Make program_space::deleted_solibs a vector of std::string
[deliverable/binutils-gdb.git] / gdb / breakpoint.c
1 /* Everything about breakpoints, for GDB.
2
3 Copyright (C) 1986-2018 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20 #include "defs.h"
21 #include "arch-utils.h"
22 #include <ctype.h>
23 #include "hashtab.h"
24 #include "symtab.h"
25 #include "frame.h"
26 #include "breakpoint.h"
27 #include "tracepoint.h"
28 #include "gdbtypes.h"
29 #include "expression.h"
30 #include "gdbcore.h"
31 #include "gdbcmd.h"
32 #include "value.h"
33 #include "command.h"
34 #include "inferior.h"
35 #include "infrun.h"
36 #include "gdbthread.h"
37 #include "target.h"
38 #include "language.h"
39 #include "gdb-demangle.h"
40 #include "filenames.h"
41 #include "annotate.h"
42 #include "symfile.h"
43 #include "objfiles.h"
44 #include "source.h"
45 #include "linespec.h"
46 #include "completer.h"
47 #include "ui-out.h"
48 #include "cli/cli-script.h"
49 #include "block.h"
50 #include "solib.h"
51 #include "solist.h"
52 #include "observer.h"
53 #include "memattr.h"
54 #include "ada-lang.h"
55 #include "top.h"
56 #include "valprint.h"
57 #include "jit.h"
58 #include "parser-defs.h"
59 #include "gdb_regex.h"
60 #include "probe.h"
61 #include "cli/cli-utils.h"
62 #include "continuations.h"
63 #include "stack.h"
64 #include "skip.h"
65 #include "ax-gdb.h"
66 #include "dummy-frame.h"
67 #include "interps.h"
68 #include "format.h"
69 #include "thread-fsm.h"
70 #include "tid-parse.h"
71
72 /* readline include files */
73 #include "readline/readline.h"
74 #include "readline/history.h"
75
76 /* readline defines this. */
77 #undef savestring
78
79 #include "mi/mi-common.h"
80 #include "extension.h"
81 #include <algorithm>
82 #include "progspace-and-thread.h"
83 #include "common/array-view.h"
84 #include "common/gdb_optional.h"
85
86 /* Enums for exception-handling support. */
87 enum exception_event_kind
88 {
89 EX_EVENT_THROW,
90 EX_EVENT_RETHROW,
91 EX_EVENT_CATCH
92 };
93
94 /* Prototypes for local functions. */
95
96 static void map_breakpoint_numbers (const char *,
97 gdb::function_view<void (breakpoint *)>);
98
99 static void breakpoint_re_set_default (struct breakpoint *);
100
101 static void
102 create_sals_from_location_default (const struct event_location *location,
103 struct linespec_result *canonical,
104 enum bptype type_wanted);
105
106 static void create_breakpoints_sal_default (struct gdbarch *,
107 struct linespec_result *,
108 gdb::unique_xmalloc_ptr<char>,
109 gdb::unique_xmalloc_ptr<char>,
110 enum bptype,
111 enum bpdisp, int, int,
112 int,
113 const struct breakpoint_ops *,
114 int, int, int, unsigned);
115
116 static std::vector<symtab_and_line> decode_location_default
117 (struct breakpoint *b, const struct event_location *location,
118 struct program_space *search_pspace);
119
120 static int can_use_hardware_watchpoint (struct value *);
121
122 static void mention (struct breakpoint *);
123
124 static struct breakpoint *set_raw_breakpoint_without_location (struct gdbarch *,
125 enum bptype,
126 const struct breakpoint_ops *);
127 static struct bp_location *add_location_to_breakpoint (struct breakpoint *,
128 const struct symtab_and_line *);
129
130 /* This function is used in gdbtk sources and thus can not be made
131 static. */
132 struct breakpoint *set_raw_breakpoint (struct gdbarch *gdbarch,
133 struct symtab_and_line,
134 enum bptype,
135 const struct breakpoint_ops *);
136
137 static struct breakpoint *
138 momentary_breakpoint_from_master (struct breakpoint *orig,
139 enum bptype type,
140 const struct breakpoint_ops *ops,
141 int loc_enabled);
142
143 static void breakpoint_adjustment_warning (CORE_ADDR, CORE_ADDR, int, int);
144
145 static CORE_ADDR adjust_breakpoint_address (struct gdbarch *gdbarch,
146 CORE_ADDR bpaddr,
147 enum bptype bptype);
148
149 static void describe_other_breakpoints (struct gdbarch *,
150 struct program_space *, CORE_ADDR,
151 struct obj_section *, int);
152
153 static int watchpoint_locations_match (struct bp_location *loc1,
154 struct bp_location *loc2);
155
156 static int breakpoint_location_address_match (struct bp_location *bl,
157 const struct address_space *aspace,
158 CORE_ADDR addr);
159
160 static int breakpoint_location_address_range_overlap (struct bp_location *,
161 const address_space *,
162 CORE_ADDR, int);
163
164 static int remove_breakpoint (struct bp_location *);
165 static int remove_breakpoint_1 (struct bp_location *, enum remove_bp_reason);
166
167 static enum print_stop_action print_bp_stop_message (bpstat bs);
168
169 static int hw_breakpoint_used_count (void);
170
171 static int hw_watchpoint_use_count (struct breakpoint *);
172
173 static int hw_watchpoint_used_count_others (struct breakpoint *except,
174 enum bptype type,
175 int *other_type_used);
176
177 static void enable_breakpoint_disp (struct breakpoint *, enum bpdisp,
178 int count);
179
180 static void free_bp_location (struct bp_location *loc);
181 static void incref_bp_location (struct bp_location *loc);
182 static void decref_bp_location (struct bp_location **loc);
183
184 static struct bp_location *allocate_bp_location (struct breakpoint *bpt);
185
186 /* update_global_location_list's modes of operation wrt to whether to
187 insert locations now. */
188 enum ugll_insert_mode
189 {
190 /* Don't insert any breakpoint locations into the inferior, only
191 remove already-inserted locations that no longer should be
192 inserted. Functions that delete a breakpoint or breakpoints
193 should specify this mode, so that deleting a breakpoint doesn't
194 have the side effect of inserting the locations of other
195 breakpoints that are marked not-inserted, but should_be_inserted
196 returns true on them.
197
198 This behavior is useful is situations close to tear-down -- e.g.,
199 after an exec, while the target still has execution, but
200 breakpoint shadows of the previous executable image should *NOT*
201 be restored to the new image; or before detaching, where the
202 target still has execution and wants to delete breakpoints from
203 GDB's lists, and all breakpoints had already been removed from
204 the inferior. */
205 UGLL_DONT_INSERT,
206
207 /* May insert breakpoints iff breakpoints_should_be_inserted_now
208 claims breakpoints should be inserted now. */
209 UGLL_MAY_INSERT,
210
211 /* Insert locations now, irrespective of
212 breakpoints_should_be_inserted_now. E.g., say all threads are
213 stopped right now, and the user did "continue". We need to
214 insert breakpoints _before_ resuming the target, but
215 UGLL_MAY_INSERT wouldn't insert them, because
216 breakpoints_should_be_inserted_now returns false at that point,
217 as no thread is running yet. */
218 UGLL_INSERT
219 };
220
221 static void update_global_location_list (enum ugll_insert_mode);
222
223 static void update_global_location_list_nothrow (enum ugll_insert_mode);
224
225 static int is_hardware_watchpoint (const struct breakpoint *bpt);
226
227 static void insert_breakpoint_locations (void);
228
229 static void trace_pass_command (const char *, int);
230
231 static void set_tracepoint_count (int num);
232
233 static int is_masked_watchpoint (const struct breakpoint *b);
234
235 static struct bp_location **get_first_locp_gte_addr (CORE_ADDR address);
236
237 /* Return 1 if B refers to a static tracepoint set by marker ("-m"), zero
238 otherwise. */
239
240 static int strace_marker_p (struct breakpoint *b);
241
242 /* The breakpoint_ops structure to be inherited by all breakpoint_ops
243 that are implemented on top of software or hardware breakpoints
244 (user breakpoints, internal and momentary breakpoints, etc.). */
245 static struct breakpoint_ops bkpt_base_breakpoint_ops;
246
247 /* Internal breakpoints class type. */
248 static struct breakpoint_ops internal_breakpoint_ops;
249
250 /* Momentary breakpoints class type. */
251 static struct breakpoint_ops momentary_breakpoint_ops;
252
253 /* The breakpoint_ops structure to be used in regular user created
254 breakpoints. */
255 struct breakpoint_ops bkpt_breakpoint_ops;
256
257 /* Breakpoints set on probes. */
258 static struct breakpoint_ops bkpt_probe_breakpoint_ops;
259
260 /* Dynamic printf class type. */
261 struct breakpoint_ops dprintf_breakpoint_ops;
262
263 /* The style in which to perform a dynamic printf. This is a user
264 option because different output options have different tradeoffs;
265 if GDB does the printing, there is better error handling if there
266 is a problem with any of the arguments, but using an inferior
267 function lets you have special-purpose printers and sending of
268 output to the same place as compiled-in print functions. */
269
270 static const char dprintf_style_gdb[] = "gdb";
271 static const char dprintf_style_call[] = "call";
272 static const char dprintf_style_agent[] = "agent";
273 static const char *const dprintf_style_enums[] = {
274 dprintf_style_gdb,
275 dprintf_style_call,
276 dprintf_style_agent,
277 NULL
278 };
279 static const char *dprintf_style = dprintf_style_gdb;
280
281 /* The function to use for dynamic printf if the preferred style is to
282 call into the inferior. The value is simply a string that is
283 copied into the command, so it can be anything that GDB can
284 evaluate to a callable address, not necessarily a function name. */
285
286 static char *dprintf_function;
287
288 /* The channel to use for dynamic printf if the preferred style is to
289 call into the inferior; if a nonempty string, it will be passed to
290 the call as the first argument, with the format string as the
291 second. As with the dprintf function, this can be anything that
292 GDB knows how to evaluate, so in addition to common choices like
293 "stderr", this could be an app-specific expression like
294 "mystreams[curlogger]". */
295
296 static char *dprintf_channel;
297
298 /* True if dprintf commands should continue to operate even if GDB
299 has disconnected. */
300 static int disconnected_dprintf = 1;
301
302 struct command_line *
303 breakpoint_commands (struct breakpoint *b)
304 {
305 return b->commands ? b->commands.get () : NULL;
306 }
307
308 /* Flag indicating that a command has proceeded the inferior past the
309 current breakpoint. */
310
311 static int breakpoint_proceeded;
312
313 const char *
314 bpdisp_text (enum bpdisp disp)
315 {
316 /* NOTE: the following values are a part of MI protocol and
317 represent values of 'disp' field returned when inferior stops at
318 a breakpoint. */
319 static const char * const bpdisps[] = {"del", "dstp", "dis", "keep"};
320
321 return bpdisps[(int) disp];
322 }
323
324 /* Prototypes for exported functions. */
325 /* If FALSE, gdb will not use hardware support for watchpoints, even
326 if such is available. */
327 static int can_use_hw_watchpoints;
328
329 static void
330 show_can_use_hw_watchpoints (struct ui_file *file, int from_tty,
331 struct cmd_list_element *c,
332 const char *value)
333 {
334 fprintf_filtered (file,
335 _("Debugger's willingness to use "
336 "watchpoint hardware is %s.\n"),
337 value);
338 }
339
340 /* If AUTO_BOOLEAN_FALSE, gdb will not attempt to create pending breakpoints.
341 If AUTO_BOOLEAN_TRUE, gdb will automatically create pending breakpoints
342 for unrecognized breakpoint locations.
343 If AUTO_BOOLEAN_AUTO, gdb will query when breakpoints are unrecognized. */
344 static enum auto_boolean pending_break_support;
345 static void
346 show_pending_break_support (struct ui_file *file, int from_tty,
347 struct cmd_list_element *c,
348 const char *value)
349 {
350 fprintf_filtered (file,
351 _("Debugger's behavior regarding "
352 "pending breakpoints is %s.\n"),
353 value);
354 }
355
356 /* If 1, gdb will automatically use hardware breakpoints for breakpoints
357 set with "break" but falling in read-only memory.
358 If 0, gdb will warn about such breakpoints, but won't automatically
359 use hardware breakpoints. */
360 static int automatic_hardware_breakpoints;
361 static void
362 show_automatic_hardware_breakpoints (struct ui_file *file, int from_tty,
363 struct cmd_list_element *c,
364 const char *value)
365 {
366 fprintf_filtered (file,
367 _("Automatic usage of hardware breakpoints is %s.\n"),
368 value);
369 }
370
371 /* If on, GDB keeps breakpoints inserted even if the inferior is
372 stopped, and immediately inserts any new breakpoints as soon as
373 they're created. If off (default), GDB keeps breakpoints off of
374 the target as long as possible. That is, it delays inserting
375 breakpoints until the next resume, and removes them again when the
376 target fully stops. This is a bit safer in case GDB crashes while
377 processing user input. */
378 static int always_inserted_mode = 0;
379
380 static void
381 show_always_inserted_mode (struct ui_file *file, int from_tty,
382 struct cmd_list_element *c, const char *value)
383 {
384 fprintf_filtered (file, _("Always inserted breakpoint mode is %s.\n"),
385 value);
386 }
387
388 /* See breakpoint.h. */
389
390 int
391 breakpoints_should_be_inserted_now (void)
392 {
393 if (gdbarch_has_global_breakpoints (target_gdbarch ()))
394 {
395 /* If breakpoints are global, they should be inserted even if no
396 thread under gdb's control is running, or even if there are
397 no threads under GDB's control yet. */
398 return 1;
399 }
400 else if (target_has_execution)
401 {
402 struct thread_info *tp;
403
404 if (always_inserted_mode)
405 {
406 /* The user wants breakpoints inserted even if all threads
407 are stopped. */
408 return 1;
409 }
410
411 if (threads_are_executing ())
412 return 1;
413
414 /* Don't remove breakpoints yet if, even though all threads are
415 stopped, we still have events to process. */
416 ALL_NON_EXITED_THREADS (tp)
417 if (tp->resumed
418 && tp->suspend.waitstatus_pending_p)
419 return 1;
420 }
421 return 0;
422 }
423
424 static const char condition_evaluation_both[] = "host or target";
425
426 /* Modes for breakpoint condition evaluation. */
427 static const char condition_evaluation_auto[] = "auto";
428 static const char condition_evaluation_host[] = "host";
429 static const char condition_evaluation_target[] = "target";
430 static const char *const condition_evaluation_enums[] = {
431 condition_evaluation_auto,
432 condition_evaluation_host,
433 condition_evaluation_target,
434 NULL
435 };
436
437 /* Global that holds the current mode for breakpoint condition evaluation. */
438 static const char *condition_evaluation_mode_1 = condition_evaluation_auto;
439
440 /* Global that we use to display information to the user (gets its value from
441 condition_evaluation_mode_1. */
442 static const char *condition_evaluation_mode = condition_evaluation_auto;
443
444 /* Translate a condition evaluation mode MODE into either "host"
445 or "target". This is used mostly to translate from "auto" to the
446 real setting that is being used. It returns the translated
447 evaluation mode. */
448
449 static const char *
450 translate_condition_evaluation_mode (const char *mode)
451 {
452 if (mode == condition_evaluation_auto)
453 {
454 if (target_supports_evaluation_of_breakpoint_conditions ())
455 return condition_evaluation_target;
456 else
457 return condition_evaluation_host;
458 }
459 else
460 return mode;
461 }
462
463 /* Discovers what condition_evaluation_auto translates to. */
464
465 static const char *
466 breakpoint_condition_evaluation_mode (void)
467 {
468 return translate_condition_evaluation_mode (condition_evaluation_mode);
469 }
470
471 /* Return true if GDB should evaluate breakpoint conditions or false
472 otherwise. */
473
474 static int
475 gdb_evaluates_breakpoint_condition_p (void)
476 {
477 const char *mode = breakpoint_condition_evaluation_mode ();
478
479 return (mode == condition_evaluation_host);
480 }
481
482 /* Are we executing breakpoint commands? */
483 static int executing_breakpoint_commands;
484
485 /* Are overlay event breakpoints enabled? */
486 static int overlay_events_enabled;
487
488 /* See description in breakpoint.h. */
489 int target_exact_watchpoints = 0;
490
491 /* Walk the following statement or block through all breakpoints.
492 ALL_BREAKPOINTS_SAFE does so even if the statement deletes the
493 current breakpoint. */
494
495 #define ALL_BREAKPOINTS(B) for (B = breakpoint_chain; B; B = B->next)
496
497 #define ALL_BREAKPOINTS_SAFE(B,TMP) \
498 for (B = breakpoint_chain; \
499 B ? (TMP=B->next, 1): 0; \
500 B = TMP)
501
502 /* Similar iterator for the low-level breakpoints. SAFE variant is
503 not provided so update_global_location_list must not be called
504 while executing the block of ALL_BP_LOCATIONS. */
505
506 #define ALL_BP_LOCATIONS(B,BP_TMP) \
507 for (BP_TMP = bp_locations; \
508 BP_TMP < bp_locations + bp_locations_count && (B = *BP_TMP);\
509 BP_TMP++)
510
511 /* Iterates through locations with address ADDRESS for the currently selected
512 program space. BP_LOCP_TMP points to each object. BP_LOCP_START points
513 to where the loop should start from.
514 If BP_LOCP_START is a NULL pointer, the macro automatically seeks the
515 appropriate location to start with. */
516
517 #define ALL_BP_LOCATIONS_AT_ADDR(BP_LOCP_TMP, BP_LOCP_START, ADDRESS) \
518 for (BP_LOCP_START = BP_LOCP_START == NULL ? get_first_locp_gte_addr (ADDRESS) : BP_LOCP_START, \
519 BP_LOCP_TMP = BP_LOCP_START; \
520 BP_LOCP_START \
521 && (BP_LOCP_TMP < bp_locations + bp_locations_count \
522 && (*BP_LOCP_TMP)->address == ADDRESS); \
523 BP_LOCP_TMP++)
524
525 /* Iterator for tracepoints only. */
526
527 #define ALL_TRACEPOINTS(B) \
528 for (B = breakpoint_chain; B; B = B->next) \
529 if (is_tracepoint (B))
530
531 /* Chains of all breakpoints defined. */
532
533 struct breakpoint *breakpoint_chain;
534
535 /* Array is sorted by bp_locations_compare - primarily by the ADDRESS. */
536
537 static struct bp_location **bp_locations;
538
539 /* Number of elements of BP_LOCATIONS. */
540
541 static unsigned bp_locations_count;
542
543 /* Maximum alignment offset between bp_target_info.PLACED_ADDRESS and
544 ADDRESS for the current elements of BP_LOCATIONS which get a valid
545 result from bp_location_has_shadow. You can use it for roughly
546 limiting the subrange of BP_LOCATIONS to scan for shadow bytes for
547 an address you need to read. */
548
549 static CORE_ADDR bp_locations_placed_address_before_address_max;
550
551 /* Maximum offset plus alignment between bp_target_info.PLACED_ADDRESS
552 + bp_target_info.SHADOW_LEN and ADDRESS for the current elements of
553 BP_LOCATIONS which get a valid result from bp_location_has_shadow.
554 You can use it for roughly limiting the subrange of BP_LOCATIONS to
555 scan for shadow bytes for an address you need to read. */
556
557 static CORE_ADDR bp_locations_shadow_len_after_address_max;
558
559 /* The locations that no longer correspond to any breakpoint, unlinked
560 from the bp_locations array, but for which a hit may still be
561 reported by a target. */
562 VEC(bp_location_p) *moribund_locations = NULL;
563
564 /* Number of last breakpoint made. */
565
566 static int breakpoint_count;
567
568 /* The value of `breakpoint_count' before the last command that
569 created breakpoints. If the last (break-like) command created more
570 than one breakpoint, then the difference between BREAKPOINT_COUNT
571 and PREV_BREAKPOINT_COUNT is more than one. */
572 static int prev_breakpoint_count;
573
574 /* Number of last tracepoint made. */
575
576 static int tracepoint_count;
577
578 static struct cmd_list_element *breakpoint_set_cmdlist;
579 static struct cmd_list_element *breakpoint_show_cmdlist;
580 struct cmd_list_element *save_cmdlist;
581
582 /* See declaration at breakpoint.h. */
583
584 struct breakpoint *
585 breakpoint_find_if (int (*func) (struct breakpoint *b, void *d),
586 void *user_data)
587 {
588 struct breakpoint *b = NULL;
589
590 ALL_BREAKPOINTS (b)
591 {
592 if (func (b, user_data) != 0)
593 break;
594 }
595
596 return b;
597 }
598
599 /* Return whether a breakpoint is an active enabled breakpoint. */
600 static int
601 breakpoint_enabled (struct breakpoint *b)
602 {
603 return (b->enable_state == bp_enabled);
604 }
605
606 /* Set breakpoint count to NUM. */
607
608 static void
609 set_breakpoint_count (int num)
610 {
611 prev_breakpoint_count = breakpoint_count;
612 breakpoint_count = num;
613 set_internalvar_integer (lookup_internalvar ("bpnum"), num);
614 }
615
616 /* Used by `start_rbreak_breakpoints' below, to record the current
617 breakpoint count before "rbreak" creates any breakpoint. */
618 static int rbreak_start_breakpoint_count;
619
620 /* Called at the start an "rbreak" command to record the first
621 breakpoint made. */
622
623 scoped_rbreak_breakpoints::scoped_rbreak_breakpoints ()
624 {
625 rbreak_start_breakpoint_count = breakpoint_count;
626 }
627
628 /* Called at the end of an "rbreak" command to record the last
629 breakpoint made. */
630
631 scoped_rbreak_breakpoints::~scoped_rbreak_breakpoints ()
632 {
633 prev_breakpoint_count = rbreak_start_breakpoint_count;
634 }
635
636 /* Used in run_command to zero the hit count when a new run starts. */
637
638 void
639 clear_breakpoint_hit_counts (void)
640 {
641 struct breakpoint *b;
642
643 ALL_BREAKPOINTS (b)
644 b->hit_count = 0;
645 }
646
647 \f
648 /* Return the breakpoint with the specified number, or NULL
649 if the number does not refer to an existing breakpoint. */
650
651 struct breakpoint *
652 get_breakpoint (int num)
653 {
654 struct breakpoint *b;
655
656 ALL_BREAKPOINTS (b)
657 if (b->number == num)
658 return b;
659
660 return NULL;
661 }
662
663 \f
664
665 /* Mark locations as "conditions have changed" in case the target supports
666 evaluating conditions on its side. */
667
668 static void
669 mark_breakpoint_modified (struct breakpoint *b)
670 {
671 struct bp_location *loc;
672
673 /* This is only meaningful if the target is
674 evaluating conditions and if the user has
675 opted for condition evaluation on the target's
676 side. */
677 if (gdb_evaluates_breakpoint_condition_p ()
678 || !target_supports_evaluation_of_breakpoint_conditions ())
679 return;
680
681 if (!is_breakpoint (b))
682 return;
683
684 for (loc = b->loc; loc; loc = loc->next)
685 loc->condition_changed = condition_modified;
686 }
687
688 /* Mark location as "conditions have changed" in case the target supports
689 evaluating conditions on its side. */
690
691 static void
692 mark_breakpoint_location_modified (struct bp_location *loc)
693 {
694 /* This is only meaningful if the target is
695 evaluating conditions and if the user has
696 opted for condition evaluation on the target's
697 side. */
698 if (gdb_evaluates_breakpoint_condition_p ()
699 || !target_supports_evaluation_of_breakpoint_conditions ())
700
701 return;
702
703 if (!is_breakpoint (loc->owner))
704 return;
705
706 loc->condition_changed = condition_modified;
707 }
708
709 /* Sets the condition-evaluation mode using the static global
710 condition_evaluation_mode. */
711
712 static void
713 set_condition_evaluation_mode (const char *args, int from_tty,
714 struct cmd_list_element *c)
715 {
716 const char *old_mode, *new_mode;
717
718 if ((condition_evaluation_mode_1 == condition_evaluation_target)
719 && !target_supports_evaluation_of_breakpoint_conditions ())
720 {
721 condition_evaluation_mode_1 = condition_evaluation_mode;
722 warning (_("Target does not support breakpoint condition evaluation.\n"
723 "Using host evaluation mode instead."));
724 return;
725 }
726
727 new_mode = translate_condition_evaluation_mode (condition_evaluation_mode_1);
728 old_mode = translate_condition_evaluation_mode (condition_evaluation_mode);
729
730 /* Flip the switch. Flip it even if OLD_MODE == NEW_MODE as one of the
731 settings was "auto". */
732 condition_evaluation_mode = condition_evaluation_mode_1;
733
734 /* Only update the mode if the user picked a different one. */
735 if (new_mode != old_mode)
736 {
737 struct bp_location *loc, **loc_tmp;
738 /* If the user switched to a different evaluation mode, we
739 need to synch the changes with the target as follows:
740
741 "host" -> "target": Send all (valid) conditions to the target.
742 "target" -> "host": Remove all the conditions from the target.
743 */
744
745 if (new_mode == condition_evaluation_target)
746 {
747 /* Mark everything modified and synch conditions with the
748 target. */
749 ALL_BP_LOCATIONS (loc, loc_tmp)
750 mark_breakpoint_location_modified (loc);
751 }
752 else
753 {
754 /* Manually mark non-duplicate locations to synch conditions
755 with the target. We do this to remove all the conditions the
756 target knows about. */
757 ALL_BP_LOCATIONS (loc, loc_tmp)
758 if (is_breakpoint (loc->owner) && loc->inserted)
759 loc->needs_update = 1;
760 }
761
762 /* Do the update. */
763 update_global_location_list (UGLL_MAY_INSERT);
764 }
765
766 return;
767 }
768
769 /* Shows the current mode of breakpoint condition evaluation. Explicitly shows
770 what "auto" is translating to. */
771
772 static void
773 show_condition_evaluation_mode (struct ui_file *file, int from_tty,
774 struct cmd_list_element *c, const char *value)
775 {
776 if (condition_evaluation_mode == condition_evaluation_auto)
777 fprintf_filtered (file,
778 _("Breakpoint condition evaluation "
779 "mode is %s (currently %s).\n"),
780 value,
781 breakpoint_condition_evaluation_mode ());
782 else
783 fprintf_filtered (file, _("Breakpoint condition evaluation mode is %s.\n"),
784 value);
785 }
786
787 /* A comparison function for bp_location AP and BP that is used by
788 bsearch. This comparison function only cares about addresses, unlike
789 the more general bp_locations_compare function. */
790
791 static int
792 bp_locations_compare_addrs (const void *ap, const void *bp)
793 {
794 const struct bp_location *a = *(const struct bp_location **) ap;
795 const struct bp_location *b = *(const struct bp_location **) bp;
796
797 if (a->address == b->address)
798 return 0;
799 else
800 return ((a->address > b->address) - (a->address < b->address));
801 }
802
803 /* Helper function to skip all bp_locations with addresses
804 less than ADDRESS. It returns the first bp_location that
805 is greater than or equal to ADDRESS. If none is found, just
806 return NULL. */
807
808 static struct bp_location **
809 get_first_locp_gte_addr (CORE_ADDR address)
810 {
811 struct bp_location dummy_loc;
812 struct bp_location *dummy_locp = &dummy_loc;
813 struct bp_location **locp_found = NULL;
814
815 /* Initialize the dummy location's address field. */
816 dummy_loc.address = address;
817
818 /* Find a close match to the first location at ADDRESS. */
819 locp_found = ((struct bp_location **)
820 bsearch (&dummy_locp, bp_locations, bp_locations_count,
821 sizeof (struct bp_location **),
822 bp_locations_compare_addrs));
823
824 /* Nothing was found, nothing left to do. */
825 if (locp_found == NULL)
826 return NULL;
827
828 /* We may have found a location that is at ADDRESS but is not the first in the
829 location's list. Go backwards (if possible) and locate the first one. */
830 while ((locp_found - 1) >= bp_locations
831 && (*(locp_found - 1))->address == address)
832 locp_found--;
833
834 return locp_found;
835 }
836
837 void
838 set_breakpoint_condition (struct breakpoint *b, const char *exp,
839 int from_tty)
840 {
841 xfree (b->cond_string);
842 b->cond_string = NULL;
843
844 if (is_watchpoint (b))
845 {
846 struct watchpoint *w = (struct watchpoint *) b;
847
848 w->cond_exp.reset ();
849 }
850 else
851 {
852 struct bp_location *loc;
853
854 for (loc = b->loc; loc; loc = loc->next)
855 {
856 loc->cond.reset ();
857
858 /* No need to free the condition agent expression
859 bytecode (if we have one). We will handle this
860 when we go through update_global_location_list. */
861 }
862 }
863
864 if (*exp == 0)
865 {
866 if (from_tty)
867 printf_filtered (_("Breakpoint %d now unconditional.\n"), b->number);
868 }
869 else
870 {
871 const char *arg = exp;
872
873 /* I don't know if it matters whether this is the string the user
874 typed in or the decompiled expression. */
875 b->cond_string = xstrdup (arg);
876 b->condition_not_parsed = 0;
877
878 if (is_watchpoint (b))
879 {
880 struct watchpoint *w = (struct watchpoint *) b;
881
882 innermost_block.reset ();
883 arg = exp;
884 w->cond_exp = parse_exp_1 (&arg, 0, 0, 0);
885 if (*arg)
886 error (_("Junk at end of expression"));
887 w->cond_exp_valid_block = innermost_block.block ();
888 }
889 else
890 {
891 struct bp_location *loc;
892
893 for (loc = b->loc; loc; loc = loc->next)
894 {
895 arg = exp;
896 loc->cond =
897 parse_exp_1 (&arg, loc->address,
898 block_for_pc (loc->address), 0);
899 if (*arg)
900 error (_("Junk at end of expression"));
901 }
902 }
903 }
904 mark_breakpoint_modified (b);
905
906 observer_notify_breakpoint_modified (b);
907 }
908
909 /* Completion for the "condition" command. */
910
911 static void
912 condition_completer (struct cmd_list_element *cmd,
913 completion_tracker &tracker,
914 const char *text, const char *word)
915 {
916 const char *space;
917
918 text = skip_spaces (text);
919 space = skip_to_space (text);
920 if (*space == '\0')
921 {
922 int len;
923 struct breakpoint *b;
924
925 if (text[0] == '$')
926 {
927 /* We don't support completion of history indices. */
928 if (!isdigit (text[1]))
929 complete_internalvar (tracker, &text[1]);
930 return;
931 }
932
933 /* We're completing the breakpoint number. */
934 len = strlen (text);
935
936 ALL_BREAKPOINTS (b)
937 {
938 char number[50];
939
940 xsnprintf (number, sizeof (number), "%d", b->number);
941
942 if (strncmp (number, text, len) == 0)
943 {
944 gdb::unique_xmalloc_ptr<char> copy (xstrdup (number));
945 tracker.add_completion (std::move (copy));
946 }
947 }
948
949 return;
950 }
951
952 /* We're completing the expression part. */
953 text = skip_spaces (space);
954 expression_completer (cmd, tracker, text, word);
955 }
956
957 /* condition N EXP -- set break condition of breakpoint N to EXP. */
958
959 static void
960 condition_command (const char *arg, int from_tty)
961 {
962 struct breakpoint *b;
963 const char *p;
964 int bnum;
965
966 if (arg == 0)
967 error_no_arg (_("breakpoint number"));
968
969 p = arg;
970 bnum = get_number (&p);
971 if (bnum == 0)
972 error (_("Bad breakpoint argument: '%s'"), arg);
973
974 ALL_BREAKPOINTS (b)
975 if (b->number == bnum)
976 {
977 /* Check if this breakpoint has a "stop" method implemented in an
978 extension language. This method and conditions entered into GDB
979 from the CLI are mutually exclusive. */
980 const struct extension_language_defn *extlang
981 = get_breakpoint_cond_ext_lang (b, EXT_LANG_NONE);
982
983 if (extlang != NULL)
984 {
985 error (_("Only one stop condition allowed. There is currently"
986 " a %s stop condition defined for this breakpoint."),
987 ext_lang_capitalized_name (extlang));
988 }
989 set_breakpoint_condition (b, p, from_tty);
990
991 if (is_breakpoint (b))
992 update_global_location_list (UGLL_MAY_INSERT);
993
994 return;
995 }
996
997 error (_("No breakpoint number %d."), bnum);
998 }
999
1000 /* Check that COMMAND do not contain commands that are suitable
1001 only for tracepoints and not suitable for ordinary breakpoints.
1002 Throw if any such commands is found. */
1003
1004 static void
1005 check_no_tracepoint_commands (struct command_line *commands)
1006 {
1007 struct command_line *c;
1008
1009 for (c = commands; c; c = c->next)
1010 {
1011 int i;
1012
1013 if (c->control_type == while_stepping_control)
1014 error (_("The 'while-stepping' command can "
1015 "only be used for tracepoints"));
1016
1017 for (i = 0; i < c->body_count; ++i)
1018 check_no_tracepoint_commands ((c->body_list)[i]);
1019
1020 /* Not that command parsing removes leading whitespace and comment
1021 lines and also empty lines. So, we only need to check for
1022 command directly. */
1023 if (strstr (c->line, "collect ") == c->line)
1024 error (_("The 'collect' command can only be used for tracepoints"));
1025
1026 if (strstr (c->line, "teval ") == c->line)
1027 error (_("The 'teval' command can only be used for tracepoints"));
1028 }
1029 }
1030
1031 struct longjmp_breakpoint : public breakpoint
1032 {
1033 ~longjmp_breakpoint () override;
1034 };
1035
1036 /* Encapsulate tests for different types of tracepoints. */
1037
1038 static bool
1039 is_tracepoint_type (bptype type)
1040 {
1041 return (type == bp_tracepoint
1042 || type == bp_fast_tracepoint
1043 || type == bp_static_tracepoint);
1044 }
1045
1046 static bool
1047 is_longjmp_type (bptype type)
1048 {
1049 return type == bp_longjmp || type == bp_exception;
1050 }
1051
1052 int
1053 is_tracepoint (const struct breakpoint *b)
1054 {
1055 return is_tracepoint_type (b->type);
1056 }
1057
1058 /* Factory function to create an appropriate instance of breakpoint given
1059 TYPE. */
1060
1061 static std::unique_ptr<breakpoint>
1062 new_breakpoint_from_type (bptype type)
1063 {
1064 breakpoint *b;
1065
1066 if (is_tracepoint_type (type))
1067 b = new tracepoint ();
1068 else if (is_longjmp_type (type))
1069 b = new longjmp_breakpoint ();
1070 else
1071 b = new breakpoint ();
1072
1073 return std::unique_ptr<breakpoint> (b);
1074 }
1075
1076 /* A helper function that validates that COMMANDS are valid for a
1077 breakpoint. This function will throw an exception if a problem is
1078 found. */
1079
1080 static void
1081 validate_commands_for_breakpoint (struct breakpoint *b,
1082 struct command_line *commands)
1083 {
1084 if (is_tracepoint (b))
1085 {
1086 struct tracepoint *t = (struct tracepoint *) b;
1087 struct command_line *c;
1088 struct command_line *while_stepping = 0;
1089
1090 /* Reset the while-stepping step count. The previous commands
1091 might have included a while-stepping action, while the new
1092 ones might not. */
1093 t->step_count = 0;
1094
1095 /* We need to verify that each top-level element of commands is
1096 valid for tracepoints, that there's at most one
1097 while-stepping element, and that the while-stepping's body
1098 has valid tracing commands excluding nested while-stepping.
1099 We also need to validate the tracepoint action line in the
1100 context of the tracepoint --- validate_actionline actually
1101 has side effects, like setting the tracepoint's
1102 while-stepping STEP_COUNT, in addition to checking if the
1103 collect/teval actions parse and make sense in the
1104 tracepoint's context. */
1105 for (c = commands; c; c = c->next)
1106 {
1107 if (c->control_type == while_stepping_control)
1108 {
1109 if (b->type == bp_fast_tracepoint)
1110 error (_("The 'while-stepping' command "
1111 "cannot be used for fast tracepoint"));
1112 else if (b->type == bp_static_tracepoint)
1113 error (_("The 'while-stepping' command "
1114 "cannot be used for static tracepoint"));
1115
1116 if (while_stepping)
1117 error (_("The 'while-stepping' command "
1118 "can be used only once"));
1119 else
1120 while_stepping = c;
1121 }
1122
1123 validate_actionline (c->line, b);
1124 }
1125 if (while_stepping)
1126 {
1127 struct command_line *c2;
1128
1129 gdb_assert (while_stepping->body_count == 1);
1130 c2 = while_stepping->body_list[0];
1131 for (; c2; c2 = c2->next)
1132 {
1133 if (c2->control_type == while_stepping_control)
1134 error (_("The 'while-stepping' command cannot be nested"));
1135 }
1136 }
1137 }
1138 else
1139 {
1140 check_no_tracepoint_commands (commands);
1141 }
1142 }
1143
1144 /* Return a vector of all the static tracepoints set at ADDR. The
1145 caller is responsible for releasing the vector. */
1146
1147 VEC(breakpoint_p) *
1148 static_tracepoints_here (CORE_ADDR addr)
1149 {
1150 struct breakpoint *b;
1151 VEC(breakpoint_p) *found = 0;
1152 struct bp_location *loc;
1153
1154 ALL_BREAKPOINTS (b)
1155 if (b->type == bp_static_tracepoint)
1156 {
1157 for (loc = b->loc; loc; loc = loc->next)
1158 if (loc->address == addr)
1159 VEC_safe_push(breakpoint_p, found, b);
1160 }
1161
1162 return found;
1163 }
1164
1165 /* Set the command list of B to COMMANDS. If breakpoint is tracepoint,
1166 validate that only allowed commands are included. */
1167
1168 void
1169 breakpoint_set_commands (struct breakpoint *b,
1170 command_line_up &&commands)
1171 {
1172 validate_commands_for_breakpoint (b, commands.get ());
1173
1174 b->commands = std::move (commands);
1175 observer_notify_breakpoint_modified (b);
1176 }
1177
1178 /* Set the internal `silent' flag on the breakpoint. Note that this
1179 is not the same as the "silent" that may appear in the breakpoint's
1180 commands. */
1181
1182 void
1183 breakpoint_set_silent (struct breakpoint *b, int silent)
1184 {
1185 int old_silent = b->silent;
1186
1187 b->silent = silent;
1188 if (old_silent != silent)
1189 observer_notify_breakpoint_modified (b);
1190 }
1191
1192 /* Set the thread for this breakpoint. If THREAD is -1, make the
1193 breakpoint work for any thread. */
1194
1195 void
1196 breakpoint_set_thread (struct breakpoint *b, int thread)
1197 {
1198 int old_thread = b->thread;
1199
1200 b->thread = thread;
1201 if (old_thread != thread)
1202 observer_notify_breakpoint_modified (b);
1203 }
1204
1205 /* Set the task for this breakpoint. If TASK is 0, make the
1206 breakpoint work for any task. */
1207
1208 void
1209 breakpoint_set_task (struct breakpoint *b, int task)
1210 {
1211 int old_task = b->task;
1212
1213 b->task = task;
1214 if (old_task != task)
1215 observer_notify_breakpoint_modified (b);
1216 }
1217
1218 void
1219 check_tracepoint_command (char *line, void *closure)
1220 {
1221 struct breakpoint *b = (struct breakpoint *) closure;
1222
1223 validate_actionline (line, b);
1224 }
1225
1226 static void
1227 commands_command_1 (const char *arg, int from_tty,
1228 struct command_line *control)
1229 {
1230 counted_command_line cmd;
1231
1232 std::string new_arg;
1233
1234 if (arg == NULL || !*arg)
1235 {
1236 if (breakpoint_count - prev_breakpoint_count > 1)
1237 new_arg = string_printf ("%d-%d", prev_breakpoint_count + 1,
1238 breakpoint_count);
1239 else if (breakpoint_count > 0)
1240 new_arg = string_printf ("%d", breakpoint_count);
1241 arg = new_arg.c_str ();
1242 }
1243
1244 map_breakpoint_numbers
1245 (arg, [&] (breakpoint *b)
1246 {
1247 if (cmd == NULL)
1248 {
1249 if (control != NULL)
1250 cmd = copy_command_lines (control->body_list[0]);
1251 else
1252 {
1253 std::string str
1254 = string_printf (_("Type commands for breakpoint(s) "
1255 "%s, one per line."),
1256 arg);
1257
1258 cmd = read_command_lines (&str[0],
1259 from_tty, 1,
1260 (is_tracepoint (b)
1261 ? check_tracepoint_command : 0),
1262 b);
1263 }
1264 }
1265
1266 /* If a breakpoint was on the list more than once, we don't need to
1267 do anything. */
1268 if (b->commands != cmd)
1269 {
1270 validate_commands_for_breakpoint (b, cmd.get ());
1271 b->commands = cmd;
1272 observer_notify_breakpoint_modified (b);
1273 }
1274 });
1275 }
1276
1277 static void
1278 commands_command (const char *arg, int from_tty)
1279 {
1280 commands_command_1 (arg, from_tty, NULL);
1281 }
1282
1283 /* Like commands_command, but instead of reading the commands from
1284 input stream, takes them from an already parsed command structure.
1285
1286 This is used by cli-script.c to DTRT with breakpoint commands
1287 that are part of if and while bodies. */
1288 enum command_control_type
1289 commands_from_control_command (const char *arg, struct command_line *cmd)
1290 {
1291 commands_command_1 (arg, 0, cmd);
1292 return simple_control;
1293 }
1294
1295 /* Return non-zero if BL->TARGET_INFO contains valid information. */
1296
1297 static int
1298 bp_location_has_shadow (struct bp_location *bl)
1299 {
1300 if (bl->loc_type != bp_loc_software_breakpoint)
1301 return 0;
1302 if (!bl->inserted)
1303 return 0;
1304 if (bl->target_info.shadow_len == 0)
1305 /* BL isn't valid, or doesn't shadow memory. */
1306 return 0;
1307 return 1;
1308 }
1309
1310 /* Update BUF, which is LEN bytes read from the target address
1311 MEMADDR, by replacing a memory breakpoint with its shadowed
1312 contents.
1313
1314 If READBUF is not NULL, this buffer must not overlap with the of
1315 the breakpoint location's shadow_contents buffer. Otherwise, a
1316 failed assertion internal error will be raised. */
1317
1318 static void
1319 one_breakpoint_xfer_memory (gdb_byte *readbuf, gdb_byte *writebuf,
1320 const gdb_byte *writebuf_org,
1321 ULONGEST memaddr, LONGEST len,
1322 struct bp_target_info *target_info,
1323 struct gdbarch *gdbarch)
1324 {
1325 /* Now do full processing of the found relevant range of elements. */
1326 CORE_ADDR bp_addr = 0;
1327 int bp_size = 0;
1328 int bptoffset = 0;
1329
1330 if (!breakpoint_address_match (target_info->placed_address_space, 0,
1331 current_program_space->aspace, 0))
1332 {
1333 /* The breakpoint is inserted in a different address space. */
1334 return;
1335 }
1336
1337 /* Addresses and length of the part of the breakpoint that
1338 we need to copy. */
1339 bp_addr = target_info->placed_address;
1340 bp_size = target_info->shadow_len;
1341
1342 if (bp_addr + bp_size <= memaddr)
1343 {
1344 /* The breakpoint is entirely before the chunk of memory we are
1345 reading. */
1346 return;
1347 }
1348
1349 if (bp_addr >= memaddr + len)
1350 {
1351 /* The breakpoint is entirely after the chunk of memory we are
1352 reading. */
1353 return;
1354 }
1355
1356 /* Offset within shadow_contents. */
1357 if (bp_addr < memaddr)
1358 {
1359 /* Only copy the second part of the breakpoint. */
1360 bp_size -= memaddr - bp_addr;
1361 bptoffset = memaddr - bp_addr;
1362 bp_addr = memaddr;
1363 }
1364
1365 if (bp_addr + bp_size > memaddr + len)
1366 {
1367 /* Only copy the first part of the breakpoint. */
1368 bp_size -= (bp_addr + bp_size) - (memaddr + len);
1369 }
1370
1371 if (readbuf != NULL)
1372 {
1373 /* Verify that the readbuf buffer does not overlap with the
1374 shadow_contents buffer. */
1375 gdb_assert (target_info->shadow_contents >= readbuf + len
1376 || readbuf >= (target_info->shadow_contents
1377 + target_info->shadow_len));
1378
1379 /* Update the read buffer with this inserted breakpoint's
1380 shadow. */
1381 memcpy (readbuf + bp_addr - memaddr,
1382 target_info->shadow_contents + bptoffset, bp_size);
1383 }
1384 else
1385 {
1386 const unsigned char *bp;
1387 CORE_ADDR addr = target_info->reqstd_address;
1388 int placed_size;
1389
1390 /* Update the shadow with what we want to write to memory. */
1391 memcpy (target_info->shadow_contents + bptoffset,
1392 writebuf_org + bp_addr - memaddr, bp_size);
1393
1394 /* Determine appropriate breakpoint contents and size for this
1395 address. */
1396 bp = gdbarch_breakpoint_from_pc (gdbarch, &addr, &placed_size);
1397
1398 /* Update the final write buffer with this inserted
1399 breakpoint's INSN. */
1400 memcpy (writebuf + bp_addr - memaddr, bp + bptoffset, bp_size);
1401 }
1402 }
1403
1404 /* Update BUF, which is LEN bytes read from the target address MEMADDR,
1405 by replacing any memory breakpoints with their shadowed contents.
1406
1407 If READBUF is not NULL, this buffer must not overlap with any of
1408 the breakpoint location's shadow_contents buffers. Otherwise,
1409 a failed assertion internal error will be raised.
1410
1411 The range of shadowed area by each bp_location is:
1412 bl->address - bp_locations_placed_address_before_address_max
1413 up to bl->address + bp_locations_shadow_len_after_address_max
1414 The range we were requested to resolve shadows for is:
1415 memaddr ... memaddr + len
1416 Thus the safe cutoff boundaries for performance optimization are
1417 memaddr + len <= (bl->address
1418 - bp_locations_placed_address_before_address_max)
1419 and:
1420 bl->address + bp_locations_shadow_len_after_address_max <= memaddr */
1421
1422 void
1423 breakpoint_xfer_memory (gdb_byte *readbuf, gdb_byte *writebuf,
1424 const gdb_byte *writebuf_org,
1425 ULONGEST memaddr, LONGEST len)
1426 {
1427 /* Left boundary, right boundary and median element of our binary
1428 search. */
1429 unsigned bc_l, bc_r, bc;
1430
1431 /* Find BC_L which is a leftmost element which may affect BUF
1432 content. It is safe to report lower value but a failure to
1433 report higher one. */
1434
1435 bc_l = 0;
1436 bc_r = bp_locations_count;
1437 while (bc_l + 1 < bc_r)
1438 {
1439 struct bp_location *bl;
1440
1441 bc = (bc_l + bc_r) / 2;
1442 bl = bp_locations[bc];
1443
1444 /* Check first BL->ADDRESS will not overflow due to the added
1445 constant. Then advance the left boundary only if we are sure
1446 the BC element can in no way affect the BUF content (MEMADDR
1447 to MEMADDR + LEN range).
1448
1449 Use the BP_LOCATIONS_SHADOW_LEN_AFTER_ADDRESS_MAX safety
1450 offset so that we cannot miss a breakpoint with its shadow
1451 range tail still reaching MEMADDR. */
1452
1453 if ((bl->address + bp_locations_shadow_len_after_address_max
1454 >= bl->address)
1455 && (bl->address + bp_locations_shadow_len_after_address_max
1456 <= memaddr))
1457 bc_l = bc;
1458 else
1459 bc_r = bc;
1460 }
1461
1462 /* Due to the binary search above, we need to make sure we pick the
1463 first location that's at BC_L's address. E.g., if there are
1464 multiple locations at the same address, BC_L may end up pointing
1465 at a duplicate location, and miss the "master"/"inserted"
1466 location. Say, given locations L1, L2 and L3 at addresses A and
1467 B:
1468
1469 L1@A, L2@A, L3@B, ...
1470
1471 BC_L could end up pointing at location L2, while the "master"
1472 location could be L1. Since the `loc->inserted' flag is only set
1473 on "master" locations, we'd forget to restore the shadow of L1
1474 and L2. */
1475 while (bc_l > 0
1476 && bp_locations[bc_l]->address == bp_locations[bc_l - 1]->address)
1477 bc_l--;
1478
1479 /* Now do full processing of the found relevant range of elements. */
1480
1481 for (bc = bc_l; bc < bp_locations_count; bc++)
1482 {
1483 struct bp_location *bl = bp_locations[bc];
1484
1485 /* bp_location array has BL->OWNER always non-NULL. */
1486 if (bl->owner->type == bp_none)
1487 warning (_("reading through apparently deleted breakpoint #%d?"),
1488 bl->owner->number);
1489
1490 /* Performance optimization: any further element can no longer affect BUF
1491 content. */
1492
1493 if (bl->address >= bp_locations_placed_address_before_address_max
1494 && memaddr + len <= (bl->address
1495 - bp_locations_placed_address_before_address_max))
1496 break;
1497
1498 if (!bp_location_has_shadow (bl))
1499 continue;
1500
1501 one_breakpoint_xfer_memory (readbuf, writebuf, writebuf_org,
1502 memaddr, len, &bl->target_info, bl->gdbarch);
1503 }
1504 }
1505
1506 \f
1507
1508 /* Return true if BPT is either a software breakpoint or a hardware
1509 breakpoint. */
1510
1511 int
1512 is_breakpoint (const struct breakpoint *bpt)
1513 {
1514 return (bpt->type == bp_breakpoint
1515 || bpt->type == bp_hardware_breakpoint
1516 || bpt->type == bp_dprintf);
1517 }
1518
1519 /* Return true if BPT is of any hardware watchpoint kind. */
1520
1521 static int
1522 is_hardware_watchpoint (const struct breakpoint *bpt)
1523 {
1524 return (bpt->type == bp_hardware_watchpoint
1525 || bpt->type == bp_read_watchpoint
1526 || bpt->type == bp_access_watchpoint);
1527 }
1528
1529 /* Return true if BPT is of any watchpoint kind, hardware or
1530 software. */
1531
1532 int
1533 is_watchpoint (const struct breakpoint *bpt)
1534 {
1535 return (is_hardware_watchpoint (bpt)
1536 || bpt->type == bp_watchpoint);
1537 }
1538
1539 /* Returns true if the current thread and its running state are safe
1540 to evaluate or update watchpoint B. Watchpoints on local
1541 expressions need to be evaluated in the context of the thread that
1542 was current when the watchpoint was created, and, that thread needs
1543 to be stopped to be able to select the correct frame context.
1544 Watchpoints on global expressions can be evaluated on any thread,
1545 and in any state. It is presently left to the target allowing
1546 memory accesses when threads are running. */
1547
1548 static int
1549 watchpoint_in_thread_scope (struct watchpoint *b)
1550 {
1551 return (b->pspace == current_program_space
1552 && (ptid_equal (b->watchpoint_thread, null_ptid)
1553 || (ptid_equal (inferior_ptid, b->watchpoint_thread)
1554 && !is_executing (inferior_ptid))));
1555 }
1556
1557 /* Set watchpoint B to disp_del_at_next_stop, even including its possible
1558 associated bp_watchpoint_scope breakpoint. */
1559
1560 static void
1561 watchpoint_del_at_next_stop (struct watchpoint *w)
1562 {
1563 if (w->related_breakpoint != w)
1564 {
1565 gdb_assert (w->related_breakpoint->type == bp_watchpoint_scope);
1566 gdb_assert (w->related_breakpoint->related_breakpoint == w);
1567 w->related_breakpoint->disposition = disp_del_at_next_stop;
1568 w->related_breakpoint->related_breakpoint = w->related_breakpoint;
1569 w->related_breakpoint = w;
1570 }
1571 w->disposition = disp_del_at_next_stop;
1572 }
1573
1574 /* Extract a bitfield value from value VAL using the bit parameters contained in
1575 watchpoint W. */
1576
1577 static struct value *
1578 extract_bitfield_from_watchpoint_value (struct watchpoint *w, struct value *val)
1579 {
1580 struct value *bit_val;
1581
1582 if (val == NULL)
1583 return NULL;
1584
1585 bit_val = allocate_value (value_type (val));
1586
1587 unpack_value_bitfield (bit_val,
1588 w->val_bitpos,
1589 w->val_bitsize,
1590 value_contents_for_printing (val),
1591 value_offset (val),
1592 val);
1593
1594 return bit_val;
1595 }
1596
1597 /* Allocate a dummy location and add it to B, which must be a software
1598 watchpoint. This is required because even if a software watchpoint
1599 is not watching any memory, bpstat_stop_status requires a location
1600 to be able to report stops. */
1601
1602 static void
1603 software_watchpoint_add_no_memory_location (struct breakpoint *b,
1604 struct program_space *pspace)
1605 {
1606 gdb_assert (b->type == bp_watchpoint && b->loc == NULL);
1607
1608 b->loc = allocate_bp_location (b);
1609 b->loc->pspace = pspace;
1610 b->loc->address = -1;
1611 b->loc->length = -1;
1612 }
1613
1614 /* Returns true if B is a software watchpoint that is not watching any
1615 memory (e.g., "watch $pc"). */
1616
1617 static int
1618 is_no_memory_software_watchpoint (struct breakpoint *b)
1619 {
1620 return (b->type == bp_watchpoint
1621 && b->loc != NULL
1622 && b->loc->next == NULL
1623 && b->loc->address == -1
1624 && b->loc->length == -1);
1625 }
1626
1627 /* Assuming that B is a watchpoint:
1628 - Reparse watchpoint expression, if REPARSE is non-zero
1629 - Evaluate expression and store the result in B->val
1630 - Evaluate the condition if there is one, and store the result
1631 in b->loc->cond.
1632 - Update the list of values that must be watched in B->loc.
1633
1634 If the watchpoint disposition is disp_del_at_next_stop, then do
1635 nothing. If this is local watchpoint that is out of scope, delete
1636 it.
1637
1638 Even with `set breakpoint always-inserted on' the watchpoints are
1639 removed + inserted on each stop here. Normal breakpoints must
1640 never be removed because they might be missed by a running thread
1641 when debugging in non-stop mode. On the other hand, hardware
1642 watchpoints (is_hardware_watchpoint; processed here) are specific
1643 to each LWP since they are stored in each LWP's hardware debug
1644 registers. Therefore, such LWP must be stopped first in order to
1645 be able to modify its hardware watchpoints.
1646
1647 Hardware watchpoints must be reset exactly once after being
1648 presented to the user. It cannot be done sooner, because it would
1649 reset the data used to present the watchpoint hit to the user. And
1650 it must not be done later because it could display the same single
1651 watchpoint hit during multiple GDB stops. Note that the latter is
1652 relevant only to the hardware watchpoint types bp_read_watchpoint
1653 and bp_access_watchpoint. False hit by bp_hardware_watchpoint is
1654 not user-visible - its hit is suppressed if the memory content has
1655 not changed.
1656
1657 The following constraints influence the location where we can reset
1658 hardware watchpoints:
1659
1660 * target_stopped_by_watchpoint and target_stopped_data_address are
1661 called several times when GDB stops.
1662
1663 [linux]
1664 * Multiple hardware watchpoints can be hit at the same time,
1665 causing GDB to stop. GDB only presents one hardware watchpoint
1666 hit at a time as the reason for stopping, and all the other hits
1667 are presented later, one after the other, each time the user
1668 requests the execution to be resumed. Execution is not resumed
1669 for the threads still having pending hit event stored in
1670 LWP_INFO->STATUS. While the watchpoint is already removed from
1671 the inferior on the first stop the thread hit event is kept being
1672 reported from its cached value by linux_nat_stopped_data_address
1673 until the real thread resume happens after the watchpoint gets
1674 presented and thus its LWP_INFO->STATUS gets reset.
1675
1676 Therefore the hardware watchpoint hit can get safely reset on the
1677 watchpoint removal from inferior. */
1678
1679 static void
1680 update_watchpoint (struct watchpoint *b, int reparse)
1681 {
1682 int within_current_scope;
1683 struct frame_id saved_frame_id;
1684 int frame_saved;
1685
1686 /* If this is a local watchpoint, we only want to check if the
1687 watchpoint frame is in scope if the current thread is the thread
1688 that was used to create the watchpoint. */
1689 if (!watchpoint_in_thread_scope (b))
1690 return;
1691
1692 if (b->disposition == disp_del_at_next_stop)
1693 return;
1694
1695 frame_saved = 0;
1696
1697 /* Determine if the watchpoint is within scope. */
1698 if (b->exp_valid_block == NULL)
1699 within_current_scope = 1;
1700 else
1701 {
1702 struct frame_info *fi = get_current_frame ();
1703 struct gdbarch *frame_arch = get_frame_arch (fi);
1704 CORE_ADDR frame_pc = get_frame_pc (fi);
1705
1706 /* If we're at a point where the stack has been destroyed
1707 (e.g. in a function epilogue), unwinding may not work
1708 properly. Do not attempt to recreate locations at this
1709 point. See similar comments in watchpoint_check. */
1710 if (gdbarch_stack_frame_destroyed_p (frame_arch, frame_pc))
1711 return;
1712
1713 /* Save the current frame's ID so we can restore it after
1714 evaluating the watchpoint expression on its own frame. */
1715 /* FIXME drow/2003-09-09: It would be nice if evaluate_expression
1716 took a frame parameter, so that we didn't have to change the
1717 selected frame. */
1718 frame_saved = 1;
1719 saved_frame_id = get_frame_id (get_selected_frame (NULL));
1720
1721 fi = frame_find_by_id (b->watchpoint_frame);
1722 within_current_scope = (fi != NULL);
1723 if (within_current_scope)
1724 select_frame (fi);
1725 }
1726
1727 /* We don't free locations. They are stored in the bp_location array
1728 and update_global_location_list will eventually delete them and
1729 remove breakpoints if needed. */
1730 b->loc = NULL;
1731
1732 if (within_current_scope && reparse)
1733 {
1734 const char *s;
1735
1736 b->exp.reset ();
1737 s = b->exp_string_reparse ? b->exp_string_reparse : b->exp_string;
1738 b->exp = parse_exp_1 (&s, 0, b->exp_valid_block, 0);
1739 /* If the meaning of expression itself changed, the old value is
1740 no longer relevant. We don't want to report a watchpoint hit
1741 to the user when the old value and the new value may actually
1742 be completely different objects. */
1743 value_free (b->val);
1744 b->val = NULL;
1745 b->val_valid = 0;
1746
1747 /* Note that unlike with breakpoints, the watchpoint's condition
1748 expression is stored in the breakpoint object, not in the
1749 locations (re)created below. */
1750 if (b->cond_string != NULL)
1751 {
1752 b->cond_exp.reset ();
1753
1754 s = b->cond_string;
1755 b->cond_exp = parse_exp_1 (&s, 0, b->cond_exp_valid_block, 0);
1756 }
1757 }
1758
1759 /* If we failed to parse the expression, for example because
1760 it refers to a global variable in a not-yet-loaded shared library,
1761 don't try to insert watchpoint. We don't automatically delete
1762 such watchpoint, though, since failure to parse expression
1763 is different from out-of-scope watchpoint. */
1764 if (!target_has_execution)
1765 {
1766 /* Without execution, memory can't change. No use to try and
1767 set watchpoint locations. The watchpoint will be reset when
1768 the target gains execution, through breakpoint_re_set. */
1769 if (!can_use_hw_watchpoints)
1770 {
1771 if (b->ops->works_in_software_mode (b))
1772 b->type = bp_watchpoint;
1773 else
1774 error (_("Can't set read/access watchpoint when "
1775 "hardware watchpoints are disabled."));
1776 }
1777 }
1778 else if (within_current_scope && b->exp)
1779 {
1780 int pc = 0;
1781 struct value *val_chain, *v, *result, *next;
1782 struct program_space *frame_pspace;
1783
1784 fetch_subexp_value (b->exp.get (), &pc, &v, &result, &val_chain, 0);
1785
1786 /* Avoid setting b->val if it's already set. The meaning of
1787 b->val is 'the last value' user saw, and we should update
1788 it only if we reported that last value to user. As it
1789 happens, the code that reports it updates b->val directly.
1790 We don't keep track of the memory value for masked
1791 watchpoints. */
1792 if (!b->val_valid && !is_masked_watchpoint (b))
1793 {
1794 if (b->val_bitsize != 0)
1795 {
1796 v = extract_bitfield_from_watchpoint_value (b, v);
1797 if (v != NULL)
1798 release_value (v);
1799 }
1800 b->val = v;
1801 b->val_valid = 1;
1802 }
1803
1804 frame_pspace = get_frame_program_space (get_selected_frame (NULL));
1805
1806 /* Look at each value on the value chain. */
1807 for (v = val_chain; v; v = value_next (v))
1808 {
1809 /* If it's a memory location, and GDB actually needed
1810 its contents to evaluate the expression, then we
1811 must watch it. If the first value returned is
1812 still lazy, that means an error occurred reading it;
1813 watch it anyway in case it becomes readable. */
1814 if (VALUE_LVAL (v) == lval_memory
1815 && (v == val_chain || ! value_lazy (v)))
1816 {
1817 struct type *vtype = check_typedef (value_type (v));
1818
1819 /* We only watch structs and arrays if user asked
1820 for it explicitly, never if they just happen to
1821 appear in the middle of some value chain. */
1822 if (v == result
1823 || (TYPE_CODE (vtype) != TYPE_CODE_STRUCT
1824 && TYPE_CODE (vtype) != TYPE_CODE_ARRAY))
1825 {
1826 CORE_ADDR addr;
1827 enum target_hw_bp_type type;
1828 struct bp_location *loc, **tmp;
1829 int bitpos = 0, bitsize = 0;
1830
1831 if (value_bitsize (v) != 0)
1832 {
1833 /* Extract the bit parameters out from the bitfield
1834 sub-expression. */
1835 bitpos = value_bitpos (v);
1836 bitsize = value_bitsize (v);
1837 }
1838 else if (v == result && b->val_bitsize != 0)
1839 {
1840 /* If VAL_BITSIZE != 0 then RESULT is actually a bitfield
1841 lvalue whose bit parameters are saved in the fields
1842 VAL_BITPOS and VAL_BITSIZE. */
1843 bitpos = b->val_bitpos;
1844 bitsize = b->val_bitsize;
1845 }
1846
1847 addr = value_address (v);
1848 if (bitsize != 0)
1849 {
1850 /* Skip the bytes that don't contain the bitfield. */
1851 addr += bitpos / 8;
1852 }
1853
1854 type = hw_write;
1855 if (b->type == bp_read_watchpoint)
1856 type = hw_read;
1857 else if (b->type == bp_access_watchpoint)
1858 type = hw_access;
1859
1860 loc = allocate_bp_location (b);
1861 for (tmp = &(b->loc); *tmp != NULL; tmp = &((*tmp)->next))
1862 ;
1863 *tmp = loc;
1864 loc->gdbarch = get_type_arch (value_type (v));
1865
1866 loc->pspace = frame_pspace;
1867 loc->address = address_significant (loc->gdbarch, addr);
1868
1869 if (bitsize != 0)
1870 {
1871 /* Just cover the bytes that make up the bitfield. */
1872 loc->length = ((bitpos % 8) + bitsize + 7) / 8;
1873 }
1874 else
1875 loc->length = TYPE_LENGTH (value_type (v));
1876
1877 loc->watchpoint_type = type;
1878 }
1879 }
1880 }
1881
1882 /* Change the type of breakpoint between hardware assisted or
1883 an ordinary watchpoint depending on the hardware support
1884 and free hardware slots. REPARSE is set when the inferior
1885 is started. */
1886 if (reparse)
1887 {
1888 int reg_cnt;
1889 enum bp_loc_type loc_type;
1890 struct bp_location *bl;
1891
1892 reg_cnt = can_use_hardware_watchpoint (val_chain);
1893
1894 if (reg_cnt)
1895 {
1896 int i, target_resources_ok, other_type_used;
1897 enum bptype type;
1898
1899 /* Use an exact watchpoint when there's only one memory region to be
1900 watched, and only one debug register is needed to watch it. */
1901 b->exact = target_exact_watchpoints && reg_cnt == 1;
1902
1903 /* We need to determine how many resources are already
1904 used for all other hardware watchpoints plus this one
1905 to see if we still have enough resources to also fit
1906 this watchpoint in as well. */
1907
1908 /* If this is a software watchpoint, we try to turn it
1909 to a hardware one -- count resources as if B was of
1910 hardware watchpoint type. */
1911 type = b->type;
1912 if (type == bp_watchpoint)
1913 type = bp_hardware_watchpoint;
1914
1915 /* This watchpoint may or may not have been placed on
1916 the list yet at this point (it won't be in the list
1917 if we're trying to create it for the first time,
1918 through watch_command), so always account for it
1919 manually. */
1920
1921 /* Count resources used by all watchpoints except B. */
1922 i = hw_watchpoint_used_count_others (b, type, &other_type_used);
1923
1924 /* Add in the resources needed for B. */
1925 i += hw_watchpoint_use_count (b);
1926
1927 target_resources_ok
1928 = target_can_use_hardware_watchpoint (type, i, other_type_used);
1929 if (target_resources_ok <= 0)
1930 {
1931 int sw_mode = b->ops->works_in_software_mode (b);
1932
1933 if (target_resources_ok == 0 && !sw_mode)
1934 error (_("Target does not support this type of "
1935 "hardware watchpoint."));
1936 else if (target_resources_ok < 0 && !sw_mode)
1937 error (_("There are not enough available hardware "
1938 "resources for this watchpoint."));
1939
1940 /* Downgrade to software watchpoint. */
1941 b->type = bp_watchpoint;
1942 }
1943 else
1944 {
1945 /* If this was a software watchpoint, we've just
1946 found we have enough resources to turn it to a
1947 hardware watchpoint. Otherwise, this is a
1948 nop. */
1949 b->type = type;
1950 }
1951 }
1952 else if (!b->ops->works_in_software_mode (b))
1953 {
1954 if (!can_use_hw_watchpoints)
1955 error (_("Can't set read/access watchpoint when "
1956 "hardware watchpoints are disabled."));
1957 else
1958 error (_("Expression cannot be implemented with "
1959 "read/access watchpoint."));
1960 }
1961 else
1962 b->type = bp_watchpoint;
1963
1964 loc_type = (b->type == bp_watchpoint? bp_loc_other
1965 : bp_loc_hardware_watchpoint);
1966 for (bl = b->loc; bl; bl = bl->next)
1967 bl->loc_type = loc_type;
1968 }
1969
1970 for (v = val_chain; v; v = next)
1971 {
1972 next = value_next (v);
1973 if (v != b->val)
1974 value_free (v);
1975 }
1976
1977 /* If a software watchpoint is not watching any memory, then the
1978 above left it without any location set up. But,
1979 bpstat_stop_status requires a location to be able to report
1980 stops, so make sure there's at least a dummy one. */
1981 if (b->type == bp_watchpoint && b->loc == NULL)
1982 software_watchpoint_add_no_memory_location (b, frame_pspace);
1983 }
1984 else if (!within_current_scope)
1985 {
1986 printf_filtered (_("\
1987 Watchpoint %d deleted because the program has left the block\n\
1988 in which its expression is valid.\n"),
1989 b->number);
1990 watchpoint_del_at_next_stop (b);
1991 }
1992
1993 /* Restore the selected frame. */
1994 if (frame_saved)
1995 select_frame (frame_find_by_id (saved_frame_id));
1996 }
1997
1998
1999 /* Returns 1 iff breakpoint location should be
2000 inserted in the inferior. We don't differentiate the type of BL's owner
2001 (breakpoint vs. tracepoint), although insert_location in tracepoint's
2002 breakpoint_ops is not defined, because in insert_bp_location,
2003 tracepoint's insert_location will not be called. */
2004 static int
2005 should_be_inserted (struct bp_location *bl)
2006 {
2007 if (bl->owner == NULL || !breakpoint_enabled (bl->owner))
2008 return 0;
2009
2010 if (bl->owner->disposition == disp_del_at_next_stop)
2011 return 0;
2012
2013 if (!bl->enabled || bl->shlib_disabled || bl->duplicate)
2014 return 0;
2015
2016 if (user_breakpoint_p (bl->owner) && bl->pspace->executing_startup)
2017 return 0;
2018
2019 /* This is set for example, when we're attached to the parent of a
2020 vfork, and have detached from the child. The child is running
2021 free, and we expect it to do an exec or exit, at which point the
2022 OS makes the parent schedulable again (and the target reports
2023 that the vfork is done). Until the child is done with the shared
2024 memory region, do not insert breakpoints in the parent, otherwise
2025 the child could still trip on the parent's breakpoints. Since
2026 the parent is blocked anyway, it won't miss any breakpoint. */
2027 if (bl->pspace->breakpoints_not_allowed)
2028 return 0;
2029
2030 /* Don't insert a breakpoint if we're trying to step past its
2031 location, except if the breakpoint is a single-step breakpoint,
2032 and the breakpoint's thread is the thread which is stepping past
2033 a breakpoint. */
2034 if ((bl->loc_type == bp_loc_software_breakpoint
2035 || bl->loc_type == bp_loc_hardware_breakpoint)
2036 && stepping_past_instruction_at (bl->pspace->aspace,
2037 bl->address)
2038 /* The single-step breakpoint may be inserted at the location
2039 we're trying to step if the instruction branches to itself.
2040 However, the instruction won't be executed at all and it may
2041 break the semantics of the instruction, for example, the
2042 instruction is a conditional branch or updates some flags.
2043 We can't fix it unless GDB is able to emulate the instruction
2044 or switch to displaced stepping. */
2045 && !(bl->owner->type == bp_single_step
2046 && thread_is_stepping_over_breakpoint (bl->owner->thread)))
2047 {
2048 if (debug_infrun)
2049 {
2050 fprintf_unfiltered (gdb_stdlog,
2051 "infrun: skipping breakpoint: "
2052 "stepping past insn at: %s\n",
2053 paddress (bl->gdbarch, bl->address));
2054 }
2055 return 0;
2056 }
2057
2058 /* Don't insert watchpoints if we're trying to step past the
2059 instruction that triggered one. */
2060 if ((bl->loc_type == bp_loc_hardware_watchpoint)
2061 && stepping_past_nonsteppable_watchpoint ())
2062 {
2063 if (debug_infrun)
2064 {
2065 fprintf_unfiltered (gdb_stdlog,
2066 "infrun: stepping past non-steppable watchpoint. "
2067 "skipping watchpoint at %s:%d\n",
2068 paddress (bl->gdbarch, bl->address),
2069 bl->length);
2070 }
2071 return 0;
2072 }
2073
2074 return 1;
2075 }
2076
2077 /* Same as should_be_inserted but does the check assuming
2078 that the location is not duplicated. */
2079
2080 static int
2081 unduplicated_should_be_inserted (struct bp_location *bl)
2082 {
2083 int result;
2084 const int save_duplicate = bl->duplicate;
2085
2086 bl->duplicate = 0;
2087 result = should_be_inserted (bl);
2088 bl->duplicate = save_duplicate;
2089 return result;
2090 }
2091
2092 /* Parses a conditional described by an expression COND into an
2093 agent expression bytecode suitable for evaluation
2094 by the bytecode interpreter. Return NULL if there was
2095 any error during parsing. */
2096
2097 static agent_expr_up
2098 parse_cond_to_aexpr (CORE_ADDR scope, struct expression *cond)
2099 {
2100 if (cond == NULL)
2101 return NULL;
2102
2103 agent_expr_up aexpr;
2104
2105 /* We don't want to stop processing, so catch any errors
2106 that may show up. */
2107 TRY
2108 {
2109 aexpr = gen_eval_for_expr (scope, cond);
2110 }
2111
2112 CATCH (ex, RETURN_MASK_ERROR)
2113 {
2114 /* If we got here, it means the condition could not be parsed to a valid
2115 bytecode expression and thus can't be evaluated on the target's side.
2116 It's no use iterating through the conditions. */
2117 }
2118 END_CATCH
2119
2120 /* We have a valid agent expression. */
2121 return aexpr;
2122 }
2123
2124 /* Based on location BL, create a list of breakpoint conditions to be
2125 passed on to the target. If we have duplicated locations with different
2126 conditions, we will add such conditions to the list. The idea is that the
2127 target will evaluate the list of conditions and will only notify GDB when
2128 one of them is true. */
2129
2130 static void
2131 build_target_condition_list (struct bp_location *bl)
2132 {
2133 struct bp_location **locp = NULL, **loc2p;
2134 int null_condition_or_parse_error = 0;
2135 int modified = bl->needs_update;
2136 struct bp_location *loc;
2137
2138 /* Release conditions left over from a previous insert. */
2139 bl->target_info.conditions.clear ();
2140
2141 /* This is only meaningful if the target is
2142 evaluating conditions and if the user has
2143 opted for condition evaluation on the target's
2144 side. */
2145 if (gdb_evaluates_breakpoint_condition_p ()
2146 || !target_supports_evaluation_of_breakpoint_conditions ())
2147 return;
2148
2149 /* Do a first pass to check for locations with no assigned
2150 conditions or conditions that fail to parse to a valid agent expression
2151 bytecode. If any of these happen, then it's no use to send conditions
2152 to the target since this location will always trigger and generate a
2153 response back to GDB. */
2154 ALL_BP_LOCATIONS_AT_ADDR (loc2p, locp, bl->address)
2155 {
2156 loc = (*loc2p);
2157 if (is_breakpoint (loc->owner) && loc->pspace->num == bl->pspace->num)
2158 {
2159 if (modified)
2160 {
2161 /* Re-parse the conditions since something changed. In that
2162 case we already freed the condition bytecodes (see
2163 force_breakpoint_reinsertion). We just
2164 need to parse the condition to bytecodes again. */
2165 loc->cond_bytecode = parse_cond_to_aexpr (bl->address,
2166 loc->cond.get ());
2167 }
2168
2169 /* If we have a NULL bytecode expression, it means something
2170 went wrong or we have a null condition expression. */
2171 if (!loc->cond_bytecode)
2172 {
2173 null_condition_or_parse_error = 1;
2174 break;
2175 }
2176 }
2177 }
2178
2179 /* If any of these happened, it means we will have to evaluate the conditions
2180 for the location's address on gdb's side. It is no use keeping bytecodes
2181 for all the other duplicate locations, thus we free all of them here.
2182
2183 This is so we have a finer control over which locations' conditions are
2184 being evaluated by GDB or the remote stub. */
2185 if (null_condition_or_parse_error)
2186 {
2187 ALL_BP_LOCATIONS_AT_ADDR (loc2p, locp, bl->address)
2188 {
2189 loc = (*loc2p);
2190 if (is_breakpoint (loc->owner) && loc->pspace->num == bl->pspace->num)
2191 {
2192 /* Only go as far as the first NULL bytecode is
2193 located. */
2194 if (!loc->cond_bytecode)
2195 return;
2196
2197 loc->cond_bytecode.reset ();
2198 }
2199 }
2200 }
2201
2202 /* No NULL conditions or failed bytecode generation. Build a condition list
2203 for this location's address. */
2204 ALL_BP_LOCATIONS_AT_ADDR (loc2p, locp, bl->address)
2205 {
2206 loc = (*loc2p);
2207 if (loc->cond
2208 && is_breakpoint (loc->owner)
2209 && loc->pspace->num == bl->pspace->num
2210 && loc->owner->enable_state == bp_enabled
2211 && loc->enabled)
2212 {
2213 /* Add the condition to the vector. This will be used later
2214 to send the conditions to the target. */
2215 bl->target_info.conditions.push_back (loc->cond_bytecode.get ());
2216 }
2217 }
2218
2219 return;
2220 }
2221
2222 /* Parses a command described by string CMD into an agent expression
2223 bytecode suitable for evaluation by the bytecode interpreter.
2224 Return NULL if there was any error during parsing. */
2225
2226 static agent_expr_up
2227 parse_cmd_to_aexpr (CORE_ADDR scope, char *cmd)
2228 {
2229 const char *cmdrest;
2230 const char *format_start, *format_end;
2231 struct gdbarch *gdbarch = get_current_arch ();
2232
2233 if (cmd == NULL)
2234 return NULL;
2235
2236 cmdrest = cmd;
2237
2238 if (*cmdrest == ',')
2239 ++cmdrest;
2240 cmdrest = skip_spaces (cmdrest);
2241
2242 if (*cmdrest++ != '"')
2243 error (_("No format string following the location"));
2244
2245 format_start = cmdrest;
2246
2247 format_pieces fpieces (&cmdrest);
2248
2249 format_end = cmdrest;
2250
2251 if (*cmdrest++ != '"')
2252 error (_("Bad format string, non-terminated '\"'."));
2253
2254 cmdrest = skip_spaces (cmdrest);
2255
2256 if (!(*cmdrest == ',' || *cmdrest == '\0'))
2257 error (_("Invalid argument syntax"));
2258
2259 if (*cmdrest == ',')
2260 cmdrest++;
2261 cmdrest = skip_spaces (cmdrest);
2262
2263 /* For each argument, make an expression. */
2264
2265 std::vector<struct expression *> argvec;
2266 while (*cmdrest != '\0')
2267 {
2268 const char *cmd1;
2269
2270 cmd1 = cmdrest;
2271 expression_up expr = parse_exp_1 (&cmd1, scope, block_for_pc (scope), 1);
2272 argvec.push_back (expr.release ());
2273 cmdrest = cmd1;
2274 if (*cmdrest == ',')
2275 ++cmdrest;
2276 }
2277
2278 agent_expr_up aexpr;
2279
2280 /* We don't want to stop processing, so catch any errors
2281 that may show up. */
2282 TRY
2283 {
2284 aexpr = gen_printf (scope, gdbarch, 0, 0,
2285 format_start, format_end - format_start,
2286 argvec.size (), argvec.data ());
2287 }
2288 CATCH (ex, RETURN_MASK_ERROR)
2289 {
2290 /* If we got here, it means the command could not be parsed to a valid
2291 bytecode expression and thus can't be evaluated on the target's side.
2292 It's no use iterating through the other commands. */
2293 }
2294 END_CATCH
2295
2296 /* We have a valid agent expression, return it. */
2297 return aexpr;
2298 }
2299
2300 /* Based on location BL, create a list of breakpoint commands to be
2301 passed on to the target. If we have duplicated locations with
2302 different commands, we will add any such to the list. */
2303
2304 static void
2305 build_target_command_list (struct bp_location *bl)
2306 {
2307 struct bp_location **locp = NULL, **loc2p;
2308 int null_command_or_parse_error = 0;
2309 int modified = bl->needs_update;
2310 struct bp_location *loc;
2311
2312 /* Clear commands left over from a previous insert. */
2313 bl->target_info.tcommands.clear ();
2314
2315 if (!target_can_run_breakpoint_commands ())
2316 return;
2317
2318 /* For now, limit to agent-style dprintf breakpoints. */
2319 if (dprintf_style != dprintf_style_agent)
2320 return;
2321
2322 /* For now, if we have any duplicate location that isn't a dprintf,
2323 don't install the target-side commands, as that would make the
2324 breakpoint not be reported to the core, and we'd lose
2325 control. */
2326 ALL_BP_LOCATIONS_AT_ADDR (loc2p, locp, bl->address)
2327 {
2328 loc = (*loc2p);
2329 if (is_breakpoint (loc->owner)
2330 && loc->pspace->num == bl->pspace->num
2331 && loc->owner->type != bp_dprintf)
2332 return;
2333 }
2334
2335 /* Do a first pass to check for locations with no assigned
2336 conditions or conditions that fail to parse to a valid agent expression
2337 bytecode. If any of these happen, then it's no use to send conditions
2338 to the target since this location will always trigger and generate a
2339 response back to GDB. */
2340 ALL_BP_LOCATIONS_AT_ADDR (loc2p, locp, bl->address)
2341 {
2342 loc = (*loc2p);
2343 if (is_breakpoint (loc->owner) && loc->pspace->num == bl->pspace->num)
2344 {
2345 if (modified)
2346 {
2347 /* Re-parse the commands since something changed. In that
2348 case we already freed the command bytecodes (see
2349 force_breakpoint_reinsertion). We just
2350 need to parse the command to bytecodes again. */
2351 loc->cmd_bytecode
2352 = parse_cmd_to_aexpr (bl->address,
2353 loc->owner->extra_string);
2354 }
2355
2356 /* If we have a NULL bytecode expression, it means something
2357 went wrong or we have a null command expression. */
2358 if (!loc->cmd_bytecode)
2359 {
2360 null_command_or_parse_error = 1;
2361 break;
2362 }
2363 }
2364 }
2365
2366 /* If anything failed, then we're not doing target-side commands,
2367 and so clean up. */
2368 if (null_command_or_parse_error)
2369 {
2370 ALL_BP_LOCATIONS_AT_ADDR (loc2p, locp, bl->address)
2371 {
2372 loc = (*loc2p);
2373 if (is_breakpoint (loc->owner)
2374 && loc->pspace->num == bl->pspace->num)
2375 {
2376 /* Only go as far as the first NULL bytecode is
2377 located. */
2378 if (loc->cmd_bytecode == NULL)
2379 return;
2380
2381 loc->cmd_bytecode.reset ();
2382 }
2383 }
2384 }
2385
2386 /* No NULL commands or failed bytecode generation. Build a command list
2387 for this location's address. */
2388 ALL_BP_LOCATIONS_AT_ADDR (loc2p, locp, bl->address)
2389 {
2390 loc = (*loc2p);
2391 if (loc->owner->extra_string
2392 && is_breakpoint (loc->owner)
2393 && loc->pspace->num == bl->pspace->num
2394 && loc->owner->enable_state == bp_enabled
2395 && loc->enabled)
2396 {
2397 /* Add the command to the vector. This will be used later
2398 to send the commands to the target. */
2399 bl->target_info.tcommands.push_back (loc->cmd_bytecode.get ());
2400 }
2401 }
2402
2403 bl->target_info.persist = 0;
2404 /* Maybe flag this location as persistent. */
2405 if (bl->owner->type == bp_dprintf && disconnected_dprintf)
2406 bl->target_info.persist = 1;
2407 }
2408
2409 /* Return the kind of breakpoint on address *ADDR. Get the kind
2410 of breakpoint according to ADDR except single-step breakpoint.
2411 Get the kind of single-step breakpoint according to the current
2412 registers state. */
2413
2414 static int
2415 breakpoint_kind (struct bp_location *bl, CORE_ADDR *addr)
2416 {
2417 if (bl->owner->type == bp_single_step)
2418 {
2419 struct thread_info *thr = find_thread_global_id (bl->owner->thread);
2420 struct regcache *regcache;
2421
2422 regcache = get_thread_regcache (thr->ptid);
2423
2424 return gdbarch_breakpoint_kind_from_current_state (bl->gdbarch,
2425 regcache, addr);
2426 }
2427 else
2428 return gdbarch_breakpoint_kind_from_pc (bl->gdbarch, addr);
2429 }
2430
2431 /* Insert a low-level "breakpoint" of some type. BL is the breakpoint
2432 location. Any error messages are printed to TMP_ERROR_STREAM; and
2433 DISABLED_BREAKS, and HW_BREAKPOINT_ERROR are used to report problems.
2434 Returns 0 for success, 1 if the bp_location type is not supported or
2435 -1 for failure.
2436
2437 NOTE drow/2003-09-09: This routine could be broken down to an
2438 object-style method for each breakpoint or catchpoint type. */
2439 static int
2440 insert_bp_location (struct bp_location *bl,
2441 struct ui_file *tmp_error_stream,
2442 int *disabled_breaks,
2443 int *hw_breakpoint_error,
2444 int *hw_bp_error_explained_already)
2445 {
2446 gdb_exception bp_excpt = exception_none;
2447
2448 if (!should_be_inserted (bl) || (bl->inserted && !bl->needs_update))
2449 return 0;
2450
2451 /* Note we don't initialize bl->target_info, as that wipes out
2452 the breakpoint location's shadow_contents if the breakpoint
2453 is still inserted at that location. This in turn breaks
2454 target_read_memory which depends on these buffers when
2455 a memory read is requested at the breakpoint location:
2456 Once the target_info has been wiped, we fail to see that
2457 we have a breakpoint inserted at that address and thus
2458 read the breakpoint instead of returning the data saved in
2459 the breakpoint location's shadow contents. */
2460 bl->target_info.reqstd_address = bl->address;
2461 bl->target_info.placed_address_space = bl->pspace->aspace;
2462 bl->target_info.length = bl->length;
2463
2464 /* When working with target-side conditions, we must pass all the conditions
2465 for the same breakpoint address down to the target since GDB will not
2466 insert those locations. With a list of breakpoint conditions, the target
2467 can decide when to stop and notify GDB. */
2468
2469 if (is_breakpoint (bl->owner))
2470 {
2471 build_target_condition_list (bl);
2472 build_target_command_list (bl);
2473 /* Reset the modification marker. */
2474 bl->needs_update = 0;
2475 }
2476
2477 if (bl->loc_type == bp_loc_software_breakpoint
2478 || bl->loc_type == bp_loc_hardware_breakpoint)
2479 {
2480 if (bl->owner->type != bp_hardware_breakpoint)
2481 {
2482 /* If the explicitly specified breakpoint type
2483 is not hardware breakpoint, check the memory map to see
2484 if the breakpoint address is in read only memory or not.
2485
2486 Two important cases are:
2487 - location type is not hardware breakpoint, memory
2488 is readonly. We change the type of the location to
2489 hardware breakpoint.
2490 - location type is hardware breakpoint, memory is
2491 read-write. This means we've previously made the
2492 location hardware one, but then the memory map changed,
2493 so we undo.
2494
2495 When breakpoints are removed, remove_breakpoints will use
2496 location types we've just set here, the only possible
2497 problem is that memory map has changed during running
2498 program, but it's not going to work anyway with current
2499 gdb. */
2500 struct mem_region *mr
2501 = lookup_mem_region (bl->target_info.reqstd_address);
2502
2503 if (mr)
2504 {
2505 if (automatic_hardware_breakpoints)
2506 {
2507 enum bp_loc_type new_type;
2508
2509 if (mr->attrib.mode != MEM_RW)
2510 new_type = bp_loc_hardware_breakpoint;
2511 else
2512 new_type = bp_loc_software_breakpoint;
2513
2514 if (new_type != bl->loc_type)
2515 {
2516 static int said = 0;
2517
2518 bl->loc_type = new_type;
2519 if (!said)
2520 {
2521 fprintf_filtered (gdb_stdout,
2522 _("Note: automatically using "
2523 "hardware breakpoints for "
2524 "read-only addresses.\n"));
2525 said = 1;
2526 }
2527 }
2528 }
2529 else if (bl->loc_type == bp_loc_software_breakpoint
2530 && mr->attrib.mode != MEM_RW)
2531 {
2532 fprintf_unfiltered (tmp_error_stream,
2533 _("Cannot insert breakpoint %d.\n"
2534 "Cannot set software breakpoint "
2535 "at read-only address %s\n"),
2536 bl->owner->number,
2537 paddress (bl->gdbarch, bl->address));
2538 return 1;
2539 }
2540 }
2541 }
2542
2543 /* First check to see if we have to handle an overlay. */
2544 if (overlay_debugging == ovly_off
2545 || bl->section == NULL
2546 || !(section_is_overlay (bl->section)))
2547 {
2548 /* No overlay handling: just set the breakpoint. */
2549 TRY
2550 {
2551 int val;
2552
2553 val = bl->owner->ops->insert_location (bl);
2554 if (val)
2555 bp_excpt = gdb_exception {RETURN_ERROR, GENERIC_ERROR};
2556 }
2557 CATCH (e, RETURN_MASK_ALL)
2558 {
2559 bp_excpt = e;
2560 }
2561 END_CATCH
2562 }
2563 else
2564 {
2565 /* This breakpoint is in an overlay section.
2566 Shall we set a breakpoint at the LMA? */
2567 if (!overlay_events_enabled)
2568 {
2569 /* Yes -- overlay event support is not active,
2570 so we must try to set a breakpoint at the LMA.
2571 This will not work for a hardware breakpoint. */
2572 if (bl->loc_type == bp_loc_hardware_breakpoint)
2573 warning (_("hardware breakpoint %d not supported in overlay!"),
2574 bl->owner->number);
2575 else
2576 {
2577 CORE_ADDR addr = overlay_unmapped_address (bl->address,
2578 bl->section);
2579 /* Set a software (trap) breakpoint at the LMA. */
2580 bl->overlay_target_info = bl->target_info;
2581 bl->overlay_target_info.reqstd_address = addr;
2582
2583 /* No overlay handling: just set the breakpoint. */
2584 TRY
2585 {
2586 int val;
2587
2588 bl->overlay_target_info.kind
2589 = breakpoint_kind (bl, &addr);
2590 bl->overlay_target_info.placed_address = addr;
2591 val = target_insert_breakpoint (bl->gdbarch,
2592 &bl->overlay_target_info);
2593 if (val)
2594 bp_excpt
2595 = gdb_exception {RETURN_ERROR, GENERIC_ERROR};
2596 }
2597 CATCH (e, RETURN_MASK_ALL)
2598 {
2599 bp_excpt = e;
2600 }
2601 END_CATCH
2602
2603 if (bp_excpt.reason != 0)
2604 fprintf_unfiltered (tmp_error_stream,
2605 "Overlay breakpoint %d "
2606 "failed: in ROM?\n",
2607 bl->owner->number);
2608 }
2609 }
2610 /* Shall we set a breakpoint at the VMA? */
2611 if (section_is_mapped (bl->section))
2612 {
2613 /* Yes. This overlay section is mapped into memory. */
2614 TRY
2615 {
2616 int val;
2617
2618 val = bl->owner->ops->insert_location (bl);
2619 if (val)
2620 bp_excpt = gdb_exception {RETURN_ERROR, GENERIC_ERROR};
2621 }
2622 CATCH (e, RETURN_MASK_ALL)
2623 {
2624 bp_excpt = e;
2625 }
2626 END_CATCH
2627 }
2628 else
2629 {
2630 /* No. This breakpoint will not be inserted.
2631 No error, but do not mark the bp as 'inserted'. */
2632 return 0;
2633 }
2634 }
2635
2636 if (bp_excpt.reason != 0)
2637 {
2638 /* Can't set the breakpoint. */
2639
2640 /* In some cases, we might not be able to insert a
2641 breakpoint in a shared library that has already been
2642 removed, but we have not yet processed the shlib unload
2643 event. Unfortunately, some targets that implement
2644 breakpoint insertion themselves can't tell why the
2645 breakpoint insertion failed (e.g., the remote target
2646 doesn't define error codes), so we must treat generic
2647 errors as memory errors. */
2648 if (bp_excpt.reason == RETURN_ERROR
2649 && (bp_excpt.error == GENERIC_ERROR
2650 || bp_excpt.error == MEMORY_ERROR)
2651 && bl->loc_type == bp_loc_software_breakpoint
2652 && (solib_name_from_address (bl->pspace, bl->address)
2653 || shared_objfile_contains_address_p (bl->pspace,
2654 bl->address)))
2655 {
2656 /* See also: disable_breakpoints_in_shlibs. */
2657 bl->shlib_disabled = 1;
2658 observer_notify_breakpoint_modified (bl->owner);
2659 if (!*disabled_breaks)
2660 {
2661 fprintf_unfiltered (tmp_error_stream,
2662 "Cannot insert breakpoint %d.\n",
2663 bl->owner->number);
2664 fprintf_unfiltered (tmp_error_stream,
2665 "Temporarily disabling shared "
2666 "library breakpoints:\n");
2667 }
2668 *disabled_breaks = 1;
2669 fprintf_unfiltered (tmp_error_stream,
2670 "breakpoint #%d\n", bl->owner->number);
2671 return 0;
2672 }
2673 else
2674 {
2675 if (bl->loc_type == bp_loc_hardware_breakpoint)
2676 {
2677 *hw_breakpoint_error = 1;
2678 *hw_bp_error_explained_already = bp_excpt.message != NULL;
2679 fprintf_unfiltered (tmp_error_stream,
2680 "Cannot insert hardware breakpoint %d%s",
2681 bl->owner->number,
2682 bp_excpt.message ? ":" : ".\n");
2683 if (bp_excpt.message != NULL)
2684 fprintf_unfiltered (tmp_error_stream, "%s.\n",
2685 bp_excpt.message);
2686 }
2687 else
2688 {
2689 if (bp_excpt.message == NULL)
2690 {
2691 std::string message
2692 = memory_error_message (TARGET_XFER_E_IO,
2693 bl->gdbarch, bl->address);
2694
2695 fprintf_unfiltered (tmp_error_stream,
2696 "Cannot insert breakpoint %d.\n"
2697 "%s\n",
2698 bl->owner->number, message.c_str ());
2699 }
2700 else
2701 {
2702 fprintf_unfiltered (tmp_error_stream,
2703 "Cannot insert breakpoint %d: %s\n",
2704 bl->owner->number,
2705 bp_excpt.message);
2706 }
2707 }
2708 return 1;
2709
2710 }
2711 }
2712 else
2713 bl->inserted = 1;
2714
2715 return 0;
2716 }
2717
2718 else if (bl->loc_type == bp_loc_hardware_watchpoint
2719 /* NOTE drow/2003-09-08: This state only exists for removing
2720 watchpoints. It's not clear that it's necessary... */
2721 && bl->owner->disposition != disp_del_at_next_stop)
2722 {
2723 int val;
2724
2725 gdb_assert (bl->owner->ops != NULL
2726 && bl->owner->ops->insert_location != NULL);
2727
2728 val = bl->owner->ops->insert_location (bl);
2729
2730 /* If trying to set a read-watchpoint, and it turns out it's not
2731 supported, try emulating one with an access watchpoint. */
2732 if (val == 1 && bl->watchpoint_type == hw_read)
2733 {
2734 struct bp_location *loc, **loc_temp;
2735
2736 /* But don't try to insert it, if there's already another
2737 hw_access location that would be considered a duplicate
2738 of this one. */
2739 ALL_BP_LOCATIONS (loc, loc_temp)
2740 if (loc != bl
2741 && loc->watchpoint_type == hw_access
2742 && watchpoint_locations_match (bl, loc))
2743 {
2744 bl->duplicate = 1;
2745 bl->inserted = 1;
2746 bl->target_info = loc->target_info;
2747 bl->watchpoint_type = hw_access;
2748 val = 0;
2749 break;
2750 }
2751
2752 if (val == 1)
2753 {
2754 bl->watchpoint_type = hw_access;
2755 val = bl->owner->ops->insert_location (bl);
2756
2757 if (val)
2758 /* Back to the original value. */
2759 bl->watchpoint_type = hw_read;
2760 }
2761 }
2762
2763 bl->inserted = (val == 0);
2764 }
2765
2766 else if (bl->owner->type == bp_catchpoint)
2767 {
2768 int val;
2769
2770 gdb_assert (bl->owner->ops != NULL
2771 && bl->owner->ops->insert_location != NULL);
2772
2773 val = bl->owner->ops->insert_location (bl);
2774 if (val)
2775 {
2776 bl->owner->enable_state = bp_disabled;
2777
2778 if (val == 1)
2779 warning (_("\
2780 Error inserting catchpoint %d: Your system does not support this type\n\
2781 of catchpoint."), bl->owner->number);
2782 else
2783 warning (_("Error inserting catchpoint %d."), bl->owner->number);
2784 }
2785
2786 bl->inserted = (val == 0);
2787
2788 /* We've already printed an error message if there was a problem
2789 inserting this catchpoint, and we've disabled the catchpoint,
2790 so just return success. */
2791 return 0;
2792 }
2793
2794 return 0;
2795 }
2796
2797 /* This function is called when program space PSPACE is about to be
2798 deleted. It takes care of updating breakpoints to not reference
2799 PSPACE anymore. */
2800
2801 void
2802 breakpoint_program_space_exit (struct program_space *pspace)
2803 {
2804 struct breakpoint *b, *b_temp;
2805 struct bp_location *loc, **loc_temp;
2806
2807 /* Remove any breakpoint that was set through this program space. */
2808 ALL_BREAKPOINTS_SAFE (b, b_temp)
2809 {
2810 if (b->pspace == pspace)
2811 delete_breakpoint (b);
2812 }
2813
2814 /* Breakpoints set through other program spaces could have locations
2815 bound to PSPACE as well. Remove those. */
2816 ALL_BP_LOCATIONS (loc, loc_temp)
2817 {
2818 struct bp_location *tmp;
2819
2820 if (loc->pspace == pspace)
2821 {
2822 /* ALL_BP_LOCATIONS bp_location has LOC->OWNER always non-NULL. */
2823 if (loc->owner->loc == loc)
2824 loc->owner->loc = loc->next;
2825 else
2826 for (tmp = loc->owner->loc; tmp->next != NULL; tmp = tmp->next)
2827 if (tmp->next == loc)
2828 {
2829 tmp->next = loc->next;
2830 break;
2831 }
2832 }
2833 }
2834
2835 /* Now update the global location list to permanently delete the
2836 removed locations above. */
2837 update_global_location_list (UGLL_DONT_INSERT);
2838 }
2839
2840 /* Make sure all breakpoints are inserted in inferior.
2841 Throws exception on any error.
2842 A breakpoint that is already inserted won't be inserted
2843 again, so calling this function twice is safe. */
2844 void
2845 insert_breakpoints (void)
2846 {
2847 struct breakpoint *bpt;
2848
2849 ALL_BREAKPOINTS (bpt)
2850 if (is_hardware_watchpoint (bpt))
2851 {
2852 struct watchpoint *w = (struct watchpoint *) bpt;
2853
2854 update_watchpoint (w, 0 /* don't reparse. */);
2855 }
2856
2857 /* Updating watchpoints creates new locations, so update the global
2858 location list. Explicitly tell ugll to insert locations and
2859 ignore breakpoints_always_inserted_mode. */
2860 update_global_location_list (UGLL_INSERT);
2861 }
2862
2863 /* Invoke CALLBACK for each of bp_location. */
2864
2865 void
2866 iterate_over_bp_locations (walk_bp_location_callback callback)
2867 {
2868 struct bp_location *loc, **loc_tmp;
2869
2870 ALL_BP_LOCATIONS (loc, loc_tmp)
2871 {
2872 callback (loc, NULL);
2873 }
2874 }
2875
2876 /* This is used when we need to synch breakpoint conditions between GDB and the
2877 target. It is the case with deleting and disabling of breakpoints when using
2878 always-inserted mode. */
2879
2880 static void
2881 update_inserted_breakpoint_locations (void)
2882 {
2883 struct bp_location *bl, **blp_tmp;
2884 int error_flag = 0;
2885 int val = 0;
2886 int disabled_breaks = 0;
2887 int hw_breakpoint_error = 0;
2888 int hw_bp_details_reported = 0;
2889
2890 string_file tmp_error_stream;
2891
2892 /* Explicitly mark the warning -- this will only be printed if
2893 there was an error. */
2894 tmp_error_stream.puts ("Warning:\n");
2895
2896 scoped_restore_current_pspace_and_thread restore_pspace_thread;
2897
2898 ALL_BP_LOCATIONS (bl, blp_tmp)
2899 {
2900 /* We only want to update software breakpoints and hardware
2901 breakpoints. */
2902 if (!is_breakpoint (bl->owner))
2903 continue;
2904
2905 /* We only want to update locations that are already inserted
2906 and need updating. This is to avoid unwanted insertion during
2907 deletion of breakpoints. */
2908 if (!bl->inserted || (bl->inserted && !bl->needs_update))
2909 continue;
2910
2911 switch_to_program_space_and_thread (bl->pspace);
2912
2913 /* For targets that support global breakpoints, there's no need
2914 to select an inferior to insert breakpoint to. In fact, even
2915 if we aren't attached to any process yet, we should still
2916 insert breakpoints. */
2917 if (!gdbarch_has_global_breakpoints (target_gdbarch ())
2918 && ptid_equal (inferior_ptid, null_ptid))
2919 continue;
2920
2921 val = insert_bp_location (bl, &tmp_error_stream, &disabled_breaks,
2922 &hw_breakpoint_error, &hw_bp_details_reported);
2923 if (val)
2924 error_flag = val;
2925 }
2926
2927 if (error_flag)
2928 {
2929 target_terminal::ours_for_output ();
2930 error_stream (tmp_error_stream);
2931 }
2932 }
2933
2934 /* Used when starting or continuing the program. */
2935
2936 static void
2937 insert_breakpoint_locations (void)
2938 {
2939 struct breakpoint *bpt;
2940 struct bp_location *bl, **blp_tmp;
2941 int error_flag = 0;
2942 int val = 0;
2943 int disabled_breaks = 0;
2944 int hw_breakpoint_error = 0;
2945 int hw_bp_error_explained_already = 0;
2946
2947 string_file tmp_error_stream;
2948
2949 /* Explicitly mark the warning -- this will only be printed if
2950 there was an error. */
2951 tmp_error_stream.puts ("Warning:\n");
2952
2953 scoped_restore_current_pspace_and_thread restore_pspace_thread;
2954
2955 ALL_BP_LOCATIONS (bl, blp_tmp)
2956 {
2957 if (!should_be_inserted (bl) || (bl->inserted && !bl->needs_update))
2958 continue;
2959
2960 /* There is no point inserting thread-specific breakpoints if
2961 the thread no longer exists. ALL_BP_LOCATIONS bp_location
2962 has BL->OWNER always non-NULL. */
2963 if (bl->owner->thread != -1
2964 && !valid_global_thread_id (bl->owner->thread))
2965 continue;
2966
2967 switch_to_program_space_and_thread (bl->pspace);
2968
2969 /* For targets that support global breakpoints, there's no need
2970 to select an inferior to insert breakpoint to. In fact, even
2971 if we aren't attached to any process yet, we should still
2972 insert breakpoints. */
2973 if (!gdbarch_has_global_breakpoints (target_gdbarch ())
2974 && ptid_equal (inferior_ptid, null_ptid))
2975 continue;
2976
2977 val = insert_bp_location (bl, &tmp_error_stream, &disabled_breaks,
2978 &hw_breakpoint_error, &hw_bp_error_explained_already);
2979 if (val)
2980 error_flag = val;
2981 }
2982
2983 /* If we failed to insert all locations of a watchpoint, remove
2984 them, as half-inserted watchpoint is of limited use. */
2985 ALL_BREAKPOINTS (bpt)
2986 {
2987 int some_failed = 0;
2988 struct bp_location *loc;
2989
2990 if (!is_hardware_watchpoint (bpt))
2991 continue;
2992
2993 if (!breakpoint_enabled (bpt))
2994 continue;
2995
2996 if (bpt->disposition == disp_del_at_next_stop)
2997 continue;
2998
2999 for (loc = bpt->loc; loc; loc = loc->next)
3000 if (!loc->inserted && should_be_inserted (loc))
3001 {
3002 some_failed = 1;
3003 break;
3004 }
3005 if (some_failed)
3006 {
3007 for (loc = bpt->loc; loc; loc = loc->next)
3008 if (loc->inserted)
3009 remove_breakpoint (loc);
3010
3011 hw_breakpoint_error = 1;
3012 tmp_error_stream.printf ("Could not insert "
3013 "hardware watchpoint %d.\n",
3014 bpt->number);
3015 error_flag = -1;
3016 }
3017 }
3018
3019 if (error_flag)
3020 {
3021 /* If a hardware breakpoint or watchpoint was inserted, add a
3022 message about possibly exhausted resources. */
3023 if (hw_breakpoint_error && !hw_bp_error_explained_already)
3024 {
3025 tmp_error_stream.printf ("Could not insert hardware breakpoints:\n\
3026 You may have requested too many hardware breakpoints/watchpoints.\n");
3027 }
3028 target_terminal::ours_for_output ();
3029 error_stream (tmp_error_stream);
3030 }
3031 }
3032
3033 /* Used when the program stops.
3034 Returns zero if successful, or non-zero if there was a problem
3035 removing a breakpoint location. */
3036
3037 int
3038 remove_breakpoints (void)
3039 {
3040 struct bp_location *bl, **blp_tmp;
3041 int val = 0;
3042
3043 ALL_BP_LOCATIONS (bl, blp_tmp)
3044 {
3045 if (bl->inserted && !is_tracepoint (bl->owner))
3046 val |= remove_breakpoint (bl);
3047 }
3048 return val;
3049 }
3050
3051 /* When a thread exits, remove breakpoints that are related to
3052 that thread. */
3053
3054 static void
3055 remove_threaded_breakpoints (struct thread_info *tp, int silent)
3056 {
3057 struct breakpoint *b, *b_tmp;
3058
3059 ALL_BREAKPOINTS_SAFE (b, b_tmp)
3060 {
3061 if (b->thread == tp->global_num && user_breakpoint_p (b))
3062 {
3063 b->disposition = disp_del_at_next_stop;
3064
3065 printf_filtered (_("\
3066 Thread-specific breakpoint %d deleted - thread %s no longer in the thread list.\n"),
3067 b->number, print_thread_id (tp));
3068
3069 /* Hide it from the user. */
3070 b->number = 0;
3071 }
3072 }
3073 }
3074
3075 /* Remove breakpoints of process PID. */
3076
3077 int
3078 remove_breakpoints_pid (int pid)
3079 {
3080 struct bp_location *bl, **blp_tmp;
3081 int val;
3082 struct inferior *inf = find_inferior_pid (pid);
3083
3084 ALL_BP_LOCATIONS (bl, blp_tmp)
3085 {
3086 if (bl->pspace != inf->pspace)
3087 continue;
3088
3089 if (bl->inserted && !bl->target_info.persist)
3090 {
3091 val = remove_breakpoint (bl);
3092 if (val != 0)
3093 return val;
3094 }
3095 }
3096 return 0;
3097 }
3098
3099 static int internal_breakpoint_number = -1;
3100
3101 /* Set the breakpoint number of B, depending on the value of INTERNAL.
3102 If INTERNAL is non-zero, the breakpoint number will be populated
3103 from internal_breakpoint_number and that variable decremented.
3104 Otherwise the breakpoint number will be populated from
3105 breakpoint_count and that value incremented. Internal breakpoints
3106 do not set the internal var bpnum. */
3107 static void
3108 set_breakpoint_number (int internal, struct breakpoint *b)
3109 {
3110 if (internal)
3111 b->number = internal_breakpoint_number--;
3112 else
3113 {
3114 set_breakpoint_count (breakpoint_count + 1);
3115 b->number = breakpoint_count;
3116 }
3117 }
3118
3119 static struct breakpoint *
3120 create_internal_breakpoint (struct gdbarch *gdbarch,
3121 CORE_ADDR address, enum bptype type,
3122 const struct breakpoint_ops *ops)
3123 {
3124 symtab_and_line sal;
3125 sal.pc = address;
3126 sal.section = find_pc_overlay (sal.pc);
3127 sal.pspace = current_program_space;
3128
3129 breakpoint *b = set_raw_breakpoint (gdbarch, sal, type, ops);
3130 b->number = internal_breakpoint_number--;
3131 b->disposition = disp_donttouch;
3132
3133 return b;
3134 }
3135
3136 static const char *const longjmp_names[] =
3137 {
3138 "longjmp", "_longjmp", "siglongjmp", "_siglongjmp"
3139 };
3140 #define NUM_LONGJMP_NAMES ARRAY_SIZE(longjmp_names)
3141
3142 /* Per-objfile data private to breakpoint.c. */
3143 struct breakpoint_objfile_data
3144 {
3145 /* Minimal symbol for "_ovly_debug_event" (if any). */
3146 struct bound_minimal_symbol overlay_msym {};
3147
3148 /* Minimal symbol(s) for "longjmp", "siglongjmp", etc. (if any). */
3149 struct bound_minimal_symbol longjmp_msym[NUM_LONGJMP_NAMES] {};
3150
3151 /* True if we have looked for longjmp probes. */
3152 int longjmp_searched = 0;
3153
3154 /* SystemTap probe points for longjmp (if any). These are non-owning
3155 references. */
3156 std::vector<probe *> longjmp_probes;
3157
3158 /* Minimal symbol for "std::terminate()" (if any). */
3159 struct bound_minimal_symbol terminate_msym {};
3160
3161 /* Minimal symbol for "_Unwind_DebugHook" (if any). */
3162 struct bound_minimal_symbol exception_msym {};
3163
3164 /* True if we have looked for exception probes. */
3165 int exception_searched = 0;
3166
3167 /* SystemTap probe points for unwinding (if any). These are non-owning
3168 references. */
3169 std::vector<probe *> exception_probes;
3170 };
3171
3172 static const struct objfile_data *breakpoint_objfile_key;
3173
3174 /* Minimal symbol not found sentinel. */
3175 static struct minimal_symbol msym_not_found;
3176
3177 /* Returns TRUE if MSYM point to the "not found" sentinel. */
3178
3179 static int
3180 msym_not_found_p (const struct minimal_symbol *msym)
3181 {
3182 return msym == &msym_not_found;
3183 }
3184
3185 /* Return per-objfile data needed by breakpoint.c.
3186 Allocate the data if necessary. */
3187
3188 static struct breakpoint_objfile_data *
3189 get_breakpoint_objfile_data (struct objfile *objfile)
3190 {
3191 struct breakpoint_objfile_data *bp_objfile_data;
3192
3193 bp_objfile_data = ((struct breakpoint_objfile_data *)
3194 objfile_data (objfile, breakpoint_objfile_key));
3195 if (bp_objfile_data == NULL)
3196 {
3197 bp_objfile_data = new breakpoint_objfile_data ();
3198 set_objfile_data (objfile, breakpoint_objfile_key, bp_objfile_data);
3199 }
3200 return bp_objfile_data;
3201 }
3202
3203 static void
3204 free_breakpoint_objfile_data (struct objfile *obj, void *data)
3205 {
3206 struct breakpoint_objfile_data *bp_objfile_data
3207 = (struct breakpoint_objfile_data *) data;
3208
3209 delete bp_objfile_data;
3210 }
3211
3212 static void
3213 create_overlay_event_breakpoint (void)
3214 {
3215 struct objfile *objfile;
3216 const char *const func_name = "_ovly_debug_event";
3217
3218 ALL_OBJFILES (objfile)
3219 {
3220 struct breakpoint *b;
3221 struct breakpoint_objfile_data *bp_objfile_data;
3222 CORE_ADDR addr;
3223 struct explicit_location explicit_loc;
3224
3225 bp_objfile_data = get_breakpoint_objfile_data (objfile);
3226
3227 if (msym_not_found_p (bp_objfile_data->overlay_msym.minsym))
3228 continue;
3229
3230 if (bp_objfile_data->overlay_msym.minsym == NULL)
3231 {
3232 struct bound_minimal_symbol m;
3233
3234 m = lookup_minimal_symbol_text (func_name, objfile);
3235 if (m.minsym == NULL)
3236 {
3237 /* Avoid future lookups in this objfile. */
3238 bp_objfile_data->overlay_msym.minsym = &msym_not_found;
3239 continue;
3240 }
3241 bp_objfile_data->overlay_msym = m;
3242 }
3243
3244 addr = BMSYMBOL_VALUE_ADDRESS (bp_objfile_data->overlay_msym);
3245 b = create_internal_breakpoint (get_objfile_arch (objfile), addr,
3246 bp_overlay_event,
3247 &internal_breakpoint_ops);
3248 initialize_explicit_location (&explicit_loc);
3249 explicit_loc.function_name = ASTRDUP (func_name);
3250 b->location = new_explicit_location (&explicit_loc);
3251
3252 if (overlay_debugging == ovly_auto)
3253 {
3254 b->enable_state = bp_enabled;
3255 overlay_events_enabled = 1;
3256 }
3257 else
3258 {
3259 b->enable_state = bp_disabled;
3260 overlay_events_enabled = 0;
3261 }
3262 }
3263 }
3264
3265 static void
3266 create_longjmp_master_breakpoint (void)
3267 {
3268 struct program_space *pspace;
3269
3270 scoped_restore_current_program_space restore_pspace;
3271
3272 ALL_PSPACES (pspace)
3273 {
3274 struct objfile *objfile;
3275
3276 set_current_program_space (pspace);
3277
3278 ALL_OBJFILES (objfile)
3279 {
3280 int i;
3281 struct gdbarch *gdbarch;
3282 struct breakpoint_objfile_data *bp_objfile_data;
3283
3284 gdbarch = get_objfile_arch (objfile);
3285
3286 bp_objfile_data = get_breakpoint_objfile_data (objfile);
3287
3288 if (!bp_objfile_data->longjmp_searched)
3289 {
3290 std::vector<probe *> ret
3291 = find_probes_in_objfile (objfile, "libc", "longjmp");
3292
3293 if (!ret.empty ())
3294 {
3295 /* We are only interested in checking one element. */
3296 probe *p = ret[0];
3297
3298 if (!p->can_evaluate_arguments ())
3299 {
3300 /* We cannot use the probe interface here, because it does
3301 not know how to evaluate arguments. */
3302 ret.clear ();
3303 }
3304 }
3305 bp_objfile_data->longjmp_probes = ret;
3306 bp_objfile_data->longjmp_searched = 1;
3307 }
3308
3309 if (!bp_objfile_data->longjmp_probes.empty ())
3310 {
3311 struct gdbarch *gdbarch = get_objfile_arch (objfile);
3312
3313 for (probe *p : bp_objfile_data->longjmp_probes)
3314 {
3315 struct breakpoint *b;
3316
3317 b = create_internal_breakpoint (gdbarch,
3318 p->get_relocated_address (objfile),
3319 bp_longjmp_master,
3320 &internal_breakpoint_ops);
3321 b->location = new_probe_location ("-probe-stap libc:longjmp");
3322 b->enable_state = bp_disabled;
3323 }
3324
3325 continue;
3326 }
3327
3328 if (!gdbarch_get_longjmp_target_p (gdbarch))
3329 continue;
3330
3331 for (i = 0; i < NUM_LONGJMP_NAMES; i++)
3332 {
3333 struct breakpoint *b;
3334 const char *func_name;
3335 CORE_ADDR addr;
3336 struct explicit_location explicit_loc;
3337
3338 if (msym_not_found_p (bp_objfile_data->longjmp_msym[i].minsym))
3339 continue;
3340
3341 func_name = longjmp_names[i];
3342 if (bp_objfile_data->longjmp_msym[i].minsym == NULL)
3343 {
3344 struct bound_minimal_symbol m;
3345
3346 m = lookup_minimal_symbol_text (func_name, objfile);
3347 if (m.minsym == NULL)
3348 {
3349 /* Prevent future lookups in this objfile. */
3350 bp_objfile_data->longjmp_msym[i].minsym = &msym_not_found;
3351 continue;
3352 }
3353 bp_objfile_data->longjmp_msym[i] = m;
3354 }
3355
3356 addr = BMSYMBOL_VALUE_ADDRESS (bp_objfile_data->longjmp_msym[i]);
3357 b = create_internal_breakpoint (gdbarch, addr, bp_longjmp_master,
3358 &internal_breakpoint_ops);
3359 initialize_explicit_location (&explicit_loc);
3360 explicit_loc.function_name = ASTRDUP (func_name);
3361 b->location = new_explicit_location (&explicit_loc);
3362 b->enable_state = bp_disabled;
3363 }
3364 }
3365 }
3366 }
3367
3368 /* Create a master std::terminate breakpoint. */
3369 static void
3370 create_std_terminate_master_breakpoint (void)
3371 {
3372 struct program_space *pspace;
3373 const char *const func_name = "std::terminate()";
3374
3375 scoped_restore_current_program_space restore_pspace;
3376
3377 ALL_PSPACES (pspace)
3378 {
3379 struct objfile *objfile;
3380 CORE_ADDR addr;
3381
3382 set_current_program_space (pspace);
3383
3384 ALL_OBJFILES (objfile)
3385 {
3386 struct breakpoint *b;
3387 struct breakpoint_objfile_data *bp_objfile_data;
3388 struct explicit_location explicit_loc;
3389
3390 bp_objfile_data = get_breakpoint_objfile_data (objfile);
3391
3392 if (msym_not_found_p (bp_objfile_data->terminate_msym.minsym))
3393 continue;
3394
3395 if (bp_objfile_data->terminate_msym.minsym == NULL)
3396 {
3397 struct bound_minimal_symbol m;
3398
3399 m = lookup_minimal_symbol (func_name, NULL, objfile);
3400 if (m.minsym == NULL || (MSYMBOL_TYPE (m.minsym) != mst_text
3401 && MSYMBOL_TYPE (m.minsym) != mst_file_text))
3402 {
3403 /* Prevent future lookups in this objfile. */
3404 bp_objfile_data->terminate_msym.minsym = &msym_not_found;
3405 continue;
3406 }
3407 bp_objfile_data->terminate_msym = m;
3408 }
3409
3410 addr = BMSYMBOL_VALUE_ADDRESS (bp_objfile_data->terminate_msym);
3411 b = create_internal_breakpoint (get_objfile_arch (objfile), addr,
3412 bp_std_terminate_master,
3413 &internal_breakpoint_ops);
3414 initialize_explicit_location (&explicit_loc);
3415 explicit_loc.function_name = ASTRDUP (func_name);
3416 b->location = new_explicit_location (&explicit_loc);
3417 b->enable_state = bp_disabled;
3418 }
3419 }
3420 }
3421
3422 /* Install a master breakpoint on the unwinder's debug hook. */
3423
3424 static void
3425 create_exception_master_breakpoint (void)
3426 {
3427 struct objfile *objfile;
3428 const char *const func_name = "_Unwind_DebugHook";
3429
3430 ALL_OBJFILES (objfile)
3431 {
3432 struct breakpoint *b;
3433 struct gdbarch *gdbarch;
3434 struct breakpoint_objfile_data *bp_objfile_data;
3435 CORE_ADDR addr;
3436 struct explicit_location explicit_loc;
3437
3438 bp_objfile_data = get_breakpoint_objfile_data (objfile);
3439
3440 /* We prefer the SystemTap probe point if it exists. */
3441 if (!bp_objfile_data->exception_searched)
3442 {
3443 std::vector<probe *> ret
3444 = find_probes_in_objfile (objfile, "libgcc", "unwind");
3445
3446 if (!ret.empty ())
3447 {
3448 /* We are only interested in checking one element. */
3449 probe *p = ret[0];
3450
3451 if (!p->can_evaluate_arguments ())
3452 {
3453 /* We cannot use the probe interface here, because it does
3454 not know how to evaluate arguments. */
3455 ret.clear ();
3456 }
3457 }
3458 bp_objfile_data->exception_probes = ret;
3459 bp_objfile_data->exception_searched = 1;
3460 }
3461
3462 if (!bp_objfile_data->exception_probes.empty ())
3463 {
3464 struct gdbarch *gdbarch = get_objfile_arch (objfile);
3465
3466 for (probe *p : bp_objfile_data->exception_probes)
3467 {
3468 struct breakpoint *b;
3469
3470 b = create_internal_breakpoint (gdbarch,
3471 p->get_relocated_address (objfile),
3472 bp_exception_master,
3473 &internal_breakpoint_ops);
3474 b->location = new_probe_location ("-probe-stap libgcc:unwind");
3475 b->enable_state = bp_disabled;
3476 }
3477
3478 continue;
3479 }
3480
3481 /* Otherwise, try the hook function. */
3482
3483 if (msym_not_found_p (bp_objfile_data->exception_msym.minsym))
3484 continue;
3485
3486 gdbarch = get_objfile_arch (objfile);
3487
3488 if (bp_objfile_data->exception_msym.minsym == NULL)
3489 {
3490 struct bound_minimal_symbol debug_hook;
3491
3492 debug_hook = lookup_minimal_symbol (func_name, NULL, objfile);
3493 if (debug_hook.minsym == NULL)
3494 {
3495 bp_objfile_data->exception_msym.minsym = &msym_not_found;
3496 continue;
3497 }
3498
3499 bp_objfile_data->exception_msym = debug_hook;
3500 }
3501
3502 addr = BMSYMBOL_VALUE_ADDRESS (bp_objfile_data->exception_msym);
3503 addr = gdbarch_convert_from_func_ptr_addr (gdbarch, addr,
3504 &current_target);
3505 b = create_internal_breakpoint (gdbarch, addr, bp_exception_master,
3506 &internal_breakpoint_ops);
3507 initialize_explicit_location (&explicit_loc);
3508 explicit_loc.function_name = ASTRDUP (func_name);
3509 b->location = new_explicit_location (&explicit_loc);
3510 b->enable_state = bp_disabled;
3511 }
3512 }
3513
3514 /* Does B have a location spec? */
3515
3516 static int
3517 breakpoint_event_location_empty_p (const struct breakpoint *b)
3518 {
3519 return b->location != NULL && event_location_empty_p (b->location.get ());
3520 }
3521
3522 void
3523 update_breakpoints_after_exec (void)
3524 {
3525 struct breakpoint *b, *b_tmp;
3526 struct bp_location *bploc, **bplocp_tmp;
3527
3528 /* We're about to delete breakpoints from GDB's lists. If the
3529 INSERTED flag is true, GDB will try to lift the breakpoints by
3530 writing the breakpoints' "shadow contents" back into memory. The
3531 "shadow contents" are NOT valid after an exec, so GDB should not
3532 do that. Instead, the target is responsible from marking
3533 breakpoints out as soon as it detects an exec. We don't do that
3534 here instead, because there may be other attempts to delete
3535 breakpoints after detecting an exec and before reaching here. */
3536 ALL_BP_LOCATIONS (bploc, bplocp_tmp)
3537 if (bploc->pspace == current_program_space)
3538 gdb_assert (!bploc->inserted);
3539
3540 ALL_BREAKPOINTS_SAFE (b, b_tmp)
3541 {
3542 if (b->pspace != current_program_space)
3543 continue;
3544
3545 /* Solib breakpoints must be explicitly reset after an exec(). */
3546 if (b->type == bp_shlib_event)
3547 {
3548 delete_breakpoint (b);
3549 continue;
3550 }
3551
3552 /* JIT breakpoints must be explicitly reset after an exec(). */
3553 if (b->type == bp_jit_event)
3554 {
3555 delete_breakpoint (b);
3556 continue;
3557 }
3558
3559 /* Thread event breakpoints must be set anew after an exec(),
3560 as must overlay event and longjmp master breakpoints. */
3561 if (b->type == bp_thread_event || b->type == bp_overlay_event
3562 || b->type == bp_longjmp_master || b->type == bp_std_terminate_master
3563 || b->type == bp_exception_master)
3564 {
3565 delete_breakpoint (b);
3566 continue;
3567 }
3568
3569 /* Step-resume breakpoints are meaningless after an exec(). */
3570 if (b->type == bp_step_resume || b->type == bp_hp_step_resume)
3571 {
3572 delete_breakpoint (b);
3573 continue;
3574 }
3575
3576 /* Just like single-step breakpoints. */
3577 if (b->type == bp_single_step)
3578 {
3579 delete_breakpoint (b);
3580 continue;
3581 }
3582
3583 /* Longjmp and longjmp-resume breakpoints are also meaningless
3584 after an exec. */
3585 if (b->type == bp_longjmp || b->type == bp_longjmp_resume
3586 || b->type == bp_longjmp_call_dummy
3587 || b->type == bp_exception || b->type == bp_exception_resume)
3588 {
3589 delete_breakpoint (b);
3590 continue;
3591 }
3592
3593 if (b->type == bp_catchpoint)
3594 {
3595 /* For now, none of the bp_catchpoint breakpoints need to
3596 do anything at this point. In the future, if some of
3597 the catchpoints need to something, we will need to add
3598 a new method, and call this method from here. */
3599 continue;
3600 }
3601
3602 /* bp_finish is a special case. The only way we ought to be able
3603 to see one of these when an exec() has happened, is if the user
3604 caught a vfork, and then said "finish". Ordinarily a finish just
3605 carries them to the call-site of the current callee, by setting
3606 a temporary bp there and resuming. But in this case, the finish
3607 will carry them entirely through the vfork & exec.
3608
3609 We don't want to allow a bp_finish to remain inserted now. But
3610 we can't safely delete it, 'cause finish_command has a handle to
3611 the bp on a bpstat, and will later want to delete it. There's a
3612 chance (and I've seen it happen) that if we delete the bp_finish
3613 here, that its storage will get reused by the time finish_command
3614 gets 'round to deleting the "use to be a bp_finish" breakpoint.
3615 We really must allow finish_command to delete a bp_finish.
3616
3617 In the absence of a general solution for the "how do we know
3618 it's safe to delete something others may have handles to?"
3619 problem, what we'll do here is just uninsert the bp_finish, and
3620 let finish_command delete it.
3621
3622 (We know the bp_finish is "doomed" in the sense that it's
3623 momentary, and will be deleted as soon as finish_command sees
3624 the inferior stopped. So it doesn't matter that the bp's
3625 address is probably bogus in the new a.out, unlike e.g., the
3626 solib breakpoints.) */
3627
3628 if (b->type == bp_finish)
3629 {
3630 continue;
3631 }
3632
3633 /* Without a symbolic address, we have little hope of the
3634 pre-exec() address meaning the same thing in the post-exec()
3635 a.out. */
3636 if (breakpoint_event_location_empty_p (b))
3637 {
3638 delete_breakpoint (b);
3639 continue;
3640 }
3641 }
3642 }
3643
3644 int
3645 detach_breakpoints (ptid_t ptid)
3646 {
3647 struct bp_location *bl, **blp_tmp;
3648 int val = 0;
3649 scoped_restore save_inferior_ptid = make_scoped_restore (&inferior_ptid);
3650 struct inferior *inf = current_inferior ();
3651
3652 if (ptid_get_pid (ptid) == ptid_get_pid (inferior_ptid))
3653 error (_("Cannot detach breakpoints of inferior_ptid"));
3654
3655 /* Set inferior_ptid; remove_breakpoint_1 uses this global. */
3656 inferior_ptid = ptid;
3657 ALL_BP_LOCATIONS (bl, blp_tmp)
3658 {
3659 if (bl->pspace != inf->pspace)
3660 continue;
3661
3662 /* This function must physically remove breakpoints locations
3663 from the specified ptid, without modifying the breakpoint
3664 package's state. Locations of type bp_loc_other are only
3665 maintained at GDB side. So, there is no need to remove
3666 these bp_loc_other locations. Moreover, removing these
3667 would modify the breakpoint package's state. */
3668 if (bl->loc_type == bp_loc_other)
3669 continue;
3670
3671 if (bl->inserted)
3672 val |= remove_breakpoint_1 (bl, DETACH_BREAKPOINT);
3673 }
3674
3675 return val;
3676 }
3677
3678 /* Remove the breakpoint location BL from the current address space.
3679 Note that this is used to detach breakpoints from a child fork.
3680 When we get here, the child isn't in the inferior list, and neither
3681 do we have objects to represent its address space --- we should
3682 *not* look at bl->pspace->aspace here. */
3683
3684 static int
3685 remove_breakpoint_1 (struct bp_location *bl, enum remove_bp_reason reason)
3686 {
3687 int val;
3688
3689 /* BL is never in moribund_locations by our callers. */
3690 gdb_assert (bl->owner != NULL);
3691
3692 /* The type of none suggests that owner is actually deleted.
3693 This should not ever happen. */
3694 gdb_assert (bl->owner->type != bp_none);
3695
3696 if (bl->loc_type == bp_loc_software_breakpoint
3697 || bl->loc_type == bp_loc_hardware_breakpoint)
3698 {
3699 /* "Normal" instruction breakpoint: either the standard
3700 trap-instruction bp (bp_breakpoint), or a
3701 bp_hardware_breakpoint. */
3702
3703 /* First check to see if we have to handle an overlay. */
3704 if (overlay_debugging == ovly_off
3705 || bl->section == NULL
3706 || !(section_is_overlay (bl->section)))
3707 {
3708 /* No overlay handling: just remove the breakpoint. */
3709
3710 /* If we're trying to uninsert a memory breakpoint that we
3711 know is set in a dynamic object that is marked
3712 shlib_disabled, then either the dynamic object was
3713 removed with "remove-symbol-file" or with
3714 "nosharedlibrary". In the former case, we don't know
3715 whether another dynamic object might have loaded over the
3716 breakpoint's address -- the user might well let us know
3717 about it next with add-symbol-file (the whole point of
3718 add-symbol-file is letting the user manually maintain a
3719 list of dynamically loaded objects). If we have the
3720 breakpoint's shadow memory, that is, this is a software
3721 breakpoint managed by GDB, check whether the breakpoint
3722 is still inserted in memory, to avoid overwriting wrong
3723 code with stale saved shadow contents. Note that HW
3724 breakpoints don't have shadow memory, as they're
3725 implemented using a mechanism that is not dependent on
3726 being able to modify the target's memory, and as such
3727 they should always be removed. */
3728 if (bl->shlib_disabled
3729 && bl->target_info.shadow_len != 0
3730 && !memory_validate_breakpoint (bl->gdbarch, &bl->target_info))
3731 val = 0;
3732 else
3733 val = bl->owner->ops->remove_location (bl, reason);
3734 }
3735 else
3736 {
3737 /* This breakpoint is in an overlay section.
3738 Did we set a breakpoint at the LMA? */
3739 if (!overlay_events_enabled)
3740 {
3741 /* Yes -- overlay event support is not active, so we
3742 should have set a breakpoint at the LMA. Remove it.
3743 */
3744 /* Ignore any failures: if the LMA is in ROM, we will
3745 have already warned when we failed to insert it. */
3746 if (bl->loc_type == bp_loc_hardware_breakpoint)
3747 target_remove_hw_breakpoint (bl->gdbarch,
3748 &bl->overlay_target_info);
3749 else
3750 target_remove_breakpoint (bl->gdbarch,
3751 &bl->overlay_target_info,
3752 reason);
3753 }
3754 /* Did we set a breakpoint at the VMA?
3755 If so, we will have marked the breakpoint 'inserted'. */
3756 if (bl->inserted)
3757 {
3758 /* Yes -- remove it. Previously we did not bother to
3759 remove the breakpoint if the section had been
3760 unmapped, but let's not rely on that being safe. We
3761 don't know what the overlay manager might do. */
3762
3763 /* However, we should remove *software* breakpoints only
3764 if the section is still mapped, or else we overwrite
3765 wrong code with the saved shadow contents. */
3766 if (bl->loc_type == bp_loc_hardware_breakpoint
3767 || section_is_mapped (bl->section))
3768 val = bl->owner->ops->remove_location (bl, reason);
3769 else
3770 val = 0;
3771 }
3772 else
3773 {
3774 /* No -- not inserted, so no need to remove. No error. */
3775 val = 0;
3776 }
3777 }
3778
3779 /* In some cases, we might not be able to remove a breakpoint in
3780 a shared library that has already been removed, but we have
3781 not yet processed the shlib unload event. Similarly for an
3782 unloaded add-symbol-file object - the user might not yet have
3783 had the chance to remove-symbol-file it. shlib_disabled will
3784 be set if the library/object has already been removed, but
3785 the breakpoint hasn't been uninserted yet, e.g., after
3786 "nosharedlibrary" or "remove-symbol-file" with breakpoints
3787 always-inserted mode. */
3788 if (val
3789 && (bl->loc_type == bp_loc_software_breakpoint
3790 && (bl->shlib_disabled
3791 || solib_name_from_address (bl->pspace, bl->address)
3792 || shared_objfile_contains_address_p (bl->pspace,
3793 bl->address))))
3794 val = 0;
3795
3796 if (val)
3797 return val;
3798 bl->inserted = (reason == DETACH_BREAKPOINT);
3799 }
3800 else if (bl->loc_type == bp_loc_hardware_watchpoint)
3801 {
3802 gdb_assert (bl->owner->ops != NULL
3803 && bl->owner->ops->remove_location != NULL);
3804
3805 bl->inserted = (reason == DETACH_BREAKPOINT);
3806 bl->owner->ops->remove_location (bl, reason);
3807
3808 /* Failure to remove any of the hardware watchpoints comes here. */
3809 if (reason == REMOVE_BREAKPOINT && bl->inserted)
3810 warning (_("Could not remove hardware watchpoint %d."),
3811 bl->owner->number);
3812 }
3813 else if (bl->owner->type == bp_catchpoint
3814 && breakpoint_enabled (bl->owner)
3815 && !bl->duplicate)
3816 {
3817 gdb_assert (bl->owner->ops != NULL
3818 && bl->owner->ops->remove_location != NULL);
3819
3820 val = bl->owner->ops->remove_location (bl, reason);
3821 if (val)
3822 return val;
3823
3824 bl->inserted = (reason == DETACH_BREAKPOINT);
3825 }
3826
3827 return 0;
3828 }
3829
3830 static int
3831 remove_breakpoint (struct bp_location *bl)
3832 {
3833 /* BL is never in moribund_locations by our callers. */
3834 gdb_assert (bl->owner != NULL);
3835
3836 /* The type of none suggests that owner is actually deleted.
3837 This should not ever happen. */
3838 gdb_assert (bl->owner->type != bp_none);
3839
3840 scoped_restore_current_pspace_and_thread restore_pspace_thread;
3841
3842 switch_to_program_space_and_thread (bl->pspace);
3843
3844 return remove_breakpoint_1 (bl, REMOVE_BREAKPOINT);
3845 }
3846
3847 /* Clear the "inserted" flag in all breakpoints. */
3848
3849 void
3850 mark_breakpoints_out (void)
3851 {
3852 struct bp_location *bl, **blp_tmp;
3853
3854 ALL_BP_LOCATIONS (bl, blp_tmp)
3855 if (bl->pspace == current_program_space)
3856 bl->inserted = 0;
3857 }
3858
3859 /* Clear the "inserted" flag in all breakpoints and delete any
3860 breakpoints which should go away between runs of the program.
3861
3862 Plus other such housekeeping that has to be done for breakpoints
3863 between runs.
3864
3865 Note: this function gets called at the end of a run (by
3866 generic_mourn_inferior) and when a run begins (by
3867 init_wait_for_inferior). */
3868
3869
3870
3871 void
3872 breakpoint_init_inferior (enum inf_context context)
3873 {
3874 struct breakpoint *b, *b_tmp;
3875 struct bp_location *bl;
3876 int ix;
3877 struct program_space *pspace = current_program_space;
3878
3879 /* If breakpoint locations are shared across processes, then there's
3880 nothing to do. */
3881 if (gdbarch_has_global_breakpoints (target_gdbarch ()))
3882 return;
3883
3884 mark_breakpoints_out ();
3885
3886 ALL_BREAKPOINTS_SAFE (b, b_tmp)
3887 {
3888 if (b->loc && b->loc->pspace != pspace)
3889 continue;
3890
3891 switch (b->type)
3892 {
3893 case bp_call_dummy:
3894 case bp_longjmp_call_dummy:
3895
3896 /* If the call dummy breakpoint is at the entry point it will
3897 cause problems when the inferior is rerun, so we better get
3898 rid of it. */
3899
3900 case bp_watchpoint_scope:
3901
3902 /* Also get rid of scope breakpoints. */
3903
3904 case bp_shlib_event:
3905
3906 /* Also remove solib event breakpoints. Their addresses may
3907 have changed since the last time we ran the program.
3908 Actually we may now be debugging against different target;
3909 and so the solib backend that installed this breakpoint may
3910 not be used in by the target. E.g.,
3911
3912 (gdb) file prog-linux
3913 (gdb) run # native linux target
3914 ...
3915 (gdb) kill
3916 (gdb) file prog-win.exe
3917 (gdb) tar rem :9999 # remote Windows gdbserver.
3918 */
3919
3920 case bp_step_resume:
3921
3922 /* Also remove step-resume breakpoints. */
3923
3924 case bp_single_step:
3925
3926 /* Also remove single-step breakpoints. */
3927
3928 delete_breakpoint (b);
3929 break;
3930
3931 case bp_watchpoint:
3932 case bp_hardware_watchpoint:
3933 case bp_read_watchpoint:
3934 case bp_access_watchpoint:
3935 {
3936 struct watchpoint *w = (struct watchpoint *) b;
3937
3938 /* Likewise for watchpoints on local expressions. */
3939 if (w->exp_valid_block != NULL)
3940 delete_breakpoint (b);
3941 else
3942 {
3943 /* Get rid of existing locations, which are no longer
3944 valid. New ones will be created in
3945 update_watchpoint, when the inferior is restarted.
3946 The next update_global_location_list call will
3947 garbage collect them. */
3948 b->loc = NULL;
3949
3950 if (context == inf_starting)
3951 {
3952 /* Reset val field to force reread of starting value in
3953 insert_breakpoints. */
3954 if (w->val)
3955 value_free (w->val);
3956 w->val = NULL;
3957 w->val_valid = 0;
3958 }
3959 }
3960 }
3961 break;
3962 default:
3963 break;
3964 }
3965 }
3966
3967 /* Get rid of the moribund locations. */
3968 for (ix = 0; VEC_iterate (bp_location_p, moribund_locations, ix, bl); ++ix)
3969 decref_bp_location (&bl);
3970 VEC_free (bp_location_p, moribund_locations);
3971 }
3972
3973 /* These functions concern about actual breakpoints inserted in the
3974 target --- to e.g. check if we need to do decr_pc adjustment or if
3975 we need to hop over the bkpt --- so we check for address space
3976 match, not program space. */
3977
3978 /* breakpoint_here_p (PC) returns non-zero if an enabled breakpoint
3979 exists at PC. It returns ordinary_breakpoint_here if it's an
3980 ordinary breakpoint, or permanent_breakpoint_here if it's a
3981 permanent breakpoint.
3982 - When continuing from a location with an ordinary breakpoint, we
3983 actually single step once before calling insert_breakpoints.
3984 - When continuing from a location with a permanent breakpoint, we
3985 need to use the `SKIP_PERMANENT_BREAKPOINT' macro, provided by
3986 the target, to advance the PC past the breakpoint. */
3987
3988 enum breakpoint_here
3989 breakpoint_here_p (const address_space *aspace, CORE_ADDR pc)
3990 {
3991 struct bp_location *bl, **blp_tmp;
3992 int any_breakpoint_here = 0;
3993
3994 ALL_BP_LOCATIONS (bl, blp_tmp)
3995 {
3996 if (bl->loc_type != bp_loc_software_breakpoint
3997 && bl->loc_type != bp_loc_hardware_breakpoint)
3998 continue;
3999
4000 /* ALL_BP_LOCATIONS bp_location has BL->OWNER always non-NULL. */
4001 if ((breakpoint_enabled (bl->owner)
4002 || bl->permanent)
4003 && breakpoint_location_address_match (bl, aspace, pc))
4004 {
4005 if (overlay_debugging
4006 && section_is_overlay (bl->section)
4007 && !section_is_mapped (bl->section))
4008 continue; /* unmapped overlay -- can't be a match */
4009 else if (bl->permanent)
4010 return permanent_breakpoint_here;
4011 else
4012 any_breakpoint_here = 1;
4013 }
4014 }
4015
4016 return any_breakpoint_here ? ordinary_breakpoint_here : no_breakpoint_here;
4017 }
4018
4019 /* See breakpoint.h. */
4020
4021 int
4022 breakpoint_in_range_p (const address_space *aspace,
4023 CORE_ADDR addr, ULONGEST len)
4024 {
4025 struct bp_location *bl, **blp_tmp;
4026
4027 ALL_BP_LOCATIONS (bl, blp_tmp)
4028 {
4029 if (bl->loc_type != bp_loc_software_breakpoint
4030 && bl->loc_type != bp_loc_hardware_breakpoint)
4031 continue;
4032
4033 if ((breakpoint_enabled (bl->owner)
4034 || bl->permanent)
4035 && breakpoint_location_address_range_overlap (bl, aspace,
4036 addr, len))
4037 {
4038 if (overlay_debugging
4039 && section_is_overlay (bl->section)
4040 && !section_is_mapped (bl->section))
4041 {
4042 /* Unmapped overlay -- can't be a match. */
4043 continue;
4044 }
4045
4046 return 1;
4047 }
4048 }
4049
4050 return 0;
4051 }
4052
4053 /* Return true if there's a moribund breakpoint at PC. */
4054
4055 int
4056 moribund_breakpoint_here_p (const address_space *aspace, CORE_ADDR pc)
4057 {
4058 struct bp_location *loc;
4059 int ix;
4060
4061 for (ix = 0; VEC_iterate (bp_location_p, moribund_locations, ix, loc); ++ix)
4062 if (breakpoint_location_address_match (loc, aspace, pc))
4063 return 1;
4064
4065 return 0;
4066 }
4067
4068 /* Returns non-zero iff BL is inserted at PC, in address space
4069 ASPACE. */
4070
4071 static int
4072 bp_location_inserted_here_p (struct bp_location *bl,
4073 const address_space *aspace, CORE_ADDR pc)
4074 {
4075 if (bl->inserted
4076 && breakpoint_address_match (bl->pspace->aspace, bl->address,
4077 aspace, pc))
4078 {
4079 if (overlay_debugging
4080 && section_is_overlay (bl->section)
4081 && !section_is_mapped (bl->section))
4082 return 0; /* unmapped overlay -- can't be a match */
4083 else
4084 return 1;
4085 }
4086 return 0;
4087 }
4088
4089 /* Returns non-zero iff there's a breakpoint inserted at PC. */
4090
4091 int
4092 breakpoint_inserted_here_p (const address_space *aspace, CORE_ADDR pc)
4093 {
4094 struct bp_location **blp, **blp_tmp = NULL;
4095
4096 ALL_BP_LOCATIONS_AT_ADDR (blp, blp_tmp, pc)
4097 {
4098 struct bp_location *bl = *blp;
4099
4100 if (bl->loc_type != bp_loc_software_breakpoint
4101 && bl->loc_type != bp_loc_hardware_breakpoint)
4102 continue;
4103
4104 if (bp_location_inserted_here_p (bl, aspace, pc))
4105 return 1;
4106 }
4107 return 0;
4108 }
4109
4110 /* This function returns non-zero iff there is a software breakpoint
4111 inserted at PC. */
4112
4113 int
4114 software_breakpoint_inserted_here_p (const address_space *aspace,
4115 CORE_ADDR pc)
4116 {
4117 struct bp_location **blp, **blp_tmp = NULL;
4118
4119 ALL_BP_LOCATIONS_AT_ADDR (blp, blp_tmp, pc)
4120 {
4121 struct bp_location *bl = *blp;
4122
4123 if (bl->loc_type != bp_loc_software_breakpoint)
4124 continue;
4125
4126 if (bp_location_inserted_here_p (bl, aspace, pc))
4127 return 1;
4128 }
4129
4130 return 0;
4131 }
4132
4133 /* See breakpoint.h. */
4134
4135 int
4136 hardware_breakpoint_inserted_here_p (const address_space *aspace,
4137 CORE_ADDR pc)
4138 {
4139 struct bp_location **blp, **blp_tmp = NULL;
4140
4141 ALL_BP_LOCATIONS_AT_ADDR (blp, blp_tmp, pc)
4142 {
4143 struct bp_location *bl = *blp;
4144
4145 if (bl->loc_type != bp_loc_hardware_breakpoint)
4146 continue;
4147
4148 if (bp_location_inserted_here_p (bl, aspace, pc))
4149 return 1;
4150 }
4151
4152 return 0;
4153 }
4154
4155 int
4156 hardware_watchpoint_inserted_in_range (const address_space *aspace,
4157 CORE_ADDR addr, ULONGEST len)
4158 {
4159 struct breakpoint *bpt;
4160
4161 ALL_BREAKPOINTS (bpt)
4162 {
4163 struct bp_location *loc;
4164
4165 if (bpt->type != bp_hardware_watchpoint
4166 && bpt->type != bp_access_watchpoint)
4167 continue;
4168
4169 if (!breakpoint_enabled (bpt))
4170 continue;
4171
4172 for (loc = bpt->loc; loc; loc = loc->next)
4173 if (loc->pspace->aspace == aspace && loc->inserted)
4174 {
4175 CORE_ADDR l, h;
4176
4177 /* Check for intersection. */
4178 l = std::max<CORE_ADDR> (loc->address, addr);
4179 h = std::min<CORE_ADDR> (loc->address + loc->length, addr + len);
4180 if (l < h)
4181 return 1;
4182 }
4183 }
4184 return 0;
4185 }
4186 \f
4187
4188 /* bpstat stuff. External routines' interfaces are documented
4189 in breakpoint.h. */
4190
4191 int
4192 is_catchpoint (struct breakpoint *ep)
4193 {
4194 return (ep->type == bp_catchpoint);
4195 }
4196
4197 /* Frees any storage that is part of a bpstat. Does not walk the
4198 'next' chain. */
4199
4200 bpstats::~bpstats ()
4201 {
4202 if (old_val != NULL)
4203 value_free (old_val);
4204 if (bp_location_at != NULL)
4205 decref_bp_location (&bp_location_at);
4206 }
4207
4208 /* Clear a bpstat so that it says we are not at any breakpoint.
4209 Also free any storage that is part of a bpstat. */
4210
4211 void
4212 bpstat_clear (bpstat *bsp)
4213 {
4214 bpstat p;
4215 bpstat q;
4216
4217 if (bsp == 0)
4218 return;
4219 p = *bsp;
4220 while (p != NULL)
4221 {
4222 q = p->next;
4223 delete p;
4224 p = q;
4225 }
4226 *bsp = NULL;
4227 }
4228
4229 bpstats::bpstats (const bpstats &other)
4230 : next (NULL),
4231 bp_location_at (other.bp_location_at),
4232 breakpoint_at (other.breakpoint_at),
4233 commands (other.commands),
4234 old_val (other.old_val),
4235 print (other.print),
4236 stop (other.stop),
4237 print_it (other.print_it)
4238 {
4239 if (old_val != NULL)
4240 {
4241 old_val = value_copy (old_val);
4242 release_value (old_val);
4243 }
4244 incref_bp_location (bp_location_at);
4245 }
4246
4247 /* Return a copy of a bpstat. Like "bs1 = bs2" but all storage that
4248 is part of the bpstat is copied as well. */
4249
4250 bpstat
4251 bpstat_copy (bpstat bs)
4252 {
4253 bpstat p = NULL;
4254 bpstat tmp;
4255 bpstat retval = NULL;
4256
4257 if (bs == NULL)
4258 return bs;
4259
4260 for (; bs != NULL; bs = bs->next)
4261 {
4262 tmp = new bpstats (*bs);
4263
4264 if (p == NULL)
4265 /* This is the first thing in the chain. */
4266 retval = tmp;
4267 else
4268 p->next = tmp;
4269 p = tmp;
4270 }
4271 p->next = NULL;
4272 return retval;
4273 }
4274
4275 /* Find the bpstat associated with this breakpoint. */
4276
4277 bpstat
4278 bpstat_find_breakpoint (bpstat bsp, struct breakpoint *breakpoint)
4279 {
4280 if (bsp == NULL)
4281 return NULL;
4282
4283 for (; bsp != NULL; bsp = bsp->next)
4284 {
4285 if (bsp->breakpoint_at == breakpoint)
4286 return bsp;
4287 }
4288 return NULL;
4289 }
4290
4291 /* See breakpoint.h. */
4292
4293 int
4294 bpstat_explains_signal (bpstat bsp, enum gdb_signal sig)
4295 {
4296 for (; bsp != NULL; bsp = bsp->next)
4297 {
4298 if (bsp->breakpoint_at == NULL)
4299 {
4300 /* A moribund location can never explain a signal other than
4301 GDB_SIGNAL_TRAP. */
4302 if (sig == GDB_SIGNAL_TRAP)
4303 return 1;
4304 }
4305 else
4306 {
4307 if (bsp->breakpoint_at->ops->explains_signal (bsp->breakpoint_at,
4308 sig))
4309 return 1;
4310 }
4311 }
4312
4313 return 0;
4314 }
4315
4316 /* Put in *NUM the breakpoint number of the first breakpoint we are
4317 stopped at. *BSP upon return is a bpstat which points to the
4318 remaining breakpoints stopped at (but which is not guaranteed to be
4319 good for anything but further calls to bpstat_num).
4320
4321 Return 0 if passed a bpstat which does not indicate any breakpoints.
4322 Return -1 if stopped at a breakpoint that has been deleted since
4323 we set it.
4324 Return 1 otherwise. */
4325
4326 int
4327 bpstat_num (bpstat *bsp, int *num)
4328 {
4329 struct breakpoint *b;
4330
4331 if ((*bsp) == NULL)
4332 return 0; /* No more breakpoint values */
4333
4334 /* We assume we'll never have several bpstats that correspond to a
4335 single breakpoint -- otherwise, this function might return the
4336 same number more than once and this will look ugly. */
4337 b = (*bsp)->breakpoint_at;
4338 *bsp = (*bsp)->next;
4339 if (b == NULL)
4340 return -1; /* breakpoint that's been deleted since */
4341
4342 *num = b->number; /* We have its number */
4343 return 1;
4344 }
4345
4346 /* See breakpoint.h. */
4347
4348 void
4349 bpstat_clear_actions (void)
4350 {
4351 struct thread_info *tp;
4352 bpstat bs;
4353
4354 if (ptid_equal (inferior_ptid, null_ptid))
4355 return;
4356
4357 tp = find_thread_ptid (inferior_ptid);
4358 if (tp == NULL)
4359 return;
4360
4361 for (bs = tp->control.stop_bpstat; bs != NULL; bs = bs->next)
4362 {
4363 bs->commands = NULL;
4364
4365 if (bs->old_val != NULL)
4366 {
4367 value_free (bs->old_val);
4368 bs->old_val = NULL;
4369 }
4370 }
4371 }
4372
4373 /* Called when a command is about to proceed the inferior. */
4374
4375 static void
4376 breakpoint_about_to_proceed (void)
4377 {
4378 if (!ptid_equal (inferior_ptid, null_ptid))
4379 {
4380 struct thread_info *tp = inferior_thread ();
4381
4382 /* Allow inferior function calls in breakpoint commands to not
4383 interrupt the command list. When the call finishes
4384 successfully, the inferior will be standing at the same
4385 breakpoint as if nothing happened. */
4386 if (tp->control.in_infcall)
4387 return;
4388 }
4389
4390 breakpoint_proceeded = 1;
4391 }
4392
4393 /* Return non-zero iff CMD as the first line of a command sequence is `silent'
4394 or its equivalent. */
4395
4396 static int
4397 command_line_is_silent (struct command_line *cmd)
4398 {
4399 return cmd && (strcmp ("silent", cmd->line) == 0);
4400 }
4401
4402 /* Execute all the commands associated with all the breakpoints at
4403 this location. Any of these commands could cause the process to
4404 proceed beyond this point, etc. We look out for such changes by
4405 checking the global "breakpoint_proceeded" after each command.
4406
4407 Returns true if a breakpoint command resumed the inferior. In that
4408 case, it is the caller's responsibility to recall it again with the
4409 bpstat of the current thread. */
4410
4411 static int
4412 bpstat_do_actions_1 (bpstat *bsp)
4413 {
4414 bpstat bs;
4415 int again = 0;
4416
4417 /* Avoid endless recursion if a `source' command is contained
4418 in bs->commands. */
4419 if (executing_breakpoint_commands)
4420 return 0;
4421
4422 scoped_restore save_executing
4423 = make_scoped_restore (&executing_breakpoint_commands, 1);
4424
4425 scoped_restore preventer = prevent_dont_repeat ();
4426
4427 /* This pointer will iterate over the list of bpstat's. */
4428 bs = *bsp;
4429
4430 breakpoint_proceeded = 0;
4431 for (; bs != NULL; bs = bs->next)
4432 {
4433 struct command_line *cmd = NULL;
4434
4435 /* Take ownership of the BSP's command tree, if it has one.
4436
4437 The command tree could legitimately contain commands like
4438 'step' and 'next', which call clear_proceed_status, which
4439 frees stop_bpstat's command tree. To make sure this doesn't
4440 free the tree we're executing out from under us, we need to
4441 take ownership of the tree ourselves. Since a given bpstat's
4442 commands are only executed once, we don't need to copy it; we
4443 can clear the pointer in the bpstat, and make sure we free
4444 the tree when we're done. */
4445 counted_command_line ccmd = bs->commands;
4446 bs->commands = NULL;
4447 if (ccmd != NULL)
4448 cmd = ccmd.get ();
4449 if (command_line_is_silent (cmd))
4450 {
4451 /* The action has been already done by bpstat_stop_status. */
4452 cmd = cmd->next;
4453 }
4454
4455 while (cmd != NULL)
4456 {
4457 execute_control_command (cmd);
4458
4459 if (breakpoint_proceeded)
4460 break;
4461 else
4462 cmd = cmd->next;
4463 }
4464
4465 if (breakpoint_proceeded)
4466 {
4467 if (current_ui->async)
4468 /* If we are in async mode, then the target might be still
4469 running, not stopped at any breakpoint, so nothing for
4470 us to do here -- just return to the event loop. */
4471 ;
4472 else
4473 /* In sync mode, when execute_control_command returns
4474 we're already standing on the next breakpoint.
4475 Breakpoint commands for that stop were not run, since
4476 execute_command does not run breakpoint commands --
4477 only command_line_handler does, but that one is not
4478 involved in execution of breakpoint commands. So, we
4479 can now execute breakpoint commands. It should be
4480 noted that making execute_command do bpstat actions is
4481 not an option -- in this case we'll have recursive
4482 invocation of bpstat for each breakpoint with a
4483 command, and can easily blow up GDB stack. Instead, we
4484 return true, which will trigger the caller to recall us
4485 with the new stop_bpstat. */
4486 again = 1;
4487 break;
4488 }
4489 }
4490 return again;
4491 }
4492
4493 void
4494 bpstat_do_actions (void)
4495 {
4496 struct cleanup *cleanup_if_error = make_bpstat_clear_actions_cleanup ();
4497
4498 /* Do any commands attached to breakpoint we are stopped at. */
4499 while (!ptid_equal (inferior_ptid, null_ptid)
4500 && target_has_execution
4501 && !is_exited (inferior_ptid)
4502 && !is_executing (inferior_ptid))
4503 /* Since in sync mode, bpstat_do_actions may resume the inferior,
4504 and only return when it is stopped at the next breakpoint, we
4505 keep doing breakpoint actions until it returns false to
4506 indicate the inferior was not resumed. */
4507 if (!bpstat_do_actions_1 (&inferior_thread ()->control.stop_bpstat))
4508 break;
4509
4510 discard_cleanups (cleanup_if_error);
4511 }
4512
4513 /* Print out the (old or new) value associated with a watchpoint. */
4514
4515 static void
4516 watchpoint_value_print (struct value *val, struct ui_file *stream)
4517 {
4518 if (val == NULL)
4519 fprintf_unfiltered (stream, _("<unreadable>"));
4520 else
4521 {
4522 struct value_print_options opts;
4523 get_user_print_options (&opts);
4524 value_print (val, stream, &opts);
4525 }
4526 }
4527
4528 /* Print the "Thread ID hit" part of "Thread ID hit Breakpoint N" if
4529 debugging multiple threads. */
4530
4531 void
4532 maybe_print_thread_hit_breakpoint (struct ui_out *uiout)
4533 {
4534 if (uiout->is_mi_like_p ())
4535 return;
4536
4537 uiout->text ("\n");
4538
4539 if (show_thread_that_caused_stop ())
4540 {
4541 const char *name;
4542 struct thread_info *thr = inferior_thread ();
4543
4544 uiout->text ("Thread ");
4545 uiout->field_fmt ("thread-id", "%s", print_thread_id (thr));
4546
4547 name = thr->name != NULL ? thr->name : target_thread_name (thr);
4548 if (name != NULL)
4549 {
4550 uiout->text (" \"");
4551 uiout->field_fmt ("name", "%s", name);
4552 uiout->text ("\"");
4553 }
4554
4555 uiout->text (" hit ");
4556 }
4557 }
4558
4559 /* Generic routine for printing messages indicating why we
4560 stopped. The behavior of this function depends on the value
4561 'print_it' in the bpstat structure. Under some circumstances we
4562 may decide not to print anything here and delegate the task to
4563 normal_stop(). */
4564
4565 static enum print_stop_action
4566 print_bp_stop_message (bpstat bs)
4567 {
4568 switch (bs->print_it)
4569 {
4570 case print_it_noop:
4571 /* Nothing should be printed for this bpstat entry. */
4572 return PRINT_UNKNOWN;
4573 break;
4574
4575 case print_it_done:
4576 /* We still want to print the frame, but we already printed the
4577 relevant messages. */
4578 return PRINT_SRC_AND_LOC;
4579 break;
4580
4581 case print_it_normal:
4582 {
4583 struct breakpoint *b = bs->breakpoint_at;
4584
4585 /* bs->breakpoint_at can be NULL if it was a momentary breakpoint
4586 which has since been deleted. */
4587 if (b == NULL)
4588 return PRINT_UNKNOWN;
4589
4590 /* Normal case. Call the breakpoint's print_it method. */
4591 return b->ops->print_it (bs);
4592 }
4593 break;
4594
4595 default:
4596 internal_error (__FILE__, __LINE__,
4597 _("print_bp_stop_message: unrecognized enum value"));
4598 break;
4599 }
4600 }
4601
4602 /* A helper function that prints a shared library stopped event. */
4603
4604 static void
4605 print_solib_event (int is_catchpoint)
4606 {
4607 bool any_deleted = !current_program_space->deleted_solibs.empty ();
4608 int any_added
4609 = !VEC_empty (so_list_ptr, current_program_space->added_solibs);
4610
4611 if (!is_catchpoint)
4612 {
4613 if (any_added || any_deleted)
4614 current_uiout->text (_("Stopped due to shared library event:\n"));
4615 else
4616 current_uiout->text (_("Stopped due to shared library event (no "
4617 "libraries added or removed)\n"));
4618 }
4619
4620 if (current_uiout->is_mi_like_p ())
4621 current_uiout->field_string ("reason",
4622 async_reason_lookup (EXEC_ASYNC_SOLIB_EVENT));
4623
4624 if (any_deleted)
4625 {
4626 current_uiout->text (_(" Inferior unloaded "));
4627 ui_out_emit_list list_emitter (current_uiout, "removed");
4628 for (int ix = 0; ix < current_program_space->deleted_solibs.size (); ix++)
4629 {
4630 const std::string &name = current_program_space->deleted_solibs[ix];
4631
4632 if (ix > 0)
4633 current_uiout->text (" ");
4634 current_uiout->field_string ("library", name);
4635 current_uiout->text ("\n");
4636 }
4637 }
4638
4639 if (any_added)
4640 {
4641 struct so_list *iter;
4642 int ix;
4643
4644 current_uiout->text (_(" Inferior loaded "));
4645 ui_out_emit_list list_emitter (current_uiout, "added");
4646 for (ix = 0;
4647 VEC_iterate (so_list_ptr, current_program_space->added_solibs,
4648 ix, iter);
4649 ++ix)
4650 {
4651 if (ix > 0)
4652 current_uiout->text (" ");
4653 current_uiout->field_string ("library", iter->so_name);
4654 current_uiout->text ("\n");
4655 }
4656 }
4657 }
4658
4659 /* Print a message indicating what happened. This is called from
4660 normal_stop(). The input to this routine is the head of the bpstat
4661 list - a list of the eventpoints that caused this stop. KIND is
4662 the target_waitkind for the stopping event. This
4663 routine calls the generic print routine for printing a message
4664 about reasons for stopping. This will print (for example) the
4665 "Breakpoint n," part of the output. The return value of this
4666 routine is one of:
4667
4668 PRINT_UNKNOWN: Means we printed nothing.
4669 PRINT_SRC_AND_LOC: Means we printed something, and expect subsequent
4670 code to print the location. An example is
4671 "Breakpoint 1, " which should be followed by
4672 the location.
4673 PRINT_SRC_ONLY: Means we printed something, but there is no need
4674 to also print the location part of the message.
4675 An example is the catch/throw messages, which
4676 don't require a location appended to the end.
4677 PRINT_NOTHING: We have done some printing and we don't need any
4678 further info to be printed. */
4679
4680 enum print_stop_action
4681 bpstat_print (bpstat bs, int kind)
4682 {
4683 enum print_stop_action val;
4684
4685 /* Maybe another breakpoint in the chain caused us to stop.
4686 (Currently all watchpoints go on the bpstat whether hit or not.
4687 That probably could (should) be changed, provided care is taken
4688 with respect to bpstat_explains_signal). */
4689 for (; bs; bs = bs->next)
4690 {
4691 val = print_bp_stop_message (bs);
4692 if (val == PRINT_SRC_ONLY
4693 || val == PRINT_SRC_AND_LOC
4694 || val == PRINT_NOTHING)
4695 return val;
4696 }
4697
4698 /* If we had hit a shared library event breakpoint,
4699 print_bp_stop_message would print out this message. If we hit an
4700 OS-level shared library event, do the same thing. */
4701 if (kind == TARGET_WAITKIND_LOADED)
4702 {
4703 print_solib_event (0);
4704 return PRINT_NOTHING;
4705 }
4706
4707 /* We reached the end of the chain, or we got a null BS to start
4708 with and nothing was printed. */
4709 return PRINT_UNKNOWN;
4710 }
4711
4712 /* Evaluate the boolean expression EXP and return the result. */
4713
4714 static bool
4715 breakpoint_cond_eval (expression *exp)
4716 {
4717 struct value *mark = value_mark ();
4718 bool res = value_true (evaluate_expression (exp));
4719
4720 value_free_to_mark (mark);
4721 return res;
4722 }
4723
4724 /* Allocate a new bpstat. Link it to the FIFO list by BS_LINK_POINTER. */
4725
4726 bpstats::bpstats (struct bp_location *bl, bpstat **bs_link_pointer)
4727 : next (NULL),
4728 bp_location_at (bl),
4729 breakpoint_at (bl->owner),
4730 commands (NULL),
4731 old_val (NULL),
4732 print (0),
4733 stop (0),
4734 print_it (print_it_normal)
4735 {
4736 incref_bp_location (bl);
4737 **bs_link_pointer = this;
4738 *bs_link_pointer = &next;
4739 }
4740
4741 bpstats::bpstats ()
4742 : next (NULL),
4743 bp_location_at (NULL),
4744 breakpoint_at (NULL),
4745 commands (NULL),
4746 old_val (NULL),
4747 print (0),
4748 stop (0),
4749 print_it (print_it_normal)
4750 {
4751 }
4752 \f
4753 /* The target has stopped with waitstatus WS. Check if any hardware
4754 watchpoints have triggered, according to the target. */
4755
4756 int
4757 watchpoints_triggered (struct target_waitstatus *ws)
4758 {
4759 int stopped_by_watchpoint = target_stopped_by_watchpoint ();
4760 CORE_ADDR addr;
4761 struct breakpoint *b;
4762
4763 if (!stopped_by_watchpoint)
4764 {
4765 /* We were not stopped by a watchpoint. Mark all watchpoints
4766 as not triggered. */
4767 ALL_BREAKPOINTS (b)
4768 if (is_hardware_watchpoint (b))
4769 {
4770 struct watchpoint *w = (struct watchpoint *) b;
4771
4772 w->watchpoint_triggered = watch_triggered_no;
4773 }
4774
4775 return 0;
4776 }
4777
4778 if (!target_stopped_data_address (&current_target, &addr))
4779 {
4780 /* We were stopped by a watchpoint, but we don't know where.
4781 Mark all watchpoints as unknown. */
4782 ALL_BREAKPOINTS (b)
4783 if (is_hardware_watchpoint (b))
4784 {
4785 struct watchpoint *w = (struct watchpoint *) b;
4786
4787 w->watchpoint_triggered = watch_triggered_unknown;
4788 }
4789
4790 return 1;
4791 }
4792
4793 /* The target could report the data address. Mark watchpoints
4794 affected by this data address as triggered, and all others as not
4795 triggered. */
4796
4797 ALL_BREAKPOINTS (b)
4798 if (is_hardware_watchpoint (b))
4799 {
4800 struct watchpoint *w = (struct watchpoint *) b;
4801 struct bp_location *loc;
4802
4803 w->watchpoint_triggered = watch_triggered_no;
4804 for (loc = b->loc; loc; loc = loc->next)
4805 {
4806 if (is_masked_watchpoint (b))
4807 {
4808 CORE_ADDR newaddr = addr & w->hw_wp_mask;
4809 CORE_ADDR start = loc->address & w->hw_wp_mask;
4810
4811 if (newaddr == start)
4812 {
4813 w->watchpoint_triggered = watch_triggered_yes;
4814 break;
4815 }
4816 }
4817 /* Exact match not required. Within range is sufficient. */
4818 else if (target_watchpoint_addr_within_range (&current_target,
4819 addr, loc->address,
4820 loc->length))
4821 {
4822 w->watchpoint_triggered = watch_triggered_yes;
4823 break;
4824 }
4825 }
4826 }
4827
4828 return 1;
4829 }
4830
4831 /* Possible return values for watchpoint_check. */
4832 enum wp_check_result
4833 {
4834 /* The watchpoint has been deleted. */
4835 WP_DELETED = 1,
4836
4837 /* The value has changed. */
4838 WP_VALUE_CHANGED = 2,
4839
4840 /* The value has not changed. */
4841 WP_VALUE_NOT_CHANGED = 3,
4842
4843 /* Ignore this watchpoint, no matter if the value changed or not. */
4844 WP_IGNORE = 4,
4845 };
4846
4847 #define BP_TEMPFLAG 1
4848 #define BP_HARDWAREFLAG 2
4849
4850 /* Evaluate watchpoint condition expression and check if its value
4851 changed. */
4852
4853 static wp_check_result
4854 watchpoint_check (bpstat bs)
4855 {
4856 struct watchpoint *b;
4857 struct frame_info *fr;
4858 int within_current_scope;
4859
4860 /* BS is built from an existing struct breakpoint. */
4861 gdb_assert (bs->breakpoint_at != NULL);
4862 b = (struct watchpoint *) bs->breakpoint_at;
4863
4864 /* If this is a local watchpoint, we only want to check if the
4865 watchpoint frame is in scope if the current thread is the thread
4866 that was used to create the watchpoint. */
4867 if (!watchpoint_in_thread_scope (b))
4868 return WP_IGNORE;
4869
4870 if (b->exp_valid_block == NULL)
4871 within_current_scope = 1;
4872 else
4873 {
4874 struct frame_info *frame = get_current_frame ();
4875 struct gdbarch *frame_arch = get_frame_arch (frame);
4876 CORE_ADDR frame_pc = get_frame_pc (frame);
4877
4878 /* stack_frame_destroyed_p() returns a non-zero value if we're
4879 still in the function but the stack frame has already been
4880 invalidated. Since we can't rely on the values of local
4881 variables after the stack has been destroyed, we are treating
4882 the watchpoint in that state as `not changed' without further
4883 checking. Don't mark watchpoints as changed if the current
4884 frame is in an epilogue - even if they are in some other
4885 frame, our view of the stack is likely to be wrong and
4886 frame_find_by_id could error out. */
4887 if (gdbarch_stack_frame_destroyed_p (frame_arch, frame_pc))
4888 return WP_IGNORE;
4889
4890 fr = frame_find_by_id (b->watchpoint_frame);
4891 within_current_scope = (fr != NULL);
4892
4893 /* If we've gotten confused in the unwinder, we might have
4894 returned a frame that can't describe this variable. */
4895 if (within_current_scope)
4896 {
4897 struct symbol *function;
4898
4899 function = get_frame_function (fr);
4900 if (function == NULL
4901 || !contained_in (b->exp_valid_block,
4902 SYMBOL_BLOCK_VALUE (function)))
4903 within_current_scope = 0;
4904 }
4905
4906 if (within_current_scope)
4907 /* If we end up stopping, the current frame will get selected
4908 in normal_stop. So this call to select_frame won't affect
4909 the user. */
4910 select_frame (fr);
4911 }
4912
4913 if (within_current_scope)
4914 {
4915 /* We use value_{,free_to_}mark because it could be a *long*
4916 time before we return to the command level and call
4917 free_all_values. We can't call free_all_values because we
4918 might be in the middle of evaluating a function call. */
4919
4920 int pc = 0;
4921 struct value *mark;
4922 struct value *new_val;
4923
4924 if (is_masked_watchpoint (b))
4925 /* Since we don't know the exact trigger address (from
4926 stopped_data_address), just tell the user we've triggered
4927 a mask watchpoint. */
4928 return WP_VALUE_CHANGED;
4929
4930 mark = value_mark ();
4931 fetch_subexp_value (b->exp.get (), &pc, &new_val, NULL, NULL, 0);
4932
4933 if (b->val_bitsize != 0)
4934 new_val = extract_bitfield_from_watchpoint_value (b, new_val);
4935
4936 /* We use value_equal_contents instead of value_equal because
4937 the latter coerces an array to a pointer, thus comparing just
4938 the address of the array instead of its contents. This is
4939 not what we want. */
4940 if ((b->val != NULL) != (new_val != NULL)
4941 || (b->val != NULL && !value_equal_contents (b->val, new_val)))
4942 {
4943 if (new_val != NULL)
4944 {
4945 release_value (new_val);
4946 value_free_to_mark (mark);
4947 }
4948 bs->old_val = b->val;
4949 b->val = new_val;
4950 b->val_valid = 1;
4951 return WP_VALUE_CHANGED;
4952 }
4953 else
4954 {
4955 /* Nothing changed. */
4956 value_free_to_mark (mark);
4957 return WP_VALUE_NOT_CHANGED;
4958 }
4959 }
4960 else
4961 {
4962 /* This seems like the only logical thing to do because
4963 if we temporarily ignored the watchpoint, then when
4964 we reenter the block in which it is valid it contains
4965 garbage (in the case of a function, it may have two
4966 garbage values, one before and one after the prologue).
4967 So we can't even detect the first assignment to it and
4968 watch after that (since the garbage may or may not equal
4969 the first value assigned). */
4970 /* We print all the stop information in
4971 breakpoint_ops->print_it, but in this case, by the time we
4972 call breakpoint_ops->print_it this bp will be deleted
4973 already. So we have no choice but print the information
4974 here. */
4975
4976 SWITCH_THRU_ALL_UIS ()
4977 {
4978 struct ui_out *uiout = current_uiout;
4979
4980 if (uiout->is_mi_like_p ())
4981 uiout->field_string
4982 ("reason", async_reason_lookup (EXEC_ASYNC_WATCHPOINT_SCOPE));
4983 uiout->text ("\nWatchpoint ");
4984 uiout->field_int ("wpnum", b->number);
4985 uiout->text (" deleted because the program has left the block in\n"
4986 "which its expression is valid.\n");
4987 }
4988
4989 /* Make sure the watchpoint's commands aren't executed. */
4990 b->commands = NULL;
4991 watchpoint_del_at_next_stop (b);
4992
4993 return WP_DELETED;
4994 }
4995 }
4996
4997 /* Return true if it looks like target has stopped due to hitting
4998 breakpoint location BL. This function does not check if we should
4999 stop, only if BL explains the stop. */
5000
5001 static int
5002 bpstat_check_location (const struct bp_location *bl,
5003 const address_space *aspace, CORE_ADDR bp_addr,
5004 const struct target_waitstatus *ws)
5005 {
5006 struct breakpoint *b = bl->owner;
5007
5008 /* BL is from an existing breakpoint. */
5009 gdb_assert (b != NULL);
5010
5011 return b->ops->breakpoint_hit (bl, aspace, bp_addr, ws);
5012 }
5013
5014 /* Determine if the watched values have actually changed, and we
5015 should stop. If not, set BS->stop to 0. */
5016
5017 static void
5018 bpstat_check_watchpoint (bpstat bs)
5019 {
5020 const struct bp_location *bl;
5021 struct watchpoint *b;
5022
5023 /* BS is built for existing struct breakpoint. */
5024 bl = bs->bp_location_at;
5025 gdb_assert (bl != NULL);
5026 b = (struct watchpoint *) bs->breakpoint_at;
5027 gdb_assert (b != NULL);
5028
5029 {
5030 int must_check_value = 0;
5031
5032 if (b->type == bp_watchpoint)
5033 /* For a software watchpoint, we must always check the
5034 watched value. */
5035 must_check_value = 1;
5036 else if (b->watchpoint_triggered == watch_triggered_yes)
5037 /* We have a hardware watchpoint (read, write, or access)
5038 and the target earlier reported an address watched by
5039 this watchpoint. */
5040 must_check_value = 1;
5041 else if (b->watchpoint_triggered == watch_triggered_unknown
5042 && b->type == bp_hardware_watchpoint)
5043 /* We were stopped by a hardware watchpoint, but the target could
5044 not report the data address. We must check the watchpoint's
5045 value. Access and read watchpoints are out of luck; without
5046 a data address, we can't figure it out. */
5047 must_check_value = 1;
5048
5049 if (must_check_value)
5050 {
5051 wp_check_result e;
5052
5053 TRY
5054 {
5055 e = watchpoint_check (bs);
5056 }
5057 CATCH (ex, RETURN_MASK_ALL)
5058 {
5059 exception_fprintf (gdb_stderr, ex,
5060 "Error evaluating expression "
5061 "for watchpoint %d\n",
5062 b->number);
5063
5064 SWITCH_THRU_ALL_UIS ()
5065 {
5066 printf_filtered (_("Watchpoint %d deleted.\n"),
5067 b->number);
5068 }
5069 watchpoint_del_at_next_stop (b);
5070 e = WP_DELETED;
5071 }
5072 END_CATCH
5073
5074 switch (e)
5075 {
5076 case WP_DELETED:
5077 /* We've already printed what needs to be printed. */
5078 bs->print_it = print_it_done;
5079 /* Stop. */
5080 break;
5081 case WP_IGNORE:
5082 bs->print_it = print_it_noop;
5083 bs->stop = 0;
5084 break;
5085 case WP_VALUE_CHANGED:
5086 if (b->type == bp_read_watchpoint)
5087 {
5088 /* There are two cases to consider here:
5089
5090 1. We're watching the triggered memory for reads.
5091 In that case, trust the target, and always report
5092 the watchpoint hit to the user. Even though
5093 reads don't cause value changes, the value may
5094 have changed since the last time it was read, and
5095 since we're not trapping writes, we will not see
5096 those, and as such we should ignore our notion of
5097 old value.
5098
5099 2. We're watching the triggered memory for both
5100 reads and writes. There are two ways this may
5101 happen:
5102
5103 2.1. This is a target that can't break on data
5104 reads only, but can break on accesses (reads or
5105 writes), such as e.g., x86. We detect this case
5106 at the time we try to insert read watchpoints.
5107
5108 2.2. Otherwise, the target supports read
5109 watchpoints, but, the user set an access or write
5110 watchpoint watching the same memory as this read
5111 watchpoint.
5112
5113 If we're watching memory writes as well as reads,
5114 ignore watchpoint hits when we find that the
5115 value hasn't changed, as reads don't cause
5116 changes. This still gives false positives when
5117 the program writes the same value to memory as
5118 what there was already in memory (we will confuse
5119 it for a read), but it's much better than
5120 nothing. */
5121
5122 int other_write_watchpoint = 0;
5123
5124 if (bl->watchpoint_type == hw_read)
5125 {
5126 struct breakpoint *other_b;
5127
5128 ALL_BREAKPOINTS (other_b)
5129 if (other_b->type == bp_hardware_watchpoint
5130 || other_b->type == bp_access_watchpoint)
5131 {
5132 struct watchpoint *other_w =
5133 (struct watchpoint *) other_b;
5134
5135 if (other_w->watchpoint_triggered
5136 == watch_triggered_yes)
5137 {
5138 other_write_watchpoint = 1;
5139 break;
5140 }
5141 }
5142 }
5143
5144 if (other_write_watchpoint
5145 || bl->watchpoint_type == hw_access)
5146 {
5147 /* We're watching the same memory for writes,
5148 and the value changed since the last time we
5149 updated it, so this trap must be for a write.
5150 Ignore it. */
5151 bs->print_it = print_it_noop;
5152 bs->stop = 0;
5153 }
5154 }
5155 break;
5156 case WP_VALUE_NOT_CHANGED:
5157 if (b->type == bp_hardware_watchpoint
5158 || b->type == bp_watchpoint)
5159 {
5160 /* Don't stop: write watchpoints shouldn't fire if
5161 the value hasn't changed. */
5162 bs->print_it = print_it_noop;
5163 bs->stop = 0;
5164 }
5165 /* Stop. */
5166 break;
5167 default:
5168 /* Can't happen. */
5169 break;
5170 }
5171 }
5172 else /* must_check_value == 0 */
5173 {
5174 /* This is a case where some watchpoint(s) triggered, but
5175 not at the address of this watchpoint, or else no
5176 watchpoint triggered after all. So don't print
5177 anything for this watchpoint. */
5178 bs->print_it = print_it_noop;
5179 bs->stop = 0;
5180 }
5181 }
5182 }
5183
5184 /* For breakpoints that are currently marked as telling gdb to stop,
5185 check conditions (condition proper, frame, thread and ignore count)
5186 of breakpoint referred to by BS. If we should not stop for this
5187 breakpoint, set BS->stop to 0. */
5188
5189 static void
5190 bpstat_check_breakpoint_conditions (bpstat bs, ptid_t ptid)
5191 {
5192 const struct bp_location *bl;
5193 struct breakpoint *b;
5194 /* Assume stop. */
5195 bool condition_result = true;
5196 struct expression *cond;
5197
5198 gdb_assert (bs->stop);
5199
5200 /* BS is built for existing struct breakpoint. */
5201 bl = bs->bp_location_at;
5202 gdb_assert (bl != NULL);
5203 b = bs->breakpoint_at;
5204 gdb_assert (b != NULL);
5205
5206 /* Even if the target evaluated the condition on its end and notified GDB, we
5207 need to do so again since GDB does not know if we stopped due to a
5208 breakpoint or a single step breakpoint. */
5209
5210 if (frame_id_p (b->frame_id)
5211 && !frame_id_eq (b->frame_id, get_stack_frame_id (get_current_frame ())))
5212 {
5213 bs->stop = 0;
5214 return;
5215 }
5216
5217 /* If this is a thread/task-specific breakpoint, don't waste cpu
5218 evaluating the condition if this isn't the specified
5219 thread/task. */
5220 if ((b->thread != -1 && b->thread != ptid_to_global_thread_id (ptid))
5221 || (b->task != 0 && b->task != ada_get_task_number (ptid)))
5222
5223 {
5224 bs->stop = 0;
5225 return;
5226 }
5227
5228 /* Evaluate extension language breakpoints that have a "stop" method
5229 implemented. */
5230 bs->stop = breakpoint_ext_lang_cond_says_stop (b);
5231
5232 if (is_watchpoint (b))
5233 {
5234 struct watchpoint *w = (struct watchpoint *) b;
5235
5236 cond = w->cond_exp.get ();
5237 }
5238 else
5239 cond = bl->cond.get ();
5240
5241 if (cond && b->disposition != disp_del_at_next_stop)
5242 {
5243 int within_current_scope = 1;
5244 struct watchpoint * w;
5245
5246 /* We use value_mark and value_free_to_mark because it could
5247 be a long time before we return to the command level and
5248 call free_all_values. We can't call free_all_values
5249 because we might be in the middle of evaluating a
5250 function call. */
5251 struct value *mark = value_mark ();
5252
5253 if (is_watchpoint (b))
5254 w = (struct watchpoint *) b;
5255 else
5256 w = NULL;
5257
5258 /* Need to select the frame, with all that implies so that
5259 the conditions will have the right context. Because we
5260 use the frame, we will not see an inlined function's
5261 variables when we arrive at a breakpoint at the start
5262 of the inlined function; the current frame will be the
5263 call site. */
5264 if (w == NULL || w->cond_exp_valid_block == NULL)
5265 select_frame (get_current_frame ());
5266 else
5267 {
5268 struct frame_info *frame;
5269
5270 /* For local watchpoint expressions, which particular
5271 instance of a local is being watched matters, so we
5272 keep track of the frame to evaluate the expression
5273 in. To evaluate the condition however, it doesn't
5274 really matter which instantiation of the function
5275 where the condition makes sense triggers the
5276 watchpoint. This allows an expression like "watch
5277 global if q > 10" set in `func', catch writes to
5278 global on all threads that call `func', or catch
5279 writes on all recursive calls of `func' by a single
5280 thread. We simply always evaluate the condition in
5281 the innermost frame that's executing where it makes
5282 sense to evaluate the condition. It seems
5283 intuitive. */
5284 frame = block_innermost_frame (w->cond_exp_valid_block);
5285 if (frame != NULL)
5286 select_frame (frame);
5287 else
5288 within_current_scope = 0;
5289 }
5290 if (within_current_scope)
5291 {
5292 TRY
5293 {
5294 condition_result = breakpoint_cond_eval (cond);
5295 }
5296 CATCH (ex, RETURN_MASK_ALL)
5297 {
5298 exception_fprintf (gdb_stderr, ex,
5299 "Error in testing breakpoint condition:\n");
5300 }
5301 END_CATCH
5302 }
5303 else
5304 {
5305 warning (_("Watchpoint condition cannot be tested "
5306 "in the current scope"));
5307 /* If we failed to set the right context for this
5308 watchpoint, unconditionally report it. */
5309 }
5310 /* FIXME-someday, should give breakpoint #. */
5311 value_free_to_mark (mark);
5312 }
5313
5314 if (cond && !condition_result)
5315 {
5316 bs->stop = 0;
5317 }
5318 else if (b->ignore_count > 0)
5319 {
5320 b->ignore_count--;
5321 bs->stop = 0;
5322 /* Increase the hit count even though we don't stop. */
5323 ++(b->hit_count);
5324 observer_notify_breakpoint_modified (b);
5325 }
5326 }
5327
5328 /* Returns true if we need to track moribund locations of LOC's type
5329 on the current target. */
5330
5331 static int
5332 need_moribund_for_location_type (struct bp_location *loc)
5333 {
5334 return ((loc->loc_type == bp_loc_software_breakpoint
5335 && !target_supports_stopped_by_sw_breakpoint ())
5336 || (loc->loc_type == bp_loc_hardware_breakpoint
5337 && !target_supports_stopped_by_hw_breakpoint ()));
5338 }
5339
5340
5341 /* Get a bpstat associated with having just stopped at address
5342 BP_ADDR in thread PTID.
5343
5344 Determine whether we stopped at a breakpoint, etc, or whether we
5345 don't understand this stop. Result is a chain of bpstat's such
5346 that:
5347
5348 if we don't understand the stop, the result is a null pointer.
5349
5350 if we understand why we stopped, the result is not null.
5351
5352 Each element of the chain refers to a particular breakpoint or
5353 watchpoint at which we have stopped. (We may have stopped for
5354 several reasons concurrently.)
5355
5356 Each element of the chain has valid next, breakpoint_at,
5357 commands, FIXME??? fields. */
5358
5359 bpstat
5360 bpstat_stop_status (const address_space *aspace,
5361 CORE_ADDR bp_addr, ptid_t ptid,
5362 const struct target_waitstatus *ws)
5363 {
5364 struct breakpoint *b = NULL;
5365 struct bp_location *bl;
5366 struct bp_location *loc;
5367 /* First item of allocated bpstat's. */
5368 bpstat bs_head = NULL, *bs_link = &bs_head;
5369 /* Pointer to the last thing in the chain currently. */
5370 bpstat bs;
5371 int ix;
5372 int need_remove_insert;
5373 int removed_any;
5374
5375 /* First, build the bpstat chain with locations that explain a
5376 target stop, while being careful to not set the target running,
5377 as that may invalidate locations (in particular watchpoint
5378 locations are recreated). Resuming will happen here with
5379 breakpoint conditions or watchpoint expressions that include
5380 inferior function calls. */
5381
5382 ALL_BREAKPOINTS (b)
5383 {
5384 if (!breakpoint_enabled (b))
5385 continue;
5386
5387 for (bl = b->loc; bl != NULL; bl = bl->next)
5388 {
5389 /* For hardware watchpoints, we look only at the first
5390 location. The watchpoint_check function will work on the
5391 entire expression, not the individual locations. For
5392 read watchpoints, the watchpoints_triggered function has
5393 checked all locations already. */
5394 if (b->type == bp_hardware_watchpoint && bl != b->loc)
5395 break;
5396
5397 if (!bl->enabled || bl->shlib_disabled)
5398 continue;
5399
5400 if (!bpstat_check_location (bl, aspace, bp_addr, ws))
5401 continue;
5402
5403 /* Come here if it's a watchpoint, or if the break address
5404 matches. */
5405
5406 bs = new bpstats (bl, &bs_link); /* Alloc a bpstat to
5407 explain stop. */
5408
5409 /* Assume we stop. Should we find a watchpoint that is not
5410 actually triggered, or if the condition of the breakpoint
5411 evaluates as false, we'll reset 'stop' to 0. */
5412 bs->stop = 1;
5413 bs->print = 1;
5414
5415 /* If this is a scope breakpoint, mark the associated
5416 watchpoint as triggered so that we will handle the
5417 out-of-scope event. We'll get to the watchpoint next
5418 iteration. */
5419 if (b->type == bp_watchpoint_scope && b->related_breakpoint != b)
5420 {
5421 struct watchpoint *w = (struct watchpoint *) b->related_breakpoint;
5422
5423 w->watchpoint_triggered = watch_triggered_yes;
5424 }
5425 }
5426 }
5427
5428 /* Check if a moribund breakpoint explains the stop. */
5429 if (!target_supports_stopped_by_sw_breakpoint ()
5430 || !target_supports_stopped_by_hw_breakpoint ())
5431 {
5432 for (ix = 0; VEC_iterate (bp_location_p, moribund_locations, ix, loc); ++ix)
5433 {
5434 if (breakpoint_location_address_match (loc, aspace, bp_addr)
5435 && need_moribund_for_location_type (loc))
5436 {
5437 bs = new bpstats (loc, &bs_link);
5438 /* For hits of moribund locations, we should just proceed. */
5439 bs->stop = 0;
5440 bs->print = 0;
5441 bs->print_it = print_it_noop;
5442 }
5443 }
5444 }
5445
5446 /* A bit of special processing for shlib breakpoints. We need to
5447 process solib loading here, so that the lists of loaded and
5448 unloaded libraries are correct before we handle "catch load" and
5449 "catch unload". */
5450 for (bs = bs_head; bs != NULL; bs = bs->next)
5451 {
5452 if (bs->breakpoint_at && bs->breakpoint_at->type == bp_shlib_event)
5453 {
5454 handle_solib_event ();
5455 break;
5456 }
5457 }
5458
5459 /* Now go through the locations that caused the target to stop, and
5460 check whether we're interested in reporting this stop to higher
5461 layers, or whether we should resume the target transparently. */
5462
5463 removed_any = 0;
5464
5465 for (bs = bs_head; bs != NULL; bs = bs->next)
5466 {
5467 if (!bs->stop)
5468 continue;
5469
5470 b = bs->breakpoint_at;
5471 b->ops->check_status (bs);
5472 if (bs->stop)
5473 {
5474 bpstat_check_breakpoint_conditions (bs, ptid);
5475
5476 if (bs->stop)
5477 {
5478 ++(b->hit_count);
5479 observer_notify_breakpoint_modified (b);
5480
5481 /* We will stop here. */
5482 if (b->disposition == disp_disable)
5483 {
5484 --(b->enable_count);
5485 if (b->enable_count <= 0)
5486 b->enable_state = bp_disabled;
5487 removed_any = 1;
5488 }
5489 if (b->silent)
5490 bs->print = 0;
5491 bs->commands = b->commands;
5492 if (command_line_is_silent (bs->commands
5493 ? bs->commands.get () : NULL))
5494 bs->print = 0;
5495
5496 b->ops->after_condition_true (bs);
5497 }
5498
5499 }
5500
5501 /* Print nothing for this entry if we don't stop or don't
5502 print. */
5503 if (!bs->stop || !bs->print)
5504 bs->print_it = print_it_noop;
5505 }
5506
5507 /* If we aren't stopping, the value of some hardware watchpoint may
5508 not have changed, but the intermediate memory locations we are
5509 watching may have. Don't bother if we're stopping; this will get
5510 done later. */
5511 need_remove_insert = 0;
5512 if (! bpstat_causes_stop (bs_head))
5513 for (bs = bs_head; bs != NULL; bs = bs->next)
5514 if (!bs->stop
5515 && bs->breakpoint_at
5516 && is_hardware_watchpoint (bs->breakpoint_at))
5517 {
5518 struct watchpoint *w = (struct watchpoint *) bs->breakpoint_at;
5519
5520 update_watchpoint (w, 0 /* don't reparse. */);
5521 need_remove_insert = 1;
5522 }
5523
5524 if (need_remove_insert)
5525 update_global_location_list (UGLL_MAY_INSERT);
5526 else if (removed_any)
5527 update_global_location_list (UGLL_DONT_INSERT);
5528
5529 return bs_head;
5530 }
5531
5532 static void
5533 handle_jit_event (void)
5534 {
5535 struct frame_info *frame;
5536 struct gdbarch *gdbarch;
5537
5538 if (debug_infrun)
5539 fprintf_unfiltered (gdb_stdlog, "handling bp_jit_event\n");
5540
5541 /* Switch terminal for any messages produced by
5542 breakpoint_re_set. */
5543 target_terminal::ours_for_output ();
5544
5545 frame = get_current_frame ();
5546 gdbarch = get_frame_arch (frame);
5547
5548 jit_event_handler (gdbarch);
5549
5550 target_terminal::inferior ();
5551 }
5552
5553 /* Prepare WHAT final decision for infrun. */
5554
5555 /* Decide what infrun needs to do with this bpstat. */
5556
5557 struct bpstat_what
5558 bpstat_what (bpstat bs_head)
5559 {
5560 struct bpstat_what retval;
5561 bpstat bs;
5562
5563 retval.main_action = BPSTAT_WHAT_KEEP_CHECKING;
5564 retval.call_dummy = STOP_NONE;
5565 retval.is_longjmp = 0;
5566
5567 for (bs = bs_head; bs != NULL; bs = bs->next)
5568 {
5569 /* Extract this BS's action. After processing each BS, we check
5570 if its action overrides all we've seem so far. */
5571 enum bpstat_what_main_action this_action = BPSTAT_WHAT_KEEP_CHECKING;
5572 enum bptype bptype;
5573
5574 if (bs->breakpoint_at == NULL)
5575 {
5576 /* I suspect this can happen if it was a momentary
5577 breakpoint which has since been deleted. */
5578 bptype = bp_none;
5579 }
5580 else
5581 bptype = bs->breakpoint_at->type;
5582
5583 switch (bptype)
5584 {
5585 case bp_none:
5586 break;
5587 case bp_breakpoint:
5588 case bp_hardware_breakpoint:
5589 case bp_single_step:
5590 case bp_until:
5591 case bp_finish:
5592 case bp_shlib_event:
5593 if (bs->stop)
5594 {
5595 if (bs->print)
5596 this_action = BPSTAT_WHAT_STOP_NOISY;
5597 else
5598 this_action = BPSTAT_WHAT_STOP_SILENT;
5599 }
5600 else
5601 this_action = BPSTAT_WHAT_SINGLE;
5602 break;
5603 case bp_watchpoint:
5604 case bp_hardware_watchpoint:
5605 case bp_read_watchpoint:
5606 case bp_access_watchpoint:
5607 if (bs->stop)
5608 {
5609 if (bs->print)
5610 this_action = BPSTAT_WHAT_STOP_NOISY;
5611 else
5612 this_action = BPSTAT_WHAT_STOP_SILENT;
5613 }
5614 else
5615 {
5616 /* There was a watchpoint, but we're not stopping.
5617 This requires no further action. */
5618 }
5619 break;
5620 case bp_longjmp:
5621 case bp_longjmp_call_dummy:
5622 case bp_exception:
5623 if (bs->stop)
5624 {
5625 this_action = BPSTAT_WHAT_SET_LONGJMP_RESUME;
5626 retval.is_longjmp = bptype != bp_exception;
5627 }
5628 else
5629 this_action = BPSTAT_WHAT_SINGLE;
5630 break;
5631 case bp_longjmp_resume:
5632 case bp_exception_resume:
5633 if (bs->stop)
5634 {
5635 this_action = BPSTAT_WHAT_CLEAR_LONGJMP_RESUME;
5636 retval.is_longjmp = bptype == bp_longjmp_resume;
5637 }
5638 else
5639 this_action = BPSTAT_WHAT_SINGLE;
5640 break;
5641 case bp_step_resume:
5642 if (bs->stop)
5643 this_action = BPSTAT_WHAT_STEP_RESUME;
5644 else
5645 {
5646 /* It is for the wrong frame. */
5647 this_action = BPSTAT_WHAT_SINGLE;
5648 }
5649 break;
5650 case bp_hp_step_resume:
5651 if (bs->stop)
5652 this_action = BPSTAT_WHAT_HP_STEP_RESUME;
5653 else
5654 {
5655 /* It is for the wrong frame. */
5656 this_action = BPSTAT_WHAT_SINGLE;
5657 }
5658 break;
5659 case bp_watchpoint_scope:
5660 case bp_thread_event:
5661 case bp_overlay_event:
5662 case bp_longjmp_master:
5663 case bp_std_terminate_master:
5664 case bp_exception_master:
5665 this_action = BPSTAT_WHAT_SINGLE;
5666 break;
5667 case bp_catchpoint:
5668 if (bs->stop)
5669 {
5670 if (bs->print)
5671 this_action = BPSTAT_WHAT_STOP_NOISY;
5672 else
5673 this_action = BPSTAT_WHAT_STOP_SILENT;
5674 }
5675 else
5676 {
5677 /* There was a catchpoint, but we're not stopping.
5678 This requires no further action. */
5679 }
5680 break;
5681 case bp_jit_event:
5682 this_action = BPSTAT_WHAT_SINGLE;
5683 break;
5684 case bp_call_dummy:
5685 /* Make sure the action is stop (silent or noisy),
5686 so infrun.c pops the dummy frame. */
5687 retval.call_dummy = STOP_STACK_DUMMY;
5688 this_action = BPSTAT_WHAT_STOP_SILENT;
5689 break;
5690 case bp_std_terminate:
5691 /* Make sure the action is stop (silent or noisy),
5692 so infrun.c pops the dummy frame. */
5693 retval.call_dummy = STOP_STD_TERMINATE;
5694 this_action = BPSTAT_WHAT_STOP_SILENT;
5695 break;
5696 case bp_tracepoint:
5697 case bp_fast_tracepoint:
5698 case bp_static_tracepoint:
5699 /* Tracepoint hits should not be reported back to GDB, and
5700 if one got through somehow, it should have been filtered
5701 out already. */
5702 internal_error (__FILE__, __LINE__,
5703 _("bpstat_what: tracepoint encountered"));
5704 break;
5705 case bp_gnu_ifunc_resolver:
5706 /* Step over it (and insert bp_gnu_ifunc_resolver_return). */
5707 this_action = BPSTAT_WHAT_SINGLE;
5708 break;
5709 case bp_gnu_ifunc_resolver_return:
5710 /* The breakpoint will be removed, execution will restart from the
5711 PC of the former breakpoint. */
5712 this_action = BPSTAT_WHAT_KEEP_CHECKING;
5713 break;
5714
5715 case bp_dprintf:
5716 if (bs->stop)
5717 this_action = BPSTAT_WHAT_STOP_SILENT;
5718 else
5719 this_action = BPSTAT_WHAT_SINGLE;
5720 break;
5721
5722 default:
5723 internal_error (__FILE__, __LINE__,
5724 _("bpstat_what: unhandled bptype %d"), (int) bptype);
5725 }
5726
5727 retval.main_action = std::max (retval.main_action, this_action);
5728 }
5729
5730 return retval;
5731 }
5732
5733 void
5734 bpstat_run_callbacks (bpstat bs_head)
5735 {
5736 bpstat bs;
5737
5738 for (bs = bs_head; bs != NULL; bs = bs->next)
5739 {
5740 struct breakpoint *b = bs->breakpoint_at;
5741
5742 if (b == NULL)
5743 continue;
5744 switch (b->type)
5745 {
5746 case bp_jit_event:
5747 handle_jit_event ();
5748 break;
5749 case bp_gnu_ifunc_resolver:
5750 gnu_ifunc_resolver_stop (b);
5751 break;
5752 case bp_gnu_ifunc_resolver_return:
5753 gnu_ifunc_resolver_return_stop (b);
5754 break;
5755 }
5756 }
5757 }
5758
5759 /* Nonzero if we should step constantly (e.g. watchpoints on machines
5760 without hardware support). This isn't related to a specific bpstat,
5761 just to things like whether watchpoints are set. */
5762
5763 int
5764 bpstat_should_step (void)
5765 {
5766 struct breakpoint *b;
5767
5768 ALL_BREAKPOINTS (b)
5769 if (breakpoint_enabled (b) && b->type == bp_watchpoint && b->loc != NULL)
5770 return 1;
5771 return 0;
5772 }
5773
5774 int
5775 bpstat_causes_stop (bpstat bs)
5776 {
5777 for (; bs != NULL; bs = bs->next)
5778 if (bs->stop)
5779 return 1;
5780
5781 return 0;
5782 }
5783
5784 \f
5785
5786 /* Compute a string of spaces suitable to indent the next line
5787 so it starts at the position corresponding to the table column
5788 named COL_NAME in the currently active table of UIOUT. */
5789
5790 static char *
5791 wrap_indent_at_field (struct ui_out *uiout, const char *col_name)
5792 {
5793 static char wrap_indent[80];
5794 int i, total_width, width, align;
5795 const char *text;
5796
5797 total_width = 0;
5798 for (i = 1; uiout->query_table_field (i, &width, &align, &text); i++)
5799 {
5800 if (strcmp (text, col_name) == 0)
5801 {
5802 gdb_assert (total_width < sizeof wrap_indent);
5803 memset (wrap_indent, ' ', total_width);
5804 wrap_indent[total_width] = 0;
5805
5806 return wrap_indent;
5807 }
5808
5809 total_width += width + 1;
5810 }
5811
5812 return NULL;
5813 }
5814
5815 /* Determine if the locations of this breakpoint will have their conditions
5816 evaluated by the target, host or a mix of both. Returns the following:
5817
5818 "host": Host evals condition.
5819 "host or target": Host or Target evals condition.
5820 "target": Target evals condition.
5821 */
5822
5823 static const char *
5824 bp_condition_evaluator (struct breakpoint *b)
5825 {
5826 struct bp_location *bl;
5827 char host_evals = 0;
5828 char target_evals = 0;
5829
5830 if (!b)
5831 return NULL;
5832
5833 if (!is_breakpoint (b))
5834 return NULL;
5835
5836 if (gdb_evaluates_breakpoint_condition_p ()
5837 || !target_supports_evaluation_of_breakpoint_conditions ())
5838 return condition_evaluation_host;
5839
5840 for (bl = b->loc; bl; bl = bl->next)
5841 {
5842 if (bl->cond_bytecode)
5843 target_evals++;
5844 else
5845 host_evals++;
5846 }
5847
5848 if (host_evals && target_evals)
5849 return condition_evaluation_both;
5850 else if (target_evals)
5851 return condition_evaluation_target;
5852 else
5853 return condition_evaluation_host;
5854 }
5855
5856 /* Determine the breakpoint location's condition evaluator. This is
5857 similar to bp_condition_evaluator, but for locations. */
5858
5859 static const char *
5860 bp_location_condition_evaluator (struct bp_location *bl)
5861 {
5862 if (bl && !is_breakpoint (bl->owner))
5863 return NULL;
5864
5865 if (gdb_evaluates_breakpoint_condition_p ()
5866 || !target_supports_evaluation_of_breakpoint_conditions ())
5867 return condition_evaluation_host;
5868
5869 if (bl && bl->cond_bytecode)
5870 return condition_evaluation_target;
5871 else
5872 return condition_evaluation_host;
5873 }
5874
5875 /* Print the LOC location out of the list of B->LOC locations. */
5876
5877 static void
5878 print_breakpoint_location (struct breakpoint *b,
5879 struct bp_location *loc)
5880 {
5881 struct ui_out *uiout = current_uiout;
5882
5883 scoped_restore_current_program_space restore_pspace;
5884
5885 if (loc != NULL && loc->shlib_disabled)
5886 loc = NULL;
5887
5888 if (loc != NULL)
5889 set_current_program_space (loc->pspace);
5890
5891 if (b->display_canonical)
5892 uiout->field_string ("what", event_location_to_string (b->location.get ()));
5893 else if (loc && loc->symtab)
5894 {
5895 const struct symbol *sym = loc->symbol;
5896
5897 if (sym == NULL)
5898 sym = find_pc_sect_function (loc->address, loc->section);
5899
5900 if (sym)
5901 {
5902 uiout->text ("in ");
5903 uiout->field_string ("func", SYMBOL_PRINT_NAME (sym));
5904 uiout->text (" ");
5905 uiout->wrap_hint (wrap_indent_at_field (uiout, "what"));
5906 uiout->text ("at ");
5907 }
5908 uiout->field_string ("file",
5909 symtab_to_filename_for_display (loc->symtab));
5910 uiout->text (":");
5911
5912 if (uiout->is_mi_like_p ())
5913 uiout->field_string ("fullname", symtab_to_fullname (loc->symtab));
5914
5915 uiout->field_int ("line", loc->line_number);
5916 }
5917 else if (loc)
5918 {
5919 string_file stb;
5920
5921 print_address_symbolic (loc->gdbarch, loc->address, &stb,
5922 demangle, "");
5923 uiout->field_stream ("at", stb);
5924 }
5925 else
5926 {
5927 uiout->field_string ("pending",
5928 event_location_to_string (b->location.get ()));
5929 /* If extra_string is available, it could be holding a condition
5930 or dprintf arguments. In either case, make sure it is printed,
5931 too, but only for non-MI streams. */
5932 if (!uiout->is_mi_like_p () && b->extra_string != NULL)
5933 {
5934 if (b->type == bp_dprintf)
5935 uiout->text (",");
5936 else
5937 uiout->text (" ");
5938 uiout->text (b->extra_string);
5939 }
5940 }
5941
5942 if (loc && is_breakpoint (b)
5943 && breakpoint_condition_evaluation_mode () == condition_evaluation_target
5944 && bp_condition_evaluator (b) == condition_evaluation_both)
5945 {
5946 uiout->text (" (");
5947 uiout->field_string ("evaluated-by",
5948 bp_location_condition_evaluator (loc));
5949 uiout->text (")");
5950 }
5951 }
5952
5953 static const char *
5954 bptype_string (enum bptype type)
5955 {
5956 struct ep_type_description
5957 {
5958 enum bptype type;
5959 const char *description;
5960 };
5961 static struct ep_type_description bptypes[] =
5962 {
5963 {bp_none, "?deleted?"},
5964 {bp_breakpoint, "breakpoint"},
5965 {bp_hardware_breakpoint, "hw breakpoint"},
5966 {bp_single_step, "sw single-step"},
5967 {bp_until, "until"},
5968 {bp_finish, "finish"},
5969 {bp_watchpoint, "watchpoint"},
5970 {bp_hardware_watchpoint, "hw watchpoint"},
5971 {bp_read_watchpoint, "read watchpoint"},
5972 {bp_access_watchpoint, "acc watchpoint"},
5973 {bp_longjmp, "longjmp"},
5974 {bp_longjmp_resume, "longjmp resume"},
5975 {bp_longjmp_call_dummy, "longjmp for call dummy"},
5976 {bp_exception, "exception"},
5977 {bp_exception_resume, "exception resume"},
5978 {bp_step_resume, "step resume"},
5979 {bp_hp_step_resume, "high-priority step resume"},
5980 {bp_watchpoint_scope, "watchpoint scope"},
5981 {bp_call_dummy, "call dummy"},
5982 {bp_std_terminate, "std::terminate"},
5983 {bp_shlib_event, "shlib events"},
5984 {bp_thread_event, "thread events"},
5985 {bp_overlay_event, "overlay events"},
5986 {bp_longjmp_master, "longjmp master"},
5987 {bp_std_terminate_master, "std::terminate master"},
5988 {bp_exception_master, "exception master"},
5989 {bp_catchpoint, "catchpoint"},
5990 {bp_tracepoint, "tracepoint"},
5991 {bp_fast_tracepoint, "fast tracepoint"},
5992 {bp_static_tracepoint, "static tracepoint"},
5993 {bp_dprintf, "dprintf"},
5994 {bp_jit_event, "jit events"},
5995 {bp_gnu_ifunc_resolver, "STT_GNU_IFUNC resolver"},
5996 {bp_gnu_ifunc_resolver_return, "STT_GNU_IFUNC resolver return"},
5997 };
5998
5999 if (((int) type >= (sizeof (bptypes) / sizeof (bptypes[0])))
6000 || ((int) type != bptypes[(int) type].type))
6001 internal_error (__FILE__, __LINE__,
6002 _("bptypes table does not describe type #%d."),
6003 (int) type);
6004
6005 return bptypes[(int) type].description;
6006 }
6007
6008 /* For MI, output a field named 'thread-groups' with a list as the value.
6009 For CLI, prefix the list with the string 'inf'. */
6010
6011 static void
6012 output_thread_groups (struct ui_out *uiout,
6013 const char *field_name,
6014 const std::vector<int> &inf_nums,
6015 int mi_only)
6016 {
6017 int is_mi = uiout->is_mi_like_p ();
6018
6019 /* For backward compatibility, don't display inferiors in CLI unless
6020 there are several. Always display them for MI. */
6021 if (!is_mi && mi_only)
6022 return;
6023
6024 ui_out_emit_list list_emitter (uiout, field_name);
6025
6026 for (size_t i = 0; i < inf_nums.size (); i++)
6027 {
6028 if (is_mi)
6029 {
6030 char mi_group[10];
6031
6032 xsnprintf (mi_group, sizeof (mi_group), "i%d", inf_nums[i]);
6033 uiout->field_string (NULL, mi_group);
6034 }
6035 else
6036 {
6037 if (i == 0)
6038 uiout->text (" inf ");
6039 else
6040 uiout->text (", ");
6041
6042 uiout->text (plongest (inf_nums[i]));
6043 }
6044 }
6045 }
6046
6047 /* Print B to gdb_stdout. */
6048
6049 static void
6050 print_one_breakpoint_location (struct breakpoint *b,
6051 struct bp_location *loc,
6052 int loc_number,
6053 struct bp_location **last_loc,
6054 int allflag)
6055 {
6056 struct command_line *l;
6057 static char bpenables[] = "nynny";
6058
6059 struct ui_out *uiout = current_uiout;
6060 int header_of_multiple = 0;
6061 int part_of_multiple = (loc != NULL);
6062 struct value_print_options opts;
6063
6064 get_user_print_options (&opts);
6065
6066 gdb_assert (!loc || loc_number != 0);
6067 /* See comment in print_one_breakpoint concerning treatment of
6068 breakpoints with single disabled location. */
6069 if (loc == NULL
6070 && (b->loc != NULL
6071 && (b->loc->next != NULL || !b->loc->enabled)))
6072 header_of_multiple = 1;
6073 if (loc == NULL)
6074 loc = b->loc;
6075
6076 annotate_record ();
6077
6078 /* 1 */
6079 annotate_field (0);
6080 if (part_of_multiple)
6081 {
6082 char *formatted;
6083 formatted = xstrprintf ("%d.%d", b->number, loc_number);
6084 uiout->field_string ("number", formatted);
6085 xfree (formatted);
6086 }
6087 else
6088 {
6089 uiout->field_int ("number", b->number);
6090 }
6091
6092 /* 2 */
6093 annotate_field (1);
6094 if (part_of_multiple)
6095 uiout->field_skip ("type");
6096 else
6097 uiout->field_string ("type", bptype_string (b->type));
6098
6099 /* 3 */
6100 annotate_field (2);
6101 if (part_of_multiple)
6102 uiout->field_skip ("disp");
6103 else
6104 uiout->field_string ("disp", bpdisp_text (b->disposition));
6105
6106
6107 /* 4 */
6108 annotate_field (3);
6109 if (part_of_multiple)
6110 uiout->field_string ("enabled", loc->enabled ? "y" : "n");
6111 else
6112 uiout->field_fmt ("enabled", "%c", bpenables[(int) b->enable_state]);
6113 uiout->spaces (2);
6114
6115
6116 /* 5 and 6 */
6117 if (b->ops != NULL && b->ops->print_one != NULL)
6118 {
6119 /* Although the print_one can possibly print all locations,
6120 calling it here is not likely to get any nice result. So,
6121 make sure there's just one location. */
6122 gdb_assert (b->loc == NULL || b->loc->next == NULL);
6123 b->ops->print_one (b, last_loc);
6124 }
6125 else
6126 switch (b->type)
6127 {
6128 case bp_none:
6129 internal_error (__FILE__, __LINE__,
6130 _("print_one_breakpoint: bp_none encountered\n"));
6131 break;
6132
6133 case bp_watchpoint:
6134 case bp_hardware_watchpoint:
6135 case bp_read_watchpoint:
6136 case bp_access_watchpoint:
6137 {
6138 struct watchpoint *w = (struct watchpoint *) b;
6139
6140 /* Field 4, the address, is omitted (which makes the columns
6141 not line up too nicely with the headers, but the effect
6142 is relatively readable). */
6143 if (opts.addressprint)
6144 uiout->field_skip ("addr");
6145 annotate_field (5);
6146 uiout->field_string ("what", w->exp_string);
6147 }
6148 break;
6149
6150 case bp_breakpoint:
6151 case bp_hardware_breakpoint:
6152 case bp_single_step:
6153 case bp_until:
6154 case bp_finish:
6155 case bp_longjmp:
6156 case bp_longjmp_resume:
6157 case bp_longjmp_call_dummy:
6158 case bp_exception:
6159 case bp_exception_resume:
6160 case bp_step_resume:
6161 case bp_hp_step_resume:
6162 case bp_watchpoint_scope:
6163 case bp_call_dummy:
6164 case bp_std_terminate:
6165 case bp_shlib_event:
6166 case bp_thread_event:
6167 case bp_overlay_event:
6168 case bp_longjmp_master:
6169 case bp_std_terminate_master:
6170 case bp_exception_master:
6171 case bp_tracepoint:
6172 case bp_fast_tracepoint:
6173 case bp_static_tracepoint:
6174 case bp_dprintf:
6175 case bp_jit_event:
6176 case bp_gnu_ifunc_resolver:
6177 case bp_gnu_ifunc_resolver_return:
6178 if (opts.addressprint)
6179 {
6180 annotate_field (4);
6181 if (header_of_multiple)
6182 uiout->field_string ("addr", "<MULTIPLE>");
6183 else if (b->loc == NULL || loc->shlib_disabled)
6184 uiout->field_string ("addr", "<PENDING>");
6185 else
6186 uiout->field_core_addr ("addr",
6187 loc->gdbarch, loc->address);
6188 }
6189 annotate_field (5);
6190 if (!header_of_multiple)
6191 print_breakpoint_location (b, loc);
6192 if (b->loc)
6193 *last_loc = b->loc;
6194 break;
6195 }
6196
6197
6198 if (loc != NULL && !header_of_multiple)
6199 {
6200 struct inferior *inf;
6201 std::vector<int> inf_nums;
6202 int mi_only = 1;
6203
6204 ALL_INFERIORS (inf)
6205 {
6206 if (inf->pspace == loc->pspace)
6207 inf_nums.push_back (inf->num);
6208 }
6209
6210 /* For backward compatibility, don't display inferiors in CLI unless
6211 there are several. Always display for MI. */
6212 if (allflag
6213 || (!gdbarch_has_global_breakpoints (target_gdbarch ())
6214 && (number_of_program_spaces () > 1
6215 || number_of_inferiors () > 1)
6216 /* LOC is for existing B, it cannot be in
6217 moribund_locations and thus having NULL OWNER. */
6218 && loc->owner->type != bp_catchpoint))
6219 mi_only = 0;
6220 output_thread_groups (uiout, "thread-groups", inf_nums, mi_only);
6221 }
6222
6223 if (!part_of_multiple)
6224 {
6225 if (b->thread != -1)
6226 {
6227 /* FIXME: This seems to be redundant and lost here; see the
6228 "stop only in" line a little further down. */
6229 uiout->text (" thread ");
6230 uiout->field_int ("thread", b->thread);
6231 }
6232 else if (b->task != 0)
6233 {
6234 uiout->text (" task ");
6235 uiout->field_int ("task", b->task);
6236 }
6237 }
6238
6239 uiout->text ("\n");
6240
6241 if (!part_of_multiple)
6242 b->ops->print_one_detail (b, uiout);
6243
6244 if (part_of_multiple && frame_id_p (b->frame_id))
6245 {
6246 annotate_field (6);
6247 uiout->text ("\tstop only in stack frame at ");
6248 /* FIXME: cagney/2002-12-01: Shouldn't be poking around inside
6249 the frame ID. */
6250 uiout->field_core_addr ("frame",
6251 b->gdbarch, b->frame_id.stack_addr);
6252 uiout->text ("\n");
6253 }
6254
6255 if (!part_of_multiple && b->cond_string)
6256 {
6257 annotate_field (7);
6258 if (is_tracepoint (b))
6259 uiout->text ("\ttrace only if ");
6260 else
6261 uiout->text ("\tstop only if ");
6262 uiout->field_string ("cond", b->cond_string);
6263
6264 /* Print whether the target is doing the breakpoint's condition
6265 evaluation. If GDB is doing the evaluation, don't print anything. */
6266 if (is_breakpoint (b)
6267 && breakpoint_condition_evaluation_mode ()
6268 == condition_evaluation_target)
6269 {
6270 uiout->text (" (");
6271 uiout->field_string ("evaluated-by",
6272 bp_condition_evaluator (b));
6273 uiout->text (" evals)");
6274 }
6275 uiout->text ("\n");
6276 }
6277
6278 if (!part_of_multiple && b->thread != -1)
6279 {
6280 /* FIXME should make an annotation for this. */
6281 uiout->text ("\tstop only in thread ");
6282 if (uiout->is_mi_like_p ())
6283 uiout->field_int ("thread", b->thread);
6284 else
6285 {
6286 struct thread_info *thr = find_thread_global_id (b->thread);
6287
6288 uiout->field_string ("thread", print_thread_id (thr));
6289 }
6290 uiout->text ("\n");
6291 }
6292
6293 if (!part_of_multiple)
6294 {
6295 if (b->hit_count)
6296 {
6297 /* FIXME should make an annotation for this. */
6298 if (is_catchpoint (b))
6299 uiout->text ("\tcatchpoint");
6300 else if (is_tracepoint (b))
6301 uiout->text ("\ttracepoint");
6302 else
6303 uiout->text ("\tbreakpoint");
6304 uiout->text (" already hit ");
6305 uiout->field_int ("times", b->hit_count);
6306 if (b->hit_count == 1)
6307 uiout->text (" time\n");
6308 else
6309 uiout->text (" times\n");
6310 }
6311 else
6312 {
6313 /* Output the count also if it is zero, but only if this is mi. */
6314 if (uiout->is_mi_like_p ())
6315 uiout->field_int ("times", b->hit_count);
6316 }
6317 }
6318
6319 if (!part_of_multiple && b->ignore_count)
6320 {
6321 annotate_field (8);
6322 uiout->text ("\tignore next ");
6323 uiout->field_int ("ignore", b->ignore_count);
6324 uiout->text (" hits\n");
6325 }
6326
6327 /* Note that an enable count of 1 corresponds to "enable once"
6328 behavior, which is reported by the combination of enablement and
6329 disposition, so we don't need to mention it here. */
6330 if (!part_of_multiple && b->enable_count > 1)
6331 {
6332 annotate_field (8);
6333 uiout->text ("\tdisable after ");
6334 /* Tweak the wording to clarify that ignore and enable counts
6335 are distinct, and have additive effect. */
6336 if (b->ignore_count)
6337 uiout->text ("additional ");
6338 else
6339 uiout->text ("next ");
6340 uiout->field_int ("enable", b->enable_count);
6341 uiout->text (" hits\n");
6342 }
6343
6344 if (!part_of_multiple && is_tracepoint (b))
6345 {
6346 struct tracepoint *tp = (struct tracepoint *) b;
6347
6348 if (tp->traceframe_usage)
6349 {
6350 uiout->text ("\ttrace buffer usage ");
6351 uiout->field_int ("traceframe-usage", tp->traceframe_usage);
6352 uiout->text (" bytes\n");
6353 }
6354 }
6355
6356 l = b->commands ? b->commands.get () : NULL;
6357 if (!part_of_multiple && l)
6358 {
6359 annotate_field (9);
6360 ui_out_emit_tuple tuple_emitter (uiout, "script");
6361 print_command_lines (uiout, l, 4);
6362 }
6363
6364 if (is_tracepoint (b))
6365 {
6366 struct tracepoint *t = (struct tracepoint *) b;
6367
6368 if (!part_of_multiple && t->pass_count)
6369 {
6370 annotate_field (10);
6371 uiout->text ("\tpass count ");
6372 uiout->field_int ("pass", t->pass_count);
6373 uiout->text (" \n");
6374 }
6375
6376 /* Don't display it when tracepoint or tracepoint location is
6377 pending. */
6378 if (!header_of_multiple && loc != NULL && !loc->shlib_disabled)
6379 {
6380 annotate_field (11);
6381
6382 if (uiout->is_mi_like_p ())
6383 uiout->field_string ("installed",
6384 loc->inserted ? "y" : "n");
6385 else
6386 {
6387 if (loc->inserted)
6388 uiout->text ("\t");
6389 else
6390 uiout->text ("\tnot ");
6391 uiout->text ("installed on target\n");
6392 }
6393 }
6394 }
6395
6396 if (uiout->is_mi_like_p () && !part_of_multiple)
6397 {
6398 if (is_watchpoint (b))
6399 {
6400 struct watchpoint *w = (struct watchpoint *) b;
6401
6402 uiout->field_string ("original-location", w->exp_string);
6403 }
6404 else if (b->location != NULL
6405 && event_location_to_string (b->location.get ()) != NULL)
6406 uiout->field_string ("original-location",
6407 event_location_to_string (b->location.get ()));
6408 }
6409 }
6410
6411 static void
6412 print_one_breakpoint (struct breakpoint *b,
6413 struct bp_location **last_loc,
6414 int allflag)
6415 {
6416 struct ui_out *uiout = current_uiout;
6417
6418 {
6419 ui_out_emit_tuple tuple_emitter (uiout, "bkpt");
6420
6421 print_one_breakpoint_location (b, NULL, 0, last_loc, allflag);
6422 }
6423
6424 /* If this breakpoint has custom print function,
6425 it's already printed. Otherwise, print individual
6426 locations, if any. */
6427 if (b->ops == NULL || b->ops->print_one == NULL)
6428 {
6429 /* If breakpoint has a single location that is disabled, we
6430 print it as if it had several locations, since otherwise it's
6431 hard to represent "breakpoint enabled, location disabled"
6432 situation.
6433
6434 Note that while hardware watchpoints have several locations
6435 internally, that's not a property exposed to user. */
6436 if (b->loc
6437 && !is_hardware_watchpoint (b)
6438 && (b->loc->next || !b->loc->enabled))
6439 {
6440 struct bp_location *loc;
6441 int n = 1;
6442
6443 for (loc = b->loc; loc; loc = loc->next, ++n)
6444 {
6445 ui_out_emit_tuple tuple_emitter (uiout, NULL);
6446 print_one_breakpoint_location (b, loc, n, last_loc, allflag);
6447 }
6448 }
6449 }
6450 }
6451
6452 static int
6453 breakpoint_address_bits (struct breakpoint *b)
6454 {
6455 int print_address_bits = 0;
6456 struct bp_location *loc;
6457
6458 /* Software watchpoints that aren't watching memory don't have an
6459 address to print. */
6460 if (is_no_memory_software_watchpoint (b))
6461 return 0;
6462
6463 for (loc = b->loc; loc; loc = loc->next)
6464 {
6465 int addr_bit;
6466
6467 addr_bit = gdbarch_addr_bit (loc->gdbarch);
6468 if (addr_bit > print_address_bits)
6469 print_address_bits = addr_bit;
6470 }
6471
6472 return print_address_bits;
6473 }
6474
6475 /* See breakpoint.h. */
6476
6477 void
6478 print_breakpoint (breakpoint *b)
6479 {
6480 struct bp_location *dummy_loc = NULL;
6481 print_one_breakpoint (b, &dummy_loc, 0);
6482 }
6483
6484 /* Return true if this breakpoint was set by the user, false if it is
6485 internal or momentary. */
6486
6487 int
6488 user_breakpoint_p (struct breakpoint *b)
6489 {
6490 return b->number > 0;
6491 }
6492
6493 /* See breakpoint.h. */
6494
6495 int
6496 pending_breakpoint_p (struct breakpoint *b)
6497 {
6498 return b->loc == NULL;
6499 }
6500
6501 /* Print information on user settable breakpoint (watchpoint, etc)
6502 number BNUM. If BNUM is -1 print all user-settable breakpoints.
6503 If ALLFLAG is non-zero, include non-user-settable breakpoints. If
6504 FILTER is non-NULL, call it on each breakpoint and only include the
6505 ones for which it returns non-zero. Return the total number of
6506 breakpoints listed. */
6507
6508 static int
6509 breakpoint_1 (const char *args, int allflag,
6510 int (*filter) (const struct breakpoint *))
6511 {
6512 struct breakpoint *b;
6513 struct bp_location *last_loc = NULL;
6514 int nr_printable_breakpoints;
6515 struct value_print_options opts;
6516 int print_address_bits = 0;
6517 int print_type_col_width = 14;
6518 struct ui_out *uiout = current_uiout;
6519
6520 get_user_print_options (&opts);
6521
6522 /* Compute the number of rows in the table, as well as the size
6523 required for address fields. */
6524 nr_printable_breakpoints = 0;
6525 ALL_BREAKPOINTS (b)
6526 {
6527 /* If we have a filter, only list the breakpoints it accepts. */
6528 if (filter && !filter (b))
6529 continue;
6530
6531 /* If we have an "args" string, it is a list of breakpoints to
6532 accept. Skip the others. */
6533 if (args != NULL && *args != '\0')
6534 {
6535 if (allflag && parse_and_eval_long (args) != b->number)
6536 continue;
6537 if (!allflag && !number_is_in_list (args, b->number))
6538 continue;
6539 }
6540
6541 if (allflag || user_breakpoint_p (b))
6542 {
6543 int addr_bit, type_len;
6544
6545 addr_bit = breakpoint_address_bits (b);
6546 if (addr_bit > print_address_bits)
6547 print_address_bits = addr_bit;
6548
6549 type_len = strlen (bptype_string (b->type));
6550 if (type_len > print_type_col_width)
6551 print_type_col_width = type_len;
6552
6553 nr_printable_breakpoints++;
6554 }
6555 }
6556
6557 {
6558 ui_out_emit_table table_emitter (uiout,
6559 opts.addressprint ? 6 : 5,
6560 nr_printable_breakpoints,
6561 "BreakpointTable");
6562
6563 if (nr_printable_breakpoints > 0)
6564 annotate_breakpoints_headers ();
6565 if (nr_printable_breakpoints > 0)
6566 annotate_field (0);
6567 uiout->table_header (7, ui_left, "number", "Num"); /* 1 */
6568 if (nr_printable_breakpoints > 0)
6569 annotate_field (1);
6570 uiout->table_header (print_type_col_width, ui_left, "type", "Type"); /* 2 */
6571 if (nr_printable_breakpoints > 0)
6572 annotate_field (2);
6573 uiout->table_header (4, ui_left, "disp", "Disp"); /* 3 */
6574 if (nr_printable_breakpoints > 0)
6575 annotate_field (3);
6576 uiout->table_header (3, ui_left, "enabled", "Enb"); /* 4 */
6577 if (opts.addressprint)
6578 {
6579 if (nr_printable_breakpoints > 0)
6580 annotate_field (4);
6581 if (print_address_bits <= 32)
6582 uiout->table_header (10, ui_left, "addr", "Address"); /* 5 */
6583 else
6584 uiout->table_header (18, ui_left, "addr", "Address"); /* 5 */
6585 }
6586 if (nr_printable_breakpoints > 0)
6587 annotate_field (5);
6588 uiout->table_header (40, ui_noalign, "what", "What"); /* 6 */
6589 uiout->table_body ();
6590 if (nr_printable_breakpoints > 0)
6591 annotate_breakpoints_table ();
6592
6593 ALL_BREAKPOINTS (b)
6594 {
6595 QUIT;
6596 /* If we have a filter, only list the breakpoints it accepts. */
6597 if (filter && !filter (b))
6598 continue;
6599
6600 /* If we have an "args" string, it is a list of breakpoints to
6601 accept. Skip the others. */
6602
6603 if (args != NULL && *args != '\0')
6604 {
6605 if (allflag) /* maintenance info breakpoint */
6606 {
6607 if (parse_and_eval_long (args) != b->number)
6608 continue;
6609 }
6610 else /* all others */
6611 {
6612 if (!number_is_in_list (args, b->number))
6613 continue;
6614 }
6615 }
6616 /* We only print out user settable breakpoints unless the
6617 allflag is set. */
6618 if (allflag || user_breakpoint_p (b))
6619 print_one_breakpoint (b, &last_loc, allflag);
6620 }
6621 }
6622
6623 if (nr_printable_breakpoints == 0)
6624 {
6625 /* If there's a filter, let the caller decide how to report
6626 empty list. */
6627 if (!filter)
6628 {
6629 if (args == NULL || *args == '\0')
6630 uiout->message ("No breakpoints or watchpoints.\n");
6631 else
6632 uiout->message ("No breakpoint or watchpoint matching '%s'.\n",
6633 args);
6634 }
6635 }
6636 else
6637 {
6638 if (last_loc && !server_command)
6639 set_next_address (last_loc->gdbarch, last_loc->address);
6640 }
6641
6642 /* FIXME? Should this be moved up so that it is only called when
6643 there have been breakpoints? */
6644 annotate_breakpoints_table_end ();
6645
6646 return nr_printable_breakpoints;
6647 }
6648
6649 /* Display the value of default-collect in a way that is generally
6650 compatible with the breakpoint list. */
6651
6652 static void
6653 default_collect_info (void)
6654 {
6655 struct ui_out *uiout = current_uiout;
6656
6657 /* If it has no value (which is frequently the case), say nothing; a
6658 message like "No default-collect." gets in user's face when it's
6659 not wanted. */
6660 if (!*default_collect)
6661 return;
6662
6663 /* The following phrase lines up nicely with per-tracepoint collect
6664 actions. */
6665 uiout->text ("default collect ");
6666 uiout->field_string ("default-collect", default_collect);
6667 uiout->text (" \n");
6668 }
6669
6670 static void
6671 info_breakpoints_command (const char *args, int from_tty)
6672 {
6673 breakpoint_1 (args, 0, NULL);
6674
6675 default_collect_info ();
6676 }
6677
6678 static void
6679 info_watchpoints_command (const char *args, int from_tty)
6680 {
6681 int num_printed = breakpoint_1 (args, 0, is_watchpoint);
6682 struct ui_out *uiout = current_uiout;
6683
6684 if (num_printed == 0)
6685 {
6686 if (args == NULL || *args == '\0')
6687 uiout->message ("No watchpoints.\n");
6688 else
6689 uiout->message ("No watchpoint matching '%s'.\n", args);
6690 }
6691 }
6692
6693 static void
6694 maintenance_info_breakpoints (const char *args, int from_tty)
6695 {
6696 breakpoint_1 (args, 1, NULL);
6697
6698 default_collect_info ();
6699 }
6700
6701 static int
6702 breakpoint_has_pc (struct breakpoint *b,
6703 struct program_space *pspace,
6704 CORE_ADDR pc, struct obj_section *section)
6705 {
6706 struct bp_location *bl = b->loc;
6707
6708 for (; bl; bl = bl->next)
6709 {
6710 if (bl->pspace == pspace
6711 && bl->address == pc
6712 && (!overlay_debugging || bl->section == section))
6713 return 1;
6714 }
6715 return 0;
6716 }
6717
6718 /* Print a message describing any user-breakpoints set at PC. This
6719 concerns with logical breakpoints, so we match program spaces, not
6720 address spaces. */
6721
6722 static void
6723 describe_other_breakpoints (struct gdbarch *gdbarch,
6724 struct program_space *pspace, CORE_ADDR pc,
6725 struct obj_section *section, int thread)
6726 {
6727 int others = 0;
6728 struct breakpoint *b;
6729
6730 ALL_BREAKPOINTS (b)
6731 others += (user_breakpoint_p (b)
6732 && breakpoint_has_pc (b, pspace, pc, section));
6733 if (others > 0)
6734 {
6735 if (others == 1)
6736 printf_filtered (_("Note: breakpoint "));
6737 else /* if (others == ???) */
6738 printf_filtered (_("Note: breakpoints "));
6739 ALL_BREAKPOINTS (b)
6740 if (user_breakpoint_p (b) && breakpoint_has_pc (b, pspace, pc, section))
6741 {
6742 others--;
6743 printf_filtered ("%d", b->number);
6744 if (b->thread == -1 && thread != -1)
6745 printf_filtered (" (all threads)");
6746 else if (b->thread != -1)
6747 printf_filtered (" (thread %d)", b->thread);
6748 printf_filtered ("%s%s ",
6749 ((b->enable_state == bp_disabled
6750 || b->enable_state == bp_call_disabled)
6751 ? " (disabled)"
6752 : ""),
6753 (others > 1) ? ","
6754 : ((others == 1) ? " and" : ""));
6755 }
6756 printf_filtered (_("also set at pc "));
6757 fputs_filtered (paddress (gdbarch, pc), gdb_stdout);
6758 printf_filtered (".\n");
6759 }
6760 }
6761 \f
6762
6763 /* Return true iff it is meaningful to use the address member of
6764 BPT locations. For some breakpoint types, the locations' address members
6765 are irrelevant and it makes no sense to attempt to compare them to other
6766 addresses (or use them for any other purpose either).
6767
6768 More specifically, each of the following breakpoint types will
6769 always have a zero valued location address and we don't want to mark
6770 breakpoints of any of these types to be a duplicate of an actual
6771 breakpoint location at address zero:
6772
6773 bp_watchpoint
6774 bp_catchpoint
6775
6776 */
6777
6778 static int
6779 breakpoint_address_is_meaningful (struct breakpoint *bpt)
6780 {
6781 enum bptype type = bpt->type;
6782
6783 return (type != bp_watchpoint && type != bp_catchpoint);
6784 }
6785
6786 /* Assuming LOC1 and LOC2's owners are hardware watchpoints, returns
6787 true if LOC1 and LOC2 represent the same watchpoint location. */
6788
6789 static int
6790 watchpoint_locations_match (struct bp_location *loc1,
6791 struct bp_location *loc2)
6792 {
6793 struct watchpoint *w1 = (struct watchpoint *) loc1->owner;
6794 struct watchpoint *w2 = (struct watchpoint *) loc2->owner;
6795
6796 /* Both of them must exist. */
6797 gdb_assert (w1 != NULL);
6798 gdb_assert (w2 != NULL);
6799
6800 /* If the target can evaluate the condition expression in hardware,
6801 then we we need to insert both watchpoints even if they are at
6802 the same place. Otherwise the watchpoint will only trigger when
6803 the condition of whichever watchpoint was inserted evaluates to
6804 true, not giving a chance for GDB to check the condition of the
6805 other watchpoint. */
6806 if ((w1->cond_exp
6807 && target_can_accel_watchpoint_condition (loc1->address,
6808 loc1->length,
6809 loc1->watchpoint_type,
6810 w1->cond_exp.get ()))
6811 || (w2->cond_exp
6812 && target_can_accel_watchpoint_condition (loc2->address,
6813 loc2->length,
6814 loc2->watchpoint_type,
6815 w2->cond_exp.get ())))
6816 return 0;
6817
6818 /* Note that this checks the owner's type, not the location's. In
6819 case the target does not support read watchpoints, but does
6820 support access watchpoints, we'll have bp_read_watchpoint
6821 watchpoints with hw_access locations. Those should be considered
6822 duplicates of hw_read locations. The hw_read locations will
6823 become hw_access locations later. */
6824 return (loc1->owner->type == loc2->owner->type
6825 && loc1->pspace->aspace == loc2->pspace->aspace
6826 && loc1->address == loc2->address
6827 && loc1->length == loc2->length);
6828 }
6829
6830 /* See breakpoint.h. */
6831
6832 int
6833 breakpoint_address_match (const address_space *aspace1, CORE_ADDR addr1,
6834 const address_space *aspace2, CORE_ADDR addr2)
6835 {
6836 return ((gdbarch_has_global_breakpoints (target_gdbarch ())
6837 || aspace1 == aspace2)
6838 && addr1 == addr2);
6839 }
6840
6841 /* Returns true if {ASPACE2,ADDR2} falls within the range determined by
6842 {ASPACE1,ADDR1,LEN1}. In most targets, this can only be true if ASPACE1
6843 matches ASPACE2. On targets that have global breakpoints, the address
6844 space doesn't really matter. */
6845
6846 static int
6847 breakpoint_address_match_range (const address_space *aspace1,
6848 CORE_ADDR addr1,
6849 int len1, const address_space *aspace2,
6850 CORE_ADDR addr2)
6851 {
6852 return ((gdbarch_has_global_breakpoints (target_gdbarch ())
6853 || aspace1 == aspace2)
6854 && addr2 >= addr1 && addr2 < addr1 + len1);
6855 }
6856
6857 /* Returns true if {ASPACE,ADDR} matches the breakpoint BL. BL may be
6858 a ranged breakpoint. In most targets, a match happens only if ASPACE
6859 matches the breakpoint's address space. On targets that have global
6860 breakpoints, the address space doesn't really matter. */
6861
6862 static int
6863 breakpoint_location_address_match (struct bp_location *bl,
6864 const address_space *aspace,
6865 CORE_ADDR addr)
6866 {
6867 return (breakpoint_address_match (bl->pspace->aspace, bl->address,
6868 aspace, addr)
6869 || (bl->length
6870 && breakpoint_address_match_range (bl->pspace->aspace,
6871 bl->address, bl->length,
6872 aspace, addr)));
6873 }
6874
6875 /* Returns true if the [ADDR,ADDR+LEN) range in ASPACE overlaps
6876 breakpoint BL. BL may be a ranged breakpoint. In most targets, a
6877 match happens only if ASPACE matches the breakpoint's address
6878 space. On targets that have global breakpoints, the address space
6879 doesn't really matter. */
6880
6881 static int
6882 breakpoint_location_address_range_overlap (struct bp_location *bl,
6883 const address_space *aspace,
6884 CORE_ADDR addr, int len)
6885 {
6886 if (gdbarch_has_global_breakpoints (target_gdbarch ())
6887 || bl->pspace->aspace == aspace)
6888 {
6889 int bl_len = bl->length != 0 ? bl->length : 1;
6890
6891 if (mem_ranges_overlap (addr, len, bl->address, bl_len))
6892 return 1;
6893 }
6894 return 0;
6895 }
6896
6897 /* If LOC1 and LOC2's owners are not tracepoints, returns false directly.
6898 Then, if LOC1 and LOC2 represent the same tracepoint location, returns
6899 true, otherwise returns false. */
6900
6901 static int
6902 tracepoint_locations_match (struct bp_location *loc1,
6903 struct bp_location *loc2)
6904 {
6905 if (is_tracepoint (loc1->owner) && is_tracepoint (loc2->owner))
6906 /* Since tracepoint locations are never duplicated with others', tracepoint
6907 locations at the same address of different tracepoints are regarded as
6908 different locations. */
6909 return (loc1->address == loc2->address && loc1->owner == loc2->owner);
6910 else
6911 return 0;
6912 }
6913
6914 /* Assuming LOC1 and LOC2's types' have meaningful target addresses
6915 (breakpoint_address_is_meaningful), returns true if LOC1 and LOC2
6916 represent the same location. */
6917
6918 static int
6919 breakpoint_locations_match (struct bp_location *loc1,
6920 struct bp_location *loc2)
6921 {
6922 int hw_point1, hw_point2;
6923
6924 /* Both of them must not be in moribund_locations. */
6925 gdb_assert (loc1->owner != NULL);
6926 gdb_assert (loc2->owner != NULL);
6927
6928 hw_point1 = is_hardware_watchpoint (loc1->owner);
6929 hw_point2 = is_hardware_watchpoint (loc2->owner);
6930
6931 if (hw_point1 != hw_point2)
6932 return 0;
6933 else if (hw_point1)
6934 return watchpoint_locations_match (loc1, loc2);
6935 else if (is_tracepoint (loc1->owner) || is_tracepoint (loc2->owner))
6936 return tracepoint_locations_match (loc1, loc2);
6937 else
6938 /* We compare bp_location.length in order to cover ranged breakpoints. */
6939 return (breakpoint_address_match (loc1->pspace->aspace, loc1->address,
6940 loc2->pspace->aspace, loc2->address)
6941 && loc1->length == loc2->length);
6942 }
6943
6944 static void
6945 breakpoint_adjustment_warning (CORE_ADDR from_addr, CORE_ADDR to_addr,
6946 int bnum, int have_bnum)
6947 {
6948 /* The longest string possibly returned by hex_string_custom
6949 is 50 chars. These must be at least that big for safety. */
6950 char astr1[64];
6951 char astr2[64];
6952
6953 strcpy (astr1, hex_string_custom ((unsigned long) from_addr, 8));
6954 strcpy (astr2, hex_string_custom ((unsigned long) to_addr, 8));
6955 if (have_bnum)
6956 warning (_("Breakpoint %d address previously adjusted from %s to %s."),
6957 bnum, astr1, astr2);
6958 else
6959 warning (_("Breakpoint address adjusted from %s to %s."), astr1, astr2);
6960 }
6961
6962 /* Adjust a breakpoint's address to account for architectural
6963 constraints on breakpoint placement. Return the adjusted address.
6964 Note: Very few targets require this kind of adjustment. For most
6965 targets, this function is simply the identity function. */
6966
6967 static CORE_ADDR
6968 adjust_breakpoint_address (struct gdbarch *gdbarch,
6969 CORE_ADDR bpaddr, enum bptype bptype)
6970 {
6971 if (bptype == bp_watchpoint
6972 || bptype == bp_hardware_watchpoint
6973 || bptype == bp_read_watchpoint
6974 || bptype == bp_access_watchpoint
6975 || bptype == bp_catchpoint)
6976 {
6977 /* Watchpoints and the various bp_catch_* eventpoints should not
6978 have their addresses modified. */
6979 return bpaddr;
6980 }
6981 else if (bptype == bp_single_step)
6982 {
6983 /* Single-step breakpoints should not have their addresses
6984 modified. If there's any architectural constrain that
6985 applies to this address, then it should have already been
6986 taken into account when the breakpoint was created in the
6987 first place. If we didn't do this, stepping through e.g.,
6988 Thumb-2 IT blocks would break. */
6989 return bpaddr;
6990 }
6991 else
6992 {
6993 CORE_ADDR adjusted_bpaddr = bpaddr;
6994
6995 if (gdbarch_adjust_breakpoint_address_p (gdbarch))
6996 {
6997 /* Some targets have architectural constraints on the placement
6998 of breakpoint instructions. Obtain the adjusted address. */
6999 adjusted_bpaddr = gdbarch_adjust_breakpoint_address (gdbarch, bpaddr);
7000 }
7001
7002 adjusted_bpaddr = address_significant (gdbarch, adjusted_bpaddr);
7003
7004 /* An adjusted breakpoint address can significantly alter
7005 a user's expectations. Print a warning if an adjustment
7006 is required. */
7007 if (adjusted_bpaddr != bpaddr)
7008 breakpoint_adjustment_warning (bpaddr, adjusted_bpaddr, 0, 0);
7009
7010 return adjusted_bpaddr;
7011 }
7012 }
7013
7014 bp_location::bp_location (const bp_location_ops *ops, breakpoint *owner)
7015 {
7016 bp_location *loc = this;
7017
7018 gdb_assert (ops != NULL);
7019
7020 loc->ops = ops;
7021 loc->owner = owner;
7022 loc->cond_bytecode = NULL;
7023 loc->shlib_disabled = 0;
7024 loc->enabled = 1;
7025
7026 switch (owner->type)
7027 {
7028 case bp_breakpoint:
7029 case bp_single_step:
7030 case bp_until:
7031 case bp_finish:
7032 case bp_longjmp:
7033 case bp_longjmp_resume:
7034 case bp_longjmp_call_dummy:
7035 case bp_exception:
7036 case bp_exception_resume:
7037 case bp_step_resume:
7038 case bp_hp_step_resume:
7039 case bp_watchpoint_scope:
7040 case bp_call_dummy:
7041 case bp_std_terminate:
7042 case bp_shlib_event:
7043 case bp_thread_event:
7044 case bp_overlay_event:
7045 case bp_jit_event:
7046 case bp_longjmp_master:
7047 case bp_std_terminate_master:
7048 case bp_exception_master:
7049 case bp_gnu_ifunc_resolver:
7050 case bp_gnu_ifunc_resolver_return:
7051 case bp_dprintf:
7052 loc->loc_type = bp_loc_software_breakpoint;
7053 mark_breakpoint_location_modified (loc);
7054 break;
7055 case bp_hardware_breakpoint:
7056 loc->loc_type = bp_loc_hardware_breakpoint;
7057 mark_breakpoint_location_modified (loc);
7058 break;
7059 case bp_hardware_watchpoint:
7060 case bp_read_watchpoint:
7061 case bp_access_watchpoint:
7062 loc->loc_type = bp_loc_hardware_watchpoint;
7063 break;
7064 case bp_watchpoint:
7065 case bp_catchpoint:
7066 case bp_tracepoint:
7067 case bp_fast_tracepoint:
7068 case bp_static_tracepoint:
7069 loc->loc_type = bp_loc_other;
7070 break;
7071 default:
7072 internal_error (__FILE__, __LINE__, _("unknown breakpoint type"));
7073 }
7074
7075 loc->refc = 1;
7076 }
7077
7078 /* Allocate a struct bp_location. */
7079
7080 static struct bp_location *
7081 allocate_bp_location (struct breakpoint *bpt)
7082 {
7083 return bpt->ops->allocate_location (bpt);
7084 }
7085
7086 static void
7087 free_bp_location (struct bp_location *loc)
7088 {
7089 loc->ops->dtor (loc);
7090 delete loc;
7091 }
7092
7093 /* Increment reference count. */
7094
7095 static void
7096 incref_bp_location (struct bp_location *bl)
7097 {
7098 ++bl->refc;
7099 }
7100
7101 /* Decrement reference count. If the reference count reaches 0,
7102 destroy the bp_location. Sets *BLP to NULL. */
7103
7104 static void
7105 decref_bp_location (struct bp_location **blp)
7106 {
7107 gdb_assert ((*blp)->refc > 0);
7108
7109 if (--(*blp)->refc == 0)
7110 free_bp_location (*blp);
7111 *blp = NULL;
7112 }
7113
7114 /* Add breakpoint B at the end of the global breakpoint chain. */
7115
7116 static breakpoint *
7117 add_to_breakpoint_chain (std::unique_ptr<breakpoint> &&b)
7118 {
7119 struct breakpoint *b1;
7120 struct breakpoint *result = b.get ();
7121
7122 /* Add this breakpoint to the end of the chain so that a list of
7123 breakpoints will come out in order of increasing numbers. */
7124
7125 b1 = breakpoint_chain;
7126 if (b1 == 0)
7127 breakpoint_chain = b.release ();
7128 else
7129 {
7130 while (b1->next)
7131 b1 = b1->next;
7132 b1->next = b.release ();
7133 }
7134
7135 return result;
7136 }
7137
7138 /* Initializes breakpoint B with type BPTYPE and no locations yet. */
7139
7140 static void
7141 init_raw_breakpoint_without_location (struct breakpoint *b,
7142 struct gdbarch *gdbarch,
7143 enum bptype bptype,
7144 const struct breakpoint_ops *ops)
7145 {
7146 gdb_assert (ops != NULL);
7147
7148 b->ops = ops;
7149 b->type = bptype;
7150 b->gdbarch = gdbarch;
7151 b->language = current_language->la_language;
7152 b->input_radix = input_radix;
7153 b->related_breakpoint = b;
7154 }
7155
7156 /* Helper to set_raw_breakpoint below. Creates a breakpoint
7157 that has type BPTYPE and has no locations as yet. */
7158
7159 static struct breakpoint *
7160 set_raw_breakpoint_without_location (struct gdbarch *gdbarch,
7161 enum bptype bptype,
7162 const struct breakpoint_ops *ops)
7163 {
7164 std::unique_ptr<breakpoint> b = new_breakpoint_from_type (bptype);
7165
7166 init_raw_breakpoint_without_location (b.get (), gdbarch, bptype, ops);
7167 return add_to_breakpoint_chain (std::move (b));
7168 }
7169
7170 /* Initialize loc->function_name. EXPLICIT_LOC says no indirect function
7171 resolutions should be made as the user specified the location explicitly
7172 enough. */
7173
7174 static void
7175 set_breakpoint_location_function (struct bp_location *loc, int explicit_loc)
7176 {
7177 gdb_assert (loc->owner != NULL);
7178
7179 if (loc->owner->type == bp_breakpoint
7180 || loc->owner->type == bp_hardware_breakpoint
7181 || is_tracepoint (loc->owner))
7182 {
7183 int is_gnu_ifunc;
7184 const char *function_name;
7185 CORE_ADDR func_addr;
7186
7187 find_pc_partial_function_gnu_ifunc (loc->address, &function_name,
7188 &func_addr, NULL, &is_gnu_ifunc);
7189
7190 if (is_gnu_ifunc && !explicit_loc)
7191 {
7192 struct breakpoint *b = loc->owner;
7193
7194 gdb_assert (loc->pspace == current_program_space);
7195 if (gnu_ifunc_resolve_name (function_name,
7196 &loc->requested_address))
7197 {
7198 /* Recalculate ADDRESS based on new REQUESTED_ADDRESS. */
7199 loc->address = adjust_breakpoint_address (loc->gdbarch,
7200 loc->requested_address,
7201 b->type);
7202 }
7203 else if (b->type == bp_breakpoint && b->loc == loc
7204 && loc->next == NULL && b->related_breakpoint == b)
7205 {
7206 /* Create only the whole new breakpoint of this type but do not
7207 mess more complicated breakpoints with multiple locations. */
7208 b->type = bp_gnu_ifunc_resolver;
7209 /* Remember the resolver's address for use by the return
7210 breakpoint. */
7211 loc->related_address = func_addr;
7212 }
7213 }
7214
7215 if (function_name)
7216 loc->function_name = xstrdup (function_name);
7217 }
7218 }
7219
7220 /* Attempt to determine architecture of location identified by SAL. */
7221 struct gdbarch *
7222 get_sal_arch (struct symtab_and_line sal)
7223 {
7224 if (sal.section)
7225 return get_objfile_arch (sal.section->objfile);
7226 if (sal.symtab)
7227 return get_objfile_arch (SYMTAB_OBJFILE (sal.symtab));
7228
7229 return NULL;
7230 }
7231
7232 /* Low level routine for partially initializing a breakpoint of type
7233 BPTYPE. The newly created breakpoint's address, section, source
7234 file name, and line number are provided by SAL.
7235
7236 It is expected that the caller will complete the initialization of
7237 the newly created breakpoint struct as well as output any status
7238 information regarding the creation of a new breakpoint. */
7239
7240 static void
7241 init_raw_breakpoint (struct breakpoint *b, struct gdbarch *gdbarch,
7242 struct symtab_and_line sal, enum bptype bptype,
7243 const struct breakpoint_ops *ops)
7244 {
7245 init_raw_breakpoint_without_location (b, gdbarch, bptype, ops);
7246
7247 add_location_to_breakpoint (b, &sal);
7248
7249 if (bptype != bp_catchpoint)
7250 gdb_assert (sal.pspace != NULL);
7251
7252 /* Store the program space that was used to set the breakpoint,
7253 except for ordinary breakpoints, which are independent of the
7254 program space. */
7255 if (bptype != bp_breakpoint && bptype != bp_hardware_breakpoint)
7256 b->pspace = sal.pspace;
7257 }
7258
7259 /* set_raw_breakpoint is a low level routine for allocating and
7260 partially initializing a breakpoint of type BPTYPE. The newly
7261 created breakpoint's address, section, source file name, and line
7262 number are provided by SAL. The newly created and partially
7263 initialized breakpoint is added to the breakpoint chain and
7264 is also returned as the value of this function.
7265
7266 It is expected that the caller will complete the initialization of
7267 the newly created breakpoint struct as well as output any status
7268 information regarding the creation of a new breakpoint. In
7269 particular, set_raw_breakpoint does NOT set the breakpoint
7270 number! Care should be taken to not allow an error to occur
7271 prior to completing the initialization of the breakpoint. If this
7272 should happen, a bogus breakpoint will be left on the chain. */
7273
7274 struct breakpoint *
7275 set_raw_breakpoint (struct gdbarch *gdbarch,
7276 struct symtab_and_line sal, enum bptype bptype,
7277 const struct breakpoint_ops *ops)
7278 {
7279 std::unique_ptr<breakpoint> b = new_breakpoint_from_type (bptype);
7280
7281 init_raw_breakpoint (b.get (), gdbarch, sal, bptype, ops);
7282 return add_to_breakpoint_chain (std::move (b));
7283 }
7284
7285 /* Call this routine when stepping and nexting to enable a breakpoint
7286 if we do a longjmp() or 'throw' in TP. FRAME is the frame which
7287 initiated the operation. */
7288
7289 void
7290 set_longjmp_breakpoint (struct thread_info *tp, struct frame_id frame)
7291 {
7292 struct breakpoint *b, *b_tmp;
7293 int thread = tp->global_num;
7294
7295 /* To avoid having to rescan all objfile symbols at every step,
7296 we maintain a list of continually-inserted but always disabled
7297 longjmp "master" breakpoints. Here, we simply create momentary
7298 clones of those and enable them for the requested thread. */
7299 ALL_BREAKPOINTS_SAFE (b, b_tmp)
7300 if (b->pspace == current_program_space
7301 && (b->type == bp_longjmp_master
7302 || b->type == bp_exception_master))
7303 {
7304 enum bptype type = b->type == bp_longjmp_master ? bp_longjmp : bp_exception;
7305 struct breakpoint *clone;
7306
7307 /* longjmp_breakpoint_ops ensures INITIATING_FRAME is cleared again
7308 after their removal. */
7309 clone = momentary_breakpoint_from_master (b, type,
7310 &momentary_breakpoint_ops, 1);
7311 clone->thread = thread;
7312 }
7313
7314 tp->initiating_frame = frame;
7315 }
7316
7317 /* Delete all longjmp breakpoints from THREAD. */
7318 void
7319 delete_longjmp_breakpoint (int thread)
7320 {
7321 struct breakpoint *b, *b_tmp;
7322
7323 ALL_BREAKPOINTS_SAFE (b, b_tmp)
7324 if (b->type == bp_longjmp || b->type == bp_exception)
7325 {
7326 if (b->thread == thread)
7327 delete_breakpoint (b);
7328 }
7329 }
7330
7331 void
7332 delete_longjmp_breakpoint_at_next_stop (int thread)
7333 {
7334 struct breakpoint *b, *b_tmp;
7335
7336 ALL_BREAKPOINTS_SAFE (b, b_tmp)
7337 if (b->type == bp_longjmp || b->type == bp_exception)
7338 {
7339 if (b->thread == thread)
7340 b->disposition = disp_del_at_next_stop;
7341 }
7342 }
7343
7344 /* Place breakpoints of type bp_longjmp_call_dummy to catch longjmp for
7345 INFERIOR_PTID thread. Chain them all by RELATED_BREAKPOINT and return
7346 pointer to any of them. Return NULL if this system cannot place longjmp
7347 breakpoints. */
7348
7349 struct breakpoint *
7350 set_longjmp_breakpoint_for_call_dummy (void)
7351 {
7352 struct breakpoint *b, *retval = NULL;
7353
7354 ALL_BREAKPOINTS (b)
7355 if (b->pspace == current_program_space && b->type == bp_longjmp_master)
7356 {
7357 struct breakpoint *new_b;
7358
7359 new_b = momentary_breakpoint_from_master (b, bp_longjmp_call_dummy,
7360 &momentary_breakpoint_ops,
7361 1);
7362 new_b->thread = ptid_to_global_thread_id (inferior_ptid);
7363
7364 /* Link NEW_B into the chain of RETVAL breakpoints. */
7365
7366 gdb_assert (new_b->related_breakpoint == new_b);
7367 if (retval == NULL)
7368 retval = new_b;
7369 new_b->related_breakpoint = retval;
7370 while (retval->related_breakpoint != new_b->related_breakpoint)
7371 retval = retval->related_breakpoint;
7372 retval->related_breakpoint = new_b;
7373 }
7374
7375 return retval;
7376 }
7377
7378 /* Verify all existing dummy frames and their associated breakpoints for
7379 TP. Remove those which can no longer be found in the current frame
7380 stack.
7381
7382 You should call this function only at places where it is safe to currently
7383 unwind the whole stack. Failed stack unwind would discard live dummy
7384 frames. */
7385
7386 void
7387 check_longjmp_breakpoint_for_call_dummy (struct thread_info *tp)
7388 {
7389 struct breakpoint *b, *b_tmp;
7390
7391 ALL_BREAKPOINTS_SAFE (b, b_tmp)
7392 if (b->type == bp_longjmp_call_dummy && b->thread == tp->global_num)
7393 {
7394 struct breakpoint *dummy_b = b->related_breakpoint;
7395
7396 while (dummy_b != b && dummy_b->type != bp_call_dummy)
7397 dummy_b = dummy_b->related_breakpoint;
7398 if (dummy_b->type != bp_call_dummy
7399 || frame_find_by_id (dummy_b->frame_id) != NULL)
7400 continue;
7401
7402 dummy_frame_discard (dummy_b->frame_id, tp->ptid);
7403
7404 while (b->related_breakpoint != b)
7405 {
7406 if (b_tmp == b->related_breakpoint)
7407 b_tmp = b->related_breakpoint->next;
7408 delete_breakpoint (b->related_breakpoint);
7409 }
7410 delete_breakpoint (b);
7411 }
7412 }
7413
7414 void
7415 enable_overlay_breakpoints (void)
7416 {
7417 struct breakpoint *b;
7418
7419 ALL_BREAKPOINTS (b)
7420 if (b->type == bp_overlay_event)
7421 {
7422 b->enable_state = bp_enabled;
7423 update_global_location_list (UGLL_MAY_INSERT);
7424 overlay_events_enabled = 1;
7425 }
7426 }
7427
7428 void
7429 disable_overlay_breakpoints (void)
7430 {
7431 struct breakpoint *b;
7432
7433 ALL_BREAKPOINTS (b)
7434 if (b->type == bp_overlay_event)
7435 {
7436 b->enable_state = bp_disabled;
7437 update_global_location_list (UGLL_DONT_INSERT);
7438 overlay_events_enabled = 0;
7439 }
7440 }
7441
7442 /* Set an active std::terminate breakpoint for each std::terminate
7443 master breakpoint. */
7444 void
7445 set_std_terminate_breakpoint (void)
7446 {
7447 struct breakpoint *b, *b_tmp;
7448
7449 ALL_BREAKPOINTS_SAFE (b, b_tmp)
7450 if (b->pspace == current_program_space
7451 && b->type == bp_std_terminate_master)
7452 {
7453 momentary_breakpoint_from_master (b, bp_std_terminate,
7454 &momentary_breakpoint_ops, 1);
7455 }
7456 }
7457
7458 /* Delete all the std::terminate breakpoints. */
7459 void
7460 delete_std_terminate_breakpoint (void)
7461 {
7462 struct breakpoint *b, *b_tmp;
7463
7464 ALL_BREAKPOINTS_SAFE (b, b_tmp)
7465 if (b->type == bp_std_terminate)
7466 delete_breakpoint (b);
7467 }
7468
7469 struct breakpoint *
7470 create_thread_event_breakpoint (struct gdbarch *gdbarch, CORE_ADDR address)
7471 {
7472 struct breakpoint *b;
7473
7474 b = create_internal_breakpoint (gdbarch, address, bp_thread_event,
7475 &internal_breakpoint_ops);
7476
7477 b->enable_state = bp_enabled;
7478 /* location has to be used or breakpoint_re_set will delete me. */
7479 b->location = new_address_location (b->loc->address, NULL, 0);
7480
7481 update_global_location_list_nothrow (UGLL_MAY_INSERT);
7482
7483 return b;
7484 }
7485
7486 struct lang_and_radix
7487 {
7488 enum language lang;
7489 int radix;
7490 };
7491
7492 /* Create a breakpoint for JIT code registration and unregistration. */
7493
7494 struct breakpoint *
7495 create_jit_event_breakpoint (struct gdbarch *gdbarch, CORE_ADDR address)
7496 {
7497 return create_internal_breakpoint (gdbarch, address, bp_jit_event,
7498 &internal_breakpoint_ops);
7499 }
7500
7501 /* Remove JIT code registration and unregistration breakpoint(s). */
7502
7503 void
7504 remove_jit_event_breakpoints (void)
7505 {
7506 struct breakpoint *b, *b_tmp;
7507
7508 ALL_BREAKPOINTS_SAFE (b, b_tmp)
7509 if (b->type == bp_jit_event
7510 && b->loc->pspace == current_program_space)
7511 delete_breakpoint (b);
7512 }
7513
7514 void
7515 remove_solib_event_breakpoints (void)
7516 {
7517 struct breakpoint *b, *b_tmp;
7518
7519 ALL_BREAKPOINTS_SAFE (b, b_tmp)
7520 if (b->type == bp_shlib_event
7521 && b->loc->pspace == current_program_space)
7522 delete_breakpoint (b);
7523 }
7524
7525 /* See breakpoint.h. */
7526
7527 void
7528 remove_solib_event_breakpoints_at_next_stop (void)
7529 {
7530 struct breakpoint *b, *b_tmp;
7531
7532 ALL_BREAKPOINTS_SAFE (b, b_tmp)
7533 if (b->type == bp_shlib_event
7534 && b->loc->pspace == current_program_space)
7535 b->disposition = disp_del_at_next_stop;
7536 }
7537
7538 /* Helper for create_solib_event_breakpoint /
7539 create_and_insert_solib_event_breakpoint. Allows specifying which
7540 INSERT_MODE to pass through to update_global_location_list. */
7541
7542 static struct breakpoint *
7543 create_solib_event_breakpoint_1 (struct gdbarch *gdbarch, CORE_ADDR address,
7544 enum ugll_insert_mode insert_mode)
7545 {
7546 struct breakpoint *b;
7547
7548 b = create_internal_breakpoint (gdbarch, address, bp_shlib_event,
7549 &internal_breakpoint_ops);
7550 update_global_location_list_nothrow (insert_mode);
7551 return b;
7552 }
7553
7554 struct breakpoint *
7555 create_solib_event_breakpoint (struct gdbarch *gdbarch, CORE_ADDR address)
7556 {
7557 return create_solib_event_breakpoint_1 (gdbarch, address, UGLL_MAY_INSERT);
7558 }
7559
7560 /* See breakpoint.h. */
7561
7562 struct breakpoint *
7563 create_and_insert_solib_event_breakpoint (struct gdbarch *gdbarch, CORE_ADDR address)
7564 {
7565 struct breakpoint *b;
7566
7567 /* Explicitly tell update_global_location_list to insert
7568 locations. */
7569 b = create_solib_event_breakpoint_1 (gdbarch, address, UGLL_INSERT);
7570 if (!b->loc->inserted)
7571 {
7572 delete_breakpoint (b);
7573 return NULL;
7574 }
7575 return b;
7576 }
7577
7578 /* Disable any breakpoints that are on code in shared libraries. Only
7579 apply to enabled breakpoints, disabled ones can just stay disabled. */
7580
7581 void
7582 disable_breakpoints_in_shlibs (void)
7583 {
7584 struct bp_location *loc, **locp_tmp;
7585
7586 ALL_BP_LOCATIONS (loc, locp_tmp)
7587 {
7588 /* ALL_BP_LOCATIONS bp_location has LOC->OWNER always non-NULL. */
7589 struct breakpoint *b = loc->owner;
7590
7591 /* We apply the check to all breakpoints, including disabled for
7592 those with loc->duplicate set. This is so that when breakpoint
7593 becomes enabled, or the duplicate is removed, gdb will try to
7594 insert all breakpoints. If we don't set shlib_disabled here,
7595 we'll try to insert those breakpoints and fail. */
7596 if (((b->type == bp_breakpoint)
7597 || (b->type == bp_jit_event)
7598 || (b->type == bp_hardware_breakpoint)
7599 || (is_tracepoint (b)))
7600 && loc->pspace == current_program_space
7601 && !loc->shlib_disabled
7602 && solib_name_from_address (loc->pspace, loc->address)
7603 )
7604 {
7605 loc->shlib_disabled = 1;
7606 }
7607 }
7608 }
7609
7610 /* Disable any breakpoints and tracepoints that are in SOLIB upon
7611 notification of unloaded_shlib. Only apply to enabled breakpoints,
7612 disabled ones can just stay disabled. */
7613
7614 static void
7615 disable_breakpoints_in_unloaded_shlib (struct so_list *solib)
7616 {
7617 struct bp_location *loc, **locp_tmp;
7618 int disabled_shlib_breaks = 0;
7619
7620 ALL_BP_LOCATIONS (loc, locp_tmp)
7621 {
7622 /* ALL_BP_LOCATIONS bp_location has LOC->OWNER always non-NULL. */
7623 struct breakpoint *b = loc->owner;
7624
7625 if (solib->pspace == loc->pspace
7626 && !loc->shlib_disabled
7627 && (((b->type == bp_breakpoint
7628 || b->type == bp_jit_event
7629 || b->type == bp_hardware_breakpoint)
7630 && (loc->loc_type == bp_loc_hardware_breakpoint
7631 || loc->loc_type == bp_loc_software_breakpoint))
7632 || is_tracepoint (b))
7633 && solib_contains_address_p (solib, loc->address))
7634 {
7635 loc->shlib_disabled = 1;
7636 /* At this point, we cannot rely on remove_breakpoint
7637 succeeding so we must mark the breakpoint as not inserted
7638 to prevent future errors occurring in remove_breakpoints. */
7639 loc->inserted = 0;
7640
7641 /* This may cause duplicate notifications for the same breakpoint. */
7642 observer_notify_breakpoint_modified (b);
7643
7644 if (!disabled_shlib_breaks)
7645 {
7646 target_terminal::ours_for_output ();
7647 warning (_("Temporarily disabling breakpoints "
7648 "for unloaded shared library \"%s\""),
7649 solib->so_name);
7650 }
7651 disabled_shlib_breaks = 1;
7652 }
7653 }
7654 }
7655
7656 /* Disable any breakpoints and tracepoints in OBJFILE upon
7657 notification of free_objfile. Only apply to enabled breakpoints,
7658 disabled ones can just stay disabled. */
7659
7660 static void
7661 disable_breakpoints_in_freed_objfile (struct objfile *objfile)
7662 {
7663 struct breakpoint *b;
7664
7665 if (objfile == NULL)
7666 return;
7667
7668 /* OBJF_SHARED|OBJF_USERLOADED objfiles are dynamic modules manually
7669 managed by the user with add-symbol-file/remove-symbol-file.
7670 Similarly to how breakpoints in shared libraries are handled in
7671 response to "nosharedlibrary", mark breakpoints in such modules
7672 shlib_disabled so they end up uninserted on the next global
7673 location list update. Shared libraries not loaded by the user
7674 aren't handled here -- they're already handled in
7675 disable_breakpoints_in_unloaded_shlib, called by solib.c's
7676 solib_unloaded observer. We skip objfiles that are not
7677 OBJF_SHARED as those aren't considered dynamic objects (e.g. the
7678 main objfile). */
7679 if ((objfile->flags & OBJF_SHARED) == 0
7680 || (objfile->flags & OBJF_USERLOADED) == 0)
7681 return;
7682
7683 ALL_BREAKPOINTS (b)
7684 {
7685 struct bp_location *loc;
7686 int bp_modified = 0;
7687
7688 if (!is_breakpoint (b) && !is_tracepoint (b))
7689 continue;
7690
7691 for (loc = b->loc; loc != NULL; loc = loc->next)
7692 {
7693 CORE_ADDR loc_addr = loc->address;
7694
7695 if (loc->loc_type != bp_loc_hardware_breakpoint
7696 && loc->loc_type != bp_loc_software_breakpoint)
7697 continue;
7698
7699 if (loc->shlib_disabled != 0)
7700 continue;
7701
7702 if (objfile->pspace != loc->pspace)
7703 continue;
7704
7705 if (loc->loc_type != bp_loc_hardware_breakpoint
7706 && loc->loc_type != bp_loc_software_breakpoint)
7707 continue;
7708
7709 if (is_addr_in_objfile (loc_addr, objfile))
7710 {
7711 loc->shlib_disabled = 1;
7712 /* At this point, we don't know whether the object was
7713 unmapped from the inferior or not, so leave the
7714 inserted flag alone. We'll handle failure to
7715 uninsert quietly, in case the object was indeed
7716 unmapped. */
7717
7718 mark_breakpoint_location_modified (loc);
7719
7720 bp_modified = 1;
7721 }
7722 }
7723
7724 if (bp_modified)
7725 observer_notify_breakpoint_modified (b);
7726 }
7727 }
7728
7729 /* FORK & VFORK catchpoints. */
7730
7731 /* An instance of this type is used to represent a fork or vfork
7732 catchpoint. A breakpoint is really of this type iff its ops pointer points
7733 to CATCH_FORK_BREAKPOINT_OPS. */
7734
7735 struct fork_catchpoint : public breakpoint
7736 {
7737 /* Process id of a child process whose forking triggered this
7738 catchpoint. This field is only valid immediately after this
7739 catchpoint has triggered. */
7740 ptid_t forked_inferior_pid;
7741 };
7742
7743 /* Implement the "insert" breakpoint_ops method for fork
7744 catchpoints. */
7745
7746 static int
7747 insert_catch_fork (struct bp_location *bl)
7748 {
7749 return target_insert_fork_catchpoint (ptid_get_pid (inferior_ptid));
7750 }
7751
7752 /* Implement the "remove" breakpoint_ops method for fork
7753 catchpoints. */
7754
7755 static int
7756 remove_catch_fork (struct bp_location *bl, enum remove_bp_reason reason)
7757 {
7758 return target_remove_fork_catchpoint (ptid_get_pid (inferior_ptid));
7759 }
7760
7761 /* Implement the "breakpoint_hit" breakpoint_ops method for fork
7762 catchpoints. */
7763
7764 static int
7765 breakpoint_hit_catch_fork (const struct bp_location *bl,
7766 const address_space *aspace, CORE_ADDR bp_addr,
7767 const struct target_waitstatus *ws)
7768 {
7769 struct fork_catchpoint *c = (struct fork_catchpoint *) bl->owner;
7770
7771 if (ws->kind != TARGET_WAITKIND_FORKED)
7772 return 0;
7773
7774 c->forked_inferior_pid = ws->value.related_pid;
7775 return 1;
7776 }
7777
7778 /* Implement the "print_it" breakpoint_ops method for fork
7779 catchpoints. */
7780
7781 static enum print_stop_action
7782 print_it_catch_fork (bpstat bs)
7783 {
7784 struct ui_out *uiout = current_uiout;
7785 struct breakpoint *b = bs->breakpoint_at;
7786 struct fork_catchpoint *c = (struct fork_catchpoint *) bs->breakpoint_at;
7787
7788 annotate_catchpoint (b->number);
7789 maybe_print_thread_hit_breakpoint (uiout);
7790 if (b->disposition == disp_del)
7791 uiout->text ("Temporary catchpoint ");
7792 else
7793 uiout->text ("Catchpoint ");
7794 if (uiout->is_mi_like_p ())
7795 {
7796 uiout->field_string ("reason", async_reason_lookup (EXEC_ASYNC_FORK));
7797 uiout->field_string ("disp", bpdisp_text (b->disposition));
7798 }
7799 uiout->field_int ("bkptno", b->number);
7800 uiout->text (" (forked process ");
7801 uiout->field_int ("newpid", ptid_get_pid (c->forked_inferior_pid));
7802 uiout->text ("), ");
7803 return PRINT_SRC_AND_LOC;
7804 }
7805
7806 /* Implement the "print_one" breakpoint_ops method for fork
7807 catchpoints. */
7808
7809 static void
7810 print_one_catch_fork (struct breakpoint *b, struct bp_location **last_loc)
7811 {
7812 struct fork_catchpoint *c = (struct fork_catchpoint *) b;
7813 struct value_print_options opts;
7814 struct ui_out *uiout = current_uiout;
7815
7816 get_user_print_options (&opts);
7817
7818 /* Field 4, the address, is omitted (which makes the columns not
7819 line up too nicely with the headers, but the effect is relatively
7820 readable). */
7821 if (opts.addressprint)
7822 uiout->field_skip ("addr");
7823 annotate_field (5);
7824 uiout->text ("fork");
7825 if (!ptid_equal (c->forked_inferior_pid, null_ptid))
7826 {
7827 uiout->text (", process ");
7828 uiout->field_int ("what", ptid_get_pid (c->forked_inferior_pid));
7829 uiout->spaces (1);
7830 }
7831
7832 if (uiout->is_mi_like_p ())
7833 uiout->field_string ("catch-type", "fork");
7834 }
7835
7836 /* Implement the "print_mention" breakpoint_ops method for fork
7837 catchpoints. */
7838
7839 static void
7840 print_mention_catch_fork (struct breakpoint *b)
7841 {
7842 printf_filtered (_("Catchpoint %d (fork)"), b->number);
7843 }
7844
7845 /* Implement the "print_recreate" breakpoint_ops method for fork
7846 catchpoints. */
7847
7848 static void
7849 print_recreate_catch_fork (struct breakpoint *b, struct ui_file *fp)
7850 {
7851 fprintf_unfiltered (fp, "catch fork");
7852 print_recreate_thread (b, fp);
7853 }
7854
7855 /* The breakpoint_ops structure to be used in fork catchpoints. */
7856
7857 static struct breakpoint_ops catch_fork_breakpoint_ops;
7858
7859 /* Implement the "insert" breakpoint_ops method for vfork
7860 catchpoints. */
7861
7862 static int
7863 insert_catch_vfork (struct bp_location *bl)
7864 {
7865 return target_insert_vfork_catchpoint (ptid_get_pid (inferior_ptid));
7866 }
7867
7868 /* Implement the "remove" breakpoint_ops method for vfork
7869 catchpoints. */
7870
7871 static int
7872 remove_catch_vfork (struct bp_location *bl, enum remove_bp_reason reason)
7873 {
7874 return target_remove_vfork_catchpoint (ptid_get_pid (inferior_ptid));
7875 }
7876
7877 /* Implement the "breakpoint_hit" breakpoint_ops method for vfork
7878 catchpoints. */
7879
7880 static int
7881 breakpoint_hit_catch_vfork (const struct bp_location *bl,
7882 const address_space *aspace, CORE_ADDR bp_addr,
7883 const struct target_waitstatus *ws)
7884 {
7885 struct fork_catchpoint *c = (struct fork_catchpoint *) bl->owner;
7886
7887 if (ws->kind != TARGET_WAITKIND_VFORKED)
7888 return 0;
7889
7890 c->forked_inferior_pid = ws->value.related_pid;
7891 return 1;
7892 }
7893
7894 /* Implement the "print_it" breakpoint_ops method for vfork
7895 catchpoints. */
7896
7897 static enum print_stop_action
7898 print_it_catch_vfork (bpstat bs)
7899 {
7900 struct ui_out *uiout = current_uiout;
7901 struct breakpoint *b = bs->breakpoint_at;
7902 struct fork_catchpoint *c = (struct fork_catchpoint *) b;
7903
7904 annotate_catchpoint (b->number);
7905 maybe_print_thread_hit_breakpoint (uiout);
7906 if (b->disposition == disp_del)
7907 uiout->text ("Temporary catchpoint ");
7908 else
7909 uiout->text ("Catchpoint ");
7910 if (uiout->is_mi_like_p ())
7911 {
7912 uiout->field_string ("reason", async_reason_lookup (EXEC_ASYNC_VFORK));
7913 uiout->field_string ("disp", bpdisp_text (b->disposition));
7914 }
7915 uiout->field_int ("bkptno", b->number);
7916 uiout->text (" (vforked process ");
7917 uiout->field_int ("newpid", ptid_get_pid (c->forked_inferior_pid));
7918 uiout->text ("), ");
7919 return PRINT_SRC_AND_LOC;
7920 }
7921
7922 /* Implement the "print_one" breakpoint_ops method for vfork
7923 catchpoints. */
7924
7925 static void
7926 print_one_catch_vfork (struct breakpoint *b, struct bp_location **last_loc)
7927 {
7928 struct fork_catchpoint *c = (struct fork_catchpoint *) b;
7929 struct value_print_options opts;
7930 struct ui_out *uiout = current_uiout;
7931
7932 get_user_print_options (&opts);
7933 /* Field 4, the address, is omitted (which makes the columns not
7934 line up too nicely with the headers, but the effect is relatively
7935 readable). */
7936 if (opts.addressprint)
7937 uiout->field_skip ("addr");
7938 annotate_field (5);
7939 uiout->text ("vfork");
7940 if (!ptid_equal (c->forked_inferior_pid, null_ptid))
7941 {
7942 uiout->text (", process ");
7943 uiout->field_int ("what", ptid_get_pid (c->forked_inferior_pid));
7944 uiout->spaces (1);
7945 }
7946
7947 if (uiout->is_mi_like_p ())
7948 uiout->field_string ("catch-type", "vfork");
7949 }
7950
7951 /* Implement the "print_mention" breakpoint_ops method for vfork
7952 catchpoints. */
7953
7954 static void
7955 print_mention_catch_vfork (struct breakpoint *b)
7956 {
7957 printf_filtered (_("Catchpoint %d (vfork)"), b->number);
7958 }
7959
7960 /* Implement the "print_recreate" breakpoint_ops method for vfork
7961 catchpoints. */
7962
7963 static void
7964 print_recreate_catch_vfork (struct breakpoint *b, struct ui_file *fp)
7965 {
7966 fprintf_unfiltered (fp, "catch vfork");
7967 print_recreate_thread (b, fp);
7968 }
7969
7970 /* The breakpoint_ops structure to be used in vfork catchpoints. */
7971
7972 static struct breakpoint_ops catch_vfork_breakpoint_ops;
7973
7974 /* An instance of this type is used to represent an solib catchpoint.
7975 A breakpoint is really of this type iff its ops pointer points to
7976 CATCH_SOLIB_BREAKPOINT_OPS. */
7977
7978 struct solib_catchpoint : public breakpoint
7979 {
7980 ~solib_catchpoint () override;
7981
7982 /* True for "catch load", false for "catch unload". */
7983 unsigned char is_load;
7984
7985 /* Regular expression to match, if any. COMPILED is only valid when
7986 REGEX is non-NULL. */
7987 char *regex;
7988 std::unique_ptr<compiled_regex> compiled;
7989 };
7990
7991 solib_catchpoint::~solib_catchpoint ()
7992 {
7993 xfree (this->regex);
7994 }
7995
7996 static int
7997 insert_catch_solib (struct bp_location *ignore)
7998 {
7999 return 0;
8000 }
8001
8002 static int
8003 remove_catch_solib (struct bp_location *ignore, enum remove_bp_reason reason)
8004 {
8005 return 0;
8006 }
8007
8008 static int
8009 breakpoint_hit_catch_solib (const struct bp_location *bl,
8010 const address_space *aspace,
8011 CORE_ADDR bp_addr,
8012 const struct target_waitstatus *ws)
8013 {
8014 struct solib_catchpoint *self = (struct solib_catchpoint *) bl->owner;
8015 struct breakpoint *other;
8016
8017 if (ws->kind == TARGET_WAITKIND_LOADED)
8018 return 1;
8019
8020 ALL_BREAKPOINTS (other)
8021 {
8022 struct bp_location *other_bl;
8023
8024 if (other == bl->owner)
8025 continue;
8026
8027 if (other->type != bp_shlib_event)
8028 continue;
8029
8030 if (self->pspace != NULL && other->pspace != self->pspace)
8031 continue;
8032
8033 for (other_bl = other->loc; other_bl != NULL; other_bl = other_bl->next)
8034 {
8035 if (other->ops->breakpoint_hit (other_bl, aspace, bp_addr, ws))
8036 return 1;
8037 }
8038 }
8039
8040 return 0;
8041 }
8042
8043 static void
8044 check_status_catch_solib (struct bpstats *bs)
8045 {
8046 struct solib_catchpoint *self
8047 = (struct solib_catchpoint *) bs->breakpoint_at;
8048
8049 if (self->is_load)
8050 {
8051 struct so_list *iter;
8052
8053 for (int ix = 0;
8054 VEC_iterate (so_list_ptr, current_program_space->added_solibs,
8055 ix, iter);
8056 ++ix)
8057 {
8058 if (!self->regex
8059 || self->compiled->exec (iter->so_name, 0, NULL, 0) == 0)
8060 return;
8061 }
8062 }
8063 else
8064 {
8065 for (const std::string &iter : current_program_space->deleted_solibs)
8066 {
8067 if (!self->regex
8068 || self->compiled->exec (iter.c_str (), 0, NULL, 0) == 0)
8069 return;
8070 }
8071 }
8072
8073 bs->stop = 0;
8074 bs->print_it = print_it_noop;
8075 }
8076
8077 static enum print_stop_action
8078 print_it_catch_solib (bpstat bs)
8079 {
8080 struct breakpoint *b = bs->breakpoint_at;
8081 struct ui_out *uiout = current_uiout;
8082
8083 annotate_catchpoint (b->number);
8084 maybe_print_thread_hit_breakpoint (uiout);
8085 if (b->disposition == disp_del)
8086 uiout->text ("Temporary catchpoint ");
8087 else
8088 uiout->text ("Catchpoint ");
8089 uiout->field_int ("bkptno", b->number);
8090 uiout->text ("\n");
8091 if (uiout->is_mi_like_p ())
8092 uiout->field_string ("disp", bpdisp_text (b->disposition));
8093 print_solib_event (1);
8094 return PRINT_SRC_AND_LOC;
8095 }
8096
8097 static void
8098 print_one_catch_solib (struct breakpoint *b, struct bp_location **locs)
8099 {
8100 struct solib_catchpoint *self = (struct solib_catchpoint *) b;
8101 struct value_print_options opts;
8102 struct ui_out *uiout = current_uiout;
8103 char *msg;
8104
8105 get_user_print_options (&opts);
8106 /* Field 4, the address, is omitted (which makes the columns not
8107 line up too nicely with the headers, but the effect is relatively
8108 readable). */
8109 if (opts.addressprint)
8110 {
8111 annotate_field (4);
8112 uiout->field_skip ("addr");
8113 }
8114
8115 annotate_field (5);
8116 if (self->is_load)
8117 {
8118 if (self->regex)
8119 msg = xstrprintf (_("load of library matching %s"), self->regex);
8120 else
8121 msg = xstrdup (_("load of library"));
8122 }
8123 else
8124 {
8125 if (self->regex)
8126 msg = xstrprintf (_("unload of library matching %s"), self->regex);
8127 else
8128 msg = xstrdup (_("unload of library"));
8129 }
8130 uiout->field_string ("what", msg);
8131 xfree (msg);
8132
8133 if (uiout->is_mi_like_p ())
8134 uiout->field_string ("catch-type", self->is_load ? "load" : "unload");
8135 }
8136
8137 static void
8138 print_mention_catch_solib (struct breakpoint *b)
8139 {
8140 struct solib_catchpoint *self = (struct solib_catchpoint *) b;
8141
8142 printf_filtered (_("Catchpoint %d (%s)"), b->number,
8143 self->is_load ? "load" : "unload");
8144 }
8145
8146 static void
8147 print_recreate_catch_solib (struct breakpoint *b, struct ui_file *fp)
8148 {
8149 struct solib_catchpoint *self = (struct solib_catchpoint *) b;
8150
8151 fprintf_unfiltered (fp, "%s %s",
8152 b->disposition == disp_del ? "tcatch" : "catch",
8153 self->is_load ? "load" : "unload");
8154 if (self->regex)
8155 fprintf_unfiltered (fp, " %s", self->regex);
8156 fprintf_unfiltered (fp, "\n");
8157 }
8158
8159 static struct breakpoint_ops catch_solib_breakpoint_ops;
8160
8161 /* Shared helper function (MI and CLI) for creating and installing
8162 a shared object event catchpoint. If IS_LOAD is non-zero then
8163 the events to be caught are load events, otherwise they are
8164 unload events. If IS_TEMP is non-zero the catchpoint is a
8165 temporary one. If ENABLED is non-zero the catchpoint is
8166 created in an enabled state. */
8167
8168 void
8169 add_solib_catchpoint (const char *arg, int is_load, int is_temp, int enabled)
8170 {
8171 struct gdbarch *gdbarch = get_current_arch ();
8172
8173 if (!arg)
8174 arg = "";
8175 arg = skip_spaces (arg);
8176
8177 std::unique_ptr<solib_catchpoint> c (new solib_catchpoint ());
8178
8179 if (*arg != '\0')
8180 {
8181 c->compiled.reset (new compiled_regex (arg, REG_NOSUB,
8182 _("Invalid regexp")));
8183 c->regex = xstrdup (arg);
8184 }
8185
8186 c->is_load = is_load;
8187 init_catchpoint (c.get (), gdbarch, is_temp, NULL,
8188 &catch_solib_breakpoint_ops);
8189
8190 c->enable_state = enabled ? bp_enabled : bp_disabled;
8191
8192 install_breakpoint (0, std::move (c), 1);
8193 }
8194
8195 /* A helper function that does all the work for "catch load" and
8196 "catch unload". */
8197
8198 static void
8199 catch_load_or_unload (const char *arg, int from_tty, int is_load,
8200 struct cmd_list_element *command)
8201 {
8202 int tempflag;
8203 const int enabled = 1;
8204
8205 tempflag = get_cmd_context (command) == CATCH_TEMPORARY;
8206
8207 add_solib_catchpoint (arg, is_load, tempflag, enabled);
8208 }
8209
8210 static void
8211 catch_load_command_1 (const char *arg, int from_tty,
8212 struct cmd_list_element *command)
8213 {
8214 catch_load_or_unload (arg, from_tty, 1, command);
8215 }
8216
8217 static void
8218 catch_unload_command_1 (const char *arg, int from_tty,
8219 struct cmd_list_element *command)
8220 {
8221 catch_load_or_unload (arg, from_tty, 0, command);
8222 }
8223
8224 /* Initialize a new breakpoint of the bp_catchpoint kind. If TEMPFLAG
8225 is non-zero, then make the breakpoint temporary. If COND_STRING is
8226 not NULL, then store it in the breakpoint. OPS, if not NULL, is
8227 the breakpoint_ops structure associated to the catchpoint. */
8228
8229 void
8230 init_catchpoint (struct breakpoint *b,
8231 struct gdbarch *gdbarch, int tempflag,
8232 const char *cond_string,
8233 const struct breakpoint_ops *ops)
8234 {
8235 symtab_and_line sal;
8236 sal.pspace = current_program_space;
8237
8238 init_raw_breakpoint (b, gdbarch, sal, bp_catchpoint, ops);
8239
8240 b->cond_string = (cond_string == NULL) ? NULL : xstrdup (cond_string);
8241 b->disposition = tempflag ? disp_del : disp_donttouch;
8242 }
8243
8244 void
8245 install_breakpoint (int internal, std::unique_ptr<breakpoint> &&arg, int update_gll)
8246 {
8247 breakpoint *b = add_to_breakpoint_chain (std::move (arg));
8248 set_breakpoint_number (internal, b);
8249 if (is_tracepoint (b))
8250 set_tracepoint_count (breakpoint_count);
8251 if (!internal)
8252 mention (b);
8253 observer_notify_breakpoint_created (b);
8254
8255 if (update_gll)
8256 update_global_location_list (UGLL_MAY_INSERT);
8257 }
8258
8259 static void
8260 create_fork_vfork_event_catchpoint (struct gdbarch *gdbarch,
8261 int tempflag, const char *cond_string,
8262 const struct breakpoint_ops *ops)
8263 {
8264 std::unique_ptr<fork_catchpoint> c (new fork_catchpoint ());
8265
8266 init_catchpoint (c.get (), gdbarch, tempflag, cond_string, ops);
8267
8268 c->forked_inferior_pid = null_ptid;
8269
8270 install_breakpoint (0, std::move (c), 1);
8271 }
8272
8273 /* Exec catchpoints. */
8274
8275 /* An instance of this type is used to represent an exec catchpoint.
8276 A breakpoint is really of this type iff its ops pointer points to
8277 CATCH_EXEC_BREAKPOINT_OPS. */
8278
8279 struct exec_catchpoint : public breakpoint
8280 {
8281 ~exec_catchpoint () override;
8282
8283 /* Filename of a program whose exec triggered this catchpoint.
8284 This field is only valid immediately after this catchpoint has
8285 triggered. */
8286 char *exec_pathname;
8287 };
8288
8289 /* Exec catchpoint destructor. */
8290
8291 exec_catchpoint::~exec_catchpoint ()
8292 {
8293 xfree (this->exec_pathname);
8294 }
8295
8296 static int
8297 insert_catch_exec (struct bp_location *bl)
8298 {
8299 return target_insert_exec_catchpoint (ptid_get_pid (inferior_ptid));
8300 }
8301
8302 static int
8303 remove_catch_exec (struct bp_location *bl, enum remove_bp_reason reason)
8304 {
8305 return target_remove_exec_catchpoint (ptid_get_pid (inferior_ptid));
8306 }
8307
8308 static int
8309 breakpoint_hit_catch_exec (const struct bp_location *bl,
8310 const address_space *aspace, CORE_ADDR bp_addr,
8311 const struct target_waitstatus *ws)
8312 {
8313 struct exec_catchpoint *c = (struct exec_catchpoint *) bl->owner;
8314
8315 if (ws->kind != TARGET_WAITKIND_EXECD)
8316 return 0;
8317
8318 c->exec_pathname = xstrdup (ws->value.execd_pathname);
8319 return 1;
8320 }
8321
8322 static enum print_stop_action
8323 print_it_catch_exec (bpstat bs)
8324 {
8325 struct ui_out *uiout = current_uiout;
8326 struct breakpoint *b = bs->breakpoint_at;
8327 struct exec_catchpoint *c = (struct exec_catchpoint *) b;
8328
8329 annotate_catchpoint (b->number);
8330 maybe_print_thread_hit_breakpoint (uiout);
8331 if (b->disposition == disp_del)
8332 uiout->text ("Temporary catchpoint ");
8333 else
8334 uiout->text ("Catchpoint ");
8335 if (uiout->is_mi_like_p ())
8336 {
8337 uiout->field_string ("reason", async_reason_lookup (EXEC_ASYNC_EXEC));
8338 uiout->field_string ("disp", bpdisp_text (b->disposition));
8339 }
8340 uiout->field_int ("bkptno", b->number);
8341 uiout->text (" (exec'd ");
8342 uiout->field_string ("new-exec", c->exec_pathname);
8343 uiout->text ("), ");
8344
8345 return PRINT_SRC_AND_LOC;
8346 }
8347
8348 static void
8349 print_one_catch_exec (struct breakpoint *b, struct bp_location **last_loc)
8350 {
8351 struct exec_catchpoint *c = (struct exec_catchpoint *) b;
8352 struct value_print_options opts;
8353 struct ui_out *uiout = current_uiout;
8354
8355 get_user_print_options (&opts);
8356
8357 /* Field 4, the address, is omitted (which makes the columns
8358 not line up too nicely with the headers, but the effect
8359 is relatively readable). */
8360 if (opts.addressprint)
8361 uiout->field_skip ("addr");
8362 annotate_field (5);
8363 uiout->text ("exec");
8364 if (c->exec_pathname != NULL)
8365 {
8366 uiout->text (", program \"");
8367 uiout->field_string ("what", c->exec_pathname);
8368 uiout->text ("\" ");
8369 }
8370
8371 if (uiout->is_mi_like_p ())
8372 uiout->field_string ("catch-type", "exec");
8373 }
8374
8375 static void
8376 print_mention_catch_exec (struct breakpoint *b)
8377 {
8378 printf_filtered (_("Catchpoint %d (exec)"), b->number);
8379 }
8380
8381 /* Implement the "print_recreate" breakpoint_ops method for exec
8382 catchpoints. */
8383
8384 static void
8385 print_recreate_catch_exec (struct breakpoint *b, struct ui_file *fp)
8386 {
8387 fprintf_unfiltered (fp, "catch exec");
8388 print_recreate_thread (b, fp);
8389 }
8390
8391 static struct breakpoint_ops catch_exec_breakpoint_ops;
8392
8393 static int
8394 hw_breakpoint_used_count (void)
8395 {
8396 int i = 0;
8397 struct breakpoint *b;
8398 struct bp_location *bl;
8399
8400 ALL_BREAKPOINTS (b)
8401 {
8402 if (b->type == bp_hardware_breakpoint && breakpoint_enabled (b))
8403 for (bl = b->loc; bl; bl = bl->next)
8404 {
8405 /* Special types of hardware breakpoints may use more than
8406 one register. */
8407 i += b->ops->resources_needed (bl);
8408 }
8409 }
8410
8411 return i;
8412 }
8413
8414 /* Returns the resources B would use if it were a hardware
8415 watchpoint. */
8416
8417 static int
8418 hw_watchpoint_use_count (struct breakpoint *b)
8419 {
8420 int i = 0;
8421 struct bp_location *bl;
8422
8423 if (!breakpoint_enabled (b))
8424 return 0;
8425
8426 for (bl = b->loc; bl; bl = bl->next)
8427 {
8428 /* Special types of hardware watchpoints may use more than
8429 one register. */
8430 i += b->ops->resources_needed (bl);
8431 }
8432
8433 return i;
8434 }
8435
8436 /* Returns the sum the used resources of all hardware watchpoints of
8437 type TYPE in the breakpoints list. Also returns in OTHER_TYPE_USED
8438 the sum of the used resources of all hardware watchpoints of other
8439 types _not_ TYPE. */
8440
8441 static int
8442 hw_watchpoint_used_count_others (struct breakpoint *except,
8443 enum bptype type, int *other_type_used)
8444 {
8445 int i = 0;
8446 struct breakpoint *b;
8447
8448 *other_type_used = 0;
8449 ALL_BREAKPOINTS (b)
8450 {
8451 if (b == except)
8452 continue;
8453 if (!breakpoint_enabled (b))
8454 continue;
8455
8456 if (b->type == type)
8457 i += hw_watchpoint_use_count (b);
8458 else if (is_hardware_watchpoint (b))
8459 *other_type_used = 1;
8460 }
8461
8462 return i;
8463 }
8464
8465 void
8466 disable_watchpoints_before_interactive_call_start (void)
8467 {
8468 struct breakpoint *b;
8469
8470 ALL_BREAKPOINTS (b)
8471 {
8472 if (is_watchpoint (b) && breakpoint_enabled (b))
8473 {
8474 b->enable_state = bp_call_disabled;
8475 update_global_location_list (UGLL_DONT_INSERT);
8476 }
8477 }
8478 }
8479
8480 void
8481 enable_watchpoints_after_interactive_call_stop (void)
8482 {
8483 struct breakpoint *b;
8484
8485 ALL_BREAKPOINTS (b)
8486 {
8487 if (is_watchpoint (b) && b->enable_state == bp_call_disabled)
8488 {
8489 b->enable_state = bp_enabled;
8490 update_global_location_list (UGLL_MAY_INSERT);
8491 }
8492 }
8493 }
8494
8495 void
8496 disable_breakpoints_before_startup (void)
8497 {
8498 current_program_space->executing_startup = 1;
8499 update_global_location_list (UGLL_DONT_INSERT);
8500 }
8501
8502 void
8503 enable_breakpoints_after_startup (void)
8504 {
8505 current_program_space->executing_startup = 0;
8506 breakpoint_re_set ();
8507 }
8508
8509 /* Create a new single-step breakpoint for thread THREAD, with no
8510 locations. */
8511
8512 static struct breakpoint *
8513 new_single_step_breakpoint (int thread, struct gdbarch *gdbarch)
8514 {
8515 std::unique_ptr<breakpoint> b (new breakpoint ());
8516
8517 init_raw_breakpoint_without_location (b.get (), gdbarch, bp_single_step,
8518 &momentary_breakpoint_ops);
8519
8520 b->disposition = disp_donttouch;
8521 b->frame_id = null_frame_id;
8522
8523 b->thread = thread;
8524 gdb_assert (b->thread != 0);
8525
8526 return add_to_breakpoint_chain (std::move (b));
8527 }
8528
8529 /* Set a momentary breakpoint of type TYPE at address specified by
8530 SAL. If FRAME_ID is valid, the breakpoint is restricted to that
8531 frame. */
8532
8533 breakpoint_up
8534 set_momentary_breakpoint (struct gdbarch *gdbarch, struct symtab_and_line sal,
8535 struct frame_id frame_id, enum bptype type)
8536 {
8537 struct breakpoint *b;
8538
8539 /* If FRAME_ID is valid, it should be a real frame, not an inlined or
8540 tail-called one. */
8541 gdb_assert (!frame_id_artificial_p (frame_id));
8542
8543 b = set_raw_breakpoint (gdbarch, sal, type, &momentary_breakpoint_ops);
8544 b->enable_state = bp_enabled;
8545 b->disposition = disp_donttouch;
8546 b->frame_id = frame_id;
8547
8548 /* If we're debugging a multi-threaded program, then we want
8549 momentary breakpoints to be active in only a single thread of
8550 control. */
8551 if (in_thread_list (inferior_ptid))
8552 b->thread = ptid_to_global_thread_id (inferior_ptid);
8553
8554 update_global_location_list_nothrow (UGLL_MAY_INSERT);
8555
8556 return breakpoint_up (b);
8557 }
8558
8559 /* Make a momentary breakpoint based on the master breakpoint ORIG.
8560 The new breakpoint will have type TYPE, use OPS as its
8561 breakpoint_ops, and will set enabled to LOC_ENABLED. */
8562
8563 static struct breakpoint *
8564 momentary_breakpoint_from_master (struct breakpoint *orig,
8565 enum bptype type,
8566 const struct breakpoint_ops *ops,
8567 int loc_enabled)
8568 {
8569 struct breakpoint *copy;
8570
8571 copy = set_raw_breakpoint_without_location (orig->gdbarch, type, ops);
8572 copy->loc = allocate_bp_location (copy);
8573 set_breakpoint_location_function (copy->loc, 1);
8574
8575 copy->loc->gdbarch = orig->loc->gdbarch;
8576 copy->loc->requested_address = orig->loc->requested_address;
8577 copy->loc->address = orig->loc->address;
8578 copy->loc->section = orig->loc->section;
8579 copy->loc->pspace = orig->loc->pspace;
8580 copy->loc->probe = orig->loc->probe;
8581 copy->loc->line_number = orig->loc->line_number;
8582 copy->loc->symtab = orig->loc->symtab;
8583 copy->loc->enabled = loc_enabled;
8584 copy->frame_id = orig->frame_id;
8585 copy->thread = orig->thread;
8586 copy->pspace = orig->pspace;
8587
8588 copy->enable_state = bp_enabled;
8589 copy->disposition = disp_donttouch;
8590 copy->number = internal_breakpoint_number--;
8591
8592 update_global_location_list_nothrow (UGLL_DONT_INSERT);
8593 return copy;
8594 }
8595
8596 /* Make a deep copy of momentary breakpoint ORIG. Returns NULL if
8597 ORIG is NULL. */
8598
8599 struct breakpoint *
8600 clone_momentary_breakpoint (struct breakpoint *orig)
8601 {
8602 /* If there's nothing to clone, then return nothing. */
8603 if (orig == NULL)
8604 return NULL;
8605
8606 return momentary_breakpoint_from_master (orig, orig->type, orig->ops, 0);
8607 }
8608
8609 breakpoint_up
8610 set_momentary_breakpoint_at_pc (struct gdbarch *gdbarch, CORE_ADDR pc,
8611 enum bptype type)
8612 {
8613 struct symtab_and_line sal;
8614
8615 sal = find_pc_line (pc, 0);
8616 sal.pc = pc;
8617 sal.section = find_pc_overlay (pc);
8618 sal.explicit_pc = 1;
8619
8620 return set_momentary_breakpoint (gdbarch, sal, null_frame_id, type);
8621 }
8622 \f
8623
8624 /* Tell the user we have just set a breakpoint B. */
8625
8626 static void
8627 mention (struct breakpoint *b)
8628 {
8629 b->ops->print_mention (b);
8630 if (current_uiout->is_mi_like_p ())
8631 return;
8632 printf_filtered ("\n");
8633 }
8634 \f
8635
8636 static int bp_loc_is_permanent (struct bp_location *loc);
8637
8638 static struct bp_location *
8639 add_location_to_breakpoint (struct breakpoint *b,
8640 const struct symtab_and_line *sal)
8641 {
8642 struct bp_location *loc, **tmp;
8643 CORE_ADDR adjusted_address;
8644 struct gdbarch *loc_gdbarch = get_sal_arch (*sal);
8645
8646 if (loc_gdbarch == NULL)
8647 loc_gdbarch = b->gdbarch;
8648
8649 /* Adjust the breakpoint's address prior to allocating a location.
8650 Once we call allocate_bp_location(), that mostly uninitialized
8651 location will be placed on the location chain. Adjustment of the
8652 breakpoint may cause target_read_memory() to be called and we do
8653 not want its scan of the location chain to find a breakpoint and
8654 location that's only been partially initialized. */
8655 adjusted_address = adjust_breakpoint_address (loc_gdbarch,
8656 sal->pc, b->type);
8657
8658 /* Sort the locations by their ADDRESS. */
8659 loc = allocate_bp_location (b);
8660 for (tmp = &(b->loc); *tmp != NULL && (*tmp)->address <= adjusted_address;
8661 tmp = &((*tmp)->next))
8662 ;
8663 loc->next = *tmp;
8664 *tmp = loc;
8665
8666 loc->requested_address = sal->pc;
8667 loc->address = adjusted_address;
8668 loc->pspace = sal->pspace;
8669 loc->probe.prob = sal->prob;
8670 loc->probe.objfile = sal->objfile;
8671 gdb_assert (loc->pspace != NULL);
8672 loc->section = sal->section;
8673 loc->gdbarch = loc_gdbarch;
8674 loc->line_number = sal->line;
8675 loc->symtab = sal->symtab;
8676 loc->symbol = sal->symbol;
8677
8678 set_breakpoint_location_function (loc,
8679 sal->explicit_pc || sal->explicit_line);
8680
8681 /* While by definition, permanent breakpoints are already present in the
8682 code, we don't mark the location as inserted. Normally one would expect
8683 that GDB could rely on that breakpoint instruction to stop the program,
8684 thus removing the need to insert its own breakpoint, except that executing
8685 the breakpoint instruction can kill the target instead of reporting a
8686 SIGTRAP. E.g., on SPARC, when interrupts are disabled, executing the
8687 instruction resets the CPU, so QEMU 2.0.0 for SPARC correspondingly dies
8688 with "Trap 0x02 while interrupts disabled, Error state". Letting the
8689 breakpoint be inserted normally results in QEMU knowing about the GDB
8690 breakpoint, and thus trap before the breakpoint instruction is executed.
8691 (If GDB later needs to continue execution past the permanent breakpoint,
8692 it manually increments the PC, thus avoiding executing the breakpoint
8693 instruction.) */
8694 if (bp_loc_is_permanent (loc))
8695 loc->permanent = 1;
8696
8697 return loc;
8698 }
8699 \f
8700
8701 /* See breakpoint.h. */
8702
8703 int
8704 program_breakpoint_here_p (struct gdbarch *gdbarch, CORE_ADDR address)
8705 {
8706 int len;
8707 CORE_ADDR addr;
8708 const gdb_byte *bpoint;
8709 gdb_byte *target_mem;
8710
8711 addr = address;
8712 bpoint = gdbarch_breakpoint_from_pc (gdbarch, &addr, &len);
8713
8714 /* Software breakpoints unsupported? */
8715 if (bpoint == NULL)
8716 return 0;
8717
8718 target_mem = (gdb_byte *) alloca (len);
8719
8720 /* Enable the automatic memory restoration from breakpoints while
8721 we read the memory. Otherwise we could say about our temporary
8722 breakpoints they are permanent. */
8723 scoped_restore restore_memory
8724 = make_scoped_restore_show_memory_breakpoints (0);
8725
8726 if (target_read_memory (address, target_mem, len) == 0
8727 && memcmp (target_mem, bpoint, len) == 0)
8728 return 1;
8729
8730 return 0;
8731 }
8732
8733 /* Return 1 if LOC is pointing to a permanent breakpoint,
8734 return 0 otherwise. */
8735
8736 static int
8737 bp_loc_is_permanent (struct bp_location *loc)
8738 {
8739 gdb_assert (loc != NULL);
8740
8741 /* If we have a catchpoint or a watchpoint, just return 0. We should not
8742 attempt to read from the addresses the locations of these breakpoint types
8743 point to. program_breakpoint_here_p, below, will attempt to read
8744 memory. */
8745 if (!breakpoint_address_is_meaningful (loc->owner))
8746 return 0;
8747
8748 scoped_restore_current_pspace_and_thread restore_pspace_thread;
8749 switch_to_program_space_and_thread (loc->pspace);
8750 return program_breakpoint_here_p (loc->gdbarch, loc->address);
8751 }
8752
8753 /* Build a command list for the dprintf corresponding to the current
8754 settings of the dprintf style options. */
8755
8756 static void
8757 update_dprintf_command_list (struct breakpoint *b)
8758 {
8759 char *dprintf_args = b->extra_string;
8760 char *printf_line = NULL;
8761
8762 if (!dprintf_args)
8763 return;
8764
8765 dprintf_args = skip_spaces (dprintf_args);
8766
8767 /* Allow a comma, as it may have terminated a location, but don't
8768 insist on it. */
8769 if (*dprintf_args == ',')
8770 ++dprintf_args;
8771 dprintf_args = skip_spaces (dprintf_args);
8772
8773 if (*dprintf_args != '"')
8774 error (_("Bad format string, missing '\"'."));
8775
8776 if (strcmp (dprintf_style, dprintf_style_gdb) == 0)
8777 printf_line = xstrprintf ("printf %s", dprintf_args);
8778 else if (strcmp (dprintf_style, dprintf_style_call) == 0)
8779 {
8780 if (!dprintf_function)
8781 error (_("No function supplied for dprintf call"));
8782
8783 if (dprintf_channel && strlen (dprintf_channel) > 0)
8784 printf_line = xstrprintf ("call (void) %s (%s,%s)",
8785 dprintf_function,
8786 dprintf_channel,
8787 dprintf_args);
8788 else
8789 printf_line = xstrprintf ("call (void) %s (%s)",
8790 dprintf_function,
8791 dprintf_args);
8792 }
8793 else if (strcmp (dprintf_style, dprintf_style_agent) == 0)
8794 {
8795 if (target_can_run_breakpoint_commands ())
8796 printf_line = xstrprintf ("agent-printf %s", dprintf_args);
8797 else
8798 {
8799 warning (_("Target cannot run dprintf commands, falling back to GDB printf"));
8800 printf_line = xstrprintf ("printf %s", dprintf_args);
8801 }
8802 }
8803 else
8804 internal_error (__FILE__, __LINE__,
8805 _("Invalid dprintf style."));
8806
8807 gdb_assert (printf_line != NULL);
8808 /* Manufacture a printf sequence. */
8809 {
8810 struct command_line *printf_cmd_line = XNEW (struct command_line);
8811
8812 printf_cmd_line->control_type = simple_control;
8813 printf_cmd_line->body_count = 0;
8814 printf_cmd_line->body_list = NULL;
8815 printf_cmd_line->next = NULL;
8816 printf_cmd_line->line = printf_line;
8817
8818 breakpoint_set_commands (b, command_line_up (printf_cmd_line));
8819 }
8820 }
8821
8822 /* Update all dprintf commands, making their command lists reflect
8823 current style settings. */
8824
8825 static void
8826 update_dprintf_commands (const char *args, int from_tty,
8827 struct cmd_list_element *c)
8828 {
8829 struct breakpoint *b;
8830
8831 ALL_BREAKPOINTS (b)
8832 {
8833 if (b->type == bp_dprintf)
8834 update_dprintf_command_list (b);
8835 }
8836 }
8837
8838 /* Create a breakpoint with SAL as location. Use LOCATION
8839 as a description of the location, and COND_STRING
8840 as condition expression. If LOCATION is NULL then create an
8841 "address location" from the address in the SAL. */
8842
8843 static void
8844 init_breakpoint_sal (struct breakpoint *b, struct gdbarch *gdbarch,
8845 gdb::array_view<const symtab_and_line> sals,
8846 event_location_up &&location,
8847 gdb::unique_xmalloc_ptr<char> filter,
8848 gdb::unique_xmalloc_ptr<char> cond_string,
8849 gdb::unique_xmalloc_ptr<char> extra_string,
8850 enum bptype type, enum bpdisp disposition,
8851 int thread, int task, int ignore_count,
8852 const struct breakpoint_ops *ops, int from_tty,
8853 int enabled, int internal, unsigned flags,
8854 int display_canonical)
8855 {
8856 int i;
8857
8858 if (type == bp_hardware_breakpoint)
8859 {
8860 int target_resources_ok;
8861
8862 i = hw_breakpoint_used_count ();
8863 target_resources_ok =
8864 target_can_use_hardware_watchpoint (bp_hardware_breakpoint,
8865 i + 1, 0);
8866 if (target_resources_ok == 0)
8867 error (_("No hardware breakpoint support in the target."));
8868 else if (target_resources_ok < 0)
8869 error (_("Hardware breakpoints used exceeds limit."));
8870 }
8871
8872 gdb_assert (!sals.empty ());
8873
8874 for (const auto &sal : sals)
8875 {
8876 struct bp_location *loc;
8877
8878 if (from_tty)
8879 {
8880 struct gdbarch *loc_gdbarch = get_sal_arch (sal);
8881 if (!loc_gdbarch)
8882 loc_gdbarch = gdbarch;
8883
8884 describe_other_breakpoints (loc_gdbarch,
8885 sal.pspace, sal.pc, sal.section, thread);
8886 }
8887
8888 if (&sal == &sals[0])
8889 {
8890 init_raw_breakpoint (b, gdbarch, sal, type, ops);
8891 b->thread = thread;
8892 b->task = task;
8893
8894 b->cond_string = cond_string.release ();
8895 b->extra_string = extra_string.release ();
8896 b->ignore_count = ignore_count;
8897 b->enable_state = enabled ? bp_enabled : bp_disabled;
8898 b->disposition = disposition;
8899
8900 if ((flags & CREATE_BREAKPOINT_FLAGS_INSERTED) != 0)
8901 b->loc->inserted = 1;
8902
8903 if (type == bp_static_tracepoint)
8904 {
8905 struct tracepoint *t = (struct tracepoint *) b;
8906 struct static_tracepoint_marker marker;
8907
8908 if (strace_marker_p (b))
8909 {
8910 /* We already know the marker exists, otherwise, we
8911 wouldn't see a sal for it. */
8912 const char *p
8913 = &event_location_to_string (b->location.get ())[3];
8914 const char *endp;
8915 char *marker_str;
8916
8917 p = skip_spaces (p);
8918
8919 endp = skip_to_space (p);
8920
8921 marker_str = savestring (p, endp - p);
8922 t->static_trace_marker_id = marker_str;
8923
8924 printf_filtered (_("Probed static tracepoint "
8925 "marker \"%s\"\n"),
8926 t->static_trace_marker_id);
8927 }
8928 else if (target_static_tracepoint_marker_at (sal.pc, &marker))
8929 {
8930 t->static_trace_marker_id = xstrdup (marker.str_id);
8931 release_static_tracepoint_marker (&marker);
8932
8933 printf_filtered (_("Probed static tracepoint "
8934 "marker \"%s\"\n"),
8935 t->static_trace_marker_id);
8936 }
8937 else
8938 warning (_("Couldn't determine the static "
8939 "tracepoint marker to probe"));
8940 }
8941
8942 loc = b->loc;
8943 }
8944 else
8945 {
8946 loc = add_location_to_breakpoint (b, &sal);
8947 if ((flags & CREATE_BREAKPOINT_FLAGS_INSERTED) != 0)
8948 loc->inserted = 1;
8949 }
8950
8951 if (b->cond_string)
8952 {
8953 const char *arg = b->cond_string;
8954
8955 loc->cond = parse_exp_1 (&arg, loc->address,
8956 block_for_pc (loc->address), 0);
8957 if (*arg)
8958 error (_("Garbage '%s' follows condition"), arg);
8959 }
8960
8961 /* Dynamic printf requires and uses additional arguments on the
8962 command line, otherwise it's an error. */
8963 if (type == bp_dprintf)
8964 {
8965 if (b->extra_string)
8966 update_dprintf_command_list (b);
8967 else
8968 error (_("Format string required"));
8969 }
8970 else if (b->extra_string)
8971 error (_("Garbage '%s' at end of command"), b->extra_string);
8972 }
8973
8974 b->display_canonical = display_canonical;
8975 if (location != NULL)
8976 b->location = std::move (location);
8977 else
8978 b->location = new_address_location (b->loc->address, NULL, 0);
8979 b->filter = filter.release ();
8980 }
8981
8982 static void
8983 create_breakpoint_sal (struct gdbarch *gdbarch,
8984 gdb::array_view<const symtab_and_line> sals,
8985 event_location_up &&location,
8986 gdb::unique_xmalloc_ptr<char> filter,
8987 gdb::unique_xmalloc_ptr<char> cond_string,
8988 gdb::unique_xmalloc_ptr<char> extra_string,
8989 enum bptype type, enum bpdisp disposition,
8990 int thread, int task, int ignore_count,
8991 const struct breakpoint_ops *ops, int from_tty,
8992 int enabled, int internal, unsigned flags,
8993 int display_canonical)
8994 {
8995 std::unique_ptr<breakpoint> b = new_breakpoint_from_type (type);
8996
8997 init_breakpoint_sal (b.get (), gdbarch,
8998 sals, std::move (location),
8999 std::move (filter),
9000 std::move (cond_string),
9001 std::move (extra_string),
9002 type, disposition,
9003 thread, task, ignore_count,
9004 ops, from_tty,
9005 enabled, internal, flags,
9006 display_canonical);
9007
9008 install_breakpoint (internal, std::move (b), 0);
9009 }
9010
9011 /* Add SALS.nelts breakpoints to the breakpoint table. For each
9012 SALS.sal[i] breakpoint, include the corresponding ADDR_STRING[i]
9013 value. COND_STRING, if not NULL, specified the condition to be
9014 used for all breakpoints. Essentially the only case where
9015 SALS.nelts is not 1 is when we set a breakpoint on an overloaded
9016 function. In that case, it's still not possible to specify
9017 separate conditions for different overloaded functions, so
9018 we take just a single condition string.
9019
9020 NOTE: If the function succeeds, the caller is expected to cleanup
9021 the arrays ADDR_STRING, COND_STRING, and SALS (but not the
9022 array contents). If the function fails (error() is called), the
9023 caller is expected to cleanups both the ADDR_STRING, COND_STRING,
9024 COND and SALS arrays and each of those arrays contents. */
9025
9026 static void
9027 create_breakpoints_sal (struct gdbarch *gdbarch,
9028 struct linespec_result *canonical,
9029 gdb::unique_xmalloc_ptr<char> cond_string,
9030 gdb::unique_xmalloc_ptr<char> extra_string,
9031 enum bptype type, enum bpdisp disposition,
9032 int thread, int task, int ignore_count,
9033 const struct breakpoint_ops *ops, int from_tty,
9034 int enabled, int internal, unsigned flags)
9035 {
9036 if (canonical->pre_expanded)
9037 gdb_assert (canonical->lsals.size () == 1);
9038
9039 for (const auto &lsal : canonical->lsals)
9040 {
9041 /* Note that 'location' can be NULL in the case of a plain
9042 'break', without arguments. */
9043 event_location_up location
9044 = (canonical->location != NULL
9045 ? copy_event_location (canonical->location.get ()) : NULL);
9046 gdb::unique_xmalloc_ptr<char> filter_string
9047 (lsal.canonical != NULL ? xstrdup (lsal.canonical) : NULL);
9048
9049 create_breakpoint_sal (gdbarch, lsal.sals,
9050 std::move (location),
9051 std::move (filter_string),
9052 std::move (cond_string),
9053 std::move (extra_string),
9054 type, disposition,
9055 thread, task, ignore_count, ops,
9056 from_tty, enabled, internal, flags,
9057 canonical->special_display);
9058 }
9059 }
9060
9061 /* Parse LOCATION which is assumed to be a SAL specification possibly
9062 followed by conditionals. On return, SALS contains an array of SAL
9063 addresses found. LOCATION points to the end of the SAL (for
9064 linespec locations).
9065
9066 The array and the line spec strings are allocated on the heap, it is
9067 the caller's responsibility to free them. */
9068
9069 static void
9070 parse_breakpoint_sals (const struct event_location *location,
9071 struct linespec_result *canonical)
9072 {
9073 struct symtab_and_line cursal;
9074
9075 if (event_location_type (location) == LINESPEC_LOCATION)
9076 {
9077 const char *spec = get_linespec_location (location)->spec_string;
9078
9079 if (spec == NULL)
9080 {
9081 /* The last displayed codepoint, if it's valid, is our default
9082 breakpoint address. */
9083 if (last_displayed_sal_is_valid ())
9084 {
9085 /* Set sal's pspace, pc, symtab, and line to the values
9086 corresponding to the last call to print_frame_info.
9087 Be sure to reinitialize LINE with NOTCURRENT == 0
9088 as the breakpoint line number is inappropriate otherwise.
9089 find_pc_line would adjust PC, re-set it back. */
9090 symtab_and_line sal = get_last_displayed_sal ();
9091 CORE_ADDR pc = sal.pc;
9092
9093 sal = find_pc_line (pc, 0);
9094
9095 /* "break" without arguments is equivalent to "break *PC"
9096 where PC is the last displayed codepoint's address. So
9097 make sure to set sal.explicit_pc to prevent GDB from
9098 trying to expand the list of sals to include all other
9099 instances with the same symtab and line. */
9100 sal.pc = pc;
9101 sal.explicit_pc = 1;
9102
9103 struct linespec_sals lsal;
9104 lsal.sals = {sal};
9105 lsal.canonical = NULL;
9106
9107 canonical->lsals.push_back (std::move (lsal));
9108 return;
9109 }
9110 else
9111 error (_("No default breakpoint address now."));
9112 }
9113 }
9114
9115 /* Force almost all breakpoints to be in terms of the
9116 current_source_symtab (which is decode_line_1's default).
9117 This should produce the results we want almost all of the
9118 time while leaving default_breakpoint_* alone.
9119
9120 ObjC: However, don't match an Objective-C method name which
9121 may have a '+' or '-' succeeded by a '['. */
9122 cursal = get_current_source_symtab_and_line ();
9123 if (last_displayed_sal_is_valid ())
9124 {
9125 const char *spec = NULL;
9126
9127 if (event_location_type (location) == LINESPEC_LOCATION)
9128 spec = get_linespec_location (location)->spec_string;
9129
9130 if (!cursal.symtab
9131 || (spec != NULL
9132 && strchr ("+-", spec[0]) != NULL
9133 && spec[1] != '['))
9134 {
9135 decode_line_full (location, DECODE_LINE_FUNFIRSTLINE, NULL,
9136 get_last_displayed_symtab (),
9137 get_last_displayed_line (),
9138 canonical, NULL, NULL);
9139 return;
9140 }
9141 }
9142
9143 decode_line_full (location, DECODE_LINE_FUNFIRSTLINE, NULL,
9144 cursal.symtab, cursal.line, canonical, NULL, NULL);
9145 }
9146
9147
9148 /* Convert each SAL into a real PC. Verify that the PC can be
9149 inserted as a breakpoint. If it can't throw an error. */
9150
9151 static void
9152 breakpoint_sals_to_pc (std::vector<symtab_and_line> &sals)
9153 {
9154 for (auto &sal : sals)
9155 resolve_sal_pc (&sal);
9156 }
9157
9158 /* Fast tracepoints may have restrictions on valid locations. For
9159 instance, a fast tracepoint using a jump instead of a trap will
9160 likely have to overwrite more bytes than a trap would, and so can
9161 only be placed where the instruction is longer than the jump, or a
9162 multi-instruction sequence does not have a jump into the middle of
9163 it, etc. */
9164
9165 static void
9166 check_fast_tracepoint_sals (struct gdbarch *gdbarch,
9167 gdb::array_view<const symtab_and_line> sals)
9168 {
9169 for (const auto &sal : sals)
9170 {
9171 struct gdbarch *sarch;
9172
9173 sarch = get_sal_arch (sal);
9174 /* We fall back to GDBARCH if there is no architecture
9175 associated with SAL. */
9176 if (sarch == NULL)
9177 sarch = gdbarch;
9178 std::string msg;
9179 if (!gdbarch_fast_tracepoint_valid_at (sarch, sal.pc, &msg))
9180 error (_("May not have a fast tracepoint at %s%s"),
9181 paddress (sarch, sal.pc), msg.c_str ());
9182 }
9183 }
9184
9185 /* Given TOK, a string specification of condition and thread, as
9186 accepted by the 'break' command, extract the condition
9187 string and thread number and set *COND_STRING and *THREAD.
9188 PC identifies the context at which the condition should be parsed.
9189 If no condition is found, *COND_STRING is set to NULL.
9190 If no thread is found, *THREAD is set to -1. */
9191
9192 static void
9193 find_condition_and_thread (const char *tok, CORE_ADDR pc,
9194 char **cond_string, int *thread, int *task,
9195 char **rest)
9196 {
9197 *cond_string = NULL;
9198 *thread = -1;
9199 *task = 0;
9200 *rest = NULL;
9201
9202 while (tok && *tok)
9203 {
9204 const char *end_tok;
9205 int toklen;
9206 const char *cond_start = NULL;
9207 const char *cond_end = NULL;
9208
9209 tok = skip_spaces (tok);
9210
9211 if ((*tok == '"' || *tok == ',') && rest)
9212 {
9213 *rest = savestring (tok, strlen (tok));
9214 return;
9215 }
9216
9217 end_tok = skip_to_space (tok);
9218
9219 toklen = end_tok - tok;
9220
9221 if (toklen >= 1 && strncmp (tok, "if", toklen) == 0)
9222 {
9223 tok = cond_start = end_tok + 1;
9224 parse_exp_1 (&tok, pc, block_for_pc (pc), 0);
9225 cond_end = tok;
9226 *cond_string = savestring (cond_start, cond_end - cond_start);
9227 }
9228 else if (toklen >= 1 && strncmp (tok, "thread", toklen) == 0)
9229 {
9230 const char *tmptok;
9231 struct thread_info *thr;
9232
9233 tok = end_tok + 1;
9234 thr = parse_thread_id (tok, &tmptok);
9235 if (tok == tmptok)
9236 error (_("Junk after thread keyword."));
9237 *thread = thr->global_num;
9238 tok = tmptok;
9239 }
9240 else if (toklen >= 1 && strncmp (tok, "task", toklen) == 0)
9241 {
9242 char *tmptok;
9243
9244 tok = end_tok + 1;
9245 *task = strtol (tok, &tmptok, 0);
9246 if (tok == tmptok)
9247 error (_("Junk after task keyword."));
9248 if (!valid_task_id (*task))
9249 error (_("Unknown task %d."), *task);
9250 tok = tmptok;
9251 }
9252 else if (rest)
9253 {
9254 *rest = savestring (tok, strlen (tok));
9255 return;
9256 }
9257 else
9258 error (_("Junk at end of arguments."));
9259 }
9260 }
9261
9262 /* Decode a static tracepoint marker spec. */
9263
9264 static std::vector<symtab_and_line>
9265 decode_static_tracepoint_spec (const char **arg_p)
9266 {
9267 VEC(static_tracepoint_marker_p) *markers = NULL;
9268 const char *p = &(*arg_p)[3];
9269 const char *endp;
9270 int i;
9271
9272 p = skip_spaces (p);
9273
9274 endp = skip_to_space (p);
9275
9276 std::string marker_str (p, endp - p);
9277
9278 markers = target_static_tracepoint_markers_by_strid (marker_str.c_str ());
9279 if (VEC_empty(static_tracepoint_marker_p, markers))
9280 error (_("No known static tracepoint marker named %s"),
9281 marker_str.c_str ());
9282
9283 std::vector<symtab_and_line> sals;
9284 sals.reserve (VEC_length(static_tracepoint_marker_p, markers));
9285
9286 for (i = 0; i < VEC_length(static_tracepoint_marker_p, markers); i++)
9287 {
9288 struct static_tracepoint_marker *marker;
9289
9290 marker = VEC_index (static_tracepoint_marker_p, markers, i);
9291
9292 symtab_and_line sal = find_pc_line (marker->address, 0);
9293 sal.pc = marker->address;
9294 sals.push_back (sal);
9295
9296 release_static_tracepoint_marker (marker);
9297 }
9298
9299 *arg_p = endp;
9300 return sals;
9301 }
9302
9303 /* See breakpoint.h. */
9304
9305 int
9306 create_breakpoint (struct gdbarch *gdbarch,
9307 const struct event_location *location,
9308 const char *cond_string,
9309 int thread, const char *extra_string,
9310 int parse_extra,
9311 int tempflag, enum bptype type_wanted,
9312 int ignore_count,
9313 enum auto_boolean pending_break_support,
9314 const struct breakpoint_ops *ops,
9315 int from_tty, int enabled, int internal,
9316 unsigned flags)
9317 {
9318 struct linespec_result canonical;
9319 struct cleanup *bkpt_chain = NULL;
9320 int pending = 0;
9321 int task = 0;
9322 int prev_bkpt_count = breakpoint_count;
9323
9324 gdb_assert (ops != NULL);
9325
9326 /* If extra_string isn't useful, set it to NULL. */
9327 if (extra_string != NULL && *extra_string == '\0')
9328 extra_string = NULL;
9329
9330 TRY
9331 {
9332 ops->create_sals_from_location (location, &canonical, type_wanted);
9333 }
9334 CATCH (e, RETURN_MASK_ERROR)
9335 {
9336 /* If caller is interested in rc value from parse, set
9337 value. */
9338 if (e.error == NOT_FOUND_ERROR)
9339 {
9340 /* If pending breakpoint support is turned off, throw
9341 error. */
9342
9343 if (pending_break_support == AUTO_BOOLEAN_FALSE)
9344 throw_exception (e);
9345
9346 exception_print (gdb_stderr, e);
9347
9348 /* If pending breakpoint support is auto query and the user
9349 selects no, then simply return the error code. */
9350 if (pending_break_support == AUTO_BOOLEAN_AUTO
9351 && !nquery (_("Make %s pending on future shared library load? "),
9352 bptype_string (type_wanted)))
9353 return 0;
9354
9355 /* At this point, either the user was queried about setting
9356 a pending breakpoint and selected yes, or pending
9357 breakpoint behavior is on and thus a pending breakpoint
9358 is defaulted on behalf of the user. */
9359 pending = 1;
9360 }
9361 else
9362 throw_exception (e);
9363 }
9364 END_CATCH
9365
9366 if (!pending && canonical.lsals.empty ())
9367 return 0;
9368
9369 /* ----------------------------- SNIP -----------------------------
9370 Anything added to the cleanup chain beyond this point is assumed
9371 to be part of a breakpoint. If the breakpoint create succeeds
9372 then the memory is not reclaimed. */
9373 bkpt_chain = make_cleanup (null_cleanup, 0);
9374
9375 /* Resolve all line numbers to PC's and verify that the addresses
9376 are ok for the target. */
9377 if (!pending)
9378 {
9379 for (auto &lsal : canonical.lsals)
9380 breakpoint_sals_to_pc (lsal.sals);
9381 }
9382
9383 /* Fast tracepoints may have additional restrictions on location. */
9384 if (!pending && type_wanted == bp_fast_tracepoint)
9385 {
9386 for (const auto &lsal : canonical.lsals)
9387 check_fast_tracepoint_sals (gdbarch, lsal.sals);
9388 }
9389
9390 /* Verify that condition can be parsed, before setting any
9391 breakpoints. Allocate a separate condition expression for each
9392 breakpoint. */
9393 if (!pending)
9394 {
9395 gdb::unique_xmalloc_ptr<char> cond_string_copy;
9396 gdb::unique_xmalloc_ptr<char> extra_string_copy;
9397
9398 if (parse_extra)
9399 {
9400 char *rest;
9401 char *cond;
9402
9403 const linespec_sals &lsal = canonical.lsals[0];
9404
9405 /* Here we only parse 'arg' to separate condition
9406 from thread number, so parsing in context of first
9407 sal is OK. When setting the breakpoint we'll
9408 re-parse it in context of each sal. */
9409
9410 find_condition_and_thread (extra_string, lsal.sals[0].pc,
9411 &cond, &thread, &task, &rest);
9412 cond_string_copy.reset (cond);
9413 extra_string_copy.reset (rest);
9414 }
9415 else
9416 {
9417 if (type_wanted != bp_dprintf
9418 && extra_string != NULL && *extra_string != '\0')
9419 error (_("Garbage '%s' at end of location"), extra_string);
9420
9421 /* Create a private copy of condition string. */
9422 if (cond_string)
9423 cond_string_copy.reset (xstrdup (cond_string));
9424 /* Create a private copy of any extra string. */
9425 if (extra_string)
9426 extra_string_copy.reset (xstrdup (extra_string));
9427 }
9428
9429 ops->create_breakpoints_sal (gdbarch, &canonical,
9430 std::move (cond_string_copy),
9431 std::move (extra_string_copy),
9432 type_wanted,
9433 tempflag ? disp_del : disp_donttouch,
9434 thread, task, ignore_count, ops,
9435 from_tty, enabled, internal, flags);
9436 }
9437 else
9438 {
9439 std::unique_ptr <breakpoint> b = new_breakpoint_from_type (type_wanted);
9440
9441 init_raw_breakpoint_without_location (b.get (), gdbarch, type_wanted, ops);
9442 b->location = copy_event_location (location);
9443
9444 if (parse_extra)
9445 b->cond_string = NULL;
9446 else
9447 {
9448 /* Create a private copy of condition string. */
9449 b->cond_string = cond_string != NULL ? xstrdup (cond_string) : NULL;
9450 b->thread = thread;
9451 }
9452
9453 /* Create a private copy of any extra string. */
9454 b->extra_string = extra_string != NULL ? xstrdup (extra_string) : NULL;
9455 b->ignore_count = ignore_count;
9456 b->disposition = tempflag ? disp_del : disp_donttouch;
9457 b->condition_not_parsed = 1;
9458 b->enable_state = enabled ? bp_enabled : bp_disabled;
9459 if ((type_wanted != bp_breakpoint
9460 && type_wanted != bp_hardware_breakpoint) || thread != -1)
9461 b->pspace = current_program_space;
9462
9463 install_breakpoint (internal, std::move (b), 0);
9464 }
9465
9466 if (canonical.lsals.size () > 1)
9467 {
9468 warning (_("Multiple breakpoints were set.\nUse the "
9469 "\"delete\" command to delete unwanted breakpoints."));
9470 prev_breakpoint_count = prev_bkpt_count;
9471 }
9472
9473 /* That's it. Discard the cleanups for data inserted into the
9474 breakpoint. */
9475 discard_cleanups (bkpt_chain);
9476
9477 /* error call may happen here - have BKPT_CHAIN already discarded. */
9478 update_global_location_list (UGLL_MAY_INSERT);
9479
9480 return 1;
9481 }
9482
9483 /* Set a breakpoint.
9484 ARG is a string describing breakpoint address,
9485 condition, and thread.
9486 FLAG specifies if a breakpoint is hardware on,
9487 and if breakpoint is temporary, using BP_HARDWARE_FLAG
9488 and BP_TEMPFLAG. */
9489
9490 static void
9491 break_command_1 (const char *arg, int flag, int from_tty)
9492 {
9493 int tempflag = flag & BP_TEMPFLAG;
9494 enum bptype type_wanted = (flag & BP_HARDWAREFLAG
9495 ? bp_hardware_breakpoint
9496 : bp_breakpoint);
9497 struct breakpoint_ops *ops;
9498
9499 event_location_up location = string_to_event_location (&arg, current_language);
9500
9501 /* Matching breakpoints on probes. */
9502 if (location != NULL
9503 && event_location_type (location.get ()) == PROBE_LOCATION)
9504 ops = &bkpt_probe_breakpoint_ops;
9505 else
9506 ops = &bkpt_breakpoint_ops;
9507
9508 create_breakpoint (get_current_arch (),
9509 location.get (),
9510 NULL, 0, arg, 1 /* parse arg */,
9511 tempflag, type_wanted,
9512 0 /* Ignore count */,
9513 pending_break_support,
9514 ops,
9515 from_tty,
9516 1 /* enabled */,
9517 0 /* internal */,
9518 0);
9519 }
9520
9521 /* Helper function for break_command_1 and disassemble_command. */
9522
9523 void
9524 resolve_sal_pc (struct symtab_and_line *sal)
9525 {
9526 CORE_ADDR pc;
9527
9528 if (sal->pc == 0 && sal->symtab != NULL)
9529 {
9530 if (!find_line_pc (sal->symtab, sal->line, &pc))
9531 error (_("No line %d in file \"%s\"."),
9532 sal->line, symtab_to_filename_for_display (sal->symtab));
9533 sal->pc = pc;
9534
9535 /* If this SAL corresponds to a breakpoint inserted using a line
9536 number, then skip the function prologue if necessary. */
9537 if (sal->explicit_line)
9538 skip_prologue_sal (sal);
9539 }
9540
9541 if (sal->section == 0 && sal->symtab != NULL)
9542 {
9543 const struct blockvector *bv;
9544 const struct block *b;
9545 struct symbol *sym;
9546
9547 bv = blockvector_for_pc_sect (sal->pc, 0, &b,
9548 SYMTAB_COMPUNIT (sal->symtab));
9549 if (bv != NULL)
9550 {
9551 sym = block_linkage_function (b);
9552 if (sym != NULL)
9553 {
9554 fixup_symbol_section (sym, SYMTAB_OBJFILE (sal->symtab));
9555 sal->section = SYMBOL_OBJ_SECTION (SYMTAB_OBJFILE (sal->symtab),
9556 sym);
9557 }
9558 else
9559 {
9560 /* It really is worthwhile to have the section, so we'll
9561 just have to look harder. This case can be executed
9562 if we have line numbers but no functions (as can
9563 happen in assembly source). */
9564
9565 scoped_restore_current_pspace_and_thread restore_pspace_thread;
9566 switch_to_program_space_and_thread (sal->pspace);
9567
9568 bound_minimal_symbol msym = lookup_minimal_symbol_by_pc (sal->pc);
9569 if (msym.minsym)
9570 sal->section = MSYMBOL_OBJ_SECTION (msym.objfile, msym.minsym);
9571 }
9572 }
9573 }
9574 }
9575
9576 void
9577 break_command (const char *arg, int from_tty)
9578 {
9579 break_command_1 (arg, 0, from_tty);
9580 }
9581
9582 void
9583 tbreak_command (const char *arg, int from_tty)
9584 {
9585 break_command_1 (arg, BP_TEMPFLAG, from_tty);
9586 }
9587
9588 static void
9589 hbreak_command (const char *arg, int from_tty)
9590 {
9591 break_command_1 (arg, BP_HARDWAREFLAG, from_tty);
9592 }
9593
9594 static void
9595 thbreak_command (const char *arg, int from_tty)
9596 {
9597 break_command_1 (arg, (BP_TEMPFLAG | BP_HARDWAREFLAG), from_tty);
9598 }
9599
9600 static void
9601 stop_command (const char *arg, int from_tty)
9602 {
9603 printf_filtered (_("Specify the type of breakpoint to set.\n\
9604 Usage: stop in <function | address>\n\
9605 stop at <line>\n"));
9606 }
9607
9608 static void
9609 stopin_command (const char *arg, int from_tty)
9610 {
9611 int badInput = 0;
9612
9613 if (arg == (char *) NULL)
9614 badInput = 1;
9615 else if (*arg != '*')
9616 {
9617 const char *argptr = arg;
9618 int hasColon = 0;
9619
9620 /* Look for a ':'. If this is a line number specification, then
9621 say it is bad, otherwise, it should be an address or
9622 function/method name. */
9623 while (*argptr && !hasColon)
9624 {
9625 hasColon = (*argptr == ':');
9626 argptr++;
9627 }
9628
9629 if (hasColon)
9630 badInput = (*argptr != ':'); /* Not a class::method */
9631 else
9632 badInput = isdigit (*arg); /* a simple line number */
9633 }
9634
9635 if (badInput)
9636 printf_filtered (_("Usage: stop in <function | address>\n"));
9637 else
9638 break_command_1 (arg, 0, from_tty);
9639 }
9640
9641 static void
9642 stopat_command (const char *arg, int from_tty)
9643 {
9644 int badInput = 0;
9645
9646 if (arg == (char *) NULL || *arg == '*') /* no line number */
9647 badInput = 1;
9648 else
9649 {
9650 const char *argptr = arg;
9651 int hasColon = 0;
9652
9653 /* Look for a ':'. If there is a '::' then get out, otherwise
9654 it is probably a line number. */
9655 while (*argptr && !hasColon)
9656 {
9657 hasColon = (*argptr == ':');
9658 argptr++;
9659 }
9660
9661 if (hasColon)
9662 badInput = (*argptr == ':'); /* we have class::method */
9663 else
9664 badInput = !isdigit (*arg); /* not a line number */
9665 }
9666
9667 if (badInput)
9668 printf_filtered (_("Usage: stop at <line>\n"));
9669 else
9670 break_command_1 (arg, 0, from_tty);
9671 }
9672
9673 /* The dynamic printf command is mostly like a regular breakpoint, but
9674 with a prewired command list consisting of a single output command,
9675 built from extra arguments supplied on the dprintf command
9676 line. */
9677
9678 static void
9679 dprintf_command (const char *arg, int from_tty)
9680 {
9681 event_location_up location = string_to_event_location (&arg, current_language);
9682
9683 /* If non-NULL, ARG should have been advanced past the location;
9684 the next character must be ','. */
9685 if (arg != NULL)
9686 {
9687 if (arg[0] != ',' || arg[1] == '\0')
9688 error (_("Format string required"));
9689 else
9690 {
9691 /* Skip the comma. */
9692 ++arg;
9693 }
9694 }
9695
9696 create_breakpoint (get_current_arch (),
9697 location.get (),
9698 NULL, 0, arg, 1 /* parse arg */,
9699 0, bp_dprintf,
9700 0 /* Ignore count */,
9701 pending_break_support,
9702 &dprintf_breakpoint_ops,
9703 from_tty,
9704 1 /* enabled */,
9705 0 /* internal */,
9706 0);
9707 }
9708
9709 static void
9710 agent_printf_command (const char *arg, int from_tty)
9711 {
9712 error (_("May only run agent-printf on the target"));
9713 }
9714
9715 /* Implement the "breakpoint_hit" breakpoint_ops method for
9716 ranged breakpoints. */
9717
9718 static int
9719 breakpoint_hit_ranged_breakpoint (const struct bp_location *bl,
9720 const address_space *aspace,
9721 CORE_ADDR bp_addr,
9722 const struct target_waitstatus *ws)
9723 {
9724 if (ws->kind != TARGET_WAITKIND_STOPPED
9725 || ws->value.sig != GDB_SIGNAL_TRAP)
9726 return 0;
9727
9728 return breakpoint_address_match_range (bl->pspace->aspace, bl->address,
9729 bl->length, aspace, bp_addr);
9730 }
9731
9732 /* Implement the "resources_needed" breakpoint_ops method for
9733 ranged breakpoints. */
9734
9735 static int
9736 resources_needed_ranged_breakpoint (const struct bp_location *bl)
9737 {
9738 return target_ranged_break_num_registers ();
9739 }
9740
9741 /* Implement the "print_it" breakpoint_ops method for
9742 ranged breakpoints. */
9743
9744 static enum print_stop_action
9745 print_it_ranged_breakpoint (bpstat bs)
9746 {
9747 struct breakpoint *b = bs->breakpoint_at;
9748 struct bp_location *bl = b->loc;
9749 struct ui_out *uiout = current_uiout;
9750
9751 gdb_assert (b->type == bp_hardware_breakpoint);
9752
9753 /* Ranged breakpoints have only one location. */
9754 gdb_assert (bl && bl->next == NULL);
9755
9756 annotate_breakpoint (b->number);
9757
9758 maybe_print_thread_hit_breakpoint (uiout);
9759
9760 if (b->disposition == disp_del)
9761 uiout->text ("Temporary ranged breakpoint ");
9762 else
9763 uiout->text ("Ranged breakpoint ");
9764 if (uiout->is_mi_like_p ())
9765 {
9766 uiout->field_string ("reason",
9767 async_reason_lookup (EXEC_ASYNC_BREAKPOINT_HIT));
9768 uiout->field_string ("disp", bpdisp_text (b->disposition));
9769 }
9770 uiout->field_int ("bkptno", b->number);
9771 uiout->text (", ");
9772
9773 return PRINT_SRC_AND_LOC;
9774 }
9775
9776 /* Implement the "print_one" breakpoint_ops method for
9777 ranged breakpoints. */
9778
9779 static void
9780 print_one_ranged_breakpoint (struct breakpoint *b,
9781 struct bp_location **last_loc)
9782 {
9783 struct bp_location *bl = b->loc;
9784 struct value_print_options opts;
9785 struct ui_out *uiout = current_uiout;
9786
9787 /* Ranged breakpoints have only one location. */
9788 gdb_assert (bl && bl->next == NULL);
9789
9790 get_user_print_options (&opts);
9791
9792 if (opts.addressprint)
9793 /* We don't print the address range here, it will be printed later
9794 by print_one_detail_ranged_breakpoint. */
9795 uiout->field_skip ("addr");
9796 annotate_field (5);
9797 print_breakpoint_location (b, bl);
9798 *last_loc = bl;
9799 }
9800
9801 /* Implement the "print_one_detail" breakpoint_ops method for
9802 ranged breakpoints. */
9803
9804 static void
9805 print_one_detail_ranged_breakpoint (const struct breakpoint *b,
9806 struct ui_out *uiout)
9807 {
9808 CORE_ADDR address_start, address_end;
9809 struct bp_location *bl = b->loc;
9810 string_file stb;
9811
9812 gdb_assert (bl);
9813
9814 address_start = bl->address;
9815 address_end = address_start + bl->length - 1;
9816
9817 uiout->text ("\taddress range: ");
9818 stb.printf ("[%s, %s]",
9819 print_core_address (bl->gdbarch, address_start),
9820 print_core_address (bl->gdbarch, address_end));
9821 uiout->field_stream ("addr", stb);
9822 uiout->text ("\n");
9823 }
9824
9825 /* Implement the "print_mention" breakpoint_ops method for
9826 ranged breakpoints. */
9827
9828 static void
9829 print_mention_ranged_breakpoint (struct breakpoint *b)
9830 {
9831 struct bp_location *bl = b->loc;
9832 struct ui_out *uiout = current_uiout;
9833
9834 gdb_assert (bl);
9835 gdb_assert (b->type == bp_hardware_breakpoint);
9836
9837 if (uiout->is_mi_like_p ())
9838 return;
9839
9840 printf_filtered (_("Hardware assisted ranged breakpoint %d from %s to %s."),
9841 b->number, paddress (bl->gdbarch, bl->address),
9842 paddress (bl->gdbarch, bl->address + bl->length - 1));
9843 }
9844
9845 /* Implement the "print_recreate" breakpoint_ops method for
9846 ranged breakpoints. */
9847
9848 static void
9849 print_recreate_ranged_breakpoint (struct breakpoint *b, struct ui_file *fp)
9850 {
9851 fprintf_unfiltered (fp, "break-range %s, %s",
9852 event_location_to_string (b->location.get ()),
9853 event_location_to_string (b->location_range_end.get ()));
9854 print_recreate_thread (b, fp);
9855 }
9856
9857 /* The breakpoint_ops structure to be used in ranged breakpoints. */
9858
9859 static struct breakpoint_ops ranged_breakpoint_ops;
9860
9861 /* Find the address where the end of the breakpoint range should be
9862 placed, given the SAL of the end of the range. This is so that if
9863 the user provides a line number, the end of the range is set to the
9864 last instruction of the given line. */
9865
9866 static CORE_ADDR
9867 find_breakpoint_range_end (struct symtab_and_line sal)
9868 {
9869 CORE_ADDR end;
9870
9871 /* If the user provided a PC value, use it. Otherwise,
9872 find the address of the end of the given location. */
9873 if (sal.explicit_pc)
9874 end = sal.pc;
9875 else
9876 {
9877 int ret;
9878 CORE_ADDR start;
9879
9880 ret = find_line_pc_range (sal, &start, &end);
9881 if (!ret)
9882 error (_("Could not find location of the end of the range."));
9883
9884 /* find_line_pc_range returns the start of the next line. */
9885 end--;
9886 }
9887
9888 return end;
9889 }
9890
9891 /* Implement the "break-range" CLI command. */
9892
9893 static void
9894 break_range_command (const char *arg, int from_tty)
9895 {
9896 const char *arg_start;
9897 struct linespec_result canonical_start, canonical_end;
9898 int bp_count, can_use_bp, length;
9899 CORE_ADDR end;
9900 struct breakpoint *b;
9901
9902 /* We don't support software ranged breakpoints. */
9903 if (target_ranged_break_num_registers () < 0)
9904 error (_("This target does not support hardware ranged breakpoints."));
9905
9906 bp_count = hw_breakpoint_used_count ();
9907 bp_count += target_ranged_break_num_registers ();
9908 can_use_bp = target_can_use_hardware_watchpoint (bp_hardware_breakpoint,
9909 bp_count, 0);
9910 if (can_use_bp < 0)
9911 error (_("Hardware breakpoints used exceeds limit."));
9912
9913 arg = skip_spaces (arg);
9914 if (arg == NULL || arg[0] == '\0')
9915 error(_("No address range specified."));
9916
9917 arg_start = arg;
9918 event_location_up start_location = string_to_event_location (&arg,
9919 current_language);
9920 parse_breakpoint_sals (start_location.get (), &canonical_start);
9921
9922 if (arg[0] != ',')
9923 error (_("Too few arguments."));
9924 else if (canonical_start.lsals.empty ())
9925 error (_("Could not find location of the beginning of the range."));
9926
9927 const linespec_sals &lsal_start = canonical_start.lsals[0];
9928
9929 if (canonical_start.lsals.size () > 1
9930 || lsal_start.sals.size () != 1)
9931 error (_("Cannot create a ranged breakpoint with multiple locations."));
9932
9933 const symtab_and_line &sal_start = lsal_start.sals[0];
9934 std::string addr_string_start (arg_start, arg - arg_start);
9935
9936 arg++; /* Skip the comma. */
9937 arg = skip_spaces (arg);
9938
9939 /* Parse the end location. */
9940
9941 arg_start = arg;
9942
9943 /* We call decode_line_full directly here instead of using
9944 parse_breakpoint_sals because we need to specify the start location's
9945 symtab and line as the default symtab and line for the end of the
9946 range. This makes it possible to have ranges like "foo.c:27, +14",
9947 where +14 means 14 lines from the start location. */
9948 event_location_up end_location = string_to_event_location (&arg,
9949 current_language);
9950 decode_line_full (end_location.get (), DECODE_LINE_FUNFIRSTLINE, NULL,
9951 sal_start.symtab, sal_start.line,
9952 &canonical_end, NULL, NULL);
9953
9954 if (canonical_end.lsals.empty ())
9955 error (_("Could not find location of the end of the range."));
9956
9957 const linespec_sals &lsal_end = canonical_end.lsals[0];
9958 if (canonical_end.lsals.size () > 1
9959 || lsal_end.sals.size () != 1)
9960 error (_("Cannot create a ranged breakpoint with multiple locations."));
9961
9962 const symtab_and_line &sal_end = lsal_end.sals[0];
9963
9964 end = find_breakpoint_range_end (sal_end);
9965 if (sal_start.pc > end)
9966 error (_("Invalid address range, end precedes start."));
9967
9968 length = end - sal_start.pc + 1;
9969 if (length < 0)
9970 /* Length overflowed. */
9971 error (_("Address range too large."));
9972 else if (length == 1)
9973 {
9974 /* This range is simple enough to be handled by
9975 the `hbreak' command. */
9976 hbreak_command (&addr_string_start[0], 1);
9977
9978 return;
9979 }
9980
9981 /* Now set up the breakpoint. */
9982 b = set_raw_breakpoint (get_current_arch (), sal_start,
9983 bp_hardware_breakpoint, &ranged_breakpoint_ops);
9984 set_breakpoint_count (breakpoint_count + 1);
9985 b->number = breakpoint_count;
9986 b->disposition = disp_donttouch;
9987 b->location = std::move (start_location);
9988 b->location_range_end = std::move (end_location);
9989 b->loc->length = length;
9990
9991 mention (b);
9992 observer_notify_breakpoint_created (b);
9993 update_global_location_list (UGLL_MAY_INSERT);
9994 }
9995
9996 /* Return non-zero if EXP is verified as constant. Returned zero
9997 means EXP is variable. Also the constant detection may fail for
9998 some constant expressions and in such case still falsely return
9999 zero. */
10000
10001 static int
10002 watchpoint_exp_is_const (const struct expression *exp)
10003 {
10004 int i = exp->nelts;
10005
10006 while (i > 0)
10007 {
10008 int oplenp, argsp;
10009
10010 /* We are only interested in the descriptor of each element. */
10011 operator_length (exp, i, &oplenp, &argsp);
10012 i -= oplenp;
10013
10014 switch (exp->elts[i].opcode)
10015 {
10016 case BINOP_ADD:
10017 case BINOP_SUB:
10018 case BINOP_MUL:
10019 case BINOP_DIV:
10020 case BINOP_REM:
10021 case BINOP_MOD:
10022 case BINOP_LSH:
10023 case BINOP_RSH:
10024 case BINOP_LOGICAL_AND:
10025 case BINOP_LOGICAL_OR:
10026 case BINOP_BITWISE_AND:
10027 case BINOP_BITWISE_IOR:
10028 case BINOP_BITWISE_XOR:
10029 case BINOP_EQUAL:
10030 case BINOP_NOTEQUAL:
10031 case BINOP_LESS:
10032 case BINOP_GTR:
10033 case BINOP_LEQ:
10034 case BINOP_GEQ:
10035 case BINOP_REPEAT:
10036 case BINOP_COMMA:
10037 case BINOP_EXP:
10038 case BINOP_MIN:
10039 case BINOP_MAX:
10040 case BINOP_INTDIV:
10041 case BINOP_CONCAT:
10042 case TERNOP_COND:
10043 case TERNOP_SLICE:
10044
10045 case OP_LONG:
10046 case OP_FLOAT:
10047 case OP_LAST:
10048 case OP_COMPLEX:
10049 case OP_STRING:
10050 case OP_ARRAY:
10051 case OP_TYPE:
10052 case OP_TYPEOF:
10053 case OP_DECLTYPE:
10054 case OP_TYPEID:
10055 case OP_NAME:
10056 case OP_OBJC_NSSTRING:
10057
10058 case UNOP_NEG:
10059 case UNOP_LOGICAL_NOT:
10060 case UNOP_COMPLEMENT:
10061 case UNOP_ADDR:
10062 case UNOP_HIGH:
10063 case UNOP_CAST:
10064
10065 case UNOP_CAST_TYPE:
10066 case UNOP_REINTERPRET_CAST:
10067 case UNOP_DYNAMIC_CAST:
10068 /* Unary, binary and ternary operators: We have to check
10069 their operands. If they are constant, then so is the
10070 result of that operation. For instance, if A and B are
10071 determined to be constants, then so is "A + B".
10072
10073 UNOP_IND is one exception to the rule above, because the
10074 value of *ADDR is not necessarily a constant, even when
10075 ADDR is. */
10076 break;
10077
10078 case OP_VAR_VALUE:
10079 /* Check whether the associated symbol is a constant.
10080
10081 We use SYMBOL_CLASS rather than TYPE_CONST because it's
10082 possible that a buggy compiler could mark a variable as
10083 constant even when it is not, and TYPE_CONST would return
10084 true in this case, while SYMBOL_CLASS wouldn't.
10085
10086 We also have to check for function symbols because they
10087 are always constant. */
10088 {
10089 struct symbol *s = exp->elts[i + 2].symbol;
10090
10091 if (SYMBOL_CLASS (s) != LOC_BLOCK
10092 && SYMBOL_CLASS (s) != LOC_CONST
10093 && SYMBOL_CLASS (s) != LOC_CONST_BYTES)
10094 return 0;
10095 break;
10096 }
10097
10098 /* The default action is to return 0 because we are using
10099 the optimistic approach here: If we don't know something,
10100 then it is not a constant. */
10101 default:
10102 return 0;
10103 }
10104 }
10105
10106 return 1;
10107 }
10108
10109 /* Watchpoint destructor. */
10110
10111 watchpoint::~watchpoint ()
10112 {
10113 xfree (this->exp_string);
10114 xfree (this->exp_string_reparse);
10115 value_free (this->val);
10116 }
10117
10118 /* Implement the "re_set" breakpoint_ops method for watchpoints. */
10119
10120 static void
10121 re_set_watchpoint (struct breakpoint *b)
10122 {
10123 struct watchpoint *w = (struct watchpoint *) b;
10124
10125 /* Watchpoint can be either on expression using entirely global
10126 variables, or it can be on local variables.
10127
10128 Watchpoints of the first kind are never auto-deleted, and even
10129 persist across program restarts. Since they can use variables
10130 from shared libraries, we need to reparse expression as libraries
10131 are loaded and unloaded.
10132
10133 Watchpoints on local variables can also change meaning as result
10134 of solib event. For example, if a watchpoint uses both a local
10135 and a global variables in expression, it's a local watchpoint,
10136 but unloading of a shared library will make the expression
10137 invalid. This is not a very common use case, but we still
10138 re-evaluate expression, to avoid surprises to the user.
10139
10140 Note that for local watchpoints, we re-evaluate it only if
10141 watchpoints frame id is still valid. If it's not, it means the
10142 watchpoint is out of scope and will be deleted soon. In fact,
10143 I'm not sure we'll ever be called in this case.
10144
10145 If a local watchpoint's frame id is still valid, then
10146 w->exp_valid_block is likewise valid, and we can safely use it.
10147
10148 Don't do anything about disabled watchpoints, since they will be
10149 reevaluated again when enabled. */
10150 update_watchpoint (w, 1 /* reparse */);
10151 }
10152
10153 /* Implement the "insert" breakpoint_ops method for hardware watchpoints. */
10154
10155 static int
10156 insert_watchpoint (struct bp_location *bl)
10157 {
10158 struct watchpoint *w = (struct watchpoint *) bl->owner;
10159 int length = w->exact ? 1 : bl->length;
10160
10161 return target_insert_watchpoint (bl->address, length, bl->watchpoint_type,
10162 w->cond_exp.get ());
10163 }
10164
10165 /* Implement the "remove" breakpoint_ops method for hardware watchpoints. */
10166
10167 static int
10168 remove_watchpoint (struct bp_location *bl, enum remove_bp_reason reason)
10169 {
10170 struct watchpoint *w = (struct watchpoint *) bl->owner;
10171 int length = w->exact ? 1 : bl->length;
10172
10173 return target_remove_watchpoint (bl->address, length, bl->watchpoint_type,
10174 w->cond_exp.get ());
10175 }
10176
10177 static int
10178 breakpoint_hit_watchpoint (const struct bp_location *bl,
10179 const address_space *aspace, CORE_ADDR bp_addr,
10180 const struct target_waitstatus *ws)
10181 {
10182 struct breakpoint *b = bl->owner;
10183 struct watchpoint *w = (struct watchpoint *) b;
10184
10185 /* Continuable hardware watchpoints are treated as non-existent if the
10186 reason we stopped wasn't a hardware watchpoint (we didn't stop on
10187 some data address). Otherwise gdb won't stop on a break instruction
10188 in the code (not from a breakpoint) when a hardware watchpoint has
10189 been defined. Also skip watchpoints which we know did not trigger
10190 (did not match the data address). */
10191 if (is_hardware_watchpoint (b)
10192 && w->watchpoint_triggered == watch_triggered_no)
10193 return 0;
10194
10195 return 1;
10196 }
10197
10198 static void
10199 check_status_watchpoint (bpstat bs)
10200 {
10201 gdb_assert (is_watchpoint (bs->breakpoint_at));
10202
10203 bpstat_check_watchpoint (bs);
10204 }
10205
10206 /* Implement the "resources_needed" breakpoint_ops method for
10207 hardware watchpoints. */
10208
10209 static int
10210 resources_needed_watchpoint (const struct bp_location *bl)
10211 {
10212 struct watchpoint *w = (struct watchpoint *) bl->owner;
10213 int length = w->exact? 1 : bl->length;
10214
10215 return target_region_ok_for_hw_watchpoint (bl->address, length);
10216 }
10217
10218 /* Implement the "works_in_software_mode" breakpoint_ops method for
10219 hardware watchpoints. */
10220
10221 static int
10222 works_in_software_mode_watchpoint (const struct breakpoint *b)
10223 {
10224 /* Read and access watchpoints only work with hardware support. */
10225 return b->type == bp_watchpoint || b->type == bp_hardware_watchpoint;
10226 }
10227
10228 static enum print_stop_action
10229 print_it_watchpoint (bpstat bs)
10230 {
10231 struct breakpoint *b;
10232 enum print_stop_action result;
10233 struct watchpoint *w;
10234 struct ui_out *uiout = current_uiout;
10235
10236 gdb_assert (bs->bp_location_at != NULL);
10237
10238 b = bs->breakpoint_at;
10239 w = (struct watchpoint *) b;
10240
10241 annotate_watchpoint (b->number);
10242 maybe_print_thread_hit_breakpoint (uiout);
10243
10244 string_file stb;
10245
10246 gdb::optional<ui_out_emit_tuple> tuple_emitter;
10247 switch (b->type)
10248 {
10249 case bp_watchpoint:
10250 case bp_hardware_watchpoint:
10251 if (uiout->is_mi_like_p ())
10252 uiout->field_string
10253 ("reason", async_reason_lookup (EXEC_ASYNC_WATCHPOINT_TRIGGER));
10254 mention (b);
10255 tuple_emitter.emplace (uiout, "value");
10256 uiout->text ("\nOld value = ");
10257 watchpoint_value_print (bs->old_val, &stb);
10258 uiout->field_stream ("old", stb);
10259 uiout->text ("\nNew value = ");
10260 watchpoint_value_print (w->val, &stb);
10261 uiout->field_stream ("new", stb);
10262 uiout->text ("\n");
10263 /* More than one watchpoint may have been triggered. */
10264 result = PRINT_UNKNOWN;
10265 break;
10266
10267 case bp_read_watchpoint:
10268 if (uiout->is_mi_like_p ())
10269 uiout->field_string
10270 ("reason", async_reason_lookup (EXEC_ASYNC_READ_WATCHPOINT_TRIGGER));
10271 mention (b);
10272 tuple_emitter.emplace (uiout, "value");
10273 uiout->text ("\nValue = ");
10274 watchpoint_value_print (w->val, &stb);
10275 uiout->field_stream ("value", stb);
10276 uiout->text ("\n");
10277 result = PRINT_UNKNOWN;
10278 break;
10279
10280 case bp_access_watchpoint:
10281 if (bs->old_val != NULL)
10282 {
10283 if (uiout->is_mi_like_p ())
10284 uiout->field_string
10285 ("reason",
10286 async_reason_lookup (EXEC_ASYNC_ACCESS_WATCHPOINT_TRIGGER));
10287 mention (b);
10288 tuple_emitter.emplace (uiout, "value");
10289 uiout->text ("\nOld value = ");
10290 watchpoint_value_print (bs->old_val, &stb);
10291 uiout->field_stream ("old", stb);
10292 uiout->text ("\nNew value = ");
10293 }
10294 else
10295 {
10296 mention (b);
10297 if (uiout->is_mi_like_p ())
10298 uiout->field_string
10299 ("reason",
10300 async_reason_lookup (EXEC_ASYNC_ACCESS_WATCHPOINT_TRIGGER));
10301 tuple_emitter.emplace (uiout, "value");
10302 uiout->text ("\nValue = ");
10303 }
10304 watchpoint_value_print (w->val, &stb);
10305 uiout->field_stream ("new", stb);
10306 uiout->text ("\n");
10307 result = PRINT_UNKNOWN;
10308 break;
10309 default:
10310 result = PRINT_UNKNOWN;
10311 }
10312
10313 return result;
10314 }
10315
10316 /* Implement the "print_mention" breakpoint_ops method for hardware
10317 watchpoints. */
10318
10319 static void
10320 print_mention_watchpoint (struct breakpoint *b)
10321 {
10322 struct watchpoint *w = (struct watchpoint *) b;
10323 struct ui_out *uiout = current_uiout;
10324 const char *tuple_name;
10325
10326 switch (b->type)
10327 {
10328 case bp_watchpoint:
10329 uiout->text ("Watchpoint ");
10330 tuple_name = "wpt";
10331 break;
10332 case bp_hardware_watchpoint:
10333 uiout->text ("Hardware watchpoint ");
10334 tuple_name = "wpt";
10335 break;
10336 case bp_read_watchpoint:
10337 uiout->text ("Hardware read watchpoint ");
10338 tuple_name = "hw-rwpt";
10339 break;
10340 case bp_access_watchpoint:
10341 uiout->text ("Hardware access (read/write) watchpoint ");
10342 tuple_name = "hw-awpt";
10343 break;
10344 default:
10345 internal_error (__FILE__, __LINE__,
10346 _("Invalid hardware watchpoint type."));
10347 }
10348
10349 ui_out_emit_tuple tuple_emitter (uiout, tuple_name);
10350 uiout->field_int ("number", b->number);
10351 uiout->text (": ");
10352 uiout->field_string ("exp", w->exp_string);
10353 }
10354
10355 /* Implement the "print_recreate" breakpoint_ops method for
10356 watchpoints. */
10357
10358 static void
10359 print_recreate_watchpoint (struct breakpoint *b, struct ui_file *fp)
10360 {
10361 struct watchpoint *w = (struct watchpoint *) b;
10362
10363 switch (b->type)
10364 {
10365 case bp_watchpoint:
10366 case bp_hardware_watchpoint:
10367 fprintf_unfiltered (fp, "watch");
10368 break;
10369 case bp_read_watchpoint:
10370 fprintf_unfiltered (fp, "rwatch");
10371 break;
10372 case bp_access_watchpoint:
10373 fprintf_unfiltered (fp, "awatch");
10374 break;
10375 default:
10376 internal_error (__FILE__, __LINE__,
10377 _("Invalid watchpoint type."));
10378 }
10379
10380 fprintf_unfiltered (fp, " %s", w->exp_string);
10381 print_recreate_thread (b, fp);
10382 }
10383
10384 /* Implement the "explains_signal" breakpoint_ops method for
10385 watchpoints. */
10386
10387 static int
10388 explains_signal_watchpoint (struct breakpoint *b, enum gdb_signal sig)
10389 {
10390 /* A software watchpoint cannot cause a signal other than
10391 GDB_SIGNAL_TRAP. */
10392 if (b->type == bp_watchpoint && sig != GDB_SIGNAL_TRAP)
10393 return 0;
10394
10395 return 1;
10396 }
10397
10398 /* The breakpoint_ops structure to be used in hardware watchpoints. */
10399
10400 static struct breakpoint_ops watchpoint_breakpoint_ops;
10401
10402 /* Implement the "insert" breakpoint_ops method for
10403 masked hardware watchpoints. */
10404
10405 static int
10406 insert_masked_watchpoint (struct bp_location *bl)
10407 {
10408 struct watchpoint *w = (struct watchpoint *) bl->owner;
10409
10410 return target_insert_mask_watchpoint (bl->address, w->hw_wp_mask,
10411 bl->watchpoint_type);
10412 }
10413
10414 /* Implement the "remove" breakpoint_ops method for
10415 masked hardware watchpoints. */
10416
10417 static int
10418 remove_masked_watchpoint (struct bp_location *bl, enum remove_bp_reason reason)
10419 {
10420 struct watchpoint *w = (struct watchpoint *) bl->owner;
10421
10422 return target_remove_mask_watchpoint (bl->address, w->hw_wp_mask,
10423 bl->watchpoint_type);
10424 }
10425
10426 /* Implement the "resources_needed" breakpoint_ops method for
10427 masked hardware watchpoints. */
10428
10429 static int
10430 resources_needed_masked_watchpoint (const struct bp_location *bl)
10431 {
10432 struct watchpoint *w = (struct watchpoint *) bl->owner;
10433
10434 return target_masked_watch_num_registers (bl->address, w->hw_wp_mask);
10435 }
10436
10437 /* Implement the "works_in_software_mode" breakpoint_ops method for
10438 masked hardware watchpoints. */
10439
10440 static int
10441 works_in_software_mode_masked_watchpoint (const struct breakpoint *b)
10442 {
10443 return 0;
10444 }
10445
10446 /* Implement the "print_it" breakpoint_ops method for
10447 masked hardware watchpoints. */
10448
10449 static enum print_stop_action
10450 print_it_masked_watchpoint (bpstat bs)
10451 {
10452 struct breakpoint *b = bs->breakpoint_at;
10453 struct ui_out *uiout = current_uiout;
10454
10455 /* Masked watchpoints have only one location. */
10456 gdb_assert (b->loc && b->loc->next == NULL);
10457
10458 annotate_watchpoint (b->number);
10459 maybe_print_thread_hit_breakpoint (uiout);
10460
10461 switch (b->type)
10462 {
10463 case bp_hardware_watchpoint:
10464 if (uiout->is_mi_like_p ())
10465 uiout->field_string
10466 ("reason", async_reason_lookup (EXEC_ASYNC_WATCHPOINT_TRIGGER));
10467 break;
10468
10469 case bp_read_watchpoint:
10470 if (uiout->is_mi_like_p ())
10471 uiout->field_string
10472 ("reason", async_reason_lookup (EXEC_ASYNC_READ_WATCHPOINT_TRIGGER));
10473 break;
10474
10475 case bp_access_watchpoint:
10476 if (uiout->is_mi_like_p ())
10477 uiout->field_string
10478 ("reason",
10479 async_reason_lookup (EXEC_ASYNC_ACCESS_WATCHPOINT_TRIGGER));
10480 break;
10481 default:
10482 internal_error (__FILE__, __LINE__,
10483 _("Invalid hardware watchpoint type."));
10484 }
10485
10486 mention (b);
10487 uiout->text (_("\n\
10488 Check the underlying instruction at PC for the memory\n\
10489 address and value which triggered this watchpoint.\n"));
10490 uiout->text ("\n");
10491
10492 /* More than one watchpoint may have been triggered. */
10493 return PRINT_UNKNOWN;
10494 }
10495
10496 /* Implement the "print_one_detail" breakpoint_ops method for
10497 masked hardware watchpoints. */
10498
10499 static void
10500 print_one_detail_masked_watchpoint (const struct breakpoint *b,
10501 struct ui_out *uiout)
10502 {
10503 struct watchpoint *w = (struct watchpoint *) b;
10504
10505 /* Masked watchpoints have only one location. */
10506 gdb_assert (b->loc && b->loc->next == NULL);
10507
10508 uiout->text ("\tmask ");
10509 uiout->field_core_addr ("mask", b->loc->gdbarch, w->hw_wp_mask);
10510 uiout->text ("\n");
10511 }
10512
10513 /* Implement the "print_mention" breakpoint_ops method for
10514 masked hardware watchpoints. */
10515
10516 static void
10517 print_mention_masked_watchpoint (struct breakpoint *b)
10518 {
10519 struct watchpoint *w = (struct watchpoint *) b;
10520 struct ui_out *uiout = current_uiout;
10521 const char *tuple_name;
10522
10523 switch (b->type)
10524 {
10525 case bp_hardware_watchpoint:
10526 uiout->text ("Masked hardware watchpoint ");
10527 tuple_name = "wpt";
10528 break;
10529 case bp_read_watchpoint:
10530 uiout->text ("Masked hardware read watchpoint ");
10531 tuple_name = "hw-rwpt";
10532 break;
10533 case bp_access_watchpoint:
10534 uiout->text ("Masked hardware access (read/write) watchpoint ");
10535 tuple_name = "hw-awpt";
10536 break;
10537 default:
10538 internal_error (__FILE__, __LINE__,
10539 _("Invalid hardware watchpoint type."));
10540 }
10541
10542 ui_out_emit_tuple tuple_emitter (uiout, tuple_name);
10543 uiout->field_int ("number", b->number);
10544 uiout->text (": ");
10545 uiout->field_string ("exp", w->exp_string);
10546 }
10547
10548 /* Implement the "print_recreate" breakpoint_ops method for
10549 masked hardware watchpoints. */
10550
10551 static void
10552 print_recreate_masked_watchpoint (struct breakpoint *b, struct ui_file *fp)
10553 {
10554 struct watchpoint *w = (struct watchpoint *) b;
10555 char tmp[40];
10556
10557 switch (b->type)
10558 {
10559 case bp_hardware_watchpoint:
10560 fprintf_unfiltered (fp, "watch");
10561 break;
10562 case bp_read_watchpoint:
10563 fprintf_unfiltered (fp, "rwatch");
10564 break;
10565 case bp_access_watchpoint:
10566 fprintf_unfiltered (fp, "awatch");
10567 break;
10568 default:
10569 internal_error (__FILE__, __LINE__,
10570 _("Invalid hardware watchpoint type."));
10571 }
10572
10573 sprintf_vma (tmp, w->hw_wp_mask);
10574 fprintf_unfiltered (fp, " %s mask 0x%s", w->exp_string, tmp);
10575 print_recreate_thread (b, fp);
10576 }
10577
10578 /* The breakpoint_ops structure to be used in masked hardware watchpoints. */
10579
10580 static struct breakpoint_ops masked_watchpoint_breakpoint_ops;
10581
10582 /* Tell whether the given watchpoint is a masked hardware watchpoint. */
10583
10584 static int
10585 is_masked_watchpoint (const struct breakpoint *b)
10586 {
10587 return b->ops == &masked_watchpoint_breakpoint_ops;
10588 }
10589
10590 /* accessflag: hw_write: watch write,
10591 hw_read: watch read,
10592 hw_access: watch access (read or write) */
10593 static void
10594 watch_command_1 (const char *arg, int accessflag, int from_tty,
10595 int just_location, int internal)
10596 {
10597 struct breakpoint *scope_breakpoint = NULL;
10598 const struct block *exp_valid_block = NULL, *cond_exp_valid_block = NULL;
10599 struct value *val, *mark, *result;
10600 int saved_bitpos = 0, saved_bitsize = 0;
10601 const char *exp_start = NULL;
10602 const char *exp_end = NULL;
10603 const char *tok, *end_tok;
10604 int toklen = -1;
10605 const char *cond_start = NULL;
10606 const char *cond_end = NULL;
10607 enum bptype bp_type;
10608 int thread = -1;
10609 int pc = 0;
10610 /* Flag to indicate whether we are going to use masks for
10611 the hardware watchpoint. */
10612 int use_mask = 0;
10613 CORE_ADDR mask = 0;
10614
10615 /* Make sure that we actually have parameters to parse. */
10616 if (arg != NULL && arg[0] != '\0')
10617 {
10618 const char *value_start;
10619
10620 exp_end = arg + strlen (arg);
10621
10622 /* Look for "parameter value" pairs at the end
10623 of the arguments string. */
10624 for (tok = exp_end - 1; tok > arg; tok--)
10625 {
10626 /* Skip whitespace at the end of the argument list. */
10627 while (tok > arg && (*tok == ' ' || *tok == '\t'))
10628 tok--;
10629
10630 /* Find the beginning of the last token.
10631 This is the value of the parameter. */
10632 while (tok > arg && (*tok != ' ' && *tok != '\t'))
10633 tok--;
10634 value_start = tok + 1;
10635
10636 /* Skip whitespace. */
10637 while (tok > arg && (*tok == ' ' || *tok == '\t'))
10638 tok--;
10639
10640 end_tok = tok;
10641
10642 /* Find the beginning of the second to last token.
10643 This is the parameter itself. */
10644 while (tok > arg && (*tok != ' ' && *tok != '\t'))
10645 tok--;
10646 tok++;
10647 toklen = end_tok - tok + 1;
10648
10649 if (toklen == 6 && startswith (tok, "thread"))
10650 {
10651 struct thread_info *thr;
10652 /* At this point we've found a "thread" token, which means
10653 the user is trying to set a watchpoint that triggers
10654 only in a specific thread. */
10655 const char *endp;
10656
10657 if (thread != -1)
10658 error(_("You can specify only one thread."));
10659
10660 /* Extract the thread ID from the next token. */
10661 thr = parse_thread_id (value_start, &endp);
10662
10663 /* Check if the user provided a valid thread ID. */
10664 if (*endp != ' ' && *endp != '\t' && *endp != '\0')
10665 invalid_thread_id_error (value_start);
10666
10667 thread = thr->global_num;
10668 }
10669 else if (toklen == 4 && startswith (tok, "mask"))
10670 {
10671 /* We've found a "mask" token, which means the user wants to
10672 create a hardware watchpoint that is going to have the mask
10673 facility. */
10674 struct value *mask_value, *mark;
10675
10676 if (use_mask)
10677 error(_("You can specify only one mask."));
10678
10679 use_mask = just_location = 1;
10680
10681 mark = value_mark ();
10682 mask_value = parse_to_comma_and_eval (&value_start);
10683 mask = value_as_address (mask_value);
10684 value_free_to_mark (mark);
10685 }
10686 else
10687 /* We didn't recognize what we found. We should stop here. */
10688 break;
10689
10690 /* Truncate the string and get rid of the "parameter value" pair before
10691 the arguments string is parsed by the parse_exp_1 function. */
10692 exp_end = tok;
10693 }
10694 }
10695 else
10696 exp_end = arg;
10697
10698 /* Parse the rest of the arguments. From here on out, everything
10699 is in terms of a newly allocated string instead of the original
10700 ARG. */
10701 innermost_block.reset ();
10702 std::string expression (arg, exp_end - arg);
10703 exp_start = arg = expression.c_str ();
10704 expression_up exp = parse_exp_1 (&arg, 0, 0, 0);
10705 exp_end = arg;
10706 /* Remove trailing whitespace from the expression before saving it.
10707 This makes the eventual display of the expression string a bit
10708 prettier. */
10709 while (exp_end > exp_start && (exp_end[-1] == ' ' || exp_end[-1] == '\t'))
10710 --exp_end;
10711
10712 /* Checking if the expression is not constant. */
10713 if (watchpoint_exp_is_const (exp.get ()))
10714 {
10715 int len;
10716
10717 len = exp_end - exp_start;
10718 while (len > 0 && isspace (exp_start[len - 1]))
10719 len--;
10720 error (_("Cannot watch constant value `%.*s'."), len, exp_start);
10721 }
10722
10723 exp_valid_block = innermost_block.block ();
10724 mark = value_mark ();
10725 fetch_subexp_value (exp.get (), &pc, &val, &result, NULL, just_location);
10726
10727 if (val != NULL && just_location)
10728 {
10729 saved_bitpos = value_bitpos (val);
10730 saved_bitsize = value_bitsize (val);
10731 }
10732
10733 if (just_location)
10734 {
10735 int ret;
10736
10737 exp_valid_block = NULL;
10738 val = value_addr (result);
10739 release_value (val);
10740 value_free_to_mark (mark);
10741
10742 if (use_mask)
10743 {
10744 ret = target_masked_watch_num_registers (value_as_address (val),
10745 mask);
10746 if (ret == -1)
10747 error (_("This target does not support masked watchpoints."));
10748 else if (ret == -2)
10749 error (_("Invalid mask or memory region."));
10750 }
10751 }
10752 else if (val != NULL)
10753 release_value (val);
10754
10755 tok = skip_spaces (arg);
10756 end_tok = skip_to_space (tok);
10757
10758 toklen = end_tok - tok;
10759 if (toklen >= 1 && strncmp (tok, "if", toklen) == 0)
10760 {
10761 innermost_block.reset ();
10762 tok = cond_start = end_tok + 1;
10763 parse_exp_1 (&tok, 0, 0, 0);
10764
10765 /* The watchpoint expression may not be local, but the condition
10766 may still be. E.g.: `watch global if local > 0'. */
10767 cond_exp_valid_block = innermost_block.block ();
10768
10769 cond_end = tok;
10770 }
10771 if (*tok)
10772 error (_("Junk at end of command."));
10773
10774 frame_info *wp_frame = block_innermost_frame (exp_valid_block);
10775
10776 /* Save this because create_internal_breakpoint below invalidates
10777 'wp_frame'. */
10778 frame_id watchpoint_frame = get_frame_id (wp_frame);
10779
10780 /* If the expression is "local", then set up a "watchpoint scope"
10781 breakpoint at the point where we've left the scope of the watchpoint
10782 expression. Create the scope breakpoint before the watchpoint, so
10783 that we will encounter it first in bpstat_stop_status. */
10784 if (exp_valid_block != NULL && wp_frame != NULL)
10785 {
10786 frame_id caller_frame_id = frame_unwind_caller_id (wp_frame);
10787
10788 if (frame_id_p (caller_frame_id))
10789 {
10790 gdbarch *caller_arch = frame_unwind_caller_arch (wp_frame);
10791 CORE_ADDR caller_pc = frame_unwind_caller_pc (wp_frame);
10792
10793 scope_breakpoint
10794 = create_internal_breakpoint (caller_arch, caller_pc,
10795 bp_watchpoint_scope,
10796 &momentary_breakpoint_ops);
10797
10798 /* create_internal_breakpoint could invalidate WP_FRAME. */
10799 wp_frame = NULL;
10800
10801 scope_breakpoint->enable_state = bp_enabled;
10802
10803 /* Automatically delete the breakpoint when it hits. */
10804 scope_breakpoint->disposition = disp_del;
10805
10806 /* Only break in the proper frame (help with recursion). */
10807 scope_breakpoint->frame_id = caller_frame_id;
10808
10809 /* Set the address at which we will stop. */
10810 scope_breakpoint->loc->gdbarch = caller_arch;
10811 scope_breakpoint->loc->requested_address = caller_pc;
10812 scope_breakpoint->loc->address
10813 = adjust_breakpoint_address (scope_breakpoint->loc->gdbarch,
10814 scope_breakpoint->loc->requested_address,
10815 scope_breakpoint->type);
10816 }
10817 }
10818
10819 /* Now set up the breakpoint. We create all watchpoints as hardware
10820 watchpoints here even if hardware watchpoints are turned off, a call
10821 to update_watchpoint later in this function will cause the type to
10822 drop back to bp_watchpoint (software watchpoint) if required. */
10823
10824 if (accessflag == hw_read)
10825 bp_type = bp_read_watchpoint;
10826 else if (accessflag == hw_access)
10827 bp_type = bp_access_watchpoint;
10828 else
10829 bp_type = bp_hardware_watchpoint;
10830
10831 std::unique_ptr<watchpoint> w (new watchpoint ());
10832
10833 if (use_mask)
10834 init_raw_breakpoint_without_location (w.get (), NULL, bp_type,
10835 &masked_watchpoint_breakpoint_ops);
10836 else
10837 init_raw_breakpoint_without_location (w.get (), NULL, bp_type,
10838 &watchpoint_breakpoint_ops);
10839 w->thread = thread;
10840 w->disposition = disp_donttouch;
10841 w->pspace = current_program_space;
10842 w->exp = std::move (exp);
10843 w->exp_valid_block = exp_valid_block;
10844 w->cond_exp_valid_block = cond_exp_valid_block;
10845 if (just_location)
10846 {
10847 struct type *t = value_type (val);
10848 CORE_ADDR addr = value_as_address (val);
10849
10850 w->exp_string_reparse
10851 = current_language->la_watch_location_expression (t, addr).release ();
10852
10853 w->exp_string = xstrprintf ("-location %.*s",
10854 (int) (exp_end - exp_start), exp_start);
10855 }
10856 else
10857 w->exp_string = savestring (exp_start, exp_end - exp_start);
10858
10859 if (use_mask)
10860 {
10861 w->hw_wp_mask = mask;
10862 }
10863 else
10864 {
10865 w->val = val;
10866 w->val_bitpos = saved_bitpos;
10867 w->val_bitsize = saved_bitsize;
10868 w->val_valid = 1;
10869 }
10870
10871 if (cond_start)
10872 w->cond_string = savestring (cond_start, cond_end - cond_start);
10873 else
10874 w->cond_string = 0;
10875
10876 if (frame_id_p (watchpoint_frame))
10877 {
10878 w->watchpoint_frame = watchpoint_frame;
10879 w->watchpoint_thread = inferior_ptid;
10880 }
10881 else
10882 {
10883 w->watchpoint_frame = null_frame_id;
10884 w->watchpoint_thread = null_ptid;
10885 }
10886
10887 if (scope_breakpoint != NULL)
10888 {
10889 /* The scope breakpoint is related to the watchpoint. We will
10890 need to act on them together. */
10891 w->related_breakpoint = scope_breakpoint;
10892 scope_breakpoint->related_breakpoint = w.get ();
10893 }
10894
10895 if (!just_location)
10896 value_free_to_mark (mark);
10897
10898 /* Finally update the new watchpoint. This creates the locations
10899 that should be inserted. */
10900 update_watchpoint (w.get (), 1);
10901
10902 install_breakpoint (internal, std::move (w), 1);
10903 }
10904
10905 /* Return count of debug registers needed to watch the given expression.
10906 If the watchpoint cannot be handled in hardware return zero. */
10907
10908 static int
10909 can_use_hardware_watchpoint (struct value *v)
10910 {
10911 int found_memory_cnt = 0;
10912 struct value *head = v;
10913
10914 /* Did the user specifically forbid us to use hardware watchpoints? */
10915 if (!can_use_hw_watchpoints)
10916 return 0;
10917
10918 /* Make sure that the value of the expression depends only upon
10919 memory contents, and values computed from them within GDB. If we
10920 find any register references or function calls, we can't use a
10921 hardware watchpoint.
10922
10923 The idea here is that evaluating an expression generates a series
10924 of values, one holding the value of every subexpression. (The
10925 expression a*b+c has five subexpressions: a, b, a*b, c, and
10926 a*b+c.) GDB's values hold almost enough information to establish
10927 the criteria given above --- they identify memory lvalues,
10928 register lvalues, computed values, etcetera. So we can evaluate
10929 the expression, and then scan the chain of values that leaves
10930 behind to decide whether we can detect any possible change to the
10931 expression's final value using only hardware watchpoints.
10932
10933 However, I don't think that the values returned by inferior
10934 function calls are special in any way. So this function may not
10935 notice that an expression involving an inferior function call
10936 can't be watched with hardware watchpoints. FIXME. */
10937 for (; v; v = value_next (v))
10938 {
10939 if (VALUE_LVAL (v) == lval_memory)
10940 {
10941 if (v != head && value_lazy (v))
10942 /* A lazy memory lvalue in the chain is one that GDB never
10943 needed to fetch; we either just used its address (e.g.,
10944 `a' in `a.b') or we never needed it at all (e.g., `a'
10945 in `a,b'). This doesn't apply to HEAD; if that is
10946 lazy then it was not readable, but watch it anyway. */
10947 ;
10948 else
10949 {
10950 /* Ahh, memory we actually used! Check if we can cover
10951 it with hardware watchpoints. */
10952 struct type *vtype = check_typedef (value_type (v));
10953
10954 /* We only watch structs and arrays if user asked for it
10955 explicitly, never if they just happen to appear in a
10956 middle of some value chain. */
10957 if (v == head
10958 || (TYPE_CODE (vtype) != TYPE_CODE_STRUCT
10959 && TYPE_CODE (vtype) != TYPE_CODE_ARRAY))
10960 {
10961 CORE_ADDR vaddr = value_address (v);
10962 int len;
10963 int num_regs;
10964
10965 len = (target_exact_watchpoints
10966 && is_scalar_type_recursive (vtype))?
10967 1 : TYPE_LENGTH (value_type (v));
10968
10969 num_regs = target_region_ok_for_hw_watchpoint (vaddr, len);
10970 if (!num_regs)
10971 return 0;
10972 else
10973 found_memory_cnt += num_regs;
10974 }
10975 }
10976 }
10977 else if (VALUE_LVAL (v) != not_lval
10978 && deprecated_value_modifiable (v) == 0)
10979 return 0; /* These are values from the history (e.g., $1). */
10980 else if (VALUE_LVAL (v) == lval_register)
10981 return 0; /* Cannot watch a register with a HW watchpoint. */
10982 }
10983
10984 /* The expression itself looks suitable for using a hardware
10985 watchpoint, but give the target machine a chance to reject it. */
10986 return found_memory_cnt;
10987 }
10988
10989 void
10990 watch_command_wrapper (const char *arg, int from_tty, int internal)
10991 {
10992 watch_command_1 (arg, hw_write, from_tty, 0, internal);
10993 }
10994
10995 /* A helper function that looks for the "-location" argument and then
10996 calls watch_command_1. */
10997
10998 static void
10999 watch_maybe_just_location (const char *arg, int accessflag, int from_tty)
11000 {
11001 int just_location = 0;
11002
11003 if (arg
11004 && (check_for_argument (&arg, "-location", sizeof ("-location") - 1)
11005 || check_for_argument (&arg, "-l", sizeof ("-l") - 1)))
11006 {
11007 arg = skip_spaces (arg);
11008 just_location = 1;
11009 }
11010
11011 watch_command_1 (arg, accessflag, from_tty, just_location, 0);
11012 }
11013
11014 static void
11015 watch_command (const char *arg, int from_tty)
11016 {
11017 watch_maybe_just_location (arg, hw_write, from_tty);
11018 }
11019
11020 void
11021 rwatch_command_wrapper (const char *arg, int from_tty, int internal)
11022 {
11023 watch_command_1 (arg, hw_read, from_tty, 0, internal);
11024 }
11025
11026 static void
11027 rwatch_command (const char *arg, int from_tty)
11028 {
11029 watch_maybe_just_location (arg, hw_read, from_tty);
11030 }
11031
11032 void
11033 awatch_command_wrapper (const char *arg, int from_tty, int internal)
11034 {
11035 watch_command_1 (arg, hw_access, from_tty, 0, internal);
11036 }
11037
11038 static void
11039 awatch_command (const char *arg, int from_tty)
11040 {
11041 watch_maybe_just_location (arg, hw_access, from_tty);
11042 }
11043 \f
11044
11045 /* Data for the FSM that manages the until(location)/advance commands
11046 in infcmd.c. Here because it uses the mechanisms of
11047 breakpoints. */
11048
11049 struct until_break_fsm
11050 {
11051 /* The base class. */
11052 struct thread_fsm thread_fsm;
11053
11054 /* The thread that as current when the command was executed. */
11055 int thread;
11056
11057 /* The breakpoint set at the destination location. */
11058 struct breakpoint *location_breakpoint;
11059
11060 /* Breakpoint set at the return address in the caller frame. May be
11061 NULL. */
11062 struct breakpoint *caller_breakpoint;
11063 };
11064
11065 static void until_break_fsm_clean_up (struct thread_fsm *self,
11066 struct thread_info *thread);
11067 static int until_break_fsm_should_stop (struct thread_fsm *self,
11068 struct thread_info *thread);
11069 static enum async_reply_reason
11070 until_break_fsm_async_reply_reason (struct thread_fsm *self);
11071
11072 /* until_break_fsm's vtable. */
11073
11074 static struct thread_fsm_ops until_break_fsm_ops =
11075 {
11076 NULL, /* dtor */
11077 until_break_fsm_clean_up,
11078 until_break_fsm_should_stop,
11079 NULL, /* return_value */
11080 until_break_fsm_async_reply_reason,
11081 };
11082
11083 /* Allocate a new until_break_command_fsm. */
11084
11085 static struct until_break_fsm *
11086 new_until_break_fsm (struct interp *cmd_interp, int thread,
11087 breakpoint_up &&location_breakpoint,
11088 breakpoint_up &&caller_breakpoint)
11089 {
11090 struct until_break_fsm *sm;
11091
11092 sm = XCNEW (struct until_break_fsm);
11093 thread_fsm_ctor (&sm->thread_fsm, &until_break_fsm_ops, cmd_interp);
11094
11095 sm->thread = thread;
11096 sm->location_breakpoint = location_breakpoint.release ();
11097 sm->caller_breakpoint = caller_breakpoint.release ();
11098
11099 return sm;
11100 }
11101
11102 /* Implementation of the 'should_stop' FSM method for the
11103 until(location)/advance commands. */
11104
11105 static int
11106 until_break_fsm_should_stop (struct thread_fsm *self,
11107 struct thread_info *tp)
11108 {
11109 struct until_break_fsm *sm = (struct until_break_fsm *) self;
11110
11111 if (bpstat_find_breakpoint (tp->control.stop_bpstat,
11112 sm->location_breakpoint) != NULL
11113 || (sm->caller_breakpoint != NULL
11114 && bpstat_find_breakpoint (tp->control.stop_bpstat,
11115 sm->caller_breakpoint) != NULL))
11116 thread_fsm_set_finished (self);
11117
11118 return 1;
11119 }
11120
11121 /* Implementation of the 'clean_up' FSM method for the
11122 until(location)/advance commands. */
11123
11124 static void
11125 until_break_fsm_clean_up (struct thread_fsm *self,
11126 struct thread_info *thread)
11127 {
11128 struct until_break_fsm *sm = (struct until_break_fsm *) self;
11129
11130 /* Clean up our temporary breakpoints. */
11131 if (sm->location_breakpoint != NULL)
11132 {
11133 delete_breakpoint (sm->location_breakpoint);
11134 sm->location_breakpoint = NULL;
11135 }
11136 if (sm->caller_breakpoint != NULL)
11137 {
11138 delete_breakpoint (sm->caller_breakpoint);
11139 sm->caller_breakpoint = NULL;
11140 }
11141 delete_longjmp_breakpoint (sm->thread);
11142 }
11143
11144 /* Implementation of the 'async_reply_reason' FSM method for the
11145 until(location)/advance commands. */
11146
11147 static enum async_reply_reason
11148 until_break_fsm_async_reply_reason (struct thread_fsm *self)
11149 {
11150 return EXEC_ASYNC_LOCATION_REACHED;
11151 }
11152
11153 void
11154 until_break_command (const char *arg, int from_tty, int anywhere)
11155 {
11156 struct frame_info *frame;
11157 struct gdbarch *frame_gdbarch;
11158 struct frame_id stack_frame_id;
11159 struct frame_id caller_frame_id;
11160 struct cleanup *old_chain;
11161 int thread;
11162 struct thread_info *tp;
11163 struct until_break_fsm *sm;
11164
11165 clear_proceed_status (0);
11166
11167 /* Set a breakpoint where the user wants it and at return from
11168 this function. */
11169
11170 event_location_up location = string_to_event_location (&arg, current_language);
11171
11172 std::vector<symtab_and_line> sals
11173 = (last_displayed_sal_is_valid ()
11174 ? decode_line_1 (location.get (), DECODE_LINE_FUNFIRSTLINE, NULL,
11175 get_last_displayed_symtab (),
11176 get_last_displayed_line ())
11177 : decode_line_1 (location.get (), DECODE_LINE_FUNFIRSTLINE,
11178 NULL, (struct symtab *) NULL, 0));
11179
11180 if (sals.size () != 1)
11181 error (_("Couldn't get information on specified line."));
11182
11183 symtab_and_line &sal = sals[0];
11184
11185 if (*arg)
11186 error (_("Junk at end of arguments."));
11187
11188 resolve_sal_pc (&sal);
11189
11190 tp = inferior_thread ();
11191 thread = tp->global_num;
11192
11193 old_chain = make_cleanup (null_cleanup, NULL);
11194
11195 /* Note linespec handling above invalidates the frame chain.
11196 Installing a breakpoint also invalidates the frame chain (as it
11197 may need to switch threads), so do any frame handling before
11198 that. */
11199
11200 frame = get_selected_frame (NULL);
11201 frame_gdbarch = get_frame_arch (frame);
11202 stack_frame_id = get_stack_frame_id (frame);
11203 caller_frame_id = frame_unwind_caller_id (frame);
11204
11205 /* Keep within the current frame, or in frames called by the current
11206 one. */
11207
11208 breakpoint_up caller_breakpoint;
11209 if (frame_id_p (caller_frame_id))
11210 {
11211 struct symtab_and_line sal2;
11212 struct gdbarch *caller_gdbarch;
11213
11214 sal2 = find_pc_line (frame_unwind_caller_pc (frame), 0);
11215 sal2.pc = frame_unwind_caller_pc (frame);
11216 caller_gdbarch = frame_unwind_caller_arch (frame);
11217 caller_breakpoint = set_momentary_breakpoint (caller_gdbarch,
11218 sal2,
11219 caller_frame_id,
11220 bp_until);
11221
11222 set_longjmp_breakpoint (tp, caller_frame_id);
11223 make_cleanup (delete_longjmp_breakpoint_cleanup, &thread);
11224 }
11225
11226 /* set_momentary_breakpoint could invalidate FRAME. */
11227 frame = NULL;
11228
11229 breakpoint_up location_breakpoint;
11230 if (anywhere)
11231 /* If the user told us to continue until a specified location,
11232 we don't specify a frame at which we need to stop. */
11233 location_breakpoint = set_momentary_breakpoint (frame_gdbarch, sal,
11234 null_frame_id, bp_until);
11235 else
11236 /* Otherwise, specify the selected frame, because we want to stop
11237 only at the very same frame. */
11238 location_breakpoint = set_momentary_breakpoint (frame_gdbarch, sal,
11239 stack_frame_id, bp_until);
11240
11241 sm = new_until_break_fsm (command_interp (), tp->global_num,
11242 std::move (location_breakpoint),
11243 std::move (caller_breakpoint));
11244 tp->thread_fsm = &sm->thread_fsm;
11245
11246 discard_cleanups (old_chain);
11247
11248 proceed (-1, GDB_SIGNAL_DEFAULT);
11249 }
11250
11251 /* This function attempts to parse an optional "if <cond>" clause
11252 from the arg string. If one is not found, it returns NULL.
11253
11254 Else, it returns a pointer to the condition string. (It does not
11255 attempt to evaluate the string against a particular block.) And,
11256 it updates arg to point to the first character following the parsed
11257 if clause in the arg string. */
11258
11259 const char *
11260 ep_parse_optional_if_clause (const char **arg)
11261 {
11262 const char *cond_string;
11263
11264 if (((*arg)[0] != 'i') || ((*arg)[1] != 'f') || !isspace ((*arg)[2]))
11265 return NULL;
11266
11267 /* Skip the "if" keyword. */
11268 (*arg) += 2;
11269
11270 /* Skip any extra leading whitespace, and record the start of the
11271 condition string. */
11272 *arg = skip_spaces (*arg);
11273 cond_string = *arg;
11274
11275 /* Assume that the condition occupies the remainder of the arg
11276 string. */
11277 (*arg) += strlen (cond_string);
11278
11279 return cond_string;
11280 }
11281
11282 /* Commands to deal with catching events, such as signals, exceptions,
11283 process start/exit, etc. */
11284
11285 typedef enum
11286 {
11287 catch_fork_temporary, catch_vfork_temporary,
11288 catch_fork_permanent, catch_vfork_permanent
11289 }
11290 catch_fork_kind;
11291
11292 static void
11293 catch_fork_command_1 (const char *arg, int from_tty,
11294 struct cmd_list_element *command)
11295 {
11296 struct gdbarch *gdbarch = get_current_arch ();
11297 const char *cond_string = NULL;
11298 catch_fork_kind fork_kind;
11299 int tempflag;
11300
11301 fork_kind = (catch_fork_kind) (uintptr_t) get_cmd_context (command);
11302 tempflag = (fork_kind == catch_fork_temporary
11303 || fork_kind == catch_vfork_temporary);
11304
11305 if (!arg)
11306 arg = "";
11307 arg = skip_spaces (arg);
11308
11309 /* The allowed syntax is:
11310 catch [v]fork
11311 catch [v]fork if <cond>
11312
11313 First, check if there's an if clause. */
11314 cond_string = ep_parse_optional_if_clause (&arg);
11315
11316 if ((*arg != '\0') && !isspace (*arg))
11317 error (_("Junk at end of arguments."));
11318
11319 /* If this target supports it, create a fork or vfork catchpoint
11320 and enable reporting of such events. */
11321 switch (fork_kind)
11322 {
11323 case catch_fork_temporary:
11324 case catch_fork_permanent:
11325 create_fork_vfork_event_catchpoint (gdbarch, tempflag, cond_string,
11326 &catch_fork_breakpoint_ops);
11327 break;
11328 case catch_vfork_temporary:
11329 case catch_vfork_permanent:
11330 create_fork_vfork_event_catchpoint (gdbarch, tempflag, cond_string,
11331 &catch_vfork_breakpoint_ops);
11332 break;
11333 default:
11334 error (_("unsupported or unknown fork kind; cannot catch it"));
11335 break;
11336 }
11337 }
11338
11339 static void
11340 catch_exec_command_1 (const char *arg, int from_tty,
11341 struct cmd_list_element *command)
11342 {
11343 struct gdbarch *gdbarch = get_current_arch ();
11344 int tempflag;
11345 const char *cond_string = NULL;
11346
11347 tempflag = get_cmd_context (command) == CATCH_TEMPORARY;
11348
11349 if (!arg)
11350 arg = "";
11351 arg = skip_spaces (arg);
11352
11353 /* The allowed syntax is:
11354 catch exec
11355 catch exec if <cond>
11356
11357 First, check if there's an if clause. */
11358 cond_string = ep_parse_optional_if_clause (&arg);
11359
11360 if ((*arg != '\0') && !isspace (*arg))
11361 error (_("Junk at end of arguments."));
11362
11363 std::unique_ptr<exec_catchpoint> c (new exec_catchpoint ());
11364 init_catchpoint (c.get (), gdbarch, tempflag, cond_string,
11365 &catch_exec_breakpoint_ops);
11366 c->exec_pathname = NULL;
11367
11368 install_breakpoint (0, std::move (c), 1);
11369 }
11370
11371 void
11372 init_ada_exception_breakpoint (struct breakpoint *b,
11373 struct gdbarch *gdbarch,
11374 struct symtab_and_line sal,
11375 const char *addr_string,
11376 const struct breakpoint_ops *ops,
11377 int tempflag,
11378 int enabled,
11379 int from_tty)
11380 {
11381 if (from_tty)
11382 {
11383 struct gdbarch *loc_gdbarch = get_sal_arch (sal);
11384 if (!loc_gdbarch)
11385 loc_gdbarch = gdbarch;
11386
11387 describe_other_breakpoints (loc_gdbarch,
11388 sal.pspace, sal.pc, sal.section, -1);
11389 /* FIXME: brobecker/2006-12-28: Actually, re-implement a special
11390 version for exception catchpoints, because two catchpoints
11391 used for different exception names will use the same address.
11392 In this case, a "breakpoint ... also set at..." warning is
11393 unproductive. Besides, the warning phrasing is also a bit
11394 inappropriate, we should use the word catchpoint, and tell
11395 the user what type of catchpoint it is. The above is good
11396 enough for now, though. */
11397 }
11398
11399 init_raw_breakpoint (b, gdbarch, sal, bp_breakpoint, ops);
11400
11401 b->enable_state = enabled ? bp_enabled : bp_disabled;
11402 b->disposition = tempflag ? disp_del : disp_donttouch;
11403 b->location = string_to_event_location (&addr_string,
11404 language_def (language_ada));
11405 b->language = language_ada;
11406 }
11407
11408 static void
11409 catch_command (const char *arg, int from_tty)
11410 {
11411 error (_("Catch requires an event name."));
11412 }
11413 \f
11414
11415 static void
11416 tcatch_command (const char *arg, int from_tty)
11417 {
11418 error (_("Catch requires an event name."));
11419 }
11420
11421 /* Compare two breakpoints and return a strcmp-like result. */
11422
11423 static int
11424 compare_breakpoints (const breakpoint *a, const breakpoint *b)
11425 {
11426 uintptr_t ua = (uintptr_t) a;
11427 uintptr_t ub = (uintptr_t) b;
11428
11429 if (a->number < b->number)
11430 return -1;
11431 else if (a->number > b->number)
11432 return 1;
11433
11434 /* Now sort by address, in case we see, e..g, two breakpoints with
11435 the number 0. */
11436 if (ua < ub)
11437 return -1;
11438 return ua > ub ? 1 : 0;
11439 }
11440
11441 /* Delete breakpoints by address or line. */
11442
11443 static void
11444 clear_command (const char *arg, int from_tty)
11445 {
11446 struct breakpoint *b;
11447 int default_match;
11448
11449 std::vector<symtab_and_line> decoded_sals;
11450 symtab_and_line last_sal;
11451 gdb::array_view<symtab_and_line> sals;
11452 if (arg)
11453 {
11454 decoded_sals
11455 = decode_line_with_current_source (arg,
11456 (DECODE_LINE_FUNFIRSTLINE
11457 | DECODE_LINE_LIST_MODE));
11458 default_match = 0;
11459 sals = decoded_sals;
11460 }
11461 else
11462 {
11463 /* Set sal's line, symtab, pc, and pspace to the values
11464 corresponding to the last call to print_frame_info. If the
11465 codepoint is not valid, this will set all the fields to 0. */
11466 last_sal = get_last_displayed_sal ();
11467 if (last_sal.symtab == 0)
11468 error (_("No source file specified."));
11469
11470 default_match = 1;
11471 sals = last_sal;
11472 }
11473
11474 /* We don't call resolve_sal_pc here. That's not as bad as it
11475 seems, because all existing breakpoints typically have both
11476 file/line and pc set. So, if clear is given file/line, we can
11477 match this to existing breakpoint without obtaining pc at all.
11478
11479 We only support clearing given the address explicitly
11480 present in breakpoint table. Say, we've set breakpoint
11481 at file:line. There were several PC values for that file:line,
11482 due to optimization, all in one block.
11483
11484 We've picked one PC value. If "clear" is issued with another
11485 PC corresponding to the same file:line, the breakpoint won't
11486 be cleared. We probably can still clear the breakpoint, but
11487 since the other PC value is never presented to user, user
11488 can only find it by guessing, and it does not seem important
11489 to support that. */
11490
11491 /* For each line spec given, delete bps which correspond to it. Do
11492 it in two passes, solely to preserve the current behavior that
11493 from_tty is forced true if we delete more than one
11494 breakpoint. */
11495
11496 std::vector<struct breakpoint *> found;
11497 for (const auto &sal : sals)
11498 {
11499 const char *sal_fullname;
11500
11501 /* If exact pc given, clear bpts at that pc.
11502 If line given (pc == 0), clear all bpts on specified line.
11503 If defaulting, clear all bpts on default line
11504 or at default pc.
11505
11506 defaulting sal.pc != 0 tests to do
11507
11508 0 1 pc
11509 1 1 pc _and_ line
11510 0 0 line
11511 1 0 <can't happen> */
11512
11513 sal_fullname = (sal.symtab == NULL
11514 ? NULL : symtab_to_fullname (sal.symtab));
11515
11516 /* Find all matching breakpoints and add them to 'found'. */
11517 ALL_BREAKPOINTS (b)
11518 {
11519 int match = 0;
11520 /* Are we going to delete b? */
11521 if (b->type != bp_none && !is_watchpoint (b))
11522 {
11523 struct bp_location *loc = b->loc;
11524 for (; loc; loc = loc->next)
11525 {
11526 /* If the user specified file:line, don't allow a PC
11527 match. This matches historical gdb behavior. */
11528 int pc_match = (!sal.explicit_line
11529 && sal.pc
11530 && (loc->pspace == sal.pspace)
11531 && (loc->address == sal.pc)
11532 && (!section_is_overlay (loc->section)
11533 || loc->section == sal.section));
11534 int line_match = 0;
11535
11536 if ((default_match || sal.explicit_line)
11537 && loc->symtab != NULL
11538 && sal_fullname != NULL
11539 && sal.pspace == loc->pspace
11540 && loc->line_number == sal.line
11541 && filename_cmp (symtab_to_fullname (loc->symtab),
11542 sal_fullname) == 0)
11543 line_match = 1;
11544
11545 if (pc_match || line_match)
11546 {
11547 match = 1;
11548 break;
11549 }
11550 }
11551 }
11552
11553 if (match)
11554 found.push_back (b);
11555 }
11556 }
11557
11558 /* Now go thru the 'found' chain and delete them. */
11559 if (found.empty ())
11560 {
11561 if (arg)
11562 error (_("No breakpoint at %s."), arg);
11563 else
11564 error (_("No breakpoint at this line."));
11565 }
11566
11567 /* Remove duplicates from the vec. */
11568 std::sort (found.begin (), found.end (),
11569 [] (const breakpoint *a, const breakpoint *b)
11570 {
11571 return compare_breakpoints (a, b) < 0;
11572 });
11573 found.erase (std::unique (found.begin (), found.end (),
11574 [] (const breakpoint *a, const breakpoint *b)
11575 {
11576 return compare_breakpoints (a, b) == 0;
11577 }),
11578 found.end ());
11579
11580 if (found.size () > 1)
11581 from_tty = 1; /* Always report if deleted more than one. */
11582 if (from_tty)
11583 {
11584 if (found.size () == 1)
11585 printf_unfiltered (_("Deleted breakpoint "));
11586 else
11587 printf_unfiltered (_("Deleted breakpoints "));
11588 }
11589
11590 for (breakpoint *iter : found)
11591 {
11592 if (from_tty)
11593 printf_unfiltered ("%d ", iter->number);
11594 delete_breakpoint (iter);
11595 }
11596 if (from_tty)
11597 putchar_unfiltered ('\n');
11598 }
11599 \f
11600 /* Delete breakpoint in BS if they are `delete' breakpoints and
11601 all breakpoints that are marked for deletion, whether hit or not.
11602 This is called after any breakpoint is hit, or after errors. */
11603
11604 void
11605 breakpoint_auto_delete (bpstat bs)
11606 {
11607 struct breakpoint *b, *b_tmp;
11608
11609 for (; bs; bs = bs->next)
11610 if (bs->breakpoint_at
11611 && bs->breakpoint_at->disposition == disp_del
11612 && bs->stop)
11613 delete_breakpoint (bs->breakpoint_at);
11614
11615 ALL_BREAKPOINTS_SAFE (b, b_tmp)
11616 {
11617 if (b->disposition == disp_del_at_next_stop)
11618 delete_breakpoint (b);
11619 }
11620 }
11621
11622 /* A comparison function for bp_location AP and BP being interfaced to
11623 qsort. Sort elements primarily by their ADDRESS (no matter what
11624 does breakpoint_address_is_meaningful say for its OWNER),
11625 secondarily by ordering first permanent elements and
11626 terciarily just ensuring the array is sorted stable way despite
11627 qsort being an unstable algorithm. */
11628
11629 static int
11630 bp_locations_compare (const void *ap, const void *bp)
11631 {
11632 const struct bp_location *a = *(const struct bp_location **) ap;
11633 const struct bp_location *b = *(const struct bp_location **) bp;
11634
11635 if (a->address != b->address)
11636 return (a->address > b->address) - (a->address < b->address);
11637
11638 /* Sort locations at the same address by their pspace number, keeping
11639 locations of the same inferior (in a multi-inferior environment)
11640 grouped. */
11641
11642 if (a->pspace->num != b->pspace->num)
11643 return ((a->pspace->num > b->pspace->num)
11644 - (a->pspace->num < b->pspace->num));
11645
11646 /* Sort permanent breakpoints first. */
11647 if (a->permanent != b->permanent)
11648 return (a->permanent < b->permanent) - (a->permanent > b->permanent);
11649
11650 /* Make the internal GDB representation stable across GDB runs
11651 where A and B memory inside GDB can differ. Breakpoint locations of
11652 the same type at the same address can be sorted in arbitrary order. */
11653
11654 if (a->owner->number != b->owner->number)
11655 return ((a->owner->number > b->owner->number)
11656 - (a->owner->number < b->owner->number));
11657
11658 return (a > b) - (a < b);
11659 }
11660
11661 /* Set bp_locations_placed_address_before_address_max and
11662 bp_locations_shadow_len_after_address_max according to the current
11663 content of the bp_locations array. */
11664
11665 static void
11666 bp_locations_target_extensions_update (void)
11667 {
11668 struct bp_location *bl, **blp_tmp;
11669
11670 bp_locations_placed_address_before_address_max = 0;
11671 bp_locations_shadow_len_after_address_max = 0;
11672
11673 ALL_BP_LOCATIONS (bl, blp_tmp)
11674 {
11675 CORE_ADDR start, end, addr;
11676
11677 if (!bp_location_has_shadow (bl))
11678 continue;
11679
11680 start = bl->target_info.placed_address;
11681 end = start + bl->target_info.shadow_len;
11682
11683 gdb_assert (bl->address >= start);
11684 addr = bl->address - start;
11685 if (addr > bp_locations_placed_address_before_address_max)
11686 bp_locations_placed_address_before_address_max = addr;
11687
11688 /* Zero SHADOW_LEN would not pass bp_location_has_shadow. */
11689
11690 gdb_assert (bl->address < end);
11691 addr = end - bl->address;
11692 if (addr > bp_locations_shadow_len_after_address_max)
11693 bp_locations_shadow_len_after_address_max = addr;
11694 }
11695 }
11696
11697 /* Download tracepoint locations if they haven't been. */
11698
11699 static void
11700 download_tracepoint_locations (void)
11701 {
11702 struct breakpoint *b;
11703 enum tribool can_download_tracepoint = TRIBOOL_UNKNOWN;
11704
11705 scoped_restore_current_pspace_and_thread restore_pspace_thread;
11706
11707 ALL_TRACEPOINTS (b)
11708 {
11709 struct bp_location *bl;
11710 struct tracepoint *t;
11711 int bp_location_downloaded = 0;
11712
11713 if ((b->type == bp_fast_tracepoint
11714 ? !may_insert_fast_tracepoints
11715 : !may_insert_tracepoints))
11716 continue;
11717
11718 if (can_download_tracepoint == TRIBOOL_UNKNOWN)
11719 {
11720 if (target_can_download_tracepoint ())
11721 can_download_tracepoint = TRIBOOL_TRUE;
11722 else
11723 can_download_tracepoint = TRIBOOL_FALSE;
11724 }
11725
11726 if (can_download_tracepoint == TRIBOOL_FALSE)
11727 break;
11728
11729 for (bl = b->loc; bl; bl = bl->next)
11730 {
11731 /* In tracepoint, locations are _never_ duplicated, so
11732 should_be_inserted is equivalent to
11733 unduplicated_should_be_inserted. */
11734 if (!should_be_inserted (bl) || bl->inserted)
11735 continue;
11736
11737 switch_to_program_space_and_thread (bl->pspace);
11738
11739 target_download_tracepoint (bl);
11740
11741 bl->inserted = 1;
11742 bp_location_downloaded = 1;
11743 }
11744 t = (struct tracepoint *) b;
11745 t->number_on_target = b->number;
11746 if (bp_location_downloaded)
11747 observer_notify_breakpoint_modified (b);
11748 }
11749 }
11750
11751 /* Swap the insertion/duplication state between two locations. */
11752
11753 static void
11754 swap_insertion (struct bp_location *left, struct bp_location *right)
11755 {
11756 const int left_inserted = left->inserted;
11757 const int left_duplicate = left->duplicate;
11758 const int left_needs_update = left->needs_update;
11759 const struct bp_target_info left_target_info = left->target_info;
11760
11761 /* Locations of tracepoints can never be duplicated. */
11762 if (is_tracepoint (left->owner))
11763 gdb_assert (!left->duplicate);
11764 if (is_tracepoint (right->owner))
11765 gdb_assert (!right->duplicate);
11766
11767 left->inserted = right->inserted;
11768 left->duplicate = right->duplicate;
11769 left->needs_update = right->needs_update;
11770 left->target_info = right->target_info;
11771 right->inserted = left_inserted;
11772 right->duplicate = left_duplicate;
11773 right->needs_update = left_needs_update;
11774 right->target_info = left_target_info;
11775 }
11776
11777 /* Force the re-insertion of the locations at ADDRESS. This is called
11778 once a new/deleted/modified duplicate location is found and we are evaluating
11779 conditions on the target's side. Such conditions need to be updated on
11780 the target. */
11781
11782 static void
11783 force_breakpoint_reinsertion (struct bp_location *bl)
11784 {
11785 struct bp_location **locp = NULL, **loc2p;
11786 struct bp_location *loc;
11787 CORE_ADDR address = 0;
11788 int pspace_num;
11789
11790 address = bl->address;
11791 pspace_num = bl->pspace->num;
11792
11793 /* This is only meaningful if the target is
11794 evaluating conditions and if the user has
11795 opted for condition evaluation on the target's
11796 side. */
11797 if (gdb_evaluates_breakpoint_condition_p ()
11798 || !target_supports_evaluation_of_breakpoint_conditions ())
11799 return;
11800
11801 /* Flag all breakpoint locations with this address and
11802 the same program space as the location
11803 as "its condition has changed". We need to
11804 update the conditions on the target's side. */
11805 ALL_BP_LOCATIONS_AT_ADDR (loc2p, locp, address)
11806 {
11807 loc = *loc2p;
11808
11809 if (!is_breakpoint (loc->owner)
11810 || pspace_num != loc->pspace->num)
11811 continue;
11812
11813 /* Flag the location appropriately. We use a different state to
11814 let everyone know that we already updated the set of locations
11815 with addr bl->address and program space bl->pspace. This is so
11816 we don't have to keep calling these functions just to mark locations
11817 that have already been marked. */
11818 loc->condition_changed = condition_updated;
11819
11820 /* Free the agent expression bytecode as well. We will compute
11821 it later on. */
11822 loc->cond_bytecode.reset ();
11823 }
11824 }
11825 /* Called whether new breakpoints are created, or existing breakpoints
11826 deleted, to update the global location list and recompute which
11827 locations are duplicate of which.
11828
11829 The INSERT_MODE flag determines whether locations may not, may, or
11830 shall be inserted now. See 'enum ugll_insert_mode' for more
11831 info. */
11832
11833 static void
11834 update_global_location_list (enum ugll_insert_mode insert_mode)
11835 {
11836 struct breakpoint *b;
11837 struct bp_location **locp, *loc;
11838 /* Last breakpoint location address that was marked for update. */
11839 CORE_ADDR last_addr = 0;
11840 /* Last breakpoint location program space that was marked for update. */
11841 int last_pspace_num = -1;
11842
11843 /* Used in the duplicates detection below. When iterating over all
11844 bp_locations, points to the first bp_location of a given address.
11845 Breakpoints and watchpoints of different types are never
11846 duplicates of each other. Keep one pointer for each type of
11847 breakpoint/watchpoint, so we only need to loop over all locations
11848 once. */
11849 struct bp_location *bp_loc_first; /* breakpoint */
11850 struct bp_location *wp_loc_first; /* hardware watchpoint */
11851 struct bp_location *awp_loc_first; /* access watchpoint */
11852 struct bp_location *rwp_loc_first; /* read watchpoint */
11853
11854 /* Saved former bp_locations array which we compare against the newly
11855 built bp_locations from the current state of ALL_BREAKPOINTS. */
11856 struct bp_location **old_locp;
11857 unsigned old_locations_count;
11858 gdb::unique_xmalloc_ptr<struct bp_location *> old_locations (bp_locations);
11859
11860 old_locations_count = bp_locations_count;
11861 bp_locations = NULL;
11862 bp_locations_count = 0;
11863
11864 ALL_BREAKPOINTS (b)
11865 for (loc = b->loc; loc; loc = loc->next)
11866 bp_locations_count++;
11867
11868 bp_locations = XNEWVEC (struct bp_location *, bp_locations_count);
11869 locp = bp_locations;
11870 ALL_BREAKPOINTS (b)
11871 for (loc = b->loc; loc; loc = loc->next)
11872 *locp++ = loc;
11873 qsort (bp_locations, bp_locations_count, sizeof (*bp_locations),
11874 bp_locations_compare);
11875
11876 bp_locations_target_extensions_update ();
11877
11878 /* Identify bp_location instances that are no longer present in the
11879 new list, and therefore should be freed. Note that it's not
11880 necessary that those locations should be removed from inferior --
11881 if there's another location at the same address (previously
11882 marked as duplicate), we don't need to remove/insert the
11883 location.
11884
11885 LOCP is kept in sync with OLD_LOCP, each pointing to the current
11886 and former bp_location array state respectively. */
11887
11888 locp = bp_locations;
11889 for (old_locp = old_locations.get ();
11890 old_locp < old_locations.get () + old_locations_count;
11891 old_locp++)
11892 {
11893 struct bp_location *old_loc = *old_locp;
11894 struct bp_location **loc2p;
11895
11896 /* Tells if 'old_loc' is found among the new locations. If
11897 not, we have to free it. */
11898 int found_object = 0;
11899 /* Tells if the location should remain inserted in the target. */
11900 int keep_in_target = 0;
11901 int removed = 0;
11902
11903 /* Skip LOCP entries which will definitely never be needed.
11904 Stop either at or being the one matching OLD_LOC. */
11905 while (locp < bp_locations + bp_locations_count
11906 && (*locp)->address < old_loc->address)
11907 locp++;
11908
11909 for (loc2p = locp;
11910 (loc2p < bp_locations + bp_locations_count
11911 && (*loc2p)->address == old_loc->address);
11912 loc2p++)
11913 {
11914 /* Check if this is a new/duplicated location or a duplicated
11915 location that had its condition modified. If so, we want to send
11916 its condition to the target if evaluation of conditions is taking
11917 place there. */
11918 if ((*loc2p)->condition_changed == condition_modified
11919 && (last_addr != old_loc->address
11920 || last_pspace_num != old_loc->pspace->num))
11921 {
11922 force_breakpoint_reinsertion (*loc2p);
11923 last_pspace_num = old_loc->pspace->num;
11924 }
11925
11926 if (*loc2p == old_loc)
11927 found_object = 1;
11928 }
11929
11930 /* We have already handled this address, update it so that we don't
11931 have to go through updates again. */
11932 last_addr = old_loc->address;
11933
11934 /* Target-side condition evaluation: Handle deleted locations. */
11935 if (!found_object)
11936 force_breakpoint_reinsertion (old_loc);
11937
11938 /* If this location is no longer present, and inserted, look if
11939 there's maybe a new location at the same address. If so,
11940 mark that one inserted, and don't remove this one. This is
11941 needed so that we don't have a time window where a breakpoint
11942 at certain location is not inserted. */
11943
11944 if (old_loc->inserted)
11945 {
11946 /* If the location is inserted now, we might have to remove
11947 it. */
11948
11949 if (found_object && should_be_inserted (old_loc))
11950 {
11951 /* The location is still present in the location list,
11952 and still should be inserted. Don't do anything. */
11953 keep_in_target = 1;
11954 }
11955 else
11956 {
11957 /* This location still exists, but it won't be kept in the
11958 target since it may have been disabled. We proceed to
11959 remove its target-side condition. */
11960
11961 /* The location is either no longer present, or got
11962 disabled. See if there's another location at the
11963 same address, in which case we don't need to remove
11964 this one from the target. */
11965
11966 /* OLD_LOC comes from existing struct breakpoint. */
11967 if (breakpoint_address_is_meaningful (old_loc->owner))
11968 {
11969 for (loc2p = locp;
11970 (loc2p < bp_locations + bp_locations_count
11971 && (*loc2p)->address == old_loc->address);
11972 loc2p++)
11973 {
11974 struct bp_location *loc2 = *loc2p;
11975
11976 if (breakpoint_locations_match (loc2, old_loc))
11977 {
11978 /* Read watchpoint locations are switched to
11979 access watchpoints, if the former are not
11980 supported, but the latter are. */
11981 if (is_hardware_watchpoint (old_loc->owner))
11982 {
11983 gdb_assert (is_hardware_watchpoint (loc2->owner));
11984 loc2->watchpoint_type = old_loc->watchpoint_type;
11985 }
11986
11987 /* loc2 is a duplicated location. We need to check
11988 if it should be inserted in case it will be
11989 unduplicated. */
11990 if (loc2 != old_loc
11991 && unduplicated_should_be_inserted (loc2))
11992 {
11993 swap_insertion (old_loc, loc2);
11994 keep_in_target = 1;
11995 break;
11996 }
11997 }
11998 }
11999 }
12000 }
12001
12002 if (!keep_in_target)
12003 {
12004 if (remove_breakpoint (old_loc))
12005 {
12006 /* This is just about all we can do. We could keep
12007 this location on the global list, and try to
12008 remove it next time, but there's no particular
12009 reason why we will succeed next time.
12010
12011 Note that at this point, old_loc->owner is still
12012 valid, as delete_breakpoint frees the breakpoint
12013 only after calling us. */
12014 printf_filtered (_("warning: Error removing "
12015 "breakpoint %d\n"),
12016 old_loc->owner->number);
12017 }
12018 removed = 1;
12019 }
12020 }
12021
12022 if (!found_object)
12023 {
12024 if (removed && target_is_non_stop_p ()
12025 && need_moribund_for_location_type (old_loc))
12026 {
12027 /* This location was removed from the target. In
12028 non-stop mode, a race condition is possible where
12029 we've removed a breakpoint, but stop events for that
12030 breakpoint are already queued and will arrive later.
12031 We apply an heuristic to be able to distinguish such
12032 SIGTRAPs from other random SIGTRAPs: we keep this
12033 breakpoint location for a bit, and will retire it
12034 after we see some number of events. The theory here
12035 is that reporting of events should, "on the average",
12036 be fair, so after a while we'll see events from all
12037 threads that have anything of interest, and no longer
12038 need to keep this breakpoint location around. We
12039 don't hold locations forever so to reduce chances of
12040 mistaking a non-breakpoint SIGTRAP for a breakpoint
12041 SIGTRAP.
12042
12043 The heuristic failing can be disastrous on
12044 decr_pc_after_break targets.
12045
12046 On decr_pc_after_break targets, like e.g., x86-linux,
12047 if we fail to recognize a late breakpoint SIGTRAP,
12048 because events_till_retirement has reached 0 too
12049 soon, we'll fail to do the PC adjustment, and report
12050 a random SIGTRAP to the user. When the user resumes
12051 the inferior, it will most likely immediately crash
12052 with SIGILL/SIGBUS/SIGSEGV, or worse, get silently
12053 corrupted, because of being resumed e.g., in the
12054 middle of a multi-byte instruction, or skipped a
12055 one-byte instruction. This was actually seen happen
12056 on native x86-linux, and should be less rare on
12057 targets that do not support new thread events, like
12058 remote, due to the heuristic depending on
12059 thread_count.
12060
12061 Mistaking a random SIGTRAP for a breakpoint trap
12062 causes similar symptoms (PC adjustment applied when
12063 it shouldn't), but then again, playing with SIGTRAPs
12064 behind the debugger's back is asking for trouble.
12065
12066 Since hardware watchpoint traps are always
12067 distinguishable from other traps, so we don't need to
12068 apply keep hardware watchpoint moribund locations
12069 around. We simply always ignore hardware watchpoint
12070 traps we can no longer explain. */
12071
12072 old_loc->events_till_retirement = 3 * (thread_count () + 1);
12073 old_loc->owner = NULL;
12074
12075 VEC_safe_push (bp_location_p, moribund_locations, old_loc);
12076 }
12077 else
12078 {
12079 old_loc->owner = NULL;
12080 decref_bp_location (&old_loc);
12081 }
12082 }
12083 }
12084
12085 /* Rescan breakpoints at the same address and section, marking the
12086 first one as "first" and any others as "duplicates". This is so
12087 that the bpt instruction is only inserted once. If we have a
12088 permanent breakpoint at the same place as BPT, make that one the
12089 official one, and the rest as duplicates. Permanent breakpoints
12090 are sorted first for the same address.
12091
12092 Do the same for hardware watchpoints, but also considering the
12093 watchpoint's type (regular/access/read) and length. */
12094
12095 bp_loc_first = NULL;
12096 wp_loc_first = NULL;
12097 awp_loc_first = NULL;
12098 rwp_loc_first = NULL;
12099 ALL_BP_LOCATIONS (loc, locp)
12100 {
12101 /* ALL_BP_LOCATIONS bp_location has LOC->OWNER always
12102 non-NULL. */
12103 struct bp_location **loc_first_p;
12104 b = loc->owner;
12105
12106 if (!unduplicated_should_be_inserted (loc)
12107 || !breakpoint_address_is_meaningful (b)
12108 /* Don't detect duplicate for tracepoint locations because they are
12109 never duplicated. See the comments in field `duplicate' of
12110 `struct bp_location'. */
12111 || is_tracepoint (b))
12112 {
12113 /* Clear the condition modification flag. */
12114 loc->condition_changed = condition_unchanged;
12115 continue;
12116 }
12117
12118 if (b->type == bp_hardware_watchpoint)
12119 loc_first_p = &wp_loc_first;
12120 else if (b->type == bp_read_watchpoint)
12121 loc_first_p = &rwp_loc_first;
12122 else if (b->type == bp_access_watchpoint)
12123 loc_first_p = &awp_loc_first;
12124 else
12125 loc_first_p = &bp_loc_first;
12126
12127 if (*loc_first_p == NULL
12128 || (overlay_debugging && loc->section != (*loc_first_p)->section)
12129 || !breakpoint_locations_match (loc, *loc_first_p))
12130 {
12131 *loc_first_p = loc;
12132 loc->duplicate = 0;
12133
12134 if (is_breakpoint (loc->owner) && loc->condition_changed)
12135 {
12136 loc->needs_update = 1;
12137 /* Clear the condition modification flag. */
12138 loc->condition_changed = condition_unchanged;
12139 }
12140 continue;
12141 }
12142
12143
12144 /* This and the above ensure the invariant that the first location
12145 is not duplicated, and is the inserted one.
12146 All following are marked as duplicated, and are not inserted. */
12147 if (loc->inserted)
12148 swap_insertion (loc, *loc_first_p);
12149 loc->duplicate = 1;
12150
12151 /* Clear the condition modification flag. */
12152 loc->condition_changed = condition_unchanged;
12153 }
12154
12155 if (insert_mode == UGLL_INSERT || breakpoints_should_be_inserted_now ())
12156 {
12157 if (insert_mode != UGLL_DONT_INSERT)
12158 insert_breakpoint_locations ();
12159 else
12160 {
12161 /* Even though the caller told us to not insert new
12162 locations, we may still need to update conditions on the
12163 target's side of breakpoints that were already inserted
12164 if the target is evaluating breakpoint conditions. We
12165 only update conditions for locations that are marked
12166 "needs_update". */
12167 update_inserted_breakpoint_locations ();
12168 }
12169 }
12170
12171 if (insert_mode != UGLL_DONT_INSERT)
12172 download_tracepoint_locations ();
12173 }
12174
12175 void
12176 breakpoint_retire_moribund (void)
12177 {
12178 struct bp_location *loc;
12179 int ix;
12180
12181 for (ix = 0; VEC_iterate (bp_location_p, moribund_locations, ix, loc); ++ix)
12182 if (--(loc->events_till_retirement) == 0)
12183 {
12184 decref_bp_location (&loc);
12185 VEC_unordered_remove (bp_location_p, moribund_locations, ix);
12186 --ix;
12187 }
12188 }
12189
12190 static void
12191 update_global_location_list_nothrow (enum ugll_insert_mode insert_mode)
12192 {
12193
12194 TRY
12195 {
12196 update_global_location_list (insert_mode);
12197 }
12198 CATCH (e, RETURN_MASK_ERROR)
12199 {
12200 }
12201 END_CATCH
12202 }
12203
12204 /* Clear BKP from a BPS. */
12205
12206 static void
12207 bpstat_remove_bp_location (bpstat bps, struct breakpoint *bpt)
12208 {
12209 bpstat bs;
12210
12211 for (bs = bps; bs; bs = bs->next)
12212 if (bs->breakpoint_at == bpt)
12213 {
12214 bs->breakpoint_at = NULL;
12215 bs->old_val = NULL;
12216 /* bs->commands will be freed later. */
12217 }
12218 }
12219
12220 /* Callback for iterate_over_threads. */
12221 static int
12222 bpstat_remove_breakpoint_callback (struct thread_info *th, void *data)
12223 {
12224 struct breakpoint *bpt = (struct breakpoint *) data;
12225
12226 bpstat_remove_bp_location (th->control.stop_bpstat, bpt);
12227 return 0;
12228 }
12229
12230 /* Helper for breakpoint and tracepoint breakpoint_ops->mention
12231 callbacks. */
12232
12233 static void
12234 say_where (struct breakpoint *b)
12235 {
12236 struct value_print_options opts;
12237
12238 get_user_print_options (&opts);
12239
12240 /* i18n: cagney/2005-02-11: Below needs to be merged into a
12241 single string. */
12242 if (b->loc == NULL)
12243 {
12244 /* For pending locations, the output differs slightly based
12245 on b->extra_string. If this is non-NULL, it contains either
12246 a condition or dprintf arguments. */
12247 if (b->extra_string == NULL)
12248 {
12249 printf_filtered (_(" (%s) pending."),
12250 event_location_to_string (b->location.get ()));
12251 }
12252 else if (b->type == bp_dprintf)
12253 {
12254 printf_filtered (_(" (%s,%s) pending."),
12255 event_location_to_string (b->location.get ()),
12256 b->extra_string);
12257 }
12258 else
12259 {
12260 printf_filtered (_(" (%s %s) pending."),
12261 event_location_to_string (b->location.get ()),
12262 b->extra_string);
12263 }
12264 }
12265 else
12266 {
12267 if (opts.addressprint || b->loc->symtab == NULL)
12268 {
12269 printf_filtered (" at ");
12270 fputs_filtered (paddress (b->loc->gdbarch, b->loc->address),
12271 gdb_stdout);
12272 }
12273 if (b->loc->symtab != NULL)
12274 {
12275 /* If there is a single location, we can print the location
12276 more nicely. */
12277 if (b->loc->next == NULL)
12278 printf_filtered (": file %s, line %d.",
12279 symtab_to_filename_for_display (b->loc->symtab),
12280 b->loc->line_number);
12281 else
12282 /* This is not ideal, but each location may have a
12283 different file name, and this at least reflects the
12284 real situation somewhat. */
12285 printf_filtered (": %s.",
12286 event_location_to_string (b->location.get ()));
12287 }
12288
12289 if (b->loc->next)
12290 {
12291 struct bp_location *loc = b->loc;
12292 int n = 0;
12293 for (; loc; loc = loc->next)
12294 ++n;
12295 printf_filtered (" (%d locations)", n);
12296 }
12297 }
12298 }
12299
12300 /* Default bp_location_ops methods. */
12301
12302 static void
12303 bp_location_dtor (struct bp_location *self)
12304 {
12305 xfree (self->function_name);
12306 }
12307
12308 static const struct bp_location_ops bp_location_ops =
12309 {
12310 bp_location_dtor
12311 };
12312
12313 /* Destructor for the breakpoint base class. */
12314
12315 breakpoint::~breakpoint ()
12316 {
12317 xfree (this->cond_string);
12318 xfree (this->extra_string);
12319 xfree (this->filter);
12320 }
12321
12322 static struct bp_location *
12323 base_breakpoint_allocate_location (struct breakpoint *self)
12324 {
12325 return new bp_location (&bp_location_ops, self);
12326 }
12327
12328 static void
12329 base_breakpoint_re_set (struct breakpoint *b)
12330 {
12331 /* Nothing to re-set. */
12332 }
12333
12334 #define internal_error_pure_virtual_called() \
12335 gdb_assert_not_reached ("pure virtual function called")
12336
12337 static int
12338 base_breakpoint_insert_location (struct bp_location *bl)
12339 {
12340 internal_error_pure_virtual_called ();
12341 }
12342
12343 static int
12344 base_breakpoint_remove_location (struct bp_location *bl,
12345 enum remove_bp_reason reason)
12346 {
12347 internal_error_pure_virtual_called ();
12348 }
12349
12350 static int
12351 base_breakpoint_breakpoint_hit (const struct bp_location *bl,
12352 const address_space *aspace,
12353 CORE_ADDR bp_addr,
12354 const struct target_waitstatus *ws)
12355 {
12356 internal_error_pure_virtual_called ();
12357 }
12358
12359 static void
12360 base_breakpoint_check_status (bpstat bs)
12361 {
12362 /* Always stop. */
12363 }
12364
12365 /* A "works_in_software_mode" breakpoint_ops method that just internal
12366 errors. */
12367
12368 static int
12369 base_breakpoint_works_in_software_mode (const struct breakpoint *b)
12370 {
12371 internal_error_pure_virtual_called ();
12372 }
12373
12374 /* A "resources_needed" breakpoint_ops method that just internal
12375 errors. */
12376
12377 static int
12378 base_breakpoint_resources_needed (const struct bp_location *bl)
12379 {
12380 internal_error_pure_virtual_called ();
12381 }
12382
12383 static enum print_stop_action
12384 base_breakpoint_print_it (bpstat bs)
12385 {
12386 internal_error_pure_virtual_called ();
12387 }
12388
12389 static void
12390 base_breakpoint_print_one_detail (const struct breakpoint *self,
12391 struct ui_out *uiout)
12392 {
12393 /* nothing */
12394 }
12395
12396 static void
12397 base_breakpoint_print_mention (struct breakpoint *b)
12398 {
12399 internal_error_pure_virtual_called ();
12400 }
12401
12402 static void
12403 base_breakpoint_print_recreate (struct breakpoint *b, struct ui_file *fp)
12404 {
12405 internal_error_pure_virtual_called ();
12406 }
12407
12408 static void
12409 base_breakpoint_create_sals_from_location
12410 (const struct event_location *location,
12411 struct linespec_result *canonical,
12412 enum bptype type_wanted)
12413 {
12414 internal_error_pure_virtual_called ();
12415 }
12416
12417 static void
12418 base_breakpoint_create_breakpoints_sal (struct gdbarch *gdbarch,
12419 struct linespec_result *c,
12420 gdb::unique_xmalloc_ptr<char> cond_string,
12421 gdb::unique_xmalloc_ptr<char> extra_string,
12422 enum bptype type_wanted,
12423 enum bpdisp disposition,
12424 int thread,
12425 int task, int ignore_count,
12426 const struct breakpoint_ops *o,
12427 int from_tty, int enabled,
12428 int internal, unsigned flags)
12429 {
12430 internal_error_pure_virtual_called ();
12431 }
12432
12433 static std::vector<symtab_and_line>
12434 base_breakpoint_decode_location (struct breakpoint *b,
12435 const struct event_location *location,
12436 struct program_space *search_pspace)
12437 {
12438 internal_error_pure_virtual_called ();
12439 }
12440
12441 /* The default 'explains_signal' method. */
12442
12443 static int
12444 base_breakpoint_explains_signal (struct breakpoint *b, enum gdb_signal sig)
12445 {
12446 return 1;
12447 }
12448
12449 /* The default "after_condition_true" method. */
12450
12451 static void
12452 base_breakpoint_after_condition_true (struct bpstats *bs)
12453 {
12454 /* Nothing to do. */
12455 }
12456
12457 struct breakpoint_ops base_breakpoint_ops =
12458 {
12459 base_breakpoint_allocate_location,
12460 base_breakpoint_re_set,
12461 base_breakpoint_insert_location,
12462 base_breakpoint_remove_location,
12463 base_breakpoint_breakpoint_hit,
12464 base_breakpoint_check_status,
12465 base_breakpoint_resources_needed,
12466 base_breakpoint_works_in_software_mode,
12467 base_breakpoint_print_it,
12468 NULL,
12469 base_breakpoint_print_one_detail,
12470 base_breakpoint_print_mention,
12471 base_breakpoint_print_recreate,
12472 base_breakpoint_create_sals_from_location,
12473 base_breakpoint_create_breakpoints_sal,
12474 base_breakpoint_decode_location,
12475 base_breakpoint_explains_signal,
12476 base_breakpoint_after_condition_true,
12477 };
12478
12479 /* Default breakpoint_ops methods. */
12480
12481 static void
12482 bkpt_re_set (struct breakpoint *b)
12483 {
12484 /* FIXME: is this still reachable? */
12485 if (breakpoint_event_location_empty_p (b))
12486 {
12487 /* Anything without a location can't be re-set. */
12488 delete_breakpoint (b);
12489 return;
12490 }
12491
12492 breakpoint_re_set_default (b);
12493 }
12494
12495 static int
12496 bkpt_insert_location (struct bp_location *bl)
12497 {
12498 CORE_ADDR addr = bl->target_info.reqstd_address;
12499
12500 bl->target_info.kind = breakpoint_kind (bl, &addr);
12501 bl->target_info.placed_address = addr;
12502
12503 if (bl->loc_type == bp_loc_hardware_breakpoint)
12504 return target_insert_hw_breakpoint (bl->gdbarch, &bl->target_info);
12505 else
12506 return target_insert_breakpoint (bl->gdbarch, &bl->target_info);
12507 }
12508
12509 static int
12510 bkpt_remove_location (struct bp_location *bl, enum remove_bp_reason reason)
12511 {
12512 if (bl->loc_type == bp_loc_hardware_breakpoint)
12513 return target_remove_hw_breakpoint (bl->gdbarch, &bl->target_info);
12514 else
12515 return target_remove_breakpoint (bl->gdbarch, &bl->target_info, reason);
12516 }
12517
12518 static int
12519 bkpt_breakpoint_hit (const struct bp_location *bl,
12520 const address_space *aspace, CORE_ADDR bp_addr,
12521 const struct target_waitstatus *ws)
12522 {
12523 if (ws->kind != TARGET_WAITKIND_STOPPED
12524 || ws->value.sig != GDB_SIGNAL_TRAP)
12525 return 0;
12526
12527 if (!breakpoint_address_match (bl->pspace->aspace, bl->address,
12528 aspace, bp_addr))
12529 return 0;
12530
12531 if (overlay_debugging /* unmapped overlay section */
12532 && section_is_overlay (bl->section)
12533 && !section_is_mapped (bl->section))
12534 return 0;
12535
12536 return 1;
12537 }
12538
12539 static int
12540 dprintf_breakpoint_hit (const struct bp_location *bl,
12541 const address_space *aspace, CORE_ADDR bp_addr,
12542 const struct target_waitstatus *ws)
12543 {
12544 if (dprintf_style == dprintf_style_agent
12545 && target_can_run_breakpoint_commands ())
12546 {
12547 /* An agent-style dprintf never causes a stop. If we see a trap
12548 for this address it must be for a breakpoint that happens to
12549 be set at the same address. */
12550 return 0;
12551 }
12552
12553 return bkpt_breakpoint_hit (bl, aspace, bp_addr, ws);
12554 }
12555
12556 static int
12557 bkpt_resources_needed (const struct bp_location *bl)
12558 {
12559 gdb_assert (bl->owner->type == bp_hardware_breakpoint);
12560
12561 return 1;
12562 }
12563
12564 static enum print_stop_action
12565 bkpt_print_it (bpstat bs)
12566 {
12567 struct breakpoint *b;
12568 const struct bp_location *bl;
12569 int bp_temp;
12570 struct ui_out *uiout = current_uiout;
12571
12572 gdb_assert (bs->bp_location_at != NULL);
12573
12574 bl = bs->bp_location_at;
12575 b = bs->breakpoint_at;
12576
12577 bp_temp = b->disposition == disp_del;
12578 if (bl->address != bl->requested_address)
12579 breakpoint_adjustment_warning (bl->requested_address,
12580 bl->address,
12581 b->number, 1);
12582 annotate_breakpoint (b->number);
12583 maybe_print_thread_hit_breakpoint (uiout);
12584
12585 if (bp_temp)
12586 uiout->text ("Temporary breakpoint ");
12587 else
12588 uiout->text ("Breakpoint ");
12589 if (uiout->is_mi_like_p ())
12590 {
12591 uiout->field_string ("reason",
12592 async_reason_lookup (EXEC_ASYNC_BREAKPOINT_HIT));
12593 uiout->field_string ("disp", bpdisp_text (b->disposition));
12594 }
12595 uiout->field_int ("bkptno", b->number);
12596 uiout->text (", ");
12597
12598 return PRINT_SRC_AND_LOC;
12599 }
12600
12601 static void
12602 bkpt_print_mention (struct breakpoint *b)
12603 {
12604 if (current_uiout->is_mi_like_p ())
12605 return;
12606
12607 switch (b->type)
12608 {
12609 case bp_breakpoint:
12610 case bp_gnu_ifunc_resolver:
12611 if (b->disposition == disp_del)
12612 printf_filtered (_("Temporary breakpoint"));
12613 else
12614 printf_filtered (_("Breakpoint"));
12615 printf_filtered (_(" %d"), b->number);
12616 if (b->type == bp_gnu_ifunc_resolver)
12617 printf_filtered (_(" at gnu-indirect-function resolver"));
12618 break;
12619 case bp_hardware_breakpoint:
12620 printf_filtered (_("Hardware assisted breakpoint %d"), b->number);
12621 break;
12622 case bp_dprintf:
12623 printf_filtered (_("Dprintf %d"), b->number);
12624 break;
12625 }
12626
12627 say_where (b);
12628 }
12629
12630 static void
12631 bkpt_print_recreate (struct breakpoint *tp, struct ui_file *fp)
12632 {
12633 if (tp->type == bp_breakpoint && tp->disposition == disp_del)
12634 fprintf_unfiltered (fp, "tbreak");
12635 else if (tp->type == bp_breakpoint)
12636 fprintf_unfiltered (fp, "break");
12637 else if (tp->type == bp_hardware_breakpoint
12638 && tp->disposition == disp_del)
12639 fprintf_unfiltered (fp, "thbreak");
12640 else if (tp->type == bp_hardware_breakpoint)
12641 fprintf_unfiltered (fp, "hbreak");
12642 else
12643 internal_error (__FILE__, __LINE__,
12644 _("unhandled breakpoint type %d"), (int) tp->type);
12645
12646 fprintf_unfiltered (fp, " %s",
12647 event_location_to_string (tp->location.get ()));
12648
12649 /* Print out extra_string if this breakpoint is pending. It might
12650 contain, for example, conditions that were set by the user. */
12651 if (tp->loc == NULL && tp->extra_string != NULL)
12652 fprintf_unfiltered (fp, " %s", tp->extra_string);
12653
12654 print_recreate_thread (tp, fp);
12655 }
12656
12657 static void
12658 bkpt_create_sals_from_location (const struct event_location *location,
12659 struct linespec_result *canonical,
12660 enum bptype type_wanted)
12661 {
12662 create_sals_from_location_default (location, canonical, type_wanted);
12663 }
12664
12665 static void
12666 bkpt_create_breakpoints_sal (struct gdbarch *gdbarch,
12667 struct linespec_result *canonical,
12668 gdb::unique_xmalloc_ptr<char> cond_string,
12669 gdb::unique_xmalloc_ptr<char> extra_string,
12670 enum bptype type_wanted,
12671 enum bpdisp disposition,
12672 int thread,
12673 int task, int ignore_count,
12674 const struct breakpoint_ops *ops,
12675 int from_tty, int enabled,
12676 int internal, unsigned flags)
12677 {
12678 create_breakpoints_sal_default (gdbarch, canonical,
12679 std::move (cond_string),
12680 std::move (extra_string),
12681 type_wanted,
12682 disposition, thread, task,
12683 ignore_count, ops, from_tty,
12684 enabled, internal, flags);
12685 }
12686
12687 static std::vector<symtab_and_line>
12688 bkpt_decode_location (struct breakpoint *b,
12689 const struct event_location *location,
12690 struct program_space *search_pspace)
12691 {
12692 return decode_location_default (b, location, search_pspace);
12693 }
12694
12695 /* Virtual table for internal breakpoints. */
12696
12697 static void
12698 internal_bkpt_re_set (struct breakpoint *b)
12699 {
12700 switch (b->type)
12701 {
12702 /* Delete overlay event and longjmp master breakpoints; they
12703 will be reset later by breakpoint_re_set. */
12704 case bp_overlay_event:
12705 case bp_longjmp_master:
12706 case bp_std_terminate_master:
12707 case bp_exception_master:
12708 delete_breakpoint (b);
12709 break;
12710
12711 /* This breakpoint is special, it's set up when the inferior
12712 starts and we really don't want to touch it. */
12713 case bp_shlib_event:
12714
12715 /* Like bp_shlib_event, this breakpoint type is special. Once
12716 it is set up, we do not want to touch it. */
12717 case bp_thread_event:
12718 break;
12719 }
12720 }
12721
12722 static void
12723 internal_bkpt_check_status (bpstat bs)
12724 {
12725 if (bs->breakpoint_at->type == bp_shlib_event)
12726 {
12727 /* If requested, stop when the dynamic linker notifies GDB of
12728 events. This allows the user to get control and place
12729 breakpoints in initializer routines for dynamically loaded
12730 objects (among other things). */
12731 bs->stop = stop_on_solib_events;
12732 bs->print = stop_on_solib_events;
12733 }
12734 else
12735 bs->stop = 0;
12736 }
12737
12738 static enum print_stop_action
12739 internal_bkpt_print_it (bpstat bs)
12740 {
12741 struct breakpoint *b;
12742
12743 b = bs->breakpoint_at;
12744
12745 switch (b->type)
12746 {
12747 case bp_shlib_event:
12748 /* Did we stop because the user set the stop_on_solib_events
12749 variable? (If so, we report this as a generic, "Stopped due
12750 to shlib event" message.) */
12751 print_solib_event (0);
12752 break;
12753
12754 case bp_thread_event:
12755 /* Not sure how we will get here.
12756 GDB should not stop for these breakpoints. */
12757 printf_filtered (_("Thread Event Breakpoint: gdb should not stop!\n"));
12758 break;
12759
12760 case bp_overlay_event:
12761 /* By analogy with the thread event, GDB should not stop for these. */
12762 printf_filtered (_("Overlay Event Breakpoint: gdb should not stop!\n"));
12763 break;
12764
12765 case bp_longjmp_master:
12766 /* These should never be enabled. */
12767 printf_filtered (_("Longjmp Master Breakpoint: gdb should not stop!\n"));
12768 break;
12769
12770 case bp_std_terminate_master:
12771 /* These should never be enabled. */
12772 printf_filtered (_("std::terminate Master Breakpoint: "
12773 "gdb should not stop!\n"));
12774 break;
12775
12776 case bp_exception_master:
12777 /* These should never be enabled. */
12778 printf_filtered (_("Exception Master Breakpoint: "
12779 "gdb should not stop!\n"));
12780 break;
12781 }
12782
12783 return PRINT_NOTHING;
12784 }
12785
12786 static void
12787 internal_bkpt_print_mention (struct breakpoint *b)
12788 {
12789 /* Nothing to mention. These breakpoints are internal. */
12790 }
12791
12792 /* Virtual table for momentary breakpoints */
12793
12794 static void
12795 momentary_bkpt_re_set (struct breakpoint *b)
12796 {
12797 /* Keep temporary breakpoints, which can be encountered when we step
12798 over a dlopen call and solib_add is resetting the breakpoints.
12799 Otherwise these should have been blown away via the cleanup chain
12800 or by breakpoint_init_inferior when we rerun the executable. */
12801 }
12802
12803 static void
12804 momentary_bkpt_check_status (bpstat bs)
12805 {
12806 /* Nothing. The point of these breakpoints is causing a stop. */
12807 }
12808
12809 static enum print_stop_action
12810 momentary_bkpt_print_it (bpstat bs)
12811 {
12812 return PRINT_UNKNOWN;
12813 }
12814
12815 static void
12816 momentary_bkpt_print_mention (struct breakpoint *b)
12817 {
12818 /* Nothing to mention. These breakpoints are internal. */
12819 }
12820
12821 /* Ensure INITIATING_FRAME is cleared when no such breakpoint exists.
12822
12823 It gets cleared already on the removal of the first one of such placed
12824 breakpoints. This is OK as they get all removed altogether. */
12825
12826 longjmp_breakpoint::~longjmp_breakpoint ()
12827 {
12828 thread_info *tp = find_thread_global_id (this->thread);
12829
12830 if (tp != NULL)
12831 tp->initiating_frame = null_frame_id;
12832 }
12833
12834 /* Specific methods for probe breakpoints. */
12835
12836 static int
12837 bkpt_probe_insert_location (struct bp_location *bl)
12838 {
12839 int v = bkpt_insert_location (bl);
12840
12841 if (v == 0)
12842 {
12843 /* The insertion was successful, now let's set the probe's semaphore
12844 if needed. */
12845 bl->probe.prob->set_semaphore (bl->probe.objfile, bl->gdbarch);
12846 }
12847
12848 return v;
12849 }
12850
12851 static int
12852 bkpt_probe_remove_location (struct bp_location *bl,
12853 enum remove_bp_reason reason)
12854 {
12855 /* Let's clear the semaphore before removing the location. */
12856 bl->probe.prob->clear_semaphore (bl->probe.objfile, bl->gdbarch);
12857
12858 return bkpt_remove_location (bl, reason);
12859 }
12860
12861 static void
12862 bkpt_probe_create_sals_from_location (const struct event_location *location,
12863 struct linespec_result *canonical,
12864 enum bptype type_wanted)
12865 {
12866 struct linespec_sals lsal;
12867
12868 lsal.sals = parse_probes (location, NULL, canonical);
12869 lsal.canonical
12870 = xstrdup (event_location_to_string (canonical->location.get ()));
12871 canonical->lsals.push_back (std::move (lsal));
12872 }
12873
12874 static std::vector<symtab_and_line>
12875 bkpt_probe_decode_location (struct breakpoint *b,
12876 const struct event_location *location,
12877 struct program_space *search_pspace)
12878 {
12879 std::vector<symtab_and_line> sals = parse_probes (location, search_pspace, NULL);
12880 if (sals.empty ())
12881 error (_("probe not found"));
12882 return sals;
12883 }
12884
12885 /* The breakpoint_ops structure to be used in tracepoints. */
12886
12887 static void
12888 tracepoint_re_set (struct breakpoint *b)
12889 {
12890 breakpoint_re_set_default (b);
12891 }
12892
12893 static int
12894 tracepoint_breakpoint_hit (const struct bp_location *bl,
12895 const address_space *aspace, CORE_ADDR bp_addr,
12896 const struct target_waitstatus *ws)
12897 {
12898 /* By definition, the inferior does not report stops at
12899 tracepoints. */
12900 return 0;
12901 }
12902
12903 static void
12904 tracepoint_print_one_detail (const struct breakpoint *self,
12905 struct ui_out *uiout)
12906 {
12907 struct tracepoint *tp = (struct tracepoint *) self;
12908 if (tp->static_trace_marker_id)
12909 {
12910 gdb_assert (self->type == bp_static_tracepoint);
12911
12912 uiout->text ("\tmarker id is ");
12913 uiout->field_string ("static-tracepoint-marker-string-id",
12914 tp->static_trace_marker_id);
12915 uiout->text ("\n");
12916 }
12917 }
12918
12919 static void
12920 tracepoint_print_mention (struct breakpoint *b)
12921 {
12922 if (current_uiout->is_mi_like_p ())
12923 return;
12924
12925 switch (b->type)
12926 {
12927 case bp_tracepoint:
12928 printf_filtered (_("Tracepoint"));
12929 printf_filtered (_(" %d"), b->number);
12930 break;
12931 case bp_fast_tracepoint:
12932 printf_filtered (_("Fast tracepoint"));
12933 printf_filtered (_(" %d"), b->number);
12934 break;
12935 case bp_static_tracepoint:
12936 printf_filtered (_("Static tracepoint"));
12937 printf_filtered (_(" %d"), b->number);
12938 break;
12939 default:
12940 internal_error (__FILE__, __LINE__,
12941 _("unhandled tracepoint type %d"), (int) b->type);
12942 }
12943
12944 say_where (b);
12945 }
12946
12947 static void
12948 tracepoint_print_recreate (struct breakpoint *self, struct ui_file *fp)
12949 {
12950 struct tracepoint *tp = (struct tracepoint *) self;
12951
12952 if (self->type == bp_fast_tracepoint)
12953 fprintf_unfiltered (fp, "ftrace");
12954 else if (self->type == bp_static_tracepoint)
12955 fprintf_unfiltered (fp, "strace");
12956 else if (self->type == bp_tracepoint)
12957 fprintf_unfiltered (fp, "trace");
12958 else
12959 internal_error (__FILE__, __LINE__,
12960 _("unhandled tracepoint type %d"), (int) self->type);
12961
12962 fprintf_unfiltered (fp, " %s",
12963 event_location_to_string (self->location.get ()));
12964 print_recreate_thread (self, fp);
12965
12966 if (tp->pass_count)
12967 fprintf_unfiltered (fp, " passcount %d\n", tp->pass_count);
12968 }
12969
12970 static void
12971 tracepoint_create_sals_from_location (const struct event_location *location,
12972 struct linespec_result *canonical,
12973 enum bptype type_wanted)
12974 {
12975 create_sals_from_location_default (location, canonical, type_wanted);
12976 }
12977
12978 static void
12979 tracepoint_create_breakpoints_sal (struct gdbarch *gdbarch,
12980 struct linespec_result *canonical,
12981 gdb::unique_xmalloc_ptr<char> cond_string,
12982 gdb::unique_xmalloc_ptr<char> extra_string,
12983 enum bptype type_wanted,
12984 enum bpdisp disposition,
12985 int thread,
12986 int task, int ignore_count,
12987 const struct breakpoint_ops *ops,
12988 int from_tty, int enabled,
12989 int internal, unsigned flags)
12990 {
12991 create_breakpoints_sal_default (gdbarch, canonical,
12992 std::move (cond_string),
12993 std::move (extra_string),
12994 type_wanted,
12995 disposition, thread, task,
12996 ignore_count, ops, from_tty,
12997 enabled, internal, flags);
12998 }
12999
13000 static std::vector<symtab_and_line>
13001 tracepoint_decode_location (struct breakpoint *b,
13002 const struct event_location *location,
13003 struct program_space *search_pspace)
13004 {
13005 return decode_location_default (b, location, search_pspace);
13006 }
13007
13008 struct breakpoint_ops tracepoint_breakpoint_ops;
13009
13010 /* The breakpoint_ops structure to be use on tracepoints placed in a
13011 static probe. */
13012
13013 static void
13014 tracepoint_probe_create_sals_from_location
13015 (const struct event_location *location,
13016 struct linespec_result *canonical,
13017 enum bptype type_wanted)
13018 {
13019 /* We use the same method for breakpoint on probes. */
13020 bkpt_probe_create_sals_from_location (location, canonical, type_wanted);
13021 }
13022
13023 static std::vector<symtab_and_line>
13024 tracepoint_probe_decode_location (struct breakpoint *b,
13025 const struct event_location *location,
13026 struct program_space *search_pspace)
13027 {
13028 /* We use the same method for breakpoint on probes. */
13029 return bkpt_probe_decode_location (b, location, search_pspace);
13030 }
13031
13032 static struct breakpoint_ops tracepoint_probe_breakpoint_ops;
13033
13034 /* Dprintf breakpoint_ops methods. */
13035
13036 static void
13037 dprintf_re_set (struct breakpoint *b)
13038 {
13039 breakpoint_re_set_default (b);
13040
13041 /* extra_string should never be non-NULL for dprintf. */
13042 gdb_assert (b->extra_string != NULL);
13043
13044 /* 1 - connect to target 1, that can run breakpoint commands.
13045 2 - create a dprintf, which resolves fine.
13046 3 - disconnect from target 1
13047 4 - connect to target 2, that can NOT run breakpoint commands.
13048
13049 After steps #3/#4, you'll want the dprintf command list to
13050 be updated, because target 1 and 2 may well return different
13051 answers for target_can_run_breakpoint_commands().
13052 Given absence of finer grained resetting, we get to do
13053 it all the time. */
13054 if (b->extra_string != NULL)
13055 update_dprintf_command_list (b);
13056 }
13057
13058 /* Implement the "print_recreate" breakpoint_ops method for dprintf. */
13059
13060 static void
13061 dprintf_print_recreate (struct breakpoint *tp, struct ui_file *fp)
13062 {
13063 fprintf_unfiltered (fp, "dprintf %s,%s",
13064 event_location_to_string (tp->location.get ()),
13065 tp->extra_string);
13066 print_recreate_thread (tp, fp);
13067 }
13068
13069 /* Implement the "after_condition_true" breakpoint_ops method for
13070 dprintf.
13071
13072 dprintf's are implemented with regular commands in their command
13073 list, but we run the commands here instead of before presenting the
13074 stop to the user, as dprintf's don't actually cause a stop. This
13075 also makes it so that the commands of multiple dprintfs at the same
13076 address are all handled. */
13077
13078 static void
13079 dprintf_after_condition_true (struct bpstats *bs)
13080 {
13081 struct bpstats tmp_bs;
13082 struct bpstats *tmp_bs_p = &tmp_bs;
13083
13084 /* dprintf's never cause a stop. This wasn't set in the
13085 check_status hook instead because that would make the dprintf's
13086 condition not be evaluated. */
13087 bs->stop = 0;
13088
13089 /* Run the command list here. Take ownership of it instead of
13090 copying. We never want these commands to run later in
13091 bpstat_do_actions, if a breakpoint that causes a stop happens to
13092 be set at same address as this dprintf, or even if running the
13093 commands here throws. */
13094 tmp_bs.commands = bs->commands;
13095 bs->commands = NULL;
13096
13097 bpstat_do_actions_1 (&tmp_bs_p);
13098
13099 /* 'tmp_bs.commands' will usually be NULL by now, but
13100 bpstat_do_actions_1 may return early without processing the whole
13101 list. */
13102 }
13103
13104 /* The breakpoint_ops structure to be used on static tracepoints with
13105 markers (`-m'). */
13106
13107 static void
13108 strace_marker_create_sals_from_location (const struct event_location *location,
13109 struct linespec_result *canonical,
13110 enum bptype type_wanted)
13111 {
13112 struct linespec_sals lsal;
13113 const char *arg_start, *arg;
13114
13115 arg = arg_start = get_linespec_location (location)->spec_string;
13116 lsal.sals = decode_static_tracepoint_spec (&arg);
13117
13118 std::string str (arg_start, arg - arg_start);
13119 const char *ptr = str.c_str ();
13120 canonical->location
13121 = new_linespec_location (&ptr, symbol_name_match_type::FULL);
13122
13123 lsal.canonical
13124 = xstrdup (event_location_to_string (canonical->location.get ()));
13125 canonical->lsals.push_back (std::move (lsal));
13126 }
13127
13128 static void
13129 strace_marker_create_breakpoints_sal (struct gdbarch *gdbarch,
13130 struct linespec_result *canonical,
13131 gdb::unique_xmalloc_ptr<char> cond_string,
13132 gdb::unique_xmalloc_ptr<char> extra_string,
13133 enum bptype type_wanted,
13134 enum bpdisp disposition,
13135 int thread,
13136 int task, int ignore_count,
13137 const struct breakpoint_ops *ops,
13138 int from_tty, int enabled,
13139 int internal, unsigned flags)
13140 {
13141 const linespec_sals &lsal = canonical->lsals[0];
13142
13143 /* If the user is creating a static tracepoint by marker id
13144 (strace -m MARKER_ID), then store the sals index, so that
13145 breakpoint_re_set can try to match up which of the newly
13146 found markers corresponds to this one, and, don't try to
13147 expand multiple locations for each sal, given than SALS
13148 already should contain all sals for MARKER_ID. */
13149
13150 for (size_t i = 0; i < lsal.sals.size (); i++)
13151 {
13152 event_location_up location
13153 = copy_event_location (canonical->location.get ());
13154
13155 std::unique_ptr<tracepoint> tp (new tracepoint ());
13156 init_breakpoint_sal (tp.get (), gdbarch, lsal.sals[i],
13157 std::move (location), NULL,
13158 std::move (cond_string),
13159 std::move (extra_string),
13160 type_wanted, disposition,
13161 thread, task, ignore_count, ops,
13162 from_tty, enabled, internal, flags,
13163 canonical->special_display);
13164 /* Given that its possible to have multiple markers with
13165 the same string id, if the user is creating a static
13166 tracepoint by marker id ("strace -m MARKER_ID"), then
13167 store the sals index, so that breakpoint_re_set can
13168 try to match up which of the newly found markers
13169 corresponds to this one */
13170 tp->static_trace_marker_id_idx = i;
13171
13172 install_breakpoint (internal, std::move (tp), 0);
13173 }
13174 }
13175
13176 static std::vector<symtab_and_line>
13177 strace_marker_decode_location (struct breakpoint *b,
13178 const struct event_location *location,
13179 struct program_space *search_pspace)
13180 {
13181 struct tracepoint *tp = (struct tracepoint *) b;
13182 const char *s = get_linespec_location (location)->spec_string;
13183
13184 std::vector<symtab_and_line> sals = decode_static_tracepoint_spec (&s);
13185 if (sals.size () > tp->static_trace_marker_id_idx)
13186 {
13187 sals[0] = sals[tp->static_trace_marker_id_idx];
13188 sals.resize (1);
13189 return sals;
13190 }
13191 else
13192 error (_("marker %s not found"), tp->static_trace_marker_id);
13193 }
13194
13195 static struct breakpoint_ops strace_marker_breakpoint_ops;
13196
13197 static int
13198 strace_marker_p (struct breakpoint *b)
13199 {
13200 return b->ops == &strace_marker_breakpoint_ops;
13201 }
13202
13203 /* Delete a breakpoint and clean up all traces of it in the data
13204 structures. */
13205
13206 void
13207 delete_breakpoint (struct breakpoint *bpt)
13208 {
13209 struct breakpoint *b;
13210
13211 gdb_assert (bpt != NULL);
13212
13213 /* Has this bp already been deleted? This can happen because
13214 multiple lists can hold pointers to bp's. bpstat lists are
13215 especial culprits.
13216
13217 One example of this happening is a watchpoint's scope bp. When
13218 the scope bp triggers, we notice that the watchpoint is out of
13219 scope, and delete it. We also delete its scope bp. But the
13220 scope bp is marked "auto-deleting", and is already on a bpstat.
13221 That bpstat is then checked for auto-deleting bp's, which are
13222 deleted.
13223
13224 A real solution to this problem might involve reference counts in
13225 bp's, and/or giving them pointers back to their referencing
13226 bpstat's, and teaching delete_breakpoint to only free a bp's
13227 storage when no more references were extent. A cheaper bandaid
13228 was chosen. */
13229 if (bpt->type == bp_none)
13230 return;
13231
13232 /* At least avoid this stale reference until the reference counting
13233 of breakpoints gets resolved. */
13234 if (bpt->related_breakpoint != bpt)
13235 {
13236 struct breakpoint *related;
13237 struct watchpoint *w;
13238
13239 if (bpt->type == bp_watchpoint_scope)
13240 w = (struct watchpoint *) bpt->related_breakpoint;
13241 else if (bpt->related_breakpoint->type == bp_watchpoint_scope)
13242 w = (struct watchpoint *) bpt;
13243 else
13244 w = NULL;
13245 if (w != NULL)
13246 watchpoint_del_at_next_stop (w);
13247
13248 /* Unlink bpt from the bpt->related_breakpoint ring. */
13249 for (related = bpt; related->related_breakpoint != bpt;
13250 related = related->related_breakpoint);
13251 related->related_breakpoint = bpt->related_breakpoint;
13252 bpt->related_breakpoint = bpt;
13253 }
13254
13255 /* watch_command_1 creates a watchpoint but only sets its number if
13256 update_watchpoint succeeds in creating its bp_locations. If there's
13257 a problem in that process, we'll be asked to delete the half-created
13258 watchpoint. In that case, don't announce the deletion. */
13259 if (bpt->number)
13260 observer_notify_breakpoint_deleted (bpt);
13261
13262 if (breakpoint_chain == bpt)
13263 breakpoint_chain = bpt->next;
13264
13265 ALL_BREAKPOINTS (b)
13266 if (b->next == bpt)
13267 {
13268 b->next = bpt->next;
13269 break;
13270 }
13271
13272 /* Be sure no bpstat's are pointing at the breakpoint after it's
13273 been freed. */
13274 /* FIXME, how can we find all bpstat's? We just check stop_bpstat
13275 in all threads for now. Note that we cannot just remove bpstats
13276 pointing at bpt from the stop_bpstat list entirely, as breakpoint
13277 commands are associated with the bpstat; if we remove it here,
13278 then the later call to bpstat_do_actions (&stop_bpstat); in
13279 event-top.c won't do anything, and temporary breakpoints with
13280 commands won't work. */
13281
13282 iterate_over_threads (bpstat_remove_breakpoint_callback, bpt);
13283
13284 /* Now that breakpoint is removed from breakpoint list, update the
13285 global location list. This will remove locations that used to
13286 belong to this breakpoint. Do this before freeing the breakpoint
13287 itself, since remove_breakpoint looks at location's owner. It
13288 might be better design to have location completely
13289 self-contained, but it's not the case now. */
13290 update_global_location_list (UGLL_DONT_INSERT);
13291
13292 /* On the chance that someone will soon try again to delete this
13293 same bp, we mark it as deleted before freeing its storage. */
13294 bpt->type = bp_none;
13295 delete bpt;
13296 }
13297
13298 /* Iterator function to call a user-provided callback function once
13299 for each of B and its related breakpoints. */
13300
13301 static void
13302 iterate_over_related_breakpoints (struct breakpoint *b,
13303 gdb::function_view<void (breakpoint *)> function)
13304 {
13305 struct breakpoint *related;
13306
13307 related = b;
13308 do
13309 {
13310 struct breakpoint *next;
13311
13312 /* FUNCTION may delete RELATED. */
13313 next = related->related_breakpoint;
13314
13315 if (next == related)
13316 {
13317 /* RELATED is the last ring entry. */
13318 function (related);
13319
13320 /* FUNCTION may have deleted it, so we'd never reach back to
13321 B. There's nothing left to do anyway, so just break
13322 out. */
13323 break;
13324 }
13325 else
13326 function (related);
13327
13328 related = next;
13329 }
13330 while (related != b);
13331 }
13332
13333 static void
13334 delete_command (const char *arg, int from_tty)
13335 {
13336 struct breakpoint *b, *b_tmp;
13337
13338 dont_repeat ();
13339
13340 if (arg == 0)
13341 {
13342 int breaks_to_delete = 0;
13343
13344 /* Delete all breakpoints if no argument. Do not delete
13345 internal breakpoints, these have to be deleted with an
13346 explicit breakpoint number argument. */
13347 ALL_BREAKPOINTS (b)
13348 if (user_breakpoint_p (b))
13349 {
13350 breaks_to_delete = 1;
13351 break;
13352 }
13353
13354 /* Ask user only if there are some breakpoints to delete. */
13355 if (!from_tty
13356 || (breaks_to_delete && query (_("Delete all breakpoints? "))))
13357 {
13358 ALL_BREAKPOINTS_SAFE (b, b_tmp)
13359 if (user_breakpoint_p (b))
13360 delete_breakpoint (b);
13361 }
13362 }
13363 else
13364 map_breakpoint_numbers
13365 (arg, [&] (breakpoint *b)
13366 {
13367 iterate_over_related_breakpoints (b, delete_breakpoint);
13368 });
13369 }
13370
13371 /* Return true if all locations of B bound to PSPACE are pending. If
13372 PSPACE is NULL, all locations of all program spaces are
13373 considered. */
13374
13375 static int
13376 all_locations_are_pending (struct breakpoint *b, struct program_space *pspace)
13377 {
13378 struct bp_location *loc;
13379
13380 for (loc = b->loc; loc != NULL; loc = loc->next)
13381 if ((pspace == NULL
13382 || loc->pspace == pspace)
13383 && !loc->shlib_disabled
13384 && !loc->pspace->executing_startup)
13385 return 0;
13386 return 1;
13387 }
13388
13389 /* Subroutine of update_breakpoint_locations to simplify it.
13390 Return non-zero if multiple fns in list LOC have the same name.
13391 Null names are ignored. */
13392
13393 static int
13394 ambiguous_names_p (struct bp_location *loc)
13395 {
13396 struct bp_location *l;
13397 htab_t htab = htab_create_alloc (13, htab_hash_string,
13398 (int (*) (const void *,
13399 const void *)) streq,
13400 NULL, xcalloc, xfree);
13401
13402 for (l = loc; l != NULL; l = l->next)
13403 {
13404 const char **slot;
13405 const char *name = l->function_name;
13406
13407 /* Allow for some names to be NULL, ignore them. */
13408 if (name == NULL)
13409 continue;
13410
13411 slot = (const char **) htab_find_slot (htab, (const void *) name,
13412 INSERT);
13413 /* NOTE: We can assume slot != NULL here because xcalloc never
13414 returns NULL. */
13415 if (*slot != NULL)
13416 {
13417 htab_delete (htab);
13418 return 1;
13419 }
13420 *slot = name;
13421 }
13422
13423 htab_delete (htab);
13424 return 0;
13425 }
13426
13427 /* When symbols change, it probably means the sources changed as well,
13428 and it might mean the static tracepoint markers are no longer at
13429 the same address or line numbers they used to be at last we
13430 checked. Losing your static tracepoints whenever you rebuild is
13431 undesirable. This function tries to resync/rematch gdb static
13432 tracepoints with the markers on the target, for static tracepoints
13433 that have not been set by marker id. Static tracepoint that have
13434 been set by marker id are reset by marker id in breakpoint_re_set.
13435 The heuristic is:
13436
13437 1) For a tracepoint set at a specific address, look for a marker at
13438 the old PC. If one is found there, assume to be the same marker.
13439 If the name / string id of the marker found is different from the
13440 previous known name, assume that means the user renamed the marker
13441 in the sources, and output a warning.
13442
13443 2) For a tracepoint set at a given line number, look for a marker
13444 at the new address of the old line number. If one is found there,
13445 assume to be the same marker. If the name / string id of the
13446 marker found is different from the previous known name, assume that
13447 means the user renamed the marker in the sources, and output a
13448 warning.
13449
13450 3) If a marker is no longer found at the same address or line, it
13451 may mean the marker no longer exists. But it may also just mean
13452 the code changed a bit. Maybe the user added a few lines of code
13453 that made the marker move up or down (in line number terms). Ask
13454 the target for info about the marker with the string id as we knew
13455 it. If found, update line number and address in the matching
13456 static tracepoint. This will get confused if there's more than one
13457 marker with the same ID (possible in UST, although unadvised
13458 precisely because it confuses tools). */
13459
13460 static struct symtab_and_line
13461 update_static_tracepoint (struct breakpoint *b, struct symtab_and_line sal)
13462 {
13463 struct tracepoint *tp = (struct tracepoint *) b;
13464 struct static_tracepoint_marker marker;
13465 CORE_ADDR pc;
13466
13467 pc = sal.pc;
13468 if (sal.line)
13469 find_line_pc (sal.symtab, sal.line, &pc);
13470
13471 if (target_static_tracepoint_marker_at (pc, &marker))
13472 {
13473 if (strcmp (tp->static_trace_marker_id, marker.str_id) != 0)
13474 warning (_("static tracepoint %d changed probed marker from %s to %s"),
13475 b->number,
13476 tp->static_trace_marker_id, marker.str_id);
13477
13478 xfree (tp->static_trace_marker_id);
13479 tp->static_trace_marker_id = xstrdup (marker.str_id);
13480 release_static_tracepoint_marker (&marker);
13481
13482 return sal;
13483 }
13484
13485 /* Old marker wasn't found on target at lineno. Try looking it up
13486 by string ID. */
13487 if (!sal.explicit_pc
13488 && sal.line != 0
13489 && sal.symtab != NULL
13490 && tp->static_trace_marker_id != NULL)
13491 {
13492 VEC(static_tracepoint_marker_p) *markers;
13493
13494 markers
13495 = target_static_tracepoint_markers_by_strid (tp->static_trace_marker_id);
13496
13497 if (!VEC_empty(static_tracepoint_marker_p, markers))
13498 {
13499 struct symbol *sym;
13500 struct static_tracepoint_marker *tpmarker;
13501 struct ui_out *uiout = current_uiout;
13502 struct explicit_location explicit_loc;
13503
13504 tpmarker = VEC_index (static_tracepoint_marker_p, markers, 0);
13505
13506 xfree (tp->static_trace_marker_id);
13507 tp->static_trace_marker_id = xstrdup (tpmarker->str_id);
13508
13509 warning (_("marker for static tracepoint %d (%s) not "
13510 "found at previous line number"),
13511 b->number, tp->static_trace_marker_id);
13512
13513 symtab_and_line sal2 = find_pc_line (tpmarker->address, 0);
13514 sym = find_pc_sect_function (tpmarker->address, NULL);
13515 uiout->text ("Now in ");
13516 if (sym)
13517 {
13518 uiout->field_string ("func", SYMBOL_PRINT_NAME (sym));
13519 uiout->text (" at ");
13520 }
13521 uiout->field_string ("file",
13522 symtab_to_filename_for_display (sal2.symtab));
13523 uiout->text (":");
13524
13525 if (uiout->is_mi_like_p ())
13526 {
13527 const char *fullname = symtab_to_fullname (sal2.symtab);
13528
13529 uiout->field_string ("fullname", fullname);
13530 }
13531
13532 uiout->field_int ("line", sal2.line);
13533 uiout->text ("\n");
13534
13535 b->loc->line_number = sal2.line;
13536 b->loc->symtab = sym != NULL ? sal2.symtab : NULL;
13537
13538 b->location.reset (NULL);
13539 initialize_explicit_location (&explicit_loc);
13540 explicit_loc.source_filename
13541 = ASTRDUP (symtab_to_filename_for_display (sal2.symtab));
13542 explicit_loc.line_offset.offset = b->loc->line_number;
13543 explicit_loc.line_offset.sign = LINE_OFFSET_NONE;
13544 b->location = new_explicit_location (&explicit_loc);
13545
13546 /* Might be nice to check if function changed, and warn if
13547 so. */
13548
13549 release_static_tracepoint_marker (tpmarker);
13550 }
13551 }
13552 return sal;
13553 }
13554
13555 /* Returns 1 iff locations A and B are sufficiently same that
13556 we don't need to report breakpoint as changed. */
13557
13558 static int
13559 locations_are_equal (struct bp_location *a, struct bp_location *b)
13560 {
13561 while (a && b)
13562 {
13563 if (a->address != b->address)
13564 return 0;
13565
13566 if (a->shlib_disabled != b->shlib_disabled)
13567 return 0;
13568
13569 if (a->enabled != b->enabled)
13570 return 0;
13571
13572 a = a->next;
13573 b = b->next;
13574 }
13575
13576 if ((a == NULL) != (b == NULL))
13577 return 0;
13578
13579 return 1;
13580 }
13581
13582 /* Split all locations of B that are bound to PSPACE out of B's
13583 location list to a separate list and return that list's head. If
13584 PSPACE is NULL, hoist out all locations of B. */
13585
13586 static struct bp_location *
13587 hoist_existing_locations (struct breakpoint *b, struct program_space *pspace)
13588 {
13589 struct bp_location head;
13590 struct bp_location *i = b->loc;
13591 struct bp_location **i_link = &b->loc;
13592 struct bp_location *hoisted = &head;
13593
13594 if (pspace == NULL)
13595 {
13596 i = b->loc;
13597 b->loc = NULL;
13598 return i;
13599 }
13600
13601 head.next = NULL;
13602
13603 while (i != NULL)
13604 {
13605 if (i->pspace == pspace)
13606 {
13607 *i_link = i->next;
13608 i->next = NULL;
13609 hoisted->next = i;
13610 hoisted = i;
13611 }
13612 else
13613 i_link = &i->next;
13614 i = *i_link;
13615 }
13616
13617 return head.next;
13618 }
13619
13620 /* Create new breakpoint locations for B (a hardware or software
13621 breakpoint) based on SALS and SALS_END. If SALS_END.NELTS is not
13622 zero, then B is a ranged breakpoint. Only recreates locations for
13623 FILTER_PSPACE. Locations of other program spaces are left
13624 untouched. */
13625
13626 void
13627 update_breakpoint_locations (struct breakpoint *b,
13628 struct program_space *filter_pspace,
13629 gdb::array_view<const symtab_and_line> sals,
13630 gdb::array_view<const symtab_and_line> sals_end)
13631 {
13632 struct bp_location *existing_locations;
13633
13634 if (!sals_end.empty () && (sals.size () != 1 || sals_end.size () != 1))
13635 {
13636 /* Ranged breakpoints have only one start location and one end
13637 location. */
13638 b->enable_state = bp_disabled;
13639 printf_unfiltered (_("Could not reset ranged breakpoint %d: "
13640 "multiple locations found\n"),
13641 b->number);
13642 return;
13643 }
13644
13645 /* If there's no new locations, and all existing locations are
13646 pending, don't do anything. This optimizes the common case where
13647 all locations are in the same shared library, that was unloaded.
13648 We'd like to retain the location, so that when the library is
13649 loaded again, we don't loose the enabled/disabled status of the
13650 individual locations. */
13651 if (all_locations_are_pending (b, filter_pspace) && sals.empty ())
13652 return;
13653
13654 existing_locations = hoist_existing_locations (b, filter_pspace);
13655
13656 for (const auto &sal : sals)
13657 {
13658 struct bp_location *new_loc;
13659
13660 switch_to_program_space_and_thread (sal.pspace);
13661
13662 new_loc = add_location_to_breakpoint (b, &sal);
13663
13664 /* Reparse conditions, they might contain references to the
13665 old symtab. */
13666 if (b->cond_string != NULL)
13667 {
13668 const char *s;
13669
13670 s = b->cond_string;
13671 TRY
13672 {
13673 new_loc->cond = parse_exp_1 (&s, sal.pc,
13674 block_for_pc (sal.pc),
13675 0);
13676 }
13677 CATCH (e, RETURN_MASK_ERROR)
13678 {
13679 warning (_("failed to reevaluate condition "
13680 "for breakpoint %d: %s"),
13681 b->number, e.message);
13682 new_loc->enabled = 0;
13683 }
13684 END_CATCH
13685 }
13686
13687 if (!sals_end.empty ())
13688 {
13689 CORE_ADDR end = find_breakpoint_range_end (sals_end[0]);
13690
13691 new_loc->length = end - sals[0].pc + 1;
13692 }
13693 }
13694
13695 /* If possible, carry over 'disable' status from existing
13696 breakpoints. */
13697 {
13698 struct bp_location *e = existing_locations;
13699 /* If there are multiple breakpoints with the same function name,
13700 e.g. for inline functions, comparing function names won't work.
13701 Instead compare pc addresses; this is just a heuristic as things
13702 may have moved, but in practice it gives the correct answer
13703 often enough until a better solution is found. */
13704 int have_ambiguous_names = ambiguous_names_p (b->loc);
13705
13706 for (; e; e = e->next)
13707 {
13708 if (!e->enabled && e->function_name)
13709 {
13710 struct bp_location *l = b->loc;
13711 if (have_ambiguous_names)
13712 {
13713 for (; l; l = l->next)
13714 if (breakpoint_locations_match (e, l))
13715 {
13716 l->enabled = 0;
13717 break;
13718 }
13719 }
13720 else
13721 {
13722 for (; l; l = l->next)
13723 if (l->function_name
13724 && strcmp (e->function_name, l->function_name) == 0)
13725 {
13726 l->enabled = 0;
13727 break;
13728 }
13729 }
13730 }
13731 }
13732 }
13733
13734 if (!locations_are_equal (existing_locations, b->loc))
13735 observer_notify_breakpoint_modified (b);
13736 }
13737
13738 /* Find the SaL locations corresponding to the given LOCATION.
13739 On return, FOUND will be 1 if any SaL was found, zero otherwise. */
13740
13741 static std::vector<symtab_and_line>
13742 location_to_sals (struct breakpoint *b, struct event_location *location,
13743 struct program_space *search_pspace, int *found)
13744 {
13745 struct gdb_exception exception = exception_none;
13746
13747 gdb_assert (b->ops != NULL);
13748
13749 std::vector<symtab_and_line> sals;
13750
13751 TRY
13752 {
13753 sals = b->ops->decode_location (b, location, search_pspace);
13754 }
13755 CATCH (e, RETURN_MASK_ERROR)
13756 {
13757 int not_found_and_ok = 0;
13758
13759 exception = e;
13760
13761 /* For pending breakpoints, it's expected that parsing will
13762 fail until the right shared library is loaded. User has
13763 already told to create pending breakpoints and don't need
13764 extra messages. If breakpoint is in bp_shlib_disabled
13765 state, then user already saw the message about that
13766 breakpoint being disabled, and don't want to see more
13767 errors. */
13768 if (e.error == NOT_FOUND_ERROR
13769 && (b->condition_not_parsed
13770 || (b->loc != NULL
13771 && search_pspace != NULL
13772 && b->loc->pspace != search_pspace)
13773 || (b->loc && b->loc->shlib_disabled)
13774 || (b->loc && b->loc->pspace->executing_startup)
13775 || b->enable_state == bp_disabled))
13776 not_found_and_ok = 1;
13777
13778 if (!not_found_and_ok)
13779 {
13780 /* We surely don't want to warn about the same breakpoint
13781 10 times. One solution, implemented here, is disable
13782 the breakpoint on error. Another solution would be to
13783 have separate 'warning emitted' flag. Since this
13784 happens only when a binary has changed, I don't know
13785 which approach is better. */
13786 b->enable_state = bp_disabled;
13787 throw_exception (e);
13788 }
13789 }
13790 END_CATCH
13791
13792 if (exception.reason == 0 || exception.error != NOT_FOUND_ERROR)
13793 {
13794 for (auto &sal : sals)
13795 resolve_sal_pc (&sal);
13796 if (b->condition_not_parsed && b->extra_string != NULL)
13797 {
13798 char *cond_string, *extra_string;
13799 int thread, task;
13800
13801 find_condition_and_thread (b->extra_string, sals[0].pc,
13802 &cond_string, &thread, &task,
13803 &extra_string);
13804 gdb_assert (b->cond_string == NULL);
13805 if (cond_string)
13806 b->cond_string = cond_string;
13807 b->thread = thread;
13808 b->task = task;
13809 if (extra_string)
13810 {
13811 xfree (b->extra_string);
13812 b->extra_string = extra_string;
13813 }
13814 b->condition_not_parsed = 0;
13815 }
13816
13817 if (b->type == bp_static_tracepoint && !strace_marker_p (b))
13818 sals[0] = update_static_tracepoint (b, sals[0]);
13819
13820 *found = 1;
13821 }
13822 else
13823 *found = 0;
13824
13825 return sals;
13826 }
13827
13828 /* The default re_set method, for typical hardware or software
13829 breakpoints. Reevaluate the breakpoint and recreate its
13830 locations. */
13831
13832 static void
13833 breakpoint_re_set_default (struct breakpoint *b)
13834 {
13835 struct program_space *filter_pspace = current_program_space;
13836 std::vector<symtab_and_line> expanded, expanded_end;
13837
13838 int found;
13839 std::vector<symtab_and_line> sals = location_to_sals (b, b->location.get (),
13840 filter_pspace, &found);
13841 if (found)
13842 expanded = std::move (sals);
13843
13844 if (b->location_range_end != NULL)
13845 {
13846 std::vector<symtab_and_line> sals_end
13847 = location_to_sals (b, b->location_range_end.get (),
13848 filter_pspace, &found);
13849 if (found)
13850 expanded_end = std::move (sals_end);
13851 }
13852
13853 update_breakpoint_locations (b, filter_pspace, expanded, expanded_end);
13854 }
13855
13856 /* Default method for creating SALs from an address string. It basically
13857 calls parse_breakpoint_sals. Return 1 for success, zero for failure. */
13858
13859 static void
13860 create_sals_from_location_default (const struct event_location *location,
13861 struct linespec_result *canonical,
13862 enum bptype type_wanted)
13863 {
13864 parse_breakpoint_sals (location, canonical);
13865 }
13866
13867 /* Call create_breakpoints_sal for the given arguments. This is the default
13868 function for the `create_breakpoints_sal' method of
13869 breakpoint_ops. */
13870
13871 static void
13872 create_breakpoints_sal_default (struct gdbarch *gdbarch,
13873 struct linespec_result *canonical,
13874 gdb::unique_xmalloc_ptr<char> cond_string,
13875 gdb::unique_xmalloc_ptr<char> extra_string,
13876 enum bptype type_wanted,
13877 enum bpdisp disposition,
13878 int thread,
13879 int task, int ignore_count,
13880 const struct breakpoint_ops *ops,
13881 int from_tty, int enabled,
13882 int internal, unsigned flags)
13883 {
13884 create_breakpoints_sal (gdbarch, canonical,
13885 std::move (cond_string),
13886 std::move (extra_string),
13887 type_wanted, disposition,
13888 thread, task, ignore_count, ops, from_tty,
13889 enabled, internal, flags);
13890 }
13891
13892 /* Decode the line represented by S by calling decode_line_full. This is the
13893 default function for the `decode_location' method of breakpoint_ops. */
13894
13895 static std::vector<symtab_and_line>
13896 decode_location_default (struct breakpoint *b,
13897 const struct event_location *location,
13898 struct program_space *search_pspace)
13899 {
13900 struct linespec_result canonical;
13901
13902 decode_line_full (location, DECODE_LINE_FUNFIRSTLINE, search_pspace,
13903 (struct symtab *) NULL, 0,
13904 &canonical, multiple_symbols_all,
13905 b->filter);
13906
13907 /* We should get 0 or 1 resulting SALs. */
13908 gdb_assert (canonical.lsals.size () < 2);
13909
13910 if (!canonical.lsals.empty ())
13911 {
13912 const linespec_sals &lsal = canonical.lsals[0];
13913 return std::move (lsal.sals);
13914 }
13915 return {};
13916 }
13917
13918 /* Reset a breakpoint. */
13919
13920 static void
13921 breakpoint_re_set_one (breakpoint *b)
13922 {
13923 input_radix = b->input_radix;
13924 set_language (b->language);
13925
13926 b->ops->re_set (b);
13927 }
13928
13929 /* Re-set breakpoint locations for the current program space.
13930 Locations bound to other program spaces are left untouched. */
13931
13932 void
13933 breakpoint_re_set (void)
13934 {
13935 struct breakpoint *b, *b_tmp;
13936
13937 {
13938 scoped_restore_current_language save_language;
13939 scoped_restore save_input_radix = make_scoped_restore (&input_radix);
13940 scoped_restore_current_pspace_and_thread restore_pspace_thread;
13941
13942 /* Note: we must not try to insert locations until after all
13943 breakpoints have been re-set. Otherwise, e.g., when re-setting
13944 breakpoint 1, we'd insert the locations of breakpoint 2, which
13945 hadn't been re-set yet, and thus may have stale locations. */
13946
13947 ALL_BREAKPOINTS_SAFE (b, b_tmp)
13948 {
13949 TRY
13950 {
13951 breakpoint_re_set_one (b);
13952 }
13953 CATCH (ex, RETURN_MASK_ALL)
13954 {
13955 exception_fprintf (gdb_stderr, ex,
13956 "Error in re-setting breakpoint %d: ",
13957 b->number);
13958 }
13959 END_CATCH
13960 }
13961
13962 jit_breakpoint_re_set ();
13963 }
13964
13965 create_overlay_event_breakpoint ();
13966 create_longjmp_master_breakpoint ();
13967 create_std_terminate_master_breakpoint ();
13968 create_exception_master_breakpoint ();
13969
13970 /* Now we can insert. */
13971 update_global_location_list (UGLL_MAY_INSERT);
13972 }
13973 \f
13974 /* Reset the thread number of this breakpoint:
13975
13976 - If the breakpoint is for all threads, leave it as-is.
13977 - Else, reset it to the current thread for inferior_ptid. */
13978 void
13979 breakpoint_re_set_thread (struct breakpoint *b)
13980 {
13981 if (b->thread != -1)
13982 {
13983 if (in_thread_list (inferior_ptid))
13984 b->thread = ptid_to_global_thread_id (inferior_ptid);
13985
13986 /* We're being called after following a fork. The new fork is
13987 selected as current, and unless this was a vfork will have a
13988 different program space from the original thread. Reset that
13989 as well. */
13990 b->loc->pspace = current_program_space;
13991 }
13992 }
13993
13994 /* Set ignore-count of breakpoint number BPTNUM to COUNT.
13995 If from_tty is nonzero, it prints a message to that effect,
13996 which ends with a period (no newline). */
13997
13998 void
13999 set_ignore_count (int bptnum, int count, int from_tty)
14000 {
14001 struct breakpoint *b;
14002
14003 if (count < 0)
14004 count = 0;
14005
14006 ALL_BREAKPOINTS (b)
14007 if (b->number == bptnum)
14008 {
14009 if (is_tracepoint (b))
14010 {
14011 if (from_tty && count != 0)
14012 printf_filtered (_("Ignore count ignored for tracepoint %d."),
14013 bptnum);
14014 return;
14015 }
14016
14017 b->ignore_count = count;
14018 if (from_tty)
14019 {
14020 if (count == 0)
14021 printf_filtered (_("Will stop next time "
14022 "breakpoint %d is reached."),
14023 bptnum);
14024 else if (count == 1)
14025 printf_filtered (_("Will ignore next crossing of breakpoint %d."),
14026 bptnum);
14027 else
14028 printf_filtered (_("Will ignore next %d "
14029 "crossings of breakpoint %d."),
14030 count, bptnum);
14031 }
14032 observer_notify_breakpoint_modified (b);
14033 return;
14034 }
14035
14036 error (_("No breakpoint number %d."), bptnum);
14037 }
14038
14039 /* Command to set ignore-count of breakpoint N to COUNT. */
14040
14041 static void
14042 ignore_command (const char *args, int from_tty)
14043 {
14044 const char *p = args;
14045 int num;
14046
14047 if (p == 0)
14048 error_no_arg (_("a breakpoint number"));
14049
14050 num = get_number (&p);
14051 if (num == 0)
14052 error (_("bad breakpoint number: '%s'"), args);
14053 if (*p == 0)
14054 error (_("Second argument (specified ignore-count) is missing."));
14055
14056 set_ignore_count (num,
14057 longest_to_int (value_as_long (parse_and_eval (p))),
14058 from_tty);
14059 if (from_tty)
14060 printf_filtered ("\n");
14061 }
14062 \f
14063
14064 /* Call FUNCTION on each of the breakpoints with numbers in the range
14065 defined by BP_NUM_RANGE (an inclusive range). */
14066
14067 static void
14068 map_breakpoint_number_range (std::pair<int, int> bp_num_range,
14069 gdb::function_view<void (breakpoint *)> function)
14070 {
14071 if (bp_num_range.first == 0)
14072 {
14073 warning (_("bad breakpoint number at or near '%d'"),
14074 bp_num_range.first);
14075 }
14076 else
14077 {
14078 struct breakpoint *b, *tmp;
14079
14080 for (int i = bp_num_range.first; i <= bp_num_range.second; i++)
14081 {
14082 bool match = false;
14083
14084 ALL_BREAKPOINTS_SAFE (b, tmp)
14085 if (b->number == i)
14086 {
14087 match = true;
14088 function (b);
14089 break;
14090 }
14091 if (!match)
14092 printf_unfiltered (_("No breakpoint number %d.\n"), i);
14093 }
14094 }
14095 }
14096
14097 /* Call FUNCTION on each of the breakpoints whose numbers are given in
14098 ARGS. */
14099
14100 static void
14101 map_breakpoint_numbers (const char *args,
14102 gdb::function_view<void (breakpoint *)> function)
14103 {
14104 if (args == NULL || *args == '\0')
14105 error_no_arg (_("one or more breakpoint numbers"));
14106
14107 number_or_range_parser parser (args);
14108
14109 while (!parser.finished ())
14110 {
14111 int num = parser.get_number ();
14112 map_breakpoint_number_range (std::make_pair (num, num), function);
14113 }
14114 }
14115
14116 /* Return the breakpoint location structure corresponding to the
14117 BP_NUM and LOC_NUM values. */
14118
14119 static struct bp_location *
14120 find_location_by_number (int bp_num, int loc_num)
14121 {
14122 struct breakpoint *b;
14123
14124 ALL_BREAKPOINTS (b)
14125 if (b->number == bp_num)
14126 {
14127 break;
14128 }
14129
14130 if (!b || b->number != bp_num)
14131 error (_("Bad breakpoint number '%d'"), bp_num);
14132
14133 if (loc_num == 0)
14134 error (_("Bad breakpoint location number '%d'"), loc_num);
14135
14136 int n = 0;
14137 for (bp_location *loc = b->loc; loc != NULL; loc = loc->next)
14138 if (++n == loc_num)
14139 return loc;
14140
14141 error (_("Bad breakpoint location number '%d'"), loc_num);
14142 }
14143
14144 /* Modes of operation for extract_bp_num. */
14145 enum class extract_bp_kind
14146 {
14147 /* Extracting a breakpoint number. */
14148 bp,
14149
14150 /* Extracting a location number. */
14151 loc,
14152 };
14153
14154 /* Extract a breakpoint or location number (as determined by KIND)
14155 from the string starting at START. TRAILER is a character which
14156 can be found after the number. If you don't want a trailer, use
14157 '\0'. If END_OUT is not NULL, it is set to point after the parsed
14158 string. This always returns a positive integer. */
14159
14160 static int
14161 extract_bp_num (extract_bp_kind kind, const char *start,
14162 int trailer, const char **end_out = NULL)
14163 {
14164 const char *end = start;
14165 int num = get_number_trailer (&end, trailer);
14166 if (num < 0)
14167 error (kind == extract_bp_kind::bp
14168 ? _("Negative breakpoint number '%.*s'")
14169 : _("Negative breakpoint location number '%.*s'"),
14170 int (end - start), start);
14171 if (num == 0)
14172 error (kind == extract_bp_kind::bp
14173 ? _("Bad breakpoint number '%.*s'")
14174 : _("Bad breakpoint location number '%.*s'"),
14175 int (end - start), start);
14176
14177 if (end_out != NULL)
14178 *end_out = end;
14179 return num;
14180 }
14181
14182 /* Extract a breakpoint or location range (as determined by KIND) in
14183 the form NUM1-NUM2 stored at &ARG[arg_offset]. Returns a std::pair
14184 representing the (inclusive) range. The returned pair's elements
14185 are always positive integers. */
14186
14187 static std::pair<int, int>
14188 extract_bp_or_bp_range (extract_bp_kind kind,
14189 const std::string &arg,
14190 std::string::size_type arg_offset)
14191 {
14192 std::pair<int, int> range;
14193 const char *bp_loc = &arg[arg_offset];
14194 std::string::size_type dash = arg.find ('-', arg_offset);
14195 if (dash != std::string::npos)
14196 {
14197 /* bp_loc is a range (x-z). */
14198 if (arg.length () == dash + 1)
14199 error (kind == extract_bp_kind::bp
14200 ? _("Bad breakpoint number at or near: '%s'")
14201 : _("Bad breakpoint location number at or near: '%s'"),
14202 bp_loc);
14203
14204 const char *end;
14205 const char *start_first = bp_loc;
14206 const char *start_second = &arg[dash + 1];
14207 range.first = extract_bp_num (kind, start_first, '-');
14208 range.second = extract_bp_num (kind, start_second, '\0', &end);
14209
14210 if (range.first > range.second)
14211 error (kind == extract_bp_kind::bp
14212 ? _("Inverted breakpoint range at '%.*s'")
14213 : _("Inverted breakpoint location range at '%.*s'"),
14214 int (end - start_first), start_first);
14215 }
14216 else
14217 {
14218 /* bp_loc is a single value. */
14219 range.first = extract_bp_num (kind, bp_loc, '\0');
14220 range.second = range.first;
14221 }
14222 return range;
14223 }
14224
14225 /* Extract the breakpoint/location range specified by ARG. Returns
14226 the breakpoint range in BP_NUM_RANGE, and the location range in
14227 BP_LOC_RANGE.
14228
14229 ARG may be in any of the following forms:
14230
14231 x where 'x' is a breakpoint number.
14232 x-y where 'x' and 'y' specify a breakpoint numbers range.
14233 x.y where 'x' is a breakpoint number and 'y' a location number.
14234 x.y-z where 'x' is a breakpoint number and 'y' and 'z' specify a
14235 location number range.
14236 */
14237
14238 static void
14239 extract_bp_number_and_location (const std::string &arg,
14240 std::pair<int, int> &bp_num_range,
14241 std::pair<int, int> &bp_loc_range)
14242 {
14243 std::string::size_type dot = arg.find ('.');
14244
14245 if (dot != std::string::npos)
14246 {
14247 /* Handle 'x.y' and 'x.y-z' cases. */
14248
14249 if (arg.length () == dot + 1 || dot == 0)
14250 error (_("Bad breakpoint number at or near: '%s'"), arg.c_str ());
14251
14252 bp_num_range.first
14253 = extract_bp_num (extract_bp_kind::bp, arg.c_str (), '.');
14254 bp_num_range.second = bp_num_range.first;
14255
14256 bp_loc_range = extract_bp_or_bp_range (extract_bp_kind::loc,
14257 arg, dot + 1);
14258 }
14259 else
14260 {
14261 /* Handle x and x-y cases. */
14262
14263 bp_num_range = extract_bp_or_bp_range (extract_bp_kind::bp, arg, 0);
14264 bp_loc_range.first = 0;
14265 bp_loc_range.second = 0;
14266 }
14267 }
14268
14269 /* Enable or disable a breakpoint location BP_NUM.LOC_NUM. ENABLE
14270 specifies whether to enable or disable. */
14271
14272 static void
14273 enable_disable_bp_num_loc (int bp_num, int loc_num, bool enable)
14274 {
14275 struct bp_location *loc = find_location_by_number (bp_num, loc_num);
14276 if (loc != NULL)
14277 {
14278 if (loc->enabled != enable)
14279 {
14280 loc->enabled = enable;
14281 mark_breakpoint_location_modified (loc);
14282 }
14283 if (target_supports_enable_disable_tracepoint ()
14284 && current_trace_status ()->running && loc->owner
14285 && is_tracepoint (loc->owner))
14286 target_disable_tracepoint (loc);
14287 }
14288 update_global_location_list (UGLL_DONT_INSERT);
14289 }
14290
14291 /* Enable or disable a range of breakpoint locations. BP_NUM is the
14292 number of the breakpoint, and BP_LOC_RANGE specifies the
14293 (inclusive) range of location numbers of that breakpoint to
14294 enable/disable. ENABLE specifies whether to enable or disable the
14295 location. */
14296
14297 static void
14298 enable_disable_breakpoint_location_range (int bp_num,
14299 std::pair<int, int> &bp_loc_range,
14300 bool enable)
14301 {
14302 for (int i = bp_loc_range.first; i <= bp_loc_range.second; i++)
14303 enable_disable_bp_num_loc (bp_num, i, enable);
14304 }
14305
14306 /* Set ignore-count of breakpoint number BPTNUM to COUNT.
14307 If from_tty is nonzero, it prints a message to that effect,
14308 which ends with a period (no newline). */
14309
14310 void
14311 disable_breakpoint (struct breakpoint *bpt)
14312 {
14313 /* Never disable a watchpoint scope breakpoint; we want to
14314 hit them when we leave scope so we can delete both the
14315 watchpoint and its scope breakpoint at that time. */
14316 if (bpt->type == bp_watchpoint_scope)
14317 return;
14318
14319 bpt->enable_state = bp_disabled;
14320
14321 /* Mark breakpoint locations modified. */
14322 mark_breakpoint_modified (bpt);
14323
14324 if (target_supports_enable_disable_tracepoint ()
14325 && current_trace_status ()->running && is_tracepoint (bpt))
14326 {
14327 struct bp_location *location;
14328
14329 for (location = bpt->loc; location; location = location->next)
14330 target_disable_tracepoint (location);
14331 }
14332
14333 update_global_location_list (UGLL_DONT_INSERT);
14334
14335 observer_notify_breakpoint_modified (bpt);
14336 }
14337
14338 /* Enable or disable the breakpoint(s) or breakpoint location(s)
14339 specified in ARGS. ARGS may be in any of the formats handled by
14340 extract_bp_number_and_location. ENABLE specifies whether to enable
14341 or disable the breakpoints/locations. */
14342
14343 static void
14344 enable_disable_command (const char *args, int from_tty, bool enable)
14345 {
14346 if (args == 0)
14347 {
14348 struct breakpoint *bpt;
14349
14350 ALL_BREAKPOINTS (bpt)
14351 if (user_breakpoint_p (bpt))
14352 {
14353 if (enable)
14354 enable_breakpoint (bpt);
14355 else
14356 disable_breakpoint (bpt);
14357 }
14358 }
14359 else
14360 {
14361 std::string num = extract_arg (&args);
14362
14363 while (!num.empty ())
14364 {
14365 std::pair<int, int> bp_num_range, bp_loc_range;
14366
14367 extract_bp_number_and_location (num, bp_num_range, bp_loc_range);
14368
14369 if (bp_loc_range.first == bp_loc_range.second
14370 && bp_loc_range.first == 0)
14371 {
14372 /* Handle breakpoint ids with formats 'x' or 'x-z'. */
14373 map_breakpoint_number_range (bp_num_range,
14374 enable
14375 ? enable_breakpoint
14376 : disable_breakpoint);
14377 }
14378 else
14379 {
14380 /* Handle breakpoint ids with formats 'x.y' or
14381 'x.y-z'. */
14382 enable_disable_breakpoint_location_range
14383 (bp_num_range.first, bp_loc_range, enable);
14384 }
14385 num = extract_arg (&args);
14386 }
14387 }
14388 }
14389
14390 /* The disable command disables the specified breakpoints/locations
14391 (or all defined breakpoints) so they're no longer effective in
14392 stopping the inferior. ARGS may be in any of the forms defined in
14393 extract_bp_number_and_location. */
14394
14395 static void
14396 disable_command (const char *args, int from_tty)
14397 {
14398 enable_disable_command (args, from_tty, false);
14399 }
14400
14401 static void
14402 enable_breakpoint_disp (struct breakpoint *bpt, enum bpdisp disposition,
14403 int count)
14404 {
14405 int target_resources_ok;
14406
14407 if (bpt->type == bp_hardware_breakpoint)
14408 {
14409 int i;
14410 i = hw_breakpoint_used_count ();
14411 target_resources_ok =
14412 target_can_use_hardware_watchpoint (bp_hardware_breakpoint,
14413 i + 1, 0);
14414 if (target_resources_ok == 0)
14415 error (_("No hardware breakpoint support in the target."));
14416 else if (target_resources_ok < 0)
14417 error (_("Hardware breakpoints used exceeds limit."));
14418 }
14419
14420 if (is_watchpoint (bpt))
14421 {
14422 /* Initialize it just to avoid a GCC false warning. */
14423 enum enable_state orig_enable_state = bp_disabled;
14424
14425 TRY
14426 {
14427 struct watchpoint *w = (struct watchpoint *) bpt;
14428
14429 orig_enable_state = bpt->enable_state;
14430 bpt->enable_state = bp_enabled;
14431 update_watchpoint (w, 1 /* reparse */);
14432 }
14433 CATCH (e, RETURN_MASK_ALL)
14434 {
14435 bpt->enable_state = orig_enable_state;
14436 exception_fprintf (gdb_stderr, e, _("Cannot enable watchpoint %d: "),
14437 bpt->number);
14438 return;
14439 }
14440 END_CATCH
14441 }
14442
14443 bpt->enable_state = bp_enabled;
14444
14445 /* Mark breakpoint locations modified. */
14446 mark_breakpoint_modified (bpt);
14447
14448 if (target_supports_enable_disable_tracepoint ()
14449 && current_trace_status ()->running && is_tracepoint (bpt))
14450 {
14451 struct bp_location *location;
14452
14453 for (location = bpt->loc; location; location = location->next)
14454 target_enable_tracepoint (location);
14455 }
14456
14457 bpt->disposition = disposition;
14458 bpt->enable_count = count;
14459 update_global_location_list (UGLL_MAY_INSERT);
14460
14461 observer_notify_breakpoint_modified (bpt);
14462 }
14463
14464
14465 void
14466 enable_breakpoint (struct breakpoint *bpt)
14467 {
14468 enable_breakpoint_disp (bpt, bpt->disposition, 0);
14469 }
14470
14471 /* The enable command enables the specified breakpoints/locations (or
14472 all defined breakpoints) so they once again become (or continue to
14473 be) effective in stopping the inferior. ARGS may be in any of the
14474 forms defined in extract_bp_number_and_location. */
14475
14476 static void
14477 enable_command (const char *args, int from_tty)
14478 {
14479 enable_disable_command (args, from_tty, true);
14480 }
14481
14482 static void
14483 enable_once_command (const char *args, int from_tty)
14484 {
14485 map_breakpoint_numbers
14486 (args, [&] (breakpoint *b)
14487 {
14488 iterate_over_related_breakpoints
14489 (b, [&] (breakpoint *bpt)
14490 {
14491 enable_breakpoint_disp (bpt, disp_disable, 1);
14492 });
14493 });
14494 }
14495
14496 static void
14497 enable_count_command (const char *args, int from_tty)
14498 {
14499 int count;
14500
14501 if (args == NULL)
14502 error_no_arg (_("hit count"));
14503
14504 count = get_number (&args);
14505
14506 map_breakpoint_numbers
14507 (args, [&] (breakpoint *b)
14508 {
14509 iterate_over_related_breakpoints
14510 (b, [&] (breakpoint *bpt)
14511 {
14512 enable_breakpoint_disp (bpt, disp_disable, count);
14513 });
14514 });
14515 }
14516
14517 static void
14518 enable_delete_command (const char *args, int from_tty)
14519 {
14520 map_breakpoint_numbers
14521 (args, [&] (breakpoint *b)
14522 {
14523 iterate_over_related_breakpoints
14524 (b, [&] (breakpoint *bpt)
14525 {
14526 enable_breakpoint_disp (bpt, disp_del, 1);
14527 });
14528 });
14529 }
14530 \f
14531 static void
14532 set_breakpoint_cmd (const char *args, int from_tty)
14533 {
14534 }
14535
14536 static void
14537 show_breakpoint_cmd (const char *args, int from_tty)
14538 {
14539 }
14540
14541 /* Invalidate last known value of any hardware watchpoint if
14542 the memory which that value represents has been written to by
14543 GDB itself. */
14544
14545 static void
14546 invalidate_bp_value_on_memory_change (struct inferior *inferior,
14547 CORE_ADDR addr, ssize_t len,
14548 const bfd_byte *data)
14549 {
14550 struct breakpoint *bp;
14551
14552 ALL_BREAKPOINTS (bp)
14553 if (bp->enable_state == bp_enabled
14554 && bp->type == bp_hardware_watchpoint)
14555 {
14556 struct watchpoint *wp = (struct watchpoint *) bp;
14557
14558 if (wp->val_valid && wp->val)
14559 {
14560 struct bp_location *loc;
14561
14562 for (loc = bp->loc; loc != NULL; loc = loc->next)
14563 if (loc->loc_type == bp_loc_hardware_watchpoint
14564 && loc->address + loc->length > addr
14565 && addr + len > loc->address)
14566 {
14567 value_free (wp->val);
14568 wp->val = NULL;
14569 wp->val_valid = 0;
14570 }
14571 }
14572 }
14573 }
14574
14575 /* Create and insert a breakpoint for software single step. */
14576
14577 void
14578 insert_single_step_breakpoint (struct gdbarch *gdbarch,
14579 const address_space *aspace,
14580 CORE_ADDR next_pc)
14581 {
14582 struct thread_info *tp = inferior_thread ();
14583 struct symtab_and_line sal;
14584 CORE_ADDR pc = next_pc;
14585
14586 if (tp->control.single_step_breakpoints == NULL)
14587 {
14588 tp->control.single_step_breakpoints
14589 = new_single_step_breakpoint (tp->global_num, gdbarch);
14590 }
14591
14592 sal = find_pc_line (pc, 0);
14593 sal.pc = pc;
14594 sal.section = find_pc_overlay (pc);
14595 sal.explicit_pc = 1;
14596 add_location_to_breakpoint (tp->control.single_step_breakpoints, &sal);
14597
14598 update_global_location_list (UGLL_INSERT);
14599 }
14600
14601 /* Insert single step breakpoints according to the current state. */
14602
14603 int
14604 insert_single_step_breakpoints (struct gdbarch *gdbarch)
14605 {
14606 struct regcache *regcache = get_current_regcache ();
14607 std::vector<CORE_ADDR> next_pcs;
14608
14609 next_pcs = gdbarch_software_single_step (gdbarch, regcache);
14610
14611 if (!next_pcs.empty ())
14612 {
14613 struct frame_info *frame = get_current_frame ();
14614 const address_space *aspace = get_frame_address_space (frame);
14615
14616 for (CORE_ADDR pc : next_pcs)
14617 insert_single_step_breakpoint (gdbarch, aspace, pc);
14618
14619 return 1;
14620 }
14621 else
14622 return 0;
14623 }
14624
14625 /* See breakpoint.h. */
14626
14627 int
14628 breakpoint_has_location_inserted_here (struct breakpoint *bp,
14629 const address_space *aspace,
14630 CORE_ADDR pc)
14631 {
14632 struct bp_location *loc;
14633
14634 for (loc = bp->loc; loc != NULL; loc = loc->next)
14635 if (loc->inserted
14636 && breakpoint_location_address_match (loc, aspace, pc))
14637 return 1;
14638
14639 return 0;
14640 }
14641
14642 /* Check whether a software single-step breakpoint is inserted at
14643 PC. */
14644
14645 int
14646 single_step_breakpoint_inserted_here_p (const address_space *aspace,
14647 CORE_ADDR pc)
14648 {
14649 struct breakpoint *bpt;
14650
14651 ALL_BREAKPOINTS (bpt)
14652 {
14653 if (bpt->type == bp_single_step
14654 && breakpoint_has_location_inserted_here (bpt, aspace, pc))
14655 return 1;
14656 }
14657 return 0;
14658 }
14659
14660 /* Tracepoint-specific operations. */
14661
14662 /* Set tracepoint count to NUM. */
14663 static void
14664 set_tracepoint_count (int num)
14665 {
14666 tracepoint_count = num;
14667 set_internalvar_integer (lookup_internalvar ("tpnum"), num);
14668 }
14669
14670 static void
14671 trace_command (const char *arg, int from_tty)
14672 {
14673 struct breakpoint_ops *ops;
14674
14675 event_location_up location = string_to_event_location (&arg,
14676 current_language);
14677 if (location != NULL
14678 && event_location_type (location.get ()) == PROBE_LOCATION)
14679 ops = &tracepoint_probe_breakpoint_ops;
14680 else
14681 ops = &tracepoint_breakpoint_ops;
14682
14683 create_breakpoint (get_current_arch (),
14684 location.get (),
14685 NULL, 0, arg, 1 /* parse arg */,
14686 0 /* tempflag */,
14687 bp_tracepoint /* type_wanted */,
14688 0 /* Ignore count */,
14689 pending_break_support,
14690 ops,
14691 from_tty,
14692 1 /* enabled */,
14693 0 /* internal */, 0);
14694 }
14695
14696 static void
14697 ftrace_command (const char *arg, int from_tty)
14698 {
14699 event_location_up location = string_to_event_location (&arg,
14700 current_language);
14701 create_breakpoint (get_current_arch (),
14702 location.get (),
14703 NULL, 0, arg, 1 /* parse arg */,
14704 0 /* tempflag */,
14705 bp_fast_tracepoint /* type_wanted */,
14706 0 /* Ignore count */,
14707 pending_break_support,
14708 &tracepoint_breakpoint_ops,
14709 from_tty,
14710 1 /* enabled */,
14711 0 /* internal */, 0);
14712 }
14713
14714 /* strace command implementation. Creates a static tracepoint. */
14715
14716 static void
14717 strace_command (const char *arg, int from_tty)
14718 {
14719 struct breakpoint_ops *ops;
14720 event_location_up location;
14721
14722 /* Decide if we are dealing with a static tracepoint marker (`-m'),
14723 or with a normal static tracepoint. */
14724 if (arg && startswith (arg, "-m") && isspace (arg[2]))
14725 {
14726 ops = &strace_marker_breakpoint_ops;
14727 location = new_linespec_location (&arg, symbol_name_match_type::FULL);
14728 }
14729 else
14730 {
14731 ops = &tracepoint_breakpoint_ops;
14732 location = string_to_event_location (&arg, current_language);
14733 }
14734
14735 create_breakpoint (get_current_arch (),
14736 location.get (),
14737 NULL, 0, arg, 1 /* parse arg */,
14738 0 /* tempflag */,
14739 bp_static_tracepoint /* type_wanted */,
14740 0 /* Ignore count */,
14741 pending_break_support,
14742 ops,
14743 from_tty,
14744 1 /* enabled */,
14745 0 /* internal */, 0);
14746 }
14747
14748 /* Set up a fake reader function that gets command lines from a linked
14749 list that was acquired during tracepoint uploading. */
14750
14751 static struct uploaded_tp *this_utp;
14752 static int next_cmd;
14753
14754 static char *
14755 read_uploaded_action (void)
14756 {
14757 char *rslt;
14758
14759 VEC_iterate (char_ptr, this_utp->cmd_strings, next_cmd, rslt);
14760
14761 next_cmd++;
14762
14763 return rslt;
14764 }
14765
14766 /* Given information about a tracepoint as recorded on a target (which
14767 can be either a live system or a trace file), attempt to create an
14768 equivalent GDB tracepoint. This is not a reliable process, since
14769 the target does not necessarily have all the information used when
14770 the tracepoint was originally defined. */
14771
14772 struct tracepoint *
14773 create_tracepoint_from_upload (struct uploaded_tp *utp)
14774 {
14775 const char *addr_str;
14776 char small_buf[100];
14777 struct tracepoint *tp;
14778
14779 if (utp->at_string)
14780 addr_str = utp->at_string;
14781 else
14782 {
14783 /* In the absence of a source location, fall back to raw
14784 address. Since there is no way to confirm that the address
14785 means the same thing as when the trace was started, warn the
14786 user. */
14787 warning (_("Uploaded tracepoint %d has no "
14788 "source location, using raw address"),
14789 utp->number);
14790 xsnprintf (small_buf, sizeof (small_buf), "*%s", hex_string (utp->addr));
14791 addr_str = small_buf;
14792 }
14793
14794 /* There's not much we can do with a sequence of bytecodes. */
14795 if (utp->cond && !utp->cond_string)
14796 warning (_("Uploaded tracepoint %d condition "
14797 "has no source form, ignoring it"),
14798 utp->number);
14799
14800 event_location_up location = string_to_event_location (&addr_str,
14801 current_language);
14802 if (!create_breakpoint (get_current_arch (),
14803 location.get (),
14804 utp->cond_string, -1, addr_str,
14805 0 /* parse cond/thread */,
14806 0 /* tempflag */,
14807 utp->type /* type_wanted */,
14808 0 /* Ignore count */,
14809 pending_break_support,
14810 &tracepoint_breakpoint_ops,
14811 0 /* from_tty */,
14812 utp->enabled /* enabled */,
14813 0 /* internal */,
14814 CREATE_BREAKPOINT_FLAGS_INSERTED))
14815 return NULL;
14816
14817 /* Get the tracepoint we just created. */
14818 tp = get_tracepoint (tracepoint_count);
14819 gdb_assert (tp != NULL);
14820
14821 if (utp->pass > 0)
14822 {
14823 xsnprintf (small_buf, sizeof (small_buf), "%d %d", utp->pass,
14824 tp->number);
14825
14826 trace_pass_command (small_buf, 0);
14827 }
14828
14829 /* If we have uploaded versions of the original commands, set up a
14830 special-purpose "reader" function and call the usual command line
14831 reader, then pass the result to the breakpoint command-setting
14832 function. */
14833 if (!VEC_empty (char_ptr, utp->cmd_strings))
14834 {
14835 command_line_up cmd_list;
14836
14837 this_utp = utp;
14838 next_cmd = 0;
14839
14840 cmd_list = read_command_lines_1 (read_uploaded_action, 1, NULL, NULL);
14841
14842 breakpoint_set_commands (tp, std::move (cmd_list));
14843 }
14844 else if (!VEC_empty (char_ptr, utp->actions)
14845 || !VEC_empty (char_ptr, utp->step_actions))
14846 warning (_("Uploaded tracepoint %d actions "
14847 "have no source form, ignoring them"),
14848 utp->number);
14849
14850 /* Copy any status information that might be available. */
14851 tp->hit_count = utp->hit_count;
14852 tp->traceframe_usage = utp->traceframe_usage;
14853
14854 return tp;
14855 }
14856
14857 /* Print information on tracepoint number TPNUM_EXP, or all if
14858 omitted. */
14859
14860 static void
14861 info_tracepoints_command (const char *args, int from_tty)
14862 {
14863 struct ui_out *uiout = current_uiout;
14864 int num_printed;
14865
14866 num_printed = breakpoint_1 (args, 0, is_tracepoint);
14867
14868 if (num_printed == 0)
14869 {
14870 if (args == NULL || *args == '\0')
14871 uiout->message ("No tracepoints.\n");
14872 else
14873 uiout->message ("No tracepoint matching '%s'.\n", args);
14874 }
14875
14876 default_collect_info ();
14877 }
14878
14879 /* The 'enable trace' command enables tracepoints.
14880 Not supported by all targets. */
14881 static void
14882 enable_trace_command (const char *args, int from_tty)
14883 {
14884 enable_command (args, from_tty);
14885 }
14886
14887 /* The 'disable trace' command disables tracepoints.
14888 Not supported by all targets. */
14889 static void
14890 disable_trace_command (const char *args, int from_tty)
14891 {
14892 disable_command (args, from_tty);
14893 }
14894
14895 /* Remove a tracepoint (or all if no argument). */
14896 static void
14897 delete_trace_command (const char *arg, int from_tty)
14898 {
14899 struct breakpoint *b, *b_tmp;
14900
14901 dont_repeat ();
14902
14903 if (arg == 0)
14904 {
14905 int breaks_to_delete = 0;
14906
14907 /* Delete all breakpoints if no argument.
14908 Do not delete internal or call-dummy breakpoints, these
14909 have to be deleted with an explicit breakpoint number
14910 argument. */
14911 ALL_TRACEPOINTS (b)
14912 if (is_tracepoint (b) && user_breakpoint_p (b))
14913 {
14914 breaks_to_delete = 1;
14915 break;
14916 }
14917
14918 /* Ask user only if there are some breakpoints to delete. */
14919 if (!from_tty
14920 || (breaks_to_delete && query (_("Delete all tracepoints? "))))
14921 {
14922 ALL_BREAKPOINTS_SAFE (b, b_tmp)
14923 if (is_tracepoint (b) && user_breakpoint_p (b))
14924 delete_breakpoint (b);
14925 }
14926 }
14927 else
14928 map_breakpoint_numbers
14929 (arg, [&] (breakpoint *b)
14930 {
14931 iterate_over_related_breakpoints (b, delete_breakpoint);
14932 });
14933 }
14934
14935 /* Helper function for trace_pass_command. */
14936
14937 static void
14938 trace_pass_set_count (struct tracepoint *tp, int count, int from_tty)
14939 {
14940 tp->pass_count = count;
14941 observer_notify_breakpoint_modified (tp);
14942 if (from_tty)
14943 printf_filtered (_("Setting tracepoint %d's passcount to %d\n"),
14944 tp->number, count);
14945 }
14946
14947 /* Set passcount for tracepoint.
14948
14949 First command argument is passcount, second is tracepoint number.
14950 If tracepoint number omitted, apply to most recently defined.
14951 Also accepts special argument "all". */
14952
14953 static void
14954 trace_pass_command (const char *args, int from_tty)
14955 {
14956 struct tracepoint *t1;
14957 ULONGEST count;
14958
14959 if (args == 0 || *args == 0)
14960 error (_("passcount command requires an "
14961 "argument (count + optional TP num)"));
14962
14963 count = strtoulst (args, &args, 10); /* Count comes first, then TP num. */
14964
14965 args = skip_spaces (args);
14966 if (*args && strncasecmp (args, "all", 3) == 0)
14967 {
14968 struct breakpoint *b;
14969
14970 args += 3; /* Skip special argument "all". */
14971 if (*args)
14972 error (_("Junk at end of arguments."));
14973
14974 ALL_TRACEPOINTS (b)
14975 {
14976 t1 = (struct tracepoint *) b;
14977 trace_pass_set_count (t1, count, from_tty);
14978 }
14979 }
14980 else if (*args == '\0')
14981 {
14982 t1 = get_tracepoint_by_number (&args, NULL);
14983 if (t1)
14984 trace_pass_set_count (t1, count, from_tty);
14985 }
14986 else
14987 {
14988 number_or_range_parser parser (args);
14989 while (!parser.finished ())
14990 {
14991 t1 = get_tracepoint_by_number (&args, &parser);
14992 if (t1)
14993 trace_pass_set_count (t1, count, from_tty);
14994 }
14995 }
14996 }
14997
14998 struct tracepoint *
14999 get_tracepoint (int num)
15000 {
15001 struct breakpoint *t;
15002
15003 ALL_TRACEPOINTS (t)
15004 if (t->number == num)
15005 return (struct tracepoint *) t;
15006
15007 return NULL;
15008 }
15009
15010 /* Find the tracepoint with the given target-side number (which may be
15011 different from the tracepoint number after disconnecting and
15012 reconnecting). */
15013
15014 struct tracepoint *
15015 get_tracepoint_by_number_on_target (int num)
15016 {
15017 struct breakpoint *b;
15018
15019 ALL_TRACEPOINTS (b)
15020 {
15021 struct tracepoint *t = (struct tracepoint *) b;
15022
15023 if (t->number_on_target == num)
15024 return t;
15025 }
15026
15027 return NULL;
15028 }
15029
15030 /* Utility: parse a tracepoint number and look it up in the list.
15031 If STATE is not NULL, use, get_number_or_range_state and ignore ARG.
15032 If the argument is missing, the most recent tracepoint
15033 (tracepoint_count) is returned. */
15034
15035 struct tracepoint *
15036 get_tracepoint_by_number (const char **arg,
15037 number_or_range_parser *parser)
15038 {
15039 struct breakpoint *t;
15040 int tpnum;
15041 const char *instring = arg == NULL ? NULL : *arg;
15042
15043 if (parser != NULL)
15044 {
15045 gdb_assert (!parser->finished ());
15046 tpnum = parser->get_number ();
15047 }
15048 else if (arg == NULL || *arg == NULL || ! **arg)
15049 tpnum = tracepoint_count;
15050 else
15051 tpnum = get_number (arg);
15052
15053 if (tpnum <= 0)
15054 {
15055 if (instring && *instring)
15056 printf_filtered (_("bad tracepoint number at or near '%s'\n"),
15057 instring);
15058 else
15059 printf_filtered (_("No previous tracepoint\n"));
15060 return NULL;
15061 }
15062
15063 ALL_TRACEPOINTS (t)
15064 if (t->number == tpnum)
15065 {
15066 return (struct tracepoint *) t;
15067 }
15068
15069 printf_unfiltered ("No tracepoint number %d.\n", tpnum);
15070 return NULL;
15071 }
15072
15073 void
15074 print_recreate_thread (struct breakpoint *b, struct ui_file *fp)
15075 {
15076 if (b->thread != -1)
15077 fprintf_unfiltered (fp, " thread %d", b->thread);
15078
15079 if (b->task != 0)
15080 fprintf_unfiltered (fp, " task %d", b->task);
15081
15082 fprintf_unfiltered (fp, "\n");
15083 }
15084
15085 /* Save information on user settable breakpoints (watchpoints, etc) to
15086 a new script file named FILENAME. If FILTER is non-NULL, call it
15087 on each breakpoint and only include the ones for which it returns
15088 non-zero. */
15089
15090 static void
15091 save_breakpoints (const char *filename, int from_tty,
15092 int (*filter) (const struct breakpoint *))
15093 {
15094 struct breakpoint *tp;
15095 int any = 0;
15096 int extra_trace_bits = 0;
15097
15098 if (filename == 0 || *filename == 0)
15099 error (_("Argument required (file name in which to save)"));
15100
15101 /* See if we have anything to save. */
15102 ALL_BREAKPOINTS (tp)
15103 {
15104 /* Skip internal and momentary breakpoints. */
15105 if (!user_breakpoint_p (tp))
15106 continue;
15107
15108 /* If we have a filter, only save the breakpoints it accepts. */
15109 if (filter && !filter (tp))
15110 continue;
15111
15112 any = 1;
15113
15114 if (is_tracepoint (tp))
15115 {
15116 extra_trace_bits = 1;
15117
15118 /* We can stop searching. */
15119 break;
15120 }
15121 }
15122
15123 if (!any)
15124 {
15125 warning (_("Nothing to save."));
15126 return;
15127 }
15128
15129 gdb::unique_xmalloc_ptr<char> expanded_filename (tilde_expand (filename));
15130
15131 stdio_file fp;
15132
15133 if (!fp.open (expanded_filename.get (), "w"))
15134 error (_("Unable to open file '%s' for saving (%s)"),
15135 expanded_filename.get (), safe_strerror (errno));
15136
15137 if (extra_trace_bits)
15138 save_trace_state_variables (&fp);
15139
15140 ALL_BREAKPOINTS (tp)
15141 {
15142 /* Skip internal and momentary breakpoints. */
15143 if (!user_breakpoint_p (tp))
15144 continue;
15145
15146 /* If we have a filter, only save the breakpoints it accepts. */
15147 if (filter && !filter (tp))
15148 continue;
15149
15150 tp->ops->print_recreate (tp, &fp);
15151
15152 /* Note, we can't rely on tp->number for anything, as we can't
15153 assume the recreated breakpoint numbers will match. Use $bpnum
15154 instead. */
15155
15156 if (tp->cond_string)
15157 fp.printf (" condition $bpnum %s\n", tp->cond_string);
15158
15159 if (tp->ignore_count)
15160 fp.printf (" ignore $bpnum %d\n", tp->ignore_count);
15161
15162 if (tp->type != bp_dprintf && tp->commands)
15163 {
15164 fp.puts (" commands\n");
15165
15166 current_uiout->redirect (&fp);
15167 TRY
15168 {
15169 print_command_lines (current_uiout, tp->commands.get (), 2);
15170 }
15171 CATCH (ex, RETURN_MASK_ALL)
15172 {
15173 current_uiout->redirect (NULL);
15174 throw_exception (ex);
15175 }
15176 END_CATCH
15177
15178 current_uiout->redirect (NULL);
15179 fp.puts (" end\n");
15180 }
15181
15182 if (tp->enable_state == bp_disabled)
15183 fp.puts ("disable $bpnum\n");
15184
15185 /* If this is a multi-location breakpoint, check if the locations
15186 should be individually disabled. Watchpoint locations are
15187 special, and not user visible. */
15188 if (!is_watchpoint (tp) && tp->loc && tp->loc->next)
15189 {
15190 struct bp_location *loc;
15191 int n = 1;
15192
15193 for (loc = tp->loc; loc != NULL; loc = loc->next, n++)
15194 if (!loc->enabled)
15195 fp.printf ("disable $bpnum.%d\n", n);
15196 }
15197 }
15198
15199 if (extra_trace_bits && *default_collect)
15200 fp.printf ("set default-collect %s\n", default_collect);
15201
15202 if (from_tty)
15203 printf_filtered (_("Saved to file '%s'.\n"), expanded_filename.get ());
15204 }
15205
15206 /* The `save breakpoints' command. */
15207
15208 static void
15209 save_breakpoints_command (const char *args, int from_tty)
15210 {
15211 save_breakpoints (args, from_tty, NULL);
15212 }
15213
15214 /* The `save tracepoints' command. */
15215
15216 static void
15217 save_tracepoints_command (const char *args, int from_tty)
15218 {
15219 save_breakpoints (args, from_tty, is_tracepoint);
15220 }
15221
15222 /* Create a vector of all tracepoints. */
15223
15224 VEC(breakpoint_p) *
15225 all_tracepoints (void)
15226 {
15227 VEC(breakpoint_p) *tp_vec = 0;
15228 struct breakpoint *tp;
15229
15230 ALL_TRACEPOINTS (tp)
15231 {
15232 VEC_safe_push (breakpoint_p, tp_vec, tp);
15233 }
15234
15235 return tp_vec;
15236 }
15237
15238 \f
15239 /* This help string is used to consolidate all the help string for specifying
15240 locations used by several commands. */
15241
15242 #define LOCATION_HELP_STRING \
15243 "Linespecs are colon-separated lists of location parameters, such as\n\
15244 source filename, function name, label name, and line number.\n\
15245 Example: To specify the start of a label named \"the_top\" in the\n\
15246 function \"fact\" in the file \"factorial.c\", use\n\
15247 \"factorial.c:fact:the_top\".\n\
15248 \n\
15249 Address locations begin with \"*\" and specify an exact address in the\n\
15250 program. Example: To specify the fourth byte past the start function\n\
15251 \"main\", use \"*main + 4\".\n\
15252 \n\
15253 Explicit locations are similar to linespecs but use an option/argument\n\
15254 syntax to specify location parameters.\n\
15255 Example: To specify the start of the label named \"the_top\" in the\n\
15256 function \"fact\" in the file \"factorial.c\", use \"-source factorial.c\n\
15257 -function fact -label the_top\".\n\
15258 \n\
15259 By default, a specified function is matched against the program's\n\
15260 functions in all scopes. For C++, this means in all namespaces and\n\
15261 classes. For Ada, this means in all packages. E.g., in C++,\n\
15262 \"func()\" matches \"A::func()\", \"A::B::func()\", etc. The\n\
15263 \"-qualified\" flag overrides this behavior, making GDB interpret the\n\
15264 specified name as a complete fully-qualified name instead.\n"
15265
15266 /* This help string is used for the break, hbreak, tbreak and thbreak
15267 commands. It is defined as a macro to prevent duplication.
15268 COMMAND should be a string constant containing the name of the
15269 command. */
15270
15271 #define BREAK_ARGS_HELP(command) \
15272 command" [PROBE_MODIFIER] [LOCATION] [thread THREADNUM] [if CONDITION]\n\
15273 PROBE_MODIFIER shall be present if the command is to be placed in a\n\
15274 probe point. Accepted values are `-probe' (for a generic, automatically\n\
15275 guessed probe type), `-probe-stap' (for a SystemTap probe) or \n\
15276 `-probe-dtrace' (for a DTrace probe).\n\
15277 LOCATION may be a linespec, address, or explicit location as described\n\
15278 below.\n\
15279 \n\
15280 With no LOCATION, uses current execution address of the selected\n\
15281 stack frame. This is useful for breaking on return to a stack frame.\n\
15282 \n\
15283 THREADNUM is the number from \"info threads\".\n\
15284 CONDITION is a boolean expression.\n\
15285 \n" LOCATION_HELP_STRING "\n\
15286 Multiple breakpoints at one place are permitted, and useful if their\n\
15287 conditions are different.\n\
15288 \n\
15289 Do \"help breakpoints\" for info on other commands dealing with breakpoints."
15290
15291 /* List of subcommands for "catch". */
15292 static struct cmd_list_element *catch_cmdlist;
15293
15294 /* List of subcommands for "tcatch". */
15295 static struct cmd_list_element *tcatch_cmdlist;
15296
15297 void
15298 add_catch_command (const char *name, const char *docstring,
15299 cmd_const_sfunc_ftype *sfunc,
15300 completer_ftype *completer,
15301 void *user_data_catch,
15302 void *user_data_tcatch)
15303 {
15304 struct cmd_list_element *command;
15305
15306 command = add_cmd (name, class_breakpoint, docstring,
15307 &catch_cmdlist);
15308 set_cmd_sfunc (command, sfunc);
15309 set_cmd_context (command, user_data_catch);
15310 set_cmd_completer (command, completer);
15311
15312 command = add_cmd (name, class_breakpoint, docstring,
15313 &tcatch_cmdlist);
15314 set_cmd_sfunc (command, sfunc);
15315 set_cmd_context (command, user_data_tcatch);
15316 set_cmd_completer (command, completer);
15317 }
15318
15319 static void
15320 save_command (const char *arg, int from_tty)
15321 {
15322 printf_unfiltered (_("\"save\" must be followed by "
15323 "the name of a save subcommand.\n"));
15324 help_list (save_cmdlist, "save ", all_commands, gdb_stdout);
15325 }
15326
15327 struct breakpoint *
15328 iterate_over_breakpoints (int (*callback) (struct breakpoint *, void *),
15329 void *data)
15330 {
15331 struct breakpoint *b, *b_tmp;
15332
15333 ALL_BREAKPOINTS_SAFE (b, b_tmp)
15334 {
15335 if ((*callback) (b, data))
15336 return b;
15337 }
15338
15339 return NULL;
15340 }
15341
15342 /* Zero if any of the breakpoint's locations could be a location where
15343 functions have been inlined, nonzero otherwise. */
15344
15345 static int
15346 is_non_inline_function (struct breakpoint *b)
15347 {
15348 /* The shared library event breakpoint is set on the address of a
15349 non-inline function. */
15350 if (b->type == bp_shlib_event)
15351 return 1;
15352
15353 return 0;
15354 }
15355
15356 /* Nonzero if the specified PC cannot be a location where functions
15357 have been inlined. */
15358
15359 int
15360 pc_at_non_inline_function (const address_space *aspace, CORE_ADDR pc,
15361 const struct target_waitstatus *ws)
15362 {
15363 struct breakpoint *b;
15364 struct bp_location *bl;
15365
15366 ALL_BREAKPOINTS (b)
15367 {
15368 if (!is_non_inline_function (b))
15369 continue;
15370
15371 for (bl = b->loc; bl != NULL; bl = bl->next)
15372 {
15373 if (!bl->shlib_disabled
15374 && bpstat_check_location (bl, aspace, pc, ws))
15375 return 1;
15376 }
15377 }
15378
15379 return 0;
15380 }
15381
15382 /* Remove any references to OBJFILE which is going to be freed. */
15383
15384 void
15385 breakpoint_free_objfile (struct objfile *objfile)
15386 {
15387 struct bp_location **locp, *loc;
15388
15389 ALL_BP_LOCATIONS (loc, locp)
15390 if (loc->symtab != NULL && SYMTAB_OBJFILE (loc->symtab) == objfile)
15391 loc->symtab = NULL;
15392 }
15393
15394 void
15395 initialize_breakpoint_ops (void)
15396 {
15397 static int initialized = 0;
15398
15399 struct breakpoint_ops *ops;
15400
15401 if (initialized)
15402 return;
15403 initialized = 1;
15404
15405 /* The breakpoint_ops structure to be inherit by all kinds of
15406 breakpoints (real breakpoints, i.e., user "break" breakpoints,
15407 internal and momentary breakpoints, etc.). */
15408 ops = &bkpt_base_breakpoint_ops;
15409 *ops = base_breakpoint_ops;
15410 ops->re_set = bkpt_re_set;
15411 ops->insert_location = bkpt_insert_location;
15412 ops->remove_location = bkpt_remove_location;
15413 ops->breakpoint_hit = bkpt_breakpoint_hit;
15414 ops->create_sals_from_location = bkpt_create_sals_from_location;
15415 ops->create_breakpoints_sal = bkpt_create_breakpoints_sal;
15416 ops->decode_location = bkpt_decode_location;
15417
15418 /* The breakpoint_ops structure to be used in regular breakpoints. */
15419 ops = &bkpt_breakpoint_ops;
15420 *ops = bkpt_base_breakpoint_ops;
15421 ops->re_set = bkpt_re_set;
15422 ops->resources_needed = bkpt_resources_needed;
15423 ops->print_it = bkpt_print_it;
15424 ops->print_mention = bkpt_print_mention;
15425 ops->print_recreate = bkpt_print_recreate;
15426
15427 /* Ranged breakpoints. */
15428 ops = &ranged_breakpoint_ops;
15429 *ops = bkpt_breakpoint_ops;
15430 ops->breakpoint_hit = breakpoint_hit_ranged_breakpoint;
15431 ops->resources_needed = resources_needed_ranged_breakpoint;
15432 ops->print_it = print_it_ranged_breakpoint;
15433 ops->print_one = print_one_ranged_breakpoint;
15434 ops->print_one_detail = print_one_detail_ranged_breakpoint;
15435 ops->print_mention = print_mention_ranged_breakpoint;
15436 ops->print_recreate = print_recreate_ranged_breakpoint;
15437
15438 /* Internal breakpoints. */
15439 ops = &internal_breakpoint_ops;
15440 *ops = bkpt_base_breakpoint_ops;
15441 ops->re_set = internal_bkpt_re_set;
15442 ops->check_status = internal_bkpt_check_status;
15443 ops->print_it = internal_bkpt_print_it;
15444 ops->print_mention = internal_bkpt_print_mention;
15445
15446 /* Momentary breakpoints. */
15447 ops = &momentary_breakpoint_ops;
15448 *ops = bkpt_base_breakpoint_ops;
15449 ops->re_set = momentary_bkpt_re_set;
15450 ops->check_status = momentary_bkpt_check_status;
15451 ops->print_it = momentary_bkpt_print_it;
15452 ops->print_mention = momentary_bkpt_print_mention;
15453
15454 /* Probe breakpoints. */
15455 ops = &bkpt_probe_breakpoint_ops;
15456 *ops = bkpt_breakpoint_ops;
15457 ops->insert_location = bkpt_probe_insert_location;
15458 ops->remove_location = bkpt_probe_remove_location;
15459 ops->create_sals_from_location = bkpt_probe_create_sals_from_location;
15460 ops->decode_location = bkpt_probe_decode_location;
15461
15462 /* Watchpoints. */
15463 ops = &watchpoint_breakpoint_ops;
15464 *ops = base_breakpoint_ops;
15465 ops->re_set = re_set_watchpoint;
15466 ops->insert_location = insert_watchpoint;
15467 ops->remove_location = remove_watchpoint;
15468 ops->breakpoint_hit = breakpoint_hit_watchpoint;
15469 ops->check_status = check_status_watchpoint;
15470 ops->resources_needed = resources_needed_watchpoint;
15471 ops->works_in_software_mode = works_in_software_mode_watchpoint;
15472 ops->print_it = print_it_watchpoint;
15473 ops->print_mention = print_mention_watchpoint;
15474 ops->print_recreate = print_recreate_watchpoint;
15475 ops->explains_signal = explains_signal_watchpoint;
15476
15477 /* Masked watchpoints. */
15478 ops = &masked_watchpoint_breakpoint_ops;
15479 *ops = watchpoint_breakpoint_ops;
15480 ops->insert_location = insert_masked_watchpoint;
15481 ops->remove_location = remove_masked_watchpoint;
15482 ops->resources_needed = resources_needed_masked_watchpoint;
15483 ops->works_in_software_mode = works_in_software_mode_masked_watchpoint;
15484 ops->print_it = print_it_masked_watchpoint;
15485 ops->print_one_detail = print_one_detail_masked_watchpoint;
15486 ops->print_mention = print_mention_masked_watchpoint;
15487 ops->print_recreate = print_recreate_masked_watchpoint;
15488
15489 /* Tracepoints. */
15490 ops = &tracepoint_breakpoint_ops;
15491 *ops = base_breakpoint_ops;
15492 ops->re_set = tracepoint_re_set;
15493 ops->breakpoint_hit = tracepoint_breakpoint_hit;
15494 ops->print_one_detail = tracepoint_print_one_detail;
15495 ops->print_mention = tracepoint_print_mention;
15496 ops->print_recreate = tracepoint_print_recreate;
15497 ops->create_sals_from_location = tracepoint_create_sals_from_location;
15498 ops->create_breakpoints_sal = tracepoint_create_breakpoints_sal;
15499 ops->decode_location = tracepoint_decode_location;
15500
15501 /* Probe tracepoints. */
15502 ops = &tracepoint_probe_breakpoint_ops;
15503 *ops = tracepoint_breakpoint_ops;
15504 ops->create_sals_from_location = tracepoint_probe_create_sals_from_location;
15505 ops->decode_location = tracepoint_probe_decode_location;
15506
15507 /* Static tracepoints with marker (`-m'). */
15508 ops = &strace_marker_breakpoint_ops;
15509 *ops = tracepoint_breakpoint_ops;
15510 ops->create_sals_from_location = strace_marker_create_sals_from_location;
15511 ops->create_breakpoints_sal = strace_marker_create_breakpoints_sal;
15512 ops->decode_location = strace_marker_decode_location;
15513
15514 /* Fork catchpoints. */
15515 ops = &catch_fork_breakpoint_ops;
15516 *ops = base_breakpoint_ops;
15517 ops->insert_location = insert_catch_fork;
15518 ops->remove_location = remove_catch_fork;
15519 ops->breakpoint_hit = breakpoint_hit_catch_fork;
15520 ops->print_it = print_it_catch_fork;
15521 ops->print_one = print_one_catch_fork;
15522 ops->print_mention = print_mention_catch_fork;
15523 ops->print_recreate = print_recreate_catch_fork;
15524
15525 /* Vfork catchpoints. */
15526 ops = &catch_vfork_breakpoint_ops;
15527 *ops = base_breakpoint_ops;
15528 ops->insert_location = insert_catch_vfork;
15529 ops->remove_location = remove_catch_vfork;
15530 ops->breakpoint_hit = breakpoint_hit_catch_vfork;
15531 ops->print_it = print_it_catch_vfork;
15532 ops->print_one = print_one_catch_vfork;
15533 ops->print_mention = print_mention_catch_vfork;
15534 ops->print_recreate = print_recreate_catch_vfork;
15535
15536 /* Exec catchpoints. */
15537 ops = &catch_exec_breakpoint_ops;
15538 *ops = base_breakpoint_ops;
15539 ops->insert_location = insert_catch_exec;
15540 ops->remove_location = remove_catch_exec;
15541 ops->breakpoint_hit = breakpoint_hit_catch_exec;
15542 ops->print_it = print_it_catch_exec;
15543 ops->print_one = print_one_catch_exec;
15544 ops->print_mention = print_mention_catch_exec;
15545 ops->print_recreate = print_recreate_catch_exec;
15546
15547 /* Solib-related catchpoints. */
15548 ops = &catch_solib_breakpoint_ops;
15549 *ops = base_breakpoint_ops;
15550 ops->insert_location = insert_catch_solib;
15551 ops->remove_location = remove_catch_solib;
15552 ops->breakpoint_hit = breakpoint_hit_catch_solib;
15553 ops->check_status = check_status_catch_solib;
15554 ops->print_it = print_it_catch_solib;
15555 ops->print_one = print_one_catch_solib;
15556 ops->print_mention = print_mention_catch_solib;
15557 ops->print_recreate = print_recreate_catch_solib;
15558
15559 ops = &dprintf_breakpoint_ops;
15560 *ops = bkpt_base_breakpoint_ops;
15561 ops->re_set = dprintf_re_set;
15562 ops->resources_needed = bkpt_resources_needed;
15563 ops->print_it = bkpt_print_it;
15564 ops->print_mention = bkpt_print_mention;
15565 ops->print_recreate = dprintf_print_recreate;
15566 ops->after_condition_true = dprintf_after_condition_true;
15567 ops->breakpoint_hit = dprintf_breakpoint_hit;
15568 }
15569
15570 /* Chain containing all defined "enable breakpoint" subcommands. */
15571
15572 static struct cmd_list_element *enablebreaklist = NULL;
15573
15574 void
15575 _initialize_breakpoint (void)
15576 {
15577 struct cmd_list_element *c;
15578
15579 initialize_breakpoint_ops ();
15580
15581 observer_attach_solib_unloaded (disable_breakpoints_in_unloaded_shlib);
15582 observer_attach_free_objfile (disable_breakpoints_in_freed_objfile);
15583 observer_attach_memory_changed (invalidate_bp_value_on_memory_change);
15584
15585 breakpoint_objfile_key
15586 = register_objfile_data_with_cleanup (NULL, free_breakpoint_objfile_data);
15587
15588 breakpoint_chain = 0;
15589 /* Don't bother to call set_breakpoint_count. $bpnum isn't useful
15590 before a breakpoint is set. */
15591 breakpoint_count = 0;
15592
15593 tracepoint_count = 0;
15594
15595 add_com ("ignore", class_breakpoint, ignore_command, _("\
15596 Set ignore-count of breakpoint number N to COUNT.\n\
15597 Usage is `ignore N COUNT'."));
15598
15599 add_com ("commands", class_breakpoint, commands_command, _("\
15600 Set commands to be executed when the given breakpoints are hit.\n\
15601 Give a space-separated breakpoint list as argument after \"commands\".\n\
15602 A list element can be a breakpoint number (e.g. `5') or a range of numbers\n\
15603 (e.g. `5-7').\n\
15604 With no argument, the targeted breakpoint is the last one set.\n\
15605 The commands themselves follow starting on the next line.\n\
15606 Type a line containing \"end\" to indicate the end of them.\n\
15607 Give \"silent\" as the first line to make the breakpoint silent;\n\
15608 then no output is printed when it is hit, except what the commands print."));
15609
15610 c = add_com ("condition", class_breakpoint, condition_command, _("\
15611 Specify breakpoint number N to break only if COND is true.\n\
15612 Usage is `condition N COND', where N is an integer and COND is an\n\
15613 expression to be evaluated whenever breakpoint N is reached."));
15614 set_cmd_completer (c, condition_completer);
15615
15616 c = add_com ("tbreak", class_breakpoint, tbreak_command, _("\
15617 Set a temporary breakpoint.\n\
15618 Like \"break\" except the breakpoint is only temporary,\n\
15619 so it will be deleted when hit. Equivalent to \"break\" followed\n\
15620 by using \"enable delete\" on the breakpoint number.\n\
15621 \n"
15622 BREAK_ARGS_HELP ("tbreak")));
15623 set_cmd_completer (c, location_completer);
15624
15625 c = add_com ("hbreak", class_breakpoint, hbreak_command, _("\
15626 Set a hardware assisted breakpoint.\n\
15627 Like \"break\" except the breakpoint requires hardware support,\n\
15628 some target hardware may not have this support.\n\
15629 \n"
15630 BREAK_ARGS_HELP ("hbreak")));
15631 set_cmd_completer (c, location_completer);
15632
15633 c = add_com ("thbreak", class_breakpoint, thbreak_command, _("\
15634 Set a temporary hardware assisted breakpoint.\n\
15635 Like \"hbreak\" except the breakpoint is only temporary,\n\
15636 so it will be deleted when hit.\n\
15637 \n"
15638 BREAK_ARGS_HELP ("thbreak")));
15639 set_cmd_completer (c, location_completer);
15640
15641 add_prefix_cmd ("enable", class_breakpoint, enable_command, _("\
15642 Enable some breakpoints.\n\
15643 Give breakpoint numbers (separated by spaces) as arguments.\n\
15644 With no subcommand, breakpoints are enabled until you command otherwise.\n\
15645 This is used to cancel the effect of the \"disable\" command.\n\
15646 With a subcommand you can enable temporarily."),
15647 &enablelist, "enable ", 1, &cmdlist);
15648
15649 add_com_alias ("en", "enable", class_breakpoint, 1);
15650
15651 add_prefix_cmd ("breakpoints", class_breakpoint, enable_command, _("\
15652 Enable some breakpoints.\n\
15653 Give breakpoint numbers (separated by spaces) as arguments.\n\
15654 This is used to cancel the effect of the \"disable\" command.\n\
15655 May be abbreviated to simply \"enable\".\n"),
15656 &enablebreaklist, "enable breakpoints ", 1, &enablelist);
15657
15658 add_cmd ("once", no_class, enable_once_command, _("\
15659 Enable breakpoints for one hit. Give breakpoint numbers.\n\
15660 If a breakpoint is hit while enabled in this fashion, it becomes disabled."),
15661 &enablebreaklist);
15662
15663 add_cmd ("delete", no_class, enable_delete_command, _("\
15664 Enable breakpoints and delete when hit. Give breakpoint numbers.\n\
15665 If a breakpoint is hit while enabled in this fashion, it is deleted."),
15666 &enablebreaklist);
15667
15668 add_cmd ("count", no_class, enable_count_command, _("\
15669 Enable breakpoints for COUNT hits. Give count and then breakpoint numbers.\n\
15670 If a breakpoint is hit while enabled in this fashion,\n\
15671 the count is decremented; when it reaches zero, the breakpoint is disabled."),
15672 &enablebreaklist);
15673
15674 add_cmd ("delete", no_class, enable_delete_command, _("\
15675 Enable breakpoints and delete when hit. Give breakpoint numbers.\n\
15676 If a breakpoint is hit while enabled in this fashion, it is deleted."),
15677 &enablelist);
15678
15679 add_cmd ("once", no_class, enable_once_command, _("\
15680 Enable breakpoints for one hit. Give breakpoint numbers.\n\
15681 If a breakpoint is hit while enabled in this fashion, it becomes disabled."),
15682 &enablelist);
15683
15684 add_cmd ("count", no_class, enable_count_command, _("\
15685 Enable breakpoints for COUNT hits. Give count and then breakpoint numbers.\n\
15686 If a breakpoint is hit while enabled in this fashion,\n\
15687 the count is decremented; when it reaches zero, the breakpoint is disabled."),
15688 &enablelist);
15689
15690 add_prefix_cmd ("disable", class_breakpoint, disable_command, _("\
15691 Disable some breakpoints.\n\
15692 Arguments are breakpoint numbers with spaces in between.\n\
15693 To disable all breakpoints, give no argument.\n\
15694 A disabled breakpoint is not forgotten, but has no effect until re-enabled."),
15695 &disablelist, "disable ", 1, &cmdlist);
15696 add_com_alias ("dis", "disable", class_breakpoint, 1);
15697 add_com_alias ("disa", "disable", class_breakpoint, 1);
15698
15699 add_cmd ("breakpoints", class_alias, disable_command, _("\
15700 Disable some breakpoints.\n\
15701 Arguments are breakpoint numbers with spaces in between.\n\
15702 To disable all breakpoints, give no argument.\n\
15703 A disabled breakpoint is not forgotten, but has no effect until re-enabled.\n\
15704 This command may be abbreviated \"disable\"."),
15705 &disablelist);
15706
15707 add_prefix_cmd ("delete", class_breakpoint, delete_command, _("\
15708 Delete some breakpoints or auto-display expressions.\n\
15709 Arguments are breakpoint numbers with spaces in between.\n\
15710 To delete all breakpoints, give no argument.\n\
15711 \n\
15712 Also a prefix command for deletion of other GDB objects.\n\
15713 The \"unset\" command is also an alias for \"delete\"."),
15714 &deletelist, "delete ", 1, &cmdlist);
15715 add_com_alias ("d", "delete", class_breakpoint, 1);
15716 add_com_alias ("del", "delete", class_breakpoint, 1);
15717
15718 add_cmd ("breakpoints", class_alias, delete_command, _("\
15719 Delete some breakpoints or auto-display expressions.\n\
15720 Arguments are breakpoint numbers with spaces in between.\n\
15721 To delete all breakpoints, give no argument.\n\
15722 This command may be abbreviated \"delete\"."),
15723 &deletelist);
15724
15725 add_com ("clear", class_breakpoint, clear_command, _("\
15726 Clear breakpoint at specified location.\n\
15727 Argument may be a linespec, explicit, or address location as described below.\n\
15728 \n\
15729 With no argument, clears all breakpoints in the line that the selected frame\n\
15730 is executing in.\n"
15731 "\n" LOCATION_HELP_STRING "\n\
15732 See also the \"delete\" command which clears breakpoints by number."));
15733 add_com_alias ("cl", "clear", class_breakpoint, 1);
15734
15735 c = add_com ("break", class_breakpoint, break_command, _("\
15736 Set breakpoint at specified location.\n"
15737 BREAK_ARGS_HELP ("break")));
15738 set_cmd_completer (c, location_completer);
15739
15740 add_com_alias ("b", "break", class_run, 1);
15741 add_com_alias ("br", "break", class_run, 1);
15742 add_com_alias ("bre", "break", class_run, 1);
15743 add_com_alias ("brea", "break", class_run, 1);
15744
15745 if (dbx_commands)
15746 {
15747 add_abbrev_prefix_cmd ("stop", class_breakpoint, stop_command, _("\
15748 Break in function/address or break at a line in the current file."),
15749 &stoplist, "stop ", 1, &cmdlist);
15750 add_cmd ("in", class_breakpoint, stopin_command,
15751 _("Break in function or address."), &stoplist);
15752 add_cmd ("at", class_breakpoint, stopat_command,
15753 _("Break at a line in the current file."), &stoplist);
15754 add_com ("status", class_info, info_breakpoints_command, _("\
15755 Status of user-settable breakpoints, or breakpoint number NUMBER.\n\
15756 The \"Type\" column indicates one of:\n\
15757 \tbreakpoint - normal breakpoint\n\
15758 \twatchpoint - watchpoint\n\
15759 The \"Disp\" column contains one of \"keep\", \"del\", or \"dis\" to indicate\n\
15760 the disposition of the breakpoint after it gets hit. \"dis\" means that the\n\
15761 breakpoint will be disabled. The \"Address\" and \"What\" columns indicate the\n\
15762 address and file/line number respectively.\n\
15763 \n\
15764 Convenience variable \"$_\" and default examine address for \"x\"\n\
15765 are set to the address of the last breakpoint listed unless the command\n\
15766 is prefixed with \"server \".\n\n\
15767 Convenience variable \"$bpnum\" contains the number of the last\n\
15768 breakpoint set."));
15769 }
15770
15771 add_info ("breakpoints", info_breakpoints_command, _("\
15772 Status of specified breakpoints (all user-settable breakpoints if no argument).\n\
15773 The \"Type\" column indicates one of:\n\
15774 \tbreakpoint - normal breakpoint\n\
15775 \twatchpoint - watchpoint\n\
15776 The \"Disp\" column contains one of \"keep\", \"del\", or \"dis\" to indicate\n\
15777 the disposition of the breakpoint after it gets hit. \"dis\" means that the\n\
15778 breakpoint will be disabled. The \"Address\" and \"What\" columns indicate the\n\
15779 address and file/line number respectively.\n\
15780 \n\
15781 Convenience variable \"$_\" and default examine address for \"x\"\n\
15782 are set to the address of the last breakpoint listed unless the command\n\
15783 is prefixed with \"server \".\n\n\
15784 Convenience variable \"$bpnum\" contains the number of the last\n\
15785 breakpoint set."));
15786
15787 add_info_alias ("b", "breakpoints", 1);
15788
15789 add_cmd ("breakpoints", class_maintenance, maintenance_info_breakpoints, _("\
15790 Status of all breakpoints, or breakpoint number NUMBER.\n\
15791 The \"Type\" column indicates one of:\n\
15792 \tbreakpoint - normal breakpoint\n\
15793 \twatchpoint - watchpoint\n\
15794 \tlongjmp - internal breakpoint used to step through longjmp()\n\
15795 \tlongjmp resume - internal breakpoint at the target of longjmp()\n\
15796 \tuntil - internal breakpoint used by the \"until\" command\n\
15797 \tfinish - internal breakpoint used by the \"finish\" command\n\
15798 The \"Disp\" column contains one of \"keep\", \"del\", or \"dis\" to indicate\n\
15799 the disposition of the breakpoint after it gets hit. \"dis\" means that the\n\
15800 breakpoint will be disabled. The \"Address\" and \"What\" columns indicate the\n\
15801 address and file/line number respectively.\n\
15802 \n\
15803 Convenience variable \"$_\" and default examine address for \"x\"\n\
15804 are set to the address of the last breakpoint listed unless the command\n\
15805 is prefixed with \"server \".\n\n\
15806 Convenience variable \"$bpnum\" contains the number of the last\n\
15807 breakpoint set."),
15808 &maintenanceinfolist);
15809
15810 add_prefix_cmd ("catch", class_breakpoint, catch_command, _("\
15811 Set catchpoints to catch events."),
15812 &catch_cmdlist, "catch ",
15813 0/*allow-unknown*/, &cmdlist);
15814
15815 add_prefix_cmd ("tcatch", class_breakpoint, tcatch_command, _("\
15816 Set temporary catchpoints to catch events."),
15817 &tcatch_cmdlist, "tcatch ",
15818 0/*allow-unknown*/, &cmdlist);
15819
15820 add_catch_command ("fork", _("Catch calls to fork."),
15821 catch_fork_command_1,
15822 NULL,
15823 (void *) (uintptr_t) catch_fork_permanent,
15824 (void *) (uintptr_t) catch_fork_temporary);
15825 add_catch_command ("vfork", _("Catch calls to vfork."),
15826 catch_fork_command_1,
15827 NULL,
15828 (void *) (uintptr_t) catch_vfork_permanent,
15829 (void *) (uintptr_t) catch_vfork_temporary);
15830 add_catch_command ("exec", _("Catch calls to exec."),
15831 catch_exec_command_1,
15832 NULL,
15833 CATCH_PERMANENT,
15834 CATCH_TEMPORARY);
15835 add_catch_command ("load", _("Catch loads of shared libraries.\n\
15836 Usage: catch load [REGEX]\n\
15837 If REGEX is given, only stop for libraries matching the regular expression."),
15838 catch_load_command_1,
15839 NULL,
15840 CATCH_PERMANENT,
15841 CATCH_TEMPORARY);
15842 add_catch_command ("unload", _("Catch unloads of shared libraries.\n\
15843 Usage: catch unload [REGEX]\n\
15844 If REGEX is given, only stop for libraries matching the regular expression."),
15845 catch_unload_command_1,
15846 NULL,
15847 CATCH_PERMANENT,
15848 CATCH_TEMPORARY);
15849
15850 c = add_com ("watch", class_breakpoint, watch_command, _("\
15851 Set a watchpoint for an expression.\n\
15852 Usage: watch [-l|-location] EXPRESSION\n\
15853 A watchpoint stops execution of your program whenever the value of\n\
15854 an expression changes.\n\
15855 If -l or -location is given, this evaluates EXPRESSION and watches\n\
15856 the memory to which it refers."));
15857 set_cmd_completer (c, expression_completer);
15858
15859 c = add_com ("rwatch", class_breakpoint, rwatch_command, _("\
15860 Set a read watchpoint for an expression.\n\
15861 Usage: rwatch [-l|-location] EXPRESSION\n\
15862 A watchpoint stops execution of your program whenever the value of\n\
15863 an expression is read.\n\
15864 If -l or -location is given, this evaluates EXPRESSION and watches\n\
15865 the memory to which it refers."));
15866 set_cmd_completer (c, expression_completer);
15867
15868 c = add_com ("awatch", class_breakpoint, awatch_command, _("\
15869 Set a watchpoint for an expression.\n\
15870 Usage: awatch [-l|-location] EXPRESSION\n\
15871 A watchpoint stops execution of your program whenever the value of\n\
15872 an expression is either read or written.\n\
15873 If -l or -location is given, this evaluates EXPRESSION and watches\n\
15874 the memory to which it refers."));
15875 set_cmd_completer (c, expression_completer);
15876
15877 add_info ("watchpoints", info_watchpoints_command, _("\
15878 Status of specified watchpoints (all watchpoints if no argument)."));
15879
15880 /* XXX: cagney/2005-02-23: This should be a boolean, and should
15881 respond to changes - contrary to the description. */
15882 add_setshow_zinteger_cmd ("can-use-hw-watchpoints", class_support,
15883 &can_use_hw_watchpoints, _("\
15884 Set debugger's willingness to use watchpoint hardware."), _("\
15885 Show debugger's willingness to use watchpoint hardware."), _("\
15886 If zero, gdb will not use hardware for new watchpoints, even if\n\
15887 such is available. (However, any hardware watchpoints that were\n\
15888 created before setting this to nonzero, will continue to use watchpoint\n\
15889 hardware.)"),
15890 NULL,
15891 show_can_use_hw_watchpoints,
15892 &setlist, &showlist);
15893
15894 can_use_hw_watchpoints = 1;
15895
15896 /* Tracepoint manipulation commands. */
15897
15898 c = add_com ("trace", class_breakpoint, trace_command, _("\
15899 Set a tracepoint at specified location.\n\
15900 \n"
15901 BREAK_ARGS_HELP ("trace") "\n\
15902 Do \"help tracepoints\" for info on other tracepoint commands."));
15903 set_cmd_completer (c, location_completer);
15904
15905 add_com_alias ("tp", "trace", class_alias, 0);
15906 add_com_alias ("tr", "trace", class_alias, 1);
15907 add_com_alias ("tra", "trace", class_alias, 1);
15908 add_com_alias ("trac", "trace", class_alias, 1);
15909
15910 c = add_com ("ftrace", class_breakpoint, ftrace_command, _("\
15911 Set a fast tracepoint at specified location.\n\
15912 \n"
15913 BREAK_ARGS_HELP ("ftrace") "\n\
15914 Do \"help tracepoints\" for info on other tracepoint commands."));
15915 set_cmd_completer (c, location_completer);
15916
15917 c = add_com ("strace", class_breakpoint, strace_command, _("\
15918 Set a static tracepoint at location or marker.\n\
15919 \n\
15920 strace [LOCATION] [if CONDITION]\n\
15921 LOCATION may be a linespec, explicit, or address location (described below) \n\
15922 or -m MARKER_ID.\n\n\
15923 If a marker id is specified, probe the marker with that name. With\n\
15924 no LOCATION, uses current execution address of the selected stack frame.\n\
15925 Static tracepoints accept an extra collect action -- ``collect $_sdata''.\n\
15926 This collects arbitrary user data passed in the probe point call to the\n\
15927 tracing library. You can inspect it when analyzing the trace buffer,\n\
15928 by printing the $_sdata variable like any other convenience variable.\n\
15929 \n\
15930 CONDITION is a boolean expression.\n\
15931 \n" LOCATION_HELP_STRING "\n\
15932 Multiple tracepoints at one place are permitted, and useful if their\n\
15933 conditions are different.\n\
15934 \n\
15935 Do \"help breakpoints\" for info on other commands dealing with breakpoints.\n\
15936 Do \"help tracepoints\" for info on other tracepoint commands."));
15937 set_cmd_completer (c, location_completer);
15938
15939 add_info ("tracepoints", info_tracepoints_command, _("\
15940 Status of specified tracepoints (all tracepoints if no argument).\n\
15941 Convenience variable \"$tpnum\" contains the number of the\n\
15942 last tracepoint set."));
15943
15944 add_info_alias ("tp", "tracepoints", 1);
15945
15946 add_cmd ("tracepoints", class_trace, delete_trace_command, _("\
15947 Delete specified tracepoints.\n\
15948 Arguments are tracepoint numbers, separated by spaces.\n\
15949 No argument means delete all tracepoints."),
15950 &deletelist);
15951 add_alias_cmd ("tr", "tracepoints", class_trace, 1, &deletelist);
15952
15953 c = add_cmd ("tracepoints", class_trace, disable_trace_command, _("\
15954 Disable specified tracepoints.\n\
15955 Arguments are tracepoint numbers, separated by spaces.\n\
15956 No argument means disable all tracepoints."),
15957 &disablelist);
15958 deprecate_cmd (c, "disable");
15959
15960 c = add_cmd ("tracepoints", class_trace, enable_trace_command, _("\
15961 Enable specified tracepoints.\n\
15962 Arguments are tracepoint numbers, separated by spaces.\n\
15963 No argument means enable all tracepoints."),
15964 &enablelist);
15965 deprecate_cmd (c, "enable");
15966
15967 add_com ("passcount", class_trace, trace_pass_command, _("\
15968 Set the passcount for a tracepoint.\n\
15969 The trace will end when the tracepoint has been passed 'count' times.\n\
15970 Usage: passcount COUNT TPNUM, where TPNUM may also be \"all\";\n\
15971 if TPNUM is omitted, passcount refers to the last tracepoint defined."));
15972
15973 add_prefix_cmd ("save", class_breakpoint, save_command,
15974 _("Save breakpoint definitions as a script."),
15975 &save_cmdlist, "save ",
15976 0/*allow-unknown*/, &cmdlist);
15977
15978 c = add_cmd ("breakpoints", class_breakpoint, save_breakpoints_command, _("\
15979 Save current breakpoint definitions as a script.\n\
15980 This includes all types of breakpoints (breakpoints, watchpoints,\n\
15981 catchpoints, tracepoints). Use the 'source' command in another debug\n\
15982 session to restore them."),
15983 &save_cmdlist);
15984 set_cmd_completer (c, filename_completer);
15985
15986 c = add_cmd ("tracepoints", class_trace, save_tracepoints_command, _("\
15987 Save current tracepoint definitions as a script.\n\
15988 Use the 'source' command in another debug session to restore them."),
15989 &save_cmdlist);
15990 set_cmd_completer (c, filename_completer);
15991
15992 c = add_com_alias ("save-tracepoints", "save tracepoints", class_trace, 0);
15993 deprecate_cmd (c, "save tracepoints");
15994
15995 add_prefix_cmd ("breakpoint", class_maintenance, set_breakpoint_cmd, _("\
15996 Breakpoint specific settings\n\
15997 Configure various breakpoint-specific variables such as\n\
15998 pending breakpoint behavior"),
15999 &breakpoint_set_cmdlist, "set breakpoint ",
16000 0/*allow-unknown*/, &setlist);
16001 add_prefix_cmd ("breakpoint", class_maintenance, show_breakpoint_cmd, _("\
16002 Breakpoint specific settings\n\
16003 Configure various breakpoint-specific variables such as\n\
16004 pending breakpoint behavior"),
16005 &breakpoint_show_cmdlist, "show breakpoint ",
16006 0/*allow-unknown*/, &showlist);
16007
16008 add_setshow_auto_boolean_cmd ("pending", no_class,
16009 &pending_break_support, _("\
16010 Set debugger's behavior regarding pending breakpoints."), _("\
16011 Show debugger's behavior regarding pending breakpoints."), _("\
16012 If on, an unrecognized breakpoint location will cause gdb to create a\n\
16013 pending breakpoint. If off, an unrecognized breakpoint location results in\n\
16014 an error. If auto, an unrecognized breakpoint location results in a\n\
16015 user-query to see if a pending breakpoint should be created."),
16016 NULL,
16017 show_pending_break_support,
16018 &breakpoint_set_cmdlist,
16019 &breakpoint_show_cmdlist);
16020
16021 pending_break_support = AUTO_BOOLEAN_AUTO;
16022
16023 add_setshow_boolean_cmd ("auto-hw", no_class,
16024 &automatic_hardware_breakpoints, _("\
16025 Set automatic usage of hardware breakpoints."), _("\
16026 Show automatic usage of hardware breakpoints."), _("\
16027 If set, the debugger will automatically use hardware breakpoints for\n\
16028 breakpoints set with \"break\" but falling in read-only memory. If not set,\n\
16029 a warning will be emitted for such breakpoints."),
16030 NULL,
16031 show_automatic_hardware_breakpoints,
16032 &breakpoint_set_cmdlist,
16033 &breakpoint_show_cmdlist);
16034
16035 add_setshow_boolean_cmd ("always-inserted", class_support,
16036 &always_inserted_mode, _("\
16037 Set mode for inserting breakpoints."), _("\
16038 Show mode for inserting breakpoints."), _("\
16039 When this mode is on, breakpoints are inserted immediately as soon as\n\
16040 they're created, kept inserted even when execution stops, and removed\n\
16041 only when the user deletes them. When this mode is off (the default),\n\
16042 breakpoints are inserted only when execution continues, and removed\n\
16043 when execution stops."),
16044 NULL,
16045 &show_always_inserted_mode,
16046 &breakpoint_set_cmdlist,
16047 &breakpoint_show_cmdlist);
16048
16049 add_setshow_enum_cmd ("condition-evaluation", class_breakpoint,
16050 condition_evaluation_enums,
16051 &condition_evaluation_mode_1, _("\
16052 Set mode of breakpoint condition evaluation."), _("\
16053 Show mode of breakpoint condition evaluation."), _("\
16054 When this is set to \"host\", breakpoint conditions will be\n\
16055 evaluated on the host's side by GDB. When it is set to \"target\",\n\
16056 breakpoint conditions will be downloaded to the target (if the target\n\
16057 supports such feature) and conditions will be evaluated on the target's side.\n\
16058 If this is set to \"auto\" (default), this will be automatically set to\n\
16059 \"target\" if it supports condition evaluation, otherwise it will\n\
16060 be set to \"gdb\""),
16061 &set_condition_evaluation_mode,
16062 &show_condition_evaluation_mode,
16063 &breakpoint_set_cmdlist,
16064 &breakpoint_show_cmdlist);
16065
16066 add_com ("break-range", class_breakpoint, break_range_command, _("\
16067 Set a breakpoint for an address range.\n\
16068 break-range START-LOCATION, END-LOCATION\n\
16069 where START-LOCATION and END-LOCATION can be one of the following:\n\
16070 LINENUM, for that line in the current file,\n\
16071 FILE:LINENUM, for that line in that file,\n\
16072 +OFFSET, for that number of lines after the current line\n\
16073 or the start of the range\n\
16074 FUNCTION, for the first line in that function,\n\
16075 FILE:FUNCTION, to distinguish among like-named static functions.\n\
16076 *ADDRESS, for the instruction at that address.\n\
16077 \n\
16078 The breakpoint will stop execution of the inferior whenever it executes\n\
16079 an instruction at any address within the [START-LOCATION, END-LOCATION]\n\
16080 range (including START-LOCATION and END-LOCATION)."));
16081
16082 c = add_com ("dprintf", class_breakpoint, dprintf_command, _("\
16083 Set a dynamic printf at specified location.\n\
16084 dprintf location,format string,arg1,arg2,...\n\
16085 location may be a linespec, explicit, or address location.\n"
16086 "\n" LOCATION_HELP_STRING));
16087 set_cmd_completer (c, location_completer);
16088
16089 add_setshow_enum_cmd ("dprintf-style", class_support,
16090 dprintf_style_enums, &dprintf_style, _("\
16091 Set the style of usage for dynamic printf."), _("\
16092 Show the style of usage for dynamic printf."), _("\
16093 This setting chooses how GDB will do a dynamic printf.\n\
16094 If the value is \"gdb\", then the printing is done by GDB to its own\n\
16095 console, as with the \"printf\" command.\n\
16096 If the value is \"call\", the print is done by calling a function in your\n\
16097 program; by default printf(), but you can choose a different function or\n\
16098 output stream by setting dprintf-function and dprintf-channel."),
16099 update_dprintf_commands, NULL,
16100 &setlist, &showlist);
16101
16102 dprintf_function = xstrdup ("printf");
16103 add_setshow_string_cmd ("dprintf-function", class_support,
16104 &dprintf_function, _("\
16105 Set the function to use for dynamic printf"), _("\
16106 Show the function to use for dynamic printf"), NULL,
16107 update_dprintf_commands, NULL,
16108 &setlist, &showlist);
16109
16110 dprintf_channel = xstrdup ("");
16111 add_setshow_string_cmd ("dprintf-channel", class_support,
16112 &dprintf_channel, _("\
16113 Set the channel to use for dynamic printf"), _("\
16114 Show the channel to use for dynamic printf"), NULL,
16115 update_dprintf_commands, NULL,
16116 &setlist, &showlist);
16117
16118 add_setshow_boolean_cmd ("disconnected-dprintf", no_class,
16119 &disconnected_dprintf, _("\
16120 Set whether dprintf continues after GDB disconnects."), _("\
16121 Show whether dprintf continues after GDB disconnects."), _("\
16122 Use this to let dprintf commands continue to hit and produce output\n\
16123 even if GDB disconnects or detaches from the target."),
16124 NULL,
16125 NULL,
16126 &setlist, &showlist);
16127
16128 add_com ("agent-printf", class_vars, agent_printf_command, _("\
16129 agent-printf \"printf format string\", arg1, arg2, arg3, ..., argn\n\
16130 (target agent only) This is useful for formatted output in user-defined commands."));
16131
16132 automatic_hardware_breakpoints = 1;
16133
16134 observer_attach_about_to_proceed (breakpoint_about_to_proceed);
16135 observer_attach_thread_exit (remove_threaded_breakpoints);
16136 }
This page took 0.523469 seconds and 4 git commands to generate.