
6900 }
6901
6902 static void
6903 maintenance_info_breakpoints (char *args, int from_tty)
6904 {
6905 breakpoint_1 (args, 1, NULL);
6906
6907 default_collect_info ();
6908 }
6909
6910 static int
6911 breakpoint_has_pc (struct breakpoint *b,
6912 struct program_space *pspace,
6913 CORE_ADDR pc, struct obj_section *section)
6914 {
6915 struct bp_location *bl = b->loc;
6916
6917 for (; bl; bl = bl->next)
6918 {
6919 if (bl->pspace == pspace
6920 && bl->address == pc
6921 && (!overlay_debugging || bl->section == section))
6922 return 1;
6923 }
6924 return 0;
6925 }
6926
6927 /* Print a message describing any user-breakpoints set at PC. This
6928 concerns with logical breakpoints, so we match program spaces, not
6929 address spaces. */
6930
6931 static void
6932 describe_other_breakpoints (struct gdbarch *gdbarch,
6933 struct program_space *pspace, CORE_ADDR pc,
6934 struct obj_section *section, int thread)
6935 {
6936 int others = 0;
6937 struct breakpoint *b;
6938
6939 ALL_BREAKPOINTS (b)
6940 others += (user_breakpoint_p (b)
6941 && breakpoint_has_pc (b, pspace, pc, section));
6942 if (others > 0)
6943 {
6944 if (others == 1)
6945 printf_filtered (_("Note: breakpoint "));
6946 else /* if (others == ???) */
6947 printf_filtered (_("Note: breakpoints "));
6948 ALL_BREAKPOINTS (b)
6949 if (user_breakpoint_p (b) && breakpoint_has_pc (b, pspace, pc, section))
6950 {
6951 others--;
6952 printf_filtered ("%d", b->number);
6953 if (b->thread == -1 && thread != -1)
6954 printf_filtered (" (all threads)");
6955 else if (b->thread != -1)
6956 printf_filtered (" (thread %d)", b->thread);
6957 printf_filtered ("%s%s ",
6958 ((b->enable_state == bp_disabled
6959 || b->enable_state == bp_call_disabled)
6960 ? " (disabled)"
6961 : b->enable_state == bp_permanent
6962 ? " (permanent)"
6963 : ""),
6964 (others > 1) ? ","
6965 : ((others == 1) ? " and" : ""));
6966 }
6967 printf_filtered (_("also set at pc "));
6968 fputs_filtered (paddress (gdbarch, pc), gdb_stdout);
6969 printf_filtered (".\n");
6970 }
6971 }
6972 \f
6973
6974 /* Return true iff it is meaningful to use the address member of
6975 BPT. For some breakpoint types, the address member is irrelevant
6976 and it makes no sense to attempt to compare it to other addresses
6977 (or use it for any other purpose either).
6978
6979 More specifically, each of the following breakpoint types will
6980 always have a zero valued address and we don't want to mark
6981 breakpoints of any of these types to be a duplicate of an actual
6982 breakpoint at address zero:
6983
6984 bp_watchpoint
6985 bp_catchpoint
6986
6987 */
6988
6989 static int
6990 breakpoint_address_is_meaningful (struct breakpoint *bpt)
6991 {
6992 enum bptype type = bpt->type;
6993
6994 return (type != bp_watchpoint && type != bp_catchpoint);
6995 }
6996
6997 /* Assuming LOC1 and LOC2's owners are hardware watchpoints, returns
6998 true if LOC1 and LOC2 represent the same watchpoint location. */
6999
7000 static int
7001 watchpoint_locations_match (struct bp_location *loc1,
7002 struct bp_location *loc2)
7003 {
7004 struct watchpoint *w1 = (struct watchpoint *) loc1->owner;
7005 struct watchpoint *w2 = (struct watchpoint *) loc2->owner;
7006
7007 /* Both of them must exist. */
7008 gdb_assert (w1 != NULL);
7009 gdb_assert (w2 != NULL);
7010
7011 /* If the target can evaluate the condition expression in hardware,
7012 then we we need to insert both watchpoints even if they are at
7013 the same place. Otherwise the watchpoint will only trigger when
7014 the condition of whichever watchpoint was inserted evaluates to
7015 true, not giving a chance for GDB to check the condition of the
7016 other watchpoint. */
7017 if ((w1->cond_exp
7018 && target_can_accel_watchpoint_condition (loc1->address,
7019 loc1->length,
7020 loc1->watchpoint_type,
7021 w1->cond_exp))
7022 || (w2->cond_exp
7023 && target_can_accel_watchpoint_condition (loc2->address,
7024 loc2->length,
7025 loc2->watchpoint_type,
7026 w2->cond_exp)))
7027 return 0;
7028
7029 /* Note that this checks the owner's type, not the location's. In
7030 case the target does not support read watchpoints, but does
7031 support access watchpoints, we'll have bp_read_watchpoint
7032 watchpoints with hw_access locations. Those should be considered
7033 duplicates of hw_read locations. The hw_read locations will
7034 become hw_access locations later. */
7035 return (loc1->owner->type == loc2->owner->type
7036 && loc1->pspace->aspace == loc2->pspace->aspace
7037 && loc1->address == loc2->address
7038 && loc1->length == loc2->length);
7039 }
7040
7041 /* See breakpoint.h. */
7042
7043 int
7044 breakpoint_address_match (struct address_space *aspace1, CORE_ADDR addr1,
7045 struct address_space *aspace2, CORE_ADDR addr2)
7046 {
7047 return ((gdbarch_has_global_breakpoints (target_gdbarch ())
7048 || aspace1 == aspace2)
7049 && addr1 == addr2);
7050 }
7051
7052 /* Returns true if {ASPACE2,ADDR2} falls within the range determined by
7053 {ASPACE1,ADDR1,LEN1}. In most targets, this can only be true if ASPACE1
7054 matches ASPACE2. On targets that have global breakpoints, the address
7055 space doesn't really matter. */
7056
7057 static int
7058 breakpoint_address_match_range (struct address_space *aspace1, CORE_ADDR addr1,
7059 int len1, struct address_space *aspace2,
7060 CORE_ADDR addr2)
7061 {
7062 return ((gdbarch_has_global_breakpoints (target_gdbarch ())
7063 || aspace1 == aspace2)
7064 && addr2 >= addr1 && addr2 < addr1 + len1);
7065 }
7066
7067 /* Returns true if {ASPACE,ADDR} matches the breakpoint BL. BL may be
7068 a ranged breakpoint. In most targets, a match happens only if ASPACE
7069 matches the breakpoint's address space. On targets that have global
7070 breakpoints, the address space doesn't really matter. */
7071
7072 static int
7073 breakpoint_location_address_match (struct bp_location *bl,
7074 struct address_space *aspace,
7075 CORE_ADDR addr)
7076 {
7077 return (breakpoint_address_match (bl->pspace->aspace, bl->address,
7078 aspace, addr)
7079 || (bl->length
7080 && breakpoint_address_match_range (bl->pspace->aspace,
7081 bl->address, bl->length,
7082 aspace, addr)));
7083 }
7084
7085 /* If LOC1 and LOC2's owners are not tracepoints, returns false directly.
7086 Then, if LOC1 and LOC2 represent the same tracepoint location, returns
7087 true, otherwise returns false. */
7088
7089 static int
7090 tracepoint_locations_match (struct bp_location *loc1,
7091 struct bp_location *loc2)
7092 {
7093 if (is_tracepoint (loc1->owner) && is_tracepoint (loc2->owner))
7094 /* Since tracepoint locations are never duplicated with others', tracepoint
7095 locations at the same address of different tracepoints are regarded as
7096 different locations. */
7097 return (loc1->address == loc2->address && loc1->owner == loc2->owner);
7098 else
7099 return 0;
7100 }
7101
7102 /* Assuming LOC1 and LOC2's types' have meaningful target addresses
7103 (breakpoint_address_is_meaningful), returns true if LOC1 and LOC2
7104 represent the same location. */
7105
7106 static int
7107 breakpoint_locations_match (struct bp_location *loc1,
7108 struct bp_location *loc2)
7109 {
7110 int hw_point1, hw_point2;
7111
7112 /* Both of them must not be in moribund_locations. */
7113 gdb_assert (loc1->owner != NULL);
7114 gdb_assert (loc2->owner != NULL);
7115
7116 hw_point1 = is_hardware_watchpoint (loc1->owner);
7117 hw_point2 = is_hardware_watchpoint (loc2->owner);
7118
7119 if (hw_point1 != hw_point2)
7120 return 0;
7121 else if (hw_point1)
7122 return watchpoint_locations_match (loc1, loc2);
7123 else if (is_tracepoint (loc1->owner) || is_tracepoint (loc2->owner))
7124 return tracepoint_locations_match (loc1, loc2);
7125 else
7126 /* We compare bp_location.length in order to cover ranged breakpoints. */
7127 return (breakpoint_address_match (loc1->pspace->aspace, loc1->address,
7128 loc2->pspace->aspace, loc2->address)
7129 && loc1->length == loc2->length);
7130 }
7131
7132 static void
7133 breakpoint_adjustment_warning (CORE_ADDR from_addr, CORE_ADDR to_addr,
7134 int bnum, int have_bnum)
7135 {
7136 /* The longest string possibly returned by hex_string_custom
7137 is 50 chars. These must be at least that big for safety. */
7138 char astr1[64];
7139 char astr2[64];
7140
7141 strcpy (astr1, hex_string_custom ((unsigned long) from_addr, 8));
7142 strcpy (astr2, hex_string_custom ((unsigned long) to_addr, 8));
7143 if (have_bnum)
7144 warning (_("Breakpoint %d address previously adjusted from %s to %s."),
7145 bnum, astr1, astr2);
7146 else
7147 warning (_("Breakpoint address adjusted from %s to %s."), astr1, astr2);
7148 }
7149
7150 /* Adjust a breakpoint's address to account for architectural
7151 constraints on breakpoint placement. Return the adjusted address.
7152 Note: Very few targets require this kind of adjustment. For most
7153 targets, this function is simply the identity function. */
7154
7155 static CORE_ADDR
7156 adjust_breakpoint_address (struct gdbarch *gdbarch,
7157 CORE_ADDR bpaddr, enum bptype bptype)
7158 {
7159 if (!gdbarch_adjust_breakpoint_address_p (gdbarch))
7160 {
7161 /* Very few targets need any kind of breakpoint adjustment. */
7162 return bpaddr;
7163 }
7164 else if (bptype == bp_watchpoint
7165 || bptype == bp_hardware_watchpoint
7166 || bptype == bp_read_watchpoint
7167 || bptype == bp_access_watchpoint
7168 || bptype == bp_catchpoint)
7169 {
7170 /* Watchpoints and the various bp_catch_* eventpoints should not
7171 have their addresses modified. */
7172 return bpaddr;
7173 }
7174 else
7175 {
7176 CORE_ADDR adjusted_bpaddr;
7177
7178 /* Some targets have architectural constraints on the placement
7179 of breakpoint instructions. Obtain the adjusted address. */
7180 adjusted_bpaddr = gdbarch_adjust_breakpoint_address (gdbarch, bpaddr);
7181
7182 /* An adjusted breakpoint address can significantly alter
7183 a user's expectations. Print a warning if an adjustment
7184 is required. */
7185 if (adjusted_bpaddr != bpaddr)
7186 breakpoint_adjustment_warning (bpaddr, adjusted_bpaddr, 0, 0);
7187
7188 return adjusted_bpaddr;
7189 }
7190 }
7191
7192 void
7193 init_bp_location (struct bp_location *loc, const struct bp_location_ops *ops,
7194 struct breakpoint *owner)
7195 {
7196 memset (loc, 0, sizeof (*loc));
7197
7198 gdb_assert (ops != NULL);
7199
7200 loc->ops = ops;
7201 loc->owner = owner;
7202 loc->cond = NULL;
7203 loc->cond_bytecode = NULL;
7204 loc->shlib_disabled = 0;
7205 loc->enabled = 1;
7206
7207 switch (owner->type)
7208 {
7209 case bp_breakpoint:
7210 case bp_until:
7211 case bp_finish:
7212 case bp_longjmp:
7213 case bp_longjmp_resume:
7214 case bp_longjmp_call_dummy:
7215 case bp_exception:
7216 case bp_exception_resume:
7217 case bp_step_resume:
7218 case bp_hp_step_resume:
7219 case bp_watchpoint_scope:
7220 case bp_call_dummy:
7221 case bp_std_terminate:
7222 case bp_shlib_event:
7223 case bp_thread_event:
7224 case bp_overlay_event:
7225 case bp_jit_event:
7226 case bp_longjmp_master:
7227 case bp_std_terminate_master:
7228 case bp_exception_master:
7229 case bp_gnu_ifunc_resolver:
7230 case bp_gnu_ifunc_resolver_return:
7231 case bp_dprintf:
7232 loc->loc_type = bp_loc_software_breakpoint;
7233 mark_breakpoint_location_modified (loc);
7234 break;
7235 case bp_hardware_breakpoint:
7236 loc->loc_type = bp_loc_hardware_breakpoint;
7237 mark_breakpoint_location_modified (loc);
7238 break;
7239 case bp_hardware_watchpoint:
7240 case bp_read_watchpoint:
7241 case bp_access_watchpoint:
7242 loc->loc_type = bp_loc_hardware_watchpoint;
7243 break;
7244 case bp_watchpoint:
7245 case bp_catchpoint:
7246 case bp_tracepoint:
7247 case bp_fast_tracepoint:
7248 case bp_static_tracepoint:
7249 loc->loc_type = bp_loc_other;
7250 break;
7251 default:
7252 internal_error (__FILE__, __LINE__, _("unknown breakpoint type"));
7253 }
7254
7255 loc->refc = 1;
7256 }
7257
7258 /* Allocate a struct bp_location. */
7259
7260 static struct bp_location *
7261 allocate_bp_location (struct breakpoint *bpt)
7262 {
7263 return bpt->ops->allocate_location (bpt);
7264 }
7265
7266 static void
7267 free_bp_location (struct bp_location *loc)
7268 {
7269 loc->ops->dtor (loc);
7270 xfree (loc);
7271 }
7272
7273 /* Increment reference count. */
7274
7275 static void
7276 incref_bp_location (struct bp_location *bl)
7277 {
7278 ++bl->refc;
7279 }
7280
7281 /* Decrement reference count. If the reference count reaches 0,
7282 destroy the bp_location. Sets *BLP to NULL. */
7283
7284 static void
7285 decref_bp_location (struct bp_location **blp)
7286 {
7287 gdb_assert ((*blp)->refc > 0);
7288
7289 if (--(*blp)->refc == 0)
7290 free_bp_location (*blp);
7291 *blp = NULL;
7292 }
7293
7294 /* Add breakpoint B at the end of the global breakpoint chain. */
7295
7296 static void
7297 add_to_breakpoint_chain (struct breakpoint *b)
7298 {
7299 struct breakpoint *b1;
7300
7301 /* Add this breakpoint to the end of the chain so that a list of
7302 breakpoints will come out in order of increasing numbers. */
7303
7304 b1 = breakpoint_chain;
7305 if (b1 == 0)
7306 breakpoint_chain = b;
7307 else
7308 {
7309 while (b1->next)
7310 b1 = b1->next;
7311 b1->next = b;
7312 }
7313 }
7314
7315 /* Initializes breakpoint B with type BPTYPE and no locations yet. */
7316
7317 static void
7318 init_raw_breakpoint_without_location (struct breakpoint *b,
7319 struct gdbarch *gdbarch,
7320 enum bptype bptype,
7321 const struct breakpoint_ops *ops)
7322 {
7323 memset (b, 0, sizeof (*b));
7324
7325 gdb_assert (ops != NULL);
7326
7327 b->ops = ops;
7328 b->type = bptype;
7329 b->gdbarch = gdbarch;
7330 b->language = current_language->la_language;
7331 b->input_radix = input_radix;
7332 b->thread = -1;
7333 b->enable_state = bp_enabled;
7334 b->next = 0;
7335 b->silent = 0;
7336 b->ignore_count = 0;
7337 b->commands = NULL;
7338 b->frame_id = null_frame_id;
7339 b->condition_not_parsed = 0;
7340 b->py_bp_object = NULL;
7341 b->related_breakpoint = b;
7342 }
7343
7344 /* Helper to set_raw_breakpoint below. Creates a breakpoint
7345 that has type BPTYPE and has no locations as yet. */
7346
7347 static struct breakpoint *
7348 set_raw_breakpoint_without_location (struct gdbarch *gdbarch,
7349 enum bptype bptype,
7350 const struct breakpoint_ops *ops)
7351 {
7352 struct breakpoint *b = XNEW (struct breakpoint);
7353
7354 init_raw_breakpoint_without_location (b, gdbarch, bptype, ops);
7355 add_to_breakpoint_chain (b);
7356 return b;
7357 }
7358
7359 /* Initialize loc->function_name. EXPLICIT_LOC says no indirect function
7360 resolutions should be made as the user specified the location explicitly
7361 enough. */
7362
7363 static void
7364 set_breakpoint_location_function (struct bp_location *loc, int explicit_loc)
7365 {
7366 gdb_assert (loc->owner != NULL);
7367
7368 if (loc->owner->type == bp_breakpoint
7369 || loc->owner->type == bp_hardware_breakpoint
7370 || is_tracepoint (loc->owner))
7371 {
7372 int is_gnu_ifunc;
7373 const char *function_name;
7374 CORE_ADDR func_addr;
7375
7376 find_pc_partial_function_gnu_ifunc (loc->address, &function_name,
7377 &func_addr, NULL, &is_gnu_ifunc);
7378
7379 if (is_gnu_ifunc && !explicit_loc)
7380 {
7381 struct breakpoint *b = loc->owner;
7382
7383 gdb_assert (loc->pspace == current_program_space);
7384 if (gnu_ifunc_resolve_name (function_name,
7385 &loc->requested_address))
7386 {
7387 /* Recalculate ADDRESS based on new REQUESTED_ADDRESS. */
7388 loc->address = adjust_breakpoint_address (loc->gdbarch,
7389 loc->requested_address,
7390 b->type);
7391 }
7392 else if (b->type == bp_breakpoint && b->loc == loc
7393 && loc->next == NULL && b->related_breakpoint == b)
7394 {
7395 /* Create only the whole new breakpoint of this type but do not
7396 mess more complicated breakpoints with multiple locations. */
7397 b->type = bp_gnu_ifunc_resolver;
7398 /* Remember the resolver's address for use by the return
7399 breakpoint. */
7400 loc->related_address = func_addr;
7401 }
7402 }
7403
7404 if (function_name)
7405 loc->function_name = xstrdup (function_name);
7406 }
7407 }
7408
7409 /* Attempt to determine architecture of location identified by SAL. */
7410 struct gdbarch *
7411 get_sal_arch (struct symtab_and_line sal)
7412 {
7413 if (sal.section)
7414 return get_objfile_arch (sal.section->objfile);
7415 if (sal.symtab)
7416 return get_objfile_arch (sal.symtab->objfile);
7417
7418 return NULL;
7419 }
7420
7421 /* Low level routine for partially initializing a breakpoint of type
7422 BPTYPE. The newly created breakpoint's address, section, source
7423 file name, and line number are provided by SAL.
7424
7425 It is expected that the caller will complete the initialization of
7426 the newly created breakpoint struct as well as output any status
7427 information regarding the creation of a new breakpoint. */
7428
7429 static void
7430 init_raw_breakpoint (struct breakpoint *b, struct gdbarch *gdbarch,
7431 struct symtab_and_line sal, enum bptype bptype,
7432 const struct breakpoint_ops *ops)
7433 {
7434 init_raw_breakpoint_without_location (b, gdbarch, bptype, ops);
7435
7436 add_location_to_breakpoint (b, &sal);
7437
7438 if (bptype != bp_catchpoint)
7439 gdb_assert (sal.pspace != NULL);
7440
7441 /* Store the program space that was used to set the breakpoint,
7442 except for ordinary breakpoints, which are independent of the
7443 program space. */
7444 if (bptype != bp_breakpoint && bptype != bp_hardware_breakpoint)
7445 b->pspace = sal.pspace;
7446 }
7447
7448 /* set_raw_breakpoint is a low level routine for allocating and
7449 partially initializing a breakpoint of type BPTYPE. The newly
7450 created breakpoint's address, section, source file name, and line
7451 number are provided by SAL. The newly created and partially
7452 initialized breakpoint is added to the breakpoint chain and
7453 is also returned as the value of this function.
7454
7455 It is expected that the caller will complete the initialization of
7456 the newly created breakpoint struct as well as output any status
7457 information regarding the creation of a new breakpoint. In
7458 particular, set_raw_breakpoint does NOT set the breakpoint
7459 number! Care should be taken to not allow an error to occur
7460 prior to completing the initialization of the breakpoint. If this
7461 should happen, a bogus breakpoint will be left on the chain. */
7462
7463 struct breakpoint *
7464 set_raw_breakpoint (struct gdbarch *gdbarch,
7465 struct symtab_and_line sal, enum bptype bptype,
7466 const struct breakpoint_ops *ops)
7467 {
7468 struct breakpoint *b = XNEW (struct breakpoint);
7469
7470 init_raw_breakpoint (b, gdbarch, sal, bptype, ops);
7471 add_to_breakpoint_chain (b);
7472 return b;
7473 }
7474
7475
7476 /* Note that the breakpoint object B describes a permanent breakpoint
7477 instruction, hard-wired into the inferior's code. */
7478 void
7479 make_breakpoint_permanent (struct breakpoint *b)
7480 {
7481 struct bp_location *bl;
7482
7483 b->enable_state = bp_permanent;
7484
7485 /* By definition, permanent breakpoints are already present in the
7486 code. Mark all locations as inserted. For now,
7487 make_breakpoint_permanent is called in just one place, so it's
7488 hard to say if it's reasonable to have permanent breakpoint with
7489 multiple locations or not, but it's easy to implement. */
7490 for (bl = b->loc; bl; bl = bl->next)
7491 bl->inserted = 1;
7492 }
7493
7494 /* Call this routine when stepping and nexting to enable a breakpoint
7495 if we do a longjmp() or 'throw' in TP. FRAME is the frame which
7496 initiated the operation. */
7497
7498 void
7499 set_longjmp_breakpoint (struct thread_info *tp, struct frame_id frame)
7500 {
7501 struct breakpoint *b, *b_tmp;
7502 int thread = tp->num;
7503
7504 /* To avoid having to rescan all objfile symbols at every step,
7505 we maintain a list of continually-inserted but always disabled
7506 longjmp "master" breakpoints. Here, we simply create momentary
7507 clones of those and enable them for the requested thread. */
7508 ALL_BREAKPOINTS_SAFE (b, b_tmp)
7509 if (b->pspace == current_program_space
7510 && (b->type == bp_longjmp_master
7511 || b->type == bp_exception_master))
7512 {
7513 enum bptype type = b->type == bp_longjmp_master ? bp_longjmp : bp_exception;
7514 struct breakpoint *clone;
7515
7516 /* longjmp_breakpoint_ops ensures INITIATING_FRAME is cleared again
7517 after their removal. */
7518 clone = momentary_breakpoint_from_master (b, type,
7519 &longjmp_breakpoint_ops, 1);
7520 clone->thread = thread;
7521 }
7522
7523 tp->initiating_frame = frame;
7524 }
7525
7526 /* Delete all longjmp breakpoints from THREAD. */
7527 void
7528 delete_longjmp_breakpoint (int thread)
7529 {
7530 struct breakpoint *b, *b_tmp;
7531
7532 ALL_BREAKPOINTS_SAFE (b, b_tmp)
7533 if (b->type == bp_longjmp || b->type == bp_exception)
7534 {
7535 if (b->thread == thread)
7536 delete_breakpoint (b);
7537 }
7538 }
7539
7540 void
7541 delete_longjmp_breakpoint_at_next_stop (int thread)
7542 {
7543 struct breakpoint *b, *b_tmp;
7544
7545 ALL_BREAKPOINTS_SAFE (b, b_tmp)
7546 if (b->type == bp_longjmp || b->type == bp_exception)
7547 {
7548 if (b->thread == thread)
7549 b->disposition = disp_del_at_next_stop;
7550 }
7551 }
7552
7553 /* Place breakpoints of type bp_longjmp_call_dummy to catch longjmp for
7554 INFERIOR_PTID thread. Chain them all by RELATED_BREAKPOINT and return
7555 pointer to any of them. Return NULL if this system cannot place longjmp
7556 breakpoints. */
7557
7558 struct breakpoint *
7559 set_longjmp_breakpoint_for_call_dummy (void)
7560 {
7561 struct breakpoint *b, *retval = NULL;
7562
7563 ALL_BREAKPOINTS (b)
7564 if (b->pspace == current_program_space && b->type == bp_longjmp_master)
7565 {
7566 struct breakpoint *new_b;
7567
7568 new_b = momentary_breakpoint_from_master (b, bp_longjmp_call_dummy,
7569 &momentary_breakpoint_ops,
7570 1);
7571 new_b->thread = pid_to_thread_id (inferior_ptid);
7572
7573 /* Link NEW_B into the chain of RETVAL breakpoints. */
7574
7575 gdb_assert (new_b->related_breakpoint == new_b);
7576 if (retval == NULL)
7577 retval = new_b;
7578 new_b->related_breakpoint = retval;
7579 while (retval->related_breakpoint != new_b->related_breakpoint)
7580 retval = retval->related_breakpoint;
7581 retval->related_breakpoint = new_b;
7582 }
7583
7584 return retval;
7585 }
7586
7587 /* Verify all existing dummy frames and their associated breakpoints for
7588 TP. Remove those which can no longer be found in the current frame
7589 stack.
7590
7591 You should call this function only at places where it is safe to currently
7592 unwind the whole stack. Failed stack unwind would discard live dummy
7593 frames. */
7594
7595 void
7596 check_longjmp_breakpoint_for_call_dummy (struct thread_info *tp)
7597 {
7598 struct breakpoint *b, *b_tmp;
7599
7600 ALL_BREAKPOINTS_SAFE (b, b_tmp)
7601 if (b->type == bp_longjmp_call_dummy && b->thread == tp->num)
7602 {
7603 struct breakpoint *dummy_b = b->related_breakpoint;
7604
7605 while (dummy_b != b && dummy_b->type != bp_call_dummy)
7606 dummy_b = dummy_b->related_breakpoint;
7607 if (dummy_b->type != bp_call_dummy
7608 || frame_find_by_id (dummy_b->frame_id) != NULL)
7609 continue;
7610
7611 dummy_frame_discard (dummy_b->frame_id, tp->ptid);
7612
7613 while (b->related_breakpoint != b)
7614 {
7615 if (b_tmp == b->related_breakpoint)
7616 b_tmp = b->related_breakpoint->next;
7617 delete_breakpoint (b->related_breakpoint);
7618 }
7619 delete_breakpoint (b);
7620 }
7621 }
7622
7623 void
7624 enable_overlay_breakpoints (void)
7625 {
7626 struct breakpoint *b;
7627
7628 ALL_BREAKPOINTS (b)
7629 if (b->type == bp_overlay_event)
7630 {
7631 b->enable_state = bp_enabled;
7632 update_global_location_list (UGLL_MAY_INSERT);
7633 overlay_events_enabled = 1;
7634 }
7635 }
7636
7637 void
7638 disable_overlay_breakpoints (void)
7639 {
7640 struct breakpoint *b;
7641
7642 ALL_BREAKPOINTS (b)
7643 if (b->type == bp_overlay_event)
7644 {
7645 b->enable_state = bp_disabled;
7646 update_global_location_list (UGLL_DONT_INSERT);
7647 overlay_events_enabled = 0;
7648 }
7649 }
7650
7651 /* Set an active std::terminate breakpoint for each std::terminate
7652 master breakpoint. */
7653 void
7654 set_std_terminate_breakpoint (void)
7655 {
7656 struct breakpoint *b, *b_tmp;
7657
7658 ALL_BREAKPOINTS_SAFE (b, b_tmp)
7659 if (b->pspace == current_program_space
7660 && b->type == bp_std_terminate_master)
7661 {
7662 momentary_breakpoint_from_master (b, bp_std_terminate,
7663 &momentary_breakpoint_ops, 1);
7664 }
7665 }
7666
7667 /* Delete all the std::terminate breakpoints. */
7668 void
7669 delete_std_terminate_breakpoint (void)
7670 {
7671 struct breakpoint *b, *b_tmp;
7672
7673 ALL_BREAKPOINTS_SAFE (b, b_tmp)
7674 if (b->type == bp_std_terminate)
7675 delete_breakpoint (b);
7676 }
7677
7678 struct breakpoint *
7679 create_thread_event_breakpoint (struct gdbarch *gdbarch, CORE_ADDR address)
7680 {
7681 struct breakpoint *b;
7682
7683 b = create_internal_breakpoint (gdbarch, address, bp_thread_event,
7684 &internal_breakpoint_ops);
7685
7686 b->enable_state = bp_enabled;
7687 /* addr_string has to be used or breakpoint_re_set will delete me. */
7688 b->addr_string
7689 = xstrprintf ("*%s", paddress (b->loc->gdbarch, b->loc->address));
7690
7691 update_global_location_list_nothrow (UGLL_MAY_INSERT);
7692
7693 return b;
7694 }
7695
7696 void
7697 remove_thread_event_breakpoints (void)
7698 {
7699 struct breakpoint *b, *b_tmp;
7700
7701 ALL_BREAKPOINTS_SAFE (b, b_tmp)
7702 if (b->type == bp_thread_event
7703 && b->loc->pspace == current_program_space)
7704 delete_breakpoint (b);
7705 }
7706
7707 struct lang_and_radix
7708 {
7709 enum language lang;
7710 int radix;
7711 };
7712
7713 /* Create a breakpoint for JIT code registration and unregistration. */
7714
7715 struct breakpoint *
7716 create_jit_event_breakpoint (struct gdbarch *gdbarch, CORE_ADDR address)
7717 {
7718 struct breakpoint *b;
7719
7720 b = create_internal_breakpoint (gdbarch, address, bp_jit_event,
7721 &internal_breakpoint_ops);
7722 update_global_location_list_nothrow (UGLL_MAY_INSERT);
7723 return b;
7724 }
7725
7726 /* Remove JIT code registration and unregistration breakpoint(s). */
7727
7728 void
7729 remove_jit_event_breakpoints (void)
7730 {
7731 struct breakpoint *b, *b_tmp;
7732
7733 ALL_BREAKPOINTS_SAFE (b, b_tmp)
7734 if (b->type == bp_jit_event
7735 && b->loc->pspace == current_program_space)
7736 delete_breakpoint (b);
7737 }
7738
7739 void
7740 remove_solib_event_breakpoints (void)
7741 {
7742 struct breakpoint *b, *b_tmp;
7743
7744 ALL_BREAKPOINTS_SAFE (b, b_tmp)
7745 if (b->type == bp_shlib_event
7746 && b->loc->pspace == current_program_space)
7747 delete_breakpoint (b);
7748 }
7749
7750 /* See breakpoint.h. */
7751
7752 void
7753 remove_solib_event_breakpoints_at_next_stop (void)
7754 {
7755 struct breakpoint *b, *b_tmp;
7756
7757 ALL_BREAKPOINTS_SAFE (b, b_tmp)
7758 if (b->type == bp_shlib_event
7759 && b->loc->pspace == current_program_space)
7760 b->disposition = disp_del_at_next_stop;
7761 }
7762
7763 /* Helper for create_solib_event_breakpoint /
7764 create_and_insert_solib_event_breakpoint. Allows specifying which
7765 INSERT_MODE to pass through to update_global_location_list. */
7766
7767 static struct breakpoint *
7768 create_solib_event_breakpoint_1 (struct gdbarch *gdbarch, CORE_ADDR address,
7769 enum ugll_insert_mode insert_mode)
7770 {
7771 struct breakpoint *b;
7772
7773 b = create_internal_breakpoint (gdbarch, address, bp_shlib_event,
7774 &internal_breakpoint_ops);
7775 update_global_location_list_nothrow (insert_mode);
7776 return b;
7777 }
7778
7779 struct breakpoint *
7780 create_solib_event_breakpoint (struct gdbarch *gdbarch, CORE_ADDR address)
7781 {
7782 return create_solib_event_breakpoint_1 (gdbarch, address, UGLL_MAY_INSERT);
7783 }
7784
7785 /* See breakpoint.h. */
7786
7787 struct breakpoint *
7788 create_and_insert_solib_event_breakpoint (struct gdbarch *gdbarch, CORE_ADDR address)
7789 {
7790 struct breakpoint *b;
7791
7792 /* Explicitly tell update_global_location_list to insert
7793 locations. */
7794 b = create_solib_event_breakpoint_1 (gdbarch, address, UGLL_INSERT);
7795 if (!b->loc->inserted)
7796 {
7797 delete_breakpoint (b);
7798 return NULL;
7799 }
7800 return b;
7801 }
7802
7803 /* Disable any breakpoints that are on code in shared libraries. Only
7804 apply to enabled breakpoints, disabled ones can just stay disabled. */
7805
7806 void
7807 disable_breakpoints_in_shlibs (void)
7808 {
7809 struct bp_location *loc, **locp_tmp;
7810
7811 ALL_BP_LOCATIONS (loc, locp_tmp)
7812 {
7813 /* ALL_BP_LOCATIONS bp_location has LOC->OWNER always non-NULL. */
7814 struct breakpoint *b = loc->owner;
7815
7816 /* We apply the check to all breakpoints, including disabled for
7817 those with loc->duplicate set. This is so that when breakpoint
7818 becomes enabled, or the duplicate is removed, gdb will try to
7819 insert all breakpoints. If we don't set shlib_disabled here,
7820 we'll try to insert those breakpoints and fail. */
7821 if (((b->type == bp_breakpoint)
7822 || (b->type == bp_jit_event)
7823 || (b->type == bp_hardware_breakpoint)
7824 || (is_tracepoint (b)))
7825 && loc->pspace == current_program_space
7826 && !loc->shlib_disabled
7827 && solib_name_from_address (loc->pspace, loc->address)
7828 )
7829 {
7830 loc->shlib_disabled = 1;
7831 }
7832 }
7833 }
7834
7835 /* Disable any breakpoints and tracepoints that are in SOLIB upon
7836 notification of unloaded_shlib. Only apply to enabled breakpoints,
7837 disabled ones can just stay disabled. */
7838
7839 static void
7840 disable_breakpoints_in_unloaded_shlib (struct so_list *solib)
7841 {
7842 struct bp_location *loc, **locp_tmp;
7843 int disabled_shlib_breaks = 0;
7844
7845 /* SunOS a.out shared libraries are always mapped, so do not
7846 disable breakpoints; they will only be reported as unloaded
7847 through clear_solib when GDB discards its shared library
7848 list. See clear_solib for more information. */
7849 if (exec_bfd != NULL
7850 && bfd_get_flavour (exec_bfd) == bfd_target_aout_flavour)
7851 return;
7852
7853 ALL_BP_LOCATIONS (loc, locp_tmp)
7854 {
7855 /* ALL_BP_LOCATIONS bp_location has LOC->OWNER always non-NULL. */
7856 struct breakpoint *b = loc->owner;
7857
7858 if (solib->pspace == loc->pspace
7859 && !loc->shlib_disabled
7860 && (((b->type == bp_breakpoint
7861 || b->type == bp_jit_event
7862 || b->type == bp_hardware_breakpoint)
7863 && (loc->loc_type == bp_loc_hardware_breakpoint
7864 || loc->loc_type == bp_loc_software_breakpoint))
7865 || is_tracepoint (b))
7866 && solib_contains_address_p (solib, loc->address))
7867 {
7868 loc->shlib_disabled = 1;
7869 /* At this point, we cannot rely on remove_breakpoint
7870 succeeding so we must mark the breakpoint as not inserted
7871 to prevent future errors occurring in remove_breakpoints. */
7872 loc->inserted = 0;
7873
7874 /* This may cause duplicate notifications for the same breakpoint. */
7875 observer_notify_breakpoint_modified (b);
7876
7877 if (!disabled_shlib_breaks)
7878 {
7879 target_terminal_ours_for_output ();
7880 warning (_("Temporarily disabling breakpoints "
7881 "for unloaded shared library \"%s\""),
7882 solib->so_name);
7883 }
7884 disabled_shlib_breaks = 1;
7885 }
7886 }
7887 }
7888
7889 /* Disable any breakpoints and tracepoints in OBJFILE upon
7890 notification of free_objfile. Only apply to enabled breakpoints,
7891 disabled ones can just stay disabled. */
7892
7893 static void
7894 disable_breakpoints_in_freed_objfile (struct objfile *objfile)
7895 {
7896 struct breakpoint *b;
7897
7898 if (objfile == NULL)
7899 return;
7900
7901 /* OBJF_SHARED|OBJF_USERLOADED objfiles are dynamic modules manually
7902 managed by the user with add-symbol-file/remove-symbol-file.
7903 Similarly to how breakpoints in shared libraries are handled in
7904 response to "nosharedlibrary", mark breakpoints in such modules
7905 shlib_disabled so they end up uninserted on the next global
7906 location list update. Shared libraries not loaded by the user
7907 aren't handled here -- they're already handled in
7908 disable_breakpoints_in_unloaded_shlib, called by solib.c's
7909 solib_unloaded observer. We skip objfiles that are not
7910 OBJF_SHARED as those aren't considered dynamic objects (e.g. the
7911 main objfile). */
7912 if ((objfile->flags & OBJF_SHARED) == 0
7913 || (objfile->flags & OBJF_USERLOADED) == 0)
7914 return;
7915
7916 ALL_BREAKPOINTS (b)
7917 {
7918 struct bp_location *loc;
7919 int bp_modified = 0;
7920
7921 if (!is_breakpoint (b) && !is_tracepoint (b))
7922 continue;
7923
7924 for (loc = b->loc; loc != NULL; loc = loc->next)
7925 {
7926 CORE_ADDR loc_addr = loc->address;
7927
7928 if (loc->loc_type != bp_loc_hardware_breakpoint
7929 && loc->loc_type != bp_loc_software_breakpoint)
7930 continue;
7931
7932 if (loc->shlib_disabled != 0)
7933 continue;
7934
7935 if (objfile->pspace != loc->pspace)
7936 continue;
7937
7938 if (loc->loc_type != bp_loc_hardware_breakpoint
7939 && loc->loc_type != bp_loc_software_breakpoint)
7940 continue;
7941
7942 if (is_addr_in_objfile (loc_addr, objfile))
7943 {
7944 loc->shlib_disabled = 1;
7945 /* At this point, we don't know whether the object was
7946 unmapped from the inferior or not, so leave the
7947 inserted flag alone. We'll handle failure to
7948 uninsert quietly, in case the object was indeed
7949 unmapped. */
7950
7951 mark_breakpoint_location_modified (loc);
7952
7953 bp_modified = 1;
7954 }
7955 }
7956
7957 if (bp_modified)
7958 observer_notify_breakpoint_modified (b);
7959 }
7960 }
7961
7962 /* FORK & VFORK catchpoints. */
7963
7964 /* An instance of this type is used to represent a fork or vfork
7965 catchpoint. It includes a "struct breakpoint" as a kind of base
7966 class; users downcast to "struct breakpoint *" when needed. A
7967 breakpoint is really of this type iff its ops pointer points to
7968 CATCH_FORK_BREAKPOINT_OPS. */
7969
7970 struct fork_catchpoint
7971 {
7972 /* The base class. */
7973 struct breakpoint base;
7974
7975 /* Process id of a child process whose forking triggered this
7976 catchpoint. This field is only valid immediately after this
7977 catchpoint has triggered. */
7978 ptid_t forked_inferior_pid;
7979 };
7980
7981 /* Implement the "insert" breakpoint_ops method for fork
7982 catchpoints. */
7983
7984 static int
7985 insert_catch_fork (struct bp_location *bl)
7986 {
7987 return target_insert_fork_catchpoint (ptid_get_pid (inferior_ptid));
7988 }
7989
7990 /* Implement the "remove" breakpoint_ops method for fork
7991 catchpoints. */
7992
7993 static int
7994 remove_catch_fork (struct bp_location *bl)
7995 {
7996 return target_remove_fork_catchpoint (ptid_get_pid (inferior_ptid));
7997 }
7998
7999 /* Implement the "breakpoint_hit" breakpoint_ops method for fork
8000 catchpoints. */
8001
8002 static int
8003 breakpoint_hit_catch_fork (const struct bp_location *bl,
8004 struct address_space *aspace, CORE_ADDR bp_addr,
8005 const struct target_waitstatus *ws)
8006 {
8007 struct fork_catchpoint *c = (struct fork_catchpoint *) bl->owner;
8008
8009 if (ws->kind != TARGET_WAITKIND_FORKED)
8010 return 0;
8011
8012 c->forked_inferior_pid = ws->value.related_pid;
8013 return 1;
8014 }
8015
8016 /* Implement the "print_it" breakpoint_ops method for fork
8017 catchpoints. */
8018
8019 static enum print_stop_action
8020 print_it_catch_fork (bpstat bs)
8021 {
8022 struct ui_out *uiout = current_uiout;
8023 struct breakpoint *b = bs->breakpoint_at;
8024 struct fork_catchpoint *c = (struct fork_catchpoint *) bs->breakpoint_at;
8025
8026 annotate_catchpoint (b->number);
8027 if (b->disposition == disp_del)
8028 ui_out_text (uiout, "\nTemporary catchpoint ");
8029 else
8030 ui_out_text (uiout, "\nCatchpoint ");
8031 if (ui_out_is_mi_like_p (uiout))
8032 {
8033 ui_out_field_string (uiout, "reason",
8034 async_reason_lookup (EXEC_ASYNC_FORK));
8035 ui_out_field_string (uiout, "disp", bpdisp_text (b->disposition));
8036 }
8037 ui_out_field_int (uiout, "bkptno", b->number);
8038 ui_out_text (uiout, " (forked process ");
8039 ui_out_field_int (uiout, "newpid", ptid_get_pid (c->forked_inferior_pid));
8040 ui_out_text (uiout, "), ");
8041 return PRINT_SRC_AND_LOC;
8042 }
8043
8044 /* Implement the "print_one" breakpoint_ops method for fork
8045 catchpoints. */
8046
8047 static void
8048 print_one_catch_fork (struct breakpoint *b, struct bp_location **last_loc)
8049 {
8050 struct fork_catchpoint *c = (struct fork_catchpoint *) b;
8051 struct value_print_options opts;
8052 struct ui_out *uiout = current_uiout;
8053
8054 get_user_print_options (&opts);
8055
8056 /* Field 4, the address, is omitted (which makes the columns not
8057 line up too nicely with the headers, but the effect is relatively
8058 readable). */
8059 if (opts.addressprint)
8060 ui_out_field_skip (uiout, "addr");
8061 annotate_field (5);
8062 ui_out_text (uiout, "fork");
8063 if (!ptid_equal (c->forked_inferior_pid, null_ptid))
8064 {
8065 ui_out_text (uiout, ", process ");
8066 ui_out_field_int (uiout, "what",
8067 ptid_get_pid (c->forked_inferior_pid));
8068 ui_out_spaces (uiout, 1);
8069 }
8070
8071 if (ui_out_is_mi_like_p (uiout))
8072 ui_out_field_string (uiout, "catch-type", "fork");
8073 }
8074
8075 /* Implement the "print_mention" breakpoint_ops method for fork
8076 catchpoints. */
8077
8078 static void
8079 print_mention_catch_fork (struct breakpoint *b)
8080 {
8081 printf_filtered (_("Catchpoint %d (fork)"), b->number);
8082 }
8083
8084 /* Implement the "print_recreate" breakpoint_ops method for fork
8085 catchpoints. */
8086
8087 static void
8088 print_recreate_catch_fork (struct breakpoint *b, struct ui_file *fp)
8089 {
8090 fprintf_unfiltered (fp, "catch fork");
8091 print_recreate_thread (b, fp);
8092 }
8093
8094 /* The breakpoint_ops structure to be used in fork catchpoints. */
8095
8096 static struct breakpoint_ops catch_fork_breakpoint_ops;
8097
8098 /* Implement the "insert" breakpoint_ops method for vfork
8099 catchpoints. */
8100
8101 static int
8102 insert_catch_vfork (struct bp_location *bl)
8103 {
8104 return target_insert_vfork_catchpoint (ptid_get_pid (inferior_ptid));
8105 }
8106
8107 /* Implement the "remove" breakpoint_ops method for vfork
8108 catchpoints. */
8109
8110 static int
8111 remove_catch_vfork (struct bp_location *bl)
8112 {
8113 return target_remove_vfork_catchpoint (ptid_get_pid (inferior_ptid));
8114 }
8115
8116 /* Implement the "breakpoint_hit" breakpoint_ops method for vfork
8117 catchpoints. */
8118
8119 static int
8120 breakpoint_hit_catch_vfork (const struct bp_location *bl,
8121 struct address_space *aspace, CORE_ADDR bp_addr,
8122 const struct target_waitstatus *ws)
8123 {
8124 struct fork_catchpoint *c = (struct fork_catchpoint *) bl->owner;
8125
8126 if (ws->kind != TARGET_WAITKIND_VFORKED)
8127 return 0;
8128
8129 c->forked_inferior_pid = ws->value.related_pid;
8130 return 1;
8131 }
8132
8133 /* Implement the "print_it" breakpoint_ops method for vfork
8134 catchpoints. */
8135
8136 static enum print_stop_action
8137 print_it_catch_vfork (bpstat bs)
8138 {
8139 struct ui_out *uiout = current_uiout;
8140 struct breakpoint *b = bs->breakpoint_at;
8141 struct fork_catchpoint *c = (struct fork_catchpoint *) b;
8142
8143 annotate_catchpoint (b->number);
8144 if (b->disposition == disp_del)
8145 ui_out_text (uiout, "\nTemporary catchpoint ");
8146 else
8147 ui_out_text (uiout, "\nCatchpoint ");
8148 if (ui_out_is_mi_like_p (uiout))
8149 {
8150 ui_out_field_string (uiout, "reason",
8151 async_reason_lookup (EXEC_ASYNC_VFORK));
8152 ui_out_field_string (uiout, "disp", bpdisp_text (b->disposition));
8153 }
8154 ui_out_field_int (uiout, "bkptno", b->number);
8155 ui_out_text (uiout, " (vforked process ");
8156 ui_out_field_int (uiout, "newpid", ptid_get_pid (c->forked_inferior_pid));
8157 ui_out_text (uiout, "), ");
8158 return PRINT_SRC_AND_LOC;
8159 }
8160
8161 /* Implement the "print_one" breakpoint_ops method for vfork
8162 catchpoints. */
8163
8164 static void
8165 print_one_catch_vfork (struct breakpoint *b, struct bp_location **last_loc)
8166 {
8167 struct fork_catchpoint *c = (struct fork_catchpoint *) b;
8168 struct value_print_options opts;
8169 struct ui_out *uiout = current_uiout;
8170
8171 get_user_print_options (&opts);
8172 /* Field 4, the address, is omitted (which makes the columns not
8173 line up too nicely with the headers, but the effect is relatively
8174 readable). */
8175 if (opts.addressprint)
8176 ui_out_field_skip (uiout, "addr");
8177 annotate_field (5);
8178 ui_out_text (uiout, "vfork");
8179 if (!ptid_equal (c->forked_inferior_pid, null_ptid))
8180 {
8181 ui_out_text (uiout, ", process ");
8182 ui_out_field_int (uiout, "what",
8183 ptid_get_pid (c->forked_inferior_pid));
8184 ui_out_spaces (uiout, 1);
8185 }
8186
8187 if (ui_out_is_mi_like_p (uiout))
8188 ui_out_field_string (uiout, "catch-type", "vfork");
8189 }
8190
8191 /* Implement the "print_mention" breakpoint_ops method for vfork
8192 catchpoints. */
8193
8194 static void
8195 print_mention_catch_vfork (struct breakpoint *b)
8196 {
8197 printf_filtered (_("Catchpoint %d (vfork)"), b->number);
8198 }
8199
8200 /* Implement the "print_recreate" breakpoint_ops method for vfork
8201 catchpoints. */
8202
8203 static void
8204 print_recreate_catch_vfork (struct breakpoint *b, struct ui_file *fp)
8205 {
8206 fprintf_unfiltered (fp, "catch vfork");
8207 print_recreate_thread (b, fp);
8208 }
8209
8210 /* The breakpoint_ops structure to be used in vfork catchpoints. */
8211
8212 static struct breakpoint_ops catch_vfork_breakpoint_ops;
8213
8214 /* An instance of this type is used to represent an solib catchpoint.
8215 It includes a "struct breakpoint" as a kind of base class; users
8216 downcast to "struct breakpoint *" when needed. A breakpoint is
8217 really of this type iff its ops pointer points to
8218 CATCH_SOLIB_BREAKPOINT_OPS. */
8219
8220 struct solib_catchpoint
8221 {
8222 /* The base class. */
8223 struct breakpoint base;
8224
8225 /* True for "catch load", false for "catch unload". */
8226 unsigned char is_load;
8227
8228 /* Regular expression to match, if any. COMPILED is only valid when
8229 REGEX is non-NULL. */
8230 char *regex;
8231 regex_t compiled;
8232 };
8233
8234 static void
8235 dtor_catch_solib (struct breakpoint *b)
8236 {
8237 struct solib_catchpoint *self = (struct solib_catchpoint *) b;
8238
8239 if (self->regex)
8240 regfree (&self->compiled);
8241 xfree (self->regex);
8242
8243 base_breakpoint_ops.dtor (b);
8244 }
8245
8246 static int
8247 insert_catch_solib (struct bp_location *ignore)
8248 {
8249 return 0;
8250 }
8251
8252 static int
8253 remove_catch_solib (struct bp_location *ignore)
8254 {
8255 return 0;
8256 }
8257
8258 static int
8259 breakpoint_hit_catch_solib (const struct bp_location *bl,
8260 struct address_space *aspace,
8261 CORE_ADDR bp_addr,
8262 const struct target_waitstatus *ws)
8263 {
8264 struct solib_catchpoint *self = (struct solib_catchpoint *) bl->owner;
8265 struct breakpoint *other;
8266
8267 if (ws->kind == TARGET_WAITKIND_LOADED)
8268 return 1;
8269
8270 ALL_BREAKPOINTS (other)
8271 {
8272 struct bp_location *other_bl;
8273
8274 if (other == bl->owner)
8275 continue;
8276
8277 if (other->type != bp_shlib_event)
8278 continue;
8279
8280 if (self->base.pspace != NULL && other->pspace != self->base.pspace)
8281 continue;
8282
8283 for (other_bl = other->loc; other_bl != NULL; other_bl = other_bl->next)
8284 {
8285 if (other->ops->breakpoint_hit (other_bl, aspace, bp_addr, ws))
8286 return 1;
8287 }
8288 }
8289
8290 return 0;
8291 }
8292
8293 static void
8294 check_status_catch_solib (struct bpstats *bs)
8295 {
8296 struct solib_catchpoint *self
8297 = (struct solib_catchpoint *) bs->breakpoint_at;
8298 int ix;
8299
8300 if (self->is_load)
8301 {
8302 struct so_list *iter;
8303
8304 for (ix = 0;
8305 VEC_iterate (so_list_ptr, current_program_space->added_solibs,
8306 ix, iter);
8307 ++ix)
8308 {
8309 if (!self->regex
8310 || regexec (&self->compiled, iter->so_name, 0, NULL, 0) == 0)
8311 return;
8312 }
8313 }
8314 else
8315 {
8316 char *iter;
8317
8318 for (ix = 0;
8319 VEC_iterate (char_ptr, current_program_space->deleted_solibs,
8320 ix, iter);
8321 ++ix)
8322 {
8323 if (!self->regex
8324 || regexec (&self->compiled, iter, 0, NULL, 0) == 0)
8325 return;
8326 }
8327 }
8328
8329 bs->stop = 0;
8330 bs->print_it = print_it_noop;
8331 }
8332
8333 static enum print_stop_action
8334 print_it_catch_solib (bpstat bs)
8335 {
8336 struct breakpoint *b = bs->breakpoint_at;
8337 struct ui_out *uiout = current_uiout;
8338
8339 annotate_catchpoint (b->number);
8340 if (b->disposition == disp_del)
8341 ui_out_text (uiout, "\nTemporary catchpoint ");
8342 else
8343 ui_out_text (uiout, "\nCatchpoint ");
8344 ui_out_field_int (uiout, "bkptno", b->number);
8345 ui_out_text (uiout, "\n");
8346 if (ui_out_is_mi_like_p (uiout))
8347 ui_out_field_string (uiout, "disp", bpdisp_text (b->disposition));
8348 print_solib_event (1);
8349 return PRINT_SRC_AND_LOC;
8350 }
8351
8352 static void
8353 print_one_catch_solib (struct breakpoint *b, struct bp_location **locs)
8354 {
8355 struct solib_catchpoint *self = (struct solib_catchpoint *) b;
8356 struct value_print_options opts;
8357 struct ui_out *uiout = current_uiout;
8358 char *msg;
8359
8360 get_user_print_options (&opts);
8361 /* Field 4, the address, is omitted (which makes the columns not
8362 line up too nicely with the headers, but the effect is relatively
8363 readable). */
8364 if (opts.addressprint)
8365 {
8366 annotate_field (4);
8367 ui_out_field_skip (uiout, "addr");
8368 }
8369
8370 annotate_field (5);
8371 if (self->is_load)
8372 {
8373 if (self->regex)
8374 msg = xstrprintf (_("load of library matching %s"), self->regex);
8375 else
8376 msg = xstrdup (_("load of library"));
8377 }
8378 else
8379 {
8380 if (self->regex)
8381 msg = xstrprintf (_("unload of library matching %s"), self->regex);
8382 else
8383 msg = xstrdup (_("unload of library"));
8384 }
8385 ui_out_field_string (uiout, "what", msg);
8386 xfree (msg);
8387
8388 if (ui_out_is_mi_like_p (uiout))
8389 ui_out_field_string (uiout, "catch-type",
8390 self->is_load ? "load" : "unload");
8391 }
8392
8393 static void
8394 print_mention_catch_solib (struct breakpoint *b)
8395 {
8396 struct solib_catchpoint *self = (struct solib_catchpoint *) b;
8397
8398 printf_filtered (_("Catchpoint %d (%s)"), b->number,
8399 self->is_load ? "load" : "unload");
8400 }
8401
8402 static void
8403 print_recreate_catch_solib (struct breakpoint *b, struct ui_file *fp)
8404 {
8405 struct solib_catchpoint *self = (struct solib_catchpoint *) b;
8406
8407 fprintf_unfiltered (fp, "%s %s",
8408 b->disposition == disp_del ? "tcatch" : "catch",
8409 self->is_load ? "load" : "unload");
8410 if (self->regex)
8411 fprintf_unfiltered (fp, " %s", self->regex);
8412 fprintf_unfiltered (fp, "\n");
8413 }
8414
8415 static struct breakpoint_ops catch_solib_breakpoint_ops;
8416
8417 /* Shared helper function (MI and CLI) for creating and installing
8418 a shared object event catchpoint. If IS_LOAD is non-zero then
8419 the events to be caught are load events, otherwise they are
8420 unload events. If IS_TEMP is non-zero the catchpoint is a
8421 temporary one. If ENABLED is non-zero the catchpoint is
8422 created in an enabled state. */
8423
8424 void
8425 add_solib_catchpoint (char *arg, int is_load, int is_temp, int enabled)
8426 {
8427 struct solib_catchpoint *c;
8428 struct gdbarch *gdbarch = get_current_arch ();
8429 struct cleanup *cleanup;
8430
8431 if (!arg)
8432 arg = "";
8433 arg = skip_spaces (arg);
8434
8435 c = XCNEW (struct solib_catchpoint);
8436 cleanup = make_cleanup (xfree, c);
8437
8438 if (*arg != '\0')
8439 {
8440 int errcode;
8441
8442 errcode = regcomp (&c->compiled, arg, REG_NOSUB);
8443 if (errcode != 0)
8444 {
8445 char *err = get_regcomp_error (errcode, &c->compiled);
8446
8447 make_cleanup (xfree, err);
8448 error (_("Invalid regexp (%s): %s"), err, arg);
8449 }
8450 c->regex = xstrdup (arg);
8451 }
8452
8453 c->is_load = is_load;
8454 init_catchpoint (&c->base, gdbarch, is_temp, NULL,
8455 &catch_solib_breakpoint_ops);
8456
8457 c->base.enable_state = enabled ? bp_enabled : bp_disabled;
8458
8459 discard_cleanups (cleanup);
8460 install_breakpoint (0, &c->base, 1);
8461 }
8462
8463 /* A helper function that does all the work for "catch load" and
8464 "catch unload". */
8465
8466 static void
8467 catch_load_or_unload (char *arg, int from_tty, int is_load,
8468 struct cmd_list_element *command)
8469 {
8470 int tempflag;
8471 const int enabled = 1;
8472
8473 tempflag = get_cmd_context (command) == CATCH_TEMPORARY;
8474
8475 add_solib_catchpoint (arg, is_load, tempflag, enabled);
8476 }
8477
8478 static void
8479 catch_load_command_1 (char *arg, int from_tty,
8480 struct cmd_list_element *command)
8481 {
8482 catch_load_or_unload (arg, from_tty, 1, command);
8483 }
8484
8485 static void
8486 catch_unload_command_1 (char *arg, int from_tty,
8487 struct cmd_list_element *command)
8488 {
8489 catch_load_or_unload (arg, from_tty, 0, command);
8490 }
8491
8492 /* An instance of this type is used to represent a syscall catchpoint.
8493 It includes a "struct breakpoint" as a kind of base class; users
8494 downcast to "struct breakpoint *" when needed. A breakpoint is
8495 really of this type iff its ops pointer points to
8496 CATCH_SYSCALL_BREAKPOINT_OPS. */
8497
8498 struct syscall_catchpoint
8499 {
8500 /* The base class. */
8501 struct breakpoint base;
8502
8503 /* Syscall numbers used for the 'catch syscall' feature. If no
8504 syscall has been specified for filtering, its value is NULL.
8505 Otherwise, it holds a list of all syscalls to be caught. The
8506 list elements are allocated with xmalloc. */
8507 VEC(int) *syscalls_to_be_caught;
8508 };
8509
8510 /* Implement the "dtor" breakpoint_ops method for syscall
8511 catchpoints. */
8512
8513 static void
8514 dtor_catch_syscall (struct breakpoint *b)
8515 {
8516 struct syscall_catchpoint *c = (struct syscall_catchpoint *) b;
8517
8518 VEC_free (int, c->syscalls_to_be_caught);
8519
8520 base_breakpoint_ops.dtor (b);
8521 }
8522
8523 static const struct inferior_data *catch_syscall_inferior_data = NULL;
8524
8525 struct catch_syscall_inferior_data
8526 {
8527 /* We keep a count of the number of times the user has requested a
8528 particular syscall to be tracked, and pass this information to the
8529 target. This lets capable targets implement filtering directly. */
8530
8531 /* Number of times that "any" syscall is requested. */
8532 int any_syscall_count;
8533
8534 /* Count of each system call. */
8535 VEC(int) *syscalls_counts;
8536
8537 /* This counts all syscall catch requests, so we can readily determine
8538 if any catching is necessary. */
8539 int total_syscalls_count;
8540 };
8541
8542 static struct catch_syscall_inferior_data*
8543 get_catch_syscall_inferior_data (struct inferior *inf)
8544 {
8545 struct catch_syscall_inferior_data *inf_data;
8546
8547 inf_data = inferior_data (inf, catch_syscall_inferior_data);
8548 if (inf_data == NULL)
8549 {
8550 inf_data = XCNEW (struct catch_syscall_inferior_data);
8551 set_inferior_data (inf, catch_syscall_inferior_data, inf_data);
8552 }
8553
8554 return inf_data;
8555 }
8556
8557 static void
8558 catch_syscall_inferior_data_cleanup (struct inferior *inf, void *arg)
8559 {
8560 xfree (arg);
8561 }
8562
8563
8564 /* Implement the "insert" breakpoint_ops method for syscall
8565 catchpoints. */
8566
8567 static int
8568 insert_catch_syscall (struct bp_location *bl)
8569 {
8570 struct syscall_catchpoint *c = (struct syscall_catchpoint *) bl->owner;
8571 struct inferior *inf = current_inferior ();
8572 struct catch_syscall_inferior_data *inf_data
8573 = get_catch_syscall_inferior_data (inf);
8574
8575 ++inf_data->total_syscalls_count;
8576 if (!c->syscalls_to_be_caught)
8577 ++inf_data->any_syscall_count;
8578 else
8579 {
8580 int i, iter;
8581
8582 for (i = 0;
8583 VEC_iterate (int, c->syscalls_to_be_caught, i, iter);
8584 i++)
8585 {
8586 int elem;
8587
8588 if (iter >= VEC_length (int, inf_data->syscalls_counts))
8589 {
8590 int old_size = VEC_length (int, inf_data->syscalls_counts);
8591 uintptr_t vec_addr_offset
8592 = old_size * ((uintptr_t) sizeof (int));
8593 uintptr_t vec_addr;
8594 VEC_safe_grow (int, inf_data->syscalls_counts, iter + 1);
8595 vec_addr = ((uintptr_t) VEC_address (int,
8596 inf_data->syscalls_counts)
8597 + vec_addr_offset);
8598 memset ((void *) vec_addr, 0,
8599 (iter + 1 - old_size) * sizeof (int));
8600 }
8601 elem = VEC_index (int, inf_data->syscalls_counts, iter);
8602 VEC_replace (int, inf_data->syscalls_counts, iter, ++elem);
8603 }
8604 }
8605
8606 return target_set_syscall_catchpoint (ptid_get_pid (inferior_ptid),
8607 inf_data->total_syscalls_count != 0,
8608 inf_data->any_syscall_count,
8609 VEC_length (int,
8610 inf_data->syscalls_counts),
8611 VEC_address (int,
8612 inf_data->syscalls_counts));
8613 }
8614
8615 /* Implement the "remove" breakpoint_ops method for syscall
8616 catchpoints. */
8617
8618 static int
8619 remove_catch_syscall (struct bp_location *bl)
8620 {
8621 struct syscall_catchpoint *c = (struct syscall_catchpoint *) bl->owner;
8622 struct inferior *inf = current_inferior ();
8623 struct catch_syscall_inferior_data *inf_data
8624 = get_catch_syscall_inferior_data (inf);
8625
8626 --inf_data->total_syscalls_count;
8627 if (!c->syscalls_to_be_caught)
8628 --inf_data->any_syscall_count;
8629 else
8630 {
8631 int i, iter;
8632
8633 for (i = 0;
8634 VEC_iterate (int, c->syscalls_to_be_caught, i, iter);
8635 i++)
8636 {
8637 int elem;
8638 if (iter >= VEC_length (int, inf_data->syscalls_counts))
8639 /* Shouldn't happen. */
8640 continue;
8641 elem = VEC_index (int, inf_data->syscalls_counts, iter);
8642 VEC_replace (int, inf_data->syscalls_counts, iter, --elem);
8643 }
8644 }
8645
8646 return target_set_syscall_catchpoint (ptid_get_pid (inferior_ptid),
8647 inf_data->total_syscalls_count != 0,
8648 inf_data->any_syscall_count,
8649 VEC_length (int,
8650 inf_data->syscalls_counts),
8651 VEC_address (int,
8652 inf_data->syscalls_counts));
8653 }
8654
8655 /* Implement the "breakpoint_hit" breakpoint_ops method for syscall
8656 catchpoints. */
8657
8658 static int
8659 breakpoint_hit_catch_syscall (const struct bp_location *bl,
8660 struct address_space *aspace, CORE_ADDR bp_addr,
8661 const struct target_waitstatus *ws)
8662 {
8663 /* We must check if we are catching specific syscalls in this
8664 breakpoint. If we are, then we must guarantee that the called
8665 syscall is the same syscall we are catching. */
8666 int syscall_number = 0;
8667 const struct syscall_catchpoint *c
8668 = (const struct syscall_catchpoint *) bl->owner;
8669
8670 if (ws->kind != TARGET_WAITKIND_SYSCALL_ENTRY
8671 && ws->kind != TARGET_WAITKIND_SYSCALL_RETURN)
8672 return 0;
8673
8674 syscall_number = ws->value.syscall_number;
8675
8676 /* Now, checking if the syscall is the same. */
8677 if (c->syscalls_to_be_caught)
8678 {
8679 int i, iter;
8680
8681 for (i = 0;
8682 VEC_iterate (int, c->syscalls_to_be_caught, i, iter);
8683 i++)
8684 if (syscall_number == iter)
8685 return 1;
8686
8687 return 0;
8688 }
8689
8690 return 1;
8691 }
8692
8693 /* Implement the "print_it" breakpoint_ops method for syscall
8694 catchpoints. */
8695
8696 static enum print_stop_action
8697 print_it_catch_syscall (bpstat bs)
8698 {
8699 struct ui_out *uiout = current_uiout;
8700 struct breakpoint *b = bs->breakpoint_at;
8701 /* These are needed because we want to know in which state a
8702 syscall is. It can be in the TARGET_WAITKIND_SYSCALL_ENTRY
8703 or TARGET_WAITKIND_SYSCALL_RETURN, and depending on it we
8704 must print "called syscall" or "returned from syscall". */
8705 ptid_t ptid;
8706 struct target_waitstatus last;
8707 struct syscall s;
8708
8709 get_last_target_status (&ptid, &last);
8710
8711 get_syscall_by_number (last.value.syscall_number, &s);
8712
8713 annotate_catchpoint (b->number);
8714
8715 if (b->disposition == disp_del)
8716 ui_out_text (uiout, "\nTemporary catchpoint ");
8717 else
8718 ui_out_text (uiout, "\nCatchpoint ");
8719 if (ui_out_is_mi_like_p (uiout))
8720 {
8721 ui_out_field_string (uiout, "reason",
8722 async_reason_lookup (last.kind == TARGET_WAITKIND_SYSCALL_ENTRY
8723 ? EXEC_ASYNC_SYSCALL_ENTRY
8724 : EXEC_ASYNC_SYSCALL_RETURN));
8725 ui_out_field_string (uiout, "disp", bpdisp_text (b->disposition));
8726 }
8727 ui_out_field_int (uiout, "bkptno", b->number);
8728
8729 if (last.kind == TARGET_WAITKIND_SYSCALL_ENTRY)
8730 ui_out_text (uiout, " (call to syscall ");
8731 else
8732 ui_out_text (uiout, " (returned from syscall ");
8733
8734 if (s.name == NULL || ui_out_is_mi_like_p (uiout))
8735 ui_out_field_int (uiout, "syscall-number", last.value.syscall_number);
8736 if (s.name != NULL)
8737 ui_out_field_string (uiout, "syscall-name", s.name);
8738
8739 ui_out_text (uiout, "), ");
8740
8741 return PRINT_SRC_AND_LOC;
8742 }
8743
8744 /* Implement the "print_one" breakpoint_ops method for syscall
8745 catchpoints. */
8746
8747 static void
8748 print_one_catch_syscall (struct breakpoint *b,
8749 struct bp_location **last_loc)
8750 {
8751 struct syscall_catchpoint *c = (struct syscall_catchpoint *) b;
8752 struct value_print_options opts;
8753 struct ui_out *uiout = current_uiout;
8754
8755 get_user_print_options (&opts);
8756 /* Field 4, the address, is omitted (which makes the columns not
8757 line up too nicely with the headers, but the effect is relatively
8758 readable). */
8759 if (opts.addressprint)
8760 ui_out_field_skip (uiout, "addr");
8761 annotate_field (5);
8762
8763 if (c->syscalls_to_be_caught
8764 && VEC_length (int, c->syscalls_to_be_caught) > 1)
8765 ui_out_text (uiout, "syscalls \"");
8766 else
8767 ui_out_text (uiout, "syscall \"");
8768
8769 if (c->syscalls_to_be_caught)
8770 {
8771 int i, iter;
8772 char *text = xstrprintf ("%s", "");
8773
8774 for (i = 0;
8775 VEC_iterate (int, c->syscalls_to_be_caught, i, iter);
8776 i++)
8777 {
8778 char *x = text;
8779 struct syscall s;
8780 get_syscall_by_number (iter, &s);
8781
8782 if (s.name != NULL)
8783 text = xstrprintf ("%s%s, ", text, s.name);
8784 else
8785 text = xstrprintf ("%s%d, ", text, iter);
8786
8787 /* We have to xfree the last 'text' (now stored at 'x')
8788 because xstrprintf dynamically allocates new space for it
8789 on every call. */
8790 xfree (x);
8791 }
8792 /* Remove the last comma. */
8793 text[strlen (text) - 2] = '\0';
8794 ui_out_field_string (uiout, "what", text);
8795 }
8796 else
8797 ui_out_field_string (uiout, "what", "<any syscall>");
8798 ui_out_text (uiout, "\" ");
8799
8800 if (ui_out_is_mi_like_p (uiout))
8801 ui_out_field_string (uiout, "catch-type", "syscall");
8802 }
8803
8804 /* Implement the "print_mention" breakpoint_ops method for syscall
8805 catchpoints. */
8806
8807 static void
8808 print_mention_catch_syscall (struct breakpoint *b)
8809 {
8810 struct syscall_catchpoint *c = (struct syscall_catchpoint *) b;
8811
8812 if (c->syscalls_to_be_caught)
8813 {
8814 int i, iter;
8815
8816 if (VEC_length (int, c->syscalls_to_be_caught) > 1)
8817 printf_filtered (_("Catchpoint %d (syscalls"), b->number);
8818 else
8819 printf_filtered (_("Catchpoint %d (syscall"), b->number);
8820
8821 for (i = 0;
8822 VEC_iterate (int, c->syscalls_to_be_caught, i, iter);
8823 i++)
8824 {
8825 struct syscall s;
8826 get_syscall_by_number (iter, &s);
8827
8828 if (s.name)
8829 printf_filtered (" '%s' [%d]", s.name, s.number);
8830 else
8831 printf_filtered (" %d", s.number);
8832 }
8833 printf_filtered (")");
8834 }
8835 else
8836 printf_filtered (_("Catchpoint %d (any syscall)"),
8837 b->number);
8838 }
8839
8840 /* Implement the "print_recreate" breakpoint_ops method for syscall
8841 catchpoints. */
8842
8843 static void
8844 print_recreate_catch_syscall (struct breakpoint *b, struct ui_file *fp)
8845 {
8846 struct syscall_catchpoint *c = (struct syscall_catchpoint *) b;
8847
8848 fprintf_unfiltered (fp, "catch syscall");
8849
8850 if (c->syscalls_to_be_caught)
8851 {
8852 int i, iter;
8853
8854 for (i = 0;
8855 VEC_iterate (int, c->syscalls_to_be_caught, i, iter);
8856 i++)
8857 {
8858 struct syscall s;
8859
8860 get_syscall_by_number (iter, &s);
8861 if (s.name)
8862 fprintf_unfiltered (fp, " %s", s.name);
8863 else
8864 fprintf_unfiltered (fp, " %d", s.number);
8865 }
8866 }
8867 print_recreate_thread (b, fp);
8868 }
8869
8870 /* The breakpoint_ops structure to be used in syscall catchpoints. */
8871
8872 static struct breakpoint_ops catch_syscall_breakpoint_ops;
8873
8874 /* Returns non-zero if 'b' is a syscall catchpoint. */
8875
8876 static int
8877 syscall_catchpoint_p (struct breakpoint *b)
8878 {
8879 return (b->ops == &catch_syscall_breakpoint_ops);
8880 }
8881
8882 /* Initialize a new breakpoint of the bp_catchpoint kind. If TEMPFLAG
8883 is non-zero, then make the breakpoint temporary. If COND_STRING is
8884 not NULL, then store it in the breakpoint. OPS, if not NULL, is
8885 the breakpoint_ops structure associated to the catchpoint. */
8886
8887 void
8888 init_catchpoint (struct breakpoint *b,
8889 struct gdbarch *gdbarch, int tempflag,
8890 char *cond_string,
8891 const struct breakpoint_ops *ops)
8892 {
8893 struct symtab_and_line sal;
8894
8895 init_sal (&sal);
8896 sal.pspace = current_program_space;
8897
8898 init_raw_breakpoint (b, gdbarch, sal, bp_catchpoint, ops);
8899
8900 b->cond_string = (cond_string == NULL) ? NULL : xstrdup (cond_string);
8901 b->disposition = tempflag ? disp_del : disp_donttouch;
8902 }
8903
8904 void
8905 install_breakpoint (int internal, struct breakpoint *b, int update_gll)
8906 {
8907 add_to_breakpoint_chain (b);
8908 set_breakpoint_number (internal, b);
8909 if (is_tracepoint (b))
8910 set_tracepoint_count (breakpoint_count);
8911 if (!internal)
8912 mention (b);
8913 observer_notify_breakpoint_created (b);
8914
8915 if (update_gll)
8916 update_global_location_list (UGLL_MAY_INSERT);
8917 }
8918
8919 static void
8920 create_fork_vfork_event_catchpoint (struct gdbarch *gdbarch,
8921 int tempflag, char *cond_string,
8922 const struct breakpoint_ops *ops)
8923 {
8924 struct fork_catchpoint *c = XNEW (struct fork_catchpoint);
8925
8926 init_catchpoint (&c->base, gdbarch, tempflag, cond_string, ops);
8927
8928 c->forked_inferior_pid = null_ptid;
8929
8930 install_breakpoint (0, &c->base, 1);
8931 }
8932
8933 /* Exec catchpoints. */
8934
8935 /* An instance of this type is used to represent an exec catchpoint.
8936 It includes a "struct breakpoint" as a kind of base class; users
8937 downcast to "struct breakpoint *" when needed. A breakpoint is
8938 really of this type iff its ops pointer points to
8939 CATCH_EXEC_BREAKPOINT_OPS. */
8940
8941 struct exec_catchpoint
8942 {
8943 /* The base class. */
8944 struct breakpoint base;
8945
8946 /* Filename of a program whose exec triggered this catchpoint.
8947 This field is only valid immediately after this catchpoint has
8948 triggered. */
8949 char *exec_pathname;
8950 };
8951
8952 /* Implement the "dtor" breakpoint_ops method for exec
8953 catchpoints. */
8954
8955 static void
8956 dtor_catch_exec (struct breakpoint *b)
8957 {
8958 struct exec_catchpoint *c = (struct exec_catchpoint *) b;
8959
8960 xfree (c->exec_pathname);
8961
8962 base_breakpoint_ops.dtor (b);
8963 }
8964
8965 static int
8966 insert_catch_exec (struct bp_location *bl)
8967 {
8968 return target_insert_exec_catchpoint (ptid_get_pid (inferior_ptid));
8969 }
8970
8971 static int
8972 remove_catch_exec (struct bp_location *bl)
8973 {
8974 return target_remove_exec_catchpoint (ptid_get_pid (inferior_ptid));
8975 }
8976
8977 static int
8978 breakpoint_hit_catch_exec (const struct bp_location *bl,
8979 struct address_space *aspace, CORE_ADDR bp_addr,
8980 const struct target_waitstatus *ws)
8981 {
8982 struct exec_catchpoint *c = (struct exec_catchpoint *) bl->owner;
8983
8984 if (ws->kind != TARGET_WAITKIND_EXECD)
8985 return 0;
8986
8987 c->exec_pathname = xstrdup (ws->value.execd_pathname);
8988 return 1;
8989 }
8990
8991 static enum print_stop_action
8992 print_it_catch_exec (bpstat bs)
8993 {
8994 struct ui_out *uiout = current_uiout;
8995 struct breakpoint *b = bs->breakpoint_at;
8996 struct exec_catchpoint *c = (struct exec_catchpoint *) b;
8997
8998 annotate_catchpoint (b->number);
8999 if (b->disposition == disp_del)
9000 ui_out_text (uiout, "\nTemporary catchpoint ");
9001 else
9002 ui_out_text (uiout, "\nCatchpoint ");
9003 if (ui_out_is_mi_like_p (uiout))
9004 {
9005 ui_out_field_string (uiout, "reason",
9006 async_reason_lookup (EXEC_ASYNC_EXEC));
9007 ui_out_field_string (uiout, "disp", bpdisp_text (b->disposition));
9008 }
9009 ui_out_field_int (uiout, "bkptno", b->number);
9010 ui_out_text (uiout, " (exec'd ");
9011 ui_out_field_string (uiout, "new-exec", c->exec_pathname);
9012 ui_out_text (uiout, "), ");
9013
9014 return PRINT_SRC_AND_LOC;
9015 }
9016
9017 static void
9018 print_one_catch_exec (struct breakpoint *b, struct bp_location **last_loc)
9019 {
9020 struct exec_catchpoint *c = (struct exec_catchpoint *) b;
9021 struct value_print_options opts;
9022 struct ui_out *uiout = current_uiout;
9023
9024 get_user_print_options (&opts);
9025
9026 /* Field 4, the address, is omitted (which makes the columns
9027 not line up too nicely with the headers, but the effect
9028 is relatively readable). */
9029 if (opts.addressprint)
9030 ui_out_field_skip (uiout, "addr");
9031 annotate_field (5);
9032 ui_out_text (uiout, "exec");
9033 if (c->exec_pathname != NULL)
9034 {
9035 ui_out_text (uiout, ", program \"");
9036 ui_out_field_string (uiout, "what", c->exec_pathname);
9037 ui_out_text (uiout, "\" ");
9038 }
9039
9040 if (ui_out_is_mi_like_p (uiout))
9041 ui_out_field_string (uiout, "catch-type", "exec");
9042 }
9043
9044 static void
9045 print_mention_catch_exec (struct breakpoint *b)
9046 {
9047 printf_filtered (_("Catchpoint %d (exec)"), b->number);
9048 }
9049
9050 /* Implement the "print_recreate" breakpoint_ops method for exec
9051 catchpoints. */
9052
9053 static void
9054 print_recreate_catch_exec (struct breakpoint *b, struct ui_file *fp)
9055 {
9056 fprintf_unfiltered (fp, "catch exec");
9057 print_recreate_thread (b, fp);
9058 }
9059
9060 static struct breakpoint_ops catch_exec_breakpoint_ops;
9061
9062 static void
9063 create_syscall_event_catchpoint (int tempflag, VEC(int) *filter,
9064 const struct breakpoint_ops *ops)
9065 {
9066 struct syscall_catchpoint *c;
9067 struct gdbarch *gdbarch = get_current_arch ();
9068
9069 c = XNEW (struct syscall_catchpoint);
9070 init_catchpoint (&c->base, gdbarch, tempflag, NULL, ops);
9071 c->syscalls_to_be_caught = filter;
9072
9073 install_breakpoint (0, &c->base, 1);
9074 }
9075
9076 static int
9077 hw_breakpoint_used_count (void)
9078 {
9079 int i = 0;
9080 struct breakpoint *b;
9081 struct bp_location *bl;
9082
9083 ALL_BREAKPOINTS (b)
9084 {
9085 if (b->type == bp_hardware_breakpoint && breakpoint_enabled (b))
9086 for (bl = b->loc; bl; bl = bl->next)
9087 {
9088 /* Special types of hardware breakpoints may use more than
9089 one register. */
9090 i += b->ops->resources_needed (bl);
9091 }
9092 }
9093
9094 return i;
9095 }
9096
9097 /* Returns the resources B would use if it were a hardware
9098 watchpoint. */
9099
9100 static int
9101 hw_watchpoint_use_count (struct breakpoint *b)
9102 {
9103 int i = 0;
9104 struct bp_location *bl;
9105
9106 if (!breakpoint_enabled (b))
9107 return 0;
9108
9109 for (bl = b->loc; bl; bl = bl->next)
9110 {
9111 /* Special types of hardware watchpoints may use more than
9112 one register. */
9113 i += b->ops->resources_needed (bl);
9114 }
9115
9116 return i;
9117 }
9118
9119 /* Returns the sum the used resources of all hardware watchpoints of
9120 type TYPE in the breakpoints list. Also returns in OTHER_TYPE_USED
9121 the sum of the used resources of all hardware watchpoints of other
9122 types _not_ TYPE. */
9123
9124 static int
9125 hw_watchpoint_used_count_others (struct breakpoint *except,
9126 enum bptype type, int *other_type_used)
9127 {
9128 int i = 0;
9129 struct breakpoint *b;
9130
9131 *other_type_used = 0;
9132 ALL_BREAKPOINTS (b)
9133 {
9134 if (b == except)
9135 continue;
9136 if (!breakpoint_enabled (b))
9137 continue;
9138
9139 if (b->type == type)
9140 i += hw_watchpoint_use_count (b);
9141 else if (is_hardware_watchpoint (b))
9142 *other_type_used = 1;
9143 }
9144
9145 return i;
9146 }
9147
9148 void
9149 disable_watchpoints_before_interactive_call_start (void)
9150 {
9151 struct breakpoint *b;
9152
9153 ALL_BREAKPOINTS (b)
9154 {
9155 if (is_watchpoint (b) && breakpoint_enabled (b))
9156 {
9157 b->enable_state = bp_call_disabled;
9158 update_global_location_list (UGLL_DONT_INSERT);
9159 }
9160 }
9161 }
9162
9163 void
9164 enable_watchpoints_after_interactive_call_stop (void)
9165 {
9166 struct breakpoint *b;
9167
9168 ALL_BREAKPOINTS (b)
9169 {
9170 if (is_watchpoint (b) && b->enable_state == bp_call_disabled)
9171 {
9172 b->enable_state = bp_enabled;
9173 update_global_location_list (UGLL_MAY_INSERT);
9174 }
9175 }
9176 }
9177
9178 void
9179 disable_breakpoints_before_startup (void)
9180 {
9181 current_program_space->executing_startup = 1;
9182 update_global_location_list (UGLL_DONT_INSERT);
9183 }
9184
9185 void
9186 enable_breakpoints_after_startup (void)
9187 {
9188 current_program_space->executing_startup = 0;
9189 breakpoint_re_set ();
9190 }
9191
9192
9193 /* Set a breakpoint that will evaporate an end of command
9194 at address specified by SAL.
9195 Restrict it to frame FRAME if FRAME is nonzero. */
9196
9197 struct breakpoint *
9198 set_momentary_breakpoint (struct gdbarch *gdbarch, struct symtab_and_line sal,
9199 struct frame_id frame_id, enum bptype type)
9200 {
9201 struct breakpoint *b;
9202
9203 /* If FRAME_ID is valid, it should be a real frame, not an inlined or
9204 tail-called one. */
9205 gdb_assert (!frame_id_artificial_p (frame_id));
9206
9207 b = set_raw_breakpoint (gdbarch, sal, type, &momentary_breakpoint_ops);
9208 b->enable_state = bp_enabled;
9209 b->disposition = disp_donttouch;
9210 b->frame_id = frame_id;
9211
9212 /* If we're debugging a multi-threaded program, then we want
9213 momentary breakpoints to be active in only a single thread of
9214 control. */
9215 if (in_thread_list (inferior_ptid))
9216 b->thread = pid_to_thread_id (inferior_ptid);
9217
9218 update_global_location_list_nothrow (UGLL_MAY_INSERT);
9219
9220 return b;
9221 }
9222
9223 /* Make a momentary breakpoint based on the master breakpoint ORIG.
9224 The new breakpoint will have type TYPE, use OPS as its
9225 breakpoint_ops, and will set enabled to LOC_ENABLED. */
9226
9227 static struct breakpoint *
9228 momentary_breakpoint_from_master (struct breakpoint *orig,
9229 enum bptype type,
9230 const struct breakpoint_ops *ops,
9231 int loc_enabled)
9232 {
9233 struct breakpoint *copy;
9234
9235 copy = set_raw_breakpoint_without_location (orig->gdbarch, type, ops);
9236 copy->loc = allocate_bp_location (copy);
9237 set_breakpoint_location_function (copy->loc, 1);
9238
9239 copy->loc->gdbarch = orig->loc->gdbarch;
9240 copy->loc->requested_address = orig->loc->requested_address;
9241 copy->loc->address = orig->loc->address;
9242 copy->loc->section = orig->loc->section;
9243 copy->loc->pspace = orig->loc->pspace;
9244 copy->loc->probe = orig->loc->probe;
9245 copy->loc->line_number = orig->loc->line_number;
9246 copy->loc->symtab = orig->loc->symtab;
9247 copy->loc->enabled = loc_enabled;
9248 copy->frame_id = orig->frame_id;
9249 copy->thread = orig->thread;
9250 copy->pspace = orig->pspace;
9251
9252 copy->enable_state = bp_enabled;
9253 copy->disposition = disp_donttouch;
9254 copy->number = internal_breakpoint_number--;
9255
9256 update_global_location_list_nothrow (UGLL_DONT_INSERT);
9257 return copy;
9258 }
9259
9260 /* Make a deep copy of momentary breakpoint ORIG. Returns NULL if
9261 ORIG is NULL. */
9262
9263 struct breakpoint *
9264 clone_momentary_breakpoint (struct breakpoint *orig)
9265 {
9266 /* If there's nothing to clone, then return nothing. */
9267 if (orig == NULL)
9268 return NULL;
9269
9270 return momentary_breakpoint_from_master (orig, orig->type, orig->ops, 0);
9271 }
9272
9273 struct breakpoint *
9274 set_momentary_breakpoint_at_pc (struct gdbarch *gdbarch, CORE_ADDR pc,
9275 enum bptype type)
9276 {
9277 struct symtab_and_line sal;
9278
9279 sal = find_pc_line (pc, 0);
9280 sal.pc = pc;
9281 sal.section = find_pc_overlay (pc);
9282 sal.explicit_pc = 1;
9283
9284 return set_momentary_breakpoint (gdbarch, sal, null_frame_id, type);
9285 }
9286 \f
9287
9288 /* Tell the user we have just set a breakpoint B. */
9289
9290 static void
9291 mention (struct breakpoint *b)
9292 {
9293 b->ops->print_mention (b);
9294 if (ui_out_is_mi_like_p (current_uiout))
9295 return;
9296 printf_filtered ("\n");
9297 }
9298 \f
9299
9300 static struct bp_location *
9301 add_location_to_breakpoint (struct breakpoint *b,
9302 const struct symtab_and_line *sal)
9303 {
9304 struct bp_location *loc, **tmp;
9305 CORE_ADDR adjusted_address;
9306 struct gdbarch *loc_gdbarch = get_sal_arch (*sal);
9307
9308 if (loc_gdbarch == NULL)
9309 loc_gdbarch = b->gdbarch;
9310
9311 /* Adjust the breakpoint's address prior to allocating a location.
9312 Once we call allocate_bp_location(), that mostly uninitialized
9313 location will be placed on the location chain. Adjustment of the
9314 breakpoint may cause target_read_memory() to be called and we do
9315 not want its scan of the location chain to find a breakpoint and
9316 location that's only been partially initialized. */
9317 adjusted_address = adjust_breakpoint_address (loc_gdbarch,
9318 sal->pc, b->type);
9319
9320 /* Sort the locations by their ADDRESS. */
9321 loc = allocate_bp_location (b);
9322 for (tmp = &(b->loc); *tmp != NULL && (*tmp)->address <= adjusted_address;
9323 tmp = &((*tmp)->next))
9324 ;
9325 loc->next = *tmp;
9326 *tmp = loc;
9327
9328 loc->requested_address = sal->pc;
9329 loc->address = adjusted_address;
9330 loc->pspace = sal->pspace;
9331 loc->probe.probe = sal->probe;
9332 loc->probe.objfile = sal->objfile;
9333 gdb_assert (loc->pspace != NULL);
9334 loc->section = sal->section;
9335 loc->gdbarch = loc_gdbarch;
9336 loc->line_number = sal->line;
9337 loc->symtab = sal->symtab;
9338
9339 set_breakpoint_location_function (loc,
9340 sal->explicit_pc || sal->explicit_line);
9341 return loc;
9342 }
9343 \f
9344
9345 /* Return 1 if LOC is pointing to a permanent breakpoint,
9346 return 0 otherwise. */
9347
9348 static int
9349 bp_loc_is_permanent (struct bp_location *loc)
9350 {
9351 int len;
9352 CORE_ADDR addr;
9353 const gdb_byte *bpoint;
9354 gdb_byte *target_mem;
9355 struct cleanup *cleanup;
9356 int retval = 0;
9357
9358 gdb_assert (loc != NULL);
9359
9360 addr = loc->address;
9361 bpoint = gdbarch_breakpoint_from_pc (loc->gdbarch, &addr, &len);
9362
9363 /* Software breakpoints unsupported? */
9364 if (bpoint == NULL)
9365 return 0;
9366
9367 target_mem = alloca (len);
9368
9369 /* Enable the automatic memory restoration from breakpoints while
9370 we read the memory. Otherwise we could say about our temporary
9371 breakpoints they are permanent. */
9372 cleanup = save_current_space_and_thread ();
9373
9374 switch_to_program_space_and_thread (loc->pspace);
9375 make_show_memory_breakpoints_cleanup (0);
9376
9377 if (target_read_memory (loc->address, target_mem, len) == 0
9378 && memcmp (target_mem, bpoint, len) == 0)
9379 retval = 1;
9380
9381 do_cleanups (cleanup);
9382
9383 return retval;
9384 }
9385
9386 /* Build a command list for the dprintf corresponding to the current
9387 settings of the dprintf style options. */
9388
9389 static void
9390 update_dprintf_command_list (struct breakpoint *b)
9391 {
9392 char *dprintf_args = b->extra_string;
9393 char *printf_line = NULL;
9394
9395 if (!dprintf_args)
9396 return;
9397
9398 dprintf_args = skip_spaces (dprintf_args);
9399
9400 /* Allow a comma, as it may have terminated a location, but don't
9401 insist on it. */
9402 if (*dprintf_args == ',')
9403 ++dprintf_args;
9404 dprintf_args = skip_spaces (dprintf_args);
9405
9406 if (*dprintf_args != '"')
9407 error (_("Bad format string, missing '\"'."));
9408
9409 if (strcmp (dprintf_style, dprintf_style_gdb) == 0)
9410 printf_line = xstrprintf ("printf %s", dprintf_args);
9411 else if (strcmp (dprintf_style, dprintf_style_call) == 0)
9412 {
9413 if (!dprintf_function)
9414 error (_("No function supplied for dprintf call"));
9415
9416 if (dprintf_channel && strlen (dprintf_channel) > 0)
9417 printf_line = xstrprintf ("call (void) %s (%s,%s)",
9418 dprintf_function,
9419 dprintf_channel,
9420 dprintf_args);
9421 else
9422 printf_line = xstrprintf ("call (void) %s (%s)",
9423 dprintf_function,
9424 dprintf_args);
9425 }
9426 else if (strcmp (dprintf_style, dprintf_style_agent) == 0)
9427 {
9428 if (target_can_run_breakpoint_commands ())
9429 printf_line = xstrprintf ("agent-printf %s", dprintf_args);
9430 else
9431 {
9432 warning (_("Target cannot run dprintf commands, falling back to GDB printf"));
9433 printf_line = xstrprintf ("printf %s", dprintf_args);
9434 }
9435 }
9436 else
9437 internal_error (__FILE__, __LINE__,
9438 _("Invalid dprintf style."));
9439
9440 gdb_assert (printf_line != NULL);
9441 /* Manufacture a printf sequence. */
9442 {
9443 struct command_line *printf_cmd_line
9444 = xmalloc (sizeof (struct command_line));
9445
9446 printf_cmd_line = xmalloc (sizeof (struct command_line));
9447 printf_cmd_line->control_type = simple_control;
9448 printf_cmd_line->body_count = 0;
9449 printf_cmd_line->body_list = NULL;
9450 printf_cmd_line->next = NULL;
9451 printf_cmd_line->line = printf_line;
9452
9453 breakpoint_set_commands (b, printf_cmd_line);
9454 }
9455 }
9456
9457 /* Update all dprintf commands, making their command lists reflect
9458 current style settings. */
9459
9460 static void
9461 update_dprintf_commands (char *args, int from_tty,
9462 struct cmd_list_element *c)
9463 {
9464 struct breakpoint *b;
9465
9466 ALL_BREAKPOINTS (b)
9467 {
9468 if (b->type == bp_dprintf)
9469 update_dprintf_command_list (b);
9470 }
9471 }
9472
9473 /* Create a breakpoint with SAL as location. Use ADDR_STRING
9474 as textual description of the location, and COND_STRING
9475 as condition expression. */
9476
9477 static void
9478 init_breakpoint_sal (struct breakpoint *b, struct gdbarch *gdbarch,
9479 struct symtabs_and_lines sals, char *addr_string,
9480 char *filter, char *cond_string,
9481 char *extra_string,
9482 enum bptype type, enum bpdisp disposition,
9483 int thread, int task, int ignore_count,
9484 const struct breakpoint_ops *ops, int from_tty,
9485 int enabled, int internal, unsigned flags,
9486 int display_canonical)
9487 {
9488 int i;
9489
9490 if (type == bp_hardware_breakpoint)
9491 {
9492 int target_resources_ok;
9493
9494 i = hw_breakpoint_used_count ();
9495 target_resources_ok =
9496 target_can_use_hardware_watchpoint (bp_hardware_breakpoint,
9497 i + 1, 0);
9498 if (target_resources_ok == 0)
9499 error (_("No hardware breakpoint support in the target."));
9500 else if (target_resources_ok < 0)
9501 error (_("Hardware breakpoints used exceeds limit."));
9502 }
9503
9504 gdb_assert (sals.nelts > 0);
9505
9506 for (i = 0; i < sals.nelts; ++i)
9507 {
9508 struct symtab_and_line sal = sals.sals[i];
9509 struct bp_location *loc;
9510
9511 if (from_tty)
9512 {
9513 struct gdbarch *loc_gdbarch = get_sal_arch (sal);
9514 if (!loc_gdbarch)
9515 loc_gdbarch = gdbarch;
9516
9517 describe_other_breakpoints (loc_gdbarch,
9518 sal.pspace, sal.pc, sal.section, thread);
9519 }
9520
9521 if (i == 0)
9522 {
9523 init_raw_breakpoint (b, gdbarch, sal, type, ops);
9524 b->thread = thread;
9525 b->task = task;
9526
9527 b->cond_string = cond_string;
9528 b->extra_string = extra_string;
9529 b->ignore_count = ignore_count;
9530 b->enable_state = enabled ? bp_enabled : bp_disabled;
9531 b->disposition = disposition;
9532
9533 if ((flags & CREATE_BREAKPOINT_FLAGS_INSERTED) != 0)
9534 b->loc->inserted = 1;
9535
9536 if (type == bp_static_tracepoint)
9537 {
9538 struct tracepoint *t = (struct tracepoint *) b;
9539 struct static_tracepoint_marker marker;
9540
9541 if (strace_marker_p (b))
9542 {
9543 /* We already know the marker exists, otherwise, we
9544 wouldn't see a sal for it. */
9545 char *p = &addr_string[3];
9546 char *endp;
9547 char *marker_str;
9548
9549 p = skip_spaces (p);
9550
9551 endp = skip_to_space (p);
9552
9553 marker_str = savestring (p, endp - p);
9554 t->static_trace_marker_id = marker_str;
9555
9556 printf_filtered (_("Probed static tracepoint "
9557 "marker \"%s\"\n"),
9558 t->static_trace_marker_id);
9559 }
9560 else if (target_static_tracepoint_marker_at (sal.pc, &marker))
9561 {
9562 t->static_trace_marker_id = xstrdup (marker.str_id);
9563 release_static_tracepoint_marker (&marker);
9564
9565 printf_filtered (_("Probed static tracepoint "
9566 "marker \"%s\"\n"),
9567 t->static_trace_marker_id);
9568 }
9569 else
9570 warning (_("Couldn't determine the static "
9571 "tracepoint marker to probe"));
9572 }
9573
9574 loc = b->loc;
9575 }
9576 else
9577 {
9578 loc = add_location_to_breakpoint (b, &sal);
9579 if ((flags & CREATE_BREAKPOINT_FLAGS_INSERTED) != 0)
9580 loc->inserted = 1;
9581 }
9582
9583 if (bp_loc_is_permanent (loc))
9584 make_breakpoint_permanent (b);
9585
9586 if (b->cond_string)
9587 {
9588 const char *arg = b->cond_string;
9589
9590 loc->cond = parse_exp_1 (&arg, loc->address,
9591 block_for_pc (loc->address), 0);
9592 if (*arg)
9593 error (_("Garbage '%s' follows condition"), arg);
9594 }
9595
9596 /* Dynamic printf requires and uses additional arguments on the
9597 command line, otherwise it's an error. */
9598 if (type == bp_dprintf)
9599 {
9600 if (b->extra_string)
9601 update_dprintf_command_list (b);
9602 else
9603 error (_("Format string required"));
9604 }
9605 else if (b->extra_string)
9606 error (_("Garbage '%s' at end of command"), b->extra_string);
9607 }
9608
9609 b->display_canonical = display_canonical;
9610 if (addr_string)
9611 b->addr_string = addr_string;
9612 else
9613 /* addr_string has to be used or breakpoint_re_set will delete
9614 me. */
9615 b->addr_string
9616 = xstrprintf ("*%s", paddress (b->loc->gdbarch, b->loc->address));
9617 b->filter = filter;
9618 }
9619
9620 static void
9621 create_breakpoint_sal (struct gdbarch *gdbarch,
9622 struct symtabs_and_lines sals, char *addr_string,
9623 char *filter, char *cond_string,
9624 char *extra_string,
9625 enum bptype type, enum bpdisp disposition,
9626 int thread, int task, int ignore_count,
9627 const struct breakpoint_ops *ops, int from_tty,
9628 int enabled, int internal, unsigned flags,
9629 int display_canonical)
9630 {
9631 struct breakpoint *b;
9632 struct cleanup *old_chain;
9633
9634 if (is_tracepoint_type (type))
9635 {
9636 struct tracepoint *t;
9637
9638 t = XCNEW (struct tracepoint);
9639 b = &t->base;
9640 }
9641 else
9642 b = XNEW (struct breakpoint);
9643
9644 old_chain = make_cleanup (xfree, b);
9645
9646 init_breakpoint_sal (b, gdbarch,
9647 sals, addr_string,
9648 filter, cond_string, extra_string,
9649 type, disposition,
9650 thread, task, ignore_count,
9651 ops, from_tty,
9652 enabled, internal, flags,
9653 display_canonical);
9654 discard_cleanups (old_chain);
9655
9656 install_breakpoint (internal, b, 0);
9657 }
9658
9659 /* Add SALS.nelts breakpoints to the breakpoint table. For each
9660 SALS.sal[i] breakpoint, include the corresponding ADDR_STRING[i]
9661 value. COND_STRING, if not NULL, specified the condition to be
9662 used for all breakpoints. Essentially the only case where
9663 SALS.nelts is not 1 is when we set a breakpoint on an overloaded
9664 function. In that case, it's still not possible to specify
9665 separate conditions for different overloaded functions, so
9666 we take just a single condition string.
9667
9668 NOTE: If the function succeeds, the caller is expected to cleanup
9669 the arrays ADDR_STRING, COND_STRING, and SALS (but not the
9670 array contents). If the function fails (error() is called), the
9671 caller is expected to cleanups both the ADDR_STRING, COND_STRING,
9672 COND and SALS arrays and each of those arrays contents. */
9673
9674 static void
9675 create_breakpoints_sal (struct gdbarch *gdbarch,
9676 struct linespec_result *canonical,
9677 char *cond_string, char *extra_string,
9678 enum bptype type, enum bpdisp disposition,
9679 int thread, int task, int ignore_count,
9680 const struct breakpoint_ops *ops, int from_tty,
9681 int enabled, int internal, unsigned flags)
9682 {
9683 int i;
9684 struct linespec_sals *lsal;
9685
9686 if (canonical->pre_expanded)
9687 gdb_assert (VEC_length (linespec_sals, canonical->sals) == 1);
9688
9689 for (i = 0; VEC_iterate (linespec_sals, canonical->sals, i, lsal); ++i)
9690 {
9691 /* Note that 'addr_string' can be NULL in the case of a plain
9692 'break', without arguments. */
9693 char *addr_string = (canonical->addr_string
9694 ? xstrdup (canonical->addr_string)
9695 : NULL);
9696 char *filter_string = lsal->canonical ? xstrdup (lsal->canonical) : NULL;
9697 struct cleanup *inner = make_cleanup (xfree, addr_string);
9698
9699 make_cleanup (xfree, filter_string);
9700 create_breakpoint_sal (gdbarch, lsal->sals,
9701 addr_string,
9702 filter_string,
9703 cond_string, extra_string,
9704 type, disposition,
9705 thread, task, ignore_count, ops,
9706 from_tty, enabled, internal, flags,
9707 canonical->special_display);
9708 discard_cleanups (inner);
9709 }
9710 }
9711
9712 /* Parse ADDRESS which is assumed to be a SAL specification possibly
9713 followed by conditionals. On return, SALS contains an array of SAL
9714 addresses found. ADDR_STRING contains a vector of (canonical)
9715 address strings. ADDRESS points to the end of the SAL.
9716
9717 The array and the line spec strings are allocated on the heap, it is
9718 the caller's responsibility to free them. */
9719
9720 static void
9721 parse_breakpoint_sals (char **address,
9722 struct linespec_result *canonical)
9723 {
9724 /* If no arg given, or if first arg is 'if ', use the default
9725 breakpoint. */
9726 if ((*address) == NULL
9727 || (strncmp ((*address), "if", 2) == 0 && isspace ((*address)[2])))
9728 {
9729 /* The last displayed codepoint, if it's valid, is our default breakpoint
9730 address. */
9731 if (last_displayed_sal_is_valid ())
9732 {
9733 struct linespec_sals lsal;
9734 struct symtab_and_line sal;
9735 CORE_ADDR pc;
9736
9737 init_sal (&sal); /* Initialize to zeroes. */
9738 lsal.sals.sals = (struct symtab_and_line *)
9739 xmalloc (sizeof (struct symtab_and_line));
9740
9741 /* Set sal's pspace, pc, symtab, and line to the values
9742 corresponding to the last call to print_frame_info.
9743 Be sure to reinitialize LINE with NOTCURRENT == 0
9744 as the breakpoint line number is inappropriate otherwise.
9745 find_pc_line would adjust PC, re-set it back. */
9746 get_last_displayed_sal (&sal);
9747 pc = sal.pc;
9748 sal = find_pc_line (pc, 0);
9749
9750 /* "break" without arguments is equivalent to "break *PC"
9751 where PC is the last displayed codepoint's address. So
9752 make sure to set sal.explicit_pc to prevent GDB from
9753 trying to expand the list of sals to include all other
9754 instances with the same symtab and line. */
9755 sal.pc = pc;
9756 sal.explicit_pc = 1;
9757
9758 lsal.sals.sals[0] = sal;
9759 lsal.sals.nelts = 1;
9760 lsal.canonical = NULL;
9761
9762 VEC_safe_push (linespec_sals, canonical->sals, &lsal);
9763 }
9764 else
9765 error (_("No default breakpoint address now."));
9766 }
9767 else
9768 {
9769 struct symtab_and_line cursal = get_current_source_symtab_and_line ();
9770
9771 /* Force almost all breakpoints to be in terms of the
9772 current_source_symtab (which is decode_line_1's default).
9773 This should produce the results we want almost all of the
9774 time while leaving default_breakpoint_* alone.
9775
9776 ObjC: However, don't match an Objective-C method name which
9777 may have a '+' or '-' succeeded by a '['. */
9778 if (last_displayed_sal_is_valid ()
9779 && (!cursal.symtab
9780 || ((strchr ("+-", (*address)[0]) != NULL)
9781 && ((*address)[1] != '['))))
9782 decode_line_full (address, DECODE_LINE_FUNFIRSTLINE,
9783 get_last_displayed_symtab (),
9784 get_last_displayed_line (),
9785 canonical, NULL, NULL);
9786 else
9787 decode_line_full (address, DECODE_LINE_FUNFIRSTLINE,
9788 cursal.symtab, cursal.line, canonical, NULL, NULL);
9789 }
9790 }
9791
9792
9793 /* Convert each SAL into a real PC. Verify that the PC can be
9794 inserted as a breakpoint. If it can't throw an error. */
9795
9796 static void
9797 breakpoint_sals_to_pc (struct symtabs_and_lines *sals)
9798 {
9799 int i;
9800
9801 for (i = 0; i < sals->nelts; i++)
9802 resolve_sal_pc (&sals->sals[i]);
9803 }
9804
9805 /* Fast tracepoints may have restrictions on valid locations. For
9806 instance, a fast tracepoint using a jump instead of a trap will
9807 likely have to overwrite more bytes than a trap would, and so can
9808 only be placed where the instruction is longer than the jump, or a
9809 multi-instruction sequence does not have a jump into the middle of
9810 it, etc. */
9811
9812 static void
9813 check_fast_tracepoint_sals (struct gdbarch *gdbarch,
9814 struct symtabs_and_lines *sals)
9815 {
9816 int i, rslt;
9817 struct symtab_and_line *sal;
9818 char *msg;
9819 struct cleanup *old_chain;
9820
9821 for (i = 0; i < sals->nelts; i++)
9822 {
9823 struct gdbarch *sarch;
9824
9825 sal = &sals->sals[i];
9826
9827 sarch = get_sal_arch (*sal);
9828 /* We fall back to GDBARCH if there is no architecture
9829 associated with SAL. */
9830 if (sarch == NULL)
9831 sarch = gdbarch;
9832 rslt = gdbarch_fast_tracepoint_valid_at (sarch, sal->pc,
9833 NULL, &msg);
9834 old_chain = make_cleanup (xfree, msg);
9835
9836 if (!rslt)
9837 error (_("May not have a fast tracepoint at 0x%s%s"),
9838 paddress (sarch, sal->pc), (msg ? msg : ""));
9839
9840 do_cleanups (old_chain);
9841 }
9842 }
9843
9844 /* Issue an invalid thread ID error. */
9845
9846 static void ATTRIBUTE_NORETURN
9847 invalid_thread_id_error (int id)
9848 {
9849 error (_("Unknown thread %d."), id);
9850 }
9851
9852 /* Given TOK, a string specification of condition and thread, as
9853 accepted by the 'break' command, extract the condition
9854 string and thread number and set *COND_STRING and *THREAD.
9855 PC identifies the context at which the condition should be parsed.
9856 If no condition is found, *COND_STRING is set to NULL.
9857 If no thread is found, *THREAD is set to -1. */
9858
9859 static void
9860 find_condition_and_thread (const char *tok, CORE_ADDR pc,
9861 char **cond_string, int *thread, int *task,
9862 char **rest)
9863 {
9864 *cond_string = NULL;
9865 *thread = -1;
9866 *task = 0;
9867 *rest = NULL;
9868
9869 while (tok && *tok)
9870 {
9871 const char *end_tok;
9872 int toklen;
9873 const char *cond_start = NULL;
9874 const char *cond_end = NULL;
9875
9876 tok = skip_spaces_const (tok);
9877
9878 if ((*tok == '"' || *tok == ',') && rest)
9879 {
9880 *rest = savestring (tok, strlen (tok));
9881 return;
9882 }
9883
9884 end_tok = skip_to_space_const (tok);
9885
9886 toklen = end_tok - tok;
9887
9888 if (toklen >= 1 && strncmp (tok, "if", toklen) == 0)
9889 {
9890 struct expression *expr;
9891
9892 tok = cond_start = end_tok + 1;
9893 expr = parse_exp_1 (&tok, pc, block_for_pc (pc), 0);
9894 xfree (expr);
9895 cond_end = tok;
9896 *cond_string = savestring (cond_start, cond_end - cond_start);
9897 }
9898 else if (toklen >= 1 && strncmp (tok, "thread", toklen) == 0)
9899 {
9900 char *tmptok;
9901
9902 tok = end_tok + 1;
9903 *thread = strtol (tok, &tmptok, 0);
9904 if (tok == tmptok)
9905 error (_("Junk after thread keyword."));
9906 if (!valid_thread_id (*thread))
9907 invalid_thread_id_error (*thread);
9908 tok = tmptok;
9909 }
9910 else if (toklen >= 1 && strncmp (tok, "task", toklen) == 0)
9911 {
9912 char *tmptok;
9913
9914 tok = end_tok + 1;
9915 *task = strtol (tok, &tmptok, 0);
9916 if (tok == tmptok)
9917 error (_("Junk after task keyword."));
9918 if (!valid_task_id (*task))
9919 error (_("Unknown task %d."), *task);
9920 tok = tmptok;
9921 }
9922 else if (rest)
9923 {
9924 *rest = savestring (tok, strlen (tok));
9925 return;
9926 }
9927 else
9928 error (_("Junk at end of arguments."));
9929 }
9930 }
9931
9932 /* Decode a static tracepoint marker spec. */
9933
9934 static struct symtabs_and_lines
9935 decode_static_tracepoint_spec (char **arg_p)
9936 {
9937 VEC(static_tracepoint_marker_p) *markers = NULL;
9938 struct symtabs_and_lines sals;
9939 struct cleanup *old_chain;
9940 char *p = &(*arg_p)[3];
9941 char *endp;
9942 char *marker_str;
9943 int i;
9944
9945 p = skip_spaces (p);
9946
9947 endp = skip_to_space (p);
9948
9949 marker_str = savestring (p, endp - p);
9950 old_chain = make_cleanup (xfree, marker_str);
9951
9952 markers = target_static_tracepoint_markers_by_strid (marker_str);
9953 if (VEC_empty(static_tracepoint_marker_p, markers))
9954 error (_("No known static tracepoint marker named %s"), marker_str);
9955
9956 sals.nelts = VEC_length(static_tracepoint_marker_p, markers);
9957 sals.sals = xmalloc (sizeof *sals.sals * sals.nelts);
9958
9959 for (i = 0; i < sals.nelts; i++)
9960 {
9961 struct static_tracepoint_marker *marker;
9962
9963 marker = VEC_index (static_tracepoint_marker_p, markers, i);
9964
9965 init_sal (&sals.sals[i]);
9966
9967 sals.sals[i] = find_pc_line (marker->address, 0);
9968 sals.sals[i].pc = marker->address;
9969
9970 release_static_tracepoint_marker (marker);
9971 }
9972
9973 do_cleanups (old_chain);
9974
9975 *arg_p = endp;
9976 return sals;
9977 }
9978
9979 /* Set a breakpoint. This function is shared between CLI and MI
9980 functions for setting a breakpoint. This function has two major
9981 modes of operations, selected by the PARSE_ARG parameter. If
9982 non-zero, the function will parse ARG, extracting location,
9983 condition, thread and extra string. Otherwise, ARG is just the
9984 breakpoint's location, with condition, thread, and extra string
9985 specified by the COND_STRING, THREAD and EXTRA_STRING parameters.
9986 If INTERNAL is non-zero, the breakpoint number will be allocated
9987 from the internal breakpoint count. Returns true if any breakpoint
9988 was created; false otherwise. */
9989
9990 int
9991 create_breakpoint (struct gdbarch *gdbarch,
9992 char *arg, char *cond_string,
9993 int thread, char *extra_string,
9994 int parse_arg,
9995 int tempflag, enum bptype type_wanted,
9996 int ignore_count,
9997 enum auto_boolean pending_break_support,
9998 const struct breakpoint_ops *ops,
9999 int from_tty, int enabled, int internal,
10000 unsigned flags)
10001 {
10002 volatile struct gdb_exception e;
10003 char *copy_arg = NULL;
10004 char *addr_start = arg;
10005 struct linespec_result canonical;
10006 struct cleanup *old_chain;
10007 struct cleanup *bkpt_chain = NULL;
10008 int pending = 0;
10009 int task = 0;
10010 int prev_bkpt_count = breakpoint_count;
10011
10012 gdb_assert (ops != NULL);
10013
10014 init_linespec_result (&canonical);
10015
10016 TRY_CATCH (e, RETURN_MASK_ALL)
10017 {
10018 ops->create_sals_from_address (&arg, &canonical, type_wanted,
10019 addr_start, &copy_arg);
10020 }
10021
10022 /* If caller is interested in rc value from parse, set value. */
10023 switch (e.reason)
10024 {
10025 case GDB_NO_ERROR:
10026 if (VEC_empty (linespec_sals, canonical.sals))
10027 return 0;
10028 break;
10029 case RETURN_ERROR:
10030 switch (e.error)
10031 {
10032 case NOT_FOUND_ERROR:
10033
10034 /* If pending breakpoint support is turned off, throw
10035 error. */
10036
10037 if (pending_break_support == AUTO_BOOLEAN_FALSE)
10038 throw_exception (e);
10039
10040 exception_print (gdb_stderr, e);
10041
10042 /* If pending breakpoint support is auto query and the user
10043 selects no, then simply return the error code. */
10044 if (pending_break_support == AUTO_BOOLEAN_AUTO
10045 && !nquery (_("Make %s pending on future shared library load? "),
10046 bptype_string (type_wanted)))
10047 return 0;
10048
10049 /* At this point, either the user was queried about setting
10050 a pending breakpoint and selected yes, or pending
10051 breakpoint behavior is on and thus a pending breakpoint
10052 is defaulted on behalf of the user. */
10053 {
10054 struct linespec_sals lsal;
10055
10056 copy_arg = xstrdup (addr_start);
10057 lsal.canonical = xstrdup (copy_arg);
10058 lsal.sals.nelts = 1;
10059 lsal.sals.sals = XNEW (struct symtab_and_line);
10060 init_sal (&lsal.sals.sals[0]);
10061 pending = 1;
10062 VEC_safe_push (linespec_sals, canonical.sals, &lsal);
10063 }
10064 break;
10065 default:
10066 throw_exception (e);
10067 }
10068 break;
10069 default:
10070 throw_exception (e);
10071 }
10072
10073 /* Create a chain of things that always need to be cleaned up. */
10074 old_chain = make_cleanup_destroy_linespec_result (&canonical);
10075
10076 /* ----------------------------- SNIP -----------------------------
10077 Anything added to the cleanup chain beyond this point is assumed
10078 to be part of a breakpoint. If the breakpoint create succeeds
10079 then the memory is not reclaimed. */
10080 bkpt_chain = make_cleanup (null_cleanup, 0);
10081
10082 /* Resolve all line numbers to PC's and verify that the addresses
10083 are ok for the target. */
10084 if (!pending)
10085 {
10086 int ix;
10087 struct linespec_sals *iter;
10088
10089 for (ix = 0; VEC_iterate (linespec_sals, canonical.sals, ix, iter); ++ix)
10090 breakpoint_sals_to_pc (&iter->sals);
10091 }
10092
10093 /* Fast tracepoints may have additional restrictions on location. */
10094 if (!pending && type_wanted == bp_fast_tracepoint)
10095 {
10096 int ix;
10097 struct linespec_sals *iter;
10098
10099 for (ix = 0; VEC_iterate (linespec_sals, canonical.sals, ix, iter); ++ix)
10100 check_fast_tracepoint_sals (gdbarch, &iter->sals);
10101 }
10102
10103 /* Verify that condition can be parsed, before setting any
10104 breakpoints. Allocate a separate condition expression for each
10105 breakpoint. */
10106 if (!pending)
10107 {
10108 if (parse_arg)
10109 {
10110 char *rest;
10111 struct linespec_sals *lsal;
10112
10113 lsal = VEC_index (linespec_sals, canonical.sals, 0);
10114
10115 /* Here we only parse 'arg' to separate condition
10116 from thread number, so parsing in context of first
10117 sal is OK. When setting the breakpoint we'll
10118 re-parse it in context of each sal. */
10119
10120 find_condition_and_thread (arg, lsal->sals.sals[0].pc, &cond_string,
10121 &thread, &task, &rest);
10122 if (cond_string)
10123 make_cleanup (xfree, cond_string);
10124 if (rest)
10125 make_cleanup (xfree, rest);
10126 if (rest)
10127 extra_string = rest;
10128 }
10129 else
10130 {
10131 if (*arg != '\0')
10132 error (_("Garbage '%s' at end of location"), arg);
10133
10134 /* Create a private copy of condition string. */
10135 if (cond_string)
10136 {
10137 cond_string = xstrdup (cond_string);
10138 make_cleanup (xfree, cond_string);
10139 }
10140 /* Create a private copy of any extra string. */
10141 if (extra_string)
10142 {
10143 extra_string = xstrdup (extra_string);
10144 make_cleanup (xfree, extra_string);
10145 }
10146 }
10147
10148 ops->create_breakpoints_sal (gdbarch, &canonical,
10149 cond_string, extra_string, type_wanted,
10150 tempflag ? disp_del : disp_donttouch,
10151 thread, task, ignore_count, ops,
10152 from_tty, enabled, internal, flags);
10153 }
10154 else
10155 {
10156 struct breakpoint *b;
10157
10158 make_cleanup (xfree, copy_arg);
10159
10160 if (is_tracepoint_type (type_wanted))
10161 {
10162 struct tracepoint *t;
10163
10164 t = XCNEW (struct tracepoint);
10165 b = &t->base;
10166 }
10167 else
10168 b = XNEW (struct breakpoint);
10169
10170 init_raw_breakpoint_without_location (b, gdbarch, type_wanted, ops);
10171
10172 b->addr_string = copy_arg;
10173 if (parse_arg)
10174 b->cond_string = NULL;
10175 else
10176 {
10177 /* Create a private copy of condition string. */
10178 if (cond_string)
10179 {
10180 cond_string = xstrdup (cond_string);
10181 make_cleanup (xfree, cond_string);
10182 }
10183 b->cond_string = cond_string;
10184 }
10185 b->extra_string = NULL;
10186 b->ignore_count = ignore_count;
10187 b->disposition = tempflag ? disp_del : disp_donttouch;
10188 b->condition_not_parsed = 1;
10189 b->enable_state = enabled ? bp_enabled : bp_disabled;
10190 if ((type_wanted != bp_breakpoint
10191 && type_wanted != bp_hardware_breakpoint) || thread != -1)
10192 b->pspace = current_program_space;
10193
10194 install_breakpoint (internal, b, 0);
10195 }
10196
10197 if (VEC_length (linespec_sals, canonical.sals) > 1)
10198 {
10199 warning (_("Multiple breakpoints were set.\nUse the "
10200 "\"delete\" command to delete unwanted breakpoints."));
10201 prev_breakpoint_count = prev_bkpt_count;
10202 }
10203
10204 /* That's it. Discard the cleanups for data inserted into the
10205 breakpoint. */
10206 discard_cleanups (bkpt_chain);
10207 /* But cleanup everything else. */
10208 do_cleanups (old_chain);
10209
10210 /* error call may happen here - have BKPT_CHAIN already discarded. */
10211 update_global_location_list (UGLL_MAY_INSERT);
10212
10213 return 1;
10214 }
10215
10216 /* Set a breakpoint.
10217 ARG is a string describing breakpoint address,
10218 condition, and thread.
10219 FLAG specifies if a breakpoint is hardware on,
10220 and if breakpoint is temporary, using BP_HARDWARE_FLAG
10221 and BP_TEMPFLAG. */
10222
10223 static void
10224 break_command_1 (char *arg, int flag, int from_tty)
10225 {
10226 int tempflag = flag & BP_TEMPFLAG;
10227 enum bptype type_wanted = (flag & BP_HARDWAREFLAG
10228 ? bp_hardware_breakpoint
10229 : bp_breakpoint);
10230 struct breakpoint_ops *ops;
10231 const char *arg_cp = arg;
10232
10233 /* Matching breakpoints on probes. */
10234 if (arg && probe_linespec_to_ops (&arg_cp) != NULL)
10235 ops = &bkpt_probe_breakpoint_ops;
10236 else
10237 ops = &bkpt_breakpoint_ops;
10238
10239 create_breakpoint (get_current_arch (),
10240 arg,
10241 NULL, 0, NULL, 1 /* parse arg */,
10242 tempflag, type_wanted,
10243 0 /* Ignore count */,
10244 pending_break_support,
10245 ops,
10246 from_tty,
10247 1 /* enabled */,
10248 0 /* internal */,
10249 0);
10250 }
10251
10252 /* Helper function for break_command_1 and disassemble_command. */
10253
10254 void
10255 resolve_sal_pc (struct symtab_and_line *sal)
10256 {
10257 CORE_ADDR pc;
10258
10259 if (sal->pc == 0 && sal->symtab != NULL)
10260 {
10261 if (!find_line_pc (sal->symtab, sal->line, &pc))
10262 error (_("No line %d in file \"%s\"."),
10263 sal->line, symtab_to_filename_for_display (sal->symtab));
10264 sal->pc = pc;
10265
10266 /* If this SAL corresponds to a breakpoint inserted using a line
10267 number, then skip the function prologue if necessary. */
10268 if (sal->explicit_line)
10269 skip_prologue_sal (sal);
10270 }
10271
10272 if (sal->section == 0 && sal->symtab != NULL)
10273 {
10274 const struct blockvector *bv;
10275 const struct block *b;
10276 struct symbol *sym;
10277
10278 bv = blockvector_for_pc_sect (sal->pc, 0, &b, sal->symtab);
10279 if (bv != NULL)
10280 {
10281 sym = block_linkage_function (b);
10282 if (sym != NULL)
10283 {
10284 fixup_symbol_section (sym, sal->symtab->objfile);
10285 sal->section = SYMBOL_OBJ_SECTION (sal->symtab->objfile, sym);
10286 }
10287 else
10288 {
10289 /* It really is worthwhile to have the section, so we'll
10290 just have to look harder. This case can be executed
10291 if we have line numbers but no functions (as can
10292 happen in assembly source). */
10293
10294 struct bound_minimal_symbol msym;
10295 struct cleanup *old_chain = save_current_space_and_thread ();
10296
10297 switch_to_program_space_and_thread (sal->pspace);
10298
10299 msym = lookup_minimal_symbol_by_pc (sal->pc);
10300 if (msym.minsym)
10301 sal->section = MSYMBOL_OBJ_SECTION (msym.objfile, msym.minsym);
10302
10303 do_cleanups (old_chain);
10304 }
10305 }
10306 }
10307 }
10308
10309 void
10310 break_command (char *arg, int from_tty)
10311 {
10312 break_command_1 (arg, 0, from_tty);
10313 }
10314
10315 void
10316 tbreak_command (char *arg, int from_tty)
10317 {
10318 break_command_1 (arg, BP_TEMPFLAG, from_tty);
10319 }
10320
10321 static void
10322 hbreak_command (char *arg, int from_tty)
10323 {
10324 break_command_1 (arg, BP_HARDWAREFLAG, from_tty);
10325 }
10326
10327 static void
10328 thbreak_command (char *arg, int from_tty)
10329 {
10330 break_command_1 (arg, (BP_TEMPFLAG | BP_HARDWAREFLAG), from_tty);
10331 }
10332
10333 static void
10334 stop_command (char *arg, int from_tty)
10335 {
10336 printf_filtered (_("Specify the type of breakpoint to set.\n\
10337 Usage: stop in <function | address>\n\
10338 stop at <line>\n"));
10339 }
10340
10341 static void
10342 stopin_command (char *arg, int from_tty)
10343 {
10344 int badInput = 0;
10345
10346 if (arg == (char *) NULL)
10347 badInput = 1;
10348 else if (*arg != '*')
10349 {
10350 char *argptr = arg;
10351 int hasColon = 0;
10352
10353 /* Look for a ':'. If this is a line number specification, then
10354 say it is bad, otherwise, it should be an address or
10355 function/method name. */
10356 while (*argptr && !hasColon)
10357 {
10358 hasColon = (*argptr == ':');
10359 argptr++;
10360 }
10361
10362 if (hasColon)
10363 badInput = (*argptr != ':'); /* Not a class::method */
10364 else
10365 badInput = isdigit (*arg); /* a simple line number */
10366 }
10367
10368 if (badInput)
10369 printf_filtered (_("Usage: stop in <function | address>\n"));
10370 else
10371 break_command_1 (arg, 0, from_tty);
10372 }
10373
10374 static void
10375 stopat_command (char *arg, int from_tty)
10376 {
10377 int badInput = 0;
10378
10379 if (arg == (char *) NULL || *arg == '*') /* no line number */
10380 badInput = 1;
10381 else
10382 {
10383 char *argptr = arg;
10384 int hasColon = 0;
10385
10386 /* Look for a ':'. If there is a '::' then get out, otherwise
10387 it is probably a line number. */
10388 while (*argptr && !hasColon)
10389 {
10390 hasColon = (*argptr == ':');
10391 argptr++;
10392 }
10393
10394 if (hasColon)
10395 badInput = (*argptr == ':'); /* we have class::method */
10396 else
10397 badInput = !isdigit (*arg); /* not a line number */
10398 }
10399
10400 if (badInput)
10401 printf_filtered (_("Usage: stop at <line>\n"));
10402 else
10403 break_command_1 (arg, 0, from_tty);
10404 }
10405
10406 /* The dynamic printf command is mostly like a regular breakpoint, but
10407 with a prewired command list consisting of a single output command,
10408 built from extra arguments supplied on the dprintf command
10409 line. */
10410
10411 static void
10412 dprintf_command (char *arg, int from_tty)
10413 {
10414 create_breakpoint (get_current_arch (),
10415 arg,
10416 NULL, 0, NULL, 1 /* parse arg */,
10417 0, bp_dprintf,
10418 0 /* Ignore count */,
10419 pending_break_support,
10420 &dprintf_breakpoint_ops,
10421 from_tty,
10422 1 /* enabled */,
10423 0 /* internal */,
10424 0);
10425 }
10426
10427 static void
10428 agent_printf_command (char *arg, int from_tty)
10429 {
10430 error (_("May only run agent-printf on the target"));
10431 }
10432
10433 /* Implement the "breakpoint_hit" breakpoint_ops method for
10434 ranged breakpoints. */
10435
10436 static int
10437 breakpoint_hit_ranged_breakpoint (const struct bp_location *bl,
10438 struct address_space *aspace,
10439 CORE_ADDR bp_addr,
10440 const struct target_waitstatus *ws)
10441 {
10442 if (ws->kind != TARGET_WAITKIND_STOPPED
10443 || ws->value.sig != GDB_SIGNAL_TRAP)
10444 return 0;
10445
10446 return breakpoint_address_match_range (bl->pspace->aspace, bl->address,
10447 bl->length, aspace, bp_addr);
10448 }
10449
10450 /* Implement the "resources_needed" breakpoint_ops method for
10451 ranged breakpoints. */
10452
10453 static int
10454 resources_needed_ranged_breakpoint (const struct bp_location *bl)
10455 {
10456 return target_ranged_break_num_registers ();
10457 }
10458
10459 /* Implement the "print_it" breakpoint_ops method for
10460 ranged breakpoints. */
10461
10462 static enum print_stop_action
10463 print_it_ranged_breakpoint (bpstat bs)
10464 {
10465 struct breakpoint *b = bs->breakpoint_at;
10466 struct bp_location *bl = b->loc;
10467 struct ui_out *uiout = current_uiout;
10468
10469 gdb_assert (b->type == bp_hardware_breakpoint);
10470
10471 /* Ranged breakpoints have only one location. */
10472 gdb_assert (bl && bl->next == NULL);
10473
10474 annotate_breakpoint (b->number);
10475 if (b->disposition == disp_del)
10476 ui_out_text (uiout, "\nTemporary ranged breakpoint ");
10477 else
10478 ui_out_text (uiout, "\nRanged breakpoint ");
10479 if (ui_out_is_mi_like_p (uiout))
10480 {
10481 ui_out_field_string (uiout, "reason",
10482 async_reason_lookup (EXEC_ASYNC_BREAKPOINT_HIT));
10483 ui_out_field_string (uiout, "disp", bpdisp_text (b->disposition));
10484 }
10485 ui_out_field_int (uiout, "bkptno", b->number);
10486 ui_out_text (uiout, ", ");
10487
10488 return PRINT_SRC_AND_LOC;
10489 }
10490
10491 /* Implement the "print_one" breakpoint_ops method for
10492 ranged breakpoints. */
10493
10494 static void
10495 print_one_ranged_breakpoint (struct breakpoint *b,
10496 struct bp_location **last_loc)
10497 {
10498 struct bp_location *bl = b->loc;
10499 struct value_print_options opts;
10500 struct ui_out *uiout = current_uiout;
10501
10502 /* Ranged breakpoints have only one location. */
10503 gdb_assert (bl && bl->next == NULL);
10504
10505 get_user_print_options (&opts);
10506
10507 if (opts.addressprint)
10508 /* We don't print the address range here, it will be printed later
10509 by print_one_detail_ranged_breakpoint. */
10510 ui_out_field_skip (uiout, "addr");
10511 annotate_field (5);
10512 print_breakpoint_location (b, bl);
10513 *last_loc = bl;
10514 }
10515
10516 /* Implement the "print_one_detail" breakpoint_ops method for
10517 ranged breakpoints. */
10518
10519 static void
10520 print_one_detail_ranged_breakpoint (const struct breakpoint *b,
10521 struct ui_out *uiout)
10522 {
10523 CORE_ADDR address_start, address_end;
10524 struct bp_location *bl = b->loc;
10525 struct ui_file *stb = mem_fileopen ();
10526 struct cleanup *cleanup = make_cleanup_ui_file_delete (stb);
10527
10528 gdb_assert (bl);
10529
10530 address_start = bl->address;
10531 address_end = address_start + bl->length - 1;
10532
10533 ui_out_text (uiout, "\taddress range: ");
10534 fprintf_unfiltered (stb, "[%s, %s]",
10535 print_core_address (bl->gdbarch, address_start),
10536 print_core_address (bl->gdbarch, address_end));
10537 ui_out_field_stream (uiout, "addr", stb);
10538 ui_out_text (uiout, "\n");
10539
10540 do_cleanups (cleanup);
10541 }
10542
10543 /* Implement the "print_mention" breakpoint_ops method for
10544 ranged breakpoints. */
10545
10546 static void
10547 print_mention_ranged_breakpoint (struct breakpoint *b)
10548 {
10549 struct bp_location *bl = b->loc;
10550 struct ui_out *uiout = current_uiout;
10551
10552 gdb_assert (bl);
10553 gdb_assert (b->type == bp_hardware_breakpoint);
10554
10555 if (ui_out_is_mi_like_p (uiout))
10556 return;
10557
10558 printf_filtered (_("Hardware assisted ranged breakpoint %d from %s to %s."),
10559 b->number, paddress (bl->gdbarch, bl->address),
10560 paddress (bl->gdbarch, bl->address + bl->length - 1));
10561 }
10562
10563 /* Implement the "print_recreate" breakpoint_ops method for
10564 ranged breakpoints. */
10565
10566 static void
10567 print_recreate_ranged_breakpoint (struct breakpoint *b, struct ui_file *fp)
10568 {
10569 fprintf_unfiltered (fp, "break-range %s, %s", b->addr_string,
10570 b->addr_string_range_end);
10571 print_recreate_thread (b, fp);
10572 }
10573
10574 /* The breakpoint_ops structure to be used in ranged breakpoints. */
10575
10576 static struct breakpoint_ops ranged_breakpoint_ops;
10577
10578 /* Find the address where the end of the breakpoint range should be
10579 placed, given the SAL of the end of the range. This is so that if
10580 the user provides a line number, the end of the range is set to the
10581 last instruction of the given line. */
10582
10583 static CORE_ADDR
10584 find_breakpoint_range_end (struct symtab_and_line sal)
10585 {
10586 CORE_ADDR end;
10587
10588 /* If the user provided a PC value, use it. Otherwise,
10589 find the address of the end of the given location. */
10590 if (sal.explicit_pc)
10591 end = sal.pc;
10592 else
10593 {
10594 int ret;
10595 CORE_ADDR start;
10596
10597 ret = find_line_pc_range (sal, &start, &end);
10598 if (!ret)
10599 error (_("Could not find location of the end of the range."));
10600
10601 /* find_line_pc_range returns the start of the next line. */
10602 end--;
10603 }
10604
10605 return end;
10606 }
10607
10608 /* Implement the "break-range" CLI command. */
10609
10610 static void
10611 break_range_command (char *arg, int from_tty)
10612 {
10613 char *arg_start, *addr_string_start, *addr_string_end;
10614 struct linespec_result canonical_start, canonical_end;
10615 int bp_count, can_use_bp, length;
10616 CORE_ADDR end;
10617 struct breakpoint *b;
10618 struct symtab_and_line sal_start, sal_end;
10619 struct cleanup *cleanup_bkpt;
10620 struct linespec_sals *lsal_start, *lsal_end;
10621
10622 /* We don't support software ranged breakpoints. */
10623 if (target_ranged_break_num_registers () < 0)
10624 error (_("This target does not support hardware ranged breakpoints."));
10625
10626 bp_count = hw_breakpoint_used_count ();
10627 bp_count += target_ranged_break_num_registers ();
10628 can_use_bp = target_can_use_hardware_watchpoint (bp_hardware_breakpoint,
10629 bp_count, 0);
10630 if (can_use_bp < 0)
10631 error (_("Hardware breakpoints used exceeds limit."));
10632
10633 arg = skip_spaces (arg);
10634 if (arg == NULL || arg[0] == '\0')
10635 error(_("No address range specified."));
10636
10637 init_linespec_result (&canonical_start);
10638
10639 arg_start = arg;
10640 parse_breakpoint_sals (&arg, &canonical_start);
10641
10642 cleanup_bkpt = make_cleanup_destroy_linespec_result (&canonical_start);
10643
10644 if (arg[0] != ',')
10645 error (_("Too few arguments."));
10646 else if (VEC_empty (linespec_sals, canonical_start.sals))
10647 error (_("Could not find location of the beginning of the range."));
10648
10649 lsal_start = VEC_index (linespec_sals, canonical_start.sals, 0);
10650
10651 if (VEC_length (linespec_sals, canonical_start.sals) > 1
10652 || lsal_start->sals.nelts != 1)
10653 error (_("Cannot create a ranged breakpoint with multiple locations."));
10654
10655 sal_start = lsal_start->sals.sals[0];
10656 addr_string_start = savestring (arg_start, arg - arg_start);
10657 make_cleanup (xfree, addr_string_start);
10658
10659 arg++; /* Skip the comma. */
10660 arg = skip_spaces (arg);
10661
10662 /* Parse the end location. */
10663
10664 init_linespec_result (&canonical_end);
10665 arg_start = arg;
10666
10667 /* We call decode_line_full directly here instead of using
10668 parse_breakpoint_sals because we need to specify the start location's
10669 symtab and line as the default symtab and line for the end of the
10670 range. This makes it possible to have ranges like "foo.c:27, +14",
10671 where +14 means 14 lines from the start location. */
10672 decode_line_full (&arg, DECODE_LINE_FUNFIRSTLINE,
10673 sal_start.symtab, sal_start.line,
10674 &canonical_end, NULL, NULL);
10675
10676 make_cleanup_destroy_linespec_result (&canonical_end);
10677
10678 if (VEC_empty (linespec_sals, canonical_end.sals))
10679 error (_("Could not find location of the end of the range."));
10680
10681 lsal_end = VEC_index (linespec_sals, canonical_end.sals, 0);
10682 if (VEC_length (linespec_sals, canonical_end.sals) > 1
10683 || lsal_end->sals.nelts != 1)
10684 error (_("Cannot create a ranged breakpoint with multiple locations."));
10685
10686 sal_end = lsal_end->sals.sals[0];
10687 addr_string_end = savestring (arg_start, arg - arg_start);
10688 make_cleanup (xfree, addr_string_end);
10689
10690 end = find_breakpoint_range_end (sal_end);
10691 if (sal_start.pc > end)
10692 error (_("Invalid address range, end precedes start."));
10693
10694 length = end - sal_start.pc + 1;
10695 if (length < 0)
10696 /* Length overflowed. */
10697 error (_("Address range too large."));
10698 else if (length == 1)
10699 {
10700 /* This range is simple enough to be handled by
10701 the `hbreak' command. */
10702 hbreak_command (addr_string_start, 1);
10703
10704 do_cleanups (cleanup_bkpt);
10705
10706 return;
10707 }
10708
10709 /* Now set up the breakpoint. */
10710 b = set_raw_breakpoint (get_current_arch (), sal_start,
10711 bp_hardware_breakpoint, &ranged_breakpoint_ops);
10712 set_breakpoint_count (breakpoint_count + 1);
10713 b->number = breakpoint_count;
10714 b->disposition = disp_donttouch;
10715 b->addr_string = xstrdup (addr_string_start);
10716 b->addr_string_range_end = xstrdup (addr_string_end);
10717 b->loc->length = length;
10718
10719 do_cleanups (cleanup_bkpt);
10720
10721 mention (b);
10722 observer_notify_breakpoint_created (b);
10723 update_global_location_list (UGLL_MAY_INSERT);
10724 }
10725
10726 /* Return non-zero if EXP is verified as constant. Returned zero
10727 means EXP is variable. Also the constant detection may fail for
10728 some constant expressions and in such case still falsely return
10729 zero. */
10730
10731 static int
10732 watchpoint_exp_is_const (const struct expression *exp)
10733 {
10734 int i = exp->nelts;
10735
10736 while (i > 0)
10737 {
10738 int oplenp, argsp;
10739
10740 /* We are only interested in the descriptor of each element. */
10741 operator_length (exp, i, &oplenp, &argsp);
10742 i -= oplenp;
10743
10744 switch (exp->elts[i].opcode)
10745 {
10746 case BINOP_ADD:
10747 case BINOP_SUB:
10748 case BINOP_MUL:
10749 case BINOP_DIV:
10750 case BINOP_REM:
10751 case BINOP_MOD:
10752 case BINOP_LSH:
10753 case BINOP_RSH:
10754 case BINOP_LOGICAL_AND:
10755 case BINOP_LOGICAL_OR:
10756 case BINOP_BITWISE_AND:
10757 case BINOP_BITWISE_IOR:
10758 case BINOP_BITWISE_XOR:
10759 case BINOP_EQUAL:
10760 case BINOP_NOTEQUAL:
10761 case BINOP_LESS:
10762 case BINOP_GTR:
10763 case BINOP_LEQ:
10764 case BINOP_GEQ:
10765 case BINOP_REPEAT:
10766 case BINOP_COMMA:
10767 case BINOP_EXP:
10768 case BINOP_MIN:
10769 case BINOP_MAX:
10770 case BINOP_INTDIV:
10771 case BINOP_CONCAT:
10772 case TERNOP_COND:
10773 case TERNOP_SLICE:
10774
10775 case OP_LONG:
10776 case OP_DOUBLE:
10777 case OP_DECFLOAT:
10778 case OP_LAST:
10779 case OP_COMPLEX:
10780 case OP_STRING:
10781 case OP_ARRAY:
10782 case OP_TYPE:
10783 case OP_TYPEOF:
10784 case OP_DECLTYPE:
10785 case OP_TYPEID:
10786 case OP_NAME:
10787 case OP_OBJC_NSSTRING:
10788
10789 case UNOP_NEG:
10790 case UNOP_LOGICAL_NOT:
10791 case UNOP_COMPLEMENT:
10792 case UNOP_ADDR:
10793 case UNOP_HIGH:
10794 case UNOP_CAST:
10795
10796 case UNOP_CAST_TYPE:
10797 case UNOP_REINTERPRET_CAST:
10798 case UNOP_DYNAMIC_CAST:
10799 /* Unary, binary and ternary operators: We have to check
10800 their operands. If they are constant, then so is the
10801 result of that operation. For instance, if A and B are
10802 determined to be constants, then so is "A + B".
10803
10804 UNOP_IND is one exception to the rule above, because the
10805 value of *ADDR is not necessarily a constant, even when
10806 ADDR is. */
10807 break;
10808
10809 case OP_VAR_VALUE:
10810 /* Check whether the associated symbol is a constant.
10811
10812 We use SYMBOL_CLASS rather than TYPE_CONST because it's
10813 possible that a buggy compiler could mark a variable as
10814 constant even when it is not, and TYPE_CONST would return
10815 true in this case, while SYMBOL_CLASS wouldn't.
10816
10817 We also have to check for function symbols because they
10818 are always constant. */
10819 {
10820 struct symbol *s = exp->elts[i + 2].symbol;
10821
10822 if (SYMBOL_CLASS (s) != LOC_BLOCK
10823 && SYMBOL_CLASS (s) != LOC_CONST
10824 && SYMBOL_CLASS (s) != LOC_CONST_BYTES)
10825 return 0;
10826 break;
10827 }
10828
10829 /* The default action is to return 0 because we are using
10830 the optimistic approach here: If we don't know something,
10831 then it is not a constant. */
10832 default:
10833 return 0;
10834 }
10835 }
10836
10837 return 1;
10838 }
10839
10840 /* Implement the "dtor" breakpoint_ops method for watchpoints. */
10841
10842 static void
10843 dtor_watchpoint (struct breakpoint *self)
10844 {
10845 struct watchpoint *w = (struct watchpoint *) self;
10846
10847 xfree (w->cond_exp);
10848 xfree (w->exp);
10849 xfree (w->exp_string);
10850 xfree (w->exp_string_reparse);
10851 value_free (w->val);
10852
10853 base_breakpoint_ops.dtor (self);
10854 }
10855
10856 /* Implement the "re_set" breakpoint_ops method for watchpoints. */
10857
10858 static void
10859 re_set_watchpoint (struct breakpoint *b)
10860 {
10861 struct watchpoint *w = (struct watchpoint *) b;
10862
10863 /* Watchpoint can be either on expression using entirely global
10864 variables, or it can be on local variables.
10865
10866 Watchpoints of the first kind are never auto-deleted, and even
10867 persist across program restarts. Since they can use variables
10868 from shared libraries, we need to reparse expression as libraries
10869 are loaded and unloaded.
10870
10871 Watchpoints on local variables can also change meaning as result
10872 of solib event. For example, if a watchpoint uses both a local
10873 and a global variables in expression, it's a local watchpoint,
10874 but unloading of a shared library will make the expression
10875 invalid. This is not a very common use case, but we still
10876 re-evaluate expression, to avoid surprises to the user.
10877
10878 Note that for local watchpoints, we re-evaluate it only if
10879 watchpoints frame id is still valid. If it's not, it means the
10880 watchpoint is out of scope and will be deleted soon. In fact,
10881 I'm not sure we'll ever be called in this case.
10882
10883 If a local watchpoint's frame id is still valid, then
10884 w->exp_valid_block is likewise valid, and we can safely use it.
10885
10886 Don't do anything about disabled watchpoints, since they will be
10887 reevaluated again when enabled. */
10888 update_watchpoint (w, 1 /* reparse */);
10889 }
10890
10891 /* Implement the "insert" breakpoint_ops method for hardware watchpoints. */
10892
10893 static int
10894 insert_watchpoint (struct bp_location *bl)
10895 {
10896 struct watchpoint *w = (struct watchpoint *) bl->owner;
10897 int length = w->exact ? 1 : bl->length;
10898
10899 return target_insert_watchpoint (bl->address, length, bl->watchpoint_type,
10900 w->cond_exp);
10901 }
10902
10903 /* Implement the "remove" breakpoint_ops method for hardware watchpoints. */
10904
10905 static int
10906 remove_watchpoint (struct bp_location *bl)
10907 {
10908 struct watchpoint *w = (struct watchpoint *) bl->owner;
10909 int length = w->exact ? 1 : bl->length;
10910
10911 return target_remove_watchpoint (bl->address, length, bl->watchpoint_type,
10912 w->cond_exp);
10913 }
10914
10915 static int
10916 breakpoint_hit_watchpoint (const struct bp_location *bl,
10917 struct address_space *aspace, CORE_ADDR bp_addr,
10918 const struct target_waitstatus *ws)
10919 {
10920 struct breakpoint *b = bl->owner;
10921 struct watchpoint *w = (struct watchpoint *) b;
10922
10923 /* Continuable hardware watchpoints are treated as non-existent if the
10924 reason we stopped wasn't a hardware watchpoint (we didn't stop on
10925 some data address). Otherwise gdb won't stop on a break instruction
10926 in the code (not from a breakpoint) when a hardware watchpoint has
10927 been defined. Also skip watchpoints which we know did not trigger
10928 (did not match the data address). */
10929 if (is_hardware_watchpoint (b)
10930 && w->watchpoint_triggered == watch_triggered_no)
10931 return 0;
10932
10933 return 1;
10934 }
10935
10936 static void
10937 check_status_watchpoint (bpstat bs)
10938 {
10939 gdb_assert (is_watchpoint (bs->breakpoint_at));
10940
10941 bpstat_check_watchpoint (bs);
10942 }
10943
10944 /* Implement the "resources_needed" breakpoint_ops method for
10945 hardware watchpoints. */
10946
10947 static int
10948 resources_needed_watchpoint (const struct bp_location *bl)
10949 {
10950 struct watchpoint *w = (struct watchpoint *) bl->owner;
10951 int length = w->exact? 1 : bl->length;
10952
10953 return target_region_ok_for_hw_watchpoint (bl->address, length);
10954 }
10955
10956 /* Implement the "works_in_software_mode" breakpoint_ops method for
10957 hardware watchpoints. */
10958
10959 static int
10960 works_in_software_mode_watchpoint (const struct breakpoint *b)
10961 {
10962 /* Read and access watchpoints only work with hardware support. */
10963 return b->type == bp_watchpoint || b->type == bp_hardware_watchpoint;
10964 }
10965
10966 static enum print_stop_action
10967 print_it_watchpoint (bpstat bs)
10968 {
10969 struct cleanup *old_chain;
10970 struct breakpoint *b;
10971 struct ui_file *stb;
10972 enum print_stop_action result;
10973 struct watchpoint *w;
10974 struct ui_out *uiout = current_uiout;
10975
10976 gdb_assert (bs->bp_location_at != NULL);
10977
10978 b = bs->breakpoint_at;
10979 w = (struct watchpoint *) b;
10980
10981 stb = mem_fileopen ();
10982 old_chain = make_cleanup_ui_file_delete (stb);
10983
10984 switch (b->type)
10985 {
10986 case bp_watchpoint:
10987 case bp_hardware_watchpoint:
10988 annotate_watchpoint (b->number);
10989 if (ui_out_is_mi_like_p (uiout))
10990 ui_out_field_string
10991 (uiout, "reason",
10992 async_reason_lookup (EXEC_ASYNC_WATCHPOINT_TRIGGER));
10993 mention (b);
10994 make_cleanup_ui_out_tuple_begin_end (uiout, "value");
10995 ui_out_text (uiout, "\nOld value = ");
10996 watchpoint_value_print (bs->old_val, stb);
10997 ui_out_field_stream (uiout, "old", stb);
10998 ui_out_text (uiout, "\nNew value = ");
10999 watchpoint_value_print (w->val, stb);
11000 ui_out_field_stream (uiout, "new", stb);
11001 ui_out_text (uiout, "\n");
11002 /* More than one watchpoint may have been triggered. */
11003 result = PRINT_UNKNOWN;
11004 break;
11005
11006 case bp_read_watchpoint:
11007 if (ui_out_is_mi_like_p (uiout))
11008 ui_out_field_string
11009 (uiout, "reason",
11010 async_reason_lookup (EXEC_ASYNC_READ_WATCHPOINT_TRIGGER));
11011 mention (b);
11012 make_cleanup_ui_out_tuple_begin_end (uiout, "value");
11013 ui_out_text (uiout, "\nValue = ");
11014 watchpoint_value_print (w->val, stb);
11015 ui_out_field_stream (uiout, "value", stb);
11016 ui_out_text (uiout, "\n");
11017 result = PRINT_UNKNOWN;
11018 break;
11019
11020 case bp_access_watchpoint:
11021 if (bs->old_val != NULL)
11022 {
11023 annotate_watchpoint (b->number);
11024 if (ui_out_is_mi_like_p (uiout))
11025 ui_out_field_string
11026 (uiout, "reason",
11027 async_reason_lookup (EXEC_ASYNC_ACCESS_WATCHPOINT_TRIGGER));
11028 mention (b);
11029 make_cleanup_ui_out_tuple_begin_end (uiout, "value");
11030 ui_out_text (uiout, "\nOld value = ");
11031 watchpoint_value_print (bs->old_val, stb);
11032 ui_out_field_stream (uiout, "old", stb);
11033 ui_out_text (uiout, "\nNew value = ");
11034 }
11035 else
11036 {
11037 mention (b);
11038 if (ui_out_is_mi_like_p (uiout))
11039 ui_out_field_string
11040 (uiout, "reason",
11041 async_reason_lookup (EXEC_ASYNC_ACCESS_WATCHPOINT_TRIGGER));
11042 make_cleanup_ui_out_tuple_begin_end (uiout, "value");
11043 ui_out_text (uiout, "\nValue = ");
11044 }
11045 watchpoint_value_print (w->val, stb);
11046 ui_out_field_stream (uiout, "new", stb);
11047 ui_out_text (uiout, "\n");
11048 result = PRINT_UNKNOWN;
11049 break;
11050 default:
11051 result = PRINT_UNKNOWN;
11052 }
11053
11054 do_cleanups (old_chain);
11055 return result;
11056 }
11057
11058 /* Implement the "print_mention" breakpoint_ops method for hardware
11059 watchpoints. */
11060
11061 static void
11062 print_mention_watchpoint (struct breakpoint *b)
11063 {
11064 struct cleanup *ui_out_chain;
11065 struct watchpoint *w = (struct watchpoint *) b;
11066 struct ui_out *uiout = current_uiout;
11067
11068 switch (b->type)
11069 {
11070 case bp_watchpoint:
11071 ui_out_text (uiout, "Watchpoint ");
11072 ui_out_chain = make_cleanup_ui_out_tuple_begin_end (uiout, "wpt");
11073 break;
11074 case bp_hardware_watchpoint:
11075 ui_out_text (uiout, "Hardware watchpoint ");
11076 ui_out_chain = make_cleanup_ui_out_tuple_begin_end (uiout, "wpt");
11077 break;
11078 case bp_read_watchpoint:
11079 ui_out_text (uiout, "Hardware read watchpoint ");
11080 ui_out_chain = make_cleanup_ui_out_tuple_begin_end (uiout, "hw-rwpt");
11081 break;
11082 case bp_access_watchpoint:
11083 ui_out_text (uiout, "Hardware access (read/write) watchpoint ");
11084 ui_out_chain = make_cleanup_ui_out_tuple_begin_end (uiout, "hw-awpt");
11085 break;
11086 default:
11087 internal_error (__FILE__, __LINE__,
11088 _("Invalid hardware watchpoint type."));
11089 }
11090
11091 ui_out_field_int (uiout, "number", b->number);
11092 ui_out_text (uiout, ": ");
11093 ui_out_field_string (uiout, "exp", w->exp_string);
11094 do_cleanups (ui_out_chain);
11095 }
11096
11097 /* Implement the "print_recreate" breakpoint_ops method for
11098 watchpoints. */
11099
11100 static void
11101 print_recreate_watchpoint (struct breakpoint *b, struct ui_file *fp)
11102 {
11103 struct watchpoint *w = (struct watchpoint *) b;
11104
11105 switch (b->type)
11106 {
11107 case bp_watchpoint:
11108 case bp_hardware_watchpoint:
11109 fprintf_unfiltered (fp, "watch");
11110 break;
11111 case bp_read_watchpoint:
11112 fprintf_unfiltered (fp, "rwatch");
11113 break;
11114 case bp_access_watchpoint:
11115 fprintf_unfiltered (fp, "awatch");
11116 break;
11117 default:
11118 internal_error (__FILE__, __LINE__,
11119 _("Invalid watchpoint type."));
11120 }
11121
11122 fprintf_unfiltered (fp, " %s", w->exp_string);
11123 print_recreate_thread (b, fp);
11124 }
11125
11126 /* Implement the "explains_signal" breakpoint_ops method for
11127 watchpoints. */
11128
11129 static int
11130 explains_signal_watchpoint (struct breakpoint *b, enum gdb_signal sig)
11131 {
11132 /* A software watchpoint cannot cause a signal other than
11133 GDB_SIGNAL_TRAP. */
11134 if (b->type == bp_watchpoint && sig != GDB_SIGNAL_TRAP)
11135 return 0;
11136
11137 return 1;
11138 }
11139
11140 /* The breakpoint_ops structure to be used in hardware watchpoints. */
11141
11142 static struct breakpoint_ops watchpoint_breakpoint_ops;
11143
11144 /* Implement the "insert" breakpoint_ops method for
11145 masked hardware watchpoints. */
11146
11147 static int
11148 insert_masked_watchpoint (struct bp_location *bl)
11149 {
11150 struct watchpoint *w = (struct watchpoint *) bl->owner;
11151
11152 return target_insert_mask_watchpoint (bl->address, w->hw_wp_mask,
11153 bl->watchpoint_type);
11154 }
11155
11156 /* Implement the "remove" breakpoint_ops method for
11157 masked hardware watchpoints. */
11158
11159 static int
11160 remove_masked_watchpoint (struct bp_location *bl)
11161 {
11162 struct watchpoint *w = (struct watchpoint *) bl->owner;
11163
11164 return target_remove_mask_watchpoint (bl->address, w->hw_wp_mask,
11165 bl->watchpoint_type);
11166 }
11167
11168 /* Implement the "resources_needed" breakpoint_ops method for
11169 masked hardware watchpoints. */
11170
11171 static int
11172 resources_needed_masked_watchpoint (const struct bp_location *bl)
11173 {
11174 struct watchpoint *w = (struct watchpoint *) bl->owner;
11175
11176 return target_masked_watch_num_registers (bl->address, w->hw_wp_mask);
11177 }
11178
11179 /* Implement the "works_in_software_mode" breakpoint_ops method for
11180 masked hardware watchpoints. */
11181
11182 static int
11183 works_in_software_mode_masked_watchpoint (const struct breakpoint *b)
11184 {
11185 return 0;
11186 }
11187
11188 /* Implement the "print_it" breakpoint_ops method for
11189 masked hardware watchpoints. */
11190
11191 static enum print_stop_action
11192 print_it_masked_watchpoint (bpstat bs)
11193 {
11194 struct breakpoint *b = bs->breakpoint_at;
11195 struct ui_out *uiout = current_uiout;
11196
11197 /* Masked watchpoints have only one location. */
11198 gdb_assert (b->loc && b->loc->next == NULL);
11199
11200 switch (b->type)
11201 {
11202 case bp_hardware_watchpoint:
11203 annotate_watchpoint (b->number);
11204 if (ui_out_is_mi_like_p (uiout))
11205 ui_out_field_string
11206 (uiout, "reason",
11207 async_reason_lookup (EXEC_ASYNC_WATCHPOINT_TRIGGER));
11208 break;
11209
11210 case bp_read_watchpoint:
11211 if (ui_out_is_mi_like_p (uiout))
11212 ui_out_field_string
11213 (uiout, "reason",
11214 async_reason_lookup (EXEC_ASYNC_READ_WATCHPOINT_TRIGGER));
11215 break;
11216
11217 case bp_access_watchpoint:
11218 if (ui_out_is_mi_like_p (uiout))
11219 ui_out_field_string
11220 (uiout, "reason",
11221 async_reason_lookup (EXEC_ASYNC_ACCESS_WATCHPOINT_TRIGGER));
11222 break;
11223 default:
11224 internal_error (__FILE__, __LINE__,
11225 _("Invalid hardware watchpoint type."));
11226 }
11227
11228 mention (b);
11229 ui_out_text (uiout, _("\n\
11230 Check the underlying instruction at PC for the memory\n\
11231 address and value which triggered this watchpoint.\n"));
11232 ui_out_text (uiout, "\n");
11233
11234 /* More than one watchpoint may have been triggered. */
11235 return PRINT_UNKNOWN;
11236 }
11237
11238 /* Implement the "print_one_detail" breakpoint_ops method for
11239 masked hardware watchpoints. */
11240
11241 static void
11242 print_one_detail_masked_watchpoint (const struct breakpoint *b,
11243 struct ui_out *uiout)
11244 {
11245 struct watchpoint *w = (struct watchpoint *) b;
11246
11247 /* Masked watchpoints have only one location. */
11248 gdb_assert (b->loc && b->loc->next == NULL);
11249
11250 ui_out_text (uiout, "\tmask ");
11251 ui_out_field_core_addr (uiout, "mask", b->loc->gdbarch, w->hw_wp_mask);
11252 ui_out_text (uiout, "\n");
11253 }
11254
11255 /* Implement the "print_mention" breakpoint_ops method for
11256 masked hardware watchpoints. */
11257
11258 static void
11259 print_mention_masked_watchpoint (struct breakpoint *b)
11260 {
11261 struct watchpoint *w = (struct watchpoint *) b;
11262 struct ui_out *uiout = current_uiout;
11263 struct cleanup *ui_out_chain;
11264
11265 switch (b->type)
11266 {
11267 case bp_hardware_watchpoint:
11268 ui_out_text (uiout, "Masked hardware watchpoint ");
11269 ui_out_chain = make_cleanup_ui_out_tuple_begin_end (uiout, "wpt");
11270 break;
11271 case bp_read_watchpoint:
11272 ui_out_text (uiout, "Masked hardware read watchpoint ");
11273 ui_out_chain = make_cleanup_ui_out_tuple_begin_end (uiout, "hw-rwpt");
11274 break;
11275 case bp_access_watchpoint:
11276 ui_out_text (uiout, "Masked hardware access (read/write) watchpoint ");
11277 ui_out_chain = make_cleanup_ui_out_tuple_begin_end (uiout, "hw-awpt");
11278 break;
11279 default:
11280 internal_error (__FILE__, __LINE__,
11281 _("Invalid hardware watchpoint type."));
11282 }
11283
11284 ui_out_field_int (uiout, "number", b->number);
11285 ui_out_text (uiout, ": ");
11286 ui_out_field_string (uiout, "exp", w->exp_string);
11287 do_cleanups (ui_out_chain);
11288 }
11289
11290 /* Implement the "print_recreate" breakpoint_ops method for
11291 masked hardware watchpoints. */
11292
11293 static void
11294 print_recreate_masked_watchpoint (struct breakpoint *b, struct ui_file *fp)
11295 {
11296 struct watchpoint *w = (struct watchpoint *) b;
11297 char tmp[40];
11298
11299 switch (b->type)
11300 {
11301 case bp_hardware_watchpoint:
11302 fprintf_unfiltered (fp, "watch");
11303 break;
11304 case bp_read_watchpoint:
11305 fprintf_unfiltered (fp, "rwatch");
11306 break;
11307 case bp_access_watchpoint:
11308 fprintf_unfiltered (fp, "awatch");
11309 break;
11310 default:
11311 internal_error (__FILE__, __LINE__,
11312 _("Invalid hardware watchpoint type."));
11313 }
11314
11315 sprintf_vma (tmp, w->hw_wp_mask);
11316 fprintf_unfiltered (fp, " %s mask 0x%s", w->exp_string, tmp);
11317 print_recreate_thread (b, fp);
11318 }
11319
11320 /* The breakpoint_ops structure to be used in masked hardware watchpoints. */
11321
11322 static struct breakpoint_ops masked_watchpoint_breakpoint_ops;
11323
11324 /* Tell whether the given watchpoint is a masked hardware watchpoint. */
11325
11326 static int
11327 is_masked_watchpoint (const struct breakpoint *b)
11328 {
11329 return b->ops == &masked_watchpoint_breakpoint_ops;
11330 }
11331
11332 /* accessflag: hw_write: watch write,
11333 hw_read: watch read,
11334 hw_access: watch access (read or write) */
11335 static void
11336 watch_command_1 (const char *arg, int accessflag, int from_tty,
11337 int just_location, int internal)
11338 {
11339 volatile struct gdb_exception e;
11340 struct breakpoint *b, *scope_breakpoint = NULL;
11341 struct expression *exp;
11342 const struct block *exp_valid_block = NULL, *cond_exp_valid_block = NULL;
11343 struct value *val, *mark, *result;
11344 int saved_bitpos = 0, saved_bitsize = 0;
11345 struct frame_info *frame;
11346 const char *exp_start = NULL;
11347 const char *exp_end = NULL;
11348 const char *tok, *end_tok;
11349 int toklen = -1;
11350 const char *cond_start = NULL;
11351 const char *cond_end = NULL;
11352 enum bptype bp_type;
11353 int thread = -1;
11354 int pc = 0;
11355 /* Flag to indicate whether we are going to use masks for
11356 the hardware watchpoint. */
11357 int use_mask = 0;
11358 CORE_ADDR mask = 0;
11359 struct watchpoint *w;
11360 char *expression;
11361 struct cleanup *back_to;
11362
11363 /* Make sure that we actually have parameters to parse. */
11364 if (arg != NULL && arg[0] != '\0')
11365 {
11366 const char *value_start;
11367
11368 exp_end = arg + strlen (arg);
11369
11370 /* Look for "parameter value" pairs at the end
11371 of the arguments string. */
11372 for (tok = exp_end - 1; tok > arg; tok--)
11373 {
11374 /* Skip whitespace at the end of the argument list. */
11375 while (tok > arg && (*tok == ' ' || *tok == '\t'))
11376 tok--;
11377
11378 /* Find the beginning of the last token.
11379 This is the value of the parameter. */
11380 while (tok > arg && (*tok != ' ' && *tok != '\t'))
11381 tok--;
11382 value_start = tok + 1;
11383
11384 /* Skip whitespace. */
11385 while (tok > arg && (*tok == ' ' || *tok == '\t'))
11386 tok--;
11387
11388 end_tok = tok;
11389
11390 /* Find the beginning of the second to last token.
11391 This is the parameter itself. */
11392 while (tok > arg && (*tok != ' ' && *tok != '\t'))
11393 tok--;
11394 tok++;
11395 toklen = end_tok - tok + 1;
11396
11397 if (toklen == 6 && !strncmp (tok, "thread", 6))
11398 {
11399 /* At this point we've found a "thread" token, which means
11400 the user is trying to set a watchpoint that triggers
11401 only in a specific thread. */
11402 char *endp;
11403
11404 if (thread != -1)
11405 error(_("You can specify only one thread."));
11406
11407 /* Extract the thread ID from the next token. */
11408 thread = strtol (value_start, &endp, 0);
11409
11410 /* Check if the user provided a valid numeric value for the
11411 thread ID. */
11412 if (*endp != ' ' && *endp != '\t' && *endp != '\0')
11413 error (_("Invalid thread ID specification %s."), value_start);
11414
11415 /* Check if the thread actually exists. */
11416 if (!valid_thread_id (thread))
11417 invalid_thread_id_error (thread);
11418 }
11419 else if (toklen == 4 && !strncmp (tok, "mask", 4))
11420 {
11421 /* We've found a "mask" token, which means the user wants to
11422 create a hardware watchpoint that is going to have the mask
11423 facility. */
11424 struct value *mask_value, *mark;
11425
11426 if (use_mask)
11427 error(_("You can specify only one mask."));
11428
11429 use_mask = just_location = 1;
11430
11431 mark = value_mark ();
11432 mask_value = parse_to_comma_and_eval (&value_start);
11433 mask = value_as_address (mask_value);
11434 value_free_to_mark (mark);
11435 }
11436 else
11437 /* We didn't recognize what we found. We should stop here. */
11438 break;
11439
11440 /* Truncate the string and get rid of the "parameter value" pair before
11441 the arguments string is parsed by the parse_exp_1 function. */
11442 exp_end = tok;
11443 }
11444 }
11445 else
11446 exp_end = arg;
11447
11448 /* Parse the rest of the arguments. From here on out, everything
11449 is in terms of a newly allocated string instead of the original
11450 ARG. */
11451 innermost_block = NULL;
11452 expression = savestring (arg, exp_end - arg);
11453 back_to = make_cleanup (xfree, expression);
11454 exp_start = arg = expression;
11455 exp = parse_exp_1 (&arg, 0, 0, 0);
11456 exp_end = arg;
11457 /* Remove trailing whitespace from the expression before saving it.
11458 This makes the eventual display of the expression string a bit
11459 prettier. */
11460 while (exp_end > exp_start && (exp_end[-1] == ' ' || exp_end[-1] == '\t'))
11461 --exp_end;
11462
11463 /* Checking if the expression is not constant. */
11464 if (watchpoint_exp_is_const (exp))
11465 {
11466 int len;
11467
11468 len = exp_end - exp_start;
11469 while (len > 0 && isspace (exp_start[len - 1]))
11470 len--;
11471 error (_("Cannot watch constant value `%.*s'."), len, exp_start);
11472 }
11473
11474 exp_valid_block = innermost_block;
11475 mark = value_mark ();
11476 fetch_subexp_value (exp, &pc, &val, &result, NULL, just_location);
11477
11478 if (val != NULL && just_location)
11479 {
11480 saved_bitpos = value_bitpos (val);
11481 saved_bitsize = value_bitsize (val);
11482 }
11483
11484 if (just_location)
11485 {
11486 int ret;
11487
11488 exp_valid_block = NULL;
11489 val = value_addr (result);
11490 release_value (val);
11491 value_free_to_mark (mark);
11492
11493 if (use_mask)
11494 {
11495 ret = target_masked_watch_num_registers (value_as_address (val),
11496 mask);
11497 if (ret == -1)
11498 error (_("This target does not support masked watchpoints."));
11499 else if (ret == -2)
11500 error (_("Invalid mask or memory region."));
11501 }
11502 }
11503 else if (val != NULL)
11504 release_value (val);
11505
11506 tok = skip_spaces_const (arg);
11507 end_tok = skip_to_space_const (tok);
11508
11509 toklen = end_tok - tok;
11510 if (toklen >= 1 && strncmp (tok, "if", toklen) == 0)
11511 {
11512 struct expression *cond;
11513
11514 innermost_block = NULL;
11515 tok = cond_start = end_tok + 1;
11516 cond = parse_exp_1 (&tok, 0, 0, 0);
11517
11518 /* The watchpoint expression may not be local, but the condition
11519 may still be. E.g.: `watch global if local > 0'. */
11520 cond_exp_valid_block = innermost_block;
11521
11522 xfree (cond);
11523 cond_end = tok;
11524 }
11525 if (*tok)
11526 error (_("Junk at end of command."));
11527
11528 frame = block_innermost_frame (exp_valid_block);
11529
11530 /* If the expression is "local", then set up a "watchpoint scope"
11531 breakpoint at the point where we've left the scope of the watchpoint
11532 expression. Create the scope breakpoint before the watchpoint, so
11533 that we will encounter it first in bpstat_stop_status. */
11534 if (exp_valid_block && frame)
11535 {
11536 if (frame_id_p (frame_unwind_caller_id (frame)))
11537 {
11538 scope_breakpoint
11539 = create_internal_breakpoint (frame_unwind_caller_arch (frame),
11540 frame_unwind_caller_pc (frame),
11541 bp_watchpoint_scope,
11542 &momentary_breakpoint_ops);
11543
11544 scope_breakpoint->enable_state = bp_enabled;
11545
11546 /* Automatically delete the breakpoint when it hits. */
11547 scope_breakpoint->disposition = disp_del;
11548
11549 /* Only break in the proper frame (help with recursion). */
11550 scope_breakpoint->frame_id = frame_unwind_caller_id (frame);
11551
11552 /* Set the address at which we will stop. */
11553 scope_breakpoint->loc->gdbarch
11554 = frame_unwind_caller_arch (frame);
11555 scope_breakpoint->loc->requested_address
11556 = frame_unwind_caller_pc (frame);
11557 scope_breakpoint->loc->address
11558 = adjust_breakpoint_address (scope_breakpoint->loc->gdbarch,
11559 scope_breakpoint->loc->requested_address,
11560 scope_breakpoint->type);
11561 }
11562 }
11563
11564 /* Now set up the breakpoint. We create all watchpoints as hardware
11565 watchpoints here even if hardware watchpoints are turned off, a call
11566 to update_watchpoint later in this function will cause the type to
11567 drop back to bp_watchpoint (software watchpoint) if required. */
11568
11569 if (accessflag == hw_read)
11570 bp_type = bp_read_watchpoint;
11571 else if (accessflag == hw_access)
11572 bp_type = bp_access_watchpoint;
11573 else
11574 bp_type = bp_hardware_watchpoint;
11575
11576 w = XCNEW (struct watchpoint);
11577 b = &w->base;
11578 if (use_mask)
11579 init_raw_breakpoint_without_location (b, NULL, bp_type,
11580 &masked_watchpoint_breakpoint_ops);
11581 else
11582 init_raw_breakpoint_without_location (b, NULL, bp_type,
11583 &watchpoint_breakpoint_ops);
11584 b->thread = thread;
11585 b->disposition = disp_donttouch;
11586 b->pspace = current_program_space;
11587 w->exp = exp;
11588 w->exp_valid_block = exp_valid_block;
11589 w->cond_exp_valid_block = cond_exp_valid_block;
11590 if (just_location)
11591 {
11592 struct type *t = value_type (val);
11593 CORE_ADDR addr = value_as_address (val);
11594 char *name;
11595
11596 t = check_typedef (TYPE_TARGET_TYPE (check_typedef (t)));
11597 name = type_to_string (t);
11598
11599 w->exp_string_reparse = xstrprintf ("* (%s *) %s", name,
11600 core_addr_to_string (addr));
11601 xfree (name);
11602
11603 w->exp_string = xstrprintf ("-location %.*s",
11604 (int) (exp_end - exp_start), exp_start);
11605
11606 /* The above expression is in C. */
11607 b->language = language_c;
11608 }
11609 else
11610 w->exp_string = savestring (exp_start, exp_end - exp_start);
11611
11612 if (use_mask)
11613 {
11614 w->hw_wp_mask = mask;
11615 }
11616 else
11617 {
11618 w->val = val;
11619 w->val_bitpos = saved_bitpos;
11620 w->val_bitsize = saved_bitsize;
11621 w->val_valid = 1;
11622 }
11623
11624 if (cond_start)
11625 b->cond_string = savestring (cond_start, cond_end - cond_start);
11626 else
11627 b->cond_string = 0;
11628
11629 if (frame)
11630 {
11631 w->watchpoint_frame = get_frame_id (frame);
11632 w->watchpoint_thread = inferior_ptid;
11633 }
11634 else
11635 {
11636 w->watchpoint_frame = null_frame_id;
11637 w->watchpoint_thread = null_ptid;
11638 }
11639
11640 if (scope_breakpoint != NULL)
11641 {
11642 /* The scope breakpoint is related to the watchpoint. We will
11643 need to act on them together. */
11644 b->related_breakpoint = scope_breakpoint;
11645 scope_breakpoint->related_breakpoint = b;
11646 }
11647
11648 if (!just_location)
11649 value_free_to_mark (mark);
11650
11651 TRY_CATCH (e, RETURN_MASK_ALL)
11652 {
11653 /* Finally update the new watchpoint. This creates the locations
11654 that should be inserted. */
11655 update_watchpoint (w, 1);
11656 }
11657 if (e.reason < 0)
11658 {
11659 delete_breakpoint (b);
11660 throw_exception (e);
11661 }
11662
11663 install_breakpoint (internal, b, 1);
11664 do_cleanups (back_to);
11665 }
11666
11667 /* Return count of debug registers needed to watch the given expression.
11668 If the watchpoint cannot be handled in hardware return zero. */
11669
11670 static int
11671 can_use_hardware_watchpoint (struct value *v)
11672 {
11673 int found_memory_cnt = 0;
11674 struct value *head = v;
11675
11676 /* Did the user specifically forbid us to use hardware watchpoints? */
11677 if (!can_use_hw_watchpoints)
11678 return 0;
11679
11680 /* Make sure that the value of the expression depends only upon
11681 memory contents, and values computed from them within GDB. If we
11682 find any register references or function calls, we can't use a
11683 hardware watchpoint.
11684
11685 The idea here is that evaluating an expression generates a series
11686 of values, one holding the value of every subexpression. (The
11687 expression a*b+c has five subexpressions: a, b, a*b, c, and
11688 a*b+c.) GDB's values hold almost enough information to establish
11689 the criteria given above --- they identify memory lvalues,
11690 register lvalues, computed values, etcetera. So we can evaluate
11691 the expression, and then scan the chain of values that leaves
11692 behind to decide whether we can detect any possible change to the
11693 expression's final value using only hardware watchpoints.
11694
11695 However, I don't think that the values returned by inferior
11696 function calls are special in any way. So this function may not
11697 notice that an expression involving an inferior function call
11698 can't be watched with hardware watchpoints. FIXME. */
11699 for (; v; v = value_next (v))
11700 {
11701 if (VALUE_LVAL (v) == lval_memory)
11702 {
11703 if (v != head && value_lazy (v))
11704 /* A lazy memory lvalue in the chain is one that GDB never
11705 needed to fetch; we either just used its address (e.g.,
11706 `a' in `a.b') or we never needed it at all (e.g., `a'
11707 in `a,b'). This doesn't apply to HEAD; if that is
11708 lazy then it was not readable, but watch it anyway. */
11709 ;
11710 else
11711 {
11712 /* Ahh, memory we actually used! Check if we can cover
11713 it with hardware watchpoints. */
11714 struct type *vtype = check_typedef (value_type (v));
11715
11716 /* We only watch structs and arrays if user asked for it
11717 explicitly, never if they just happen to appear in a
11718 middle of some value chain. */
11719 if (v == head
11720 || (TYPE_CODE (vtype) != TYPE_CODE_STRUCT
11721 && TYPE_CODE (vtype) != TYPE_CODE_ARRAY))
11722 {
11723 CORE_ADDR vaddr = value_address (v);
11724 int len;
11725 int num_regs;
11726
11727 len = (target_exact_watchpoints
11728 && is_scalar_type_recursive (vtype))?
11729 1 : TYPE_LENGTH (value_type (v));
11730
11731 num_regs = target_region_ok_for_hw_watchpoint (vaddr, len);
11732 if (!num_regs)
11733 return 0;
11734 else
11735 found_memory_cnt += num_regs;
11736 }
11737 }
11738 }
11739 else if (VALUE_LVAL (v) != not_lval
11740 && deprecated_value_modifiable (v) == 0)
11741 return 0; /* These are values from the history (e.g., $1). */
11742 else if (VALUE_LVAL (v) == lval_register)
11743 return 0; /* Cannot watch a register with a HW watchpoint. */
11744 }
11745
11746 /* The expression itself looks suitable for using a hardware
11747 watchpoint, but give the target machine a chance to reject it. */
11748 return found_memory_cnt;
11749 }
11750
11751 void
11752 watch_command_wrapper (char *arg, int from_tty, int internal)
11753 {
11754 watch_command_1 (arg, hw_write, from_tty, 0, internal);
11755 }
11756
11757 /* A helper function that looks for the "-location" argument and then
11758 calls watch_command_1. */
11759
11760 static void
11761 watch_maybe_just_location (char *arg, int accessflag, int from_tty)
11762 {
11763 int just_location = 0;
11764
11765 if (arg
11766 && (check_for_argument (&arg, "-location", sizeof ("-location") - 1)
11767 || check_for_argument (&arg, "-l", sizeof ("-l") - 1)))
11768 {
11769 arg = skip_spaces (arg);
11770 just_location = 1;
11771 }
11772
11773 watch_command_1 (arg, accessflag, from_tty, just_location, 0);
11774 }
11775
11776 static void
11777 watch_command (char *arg, int from_tty)
11778 {
11779 watch_maybe_just_location (arg, hw_write, from_tty);
11780 }
11781
11782 void
11783 rwatch_command_wrapper (char *arg, int from_tty, int internal)
11784 {
11785 watch_command_1 (arg, hw_read, from_tty, 0, internal);
11786 }
11787
11788 static void
11789 rwatch_command (char *arg, int from_tty)
11790 {
11791 watch_maybe_just_location (arg, hw_read, from_tty);
11792 }
11793
11794 void
11795 awatch_command_wrapper (char *arg, int from_tty, int internal)
11796 {
11797 watch_command_1 (arg, hw_access, from_tty, 0, internal);
11798 }
11799
11800 static void
11801 awatch_command (char *arg, int from_tty)
11802 {
11803 watch_maybe_just_location (arg, hw_access, from_tty);
11804 }
11805 \f
11806
11807 /* Helper routines for the until_command routine in infcmd.c. Here
11808 because it uses the mechanisms of breakpoints. */
11809
11810 struct until_break_command_continuation_args
11811 {
11812 struct breakpoint *breakpoint;
11813 struct breakpoint *breakpoint2;
11814 int thread_num;
11815 };
11816
11817 /* This function is called by fetch_inferior_event via the
11818 cmd_continuation pointer, to complete the until command. It takes
11819 care of cleaning up the temporary breakpoints set up by the until
11820 command. */
11821 static void
11822 until_break_command_continuation (void *arg, int err)
11823 {
11824 struct until_break_command_continuation_args *a = arg;
11825
11826 delete_breakpoint (a->breakpoint);
11827 if (a->breakpoint2)
11828 delete_breakpoint (a->breakpoint2);
11829 delete_longjmp_breakpoint (a->thread_num);
11830 }
11831
11832 void
11833 until_break_command (char *arg, int from_tty, int anywhere)
11834 {
11835 struct symtabs_and_lines sals;
11836 struct symtab_and_line sal;
11837 struct frame_info *frame;
11838 struct gdbarch *frame_gdbarch;
11839 struct frame_id stack_frame_id;
11840 struct frame_id caller_frame_id;
11841 struct breakpoint *breakpoint;
11842 struct breakpoint *breakpoint2 = NULL;
11843 struct cleanup *old_chain;
11844 int thread;
11845 struct thread_info *tp;
11846
11847 clear_proceed_status (0);
11848
11849 /* Set a breakpoint where the user wants it and at return from
11850 this function. */
11851
11852 if (last_displayed_sal_is_valid ())
11853 sals = decode_line_1 (&arg, DECODE_LINE_FUNFIRSTLINE,
11854 get_last_displayed_symtab (),
11855 get_last_displayed_line ());
11856 else
11857 sals = decode_line_1 (&arg, DECODE_LINE_FUNFIRSTLINE,
11858 (struct symtab *) NULL, 0);
11859
11860 if (sals.nelts != 1)
11861 error (_("Couldn't get information on specified line."));
11862
11863 sal = sals.sals[0];
11864 xfree (sals.sals); /* malloc'd, so freed. */
11865
11866 if (*arg)
11867 error (_("Junk at end of arguments."));
11868
11869 resolve_sal_pc (&sal);
11870
11871 tp = inferior_thread ();
11872 thread = tp->num;
11873
11874 old_chain = make_cleanup (null_cleanup, NULL);
11875
11876 /* Note linespec handling above invalidates the frame chain.
11877 Installing a breakpoint also invalidates the frame chain (as it
11878 may need to switch threads), so do any frame handling before
11879 that. */
11880
11881 frame = get_selected_frame (NULL);
11882 frame_gdbarch = get_frame_arch (frame);
11883 stack_frame_id = get_stack_frame_id (frame);
11884 caller_frame_id = frame_unwind_caller_id (frame);
11885
11886 /* Keep within the current frame, or in frames called by the current
11887 one. */
11888
11889 if (frame_id_p (caller_frame_id))
11890 {
11891 struct symtab_and_line sal2;
11892
11893 sal2 = find_pc_line (frame_unwind_caller_pc (frame), 0);
11894 sal2.pc = frame_unwind_caller_pc (frame);
11895 breakpoint2 = set_momentary_breakpoint (frame_unwind_caller_arch (frame),
11896 sal2,
11897 caller_frame_id,
11898 bp_until);
11899 make_cleanup_delete_breakpoint (breakpoint2);
11900
11901 set_longjmp_breakpoint (tp, caller_frame_id);
11902 make_cleanup (delete_longjmp_breakpoint_cleanup, &thread);
11903 }
11904
11905 /* set_momentary_breakpoint could invalidate FRAME. */
11906 frame = NULL;
11907
11908 if (anywhere)
11909 /* If the user told us to continue until a specified location,
11910 we don't specify a frame at which we need to stop. */
11911 breakpoint = set_momentary_breakpoint (frame_gdbarch, sal,
11912 null_frame_id, bp_until);
11913 else
11914 /* Otherwise, specify the selected frame, because we want to stop
11915 only at the very same frame. */
11916 breakpoint = set_momentary_breakpoint (frame_gdbarch, sal,
11917 stack_frame_id, bp_until);
11918 make_cleanup_delete_breakpoint (breakpoint);
11919
11920 proceed (-1, GDB_SIGNAL_DEFAULT, 0);
11921
11922 /* If we are running asynchronously, and proceed call above has
11923 actually managed to start the target, arrange for breakpoints to
11924 be deleted when the target stops. Otherwise, we're already
11925 stopped and delete breakpoints via cleanup chain. */
11926
11927 if (target_can_async_p () && is_running (inferior_ptid))
11928 {
11929 struct until_break_command_continuation_args *args;
11930 args = xmalloc (sizeof (*args));
11931
11932 args->breakpoint = breakpoint;
11933 args->breakpoint2 = breakpoint2;
11934 args->thread_num = thread;
11935
11936 discard_cleanups (old_chain);
11937 add_continuation (inferior_thread (),
11938 until_break_command_continuation, args,
11939 xfree);
11940 }
11941 else
11942 do_cleanups (old_chain);
11943 }
11944
11945 /* This function attempts to parse an optional "if <cond>" clause
11946 from the arg string. If one is not found, it returns NULL.
11947
11948 Else, it returns a pointer to the condition string. (It does not
11949 attempt to evaluate the string against a particular block.) And,
11950 it updates arg to point to the first character following the parsed
11951 if clause in the arg string. */
11952
11953 char *
11954 ep_parse_optional_if_clause (char **arg)
11955 {
11956 char *cond_string;
11957
11958 if (((*arg)[0] != 'i') || ((*arg)[1] != 'f') || !isspace ((*arg)[2]))
11959 return NULL;
11960
11961 /* Skip the "if" keyword. */
11962 (*arg) += 2;
11963
11964 /* Skip any extra leading whitespace, and record the start of the
11965 condition string. */
11966 *arg = skip_spaces (*arg);
11967 cond_string = *arg;
11968
11969 /* Assume that the condition occupies the remainder of the arg
11970 string. */
11971 (*arg) += strlen (cond_string);
11972
11973 return cond_string;
11974 }
11975
11976 /* Commands to deal with catching events, such as signals, exceptions,
11977 process start/exit, etc. */
11978
11979 typedef enum
11980 {
11981 catch_fork_temporary, catch_vfork_temporary,
11982 catch_fork_permanent, catch_vfork_permanent
11983 }
11984 catch_fork_kind;
11985
11986 static void
11987 catch_fork_command_1 (char *arg, int from_tty,
11988 struct cmd_list_element *command)
11989 {
11990 struct gdbarch *gdbarch = get_current_arch ();
11991 char *cond_string = NULL;
11992 catch_fork_kind fork_kind;
11993 int tempflag;
11994
11995 fork_kind = (catch_fork_kind) (uintptr_t) get_cmd_context (command);
11996 tempflag = (fork_kind == catch_fork_temporary
11997 || fork_kind == catch_vfork_temporary);
11998
11999 if (!arg)
12000 arg = "";
12001 arg = skip_spaces (arg);
12002
12003 /* The allowed syntax is:
12004 catch [v]fork
12005 catch [v]fork if <cond>
12006
12007 First, check if there's an if clause. */
12008 cond_string = ep_parse_optional_if_clause (&arg);
12009
12010 if ((*arg != '\0') && !isspace (*arg))
12011 error (_("Junk at end of arguments."));
12012
12013 /* If this target supports it, create a fork or vfork catchpoint
12014 and enable reporting of such events. */
12015 switch (fork_kind)
12016 {
12017 case catch_fork_temporary:
12018 case catch_fork_permanent:
12019 create_fork_vfork_event_catchpoint (gdbarch, tempflag, cond_string,
12020 &catch_fork_breakpoint_ops);
12021 break;
12022 case catch_vfork_temporary:
12023 case catch_vfork_permanent:
12024 create_fork_vfork_event_catchpoint (gdbarch, tempflag, cond_string,
12025 &catch_vfork_breakpoint_ops);
12026 break;
12027 default:
12028 error (_("unsupported or unknown fork kind; cannot catch it"));
12029 break;
12030 }
12031 }
12032
12033 static void
12034 catch_exec_command_1 (char *arg, int from_tty,
12035 struct cmd_list_element *command)
12036 {
12037 struct exec_catchpoint *c;
12038 struct gdbarch *gdbarch = get_current_arch ();
12039 int tempflag;
12040 char *cond_string = NULL;
12041
12042 tempflag = get_cmd_context (command) == CATCH_TEMPORARY;
12043
12044 if (!arg)
12045 arg = "";
12046 arg = skip_spaces (arg);
12047
12048 /* The allowed syntax is:
12049 catch exec
12050 catch exec if <cond>
12051
12052 First, check if there's an if clause. */
12053 cond_string = ep_parse_optional_if_clause (&arg);
12054
12055 if ((*arg != '\0') && !isspace (*arg))
12056 error (_("Junk at end of arguments."));
12057
12058 c = XNEW (struct exec_catchpoint);
12059 init_catchpoint (&c->base, gdbarch, tempflag, cond_string,
12060 &catch_exec_breakpoint_ops);
12061 c->exec_pathname = NULL;
12062
12063 install_breakpoint (0, &c->base, 1);
12064 }
12065
12066 void
12067 init_ada_exception_breakpoint (struct breakpoint *b,
12068 struct gdbarch *gdbarch,
12069 struct symtab_and_line sal,
12070 char *addr_string,
12071 const struct breakpoint_ops *ops,
12072 int tempflag,
12073 int enabled,
12074 int from_tty)
12075 {
12076 if (from_tty)
12077 {
12078 struct gdbarch *loc_gdbarch = get_sal_arch (sal);
12079 if (!loc_gdbarch)
12080 loc_gdbarch = gdbarch;
12081
12082 describe_other_breakpoints (loc_gdbarch,
12083 sal.pspace, sal.pc, sal.section, -1);
12084 /* FIXME: brobecker/2006-12-28: Actually, re-implement a special
12085 version for exception catchpoints, because two catchpoints
12086 used for different exception names will use the same address.
12087 In this case, a "breakpoint ... also set at..." warning is
12088 unproductive. Besides, the warning phrasing is also a bit
12089 inappropriate, we should use the word catchpoint, and tell
12090 the user what type of catchpoint it is. The above is good
12091 enough for now, though. */
12092 }
12093
12094 init_raw_breakpoint (b, gdbarch, sal, bp_breakpoint, ops);
12095
12096 b->enable_state = enabled ? bp_enabled : bp_disabled;
12097 b->disposition = tempflag ? disp_del : disp_donttouch;
12098 b->addr_string = addr_string;
12099 b->language = language_ada;
12100 }
12101
12102 /* Splits the argument using space as delimiter. Returns an xmalloc'd
12103 filter list, or NULL if no filtering is required. */
12104 static VEC(int) *
12105 catch_syscall_split_args (char *arg)
12106 {
12107 VEC(int) *result = NULL;
12108 struct cleanup *cleanup = make_cleanup (VEC_cleanup (int), &result);
12109
12110 while (*arg != '\0')
12111 {
12112 int i, syscall_number;
12113 char *endptr;
12114 char cur_name[128];
12115 struct syscall s;
12116
12117 /* Skip whitespace. */
12118 arg = skip_spaces (arg);
12119
12120 for (i = 0; i < 127 && arg[i] && !isspace (arg[i]); ++i)
12121 cur_name[i] = arg[i];
12122 cur_name[i] = '\0';
12123 arg += i;
12124
12125 /* Check if the user provided a syscall name or a number. */
12126 syscall_number = (int) strtol (cur_name, &endptr, 0);
12127 if (*endptr == '\0')
12128 get_syscall_by_number (syscall_number, &s);
12129 else
12130 {
12131 /* We have a name. Let's check if it's valid and convert it
12132 to a number. */
12133 get_syscall_by_name (cur_name, &s);
12134
12135 if (s.number == UNKNOWN_SYSCALL)
12136 /* Here we have to issue an error instead of a warning,
12137 because GDB cannot do anything useful if there's no
12138 syscall number to be caught. */
12139 error (_("Unknown syscall name '%s'."), cur_name);
12140 }
12141
12142 /* Ok, it's valid. */
12143 VEC_safe_push (int, result, s.number);
12144 }
12145
12146 discard_cleanups (cleanup);
12147 return result;
12148 }
12149
12150 /* Implement the "catch syscall" command. */
12151
12152 static void
12153 catch_syscall_command_1 (char *arg, int from_tty,
12154 struct cmd_list_element *command)
12155 {
12156 int tempflag;
12157 VEC(int) *filter;
12158 struct syscall s;
12159 struct gdbarch *gdbarch = get_current_arch ();
12160
12161 /* Checking if the feature if supported. */
12162 if (gdbarch_get_syscall_number_p (gdbarch) == 0)
12163 error (_("The feature 'catch syscall' is not supported on \
12164 this architecture yet."));
12165
12166 tempflag = get_cmd_context (command) == CATCH_TEMPORARY;
12167
12168 arg = skip_spaces (arg);
12169
12170 /* We need to do this first "dummy" translation in order
12171 to get the syscall XML file loaded or, most important,
12172 to display a warning to the user if there's no XML file
12173 for his/her architecture. */
12174 get_syscall_by_number (0, &s);
12175
12176 /* The allowed syntax is:
12177 catch syscall
12178 catch syscall <name | number> [<name | number> ... <name | number>]
12179
12180 Let's check if there's a syscall name. */
12181
12182 if (arg != NULL)
12183 filter = catch_syscall_split_args (arg);
12184 else
12185 filter = NULL;
12186
12187 create_syscall_event_catchpoint (tempflag, filter,
12188 &catch_syscall_breakpoint_ops);
12189 }
12190
12191 static void
12192 catch_command (char *arg, int from_tty)
12193 {
12194 error (_("Catch requires an event name."));
12195 }
12196 \f
12197
12198 static void
12199 tcatch_command (char *arg, int from_tty)
12200 {
12201 error (_("Catch requires an event name."));
12202 }
12203
12204 /* A qsort comparison function that sorts breakpoints in order. */
12205
12206 static int
12207 compare_breakpoints (const void *a, const void *b)
12208 {
12209 const breakpoint_p *ba = a;
12210 uintptr_t ua = (uintptr_t) *ba;
12211 const breakpoint_p *bb = b;
12212 uintptr_t ub = (uintptr_t) *bb;
12213
12214 if ((*ba)->number < (*bb)->number)
12215 return -1;
12216 else if ((*ba)->number > (*bb)->number)
12217 return 1;
12218
12219 /* Now sort by address, in case we see, e..g, two breakpoints with
12220 the number 0. */
12221 if (ua < ub)
12222 return -1;
12223 return ua > ub ? 1 : 0;
12224 }
12225
12226 /* Delete breakpoints by address or line. */
12227
12228 static void
12229 clear_command (char *arg, int from_tty)
12230 {
12231 struct breakpoint *b, *prev;
12232 VEC(breakpoint_p) *found = 0;
12233 int ix;
12234 int default_match;
12235 struct symtabs_and_lines sals;
12236 struct symtab_and_line sal;
12237 int i;
12238 struct cleanup *cleanups = make_cleanup (null_cleanup, NULL);
12239
12240 if (arg)
12241 {
12242 sals = decode_line_with_current_source (arg,
12243 (DECODE_LINE_FUNFIRSTLINE
12244 | DECODE_LINE_LIST_MODE));
12245 make_cleanup (xfree, sals.sals);
12246 default_match = 0;
12247 }
12248 else
12249 {
12250 sals.sals = (struct symtab_and_line *)
12251 xmalloc (sizeof (struct symtab_and_line));
12252 make_cleanup (xfree, sals.sals);
12253 init_sal (&sal); /* Initialize to zeroes. */
12254
12255 /* Set sal's line, symtab, pc, and pspace to the values
12256 corresponding to the last call to print_frame_info. If the
12257 codepoint is not valid, this will set all the fields to 0. */
12258 get_last_displayed_sal (&sal);
12259 if (sal.symtab == 0)
12260 error (_("No source file specified."));
12261
12262 sals.sals[0] = sal;
12263 sals.nelts = 1;
12264
12265 default_match = 1;
12266 }
12267
12268 /* We don't call resolve_sal_pc here. That's not as bad as it
12269 seems, because all existing breakpoints typically have both
12270 file/line and pc set. So, if clear is given file/line, we can
12271 match this to existing breakpoint without obtaining pc at all.
12272
12273 We only support clearing given the address explicitly
12274 present in breakpoint table. Say, we've set breakpoint
12275 at file:line. There were several PC values for that file:line,
12276 due to optimization, all in one block.
12277
12278 We've picked one PC value. If "clear" is issued with another
12279 PC corresponding to the same file:line, the breakpoint won't
12280 be cleared. We probably can still clear the breakpoint, but
12281 since the other PC value is never presented to user, user
12282 can only find it by guessing, and it does not seem important
12283 to support that. */
12284
12285 /* For each line spec given, delete bps which correspond to it. Do
12286 it in two passes, solely to preserve the current behavior that
12287 from_tty is forced true if we delete more than one
12288 breakpoint. */
12289
12290 found = NULL;
12291 make_cleanup (VEC_cleanup (breakpoint_p), &found);
12292 for (i = 0; i < sals.nelts; i++)
12293 {
12294 const char *sal_fullname;
12295
12296 /* If exact pc given, clear bpts at that pc.
12297 If line given (pc == 0), clear all bpts on specified line.
12298 If defaulting, clear all bpts on default line
12299 or at default pc.
12300
12301 defaulting sal.pc != 0 tests to do
12302
12303 0 1 pc
12304 1 1 pc _and_ line
12305 0 0 line
12306 1 0 <can't happen> */
12307
12308 sal = sals.sals[i];
12309 sal_fullname = (sal.symtab == NULL
12310 ? NULL : symtab_to_fullname (sal.symtab));
12311
12312 /* Find all matching breakpoints and add them to 'found'. */
12313 ALL_BREAKPOINTS (b)
12314 {
12315 int match = 0;
12316 /* Are we going to delete b? */
12317 if (b->type != bp_none && !is_watchpoint (b))
12318 {
12319 struct bp_location *loc = b->loc;
12320 for (; loc; loc = loc->next)
12321 {
12322 /* If the user specified file:line, don't allow a PC
12323 match. This matches historical gdb behavior. */
12324 int pc_match = (!sal.explicit_line
12325 && sal.pc
12326 && (loc->pspace == sal.pspace)
12327 && (loc->address == sal.pc)
12328 && (!section_is_overlay (loc->section)
12329 || loc->section == sal.section));
12330 int line_match = 0;
12331
12332 if ((default_match || sal.explicit_line)
12333 && loc->symtab != NULL
12334 && sal_fullname != NULL
12335 && sal.pspace == loc->pspace
12336 && loc->line_number == sal.line
12337 && filename_cmp (symtab_to_fullname (loc->symtab),
12338 sal_fullname) == 0)
12339 line_match = 1;
12340
12341 if (pc_match || line_match)
12342 {
12343 match = 1;
12344 break;
12345 }
12346 }
12347 }
12348
12349 if (match)
12350 VEC_safe_push(breakpoint_p, found, b);
12351 }
12352 }
12353
12354 /* Now go thru the 'found' chain and delete them. */
12355 if (VEC_empty(breakpoint_p, found))
12356 {
12357 if (arg)
12358 error (_("No breakpoint at %s."), arg);
12359 else
12360 error (_("No breakpoint at this line."));
12361 }
12362
12363 /* Remove duplicates from the vec. */
12364 qsort (VEC_address (breakpoint_p, found),
12365 VEC_length (breakpoint_p, found),
12366 sizeof (breakpoint_p),
12367 compare_breakpoints);
12368 prev = VEC_index (breakpoint_p, found, 0);
12369 for (ix = 1; VEC_iterate (breakpoint_p, found, ix, b); ++ix)
12370 {
12371 if (b == prev)
12372 {
12373 VEC_ordered_remove (breakpoint_p, found, ix);
12374 --ix;
12375 }
12376 }
12377
12378 if (VEC_length(breakpoint_p, found) > 1)
12379 from_tty = 1; /* Always report if deleted more than one. */
12380 if (from_tty)
12381 {
12382 if (VEC_length(breakpoint_p, found) == 1)
12383 printf_unfiltered (_("Deleted breakpoint "));
12384 else
12385 printf_unfiltered (_("Deleted breakpoints "));
12386 }
12387
12388 for (ix = 0; VEC_iterate(breakpoint_p, found, ix, b); ix++)
12389 {
12390 if (from_tty)
12391 printf_unfiltered ("%d ", b->number);
12392 delete_breakpoint (b);
12393 }
12394 if (from_tty)
12395 putchar_unfiltered ('\n');
12396
12397 do_cleanups (cleanups);
12398 }
12399 \f
12400 /* Delete breakpoint in BS if they are `delete' breakpoints and
12401 all breakpoints that are marked for deletion, whether hit or not.
12402 This is called after any breakpoint is hit, or after errors. */
12403
12404 void
12405 breakpoint_auto_delete (bpstat bs)
12406 {
12407 struct breakpoint *b, *b_tmp;
12408
12409 for (; bs; bs = bs->next)
12410 if (bs->breakpoint_at
12411 && bs->breakpoint_at->disposition == disp_del
12412 && bs->stop)
12413 delete_breakpoint (bs->breakpoint_at);
12414
12415 ALL_BREAKPOINTS_SAFE (b, b_tmp)
12416 {
12417 if (b->disposition == disp_del_at_next_stop)
12418 delete_breakpoint (b);
12419 }
12420 }
12421
12422 /* A comparison function for bp_location AP and BP being interfaced to
12423 qsort. Sort elements primarily by their ADDRESS (no matter what
12424 does breakpoint_address_is_meaningful say for its OWNER),
12425 secondarily by ordering first bp_permanent OWNERed elements and
12426 terciarily just ensuring the array is sorted stable way despite
12427 qsort being an unstable algorithm. */
12428
12429 static int
12430 bp_location_compare (const void *ap, const void *bp)
12431 {
12432 struct bp_location *a = *(void **) ap;
12433 struct bp_location *b = *(void **) bp;
12434 /* A and B come from existing breakpoints having non-NULL OWNER. */
12435 int a_perm = a->owner->enable_state == bp_permanent;
12436 int b_perm = b->owner->enable_state == bp_permanent;
12437
12438 if (a->address != b->address)
12439 return (a->address > b->address) - (a->address < b->address);
12440
12441 /* Sort locations at the same address by their pspace number, keeping
12442 locations of the same inferior (in a multi-inferior environment)
12443 grouped. */
12444
12445 if (a->pspace->num != b->pspace->num)
12446 return ((a->pspace->num > b->pspace->num)
12447 - (a->pspace->num < b->pspace->num));
12448
12449 /* Sort permanent breakpoints first. */
12450 if (a_perm != b_perm)
12451 return (a_perm < b_perm) - (a_perm > b_perm);
12452
12453 /* Make the internal GDB representation stable across GDB runs
12454 where A and B memory inside GDB can differ. Breakpoint locations of
12455 the same type at the same address can be sorted in arbitrary order. */
12456
12457 if (a->owner->number != b->owner->number)
12458 return ((a->owner->number > b->owner->number)
12459 - (a->owner->number < b->owner->number));
12460
12461 return (a > b) - (a < b);
12462 }
12463
12464 /* Set bp_location_placed_address_before_address_max and
12465 bp_location_shadow_len_after_address_max according to the current
12466 content of the bp_location array. */
12467
12468 static void
12469 bp_location_target_extensions_update (void)
12470 {
12471 struct bp_location *bl, **blp_tmp;
12472
12473 bp_location_placed_address_before_address_max = 0;
12474 bp_location_shadow_len_after_address_max = 0;
12475
12476 ALL_BP_LOCATIONS (bl, blp_tmp)
12477 {
12478 CORE_ADDR start, end, addr;
12479
12480 if (!bp_location_has_shadow (bl))
12481 continue;
12482
12483 start = bl->target_info.placed_address;
12484 end = start + bl->target_info.shadow_len;
12485
12486 gdb_assert (bl->address >= start);
12487 addr = bl->address - start;
12488 if (addr > bp_location_placed_address_before_address_max)
12489 bp_location_placed_address_before_address_max = addr;
12490
12491 /* Zero SHADOW_LEN would not pass bp_location_has_shadow. */
12492
12493 gdb_assert (bl->address < end);
12494 addr = end - bl->address;
12495 if (addr > bp_location_shadow_len_after_address_max)
12496 bp_location_shadow_len_after_address_max = addr;
12497 }
12498 }
12499
12500 /* Download tracepoint locations if they haven't been. */
12501
12502 static void
12503 download_tracepoint_locations (void)
12504 {
12505 struct breakpoint *b;
12506 struct cleanup *old_chain;
12507
12508 if (!target_can_download_tracepoint ())
12509 return;
12510
12511 old_chain = save_current_space_and_thread ();
12512
12513 ALL_TRACEPOINTS (b)
12514 {
12515 struct bp_location *bl;
12516 struct tracepoint *t;
12517 int bp_location_downloaded = 0;
12518
12519 if ((b->type == bp_fast_tracepoint
12520 ? !may_insert_fast_tracepoints
12521 : !may_insert_tracepoints))
12522 continue;
12523
12524 for (bl = b->loc; bl; bl = bl->next)
12525 {
12526 /* In tracepoint, locations are _never_ duplicated, so
12527 should_be_inserted is equivalent to
12528 unduplicated_should_be_inserted. */
12529 if (!should_be_inserted (bl) || bl->inserted)
12530 continue;
12531
12532 switch_to_program_space_and_thread (bl->pspace);
12533
12534 target_download_tracepoint (bl);
12535
12536 bl->inserted = 1;
12537 bp_location_downloaded = 1;
12538 }
12539 t = (struct tracepoint *) b;
12540 t->number_on_target = b->number;
12541 if (bp_location_downloaded)
12542 observer_notify_breakpoint_modified (b);
12543 }
12544
12545 do_cleanups (old_chain);
12546 }
12547
12548 /* Swap the insertion/duplication state between two locations. */
12549
12550 static void
12551 swap_insertion (struct bp_location *left, struct bp_location *right)
12552 {
12553 const int left_inserted = left->inserted;
12554 const int left_duplicate = left->duplicate;
12555 const int left_needs_update = left->needs_update;
12556 const struct bp_target_info left_target_info = left->target_info;
12557
12558 /* Locations of tracepoints can never be duplicated. */
12559 if (is_tracepoint (left->owner))
12560 gdb_assert (!left->duplicate);
12561 if (is_tracepoint (right->owner))
12562 gdb_assert (!right->duplicate);
12563
12564 left->inserted = right->inserted;
12565 left->duplicate = right->duplicate;
12566 left->needs_update = right->needs_update;
12567 left->target_info = right->target_info;
12568 right->inserted = left_inserted;
12569 right->duplicate = left_duplicate;
12570 right->needs_update = left_needs_update;
12571 right->target_info = left_target_info;
12572 }
12573
12574 /* Force the re-insertion of the locations at ADDRESS. This is called
12575 once a new/deleted/modified duplicate location is found and we are evaluating
12576 conditions on the target's side. Such conditions need to be updated on
12577 the target. */
12578
12579 static void
12580 force_breakpoint_reinsertion (struct bp_location *bl)
12581 {
12582 struct bp_location **locp = NULL, **loc2p;
12583 struct bp_location *loc;
12584 CORE_ADDR address = 0;
12585 int pspace_num;
12586
12587 address = bl->address;
12588 pspace_num = bl->pspace->num;
12589
12590 /* This is only meaningful if the target is
12591 evaluating conditions and if the user has
12592 opted for condition evaluation on the target's
12593 side. */
12594 if (gdb_evaluates_breakpoint_condition_p ()
12595 || !target_supports_evaluation_of_breakpoint_conditions ())
12596 return;
12597
12598 /* Flag all breakpoint locations with this address and
12599 the same program space as the location
12600 as "its condition has changed". We need to
12601 update the conditions on the target's side. */
12602 ALL_BP_LOCATIONS_AT_ADDR (loc2p, locp, address)
12603 {
12604 loc = *loc2p;
12605
12606 if (!is_breakpoint (loc->owner)
12607 || pspace_num != loc->pspace->num)
12608 continue;
12609
12610 /* Flag the location appropriately. We use a different state to
12611 let everyone know that we already updated the set of locations
12612 with addr bl->address and program space bl->pspace. This is so
12613 we don't have to keep calling these functions just to mark locations
12614 that have already been marked. */
12615 loc->condition_changed = condition_updated;
12616
12617 /* Free the agent expression bytecode as well. We will compute
12618 it later on. */
12619 if (loc->cond_bytecode)
12620 {
12621 free_agent_expr (loc->cond_bytecode);
12622 loc->cond_bytecode = NULL;
12623 }
12624 }
12625 }
12626 /* Called whether new breakpoints are created, or existing breakpoints
12627 deleted, to update the global location list and recompute which
12628 locations are duplicate of which.
12629
12630 The INSERT_MODE flag determines whether locations may not, may, or
12631 shall be inserted now. See 'enum ugll_insert_mode' for more
12632 info. */
12633
12634 static void
12635 update_global_location_list (enum ugll_insert_mode insert_mode)
12636 {
12637 struct breakpoint *b;
12638 struct bp_location **locp, *loc;
12639 struct cleanup *cleanups;
12640 /* Last breakpoint location address that was marked for update. */
12641 CORE_ADDR last_addr = 0;
12642 /* Last breakpoint location program space that was marked for update. */
12643 int last_pspace_num = -1;
12644
12645 /* Used in the duplicates detection below. When iterating over all
12646 bp_locations, points to the first bp_location of a given address.
12647 Breakpoints and watchpoints of different types are never
12648 duplicates of each other. Keep one pointer for each type of
12649 breakpoint/watchpoint, so we only need to loop over all locations
12650 once. */
12651 struct bp_location *bp_loc_first; /* breakpoint */
12652 struct bp_location *wp_loc_first; /* hardware watchpoint */
12653 struct bp_location *awp_loc_first; /* access watchpoint */
12654 struct bp_location *rwp_loc_first; /* read watchpoint */
12655
12656 /* Saved former bp_location array which we compare against the newly
12657 built bp_location from the current state of ALL_BREAKPOINTS. */
12658 struct bp_location **old_location, **old_locp;
12659 unsigned old_location_count;
12660
12661 old_location = bp_location;
12662 old_location_count = bp_location_count;
12663 bp_location = NULL;
12664 bp_location_count = 0;
12665 cleanups = make_cleanup (xfree, old_location);
12666
12667 ALL_BREAKPOINTS (b)
12668 for (loc = b->loc; loc; loc = loc->next)
12669 bp_location_count++;
12670
12671 bp_location = xmalloc (sizeof (*bp_location) * bp_location_count);
12672 locp = bp_location;
12673 ALL_BREAKPOINTS (b)
12674 for (loc = b->loc; loc; loc = loc->next)
12675 *locp++ = loc;
12676 qsort (bp_location, bp_location_count, sizeof (*bp_location),
12677 bp_location_compare);
12678
12679 bp_location_target_extensions_update ();
12680
12681 /* Identify bp_location instances that are no longer present in the
12682 new list, and therefore should be freed. Note that it's not
12683 necessary that those locations should be removed from inferior --
12684 if there's another location at the same address (previously
12685 marked as duplicate), we don't need to remove/insert the
12686 location.
12687
12688 LOCP is kept in sync with OLD_LOCP, each pointing to the current
12689 and former bp_location array state respectively. */
12690
12691 locp = bp_location;
12692 for (old_locp = old_location; old_locp < old_location + old_location_count;
12693 old_locp++)
12694 {
12695 struct bp_location *old_loc = *old_locp;
12696 struct bp_location **loc2p;
12697
12698 /* Tells if 'old_loc' is found among the new locations. If
12699 not, we have to free it. */
12700 int found_object = 0;
12701 /* Tells if the location should remain inserted in the target. */
12702 int keep_in_target = 0;
12703 int removed = 0;
12704
12705 /* Skip LOCP entries which will definitely never be needed.
12706 Stop either at or being the one matching OLD_LOC. */
12707 while (locp < bp_location + bp_location_count
12708 && (*locp)->address < old_loc->address)
12709 locp++;
12710
12711 for (loc2p = locp;
12712 (loc2p < bp_location + bp_location_count
12713 && (*loc2p)->address == old_loc->address);
12714 loc2p++)
12715 {
12716 /* Check if this is a new/duplicated location or a duplicated
12717 location that had its condition modified. If so, we want to send
12718 its condition to the target if evaluation of conditions is taking
12719 place there. */
12720 if ((*loc2p)->condition_changed == condition_modified
12721 && (last_addr != old_loc->address
12722 || last_pspace_num != old_loc->pspace->num))
12723 {
12724 force_breakpoint_reinsertion (*loc2p);
12725 last_pspace_num = old_loc->pspace->num;
12726 }
12727
12728 if (*loc2p == old_loc)
12729 found_object = 1;
12730 }
12731
12732 /* We have already handled this address, update it so that we don't
12733 have to go through updates again. */
12734 last_addr = old_loc->address;
12735
12736 /* Target-side condition evaluation: Handle deleted locations. */
12737 if (!found_object)
12738 force_breakpoint_reinsertion (old_loc);
12739
12740 /* If this location is no longer present, and inserted, look if
12741 there's maybe a new location at the same address. If so,
12742 mark that one inserted, and don't remove this one. This is
12743 needed so that we don't have a time window where a breakpoint
12744 at certain location is not inserted. */
12745
12746 if (old_loc->inserted)
12747 {
12748 /* If the location is inserted now, we might have to remove
12749 it. */
12750
12751 if (found_object && should_be_inserted (old_loc))
12752 {
12753 /* The location is still present in the location list,
12754 and still should be inserted. Don't do anything. */
12755 keep_in_target = 1;
12756 }
12757 else
12758 {
12759 /* This location still exists, but it won't be kept in the
12760 target since it may have been disabled. We proceed to
12761 remove its target-side condition. */
12762
12763 /* The location is either no longer present, or got
12764 disabled. See if there's another location at the
12765 same address, in which case we don't need to remove
12766 this one from the target. */
12767
12768 /* OLD_LOC comes from existing struct breakpoint. */
12769 if (breakpoint_address_is_meaningful (old_loc->owner))
12770 {
12771 for (loc2p = locp;
12772 (loc2p < bp_location + bp_location_count
12773 && (*loc2p)->address == old_loc->address);
12774 loc2p++)
12775 {
12776 struct bp_location *loc2 = *loc2p;
12777
12778 if (breakpoint_locations_match (loc2, old_loc))
12779 {
12780 /* Read watchpoint locations are switched to
12781 access watchpoints, if the former are not
12782 supported, but the latter are. */
12783 if (is_hardware_watchpoint (old_loc->owner))
12784 {
12785 gdb_assert (is_hardware_watchpoint (loc2->owner));
12786 loc2->watchpoint_type = old_loc->watchpoint_type;
12787 }
12788
12789 /* loc2 is a duplicated location. We need to check
12790 if it should be inserted in case it will be
12791 unduplicated. */
12792 if (loc2 != old_loc
12793 && unduplicated_should_be_inserted (loc2))
12794 {
12795 swap_insertion (old_loc, loc2);
12796 keep_in_target = 1;
12797 break;
12798 }
12799 }
12800 }
12801 }
12802 }
12803
12804 if (!keep_in_target)
12805 {
12806 if (remove_breakpoint (old_loc, mark_uninserted))
12807 {
12808 /* This is just about all we can do. We could keep
12809 this location on the global list, and try to
12810 remove it next time, but there's no particular
12811 reason why we will succeed next time.
12812
12813 Note that at this point, old_loc->owner is still
12814 valid, as delete_breakpoint frees the breakpoint
12815 only after calling us. */
12816 printf_filtered (_("warning: Error removing "
12817 "breakpoint %d\n"),
12818 old_loc->owner->number);
12819 }
12820 removed = 1;
12821 }
12822 }
12823
12824 if (!found_object)
12825 {
12826 if (removed && non_stop
12827 && breakpoint_address_is_meaningful (old_loc->owner)
12828 && !is_hardware_watchpoint (old_loc->owner))
12829 {
12830 /* This location was removed from the target. In
12831 non-stop mode, a race condition is possible where
12832 we've removed a breakpoint, but stop events for that
12833 breakpoint are already queued and will arrive later.
12834 We apply an heuristic to be able to distinguish such
12835 SIGTRAPs from other random SIGTRAPs: we keep this
12836 breakpoint location for a bit, and will retire it
12837 after we see some number of events. The theory here
12838 is that reporting of events should, "on the average",
12839 be fair, so after a while we'll see events from all
12840 threads that have anything of interest, and no longer
12841 need to keep this breakpoint location around. We
12842 don't hold locations forever so to reduce chances of
12843 mistaking a non-breakpoint SIGTRAP for a breakpoint
12844 SIGTRAP.
12845
12846 The heuristic failing can be disastrous on
12847 decr_pc_after_break targets.
12848
12849 On decr_pc_after_break targets, like e.g., x86-linux,
12850 if we fail to recognize a late breakpoint SIGTRAP,
12851 because events_till_retirement has reached 0 too
12852 soon, we'll fail to do the PC adjustment, and report
12853 a random SIGTRAP to the user. When the user resumes
12854 the inferior, it will most likely immediately crash
12855 with SIGILL/SIGBUS/SIGSEGV, or worse, get silently
12856 corrupted, because of being resumed e.g., in the
12857 middle of a multi-byte instruction, or skipped a
12858 one-byte instruction. This was actually seen happen
12859 on native x86-linux, and should be less rare on
12860 targets that do not support new thread events, like
12861 remote, due to the heuristic depending on
12862 thread_count.
12863
12864 Mistaking a random SIGTRAP for a breakpoint trap
12865 causes similar symptoms (PC adjustment applied when
12866 it shouldn't), but then again, playing with SIGTRAPs
12867 behind the debugger's back is asking for trouble.
12868
12869 Since hardware watchpoint traps are always
12870 distinguishable from other traps, so we don't need to
12871 apply keep hardware watchpoint moribund locations
12872 around. We simply always ignore hardware watchpoint
12873 traps we can no longer explain. */
12874
12875 old_loc->events_till_retirement = 3 * (thread_count () + 1);
12876 old_loc->owner = NULL;
12877
12878 VEC_safe_push (bp_location_p, moribund_locations, old_loc);
12879 }
12880 else
12881 {
12882 old_loc->owner = NULL;
12883 decref_bp_location (&old_loc);
12884 }
12885 }
12886 }
12887
12888 /* Rescan breakpoints at the same address and section, marking the
12889 first one as "first" and any others as "duplicates". This is so
12890 that the bpt instruction is only inserted once. If we have a
12891 permanent breakpoint at the same place as BPT, make that one the
12892 official one, and the rest as duplicates. Permanent breakpoints
12893 are sorted first for the same address.
12894
12895 Do the same for hardware watchpoints, but also considering the
12896 watchpoint's type (regular/access/read) and length. */
12897
12898 bp_loc_first = NULL;
12899 wp_loc_first = NULL;
12900 awp_loc_first = NULL;
12901 rwp_loc_first = NULL;
12902 ALL_BP_LOCATIONS (loc, locp)
12903 {
12904 /* ALL_BP_LOCATIONS bp_location has LOC->OWNER always
12905 non-NULL. */
12906 struct bp_location **loc_first_p;
12907 b = loc->owner;
12908
12909 if (!unduplicated_should_be_inserted (loc)
12910 || !breakpoint_address_is_meaningful (b)
12911 /* Don't detect duplicate for tracepoint locations because they are
12912 never duplicated. See the comments in field `duplicate' of
12913 `struct bp_location'. */
12914 || is_tracepoint (b))
12915 {
12916 /* Clear the condition modification flag. */
12917 loc->condition_changed = condition_unchanged;
12918 continue;
12919 }
12920
12921 /* Permanent breakpoint should always be inserted. */
12922 if (b->enable_state == bp_permanent && ! loc->inserted)
12923 internal_error (__FILE__, __LINE__,
12924 _("allegedly permanent breakpoint is not "
12925 "actually inserted"));
12926
12927 if (b->type == bp_hardware_watchpoint)
12928 loc_first_p = &wp_loc_first;
12929 else if (b->type == bp_read_watchpoint)
12930 loc_first_p = &rwp_loc_first;
12931 else if (b->type == bp_access_watchpoint)
12932 loc_first_p = &awp_loc_first;
12933 else
12934 loc_first_p = &bp_loc_first;
12935
12936 if (*loc_first_p == NULL
12937 || (overlay_debugging && loc->section != (*loc_first_p)->section)
12938 || !breakpoint_locations_match (loc, *loc_first_p))
12939 {
12940 *loc_first_p = loc;
12941 loc->duplicate = 0;
12942
12943 if (is_breakpoint (loc->owner) && loc->condition_changed)
12944 {
12945 loc->needs_update = 1;
12946 /* Clear the condition modification flag. */
12947 loc->condition_changed = condition_unchanged;
12948 }
12949 continue;
12950 }
12951
12952
12953 /* This and the above ensure the invariant that the first location
12954 is not duplicated, and is the inserted one.
12955 All following are marked as duplicated, and are not inserted. */
12956 if (loc->inserted)
12957 swap_insertion (loc, *loc_first_p);
12958 loc->duplicate = 1;
12959
12960 /* Clear the condition modification flag. */
12961 loc->condition_changed = condition_unchanged;
12962
12963 if ((*loc_first_p)->owner->enable_state == bp_permanent && loc->inserted
12964 && b->enable_state != bp_permanent)
12965 internal_error (__FILE__, __LINE__,
12966 _("another breakpoint was inserted on top of "
12967 "a permanent breakpoint"));
12968 }
12969
12970 if (insert_mode == UGLL_INSERT || breakpoints_should_be_inserted_now ())
12971 {
12972 if (insert_mode != UGLL_DONT_INSERT)
12973 insert_breakpoint_locations ();
12974 else
12975 {
12976 /* Even though the caller told us to not insert new
12977 locations, we may still need to update conditions on the
12978 target's side of breakpoints that were already inserted
12979 if the target is evaluating breakpoint conditions. We
12980 only update conditions for locations that are marked
12981 "needs_update". */
12982 update_inserted_breakpoint_locations ();
12983 }
12984 }
12985
12986 if (insert_mode != UGLL_DONT_INSERT)
12987 download_tracepoint_locations ();
12988
12989 do_cleanups (cleanups);
12990 }
12991
12992 void
12993 breakpoint_retire_moribund (void)
12994 {
12995 struct bp_location *loc;
12996 int ix;
12997
12998 for (ix = 0; VEC_iterate (bp_location_p, moribund_locations, ix, loc); ++ix)
12999 if (--(loc->events_till_retirement) == 0)
13000 {
13001 decref_bp_location (&loc);
13002 VEC_unordered_remove (bp_location_p, moribund_locations, ix);
13003 --ix;
13004 }
13005 }
13006
13007 static void
13008 update_global_location_list_nothrow (enum ugll_insert_mode insert_mode)
13009 {
13010 volatile struct gdb_exception e;
13011
13012 TRY_CATCH (e, RETURN_MASK_ERROR)
13013 update_global_location_list (insert_mode);
13014 }
13015
13016 /* Clear BKP from a BPS. */
13017
13018 static void
13019 bpstat_remove_bp_location (bpstat bps, struct breakpoint *bpt)
13020 {
13021 bpstat bs;
13022
13023 for (bs = bps; bs; bs = bs->next)
13024 if (bs->breakpoint_at == bpt)
13025 {
13026 bs->breakpoint_at = NULL;
13027 bs->old_val = NULL;
13028 /* bs->commands will be freed later. */
13029 }
13030 }
13031
13032 /* Callback for iterate_over_threads. */
13033 static int
13034 bpstat_remove_breakpoint_callback (struct thread_info *th, void *data)
13035 {
13036 struct breakpoint *bpt = data;
13037
13038 bpstat_remove_bp_location (th->control.stop_bpstat, bpt);
13039 return 0;
13040 }
13041
13042 /* Helper for breakpoint and tracepoint breakpoint_ops->mention
13043 callbacks. */
13044
13045 static void
13046 say_where (struct breakpoint *b)
13047 {
13048 struct value_print_options opts;
13049
13050 get_user_print_options (&opts);
13051
13052 /* i18n: cagney/2005-02-11: Below needs to be merged into a
13053 single string. */
13054 if (b->loc == NULL)
13055 {
13056 printf_filtered (_(" (%s) pending."), b->addr_string);
13057 }
13058 else
13059 {
13060 if (opts.addressprint || b->loc->symtab == NULL)
13061 {
13062 printf_filtered (" at ");
13063 fputs_filtered (paddress (b->loc->gdbarch, b->loc->address),
13064 gdb_stdout);
13065 }
13066 if (b->loc->symtab != NULL)
13067 {
13068 /* If there is a single location, we can print the location
13069 more nicely. */
13070 if (b->loc->next == NULL)
13071 printf_filtered (": file %s, line %d.",
13072 symtab_to_filename_for_display (b->loc->symtab),
13073 b->loc->line_number);
13074 else
13075 /* This is not ideal, but each location may have a
13076 different file name, and this at least reflects the
13077 real situation somewhat. */
13078 printf_filtered (": %s.", b->addr_string);
13079 }
13080
13081 if (b->loc->next)
13082 {
13083 struct bp_location *loc = b->loc;
13084 int n = 0;
13085 for (; loc; loc = loc->next)
13086 ++n;
13087 printf_filtered (" (%d locations)", n);
13088 }
13089 }
13090 }
13091
13092 /* Default bp_location_ops methods. */
13093
13094 static void
13095 bp_location_dtor (struct bp_location *self)
13096 {
13097 xfree (self->cond);
13098 if (self->cond_bytecode)
13099 free_agent_expr (self->cond_bytecode);
13100 xfree (self->function_name);
13101
13102 VEC_free (agent_expr_p, self->target_info.conditions);
13103 VEC_free (agent_expr_p, self->target_info.tcommands);
13104 }
13105
13106 static const struct bp_location_ops bp_location_ops =
13107 {
13108 bp_location_dtor
13109 };
13110
13111 /* Default breakpoint_ops methods all breakpoint_ops ultimately
13112 inherit from. */
13113
13114 static void
13115 base_breakpoint_dtor (struct breakpoint *self)
13116 {
13117 decref_counted_command_line (&self->commands);
13118 xfree (self->cond_string);
13119 xfree (self->extra_string);
13120 xfree (self->addr_string);
13121 xfree (self->filter);
13122 xfree (self->addr_string_range_end);
13123 }
13124
13125 static struct bp_location *
13126 base_breakpoint_allocate_location (struct breakpoint *self)
13127 {
13128 struct bp_location *loc;
13129
13130 loc = XNEW (struct bp_location);
13131 init_bp_location (loc, &bp_location_ops, self);
13132 return loc;
13133 }
13134
13135 static void
13136 base_breakpoint_re_set (struct breakpoint *b)
13137 {
13138 /* Nothing to re-set. */
13139 }
13140
13141 #define internal_error_pure_virtual_called() \
13142 gdb_assert_not_reached ("pure virtual function called")
13143
13144 static int
13145 base_breakpoint_insert_location (struct bp_location *bl)
13146 {
13147 internal_error_pure_virtual_called ();
13148 }
13149
13150 static int
13151 base_breakpoint_remove_location (struct bp_location *bl)
13152 {
13153 internal_error_pure_virtual_called ();
13154 }
13155
13156 static int
13157 base_breakpoint_breakpoint_hit (const struct bp_location *bl,
13158 struct address_space *aspace,
13159 CORE_ADDR bp_addr,
13160 const struct target_waitstatus *ws)
13161 {
13162 internal_error_pure_virtual_called ();
13163 }
13164
13165 static void
13166 base_breakpoint_check_status (bpstat bs)
13167 {
13168 /* Always stop. */
13169 }
13170
13171 /* A "works_in_software_mode" breakpoint_ops method that just internal
13172 errors. */
13173
13174 static int
13175 base_breakpoint_works_in_software_mode (const struct breakpoint *b)
13176 {
13177 internal_error_pure_virtual_called ();
13178 }
13179
13180 /* A "resources_needed" breakpoint_ops method that just internal
13181 errors. */
13182
13183 static int
13184 base_breakpoint_resources_needed (const struct bp_location *bl)
13185 {
13186 internal_error_pure_virtual_called ();
13187 }
13188
13189 static enum print_stop_action
13190 base_breakpoint_print_it (bpstat bs)
13191 {
13192 internal_error_pure_virtual_called ();
13193 }
13194
13195 static void
13196 base_breakpoint_print_one_detail (const struct breakpoint *self,
13197 struct ui_out *uiout)
13198 {
13199 /* nothing */
13200 }
13201
13202 static void
13203 base_breakpoint_print_mention (struct breakpoint *b)
13204 {
13205 internal_error_pure_virtual_called ();
13206 }
13207
13208 static void
13209 base_breakpoint_print_recreate (struct breakpoint *b, struct ui_file *fp)
13210 {
13211 internal_error_pure_virtual_called ();
13212 }
13213
13214 static void
13215 base_breakpoint_create_sals_from_address (char **arg,
13216 struct linespec_result *canonical,
13217 enum bptype type_wanted,
13218 char *addr_start,
13219 char **copy_arg)
13220 {
13221 internal_error_pure_virtual_called ();
13222 }
13223
13224 static void
13225 base_breakpoint_create_breakpoints_sal (struct gdbarch *gdbarch,
13226 struct linespec_result *c,
13227 char *cond_string,
13228 char *extra_string,
13229 enum bptype type_wanted,
13230 enum bpdisp disposition,
13231 int thread,
13232 int task, int ignore_count,
13233 const struct breakpoint_ops *o,
13234 int from_tty, int enabled,
13235 int internal, unsigned flags)
13236 {
13237 internal_error_pure_virtual_called ();
13238 }
13239
13240 static void
13241 base_breakpoint_decode_linespec (struct breakpoint *b, char **s,
13242 struct symtabs_and_lines *sals)
13243 {
13244 internal_error_pure_virtual_called ();
13245 }
13246
13247 /* The default 'explains_signal' method. */
13248
13249 static int
13250 base_breakpoint_explains_signal (struct breakpoint *b, enum gdb_signal sig)
13251 {
13252 return 1;
13253 }
13254
13255 /* The default "after_condition_true" method. */
13256
13257 static void
13258 base_breakpoint_after_condition_true (struct bpstats *bs)
13259 {
13260 /* Nothing to do. */
13261 }
13262
13263 struct breakpoint_ops base_breakpoint_ops =
13264 {
13265 base_breakpoint_dtor,
13266 base_breakpoint_allocate_location,
13267 base_breakpoint_re_set,
13268 base_breakpoint_insert_location,
13269 base_breakpoint_remove_location,
13270 base_breakpoint_breakpoint_hit,
13271 base_breakpoint_check_status,
13272 base_breakpoint_resources_needed,
13273 base_breakpoint_works_in_software_mode,
13274 base_breakpoint_print_it,
13275 NULL,
13276 base_breakpoint_print_one_detail,
13277 base_breakpoint_print_mention,
13278 base_breakpoint_print_recreate,
13279 base_breakpoint_create_sals_from_address,
13280 base_breakpoint_create_breakpoints_sal,
13281 base_breakpoint_decode_linespec,
13282 base_breakpoint_explains_signal,
13283 base_breakpoint_after_condition_true,
13284 };
13285
13286 /* Default breakpoint_ops methods. */
13287
13288 static void
13289 bkpt_re_set (struct breakpoint *b)
13290 {
13291 /* FIXME: is this still reachable? */
13292 if (b->addr_string == NULL)
13293 {
13294 /* Anything without a string can't be re-set. */
13295 delete_breakpoint (b);
13296 return;
13297 }
13298
13299 breakpoint_re_set_default (b);
13300 }
13301
13302 /* Copy SRC's shadow buffer and whatever else we'd set if we actually
13303 inserted DEST, so we can remove it later, in case SRC is removed
13304 first. */
13305
13306 static void
13307 bp_target_info_copy_insertion_state (struct bp_target_info *dest,
13308 const struct bp_target_info *src)
13309 {
13310 dest->shadow_len = src->shadow_len;
13311 memcpy (dest->shadow_contents, src->shadow_contents, src->shadow_len);
13312 dest->placed_size = src->placed_size;
13313 }
13314
13315 static int
13316 bkpt_insert_location (struct bp_location *bl)
13317 {
13318 if (bl->loc_type == bp_loc_hardware_breakpoint)
13319 return target_insert_hw_breakpoint (bl->gdbarch,
13320 &bl->target_info);
13321 else
13322 {
13323 struct bp_target_info *bp_tgt = &bl->target_info;
13324 int ret;
13325 int sss_slot;
13326
13327 /* There is no need to insert a breakpoint if an unconditional
13328 raw/sss breakpoint is already inserted at that location. */
13329 sss_slot = find_single_step_breakpoint (bp_tgt->placed_address_space,
13330 bp_tgt->placed_address);
13331 if (sss_slot >= 0)
13332 {
13333 struct bp_target_info *sss_bp_tgt = single_step_breakpoints[sss_slot];
13334
13335 bp_target_info_copy_insertion_state (bp_tgt, sss_bp_tgt);
13336 return 0;
13337 }
13338
13339 return target_insert_breakpoint (bl->gdbarch, bp_tgt);
13340 }
13341 }
13342
13343 static int
13344 bkpt_remove_location (struct bp_location *bl)
13345 {
13346 if (bl->loc_type == bp_loc_hardware_breakpoint)
13347 return target_remove_hw_breakpoint (bl->gdbarch, &bl->target_info);
13348 else
13349 {
13350 struct bp_target_info *bp_tgt = &bl->target_info;
13351 struct address_space *aspace = bp_tgt->placed_address_space;
13352 CORE_ADDR address = bp_tgt->placed_address;
13353
13354 /* Only remove the breakpoint if there is no raw/sss breakpoint
13355 still inserted at this location. Otherwise, we would be
13356 effectively disabling the raw/sss breakpoint. */
13357 if (single_step_breakpoint_inserted_here_p (aspace, address))
13358 return 0;
13359
13360 return target_remove_breakpoint (bl->gdbarch, bp_tgt);
13361 }
13362 }
13363
13364 static int
13365 bkpt_breakpoint_hit (const struct bp_location *bl,
13366 struct address_space *aspace, CORE_ADDR bp_addr,
13367 const struct target_waitstatus *ws)
13368 {
13369 if (ws->kind != TARGET_WAITKIND_STOPPED
13370 || ws->value.sig != GDB_SIGNAL_TRAP)
13371 return 0;
13372
13373 if (!breakpoint_address_match (bl->pspace->aspace, bl->address,
13374 aspace, bp_addr))
13375 return 0;
13376
13377 if (overlay_debugging /* unmapped overlay section */
13378 && section_is_overlay (bl->section)
13379 && !section_is_mapped (bl->section))
13380 return 0;
13381
13382 return 1;
13383 }
13384
13385 static int
13386 dprintf_breakpoint_hit (const struct bp_location *bl,
13387 struct address_space *aspace, CORE_ADDR bp_addr,
13388 const struct target_waitstatus *ws)
13389 {
13390 if (dprintf_style == dprintf_style_agent
13391 && target_can_run_breakpoint_commands ())
13392 {
13393 /* An agent-style dprintf never causes a stop. If we see a trap
13394 for this address it must be for a breakpoint that happens to
13395 be set at the same address. */
13396 return 0;
13397 }
13398
13399 return bkpt_breakpoint_hit (bl, aspace, bp_addr, ws);
13400 }
13401
13402 static int
13403 bkpt_resources_needed (const struct bp_location *bl)
13404 {
13405 gdb_assert (bl->owner->type == bp_hardware_breakpoint);
13406
13407 return 1;
13408 }
13409
13410 static enum print_stop_action
13411 bkpt_print_it (bpstat bs)
13412 {
13413 struct breakpoint *b;
13414 const struct bp_location *bl;
13415 int bp_temp;
13416 struct ui_out *uiout = current_uiout;
13417
13418 gdb_assert (bs->bp_location_at != NULL);
13419
13420 bl = bs->bp_location_at;
13421 b = bs->breakpoint_at;
13422
13423 bp_temp = b->disposition == disp_del;
13424 if (bl->address != bl->requested_address)
13425 breakpoint_adjustment_warning (bl->requested_address,
13426 bl->address,
13427 b->number, 1);
13428 annotate_breakpoint (b->number);
13429 if (bp_temp)
13430 ui_out_text (uiout, "\nTemporary breakpoint ");
13431 else
13432 ui_out_text (uiout, "\nBreakpoint ");
13433 if (ui_out_is_mi_like_p (uiout))
13434 {
13435 ui_out_field_string (uiout, "reason",
13436 async_reason_lookup (EXEC_ASYNC_BREAKPOINT_HIT));
13437 ui_out_field_string (uiout, "disp", bpdisp_text (b->disposition));
13438 }
13439 ui_out_field_int (uiout, "bkptno", b->number);
13440 ui_out_text (uiout, ", ");
13441
13442 return PRINT_SRC_AND_LOC;
13443 }
13444
13445 static void
13446 bkpt_print_mention (struct breakpoint *b)
13447 {
13448 if (ui_out_is_mi_like_p (current_uiout))
13449 return;
13450
13451 switch (b->type)
13452 {
13453 case bp_breakpoint:
13454 case bp_gnu_ifunc_resolver:
13455 if (b->disposition == disp_del)
13456 printf_filtered (_("Temporary breakpoint"));
13457 else
13458 printf_filtered (_("Breakpoint"));
13459 printf_filtered (_(" %d"), b->number);
13460 if (b->type == bp_gnu_ifunc_resolver)
13461 printf_filtered (_(" at gnu-indirect-function resolver"));
13462 break;
13463 case bp_hardware_breakpoint:
13464 printf_filtered (_("Hardware assisted breakpoint %d"), b->number);
13465 break;
13466 case bp_dprintf:
13467 printf_filtered (_("Dprintf %d"), b->number);
13468 break;
13469 }
13470
13471 say_where (b);
13472 }
13473
13474 static void
13475 bkpt_print_recreate (struct breakpoint *tp, struct ui_file *fp)
13476 {
13477 if (tp->type == bp_breakpoint && tp->disposition == disp_del)
13478 fprintf_unfiltered (fp, "tbreak");
13479 else if (tp->type == bp_breakpoint)
13480 fprintf_unfiltered (fp, "break");
13481 else if (tp->type == bp_hardware_breakpoint
13482 && tp->disposition == disp_del)
13483 fprintf_unfiltered (fp, "thbreak");
13484 else if (tp->type == bp_hardware_breakpoint)
13485 fprintf_unfiltered (fp, "hbreak");
13486 else
13487 internal_error (__FILE__, __LINE__,
13488 _("unhandled breakpoint type %d"), (int) tp->type);
13489
13490 fprintf_unfiltered (fp, " %s", tp->addr_string);
13491 print_recreate_thread (tp, fp);
13492 }
13493
13494 static void
13495 bkpt_create_sals_from_address (char **arg,
13496 struct linespec_result *canonical,
13497 enum bptype type_wanted,
13498 char *addr_start, char **copy_arg)
13499 {
13500 create_sals_from_address_default (arg, canonical, type_wanted,
13501 addr_start, copy_arg);
13502 }
13503
13504 static void
13505 bkpt_create_breakpoints_sal (struct gdbarch *gdbarch,
13506 struct linespec_result *canonical,
13507 char *cond_string,
13508 char *extra_string,
13509 enum bptype type_wanted,
13510 enum bpdisp disposition,
13511 int thread,
13512 int task, int ignore_count,
13513 const struct breakpoint_ops *ops,
13514 int from_tty, int enabled,
13515 int internal, unsigned flags)
13516 {
13517 create_breakpoints_sal_default (gdbarch, canonical,
13518 cond_string, extra_string,
13519 type_wanted,
13520 disposition, thread, task,
13521 ignore_count, ops, from_tty,
13522 enabled, internal, flags);
13523 }
13524
13525 static void
13526 bkpt_decode_linespec (struct breakpoint *b, char **s,
13527 struct symtabs_and_lines *sals)
13528 {
13529 decode_linespec_default (b, s, sals);
13530 }
13531
13532 /* Virtual table for internal breakpoints. */
13533
13534 static void
13535 internal_bkpt_re_set (struct breakpoint *b)
13536 {
13537 switch (b->type)
13538 {
13539 /* Delete overlay event and longjmp master breakpoints; they
13540 will be reset later by breakpoint_re_set. */
13541 case bp_overlay_event:
13542 case bp_longjmp_master:
13543 case bp_std_terminate_master:
13544 case bp_exception_master:
13545 delete_breakpoint (b);
13546 break;
13547
13548 /* This breakpoint is special, it's set up when the inferior
13549 starts and we really don't want to touch it. */
13550 case bp_shlib_event:
13551
13552 /* Like bp_shlib_event, this breakpoint type is special. Once
13553 it is set up, we do not want to touch it. */
13554 case bp_thread_event:
13555 break;
13556 }
13557 }
13558
13559 static void
13560 internal_bkpt_check_status (bpstat bs)
13561 {
13562 if (bs->breakpoint_at->type == bp_shlib_event)
13563 {
13564 /* If requested, stop when the dynamic linker notifies GDB of
13565 events. This allows the user to get control and place
13566 breakpoints in initializer routines for dynamically loaded
13567 objects (among other things). */
13568 bs->stop = stop_on_solib_events;
13569 bs->print = stop_on_solib_events;
13570 }
13571 else
13572 bs->stop = 0;
13573 }
13574
13575 static enum print_stop_action
13576 internal_bkpt_print_it (bpstat bs)
13577 {
13578 struct breakpoint *b;
13579
13580 b = bs->breakpoint_at;
13581
13582 switch (b->type)
13583 {
13584 case bp_shlib_event:
13585 /* Did we stop because the user set the stop_on_solib_events
13586 variable? (If so, we report this as a generic, "Stopped due
13587 to shlib event" message.) */
13588 print_solib_event (0);
13589 break;
13590
13591 case bp_thread_event:
13592 /* Not sure how we will get here.
13593 GDB should not stop for these breakpoints. */
13594 printf_filtered (_("Thread Event Breakpoint: gdb should not stop!\n"));
13595 break;
13596
13597 case bp_overlay_event:
13598 /* By analogy with the thread event, GDB should not stop for these. */
13599 printf_filtered (_("Overlay Event Breakpoint: gdb should not stop!\n"));
13600 break;
13601
13602 case bp_longjmp_master:
13603 /* These should never be enabled. */
13604 printf_filtered (_("Longjmp Master Breakpoint: gdb should not stop!\n"));
13605 break;
13606
13607 case bp_std_terminate_master:
13608 /* These should never be enabled. */
13609 printf_filtered (_("std::terminate Master Breakpoint: "
13610 "gdb should not stop!\n"));
13611 break;
13612
13613 case bp_exception_master:
13614 /* These should never be enabled. */
13615 printf_filtered (_("Exception Master Breakpoint: "
13616 "gdb should not stop!\n"));
13617 break;
13618 }
13619
13620 return PRINT_NOTHING;
13621 }
13622
13623 static void
13624 internal_bkpt_print_mention (struct breakpoint *b)
13625 {
13626 /* Nothing to mention. These breakpoints are internal. */
13627 }
13628
13629 /* Virtual table for momentary breakpoints */
13630
13631 static void
13632 momentary_bkpt_re_set (struct breakpoint *b)
13633 {
13634 /* Keep temporary breakpoints, which can be encountered when we step
13635 over a dlopen call and solib_add is resetting the breakpoints.
13636 Otherwise these should have been blown away via the cleanup chain
13637 or by breakpoint_init_inferior when we rerun the executable. */
13638 }
13639
13640 static void
13641 momentary_bkpt_check_status (bpstat bs)
13642 {
13643 /* Nothing. The point of these breakpoints is causing a stop. */
13644 }
13645
13646 static enum print_stop_action
13647 momentary_bkpt_print_it (bpstat bs)
13648 {
13649 struct ui_out *uiout = current_uiout;
13650
13651 if (ui_out_is_mi_like_p (uiout))
13652 {
13653 struct breakpoint *b = bs->breakpoint_at;
13654
13655 switch (b->type)
13656 {
13657 case bp_finish:
13658 ui_out_field_string
13659 (uiout, "reason",
13660 async_reason_lookup (EXEC_ASYNC_FUNCTION_FINISHED));
13661 break;
13662
13663 case bp_until:
13664 ui_out_field_string
13665 (uiout, "reason",
13666 async_reason_lookup (EXEC_ASYNC_LOCATION_REACHED));
13667 break;
13668 }
13669 }
13670
13671 return PRINT_UNKNOWN;
13672 }
13673
13674 static void
13675 momentary_bkpt_print_mention (struct breakpoint *b)
13676 {
13677 /* Nothing to mention. These breakpoints are internal. */
13678 }
13679
13680 /* Ensure INITIATING_FRAME is cleared when no such breakpoint exists.
13681
13682 It gets cleared already on the removal of the first one of such placed
13683 breakpoints. This is OK as they get all removed altogether. */
13684
13685 static void
13686 longjmp_bkpt_dtor (struct breakpoint *self)
13687 {
13688 struct thread_info *tp = find_thread_id (self->thread);
13689
13690 if (tp)
13691 tp->initiating_frame = null_frame_id;
13692
13693 momentary_breakpoint_ops.dtor (self);
13694 }
13695
13696 /* Specific methods for probe breakpoints. */
13697
13698 static int
13699 bkpt_probe_insert_location (struct bp_location *bl)
13700 {
13701 int v = bkpt_insert_location (bl);
13702
13703 if (v == 0)
13704 {
13705 /* The insertion was successful, now let's set the probe's semaphore
13706 if needed. */
13707 bl->probe.probe->pops->set_semaphore (bl->probe.probe,
13708 bl->probe.objfile,
13709 bl->gdbarch);
13710 }
13711
13712 return v;
13713 }
13714
13715 static int
13716 bkpt_probe_remove_location (struct bp_location *bl)
13717 {
13718 /* Let's clear the semaphore before removing the location. */
13719 bl->probe.probe->pops->clear_semaphore (bl->probe.probe,
13720 bl->probe.objfile,
13721 bl->gdbarch);
13722
13723 return bkpt_remove_location (bl);
13724 }
13725
13726 static void
13727 bkpt_probe_create_sals_from_address (char **arg,
13728 struct linespec_result *canonical,
13729 enum bptype type_wanted,
13730 char *addr_start, char **copy_arg)
13731 {
13732 struct linespec_sals lsal;
13733
13734 lsal.sals = parse_probes (arg, canonical);
13735
13736 *copy_arg = xstrdup (canonical->addr_string);
13737 lsal.canonical = xstrdup (*copy_arg);
13738
13739 VEC_safe_push (linespec_sals, canonical->sals, &lsal);
13740 }
13741
13742 static void
13743 bkpt_probe_decode_linespec (struct breakpoint *b, char **s,
13744 struct symtabs_and_lines *sals)
13745 {
13746 *sals = parse_probes (s, NULL);
13747 if (!sals->sals)
13748 error (_("probe not found"));
13749 }
13750
13751 /* The breakpoint_ops structure to be used in tracepoints. */
13752
13753 static void
13754 tracepoint_re_set (struct breakpoint *b)
13755 {
13756 breakpoint_re_set_default (b);
13757 }
13758
13759 static int
13760 tracepoint_breakpoint_hit (const struct bp_location *bl,
13761 struct address_space *aspace, CORE_ADDR bp_addr,
13762 const struct target_waitstatus *ws)
13763 {
13764 /* By definition, the inferior does not report stops at
13765 tracepoints. */
13766 return 0;
13767 }
13768
13769 static void
13770 tracepoint_print_one_detail (const struct breakpoint *self,
13771 struct ui_out *uiout)
13772 {
13773 struct tracepoint *tp = (struct tracepoint *) self;
13774 if (tp->static_trace_marker_id)
13775 {
13776 gdb_assert (self->type == bp_static_tracepoint);
13777
13778 ui_out_text (uiout, "\tmarker id is ");
13779 ui_out_field_string (uiout, "static-tracepoint-marker-string-id",
13780 tp->static_trace_marker_id);
13781 ui_out_text (uiout, "\n");
13782 }
13783 }
13784
13785 static void
13786 tracepoint_print_mention (struct breakpoint *b)
13787 {
13788 if (ui_out_is_mi_like_p (current_uiout))
13789 return;
13790
13791 switch (b->type)
13792 {
13793 case bp_tracepoint:
13794 printf_filtered (_("Tracepoint"));
13795 printf_filtered (_(" %d"), b->number);
13796 break;
13797 case bp_fast_tracepoint:
13798 printf_filtered (_("Fast tracepoint"));
13799 printf_filtered (_(" %d"), b->number);
13800 break;
13801 case bp_static_tracepoint:
13802 printf_filtered (_("Static tracepoint"));
13803 printf_filtered (_(" %d"), b->number);
13804 break;
13805 default:
13806 internal_error (__FILE__, __LINE__,
13807 _("unhandled tracepoint type %d"), (int) b->type);
13808 }
13809
13810 say_where (b);
13811 }
13812
13813 static void
13814 tracepoint_print_recreate (struct breakpoint *self, struct ui_file *fp)
13815 {
13816 struct tracepoint *tp = (struct tracepoint *) self;
13817
13818 if (self->type == bp_fast_tracepoint)
13819 fprintf_unfiltered (fp, "ftrace");
13820 if (self->type == bp_static_tracepoint)
13821 fprintf_unfiltered (fp, "strace");
13822 else if (self->type == bp_tracepoint)
13823 fprintf_unfiltered (fp, "trace");
13824 else
13825 internal_error (__FILE__, __LINE__,
13826 _("unhandled tracepoint type %d"), (int) self->type);
13827
13828 fprintf_unfiltered (fp, " %s", self->addr_string);
13829 print_recreate_thread (self, fp);
13830
13831 if (tp->pass_count)
13832 fprintf_unfiltered (fp, " passcount %d\n", tp->pass_count);
13833 }
13834
13835 static void
13836 tracepoint_create_sals_from_address (char **arg,
13837 struct linespec_result *canonical,
13838 enum bptype type_wanted,
13839 char *addr_start, char **copy_arg)
13840 {
13841 create_sals_from_address_default (arg, canonical, type_wanted,
13842 addr_start, copy_arg);
13843 }
13844
13845 static void
13846 tracepoint_create_breakpoints_sal (struct gdbarch *gdbarch,
13847 struct linespec_result *canonical,
13848 char *cond_string,
13849 char *extra_string,
13850 enum bptype type_wanted,
13851 enum bpdisp disposition,
13852 int thread,
13853 int task, int ignore_count,
13854 const struct breakpoint_ops *ops,
13855 int from_tty, int enabled,
13856 int internal, unsigned flags)
13857 {
13858 create_breakpoints_sal_default (gdbarch, canonical,
13859 cond_string, extra_string,
13860 type_wanted,
13861 disposition, thread, task,
13862 ignore_count, ops, from_tty,
13863 enabled, internal, flags);
13864 }
13865
13866 static void
13867 tracepoint_decode_linespec (struct breakpoint *b, char **s,
13868 struct symtabs_and_lines *sals)
13869 {
13870 decode_linespec_default (b, s, sals);
13871 }
13872
13873 struct breakpoint_ops tracepoint_breakpoint_ops;
13874
13875 /* The breakpoint_ops structure to be use on tracepoints placed in a
13876 static probe. */
13877
13878 static void
13879 tracepoint_probe_create_sals_from_address (char **arg,
13880 struct linespec_result *canonical,
13881 enum bptype type_wanted,
13882 char *addr_start, char **copy_arg)
13883 {
13884 /* We use the same method for breakpoint on probes. */
13885 bkpt_probe_create_sals_from_address (arg, canonical, type_wanted,
13886 addr_start, copy_arg);
13887 }
13888
13889 static void
13890 tracepoint_probe_decode_linespec (struct breakpoint *b, char **s,
13891 struct symtabs_and_lines *sals)
13892 {
13893 /* We use the same method for breakpoint on probes. */
13894 bkpt_probe_decode_linespec (b, s, sals);
13895 }
13896
13897 static struct breakpoint_ops tracepoint_probe_breakpoint_ops;
13898
13899 /* Dprintf breakpoint_ops methods. */
13900
13901 static void
13902 dprintf_re_set (struct breakpoint *b)
13903 {
13904 breakpoint_re_set_default (b);
13905
13906 /* This breakpoint could have been pending, and be resolved now, and
13907 if so, we should now have the extra string. If we don't, the
13908 dprintf was malformed when created, but we couldn't tell because
13909 we can't extract the extra string until the location is
13910 resolved. */
13911 if (b->loc != NULL && b->extra_string == NULL)
13912 error (_("Format string required"));
13913
13914 /* 1 - connect to target 1, that can run breakpoint commands.
13915 2 - create a dprintf, which resolves fine.
13916 3 - disconnect from target 1
13917 4 - connect to target 2, that can NOT run breakpoint commands.
13918
13919 After steps #3/#4, you'll want the dprintf command list to
13920 be updated, because target 1 and 2 may well return different
13921 answers for target_can_run_breakpoint_commands().
13922 Given absence of finer grained resetting, we get to do
13923 it all the time. */
13924 if (b->extra_string != NULL)
13925 update_dprintf_command_list (b);
13926 }
13927
13928 /* Implement the "print_recreate" breakpoint_ops method for dprintf. */
13929
13930 static void
13931 dprintf_print_recreate (struct breakpoint *tp, struct ui_file *fp)
13932 {
13933 fprintf_unfiltered (fp, "dprintf %s%s", tp->addr_string,
13934 tp->extra_string);
13935 print_recreate_thread (tp, fp);
13936 }
13937
13938 /* Implement the "after_condition_true" breakpoint_ops method for
13939 dprintf.
13940
13941 dprintf's are implemented with regular commands in their command
13942 list, but we run the commands here instead of before presenting the
13943 stop to the user, as dprintf's don't actually cause a stop. This
13944 also makes it so that the commands of multiple dprintfs at the same
13945 address are all handled. */
13946
13947 static void
13948 dprintf_after_condition_true (struct bpstats *bs)
13949 {
13950 struct cleanup *old_chain;
13951 struct bpstats tmp_bs = { NULL };
13952 struct bpstats *tmp_bs_p = &tmp_bs;
13953
13954 /* dprintf's never cause a stop. This wasn't set in the
13955 check_status hook instead because that would make the dprintf's
13956 condition not be evaluated. */
13957 bs->stop = 0;
13958
13959 /* Run the command list here. Take ownership of it instead of
13960 copying. We never want these commands to run later in
13961 bpstat_do_actions, if a breakpoint that causes a stop happens to
13962 be set at same address as this dprintf, or even if running the
13963 commands here throws. */
13964 tmp_bs.commands = bs->commands;
13965 bs->commands = NULL;
13966 old_chain = make_cleanup_decref_counted_command_line (&tmp_bs.commands);
13967
13968 bpstat_do_actions_1 (&tmp_bs_p);
13969
13970 /* 'tmp_bs.commands' will usually be NULL by now, but
13971 bpstat_do_actions_1 may return early without processing the whole
13972 list. */
13973 do_cleanups (old_chain);
13974 }
13975
13976 /* The breakpoint_ops structure to be used on static tracepoints with
13977 markers (`-m'). */
13978
13979 static void
13980 strace_marker_create_sals_from_address (char **arg,
13981 struct linespec_result *canonical,
13982 enum bptype type_wanted,
13983 char *addr_start, char **copy_arg)
13984 {
13985 struct linespec_sals lsal;
13986
13987 lsal.sals = decode_static_tracepoint_spec (arg);
13988
13989 *copy_arg = savestring (addr_start, *arg - addr_start);
13990
13991 canonical->addr_string = xstrdup (*copy_arg);
13992 lsal.canonical = xstrdup (*copy_arg);
13993 VEC_safe_push (linespec_sals, canonical->sals, &lsal);
13994 }
13995
13996 static void
13997 strace_marker_create_breakpoints_sal (struct gdbarch *gdbarch,
13998 struct linespec_result *canonical,
13999 char *cond_string,
14000 char *extra_string,
14001 enum bptype type_wanted,
14002 enum bpdisp disposition,
14003 int thread,
14004 int task, int ignore_count,
14005 const struct breakpoint_ops *ops,
14006 int from_tty, int enabled,
14007 int internal, unsigned flags)
14008 {
14009 int i;
14010 struct linespec_sals *lsal = VEC_index (linespec_sals,
14011 canonical->sals, 0);
14012
14013 /* If the user is creating a static tracepoint by marker id
14014 (strace -m MARKER_ID), then store the sals index, so that
14015 breakpoint_re_set can try to match up which of the newly
14016 found markers corresponds to this one, and, don't try to
14017 expand multiple locations for each sal, given than SALS
14018 already should contain all sals for MARKER_ID. */
14019
14020 for (i = 0; i < lsal->sals.nelts; ++i)
14021 {
14022 struct symtabs_and_lines expanded;
14023 struct tracepoint *tp;
14024 struct cleanup *old_chain;
14025 char *addr_string;
14026
14027 expanded.nelts = 1;
14028 expanded.sals = &lsal->sals.sals[i];
14029
14030 addr_string = xstrdup (canonical->addr_string);
14031 old_chain = make_cleanup (xfree, addr_string);
14032
14033 tp = XCNEW (struct tracepoint);
14034 init_breakpoint_sal (&tp->base, gdbarch, expanded,
14035 addr_string, NULL,
14036 cond_string, extra_string,
14037 type_wanted, disposition,
14038 thread, task, ignore_count, ops,
14039 from_tty, enabled, internal, flags,
14040 canonical->special_display);
14041 /* Given that its possible to have multiple markers with
14042 the same string id, if the user is creating a static
14043 tracepoint by marker id ("strace -m MARKER_ID"), then
14044 store the sals index, so that breakpoint_re_set can
14045 try to match up which of the newly found markers
14046 corresponds to this one */
14047 tp->static_trace_marker_id_idx = i;
14048
14049 install_breakpoint (internal, &tp->base, 0);
14050
14051 discard_cleanups (old_chain);
14052 }
14053 }
14054
14055 static void
14056 strace_marker_decode_linespec (struct breakpoint *b, char **s,
14057 struct symtabs_and_lines *sals)
14058 {
14059 struct tracepoint *tp = (struct tracepoint *) b;
14060
14061 *sals = decode_static_tracepoint_spec (s);
14062 if (sals->nelts > tp->static_trace_marker_id_idx)
14063 {
14064 sals->sals[0] = sals->sals[tp->static_trace_marker_id_idx];
14065 sals->nelts = 1;
14066 }
14067 else
14068 error (_("marker %s not found"), tp->static_trace_marker_id);
14069 }
14070
14071 static struct breakpoint_ops strace_marker_breakpoint_ops;
14072
14073 static int
14074 strace_marker_p (struct breakpoint *b)
14075 {
14076 return b->ops == &strace_marker_breakpoint_ops;
14077 }
14078
14079 /* Delete a breakpoint and clean up all traces of it in the data
14080 structures. */
14081
14082 void
14083 delete_breakpoint (struct breakpoint *bpt)
14084 {
14085 struct breakpoint *b;
14086
14087 gdb_assert (bpt != NULL);
14088
14089 /* Has this bp already been deleted? This can happen because
14090 multiple lists can hold pointers to bp's. bpstat lists are
14091 especial culprits.
14092
14093 One example of this happening is a watchpoint's scope bp. When
14094 the scope bp triggers, we notice that the watchpoint is out of
14095 scope, and delete it. We also delete its scope bp. But the
14096 scope bp is marked "auto-deleting", and is already on a bpstat.
14097 That bpstat is then checked for auto-deleting bp's, which are
14098 deleted.
14099
14100 A real solution to this problem might involve reference counts in
14101 bp's, and/or giving them pointers back to their referencing
14102 bpstat's, and teaching delete_breakpoint to only free a bp's
14103 storage when no more references were extent. A cheaper bandaid
14104 was chosen. */
14105 if (bpt->type == bp_none)
14106 return;
14107
14108 /* At least avoid this stale reference until the reference counting
14109 of breakpoints gets resolved. */
14110 if (bpt->related_breakpoint != bpt)
14111 {
14112 struct breakpoint *related;
14113 struct watchpoint *w;
14114
14115 if (bpt->type == bp_watchpoint_scope)
14116 w = (struct watchpoint *) bpt->related_breakpoint;
14117 else if (bpt->related_breakpoint->type == bp_watchpoint_scope)
14118 w = (struct watchpoint *) bpt;
14119 else
14120 w = NULL;
14121 if (w != NULL)
14122 watchpoint_del_at_next_stop (w);
14123
14124 /* Unlink bpt from the bpt->related_breakpoint ring. */
14125 for (related = bpt; related->related_breakpoint != bpt;
14126 related = related->related_breakpoint);
14127 related->related_breakpoint = bpt->related_breakpoint;
14128 bpt->related_breakpoint = bpt;
14129 }
14130
14131 /* watch_command_1 creates a watchpoint but only sets its number if
14132 update_watchpoint succeeds in creating its bp_locations. If there's
14133 a problem in that process, we'll be asked to delete the half-created
14134 watchpoint. In that case, don't announce the deletion. */
14135 if (bpt->number)
14136 observer_notify_breakpoint_deleted (bpt);
14137
14138 if (breakpoint_chain == bpt)
14139 breakpoint_chain = bpt->next;
14140
14141 ALL_BREAKPOINTS (b)
14142 if (b->next == bpt)
14143 {
14144 b->next = bpt->next;
14145 break;
14146 }
14147
14148 /* Be sure no bpstat's are pointing at the breakpoint after it's
14149 been freed. */
14150 /* FIXME, how can we find all bpstat's? We just check stop_bpstat
14151 in all threads for now. Note that we cannot just remove bpstats
14152 pointing at bpt from the stop_bpstat list entirely, as breakpoint
14153 commands are associated with the bpstat; if we remove it here,
14154 then the later call to bpstat_do_actions (&stop_bpstat); in
14155 event-top.c won't do anything, and temporary breakpoints with
14156 commands won't work. */
14157
14158 iterate_over_threads (bpstat_remove_breakpoint_callback, bpt);
14159
14160 /* Now that breakpoint is removed from breakpoint list, update the
14161 global location list. This will remove locations that used to
14162 belong to this breakpoint. Do this before freeing the breakpoint
14163 itself, since remove_breakpoint looks at location's owner. It
14164 might be better design to have location completely
14165 self-contained, but it's not the case now. */
14166 update_global_location_list (UGLL_DONT_INSERT);
14167
14168 bpt->ops->dtor (bpt);
14169 /* On the chance that someone will soon try again to delete this
14170 same bp, we mark it as deleted before freeing its storage. */
14171 bpt->type = bp_none;
14172 xfree (bpt);
14173 }
14174
14175 static void
14176 do_delete_breakpoint_cleanup (void *b)
14177 {
14178 delete_breakpoint (b);
14179 }
14180
14181 struct cleanup *
14182 make_cleanup_delete_breakpoint (struct breakpoint *b)
14183 {
14184 return make_cleanup (do_delete_breakpoint_cleanup, b);
14185 }
14186
14187 /* Iterator function to call a user-provided callback function once
14188 for each of B and its related breakpoints. */
14189
14190 static void
14191 iterate_over_related_breakpoints (struct breakpoint *b,
14192 void (*function) (struct breakpoint *,
14193 void *),
14194 void *data)
14195 {
14196 struct breakpoint *related;
14197
14198 related = b;
14199 do
14200 {
14201 struct breakpoint *next;
14202
14203 /* FUNCTION may delete RELATED. */
14204 next = related->related_breakpoint;
14205
14206 if (next == related)
14207 {
14208 /* RELATED is the last ring entry. */
14209 function (related, data);
14210
14211 /* FUNCTION may have deleted it, so we'd never reach back to
14212 B. There's nothing left to do anyway, so just break
14213 out. */
14214 break;
14215 }
14216 else
14217 function (related, data);
14218
14219 related = next;
14220 }
14221 while (related != b);
14222 }
14223
14224 static void
14225 do_delete_breakpoint (struct breakpoint *b, void *ignore)
14226 {
14227 delete_breakpoint (b);
14228 }
14229
14230 /* A callback for map_breakpoint_numbers that calls
14231 delete_breakpoint. */
14232
14233 static void
14234 do_map_delete_breakpoint (struct breakpoint *b, void *ignore)
14235 {
14236 iterate_over_related_breakpoints (b, do_delete_breakpoint, NULL);
14237 }
14238
14239 void
14240 delete_command (char *arg, int from_tty)
14241 {
14242 struct breakpoint *b, *b_tmp;
14243
14244 dont_repeat ();
14245
14246 if (arg == 0)
14247 {
14248 int breaks_to_delete = 0;
14249
14250 /* Delete all breakpoints if no argument. Do not delete
14251 internal breakpoints, these have to be deleted with an
14252 explicit breakpoint number argument. */
14253 ALL_BREAKPOINTS (b)
14254 if (user_breakpoint_p (b))
14255 {
14256 breaks_to_delete = 1;
14257 break;
14258 }
14259
14260 /* Ask user only if there are some breakpoints to delete. */
14261 if (!from_tty
14262 || (breaks_to_delete && query (_("Delete all breakpoints? "))))
14263 {
14264 ALL_BREAKPOINTS_SAFE (b, b_tmp)
14265 if (user_breakpoint_p (b))
14266 delete_breakpoint (b);
14267 }
14268 }
14269 else
14270 map_breakpoint_numbers (arg, do_map_delete_breakpoint, NULL);
14271 }
14272
14273 static int
14274 all_locations_are_pending (struct bp_location *loc)
14275 {
14276 for (; loc; loc = loc->next)
14277 if (!loc->shlib_disabled
14278 && !loc->pspace->executing_startup)
14279 return 0;
14280 return 1;
14281 }
14282
14283 /* Subroutine of update_breakpoint_locations to simplify it.
14284 Return non-zero if multiple fns in list LOC have the same name.
14285 Null names are ignored. */
14286
14287 static int
14288 ambiguous_names_p (struct bp_location *loc)
14289 {
14290 struct bp_location *l;
14291 htab_t htab = htab_create_alloc (13, htab_hash_string,
14292 (int (*) (const void *,
14293 const void *)) streq,
14294 NULL, xcalloc, xfree);
14295
14296 for (l = loc; l != NULL; l = l->next)
14297 {
14298 const char **slot;
14299 const char *name = l->function_name;
14300
14301 /* Allow for some names to be NULL, ignore them. */
14302 if (name == NULL)
14303 continue;
14304
14305 slot = (const char **) htab_find_slot (htab, (const void *) name,
14306 INSERT);
14307 /* NOTE: We can assume slot != NULL here because xcalloc never
14308 returns NULL. */
14309 if (*slot != NULL)
14310 {
14311 htab_delete (htab);
14312 return 1;
14313 }
14314 *slot = name;
14315 }
14316
14317 htab_delete (htab);
14318 return 0;
14319 }
14320
14321 /* When symbols change, it probably means the sources changed as well,
14322 and it might mean the static tracepoint markers are no longer at
14323 the same address or line numbers they used to be at last we
14324 checked. Losing your static tracepoints whenever you rebuild is
14325 undesirable. This function tries to resync/rematch gdb static
14326 tracepoints with the markers on the target, for static tracepoints
14327 that have not been set by marker id. Static tracepoint that have
14328 been set by marker id are reset by marker id in breakpoint_re_set.
14329 The heuristic is:
14330
14331 1) For a tracepoint set at a specific address, look for a marker at
14332 the old PC. If one is found there, assume to be the same marker.
14333 If the name / string id of the marker found is different from the
14334 previous known name, assume that means the user renamed the marker
14335 in the sources, and output a warning.
14336
14337 2) For a tracepoint set at a given line number, look for a marker
14338 at the new address of the old line number. If one is found there,
14339 assume to be the same marker. If the name / string id of the
14340 marker found is different from the previous known name, assume that
14341 means the user renamed the marker in the sources, and output a
14342 warning.
14343
14344 3) If a marker is no longer found at the same address or line, it
14345 may mean the marker no longer exists. But it may also just mean
14346 the code changed a bit. Maybe the user added a few lines of code
14347 that made the marker move up or down (in line number terms). Ask
14348 the target for info about the marker with the string id as we knew
14349 it. If found, update line number and address in the matching
14350 static tracepoint. This will get confused if there's more than one
14351 marker with the same ID (possible in UST, although unadvised
14352 precisely because it confuses tools). */
14353
14354 static struct symtab_and_line
14355 update_static_tracepoint (struct breakpoint *b, struct symtab_and_line sal)
14356 {
14357 struct tracepoint *tp = (struct tracepoint *) b;
14358 struct static_tracepoint_marker marker;
14359 CORE_ADDR pc;
14360
14361 pc = sal.pc;
14362 if (sal.line)
14363 find_line_pc (sal.symtab, sal.line, &pc);
14364
14365 if (target_static_tracepoint_marker_at (pc, &marker))
14366 {
14367 if (strcmp (tp->static_trace_marker_id, marker.str_id) != 0)
14368 warning (_("static tracepoint %d changed probed marker from %s to %s"),
14369 b->number,
14370 tp->static_trace_marker_id, marker.str_id);
14371
14372 xfree (tp->static_trace_marker_id);
14373 tp->static_trace_marker_id = xstrdup (marker.str_id);
14374 release_static_tracepoint_marker (&marker);
14375
14376 return sal;
14377 }
14378
14379 /* Old marker wasn't found on target at lineno. Try looking it up
14380 by string ID. */
14381 if (!sal.explicit_pc
14382 && sal.line != 0
14383 && sal.symtab != NULL
14384 && tp->static_trace_marker_id != NULL)
14385 {
14386 VEC(static_tracepoint_marker_p) *markers;
14387
14388 markers
14389 = target_static_tracepoint_markers_by_strid (tp->static_trace_marker_id);
14390
14391 if (!VEC_empty(static_tracepoint_marker_p, markers))
14392 {
14393 struct symtab_and_line sal2;
14394 struct symbol *sym;
14395 struct static_tracepoint_marker *tpmarker;
14396 struct ui_out *uiout = current_uiout;
14397
14398 tpmarker = VEC_index (static_tracepoint_marker_p, markers, 0);
14399
14400 xfree (tp->static_trace_marker_id);
14401 tp->static_trace_marker_id = xstrdup (tpmarker->str_id);
14402
14403 warning (_("marker for static tracepoint %d (%s) not "
14404 "found at previous line number"),
14405 b->number, tp->static_trace_marker_id);
14406
14407 init_sal (&sal2);
14408
14409 sal2.pc = tpmarker->address;
14410
14411 sal2 = find_pc_line (tpmarker->address, 0);
14412 sym = find_pc_sect_function (tpmarker->address, NULL);
14413 ui_out_text (uiout, "Now in ");
14414 if (sym)
14415 {
14416 ui_out_field_string (uiout, "func",
14417 SYMBOL_PRINT_NAME (sym));
14418 ui_out_text (uiout, " at ");
14419 }
14420 ui_out_field_string (uiout, "file",
14421 symtab_to_filename_for_display (sal2.symtab));
14422 ui_out_text (uiout, ":");
14423
14424 if (ui_out_is_mi_like_p (uiout))
14425 {
14426 const char *fullname = symtab_to_fullname (sal2.symtab);
14427
14428 ui_out_field_string (uiout, "fullname", fullname);
14429 }
14430
14431 ui_out_field_int (uiout, "line", sal2.line);
14432 ui_out_text (uiout, "\n");
14433
14434 b->loc->line_number = sal2.line;
14435 b->loc->symtab = sym != NULL ? sal2.symtab : NULL;
14436
14437 xfree (b->addr_string);
14438 b->addr_string = xstrprintf ("%s:%d",
14439 symtab_to_filename_for_display (sal2.symtab),
14440 b->loc->line_number);
14441
14442 /* Might be nice to check if function changed, and warn if
14443 so. */
14444
14445 release_static_tracepoint_marker (tpmarker);
14446 }
14447 }
14448 return sal;
14449 }
14450
14451 /* Returns 1 iff locations A and B are sufficiently same that
14452 we don't need to report breakpoint as changed. */
14453
14454 static int
14455 locations_are_equal (struct bp_location *a, struct bp_location *b)
14456 {
14457 while (a && b)
14458 {
14459 if (a->address != b->address)
14460 return 0;
14461
14462 if (a->shlib_disabled != b->shlib_disabled)
14463 return 0;
14464
14465 if (a->enabled != b->enabled)
14466 return 0;
14467
14468 a = a->next;
14469 b = b->next;
14470 }
14471
14472 if ((a == NULL) != (b == NULL))
14473 return 0;
14474
14475 return 1;
14476 }
14477
14478 /* Create new breakpoint locations for B (a hardware or software breakpoint)
14479 based on SALS and SALS_END. If SALS_END.NELTS is not zero, then B is
14480 a ranged breakpoint. */
14481
14482 void
14483 update_breakpoint_locations (struct breakpoint *b,
14484 struct symtabs_and_lines sals,
14485 struct symtabs_and_lines sals_end)
14486 {
14487 int i;
14488 struct bp_location *existing_locations = b->loc;
14489
14490 if (sals_end.nelts != 0 && (sals.nelts != 1 || sals_end.nelts != 1))
14491 {
14492 /* Ranged breakpoints have only one start location and one end
14493 location. */
14494 b->enable_state = bp_disabled;
14495 update_global_location_list (UGLL_MAY_INSERT);
14496 printf_unfiltered (_("Could not reset ranged breakpoint %d: "
14497 "multiple locations found\n"),
14498 b->number);
14499 return;
14500 }
14501
14502 /* If there's no new locations, and all existing locations are
14503 pending, don't do anything. This optimizes the common case where
14504 all locations are in the same shared library, that was unloaded.
14505 We'd like to retain the location, so that when the library is
14506 loaded again, we don't loose the enabled/disabled status of the
14507 individual locations. */
14508 if (all_locations_are_pending (existing_locations) && sals.nelts == 0)
14509 return;
14510
14511 b->loc = NULL;
14512
14513 for (i = 0; i < sals.nelts; ++i)
14514 {
14515 struct bp_location *new_loc;
14516
14517 switch_to_program_space_and_thread (sals.sals[i].pspace);
14518
14519 new_loc = add_location_to_breakpoint (b, &(sals.sals[i]));
14520
14521 /* Reparse conditions, they might contain references to the
14522 old symtab. */
14523 if (b->cond_string != NULL)
14524 {
14525 const char *s;
14526 volatile struct gdb_exception e;
14527
14528 s = b->cond_string;
14529 TRY_CATCH (e, RETURN_MASK_ERROR)
14530 {
14531 new_loc->cond = parse_exp_1 (&s, sals.sals[i].pc,
14532 block_for_pc (sals.sals[i].pc),
14533 0);
14534 }
14535 if (e.reason < 0)
14536 {
14537 warning (_("failed to reevaluate condition "
14538 "for breakpoint %d: %s"),
14539 b->number, e.message);
14540 new_loc->enabled = 0;
14541 }
14542 }
14543
14544 if (sals_end.nelts)
14545 {
14546 CORE_ADDR end = find_breakpoint_range_end (sals_end.sals[0]);
14547
14548 new_loc->length = end - sals.sals[0].pc + 1;
14549 }
14550 }
14551
14552 /* Update locations of permanent breakpoints. */
14553 if (b->enable_state == bp_permanent)
14554 make_breakpoint_permanent (b);
14555
14556 /* If possible, carry over 'disable' status from existing
14557 breakpoints. */
14558 {
14559 struct bp_location *e = existing_locations;
14560 /* If there are multiple breakpoints with the same function name,
14561 e.g. for inline functions, comparing function names won't work.
14562 Instead compare pc addresses; this is just a heuristic as things
14563 may have moved, but in practice it gives the correct answer
14564 often enough until a better solution is found. */
14565 int have_ambiguous_names = ambiguous_names_p (b->loc);
14566
14567 for (; e; e = e->next)
14568 {
14569 if (!e->enabled && e->function_name)
14570 {
14571 struct bp_location *l = b->loc;
14572 if (have_ambiguous_names)
14573 {
14574 for (; l; l = l->next)
14575 if (breakpoint_locations_match (e, l))
14576 {
14577 l->enabled = 0;
14578 break;
14579 }
14580 }
14581 else
14582 {
14583 for (; l; l = l->next)
14584 if (l->function_name
14585 && strcmp (e->function_name, l->function_name) == 0)
14586 {
14587 l->enabled = 0;
14588 break;
14589 }
14590 }
14591 }
14592 }
14593 }
14594
14595 if (!locations_are_equal (existing_locations, b->loc))
14596 observer_notify_breakpoint_modified (b);
14597
14598 update_global_location_list (UGLL_MAY_INSERT);
14599 }
14600
14601 /* Find the SaL locations corresponding to the given ADDR_STRING.
14602 On return, FOUND will be 1 if any SaL was found, zero otherwise. */
14603
14604 static struct symtabs_and_lines
14605 addr_string_to_sals (struct breakpoint *b, char *addr_string, int *found)
14606 {
14607 char *s;
14608 struct symtabs_and_lines sals = {0};
14609 volatile struct gdb_exception e;
14610
14611 gdb_assert (b->ops != NULL);
14612 s = addr_string;
14613
14614 TRY_CATCH (e, RETURN_MASK_ERROR)
14615 {
14616 b->ops->decode_linespec (b, &s, &sals);
14617 }
14618 if (e.reason < 0)
14619 {
14620 int not_found_and_ok = 0;
14621 /* For pending breakpoints, it's expected that parsing will
14622 fail until the right shared library is loaded. User has
14623 already told to create pending breakpoints and don't need
14624 extra messages. If breakpoint is in bp_shlib_disabled
14625 state, then user already saw the message about that
14626 breakpoint being disabled, and don't want to see more
14627 errors. */
14628 if (e.error == NOT_FOUND_ERROR
14629 && (b->condition_not_parsed
14630 || (b->loc && b->loc->shlib_disabled)
14631 || (b->loc && b->loc->pspace->executing_startup)
14632 || b->enable_state == bp_disabled))
14633 not_found_and_ok = 1;
14634
14635 if (!not_found_and_ok)
14636 {
14637 /* We surely don't want to warn about the same breakpoint
14638 10 times. One solution, implemented here, is disable
14639 the breakpoint on error. Another solution would be to
14640 have separate 'warning emitted' flag. Since this
14641 happens only when a binary has changed, I don't know
14642 which approach is better. */
14643 b->enable_state = bp_disabled;
14644 throw_exception (e);
14645 }
14646 }
14647
14648 if (e.reason == 0 || e.error != NOT_FOUND_ERROR)
14649 {
14650 int i;
14651
14652 for (i = 0; i < sals.nelts; ++i)
14653 resolve_sal_pc (&sals.sals[i]);
14654 if (b->condition_not_parsed && s && s[0])
14655 {
14656 char *cond_string, *extra_string;
14657 int thread, task;
14658
14659 find_condition_and_thread (s, sals.sals[0].pc,
14660 &cond_string, &thread, &task,
14661 &extra_string);
14662 if (cond_string)
14663 b->cond_string = cond_string;
14664 b->thread = thread;
14665 b->task = task;
14666 if (extra_string)
14667 b->extra_string = extra_string;
14668 b->condition_not_parsed = 0;
14669 }
14670
14671 if (b->type == bp_static_tracepoint && !strace_marker_p (b))
14672 sals.sals[0] = update_static_tracepoint (b, sals.sals[0]);
14673
14674 *found = 1;
14675 }
14676 else
14677 *found = 0;
14678
14679 return sals;
14680 }
14681
14682 /* The default re_set method, for typical hardware or software
14683 breakpoints. Reevaluate the breakpoint and recreate its
14684 locations. */
14685
14686 static void
14687 breakpoint_re_set_default (struct breakpoint *b)
14688 {
14689 int found;
14690 struct symtabs_and_lines sals, sals_end;
14691 struct symtabs_and_lines expanded = {0};
14692 struct symtabs_and_lines expanded_end = {0};
14693
14694 sals = addr_string_to_sals (b, b->addr_string, &found);
14695 if (found)
14696 {
14697 make_cleanup (xfree, sals.sals);
14698 expanded = sals;
14699 }
14700
14701 if (b->addr_string_range_end)
14702 {
14703 sals_end = addr_string_to_sals (b, b->addr_string_range_end, &found);
14704 if (found)
14705 {
14706 make_cleanup (xfree, sals_end.sals);
14707 expanded_end = sals_end;
14708 }
14709 }
14710
14711 update_breakpoint_locations (b, expanded, expanded_end);
14712 }
14713
14714 /* Default method for creating SALs from an address string. It basically
14715 calls parse_breakpoint_sals. Return 1 for success, zero for failure. */
14716
14717 static void
14718 create_sals_from_address_default (char **arg,
14719 struct linespec_result *canonical,
14720 enum bptype type_wanted,
14721 char *addr_start, char **copy_arg)
14722 {
14723 parse_breakpoint_sals (arg, canonical);
14724 }
14725
14726 /* Call create_breakpoints_sal for the given arguments. This is the default
14727 function for the `create_breakpoints_sal' method of
14728 breakpoint_ops. */
14729
14730 static void
14731 create_breakpoints_sal_default (struct gdbarch *gdbarch,
14732 struct linespec_result *canonical,
14733 char *cond_string,
14734 char *extra_string,
14735 enum bptype type_wanted,
14736 enum bpdisp disposition,
14737 int thread,
14738 int task, int ignore_count,
14739 const struct breakpoint_ops *ops,
14740 int from_tty, int enabled,
14741 int internal, unsigned flags)
14742 {
14743 create_breakpoints_sal (gdbarch, canonical, cond_string,
14744 extra_string,
14745 type_wanted, disposition,
14746 thread, task, ignore_count, ops, from_tty,
14747 enabled, internal, flags);
14748 }
14749
14750 /* Decode the line represented by S by calling decode_line_full. This is the
14751 default function for the `decode_linespec' method of breakpoint_ops. */
14752
14753 static void
14754 decode_linespec_default (struct breakpoint *b, char **s,
14755 struct symtabs_and_lines *sals)
14756 {
14757 struct linespec_result canonical;
14758
14759 init_linespec_result (&canonical);
14760 decode_line_full (s, DECODE_LINE_FUNFIRSTLINE,
14761 (struct symtab *) NULL, 0,
14762 &canonical, multiple_symbols_all,
14763 b->filter);
14764
14765 /* We should get 0 or 1 resulting SALs. */
14766 gdb_assert (VEC_length (linespec_sals, canonical.sals) < 2);
14767
14768 if (VEC_length (linespec_sals, canonical.sals) > 0)
14769 {
14770 struct linespec_sals *lsal;
14771
14772 lsal = VEC_index (linespec_sals, canonical.sals, 0);
14773 *sals = lsal->sals;
14774 /* Arrange it so the destructor does not free the
14775 contents. */
14776 lsal->sals.sals = NULL;
14777 }
14778
14779 destroy_linespec_result (&canonical);
14780 }
14781
14782 /* Prepare the global context for a re-set of breakpoint B. */
14783
14784 static struct cleanup *
14785 prepare_re_set_context (struct breakpoint *b)
14786 {
14787 struct cleanup *cleanups;
14788
14789 input_radix = b->input_radix;
14790 cleanups = save_current_space_and_thread ();
14791 if (b->pspace != NULL)
14792 switch_to_program_space_and_thread (b->pspace);
14793 set_language (b->language);
14794
14795 return cleanups;
14796 }
14797
14798 /* Reset a breakpoint given it's struct breakpoint * BINT.
14799 The value we return ends up being the return value from catch_errors.
14800 Unused in this case. */
14801
14802 static int
14803 breakpoint_re_set_one (void *bint)
14804 {
14805 /* Get past catch_errs. */
14806 struct breakpoint *b = (struct breakpoint *) bint;
14807 struct cleanup *cleanups;
14808
14809 cleanups = prepare_re_set_context (b);
14810 b->ops->re_set (b);
14811 do_cleanups (cleanups);
14812 return 0;
14813 }
14814
14815 /* Re-set all breakpoints after symbols have been re-loaded. */
14816 void
14817 breakpoint_re_set (void)
14818 {
14819 struct breakpoint *b, *b_tmp;
14820 enum language save_language;
14821 int save_input_radix;
14822 struct cleanup *old_chain;
14823
14824 save_language = current_language->la_language;
14825 save_input_radix = input_radix;
14826 old_chain = save_current_program_space ();
14827
14828 ALL_BREAKPOINTS_SAFE (b, b_tmp)
14829 {
14830 /* Format possible error msg. */
14831 char *message = xstrprintf ("Error in re-setting breakpoint %d: ",
14832 b->number);
14833 struct cleanup *cleanups = make_cleanup (xfree, message);
14834 catch_errors (breakpoint_re_set_one, b, message, RETURN_MASK_ALL);
14835 do_cleanups (cleanups);
14836 }
14837 set_language (save_language);
14838 input_radix = save_input_radix;
14839
14840 jit_breakpoint_re_set ();
14841
14842 do_cleanups (old_chain);
14843
14844 create_overlay_event_breakpoint ();
14845 create_longjmp_master_breakpoint ();
14846 create_std_terminate_master_breakpoint ();
14847 create_exception_master_breakpoint ();
14848 }
14849 \f
14850 /* Reset the thread number of this breakpoint:
14851
14852 - If the breakpoint is for all threads, leave it as-is.
14853 - Else, reset it to the current thread for inferior_ptid. */
14854 void
14855 breakpoint_re_set_thread (struct breakpoint *b)
14856 {
14857 if (b->thread != -1)
14858 {
14859 if (in_thread_list (inferior_ptid))
14860 b->thread = pid_to_thread_id (inferior_ptid);
14861
14862 /* We're being called after following a fork. The new fork is
14863 selected as current, and unless this was a vfork will have a
14864 different program space from the original thread. Reset that
14865 as well. */
14866 b->loc->pspace = current_program_space;
14867 }
14868 }
14869
14870 /* Set ignore-count of breakpoint number BPTNUM to COUNT.
14871 If from_tty is nonzero, it prints a message to that effect,
14872 which ends with a period (no newline). */
14873
14874 void
14875 set_ignore_count (int bptnum, int count, int from_tty)
14876 {
14877 struct breakpoint *b;
14878
14879 if (count < 0)
14880 count = 0;
14881
14882 ALL_BREAKPOINTS (b)
14883 if (b->number == bptnum)
14884 {
14885 if (is_tracepoint (b))
14886 {
14887 if (from_tty && count != 0)
14888 printf_filtered (_("Ignore count ignored for tracepoint %d."),
14889 bptnum);
14890 return;
14891 }
14892
14893 b->ignore_count = count;
14894 if (from_tty)
14895 {
14896 if (count == 0)
14897 printf_filtered (_("Will stop next time "
14898 "breakpoint %d is reached."),
14899 bptnum);
14900 else if (count == 1)
14901 printf_filtered (_("Will ignore next crossing of breakpoint %d."),
14902 bptnum);
14903 else
14904 printf_filtered (_("Will ignore next %d "
14905 "crossings of breakpoint %d."),
14906 count, bptnum);
14907 }
14908 observer_notify_breakpoint_modified (b);
14909 return;
14910 }
14911
14912 error (_("No breakpoint number %d."), bptnum);
14913 }
14914
14915 /* Command to set ignore-count of breakpoint N to COUNT. */
14916
14917 static void
14918 ignore_command (char *args, int from_tty)
14919 {
14920 char *p = args;
14921 int num;
14922
14923 if (p == 0)
14924 error_no_arg (_("a breakpoint number"));
14925
14926 num = get_number (&p);
14927 if (num == 0)
14928 error (_("bad breakpoint number: '%s'"), args);
14929 if (*p == 0)
14930 error (_("Second argument (specified ignore-count) is missing."));
14931
14932 set_ignore_count (num,
14933 longest_to_int (value_as_long (parse_and_eval (p))),
14934 from_tty);
14935 if (from_tty)
14936 printf_filtered ("\n");
14937 }
14938 \f
14939 /* Call FUNCTION on each of the breakpoints
14940 whose numbers are given in ARGS. */
14941
14942 static void
14943 map_breakpoint_numbers (char *args, void (*function) (struct breakpoint *,
14944 void *),
14945 void *data)
14946 {
14947 int num;
14948 struct breakpoint *b, *tmp;
14949 int match;
14950 struct get_number_or_range_state state;
14951
14952 if (args == 0)
14953 error_no_arg (_("one or more breakpoint numbers"));
14954
14955 init_number_or_range (&state, args);
14956
14957 while (!state.finished)
14958 {
14959 const char *p = state.string;
14960
14961 match = 0;
14962
14963 num = get_number_or_range (&state);
14964 if (num == 0)
14965 {
14966 warning (_("bad breakpoint number at or near '%s'"), p);
14967 }
14968 else
14969 {
14970 ALL_BREAKPOINTS_SAFE (b, tmp)
14971 if (b->number == num)
14972 {
14973 match = 1;
14974 function (b, data);
14975 break;
14976 }
14977 if (match == 0)
14978 printf_unfiltered (_("No breakpoint number %d.\n"), num);
14979 }
14980 }
14981 }
14982
14983 static struct bp_location *
14984 find_location_by_number (char *number)
14985 {
14986 char *dot = strchr (number, '.');
14987 char *p1;
14988 int bp_num;
14989 int loc_num;
14990 struct breakpoint *b;
14991 struct bp_location *loc;
14992
14993 *dot = '\0';
14994
14995 p1 = number;
14996 bp_num = get_number (&p1);
14997 if (bp_num == 0)
14998 error (_("Bad breakpoint number '%s'"), number);
14999
15000 ALL_BREAKPOINTS (b)
15001 if (b->number == bp_num)
15002 {
15003 break;
15004 }
15005
15006 if (!b || b->number != bp_num)
15007 error (_("Bad breakpoint number '%s'"), number);
15008
15009 p1 = dot+1;
15010 loc_num = get_number (&p1);
15011 if (loc_num == 0)
15012 error (_("Bad breakpoint location number '%s'"), number);
15013
15014 --loc_num;
15015 loc = b->loc;
15016 for (;loc_num && loc; --loc_num, loc = loc->next)
15017 ;
15018 if (!loc)
15019 error (_("Bad breakpoint location number '%s'"), dot+1);
15020
15021 return loc;
15022 }
15023
15024
15025 /* Set ignore-count of breakpoint number BPTNUM to COUNT.
15026 If from_tty is nonzero, it prints a message to that effect,
15027 which ends with a period (no newline). */
15028
15029 void
15030 disable_breakpoint (struct breakpoint *bpt)
15031 {
15032 /* Never disable a watchpoint scope breakpoint; we want to
15033 hit them when we leave scope so we can delete both the
15034 watchpoint and its scope breakpoint at that time. */
15035 if (bpt->type == bp_watchpoint_scope)
15036 return;
15037
15038 /* You can't disable permanent breakpoints. */
15039 if (bpt->enable_state == bp_permanent)
15040 return;
15041
15042 bpt->enable_state = bp_disabled;
15043
15044 /* Mark breakpoint locations modified. */
15045 mark_breakpoint_modified (bpt);
15046
15047 if (target_supports_enable_disable_tracepoint ()
15048 && current_trace_status ()->running && is_tracepoint (bpt))
15049 {
15050 struct bp_location *location;
15051
15052 for (location = bpt->loc; location; location = location->next)
15053 target_disable_tracepoint (location);
15054 }
15055
15056 update_global_location_list (UGLL_DONT_INSERT);
15057
15058 observer_notify_breakpoint_modified (bpt);
15059 }
15060
15061 /* A callback for iterate_over_related_breakpoints. */
15062
15063 static void
15064 do_disable_breakpoint (struct breakpoint *b, void *ignore)
15065 {
15066 disable_breakpoint (b);
15067 }
15068
15069 /* A callback for map_breakpoint_numbers that calls
15070 disable_breakpoint. */
15071
15072 static void
15073 do_map_disable_breakpoint (struct breakpoint *b, void *ignore)
15074 {
15075 iterate_over_related_breakpoints (b, do_disable_breakpoint, NULL);
15076 }
15077
15078 static void
15079 disable_command (char *args, int from_tty)
15080 {
15081 if (args == 0)
15082 {
15083 struct breakpoint *bpt;
15084
15085 ALL_BREAKPOINTS (bpt)
15086 if (user_breakpoint_p (bpt))
15087 disable_breakpoint (bpt);
15088 }
15089 else
15090 {
15091 char *num = extract_arg (&args);
15092
15093 while (num)
15094 {
15095 if (strchr (num, '.'))
15096 {
15097 struct bp_location *loc = find_location_by_number (num);
15098
15099 if (loc)
15100 {
15101 if (loc->enabled)
15102 {
15103 loc->enabled = 0;
15104 mark_breakpoint_location_modified (loc);
15105 }
15106 if (target_supports_enable_disable_tracepoint ()
15107 && current_trace_status ()->running && loc->owner
15108 && is_tracepoint (loc->owner))
15109 target_disable_tracepoint (loc);
15110 }
15111 update_global_location_list (UGLL_DONT_INSERT);
15112 }
15113 else
15114 map_breakpoint_numbers (num, do_map_disable_breakpoint, NULL);
15115 num = extract_arg (&args);
15116 }
15117 }
15118 }
15119
15120 static void
15121 enable_breakpoint_disp (struct breakpoint *bpt, enum bpdisp disposition,
15122 int count)
15123 {
15124 int target_resources_ok;
15125
15126 if (bpt->type == bp_hardware_breakpoint)
15127 {
15128 int i;
15129 i = hw_breakpoint_used_count ();
15130 target_resources_ok =
15131 target_can_use_hardware_watchpoint (bp_hardware_breakpoint,
15132 i + 1, 0);
15133 if (target_resources_ok == 0)
15134 error (_("No hardware breakpoint support in the target."));
15135 else if (target_resources_ok < 0)
15136 error (_("Hardware breakpoints used exceeds limit."));
15137 }
15138
15139 if (is_watchpoint (bpt))
15140 {
15141 /* Initialize it just to avoid a GCC false warning. */
15142 enum enable_state orig_enable_state = 0;
15143 volatile struct gdb_exception e;
15144
15145 TRY_CATCH (e, RETURN_MASK_ALL)
15146 {
15147 struct watchpoint *w = (struct watchpoint *) bpt;
15148
15149 orig_enable_state = bpt->enable_state;
15150 bpt->enable_state = bp_enabled;
15151 update_watchpoint (w, 1 /* reparse */);
15152 }
15153 if (e.reason < 0)
15154 {
15155 bpt->enable_state = orig_enable_state;
15156 exception_fprintf (gdb_stderr, e, _("Cannot enable watchpoint %d: "),
15157 bpt->number);
15158 return;
15159 }
15160 }
15161
15162 if (bpt->enable_state != bp_permanent)
15163 bpt->enable_state = bp_enabled;
15164
15165 bpt->enable_state = bp_enabled;
15166
15167 /* Mark breakpoint locations modified. */
15168 mark_breakpoint_modified (bpt);
15169
15170 if (target_supports_enable_disable_tracepoint ()
15171 && current_trace_status ()->running && is_tracepoint (bpt))
15172 {
15173 struct bp_location *location;
15174
15175 for (location = bpt->loc; location; location = location->next)
15176 target_enable_tracepoint (location);
15177 }
15178
15179 bpt->disposition = disposition;
15180 bpt->enable_count = count;
15181 update_global_location_list (UGLL_MAY_INSERT);
15182
15183 observer_notify_breakpoint_modified (bpt);
15184 }
15185
15186
15187 void
15188 enable_breakpoint (struct breakpoint *bpt)
15189 {
15190 enable_breakpoint_disp (bpt, bpt->disposition, 0);
15191 }
15192
15193 static void
15194 do_enable_breakpoint (struct breakpoint *bpt, void *arg)
15195 {
15196 enable_breakpoint (bpt);
15197 }
15198
15199 /* A callback for map_breakpoint_numbers that calls
15200 enable_breakpoint. */
15201
15202 static void
15203 do_map_enable_breakpoint (struct breakpoint *b, void *ignore)
15204 {
15205 iterate_over_related_breakpoints (b, do_enable_breakpoint, NULL);
15206 }
15207
15208 /* The enable command enables the specified breakpoints (or all defined
15209 breakpoints) so they once again become (or continue to be) effective
15210 in stopping the inferior. */
15211
15212 static void
15213 enable_command (char *args, int from_tty)
15214 {
15215 if (args == 0)
15216 {
15217 struct breakpoint *bpt;
15218
15219 ALL_BREAKPOINTS (bpt)
15220 if (user_breakpoint_p (bpt))
15221 enable_breakpoint (bpt);
15222 }
15223 else
15224 {
15225 char *num = extract_arg (&args);
15226
15227 while (num)
15228 {
15229 if (strchr (num, '.'))
15230 {
15231 struct bp_location *loc = find_location_by_number (num);
15232
15233 if (loc)
15234 {
15235 if (!loc->enabled)
15236 {
15237 loc->enabled = 1;
15238 mark_breakpoint_location_modified (loc);
15239 }
15240 if (target_supports_enable_disable_tracepoint ()
15241 && current_trace_status ()->running && loc->owner
15242 && is_tracepoint (loc->owner))
15243 target_enable_tracepoint (loc);
15244 }
15245 update_global_location_list (UGLL_MAY_INSERT);
15246 }
15247 else
15248 map_breakpoint_numbers (num, do_map_enable_breakpoint, NULL);
15249 num = extract_arg (&args);
15250 }
15251 }
15252 }
15253
15254 /* This struct packages up disposition data for application to multiple
15255 breakpoints. */
15256
15257 struct disp_data
15258 {
15259 enum bpdisp disp;
15260 int count;
15261 };
15262
15263 static void
15264 do_enable_breakpoint_disp (struct breakpoint *bpt, void *arg)
15265 {
15266 struct disp_data disp_data = *(struct disp_data *) arg;
15267
15268 enable_breakpoint_disp (bpt, disp_data.disp, disp_data.count);
15269 }
15270
15271 static void
15272 do_map_enable_once_breakpoint (struct breakpoint *bpt, void *ignore)
15273 {
15274 struct disp_data disp = { disp_disable, 1 };
15275
15276 iterate_over_related_breakpoints (bpt, do_enable_breakpoint_disp, &disp);
15277 }
15278
15279 static void
15280 enable_once_command (char *args, int from_tty)
15281 {
15282 map_breakpoint_numbers (args, do_map_enable_once_breakpoint, NULL);
15283 }
15284
15285 static void
15286 do_map_enable_count_breakpoint (struct breakpoint *bpt, void *countptr)
15287 {
15288 struct disp_data disp = { disp_disable, *(int *) countptr };
15289
15290 iterate_over_related_breakpoints (bpt, do_enable_breakpoint_disp, &disp);
15291 }
15292
15293 static void
15294 enable_count_command (char *args, int from_tty)
15295 {
15296 int count = get_number (&args);
15297
15298 map_breakpoint_numbers (args, do_map_enable_count_breakpoint, &count);
15299 }
15300
15301 static void
15302 do_map_enable_delete_breakpoint (struct breakpoint *bpt, void *ignore)
15303 {
15304 struct disp_data disp = { disp_del, 1 };
15305
15306 iterate_over_related_breakpoints (bpt, do_enable_breakpoint_disp, &disp);
15307 }
15308
15309 static void
15310 enable_delete_command (char *args, int from_tty)
15311 {
15312 map_breakpoint_numbers (args, do_map_enable_delete_breakpoint, NULL);
15313 }
15314 \f
15315 static void
15316 set_breakpoint_cmd (char *args, int from_tty)
15317 {
15318 }
15319
15320 static void
15321 show_breakpoint_cmd (char *args, int from_tty)
15322 {
15323 }
15324
15325 /* Invalidate last known value of any hardware watchpoint if
15326 the memory which that value represents has been written to by
15327 GDB itself. */
15328
15329 static void
15330 invalidate_bp_value_on_memory_change (struct inferior *inferior,
15331 CORE_ADDR addr, ssize_t len,
15332 const bfd_byte *data)
15333 {
15334 struct breakpoint *bp;
15335
15336 ALL_BREAKPOINTS (bp)
15337 if (bp->enable_state == bp_enabled
15338 && bp->type == bp_hardware_watchpoint)
15339 {
15340 struct watchpoint *wp = (struct watchpoint *) bp;
15341
15342 if (wp->val_valid && wp->val)
15343 {
15344 struct bp_location *loc;
15345
15346 for (loc = bp->loc; loc != NULL; loc = loc->next)
15347 if (loc->loc_type == bp_loc_hardware_watchpoint
15348 && loc->address + loc->length > addr
15349 && addr + len > loc->address)
15350 {
15351 value_free (wp->val);
15352 wp->val = NULL;
15353 wp->val_valid = 0;
15354 }
15355 }
15356 }
15357 }
15358
15359 /* Create and insert a raw software breakpoint at PC. Return an
15360 identifier, which should be used to remove the breakpoint later.
15361 In general, places which call this should be using something on the
15362 breakpoint chain instead; this function should be eliminated
15363 someday. */
15364
15365 void *
15366 deprecated_insert_raw_breakpoint (struct gdbarch *gdbarch,
15367 struct address_space *aspace, CORE_ADDR pc)
15368 {
15369 struct bp_target_info *bp_tgt;
15370 struct bp_location *bl;
15371
15372 bp_tgt = XCNEW (struct bp_target_info);
15373
15374 bp_tgt->placed_address_space = aspace;
15375 bp_tgt->placed_address = pc;
15376
15377 /* If an unconditional non-raw breakpoint is already inserted at
15378 that location, there's no need to insert another. However, with
15379 target-side evaluation of breakpoint conditions, if the
15380 breakpoint that is currently inserted on the target is
15381 conditional, we need to make it unconditional. Note that a
15382 breakpoint with target-side commands is not reported even if
15383 unconditional, so we need to remove the commands from the target
15384 as well. */
15385 bl = find_non_raw_software_breakpoint_inserted_here (aspace, pc);
15386 if (bl != NULL
15387 && VEC_empty (agent_expr_p, bl->target_info.conditions)
15388 && VEC_empty (agent_expr_p, bl->target_info.tcommands))
15389 {
15390 bp_target_info_copy_insertion_state (bp_tgt, &bl->target_info);
15391 return bp_tgt;
15392 }
15393
15394 if (target_insert_breakpoint (gdbarch, bp_tgt) != 0)
15395 {
15396 /* Could not insert the breakpoint. */
15397 xfree (bp_tgt);
15398 return NULL;
15399 }
15400
15401 return bp_tgt;
15402 }
15403
15404 /* Remove a breakpoint BP inserted by
15405 deprecated_insert_raw_breakpoint. */
15406
15407 int
15408 deprecated_remove_raw_breakpoint (struct gdbarch *gdbarch, void *bp)
15409 {
15410 struct bp_target_info *bp_tgt = bp;
15411 struct address_space *aspace = bp_tgt->placed_address_space;
15412 CORE_ADDR address = bp_tgt->placed_address;
15413 struct bp_location *bl;
15414 int ret;
15415
15416 bl = find_non_raw_software_breakpoint_inserted_here (aspace, address);
15417
15418 /* Only remove the raw breakpoint if there are no other non-raw
15419 breakpoints still inserted at this location. Otherwise, we would
15420 be effectively disabling those breakpoints. */
15421 if (bl == NULL)
15422 ret = target_remove_breakpoint (gdbarch, bp_tgt);
15423 else if (!VEC_empty (agent_expr_p, bl->target_info.conditions)
15424 || !VEC_empty (agent_expr_p, bl->target_info.tcommands))
15425 {
15426 /* The target is evaluating conditions, and when we inserted the
15427 software single-step breakpoint, we had made the breakpoint
15428 unconditional and command-less on the target side. Reinsert
15429 to restore the conditions/commands. */
15430 ret = target_insert_breakpoint (bl->gdbarch, &bl->target_info);
15431 }
15432 else
15433 ret = 0;
15434
15435 xfree (bp_tgt);
15436
15437 return ret;
15438 }
15439
15440 /* Create and insert a breakpoint for software single step. */
15441
15442 void
15443 insert_single_step_breakpoint (struct gdbarch *gdbarch,
15444 struct address_space *aspace,
15445 CORE_ADDR next_pc)
15446 {
15447 void **bpt_p;
15448
15449 if (single_step_breakpoints[0] == NULL)
15450 {
15451 bpt_p = &single_step_breakpoints[0];
15452 single_step_gdbarch[0] = gdbarch;
15453 }
15454 else
15455 {
15456 gdb_assert (single_step_breakpoints[1] == NULL);
15457 bpt_p = &single_step_breakpoints[1];
15458 single_step_gdbarch[1] = gdbarch;
15459 }
15460
15461 /* NOTE drow/2006-04-11: A future improvement to this function would
15462 be to only create the breakpoints once, and actually put them on
15463 the breakpoint chain. That would let us use set_raw_breakpoint.
15464 We could adjust the addresses each time they were needed. Doing
15465 this requires corresponding changes elsewhere where single step
15466 breakpoints are handled, however. So, for now, we use this. */
15467
15468 *bpt_p = deprecated_insert_raw_breakpoint (gdbarch, aspace, next_pc);
15469 if (*bpt_p == NULL)
15470 error (_("Could not insert single-step breakpoint at %s"),
15471 paddress (gdbarch, next_pc));
15472 }
15473
15474 /* Check if the breakpoints used for software single stepping
15475 were inserted or not. */
15476
15477 int
15478 single_step_breakpoints_inserted (void)
15479 {
15480 return (single_step_breakpoints[0] != NULL
15481 || single_step_breakpoints[1] != NULL);
15482 }
15483
15484 /* Remove and delete any breakpoints used for software single step. */
15485
15486 void
15487 remove_single_step_breakpoints (void)
15488 {
15489 gdb_assert (single_step_breakpoints[0] != NULL);
15490
15491 /* See insert_single_step_breakpoint for more about this deprecated
15492 call. */
15493 deprecated_remove_raw_breakpoint (single_step_gdbarch[0],
15494 single_step_breakpoints[0]);
15495 single_step_gdbarch[0] = NULL;
15496 single_step_breakpoints[0] = NULL;
15497
15498 if (single_step_breakpoints[1] != NULL)
15499 {
15500 deprecated_remove_raw_breakpoint (single_step_gdbarch[1],
15501 single_step_breakpoints[1]);
15502 single_step_gdbarch[1] = NULL;
15503 single_step_breakpoints[1] = NULL;
15504 }
15505 }
15506
15507 /* Delete software single step breakpoints without removing them from
15508 the inferior. This is intended to be used if the inferior's address
15509 space where they were inserted is already gone, e.g. after exit or
15510 exec. */
15511
15512 void
15513 cancel_single_step_breakpoints (void)
15514 {
15515 int i;
15516
15517 for (i = 0; i < 2; i++)
15518 if (single_step_breakpoints[i])
15519 {
15520 xfree (single_step_breakpoints[i]);
15521 single_step_breakpoints[i] = NULL;
15522 single_step_gdbarch[i] = NULL;
15523 }
15524 }
15525
15526 /* Detach software single-step breakpoints from INFERIOR_PTID without
15527 removing them. */
15528
15529 static void
15530 detach_single_step_breakpoints (void)
15531 {
15532 int i;
15533
15534 for (i = 0; i < 2; i++)
15535 if (single_step_breakpoints[i])
15536 target_remove_breakpoint (single_step_gdbarch[i],
15537 single_step_breakpoints[i]);
15538 }
15539
15540 /* Find the software single-step breakpoint that inserted at PC.
15541 Returns its slot if found, and -1 if not found. */
15542
15543 static int
15544 find_single_step_breakpoint (struct address_space *aspace,
15545 CORE_ADDR pc)
15546 {
15547 int i;
15548
15549 for (i = 0; i < 2; i++)
15550 {
15551 struct bp_target_info *bp_tgt = single_step_breakpoints[i];
15552 if (bp_tgt
15553 && breakpoint_address_match (bp_tgt->placed_address_space,
15554 bp_tgt->placed_address,
15555 aspace, pc))
15556 return i;
15557 }
15558
15559 return -1;
15560 }
15561
15562 /* Check whether a software single-step breakpoint is inserted at
15563 PC. */
15564
15565 int
15566 single_step_breakpoint_inserted_here_p (struct address_space *aspace,
15567 CORE_ADDR pc)
15568 {
15569 return find_single_step_breakpoint (aspace, pc) >= 0;
15570 }
15571
15572 /* Returns 0 if 'bp' is NOT a syscall catchpoint,
15573 non-zero otherwise. */
15574 static int
15575 is_syscall_catchpoint_enabled (struct breakpoint *bp)
15576 {
15577 if (syscall_catchpoint_p (bp)
15578 && bp->enable_state != bp_disabled
15579 && bp->enable_state != bp_call_disabled)
15580 return 1;
15581 else
15582 return 0;
15583 }
15584
15585 int
15586 catch_syscall_enabled (void)
15587 {
15588 struct catch_syscall_inferior_data *inf_data
15589 = get_catch_syscall_inferior_data (current_inferior ());
15590
15591 return inf_data->total_syscalls_count != 0;
15592 }
15593
15594 int
15595 catching_syscall_number (int syscall_number)
15596 {
15597 struct breakpoint *bp;
15598
15599 ALL_BREAKPOINTS (bp)
15600 if (is_syscall_catchpoint_enabled (bp))
15601 {
15602 struct syscall_catchpoint *c = (struct syscall_catchpoint *) bp;
15603
15604 if (c->syscalls_to_be_caught)
15605 {
15606 int i, iter;
15607 for (i = 0;
15608 VEC_iterate (int, c->syscalls_to_be_caught, i, iter);
15609 i++)
15610 if (syscall_number == iter)
15611 return 1;
15612 }
15613 else
15614 return 1;
15615 }
15616
15617 return 0;
15618 }
15619
15620 /* Complete syscall names. Used by "catch syscall". */
15621 static VEC (char_ptr) *
15622 catch_syscall_completer (struct cmd_list_element *cmd,
15623 const char *text, const char *word)
15624 {
15625 const char **list = get_syscall_names ();
15626 VEC (char_ptr) *retlist
15627 = (list == NULL) ? NULL : complete_on_enum (list, word, word);
15628
15629 xfree (list);
15630 return retlist;
15631 }
15632
15633 /* Tracepoint-specific operations. */
15634
15635 /* Set tracepoint count to NUM. */
15636 static void
15637 set_tracepoint_count (int num)
15638 {
15639 tracepoint_count = num;
15640 set_internalvar_integer (lookup_internalvar ("tpnum"), num);
15641 }
15642
15643 static void
15644 trace_command (char *arg, int from_tty)
15645 {
15646 struct breakpoint_ops *ops;
15647 const char *arg_cp = arg;
15648
15649 if (arg && probe_linespec_to_ops (&arg_cp))
15650 ops = &tracepoint_probe_breakpoint_ops;
15651 else
15652 ops = &tracepoint_breakpoint_ops;
15653
15654 create_breakpoint (get_current_arch (),
15655 arg,
15656 NULL, 0, NULL, 1 /* parse arg */,
15657 0 /* tempflag */,
15658 bp_tracepoint /* type_wanted */,
15659 0 /* Ignore count */,
15660 pending_break_support,
15661 ops,
15662 from_tty,
15663 1 /* enabled */,
15664 0 /* internal */, 0);
15665 }
15666
15667 static void
15668 ftrace_command (char *arg, int from_tty)
15669 {
15670 create_breakpoint (get_current_arch (),
15671 arg,
15672 NULL, 0, NULL, 1 /* parse arg */,
15673 0 /* tempflag */,
15674 bp_fast_tracepoint /* type_wanted */,
15675 0 /* Ignore count */,
15676 pending_break_support,
15677 &tracepoint_breakpoint_ops,
15678 from_tty,
15679 1 /* enabled */,
15680 0 /* internal */, 0);
15681 }
15682
15683 /* strace command implementation. Creates a static tracepoint. */
15684
15685 static void
15686 strace_command (char *arg, int from_tty)
15687 {
15688 struct breakpoint_ops *ops;
15689
15690 /* Decide if we are dealing with a static tracepoint marker (`-m'),
15691 or with a normal static tracepoint. */
15692 if (arg && strncmp (arg, "-m", 2) == 0 && isspace (arg[2]))
15693 ops = &strace_marker_breakpoint_ops;
15694 else
15695 ops = &tracepoint_breakpoint_ops;
15696
15697 create_breakpoint (get_current_arch (),
15698 arg,
15699 NULL, 0, NULL, 1 /* parse arg */,
15700 0 /* tempflag */,
15701 bp_static_tracepoint /* type_wanted */,
15702 0 /* Ignore count */,
15703 pending_break_support,
15704 ops,
15705 from_tty,
15706 1 /* enabled */,
15707 0 /* internal */, 0);
15708 }
15709
15710 /* Set up a fake reader function that gets command lines from a linked
15711 list that was acquired during tracepoint uploading. */
15712
15713 static struct uploaded_tp *this_utp;
15714 static int next_cmd;
15715
15716 static char *
15717 read_uploaded_action (void)
15718 {
15719 char *rslt;
15720
15721 VEC_iterate (char_ptr, this_utp->cmd_strings, next_cmd, rslt);
15722
15723 next_cmd++;
15724
15725 return rslt;
15726 }
15727
15728 /* Given information about a tracepoint as recorded on a target (which
15729 can be either a live system or a trace file), attempt to create an
15730 equivalent GDB tracepoint. This is not a reliable process, since
15731 the target does not necessarily have all the information used when
15732 the tracepoint was originally defined. */
15733
15734 struct tracepoint *
15735 create_tracepoint_from_upload (struct uploaded_tp *utp)
15736 {
15737 char *addr_str, small_buf[100];
15738 struct tracepoint *tp;
15739
15740 if (utp->at_string)
15741 addr_str = utp->at_string;
15742 else
15743 {
15744 /* In the absence of a source location, fall back to raw
15745 address. Since there is no way to confirm that the address
15746 means the same thing as when the trace was started, warn the
15747 user. */
15748 warning (_("Uploaded tracepoint %d has no "
15749 "source location, using raw address"),
15750 utp->number);
15751 xsnprintf (small_buf, sizeof (small_buf), "*%s", hex_string (utp->addr));
15752 addr_str = small_buf;
15753 }
15754
15755 /* There's not much we can do with a sequence of bytecodes. */
15756 if (utp->cond && !utp->cond_string)
15757 warning (_("Uploaded tracepoint %d condition "
15758 "has no source form, ignoring it"),
15759 utp->number);
15760
15761 if (!create_breakpoint (get_current_arch (),
15762 addr_str,
15763 utp->cond_string, -1, NULL,
15764 0 /* parse cond/thread */,
15765 0 /* tempflag */,
15766 utp->type /* type_wanted */,
15767 0 /* Ignore count */,
15768 pending_break_support,
15769 &tracepoint_breakpoint_ops,
15770 0 /* from_tty */,
15771 utp->enabled /* enabled */,
15772 0 /* internal */,
15773 CREATE_BREAKPOINT_FLAGS_INSERTED))
15774 return NULL;
15775
15776 /* Get the tracepoint we just created. */
15777 tp = get_tracepoint (tracepoint_count);
15778 gdb_assert (tp != NULL);
15779
15780 if (utp->pass > 0)
15781 {
15782 xsnprintf (small_buf, sizeof (small_buf), "%d %d", utp->pass,
15783 tp->base.number);
15784
15785 trace_pass_command (small_buf, 0);
15786 }
15787
15788 /* If we have uploaded versions of the original commands, set up a
15789 special-purpose "reader" function and call the usual command line
15790 reader, then pass the result to the breakpoint command-setting
15791 function. */
15792 if (!VEC_empty (char_ptr, utp->cmd_strings))
15793 {
15794 struct command_line *cmd_list;
15795
15796 this_utp = utp;
15797 next_cmd = 0;
15798
15799 cmd_list = read_command_lines_1 (read_uploaded_action, 1, NULL, NULL);
15800
15801 breakpoint_set_commands (&tp->base, cmd_list);
15802 }
15803 else if (!VEC_empty (char_ptr, utp->actions)
15804 || !VEC_empty (char_ptr, utp->step_actions))
15805 warning (_("Uploaded tracepoint %d actions "
15806 "have no source form, ignoring them"),
15807 utp->number);
15808
15809 /* Copy any status information that might be available. */
15810 tp->base.hit_count = utp->hit_count;
15811 tp->traceframe_usage = utp->traceframe_usage;
15812
15813 return tp;
15814 }
15815
15816 /* Print information on tracepoint number TPNUM_EXP, or all if
15817 omitted. */
15818
15819 static void
15820 tracepoints_info (char *args, int from_tty)
15821 {
15822 struct ui_out *uiout = current_uiout;
15823 int num_printed;
15824
15825 num_printed = breakpoint_1 (args, 0, is_tracepoint);
15826
15827 if (num_printed == 0)
15828 {
15829 if (args == NULL || *args == '\0')
15830 ui_out_message (uiout, 0, "No tracepoints.\n");
15831 else
15832 ui_out_message (uiout, 0, "No tracepoint matching '%s'.\n", args);
15833 }
15834
15835 default_collect_info ();
15836 }
15837
15838 /* The 'enable trace' command enables tracepoints.
15839 Not supported by all targets. */
15840 static void
15841 enable_trace_command (char *args, int from_tty)
15842 {
15843 enable_command (args, from_tty);
15844 }
15845
15846 /* The 'disable trace' command disables tracepoints.
15847 Not supported by all targets. */
15848 static void
15849 disable_trace_command (char *args, int from_tty)
15850 {
15851 disable_command (args, from_tty);
15852 }
15853
15854 /* Remove a tracepoint (or all if no argument). */
15855 static void
15856 delete_trace_command (char *arg, int from_tty)
15857 {
15858 struct breakpoint *b, *b_tmp;
15859
15860 dont_repeat ();
15861
15862 if (arg == 0)
15863 {
15864 int breaks_to_delete = 0;
15865
15866 /* Delete all breakpoints if no argument.
15867 Do not delete internal or call-dummy breakpoints, these
15868 have to be deleted with an explicit breakpoint number
15869 argument. */
15870 ALL_TRACEPOINTS (b)
15871 if (is_tracepoint (b) && user_breakpoint_p (b))
15872 {
15873 breaks_to_delete = 1;
15874 break;
15875 }
15876
15877 /* Ask user only if there are some breakpoints to delete. */
15878 if (!from_tty
15879 || (breaks_to_delete && query (_("Delete all tracepoints? "))))
15880 {
15881 ALL_BREAKPOINTS_SAFE (b, b_tmp)
15882 if (is_tracepoint (b) && user_breakpoint_p (b))
15883 delete_breakpoint (b);
15884 }
15885 }
15886 else
15887 map_breakpoint_numbers (arg, do_map_delete_breakpoint, NULL);
15888 }
15889
15890 /* Helper function for trace_pass_command. */
15891
15892 static void
15893 trace_pass_set_count (struct tracepoint *tp, int count, int from_tty)
15894 {
15895 tp->pass_count = count;
15896 observer_notify_breakpoint_modified (&tp->base);
15897 if (from_tty)
15898 printf_filtered (_("Setting tracepoint %d's passcount to %d\n"),
15899 tp->base.number, count);
15900 }
15901
15902 /* Set passcount for tracepoint.
15903
15904 First command argument is passcount, second is tracepoint number.
15905 If tracepoint number omitted, apply to most recently defined.
15906 Also accepts special argument "all". */
15907
15908 static void
15909 trace_pass_command (char *args, int from_tty)
15910 {
15911 struct tracepoint *t1;
15912 unsigned int count;
15913
15914 if (args == 0 || *args == 0)
15915 error (_("passcount command requires an "
15916 "argument (count + optional TP num)"));
15917
15918 count = strtoul (args, &args, 10); /* Count comes first, then TP num. */
15919
15920 args = skip_spaces (args);
15921 if (*args && strncasecmp (args, "all", 3) == 0)
15922 {
15923 struct breakpoint *b;
15924
15925 args += 3; /* Skip special argument "all". */
15926 if (*args)
15927 error (_("Junk at end of arguments."));
15928
15929 ALL_TRACEPOINTS (b)
15930 {
15931 t1 = (struct tracepoint *) b;
15932 trace_pass_set_count (t1, count, from_tty);
15933 }
15934 }
15935 else if (*args == '\0')
15936 {
15937 t1 = get_tracepoint_by_number (&args, NULL);
15938 if (t1)
15939 trace_pass_set_count (t1, count, from_tty);
15940 }
15941 else
15942 {
15943 struct get_number_or_range_state state;
15944
15945 init_number_or_range (&state, args);
15946 while (!state.finished)
15947 {
15948 t1 = get_tracepoint_by_number (&args, &state);
15949 if (t1)
15950 trace_pass_set_count (t1, count, from_tty);
15951 }
15952 }
15953 }
15954
15955 struct tracepoint *
15956 get_tracepoint (int num)
15957 {
15958 struct breakpoint *t;
15959
15960 ALL_TRACEPOINTS (t)
15961 if (t->number == num)
15962 return (struct tracepoint *) t;
15963
15964 return NULL;
15965 }
15966
15967 /* Find the tracepoint with the given target-side number (which may be
15968 different from the tracepoint number after disconnecting and
15969 reconnecting). */
15970
15971 struct tracepoint *
15972 get_tracepoint_by_number_on_target (int num)
15973 {
15974 struct breakpoint *b;
15975
15976 ALL_TRACEPOINTS (b)
15977 {
15978 struct tracepoint *t = (struct tracepoint *) b;
15979
15980 if (t->number_on_target == num)
15981 return t;
15982 }
15983
15984 return NULL;
15985 }
15986
15987 /* Utility: parse a tracepoint number and look it up in the list.
15988 If STATE is not NULL, use, get_number_or_range_state and ignore ARG.
15989 If the argument is missing, the most recent tracepoint
15990 (tracepoint_count) is returned. */
15991
15992 struct tracepoint *
15993 get_tracepoint_by_number (char **arg,
15994 struct get_number_or_range_state *state)
15995 {
15996 struct breakpoint *t;
15997 int tpnum;
15998 char *instring = arg == NULL ? NULL : *arg;
15999
16000 if (state)
16001 {
16002 gdb_assert (!state->finished);
16003 tpnum = get_number_or_range (state);
16004 }
16005 else if (arg == NULL || *arg == NULL || ! **arg)
16006 tpnum = tracepoint_count;
16007 else
16008 tpnum = get_number (arg);
16009
16010 if (tpnum <= 0)
16011 {
16012 if (instring && *instring)
16013 printf_filtered (_("bad tracepoint number at or near '%s'\n"),
16014 instring);
16015 else
16016 printf_filtered (_("No previous tracepoint\n"));
16017 return NULL;
16018 }
16019
16020 ALL_TRACEPOINTS (t)
16021 if (t->number == tpnum)
16022 {
16023 return (struct tracepoint *) t;
16024 }
16025
16026 printf_unfiltered ("No tracepoint number %d.\n", tpnum);
16027 return NULL;
16028 }
16029
16030 void
16031 print_recreate_thread (struct breakpoint *b, struct ui_file *fp)
16032 {
16033 if (b->thread != -1)
16034 fprintf_unfiltered (fp, " thread %d", b->thread);
16035
16036 if (b->task != 0)
16037 fprintf_unfiltered (fp, " task %d", b->task);
16038
16039 fprintf_unfiltered (fp, "\n");
16040 }
16041
16042 /* Save information on user settable breakpoints (watchpoints, etc) to
16043 a new script file named FILENAME. If FILTER is non-NULL, call it
16044 on each breakpoint and only include the ones for which it returns
16045 non-zero. */
16046
16047 static void
16048 save_breakpoints (char *filename, int from_tty,
16049 int (*filter) (const struct breakpoint *))
16050 {
16051 struct breakpoint *tp;
16052 int any = 0;
16053 struct cleanup *cleanup;
16054 struct ui_file *fp;
16055 int extra_trace_bits = 0;
16056
16057 if (filename == 0 || *filename == 0)
16058 error (_("Argument required (file name in which to save)"));
16059
16060 /* See if we have anything to save. */
16061 ALL_BREAKPOINTS (tp)
16062 {
16063 /* Skip internal and momentary breakpoints. */
16064 if (!user_breakpoint_p (tp))
16065 continue;
16066
16067 /* If we have a filter, only save the breakpoints it accepts. */
16068 if (filter && !filter (tp))
16069 continue;
16070
16071 any = 1;
16072
16073 if (is_tracepoint (tp))
16074 {
16075 extra_trace_bits = 1;
16076
16077 /* We can stop searching. */
16078 break;
16079 }
16080 }
16081
16082 if (!any)
16083 {
16084 warning (_("Nothing to save."));
16085 return;
16086 }
16087
16088 filename = tilde_expand (filename);
16089 cleanup = make_cleanup (xfree, filename);
16090 fp = gdb_fopen (filename, "w");
16091 if (!fp)
16092 error (_("Unable to open file '%s' for saving (%s)"),
16093 filename, safe_strerror (errno));
16094 make_cleanup_ui_file_delete (fp);
16095
16096 if (extra_trace_bits)
16097 save_trace_state_variables (fp);
16098
16099 ALL_BREAKPOINTS (tp)
16100 {
16101 /* Skip internal and momentary breakpoints. */
16102 if (!user_breakpoint_p (tp))
16103 continue;
16104
16105 /* If we have a filter, only save the breakpoints it accepts. */
16106 if (filter && !filter (tp))
16107 continue;
16108
16109 tp->ops->print_recreate (tp, fp);
16110
16111 /* Note, we can't rely on tp->number for anything, as we can't
16112 assume the recreated breakpoint numbers will match. Use $bpnum
16113 instead. */
16114
16115 if (tp->cond_string)
16116 fprintf_unfiltered (fp, " condition $bpnum %s\n", tp->cond_string);
16117
16118 if (tp->ignore_count)
16119 fprintf_unfiltered (fp, " ignore $bpnum %d\n", tp->ignore_count);
16120
16121 if (tp->type != bp_dprintf && tp->commands)
16122 {
16123 volatile struct gdb_exception ex;
16124
16125 fprintf_unfiltered (fp, " commands\n");
16126
16127 ui_out_redirect (current_uiout, fp);
16128 TRY_CATCH (ex, RETURN_MASK_ALL)
16129 {
16130 print_command_lines (current_uiout, tp->commands->commands, 2);
16131 }
16132 ui_out_redirect (current_uiout, NULL);
16133
16134 if (ex.reason < 0)
16135 throw_exception (ex);
16136
16137 fprintf_unfiltered (fp, " end\n");
16138 }
16139
16140 if (tp->enable_state == bp_disabled)
16141 fprintf_unfiltered (fp, "disable\n");
16142
16143 /* If this is a multi-location breakpoint, check if the locations
16144 should be individually disabled. Watchpoint locations are
16145 special, and not user visible. */
16146 if (!is_watchpoint (tp) && tp->loc && tp->loc->next)
16147 {
16148 struct bp_location *loc;
16149 int n = 1;
16150
16151 for (loc = tp->loc; loc != NULL; loc = loc->next, n++)
16152 if (!loc->enabled)
16153 fprintf_unfiltered (fp, "disable $bpnum.%d\n", n);
16154 }
16155 }
16156
16157 if (extra_trace_bits && *default_collect)
16158 fprintf_unfiltered (fp, "set default-collect %s\n", default_collect);
16159
16160 if (from_tty)
16161 printf_filtered (_("Saved to file '%s'.\n"), filename);
16162 do_cleanups (cleanup);
16163 }
16164
16165 /* The `save breakpoints' command. */
16166
16167 static void
16168 save_breakpoints_command (char *args, int from_tty)
16169 {
16170 save_breakpoints (args, from_tty, NULL);
16171 }
16172
16173 /* The `save tracepoints' command. */
16174
16175 static void
16176 save_tracepoints_command (char *args, int from_tty)
16177 {
16178 save_breakpoints (args, from_tty, is_tracepoint);
16179 }
16180
16181 /* Create a vector of all tracepoints. */
16182
16183 VEC(breakpoint_p) *
16184 all_tracepoints (void)
16185 {
16186 VEC(breakpoint_p) *tp_vec = 0;
16187 struct breakpoint *tp;
16188
16189 ALL_TRACEPOINTS (tp)
16190 {
16191 VEC_safe_push (breakpoint_p, tp_vec, tp);
16192 }
16193
16194 return tp_vec;
16195 }
16196
16197 \f
16198 /* This help string is used for the break, hbreak, tbreak and thbreak
16199 commands. It is defined as a macro to prevent duplication.
16200 COMMAND should be a string constant containing the name of the
16201 command. */
16202 #define BREAK_ARGS_HELP(command) \
16203 command" [PROBE_MODIFIER] [LOCATION] [thread THREADNUM] [if CONDITION]\n\
16204 PROBE_MODIFIER shall be present if the command is to be placed in a\n\
16205 probe point. Accepted values are `-probe' (for a generic, automatically\n\
16206 guessed probe type) or `-probe-stap' (for a SystemTap probe).\n\
16207 LOCATION may be a line number, function name, or \"*\" and an address.\n\
16208 If a line number is specified, break at start of code for that line.\n\
16209 If a function is specified, break at start of code for that function.\n\
16210 If an address is specified, break at that exact address.\n\
16211 With no LOCATION, uses current execution address of the selected\n\
16212 stack frame. This is useful for breaking on return to a stack frame.\n\
16213 \n\
16214 THREADNUM is the number from \"info threads\".\n\
16215 CONDITION is a boolean expression.\n\
16216 \n\
16217 Multiple breakpoints at one place are permitted, and useful if their\n\
16218 conditions are different.\n\
16219 \n\
16220 Do \"help breakpoints\" for info on other commands dealing with breakpoints."
16221
16222 /* List of subcommands for "catch". */
16223 static struct cmd_list_element *catch_cmdlist;
16224
16225 /* List of subcommands for "tcatch". */
16226 static struct cmd_list_element *tcatch_cmdlist;
16227
16228 void
16229 add_catch_command (char *name, char *docstring,
16230 cmd_sfunc_ftype *sfunc,
16231 completer_ftype *completer,
16232 void *user_data_catch,
16233 void *user_data_tcatch)
16234 {
16235 struct cmd_list_element *command;
16236
16237 command = add_cmd (name, class_breakpoint, NULL, docstring,
16238 &catch_cmdlist);
16239 set_cmd_sfunc (command, sfunc);
16240 set_cmd_context (command, user_data_catch);
16241 set_cmd_completer (command, completer);
16242
16243 command = add_cmd (name, class_breakpoint, NULL, docstring,
16244 &tcatch_cmdlist);
16245 set_cmd_sfunc (command, sfunc);
16246 set_cmd_context (command, user_data_tcatch);
16247 set_cmd_completer (command, completer);
16248 }
16249
16250 static void
16251 clear_syscall_counts (struct inferior *inf)
16252 {
16253 struct catch_syscall_inferior_data *inf_data
16254 = get_catch_syscall_inferior_data (inf);
16255
16256 inf_data->total_syscalls_count = 0;
16257 inf_data->any_syscall_count = 0;
16258 VEC_free (int, inf_data->syscalls_counts);
16259 }
16260
16261 static void
16262 save_command (char *arg, int from_tty)
16263 {
16264 printf_unfiltered (_("\"save\" must be followed by "
16265 "the name of a save subcommand.\n"));
16266 help_list (save_cmdlist, "save ", all_commands, gdb_stdout);
16267 }
16268
16269 struct breakpoint *
16270 iterate_over_breakpoints (int (*callback) (struct breakpoint *, void *),
16271 void *data)
16272 {
16273 struct breakpoint *b, *b_tmp;
16274
16275 ALL_BREAKPOINTS_SAFE (b, b_tmp)
16276 {
16277 if ((*callback) (b, data))
16278 return b;
16279 }
16280
16281 return NULL;
16282 }
16283
16284 /* Zero if any of the breakpoint's locations could be a location where
16285 functions have been inlined, nonzero otherwise. */
16286
16287 static int
16288 is_non_inline_function (struct breakpoint *b)
16289 {
16290 /* The shared library event breakpoint is set on the address of a
16291 non-inline function. */
16292 if (b->type == bp_shlib_event)
16293 return 1;
16294
16295 return 0;
16296 }
16297
16298 /* Nonzero if the specified PC cannot be a location where functions
16299 have been inlined. */
16300
16301 int
16302 pc_at_non_inline_function (struct address_space *aspace, CORE_ADDR pc,
16303 const struct target_waitstatus *ws)
16304 {
16305 struct breakpoint *b;
16306 struct bp_location *bl;
16307
16308 ALL_BREAKPOINTS (b)
16309 {
16310 if (!is_non_inline_function (b))
16311 continue;
16312
16313 for (bl = b->loc; bl != NULL; bl = bl->next)
16314 {
16315 if (!bl->shlib_disabled
16316 && bpstat_check_location (bl, aspace, pc, ws))
16317 return 1;
16318 }
16319 }
16320
16321 return 0;
16322 }
16323
16324 /* Remove any references to OBJFILE which is going to be freed. */
16325
16326 void
16327 breakpoint_free_objfile (struct objfile *objfile)
16328 {
16329 struct bp_location **locp, *loc;
16330
16331 ALL_BP_LOCATIONS (loc, locp)
16332 if (loc->symtab != NULL && loc->symtab->objfile == objfile)
16333 loc->symtab = NULL;
16334 }
16335
16336 void
16337 initialize_breakpoint_ops (void)
16338 {
16339 static int initialized = 0;
16340
16341 struct breakpoint_ops *ops;
16342
16343 if (initialized)
16344 return;
16345 initialized = 1;
16346
16347 /* The breakpoint_ops structure to be inherit by all kinds of
16348 breakpoints (real breakpoints, i.e., user "break" breakpoints,
16349 internal and momentary breakpoints, etc.). */
16350 ops = &bkpt_base_breakpoint_ops;
16351 *ops = base_breakpoint_ops;
16352 ops->re_set = bkpt_re_set;
16353 ops->insert_location = bkpt_insert_location;
16354 ops->remove_location = bkpt_remove_location;
16355 ops->breakpoint_hit = bkpt_breakpoint_hit;
16356 ops->create_sals_from_address = bkpt_create_sals_from_address;
16357 ops->create_breakpoints_sal = bkpt_create_breakpoints_sal;
16358 ops->decode_linespec = bkpt_decode_linespec;
16359
16360 /* The breakpoint_ops structure to be used in regular breakpoints. */
16361 ops = &bkpt_breakpoint_ops;
16362 *ops = bkpt_base_breakpoint_ops;
16363 ops->re_set = bkpt_re_set;
16364 ops->resources_needed = bkpt_resources_needed;
16365 ops->print_it = bkpt_print_it;
16366 ops->print_mention = bkpt_print_mention;
16367 ops->print_recreate = bkpt_print_recreate;
16368
16369 /* Ranged breakpoints. */
16370 ops = &ranged_breakpoint_ops;
16371 *ops = bkpt_breakpoint_ops;
16372 ops->breakpoint_hit = breakpoint_hit_ranged_breakpoint;
16373 ops->resources_needed = resources_needed_ranged_breakpoint;
16374 ops->print_it = print_it_ranged_breakpoint;
16375 ops->print_one = print_one_ranged_breakpoint;
16376 ops->print_one_detail = print_one_detail_ranged_breakpoint;
16377 ops->print_mention = print_mention_ranged_breakpoint;
16378 ops->print_recreate = print_recreate_ranged_breakpoint;
16379
16380 /* Internal breakpoints. */
16381 ops = &internal_breakpoint_ops;
16382 *ops = bkpt_base_breakpoint_ops;
16383 ops->re_set = internal_bkpt_re_set;
16384 ops->check_status = internal_bkpt_check_status;
16385 ops->print_it = internal_bkpt_print_it;
16386 ops->print_mention = internal_bkpt_print_mention;
16387
16388 /* Momentary breakpoints. */
16389 ops = &momentary_breakpoint_ops;
16390 *ops = bkpt_base_breakpoint_ops;
16391 ops->re_set = momentary_bkpt_re_set;
16392 ops->check_status = momentary_bkpt_check_status;
16393 ops->print_it = momentary_bkpt_print_it;
16394 ops->print_mention = momentary_bkpt_print_mention;
16395
16396 /* Momentary breakpoints for bp_longjmp and bp_exception. */
16397 ops = &longjmp_breakpoint_ops;
16398 *ops = momentary_breakpoint_ops;
16399 ops->dtor = longjmp_bkpt_dtor;
16400
16401 /* Probe breakpoints. */
16402 ops = &bkpt_probe_breakpoint_ops;
16403 *ops = bkpt_breakpoint_ops;
16404 ops->insert_location = bkpt_probe_insert_location;
16405 ops->remove_location = bkpt_probe_remove_location;
16406 ops->create_sals_from_address = bkpt_probe_create_sals_from_address;
16407 ops->decode_linespec = bkpt_probe_decode_linespec;
16408
16409 /* Watchpoints. */
16410 ops = &watchpoint_breakpoint_ops;
16411 *ops = base_breakpoint_ops;
16412 ops->dtor = dtor_watchpoint;
16413 ops->re_set = re_set_watchpoint;
16414 ops->insert_location = insert_watchpoint;
16415 ops->remove_location = remove_watchpoint;
16416 ops->breakpoint_hit = breakpoint_hit_watchpoint;
16417 ops->check_status = check_status_watchpoint;
16418 ops->resources_needed = resources_needed_watchpoint;
16419 ops->works_in_software_mode = works_in_software_mode_watchpoint;
16420 ops->print_it = print_it_watchpoint;
16421 ops->print_mention = print_mention_watchpoint;
16422 ops->print_recreate = print_recreate_watchpoint;
16423 ops->explains_signal = explains_signal_watchpoint;
16424
16425 /* Masked watchpoints. */
16426 ops = &masked_watchpoint_breakpoint_ops;
16427 *ops = watchpoint_breakpoint_ops;
16428 ops->insert_location = insert_masked_watchpoint;
16429 ops->remove_location = remove_masked_watchpoint;
16430 ops->resources_needed = resources_needed_masked_watchpoint;
16431 ops->works_in_software_mode = works_in_software_mode_masked_watchpoint;
16432 ops->print_it = print_it_masked_watchpoint;
16433 ops->print_one_detail = print_one_detail_masked_watchpoint;
16434 ops->print_mention = print_mention_masked_watchpoint;
16435 ops->print_recreate = print_recreate_masked_watchpoint;
16436
16437 /* Tracepoints. */
16438 ops = &tracepoint_breakpoint_ops;
16439 *ops = base_breakpoint_ops;
16440 ops->re_set = tracepoint_re_set;
16441 ops->breakpoint_hit = tracepoint_breakpoint_hit;
16442 ops->print_one_detail = tracepoint_print_one_detail;
16443 ops->print_mention = tracepoint_print_mention;
16444 ops->print_recreate = tracepoint_print_recreate;
16445 ops->create_sals_from_address = tracepoint_create_sals_from_address;
16446 ops->create_breakpoints_sal = tracepoint_create_breakpoints_sal;
16447 ops->decode_linespec = tracepoint_decode_linespec;
16448
16449 /* Probe tracepoints. */
16450 ops = &tracepoint_probe_breakpoint_ops;
16451 *ops = tracepoint_breakpoint_ops;
16452 ops->create_sals_from_address = tracepoint_probe_create_sals_from_address;
16453 ops->decode_linespec = tracepoint_probe_decode_linespec;
16454
16455 /* Static tracepoints with marker (`-m'). */
16456 ops = &strace_marker_breakpoint_ops;
16457 *ops = tracepoint_breakpoint_ops;
16458 ops->create_sals_from_address = strace_marker_create_sals_from_address;
16459 ops->create_breakpoints_sal = strace_marker_create_breakpoints_sal;
16460 ops->decode_linespec = strace_marker_decode_linespec;
16461
16462 /* Fork catchpoints. */
16463 ops = &catch_fork_breakpoint_ops;
16464 *ops = base_breakpoint_ops;
16465 ops->insert_location = insert_catch_fork;
16466 ops->remove_location = remove_catch_fork;
16467 ops->breakpoint_hit = breakpoint_hit_catch_fork;
16468 ops->print_it = print_it_catch_fork;
16469 ops->print_one = print_one_catch_fork;
16470 ops->print_mention = print_mention_catch_fork;
16471 ops->print_recreate = print_recreate_catch_fork;
16472
16473 /* Vfork catchpoints. */
16474 ops = &catch_vfork_breakpoint_ops;
16475 *ops = base_breakpoint_ops;
16476 ops->insert_location = insert_catch_vfork;
16477 ops->remove_location = remove_catch_vfork;
16478 ops->breakpoint_hit = breakpoint_hit_catch_vfork;
16479 ops->print_it = print_it_catch_vfork;
16480 ops->print_one = print_one_catch_vfork;
16481 ops->print_mention = print_mention_catch_vfork;
16482 ops->print_recreate = print_recreate_catch_vfork;
16483
16484 /* Exec catchpoints. */
16485 ops = &catch_exec_breakpoint_ops;
16486 *ops = base_breakpoint_ops;
16487 ops->dtor = dtor_catch_exec;
16488 ops->insert_location = insert_catch_exec;
16489 ops->remove_location = remove_catch_exec;
16490 ops->breakpoint_hit = breakpoint_hit_catch_exec;
16491 ops->print_it = print_it_catch_exec;
16492 ops->print_one = print_one_catch_exec;
16493 ops->print_mention = print_mention_catch_exec;
16494 ops->print_recreate = print_recreate_catch_exec;
16495
16496 /* Syscall catchpoints. */
16497 ops = &catch_syscall_breakpoint_ops;
16498 *ops = base_breakpoint_ops;
16499 ops->dtor = dtor_catch_syscall;
16500 ops->insert_location = insert_catch_syscall;
16501 ops->remove_location = remove_catch_syscall;
16502 ops->breakpoint_hit = breakpoint_hit_catch_syscall;
16503 ops->print_it = print_it_catch_syscall;
16504 ops->print_one = print_one_catch_syscall;
16505 ops->print_mention = print_mention_catch_syscall;
16506 ops->print_recreate = print_recreate_catch_syscall;
16507
16508 /* Solib-related catchpoints. */
16509 ops = &catch_solib_breakpoint_ops;
16510 *ops = base_breakpoint_ops;
16511 ops->dtor = dtor_catch_solib;
16512 ops->insert_location = insert_catch_solib;
16513 ops->remove_location = remove_catch_solib;
16514 ops->breakpoint_hit = breakpoint_hit_catch_solib;
16515 ops->check_status = check_status_catch_solib;
16516 ops->print_it = print_it_catch_solib;
16517 ops->print_one = print_one_catch_solib;
16518 ops->print_mention = print_mention_catch_solib;
16519 ops->print_recreate = print_recreate_catch_solib;
16520
16521 ops = &dprintf_breakpoint_ops;
16522 *ops = bkpt_base_breakpoint_ops;
16523 ops->re_set = dprintf_re_set;
16524 ops->resources_needed = bkpt_resources_needed;
16525 ops->print_it = bkpt_print_it;
16526 ops->print_mention = bkpt_print_mention;
16527 ops->print_recreate = dprintf_print_recreate;
16528 ops->after_condition_true = dprintf_after_condition_true;
16529 ops->breakpoint_hit = dprintf_breakpoint_hit;
16530 }
16531
16532 /* Chain containing all defined "enable breakpoint" subcommands. */
16533
16534 static struct cmd_list_element *enablebreaklist = NULL;
16535
16536 void
16537 _initialize_breakpoint (void)
16538 {
16539 struct cmd_list_element *c;
16540
16541 initialize_breakpoint_ops ();
16542
16543 observer_attach_solib_unloaded (disable_breakpoints_in_unloaded_shlib);
16544 observer_attach_free_objfile (disable_breakpoints_in_freed_objfile);
16545 observer_attach_inferior_exit (clear_syscall_counts);
16546 observer_attach_memory_changed (invalidate_bp_value_on_memory_change);
16547
16548 breakpoint_objfile_key
16549 = register_objfile_data_with_cleanup (NULL, free_breakpoint_probes);
16550
16551 catch_syscall_inferior_data
16552 = register_inferior_data_with_cleanup (NULL,
16553 catch_syscall_inferior_data_cleanup);
16554
16555 breakpoint_chain = 0;
16556 /* Don't bother to call set_breakpoint_count. $bpnum isn't useful
16557 before a breakpoint is set. */
16558 breakpoint_count = 0;
16559
16560 tracepoint_count = 0;
16561
16562 add_com ("ignore", class_breakpoint, ignore_command, _("\
16563 Set ignore-count of breakpoint number N to COUNT.\n\
16564 Usage is `ignore N COUNT'."));
16565 if (xdb_commands)
16566 add_com_alias ("bc", "ignore", class_breakpoint, 1);
16567
16568 add_com ("commands", class_breakpoint, commands_command, _("\
16569 Set commands to be executed when a breakpoint is hit.\n\
16570 Give breakpoint number as argument after \"commands\".\n\
16571 With no argument, the targeted breakpoint is the last one set.\n\
16572 The commands themselves follow starting on the next line.\n\
16573 Type a line containing \"end\" to indicate the end of them.\n\
16574 Give \"silent\" as the first line to make the breakpoint silent;\n\
16575 then no output is printed when it is hit, except what the commands print."));
16576
16577 c = add_com ("condition", class_breakpoint, condition_command, _("\
16578 Specify breakpoint number N to break only if COND is true.\n\
16579 Usage is `condition N COND', where N is an integer and COND is an\n\
16580 expression to be evaluated whenever breakpoint N is reached."));
16581 set_cmd_completer (c, condition_completer);
16582
16583 c = add_com ("tbreak", class_breakpoint, tbreak_command, _("\
16584 Set a temporary breakpoint.\n\
16585 Like \"break\" except the breakpoint is only temporary,\n\
16586 so it will be deleted when hit. Equivalent to \"break\" followed\n\
16587 by using \"enable delete\" on the breakpoint number.\n\
16588 \n"
16589 BREAK_ARGS_HELP ("tbreak")));
16590 set_cmd_completer (c, location_completer);
16591
16592 c = add_com ("hbreak", class_breakpoint, hbreak_command, _("\
16593 Set a hardware assisted breakpoint.\n\
16594 Like \"break\" except the breakpoint requires hardware support,\n\
16595 some target hardware may not have this support.\n\
16596 \n"
16597 BREAK_ARGS_HELP ("hbreak")));
16598 set_cmd_completer (c, location_completer);
16599
16600 c = add_com ("thbreak", class_breakpoint, thbreak_command, _("\
16601 Set a temporary hardware assisted breakpoint.\n\
16602 Like \"hbreak\" except the breakpoint is only temporary,\n\
16603 so it will be deleted when hit.\n\
16604 \n"
16605 BREAK_ARGS_HELP ("thbreak")));
16606 set_cmd_completer (c, location_completer);
16607
16608 add_prefix_cmd ("enable", class_breakpoint, enable_command, _("\
16609 Enable some breakpoints.\n\
16610 Give breakpoint numbers (separated by spaces) as arguments.\n\
16611 With no subcommand, breakpoints are enabled until you command otherwise.\n\
16612 This is used to cancel the effect of the \"disable\" command.\n\
16613 With a subcommand you can enable temporarily."),
16614 &enablelist, "enable ", 1, &cmdlist);
16615 if (xdb_commands)
16616 add_com ("ab", class_breakpoint, enable_command, _("\
16617 Enable some breakpoints.\n\
16618 Give breakpoint numbers (separated by spaces) as arguments.\n\
16619 With no subcommand, breakpoints are enabled until you command otherwise.\n\
16620 This is used to cancel the effect of the \"disable\" command.\n\
16621 With a subcommand you can enable temporarily."));
16622
16623 add_com_alias ("en", "enable", class_breakpoint, 1);
16624
16625 add_prefix_cmd ("breakpoints", class_breakpoint, enable_command, _("\
16626 Enable some breakpoints.\n\
16627 Give breakpoint numbers (separated by spaces) as arguments.\n\
16628 This is used to cancel the effect of the \"disable\" command.\n\
16629 May be abbreviated to simply \"enable\".\n"),
16630 &enablebreaklist, "enable breakpoints ", 1, &enablelist);
16631
16632 add_cmd ("once", no_class, enable_once_command, _("\
16633 Enable breakpoints for one hit. Give breakpoint numbers.\n\
16634 If a breakpoint is hit while enabled in this fashion, it becomes disabled."),
16635 &enablebreaklist);
16636
16637 add_cmd ("delete", no_class, enable_delete_command, _("\
16638 Enable breakpoints and delete when hit. Give breakpoint numbers.\n\
16639 If a breakpoint is hit while enabled in this fashion, it is deleted."),
16640 &enablebreaklist);
16641
16642 add_cmd ("count", no_class, enable_count_command, _("\
16643 Enable breakpoints for COUNT hits. Give count and then breakpoint numbers.\n\
16644 If a breakpoint is hit while enabled in this fashion,\n\
16645 the count is decremented; when it reaches zero, the breakpoint is disabled."),
16646 &enablebreaklist);
16647
16648 add_cmd ("delete", no_class, enable_delete_command, _("\
16649 Enable breakpoints and delete when hit. Give breakpoint numbers.\n\
16650 If a breakpoint is hit while enabled in this fashion, it is deleted."),
16651 &enablelist);
16652
16653 add_cmd ("once", no_class, enable_once_command, _("\
16654 Enable breakpoints for one hit. Give breakpoint numbers.\n\
16655 If a breakpoint is hit while enabled in this fashion, it becomes disabled."),
16656 &enablelist);
16657
16658 add_cmd ("count", no_class, enable_count_command, _("\
16659 Enable breakpoints for COUNT hits. Give count and then breakpoint numbers.\n\
16660 If a breakpoint is hit while enabled in this fashion,\n\
16661 the count is decremented; when it reaches zero, the breakpoint is disabled."),
16662 &enablelist);
16663
16664 add_prefix_cmd ("disable", class_breakpoint, disable_command, _("\
16665 Disable some breakpoints.\n\
16666 Arguments are breakpoint numbers with spaces in between.\n\
16667 To disable all breakpoints, give no argument.\n\
16668 A disabled breakpoint is not forgotten, but has no effect until re-enabled."),
16669 &disablelist, "disable ", 1, &cmdlist);
16670 add_com_alias ("dis", "disable", class_breakpoint, 1);
16671 add_com_alias ("disa", "disable", class_breakpoint, 1);
16672 if (xdb_commands)
16673 add_com ("sb", class_breakpoint, disable_command, _("\
16674 Disable some breakpoints.\n\
16675 Arguments are breakpoint numbers with spaces in between.\n\
16676 To disable all breakpoints, give no argument.\n\
16677 A disabled breakpoint is not forgotten, but has no effect until re-enabled."));
16678
16679 add_cmd ("breakpoints", class_alias, disable_command, _("\
16680 Disable some breakpoints.\n\
16681 Arguments are breakpoint numbers with spaces in between.\n\
16682 To disable all breakpoints, give no argument.\n\
16683 A disabled breakpoint is not forgotten, but has no effect until re-enabled.\n\
16684 This command may be abbreviated \"disable\"."),
16685 &disablelist);
16686
16687 add_prefix_cmd ("delete", class_breakpoint, delete_command, _("\
16688 Delete some breakpoints or auto-display expressions.\n\
16689 Arguments are breakpoint numbers with spaces in between.\n\
16690 To delete all breakpoints, give no argument.\n\
16691 \n\
16692 Also a prefix command for deletion of other GDB objects.\n\
16693 The \"unset\" command is also an alias for \"delete\"."),
16694 &deletelist, "delete ", 1, &cmdlist);
16695 add_com_alias ("d", "delete", class_breakpoint, 1);
16696 add_com_alias ("del", "delete", class_breakpoint, 1);
16697 if (xdb_commands)
16698 add_com ("db", class_breakpoint, delete_command, _("\
16699 Delete some breakpoints.\n\
16700 Arguments are breakpoint numbers with spaces in between.\n\
16701 To delete all breakpoints, give no argument.\n"));
16702
16703 add_cmd ("breakpoints", class_alias, delete_command, _("\
16704 Delete some breakpoints or auto-display expressions.\n\
16705 Arguments are breakpoint numbers with spaces in between.\n\
16706 To delete all breakpoints, give no argument.\n\
16707 This command may be abbreviated \"delete\"."),
16708 &deletelist);
16709
16710 add_com ("clear", class_breakpoint, clear_command, _("\
16711 Clear breakpoint at specified line or function.\n\
16712 Argument may be line number, function name, or \"*\" and an address.\n\
16713 If line number is specified, all breakpoints in that line are cleared.\n\
16714 If function is specified, breakpoints at beginning of function are cleared.\n\
16715 If an address is specified, breakpoints at that address are cleared.\n\
16716 \n\
16717 With no argument, clears all breakpoints in the line that the selected frame\n\
16718 is executing in.\n\
16719 \n\
16720 See also the \"delete\" command which clears breakpoints by number."));
16721 add_com_alias ("cl", "clear", class_breakpoint, 1);
16722
16723 c = add_com ("break", class_breakpoint, break_command, _("\
16724 Set breakpoint at specified line or function.\n"
16725 BREAK_ARGS_HELP ("break")));
16726 set_cmd_completer (c, location_completer);
16727
16728 add_com_alias ("b", "break", class_run, 1);
16729 add_com_alias ("br", "break", class_run, 1);
16730 add_com_alias ("bre", "break", class_run, 1);
16731 add_com_alias ("brea", "break", class_run, 1);
16732
16733 if (xdb_commands)
16734 add_com_alias ("ba", "break", class_breakpoint, 1);
16735
16736 if (dbx_commands)
16737 {
16738 add_abbrev_prefix_cmd ("stop", class_breakpoint, stop_command, _("\
16739 Break in function/address or break at a line in the current file."),
16740 &stoplist, "stop ", 1, &cmdlist);
16741 add_cmd ("in", class_breakpoint, stopin_command,
16742 _("Break in function or address."), &stoplist);
16743 add_cmd ("at", class_breakpoint, stopat_command,
16744 _("Break at a line in the current file."), &stoplist);
16745 add_com ("status", class_info, breakpoints_info, _("\
16746 Status of user-settable breakpoints, or breakpoint number NUMBER.\n\
16747 The \"Type\" column indicates one of:\n\
16748 \tbreakpoint - normal breakpoint\n\
16749 \twatchpoint - watchpoint\n\
16750 The \"Disp\" column contains one of \"keep\", \"del\", or \"dis\" to indicate\n\
16751 the disposition of the breakpoint after it gets hit. \"dis\" means that the\n\
16752 breakpoint will be disabled. The \"Address\" and \"What\" columns indicate the\n\
16753 address and file/line number respectively.\n\
16754 \n\
16755 Convenience variable \"$_\" and default examine address for \"x\"\n\
16756 are set to the address of the last breakpoint listed unless the command\n\
16757 is prefixed with \"server \".\n\n\
16758 Convenience variable \"$bpnum\" contains the number of the last\n\
16759 breakpoint set."));
16760 }
16761
16762 add_info ("breakpoints", breakpoints_info, _("\
16763 Status of specified breakpoints (all user-settable breakpoints if no argument).\n\
16764 The \"Type\" column indicates one of:\n\
16765 \tbreakpoint - normal breakpoint\n\
16766 \twatchpoint - watchpoint\n\
16767 The \"Disp\" column contains one of \"keep\", \"del\", or \"dis\" to indicate\n\
16768 the disposition of the breakpoint after it gets hit. \"dis\" means that the\n\
16769 breakpoint will be disabled. The \"Address\" and \"What\" columns indicate the\n\
16770 address and file/line number respectively.\n\
16771 \n\
16772 Convenience variable \"$_\" and default examine address for \"x\"\n\
16773 are set to the address of the last breakpoint listed unless the command\n\
16774 is prefixed with \"server \".\n\n\
16775 Convenience variable \"$bpnum\" contains the number of the last\n\
16776 breakpoint set."));
16777
16778 add_info_alias ("b", "breakpoints", 1);
16779
16780 if (xdb_commands)
16781 add_com ("lb", class_breakpoint, breakpoints_info, _("\
16782 Status of user-settable breakpoints, or breakpoint number NUMBER.\n\
16783 The \"Type\" column indicates one of:\n\
16784 \tbreakpoint - normal breakpoint\n\
16785 \twatchpoint - watchpoint\n\
16786 The \"Disp\" column contains one of \"keep\", \"del\", or \"dis\" to indicate\n\
16787 the disposition of the breakpoint after it gets hit. \"dis\" means that the\n\
16788 breakpoint will be disabled. The \"Address\" and \"What\" columns indicate the\n\
16789 address and file/line number respectively.\n\
16790 \n\
16791 Convenience variable \"$_\" and default examine address for \"x\"\n\
16792 are set to the address of the last breakpoint listed unless the command\n\
16793 is prefixed with \"server \".\n\n\
16794 Convenience variable \"$bpnum\" contains the number of the last\n\
16795 breakpoint set."));
16796
16797 add_cmd ("breakpoints", class_maintenance, maintenance_info_breakpoints, _("\
16798 Status of all breakpoints, or breakpoint number NUMBER.\n\
16799 The \"Type\" column indicates one of:\n\
16800 \tbreakpoint - normal breakpoint\n\
16801 \twatchpoint - watchpoint\n\
16802 \tlongjmp - internal breakpoint used to step through longjmp()\n\
16803 \tlongjmp resume - internal breakpoint at the target of longjmp()\n\
16804 \tuntil - internal breakpoint used by the \"until\" command\n\
16805 \tfinish - internal breakpoint used by the \"finish\" command\n\
16806 The \"Disp\" column contains one of \"keep\", \"del\", or \"dis\" to indicate\n\
16807 the disposition of the breakpoint after it gets hit. \"dis\" means that the\n\
16808 breakpoint will be disabled. The \"Address\" and \"What\" columns indicate the\n\
16809 address and file/line number respectively.\n\
16810 \n\
16811 Convenience variable \"$_\" and default examine address for \"x\"\n\
16812 are set to the address of the last breakpoint listed unless the command\n\
16813 is prefixed with \"server \".\n\n\
16814 Convenience variable \"$bpnum\" contains the number of the last\n\
16815 breakpoint set."),
16816 &maintenanceinfolist);
16817
16818 add_prefix_cmd ("catch", class_breakpoint, catch_command, _("\
16819 Set catchpoints to catch events."),
16820 &catch_cmdlist, "catch ",
16821 0/*allow-unknown*/, &cmdlist);
16822
16823 add_prefix_cmd ("tcatch", class_breakpoint, tcatch_command, _("\
16824 Set temporary catchpoints to catch events."),
16825 &tcatch_cmdlist, "tcatch ",
16826 0/*allow-unknown*/, &cmdlist);
16827
16828 add_catch_command ("fork", _("Catch calls to fork."),
16829 catch_fork_command_1,
16830 NULL,
16831 (void *) (uintptr_t) catch_fork_permanent,
16832 (void *) (uintptr_t) catch_fork_temporary);
16833 add_catch_command ("vfork", _("Catch calls to vfork."),
16834 catch_fork_command_1,
16835 NULL,
16836 (void *) (uintptr_t) catch_vfork_permanent,
16837 (void *) (uintptr_t) catch_vfork_temporary);
16838 add_catch_command ("exec", _("Catch calls to exec."),
16839 catch_exec_command_1,
16840 NULL,
16841 CATCH_PERMANENT,
16842 CATCH_TEMPORARY);
16843 add_catch_command ("load", _("Catch loads of shared libraries.\n\
16844 Usage: catch load [REGEX]\n\
16845 If REGEX is given, only stop for libraries matching the regular expression."),
16846 catch_load_command_1,
16847 NULL,
16848 CATCH_PERMANENT,
16849 CATCH_TEMPORARY);
16850 add_catch_command ("unload", _("Catch unloads of shared libraries.\n\
16851 Usage: catch unload [REGEX]\n\
16852 If REGEX is given, only stop for libraries matching the regular expression."),
16853 catch_unload_command_1,
16854 NULL,
16855 CATCH_PERMANENT,
16856 CATCH_TEMPORARY);
16857 add_catch_command ("syscall", _("\
16858 Catch system calls by their names and/or numbers.\n\
16859 Arguments say which system calls to catch. If no arguments\n\
16860 are given, every system call will be caught.\n\
16861 Arguments, if given, should be one or more system call names\n\
16862 (if your system supports that), or system call numbers."),
16863 catch_syscall_command_1,
16864 catch_syscall_completer,
16865 CATCH_PERMANENT,
16866 CATCH_TEMPORARY);
16867
16868 c = add_com ("watch", class_breakpoint, watch_command, _("\
16869 Set a watchpoint for an expression.\n\
16870 Usage: watch [-l|-location] EXPRESSION\n\
16871 A watchpoint stops execution of your program whenever the value of\n\
16872 an expression changes.\n\
16873 If -l or -location is given, this evaluates EXPRESSION and watches\n\
16874 the memory to which it refers."));
16875 set_cmd_completer (c, expression_completer);
16876
16877 c = add_com ("rwatch", class_breakpoint, rwatch_command, _("\
16878 Set a read watchpoint for an expression.\n\
16879 Usage: rwatch [-l|-location] EXPRESSION\n\
16880 A watchpoint stops execution of your program whenever the value of\n\
16881 an expression is read.\n\
16882 If -l or -location is given, this evaluates EXPRESSION and watches\n\
16883 the memory to which it refers."));
16884 set_cmd_completer (c, expression_completer);
16885
16886 c = add_com ("awatch", class_breakpoint, awatch_command, _("\
16887 Set a watchpoint for an expression.\n\
16888 Usage: awatch [-l|-location] EXPRESSION\n\
16889 A watchpoint stops execution of your program whenever the value of\n\
16890 an expression is either read or written.\n\
16891 If -l or -location is given, this evaluates EXPRESSION and watches\n\
16892 the memory to which it refers."));
16893 set_cmd_completer (c, expression_completer);
16894
16895 add_info ("watchpoints", watchpoints_info, _("\
16896 Status of specified watchpoints (all watchpoints if no argument)."));
16897
16898 /* XXX: cagney/2005-02-23: This should be a boolean, and should
16899 respond to changes - contrary to the description. */
16900 add_setshow_zinteger_cmd ("can-use-hw-watchpoints", class_support,
16901 &can_use_hw_watchpoints, _("\
16902 Set debugger's willingness to use watchpoint hardware."), _("\
16903 Show debugger's willingness to use watchpoint hardware."), _("\
16904 If zero, gdb will not use hardware for new watchpoints, even if\n\
16905 such is available. (However, any hardware watchpoints that were\n\
16906 created before setting this to nonzero, will continue to use watchpoint\n\
16907 hardware.)"),
16908 NULL,
16909 show_can_use_hw_watchpoints,
16910 &setlist, &showlist);
16911
16912 can_use_hw_watchpoints = 1;
16913
16914 /* Tracepoint manipulation commands. */
16915
16916 c = add_com ("trace", class_breakpoint, trace_command, _("\
16917 Set a tracepoint at specified line or function.\n\
16918 \n"
16919 BREAK_ARGS_HELP ("trace") "\n\
16920 Do \"help tracepoints\" for info on other tracepoint commands."));
16921 set_cmd_completer (c, location_completer);
16922
16923 add_com_alias ("tp", "trace", class_alias, 0);
16924 add_com_alias ("tr", "trace", class_alias, 1);
16925 add_com_alias ("tra", "trace", class_alias, 1);
16926 add_com_alias ("trac", "trace", class_alias, 1);
16927
16928 c = add_com ("ftrace", class_breakpoint, ftrace_command, _("\
16929 Set a fast tracepoint at specified line or function.\n\
16930 \n"
16931 BREAK_ARGS_HELP ("ftrace") "\n\
16932 Do \"help tracepoints\" for info on other tracepoint commands."));
16933 set_cmd_completer (c, location_completer);
16934
16935 c = add_com ("strace", class_breakpoint, strace_command, _("\
16936 Set a static tracepoint at specified line, function or marker.\n\
16937 \n\
16938 strace [LOCATION] [if CONDITION]\n\
16939 LOCATION may be a line number, function name, \"*\" and an address,\n\
16940 or -m MARKER_ID.\n\
16941 If a line number is specified, probe the marker at start of code\n\
16942 for that line. If a function is specified, probe the marker at start\n\
16943 of code for that function. If an address is specified, probe the marker\n\
16944 at that exact address. If a marker id is specified, probe the marker\n\
16945 with that name. With no LOCATION, uses current execution address of\n\
16946 the selected stack frame.\n\
16947 Static tracepoints accept an extra collect action -- ``collect $_sdata''.\n\
16948 This collects arbitrary user data passed in the probe point call to the\n\
16949 tracing library. You can inspect it when analyzing the trace buffer,\n\
16950 by printing the $_sdata variable like any other convenience variable.\n\
16951 \n\
16952 CONDITION is a boolean expression.\n\
16953 \n\
16954 Multiple tracepoints at one place are permitted, and useful if their\n\
16955 conditions are different.\n\
16956 \n\
16957 Do \"help breakpoints\" for info on other commands dealing with breakpoints.\n\
16958 Do \"help tracepoints\" for info on other tracepoint commands."));
16959 set_cmd_completer (c, location_completer);
16960
16961 add_info ("tracepoints", tracepoints_info, _("\
16962 Status of specified tracepoints (all tracepoints if no argument).\n\
16963 Convenience variable \"$tpnum\" contains the number of the\n\
16964 last tracepoint set."));
16965
16966 add_info_alias ("tp", "tracepoints", 1);
16967
16968 add_cmd ("tracepoints", class_trace, delete_trace_command, _("\
16969 Delete specified tracepoints.\n\
16970 Arguments are tracepoint numbers, separated by spaces.\n\
16971 No argument means delete all tracepoints."),
16972 &deletelist);
16973 add_alias_cmd ("tr", "tracepoints", class_trace, 1, &deletelist);
16974
16975 c = add_cmd ("tracepoints", class_trace, disable_trace_command, _("\
16976 Disable specified tracepoints.\n\
16977 Arguments are tracepoint numbers, separated by spaces.\n\
16978 No argument means disable all tracepoints."),
16979 &disablelist);
16980 deprecate_cmd (c, "disable");
16981
16982 c = add_cmd ("tracepoints", class_trace, enable_trace_command, _("\
16983 Enable specified tracepoints.\n\
16984 Arguments are tracepoint numbers, separated by spaces.\n\
16985 No argument means enable all tracepoints."),
16986 &enablelist);
16987 deprecate_cmd (c, "enable");
16988
16989 add_com ("passcount", class_trace, trace_pass_command, _("\
16990 Set the passcount for a tracepoint.\n\
16991 The trace will end when the tracepoint has been passed 'count' times.\n\
16992 Usage: passcount COUNT TPNUM, where TPNUM may also be \"all\";\n\
16993 if TPNUM is omitted, passcount refers to the last tracepoint defined."));
16994
16995 add_prefix_cmd ("save", class_breakpoint, save_command,
16996 _("Save breakpoint definitions as a script."),
16997 &save_cmdlist, "save ",
16998 0/*allow-unknown*/, &cmdlist);
16999
17000 c = add_cmd ("breakpoints", class_breakpoint, save_breakpoints_command, _("\
17001 Save current breakpoint definitions as a script.\n\
17002 This includes all types of breakpoints (breakpoints, watchpoints,\n\
17003 catchpoints, tracepoints). Use the 'source' command in another debug\n\
17004 session to restore them."),
17005 &save_cmdlist);
17006 set_cmd_completer (c, filename_completer);
17007
17008 c = add_cmd ("tracepoints", class_trace, save_tracepoints_command, _("\
17009 Save current tracepoint definitions as a script.\n\
17010 Use the 'source' command in another debug session to restore them."),
17011 &save_cmdlist);
17012 set_cmd_completer (c, filename_completer);
17013
17014 c = add_com_alias ("save-tracepoints", "save tracepoints", class_trace, 0);
17015 deprecate_cmd (c, "save tracepoints");
17016
17017 add_prefix_cmd ("breakpoint", class_maintenance, set_breakpoint_cmd, _("\
17018 Breakpoint specific settings\n\
17019 Configure various breakpoint-specific variables such as\n\
17020 pending breakpoint behavior"),
17021 &breakpoint_set_cmdlist, "set breakpoint ",
17022 0/*allow-unknown*/, &setlist);
17023 add_prefix_cmd ("breakpoint", class_maintenance, show_breakpoint_cmd, _("\
17024 Breakpoint specific settings\n\
17025 Configure various breakpoint-specific variables such as\n\
17026 pending breakpoint behavior"),
17027 &breakpoint_show_cmdlist, "show breakpoint ",
17028 0/*allow-unknown*/, &showlist);
17029
17030 add_setshow_auto_boolean_cmd ("pending", no_class,
17031 &pending_break_support, _("\
17032 Set debugger's behavior regarding pending breakpoints."), _("\
17033 Show debugger's behavior regarding pending breakpoints."), _("\
17034 If on, an unrecognized breakpoint location will cause gdb to create a\n\
17035 pending breakpoint. If off, an unrecognized breakpoint location results in\n\
17036 an error. If auto, an unrecognized breakpoint location results in a\n\
17037 user-query to see if a pending breakpoint should be created."),
17038 NULL,
17039 show_pending_break_support,
17040 &breakpoint_set_cmdlist,
17041 &breakpoint_show_cmdlist);
17042
17043 pending_break_support = AUTO_BOOLEAN_AUTO;
17044
17045 add_setshow_boolean_cmd ("auto-hw", no_class,
17046 &automatic_hardware_breakpoints, _("\
17047 Set automatic usage of hardware breakpoints."), _("\
17048 Show automatic usage of hardware breakpoints."), _("\
17049 If set, the debugger will automatically use hardware breakpoints for\n\
17050 breakpoints set with \"break\" but falling in read-only memory. If not set,\n\
17051 a warning will be emitted for such breakpoints."),
17052 NULL,
17053 show_automatic_hardware_breakpoints,
17054 &breakpoint_set_cmdlist,
17055 &breakpoint_show_cmdlist);
17056
17057 add_setshow_boolean_cmd ("always-inserted", class_support,
17058 &always_inserted_mode, _("\
17059 Set mode for inserting breakpoints."), _("\
17060 Show mode for inserting breakpoints."), _("\
17061 When this mode is on, breakpoints are inserted immediately as soon as\n\
17062 they're created, kept inserted even when execution stops, and removed\n\
17063 only when the user deletes them. When this mode is off (the default),\n\
17064 breakpoints are inserted only when execution continues, and removed\n\
17065 when execution stops."),
17066 NULL,
17067 &show_always_inserted_mode,
17068 &breakpoint_set_cmdlist,
17069 &breakpoint_show_cmdlist);
17070
17071 add_setshow_enum_cmd ("condition-evaluation", class_breakpoint,
17072 condition_evaluation_enums,
17073 &condition_evaluation_mode_1, _("\
17074 Set mode of breakpoint condition evaluation."), _("\
17075 Show mode of breakpoint condition evaluation."), _("\
17076 When this is set to \"host\", breakpoint conditions will be\n\
17077 evaluated on the host's side by GDB. When it is set to \"target\",\n\
17078 breakpoint conditions will be downloaded to the target (if the target\n\
17079 supports such feature) and conditions will be evaluated on the target's side.\n\
17080 If this is set to \"auto\" (default), this will be automatically set to\n\
17081 \"target\" if it supports condition evaluation, otherwise it will\n\
17082 be set to \"gdb\""),
17083 &set_condition_evaluation_mode,
17084 &show_condition_evaluation_mode,
17085 &breakpoint_set_cmdlist,
17086 &breakpoint_show_cmdlist);
17087
17088 add_com ("break-range", class_breakpoint, break_range_command, _("\
17089 Set a breakpoint for an address range.\n\
17090 break-range START-LOCATION, END-LOCATION\n\
17091 where START-LOCATION and END-LOCATION can be one of the following:\n\
17092 LINENUM, for that line in the current file,\n\
17093 FILE:LINENUM, for that line in that file,\n\
17094 +OFFSET, for that number of lines after the current line\n\
17095 or the start of the range\n\
17096 FUNCTION, for the first line in that function,\n\
17097 FILE:FUNCTION, to distinguish among like-named static functions.\n\
17098 *ADDRESS, for the instruction at that address.\n\
17099 \n\
17100 The breakpoint will stop execution of the inferior whenever it executes\n\
17101 an instruction at any address within the [START-LOCATION, END-LOCATION]\n\
17102 range (including START-LOCATION and END-LOCATION)."));
17103
17104 c = add_com ("dprintf", class_breakpoint, dprintf_command, _("\
17105 Set a dynamic printf at specified line or function.\n\
17106 dprintf location,format string,arg1,arg2,...\n\
17107 location may be a line number, function name, or \"*\" and an address.\n\
17108 If a line number is specified, break at start of code for that line.\n\
17109 If a function is specified, break at start of code for that function."));
17110 set_cmd_completer (c, location_completer);
17111
17112 add_setshow_enum_cmd ("dprintf-style", class_support,
17113 dprintf_style_enums, &dprintf_style, _("\
17114 Set the style of usage for dynamic printf."), _("\
17115 Show the style of usage for dynamic printf."), _("\
17116 This setting chooses how GDB will do a dynamic printf.\n\
17117 If the value is \"gdb\", then the printing is done by GDB to its own\n\
17118 console, as with the \"printf\" command.\n\
17119 If the value is \"call\", the print is done by calling a function in your\n\
17120 program; by default printf(), but you can choose a different function or\n\
17121 output stream by setting dprintf-function and dprintf-channel."),
17122 update_dprintf_commands, NULL,
17123 &setlist, &showlist);
17124
17125 dprintf_function = xstrdup ("printf");
17126 add_setshow_string_cmd ("dprintf-function", class_support,
17127 &dprintf_function, _("\
17128 Set the function to use for dynamic printf"), _("\
17129 Show the function to use for dynamic printf"), NULL,
17130 update_dprintf_commands, NULL,
17131 &setlist, &showlist);
17132
17133 dprintf_channel = xstrdup ("");
17134 add_setshow_string_cmd ("dprintf-channel", class_support,
17135 &dprintf_channel, _("\
17136 Set the channel to use for dynamic printf"), _("\
17137 Show the channel to use for dynamic printf"), NULL,
17138 update_dprintf_commands, NULL,
17139 &setlist, &showlist);
17140
17141 add_setshow_boolean_cmd ("disconnected-dprintf", no_class,
17142 &disconnected_dprintf, _("\
17143 Set whether dprintf continues after GDB disconnects."), _("\
17144 Show whether dprintf continues after GDB disconnects."), _("\
17145 Use this to let dprintf commands continue to hit and produce output\n\
17146 even if GDB disconnects or detaches from the target."),
17147 NULL,
17148 NULL,
17149 &setlist, &showlist);
17150
17151 add_com ("agent-printf", class_vars, agent_printf_command, _("\
17152 agent-printf \"printf format string\", arg1, arg2, arg3, ..., argn\n\
17153 (target agent only) This is useful for formatted output in user-defined commands."));
17154
17155 automatic_hardware_breakpoints = 1;
17156
17157 observer_attach_about_to_proceed (breakpoint_about_to_proceed);
17158 observer_attach_thread_exit (remove_threaded_breakpoints);
17159 }
This page took 0.715816 seconds and 4 git commands to generate.