Fix stepping past GNU ifunc resolvers (introduce lookup_msym_prefer)
[deliverable/binutils-gdb.git] / gdb / breakpoint.c
1 /* Everything about breakpoints, for GDB.
2
3 Copyright (C) 1986-2018 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20 #include "defs.h"
21 #include "arch-utils.h"
22 #include <ctype.h>
23 #include "hashtab.h"
24 #include "symtab.h"
25 #include "frame.h"
26 #include "breakpoint.h"
27 #include "tracepoint.h"
28 #include "gdbtypes.h"
29 #include "expression.h"
30 #include "gdbcore.h"
31 #include "gdbcmd.h"
32 #include "value.h"
33 #include "command.h"
34 #include "inferior.h"
35 #include "infrun.h"
36 #include "gdbthread.h"
37 #include "target.h"
38 #include "language.h"
39 #include "gdb-demangle.h"
40 #include "filenames.h"
41 #include "annotate.h"
42 #include "symfile.h"
43 #include "objfiles.h"
44 #include "source.h"
45 #include "linespec.h"
46 #include "completer.h"
47 #include "ui-out.h"
48 #include "cli/cli-script.h"
49 #include "block.h"
50 #include "solib.h"
51 #include "solist.h"
52 #include "observable.h"
53 #include "memattr.h"
54 #include "ada-lang.h"
55 #include "top.h"
56 #include "valprint.h"
57 #include "jit.h"
58 #include "parser-defs.h"
59 #include "gdb_regex.h"
60 #include "probe.h"
61 #include "cli/cli-utils.h"
62 #include "continuations.h"
63 #include "stack.h"
64 #include "skip.h"
65 #include "ax-gdb.h"
66 #include "dummy-frame.h"
67 #include "interps.h"
68 #include "format.h"
69 #include "thread-fsm.h"
70 #include "tid-parse.h"
71
72 /* readline include files */
73 #include "readline/readline.h"
74 #include "readline/history.h"
75
76 /* readline defines this. */
77 #undef savestring
78
79 #include "mi/mi-common.h"
80 #include "extension.h"
81 #include <algorithm>
82 #include "progspace-and-thread.h"
83 #include "common/array-view.h"
84 #include "common/gdb_optional.h"
85
86 /* Enums for exception-handling support. */
87 enum exception_event_kind
88 {
89 EX_EVENT_THROW,
90 EX_EVENT_RETHROW,
91 EX_EVENT_CATCH
92 };
93
94 /* Prototypes for local functions. */
95
96 static void map_breakpoint_numbers (const char *,
97 gdb::function_view<void (breakpoint *)>);
98
99 static void breakpoint_re_set_default (struct breakpoint *);
100
101 static void
102 create_sals_from_location_default (const struct event_location *location,
103 struct linespec_result *canonical,
104 enum bptype type_wanted);
105
106 static void create_breakpoints_sal_default (struct gdbarch *,
107 struct linespec_result *,
108 gdb::unique_xmalloc_ptr<char>,
109 gdb::unique_xmalloc_ptr<char>,
110 enum bptype,
111 enum bpdisp, int, int,
112 int,
113 const struct breakpoint_ops *,
114 int, int, int, unsigned);
115
116 static std::vector<symtab_and_line> decode_location_default
117 (struct breakpoint *b, const struct event_location *location,
118 struct program_space *search_pspace);
119
120 static int can_use_hardware_watchpoint
121 (const std::vector<value_ref_ptr> &vals);
122
123 static void mention (struct breakpoint *);
124
125 static struct breakpoint *set_raw_breakpoint_without_location (struct gdbarch *,
126 enum bptype,
127 const struct breakpoint_ops *);
128 static struct bp_location *add_location_to_breakpoint (struct breakpoint *,
129 const struct symtab_and_line *);
130
131 /* This function is used in gdbtk sources and thus can not be made
132 static. */
133 struct breakpoint *set_raw_breakpoint (struct gdbarch *gdbarch,
134 struct symtab_and_line,
135 enum bptype,
136 const struct breakpoint_ops *);
137
138 static struct breakpoint *
139 momentary_breakpoint_from_master (struct breakpoint *orig,
140 enum bptype type,
141 const struct breakpoint_ops *ops,
142 int loc_enabled);
143
144 static void breakpoint_adjustment_warning (CORE_ADDR, CORE_ADDR, int, int);
145
146 static CORE_ADDR adjust_breakpoint_address (struct gdbarch *gdbarch,
147 CORE_ADDR bpaddr,
148 enum bptype bptype);
149
150 static void describe_other_breakpoints (struct gdbarch *,
151 struct program_space *, CORE_ADDR,
152 struct obj_section *, int);
153
154 static int watchpoint_locations_match (struct bp_location *loc1,
155 struct bp_location *loc2);
156
157 static int breakpoint_location_address_match (struct bp_location *bl,
158 const struct address_space *aspace,
159 CORE_ADDR addr);
160
161 static int breakpoint_location_address_range_overlap (struct bp_location *,
162 const address_space *,
163 CORE_ADDR, int);
164
165 static int remove_breakpoint (struct bp_location *);
166 static int remove_breakpoint_1 (struct bp_location *, enum remove_bp_reason);
167
168 static enum print_stop_action print_bp_stop_message (bpstat bs);
169
170 static int hw_breakpoint_used_count (void);
171
172 static int hw_watchpoint_use_count (struct breakpoint *);
173
174 static int hw_watchpoint_used_count_others (struct breakpoint *except,
175 enum bptype type,
176 int *other_type_used);
177
178 static void enable_breakpoint_disp (struct breakpoint *, enum bpdisp,
179 int count);
180
181 static void free_bp_location (struct bp_location *loc);
182 static void incref_bp_location (struct bp_location *loc);
183 static void decref_bp_location (struct bp_location **loc);
184
185 static struct bp_location *allocate_bp_location (struct breakpoint *bpt);
186
187 /* update_global_location_list's modes of operation wrt to whether to
188 insert locations now. */
189 enum ugll_insert_mode
190 {
191 /* Don't insert any breakpoint locations into the inferior, only
192 remove already-inserted locations that no longer should be
193 inserted. Functions that delete a breakpoint or breakpoints
194 should specify this mode, so that deleting a breakpoint doesn't
195 have the side effect of inserting the locations of other
196 breakpoints that are marked not-inserted, but should_be_inserted
197 returns true on them.
198
199 This behavior is useful is situations close to tear-down -- e.g.,
200 after an exec, while the target still has execution, but
201 breakpoint shadows of the previous executable image should *NOT*
202 be restored to the new image; or before detaching, where the
203 target still has execution and wants to delete breakpoints from
204 GDB's lists, and all breakpoints had already been removed from
205 the inferior. */
206 UGLL_DONT_INSERT,
207
208 /* May insert breakpoints iff breakpoints_should_be_inserted_now
209 claims breakpoints should be inserted now. */
210 UGLL_MAY_INSERT,
211
212 /* Insert locations now, irrespective of
213 breakpoints_should_be_inserted_now. E.g., say all threads are
214 stopped right now, and the user did "continue". We need to
215 insert breakpoints _before_ resuming the target, but
216 UGLL_MAY_INSERT wouldn't insert them, because
217 breakpoints_should_be_inserted_now returns false at that point,
218 as no thread is running yet. */
219 UGLL_INSERT
220 };
221
222 static void update_global_location_list (enum ugll_insert_mode);
223
224 static void update_global_location_list_nothrow (enum ugll_insert_mode);
225
226 static int is_hardware_watchpoint (const struct breakpoint *bpt);
227
228 static void insert_breakpoint_locations (void);
229
230 static void trace_pass_command (const char *, int);
231
232 static void set_tracepoint_count (int num);
233
234 static int is_masked_watchpoint (const struct breakpoint *b);
235
236 static struct bp_location **get_first_locp_gte_addr (CORE_ADDR address);
237
238 /* Return 1 if B refers to a static tracepoint set by marker ("-m"), zero
239 otherwise. */
240
241 static int strace_marker_p (struct breakpoint *b);
242
243 /* The breakpoint_ops structure to be inherited by all breakpoint_ops
244 that are implemented on top of software or hardware breakpoints
245 (user breakpoints, internal and momentary breakpoints, etc.). */
246 static struct breakpoint_ops bkpt_base_breakpoint_ops;
247
248 /* Internal breakpoints class type. */
249 static struct breakpoint_ops internal_breakpoint_ops;
250
251 /* Momentary breakpoints class type. */
252 static struct breakpoint_ops momentary_breakpoint_ops;
253
254 /* The breakpoint_ops structure to be used in regular user created
255 breakpoints. */
256 struct breakpoint_ops bkpt_breakpoint_ops;
257
258 /* Breakpoints set on probes. */
259 static struct breakpoint_ops bkpt_probe_breakpoint_ops;
260
261 /* Dynamic printf class type. */
262 struct breakpoint_ops dprintf_breakpoint_ops;
263
264 /* The style in which to perform a dynamic printf. This is a user
265 option because different output options have different tradeoffs;
266 if GDB does the printing, there is better error handling if there
267 is a problem with any of the arguments, but using an inferior
268 function lets you have special-purpose printers and sending of
269 output to the same place as compiled-in print functions. */
270
271 static const char dprintf_style_gdb[] = "gdb";
272 static const char dprintf_style_call[] = "call";
273 static const char dprintf_style_agent[] = "agent";
274 static const char *const dprintf_style_enums[] = {
275 dprintf_style_gdb,
276 dprintf_style_call,
277 dprintf_style_agent,
278 NULL
279 };
280 static const char *dprintf_style = dprintf_style_gdb;
281
282 /* The function to use for dynamic printf if the preferred style is to
283 call into the inferior. The value is simply a string that is
284 copied into the command, so it can be anything that GDB can
285 evaluate to a callable address, not necessarily a function name. */
286
287 static char *dprintf_function;
288
289 /* The channel to use for dynamic printf if the preferred style is to
290 call into the inferior; if a nonempty string, it will be passed to
291 the call as the first argument, with the format string as the
292 second. As with the dprintf function, this can be anything that
293 GDB knows how to evaluate, so in addition to common choices like
294 "stderr", this could be an app-specific expression like
295 "mystreams[curlogger]". */
296
297 static char *dprintf_channel;
298
299 /* True if dprintf commands should continue to operate even if GDB
300 has disconnected. */
301 static int disconnected_dprintf = 1;
302
303 struct command_line *
304 breakpoint_commands (struct breakpoint *b)
305 {
306 return b->commands ? b->commands.get () : NULL;
307 }
308
309 /* Flag indicating that a command has proceeded the inferior past the
310 current breakpoint. */
311
312 static int breakpoint_proceeded;
313
314 const char *
315 bpdisp_text (enum bpdisp disp)
316 {
317 /* NOTE: the following values are a part of MI protocol and
318 represent values of 'disp' field returned when inferior stops at
319 a breakpoint. */
320 static const char * const bpdisps[] = {"del", "dstp", "dis", "keep"};
321
322 return bpdisps[(int) disp];
323 }
324
325 /* Prototypes for exported functions. */
326 /* If FALSE, gdb will not use hardware support for watchpoints, even
327 if such is available. */
328 static int can_use_hw_watchpoints;
329
330 static void
331 show_can_use_hw_watchpoints (struct ui_file *file, int from_tty,
332 struct cmd_list_element *c,
333 const char *value)
334 {
335 fprintf_filtered (file,
336 _("Debugger's willingness to use "
337 "watchpoint hardware is %s.\n"),
338 value);
339 }
340
341 /* If AUTO_BOOLEAN_FALSE, gdb will not attempt to create pending breakpoints.
342 If AUTO_BOOLEAN_TRUE, gdb will automatically create pending breakpoints
343 for unrecognized breakpoint locations.
344 If AUTO_BOOLEAN_AUTO, gdb will query when breakpoints are unrecognized. */
345 static enum auto_boolean pending_break_support;
346 static void
347 show_pending_break_support (struct ui_file *file, int from_tty,
348 struct cmd_list_element *c,
349 const char *value)
350 {
351 fprintf_filtered (file,
352 _("Debugger's behavior regarding "
353 "pending breakpoints is %s.\n"),
354 value);
355 }
356
357 /* If 1, gdb will automatically use hardware breakpoints for breakpoints
358 set with "break" but falling in read-only memory.
359 If 0, gdb will warn about such breakpoints, but won't automatically
360 use hardware breakpoints. */
361 static int automatic_hardware_breakpoints;
362 static void
363 show_automatic_hardware_breakpoints (struct ui_file *file, int from_tty,
364 struct cmd_list_element *c,
365 const char *value)
366 {
367 fprintf_filtered (file,
368 _("Automatic usage of hardware breakpoints is %s.\n"),
369 value);
370 }
371
372 /* If on, GDB keeps breakpoints inserted even if the inferior is
373 stopped, and immediately inserts any new breakpoints as soon as
374 they're created. If off (default), GDB keeps breakpoints off of
375 the target as long as possible. That is, it delays inserting
376 breakpoints until the next resume, and removes them again when the
377 target fully stops. This is a bit safer in case GDB crashes while
378 processing user input. */
379 static int always_inserted_mode = 0;
380
381 static void
382 show_always_inserted_mode (struct ui_file *file, int from_tty,
383 struct cmd_list_element *c, const char *value)
384 {
385 fprintf_filtered (file, _("Always inserted breakpoint mode is %s.\n"),
386 value);
387 }
388
389 /* See breakpoint.h. */
390
391 int
392 breakpoints_should_be_inserted_now (void)
393 {
394 if (gdbarch_has_global_breakpoints (target_gdbarch ()))
395 {
396 /* If breakpoints are global, they should be inserted even if no
397 thread under gdb's control is running, or even if there are
398 no threads under GDB's control yet. */
399 return 1;
400 }
401 else if (target_has_execution)
402 {
403 struct thread_info *tp;
404
405 if (always_inserted_mode)
406 {
407 /* The user wants breakpoints inserted even if all threads
408 are stopped. */
409 return 1;
410 }
411
412 if (threads_are_executing ())
413 return 1;
414
415 /* Don't remove breakpoints yet if, even though all threads are
416 stopped, we still have events to process. */
417 ALL_NON_EXITED_THREADS (tp)
418 if (tp->resumed
419 && tp->suspend.waitstatus_pending_p)
420 return 1;
421 }
422 return 0;
423 }
424
425 static const char condition_evaluation_both[] = "host or target";
426
427 /* Modes for breakpoint condition evaluation. */
428 static const char condition_evaluation_auto[] = "auto";
429 static const char condition_evaluation_host[] = "host";
430 static const char condition_evaluation_target[] = "target";
431 static const char *const condition_evaluation_enums[] = {
432 condition_evaluation_auto,
433 condition_evaluation_host,
434 condition_evaluation_target,
435 NULL
436 };
437
438 /* Global that holds the current mode for breakpoint condition evaluation. */
439 static const char *condition_evaluation_mode_1 = condition_evaluation_auto;
440
441 /* Global that we use to display information to the user (gets its value from
442 condition_evaluation_mode_1. */
443 static const char *condition_evaluation_mode = condition_evaluation_auto;
444
445 /* Translate a condition evaluation mode MODE into either "host"
446 or "target". This is used mostly to translate from "auto" to the
447 real setting that is being used. It returns the translated
448 evaluation mode. */
449
450 static const char *
451 translate_condition_evaluation_mode (const char *mode)
452 {
453 if (mode == condition_evaluation_auto)
454 {
455 if (target_supports_evaluation_of_breakpoint_conditions ())
456 return condition_evaluation_target;
457 else
458 return condition_evaluation_host;
459 }
460 else
461 return mode;
462 }
463
464 /* Discovers what condition_evaluation_auto translates to. */
465
466 static const char *
467 breakpoint_condition_evaluation_mode (void)
468 {
469 return translate_condition_evaluation_mode (condition_evaluation_mode);
470 }
471
472 /* Return true if GDB should evaluate breakpoint conditions or false
473 otherwise. */
474
475 static int
476 gdb_evaluates_breakpoint_condition_p (void)
477 {
478 const char *mode = breakpoint_condition_evaluation_mode ();
479
480 return (mode == condition_evaluation_host);
481 }
482
483 /* Are we executing breakpoint commands? */
484 static int executing_breakpoint_commands;
485
486 /* Are overlay event breakpoints enabled? */
487 static int overlay_events_enabled;
488
489 /* See description in breakpoint.h. */
490 int target_exact_watchpoints = 0;
491
492 /* Walk the following statement or block through all breakpoints.
493 ALL_BREAKPOINTS_SAFE does so even if the statement deletes the
494 current breakpoint. */
495
496 #define ALL_BREAKPOINTS(B) for (B = breakpoint_chain; B; B = B->next)
497
498 #define ALL_BREAKPOINTS_SAFE(B,TMP) \
499 for (B = breakpoint_chain; \
500 B ? (TMP=B->next, 1): 0; \
501 B = TMP)
502
503 /* Similar iterator for the low-level breakpoints. SAFE variant is
504 not provided so update_global_location_list must not be called
505 while executing the block of ALL_BP_LOCATIONS. */
506
507 #define ALL_BP_LOCATIONS(B,BP_TMP) \
508 for (BP_TMP = bp_locations; \
509 BP_TMP < bp_locations + bp_locations_count && (B = *BP_TMP);\
510 BP_TMP++)
511
512 /* Iterates through locations with address ADDRESS for the currently selected
513 program space. BP_LOCP_TMP points to each object. BP_LOCP_START points
514 to where the loop should start from.
515 If BP_LOCP_START is a NULL pointer, the macro automatically seeks the
516 appropriate location to start with. */
517
518 #define ALL_BP_LOCATIONS_AT_ADDR(BP_LOCP_TMP, BP_LOCP_START, ADDRESS) \
519 for (BP_LOCP_START = BP_LOCP_START == NULL ? get_first_locp_gte_addr (ADDRESS) : BP_LOCP_START, \
520 BP_LOCP_TMP = BP_LOCP_START; \
521 BP_LOCP_START \
522 && (BP_LOCP_TMP < bp_locations + bp_locations_count \
523 && (*BP_LOCP_TMP)->address == ADDRESS); \
524 BP_LOCP_TMP++)
525
526 /* Iterator for tracepoints only. */
527
528 #define ALL_TRACEPOINTS(B) \
529 for (B = breakpoint_chain; B; B = B->next) \
530 if (is_tracepoint (B))
531
532 /* Chains of all breakpoints defined. */
533
534 struct breakpoint *breakpoint_chain;
535
536 /* Array is sorted by bp_locations_compare - primarily by the ADDRESS. */
537
538 static struct bp_location **bp_locations;
539
540 /* Number of elements of BP_LOCATIONS. */
541
542 static unsigned bp_locations_count;
543
544 /* Maximum alignment offset between bp_target_info.PLACED_ADDRESS and
545 ADDRESS for the current elements of BP_LOCATIONS which get a valid
546 result from bp_location_has_shadow. You can use it for roughly
547 limiting the subrange of BP_LOCATIONS to scan for shadow bytes for
548 an address you need to read. */
549
550 static CORE_ADDR bp_locations_placed_address_before_address_max;
551
552 /* Maximum offset plus alignment between bp_target_info.PLACED_ADDRESS
553 + bp_target_info.SHADOW_LEN and ADDRESS for the current elements of
554 BP_LOCATIONS which get a valid result from bp_location_has_shadow.
555 You can use it for roughly limiting the subrange of BP_LOCATIONS to
556 scan for shadow bytes for an address you need to read. */
557
558 static CORE_ADDR bp_locations_shadow_len_after_address_max;
559
560 /* The locations that no longer correspond to any breakpoint, unlinked
561 from the bp_locations array, but for which a hit may still be
562 reported by a target. */
563 VEC(bp_location_p) *moribund_locations = NULL;
564
565 /* Number of last breakpoint made. */
566
567 static int breakpoint_count;
568
569 /* The value of `breakpoint_count' before the last command that
570 created breakpoints. If the last (break-like) command created more
571 than one breakpoint, then the difference between BREAKPOINT_COUNT
572 and PREV_BREAKPOINT_COUNT is more than one. */
573 static int prev_breakpoint_count;
574
575 /* Number of last tracepoint made. */
576
577 static int tracepoint_count;
578
579 static struct cmd_list_element *breakpoint_set_cmdlist;
580 static struct cmd_list_element *breakpoint_show_cmdlist;
581 struct cmd_list_element *save_cmdlist;
582
583 /* See declaration at breakpoint.h. */
584
585 struct breakpoint *
586 breakpoint_find_if (int (*func) (struct breakpoint *b, void *d),
587 void *user_data)
588 {
589 struct breakpoint *b = NULL;
590
591 ALL_BREAKPOINTS (b)
592 {
593 if (func (b, user_data) != 0)
594 break;
595 }
596
597 return b;
598 }
599
600 /* Return whether a breakpoint is an active enabled breakpoint. */
601 static int
602 breakpoint_enabled (struct breakpoint *b)
603 {
604 return (b->enable_state == bp_enabled);
605 }
606
607 /* Set breakpoint count to NUM. */
608
609 static void
610 set_breakpoint_count (int num)
611 {
612 prev_breakpoint_count = breakpoint_count;
613 breakpoint_count = num;
614 set_internalvar_integer (lookup_internalvar ("bpnum"), num);
615 }
616
617 /* Used by `start_rbreak_breakpoints' below, to record the current
618 breakpoint count before "rbreak" creates any breakpoint. */
619 static int rbreak_start_breakpoint_count;
620
621 /* Called at the start an "rbreak" command to record the first
622 breakpoint made. */
623
624 scoped_rbreak_breakpoints::scoped_rbreak_breakpoints ()
625 {
626 rbreak_start_breakpoint_count = breakpoint_count;
627 }
628
629 /* Called at the end of an "rbreak" command to record the last
630 breakpoint made. */
631
632 scoped_rbreak_breakpoints::~scoped_rbreak_breakpoints ()
633 {
634 prev_breakpoint_count = rbreak_start_breakpoint_count;
635 }
636
637 /* Used in run_command to zero the hit count when a new run starts. */
638
639 void
640 clear_breakpoint_hit_counts (void)
641 {
642 struct breakpoint *b;
643
644 ALL_BREAKPOINTS (b)
645 b->hit_count = 0;
646 }
647
648 \f
649 /* Return the breakpoint with the specified number, or NULL
650 if the number does not refer to an existing breakpoint. */
651
652 struct breakpoint *
653 get_breakpoint (int num)
654 {
655 struct breakpoint *b;
656
657 ALL_BREAKPOINTS (b)
658 if (b->number == num)
659 return b;
660
661 return NULL;
662 }
663
664 \f
665
666 /* Mark locations as "conditions have changed" in case the target supports
667 evaluating conditions on its side. */
668
669 static void
670 mark_breakpoint_modified (struct breakpoint *b)
671 {
672 struct bp_location *loc;
673
674 /* This is only meaningful if the target is
675 evaluating conditions and if the user has
676 opted for condition evaluation on the target's
677 side. */
678 if (gdb_evaluates_breakpoint_condition_p ()
679 || !target_supports_evaluation_of_breakpoint_conditions ())
680 return;
681
682 if (!is_breakpoint (b))
683 return;
684
685 for (loc = b->loc; loc; loc = loc->next)
686 loc->condition_changed = condition_modified;
687 }
688
689 /* Mark location as "conditions have changed" in case the target supports
690 evaluating conditions on its side. */
691
692 static void
693 mark_breakpoint_location_modified (struct bp_location *loc)
694 {
695 /* This is only meaningful if the target is
696 evaluating conditions and if the user has
697 opted for condition evaluation on the target's
698 side. */
699 if (gdb_evaluates_breakpoint_condition_p ()
700 || !target_supports_evaluation_of_breakpoint_conditions ())
701
702 return;
703
704 if (!is_breakpoint (loc->owner))
705 return;
706
707 loc->condition_changed = condition_modified;
708 }
709
710 /* Sets the condition-evaluation mode using the static global
711 condition_evaluation_mode. */
712
713 static void
714 set_condition_evaluation_mode (const char *args, int from_tty,
715 struct cmd_list_element *c)
716 {
717 const char *old_mode, *new_mode;
718
719 if ((condition_evaluation_mode_1 == condition_evaluation_target)
720 && !target_supports_evaluation_of_breakpoint_conditions ())
721 {
722 condition_evaluation_mode_1 = condition_evaluation_mode;
723 warning (_("Target does not support breakpoint condition evaluation.\n"
724 "Using host evaluation mode instead."));
725 return;
726 }
727
728 new_mode = translate_condition_evaluation_mode (condition_evaluation_mode_1);
729 old_mode = translate_condition_evaluation_mode (condition_evaluation_mode);
730
731 /* Flip the switch. Flip it even if OLD_MODE == NEW_MODE as one of the
732 settings was "auto". */
733 condition_evaluation_mode = condition_evaluation_mode_1;
734
735 /* Only update the mode if the user picked a different one. */
736 if (new_mode != old_mode)
737 {
738 struct bp_location *loc, **loc_tmp;
739 /* If the user switched to a different evaluation mode, we
740 need to synch the changes with the target as follows:
741
742 "host" -> "target": Send all (valid) conditions to the target.
743 "target" -> "host": Remove all the conditions from the target.
744 */
745
746 if (new_mode == condition_evaluation_target)
747 {
748 /* Mark everything modified and synch conditions with the
749 target. */
750 ALL_BP_LOCATIONS (loc, loc_tmp)
751 mark_breakpoint_location_modified (loc);
752 }
753 else
754 {
755 /* Manually mark non-duplicate locations to synch conditions
756 with the target. We do this to remove all the conditions the
757 target knows about. */
758 ALL_BP_LOCATIONS (loc, loc_tmp)
759 if (is_breakpoint (loc->owner) && loc->inserted)
760 loc->needs_update = 1;
761 }
762
763 /* Do the update. */
764 update_global_location_list (UGLL_MAY_INSERT);
765 }
766
767 return;
768 }
769
770 /* Shows the current mode of breakpoint condition evaluation. Explicitly shows
771 what "auto" is translating to. */
772
773 static void
774 show_condition_evaluation_mode (struct ui_file *file, int from_tty,
775 struct cmd_list_element *c, const char *value)
776 {
777 if (condition_evaluation_mode == condition_evaluation_auto)
778 fprintf_filtered (file,
779 _("Breakpoint condition evaluation "
780 "mode is %s (currently %s).\n"),
781 value,
782 breakpoint_condition_evaluation_mode ());
783 else
784 fprintf_filtered (file, _("Breakpoint condition evaluation mode is %s.\n"),
785 value);
786 }
787
788 /* A comparison function for bp_location AP and BP that is used by
789 bsearch. This comparison function only cares about addresses, unlike
790 the more general bp_locations_compare function. */
791
792 static int
793 bp_locations_compare_addrs (const void *ap, const void *bp)
794 {
795 const struct bp_location *a = *(const struct bp_location **) ap;
796 const struct bp_location *b = *(const struct bp_location **) bp;
797
798 if (a->address == b->address)
799 return 0;
800 else
801 return ((a->address > b->address) - (a->address < b->address));
802 }
803
804 /* Helper function to skip all bp_locations with addresses
805 less than ADDRESS. It returns the first bp_location that
806 is greater than or equal to ADDRESS. If none is found, just
807 return NULL. */
808
809 static struct bp_location **
810 get_first_locp_gte_addr (CORE_ADDR address)
811 {
812 struct bp_location dummy_loc;
813 struct bp_location *dummy_locp = &dummy_loc;
814 struct bp_location **locp_found = NULL;
815
816 /* Initialize the dummy location's address field. */
817 dummy_loc.address = address;
818
819 /* Find a close match to the first location at ADDRESS. */
820 locp_found = ((struct bp_location **)
821 bsearch (&dummy_locp, bp_locations, bp_locations_count,
822 sizeof (struct bp_location **),
823 bp_locations_compare_addrs));
824
825 /* Nothing was found, nothing left to do. */
826 if (locp_found == NULL)
827 return NULL;
828
829 /* We may have found a location that is at ADDRESS but is not the first in the
830 location's list. Go backwards (if possible) and locate the first one. */
831 while ((locp_found - 1) >= bp_locations
832 && (*(locp_found - 1))->address == address)
833 locp_found--;
834
835 return locp_found;
836 }
837
838 void
839 set_breakpoint_condition (struct breakpoint *b, const char *exp,
840 int from_tty)
841 {
842 xfree (b->cond_string);
843 b->cond_string = NULL;
844
845 if (is_watchpoint (b))
846 {
847 struct watchpoint *w = (struct watchpoint *) b;
848
849 w->cond_exp.reset ();
850 }
851 else
852 {
853 struct bp_location *loc;
854
855 for (loc = b->loc; loc; loc = loc->next)
856 {
857 loc->cond.reset ();
858
859 /* No need to free the condition agent expression
860 bytecode (if we have one). We will handle this
861 when we go through update_global_location_list. */
862 }
863 }
864
865 if (*exp == 0)
866 {
867 if (from_tty)
868 printf_filtered (_("Breakpoint %d now unconditional.\n"), b->number);
869 }
870 else
871 {
872 const char *arg = exp;
873
874 /* I don't know if it matters whether this is the string the user
875 typed in or the decompiled expression. */
876 b->cond_string = xstrdup (arg);
877 b->condition_not_parsed = 0;
878
879 if (is_watchpoint (b))
880 {
881 struct watchpoint *w = (struct watchpoint *) b;
882
883 innermost_block.reset ();
884 arg = exp;
885 w->cond_exp = parse_exp_1 (&arg, 0, 0, 0);
886 if (*arg)
887 error (_("Junk at end of expression"));
888 w->cond_exp_valid_block = innermost_block.block ();
889 }
890 else
891 {
892 struct bp_location *loc;
893
894 for (loc = b->loc; loc; loc = loc->next)
895 {
896 arg = exp;
897 loc->cond =
898 parse_exp_1 (&arg, loc->address,
899 block_for_pc (loc->address), 0);
900 if (*arg)
901 error (_("Junk at end of expression"));
902 }
903 }
904 }
905 mark_breakpoint_modified (b);
906
907 gdb::observers::breakpoint_modified.notify (b);
908 }
909
910 /* Completion for the "condition" command. */
911
912 static void
913 condition_completer (struct cmd_list_element *cmd,
914 completion_tracker &tracker,
915 const char *text, const char *word)
916 {
917 const char *space;
918
919 text = skip_spaces (text);
920 space = skip_to_space (text);
921 if (*space == '\0')
922 {
923 int len;
924 struct breakpoint *b;
925
926 if (text[0] == '$')
927 {
928 /* We don't support completion of history indices. */
929 if (!isdigit (text[1]))
930 complete_internalvar (tracker, &text[1]);
931 return;
932 }
933
934 /* We're completing the breakpoint number. */
935 len = strlen (text);
936
937 ALL_BREAKPOINTS (b)
938 {
939 char number[50];
940
941 xsnprintf (number, sizeof (number), "%d", b->number);
942
943 if (strncmp (number, text, len) == 0)
944 {
945 gdb::unique_xmalloc_ptr<char> copy (xstrdup (number));
946 tracker.add_completion (std::move (copy));
947 }
948 }
949
950 return;
951 }
952
953 /* We're completing the expression part. */
954 text = skip_spaces (space);
955 expression_completer (cmd, tracker, text, word);
956 }
957
958 /* condition N EXP -- set break condition of breakpoint N to EXP. */
959
960 static void
961 condition_command (const char *arg, int from_tty)
962 {
963 struct breakpoint *b;
964 const char *p;
965 int bnum;
966
967 if (arg == 0)
968 error_no_arg (_("breakpoint number"));
969
970 p = arg;
971 bnum = get_number (&p);
972 if (bnum == 0)
973 error (_("Bad breakpoint argument: '%s'"), arg);
974
975 ALL_BREAKPOINTS (b)
976 if (b->number == bnum)
977 {
978 /* Check if this breakpoint has a "stop" method implemented in an
979 extension language. This method and conditions entered into GDB
980 from the CLI are mutually exclusive. */
981 const struct extension_language_defn *extlang
982 = get_breakpoint_cond_ext_lang (b, EXT_LANG_NONE);
983
984 if (extlang != NULL)
985 {
986 error (_("Only one stop condition allowed. There is currently"
987 " a %s stop condition defined for this breakpoint."),
988 ext_lang_capitalized_name (extlang));
989 }
990 set_breakpoint_condition (b, p, from_tty);
991
992 if (is_breakpoint (b))
993 update_global_location_list (UGLL_MAY_INSERT);
994
995 return;
996 }
997
998 error (_("No breakpoint number %d."), bnum);
999 }
1000
1001 /* Check that COMMAND do not contain commands that are suitable
1002 only for tracepoints and not suitable for ordinary breakpoints.
1003 Throw if any such commands is found. */
1004
1005 static void
1006 check_no_tracepoint_commands (struct command_line *commands)
1007 {
1008 struct command_line *c;
1009
1010 for (c = commands; c; c = c->next)
1011 {
1012 int i;
1013
1014 if (c->control_type == while_stepping_control)
1015 error (_("The 'while-stepping' command can "
1016 "only be used for tracepoints"));
1017
1018 for (i = 0; i < c->body_count; ++i)
1019 check_no_tracepoint_commands ((c->body_list)[i]);
1020
1021 /* Not that command parsing removes leading whitespace and comment
1022 lines and also empty lines. So, we only need to check for
1023 command directly. */
1024 if (strstr (c->line, "collect ") == c->line)
1025 error (_("The 'collect' command can only be used for tracepoints"));
1026
1027 if (strstr (c->line, "teval ") == c->line)
1028 error (_("The 'teval' command can only be used for tracepoints"));
1029 }
1030 }
1031
1032 struct longjmp_breakpoint : public breakpoint
1033 {
1034 ~longjmp_breakpoint () override;
1035 };
1036
1037 /* Encapsulate tests for different types of tracepoints. */
1038
1039 static bool
1040 is_tracepoint_type (bptype type)
1041 {
1042 return (type == bp_tracepoint
1043 || type == bp_fast_tracepoint
1044 || type == bp_static_tracepoint);
1045 }
1046
1047 static bool
1048 is_longjmp_type (bptype type)
1049 {
1050 return type == bp_longjmp || type == bp_exception;
1051 }
1052
1053 int
1054 is_tracepoint (const struct breakpoint *b)
1055 {
1056 return is_tracepoint_type (b->type);
1057 }
1058
1059 /* Factory function to create an appropriate instance of breakpoint given
1060 TYPE. */
1061
1062 static std::unique_ptr<breakpoint>
1063 new_breakpoint_from_type (bptype type)
1064 {
1065 breakpoint *b;
1066
1067 if (is_tracepoint_type (type))
1068 b = new tracepoint ();
1069 else if (is_longjmp_type (type))
1070 b = new longjmp_breakpoint ();
1071 else
1072 b = new breakpoint ();
1073
1074 return std::unique_ptr<breakpoint> (b);
1075 }
1076
1077 /* A helper function that validates that COMMANDS are valid for a
1078 breakpoint. This function will throw an exception if a problem is
1079 found. */
1080
1081 static void
1082 validate_commands_for_breakpoint (struct breakpoint *b,
1083 struct command_line *commands)
1084 {
1085 if (is_tracepoint (b))
1086 {
1087 struct tracepoint *t = (struct tracepoint *) b;
1088 struct command_line *c;
1089 struct command_line *while_stepping = 0;
1090
1091 /* Reset the while-stepping step count. The previous commands
1092 might have included a while-stepping action, while the new
1093 ones might not. */
1094 t->step_count = 0;
1095
1096 /* We need to verify that each top-level element of commands is
1097 valid for tracepoints, that there's at most one
1098 while-stepping element, and that the while-stepping's body
1099 has valid tracing commands excluding nested while-stepping.
1100 We also need to validate the tracepoint action line in the
1101 context of the tracepoint --- validate_actionline actually
1102 has side effects, like setting the tracepoint's
1103 while-stepping STEP_COUNT, in addition to checking if the
1104 collect/teval actions parse and make sense in the
1105 tracepoint's context. */
1106 for (c = commands; c; c = c->next)
1107 {
1108 if (c->control_type == while_stepping_control)
1109 {
1110 if (b->type == bp_fast_tracepoint)
1111 error (_("The 'while-stepping' command "
1112 "cannot be used for fast tracepoint"));
1113 else if (b->type == bp_static_tracepoint)
1114 error (_("The 'while-stepping' command "
1115 "cannot be used for static tracepoint"));
1116
1117 if (while_stepping)
1118 error (_("The 'while-stepping' command "
1119 "can be used only once"));
1120 else
1121 while_stepping = c;
1122 }
1123
1124 validate_actionline (c->line, b);
1125 }
1126 if (while_stepping)
1127 {
1128 struct command_line *c2;
1129
1130 gdb_assert (while_stepping->body_count == 1);
1131 c2 = while_stepping->body_list[0];
1132 for (; c2; c2 = c2->next)
1133 {
1134 if (c2->control_type == while_stepping_control)
1135 error (_("The 'while-stepping' command cannot be nested"));
1136 }
1137 }
1138 }
1139 else
1140 {
1141 check_no_tracepoint_commands (commands);
1142 }
1143 }
1144
1145 /* Return a vector of all the static tracepoints set at ADDR. The
1146 caller is responsible for releasing the vector. */
1147
1148 VEC(breakpoint_p) *
1149 static_tracepoints_here (CORE_ADDR addr)
1150 {
1151 struct breakpoint *b;
1152 VEC(breakpoint_p) *found = 0;
1153 struct bp_location *loc;
1154
1155 ALL_BREAKPOINTS (b)
1156 if (b->type == bp_static_tracepoint)
1157 {
1158 for (loc = b->loc; loc; loc = loc->next)
1159 if (loc->address == addr)
1160 VEC_safe_push(breakpoint_p, found, b);
1161 }
1162
1163 return found;
1164 }
1165
1166 /* Set the command list of B to COMMANDS. If breakpoint is tracepoint,
1167 validate that only allowed commands are included. */
1168
1169 void
1170 breakpoint_set_commands (struct breakpoint *b,
1171 command_line_up &&commands)
1172 {
1173 validate_commands_for_breakpoint (b, commands.get ());
1174
1175 b->commands = std::move (commands);
1176 gdb::observers::breakpoint_modified.notify (b);
1177 }
1178
1179 /* Set the internal `silent' flag on the breakpoint. Note that this
1180 is not the same as the "silent" that may appear in the breakpoint's
1181 commands. */
1182
1183 void
1184 breakpoint_set_silent (struct breakpoint *b, int silent)
1185 {
1186 int old_silent = b->silent;
1187
1188 b->silent = silent;
1189 if (old_silent != silent)
1190 gdb::observers::breakpoint_modified.notify (b);
1191 }
1192
1193 /* Set the thread for this breakpoint. If THREAD is -1, make the
1194 breakpoint work for any thread. */
1195
1196 void
1197 breakpoint_set_thread (struct breakpoint *b, int thread)
1198 {
1199 int old_thread = b->thread;
1200
1201 b->thread = thread;
1202 if (old_thread != thread)
1203 gdb::observers::breakpoint_modified.notify (b);
1204 }
1205
1206 /* Set the task for this breakpoint. If TASK is 0, make the
1207 breakpoint work for any task. */
1208
1209 void
1210 breakpoint_set_task (struct breakpoint *b, int task)
1211 {
1212 int old_task = b->task;
1213
1214 b->task = task;
1215 if (old_task != task)
1216 gdb::observers::breakpoint_modified.notify (b);
1217 }
1218
1219 void
1220 check_tracepoint_command (char *line, void *closure)
1221 {
1222 struct breakpoint *b = (struct breakpoint *) closure;
1223
1224 validate_actionline (line, b);
1225 }
1226
1227 static void
1228 commands_command_1 (const char *arg, int from_tty,
1229 struct command_line *control)
1230 {
1231 counted_command_line cmd;
1232
1233 std::string new_arg;
1234
1235 if (arg == NULL || !*arg)
1236 {
1237 if (breakpoint_count - prev_breakpoint_count > 1)
1238 new_arg = string_printf ("%d-%d", prev_breakpoint_count + 1,
1239 breakpoint_count);
1240 else if (breakpoint_count > 0)
1241 new_arg = string_printf ("%d", breakpoint_count);
1242 arg = new_arg.c_str ();
1243 }
1244
1245 map_breakpoint_numbers
1246 (arg, [&] (breakpoint *b)
1247 {
1248 if (cmd == NULL)
1249 {
1250 if (control != NULL)
1251 cmd = copy_command_lines (control->body_list[0]);
1252 else
1253 {
1254 std::string str
1255 = string_printf (_("Type commands for breakpoint(s) "
1256 "%s, one per line."),
1257 arg);
1258
1259 cmd = read_command_lines (&str[0],
1260 from_tty, 1,
1261 (is_tracepoint (b)
1262 ? check_tracepoint_command : 0),
1263 b);
1264 }
1265 }
1266
1267 /* If a breakpoint was on the list more than once, we don't need to
1268 do anything. */
1269 if (b->commands != cmd)
1270 {
1271 validate_commands_for_breakpoint (b, cmd.get ());
1272 b->commands = cmd;
1273 gdb::observers::breakpoint_modified.notify (b);
1274 }
1275 });
1276 }
1277
1278 static void
1279 commands_command (const char *arg, int from_tty)
1280 {
1281 commands_command_1 (arg, from_tty, NULL);
1282 }
1283
1284 /* Like commands_command, but instead of reading the commands from
1285 input stream, takes them from an already parsed command structure.
1286
1287 This is used by cli-script.c to DTRT with breakpoint commands
1288 that are part of if and while bodies. */
1289 enum command_control_type
1290 commands_from_control_command (const char *arg, struct command_line *cmd)
1291 {
1292 commands_command_1 (arg, 0, cmd);
1293 return simple_control;
1294 }
1295
1296 /* Return non-zero if BL->TARGET_INFO contains valid information. */
1297
1298 static int
1299 bp_location_has_shadow (struct bp_location *bl)
1300 {
1301 if (bl->loc_type != bp_loc_software_breakpoint)
1302 return 0;
1303 if (!bl->inserted)
1304 return 0;
1305 if (bl->target_info.shadow_len == 0)
1306 /* BL isn't valid, or doesn't shadow memory. */
1307 return 0;
1308 return 1;
1309 }
1310
1311 /* Update BUF, which is LEN bytes read from the target address
1312 MEMADDR, by replacing a memory breakpoint with its shadowed
1313 contents.
1314
1315 If READBUF is not NULL, this buffer must not overlap with the of
1316 the breakpoint location's shadow_contents buffer. Otherwise, a
1317 failed assertion internal error will be raised. */
1318
1319 static void
1320 one_breakpoint_xfer_memory (gdb_byte *readbuf, gdb_byte *writebuf,
1321 const gdb_byte *writebuf_org,
1322 ULONGEST memaddr, LONGEST len,
1323 struct bp_target_info *target_info,
1324 struct gdbarch *gdbarch)
1325 {
1326 /* Now do full processing of the found relevant range of elements. */
1327 CORE_ADDR bp_addr = 0;
1328 int bp_size = 0;
1329 int bptoffset = 0;
1330
1331 if (!breakpoint_address_match (target_info->placed_address_space, 0,
1332 current_program_space->aspace, 0))
1333 {
1334 /* The breakpoint is inserted in a different address space. */
1335 return;
1336 }
1337
1338 /* Addresses and length of the part of the breakpoint that
1339 we need to copy. */
1340 bp_addr = target_info->placed_address;
1341 bp_size = target_info->shadow_len;
1342
1343 if (bp_addr + bp_size <= memaddr)
1344 {
1345 /* The breakpoint is entirely before the chunk of memory we are
1346 reading. */
1347 return;
1348 }
1349
1350 if (bp_addr >= memaddr + len)
1351 {
1352 /* The breakpoint is entirely after the chunk of memory we are
1353 reading. */
1354 return;
1355 }
1356
1357 /* Offset within shadow_contents. */
1358 if (bp_addr < memaddr)
1359 {
1360 /* Only copy the second part of the breakpoint. */
1361 bp_size -= memaddr - bp_addr;
1362 bptoffset = memaddr - bp_addr;
1363 bp_addr = memaddr;
1364 }
1365
1366 if (bp_addr + bp_size > memaddr + len)
1367 {
1368 /* Only copy the first part of the breakpoint. */
1369 bp_size -= (bp_addr + bp_size) - (memaddr + len);
1370 }
1371
1372 if (readbuf != NULL)
1373 {
1374 /* Verify that the readbuf buffer does not overlap with the
1375 shadow_contents buffer. */
1376 gdb_assert (target_info->shadow_contents >= readbuf + len
1377 || readbuf >= (target_info->shadow_contents
1378 + target_info->shadow_len));
1379
1380 /* Update the read buffer with this inserted breakpoint's
1381 shadow. */
1382 memcpy (readbuf + bp_addr - memaddr,
1383 target_info->shadow_contents + bptoffset, bp_size);
1384 }
1385 else
1386 {
1387 const unsigned char *bp;
1388 CORE_ADDR addr = target_info->reqstd_address;
1389 int placed_size;
1390
1391 /* Update the shadow with what we want to write to memory. */
1392 memcpy (target_info->shadow_contents + bptoffset,
1393 writebuf_org + bp_addr - memaddr, bp_size);
1394
1395 /* Determine appropriate breakpoint contents and size for this
1396 address. */
1397 bp = gdbarch_breakpoint_from_pc (gdbarch, &addr, &placed_size);
1398
1399 /* Update the final write buffer with this inserted
1400 breakpoint's INSN. */
1401 memcpy (writebuf + bp_addr - memaddr, bp + bptoffset, bp_size);
1402 }
1403 }
1404
1405 /* Update BUF, which is LEN bytes read from the target address MEMADDR,
1406 by replacing any memory breakpoints with their shadowed contents.
1407
1408 If READBUF is not NULL, this buffer must not overlap with any of
1409 the breakpoint location's shadow_contents buffers. Otherwise,
1410 a failed assertion internal error will be raised.
1411
1412 The range of shadowed area by each bp_location is:
1413 bl->address - bp_locations_placed_address_before_address_max
1414 up to bl->address + bp_locations_shadow_len_after_address_max
1415 The range we were requested to resolve shadows for is:
1416 memaddr ... memaddr + len
1417 Thus the safe cutoff boundaries for performance optimization are
1418 memaddr + len <= (bl->address
1419 - bp_locations_placed_address_before_address_max)
1420 and:
1421 bl->address + bp_locations_shadow_len_after_address_max <= memaddr */
1422
1423 void
1424 breakpoint_xfer_memory (gdb_byte *readbuf, gdb_byte *writebuf,
1425 const gdb_byte *writebuf_org,
1426 ULONGEST memaddr, LONGEST len)
1427 {
1428 /* Left boundary, right boundary and median element of our binary
1429 search. */
1430 unsigned bc_l, bc_r, bc;
1431
1432 /* Find BC_L which is a leftmost element which may affect BUF
1433 content. It is safe to report lower value but a failure to
1434 report higher one. */
1435
1436 bc_l = 0;
1437 bc_r = bp_locations_count;
1438 while (bc_l + 1 < bc_r)
1439 {
1440 struct bp_location *bl;
1441
1442 bc = (bc_l + bc_r) / 2;
1443 bl = bp_locations[bc];
1444
1445 /* Check first BL->ADDRESS will not overflow due to the added
1446 constant. Then advance the left boundary only if we are sure
1447 the BC element can in no way affect the BUF content (MEMADDR
1448 to MEMADDR + LEN range).
1449
1450 Use the BP_LOCATIONS_SHADOW_LEN_AFTER_ADDRESS_MAX safety
1451 offset so that we cannot miss a breakpoint with its shadow
1452 range tail still reaching MEMADDR. */
1453
1454 if ((bl->address + bp_locations_shadow_len_after_address_max
1455 >= bl->address)
1456 && (bl->address + bp_locations_shadow_len_after_address_max
1457 <= memaddr))
1458 bc_l = bc;
1459 else
1460 bc_r = bc;
1461 }
1462
1463 /* Due to the binary search above, we need to make sure we pick the
1464 first location that's at BC_L's address. E.g., if there are
1465 multiple locations at the same address, BC_L may end up pointing
1466 at a duplicate location, and miss the "master"/"inserted"
1467 location. Say, given locations L1, L2 and L3 at addresses A and
1468 B:
1469
1470 L1@A, L2@A, L3@B, ...
1471
1472 BC_L could end up pointing at location L2, while the "master"
1473 location could be L1. Since the `loc->inserted' flag is only set
1474 on "master" locations, we'd forget to restore the shadow of L1
1475 and L2. */
1476 while (bc_l > 0
1477 && bp_locations[bc_l]->address == bp_locations[bc_l - 1]->address)
1478 bc_l--;
1479
1480 /* Now do full processing of the found relevant range of elements. */
1481
1482 for (bc = bc_l; bc < bp_locations_count; bc++)
1483 {
1484 struct bp_location *bl = bp_locations[bc];
1485
1486 /* bp_location array has BL->OWNER always non-NULL. */
1487 if (bl->owner->type == bp_none)
1488 warning (_("reading through apparently deleted breakpoint #%d?"),
1489 bl->owner->number);
1490
1491 /* Performance optimization: any further element can no longer affect BUF
1492 content. */
1493
1494 if (bl->address >= bp_locations_placed_address_before_address_max
1495 && memaddr + len <= (bl->address
1496 - bp_locations_placed_address_before_address_max))
1497 break;
1498
1499 if (!bp_location_has_shadow (bl))
1500 continue;
1501
1502 one_breakpoint_xfer_memory (readbuf, writebuf, writebuf_org,
1503 memaddr, len, &bl->target_info, bl->gdbarch);
1504 }
1505 }
1506
1507 \f
1508
1509 /* Return true if BPT is either a software breakpoint or a hardware
1510 breakpoint. */
1511
1512 int
1513 is_breakpoint (const struct breakpoint *bpt)
1514 {
1515 return (bpt->type == bp_breakpoint
1516 || bpt->type == bp_hardware_breakpoint
1517 || bpt->type == bp_dprintf);
1518 }
1519
1520 /* Return true if BPT is of any hardware watchpoint kind. */
1521
1522 static int
1523 is_hardware_watchpoint (const struct breakpoint *bpt)
1524 {
1525 return (bpt->type == bp_hardware_watchpoint
1526 || bpt->type == bp_read_watchpoint
1527 || bpt->type == bp_access_watchpoint);
1528 }
1529
1530 /* Return true if BPT is of any watchpoint kind, hardware or
1531 software. */
1532
1533 int
1534 is_watchpoint (const struct breakpoint *bpt)
1535 {
1536 return (is_hardware_watchpoint (bpt)
1537 || bpt->type == bp_watchpoint);
1538 }
1539
1540 /* Returns true if the current thread and its running state are safe
1541 to evaluate or update watchpoint B. Watchpoints on local
1542 expressions need to be evaluated in the context of the thread that
1543 was current when the watchpoint was created, and, that thread needs
1544 to be stopped to be able to select the correct frame context.
1545 Watchpoints on global expressions can be evaluated on any thread,
1546 and in any state. It is presently left to the target allowing
1547 memory accesses when threads are running. */
1548
1549 static int
1550 watchpoint_in_thread_scope (struct watchpoint *b)
1551 {
1552 return (b->pspace == current_program_space
1553 && (ptid_equal (b->watchpoint_thread, null_ptid)
1554 || (ptid_equal (inferior_ptid, b->watchpoint_thread)
1555 && !is_executing (inferior_ptid))));
1556 }
1557
1558 /* Set watchpoint B to disp_del_at_next_stop, even including its possible
1559 associated bp_watchpoint_scope breakpoint. */
1560
1561 static void
1562 watchpoint_del_at_next_stop (struct watchpoint *w)
1563 {
1564 if (w->related_breakpoint != w)
1565 {
1566 gdb_assert (w->related_breakpoint->type == bp_watchpoint_scope);
1567 gdb_assert (w->related_breakpoint->related_breakpoint == w);
1568 w->related_breakpoint->disposition = disp_del_at_next_stop;
1569 w->related_breakpoint->related_breakpoint = w->related_breakpoint;
1570 w->related_breakpoint = w;
1571 }
1572 w->disposition = disp_del_at_next_stop;
1573 }
1574
1575 /* Extract a bitfield value from value VAL using the bit parameters contained in
1576 watchpoint W. */
1577
1578 static struct value *
1579 extract_bitfield_from_watchpoint_value (struct watchpoint *w, struct value *val)
1580 {
1581 struct value *bit_val;
1582
1583 if (val == NULL)
1584 return NULL;
1585
1586 bit_val = allocate_value (value_type (val));
1587
1588 unpack_value_bitfield (bit_val,
1589 w->val_bitpos,
1590 w->val_bitsize,
1591 value_contents_for_printing (val),
1592 value_offset (val),
1593 val);
1594
1595 return bit_val;
1596 }
1597
1598 /* Allocate a dummy location and add it to B, which must be a software
1599 watchpoint. This is required because even if a software watchpoint
1600 is not watching any memory, bpstat_stop_status requires a location
1601 to be able to report stops. */
1602
1603 static void
1604 software_watchpoint_add_no_memory_location (struct breakpoint *b,
1605 struct program_space *pspace)
1606 {
1607 gdb_assert (b->type == bp_watchpoint && b->loc == NULL);
1608
1609 b->loc = allocate_bp_location (b);
1610 b->loc->pspace = pspace;
1611 b->loc->address = -1;
1612 b->loc->length = -1;
1613 }
1614
1615 /* Returns true if B is a software watchpoint that is not watching any
1616 memory (e.g., "watch $pc"). */
1617
1618 static int
1619 is_no_memory_software_watchpoint (struct breakpoint *b)
1620 {
1621 return (b->type == bp_watchpoint
1622 && b->loc != NULL
1623 && b->loc->next == NULL
1624 && b->loc->address == -1
1625 && b->loc->length == -1);
1626 }
1627
1628 /* Assuming that B is a watchpoint:
1629 - Reparse watchpoint expression, if REPARSE is non-zero
1630 - Evaluate expression and store the result in B->val
1631 - Evaluate the condition if there is one, and store the result
1632 in b->loc->cond.
1633 - Update the list of values that must be watched in B->loc.
1634
1635 If the watchpoint disposition is disp_del_at_next_stop, then do
1636 nothing. If this is local watchpoint that is out of scope, delete
1637 it.
1638
1639 Even with `set breakpoint always-inserted on' the watchpoints are
1640 removed + inserted on each stop here. Normal breakpoints must
1641 never be removed because they might be missed by a running thread
1642 when debugging in non-stop mode. On the other hand, hardware
1643 watchpoints (is_hardware_watchpoint; processed here) are specific
1644 to each LWP since they are stored in each LWP's hardware debug
1645 registers. Therefore, such LWP must be stopped first in order to
1646 be able to modify its hardware watchpoints.
1647
1648 Hardware watchpoints must be reset exactly once after being
1649 presented to the user. It cannot be done sooner, because it would
1650 reset the data used to present the watchpoint hit to the user. And
1651 it must not be done later because it could display the same single
1652 watchpoint hit during multiple GDB stops. Note that the latter is
1653 relevant only to the hardware watchpoint types bp_read_watchpoint
1654 and bp_access_watchpoint. False hit by bp_hardware_watchpoint is
1655 not user-visible - its hit is suppressed if the memory content has
1656 not changed.
1657
1658 The following constraints influence the location where we can reset
1659 hardware watchpoints:
1660
1661 * target_stopped_by_watchpoint and target_stopped_data_address are
1662 called several times when GDB stops.
1663
1664 [linux]
1665 * Multiple hardware watchpoints can be hit at the same time,
1666 causing GDB to stop. GDB only presents one hardware watchpoint
1667 hit at a time as the reason for stopping, and all the other hits
1668 are presented later, one after the other, each time the user
1669 requests the execution to be resumed. Execution is not resumed
1670 for the threads still having pending hit event stored in
1671 LWP_INFO->STATUS. While the watchpoint is already removed from
1672 the inferior on the first stop the thread hit event is kept being
1673 reported from its cached value by linux_nat_stopped_data_address
1674 until the real thread resume happens after the watchpoint gets
1675 presented and thus its LWP_INFO->STATUS gets reset.
1676
1677 Therefore the hardware watchpoint hit can get safely reset on the
1678 watchpoint removal from inferior. */
1679
1680 static void
1681 update_watchpoint (struct watchpoint *b, int reparse)
1682 {
1683 int within_current_scope;
1684 struct frame_id saved_frame_id;
1685 int frame_saved;
1686
1687 /* If this is a local watchpoint, we only want to check if the
1688 watchpoint frame is in scope if the current thread is the thread
1689 that was used to create the watchpoint. */
1690 if (!watchpoint_in_thread_scope (b))
1691 return;
1692
1693 if (b->disposition == disp_del_at_next_stop)
1694 return;
1695
1696 frame_saved = 0;
1697
1698 /* Determine if the watchpoint is within scope. */
1699 if (b->exp_valid_block == NULL)
1700 within_current_scope = 1;
1701 else
1702 {
1703 struct frame_info *fi = get_current_frame ();
1704 struct gdbarch *frame_arch = get_frame_arch (fi);
1705 CORE_ADDR frame_pc = get_frame_pc (fi);
1706
1707 /* If we're at a point where the stack has been destroyed
1708 (e.g. in a function epilogue), unwinding may not work
1709 properly. Do not attempt to recreate locations at this
1710 point. See similar comments in watchpoint_check. */
1711 if (gdbarch_stack_frame_destroyed_p (frame_arch, frame_pc))
1712 return;
1713
1714 /* Save the current frame's ID so we can restore it after
1715 evaluating the watchpoint expression on its own frame. */
1716 /* FIXME drow/2003-09-09: It would be nice if evaluate_expression
1717 took a frame parameter, so that we didn't have to change the
1718 selected frame. */
1719 frame_saved = 1;
1720 saved_frame_id = get_frame_id (get_selected_frame (NULL));
1721
1722 fi = frame_find_by_id (b->watchpoint_frame);
1723 within_current_scope = (fi != NULL);
1724 if (within_current_scope)
1725 select_frame (fi);
1726 }
1727
1728 /* We don't free locations. They are stored in the bp_location array
1729 and update_global_location_list will eventually delete them and
1730 remove breakpoints if needed. */
1731 b->loc = NULL;
1732
1733 if (within_current_scope && reparse)
1734 {
1735 const char *s;
1736
1737 b->exp.reset ();
1738 s = b->exp_string_reparse ? b->exp_string_reparse : b->exp_string;
1739 b->exp = parse_exp_1 (&s, 0, b->exp_valid_block, 0);
1740 /* If the meaning of expression itself changed, the old value is
1741 no longer relevant. We don't want to report a watchpoint hit
1742 to the user when the old value and the new value may actually
1743 be completely different objects. */
1744 b->val = NULL;
1745 b->val_valid = 0;
1746
1747 /* Note that unlike with breakpoints, the watchpoint's condition
1748 expression is stored in the breakpoint object, not in the
1749 locations (re)created below. */
1750 if (b->cond_string != NULL)
1751 {
1752 b->cond_exp.reset ();
1753
1754 s = b->cond_string;
1755 b->cond_exp = parse_exp_1 (&s, 0, b->cond_exp_valid_block, 0);
1756 }
1757 }
1758
1759 /* If we failed to parse the expression, for example because
1760 it refers to a global variable in a not-yet-loaded shared library,
1761 don't try to insert watchpoint. We don't automatically delete
1762 such watchpoint, though, since failure to parse expression
1763 is different from out-of-scope watchpoint. */
1764 if (!target_has_execution)
1765 {
1766 /* Without execution, memory can't change. No use to try and
1767 set watchpoint locations. The watchpoint will be reset when
1768 the target gains execution, through breakpoint_re_set. */
1769 if (!can_use_hw_watchpoints)
1770 {
1771 if (b->ops->works_in_software_mode (b))
1772 b->type = bp_watchpoint;
1773 else
1774 error (_("Can't set read/access watchpoint when "
1775 "hardware watchpoints are disabled."));
1776 }
1777 }
1778 else if (within_current_scope && b->exp)
1779 {
1780 int pc = 0;
1781 std::vector<value_ref_ptr> val_chain;
1782 struct value *v, *result, *next;
1783 struct program_space *frame_pspace;
1784
1785 fetch_subexp_value (b->exp.get (), &pc, &v, &result, &val_chain, 0);
1786
1787 /* Avoid setting b->val if it's already set. The meaning of
1788 b->val is 'the last value' user saw, and we should update
1789 it only if we reported that last value to user. As it
1790 happens, the code that reports it updates b->val directly.
1791 We don't keep track of the memory value for masked
1792 watchpoints. */
1793 if (!b->val_valid && !is_masked_watchpoint (b))
1794 {
1795 if (b->val_bitsize != 0)
1796 v = extract_bitfield_from_watchpoint_value (b, v);
1797 b->val = release_value (v);
1798 b->val_valid = 1;
1799 }
1800
1801 frame_pspace = get_frame_program_space (get_selected_frame (NULL));
1802
1803 /* Look at each value on the value chain. */
1804 gdb_assert (!val_chain.empty ());
1805 for (const value_ref_ptr &iter : val_chain)
1806 {
1807 v = iter.get ();
1808
1809 /* If it's a memory location, and GDB actually needed
1810 its contents to evaluate the expression, then we
1811 must watch it. If the first value returned is
1812 still lazy, that means an error occurred reading it;
1813 watch it anyway in case it becomes readable. */
1814 if (VALUE_LVAL (v) == lval_memory
1815 && (v == val_chain[0] || ! value_lazy (v)))
1816 {
1817 struct type *vtype = check_typedef (value_type (v));
1818
1819 /* We only watch structs and arrays if user asked
1820 for it explicitly, never if they just happen to
1821 appear in the middle of some value chain. */
1822 if (v == result
1823 || (TYPE_CODE (vtype) != TYPE_CODE_STRUCT
1824 && TYPE_CODE (vtype) != TYPE_CODE_ARRAY))
1825 {
1826 CORE_ADDR addr;
1827 enum target_hw_bp_type type;
1828 struct bp_location *loc, **tmp;
1829 int bitpos = 0, bitsize = 0;
1830
1831 if (value_bitsize (v) != 0)
1832 {
1833 /* Extract the bit parameters out from the bitfield
1834 sub-expression. */
1835 bitpos = value_bitpos (v);
1836 bitsize = value_bitsize (v);
1837 }
1838 else if (v == result && b->val_bitsize != 0)
1839 {
1840 /* If VAL_BITSIZE != 0 then RESULT is actually a bitfield
1841 lvalue whose bit parameters are saved in the fields
1842 VAL_BITPOS and VAL_BITSIZE. */
1843 bitpos = b->val_bitpos;
1844 bitsize = b->val_bitsize;
1845 }
1846
1847 addr = value_address (v);
1848 if (bitsize != 0)
1849 {
1850 /* Skip the bytes that don't contain the bitfield. */
1851 addr += bitpos / 8;
1852 }
1853
1854 type = hw_write;
1855 if (b->type == bp_read_watchpoint)
1856 type = hw_read;
1857 else if (b->type == bp_access_watchpoint)
1858 type = hw_access;
1859
1860 loc = allocate_bp_location (b);
1861 for (tmp = &(b->loc); *tmp != NULL; tmp = &((*tmp)->next))
1862 ;
1863 *tmp = loc;
1864 loc->gdbarch = get_type_arch (value_type (v));
1865
1866 loc->pspace = frame_pspace;
1867 loc->address = address_significant (loc->gdbarch, addr);
1868
1869 if (bitsize != 0)
1870 {
1871 /* Just cover the bytes that make up the bitfield. */
1872 loc->length = ((bitpos % 8) + bitsize + 7) / 8;
1873 }
1874 else
1875 loc->length = TYPE_LENGTH (value_type (v));
1876
1877 loc->watchpoint_type = type;
1878 }
1879 }
1880 }
1881
1882 /* Change the type of breakpoint between hardware assisted or
1883 an ordinary watchpoint depending on the hardware support
1884 and free hardware slots. REPARSE is set when the inferior
1885 is started. */
1886 if (reparse)
1887 {
1888 int reg_cnt;
1889 enum bp_loc_type loc_type;
1890 struct bp_location *bl;
1891
1892 reg_cnt = can_use_hardware_watchpoint (val_chain);
1893
1894 if (reg_cnt)
1895 {
1896 int i, target_resources_ok, other_type_used;
1897 enum bptype type;
1898
1899 /* Use an exact watchpoint when there's only one memory region to be
1900 watched, and only one debug register is needed to watch it. */
1901 b->exact = target_exact_watchpoints && reg_cnt == 1;
1902
1903 /* We need to determine how many resources are already
1904 used for all other hardware watchpoints plus this one
1905 to see if we still have enough resources to also fit
1906 this watchpoint in as well. */
1907
1908 /* If this is a software watchpoint, we try to turn it
1909 to a hardware one -- count resources as if B was of
1910 hardware watchpoint type. */
1911 type = b->type;
1912 if (type == bp_watchpoint)
1913 type = bp_hardware_watchpoint;
1914
1915 /* This watchpoint may or may not have been placed on
1916 the list yet at this point (it won't be in the list
1917 if we're trying to create it for the first time,
1918 through watch_command), so always account for it
1919 manually. */
1920
1921 /* Count resources used by all watchpoints except B. */
1922 i = hw_watchpoint_used_count_others (b, type, &other_type_used);
1923
1924 /* Add in the resources needed for B. */
1925 i += hw_watchpoint_use_count (b);
1926
1927 target_resources_ok
1928 = target_can_use_hardware_watchpoint (type, i, other_type_used);
1929 if (target_resources_ok <= 0)
1930 {
1931 int sw_mode = b->ops->works_in_software_mode (b);
1932
1933 if (target_resources_ok == 0 && !sw_mode)
1934 error (_("Target does not support this type of "
1935 "hardware watchpoint."));
1936 else if (target_resources_ok < 0 && !sw_mode)
1937 error (_("There are not enough available hardware "
1938 "resources for this watchpoint."));
1939
1940 /* Downgrade to software watchpoint. */
1941 b->type = bp_watchpoint;
1942 }
1943 else
1944 {
1945 /* If this was a software watchpoint, we've just
1946 found we have enough resources to turn it to a
1947 hardware watchpoint. Otherwise, this is a
1948 nop. */
1949 b->type = type;
1950 }
1951 }
1952 else if (!b->ops->works_in_software_mode (b))
1953 {
1954 if (!can_use_hw_watchpoints)
1955 error (_("Can't set read/access watchpoint when "
1956 "hardware watchpoints are disabled."));
1957 else
1958 error (_("Expression cannot be implemented with "
1959 "read/access watchpoint."));
1960 }
1961 else
1962 b->type = bp_watchpoint;
1963
1964 loc_type = (b->type == bp_watchpoint? bp_loc_other
1965 : bp_loc_hardware_watchpoint);
1966 for (bl = b->loc; bl; bl = bl->next)
1967 bl->loc_type = loc_type;
1968 }
1969
1970 /* If a software watchpoint is not watching any memory, then the
1971 above left it without any location set up. But,
1972 bpstat_stop_status requires a location to be able to report
1973 stops, so make sure there's at least a dummy one. */
1974 if (b->type == bp_watchpoint && b->loc == NULL)
1975 software_watchpoint_add_no_memory_location (b, frame_pspace);
1976 }
1977 else if (!within_current_scope)
1978 {
1979 printf_filtered (_("\
1980 Watchpoint %d deleted because the program has left the block\n\
1981 in which its expression is valid.\n"),
1982 b->number);
1983 watchpoint_del_at_next_stop (b);
1984 }
1985
1986 /* Restore the selected frame. */
1987 if (frame_saved)
1988 select_frame (frame_find_by_id (saved_frame_id));
1989 }
1990
1991
1992 /* Returns 1 iff breakpoint location should be
1993 inserted in the inferior. We don't differentiate the type of BL's owner
1994 (breakpoint vs. tracepoint), although insert_location in tracepoint's
1995 breakpoint_ops is not defined, because in insert_bp_location,
1996 tracepoint's insert_location will not be called. */
1997 static int
1998 should_be_inserted (struct bp_location *bl)
1999 {
2000 if (bl->owner == NULL || !breakpoint_enabled (bl->owner))
2001 return 0;
2002
2003 if (bl->owner->disposition == disp_del_at_next_stop)
2004 return 0;
2005
2006 if (!bl->enabled || bl->shlib_disabled || bl->duplicate)
2007 return 0;
2008
2009 if (user_breakpoint_p (bl->owner) && bl->pspace->executing_startup)
2010 return 0;
2011
2012 /* This is set for example, when we're attached to the parent of a
2013 vfork, and have detached from the child. The child is running
2014 free, and we expect it to do an exec or exit, at which point the
2015 OS makes the parent schedulable again (and the target reports
2016 that the vfork is done). Until the child is done with the shared
2017 memory region, do not insert breakpoints in the parent, otherwise
2018 the child could still trip on the parent's breakpoints. Since
2019 the parent is blocked anyway, it won't miss any breakpoint. */
2020 if (bl->pspace->breakpoints_not_allowed)
2021 return 0;
2022
2023 /* Don't insert a breakpoint if we're trying to step past its
2024 location, except if the breakpoint is a single-step breakpoint,
2025 and the breakpoint's thread is the thread which is stepping past
2026 a breakpoint. */
2027 if ((bl->loc_type == bp_loc_software_breakpoint
2028 || bl->loc_type == bp_loc_hardware_breakpoint)
2029 && stepping_past_instruction_at (bl->pspace->aspace,
2030 bl->address)
2031 /* The single-step breakpoint may be inserted at the location
2032 we're trying to step if the instruction branches to itself.
2033 However, the instruction won't be executed at all and it may
2034 break the semantics of the instruction, for example, the
2035 instruction is a conditional branch or updates some flags.
2036 We can't fix it unless GDB is able to emulate the instruction
2037 or switch to displaced stepping. */
2038 && !(bl->owner->type == bp_single_step
2039 && thread_is_stepping_over_breakpoint (bl->owner->thread)))
2040 {
2041 if (debug_infrun)
2042 {
2043 fprintf_unfiltered (gdb_stdlog,
2044 "infrun: skipping breakpoint: "
2045 "stepping past insn at: %s\n",
2046 paddress (bl->gdbarch, bl->address));
2047 }
2048 return 0;
2049 }
2050
2051 /* Don't insert watchpoints if we're trying to step past the
2052 instruction that triggered one. */
2053 if ((bl->loc_type == bp_loc_hardware_watchpoint)
2054 && stepping_past_nonsteppable_watchpoint ())
2055 {
2056 if (debug_infrun)
2057 {
2058 fprintf_unfiltered (gdb_stdlog,
2059 "infrun: stepping past non-steppable watchpoint. "
2060 "skipping watchpoint at %s:%d\n",
2061 paddress (bl->gdbarch, bl->address),
2062 bl->length);
2063 }
2064 return 0;
2065 }
2066
2067 return 1;
2068 }
2069
2070 /* Same as should_be_inserted but does the check assuming
2071 that the location is not duplicated. */
2072
2073 static int
2074 unduplicated_should_be_inserted (struct bp_location *bl)
2075 {
2076 int result;
2077 const int save_duplicate = bl->duplicate;
2078
2079 bl->duplicate = 0;
2080 result = should_be_inserted (bl);
2081 bl->duplicate = save_duplicate;
2082 return result;
2083 }
2084
2085 /* Parses a conditional described by an expression COND into an
2086 agent expression bytecode suitable for evaluation
2087 by the bytecode interpreter. Return NULL if there was
2088 any error during parsing. */
2089
2090 static agent_expr_up
2091 parse_cond_to_aexpr (CORE_ADDR scope, struct expression *cond)
2092 {
2093 if (cond == NULL)
2094 return NULL;
2095
2096 agent_expr_up aexpr;
2097
2098 /* We don't want to stop processing, so catch any errors
2099 that may show up. */
2100 TRY
2101 {
2102 aexpr = gen_eval_for_expr (scope, cond);
2103 }
2104
2105 CATCH (ex, RETURN_MASK_ERROR)
2106 {
2107 /* If we got here, it means the condition could not be parsed to a valid
2108 bytecode expression and thus can't be evaluated on the target's side.
2109 It's no use iterating through the conditions. */
2110 }
2111 END_CATCH
2112
2113 /* We have a valid agent expression. */
2114 return aexpr;
2115 }
2116
2117 /* Based on location BL, create a list of breakpoint conditions to be
2118 passed on to the target. If we have duplicated locations with different
2119 conditions, we will add such conditions to the list. The idea is that the
2120 target will evaluate the list of conditions and will only notify GDB when
2121 one of them is true. */
2122
2123 static void
2124 build_target_condition_list (struct bp_location *bl)
2125 {
2126 struct bp_location **locp = NULL, **loc2p;
2127 int null_condition_or_parse_error = 0;
2128 int modified = bl->needs_update;
2129 struct bp_location *loc;
2130
2131 /* Release conditions left over from a previous insert. */
2132 bl->target_info.conditions.clear ();
2133
2134 /* This is only meaningful if the target is
2135 evaluating conditions and if the user has
2136 opted for condition evaluation on the target's
2137 side. */
2138 if (gdb_evaluates_breakpoint_condition_p ()
2139 || !target_supports_evaluation_of_breakpoint_conditions ())
2140 return;
2141
2142 /* Do a first pass to check for locations with no assigned
2143 conditions or conditions that fail to parse to a valid agent expression
2144 bytecode. If any of these happen, then it's no use to send conditions
2145 to the target since this location will always trigger and generate a
2146 response back to GDB. */
2147 ALL_BP_LOCATIONS_AT_ADDR (loc2p, locp, bl->address)
2148 {
2149 loc = (*loc2p);
2150 if (is_breakpoint (loc->owner) && loc->pspace->num == bl->pspace->num)
2151 {
2152 if (modified)
2153 {
2154 /* Re-parse the conditions since something changed. In that
2155 case we already freed the condition bytecodes (see
2156 force_breakpoint_reinsertion). We just
2157 need to parse the condition to bytecodes again. */
2158 loc->cond_bytecode = parse_cond_to_aexpr (bl->address,
2159 loc->cond.get ());
2160 }
2161
2162 /* If we have a NULL bytecode expression, it means something
2163 went wrong or we have a null condition expression. */
2164 if (!loc->cond_bytecode)
2165 {
2166 null_condition_or_parse_error = 1;
2167 break;
2168 }
2169 }
2170 }
2171
2172 /* If any of these happened, it means we will have to evaluate the conditions
2173 for the location's address on gdb's side. It is no use keeping bytecodes
2174 for all the other duplicate locations, thus we free all of them here.
2175
2176 This is so we have a finer control over which locations' conditions are
2177 being evaluated by GDB or the remote stub. */
2178 if (null_condition_or_parse_error)
2179 {
2180 ALL_BP_LOCATIONS_AT_ADDR (loc2p, locp, bl->address)
2181 {
2182 loc = (*loc2p);
2183 if (is_breakpoint (loc->owner) && loc->pspace->num == bl->pspace->num)
2184 {
2185 /* Only go as far as the first NULL bytecode is
2186 located. */
2187 if (!loc->cond_bytecode)
2188 return;
2189
2190 loc->cond_bytecode.reset ();
2191 }
2192 }
2193 }
2194
2195 /* No NULL conditions or failed bytecode generation. Build a condition list
2196 for this location's address. */
2197 ALL_BP_LOCATIONS_AT_ADDR (loc2p, locp, bl->address)
2198 {
2199 loc = (*loc2p);
2200 if (loc->cond
2201 && is_breakpoint (loc->owner)
2202 && loc->pspace->num == bl->pspace->num
2203 && loc->owner->enable_state == bp_enabled
2204 && loc->enabled)
2205 {
2206 /* Add the condition to the vector. This will be used later
2207 to send the conditions to the target. */
2208 bl->target_info.conditions.push_back (loc->cond_bytecode.get ());
2209 }
2210 }
2211
2212 return;
2213 }
2214
2215 /* Parses a command described by string CMD into an agent expression
2216 bytecode suitable for evaluation by the bytecode interpreter.
2217 Return NULL if there was any error during parsing. */
2218
2219 static agent_expr_up
2220 parse_cmd_to_aexpr (CORE_ADDR scope, char *cmd)
2221 {
2222 const char *cmdrest;
2223 const char *format_start, *format_end;
2224 struct gdbarch *gdbarch = get_current_arch ();
2225
2226 if (cmd == NULL)
2227 return NULL;
2228
2229 cmdrest = cmd;
2230
2231 if (*cmdrest == ',')
2232 ++cmdrest;
2233 cmdrest = skip_spaces (cmdrest);
2234
2235 if (*cmdrest++ != '"')
2236 error (_("No format string following the location"));
2237
2238 format_start = cmdrest;
2239
2240 format_pieces fpieces (&cmdrest);
2241
2242 format_end = cmdrest;
2243
2244 if (*cmdrest++ != '"')
2245 error (_("Bad format string, non-terminated '\"'."));
2246
2247 cmdrest = skip_spaces (cmdrest);
2248
2249 if (!(*cmdrest == ',' || *cmdrest == '\0'))
2250 error (_("Invalid argument syntax"));
2251
2252 if (*cmdrest == ',')
2253 cmdrest++;
2254 cmdrest = skip_spaces (cmdrest);
2255
2256 /* For each argument, make an expression. */
2257
2258 std::vector<struct expression *> argvec;
2259 while (*cmdrest != '\0')
2260 {
2261 const char *cmd1;
2262
2263 cmd1 = cmdrest;
2264 expression_up expr = parse_exp_1 (&cmd1, scope, block_for_pc (scope), 1);
2265 argvec.push_back (expr.release ());
2266 cmdrest = cmd1;
2267 if (*cmdrest == ',')
2268 ++cmdrest;
2269 }
2270
2271 agent_expr_up aexpr;
2272
2273 /* We don't want to stop processing, so catch any errors
2274 that may show up. */
2275 TRY
2276 {
2277 aexpr = gen_printf (scope, gdbarch, 0, 0,
2278 format_start, format_end - format_start,
2279 argvec.size (), argvec.data ());
2280 }
2281 CATCH (ex, RETURN_MASK_ERROR)
2282 {
2283 /* If we got here, it means the command could not be parsed to a valid
2284 bytecode expression and thus can't be evaluated on the target's side.
2285 It's no use iterating through the other commands. */
2286 }
2287 END_CATCH
2288
2289 /* We have a valid agent expression, return it. */
2290 return aexpr;
2291 }
2292
2293 /* Based on location BL, create a list of breakpoint commands to be
2294 passed on to the target. If we have duplicated locations with
2295 different commands, we will add any such to the list. */
2296
2297 static void
2298 build_target_command_list (struct bp_location *bl)
2299 {
2300 struct bp_location **locp = NULL, **loc2p;
2301 int null_command_or_parse_error = 0;
2302 int modified = bl->needs_update;
2303 struct bp_location *loc;
2304
2305 /* Clear commands left over from a previous insert. */
2306 bl->target_info.tcommands.clear ();
2307
2308 if (!target_can_run_breakpoint_commands ())
2309 return;
2310
2311 /* For now, limit to agent-style dprintf breakpoints. */
2312 if (dprintf_style != dprintf_style_agent)
2313 return;
2314
2315 /* For now, if we have any duplicate location that isn't a dprintf,
2316 don't install the target-side commands, as that would make the
2317 breakpoint not be reported to the core, and we'd lose
2318 control. */
2319 ALL_BP_LOCATIONS_AT_ADDR (loc2p, locp, bl->address)
2320 {
2321 loc = (*loc2p);
2322 if (is_breakpoint (loc->owner)
2323 && loc->pspace->num == bl->pspace->num
2324 && loc->owner->type != bp_dprintf)
2325 return;
2326 }
2327
2328 /* Do a first pass to check for locations with no assigned
2329 conditions or conditions that fail to parse to a valid agent expression
2330 bytecode. If any of these happen, then it's no use to send conditions
2331 to the target since this location will always trigger and generate a
2332 response back to GDB. */
2333 ALL_BP_LOCATIONS_AT_ADDR (loc2p, locp, bl->address)
2334 {
2335 loc = (*loc2p);
2336 if (is_breakpoint (loc->owner) && loc->pspace->num == bl->pspace->num)
2337 {
2338 if (modified)
2339 {
2340 /* Re-parse the commands since something changed. In that
2341 case we already freed the command bytecodes (see
2342 force_breakpoint_reinsertion). We just
2343 need to parse the command to bytecodes again. */
2344 loc->cmd_bytecode
2345 = parse_cmd_to_aexpr (bl->address,
2346 loc->owner->extra_string);
2347 }
2348
2349 /* If we have a NULL bytecode expression, it means something
2350 went wrong or we have a null command expression. */
2351 if (!loc->cmd_bytecode)
2352 {
2353 null_command_or_parse_error = 1;
2354 break;
2355 }
2356 }
2357 }
2358
2359 /* If anything failed, then we're not doing target-side commands,
2360 and so clean up. */
2361 if (null_command_or_parse_error)
2362 {
2363 ALL_BP_LOCATIONS_AT_ADDR (loc2p, locp, bl->address)
2364 {
2365 loc = (*loc2p);
2366 if (is_breakpoint (loc->owner)
2367 && loc->pspace->num == bl->pspace->num)
2368 {
2369 /* Only go as far as the first NULL bytecode is
2370 located. */
2371 if (loc->cmd_bytecode == NULL)
2372 return;
2373
2374 loc->cmd_bytecode.reset ();
2375 }
2376 }
2377 }
2378
2379 /* No NULL commands or failed bytecode generation. Build a command list
2380 for this location's address. */
2381 ALL_BP_LOCATIONS_AT_ADDR (loc2p, locp, bl->address)
2382 {
2383 loc = (*loc2p);
2384 if (loc->owner->extra_string
2385 && is_breakpoint (loc->owner)
2386 && loc->pspace->num == bl->pspace->num
2387 && loc->owner->enable_state == bp_enabled
2388 && loc->enabled)
2389 {
2390 /* Add the command to the vector. This will be used later
2391 to send the commands to the target. */
2392 bl->target_info.tcommands.push_back (loc->cmd_bytecode.get ());
2393 }
2394 }
2395
2396 bl->target_info.persist = 0;
2397 /* Maybe flag this location as persistent. */
2398 if (bl->owner->type == bp_dprintf && disconnected_dprintf)
2399 bl->target_info.persist = 1;
2400 }
2401
2402 /* Return the kind of breakpoint on address *ADDR. Get the kind
2403 of breakpoint according to ADDR except single-step breakpoint.
2404 Get the kind of single-step breakpoint according to the current
2405 registers state. */
2406
2407 static int
2408 breakpoint_kind (struct bp_location *bl, CORE_ADDR *addr)
2409 {
2410 if (bl->owner->type == bp_single_step)
2411 {
2412 struct thread_info *thr = find_thread_global_id (bl->owner->thread);
2413 struct regcache *regcache;
2414
2415 regcache = get_thread_regcache (thr->ptid);
2416
2417 return gdbarch_breakpoint_kind_from_current_state (bl->gdbarch,
2418 regcache, addr);
2419 }
2420 else
2421 return gdbarch_breakpoint_kind_from_pc (bl->gdbarch, addr);
2422 }
2423
2424 /* Insert a low-level "breakpoint" of some type. BL is the breakpoint
2425 location. Any error messages are printed to TMP_ERROR_STREAM; and
2426 DISABLED_BREAKS, and HW_BREAKPOINT_ERROR are used to report problems.
2427 Returns 0 for success, 1 if the bp_location type is not supported or
2428 -1 for failure.
2429
2430 NOTE drow/2003-09-09: This routine could be broken down to an
2431 object-style method for each breakpoint or catchpoint type. */
2432 static int
2433 insert_bp_location (struct bp_location *bl,
2434 struct ui_file *tmp_error_stream,
2435 int *disabled_breaks,
2436 int *hw_breakpoint_error,
2437 int *hw_bp_error_explained_already)
2438 {
2439 gdb_exception bp_excpt = exception_none;
2440
2441 if (!should_be_inserted (bl) || (bl->inserted && !bl->needs_update))
2442 return 0;
2443
2444 /* Note we don't initialize bl->target_info, as that wipes out
2445 the breakpoint location's shadow_contents if the breakpoint
2446 is still inserted at that location. This in turn breaks
2447 target_read_memory which depends on these buffers when
2448 a memory read is requested at the breakpoint location:
2449 Once the target_info has been wiped, we fail to see that
2450 we have a breakpoint inserted at that address and thus
2451 read the breakpoint instead of returning the data saved in
2452 the breakpoint location's shadow contents. */
2453 bl->target_info.reqstd_address = bl->address;
2454 bl->target_info.placed_address_space = bl->pspace->aspace;
2455 bl->target_info.length = bl->length;
2456
2457 /* When working with target-side conditions, we must pass all the conditions
2458 for the same breakpoint address down to the target since GDB will not
2459 insert those locations. With a list of breakpoint conditions, the target
2460 can decide when to stop and notify GDB. */
2461
2462 if (is_breakpoint (bl->owner))
2463 {
2464 build_target_condition_list (bl);
2465 build_target_command_list (bl);
2466 /* Reset the modification marker. */
2467 bl->needs_update = 0;
2468 }
2469
2470 if (bl->loc_type == bp_loc_software_breakpoint
2471 || bl->loc_type == bp_loc_hardware_breakpoint)
2472 {
2473 if (bl->owner->type != bp_hardware_breakpoint)
2474 {
2475 /* If the explicitly specified breakpoint type
2476 is not hardware breakpoint, check the memory map to see
2477 if the breakpoint address is in read only memory or not.
2478
2479 Two important cases are:
2480 - location type is not hardware breakpoint, memory
2481 is readonly. We change the type of the location to
2482 hardware breakpoint.
2483 - location type is hardware breakpoint, memory is
2484 read-write. This means we've previously made the
2485 location hardware one, but then the memory map changed,
2486 so we undo.
2487
2488 When breakpoints are removed, remove_breakpoints will use
2489 location types we've just set here, the only possible
2490 problem is that memory map has changed during running
2491 program, but it's not going to work anyway with current
2492 gdb. */
2493 struct mem_region *mr
2494 = lookup_mem_region (bl->target_info.reqstd_address);
2495
2496 if (mr)
2497 {
2498 if (automatic_hardware_breakpoints)
2499 {
2500 enum bp_loc_type new_type;
2501
2502 if (mr->attrib.mode != MEM_RW)
2503 new_type = bp_loc_hardware_breakpoint;
2504 else
2505 new_type = bp_loc_software_breakpoint;
2506
2507 if (new_type != bl->loc_type)
2508 {
2509 static int said = 0;
2510
2511 bl->loc_type = new_type;
2512 if (!said)
2513 {
2514 fprintf_filtered (gdb_stdout,
2515 _("Note: automatically using "
2516 "hardware breakpoints for "
2517 "read-only addresses.\n"));
2518 said = 1;
2519 }
2520 }
2521 }
2522 else if (bl->loc_type == bp_loc_software_breakpoint
2523 && mr->attrib.mode != MEM_RW)
2524 {
2525 fprintf_unfiltered (tmp_error_stream,
2526 _("Cannot insert breakpoint %d.\n"
2527 "Cannot set software breakpoint "
2528 "at read-only address %s\n"),
2529 bl->owner->number,
2530 paddress (bl->gdbarch, bl->address));
2531 return 1;
2532 }
2533 }
2534 }
2535
2536 /* First check to see if we have to handle an overlay. */
2537 if (overlay_debugging == ovly_off
2538 || bl->section == NULL
2539 || !(section_is_overlay (bl->section)))
2540 {
2541 /* No overlay handling: just set the breakpoint. */
2542 TRY
2543 {
2544 int val;
2545
2546 val = bl->owner->ops->insert_location (bl);
2547 if (val)
2548 bp_excpt = gdb_exception {RETURN_ERROR, GENERIC_ERROR};
2549 }
2550 CATCH (e, RETURN_MASK_ALL)
2551 {
2552 bp_excpt = e;
2553 }
2554 END_CATCH
2555 }
2556 else
2557 {
2558 /* This breakpoint is in an overlay section.
2559 Shall we set a breakpoint at the LMA? */
2560 if (!overlay_events_enabled)
2561 {
2562 /* Yes -- overlay event support is not active,
2563 so we must try to set a breakpoint at the LMA.
2564 This will not work for a hardware breakpoint. */
2565 if (bl->loc_type == bp_loc_hardware_breakpoint)
2566 warning (_("hardware breakpoint %d not supported in overlay!"),
2567 bl->owner->number);
2568 else
2569 {
2570 CORE_ADDR addr = overlay_unmapped_address (bl->address,
2571 bl->section);
2572 /* Set a software (trap) breakpoint at the LMA. */
2573 bl->overlay_target_info = bl->target_info;
2574 bl->overlay_target_info.reqstd_address = addr;
2575
2576 /* No overlay handling: just set the breakpoint. */
2577 TRY
2578 {
2579 int val;
2580
2581 bl->overlay_target_info.kind
2582 = breakpoint_kind (bl, &addr);
2583 bl->overlay_target_info.placed_address = addr;
2584 val = target_insert_breakpoint (bl->gdbarch,
2585 &bl->overlay_target_info);
2586 if (val)
2587 bp_excpt
2588 = gdb_exception {RETURN_ERROR, GENERIC_ERROR};
2589 }
2590 CATCH (e, RETURN_MASK_ALL)
2591 {
2592 bp_excpt = e;
2593 }
2594 END_CATCH
2595
2596 if (bp_excpt.reason != 0)
2597 fprintf_unfiltered (tmp_error_stream,
2598 "Overlay breakpoint %d "
2599 "failed: in ROM?\n",
2600 bl->owner->number);
2601 }
2602 }
2603 /* Shall we set a breakpoint at the VMA? */
2604 if (section_is_mapped (bl->section))
2605 {
2606 /* Yes. This overlay section is mapped into memory. */
2607 TRY
2608 {
2609 int val;
2610
2611 val = bl->owner->ops->insert_location (bl);
2612 if (val)
2613 bp_excpt = gdb_exception {RETURN_ERROR, GENERIC_ERROR};
2614 }
2615 CATCH (e, RETURN_MASK_ALL)
2616 {
2617 bp_excpt = e;
2618 }
2619 END_CATCH
2620 }
2621 else
2622 {
2623 /* No. This breakpoint will not be inserted.
2624 No error, but do not mark the bp as 'inserted'. */
2625 return 0;
2626 }
2627 }
2628
2629 if (bp_excpt.reason != 0)
2630 {
2631 /* Can't set the breakpoint. */
2632
2633 /* In some cases, we might not be able to insert a
2634 breakpoint in a shared library that has already been
2635 removed, but we have not yet processed the shlib unload
2636 event. Unfortunately, some targets that implement
2637 breakpoint insertion themselves can't tell why the
2638 breakpoint insertion failed (e.g., the remote target
2639 doesn't define error codes), so we must treat generic
2640 errors as memory errors. */
2641 if (bp_excpt.reason == RETURN_ERROR
2642 && (bp_excpt.error == GENERIC_ERROR
2643 || bp_excpt.error == MEMORY_ERROR)
2644 && bl->loc_type == bp_loc_software_breakpoint
2645 && (solib_name_from_address (bl->pspace, bl->address)
2646 || shared_objfile_contains_address_p (bl->pspace,
2647 bl->address)))
2648 {
2649 /* See also: disable_breakpoints_in_shlibs. */
2650 bl->shlib_disabled = 1;
2651 gdb::observers::breakpoint_modified.notify (bl->owner);
2652 if (!*disabled_breaks)
2653 {
2654 fprintf_unfiltered (tmp_error_stream,
2655 "Cannot insert breakpoint %d.\n",
2656 bl->owner->number);
2657 fprintf_unfiltered (tmp_error_stream,
2658 "Temporarily disabling shared "
2659 "library breakpoints:\n");
2660 }
2661 *disabled_breaks = 1;
2662 fprintf_unfiltered (tmp_error_stream,
2663 "breakpoint #%d\n", bl->owner->number);
2664 return 0;
2665 }
2666 else
2667 {
2668 if (bl->loc_type == bp_loc_hardware_breakpoint)
2669 {
2670 *hw_breakpoint_error = 1;
2671 *hw_bp_error_explained_already = bp_excpt.message != NULL;
2672 fprintf_unfiltered (tmp_error_stream,
2673 "Cannot insert hardware breakpoint %d%s",
2674 bl->owner->number,
2675 bp_excpt.message ? ":" : ".\n");
2676 if (bp_excpt.message != NULL)
2677 fprintf_unfiltered (tmp_error_stream, "%s.\n",
2678 bp_excpt.message);
2679 }
2680 else
2681 {
2682 if (bp_excpt.message == NULL)
2683 {
2684 std::string message
2685 = memory_error_message (TARGET_XFER_E_IO,
2686 bl->gdbarch, bl->address);
2687
2688 fprintf_unfiltered (tmp_error_stream,
2689 "Cannot insert breakpoint %d.\n"
2690 "%s\n",
2691 bl->owner->number, message.c_str ());
2692 }
2693 else
2694 {
2695 fprintf_unfiltered (tmp_error_stream,
2696 "Cannot insert breakpoint %d: %s\n",
2697 bl->owner->number,
2698 bp_excpt.message);
2699 }
2700 }
2701 return 1;
2702
2703 }
2704 }
2705 else
2706 bl->inserted = 1;
2707
2708 return 0;
2709 }
2710
2711 else if (bl->loc_type == bp_loc_hardware_watchpoint
2712 /* NOTE drow/2003-09-08: This state only exists for removing
2713 watchpoints. It's not clear that it's necessary... */
2714 && bl->owner->disposition != disp_del_at_next_stop)
2715 {
2716 int val;
2717
2718 gdb_assert (bl->owner->ops != NULL
2719 && bl->owner->ops->insert_location != NULL);
2720
2721 val = bl->owner->ops->insert_location (bl);
2722
2723 /* If trying to set a read-watchpoint, and it turns out it's not
2724 supported, try emulating one with an access watchpoint. */
2725 if (val == 1 && bl->watchpoint_type == hw_read)
2726 {
2727 struct bp_location *loc, **loc_temp;
2728
2729 /* But don't try to insert it, if there's already another
2730 hw_access location that would be considered a duplicate
2731 of this one. */
2732 ALL_BP_LOCATIONS (loc, loc_temp)
2733 if (loc != bl
2734 && loc->watchpoint_type == hw_access
2735 && watchpoint_locations_match (bl, loc))
2736 {
2737 bl->duplicate = 1;
2738 bl->inserted = 1;
2739 bl->target_info = loc->target_info;
2740 bl->watchpoint_type = hw_access;
2741 val = 0;
2742 break;
2743 }
2744
2745 if (val == 1)
2746 {
2747 bl->watchpoint_type = hw_access;
2748 val = bl->owner->ops->insert_location (bl);
2749
2750 if (val)
2751 /* Back to the original value. */
2752 bl->watchpoint_type = hw_read;
2753 }
2754 }
2755
2756 bl->inserted = (val == 0);
2757 }
2758
2759 else if (bl->owner->type == bp_catchpoint)
2760 {
2761 int val;
2762
2763 gdb_assert (bl->owner->ops != NULL
2764 && bl->owner->ops->insert_location != NULL);
2765
2766 val = bl->owner->ops->insert_location (bl);
2767 if (val)
2768 {
2769 bl->owner->enable_state = bp_disabled;
2770
2771 if (val == 1)
2772 warning (_("\
2773 Error inserting catchpoint %d: Your system does not support this type\n\
2774 of catchpoint."), bl->owner->number);
2775 else
2776 warning (_("Error inserting catchpoint %d."), bl->owner->number);
2777 }
2778
2779 bl->inserted = (val == 0);
2780
2781 /* We've already printed an error message if there was a problem
2782 inserting this catchpoint, and we've disabled the catchpoint,
2783 so just return success. */
2784 return 0;
2785 }
2786
2787 return 0;
2788 }
2789
2790 /* This function is called when program space PSPACE is about to be
2791 deleted. It takes care of updating breakpoints to not reference
2792 PSPACE anymore. */
2793
2794 void
2795 breakpoint_program_space_exit (struct program_space *pspace)
2796 {
2797 struct breakpoint *b, *b_temp;
2798 struct bp_location *loc, **loc_temp;
2799
2800 /* Remove any breakpoint that was set through this program space. */
2801 ALL_BREAKPOINTS_SAFE (b, b_temp)
2802 {
2803 if (b->pspace == pspace)
2804 delete_breakpoint (b);
2805 }
2806
2807 /* Breakpoints set through other program spaces could have locations
2808 bound to PSPACE as well. Remove those. */
2809 ALL_BP_LOCATIONS (loc, loc_temp)
2810 {
2811 struct bp_location *tmp;
2812
2813 if (loc->pspace == pspace)
2814 {
2815 /* ALL_BP_LOCATIONS bp_location has LOC->OWNER always non-NULL. */
2816 if (loc->owner->loc == loc)
2817 loc->owner->loc = loc->next;
2818 else
2819 for (tmp = loc->owner->loc; tmp->next != NULL; tmp = tmp->next)
2820 if (tmp->next == loc)
2821 {
2822 tmp->next = loc->next;
2823 break;
2824 }
2825 }
2826 }
2827
2828 /* Now update the global location list to permanently delete the
2829 removed locations above. */
2830 update_global_location_list (UGLL_DONT_INSERT);
2831 }
2832
2833 /* Make sure all breakpoints are inserted in inferior.
2834 Throws exception on any error.
2835 A breakpoint that is already inserted won't be inserted
2836 again, so calling this function twice is safe. */
2837 void
2838 insert_breakpoints (void)
2839 {
2840 struct breakpoint *bpt;
2841
2842 ALL_BREAKPOINTS (bpt)
2843 if (is_hardware_watchpoint (bpt))
2844 {
2845 struct watchpoint *w = (struct watchpoint *) bpt;
2846
2847 update_watchpoint (w, 0 /* don't reparse. */);
2848 }
2849
2850 /* Updating watchpoints creates new locations, so update the global
2851 location list. Explicitly tell ugll to insert locations and
2852 ignore breakpoints_always_inserted_mode. */
2853 update_global_location_list (UGLL_INSERT);
2854 }
2855
2856 /* Invoke CALLBACK for each of bp_location. */
2857
2858 void
2859 iterate_over_bp_locations (walk_bp_location_callback callback)
2860 {
2861 struct bp_location *loc, **loc_tmp;
2862
2863 ALL_BP_LOCATIONS (loc, loc_tmp)
2864 {
2865 callback (loc, NULL);
2866 }
2867 }
2868
2869 /* This is used when we need to synch breakpoint conditions between GDB and the
2870 target. It is the case with deleting and disabling of breakpoints when using
2871 always-inserted mode. */
2872
2873 static void
2874 update_inserted_breakpoint_locations (void)
2875 {
2876 struct bp_location *bl, **blp_tmp;
2877 int error_flag = 0;
2878 int val = 0;
2879 int disabled_breaks = 0;
2880 int hw_breakpoint_error = 0;
2881 int hw_bp_details_reported = 0;
2882
2883 string_file tmp_error_stream;
2884
2885 /* Explicitly mark the warning -- this will only be printed if
2886 there was an error. */
2887 tmp_error_stream.puts ("Warning:\n");
2888
2889 scoped_restore_current_pspace_and_thread restore_pspace_thread;
2890
2891 ALL_BP_LOCATIONS (bl, blp_tmp)
2892 {
2893 /* We only want to update software breakpoints and hardware
2894 breakpoints. */
2895 if (!is_breakpoint (bl->owner))
2896 continue;
2897
2898 /* We only want to update locations that are already inserted
2899 and need updating. This is to avoid unwanted insertion during
2900 deletion of breakpoints. */
2901 if (!bl->inserted || (bl->inserted && !bl->needs_update))
2902 continue;
2903
2904 switch_to_program_space_and_thread (bl->pspace);
2905
2906 /* For targets that support global breakpoints, there's no need
2907 to select an inferior to insert breakpoint to. In fact, even
2908 if we aren't attached to any process yet, we should still
2909 insert breakpoints. */
2910 if (!gdbarch_has_global_breakpoints (target_gdbarch ())
2911 && ptid_equal (inferior_ptid, null_ptid))
2912 continue;
2913
2914 val = insert_bp_location (bl, &tmp_error_stream, &disabled_breaks,
2915 &hw_breakpoint_error, &hw_bp_details_reported);
2916 if (val)
2917 error_flag = val;
2918 }
2919
2920 if (error_flag)
2921 {
2922 target_terminal::ours_for_output ();
2923 error_stream (tmp_error_stream);
2924 }
2925 }
2926
2927 /* Used when starting or continuing the program. */
2928
2929 static void
2930 insert_breakpoint_locations (void)
2931 {
2932 struct breakpoint *bpt;
2933 struct bp_location *bl, **blp_tmp;
2934 int error_flag = 0;
2935 int val = 0;
2936 int disabled_breaks = 0;
2937 int hw_breakpoint_error = 0;
2938 int hw_bp_error_explained_already = 0;
2939
2940 string_file tmp_error_stream;
2941
2942 /* Explicitly mark the warning -- this will only be printed if
2943 there was an error. */
2944 tmp_error_stream.puts ("Warning:\n");
2945
2946 scoped_restore_current_pspace_and_thread restore_pspace_thread;
2947
2948 ALL_BP_LOCATIONS (bl, blp_tmp)
2949 {
2950 if (!should_be_inserted (bl) || (bl->inserted && !bl->needs_update))
2951 continue;
2952
2953 /* There is no point inserting thread-specific breakpoints if
2954 the thread no longer exists. ALL_BP_LOCATIONS bp_location
2955 has BL->OWNER always non-NULL. */
2956 if (bl->owner->thread != -1
2957 && !valid_global_thread_id (bl->owner->thread))
2958 continue;
2959
2960 switch_to_program_space_and_thread (bl->pspace);
2961
2962 /* For targets that support global breakpoints, there's no need
2963 to select an inferior to insert breakpoint to. In fact, even
2964 if we aren't attached to any process yet, we should still
2965 insert breakpoints. */
2966 if (!gdbarch_has_global_breakpoints (target_gdbarch ())
2967 && ptid_equal (inferior_ptid, null_ptid))
2968 continue;
2969
2970 val = insert_bp_location (bl, &tmp_error_stream, &disabled_breaks,
2971 &hw_breakpoint_error, &hw_bp_error_explained_already);
2972 if (val)
2973 error_flag = val;
2974 }
2975
2976 /* If we failed to insert all locations of a watchpoint, remove
2977 them, as half-inserted watchpoint is of limited use. */
2978 ALL_BREAKPOINTS (bpt)
2979 {
2980 int some_failed = 0;
2981 struct bp_location *loc;
2982
2983 if (!is_hardware_watchpoint (bpt))
2984 continue;
2985
2986 if (!breakpoint_enabled (bpt))
2987 continue;
2988
2989 if (bpt->disposition == disp_del_at_next_stop)
2990 continue;
2991
2992 for (loc = bpt->loc; loc; loc = loc->next)
2993 if (!loc->inserted && should_be_inserted (loc))
2994 {
2995 some_failed = 1;
2996 break;
2997 }
2998 if (some_failed)
2999 {
3000 for (loc = bpt->loc; loc; loc = loc->next)
3001 if (loc->inserted)
3002 remove_breakpoint (loc);
3003
3004 hw_breakpoint_error = 1;
3005 tmp_error_stream.printf ("Could not insert "
3006 "hardware watchpoint %d.\n",
3007 bpt->number);
3008 error_flag = -1;
3009 }
3010 }
3011
3012 if (error_flag)
3013 {
3014 /* If a hardware breakpoint or watchpoint was inserted, add a
3015 message about possibly exhausted resources. */
3016 if (hw_breakpoint_error && !hw_bp_error_explained_already)
3017 {
3018 tmp_error_stream.printf ("Could not insert hardware breakpoints:\n\
3019 You may have requested too many hardware breakpoints/watchpoints.\n");
3020 }
3021 target_terminal::ours_for_output ();
3022 error_stream (tmp_error_stream);
3023 }
3024 }
3025
3026 /* Used when the program stops.
3027 Returns zero if successful, or non-zero if there was a problem
3028 removing a breakpoint location. */
3029
3030 int
3031 remove_breakpoints (void)
3032 {
3033 struct bp_location *bl, **blp_tmp;
3034 int val = 0;
3035
3036 ALL_BP_LOCATIONS (bl, blp_tmp)
3037 {
3038 if (bl->inserted && !is_tracepoint (bl->owner))
3039 val |= remove_breakpoint (bl);
3040 }
3041 return val;
3042 }
3043
3044 /* When a thread exits, remove breakpoints that are related to
3045 that thread. */
3046
3047 static void
3048 remove_threaded_breakpoints (struct thread_info *tp, int silent)
3049 {
3050 struct breakpoint *b, *b_tmp;
3051
3052 ALL_BREAKPOINTS_SAFE (b, b_tmp)
3053 {
3054 if (b->thread == tp->global_num && user_breakpoint_p (b))
3055 {
3056 b->disposition = disp_del_at_next_stop;
3057
3058 printf_filtered (_("\
3059 Thread-specific breakpoint %d deleted - thread %s no longer in the thread list.\n"),
3060 b->number, print_thread_id (tp));
3061
3062 /* Hide it from the user. */
3063 b->number = 0;
3064 }
3065 }
3066 }
3067
3068 /* Remove breakpoints of process PID. */
3069
3070 int
3071 remove_breakpoints_pid (int pid)
3072 {
3073 struct bp_location *bl, **blp_tmp;
3074 int val;
3075 struct inferior *inf = find_inferior_pid (pid);
3076
3077 ALL_BP_LOCATIONS (bl, blp_tmp)
3078 {
3079 if (bl->pspace != inf->pspace)
3080 continue;
3081
3082 if (bl->inserted && !bl->target_info.persist)
3083 {
3084 val = remove_breakpoint (bl);
3085 if (val != 0)
3086 return val;
3087 }
3088 }
3089 return 0;
3090 }
3091
3092 static int internal_breakpoint_number = -1;
3093
3094 /* Set the breakpoint number of B, depending on the value of INTERNAL.
3095 If INTERNAL is non-zero, the breakpoint number will be populated
3096 from internal_breakpoint_number and that variable decremented.
3097 Otherwise the breakpoint number will be populated from
3098 breakpoint_count and that value incremented. Internal breakpoints
3099 do not set the internal var bpnum. */
3100 static void
3101 set_breakpoint_number (int internal, struct breakpoint *b)
3102 {
3103 if (internal)
3104 b->number = internal_breakpoint_number--;
3105 else
3106 {
3107 set_breakpoint_count (breakpoint_count + 1);
3108 b->number = breakpoint_count;
3109 }
3110 }
3111
3112 static struct breakpoint *
3113 create_internal_breakpoint (struct gdbarch *gdbarch,
3114 CORE_ADDR address, enum bptype type,
3115 const struct breakpoint_ops *ops)
3116 {
3117 symtab_and_line sal;
3118 sal.pc = address;
3119 sal.section = find_pc_overlay (sal.pc);
3120 sal.pspace = current_program_space;
3121
3122 breakpoint *b = set_raw_breakpoint (gdbarch, sal, type, ops);
3123 b->number = internal_breakpoint_number--;
3124 b->disposition = disp_donttouch;
3125
3126 return b;
3127 }
3128
3129 static const char *const longjmp_names[] =
3130 {
3131 "longjmp", "_longjmp", "siglongjmp", "_siglongjmp"
3132 };
3133 #define NUM_LONGJMP_NAMES ARRAY_SIZE(longjmp_names)
3134
3135 /* Per-objfile data private to breakpoint.c. */
3136 struct breakpoint_objfile_data
3137 {
3138 /* Minimal symbol for "_ovly_debug_event" (if any). */
3139 struct bound_minimal_symbol overlay_msym {};
3140
3141 /* Minimal symbol(s) for "longjmp", "siglongjmp", etc. (if any). */
3142 struct bound_minimal_symbol longjmp_msym[NUM_LONGJMP_NAMES] {};
3143
3144 /* True if we have looked for longjmp probes. */
3145 int longjmp_searched = 0;
3146
3147 /* SystemTap probe points for longjmp (if any). These are non-owning
3148 references. */
3149 std::vector<probe *> longjmp_probes;
3150
3151 /* Minimal symbol for "std::terminate()" (if any). */
3152 struct bound_minimal_symbol terminate_msym {};
3153
3154 /* Minimal symbol for "_Unwind_DebugHook" (if any). */
3155 struct bound_minimal_symbol exception_msym {};
3156
3157 /* True if we have looked for exception probes. */
3158 int exception_searched = 0;
3159
3160 /* SystemTap probe points for unwinding (if any). These are non-owning
3161 references. */
3162 std::vector<probe *> exception_probes;
3163 };
3164
3165 static const struct objfile_data *breakpoint_objfile_key;
3166
3167 /* Minimal symbol not found sentinel. */
3168 static struct minimal_symbol msym_not_found;
3169
3170 /* Returns TRUE if MSYM point to the "not found" sentinel. */
3171
3172 static int
3173 msym_not_found_p (const struct minimal_symbol *msym)
3174 {
3175 return msym == &msym_not_found;
3176 }
3177
3178 /* Return per-objfile data needed by breakpoint.c.
3179 Allocate the data if necessary. */
3180
3181 static struct breakpoint_objfile_data *
3182 get_breakpoint_objfile_data (struct objfile *objfile)
3183 {
3184 struct breakpoint_objfile_data *bp_objfile_data;
3185
3186 bp_objfile_data = ((struct breakpoint_objfile_data *)
3187 objfile_data (objfile, breakpoint_objfile_key));
3188 if (bp_objfile_data == NULL)
3189 {
3190 bp_objfile_data = new breakpoint_objfile_data ();
3191 set_objfile_data (objfile, breakpoint_objfile_key, bp_objfile_data);
3192 }
3193 return bp_objfile_data;
3194 }
3195
3196 static void
3197 free_breakpoint_objfile_data (struct objfile *obj, void *data)
3198 {
3199 struct breakpoint_objfile_data *bp_objfile_data
3200 = (struct breakpoint_objfile_data *) data;
3201
3202 delete bp_objfile_data;
3203 }
3204
3205 static void
3206 create_overlay_event_breakpoint (void)
3207 {
3208 struct objfile *objfile;
3209 const char *const func_name = "_ovly_debug_event";
3210
3211 ALL_OBJFILES (objfile)
3212 {
3213 struct breakpoint *b;
3214 struct breakpoint_objfile_data *bp_objfile_data;
3215 CORE_ADDR addr;
3216 struct explicit_location explicit_loc;
3217
3218 bp_objfile_data = get_breakpoint_objfile_data (objfile);
3219
3220 if (msym_not_found_p (bp_objfile_data->overlay_msym.minsym))
3221 continue;
3222
3223 if (bp_objfile_data->overlay_msym.minsym == NULL)
3224 {
3225 struct bound_minimal_symbol m;
3226
3227 m = lookup_minimal_symbol_text (func_name, objfile);
3228 if (m.minsym == NULL)
3229 {
3230 /* Avoid future lookups in this objfile. */
3231 bp_objfile_data->overlay_msym.minsym = &msym_not_found;
3232 continue;
3233 }
3234 bp_objfile_data->overlay_msym = m;
3235 }
3236
3237 addr = BMSYMBOL_VALUE_ADDRESS (bp_objfile_data->overlay_msym);
3238 b = create_internal_breakpoint (get_objfile_arch (objfile), addr,
3239 bp_overlay_event,
3240 &internal_breakpoint_ops);
3241 initialize_explicit_location (&explicit_loc);
3242 explicit_loc.function_name = ASTRDUP (func_name);
3243 b->location = new_explicit_location (&explicit_loc);
3244
3245 if (overlay_debugging == ovly_auto)
3246 {
3247 b->enable_state = bp_enabled;
3248 overlay_events_enabled = 1;
3249 }
3250 else
3251 {
3252 b->enable_state = bp_disabled;
3253 overlay_events_enabled = 0;
3254 }
3255 }
3256 }
3257
3258 static void
3259 create_longjmp_master_breakpoint (void)
3260 {
3261 struct program_space *pspace;
3262
3263 scoped_restore_current_program_space restore_pspace;
3264
3265 ALL_PSPACES (pspace)
3266 {
3267 struct objfile *objfile;
3268
3269 set_current_program_space (pspace);
3270
3271 ALL_OBJFILES (objfile)
3272 {
3273 int i;
3274 struct gdbarch *gdbarch;
3275 struct breakpoint_objfile_data *bp_objfile_data;
3276
3277 gdbarch = get_objfile_arch (objfile);
3278
3279 bp_objfile_data = get_breakpoint_objfile_data (objfile);
3280
3281 if (!bp_objfile_data->longjmp_searched)
3282 {
3283 std::vector<probe *> ret
3284 = find_probes_in_objfile (objfile, "libc", "longjmp");
3285
3286 if (!ret.empty ())
3287 {
3288 /* We are only interested in checking one element. */
3289 probe *p = ret[0];
3290
3291 if (!p->can_evaluate_arguments ())
3292 {
3293 /* We cannot use the probe interface here, because it does
3294 not know how to evaluate arguments. */
3295 ret.clear ();
3296 }
3297 }
3298 bp_objfile_data->longjmp_probes = ret;
3299 bp_objfile_data->longjmp_searched = 1;
3300 }
3301
3302 if (!bp_objfile_data->longjmp_probes.empty ())
3303 {
3304 struct gdbarch *gdbarch = get_objfile_arch (objfile);
3305
3306 for (probe *p : bp_objfile_data->longjmp_probes)
3307 {
3308 struct breakpoint *b;
3309
3310 b = create_internal_breakpoint (gdbarch,
3311 p->get_relocated_address (objfile),
3312 bp_longjmp_master,
3313 &internal_breakpoint_ops);
3314 b->location = new_probe_location ("-probe-stap libc:longjmp");
3315 b->enable_state = bp_disabled;
3316 }
3317
3318 continue;
3319 }
3320
3321 if (!gdbarch_get_longjmp_target_p (gdbarch))
3322 continue;
3323
3324 for (i = 0; i < NUM_LONGJMP_NAMES; i++)
3325 {
3326 struct breakpoint *b;
3327 const char *func_name;
3328 CORE_ADDR addr;
3329 struct explicit_location explicit_loc;
3330
3331 if (msym_not_found_p (bp_objfile_data->longjmp_msym[i].minsym))
3332 continue;
3333
3334 func_name = longjmp_names[i];
3335 if (bp_objfile_data->longjmp_msym[i].minsym == NULL)
3336 {
3337 struct bound_minimal_symbol m;
3338
3339 m = lookup_minimal_symbol_text (func_name, objfile);
3340 if (m.minsym == NULL)
3341 {
3342 /* Prevent future lookups in this objfile. */
3343 bp_objfile_data->longjmp_msym[i].minsym = &msym_not_found;
3344 continue;
3345 }
3346 bp_objfile_data->longjmp_msym[i] = m;
3347 }
3348
3349 addr = BMSYMBOL_VALUE_ADDRESS (bp_objfile_data->longjmp_msym[i]);
3350 b = create_internal_breakpoint (gdbarch, addr, bp_longjmp_master,
3351 &internal_breakpoint_ops);
3352 initialize_explicit_location (&explicit_loc);
3353 explicit_loc.function_name = ASTRDUP (func_name);
3354 b->location = new_explicit_location (&explicit_loc);
3355 b->enable_state = bp_disabled;
3356 }
3357 }
3358 }
3359 }
3360
3361 /* Create a master std::terminate breakpoint. */
3362 static void
3363 create_std_terminate_master_breakpoint (void)
3364 {
3365 struct program_space *pspace;
3366 const char *const func_name = "std::terminate()";
3367
3368 scoped_restore_current_program_space restore_pspace;
3369
3370 ALL_PSPACES (pspace)
3371 {
3372 struct objfile *objfile;
3373 CORE_ADDR addr;
3374
3375 set_current_program_space (pspace);
3376
3377 ALL_OBJFILES (objfile)
3378 {
3379 struct breakpoint *b;
3380 struct breakpoint_objfile_data *bp_objfile_data;
3381 struct explicit_location explicit_loc;
3382
3383 bp_objfile_data = get_breakpoint_objfile_data (objfile);
3384
3385 if (msym_not_found_p (bp_objfile_data->terminate_msym.minsym))
3386 continue;
3387
3388 if (bp_objfile_data->terminate_msym.minsym == NULL)
3389 {
3390 struct bound_minimal_symbol m;
3391
3392 m = lookup_minimal_symbol (func_name, NULL, objfile);
3393 if (m.minsym == NULL || (MSYMBOL_TYPE (m.minsym) != mst_text
3394 && MSYMBOL_TYPE (m.minsym) != mst_file_text))
3395 {
3396 /* Prevent future lookups in this objfile. */
3397 bp_objfile_data->terminate_msym.minsym = &msym_not_found;
3398 continue;
3399 }
3400 bp_objfile_data->terminate_msym = m;
3401 }
3402
3403 addr = BMSYMBOL_VALUE_ADDRESS (bp_objfile_data->terminate_msym);
3404 b = create_internal_breakpoint (get_objfile_arch (objfile), addr,
3405 bp_std_terminate_master,
3406 &internal_breakpoint_ops);
3407 initialize_explicit_location (&explicit_loc);
3408 explicit_loc.function_name = ASTRDUP (func_name);
3409 b->location = new_explicit_location (&explicit_loc);
3410 b->enable_state = bp_disabled;
3411 }
3412 }
3413 }
3414
3415 /* Install a master breakpoint on the unwinder's debug hook. */
3416
3417 static void
3418 create_exception_master_breakpoint (void)
3419 {
3420 struct objfile *objfile;
3421 const char *const func_name = "_Unwind_DebugHook";
3422
3423 ALL_OBJFILES (objfile)
3424 {
3425 struct breakpoint *b;
3426 struct gdbarch *gdbarch;
3427 struct breakpoint_objfile_data *bp_objfile_data;
3428 CORE_ADDR addr;
3429 struct explicit_location explicit_loc;
3430
3431 bp_objfile_data = get_breakpoint_objfile_data (objfile);
3432
3433 /* We prefer the SystemTap probe point if it exists. */
3434 if (!bp_objfile_data->exception_searched)
3435 {
3436 std::vector<probe *> ret
3437 = find_probes_in_objfile (objfile, "libgcc", "unwind");
3438
3439 if (!ret.empty ())
3440 {
3441 /* We are only interested in checking one element. */
3442 probe *p = ret[0];
3443
3444 if (!p->can_evaluate_arguments ())
3445 {
3446 /* We cannot use the probe interface here, because it does
3447 not know how to evaluate arguments. */
3448 ret.clear ();
3449 }
3450 }
3451 bp_objfile_data->exception_probes = ret;
3452 bp_objfile_data->exception_searched = 1;
3453 }
3454
3455 if (!bp_objfile_data->exception_probes.empty ())
3456 {
3457 struct gdbarch *gdbarch = get_objfile_arch (objfile);
3458
3459 for (probe *p : bp_objfile_data->exception_probes)
3460 {
3461 struct breakpoint *b;
3462
3463 b = create_internal_breakpoint (gdbarch,
3464 p->get_relocated_address (objfile),
3465 bp_exception_master,
3466 &internal_breakpoint_ops);
3467 b->location = new_probe_location ("-probe-stap libgcc:unwind");
3468 b->enable_state = bp_disabled;
3469 }
3470
3471 continue;
3472 }
3473
3474 /* Otherwise, try the hook function. */
3475
3476 if (msym_not_found_p (bp_objfile_data->exception_msym.minsym))
3477 continue;
3478
3479 gdbarch = get_objfile_arch (objfile);
3480
3481 if (bp_objfile_data->exception_msym.minsym == NULL)
3482 {
3483 struct bound_minimal_symbol debug_hook;
3484
3485 debug_hook = lookup_minimal_symbol (func_name, NULL, objfile);
3486 if (debug_hook.minsym == NULL)
3487 {
3488 bp_objfile_data->exception_msym.minsym = &msym_not_found;
3489 continue;
3490 }
3491
3492 bp_objfile_data->exception_msym = debug_hook;
3493 }
3494
3495 addr = BMSYMBOL_VALUE_ADDRESS (bp_objfile_data->exception_msym);
3496 addr = gdbarch_convert_from_func_ptr_addr (gdbarch, addr,
3497 &current_target);
3498 b = create_internal_breakpoint (gdbarch, addr, bp_exception_master,
3499 &internal_breakpoint_ops);
3500 initialize_explicit_location (&explicit_loc);
3501 explicit_loc.function_name = ASTRDUP (func_name);
3502 b->location = new_explicit_location (&explicit_loc);
3503 b->enable_state = bp_disabled;
3504 }
3505 }
3506
3507 /* Does B have a location spec? */
3508
3509 static int
3510 breakpoint_event_location_empty_p (const struct breakpoint *b)
3511 {
3512 return b->location != NULL && event_location_empty_p (b->location.get ());
3513 }
3514
3515 void
3516 update_breakpoints_after_exec (void)
3517 {
3518 struct breakpoint *b, *b_tmp;
3519 struct bp_location *bploc, **bplocp_tmp;
3520
3521 /* We're about to delete breakpoints from GDB's lists. If the
3522 INSERTED flag is true, GDB will try to lift the breakpoints by
3523 writing the breakpoints' "shadow contents" back into memory. The
3524 "shadow contents" are NOT valid after an exec, so GDB should not
3525 do that. Instead, the target is responsible from marking
3526 breakpoints out as soon as it detects an exec. We don't do that
3527 here instead, because there may be other attempts to delete
3528 breakpoints after detecting an exec and before reaching here. */
3529 ALL_BP_LOCATIONS (bploc, bplocp_tmp)
3530 if (bploc->pspace == current_program_space)
3531 gdb_assert (!bploc->inserted);
3532
3533 ALL_BREAKPOINTS_SAFE (b, b_tmp)
3534 {
3535 if (b->pspace != current_program_space)
3536 continue;
3537
3538 /* Solib breakpoints must be explicitly reset after an exec(). */
3539 if (b->type == bp_shlib_event)
3540 {
3541 delete_breakpoint (b);
3542 continue;
3543 }
3544
3545 /* JIT breakpoints must be explicitly reset after an exec(). */
3546 if (b->type == bp_jit_event)
3547 {
3548 delete_breakpoint (b);
3549 continue;
3550 }
3551
3552 /* Thread event breakpoints must be set anew after an exec(),
3553 as must overlay event and longjmp master breakpoints. */
3554 if (b->type == bp_thread_event || b->type == bp_overlay_event
3555 || b->type == bp_longjmp_master || b->type == bp_std_terminate_master
3556 || b->type == bp_exception_master)
3557 {
3558 delete_breakpoint (b);
3559 continue;
3560 }
3561
3562 /* Step-resume breakpoints are meaningless after an exec(). */
3563 if (b->type == bp_step_resume || b->type == bp_hp_step_resume)
3564 {
3565 delete_breakpoint (b);
3566 continue;
3567 }
3568
3569 /* Just like single-step breakpoints. */
3570 if (b->type == bp_single_step)
3571 {
3572 delete_breakpoint (b);
3573 continue;
3574 }
3575
3576 /* Longjmp and longjmp-resume breakpoints are also meaningless
3577 after an exec. */
3578 if (b->type == bp_longjmp || b->type == bp_longjmp_resume
3579 || b->type == bp_longjmp_call_dummy
3580 || b->type == bp_exception || b->type == bp_exception_resume)
3581 {
3582 delete_breakpoint (b);
3583 continue;
3584 }
3585
3586 if (b->type == bp_catchpoint)
3587 {
3588 /* For now, none of the bp_catchpoint breakpoints need to
3589 do anything at this point. In the future, if some of
3590 the catchpoints need to something, we will need to add
3591 a new method, and call this method from here. */
3592 continue;
3593 }
3594
3595 /* bp_finish is a special case. The only way we ought to be able
3596 to see one of these when an exec() has happened, is if the user
3597 caught a vfork, and then said "finish". Ordinarily a finish just
3598 carries them to the call-site of the current callee, by setting
3599 a temporary bp there and resuming. But in this case, the finish
3600 will carry them entirely through the vfork & exec.
3601
3602 We don't want to allow a bp_finish to remain inserted now. But
3603 we can't safely delete it, 'cause finish_command has a handle to
3604 the bp on a bpstat, and will later want to delete it. There's a
3605 chance (and I've seen it happen) that if we delete the bp_finish
3606 here, that its storage will get reused by the time finish_command
3607 gets 'round to deleting the "use to be a bp_finish" breakpoint.
3608 We really must allow finish_command to delete a bp_finish.
3609
3610 In the absence of a general solution for the "how do we know
3611 it's safe to delete something others may have handles to?"
3612 problem, what we'll do here is just uninsert the bp_finish, and
3613 let finish_command delete it.
3614
3615 (We know the bp_finish is "doomed" in the sense that it's
3616 momentary, and will be deleted as soon as finish_command sees
3617 the inferior stopped. So it doesn't matter that the bp's
3618 address is probably bogus in the new a.out, unlike e.g., the
3619 solib breakpoints.) */
3620
3621 if (b->type == bp_finish)
3622 {
3623 continue;
3624 }
3625
3626 /* Without a symbolic address, we have little hope of the
3627 pre-exec() address meaning the same thing in the post-exec()
3628 a.out. */
3629 if (breakpoint_event_location_empty_p (b))
3630 {
3631 delete_breakpoint (b);
3632 continue;
3633 }
3634 }
3635 }
3636
3637 int
3638 detach_breakpoints (ptid_t ptid)
3639 {
3640 struct bp_location *bl, **blp_tmp;
3641 int val = 0;
3642 scoped_restore save_inferior_ptid = make_scoped_restore (&inferior_ptid);
3643 struct inferior *inf = current_inferior ();
3644
3645 if (ptid_get_pid (ptid) == ptid_get_pid (inferior_ptid))
3646 error (_("Cannot detach breakpoints of inferior_ptid"));
3647
3648 /* Set inferior_ptid; remove_breakpoint_1 uses this global. */
3649 inferior_ptid = ptid;
3650 ALL_BP_LOCATIONS (bl, blp_tmp)
3651 {
3652 if (bl->pspace != inf->pspace)
3653 continue;
3654
3655 /* This function must physically remove breakpoints locations
3656 from the specified ptid, without modifying the breakpoint
3657 package's state. Locations of type bp_loc_other are only
3658 maintained at GDB side. So, there is no need to remove
3659 these bp_loc_other locations. Moreover, removing these
3660 would modify the breakpoint package's state. */
3661 if (bl->loc_type == bp_loc_other)
3662 continue;
3663
3664 if (bl->inserted)
3665 val |= remove_breakpoint_1 (bl, DETACH_BREAKPOINT);
3666 }
3667
3668 return val;
3669 }
3670
3671 /* Remove the breakpoint location BL from the current address space.
3672 Note that this is used to detach breakpoints from a child fork.
3673 When we get here, the child isn't in the inferior list, and neither
3674 do we have objects to represent its address space --- we should
3675 *not* look at bl->pspace->aspace here. */
3676
3677 static int
3678 remove_breakpoint_1 (struct bp_location *bl, enum remove_bp_reason reason)
3679 {
3680 int val;
3681
3682 /* BL is never in moribund_locations by our callers. */
3683 gdb_assert (bl->owner != NULL);
3684
3685 /* The type of none suggests that owner is actually deleted.
3686 This should not ever happen. */
3687 gdb_assert (bl->owner->type != bp_none);
3688
3689 if (bl->loc_type == bp_loc_software_breakpoint
3690 || bl->loc_type == bp_loc_hardware_breakpoint)
3691 {
3692 /* "Normal" instruction breakpoint: either the standard
3693 trap-instruction bp (bp_breakpoint), or a
3694 bp_hardware_breakpoint. */
3695
3696 /* First check to see if we have to handle an overlay. */
3697 if (overlay_debugging == ovly_off
3698 || bl->section == NULL
3699 || !(section_is_overlay (bl->section)))
3700 {
3701 /* No overlay handling: just remove the breakpoint. */
3702
3703 /* If we're trying to uninsert a memory breakpoint that we
3704 know is set in a dynamic object that is marked
3705 shlib_disabled, then either the dynamic object was
3706 removed with "remove-symbol-file" or with
3707 "nosharedlibrary". In the former case, we don't know
3708 whether another dynamic object might have loaded over the
3709 breakpoint's address -- the user might well let us know
3710 about it next with add-symbol-file (the whole point of
3711 add-symbol-file is letting the user manually maintain a
3712 list of dynamically loaded objects). If we have the
3713 breakpoint's shadow memory, that is, this is a software
3714 breakpoint managed by GDB, check whether the breakpoint
3715 is still inserted in memory, to avoid overwriting wrong
3716 code with stale saved shadow contents. Note that HW
3717 breakpoints don't have shadow memory, as they're
3718 implemented using a mechanism that is not dependent on
3719 being able to modify the target's memory, and as such
3720 they should always be removed. */
3721 if (bl->shlib_disabled
3722 && bl->target_info.shadow_len != 0
3723 && !memory_validate_breakpoint (bl->gdbarch, &bl->target_info))
3724 val = 0;
3725 else
3726 val = bl->owner->ops->remove_location (bl, reason);
3727 }
3728 else
3729 {
3730 /* This breakpoint is in an overlay section.
3731 Did we set a breakpoint at the LMA? */
3732 if (!overlay_events_enabled)
3733 {
3734 /* Yes -- overlay event support is not active, so we
3735 should have set a breakpoint at the LMA. Remove it.
3736 */
3737 /* Ignore any failures: if the LMA is in ROM, we will
3738 have already warned when we failed to insert it. */
3739 if (bl->loc_type == bp_loc_hardware_breakpoint)
3740 target_remove_hw_breakpoint (bl->gdbarch,
3741 &bl->overlay_target_info);
3742 else
3743 target_remove_breakpoint (bl->gdbarch,
3744 &bl->overlay_target_info,
3745 reason);
3746 }
3747 /* Did we set a breakpoint at the VMA?
3748 If so, we will have marked the breakpoint 'inserted'. */
3749 if (bl->inserted)
3750 {
3751 /* Yes -- remove it. Previously we did not bother to
3752 remove the breakpoint if the section had been
3753 unmapped, but let's not rely on that being safe. We
3754 don't know what the overlay manager might do. */
3755
3756 /* However, we should remove *software* breakpoints only
3757 if the section is still mapped, or else we overwrite
3758 wrong code with the saved shadow contents. */
3759 if (bl->loc_type == bp_loc_hardware_breakpoint
3760 || section_is_mapped (bl->section))
3761 val = bl->owner->ops->remove_location (bl, reason);
3762 else
3763 val = 0;
3764 }
3765 else
3766 {
3767 /* No -- not inserted, so no need to remove. No error. */
3768 val = 0;
3769 }
3770 }
3771
3772 /* In some cases, we might not be able to remove a breakpoint in
3773 a shared library that has already been removed, but we have
3774 not yet processed the shlib unload event. Similarly for an
3775 unloaded add-symbol-file object - the user might not yet have
3776 had the chance to remove-symbol-file it. shlib_disabled will
3777 be set if the library/object has already been removed, but
3778 the breakpoint hasn't been uninserted yet, e.g., after
3779 "nosharedlibrary" or "remove-symbol-file" with breakpoints
3780 always-inserted mode. */
3781 if (val
3782 && (bl->loc_type == bp_loc_software_breakpoint
3783 && (bl->shlib_disabled
3784 || solib_name_from_address (bl->pspace, bl->address)
3785 || shared_objfile_contains_address_p (bl->pspace,
3786 bl->address))))
3787 val = 0;
3788
3789 if (val)
3790 return val;
3791 bl->inserted = (reason == DETACH_BREAKPOINT);
3792 }
3793 else if (bl->loc_type == bp_loc_hardware_watchpoint)
3794 {
3795 gdb_assert (bl->owner->ops != NULL
3796 && bl->owner->ops->remove_location != NULL);
3797
3798 bl->inserted = (reason == DETACH_BREAKPOINT);
3799 bl->owner->ops->remove_location (bl, reason);
3800
3801 /* Failure to remove any of the hardware watchpoints comes here. */
3802 if (reason == REMOVE_BREAKPOINT && bl->inserted)
3803 warning (_("Could not remove hardware watchpoint %d."),
3804 bl->owner->number);
3805 }
3806 else if (bl->owner->type == bp_catchpoint
3807 && breakpoint_enabled (bl->owner)
3808 && !bl->duplicate)
3809 {
3810 gdb_assert (bl->owner->ops != NULL
3811 && bl->owner->ops->remove_location != NULL);
3812
3813 val = bl->owner->ops->remove_location (bl, reason);
3814 if (val)
3815 return val;
3816
3817 bl->inserted = (reason == DETACH_BREAKPOINT);
3818 }
3819
3820 return 0;
3821 }
3822
3823 static int
3824 remove_breakpoint (struct bp_location *bl)
3825 {
3826 /* BL is never in moribund_locations by our callers. */
3827 gdb_assert (bl->owner != NULL);
3828
3829 /* The type of none suggests that owner is actually deleted.
3830 This should not ever happen. */
3831 gdb_assert (bl->owner->type != bp_none);
3832
3833 scoped_restore_current_pspace_and_thread restore_pspace_thread;
3834
3835 switch_to_program_space_and_thread (bl->pspace);
3836
3837 return remove_breakpoint_1 (bl, REMOVE_BREAKPOINT);
3838 }
3839
3840 /* Clear the "inserted" flag in all breakpoints. */
3841
3842 void
3843 mark_breakpoints_out (void)
3844 {
3845 struct bp_location *bl, **blp_tmp;
3846
3847 ALL_BP_LOCATIONS (bl, blp_tmp)
3848 if (bl->pspace == current_program_space)
3849 bl->inserted = 0;
3850 }
3851
3852 /* Clear the "inserted" flag in all breakpoints and delete any
3853 breakpoints which should go away between runs of the program.
3854
3855 Plus other such housekeeping that has to be done for breakpoints
3856 between runs.
3857
3858 Note: this function gets called at the end of a run (by
3859 generic_mourn_inferior) and when a run begins (by
3860 init_wait_for_inferior). */
3861
3862
3863
3864 void
3865 breakpoint_init_inferior (enum inf_context context)
3866 {
3867 struct breakpoint *b, *b_tmp;
3868 struct bp_location *bl;
3869 int ix;
3870 struct program_space *pspace = current_program_space;
3871
3872 /* If breakpoint locations are shared across processes, then there's
3873 nothing to do. */
3874 if (gdbarch_has_global_breakpoints (target_gdbarch ()))
3875 return;
3876
3877 mark_breakpoints_out ();
3878
3879 ALL_BREAKPOINTS_SAFE (b, b_tmp)
3880 {
3881 if (b->loc && b->loc->pspace != pspace)
3882 continue;
3883
3884 switch (b->type)
3885 {
3886 case bp_call_dummy:
3887 case bp_longjmp_call_dummy:
3888
3889 /* If the call dummy breakpoint is at the entry point it will
3890 cause problems when the inferior is rerun, so we better get
3891 rid of it. */
3892
3893 case bp_watchpoint_scope:
3894
3895 /* Also get rid of scope breakpoints. */
3896
3897 case bp_shlib_event:
3898
3899 /* Also remove solib event breakpoints. Their addresses may
3900 have changed since the last time we ran the program.
3901 Actually we may now be debugging against different target;
3902 and so the solib backend that installed this breakpoint may
3903 not be used in by the target. E.g.,
3904
3905 (gdb) file prog-linux
3906 (gdb) run # native linux target
3907 ...
3908 (gdb) kill
3909 (gdb) file prog-win.exe
3910 (gdb) tar rem :9999 # remote Windows gdbserver.
3911 */
3912
3913 case bp_step_resume:
3914
3915 /* Also remove step-resume breakpoints. */
3916
3917 case bp_single_step:
3918
3919 /* Also remove single-step breakpoints. */
3920
3921 delete_breakpoint (b);
3922 break;
3923
3924 case bp_watchpoint:
3925 case bp_hardware_watchpoint:
3926 case bp_read_watchpoint:
3927 case bp_access_watchpoint:
3928 {
3929 struct watchpoint *w = (struct watchpoint *) b;
3930
3931 /* Likewise for watchpoints on local expressions. */
3932 if (w->exp_valid_block != NULL)
3933 delete_breakpoint (b);
3934 else
3935 {
3936 /* Get rid of existing locations, which are no longer
3937 valid. New ones will be created in
3938 update_watchpoint, when the inferior is restarted.
3939 The next update_global_location_list call will
3940 garbage collect them. */
3941 b->loc = NULL;
3942
3943 if (context == inf_starting)
3944 {
3945 /* Reset val field to force reread of starting value in
3946 insert_breakpoints. */
3947 w->val.reset (nullptr);
3948 w->val_valid = 0;
3949 }
3950 }
3951 }
3952 break;
3953 default:
3954 break;
3955 }
3956 }
3957
3958 /* Get rid of the moribund locations. */
3959 for (ix = 0; VEC_iterate (bp_location_p, moribund_locations, ix, bl); ++ix)
3960 decref_bp_location (&bl);
3961 VEC_free (bp_location_p, moribund_locations);
3962 }
3963
3964 /* These functions concern about actual breakpoints inserted in the
3965 target --- to e.g. check if we need to do decr_pc adjustment or if
3966 we need to hop over the bkpt --- so we check for address space
3967 match, not program space. */
3968
3969 /* breakpoint_here_p (PC) returns non-zero if an enabled breakpoint
3970 exists at PC. It returns ordinary_breakpoint_here if it's an
3971 ordinary breakpoint, or permanent_breakpoint_here if it's a
3972 permanent breakpoint.
3973 - When continuing from a location with an ordinary breakpoint, we
3974 actually single step once before calling insert_breakpoints.
3975 - When continuing from a location with a permanent breakpoint, we
3976 need to use the `SKIP_PERMANENT_BREAKPOINT' macro, provided by
3977 the target, to advance the PC past the breakpoint. */
3978
3979 enum breakpoint_here
3980 breakpoint_here_p (const address_space *aspace, CORE_ADDR pc)
3981 {
3982 struct bp_location *bl, **blp_tmp;
3983 int any_breakpoint_here = 0;
3984
3985 ALL_BP_LOCATIONS (bl, blp_tmp)
3986 {
3987 if (bl->loc_type != bp_loc_software_breakpoint
3988 && bl->loc_type != bp_loc_hardware_breakpoint)
3989 continue;
3990
3991 /* ALL_BP_LOCATIONS bp_location has BL->OWNER always non-NULL. */
3992 if ((breakpoint_enabled (bl->owner)
3993 || bl->permanent)
3994 && breakpoint_location_address_match (bl, aspace, pc))
3995 {
3996 if (overlay_debugging
3997 && section_is_overlay (bl->section)
3998 && !section_is_mapped (bl->section))
3999 continue; /* unmapped overlay -- can't be a match */
4000 else if (bl->permanent)
4001 return permanent_breakpoint_here;
4002 else
4003 any_breakpoint_here = 1;
4004 }
4005 }
4006
4007 return any_breakpoint_here ? ordinary_breakpoint_here : no_breakpoint_here;
4008 }
4009
4010 /* See breakpoint.h. */
4011
4012 int
4013 breakpoint_in_range_p (const address_space *aspace,
4014 CORE_ADDR addr, ULONGEST len)
4015 {
4016 struct bp_location *bl, **blp_tmp;
4017
4018 ALL_BP_LOCATIONS (bl, blp_tmp)
4019 {
4020 if (bl->loc_type != bp_loc_software_breakpoint
4021 && bl->loc_type != bp_loc_hardware_breakpoint)
4022 continue;
4023
4024 if ((breakpoint_enabled (bl->owner)
4025 || bl->permanent)
4026 && breakpoint_location_address_range_overlap (bl, aspace,
4027 addr, len))
4028 {
4029 if (overlay_debugging
4030 && section_is_overlay (bl->section)
4031 && !section_is_mapped (bl->section))
4032 {
4033 /* Unmapped overlay -- can't be a match. */
4034 continue;
4035 }
4036
4037 return 1;
4038 }
4039 }
4040
4041 return 0;
4042 }
4043
4044 /* Return true if there's a moribund breakpoint at PC. */
4045
4046 int
4047 moribund_breakpoint_here_p (const address_space *aspace, CORE_ADDR pc)
4048 {
4049 struct bp_location *loc;
4050 int ix;
4051
4052 for (ix = 0; VEC_iterate (bp_location_p, moribund_locations, ix, loc); ++ix)
4053 if (breakpoint_location_address_match (loc, aspace, pc))
4054 return 1;
4055
4056 return 0;
4057 }
4058
4059 /* Returns non-zero iff BL is inserted at PC, in address space
4060 ASPACE. */
4061
4062 static int
4063 bp_location_inserted_here_p (struct bp_location *bl,
4064 const address_space *aspace, CORE_ADDR pc)
4065 {
4066 if (bl->inserted
4067 && breakpoint_address_match (bl->pspace->aspace, bl->address,
4068 aspace, pc))
4069 {
4070 if (overlay_debugging
4071 && section_is_overlay (bl->section)
4072 && !section_is_mapped (bl->section))
4073 return 0; /* unmapped overlay -- can't be a match */
4074 else
4075 return 1;
4076 }
4077 return 0;
4078 }
4079
4080 /* Returns non-zero iff there's a breakpoint inserted at PC. */
4081
4082 int
4083 breakpoint_inserted_here_p (const address_space *aspace, CORE_ADDR pc)
4084 {
4085 struct bp_location **blp, **blp_tmp = NULL;
4086
4087 ALL_BP_LOCATIONS_AT_ADDR (blp, blp_tmp, pc)
4088 {
4089 struct bp_location *bl = *blp;
4090
4091 if (bl->loc_type != bp_loc_software_breakpoint
4092 && bl->loc_type != bp_loc_hardware_breakpoint)
4093 continue;
4094
4095 if (bp_location_inserted_here_p (bl, aspace, pc))
4096 return 1;
4097 }
4098 return 0;
4099 }
4100
4101 /* This function returns non-zero iff there is a software breakpoint
4102 inserted at PC. */
4103
4104 int
4105 software_breakpoint_inserted_here_p (const address_space *aspace,
4106 CORE_ADDR pc)
4107 {
4108 struct bp_location **blp, **blp_tmp = NULL;
4109
4110 ALL_BP_LOCATIONS_AT_ADDR (blp, blp_tmp, pc)
4111 {
4112 struct bp_location *bl = *blp;
4113
4114 if (bl->loc_type != bp_loc_software_breakpoint)
4115 continue;
4116
4117 if (bp_location_inserted_here_p (bl, aspace, pc))
4118 return 1;
4119 }
4120
4121 return 0;
4122 }
4123
4124 /* See breakpoint.h. */
4125
4126 int
4127 hardware_breakpoint_inserted_here_p (const address_space *aspace,
4128 CORE_ADDR pc)
4129 {
4130 struct bp_location **blp, **blp_tmp = NULL;
4131
4132 ALL_BP_LOCATIONS_AT_ADDR (blp, blp_tmp, pc)
4133 {
4134 struct bp_location *bl = *blp;
4135
4136 if (bl->loc_type != bp_loc_hardware_breakpoint)
4137 continue;
4138
4139 if (bp_location_inserted_here_p (bl, aspace, pc))
4140 return 1;
4141 }
4142
4143 return 0;
4144 }
4145
4146 int
4147 hardware_watchpoint_inserted_in_range (const address_space *aspace,
4148 CORE_ADDR addr, ULONGEST len)
4149 {
4150 struct breakpoint *bpt;
4151
4152 ALL_BREAKPOINTS (bpt)
4153 {
4154 struct bp_location *loc;
4155
4156 if (bpt->type != bp_hardware_watchpoint
4157 && bpt->type != bp_access_watchpoint)
4158 continue;
4159
4160 if (!breakpoint_enabled (bpt))
4161 continue;
4162
4163 for (loc = bpt->loc; loc; loc = loc->next)
4164 if (loc->pspace->aspace == aspace && loc->inserted)
4165 {
4166 CORE_ADDR l, h;
4167
4168 /* Check for intersection. */
4169 l = std::max<CORE_ADDR> (loc->address, addr);
4170 h = std::min<CORE_ADDR> (loc->address + loc->length, addr + len);
4171 if (l < h)
4172 return 1;
4173 }
4174 }
4175 return 0;
4176 }
4177 \f
4178
4179 /* bpstat stuff. External routines' interfaces are documented
4180 in breakpoint.h. */
4181
4182 int
4183 is_catchpoint (struct breakpoint *ep)
4184 {
4185 return (ep->type == bp_catchpoint);
4186 }
4187
4188 /* Frees any storage that is part of a bpstat. Does not walk the
4189 'next' chain. */
4190
4191 bpstats::~bpstats ()
4192 {
4193 if (bp_location_at != NULL)
4194 decref_bp_location (&bp_location_at);
4195 }
4196
4197 /* Clear a bpstat so that it says we are not at any breakpoint.
4198 Also free any storage that is part of a bpstat. */
4199
4200 void
4201 bpstat_clear (bpstat *bsp)
4202 {
4203 bpstat p;
4204 bpstat q;
4205
4206 if (bsp == 0)
4207 return;
4208 p = *bsp;
4209 while (p != NULL)
4210 {
4211 q = p->next;
4212 delete p;
4213 p = q;
4214 }
4215 *bsp = NULL;
4216 }
4217
4218 bpstats::bpstats (const bpstats &other)
4219 : next (NULL),
4220 bp_location_at (other.bp_location_at),
4221 breakpoint_at (other.breakpoint_at),
4222 commands (other.commands),
4223 print (other.print),
4224 stop (other.stop),
4225 print_it (other.print_it)
4226 {
4227 if (other.old_val != NULL)
4228 old_val = release_value (value_copy (other.old_val.get ()));
4229 incref_bp_location (bp_location_at);
4230 }
4231
4232 /* Return a copy of a bpstat. Like "bs1 = bs2" but all storage that
4233 is part of the bpstat is copied as well. */
4234
4235 bpstat
4236 bpstat_copy (bpstat bs)
4237 {
4238 bpstat p = NULL;
4239 bpstat tmp;
4240 bpstat retval = NULL;
4241
4242 if (bs == NULL)
4243 return bs;
4244
4245 for (; bs != NULL; bs = bs->next)
4246 {
4247 tmp = new bpstats (*bs);
4248
4249 if (p == NULL)
4250 /* This is the first thing in the chain. */
4251 retval = tmp;
4252 else
4253 p->next = tmp;
4254 p = tmp;
4255 }
4256 p->next = NULL;
4257 return retval;
4258 }
4259
4260 /* Find the bpstat associated with this breakpoint. */
4261
4262 bpstat
4263 bpstat_find_breakpoint (bpstat bsp, struct breakpoint *breakpoint)
4264 {
4265 if (bsp == NULL)
4266 return NULL;
4267
4268 for (; bsp != NULL; bsp = bsp->next)
4269 {
4270 if (bsp->breakpoint_at == breakpoint)
4271 return bsp;
4272 }
4273 return NULL;
4274 }
4275
4276 /* See breakpoint.h. */
4277
4278 int
4279 bpstat_explains_signal (bpstat bsp, enum gdb_signal sig)
4280 {
4281 for (; bsp != NULL; bsp = bsp->next)
4282 {
4283 if (bsp->breakpoint_at == NULL)
4284 {
4285 /* A moribund location can never explain a signal other than
4286 GDB_SIGNAL_TRAP. */
4287 if (sig == GDB_SIGNAL_TRAP)
4288 return 1;
4289 }
4290 else
4291 {
4292 if (bsp->breakpoint_at->ops->explains_signal (bsp->breakpoint_at,
4293 sig))
4294 return 1;
4295 }
4296 }
4297
4298 return 0;
4299 }
4300
4301 /* Put in *NUM the breakpoint number of the first breakpoint we are
4302 stopped at. *BSP upon return is a bpstat which points to the
4303 remaining breakpoints stopped at (but which is not guaranteed to be
4304 good for anything but further calls to bpstat_num).
4305
4306 Return 0 if passed a bpstat which does not indicate any breakpoints.
4307 Return -1 if stopped at a breakpoint that has been deleted since
4308 we set it.
4309 Return 1 otherwise. */
4310
4311 int
4312 bpstat_num (bpstat *bsp, int *num)
4313 {
4314 struct breakpoint *b;
4315
4316 if ((*bsp) == NULL)
4317 return 0; /* No more breakpoint values */
4318
4319 /* We assume we'll never have several bpstats that correspond to a
4320 single breakpoint -- otherwise, this function might return the
4321 same number more than once and this will look ugly. */
4322 b = (*bsp)->breakpoint_at;
4323 *bsp = (*bsp)->next;
4324 if (b == NULL)
4325 return -1; /* breakpoint that's been deleted since */
4326
4327 *num = b->number; /* We have its number */
4328 return 1;
4329 }
4330
4331 /* See breakpoint.h. */
4332
4333 void
4334 bpstat_clear_actions (void)
4335 {
4336 struct thread_info *tp;
4337 bpstat bs;
4338
4339 if (ptid_equal (inferior_ptid, null_ptid))
4340 return;
4341
4342 tp = find_thread_ptid (inferior_ptid);
4343 if (tp == NULL)
4344 return;
4345
4346 for (bs = tp->control.stop_bpstat; bs != NULL; bs = bs->next)
4347 {
4348 bs->commands = NULL;
4349 bs->old_val.reset (nullptr);
4350 }
4351 }
4352
4353 /* Called when a command is about to proceed the inferior. */
4354
4355 static void
4356 breakpoint_about_to_proceed (void)
4357 {
4358 if (!ptid_equal (inferior_ptid, null_ptid))
4359 {
4360 struct thread_info *tp = inferior_thread ();
4361
4362 /* Allow inferior function calls in breakpoint commands to not
4363 interrupt the command list. When the call finishes
4364 successfully, the inferior will be standing at the same
4365 breakpoint as if nothing happened. */
4366 if (tp->control.in_infcall)
4367 return;
4368 }
4369
4370 breakpoint_proceeded = 1;
4371 }
4372
4373 /* Return non-zero iff CMD as the first line of a command sequence is `silent'
4374 or its equivalent. */
4375
4376 static int
4377 command_line_is_silent (struct command_line *cmd)
4378 {
4379 return cmd && (strcmp ("silent", cmd->line) == 0);
4380 }
4381
4382 /* Execute all the commands associated with all the breakpoints at
4383 this location. Any of these commands could cause the process to
4384 proceed beyond this point, etc. We look out for such changes by
4385 checking the global "breakpoint_proceeded" after each command.
4386
4387 Returns true if a breakpoint command resumed the inferior. In that
4388 case, it is the caller's responsibility to recall it again with the
4389 bpstat of the current thread. */
4390
4391 static int
4392 bpstat_do_actions_1 (bpstat *bsp)
4393 {
4394 bpstat bs;
4395 int again = 0;
4396
4397 /* Avoid endless recursion if a `source' command is contained
4398 in bs->commands. */
4399 if (executing_breakpoint_commands)
4400 return 0;
4401
4402 scoped_restore save_executing
4403 = make_scoped_restore (&executing_breakpoint_commands, 1);
4404
4405 scoped_restore preventer = prevent_dont_repeat ();
4406
4407 /* This pointer will iterate over the list of bpstat's. */
4408 bs = *bsp;
4409
4410 breakpoint_proceeded = 0;
4411 for (; bs != NULL; bs = bs->next)
4412 {
4413 struct command_line *cmd = NULL;
4414
4415 /* Take ownership of the BSP's command tree, if it has one.
4416
4417 The command tree could legitimately contain commands like
4418 'step' and 'next', which call clear_proceed_status, which
4419 frees stop_bpstat's command tree. To make sure this doesn't
4420 free the tree we're executing out from under us, we need to
4421 take ownership of the tree ourselves. Since a given bpstat's
4422 commands are only executed once, we don't need to copy it; we
4423 can clear the pointer in the bpstat, and make sure we free
4424 the tree when we're done. */
4425 counted_command_line ccmd = bs->commands;
4426 bs->commands = NULL;
4427 if (ccmd != NULL)
4428 cmd = ccmd.get ();
4429 if (command_line_is_silent (cmd))
4430 {
4431 /* The action has been already done by bpstat_stop_status. */
4432 cmd = cmd->next;
4433 }
4434
4435 while (cmd != NULL)
4436 {
4437 execute_control_command (cmd);
4438
4439 if (breakpoint_proceeded)
4440 break;
4441 else
4442 cmd = cmd->next;
4443 }
4444
4445 if (breakpoint_proceeded)
4446 {
4447 if (current_ui->async)
4448 /* If we are in async mode, then the target might be still
4449 running, not stopped at any breakpoint, so nothing for
4450 us to do here -- just return to the event loop. */
4451 ;
4452 else
4453 /* In sync mode, when execute_control_command returns
4454 we're already standing on the next breakpoint.
4455 Breakpoint commands for that stop were not run, since
4456 execute_command does not run breakpoint commands --
4457 only command_line_handler does, but that one is not
4458 involved in execution of breakpoint commands. So, we
4459 can now execute breakpoint commands. It should be
4460 noted that making execute_command do bpstat actions is
4461 not an option -- in this case we'll have recursive
4462 invocation of bpstat for each breakpoint with a
4463 command, and can easily blow up GDB stack. Instead, we
4464 return true, which will trigger the caller to recall us
4465 with the new stop_bpstat. */
4466 again = 1;
4467 break;
4468 }
4469 }
4470 return again;
4471 }
4472
4473 void
4474 bpstat_do_actions (void)
4475 {
4476 struct cleanup *cleanup_if_error = make_bpstat_clear_actions_cleanup ();
4477
4478 /* Do any commands attached to breakpoint we are stopped at. */
4479 while (!ptid_equal (inferior_ptid, null_ptid)
4480 && target_has_execution
4481 && !is_exited (inferior_ptid)
4482 && !is_executing (inferior_ptid))
4483 /* Since in sync mode, bpstat_do_actions may resume the inferior,
4484 and only return when it is stopped at the next breakpoint, we
4485 keep doing breakpoint actions until it returns false to
4486 indicate the inferior was not resumed. */
4487 if (!bpstat_do_actions_1 (&inferior_thread ()->control.stop_bpstat))
4488 break;
4489
4490 discard_cleanups (cleanup_if_error);
4491 }
4492
4493 /* Print out the (old or new) value associated with a watchpoint. */
4494
4495 static void
4496 watchpoint_value_print (struct value *val, struct ui_file *stream)
4497 {
4498 if (val == NULL)
4499 fprintf_unfiltered (stream, _("<unreadable>"));
4500 else
4501 {
4502 struct value_print_options opts;
4503 get_user_print_options (&opts);
4504 value_print (val, stream, &opts);
4505 }
4506 }
4507
4508 /* Print the "Thread ID hit" part of "Thread ID hit Breakpoint N" if
4509 debugging multiple threads. */
4510
4511 void
4512 maybe_print_thread_hit_breakpoint (struct ui_out *uiout)
4513 {
4514 if (uiout->is_mi_like_p ())
4515 return;
4516
4517 uiout->text ("\n");
4518
4519 if (show_thread_that_caused_stop ())
4520 {
4521 const char *name;
4522 struct thread_info *thr = inferior_thread ();
4523
4524 uiout->text ("Thread ");
4525 uiout->field_fmt ("thread-id", "%s", print_thread_id (thr));
4526
4527 name = thr->name != NULL ? thr->name : target_thread_name (thr);
4528 if (name != NULL)
4529 {
4530 uiout->text (" \"");
4531 uiout->field_fmt ("name", "%s", name);
4532 uiout->text ("\"");
4533 }
4534
4535 uiout->text (" hit ");
4536 }
4537 }
4538
4539 /* Generic routine for printing messages indicating why we
4540 stopped. The behavior of this function depends on the value
4541 'print_it' in the bpstat structure. Under some circumstances we
4542 may decide not to print anything here and delegate the task to
4543 normal_stop(). */
4544
4545 static enum print_stop_action
4546 print_bp_stop_message (bpstat bs)
4547 {
4548 switch (bs->print_it)
4549 {
4550 case print_it_noop:
4551 /* Nothing should be printed for this bpstat entry. */
4552 return PRINT_UNKNOWN;
4553 break;
4554
4555 case print_it_done:
4556 /* We still want to print the frame, but we already printed the
4557 relevant messages. */
4558 return PRINT_SRC_AND_LOC;
4559 break;
4560
4561 case print_it_normal:
4562 {
4563 struct breakpoint *b = bs->breakpoint_at;
4564
4565 /* bs->breakpoint_at can be NULL if it was a momentary breakpoint
4566 which has since been deleted. */
4567 if (b == NULL)
4568 return PRINT_UNKNOWN;
4569
4570 /* Normal case. Call the breakpoint's print_it method. */
4571 return b->ops->print_it (bs);
4572 }
4573 break;
4574
4575 default:
4576 internal_error (__FILE__, __LINE__,
4577 _("print_bp_stop_message: unrecognized enum value"));
4578 break;
4579 }
4580 }
4581
4582 /* A helper function that prints a shared library stopped event. */
4583
4584 static void
4585 print_solib_event (int is_catchpoint)
4586 {
4587 bool any_deleted = !current_program_space->deleted_solibs.empty ();
4588 int any_added
4589 = !VEC_empty (so_list_ptr, current_program_space->added_solibs);
4590
4591 if (!is_catchpoint)
4592 {
4593 if (any_added || any_deleted)
4594 current_uiout->text (_("Stopped due to shared library event:\n"));
4595 else
4596 current_uiout->text (_("Stopped due to shared library event (no "
4597 "libraries added or removed)\n"));
4598 }
4599
4600 if (current_uiout->is_mi_like_p ())
4601 current_uiout->field_string ("reason",
4602 async_reason_lookup (EXEC_ASYNC_SOLIB_EVENT));
4603
4604 if (any_deleted)
4605 {
4606 current_uiout->text (_(" Inferior unloaded "));
4607 ui_out_emit_list list_emitter (current_uiout, "removed");
4608 for (int ix = 0; ix < current_program_space->deleted_solibs.size (); ix++)
4609 {
4610 const std::string &name = current_program_space->deleted_solibs[ix];
4611
4612 if (ix > 0)
4613 current_uiout->text (" ");
4614 current_uiout->field_string ("library", name);
4615 current_uiout->text ("\n");
4616 }
4617 }
4618
4619 if (any_added)
4620 {
4621 struct so_list *iter;
4622 int ix;
4623
4624 current_uiout->text (_(" Inferior loaded "));
4625 ui_out_emit_list list_emitter (current_uiout, "added");
4626 for (ix = 0;
4627 VEC_iterate (so_list_ptr, current_program_space->added_solibs,
4628 ix, iter);
4629 ++ix)
4630 {
4631 if (ix > 0)
4632 current_uiout->text (" ");
4633 current_uiout->field_string ("library", iter->so_name);
4634 current_uiout->text ("\n");
4635 }
4636 }
4637 }
4638
4639 /* Print a message indicating what happened. This is called from
4640 normal_stop(). The input to this routine is the head of the bpstat
4641 list - a list of the eventpoints that caused this stop. KIND is
4642 the target_waitkind for the stopping event. This
4643 routine calls the generic print routine for printing a message
4644 about reasons for stopping. This will print (for example) the
4645 "Breakpoint n," part of the output. The return value of this
4646 routine is one of:
4647
4648 PRINT_UNKNOWN: Means we printed nothing.
4649 PRINT_SRC_AND_LOC: Means we printed something, and expect subsequent
4650 code to print the location. An example is
4651 "Breakpoint 1, " which should be followed by
4652 the location.
4653 PRINT_SRC_ONLY: Means we printed something, but there is no need
4654 to also print the location part of the message.
4655 An example is the catch/throw messages, which
4656 don't require a location appended to the end.
4657 PRINT_NOTHING: We have done some printing and we don't need any
4658 further info to be printed. */
4659
4660 enum print_stop_action
4661 bpstat_print (bpstat bs, int kind)
4662 {
4663 enum print_stop_action val;
4664
4665 /* Maybe another breakpoint in the chain caused us to stop.
4666 (Currently all watchpoints go on the bpstat whether hit or not.
4667 That probably could (should) be changed, provided care is taken
4668 with respect to bpstat_explains_signal). */
4669 for (; bs; bs = bs->next)
4670 {
4671 val = print_bp_stop_message (bs);
4672 if (val == PRINT_SRC_ONLY
4673 || val == PRINT_SRC_AND_LOC
4674 || val == PRINT_NOTHING)
4675 return val;
4676 }
4677
4678 /* If we had hit a shared library event breakpoint,
4679 print_bp_stop_message would print out this message. If we hit an
4680 OS-level shared library event, do the same thing. */
4681 if (kind == TARGET_WAITKIND_LOADED)
4682 {
4683 print_solib_event (0);
4684 return PRINT_NOTHING;
4685 }
4686
4687 /* We reached the end of the chain, or we got a null BS to start
4688 with and nothing was printed. */
4689 return PRINT_UNKNOWN;
4690 }
4691
4692 /* Evaluate the boolean expression EXP and return the result. */
4693
4694 static bool
4695 breakpoint_cond_eval (expression *exp)
4696 {
4697 struct value *mark = value_mark ();
4698 bool res = value_true (evaluate_expression (exp));
4699
4700 value_free_to_mark (mark);
4701 return res;
4702 }
4703
4704 /* Allocate a new bpstat. Link it to the FIFO list by BS_LINK_POINTER. */
4705
4706 bpstats::bpstats (struct bp_location *bl, bpstat **bs_link_pointer)
4707 : next (NULL),
4708 bp_location_at (bl),
4709 breakpoint_at (bl->owner),
4710 commands (NULL),
4711 print (0),
4712 stop (0),
4713 print_it (print_it_normal)
4714 {
4715 incref_bp_location (bl);
4716 **bs_link_pointer = this;
4717 *bs_link_pointer = &next;
4718 }
4719
4720 bpstats::bpstats ()
4721 : next (NULL),
4722 bp_location_at (NULL),
4723 breakpoint_at (NULL),
4724 commands (NULL),
4725 print (0),
4726 stop (0),
4727 print_it (print_it_normal)
4728 {
4729 }
4730 \f
4731 /* The target has stopped with waitstatus WS. Check if any hardware
4732 watchpoints have triggered, according to the target. */
4733
4734 int
4735 watchpoints_triggered (struct target_waitstatus *ws)
4736 {
4737 int stopped_by_watchpoint = target_stopped_by_watchpoint ();
4738 CORE_ADDR addr;
4739 struct breakpoint *b;
4740
4741 if (!stopped_by_watchpoint)
4742 {
4743 /* We were not stopped by a watchpoint. Mark all watchpoints
4744 as not triggered. */
4745 ALL_BREAKPOINTS (b)
4746 if (is_hardware_watchpoint (b))
4747 {
4748 struct watchpoint *w = (struct watchpoint *) b;
4749
4750 w->watchpoint_triggered = watch_triggered_no;
4751 }
4752
4753 return 0;
4754 }
4755
4756 if (!target_stopped_data_address (&current_target, &addr))
4757 {
4758 /* We were stopped by a watchpoint, but we don't know where.
4759 Mark all watchpoints as unknown. */
4760 ALL_BREAKPOINTS (b)
4761 if (is_hardware_watchpoint (b))
4762 {
4763 struct watchpoint *w = (struct watchpoint *) b;
4764
4765 w->watchpoint_triggered = watch_triggered_unknown;
4766 }
4767
4768 return 1;
4769 }
4770
4771 /* The target could report the data address. Mark watchpoints
4772 affected by this data address as triggered, and all others as not
4773 triggered. */
4774
4775 ALL_BREAKPOINTS (b)
4776 if (is_hardware_watchpoint (b))
4777 {
4778 struct watchpoint *w = (struct watchpoint *) b;
4779 struct bp_location *loc;
4780
4781 w->watchpoint_triggered = watch_triggered_no;
4782 for (loc = b->loc; loc; loc = loc->next)
4783 {
4784 if (is_masked_watchpoint (b))
4785 {
4786 CORE_ADDR newaddr = addr & w->hw_wp_mask;
4787 CORE_ADDR start = loc->address & w->hw_wp_mask;
4788
4789 if (newaddr == start)
4790 {
4791 w->watchpoint_triggered = watch_triggered_yes;
4792 break;
4793 }
4794 }
4795 /* Exact match not required. Within range is sufficient. */
4796 else if (target_watchpoint_addr_within_range (&current_target,
4797 addr, loc->address,
4798 loc->length))
4799 {
4800 w->watchpoint_triggered = watch_triggered_yes;
4801 break;
4802 }
4803 }
4804 }
4805
4806 return 1;
4807 }
4808
4809 /* Possible return values for watchpoint_check. */
4810 enum wp_check_result
4811 {
4812 /* The watchpoint has been deleted. */
4813 WP_DELETED = 1,
4814
4815 /* The value has changed. */
4816 WP_VALUE_CHANGED = 2,
4817
4818 /* The value has not changed. */
4819 WP_VALUE_NOT_CHANGED = 3,
4820
4821 /* Ignore this watchpoint, no matter if the value changed or not. */
4822 WP_IGNORE = 4,
4823 };
4824
4825 #define BP_TEMPFLAG 1
4826 #define BP_HARDWAREFLAG 2
4827
4828 /* Evaluate watchpoint condition expression and check if its value
4829 changed. */
4830
4831 static wp_check_result
4832 watchpoint_check (bpstat bs)
4833 {
4834 struct watchpoint *b;
4835 struct frame_info *fr;
4836 int within_current_scope;
4837
4838 /* BS is built from an existing struct breakpoint. */
4839 gdb_assert (bs->breakpoint_at != NULL);
4840 b = (struct watchpoint *) bs->breakpoint_at;
4841
4842 /* If this is a local watchpoint, we only want to check if the
4843 watchpoint frame is in scope if the current thread is the thread
4844 that was used to create the watchpoint. */
4845 if (!watchpoint_in_thread_scope (b))
4846 return WP_IGNORE;
4847
4848 if (b->exp_valid_block == NULL)
4849 within_current_scope = 1;
4850 else
4851 {
4852 struct frame_info *frame = get_current_frame ();
4853 struct gdbarch *frame_arch = get_frame_arch (frame);
4854 CORE_ADDR frame_pc = get_frame_pc (frame);
4855
4856 /* stack_frame_destroyed_p() returns a non-zero value if we're
4857 still in the function but the stack frame has already been
4858 invalidated. Since we can't rely on the values of local
4859 variables after the stack has been destroyed, we are treating
4860 the watchpoint in that state as `not changed' without further
4861 checking. Don't mark watchpoints as changed if the current
4862 frame is in an epilogue - even if they are in some other
4863 frame, our view of the stack is likely to be wrong and
4864 frame_find_by_id could error out. */
4865 if (gdbarch_stack_frame_destroyed_p (frame_arch, frame_pc))
4866 return WP_IGNORE;
4867
4868 fr = frame_find_by_id (b->watchpoint_frame);
4869 within_current_scope = (fr != NULL);
4870
4871 /* If we've gotten confused in the unwinder, we might have
4872 returned a frame that can't describe this variable. */
4873 if (within_current_scope)
4874 {
4875 struct symbol *function;
4876
4877 function = get_frame_function (fr);
4878 if (function == NULL
4879 || !contained_in (b->exp_valid_block,
4880 SYMBOL_BLOCK_VALUE (function)))
4881 within_current_scope = 0;
4882 }
4883
4884 if (within_current_scope)
4885 /* If we end up stopping, the current frame will get selected
4886 in normal_stop. So this call to select_frame won't affect
4887 the user. */
4888 select_frame (fr);
4889 }
4890
4891 if (within_current_scope)
4892 {
4893 /* We use value_{,free_to_}mark because it could be a *long*
4894 time before we return to the command level and call
4895 free_all_values. We can't call free_all_values because we
4896 might be in the middle of evaluating a function call. */
4897
4898 int pc = 0;
4899 struct value *mark;
4900 struct value *new_val;
4901
4902 if (is_masked_watchpoint (b))
4903 /* Since we don't know the exact trigger address (from
4904 stopped_data_address), just tell the user we've triggered
4905 a mask watchpoint. */
4906 return WP_VALUE_CHANGED;
4907
4908 mark = value_mark ();
4909 fetch_subexp_value (b->exp.get (), &pc, &new_val, NULL, NULL, 0);
4910
4911 if (b->val_bitsize != 0)
4912 new_val = extract_bitfield_from_watchpoint_value (b, new_val);
4913
4914 /* We use value_equal_contents instead of value_equal because
4915 the latter coerces an array to a pointer, thus comparing just
4916 the address of the array instead of its contents. This is
4917 not what we want. */
4918 if ((b->val != NULL) != (new_val != NULL)
4919 || (b->val != NULL && !value_equal_contents (b->val.get (),
4920 new_val)))
4921 {
4922 bs->old_val = b->val;
4923 b->val = release_value (new_val);
4924 b->val_valid = 1;
4925 if (new_val != NULL)
4926 value_free_to_mark (mark);
4927 return WP_VALUE_CHANGED;
4928 }
4929 else
4930 {
4931 /* Nothing changed. */
4932 value_free_to_mark (mark);
4933 return WP_VALUE_NOT_CHANGED;
4934 }
4935 }
4936 else
4937 {
4938 /* This seems like the only logical thing to do because
4939 if we temporarily ignored the watchpoint, then when
4940 we reenter the block in which it is valid it contains
4941 garbage (in the case of a function, it may have two
4942 garbage values, one before and one after the prologue).
4943 So we can't even detect the first assignment to it and
4944 watch after that (since the garbage may or may not equal
4945 the first value assigned). */
4946 /* We print all the stop information in
4947 breakpoint_ops->print_it, but in this case, by the time we
4948 call breakpoint_ops->print_it this bp will be deleted
4949 already. So we have no choice but print the information
4950 here. */
4951
4952 SWITCH_THRU_ALL_UIS ()
4953 {
4954 struct ui_out *uiout = current_uiout;
4955
4956 if (uiout->is_mi_like_p ())
4957 uiout->field_string
4958 ("reason", async_reason_lookup (EXEC_ASYNC_WATCHPOINT_SCOPE));
4959 uiout->text ("\nWatchpoint ");
4960 uiout->field_int ("wpnum", b->number);
4961 uiout->text (" deleted because the program has left the block in\n"
4962 "which its expression is valid.\n");
4963 }
4964
4965 /* Make sure the watchpoint's commands aren't executed. */
4966 b->commands = NULL;
4967 watchpoint_del_at_next_stop (b);
4968
4969 return WP_DELETED;
4970 }
4971 }
4972
4973 /* Return true if it looks like target has stopped due to hitting
4974 breakpoint location BL. This function does not check if we should
4975 stop, only if BL explains the stop. */
4976
4977 static int
4978 bpstat_check_location (const struct bp_location *bl,
4979 const address_space *aspace, CORE_ADDR bp_addr,
4980 const struct target_waitstatus *ws)
4981 {
4982 struct breakpoint *b = bl->owner;
4983
4984 /* BL is from an existing breakpoint. */
4985 gdb_assert (b != NULL);
4986
4987 return b->ops->breakpoint_hit (bl, aspace, bp_addr, ws);
4988 }
4989
4990 /* Determine if the watched values have actually changed, and we
4991 should stop. If not, set BS->stop to 0. */
4992
4993 static void
4994 bpstat_check_watchpoint (bpstat bs)
4995 {
4996 const struct bp_location *bl;
4997 struct watchpoint *b;
4998
4999 /* BS is built for existing struct breakpoint. */
5000 bl = bs->bp_location_at;
5001 gdb_assert (bl != NULL);
5002 b = (struct watchpoint *) bs->breakpoint_at;
5003 gdb_assert (b != NULL);
5004
5005 {
5006 int must_check_value = 0;
5007
5008 if (b->type == bp_watchpoint)
5009 /* For a software watchpoint, we must always check the
5010 watched value. */
5011 must_check_value = 1;
5012 else if (b->watchpoint_triggered == watch_triggered_yes)
5013 /* We have a hardware watchpoint (read, write, or access)
5014 and the target earlier reported an address watched by
5015 this watchpoint. */
5016 must_check_value = 1;
5017 else if (b->watchpoint_triggered == watch_triggered_unknown
5018 && b->type == bp_hardware_watchpoint)
5019 /* We were stopped by a hardware watchpoint, but the target could
5020 not report the data address. We must check the watchpoint's
5021 value. Access and read watchpoints are out of luck; without
5022 a data address, we can't figure it out. */
5023 must_check_value = 1;
5024
5025 if (must_check_value)
5026 {
5027 wp_check_result e;
5028
5029 TRY
5030 {
5031 e = watchpoint_check (bs);
5032 }
5033 CATCH (ex, RETURN_MASK_ALL)
5034 {
5035 exception_fprintf (gdb_stderr, ex,
5036 "Error evaluating expression "
5037 "for watchpoint %d\n",
5038 b->number);
5039
5040 SWITCH_THRU_ALL_UIS ()
5041 {
5042 printf_filtered (_("Watchpoint %d deleted.\n"),
5043 b->number);
5044 }
5045 watchpoint_del_at_next_stop (b);
5046 e = WP_DELETED;
5047 }
5048 END_CATCH
5049
5050 switch (e)
5051 {
5052 case WP_DELETED:
5053 /* We've already printed what needs to be printed. */
5054 bs->print_it = print_it_done;
5055 /* Stop. */
5056 break;
5057 case WP_IGNORE:
5058 bs->print_it = print_it_noop;
5059 bs->stop = 0;
5060 break;
5061 case WP_VALUE_CHANGED:
5062 if (b->type == bp_read_watchpoint)
5063 {
5064 /* There are two cases to consider here:
5065
5066 1. We're watching the triggered memory for reads.
5067 In that case, trust the target, and always report
5068 the watchpoint hit to the user. Even though
5069 reads don't cause value changes, the value may
5070 have changed since the last time it was read, and
5071 since we're not trapping writes, we will not see
5072 those, and as such we should ignore our notion of
5073 old value.
5074
5075 2. We're watching the triggered memory for both
5076 reads and writes. There are two ways this may
5077 happen:
5078
5079 2.1. This is a target that can't break on data
5080 reads only, but can break on accesses (reads or
5081 writes), such as e.g., x86. We detect this case
5082 at the time we try to insert read watchpoints.
5083
5084 2.2. Otherwise, the target supports read
5085 watchpoints, but, the user set an access or write
5086 watchpoint watching the same memory as this read
5087 watchpoint.
5088
5089 If we're watching memory writes as well as reads,
5090 ignore watchpoint hits when we find that the
5091 value hasn't changed, as reads don't cause
5092 changes. This still gives false positives when
5093 the program writes the same value to memory as
5094 what there was already in memory (we will confuse
5095 it for a read), but it's much better than
5096 nothing. */
5097
5098 int other_write_watchpoint = 0;
5099
5100 if (bl->watchpoint_type == hw_read)
5101 {
5102 struct breakpoint *other_b;
5103
5104 ALL_BREAKPOINTS (other_b)
5105 if (other_b->type == bp_hardware_watchpoint
5106 || other_b->type == bp_access_watchpoint)
5107 {
5108 struct watchpoint *other_w =
5109 (struct watchpoint *) other_b;
5110
5111 if (other_w->watchpoint_triggered
5112 == watch_triggered_yes)
5113 {
5114 other_write_watchpoint = 1;
5115 break;
5116 }
5117 }
5118 }
5119
5120 if (other_write_watchpoint
5121 || bl->watchpoint_type == hw_access)
5122 {
5123 /* We're watching the same memory for writes,
5124 and the value changed since the last time we
5125 updated it, so this trap must be for a write.
5126 Ignore it. */
5127 bs->print_it = print_it_noop;
5128 bs->stop = 0;
5129 }
5130 }
5131 break;
5132 case WP_VALUE_NOT_CHANGED:
5133 if (b->type == bp_hardware_watchpoint
5134 || b->type == bp_watchpoint)
5135 {
5136 /* Don't stop: write watchpoints shouldn't fire if
5137 the value hasn't changed. */
5138 bs->print_it = print_it_noop;
5139 bs->stop = 0;
5140 }
5141 /* Stop. */
5142 break;
5143 default:
5144 /* Can't happen. */
5145 break;
5146 }
5147 }
5148 else /* must_check_value == 0 */
5149 {
5150 /* This is a case where some watchpoint(s) triggered, but
5151 not at the address of this watchpoint, or else no
5152 watchpoint triggered after all. So don't print
5153 anything for this watchpoint. */
5154 bs->print_it = print_it_noop;
5155 bs->stop = 0;
5156 }
5157 }
5158 }
5159
5160 /* For breakpoints that are currently marked as telling gdb to stop,
5161 check conditions (condition proper, frame, thread and ignore count)
5162 of breakpoint referred to by BS. If we should not stop for this
5163 breakpoint, set BS->stop to 0. */
5164
5165 static void
5166 bpstat_check_breakpoint_conditions (bpstat bs, ptid_t ptid)
5167 {
5168 const struct bp_location *bl;
5169 struct breakpoint *b;
5170 /* Assume stop. */
5171 bool condition_result = true;
5172 struct expression *cond;
5173
5174 gdb_assert (bs->stop);
5175
5176 /* BS is built for existing struct breakpoint. */
5177 bl = bs->bp_location_at;
5178 gdb_assert (bl != NULL);
5179 b = bs->breakpoint_at;
5180 gdb_assert (b != NULL);
5181
5182 /* Even if the target evaluated the condition on its end and notified GDB, we
5183 need to do so again since GDB does not know if we stopped due to a
5184 breakpoint or a single step breakpoint. */
5185
5186 if (frame_id_p (b->frame_id)
5187 && !frame_id_eq (b->frame_id, get_stack_frame_id (get_current_frame ())))
5188 {
5189 bs->stop = 0;
5190 return;
5191 }
5192
5193 /* If this is a thread/task-specific breakpoint, don't waste cpu
5194 evaluating the condition if this isn't the specified
5195 thread/task. */
5196 if ((b->thread != -1 && b->thread != ptid_to_global_thread_id (ptid))
5197 || (b->task != 0 && b->task != ada_get_task_number (ptid)))
5198
5199 {
5200 bs->stop = 0;
5201 return;
5202 }
5203
5204 /* Evaluate extension language breakpoints that have a "stop" method
5205 implemented. */
5206 bs->stop = breakpoint_ext_lang_cond_says_stop (b);
5207
5208 if (is_watchpoint (b))
5209 {
5210 struct watchpoint *w = (struct watchpoint *) b;
5211
5212 cond = w->cond_exp.get ();
5213 }
5214 else
5215 cond = bl->cond.get ();
5216
5217 if (cond && b->disposition != disp_del_at_next_stop)
5218 {
5219 int within_current_scope = 1;
5220 struct watchpoint * w;
5221
5222 /* We use value_mark and value_free_to_mark because it could
5223 be a long time before we return to the command level and
5224 call free_all_values. We can't call free_all_values
5225 because we might be in the middle of evaluating a
5226 function call. */
5227 struct value *mark = value_mark ();
5228
5229 if (is_watchpoint (b))
5230 w = (struct watchpoint *) b;
5231 else
5232 w = NULL;
5233
5234 /* Need to select the frame, with all that implies so that
5235 the conditions will have the right context. Because we
5236 use the frame, we will not see an inlined function's
5237 variables when we arrive at a breakpoint at the start
5238 of the inlined function; the current frame will be the
5239 call site. */
5240 if (w == NULL || w->cond_exp_valid_block == NULL)
5241 select_frame (get_current_frame ());
5242 else
5243 {
5244 struct frame_info *frame;
5245
5246 /* For local watchpoint expressions, which particular
5247 instance of a local is being watched matters, so we
5248 keep track of the frame to evaluate the expression
5249 in. To evaluate the condition however, it doesn't
5250 really matter which instantiation of the function
5251 where the condition makes sense triggers the
5252 watchpoint. This allows an expression like "watch
5253 global if q > 10" set in `func', catch writes to
5254 global on all threads that call `func', or catch
5255 writes on all recursive calls of `func' by a single
5256 thread. We simply always evaluate the condition in
5257 the innermost frame that's executing where it makes
5258 sense to evaluate the condition. It seems
5259 intuitive. */
5260 frame = block_innermost_frame (w->cond_exp_valid_block);
5261 if (frame != NULL)
5262 select_frame (frame);
5263 else
5264 within_current_scope = 0;
5265 }
5266 if (within_current_scope)
5267 {
5268 TRY
5269 {
5270 condition_result = breakpoint_cond_eval (cond);
5271 }
5272 CATCH (ex, RETURN_MASK_ALL)
5273 {
5274 exception_fprintf (gdb_stderr, ex,
5275 "Error in testing breakpoint condition:\n");
5276 }
5277 END_CATCH
5278 }
5279 else
5280 {
5281 warning (_("Watchpoint condition cannot be tested "
5282 "in the current scope"));
5283 /* If we failed to set the right context for this
5284 watchpoint, unconditionally report it. */
5285 }
5286 /* FIXME-someday, should give breakpoint #. */
5287 value_free_to_mark (mark);
5288 }
5289
5290 if (cond && !condition_result)
5291 {
5292 bs->stop = 0;
5293 }
5294 else if (b->ignore_count > 0)
5295 {
5296 b->ignore_count--;
5297 bs->stop = 0;
5298 /* Increase the hit count even though we don't stop. */
5299 ++(b->hit_count);
5300 gdb::observers::breakpoint_modified.notify (b);
5301 }
5302 }
5303
5304 /* Returns true if we need to track moribund locations of LOC's type
5305 on the current target. */
5306
5307 static int
5308 need_moribund_for_location_type (struct bp_location *loc)
5309 {
5310 return ((loc->loc_type == bp_loc_software_breakpoint
5311 && !target_supports_stopped_by_sw_breakpoint ())
5312 || (loc->loc_type == bp_loc_hardware_breakpoint
5313 && !target_supports_stopped_by_hw_breakpoint ()));
5314 }
5315
5316
5317 /* Get a bpstat associated with having just stopped at address
5318 BP_ADDR in thread PTID.
5319
5320 Determine whether we stopped at a breakpoint, etc, or whether we
5321 don't understand this stop. Result is a chain of bpstat's such
5322 that:
5323
5324 if we don't understand the stop, the result is a null pointer.
5325
5326 if we understand why we stopped, the result is not null.
5327
5328 Each element of the chain refers to a particular breakpoint or
5329 watchpoint at which we have stopped. (We may have stopped for
5330 several reasons concurrently.)
5331
5332 Each element of the chain has valid next, breakpoint_at,
5333 commands, FIXME??? fields. */
5334
5335 bpstat
5336 bpstat_stop_status (const address_space *aspace,
5337 CORE_ADDR bp_addr, ptid_t ptid,
5338 const struct target_waitstatus *ws)
5339 {
5340 struct breakpoint *b = NULL;
5341 struct bp_location *bl;
5342 struct bp_location *loc;
5343 /* First item of allocated bpstat's. */
5344 bpstat bs_head = NULL, *bs_link = &bs_head;
5345 /* Pointer to the last thing in the chain currently. */
5346 bpstat bs;
5347 int ix;
5348 int need_remove_insert;
5349 int removed_any;
5350
5351 /* First, build the bpstat chain with locations that explain a
5352 target stop, while being careful to not set the target running,
5353 as that may invalidate locations (in particular watchpoint
5354 locations are recreated). Resuming will happen here with
5355 breakpoint conditions or watchpoint expressions that include
5356 inferior function calls. */
5357
5358 ALL_BREAKPOINTS (b)
5359 {
5360 if (!breakpoint_enabled (b))
5361 continue;
5362
5363 for (bl = b->loc; bl != NULL; bl = bl->next)
5364 {
5365 /* For hardware watchpoints, we look only at the first
5366 location. The watchpoint_check function will work on the
5367 entire expression, not the individual locations. For
5368 read watchpoints, the watchpoints_triggered function has
5369 checked all locations already. */
5370 if (b->type == bp_hardware_watchpoint && bl != b->loc)
5371 break;
5372
5373 if (!bl->enabled || bl->shlib_disabled)
5374 continue;
5375
5376 if (!bpstat_check_location (bl, aspace, bp_addr, ws))
5377 continue;
5378
5379 /* Come here if it's a watchpoint, or if the break address
5380 matches. */
5381
5382 bs = new bpstats (bl, &bs_link); /* Alloc a bpstat to
5383 explain stop. */
5384
5385 /* Assume we stop. Should we find a watchpoint that is not
5386 actually triggered, or if the condition of the breakpoint
5387 evaluates as false, we'll reset 'stop' to 0. */
5388 bs->stop = 1;
5389 bs->print = 1;
5390
5391 /* If this is a scope breakpoint, mark the associated
5392 watchpoint as triggered so that we will handle the
5393 out-of-scope event. We'll get to the watchpoint next
5394 iteration. */
5395 if (b->type == bp_watchpoint_scope && b->related_breakpoint != b)
5396 {
5397 struct watchpoint *w = (struct watchpoint *) b->related_breakpoint;
5398
5399 w->watchpoint_triggered = watch_triggered_yes;
5400 }
5401 }
5402 }
5403
5404 /* Check if a moribund breakpoint explains the stop. */
5405 if (!target_supports_stopped_by_sw_breakpoint ()
5406 || !target_supports_stopped_by_hw_breakpoint ())
5407 {
5408 for (ix = 0; VEC_iterate (bp_location_p, moribund_locations, ix, loc); ++ix)
5409 {
5410 if (breakpoint_location_address_match (loc, aspace, bp_addr)
5411 && need_moribund_for_location_type (loc))
5412 {
5413 bs = new bpstats (loc, &bs_link);
5414 /* For hits of moribund locations, we should just proceed. */
5415 bs->stop = 0;
5416 bs->print = 0;
5417 bs->print_it = print_it_noop;
5418 }
5419 }
5420 }
5421
5422 /* A bit of special processing for shlib breakpoints. We need to
5423 process solib loading here, so that the lists of loaded and
5424 unloaded libraries are correct before we handle "catch load" and
5425 "catch unload". */
5426 for (bs = bs_head; bs != NULL; bs = bs->next)
5427 {
5428 if (bs->breakpoint_at && bs->breakpoint_at->type == bp_shlib_event)
5429 {
5430 handle_solib_event ();
5431 break;
5432 }
5433 }
5434
5435 /* Now go through the locations that caused the target to stop, and
5436 check whether we're interested in reporting this stop to higher
5437 layers, or whether we should resume the target transparently. */
5438
5439 removed_any = 0;
5440
5441 for (bs = bs_head; bs != NULL; bs = bs->next)
5442 {
5443 if (!bs->stop)
5444 continue;
5445
5446 b = bs->breakpoint_at;
5447 b->ops->check_status (bs);
5448 if (bs->stop)
5449 {
5450 bpstat_check_breakpoint_conditions (bs, ptid);
5451
5452 if (bs->stop)
5453 {
5454 ++(b->hit_count);
5455 gdb::observers::breakpoint_modified.notify (b);
5456
5457 /* We will stop here. */
5458 if (b->disposition == disp_disable)
5459 {
5460 --(b->enable_count);
5461 if (b->enable_count <= 0)
5462 b->enable_state = bp_disabled;
5463 removed_any = 1;
5464 }
5465 if (b->silent)
5466 bs->print = 0;
5467 bs->commands = b->commands;
5468 if (command_line_is_silent (bs->commands
5469 ? bs->commands.get () : NULL))
5470 bs->print = 0;
5471
5472 b->ops->after_condition_true (bs);
5473 }
5474
5475 }
5476
5477 /* Print nothing for this entry if we don't stop or don't
5478 print. */
5479 if (!bs->stop || !bs->print)
5480 bs->print_it = print_it_noop;
5481 }
5482
5483 /* If we aren't stopping, the value of some hardware watchpoint may
5484 not have changed, but the intermediate memory locations we are
5485 watching may have. Don't bother if we're stopping; this will get
5486 done later. */
5487 need_remove_insert = 0;
5488 if (! bpstat_causes_stop (bs_head))
5489 for (bs = bs_head; bs != NULL; bs = bs->next)
5490 if (!bs->stop
5491 && bs->breakpoint_at
5492 && is_hardware_watchpoint (bs->breakpoint_at))
5493 {
5494 struct watchpoint *w = (struct watchpoint *) bs->breakpoint_at;
5495
5496 update_watchpoint (w, 0 /* don't reparse. */);
5497 need_remove_insert = 1;
5498 }
5499
5500 if (need_remove_insert)
5501 update_global_location_list (UGLL_MAY_INSERT);
5502 else if (removed_any)
5503 update_global_location_list (UGLL_DONT_INSERT);
5504
5505 return bs_head;
5506 }
5507
5508 static void
5509 handle_jit_event (void)
5510 {
5511 struct frame_info *frame;
5512 struct gdbarch *gdbarch;
5513
5514 if (debug_infrun)
5515 fprintf_unfiltered (gdb_stdlog, "handling bp_jit_event\n");
5516
5517 /* Switch terminal for any messages produced by
5518 breakpoint_re_set. */
5519 target_terminal::ours_for_output ();
5520
5521 frame = get_current_frame ();
5522 gdbarch = get_frame_arch (frame);
5523
5524 jit_event_handler (gdbarch);
5525
5526 target_terminal::inferior ();
5527 }
5528
5529 /* Prepare WHAT final decision for infrun. */
5530
5531 /* Decide what infrun needs to do with this bpstat. */
5532
5533 struct bpstat_what
5534 bpstat_what (bpstat bs_head)
5535 {
5536 struct bpstat_what retval;
5537 bpstat bs;
5538
5539 retval.main_action = BPSTAT_WHAT_KEEP_CHECKING;
5540 retval.call_dummy = STOP_NONE;
5541 retval.is_longjmp = 0;
5542
5543 for (bs = bs_head; bs != NULL; bs = bs->next)
5544 {
5545 /* Extract this BS's action. After processing each BS, we check
5546 if its action overrides all we've seem so far. */
5547 enum bpstat_what_main_action this_action = BPSTAT_WHAT_KEEP_CHECKING;
5548 enum bptype bptype;
5549
5550 if (bs->breakpoint_at == NULL)
5551 {
5552 /* I suspect this can happen if it was a momentary
5553 breakpoint which has since been deleted. */
5554 bptype = bp_none;
5555 }
5556 else
5557 bptype = bs->breakpoint_at->type;
5558
5559 switch (bptype)
5560 {
5561 case bp_none:
5562 break;
5563 case bp_breakpoint:
5564 case bp_hardware_breakpoint:
5565 case bp_single_step:
5566 case bp_until:
5567 case bp_finish:
5568 case bp_shlib_event:
5569 if (bs->stop)
5570 {
5571 if (bs->print)
5572 this_action = BPSTAT_WHAT_STOP_NOISY;
5573 else
5574 this_action = BPSTAT_WHAT_STOP_SILENT;
5575 }
5576 else
5577 this_action = BPSTAT_WHAT_SINGLE;
5578 break;
5579 case bp_watchpoint:
5580 case bp_hardware_watchpoint:
5581 case bp_read_watchpoint:
5582 case bp_access_watchpoint:
5583 if (bs->stop)
5584 {
5585 if (bs->print)
5586 this_action = BPSTAT_WHAT_STOP_NOISY;
5587 else
5588 this_action = BPSTAT_WHAT_STOP_SILENT;
5589 }
5590 else
5591 {
5592 /* There was a watchpoint, but we're not stopping.
5593 This requires no further action. */
5594 }
5595 break;
5596 case bp_longjmp:
5597 case bp_longjmp_call_dummy:
5598 case bp_exception:
5599 if (bs->stop)
5600 {
5601 this_action = BPSTAT_WHAT_SET_LONGJMP_RESUME;
5602 retval.is_longjmp = bptype != bp_exception;
5603 }
5604 else
5605 this_action = BPSTAT_WHAT_SINGLE;
5606 break;
5607 case bp_longjmp_resume:
5608 case bp_exception_resume:
5609 if (bs->stop)
5610 {
5611 this_action = BPSTAT_WHAT_CLEAR_LONGJMP_RESUME;
5612 retval.is_longjmp = bptype == bp_longjmp_resume;
5613 }
5614 else
5615 this_action = BPSTAT_WHAT_SINGLE;
5616 break;
5617 case bp_step_resume:
5618 if (bs->stop)
5619 this_action = BPSTAT_WHAT_STEP_RESUME;
5620 else
5621 {
5622 /* It is for the wrong frame. */
5623 this_action = BPSTAT_WHAT_SINGLE;
5624 }
5625 break;
5626 case bp_hp_step_resume:
5627 if (bs->stop)
5628 this_action = BPSTAT_WHAT_HP_STEP_RESUME;
5629 else
5630 {
5631 /* It is for the wrong frame. */
5632 this_action = BPSTAT_WHAT_SINGLE;
5633 }
5634 break;
5635 case bp_watchpoint_scope:
5636 case bp_thread_event:
5637 case bp_overlay_event:
5638 case bp_longjmp_master:
5639 case bp_std_terminate_master:
5640 case bp_exception_master:
5641 this_action = BPSTAT_WHAT_SINGLE;
5642 break;
5643 case bp_catchpoint:
5644 if (bs->stop)
5645 {
5646 if (bs->print)
5647 this_action = BPSTAT_WHAT_STOP_NOISY;
5648 else
5649 this_action = BPSTAT_WHAT_STOP_SILENT;
5650 }
5651 else
5652 {
5653 /* There was a catchpoint, but we're not stopping.
5654 This requires no further action. */
5655 }
5656 break;
5657 case bp_jit_event:
5658 this_action = BPSTAT_WHAT_SINGLE;
5659 break;
5660 case bp_call_dummy:
5661 /* Make sure the action is stop (silent or noisy),
5662 so infrun.c pops the dummy frame. */
5663 retval.call_dummy = STOP_STACK_DUMMY;
5664 this_action = BPSTAT_WHAT_STOP_SILENT;
5665 break;
5666 case bp_std_terminate:
5667 /* Make sure the action is stop (silent or noisy),
5668 so infrun.c pops the dummy frame. */
5669 retval.call_dummy = STOP_STD_TERMINATE;
5670 this_action = BPSTAT_WHAT_STOP_SILENT;
5671 break;
5672 case bp_tracepoint:
5673 case bp_fast_tracepoint:
5674 case bp_static_tracepoint:
5675 /* Tracepoint hits should not be reported back to GDB, and
5676 if one got through somehow, it should have been filtered
5677 out already. */
5678 internal_error (__FILE__, __LINE__,
5679 _("bpstat_what: tracepoint encountered"));
5680 break;
5681 case bp_gnu_ifunc_resolver:
5682 /* Step over it (and insert bp_gnu_ifunc_resolver_return). */
5683 this_action = BPSTAT_WHAT_SINGLE;
5684 break;
5685 case bp_gnu_ifunc_resolver_return:
5686 /* The breakpoint will be removed, execution will restart from the
5687 PC of the former breakpoint. */
5688 this_action = BPSTAT_WHAT_KEEP_CHECKING;
5689 break;
5690
5691 case bp_dprintf:
5692 if (bs->stop)
5693 this_action = BPSTAT_WHAT_STOP_SILENT;
5694 else
5695 this_action = BPSTAT_WHAT_SINGLE;
5696 break;
5697
5698 default:
5699 internal_error (__FILE__, __LINE__,
5700 _("bpstat_what: unhandled bptype %d"), (int) bptype);
5701 }
5702
5703 retval.main_action = std::max (retval.main_action, this_action);
5704 }
5705
5706 return retval;
5707 }
5708
5709 void
5710 bpstat_run_callbacks (bpstat bs_head)
5711 {
5712 bpstat bs;
5713
5714 for (bs = bs_head; bs != NULL; bs = bs->next)
5715 {
5716 struct breakpoint *b = bs->breakpoint_at;
5717
5718 if (b == NULL)
5719 continue;
5720 switch (b->type)
5721 {
5722 case bp_jit_event:
5723 handle_jit_event ();
5724 break;
5725 case bp_gnu_ifunc_resolver:
5726 gnu_ifunc_resolver_stop (b);
5727 break;
5728 case bp_gnu_ifunc_resolver_return:
5729 gnu_ifunc_resolver_return_stop (b);
5730 break;
5731 }
5732 }
5733 }
5734
5735 /* Nonzero if we should step constantly (e.g. watchpoints on machines
5736 without hardware support). This isn't related to a specific bpstat,
5737 just to things like whether watchpoints are set. */
5738
5739 int
5740 bpstat_should_step (void)
5741 {
5742 struct breakpoint *b;
5743
5744 ALL_BREAKPOINTS (b)
5745 if (breakpoint_enabled (b) && b->type == bp_watchpoint && b->loc != NULL)
5746 return 1;
5747 return 0;
5748 }
5749
5750 int
5751 bpstat_causes_stop (bpstat bs)
5752 {
5753 for (; bs != NULL; bs = bs->next)
5754 if (bs->stop)
5755 return 1;
5756
5757 return 0;
5758 }
5759
5760 \f
5761
5762 /* Compute a string of spaces suitable to indent the next line
5763 so it starts at the position corresponding to the table column
5764 named COL_NAME in the currently active table of UIOUT. */
5765
5766 static char *
5767 wrap_indent_at_field (struct ui_out *uiout, const char *col_name)
5768 {
5769 static char wrap_indent[80];
5770 int i, total_width, width, align;
5771 const char *text;
5772
5773 total_width = 0;
5774 for (i = 1; uiout->query_table_field (i, &width, &align, &text); i++)
5775 {
5776 if (strcmp (text, col_name) == 0)
5777 {
5778 gdb_assert (total_width < sizeof wrap_indent);
5779 memset (wrap_indent, ' ', total_width);
5780 wrap_indent[total_width] = 0;
5781
5782 return wrap_indent;
5783 }
5784
5785 total_width += width + 1;
5786 }
5787
5788 return NULL;
5789 }
5790
5791 /* Determine if the locations of this breakpoint will have their conditions
5792 evaluated by the target, host or a mix of both. Returns the following:
5793
5794 "host": Host evals condition.
5795 "host or target": Host or Target evals condition.
5796 "target": Target evals condition.
5797 */
5798
5799 static const char *
5800 bp_condition_evaluator (struct breakpoint *b)
5801 {
5802 struct bp_location *bl;
5803 char host_evals = 0;
5804 char target_evals = 0;
5805
5806 if (!b)
5807 return NULL;
5808
5809 if (!is_breakpoint (b))
5810 return NULL;
5811
5812 if (gdb_evaluates_breakpoint_condition_p ()
5813 || !target_supports_evaluation_of_breakpoint_conditions ())
5814 return condition_evaluation_host;
5815
5816 for (bl = b->loc; bl; bl = bl->next)
5817 {
5818 if (bl->cond_bytecode)
5819 target_evals++;
5820 else
5821 host_evals++;
5822 }
5823
5824 if (host_evals && target_evals)
5825 return condition_evaluation_both;
5826 else if (target_evals)
5827 return condition_evaluation_target;
5828 else
5829 return condition_evaluation_host;
5830 }
5831
5832 /* Determine the breakpoint location's condition evaluator. This is
5833 similar to bp_condition_evaluator, but for locations. */
5834
5835 static const char *
5836 bp_location_condition_evaluator (struct bp_location *bl)
5837 {
5838 if (bl && !is_breakpoint (bl->owner))
5839 return NULL;
5840
5841 if (gdb_evaluates_breakpoint_condition_p ()
5842 || !target_supports_evaluation_of_breakpoint_conditions ())
5843 return condition_evaluation_host;
5844
5845 if (bl && bl->cond_bytecode)
5846 return condition_evaluation_target;
5847 else
5848 return condition_evaluation_host;
5849 }
5850
5851 /* Print the LOC location out of the list of B->LOC locations. */
5852
5853 static void
5854 print_breakpoint_location (struct breakpoint *b,
5855 struct bp_location *loc)
5856 {
5857 struct ui_out *uiout = current_uiout;
5858
5859 scoped_restore_current_program_space restore_pspace;
5860
5861 if (loc != NULL && loc->shlib_disabled)
5862 loc = NULL;
5863
5864 if (loc != NULL)
5865 set_current_program_space (loc->pspace);
5866
5867 if (b->display_canonical)
5868 uiout->field_string ("what", event_location_to_string (b->location.get ()));
5869 else if (loc && loc->symtab)
5870 {
5871 const struct symbol *sym = loc->symbol;
5872
5873 if (sym == NULL)
5874 sym = find_pc_sect_function (loc->address, loc->section);
5875
5876 if (sym)
5877 {
5878 uiout->text ("in ");
5879 uiout->field_string ("func", SYMBOL_PRINT_NAME (sym));
5880 uiout->text (" ");
5881 uiout->wrap_hint (wrap_indent_at_field (uiout, "what"));
5882 uiout->text ("at ");
5883 }
5884 uiout->field_string ("file",
5885 symtab_to_filename_for_display (loc->symtab));
5886 uiout->text (":");
5887
5888 if (uiout->is_mi_like_p ())
5889 uiout->field_string ("fullname", symtab_to_fullname (loc->symtab));
5890
5891 uiout->field_int ("line", loc->line_number);
5892 }
5893 else if (loc)
5894 {
5895 string_file stb;
5896
5897 print_address_symbolic (loc->gdbarch, loc->address, &stb,
5898 demangle, "");
5899 uiout->field_stream ("at", stb);
5900 }
5901 else
5902 {
5903 uiout->field_string ("pending",
5904 event_location_to_string (b->location.get ()));
5905 /* If extra_string is available, it could be holding a condition
5906 or dprintf arguments. In either case, make sure it is printed,
5907 too, but only for non-MI streams. */
5908 if (!uiout->is_mi_like_p () && b->extra_string != NULL)
5909 {
5910 if (b->type == bp_dprintf)
5911 uiout->text (",");
5912 else
5913 uiout->text (" ");
5914 uiout->text (b->extra_string);
5915 }
5916 }
5917
5918 if (loc && is_breakpoint (b)
5919 && breakpoint_condition_evaluation_mode () == condition_evaluation_target
5920 && bp_condition_evaluator (b) == condition_evaluation_both)
5921 {
5922 uiout->text (" (");
5923 uiout->field_string ("evaluated-by",
5924 bp_location_condition_evaluator (loc));
5925 uiout->text (")");
5926 }
5927 }
5928
5929 static const char *
5930 bptype_string (enum bptype type)
5931 {
5932 struct ep_type_description
5933 {
5934 enum bptype type;
5935 const char *description;
5936 };
5937 static struct ep_type_description bptypes[] =
5938 {
5939 {bp_none, "?deleted?"},
5940 {bp_breakpoint, "breakpoint"},
5941 {bp_hardware_breakpoint, "hw breakpoint"},
5942 {bp_single_step, "sw single-step"},
5943 {bp_until, "until"},
5944 {bp_finish, "finish"},
5945 {bp_watchpoint, "watchpoint"},
5946 {bp_hardware_watchpoint, "hw watchpoint"},
5947 {bp_read_watchpoint, "read watchpoint"},
5948 {bp_access_watchpoint, "acc watchpoint"},
5949 {bp_longjmp, "longjmp"},
5950 {bp_longjmp_resume, "longjmp resume"},
5951 {bp_longjmp_call_dummy, "longjmp for call dummy"},
5952 {bp_exception, "exception"},
5953 {bp_exception_resume, "exception resume"},
5954 {bp_step_resume, "step resume"},
5955 {bp_hp_step_resume, "high-priority step resume"},
5956 {bp_watchpoint_scope, "watchpoint scope"},
5957 {bp_call_dummy, "call dummy"},
5958 {bp_std_terminate, "std::terminate"},
5959 {bp_shlib_event, "shlib events"},
5960 {bp_thread_event, "thread events"},
5961 {bp_overlay_event, "overlay events"},
5962 {bp_longjmp_master, "longjmp master"},
5963 {bp_std_terminate_master, "std::terminate master"},
5964 {bp_exception_master, "exception master"},
5965 {bp_catchpoint, "catchpoint"},
5966 {bp_tracepoint, "tracepoint"},
5967 {bp_fast_tracepoint, "fast tracepoint"},
5968 {bp_static_tracepoint, "static tracepoint"},
5969 {bp_dprintf, "dprintf"},
5970 {bp_jit_event, "jit events"},
5971 {bp_gnu_ifunc_resolver, "STT_GNU_IFUNC resolver"},
5972 {bp_gnu_ifunc_resolver_return, "STT_GNU_IFUNC resolver return"},
5973 };
5974
5975 if (((int) type >= (sizeof (bptypes) / sizeof (bptypes[0])))
5976 || ((int) type != bptypes[(int) type].type))
5977 internal_error (__FILE__, __LINE__,
5978 _("bptypes table does not describe type #%d."),
5979 (int) type);
5980
5981 return bptypes[(int) type].description;
5982 }
5983
5984 /* For MI, output a field named 'thread-groups' with a list as the value.
5985 For CLI, prefix the list with the string 'inf'. */
5986
5987 static void
5988 output_thread_groups (struct ui_out *uiout,
5989 const char *field_name,
5990 const std::vector<int> &inf_nums,
5991 int mi_only)
5992 {
5993 int is_mi = uiout->is_mi_like_p ();
5994
5995 /* For backward compatibility, don't display inferiors in CLI unless
5996 there are several. Always display them for MI. */
5997 if (!is_mi && mi_only)
5998 return;
5999
6000 ui_out_emit_list list_emitter (uiout, field_name);
6001
6002 for (size_t i = 0; i < inf_nums.size (); i++)
6003 {
6004 if (is_mi)
6005 {
6006 char mi_group[10];
6007
6008 xsnprintf (mi_group, sizeof (mi_group), "i%d", inf_nums[i]);
6009 uiout->field_string (NULL, mi_group);
6010 }
6011 else
6012 {
6013 if (i == 0)
6014 uiout->text (" inf ");
6015 else
6016 uiout->text (", ");
6017
6018 uiout->text (plongest (inf_nums[i]));
6019 }
6020 }
6021 }
6022
6023 /* Print B to gdb_stdout. */
6024
6025 static void
6026 print_one_breakpoint_location (struct breakpoint *b,
6027 struct bp_location *loc,
6028 int loc_number,
6029 struct bp_location **last_loc,
6030 int allflag)
6031 {
6032 struct command_line *l;
6033 static char bpenables[] = "nynny";
6034
6035 struct ui_out *uiout = current_uiout;
6036 int header_of_multiple = 0;
6037 int part_of_multiple = (loc != NULL);
6038 struct value_print_options opts;
6039
6040 get_user_print_options (&opts);
6041
6042 gdb_assert (!loc || loc_number != 0);
6043 /* See comment in print_one_breakpoint concerning treatment of
6044 breakpoints with single disabled location. */
6045 if (loc == NULL
6046 && (b->loc != NULL
6047 && (b->loc->next != NULL || !b->loc->enabled)))
6048 header_of_multiple = 1;
6049 if (loc == NULL)
6050 loc = b->loc;
6051
6052 annotate_record ();
6053
6054 /* 1 */
6055 annotate_field (0);
6056 if (part_of_multiple)
6057 {
6058 char *formatted;
6059 formatted = xstrprintf ("%d.%d", b->number, loc_number);
6060 uiout->field_string ("number", formatted);
6061 xfree (formatted);
6062 }
6063 else
6064 {
6065 uiout->field_int ("number", b->number);
6066 }
6067
6068 /* 2 */
6069 annotate_field (1);
6070 if (part_of_multiple)
6071 uiout->field_skip ("type");
6072 else
6073 uiout->field_string ("type", bptype_string (b->type));
6074
6075 /* 3 */
6076 annotate_field (2);
6077 if (part_of_multiple)
6078 uiout->field_skip ("disp");
6079 else
6080 uiout->field_string ("disp", bpdisp_text (b->disposition));
6081
6082
6083 /* 4 */
6084 annotate_field (3);
6085 if (part_of_multiple)
6086 uiout->field_string ("enabled", loc->enabled ? "y" : "n");
6087 else
6088 uiout->field_fmt ("enabled", "%c", bpenables[(int) b->enable_state]);
6089 uiout->spaces (2);
6090
6091
6092 /* 5 and 6 */
6093 if (b->ops != NULL && b->ops->print_one != NULL)
6094 {
6095 /* Although the print_one can possibly print all locations,
6096 calling it here is not likely to get any nice result. So,
6097 make sure there's just one location. */
6098 gdb_assert (b->loc == NULL || b->loc->next == NULL);
6099 b->ops->print_one (b, last_loc);
6100 }
6101 else
6102 switch (b->type)
6103 {
6104 case bp_none:
6105 internal_error (__FILE__, __LINE__,
6106 _("print_one_breakpoint: bp_none encountered\n"));
6107 break;
6108
6109 case bp_watchpoint:
6110 case bp_hardware_watchpoint:
6111 case bp_read_watchpoint:
6112 case bp_access_watchpoint:
6113 {
6114 struct watchpoint *w = (struct watchpoint *) b;
6115
6116 /* Field 4, the address, is omitted (which makes the columns
6117 not line up too nicely with the headers, but the effect
6118 is relatively readable). */
6119 if (opts.addressprint)
6120 uiout->field_skip ("addr");
6121 annotate_field (5);
6122 uiout->field_string ("what", w->exp_string);
6123 }
6124 break;
6125
6126 case bp_breakpoint:
6127 case bp_hardware_breakpoint:
6128 case bp_single_step:
6129 case bp_until:
6130 case bp_finish:
6131 case bp_longjmp:
6132 case bp_longjmp_resume:
6133 case bp_longjmp_call_dummy:
6134 case bp_exception:
6135 case bp_exception_resume:
6136 case bp_step_resume:
6137 case bp_hp_step_resume:
6138 case bp_watchpoint_scope:
6139 case bp_call_dummy:
6140 case bp_std_terminate:
6141 case bp_shlib_event:
6142 case bp_thread_event:
6143 case bp_overlay_event:
6144 case bp_longjmp_master:
6145 case bp_std_terminate_master:
6146 case bp_exception_master:
6147 case bp_tracepoint:
6148 case bp_fast_tracepoint:
6149 case bp_static_tracepoint:
6150 case bp_dprintf:
6151 case bp_jit_event:
6152 case bp_gnu_ifunc_resolver:
6153 case bp_gnu_ifunc_resolver_return:
6154 if (opts.addressprint)
6155 {
6156 annotate_field (4);
6157 if (header_of_multiple)
6158 uiout->field_string ("addr", "<MULTIPLE>");
6159 else if (b->loc == NULL || loc->shlib_disabled)
6160 uiout->field_string ("addr", "<PENDING>");
6161 else
6162 uiout->field_core_addr ("addr",
6163 loc->gdbarch, loc->address);
6164 }
6165 annotate_field (5);
6166 if (!header_of_multiple)
6167 print_breakpoint_location (b, loc);
6168 if (b->loc)
6169 *last_loc = b->loc;
6170 break;
6171 }
6172
6173
6174 if (loc != NULL && !header_of_multiple)
6175 {
6176 struct inferior *inf;
6177 std::vector<int> inf_nums;
6178 int mi_only = 1;
6179
6180 ALL_INFERIORS (inf)
6181 {
6182 if (inf->pspace == loc->pspace)
6183 inf_nums.push_back (inf->num);
6184 }
6185
6186 /* For backward compatibility, don't display inferiors in CLI unless
6187 there are several. Always display for MI. */
6188 if (allflag
6189 || (!gdbarch_has_global_breakpoints (target_gdbarch ())
6190 && (number_of_program_spaces () > 1
6191 || number_of_inferiors () > 1)
6192 /* LOC is for existing B, it cannot be in
6193 moribund_locations and thus having NULL OWNER. */
6194 && loc->owner->type != bp_catchpoint))
6195 mi_only = 0;
6196 output_thread_groups (uiout, "thread-groups", inf_nums, mi_only);
6197 }
6198
6199 if (!part_of_multiple)
6200 {
6201 if (b->thread != -1)
6202 {
6203 /* FIXME: This seems to be redundant and lost here; see the
6204 "stop only in" line a little further down. */
6205 uiout->text (" thread ");
6206 uiout->field_int ("thread", b->thread);
6207 }
6208 else if (b->task != 0)
6209 {
6210 uiout->text (" task ");
6211 uiout->field_int ("task", b->task);
6212 }
6213 }
6214
6215 uiout->text ("\n");
6216
6217 if (!part_of_multiple)
6218 b->ops->print_one_detail (b, uiout);
6219
6220 if (part_of_multiple && frame_id_p (b->frame_id))
6221 {
6222 annotate_field (6);
6223 uiout->text ("\tstop only in stack frame at ");
6224 /* FIXME: cagney/2002-12-01: Shouldn't be poking around inside
6225 the frame ID. */
6226 uiout->field_core_addr ("frame",
6227 b->gdbarch, b->frame_id.stack_addr);
6228 uiout->text ("\n");
6229 }
6230
6231 if (!part_of_multiple && b->cond_string)
6232 {
6233 annotate_field (7);
6234 if (is_tracepoint (b))
6235 uiout->text ("\ttrace only if ");
6236 else
6237 uiout->text ("\tstop only if ");
6238 uiout->field_string ("cond", b->cond_string);
6239
6240 /* Print whether the target is doing the breakpoint's condition
6241 evaluation. If GDB is doing the evaluation, don't print anything. */
6242 if (is_breakpoint (b)
6243 && breakpoint_condition_evaluation_mode ()
6244 == condition_evaluation_target)
6245 {
6246 uiout->text (" (");
6247 uiout->field_string ("evaluated-by",
6248 bp_condition_evaluator (b));
6249 uiout->text (" evals)");
6250 }
6251 uiout->text ("\n");
6252 }
6253
6254 if (!part_of_multiple && b->thread != -1)
6255 {
6256 /* FIXME should make an annotation for this. */
6257 uiout->text ("\tstop only in thread ");
6258 if (uiout->is_mi_like_p ())
6259 uiout->field_int ("thread", b->thread);
6260 else
6261 {
6262 struct thread_info *thr = find_thread_global_id (b->thread);
6263
6264 uiout->field_string ("thread", print_thread_id (thr));
6265 }
6266 uiout->text ("\n");
6267 }
6268
6269 if (!part_of_multiple)
6270 {
6271 if (b->hit_count)
6272 {
6273 /* FIXME should make an annotation for this. */
6274 if (is_catchpoint (b))
6275 uiout->text ("\tcatchpoint");
6276 else if (is_tracepoint (b))
6277 uiout->text ("\ttracepoint");
6278 else
6279 uiout->text ("\tbreakpoint");
6280 uiout->text (" already hit ");
6281 uiout->field_int ("times", b->hit_count);
6282 if (b->hit_count == 1)
6283 uiout->text (" time\n");
6284 else
6285 uiout->text (" times\n");
6286 }
6287 else
6288 {
6289 /* Output the count also if it is zero, but only if this is mi. */
6290 if (uiout->is_mi_like_p ())
6291 uiout->field_int ("times", b->hit_count);
6292 }
6293 }
6294
6295 if (!part_of_multiple && b->ignore_count)
6296 {
6297 annotate_field (8);
6298 uiout->text ("\tignore next ");
6299 uiout->field_int ("ignore", b->ignore_count);
6300 uiout->text (" hits\n");
6301 }
6302
6303 /* Note that an enable count of 1 corresponds to "enable once"
6304 behavior, which is reported by the combination of enablement and
6305 disposition, so we don't need to mention it here. */
6306 if (!part_of_multiple && b->enable_count > 1)
6307 {
6308 annotate_field (8);
6309 uiout->text ("\tdisable after ");
6310 /* Tweak the wording to clarify that ignore and enable counts
6311 are distinct, and have additive effect. */
6312 if (b->ignore_count)
6313 uiout->text ("additional ");
6314 else
6315 uiout->text ("next ");
6316 uiout->field_int ("enable", b->enable_count);
6317 uiout->text (" hits\n");
6318 }
6319
6320 if (!part_of_multiple && is_tracepoint (b))
6321 {
6322 struct tracepoint *tp = (struct tracepoint *) b;
6323
6324 if (tp->traceframe_usage)
6325 {
6326 uiout->text ("\ttrace buffer usage ");
6327 uiout->field_int ("traceframe-usage", tp->traceframe_usage);
6328 uiout->text (" bytes\n");
6329 }
6330 }
6331
6332 l = b->commands ? b->commands.get () : NULL;
6333 if (!part_of_multiple && l)
6334 {
6335 annotate_field (9);
6336 ui_out_emit_tuple tuple_emitter (uiout, "script");
6337 print_command_lines (uiout, l, 4);
6338 }
6339
6340 if (is_tracepoint (b))
6341 {
6342 struct tracepoint *t = (struct tracepoint *) b;
6343
6344 if (!part_of_multiple && t->pass_count)
6345 {
6346 annotate_field (10);
6347 uiout->text ("\tpass count ");
6348 uiout->field_int ("pass", t->pass_count);
6349 uiout->text (" \n");
6350 }
6351
6352 /* Don't display it when tracepoint or tracepoint location is
6353 pending. */
6354 if (!header_of_multiple && loc != NULL && !loc->shlib_disabled)
6355 {
6356 annotate_field (11);
6357
6358 if (uiout->is_mi_like_p ())
6359 uiout->field_string ("installed",
6360 loc->inserted ? "y" : "n");
6361 else
6362 {
6363 if (loc->inserted)
6364 uiout->text ("\t");
6365 else
6366 uiout->text ("\tnot ");
6367 uiout->text ("installed on target\n");
6368 }
6369 }
6370 }
6371
6372 if (uiout->is_mi_like_p () && !part_of_multiple)
6373 {
6374 if (is_watchpoint (b))
6375 {
6376 struct watchpoint *w = (struct watchpoint *) b;
6377
6378 uiout->field_string ("original-location", w->exp_string);
6379 }
6380 else if (b->location != NULL
6381 && event_location_to_string (b->location.get ()) != NULL)
6382 uiout->field_string ("original-location",
6383 event_location_to_string (b->location.get ()));
6384 }
6385 }
6386
6387 static void
6388 print_one_breakpoint (struct breakpoint *b,
6389 struct bp_location **last_loc,
6390 int allflag)
6391 {
6392 struct ui_out *uiout = current_uiout;
6393
6394 {
6395 ui_out_emit_tuple tuple_emitter (uiout, "bkpt");
6396
6397 print_one_breakpoint_location (b, NULL, 0, last_loc, allflag);
6398 }
6399
6400 /* If this breakpoint has custom print function,
6401 it's already printed. Otherwise, print individual
6402 locations, if any. */
6403 if (b->ops == NULL || b->ops->print_one == NULL)
6404 {
6405 /* If breakpoint has a single location that is disabled, we
6406 print it as if it had several locations, since otherwise it's
6407 hard to represent "breakpoint enabled, location disabled"
6408 situation.
6409
6410 Note that while hardware watchpoints have several locations
6411 internally, that's not a property exposed to user. */
6412 if (b->loc
6413 && !is_hardware_watchpoint (b)
6414 && (b->loc->next || !b->loc->enabled))
6415 {
6416 struct bp_location *loc;
6417 int n = 1;
6418
6419 for (loc = b->loc; loc; loc = loc->next, ++n)
6420 {
6421 ui_out_emit_tuple tuple_emitter (uiout, NULL);
6422 print_one_breakpoint_location (b, loc, n, last_loc, allflag);
6423 }
6424 }
6425 }
6426 }
6427
6428 static int
6429 breakpoint_address_bits (struct breakpoint *b)
6430 {
6431 int print_address_bits = 0;
6432 struct bp_location *loc;
6433
6434 /* Software watchpoints that aren't watching memory don't have an
6435 address to print. */
6436 if (is_no_memory_software_watchpoint (b))
6437 return 0;
6438
6439 for (loc = b->loc; loc; loc = loc->next)
6440 {
6441 int addr_bit;
6442
6443 addr_bit = gdbarch_addr_bit (loc->gdbarch);
6444 if (addr_bit > print_address_bits)
6445 print_address_bits = addr_bit;
6446 }
6447
6448 return print_address_bits;
6449 }
6450
6451 /* See breakpoint.h. */
6452
6453 void
6454 print_breakpoint (breakpoint *b)
6455 {
6456 struct bp_location *dummy_loc = NULL;
6457 print_one_breakpoint (b, &dummy_loc, 0);
6458 }
6459
6460 /* Return true if this breakpoint was set by the user, false if it is
6461 internal or momentary. */
6462
6463 int
6464 user_breakpoint_p (struct breakpoint *b)
6465 {
6466 return b->number > 0;
6467 }
6468
6469 /* See breakpoint.h. */
6470
6471 int
6472 pending_breakpoint_p (struct breakpoint *b)
6473 {
6474 return b->loc == NULL;
6475 }
6476
6477 /* Print information on user settable breakpoint (watchpoint, etc)
6478 number BNUM. If BNUM is -1 print all user-settable breakpoints.
6479 If ALLFLAG is non-zero, include non-user-settable breakpoints. If
6480 FILTER is non-NULL, call it on each breakpoint and only include the
6481 ones for which it returns non-zero. Return the total number of
6482 breakpoints listed. */
6483
6484 static int
6485 breakpoint_1 (const char *args, int allflag,
6486 int (*filter) (const struct breakpoint *))
6487 {
6488 struct breakpoint *b;
6489 struct bp_location *last_loc = NULL;
6490 int nr_printable_breakpoints;
6491 struct value_print_options opts;
6492 int print_address_bits = 0;
6493 int print_type_col_width = 14;
6494 struct ui_out *uiout = current_uiout;
6495
6496 get_user_print_options (&opts);
6497
6498 /* Compute the number of rows in the table, as well as the size
6499 required for address fields. */
6500 nr_printable_breakpoints = 0;
6501 ALL_BREAKPOINTS (b)
6502 {
6503 /* If we have a filter, only list the breakpoints it accepts. */
6504 if (filter && !filter (b))
6505 continue;
6506
6507 /* If we have an "args" string, it is a list of breakpoints to
6508 accept. Skip the others. */
6509 if (args != NULL && *args != '\0')
6510 {
6511 if (allflag && parse_and_eval_long (args) != b->number)
6512 continue;
6513 if (!allflag && !number_is_in_list (args, b->number))
6514 continue;
6515 }
6516
6517 if (allflag || user_breakpoint_p (b))
6518 {
6519 int addr_bit, type_len;
6520
6521 addr_bit = breakpoint_address_bits (b);
6522 if (addr_bit > print_address_bits)
6523 print_address_bits = addr_bit;
6524
6525 type_len = strlen (bptype_string (b->type));
6526 if (type_len > print_type_col_width)
6527 print_type_col_width = type_len;
6528
6529 nr_printable_breakpoints++;
6530 }
6531 }
6532
6533 {
6534 ui_out_emit_table table_emitter (uiout,
6535 opts.addressprint ? 6 : 5,
6536 nr_printable_breakpoints,
6537 "BreakpointTable");
6538
6539 if (nr_printable_breakpoints > 0)
6540 annotate_breakpoints_headers ();
6541 if (nr_printable_breakpoints > 0)
6542 annotate_field (0);
6543 uiout->table_header (7, ui_left, "number", "Num"); /* 1 */
6544 if (nr_printable_breakpoints > 0)
6545 annotate_field (1);
6546 uiout->table_header (print_type_col_width, ui_left, "type", "Type"); /* 2 */
6547 if (nr_printable_breakpoints > 0)
6548 annotate_field (2);
6549 uiout->table_header (4, ui_left, "disp", "Disp"); /* 3 */
6550 if (nr_printable_breakpoints > 0)
6551 annotate_field (3);
6552 uiout->table_header (3, ui_left, "enabled", "Enb"); /* 4 */
6553 if (opts.addressprint)
6554 {
6555 if (nr_printable_breakpoints > 0)
6556 annotate_field (4);
6557 if (print_address_bits <= 32)
6558 uiout->table_header (10, ui_left, "addr", "Address"); /* 5 */
6559 else
6560 uiout->table_header (18, ui_left, "addr", "Address"); /* 5 */
6561 }
6562 if (nr_printable_breakpoints > 0)
6563 annotate_field (5);
6564 uiout->table_header (40, ui_noalign, "what", "What"); /* 6 */
6565 uiout->table_body ();
6566 if (nr_printable_breakpoints > 0)
6567 annotate_breakpoints_table ();
6568
6569 ALL_BREAKPOINTS (b)
6570 {
6571 QUIT;
6572 /* If we have a filter, only list the breakpoints it accepts. */
6573 if (filter && !filter (b))
6574 continue;
6575
6576 /* If we have an "args" string, it is a list of breakpoints to
6577 accept. Skip the others. */
6578
6579 if (args != NULL && *args != '\0')
6580 {
6581 if (allflag) /* maintenance info breakpoint */
6582 {
6583 if (parse_and_eval_long (args) != b->number)
6584 continue;
6585 }
6586 else /* all others */
6587 {
6588 if (!number_is_in_list (args, b->number))
6589 continue;
6590 }
6591 }
6592 /* We only print out user settable breakpoints unless the
6593 allflag is set. */
6594 if (allflag || user_breakpoint_p (b))
6595 print_one_breakpoint (b, &last_loc, allflag);
6596 }
6597 }
6598
6599 if (nr_printable_breakpoints == 0)
6600 {
6601 /* If there's a filter, let the caller decide how to report
6602 empty list. */
6603 if (!filter)
6604 {
6605 if (args == NULL || *args == '\0')
6606 uiout->message ("No breakpoints or watchpoints.\n");
6607 else
6608 uiout->message ("No breakpoint or watchpoint matching '%s'.\n",
6609 args);
6610 }
6611 }
6612 else
6613 {
6614 if (last_loc && !server_command)
6615 set_next_address (last_loc->gdbarch, last_loc->address);
6616 }
6617
6618 /* FIXME? Should this be moved up so that it is only called when
6619 there have been breakpoints? */
6620 annotate_breakpoints_table_end ();
6621
6622 return nr_printable_breakpoints;
6623 }
6624
6625 /* Display the value of default-collect in a way that is generally
6626 compatible with the breakpoint list. */
6627
6628 static void
6629 default_collect_info (void)
6630 {
6631 struct ui_out *uiout = current_uiout;
6632
6633 /* If it has no value (which is frequently the case), say nothing; a
6634 message like "No default-collect." gets in user's face when it's
6635 not wanted. */
6636 if (!*default_collect)
6637 return;
6638
6639 /* The following phrase lines up nicely with per-tracepoint collect
6640 actions. */
6641 uiout->text ("default collect ");
6642 uiout->field_string ("default-collect", default_collect);
6643 uiout->text (" \n");
6644 }
6645
6646 static void
6647 info_breakpoints_command (const char *args, int from_tty)
6648 {
6649 breakpoint_1 (args, 0, NULL);
6650
6651 default_collect_info ();
6652 }
6653
6654 static void
6655 info_watchpoints_command (const char *args, int from_tty)
6656 {
6657 int num_printed = breakpoint_1 (args, 0, is_watchpoint);
6658 struct ui_out *uiout = current_uiout;
6659
6660 if (num_printed == 0)
6661 {
6662 if (args == NULL || *args == '\0')
6663 uiout->message ("No watchpoints.\n");
6664 else
6665 uiout->message ("No watchpoint matching '%s'.\n", args);
6666 }
6667 }
6668
6669 static void
6670 maintenance_info_breakpoints (const char *args, int from_tty)
6671 {
6672 breakpoint_1 (args, 1, NULL);
6673
6674 default_collect_info ();
6675 }
6676
6677 static int
6678 breakpoint_has_pc (struct breakpoint *b,
6679 struct program_space *pspace,
6680 CORE_ADDR pc, struct obj_section *section)
6681 {
6682 struct bp_location *bl = b->loc;
6683
6684 for (; bl; bl = bl->next)
6685 {
6686 if (bl->pspace == pspace
6687 && bl->address == pc
6688 && (!overlay_debugging || bl->section == section))
6689 return 1;
6690 }
6691 return 0;
6692 }
6693
6694 /* Print a message describing any user-breakpoints set at PC. This
6695 concerns with logical breakpoints, so we match program spaces, not
6696 address spaces. */
6697
6698 static void
6699 describe_other_breakpoints (struct gdbarch *gdbarch,
6700 struct program_space *pspace, CORE_ADDR pc,
6701 struct obj_section *section, int thread)
6702 {
6703 int others = 0;
6704 struct breakpoint *b;
6705
6706 ALL_BREAKPOINTS (b)
6707 others += (user_breakpoint_p (b)
6708 && breakpoint_has_pc (b, pspace, pc, section));
6709 if (others > 0)
6710 {
6711 if (others == 1)
6712 printf_filtered (_("Note: breakpoint "));
6713 else /* if (others == ???) */
6714 printf_filtered (_("Note: breakpoints "));
6715 ALL_BREAKPOINTS (b)
6716 if (user_breakpoint_p (b) && breakpoint_has_pc (b, pspace, pc, section))
6717 {
6718 others--;
6719 printf_filtered ("%d", b->number);
6720 if (b->thread == -1 && thread != -1)
6721 printf_filtered (" (all threads)");
6722 else if (b->thread != -1)
6723 printf_filtered (" (thread %d)", b->thread);
6724 printf_filtered ("%s%s ",
6725 ((b->enable_state == bp_disabled
6726 || b->enable_state == bp_call_disabled)
6727 ? " (disabled)"
6728 : ""),
6729 (others > 1) ? ","
6730 : ((others == 1) ? " and" : ""));
6731 }
6732 printf_filtered (_("also set at pc "));
6733 fputs_filtered (paddress (gdbarch, pc), gdb_stdout);
6734 printf_filtered (".\n");
6735 }
6736 }
6737 \f
6738
6739 /* Return true iff it is meaningful to use the address member of
6740 BPT locations. For some breakpoint types, the locations' address members
6741 are irrelevant and it makes no sense to attempt to compare them to other
6742 addresses (or use them for any other purpose either).
6743
6744 More specifically, each of the following breakpoint types will
6745 always have a zero valued location address and we don't want to mark
6746 breakpoints of any of these types to be a duplicate of an actual
6747 breakpoint location at address zero:
6748
6749 bp_watchpoint
6750 bp_catchpoint
6751
6752 */
6753
6754 static int
6755 breakpoint_address_is_meaningful (struct breakpoint *bpt)
6756 {
6757 enum bptype type = bpt->type;
6758
6759 return (type != bp_watchpoint && type != bp_catchpoint);
6760 }
6761
6762 /* Assuming LOC1 and LOC2's owners are hardware watchpoints, returns
6763 true if LOC1 and LOC2 represent the same watchpoint location. */
6764
6765 static int
6766 watchpoint_locations_match (struct bp_location *loc1,
6767 struct bp_location *loc2)
6768 {
6769 struct watchpoint *w1 = (struct watchpoint *) loc1->owner;
6770 struct watchpoint *w2 = (struct watchpoint *) loc2->owner;
6771
6772 /* Both of them must exist. */
6773 gdb_assert (w1 != NULL);
6774 gdb_assert (w2 != NULL);
6775
6776 /* If the target can evaluate the condition expression in hardware,
6777 then we we need to insert both watchpoints even if they are at
6778 the same place. Otherwise the watchpoint will only trigger when
6779 the condition of whichever watchpoint was inserted evaluates to
6780 true, not giving a chance for GDB to check the condition of the
6781 other watchpoint. */
6782 if ((w1->cond_exp
6783 && target_can_accel_watchpoint_condition (loc1->address,
6784 loc1->length,
6785 loc1->watchpoint_type,
6786 w1->cond_exp.get ()))
6787 || (w2->cond_exp
6788 && target_can_accel_watchpoint_condition (loc2->address,
6789 loc2->length,
6790 loc2->watchpoint_type,
6791 w2->cond_exp.get ())))
6792 return 0;
6793
6794 /* Note that this checks the owner's type, not the location's. In
6795 case the target does not support read watchpoints, but does
6796 support access watchpoints, we'll have bp_read_watchpoint
6797 watchpoints with hw_access locations. Those should be considered
6798 duplicates of hw_read locations. The hw_read locations will
6799 become hw_access locations later. */
6800 return (loc1->owner->type == loc2->owner->type
6801 && loc1->pspace->aspace == loc2->pspace->aspace
6802 && loc1->address == loc2->address
6803 && loc1->length == loc2->length);
6804 }
6805
6806 /* See breakpoint.h. */
6807
6808 int
6809 breakpoint_address_match (const address_space *aspace1, CORE_ADDR addr1,
6810 const address_space *aspace2, CORE_ADDR addr2)
6811 {
6812 return ((gdbarch_has_global_breakpoints (target_gdbarch ())
6813 || aspace1 == aspace2)
6814 && addr1 == addr2);
6815 }
6816
6817 /* Returns true if {ASPACE2,ADDR2} falls within the range determined by
6818 {ASPACE1,ADDR1,LEN1}. In most targets, this can only be true if ASPACE1
6819 matches ASPACE2. On targets that have global breakpoints, the address
6820 space doesn't really matter. */
6821
6822 static int
6823 breakpoint_address_match_range (const address_space *aspace1,
6824 CORE_ADDR addr1,
6825 int len1, const address_space *aspace2,
6826 CORE_ADDR addr2)
6827 {
6828 return ((gdbarch_has_global_breakpoints (target_gdbarch ())
6829 || aspace1 == aspace2)
6830 && addr2 >= addr1 && addr2 < addr1 + len1);
6831 }
6832
6833 /* Returns true if {ASPACE,ADDR} matches the breakpoint BL. BL may be
6834 a ranged breakpoint. In most targets, a match happens only if ASPACE
6835 matches the breakpoint's address space. On targets that have global
6836 breakpoints, the address space doesn't really matter. */
6837
6838 static int
6839 breakpoint_location_address_match (struct bp_location *bl,
6840 const address_space *aspace,
6841 CORE_ADDR addr)
6842 {
6843 return (breakpoint_address_match (bl->pspace->aspace, bl->address,
6844 aspace, addr)
6845 || (bl->length
6846 && breakpoint_address_match_range (bl->pspace->aspace,
6847 bl->address, bl->length,
6848 aspace, addr)));
6849 }
6850
6851 /* Returns true if the [ADDR,ADDR+LEN) range in ASPACE overlaps
6852 breakpoint BL. BL may be a ranged breakpoint. In most targets, a
6853 match happens only if ASPACE matches the breakpoint's address
6854 space. On targets that have global breakpoints, the address space
6855 doesn't really matter. */
6856
6857 static int
6858 breakpoint_location_address_range_overlap (struct bp_location *bl,
6859 const address_space *aspace,
6860 CORE_ADDR addr, int len)
6861 {
6862 if (gdbarch_has_global_breakpoints (target_gdbarch ())
6863 || bl->pspace->aspace == aspace)
6864 {
6865 int bl_len = bl->length != 0 ? bl->length : 1;
6866
6867 if (mem_ranges_overlap (addr, len, bl->address, bl_len))
6868 return 1;
6869 }
6870 return 0;
6871 }
6872
6873 /* If LOC1 and LOC2's owners are not tracepoints, returns false directly.
6874 Then, if LOC1 and LOC2 represent the same tracepoint location, returns
6875 true, otherwise returns false. */
6876
6877 static int
6878 tracepoint_locations_match (struct bp_location *loc1,
6879 struct bp_location *loc2)
6880 {
6881 if (is_tracepoint (loc1->owner) && is_tracepoint (loc2->owner))
6882 /* Since tracepoint locations are never duplicated with others', tracepoint
6883 locations at the same address of different tracepoints are regarded as
6884 different locations. */
6885 return (loc1->address == loc2->address && loc1->owner == loc2->owner);
6886 else
6887 return 0;
6888 }
6889
6890 /* Assuming LOC1 and LOC2's types' have meaningful target addresses
6891 (breakpoint_address_is_meaningful), returns true if LOC1 and LOC2
6892 represent the same location. */
6893
6894 static int
6895 breakpoint_locations_match (struct bp_location *loc1,
6896 struct bp_location *loc2)
6897 {
6898 int hw_point1, hw_point2;
6899
6900 /* Both of them must not be in moribund_locations. */
6901 gdb_assert (loc1->owner != NULL);
6902 gdb_assert (loc2->owner != NULL);
6903
6904 hw_point1 = is_hardware_watchpoint (loc1->owner);
6905 hw_point2 = is_hardware_watchpoint (loc2->owner);
6906
6907 if (hw_point1 != hw_point2)
6908 return 0;
6909 else if (hw_point1)
6910 return watchpoint_locations_match (loc1, loc2);
6911 else if (is_tracepoint (loc1->owner) || is_tracepoint (loc2->owner))
6912 return tracepoint_locations_match (loc1, loc2);
6913 else
6914 /* We compare bp_location.length in order to cover ranged breakpoints. */
6915 return (breakpoint_address_match (loc1->pspace->aspace, loc1->address,
6916 loc2->pspace->aspace, loc2->address)
6917 && loc1->length == loc2->length);
6918 }
6919
6920 static void
6921 breakpoint_adjustment_warning (CORE_ADDR from_addr, CORE_ADDR to_addr,
6922 int bnum, int have_bnum)
6923 {
6924 /* The longest string possibly returned by hex_string_custom
6925 is 50 chars. These must be at least that big for safety. */
6926 char astr1[64];
6927 char astr2[64];
6928
6929 strcpy (astr1, hex_string_custom ((unsigned long) from_addr, 8));
6930 strcpy (astr2, hex_string_custom ((unsigned long) to_addr, 8));
6931 if (have_bnum)
6932 warning (_("Breakpoint %d address previously adjusted from %s to %s."),
6933 bnum, astr1, astr2);
6934 else
6935 warning (_("Breakpoint address adjusted from %s to %s."), astr1, astr2);
6936 }
6937
6938 /* Adjust a breakpoint's address to account for architectural
6939 constraints on breakpoint placement. Return the adjusted address.
6940 Note: Very few targets require this kind of adjustment. For most
6941 targets, this function is simply the identity function. */
6942
6943 static CORE_ADDR
6944 adjust_breakpoint_address (struct gdbarch *gdbarch,
6945 CORE_ADDR bpaddr, enum bptype bptype)
6946 {
6947 if (bptype == bp_watchpoint
6948 || bptype == bp_hardware_watchpoint
6949 || bptype == bp_read_watchpoint
6950 || bptype == bp_access_watchpoint
6951 || bptype == bp_catchpoint)
6952 {
6953 /* Watchpoints and the various bp_catch_* eventpoints should not
6954 have their addresses modified. */
6955 return bpaddr;
6956 }
6957 else if (bptype == bp_single_step)
6958 {
6959 /* Single-step breakpoints should not have their addresses
6960 modified. If there's any architectural constrain that
6961 applies to this address, then it should have already been
6962 taken into account when the breakpoint was created in the
6963 first place. If we didn't do this, stepping through e.g.,
6964 Thumb-2 IT blocks would break. */
6965 return bpaddr;
6966 }
6967 else
6968 {
6969 CORE_ADDR adjusted_bpaddr = bpaddr;
6970
6971 if (gdbarch_adjust_breakpoint_address_p (gdbarch))
6972 {
6973 /* Some targets have architectural constraints on the placement
6974 of breakpoint instructions. Obtain the adjusted address. */
6975 adjusted_bpaddr = gdbarch_adjust_breakpoint_address (gdbarch, bpaddr);
6976 }
6977
6978 adjusted_bpaddr = address_significant (gdbarch, adjusted_bpaddr);
6979
6980 /* An adjusted breakpoint address can significantly alter
6981 a user's expectations. Print a warning if an adjustment
6982 is required. */
6983 if (adjusted_bpaddr != bpaddr)
6984 breakpoint_adjustment_warning (bpaddr, adjusted_bpaddr, 0, 0);
6985
6986 return adjusted_bpaddr;
6987 }
6988 }
6989
6990 bp_location::bp_location (const bp_location_ops *ops, breakpoint *owner)
6991 {
6992 bp_location *loc = this;
6993
6994 gdb_assert (ops != NULL);
6995
6996 loc->ops = ops;
6997 loc->owner = owner;
6998 loc->cond_bytecode = NULL;
6999 loc->shlib_disabled = 0;
7000 loc->enabled = 1;
7001
7002 switch (owner->type)
7003 {
7004 case bp_breakpoint:
7005 case bp_single_step:
7006 case bp_until:
7007 case bp_finish:
7008 case bp_longjmp:
7009 case bp_longjmp_resume:
7010 case bp_longjmp_call_dummy:
7011 case bp_exception:
7012 case bp_exception_resume:
7013 case bp_step_resume:
7014 case bp_hp_step_resume:
7015 case bp_watchpoint_scope:
7016 case bp_call_dummy:
7017 case bp_std_terminate:
7018 case bp_shlib_event:
7019 case bp_thread_event:
7020 case bp_overlay_event:
7021 case bp_jit_event:
7022 case bp_longjmp_master:
7023 case bp_std_terminate_master:
7024 case bp_exception_master:
7025 case bp_gnu_ifunc_resolver:
7026 case bp_gnu_ifunc_resolver_return:
7027 case bp_dprintf:
7028 loc->loc_type = bp_loc_software_breakpoint;
7029 mark_breakpoint_location_modified (loc);
7030 break;
7031 case bp_hardware_breakpoint:
7032 loc->loc_type = bp_loc_hardware_breakpoint;
7033 mark_breakpoint_location_modified (loc);
7034 break;
7035 case bp_hardware_watchpoint:
7036 case bp_read_watchpoint:
7037 case bp_access_watchpoint:
7038 loc->loc_type = bp_loc_hardware_watchpoint;
7039 break;
7040 case bp_watchpoint:
7041 case bp_catchpoint:
7042 case bp_tracepoint:
7043 case bp_fast_tracepoint:
7044 case bp_static_tracepoint:
7045 loc->loc_type = bp_loc_other;
7046 break;
7047 default:
7048 internal_error (__FILE__, __LINE__, _("unknown breakpoint type"));
7049 }
7050
7051 loc->refc = 1;
7052 }
7053
7054 /* Allocate a struct bp_location. */
7055
7056 static struct bp_location *
7057 allocate_bp_location (struct breakpoint *bpt)
7058 {
7059 return bpt->ops->allocate_location (bpt);
7060 }
7061
7062 static void
7063 free_bp_location (struct bp_location *loc)
7064 {
7065 loc->ops->dtor (loc);
7066 delete loc;
7067 }
7068
7069 /* Increment reference count. */
7070
7071 static void
7072 incref_bp_location (struct bp_location *bl)
7073 {
7074 ++bl->refc;
7075 }
7076
7077 /* Decrement reference count. If the reference count reaches 0,
7078 destroy the bp_location. Sets *BLP to NULL. */
7079
7080 static void
7081 decref_bp_location (struct bp_location **blp)
7082 {
7083 gdb_assert ((*blp)->refc > 0);
7084
7085 if (--(*blp)->refc == 0)
7086 free_bp_location (*blp);
7087 *blp = NULL;
7088 }
7089
7090 /* Add breakpoint B at the end of the global breakpoint chain. */
7091
7092 static breakpoint *
7093 add_to_breakpoint_chain (std::unique_ptr<breakpoint> &&b)
7094 {
7095 struct breakpoint *b1;
7096 struct breakpoint *result = b.get ();
7097
7098 /* Add this breakpoint to the end of the chain so that a list of
7099 breakpoints will come out in order of increasing numbers. */
7100
7101 b1 = breakpoint_chain;
7102 if (b1 == 0)
7103 breakpoint_chain = b.release ();
7104 else
7105 {
7106 while (b1->next)
7107 b1 = b1->next;
7108 b1->next = b.release ();
7109 }
7110
7111 return result;
7112 }
7113
7114 /* Initializes breakpoint B with type BPTYPE and no locations yet. */
7115
7116 static void
7117 init_raw_breakpoint_without_location (struct breakpoint *b,
7118 struct gdbarch *gdbarch,
7119 enum bptype bptype,
7120 const struct breakpoint_ops *ops)
7121 {
7122 gdb_assert (ops != NULL);
7123
7124 b->ops = ops;
7125 b->type = bptype;
7126 b->gdbarch = gdbarch;
7127 b->language = current_language->la_language;
7128 b->input_radix = input_radix;
7129 b->related_breakpoint = b;
7130 }
7131
7132 /* Helper to set_raw_breakpoint below. Creates a breakpoint
7133 that has type BPTYPE and has no locations as yet. */
7134
7135 static struct breakpoint *
7136 set_raw_breakpoint_without_location (struct gdbarch *gdbarch,
7137 enum bptype bptype,
7138 const struct breakpoint_ops *ops)
7139 {
7140 std::unique_ptr<breakpoint> b = new_breakpoint_from_type (bptype);
7141
7142 init_raw_breakpoint_without_location (b.get (), gdbarch, bptype, ops);
7143 return add_to_breakpoint_chain (std::move (b));
7144 }
7145
7146 /* Initialize loc->function_name. EXPLICIT_LOC says no indirect function
7147 resolutions should be made as the user specified the location explicitly
7148 enough. */
7149
7150 static void
7151 set_breakpoint_location_function (struct bp_location *loc, int explicit_loc)
7152 {
7153 gdb_assert (loc->owner != NULL);
7154
7155 if (loc->owner->type == bp_breakpoint
7156 || loc->owner->type == bp_hardware_breakpoint
7157 || is_tracepoint (loc->owner))
7158 {
7159 const char *function_name;
7160
7161 if (loc->msymbol != NULL
7162 && MSYMBOL_TYPE (loc->msymbol) == mst_text_gnu_ifunc
7163 && !explicit_loc)
7164 {
7165 struct breakpoint *b = loc->owner;
7166
7167 function_name = MSYMBOL_LINKAGE_NAME (loc->msymbol);
7168
7169 if (b->type == bp_breakpoint && b->loc == loc
7170 && loc->next == NULL && b->related_breakpoint == b)
7171 {
7172 /* Create only the whole new breakpoint of this type but do not
7173 mess more complicated breakpoints with multiple locations. */
7174 b->type = bp_gnu_ifunc_resolver;
7175 /* Remember the resolver's address for use by the return
7176 breakpoint. */
7177 loc->related_address = loc->address;
7178 }
7179 }
7180 else
7181 find_pc_partial_function (loc->address, &function_name, NULL, NULL);
7182
7183 if (function_name)
7184 loc->function_name = xstrdup (function_name);
7185 }
7186 }
7187
7188 /* Attempt to determine architecture of location identified by SAL. */
7189 struct gdbarch *
7190 get_sal_arch (struct symtab_and_line sal)
7191 {
7192 if (sal.section)
7193 return get_objfile_arch (sal.section->objfile);
7194 if (sal.symtab)
7195 return get_objfile_arch (SYMTAB_OBJFILE (sal.symtab));
7196
7197 return NULL;
7198 }
7199
7200 /* Low level routine for partially initializing a breakpoint of type
7201 BPTYPE. The newly created breakpoint's address, section, source
7202 file name, and line number are provided by SAL.
7203
7204 It is expected that the caller will complete the initialization of
7205 the newly created breakpoint struct as well as output any status
7206 information regarding the creation of a new breakpoint. */
7207
7208 static void
7209 init_raw_breakpoint (struct breakpoint *b, struct gdbarch *gdbarch,
7210 struct symtab_and_line sal, enum bptype bptype,
7211 const struct breakpoint_ops *ops)
7212 {
7213 init_raw_breakpoint_without_location (b, gdbarch, bptype, ops);
7214
7215 add_location_to_breakpoint (b, &sal);
7216
7217 if (bptype != bp_catchpoint)
7218 gdb_assert (sal.pspace != NULL);
7219
7220 /* Store the program space that was used to set the breakpoint,
7221 except for ordinary breakpoints, which are independent of the
7222 program space. */
7223 if (bptype != bp_breakpoint && bptype != bp_hardware_breakpoint)
7224 b->pspace = sal.pspace;
7225 }
7226
7227 /* set_raw_breakpoint is a low level routine for allocating and
7228 partially initializing a breakpoint of type BPTYPE. The newly
7229 created breakpoint's address, section, source file name, and line
7230 number are provided by SAL. The newly created and partially
7231 initialized breakpoint is added to the breakpoint chain and
7232 is also returned as the value of this function.
7233
7234 It is expected that the caller will complete the initialization of
7235 the newly created breakpoint struct as well as output any status
7236 information regarding the creation of a new breakpoint. In
7237 particular, set_raw_breakpoint does NOT set the breakpoint
7238 number! Care should be taken to not allow an error to occur
7239 prior to completing the initialization of the breakpoint. If this
7240 should happen, a bogus breakpoint will be left on the chain. */
7241
7242 struct breakpoint *
7243 set_raw_breakpoint (struct gdbarch *gdbarch,
7244 struct symtab_and_line sal, enum bptype bptype,
7245 const struct breakpoint_ops *ops)
7246 {
7247 std::unique_ptr<breakpoint> b = new_breakpoint_from_type (bptype);
7248
7249 init_raw_breakpoint (b.get (), gdbarch, sal, bptype, ops);
7250 return add_to_breakpoint_chain (std::move (b));
7251 }
7252
7253 /* Call this routine when stepping and nexting to enable a breakpoint
7254 if we do a longjmp() or 'throw' in TP. FRAME is the frame which
7255 initiated the operation. */
7256
7257 void
7258 set_longjmp_breakpoint (struct thread_info *tp, struct frame_id frame)
7259 {
7260 struct breakpoint *b, *b_tmp;
7261 int thread = tp->global_num;
7262
7263 /* To avoid having to rescan all objfile symbols at every step,
7264 we maintain a list of continually-inserted but always disabled
7265 longjmp "master" breakpoints. Here, we simply create momentary
7266 clones of those and enable them for the requested thread. */
7267 ALL_BREAKPOINTS_SAFE (b, b_tmp)
7268 if (b->pspace == current_program_space
7269 && (b->type == bp_longjmp_master
7270 || b->type == bp_exception_master))
7271 {
7272 enum bptype type = b->type == bp_longjmp_master ? bp_longjmp : bp_exception;
7273 struct breakpoint *clone;
7274
7275 /* longjmp_breakpoint_ops ensures INITIATING_FRAME is cleared again
7276 after their removal. */
7277 clone = momentary_breakpoint_from_master (b, type,
7278 &momentary_breakpoint_ops, 1);
7279 clone->thread = thread;
7280 }
7281
7282 tp->initiating_frame = frame;
7283 }
7284
7285 /* Delete all longjmp breakpoints from THREAD. */
7286 void
7287 delete_longjmp_breakpoint (int thread)
7288 {
7289 struct breakpoint *b, *b_tmp;
7290
7291 ALL_BREAKPOINTS_SAFE (b, b_tmp)
7292 if (b->type == bp_longjmp || b->type == bp_exception)
7293 {
7294 if (b->thread == thread)
7295 delete_breakpoint (b);
7296 }
7297 }
7298
7299 void
7300 delete_longjmp_breakpoint_at_next_stop (int thread)
7301 {
7302 struct breakpoint *b, *b_tmp;
7303
7304 ALL_BREAKPOINTS_SAFE (b, b_tmp)
7305 if (b->type == bp_longjmp || b->type == bp_exception)
7306 {
7307 if (b->thread == thread)
7308 b->disposition = disp_del_at_next_stop;
7309 }
7310 }
7311
7312 /* Place breakpoints of type bp_longjmp_call_dummy to catch longjmp for
7313 INFERIOR_PTID thread. Chain them all by RELATED_BREAKPOINT and return
7314 pointer to any of them. Return NULL if this system cannot place longjmp
7315 breakpoints. */
7316
7317 struct breakpoint *
7318 set_longjmp_breakpoint_for_call_dummy (void)
7319 {
7320 struct breakpoint *b, *retval = NULL;
7321
7322 ALL_BREAKPOINTS (b)
7323 if (b->pspace == current_program_space && b->type == bp_longjmp_master)
7324 {
7325 struct breakpoint *new_b;
7326
7327 new_b = momentary_breakpoint_from_master (b, bp_longjmp_call_dummy,
7328 &momentary_breakpoint_ops,
7329 1);
7330 new_b->thread = ptid_to_global_thread_id (inferior_ptid);
7331
7332 /* Link NEW_B into the chain of RETVAL breakpoints. */
7333
7334 gdb_assert (new_b->related_breakpoint == new_b);
7335 if (retval == NULL)
7336 retval = new_b;
7337 new_b->related_breakpoint = retval;
7338 while (retval->related_breakpoint != new_b->related_breakpoint)
7339 retval = retval->related_breakpoint;
7340 retval->related_breakpoint = new_b;
7341 }
7342
7343 return retval;
7344 }
7345
7346 /* Verify all existing dummy frames and their associated breakpoints for
7347 TP. Remove those which can no longer be found in the current frame
7348 stack.
7349
7350 You should call this function only at places where it is safe to currently
7351 unwind the whole stack. Failed stack unwind would discard live dummy
7352 frames. */
7353
7354 void
7355 check_longjmp_breakpoint_for_call_dummy (struct thread_info *tp)
7356 {
7357 struct breakpoint *b, *b_tmp;
7358
7359 ALL_BREAKPOINTS_SAFE (b, b_tmp)
7360 if (b->type == bp_longjmp_call_dummy && b->thread == tp->global_num)
7361 {
7362 struct breakpoint *dummy_b = b->related_breakpoint;
7363
7364 while (dummy_b != b && dummy_b->type != bp_call_dummy)
7365 dummy_b = dummy_b->related_breakpoint;
7366 if (dummy_b->type != bp_call_dummy
7367 || frame_find_by_id (dummy_b->frame_id) != NULL)
7368 continue;
7369
7370 dummy_frame_discard (dummy_b->frame_id, tp->ptid);
7371
7372 while (b->related_breakpoint != b)
7373 {
7374 if (b_tmp == b->related_breakpoint)
7375 b_tmp = b->related_breakpoint->next;
7376 delete_breakpoint (b->related_breakpoint);
7377 }
7378 delete_breakpoint (b);
7379 }
7380 }
7381
7382 void
7383 enable_overlay_breakpoints (void)
7384 {
7385 struct breakpoint *b;
7386
7387 ALL_BREAKPOINTS (b)
7388 if (b->type == bp_overlay_event)
7389 {
7390 b->enable_state = bp_enabled;
7391 update_global_location_list (UGLL_MAY_INSERT);
7392 overlay_events_enabled = 1;
7393 }
7394 }
7395
7396 void
7397 disable_overlay_breakpoints (void)
7398 {
7399 struct breakpoint *b;
7400
7401 ALL_BREAKPOINTS (b)
7402 if (b->type == bp_overlay_event)
7403 {
7404 b->enable_state = bp_disabled;
7405 update_global_location_list (UGLL_DONT_INSERT);
7406 overlay_events_enabled = 0;
7407 }
7408 }
7409
7410 /* Set an active std::terminate breakpoint for each std::terminate
7411 master breakpoint. */
7412 void
7413 set_std_terminate_breakpoint (void)
7414 {
7415 struct breakpoint *b, *b_tmp;
7416
7417 ALL_BREAKPOINTS_SAFE (b, b_tmp)
7418 if (b->pspace == current_program_space
7419 && b->type == bp_std_terminate_master)
7420 {
7421 momentary_breakpoint_from_master (b, bp_std_terminate,
7422 &momentary_breakpoint_ops, 1);
7423 }
7424 }
7425
7426 /* Delete all the std::terminate breakpoints. */
7427 void
7428 delete_std_terminate_breakpoint (void)
7429 {
7430 struct breakpoint *b, *b_tmp;
7431
7432 ALL_BREAKPOINTS_SAFE (b, b_tmp)
7433 if (b->type == bp_std_terminate)
7434 delete_breakpoint (b);
7435 }
7436
7437 struct breakpoint *
7438 create_thread_event_breakpoint (struct gdbarch *gdbarch, CORE_ADDR address)
7439 {
7440 struct breakpoint *b;
7441
7442 b = create_internal_breakpoint (gdbarch, address, bp_thread_event,
7443 &internal_breakpoint_ops);
7444
7445 b->enable_state = bp_enabled;
7446 /* location has to be used or breakpoint_re_set will delete me. */
7447 b->location = new_address_location (b->loc->address, NULL, 0);
7448
7449 update_global_location_list_nothrow (UGLL_MAY_INSERT);
7450
7451 return b;
7452 }
7453
7454 struct lang_and_radix
7455 {
7456 enum language lang;
7457 int radix;
7458 };
7459
7460 /* Create a breakpoint for JIT code registration and unregistration. */
7461
7462 struct breakpoint *
7463 create_jit_event_breakpoint (struct gdbarch *gdbarch, CORE_ADDR address)
7464 {
7465 return create_internal_breakpoint (gdbarch, address, bp_jit_event,
7466 &internal_breakpoint_ops);
7467 }
7468
7469 /* Remove JIT code registration and unregistration breakpoint(s). */
7470
7471 void
7472 remove_jit_event_breakpoints (void)
7473 {
7474 struct breakpoint *b, *b_tmp;
7475
7476 ALL_BREAKPOINTS_SAFE (b, b_tmp)
7477 if (b->type == bp_jit_event
7478 && b->loc->pspace == current_program_space)
7479 delete_breakpoint (b);
7480 }
7481
7482 void
7483 remove_solib_event_breakpoints (void)
7484 {
7485 struct breakpoint *b, *b_tmp;
7486
7487 ALL_BREAKPOINTS_SAFE (b, b_tmp)
7488 if (b->type == bp_shlib_event
7489 && b->loc->pspace == current_program_space)
7490 delete_breakpoint (b);
7491 }
7492
7493 /* See breakpoint.h. */
7494
7495 void
7496 remove_solib_event_breakpoints_at_next_stop (void)
7497 {
7498 struct breakpoint *b, *b_tmp;
7499
7500 ALL_BREAKPOINTS_SAFE (b, b_tmp)
7501 if (b->type == bp_shlib_event
7502 && b->loc->pspace == current_program_space)
7503 b->disposition = disp_del_at_next_stop;
7504 }
7505
7506 /* Helper for create_solib_event_breakpoint /
7507 create_and_insert_solib_event_breakpoint. Allows specifying which
7508 INSERT_MODE to pass through to update_global_location_list. */
7509
7510 static struct breakpoint *
7511 create_solib_event_breakpoint_1 (struct gdbarch *gdbarch, CORE_ADDR address,
7512 enum ugll_insert_mode insert_mode)
7513 {
7514 struct breakpoint *b;
7515
7516 b = create_internal_breakpoint (gdbarch, address, bp_shlib_event,
7517 &internal_breakpoint_ops);
7518 update_global_location_list_nothrow (insert_mode);
7519 return b;
7520 }
7521
7522 struct breakpoint *
7523 create_solib_event_breakpoint (struct gdbarch *gdbarch, CORE_ADDR address)
7524 {
7525 return create_solib_event_breakpoint_1 (gdbarch, address, UGLL_MAY_INSERT);
7526 }
7527
7528 /* See breakpoint.h. */
7529
7530 struct breakpoint *
7531 create_and_insert_solib_event_breakpoint (struct gdbarch *gdbarch, CORE_ADDR address)
7532 {
7533 struct breakpoint *b;
7534
7535 /* Explicitly tell update_global_location_list to insert
7536 locations. */
7537 b = create_solib_event_breakpoint_1 (gdbarch, address, UGLL_INSERT);
7538 if (!b->loc->inserted)
7539 {
7540 delete_breakpoint (b);
7541 return NULL;
7542 }
7543 return b;
7544 }
7545
7546 /* Disable any breakpoints that are on code in shared libraries. Only
7547 apply to enabled breakpoints, disabled ones can just stay disabled. */
7548
7549 void
7550 disable_breakpoints_in_shlibs (void)
7551 {
7552 struct bp_location *loc, **locp_tmp;
7553
7554 ALL_BP_LOCATIONS (loc, locp_tmp)
7555 {
7556 /* ALL_BP_LOCATIONS bp_location has LOC->OWNER always non-NULL. */
7557 struct breakpoint *b = loc->owner;
7558
7559 /* We apply the check to all breakpoints, including disabled for
7560 those with loc->duplicate set. This is so that when breakpoint
7561 becomes enabled, or the duplicate is removed, gdb will try to
7562 insert all breakpoints. If we don't set shlib_disabled here,
7563 we'll try to insert those breakpoints and fail. */
7564 if (((b->type == bp_breakpoint)
7565 || (b->type == bp_jit_event)
7566 || (b->type == bp_hardware_breakpoint)
7567 || (is_tracepoint (b)))
7568 && loc->pspace == current_program_space
7569 && !loc->shlib_disabled
7570 && solib_name_from_address (loc->pspace, loc->address)
7571 )
7572 {
7573 loc->shlib_disabled = 1;
7574 }
7575 }
7576 }
7577
7578 /* Disable any breakpoints and tracepoints that are in SOLIB upon
7579 notification of unloaded_shlib. Only apply to enabled breakpoints,
7580 disabled ones can just stay disabled. */
7581
7582 static void
7583 disable_breakpoints_in_unloaded_shlib (struct so_list *solib)
7584 {
7585 struct bp_location *loc, **locp_tmp;
7586 int disabled_shlib_breaks = 0;
7587
7588 ALL_BP_LOCATIONS (loc, locp_tmp)
7589 {
7590 /* ALL_BP_LOCATIONS bp_location has LOC->OWNER always non-NULL. */
7591 struct breakpoint *b = loc->owner;
7592
7593 if (solib->pspace == loc->pspace
7594 && !loc->shlib_disabled
7595 && (((b->type == bp_breakpoint
7596 || b->type == bp_jit_event
7597 || b->type == bp_hardware_breakpoint)
7598 && (loc->loc_type == bp_loc_hardware_breakpoint
7599 || loc->loc_type == bp_loc_software_breakpoint))
7600 || is_tracepoint (b))
7601 && solib_contains_address_p (solib, loc->address))
7602 {
7603 loc->shlib_disabled = 1;
7604 /* At this point, we cannot rely on remove_breakpoint
7605 succeeding so we must mark the breakpoint as not inserted
7606 to prevent future errors occurring in remove_breakpoints. */
7607 loc->inserted = 0;
7608
7609 /* This may cause duplicate notifications for the same breakpoint. */
7610 gdb::observers::breakpoint_modified.notify (b);
7611
7612 if (!disabled_shlib_breaks)
7613 {
7614 target_terminal::ours_for_output ();
7615 warning (_("Temporarily disabling breakpoints "
7616 "for unloaded shared library \"%s\""),
7617 solib->so_name);
7618 }
7619 disabled_shlib_breaks = 1;
7620 }
7621 }
7622 }
7623
7624 /* Disable any breakpoints and tracepoints in OBJFILE upon
7625 notification of free_objfile. Only apply to enabled breakpoints,
7626 disabled ones can just stay disabled. */
7627
7628 static void
7629 disable_breakpoints_in_freed_objfile (struct objfile *objfile)
7630 {
7631 struct breakpoint *b;
7632
7633 if (objfile == NULL)
7634 return;
7635
7636 /* OBJF_SHARED|OBJF_USERLOADED objfiles are dynamic modules manually
7637 managed by the user with add-symbol-file/remove-symbol-file.
7638 Similarly to how breakpoints in shared libraries are handled in
7639 response to "nosharedlibrary", mark breakpoints in such modules
7640 shlib_disabled so they end up uninserted on the next global
7641 location list update. Shared libraries not loaded by the user
7642 aren't handled here -- they're already handled in
7643 disable_breakpoints_in_unloaded_shlib, called by solib.c's
7644 solib_unloaded observer. We skip objfiles that are not
7645 OBJF_SHARED as those aren't considered dynamic objects (e.g. the
7646 main objfile). */
7647 if ((objfile->flags & OBJF_SHARED) == 0
7648 || (objfile->flags & OBJF_USERLOADED) == 0)
7649 return;
7650
7651 ALL_BREAKPOINTS (b)
7652 {
7653 struct bp_location *loc;
7654 int bp_modified = 0;
7655
7656 if (!is_breakpoint (b) && !is_tracepoint (b))
7657 continue;
7658
7659 for (loc = b->loc; loc != NULL; loc = loc->next)
7660 {
7661 CORE_ADDR loc_addr = loc->address;
7662
7663 if (loc->loc_type != bp_loc_hardware_breakpoint
7664 && loc->loc_type != bp_loc_software_breakpoint)
7665 continue;
7666
7667 if (loc->shlib_disabled != 0)
7668 continue;
7669
7670 if (objfile->pspace != loc->pspace)
7671 continue;
7672
7673 if (loc->loc_type != bp_loc_hardware_breakpoint
7674 && loc->loc_type != bp_loc_software_breakpoint)
7675 continue;
7676
7677 if (is_addr_in_objfile (loc_addr, objfile))
7678 {
7679 loc->shlib_disabled = 1;
7680 /* At this point, we don't know whether the object was
7681 unmapped from the inferior or not, so leave the
7682 inserted flag alone. We'll handle failure to
7683 uninsert quietly, in case the object was indeed
7684 unmapped. */
7685
7686 mark_breakpoint_location_modified (loc);
7687
7688 bp_modified = 1;
7689 }
7690 }
7691
7692 if (bp_modified)
7693 gdb::observers::breakpoint_modified.notify (b);
7694 }
7695 }
7696
7697 /* FORK & VFORK catchpoints. */
7698
7699 /* An instance of this type is used to represent a fork or vfork
7700 catchpoint. A breakpoint is really of this type iff its ops pointer points
7701 to CATCH_FORK_BREAKPOINT_OPS. */
7702
7703 struct fork_catchpoint : public breakpoint
7704 {
7705 /* Process id of a child process whose forking triggered this
7706 catchpoint. This field is only valid immediately after this
7707 catchpoint has triggered. */
7708 ptid_t forked_inferior_pid;
7709 };
7710
7711 /* Implement the "insert" breakpoint_ops method for fork
7712 catchpoints. */
7713
7714 static int
7715 insert_catch_fork (struct bp_location *bl)
7716 {
7717 return target_insert_fork_catchpoint (ptid_get_pid (inferior_ptid));
7718 }
7719
7720 /* Implement the "remove" breakpoint_ops method for fork
7721 catchpoints. */
7722
7723 static int
7724 remove_catch_fork (struct bp_location *bl, enum remove_bp_reason reason)
7725 {
7726 return target_remove_fork_catchpoint (ptid_get_pid (inferior_ptid));
7727 }
7728
7729 /* Implement the "breakpoint_hit" breakpoint_ops method for fork
7730 catchpoints. */
7731
7732 static int
7733 breakpoint_hit_catch_fork (const struct bp_location *bl,
7734 const address_space *aspace, CORE_ADDR bp_addr,
7735 const struct target_waitstatus *ws)
7736 {
7737 struct fork_catchpoint *c = (struct fork_catchpoint *) bl->owner;
7738
7739 if (ws->kind != TARGET_WAITKIND_FORKED)
7740 return 0;
7741
7742 c->forked_inferior_pid = ws->value.related_pid;
7743 return 1;
7744 }
7745
7746 /* Implement the "print_it" breakpoint_ops method for fork
7747 catchpoints. */
7748
7749 static enum print_stop_action
7750 print_it_catch_fork (bpstat bs)
7751 {
7752 struct ui_out *uiout = current_uiout;
7753 struct breakpoint *b = bs->breakpoint_at;
7754 struct fork_catchpoint *c = (struct fork_catchpoint *) bs->breakpoint_at;
7755
7756 annotate_catchpoint (b->number);
7757 maybe_print_thread_hit_breakpoint (uiout);
7758 if (b->disposition == disp_del)
7759 uiout->text ("Temporary catchpoint ");
7760 else
7761 uiout->text ("Catchpoint ");
7762 if (uiout->is_mi_like_p ())
7763 {
7764 uiout->field_string ("reason", async_reason_lookup (EXEC_ASYNC_FORK));
7765 uiout->field_string ("disp", bpdisp_text (b->disposition));
7766 }
7767 uiout->field_int ("bkptno", b->number);
7768 uiout->text (" (forked process ");
7769 uiout->field_int ("newpid", ptid_get_pid (c->forked_inferior_pid));
7770 uiout->text ("), ");
7771 return PRINT_SRC_AND_LOC;
7772 }
7773
7774 /* Implement the "print_one" breakpoint_ops method for fork
7775 catchpoints. */
7776
7777 static void
7778 print_one_catch_fork (struct breakpoint *b, struct bp_location **last_loc)
7779 {
7780 struct fork_catchpoint *c = (struct fork_catchpoint *) b;
7781 struct value_print_options opts;
7782 struct ui_out *uiout = current_uiout;
7783
7784 get_user_print_options (&opts);
7785
7786 /* Field 4, the address, is omitted (which makes the columns not
7787 line up too nicely with the headers, but the effect is relatively
7788 readable). */
7789 if (opts.addressprint)
7790 uiout->field_skip ("addr");
7791 annotate_field (5);
7792 uiout->text ("fork");
7793 if (!ptid_equal (c->forked_inferior_pid, null_ptid))
7794 {
7795 uiout->text (", process ");
7796 uiout->field_int ("what", ptid_get_pid (c->forked_inferior_pid));
7797 uiout->spaces (1);
7798 }
7799
7800 if (uiout->is_mi_like_p ())
7801 uiout->field_string ("catch-type", "fork");
7802 }
7803
7804 /* Implement the "print_mention" breakpoint_ops method for fork
7805 catchpoints. */
7806
7807 static void
7808 print_mention_catch_fork (struct breakpoint *b)
7809 {
7810 printf_filtered (_("Catchpoint %d (fork)"), b->number);
7811 }
7812
7813 /* Implement the "print_recreate" breakpoint_ops method for fork
7814 catchpoints. */
7815
7816 static void
7817 print_recreate_catch_fork (struct breakpoint *b, struct ui_file *fp)
7818 {
7819 fprintf_unfiltered (fp, "catch fork");
7820 print_recreate_thread (b, fp);
7821 }
7822
7823 /* The breakpoint_ops structure to be used in fork catchpoints. */
7824
7825 static struct breakpoint_ops catch_fork_breakpoint_ops;
7826
7827 /* Implement the "insert" breakpoint_ops method for vfork
7828 catchpoints. */
7829
7830 static int
7831 insert_catch_vfork (struct bp_location *bl)
7832 {
7833 return target_insert_vfork_catchpoint (ptid_get_pid (inferior_ptid));
7834 }
7835
7836 /* Implement the "remove" breakpoint_ops method for vfork
7837 catchpoints. */
7838
7839 static int
7840 remove_catch_vfork (struct bp_location *bl, enum remove_bp_reason reason)
7841 {
7842 return target_remove_vfork_catchpoint (ptid_get_pid (inferior_ptid));
7843 }
7844
7845 /* Implement the "breakpoint_hit" breakpoint_ops method for vfork
7846 catchpoints. */
7847
7848 static int
7849 breakpoint_hit_catch_vfork (const struct bp_location *bl,
7850 const address_space *aspace, CORE_ADDR bp_addr,
7851 const struct target_waitstatus *ws)
7852 {
7853 struct fork_catchpoint *c = (struct fork_catchpoint *) bl->owner;
7854
7855 if (ws->kind != TARGET_WAITKIND_VFORKED)
7856 return 0;
7857
7858 c->forked_inferior_pid = ws->value.related_pid;
7859 return 1;
7860 }
7861
7862 /* Implement the "print_it" breakpoint_ops method for vfork
7863 catchpoints. */
7864
7865 static enum print_stop_action
7866 print_it_catch_vfork (bpstat bs)
7867 {
7868 struct ui_out *uiout = current_uiout;
7869 struct breakpoint *b = bs->breakpoint_at;
7870 struct fork_catchpoint *c = (struct fork_catchpoint *) b;
7871
7872 annotate_catchpoint (b->number);
7873 maybe_print_thread_hit_breakpoint (uiout);
7874 if (b->disposition == disp_del)
7875 uiout->text ("Temporary catchpoint ");
7876 else
7877 uiout->text ("Catchpoint ");
7878 if (uiout->is_mi_like_p ())
7879 {
7880 uiout->field_string ("reason", async_reason_lookup (EXEC_ASYNC_VFORK));
7881 uiout->field_string ("disp", bpdisp_text (b->disposition));
7882 }
7883 uiout->field_int ("bkptno", b->number);
7884 uiout->text (" (vforked process ");
7885 uiout->field_int ("newpid", ptid_get_pid (c->forked_inferior_pid));
7886 uiout->text ("), ");
7887 return PRINT_SRC_AND_LOC;
7888 }
7889
7890 /* Implement the "print_one" breakpoint_ops method for vfork
7891 catchpoints. */
7892
7893 static void
7894 print_one_catch_vfork (struct breakpoint *b, struct bp_location **last_loc)
7895 {
7896 struct fork_catchpoint *c = (struct fork_catchpoint *) b;
7897 struct value_print_options opts;
7898 struct ui_out *uiout = current_uiout;
7899
7900 get_user_print_options (&opts);
7901 /* Field 4, the address, is omitted (which makes the columns not
7902 line up too nicely with the headers, but the effect is relatively
7903 readable). */
7904 if (opts.addressprint)
7905 uiout->field_skip ("addr");
7906 annotate_field (5);
7907 uiout->text ("vfork");
7908 if (!ptid_equal (c->forked_inferior_pid, null_ptid))
7909 {
7910 uiout->text (", process ");
7911 uiout->field_int ("what", ptid_get_pid (c->forked_inferior_pid));
7912 uiout->spaces (1);
7913 }
7914
7915 if (uiout->is_mi_like_p ())
7916 uiout->field_string ("catch-type", "vfork");
7917 }
7918
7919 /* Implement the "print_mention" breakpoint_ops method for vfork
7920 catchpoints. */
7921
7922 static void
7923 print_mention_catch_vfork (struct breakpoint *b)
7924 {
7925 printf_filtered (_("Catchpoint %d (vfork)"), b->number);
7926 }
7927
7928 /* Implement the "print_recreate" breakpoint_ops method for vfork
7929 catchpoints. */
7930
7931 static void
7932 print_recreate_catch_vfork (struct breakpoint *b, struct ui_file *fp)
7933 {
7934 fprintf_unfiltered (fp, "catch vfork");
7935 print_recreate_thread (b, fp);
7936 }
7937
7938 /* The breakpoint_ops structure to be used in vfork catchpoints. */
7939
7940 static struct breakpoint_ops catch_vfork_breakpoint_ops;
7941
7942 /* An instance of this type is used to represent an solib catchpoint.
7943 A breakpoint is really of this type iff its ops pointer points to
7944 CATCH_SOLIB_BREAKPOINT_OPS. */
7945
7946 struct solib_catchpoint : public breakpoint
7947 {
7948 ~solib_catchpoint () override;
7949
7950 /* True for "catch load", false for "catch unload". */
7951 unsigned char is_load;
7952
7953 /* Regular expression to match, if any. COMPILED is only valid when
7954 REGEX is non-NULL. */
7955 char *regex;
7956 std::unique_ptr<compiled_regex> compiled;
7957 };
7958
7959 solib_catchpoint::~solib_catchpoint ()
7960 {
7961 xfree (this->regex);
7962 }
7963
7964 static int
7965 insert_catch_solib (struct bp_location *ignore)
7966 {
7967 return 0;
7968 }
7969
7970 static int
7971 remove_catch_solib (struct bp_location *ignore, enum remove_bp_reason reason)
7972 {
7973 return 0;
7974 }
7975
7976 static int
7977 breakpoint_hit_catch_solib (const struct bp_location *bl,
7978 const address_space *aspace,
7979 CORE_ADDR bp_addr,
7980 const struct target_waitstatus *ws)
7981 {
7982 struct solib_catchpoint *self = (struct solib_catchpoint *) bl->owner;
7983 struct breakpoint *other;
7984
7985 if (ws->kind == TARGET_WAITKIND_LOADED)
7986 return 1;
7987
7988 ALL_BREAKPOINTS (other)
7989 {
7990 struct bp_location *other_bl;
7991
7992 if (other == bl->owner)
7993 continue;
7994
7995 if (other->type != bp_shlib_event)
7996 continue;
7997
7998 if (self->pspace != NULL && other->pspace != self->pspace)
7999 continue;
8000
8001 for (other_bl = other->loc; other_bl != NULL; other_bl = other_bl->next)
8002 {
8003 if (other->ops->breakpoint_hit (other_bl, aspace, bp_addr, ws))
8004 return 1;
8005 }
8006 }
8007
8008 return 0;
8009 }
8010
8011 static void
8012 check_status_catch_solib (struct bpstats *bs)
8013 {
8014 struct solib_catchpoint *self
8015 = (struct solib_catchpoint *) bs->breakpoint_at;
8016
8017 if (self->is_load)
8018 {
8019 struct so_list *iter;
8020
8021 for (int ix = 0;
8022 VEC_iterate (so_list_ptr, current_program_space->added_solibs,
8023 ix, iter);
8024 ++ix)
8025 {
8026 if (!self->regex
8027 || self->compiled->exec (iter->so_name, 0, NULL, 0) == 0)
8028 return;
8029 }
8030 }
8031 else
8032 {
8033 for (const std::string &iter : current_program_space->deleted_solibs)
8034 {
8035 if (!self->regex
8036 || self->compiled->exec (iter.c_str (), 0, NULL, 0) == 0)
8037 return;
8038 }
8039 }
8040
8041 bs->stop = 0;
8042 bs->print_it = print_it_noop;
8043 }
8044
8045 static enum print_stop_action
8046 print_it_catch_solib (bpstat bs)
8047 {
8048 struct breakpoint *b = bs->breakpoint_at;
8049 struct ui_out *uiout = current_uiout;
8050
8051 annotate_catchpoint (b->number);
8052 maybe_print_thread_hit_breakpoint (uiout);
8053 if (b->disposition == disp_del)
8054 uiout->text ("Temporary catchpoint ");
8055 else
8056 uiout->text ("Catchpoint ");
8057 uiout->field_int ("bkptno", b->number);
8058 uiout->text ("\n");
8059 if (uiout->is_mi_like_p ())
8060 uiout->field_string ("disp", bpdisp_text (b->disposition));
8061 print_solib_event (1);
8062 return PRINT_SRC_AND_LOC;
8063 }
8064
8065 static void
8066 print_one_catch_solib (struct breakpoint *b, struct bp_location **locs)
8067 {
8068 struct solib_catchpoint *self = (struct solib_catchpoint *) b;
8069 struct value_print_options opts;
8070 struct ui_out *uiout = current_uiout;
8071 char *msg;
8072
8073 get_user_print_options (&opts);
8074 /* Field 4, the address, is omitted (which makes the columns not
8075 line up too nicely with the headers, but the effect is relatively
8076 readable). */
8077 if (opts.addressprint)
8078 {
8079 annotate_field (4);
8080 uiout->field_skip ("addr");
8081 }
8082
8083 annotate_field (5);
8084 if (self->is_load)
8085 {
8086 if (self->regex)
8087 msg = xstrprintf (_("load of library matching %s"), self->regex);
8088 else
8089 msg = xstrdup (_("load of library"));
8090 }
8091 else
8092 {
8093 if (self->regex)
8094 msg = xstrprintf (_("unload of library matching %s"), self->regex);
8095 else
8096 msg = xstrdup (_("unload of library"));
8097 }
8098 uiout->field_string ("what", msg);
8099 xfree (msg);
8100
8101 if (uiout->is_mi_like_p ())
8102 uiout->field_string ("catch-type", self->is_load ? "load" : "unload");
8103 }
8104
8105 static void
8106 print_mention_catch_solib (struct breakpoint *b)
8107 {
8108 struct solib_catchpoint *self = (struct solib_catchpoint *) b;
8109
8110 printf_filtered (_("Catchpoint %d (%s)"), b->number,
8111 self->is_load ? "load" : "unload");
8112 }
8113
8114 static void
8115 print_recreate_catch_solib (struct breakpoint *b, struct ui_file *fp)
8116 {
8117 struct solib_catchpoint *self = (struct solib_catchpoint *) b;
8118
8119 fprintf_unfiltered (fp, "%s %s",
8120 b->disposition == disp_del ? "tcatch" : "catch",
8121 self->is_load ? "load" : "unload");
8122 if (self->regex)
8123 fprintf_unfiltered (fp, " %s", self->regex);
8124 fprintf_unfiltered (fp, "\n");
8125 }
8126
8127 static struct breakpoint_ops catch_solib_breakpoint_ops;
8128
8129 /* Shared helper function (MI and CLI) for creating and installing
8130 a shared object event catchpoint. If IS_LOAD is non-zero then
8131 the events to be caught are load events, otherwise they are
8132 unload events. If IS_TEMP is non-zero the catchpoint is a
8133 temporary one. If ENABLED is non-zero the catchpoint is
8134 created in an enabled state. */
8135
8136 void
8137 add_solib_catchpoint (const char *arg, int is_load, int is_temp, int enabled)
8138 {
8139 struct gdbarch *gdbarch = get_current_arch ();
8140
8141 if (!arg)
8142 arg = "";
8143 arg = skip_spaces (arg);
8144
8145 std::unique_ptr<solib_catchpoint> c (new solib_catchpoint ());
8146
8147 if (*arg != '\0')
8148 {
8149 c->compiled.reset (new compiled_regex (arg, REG_NOSUB,
8150 _("Invalid regexp")));
8151 c->regex = xstrdup (arg);
8152 }
8153
8154 c->is_load = is_load;
8155 init_catchpoint (c.get (), gdbarch, is_temp, NULL,
8156 &catch_solib_breakpoint_ops);
8157
8158 c->enable_state = enabled ? bp_enabled : bp_disabled;
8159
8160 install_breakpoint (0, std::move (c), 1);
8161 }
8162
8163 /* A helper function that does all the work for "catch load" and
8164 "catch unload". */
8165
8166 static void
8167 catch_load_or_unload (const char *arg, int from_tty, int is_load,
8168 struct cmd_list_element *command)
8169 {
8170 int tempflag;
8171 const int enabled = 1;
8172
8173 tempflag = get_cmd_context (command) == CATCH_TEMPORARY;
8174
8175 add_solib_catchpoint (arg, is_load, tempflag, enabled);
8176 }
8177
8178 static void
8179 catch_load_command_1 (const char *arg, int from_tty,
8180 struct cmd_list_element *command)
8181 {
8182 catch_load_or_unload (arg, from_tty, 1, command);
8183 }
8184
8185 static void
8186 catch_unload_command_1 (const char *arg, int from_tty,
8187 struct cmd_list_element *command)
8188 {
8189 catch_load_or_unload (arg, from_tty, 0, command);
8190 }
8191
8192 /* Initialize a new breakpoint of the bp_catchpoint kind. If TEMPFLAG
8193 is non-zero, then make the breakpoint temporary. If COND_STRING is
8194 not NULL, then store it in the breakpoint. OPS, if not NULL, is
8195 the breakpoint_ops structure associated to the catchpoint. */
8196
8197 void
8198 init_catchpoint (struct breakpoint *b,
8199 struct gdbarch *gdbarch, int tempflag,
8200 const char *cond_string,
8201 const struct breakpoint_ops *ops)
8202 {
8203 symtab_and_line sal;
8204 sal.pspace = current_program_space;
8205
8206 init_raw_breakpoint (b, gdbarch, sal, bp_catchpoint, ops);
8207
8208 b->cond_string = (cond_string == NULL) ? NULL : xstrdup (cond_string);
8209 b->disposition = tempflag ? disp_del : disp_donttouch;
8210 }
8211
8212 void
8213 install_breakpoint (int internal, std::unique_ptr<breakpoint> &&arg, int update_gll)
8214 {
8215 breakpoint *b = add_to_breakpoint_chain (std::move (arg));
8216 set_breakpoint_number (internal, b);
8217 if (is_tracepoint (b))
8218 set_tracepoint_count (breakpoint_count);
8219 if (!internal)
8220 mention (b);
8221 gdb::observers::breakpoint_created.notify (b);
8222
8223 if (update_gll)
8224 update_global_location_list (UGLL_MAY_INSERT);
8225 }
8226
8227 static void
8228 create_fork_vfork_event_catchpoint (struct gdbarch *gdbarch,
8229 int tempflag, const char *cond_string,
8230 const struct breakpoint_ops *ops)
8231 {
8232 std::unique_ptr<fork_catchpoint> c (new fork_catchpoint ());
8233
8234 init_catchpoint (c.get (), gdbarch, tempflag, cond_string, ops);
8235
8236 c->forked_inferior_pid = null_ptid;
8237
8238 install_breakpoint (0, std::move (c), 1);
8239 }
8240
8241 /* Exec catchpoints. */
8242
8243 /* An instance of this type is used to represent an exec catchpoint.
8244 A breakpoint is really of this type iff its ops pointer points to
8245 CATCH_EXEC_BREAKPOINT_OPS. */
8246
8247 struct exec_catchpoint : public breakpoint
8248 {
8249 ~exec_catchpoint () override;
8250
8251 /* Filename of a program whose exec triggered this catchpoint.
8252 This field is only valid immediately after this catchpoint has
8253 triggered. */
8254 char *exec_pathname;
8255 };
8256
8257 /* Exec catchpoint destructor. */
8258
8259 exec_catchpoint::~exec_catchpoint ()
8260 {
8261 xfree (this->exec_pathname);
8262 }
8263
8264 static int
8265 insert_catch_exec (struct bp_location *bl)
8266 {
8267 return target_insert_exec_catchpoint (ptid_get_pid (inferior_ptid));
8268 }
8269
8270 static int
8271 remove_catch_exec (struct bp_location *bl, enum remove_bp_reason reason)
8272 {
8273 return target_remove_exec_catchpoint (ptid_get_pid (inferior_ptid));
8274 }
8275
8276 static int
8277 breakpoint_hit_catch_exec (const struct bp_location *bl,
8278 const address_space *aspace, CORE_ADDR bp_addr,
8279 const struct target_waitstatus *ws)
8280 {
8281 struct exec_catchpoint *c = (struct exec_catchpoint *) bl->owner;
8282
8283 if (ws->kind != TARGET_WAITKIND_EXECD)
8284 return 0;
8285
8286 c->exec_pathname = xstrdup (ws->value.execd_pathname);
8287 return 1;
8288 }
8289
8290 static enum print_stop_action
8291 print_it_catch_exec (bpstat bs)
8292 {
8293 struct ui_out *uiout = current_uiout;
8294 struct breakpoint *b = bs->breakpoint_at;
8295 struct exec_catchpoint *c = (struct exec_catchpoint *) b;
8296
8297 annotate_catchpoint (b->number);
8298 maybe_print_thread_hit_breakpoint (uiout);
8299 if (b->disposition == disp_del)
8300 uiout->text ("Temporary catchpoint ");
8301 else
8302 uiout->text ("Catchpoint ");
8303 if (uiout->is_mi_like_p ())
8304 {
8305 uiout->field_string ("reason", async_reason_lookup (EXEC_ASYNC_EXEC));
8306 uiout->field_string ("disp", bpdisp_text (b->disposition));
8307 }
8308 uiout->field_int ("bkptno", b->number);
8309 uiout->text (" (exec'd ");
8310 uiout->field_string ("new-exec", c->exec_pathname);
8311 uiout->text ("), ");
8312
8313 return PRINT_SRC_AND_LOC;
8314 }
8315
8316 static void
8317 print_one_catch_exec (struct breakpoint *b, struct bp_location **last_loc)
8318 {
8319 struct exec_catchpoint *c = (struct exec_catchpoint *) b;
8320 struct value_print_options opts;
8321 struct ui_out *uiout = current_uiout;
8322
8323 get_user_print_options (&opts);
8324
8325 /* Field 4, the address, is omitted (which makes the columns
8326 not line up too nicely with the headers, but the effect
8327 is relatively readable). */
8328 if (opts.addressprint)
8329 uiout->field_skip ("addr");
8330 annotate_field (5);
8331 uiout->text ("exec");
8332 if (c->exec_pathname != NULL)
8333 {
8334 uiout->text (", program \"");
8335 uiout->field_string ("what", c->exec_pathname);
8336 uiout->text ("\" ");
8337 }
8338
8339 if (uiout->is_mi_like_p ())
8340 uiout->field_string ("catch-type", "exec");
8341 }
8342
8343 static void
8344 print_mention_catch_exec (struct breakpoint *b)
8345 {
8346 printf_filtered (_("Catchpoint %d (exec)"), b->number);
8347 }
8348
8349 /* Implement the "print_recreate" breakpoint_ops method for exec
8350 catchpoints. */
8351
8352 static void
8353 print_recreate_catch_exec (struct breakpoint *b, struct ui_file *fp)
8354 {
8355 fprintf_unfiltered (fp, "catch exec");
8356 print_recreate_thread (b, fp);
8357 }
8358
8359 static struct breakpoint_ops catch_exec_breakpoint_ops;
8360
8361 static int
8362 hw_breakpoint_used_count (void)
8363 {
8364 int i = 0;
8365 struct breakpoint *b;
8366 struct bp_location *bl;
8367
8368 ALL_BREAKPOINTS (b)
8369 {
8370 if (b->type == bp_hardware_breakpoint && breakpoint_enabled (b))
8371 for (bl = b->loc; bl; bl = bl->next)
8372 {
8373 /* Special types of hardware breakpoints may use more than
8374 one register. */
8375 i += b->ops->resources_needed (bl);
8376 }
8377 }
8378
8379 return i;
8380 }
8381
8382 /* Returns the resources B would use if it were a hardware
8383 watchpoint. */
8384
8385 static int
8386 hw_watchpoint_use_count (struct breakpoint *b)
8387 {
8388 int i = 0;
8389 struct bp_location *bl;
8390
8391 if (!breakpoint_enabled (b))
8392 return 0;
8393
8394 for (bl = b->loc; bl; bl = bl->next)
8395 {
8396 /* Special types of hardware watchpoints may use more than
8397 one register. */
8398 i += b->ops->resources_needed (bl);
8399 }
8400
8401 return i;
8402 }
8403
8404 /* Returns the sum the used resources of all hardware watchpoints of
8405 type TYPE in the breakpoints list. Also returns in OTHER_TYPE_USED
8406 the sum of the used resources of all hardware watchpoints of other
8407 types _not_ TYPE. */
8408
8409 static int
8410 hw_watchpoint_used_count_others (struct breakpoint *except,
8411 enum bptype type, int *other_type_used)
8412 {
8413 int i = 0;
8414 struct breakpoint *b;
8415
8416 *other_type_used = 0;
8417 ALL_BREAKPOINTS (b)
8418 {
8419 if (b == except)
8420 continue;
8421 if (!breakpoint_enabled (b))
8422 continue;
8423
8424 if (b->type == type)
8425 i += hw_watchpoint_use_count (b);
8426 else if (is_hardware_watchpoint (b))
8427 *other_type_used = 1;
8428 }
8429
8430 return i;
8431 }
8432
8433 void
8434 disable_watchpoints_before_interactive_call_start (void)
8435 {
8436 struct breakpoint *b;
8437
8438 ALL_BREAKPOINTS (b)
8439 {
8440 if (is_watchpoint (b) && breakpoint_enabled (b))
8441 {
8442 b->enable_state = bp_call_disabled;
8443 update_global_location_list (UGLL_DONT_INSERT);
8444 }
8445 }
8446 }
8447
8448 void
8449 enable_watchpoints_after_interactive_call_stop (void)
8450 {
8451 struct breakpoint *b;
8452
8453 ALL_BREAKPOINTS (b)
8454 {
8455 if (is_watchpoint (b) && b->enable_state == bp_call_disabled)
8456 {
8457 b->enable_state = bp_enabled;
8458 update_global_location_list (UGLL_MAY_INSERT);
8459 }
8460 }
8461 }
8462
8463 void
8464 disable_breakpoints_before_startup (void)
8465 {
8466 current_program_space->executing_startup = 1;
8467 update_global_location_list (UGLL_DONT_INSERT);
8468 }
8469
8470 void
8471 enable_breakpoints_after_startup (void)
8472 {
8473 current_program_space->executing_startup = 0;
8474 breakpoint_re_set ();
8475 }
8476
8477 /* Create a new single-step breakpoint for thread THREAD, with no
8478 locations. */
8479
8480 static struct breakpoint *
8481 new_single_step_breakpoint (int thread, struct gdbarch *gdbarch)
8482 {
8483 std::unique_ptr<breakpoint> b (new breakpoint ());
8484
8485 init_raw_breakpoint_without_location (b.get (), gdbarch, bp_single_step,
8486 &momentary_breakpoint_ops);
8487
8488 b->disposition = disp_donttouch;
8489 b->frame_id = null_frame_id;
8490
8491 b->thread = thread;
8492 gdb_assert (b->thread != 0);
8493
8494 return add_to_breakpoint_chain (std::move (b));
8495 }
8496
8497 /* Set a momentary breakpoint of type TYPE at address specified by
8498 SAL. If FRAME_ID is valid, the breakpoint is restricted to that
8499 frame. */
8500
8501 breakpoint_up
8502 set_momentary_breakpoint (struct gdbarch *gdbarch, struct symtab_and_line sal,
8503 struct frame_id frame_id, enum bptype type)
8504 {
8505 struct breakpoint *b;
8506
8507 /* If FRAME_ID is valid, it should be a real frame, not an inlined or
8508 tail-called one. */
8509 gdb_assert (!frame_id_artificial_p (frame_id));
8510
8511 b = set_raw_breakpoint (gdbarch, sal, type, &momentary_breakpoint_ops);
8512 b->enable_state = bp_enabled;
8513 b->disposition = disp_donttouch;
8514 b->frame_id = frame_id;
8515
8516 /* If we're debugging a multi-threaded program, then we want
8517 momentary breakpoints to be active in only a single thread of
8518 control. */
8519 if (in_thread_list (inferior_ptid))
8520 b->thread = ptid_to_global_thread_id (inferior_ptid);
8521
8522 update_global_location_list_nothrow (UGLL_MAY_INSERT);
8523
8524 return breakpoint_up (b);
8525 }
8526
8527 /* Make a momentary breakpoint based on the master breakpoint ORIG.
8528 The new breakpoint will have type TYPE, use OPS as its
8529 breakpoint_ops, and will set enabled to LOC_ENABLED. */
8530
8531 static struct breakpoint *
8532 momentary_breakpoint_from_master (struct breakpoint *orig,
8533 enum bptype type,
8534 const struct breakpoint_ops *ops,
8535 int loc_enabled)
8536 {
8537 struct breakpoint *copy;
8538
8539 copy = set_raw_breakpoint_without_location (orig->gdbarch, type, ops);
8540 copy->loc = allocate_bp_location (copy);
8541 set_breakpoint_location_function (copy->loc, 1);
8542
8543 copy->loc->gdbarch = orig->loc->gdbarch;
8544 copy->loc->requested_address = orig->loc->requested_address;
8545 copy->loc->address = orig->loc->address;
8546 copy->loc->section = orig->loc->section;
8547 copy->loc->pspace = orig->loc->pspace;
8548 copy->loc->probe = orig->loc->probe;
8549 copy->loc->line_number = orig->loc->line_number;
8550 copy->loc->symtab = orig->loc->symtab;
8551 copy->loc->enabled = loc_enabled;
8552 copy->frame_id = orig->frame_id;
8553 copy->thread = orig->thread;
8554 copy->pspace = orig->pspace;
8555
8556 copy->enable_state = bp_enabled;
8557 copy->disposition = disp_donttouch;
8558 copy->number = internal_breakpoint_number--;
8559
8560 update_global_location_list_nothrow (UGLL_DONT_INSERT);
8561 return copy;
8562 }
8563
8564 /* Make a deep copy of momentary breakpoint ORIG. Returns NULL if
8565 ORIG is NULL. */
8566
8567 struct breakpoint *
8568 clone_momentary_breakpoint (struct breakpoint *orig)
8569 {
8570 /* If there's nothing to clone, then return nothing. */
8571 if (orig == NULL)
8572 return NULL;
8573
8574 return momentary_breakpoint_from_master (orig, orig->type, orig->ops, 0);
8575 }
8576
8577 breakpoint_up
8578 set_momentary_breakpoint_at_pc (struct gdbarch *gdbarch, CORE_ADDR pc,
8579 enum bptype type)
8580 {
8581 struct symtab_and_line sal;
8582
8583 sal = find_pc_line (pc, 0);
8584 sal.pc = pc;
8585 sal.section = find_pc_overlay (pc);
8586 sal.explicit_pc = 1;
8587
8588 return set_momentary_breakpoint (gdbarch, sal, null_frame_id, type);
8589 }
8590 \f
8591
8592 /* Tell the user we have just set a breakpoint B. */
8593
8594 static void
8595 mention (struct breakpoint *b)
8596 {
8597 b->ops->print_mention (b);
8598 if (current_uiout->is_mi_like_p ())
8599 return;
8600 printf_filtered ("\n");
8601 }
8602 \f
8603
8604 static int bp_loc_is_permanent (struct bp_location *loc);
8605
8606 static struct bp_location *
8607 add_location_to_breakpoint (struct breakpoint *b,
8608 const struct symtab_and_line *sal)
8609 {
8610 struct bp_location *loc, **tmp;
8611 CORE_ADDR adjusted_address;
8612 struct gdbarch *loc_gdbarch = get_sal_arch (*sal);
8613
8614 if (loc_gdbarch == NULL)
8615 loc_gdbarch = b->gdbarch;
8616
8617 /* Adjust the breakpoint's address prior to allocating a location.
8618 Once we call allocate_bp_location(), that mostly uninitialized
8619 location will be placed on the location chain. Adjustment of the
8620 breakpoint may cause target_read_memory() to be called and we do
8621 not want its scan of the location chain to find a breakpoint and
8622 location that's only been partially initialized. */
8623 adjusted_address = adjust_breakpoint_address (loc_gdbarch,
8624 sal->pc, b->type);
8625
8626 /* Sort the locations by their ADDRESS. */
8627 loc = allocate_bp_location (b);
8628 for (tmp = &(b->loc); *tmp != NULL && (*tmp)->address <= adjusted_address;
8629 tmp = &((*tmp)->next))
8630 ;
8631 loc->next = *tmp;
8632 *tmp = loc;
8633
8634 loc->requested_address = sal->pc;
8635 loc->address = adjusted_address;
8636 loc->pspace = sal->pspace;
8637 loc->probe.prob = sal->prob;
8638 loc->probe.objfile = sal->objfile;
8639 gdb_assert (loc->pspace != NULL);
8640 loc->section = sal->section;
8641 loc->gdbarch = loc_gdbarch;
8642 loc->line_number = sal->line;
8643 loc->symtab = sal->symtab;
8644 loc->symbol = sal->symbol;
8645 loc->msymbol = sal->msymbol;
8646 loc->objfile = sal->objfile;
8647
8648 set_breakpoint_location_function (loc,
8649 sal->explicit_pc || sal->explicit_line);
8650
8651 /* While by definition, permanent breakpoints are already present in the
8652 code, we don't mark the location as inserted. Normally one would expect
8653 that GDB could rely on that breakpoint instruction to stop the program,
8654 thus removing the need to insert its own breakpoint, except that executing
8655 the breakpoint instruction can kill the target instead of reporting a
8656 SIGTRAP. E.g., on SPARC, when interrupts are disabled, executing the
8657 instruction resets the CPU, so QEMU 2.0.0 for SPARC correspondingly dies
8658 with "Trap 0x02 while interrupts disabled, Error state". Letting the
8659 breakpoint be inserted normally results in QEMU knowing about the GDB
8660 breakpoint, and thus trap before the breakpoint instruction is executed.
8661 (If GDB later needs to continue execution past the permanent breakpoint,
8662 it manually increments the PC, thus avoiding executing the breakpoint
8663 instruction.) */
8664 if (bp_loc_is_permanent (loc))
8665 loc->permanent = 1;
8666
8667 return loc;
8668 }
8669 \f
8670
8671 /* See breakpoint.h. */
8672
8673 int
8674 program_breakpoint_here_p (struct gdbarch *gdbarch, CORE_ADDR address)
8675 {
8676 int len;
8677 CORE_ADDR addr;
8678 const gdb_byte *bpoint;
8679 gdb_byte *target_mem;
8680
8681 addr = address;
8682 bpoint = gdbarch_breakpoint_from_pc (gdbarch, &addr, &len);
8683
8684 /* Software breakpoints unsupported? */
8685 if (bpoint == NULL)
8686 return 0;
8687
8688 target_mem = (gdb_byte *) alloca (len);
8689
8690 /* Enable the automatic memory restoration from breakpoints while
8691 we read the memory. Otherwise we could say about our temporary
8692 breakpoints they are permanent. */
8693 scoped_restore restore_memory
8694 = make_scoped_restore_show_memory_breakpoints (0);
8695
8696 if (target_read_memory (address, target_mem, len) == 0
8697 && memcmp (target_mem, bpoint, len) == 0)
8698 return 1;
8699
8700 return 0;
8701 }
8702
8703 /* Return 1 if LOC is pointing to a permanent breakpoint,
8704 return 0 otherwise. */
8705
8706 static int
8707 bp_loc_is_permanent (struct bp_location *loc)
8708 {
8709 gdb_assert (loc != NULL);
8710
8711 /* If we have a catchpoint or a watchpoint, just return 0. We should not
8712 attempt to read from the addresses the locations of these breakpoint types
8713 point to. program_breakpoint_here_p, below, will attempt to read
8714 memory. */
8715 if (!breakpoint_address_is_meaningful (loc->owner))
8716 return 0;
8717
8718 scoped_restore_current_pspace_and_thread restore_pspace_thread;
8719 switch_to_program_space_and_thread (loc->pspace);
8720 return program_breakpoint_here_p (loc->gdbarch, loc->address);
8721 }
8722
8723 /* Build a command list for the dprintf corresponding to the current
8724 settings of the dprintf style options. */
8725
8726 static void
8727 update_dprintf_command_list (struct breakpoint *b)
8728 {
8729 char *dprintf_args = b->extra_string;
8730 char *printf_line = NULL;
8731
8732 if (!dprintf_args)
8733 return;
8734
8735 dprintf_args = skip_spaces (dprintf_args);
8736
8737 /* Allow a comma, as it may have terminated a location, but don't
8738 insist on it. */
8739 if (*dprintf_args == ',')
8740 ++dprintf_args;
8741 dprintf_args = skip_spaces (dprintf_args);
8742
8743 if (*dprintf_args != '"')
8744 error (_("Bad format string, missing '\"'."));
8745
8746 if (strcmp (dprintf_style, dprintf_style_gdb) == 0)
8747 printf_line = xstrprintf ("printf %s", dprintf_args);
8748 else if (strcmp (dprintf_style, dprintf_style_call) == 0)
8749 {
8750 if (!dprintf_function)
8751 error (_("No function supplied for dprintf call"));
8752
8753 if (dprintf_channel && strlen (dprintf_channel) > 0)
8754 printf_line = xstrprintf ("call (void) %s (%s,%s)",
8755 dprintf_function,
8756 dprintf_channel,
8757 dprintf_args);
8758 else
8759 printf_line = xstrprintf ("call (void) %s (%s)",
8760 dprintf_function,
8761 dprintf_args);
8762 }
8763 else if (strcmp (dprintf_style, dprintf_style_agent) == 0)
8764 {
8765 if (target_can_run_breakpoint_commands ())
8766 printf_line = xstrprintf ("agent-printf %s", dprintf_args);
8767 else
8768 {
8769 warning (_("Target cannot run dprintf commands, falling back to GDB printf"));
8770 printf_line = xstrprintf ("printf %s", dprintf_args);
8771 }
8772 }
8773 else
8774 internal_error (__FILE__, __LINE__,
8775 _("Invalid dprintf style."));
8776
8777 gdb_assert (printf_line != NULL);
8778 /* Manufacture a printf sequence. */
8779 {
8780 struct command_line *printf_cmd_line = XNEW (struct command_line);
8781
8782 printf_cmd_line->control_type = simple_control;
8783 printf_cmd_line->body_count = 0;
8784 printf_cmd_line->body_list = NULL;
8785 printf_cmd_line->next = NULL;
8786 printf_cmd_line->line = printf_line;
8787
8788 breakpoint_set_commands (b, command_line_up (printf_cmd_line));
8789 }
8790 }
8791
8792 /* Update all dprintf commands, making their command lists reflect
8793 current style settings. */
8794
8795 static void
8796 update_dprintf_commands (const char *args, int from_tty,
8797 struct cmd_list_element *c)
8798 {
8799 struct breakpoint *b;
8800
8801 ALL_BREAKPOINTS (b)
8802 {
8803 if (b->type == bp_dprintf)
8804 update_dprintf_command_list (b);
8805 }
8806 }
8807
8808 /* Create a breakpoint with SAL as location. Use LOCATION
8809 as a description of the location, and COND_STRING
8810 as condition expression. If LOCATION is NULL then create an
8811 "address location" from the address in the SAL. */
8812
8813 static void
8814 init_breakpoint_sal (struct breakpoint *b, struct gdbarch *gdbarch,
8815 gdb::array_view<const symtab_and_line> sals,
8816 event_location_up &&location,
8817 gdb::unique_xmalloc_ptr<char> filter,
8818 gdb::unique_xmalloc_ptr<char> cond_string,
8819 gdb::unique_xmalloc_ptr<char> extra_string,
8820 enum bptype type, enum bpdisp disposition,
8821 int thread, int task, int ignore_count,
8822 const struct breakpoint_ops *ops, int from_tty,
8823 int enabled, int internal, unsigned flags,
8824 int display_canonical)
8825 {
8826 int i;
8827
8828 if (type == bp_hardware_breakpoint)
8829 {
8830 int target_resources_ok;
8831
8832 i = hw_breakpoint_used_count ();
8833 target_resources_ok =
8834 target_can_use_hardware_watchpoint (bp_hardware_breakpoint,
8835 i + 1, 0);
8836 if (target_resources_ok == 0)
8837 error (_("No hardware breakpoint support in the target."));
8838 else if (target_resources_ok < 0)
8839 error (_("Hardware breakpoints used exceeds limit."));
8840 }
8841
8842 gdb_assert (!sals.empty ());
8843
8844 for (const auto &sal : sals)
8845 {
8846 struct bp_location *loc;
8847
8848 if (from_tty)
8849 {
8850 struct gdbarch *loc_gdbarch = get_sal_arch (sal);
8851 if (!loc_gdbarch)
8852 loc_gdbarch = gdbarch;
8853
8854 describe_other_breakpoints (loc_gdbarch,
8855 sal.pspace, sal.pc, sal.section, thread);
8856 }
8857
8858 if (&sal == &sals[0])
8859 {
8860 init_raw_breakpoint (b, gdbarch, sal, type, ops);
8861 b->thread = thread;
8862 b->task = task;
8863
8864 b->cond_string = cond_string.release ();
8865 b->extra_string = extra_string.release ();
8866 b->ignore_count = ignore_count;
8867 b->enable_state = enabled ? bp_enabled : bp_disabled;
8868 b->disposition = disposition;
8869
8870 if ((flags & CREATE_BREAKPOINT_FLAGS_INSERTED) != 0)
8871 b->loc->inserted = 1;
8872
8873 if (type == bp_static_tracepoint)
8874 {
8875 struct tracepoint *t = (struct tracepoint *) b;
8876 struct static_tracepoint_marker marker;
8877
8878 if (strace_marker_p (b))
8879 {
8880 /* We already know the marker exists, otherwise, we
8881 wouldn't see a sal for it. */
8882 const char *p
8883 = &event_location_to_string (b->location.get ())[3];
8884 const char *endp;
8885
8886 p = skip_spaces (p);
8887
8888 endp = skip_to_space (p);
8889
8890 t->static_trace_marker_id.assign (p, endp - p);
8891
8892 printf_filtered (_("Probed static tracepoint "
8893 "marker \"%s\"\n"),
8894 t->static_trace_marker_id.c_str ());
8895 }
8896 else if (target_static_tracepoint_marker_at (sal.pc, &marker))
8897 {
8898 t->static_trace_marker_id = std::move (marker.str_id);
8899
8900 printf_filtered (_("Probed static tracepoint "
8901 "marker \"%s\"\n"),
8902 t->static_trace_marker_id.c_str ());
8903 }
8904 else
8905 warning (_("Couldn't determine the static "
8906 "tracepoint marker to probe"));
8907 }
8908
8909 loc = b->loc;
8910 }
8911 else
8912 {
8913 loc = add_location_to_breakpoint (b, &sal);
8914 if ((flags & CREATE_BREAKPOINT_FLAGS_INSERTED) != 0)
8915 loc->inserted = 1;
8916 }
8917
8918 if (b->cond_string)
8919 {
8920 const char *arg = b->cond_string;
8921
8922 loc->cond = parse_exp_1 (&arg, loc->address,
8923 block_for_pc (loc->address), 0);
8924 if (*arg)
8925 error (_("Garbage '%s' follows condition"), arg);
8926 }
8927
8928 /* Dynamic printf requires and uses additional arguments on the
8929 command line, otherwise it's an error. */
8930 if (type == bp_dprintf)
8931 {
8932 if (b->extra_string)
8933 update_dprintf_command_list (b);
8934 else
8935 error (_("Format string required"));
8936 }
8937 else if (b->extra_string)
8938 error (_("Garbage '%s' at end of command"), b->extra_string);
8939 }
8940
8941 b->display_canonical = display_canonical;
8942 if (location != NULL)
8943 b->location = std::move (location);
8944 else
8945 b->location = new_address_location (b->loc->address, NULL, 0);
8946 b->filter = filter.release ();
8947 }
8948
8949 static void
8950 create_breakpoint_sal (struct gdbarch *gdbarch,
8951 gdb::array_view<const symtab_and_line> sals,
8952 event_location_up &&location,
8953 gdb::unique_xmalloc_ptr<char> filter,
8954 gdb::unique_xmalloc_ptr<char> cond_string,
8955 gdb::unique_xmalloc_ptr<char> extra_string,
8956 enum bptype type, enum bpdisp disposition,
8957 int thread, int task, int ignore_count,
8958 const struct breakpoint_ops *ops, int from_tty,
8959 int enabled, int internal, unsigned flags,
8960 int display_canonical)
8961 {
8962 std::unique_ptr<breakpoint> b = new_breakpoint_from_type (type);
8963
8964 init_breakpoint_sal (b.get (), gdbarch,
8965 sals, std::move (location),
8966 std::move (filter),
8967 std::move (cond_string),
8968 std::move (extra_string),
8969 type, disposition,
8970 thread, task, ignore_count,
8971 ops, from_tty,
8972 enabled, internal, flags,
8973 display_canonical);
8974
8975 install_breakpoint (internal, std::move (b), 0);
8976 }
8977
8978 /* Add SALS.nelts breakpoints to the breakpoint table. For each
8979 SALS.sal[i] breakpoint, include the corresponding ADDR_STRING[i]
8980 value. COND_STRING, if not NULL, specified the condition to be
8981 used for all breakpoints. Essentially the only case where
8982 SALS.nelts is not 1 is when we set a breakpoint on an overloaded
8983 function. In that case, it's still not possible to specify
8984 separate conditions for different overloaded functions, so
8985 we take just a single condition string.
8986
8987 NOTE: If the function succeeds, the caller is expected to cleanup
8988 the arrays ADDR_STRING, COND_STRING, and SALS (but not the
8989 array contents). If the function fails (error() is called), the
8990 caller is expected to cleanups both the ADDR_STRING, COND_STRING,
8991 COND and SALS arrays and each of those arrays contents. */
8992
8993 static void
8994 create_breakpoints_sal (struct gdbarch *gdbarch,
8995 struct linespec_result *canonical,
8996 gdb::unique_xmalloc_ptr<char> cond_string,
8997 gdb::unique_xmalloc_ptr<char> extra_string,
8998 enum bptype type, enum bpdisp disposition,
8999 int thread, int task, int ignore_count,
9000 const struct breakpoint_ops *ops, int from_tty,
9001 int enabled, int internal, unsigned flags)
9002 {
9003 if (canonical->pre_expanded)
9004 gdb_assert (canonical->lsals.size () == 1);
9005
9006 for (const auto &lsal : canonical->lsals)
9007 {
9008 /* Note that 'location' can be NULL in the case of a plain
9009 'break', without arguments. */
9010 event_location_up location
9011 = (canonical->location != NULL
9012 ? copy_event_location (canonical->location.get ()) : NULL);
9013 gdb::unique_xmalloc_ptr<char> filter_string
9014 (lsal.canonical != NULL ? xstrdup (lsal.canonical) : NULL);
9015
9016 create_breakpoint_sal (gdbarch, lsal.sals,
9017 std::move (location),
9018 std::move (filter_string),
9019 std::move (cond_string),
9020 std::move (extra_string),
9021 type, disposition,
9022 thread, task, ignore_count, ops,
9023 from_tty, enabled, internal, flags,
9024 canonical->special_display);
9025 }
9026 }
9027
9028 /* Parse LOCATION which is assumed to be a SAL specification possibly
9029 followed by conditionals. On return, SALS contains an array of SAL
9030 addresses found. LOCATION points to the end of the SAL (for
9031 linespec locations).
9032
9033 The array and the line spec strings are allocated on the heap, it is
9034 the caller's responsibility to free them. */
9035
9036 static void
9037 parse_breakpoint_sals (const struct event_location *location,
9038 struct linespec_result *canonical)
9039 {
9040 struct symtab_and_line cursal;
9041
9042 if (event_location_type (location) == LINESPEC_LOCATION)
9043 {
9044 const char *spec = get_linespec_location (location)->spec_string;
9045
9046 if (spec == NULL)
9047 {
9048 /* The last displayed codepoint, if it's valid, is our default
9049 breakpoint address. */
9050 if (last_displayed_sal_is_valid ())
9051 {
9052 /* Set sal's pspace, pc, symtab, and line to the values
9053 corresponding to the last call to print_frame_info.
9054 Be sure to reinitialize LINE with NOTCURRENT == 0
9055 as the breakpoint line number is inappropriate otherwise.
9056 find_pc_line would adjust PC, re-set it back. */
9057 symtab_and_line sal = get_last_displayed_sal ();
9058 CORE_ADDR pc = sal.pc;
9059
9060 sal = find_pc_line (pc, 0);
9061
9062 /* "break" without arguments is equivalent to "break *PC"
9063 where PC is the last displayed codepoint's address. So
9064 make sure to set sal.explicit_pc to prevent GDB from
9065 trying to expand the list of sals to include all other
9066 instances with the same symtab and line. */
9067 sal.pc = pc;
9068 sal.explicit_pc = 1;
9069
9070 struct linespec_sals lsal;
9071 lsal.sals = {sal};
9072 lsal.canonical = NULL;
9073
9074 canonical->lsals.push_back (std::move (lsal));
9075 return;
9076 }
9077 else
9078 error (_("No default breakpoint address now."));
9079 }
9080 }
9081
9082 /* Force almost all breakpoints to be in terms of the
9083 current_source_symtab (which is decode_line_1's default).
9084 This should produce the results we want almost all of the
9085 time while leaving default_breakpoint_* alone.
9086
9087 ObjC: However, don't match an Objective-C method name which
9088 may have a '+' or '-' succeeded by a '['. */
9089 cursal = get_current_source_symtab_and_line ();
9090 if (last_displayed_sal_is_valid ())
9091 {
9092 const char *spec = NULL;
9093
9094 if (event_location_type (location) == LINESPEC_LOCATION)
9095 spec = get_linespec_location (location)->spec_string;
9096
9097 if (!cursal.symtab
9098 || (spec != NULL
9099 && strchr ("+-", spec[0]) != NULL
9100 && spec[1] != '['))
9101 {
9102 decode_line_full (location, DECODE_LINE_FUNFIRSTLINE, NULL,
9103 get_last_displayed_symtab (),
9104 get_last_displayed_line (),
9105 canonical, NULL, NULL);
9106 return;
9107 }
9108 }
9109
9110 decode_line_full (location, DECODE_LINE_FUNFIRSTLINE, NULL,
9111 cursal.symtab, cursal.line, canonical, NULL, NULL);
9112 }
9113
9114
9115 /* Convert each SAL into a real PC. Verify that the PC can be
9116 inserted as a breakpoint. If it can't throw an error. */
9117
9118 static void
9119 breakpoint_sals_to_pc (std::vector<symtab_and_line> &sals)
9120 {
9121 for (auto &sal : sals)
9122 resolve_sal_pc (&sal);
9123 }
9124
9125 /* Fast tracepoints may have restrictions on valid locations. For
9126 instance, a fast tracepoint using a jump instead of a trap will
9127 likely have to overwrite more bytes than a trap would, and so can
9128 only be placed where the instruction is longer than the jump, or a
9129 multi-instruction sequence does not have a jump into the middle of
9130 it, etc. */
9131
9132 static void
9133 check_fast_tracepoint_sals (struct gdbarch *gdbarch,
9134 gdb::array_view<const symtab_and_line> sals)
9135 {
9136 for (const auto &sal : sals)
9137 {
9138 struct gdbarch *sarch;
9139
9140 sarch = get_sal_arch (sal);
9141 /* We fall back to GDBARCH if there is no architecture
9142 associated with SAL. */
9143 if (sarch == NULL)
9144 sarch = gdbarch;
9145 std::string msg;
9146 if (!gdbarch_fast_tracepoint_valid_at (sarch, sal.pc, &msg))
9147 error (_("May not have a fast tracepoint at %s%s"),
9148 paddress (sarch, sal.pc), msg.c_str ());
9149 }
9150 }
9151
9152 /* Given TOK, a string specification of condition and thread, as
9153 accepted by the 'break' command, extract the condition
9154 string and thread number and set *COND_STRING and *THREAD.
9155 PC identifies the context at which the condition should be parsed.
9156 If no condition is found, *COND_STRING is set to NULL.
9157 If no thread is found, *THREAD is set to -1. */
9158
9159 static void
9160 find_condition_and_thread (const char *tok, CORE_ADDR pc,
9161 char **cond_string, int *thread, int *task,
9162 char **rest)
9163 {
9164 *cond_string = NULL;
9165 *thread = -1;
9166 *task = 0;
9167 *rest = NULL;
9168
9169 while (tok && *tok)
9170 {
9171 const char *end_tok;
9172 int toklen;
9173 const char *cond_start = NULL;
9174 const char *cond_end = NULL;
9175
9176 tok = skip_spaces (tok);
9177
9178 if ((*tok == '"' || *tok == ',') && rest)
9179 {
9180 *rest = savestring (tok, strlen (tok));
9181 return;
9182 }
9183
9184 end_tok = skip_to_space (tok);
9185
9186 toklen = end_tok - tok;
9187
9188 if (toklen >= 1 && strncmp (tok, "if", toklen) == 0)
9189 {
9190 tok = cond_start = end_tok + 1;
9191 parse_exp_1 (&tok, pc, block_for_pc (pc), 0);
9192 cond_end = tok;
9193 *cond_string = savestring (cond_start, cond_end - cond_start);
9194 }
9195 else if (toklen >= 1 && strncmp (tok, "thread", toklen) == 0)
9196 {
9197 const char *tmptok;
9198 struct thread_info *thr;
9199
9200 tok = end_tok + 1;
9201 thr = parse_thread_id (tok, &tmptok);
9202 if (tok == tmptok)
9203 error (_("Junk after thread keyword."));
9204 *thread = thr->global_num;
9205 tok = tmptok;
9206 }
9207 else if (toklen >= 1 && strncmp (tok, "task", toklen) == 0)
9208 {
9209 char *tmptok;
9210
9211 tok = end_tok + 1;
9212 *task = strtol (tok, &tmptok, 0);
9213 if (tok == tmptok)
9214 error (_("Junk after task keyword."));
9215 if (!valid_task_id (*task))
9216 error (_("Unknown task %d."), *task);
9217 tok = tmptok;
9218 }
9219 else if (rest)
9220 {
9221 *rest = savestring (tok, strlen (tok));
9222 return;
9223 }
9224 else
9225 error (_("Junk at end of arguments."));
9226 }
9227 }
9228
9229 /* Decode a static tracepoint marker spec. */
9230
9231 static std::vector<symtab_and_line>
9232 decode_static_tracepoint_spec (const char **arg_p)
9233 {
9234 const char *p = &(*arg_p)[3];
9235 const char *endp;
9236
9237 p = skip_spaces (p);
9238
9239 endp = skip_to_space (p);
9240
9241 std::string marker_str (p, endp - p);
9242
9243 std::vector<static_tracepoint_marker> markers
9244 = target_static_tracepoint_markers_by_strid (marker_str.c_str ());
9245 if (markers.empty ())
9246 error (_("No known static tracepoint marker named %s"),
9247 marker_str.c_str ());
9248
9249 std::vector<symtab_and_line> sals;
9250 sals.reserve (markers.size ());
9251
9252 for (const static_tracepoint_marker &marker : markers)
9253 {
9254 symtab_and_line sal = find_pc_line (marker.address, 0);
9255 sal.pc = marker.address;
9256 sals.push_back (sal);
9257 }
9258
9259 *arg_p = endp;
9260 return sals;
9261 }
9262
9263 /* See breakpoint.h. */
9264
9265 int
9266 create_breakpoint (struct gdbarch *gdbarch,
9267 const struct event_location *location,
9268 const char *cond_string,
9269 int thread, const char *extra_string,
9270 int parse_extra,
9271 int tempflag, enum bptype type_wanted,
9272 int ignore_count,
9273 enum auto_boolean pending_break_support,
9274 const struct breakpoint_ops *ops,
9275 int from_tty, int enabled, int internal,
9276 unsigned flags)
9277 {
9278 struct linespec_result canonical;
9279 struct cleanup *bkpt_chain = NULL;
9280 int pending = 0;
9281 int task = 0;
9282 int prev_bkpt_count = breakpoint_count;
9283
9284 gdb_assert (ops != NULL);
9285
9286 /* If extra_string isn't useful, set it to NULL. */
9287 if (extra_string != NULL && *extra_string == '\0')
9288 extra_string = NULL;
9289
9290 TRY
9291 {
9292 ops->create_sals_from_location (location, &canonical, type_wanted);
9293 }
9294 CATCH (e, RETURN_MASK_ERROR)
9295 {
9296 /* If caller is interested in rc value from parse, set
9297 value. */
9298 if (e.error == NOT_FOUND_ERROR)
9299 {
9300 /* If pending breakpoint support is turned off, throw
9301 error. */
9302
9303 if (pending_break_support == AUTO_BOOLEAN_FALSE)
9304 throw_exception (e);
9305
9306 exception_print (gdb_stderr, e);
9307
9308 /* If pending breakpoint support is auto query and the user
9309 selects no, then simply return the error code. */
9310 if (pending_break_support == AUTO_BOOLEAN_AUTO
9311 && !nquery (_("Make %s pending on future shared library load? "),
9312 bptype_string (type_wanted)))
9313 return 0;
9314
9315 /* At this point, either the user was queried about setting
9316 a pending breakpoint and selected yes, or pending
9317 breakpoint behavior is on and thus a pending breakpoint
9318 is defaulted on behalf of the user. */
9319 pending = 1;
9320 }
9321 else
9322 throw_exception (e);
9323 }
9324 END_CATCH
9325
9326 if (!pending && canonical.lsals.empty ())
9327 return 0;
9328
9329 /* ----------------------------- SNIP -----------------------------
9330 Anything added to the cleanup chain beyond this point is assumed
9331 to be part of a breakpoint. If the breakpoint create succeeds
9332 then the memory is not reclaimed. */
9333 bkpt_chain = make_cleanup (null_cleanup, 0);
9334
9335 /* Resolve all line numbers to PC's and verify that the addresses
9336 are ok for the target. */
9337 if (!pending)
9338 {
9339 for (auto &lsal : canonical.lsals)
9340 breakpoint_sals_to_pc (lsal.sals);
9341 }
9342
9343 /* Fast tracepoints may have additional restrictions on location. */
9344 if (!pending && type_wanted == bp_fast_tracepoint)
9345 {
9346 for (const auto &lsal : canonical.lsals)
9347 check_fast_tracepoint_sals (gdbarch, lsal.sals);
9348 }
9349
9350 /* Verify that condition can be parsed, before setting any
9351 breakpoints. Allocate a separate condition expression for each
9352 breakpoint. */
9353 if (!pending)
9354 {
9355 gdb::unique_xmalloc_ptr<char> cond_string_copy;
9356 gdb::unique_xmalloc_ptr<char> extra_string_copy;
9357
9358 if (parse_extra)
9359 {
9360 char *rest;
9361 char *cond;
9362
9363 const linespec_sals &lsal = canonical.lsals[0];
9364
9365 /* Here we only parse 'arg' to separate condition
9366 from thread number, so parsing in context of first
9367 sal is OK. When setting the breakpoint we'll
9368 re-parse it in context of each sal. */
9369
9370 find_condition_and_thread (extra_string, lsal.sals[0].pc,
9371 &cond, &thread, &task, &rest);
9372 cond_string_copy.reset (cond);
9373 extra_string_copy.reset (rest);
9374 }
9375 else
9376 {
9377 if (type_wanted != bp_dprintf
9378 && extra_string != NULL && *extra_string != '\0')
9379 error (_("Garbage '%s' at end of location"), extra_string);
9380
9381 /* Create a private copy of condition string. */
9382 if (cond_string)
9383 cond_string_copy.reset (xstrdup (cond_string));
9384 /* Create a private copy of any extra string. */
9385 if (extra_string)
9386 extra_string_copy.reset (xstrdup (extra_string));
9387 }
9388
9389 ops->create_breakpoints_sal (gdbarch, &canonical,
9390 std::move (cond_string_copy),
9391 std::move (extra_string_copy),
9392 type_wanted,
9393 tempflag ? disp_del : disp_donttouch,
9394 thread, task, ignore_count, ops,
9395 from_tty, enabled, internal, flags);
9396 }
9397 else
9398 {
9399 std::unique_ptr <breakpoint> b = new_breakpoint_from_type (type_wanted);
9400
9401 init_raw_breakpoint_without_location (b.get (), gdbarch, type_wanted, ops);
9402 b->location = copy_event_location (location);
9403
9404 if (parse_extra)
9405 b->cond_string = NULL;
9406 else
9407 {
9408 /* Create a private copy of condition string. */
9409 b->cond_string = cond_string != NULL ? xstrdup (cond_string) : NULL;
9410 b->thread = thread;
9411 }
9412
9413 /* Create a private copy of any extra string. */
9414 b->extra_string = extra_string != NULL ? xstrdup (extra_string) : NULL;
9415 b->ignore_count = ignore_count;
9416 b->disposition = tempflag ? disp_del : disp_donttouch;
9417 b->condition_not_parsed = 1;
9418 b->enable_state = enabled ? bp_enabled : bp_disabled;
9419 if ((type_wanted != bp_breakpoint
9420 && type_wanted != bp_hardware_breakpoint) || thread != -1)
9421 b->pspace = current_program_space;
9422
9423 install_breakpoint (internal, std::move (b), 0);
9424 }
9425
9426 if (canonical.lsals.size () > 1)
9427 {
9428 warning (_("Multiple breakpoints were set.\nUse the "
9429 "\"delete\" command to delete unwanted breakpoints."));
9430 prev_breakpoint_count = prev_bkpt_count;
9431 }
9432
9433 /* That's it. Discard the cleanups for data inserted into the
9434 breakpoint. */
9435 discard_cleanups (bkpt_chain);
9436
9437 /* error call may happen here - have BKPT_CHAIN already discarded. */
9438 update_global_location_list (UGLL_MAY_INSERT);
9439
9440 return 1;
9441 }
9442
9443 /* Set a breakpoint.
9444 ARG is a string describing breakpoint address,
9445 condition, and thread.
9446 FLAG specifies if a breakpoint is hardware on,
9447 and if breakpoint is temporary, using BP_HARDWARE_FLAG
9448 and BP_TEMPFLAG. */
9449
9450 static void
9451 break_command_1 (const char *arg, int flag, int from_tty)
9452 {
9453 int tempflag = flag & BP_TEMPFLAG;
9454 enum bptype type_wanted = (flag & BP_HARDWAREFLAG
9455 ? bp_hardware_breakpoint
9456 : bp_breakpoint);
9457 struct breakpoint_ops *ops;
9458
9459 event_location_up location = string_to_event_location (&arg, current_language);
9460
9461 /* Matching breakpoints on probes. */
9462 if (location != NULL
9463 && event_location_type (location.get ()) == PROBE_LOCATION)
9464 ops = &bkpt_probe_breakpoint_ops;
9465 else
9466 ops = &bkpt_breakpoint_ops;
9467
9468 create_breakpoint (get_current_arch (),
9469 location.get (),
9470 NULL, 0, arg, 1 /* parse arg */,
9471 tempflag, type_wanted,
9472 0 /* Ignore count */,
9473 pending_break_support,
9474 ops,
9475 from_tty,
9476 1 /* enabled */,
9477 0 /* internal */,
9478 0);
9479 }
9480
9481 /* Helper function for break_command_1 and disassemble_command. */
9482
9483 void
9484 resolve_sal_pc (struct symtab_and_line *sal)
9485 {
9486 CORE_ADDR pc;
9487
9488 if (sal->pc == 0 && sal->symtab != NULL)
9489 {
9490 if (!find_line_pc (sal->symtab, sal->line, &pc))
9491 error (_("No line %d in file \"%s\"."),
9492 sal->line, symtab_to_filename_for_display (sal->symtab));
9493 sal->pc = pc;
9494
9495 /* If this SAL corresponds to a breakpoint inserted using a line
9496 number, then skip the function prologue if necessary. */
9497 if (sal->explicit_line)
9498 skip_prologue_sal (sal);
9499 }
9500
9501 if (sal->section == 0 && sal->symtab != NULL)
9502 {
9503 const struct blockvector *bv;
9504 const struct block *b;
9505 struct symbol *sym;
9506
9507 bv = blockvector_for_pc_sect (sal->pc, 0, &b,
9508 SYMTAB_COMPUNIT (sal->symtab));
9509 if (bv != NULL)
9510 {
9511 sym = block_linkage_function (b);
9512 if (sym != NULL)
9513 {
9514 fixup_symbol_section (sym, SYMTAB_OBJFILE (sal->symtab));
9515 sal->section = SYMBOL_OBJ_SECTION (SYMTAB_OBJFILE (sal->symtab),
9516 sym);
9517 }
9518 else
9519 {
9520 /* It really is worthwhile to have the section, so we'll
9521 just have to look harder. This case can be executed
9522 if we have line numbers but no functions (as can
9523 happen in assembly source). */
9524
9525 scoped_restore_current_pspace_and_thread restore_pspace_thread;
9526 switch_to_program_space_and_thread (sal->pspace);
9527
9528 bound_minimal_symbol msym = lookup_minimal_symbol_by_pc (sal->pc);
9529 if (msym.minsym)
9530 sal->section = MSYMBOL_OBJ_SECTION (msym.objfile, msym.minsym);
9531 }
9532 }
9533 }
9534 }
9535
9536 void
9537 break_command (const char *arg, int from_tty)
9538 {
9539 break_command_1 (arg, 0, from_tty);
9540 }
9541
9542 void
9543 tbreak_command (const char *arg, int from_tty)
9544 {
9545 break_command_1 (arg, BP_TEMPFLAG, from_tty);
9546 }
9547
9548 static void
9549 hbreak_command (const char *arg, int from_tty)
9550 {
9551 break_command_1 (arg, BP_HARDWAREFLAG, from_tty);
9552 }
9553
9554 static void
9555 thbreak_command (const char *arg, int from_tty)
9556 {
9557 break_command_1 (arg, (BP_TEMPFLAG | BP_HARDWAREFLAG), from_tty);
9558 }
9559
9560 static void
9561 stop_command (const char *arg, int from_tty)
9562 {
9563 printf_filtered (_("Specify the type of breakpoint to set.\n\
9564 Usage: stop in <function | address>\n\
9565 stop at <line>\n"));
9566 }
9567
9568 static void
9569 stopin_command (const char *arg, int from_tty)
9570 {
9571 int badInput = 0;
9572
9573 if (arg == (char *) NULL)
9574 badInput = 1;
9575 else if (*arg != '*')
9576 {
9577 const char *argptr = arg;
9578 int hasColon = 0;
9579
9580 /* Look for a ':'. If this is a line number specification, then
9581 say it is bad, otherwise, it should be an address or
9582 function/method name. */
9583 while (*argptr && !hasColon)
9584 {
9585 hasColon = (*argptr == ':');
9586 argptr++;
9587 }
9588
9589 if (hasColon)
9590 badInput = (*argptr != ':'); /* Not a class::method */
9591 else
9592 badInput = isdigit (*arg); /* a simple line number */
9593 }
9594
9595 if (badInput)
9596 printf_filtered (_("Usage: stop in <function | address>\n"));
9597 else
9598 break_command_1 (arg, 0, from_tty);
9599 }
9600
9601 static void
9602 stopat_command (const char *arg, int from_tty)
9603 {
9604 int badInput = 0;
9605
9606 if (arg == (char *) NULL || *arg == '*') /* no line number */
9607 badInput = 1;
9608 else
9609 {
9610 const char *argptr = arg;
9611 int hasColon = 0;
9612
9613 /* Look for a ':'. If there is a '::' then get out, otherwise
9614 it is probably a line number. */
9615 while (*argptr && !hasColon)
9616 {
9617 hasColon = (*argptr == ':');
9618 argptr++;
9619 }
9620
9621 if (hasColon)
9622 badInput = (*argptr == ':'); /* we have class::method */
9623 else
9624 badInput = !isdigit (*arg); /* not a line number */
9625 }
9626
9627 if (badInput)
9628 printf_filtered (_("Usage: stop at <line>\n"));
9629 else
9630 break_command_1 (arg, 0, from_tty);
9631 }
9632
9633 /* The dynamic printf command is mostly like a regular breakpoint, but
9634 with a prewired command list consisting of a single output command,
9635 built from extra arguments supplied on the dprintf command
9636 line. */
9637
9638 static void
9639 dprintf_command (const char *arg, int from_tty)
9640 {
9641 event_location_up location = string_to_event_location (&arg, current_language);
9642
9643 /* If non-NULL, ARG should have been advanced past the location;
9644 the next character must be ','. */
9645 if (arg != NULL)
9646 {
9647 if (arg[0] != ',' || arg[1] == '\0')
9648 error (_("Format string required"));
9649 else
9650 {
9651 /* Skip the comma. */
9652 ++arg;
9653 }
9654 }
9655
9656 create_breakpoint (get_current_arch (),
9657 location.get (),
9658 NULL, 0, arg, 1 /* parse arg */,
9659 0, bp_dprintf,
9660 0 /* Ignore count */,
9661 pending_break_support,
9662 &dprintf_breakpoint_ops,
9663 from_tty,
9664 1 /* enabled */,
9665 0 /* internal */,
9666 0);
9667 }
9668
9669 static void
9670 agent_printf_command (const char *arg, int from_tty)
9671 {
9672 error (_("May only run agent-printf on the target"));
9673 }
9674
9675 /* Implement the "breakpoint_hit" breakpoint_ops method for
9676 ranged breakpoints. */
9677
9678 static int
9679 breakpoint_hit_ranged_breakpoint (const struct bp_location *bl,
9680 const address_space *aspace,
9681 CORE_ADDR bp_addr,
9682 const struct target_waitstatus *ws)
9683 {
9684 if (ws->kind != TARGET_WAITKIND_STOPPED
9685 || ws->value.sig != GDB_SIGNAL_TRAP)
9686 return 0;
9687
9688 return breakpoint_address_match_range (bl->pspace->aspace, bl->address,
9689 bl->length, aspace, bp_addr);
9690 }
9691
9692 /* Implement the "resources_needed" breakpoint_ops method for
9693 ranged breakpoints. */
9694
9695 static int
9696 resources_needed_ranged_breakpoint (const struct bp_location *bl)
9697 {
9698 return target_ranged_break_num_registers ();
9699 }
9700
9701 /* Implement the "print_it" breakpoint_ops method for
9702 ranged breakpoints. */
9703
9704 static enum print_stop_action
9705 print_it_ranged_breakpoint (bpstat bs)
9706 {
9707 struct breakpoint *b = bs->breakpoint_at;
9708 struct bp_location *bl = b->loc;
9709 struct ui_out *uiout = current_uiout;
9710
9711 gdb_assert (b->type == bp_hardware_breakpoint);
9712
9713 /* Ranged breakpoints have only one location. */
9714 gdb_assert (bl && bl->next == NULL);
9715
9716 annotate_breakpoint (b->number);
9717
9718 maybe_print_thread_hit_breakpoint (uiout);
9719
9720 if (b->disposition == disp_del)
9721 uiout->text ("Temporary ranged breakpoint ");
9722 else
9723 uiout->text ("Ranged breakpoint ");
9724 if (uiout->is_mi_like_p ())
9725 {
9726 uiout->field_string ("reason",
9727 async_reason_lookup (EXEC_ASYNC_BREAKPOINT_HIT));
9728 uiout->field_string ("disp", bpdisp_text (b->disposition));
9729 }
9730 uiout->field_int ("bkptno", b->number);
9731 uiout->text (", ");
9732
9733 return PRINT_SRC_AND_LOC;
9734 }
9735
9736 /* Implement the "print_one" breakpoint_ops method for
9737 ranged breakpoints. */
9738
9739 static void
9740 print_one_ranged_breakpoint (struct breakpoint *b,
9741 struct bp_location **last_loc)
9742 {
9743 struct bp_location *bl = b->loc;
9744 struct value_print_options opts;
9745 struct ui_out *uiout = current_uiout;
9746
9747 /* Ranged breakpoints have only one location. */
9748 gdb_assert (bl && bl->next == NULL);
9749
9750 get_user_print_options (&opts);
9751
9752 if (opts.addressprint)
9753 /* We don't print the address range here, it will be printed later
9754 by print_one_detail_ranged_breakpoint. */
9755 uiout->field_skip ("addr");
9756 annotate_field (5);
9757 print_breakpoint_location (b, bl);
9758 *last_loc = bl;
9759 }
9760
9761 /* Implement the "print_one_detail" breakpoint_ops method for
9762 ranged breakpoints. */
9763
9764 static void
9765 print_one_detail_ranged_breakpoint (const struct breakpoint *b,
9766 struct ui_out *uiout)
9767 {
9768 CORE_ADDR address_start, address_end;
9769 struct bp_location *bl = b->loc;
9770 string_file stb;
9771
9772 gdb_assert (bl);
9773
9774 address_start = bl->address;
9775 address_end = address_start + bl->length - 1;
9776
9777 uiout->text ("\taddress range: ");
9778 stb.printf ("[%s, %s]",
9779 print_core_address (bl->gdbarch, address_start),
9780 print_core_address (bl->gdbarch, address_end));
9781 uiout->field_stream ("addr", stb);
9782 uiout->text ("\n");
9783 }
9784
9785 /* Implement the "print_mention" breakpoint_ops method for
9786 ranged breakpoints. */
9787
9788 static void
9789 print_mention_ranged_breakpoint (struct breakpoint *b)
9790 {
9791 struct bp_location *bl = b->loc;
9792 struct ui_out *uiout = current_uiout;
9793
9794 gdb_assert (bl);
9795 gdb_assert (b->type == bp_hardware_breakpoint);
9796
9797 if (uiout->is_mi_like_p ())
9798 return;
9799
9800 printf_filtered (_("Hardware assisted ranged breakpoint %d from %s to %s."),
9801 b->number, paddress (bl->gdbarch, bl->address),
9802 paddress (bl->gdbarch, bl->address + bl->length - 1));
9803 }
9804
9805 /* Implement the "print_recreate" breakpoint_ops method for
9806 ranged breakpoints. */
9807
9808 static void
9809 print_recreate_ranged_breakpoint (struct breakpoint *b, struct ui_file *fp)
9810 {
9811 fprintf_unfiltered (fp, "break-range %s, %s",
9812 event_location_to_string (b->location.get ()),
9813 event_location_to_string (b->location_range_end.get ()));
9814 print_recreate_thread (b, fp);
9815 }
9816
9817 /* The breakpoint_ops structure to be used in ranged breakpoints. */
9818
9819 static struct breakpoint_ops ranged_breakpoint_ops;
9820
9821 /* Find the address where the end of the breakpoint range should be
9822 placed, given the SAL of the end of the range. This is so that if
9823 the user provides a line number, the end of the range is set to the
9824 last instruction of the given line. */
9825
9826 static CORE_ADDR
9827 find_breakpoint_range_end (struct symtab_and_line sal)
9828 {
9829 CORE_ADDR end;
9830
9831 /* If the user provided a PC value, use it. Otherwise,
9832 find the address of the end of the given location. */
9833 if (sal.explicit_pc)
9834 end = sal.pc;
9835 else
9836 {
9837 int ret;
9838 CORE_ADDR start;
9839
9840 ret = find_line_pc_range (sal, &start, &end);
9841 if (!ret)
9842 error (_("Could not find location of the end of the range."));
9843
9844 /* find_line_pc_range returns the start of the next line. */
9845 end--;
9846 }
9847
9848 return end;
9849 }
9850
9851 /* Implement the "break-range" CLI command. */
9852
9853 static void
9854 break_range_command (const char *arg, int from_tty)
9855 {
9856 const char *arg_start;
9857 struct linespec_result canonical_start, canonical_end;
9858 int bp_count, can_use_bp, length;
9859 CORE_ADDR end;
9860 struct breakpoint *b;
9861
9862 /* We don't support software ranged breakpoints. */
9863 if (target_ranged_break_num_registers () < 0)
9864 error (_("This target does not support hardware ranged breakpoints."));
9865
9866 bp_count = hw_breakpoint_used_count ();
9867 bp_count += target_ranged_break_num_registers ();
9868 can_use_bp = target_can_use_hardware_watchpoint (bp_hardware_breakpoint,
9869 bp_count, 0);
9870 if (can_use_bp < 0)
9871 error (_("Hardware breakpoints used exceeds limit."));
9872
9873 arg = skip_spaces (arg);
9874 if (arg == NULL || arg[0] == '\0')
9875 error(_("No address range specified."));
9876
9877 arg_start = arg;
9878 event_location_up start_location = string_to_event_location (&arg,
9879 current_language);
9880 parse_breakpoint_sals (start_location.get (), &canonical_start);
9881
9882 if (arg[0] != ',')
9883 error (_("Too few arguments."));
9884 else if (canonical_start.lsals.empty ())
9885 error (_("Could not find location of the beginning of the range."));
9886
9887 const linespec_sals &lsal_start = canonical_start.lsals[0];
9888
9889 if (canonical_start.lsals.size () > 1
9890 || lsal_start.sals.size () != 1)
9891 error (_("Cannot create a ranged breakpoint with multiple locations."));
9892
9893 const symtab_and_line &sal_start = lsal_start.sals[0];
9894 std::string addr_string_start (arg_start, arg - arg_start);
9895
9896 arg++; /* Skip the comma. */
9897 arg = skip_spaces (arg);
9898
9899 /* Parse the end location. */
9900
9901 arg_start = arg;
9902
9903 /* We call decode_line_full directly here instead of using
9904 parse_breakpoint_sals because we need to specify the start location's
9905 symtab and line as the default symtab and line for the end of the
9906 range. This makes it possible to have ranges like "foo.c:27, +14",
9907 where +14 means 14 lines from the start location. */
9908 event_location_up end_location = string_to_event_location (&arg,
9909 current_language);
9910 decode_line_full (end_location.get (), DECODE_LINE_FUNFIRSTLINE, NULL,
9911 sal_start.symtab, sal_start.line,
9912 &canonical_end, NULL, NULL);
9913
9914 if (canonical_end.lsals.empty ())
9915 error (_("Could not find location of the end of the range."));
9916
9917 const linespec_sals &lsal_end = canonical_end.lsals[0];
9918 if (canonical_end.lsals.size () > 1
9919 || lsal_end.sals.size () != 1)
9920 error (_("Cannot create a ranged breakpoint with multiple locations."));
9921
9922 const symtab_and_line &sal_end = lsal_end.sals[0];
9923
9924 end = find_breakpoint_range_end (sal_end);
9925 if (sal_start.pc > end)
9926 error (_("Invalid address range, end precedes start."));
9927
9928 length = end - sal_start.pc + 1;
9929 if (length < 0)
9930 /* Length overflowed. */
9931 error (_("Address range too large."));
9932 else if (length == 1)
9933 {
9934 /* This range is simple enough to be handled by
9935 the `hbreak' command. */
9936 hbreak_command (&addr_string_start[0], 1);
9937
9938 return;
9939 }
9940
9941 /* Now set up the breakpoint. */
9942 b = set_raw_breakpoint (get_current_arch (), sal_start,
9943 bp_hardware_breakpoint, &ranged_breakpoint_ops);
9944 set_breakpoint_count (breakpoint_count + 1);
9945 b->number = breakpoint_count;
9946 b->disposition = disp_donttouch;
9947 b->location = std::move (start_location);
9948 b->location_range_end = std::move (end_location);
9949 b->loc->length = length;
9950
9951 mention (b);
9952 gdb::observers::breakpoint_created.notify (b);
9953 update_global_location_list (UGLL_MAY_INSERT);
9954 }
9955
9956 /* Return non-zero if EXP is verified as constant. Returned zero
9957 means EXP is variable. Also the constant detection may fail for
9958 some constant expressions and in such case still falsely return
9959 zero. */
9960
9961 static int
9962 watchpoint_exp_is_const (const struct expression *exp)
9963 {
9964 int i = exp->nelts;
9965
9966 while (i > 0)
9967 {
9968 int oplenp, argsp;
9969
9970 /* We are only interested in the descriptor of each element. */
9971 operator_length (exp, i, &oplenp, &argsp);
9972 i -= oplenp;
9973
9974 switch (exp->elts[i].opcode)
9975 {
9976 case BINOP_ADD:
9977 case BINOP_SUB:
9978 case BINOP_MUL:
9979 case BINOP_DIV:
9980 case BINOP_REM:
9981 case BINOP_MOD:
9982 case BINOP_LSH:
9983 case BINOP_RSH:
9984 case BINOP_LOGICAL_AND:
9985 case BINOP_LOGICAL_OR:
9986 case BINOP_BITWISE_AND:
9987 case BINOP_BITWISE_IOR:
9988 case BINOP_BITWISE_XOR:
9989 case BINOP_EQUAL:
9990 case BINOP_NOTEQUAL:
9991 case BINOP_LESS:
9992 case BINOP_GTR:
9993 case BINOP_LEQ:
9994 case BINOP_GEQ:
9995 case BINOP_REPEAT:
9996 case BINOP_COMMA:
9997 case BINOP_EXP:
9998 case BINOP_MIN:
9999 case BINOP_MAX:
10000 case BINOP_INTDIV:
10001 case BINOP_CONCAT:
10002 case TERNOP_COND:
10003 case TERNOP_SLICE:
10004
10005 case OP_LONG:
10006 case OP_FLOAT:
10007 case OP_LAST:
10008 case OP_COMPLEX:
10009 case OP_STRING:
10010 case OP_ARRAY:
10011 case OP_TYPE:
10012 case OP_TYPEOF:
10013 case OP_DECLTYPE:
10014 case OP_TYPEID:
10015 case OP_NAME:
10016 case OP_OBJC_NSSTRING:
10017
10018 case UNOP_NEG:
10019 case UNOP_LOGICAL_NOT:
10020 case UNOP_COMPLEMENT:
10021 case UNOP_ADDR:
10022 case UNOP_HIGH:
10023 case UNOP_CAST:
10024
10025 case UNOP_CAST_TYPE:
10026 case UNOP_REINTERPRET_CAST:
10027 case UNOP_DYNAMIC_CAST:
10028 /* Unary, binary and ternary operators: We have to check
10029 their operands. If they are constant, then so is the
10030 result of that operation. For instance, if A and B are
10031 determined to be constants, then so is "A + B".
10032
10033 UNOP_IND is one exception to the rule above, because the
10034 value of *ADDR is not necessarily a constant, even when
10035 ADDR is. */
10036 break;
10037
10038 case OP_VAR_VALUE:
10039 /* Check whether the associated symbol is a constant.
10040
10041 We use SYMBOL_CLASS rather than TYPE_CONST because it's
10042 possible that a buggy compiler could mark a variable as
10043 constant even when it is not, and TYPE_CONST would return
10044 true in this case, while SYMBOL_CLASS wouldn't.
10045
10046 We also have to check for function symbols because they
10047 are always constant. */
10048 {
10049 struct symbol *s = exp->elts[i + 2].symbol;
10050
10051 if (SYMBOL_CLASS (s) != LOC_BLOCK
10052 && SYMBOL_CLASS (s) != LOC_CONST
10053 && SYMBOL_CLASS (s) != LOC_CONST_BYTES)
10054 return 0;
10055 break;
10056 }
10057
10058 /* The default action is to return 0 because we are using
10059 the optimistic approach here: If we don't know something,
10060 then it is not a constant. */
10061 default:
10062 return 0;
10063 }
10064 }
10065
10066 return 1;
10067 }
10068
10069 /* Watchpoint destructor. */
10070
10071 watchpoint::~watchpoint ()
10072 {
10073 xfree (this->exp_string);
10074 xfree (this->exp_string_reparse);
10075 }
10076
10077 /* Implement the "re_set" breakpoint_ops method for watchpoints. */
10078
10079 static void
10080 re_set_watchpoint (struct breakpoint *b)
10081 {
10082 struct watchpoint *w = (struct watchpoint *) b;
10083
10084 /* Watchpoint can be either on expression using entirely global
10085 variables, or it can be on local variables.
10086
10087 Watchpoints of the first kind are never auto-deleted, and even
10088 persist across program restarts. Since they can use variables
10089 from shared libraries, we need to reparse expression as libraries
10090 are loaded and unloaded.
10091
10092 Watchpoints on local variables can also change meaning as result
10093 of solib event. For example, if a watchpoint uses both a local
10094 and a global variables in expression, it's a local watchpoint,
10095 but unloading of a shared library will make the expression
10096 invalid. This is not a very common use case, but we still
10097 re-evaluate expression, to avoid surprises to the user.
10098
10099 Note that for local watchpoints, we re-evaluate it only if
10100 watchpoints frame id is still valid. If it's not, it means the
10101 watchpoint is out of scope and will be deleted soon. In fact,
10102 I'm not sure we'll ever be called in this case.
10103
10104 If a local watchpoint's frame id is still valid, then
10105 w->exp_valid_block is likewise valid, and we can safely use it.
10106
10107 Don't do anything about disabled watchpoints, since they will be
10108 reevaluated again when enabled. */
10109 update_watchpoint (w, 1 /* reparse */);
10110 }
10111
10112 /* Implement the "insert" breakpoint_ops method for hardware watchpoints. */
10113
10114 static int
10115 insert_watchpoint (struct bp_location *bl)
10116 {
10117 struct watchpoint *w = (struct watchpoint *) bl->owner;
10118 int length = w->exact ? 1 : bl->length;
10119
10120 return target_insert_watchpoint (bl->address, length, bl->watchpoint_type,
10121 w->cond_exp.get ());
10122 }
10123
10124 /* Implement the "remove" breakpoint_ops method for hardware watchpoints. */
10125
10126 static int
10127 remove_watchpoint (struct bp_location *bl, enum remove_bp_reason reason)
10128 {
10129 struct watchpoint *w = (struct watchpoint *) bl->owner;
10130 int length = w->exact ? 1 : bl->length;
10131
10132 return target_remove_watchpoint (bl->address, length, bl->watchpoint_type,
10133 w->cond_exp.get ());
10134 }
10135
10136 static int
10137 breakpoint_hit_watchpoint (const struct bp_location *bl,
10138 const address_space *aspace, CORE_ADDR bp_addr,
10139 const struct target_waitstatus *ws)
10140 {
10141 struct breakpoint *b = bl->owner;
10142 struct watchpoint *w = (struct watchpoint *) b;
10143
10144 /* Continuable hardware watchpoints are treated as non-existent if the
10145 reason we stopped wasn't a hardware watchpoint (we didn't stop on
10146 some data address). Otherwise gdb won't stop on a break instruction
10147 in the code (not from a breakpoint) when a hardware watchpoint has
10148 been defined. Also skip watchpoints which we know did not trigger
10149 (did not match the data address). */
10150 if (is_hardware_watchpoint (b)
10151 && w->watchpoint_triggered == watch_triggered_no)
10152 return 0;
10153
10154 return 1;
10155 }
10156
10157 static void
10158 check_status_watchpoint (bpstat bs)
10159 {
10160 gdb_assert (is_watchpoint (bs->breakpoint_at));
10161
10162 bpstat_check_watchpoint (bs);
10163 }
10164
10165 /* Implement the "resources_needed" breakpoint_ops method for
10166 hardware watchpoints. */
10167
10168 static int
10169 resources_needed_watchpoint (const struct bp_location *bl)
10170 {
10171 struct watchpoint *w = (struct watchpoint *) bl->owner;
10172 int length = w->exact? 1 : bl->length;
10173
10174 return target_region_ok_for_hw_watchpoint (bl->address, length);
10175 }
10176
10177 /* Implement the "works_in_software_mode" breakpoint_ops method for
10178 hardware watchpoints. */
10179
10180 static int
10181 works_in_software_mode_watchpoint (const struct breakpoint *b)
10182 {
10183 /* Read and access watchpoints only work with hardware support. */
10184 return b->type == bp_watchpoint || b->type == bp_hardware_watchpoint;
10185 }
10186
10187 static enum print_stop_action
10188 print_it_watchpoint (bpstat bs)
10189 {
10190 struct breakpoint *b;
10191 enum print_stop_action result;
10192 struct watchpoint *w;
10193 struct ui_out *uiout = current_uiout;
10194
10195 gdb_assert (bs->bp_location_at != NULL);
10196
10197 b = bs->breakpoint_at;
10198 w = (struct watchpoint *) b;
10199
10200 annotate_watchpoint (b->number);
10201 maybe_print_thread_hit_breakpoint (uiout);
10202
10203 string_file stb;
10204
10205 gdb::optional<ui_out_emit_tuple> tuple_emitter;
10206 switch (b->type)
10207 {
10208 case bp_watchpoint:
10209 case bp_hardware_watchpoint:
10210 if (uiout->is_mi_like_p ())
10211 uiout->field_string
10212 ("reason", async_reason_lookup (EXEC_ASYNC_WATCHPOINT_TRIGGER));
10213 mention (b);
10214 tuple_emitter.emplace (uiout, "value");
10215 uiout->text ("\nOld value = ");
10216 watchpoint_value_print (bs->old_val.get (), &stb);
10217 uiout->field_stream ("old", stb);
10218 uiout->text ("\nNew value = ");
10219 watchpoint_value_print (w->val.get (), &stb);
10220 uiout->field_stream ("new", stb);
10221 uiout->text ("\n");
10222 /* More than one watchpoint may have been triggered. */
10223 result = PRINT_UNKNOWN;
10224 break;
10225
10226 case bp_read_watchpoint:
10227 if (uiout->is_mi_like_p ())
10228 uiout->field_string
10229 ("reason", async_reason_lookup (EXEC_ASYNC_READ_WATCHPOINT_TRIGGER));
10230 mention (b);
10231 tuple_emitter.emplace (uiout, "value");
10232 uiout->text ("\nValue = ");
10233 watchpoint_value_print (w->val.get (), &stb);
10234 uiout->field_stream ("value", stb);
10235 uiout->text ("\n");
10236 result = PRINT_UNKNOWN;
10237 break;
10238
10239 case bp_access_watchpoint:
10240 if (bs->old_val != NULL)
10241 {
10242 if (uiout->is_mi_like_p ())
10243 uiout->field_string
10244 ("reason",
10245 async_reason_lookup (EXEC_ASYNC_ACCESS_WATCHPOINT_TRIGGER));
10246 mention (b);
10247 tuple_emitter.emplace (uiout, "value");
10248 uiout->text ("\nOld value = ");
10249 watchpoint_value_print (bs->old_val.get (), &stb);
10250 uiout->field_stream ("old", stb);
10251 uiout->text ("\nNew value = ");
10252 }
10253 else
10254 {
10255 mention (b);
10256 if (uiout->is_mi_like_p ())
10257 uiout->field_string
10258 ("reason",
10259 async_reason_lookup (EXEC_ASYNC_ACCESS_WATCHPOINT_TRIGGER));
10260 tuple_emitter.emplace (uiout, "value");
10261 uiout->text ("\nValue = ");
10262 }
10263 watchpoint_value_print (w->val.get (), &stb);
10264 uiout->field_stream ("new", stb);
10265 uiout->text ("\n");
10266 result = PRINT_UNKNOWN;
10267 break;
10268 default:
10269 result = PRINT_UNKNOWN;
10270 }
10271
10272 return result;
10273 }
10274
10275 /* Implement the "print_mention" breakpoint_ops method for hardware
10276 watchpoints. */
10277
10278 static void
10279 print_mention_watchpoint (struct breakpoint *b)
10280 {
10281 struct watchpoint *w = (struct watchpoint *) b;
10282 struct ui_out *uiout = current_uiout;
10283 const char *tuple_name;
10284
10285 switch (b->type)
10286 {
10287 case bp_watchpoint:
10288 uiout->text ("Watchpoint ");
10289 tuple_name = "wpt";
10290 break;
10291 case bp_hardware_watchpoint:
10292 uiout->text ("Hardware watchpoint ");
10293 tuple_name = "wpt";
10294 break;
10295 case bp_read_watchpoint:
10296 uiout->text ("Hardware read watchpoint ");
10297 tuple_name = "hw-rwpt";
10298 break;
10299 case bp_access_watchpoint:
10300 uiout->text ("Hardware access (read/write) watchpoint ");
10301 tuple_name = "hw-awpt";
10302 break;
10303 default:
10304 internal_error (__FILE__, __LINE__,
10305 _("Invalid hardware watchpoint type."));
10306 }
10307
10308 ui_out_emit_tuple tuple_emitter (uiout, tuple_name);
10309 uiout->field_int ("number", b->number);
10310 uiout->text (": ");
10311 uiout->field_string ("exp", w->exp_string);
10312 }
10313
10314 /* Implement the "print_recreate" breakpoint_ops method for
10315 watchpoints. */
10316
10317 static void
10318 print_recreate_watchpoint (struct breakpoint *b, struct ui_file *fp)
10319 {
10320 struct watchpoint *w = (struct watchpoint *) b;
10321
10322 switch (b->type)
10323 {
10324 case bp_watchpoint:
10325 case bp_hardware_watchpoint:
10326 fprintf_unfiltered (fp, "watch");
10327 break;
10328 case bp_read_watchpoint:
10329 fprintf_unfiltered (fp, "rwatch");
10330 break;
10331 case bp_access_watchpoint:
10332 fprintf_unfiltered (fp, "awatch");
10333 break;
10334 default:
10335 internal_error (__FILE__, __LINE__,
10336 _("Invalid watchpoint type."));
10337 }
10338
10339 fprintf_unfiltered (fp, " %s", w->exp_string);
10340 print_recreate_thread (b, fp);
10341 }
10342
10343 /* Implement the "explains_signal" breakpoint_ops method for
10344 watchpoints. */
10345
10346 static int
10347 explains_signal_watchpoint (struct breakpoint *b, enum gdb_signal sig)
10348 {
10349 /* A software watchpoint cannot cause a signal other than
10350 GDB_SIGNAL_TRAP. */
10351 if (b->type == bp_watchpoint && sig != GDB_SIGNAL_TRAP)
10352 return 0;
10353
10354 return 1;
10355 }
10356
10357 /* The breakpoint_ops structure to be used in hardware watchpoints. */
10358
10359 static struct breakpoint_ops watchpoint_breakpoint_ops;
10360
10361 /* Implement the "insert" breakpoint_ops method for
10362 masked hardware watchpoints. */
10363
10364 static int
10365 insert_masked_watchpoint (struct bp_location *bl)
10366 {
10367 struct watchpoint *w = (struct watchpoint *) bl->owner;
10368
10369 return target_insert_mask_watchpoint (bl->address, w->hw_wp_mask,
10370 bl->watchpoint_type);
10371 }
10372
10373 /* Implement the "remove" breakpoint_ops method for
10374 masked hardware watchpoints. */
10375
10376 static int
10377 remove_masked_watchpoint (struct bp_location *bl, enum remove_bp_reason reason)
10378 {
10379 struct watchpoint *w = (struct watchpoint *) bl->owner;
10380
10381 return target_remove_mask_watchpoint (bl->address, w->hw_wp_mask,
10382 bl->watchpoint_type);
10383 }
10384
10385 /* Implement the "resources_needed" breakpoint_ops method for
10386 masked hardware watchpoints. */
10387
10388 static int
10389 resources_needed_masked_watchpoint (const struct bp_location *bl)
10390 {
10391 struct watchpoint *w = (struct watchpoint *) bl->owner;
10392
10393 return target_masked_watch_num_registers (bl->address, w->hw_wp_mask);
10394 }
10395
10396 /* Implement the "works_in_software_mode" breakpoint_ops method for
10397 masked hardware watchpoints. */
10398
10399 static int
10400 works_in_software_mode_masked_watchpoint (const struct breakpoint *b)
10401 {
10402 return 0;
10403 }
10404
10405 /* Implement the "print_it" breakpoint_ops method for
10406 masked hardware watchpoints. */
10407
10408 static enum print_stop_action
10409 print_it_masked_watchpoint (bpstat bs)
10410 {
10411 struct breakpoint *b = bs->breakpoint_at;
10412 struct ui_out *uiout = current_uiout;
10413
10414 /* Masked watchpoints have only one location. */
10415 gdb_assert (b->loc && b->loc->next == NULL);
10416
10417 annotate_watchpoint (b->number);
10418 maybe_print_thread_hit_breakpoint (uiout);
10419
10420 switch (b->type)
10421 {
10422 case bp_hardware_watchpoint:
10423 if (uiout->is_mi_like_p ())
10424 uiout->field_string
10425 ("reason", async_reason_lookup (EXEC_ASYNC_WATCHPOINT_TRIGGER));
10426 break;
10427
10428 case bp_read_watchpoint:
10429 if (uiout->is_mi_like_p ())
10430 uiout->field_string
10431 ("reason", async_reason_lookup (EXEC_ASYNC_READ_WATCHPOINT_TRIGGER));
10432 break;
10433
10434 case bp_access_watchpoint:
10435 if (uiout->is_mi_like_p ())
10436 uiout->field_string
10437 ("reason",
10438 async_reason_lookup (EXEC_ASYNC_ACCESS_WATCHPOINT_TRIGGER));
10439 break;
10440 default:
10441 internal_error (__FILE__, __LINE__,
10442 _("Invalid hardware watchpoint type."));
10443 }
10444
10445 mention (b);
10446 uiout->text (_("\n\
10447 Check the underlying instruction at PC for the memory\n\
10448 address and value which triggered this watchpoint.\n"));
10449 uiout->text ("\n");
10450
10451 /* More than one watchpoint may have been triggered. */
10452 return PRINT_UNKNOWN;
10453 }
10454
10455 /* Implement the "print_one_detail" breakpoint_ops method for
10456 masked hardware watchpoints. */
10457
10458 static void
10459 print_one_detail_masked_watchpoint (const struct breakpoint *b,
10460 struct ui_out *uiout)
10461 {
10462 struct watchpoint *w = (struct watchpoint *) b;
10463
10464 /* Masked watchpoints have only one location. */
10465 gdb_assert (b->loc && b->loc->next == NULL);
10466
10467 uiout->text ("\tmask ");
10468 uiout->field_core_addr ("mask", b->loc->gdbarch, w->hw_wp_mask);
10469 uiout->text ("\n");
10470 }
10471
10472 /* Implement the "print_mention" breakpoint_ops method for
10473 masked hardware watchpoints. */
10474
10475 static void
10476 print_mention_masked_watchpoint (struct breakpoint *b)
10477 {
10478 struct watchpoint *w = (struct watchpoint *) b;
10479 struct ui_out *uiout = current_uiout;
10480 const char *tuple_name;
10481
10482 switch (b->type)
10483 {
10484 case bp_hardware_watchpoint:
10485 uiout->text ("Masked hardware watchpoint ");
10486 tuple_name = "wpt";
10487 break;
10488 case bp_read_watchpoint:
10489 uiout->text ("Masked hardware read watchpoint ");
10490 tuple_name = "hw-rwpt";
10491 break;
10492 case bp_access_watchpoint:
10493 uiout->text ("Masked hardware access (read/write) watchpoint ");
10494 tuple_name = "hw-awpt";
10495 break;
10496 default:
10497 internal_error (__FILE__, __LINE__,
10498 _("Invalid hardware watchpoint type."));
10499 }
10500
10501 ui_out_emit_tuple tuple_emitter (uiout, tuple_name);
10502 uiout->field_int ("number", b->number);
10503 uiout->text (": ");
10504 uiout->field_string ("exp", w->exp_string);
10505 }
10506
10507 /* Implement the "print_recreate" breakpoint_ops method for
10508 masked hardware watchpoints. */
10509
10510 static void
10511 print_recreate_masked_watchpoint (struct breakpoint *b, struct ui_file *fp)
10512 {
10513 struct watchpoint *w = (struct watchpoint *) b;
10514 char tmp[40];
10515
10516 switch (b->type)
10517 {
10518 case bp_hardware_watchpoint:
10519 fprintf_unfiltered (fp, "watch");
10520 break;
10521 case bp_read_watchpoint:
10522 fprintf_unfiltered (fp, "rwatch");
10523 break;
10524 case bp_access_watchpoint:
10525 fprintf_unfiltered (fp, "awatch");
10526 break;
10527 default:
10528 internal_error (__FILE__, __LINE__,
10529 _("Invalid hardware watchpoint type."));
10530 }
10531
10532 sprintf_vma (tmp, w->hw_wp_mask);
10533 fprintf_unfiltered (fp, " %s mask 0x%s", w->exp_string, tmp);
10534 print_recreate_thread (b, fp);
10535 }
10536
10537 /* The breakpoint_ops structure to be used in masked hardware watchpoints. */
10538
10539 static struct breakpoint_ops masked_watchpoint_breakpoint_ops;
10540
10541 /* Tell whether the given watchpoint is a masked hardware watchpoint. */
10542
10543 static int
10544 is_masked_watchpoint (const struct breakpoint *b)
10545 {
10546 return b->ops == &masked_watchpoint_breakpoint_ops;
10547 }
10548
10549 /* accessflag: hw_write: watch write,
10550 hw_read: watch read,
10551 hw_access: watch access (read or write) */
10552 static void
10553 watch_command_1 (const char *arg, int accessflag, int from_tty,
10554 int just_location, int internal)
10555 {
10556 struct breakpoint *scope_breakpoint = NULL;
10557 const struct block *exp_valid_block = NULL, *cond_exp_valid_block = NULL;
10558 struct value *mark, *result;
10559 int saved_bitpos = 0, saved_bitsize = 0;
10560 const char *exp_start = NULL;
10561 const char *exp_end = NULL;
10562 const char *tok, *end_tok;
10563 int toklen = -1;
10564 const char *cond_start = NULL;
10565 const char *cond_end = NULL;
10566 enum bptype bp_type;
10567 int thread = -1;
10568 int pc = 0;
10569 /* Flag to indicate whether we are going to use masks for
10570 the hardware watchpoint. */
10571 int use_mask = 0;
10572 CORE_ADDR mask = 0;
10573
10574 /* Make sure that we actually have parameters to parse. */
10575 if (arg != NULL && arg[0] != '\0')
10576 {
10577 const char *value_start;
10578
10579 exp_end = arg + strlen (arg);
10580
10581 /* Look for "parameter value" pairs at the end
10582 of the arguments string. */
10583 for (tok = exp_end - 1; tok > arg; tok--)
10584 {
10585 /* Skip whitespace at the end of the argument list. */
10586 while (tok > arg && (*tok == ' ' || *tok == '\t'))
10587 tok--;
10588
10589 /* Find the beginning of the last token.
10590 This is the value of the parameter. */
10591 while (tok > arg && (*tok != ' ' && *tok != '\t'))
10592 tok--;
10593 value_start = tok + 1;
10594
10595 /* Skip whitespace. */
10596 while (tok > arg && (*tok == ' ' || *tok == '\t'))
10597 tok--;
10598
10599 end_tok = tok;
10600
10601 /* Find the beginning of the second to last token.
10602 This is the parameter itself. */
10603 while (tok > arg && (*tok != ' ' && *tok != '\t'))
10604 tok--;
10605 tok++;
10606 toklen = end_tok - tok + 1;
10607
10608 if (toklen == 6 && startswith (tok, "thread"))
10609 {
10610 struct thread_info *thr;
10611 /* At this point we've found a "thread" token, which means
10612 the user is trying to set a watchpoint that triggers
10613 only in a specific thread. */
10614 const char *endp;
10615
10616 if (thread != -1)
10617 error(_("You can specify only one thread."));
10618
10619 /* Extract the thread ID from the next token. */
10620 thr = parse_thread_id (value_start, &endp);
10621
10622 /* Check if the user provided a valid thread ID. */
10623 if (*endp != ' ' && *endp != '\t' && *endp != '\0')
10624 invalid_thread_id_error (value_start);
10625
10626 thread = thr->global_num;
10627 }
10628 else if (toklen == 4 && startswith (tok, "mask"))
10629 {
10630 /* We've found a "mask" token, which means the user wants to
10631 create a hardware watchpoint that is going to have the mask
10632 facility. */
10633 struct value *mask_value, *mark;
10634
10635 if (use_mask)
10636 error(_("You can specify only one mask."));
10637
10638 use_mask = just_location = 1;
10639
10640 mark = value_mark ();
10641 mask_value = parse_to_comma_and_eval (&value_start);
10642 mask = value_as_address (mask_value);
10643 value_free_to_mark (mark);
10644 }
10645 else
10646 /* We didn't recognize what we found. We should stop here. */
10647 break;
10648
10649 /* Truncate the string and get rid of the "parameter value" pair before
10650 the arguments string is parsed by the parse_exp_1 function. */
10651 exp_end = tok;
10652 }
10653 }
10654 else
10655 exp_end = arg;
10656
10657 /* Parse the rest of the arguments. From here on out, everything
10658 is in terms of a newly allocated string instead of the original
10659 ARG. */
10660 innermost_block.reset ();
10661 std::string expression (arg, exp_end - arg);
10662 exp_start = arg = expression.c_str ();
10663 expression_up exp = parse_exp_1 (&arg, 0, 0, 0);
10664 exp_end = arg;
10665 /* Remove trailing whitespace from the expression before saving it.
10666 This makes the eventual display of the expression string a bit
10667 prettier. */
10668 while (exp_end > exp_start && (exp_end[-1] == ' ' || exp_end[-1] == '\t'))
10669 --exp_end;
10670
10671 /* Checking if the expression is not constant. */
10672 if (watchpoint_exp_is_const (exp.get ()))
10673 {
10674 int len;
10675
10676 len = exp_end - exp_start;
10677 while (len > 0 && isspace (exp_start[len - 1]))
10678 len--;
10679 error (_("Cannot watch constant value `%.*s'."), len, exp_start);
10680 }
10681
10682 exp_valid_block = innermost_block.block ();
10683 mark = value_mark ();
10684 struct value *val_as_value = nullptr;
10685 fetch_subexp_value (exp.get (), &pc, &val_as_value, &result, NULL,
10686 just_location);
10687
10688 if (val_as_value != NULL && just_location)
10689 {
10690 saved_bitpos = value_bitpos (val_as_value);
10691 saved_bitsize = value_bitsize (val_as_value);
10692 }
10693
10694 value_ref_ptr val;
10695 if (just_location)
10696 {
10697 int ret;
10698
10699 exp_valid_block = NULL;
10700 val = release_value (value_addr (result));
10701 value_free_to_mark (mark);
10702
10703 if (use_mask)
10704 {
10705 ret = target_masked_watch_num_registers (value_as_address (val.get ()),
10706 mask);
10707 if (ret == -1)
10708 error (_("This target does not support masked watchpoints."));
10709 else if (ret == -2)
10710 error (_("Invalid mask or memory region."));
10711 }
10712 }
10713 else if (val_as_value != NULL)
10714 val = release_value (val_as_value);
10715
10716 tok = skip_spaces (arg);
10717 end_tok = skip_to_space (tok);
10718
10719 toklen = end_tok - tok;
10720 if (toklen >= 1 && strncmp (tok, "if", toklen) == 0)
10721 {
10722 innermost_block.reset ();
10723 tok = cond_start = end_tok + 1;
10724 parse_exp_1 (&tok, 0, 0, 0);
10725
10726 /* The watchpoint expression may not be local, but the condition
10727 may still be. E.g.: `watch global if local > 0'. */
10728 cond_exp_valid_block = innermost_block.block ();
10729
10730 cond_end = tok;
10731 }
10732 if (*tok)
10733 error (_("Junk at end of command."));
10734
10735 frame_info *wp_frame = block_innermost_frame (exp_valid_block);
10736
10737 /* Save this because create_internal_breakpoint below invalidates
10738 'wp_frame'. */
10739 frame_id watchpoint_frame = get_frame_id (wp_frame);
10740
10741 /* If the expression is "local", then set up a "watchpoint scope"
10742 breakpoint at the point where we've left the scope of the watchpoint
10743 expression. Create the scope breakpoint before the watchpoint, so
10744 that we will encounter it first in bpstat_stop_status. */
10745 if (exp_valid_block != NULL && wp_frame != NULL)
10746 {
10747 frame_id caller_frame_id = frame_unwind_caller_id (wp_frame);
10748
10749 if (frame_id_p (caller_frame_id))
10750 {
10751 gdbarch *caller_arch = frame_unwind_caller_arch (wp_frame);
10752 CORE_ADDR caller_pc = frame_unwind_caller_pc (wp_frame);
10753
10754 scope_breakpoint
10755 = create_internal_breakpoint (caller_arch, caller_pc,
10756 bp_watchpoint_scope,
10757 &momentary_breakpoint_ops);
10758
10759 /* create_internal_breakpoint could invalidate WP_FRAME. */
10760 wp_frame = NULL;
10761
10762 scope_breakpoint->enable_state = bp_enabled;
10763
10764 /* Automatically delete the breakpoint when it hits. */
10765 scope_breakpoint->disposition = disp_del;
10766
10767 /* Only break in the proper frame (help with recursion). */
10768 scope_breakpoint->frame_id = caller_frame_id;
10769
10770 /* Set the address at which we will stop. */
10771 scope_breakpoint->loc->gdbarch = caller_arch;
10772 scope_breakpoint->loc->requested_address = caller_pc;
10773 scope_breakpoint->loc->address
10774 = adjust_breakpoint_address (scope_breakpoint->loc->gdbarch,
10775 scope_breakpoint->loc->requested_address,
10776 scope_breakpoint->type);
10777 }
10778 }
10779
10780 /* Now set up the breakpoint. We create all watchpoints as hardware
10781 watchpoints here even if hardware watchpoints are turned off, a call
10782 to update_watchpoint later in this function will cause the type to
10783 drop back to bp_watchpoint (software watchpoint) if required. */
10784
10785 if (accessflag == hw_read)
10786 bp_type = bp_read_watchpoint;
10787 else if (accessflag == hw_access)
10788 bp_type = bp_access_watchpoint;
10789 else
10790 bp_type = bp_hardware_watchpoint;
10791
10792 std::unique_ptr<watchpoint> w (new watchpoint ());
10793
10794 if (use_mask)
10795 init_raw_breakpoint_without_location (w.get (), NULL, bp_type,
10796 &masked_watchpoint_breakpoint_ops);
10797 else
10798 init_raw_breakpoint_without_location (w.get (), NULL, bp_type,
10799 &watchpoint_breakpoint_ops);
10800 w->thread = thread;
10801 w->disposition = disp_donttouch;
10802 w->pspace = current_program_space;
10803 w->exp = std::move (exp);
10804 w->exp_valid_block = exp_valid_block;
10805 w->cond_exp_valid_block = cond_exp_valid_block;
10806 if (just_location)
10807 {
10808 struct type *t = value_type (val.get ());
10809 CORE_ADDR addr = value_as_address (val.get ());
10810
10811 w->exp_string_reparse
10812 = current_language->la_watch_location_expression (t, addr).release ();
10813
10814 w->exp_string = xstrprintf ("-location %.*s",
10815 (int) (exp_end - exp_start), exp_start);
10816 }
10817 else
10818 w->exp_string = savestring (exp_start, exp_end - exp_start);
10819
10820 if (use_mask)
10821 {
10822 w->hw_wp_mask = mask;
10823 }
10824 else
10825 {
10826 w->val = val;
10827 w->val_bitpos = saved_bitpos;
10828 w->val_bitsize = saved_bitsize;
10829 w->val_valid = 1;
10830 }
10831
10832 if (cond_start)
10833 w->cond_string = savestring (cond_start, cond_end - cond_start);
10834 else
10835 w->cond_string = 0;
10836
10837 if (frame_id_p (watchpoint_frame))
10838 {
10839 w->watchpoint_frame = watchpoint_frame;
10840 w->watchpoint_thread = inferior_ptid;
10841 }
10842 else
10843 {
10844 w->watchpoint_frame = null_frame_id;
10845 w->watchpoint_thread = null_ptid;
10846 }
10847
10848 if (scope_breakpoint != NULL)
10849 {
10850 /* The scope breakpoint is related to the watchpoint. We will
10851 need to act on them together. */
10852 w->related_breakpoint = scope_breakpoint;
10853 scope_breakpoint->related_breakpoint = w.get ();
10854 }
10855
10856 if (!just_location)
10857 value_free_to_mark (mark);
10858
10859 /* Finally update the new watchpoint. This creates the locations
10860 that should be inserted. */
10861 update_watchpoint (w.get (), 1);
10862
10863 install_breakpoint (internal, std::move (w), 1);
10864 }
10865
10866 /* Return count of debug registers needed to watch the given expression.
10867 If the watchpoint cannot be handled in hardware return zero. */
10868
10869 static int
10870 can_use_hardware_watchpoint (const std::vector<value_ref_ptr> &vals)
10871 {
10872 int found_memory_cnt = 0;
10873
10874 /* Did the user specifically forbid us to use hardware watchpoints? */
10875 if (!can_use_hw_watchpoints)
10876 return 0;
10877
10878 gdb_assert (!vals.empty ());
10879 struct value *head = vals[0].get ();
10880
10881 /* Make sure that the value of the expression depends only upon
10882 memory contents, and values computed from them within GDB. If we
10883 find any register references or function calls, we can't use a
10884 hardware watchpoint.
10885
10886 The idea here is that evaluating an expression generates a series
10887 of values, one holding the value of every subexpression. (The
10888 expression a*b+c has five subexpressions: a, b, a*b, c, and
10889 a*b+c.) GDB's values hold almost enough information to establish
10890 the criteria given above --- they identify memory lvalues,
10891 register lvalues, computed values, etcetera. So we can evaluate
10892 the expression, and then scan the chain of values that leaves
10893 behind to decide whether we can detect any possible change to the
10894 expression's final value using only hardware watchpoints.
10895
10896 However, I don't think that the values returned by inferior
10897 function calls are special in any way. So this function may not
10898 notice that an expression involving an inferior function call
10899 can't be watched with hardware watchpoints. FIXME. */
10900 for (const value_ref_ptr &iter : vals)
10901 {
10902 struct value *v = iter.get ();
10903
10904 if (VALUE_LVAL (v) == lval_memory)
10905 {
10906 if (v != head && value_lazy (v))
10907 /* A lazy memory lvalue in the chain is one that GDB never
10908 needed to fetch; we either just used its address (e.g.,
10909 `a' in `a.b') or we never needed it at all (e.g., `a'
10910 in `a,b'). This doesn't apply to HEAD; if that is
10911 lazy then it was not readable, but watch it anyway. */
10912 ;
10913 else
10914 {
10915 /* Ahh, memory we actually used! Check if we can cover
10916 it with hardware watchpoints. */
10917 struct type *vtype = check_typedef (value_type (v));
10918
10919 /* We only watch structs and arrays if user asked for it
10920 explicitly, never if they just happen to appear in a
10921 middle of some value chain. */
10922 if (v == head
10923 || (TYPE_CODE (vtype) != TYPE_CODE_STRUCT
10924 && TYPE_CODE (vtype) != TYPE_CODE_ARRAY))
10925 {
10926 CORE_ADDR vaddr = value_address (v);
10927 int len;
10928 int num_regs;
10929
10930 len = (target_exact_watchpoints
10931 && is_scalar_type_recursive (vtype))?
10932 1 : TYPE_LENGTH (value_type (v));
10933
10934 num_regs = target_region_ok_for_hw_watchpoint (vaddr, len);
10935 if (!num_regs)
10936 return 0;
10937 else
10938 found_memory_cnt += num_regs;
10939 }
10940 }
10941 }
10942 else if (VALUE_LVAL (v) != not_lval
10943 && deprecated_value_modifiable (v) == 0)
10944 return 0; /* These are values from the history (e.g., $1). */
10945 else if (VALUE_LVAL (v) == lval_register)
10946 return 0; /* Cannot watch a register with a HW watchpoint. */
10947 }
10948
10949 /* The expression itself looks suitable for using a hardware
10950 watchpoint, but give the target machine a chance to reject it. */
10951 return found_memory_cnt;
10952 }
10953
10954 void
10955 watch_command_wrapper (const char *arg, int from_tty, int internal)
10956 {
10957 watch_command_1 (arg, hw_write, from_tty, 0, internal);
10958 }
10959
10960 /* A helper function that looks for the "-location" argument and then
10961 calls watch_command_1. */
10962
10963 static void
10964 watch_maybe_just_location (const char *arg, int accessflag, int from_tty)
10965 {
10966 int just_location = 0;
10967
10968 if (arg
10969 && (check_for_argument (&arg, "-location", sizeof ("-location") - 1)
10970 || check_for_argument (&arg, "-l", sizeof ("-l") - 1)))
10971 {
10972 arg = skip_spaces (arg);
10973 just_location = 1;
10974 }
10975
10976 watch_command_1 (arg, accessflag, from_tty, just_location, 0);
10977 }
10978
10979 static void
10980 watch_command (const char *arg, int from_tty)
10981 {
10982 watch_maybe_just_location (arg, hw_write, from_tty);
10983 }
10984
10985 void
10986 rwatch_command_wrapper (const char *arg, int from_tty, int internal)
10987 {
10988 watch_command_1 (arg, hw_read, from_tty, 0, internal);
10989 }
10990
10991 static void
10992 rwatch_command (const char *arg, int from_tty)
10993 {
10994 watch_maybe_just_location (arg, hw_read, from_tty);
10995 }
10996
10997 void
10998 awatch_command_wrapper (const char *arg, int from_tty, int internal)
10999 {
11000 watch_command_1 (arg, hw_access, from_tty, 0, internal);
11001 }
11002
11003 static void
11004 awatch_command (const char *arg, int from_tty)
11005 {
11006 watch_maybe_just_location (arg, hw_access, from_tty);
11007 }
11008 \f
11009
11010 /* Data for the FSM that manages the until(location)/advance commands
11011 in infcmd.c. Here because it uses the mechanisms of
11012 breakpoints. */
11013
11014 struct until_break_fsm
11015 {
11016 /* The base class. */
11017 struct thread_fsm thread_fsm;
11018
11019 /* The thread that as current when the command was executed. */
11020 int thread;
11021
11022 /* The breakpoint set at the destination location. */
11023 struct breakpoint *location_breakpoint;
11024
11025 /* Breakpoint set at the return address in the caller frame. May be
11026 NULL. */
11027 struct breakpoint *caller_breakpoint;
11028 };
11029
11030 static void until_break_fsm_clean_up (struct thread_fsm *self,
11031 struct thread_info *thread);
11032 static int until_break_fsm_should_stop (struct thread_fsm *self,
11033 struct thread_info *thread);
11034 static enum async_reply_reason
11035 until_break_fsm_async_reply_reason (struct thread_fsm *self);
11036
11037 /* until_break_fsm's vtable. */
11038
11039 static struct thread_fsm_ops until_break_fsm_ops =
11040 {
11041 NULL, /* dtor */
11042 until_break_fsm_clean_up,
11043 until_break_fsm_should_stop,
11044 NULL, /* return_value */
11045 until_break_fsm_async_reply_reason,
11046 };
11047
11048 /* Allocate a new until_break_command_fsm. */
11049
11050 static struct until_break_fsm *
11051 new_until_break_fsm (struct interp *cmd_interp, int thread,
11052 breakpoint_up &&location_breakpoint,
11053 breakpoint_up &&caller_breakpoint)
11054 {
11055 struct until_break_fsm *sm;
11056
11057 sm = XCNEW (struct until_break_fsm);
11058 thread_fsm_ctor (&sm->thread_fsm, &until_break_fsm_ops, cmd_interp);
11059
11060 sm->thread = thread;
11061 sm->location_breakpoint = location_breakpoint.release ();
11062 sm->caller_breakpoint = caller_breakpoint.release ();
11063
11064 return sm;
11065 }
11066
11067 /* Implementation of the 'should_stop' FSM method for the
11068 until(location)/advance commands. */
11069
11070 static int
11071 until_break_fsm_should_stop (struct thread_fsm *self,
11072 struct thread_info *tp)
11073 {
11074 struct until_break_fsm *sm = (struct until_break_fsm *) self;
11075
11076 if (bpstat_find_breakpoint (tp->control.stop_bpstat,
11077 sm->location_breakpoint) != NULL
11078 || (sm->caller_breakpoint != NULL
11079 && bpstat_find_breakpoint (tp->control.stop_bpstat,
11080 sm->caller_breakpoint) != NULL))
11081 thread_fsm_set_finished (self);
11082
11083 return 1;
11084 }
11085
11086 /* Implementation of the 'clean_up' FSM method for the
11087 until(location)/advance commands. */
11088
11089 static void
11090 until_break_fsm_clean_up (struct thread_fsm *self,
11091 struct thread_info *thread)
11092 {
11093 struct until_break_fsm *sm = (struct until_break_fsm *) self;
11094
11095 /* Clean up our temporary breakpoints. */
11096 if (sm->location_breakpoint != NULL)
11097 {
11098 delete_breakpoint (sm->location_breakpoint);
11099 sm->location_breakpoint = NULL;
11100 }
11101 if (sm->caller_breakpoint != NULL)
11102 {
11103 delete_breakpoint (sm->caller_breakpoint);
11104 sm->caller_breakpoint = NULL;
11105 }
11106 delete_longjmp_breakpoint (sm->thread);
11107 }
11108
11109 /* Implementation of the 'async_reply_reason' FSM method for the
11110 until(location)/advance commands. */
11111
11112 static enum async_reply_reason
11113 until_break_fsm_async_reply_reason (struct thread_fsm *self)
11114 {
11115 return EXEC_ASYNC_LOCATION_REACHED;
11116 }
11117
11118 void
11119 until_break_command (const char *arg, int from_tty, int anywhere)
11120 {
11121 struct frame_info *frame;
11122 struct gdbarch *frame_gdbarch;
11123 struct frame_id stack_frame_id;
11124 struct frame_id caller_frame_id;
11125 struct cleanup *old_chain;
11126 int thread;
11127 struct thread_info *tp;
11128 struct until_break_fsm *sm;
11129
11130 clear_proceed_status (0);
11131
11132 /* Set a breakpoint where the user wants it and at return from
11133 this function. */
11134
11135 event_location_up location = string_to_event_location (&arg, current_language);
11136
11137 std::vector<symtab_and_line> sals
11138 = (last_displayed_sal_is_valid ()
11139 ? decode_line_1 (location.get (), DECODE_LINE_FUNFIRSTLINE, NULL,
11140 get_last_displayed_symtab (),
11141 get_last_displayed_line ())
11142 : decode_line_1 (location.get (), DECODE_LINE_FUNFIRSTLINE,
11143 NULL, (struct symtab *) NULL, 0));
11144
11145 if (sals.size () != 1)
11146 error (_("Couldn't get information on specified line."));
11147
11148 symtab_and_line &sal = sals[0];
11149
11150 if (*arg)
11151 error (_("Junk at end of arguments."));
11152
11153 resolve_sal_pc (&sal);
11154
11155 tp = inferior_thread ();
11156 thread = tp->global_num;
11157
11158 old_chain = make_cleanup (null_cleanup, NULL);
11159
11160 /* Note linespec handling above invalidates the frame chain.
11161 Installing a breakpoint also invalidates the frame chain (as it
11162 may need to switch threads), so do any frame handling before
11163 that. */
11164
11165 frame = get_selected_frame (NULL);
11166 frame_gdbarch = get_frame_arch (frame);
11167 stack_frame_id = get_stack_frame_id (frame);
11168 caller_frame_id = frame_unwind_caller_id (frame);
11169
11170 /* Keep within the current frame, or in frames called by the current
11171 one. */
11172
11173 breakpoint_up caller_breakpoint;
11174 if (frame_id_p (caller_frame_id))
11175 {
11176 struct symtab_and_line sal2;
11177 struct gdbarch *caller_gdbarch;
11178
11179 sal2 = find_pc_line (frame_unwind_caller_pc (frame), 0);
11180 sal2.pc = frame_unwind_caller_pc (frame);
11181 caller_gdbarch = frame_unwind_caller_arch (frame);
11182 caller_breakpoint = set_momentary_breakpoint (caller_gdbarch,
11183 sal2,
11184 caller_frame_id,
11185 bp_until);
11186
11187 set_longjmp_breakpoint (tp, caller_frame_id);
11188 make_cleanup (delete_longjmp_breakpoint_cleanup, &thread);
11189 }
11190
11191 /* set_momentary_breakpoint could invalidate FRAME. */
11192 frame = NULL;
11193
11194 breakpoint_up location_breakpoint;
11195 if (anywhere)
11196 /* If the user told us to continue until a specified location,
11197 we don't specify a frame at which we need to stop. */
11198 location_breakpoint = set_momentary_breakpoint (frame_gdbarch, sal,
11199 null_frame_id, bp_until);
11200 else
11201 /* Otherwise, specify the selected frame, because we want to stop
11202 only at the very same frame. */
11203 location_breakpoint = set_momentary_breakpoint (frame_gdbarch, sal,
11204 stack_frame_id, bp_until);
11205
11206 sm = new_until_break_fsm (command_interp (), tp->global_num,
11207 std::move (location_breakpoint),
11208 std::move (caller_breakpoint));
11209 tp->thread_fsm = &sm->thread_fsm;
11210
11211 discard_cleanups (old_chain);
11212
11213 proceed (-1, GDB_SIGNAL_DEFAULT);
11214 }
11215
11216 /* This function attempts to parse an optional "if <cond>" clause
11217 from the arg string. If one is not found, it returns NULL.
11218
11219 Else, it returns a pointer to the condition string. (It does not
11220 attempt to evaluate the string against a particular block.) And,
11221 it updates arg to point to the first character following the parsed
11222 if clause in the arg string. */
11223
11224 const char *
11225 ep_parse_optional_if_clause (const char **arg)
11226 {
11227 const char *cond_string;
11228
11229 if (((*arg)[0] != 'i') || ((*arg)[1] != 'f') || !isspace ((*arg)[2]))
11230 return NULL;
11231
11232 /* Skip the "if" keyword. */
11233 (*arg) += 2;
11234
11235 /* Skip any extra leading whitespace, and record the start of the
11236 condition string. */
11237 *arg = skip_spaces (*arg);
11238 cond_string = *arg;
11239
11240 /* Assume that the condition occupies the remainder of the arg
11241 string. */
11242 (*arg) += strlen (cond_string);
11243
11244 return cond_string;
11245 }
11246
11247 /* Commands to deal with catching events, such as signals, exceptions,
11248 process start/exit, etc. */
11249
11250 typedef enum
11251 {
11252 catch_fork_temporary, catch_vfork_temporary,
11253 catch_fork_permanent, catch_vfork_permanent
11254 }
11255 catch_fork_kind;
11256
11257 static void
11258 catch_fork_command_1 (const char *arg, int from_tty,
11259 struct cmd_list_element *command)
11260 {
11261 struct gdbarch *gdbarch = get_current_arch ();
11262 const char *cond_string = NULL;
11263 catch_fork_kind fork_kind;
11264 int tempflag;
11265
11266 fork_kind = (catch_fork_kind) (uintptr_t) get_cmd_context (command);
11267 tempflag = (fork_kind == catch_fork_temporary
11268 || fork_kind == catch_vfork_temporary);
11269
11270 if (!arg)
11271 arg = "";
11272 arg = skip_spaces (arg);
11273
11274 /* The allowed syntax is:
11275 catch [v]fork
11276 catch [v]fork if <cond>
11277
11278 First, check if there's an if clause. */
11279 cond_string = ep_parse_optional_if_clause (&arg);
11280
11281 if ((*arg != '\0') && !isspace (*arg))
11282 error (_("Junk at end of arguments."));
11283
11284 /* If this target supports it, create a fork or vfork catchpoint
11285 and enable reporting of such events. */
11286 switch (fork_kind)
11287 {
11288 case catch_fork_temporary:
11289 case catch_fork_permanent:
11290 create_fork_vfork_event_catchpoint (gdbarch, tempflag, cond_string,
11291 &catch_fork_breakpoint_ops);
11292 break;
11293 case catch_vfork_temporary:
11294 case catch_vfork_permanent:
11295 create_fork_vfork_event_catchpoint (gdbarch, tempflag, cond_string,
11296 &catch_vfork_breakpoint_ops);
11297 break;
11298 default:
11299 error (_("unsupported or unknown fork kind; cannot catch it"));
11300 break;
11301 }
11302 }
11303
11304 static void
11305 catch_exec_command_1 (const char *arg, int from_tty,
11306 struct cmd_list_element *command)
11307 {
11308 struct gdbarch *gdbarch = get_current_arch ();
11309 int tempflag;
11310 const char *cond_string = NULL;
11311
11312 tempflag = get_cmd_context (command) == CATCH_TEMPORARY;
11313
11314 if (!arg)
11315 arg = "";
11316 arg = skip_spaces (arg);
11317
11318 /* The allowed syntax is:
11319 catch exec
11320 catch exec if <cond>
11321
11322 First, check if there's an if clause. */
11323 cond_string = ep_parse_optional_if_clause (&arg);
11324
11325 if ((*arg != '\0') && !isspace (*arg))
11326 error (_("Junk at end of arguments."));
11327
11328 std::unique_ptr<exec_catchpoint> c (new exec_catchpoint ());
11329 init_catchpoint (c.get (), gdbarch, tempflag, cond_string,
11330 &catch_exec_breakpoint_ops);
11331 c->exec_pathname = NULL;
11332
11333 install_breakpoint (0, std::move (c), 1);
11334 }
11335
11336 void
11337 init_ada_exception_breakpoint (struct breakpoint *b,
11338 struct gdbarch *gdbarch,
11339 struct symtab_and_line sal,
11340 const char *addr_string,
11341 const struct breakpoint_ops *ops,
11342 int tempflag,
11343 int enabled,
11344 int from_tty)
11345 {
11346 if (from_tty)
11347 {
11348 struct gdbarch *loc_gdbarch = get_sal_arch (sal);
11349 if (!loc_gdbarch)
11350 loc_gdbarch = gdbarch;
11351
11352 describe_other_breakpoints (loc_gdbarch,
11353 sal.pspace, sal.pc, sal.section, -1);
11354 /* FIXME: brobecker/2006-12-28: Actually, re-implement a special
11355 version for exception catchpoints, because two catchpoints
11356 used for different exception names will use the same address.
11357 In this case, a "breakpoint ... also set at..." warning is
11358 unproductive. Besides, the warning phrasing is also a bit
11359 inappropriate, we should use the word catchpoint, and tell
11360 the user what type of catchpoint it is. The above is good
11361 enough for now, though. */
11362 }
11363
11364 init_raw_breakpoint (b, gdbarch, sal, bp_breakpoint, ops);
11365
11366 b->enable_state = enabled ? bp_enabled : bp_disabled;
11367 b->disposition = tempflag ? disp_del : disp_donttouch;
11368 b->location = string_to_event_location (&addr_string,
11369 language_def (language_ada));
11370 b->language = language_ada;
11371 }
11372
11373 static void
11374 catch_command (const char *arg, int from_tty)
11375 {
11376 error (_("Catch requires an event name."));
11377 }
11378 \f
11379
11380 static void
11381 tcatch_command (const char *arg, int from_tty)
11382 {
11383 error (_("Catch requires an event name."));
11384 }
11385
11386 /* Compare two breakpoints and return a strcmp-like result. */
11387
11388 static int
11389 compare_breakpoints (const breakpoint *a, const breakpoint *b)
11390 {
11391 uintptr_t ua = (uintptr_t) a;
11392 uintptr_t ub = (uintptr_t) b;
11393
11394 if (a->number < b->number)
11395 return -1;
11396 else if (a->number > b->number)
11397 return 1;
11398
11399 /* Now sort by address, in case we see, e..g, two breakpoints with
11400 the number 0. */
11401 if (ua < ub)
11402 return -1;
11403 return ua > ub ? 1 : 0;
11404 }
11405
11406 /* Delete breakpoints by address or line. */
11407
11408 static void
11409 clear_command (const char *arg, int from_tty)
11410 {
11411 struct breakpoint *b;
11412 int default_match;
11413
11414 std::vector<symtab_and_line> decoded_sals;
11415 symtab_and_line last_sal;
11416 gdb::array_view<symtab_and_line> sals;
11417 if (arg)
11418 {
11419 decoded_sals
11420 = decode_line_with_current_source (arg,
11421 (DECODE_LINE_FUNFIRSTLINE
11422 | DECODE_LINE_LIST_MODE));
11423 default_match = 0;
11424 sals = decoded_sals;
11425 }
11426 else
11427 {
11428 /* Set sal's line, symtab, pc, and pspace to the values
11429 corresponding to the last call to print_frame_info. If the
11430 codepoint is not valid, this will set all the fields to 0. */
11431 last_sal = get_last_displayed_sal ();
11432 if (last_sal.symtab == 0)
11433 error (_("No source file specified."));
11434
11435 default_match = 1;
11436 sals = last_sal;
11437 }
11438
11439 /* We don't call resolve_sal_pc here. That's not as bad as it
11440 seems, because all existing breakpoints typically have both
11441 file/line and pc set. So, if clear is given file/line, we can
11442 match this to existing breakpoint without obtaining pc at all.
11443
11444 We only support clearing given the address explicitly
11445 present in breakpoint table. Say, we've set breakpoint
11446 at file:line. There were several PC values for that file:line,
11447 due to optimization, all in one block.
11448
11449 We've picked one PC value. If "clear" is issued with another
11450 PC corresponding to the same file:line, the breakpoint won't
11451 be cleared. We probably can still clear the breakpoint, but
11452 since the other PC value is never presented to user, user
11453 can only find it by guessing, and it does not seem important
11454 to support that. */
11455
11456 /* For each line spec given, delete bps which correspond to it. Do
11457 it in two passes, solely to preserve the current behavior that
11458 from_tty is forced true if we delete more than one
11459 breakpoint. */
11460
11461 std::vector<struct breakpoint *> found;
11462 for (const auto &sal : sals)
11463 {
11464 const char *sal_fullname;
11465
11466 /* If exact pc given, clear bpts at that pc.
11467 If line given (pc == 0), clear all bpts on specified line.
11468 If defaulting, clear all bpts on default line
11469 or at default pc.
11470
11471 defaulting sal.pc != 0 tests to do
11472
11473 0 1 pc
11474 1 1 pc _and_ line
11475 0 0 line
11476 1 0 <can't happen> */
11477
11478 sal_fullname = (sal.symtab == NULL
11479 ? NULL : symtab_to_fullname (sal.symtab));
11480
11481 /* Find all matching breakpoints and add them to 'found'. */
11482 ALL_BREAKPOINTS (b)
11483 {
11484 int match = 0;
11485 /* Are we going to delete b? */
11486 if (b->type != bp_none && !is_watchpoint (b))
11487 {
11488 struct bp_location *loc = b->loc;
11489 for (; loc; loc = loc->next)
11490 {
11491 /* If the user specified file:line, don't allow a PC
11492 match. This matches historical gdb behavior. */
11493 int pc_match = (!sal.explicit_line
11494 && sal.pc
11495 && (loc->pspace == sal.pspace)
11496 && (loc->address == sal.pc)
11497 && (!section_is_overlay (loc->section)
11498 || loc->section == sal.section));
11499 int line_match = 0;
11500
11501 if ((default_match || sal.explicit_line)
11502 && loc->symtab != NULL
11503 && sal_fullname != NULL
11504 && sal.pspace == loc->pspace
11505 && loc->line_number == sal.line
11506 && filename_cmp (symtab_to_fullname (loc->symtab),
11507 sal_fullname) == 0)
11508 line_match = 1;
11509
11510 if (pc_match || line_match)
11511 {
11512 match = 1;
11513 break;
11514 }
11515 }
11516 }
11517
11518 if (match)
11519 found.push_back (b);
11520 }
11521 }
11522
11523 /* Now go thru the 'found' chain and delete them. */
11524 if (found.empty ())
11525 {
11526 if (arg)
11527 error (_("No breakpoint at %s."), arg);
11528 else
11529 error (_("No breakpoint at this line."));
11530 }
11531
11532 /* Remove duplicates from the vec. */
11533 std::sort (found.begin (), found.end (),
11534 [] (const breakpoint *a, const breakpoint *b)
11535 {
11536 return compare_breakpoints (a, b) < 0;
11537 });
11538 found.erase (std::unique (found.begin (), found.end (),
11539 [] (const breakpoint *a, const breakpoint *b)
11540 {
11541 return compare_breakpoints (a, b) == 0;
11542 }),
11543 found.end ());
11544
11545 if (found.size () > 1)
11546 from_tty = 1; /* Always report if deleted more than one. */
11547 if (from_tty)
11548 {
11549 if (found.size () == 1)
11550 printf_unfiltered (_("Deleted breakpoint "));
11551 else
11552 printf_unfiltered (_("Deleted breakpoints "));
11553 }
11554
11555 for (breakpoint *iter : found)
11556 {
11557 if (from_tty)
11558 printf_unfiltered ("%d ", iter->number);
11559 delete_breakpoint (iter);
11560 }
11561 if (from_tty)
11562 putchar_unfiltered ('\n');
11563 }
11564 \f
11565 /* Delete breakpoint in BS if they are `delete' breakpoints and
11566 all breakpoints that are marked for deletion, whether hit or not.
11567 This is called after any breakpoint is hit, or after errors. */
11568
11569 void
11570 breakpoint_auto_delete (bpstat bs)
11571 {
11572 struct breakpoint *b, *b_tmp;
11573
11574 for (; bs; bs = bs->next)
11575 if (bs->breakpoint_at
11576 && bs->breakpoint_at->disposition == disp_del
11577 && bs->stop)
11578 delete_breakpoint (bs->breakpoint_at);
11579
11580 ALL_BREAKPOINTS_SAFE (b, b_tmp)
11581 {
11582 if (b->disposition == disp_del_at_next_stop)
11583 delete_breakpoint (b);
11584 }
11585 }
11586
11587 /* A comparison function for bp_location AP and BP being interfaced to
11588 qsort. Sort elements primarily by their ADDRESS (no matter what
11589 does breakpoint_address_is_meaningful say for its OWNER),
11590 secondarily by ordering first permanent elements and
11591 terciarily just ensuring the array is sorted stable way despite
11592 qsort being an unstable algorithm. */
11593
11594 static int
11595 bp_locations_compare (const void *ap, const void *bp)
11596 {
11597 const struct bp_location *a = *(const struct bp_location **) ap;
11598 const struct bp_location *b = *(const struct bp_location **) bp;
11599
11600 if (a->address != b->address)
11601 return (a->address > b->address) - (a->address < b->address);
11602
11603 /* Sort locations at the same address by their pspace number, keeping
11604 locations of the same inferior (in a multi-inferior environment)
11605 grouped. */
11606
11607 if (a->pspace->num != b->pspace->num)
11608 return ((a->pspace->num > b->pspace->num)
11609 - (a->pspace->num < b->pspace->num));
11610
11611 /* Sort permanent breakpoints first. */
11612 if (a->permanent != b->permanent)
11613 return (a->permanent < b->permanent) - (a->permanent > b->permanent);
11614
11615 /* Make the internal GDB representation stable across GDB runs
11616 where A and B memory inside GDB can differ. Breakpoint locations of
11617 the same type at the same address can be sorted in arbitrary order. */
11618
11619 if (a->owner->number != b->owner->number)
11620 return ((a->owner->number > b->owner->number)
11621 - (a->owner->number < b->owner->number));
11622
11623 return (a > b) - (a < b);
11624 }
11625
11626 /* Set bp_locations_placed_address_before_address_max and
11627 bp_locations_shadow_len_after_address_max according to the current
11628 content of the bp_locations array. */
11629
11630 static void
11631 bp_locations_target_extensions_update (void)
11632 {
11633 struct bp_location *bl, **blp_tmp;
11634
11635 bp_locations_placed_address_before_address_max = 0;
11636 bp_locations_shadow_len_after_address_max = 0;
11637
11638 ALL_BP_LOCATIONS (bl, blp_tmp)
11639 {
11640 CORE_ADDR start, end, addr;
11641
11642 if (!bp_location_has_shadow (bl))
11643 continue;
11644
11645 start = bl->target_info.placed_address;
11646 end = start + bl->target_info.shadow_len;
11647
11648 gdb_assert (bl->address >= start);
11649 addr = bl->address - start;
11650 if (addr > bp_locations_placed_address_before_address_max)
11651 bp_locations_placed_address_before_address_max = addr;
11652
11653 /* Zero SHADOW_LEN would not pass bp_location_has_shadow. */
11654
11655 gdb_assert (bl->address < end);
11656 addr = end - bl->address;
11657 if (addr > bp_locations_shadow_len_after_address_max)
11658 bp_locations_shadow_len_after_address_max = addr;
11659 }
11660 }
11661
11662 /* Download tracepoint locations if they haven't been. */
11663
11664 static void
11665 download_tracepoint_locations (void)
11666 {
11667 struct breakpoint *b;
11668 enum tribool can_download_tracepoint = TRIBOOL_UNKNOWN;
11669
11670 scoped_restore_current_pspace_and_thread restore_pspace_thread;
11671
11672 ALL_TRACEPOINTS (b)
11673 {
11674 struct bp_location *bl;
11675 struct tracepoint *t;
11676 int bp_location_downloaded = 0;
11677
11678 if ((b->type == bp_fast_tracepoint
11679 ? !may_insert_fast_tracepoints
11680 : !may_insert_tracepoints))
11681 continue;
11682
11683 if (can_download_tracepoint == TRIBOOL_UNKNOWN)
11684 {
11685 if (target_can_download_tracepoint ())
11686 can_download_tracepoint = TRIBOOL_TRUE;
11687 else
11688 can_download_tracepoint = TRIBOOL_FALSE;
11689 }
11690
11691 if (can_download_tracepoint == TRIBOOL_FALSE)
11692 break;
11693
11694 for (bl = b->loc; bl; bl = bl->next)
11695 {
11696 /* In tracepoint, locations are _never_ duplicated, so
11697 should_be_inserted is equivalent to
11698 unduplicated_should_be_inserted. */
11699 if (!should_be_inserted (bl) || bl->inserted)
11700 continue;
11701
11702 switch_to_program_space_and_thread (bl->pspace);
11703
11704 target_download_tracepoint (bl);
11705
11706 bl->inserted = 1;
11707 bp_location_downloaded = 1;
11708 }
11709 t = (struct tracepoint *) b;
11710 t->number_on_target = b->number;
11711 if (bp_location_downloaded)
11712 gdb::observers::breakpoint_modified.notify (b);
11713 }
11714 }
11715
11716 /* Swap the insertion/duplication state between two locations. */
11717
11718 static void
11719 swap_insertion (struct bp_location *left, struct bp_location *right)
11720 {
11721 const int left_inserted = left->inserted;
11722 const int left_duplicate = left->duplicate;
11723 const int left_needs_update = left->needs_update;
11724 const struct bp_target_info left_target_info = left->target_info;
11725
11726 /* Locations of tracepoints can never be duplicated. */
11727 if (is_tracepoint (left->owner))
11728 gdb_assert (!left->duplicate);
11729 if (is_tracepoint (right->owner))
11730 gdb_assert (!right->duplicate);
11731
11732 left->inserted = right->inserted;
11733 left->duplicate = right->duplicate;
11734 left->needs_update = right->needs_update;
11735 left->target_info = right->target_info;
11736 right->inserted = left_inserted;
11737 right->duplicate = left_duplicate;
11738 right->needs_update = left_needs_update;
11739 right->target_info = left_target_info;
11740 }
11741
11742 /* Force the re-insertion of the locations at ADDRESS. This is called
11743 once a new/deleted/modified duplicate location is found and we are evaluating
11744 conditions on the target's side. Such conditions need to be updated on
11745 the target. */
11746
11747 static void
11748 force_breakpoint_reinsertion (struct bp_location *bl)
11749 {
11750 struct bp_location **locp = NULL, **loc2p;
11751 struct bp_location *loc;
11752 CORE_ADDR address = 0;
11753 int pspace_num;
11754
11755 address = bl->address;
11756 pspace_num = bl->pspace->num;
11757
11758 /* This is only meaningful if the target is
11759 evaluating conditions and if the user has
11760 opted for condition evaluation on the target's
11761 side. */
11762 if (gdb_evaluates_breakpoint_condition_p ()
11763 || !target_supports_evaluation_of_breakpoint_conditions ())
11764 return;
11765
11766 /* Flag all breakpoint locations with this address and
11767 the same program space as the location
11768 as "its condition has changed". We need to
11769 update the conditions on the target's side. */
11770 ALL_BP_LOCATIONS_AT_ADDR (loc2p, locp, address)
11771 {
11772 loc = *loc2p;
11773
11774 if (!is_breakpoint (loc->owner)
11775 || pspace_num != loc->pspace->num)
11776 continue;
11777
11778 /* Flag the location appropriately. We use a different state to
11779 let everyone know that we already updated the set of locations
11780 with addr bl->address and program space bl->pspace. This is so
11781 we don't have to keep calling these functions just to mark locations
11782 that have already been marked. */
11783 loc->condition_changed = condition_updated;
11784
11785 /* Free the agent expression bytecode as well. We will compute
11786 it later on. */
11787 loc->cond_bytecode.reset ();
11788 }
11789 }
11790 /* Called whether new breakpoints are created, or existing breakpoints
11791 deleted, to update the global location list and recompute which
11792 locations are duplicate of which.
11793
11794 The INSERT_MODE flag determines whether locations may not, may, or
11795 shall be inserted now. See 'enum ugll_insert_mode' for more
11796 info. */
11797
11798 static void
11799 update_global_location_list (enum ugll_insert_mode insert_mode)
11800 {
11801 struct breakpoint *b;
11802 struct bp_location **locp, *loc;
11803 /* Last breakpoint location address that was marked for update. */
11804 CORE_ADDR last_addr = 0;
11805 /* Last breakpoint location program space that was marked for update. */
11806 int last_pspace_num = -1;
11807
11808 /* Used in the duplicates detection below. When iterating over all
11809 bp_locations, points to the first bp_location of a given address.
11810 Breakpoints and watchpoints of different types are never
11811 duplicates of each other. Keep one pointer for each type of
11812 breakpoint/watchpoint, so we only need to loop over all locations
11813 once. */
11814 struct bp_location *bp_loc_first; /* breakpoint */
11815 struct bp_location *wp_loc_first; /* hardware watchpoint */
11816 struct bp_location *awp_loc_first; /* access watchpoint */
11817 struct bp_location *rwp_loc_first; /* read watchpoint */
11818
11819 /* Saved former bp_locations array which we compare against the newly
11820 built bp_locations from the current state of ALL_BREAKPOINTS. */
11821 struct bp_location **old_locp;
11822 unsigned old_locations_count;
11823 gdb::unique_xmalloc_ptr<struct bp_location *> old_locations (bp_locations);
11824
11825 old_locations_count = bp_locations_count;
11826 bp_locations = NULL;
11827 bp_locations_count = 0;
11828
11829 ALL_BREAKPOINTS (b)
11830 for (loc = b->loc; loc; loc = loc->next)
11831 bp_locations_count++;
11832
11833 bp_locations = XNEWVEC (struct bp_location *, bp_locations_count);
11834 locp = bp_locations;
11835 ALL_BREAKPOINTS (b)
11836 for (loc = b->loc; loc; loc = loc->next)
11837 *locp++ = loc;
11838 qsort (bp_locations, bp_locations_count, sizeof (*bp_locations),
11839 bp_locations_compare);
11840
11841 bp_locations_target_extensions_update ();
11842
11843 /* Identify bp_location instances that are no longer present in the
11844 new list, and therefore should be freed. Note that it's not
11845 necessary that those locations should be removed from inferior --
11846 if there's another location at the same address (previously
11847 marked as duplicate), we don't need to remove/insert the
11848 location.
11849
11850 LOCP is kept in sync with OLD_LOCP, each pointing to the current
11851 and former bp_location array state respectively. */
11852
11853 locp = bp_locations;
11854 for (old_locp = old_locations.get ();
11855 old_locp < old_locations.get () + old_locations_count;
11856 old_locp++)
11857 {
11858 struct bp_location *old_loc = *old_locp;
11859 struct bp_location **loc2p;
11860
11861 /* Tells if 'old_loc' is found among the new locations. If
11862 not, we have to free it. */
11863 int found_object = 0;
11864 /* Tells if the location should remain inserted in the target. */
11865 int keep_in_target = 0;
11866 int removed = 0;
11867
11868 /* Skip LOCP entries which will definitely never be needed.
11869 Stop either at or being the one matching OLD_LOC. */
11870 while (locp < bp_locations + bp_locations_count
11871 && (*locp)->address < old_loc->address)
11872 locp++;
11873
11874 for (loc2p = locp;
11875 (loc2p < bp_locations + bp_locations_count
11876 && (*loc2p)->address == old_loc->address);
11877 loc2p++)
11878 {
11879 /* Check if this is a new/duplicated location or a duplicated
11880 location that had its condition modified. If so, we want to send
11881 its condition to the target if evaluation of conditions is taking
11882 place there. */
11883 if ((*loc2p)->condition_changed == condition_modified
11884 && (last_addr != old_loc->address
11885 || last_pspace_num != old_loc->pspace->num))
11886 {
11887 force_breakpoint_reinsertion (*loc2p);
11888 last_pspace_num = old_loc->pspace->num;
11889 }
11890
11891 if (*loc2p == old_loc)
11892 found_object = 1;
11893 }
11894
11895 /* We have already handled this address, update it so that we don't
11896 have to go through updates again. */
11897 last_addr = old_loc->address;
11898
11899 /* Target-side condition evaluation: Handle deleted locations. */
11900 if (!found_object)
11901 force_breakpoint_reinsertion (old_loc);
11902
11903 /* If this location is no longer present, and inserted, look if
11904 there's maybe a new location at the same address. If so,
11905 mark that one inserted, and don't remove this one. This is
11906 needed so that we don't have a time window where a breakpoint
11907 at certain location is not inserted. */
11908
11909 if (old_loc->inserted)
11910 {
11911 /* If the location is inserted now, we might have to remove
11912 it. */
11913
11914 if (found_object && should_be_inserted (old_loc))
11915 {
11916 /* The location is still present in the location list,
11917 and still should be inserted. Don't do anything. */
11918 keep_in_target = 1;
11919 }
11920 else
11921 {
11922 /* This location still exists, but it won't be kept in the
11923 target since it may have been disabled. We proceed to
11924 remove its target-side condition. */
11925
11926 /* The location is either no longer present, or got
11927 disabled. See if there's another location at the
11928 same address, in which case we don't need to remove
11929 this one from the target. */
11930
11931 /* OLD_LOC comes from existing struct breakpoint. */
11932 if (breakpoint_address_is_meaningful (old_loc->owner))
11933 {
11934 for (loc2p = locp;
11935 (loc2p < bp_locations + bp_locations_count
11936 && (*loc2p)->address == old_loc->address);
11937 loc2p++)
11938 {
11939 struct bp_location *loc2 = *loc2p;
11940
11941 if (breakpoint_locations_match (loc2, old_loc))
11942 {
11943 /* Read watchpoint locations are switched to
11944 access watchpoints, if the former are not
11945 supported, but the latter are. */
11946 if (is_hardware_watchpoint (old_loc->owner))
11947 {
11948 gdb_assert (is_hardware_watchpoint (loc2->owner));
11949 loc2->watchpoint_type = old_loc->watchpoint_type;
11950 }
11951
11952 /* loc2 is a duplicated location. We need to check
11953 if it should be inserted in case it will be
11954 unduplicated. */
11955 if (loc2 != old_loc
11956 && unduplicated_should_be_inserted (loc2))
11957 {
11958 swap_insertion (old_loc, loc2);
11959 keep_in_target = 1;
11960 break;
11961 }
11962 }
11963 }
11964 }
11965 }
11966
11967 if (!keep_in_target)
11968 {
11969 if (remove_breakpoint (old_loc))
11970 {
11971 /* This is just about all we can do. We could keep
11972 this location on the global list, and try to
11973 remove it next time, but there's no particular
11974 reason why we will succeed next time.
11975
11976 Note that at this point, old_loc->owner is still
11977 valid, as delete_breakpoint frees the breakpoint
11978 only after calling us. */
11979 printf_filtered (_("warning: Error removing "
11980 "breakpoint %d\n"),
11981 old_loc->owner->number);
11982 }
11983 removed = 1;
11984 }
11985 }
11986
11987 if (!found_object)
11988 {
11989 if (removed && target_is_non_stop_p ()
11990 && need_moribund_for_location_type (old_loc))
11991 {
11992 /* This location was removed from the target. In
11993 non-stop mode, a race condition is possible where
11994 we've removed a breakpoint, but stop events for that
11995 breakpoint are already queued and will arrive later.
11996 We apply an heuristic to be able to distinguish such
11997 SIGTRAPs from other random SIGTRAPs: we keep this
11998 breakpoint location for a bit, and will retire it
11999 after we see some number of events. The theory here
12000 is that reporting of events should, "on the average",
12001 be fair, so after a while we'll see events from all
12002 threads that have anything of interest, and no longer
12003 need to keep this breakpoint location around. We
12004 don't hold locations forever so to reduce chances of
12005 mistaking a non-breakpoint SIGTRAP for a breakpoint
12006 SIGTRAP.
12007
12008 The heuristic failing can be disastrous on
12009 decr_pc_after_break targets.
12010
12011 On decr_pc_after_break targets, like e.g., x86-linux,
12012 if we fail to recognize a late breakpoint SIGTRAP,
12013 because events_till_retirement has reached 0 too
12014 soon, we'll fail to do the PC adjustment, and report
12015 a random SIGTRAP to the user. When the user resumes
12016 the inferior, it will most likely immediately crash
12017 with SIGILL/SIGBUS/SIGSEGV, or worse, get silently
12018 corrupted, because of being resumed e.g., in the
12019 middle of a multi-byte instruction, or skipped a
12020 one-byte instruction. This was actually seen happen
12021 on native x86-linux, and should be less rare on
12022 targets that do not support new thread events, like
12023 remote, due to the heuristic depending on
12024 thread_count.
12025
12026 Mistaking a random SIGTRAP for a breakpoint trap
12027 causes similar symptoms (PC adjustment applied when
12028 it shouldn't), but then again, playing with SIGTRAPs
12029 behind the debugger's back is asking for trouble.
12030
12031 Since hardware watchpoint traps are always
12032 distinguishable from other traps, so we don't need to
12033 apply keep hardware watchpoint moribund locations
12034 around. We simply always ignore hardware watchpoint
12035 traps we can no longer explain. */
12036
12037 old_loc->events_till_retirement = 3 * (thread_count () + 1);
12038 old_loc->owner = NULL;
12039
12040 VEC_safe_push (bp_location_p, moribund_locations, old_loc);
12041 }
12042 else
12043 {
12044 old_loc->owner = NULL;
12045 decref_bp_location (&old_loc);
12046 }
12047 }
12048 }
12049
12050 /* Rescan breakpoints at the same address and section, marking the
12051 first one as "first" and any others as "duplicates". This is so
12052 that the bpt instruction is only inserted once. If we have a
12053 permanent breakpoint at the same place as BPT, make that one the
12054 official one, and the rest as duplicates. Permanent breakpoints
12055 are sorted first for the same address.
12056
12057 Do the same for hardware watchpoints, but also considering the
12058 watchpoint's type (regular/access/read) and length. */
12059
12060 bp_loc_first = NULL;
12061 wp_loc_first = NULL;
12062 awp_loc_first = NULL;
12063 rwp_loc_first = NULL;
12064 ALL_BP_LOCATIONS (loc, locp)
12065 {
12066 /* ALL_BP_LOCATIONS bp_location has LOC->OWNER always
12067 non-NULL. */
12068 struct bp_location **loc_first_p;
12069 b = loc->owner;
12070
12071 if (!unduplicated_should_be_inserted (loc)
12072 || !breakpoint_address_is_meaningful (b)
12073 /* Don't detect duplicate for tracepoint locations because they are
12074 never duplicated. See the comments in field `duplicate' of
12075 `struct bp_location'. */
12076 || is_tracepoint (b))
12077 {
12078 /* Clear the condition modification flag. */
12079 loc->condition_changed = condition_unchanged;
12080 continue;
12081 }
12082
12083 if (b->type == bp_hardware_watchpoint)
12084 loc_first_p = &wp_loc_first;
12085 else if (b->type == bp_read_watchpoint)
12086 loc_first_p = &rwp_loc_first;
12087 else if (b->type == bp_access_watchpoint)
12088 loc_first_p = &awp_loc_first;
12089 else
12090 loc_first_p = &bp_loc_first;
12091
12092 if (*loc_first_p == NULL
12093 || (overlay_debugging && loc->section != (*loc_first_p)->section)
12094 || !breakpoint_locations_match (loc, *loc_first_p))
12095 {
12096 *loc_first_p = loc;
12097 loc->duplicate = 0;
12098
12099 if (is_breakpoint (loc->owner) && loc->condition_changed)
12100 {
12101 loc->needs_update = 1;
12102 /* Clear the condition modification flag. */
12103 loc->condition_changed = condition_unchanged;
12104 }
12105 continue;
12106 }
12107
12108
12109 /* This and the above ensure the invariant that the first location
12110 is not duplicated, and is the inserted one.
12111 All following are marked as duplicated, and are not inserted. */
12112 if (loc->inserted)
12113 swap_insertion (loc, *loc_first_p);
12114 loc->duplicate = 1;
12115
12116 /* Clear the condition modification flag. */
12117 loc->condition_changed = condition_unchanged;
12118 }
12119
12120 if (insert_mode == UGLL_INSERT || breakpoints_should_be_inserted_now ())
12121 {
12122 if (insert_mode != UGLL_DONT_INSERT)
12123 insert_breakpoint_locations ();
12124 else
12125 {
12126 /* Even though the caller told us to not insert new
12127 locations, we may still need to update conditions on the
12128 target's side of breakpoints that were already inserted
12129 if the target is evaluating breakpoint conditions. We
12130 only update conditions for locations that are marked
12131 "needs_update". */
12132 update_inserted_breakpoint_locations ();
12133 }
12134 }
12135
12136 if (insert_mode != UGLL_DONT_INSERT)
12137 download_tracepoint_locations ();
12138 }
12139
12140 void
12141 breakpoint_retire_moribund (void)
12142 {
12143 struct bp_location *loc;
12144 int ix;
12145
12146 for (ix = 0; VEC_iterate (bp_location_p, moribund_locations, ix, loc); ++ix)
12147 if (--(loc->events_till_retirement) == 0)
12148 {
12149 decref_bp_location (&loc);
12150 VEC_unordered_remove (bp_location_p, moribund_locations, ix);
12151 --ix;
12152 }
12153 }
12154
12155 static void
12156 update_global_location_list_nothrow (enum ugll_insert_mode insert_mode)
12157 {
12158
12159 TRY
12160 {
12161 update_global_location_list (insert_mode);
12162 }
12163 CATCH (e, RETURN_MASK_ERROR)
12164 {
12165 }
12166 END_CATCH
12167 }
12168
12169 /* Clear BKP from a BPS. */
12170
12171 static void
12172 bpstat_remove_bp_location (bpstat bps, struct breakpoint *bpt)
12173 {
12174 bpstat bs;
12175
12176 for (bs = bps; bs; bs = bs->next)
12177 if (bs->breakpoint_at == bpt)
12178 {
12179 bs->breakpoint_at = NULL;
12180 bs->old_val = NULL;
12181 /* bs->commands will be freed later. */
12182 }
12183 }
12184
12185 /* Callback for iterate_over_threads. */
12186 static int
12187 bpstat_remove_breakpoint_callback (struct thread_info *th, void *data)
12188 {
12189 struct breakpoint *bpt = (struct breakpoint *) data;
12190
12191 bpstat_remove_bp_location (th->control.stop_bpstat, bpt);
12192 return 0;
12193 }
12194
12195 /* Helper for breakpoint and tracepoint breakpoint_ops->mention
12196 callbacks. */
12197
12198 static void
12199 say_where (struct breakpoint *b)
12200 {
12201 struct value_print_options opts;
12202
12203 get_user_print_options (&opts);
12204
12205 /* i18n: cagney/2005-02-11: Below needs to be merged into a
12206 single string. */
12207 if (b->loc == NULL)
12208 {
12209 /* For pending locations, the output differs slightly based
12210 on b->extra_string. If this is non-NULL, it contains either
12211 a condition or dprintf arguments. */
12212 if (b->extra_string == NULL)
12213 {
12214 printf_filtered (_(" (%s) pending."),
12215 event_location_to_string (b->location.get ()));
12216 }
12217 else if (b->type == bp_dprintf)
12218 {
12219 printf_filtered (_(" (%s,%s) pending."),
12220 event_location_to_string (b->location.get ()),
12221 b->extra_string);
12222 }
12223 else
12224 {
12225 printf_filtered (_(" (%s %s) pending."),
12226 event_location_to_string (b->location.get ()),
12227 b->extra_string);
12228 }
12229 }
12230 else
12231 {
12232 if (opts.addressprint || b->loc->symtab == NULL)
12233 {
12234 printf_filtered (" at ");
12235 fputs_filtered (paddress (b->loc->gdbarch, b->loc->address),
12236 gdb_stdout);
12237 }
12238 if (b->loc->symtab != NULL)
12239 {
12240 /* If there is a single location, we can print the location
12241 more nicely. */
12242 if (b->loc->next == NULL)
12243 printf_filtered (": file %s, line %d.",
12244 symtab_to_filename_for_display (b->loc->symtab),
12245 b->loc->line_number);
12246 else
12247 /* This is not ideal, but each location may have a
12248 different file name, and this at least reflects the
12249 real situation somewhat. */
12250 printf_filtered (": %s.",
12251 event_location_to_string (b->location.get ()));
12252 }
12253
12254 if (b->loc->next)
12255 {
12256 struct bp_location *loc = b->loc;
12257 int n = 0;
12258 for (; loc; loc = loc->next)
12259 ++n;
12260 printf_filtered (" (%d locations)", n);
12261 }
12262 }
12263 }
12264
12265 /* Default bp_location_ops methods. */
12266
12267 static void
12268 bp_location_dtor (struct bp_location *self)
12269 {
12270 xfree (self->function_name);
12271 }
12272
12273 static const struct bp_location_ops bp_location_ops =
12274 {
12275 bp_location_dtor
12276 };
12277
12278 /* Destructor for the breakpoint base class. */
12279
12280 breakpoint::~breakpoint ()
12281 {
12282 xfree (this->cond_string);
12283 xfree (this->extra_string);
12284 xfree (this->filter);
12285 }
12286
12287 static struct bp_location *
12288 base_breakpoint_allocate_location (struct breakpoint *self)
12289 {
12290 return new bp_location (&bp_location_ops, self);
12291 }
12292
12293 static void
12294 base_breakpoint_re_set (struct breakpoint *b)
12295 {
12296 /* Nothing to re-set. */
12297 }
12298
12299 #define internal_error_pure_virtual_called() \
12300 gdb_assert_not_reached ("pure virtual function called")
12301
12302 static int
12303 base_breakpoint_insert_location (struct bp_location *bl)
12304 {
12305 internal_error_pure_virtual_called ();
12306 }
12307
12308 static int
12309 base_breakpoint_remove_location (struct bp_location *bl,
12310 enum remove_bp_reason reason)
12311 {
12312 internal_error_pure_virtual_called ();
12313 }
12314
12315 static int
12316 base_breakpoint_breakpoint_hit (const struct bp_location *bl,
12317 const address_space *aspace,
12318 CORE_ADDR bp_addr,
12319 const struct target_waitstatus *ws)
12320 {
12321 internal_error_pure_virtual_called ();
12322 }
12323
12324 static void
12325 base_breakpoint_check_status (bpstat bs)
12326 {
12327 /* Always stop. */
12328 }
12329
12330 /* A "works_in_software_mode" breakpoint_ops method that just internal
12331 errors. */
12332
12333 static int
12334 base_breakpoint_works_in_software_mode (const struct breakpoint *b)
12335 {
12336 internal_error_pure_virtual_called ();
12337 }
12338
12339 /* A "resources_needed" breakpoint_ops method that just internal
12340 errors. */
12341
12342 static int
12343 base_breakpoint_resources_needed (const struct bp_location *bl)
12344 {
12345 internal_error_pure_virtual_called ();
12346 }
12347
12348 static enum print_stop_action
12349 base_breakpoint_print_it (bpstat bs)
12350 {
12351 internal_error_pure_virtual_called ();
12352 }
12353
12354 static void
12355 base_breakpoint_print_one_detail (const struct breakpoint *self,
12356 struct ui_out *uiout)
12357 {
12358 /* nothing */
12359 }
12360
12361 static void
12362 base_breakpoint_print_mention (struct breakpoint *b)
12363 {
12364 internal_error_pure_virtual_called ();
12365 }
12366
12367 static void
12368 base_breakpoint_print_recreate (struct breakpoint *b, struct ui_file *fp)
12369 {
12370 internal_error_pure_virtual_called ();
12371 }
12372
12373 static void
12374 base_breakpoint_create_sals_from_location
12375 (const struct event_location *location,
12376 struct linespec_result *canonical,
12377 enum bptype type_wanted)
12378 {
12379 internal_error_pure_virtual_called ();
12380 }
12381
12382 static void
12383 base_breakpoint_create_breakpoints_sal (struct gdbarch *gdbarch,
12384 struct linespec_result *c,
12385 gdb::unique_xmalloc_ptr<char> cond_string,
12386 gdb::unique_xmalloc_ptr<char> extra_string,
12387 enum bptype type_wanted,
12388 enum bpdisp disposition,
12389 int thread,
12390 int task, int ignore_count,
12391 const struct breakpoint_ops *o,
12392 int from_tty, int enabled,
12393 int internal, unsigned flags)
12394 {
12395 internal_error_pure_virtual_called ();
12396 }
12397
12398 static std::vector<symtab_and_line>
12399 base_breakpoint_decode_location (struct breakpoint *b,
12400 const struct event_location *location,
12401 struct program_space *search_pspace)
12402 {
12403 internal_error_pure_virtual_called ();
12404 }
12405
12406 /* The default 'explains_signal' method. */
12407
12408 static int
12409 base_breakpoint_explains_signal (struct breakpoint *b, enum gdb_signal sig)
12410 {
12411 return 1;
12412 }
12413
12414 /* The default "after_condition_true" method. */
12415
12416 static void
12417 base_breakpoint_after_condition_true (struct bpstats *bs)
12418 {
12419 /* Nothing to do. */
12420 }
12421
12422 struct breakpoint_ops base_breakpoint_ops =
12423 {
12424 base_breakpoint_allocate_location,
12425 base_breakpoint_re_set,
12426 base_breakpoint_insert_location,
12427 base_breakpoint_remove_location,
12428 base_breakpoint_breakpoint_hit,
12429 base_breakpoint_check_status,
12430 base_breakpoint_resources_needed,
12431 base_breakpoint_works_in_software_mode,
12432 base_breakpoint_print_it,
12433 NULL,
12434 base_breakpoint_print_one_detail,
12435 base_breakpoint_print_mention,
12436 base_breakpoint_print_recreate,
12437 base_breakpoint_create_sals_from_location,
12438 base_breakpoint_create_breakpoints_sal,
12439 base_breakpoint_decode_location,
12440 base_breakpoint_explains_signal,
12441 base_breakpoint_after_condition_true,
12442 };
12443
12444 /* Default breakpoint_ops methods. */
12445
12446 static void
12447 bkpt_re_set (struct breakpoint *b)
12448 {
12449 /* FIXME: is this still reachable? */
12450 if (breakpoint_event_location_empty_p (b))
12451 {
12452 /* Anything without a location can't be re-set. */
12453 delete_breakpoint (b);
12454 return;
12455 }
12456
12457 breakpoint_re_set_default (b);
12458 }
12459
12460 static int
12461 bkpt_insert_location (struct bp_location *bl)
12462 {
12463 CORE_ADDR addr = bl->target_info.reqstd_address;
12464
12465 bl->target_info.kind = breakpoint_kind (bl, &addr);
12466 bl->target_info.placed_address = addr;
12467
12468 if (bl->loc_type == bp_loc_hardware_breakpoint)
12469 return target_insert_hw_breakpoint (bl->gdbarch, &bl->target_info);
12470 else
12471 return target_insert_breakpoint (bl->gdbarch, &bl->target_info);
12472 }
12473
12474 static int
12475 bkpt_remove_location (struct bp_location *bl, enum remove_bp_reason reason)
12476 {
12477 if (bl->loc_type == bp_loc_hardware_breakpoint)
12478 return target_remove_hw_breakpoint (bl->gdbarch, &bl->target_info);
12479 else
12480 return target_remove_breakpoint (bl->gdbarch, &bl->target_info, reason);
12481 }
12482
12483 static int
12484 bkpt_breakpoint_hit (const struct bp_location *bl,
12485 const address_space *aspace, CORE_ADDR bp_addr,
12486 const struct target_waitstatus *ws)
12487 {
12488 if (ws->kind != TARGET_WAITKIND_STOPPED
12489 || ws->value.sig != GDB_SIGNAL_TRAP)
12490 return 0;
12491
12492 if (!breakpoint_address_match (bl->pspace->aspace, bl->address,
12493 aspace, bp_addr))
12494 return 0;
12495
12496 if (overlay_debugging /* unmapped overlay section */
12497 && section_is_overlay (bl->section)
12498 && !section_is_mapped (bl->section))
12499 return 0;
12500
12501 return 1;
12502 }
12503
12504 static int
12505 dprintf_breakpoint_hit (const struct bp_location *bl,
12506 const address_space *aspace, CORE_ADDR bp_addr,
12507 const struct target_waitstatus *ws)
12508 {
12509 if (dprintf_style == dprintf_style_agent
12510 && target_can_run_breakpoint_commands ())
12511 {
12512 /* An agent-style dprintf never causes a stop. If we see a trap
12513 for this address it must be for a breakpoint that happens to
12514 be set at the same address. */
12515 return 0;
12516 }
12517
12518 return bkpt_breakpoint_hit (bl, aspace, bp_addr, ws);
12519 }
12520
12521 static int
12522 bkpt_resources_needed (const struct bp_location *bl)
12523 {
12524 gdb_assert (bl->owner->type == bp_hardware_breakpoint);
12525
12526 return 1;
12527 }
12528
12529 static enum print_stop_action
12530 bkpt_print_it (bpstat bs)
12531 {
12532 struct breakpoint *b;
12533 const struct bp_location *bl;
12534 int bp_temp;
12535 struct ui_out *uiout = current_uiout;
12536
12537 gdb_assert (bs->bp_location_at != NULL);
12538
12539 bl = bs->bp_location_at;
12540 b = bs->breakpoint_at;
12541
12542 bp_temp = b->disposition == disp_del;
12543 if (bl->address != bl->requested_address)
12544 breakpoint_adjustment_warning (bl->requested_address,
12545 bl->address,
12546 b->number, 1);
12547 annotate_breakpoint (b->number);
12548 maybe_print_thread_hit_breakpoint (uiout);
12549
12550 if (bp_temp)
12551 uiout->text ("Temporary breakpoint ");
12552 else
12553 uiout->text ("Breakpoint ");
12554 if (uiout->is_mi_like_p ())
12555 {
12556 uiout->field_string ("reason",
12557 async_reason_lookup (EXEC_ASYNC_BREAKPOINT_HIT));
12558 uiout->field_string ("disp", bpdisp_text (b->disposition));
12559 }
12560 uiout->field_int ("bkptno", b->number);
12561 uiout->text (", ");
12562
12563 return PRINT_SRC_AND_LOC;
12564 }
12565
12566 static void
12567 bkpt_print_mention (struct breakpoint *b)
12568 {
12569 if (current_uiout->is_mi_like_p ())
12570 return;
12571
12572 switch (b->type)
12573 {
12574 case bp_breakpoint:
12575 case bp_gnu_ifunc_resolver:
12576 if (b->disposition == disp_del)
12577 printf_filtered (_("Temporary breakpoint"));
12578 else
12579 printf_filtered (_("Breakpoint"));
12580 printf_filtered (_(" %d"), b->number);
12581 if (b->type == bp_gnu_ifunc_resolver)
12582 printf_filtered (_(" at gnu-indirect-function resolver"));
12583 break;
12584 case bp_hardware_breakpoint:
12585 printf_filtered (_("Hardware assisted breakpoint %d"), b->number);
12586 break;
12587 case bp_dprintf:
12588 printf_filtered (_("Dprintf %d"), b->number);
12589 break;
12590 }
12591
12592 say_where (b);
12593 }
12594
12595 static void
12596 bkpt_print_recreate (struct breakpoint *tp, struct ui_file *fp)
12597 {
12598 if (tp->type == bp_breakpoint && tp->disposition == disp_del)
12599 fprintf_unfiltered (fp, "tbreak");
12600 else if (tp->type == bp_breakpoint)
12601 fprintf_unfiltered (fp, "break");
12602 else if (tp->type == bp_hardware_breakpoint
12603 && tp->disposition == disp_del)
12604 fprintf_unfiltered (fp, "thbreak");
12605 else if (tp->type == bp_hardware_breakpoint)
12606 fprintf_unfiltered (fp, "hbreak");
12607 else
12608 internal_error (__FILE__, __LINE__,
12609 _("unhandled breakpoint type %d"), (int) tp->type);
12610
12611 fprintf_unfiltered (fp, " %s",
12612 event_location_to_string (tp->location.get ()));
12613
12614 /* Print out extra_string if this breakpoint is pending. It might
12615 contain, for example, conditions that were set by the user. */
12616 if (tp->loc == NULL && tp->extra_string != NULL)
12617 fprintf_unfiltered (fp, " %s", tp->extra_string);
12618
12619 print_recreate_thread (tp, fp);
12620 }
12621
12622 static void
12623 bkpt_create_sals_from_location (const struct event_location *location,
12624 struct linespec_result *canonical,
12625 enum bptype type_wanted)
12626 {
12627 create_sals_from_location_default (location, canonical, type_wanted);
12628 }
12629
12630 static void
12631 bkpt_create_breakpoints_sal (struct gdbarch *gdbarch,
12632 struct linespec_result *canonical,
12633 gdb::unique_xmalloc_ptr<char> cond_string,
12634 gdb::unique_xmalloc_ptr<char> extra_string,
12635 enum bptype type_wanted,
12636 enum bpdisp disposition,
12637 int thread,
12638 int task, int ignore_count,
12639 const struct breakpoint_ops *ops,
12640 int from_tty, int enabled,
12641 int internal, unsigned flags)
12642 {
12643 create_breakpoints_sal_default (gdbarch, canonical,
12644 std::move (cond_string),
12645 std::move (extra_string),
12646 type_wanted,
12647 disposition, thread, task,
12648 ignore_count, ops, from_tty,
12649 enabled, internal, flags);
12650 }
12651
12652 static std::vector<symtab_and_line>
12653 bkpt_decode_location (struct breakpoint *b,
12654 const struct event_location *location,
12655 struct program_space *search_pspace)
12656 {
12657 return decode_location_default (b, location, search_pspace);
12658 }
12659
12660 /* Virtual table for internal breakpoints. */
12661
12662 static void
12663 internal_bkpt_re_set (struct breakpoint *b)
12664 {
12665 switch (b->type)
12666 {
12667 /* Delete overlay event and longjmp master breakpoints; they
12668 will be reset later by breakpoint_re_set. */
12669 case bp_overlay_event:
12670 case bp_longjmp_master:
12671 case bp_std_terminate_master:
12672 case bp_exception_master:
12673 delete_breakpoint (b);
12674 break;
12675
12676 /* This breakpoint is special, it's set up when the inferior
12677 starts and we really don't want to touch it. */
12678 case bp_shlib_event:
12679
12680 /* Like bp_shlib_event, this breakpoint type is special. Once
12681 it is set up, we do not want to touch it. */
12682 case bp_thread_event:
12683 break;
12684 }
12685 }
12686
12687 static void
12688 internal_bkpt_check_status (bpstat bs)
12689 {
12690 if (bs->breakpoint_at->type == bp_shlib_event)
12691 {
12692 /* If requested, stop when the dynamic linker notifies GDB of
12693 events. This allows the user to get control and place
12694 breakpoints in initializer routines for dynamically loaded
12695 objects (among other things). */
12696 bs->stop = stop_on_solib_events;
12697 bs->print = stop_on_solib_events;
12698 }
12699 else
12700 bs->stop = 0;
12701 }
12702
12703 static enum print_stop_action
12704 internal_bkpt_print_it (bpstat bs)
12705 {
12706 struct breakpoint *b;
12707
12708 b = bs->breakpoint_at;
12709
12710 switch (b->type)
12711 {
12712 case bp_shlib_event:
12713 /* Did we stop because the user set the stop_on_solib_events
12714 variable? (If so, we report this as a generic, "Stopped due
12715 to shlib event" message.) */
12716 print_solib_event (0);
12717 break;
12718
12719 case bp_thread_event:
12720 /* Not sure how we will get here.
12721 GDB should not stop for these breakpoints. */
12722 printf_filtered (_("Thread Event Breakpoint: gdb should not stop!\n"));
12723 break;
12724
12725 case bp_overlay_event:
12726 /* By analogy with the thread event, GDB should not stop for these. */
12727 printf_filtered (_("Overlay Event Breakpoint: gdb should not stop!\n"));
12728 break;
12729
12730 case bp_longjmp_master:
12731 /* These should never be enabled. */
12732 printf_filtered (_("Longjmp Master Breakpoint: gdb should not stop!\n"));
12733 break;
12734
12735 case bp_std_terminate_master:
12736 /* These should never be enabled. */
12737 printf_filtered (_("std::terminate Master Breakpoint: "
12738 "gdb should not stop!\n"));
12739 break;
12740
12741 case bp_exception_master:
12742 /* These should never be enabled. */
12743 printf_filtered (_("Exception Master Breakpoint: "
12744 "gdb should not stop!\n"));
12745 break;
12746 }
12747
12748 return PRINT_NOTHING;
12749 }
12750
12751 static void
12752 internal_bkpt_print_mention (struct breakpoint *b)
12753 {
12754 /* Nothing to mention. These breakpoints are internal. */
12755 }
12756
12757 /* Virtual table for momentary breakpoints */
12758
12759 static void
12760 momentary_bkpt_re_set (struct breakpoint *b)
12761 {
12762 /* Keep temporary breakpoints, which can be encountered when we step
12763 over a dlopen call and solib_add is resetting the breakpoints.
12764 Otherwise these should have been blown away via the cleanup chain
12765 or by breakpoint_init_inferior when we rerun the executable. */
12766 }
12767
12768 static void
12769 momentary_bkpt_check_status (bpstat bs)
12770 {
12771 /* Nothing. The point of these breakpoints is causing a stop. */
12772 }
12773
12774 static enum print_stop_action
12775 momentary_bkpt_print_it (bpstat bs)
12776 {
12777 return PRINT_UNKNOWN;
12778 }
12779
12780 static void
12781 momentary_bkpt_print_mention (struct breakpoint *b)
12782 {
12783 /* Nothing to mention. These breakpoints are internal. */
12784 }
12785
12786 /* Ensure INITIATING_FRAME is cleared when no such breakpoint exists.
12787
12788 It gets cleared already on the removal of the first one of such placed
12789 breakpoints. This is OK as they get all removed altogether. */
12790
12791 longjmp_breakpoint::~longjmp_breakpoint ()
12792 {
12793 thread_info *tp = find_thread_global_id (this->thread);
12794
12795 if (tp != NULL)
12796 tp->initiating_frame = null_frame_id;
12797 }
12798
12799 /* Specific methods for probe breakpoints. */
12800
12801 static int
12802 bkpt_probe_insert_location (struct bp_location *bl)
12803 {
12804 int v = bkpt_insert_location (bl);
12805
12806 if (v == 0)
12807 {
12808 /* The insertion was successful, now let's set the probe's semaphore
12809 if needed. */
12810 bl->probe.prob->set_semaphore (bl->probe.objfile, bl->gdbarch);
12811 }
12812
12813 return v;
12814 }
12815
12816 static int
12817 bkpt_probe_remove_location (struct bp_location *bl,
12818 enum remove_bp_reason reason)
12819 {
12820 /* Let's clear the semaphore before removing the location. */
12821 bl->probe.prob->clear_semaphore (bl->probe.objfile, bl->gdbarch);
12822
12823 return bkpt_remove_location (bl, reason);
12824 }
12825
12826 static void
12827 bkpt_probe_create_sals_from_location (const struct event_location *location,
12828 struct linespec_result *canonical,
12829 enum bptype type_wanted)
12830 {
12831 struct linespec_sals lsal;
12832
12833 lsal.sals = parse_probes (location, NULL, canonical);
12834 lsal.canonical
12835 = xstrdup (event_location_to_string (canonical->location.get ()));
12836 canonical->lsals.push_back (std::move (lsal));
12837 }
12838
12839 static std::vector<symtab_and_line>
12840 bkpt_probe_decode_location (struct breakpoint *b,
12841 const struct event_location *location,
12842 struct program_space *search_pspace)
12843 {
12844 std::vector<symtab_and_line> sals = parse_probes (location, search_pspace, NULL);
12845 if (sals.empty ())
12846 error (_("probe not found"));
12847 return sals;
12848 }
12849
12850 /* The breakpoint_ops structure to be used in tracepoints. */
12851
12852 static void
12853 tracepoint_re_set (struct breakpoint *b)
12854 {
12855 breakpoint_re_set_default (b);
12856 }
12857
12858 static int
12859 tracepoint_breakpoint_hit (const struct bp_location *bl,
12860 const address_space *aspace, CORE_ADDR bp_addr,
12861 const struct target_waitstatus *ws)
12862 {
12863 /* By definition, the inferior does not report stops at
12864 tracepoints. */
12865 return 0;
12866 }
12867
12868 static void
12869 tracepoint_print_one_detail (const struct breakpoint *self,
12870 struct ui_out *uiout)
12871 {
12872 struct tracepoint *tp = (struct tracepoint *) self;
12873 if (!tp->static_trace_marker_id.empty ())
12874 {
12875 gdb_assert (self->type == bp_static_tracepoint);
12876
12877 uiout->text ("\tmarker id is ");
12878 uiout->field_string ("static-tracepoint-marker-string-id",
12879 tp->static_trace_marker_id);
12880 uiout->text ("\n");
12881 }
12882 }
12883
12884 static void
12885 tracepoint_print_mention (struct breakpoint *b)
12886 {
12887 if (current_uiout->is_mi_like_p ())
12888 return;
12889
12890 switch (b->type)
12891 {
12892 case bp_tracepoint:
12893 printf_filtered (_("Tracepoint"));
12894 printf_filtered (_(" %d"), b->number);
12895 break;
12896 case bp_fast_tracepoint:
12897 printf_filtered (_("Fast tracepoint"));
12898 printf_filtered (_(" %d"), b->number);
12899 break;
12900 case bp_static_tracepoint:
12901 printf_filtered (_("Static tracepoint"));
12902 printf_filtered (_(" %d"), b->number);
12903 break;
12904 default:
12905 internal_error (__FILE__, __LINE__,
12906 _("unhandled tracepoint type %d"), (int) b->type);
12907 }
12908
12909 say_where (b);
12910 }
12911
12912 static void
12913 tracepoint_print_recreate (struct breakpoint *self, struct ui_file *fp)
12914 {
12915 struct tracepoint *tp = (struct tracepoint *) self;
12916
12917 if (self->type == bp_fast_tracepoint)
12918 fprintf_unfiltered (fp, "ftrace");
12919 else if (self->type == bp_static_tracepoint)
12920 fprintf_unfiltered (fp, "strace");
12921 else if (self->type == bp_tracepoint)
12922 fprintf_unfiltered (fp, "trace");
12923 else
12924 internal_error (__FILE__, __LINE__,
12925 _("unhandled tracepoint type %d"), (int) self->type);
12926
12927 fprintf_unfiltered (fp, " %s",
12928 event_location_to_string (self->location.get ()));
12929 print_recreate_thread (self, fp);
12930
12931 if (tp->pass_count)
12932 fprintf_unfiltered (fp, " passcount %d\n", tp->pass_count);
12933 }
12934
12935 static void
12936 tracepoint_create_sals_from_location (const struct event_location *location,
12937 struct linespec_result *canonical,
12938 enum bptype type_wanted)
12939 {
12940 create_sals_from_location_default (location, canonical, type_wanted);
12941 }
12942
12943 static void
12944 tracepoint_create_breakpoints_sal (struct gdbarch *gdbarch,
12945 struct linespec_result *canonical,
12946 gdb::unique_xmalloc_ptr<char> cond_string,
12947 gdb::unique_xmalloc_ptr<char> extra_string,
12948 enum bptype type_wanted,
12949 enum bpdisp disposition,
12950 int thread,
12951 int task, int ignore_count,
12952 const struct breakpoint_ops *ops,
12953 int from_tty, int enabled,
12954 int internal, unsigned flags)
12955 {
12956 create_breakpoints_sal_default (gdbarch, canonical,
12957 std::move (cond_string),
12958 std::move (extra_string),
12959 type_wanted,
12960 disposition, thread, task,
12961 ignore_count, ops, from_tty,
12962 enabled, internal, flags);
12963 }
12964
12965 static std::vector<symtab_and_line>
12966 tracepoint_decode_location (struct breakpoint *b,
12967 const struct event_location *location,
12968 struct program_space *search_pspace)
12969 {
12970 return decode_location_default (b, location, search_pspace);
12971 }
12972
12973 struct breakpoint_ops tracepoint_breakpoint_ops;
12974
12975 /* The breakpoint_ops structure to be use on tracepoints placed in a
12976 static probe. */
12977
12978 static void
12979 tracepoint_probe_create_sals_from_location
12980 (const struct event_location *location,
12981 struct linespec_result *canonical,
12982 enum bptype type_wanted)
12983 {
12984 /* We use the same method for breakpoint on probes. */
12985 bkpt_probe_create_sals_from_location (location, canonical, type_wanted);
12986 }
12987
12988 static std::vector<symtab_and_line>
12989 tracepoint_probe_decode_location (struct breakpoint *b,
12990 const struct event_location *location,
12991 struct program_space *search_pspace)
12992 {
12993 /* We use the same method for breakpoint on probes. */
12994 return bkpt_probe_decode_location (b, location, search_pspace);
12995 }
12996
12997 static struct breakpoint_ops tracepoint_probe_breakpoint_ops;
12998
12999 /* Dprintf breakpoint_ops methods. */
13000
13001 static void
13002 dprintf_re_set (struct breakpoint *b)
13003 {
13004 breakpoint_re_set_default (b);
13005
13006 /* extra_string should never be non-NULL for dprintf. */
13007 gdb_assert (b->extra_string != NULL);
13008
13009 /* 1 - connect to target 1, that can run breakpoint commands.
13010 2 - create a dprintf, which resolves fine.
13011 3 - disconnect from target 1
13012 4 - connect to target 2, that can NOT run breakpoint commands.
13013
13014 After steps #3/#4, you'll want the dprintf command list to
13015 be updated, because target 1 and 2 may well return different
13016 answers for target_can_run_breakpoint_commands().
13017 Given absence of finer grained resetting, we get to do
13018 it all the time. */
13019 if (b->extra_string != NULL)
13020 update_dprintf_command_list (b);
13021 }
13022
13023 /* Implement the "print_recreate" breakpoint_ops method for dprintf. */
13024
13025 static void
13026 dprintf_print_recreate (struct breakpoint *tp, struct ui_file *fp)
13027 {
13028 fprintf_unfiltered (fp, "dprintf %s,%s",
13029 event_location_to_string (tp->location.get ()),
13030 tp->extra_string);
13031 print_recreate_thread (tp, fp);
13032 }
13033
13034 /* Implement the "after_condition_true" breakpoint_ops method for
13035 dprintf.
13036
13037 dprintf's are implemented with regular commands in their command
13038 list, but we run the commands here instead of before presenting the
13039 stop to the user, as dprintf's don't actually cause a stop. This
13040 also makes it so that the commands of multiple dprintfs at the same
13041 address are all handled. */
13042
13043 static void
13044 dprintf_after_condition_true (struct bpstats *bs)
13045 {
13046 struct bpstats tmp_bs;
13047 struct bpstats *tmp_bs_p = &tmp_bs;
13048
13049 /* dprintf's never cause a stop. This wasn't set in the
13050 check_status hook instead because that would make the dprintf's
13051 condition not be evaluated. */
13052 bs->stop = 0;
13053
13054 /* Run the command list here. Take ownership of it instead of
13055 copying. We never want these commands to run later in
13056 bpstat_do_actions, if a breakpoint that causes a stop happens to
13057 be set at same address as this dprintf, or even if running the
13058 commands here throws. */
13059 tmp_bs.commands = bs->commands;
13060 bs->commands = NULL;
13061
13062 bpstat_do_actions_1 (&tmp_bs_p);
13063
13064 /* 'tmp_bs.commands' will usually be NULL by now, but
13065 bpstat_do_actions_1 may return early without processing the whole
13066 list. */
13067 }
13068
13069 /* The breakpoint_ops structure to be used on static tracepoints with
13070 markers (`-m'). */
13071
13072 static void
13073 strace_marker_create_sals_from_location (const struct event_location *location,
13074 struct linespec_result *canonical,
13075 enum bptype type_wanted)
13076 {
13077 struct linespec_sals lsal;
13078 const char *arg_start, *arg;
13079
13080 arg = arg_start = get_linespec_location (location)->spec_string;
13081 lsal.sals = decode_static_tracepoint_spec (&arg);
13082
13083 std::string str (arg_start, arg - arg_start);
13084 const char *ptr = str.c_str ();
13085 canonical->location
13086 = new_linespec_location (&ptr, symbol_name_match_type::FULL);
13087
13088 lsal.canonical
13089 = xstrdup (event_location_to_string (canonical->location.get ()));
13090 canonical->lsals.push_back (std::move (lsal));
13091 }
13092
13093 static void
13094 strace_marker_create_breakpoints_sal (struct gdbarch *gdbarch,
13095 struct linespec_result *canonical,
13096 gdb::unique_xmalloc_ptr<char> cond_string,
13097 gdb::unique_xmalloc_ptr<char> extra_string,
13098 enum bptype type_wanted,
13099 enum bpdisp disposition,
13100 int thread,
13101 int task, int ignore_count,
13102 const struct breakpoint_ops *ops,
13103 int from_tty, int enabled,
13104 int internal, unsigned flags)
13105 {
13106 const linespec_sals &lsal = canonical->lsals[0];
13107
13108 /* If the user is creating a static tracepoint by marker id
13109 (strace -m MARKER_ID), then store the sals index, so that
13110 breakpoint_re_set can try to match up which of the newly
13111 found markers corresponds to this one, and, don't try to
13112 expand multiple locations for each sal, given than SALS
13113 already should contain all sals for MARKER_ID. */
13114
13115 for (size_t i = 0; i < lsal.sals.size (); i++)
13116 {
13117 event_location_up location
13118 = copy_event_location (canonical->location.get ());
13119
13120 std::unique_ptr<tracepoint> tp (new tracepoint ());
13121 init_breakpoint_sal (tp.get (), gdbarch, lsal.sals[i],
13122 std::move (location), NULL,
13123 std::move (cond_string),
13124 std::move (extra_string),
13125 type_wanted, disposition,
13126 thread, task, ignore_count, ops,
13127 from_tty, enabled, internal, flags,
13128 canonical->special_display);
13129 /* Given that its possible to have multiple markers with
13130 the same string id, if the user is creating a static
13131 tracepoint by marker id ("strace -m MARKER_ID"), then
13132 store the sals index, so that breakpoint_re_set can
13133 try to match up which of the newly found markers
13134 corresponds to this one */
13135 tp->static_trace_marker_id_idx = i;
13136
13137 install_breakpoint (internal, std::move (tp), 0);
13138 }
13139 }
13140
13141 static std::vector<symtab_and_line>
13142 strace_marker_decode_location (struct breakpoint *b,
13143 const struct event_location *location,
13144 struct program_space *search_pspace)
13145 {
13146 struct tracepoint *tp = (struct tracepoint *) b;
13147 const char *s = get_linespec_location (location)->spec_string;
13148
13149 std::vector<symtab_and_line> sals = decode_static_tracepoint_spec (&s);
13150 if (sals.size () > tp->static_trace_marker_id_idx)
13151 {
13152 sals[0] = sals[tp->static_trace_marker_id_idx];
13153 sals.resize (1);
13154 return sals;
13155 }
13156 else
13157 error (_("marker %s not found"), tp->static_trace_marker_id.c_str ());
13158 }
13159
13160 static struct breakpoint_ops strace_marker_breakpoint_ops;
13161
13162 static int
13163 strace_marker_p (struct breakpoint *b)
13164 {
13165 return b->ops == &strace_marker_breakpoint_ops;
13166 }
13167
13168 /* Delete a breakpoint and clean up all traces of it in the data
13169 structures. */
13170
13171 void
13172 delete_breakpoint (struct breakpoint *bpt)
13173 {
13174 struct breakpoint *b;
13175
13176 gdb_assert (bpt != NULL);
13177
13178 /* Has this bp already been deleted? This can happen because
13179 multiple lists can hold pointers to bp's. bpstat lists are
13180 especial culprits.
13181
13182 One example of this happening is a watchpoint's scope bp. When
13183 the scope bp triggers, we notice that the watchpoint is out of
13184 scope, and delete it. We also delete its scope bp. But the
13185 scope bp is marked "auto-deleting", and is already on a bpstat.
13186 That bpstat is then checked for auto-deleting bp's, which are
13187 deleted.
13188
13189 A real solution to this problem might involve reference counts in
13190 bp's, and/or giving them pointers back to their referencing
13191 bpstat's, and teaching delete_breakpoint to only free a bp's
13192 storage when no more references were extent. A cheaper bandaid
13193 was chosen. */
13194 if (bpt->type == bp_none)
13195 return;
13196
13197 /* At least avoid this stale reference until the reference counting
13198 of breakpoints gets resolved. */
13199 if (bpt->related_breakpoint != bpt)
13200 {
13201 struct breakpoint *related;
13202 struct watchpoint *w;
13203
13204 if (bpt->type == bp_watchpoint_scope)
13205 w = (struct watchpoint *) bpt->related_breakpoint;
13206 else if (bpt->related_breakpoint->type == bp_watchpoint_scope)
13207 w = (struct watchpoint *) bpt;
13208 else
13209 w = NULL;
13210 if (w != NULL)
13211 watchpoint_del_at_next_stop (w);
13212
13213 /* Unlink bpt from the bpt->related_breakpoint ring. */
13214 for (related = bpt; related->related_breakpoint != bpt;
13215 related = related->related_breakpoint);
13216 related->related_breakpoint = bpt->related_breakpoint;
13217 bpt->related_breakpoint = bpt;
13218 }
13219
13220 /* watch_command_1 creates a watchpoint but only sets its number if
13221 update_watchpoint succeeds in creating its bp_locations. If there's
13222 a problem in that process, we'll be asked to delete the half-created
13223 watchpoint. In that case, don't announce the deletion. */
13224 if (bpt->number)
13225 gdb::observers::breakpoint_deleted.notify (bpt);
13226
13227 if (breakpoint_chain == bpt)
13228 breakpoint_chain = bpt->next;
13229
13230 ALL_BREAKPOINTS (b)
13231 if (b->next == bpt)
13232 {
13233 b->next = bpt->next;
13234 break;
13235 }
13236
13237 /* Be sure no bpstat's are pointing at the breakpoint after it's
13238 been freed. */
13239 /* FIXME, how can we find all bpstat's? We just check stop_bpstat
13240 in all threads for now. Note that we cannot just remove bpstats
13241 pointing at bpt from the stop_bpstat list entirely, as breakpoint
13242 commands are associated with the bpstat; if we remove it here,
13243 then the later call to bpstat_do_actions (&stop_bpstat); in
13244 event-top.c won't do anything, and temporary breakpoints with
13245 commands won't work. */
13246
13247 iterate_over_threads (bpstat_remove_breakpoint_callback, bpt);
13248
13249 /* Now that breakpoint is removed from breakpoint list, update the
13250 global location list. This will remove locations that used to
13251 belong to this breakpoint. Do this before freeing the breakpoint
13252 itself, since remove_breakpoint looks at location's owner. It
13253 might be better design to have location completely
13254 self-contained, but it's not the case now. */
13255 update_global_location_list (UGLL_DONT_INSERT);
13256
13257 /* On the chance that someone will soon try again to delete this
13258 same bp, we mark it as deleted before freeing its storage. */
13259 bpt->type = bp_none;
13260 delete bpt;
13261 }
13262
13263 /* Iterator function to call a user-provided callback function once
13264 for each of B and its related breakpoints. */
13265
13266 static void
13267 iterate_over_related_breakpoints (struct breakpoint *b,
13268 gdb::function_view<void (breakpoint *)> function)
13269 {
13270 struct breakpoint *related;
13271
13272 related = b;
13273 do
13274 {
13275 struct breakpoint *next;
13276
13277 /* FUNCTION may delete RELATED. */
13278 next = related->related_breakpoint;
13279
13280 if (next == related)
13281 {
13282 /* RELATED is the last ring entry. */
13283 function (related);
13284
13285 /* FUNCTION may have deleted it, so we'd never reach back to
13286 B. There's nothing left to do anyway, so just break
13287 out. */
13288 break;
13289 }
13290 else
13291 function (related);
13292
13293 related = next;
13294 }
13295 while (related != b);
13296 }
13297
13298 static void
13299 delete_command (const char *arg, int from_tty)
13300 {
13301 struct breakpoint *b, *b_tmp;
13302
13303 dont_repeat ();
13304
13305 if (arg == 0)
13306 {
13307 int breaks_to_delete = 0;
13308
13309 /* Delete all breakpoints if no argument. Do not delete
13310 internal breakpoints, these have to be deleted with an
13311 explicit breakpoint number argument. */
13312 ALL_BREAKPOINTS (b)
13313 if (user_breakpoint_p (b))
13314 {
13315 breaks_to_delete = 1;
13316 break;
13317 }
13318
13319 /* Ask user only if there are some breakpoints to delete. */
13320 if (!from_tty
13321 || (breaks_to_delete && query (_("Delete all breakpoints? "))))
13322 {
13323 ALL_BREAKPOINTS_SAFE (b, b_tmp)
13324 if (user_breakpoint_p (b))
13325 delete_breakpoint (b);
13326 }
13327 }
13328 else
13329 map_breakpoint_numbers
13330 (arg, [&] (breakpoint *b)
13331 {
13332 iterate_over_related_breakpoints (b, delete_breakpoint);
13333 });
13334 }
13335
13336 /* Return true if all locations of B bound to PSPACE are pending. If
13337 PSPACE is NULL, all locations of all program spaces are
13338 considered. */
13339
13340 static int
13341 all_locations_are_pending (struct breakpoint *b, struct program_space *pspace)
13342 {
13343 struct bp_location *loc;
13344
13345 for (loc = b->loc; loc != NULL; loc = loc->next)
13346 if ((pspace == NULL
13347 || loc->pspace == pspace)
13348 && !loc->shlib_disabled
13349 && !loc->pspace->executing_startup)
13350 return 0;
13351 return 1;
13352 }
13353
13354 /* Subroutine of update_breakpoint_locations to simplify it.
13355 Return non-zero if multiple fns in list LOC have the same name.
13356 Null names are ignored. */
13357
13358 static int
13359 ambiguous_names_p (struct bp_location *loc)
13360 {
13361 struct bp_location *l;
13362 htab_t htab = htab_create_alloc (13, htab_hash_string, streq_hash, NULL,
13363 xcalloc, xfree);
13364
13365 for (l = loc; l != NULL; l = l->next)
13366 {
13367 const char **slot;
13368 const char *name = l->function_name;
13369
13370 /* Allow for some names to be NULL, ignore them. */
13371 if (name == NULL)
13372 continue;
13373
13374 slot = (const char **) htab_find_slot (htab, (const void *) name,
13375 INSERT);
13376 /* NOTE: We can assume slot != NULL here because xcalloc never
13377 returns NULL. */
13378 if (*slot != NULL)
13379 {
13380 htab_delete (htab);
13381 return 1;
13382 }
13383 *slot = name;
13384 }
13385
13386 htab_delete (htab);
13387 return 0;
13388 }
13389
13390 /* When symbols change, it probably means the sources changed as well,
13391 and it might mean the static tracepoint markers are no longer at
13392 the same address or line numbers they used to be at last we
13393 checked. Losing your static tracepoints whenever you rebuild is
13394 undesirable. This function tries to resync/rematch gdb static
13395 tracepoints with the markers on the target, for static tracepoints
13396 that have not been set by marker id. Static tracepoint that have
13397 been set by marker id are reset by marker id in breakpoint_re_set.
13398 The heuristic is:
13399
13400 1) For a tracepoint set at a specific address, look for a marker at
13401 the old PC. If one is found there, assume to be the same marker.
13402 If the name / string id of the marker found is different from the
13403 previous known name, assume that means the user renamed the marker
13404 in the sources, and output a warning.
13405
13406 2) For a tracepoint set at a given line number, look for a marker
13407 at the new address of the old line number. If one is found there,
13408 assume to be the same marker. If the name / string id of the
13409 marker found is different from the previous known name, assume that
13410 means the user renamed the marker in the sources, and output a
13411 warning.
13412
13413 3) If a marker is no longer found at the same address or line, it
13414 may mean the marker no longer exists. But it may also just mean
13415 the code changed a bit. Maybe the user added a few lines of code
13416 that made the marker move up or down (in line number terms). Ask
13417 the target for info about the marker with the string id as we knew
13418 it. If found, update line number and address in the matching
13419 static tracepoint. This will get confused if there's more than one
13420 marker with the same ID (possible in UST, although unadvised
13421 precisely because it confuses tools). */
13422
13423 static struct symtab_and_line
13424 update_static_tracepoint (struct breakpoint *b, struct symtab_and_line sal)
13425 {
13426 struct tracepoint *tp = (struct tracepoint *) b;
13427 struct static_tracepoint_marker marker;
13428 CORE_ADDR pc;
13429
13430 pc = sal.pc;
13431 if (sal.line)
13432 find_line_pc (sal.symtab, sal.line, &pc);
13433
13434 if (target_static_tracepoint_marker_at (pc, &marker))
13435 {
13436 if (tp->static_trace_marker_id != marker.str_id)
13437 warning (_("static tracepoint %d changed probed marker from %s to %s"),
13438 b->number, tp->static_trace_marker_id.c_str (),
13439 marker.str_id.c_str ());
13440
13441 tp->static_trace_marker_id = std::move (marker.str_id);
13442
13443 return sal;
13444 }
13445
13446 /* Old marker wasn't found on target at lineno. Try looking it up
13447 by string ID. */
13448 if (!sal.explicit_pc
13449 && sal.line != 0
13450 && sal.symtab != NULL
13451 && !tp->static_trace_marker_id.empty ())
13452 {
13453 std::vector<static_tracepoint_marker> markers
13454 = target_static_tracepoint_markers_by_strid
13455 (tp->static_trace_marker_id.c_str ());
13456
13457 if (!markers.empty ())
13458 {
13459 struct symbol *sym;
13460 struct static_tracepoint_marker *tpmarker;
13461 struct ui_out *uiout = current_uiout;
13462 struct explicit_location explicit_loc;
13463
13464 tpmarker = &markers[0];
13465
13466 tp->static_trace_marker_id = std::move (tpmarker->str_id);
13467
13468 warning (_("marker for static tracepoint %d (%s) not "
13469 "found at previous line number"),
13470 b->number, tp->static_trace_marker_id.c_str ());
13471
13472 symtab_and_line sal2 = find_pc_line (tpmarker->address, 0);
13473 sym = find_pc_sect_function (tpmarker->address, NULL);
13474 uiout->text ("Now in ");
13475 if (sym)
13476 {
13477 uiout->field_string ("func", SYMBOL_PRINT_NAME (sym));
13478 uiout->text (" at ");
13479 }
13480 uiout->field_string ("file",
13481 symtab_to_filename_for_display (sal2.symtab));
13482 uiout->text (":");
13483
13484 if (uiout->is_mi_like_p ())
13485 {
13486 const char *fullname = symtab_to_fullname (sal2.symtab);
13487
13488 uiout->field_string ("fullname", fullname);
13489 }
13490
13491 uiout->field_int ("line", sal2.line);
13492 uiout->text ("\n");
13493
13494 b->loc->line_number = sal2.line;
13495 b->loc->symtab = sym != NULL ? sal2.symtab : NULL;
13496
13497 b->location.reset (NULL);
13498 initialize_explicit_location (&explicit_loc);
13499 explicit_loc.source_filename
13500 = ASTRDUP (symtab_to_filename_for_display (sal2.symtab));
13501 explicit_loc.line_offset.offset = b->loc->line_number;
13502 explicit_loc.line_offset.sign = LINE_OFFSET_NONE;
13503 b->location = new_explicit_location (&explicit_loc);
13504
13505 /* Might be nice to check if function changed, and warn if
13506 so. */
13507 }
13508 }
13509 return sal;
13510 }
13511
13512 /* Returns 1 iff locations A and B are sufficiently same that
13513 we don't need to report breakpoint as changed. */
13514
13515 static int
13516 locations_are_equal (struct bp_location *a, struct bp_location *b)
13517 {
13518 while (a && b)
13519 {
13520 if (a->address != b->address)
13521 return 0;
13522
13523 if (a->shlib_disabled != b->shlib_disabled)
13524 return 0;
13525
13526 if (a->enabled != b->enabled)
13527 return 0;
13528
13529 a = a->next;
13530 b = b->next;
13531 }
13532
13533 if ((a == NULL) != (b == NULL))
13534 return 0;
13535
13536 return 1;
13537 }
13538
13539 /* Split all locations of B that are bound to PSPACE out of B's
13540 location list to a separate list and return that list's head. If
13541 PSPACE is NULL, hoist out all locations of B. */
13542
13543 static struct bp_location *
13544 hoist_existing_locations (struct breakpoint *b, struct program_space *pspace)
13545 {
13546 struct bp_location head;
13547 struct bp_location *i = b->loc;
13548 struct bp_location **i_link = &b->loc;
13549 struct bp_location *hoisted = &head;
13550
13551 if (pspace == NULL)
13552 {
13553 i = b->loc;
13554 b->loc = NULL;
13555 return i;
13556 }
13557
13558 head.next = NULL;
13559
13560 while (i != NULL)
13561 {
13562 if (i->pspace == pspace)
13563 {
13564 *i_link = i->next;
13565 i->next = NULL;
13566 hoisted->next = i;
13567 hoisted = i;
13568 }
13569 else
13570 i_link = &i->next;
13571 i = *i_link;
13572 }
13573
13574 return head.next;
13575 }
13576
13577 /* Create new breakpoint locations for B (a hardware or software
13578 breakpoint) based on SALS and SALS_END. If SALS_END.NELTS is not
13579 zero, then B is a ranged breakpoint. Only recreates locations for
13580 FILTER_PSPACE. Locations of other program spaces are left
13581 untouched. */
13582
13583 void
13584 update_breakpoint_locations (struct breakpoint *b,
13585 struct program_space *filter_pspace,
13586 gdb::array_view<const symtab_and_line> sals,
13587 gdb::array_view<const symtab_and_line> sals_end)
13588 {
13589 struct bp_location *existing_locations;
13590
13591 if (!sals_end.empty () && (sals.size () != 1 || sals_end.size () != 1))
13592 {
13593 /* Ranged breakpoints have only one start location and one end
13594 location. */
13595 b->enable_state = bp_disabled;
13596 printf_unfiltered (_("Could not reset ranged breakpoint %d: "
13597 "multiple locations found\n"),
13598 b->number);
13599 return;
13600 }
13601
13602 /* If there's no new locations, and all existing locations are
13603 pending, don't do anything. This optimizes the common case where
13604 all locations are in the same shared library, that was unloaded.
13605 We'd like to retain the location, so that when the library is
13606 loaded again, we don't loose the enabled/disabled status of the
13607 individual locations. */
13608 if (all_locations_are_pending (b, filter_pspace) && sals.empty ())
13609 return;
13610
13611 existing_locations = hoist_existing_locations (b, filter_pspace);
13612
13613 for (const auto &sal : sals)
13614 {
13615 struct bp_location *new_loc;
13616
13617 switch_to_program_space_and_thread (sal.pspace);
13618
13619 new_loc = add_location_to_breakpoint (b, &sal);
13620
13621 /* Reparse conditions, they might contain references to the
13622 old symtab. */
13623 if (b->cond_string != NULL)
13624 {
13625 const char *s;
13626
13627 s = b->cond_string;
13628 TRY
13629 {
13630 new_loc->cond = parse_exp_1 (&s, sal.pc,
13631 block_for_pc (sal.pc),
13632 0);
13633 }
13634 CATCH (e, RETURN_MASK_ERROR)
13635 {
13636 warning (_("failed to reevaluate condition "
13637 "for breakpoint %d: %s"),
13638 b->number, e.message);
13639 new_loc->enabled = 0;
13640 }
13641 END_CATCH
13642 }
13643
13644 if (!sals_end.empty ())
13645 {
13646 CORE_ADDR end = find_breakpoint_range_end (sals_end[0]);
13647
13648 new_loc->length = end - sals[0].pc + 1;
13649 }
13650 }
13651
13652 /* If possible, carry over 'disable' status from existing
13653 breakpoints. */
13654 {
13655 struct bp_location *e = existing_locations;
13656 /* If there are multiple breakpoints with the same function name,
13657 e.g. for inline functions, comparing function names won't work.
13658 Instead compare pc addresses; this is just a heuristic as things
13659 may have moved, but in practice it gives the correct answer
13660 often enough until a better solution is found. */
13661 int have_ambiguous_names = ambiguous_names_p (b->loc);
13662
13663 for (; e; e = e->next)
13664 {
13665 if (!e->enabled && e->function_name)
13666 {
13667 struct bp_location *l = b->loc;
13668 if (have_ambiguous_names)
13669 {
13670 for (; l; l = l->next)
13671 if (breakpoint_locations_match (e, l))
13672 {
13673 l->enabled = 0;
13674 break;
13675 }
13676 }
13677 else
13678 {
13679 for (; l; l = l->next)
13680 if (l->function_name
13681 && strcmp (e->function_name, l->function_name) == 0)
13682 {
13683 l->enabled = 0;
13684 break;
13685 }
13686 }
13687 }
13688 }
13689 }
13690
13691 if (!locations_are_equal (existing_locations, b->loc))
13692 gdb::observers::breakpoint_modified.notify (b);
13693 }
13694
13695 /* Find the SaL locations corresponding to the given LOCATION.
13696 On return, FOUND will be 1 if any SaL was found, zero otherwise. */
13697
13698 static std::vector<symtab_and_line>
13699 location_to_sals (struct breakpoint *b, struct event_location *location,
13700 struct program_space *search_pspace, int *found)
13701 {
13702 struct gdb_exception exception = exception_none;
13703
13704 gdb_assert (b->ops != NULL);
13705
13706 std::vector<symtab_and_line> sals;
13707
13708 TRY
13709 {
13710 sals = b->ops->decode_location (b, location, search_pspace);
13711 }
13712 CATCH (e, RETURN_MASK_ERROR)
13713 {
13714 int not_found_and_ok = 0;
13715
13716 exception = e;
13717
13718 /* For pending breakpoints, it's expected that parsing will
13719 fail until the right shared library is loaded. User has
13720 already told to create pending breakpoints and don't need
13721 extra messages. If breakpoint is in bp_shlib_disabled
13722 state, then user already saw the message about that
13723 breakpoint being disabled, and don't want to see more
13724 errors. */
13725 if (e.error == NOT_FOUND_ERROR
13726 && (b->condition_not_parsed
13727 || (b->loc != NULL
13728 && search_pspace != NULL
13729 && b->loc->pspace != search_pspace)
13730 || (b->loc && b->loc->shlib_disabled)
13731 || (b->loc && b->loc->pspace->executing_startup)
13732 || b->enable_state == bp_disabled))
13733 not_found_and_ok = 1;
13734
13735 if (!not_found_and_ok)
13736 {
13737 /* We surely don't want to warn about the same breakpoint
13738 10 times. One solution, implemented here, is disable
13739 the breakpoint on error. Another solution would be to
13740 have separate 'warning emitted' flag. Since this
13741 happens only when a binary has changed, I don't know
13742 which approach is better. */
13743 b->enable_state = bp_disabled;
13744 throw_exception (e);
13745 }
13746 }
13747 END_CATCH
13748
13749 if (exception.reason == 0 || exception.error != NOT_FOUND_ERROR)
13750 {
13751 for (auto &sal : sals)
13752 resolve_sal_pc (&sal);
13753 if (b->condition_not_parsed && b->extra_string != NULL)
13754 {
13755 char *cond_string, *extra_string;
13756 int thread, task;
13757
13758 find_condition_and_thread (b->extra_string, sals[0].pc,
13759 &cond_string, &thread, &task,
13760 &extra_string);
13761 gdb_assert (b->cond_string == NULL);
13762 if (cond_string)
13763 b->cond_string = cond_string;
13764 b->thread = thread;
13765 b->task = task;
13766 if (extra_string)
13767 {
13768 xfree (b->extra_string);
13769 b->extra_string = extra_string;
13770 }
13771 b->condition_not_parsed = 0;
13772 }
13773
13774 if (b->type == bp_static_tracepoint && !strace_marker_p (b))
13775 sals[0] = update_static_tracepoint (b, sals[0]);
13776
13777 *found = 1;
13778 }
13779 else
13780 *found = 0;
13781
13782 return sals;
13783 }
13784
13785 /* The default re_set method, for typical hardware or software
13786 breakpoints. Reevaluate the breakpoint and recreate its
13787 locations. */
13788
13789 static void
13790 breakpoint_re_set_default (struct breakpoint *b)
13791 {
13792 struct program_space *filter_pspace = current_program_space;
13793 std::vector<symtab_and_line> expanded, expanded_end;
13794
13795 int found;
13796 std::vector<symtab_and_line> sals = location_to_sals (b, b->location.get (),
13797 filter_pspace, &found);
13798 if (found)
13799 expanded = std::move (sals);
13800
13801 if (b->location_range_end != NULL)
13802 {
13803 std::vector<symtab_and_line> sals_end
13804 = location_to_sals (b, b->location_range_end.get (),
13805 filter_pspace, &found);
13806 if (found)
13807 expanded_end = std::move (sals_end);
13808 }
13809
13810 update_breakpoint_locations (b, filter_pspace, expanded, expanded_end);
13811 }
13812
13813 /* Default method for creating SALs from an address string. It basically
13814 calls parse_breakpoint_sals. Return 1 for success, zero for failure. */
13815
13816 static void
13817 create_sals_from_location_default (const struct event_location *location,
13818 struct linespec_result *canonical,
13819 enum bptype type_wanted)
13820 {
13821 parse_breakpoint_sals (location, canonical);
13822 }
13823
13824 /* Call create_breakpoints_sal for the given arguments. This is the default
13825 function for the `create_breakpoints_sal' method of
13826 breakpoint_ops. */
13827
13828 static void
13829 create_breakpoints_sal_default (struct gdbarch *gdbarch,
13830 struct linespec_result *canonical,
13831 gdb::unique_xmalloc_ptr<char> cond_string,
13832 gdb::unique_xmalloc_ptr<char> extra_string,
13833 enum bptype type_wanted,
13834 enum bpdisp disposition,
13835 int thread,
13836 int task, int ignore_count,
13837 const struct breakpoint_ops *ops,
13838 int from_tty, int enabled,
13839 int internal, unsigned flags)
13840 {
13841 create_breakpoints_sal (gdbarch, canonical,
13842 std::move (cond_string),
13843 std::move (extra_string),
13844 type_wanted, disposition,
13845 thread, task, ignore_count, ops, from_tty,
13846 enabled, internal, flags);
13847 }
13848
13849 /* Decode the line represented by S by calling decode_line_full. This is the
13850 default function for the `decode_location' method of breakpoint_ops. */
13851
13852 static std::vector<symtab_and_line>
13853 decode_location_default (struct breakpoint *b,
13854 const struct event_location *location,
13855 struct program_space *search_pspace)
13856 {
13857 struct linespec_result canonical;
13858
13859 decode_line_full (location, DECODE_LINE_FUNFIRSTLINE, search_pspace,
13860 (struct symtab *) NULL, 0,
13861 &canonical, multiple_symbols_all,
13862 b->filter);
13863
13864 /* We should get 0 or 1 resulting SALs. */
13865 gdb_assert (canonical.lsals.size () < 2);
13866
13867 if (!canonical.lsals.empty ())
13868 {
13869 const linespec_sals &lsal = canonical.lsals[0];
13870 return std::move (lsal.sals);
13871 }
13872 return {};
13873 }
13874
13875 /* Reset a breakpoint. */
13876
13877 static void
13878 breakpoint_re_set_one (breakpoint *b)
13879 {
13880 input_radix = b->input_radix;
13881 set_language (b->language);
13882
13883 b->ops->re_set (b);
13884 }
13885
13886 /* Re-set breakpoint locations for the current program space.
13887 Locations bound to other program spaces are left untouched. */
13888
13889 void
13890 breakpoint_re_set (void)
13891 {
13892 struct breakpoint *b, *b_tmp;
13893
13894 {
13895 scoped_restore_current_language save_language;
13896 scoped_restore save_input_radix = make_scoped_restore (&input_radix);
13897 scoped_restore_current_pspace_and_thread restore_pspace_thread;
13898
13899 /* Note: we must not try to insert locations until after all
13900 breakpoints have been re-set. Otherwise, e.g., when re-setting
13901 breakpoint 1, we'd insert the locations of breakpoint 2, which
13902 hadn't been re-set yet, and thus may have stale locations. */
13903
13904 ALL_BREAKPOINTS_SAFE (b, b_tmp)
13905 {
13906 TRY
13907 {
13908 breakpoint_re_set_one (b);
13909 }
13910 CATCH (ex, RETURN_MASK_ALL)
13911 {
13912 exception_fprintf (gdb_stderr, ex,
13913 "Error in re-setting breakpoint %d: ",
13914 b->number);
13915 }
13916 END_CATCH
13917 }
13918
13919 jit_breakpoint_re_set ();
13920 }
13921
13922 create_overlay_event_breakpoint ();
13923 create_longjmp_master_breakpoint ();
13924 create_std_terminate_master_breakpoint ();
13925 create_exception_master_breakpoint ();
13926
13927 /* Now we can insert. */
13928 update_global_location_list (UGLL_MAY_INSERT);
13929 }
13930 \f
13931 /* Reset the thread number of this breakpoint:
13932
13933 - If the breakpoint is for all threads, leave it as-is.
13934 - Else, reset it to the current thread for inferior_ptid. */
13935 void
13936 breakpoint_re_set_thread (struct breakpoint *b)
13937 {
13938 if (b->thread != -1)
13939 {
13940 if (in_thread_list (inferior_ptid))
13941 b->thread = ptid_to_global_thread_id (inferior_ptid);
13942
13943 /* We're being called after following a fork. The new fork is
13944 selected as current, and unless this was a vfork will have a
13945 different program space from the original thread. Reset that
13946 as well. */
13947 b->loc->pspace = current_program_space;
13948 }
13949 }
13950
13951 /* Set ignore-count of breakpoint number BPTNUM to COUNT.
13952 If from_tty is nonzero, it prints a message to that effect,
13953 which ends with a period (no newline). */
13954
13955 void
13956 set_ignore_count (int bptnum, int count, int from_tty)
13957 {
13958 struct breakpoint *b;
13959
13960 if (count < 0)
13961 count = 0;
13962
13963 ALL_BREAKPOINTS (b)
13964 if (b->number == bptnum)
13965 {
13966 if (is_tracepoint (b))
13967 {
13968 if (from_tty && count != 0)
13969 printf_filtered (_("Ignore count ignored for tracepoint %d."),
13970 bptnum);
13971 return;
13972 }
13973
13974 b->ignore_count = count;
13975 if (from_tty)
13976 {
13977 if (count == 0)
13978 printf_filtered (_("Will stop next time "
13979 "breakpoint %d is reached."),
13980 bptnum);
13981 else if (count == 1)
13982 printf_filtered (_("Will ignore next crossing of breakpoint %d."),
13983 bptnum);
13984 else
13985 printf_filtered (_("Will ignore next %d "
13986 "crossings of breakpoint %d."),
13987 count, bptnum);
13988 }
13989 gdb::observers::breakpoint_modified.notify (b);
13990 return;
13991 }
13992
13993 error (_("No breakpoint number %d."), bptnum);
13994 }
13995
13996 /* Command to set ignore-count of breakpoint N to COUNT. */
13997
13998 static void
13999 ignore_command (const char *args, int from_tty)
14000 {
14001 const char *p = args;
14002 int num;
14003
14004 if (p == 0)
14005 error_no_arg (_("a breakpoint number"));
14006
14007 num = get_number (&p);
14008 if (num == 0)
14009 error (_("bad breakpoint number: '%s'"), args);
14010 if (*p == 0)
14011 error (_("Second argument (specified ignore-count) is missing."));
14012
14013 set_ignore_count (num,
14014 longest_to_int (value_as_long (parse_and_eval (p))),
14015 from_tty);
14016 if (from_tty)
14017 printf_filtered ("\n");
14018 }
14019 \f
14020
14021 /* Call FUNCTION on each of the breakpoints with numbers in the range
14022 defined by BP_NUM_RANGE (an inclusive range). */
14023
14024 static void
14025 map_breakpoint_number_range (std::pair<int, int> bp_num_range,
14026 gdb::function_view<void (breakpoint *)> function)
14027 {
14028 if (bp_num_range.first == 0)
14029 {
14030 warning (_("bad breakpoint number at or near '%d'"),
14031 bp_num_range.first);
14032 }
14033 else
14034 {
14035 struct breakpoint *b, *tmp;
14036
14037 for (int i = bp_num_range.first; i <= bp_num_range.second; i++)
14038 {
14039 bool match = false;
14040
14041 ALL_BREAKPOINTS_SAFE (b, tmp)
14042 if (b->number == i)
14043 {
14044 match = true;
14045 function (b);
14046 break;
14047 }
14048 if (!match)
14049 printf_unfiltered (_("No breakpoint number %d.\n"), i);
14050 }
14051 }
14052 }
14053
14054 /* Call FUNCTION on each of the breakpoints whose numbers are given in
14055 ARGS. */
14056
14057 static void
14058 map_breakpoint_numbers (const char *args,
14059 gdb::function_view<void (breakpoint *)> function)
14060 {
14061 if (args == NULL || *args == '\0')
14062 error_no_arg (_("one or more breakpoint numbers"));
14063
14064 number_or_range_parser parser (args);
14065
14066 while (!parser.finished ())
14067 {
14068 int num = parser.get_number ();
14069 map_breakpoint_number_range (std::make_pair (num, num), function);
14070 }
14071 }
14072
14073 /* Return the breakpoint location structure corresponding to the
14074 BP_NUM and LOC_NUM values. */
14075
14076 static struct bp_location *
14077 find_location_by_number (int bp_num, int loc_num)
14078 {
14079 struct breakpoint *b;
14080
14081 ALL_BREAKPOINTS (b)
14082 if (b->number == bp_num)
14083 {
14084 break;
14085 }
14086
14087 if (!b || b->number != bp_num)
14088 error (_("Bad breakpoint number '%d'"), bp_num);
14089
14090 if (loc_num == 0)
14091 error (_("Bad breakpoint location number '%d'"), loc_num);
14092
14093 int n = 0;
14094 for (bp_location *loc = b->loc; loc != NULL; loc = loc->next)
14095 if (++n == loc_num)
14096 return loc;
14097
14098 error (_("Bad breakpoint location number '%d'"), loc_num);
14099 }
14100
14101 /* Modes of operation for extract_bp_num. */
14102 enum class extract_bp_kind
14103 {
14104 /* Extracting a breakpoint number. */
14105 bp,
14106
14107 /* Extracting a location number. */
14108 loc,
14109 };
14110
14111 /* Extract a breakpoint or location number (as determined by KIND)
14112 from the string starting at START. TRAILER is a character which
14113 can be found after the number. If you don't want a trailer, use
14114 '\0'. If END_OUT is not NULL, it is set to point after the parsed
14115 string. This always returns a positive integer. */
14116
14117 static int
14118 extract_bp_num (extract_bp_kind kind, const char *start,
14119 int trailer, const char **end_out = NULL)
14120 {
14121 const char *end = start;
14122 int num = get_number_trailer (&end, trailer);
14123 if (num < 0)
14124 error (kind == extract_bp_kind::bp
14125 ? _("Negative breakpoint number '%.*s'")
14126 : _("Negative breakpoint location number '%.*s'"),
14127 int (end - start), start);
14128 if (num == 0)
14129 error (kind == extract_bp_kind::bp
14130 ? _("Bad breakpoint number '%.*s'")
14131 : _("Bad breakpoint location number '%.*s'"),
14132 int (end - start), start);
14133
14134 if (end_out != NULL)
14135 *end_out = end;
14136 return num;
14137 }
14138
14139 /* Extract a breakpoint or location range (as determined by KIND) in
14140 the form NUM1-NUM2 stored at &ARG[arg_offset]. Returns a std::pair
14141 representing the (inclusive) range. The returned pair's elements
14142 are always positive integers. */
14143
14144 static std::pair<int, int>
14145 extract_bp_or_bp_range (extract_bp_kind kind,
14146 const std::string &arg,
14147 std::string::size_type arg_offset)
14148 {
14149 std::pair<int, int> range;
14150 const char *bp_loc = &arg[arg_offset];
14151 std::string::size_type dash = arg.find ('-', arg_offset);
14152 if (dash != std::string::npos)
14153 {
14154 /* bp_loc is a range (x-z). */
14155 if (arg.length () == dash + 1)
14156 error (kind == extract_bp_kind::bp
14157 ? _("Bad breakpoint number at or near: '%s'")
14158 : _("Bad breakpoint location number at or near: '%s'"),
14159 bp_loc);
14160
14161 const char *end;
14162 const char *start_first = bp_loc;
14163 const char *start_second = &arg[dash + 1];
14164 range.first = extract_bp_num (kind, start_first, '-');
14165 range.second = extract_bp_num (kind, start_second, '\0', &end);
14166
14167 if (range.first > range.second)
14168 error (kind == extract_bp_kind::bp
14169 ? _("Inverted breakpoint range at '%.*s'")
14170 : _("Inverted breakpoint location range at '%.*s'"),
14171 int (end - start_first), start_first);
14172 }
14173 else
14174 {
14175 /* bp_loc is a single value. */
14176 range.first = extract_bp_num (kind, bp_loc, '\0');
14177 range.second = range.first;
14178 }
14179 return range;
14180 }
14181
14182 /* Extract the breakpoint/location range specified by ARG. Returns
14183 the breakpoint range in BP_NUM_RANGE, and the location range in
14184 BP_LOC_RANGE.
14185
14186 ARG may be in any of the following forms:
14187
14188 x where 'x' is a breakpoint number.
14189 x-y where 'x' and 'y' specify a breakpoint numbers range.
14190 x.y where 'x' is a breakpoint number and 'y' a location number.
14191 x.y-z where 'x' is a breakpoint number and 'y' and 'z' specify a
14192 location number range.
14193 */
14194
14195 static void
14196 extract_bp_number_and_location (const std::string &arg,
14197 std::pair<int, int> &bp_num_range,
14198 std::pair<int, int> &bp_loc_range)
14199 {
14200 std::string::size_type dot = arg.find ('.');
14201
14202 if (dot != std::string::npos)
14203 {
14204 /* Handle 'x.y' and 'x.y-z' cases. */
14205
14206 if (arg.length () == dot + 1 || dot == 0)
14207 error (_("Bad breakpoint number at or near: '%s'"), arg.c_str ());
14208
14209 bp_num_range.first
14210 = extract_bp_num (extract_bp_kind::bp, arg.c_str (), '.');
14211 bp_num_range.second = bp_num_range.first;
14212
14213 bp_loc_range = extract_bp_or_bp_range (extract_bp_kind::loc,
14214 arg, dot + 1);
14215 }
14216 else
14217 {
14218 /* Handle x and x-y cases. */
14219
14220 bp_num_range = extract_bp_or_bp_range (extract_bp_kind::bp, arg, 0);
14221 bp_loc_range.first = 0;
14222 bp_loc_range.second = 0;
14223 }
14224 }
14225
14226 /* Enable or disable a breakpoint location BP_NUM.LOC_NUM. ENABLE
14227 specifies whether to enable or disable. */
14228
14229 static void
14230 enable_disable_bp_num_loc (int bp_num, int loc_num, bool enable)
14231 {
14232 struct bp_location *loc = find_location_by_number (bp_num, loc_num);
14233 if (loc != NULL)
14234 {
14235 if (loc->enabled != enable)
14236 {
14237 loc->enabled = enable;
14238 mark_breakpoint_location_modified (loc);
14239 }
14240 if (target_supports_enable_disable_tracepoint ()
14241 && current_trace_status ()->running && loc->owner
14242 && is_tracepoint (loc->owner))
14243 target_disable_tracepoint (loc);
14244 }
14245 update_global_location_list (UGLL_DONT_INSERT);
14246 }
14247
14248 /* Enable or disable a range of breakpoint locations. BP_NUM is the
14249 number of the breakpoint, and BP_LOC_RANGE specifies the
14250 (inclusive) range of location numbers of that breakpoint to
14251 enable/disable. ENABLE specifies whether to enable or disable the
14252 location. */
14253
14254 static void
14255 enable_disable_breakpoint_location_range (int bp_num,
14256 std::pair<int, int> &bp_loc_range,
14257 bool enable)
14258 {
14259 for (int i = bp_loc_range.first; i <= bp_loc_range.second; i++)
14260 enable_disable_bp_num_loc (bp_num, i, enable);
14261 }
14262
14263 /* Set ignore-count of breakpoint number BPTNUM to COUNT.
14264 If from_tty is nonzero, it prints a message to that effect,
14265 which ends with a period (no newline). */
14266
14267 void
14268 disable_breakpoint (struct breakpoint *bpt)
14269 {
14270 /* Never disable a watchpoint scope breakpoint; we want to
14271 hit them when we leave scope so we can delete both the
14272 watchpoint and its scope breakpoint at that time. */
14273 if (bpt->type == bp_watchpoint_scope)
14274 return;
14275
14276 bpt->enable_state = bp_disabled;
14277
14278 /* Mark breakpoint locations modified. */
14279 mark_breakpoint_modified (bpt);
14280
14281 if (target_supports_enable_disable_tracepoint ()
14282 && current_trace_status ()->running && is_tracepoint (bpt))
14283 {
14284 struct bp_location *location;
14285
14286 for (location = bpt->loc; location; location = location->next)
14287 target_disable_tracepoint (location);
14288 }
14289
14290 update_global_location_list (UGLL_DONT_INSERT);
14291
14292 gdb::observers::breakpoint_modified.notify (bpt);
14293 }
14294
14295 /* Enable or disable the breakpoint(s) or breakpoint location(s)
14296 specified in ARGS. ARGS may be in any of the formats handled by
14297 extract_bp_number_and_location. ENABLE specifies whether to enable
14298 or disable the breakpoints/locations. */
14299
14300 static void
14301 enable_disable_command (const char *args, int from_tty, bool enable)
14302 {
14303 if (args == 0)
14304 {
14305 struct breakpoint *bpt;
14306
14307 ALL_BREAKPOINTS (bpt)
14308 if (user_breakpoint_p (bpt))
14309 {
14310 if (enable)
14311 enable_breakpoint (bpt);
14312 else
14313 disable_breakpoint (bpt);
14314 }
14315 }
14316 else
14317 {
14318 std::string num = extract_arg (&args);
14319
14320 while (!num.empty ())
14321 {
14322 std::pair<int, int> bp_num_range, bp_loc_range;
14323
14324 extract_bp_number_and_location (num, bp_num_range, bp_loc_range);
14325
14326 if (bp_loc_range.first == bp_loc_range.second
14327 && bp_loc_range.first == 0)
14328 {
14329 /* Handle breakpoint ids with formats 'x' or 'x-z'. */
14330 map_breakpoint_number_range (bp_num_range,
14331 enable
14332 ? enable_breakpoint
14333 : disable_breakpoint);
14334 }
14335 else
14336 {
14337 /* Handle breakpoint ids with formats 'x.y' or
14338 'x.y-z'. */
14339 enable_disable_breakpoint_location_range
14340 (bp_num_range.first, bp_loc_range, enable);
14341 }
14342 num = extract_arg (&args);
14343 }
14344 }
14345 }
14346
14347 /* The disable command disables the specified breakpoints/locations
14348 (or all defined breakpoints) so they're no longer effective in
14349 stopping the inferior. ARGS may be in any of the forms defined in
14350 extract_bp_number_and_location. */
14351
14352 static void
14353 disable_command (const char *args, int from_tty)
14354 {
14355 enable_disable_command (args, from_tty, false);
14356 }
14357
14358 static void
14359 enable_breakpoint_disp (struct breakpoint *bpt, enum bpdisp disposition,
14360 int count)
14361 {
14362 int target_resources_ok;
14363
14364 if (bpt->type == bp_hardware_breakpoint)
14365 {
14366 int i;
14367 i = hw_breakpoint_used_count ();
14368 target_resources_ok =
14369 target_can_use_hardware_watchpoint (bp_hardware_breakpoint,
14370 i + 1, 0);
14371 if (target_resources_ok == 0)
14372 error (_("No hardware breakpoint support in the target."));
14373 else if (target_resources_ok < 0)
14374 error (_("Hardware breakpoints used exceeds limit."));
14375 }
14376
14377 if (is_watchpoint (bpt))
14378 {
14379 /* Initialize it just to avoid a GCC false warning. */
14380 enum enable_state orig_enable_state = bp_disabled;
14381
14382 TRY
14383 {
14384 struct watchpoint *w = (struct watchpoint *) bpt;
14385
14386 orig_enable_state = bpt->enable_state;
14387 bpt->enable_state = bp_enabled;
14388 update_watchpoint (w, 1 /* reparse */);
14389 }
14390 CATCH (e, RETURN_MASK_ALL)
14391 {
14392 bpt->enable_state = orig_enable_state;
14393 exception_fprintf (gdb_stderr, e, _("Cannot enable watchpoint %d: "),
14394 bpt->number);
14395 return;
14396 }
14397 END_CATCH
14398 }
14399
14400 bpt->enable_state = bp_enabled;
14401
14402 /* Mark breakpoint locations modified. */
14403 mark_breakpoint_modified (bpt);
14404
14405 if (target_supports_enable_disable_tracepoint ()
14406 && current_trace_status ()->running && is_tracepoint (bpt))
14407 {
14408 struct bp_location *location;
14409
14410 for (location = bpt->loc; location; location = location->next)
14411 target_enable_tracepoint (location);
14412 }
14413
14414 bpt->disposition = disposition;
14415 bpt->enable_count = count;
14416 update_global_location_list (UGLL_MAY_INSERT);
14417
14418 gdb::observers::breakpoint_modified.notify (bpt);
14419 }
14420
14421
14422 void
14423 enable_breakpoint (struct breakpoint *bpt)
14424 {
14425 enable_breakpoint_disp (bpt, bpt->disposition, 0);
14426 }
14427
14428 /* The enable command enables the specified breakpoints/locations (or
14429 all defined breakpoints) so they once again become (or continue to
14430 be) effective in stopping the inferior. ARGS may be in any of the
14431 forms defined in extract_bp_number_and_location. */
14432
14433 static void
14434 enable_command (const char *args, int from_tty)
14435 {
14436 enable_disable_command (args, from_tty, true);
14437 }
14438
14439 static void
14440 enable_once_command (const char *args, int from_tty)
14441 {
14442 map_breakpoint_numbers
14443 (args, [&] (breakpoint *b)
14444 {
14445 iterate_over_related_breakpoints
14446 (b, [&] (breakpoint *bpt)
14447 {
14448 enable_breakpoint_disp (bpt, disp_disable, 1);
14449 });
14450 });
14451 }
14452
14453 static void
14454 enable_count_command (const char *args, int from_tty)
14455 {
14456 int count;
14457
14458 if (args == NULL)
14459 error_no_arg (_("hit count"));
14460
14461 count = get_number (&args);
14462
14463 map_breakpoint_numbers
14464 (args, [&] (breakpoint *b)
14465 {
14466 iterate_over_related_breakpoints
14467 (b, [&] (breakpoint *bpt)
14468 {
14469 enable_breakpoint_disp (bpt, disp_disable, count);
14470 });
14471 });
14472 }
14473
14474 static void
14475 enable_delete_command (const char *args, int from_tty)
14476 {
14477 map_breakpoint_numbers
14478 (args, [&] (breakpoint *b)
14479 {
14480 iterate_over_related_breakpoints
14481 (b, [&] (breakpoint *bpt)
14482 {
14483 enable_breakpoint_disp (bpt, disp_del, 1);
14484 });
14485 });
14486 }
14487 \f
14488 static void
14489 set_breakpoint_cmd (const char *args, int from_tty)
14490 {
14491 }
14492
14493 static void
14494 show_breakpoint_cmd (const char *args, int from_tty)
14495 {
14496 }
14497
14498 /* Invalidate last known value of any hardware watchpoint if
14499 the memory which that value represents has been written to by
14500 GDB itself. */
14501
14502 static void
14503 invalidate_bp_value_on_memory_change (struct inferior *inferior,
14504 CORE_ADDR addr, ssize_t len,
14505 const bfd_byte *data)
14506 {
14507 struct breakpoint *bp;
14508
14509 ALL_BREAKPOINTS (bp)
14510 if (bp->enable_state == bp_enabled
14511 && bp->type == bp_hardware_watchpoint)
14512 {
14513 struct watchpoint *wp = (struct watchpoint *) bp;
14514
14515 if (wp->val_valid && wp->val != nullptr)
14516 {
14517 struct bp_location *loc;
14518
14519 for (loc = bp->loc; loc != NULL; loc = loc->next)
14520 if (loc->loc_type == bp_loc_hardware_watchpoint
14521 && loc->address + loc->length > addr
14522 && addr + len > loc->address)
14523 {
14524 wp->val = NULL;
14525 wp->val_valid = 0;
14526 }
14527 }
14528 }
14529 }
14530
14531 /* Create and insert a breakpoint for software single step. */
14532
14533 void
14534 insert_single_step_breakpoint (struct gdbarch *gdbarch,
14535 const address_space *aspace,
14536 CORE_ADDR next_pc)
14537 {
14538 struct thread_info *tp = inferior_thread ();
14539 struct symtab_and_line sal;
14540 CORE_ADDR pc = next_pc;
14541
14542 if (tp->control.single_step_breakpoints == NULL)
14543 {
14544 tp->control.single_step_breakpoints
14545 = new_single_step_breakpoint (tp->global_num, gdbarch);
14546 }
14547
14548 sal = find_pc_line (pc, 0);
14549 sal.pc = pc;
14550 sal.section = find_pc_overlay (pc);
14551 sal.explicit_pc = 1;
14552 add_location_to_breakpoint (tp->control.single_step_breakpoints, &sal);
14553
14554 update_global_location_list (UGLL_INSERT);
14555 }
14556
14557 /* Insert single step breakpoints according to the current state. */
14558
14559 int
14560 insert_single_step_breakpoints (struct gdbarch *gdbarch)
14561 {
14562 struct regcache *regcache = get_current_regcache ();
14563 std::vector<CORE_ADDR> next_pcs;
14564
14565 next_pcs = gdbarch_software_single_step (gdbarch, regcache);
14566
14567 if (!next_pcs.empty ())
14568 {
14569 struct frame_info *frame = get_current_frame ();
14570 const address_space *aspace = get_frame_address_space (frame);
14571
14572 for (CORE_ADDR pc : next_pcs)
14573 insert_single_step_breakpoint (gdbarch, aspace, pc);
14574
14575 return 1;
14576 }
14577 else
14578 return 0;
14579 }
14580
14581 /* See breakpoint.h. */
14582
14583 int
14584 breakpoint_has_location_inserted_here (struct breakpoint *bp,
14585 const address_space *aspace,
14586 CORE_ADDR pc)
14587 {
14588 struct bp_location *loc;
14589
14590 for (loc = bp->loc; loc != NULL; loc = loc->next)
14591 if (loc->inserted
14592 && breakpoint_location_address_match (loc, aspace, pc))
14593 return 1;
14594
14595 return 0;
14596 }
14597
14598 /* Check whether a software single-step breakpoint is inserted at
14599 PC. */
14600
14601 int
14602 single_step_breakpoint_inserted_here_p (const address_space *aspace,
14603 CORE_ADDR pc)
14604 {
14605 struct breakpoint *bpt;
14606
14607 ALL_BREAKPOINTS (bpt)
14608 {
14609 if (bpt->type == bp_single_step
14610 && breakpoint_has_location_inserted_here (bpt, aspace, pc))
14611 return 1;
14612 }
14613 return 0;
14614 }
14615
14616 /* Tracepoint-specific operations. */
14617
14618 /* Set tracepoint count to NUM. */
14619 static void
14620 set_tracepoint_count (int num)
14621 {
14622 tracepoint_count = num;
14623 set_internalvar_integer (lookup_internalvar ("tpnum"), num);
14624 }
14625
14626 static void
14627 trace_command (const char *arg, int from_tty)
14628 {
14629 struct breakpoint_ops *ops;
14630
14631 event_location_up location = string_to_event_location (&arg,
14632 current_language);
14633 if (location != NULL
14634 && event_location_type (location.get ()) == PROBE_LOCATION)
14635 ops = &tracepoint_probe_breakpoint_ops;
14636 else
14637 ops = &tracepoint_breakpoint_ops;
14638
14639 create_breakpoint (get_current_arch (),
14640 location.get (),
14641 NULL, 0, arg, 1 /* parse arg */,
14642 0 /* tempflag */,
14643 bp_tracepoint /* type_wanted */,
14644 0 /* Ignore count */,
14645 pending_break_support,
14646 ops,
14647 from_tty,
14648 1 /* enabled */,
14649 0 /* internal */, 0);
14650 }
14651
14652 static void
14653 ftrace_command (const char *arg, int from_tty)
14654 {
14655 event_location_up location = string_to_event_location (&arg,
14656 current_language);
14657 create_breakpoint (get_current_arch (),
14658 location.get (),
14659 NULL, 0, arg, 1 /* parse arg */,
14660 0 /* tempflag */,
14661 bp_fast_tracepoint /* type_wanted */,
14662 0 /* Ignore count */,
14663 pending_break_support,
14664 &tracepoint_breakpoint_ops,
14665 from_tty,
14666 1 /* enabled */,
14667 0 /* internal */, 0);
14668 }
14669
14670 /* strace command implementation. Creates a static tracepoint. */
14671
14672 static void
14673 strace_command (const char *arg, int from_tty)
14674 {
14675 struct breakpoint_ops *ops;
14676 event_location_up location;
14677
14678 /* Decide if we are dealing with a static tracepoint marker (`-m'),
14679 or with a normal static tracepoint. */
14680 if (arg && startswith (arg, "-m") && isspace (arg[2]))
14681 {
14682 ops = &strace_marker_breakpoint_ops;
14683 location = new_linespec_location (&arg, symbol_name_match_type::FULL);
14684 }
14685 else
14686 {
14687 ops = &tracepoint_breakpoint_ops;
14688 location = string_to_event_location (&arg, current_language);
14689 }
14690
14691 create_breakpoint (get_current_arch (),
14692 location.get (),
14693 NULL, 0, arg, 1 /* parse arg */,
14694 0 /* tempflag */,
14695 bp_static_tracepoint /* type_wanted */,
14696 0 /* Ignore count */,
14697 pending_break_support,
14698 ops,
14699 from_tty,
14700 1 /* enabled */,
14701 0 /* internal */, 0);
14702 }
14703
14704 /* Set up a fake reader function that gets command lines from a linked
14705 list that was acquired during tracepoint uploading. */
14706
14707 static struct uploaded_tp *this_utp;
14708 static int next_cmd;
14709
14710 static char *
14711 read_uploaded_action (void)
14712 {
14713 char *rslt = nullptr;
14714
14715 if (next_cmd < this_utp->cmd_strings.size ())
14716 {
14717 rslt = this_utp->cmd_strings[next_cmd];
14718 next_cmd++;
14719 }
14720
14721 return rslt;
14722 }
14723
14724 /* Given information about a tracepoint as recorded on a target (which
14725 can be either a live system or a trace file), attempt to create an
14726 equivalent GDB tracepoint. This is not a reliable process, since
14727 the target does not necessarily have all the information used when
14728 the tracepoint was originally defined. */
14729
14730 struct tracepoint *
14731 create_tracepoint_from_upload (struct uploaded_tp *utp)
14732 {
14733 const char *addr_str;
14734 char small_buf[100];
14735 struct tracepoint *tp;
14736
14737 if (utp->at_string)
14738 addr_str = utp->at_string;
14739 else
14740 {
14741 /* In the absence of a source location, fall back to raw
14742 address. Since there is no way to confirm that the address
14743 means the same thing as when the trace was started, warn the
14744 user. */
14745 warning (_("Uploaded tracepoint %d has no "
14746 "source location, using raw address"),
14747 utp->number);
14748 xsnprintf (small_buf, sizeof (small_buf), "*%s", hex_string (utp->addr));
14749 addr_str = small_buf;
14750 }
14751
14752 /* There's not much we can do with a sequence of bytecodes. */
14753 if (utp->cond && !utp->cond_string)
14754 warning (_("Uploaded tracepoint %d condition "
14755 "has no source form, ignoring it"),
14756 utp->number);
14757
14758 event_location_up location = string_to_event_location (&addr_str,
14759 current_language);
14760 if (!create_breakpoint (get_current_arch (),
14761 location.get (),
14762 utp->cond_string, -1, addr_str,
14763 0 /* parse cond/thread */,
14764 0 /* tempflag */,
14765 utp->type /* type_wanted */,
14766 0 /* Ignore count */,
14767 pending_break_support,
14768 &tracepoint_breakpoint_ops,
14769 0 /* from_tty */,
14770 utp->enabled /* enabled */,
14771 0 /* internal */,
14772 CREATE_BREAKPOINT_FLAGS_INSERTED))
14773 return NULL;
14774
14775 /* Get the tracepoint we just created. */
14776 tp = get_tracepoint (tracepoint_count);
14777 gdb_assert (tp != NULL);
14778
14779 if (utp->pass > 0)
14780 {
14781 xsnprintf (small_buf, sizeof (small_buf), "%d %d", utp->pass,
14782 tp->number);
14783
14784 trace_pass_command (small_buf, 0);
14785 }
14786
14787 /* If we have uploaded versions of the original commands, set up a
14788 special-purpose "reader" function and call the usual command line
14789 reader, then pass the result to the breakpoint command-setting
14790 function. */
14791 if (!utp->cmd_strings.empty ())
14792 {
14793 command_line_up cmd_list;
14794
14795 this_utp = utp;
14796 next_cmd = 0;
14797
14798 cmd_list = read_command_lines_1 (read_uploaded_action, 1, NULL, NULL);
14799
14800 breakpoint_set_commands (tp, std::move (cmd_list));
14801 }
14802 else if (!utp->actions.empty ()
14803 || !utp->step_actions.empty ())
14804 warning (_("Uploaded tracepoint %d actions "
14805 "have no source form, ignoring them"),
14806 utp->number);
14807
14808 /* Copy any status information that might be available. */
14809 tp->hit_count = utp->hit_count;
14810 tp->traceframe_usage = utp->traceframe_usage;
14811
14812 return tp;
14813 }
14814
14815 /* Print information on tracepoint number TPNUM_EXP, or all if
14816 omitted. */
14817
14818 static void
14819 info_tracepoints_command (const char *args, int from_tty)
14820 {
14821 struct ui_out *uiout = current_uiout;
14822 int num_printed;
14823
14824 num_printed = breakpoint_1 (args, 0, is_tracepoint);
14825
14826 if (num_printed == 0)
14827 {
14828 if (args == NULL || *args == '\0')
14829 uiout->message ("No tracepoints.\n");
14830 else
14831 uiout->message ("No tracepoint matching '%s'.\n", args);
14832 }
14833
14834 default_collect_info ();
14835 }
14836
14837 /* The 'enable trace' command enables tracepoints.
14838 Not supported by all targets. */
14839 static void
14840 enable_trace_command (const char *args, int from_tty)
14841 {
14842 enable_command (args, from_tty);
14843 }
14844
14845 /* The 'disable trace' command disables tracepoints.
14846 Not supported by all targets. */
14847 static void
14848 disable_trace_command (const char *args, int from_tty)
14849 {
14850 disable_command (args, from_tty);
14851 }
14852
14853 /* Remove a tracepoint (or all if no argument). */
14854 static void
14855 delete_trace_command (const char *arg, int from_tty)
14856 {
14857 struct breakpoint *b, *b_tmp;
14858
14859 dont_repeat ();
14860
14861 if (arg == 0)
14862 {
14863 int breaks_to_delete = 0;
14864
14865 /* Delete all breakpoints if no argument.
14866 Do not delete internal or call-dummy breakpoints, these
14867 have to be deleted with an explicit breakpoint number
14868 argument. */
14869 ALL_TRACEPOINTS (b)
14870 if (is_tracepoint (b) && user_breakpoint_p (b))
14871 {
14872 breaks_to_delete = 1;
14873 break;
14874 }
14875
14876 /* Ask user only if there are some breakpoints to delete. */
14877 if (!from_tty
14878 || (breaks_to_delete && query (_("Delete all tracepoints? "))))
14879 {
14880 ALL_BREAKPOINTS_SAFE (b, b_tmp)
14881 if (is_tracepoint (b) && user_breakpoint_p (b))
14882 delete_breakpoint (b);
14883 }
14884 }
14885 else
14886 map_breakpoint_numbers
14887 (arg, [&] (breakpoint *b)
14888 {
14889 iterate_over_related_breakpoints (b, delete_breakpoint);
14890 });
14891 }
14892
14893 /* Helper function for trace_pass_command. */
14894
14895 static void
14896 trace_pass_set_count (struct tracepoint *tp, int count, int from_tty)
14897 {
14898 tp->pass_count = count;
14899 gdb::observers::breakpoint_modified.notify (tp);
14900 if (from_tty)
14901 printf_filtered (_("Setting tracepoint %d's passcount to %d\n"),
14902 tp->number, count);
14903 }
14904
14905 /* Set passcount for tracepoint.
14906
14907 First command argument is passcount, second is tracepoint number.
14908 If tracepoint number omitted, apply to most recently defined.
14909 Also accepts special argument "all". */
14910
14911 static void
14912 trace_pass_command (const char *args, int from_tty)
14913 {
14914 struct tracepoint *t1;
14915 ULONGEST count;
14916
14917 if (args == 0 || *args == 0)
14918 error (_("passcount command requires an "
14919 "argument (count + optional TP num)"));
14920
14921 count = strtoulst (args, &args, 10); /* Count comes first, then TP num. */
14922
14923 args = skip_spaces (args);
14924 if (*args && strncasecmp (args, "all", 3) == 0)
14925 {
14926 struct breakpoint *b;
14927
14928 args += 3; /* Skip special argument "all". */
14929 if (*args)
14930 error (_("Junk at end of arguments."));
14931
14932 ALL_TRACEPOINTS (b)
14933 {
14934 t1 = (struct tracepoint *) b;
14935 trace_pass_set_count (t1, count, from_tty);
14936 }
14937 }
14938 else if (*args == '\0')
14939 {
14940 t1 = get_tracepoint_by_number (&args, NULL);
14941 if (t1)
14942 trace_pass_set_count (t1, count, from_tty);
14943 }
14944 else
14945 {
14946 number_or_range_parser parser (args);
14947 while (!parser.finished ())
14948 {
14949 t1 = get_tracepoint_by_number (&args, &parser);
14950 if (t1)
14951 trace_pass_set_count (t1, count, from_tty);
14952 }
14953 }
14954 }
14955
14956 struct tracepoint *
14957 get_tracepoint (int num)
14958 {
14959 struct breakpoint *t;
14960
14961 ALL_TRACEPOINTS (t)
14962 if (t->number == num)
14963 return (struct tracepoint *) t;
14964
14965 return NULL;
14966 }
14967
14968 /* Find the tracepoint with the given target-side number (which may be
14969 different from the tracepoint number after disconnecting and
14970 reconnecting). */
14971
14972 struct tracepoint *
14973 get_tracepoint_by_number_on_target (int num)
14974 {
14975 struct breakpoint *b;
14976
14977 ALL_TRACEPOINTS (b)
14978 {
14979 struct tracepoint *t = (struct tracepoint *) b;
14980
14981 if (t->number_on_target == num)
14982 return t;
14983 }
14984
14985 return NULL;
14986 }
14987
14988 /* Utility: parse a tracepoint number and look it up in the list.
14989 If STATE is not NULL, use, get_number_or_range_state and ignore ARG.
14990 If the argument is missing, the most recent tracepoint
14991 (tracepoint_count) is returned. */
14992
14993 struct tracepoint *
14994 get_tracepoint_by_number (const char **arg,
14995 number_or_range_parser *parser)
14996 {
14997 struct breakpoint *t;
14998 int tpnum;
14999 const char *instring = arg == NULL ? NULL : *arg;
15000
15001 if (parser != NULL)
15002 {
15003 gdb_assert (!parser->finished ());
15004 tpnum = parser->get_number ();
15005 }
15006 else if (arg == NULL || *arg == NULL || ! **arg)
15007 tpnum = tracepoint_count;
15008 else
15009 tpnum = get_number (arg);
15010
15011 if (tpnum <= 0)
15012 {
15013 if (instring && *instring)
15014 printf_filtered (_("bad tracepoint number at or near '%s'\n"),
15015 instring);
15016 else
15017 printf_filtered (_("No previous tracepoint\n"));
15018 return NULL;
15019 }
15020
15021 ALL_TRACEPOINTS (t)
15022 if (t->number == tpnum)
15023 {
15024 return (struct tracepoint *) t;
15025 }
15026
15027 printf_unfiltered ("No tracepoint number %d.\n", tpnum);
15028 return NULL;
15029 }
15030
15031 void
15032 print_recreate_thread (struct breakpoint *b, struct ui_file *fp)
15033 {
15034 if (b->thread != -1)
15035 fprintf_unfiltered (fp, " thread %d", b->thread);
15036
15037 if (b->task != 0)
15038 fprintf_unfiltered (fp, " task %d", b->task);
15039
15040 fprintf_unfiltered (fp, "\n");
15041 }
15042
15043 /* Save information on user settable breakpoints (watchpoints, etc) to
15044 a new script file named FILENAME. If FILTER is non-NULL, call it
15045 on each breakpoint and only include the ones for which it returns
15046 non-zero. */
15047
15048 static void
15049 save_breakpoints (const char *filename, int from_tty,
15050 int (*filter) (const struct breakpoint *))
15051 {
15052 struct breakpoint *tp;
15053 int any = 0;
15054 int extra_trace_bits = 0;
15055
15056 if (filename == 0 || *filename == 0)
15057 error (_("Argument required (file name in which to save)"));
15058
15059 /* See if we have anything to save. */
15060 ALL_BREAKPOINTS (tp)
15061 {
15062 /* Skip internal and momentary breakpoints. */
15063 if (!user_breakpoint_p (tp))
15064 continue;
15065
15066 /* If we have a filter, only save the breakpoints it accepts. */
15067 if (filter && !filter (tp))
15068 continue;
15069
15070 any = 1;
15071
15072 if (is_tracepoint (tp))
15073 {
15074 extra_trace_bits = 1;
15075
15076 /* We can stop searching. */
15077 break;
15078 }
15079 }
15080
15081 if (!any)
15082 {
15083 warning (_("Nothing to save."));
15084 return;
15085 }
15086
15087 gdb::unique_xmalloc_ptr<char> expanded_filename (tilde_expand (filename));
15088
15089 stdio_file fp;
15090
15091 if (!fp.open (expanded_filename.get (), "w"))
15092 error (_("Unable to open file '%s' for saving (%s)"),
15093 expanded_filename.get (), safe_strerror (errno));
15094
15095 if (extra_trace_bits)
15096 save_trace_state_variables (&fp);
15097
15098 ALL_BREAKPOINTS (tp)
15099 {
15100 /* Skip internal and momentary breakpoints. */
15101 if (!user_breakpoint_p (tp))
15102 continue;
15103
15104 /* If we have a filter, only save the breakpoints it accepts. */
15105 if (filter && !filter (tp))
15106 continue;
15107
15108 tp->ops->print_recreate (tp, &fp);
15109
15110 /* Note, we can't rely on tp->number for anything, as we can't
15111 assume the recreated breakpoint numbers will match. Use $bpnum
15112 instead. */
15113
15114 if (tp->cond_string)
15115 fp.printf (" condition $bpnum %s\n", tp->cond_string);
15116
15117 if (tp->ignore_count)
15118 fp.printf (" ignore $bpnum %d\n", tp->ignore_count);
15119
15120 if (tp->type != bp_dprintf && tp->commands)
15121 {
15122 fp.puts (" commands\n");
15123
15124 current_uiout->redirect (&fp);
15125 TRY
15126 {
15127 print_command_lines (current_uiout, tp->commands.get (), 2);
15128 }
15129 CATCH (ex, RETURN_MASK_ALL)
15130 {
15131 current_uiout->redirect (NULL);
15132 throw_exception (ex);
15133 }
15134 END_CATCH
15135
15136 current_uiout->redirect (NULL);
15137 fp.puts (" end\n");
15138 }
15139
15140 if (tp->enable_state == bp_disabled)
15141 fp.puts ("disable $bpnum\n");
15142
15143 /* If this is a multi-location breakpoint, check if the locations
15144 should be individually disabled. Watchpoint locations are
15145 special, and not user visible. */
15146 if (!is_watchpoint (tp) && tp->loc && tp->loc->next)
15147 {
15148 struct bp_location *loc;
15149 int n = 1;
15150
15151 for (loc = tp->loc; loc != NULL; loc = loc->next, n++)
15152 if (!loc->enabled)
15153 fp.printf ("disable $bpnum.%d\n", n);
15154 }
15155 }
15156
15157 if (extra_trace_bits && *default_collect)
15158 fp.printf ("set default-collect %s\n", default_collect);
15159
15160 if (from_tty)
15161 printf_filtered (_("Saved to file '%s'.\n"), expanded_filename.get ());
15162 }
15163
15164 /* The `save breakpoints' command. */
15165
15166 static void
15167 save_breakpoints_command (const char *args, int from_tty)
15168 {
15169 save_breakpoints (args, from_tty, NULL);
15170 }
15171
15172 /* The `save tracepoints' command. */
15173
15174 static void
15175 save_tracepoints_command (const char *args, int from_tty)
15176 {
15177 save_breakpoints (args, from_tty, is_tracepoint);
15178 }
15179
15180 /* Create a vector of all tracepoints. */
15181
15182 VEC(breakpoint_p) *
15183 all_tracepoints (void)
15184 {
15185 VEC(breakpoint_p) *tp_vec = 0;
15186 struct breakpoint *tp;
15187
15188 ALL_TRACEPOINTS (tp)
15189 {
15190 VEC_safe_push (breakpoint_p, tp_vec, tp);
15191 }
15192
15193 return tp_vec;
15194 }
15195
15196 \f
15197 /* This help string is used to consolidate all the help string for specifying
15198 locations used by several commands. */
15199
15200 #define LOCATION_HELP_STRING \
15201 "Linespecs are colon-separated lists of location parameters, such as\n\
15202 source filename, function name, label name, and line number.\n\
15203 Example: To specify the start of a label named \"the_top\" in the\n\
15204 function \"fact\" in the file \"factorial.c\", use\n\
15205 \"factorial.c:fact:the_top\".\n\
15206 \n\
15207 Address locations begin with \"*\" and specify an exact address in the\n\
15208 program. Example: To specify the fourth byte past the start function\n\
15209 \"main\", use \"*main + 4\".\n\
15210 \n\
15211 Explicit locations are similar to linespecs but use an option/argument\n\
15212 syntax to specify location parameters.\n\
15213 Example: To specify the start of the label named \"the_top\" in the\n\
15214 function \"fact\" in the file \"factorial.c\", use \"-source factorial.c\n\
15215 -function fact -label the_top\".\n\
15216 \n\
15217 By default, a specified function is matched against the program's\n\
15218 functions in all scopes. For C++, this means in all namespaces and\n\
15219 classes. For Ada, this means in all packages. E.g., in C++,\n\
15220 \"func()\" matches \"A::func()\", \"A::B::func()\", etc. The\n\
15221 \"-qualified\" flag overrides this behavior, making GDB interpret the\n\
15222 specified name as a complete fully-qualified name instead.\n"
15223
15224 /* This help string is used for the break, hbreak, tbreak and thbreak
15225 commands. It is defined as a macro to prevent duplication.
15226 COMMAND should be a string constant containing the name of the
15227 command. */
15228
15229 #define BREAK_ARGS_HELP(command) \
15230 command" [PROBE_MODIFIER] [LOCATION] [thread THREADNUM] [if CONDITION]\n\
15231 PROBE_MODIFIER shall be present if the command is to be placed in a\n\
15232 probe point. Accepted values are `-probe' (for a generic, automatically\n\
15233 guessed probe type), `-probe-stap' (for a SystemTap probe) or \n\
15234 `-probe-dtrace' (for a DTrace probe).\n\
15235 LOCATION may be a linespec, address, or explicit location as described\n\
15236 below.\n\
15237 \n\
15238 With no LOCATION, uses current execution address of the selected\n\
15239 stack frame. This is useful for breaking on return to a stack frame.\n\
15240 \n\
15241 THREADNUM is the number from \"info threads\".\n\
15242 CONDITION is a boolean expression.\n\
15243 \n" LOCATION_HELP_STRING "\n\
15244 Multiple breakpoints at one place are permitted, and useful if their\n\
15245 conditions are different.\n\
15246 \n\
15247 Do \"help breakpoints\" for info on other commands dealing with breakpoints."
15248
15249 /* List of subcommands for "catch". */
15250 static struct cmd_list_element *catch_cmdlist;
15251
15252 /* List of subcommands for "tcatch". */
15253 static struct cmd_list_element *tcatch_cmdlist;
15254
15255 void
15256 add_catch_command (const char *name, const char *docstring,
15257 cmd_const_sfunc_ftype *sfunc,
15258 completer_ftype *completer,
15259 void *user_data_catch,
15260 void *user_data_tcatch)
15261 {
15262 struct cmd_list_element *command;
15263
15264 command = add_cmd (name, class_breakpoint, docstring,
15265 &catch_cmdlist);
15266 set_cmd_sfunc (command, sfunc);
15267 set_cmd_context (command, user_data_catch);
15268 set_cmd_completer (command, completer);
15269
15270 command = add_cmd (name, class_breakpoint, docstring,
15271 &tcatch_cmdlist);
15272 set_cmd_sfunc (command, sfunc);
15273 set_cmd_context (command, user_data_tcatch);
15274 set_cmd_completer (command, completer);
15275 }
15276
15277 static void
15278 save_command (const char *arg, int from_tty)
15279 {
15280 printf_unfiltered (_("\"save\" must be followed by "
15281 "the name of a save subcommand.\n"));
15282 help_list (save_cmdlist, "save ", all_commands, gdb_stdout);
15283 }
15284
15285 struct breakpoint *
15286 iterate_over_breakpoints (int (*callback) (struct breakpoint *, void *),
15287 void *data)
15288 {
15289 struct breakpoint *b, *b_tmp;
15290
15291 ALL_BREAKPOINTS_SAFE (b, b_tmp)
15292 {
15293 if ((*callback) (b, data))
15294 return b;
15295 }
15296
15297 return NULL;
15298 }
15299
15300 /* Zero if any of the breakpoint's locations could be a location where
15301 functions have been inlined, nonzero otherwise. */
15302
15303 static int
15304 is_non_inline_function (struct breakpoint *b)
15305 {
15306 /* The shared library event breakpoint is set on the address of a
15307 non-inline function. */
15308 if (b->type == bp_shlib_event)
15309 return 1;
15310
15311 return 0;
15312 }
15313
15314 /* Nonzero if the specified PC cannot be a location where functions
15315 have been inlined. */
15316
15317 int
15318 pc_at_non_inline_function (const address_space *aspace, CORE_ADDR pc,
15319 const struct target_waitstatus *ws)
15320 {
15321 struct breakpoint *b;
15322 struct bp_location *bl;
15323
15324 ALL_BREAKPOINTS (b)
15325 {
15326 if (!is_non_inline_function (b))
15327 continue;
15328
15329 for (bl = b->loc; bl != NULL; bl = bl->next)
15330 {
15331 if (!bl->shlib_disabled
15332 && bpstat_check_location (bl, aspace, pc, ws))
15333 return 1;
15334 }
15335 }
15336
15337 return 0;
15338 }
15339
15340 /* Remove any references to OBJFILE which is going to be freed. */
15341
15342 void
15343 breakpoint_free_objfile (struct objfile *objfile)
15344 {
15345 struct bp_location **locp, *loc;
15346
15347 ALL_BP_LOCATIONS (loc, locp)
15348 if (loc->symtab != NULL && SYMTAB_OBJFILE (loc->symtab) == objfile)
15349 loc->symtab = NULL;
15350 }
15351
15352 void
15353 initialize_breakpoint_ops (void)
15354 {
15355 static int initialized = 0;
15356
15357 struct breakpoint_ops *ops;
15358
15359 if (initialized)
15360 return;
15361 initialized = 1;
15362
15363 /* The breakpoint_ops structure to be inherit by all kinds of
15364 breakpoints (real breakpoints, i.e., user "break" breakpoints,
15365 internal and momentary breakpoints, etc.). */
15366 ops = &bkpt_base_breakpoint_ops;
15367 *ops = base_breakpoint_ops;
15368 ops->re_set = bkpt_re_set;
15369 ops->insert_location = bkpt_insert_location;
15370 ops->remove_location = bkpt_remove_location;
15371 ops->breakpoint_hit = bkpt_breakpoint_hit;
15372 ops->create_sals_from_location = bkpt_create_sals_from_location;
15373 ops->create_breakpoints_sal = bkpt_create_breakpoints_sal;
15374 ops->decode_location = bkpt_decode_location;
15375
15376 /* The breakpoint_ops structure to be used in regular breakpoints. */
15377 ops = &bkpt_breakpoint_ops;
15378 *ops = bkpt_base_breakpoint_ops;
15379 ops->re_set = bkpt_re_set;
15380 ops->resources_needed = bkpt_resources_needed;
15381 ops->print_it = bkpt_print_it;
15382 ops->print_mention = bkpt_print_mention;
15383 ops->print_recreate = bkpt_print_recreate;
15384
15385 /* Ranged breakpoints. */
15386 ops = &ranged_breakpoint_ops;
15387 *ops = bkpt_breakpoint_ops;
15388 ops->breakpoint_hit = breakpoint_hit_ranged_breakpoint;
15389 ops->resources_needed = resources_needed_ranged_breakpoint;
15390 ops->print_it = print_it_ranged_breakpoint;
15391 ops->print_one = print_one_ranged_breakpoint;
15392 ops->print_one_detail = print_one_detail_ranged_breakpoint;
15393 ops->print_mention = print_mention_ranged_breakpoint;
15394 ops->print_recreate = print_recreate_ranged_breakpoint;
15395
15396 /* Internal breakpoints. */
15397 ops = &internal_breakpoint_ops;
15398 *ops = bkpt_base_breakpoint_ops;
15399 ops->re_set = internal_bkpt_re_set;
15400 ops->check_status = internal_bkpt_check_status;
15401 ops->print_it = internal_bkpt_print_it;
15402 ops->print_mention = internal_bkpt_print_mention;
15403
15404 /* Momentary breakpoints. */
15405 ops = &momentary_breakpoint_ops;
15406 *ops = bkpt_base_breakpoint_ops;
15407 ops->re_set = momentary_bkpt_re_set;
15408 ops->check_status = momentary_bkpt_check_status;
15409 ops->print_it = momentary_bkpt_print_it;
15410 ops->print_mention = momentary_bkpt_print_mention;
15411
15412 /* Probe breakpoints. */
15413 ops = &bkpt_probe_breakpoint_ops;
15414 *ops = bkpt_breakpoint_ops;
15415 ops->insert_location = bkpt_probe_insert_location;
15416 ops->remove_location = bkpt_probe_remove_location;
15417 ops->create_sals_from_location = bkpt_probe_create_sals_from_location;
15418 ops->decode_location = bkpt_probe_decode_location;
15419
15420 /* Watchpoints. */
15421 ops = &watchpoint_breakpoint_ops;
15422 *ops = base_breakpoint_ops;
15423 ops->re_set = re_set_watchpoint;
15424 ops->insert_location = insert_watchpoint;
15425 ops->remove_location = remove_watchpoint;
15426 ops->breakpoint_hit = breakpoint_hit_watchpoint;
15427 ops->check_status = check_status_watchpoint;
15428 ops->resources_needed = resources_needed_watchpoint;
15429 ops->works_in_software_mode = works_in_software_mode_watchpoint;
15430 ops->print_it = print_it_watchpoint;
15431 ops->print_mention = print_mention_watchpoint;
15432 ops->print_recreate = print_recreate_watchpoint;
15433 ops->explains_signal = explains_signal_watchpoint;
15434
15435 /* Masked watchpoints. */
15436 ops = &masked_watchpoint_breakpoint_ops;
15437 *ops = watchpoint_breakpoint_ops;
15438 ops->insert_location = insert_masked_watchpoint;
15439 ops->remove_location = remove_masked_watchpoint;
15440 ops->resources_needed = resources_needed_masked_watchpoint;
15441 ops->works_in_software_mode = works_in_software_mode_masked_watchpoint;
15442 ops->print_it = print_it_masked_watchpoint;
15443 ops->print_one_detail = print_one_detail_masked_watchpoint;
15444 ops->print_mention = print_mention_masked_watchpoint;
15445 ops->print_recreate = print_recreate_masked_watchpoint;
15446
15447 /* Tracepoints. */
15448 ops = &tracepoint_breakpoint_ops;
15449 *ops = base_breakpoint_ops;
15450 ops->re_set = tracepoint_re_set;
15451 ops->breakpoint_hit = tracepoint_breakpoint_hit;
15452 ops->print_one_detail = tracepoint_print_one_detail;
15453 ops->print_mention = tracepoint_print_mention;
15454 ops->print_recreate = tracepoint_print_recreate;
15455 ops->create_sals_from_location = tracepoint_create_sals_from_location;
15456 ops->create_breakpoints_sal = tracepoint_create_breakpoints_sal;
15457 ops->decode_location = tracepoint_decode_location;
15458
15459 /* Probe tracepoints. */
15460 ops = &tracepoint_probe_breakpoint_ops;
15461 *ops = tracepoint_breakpoint_ops;
15462 ops->create_sals_from_location = tracepoint_probe_create_sals_from_location;
15463 ops->decode_location = tracepoint_probe_decode_location;
15464
15465 /* Static tracepoints with marker (`-m'). */
15466 ops = &strace_marker_breakpoint_ops;
15467 *ops = tracepoint_breakpoint_ops;
15468 ops->create_sals_from_location = strace_marker_create_sals_from_location;
15469 ops->create_breakpoints_sal = strace_marker_create_breakpoints_sal;
15470 ops->decode_location = strace_marker_decode_location;
15471
15472 /* Fork catchpoints. */
15473 ops = &catch_fork_breakpoint_ops;
15474 *ops = base_breakpoint_ops;
15475 ops->insert_location = insert_catch_fork;
15476 ops->remove_location = remove_catch_fork;
15477 ops->breakpoint_hit = breakpoint_hit_catch_fork;
15478 ops->print_it = print_it_catch_fork;
15479 ops->print_one = print_one_catch_fork;
15480 ops->print_mention = print_mention_catch_fork;
15481 ops->print_recreate = print_recreate_catch_fork;
15482
15483 /* Vfork catchpoints. */
15484 ops = &catch_vfork_breakpoint_ops;
15485 *ops = base_breakpoint_ops;
15486 ops->insert_location = insert_catch_vfork;
15487 ops->remove_location = remove_catch_vfork;
15488 ops->breakpoint_hit = breakpoint_hit_catch_vfork;
15489 ops->print_it = print_it_catch_vfork;
15490 ops->print_one = print_one_catch_vfork;
15491 ops->print_mention = print_mention_catch_vfork;
15492 ops->print_recreate = print_recreate_catch_vfork;
15493
15494 /* Exec catchpoints. */
15495 ops = &catch_exec_breakpoint_ops;
15496 *ops = base_breakpoint_ops;
15497 ops->insert_location = insert_catch_exec;
15498 ops->remove_location = remove_catch_exec;
15499 ops->breakpoint_hit = breakpoint_hit_catch_exec;
15500 ops->print_it = print_it_catch_exec;
15501 ops->print_one = print_one_catch_exec;
15502 ops->print_mention = print_mention_catch_exec;
15503 ops->print_recreate = print_recreate_catch_exec;
15504
15505 /* Solib-related catchpoints. */
15506 ops = &catch_solib_breakpoint_ops;
15507 *ops = base_breakpoint_ops;
15508 ops->insert_location = insert_catch_solib;
15509 ops->remove_location = remove_catch_solib;
15510 ops->breakpoint_hit = breakpoint_hit_catch_solib;
15511 ops->check_status = check_status_catch_solib;
15512 ops->print_it = print_it_catch_solib;
15513 ops->print_one = print_one_catch_solib;
15514 ops->print_mention = print_mention_catch_solib;
15515 ops->print_recreate = print_recreate_catch_solib;
15516
15517 ops = &dprintf_breakpoint_ops;
15518 *ops = bkpt_base_breakpoint_ops;
15519 ops->re_set = dprintf_re_set;
15520 ops->resources_needed = bkpt_resources_needed;
15521 ops->print_it = bkpt_print_it;
15522 ops->print_mention = bkpt_print_mention;
15523 ops->print_recreate = dprintf_print_recreate;
15524 ops->after_condition_true = dprintf_after_condition_true;
15525 ops->breakpoint_hit = dprintf_breakpoint_hit;
15526 }
15527
15528 /* Chain containing all defined "enable breakpoint" subcommands. */
15529
15530 static struct cmd_list_element *enablebreaklist = NULL;
15531
15532 void
15533 _initialize_breakpoint (void)
15534 {
15535 struct cmd_list_element *c;
15536
15537 initialize_breakpoint_ops ();
15538
15539 gdb::observers::solib_unloaded.attach (disable_breakpoints_in_unloaded_shlib);
15540 gdb::observers::free_objfile.attach (disable_breakpoints_in_freed_objfile);
15541 gdb::observers::memory_changed.attach (invalidate_bp_value_on_memory_change);
15542
15543 breakpoint_objfile_key
15544 = register_objfile_data_with_cleanup (NULL, free_breakpoint_objfile_data);
15545
15546 breakpoint_chain = 0;
15547 /* Don't bother to call set_breakpoint_count. $bpnum isn't useful
15548 before a breakpoint is set. */
15549 breakpoint_count = 0;
15550
15551 tracepoint_count = 0;
15552
15553 add_com ("ignore", class_breakpoint, ignore_command, _("\
15554 Set ignore-count of breakpoint number N to COUNT.\n\
15555 Usage is `ignore N COUNT'."));
15556
15557 add_com ("commands", class_breakpoint, commands_command, _("\
15558 Set commands to be executed when the given breakpoints are hit.\n\
15559 Give a space-separated breakpoint list as argument after \"commands\".\n\
15560 A list element can be a breakpoint number (e.g. `5') or a range of numbers\n\
15561 (e.g. `5-7').\n\
15562 With no argument, the targeted breakpoint is the last one set.\n\
15563 The commands themselves follow starting on the next line.\n\
15564 Type a line containing \"end\" to indicate the end of them.\n\
15565 Give \"silent\" as the first line to make the breakpoint silent;\n\
15566 then no output is printed when it is hit, except what the commands print."));
15567
15568 c = add_com ("condition", class_breakpoint, condition_command, _("\
15569 Specify breakpoint number N to break only if COND is true.\n\
15570 Usage is `condition N COND', where N is an integer and COND is an\n\
15571 expression to be evaluated whenever breakpoint N is reached."));
15572 set_cmd_completer (c, condition_completer);
15573
15574 c = add_com ("tbreak", class_breakpoint, tbreak_command, _("\
15575 Set a temporary breakpoint.\n\
15576 Like \"break\" except the breakpoint is only temporary,\n\
15577 so it will be deleted when hit. Equivalent to \"break\" followed\n\
15578 by using \"enable delete\" on the breakpoint number.\n\
15579 \n"
15580 BREAK_ARGS_HELP ("tbreak")));
15581 set_cmd_completer (c, location_completer);
15582
15583 c = add_com ("hbreak", class_breakpoint, hbreak_command, _("\
15584 Set a hardware assisted breakpoint.\n\
15585 Like \"break\" except the breakpoint requires hardware support,\n\
15586 some target hardware may not have this support.\n\
15587 \n"
15588 BREAK_ARGS_HELP ("hbreak")));
15589 set_cmd_completer (c, location_completer);
15590
15591 c = add_com ("thbreak", class_breakpoint, thbreak_command, _("\
15592 Set a temporary hardware assisted breakpoint.\n\
15593 Like \"hbreak\" except the breakpoint is only temporary,\n\
15594 so it will be deleted when hit.\n\
15595 \n"
15596 BREAK_ARGS_HELP ("thbreak")));
15597 set_cmd_completer (c, location_completer);
15598
15599 add_prefix_cmd ("enable", class_breakpoint, enable_command, _("\
15600 Enable some breakpoints.\n\
15601 Give breakpoint numbers (separated by spaces) as arguments.\n\
15602 With no subcommand, breakpoints are enabled until you command otherwise.\n\
15603 This is used to cancel the effect of the \"disable\" command.\n\
15604 With a subcommand you can enable temporarily."),
15605 &enablelist, "enable ", 1, &cmdlist);
15606
15607 add_com_alias ("en", "enable", class_breakpoint, 1);
15608
15609 add_prefix_cmd ("breakpoints", class_breakpoint, enable_command, _("\
15610 Enable some breakpoints.\n\
15611 Give breakpoint numbers (separated by spaces) as arguments.\n\
15612 This is used to cancel the effect of the \"disable\" command.\n\
15613 May be abbreviated to simply \"enable\".\n"),
15614 &enablebreaklist, "enable breakpoints ", 1, &enablelist);
15615
15616 add_cmd ("once", no_class, enable_once_command, _("\
15617 Enable breakpoints for one hit. Give breakpoint numbers.\n\
15618 If a breakpoint is hit while enabled in this fashion, it becomes disabled."),
15619 &enablebreaklist);
15620
15621 add_cmd ("delete", no_class, enable_delete_command, _("\
15622 Enable breakpoints and delete when hit. Give breakpoint numbers.\n\
15623 If a breakpoint is hit while enabled in this fashion, it is deleted."),
15624 &enablebreaklist);
15625
15626 add_cmd ("count", no_class, enable_count_command, _("\
15627 Enable breakpoints for COUNT hits. Give count and then breakpoint numbers.\n\
15628 If a breakpoint is hit while enabled in this fashion,\n\
15629 the count is decremented; when it reaches zero, the breakpoint is disabled."),
15630 &enablebreaklist);
15631
15632 add_cmd ("delete", no_class, enable_delete_command, _("\
15633 Enable breakpoints and delete when hit. Give breakpoint numbers.\n\
15634 If a breakpoint is hit while enabled in this fashion, it is deleted."),
15635 &enablelist);
15636
15637 add_cmd ("once", no_class, enable_once_command, _("\
15638 Enable breakpoints for one hit. Give breakpoint numbers.\n\
15639 If a breakpoint is hit while enabled in this fashion, it becomes disabled."),
15640 &enablelist);
15641
15642 add_cmd ("count", no_class, enable_count_command, _("\
15643 Enable breakpoints for COUNT hits. Give count and then breakpoint numbers.\n\
15644 If a breakpoint is hit while enabled in this fashion,\n\
15645 the count is decremented; when it reaches zero, the breakpoint is disabled."),
15646 &enablelist);
15647
15648 add_prefix_cmd ("disable", class_breakpoint, disable_command, _("\
15649 Disable some breakpoints.\n\
15650 Arguments are breakpoint numbers with spaces in between.\n\
15651 To disable all breakpoints, give no argument.\n\
15652 A disabled breakpoint is not forgotten, but has no effect until re-enabled."),
15653 &disablelist, "disable ", 1, &cmdlist);
15654 add_com_alias ("dis", "disable", class_breakpoint, 1);
15655 add_com_alias ("disa", "disable", class_breakpoint, 1);
15656
15657 add_cmd ("breakpoints", class_alias, disable_command, _("\
15658 Disable some breakpoints.\n\
15659 Arguments are breakpoint numbers with spaces in between.\n\
15660 To disable all breakpoints, give no argument.\n\
15661 A disabled breakpoint is not forgotten, but has no effect until re-enabled.\n\
15662 This command may be abbreviated \"disable\"."),
15663 &disablelist);
15664
15665 add_prefix_cmd ("delete", class_breakpoint, delete_command, _("\
15666 Delete some breakpoints or auto-display expressions.\n\
15667 Arguments are breakpoint numbers with spaces in between.\n\
15668 To delete all breakpoints, give no argument.\n\
15669 \n\
15670 Also a prefix command for deletion of other GDB objects.\n\
15671 The \"unset\" command is also an alias for \"delete\"."),
15672 &deletelist, "delete ", 1, &cmdlist);
15673 add_com_alias ("d", "delete", class_breakpoint, 1);
15674 add_com_alias ("del", "delete", class_breakpoint, 1);
15675
15676 add_cmd ("breakpoints", class_alias, delete_command, _("\
15677 Delete some breakpoints or auto-display expressions.\n\
15678 Arguments are breakpoint numbers with spaces in between.\n\
15679 To delete all breakpoints, give no argument.\n\
15680 This command may be abbreviated \"delete\"."),
15681 &deletelist);
15682
15683 add_com ("clear", class_breakpoint, clear_command, _("\
15684 Clear breakpoint at specified location.\n\
15685 Argument may be a linespec, explicit, or address location as described below.\n\
15686 \n\
15687 With no argument, clears all breakpoints in the line that the selected frame\n\
15688 is executing in.\n"
15689 "\n" LOCATION_HELP_STRING "\n\
15690 See also the \"delete\" command which clears breakpoints by number."));
15691 add_com_alias ("cl", "clear", class_breakpoint, 1);
15692
15693 c = add_com ("break", class_breakpoint, break_command, _("\
15694 Set breakpoint at specified location.\n"
15695 BREAK_ARGS_HELP ("break")));
15696 set_cmd_completer (c, location_completer);
15697
15698 add_com_alias ("b", "break", class_run, 1);
15699 add_com_alias ("br", "break", class_run, 1);
15700 add_com_alias ("bre", "break", class_run, 1);
15701 add_com_alias ("brea", "break", class_run, 1);
15702
15703 if (dbx_commands)
15704 {
15705 add_abbrev_prefix_cmd ("stop", class_breakpoint, stop_command, _("\
15706 Break in function/address or break at a line in the current file."),
15707 &stoplist, "stop ", 1, &cmdlist);
15708 add_cmd ("in", class_breakpoint, stopin_command,
15709 _("Break in function or address."), &stoplist);
15710 add_cmd ("at", class_breakpoint, stopat_command,
15711 _("Break at a line in the current file."), &stoplist);
15712 add_com ("status", class_info, info_breakpoints_command, _("\
15713 Status of user-settable breakpoints, or breakpoint number NUMBER.\n\
15714 The \"Type\" column indicates one of:\n\
15715 \tbreakpoint - normal breakpoint\n\
15716 \twatchpoint - watchpoint\n\
15717 The \"Disp\" column contains one of \"keep\", \"del\", or \"dis\" to indicate\n\
15718 the disposition of the breakpoint after it gets hit. \"dis\" means that the\n\
15719 breakpoint will be disabled. The \"Address\" and \"What\" columns indicate the\n\
15720 address and file/line number respectively.\n\
15721 \n\
15722 Convenience variable \"$_\" and default examine address for \"x\"\n\
15723 are set to the address of the last breakpoint listed unless the command\n\
15724 is prefixed with \"server \".\n\n\
15725 Convenience variable \"$bpnum\" contains the number of the last\n\
15726 breakpoint set."));
15727 }
15728
15729 add_info ("breakpoints", info_breakpoints_command, _("\
15730 Status of specified breakpoints (all user-settable breakpoints if no argument).\n\
15731 The \"Type\" column indicates one of:\n\
15732 \tbreakpoint - normal breakpoint\n\
15733 \twatchpoint - watchpoint\n\
15734 The \"Disp\" column contains one of \"keep\", \"del\", or \"dis\" to indicate\n\
15735 the disposition of the breakpoint after it gets hit. \"dis\" means that the\n\
15736 breakpoint will be disabled. The \"Address\" and \"What\" columns indicate the\n\
15737 address and file/line number respectively.\n\
15738 \n\
15739 Convenience variable \"$_\" and default examine address for \"x\"\n\
15740 are set to the address of the last breakpoint listed unless the command\n\
15741 is prefixed with \"server \".\n\n\
15742 Convenience variable \"$bpnum\" contains the number of the last\n\
15743 breakpoint set."));
15744
15745 add_info_alias ("b", "breakpoints", 1);
15746
15747 add_cmd ("breakpoints", class_maintenance, maintenance_info_breakpoints, _("\
15748 Status of all breakpoints, or breakpoint number NUMBER.\n\
15749 The \"Type\" column indicates one of:\n\
15750 \tbreakpoint - normal breakpoint\n\
15751 \twatchpoint - watchpoint\n\
15752 \tlongjmp - internal breakpoint used to step through longjmp()\n\
15753 \tlongjmp resume - internal breakpoint at the target of longjmp()\n\
15754 \tuntil - internal breakpoint used by the \"until\" command\n\
15755 \tfinish - internal breakpoint used by the \"finish\" command\n\
15756 The \"Disp\" column contains one of \"keep\", \"del\", or \"dis\" to indicate\n\
15757 the disposition of the breakpoint after it gets hit. \"dis\" means that the\n\
15758 breakpoint will be disabled. The \"Address\" and \"What\" columns indicate the\n\
15759 address and file/line number respectively.\n\
15760 \n\
15761 Convenience variable \"$_\" and default examine address for \"x\"\n\
15762 are set to the address of the last breakpoint listed unless the command\n\
15763 is prefixed with \"server \".\n\n\
15764 Convenience variable \"$bpnum\" contains the number of the last\n\
15765 breakpoint set."),
15766 &maintenanceinfolist);
15767
15768 add_prefix_cmd ("catch", class_breakpoint, catch_command, _("\
15769 Set catchpoints to catch events."),
15770 &catch_cmdlist, "catch ",
15771 0/*allow-unknown*/, &cmdlist);
15772
15773 add_prefix_cmd ("tcatch", class_breakpoint, tcatch_command, _("\
15774 Set temporary catchpoints to catch events."),
15775 &tcatch_cmdlist, "tcatch ",
15776 0/*allow-unknown*/, &cmdlist);
15777
15778 add_catch_command ("fork", _("Catch calls to fork."),
15779 catch_fork_command_1,
15780 NULL,
15781 (void *) (uintptr_t) catch_fork_permanent,
15782 (void *) (uintptr_t) catch_fork_temporary);
15783 add_catch_command ("vfork", _("Catch calls to vfork."),
15784 catch_fork_command_1,
15785 NULL,
15786 (void *) (uintptr_t) catch_vfork_permanent,
15787 (void *) (uintptr_t) catch_vfork_temporary);
15788 add_catch_command ("exec", _("Catch calls to exec."),
15789 catch_exec_command_1,
15790 NULL,
15791 CATCH_PERMANENT,
15792 CATCH_TEMPORARY);
15793 add_catch_command ("load", _("Catch loads of shared libraries.\n\
15794 Usage: catch load [REGEX]\n\
15795 If REGEX is given, only stop for libraries matching the regular expression."),
15796 catch_load_command_1,
15797 NULL,
15798 CATCH_PERMANENT,
15799 CATCH_TEMPORARY);
15800 add_catch_command ("unload", _("Catch unloads of shared libraries.\n\
15801 Usage: catch unload [REGEX]\n\
15802 If REGEX is given, only stop for libraries matching the regular expression."),
15803 catch_unload_command_1,
15804 NULL,
15805 CATCH_PERMANENT,
15806 CATCH_TEMPORARY);
15807
15808 c = add_com ("watch", class_breakpoint, watch_command, _("\
15809 Set a watchpoint for an expression.\n\
15810 Usage: watch [-l|-location] EXPRESSION\n\
15811 A watchpoint stops execution of your program whenever the value of\n\
15812 an expression changes.\n\
15813 If -l or -location is given, this evaluates EXPRESSION and watches\n\
15814 the memory to which it refers."));
15815 set_cmd_completer (c, expression_completer);
15816
15817 c = add_com ("rwatch", class_breakpoint, rwatch_command, _("\
15818 Set a read watchpoint for an expression.\n\
15819 Usage: rwatch [-l|-location] EXPRESSION\n\
15820 A watchpoint stops execution of your program whenever the value of\n\
15821 an expression is read.\n\
15822 If -l or -location is given, this evaluates EXPRESSION and watches\n\
15823 the memory to which it refers."));
15824 set_cmd_completer (c, expression_completer);
15825
15826 c = add_com ("awatch", class_breakpoint, awatch_command, _("\
15827 Set a watchpoint for an expression.\n\
15828 Usage: awatch [-l|-location] EXPRESSION\n\
15829 A watchpoint stops execution of your program whenever the value of\n\
15830 an expression is either read or written.\n\
15831 If -l or -location is given, this evaluates EXPRESSION and watches\n\
15832 the memory to which it refers."));
15833 set_cmd_completer (c, expression_completer);
15834
15835 add_info ("watchpoints", info_watchpoints_command, _("\
15836 Status of specified watchpoints (all watchpoints if no argument)."));
15837
15838 /* XXX: cagney/2005-02-23: This should be a boolean, and should
15839 respond to changes - contrary to the description. */
15840 add_setshow_zinteger_cmd ("can-use-hw-watchpoints", class_support,
15841 &can_use_hw_watchpoints, _("\
15842 Set debugger's willingness to use watchpoint hardware."), _("\
15843 Show debugger's willingness to use watchpoint hardware."), _("\
15844 If zero, gdb will not use hardware for new watchpoints, even if\n\
15845 such is available. (However, any hardware watchpoints that were\n\
15846 created before setting this to nonzero, will continue to use watchpoint\n\
15847 hardware.)"),
15848 NULL,
15849 show_can_use_hw_watchpoints,
15850 &setlist, &showlist);
15851
15852 can_use_hw_watchpoints = 1;
15853
15854 /* Tracepoint manipulation commands. */
15855
15856 c = add_com ("trace", class_breakpoint, trace_command, _("\
15857 Set a tracepoint at specified location.\n\
15858 \n"
15859 BREAK_ARGS_HELP ("trace") "\n\
15860 Do \"help tracepoints\" for info on other tracepoint commands."));
15861 set_cmd_completer (c, location_completer);
15862
15863 add_com_alias ("tp", "trace", class_alias, 0);
15864 add_com_alias ("tr", "trace", class_alias, 1);
15865 add_com_alias ("tra", "trace", class_alias, 1);
15866 add_com_alias ("trac", "trace", class_alias, 1);
15867
15868 c = add_com ("ftrace", class_breakpoint, ftrace_command, _("\
15869 Set a fast tracepoint at specified location.\n\
15870 \n"
15871 BREAK_ARGS_HELP ("ftrace") "\n\
15872 Do \"help tracepoints\" for info on other tracepoint commands."));
15873 set_cmd_completer (c, location_completer);
15874
15875 c = add_com ("strace", class_breakpoint, strace_command, _("\
15876 Set a static tracepoint at location or marker.\n\
15877 \n\
15878 strace [LOCATION] [if CONDITION]\n\
15879 LOCATION may be a linespec, explicit, or address location (described below) \n\
15880 or -m MARKER_ID.\n\n\
15881 If a marker id is specified, probe the marker with that name. With\n\
15882 no LOCATION, uses current execution address of the selected stack frame.\n\
15883 Static tracepoints accept an extra collect action -- ``collect $_sdata''.\n\
15884 This collects arbitrary user data passed in the probe point call to the\n\
15885 tracing library. You can inspect it when analyzing the trace buffer,\n\
15886 by printing the $_sdata variable like any other convenience variable.\n\
15887 \n\
15888 CONDITION is a boolean expression.\n\
15889 \n" LOCATION_HELP_STRING "\n\
15890 Multiple tracepoints at one place are permitted, and useful if their\n\
15891 conditions are different.\n\
15892 \n\
15893 Do \"help breakpoints\" for info on other commands dealing with breakpoints.\n\
15894 Do \"help tracepoints\" for info on other tracepoint commands."));
15895 set_cmd_completer (c, location_completer);
15896
15897 add_info ("tracepoints", info_tracepoints_command, _("\
15898 Status of specified tracepoints (all tracepoints if no argument).\n\
15899 Convenience variable \"$tpnum\" contains the number of the\n\
15900 last tracepoint set."));
15901
15902 add_info_alias ("tp", "tracepoints", 1);
15903
15904 add_cmd ("tracepoints", class_trace, delete_trace_command, _("\
15905 Delete specified tracepoints.\n\
15906 Arguments are tracepoint numbers, separated by spaces.\n\
15907 No argument means delete all tracepoints."),
15908 &deletelist);
15909 add_alias_cmd ("tr", "tracepoints", class_trace, 1, &deletelist);
15910
15911 c = add_cmd ("tracepoints", class_trace, disable_trace_command, _("\
15912 Disable specified tracepoints.\n\
15913 Arguments are tracepoint numbers, separated by spaces.\n\
15914 No argument means disable all tracepoints."),
15915 &disablelist);
15916 deprecate_cmd (c, "disable");
15917
15918 c = add_cmd ("tracepoints", class_trace, enable_trace_command, _("\
15919 Enable specified tracepoints.\n\
15920 Arguments are tracepoint numbers, separated by spaces.\n\
15921 No argument means enable all tracepoints."),
15922 &enablelist);
15923 deprecate_cmd (c, "enable");
15924
15925 add_com ("passcount", class_trace, trace_pass_command, _("\
15926 Set the passcount for a tracepoint.\n\
15927 The trace will end when the tracepoint has been passed 'count' times.\n\
15928 Usage: passcount COUNT TPNUM, where TPNUM may also be \"all\";\n\
15929 if TPNUM is omitted, passcount refers to the last tracepoint defined."));
15930
15931 add_prefix_cmd ("save", class_breakpoint, save_command,
15932 _("Save breakpoint definitions as a script."),
15933 &save_cmdlist, "save ",
15934 0/*allow-unknown*/, &cmdlist);
15935
15936 c = add_cmd ("breakpoints", class_breakpoint, save_breakpoints_command, _("\
15937 Save current breakpoint definitions as a script.\n\
15938 This includes all types of breakpoints (breakpoints, watchpoints,\n\
15939 catchpoints, tracepoints). Use the 'source' command in another debug\n\
15940 session to restore them."),
15941 &save_cmdlist);
15942 set_cmd_completer (c, filename_completer);
15943
15944 c = add_cmd ("tracepoints", class_trace, save_tracepoints_command, _("\
15945 Save current tracepoint definitions as a script.\n\
15946 Use the 'source' command in another debug session to restore them."),
15947 &save_cmdlist);
15948 set_cmd_completer (c, filename_completer);
15949
15950 c = add_com_alias ("save-tracepoints", "save tracepoints", class_trace, 0);
15951 deprecate_cmd (c, "save tracepoints");
15952
15953 add_prefix_cmd ("breakpoint", class_maintenance, set_breakpoint_cmd, _("\
15954 Breakpoint specific settings\n\
15955 Configure various breakpoint-specific variables such as\n\
15956 pending breakpoint behavior"),
15957 &breakpoint_set_cmdlist, "set breakpoint ",
15958 0/*allow-unknown*/, &setlist);
15959 add_prefix_cmd ("breakpoint", class_maintenance, show_breakpoint_cmd, _("\
15960 Breakpoint specific settings\n\
15961 Configure various breakpoint-specific variables such as\n\
15962 pending breakpoint behavior"),
15963 &breakpoint_show_cmdlist, "show breakpoint ",
15964 0/*allow-unknown*/, &showlist);
15965
15966 add_setshow_auto_boolean_cmd ("pending", no_class,
15967 &pending_break_support, _("\
15968 Set debugger's behavior regarding pending breakpoints."), _("\
15969 Show debugger's behavior regarding pending breakpoints."), _("\
15970 If on, an unrecognized breakpoint location will cause gdb to create a\n\
15971 pending breakpoint. If off, an unrecognized breakpoint location results in\n\
15972 an error. If auto, an unrecognized breakpoint location results in a\n\
15973 user-query to see if a pending breakpoint should be created."),
15974 NULL,
15975 show_pending_break_support,
15976 &breakpoint_set_cmdlist,
15977 &breakpoint_show_cmdlist);
15978
15979 pending_break_support = AUTO_BOOLEAN_AUTO;
15980
15981 add_setshow_boolean_cmd ("auto-hw", no_class,
15982 &automatic_hardware_breakpoints, _("\
15983 Set automatic usage of hardware breakpoints."), _("\
15984 Show automatic usage of hardware breakpoints."), _("\
15985 If set, the debugger will automatically use hardware breakpoints for\n\
15986 breakpoints set with \"break\" but falling in read-only memory. If not set,\n\
15987 a warning will be emitted for such breakpoints."),
15988 NULL,
15989 show_automatic_hardware_breakpoints,
15990 &breakpoint_set_cmdlist,
15991 &breakpoint_show_cmdlist);
15992
15993 add_setshow_boolean_cmd ("always-inserted", class_support,
15994 &always_inserted_mode, _("\
15995 Set mode for inserting breakpoints."), _("\
15996 Show mode for inserting breakpoints."), _("\
15997 When this mode is on, breakpoints are inserted immediately as soon as\n\
15998 they're created, kept inserted even when execution stops, and removed\n\
15999 only when the user deletes them. When this mode is off (the default),\n\
16000 breakpoints are inserted only when execution continues, and removed\n\
16001 when execution stops."),
16002 NULL,
16003 &show_always_inserted_mode,
16004 &breakpoint_set_cmdlist,
16005 &breakpoint_show_cmdlist);
16006
16007 add_setshow_enum_cmd ("condition-evaluation", class_breakpoint,
16008 condition_evaluation_enums,
16009 &condition_evaluation_mode_1, _("\
16010 Set mode of breakpoint condition evaluation."), _("\
16011 Show mode of breakpoint condition evaluation."), _("\
16012 When this is set to \"host\", breakpoint conditions will be\n\
16013 evaluated on the host's side by GDB. When it is set to \"target\",\n\
16014 breakpoint conditions will be downloaded to the target (if the target\n\
16015 supports such feature) and conditions will be evaluated on the target's side.\n\
16016 If this is set to \"auto\" (default), this will be automatically set to\n\
16017 \"target\" if it supports condition evaluation, otherwise it will\n\
16018 be set to \"gdb\""),
16019 &set_condition_evaluation_mode,
16020 &show_condition_evaluation_mode,
16021 &breakpoint_set_cmdlist,
16022 &breakpoint_show_cmdlist);
16023
16024 add_com ("break-range", class_breakpoint, break_range_command, _("\
16025 Set a breakpoint for an address range.\n\
16026 break-range START-LOCATION, END-LOCATION\n\
16027 where START-LOCATION and END-LOCATION can be one of the following:\n\
16028 LINENUM, for that line in the current file,\n\
16029 FILE:LINENUM, for that line in that file,\n\
16030 +OFFSET, for that number of lines after the current line\n\
16031 or the start of the range\n\
16032 FUNCTION, for the first line in that function,\n\
16033 FILE:FUNCTION, to distinguish among like-named static functions.\n\
16034 *ADDRESS, for the instruction at that address.\n\
16035 \n\
16036 The breakpoint will stop execution of the inferior whenever it executes\n\
16037 an instruction at any address within the [START-LOCATION, END-LOCATION]\n\
16038 range (including START-LOCATION and END-LOCATION)."));
16039
16040 c = add_com ("dprintf", class_breakpoint, dprintf_command, _("\
16041 Set a dynamic printf at specified location.\n\
16042 dprintf location,format string,arg1,arg2,...\n\
16043 location may be a linespec, explicit, or address location.\n"
16044 "\n" LOCATION_HELP_STRING));
16045 set_cmd_completer (c, location_completer);
16046
16047 add_setshow_enum_cmd ("dprintf-style", class_support,
16048 dprintf_style_enums, &dprintf_style, _("\
16049 Set the style of usage for dynamic printf."), _("\
16050 Show the style of usage for dynamic printf."), _("\
16051 This setting chooses how GDB will do a dynamic printf.\n\
16052 If the value is \"gdb\", then the printing is done by GDB to its own\n\
16053 console, as with the \"printf\" command.\n\
16054 If the value is \"call\", the print is done by calling a function in your\n\
16055 program; by default printf(), but you can choose a different function or\n\
16056 output stream by setting dprintf-function and dprintf-channel."),
16057 update_dprintf_commands, NULL,
16058 &setlist, &showlist);
16059
16060 dprintf_function = xstrdup ("printf");
16061 add_setshow_string_cmd ("dprintf-function", class_support,
16062 &dprintf_function, _("\
16063 Set the function to use for dynamic printf"), _("\
16064 Show the function to use for dynamic printf"), NULL,
16065 update_dprintf_commands, NULL,
16066 &setlist, &showlist);
16067
16068 dprintf_channel = xstrdup ("");
16069 add_setshow_string_cmd ("dprintf-channel", class_support,
16070 &dprintf_channel, _("\
16071 Set the channel to use for dynamic printf"), _("\
16072 Show the channel to use for dynamic printf"), NULL,
16073 update_dprintf_commands, NULL,
16074 &setlist, &showlist);
16075
16076 add_setshow_boolean_cmd ("disconnected-dprintf", no_class,
16077 &disconnected_dprintf, _("\
16078 Set whether dprintf continues after GDB disconnects."), _("\
16079 Show whether dprintf continues after GDB disconnects."), _("\
16080 Use this to let dprintf commands continue to hit and produce output\n\
16081 even if GDB disconnects or detaches from the target."),
16082 NULL,
16083 NULL,
16084 &setlist, &showlist);
16085
16086 add_com ("agent-printf", class_vars, agent_printf_command, _("\
16087 agent-printf \"printf format string\", arg1, arg2, arg3, ..., argn\n\
16088 (target agent only) This is useful for formatted output in user-defined commands."));
16089
16090 automatic_hardware_breakpoints = 1;
16091
16092 gdb::observers::about_to_proceed.attach (breakpoint_about_to_proceed);
16093 gdb::observers::thread_exit.attach (remove_threaded_breakpoints);
16094 }
This page took 0.396583 seconds and 4 git commands to generate.