Correct invalid assumptions made by (mostly) DWARF-2 tests
[deliverable/binutils-gdb.git] / gdb / breakpoint.c
1 /* Everything about breakpoints, for GDB.
2
3 Copyright (C) 1986-2014 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20 #include "defs.h"
21 #include "arch-utils.h"
22 #include <ctype.h>
23 #include "hashtab.h"
24 #include "symtab.h"
25 #include "frame.h"
26 #include "breakpoint.h"
27 #include "tracepoint.h"
28 #include "gdbtypes.h"
29 #include "expression.h"
30 #include "gdbcore.h"
31 #include "gdbcmd.h"
32 #include "value.h"
33 #include "command.h"
34 #include "inferior.h"
35 #include "infrun.h"
36 #include "gdbthread.h"
37 #include "target.h"
38 #include "language.h"
39 #include "gdb-demangle.h"
40 #include "filenames.h"
41 #include "annotate.h"
42 #include "symfile.h"
43 #include "objfiles.h"
44 #include "source.h"
45 #include "linespec.h"
46 #include "completer.h"
47 #include "gdb.h"
48 #include "ui-out.h"
49 #include "cli/cli-script.h"
50 #include "block.h"
51 #include "solib.h"
52 #include "solist.h"
53 #include "observer.h"
54 #include "memattr.h"
55 #include "ada-lang.h"
56 #include "top.h"
57 #include "valprint.h"
58 #include "jit.h"
59 #include "xml-syscall.h"
60 #include "parser-defs.h"
61 #include "gdb_regex.h"
62 #include "probe.h"
63 #include "cli/cli-utils.h"
64 #include "continuations.h"
65 #include "stack.h"
66 #include "skip.h"
67 #include "ax-gdb.h"
68 #include "dummy-frame.h"
69
70 #include "format.h"
71
72 /* readline include files */
73 #include "readline/readline.h"
74 #include "readline/history.h"
75
76 /* readline defines this. */
77 #undef savestring
78
79 #include "mi/mi-common.h"
80 #include "extension.h"
81
82 /* Enums for exception-handling support. */
83 enum exception_event_kind
84 {
85 EX_EVENT_THROW,
86 EX_EVENT_RETHROW,
87 EX_EVENT_CATCH
88 };
89
90 /* Prototypes for local functions. */
91
92 static void enable_delete_command (char *, int);
93
94 static void enable_once_command (char *, int);
95
96 static void enable_count_command (char *, int);
97
98 static void disable_command (char *, int);
99
100 static void enable_command (char *, int);
101
102 static void map_breakpoint_numbers (char *, void (*) (struct breakpoint *,
103 void *),
104 void *);
105
106 static void ignore_command (char *, int);
107
108 static int breakpoint_re_set_one (void *);
109
110 static void breakpoint_re_set_default (struct breakpoint *);
111
112 static void create_sals_from_address_default (char **,
113 struct linespec_result *,
114 enum bptype, char *,
115 char **);
116
117 static void create_breakpoints_sal_default (struct gdbarch *,
118 struct linespec_result *,
119 char *, char *, enum bptype,
120 enum bpdisp, int, int,
121 int,
122 const struct breakpoint_ops *,
123 int, int, int, unsigned);
124
125 static void decode_linespec_default (struct breakpoint *, char **,
126 struct symtabs_and_lines *);
127
128 static void clear_command (char *, int);
129
130 static void catch_command (char *, int);
131
132 static int can_use_hardware_watchpoint (struct value *);
133
134 static void break_command_1 (char *, int, int);
135
136 static void mention (struct breakpoint *);
137
138 static struct breakpoint *set_raw_breakpoint_without_location (struct gdbarch *,
139 enum bptype,
140 const struct breakpoint_ops *);
141 static struct bp_location *add_location_to_breakpoint (struct breakpoint *,
142 const struct symtab_and_line *);
143
144 /* This function is used in gdbtk sources and thus can not be made
145 static. */
146 struct breakpoint *set_raw_breakpoint (struct gdbarch *gdbarch,
147 struct symtab_and_line,
148 enum bptype,
149 const struct breakpoint_ops *);
150
151 static struct breakpoint *
152 momentary_breakpoint_from_master (struct breakpoint *orig,
153 enum bptype type,
154 const struct breakpoint_ops *ops,
155 int loc_enabled);
156
157 static void breakpoint_adjustment_warning (CORE_ADDR, CORE_ADDR, int, int);
158
159 static CORE_ADDR adjust_breakpoint_address (struct gdbarch *gdbarch,
160 CORE_ADDR bpaddr,
161 enum bptype bptype);
162
163 static void describe_other_breakpoints (struct gdbarch *,
164 struct program_space *, CORE_ADDR,
165 struct obj_section *, int);
166
167 static int watchpoint_locations_match (struct bp_location *loc1,
168 struct bp_location *loc2);
169
170 static int breakpoint_location_address_match (struct bp_location *bl,
171 struct address_space *aspace,
172 CORE_ADDR addr);
173
174 static void breakpoints_info (char *, int);
175
176 static void watchpoints_info (char *, int);
177
178 static int breakpoint_1 (char *, int,
179 int (*) (const struct breakpoint *));
180
181 static int breakpoint_cond_eval (void *);
182
183 static void cleanup_executing_breakpoints (void *);
184
185 static void commands_command (char *, int);
186
187 static void condition_command (char *, int);
188
189 typedef enum
190 {
191 mark_inserted,
192 mark_uninserted
193 }
194 insertion_state_t;
195
196 static int remove_breakpoint (struct bp_location *, insertion_state_t);
197 static int remove_breakpoint_1 (struct bp_location *, insertion_state_t);
198
199 static enum print_stop_action print_bp_stop_message (bpstat bs);
200
201 static int watchpoint_check (void *);
202
203 static void maintenance_info_breakpoints (char *, int);
204
205 static int hw_breakpoint_used_count (void);
206
207 static int hw_watchpoint_use_count (struct breakpoint *);
208
209 static int hw_watchpoint_used_count_others (struct breakpoint *except,
210 enum bptype type,
211 int *other_type_used);
212
213 static void hbreak_command (char *, int);
214
215 static void thbreak_command (char *, int);
216
217 static void enable_breakpoint_disp (struct breakpoint *, enum bpdisp,
218 int count);
219
220 static void stop_command (char *arg, int from_tty);
221
222 static void stopin_command (char *arg, int from_tty);
223
224 static void stopat_command (char *arg, int from_tty);
225
226 static void tcatch_command (char *arg, int from_tty);
227
228 static void free_bp_location (struct bp_location *loc);
229 static void incref_bp_location (struct bp_location *loc);
230 static void decref_bp_location (struct bp_location **loc);
231
232 static struct bp_location *allocate_bp_location (struct breakpoint *bpt);
233
234 /* update_global_location_list's modes of operation wrt to whether to
235 insert locations now. */
236 enum ugll_insert_mode
237 {
238 /* Don't insert any breakpoint locations into the inferior, only
239 remove already-inserted locations that no longer should be
240 inserted. Functions that delete a breakpoint or breakpoints
241 should specify this mode, so that deleting a breakpoint doesn't
242 have the side effect of inserting the locations of other
243 breakpoints that are marked not-inserted, but should_be_inserted
244 returns true on them.
245
246 This behavior is useful is situations close to tear-down -- e.g.,
247 after an exec, while the target still has execution, but
248 breakpoint shadows of the previous executable image should *NOT*
249 be restored to the new image; or before detaching, where the
250 target still has execution and wants to delete breakpoints from
251 GDB's lists, and all breakpoints had already been removed from
252 the inferior. */
253 UGLL_DONT_INSERT,
254
255 /* May insert breakpoints iff breakpoints_should_be_inserted_now
256 claims breakpoints should be inserted now. */
257 UGLL_MAY_INSERT,
258
259 /* Insert locations now, irrespective of
260 breakpoints_should_be_inserted_now. E.g., say all threads are
261 stopped right now, and the user did "continue". We need to
262 insert breakpoints _before_ resuming the target, but
263 UGLL_MAY_INSERT wouldn't insert them, because
264 breakpoints_should_be_inserted_now returns false at that point,
265 as no thread is running yet. */
266 UGLL_INSERT
267 };
268
269 static void update_global_location_list (enum ugll_insert_mode);
270
271 static void update_global_location_list_nothrow (enum ugll_insert_mode);
272
273 static int is_hardware_watchpoint (const struct breakpoint *bpt);
274
275 static void insert_breakpoint_locations (void);
276
277 static int syscall_catchpoint_p (struct breakpoint *b);
278
279 static void tracepoints_info (char *, int);
280
281 static void delete_trace_command (char *, int);
282
283 static void enable_trace_command (char *, int);
284
285 static void disable_trace_command (char *, int);
286
287 static void trace_pass_command (char *, int);
288
289 static void set_tracepoint_count (int num);
290
291 static int is_masked_watchpoint (const struct breakpoint *b);
292
293 static struct bp_location **get_first_locp_gte_addr (CORE_ADDR address);
294
295 /* Return 1 if B refers to a static tracepoint set by marker ("-m"), zero
296 otherwise. */
297
298 static int strace_marker_p (struct breakpoint *b);
299
300 /* The abstract base class all breakpoint_ops structures inherit
301 from. */
302 struct breakpoint_ops base_breakpoint_ops;
303
304 /* The breakpoint_ops structure to be inherited by all breakpoint_ops
305 that are implemented on top of software or hardware breakpoints
306 (user breakpoints, internal and momentary breakpoints, etc.). */
307 static struct breakpoint_ops bkpt_base_breakpoint_ops;
308
309 /* Internal breakpoints class type. */
310 static struct breakpoint_ops internal_breakpoint_ops;
311
312 /* Momentary breakpoints class type. */
313 static struct breakpoint_ops momentary_breakpoint_ops;
314
315 /* Momentary breakpoints for bp_longjmp and bp_exception class type. */
316 static struct breakpoint_ops longjmp_breakpoint_ops;
317
318 /* The breakpoint_ops structure to be used in regular user created
319 breakpoints. */
320 struct breakpoint_ops bkpt_breakpoint_ops;
321
322 /* Breakpoints set on probes. */
323 static struct breakpoint_ops bkpt_probe_breakpoint_ops;
324
325 /* Dynamic printf class type. */
326 struct breakpoint_ops dprintf_breakpoint_ops;
327
328 /* The style in which to perform a dynamic printf. This is a user
329 option because different output options have different tradeoffs;
330 if GDB does the printing, there is better error handling if there
331 is a problem with any of the arguments, but using an inferior
332 function lets you have special-purpose printers and sending of
333 output to the same place as compiled-in print functions. */
334
335 static const char dprintf_style_gdb[] = "gdb";
336 static const char dprintf_style_call[] = "call";
337 static const char dprintf_style_agent[] = "agent";
338 static const char *const dprintf_style_enums[] = {
339 dprintf_style_gdb,
340 dprintf_style_call,
341 dprintf_style_agent,
342 NULL
343 };
344 static const char *dprintf_style = dprintf_style_gdb;
345
346 /* The function to use for dynamic printf if the preferred style is to
347 call into the inferior. The value is simply a string that is
348 copied into the command, so it can be anything that GDB can
349 evaluate to a callable address, not necessarily a function name. */
350
351 static char *dprintf_function = "";
352
353 /* The channel to use for dynamic printf if the preferred style is to
354 call into the inferior; if a nonempty string, it will be passed to
355 the call as the first argument, with the format string as the
356 second. As with the dprintf function, this can be anything that
357 GDB knows how to evaluate, so in addition to common choices like
358 "stderr", this could be an app-specific expression like
359 "mystreams[curlogger]". */
360
361 static char *dprintf_channel = "";
362
363 /* True if dprintf commands should continue to operate even if GDB
364 has disconnected. */
365 static int disconnected_dprintf = 1;
366
367 /* A reference-counted struct command_line. This lets multiple
368 breakpoints share a single command list. */
369 struct counted_command_line
370 {
371 /* The reference count. */
372 int refc;
373
374 /* The command list. */
375 struct command_line *commands;
376 };
377
378 struct command_line *
379 breakpoint_commands (struct breakpoint *b)
380 {
381 return b->commands ? b->commands->commands : NULL;
382 }
383
384 /* Flag indicating that a command has proceeded the inferior past the
385 current breakpoint. */
386
387 static int breakpoint_proceeded;
388
389 const char *
390 bpdisp_text (enum bpdisp disp)
391 {
392 /* NOTE: the following values are a part of MI protocol and
393 represent values of 'disp' field returned when inferior stops at
394 a breakpoint. */
395 static const char * const bpdisps[] = {"del", "dstp", "dis", "keep"};
396
397 return bpdisps[(int) disp];
398 }
399
400 /* Prototypes for exported functions. */
401 /* If FALSE, gdb will not use hardware support for watchpoints, even
402 if such is available. */
403 static int can_use_hw_watchpoints;
404
405 static void
406 show_can_use_hw_watchpoints (struct ui_file *file, int from_tty,
407 struct cmd_list_element *c,
408 const char *value)
409 {
410 fprintf_filtered (file,
411 _("Debugger's willingness to use "
412 "watchpoint hardware is %s.\n"),
413 value);
414 }
415
416 /* If AUTO_BOOLEAN_FALSE, gdb will not attempt to create pending breakpoints.
417 If AUTO_BOOLEAN_TRUE, gdb will automatically create pending breakpoints
418 for unrecognized breakpoint locations.
419 If AUTO_BOOLEAN_AUTO, gdb will query when breakpoints are unrecognized. */
420 static enum auto_boolean pending_break_support;
421 static void
422 show_pending_break_support (struct ui_file *file, int from_tty,
423 struct cmd_list_element *c,
424 const char *value)
425 {
426 fprintf_filtered (file,
427 _("Debugger's behavior regarding "
428 "pending breakpoints is %s.\n"),
429 value);
430 }
431
432 /* If 1, gdb will automatically use hardware breakpoints for breakpoints
433 set with "break" but falling in read-only memory.
434 If 0, gdb will warn about such breakpoints, but won't automatically
435 use hardware breakpoints. */
436 static int automatic_hardware_breakpoints;
437 static void
438 show_automatic_hardware_breakpoints (struct ui_file *file, int from_tty,
439 struct cmd_list_element *c,
440 const char *value)
441 {
442 fprintf_filtered (file,
443 _("Automatic usage of hardware breakpoints is %s.\n"),
444 value);
445 }
446
447 /* If on, GDB keeps breakpoints inserted even if the inferior is
448 stopped, and immediately inserts any new breakpoints as soon as
449 they're created. If off (default), GDB keeps breakpoints off of
450 the target as long as possible. That is, it delays inserting
451 breakpoints until the next resume, and removes them again when the
452 target fully stops. This is a bit safer in case GDB crashes while
453 processing user input. */
454 static int always_inserted_mode = 0;
455
456 static void
457 show_always_inserted_mode (struct ui_file *file, int from_tty,
458 struct cmd_list_element *c, const char *value)
459 {
460 fprintf_filtered (file, _("Always inserted breakpoint mode is %s.\n"),
461 value);
462 }
463
464 /* See breakpoint.h. */
465
466 int
467 breakpoints_should_be_inserted_now (void)
468 {
469 if (gdbarch_has_global_breakpoints (target_gdbarch ()))
470 {
471 /* If breakpoints are global, they should be inserted even if no
472 thread under gdb's control is running, or even if there are
473 no threads under GDB's control yet. */
474 return 1;
475 }
476 else if (target_has_execution)
477 {
478 if (always_inserted_mode)
479 {
480 /* The user wants breakpoints inserted even if all threads
481 are stopped. */
482 return 1;
483 }
484
485 if (threads_are_executing ())
486 return 1;
487 }
488 return 0;
489 }
490
491 static const char condition_evaluation_both[] = "host or target";
492
493 /* Modes for breakpoint condition evaluation. */
494 static const char condition_evaluation_auto[] = "auto";
495 static const char condition_evaluation_host[] = "host";
496 static const char condition_evaluation_target[] = "target";
497 static const char *const condition_evaluation_enums[] = {
498 condition_evaluation_auto,
499 condition_evaluation_host,
500 condition_evaluation_target,
501 NULL
502 };
503
504 /* Global that holds the current mode for breakpoint condition evaluation. */
505 static const char *condition_evaluation_mode_1 = condition_evaluation_auto;
506
507 /* Global that we use to display information to the user (gets its value from
508 condition_evaluation_mode_1. */
509 static const char *condition_evaluation_mode = condition_evaluation_auto;
510
511 /* Translate a condition evaluation mode MODE into either "host"
512 or "target". This is used mostly to translate from "auto" to the
513 real setting that is being used. It returns the translated
514 evaluation mode. */
515
516 static const char *
517 translate_condition_evaluation_mode (const char *mode)
518 {
519 if (mode == condition_evaluation_auto)
520 {
521 if (target_supports_evaluation_of_breakpoint_conditions ())
522 return condition_evaluation_target;
523 else
524 return condition_evaluation_host;
525 }
526 else
527 return mode;
528 }
529
530 /* Discovers what condition_evaluation_auto translates to. */
531
532 static const char *
533 breakpoint_condition_evaluation_mode (void)
534 {
535 return translate_condition_evaluation_mode (condition_evaluation_mode);
536 }
537
538 /* Return true if GDB should evaluate breakpoint conditions or false
539 otherwise. */
540
541 static int
542 gdb_evaluates_breakpoint_condition_p (void)
543 {
544 const char *mode = breakpoint_condition_evaluation_mode ();
545
546 return (mode == condition_evaluation_host);
547 }
548
549 void _initialize_breakpoint (void);
550
551 /* Are we executing breakpoint commands? */
552 static int executing_breakpoint_commands;
553
554 /* Are overlay event breakpoints enabled? */
555 static int overlay_events_enabled;
556
557 /* See description in breakpoint.h. */
558 int target_exact_watchpoints = 0;
559
560 /* Walk the following statement or block through all breakpoints.
561 ALL_BREAKPOINTS_SAFE does so even if the statement deletes the
562 current breakpoint. */
563
564 #define ALL_BREAKPOINTS(B) for (B = breakpoint_chain; B; B = B->next)
565
566 #define ALL_BREAKPOINTS_SAFE(B,TMP) \
567 for (B = breakpoint_chain; \
568 B ? (TMP=B->next, 1): 0; \
569 B = TMP)
570
571 /* Similar iterator for the low-level breakpoints. SAFE variant is
572 not provided so update_global_location_list must not be called
573 while executing the block of ALL_BP_LOCATIONS. */
574
575 #define ALL_BP_LOCATIONS(B,BP_TMP) \
576 for (BP_TMP = bp_location; \
577 BP_TMP < bp_location + bp_location_count && (B = *BP_TMP); \
578 BP_TMP++)
579
580 /* Iterates through locations with address ADDRESS for the currently selected
581 program space. BP_LOCP_TMP points to each object. BP_LOCP_START points
582 to where the loop should start from.
583 If BP_LOCP_START is a NULL pointer, the macro automatically seeks the
584 appropriate location to start with. */
585
586 #define ALL_BP_LOCATIONS_AT_ADDR(BP_LOCP_TMP, BP_LOCP_START, ADDRESS) \
587 for (BP_LOCP_START = BP_LOCP_START == NULL ? get_first_locp_gte_addr (ADDRESS) : BP_LOCP_START, \
588 BP_LOCP_TMP = BP_LOCP_START; \
589 BP_LOCP_START \
590 && (BP_LOCP_TMP < bp_location + bp_location_count \
591 && (*BP_LOCP_TMP)->address == ADDRESS); \
592 BP_LOCP_TMP++)
593
594 /* Iterator for tracepoints only. */
595
596 #define ALL_TRACEPOINTS(B) \
597 for (B = breakpoint_chain; B; B = B->next) \
598 if (is_tracepoint (B))
599
600 /* Chains of all breakpoints defined. */
601
602 struct breakpoint *breakpoint_chain;
603
604 /* Array is sorted by bp_location_compare - primarily by the ADDRESS. */
605
606 static struct bp_location **bp_location;
607
608 /* Number of elements of BP_LOCATION. */
609
610 static unsigned bp_location_count;
611
612 /* Maximum alignment offset between bp_target_info.PLACED_ADDRESS and
613 ADDRESS for the current elements of BP_LOCATION which get a valid
614 result from bp_location_has_shadow. You can use it for roughly
615 limiting the subrange of BP_LOCATION to scan for shadow bytes for
616 an address you need to read. */
617
618 static CORE_ADDR bp_location_placed_address_before_address_max;
619
620 /* Maximum offset plus alignment between bp_target_info.PLACED_ADDRESS
621 + bp_target_info.SHADOW_LEN and ADDRESS for the current elements of
622 BP_LOCATION which get a valid result from bp_location_has_shadow.
623 You can use it for roughly limiting the subrange of BP_LOCATION to
624 scan for shadow bytes for an address you need to read. */
625
626 static CORE_ADDR bp_location_shadow_len_after_address_max;
627
628 /* The locations that no longer correspond to any breakpoint, unlinked
629 from bp_location array, but for which a hit may still be reported
630 by a target. */
631 VEC(bp_location_p) *moribund_locations = NULL;
632
633 /* Number of last breakpoint made. */
634
635 static int breakpoint_count;
636
637 /* The value of `breakpoint_count' before the last command that
638 created breakpoints. If the last (break-like) command created more
639 than one breakpoint, then the difference between BREAKPOINT_COUNT
640 and PREV_BREAKPOINT_COUNT is more than one. */
641 static int prev_breakpoint_count;
642
643 /* Number of last tracepoint made. */
644
645 static int tracepoint_count;
646
647 static struct cmd_list_element *breakpoint_set_cmdlist;
648 static struct cmd_list_element *breakpoint_show_cmdlist;
649 struct cmd_list_element *save_cmdlist;
650
651 /* Return whether a breakpoint is an active enabled breakpoint. */
652 static int
653 breakpoint_enabled (struct breakpoint *b)
654 {
655 return (b->enable_state == bp_enabled);
656 }
657
658 /* Set breakpoint count to NUM. */
659
660 static void
661 set_breakpoint_count (int num)
662 {
663 prev_breakpoint_count = breakpoint_count;
664 breakpoint_count = num;
665 set_internalvar_integer (lookup_internalvar ("bpnum"), num);
666 }
667
668 /* Used by `start_rbreak_breakpoints' below, to record the current
669 breakpoint count before "rbreak" creates any breakpoint. */
670 static int rbreak_start_breakpoint_count;
671
672 /* Called at the start an "rbreak" command to record the first
673 breakpoint made. */
674
675 void
676 start_rbreak_breakpoints (void)
677 {
678 rbreak_start_breakpoint_count = breakpoint_count;
679 }
680
681 /* Called at the end of an "rbreak" command to record the last
682 breakpoint made. */
683
684 void
685 end_rbreak_breakpoints (void)
686 {
687 prev_breakpoint_count = rbreak_start_breakpoint_count;
688 }
689
690 /* Used in run_command to zero the hit count when a new run starts. */
691
692 void
693 clear_breakpoint_hit_counts (void)
694 {
695 struct breakpoint *b;
696
697 ALL_BREAKPOINTS (b)
698 b->hit_count = 0;
699 }
700
701 /* Allocate a new counted_command_line with reference count of 1.
702 The new structure owns COMMANDS. */
703
704 static struct counted_command_line *
705 alloc_counted_command_line (struct command_line *commands)
706 {
707 struct counted_command_line *result
708 = xmalloc (sizeof (struct counted_command_line));
709
710 result->refc = 1;
711 result->commands = commands;
712 return result;
713 }
714
715 /* Increment reference count. This does nothing if CMD is NULL. */
716
717 static void
718 incref_counted_command_line (struct counted_command_line *cmd)
719 {
720 if (cmd)
721 ++cmd->refc;
722 }
723
724 /* Decrement reference count. If the reference count reaches 0,
725 destroy the counted_command_line. Sets *CMDP to NULL. This does
726 nothing if *CMDP is NULL. */
727
728 static void
729 decref_counted_command_line (struct counted_command_line **cmdp)
730 {
731 if (*cmdp)
732 {
733 if (--(*cmdp)->refc == 0)
734 {
735 free_command_lines (&(*cmdp)->commands);
736 xfree (*cmdp);
737 }
738 *cmdp = NULL;
739 }
740 }
741
742 /* A cleanup function that calls decref_counted_command_line. */
743
744 static void
745 do_cleanup_counted_command_line (void *arg)
746 {
747 decref_counted_command_line (arg);
748 }
749
750 /* Create a cleanup that calls decref_counted_command_line on the
751 argument. */
752
753 static struct cleanup *
754 make_cleanup_decref_counted_command_line (struct counted_command_line **cmdp)
755 {
756 return make_cleanup (do_cleanup_counted_command_line, cmdp);
757 }
758
759 \f
760 /* Return the breakpoint with the specified number, or NULL
761 if the number does not refer to an existing breakpoint. */
762
763 struct breakpoint *
764 get_breakpoint (int num)
765 {
766 struct breakpoint *b;
767
768 ALL_BREAKPOINTS (b)
769 if (b->number == num)
770 return b;
771
772 return NULL;
773 }
774
775 \f
776
777 /* Mark locations as "conditions have changed" in case the target supports
778 evaluating conditions on its side. */
779
780 static void
781 mark_breakpoint_modified (struct breakpoint *b)
782 {
783 struct bp_location *loc;
784
785 /* This is only meaningful if the target is
786 evaluating conditions and if the user has
787 opted for condition evaluation on the target's
788 side. */
789 if (gdb_evaluates_breakpoint_condition_p ()
790 || !target_supports_evaluation_of_breakpoint_conditions ())
791 return;
792
793 if (!is_breakpoint (b))
794 return;
795
796 for (loc = b->loc; loc; loc = loc->next)
797 loc->condition_changed = condition_modified;
798 }
799
800 /* Mark location as "conditions have changed" in case the target supports
801 evaluating conditions on its side. */
802
803 static void
804 mark_breakpoint_location_modified (struct bp_location *loc)
805 {
806 /* This is only meaningful if the target is
807 evaluating conditions and if the user has
808 opted for condition evaluation on the target's
809 side. */
810 if (gdb_evaluates_breakpoint_condition_p ()
811 || !target_supports_evaluation_of_breakpoint_conditions ())
812
813 return;
814
815 if (!is_breakpoint (loc->owner))
816 return;
817
818 loc->condition_changed = condition_modified;
819 }
820
821 /* Sets the condition-evaluation mode using the static global
822 condition_evaluation_mode. */
823
824 static void
825 set_condition_evaluation_mode (char *args, int from_tty,
826 struct cmd_list_element *c)
827 {
828 const char *old_mode, *new_mode;
829
830 if ((condition_evaluation_mode_1 == condition_evaluation_target)
831 && !target_supports_evaluation_of_breakpoint_conditions ())
832 {
833 condition_evaluation_mode_1 = condition_evaluation_mode;
834 warning (_("Target does not support breakpoint condition evaluation.\n"
835 "Using host evaluation mode instead."));
836 return;
837 }
838
839 new_mode = translate_condition_evaluation_mode (condition_evaluation_mode_1);
840 old_mode = translate_condition_evaluation_mode (condition_evaluation_mode);
841
842 /* Flip the switch. Flip it even if OLD_MODE == NEW_MODE as one of the
843 settings was "auto". */
844 condition_evaluation_mode = condition_evaluation_mode_1;
845
846 /* Only update the mode if the user picked a different one. */
847 if (new_mode != old_mode)
848 {
849 struct bp_location *loc, **loc_tmp;
850 /* If the user switched to a different evaluation mode, we
851 need to synch the changes with the target as follows:
852
853 "host" -> "target": Send all (valid) conditions to the target.
854 "target" -> "host": Remove all the conditions from the target.
855 */
856
857 if (new_mode == condition_evaluation_target)
858 {
859 /* Mark everything modified and synch conditions with the
860 target. */
861 ALL_BP_LOCATIONS (loc, loc_tmp)
862 mark_breakpoint_location_modified (loc);
863 }
864 else
865 {
866 /* Manually mark non-duplicate locations to synch conditions
867 with the target. We do this to remove all the conditions the
868 target knows about. */
869 ALL_BP_LOCATIONS (loc, loc_tmp)
870 if (is_breakpoint (loc->owner) && loc->inserted)
871 loc->needs_update = 1;
872 }
873
874 /* Do the update. */
875 update_global_location_list (UGLL_MAY_INSERT);
876 }
877
878 return;
879 }
880
881 /* Shows the current mode of breakpoint condition evaluation. Explicitly shows
882 what "auto" is translating to. */
883
884 static void
885 show_condition_evaluation_mode (struct ui_file *file, int from_tty,
886 struct cmd_list_element *c, const char *value)
887 {
888 if (condition_evaluation_mode == condition_evaluation_auto)
889 fprintf_filtered (file,
890 _("Breakpoint condition evaluation "
891 "mode is %s (currently %s).\n"),
892 value,
893 breakpoint_condition_evaluation_mode ());
894 else
895 fprintf_filtered (file, _("Breakpoint condition evaluation mode is %s.\n"),
896 value);
897 }
898
899 /* A comparison function for bp_location AP and BP that is used by
900 bsearch. This comparison function only cares about addresses, unlike
901 the more general bp_location_compare function. */
902
903 static int
904 bp_location_compare_addrs (const void *ap, const void *bp)
905 {
906 struct bp_location *a = *(void **) ap;
907 struct bp_location *b = *(void **) bp;
908
909 if (a->address == b->address)
910 return 0;
911 else
912 return ((a->address > b->address) - (a->address < b->address));
913 }
914
915 /* Helper function to skip all bp_locations with addresses
916 less than ADDRESS. It returns the first bp_location that
917 is greater than or equal to ADDRESS. If none is found, just
918 return NULL. */
919
920 static struct bp_location **
921 get_first_locp_gte_addr (CORE_ADDR address)
922 {
923 struct bp_location dummy_loc;
924 struct bp_location *dummy_locp = &dummy_loc;
925 struct bp_location **locp_found = NULL;
926
927 /* Initialize the dummy location's address field. */
928 memset (&dummy_loc, 0, sizeof (struct bp_location));
929 dummy_loc.address = address;
930
931 /* Find a close match to the first location at ADDRESS. */
932 locp_found = bsearch (&dummy_locp, bp_location, bp_location_count,
933 sizeof (struct bp_location **),
934 bp_location_compare_addrs);
935
936 /* Nothing was found, nothing left to do. */
937 if (locp_found == NULL)
938 return NULL;
939
940 /* We may have found a location that is at ADDRESS but is not the first in the
941 location's list. Go backwards (if possible) and locate the first one. */
942 while ((locp_found - 1) >= bp_location
943 && (*(locp_found - 1))->address == address)
944 locp_found--;
945
946 return locp_found;
947 }
948
949 void
950 set_breakpoint_condition (struct breakpoint *b, char *exp,
951 int from_tty)
952 {
953 xfree (b->cond_string);
954 b->cond_string = NULL;
955
956 if (is_watchpoint (b))
957 {
958 struct watchpoint *w = (struct watchpoint *) b;
959
960 xfree (w->cond_exp);
961 w->cond_exp = NULL;
962 }
963 else
964 {
965 struct bp_location *loc;
966
967 for (loc = b->loc; loc; loc = loc->next)
968 {
969 xfree (loc->cond);
970 loc->cond = NULL;
971
972 /* No need to free the condition agent expression
973 bytecode (if we have one). We will handle this
974 when we go through update_global_location_list. */
975 }
976 }
977
978 if (*exp == 0)
979 {
980 if (from_tty)
981 printf_filtered (_("Breakpoint %d now unconditional.\n"), b->number);
982 }
983 else
984 {
985 const char *arg = exp;
986
987 /* I don't know if it matters whether this is the string the user
988 typed in or the decompiled expression. */
989 b->cond_string = xstrdup (arg);
990 b->condition_not_parsed = 0;
991
992 if (is_watchpoint (b))
993 {
994 struct watchpoint *w = (struct watchpoint *) b;
995
996 innermost_block = NULL;
997 arg = exp;
998 w->cond_exp = parse_exp_1 (&arg, 0, 0, 0);
999 if (*arg)
1000 error (_("Junk at end of expression"));
1001 w->cond_exp_valid_block = innermost_block;
1002 }
1003 else
1004 {
1005 struct bp_location *loc;
1006
1007 for (loc = b->loc; loc; loc = loc->next)
1008 {
1009 arg = exp;
1010 loc->cond =
1011 parse_exp_1 (&arg, loc->address,
1012 block_for_pc (loc->address), 0);
1013 if (*arg)
1014 error (_("Junk at end of expression"));
1015 }
1016 }
1017 }
1018 mark_breakpoint_modified (b);
1019
1020 observer_notify_breakpoint_modified (b);
1021 }
1022
1023 /* Completion for the "condition" command. */
1024
1025 static VEC (char_ptr) *
1026 condition_completer (struct cmd_list_element *cmd,
1027 const char *text, const char *word)
1028 {
1029 const char *space;
1030
1031 text = skip_spaces_const (text);
1032 space = skip_to_space_const (text);
1033 if (*space == '\0')
1034 {
1035 int len;
1036 struct breakpoint *b;
1037 VEC (char_ptr) *result = NULL;
1038
1039 if (text[0] == '$')
1040 {
1041 /* We don't support completion of history indices. */
1042 if (isdigit (text[1]))
1043 return NULL;
1044 return complete_internalvar (&text[1]);
1045 }
1046
1047 /* We're completing the breakpoint number. */
1048 len = strlen (text);
1049
1050 ALL_BREAKPOINTS (b)
1051 {
1052 char number[50];
1053
1054 xsnprintf (number, sizeof (number), "%d", b->number);
1055
1056 if (strncmp (number, text, len) == 0)
1057 VEC_safe_push (char_ptr, result, xstrdup (number));
1058 }
1059
1060 return result;
1061 }
1062
1063 /* We're completing the expression part. */
1064 text = skip_spaces_const (space);
1065 return expression_completer (cmd, text, word);
1066 }
1067
1068 /* condition N EXP -- set break condition of breakpoint N to EXP. */
1069
1070 static void
1071 condition_command (char *arg, int from_tty)
1072 {
1073 struct breakpoint *b;
1074 char *p;
1075 int bnum;
1076
1077 if (arg == 0)
1078 error_no_arg (_("breakpoint number"));
1079
1080 p = arg;
1081 bnum = get_number (&p);
1082 if (bnum == 0)
1083 error (_("Bad breakpoint argument: '%s'"), arg);
1084
1085 ALL_BREAKPOINTS (b)
1086 if (b->number == bnum)
1087 {
1088 /* Check if this breakpoint has a "stop" method implemented in an
1089 extension language. This method and conditions entered into GDB
1090 from the CLI are mutually exclusive. */
1091 const struct extension_language_defn *extlang
1092 = get_breakpoint_cond_ext_lang (b, EXT_LANG_NONE);
1093
1094 if (extlang != NULL)
1095 {
1096 error (_("Only one stop condition allowed. There is currently"
1097 " a %s stop condition defined for this breakpoint."),
1098 ext_lang_capitalized_name (extlang));
1099 }
1100 set_breakpoint_condition (b, p, from_tty);
1101
1102 if (is_breakpoint (b))
1103 update_global_location_list (UGLL_MAY_INSERT);
1104
1105 return;
1106 }
1107
1108 error (_("No breakpoint number %d."), bnum);
1109 }
1110
1111 /* Check that COMMAND do not contain commands that are suitable
1112 only for tracepoints and not suitable for ordinary breakpoints.
1113 Throw if any such commands is found. */
1114
1115 static void
1116 check_no_tracepoint_commands (struct command_line *commands)
1117 {
1118 struct command_line *c;
1119
1120 for (c = commands; c; c = c->next)
1121 {
1122 int i;
1123
1124 if (c->control_type == while_stepping_control)
1125 error (_("The 'while-stepping' command can "
1126 "only be used for tracepoints"));
1127
1128 for (i = 0; i < c->body_count; ++i)
1129 check_no_tracepoint_commands ((c->body_list)[i]);
1130
1131 /* Not that command parsing removes leading whitespace and comment
1132 lines and also empty lines. So, we only need to check for
1133 command directly. */
1134 if (strstr (c->line, "collect ") == c->line)
1135 error (_("The 'collect' command can only be used for tracepoints"));
1136
1137 if (strstr (c->line, "teval ") == c->line)
1138 error (_("The 'teval' command can only be used for tracepoints"));
1139 }
1140 }
1141
1142 /* Encapsulate tests for different types of tracepoints. */
1143
1144 static int
1145 is_tracepoint_type (enum bptype type)
1146 {
1147 return (type == bp_tracepoint
1148 || type == bp_fast_tracepoint
1149 || type == bp_static_tracepoint);
1150 }
1151
1152 int
1153 is_tracepoint (const struct breakpoint *b)
1154 {
1155 return is_tracepoint_type (b->type);
1156 }
1157
1158 /* A helper function that validates that COMMANDS are valid for a
1159 breakpoint. This function will throw an exception if a problem is
1160 found. */
1161
1162 static void
1163 validate_commands_for_breakpoint (struct breakpoint *b,
1164 struct command_line *commands)
1165 {
1166 if (is_tracepoint (b))
1167 {
1168 struct tracepoint *t = (struct tracepoint *) b;
1169 struct command_line *c;
1170 struct command_line *while_stepping = 0;
1171
1172 /* Reset the while-stepping step count. The previous commands
1173 might have included a while-stepping action, while the new
1174 ones might not. */
1175 t->step_count = 0;
1176
1177 /* We need to verify that each top-level element of commands is
1178 valid for tracepoints, that there's at most one
1179 while-stepping element, and that the while-stepping's body
1180 has valid tracing commands excluding nested while-stepping.
1181 We also need to validate the tracepoint action line in the
1182 context of the tracepoint --- validate_actionline actually
1183 has side effects, like setting the tracepoint's
1184 while-stepping STEP_COUNT, in addition to checking if the
1185 collect/teval actions parse and make sense in the
1186 tracepoint's context. */
1187 for (c = commands; c; c = c->next)
1188 {
1189 if (c->control_type == while_stepping_control)
1190 {
1191 if (b->type == bp_fast_tracepoint)
1192 error (_("The 'while-stepping' command "
1193 "cannot be used for fast tracepoint"));
1194 else if (b->type == bp_static_tracepoint)
1195 error (_("The 'while-stepping' command "
1196 "cannot be used for static tracepoint"));
1197
1198 if (while_stepping)
1199 error (_("The 'while-stepping' command "
1200 "can be used only once"));
1201 else
1202 while_stepping = c;
1203 }
1204
1205 validate_actionline (c->line, b);
1206 }
1207 if (while_stepping)
1208 {
1209 struct command_line *c2;
1210
1211 gdb_assert (while_stepping->body_count == 1);
1212 c2 = while_stepping->body_list[0];
1213 for (; c2; c2 = c2->next)
1214 {
1215 if (c2->control_type == while_stepping_control)
1216 error (_("The 'while-stepping' command cannot be nested"));
1217 }
1218 }
1219 }
1220 else
1221 {
1222 check_no_tracepoint_commands (commands);
1223 }
1224 }
1225
1226 /* Return a vector of all the static tracepoints set at ADDR. The
1227 caller is responsible for releasing the vector. */
1228
1229 VEC(breakpoint_p) *
1230 static_tracepoints_here (CORE_ADDR addr)
1231 {
1232 struct breakpoint *b;
1233 VEC(breakpoint_p) *found = 0;
1234 struct bp_location *loc;
1235
1236 ALL_BREAKPOINTS (b)
1237 if (b->type == bp_static_tracepoint)
1238 {
1239 for (loc = b->loc; loc; loc = loc->next)
1240 if (loc->address == addr)
1241 VEC_safe_push(breakpoint_p, found, b);
1242 }
1243
1244 return found;
1245 }
1246
1247 /* Set the command list of B to COMMANDS. If breakpoint is tracepoint,
1248 validate that only allowed commands are included. */
1249
1250 void
1251 breakpoint_set_commands (struct breakpoint *b,
1252 struct command_line *commands)
1253 {
1254 validate_commands_for_breakpoint (b, commands);
1255
1256 decref_counted_command_line (&b->commands);
1257 b->commands = alloc_counted_command_line (commands);
1258 observer_notify_breakpoint_modified (b);
1259 }
1260
1261 /* Set the internal `silent' flag on the breakpoint. Note that this
1262 is not the same as the "silent" that may appear in the breakpoint's
1263 commands. */
1264
1265 void
1266 breakpoint_set_silent (struct breakpoint *b, int silent)
1267 {
1268 int old_silent = b->silent;
1269
1270 b->silent = silent;
1271 if (old_silent != silent)
1272 observer_notify_breakpoint_modified (b);
1273 }
1274
1275 /* Set the thread for this breakpoint. If THREAD is -1, make the
1276 breakpoint work for any thread. */
1277
1278 void
1279 breakpoint_set_thread (struct breakpoint *b, int thread)
1280 {
1281 int old_thread = b->thread;
1282
1283 b->thread = thread;
1284 if (old_thread != thread)
1285 observer_notify_breakpoint_modified (b);
1286 }
1287
1288 /* Set the task for this breakpoint. If TASK is 0, make the
1289 breakpoint work for any task. */
1290
1291 void
1292 breakpoint_set_task (struct breakpoint *b, int task)
1293 {
1294 int old_task = b->task;
1295
1296 b->task = task;
1297 if (old_task != task)
1298 observer_notify_breakpoint_modified (b);
1299 }
1300
1301 void
1302 check_tracepoint_command (char *line, void *closure)
1303 {
1304 struct breakpoint *b = closure;
1305
1306 validate_actionline (line, b);
1307 }
1308
1309 /* A structure used to pass information through
1310 map_breakpoint_numbers. */
1311
1312 struct commands_info
1313 {
1314 /* True if the command was typed at a tty. */
1315 int from_tty;
1316
1317 /* The breakpoint range spec. */
1318 char *arg;
1319
1320 /* Non-NULL if the body of the commands are being read from this
1321 already-parsed command. */
1322 struct command_line *control;
1323
1324 /* The command lines read from the user, or NULL if they have not
1325 yet been read. */
1326 struct counted_command_line *cmd;
1327 };
1328
1329 /* A callback for map_breakpoint_numbers that sets the commands for
1330 commands_command. */
1331
1332 static void
1333 do_map_commands_command (struct breakpoint *b, void *data)
1334 {
1335 struct commands_info *info = data;
1336
1337 if (info->cmd == NULL)
1338 {
1339 struct command_line *l;
1340
1341 if (info->control != NULL)
1342 l = copy_command_lines (info->control->body_list[0]);
1343 else
1344 {
1345 struct cleanup *old_chain;
1346 char *str;
1347
1348 str = xstrprintf (_("Type commands for breakpoint(s) "
1349 "%s, one per line."),
1350 info->arg);
1351
1352 old_chain = make_cleanup (xfree, str);
1353
1354 l = read_command_lines (str,
1355 info->from_tty, 1,
1356 (is_tracepoint (b)
1357 ? check_tracepoint_command : 0),
1358 b);
1359
1360 do_cleanups (old_chain);
1361 }
1362
1363 info->cmd = alloc_counted_command_line (l);
1364 }
1365
1366 /* If a breakpoint was on the list more than once, we don't need to
1367 do anything. */
1368 if (b->commands != info->cmd)
1369 {
1370 validate_commands_for_breakpoint (b, info->cmd->commands);
1371 incref_counted_command_line (info->cmd);
1372 decref_counted_command_line (&b->commands);
1373 b->commands = info->cmd;
1374 observer_notify_breakpoint_modified (b);
1375 }
1376 }
1377
1378 static void
1379 commands_command_1 (char *arg, int from_tty,
1380 struct command_line *control)
1381 {
1382 struct cleanup *cleanups;
1383 struct commands_info info;
1384
1385 info.from_tty = from_tty;
1386 info.control = control;
1387 info.cmd = NULL;
1388 /* If we read command lines from the user, then `info' will hold an
1389 extra reference to the commands that we must clean up. */
1390 cleanups = make_cleanup_decref_counted_command_line (&info.cmd);
1391
1392 if (arg == NULL || !*arg)
1393 {
1394 if (breakpoint_count - prev_breakpoint_count > 1)
1395 arg = xstrprintf ("%d-%d", prev_breakpoint_count + 1,
1396 breakpoint_count);
1397 else if (breakpoint_count > 0)
1398 arg = xstrprintf ("%d", breakpoint_count);
1399 else
1400 {
1401 /* So that we don't try to free the incoming non-NULL
1402 argument in the cleanup below. Mapping breakpoint
1403 numbers will fail in this case. */
1404 arg = NULL;
1405 }
1406 }
1407 else
1408 /* The command loop has some static state, so we need to preserve
1409 our argument. */
1410 arg = xstrdup (arg);
1411
1412 if (arg != NULL)
1413 make_cleanup (xfree, arg);
1414
1415 info.arg = arg;
1416
1417 map_breakpoint_numbers (arg, do_map_commands_command, &info);
1418
1419 if (info.cmd == NULL)
1420 error (_("No breakpoints specified."));
1421
1422 do_cleanups (cleanups);
1423 }
1424
1425 static void
1426 commands_command (char *arg, int from_tty)
1427 {
1428 commands_command_1 (arg, from_tty, NULL);
1429 }
1430
1431 /* Like commands_command, but instead of reading the commands from
1432 input stream, takes them from an already parsed command structure.
1433
1434 This is used by cli-script.c to DTRT with breakpoint commands
1435 that are part of if and while bodies. */
1436 enum command_control_type
1437 commands_from_control_command (char *arg, struct command_line *cmd)
1438 {
1439 commands_command_1 (arg, 0, cmd);
1440 return simple_control;
1441 }
1442
1443 /* Return non-zero if BL->TARGET_INFO contains valid information. */
1444
1445 static int
1446 bp_location_has_shadow (struct bp_location *bl)
1447 {
1448 if (bl->loc_type != bp_loc_software_breakpoint)
1449 return 0;
1450 if (!bl->inserted)
1451 return 0;
1452 if (bl->target_info.shadow_len == 0)
1453 /* BL isn't valid, or doesn't shadow memory. */
1454 return 0;
1455 return 1;
1456 }
1457
1458 /* Update BUF, which is LEN bytes read from the target address
1459 MEMADDR, by replacing a memory breakpoint with its shadowed
1460 contents.
1461
1462 If READBUF is not NULL, this buffer must not overlap with the of
1463 the breakpoint location's shadow_contents buffer. Otherwise, a
1464 failed assertion internal error will be raised. */
1465
1466 static void
1467 one_breakpoint_xfer_memory (gdb_byte *readbuf, gdb_byte *writebuf,
1468 const gdb_byte *writebuf_org,
1469 ULONGEST memaddr, LONGEST len,
1470 struct bp_target_info *target_info,
1471 struct gdbarch *gdbarch)
1472 {
1473 /* Now do full processing of the found relevant range of elements. */
1474 CORE_ADDR bp_addr = 0;
1475 int bp_size = 0;
1476 int bptoffset = 0;
1477
1478 if (!breakpoint_address_match (target_info->placed_address_space, 0,
1479 current_program_space->aspace, 0))
1480 {
1481 /* The breakpoint is inserted in a different address space. */
1482 return;
1483 }
1484
1485 /* Addresses and length of the part of the breakpoint that
1486 we need to copy. */
1487 bp_addr = target_info->placed_address;
1488 bp_size = target_info->shadow_len;
1489
1490 if (bp_addr + bp_size <= memaddr)
1491 {
1492 /* The breakpoint is entirely before the chunk of memory we are
1493 reading. */
1494 return;
1495 }
1496
1497 if (bp_addr >= memaddr + len)
1498 {
1499 /* The breakpoint is entirely after the chunk of memory we are
1500 reading. */
1501 return;
1502 }
1503
1504 /* Offset within shadow_contents. */
1505 if (bp_addr < memaddr)
1506 {
1507 /* Only copy the second part of the breakpoint. */
1508 bp_size -= memaddr - bp_addr;
1509 bptoffset = memaddr - bp_addr;
1510 bp_addr = memaddr;
1511 }
1512
1513 if (bp_addr + bp_size > memaddr + len)
1514 {
1515 /* Only copy the first part of the breakpoint. */
1516 bp_size -= (bp_addr + bp_size) - (memaddr + len);
1517 }
1518
1519 if (readbuf != NULL)
1520 {
1521 /* Verify that the readbuf buffer does not overlap with the
1522 shadow_contents buffer. */
1523 gdb_assert (target_info->shadow_contents >= readbuf + len
1524 || readbuf >= (target_info->shadow_contents
1525 + target_info->shadow_len));
1526
1527 /* Update the read buffer with this inserted breakpoint's
1528 shadow. */
1529 memcpy (readbuf + bp_addr - memaddr,
1530 target_info->shadow_contents + bptoffset, bp_size);
1531 }
1532 else
1533 {
1534 const unsigned char *bp;
1535 CORE_ADDR addr = target_info->reqstd_address;
1536 int placed_size;
1537
1538 /* Update the shadow with what we want to write to memory. */
1539 memcpy (target_info->shadow_contents + bptoffset,
1540 writebuf_org + bp_addr - memaddr, bp_size);
1541
1542 /* Determine appropriate breakpoint contents and size for this
1543 address. */
1544 bp = gdbarch_breakpoint_from_pc (gdbarch, &addr, &placed_size);
1545
1546 /* Update the final write buffer with this inserted
1547 breakpoint's INSN. */
1548 memcpy (writebuf + bp_addr - memaddr, bp + bptoffset, bp_size);
1549 }
1550 }
1551
1552 /* Update BUF, which is LEN bytes read from the target address MEMADDR,
1553 by replacing any memory breakpoints with their shadowed contents.
1554
1555 If READBUF is not NULL, this buffer must not overlap with any of
1556 the breakpoint location's shadow_contents buffers. Otherwise,
1557 a failed assertion internal error will be raised.
1558
1559 The range of shadowed area by each bp_location is:
1560 bl->address - bp_location_placed_address_before_address_max
1561 up to bl->address + bp_location_shadow_len_after_address_max
1562 The range we were requested to resolve shadows for is:
1563 memaddr ... memaddr + len
1564 Thus the safe cutoff boundaries for performance optimization are
1565 memaddr + len <= (bl->address
1566 - bp_location_placed_address_before_address_max)
1567 and:
1568 bl->address + bp_location_shadow_len_after_address_max <= memaddr */
1569
1570 void
1571 breakpoint_xfer_memory (gdb_byte *readbuf, gdb_byte *writebuf,
1572 const gdb_byte *writebuf_org,
1573 ULONGEST memaddr, LONGEST len)
1574 {
1575 /* Left boundary, right boundary and median element of our binary
1576 search. */
1577 unsigned bc_l, bc_r, bc;
1578 size_t i;
1579
1580 /* Find BC_L which is a leftmost element which may affect BUF
1581 content. It is safe to report lower value but a failure to
1582 report higher one. */
1583
1584 bc_l = 0;
1585 bc_r = bp_location_count;
1586 while (bc_l + 1 < bc_r)
1587 {
1588 struct bp_location *bl;
1589
1590 bc = (bc_l + bc_r) / 2;
1591 bl = bp_location[bc];
1592
1593 /* Check first BL->ADDRESS will not overflow due to the added
1594 constant. Then advance the left boundary only if we are sure
1595 the BC element can in no way affect the BUF content (MEMADDR
1596 to MEMADDR + LEN range).
1597
1598 Use the BP_LOCATION_SHADOW_LEN_AFTER_ADDRESS_MAX safety
1599 offset so that we cannot miss a breakpoint with its shadow
1600 range tail still reaching MEMADDR. */
1601
1602 if ((bl->address + bp_location_shadow_len_after_address_max
1603 >= bl->address)
1604 && (bl->address + bp_location_shadow_len_after_address_max
1605 <= memaddr))
1606 bc_l = bc;
1607 else
1608 bc_r = bc;
1609 }
1610
1611 /* Due to the binary search above, we need to make sure we pick the
1612 first location that's at BC_L's address. E.g., if there are
1613 multiple locations at the same address, BC_L may end up pointing
1614 at a duplicate location, and miss the "master"/"inserted"
1615 location. Say, given locations L1, L2 and L3 at addresses A and
1616 B:
1617
1618 L1@A, L2@A, L3@B, ...
1619
1620 BC_L could end up pointing at location L2, while the "master"
1621 location could be L1. Since the `loc->inserted' flag is only set
1622 on "master" locations, we'd forget to restore the shadow of L1
1623 and L2. */
1624 while (bc_l > 0
1625 && bp_location[bc_l]->address == bp_location[bc_l - 1]->address)
1626 bc_l--;
1627
1628 /* Now do full processing of the found relevant range of elements. */
1629
1630 for (bc = bc_l; bc < bp_location_count; bc++)
1631 {
1632 struct bp_location *bl = bp_location[bc];
1633 CORE_ADDR bp_addr = 0;
1634 int bp_size = 0;
1635 int bptoffset = 0;
1636
1637 /* bp_location array has BL->OWNER always non-NULL. */
1638 if (bl->owner->type == bp_none)
1639 warning (_("reading through apparently deleted breakpoint #%d?"),
1640 bl->owner->number);
1641
1642 /* Performance optimization: any further element can no longer affect BUF
1643 content. */
1644
1645 if (bl->address >= bp_location_placed_address_before_address_max
1646 && memaddr + len <= (bl->address
1647 - bp_location_placed_address_before_address_max))
1648 break;
1649
1650 if (!bp_location_has_shadow (bl))
1651 continue;
1652
1653 one_breakpoint_xfer_memory (readbuf, writebuf, writebuf_org,
1654 memaddr, len, &bl->target_info, bl->gdbarch);
1655 }
1656 }
1657
1658 \f
1659
1660 /* Return true if BPT is either a software breakpoint or a hardware
1661 breakpoint. */
1662
1663 int
1664 is_breakpoint (const struct breakpoint *bpt)
1665 {
1666 return (bpt->type == bp_breakpoint
1667 || bpt->type == bp_hardware_breakpoint
1668 || bpt->type == bp_dprintf);
1669 }
1670
1671 /* Return true if BPT is of any hardware watchpoint kind. */
1672
1673 static int
1674 is_hardware_watchpoint (const struct breakpoint *bpt)
1675 {
1676 return (bpt->type == bp_hardware_watchpoint
1677 || bpt->type == bp_read_watchpoint
1678 || bpt->type == bp_access_watchpoint);
1679 }
1680
1681 /* Return true if BPT is of any watchpoint kind, hardware or
1682 software. */
1683
1684 int
1685 is_watchpoint (const struct breakpoint *bpt)
1686 {
1687 return (is_hardware_watchpoint (bpt)
1688 || bpt->type == bp_watchpoint);
1689 }
1690
1691 /* Returns true if the current thread and its running state are safe
1692 to evaluate or update watchpoint B. Watchpoints on local
1693 expressions need to be evaluated in the context of the thread that
1694 was current when the watchpoint was created, and, that thread needs
1695 to be stopped to be able to select the correct frame context.
1696 Watchpoints on global expressions can be evaluated on any thread,
1697 and in any state. It is presently left to the target allowing
1698 memory accesses when threads are running. */
1699
1700 static int
1701 watchpoint_in_thread_scope (struct watchpoint *b)
1702 {
1703 return (b->base.pspace == current_program_space
1704 && (ptid_equal (b->watchpoint_thread, null_ptid)
1705 || (ptid_equal (inferior_ptid, b->watchpoint_thread)
1706 && !is_executing (inferior_ptid))));
1707 }
1708
1709 /* Set watchpoint B to disp_del_at_next_stop, even including its possible
1710 associated bp_watchpoint_scope breakpoint. */
1711
1712 static void
1713 watchpoint_del_at_next_stop (struct watchpoint *w)
1714 {
1715 struct breakpoint *b = &w->base;
1716
1717 if (b->related_breakpoint != b)
1718 {
1719 gdb_assert (b->related_breakpoint->type == bp_watchpoint_scope);
1720 gdb_assert (b->related_breakpoint->related_breakpoint == b);
1721 b->related_breakpoint->disposition = disp_del_at_next_stop;
1722 b->related_breakpoint->related_breakpoint = b->related_breakpoint;
1723 b->related_breakpoint = b;
1724 }
1725 b->disposition = disp_del_at_next_stop;
1726 }
1727
1728 /* Extract a bitfield value from value VAL using the bit parameters contained in
1729 watchpoint W. */
1730
1731 static struct value *
1732 extract_bitfield_from_watchpoint_value (struct watchpoint *w, struct value *val)
1733 {
1734 struct value *bit_val;
1735
1736 if (val == NULL)
1737 return NULL;
1738
1739 bit_val = allocate_value (value_type (val));
1740
1741 unpack_value_bitfield (bit_val,
1742 w->val_bitpos,
1743 w->val_bitsize,
1744 value_contents_for_printing (val),
1745 value_offset (val),
1746 val);
1747
1748 return bit_val;
1749 }
1750
1751 /* Assuming that B is a watchpoint:
1752 - Reparse watchpoint expression, if REPARSE is non-zero
1753 - Evaluate expression and store the result in B->val
1754 - Evaluate the condition if there is one, and store the result
1755 in b->loc->cond.
1756 - Update the list of values that must be watched in B->loc.
1757
1758 If the watchpoint disposition is disp_del_at_next_stop, then do
1759 nothing. If this is local watchpoint that is out of scope, delete
1760 it.
1761
1762 Even with `set breakpoint always-inserted on' the watchpoints are
1763 removed + inserted on each stop here. Normal breakpoints must
1764 never be removed because they might be missed by a running thread
1765 when debugging in non-stop mode. On the other hand, hardware
1766 watchpoints (is_hardware_watchpoint; processed here) are specific
1767 to each LWP since they are stored in each LWP's hardware debug
1768 registers. Therefore, such LWP must be stopped first in order to
1769 be able to modify its hardware watchpoints.
1770
1771 Hardware watchpoints must be reset exactly once after being
1772 presented to the user. It cannot be done sooner, because it would
1773 reset the data used to present the watchpoint hit to the user. And
1774 it must not be done later because it could display the same single
1775 watchpoint hit during multiple GDB stops. Note that the latter is
1776 relevant only to the hardware watchpoint types bp_read_watchpoint
1777 and bp_access_watchpoint. False hit by bp_hardware_watchpoint is
1778 not user-visible - its hit is suppressed if the memory content has
1779 not changed.
1780
1781 The following constraints influence the location where we can reset
1782 hardware watchpoints:
1783
1784 * target_stopped_by_watchpoint and target_stopped_data_address are
1785 called several times when GDB stops.
1786
1787 [linux]
1788 * Multiple hardware watchpoints can be hit at the same time,
1789 causing GDB to stop. GDB only presents one hardware watchpoint
1790 hit at a time as the reason for stopping, and all the other hits
1791 are presented later, one after the other, each time the user
1792 requests the execution to be resumed. Execution is not resumed
1793 for the threads still having pending hit event stored in
1794 LWP_INFO->STATUS. While the watchpoint is already removed from
1795 the inferior on the first stop the thread hit event is kept being
1796 reported from its cached value by linux_nat_stopped_data_address
1797 until the real thread resume happens after the watchpoint gets
1798 presented and thus its LWP_INFO->STATUS gets reset.
1799
1800 Therefore the hardware watchpoint hit can get safely reset on the
1801 watchpoint removal from inferior. */
1802
1803 static void
1804 update_watchpoint (struct watchpoint *b, int reparse)
1805 {
1806 int within_current_scope;
1807 struct frame_id saved_frame_id;
1808 int frame_saved;
1809
1810 /* If this is a local watchpoint, we only want to check if the
1811 watchpoint frame is in scope if the current thread is the thread
1812 that was used to create the watchpoint. */
1813 if (!watchpoint_in_thread_scope (b))
1814 return;
1815
1816 if (b->base.disposition == disp_del_at_next_stop)
1817 return;
1818
1819 frame_saved = 0;
1820
1821 /* Determine if the watchpoint is within scope. */
1822 if (b->exp_valid_block == NULL)
1823 within_current_scope = 1;
1824 else
1825 {
1826 struct frame_info *fi = get_current_frame ();
1827 struct gdbarch *frame_arch = get_frame_arch (fi);
1828 CORE_ADDR frame_pc = get_frame_pc (fi);
1829
1830 /* If we're in a function epilogue, unwinding may not work
1831 properly, so do not attempt to recreate locations at this
1832 point. See similar comments in watchpoint_check. */
1833 if (gdbarch_in_function_epilogue_p (frame_arch, frame_pc))
1834 return;
1835
1836 /* Save the current frame's ID so we can restore it after
1837 evaluating the watchpoint expression on its own frame. */
1838 /* FIXME drow/2003-09-09: It would be nice if evaluate_expression
1839 took a frame parameter, so that we didn't have to change the
1840 selected frame. */
1841 frame_saved = 1;
1842 saved_frame_id = get_frame_id (get_selected_frame (NULL));
1843
1844 fi = frame_find_by_id (b->watchpoint_frame);
1845 within_current_scope = (fi != NULL);
1846 if (within_current_scope)
1847 select_frame (fi);
1848 }
1849
1850 /* We don't free locations. They are stored in the bp_location array
1851 and update_global_location_list will eventually delete them and
1852 remove breakpoints if needed. */
1853 b->base.loc = NULL;
1854
1855 if (within_current_scope && reparse)
1856 {
1857 const char *s;
1858
1859 if (b->exp)
1860 {
1861 xfree (b->exp);
1862 b->exp = NULL;
1863 }
1864 s = b->exp_string_reparse ? b->exp_string_reparse : b->exp_string;
1865 b->exp = parse_exp_1 (&s, 0, b->exp_valid_block, 0);
1866 /* If the meaning of expression itself changed, the old value is
1867 no longer relevant. We don't want to report a watchpoint hit
1868 to the user when the old value and the new value may actually
1869 be completely different objects. */
1870 value_free (b->val);
1871 b->val = NULL;
1872 b->val_valid = 0;
1873
1874 /* Note that unlike with breakpoints, the watchpoint's condition
1875 expression is stored in the breakpoint object, not in the
1876 locations (re)created below. */
1877 if (b->base.cond_string != NULL)
1878 {
1879 if (b->cond_exp != NULL)
1880 {
1881 xfree (b->cond_exp);
1882 b->cond_exp = NULL;
1883 }
1884
1885 s = b->base.cond_string;
1886 b->cond_exp = parse_exp_1 (&s, 0, b->cond_exp_valid_block, 0);
1887 }
1888 }
1889
1890 /* If we failed to parse the expression, for example because
1891 it refers to a global variable in a not-yet-loaded shared library,
1892 don't try to insert watchpoint. We don't automatically delete
1893 such watchpoint, though, since failure to parse expression
1894 is different from out-of-scope watchpoint. */
1895 if (!target_has_execution)
1896 {
1897 /* Without execution, memory can't change. No use to try and
1898 set watchpoint locations. The watchpoint will be reset when
1899 the target gains execution, through breakpoint_re_set. */
1900 if (!can_use_hw_watchpoints)
1901 {
1902 if (b->base.ops->works_in_software_mode (&b->base))
1903 b->base.type = bp_watchpoint;
1904 else
1905 error (_("Can't set read/access watchpoint when "
1906 "hardware watchpoints are disabled."));
1907 }
1908 }
1909 else if (within_current_scope && b->exp)
1910 {
1911 int pc = 0;
1912 struct value *val_chain, *v, *result, *next;
1913 struct program_space *frame_pspace;
1914
1915 fetch_subexp_value (b->exp, &pc, &v, &result, &val_chain, 0);
1916
1917 /* Avoid setting b->val if it's already set. The meaning of
1918 b->val is 'the last value' user saw, and we should update
1919 it only if we reported that last value to user. As it
1920 happens, the code that reports it updates b->val directly.
1921 We don't keep track of the memory value for masked
1922 watchpoints. */
1923 if (!b->val_valid && !is_masked_watchpoint (&b->base))
1924 {
1925 if (b->val_bitsize != 0)
1926 {
1927 v = extract_bitfield_from_watchpoint_value (b, v);
1928 if (v != NULL)
1929 release_value (v);
1930 }
1931 b->val = v;
1932 b->val_valid = 1;
1933 }
1934
1935 frame_pspace = get_frame_program_space (get_selected_frame (NULL));
1936
1937 /* Look at each value on the value chain. */
1938 for (v = val_chain; v; v = value_next (v))
1939 {
1940 /* If it's a memory location, and GDB actually needed
1941 its contents to evaluate the expression, then we
1942 must watch it. If the first value returned is
1943 still lazy, that means an error occurred reading it;
1944 watch it anyway in case it becomes readable. */
1945 if (VALUE_LVAL (v) == lval_memory
1946 && (v == val_chain || ! value_lazy (v)))
1947 {
1948 struct type *vtype = check_typedef (value_type (v));
1949
1950 /* We only watch structs and arrays if user asked
1951 for it explicitly, never if they just happen to
1952 appear in the middle of some value chain. */
1953 if (v == result
1954 || (TYPE_CODE (vtype) != TYPE_CODE_STRUCT
1955 && TYPE_CODE (vtype) != TYPE_CODE_ARRAY))
1956 {
1957 CORE_ADDR addr;
1958 int type;
1959 struct bp_location *loc, **tmp;
1960 int bitpos = 0, bitsize = 0;
1961
1962 if (value_bitsize (v) != 0)
1963 {
1964 /* Extract the bit parameters out from the bitfield
1965 sub-expression. */
1966 bitpos = value_bitpos (v);
1967 bitsize = value_bitsize (v);
1968 }
1969 else if (v == result && b->val_bitsize != 0)
1970 {
1971 /* If VAL_BITSIZE != 0 then RESULT is actually a bitfield
1972 lvalue whose bit parameters are saved in the fields
1973 VAL_BITPOS and VAL_BITSIZE. */
1974 bitpos = b->val_bitpos;
1975 bitsize = b->val_bitsize;
1976 }
1977
1978 addr = value_address (v);
1979 if (bitsize != 0)
1980 {
1981 /* Skip the bytes that don't contain the bitfield. */
1982 addr += bitpos / 8;
1983 }
1984
1985 type = hw_write;
1986 if (b->base.type == bp_read_watchpoint)
1987 type = hw_read;
1988 else if (b->base.type == bp_access_watchpoint)
1989 type = hw_access;
1990
1991 loc = allocate_bp_location (&b->base);
1992 for (tmp = &(b->base.loc); *tmp != NULL; tmp = &((*tmp)->next))
1993 ;
1994 *tmp = loc;
1995 loc->gdbarch = get_type_arch (value_type (v));
1996
1997 loc->pspace = frame_pspace;
1998 loc->address = addr;
1999
2000 if (bitsize != 0)
2001 {
2002 /* Just cover the bytes that make up the bitfield. */
2003 loc->length = ((bitpos % 8) + bitsize + 7) / 8;
2004 }
2005 else
2006 loc->length = TYPE_LENGTH (value_type (v));
2007
2008 loc->watchpoint_type = type;
2009 }
2010 }
2011 }
2012
2013 /* Change the type of breakpoint between hardware assisted or
2014 an ordinary watchpoint depending on the hardware support
2015 and free hardware slots. REPARSE is set when the inferior
2016 is started. */
2017 if (reparse)
2018 {
2019 int reg_cnt;
2020 enum bp_loc_type loc_type;
2021 struct bp_location *bl;
2022
2023 reg_cnt = can_use_hardware_watchpoint (val_chain);
2024
2025 if (reg_cnt)
2026 {
2027 int i, target_resources_ok, other_type_used;
2028 enum bptype type;
2029
2030 /* Use an exact watchpoint when there's only one memory region to be
2031 watched, and only one debug register is needed to watch it. */
2032 b->exact = target_exact_watchpoints && reg_cnt == 1;
2033
2034 /* We need to determine how many resources are already
2035 used for all other hardware watchpoints plus this one
2036 to see if we still have enough resources to also fit
2037 this watchpoint in as well. */
2038
2039 /* If this is a software watchpoint, we try to turn it
2040 to a hardware one -- count resources as if B was of
2041 hardware watchpoint type. */
2042 type = b->base.type;
2043 if (type == bp_watchpoint)
2044 type = bp_hardware_watchpoint;
2045
2046 /* This watchpoint may or may not have been placed on
2047 the list yet at this point (it won't be in the list
2048 if we're trying to create it for the first time,
2049 through watch_command), so always account for it
2050 manually. */
2051
2052 /* Count resources used by all watchpoints except B. */
2053 i = hw_watchpoint_used_count_others (&b->base, type, &other_type_used);
2054
2055 /* Add in the resources needed for B. */
2056 i += hw_watchpoint_use_count (&b->base);
2057
2058 target_resources_ok
2059 = target_can_use_hardware_watchpoint (type, i, other_type_used);
2060 if (target_resources_ok <= 0)
2061 {
2062 int sw_mode = b->base.ops->works_in_software_mode (&b->base);
2063
2064 if (target_resources_ok == 0 && !sw_mode)
2065 error (_("Target does not support this type of "
2066 "hardware watchpoint."));
2067 else if (target_resources_ok < 0 && !sw_mode)
2068 error (_("There are not enough available hardware "
2069 "resources for this watchpoint."));
2070
2071 /* Downgrade to software watchpoint. */
2072 b->base.type = bp_watchpoint;
2073 }
2074 else
2075 {
2076 /* If this was a software watchpoint, we've just
2077 found we have enough resources to turn it to a
2078 hardware watchpoint. Otherwise, this is a
2079 nop. */
2080 b->base.type = type;
2081 }
2082 }
2083 else if (!b->base.ops->works_in_software_mode (&b->base))
2084 {
2085 if (!can_use_hw_watchpoints)
2086 error (_("Can't set read/access watchpoint when "
2087 "hardware watchpoints are disabled."));
2088 else
2089 error (_("Expression cannot be implemented with "
2090 "read/access watchpoint."));
2091 }
2092 else
2093 b->base.type = bp_watchpoint;
2094
2095 loc_type = (b->base.type == bp_watchpoint? bp_loc_other
2096 : bp_loc_hardware_watchpoint);
2097 for (bl = b->base.loc; bl; bl = bl->next)
2098 bl->loc_type = loc_type;
2099 }
2100
2101 for (v = val_chain; v; v = next)
2102 {
2103 next = value_next (v);
2104 if (v != b->val)
2105 value_free (v);
2106 }
2107
2108 /* If a software watchpoint is not watching any memory, then the
2109 above left it without any location set up. But,
2110 bpstat_stop_status requires a location to be able to report
2111 stops, so make sure there's at least a dummy one. */
2112 if (b->base.type == bp_watchpoint && b->base.loc == NULL)
2113 {
2114 struct breakpoint *base = &b->base;
2115 base->loc = allocate_bp_location (base);
2116 base->loc->pspace = frame_pspace;
2117 base->loc->address = -1;
2118 base->loc->length = -1;
2119 base->loc->watchpoint_type = -1;
2120 }
2121 }
2122 else if (!within_current_scope)
2123 {
2124 printf_filtered (_("\
2125 Watchpoint %d deleted because the program has left the block\n\
2126 in which its expression is valid.\n"),
2127 b->base.number);
2128 watchpoint_del_at_next_stop (b);
2129 }
2130
2131 /* Restore the selected frame. */
2132 if (frame_saved)
2133 select_frame (frame_find_by_id (saved_frame_id));
2134 }
2135
2136
2137 /* Returns 1 iff breakpoint location should be
2138 inserted in the inferior. We don't differentiate the type of BL's owner
2139 (breakpoint vs. tracepoint), although insert_location in tracepoint's
2140 breakpoint_ops is not defined, because in insert_bp_location,
2141 tracepoint's insert_location will not be called. */
2142 static int
2143 should_be_inserted (struct bp_location *bl)
2144 {
2145 if (bl->owner == NULL || !breakpoint_enabled (bl->owner))
2146 return 0;
2147
2148 if (bl->owner->disposition == disp_del_at_next_stop)
2149 return 0;
2150
2151 if (!bl->enabled || bl->shlib_disabled || bl->duplicate)
2152 return 0;
2153
2154 if (user_breakpoint_p (bl->owner) && bl->pspace->executing_startup)
2155 return 0;
2156
2157 /* This is set for example, when we're attached to the parent of a
2158 vfork, and have detached from the child. The child is running
2159 free, and we expect it to do an exec or exit, at which point the
2160 OS makes the parent schedulable again (and the target reports
2161 that the vfork is done). Until the child is done with the shared
2162 memory region, do not insert breakpoints in the parent, otherwise
2163 the child could still trip on the parent's breakpoints. Since
2164 the parent is blocked anyway, it won't miss any breakpoint. */
2165 if (bl->pspace->breakpoints_not_allowed)
2166 return 0;
2167
2168 /* Don't insert a breakpoint if we're trying to step past its
2169 location. */
2170 if ((bl->loc_type == bp_loc_software_breakpoint
2171 || bl->loc_type == bp_loc_hardware_breakpoint)
2172 && stepping_past_instruction_at (bl->pspace->aspace,
2173 bl->address))
2174 {
2175 if (debug_infrun)
2176 {
2177 fprintf_unfiltered (gdb_stdlog,
2178 "infrun: skipping breakpoint: "
2179 "stepping past insn at: %s\n",
2180 paddress (bl->gdbarch, bl->address));
2181 }
2182 return 0;
2183 }
2184
2185 /* Don't insert watchpoints if we're trying to step past the
2186 instruction that triggered one. */
2187 if ((bl->loc_type == bp_loc_hardware_watchpoint)
2188 && stepping_past_nonsteppable_watchpoint ())
2189 {
2190 if (debug_infrun)
2191 {
2192 fprintf_unfiltered (gdb_stdlog,
2193 "infrun: stepping past non-steppable watchpoint. "
2194 "skipping watchpoint at %s:%d\n",
2195 paddress (bl->gdbarch, bl->address),
2196 bl->length);
2197 }
2198 return 0;
2199 }
2200
2201 return 1;
2202 }
2203
2204 /* Same as should_be_inserted but does the check assuming
2205 that the location is not duplicated. */
2206
2207 static int
2208 unduplicated_should_be_inserted (struct bp_location *bl)
2209 {
2210 int result;
2211 const int save_duplicate = bl->duplicate;
2212
2213 bl->duplicate = 0;
2214 result = should_be_inserted (bl);
2215 bl->duplicate = save_duplicate;
2216 return result;
2217 }
2218
2219 /* Parses a conditional described by an expression COND into an
2220 agent expression bytecode suitable for evaluation
2221 by the bytecode interpreter. Return NULL if there was
2222 any error during parsing. */
2223
2224 static struct agent_expr *
2225 parse_cond_to_aexpr (CORE_ADDR scope, struct expression *cond)
2226 {
2227 struct agent_expr *aexpr = NULL;
2228 volatile struct gdb_exception ex;
2229
2230 if (!cond)
2231 return NULL;
2232
2233 /* We don't want to stop processing, so catch any errors
2234 that may show up. */
2235 TRY_CATCH (ex, RETURN_MASK_ERROR)
2236 {
2237 aexpr = gen_eval_for_expr (scope, cond);
2238 }
2239
2240 if (ex.reason < 0)
2241 {
2242 /* If we got here, it means the condition could not be parsed to a valid
2243 bytecode expression and thus can't be evaluated on the target's side.
2244 It's no use iterating through the conditions. */
2245 return NULL;
2246 }
2247
2248 /* We have a valid agent expression. */
2249 return aexpr;
2250 }
2251
2252 /* Based on location BL, create a list of breakpoint conditions to be
2253 passed on to the target. If we have duplicated locations with different
2254 conditions, we will add such conditions to the list. The idea is that the
2255 target will evaluate the list of conditions and will only notify GDB when
2256 one of them is true. */
2257
2258 static void
2259 build_target_condition_list (struct bp_location *bl)
2260 {
2261 struct bp_location **locp = NULL, **loc2p;
2262 int null_condition_or_parse_error = 0;
2263 int modified = bl->needs_update;
2264 struct bp_location *loc;
2265
2266 /* Release conditions left over from a previous insert. */
2267 VEC_free (agent_expr_p, bl->target_info.conditions);
2268
2269 /* This is only meaningful if the target is
2270 evaluating conditions and if the user has
2271 opted for condition evaluation on the target's
2272 side. */
2273 if (gdb_evaluates_breakpoint_condition_p ()
2274 || !target_supports_evaluation_of_breakpoint_conditions ())
2275 return;
2276
2277 /* Do a first pass to check for locations with no assigned
2278 conditions or conditions that fail to parse to a valid agent expression
2279 bytecode. If any of these happen, then it's no use to send conditions
2280 to the target since this location will always trigger and generate a
2281 response back to GDB. */
2282 ALL_BP_LOCATIONS_AT_ADDR (loc2p, locp, bl->address)
2283 {
2284 loc = (*loc2p);
2285 if (is_breakpoint (loc->owner) && loc->pspace->num == bl->pspace->num)
2286 {
2287 if (modified)
2288 {
2289 struct agent_expr *aexpr;
2290
2291 /* Re-parse the conditions since something changed. In that
2292 case we already freed the condition bytecodes (see
2293 force_breakpoint_reinsertion). We just
2294 need to parse the condition to bytecodes again. */
2295 aexpr = parse_cond_to_aexpr (bl->address, loc->cond);
2296 loc->cond_bytecode = aexpr;
2297
2298 /* Check if we managed to parse the conditional expression
2299 correctly. If not, we will not send this condition
2300 to the target. */
2301 if (aexpr)
2302 continue;
2303 }
2304
2305 /* If we have a NULL bytecode expression, it means something
2306 went wrong or we have a null condition expression. */
2307 if (!loc->cond_bytecode)
2308 {
2309 null_condition_or_parse_error = 1;
2310 break;
2311 }
2312 }
2313 }
2314
2315 /* If any of these happened, it means we will have to evaluate the conditions
2316 for the location's address on gdb's side. It is no use keeping bytecodes
2317 for all the other duplicate locations, thus we free all of them here.
2318
2319 This is so we have a finer control over which locations' conditions are
2320 being evaluated by GDB or the remote stub. */
2321 if (null_condition_or_parse_error)
2322 {
2323 ALL_BP_LOCATIONS_AT_ADDR (loc2p, locp, bl->address)
2324 {
2325 loc = (*loc2p);
2326 if (is_breakpoint (loc->owner) && loc->pspace->num == bl->pspace->num)
2327 {
2328 /* Only go as far as the first NULL bytecode is
2329 located. */
2330 if (!loc->cond_bytecode)
2331 return;
2332
2333 free_agent_expr (loc->cond_bytecode);
2334 loc->cond_bytecode = NULL;
2335 }
2336 }
2337 }
2338
2339 /* No NULL conditions or failed bytecode generation. Build a condition list
2340 for this location's address. */
2341 ALL_BP_LOCATIONS_AT_ADDR (loc2p, locp, bl->address)
2342 {
2343 loc = (*loc2p);
2344 if (loc->cond
2345 && is_breakpoint (loc->owner)
2346 && loc->pspace->num == bl->pspace->num
2347 && loc->owner->enable_state == bp_enabled
2348 && loc->enabled)
2349 /* Add the condition to the vector. This will be used later to send the
2350 conditions to the target. */
2351 VEC_safe_push (agent_expr_p, bl->target_info.conditions,
2352 loc->cond_bytecode);
2353 }
2354
2355 return;
2356 }
2357
2358 /* Parses a command described by string CMD into an agent expression
2359 bytecode suitable for evaluation by the bytecode interpreter.
2360 Return NULL if there was any error during parsing. */
2361
2362 static struct agent_expr *
2363 parse_cmd_to_aexpr (CORE_ADDR scope, char *cmd)
2364 {
2365 struct cleanup *old_cleanups = 0;
2366 struct expression *expr, **argvec;
2367 struct agent_expr *aexpr = NULL;
2368 volatile struct gdb_exception ex;
2369 const char *cmdrest;
2370 const char *format_start, *format_end;
2371 struct format_piece *fpieces;
2372 int nargs;
2373 struct gdbarch *gdbarch = get_current_arch ();
2374
2375 if (!cmd)
2376 return NULL;
2377
2378 cmdrest = cmd;
2379
2380 if (*cmdrest == ',')
2381 ++cmdrest;
2382 cmdrest = skip_spaces_const (cmdrest);
2383
2384 if (*cmdrest++ != '"')
2385 error (_("No format string following the location"));
2386
2387 format_start = cmdrest;
2388
2389 fpieces = parse_format_string (&cmdrest);
2390
2391 old_cleanups = make_cleanup (free_format_pieces_cleanup, &fpieces);
2392
2393 format_end = cmdrest;
2394
2395 if (*cmdrest++ != '"')
2396 error (_("Bad format string, non-terminated '\"'."));
2397
2398 cmdrest = skip_spaces_const (cmdrest);
2399
2400 if (!(*cmdrest == ',' || *cmdrest == '\0'))
2401 error (_("Invalid argument syntax"));
2402
2403 if (*cmdrest == ',')
2404 cmdrest++;
2405 cmdrest = skip_spaces_const (cmdrest);
2406
2407 /* For each argument, make an expression. */
2408
2409 argvec = (struct expression **) alloca (strlen (cmd)
2410 * sizeof (struct expression *));
2411
2412 nargs = 0;
2413 while (*cmdrest != '\0')
2414 {
2415 const char *cmd1;
2416
2417 cmd1 = cmdrest;
2418 expr = parse_exp_1 (&cmd1, scope, block_for_pc (scope), 1);
2419 argvec[nargs++] = expr;
2420 cmdrest = cmd1;
2421 if (*cmdrest == ',')
2422 ++cmdrest;
2423 }
2424
2425 /* We don't want to stop processing, so catch any errors
2426 that may show up. */
2427 TRY_CATCH (ex, RETURN_MASK_ERROR)
2428 {
2429 aexpr = gen_printf (scope, gdbarch, 0, 0,
2430 format_start, format_end - format_start,
2431 fpieces, nargs, argvec);
2432 }
2433
2434 do_cleanups (old_cleanups);
2435
2436 if (ex.reason < 0)
2437 {
2438 /* If we got here, it means the command could not be parsed to a valid
2439 bytecode expression and thus can't be evaluated on the target's side.
2440 It's no use iterating through the other commands. */
2441 return NULL;
2442 }
2443
2444 /* We have a valid agent expression, return it. */
2445 return aexpr;
2446 }
2447
2448 /* Based on location BL, create a list of breakpoint commands to be
2449 passed on to the target. If we have duplicated locations with
2450 different commands, we will add any such to the list. */
2451
2452 static void
2453 build_target_command_list (struct bp_location *bl)
2454 {
2455 struct bp_location **locp = NULL, **loc2p;
2456 int null_command_or_parse_error = 0;
2457 int modified = bl->needs_update;
2458 struct bp_location *loc;
2459
2460 /* Release commands left over from a previous insert. */
2461 VEC_free (agent_expr_p, bl->target_info.tcommands);
2462
2463 if (!target_can_run_breakpoint_commands ())
2464 return;
2465
2466 /* For now, limit to agent-style dprintf breakpoints. */
2467 if (dprintf_style != dprintf_style_agent)
2468 return;
2469
2470 /* For now, if we have any duplicate location that isn't a dprintf,
2471 don't install the target-side commands, as that would make the
2472 breakpoint not be reported to the core, and we'd lose
2473 control. */
2474 ALL_BP_LOCATIONS_AT_ADDR (loc2p, locp, bl->address)
2475 {
2476 loc = (*loc2p);
2477 if (is_breakpoint (loc->owner)
2478 && loc->pspace->num == bl->pspace->num
2479 && loc->owner->type != bp_dprintf)
2480 return;
2481 }
2482
2483 /* Do a first pass to check for locations with no assigned
2484 conditions or conditions that fail to parse to a valid agent expression
2485 bytecode. If any of these happen, then it's no use to send conditions
2486 to the target since this location will always trigger and generate a
2487 response back to GDB. */
2488 ALL_BP_LOCATIONS_AT_ADDR (loc2p, locp, bl->address)
2489 {
2490 loc = (*loc2p);
2491 if (is_breakpoint (loc->owner) && loc->pspace->num == bl->pspace->num)
2492 {
2493 if (modified)
2494 {
2495 struct agent_expr *aexpr;
2496
2497 /* Re-parse the commands since something changed. In that
2498 case we already freed the command bytecodes (see
2499 force_breakpoint_reinsertion). We just
2500 need to parse the command to bytecodes again. */
2501 aexpr = parse_cmd_to_aexpr (bl->address,
2502 loc->owner->extra_string);
2503 loc->cmd_bytecode = aexpr;
2504
2505 if (!aexpr)
2506 continue;
2507 }
2508
2509 /* If we have a NULL bytecode expression, it means something
2510 went wrong or we have a null command expression. */
2511 if (!loc->cmd_bytecode)
2512 {
2513 null_command_or_parse_error = 1;
2514 break;
2515 }
2516 }
2517 }
2518
2519 /* If anything failed, then we're not doing target-side commands,
2520 and so clean up. */
2521 if (null_command_or_parse_error)
2522 {
2523 ALL_BP_LOCATIONS_AT_ADDR (loc2p, locp, bl->address)
2524 {
2525 loc = (*loc2p);
2526 if (is_breakpoint (loc->owner)
2527 && loc->pspace->num == bl->pspace->num)
2528 {
2529 /* Only go as far as the first NULL bytecode is
2530 located. */
2531 if (loc->cmd_bytecode == NULL)
2532 return;
2533
2534 free_agent_expr (loc->cmd_bytecode);
2535 loc->cmd_bytecode = NULL;
2536 }
2537 }
2538 }
2539
2540 /* No NULL commands or failed bytecode generation. Build a command list
2541 for this location's address. */
2542 ALL_BP_LOCATIONS_AT_ADDR (loc2p, locp, bl->address)
2543 {
2544 loc = (*loc2p);
2545 if (loc->owner->extra_string
2546 && is_breakpoint (loc->owner)
2547 && loc->pspace->num == bl->pspace->num
2548 && loc->owner->enable_state == bp_enabled
2549 && loc->enabled)
2550 /* Add the command to the vector. This will be used later
2551 to send the commands to the target. */
2552 VEC_safe_push (agent_expr_p, bl->target_info.tcommands,
2553 loc->cmd_bytecode);
2554 }
2555
2556 bl->target_info.persist = 0;
2557 /* Maybe flag this location as persistent. */
2558 if (bl->owner->type == bp_dprintf && disconnected_dprintf)
2559 bl->target_info.persist = 1;
2560 }
2561
2562 /* Insert a low-level "breakpoint" of some type. BL is the breakpoint
2563 location. Any error messages are printed to TMP_ERROR_STREAM; and
2564 DISABLED_BREAKS, and HW_BREAKPOINT_ERROR are used to report problems.
2565 Returns 0 for success, 1 if the bp_location type is not supported or
2566 -1 for failure.
2567
2568 NOTE drow/2003-09-09: This routine could be broken down to an
2569 object-style method for each breakpoint or catchpoint type. */
2570 static int
2571 insert_bp_location (struct bp_location *bl,
2572 struct ui_file *tmp_error_stream,
2573 int *disabled_breaks,
2574 int *hw_breakpoint_error,
2575 int *hw_bp_error_explained_already)
2576 {
2577 enum errors bp_err = GDB_NO_ERROR;
2578 const char *bp_err_message = NULL;
2579 volatile struct gdb_exception e;
2580
2581 if (!should_be_inserted (bl) || (bl->inserted && !bl->needs_update))
2582 return 0;
2583
2584 /* Note we don't initialize bl->target_info, as that wipes out
2585 the breakpoint location's shadow_contents if the breakpoint
2586 is still inserted at that location. This in turn breaks
2587 target_read_memory which depends on these buffers when
2588 a memory read is requested at the breakpoint location:
2589 Once the target_info has been wiped, we fail to see that
2590 we have a breakpoint inserted at that address and thus
2591 read the breakpoint instead of returning the data saved in
2592 the breakpoint location's shadow contents. */
2593 bl->target_info.reqstd_address = bl->address;
2594 bl->target_info.placed_address_space = bl->pspace->aspace;
2595 bl->target_info.length = bl->length;
2596
2597 /* When working with target-side conditions, we must pass all the conditions
2598 for the same breakpoint address down to the target since GDB will not
2599 insert those locations. With a list of breakpoint conditions, the target
2600 can decide when to stop and notify GDB. */
2601
2602 if (is_breakpoint (bl->owner))
2603 {
2604 build_target_condition_list (bl);
2605 build_target_command_list (bl);
2606 /* Reset the modification marker. */
2607 bl->needs_update = 0;
2608 }
2609
2610 if (bl->loc_type == bp_loc_software_breakpoint
2611 || bl->loc_type == bp_loc_hardware_breakpoint)
2612 {
2613 if (bl->owner->type != bp_hardware_breakpoint)
2614 {
2615 /* If the explicitly specified breakpoint type
2616 is not hardware breakpoint, check the memory map to see
2617 if the breakpoint address is in read only memory or not.
2618
2619 Two important cases are:
2620 - location type is not hardware breakpoint, memory
2621 is readonly. We change the type of the location to
2622 hardware breakpoint.
2623 - location type is hardware breakpoint, memory is
2624 read-write. This means we've previously made the
2625 location hardware one, but then the memory map changed,
2626 so we undo.
2627
2628 When breakpoints are removed, remove_breakpoints will use
2629 location types we've just set here, the only possible
2630 problem is that memory map has changed during running
2631 program, but it's not going to work anyway with current
2632 gdb. */
2633 struct mem_region *mr
2634 = lookup_mem_region (bl->target_info.reqstd_address);
2635
2636 if (mr)
2637 {
2638 if (automatic_hardware_breakpoints)
2639 {
2640 enum bp_loc_type new_type;
2641
2642 if (mr->attrib.mode != MEM_RW)
2643 new_type = bp_loc_hardware_breakpoint;
2644 else
2645 new_type = bp_loc_software_breakpoint;
2646
2647 if (new_type != bl->loc_type)
2648 {
2649 static int said = 0;
2650
2651 bl->loc_type = new_type;
2652 if (!said)
2653 {
2654 fprintf_filtered (gdb_stdout,
2655 _("Note: automatically using "
2656 "hardware breakpoints for "
2657 "read-only addresses.\n"));
2658 said = 1;
2659 }
2660 }
2661 }
2662 else if (bl->loc_type == bp_loc_software_breakpoint
2663 && mr->attrib.mode != MEM_RW)
2664 {
2665 fprintf_unfiltered (tmp_error_stream,
2666 _("Cannot insert breakpoint %d.\n"
2667 "Cannot set software breakpoint "
2668 "at read-only address %s\n"),
2669 bl->owner->number,
2670 paddress (bl->gdbarch, bl->address));
2671 return 1;
2672 }
2673 }
2674 }
2675
2676 /* First check to see if we have to handle an overlay. */
2677 if (overlay_debugging == ovly_off
2678 || bl->section == NULL
2679 || !(section_is_overlay (bl->section)))
2680 {
2681 /* No overlay handling: just set the breakpoint. */
2682 TRY_CATCH (e, RETURN_MASK_ALL)
2683 {
2684 int val;
2685
2686 val = bl->owner->ops->insert_location (bl);
2687 if (val)
2688 bp_err = GENERIC_ERROR;
2689 }
2690 if (e.reason < 0)
2691 {
2692 bp_err = e.error;
2693 bp_err_message = e.message;
2694 }
2695 }
2696 else
2697 {
2698 /* This breakpoint is in an overlay section.
2699 Shall we set a breakpoint at the LMA? */
2700 if (!overlay_events_enabled)
2701 {
2702 /* Yes -- overlay event support is not active,
2703 so we must try to set a breakpoint at the LMA.
2704 This will not work for a hardware breakpoint. */
2705 if (bl->loc_type == bp_loc_hardware_breakpoint)
2706 warning (_("hardware breakpoint %d not supported in overlay!"),
2707 bl->owner->number);
2708 else
2709 {
2710 CORE_ADDR addr = overlay_unmapped_address (bl->address,
2711 bl->section);
2712 /* Set a software (trap) breakpoint at the LMA. */
2713 bl->overlay_target_info = bl->target_info;
2714 bl->overlay_target_info.reqstd_address = addr;
2715
2716 /* No overlay handling: just set the breakpoint. */
2717 TRY_CATCH (e, RETURN_MASK_ALL)
2718 {
2719 int val;
2720
2721 val = target_insert_breakpoint (bl->gdbarch,
2722 &bl->overlay_target_info);
2723 if (val)
2724 bp_err = GENERIC_ERROR;
2725 }
2726 if (e.reason < 0)
2727 {
2728 bp_err = e.error;
2729 bp_err_message = e.message;
2730 }
2731
2732 if (bp_err != GDB_NO_ERROR)
2733 fprintf_unfiltered (tmp_error_stream,
2734 "Overlay breakpoint %d "
2735 "failed: in ROM?\n",
2736 bl->owner->number);
2737 }
2738 }
2739 /* Shall we set a breakpoint at the VMA? */
2740 if (section_is_mapped (bl->section))
2741 {
2742 /* Yes. This overlay section is mapped into memory. */
2743 TRY_CATCH (e, RETURN_MASK_ALL)
2744 {
2745 int val;
2746
2747 val = bl->owner->ops->insert_location (bl);
2748 if (val)
2749 bp_err = GENERIC_ERROR;
2750 }
2751 if (e.reason < 0)
2752 {
2753 bp_err = e.error;
2754 bp_err_message = e.message;
2755 }
2756 }
2757 else
2758 {
2759 /* No. This breakpoint will not be inserted.
2760 No error, but do not mark the bp as 'inserted'. */
2761 return 0;
2762 }
2763 }
2764
2765 if (bp_err != GDB_NO_ERROR)
2766 {
2767 /* Can't set the breakpoint. */
2768
2769 /* In some cases, we might not be able to insert a
2770 breakpoint in a shared library that has already been
2771 removed, but we have not yet processed the shlib unload
2772 event. Unfortunately, some targets that implement
2773 breakpoint insertion themselves can't tell why the
2774 breakpoint insertion failed (e.g., the remote target
2775 doesn't define error codes), so we must treat generic
2776 errors as memory errors. */
2777 if ((bp_err == GENERIC_ERROR || bp_err == MEMORY_ERROR)
2778 && bl->loc_type == bp_loc_software_breakpoint
2779 && (solib_name_from_address (bl->pspace, bl->address)
2780 || shared_objfile_contains_address_p (bl->pspace,
2781 bl->address)))
2782 {
2783 /* See also: disable_breakpoints_in_shlibs. */
2784 bl->shlib_disabled = 1;
2785 observer_notify_breakpoint_modified (bl->owner);
2786 if (!*disabled_breaks)
2787 {
2788 fprintf_unfiltered (tmp_error_stream,
2789 "Cannot insert breakpoint %d.\n",
2790 bl->owner->number);
2791 fprintf_unfiltered (tmp_error_stream,
2792 "Temporarily disabling shared "
2793 "library breakpoints:\n");
2794 }
2795 *disabled_breaks = 1;
2796 fprintf_unfiltered (tmp_error_stream,
2797 "breakpoint #%d\n", bl->owner->number);
2798 return 0;
2799 }
2800 else
2801 {
2802 if (bl->loc_type == bp_loc_hardware_breakpoint)
2803 {
2804 *hw_breakpoint_error = 1;
2805 *hw_bp_error_explained_already = bp_err_message != NULL;
2806 fprintf_unfiltered (tmp_error_stream,
2807 "Cannot insert hardware breakpoint %d%s",
2808 bl->owner->number, bp_err_message ? ":" : ".\n");
2809 if (bp_err_message != NULL)
2810 fprintf_unfiltered (tmp_error_stream, "%s.\n", bp_err_message);
2811 }
2812 else
2813 {
2814 if (bp_err_message == NULL)
2815 {
2816 char *message
2817 = memory_error_message (TARGET_XFER_E_IO,
2818 bl->gdbarch, bl->address);
2819 struct cleanup *old_chain = make_cleanup (xfree, message);
2820
2821 fprintf_unfiltered (tmp_error_stream,
2822 "Cannot insert breakpoint %d.\n"
2823 "%s\n",
2824 bl->owner->number, message);
2825 do_cleanups (old_chain);
2826 }
2827 else
2828 {
2829 fprintf_unfiltered (tmp_error_stream,
2830 "Cannot insert breakpoint %d: %s\n",
2831 bl->owner->number,
2832 bp_err_message);
2833 }
2834 }
2835 return 1;
2836
2837 }
2838 }
2839 else
2840 bl->inserted = 1;
2841
2842 return 0;
2843 }
2844
2845 else if (bl->loc_type == bp_loc_hardware_watchpoint
2846 /* NOTE drow/2003-09-08: This state only exists for removing
2847 watchpoints. It's not clear that it's necessary... */
2848 && bl->owner->disposition != disp_del_at_next_stop)
2849 {
2850 int val;
2851
2852 gdb_assert (bl->owner->ops != NULL
2853 && bl->owner->ops->insert_location != NULL);
2854
2855 val = bl->owner->ops->insert_location (bl);
2856
2857 /* If trying to set a read-watchpoint, and it turns out it's not
2858 supported, try emulating one with an access watchpoint. */
2859 if (val == 1 && bl->watchpoint_type == hw_read)
2860 {
2861 struct bp_location *loc, **loc_temp;
2862
2863 /* But don't try to insert it, if there's already another
2864 hw_access location that would be considered a duplicate
2865 of this one. */
2866 ALL_BP_LOCATIONS (loc, loc_temp)
2867 if (loc != bl
2868 && loc->watchpoint_type == hw_access
2869 && watchpoint_locations_match (bl, loc))
2870 {
2871 bl->duplicate = 1;
2872 bl->inserted = 1;
2873 bl->target_info = loc->target_info;
2874 bl->watchpoint_type = hw_access;
2875 val = 0;
2876 break;
2877 }
2878
2879 if (val == 1)
2880 {
2881 bl->watchpoint_type = hw_access;
2882 val = bl->owner->ops->insert_location (bl);
2883
2884 if (val)
2885 /* Back to the original value. */
2886 bl->watchpoint_type = hw_read;
2887 }
2888 }
2889
2890 bl->inserted = (val == 0);
2891 }
2892
2893 else if (bl->owner->type == bp_catchpoint)
2894 {
2895 int val;
2896
2897 gdb_assert (bl->owner->ops != NULL
2898 && bl->owner->ops->insert_location != NULL);
2899
2900 val = bl->owner->ops->insert_location (bl);
2901 if (val)
2902 {
2903 bl->owner->enable_state = bp_disabled;
2904
2905 if (val == 1)
2906 warning (_("\
2907 Error inserting catchpoint %d: Your system does not support this type\n\
2908 of catchpoint."), bl->owner->number);
2909 else
2910 warning (_("Error inserting catchpoint %d."), bl->owner->number);
2911 }
2912
2913 bl->inserted = (val == 0);
2914
2915 /* We've already printed an error message if there was a problem
2916 inserting this catchpoint, and we've disabled the catchpoint,
2917 so just return success. */
2918 return 0;
2919 }
2920
2921 return 0;
2922 }
2923
2924 /* This function is called when program space PSPACE is about to be
2925 deleted. It takes care of updating breakpoints to not reference
2926 PSPACE anymore. */
2927
2928 void
2929 breakpoint_program_space_exit (struct program_space *pspace)
2930 {
2931 struct breakpoint *b, *b_temp;
2932 struct bp_location *loc, **loc_temp;
2933
2934 /* Remove any breakpoint that was set through this program space. */
2935 ALL_BREAKPOINTS_SAFE (b, b_temp)
2936 {
2937 if (b->pspace == pspace)
2938 delete_breakpoint (b);
2939 }
2940
2941 /* Breakpoints set through other program spaces could have locations
2942 bound to PSPACE as well. Remove those. */
2943 ALL_BP_LOCATIONS (loc, loc_temp)
2944 {
2945 struct bp_location *tmp;
2946
2947 if (loc->pspace == pspace)
2948 {
2949 /* ALL_BP_LOCATIONS bp_location has LOC->OWNER always non-NULL. */
2950 if (loc->owner->loc == loc)
2951 loc->owner->loc = loc->next;
2952 else
2953 for (tmp = loc->owner->loc; tmp->next != NULL; tmp = tmp->next)
2954 if (tmp->next == loc)
2955 {
2956 tmp->next = loc->next;
2957 break;
2958 }
2959 }
2960 }
2961
2962 /* Now update the global location list to permanently delete the
2963 removed locations above. */
2964 update_global_location_list (UGLL_DONT_INSERT);
2965 }
2966
2967 /* Make sure all breakpoints are inserted in inferior.
2968 Throws exception on any error.
2969 A breakpoint that is already inserted won't be inserted
2970 again, so calling this function twice is safe. */
2971 void
2972 insert_breakpoints (void)
2973 {
2974 struct breakpoint *bpt;
2975
2976 ALL_BREAKPOINTS (bpt)
2977 if (is_hardware_watchpoint (bpt))
2978 {
2979 struct watchpoint *w = (struct watchpoint *) bpt;
2980
2981 update_watchpoint (w, 0 /* don't reparse. */);
2982 }
2983
2984 /* Updating watchpoints creates new locations, so update the global
2985 location list. Explicitly tell ugll to insert locations and
2986 ignore breakpoints_always_inserted_mode. */
2987 update_global_location_list (UGLL_INSERT);
2988 }
2989
2990 /* Invoke CALLBACK for each of bp_location. */
2991
2992 void
2993 iterate_over_bp_locations (walk_bp_location_callback callback)
2994 {
2995 struct bp_location *loc, **loc_tmp;
2996
2997 ALL_BP_LOCATIONS (loc, loc_tmp)
2998 {
2999 callback (loc, NULL);
3000 }
3001 }
3002
3003 /* This is used when we need to synch breakpoint conditions between GDB and the
3004 target. It is the case with deleting and disabling of breakpoints when using
3005 always-inserted mode. */
3006
3007 static void
3008 update_inserted_breakpoint_locations (void)
3009 {
3010 struct bp_location *bl, **blp_tmp;
3011 int error_flag = 0;
3012 int val = 0;
3013 int disabled_breaks = 0;
3014 int hw_breakpoint_error = 0;
3015 int hw_bp_details_reported = 0;
3016
3017 struct ui_file *tmp_error_stream = mem_fileopen ();
3018 struct cleanup *cleanups = make_cleanup_ui_file_delete (tmp_error_stream);
3019
3020 /* Explicitly mark the warning -- this will only be printed if
3021 there was an error. */
3022 fprintf_unfiltered (tmp_error_stream, "Warning:\n");
3023
3024 save_current_space_and_thread ();
3025
3026 ALL_BP_LOCATIONS (bl, blp_tmp)
3027 {
3028 /* We only want to update software breakpoints and hardware
3029 breakpoints. */
3030 if (!is_breakpoint (bl->owner))
3031 continue;
3032
3033 /* We only want to update locations that are already inserted
3034 and need updating. This is to avoid unwanted insertion during
3035 deletion of breakpoints. */
3036 if (!bl->inserted || (bl->inserted && !bl->needs_update))
3037 continue;
3038
3039 switch_to_program_space_and_thread (bl->pspace);
3040
3041 /* For targets that support global breakpoints, there's no need
3042 to select an inferior to insert breakpoint to. In fact, even
3043 if we aren't attached to any process yet, we should still
3044 insert breakpoints. */
3045 if (!gdbarch_has_global_breakpoints (target_gdbarch ())
3046 && ptid_equal (inferior_ptid, null_ptid))
3047 continue;
3048
3049 val = insert_bp_location (bl, tmp_error_stream, &disabled_breaks,
3050 &hw_breakpoint_error, &hw_bp_details_reported);
3051 if (val)
3052 error_flag = val;
3053 }
3054
3055 if (error_flag)
3056 {
3057 target_terminal_ours_for_output ();
3058 error_stream (tmp_error_stream);
3059 }
3060
3061 do_cleanups (cleanups);
3062 }
3063
3064 /* Used when starting or continuing the program. */
3065
3066 static void
3067 insert_breakpoint_locations (void)
3068 {
3069 struct breakpoint *bpt;
3070 struct bp_location *bl, **blp_tmp;
3071 int error_flag = 0;
3072 int val = 0;
3073 int disabled_breaks = 0;
3074 int hw_breakpoint_error = 0;
3075 int hw_bp_error_explained_already = 0;
3076
3077 struct ui_file *tmp_error_stream = mem_fileopen ();
3078 struct cleanup *cleanups = make_cleanup_ui_file_delete (tmp_error_stream);
3079
3080 /* Explicitly mark the warning -- this will only be printed if
3081 there was an error. */
3082 fprintf_unfiltered (tmp_error_stream, "Warning:\n");
3083
3084 save_current_space_and_thread ();
3085
3086 ALL_BP_LOCATIONS (bl, blp_tmp)
3087 {
3088 if (!should_be_inserted (bl) || (bl->inserted && !bl->needs_update))
3089 continue;
3090
3091 /* There is no point inserting thread-specific breakpoints if
3092 the thread no longer exists. ALL_BP_LOCATIONS bp_location
3093 has BL->OWNER always non-NULL. */
3094 if (bl->owner->thread != -1
3095 && !valid_thread_id (bl->owner->thread))
3096 continue;
3097
3098 switch_to_program_space_and_thread (bl->pspace);
3099
3100 /* For targets that support global breakpoints, there's no need
3101 to select an inferior to insert breakpoint to. In fact, even
3102 if we aren't attached to any process yet, we should still
3103 insert breakpoints. */
3104 if (!gdbarch_has_global_breakpoints (target_gdbarch ())
3105 && ptid_equal (inferior_ptid, null_ptid))
3106 continue;
3107
3108 val = insert_bp_location (bl, tmp_error_stream, &disabled_breaks,
3109 &hw_breakpoint_error, &hw_bp_error_explained_already);
3110 if (val)
3111 error_flag = val;
3112 }
3113
3114 /* If we failed to insert all locations of a watchpoint, remove
3115 them, as half-inserted watchpoint is of limited use. */
3116 ALL_BREAKPOINTS (bpt)
3117 {
3118 int some_failed = 0;
3119 struct bp_location *loc;
3120
3121 if (!is_hardware_watchpoint (bpt))
3122 continue;
3123
3124 if (!breakpoint_enabled (bpt))
3125 continue;
3126
3127 if (bpt->disposition == disp_del_at_next_stop)
3128 continue;
3129
3130 for (loc = bpt->loc; loc; loc = loc->next)
3131 if (!loc->inserted && should_be_inserted (loc))
3132 {
3133 some_failed = 1;
3134 break;
3135 }
3136 if (some_failed)
3137 {
3138 for (loc = bpt->loc; loc; loc = loc->next)
3139 if (loc->inserted)
3140 remove_breakpoint (loc, mark_uninserted);
3141
3142 hw_breakpoint_error = 1;
3143 fprintf_unfiltered (tmp_error_stream,
3144 "Could not insert hardware watchpoint %d.\n",
3145 bpt->number);
3146 error_flag = -1;
3147 }
3148 }
3149
3150 if (error_flag)
3151 {
3152 /* If a hardware breakpoint or watchpoint was inserted, add a
3153 message about possibly exhausted resources. */
3154 if (hw_breakpoint_error && !hw_bp_error_explained_already)
3155 {
3156 fprintf_unfiltered (tmp_error_stream,
3157 "Could not insert hardware breakpoints:\n\
3158 You may have requested too many hardware breakpoints/watchpoints.\n");
3159 }
3160 target_terminal_ours_for_output ();
3161 error_stream (tmp_error_stream);
3162 }
3163
3164 do_cleanups (cleanups);
3165 }
3166
3167 /* Used when the program stops.
3168 Returns zero if successful, or non-zero if there was a problem
3169 removing a breakpoint location. */
3170
3171 int
3172 remove_breakpoints (void)
3173 {
3174 struct bp_location *bl, **blp_tmp;
3175 int val = 0;
3176
3177 ALL_BP_LOCATIONS (bl, blp_tmp)
3178 {
3179 if (bl->inserted && !is_tracepoint (bl->owner))
3180 val |= remove_breakpoint (bl, mark_uninserted);
3181 }
3182 return val;
3183 }
3184
3185 /* When a thread exits, remove breakpoints that are related to
3186 that thread. */
3187
3188 static void
3189 remove_threaded_breakpoints (struct thread_info *tp, int silent)
3190 {
3191 struct breakpoint *b, *b_tmp;
3192
3193 ALL_BREAKPOINTS_SAFE (b, b_tmp)
3194 {
3195 if (b->thread == tp->num && user_breakpoint_p (b))
3196 {
3197 b->disposition = disp_del_at_next_stop;
3198
3199 printf_filtered (_("\
3200 Thread-specific breakpoint %d deleted - thread %d no longer in the thread list.\n"),
3201 b->number, tp->num);
3202
3203 /* Hide it from the user. */
3204 b->number = 0;
3205 }
3206 }
3207 }
3208
3209 /* Remove breakpoints of process PID. */
3210
3211 int
3212 remove_breakpoints_pid (int pid)
3213 {
3214 struct bp_location *bl, **blp_tmp;
3215 int val;
3216 struct inferior *inf = find_inferior_pid (pid);
3217
3218 ALL_BP_LOCATIONS (bl, blp_tmp)
3219 {
3220 if (bl->pspace != inf->pspace)
3221 continue;
3222
3223 if (bl->owner->type == bp_dprintf)
3224 continue;
3225
3226 if (bl->inserted)
3227 {
3228 val = remove_breakpoint (bl, mark_uninserted);
3229 if (val != 0)
3230 return val;
3231 }
3232 }
3233 return 0;
3234 }
3235
3236 int
3237 reattach_breakpoints (int pid)
3238 {
3239 struct cleanup *old_chain;
3240 struct bp_location *bl, **blp_tmp;
3241 int val;
3242 struct ui_file *tmp_error_stream;
3243 int dummy1 = 0, dummy2 = 0, dummy3 = 0;
3244 struct inferior *inf;
3245 struct thread_info *tp;
3246
3247 tp = any_live_thread_of_process (pid);
3248 if (tp == NULL)
3249 return 1;
3250
3251 inf = find_inferior_pid (pid);
3252 old_chain = save_inferior_ptid ();
3253
3254 inferior_ptid = tp->ptid;
3255
3256 tmp_error_stream = mem_fileopen ();
3257 make_cleanup_ui_file_delete (tmp_error_stream);
3258
3259 ALL_BP_LOCATIONS (bl, blp_tmp)
3260 {
3261 if (bl->pspace != inf->pspace)
3262 continue;
3263
3264 if (bl->inserted)
3265 {
3266 bl->inserted = 0;
3267 val = insert_bp_location (bl, tmp_error_stream, &dummy1, &dummy2, &dummy3);
3268 if (val != 0)
3269 {
3270 do_cleanups (old_chain);
3271 return val;
3272 }
3273 }
3274 }
3275 do_cleanups (old_chain);
3276 return 0;
3277 }
3278
3279 static int internal_breakpoint_number = -1;
3280
3281 /* Set the breakpoint number of B, depending on the value of INTERNAL.
3282 If INTERNAL is non-zero, the breakpoint number will be populated
3283 from internal_breakpoint_number and that variable decremented.
3284 Otherwise the breakpoint number will be populated from
3285 breakpoint_count and that value incremented. Internal breakpoints
3286 do not set the internal var bpnum. */
3287 static void
3288 set_breakpoint_number (int internal, struct breakpoint *b)
3289 {
3290 if (internal)
3291 b->number = internal_breakpoint_number--;
3292 else
3293 {
3294 set_breakpoint_count (breakpoint_count + 1);
3295 b->number = breakpoint_count;
3296 }
3297 }
3298
3299 static struct breakpoint *
3300 create_internal_breakpoint (struct gdbarch *gdbarch,
3301 CORE_ADDR address, enum bptype type,
3302 const struct breakpoint_ops *ops)
3303 {
3304 struct symtab_and_line sal;
3305 struct breakpoint *b;
3306
3307 init_sal (&sal); /* Initialize to zeroes. */
3308
3309 sal.pc = address;
3310 sal.section = find_pc_overlay (sal.pc);
3311 sal.pspace = current_program_space;
3312
3313 b = set_raw_breakpoint (gdbarch, sal, type, ops);
3314 b->number = internal_breakpoint_number--;
3315 b->disposition = disp_donttouch;
3316
3317 return b;
3318 }
3319
3320 static const char *const longjmp_names[] =
3321 {
3322 "longjmp", "_longjmp", "siglongjmp", "_siglongjmp"
3323 };
3324 #define NUM_LONGJMP_NAMES ARRAY_SIZE(longjmp_names)
3325
3326 /* Per-objfile data private to breakpoint.c. */
3327 struct breakpoint_objfile_data
3328 {
3329 /* Minimal symbol for "_ovly_debug_event" (if any). */
3330 struct bound_minimal_symbol overlay_msym;
3331
3332 /* Minimal symbol(s) for "longjmp", "siglongjmp", etc. (if any). */
3333 struct bound_minimal_symbol longjmp_msym[NUM_LONGJMP_NAMES];
3334
3335 /* True if we have looked for longjmp probes. */
3336 int longjmp_searched;
3337
3338 /* SystemTap probe points for longjmp (if any). */
3339 VEC (probe_p) *longjmp_probes;
3340
3341 /* Minimal symbol for "std::terminate()" (if any). */
3342 struct bound_minimal_symbol terminate_msym;
3343
3344 /* Minimal symbol for "_Unwind_DebugHook" (if any). */
3345 struct bound_minimal_symbol exception_msym;
3346
3347 /* True if we have looked for exception probes. */
3348 int exception_searched;
3349
3350 /* SystemTap probe points for unwinding (if any). */
3351 VEC (probe_p) *exception_probes;
3352 };
3353
3354 static const struct objfile_data *breakpoint_objfile_key;
3355
3356 /* Minimal symbol not found sentinel. */
3357 static struct minimal_symbol msym_not_found;
3358
3359 /* Returns TRUE if MSYM point to the "not found" sentinel. */
3360
3361 static int
3362 msym_not_found_p (const struct minimal_symbol *msym)
3363 {
3364 return msym == &msym_not_found;
3365 }
3366
3367 /* Return per-objfile data needed by breakpoint.c.
3368 Allocate the data if necessary. */
3369
3370 static struct breakpoint_objfile_data *
3371 get_breakpoint_objfile_data (struct objfile *objfile)
3372 {
3373 struct breakpoint_objfile_data *bp_objfile_data;
3374
3375 bp_objfile_data = objfile_data (objfile, breakpoint_objfile_key);
3376 if (bp_objfile_data == NULL)
3377 {
3378 bp_objfile_data = obstack_alloc (&objfile->objfile_obstack,
3379 sizeof (*bp_objfile_data));
3380
3381 memset (bp_objfile_data, 0, sizeof (*bp_objfile_data));
3382 set_objfile_data (objfile, breakpoint_objfile_key, bp_objfile_data);
3383 }
3384 return bp_objfile_data;
3385 }
3386
3387 static void
3388 free_breakpoint_probes (struct objfile *obj, void *data)
3389 {
3390 struct breakpoint_objfile_data *bp_objfile_data = data;
3391
3392 VEC_free (probe_p, bp_objfile_data->longjmp_probes);
3393 VEC_free (probe_p, bp_objfile_data->exception_probes);
3394 }
3395
3396 static void
3397 create_overlay_event_breakpoint (void)
3398 {
3399 struct objfile *objfile;
3400 const char *const func_name = "_ovly_debug_event";
3401
3402 ALL_OBJFILES (objfile)
3403 {
3404 struct breakpoint *b;
3405 struct breakpoint_objfile_data *bp_objfile_data;
3406 CORE_ADDR addr;
3407
3408 bp_objfile_data = get_breakpoint_objfile_data (objfile);
3409
3410 if (msym_not_found_p (bp_objfile_data->overlay_msym.minsym))
3411 continue;
3412
3413 if (bp_objfile_data->overlay_msym.minsym == NULL)
3414 {
3415 struct bound_minimal_symbol m;
3416
3417 m = lookup_minimal_symbol_text (func_name, objfile);
3418 if (m.minsym == NULL)
3419 {
3420 /* Avoid future lookups in this objfile. */
3421 bp_objfile_data->overlay_msym.minsym = &msym_not_found;
3422 continue;
3423 }
3424 bp_objfile_data->overlay_msym = m;
3425 }
3426
3427 addr = BMSYMBOL_VALUE_ADDRESS (bp_objfile_data->overlay_msym);
3428 b = create_internal_breakpoint (get_objfile_arch (objfile), addr,
3429 bp_overlay_event,
3430 &internal_breakpoint_ops);
3431 b->addr_string = xstrdup (func_name);
3432
3433 if (overlay_debugging == ovly_auto)
3434 {
3435 b->enable_state = bp_enabled;
3436 overlay_events_enabled = 1;
3437 }
3438 else
3439 {
3440 b->enable_state = bp_disabled;
3441 overlay_events_enabled = 0;
3442 }
3443 }
3444 update_global_location_list (UGLL_MAY_INSERT);
3445 }
3446
3447 static void
3448 create_longjmp_master_breakpoint (void)
3449 {
3450 struct program_space *pspace;
3451 struct cleanup *old_chain;
3452
3453 old_chain = save_current_program_space ();
3454
3455 ALL_PSPACES (pspace)
3456 {
3457 struct objfile *objfile;
3458
3459 set_current_program_space (pspace);
3460
3461 ALL_OBJFILES (objfile)
3462 {
3463 int i;
3464 struct gdbarch *gdbarch;
3465 struct breakpoint_objfile_data *bp_objfile_data;
3466
3467 gdbarch = get_objfile_arch (objfile);
3468
3469 bp_objfile_data = get_breakpoint_objfile_data (objfile);
3470
3471 if (!bp_objfile_data->longjmp_searched)
3472 {
3473 VEC (probe_p) *ret;
3474
3475 ret = find_probes_in_objfile (objfile, "libc", "longjmp");
3476 if (ret != NULL)
3477 {
3478 /* We are only interested in checking one element. */
3479 struct probe *p = VEC_index (probe_p, ret, 0);
3480
3481 if (!can_evaluate_probe_arguments (p))
3482 {
3483 /* We cannot use the probe interface here, because it does
3484 not know how to evaluate arguments. */
3485 VEC_free (probe_p, ret);
3486 ret = NULL;
3487 }
3488 }
3489 bp_objfile_data->longjmp_probes = ret;
3490 bp_objfile_data->longjmp_searched = 1;
3491 }
3492
3493 if (bp_objfile_data->longjmp_probes != NULL)
3494 {
3495 int i;
3496 struct probe *probe;
3497 struct gdbarch *gdbarch = get_objfile_arch (objfile);
3498
3499 for (i = 0;
3500 VEC_iterate (probe_p,
3501 bp_objfile_data->longjmp_probes,
3502 i, probe);
3503 ++i)
3504 {
3505 struct breakpoint *b;
3506
3507 b = create_internal_breakpoint (gdbarch,
3508 get_probe_address (probe,
3509 objfile),
3510 bp_longjmp_master,
3511 &internal_breakpoint_ops);
3512 b->addr_string = xstrdup ("-probe-stap libc:longjmp");
3513 b->enable_state = bp_disabled;
3514 }
3515
3516 continue;
3517 }
3518
3519 if (!gdbarch_get_longjmp_target_p (gdbarch))
3520 continue;
3521
3522 for (i = 0; i < NUM_LONGJMP_NAMES; i++)
3523 {
3524 struct breakpoint *b;
3525 const char *func_name;
3526 CORE_ADDR addr;
3527
3528 if (msym_not_found_p (bp_objfile_data->longjmp_msym[i].minsym))
3529 continue;
3530
3531 func_name = longjmp_names[i];
3532 if (bp_objfile_data->longjmp_msym[i].minsym == NULL)
3533 {
3534 struct bound_minimal_symbol m;
3535
3536 m = lookup_minimal_symbol_text (func_name, objfile);
3537 if (m.minsym == NULL)
3538 {
3539 /* Prevent future lookups in this objfile. */
3540 bp_objfile_data->longjmp_msym[i].minsym = &msym_not_found;
3541 continue;
3542 }
3543 bp_objfile_data->longjmp_msym[i] = m;
3544 }
3545
3546 addr = BMSYMBOL_VALUE_ADDRESS (bp_objfile_data->longjmp_msym[i]);
3547 b = create_internal_breakpoint (gdbarch, addr, bp_longjmp_master,
3548 &internal_breakpoint_ops);
3549 b->addr_string = xstrdup (func_name);
3550 b->enable_state = bp_disabled;
3551 }
3552 }
3553 }
3554 update_global_location_list (UGLL_MAY_INSERT);
3555
3556 do_cleanups (old_chain);
3557 }
3558
3559 /* Create a master std::terminate breakpoint. */
3560 static void
3561 create_std_terminate_master_breakpoint (void)
3562 {
3563 struct program_space *pspace;
3564 struct cleanup *old_chain;
3565 const char *const func_name = "std::terminate()";
3566
3567 old_chain = save_current_program_space ();
3568
3569 ALL_PSPACES (pspace)
3570 {
3571 struct objfile *objfile;
3572 CORE_ADDR addr;
3573
3574 set_current_program_space (pspace);
3575
3576 ALL_OBJFILES (objfile)
3577 {
3578 struct breakpoint *b;
3579 struct breakpoint_objfile_data *bp_objfile_data;
3580
3581 bp_objfile_data = get_breakpoint_objfile_data (objfile);
3582
3583 if (msym_not_found_p (bp_objfile_data->terminate_msym.minsym))
3584 continue;
3585
3586 if (bp_objfile_data->terminate_msym.minsym == NULL)
3587 {
3588 struct bound_minimal_symbol m;
3589
3590 m = lookup_minimal_symbol (func_name, NULL, objfile);
3591 if (m.minsym == NULL || (MSYMBOL_TYPE (m.minsym) != mst_text
3592 && MSYMBOL_TYPE (m.minsym) != mst_file_text))
3593 {
3594 /* Prevent future lookups in this objfile. */
3595 bp_objfile_data->terminate_msym.minsym = &msym_not_found;
3596 continue;
3597 }
3598 bp_objfile_data->terminate_msym = m;
3599 }
3600
3601 addr = BMSYMBOL_VALUE_ADDRESS (bp_objfile_data->terminate_msym);
3602 b = create_internal_breakpoint (get_objfile_arch (objfile), addr,
3603 bp_std_terminate_master,
3604 &internal_breakpoint_ops);
3605 b->addr_string = xstrdup (func_name);
3606 b->enable_state = bp_disabled;
3607 }
3608 }
3609
3610 update_global_location_list (UGLL_MAY_INSERT);
3611
3612 do_cleanups (old_chain);
3613 }
3614
3615 /* Install a master breakpoint on the unwinder's debug hook. */
3616
3617 static void
3618 create_exception_master_breakpoint (void)
3619 {
3620 struct objfile *objfile;
3621 const char *const func_name = "_Unwind_DebugHook";
3622
3623 ALL_OBJFILES (objfile)
3624 {
3625 struct breakpoint *b;
3626 struct gdbarch *gdbarch;
3627 struct breakpoint_objfile_data *bp_objfile_data;
3628 CORE_ADDR addr;
3629
3630 bp_objfile_data = get_breakpoint_objfile_data (objfile);
3631
3632 /* We prefer the SystemTap probe point if it exists. */
3633 if (!bp_objfile_data->exception_searched)
3634 {
3635 VEC (probe_p) *ret;
3636
3637 ret = find_probes_in_objfile (objfile, "libgcc", "unwind");
3638
3639 if (ret != NULL)
3640 {
3641 /* We are only interested in checking one element. */
3642 struct probe *p = VEC_index (probe_p, ret, 0);
3643
3644 if (!can_evaluate_probe_arguments (p))
3645 {
3646 /* We cannot use the probe interface here, because it does
3647 not know how to evaluate arguments. */
3648 VEC_free (probe_p, ret);
3649 ret = NULL;
3650 }
3651 }
3652 bp_objfile_data->exception_probes = ret;
3653 bp_objfile_data->exception_searched = 1;
3654 }
3655
3656 if (bp_objfile_data->exception_probes != NULL)
3657 {
3658 struct gdbarch *gdbarch = get_objfile_arch (objfile);
3659 int i;
3660 struct probe *probe;
3661
3662 for (i = 0;
3663 VEC_iterate (probe_p,
3664 bp_objfile_data->exception_probes,
3665 i, probe);
3666 ++i)
3667 {
3668 struct breakpoint *b;
3669
3670 b = create_internal_breakpoint (gdbarch,
3671 get_probe_address (probe,
3672 objfile),
3673 bp_exception_master,
3674 &internal_breakpoint_ops);
3675 b->addr_string = xstrdup ("-probe-stap libgcc:unwind");
3676 b->enable_state = bp_disabled;
3677 }
3678
3679 continue;
3680 }
3681
3682 /* Otherwise, try the hook function. */
3683
3684 if (msym_not_found_p (bp_objfile_data->exception_msym.minsym))
3685 continue;
3686
3687 gdbarch = get_objfile_arch (objfile);
3688
3689 if (bp_objfile_data->exception_msym.minsym == NULL)
3690 {
3691 struct bound_minimal_symbol debug_hook;
3692
3693 debug_hook = lookup_minimal_symbol (func_name, NULL, objfile);
3694 if (debug_hook.minsym == NULL)
3695 {
3696 bp_objfile_data->exception_msym.minsym = &msym_not_found;
3697 continue;
3698 }
3699
3700 bp_objfile_data->exception_msym = debug_hook;
3701 }
3702
3703 addr = BMSYMBOL_VALUE_ADDRESS (bp_objfile_data->exception_msym);
3704 addr = gdbarch_convert_from_func_ptr_addr (gdbarch, addr,
3705 &current_target);
3706 b = create_internal_breakpoint (gdbarch, addr, bp_exception_master,
3707 &internal_breakpoint_ops);
3708 b->addr_string = xstrdup (func_name);
3709 b->enable_state = bp_disabled;
3710 }
3711
3712 update_global_location_list (UGLL_MAY_INSERT);
3713 }
3714
3715 void
3716 update_breakpoints_after_exec (void)
3717 {
3718 struct breakpoint *b, *b_tmp;
3719 struct bp_location *bploc, **bplocp_tmp;
3720
3721 /* We're about to delete breakpoints from GDB's lists. If the
3722 INSERTED flag is true, GDB will try to lift the breakpoints by
3723 writing the breakpoints' "shadow contents" back into memory. The
3724 "shadow contents" are NOT valid after an exec, so GDB should not
3725 do that. Instead, the target is responsible from marking
3726 breakpoints out as soon as it detects an exec. We don't do that
3727 here instead, because there may be other attempts to delete
3728 breakpoints after detecting an exec and before reaching here. */
3729 ALL_BP_LOCATIONS (bploc, bplocp_tmp)
3730 if (bploc->pspace == current_program_space)
3731 gdb_assert (!bploc->inserted);
3732
3733 ALL_BREAKPOINTS_SAFE (b, b_tmp)
3734 {
3735 if (b->pspace != current_program_space)
3736 continue;
3737
3738 /* Solib breakpoints must be explicitly reset after an exec(). */
3739 if (b->type == bp_shlib_event)
3740 {
3741 delete_breakpoint (b);
3742 continue;
3743 }
3744
3745 /* JIT breakpoints must be explicitly reset after an exec(). */
3746 if (b->type == bp_jit_event)
3747 {
3748 delete_breakpoint (b);
3749 continue;
3750 }
3751
3752 /* Thread event breakpoints must be set anew after an exec(),
3753 as must overlay event and longjmp master breakpoints. */
3754 if (b->type == bp_thread_event || b->type == bp_overlay_event
3755 || b->type == bp_longjmp_master || b->type == bp_std_terminate_master
3756 || b->type == bp_exception_master)
3757 {
3758 delete_breakpoint (b);
3759 continue;
3760 }
3761
3762 /* Step-resume breakpoints are meaningless after an exec(). */
3763 if (b->type == bp_step_resume || b->type == bp_hp_step_resume)
3764 {
3765 delete_breakpoint (b);
3766 continue;
3767 }
3768
3769 /* Just like single-step breakpoints. */
3770 if (b->type == bp_single_step)
3771 {
3772 delete_breakpoint (b);
3773 continue;
3774 }
3775
3776 /* Longjmp and longjmp-resume breakpoints are also meaningless
3777 after an exec. */
3778 if (b->type == bp_longjmp || b->type == bp_longjmp_resume
3779 || b->type == bp_longjmp_call_dummy
3780 || b->type == bp_exception || b->type == bp_exception_resume)
3781 {
3782 delete_breakpoint (b);
3783 continue;
3784 }
3785
3786 if (b->type == bp_catchpoint)
3787 {
3788 /* For now, none of the bp_catchpoint breakpoints need to
3789 do anything at this point. In the future, if some of
3790 the catchpoints need to something, we will need to add
3791 a new method, and call this method from here. */
3792 continue;
3793 }
3794
3795 /* bp_finish is a special case. The only way we ought to be able
3796 to see one of these when an exec() has happened, is if the user
3797 caught a vfork, and then said "finish". Ordinarily a finish just
3798 carries them to the call-site of the current callee, by setting
3799 a temporary bp there and resuming. But in this case, the finish
3800 will carry them entirely through the vfork & exec.
3801
3802 We don't want to allow a bp_finish to remain inserted now. But
3803 we can't safely delete it, 'cause finish_command has a handle to
3804 the bp on a bpstat, and will later want to delete it. There's a
3805 chance (and I've seen it happen) that if we delete the bp_finish
3806 here, that its storage will get reused by the time finish_command
3807 gets 'round to deleting the "use to be a bp_finish" breakpoint.
3808 We really must allow finish_command to delete a bp_finish.
3809
3810 In the absence of a general solution for the "how do we know
3811 it's safe to delete something others may have handles to?"
3812 problem, what we'll do here is just uninsert the bp_finish, and
3813 let finish_command delete it.
3814
3815 (We know the bp_finish is "doomed" in the sense that it's
3816 momentary, and will be deleted as soon as finish_command sees
3817 the inferior stopped. So it doesn't matter that the bp's
3818 address is probably bogus in the new a.out, unlike e.g., the
3819 solib breakpoints.) */
3820
3821 if (b->type == bp_finish)
3822 {
3823 continue;
3824 }
3825
3826 /* Without a symbolic address, we have little hope of the
3827 pre-exec() address meaning the same thing in the post-exec()
3828 a.out. */
3829 if (b->addr_string == NULL)
3830 {
3831 delete_breakpoint (b);
3832 continue;
3833 }
3834 }
3835 }
3836
3837 int
3838 detach_breakpoints (ptid_t ptid)
3839 {
3840 struct bp_location *bl, **blp_tmp;
3841 int val = 0;
3842 struct cleanup *old_chain = save_inferior_ptid ();
3843 struct inferior *inf = current_inferior ();
3844
3845 if (ptid_get_pid (ptid) == ptid_get_pid (inferior_ptid))
3846 error (_("Cannot detach breakpoints of inferior_ptid"));
3847
3848 /* Set inferior_ptid; remove_breakpoint_1 uses this global. */
3849 inferior_ptid = ptid;
3850 ALL_BP_LOCATIONS (bl, blp_tmp)
3851 {
3852 if (bl->pspace != inf->pspace)
3853 continue;
3854
3855 /* This function must physically remove breakpoints locations
3856 from the specified ptid, without modifying the breakpoint
3857 package's state. Locations of type bp_loc_other are only
3858 maintained at GDB side. So, there is no need to remove
3859 these bp_loc_other locations. Moreover, removing these
3860 would modify the breakpoint package's state. */
3861 if (bl->loc_type == bp_loc_other)
3862 continue;
3863
3864 if (bl->inserted)
3865 val |= remove_breakpoint_1 (bl, mark_inserted);
3866 }
3867
3868 do_cleanups (old_chain);
3869 return val;
3870 }
3871
3872 /* Remove the breakpoint location BL from the current address space.
3873 Note that this is used to detach breakpoints from a child fork.
3874 When we get here, the child isn't in the inferior list, and neither
3875 do we have objects to represent its address space --- we should
3876 *not* look at bl->pspace->aspace here. */
3877
3878 static int
3879 remove_breakpoint_1 (struct bp_location *bl, insertion_state_t is)
3880 {
3881 int val;
3882
3883 /* BL is never in moribund_locations by our callers. */
3884 gdb_assert (bl->owner != NULL);
3885
3886 if (bl->permanent)
3887 /* Permanent breakpoints cannot be inserted or removed. */
3888 return 0;
3889
3890 /* The type of none suggests that owner is actually deleted.
3891 This should not ever happen. */
3892 gdb_assert (bl->owner->type != bp_none);
3893
3894 if (bl->loc_type == bp_loc_software_breakpoint
3895 || bl->loc_type == bp_loc_hardware_breakpoint)
3896 {
3897 /* "Normal" instruction breakpoint: either the standard
3898 trap-instruction bp (bp_breakpoint), or a
3899 bp_hardware_breakpoint. */
3900
3901 /* First check to see if we have to handle an overlay. */
3902 if (overlay_debugging == ovly_off
3903 || bl->section == NULL
3904 || !(section_is_overlay (bl->section)))
3905 {
3906 /* No overlay handling: just remove the breakpoint. */
3907
3908 /* If we're trying to uninsert a memory breakpoint that we
3909 know is set in a dynamic object that is marked
3910 shlib_disabled, then either the dynamic object was
3911 removed with "remove-symbol-file" or with
3912 "nosharedlibrary". In the former case, we don't know
3913 whether another dynamic object might have loaded over the
3914 breakpoint's address -- the user might well let us know
3915 about it next with add-symbol-file (the whole point of
3916 add-symbol-file is letting the user manually maintain a
3917 list of dynamically loaded objects). If we have the
3918 breakpoint's shadow memory, that is, this is a software
3919 breakpoint managed by GDB, check whether the breakpoint
3920 is still inserted in memory, to avoid overwriting wrong
3921 code with stale saved shadow contents. Note that HW
3922 breakpoints don't have shadow memory, as they're
3923 implemented using a mechanism that is not dependent on
3924 being able to modify the target's memory, and as such
3925 they should always be removed. */
3926 if (bl->shlib_disabled
3927 && bl->target_info.shadow_len != 0
3928 && !memory_validate_breakpoint (bl->gdbarch, &bl->target_info))
3929 val = 0;
3930 else
3931 val = bl->owner->ops->remove_location (bl);
3932 }
3933 else
3934 {
3935 /* This breakpoint is in an overlay section.
3936 Did we set a breakpoint at the LMA? */
3937 if (!overlay_events_enabled)
3938 {
3939 /* Yes -- overlay event support is not active, so we
3940 should have set a breakpoint at the LMA. Remove it.
3941 */
3942 /* Ignore any failures: if the LMA is in ROM, we will
3943 have already warned when we failed to insert it. */
3944 if (bl->loc_type == bp_loc_hardware_breakpoint)
3945 target_remove_hw_breakpoint (bl->gdbarch,
3946 &bl->overlay_target_info);
3947 else
3948 target_remove_breakpoint (bl->gdbarch,
3949 &bl->overlay_target_info);
3950 }
3951 /* Did we set a breakpoint at the VMA?
3952 If so, we will have marked the breakpoint 'inserted'. */
3953 if (bl->inserted)
3954 {
3955 /* Yes -- remove it. Previously we did not bother to
3956 remove the breakpoint if the section had been
3957 unmapped, but let's not rely on that being safe. We
3958 don't know what the overlay manager might do. */
3959
3960 /* However, we should remove *software* breakpoints only
3961 if the section is still mapped, or else we overwrite
3962 wrong code with the saved shadow contents. */
3963 if (bl->loc_type == bp_loc_hardware_breakpoint
3964 || section_is_mapped (bl->section))
3965 val = bl->owner->ops->remove_location (bl);
3966 else
3967 val = 0;
3968 }
3969 else
3970 {
3971 /* No -- not inserted, so no need to remove. No error. */
3972 val = 0;
3973 }
3974 }
3975
3976 /* In some cases, we might not be able to remove a breakpoint in
3977 a shared library that has already been removed, but we have
3978 not yet processed the shlib unload event. Similarly for an
3979 unloaded add-symbol-file object - the user might not yet have
3980 had the chance to remove-symbol-file it. shlib_disabled will
3981 be set if the library/object has already been removed, but
3982 the breakpoint hasn't been uninserted yet, e.g., after
3983 "nosharedlibrary" or "remove-symbol-file" with breakpoints
3984 always-inserted mode. */
3985 if (val
3986 && (bl->loc_type == bp_loc_software_breakpoint
3987 && (bl->shlib_disabled
3988 || solib_name_from_address (bl->pspace, bl->address)
3989 || shared_objfile_contains_address_p (bl->pspace,
3990 bl->address))))
3991 val = 0;
3992
3993 if (val)
3994 return val;
3995 bl->inserted = (is == mark_inserted);
3996 }
3997 else if (bl->loc_type == bp_loc_hardware_watchpoint)
3998 {
3999 gdb_assert (bl->owner->ops != NULL
4000 && bl->owner->ops->remove_location != NULL);
4001
4002 bl->inserted = (is == mark_inserted);
4003 bl->owner->ops->remove_location (bl);
4004
4005 /* Failure to remove any of the hardware watchpoints comes here. */
4006 if ((is == mark_uninserted) && (bl->inserted))
4007 warning (_("Could not remove hardware watchpoint %d."),
4008 bl->owner->number);
4009 }
4010 else if (bl->owner->type == bp_catchpoint
4011 && breakpoint_enabled (bl->owner)
4012 && !bl->duplicate)
4013 {
4014 gdb_assert (bl->owner->ops != NULL
4015 && bl->owner->ops->remove_location != NULL);
4016
4017 val = bl->owner->ops->remove_location (bl);
4018 if (val)
4019 return val;
4020
4021 bl->inserted = (is == mark_inserted);
4022 }
4023
4024 return 0;
4025 }
4026
4027 static int
4028 remove_breakpoint (struct bp_location *bl, insertion_state_t is)
4029 {
4030 int ret;
4031 struct cleanup *old_chain;
4032
4033 /* BL is never in moribund_locations by our callers. */
4034 gdb_assert (bl->owner != NULL);
4035
4036 if (bl->permanent)
4037 /* Permanent breakpoints cannot be inserted or removed. */
4038 return 0;
4039
4040 /* The type of none suggests that owner is actually deleted.
4041 This should not ever happen. */
4042 gdb_assert (bl->owner->type != bp_none);
4043
4044 old_chain = save_current_space_and_thread ();
4045
4046 switch_to_program_space_and_thread (bl->pspace);
4047
4048 ret = remove_breakpoint_1 (bl, is);
4049
4050 do_cleanups (old_chain);
4051 return ret;
4052 }
4053
4054 /* Clear the "inserted" flag in all breakpoints. */
4055
4056 void
4057 mark_breakpoints_out (void)
4058 {
4059 struct bp_location *bl, **blp_tmp;
4060
4061 ALL_BP_LOCATIONS (bl, blp_tmp)
4062 if (bl->pspace == current_program_space
4063 && !bl->permanent)
4064 bl->inserted = 0;
4065 }
4066
4067 /* Clear the "inserted" flag in all breakpoints and delete any
4068 breakpoints which should go away between runs of the program.
4069
4070 Plus other such housekeeping that has to be done for breakpoints
4071 between runs.
4072
4073 Note: this function gets called at the end of a run (by
4074 generic_mourn_inferior) and when a run begins (by
4075 init_wait_for_inferior). */
4076
4077
4078
4079 void
4080 breakpoint_init_inferior (enum inf_context context)
4081 {
4082 struct breakpoint *b, *b_tmp;
4083 struct bp_location *bl, **blp_tmp;
4084 int ix;
4085 struct program_space *pspace = current_program_space;
4086
4087 /* If breakpoint locations are shared across processes, then there's
4088 nothing to do. */
4089 if (gdbarch_has_global_breakpoints (target_gdbarch ()))
4090 return;
4091
4092 mark_breakpoints_out ();
4093
4094 ALL_BREAKPOINTS_SAFE (b, b_tmp)
4095 {
4096 if (b->loc && b->loc->pspace != pspace)
4097 continue;
4098
4099 switch (b->type)
4100 {
4101 case bp_call_dummy:
4102 case bp_longjmp_call_dummy:
4103
4104 /* If the call dummy breakpoint is at the entry point it will
4105 cause problems when the inferior is rerun, so we better get
4106 rid of it. */
4107
4108 case bp_watchpoint_scope:
4109
4110 /* Also get rid of scope breakpoints. */
4111
4112 case bp_shlib_event:
4113
4114 /* Also remove solib event breakpoints. Their addresses may
4115 have changed since the last time we ran the program.
4116 Actually we may now be debugging against different target;
4117 and so the solib backend that installed this breakpoint may
4118 not be used in by the target. E.g.,
4119
4120 (gdb) file prog-linux
4121 (gdb) run # native linux target
4122 ...
4123 (gdb) kill
4124 (gdb) file prog-win.exe
4125 (gdb) tar rem :9999 # remote Windows gdbserver.
4126 */
4127
4128 case bp_step_resume:
4129
4130 /* Also remove step-resume breakpoints. */
4131
4132 case bp_single_step:
4133
4134 /* Also remove single-step breakpoints. */
4135
4136 delete_breakpoint (b);
4137 break;
4138
4139 case bp_watchpoint:
4140 case bp_hardware_watchpoint:
4141 case bp_read_watchpoint:
4142 case bp_access_watchpoint:
4143 {
4144 struct watchpoint *w = (struct watchpoint *) b;
4145
4146 /* Likewise for watchpoints on local expressions. */
4147 if (w->exp_valid_block != NULL)
4148 delete_breakpoint (b);
4149 else if (context == inf_starting)
4150 {
4151 /* Reset val field to force reread of starting value in
4152 insert_breakpoints. */
4153 if (w->val)
4154 value_free (w->val);
4155 w->val = NULL;
4156 w->val_valid = 0;
4157 }
4158 }
4159 break;
4160 default:
4161 break;
4162 }
4163 }
4164
4165 /* Get rid of the moribund locations. */
4166 for (ix = 0; VEC_iterate (bp_location_p, moribund_locations, ix, bl); ++ix)
4167 decref_bp_location (&bl);
4168 VEC_free (bp_location_p, moribund_locations);
4169 }
4170
4171 /* These functions concern about actual breakpoints inserted in the
4172 target --- to e.g. check if we need to do decr_pc adjustment or if
4173 we need to hop over the bkpt --- so we check for address space
4174 match, not program space. */
4175
4176 /* breakpoint_here_p (PC) returns non-zero if an enabled breakpoint
4177 exists at PC. It returns ordinary_breakpoint_here if it's an
4178 ordinary breakpoint, or permanent_breakpoint_here if it's a
4179 permanent breakpoint.
4180 - When continuing from a location with an ordinary breakpoint, we
4181 actually single step once before calling insert_breakpoints.
4182 - When continuing from a location with a permanent breakpoint, we
4183 need to use the `SKIP_PERMANENT_BREAKPOINT' macro, provided by
4184 the target, to advance the PC past the breakpoint. */
4185
4186 enum breakpoint_here
4187 breakpoint_here_p (struct address_space *aspace, CORE_ADDR pc)
4188 {
4189 struct bp_location *bl, **blp_tmp;
4190 int any_breakpoint_here = 0;
4191
4192 ALL_BP_LOCATIONS (bl, blp_tmp)
4193 {
4194 if (bl->loc_type != bp_loc_software_breakpoint
4195 && bl->loc_type != bp_loc_hardware_breakpoint)
4196 continue;
4197
4198 /* ALL_BP_LOCATIONS bp_location has BL->OWNER always non-NULL. */
4199 if ((breakpoint_enabled (bl->owner)
4200 || bl->permanent)
4201 && breakpoint_location_address_match (bl, aspace, pc))
4202 {
4203 if (overlay_debugging
4204 && section_is_overlay (bl->section)
4205 && !section_is_mapped (bl->section))
4206 continue; /* unmapped overlay -- can't be a match */
4207 else if (bl->permanent)
4208 return permanent_breakpoint_here;
4209 else
4210 any_breakpoint_here = 1;
4211 }
4212 }
4213
4214 return any_breakpoint_here ? ordinary_breakpoint_here : 0;
4215 }
4216
4217 /* Return true if there's a moribund breakpoint at PC. */
4218
4219 int
4220 moribund_breakpoint_here_p (struct address_space *aspace, CORE_ADDR pc)
4221 {
4222 struct bp_location *loc;
4223 int ix;
4224
4225 for (ix = 0; VEC_iterate (bp_location_p, moribund_locations, ix, loc); ++ix)
4226 if (breakpoint_location_address_match (loc, aspace, pc))
4227 return 1;
4228
4229 return 0;
4230 }
4231
4232 /* Returns non-zero iff there's a breakpoint inserted at PC. */
4233
4234 int
4235 breakpoint_inserted_here_p (struct address_space *aspace, CORE_ADDR pc)
4236 {
4237 struct bp_location *bl, **blp_tmp;
4238
4239 ALL_BP_LOCATIONS (bl, blp_tmp)
4240 {
4241 if (bl->loc_type != bp_loc_software_breakpoint
4242 && bl->loc_type != bp_loc_hardware_breakpoint)
4243 continue;
4244
4245 if (bl->inserted
4246 && breakpoint_location_address_match (bl, aspace, pc))
4247 {
4248 if (overlay_debugging
4249 && section_is_overlay (bl->section)
4250 && !section_is_mapped (bl->section))
4251 continue; /* unmapped overlay -- can't be a match */
4252 else
4253 return 1;
4254 }
4255 }
4256 return 0;
4257 }
4258
4259 /* This function returns non-zero iff there is a software breakpoint
4260 inserted at PC. */
4261
4262 int
4263 software_breakpoint_inserted_here_p (struct address_space *aspace,
4264 CORE_ADDR pc)
4265 {
4266 struct bp_location *bl, **blp_tmp;
4267
4268 ALL_BP_LOCATIONS (bl, blp_tmp)
4269 {
4270 if (bl->loc_type != bp_loc_software_breakpoint)
4271 continue;
4272
4273 if (bl->inserted
4274 && breakpoint_address_match (bl->pspace->aspace, bl->address,
4275 aspace, pc))
4276 {
4277 if (overlay_debugging
4278 && section_is_overlay (bl->section)
4279 && !section_is_mapped (bl->section))
4280 continue; /* unmapped overlay -- can't be a match */
4281 else
4282 return 1;
4283 }
4284 }
4285
4286 return 0;
4287 }
4288
4289 int
4290 hardware_watchpoint_inserted_in_range (struct address_space *aspace,
4291 CORE_ADDR addr, ULONGEST len)
4292 {
4293 struct breakpoint *bpt;
4294
4295 ALL_BREAKPOINTS (bpt)
4296 {
4297 struct bp_location *loc;
4298
4299 if (bpt->type != bp_hardware_watchpoint
4300 && bpt->type != bp_access_watchpoint)
4301 continue;
4302
4303 if (!breakpoint_enabled (bpt))
4304 continue;
4305
4306 for (loc = bpt->loc; loc; loc = loc->next)
4307 if (loc->pspace->aspace == aspace && loc->inserted)
4308 {
4309 CORE_ADDR l, h;
4310
4311 /* Check for intersection. */
4312 l = max (loc->address, addr);
4313 h = min (loc->address + loc->length, addr + len);
4314 if (l < h)
4315 return 1;
4316 }
4317 }
4318 return 0;
4319 }
4320 \f
4321
4322 /* bpstat stuff. External routines' interfaces are documented
4323 in breakpoint.h. */
4324
4325 int
4326 is_catchpoint (struct breakpoint *ep)
4327 {
4328 return (ep->type == bp_catchpoint);
4329 }
4330
4331 /* Frees any storage that is part of a bpstat. Does not walk the
4332 'next' chain. */
4333
4334 static void
4335 bpstat_free (bpstat bs)
4336 {
4337 if (bs->old_val != NULL)
4338 value_free (bs->old_val);
4339 decref_counted_command_line (&bs->commands);
4340 decref_bp_location (&bs->bp_location_at);
4341 xfree (bs);
4342 }
4343
4344 /* Clear a bpstat so that it says we are not at any breakpoint.
4345 Also free any storage that is part of a bpstat. */
4346
4347 void
4348 bpstat_clear (bpstat *bsp)
4349 {
4350 bpstat p;
4351 bpstat q;
4352
4353 if (bsp == 0)
4354 return;
4355 p = *bsp;
4356 while (p != NULL)
4357 {
4358 q = p->next;
4359 bpstat_free (p);
4360 p = q;
4361 }
4362 *bsp = NULL;
4363 }
4364
4365 /* Return a copy of a bpstat. Like "bs1 = bs2" but all storage that
4366 is part of the bpstat is copied as well. */
4367
4368 bpstat
4369 bpstat_copy (bpstat bs)
4370 {
4371 bpstat p = NULL;
4372 bpstat tmp;
4373 bpstat retval = NULL;
4374
4375 if (bs == NULL)
4376 return bs;
4377
4378 for (; bs != NULL; bs = bs->next)
4379 {
4380 tmp = (bpstat) xmalloc (sizeof (*tmp));
4381 memcpy (tmp, bs, sizeof (*tmp));
4382 incref_counted_command_line (tmp->commands);
4383 incref_bp_location (tmp->bp_location_at);
4384 if (bs->old_val != NULL)
4385 {
4386 tmp->old_val = value_copy (bs->old_val);
4387 release_value (tmp->old_val);
4388 }
4389
4390 if (p == NULL)
4391 /* This is the first thing in the chain. */
4392 retval = tmp;
4393 else
4394 p->next = tmp;
4395 p = tmp;
4396 }
4397 p->next = NULL;
4398 return retval;
4399 }
4400
4401 /* Find the bpstat associated with this breakpoint. */
4402
4403 bpstat
4404 bpstat_find_breakpoint (bpstat bsp, struct breakpoint *breakpoint)
4405 {
4406 if (bsp == NULL)
4407 return NULL;
4408
4409 for (; bsp != NULL; bsp = bsp->next)
4410 {
4411 if (bsp->breakpoint_at == breakpoint)
4412 return bsp;
4413 }
4414 return NULL;
4415 }
4416
4417 /* See breakpoint.h. */
4418
4419 int
4420 bpstat_explains_signal (bpstat bsp, enum gdb_signal sig)
4421 {
4422 for (; bsp != NULL; bsp = bsp->next)
4423 {
4424 if (bsp->breakpoint_at == NULL)
4425 {
4426 /* A moribund location can never explain a signal other than
4427 GDB_SIGNAL_TRAP. */
4428 if (sig == GDB_SIGNAL_TRAP)
4429 return 1;
4430 }
4431 else
4432 {
4433 if (bsp->breakpoint_at->ops->explains_signal (bsp->breakpoint_at,
4434 sig))
4435 return 1;
4436 }
4437 }
4438
4439 return 0;
4440 }
4441
4442 /* Put in *NUM the breakpoint number of the first breakpoint we are
4443 stopped at. *BSP upon return is a bpstat which points to the
4444 remaining breakpoints stopped at (but which is not guaranteed to be
4445 good for anything but further calls to bpstat_num).
4446
4447 Return 0 if passed a bpstat which does not indicate any breakpoints.
4448 Return -1 if stopped at a breakpoint that has been deleted since
4449 we set it.
4450 Return 1 otherwise. */
4451
4452 int
4453 bpstat_num (bpstat *bsp, int *num)
4454 {
4455 struct breakpoint *b;
4456
4457 if ((*bsp) == NULL)
4458 return 0; /* No more breakpoint values */
4459
4460 /* We assume we'll never have several bpstats that correspond to a
4461 single breakpoint -- otherwise, this function might return the
4462 same number more than once and this will look ugly. */
4463 b = (*bsp)->breakpoint_at;
4464 *bsp = (*bsp)->next;
4465 if (b == NULL)
4466 return -1; /* breakpoint that's been deleted since */
4467
4468 *num = b->number; /* We have its number */
4469 return 1;
4470 }
4471
4472 /* See breakpoint.h. */
4473
4474 void
4475 bpstat_clear_actions (void)
4476 {
4477 struct thread_info *tp;
4478 bpstat bs;
4479
4480 if (ptid_equal (inferior_ptid, null_ptid))
4481 return;
4482
4483 tp = find_thread_ptid (inferior_ptid);
4484 if (tp == NULL)
4485 return;
4486
4487 for (bs = tp->control.stop_bpstat; bs != NULL; bs = bs->next)
4488 {
4489 decref_counted_command_line (&bs->commands);
4490
4491 if (bs->old_val != NULL)
4492 {
4493 value_free (bs->old_val);
4494 bs->old_val = NULL;
4495 }
4496 }
4497 }
4498
4499 /* Called when a command is about to proceed the inferior. */
4500
4501 static void
4502 breakpoint_about_to_proceed (void)
4503 {
4504 if (!ptid_equal (inferior_ptid, null_ptid))
4505 {
4506 struct thread_info *tp = inferior_thread ();
4507
4508 /* Allow inferior function calls in breakpoint commands to not
4509 interrupt the command list. When the call finishes
4510 successfully, the inferior will be standing at the same
4511 breakpoint as if nothing happened. */
4512 if (tp->control.in_infcall)
4513 return;
4514 }
4515
4516 breakpoint_proceeded = 1;
4517 }
4518
4519 /* Stub for cleaning up our state if we error-out of a breakpoint
4520 command. */
4521 static void
4522 cleanup_executing_breakpoints (void *ignore)
4523 {
4524 executing_breakpoint_commands = 0;
4525 }
4526
4527 /* Return non-zero iff CMD as the first line of a command sequence is `silent'
4528 or its equivalent. */
4529
4530 static int
4531 command_line_is_silent (struct command_line *cmd)
4532 {
4533 return cmd && (strcmp ("silent", cmd->line) == 0
4534 || (xdb_commands && strcmp ("Q", cmd->line) == 0));
4535 }
4536
4537 /* Execute all the commands associated with all the breakpoints at
4538 this location. Any of these commands could cause the process to
4539 proceed beyond this point, etc. We look out for such changes by
4540 checking the global "breakpoint_proceeded" after each command.
4541
4542 Returns true if a breakpoint command resumed the inferior. In that
4543 case, it is the caller's responsibility to recall it again with the
4544 bpstat of the current thread. */
4545
4546 static int
4547 bpstat_do_actions_1 (bpstat *bsp)
4548 {
4549 bpstat bs;
4550 struct cleanup *old_chain;
4551 int again = 0;
4552
4553 /* Avoid endless recursion if a `source' command is contained
4554 in bs->commands. */
4555 if (executing_breakpoint_commands)
4556 return 0;
4557
4558 executing_breakpoint_commands = 1;
4559 old_chain = make_cleanup (cleanup_executing_breakpoints, 0);
4560
4561 prevent_dont_repeat ();
4562
4563 /* This pointer will iterate over the list of bpstat's. */
4564 bs = *bsp;
4565
4566 breakpoint_proceeded = 0;
4567 for (; bs != NULL; bs = bs->next)
4568 {
4569 struct counted_command_line *ccmd;
4570 struct command_line *cmd;
4571 struct cleanup *this_cmd_tree_chain;
4572
4573 /* Take ownership of the BSP's command tree, if it has one.
4574
4575 The command tree could legitimately contain commands like
4576 'step' and 'next', which call clear_proceed_status, which
4577 frees stop_bpstat's command tree. To make sure this doesn't
4578 free the tree we're executing out from under us, we need to
4579 take ownership of the tree ourselves. Since a given bpstat's
4580 commands are only executed once, we don't need to copy it; we
4581 can clear the pointer in the bpstat, and make sure we free
4582 the tree when we're done. */
4583 ccmd = bs->commands;
4584 bs->commands = NULL;
4585 this_cmd_tree_chain = make_cleanup_decref_counted_command_line (&ccmd);
4586 cmd = ccmd ? ccmd->commands : NULL;
4587 if (command_line_is_silent (cmd))
4588 {
4589 /* The action has been already done by bpstat_stop_status. */
4590 cmd = cmd->next;
4591 }
4592
4593 while (cmd != NULL)
4594 {
4595 execute_control_command (cmd);
4596
4597 if (breakpoint_proceeded)
4598 break;
4599 else
4600 cmd = cmd->next;
4601 }
4602
4603 /* We can free this command tree now. */
4604 do_cleanups (this_cmd_tree_chain);
4605
4606 if (breakpoint_proceeded)
4607 {
4608 if (target_can_async_p ())
4609 /* If we are in async mode, then the target might be still
4610 running, not stopped at any breakpoint, so nothing for
4611 us to do here -- just return to the event loop. */
4612 ;
4613 else
4614 /* In sync mode, when execute_control_command returns
4615 we're already standing on the next breakpoint.
4616 Breakpoint commands for that stop were not run, since
4617 execute_command does not run breakpoint commands --
4618 only command_line_handler does, but that one is not
4619 involved in execution of breakpoint commands. So, we
4620 can now execute breakpoint commands. It should be
4621 noted that making execute_command do bpstat actions is
4622 not an option -- in this case we'll have recursive
4623 invocation of bpstat for each breakpoint with a
4624 command, and can easily blow up GDB stack. Instead, we
4625 return true, which will trigger the caller to recall us
4626 with the new stop_bpstat. */
4627 again = 1;
4628 break;
4629 }
4630 }
4631 do_cleanups (old_chain);
4632 return again;
4633 }
4634
4635 void
4636 bpstat_do_actions (void)
4637 {
4638 struct cleanup *cleanup_if_error = make_bpstat_clear_actions_cleanup ();
4639
4640 /* Do any commands attached to breakpoint we are stopped at. */
4641 while (!ptid_equal (inferior_ptid, null_ptid)
4642 && target_has_execution
4643 && !is_exited (inferior_ptid)
4644 && !is_executing (inferior_ptid))
4645 /* Since in sync mode, bpstat_do_actions may resume the inferior,
4646 and only return when it is stopped at the next breakpoint, we
4647 keep doing breakpoint actions until it returns false to
4648 indicate the inferior was not resumed. */
4649 if (!bpstat_do_actions_1 (&inferior_thread ()->control.stop_bpstat))
4650 break;
4651
4652 discard_cleanups (cleanup_if_error);
4653 }
4654
4655 /* Print out the (old or new) value associated with a watchpoint. */
4656
4657 static void
4658 watchpoint_value_print (struct value *val, struct ui_file *stream)
4659 {
4660 if (val == NULL)
4661 fprintf_unfiltered (stream, _("<unreadable>"));
4662 else
4663 {
4664 struct value_print_options opts;
4665 get_user_print_options (&opts);
4666 value_print (val, stream, &opts);
4667 }
4668 }
4669
4670 /* Generic routine for printing messages indicating why we
4671 stopped. The behavior of this function depends on the value
4672 'print_it' in the bpstat structure. Under some circumstances we
4673 may decide not to print anything here and delegate the task to
4674 normal_stop(). */
4675
4676 static enum print_stop_action
4677 print_bp_stop_message (bpstat bs)
4678 {
4679 switch (bs->print_it)
4680 {
4681 case print_it_noop:
4682 /* Nothing should be printed for this bpstat entry. */
4683 return PRINT_UNKNOWN;
4684 break;
4685
4686 case print_it_done:
4687 /* We still want to print the frame, but we already printed the
4688 relevant messages. */
4689 return PRINT_SRC_AND_LOC;
4690 break;
4691
4692 case print_it_normal:
4693 {
4694 struct breakpoint *b = bs->breakpoint_at;
4695
4696 /* bs->breakpoint_at can be NULL if it was a momentary breakpoint
4697 which has since been deleted. */
4698 if (b == NULL)
4699 return PRINT_UNKNOWN;
4700
4701 /* Normal case. Call the breakpoint's print_it method. */
4702 return b->ops->print_it (bs);
4703 }
4704 break;
4705
4706 default:
4707 internal_error (__FILE__, __LINE__,
4708 _("print_bp_stop_message: unrecognized enum value"));
4709 break;
4710 }
4711 }
4712
4713 /* A helper function that prints a shared library stopped event. */
4714
4715 static void
4716 print_solib_event (int is_catchpoint)
4717 {
4718 int any_deleted
4719 = !VEC_empty (char_ptr, current_program_space->deleted_solibs);
4720 int any_added
4721 = !VEC_empty (so_list_ptr, current_program_space->added_solibs);
4722
4723 if (!is_catchpoint)
4724 {
4725 if (any_added || any_deleted)
4726 ui_out_text (current_uiout,
4727 _("Stopped due to shared library event:\n"));
4728 else
4729 ui_out_text (current_uiout,
4730 _("Stopped due to shared library event (no "
4731 "libraries added or removed)\n"));
4732 }
4733
4734 if (ui_out_is_mi_like_p (current_uiout))
4735 ui_out_field_string (current_uiout, "reason",
4736 async_reason_lookup (EXEC_ASYNC_SOLIB_EVENT));
4737
4738 if (any_deleted)
4739 {
4740 struct cleanup *cleanup;
4741 char *name;
4742 int ix;
4743
4744 ui_out_text (current_uiout, _(" Inferior unloaded "));
4745 cleanup = make_cleanup_ui_out_list_begin_end (current_uiout,
4746 "removed");
4747 for (ix = 0;
4748 VEC_iterate (char_ptr, current_program_space->deleted_solibs,
4749 ix, name);
4750 ++ix)
4751 {
4752 if (ix > 0)
4753 ui_out_text (current_uiout, " ");
4754 ui_out_field_string (current_uiout, "library", name);
4755 ui_out_text (current_uiout, "\n");
4756 }
4757
4758 do_cleanups (cleanup);
4759 }
4760
4761 if (any_added)
4762 {
4763 struct so_list *iter;
4764 int ix;
4765 struct cleanup *cleanup;
4766
4767 ui_out_text (current_uiout, _(" Inferior loaded "));
4768 cleanup = make_cleanup_ui_out_list_begin_end (current_uiout,
4769 "added");
4770 for (ix = 0;
4771 VEC_iterate (so_list_ptr, current_program_space->added_solibs,
4772 ix, iter);
4773 ++ix)
4774 {
4775 if (ix > 0)
4776 ui_out_text (current_uiout, " ");
4777 ui_out_field_string (current_uiout, "library", iter->so_name);
4778 ui_out_text (current_uiout, "\n");
4779 }
4780
4781 do_cleanups (cleanup);
4782 }
4783 }
4784
4785 /* Print a message indicating what happened. This is called from
4786 normal_stop(). The input to this routine is the head of the bpstat
4787 list - a list of the eventpoints that caused this stop. KIND is
4788 the target_waitkind for the stopping event. This
4789 routine calls the generic print routine for printing a message
4790 about reasons for stopping. This will print (for example) the
4791 "Breakpoint n," part of the output. The return value of this
4792 routine is one of:
4793
4794 PRINT_UNKNOWN: Means we printed nothing.
4795 PRINT_SRC_AND_LOC: Means we printed something, and expect subsequent
4796 code to print the location. An example is
4797 "Breakpoint 1, " which should be followed by
4798 the location.
4799 PRINT_SRC_ONLY: Means we printed something, but there is no need
4800 to also print the location part of the message.
4801 An example is the catch/throw messages, which
4802 don't require a location appended to the end.
4803 PRINT_NOTHING: We have done some printing and we don't need any
4804 further info to be printed. */
4805
4806 enum print_stop_action
4807 bpstat_print (bpstat bs, int kind)
4808 {
4809 int val;
4810
4811 /* Maybe another breakpoint in the chain caused us to stop.
4812 (Currently all watchpoints go on the bpstat whether hit or not.
4813 That probably could (should) be changed, provided care is taken
4814 with respect to bpstat_explains_signal). */
4815 for (; bs; bs = bs->next)
4816 {
4817 val = print_bp_stop_message (bs);
4818 if (val == PRINT_SRC_ONLY
4819 || val == PRINT_SRC_AND_LOC
4820 || val == PRINT_NOTHING)
4821 return val;
4822 }
4823
4824 /* If we had hit a shared library event breakpoint,
4825 print_bp_stop_message would print out this message. If we hit an
4826 OS-level shared library event, do the same thing. */
4827 if (kind == TARGET_WAITKIND_LOADED)
4828 {
4829 print_solib_event (0);
4830 return PRINT_NOTHING;
4831 }
4832
4833 /* We reached the end of the chain, or we got a null BS to start
4834 with and nothing was printed. */
4835 return PRINT_UNKNOWN;
4836 }
4837
4838 /* Evaluate the expression EXP and return 1 if value is zero.
4839 This returns the inverse of the condition because it is called
4840 from catch_errors which returns 0 if an exception happened, and if an
4841 exception happens we want execution to stop.
4842 The argument is a "struct expression *" that has been cast to a
4843 "void *" to make it pass through catch_errors. */
4844
4845 static int
4846 breakpoint_cond_eval (void *exp)
4847 {
4848 struct value *mark = value_mark ();
4849 int i = !value_true (evaluate_expression ((struct expression *) exp));
4850
4851 value_free_to_mark (mark);
4852 return i;
4853 }
4854
4855 /* Allocate a new bpstat. Link it to the FIFO list by BS_LINK_POINTER. */
4856
4857 static bpstat
4858 bpstat_alloc (struct bp_location *bl, bpstat **bs_link_pointer)
4859 {
4860 bpstat bs;
4861
4862 bs = (bpstat) xmalloc (sizeof (*bs));
4863 bs->next = NULL;
4864 **bs_link_pointer = bs;
4865 *bs_link_pointer = &bs->next;
4866 bs->breakpoint_at = bl->owner;
4867 bs->bp_location_at = bl;
4868 incref_bp_location (bl);
4869 /* If the condition is false, etc., don't do the commands. */
4870 bs->commands = NULL;
4871 bs->old_val = NULL;
4872 bs->print_it = print_it_normal;
4873 return bs;
4874 }
4875 \f
4876 /* The target has stopped with waitstatus WS. Check if any hardware
4877 watchpoints have triggered, according to the target. */
4878
4879 int
4880 watchpoints_triggered (struct target_waitstatus *ws)
4881 {
4882 int stopped_by_watchpoint = target_stopped_by_watchpoint ();
4883 CORE_ADDR addr;
4884 struct breakpoint *b;
4885
4886 if (!stopped_by_watchpoint)
4887 {
4888 /* We were not stopped by a watchpoint. Mark all watchpoints
4889 as not triggered. */
4890 ALL_BREAKPOINTS (b)
4891 if (is_hardware_watchpoint (b))
4892 {
4893 struct watchpoint *w = (struct watchpoint *) b;
4894
4895 w->watchpoint_triggered = watch_triggered_no;
4896 }
4897
4898 return 0;
4899 }
4900
4901 if (!target_stopped_data_address (&current_target, &addr))
4902 {
4903 /* We were stopped by a watchpoint, but we don't know where.
4904 Mark all watchpoints as unknown. */
4905 ALL_BREAKPOINTS (b)
4906 if (is_hardware_watchpoint (b))
4907 {
4908 struct watchpoint *w = (struct watchpoint *) b;
4909
4910 w->watchpoint_triggered = watch_triggered_unknown;
4911 }
4912
4913 return 1;
4914 }
4915
4916 /* The target could report the data address. Mark watchpoints
4917 affected by this data address as triggered, and all others as not
4918 triggered. */
4919
4920 ALL_BREAKPOINTS (b)
4921 if (is_hardware_watchpoint (b))
4922 {
4923 struct watchpoint *w = (struct watchpoint *) b;
4924 struct bp_location *loc;
4925
4926 w->watchpoint_triggered = watch_triggered_no;
4927 for (loc = b->loc; loc; loc = loc->next)
4928 {
4929 if (is_masked_watchpoint (b))
4930 {
4931 CORE_ADDR newaddr = addr & w->hw_wp_mask;
4932 CORE_ADDR start = loc->address & w->hw_wp_mask;
4933
4934 if (newaddr == start)
4935 {
4936 w->watchpoint_triggered = watch_triggered_yes;
4937 break;
4938 }
4939 }
4940 /* Exact match not required. Within range is sufficient. */
4941 else if (target_watchpoint_addr_within_range (&current_target,
4942 addr, loc->address,
4943 loc->length))
4944 {
4945 w->watchpoint_triggered = watch_triggered_yes;
4946 break;
4947 }
4948 }
4949 }
4950
4951 return 1;
4952 }
4953
4954 /* Possible return values for watchpoint_check (this can't be an enum
4955 because of check_errors). */
4956 /* The watchpoint has been deleted. */
4957 #define WP_DELETED 1
4958 /* The value has changed. */
4959 #define WP_VALUE_CHANGED 2
4960 /* The value has not changed. */
4961 #define WP_VALUE_NOT_CHANGED 3
4962 /* Ignore this watchpoint, no matter if the value changed or not. */
4963 #define WP_IGNORE 4
4964
4965 #define BP_TEMPFLAG 1
4966 #define BP_HARDWAREFLAG 2
4967
4968 /* Evaluate watchpoint condition expression and check if its value
4969 changed.
4970
4971 P should be a pointer to struct bpstat, but is defined as a void *
4972 in order for this function to be usable with catch_errors. */
4973
4974 static int
4975 watchpoint_check (void *p)
4976 {
4977 bpstat bs = (bpstat) p;
4978 struct watchpoint *b;
4979 struct frame_info *fr;
4980 int within_current_scope;
4981
4982 /* BS is built from an existing struct breakpoint. */
4983 gdb_assert (bs->breakpoint_at != NULL);
4984 b = (struct watchpoint *) bs->breakpoint_at;
4985
4986 /* If this is a local watchpoint, we only want to check if the
4987 watchpoint frame is in scope if the current thread is the thread
4988 that was used to create the watchpoint. */
4989 if (!watchpoint_in_thread_scope (b))
4990 return WP_IGNORE;
4991
4992 if (b->exp_valid_block == NULL)
4993 within_current_scope = 1;
4994 else
4995 {
4996 struct frame_info *frame = get_current_frame ();
4997 struct gdbarch *frame_arch = get_frame_arch (frame);
4998 CORE_ADDR frame_pc = get_frame_pc (frame);
4999
5000 /* in_function_epilogue_p() returns a non-zero value if we're
5001 still in the function but the stack frame has already been
5002 invalidated. Since we can't rely on the values of local
5003 variables after the stack has been destroyed, we are treating
5004 the watchpoint in that state as `not changed' without further
5005 checking. Don't mark watchpoints as changed if the current
5006 frame is in an epilogue - even if they are in some other
5007 frame, our view of the stack is likely to be wrong and
5008 frame_find_by_id could error out. */
5009 if (gdbarch_in_function_epilogue_p (frame_arch, frame_pc))
5010 return WP_IGNORE;
5011
5012 fr = frame_find_by_id (b->watchpoint_frame);
5013 within_current_scope = (fr != NULL);
5014
5015 /* If we've gotten confused in the unwinder, we might have
5016 returned a frame that can't describe this variable. */
5017 if (within_current_scope)
5018 {
5019 struct symbol *function;
5020
5021 function = get_frame_function (fr);
5022 if (function == NULL
5023 || !contained_in (b->exp_valid_block,
5024 SYMBOL_BLOCK_VALUE (function)))
5025 within_current_scope = 0;
5026 }
5027
5028 if (within_current_scope)
5029 /* If we end up stopping, the current frame will get selected
5030 in normal_stop. So this call to select_frame won't affect
5031 the user. */
5032 select_frame (fr);
5033 }
5034
5035 if (within_current_scope)
5036 {
5037 /* We use value_{,free_to_}mark because it could be a *long*
5038 time before we return to the command level and call
5039 free_all_values. We can't call free_all_values because we
5040 might be in the middle of evaluating a function call. */
5041
5042 int pc = 0;
5043 struct value *mark;
5044 struct value *new_val;
5045
5046 if (is_masked_watchpoint (&b->base))
5047 /* Since we don't know the exact trigger address (from
5048 stopped_data_address), just tell the user we've triggered
5049 a mask watchpoint. */
5050 return WP_VALUE_CHANGED;
5051
5052 mark = value_mark ();
5053 fetch_subexp_value (b->exp, &pc, &new_val, NULL, NULL, 0);
5054
5055 if (b->val_bitsize != 0)
5056 new_val = extract_bitfield_from_watchpoint_value (b, new_val);
5057
5058 /* We use value_equal_contents instead of value_equal because
5059 the latter coerces an array to a pointer, thus comparing just
5060 the address of the array instead of its contents. This is
5061 not what we want. */
5062 if ((b->val != NULL) != (new_val != NULL)
5063 || (b->val != NULL && !value_equal_contents (b->val, new_val)))
5064 {
5065 if (new_val != NULL)
5066 {
5067 release_value (new_val);
5068 value_free_to_mark (mark);
5069 }
5070 bs->old_val = b->val;
5071 b->val = new_val;
5072 b->val_valid = 1;
5073 return WP_VALUE_CHANGED;
5074 }
5075 else
5076 {
5077 /* Nothing changed. */
5078 value_free_to_mark (mark);
5079 return WP_VALUE_NOT_CHANGED;
5080 }
5081 }
5082 else
5083 {
5084 struct ui_out *uiout = current_uiout;
5085
5086 /* This seems like the only logical thing to do because
5087 if we temporarily ignored the watchpoint, then when
5088 we reenter the block in which it is valid it contains
5089 garbage (in the case of a function, it may have two
5090 garbage values, one before and one after the prologue).
5091 So we can't even detect the first assignment to it and
5092 watch after that (since the garbage may or may not equal
5093 the first value assigned). */
5094 /* We print all the stop information in
5095 breakpoint_ops->print_it, but in this case, by the time we
5096 call breakpoint_ops->print_it this bp will be deleted
5097 already. So we have no choice but print the information
5098 here. */
5099 if (ui_out_is_mi_like_p (uiout))
5100 ui_out_field_string
5101 (uiout, "reason", async_reason_lookup (EXEC_ASYNC_WATCHPOINT_SCOPE));
5102 ui_out_text (uiout, "\nWatchpoint ");
5103 ui_out_field_int (uiout, "wpnum", b->base.number);
5104 ui_out_text (uiout,
5105 " deleted because the program has left the block in\n\
5106 which its expression is valid.\n");
5107
5108 /* Make sure the watchpoint's commands aren't executed. */
5109 decref_counted_command_line (&b->base.commands);
5110 watchpoint_del_at_next_stop (b);
5111
5112 return WP_DELETED;
5113 }
5114 }
5115
5116 /* Return true if it looks like target has stopped due to hitting
5117 breakpoint location BL. This function does not check if we should
5118 stop, only if BL explains the stop. */
5119
5120 static int
5121 bpstat_check_location (const struct bp_location *bl,
5122 struct address_space *aspace, CORE_ADDR bp_addr,
5123 const struct target_waitstatus *ws)
5124 {
5125 struct breakpoint *b = bl->owner;
5126
5127 /* BL is from an existing breakpoint. */
5128 gdb_assert (b != NULL);
5129
5130 return b->ops->breakpoint_hit (bl, aspace, bp_addr, ws);
5131 }
5132
5133 /* Determine if the watched values have actually changed, and we
5134 should stop. If not, set BS->stop to 0. */
5135
5136 static void
5137 bpstat_check_watchpoint (bpstat bs)
5138 {
5139 const struct bp_location *bl;
5140 struct watchpoint *b;
5141
5142 /* BS is built for existing struct breakpoint. */
5143 bl = bs->bp_location_at;
5144 gdb_assert (bl != NULL);
5145 b = (struct watchpoint *) bs->breakpoint_at;
5146 gdb_assert (b != NULL);
5147
5148 {
5149 int must_check_value = 0;
5150
5151 if (b->base.type == bp_watchpoint)
5152 /* For a software watchpoint, we must always check the
5153 watched value. */
5154 must_check_value = 1;
5155 else if (b->watchpoint_triggered == watch_triggered_yes)
5156 /* We have a hardware watchpoint (read, write, or access)
5157 and the target earlier reported an address watched by
5158 this watchpoint. */
5159 must_check_value = 1;
5160 else if (b->watchpoint_triggered == watch_triggered_unknown
5161 && b->base.type == bp_hardware_watchpoint)
5162 /* We were stopped by a hardware watchpoint, but the target could
5163 not report the data address. We must check the watchpoint's
5164 value. Access and read watchpoints are out of luck; without
5165 a data address, we can't figure it out. */
5166 must_check_value = 1;
5167
5168 if (must_check_value)
5169 {
5170 char *message
5171 = xstrprintf ("Error evaluating expression for watchpoint %d\n",
5172 b->base.number);
5173 struct cleanup *cleanups = make_cleanup (xfree, message);
5174 int e = catch_errors (watchpoint_check, bs, message,
5175 RETURN_MASK_ALL);
5176 do_cleanups (cleanups);
5177 switch (e)
5178 {
5179 case WP_DELETED:
5180 /* We've already printed what needs to be printed. */
5181 bs->print_it = print_it_done;
5182 /* Stop. */
5183 break;
5184 case WP_IGNORE:
5185 bs->print_it = print_it_noop;
5186 bs->stop = 0;
5187 break;
5188 case WP_VALUE_CHANGED:
5189 if (b->base.type == bp_read_watchpoint)
5190 {
5191 /* There are two cases to consider here:
5192
5193 1. We're watching the triggered memory for reads.
5194 In that case, trust the target, and always report
5195 the watchpoint hit to the user. Even though
5196 reads don't cause value changes, the value may
5197 have changed since the last time it was read, and
5198 since we're not trapping writes, we will not see
5199 those, and as such we should ignore our notion of
5200 old value.
5201
5202 2. We're watching the triggered memory for both
5203 reads and writes. There are two ways this may
5204 happen:
5205
5206 2.1. This is a target that can't break on data
5207 reads only, but can break on accesses (reads or
5208 writes), such as e.g., x86. We detect this case
5209 at the time we try to insert read watchpoints.
5210
5211 2.2. Otherwise, the target supports read
5212 watchpoints, but, the user set an access or write
5213 watchpoint watching the same memory as this read
5214 watchpoint.
5215
5216 If we're watching memory writes as well as reads,
5217 ignore watchpoint hits when we find that the
5218 value hasn't changed, as reads don't cause
5219 changes. This still gives false positives when
5220 the program writes the same value to memory as
5221 what there was already in memory (we will confuse
5222 it for a read), but it's much better than
5223 nothing. */
5224
5225 int other_write_watchpoint = 0;
5226
5227 if (bl->watchpoint_type == hw_read)
5228 {
5229 struct breakpoint *other_b;
5230
5231 ALL_BREAKPOINTS (other_b)
5232 if (other_b->type == bp_hardware_watchpoint
5233 || other_b->type == bp_access_watchpoint)
5234 {
5235 struct watchpoint *other_w =
5236 (struct watchpoint *) other_b;
5237
5238 if (other_w->watchpoint_triggered
5239 == watch_triggered_yes)
5240 {
5241 other_write_watchpoint = 1;
5242 break;
5243 }
5244 }
5245 }
5246
5247 if (other_write_watchpoint
5248 || bl->watchpoint_type == hw_access)
5249 {
5250 /* We're watching the same memory for writes,
5251 and the value changed since the last time we
5252 updated it, so this trap must be for a write.
5253 Ignore it. */
5254 bs->print_it = print_it_noop;
5255 bs->stop = 0;
5256 }
5257 }
5258 break;
5259 case WP_VALUE_NOT_CHANGED:
5260 if (b->base.type == bp_hardware_watchpoint
5261 || b->base.type == bp_watchpoint)
5262 {
5263 /* Don't stop: write watchpoints shouldn't fire if
5264 the value hasn't changed. */
5265 bs->print_it = print_it_noop;
5266 bs->stop = 0;
5267 }
5268 /* Stop. */
5269 break;
5270 default:
5271 /* Can't happen. */
5272 case 0:
5273 /* Error from catch_errors. */
5274 printf_filtered (_("Watchpoint %d deleted.\n"), b->base.number);
5275 watchpoint_del_at_next_stop (b);
5276 /* We've already printed what needs to be printed. */
5277 bs->print_it = print_it_done;
5278 break;
5279 }
5280 }
5281 else /* must_check_value == 0 */
5282 {
5283 /* This is a case where some watchpoint(s) triggered, but
5284 not at the address of this watchpoint, or else no
5285 watchpoint triggered after all. So don't print
5286 anything for this watchpoint. */
5287 bs->print_it = print_it_noop;
5288 bs->stop = 0;
5289 }
5290 }
5291 }
5292
5293 /* For breakpoints that are currently marked as telling gdb to stop,
5294 check conditions (condition proper, frame, thread and ignore count)
5295 of breakpoint referred to by BS. If we should not stop for this
5296 breakpoint, set BS->stop to 0. */
5297
5298 static void
5299 bpstat_check_breakpoint_conditions (bpstat bs, ptid_t ptid)
5300 {
5301 const struct bp_location *bl;
5302 struct breakpoint *b;
5303 int value_is_zero = 0;
5304 struct expression *cond;
5305
5306 gdb_assert (bs->stop);
5307
5308 /* BS is built for existing struct breakpoint. */
5309 bl = bs->bp_location_at;
5310 gdb_assert (bl != NULL);
5311 b = bs->breakpoint_at;
5312 gdb_assert (b != NULL);
5313
5314 /* Even if the target evaluated the condition on its end and notified GDB, we
5315 need to do so again since GDB does not know if we stopped due to a
5316 breakpoint or a single step breakpoint. */
5317
5318 if (frame_id_p (b->frame_id)
5319 && !frame_id_eq (b->frame_id, get_stack_frame_id (get_current_frame ())))
5320 {
5321 bs->stop = 0;
5322 return;
5323 }
5324
5325 /* If this is a thread/task-specific breakpoint, don't waste cpu
5326 evaluating the condition if this isn't the specified
5327 thread/task. */
5328 if ((b->thread != -1 && b->thread != pid_to_thread_id (ptid))
5329 || (b->task != 0 && b->task != ada_get_task_number (ptid)))
5330
5331 {
5332 bs->stop = 0;
5333 return;
5334 }
5335
5336 /* Evaluate extension language breakpoints that have a "stop" method
5337 implemented. */
5338 bs->stop = breakpoint_ext_lang_cond_says_stop (b);
5339
5340 if (is_watchpoint (b))
5341 {
5342 struct watchpoint *w = (struct watchpoint *) b;
5343
5344 cond = w->cond_exp;
5345 }
5346 else
5347 cond = bl->cond;
5348
5349 if (cond && b->disposition != disp_del_at_next_stop)
5350 {
5351 int within_current_scope = 1;
5352 struct watchpoint * w;
5353
5354 /* We use value_mark and value_free_to_mark because it could
5355 be a long time before we return to the command level and
5356 call free_all_values. We can't call free_all_values
5357 because we might be in the middle of evaluating a
5358 function call. */
5359 struct value *mark = value_mark ();
5360
5361 if (is_watchpoint (b))
5362 w = (struct watchpoint *) b;
5363 else
5364 w = NULL;
5365
5366 /* Need to select the frame, with all that implies so that
5367 the conditions will have the right context. Because we
5368 use the frame, we will not see an inlined function's
5369 variables when we arrive at a breakpoint at the start
5370 of the inlined function; the current frame will be the
5371 call site. */
5372 if (w == NULL || w->cond_exp_valid_block == NULL)
5373 select_frame (get_current_frame ());
5374 else
5375 {
5376 struct frame_info *frame;
5377
5378 /* For local watchpoint expressions, which particular
5379 instance of a local is being watched matters, so we
5380 keep track of the frame to evaluate the expression
5381 in. To evaluate the condition however, it doesn't
5382 really matter which instantiation of the function
5383 where the condition makes sense triggers the
5384 watchpoint. This allows an expression like "watch
5385 global if q > 10" set in `func', catch writes to
5386 global on all threads that call `func', or catch
5387 writes on all recursive calls of `func' by a single
5388 thread. We simply always evaluate the condition in
5389 the innermost frame that's executing where it makes
5390 sense to evaluate the condition. It seems
5391 intuitive. */
5392 frame = block_innermost_frame (w->cond_exp_valid_block);
5393 if (frame != NULL)
5394 select_frame (frame);
5395 else
5396 within_current_scope = 0;
5397 }
5398 if (within_current_scope)
5399 value_is_zero
5400 = catch_errors (breakpoint_cond_eval, cond,
5401 "Error in testing breakpoint condition:\n",
5402 RETURN_MASK_ALL);
5403 else
5404 {
5405 warning (_("Watchpoint condition cannot be tested "
5406 "in the current scope"));
5407 /* If we failed to set the right context for this
5408 watchpoint, unconditionally report it. */
5409 value_is_zero = 0;
5410 }
5411 /* FIXME-someday, should give breakpoint #. */
5412 value_free_to_mark (mark);
5413 }
5414
5415 if (cond && value_is_zero)
5416 {
5417 bs->stop = 0;
5418 }
5419 else if (b->ignore_count > 0)
5420 {
5421 b->ignore_count--;
5422 bs->stop = 0;
5423 /* Increase the hit count even though we don't stop. */
5424 ++(b->hit_count);
5425 observer_notify_breakpoint_modified (b);
5426 }
5427 }
5428
5429
5430 /* Get a bpstat associated with having just stopped at address
5431 BP_ADDR in thread PTID.
5432
5433 Determine whether we stopped at a breakpoint, etc, or whether we
5434 don't understand this stop. Result is a chain of bpstat's such
5435 that:
5436
5437 if we don't understand the stop, the result is a null pointer.
5438
5439 if we understand why we stopped, the result is not null.
5440
5441 Each element of the chain refers to a particular breakpoint or
5442 watchpoint at which we have stopped. (We may have stopped for
5443 several reasons concurrently.)
5444
5445 Each element of the chain has valid next, breakpoint_at,
5446 commands, FIXME??? fields. */
5447
5448 bpstat
5449 bpstat_stop_status (struct address_space *aspace,
5450 CORE_ADDR bp_addr, ptid_t ptid,
5451 const struct target_waitstatus *ws)
5452 {
5453 struct breakpoint *b = NULL;
5454 struct bp_location *bl;
5455 struct bp_location *loc;
5456 /* First item of allocated bpstat's. */
5457 bpstat bs_head = NULL, *bs_link = &bs_head;
5458 /* Pointer to the last thing in the chain currently. */
5459 bpstat bs;
5460 int ix;
5461 int need_remove_insert;
5462 int removed_any;
5463
5464 /* First, build the bpstat chain with locations that explain a
5465 target stop, while being careful to not set the target running,
5466 as that may invalidate locations (in particular watchpoint
5467 locations are recreated). Resuming will happen here with
5468 breakpoint conditions or watchpoint expressions that include
5469 inferior function calls. */
5470
5471 ALL_BREAKPOINTS (b)
5472 {
5473 if (!breakpoint_enabled (b))
5474 continue;
5475
5476 for (bl = b->loc; bl != NULL; bl = bl->next)
5477 {
5478 /* For hardware watchpoints, we look only at the first
5479 location. The watchpoint_check function will work on the
5480 entire expression, not the individual locations. For
5481 read watchpoints, the watchpoints_triggered function has
5482 checked all locations already. */
5483 if (b->type == bp_hardware_watchpoint && bl != b->loc)
5484 break;
5485
5486 if (!bl->enabled || bl->shlib_disabled)
5487 continue;
5488
5489 if (!bpstat_check_location (bl, aspace, bp_addr, ws))
5490 continue;
5491
5492 /* Come here if it's a watchpoint, or if the break address
5493 matches. */
5494
5495 bs = bpstat_alloc (bl, &bs_link); /* Alloc a bpstat to
5496 explain stop. */
5497
5498 /* Assume we stop. Should we find a watchpoint that is not
5499 actually triggered, or if the condition of the breakpoint
5500 evaluates as false, we'll reset 'stop' to 0. */
5501 bs->stop = 1;
5502 bs->print = 1;
5503
5504 /* If this is a scope breakpoint, mark the associated
5505 watchpoint as triggered so that we will handle the
5506 out-of-scope event. We'll get to the watchpoint next
5507 iteration. */
5508 if (b->type == bp_watchpoint_scope && b->related_breakpoint != b)
5509 {
5510 struct watchpoint *w = (struct watchpoint *) b->related_breakpoint;
5511
5512 w->watchpoint_triggered = watch_triggered_yes;
5513 }
5514 }
5515 }
5516
5517 /* Check if a moribund breakpoint explains the stop. */
5518 for (ix = 0; VEC_iterate (bp_location_p, moribund_locations, ix, loc); ++ix)
5519 {
5520 if (breakpoint_location_address_match (loc, aspace, bp_addr))
5521 {
5522 bs = bpstat_alloc (loc, &bs_link);
5523 /* For hits of moribund locations, we should just proceed. */
5524 bs->stop = 0;
5525 bs->print = 0;
5526 bs->print_it = print_it_noop;
5527 }
5528 }
5529
5530 /* A bit of special processing for shlib breakpoints. We need to
5531 process solib loading here, so that the lists of loaded and
5532 unloaded libraries are correct before we handle "catch load" and
5533 "catch unload". */
5534 for (bs = bs_head; bs != NULL; bs = bs->next)
5535 {
5536 if (bs->breakpoint_at && bs->breakpoint_at->type == bp_shlib_event)
5537 {
5538 handle_solib_event ();
5539 break;
5540 }
5541 }
5542
5543 /* Now go through the locations that caused the target to stop, and
5544 check whether we're interested in reporting this stop to higher
5545 layers, or whether we should resume the target transparently. */
5546
5547 removed_any = 0;
5548
5549 for (bs = bs_head; bs != NULL; bs = bs->next)
5550 {
5551 if (!bs->stop)
5552 continue;
5553
5554 b = bs->breakpoint_at;
5555 b->ops->check_status (bs);
5556 if (bs->stop)
5557 {
5558 bpstat_check_breakpoint_conditions (bs, ptid);
5559
5560 if (bs->stop)
5561 {
5562 ++(b->hit_count);
5563 observer_notify_breakpoint_modified (b);
5564
5565 /* We will stop here. */
5566 if (b->disposition == disp_disable)
5567 {
5568 --(b->enable_count);
5569 if (b->enable_count <= 0)
5570 b->enable_state = bp_disabled;
5571 removed_any = 1;
5572 }
5573 if (b->silent)
5574 bs->print = 0;
5575 bs->commands = b->commands;
5576 incref_counted_command_line (bs->commands);
5577 if (command_line_is_silent (bs->commands
5578 ? bs->commands->commands : NULL))
5579 bs->print = 0;
5580
5581 b->ops->after_condition_true (bs);
5582 }
5583
5584 }
5585
5586 /* Print nothing for this entry if we don't stop or don't
5587 print. */
5588 if (!bs->stop || !bs->print)
5589 bs->print_it = print_it_noop;
5590 }
5591
5592 /* If we aren't stopping, the value of some hardware watchpoint may
5593 not have changed, but the intermediate memory locations we are
5594 watching may have. Don't bother if we're stopping; this will get
5595 done later. */
5596 need_remove_insert = 0;
5597 if (! bpstat_causes_stop (bs_head))
5598 for (bs = bs_head; bs != NULL; bs = bs->next)
5599 if (!bs->stop
5600 && bs->breakpoint_at
5601 && is_hardware_watchpoint (bs->breakpoint_at))
5602 {
5603 struct watchpoint *w = (struct watchpoint *) bs->breakpoint_at;
5604
5605 update_watchpoint (w, 0 /* don't reparse. */);
5606 need_remove_insert = 1;
5607 }
5608
5609 if (need_remove_insert)
5610 update_global_location_list (UGLL_MAY_INSERT);
5611 else if (removed_any)
5612 update_global_location_list (UGLL_DONT_INSERT);
5613
5614 return bs_head;
5615 }
5616
5617 static void
5618 handle_jit_event (void)
5619 {
5620 struct frame_info *frame;
5621 struct gdbarch *gdbarch;
5622
5623 /* Switch terminal for any messages produced by
5624 breakpoint_re_set. */
5625 target_terminal_ours_for_output ();
5626
5627 frame = get_current_frame ();
5628 gdbarch = get_frame_arch (frame);
5629
5630 jit_event_handler (gdbarch);
5631
5632 target_terminal_inferior ();
5633 }
5634
5635 /* Prepare WHAT final decision for infrun. */
5636
5637 /* Decide what infrun needs to do with this bpstat. */
5638
5639 struct bpstat_what
5640 bpstat_what (bpstat bs_head)
5641 {
5642 struct bpstat_what retval;
5643 int jit_event = 0;
5644 bpstat bs;
5645
5646 retval.main_action = BPSTAT_WHAT_KEEP_CHECKING;
5647 retval.call_dummy = STOP_NONE;
5648 retval.is_longjmp = 0;
5649
5650 for (bs = bs_head; bs != NULL; bs = bs->next)
5651 {
5652 /* Extract this BS's action. After processing each BS, we check
5653 if its action overrides all we've seem so far. */
5654 enum bpstat_what_main_action this_action = BPSTAT_WHAT_KEEP_CHECKING;
5655 enum bptype bptype;
5656
5657 if (bs->breakpoint_at == NULL)
5658 {
5659 /* I suspect this can happen if it was a momentary
5660 breakpoint which has since been deleted. */
5661 bptype = bp_none;
5662 }
5663 else
5664 bptype = bs->breakpoint_at->type;
5665
5666 switch (bptype)
5667 {
5668 case bp_none:
5669 break;
5670 case bp_breakpoint:
5671 case bp_hardware_breakpoint:
5672 case bp_single_step:
5673 case bp_until:
5674 case bp_finish:
5675 case bp_shlib_event:
5676 if (bs->stop)
5677 {
5678 if (bs->print)
5679 this_action = BPSTAT_WHAT_STOP_NOISY;
5680 else
5681 this_action = BPSTAT_WHAT_STOP_SILENT;
5682 }
5683 else
5684 this_action = BPSTAT_WHAT_SINGLE;
5685 break;
5686 case bp_watchpoint:
5687 case bp_hardware_watchpoint:
5688 case bp_read_watchpoint:
5689 case bp_access_watchpoint:
5690 if (bs->stop)
5691 {
5692 if (bs->print)
5693 this_action = BPSTAT_WHAT_STOP_NOISY;
5694 else
5695 this_action = BPSTAT_WHAT_STOP_SILENT;
5696 }
5697 else
5698 {
5699 /* There was a watchpoint, but we're not stopping.
5700 This requires no further action. */
5701 }
5702 break;
5703 case bp_longjmp:
5704 case bp_longjmp_call_dummy:
5705 case bp_exception:
5706 this_action = BPSTAT_WHAT_SET_LONGJMP_RESUME;
5707 retval.is_longjmp = bptype != bp_exception;
5708 break;
5709 case bp_longjmp_resume:
5710 case bp_exception_resume:
5711 this_action = BPSTAT_WHAT_CLEAR_LONGJMP_RESUME;
5712 retval.is_longjmp = bptype == bp_longjmp_resume;
5713 break;
5714 case bp_step_resume:
5715 if (bs->stop)
5716 this_action = BPSTAT_WHAT_STEP_RESUME;
5717 else
5718 {
5719 /* It is for the wrong frame. */
5720 this_action = BPSTAT_WHAT_SINGLE;
5721 }
5722 break;
5723 case bp_hp_step_resume:
5724 if (bs->stop)
5725 this_action = BPSTAT_WHAT_HP_STEP_RESUME;
5726 else
5727 {
5728 /* It is for the wrong frame. */
5729 this_action = BPSTAT_WHAT_SINGLE;
5730 }
5731 break;
5732 case bp_watchpoint_scope:
5733 case bp_thread_event:
5734 case bp_overlay_event:
5735 case bp_longjmp_master:
5736 case bp_std_terminate_master:
5737 case bp_exception_master:
5738 this_action = BPSTAT_WHAT_SINGLE;
5739 break;
5740 case bp_catchpoint:
5741 if (bs->stop)
5742 {
5743 if (bs->print)
5744 this_action = BPSTAT_WHAT_STOP_NOISY;
5745 else
5746 this_action = BPSTAT_WHAT_STOP_SILENT;
5747 }
5748 else
5749 {
5750 /* There was a catchpoint, but we're not stopping.
5751 This requires no further action. */
5752 }
5753 break;
5754 case bp_jit_event:
5755 jit_event = 1;
5756 this_action = BPSTAT_WHAT_SINGLE;
5757 break;
5758 case bp_call_dummy:
5759 /* Make sure the action is stop (silent or noisy),
5760 so infrun.c pops the dummy frame. */
5761 retval.call_dummy = STOP_STACK_DUMMY;
5762 this_action = BPSTAT_WHAT_STOP_SILENT;
5763 break;
5764 case bp_std_terminate:
5765 /* Make sure the action is stop (silent or noisy),
5766 so infrun.c pops the dummy frame. */
5767 retval.call_dummy = STOP_STD_TERMINATE;
5768 this_action = BPSTAT_WHAT_STOP_SILENT;
5769 break;
5770 case bp_tracepoint:
5771 case bp_fast_tracepoint:
5772 case bp_static_tracepoint:
5773 /* Tracepoint hits should not be reported back to GDB, and
5774 if one got through somehow, it should have been filtered
5775 out already. */
5776 internal_error (__FILE__, __LINE__,
5777 _("bpstat_what: tracepoint encountered"));
5778 break;
5779 case bp_gnu_ifunc_resolver:
5780 /* Step over it (and insert bp_gnu_ifunc_resolver_return). */
5781 this_action = BPSTAT_WHAT_SINGLE;
5782 break;
5783 case bp_gnu_ifunc_resolver_return:
5784 /* The breakpoint will be removed, execution will restart from the
5785 PC of the former breakpoint. */
5786 this_action = BPSTAT_WHAT_KEEP_CHECKING;
5787 break;
5788
5789 case bp_dprintf:
5790 if (bs->stop)
5791 this_action = BPSTAT_WHAT_STOP_SILENT;
5792 else
5793 this_action = BPSTAT_WHAT_SINGLE;
5794 break;
5795
5796 default:
5797 internal_error (__FILE__, __LINE__,
5798 _("bpstat_what: unhandled bptype %d"), (int) bptype);
5799 }
5800
5801 retval.main_action = max (retval.main_action, this_action);
5802 }
5803
5804 /* These operations may affect the bs->breakpoint_at state so they are
5805 delayed after MAIN_ACTION is decided above. */
5806
5807 if (jit_event)
5808 {
5809 if (debug_infrun)
5810 fprintf_unfiltered (gdb_stdlog, "bpstat_what: bp_jit_event\n");
5811
5812 handle_jit_event ();
5813 }
5814
5815 for (bs = bs_head; bs != NULL; bs = bs->next)
5816 {
5817 struct breakpoint *b = bs->breakpoint_at;
5818
5819 if (b == NULL)
5820 continue;
5821 switch (b->type)
5822 {
5823 case bp_gnu_ifunc_resolver:
5824 gnu_ifunc_resolver_stop (b);
5825 break;
5826 case bp_gnu_ifunc_resolver_return:
5827 gnu_ifunc_resolver_return_stop (b);
5828 break;
5829 }
5830 }
5831
5832 return retval;
5833 }
5834
5835 /* Nonzero if we should step constantly (e.g. watchpoints on machines
5836 without hardware support). This isn't related to a specific bpstat,
5837 just to things like whether watchpoints are set. */
5838
5839 int
5840 bpstat_should_step (void)
5841 {
5842 struct breakpoint *b;
5843
5844 ALL_BREAKPOINTS (b)
5845 if (breakpoint_enabled (b) && b->type == bp_watchpoint && b->loc != NULL)
5846 return 1;
5847 return 0;
5848 }
5849
5850 int
5851 bpstat_causes_stop (bpstat bs)
5852 {
5853 for (; bs != NULL; bs = bs->next)
5854 if (bs->stop)
5855 return 1;
5856
5857 return 0;
5858 }
5859
5860 \f
5861
5862 /* Compute a string of spaces suitable to indent the next line
5863 so it starts at the position corresponding to the table column
5864 named COL_NAME in the currently active table of UIOUT. */
5865
5866 static char *
5867 wrap_indent_at_field (struct ui_out *uiout, const char *col_name)
5868 {
5869 static char wrap_indent[80];
5870 int i, total_width, width, align;
5871 char *text;
5872
5873 total_width = 0;
5874 for (i = 1; ui_out_query_field (uiout, i, &width, &align, &text); i++)
5875 {
5876 if (strcmp (text, col_name) == 0)
5877 {
5878 gdb_assert (total_width < sizeof wrap_indent);
5879 memset (wrap_indent, ' ', total_width);
5880 wrap_indent[total_width] = 0;
5881
5882 return wrap_indent;
5883 }
5884
5885 total_width += width + 1;
5886 }
5887
5888 return NULL;
5889 }
5890
5891 /* Determine if the locations of this breakpoint will have their conditions
5892 evaluated by the target, host or a mix of both. Returns the following:
5893
5894 "host": Host evals condition.
5895 "host or target": Host or Target evals condition.
5896 "target": Target evals condition.
5897 */
5898
5899 static const char *
5900 bp_condition_evaluator (struct breakpoint *b)
5901 {
5902 struct bp_location *bl;
5903 char host_evals = 0;
5904 char target_evals = 0;
5905
5906 if (!b)
5907 return NULL;
5908
5909 if (!is_breakpoint (b))
5910 return NULL;
5911
5912 if (gdb_evaluates_breakpoint_condition_p ()
5913 || !target_supports_evaluation_of_breakpoint_conditions ())
5914 return condition_evaluation_host;
5915
5916 for (bl = b->loc; bl; bl = bl->next)
5917 {
5918 if (bl->cond_bytecode)
5919 target_evals++;
5920 else
5921 host_evals++;
5922 }
5923
5924 if (host_evals && target_evals)
5925 return condition_evaluation_both;
5926 else if (target_evals)
5927 return condition_evaluation_target;
5928 else
5929 return condition_evaluation_host;
5930 }
5931
5932 /* Determine the breakpoint location's condition evaluator. This is
5933 similar to bp_condition_evaluator, but for locations. */
5934
5935 static const char *
5936 bp_location_condition_evaluator (struct bp_location *bl)
5937 {
5938 if (bl && !is_breakpoint (bl->owner))
5939 return NULL;
5940
5941 if (gdb_evaluates_breakpoint_condition_p ()
5942 || !target_supports_evaluation_of_breakpoint_conditions ())
5943 return condition_evaluation_host;
5944
5945 if (bl && bl->cond_bytecode)
5946 return condition_evaluation_target;
5947 else
5948 return condition_evaluation_host;
5949 }
5950
5951 /* Print the LOC location out of the list of B->LOC locations. */
5952
5953 static void
5954 print_breakpoint_location (struct breakpoint *b,
5955 struct bp_location *loc)
5956 {
5957 struct ui_out *uiout = current_uiout;
5958 struct cleanup *old_chain = save_current_program_space ();
5959
5960 if (loc != NULL && loc->shlib_disabled)
5961 loc = NULL;
5962
5963 if (loc != NULL)
5964 set_current_program_space (loc->pspace);
5965
5966 if (b->display_canonical)
5967 ui_out_field_string (uiout, "what", b->addr_string);
5968 else if (loc && loc->symtab)
5969 {
5970 struct symbol *sym
5971 = find_pc_sect_function (loc->address, loc->section);
5972 if (sym)
5973 {
5974 ui_out_text (uiout, "in ");
5975 ui_out_field_string (uiout, "func",
5976 SYMBOL_PRINT_NAME (sym));
5977 ui_out_text (uiout, " ");
5978 ui_out_wrap_hint (uiout, wrap_indent_at_field (uiout, "what"));
5979 ui_out_text (uiout, "at ");
5980 }
5981 ui_out_field_string (uiout, "file",
5982 symtab_to_filename_for_display (loc->symtab));
5983 ui_out_text (uiout, ":");
5984
5985 if (ui_out_is_mi_like_p (uiout))
5986 ui_out_field_string (uiout, "fullname",
5987 symtab_to_fullname (loc->symtab));
5988
5989 ui_out_field_int (uiout, "line", loc->line_number);
5990 }
5991 else if (loc)
5992 {
5993 struct ui_file *stb = mem_fileopen ();
5994 struct cleanup *stb_chain = make_cleanup_ui_file_delete (stb);
5995
5996 print_address_symbolic (loc->gdbarch, loc->address, stb,
5997 demangle, "");
5998 ui_out_field_stream (uiout, "at", stb);
5999
6000 do_cleanups (stb_chain);
6001 }
6002 else
6003 ui_out_field_string (uiout, "pending", b->addr_string);
6004
6005 if (loc && is_breakpoint (b)
6006 && breakpoint_condition_evaluation_mode () == condition_evaluation_target
6007 && bp_condition_evaluator (b) == condition_evaluation_both)
6008 {
6009 ui_out_text (uiout, " (");
6010 ui_out_field_string (uiout, "evaluated-by",
6011 bp_location_condition_evaluator (loc));
6012 ui_out_text (uiout, ")");
6013 }
6014
6015 do_cleanups (old_chain);
6016 }
6017
6018 static const char *
6019 bptype_string (enum bptype type)
6020 {
6021 struct ep_type_description
6022 {
6023 enum bptype type;
6024 char *description;
6025 };
6026 static struct ep_type_description bptypes[] =
6027 {
6028 {bp_none, "?deleted?"},
6029 {bp_breakpoint, "breakpoint"},
6030 {bp_hardware_breakpoint, "hw breakpoint"},
6031 {bp_single_step, "sw single-step"},
6032 {bp_until, "until"},
6033 {bp_finish, "finish"},
6034 {bp_watchpoint, "watchpoint"},
6035 {bp_hardware_watchpoint, "hw watchpoint"},
6036 {bp_read_watchpoint, "read watchpoint"},
6037 {bp_access_watchpoint, "acc watchpoint"},
6038 {bp_longjmp, "longjmp"},
6039 {bp_longjmp_resume, "longjmp resume"},
6040 {bp_longjmp_call_dummy, "longjmp for call dummy"},
6041 {bp_exception, "exception"},
6042 {bp_exception_resume, "exception resume"},
6043 {bp_step_resume, "step resume"},
6044 {bp_hp_step_resume, "high-priority step resume"},
6045 {bp_watchpoint_scope, "watchpoint scope"},
6046 {bp_call_dummy, "call dummy"},
6047 {bp_std_terminate, "std::terminate"},
6048 {bp_shlib_event, "shlib events"},
6049 {bp_thread_event, "thread events"},
6050 {bp_overlay_event, "overlay events"},
6051 {bp_longjmp_master, "longjmp master"},
6052 {bp_std_terminate_master, "std::terminate master"},
6053 {bp_exception_master, "exception master"},
6054 {bp_catchpoint, "catchpoint"},
6055 {bp_tracepoint, "tracepoint"},
6056 {bp_fast_tracepoint, "fast tracepoint"},
6057 {bp_static_tracepoint, "static tracepoint"},
6058 {bp_dprintf, "dprintf"},
6059 {bp_jit_event, "jit events"},
6060 {bp_gnu_ifunc_resolver, "STT_GNU_IFUNC resolver"},
6061 {bp_gnu_ifunc_resolver_return, "STT_GNU_IFUNC resolver return"},
6062 };
6063
6064 if (((int) type >= (sizeof (bptypes) / sizeof (bptypes[0])))
6065 || ((int) type != bptypes[(int) type].type))
6066 internal_error (__FILE__, __LINE__,
6067 _("bptypes table does not describe type #%d."),
6068 (int) type);
6069
6070 return bptypes[(int) type].description;
6071 }
6072
6073 /* For MI, output a field named 'thread-groups' with a list as the value.
6074 For CLI, prefix the list with the string 'inf'. */
6075
6076 static void
6077 output_thread_groups (struct ui_out *uiout,
6078 const char *field_name,
6079 VEC(int) *inf_num,
6080 int mi_only)
6081 {
6082 struct cleanup *back_to;
6083 int is_mi = ui_out_is_mi_like_p (uiout);
6084 int inf;
6085 int i;
6086
6087 /* For backward compatibility, don't display inferiors in CLI unless
6088 there are several. Always display them for MI. */
6089 if (!is_mi && mi_only)
6090 return;
6091
6092 back_to = make_cleanup_ui_out_list_begin_end (uiout, field_name);
6093
6094 for (i = 0; VEC_iterate (int, inf_num, i, inf); ++i)
6095 {
6096 if (is_mi)
6097 {
6098 char mi_group[10];
6099
6100 xsnprintf (mi_group, sizeof (mi_group), "i%d", inf);
6101 ui_out_field_string (uiout, NULL, mi_group);
6102 }
6103 else
6104 {
6105 if (i == 0)
6106 ui_out_text (uiout, " inf ");
6107 else
6108 ui_out_text (uiout, ", ");
6109
6110 ui_out_text (uiout, plongest (inf));
6111 }
6112 }
6113
6114 do_cleanups (back_to);
6115 }
6116
6117 /* Print B to gdb_stdout. */
6118
6119 static void
6120 print_one_breakpoint_location (struct breakpoint *b,
6121 struct bp_location *loc,
6122 int loc_number,
6123 struct bp_location **last_loc,
6124 int allflag)
6125 {
6126 struct command_line *l;
6127 static char bpenables[] = "nynny";
6128
6129 struct ui_out *uiout = current_uiout;
6130 int header_of_multiple = 0;
6131 int part_of_multiple = (loc != NULL);
6132 struct value_print_options opts;
6133
6134 get_user_print_options (&opts);
6135
6136 gdb_assert (!loc || loc_number != 0);
6137 /* See comment in print_one_breakpoint concerning treatment of
6138 breakpoints with single disabled location. */
6139 if (loc == NULL
6140 && (b->loc != NULL
6141 && (b->loc->next != NULL || !b->loc->enabled)))
6142 header_of_multiple = 1;
6143 if (loc == NULL)
6144 loc = b->loc;
6145
6146 annotate_record ();
6147
6148 /* 1 */
6149 annotate_field (0);
6150 if (part_of_multiple)
6151 {
6152 char *formatted;
6153 formatted = xstrprintf ("%d.%d", b->number, loc_number);
6154 ui_out_field_string (uiout, "number", formatted);
6155 xfree (formatted);
6156 }
6157 else
6158 {
6159 ui_out_field_int (uiout, "number", b->number);
6160 }
6161
6162 /* 2 */
6163 annotate_field (1);
6164 if (part_of_multiple)
6165 ui_out_field_skip (uiout, "type");
6166 else
6167 ui_out_field_string (uiout, "type", bptype_string (b->type));
6168
6169 /* 3 */
6170 annotate_field (2);
6171 if (part_of_multiple)
6172 ui_out_field_skip (uiout, "disp");
6173 else
6174 ui_out_field_string (uiout, "disp", bpdisp_text (b->disposition));
6175
6176
6177 /* 4 */
6178 annotate_field (3);
6179 if (part_of_multiple)
6180 ui_out_field_string (uiout, "enabled", loc->enabled ? "y" : "n");
6181 else
6182 ui_out_field_fmt (uiout, "enabled", "%c",
6183 bpenables[(int) b->enable_state]);
6184 ui_out_spaces (uiout, 2);
6185
6186
6187 /* 5 and 6 */
6188 if (b->ops != NULL && b->ops->print_one != NULL)
6189 {
6190 /* Although the print_one can possibly print all locations,
6191 calling it here is not likely to get any nice result. So,
6192 make sure there's just one location. */
6193 gdb_assert (b->loc == NULL || b->loc->next == NULL);
6194 b->ops->print_one (b, last_loc);
6195 }
6196 else
6197 switch (b->type)
6198 {
6199 case bp_none:
6200 internal_error (__FILE__, __LINE__,
6201 _("print_one_breakpoint: bp_none encountered\n"));
6202 break;
6203
6204 case bp_watchpoint:
6205 case bp_hardware_watchpoint:
6206 case bp_read_watchpoint:
6207 case bp_access_watchpoint:
6208 {
6209 struct watchpoint *w = (struct watchpoint *) b;
6210
6211 /* Field 4, the address, is omitted (which makes the columns
6212 not line up too nicely with the headers, but the effect
6213 is relatively readable). */
6214 if (opts.addressprint)
6215 ui_out_field_skip (uiout, "addr");
6216 annotate_field (5);
6217 ui_out_field_string (uiout, "what", w->exp_string);
6218 }
6219 break;
6220
6221 case bp_breakpoint:
6222 case bp_hardware_breakpoint:
6223 case bp_single_step:
6224 case bp_until:
6225 case bp_finish:
6226 case bp_longjmp:
6227 case bp_longjmp_resume:
6228 case bp_longjmp_call_dummy:
6229 case bp_exception:
6230 case bp_exception_resume:
6231 case bp_step_resume:
6232 case bp_hp_step_resume:
6233 case bp_watchpoint_scope:
6234 case bp_call_dummy:
6235 case bp_std_terminate:
6236 case bp_shlib_event:
6237 case bp_thread_event:
6238 case bp_overlay_event:
6239 case bp_longjmp_master:
6240 case bp_std_terminate_master:
6241 case bp_exception_master:
6242 case bp_tracepoint:
6243 case bp_fast_tracepoint:
6244 case bp_static_tracepoint:
6245 case bp_dprintf:
6246 case bp_jit_event:
6247 case bp_gnu_ifunc_resolver:
6248 case bp_gnu_ifunc_resolver_return:
6249 if (opts.addressprint)
6250 {
6251 annotate_field (4);
6252 if (header_of_multiple)
6253 ui_out_field_string (uiout, "addr", "<MULTIPLE>");
6254 else if (b->loc == NULL || loc->shlib_disabled)
6255 ui_out_field_string (uiout, "addr", "<PENDING>");
6256 else
6257 ui_out_field_core_addr (uiout, "addr",
6258 loc->gdbarch, loc->address);
6259 }
6260 annotate_field (5);
6261 if (!header_of_multiple)
6262 print_breakpoint_location (b, loc);
6263 if (b->loc)
6264 *last_loc = b->loc;
6265 break;
6266 }
6267
6268
6269 if (loc != NULL && !header_of_multiple)
6270 {
6271 struct inferior *inf;
6272 VEC(int) *inf_num = NULL;
6273 int mi_only = 1;
6274
6275 ALL_INFERIORS (inf)
6276 {
6277 if (inf->pspace == loc->pspace)
6278 VEC_safe_push (int, inf_num, inf->num);
6279 }
6280
6281 /* For backward compatibility, don't display inferiors in CLI unless
6282 there are several. Always display for MI. */
6283 if (allflag
6284 || (!gdbarch_has_global_breakpoints (target_gdbarch ())
6285 && (number_of_program_spaces () > 1
6286 || number_of_inferiors () > 1)
6287 /* LOC is for existing B, it cannot be in
6288 moribund_locations and thus having NULL OWNER. */
6289 && loc->owner->type != bp_catchpoint))
6290 mi_only = 0;
6291 output_thread_groups (uiout, "thread-groups", inf_num, mi_only);
6292 VEC_free (int, inf_num);
6293 }
6294
6295 if (!part_of_multiple)
6296 {
6297 if (b->thread != -1)
6298 {
6299 /* FIXME: This seems to be redundant and lost here; see the
6300 "stop only in" line a little further down. */
6301 ui_out_text (uiout, " thread ");
6302 ui_out_field_int (uiout, "thread", b->thread);
6303 }
6304 else if (b->task != 0)
6305 {
6306 ui_out_text (uiout, " task ");
6307 ui_out_field_int (uiout, "task", b->task);
6308 }
6309 }
6310
6311 ui_out_text (uiout, "\n");
6312
6313 if (!part_of_multiple)
6314 b->ops->print_one_detail (b, uiout);
6315
6316 if (part_of_multiple && frame_id_p (b->frame_id))
6317 {
6318 annotate_field (6);
6319 ui_out_text (uiout, "\tstop only in stack frame at ");
6320 /* FIXME: cagney/2002-12-01: Shouldn't be poking around inside
6321 the frame ID. */
6322 ui_out_field_core_addr (uiout, "frame",
6323 b->gdbarch, b->frame_id.stack_addr);
6324 ui_out_text (uiout, "\n");
6325 }
6326
6327 if (!part_of_multiple && b->cond_string)
6328 {
6329 annotate_field (7);
6330 if (is_tracepoint (b))
6331 ui_out_text (uiout, "\ttrace only if ");
6332 else
6333 ui_out_text (uiout, "\tstop only if ");
6334 ui_out_field_string (uiout, "cond", b->cond_string);
6335
6336 /* Print whether the target is doing the breakpoint's condition
6337 evaluation. If GDB is doing the evaluation, don't print anything. */
6338 if (is_breakpoint (b)
6339 && breakpoint_condition_evaluation_mode ()
6340 == condition_evaluation_target)
6341 {
6342 ui_out_text (uiout, " (");
6343 ui_out_field_string (uiout, "evaluated-by",
6344 bp_condition_evaluator (b));
6345 ui_out_text (uiout, " evals)");
6346 }
6347 ui_out_text (uiout, "\n");
6348 }
6349
6350 if (!part_of_multiple && b->thread != -1)
6351 {
6352 /* FIXME should make an annotation for this. */
6353 ui_out_text (uiout, "\tstop only in thread ");
6354 ui_out_field_int (uiout, "thread", b->thread);
6355 ui_out_text (uiout, "\n");
6356 }
6357
6358 if (!part_of_multiple)
6359 {
6360 if (b->hit_count)
6361 {
6362 /* FIXME should make an annotation for this. */
6363 if (is_catchpoint (b))
6364 ui_out_text (uiout, "\tcatchpoint");
6365 else if (is_tracepoint (b))
6366 ui_out_text (uiout, "\ttracepoint");
6367 else
6368 ui_out_text (uiout, "\tbreakpoint");
6369 ui_out_text (uiout, " already hit ");
6370 ui_out_field_int (uiout, "times", b->hit_count);
6371 if (b->hit_count == 1)
6372 ui_out_text (uiout, " time\n");
6373 else
6374 ui_out_text (uiout, " times\n");
6375 }
6376 else
6377 {
6378 /* Output the count also if it is zero, but only if this is mi. */
6379 if (ui_out_is_mi_like_p (uiout))
6380 ui_out_field_int (uiout, "times", b->hit_count);
6381 }
6382 }
6383
6384 if (!part_of_multiple && b->ignore_count)
6385 {
6386 annotate_field (8);
6387 ui_out_text (uiout, "\tignore next ");
6388 ui_out_field_int (uiout, "ignore", b->ignore_count);
6389 ui_out_text (uiout, " hits\n");
6390 }
6391
6392 /* Note that an enable count of 1 corresponds to "enable once"
6393 behavior, which is reported by the combination of enablement and
6394 disposition, so we don't need to mention it here. */
6395 if (!part_of_multiple && b->enable_count > 1)
6396 {
6397 annotate_field (8);
6398 ui_out_text (uiout, "\tdisable after ");
6399 /* Tweak the wording to clarify that ignore and enable counts
6400 are distinct, and have additive effect. */
6401 if (b->ignore_count)
6402 ui_out_text (uiout, "additional ");
6403 else
6404 ui_out_text (uiout, "next ");
6405 ui_out_field_int (uiout, "enable", b->enable_count);
6406 ui_out_text (uiout, " hits\n");
6407 }
6408
6409 if (!part_of_multiple && is_tracepoint (b))
6410 {
6411 struct tracepoint *tp = (struct tracepoint *) b;
6412
6413 if (tp->traceframe_usage)
6414 {
6415 ui_out_text (uiout, "\ttrace buffer usage ");
6416 ui_out_field_int (uiout, "traceframe-usage", tp->traceframe_usage);
6417 ui_out_text (uiout, " bytes\n");
6418 }
6419 }
6420
6421 l = b->commands ? b->commands->commands : NULL;
6422 if (!part_of_multiple && l)
6423 {
6424 struct cleanup *script_chain;
6425
6426 annotate_field (9);
6427 script_chain = make_cleanup_ui_out_tuple_begin_end (uiout, "script");
6428 print_command_lines (uiout, l, 4);
6429 do_cleanups (script_chain);
6430 }
6431
6432 if (is_tracepoint (b))
6433 {
6434 struct tracepoint *t = (struct tracepoint *) b;
6435
6436 if (!part_of_multiple && t->pass_count)
6437 {
6438 annotate_field (10);
6439 ui_out_text (uiout, "\tpass count ");
6440 ui_out_field_int (uiout, "pass", t->pass_count);
6441 ui_out_text (uiout, " \n");
6442 }
6443
6444 /* Don't display it when tracepoint or tracepoint location is
6445 pending. */
6446 if (!header_of_multiple && loc != NULL && !loc->shlib_disabled)
6447 {
6448 annotate_field (11);
6449
6450 if (ui_out_is_mi_like_p (uiout))
6451 ui_out_field_string (uiout, "installed",
6452 loc->inserted ? "y" : "n");
6453 else
6454 {
6455 if (loc->inserted)
6456 ui_out_text (uiout, "\t");
6457 else
6458 ui_out_text (uiout, "\tnot ");
6459 ui_out_text (uiout, "installed on target\n");
6460 }
6461 }
6462 }
6463
6464 if (ui_out_is_mi_like_p (uiout) && !part_of_multiple)
6465 {
6466 if (is_watchpoint (b))
6467 {
6468 struct watchpoint *w = (struct watchpoint *) b;
6469
6470 ui_out_field_string (uiout, "original-location", w->exp_string);
6471 }
6472 else if (b->addr_string)
6473 ui_out_field_string (uiout, "original-location", b->addr_string);
6474 }
6475 }
6476
6477 static void
6478 print_one_breakpoint (struct breakpoint *b,
6479 struct bp_location **last_loc,
6480 int allflag)
6481 {
6482 struct cleanup *bkpt_chain;
6483 struct ui_out *uiout = current_uiout;
6484
6485 bkpt_chain = make_cleanup_ui_out_tuple_begin_end (uiout, "bkpt");
6486
6487 print_one_breakpoint_location (b, NULL, 0, last_loc, allflag);
6488 do_cleanups (bkpt_chain);
6489
6490 /* If this breakpoint has custom print function,
6491 it's already printed. Otherwise, print individual
6492 locations, if any. */
6493 if (b->ops == NULL || b->ops->print_one == NULL)
6494 {
6495 /* If breakpoint has a single location that is disabled, we
6496 print it as if it had several locations, since otherwise it's
6497 hard to represent "breakpoint enabled, location disabled"
6498 situation.
6499
6500 Note that while hardware watchpoints have several locations
6501 internally, that's not a property exposed to user. */
6502 if (b->loc
6503 && !is_hardware_watchpoint (b)
6504 && (b->loc->next || !b->loc->enabled))
6505 {
6506 struct bp_location *loc;
6507 int n = 1;
6508
6509 for (loc = b->loc; loc; loc = loc->next, ++n)
6510 {
6511 struct cleanup *inner2 =
6512 make_cleanup_ui_out_tuple_begin_end (uiout, NULL);
6513 print_one_breakpoint_location (b, loc, n, last_loc, allflag);
6514 do_cleanups (inner2);
6515 }
6516 }
6517 }
6518 }
6519
6520 static int
6521 breakpoint_address_bits (struct breakpoint *b)
6522 {
6523 int print_address_bits = 0;
6524 struct bp_location *loc;
6525
6526 for (loc = b->loc; loc; loc = loc->next)
6527 {
6528 int addr_bit;
6529
6530 /* Software watchpoints that aren't watching memory don't have
6531 an address to print. */
6532 if (b->type == bp_watchpoint && loc->watchpoint_type == -1)
6533 continue;
6534
6535 addr_bit = gdbarch_addr_bit (loc->gdbarch);
6536 if (addr_bit > print_address_bits)
6537 print_address_bits = addr_bit;
6538 }
6539
6540 return print_address_bits;
6541 }
6542
6543 struct captured_breakpoint_query_args
6544 {
6545 int bnum;
6546 };
6547
6548 static int
6549 do_captured_breakpoint_query (struct ui_out *uiout, void *data)
6550 {
6551 struct captured_breakpoint_query_args *args = data;
6552 struct breakpoint *b;
6553 struct bp_location *dummy_loc = NULL;
6554
6555 ALL_BREAKPOINTS (b)
6556 {
6557 if (args->bnum == b->number)
6558 {
6559 print_one_breakpoint (b, &dummy_loc, 0);
6560 return GDB_RC_OK;
6561 }
6562 }
6563 return GDB_RC_NONE;
6564 }
6565
6566 enum gdb_rc
6567 gdb_breakpoint_query (struct ui_out *uiout, int bnum,
6568 char **error_message)
6569 {
6570 struct captured_breakpoint_query_args args;
6571
6572 args.bnum = bnum;
6573 /* For the moment we don't trust print_one_breakpoint() to not throw
6574 an error. */
6575 if (catch_exceptions_with_msg (uiout, do_captured_breakpoint_query, &args,
6576 error_message, RETURN_MASK_ALL) < 0)
6577 return GDB_RC_FAIL;
6578 else
6579 return GDB_RC_OK;
6580 }
6581
6582 /* Return true if this breakpoint was set by the user, false if it is
6583 internal or momentary. */
6584
6585 int
6586 user_breakpoint_p (struct breakpoint *b)
6587 {
6588 return b->number > 0;
6589 }
6590
6591 /* Print information on user settable breakpoint (watchpoint, etc)
6592 number BNUM. If BNUM is -1 print all user-settable breakpoints.
6593 If ALLFLAG is non-zero, include non-user-settable breakpoints. If
6594 FILTER is non-NULL, call it on each breakpoint and only include the
6595 ones for which it returns non-zero. Return the total number of
6596 breakpoints listed. */
6597
6598 static int
6599 breakpoint_1 (char *args, int allflag,
6600 int (*filter) (const struct breakpoint *))
6601 {
6602 struct breakpoint *b;
6603 struct bp_location *last_loc = NULL;
6604 int nr_printable_breakpoints;
6605 struct cleanup *bkpttbl_chain;
6606 struct value_print_options opts;
6607 int print_address_bits = 0;
6608 int print_type_col_width = 14;
6609 struct ui_out *uiout = current_uiout;
6610
6611 get_user_print_options (&opts);
6612
6613 /* Compute the number of rows in the table, as well as the size
6614 required for address fields. */
6615 nr_printable_breakpoints = 0;
6616 ALL_BREAKPOINTS (b)
6617 {
6618 /* If we have a filter, only list the breakpoints it accepts. */
6619 if (filter && !filter (b))
6620 continue;
6621
6622 /* If we have an "args" string, it is a list of breakpoints to
6623 accept. Skip the others. */
6624 if (args != NULL && *args != '\0')
6625 {
6626 if (allflag && parse_and_eval_long (args) != b->number)
6627 continue;
6628 if (!allflag && !number_is_in_list (args, b->number))
6629 continue;
6630 }
6631
6632 if (allflag || user_breakpoint_p (b))
6633 {
6634 int addr_bit, type_len;
6635
6636 addr_bit = breakpoint_address_bits (b);
6637 if (addr_bit > print_address_bits)
6638 print_address_bits = addr_bit;
6639
6640 type_len = strlen (bptype_string (b->type));
6641 if (type_len > print_type_col_width)
6642 print_type_col_width = type_len;
6643
6644 nr_printable_breakpoints++;
6645 }
6646 }
6647
6648 if (opts.addressprint)
6649 bkpttbl_chain
6650 = make_cleanup_ui_out_table_begin_end (uiout, 6,
6651 nr_printable_breakpoints,
6652 "BreakpointTable");
6653 else
6654 bkpttbl_chain
6655 = make_cleanup_ui_out_table_begin_end (uiout, 5,
6656 nr_printable_breakpoints,
6657 "BreakpointTable");
6658
6659 if (nr_printable_breakpoints > 0)
6660 annotate_breakpoints_headers ();
6661 if (nr_printable_breakpoints > 0)
6662 annotate_field (0);
6663 ui_out_table_header (uiout, 7, ui_left, "number", "Num"); /* 1 */
6664 if (nr_printable_breakpoints > 0)
6665 annotate_field (1);
6666 ui_out_table_header (uiout, print_type_col_width, ui_left,
6667 "type", "Type"); /* 2 */
6668 if (nr_printable_breakpoints > 0)
6669 annotate_field (2);
6670 ui_out_table_header (uiout, 4, ui_left, "disp", "Disp"); /* 3 */
6671 if (nr_printable_breakpoints > 0)
6672 annotate_field (3);
6673 ui_out_table_header (uiout, 3, ui_left, "enabled", "Enb"); /* 4 */
6674 if (opts.addressprint)
6675 {
6676 if (nr_printable_breakpoints > 0)
6677 annotate_field (4);
6678 if (print_address_bits <= 32)
6679 ui_out_table_header (uiout, 10, ui_left,
6680 "addr", "Address"); /* 5 */
6681 else
6682 ui_out_table_header (uiout, 18, ui_left,
6683 "addr", "Address"); /* 5 */
6684 }
6685 if (nr_printable_breakpoints > 0)
6686 annotate_field (5);
6687 ui_out_table_header (uiout, 40, ui_noalign, "what", "What"); /* 6 */
6688 ui_out_table_body (uiout);
6689 if (nr_printable_breakpoints > 0)
6690 annotate_breakpoints_table ();
6691
6692 ALL_BREAKPOINTS (b)
6693 {
6694 QUIT;
6695 /* If we have a filter, only list the breakpoints it accepts. */
6696 if (filter && !filter (b))
6697 continue;
6698
6699 /* If we have an "args" string, it is a list of breakpoints to
6700 accept. Skip the others. */
6701
6702 if (args != NULL && *args != '\0')
6703 {
6704 if (allflag) /* maintenance info breakpoint */
6705 {
6706 if (parse_and_eval_long (args) != b->number)
6707 continue;
6708 }
6709 else /* all others */
6710 {
6711 if (!number_is_in_list (args, b->number))
6712 continue;
6713 }
6714 }
6715 /* We only print out user settable breakpoints unless the
6716 allflag is set. */
6717 if (allflag || user_breakpoint_p (b))
6718 print_one_breakpoint (b, &last_loc, allflag);
6719 }
6720
6721 do_cleanups (bkpttbl_chain);
6722
6723 if (nr_printable_breakpoints == 0)
6724 {
6725 /* If there's a filter, let the caller decide how to report
6726 empty list. */
6727 if (!filter)
6728 {
6729 if (args == NULL || *args == '\0')
6730 ui_out_message (uiout, 0, "No breakpoints or watchpoints.\n");
6731 else
6732 ui_out_message (uiout, 0,
6733 "No breakpoint or watchpoint matching '%s'.\n",
6734 args);
6735 }
6736 }
6737 else
6738 {
6739 if (last_loc && !server_command)
6740 set_next_address (last_loc->gdbarch, last_loc->address);
6741 }
6742
6743 /* FIXME? Should this be moved up so that it is only called when
6744 there have been breakpoints? */
6745 annotate_breakpoints_table_end ();
6746
6747 return nr_printable_breakpoints;
6748 }
6749
6750 /* Display the value of default-collect in a way that is generally
6751 compatible with the breakpoint list. */
6752
6753 static void
6754 default_collect_info (void)
6755 {
6756 struct ui_out *uiout = current_uiout;
6757
6758 /* If it has no value (which is frequently the case), say nothing; a
6759 message like "No default-collect." gets in user's face when it's
6760 not wanted. */
6761 if (!*default_collect)
6762 return;
6763
6764 /* The following phrase lines up nicely with per-tracepoint collect
6765 actions. */
6766 ui_out_text (uiout, "default collect ");
6767 ui_out_field_string (uiout, "default-collect", default_collect);
6768 ui_out_text (uiout, " \n");
6769 }
6770
6771 static void
6772 breakpoints_info (char *args, int from_tty)
6773 {
6774 breakpoint_1 (args, 0, NULL);
6775
6776 default_collect_info ();
6777 }
6778
6779 static void
6780 watchpoints_info (char *args, int from_tty)
6781 {
6782 int num_printed = breakpoint_1 (args, 0, is_watchpoint);
6783 struct ui_out *uiout = current_uiout;
6784
6785 if (num_printed == 0)
6786 {
6787 if (args == NULL || *args == '\0')
6788 ui_out_message (uiout, 0, "No watchpoints.\n");
6789 else
6790 ui_out_message (uiout, 0, "No watchpoint matching '%s'.\n", args);
6791 }
6792 }
6793
6794 static void
6795 maintenance_info_breakpoints (char *args, int from_tty)
6796 {
6797 breakpoint_1 (args, 1, NULL);
6798
6799 default_collect_info ();
6800 }
6801
6802 static int
6803 breakpoint_has_pc (struct breakpoint *b,
6804 struct program_space *pspace,
6805 CORE_ADDR pc, struct obj_section *section)
6806 {
6807 struct bp_location *bl = b->loc;
6808
6809 for (; bl; bl = bl->next)
6810 {
6811 if (bl->pspace == pspace
6812 && bl->address == pc
6813 && (!overlay_debugging || bl->section == section))
6814 return 1;
6815 }
6816 return 0;
6817 }
6818
6819 /* Print a message describing any user-breakpoints set at PC. This
6820 concerns with logical breakpoints, so we match program spaces, not
6821 address spaces. */
6822
6823 static void
6824 describe_other_breakpoints (struct gdbarch *gdbarch,
6825 struct program_space *pspace, CORE_ADDR pc,
6826 struct obj_section *section, int thread)
6827 {
6828 int others = 0;
6829 struct breakpoint *b;
6830
6831 ALL_BREAKPOINTS (b)
6832 others += (user_breakpoint_p (b)
6833 && breakpoint_has_pc (b, pspace, pc, section));
6834 if (others > 0)
6835 {
6836 if (others == 1)
6837 printf_filtered (_("Note: breakpoint "));
6838 else /* if (others == ???) */
6839 printf_filtered (_("Note: breakpoints "));
6840 ALL_BREAKPOINTS (b)
6841 if (user_breakpoint_p (b) && breakpoint_has_pc (b, pspace, pc, section))
6842 {
6843 others--;
6844 printf_filtered ("%d", b->number);
6845 if (b->thread == -1 && thread != -1)
6846 printf_filtered (" (all threads)");
6847 else if (b->thread != -1)
6848 printf_filtered (" (thread %d)", b->thread);
6849 printf_filtered ("%s%s ",
6850 ((b->enable_state == bp_disabled
6851 || b->enable_state == bp_call_disabled)
6852 ? " (disabled)"
6853 : ""),
6854 (others > 1) ? ","
6855 : ((others == 1) ? " and" : ""));
6856 }
6857 printf_filtered (_("also set at pc "));
6858 fputs_filtered (paddress (gdbarch, pc), gdb_stdout);
6859 printf_filtered (".\n");
6860 }
6861 }
6862 \f
6863
6864 /* Return true iff it is meaningful to use the address member of
6865 BPT. For some breakpoint types, the address member is irrelevant
6866 and it makes no sense to attempt to compare it to other addresses
6867 (or use it for any other purpose either).
6868
6869 More specifically, each of the following breakpoint types will
6870 always have a zero valued address and we don't want to mark
6871 breakpoints of any of these types to be a duplicate of an actual
6872 breakpoint at address zero:
6873
6874 bp_watchpoint
6875 bp_catchpoint
6876
6877 */
6878
6879 static int
6880 breakpoint_address_is_meaningful (struct breakpoint *bpt)
6881 {
6882 enum bptype type = bpt->type;
6883
6884 return (type != bp_watchpoint && type != bp_catchpoint);
6885 }
6886
6887 /* Assuming LOC1 and LOC2's owners are hardware watchpoints, returns
6888 true if LOC1 and LOC2 represent the same watchpoint location. */
6889
6890 static int
6891 watchpoint_locations_match (struct bp_location *loc1,
6892 struct bp_location *loc2)
6893 {
6894 struct watchpoint *w1 = (struct watchpoint *) loc1->owner;
6895 struct watchpoint *w2 = (struct watchpoint *) loc2->owner;
6896
6897 /* Both of them must exist. */
6898 gdb_assert (w1 != NULL);
6899 gdb_assert (w2 != NULL);
6900
6901 /* If the target can evaluate the condition expression in hardware,
6902 then we we need to insert both watchpoints even if they are at
6903 the same place. Otherwise the watchpoint will only trigger when
6904 the condition of whichever watchpoint was inserted evaluates to
6905 true, not giving a chance for GDB to check the condition of the
6906 other watchpoint. */
6907 if ((w1->cond_exp
6908 && target_can_accel_watchpoint_condition (loc1->address,
6909 loc1->length,
6910 loc1->watchpoint_type,
6911 w1->cond_exp))
6912 || (w2->cond_exp
6913 && target_can_accel_watchpoint_condition (loc2->address,
6914 loc2->length,
6915 loc2->watchpoint_type,
6916 w2->cond_exp)))
6917 return 0;
6918
6919 /* Note that this checks the owner's type, not the location's. In
6920 case the target does not support read watchpoints, but does
6921 support access watchpoints, we'll have bp_read_watchpoint
6922 watchpoints with hw_access locations. Those should be considered
6923 duplicates of hw_read locations. The hw_read locations will
6924 become hw_access locations later. */
6925 return (loc1->owner->type == loc2->owner->type
6926 && loc1->pspace->aspace == loc2->pspace->aspace
6927 && loc1->address == loc2->address
6928 && loc1->length == loc2->length);
6929 }
6930
6931 /* See breakpoint.h. */
6932
6933 int
6934 breakpoint_address_match (struct address_space *aspace1, CORE_ADDR addr1,
6935 struct address_space *aspace2, CORE_ADDR addr2)
6936 {
6937 return ((gdbarch_has_global_breakpoints (target_gdbarch ())
6938 || aspace1 == aspace2)
6939 && addr1 == addr2);
6940 }
6941
6942 /* Returns true if {ASPACE2,ADDR2} falls within the range determined by
6943 {ASPACE1,ADDR1,LEN1}. In most targets, this can only be true if ASPACE1
6944 matches ASPACE2. On targets that have global breakpoints, the address
6945 space doesn't really matter. */
6946
6947 static int
6948 breakpoint_address_match_range (struct address_space *aspace1, CORE_ADDR addr1,
6949 int len1, struct address_space *aspace2,
6950 CORE_ADDR addr2)
6951 {
6952 return ((gdbarch_has_global_breakpoints (target_gdbarch ())
6953 || aspace1 == aspace2)
6954 && addr2 >= addr1 && addr2 < addr1 + len1);
6955 }
6956
6957 /* Returns true if {ASPACE,ADDR} matches the breakpoint BL. BL may be
6958 a ranged breakpoint. In most targets, a match happens only if ASPACE
6959 matches the breakpoint's address space. On targets that have global
6960 breakpoints, the address space doesn't really matter. */
6961
6962 static int
6963 breakpoint_location_address_match (struct bp_location *bl,
6964 struct address_space *aspace,
6965 CORE_ADDR addr)
6966 {
6967 return (breakpoint_address_match (bl->pspace->aspace, bl->address,
6968 aspace, addr)
6969 || (bl->length
6970 && breakpoint_address_match_range (bl->pspace->aspace,
6971 bl->address, bl->length,
6972 aspace, addr)));
6973 }
6974
6975 /* If LOC1 and LOC2's owners are not tracepoints, returns false directly.
6976 Then, if LOC1 and LOC2 represent the same tracepoint location, returns
6977 true, otherwise returns false. */
6978
6979 static int
6980 tracepoint_locations_match (struct bp_location *loc1,
6981 struct bp_location *loc2)
6982 {
6983 if (is_tracepoint (loc1->owner) && is_tracepoint (loc2->owner))
6984 /* Since tracepoint locations are never duplicated with others', tracepoint
6985 locations at the same address of different tracepoints are regarded as
6986 different locations. */
6987 return (loc1->address == loc2->address && loc1->owner == loc2->owner);
6988 else
6989 return 0;
6990 }
6991
6992 /* Assuming LOC1 and LOC2's types' have meaningful target addresses
6993 (breakpoint_address_is_meaningful), returns true if LOC1 and LOC2
6994 represent the same location. */
6995
6996 static int
6997 breakpoint_locations_match (struct bp_location *loc1,
6998 struct bp_location *loc2)
6999 {
7000 int hw_point1, hw_point2;
7001
7002 /* Both of them must not be in moribund_locations. */
7003 gdb_assert (loc1->owner != NULL);
7004 gdb_assert (loc2->owner != NULL);
7005
7006 hw_point1 = is_hardware_watchpoint (loc1->owner);
7007 hw_point2 = is_hardware_watchpoint (loc2->owner);
7008
7009 if (hw_point1 != hw_point2)
7010 return 0;
7011 else if (hw_point1)
7012 return watchpoint_locations_match (loc1, loc2);
7013 else if (is_tracepoint (loc1->owner) || is_tracepoint (loc2->owner))
7014 return tracepoint_locations_match (loc1, loc2);
7015 else
7016 /* We compare bp_location.length in order to cover ranged breakpoints. */
7017 return (breakpoint_address_match (loc1->pspace->aspace, loc1->address,
7018 loc2->pspace->aspace, loc2->address)
7019 && loc1->length == loc2->length);
7020 }
7021
7022 static void
7023 breakpoint_adjustment_warning (CORE_ADDR from_addr, CORE_ADDR to_addr,
7024 int bnum, int have_bnum)
7025 {
7026 /* The longest string possibly returned by hex_string_custom
7027 is 50 chars. These must be at least that big for safety. */
7028 char astr1[64];
7029 char astr2[64];
7030
7031 strcpy (astr1, hex_string_custom ((unsigned long) from_addr, 8));
7032 strcpy (astr2, hex_string_custom ((unsigned long) to_addr, 8));
7033 if (have_bnum)
7034 warning (_("Breakpoint %d address previously adjusted from %s to %s."),
7035 bnum, astr1, astr2);
7036 else
7037 warning (_("Breakpoint address adjusted from %s to %s."), astr1, astr2);
7038 }
7039
7040 /* Adjust a breakpoint's address to account for architectural
7041 constraints on breakpoint placement. Return the adjusted address.
7042 Note: Very few targets require this kind of adjustment. For most
7043 targets, this function is simply the identity function. */
7044
7045 static CORE_ADDR
7046 adjust_breakpoint_address (struct gdbarch *gdbarch,
7047 CORE_ADDR bpaddr, enum bptype bptype)
7048 {
7049 if (!gdbarch_adjust_breakpoint_address_p (gdbarch))
7050 {
7051 /* Very few targets need any kind of breakpoint adjustment. */
7052 return bpaddr;
7053 }
7054 else if (bptype == bp_watchpoint
7055 || bptype == bp_hardware_watchpoint
7056 || bptype == bp_read_watchpoint
7057 || bptype == bp_access_watchpoint
7058 || bptype == bp_catchpoint)
7059 {
7060 /* Watchpoints and the various bp_catch_* eventpoints should not
7061 have their addresses modified. */
7062 return bpaddr;
7063 }
7064 else if (bptype == bp_single_step)
7065 {
7066 /* Single-step breakpoints should not have their addresses
7067 modified. If there's any architectural constrain that
7068 applies to this address, then it should have already been
7069 taken into account when the breakpoint was created in the
7070 first place. If we didn't do this, stepping through e.g.,
7071 Thumb-2 IT blocks would break. */
7072 return bpaddr;
7073 }
7074 else
7075 {
7076 CORE_ADDR adjusted_bpaddr;
7077
7078 /* Some targets have architectural constraints on the placement
7079 of breakpoint instructions. Obtain the adjusted address. */
7080 adjusted_bpaddr = gdbarch_adjust_breakpoint_address (gdbarch, bpaddr);
7081
7082 /* An adjusted breakpoint address can significantly alter
7083 a user's expectations. Print a warning if an adjustment
7084 is required. */
7085 if (adjusted_bpaddr != bpaddr)
7086 breakpoint_adjustment_warning (bpaddr, adjusted_bpaddr, 0, 0);
7087
7088 return adjusted_bpaddr;
7089 }
7090 }
7091
7092 void
7093 init_bp_location (struct bp_location *loc, const struct bp_location_ops *ops,
7094 struct breakpoint *owner)
7095 {
7096 memset (loc, 0, sizeof (*loc));
7097
7098 gdb_assert (ops != NULL);
7099
7100 loc->ops = ops;
7101 loc->owner = owner;
7102 loc->cond = NULL;
7103 loc->cond_bytecode = NULL;
7104 loc->shlib_disabled = 0;
7105 loc->enabled = 1;
7106
7107 switch (owner->type)
7108 {
7109 case bp_breakpoint:
7110 case bp_single_step:
7111 case bp_until:
7112 case bp_finish:
7113 case bp_longjmp:
7114 case bp_longjmp_resume:
7115 case bp_longjmp_call_dummy:
7116 case bp_exception:
7117 case bp_exception_resume:
7118 case bp_step_resume:
7119 case bp_hp_step_resume:
7120 case bp_watchpoint_scope:
7121 case bp_call_dummy:
7122 case bp_std_terminate:
7123 case bp_shlib_event:
7124 case bp_thread_event:
7125 case bp_overlay_event:
7126 case bp_jit_event:
7127 case bp_longjmp_master:
7128 case bp_std_terminate_master:
7129 case bp_exception_master:
7130 case bp_gnu_ifunc_resolver:
7131 case bp_gnu_ifunc_resolver_return:
7132 case bp_dprintf:
7133 loc->loc_type = bp_loc_software_breakpoint;
7134 mark_breakpoint_location_modified (loc);
7135 break;
7136 case bp_hardware_breakpoint:
7137 loc->loc_type = bp_loc_hardware_breakpoint;
7138 mark_breakpoint_location_modified (loc);
7139 break;
7140 case bp_hardware_watchpoint:
7141 case bp_read_watchpoint:
7142 case bp_access_watchpoint:
7143 loc->loc_type = bp_loc_hardware_watchpoint;
7144 break;
7145 case bp_watchpoint:
7146 case bp_catchpoint:
7147 case bp_tracepoint:
7148 case bp_fast_tracepoint:
7149 case bp_static_tracepoint:
7150 loc->loc_type = bp_loc_other;
7151 break;
7152 default:
7153 internal_error (__FILE__, __LINE__, _("unknown breakpoint type"));
7154 }
7155
7156 loc->refc = 1;
7157 }
7158
7159 /* Allocate a struct bp_location. */
7160
7161 static struct bp_location *
7162 allocate_bp_location (struct breakpoint *bpt)
7163 {
7164 return bpt->ops->allocate_location (bpt);
7165 }
7166
7167 static void
7168 free_bp_location (struct bp_location *loc)
7169 {
7170 loc->ops->dtor (loc);
7171 xfree (loc);
7172 }
7173
7174 /* Increment reference count. */
7175
7176 static void
7177 incref_bp_location (struct bp_location *bl)
7178 {
7179 ++bl->refc;
7180 }
7181
7182 /* Decrement reference count. If the reference count reaches 0,
7183 destroy the bp_location. Sets *BLP to NULL. */
7184
7185 static void
7186 decref_bp_location (struct bp_location **blp)
7187 {
7188 gdb_assert ((*blp)->refc > 0);
7189
7190 if (--(*blp)->refc == 0)
7191 free_bp_location (*blp);
7192 *blp = NULL;
7193 }
7194
7195 /* Add breakpoint B at the end of the global breakpoint chain. */
7196
7197 static void
7198 add_to_breakpoint_chain (struct breakpoint *b)
7199 {
7200 struct breakpoint *b1;
7201
7202 /* Add this breakpoint to the end of the chain so that a list of
7203 breakpoints will come out in order of increasing numbers. */
7204
7205 b1 = breakpoint_chain;
7206 if (b1 == 0)
7207 breakpoint_chain = b;
7208 else
7209 {
7210 while (b1->next)
7211 b1 = b1->next;
7212 b1->next = b;
7213 }
7214 }
7215
7216 /* Initializes breakpoint B with type BPTYPE and no locations yet. */
7217
7218 static void
7219 init_raw_breakpoint_without_location (struct breakpoint *b,
7220 struct gdbarch *gdbarch,
7221 enum bptype bptype,
7222 const struct breakpoint_ops *ops)
7223 {
7224 memset (b, 0, sizeof (*b));
7225
7226 gdb_assert (ops != NULL);
7227
7228 b->ops = ops;
7229 b->type = bptype;
7230 b->gdbarch = gdbarch;
7231 b->language = current_language->la_language;
7232 b->input_radix = input_radix;
7233 b->thread = -1;
7234 b->enable_state = bp_enabled;
7235 b->next = 0;
7236 b->silent = 0;
7237 b->ignore_count = 0;
7238 b->commands = NULL;
7239 b->frame_id = null_frame_id;
7240 b->condition_not_parsed = 0;
7241 b->py_bp_object = NULL;
7242 b->related_breakpoint = b;
7243 }
7244
7245 /* Helper to set_raw_breakpoint below. Creates a breakpoint
7246 that has type BPTYPE and has no locations as yet. */
7247
7248 static struct breakpoint *
7249 set_raw_breakpoint_without_location (struct gdbarch *gdbarch,
7250 enum bptype bptype,
7251 const struct breakpoint_ops *ops)
7252 {
7253 struct breakpoint *b = XNEW (struct breakpoint);
7254
7255 init_raw_breakpoint_without_location (b, gdbarch, bptype, ops);
7256 add_to_breakpoint_chain (b);
7257 return b;
7258 }
7259
7260 /* Initialize loc->function_name. EXPLICIT_LOC says no indirect function
7261 resolutions should be made as the user specified the location explicitly
7262 enough. */
7263
7264 static void
7265 set_breakpoint_location_function (struct bp_location *loc, int explicit_loc)
7266 {
7267 gdb_assert (loc->owner != NULL);
7268
7269 if (loc->owner->type == bp_breakpoint
7270 || loc->owner->type == bp_hardware_breakpoint
7271 || is_tracepoint (loc->owner))
7272 {
7273 int is_gnu_ifunc;
7274 const char *function_name;
7275 CORE_ADDR func_addr;
7276
7277 find_pc_partial_function_gnu_ifunc (loc->address, &function_name,
7278 &func_addr, NULL, &is_gnu_ifunc);
7279
7280 if (is_gnu_ifunc && !explicit_loc)
7281 {
7282 struct breakpoint *b = loc->owner;
7283
7284 gdb_assert (loc->pspace == current_program_space);
7285 if (gnu_ifunc_resolve_name (function_name,
7286 &loc->requested_address))
7287 {
7288 /* Recalculate ADDRESS based on new REQUESTED_ADDRESS. */
7289 loc->address = adjust_breakpoint_address (loc->gdbarch,
7290 loc->requested_address,
7291 b->type);
7292 }
7293 else if (b->type == bp_breakpoint && b->loc == loc
7294 && loc->next == NULL && b->related_breakpoint == b)
7295 {
7296 /* Create only the whole new breakpoint of this type but do not
7297 mess more complicated breakpoints with multiple locations. */
7298 b->type = bp_gnu_ifunc_resolver;
7299 /* Remember the resolver's address for use by the return
7300 breakpoint. */
7301 loc->related_address = func_addr;
7302 }
7303 }
7304
7305 if (function_name)
7306 loc->function_name = xstrdup (function_name);
7307 }
7308 }
7309
7310 /* Attempt to determine architecture of location identified by SAL. */
7311 struct gdbarch *
7312 get_sal_arch (struct symtab_and_line sal)
7313 {
7314 if (sal.section)
7315 return get_objfile_arch (sal.section->objfile);
7316 if (sal.symtab)
7317 return get_objfile_arch (SYMTAB_OBJFILE (sal.symtab));
7318
7319 return NULL;
7320 }
7321
7322 /* Low level routine for partially initializing a breakpoint of type
7323 BPTYPE. The newly created breakpoint's address, section, source
7324 file name, and line number are provided by SAL.
7325
7326 It is expected that the caller will complete the initialization of
7327 the newly created breakpoint struct as well as output any status
7328 information regarding the creation of a new breakpoint. */
7329
7330 static void
7331 init_raw_breakpoint (struct breakpoint *b, struct gdbarch *gdbarch,
7332 struct symtab_and_line sal, enum bptype bptype,
7333 const struct breakpoint_ops *ops)
7334 {
7335 init_raw_breakpoint_without_location (b, gdbarch, bptype, ops);
7336
7337 add_location_to_breakpoint (b, &sal);
7338
7339 if (bptype != bp_catchpoint)
7340 gdb_assert (sal.pspace != NULL);
7341
7342 /* Store the program space that was used to set the breakpoint,
7343 except for ordinary breakpoints, which are independent of the
7344 program space. */
7345 if (bptype != bp_breakpoint && bptype != bp_hardware_breakpoint)
7346 b->pspace = sal.pspace;
7347 }
7348
7349 /* set_raw_breakpoint is a low level routine for allocating and
7350 partially initializing a breakpoint of type BPTYPE. The newly
7351 created breakpoint's address, section, source file name, and line
7352 number are provided by SAL. The newly created and partially
7353 initialized breakpoint is added to the breakpoint chain and
7354 is also returned as the value of this function.
7355
7356 It is expected that the caller will complete the initialization of
7357 the newly created breakpoint struct as well as output any status
7358 information regarding the creation of a new breakpoint. In
7359 particular, set_raw_breakpoint does NOT set the breakpoint
7360 number! Care should be taken to not allow an error to occur
7361 prior to completing the initialization of the breakpoint. If this
7362 should happen, a bogus breakpoint will be left on the chain. */
7363
7364 struct breakpoint *
7365 set_raw_breakpoint (struct gdbarch *gdbarch,
7366 struct symtab_and_line sal, enum bptype bptype,
7367 const struct breakpoint_ops *ops)
7368 {
7369 struct breakpoint *b = XNEW (struct breakpoint);
7370
7371 init_raw_breakpoint (b, gdbarch, sal, bptype, ops);
7372 add_to_breakpoint_chain (b);
7373 return b;
7374 }
7375
7376
7377 /* Note that the breakpoint object B describes a permanent breakpoint
7378 instruction, hard-wired into the inferior's code. */
7379 void
7380 make_breakpoint_permanent (struct breakpoint *b)
7381 {
7382 struct bp_location *bl;
7383
7384 /* By definition, permanent breakpoints are already present in the
7385 code. Mark all locations as inserted. For now,
7386 make_breakpoint_permanent is called in just one place, so it's
7387 hard to say if it's reasonable to have permanent breakpoint with
7388 multiple locations or not, but it's easy to implement. */
7389 for (bl = b->loc; bl; bl = bl->next)
7390 {
7391 bl->permanent = 1;
7392 bl->inserted = 1;
7393 }
7394 }
7395
7396 /* Call this routine when stepping and nexting to enable a breakpoint
7397 if we do a longjmp() or 'throw' in TP. FRAME is the frame which
7398 initiated the operation. */
7399
7400 void
7401 set_longjmp_breakpoint (struct thread_info *tp, struct frame_id frame)
7402 {
7403 struct breakpoint *b, *b_tmp;
7404 int thread = tp->num;
7405
7406 /* To avoid having to rescan all objfile symbols at every step,
7407 we maintain a list of continually-inserted but always disabled
7408 longjmp "master" breakpoints. Here, we simply create momentary
7409 clones of those and enable them for the requested thread. */
7410 ALL_BREAKPOINTS_SAFE (b, b_tmp)
7411 if (b->pspace == current_program_space
7412 && (b->type == bp_longjmp_master
7413 || b->type == bp_exception_master))
7414 {
7415 enum bptype type = b->type == bp_longjmp_master ? bp_longjmp : bp_exception;
7416 struct breakpoint *clone;
7417
7418 /* longjmp_breakpoint_ops ensures INITIATING_FRAME is cleared again
7419 after their removal. */
7420 clone = momentary_breakpoint_from_master (b, type,
7421 &longjmp_breakpoint_ops, 1);
7422 clone->thread = thread;
7423 }
7424
7425 tp->initiating_frame = frame;
7426 }
7427
7428 /* Delete all longjmp breakpoints from THREAD. */
7429 void
7430 delete_longjmp_breakpoint (int thread)
7431 {
7432 struct breakpoint *b, *b_tmp;
7433
7434 ALL_BREAKPOINTS_SAFE (b, b_tmp)
7435 if (b->type == bp_longjmp || b->type == bp_exception)
7436 {
7437 if (b->thread == thread)
7438 delete_breakpoint (b);
7439 }
7440 }
7441
7442 void
7443 delete_longjmp_breakpoint_at_next_stop (int thread)
7444 {
7445 struct breakpoint *b, *b_tmp;
7446
7447 ALL_BREAKPOINTS_SAFE (b, b_tmp)
7448 if (b->type == bp_longjmp || b->type == bp_exception)
7449 {
7450 if (b->thread == thread)
7451 b->disposition = disp_del_at_next_stop;
7452 }
7453 }
7454
7455 /* Place breakpoints of type bp_longjmp_call_dummy to catch longjmp for
7456 INFERIOR_PTID thread. Chain them all by RELATED_BREAKPOINT and return
7457 pointer to any of them. Return NULL if this system cannot place longjmp
7458 breakpoints. */
7459
7460 struct breakpoint *
7461 set_longjmp_breakpoint_for_call_dummy (void)
7462 {
7463 struct breakpoint *b, *retval = NULL;
7464
7465 ALL_BREAKPOINTS (b)
7466 if (b->pspace == current_program_space && b->type == bp_longjmp_master)
7467 {
7468 struct breakpoint *new_b;
7469
7470 new_b = momentary_breakpoint_from_master (b, bp_longjmp_call_dummy,
7471 &momentary_breakpoint_ops,
7472 1);
7473 new_b->thread = pid_to_thread_id (inferior_ptid);
7474
7475 /* Link NEW_B into the chain of RETVAL breakpoints. */
7476
7477 gdb_assert (new_b->related_breakpoint == new_b);
7478 if (retval == NULL)
7479 retval = new_b;
7480 new_b->related_breakpoint = retval;
7481 while (retval->related_breakpoint != new_b->related_breakpoint)
7482 retval = retval->related_breakpoint;
7483 retval->related_breakpoint = new_b;
7484 }
7485
7486 return retval;
7487 }
7488
7489 /* Verify all existing dummy frames and their associated breakpoints for
7490 TP. Remove those which can no longer be found in the current frame
7491 stack.
7492
7493 You should call this function only at places where it is safe to currently
7494 unwind the whole stack. Failed stack unwind would discard live dummy
7495 frames. */
7496
7497 void
7498 check_longjmp_breakpoint_for_call_dummy (struct thread_info *tp)
7499 {
7500 struct breakpoint *b, *b_tmp;
7501
7502 ALL_BREAKPOINTS_SAFE (b, b_tmp)
7503 if (b->type == bp_longjmp_call_dummy && b->thread == tp->num)
7504 {
7505 struct breakpoint *dummy_b = b->related_breakpoint;
7506
7507 while (dummy_b != b && dummy_b->type != bp_call_dummy)
7508 dummy_b = dummy_b->related_breakpoint;
7509 if (dummy_b->type != bp_call_dummy
7510 || frame_find_by_id (dummy_b->frame_id) != NULL)
7511 continue;
7512
7513 dummy_frame_discard (dummy_b->frame_id, tp->ptid);
7514
7515 while (b->related_breakpoint != b)
7516 {
7517 if (b_tmp == b->related_breakpoint)
7518 b_tmp = b->related_breakpoint->next;
7519 delete_breakpoint (b->related_breakpoint);
7520 }
7521 delete_breakpoint (b);
7522 }
7523 }
7524
7525 void
7526 enable_overlay_breakpoints (void)
7527 {
7528 struct breakpoint *b;
7529
7530 ALL_BREAKPOINTS (b)
7531 if (b->type == bp_overlay_event)
7532 {
7533 b->enable_state = bp_enabled;
7534 update_global_location_list (UGLL_MAY_INSERT);
7535 overlay_events_enabled = 1;
7536 }
7537 }
7538
7539 void
7540 disable_overlay_breakpoints (void)
7541 {
7542 struct breakpoint *b;
7543
7544 ALL_BREAKPOINTS (b)
7545 if (b->type == bp_overlay_event)
7546 {
7547 b->enable_state = bp_disabled;
7548 update_global_location_list (UGLL_DONT_INSERT);
7549 overlay_events_enabled = 0;
7550 }
7551 }
7552
7553 /* Set an active std::terminate breakpoint for each std::terminate
7554 master breakpoint. */
7555 void
7556 set_std_terminate_breakpoint (void)
7557 {
7558 struct breakpoint *b, *b_tmp;
7559
7560 ALL_BREAKPOINTS_SAFE (b, b_tmp)
7561 if (b->pspace == current_program_space
7562 && b->type == bp_std_terminate_master)
7563 {
7564 momentary_breakpoint_from_master (b, bp_std_terminate,
7565 &momentary_breakpoint_ops, 1);
7566 }
7567 }
7568
7569 /* Delete all the std::terminate breakpoints. */
7570 void
7571 delete_std_terminate_breakpoint (void)
7572 {
7573 struct breakpoint *b, *b_tmp;
7574
7575 ALL_BREAKPOINTS_SAFE (b, b_tmp)
7576 if (b->type == bp_std_terminate)
7577 delete_breakpoint (b);
7578 }
7579
7580 struct breakpoint *
7581 create_thread_event_breakpoint (struct gdbarch *gdbarch, CORE_ADDR address)
7582 {
7583 struct breakpoint *b;
7584
7585 b = create_internal_breakpoint (gdbarch, address, bp_thread_event,
7586 &internal_breakpoint_ops);
7587
7588 b->enable_state = bp_enabled;
7589 /* addr_string has to be used or breakpoint_re_set will delete me. */
7590 b->addr_string
7591 = xstrprintf ("*%s", paddress (b->loc->gdbarch, b->loc->address));
7592
7593 update_global_location_list_nothrow (UGLL_MAY_INSERT);
7594
7595 return b;
7596 }
7597
7598 void
7599 remove_thread_event_breakpoints (void)
7600 {
7601 struct breakpoint *b, *b_tmp;
7602
7603 ALL_BREAKPOINTS_SAFE (b, b_tmp)
7604 if (b->type == bp_thread_event
7605 && b->loc->pspace == current_program_space)
7606 delete_breakpoint (b);
7607 }
7608
7609 struct lang_and_radix
7610 {
7611 enum language lang;
7612 int radix;
7613 };
7614
7615 /* Create a breakpoint for JIT code registration and unregistration. */
7616
7617 struct breakpoint *
7618 create_jit_event_breakpoint (struct gdbarch *gdbarch, CORE_ADDR address)
7619 {
7620 struct breakpoint *b;
7621
7622 b = create_internal_breakpoint (gdbarch, address, bp_jit_event,
7623 &internal_breakpoint_ops);
7624 update_global_location_list_nothrow (UGLL_MAY_INSERT);
7625 return b;
7626 }
7627
7628 /* Remove JIT code registration and unregistration breakpoint(s). */
7629
7630 void
7631 remove_jit_event_breakpoints (void)
7632 {
7633 struct breakpoint *b, *b_tmp;
7634
7635 ALL_BREAKPOINTS_SAFE (b, b_tmp)
7636 if (b->type == bp_jit_event
7637 && b->loc->pspace == current_program_space)
7638 delete_breakpoint (b);
7639 }
7640
7641 void
7642 remove_solib_event_breakpoints (void)
7643 {
7644 struct breakpoint *b, *b_tmp;
7645
7646 ALL_BREAKPOINTS_SAFE (b, b_tmp)
7647 if (b->type == bp_shlib_event
7648 && b->loc->pspace == current_program_space)
7649 delete_breakpoint (b);
7650 }
7651
7652 /* See breakpoint.h. */
7653
7654 void
7655 remove_solib_event_breakpoints_at_next_stop (void)
7656 {
7657 struct breakpoint *b, *b_tmp;
7658
7659 ALL_BREAKPOINTS_SAFE (b, b_tmp)
7660 if (b->type == bp_shlib_event
7661 && b->loc->pspace == current_program_space)
7662 b->disposition = disp_del_at_next_stop;
7663 }
7664
7665 /* Helper for create_solib_event_breakpoint /
7666 create_and_insert_solib_event_breakpoint. Allows specifying which
7667 INSERT_MODE to pass through to update_global_location_list. */
7668
7669 static struct breakpoint *
7670 create_solib_event_breakpoint_1 (struct gdbarch *gdbarch, CORE_ADDR address,
7671 enum ugll_insert_mode insert_mode)
7672 {
7673 struct breakpoint *b;
7674
7675 b = create_internal_breakpoint (gdbarch, address, bp_shlib_event,
7676 &internal_breakpoint_ops);
7677 update_global_location_list_nothrow (insert_mode);
7678 return b;
7679 }
7680
7681 struct breakpoint *
7682 create_solib_event_breakpoint (struct gdbarch *gdbarch, CORE_ADDR address)
7683 {
7684 return create_solib_event_breakpoint_1 (gdbarch, address, UGLL_MAY_INSERT);
7685 }
7686
7687 /* See breakpoint.h. */
7688
7689 struct breakpoint *
7690 create_and_insert_solib_event_breakpoint (struct gdbarch *gdbarch, CORE_ADDR address)
7691 {
7692 struct breakpoint *b;
7693
7694 /* Explicitly tell update_global_location_list to insert
7695 locations. */
7696 b = create_solib_event_breakpoint_1 (gdbarch, address, UGLL_INSERT);
7697 if (!b->loc->inserted)
7698 {
7699 delete_breakpoint (b);
7700 return NULL;
7701 }
7702 return b;
7703 }
7704
7705 /* Disable any breakpoints that are on code in shared libraries. Only
7706 apply to enabled breakpoints, disabled ones can just stay disabled. */
7707
7708 void
7709 disable_breakpoints_in_shlibs (void)
7710 {
7711 struct bp_location *loc, **locp_tmp;
7712
7713 ALL_BP_LOCATIONS (loc, locp_tmp)
7714 {
7715 /* ALL_BP_LOCATIONS bp_location has LOC->OWNER always non-NULL. */
7716 struct breakpoint *b = loc->owner;
7717
7718 /* We apply the check to all breakpoints, including disabled for
7719 those with loc->duplicate set. This is so that when breakpoint
7720 becomes enabled, or the duplicate is removed, gdb will try to
7721 insert all breakpoints. If we don't set shlib_disabled here,
7722 we'll try to insert those breakpoints and fail. */
7723 if (((b->type == bp_breakpoint)
7724 || (b->type == bp_jit_event)
7725 || (b->type == bp_hardware_breakpoint)
7726 || (is_tracepoint (b)))
7727 && loc->pspace == current_program_space
7728 && !loc->shlib_disabled
7729 && solib_name_from_address (loc->pspace, loc->address)
7730 )
7731 {
7732 loc->shlib_disabled = 1;
7733 }
7734 }
7735 }
7736
7737 /* Disable any breakpoints and tracepoints that are in SOLIB upon
7738 notification of unloaded_shlib. Only apply to enabled breakpoints,
7739 disabled ones can just stay disabled. */
7740
7741 static void
7742 disable_breakpoints_in_unloaded_shlib (struct so_list *solib)
7743 {
7744 struct bp_location *loc, **locp_tmp;
7745 int disabled_shlib_breaks = 0;
7746
7747 /* SunOS a.out shared libraries are always mapped, so do not
7748 disable breakpoints; they will only be reported as unloaded
7749 through clear_solib when GDB discards its shared library
7750 list. See clear_solib for more information. */
7751 if (exec_bfd != NULL
7752 && bfd_get_flavour (exec_bfd) == bfd_target_aout_flavour)
7753 return;
7754
7755 ALL_BP_LOCATIONS (loc, locp_tmp)
7756 {
7757 /* ALL_BP_LOCATIONS bp_location has LOC->OWNER always non-NULL. */
7758 struct breakpoint *b = loc->owner;
7759
7760 if (solib->pspace == loc->pspace
7761 && !loc->shlib_disabled
7762 && (((b->type == bp_breakpoint
7763 || b->type == bp_jit_event
7764 || b->type == bp_hardware_breakpoint)
7765 && (loc->loc_type == bp_loc_hardware_breakpoint
7766 || loc->loc_type == bp_loc_software_breakpoint))
7767 || is_tracepoint (b))
7768 && solib_contains_address_p (solib, loc->address))
7769 {
7770 loc->shlib_disabled = 1;
7771 /* At this point, we cannot rely on remove_breakpoint
7772 succeeding so we must mark the breakpoint as not inserted
7773 to prevent future errors occurring in remove_breakpoints. */
7774 loc->inserted = 0;
7775
7776 /* This may cause duplicate notifications for the same breakpoint. */
7777 observer_notify_breakpoint_modified (b);
7778
7779 if (!disabled_shlib_breaks)
7780 {
7781 target_terminal_ours_for_output ();
7782 warning (_("Temporarily disabling breakpoints "
7783 "for unloaded shared library \"%s\""),
7784 solib->so_name);
7785 }
7786 disabled_shlib_breaks = 1;
7787 }
7788 }
7789 }
7790
7791 /* Disable any breakpoints and tracepoints in OBJFILE upon
7792 notification of free_objfile. Only apply to enabled breakpoints,
7793 disabled ones can just stay disabled. */
7794
7795 static void
7796 disable_breakpoints_in_freed_objfile (struct objfile *objfile)
7797 {
7798 struct breakpoint *b;
7799
7800 if (objfile == NULL)
7801 return;
7802
7803 /* OBJF_SHARED|OBJF_USERLOADED objfiles are dynamic modules manually
7804 managed by the user with add-symbol-file/remove-symbol-file.
7805 Similarly to how breakpoints in shared libraries are handled in
7806 response to "nosharedlibrary", mark breakpoints in such modules
7807 shlib_disabled so they end up uninserted on the next global
7808 location list update. Shared libraries not loaded by the user
7809 aren't handled here -- they're already handled in
7810 disable_breakpoints_in_unloaded_shlib, called by solib.c's
7811 solib_unloaded observer. We skip objfiles that are not
7812 OBJF_SHARED as those aren't considered dynamic objects (e.g. the
7813 main objfile). */
7814 if ((objfile->flags & OBJF_SHARED) == 0
7815 || (objfile->flags & OBJF_USERLOADED) == 0)
7816 return;
7817
7818 ALL_BREAKPOINTS (b)
7819 {
7820 struct bp_location *loc;
7821 int bp_modified = 0;
7822
7823 if (!is_breakpoint (b) && !is_tracepoint (b))
7824 continue;
7825
7826 for (loc = b->loc; loc != NULL; loc = loc->next)
7827 {
7828 CORE_ADDR loc_addr = loc->address;
7829
7830 if (loc->loc_type != bp_loc_hardware_breakpoint
7831 && loc->loc_type != bp_loc_software_breakpoint)
7832 continue;
7833
7834 if (loc->shlib_disabled != 0)
7835 continue;
7836
7837 if (objfile->pspace != loc->pspace)
7838 continue;
7839
7840 if (loc->loc_type != bp_loc_hardware_breakpoint
7841 && loc->loc_type != bp_loc_software_breakpoint)
7842 continue;
7843
7844 if (is_addr_in_objfile (loc_addr, objfile))
7845 {
7846 loc->shlib_disabled = 1;
7847 /* At this point, we don't know whether the object was
7848 unmapped from the inferior or not, so leave the
7849 inserted flag alone. We'll handle failure to
7850 uninsert quietly, in case the object was indeed
7851 unmapped. */
7852
7853 mark_breakpoint_location_modified (loc);
7854
7855 bp_modified = 1;
7856 }
7857 }
7858
7859 if (bp_modified)
7860 observer_notify_breakpoint_modified (b);
7861 }
7862 }
7863
7864 /* FORK & VFORK catchpoints. */
7865
7866 /* An instance of this type is used to represent a fork or vfork
7867 catchpoint. It includes a "struct breakpoint" as a kind of base
7868 class; users downcast to "struct breakpoint *" when needed. A
7869 breakpoint is really of this type iff its ops pointer points to
7870 CATCH_FORK_BREAKPOINT_OPS. */
7871
7872 struct fork_catchpoint
7873 {
7874 /* The base class. */
7875 struct breakpoint base;
7876
7877 /* Process id of a child process whose forking triggered this
7878 catchpoint. This field is only valid immediately after this
7879 catchpoint has triggered. */
7880 ptid_t forked_inferior_pid;
7881 };
7882
7883 /* Implement the "insert" breakpoint_ops method for fork
7884 catchpoints. */
7885
7886 static int
7887 insert_catch_fork (struct bp_location *bl)
7888 {
7889 return target_insert_fork_catchpoint (ptid_get_pid (inferior_ptid));
7890 }
7891
7892 /* Implement the "remove" breakpoint_ops method for fork
7893 catchpoints. */
7894
7895 static int
7896 remove_catch_fork (struct bp_location *bl)
7897 {
7898 return target_remove_fork_catchpoint (ptid_get_pid (inferior_ptid));
7899 }
7900
7901 /* Implement the "breakpoint_hit" breakpoint_ops method for fork
7902 catchpoints. */
7903
7904 static int
7905 breakpoint_hit_catch_fork (const struct bp_location *bl,
7906 struct address_space *aspace, CORE_ADDR bp_addr,
7907 const struct target_waitstatus *ws)
7908 {
7909 struct fork_catchpoint *c = (struct fork_catchpoint *) bl->owner;
7910
7911 if (ws->kind != TARGET_WAITKIND_FORKED)
7912 return 0;
7913
7914 c->forked_inferior_pid = ws->value.related_pid;
7915 return 1;
7916 }
7917
7918 /* Implement the "print_it" breakpoint_ops method for fork
7919 catchpoints. */
7920
7921 static enum print_stop_action
7922 print_it_catch_fork (bpstat bs)
7923 {
7924 struct ui_out *uiout = current_uiout;
7925 struct breakpoint *b = bs->breakpoint_at;
7926 struct fork_catchpoint *c = (struct fork_catchpoint *) bs->breakpoint_at;
7927
7928 annotate_catchpoint (b->number);
7929 if (b->disposition == disp_del)
7930 ui_out_text (uiout, "\nTemporary catchpoint ");
7931 else
7932 ui_out_text (uiout, "\nCatchpoint ");
7933 if (ui_out_is_mi_like_p (uiout))
7934 {
7935 ui_out_field_string (uiout, "reason",
7936 async_reason_lookup (EXEC_ASYNC_FORK));
7937 ui_out_field_string (uiout, "disp", bpdisp_text (b->disposition));
7938 }
7939 ui_out_field_int (uiout, "bkptno", b->number);
7940 ui_out_text (uiout, " (forked process ");
7941 ui_out_field_int (uiout, "newpid", ptid_get_pid (c->forked_inferior_pid));
7942 ui_out_text (uiout, "), ");
7943 return PRINT_SRC_AND_LOC;
7944 }
7945
7946 /* Implement the "print_one" breakpoint_ops method for fork
7947 catchpoints. */
7948
7949 static void
7950 print_one_catch_fork (struct breakpoint *b, struct bp_location **last_loc)
7951 {
7952 struct fork_catchpoint *c = (struct fork_catchpoint *) b;
7953 struct value_print_options opts;
7954 struct ui_out *uiout = current_uiout;
7955
7956 get_user_print_options (&opts);
7957
7958 /* Field 4, the address, is omitted (which makes the columns not
7959 line up too nicely with the headers, but the effect is relatively
7960 readable). */
7961 if (opts.addressprint)
7962 ui_out_field_skip (uiout, "addr");
7963 annotate_field (5);
7964 ui_out_text (uiout, "fork");
7965 if (!ptid_equal (c->forked_inferior_pid, null_ptid))
7966 {
7967 ui_out_text (uiout, ", process ");
7968 ui_out_field_int (uiout, "what",
7969 ptid_get_pid (c->forked_inferior_pid));
7970 ui_out_spaces (uiout, 1);
7971 }
7972
7973 if (ui_out_is_mi_like_p (uiout))
7974 ui_out_field_string (uiout, "catch-type", "fork");
7975 }
7976
7977 /* Implement the "print_mention" breakpoint_ops method for fork
7978 catchpoints. */
7979
7980 static void
7981 print_mention_catch_fork (struct breakpoint *b)
7982 {
7983 printf_filtered (_("Catchpoint %d (fork)"), b->number);
7984 }
7985
7986 /* Implement the "print_recreate" breakpoint_ops method for fork
7987 catchpoints. */
7988
7989 static void
7990 print_recreate_catch_fork (struct breakpoint *b, struct ui_file *fp)
7991 {
7992 fprintf_unfiltered (fp, "catch fork");
7993 print_recreate_thread (b, fp);
7994 }
7995
7996 /* The breakpoint_ops structure to be used in fork catchpoints. */
7997
7998 static struct breakpoint_ops catch_fork_breakpoint_ops;
7999
8000 /* Implement the "insert" breakpoint_ops method for vfork
8001 catchpoints. */
8002
8003 static int
8004 insert_catch_vfork (struct bp_location *bl)
8005 {
8006 return target_insert_vfork_catchpoint (ptid_get_pid (inferior_ptid));
8007 }
8008
8009 /* Implement the "remove" breakpoint_ops method for vfork
8010 catchpoints. */
8011
8012 static int
8013 remove_catch_vfork (struct bp_location *bl)
8014 {
8015 return target_remove_vfork_catchpoint (ptid_get_pid (inferior_ptid));
8016 }
8017
8018 /* Implement the "breakpoint_hit" breakpoint_ops method for vfork
8019 catchpoints. */
8020
8021 static int
8022 breakpoint_hit_catch_vfork (const struct bp_location *bl,
8023 struct address_space *aspace, CORE_ADDR bp_addr,
8024 const struct target_waitstatus *ws)
8025 {
8026 struct fork_catchpoint *c = (struct fork_catchpoint *) bl->owner;
8027
8028 if (ws->kind != TARGET_WAITKIND_VFORKED)
8029 return 0;
8030
8031 c->forked_inferior_pid = ws->value.related_pid;
8032 return 1;
8033 }
8034
8035 /* Implement the "print_it" breakpoint_ops method for vfork
8036 catchpoints. */
8037
8038 static enum print_stop_action
8039 print_it_catch_vfork (bpstat bs)
8040 {
8041 struct ui_out *uiout = current_uiout;
8042 struct breakpoint *b = bs->breakpoint_at;
8043 struct fork_catchpoint *c = (struct fork_catchpoint *) b;
8044
8045 annotate_catchpoint (b->number);
8046 if (b->disposition == disp_del)
8047 ui_out_text (uiout, "\nTemporary catchpoint ");
8048 else
8049 ui_out_text (uiout, "\nCatchpoint ");
8050 if (ui_out_is_mi_like_p (uiout))
8051 {
8052 ui_out_field_string (uiout, "reason",
8053 async_reason_lookup (EXEC_ASYNC_VFORK));
8054 ui_out_field_string (uiout, "disp", bpdisp_text (b->disposition));
8055 }
8056 ui_out_field_int (uiout, "bkptno", b->number);
8057 ui_out_text (uiout, " (vforked process ");
8058 ui_out_field_int (uiout, "newpid", ptid_get_pid (c->forked_inferior_pid));
8059 ui_out_text (uiout, "), ");
8060 return PRINT_SRC_AND_LOC;
8061 }
8062
8063 /* Implement the "print_one" breakpoint_ops method for vfork
8064 catchpoints. */
8065
8066 static void
8067 print_one_catch_vfork (struct breakpoint *b, struct bp_location **last_loc)
8068 {
8069 struct fork_catchpoint *c = (struct fork_catchpoint *) b;
8070 struct value_print_options opts;
8071 struct ui_out *uiout = current_uiout;
8072
8073 get_user_print_options (&opts);
8074 /* Field 4, the address, is omitted (which makes the columns not
8075 line up too nicely with the headers, but the effect is relatively
8076 readable). */
8077 if (opts.addressprint)
8078 ui_out_field_skip (uiout, "addr");
8079 annotate_field (5);
8080 ui_out_text (uiout, "vfork");
8081 if (!ptid_equal (c->forked_inferior_pid, null_ptid))
8082 {
8083 ui_out_text (uiout, ", process ");
8084 ui_out_field_int (uiout, "what",
8085 ptid_get_pid (c->forked_inferior_pid));
8086 ui_out_spaces (uiout, 1);
8087 }
8088
8089 if (ui_out_is_mi_like_p (uiout))
8090 ui_out_field_string (uiout, "catch-type", "vfork");
8091 }
8092
8093 /* Implement the "print_mention" breakpoint_ops method for vfork
8094 catchpoints. */
8095
8096 static void
8097 print_mention_catch_vfork (struct breakpoint *b)
8098 {
8099 printf_filtered (_("Catchpoint %d (vfork)"), b->number);
8100 }
8101
8102 /* Implement the "print_recreate" breakpoint_ops method for vfork
8103 catchpoints. */
8104
8105 static void
8106 print_recreate_catch_vfork (struct breakpoint *b, struct ui_file *fp)
8107 {
8108 fprintf_unfiltered (fp, "catch vfork");
8109 print_recreate_thread (b, fp);
8110 }
8111
8112 /* The breakpoint_ops structure to be used in vfork catchpoints. */
8113
8114 static struct breakpoint_ops catch_vfork_breakpoint_ops;
8115
8116 /* An instance of this type is used to represent an solib catchpoint.
8117 It includes a "struct breakpoint" as a kind of base class; users
8118 downcast to "struct breakpoint *" when needed. A breakpoint is
8119 really of this type iff its ops pointer points to
8120 CATCH_SOLIB_BREAKPOINT_OPS. */
8121
8122 struct solib_catchpoint
8123 {
8124 /* The base class. */
8125 struct breakpoint base;
8126
8127 /* True for "catch load", false for "catch unload". */
8128 unsigned char is_load;
8129
8130 /* Regular expression to match, if any. COMPILED is only valid when
8131 REGEX is non-NULL. */
8132 char *regex;
8133 regex_t compiled;
8134 };
8135
8136 static void
8137 dtor_catch_solib (struct breakpoint *b)
8138 {
8139 struct solib_catchpoint *self = (struct solib_catchpoint *) b;
8140
8141 if (self->regex)
8142 regfree (&self->compiled);
8143 xfree (self->regex);
8144
8145 base_breakpoint_ops.dtor (b);
8146 }
8147
8148 static int
8149 insert_catch_solib (struct bp_location *ignore)
8150 {
8151 return 0;
8152 }
8153
8154 static int
8155 remove_catch_solib (struct bp_location *ignore)
8156 {
8157 return 0;
8158 }
8159
8160 static int
8161 breakpoint_hit_catch_solib (const struct bp_location *bl,
8162 struct address_space *aspace,
8163 CORE_ADDR bp_addr,
8164 const struct target_waitstatus *ws)
8165 {
8166 struct solib_catchpoint *self = (struct solib_catchpoint *) bl->owner;
8167 struct breakpoint *other;
8168
8169 if (ws->kind == TARGET_WAITKIND_LOADED)
8170 return 1;
8171
8172 ALL_BREAKPOINTS (other)
8173 {
8174 struct bp_location *other_bl;
8175
8176 if (other == bl->owner)
8177 continue;
8178
8179 if (other->type != bp_shlib_event)
8180 continue;
8181
8182 if (self->base.pspace != NULL && other->pspace != self->base.pspace)
8183 continue;
8184
8185 for (other_bl = other->loc; other_bl != NULL; other_bl = other_bl->next)
8186 {
8187 if (other->ops->breakpoint_hit (other_bl, aspace, bp_addr, ws))
8188 return 1;
8189 }
8190 }
8191
8192 return 0;
8193 }
8194
8195 static void
8196 check_status_catch_solib (struct bpstats *bs)
8197 {
8198 struct solib_catchpoint *self
8199 = (struct solib_catchpoint *) bs->breakpoint_at;
8200 int ix;
8201
8202 if (self->is_load)
8203 {
8204 struct so_list *iter;
8205
8206 for (ix = 0;
8207 VEC_iterate (so_list_ptr, current_program_space->added_solibs,
8208 ix, iter);
8209 ++ix)
8210 {
8211 if (!self->regex
8212 || regexec (&self->compiled, iter->so_name, 0, NULL, 0) == 0)
8213 return;
8214 }
8215 }
8216 else
8217 {
8218 char *iter;
8219
8220 for (ix = 0;
8221 VEC_iterate (char_ptr, current_program_space->deleted_solibs,
8222 ix, iter);
8223 ++ix)
8224 {
8225 if (!self->regex
8226 || regexec (&self->compiled, iter, 0, NULL, 0) == 0)
8227 return;
8228 }
8229 }
8230
8231 bs->stop = 0;
8232 bs->print_it = print_it_noop;
8233 }
8234
8235 static enum print_stop_action
8236 print_it_catch_solib (bpstat bs)
8237 {
8238 struct breakpoint *b = bs->breakpoint_at;
8239 struct ui_out *uiout = current_uiout;
8240
8241 annotate_catchpoint (b->number);
8242 if (b->disposition == disp_del)
8243 ui_out_text (uiout, "\nTemporary catchpoint ");
8244 else
8245 ui_out_text (uiout, "\nCatchpoint ");
8246 ui_out_field_int (uiout, "bkptno", b->number);
8247 ui_out_text (uiout, "\n");
8248 if (ui_out_is_mi_like_p (uiout))
8249 ui_out_field_string (uiout, "disp", bpdisp_text (b->disposition));
8250 print_solib_event (1);
8251 return PRINT_SRC_AND_LOC;
8252 }
8253
8254 static void
8255 print_one_catch_solib (struct breakpoint *b, struct bp_location **locs)
8256 {
8257 struct solib_catchpoint *self = (struct solib_catchpoint *) b;
8258 struct value_print_options opts;
8259 struct ui_out *uiout = current_uiout;
8260 char *msg;
8261
8262 get_user_print_options (&opts);
8263 /* Field 4, the address, is omitted (which makes the columns not
8264 line up too nicely with the headers, but the effect is relatively
8265 readable). */
8266 if (opts.addressprint)
8267 {
8268 annotate_field (4);
8269 ui_out_field_skip (uiout, "addr");
8270 }
8271
8272 annotate_field (5);
8273 if (self->is_load)
8274 {
8275 if (self->regex)
8276 msg = xstrprintf (_("load of library matching %s"), self->regex);
8277 else
8278 msg = xstrdup (_("load of library"));
8279 }
8280 else
8281 {
8282 if (self->regex)
8283 msg = xstrprintf (_("unload of library matching %s"), self->regex);
8284 else
8285 msg = xstrdup (_("unload of library"));
8286 }
8287 ui_out_field_string (uiout, "what", msg);
8288 xfree (msg);
8289
8290 if (ui_out_is_mi_like_p (uiout))
8291 ui_out_field_string (uiout, "catch-type",
8292 self->is_load ? "load" : "unload");
8293 }
8294
8295 static void
8296 print_mention_catch_solib (struct breakpoint *b)
8297 {
8298 struct solib_catchpoint *self = (struct solib_catchpoint *) b;
8299
8300 printf_filtered (_("Catchpoint %d (%s)"), b->number,
8301 self->is_load ? "load" : "unload");
8302 }
8303
8304 static void
8305 print_recreate_catch_solib (struct breakpoint *b, struct ui_file *fp)
8306 {
8307 struct solib_catchpoint *self = (struct solib_catchpoint *) b;
8308
8309 fprintf_unfiltered (fp, "%s %s",
8310 b->disposition == disp_del ? "tcatch" : "catch",
8311 self->is_load ? "load" : "unload");
8312 if (self->regex)
8313 fprintf_unfiltered (fp, " %s", self->regex);
8314 fprintf_unfiltered (fp, "\n");
8315 }
8316
8317 static struct breakpoint_ops catch_solib_breakpoint_ops;
8318
8319 /* Shared helper function (MI and CLI) for creating and installing
8320 a shared object event catchpoint. If IS_LOAD is non-zero then
8321 the events to be caught are load events, otherwise they are
8322 unload events. If IS_TEMP is non-zero the catchpoint is a
8323 temporary one. If ENABLED is non-zero the catchpoint is
8324 created in an enabled state. */
8325
8326 void
8327 add_solib_catchpoint (char *arg, int is_load, int is_temp, int enabled)
8328 {
8329 struct solib_catchpoint *c;
8330 struct gdbarch *gdbarch = get_current_arch ();
8331 struct cleanup *cleanup;
8332
8333 if (!arg)
8334 arg = "";
8335 arg = skip_spaces (arg);
8336
8337 c = XCNEW (struct solib_catchpoint);
8338 cleanup = make_cleanup (xfree, c);
8339
8340 if (*arg != '\0')
8341 {
8342 int errcode;
8343
8344 errcode = regcomp (&c->compiled, arg, REG_NOSUB);
8345 if (errcode != 0)
8346 {
8347 char *err = get_regcomp_error (errcode, &c->compiled);
8348
8349 make_cleanup (xfree, err);
8350 error (_("Invalid regexp (%s): %s"), err, arg);
8351 }
8352 c->regex = xstrdup (arg);
8353 }
8354
8355 c->is_load = is_load;
8356 init_catchpoint (&c->base, gdbarch, is_temp, NULL,
8357 &catch_solib_breakpoint_ops);
8358
8359 c->base.enable_state = enabled ? bp_enabled : bp_disabled;
8360
8361 discard_cleanups (cleanup);
8362 install_breakpoint (0, &c->base, 1);
8363 }
8364
8365 /* A helper function that does all the work for "catch load" and
8366 "catch unload". */
8367
8368 static void
8369 catch_load_or_unload (char *arg, int from_tty, int is_load,
8370 struct cmd_list_element *command)
8371 {
8372 int tempflag;
8373 const int enabled = 1;
8374
8375 tempflag = get_cmd_context (command) == CATCH_TEMPORARY;
8376
8377 add_solib_catchpoint (arg, is_load, tempflag, enabled);
8378 }
8379
8380 static void
8381 catch_load_command_1 (char *arg, int from_tty,
8382 struct cmd_list_element *command)
8383 {
8384 catch_load_or_unload (arg, from_tty, 1, command);
8385 }
8386
8387 static void
8388 catch_unload_command_1 (char *arg, int from_tty,
8389 struct cmd_list_element *command)
8390 {
8391 catch_load_or_unload (arg, from_tty, 0, command);
8392 }
8393
8394 /* An instance of this type is used to represent a syscall catchpoint.
8395 It includes a "struct breakpoint" as a kind of base class; users
8396 downcast to "struct breakpoint *" when needed. A breakpoint is
8397 really of this type iff its ops pointer points to
8398 CATCH_SYSCALL_BREAKPOINT_OPS. */
8399
8400 struct syscall_catchpoint
8401 {
8402 /* The base class. */
8403 struct breakpoint base;
8404
8405 /* Syscall numbers used for the 'catch syscall' feature. If no
8406 syscall has been specified for filtering, its value is NULL.
8407 Otherwise, it holds a list of all syscalls to be caught. The
8408 list elements are allocated with xmalloc. */
8409 VEC(int) *syscalls_to_be_caught;
8410 };
8411
8412 /* Implement the "dtor" breakpoint_ops method for syscall
8413 catchpoints. */
8414
8415 static void
8416 dtor_catch_syscall (struct breakpoint *b)
8417 {
8418 struct syscall_catchpoint *c = (struct syscall_catchpoint *) b;
8419
8420 VEC_free (int, c->syscalls_to_be_caught);
8421
8422 base_breakpoint_ops.dtor (b);
8423 }
8424
8425 static const struct inferior_data *catch_syscall_inferior_data = NULL;
8426
8427 struct catch_syscall_inferior_data
8428 {
8429 /* We keep a count of the number of times the user has requested a
8430 particular syscall to be tracked, and pass this information to the
8431 target. This lets capable targets implement filtering directly. */
8432
8433 /* Number of times that "any" syscall is requested. */
8434 int any_syscall_count;
8435
8436 /* Count of each system call. */
8437 VEC(int) *syscalls_counts;
8438
8439 /* This counts all syscall catch requests, so we can readily determine
8440 if any catching is necessary. */
8441 int total_syscalls_count;
8442 };
8443
8444 static struct catch_syscall_inferior_data*
8445 get_catch_syscall_inferior_data (struct inferior *inf)
8446 {
8447 struct catch_syscall_inferior_data *inf_data;
8448
8449 inf_data = inferior_data (inf, catch_syscall_inferior_data);
8450 if (inf_data == NULL)
8451 {
8452 inf_data = XCNEW (struct catch_syscall_inferior_data);
8453 set_inferior_data (inf, catch_syscall_inferior_data, inf_data);
8454 }
8455
8456 return inf_data;
8457 }
8458
8459 static void
8460 catch_syscall_inferior_data_cleanup (struct inferior *inf, void *arg)
8461 {
8462 xfree (arg);
8463 }
8464
8465
8466 /* Implement the "insert" breakpoint_ops method for syscall
8467 catchpoints. */
8468
8469 static int
8470 insert_catch_syscall (struct bp_location *bl)
8471 {
8472 struct syscall_catchpoint *c = (struct syscall_catchpoint *) bl->owner;
8473 struct inferior *inf = current_inferior ();
8474 struct catch_syscall_inferior_data *inf_data
8475 = get_catch_syscall_inferior_data (inf);
8476
8477 ++inf_data->total_syscalls_count;
8478 if (!c->syscalls_to_be_caught)
8479 ++inf_data->any_syscall_count;
8480 else
8481 {
8482 int i, iter;
8483
8484 for (i = 0;
8485 VEC_iterate (int, c->syscalls_to_be_caught, i, iter);
8486 i++)
8487 {
8488 int elem;
8489
8490 if (iter >= VEC_length (int, inf_data->syscalls_counts))
8491 {
8492 int old_size = VEC_length (int, inf_data->syscalls_counts);
8493 uintptr_t vec_addr_offset
8494 = old_size * ((uintptr_t) sizeof (int));
8495 uintptr_t vec_addr;
8496 VEC_safe_grow (int, inf_data->syscalls_counts, iter + 1);
8497 vec_addr = ((uintptr_t) VEC_address (int,
8498 inf_data->syscalls_counts)
8499 + vec_addr_offset);
8500 memset ((void *) vec_addr, 0,
8501 (iter + 1 - old_size) * sizeof (int));
8502 }
8503 elem = VEC_index (int, inf_data->syscalls_counts, iter);
8504 VEC_replace (int, inf_data->syscalls_counts, iter, ++elem);
8505 }
8506 }
8507
8508 return target_set_syscall_catchpoint (ptid_get_pid (inferior_ptid),
8509 inf_data->total_syscalls_count != 0,
8510 inf_data->any_syscall_count,
8511 VEC_length (int,
8512 inf_data->syscalls_counts),
8513 VEC_address (int,
8514 inf_data->syscalls_counts));
8515 }
8516
8517 /* Implement the "remove" breakpoint_ops method for syscall
8518 catchpoints. */
8519
8520 static int
8521 remove_catch_syscall (struct bp_location *bl)
8522 {
8523 struct syscall_catchpoint *c = (struct syscall_catchpoint *) bl->owner;
8524 struct inferior *inf = current_inferior ();
8525 struct catch_syscall_inferior_data *inf_data
8526 = get_catch_syscall_inferior_data (inf);
8527
8528 --inf_data->total_syscalls_count;
8529 if (!c->syscalls_to_be_caught)
8530 --inf_data->any_syscall_count;
8531 else
8532 {
8533 int i, iter;
8534
8535 for (i = 0;
8536 VEC_iterate (int, c->syscalls_to_be_caught, i, iter);
8537 i++)
8538 {
8539 int elem;
8540 if (iter >= VEC_length (int, inf_data->syscalls_counts))
8541 /* Shouldn't happen. */
8542 continue;
8543 elem = VEC_index (int, inf_data->syscalls_counts, iter);
8544 VEC_replace (int, inf_data->syscalls_counts, iter, --elem);
8545 }
8546 }
8547
8548 return target_set_syscall_catchpoint (ptid_get_pid (inferior_ptid),
8549 inf_data->total_syscalls_count != 0,
8550 inf_data->any_syscall_count,
8551 VEC_length (int,
8552 inf_data->syscalls_counts),
8553 VEC_address (int,
8554 inf_data->syscalls_counts));
8555 }
8556
8557 /* Implement the "breakpoint_hit" breakpoint_ops method for syscall
8558 catchpoints. */
8559
8560 static int
8561 breakpoint_hit_catch_syscall (const struct bp_location *bl,
8562 struct address_space *aspace, CORE_ADDR bp_addr,
8563 const struct target_waitstatus *ws)
8564 {
8565 /* We must check if we are catching specific syscalls in this
8566 breakpoint. If we are, then we must guarantee that the called
8567 syscall is the same syscall we are catching. */
8568 int syscall_number = 0;
8569 const struct syscall_catchpoint *c
8570 = (const struct syscall_catchpoint *) bl->owner;
8571
8572 if (ws->kind != TARGET_WAITKIND_SYSCALL_ENTRY
8573 && ws->kind != TARGET_WAITKIND_SYSCALL_RETURN)
8574 return 0;
8575
8576 syscall_number = ws->value.syscall_number;
8577
8578 /* Now, checking if the syscall is the same. */
8579 if (c->syscalls_to_be_caught)
8580 {
8581 int i, iter;
8582
8583 for (i = 0;
8584 VEC_iterate (int, c->syscalls_to_be_caught, i, iter);
8585 i++)
8586 if (syscall_number == iter)
8587 return 1;
8588
8589 return 0;
8590 }
8591
8592 return 1;
8593 }
8594
8595 /* Implement the "print_it" breakpoint_ops method for syscall
8596 catchpoints. */
8597
8598 static enum print_stop_action
8599 print_it_catch_syscall (bpstat bs)
8600 {
8601 struct ui_out *uiout = current_uiout;
8602 struct breakpoint *b = bs->breakpoint_at;
8603 /* These are needed because we want to know in which state a
8604 syscall is. It can be in the TARGET_WAITKIND_SYSCALL_ENTRY
8605 or TARGET_WAITKIND_SYSCALL_RETURN, and depending on it we
8606 must print "called syscall" or "returned from syscall". */
8607 ptid_t ptid;
8608 struct target_waitstatus last;
8609 struct syscall s;
8610 struct gdbarch *gdbarch = bs->bp_location_at->gdbarch;
8611
8612 get_last_target_status (&ptid, &last);
8613
8614 get_syscall_by_number (gdbarch, last.value.syscall_number, &s);
8615
8616 annotate_catchpoint (b->number);
8617
8618 if (b->disposition == disp_del)
8619 ui_out_text (uiout, "\nTemporary catchpoint ");
8620 else
8621 ui_out_text (uiout, "\nCatchpoint ");
8622 if (ui_out_is_mi_like_p (uiout))
8623 {
8624 ui_out_field_string (uiout, "reason",
8625 async_reason_lookup (last.kind == TARGET_WAITKIND_SYSCALL_ENTRY
8626 ? EXEC_ASYNC_SYSCALL_ENTRY
8627 : EXEC_ASYNC_SYSCALL_RETURN));
8628 ui_out_field_string (uiout, "disp", bpdisp_text (b->disposition));
8629 }
8630 ui_out_field_int (uiout, "bkptno", b->number);
8631
8632 if (last.kind == TARGET_WAITKIND_SYSCALL_ENTRY)
8633 ui_out_text (uiout, " (call to syscall ");
8634 else
8635 ui_out_text (uiout, " (returned from syscall ");
8636
8637 if (s.name == NULL || ui_out_is_mi_like_p (uiout))
8638 ui_out_field_int (uiout, "syscall-number", last.value.syscall_number);
8639 if (s.name != NULL)
8640 ui_out_field_string (uiout, "syscall-name", s.name);
8641
8642 ui_out_text (uiout, "), ");
8643
8644 return PRINT_SRC_AND_LOC;
8645 }
8646
8647 /* Implement the "print_one" breakpoint_ops method for syscall
8648 catchpoints. */
8649
8650 static void
8651 print_one_catch_syscall (struct breakpoint *b,
8652 struct bp_location **last_loc)
8653 {
8654 struct syscall_catchpoint *c = (struct syscall_catchpoint *) b;
8655 struct value_print_options opts;
8656 struct ui_out *uiout = current_uiout;
8657 struct gdbarch *gdbarch = b->loc->gdbarch;
8658
8659 get_user_print_options (&opts);
8660 /* Field 4, the address, is omitted (which makes the columns not
8661 line up too nicely with the headers, but the effect is relatively
8662 readable). */
8663 if (opts.addressprint)
8664 ui_out_field_skip (uiout, "addr");
8665 annotate_field (5);
8666
8667 if (c->syscalls_to_be_caught
8668 && VEC_length (int, c->syscalls_to_be_caught) > 1)
8669 ui_out_text (uiout, "syscalls \"");
8670 else
8671 ui_out_text (uiout, "syscall \"");
8672
8673 if (c->syscalls_to_be_caught)
8674 {
8675 int i, iter;
8676 char *text = xstrprintf ("%s", "");
8677
8678 for (i = 0;
8679 VEC_iterate (int, c->syscalls_to_be_caught, i, iter);
8680 i++)
8681 {
8682 char *x = text;
8683 struct syscall s;
8684 get_syscall_by_number (gdbarch, iter, &s);
8685
8686 if (s.name != NULL)
8687 text = xstrprintf ("%s%s, ", text, s.name);
8688 else
8689 text = xstrprintf ("%s%d, ", text, iter);
8690
8691 /* We have to xfree the last 'text' (now stored at 'x')
8692 because xstrprintf dynamically allocates new space for it
8693 on every call. */
8694 xfree (x);
8695 }
8696 /* Remove the last comma. */
8697 text[strlen (text) - 2] = '\0';
8698 ui_out_field_string (uiout, "what", text);
8699 }
8700 else
8701 ui_out_field_string (uiout, "what", "<any syscall>");
8702 ui_out_text (uiout, "\" ");
8703
8704 if (ui_out_is_mi_like_p (uiout))
8705 ui_out_field_string (uiout, "catch-type", "syscall");
8706 }
8707
8708 /* Implement the "print_mention" breakpoint_ops method for syscall
8709 catchpoints. */
8710
8711 static void
8712 print_mention_catch_syscall (struct breakpoint *b)
8713 {
8714 struct syscall_catchpoint *c = (struct syscall_catchpoint *) b;
8715 struct gdbarch *gdbarch = b->loc->gdbarch;
8716
8717 if (c->syscalls_to_be_caught)
8718 {
8719 int i, iter;
8720
8721 if (VEC_length (int, c->syscalls_to_be_caught) > 1)
8722 printf_filtered (_("Catchpoint %d (syscalls"), b->number);
8723 else
8724 printf_filtered (_("Catchpoint %d (syscall"), b->number);
8725
8726 for (i = 0;
8727 VEC_iterate (int, c->syscalls_to_be_caught, i, iter);
8728 i++)
8729 {
8730 struct syscall s;
8731 get_syscall_by_number (gdbarch, iter, &s);
8732
8733 if (s.name)
8734 printf_filtered (" '%s' [%d]", s.name, s.number);
8735 else
8736 printf_filtered (" %d", s.number);
8737 }
8738 printf_filtered (")");
8739 }
8740 else
8741 printf_filtered (_("Catchpoint %d (any syscall)"),
8742 b->number);
8743 }
8744
8745 /* Implement the "print_recreate" breakpoint_ops method for syscall
8746 catchpoints. */
8747
8748 static void
8749 print_recreate_catch_syscall (struct breakpoint *b, struct ui_file *fp)
8750 {
8751 struct syscall_catchpoint *c = (struct syscall_catchpoint *) b;
8752 struct gdbarch *gdbarch = b->loc->gdbarch;
8753
8754 fprintf_unfiltered (fp, "catch syscall");
8755
8756 if (c->syscalls_to_be_caught)
8757 {
8758 int i, iter;
8759
8760 for (i = 0;
8761 VEC_iterate (int, c->syscalls_to_be_caught, i, iter);
8762 i++)
8763 {
8764 struct syscall s;
8765
8766 get_syscall_by_number (gdbarch, iter, &s);
8767 if (s.name)
8768 fprintf_unfiltered (fp, " %s", s.name);
8769 else
8770 fprintf_unfiltered (fp, " %d", s.number);
8771 }
8772 }
8773 print_recreate_thread (b, fp);
8774 }
8775
8776 /* The breakpoint_ops structure to be used in syscall catchpoints. */
8777
8778 static struct breakpoint_ops catch_syscall_breakpoint_ops;
8779
8780 /* Returns non-zero if 'b' is a syscall catchpoint. */
8781
8782 static int
8783 syscall_catchpoint_p (struct breakpoint *b)
8784 {
8785 return (b->ops == &catch_syscall_breakpoint_ops);
8786 }
8787
8788 /* Initialize a new breakpoint of the bp_catchpoint kind. If TEMPFLAG
8789 is non-zero, then make the breakpoint temporary. If COND_STRING is
8790 not NULL, then store it in the breakpoint. OPS, if not NULL, is
8791 the breakpoint_ops structure associated to the catchpoint. */
8792
8793 void
8794 init_catchpoint (struct breakpoint *b,
8795 struct gdbarch *gdbarch, int tempflag,
8796 char *cond_string,
8797 const struct breakpoint_ops *ops)
8798 {
8799 struct symtab_and_line sal;
8800
8801 init_sal (&sal);
8802 sal.pspace = current_program_space;
8803
8804 init_raw_breakpoint (b, gdbarch, sal, bp_catchpoint, ops);
8805
8806 b->cond_string = (cond_string == NULL) ? NULL : xstrdup (cond_string);
8807 b->disposition = tempflag ? disp_del : disp_donttouch;
8808 }
8809
8810 void
8811 install_breakpoint (int internal, struct breakpoint *b, int update_gll)
8812 {
8813 add_to_breakpoint_chain (b);
8814 set_breakpoint_number (internal, b);
8815 if (is_tracepoint (b))
8816 set_tracepoint_count (breakpoint_count);
8817 if (!internal)
8818 mention (b);
8819 observer_notify_breakpoint_created (b);
8820
8821 if (update_gll)
8822 update_global_location_list (UGLL_MAY_INSERT);
8823 }
8824
8825 static void
8826 create_fork_vfork_event_catchpoint (struct gdbarch *gdbarch,
8827 int tempflag, char *cond_string,
8828 const struct breakpoint_ops *ops)
8829 {
8830 struct fork_catchpoint *c = XNEW (struct fork_catchpoint);
8831
8832 init_catchpoint (&c->base, gdbarch, tempflag, cond_string, ops);
8833
8834 c->forked_inferior_pid = null_ptid;
8835
8836 install_breakpoint (0, &c->base, 1);
8837 }
8838
8839 /* Exec catchpoints. */
8840
8841 /* An instance of this type is used to represent an exec catchpoint.
8842 It includes a "struct breakpoint" as a kind of base class; users
8843 downcast to "struct breakpoint *" when needed. A breakpoint is
8844 really of this type iff its ops pointer points to
8845 CATCH_EXEC_BREAKPOINT_OPS. */
8846
8847 struct exec_catchpoint
8848 {
8849 /* The base class. */
8850 struct breakpoint base;
8851
8852 /* Filename of a program whose exec triggered this catchpoint.
8853 This field is only valid immediately after this catchpoint has
8854 triggered. */
8855 char *exec_pathname;
8856 };
8857
8858 /* Implement the "dtor" breakpoint_ops method for exec
8859 catchpoints. */
8860
8861 static void
8862 dtor_catch_exec (struct breakpoint *b)
8863 {
8864 struct exec_catchpoint *c = (struct exec_catchpoint *) b;
8865
8866 xfree (c->exec_pathname);
8867
8868 base_breakpoint_ops.dtor (b);
8869 }
8870
8871 static int
8872 insert_catch_exec (struct bp_location *bl)
8873 {
8874 return target_insert_exec_catchpoint (ptid_get_pid (inferior_ptid));
8875 }
8876
8877 static int
8878 remove_catch_exec (struct bp_location *bl)
8879 {
8880 return target_remove_exec_catchpoint (ptid_get_pid (inferior_ptid));
8881 }
8882
8883 static int
8884 breakpoint_hit_catch_exec (const struct bp_location *bl,
8885 struct address_space *aspace, CORE_ADDR bp_addr,
8886 const struct target_waitstatus *ws)
8887 {
8888 struct exec_catchpoint *c = (struct exec_catchpoint *) bl->owner;
8889
8890 if (ws->kind != TARGET_WAITKIND_EXECD)
8891 return 0;
8892
8893 c->exec_pathname = xstrdup (ws->value.execd_pathname);
8894 return 1;
8895 }
8896
8897 static enum print_stop_action
8898 print_it_catch_exec (bpstat bs)
8899 {
8900 struct ui_out *uiout = current_uiout;
8901 struct breakpoint *b = bs->breakpoint_at;
8902 struct exec_catchpoint *c = (struct exec_catchpoint *) b;
8903
8904 annotate_catchpoint (b->number);
8905 if (b->disposition == disp_del)
8906 ui_out_text (uiout, "\nTemporary catchpoint ");
8907 else
8908 ui_out_text (uiout, "\nCatchpoint ");
8909 if (ui_out_is_mi_like_p (uiout))
8910 {
8911 ui_out_field_string (uiout, "reason",
8912 async_reason_lookup (EXEC_ASYNC_EXEC));
8913 ui_out_field_string (uiout, "disp", bpdisp_text (b->disposition));
8914 }
8915 ui_out_field_int (uiout, "bkptno", b->number);
8916 ui_out_text (uiout, " (exec'd ");
8917 ui_out_field_string (uiout, "new-exec", c->exec_pathname);
8918 ui_out_text (uiout, "), ");
8919
8920 return PRINT_SRC_AND_LOC;
8921 }
8922
8923 static void
8924 print_one_catch_exec (struct breakpoint *b, struct bp_location **last_loc)
8925 {
8926 struct exec_catchpoint *c = (struct exec_catchpoint *) b;
8927 struct value_print_options opts;
8928 struct ui_out *uiout = current_uiout;
8929
8930 get_user_print_options (&opts);
8931
8932 /* Field 4, the address, is omitted (which makes the columns
8933 not line up too nicely with the headers, but the effect
8934 is relatively readable). */
8935 if (opts.addressprint)
8936 ui_out_field_skip (uiout, "addr");
8937 annotate_field (5);
8938 ui_out_text (uiout, "exec");
8939 if (c->exec_pathname != NULL)
8940 {
8941 ui_out_text (uiout, ", program \"");
8942 ui_out_field_string (uiout, "what", c->exec_pathname);
8943 ui_out_text (uiout, "\" ");
8944 }
8945
8946 if (ui_out_is_mi_like_p (uiout))
8947 ui_out_field_string (uiout, "catch-type", "exec");
8948 }
8949
8950 static void
8951 print_mention_catch_exec (struct breakpoint *b)
8952 {
8953 printf_filtered (_("Catchpoint %d (exec)"), b->number);
8954 }
8955
8956 /* Implement the "print_recreate" breakpoint_ops method for exec
8957 catchpoints. */
8958
8959 static void
8960 print_recreate_catch_exec (struct breakpoint *b, struct ui_file *fp)
8961 {
8962 fprintf_unfiltered (fp, "catch exec");
8963 print_recreate_thread (b, fp);
8964 }
8965
8966 static struct breakpoint_ops catch_exec_breakpoint_ops;
8967
8968 static void
8969 create_syscall_event_catchpoint (int tempflag, VEC(int) *filter,
8970 const struct breakpoint_ops *ops)
8971 {
8972 struct syscall_catchpoint *c;
8973 struct gdbarch *gdbarch = get_current_arch ();
8974
8975 c = XNEW (struct syscall_catchpoint);
8976 init_catchpoint (&c->base, gdbarch, tempflag, NULL, ops);
8977 c->syscalls_to_be_caught = filter;
8978
8979 install_breakpoint (0, &c->base, 1);
8980 }
8981
8982 static int
8983 hw_breakpoint_used_count (void)
8984 {
8985 int i = 0;
8986 struct breakpoint *b;
8987 struct bp_location *bl;
8988
8989 ALL_BREAKPOINTS (b)
8990 {
8991 if (b->type == bp_hardware_breakpoint && breakpoint_enabled (b))
8992 for (bl = b->loc; bl; bl = bl->next)
8993 {
8994 /* Special types of hardware breakpoints may use more than
8995 one register. */
8996 i += b->ops->resources_needed (bl);
8997 }
8998 }
8999
9000 return i;
9001 }
9002
9003 /* Returns the resources B would use if it were a hardware
9004 watchpoint. */
9005
9006 static int
9007 hw_watchpoint_use_count (struct breakpoint *b)
9008 {
9009 int i = 0;
9010 struct bp_location *bl;
9011
9012 if (!breakpoint_enabled (b))
9013 return 0;
9014
9015 for (bl = b->loc; bl; bl = bl->next)
9016 {
9017 /* Special types of hardware watchpoints may use more than
9018 one register. */
9019 i += b->ops->resources_needed (bl);
9020 }
9021
9022 return i;
9023 }
9024
9025 /* Returns the sum the used resources of all hardware watchpoints of
9026 type TYPE in the breakpoints list. Also returns in OTHER_TYPE_USED
9027 the sum of the used resources of all hardware watchpoints of other
9028 types _not_ TYPE. */
9029
9030 static int
9031 hw_watchpoint_used_count_others (struct breakpoint *except,
9032 enum bptype type, int *other_type_used)
9033 {
9034 int i = 0;
9035 struct breakpoint *b;
9036
9037 *other_type_used = 0;
9038 ALL_BREAKPOINTS (b)
9039 {
9040 if (b == except)
9041 continue;
9042 if (!breakpoint_enabled (b))
9043 continue;
9044
9045 if (b->type == type)
9046 i += hw_watchpoint_use_count (b);
9047 else if (is_hardware_watchpoint (b))
9048 *other_type_used = 1;
9049 }
9050
9051 return i;
9052 }
9053
9054 void
9055 disable_watchpoints_before_interactive_call_start (void)
9056 {
9057 struct breakpoint *b;
9058
9059 ALL_BREAKPOINTS (b)
9060 {
9061 if (is_watchpoint (b) && breakpoint_enabled (b))
9062 {
9063 b->enable_state = bp_call_disabled;
9064 update_global_location_list (UGLL_DONT_INSERT);
9065 }
9066 }
9067 }
9068
9069 void
9070 enable_watchpoints_after_interactive_call_stop (void)
9071 {
9072 struct breakpoint *b;
9073
9074 ALL_BREAKPOINTS (b)
9075 {
9076 if (is_watchpoint (b) && b->enable_state == bp_call_disabled)
9077 {
9078 b->enable_state = bp_enabled;
9079 update_global_location_list (UGLL_MAY_INSERT);
9080 }
9081 }
9082 }
9083
9084 void
9085 disable_breakpoints_before_startup (void)
9086 {
9087 current_program_space->executing_startup = 1;
9088 update_global_location_list (UGLL_DONT_INSERT);
9089 }
9090
9091 void
9092 enable_breakpoints_after_startup (void)
9093 {
9094 current_program_space->executing_startup = 0;
9095 breakpoint_re_set ();
9096 }
9097
9098 /* Create a new single-step breakpoint for thread THREAD, with no
9099 locations. */
9100
9101 static struct breakpoint *
9102 new_single_step_breakpoint (int thread, struct gdbarch *gdbarch)
9103 {
9104 struct breakpoint *b = XNEW (struct breakpoint);
9105
9106 init_raw_breakpoint_without_location (b, gdbarch, bp_single_step,
9107 &momentary_breakpoint_ops);
9108
9109 b->disposition = disp_donttouch;
9110 b->frame_id = null_frame_id;
9111
9112 b->thread = thread;
9113 gdb_assert (b->thread != 0);
9114
9115 add_to_breakpoint_chain (b);
9116
9117 return b;
9118 }
9119
9120 /* Set a momentary breakpoint of type TYPE at address specified by
9121 SAL. If FRAME_ID is valid, the breakpoint is restricted to that
9122 frame. */
9123
9124 struct breakpoint *
9125 set_momentary_breakpoint (struct gdbarch *gdbarch, struct symtab_and_line sal,
9126 struct frame_id frame_id, enum bptype type)
9127 {
9128 struct breakpoint *b;
9129
9130 /* If FRAME_ID is valid, it should be a real frame, not an inlined or
9131 tail-called one. */
9132 gdb_assert (!frame_id_artificial_p (frame_id));
9133
9134 b = set_raw_breakpoint (gdbarch, sal, type, &momentary_breakpoint_ops);
9135 b->enable_state = bp_enabled;
9136 b->disposition = disp_donttouch;
9137 b->frame_id = frame_id;
9138
9139 /* If we're debugging a multi-threaded program, then we want
9140 momentary breakpoints to be active in only a single thread of
9141 control. */
9142 if (in_thread_list (inferior_ptid))
9143 b->thread = pid_to_thread_id (inferior_ptid);
9144
9145 update_global_location_list_nothrow (UGLL_MAY_INSERT);
9146
9147 return b;
9148 }
9149
9150 /* Make a momentary breakpoint based on the master breakpoint ORIG.
9151 The new breakpoint will have type TYPE, use OPS as its
9152 breakpoint_ops, and will set enabled to LOC_ENABLED. */
9153
9154 static struct breakpoint *
9155 momentary_breakpoint_from_master (struct breakpoint *orig,
9156 enum bptype type,
9157 const struct breakpoint_ops *ops,
9158 int loc_enabled)
9159 {
9160 struct breakpoint *copy;
9161
9162 copy = set_raw_breakpoint_without_location (orig->gdbarch, type, ops);
9163 copy->loc = allocate_bp_location (copy);
9164 set_breakpoint_location_function (copy->loc, 1);
9165
9166 copy->loc->gdbarch = orig->loc->gdbarch;
9167 copy->loc->requested_address = orig->loc->requested_address;
9168 copy->loc->address = orig->loc->address;
9169 copy->loc->section = orig->loc->section;
9170 copy->loc->pspace = orig->loc->pspace;
9171 copy->loc->probe = orig->loc->probe;
9172 copy->loc->line_number = orig->loc->line_number;
9173 copy->loc->symtab = orig->loc->symtab;
9174 copy->loc->enabled = loc_enabled;
9175 copy->frame_id = orig->frame_id;
9176 copy->thread = orig->thread;
9177 copy->pspace = orig->pspace;
9178
9179 copy->enable_state = bp_enabled;
9180 copy->disposition = disp_donttouch;
9181 copy->number = internal_breakpoint_number--;
9182
9183 update_global_location_list_nothrow (UGLL_DONT_INSERT);
9184 return copy;
9185 }
9186
9187 /* Make a deep copy of momentary breakpoint ORIG. Returns NULL if
9188 ORIG is NULL. */
9189
9190 struct breakpoint *
9191 clone_momentary_breakpoint (struct breakpoint *orig)
9192 {
9193 /* If there's nothing to clone, then return nothing. */
9194 if (orig == NULL)
9195 return NULL;
9196
9197 return momentary_breakpoint_from_master (orig, orig->type, orig->ops, 0);
9198 }
9199
9200 struct breakpoint *
9201 set_momentary_breakpoint_at_pc (struct gdbarch *gdbarch, CORE_ADDR pc,
9202 enum bptype type)
9203 {
9204 struct symtab_and_line sal;
9205
9206 sal = find_pc_line (pc, 0);
9207 sal.pc = pc;
9208 sal.section = find_pc_overlay (pc);
9209 sal.explicit_pc = 1;
9210
9211 return set_momentary_breakpoint (gdbarch, sal, null_frame_id, type);
9212 }
9213 \f
9214
9215 /* Tell the user we have just set a breakpoint B. */
9216
9217 static void
9218 mention (struct breakpoint *b)
9219 {
9220 b->ops->print_mention (b);
9221 if (ui_out_is_mi_like_p (current_uiout))
9222 return;
9223 printf_filtered ("\n");
9224 }
9225 \f
9226
9227 static int bp_loc_is_permanent (struct bp_location *loc);
9228
9229 static struct bp_location *
9230 add_location_to_breakpoint (struct breakpoint *b,
9231 const struct symtab_and_line *sal)
9232 {
9233 struct bp_location *loc, **tmp;
9234 CORE_ADDR adjusted_address;
9235 struct gdbarch *loc_gdbarch = get_sal_arch (*sal);
9236
9237 if (loc_gdbarch == NULL)
9238 loc_gdbarch = b->gdbarch;
9239
9240 /* Adjust the breakpoint's address prior to allocating a location.
9241 Once we call allocate_bp_location(), that mostly uninitialized
9242 location will be placed on the location chain. Adjustment of the
9243 breakpoint may cause target_read_memory() to be called and we do
9244 not want its scan of the location chain to find a breakpoint and
9245 location that's only been partially initialized. */
9246 adjusted_address = adjust_breakpoint_address (loc_gdbarch,
9247 sal->pc, b->type);
9248
9249 /* Sort the locations by their ADDRESS. */
9250 loc = allocate_bp_location (b);
9251 for (tmp = &(b->loc); *tmp != NULL && (*tmp)->address <= adjusted_address;
9252 tmp = &((*tmp)->next))
9253 ;
9254 loc->next = *tmp;
9255 *tmp = loc;
9256
9257 loc->requested_address = sal->pc;
9258 loc->address = adjusted_address;
9259 loc->pspace = sal->pspace;
9260 loc->probe.probe = sal->probe;
9261 loc->probe.objfile = sal->objfile;
9262 gdb_assert (loc->pspace != NULL);
9263 loc->section = sal->section;
9264 loc->gdbarch = loc_gdbarch;
9265 loc->line_number = sal->line;
9266 loc->symtab = sal->symtab;
9267
9268 set_breakpoint_location_function (loc,
9269 sal->explicit_pc || sal->explicit_line);
9270
9271 if (bp_loc_is_permanent (loc))
9272 {
9273 loc->inserted = 1;
9274 loc->permanent = 1;
9275 }
9276
9277 return loc;
9278 }
9279 \f
9280
9281 /* Return 1 if LOC is pointing to a permanent breakpoint,
9282 return 0 otherwise. */
9283
9284 static int
9285 bp_loc_is_permanent (struct bp_location *loc)
9286 {
9287 int len;
9288 CORE_ADDR addr;
9289 const gdb_byte *bpoint;
9290 gdb_byte *target_mem;
9291 struct cleanup *cleanup;
9292 int retval = 0;
9293
9294 gdb_assert (loc != NULL);
9295
9296 /* bp_call_dummy breakpoint locations are usually memory locations
9297 where GDB just wrote a breakpoint instruction, making it look
9298 as if there is a permanent breakpoint at that location. Considering
9299 it permanent makes GDB rely on that breakpoint instruction to stop
9300 the program, thus removing the need to insert its own breakpoint
9301 there. This is normally expected to work, except that some versions
9302 of QEMU (Eg: QEMU 2.0.0 for SPARC) just report a fatal problem (Trap
9303 0x02 while interrupts disabled, Error state) instead of reporting
9304 a SIGTRAP. QEMU should probably be fixed, but in the interest of
9305 compatibility with versions that behave this way, we always consider
9306 bp_call_dummy breakpoint locations as non-permanent. */
9307 if (loc->owner->type == bp_call_dummy)
9308 return 0;
9309
9310 addr = loc->address;
9311 bpoint = gdbarch_breakpoint_from_pc (loc->gdbarch, &addr, &len);
9312
9313 /* Software breakpoints unsupported? */
9314 if (bpoint == NULL)
9315 return 0;
9316
9317 target_mem = alloca (len);
9318
9319 /* Enable the automatic memory restoration from breakpoints while
9320 we read the memory. Otherwise we could say about our temporary
9321 breakpoints they are permanent. */
9322 cleanup = save_current_space_and_thread ();
9323
9324 switch_to_program_space_and_thread (loc->pspace);
9325 make_show_memory_breakpoints_cleanup (0);
9326
9327 if (target_read_memory (loc->address, target_mem, len) == 0
9328 && memcmp (target_mem, bpoint, len) == 0)
9329 retval = 1;
9330
9331 do_cleanups (cleanup);
9332
9333 return retval;
9334 }
9335
9336 /* Build a command list for the dprintf corresponding to the current
9337 settings of the dprintf style options. */
9338
9339 static void
9340 update_dprintf_command_list (struct breakpoint *b)
9341 {
9342 char *dprintf_args = b->extra_string;
9343 char *printf_line = NULL;
9344
9345 if (!dprintf_args)
9346 return;
9347
9348 dprintf_args = skip_spaces (dprintf_args);
9349
9350 /* Allow a comma, as it may have terminated a location, but don't
9351 insist on it. */
9352 if (*dprintf_args == ',')
9353 ++dprintf_args;
9354 dprintf_args = skip_spaces (dprintf_args);
9355
9356 if (*dprintf_args != '"')
9357 error (_("Bad format string, missing '\"'."));
9358
9359 if (strcmp (dprintf_style, dprintf_style_gdb) == 0)
9360 printf_line = xstrprintf ("printf %s", dprintf_args);
9361 else if (strcmp (dprintf_style, dprintf_style_call) == 0)
9362 {
9363 if (!dprintf_function)
9364 error (_("No function supplied for dprintf call"));
9365
9366 if (dprintf_channel && strlen (dprintf_channel) > 0)
9367 printf_line = xstrprintf ("call (void) %s (%s,%s)",
9368 dprintf_function,
9369 dprintf_channel,
9370 dprintf_args);
9371 else
9372 printf_line = xstrprintf ("call (void) %s (%s)",
9373 dprintf_function,
9374 dprintf_args);
9375 }
9376 else if (strcmp (dprintf_style, dprintf_style_agent) == 0)
9377 {
9378 if (target_can_run_breakpoint_commands ())
9379 printf_line = xstrprintf ("agent-printf %s", dprintf_args);
9380 else
9381 {
9382 warning (_("Target cannot run dprintf commands, falling back to GDB printf"));
9383 printf_line = xstrprintf ("printf %s", dprintf_args);
9384 }
9385 }
9386 else
9387 internal_error (__FILE__, __LINE__,
9388 _("Invalid dprintf style."));
9389
9390 gdb_assert (printf_line != NULL);
9391 /* Manufacture a printf sequence. */
9392 {
9393 struct command_line *printf_cmd_line
9394 = xmalloc (sizeof (struct command_line));
9395
9396 printf_cmd_line = xmalloc (sizeof (struct command_line));
9397 printf_cmd_line->control_type = simple_control;
9398 printf_cmd_line->body_count = 0;
9399 printf_cmd_line->body_list = NULL;
9400 printf_cmd_line->next = NULL;
9401 printf_cmd_line->line = printf_line;
9402
9403 breakpoint_set_commands (b, printf_cmd_line);
9404 }
9405 }
9406
9407 /* Update all dprintf commands, making their command lists reflect
9408 current style settings. */
9409
9410 static void
9411 update_dprintf_commands (char *args, int from_tty,
9412 struct cmd_list_element *c)
9413 {
9414 struct breakpoint *b;
9415
9416 ALL_BREAKPOINTS (b)
9417 {
9418 if (b->type == bp_dprintf)
9419 update_dprintf_command_list (b);
9420 }
9421 }
9422
9423 /* Create a breakpoint with SAL as location. Use ADDR_STRING
9424 as textual description of the location, and COND_STRING
9425 as condition expression. */
9426
9427 static void
9428 init_breakpoint_sal (struct breakpoint *b, struct gdbarch *gdbarch,
9429 struct symtabs_and_lines sals, char *addr_string,
9430 char *filter, char *cond_string,
9431 char *extra_string,
9432 enum bptype type, enum bpdisp disposition,
9433 int thread, int task, int ignore_count,
9434 const struct breakpoint_ops *ops, int from_tty,
9435 int enabled, int internal, unsigned flags,
9436 int display_canonical)
9437 {
9438 int i;
9439
9440 if (type == bp_hardware_breakpoint)
9441 {
9442 int target_resources_ok;
9443
9444 i = hw_breakpoint_used_count ();
9445 target_resources_ok =
9446 target_can_use_hardware_watchpoint (bp_hardware_breakpoint,
9447 i + 1, 0);
9448 if (target_resources_ok == 0)
9449 error (_("No hardware breakpoint support in the target."));
9450 else if (target_resources_ok < 0)
9451 error (_("Hardware breakpoints used exceeds limit."));
9452 }
9453
9454 gdb_assert (sals.nelts > 0);
9455
9456 for (i = 0; i < sals.nelts; ++i)
9457 {
9458 struct symtab_and_line sal = sals.sals[i];
9459 struct bp_location *loc;
9460
9461 if (from_tty)
9462 {
9463 struct gdbarch *loc_gdbarch = get_sal_arch (sal);
9464 if (!loc_gdbarch)
9465 loc_gdbarch = gdbarch;
9466
9467 describe_other_breakpoints (loc_gdbarch,
9468 sal.pspace, sal.pc, sal.section, thread);
9469 }
9470
9471 if (i == 0)
9472 {
9473 init_raw_breakpoint (b, gdbarch, sal, type, ops);
9474 b->thread = thread;
9475 b->task = task;
9476
9477 b->cond_string = cond_string;
9478 b->extra_string = extra_string;
9479 b->ignore_count = ignore_count;
9480 b->enable_state = enabled ? bp_enabled : bp_disabled;
9481 b->disposition = disposition;
9482
9483 if ((flags & CREATE_BREAKPOINT_FLAGS_INSERTED) != 0)
9484 b->loc->inserted = 1;
9485
9486 if (type == bp_static_tracepoint)
9487 {
9488 struct tracepoint *t = (struct tracepoint *) b;
9489 struct static_tracepoint_marker marker;
9490
9491 if (strace_marker_p (b))
9492 {
9493 /* We already know the marker exists, otherwise, we
9494 wouldn't see a sal for it. */
9495 char *p = &addr_string[3];
9496 char *endp;
9497 char *marker_str;
9498
9499 p = skip_spaces (p);
9500
9501 endp = skip_to_space (p);
9502
9503 marker_str = savestring (p, endp - p);
9504 t->static_trace_marker_id = marker_str;
9505
9506 printf_filtered (_("Probed static tracepoint "
9507 "marker \"%s\"\n"),
9508 t->static_trace_marker_id);
9509 }
9510 else if (target_static_tracepoint_marker_at (sal.pc, &marker))
9511 {
9512 t->static_trace_marker_id = xstrdup (marker.str_id);
9513 release_static_tracepoint_marker (&marker);
9514
9515 printf_filtered (_("Probed static tracepoint "
9516 "marker \"%s\"\n"),
9517 t->static_trace_marker_id);
9518 }
9519 else
9520 warning (_("Couldn't determine the static "
9521 "tracepoint marker to probe"));
9522 }
9523
9524 loc = b->loc;
9525 }
9526 else
9527 {
9528 loc = add_location_to_breakpoint (b, &sal);
9529 if ((flags & CREATE_BREAKPOINT_FLAGS_INSERTED) != 0)
9530 loc->inserted = 1;
9531 }
9532
9533 if (b->cond_string)
9534 {
9535 const char *arg = b->cond_string;
9536
9537 loc->cond = parse_exp_1 (&arg, loc->address,
9538 block_for_pc (loc->address), 0);
9539 if (*arg)
9540 error (_("Garbage '%s' follows condition"), arg);
9541 }
9542
9543 /* Dynamic printf requires and uses additional arguments on the
9544 command line, otherwise it's an error. */
9545 if (type == bp_dprintf)
9546 {
9547 if (b->extra_string)
9548 update_dprintf_command_list (b);
9549 else
9550 error (_("Format string required"));
9551 }
9552 else if (b->extra_string)
9553 error (_("Garbage '%s' at end of command"), b->extra_string);
9554 }
9555
9556 b->display_canonical = display_canonical;
9557 if (addr_string)
9558 b->addr_string = addr_string;
9559 else
9560 /* addr_string has to be used or breakpoint_re_set will delete
9561 me. */
9562 b->addr_string
9563 = xstrprintf ("*%s", paddress (b->loc->gdbarch, b->loc->address));
9564 b->filter = filter;
9565 }
9566
9567 static void
9568 create_breakpoint_sal (struct gdbarch *gdbarch,
9569 struct symtabs_and_lines sals, char *addr_string,
9570 char *filter, char *cond_string,
9571 char *extra_string,
9572 enum bptype type, enum bpdisp disposition,
9573 int thread, int task, int ignore_count,
9574 const struct breakpoint_ops *ops, int from_tty,
9575 int enabled, int internal, unsigned flags,
9576 int display_canonical)
9577 {
9578 struct breakpoint *b;
9579 struct cleanup *old_chain;
9580
9581 if (is_tracepoint_type (type))
9582 {
9583 struct tracepoint *t;
9584
9585 t = XCNEW (struct tracepoint);
9586 b = &t->base;
9587 }
9588 else
9589 b = XNEW (struct breakpoint);
9590
9591 old_chain = make_cleanup (xfree, b);
9592
9593 init_breakpoint_sal (b, gdbarch,
9594 sals, addr_string,
9595 filter, cond_string, extra_string,
9596 type, disposition,
9597 thread, task, ignore_count,
9598 ops, from_tty,
9599 enabled, internal, flags,
9600 display_canonical);
9601 discard_cleanups (old_chain);
9602
9603 install_breakpoint (internal, b, 0);
9604 }
9605
9606 /* Add SALS.nelts breakpoints to the breakpoint table. For each
9607 SALS.sal[i] breakpoint, include the corresponding ADDR_STRING[i]
9608 value. COND_STRING, if not NULL, specified the condition to be
9609 used for all breakpoints. Essentially the only case where
9610 SALS.nelts is not 1 is when we set a breakpoint on an overloaded
9611 function. In that case, it's still not possible to specify
9612 separate conditions for different overloaded functions, so
9613 we take just a single condition string.
9614
9615 NOTE: If the function succeeds, the caller is expected to cleanup
9616 the arrays ADDR_STRING, COND_STRING, and SALS (but not the
9617 array contents). If the function fails (error() is called), the
9618 caller is expected to cleanups both the ADDR_STRING, COND_STRING,
9619 COND and SALS arrays and each of those arrays contents. */
9620
9621 static void
9622 create_breakpoints_sal (struct gdbarch *gdbarch,
9623 struct linespec_result *canonical,
9624 char *cond_string, char *extra_string,
9625 enum bptype type, enum bpdisp disposition,
9626 int thread, int task, int ignore_count,
9627 const struct breakpoint_ops *ops, int from_tty,
9628 int enabled, int internal, unsigned flags)
9629 {
9630 int i;
9631 struct linespec_sals *lsal;
9632
9633 if (canonical->pre_expanded)
9634 gdb_assert (VEC_length (linespec_sals, canonical->sals) == 1);
9635
9636 for (i = 0; VEC_iterate (linespec_sals, canonical->sals, i, lsal); ++i)
9637 {
9638 /* Note that 'addr_string' can be NULL in the case of a plain
9639 'break', without arguments. */
9640 char *addr_string = (canonical->addr_string
9641 ? xstrdup (canonical->addr_string)
9642 : NULL);
9643 char *filter_string = lsal->canonical ? xstrdup (lsal->canonical) : NULL;
9644 struct cleanup *inner = make_cleanup (xfree, addr_string);
9645
9646 make_cleanup (xfree, filter_string);
9647 create_breakpoint_sal (gdbarch, lsal->sals,
9648 addr_string,
9649 filter_string,
9650 cond_string, extra_string,
9651 type, disposition,
9652 thread, task, ignore_count, ops,
9653 from_tty, enabled, internal, flags,
9654 canonical->special_display);
9655 discard_cleanups (inner);
9656 }
9657 }
9658
9659 /* Parse ADDRESS which is assumed to be a SAL specification possibly
9660 followed by conditionals. On return, SALS contains an array of SAL
9661 addresses found. ADDR_STRING contains a vector of (canonical)
9662 address strings. ADDRESS points to the end of the SAL.
9663
9664 The array and the line spec strings are allocated on the heap, it is
9665 the caller's responsibility to free them. */
9666
9667 static void
9668 parse_breakpoint_sals (char **address,
9669 struct linespec_result *canonical)
9670 {
9671 /* If no arg given, or if first arg is 'if ', use the default
9672 breakpoint. */
9673 if ((*address) == NULL
9674 || (strncmp ((*address), "if", 2) == 0 && isspace ((*address)[2])))
9675 {
9676 /* The last displayed codepoint, if it's valid, is our default breakpoint
9677 address. */
9678 if (last_displayed_sal_is_valid ())
9679 {
9680 struct linespec_sals lsal;
9681 struct symtab_and_line sal;
9682 CORE_ADDR pc;
9683
9684 init_sal (&sal); /* Initialize to zeroes. */
9685 lsal.sals.sals = (struct symtab_and_line *)
9686 xmalloc (sizeof (struct symtab_and_line));
9687
9688 /* Set sal's pspace, pc, symtab, and line to the values
9689 corresponding to the last call to print_frame_info.
9690 Be sure to reinitialize LINE with NOTCURRENT == 0
9691 as the breakpoint line number is inappropriate otherwise.
9692 find_pc_line would adjust PC, re-set it back. */
9693 get_last_displayed_sal (&sal);
9694 pc = sal.pc;
9695 sal = find_pc_line (pc, 0);
9696
9697 /* "break" without arguments is equivalent to "break *PC"
9698 where PC is the last displayed codepoint's address. So
9699 make sure to set sal.explicit_pc to prevent GDB from
9700 trying to expand the list of sals to include all other
9701 instances with the same symtab and line. */
9702 sal.pc = pc;
9703 sal.explicit_pc = 1;
9704
9705 lsal.sals.sals[0] = sal;
9706 lsal.sals.nelts = 1;
9707 lsal.canonical = NULL;
9708
9709 VEC_safe_push (linespec_sals, canonical->sals, &lsal);
9710 }
9711 else
9712 error (_("No default breakpoint address now."));
9713 }
9714 else
9715 {
9716 struct symtab_and_line cursal = get_current_source_symtab_and_line ();
9717
9718 /* Force almost all breakpoints to be in terms of the
9719 current_source_symtab (which is decode_line_1's default).
9720 This should produce the results we want almost all of the
9721 time while leaving default_breakpoint_* alone.
9722
9723 ObjC: However, don't match an Objective-C method name which
9724 may have a '+' or '-' succeeded by a '['. */
9725 if (last_displayed_sal_is_valid ()
9726 && (!cursal.symtab
9727 || ((strchr ("+-", (*address)[0]) != NULL)
9728 && ((*address)[1] != '['))))
9729 decode_line_full (address, DECODE_LINE_FUNFIRSTLINE,
9730 get_last_displayed_symtab (),
9731 get_last_displayed_line (),
9732 canonical, NULL, NULL);
9733 else
9734 decode_line_full (address, DECODE_LINE_FUNFIRSTLINE,
9735 cursal.symtab, cursal.line, canonical, NULL, NULL);
9736 }
9737 }
9738
9739
9740 /* Convert each SAL into a real PC. Verify that the PC can be
9741 inserted as a breakpoint. If it can't throw an error. */
9742
9743 static void
9744 breakpoint_sals_to_pc (struct symtabs_and_lines *sals)
9745 {
9746 int i;
9747
9748 for (i = 0; i < sals->nelts; i++)
9749 resolve_sal_pc (&sals->sals[i]);
9750 }
9751
9752 /* Fast tracepoints may have restrictions on valid locations. For
9753 instance, a fast tracepoint using a jump instead of a trap will
9754 likely have to overwrite more bytes than a trap would, and so can
9755 only be placed where the instruction is longer than the jump, or a
9756 multi-instruction sequence does not have a jump into the middle of
9757 it, etc. */
9758
9759 static void
9760 check_fast_tracepoint_sals (struct gdbarch *gdbarch,
9761 struct symtabs_and_lines *sals)
9762 {
9763 int i, rslt;
9764 struct symtab_and_line *sal;
9765 char *msg;
9766 struct cleanup *old_chain;
9767
9768 for (i = 0; i < sals->nelts; i++)
9769 {
9770 struct gdbarch *sarch;
9771
9772 sal = &sals->sals[i];
9773
9774 sarch = get_sal_arch (*sal);
9775 /* We fall back to GDBARCH if there is no architecture
9776 associated with SAL. */
9777 if (sarch == NULL)
9778 sarch = gdbarch;
9779 rslt = gdbarch_fast_tracepoint_valid_at (sarch, sal->pc,
9780 NULL, &msg);
9781 old_chain = make_cleanup (xfree, msg);
9782
9783 if (!rslt)
9784 error (_("May not have a fast tracepoint at 0x%s%s"),
9785 paddress (sarch, sal->pc), (msg ? msg : ""));
9786
9787 do_cleanups (old_chain);
9788 }
9789 }
9790
9791 /* Issue an invalid thread ID error. */
9792
9793 static void ATTRIBUTE_NORETURN
9794 invalid_thread_id_error (int id)
9795 {
9796 error (_("Unknown thread %d."), id);
9797 }
9798
9799 /* Given TOK, a string specification of condition and thread, as
9800 accepted by the 'break' command, extract the condition
9801 string and thread number and set *COND_STRING and *THREAD.
9802 PC identifies the context at which the condition should be parsed.
9803 If no condition is found, *COND_STRING is set to NULL.
9804 If no thread is found, *THREAD is set to -1. */
9805
9806 static void
9807 find_condition_and_thread (const char *tok, CORE_ADDR pc,
9808 char **cond_string, int *thread, int *task,
9809 char **rest)
9810 {
9811 *cond_string = NULL;
9812 *thread = -1;
9813 *task = 0;
9814 *rest = NULL;
9815
9816 while (tok && *tok)
9817 {
9818 const char *end_tok;
9819 int toklen;
9820 const char *cond_start = NULL;
9821 const char *cond_end = NULL;
9822
9823 tok = skip_spaces_const (tok);
9824
9825 if ((*tok == '"' || *tok == ',') && rest)
9826 {
9827 *rest = savestring (tok, strlen (tok));
9828 return;
9829 }
9830
9831 end_tok = skip_to_space_const (tok);
9832
9833 toklen = end_tok - tok;
9834
9835 if (toklen >= 1 && strncmp (tok, "if", toklen) == 0)
9836 {
9837 struct expression *expr;
9838
9839 tok = cond_start = end_tok + 1;
9840 expr = parse_exp_1 (&tok, pc, block_for_pc (pc), 0);
9841 xfree (expr);
9842 cond_end = tok;
9843 *cond_string = savestring (cond_start, cond_end - cond_start);
9844 }
9845 else if (toklen >= 1 && strncmp (tok, "thread", toklen) == 0)
9846 {
9847 char *tmptok;
9848
9849 tok = end_tok + 1;
9850 *thread = strtol (tok, &tmptok, 0);
9851 if (tok == tmptok)
9852 error (_("Junk after thread keyword."));
9853 if (!valid_thread_id (*thread))
9854 invalid_thread_id_error (*thread);
9855 tok = tmptok;
9856 }
9857 else if (toklen >= 1 && strncmp (tok, "task", toklen) == 0)
9858 {
9859 char *tmptok;
9860
9861 tok = end_tok + 1;
9862 *task = strtol (tok, &tmptok, 0);
9863 if (tok == tmptok)
9864 error (_("Junk after task keyword."));
9865 if (!valid_task_id (*task))
9866 error (_("Unknown task %d."), *task);
9867 tok = tmptok;
9868 }
9869 else if (rest)
9870 {
9871 *rest = savestring (tok, strlen (tok));
9872 return;
9873 }
9874 else
9875 error (_("Junk at end of arguments."));
9876 }
9877 }
9878
9879 /* Decode a static tracepoint marker spec. */
9880
9881 static struct symtabs_and_lines
9882 decode_static_tracepoint_spec (char **arg_p)
9883 {
9884 VEC(static_tracepoint_marker_p) *markers = NULL;
9885 struct symtabs_and_lines sals;
9886 struct cleanup *old_chain;
9887 char *p = &(*arg_p)[3];
9888 char *endp;
9889 char *marker_str;
9890 int i;
9891
9892 p = skip_spaces (p);
9893
9894 endp = skip_to_space (p);
9895
9896 marker_str = savestring (p, endp - p);
9897 old_chain = make_cleanup (xfree, marker_str);
9898
9899 markers = target_static_tracepoint_markers_by_strid (marker_str);
9900 if (VEC_empty(static_tracepoint_marker_p, markers))
9901 error (_("No known static tracepoint marker named %s"), marker_str);
9902
9903 sals.nelts = VEC_length(static_tracepoint_marker_p, markers);
9904 sals.sals = xmalloc (sizeof *sals.sals * sals.nelts);
9905
9906 for (i = 0; i < sals.nelts; i++)
9907 {
9908 struct static_tracepoint_marker *marker;
9909
9910 marker = VEC_index (static_tracepoint_marker_p, markers, i);
9911
9912 init_sal (&sals.sals[i]);
9913
9914 sals.sals[i] = find_pc_line (marker->address, 0);
9915 sals.sals[i].pc = marker->address;
9916
9917 release_static_tracepoint_marker (marker);
9918 }
9919
9920 do_cleanups (old_chain);
9921
9922 *arg_p = endp;
9923 return sals;
9924 }
9925
9926 /* Set a breakpoint. This function is shared between CLI and MI
9927 functions for setting a breakpoint. This function has two major
9928 modes of operations, selected by the PARSE_ARG parameter. If
9929 non-zero, the function will parse ARG, extracting location,
9930 condition, thread and extra string. Otherwise, ARG is just the
9931 breakpoint's location, with condition, thread, and extra string
9932 specified by the COND_STRING, THREAD and EXTRA_STRING parameters.
9933 If INTERNAL is non-zero, the breakpoint number will be allocated
9934 from the internal breakpoint count. Returns true if any breakpoint
9935 was created; false otherwise. */
9936
9937 int
9938 create_breakpoint (struct gdbarch *gdbarch,
9939 char *arg, char *cond_string,
9940 int thread, char *extra_string,
9941 int parse_arg,
9942 int tempflag, enum bptype type_wanted,
9943 int ignore_count,
9944 enum auto_boolean pending_break_support,
9945 const struct breakpoint_ops *ops,
9946 int from_tty, int enabled, int internal,
9947 unsigned flags)
9948 {
9949 volatile struct gdb_exception e;
9950 char *copy_arg = NULL;
9951 char *addr_start = arg;
9952 struct linespec_result canonical;
9953 struct cleanup *old_chain;
9954 struct cleanup *bkpt_chain = NULL;
9955 int pending = 0;
9956 int task = 0;
9957 int prev_bkpt_count = breakpoint_count;
9958
9959 gdb_assert (ops != NULL);
9960
9961 init_linespec_result (&canonical);
9962
9963 TRY_CATCH (e, RETURN_MASK_ALL)
9964 {
9965 ops->create_sals_from_address (&arg, &canonical, type_wanted,
9966 addr_start, &copy_arg);
9967 }
9968
9969 /* If caller is interested in rc value from parse, set value. */
9970 switch (e.reason)
9971 {
9972 case GDB_NO_ERROR:
9973 if (VEC_empty (linespec_sals, canonical.sals))
9974 return 0;
9975 break;
9976 case RETURN_ERROR:
9977 switch (e.error)
9978 {
9979 case NOT_FOUND_ERROR:
9980
9981 /* If pending breakpoint support is turned off, throw
9982 error. */
9983
9984 if (pending_break_support == AUTO_BOOLEAN_FALSE)
9985 throw_exception (e);
9986
9987 exception_print (gdb_stderr, e);
9988
9989 /* If pending breakpoint support is auto query and the user
9990 selects no, then simply return the error code. */
9991 if (pending_break_support == AUTO_BOOLEAN_AUTO
9992 && !nquery (_("Make %s pending on future shared library load? "),
9993 bptype_string (type_wanted)))
9994 return 0;
9995
9996 /* At this point, either the user was queried about setting
9997 a pending breakpoint and selected yes, or pending
9998 breakpoint behavior is on and thus a pending breakpoint
9999 is defaulted on behalf of the user. */
10000 {
10001 struct linespec_sals lsal;
10002
10003 copy_arg = xstrdup (addr_start);
10004 lsal.canonical = xstrdup (copy_arg);
10005 lsal.sals.nelts = 1;
10006 lsal.sals.sals = XNEW (struct symtab_and_line);
10007 init_sal (&lsal.sals.sals[0]);
10008 pending = 1;
10009 VEC_safe_push (linespec_sals, canonical.sals, &lsal);
10010 }
10011 break;
10012 default:
10013 throw_exception (e);
10014 }
10015 break;
10016 default:
10017 throw_exception (e);
10018 }
10019
10020 /* Create a chain of things that always need to be cleaned up. */
10021 old_chain = make_cleanup_destroy_linespec_result (&canonical);
10022
10023 /* ----------------------------- SNIP -----------------------------
10024 Anything added to the cleanup chain beyond this point is assumed
10025 to be part of a breakpoint. If the breakpoint create succeeds
10026 then the memory is not reclaimed. */
10027 bkpt_chain = make_cleanup (null_cleanup, 0);
10028
10029 /* Resolve all line numbers to PC's and verify that the addresses
10030 are ok for the target. */
10031 if (!pending)
10032 {
10033 int ix;
10034 struct linespec_sals *iter;
10035
10036 for (ix = 0; VEC_iterate (linespec_sals, canonical.sals, ix, iter); ++ix)
10037 breakpoint_sals_to_pc (&iter->sals);
10038 }
10039
10040 /* Fast tracepoints may have additional restrictions on location. */
10041 if (!pending && type_wanted == bp_fast_tracepoint)
10042 {
10043 int ix;
10044 struct linespec_sals *iter;
10045
10046 for (ix = 0; VEC_iterate (linespec_sals, canonical.sals, ix, iter); ++ix)
10047 check_fast_tracepoint_sals (gdbarch, &iter->sals);
10048 }
10049
10050 /* Verify that condition can be parsed, before setting any
10051 breakpoints. Allocate a separate condition expression for each
10052 breakpoint. */
10053 if (!pending)
10054 {
10055 if (parse_arg)
10056 {
10057 char *rest;
10058 struct linespec_sals *lsal;
10059
10060 lsal = VEC_index (linespec_sals, canonical.sals, 0);
10061
10062 /* Here we only parse 'arg' to separate condition
10063 from thread number, so parsing in context of first
10064 sal is OK. When setting the breakpoint we'll
10065 re-parse it in context of each sal. */
10066
10067 find_condition_and_thread (arg, lsal->sals.sals[0].pc, &cond_string,
10068 &thread, &task, &rest);
10069 if (cond_string)
10070 make_cleanup (xfree, cond_string);
10071 if (rest)
10072 make_cleanup (xfree, rest);
10073 if (rest)
10074 extra_string = rest;
10075 }
10076 else
10077 {
10078 if (*arg != '\0')
10079 error (_("Garbage '%s' at end of location"), arg);
10080
10081 /* Create a private copy of condition string. */
10082 if (cond_string)
10083 {
10084 cond_string = xstrdup (cond_string);
10085 make_cleanup (xfree, cond_string);
10086 }
10087 /* Create a private copy of any extra string. */
10088 if (extra_string)
10089 {
10090 extra_string = xstrdup (extra_string);
10091 make_cleanup (xfree, extra_string);
10092 }
10093 }
10094
10095 ops->create_breakpoints_sal (gdbarch, &canonical,
10096 cond_string, extra_string, type_wanted,
10097 tempflag ? disp_del : disp_donttouch,
10098 thread, task, ignore_count, ops,
10099 from_tty, enabled, internal, flags);
10100 }
10101 else
10102 {
10103 struct breakpoint *b;
10104
10105 make_cleanup (xfree, copy_arg);
10106
10107 if (is_tracepoint_type (type_wanted))
10108 {
10109 struct tracepoint *t;
10110
10111 t = XCNEW (struct tracepoint);
10112 b = &t->base;
10113 }
10114 else
10115 b = XNEW (struct breakpoint);
10116
10117 init_raw_breakpoint_without_location (b, gdbarch, type_wanted, ops);
10118
10119 b->addr_string = copy_arg;
10120 if (parse_arg)
10121 b->cond_string = NULL;
10122 else
10123 {
10124 /* Create a private copy of condition string. */
10125 if (cond_string)
10126 {
10127 cond_string = xstrdup (cond_string);
10128 make_cleanup (xfree, cond_string);
10129 }
10130 b->cond_string = cond_string;
10131 }
10132 b->extra_string = NULL;
10133 b->ignore_count = ignore_count;
10134 b->disposition = tempflag ? disp_del : disp_donttouch;
10135 b->condition_not_parsed = 1;
10136 b->enable_state = enabled ? bp_enabled : bp_disabled;
10137 if ((type_wanted != bp_breakpoint
10138 && type_wanted != bp_hardware_breakpoint) || thread != -1)
10139 b->pspace = current_program_space;
10140
10141 install_breakpoint (internal, b, 0);
10142 }
10143
10144 if (VEC_length (linespec_sals, canonical.sals) > 1)
10145 {
10146 warning (_("Multiple breakpoints were set.\nUse the "
10147 "\"delete\" command to delete unwanted breakpoints."));
10148 prev_breakpoint_count = prev_bkpt_count;
10149 }
10150
10151 /* That's it. Discard the cleanups for data inserted into the
10152 breakpoint. */
10153 discard_cleanups (bkpt_chain);
10154 /* But cleanup everything else. */
10155 do_cleanups (old_chain);
10156
10157 /* error call may happen here - have BKPT_CHAIN already discarded. */
10158 update_global_location_list (UGLL_MAY_INSERT);
10159
10160 return 1;
10161 }
10162
10163 /* Set a breakpoint.
10164 ARG is a string describing breakpoint address,
10165 condition, and thread.
10166 FLAG specifies if a breakpoint is hardware on,
10167 and if breakpoint is temporary, using BP_HARDWARE_FLAG
10168 and BP_TEMPFLAG. */
10169
10170 static void
10171 break_command_1 (char *arg, int flag, int from_tty)
10172 {
10173 int tempflag = flag & BP_TEMPFLAG;
10174 enum bptype type_wanted = (flag & BP_HARDWAREFLAG
10175 ? bp_hardware_breakpoint
10176 : bp_breakpoint);
10177 struct breakpoint_ops *ops;
10178 const char *arg_cp = arg;
10179
10180 /* Matching breakpoints on probes. */
10181 if (arg && probe_linespec_to_ops (&arg_cp) != NULL)
10182 ops = &bkpt_probe_breakpoint_ops;
10183 else
10184 ops = &bkpt_breakpoint_ops;
10185
10186 create_breakpoint (get_current_arch (),
10187 arg,
10188 NULL, 0, NULL, 1 /* parse arg */,
10189 tempflag, type_wanted,
10190 0 /* Ignore count */,
10191 pending_break_support,
10192 ops,
10193 from_tty,
10194 1 /* enabled */,
10195 0 /* internal */,
10196 0);
10197 }
10198
10199 /* Helper function for break_command_1 and disassemble_command. */
10200
10201 void
10202 resolve_sal_pc (struct symtab_and_line *sal)
10203 {
10204 CORE_ADDR pc;
10205
10206 if (sal->pc == 0 && sal->symtab != NULL)
10207 {
10208 if (!find_line_pc (sal->symtab, sal->line, &pc))
10209 error (_("No line %d in file \"%s\"."),
10210 sal->line, symtab_to_filename_for_display (sal->symtab));
10211 sal->pc = pc;
10212
10213 /* If this SAL corresponds to a breakpoint inserted using a line
10214 number, then skip the function prologue if necessary. */
10215 if (sal->explicit_line)
10216 skip_prologue_sal (sal);
10217 }
10218
10219 if (sal->section == 0 && sal->symtab != NULL)
10220 {
10221 const struct blockvector *bv;
10222 const struct block *b;
10223 struct symbol *sym;
10224
10225 bv = blockvector_for_pc_sect (sal->pc, 0, &b,
10226 SYMTAB_COMPUNIT (sal->symtab));
10227 if (bv != NULL)
10228 {
10229 sym = block_linkage_function (b);
10230 if (sym != NULL)
10231 {
10232 fixup_symbol_section (sym, SYMTAB_OBJFILE (sal->symtab));
10233 sal->section = SYMBOL_OBJ_SECTION (SYMTAB_OBJFILE (sal->symtab),
10234 sym);
10235 }
10236 else
10237 {
10238 /* It really is worthwhile to have the section, so we'll
10239 just have to look harder. This case can be executed
10240 if we have line numbers but no functions (as can
10241 happen in assembly source). */
10242
10243 struct bound_minimal_symbol msym;
10244 struct cleanup *old_chain = save_current_space_and_thread ();
10245
10246 switch_to_program_space_and_thread (sal->pspace);
10247
10248 msym = lookup_minimal_symbol_by_pc (sal->pc);
10249 if (msym.minsym)
10250 sal->section = MSYMBOL_OBJ_SECTION (msym.objfile, msym.minsym);
10251
10252 do_cleanups (old_chain);
10253 }
10254 }
10255 }
10256 }
10257
10258 void
10259 break_command (char *arg, int from_tty)
10260 {
10261 break_command_1 (arg, 0, from_tty);
10262 }
10263
10264 void
10265 tbreak_command (char *arg, int from_tty)
10266 {
10267 break_command_1 (arg, BP_TEMPFLAG, from_tty);
10268 }
10269
10270 static void
10271 hbreak_command (char *arg, int from_tty)
10272 {
10273 break_command_1 (arg, BP_HARDWAREFLAG, from_tty);
10274 }
10275
10276 static void
10277 thbreak_command (char *arg, int from_tty)
10278 {
10279 break_command_1 (arg, (BP_TEMPFLAG | BP_HARDWAREFLAG), from_tty);
10280 }
10281
10282 static void
10283 stop_command (char *arg, int from_tty)
10284 {
10285 printf_filtered (_("Specify the type of breakpoint to set.\n\
10286 Usage: stop in <function | address>\n\
10287 stop at <line>\n"));
10288 }
10289
10290 static void
10291 stopin_command (char *arg, int from_tty)
10292 {
10293 int badInput = 0;
10294
10295 if (arg == (char *) NULL)
10296 badInput = 1;
10297 else if (*arg != '*')
10298 {
10299 char *argptr = arg;
10300 int hasColon = 0;
10301
10302 /* Look for a ':'. If this is a line number specification, then
10303 say it is bad, otherwise, it should be an address or
10304 function/method name. */
10305 while (*argptr && !hasColon)
10306 {
10307 hasColon = (*argptr == ':');
10308 argptr++;
10309 }
10310
10311 if (hasColon)
10312 badInput = (*argptr != ':'); /* Not a class::method */
10313 else
10314 badInput = isdigit (*arg); /* a simple line number */
10315 }
10316
10317 if (badInput)
10318 printf_filtered (_("Usage: stop in <function | address>\n"));
10319 else
10320 break_command_1 (arg, 0, from_tty);
10321 }
10322
10323 static void
10324 stopat_command (char *arg, int from_tty)
10325 {
10326 int badInput = 0;
10327
10328 if (arg == (char *) NULL || *arg == '*') /* no line number */
10329 badInput = 1;
10330 else
10331 {
10332 char *argptr = arg;
10333 int hasColon = 0;
10334
10335 /* Look for a ':'. If there is a '::' then get out, otherwise
10336 it is probably a line number. */
10337 while (*argptr && !hasColon)
10338 {
10339 hasColon = (*argptr == ':');
10340 argptr++;
10341 }
10342
10343 if (hasColon)
10344 badInput = (*argptr == ':'); /* we have class::method */
10345 else
10346 badInput = !isdigit (*arg); /* not a line number */
10347 }
10348
10349 if (badInput)
10350 printf_filtered (_("Usage: stop at <line>\n"));
10351 else
10352 break_command_1 (arg, 0, from_tty);
10353 }
10354
10355 /* The dynamic printf command is mostly like a regular breakpoint, but
10356 with a prewired command list consisting of a single output command,
10357 built from extra arguments supplied on the dprintf command
10358 line. */
10359
10360 static void
10361 dprintf_command (char *arg, int from_tty)
10362 {
10363 create_breakpoint (get_current_arch (),
10364 arg,
10365 NULL, 0, NULL, 1 /* parse arg */,
10366 0, bp_dprintf,
10367 0 /* Ignore count */,
10368 pending_break_support,
10369 &dprintf_breakpoint_ops,
10370 from_tty,
10371 1 /* enabled */,
10372 0 /* internal */,
10373 0);
10374 }
10375
10376 static void
10377 agent_printf_command (char *arg, int from_tty)
10378 {
10379 error (_("May only run agent-printf on the target"));
10380 }
10381
10382 /* Implement the "breakpoint_hit" breakpoint_ops method for
10383 ranged breakpoints. */
10384
10385 static int
10386 breakpoint_hit_ranged_breakpoint (const struct bp_location *bl,
10387 struct address_space *aspace,
10388 CORE_ADDR bp_addr,
10389 const struct target_waitstatus *ws)
10390 {
10391 if (ws->kind != TARGET_WAITKIND_STOPPED
10392 || ws->value.sig != GDB_SIGNAL_TRAP)
10393 return 0;
10394
10395 return breakpoint_address_match_range (bl->pspace->aspace, bl->address,
10396 bl->length, aspace, bp_addr);
10397 }
10398
10399 /* Implement the "resources_needed" breakpoint_ops method for
10400 ranged breakpoints. */
10401
10402 static int
10403 resources_needed_ranged_breakpoint (const struct bp_location *bl)
10404 {
10405 return target_ranged_break_num_registers ();
10406 }
10407
10408 /* Implement the "print_it" breakpoint_ops method for
10409 ranged breakpoints. */
10410
10411 static enum print_stop_action
10412 print_it_ranged_breakpoint (bpstat bs)
10413 {
10414 struct breakpoint *b = bs->breakpoint_at;
10415 struct bp_location *bl = b->loc;
10416 struct ui_out *uiout = current_uiout;
10417
10418 gdb_assert (b->type == bp_hardware_breakpoint);
10419
10420 /* Ranged breakpoints have only one location. */
10421 gdb_assert (bl && bl->next == NULL);
10422
10423 annotate_breakpoint (b->number);
10424 if (b->disposition == disp_del)
10425 ui_out_text (uiout, "\nTemporary ranged breakpoint ");
10426 else
10427 ui_out_text (uiout, "\nRanged breakpoint ");
10428 if (ui_out_is_mi_like_p (uiout))
10429 {
10430 ui_out_field_string (uiout, "reason",
10431 async_reason_lookup (EXEC_ASYNC_BREAKPOINT_HIT));
10432 ui_out_field_string (uiout, "disp", bpdisp_text (b->disposition));
10433 }
10434 ui_out_field_int (uiout, "bkptno", b->number);
10435 ui_out_text (uiout, ", ");
10436
10437 return PRINT_SRC_AND_LOC;
10438 }
10439
10440 /* Implement the "print_one" breakpoint_ops method for
10441 ranged breakpoints. */
10442
10443 static void
10444 print_one_ranged_breakpoint (struct breakpoint *b,
10445 struct bp_location **last_loc)
10446 {
10447 struct bp_location *bl = b->loc;
10448 struct value_print_options opts;
10449 struct ui_out *uiout = current_uiout;
10450
10451 /* Ranged breakpoints have only one location. */
10452 gdb_assert (bl && bl->next == NULL);
10453
10454 get_user_print_options (&opts);
10455
10456 if (opts.addressprint)
10457 /* We don't print the address range here, it will be printed later
10458 by print_one_detail_ranged_breakpoint. */
10459 ui_out_field_skip (uiout, "addr");
10460 annotate_field (5);
10461 print_breakpoint_location (b, bl);
10462 *last_loc = bl;
10463 }
10464
10465 /* Implement the "print_one_detail" breakpoint_ops method for
10466 ranged breakpoints. */
10467
10468 static void
10469 print_one_detail_ranged_breakpoint (const struct breakpoint *b,
10470 struct ui_out *uiout)
10471 {
10472 CORE_ADDR address_start, address_end;
10473 struct bp_location *bl = b->loc;
10474 struct ui_file *stb = mem_fileopen ();
10475 struct cleanup *cleanup = make_cleanup_ui_file_delete (stb);
10476
10477 gdb_assert (bl);
10478
10479 address_start = bl->address;
10480 address_end = address_start + bl->length - 1;
10481
10482 ui_out_text (uiout, "\taddress range: ");
10483 fprintf_unfiltered (stb, "[%s, %s]",
10484 print_core_address (bl->gdbarch, address_start),
10485 print_core_address (bl->gdbarch, address_end));
10486 ui_out_field_stream (uiout, "addr", stb);
10487 ui_out_text (uiout, "\n");
10488
10489 do_cleanups (cleanup);
10490 }
10491
10492 /* Implement the "print_mention" breakpoint_ops method for
10493 ranged breakpoints. */
10494
10495 static void
10496 print_mention_ranged_breakpoint (struct breakpoint *b)
10497 {
10498 struct bp_location *bl = b->loc;
10499 struct ui_out *uiout = current_uiout;
10500
10501 gdb_assert (bl);
10502 gdb_assert (b->type == bp_hardware_breakpoint);
10503
10504 if (ui_out_is_mi_like_p (uiout))
10505 return;
10506
10507 printf_filtered (_("Hardware assisted ranged breakpoint %d from %s to %s."),
10508 b->number, paddress (bl->gdbarch, bl->address),
10509 paddress (bl->gdbarch, bl->address + bl->length - 1));
10510 }
10511
10512 /* Implement the "print_recreate" breakpoint_ops method for
10513 ranged breakpoints. */
10514
10515 static void
10516 print_recreate_ranged_breakpoint (struct breakpoint *b, struct ui_file *fp)
10517 {
10518 fprintf_unfiltered (fp, "break-range %s, %s", b->addr_string,
10519 b->addr_string_range_end);
10520 print_recreate_thread (b, fp);
10521 }
10522
10523 /* The breakpoint_ops structure to be used in ranged breakpoints. */
10524
10525 static struct breakpoint_ops ranged_breakpoint_ops;
10526
10527 /* Find the address where the end of the breakpoint range should be
10528 placed, given the SAL of the end of the range. This is so that if
10529 the user provides a line number, the end of the range is set to the
10530 last instruction of the given line. */
10531
10532 static CORE_ADDR
10533 find_breakpoint_range_end (struct symtab_and_line sal)
10534 {
10535 CORE_ADDR end;
10536
10537 /* If the user provided a PC value, use it. Otherwise,
10538 find the address of the end of the given location. */
10539 if (sal.explicit_pc)
10540 end = sal.pc;
10541 else
10542 {
10543 int ret;
10544 CORE_ADDR start;
10545
10546 ret = find_line_pc_range (sal, &start, &end);
10547 if (!ret)
10548 error (_("Could not find location of the end of the range."));
10549
10550 /* find_line_pc_range returns the start of the next line. */
10551 end--;
10552 }
10553
10554 return end;
10555 }
10556
10557 /* Implement the "break-range" CLI command. */
10558
10559 static void
10560 break_range_command (char *arg, int from_tty)
10561 {
10562 char *arg_start, *addr_string_start, *addr_string_end;
10563 struct linespec_result canonical_start, canonical_end;
10564 int bp_count, can_use_bp, length;
10565 CORE_ADDR end;
10566 struct breakpoint *b;
10567 struct symtab_and_line sal_start, sal_end;
10568 struct cleanup *cleanup_bkpt;
10569 struct linespec_sals *lsal_start, *lsal_end;
10570
10571 /* We don't support software ranged breakpoints. */
10572 if (target_ranged_break_num_registers () < 0)
10573 error (_("This target does not support hardware ranged breakpoints."));
10574
10575 bp_count = hw_breakpoint_used_count ();
10576 bp_count += target_ranged_break_num_registers ();
10577 can_use_bp = target_can_use_hardware_watchpoint (bp_hardware_breakpoint,
10578 bp_count, 0);
10579 if (can_use_bp < 0)
10580 error (_("Hardware breakpoints used exceeds limit."));
10581
10582 arg = skip_spaces (arg);
10583 if (arg == NULL || arg[0] == '\0')
10584 error(_("No address range specified."));
10585
10586 init_linespec_result (&canonical_start);
10587
10588 arg_start = arg;
10589 parse_breakpoint_sals (&arg, &canonical_start);
10590
10591 cleanup_bkpt = make_cleanup_destroy_linespec_result (&canonical_start);
10592
10593 if (arg[0] != ',')
10594 error (_("Too few arguments."));
10595 else if (VEC_empty (linespec_sals, canonical_start.sals))
10596 error (_("Could not find location of the beginning of the range."));
10597
10598 lsal_start = VEC_index (linespec_sals, canonical_start.sals, 0);
10599
10600 if (VEC_length (linespec_sals, canonical_start.sals) > 1
10601 || lsal_start->sals.nelts != 1)
10602 error (_("Cannot create a ranged breakpoint with multiple locations."));
10603
10604 sal_start = lsal_start->sals.sals[0];
10605 addr_string_start = savestring (arg_start, arg - arg_start);
10606 make_cleanup (xfree, addr_string_start);
10607
10608 arg++; /* Skip the comma. */
10609 arg = skip_spaces (arg);
10610
10611 /* Parse the end location. */
10612
10613 init_linespec_result (&canonical_end);
10614 arg_start = arg;
10615
10616 /* We call decode_line_full directly here instead of using
10617 parse_breakpoint_sals because we need to specify the start location's
10618 symtab and line as the default symtab and line for the end of the
10619 range. This makes it possible to have ranges like "foo.c:27, +14",
10620 where +14 means 14 lines from the start location. */
10621 decode_line_full (&arg, DECODE_LINE_FUNFIRSTLINE,
10622 sal_start.symtab, sal_start.line,
10623 &canonical_end, NULL, NULL);
10624
10625 make_cleanup_destroy_linespec_result (&canonical_end);
10626
10627 if (VEC_empty (linespec_sals, canonical_end.sals))
10628 error (_("Could not find location of the end of the range."));
10629
10630 lsal_end = VEC_index (linespec_sals, canonical_end.sals, 0);
10631 if (VEC_length (linespec_sals, canonical_end.sals) > 1
10632 || lsal_end->sals.nelts != 1)
10633 error (_("Cannot create a ranged breakpoint with multiple locations."));
10634
10635 sal_end = lsal_end->sals.sals[0];
10636 addr_string_end = savestring (arg_start, arg - arg_start);
10637 make_cleanup (xfree, addr_string_end);
10638
10639 end = find_breakpoint_range_end (sal_end);
10640 if (sal_start.pc > end)
10641 error (_("Invalid address range, end precedes start."));
10642
10643 length = end - sal_start.pc + 1;
10644 if (length < 0)
10645 /* Length overflowed. */
10646 error (_("Address range too large."));
10647 else if (length == 1)
10648 {
10649 /* This range is simple enough to be handled by
10650 the `hbreak' command. */
10651 hbreak_command (addr_string_start, 1);
10652
10653 do_cleanups (cleanup_bkpt);
10654
10655 return;
10656 }
10657
10658 /* Now set up the breakpoint. */
10659 b = set_raw_breakpoint (get_current_arch (), sal_start,
10660 bp_hardware_breakpoint, &ranged_breakpoint_ops);
10661 set_breakpoint_count (breakpoint_count + 1);
10662 b->number = breakpoint_count;
10663 b->disposition = disp_donttouch;
10664 b->addr_string = xstrdup (addr_string_start);
10665 b->addr_string_range_end = xstrdup (addr_string_end);
10666 b->loc->length = length;
10667
10668 do_cleanups (cleanup_bkpt);
10669
10670 mention (b);
10671 observer_notify_breakpoint_created (b);
10672 update_global_location_list (UGLL_MAY_INSERT);
10673 }
10674
10675 /* Return non-zero if EXP is verified as constant. Returned zero
10676 means EXP is variable. Also the constant detection may fail for
10677 some constant expressions and in such case still falsely return
10678 zero. */
10679
10680 static int
10681 watchpoint_exp_is_const (const struct expression *exp)
10682 {
10683 int i = exp->nelts;
10684
10685 while (i > 0)
10686 {
10687 int oplenp, argsp;
10688
10689 /* We are only interested in the descriptor of each element. */
10690 operator_length (exp, i, &oplenp, &argsp);
10691 i -= oplenp;
10692
10693 switch (exp->elts[i].opcode)
10694 {
10695 case BINOP_ADD:
10696 case BINOP_SUB:
10697 case BINOP_MUL:
10698 case BINOP_DIV:
10699 case BINOP_REM:
10700 case BINOP_MOD:
10701 case BINOP_LSH:
10702 case BINOP_RSH:
10703 case BINOP_LOGICAL_AND:
10704 case BINOP_LOGICAL_OR:
10705 case BINOP_BITWISE_AND:
10706 case BINOP_BITWISE_IOR:
10707 case BINOP_BITWISE_XOR:
10708 case BINOP_EQUAL:
10709 case BINOP_NOTEQUAL:
10710 case BINOP_LESS:
10711 case BINOP_GTR:
10712 case BINOP_LEQ:
10713 case BINOP_GEQ:
10714 case BINOP_REPEAT:
10715 case BINOP_COMMA:
10716 case BINOP_EXP:
10717 case BINOP_MIN:
10718 case BINOP_MAX:
10719 case BINOP_INTDIV:
10720 case BINOP_CONCAT:
10721 case TERNOP_COND:
10722 case TERNOP_SLICE:
10723
10724 case OP_LONG:
10725 case OP_DOUBLE:
10726 case OP_DECFLOAT:
10727 case OP_LAST:
10728 case OP_COMPLEX:
10729 case OP_STRING:
10730 case OP_ARRAY:
10731 case OP_TYPE:
10732 case OP_TYPEOF:
10733 case OP_DECLTYPE:
10734 case OP_TYPEID:
10735 case OP_NAME:
10736 case OP_OBJC_NSSTRING:
10737
10738 case UNOP_NEG:
10739 case UNOP_LOGICAL_NOT:
10740 case UNOP_COMPLEMENT:
10741 case UNOP_ADDR:
10742 case UNOP_HIGH:
10743 case UNOP_CAST:
10744
10745 case UNOP_CAST_TYPE:
10746 case UNOP_REINTERPRET_CAST:
10747 case UNOP_DYNAMIC_CAST:
10748 /* Unary, binary and ternary operators: We have to check
10749 their operands. If they are constant, then so is the
10750 result of that operation. For instance, if A and B are
10751 determined to be constants, then so is "A + B".
10752
10753 UNOP_IND is one exception to the rule above, because the
10754 value of *ADDR is not necessarily a constant, even when
10755 ADDR is. */
10756 break;
10757
10758 case OP_VAR_VALUE:
10759 /* Check whether the associated symbol is a constant.
10760
10761 We use SYMBOL_CLASS rather than TYPE_CONST because it's
10762 possible that a buggy compiler could mark a variable as
10763 constant even when it is not, and TYPE_CONST would return
10764 true in this case, while SYMBOL_CLASS wouldn't.
10765
10766 We also have to check for function symbols because they
10767 are always constant. */
10768 {
10769 struct symbol *s = exp->elts[i + 2].symbol;
10770
10771 if (SYMBOL_CLASS (s) != LOC_BLOCK
10772 && SYMBOL_CLASS (s) != LOC_CONST
10773 && SYMBOL_CLASS (s) != LOC_CONST_BYTES)
10774 return 0;
10775 break;
10776 }
10777
10778 /* The default action is to return 0 because we are using
10779 the optimistic approach here: If we don't know something,
10780 then it is not a constant. */
10781 default:
10782 return 0;
10783 }
10784 }
10785
10786 return 1;
10787 }
10788
10789 /* Implement the "dtor" breakpoint_ops method for watchpoints. */
10790
10791 static void
10792 dtor_watchpoint (struct breakpoint *self)
10793 {
10794 struct watchpoint *w = (struct watchpoint *) self;
10795
10796 xfree (w->cond_exp);
10797 xfree (w->exp);
10798 xfree (w->exp_string);
10799 xfree (w->exp_string_reparse);
10800 value_free (w->val);
10801
10802 base_breakpoint_ops.dtor (self);
10803 }
10804
10805 /* Implement the "re_set" breakpoint_ops method for watchpoints. */
10806
10807 static void
10808 re_set_watchpoint (struct breakpoint *b)
10809 {
10810 struct watchpoint *w = (struct watchpoint *) b;
10811
10812 /* Watchpoint can be either on expression using entirely global
10813 variables, or it can be on local variables.
10814
10815 Watchpoints of the first kind are never auto-deleted, and even
10816 persist across program restarts. Since they can use variables
10817 from shared libraries, we need to reparse expression as libraries
10818 are loaded and unloaded.
10819
10820 Watchpoints on local variables can also change meaning as result
10821 of solib event. For example, if a watchpoint uses both a local
10822 and a global variables in expression, it's a local watchpoint,
10823 but unloading of a shared library will make the expression
10824 invalid. This is not a very common use case, but we still
10825 re-evaluate expression, to avoid surprises to the user.
10826
10827 Note that for local watchpoints, we re-evaluate it only if
10828 watchpoints frame id is still valid. If it's not, it means the
10829 watchpoint is out of scope and will be deleted soon. In fact,
10830 I'm not sure we'll ever be called in this case.
10831
10832 If a local watchpoint's frame id is still valid, then
10833 w->exp_valid_block is likewise valid, and we can safely use it.
10834
10835 Don't do anything about disabled watchpoints, since they will be
10836 reevaluated again when enabled. */
10837 update_watchpoint (w, 1 /* reparse */);
10838 }
10839
10840 /* Implement the "insert" breakpoint_ops method for hardware watchpoints. */
10841
10842 static int
10843 insert_watchpoint (struct bp_location *bl)
10844 {
10845 struct watchpoint *w = (struct watchpoint *) bl->owner;
10846 int length = w->exact ? 1 : bl->length;
10847
10848 return target_insert_watchpoint (bl->address, length, bl->watchpoint_type,
10849 w->cond_exp);
10850 }
10851
10852 /* Implement the "remove" breakpoint_ops method for hardware watchpoints. */
10853
10854 static int
10855 remove_watchpoint (struct bp_location *bl)
10856 {
10857 struct watchpoint *w = (struct watchpoint *) bl->owner;
10858 int length = w->exact ? 1 : bl->length;
10859
10860 return target_remove_watchpoint (bl->address, length, bl->watchpoint_type,
10861 w->cond_exp);
10862 }
10863
10864 static int
10865 breakpoint_hit_watchpoint (const struct bp_location *bl,
10866 struct address_space *aspace, CORE_ADDR bp_addr,
10867 const struct target_waitstatus *ws)
10868 {
10869 struct breakpoint *b = bl->owner;
10870 struct watchpoint *w = (struct watchpoint *) b;
10871
10872 /* Continuable hardware watchpoints are treated as non-existent if the
10873 reason we stopped wasn't a hardware watchpoint (we didn't stop on
10874 some data address). Otherwise gdb won't stop on a break instruction
10875 in the code (not from a breakpoint) when a hardware watchpoint has
10876 been defined. Also skip watchpoints which we know did not trigger
10877 (did not match the data address). */
10878 if (is_hardware_watchpoint (b)
10879 && w->watchpoint_triggered == watch_triggered_no)
10880 return 0;
10881
10882 return 1;
10883 }
10884
10885 static void
10886 check_status_watchpoint (bpstat bs)
10887 {
10888 gdb_assert (is_watchpoint (bs->breakpoint_at));
10889
10890 bpstat_check_watchpoint (bs);
10891 }
10892
10893 /* Implement the "resources_needed" breakpoint_ops method for
10894 hardware watchpoints. */
10895
10896 static int
10897 resources_needed_watchpoint (const struct bp_location *bl)
10898 {
10899 struct watchpoint *w = (struct watchpoint *) bl->owner;
10900 int length = w->exact? 1 : bl->length;
10901
10902 return target_region_ok_for_hw_watchpoint (bl->address, length);
10903 }
10904
10905 /* Implement the "works_in_software_mode" breakpoint_ops method for
10906 hardware watchpoints. */
10907
10908 static int
10909 works_in_software_mode_watchpoint (const struct breakpoint *b)
10910 {
10911 /* Read and access watchpoints only work with hardware support. */
10912 return b->type == bp_watchpoint || b->type == bp_hardware_watchpoint;
10913 }
10914
10915 static enum print_stop_action
10916 print_it_watchpoint (bpstat bs)
10917 {
10918 struct cleanup *old_chain;
10919 struct breakpoint *b;
10920 struct ui_file *stb;
10921 enum print_stop_action result;
10922 struct watchpoint *w;
10923 struct ui_out *uiout = current_uiout;
10924
10925 gdb_assert (bs->bp_location_at != NULL);
10926
10927 b = bs->breakpoint_at;
10928 w = (struct watchpoint *) b;
10929
10930 stb = mem_fileopen ();
10931 old_chain = make_cleanup_ui_file_delete (stb);
10932
10933 switch (b->type)
10934 {
10935 case bp_watchpoint:
10936 case bp_hardware_watchpoint:
10937 annotate_watchpoint (b->number);
10938 if (ui_out_is_mi_like_p (uiout))
10939 ui_out_field_string
10940 (uiout, "reason",
10941 async_reason_lookup (EXEC_ASYNC_WATCHPOINT_TRIGGER));
10942 mention (b);
10943 make_cleanup_ui_out_tuple_begin_end (uiout, "value");
10944 ui_out_text (uiout, "\nOld value = ");
10945 watchpoint_value_print (bs->old_val, stb);
10946 ui_out_field_stream (uiout, "old", stb);
10947 ui_out_text (uiout, "\nNew value = ");
10948 watchpoint_value_print (w->val, stb);
10949 ui_out_field_stream (uiout, "new", stb);
10950 ui_out_text (uiout, "\n");
10951 /* More than one watchpoint may have been triggered. */
10952 result = PRINT_UNKNOWN;
10953 break;
10954
10955 case bp_read_watchpoint:
10956 if (ui_out_is_mi_like_p (uiout))
10957 ui_out_field_string
10958 (uiout, "reason",
10959 async_reason_lookup (EXEC_ASYNC_READ_WATCHPOINT_TRIGGER));
10960 mention (b);
10961 make_cleanup_ui_out_tuple_begin_end (uiout, "value");
10962 ui_out_text (uiout, "\nValue = ");
10963 watchpoint_value_print (w->val, stb);
10964 ui_out_field_stream (uiout, "value", stb);
10965 ui_out_text (uiout, "\n");
10966 result = PRINT_UNKNOWN;
10967 break;
10968
10969 case bp_access_watchpoint:
10970 if (bs->old_val != NULL)
10971 {
10972 annotate_watchpoint (b->number);
10973 if (ui_out_is_mi_like_p (uiout))
10974 ui_out_field_string
10975 (uiout, "reason",
10976 async_reason_lookup (EXEC_ASYNC_ACCESS_WATCHPOINT_TRIGGER));
10977 mention (b);
10978 make_cleanup_ui_out_tuple_begin_end (uiout, "value");
10979 ui_out_text (uiout, "\nOld value = ");
10980 watchpoint_value_print (bs->old_val, stb);
10981 ui_out_field_stream (uiout, "old", stb);
10982 ui_out_text (uiout, "\nNew value = ");
10983 }
10984 else
10985 {
10986 mention (b);
10987 if (ui_out_is_mi_like_p (uiout))
10988 ui_out_field_string
10989 (uiout, "reason",
10990 async_reason_lookup (EXEC_ASYNC_ACCESS_WATCHPOINT_TRIGGER));
10991 make_cleanup_ui_out_tuple_begin_end (uiout, "value");
10992 ui_out_text (uiout, "\nValue = ");
10993 }
10994 watchpoint_value_print (w->val, stb);
10995 ui_out_field_stream (uiout, "new", stb);
10996 ui_out_text (uiout, "\n");
10997 result = PRINT_UNKNOWN;
10998 break;
10999 default:
11000 result = PRINT_UNKNOWN;
11001 }
11002
11003 do_cleanups (old_chain);
11004 return result;
11005 }
11006
11007 /* Implement the "print_mention" breakpoint_ops method for hardware
11008 watchpoints. */
11009
11010 static void
11011 print_mention_watchpoint (struct breakpoint *b)
11012 {
11013 struct cleanup *ui_out_chain;
11014 struct watchpoint *w = (struct watchpoint *) b;
11015 struct ui_out *uiout = current_uiout;
11016
11017 switch (b->type)
11018 {
11019 case bp_watchpoint:
11020 ui_out_text (uiout, "Watchpoint ");
11021 ui_out_chain = make_cleanup_ui_out_tuple_begin_end (uiout, "wpt");
11022 break;
11023 case bp_hardware_watchpoint:
11024 ui_out_text (uiout, "Hardware watchpoint ");
11025 ui_out_chain = make_cleanup_ui_out_tuple_begin_end (uiout, "wpt");
11026 break;
11027 case bp_read_watchpoint:
11028 ui_out_text (uiout, "Hardware read watchpoint ");
11029 ui_out_chain = make_cleanup_ui_out_tuple_begin_end (uiout, "hw-rwpt");
11030 break;
11031 case bp_access_watchpoint:
11032 ui_out_text (uiout, "Hardware access (read/write) watchpoint ");
11033 ui_out_chain = make_cleanup_ui_out_tuple_begin_end (uiout, "hw-awpt");
11034 break;
11035 default:
11036 internal_error (__FILE__, __LINE__,
11037 _("Invalid hardware watchpoint type."));
11038 }
11039
11040 ui_out_field_int (uiout, "number", b->number);
11041 ui_out_text (uiout, ": ");
11042 ui_out_field_string (uiout, "exp", w->exp_string);
11043 do_cleanups (ui_out_chain);
11044 }
11045
11046 /* Implement the "print_recreate" breakpoint_ops method for
11047 watchpoints. */
11048
11049 static void
11050 print_recreate_watchpoint (struct breakpoint *b, struct ui_file *fp)
11051 {
11052 struct watchpoint *w = (struct watchpoint *) b;
11053
11054 switch (b->type)
11055 {
11056 case bp_watchpoint:
11057 case bp_hardware_watchpoint:
11058 fprintf_unfiltered (fp, "watch");
11059 break;
11060 case bp_read_watchpoint:
11061 fprintf_unfiltered (fp, "rwatch");
11062 break;
11063 case bp_access_watchpoint:
11064 fprintf_unfiltered (fp, "awatch");
11065 break;
11066 default:
11067 internal_error (__FILE__, __LINE__,
11068 _("Invalid watchpoint type."));
11069 }
11070
11071 fprintf_unfiltered (fp, " %s", w->exp_string);
11072 print_recreate_thread (b, fp);
11073 }
11074
11075 /* Implement the "explains_signal" breakpoint_ops method for
11076 watchpoints. */
11077
11078 static int
11079 explains_signal_watchpoint (struct breakpoint *b, enum gdb_signal sig)
11080 {
11081 /* A software watchpoint cannot cause a signal other than
11082 GDB_SIGNAL_TRAP. */
11083 if (b->type == bp_watchpoint && sig != GDB_SIGNAL_TRAP)
11084 return 0;
11085
11086 return 1;
11087 }
11088
11089 /* The breakpoint_ops structure to be used in hardware watchpoints. */
11090
11091 static struct breakpoint_ops watchpoint_breakpoint_ops;
11092
11093 /* Implement the "insert" breakpoint_ops method for
11094 masked hardware watchpoints. */
11095
11096 static int
11097 insert_masked_watchpoint (struct bp_location *bl)
11098 {
11099 struct watchpoint *w = (struct watchpoint *) bl->owner;
11100
11101 return target_insert_mask_watchpoint (bl->address, w->hw_wp_mask,
11102 bl->watchpoint_type);
11103 }
11104
11105 /* Implement the "remove" breakpoint_ops method for
11106 masked hardware watchpoints. */
11107
11108 static int
11109 remove_masked_watchpoint (struct bp_location *bl)
11110 {
11111 struct watchpoint *w = (struct watchpoint *) bl->owner;
11112
11113 return target_remove_mask_watchpoint (bl->address, w->hw_wp_mask,
11114 bl->watchpoint_type);
11115 }
11116
11117 /* Implement the "resources_needed" breakpoint_ops method for
11118 masked hardware watchpoints. */
11119
11120 static int
11121 resources_needed_masked_watchpoint (const struct bp_location *bl)
11122 {
11123 struct watchpoint *w = (struct watchpoint *) bl->owner;
11124
11125 return target_masked_watch_num_registers (bl->address, w->hw_wp_mask);
11126 }
11127
11128 /* Implement the "works_in_software_mode" breakpoint_ops method for
11129 masked hardware watchpoints. */
11130
11131 static int
11132 works_in_software_mode_masked_watchpoint (const struct breakpoint *b)
11133 {
11134 return 0;
11135 }
11136
11137 /* Implement the "print_it" breakpoint_ops method for
11138 masked hardware watchpoints. */
11139
11140 static enum print_stop_action
11141 print_it_masked_watchpoint (bpstat bs)
11142 {
11143 struct breakpoint *b = bs->breakpoint_at;
11144 struct ui_out *uiout = current_uiout;
11145
11146 /* Masked watchpoints have only one location. */
11147 gdb_assert (b->loc && b->loc->next == NULL);
11148
11149 switch (b->type)
11150 {
11151 case bp_hardware_watchpoint:
11152 annotate_watchpoint (b->number);
11153 if (ui_out_is_mi_like_p (uiout))
11154 ui_out_field_string
11155 (uiout, "reason",
11156 async_reason_lookup (EXEC_ASYNC_WATCHPOINT_TRIGGER));
11157 break;
11158
11159 case bp_read_watchpoint:
11160 if (ui_out_is_mi_like_p (uiout))
11161 ui_out_field_string
11162 (uiout, "reason",
11163 async_reason_lookup (EXEC_ASYNC_READ_WATCHPOINT_TRIGGER));
11164 break;
11165
11166 case bp_access_watchpoint:
11167 if (ui_out_is_mi_like_p (uiout))
11168 ui_out_field_string
11169 (uiout, "reason",
11170 async_reason_lookup (EXEC_ASYNC_ACCESS_WATCHPOINT_TRIGGER));
11171 break;
11172 default:
11173 internal_error (__FILE__, __LINE__,
11174 _("Invalid hardware watchpoint type."));
11175 }
11176
11177 mention (b);
11178 ui_out_text (uiout, _("\n\
11179 Check the underlying instruction at PC for the memory\n\
11180 address and value which triggered this watchpoint.\n"));
11181 ui_out_text (uiout, "\n");
11182
11183 /* More than one watchpoint may have been triggered. */
11184 return PRINT_UNKNOWN;
11185 }
11186
11187 /* Implement the "print_one_detail" breakpoint_ops method for
11188 masked hardware watchpoints. */
11189
11190 static void
11191 print_one_detail_masked_watchpoint (const struct breakpoint *b,
11192 struct ui_out *uiout)
11193 {
11194 struct watchpoint *w = (struct watchpoint *) b;
11195
11196 /* Masked watchpoints have only one location. */
11197 gdb_assert (b->loc && b->loc->next == NULL);
11198
11199 ui_out_text (uiout, "\tmask ");
11200 ui_out_field_core_addr (uiout, "mask", b->loc->gdbarch, w->hw_wp_mask);
11201 ui_out_text (uiout, "\n");
11202 }
11203
11204 /* Implement the "print_mention" breakpoint_ops method for
11205 masked hardware watchpoints. */
11206
11207 static void
11208 print_mention_masked_watchpoint (struct breakpoint *b)
11209 {
11210 struct watchpoint *w = (struct watchpoint *) b;
11211 struct ui_out *uiout = current_uiout;
11212 struct cleanup *ui_out_chain;
11213
11214 switch (b->type)
11215 {
11216 case bp_hardware_watchpoint:
11217 ui_out_text (uiout, "Masked hardware watchpoint ");
11218 ui_out_chain = make_cleanup_ui_out_tuple_begin_end (uiout, "wpt");
11219 break;
11220 case bp_read_watchpoint:
11221 ui_out_text (uiout, "Masked hardware read watchpoint ");
11222 ui_out_chain = make_cleanup_ui_out_tuple_begin_end (uiout, "hw-rwpt");
11223 break;
11224 case bp_access_watchpoint:
11225 ui_out_text (uiout, "Masked hardware access (read/write) watchpoint ");
11226 ui_out_chain = make_cleanup_ui_out_tuple_begin_end (uiout, "hw-awpt");
11227 break;
11228 default:
11229 internal_error (__FILE__, __LINE__,
11230 _("Invalid hardware watchpoint type."));
11231 }
11232
11233 ui_out_field_int (uiout, "number", b->number);
11234 ui_out_text (uiout, ": ");
11235 ui_out_field_string (uiout, "exp", w->exp_string);
11236 do_cleanups (ui_out_chain);
11237 }
11238
11239 /* Implement the "print_recreate" breakpoint_ops method for
11240 masked hardware watchpoints. */
11241
11242 static void
11243 print_recreate_masked_watchpoint (struct breakpoint *b, struct ui_file *fp)
11244 {
11245 struct watchpoint *w = (struct watchpoint *) b;
11246 char tmp[40];
11247
11248 switch (b->type)
11249 {
11250 case bp_hardware_watchpoint:
11251 fprintf_unfiltered (fp, "watch");
11252 break;
11253 case bp_read_watchpoint:
11254 fprintf_unfiltered (fp, "rwatch");
11255 break;
11256 case bp_access_watchpoint:
11257 fprintf_unfiltered (fp, "awatch");
11258 break;
11259 default:
11260 internal_error (__FILE__, __LINE__,
11261 _("Invalid hardware watchpoint type."));
11262 }
11263
11264 sprintf_vma (tmp, w->hw_wp_mask);
11265 fprintf_unfiltered (fp, " %s mask 0x%s", w->exp_string, tmp);
11266 print_recreate_thread (b, fp);
11267 }
11268
11269 /* The breakpoint_ops structure to be used in masked hardware watchpoints. */
11270
11271 static struct breakpoint_ops masked_watchpoint_breakpoint_ops;
11272
11273 /* Tell whether the given watchpoint is a masked hardware watchpoint. */
11274
11275 static int
11276 is_masked_watchpoint (const struct breakpoint *b)
11277 {
11278 return b->ops == &masked_watchpoint_breakpoint_ops;
11279 }
11280
11281 /* accessflag: hw_write: watch write,
11282 hw_read: watch read,
11283 hw_access: watch access (read or write) */
11284 static void
11285 watch_command_1 (const char *arg, int accessflag, int from_tty,
11286 int just_location, int internal)
11287 {
11288 volatile struct gdb_exception e;
11289 struct breakpoint *b, *scope_breakpoint = NULL;
11290 struct expression *exp;
11291 const struct block *exp_valid_block = NULL, *cond_exp_valid_block = NULL;
11292 struct value *val, *mark, *result;
11293 int saved_bitpos = 0, saved_bitsize = 0;
11294 struct frame_info *frame;
11295 const char *exp_start = NULL;
11296 const char *exp_end = NULL;
11297 const char *tok, *end_tok;
11298 int toklen = -1;
11299 const char *cond_start = NULL;
11300 const char *cond_end = NULL;
11301 enum bptype bp_type;
11302 int thread = -1;
11303 int pc = 0;
11304 /* Flag to indicate whether we are going to use masks for
11305 the hardware watchpoint. */
11306 int use_mask = 0;
11307 CORE_ADDR mask = 0;
11308 struct watchpoint *w;
11309 char *expression;
11310 struct cleanup *back_to;
11311
11312 /* Make sure that we actually have parameters to parse. */
11313 if (arg != NULL && arg[0] != '\0')
11314 {
11315 const char *value_start;
11316
11317 exp_end = arg + strlen (arg);
11318
11319 /* Look for "parameter value" pairs at the end
11320 of the arguments string. */
11321 for (tok = exp_end - 1; tok > arg; tok--)
11322 {
11323 /* Skip whitespace at the end of the argument list. */
11324 while (tok > arg && (*tok == ' ' || *tok == '\t'))
11325 tok--;
11326
11327 /* Find the beginning of the last token.
11328 This is the value of the parameter. */
11329 while (tok > arg && (*tok != ' ' && *tok != '\t'))
11330 tok--;
11331 value_start = tok + 1;
11332
11333 /* Skip whitespace. */
11334 while (tok > arg && (*tok == ' ' || *tok == '\t'))
11335 tok--;
11336
11337 end_tok = tok;
11338
11339 /* Find the beginning of the second to last token.
11340 This is the parameter itself. */
11341 while (tok > arg && (*tok != ' ' && *tok != '\t'))
11342 tok--;
11343 tok++;
11344 toklen = end_tok - tok + 1;
11345
11346 if (toklen == 6 && !strncmp (tok, "thread", 6))
11347 {
11348 /* At this point we've found a "thread" token, which means
11349 the user is trying to set a watchpoint that triggers
11350 only in a specific thread. */
11351 char *endp;
11352
11353 if (thread != -1)
11354 error(_("You can specify only one thread."));
11355
11356 /* Extract the thread ID from the next token. */
11357 thread = strtol (value_start, &endp, 0);
11358
11359 /* Check if the user provided a valid numeric value for the
11360 thread ID. */
11361 if (*endp != ' ' && *endp != '\t' && *endp != '\0')
11362 error (_("Invalid thread ID specification %s."), value_start);
11363
11364 /* Check if the thread actually exists. */
11365 if (!valid_thread_id (thread))
11366 invalid_thread_id_error (thread);
11367 }
11368 else if (toklen == 4 && !strncmp (tok, "mask", 4))
11369 {
11370 /* We've found a "mask" token, which means the user wants to
11371 create a hardware watchpoint that is going to have the mask
11372 facility. */
11373 struct value *mask_value, *mark;
11374
11375 if (use_mask)
11376 error(_("You can specify only one mask."));
11377
11378 use_mask = just_location = 1;
11379
11380 mark = value_mark ();
11381 mask_value = parse_to_comma_and_eval (&value_start);
11382 mask = value_as_address (mask_value);
11383 value_free_to_mark (mark);
11384 }
11385 else
11386 /* We didn't recognize what we found. We should stop here. */
11387 break;
11388
11389 /* Truncate the string and get rid of the "parameter value" pair before
11390 the arguments string is parsed by the parse_exp_1 function. */
11391 exp_end = tok;
11392 }
11393 }
11394 else
11395 exp_end = arg;
11396
11397 /* Parse the rest of the arguments. From here on out, everything
11398 is in terms of a newly allocated string instead of the original
11399 ARG. */
11400 innermost_block = NULL;
11401 expression = savestring (arg, exp_end - arg);
11402 back_to = make_cleanup (xfree, expression);
11403 exp_start = arg = expression;
11404 exp = parse_exp_1 (&arg, 0, 0, 0);
11405 exp_end = arg;
11406 /* Remove trailing whitespace from the expression before saving it.
11407 This makes the eventual display of the expression string a bit
11408 prettier. */
11409 while (exp_end > exp_start && (exp_end[-1] == ' ' || exp_end[-1] == '\t'))
11410 --exp_end;
11411
11412 /* Checking if the expression is not constant. */
11413 if (watchpoint_exp_is_const (exp))
11414 {
11415 int len;
11416
11417 len = exp_end - exp_start;
11418 while (len > 0 && isspace (exp_start[len - 1]))
11419 len--;
11420 error (_("Cannot watch constant value `%.*s'."), len, exp_start);
11421 }
11422
11423 exp_valid_block = innermost_block;
11424 mark = value_mark ();
11425 fetch_subexp_value (exp, &pc, &val, &result, NULL, just_location);
11426
11427 if (val != NULL && just_location)
11428 {
11429 saved_bitpos = value_bitpos (val);
11430 saved_bitsize = value_bitsize (val);
11431 }
11432
11433 if (just_location)
11434 {
11435 int ret;
11436
11437 exp_valid_block = NULL;
11438 val = value_addr (result);
11439 release_value (val);
11440 value_free_to_mark (mark);
11441
11442 if (use_mask)
11443 {
11444 ret = target_masked_watch_num_registers (value_as_address (val),
11445 mask);
11446 if (ret == -1)
11447 error (_("This target does not support masked watchpoints."));
11448 else if (ret == -2)
11449 error (_("Invalid mask or memory region."));
11450 }
11451 }
11452 else if (val != NULL)
11453 release_value (val);
11454
11455 tok = skip_spaces_const (arg);
11456 end_tok = skip_to_space_const (tok);
11457
11458 toklen = end_tok - tok;
11459 if (toklen >= 1 && strncmp (tok, "if", toklen) == 0)
11460 {
11461 struct expression *cond;
11462
11463 innermost_block = NULL;
11464 tok = cond_start = end_tok + 1;
11465 cond = parse_exp_1 (&tok, 0, 0, 0);
11466
11467 /* The watchpoint expression may not be local, but the condition
11468 may still be. E.g.: `watch global if local > 0'. */
11469 cond_exp_valid_block = innermost_block;
11470
11471 xfree (cond);
11472 cond_end = tok;
11473 }
11474 if (*tok)
11475 error (_("Junk at end of command."));
11476
11477 frame = block_innermost_frame (exp_valid_block);
11478
11479 /* If the expression is "local", then set up a "watchpoint scope"
11480 breakpoint at the point where we've left the scope of the watchpoint
11481 expression. Create the scope breakpoint before the watchpoint, so
11482 that we will encounter it first in bpstat_stop_status. */
11483 if (exp_valid_block && frame)
11484 {
11485 if (frame_id_p (frame_unwind_caller_id (frame)))
11486 {
11487 scope_breakpoint
11488 = create_internal_breakpoint (frame_unwind_caller_arch (frame),
11489 frame_unwind_caller_pc (frame),
11490 bp_watchpoint_scope,
11491 &momentary_breakpoint_ops);
11492
11493 scope_breakpoint->enable_state = bp_enabled;
11494
11495 /* Automatically delete the breakpoint when it hits. */
11496 scope_breakpoint->disposition = disp_del;
11497
11498 /* Only break in the proper frame (help with recursion). */
11499 scope_breakpoint->frame_id = frame_unwind_caller_id (frame);
11500
11501 /* Set the address at which we will stop. */
11502 scope_breakpoint->loc->gdbarch
11503 = frame_unwind_caller_arch (frame);
11504 scope_breakpoint->loc->requested_address
11505 = frame_unwind_caller_pc (frame);
11506 scope_breakpoint->loc->address
11507 = adjust_breakpoint_address (scope_breakpoint->loc->gdbarch,
11508 scope_breakpoint->loc->requested_address,
11509 scope_breakpoint->type);
11510 }
11511 }
11512
11513 /* Now set up the breakpoint. We create all watchpoints as hardware
11514 watchpoints here even if hardware watchpoints are turned off, a call
11515 to update_watchpoint later in this function will cause the type to
11516 drop back to bp_watchpoint (software watchpoint) if required. */
11517
11518 if (accessflag == hw_read)
11519 bp_type = bp_read_watchpoint;
11520 else if (accessflag == hw_access)
11521 bp_type = bp_access_watchpoint;
11522 else
11523 bp_type = bp_hardware_watchpoint;
11524
11525 w = XCNEW (struct watchpoint);
11526 b = &w->base;
11527 if (use_mask)
11528 init_raw_breakpoint_without_location (b, NULL, bp_type,
11529 &masked_watchpoint_breakpoint_ops);
11530 else
11531 init_raw_breakpoint_without_location (b, NULL, bp_type,
11532 &watchpoint_breakpoint_ops);
11533 b->thread = thread;
11534 b->disposition = disp_donttouch;
11535 b->pspace = current_program_space;
11536 w->exp = exp;
11537 w->exp_valid_block = exp_valid_block;
11538 w->cond_exp_valid_block = cond_exp_valid_block;
11539 if (just_location)
11540 {
11541 struct type *t = value_type (val);
11542 CORE_ADDR addr = value_as_address (val);
11543 char *name;
11544
11545 t = check_typedef (TYPE_TARGET_TYPE (check_typedef (t)));
11546 name = type_to_string (t);
11547
11548 w->exp_string_reparse = xstrprintf ("* (%s *) %s", name,
11549 core_addr_to_string (addr));
11550 xfree (name);
11551
11552 w->exp_string = xstrprintf ("-location %.*s",
11553 (int) (exp_end - exp_start), exp_start);
11554
11555 /* The above expression is in C. */
11556 b->language = language_c;
11557 }
11558 else
11559 w->exp_string = savestring (exp_start, exp_end - exp_start);
11560
11561 if (use_mask)
11562 {
11563 w->hw_wp_mask = mask;
11564 }
11565 else
11566 {
11567 w->val = val;
11568 w->val_bitpos = saved_bitpos;
11569 w->val_bitsize = saved_bitsize;
11570 w->val_valid = 1;
11571 }
11572
11573 if (cond_start)
11574 b->cond_string = savestring (cond_start, cond_end - cond_start);
11575 else
11576 b->cond_string = 0;
11577
11578 if (frame)
11579 {
11580 w->watchpoint_frame = get_frame_id (frame);
11581 w->watchpoint_thread = inferior_ptid;
11582 }
11583 else
11584 {
11585 w->watchpoint_frame = null_frame_id;
11586 w->watchpoint_thread = null_ptid;
11587 }
11588
11589 if (scope_breakpoint != NULL)
11590 {
11591 /* The scope breakpoint is related to the watchpoint. We will
11592 need to act on them together. */
11593 b->related_breakpoint = scope_breakpoint;
11594 scope_breakpoint->related_breakpoint = b;
11595 }
11596
11597 if (!just_location)
11598 value_free_to_mark (mark);
11599
11600 TRY_CATCH (e, RETURN_MASK_ALL)
11601 {
11602 /* Finally update the new watchpoint. This creates the locations
11603 that should be inserted. */
11604 update_watchpoint (w, 1);
11605 }
11606 if (e.reason < 0)
11607 {
11608 delete_breakpoint (b);
11609 throw_exception (e);
11610 }
11611
11612 install_breakpoint (internal, b, 1);
11613 do_cleanups (back_to);
11614 }
11615
11616 /* Return count of debug registers needed to watch the given expression.
11617 If the watchpoint cannot be handled in hardware return zero. */
11618
11619 static int
11620 can_use_hardware_watchpoint (struct value *v)
11621 {
11622 int found_memory_cnt = 0;
11623 struct value *head = v;
11624
11625 /* Did the user specifically forbid us to use hardware watchpoints? */
11626 if (!can_use_hw_watchpoints)
11627 return 0;
11628
11629 /* Make sure that the value of the expression depends only upon
11630 memory contents, and values computed from them within GDB. If we
11631 find any register references or function calls, we can't use a
11632 hardware watchpoint.
11633
11634 The idea here is that evaluating an expression generates a series
11635 of values, one holding the value of every subexpression. (The
11636 expression a*b+c has five subexpressions: a, b, a*b, c, and
11637 a*b+c.) GDB's values hold almost enough information to establish
11638 the criteria given above --- they identify memory lvalues,
11639 register lvalues, computed values, etcetera. So we can evaluate
11640 the expression, and then scan the chain of values that leaves
11641 behind to decide whether we can detect any possible change to the
11642 expression's final value using only hardware watchpoints.
11643
11644 However, I don't think that the values returned by inferior
11645 function calls are special in any way. So this function may not
11646 notice that an expression involving an inferior function call
11647 can't be watched with hardware watchpoints. FIXME. */
11648 for (; v; v = value_next (v))
11649 {
11650 if (VALUE_LVAL (v) == lval_memory)
11651 {
11652 if (v != head && value_lazy (v))
11653 /* A lazy memory lvalue in the chain is one that GDB never
11654 needed to fetch; we either just used its address (e.g.,
11655 `a' in `a.b') or we never needed it at all (e.g., `a'
11656 in `a,b'). This doesn't apply to HEAD; if that is
11657 lazy then it was not readable, but watch it anyway. */
11658 ;
11659 else
11660 {
11661 /* Ahh, memory we actually used! Check if we can cover
11662 it with hardware watchpoints. */
11663 struct type *vtype = check_typedef (value_type (v));
11664
11665 /* We only watch structs and arrays if user asked for it
11666 explicitly, never if they just happen to appear in a
11667 middle of some value chain. */
11668 if (v == head
11669 || (TYPE_CODE (vtype) != TYPE_CODE_STRUCT
11670 && TYPE_CODE (vtype) != TYPE_CODE_ARRAY))
11671 {
11672 CORE_ADDR vaddr = value_address (v);
11673 int len;
11674 int num_regs;
11675
11676 len = (target_exact_watchpoints
11677 && is_scalar_type_recursive (vtype))?
11678 1 : TYPE_LENGTH (value_type (v));
11679
11680 num_regs = target_region_ok_for_hw_watchpoint (vaddr, len);
11681 if (!num_regs)
11682 return 0;
11683 else
11684 found_memory_cnt += num_regs;
11685 }
11686 }
11687 }
11688 else if (VALUE_LVAL (v) != not_lval
11689 && deprecated_value_modifiable (v) == 0)
11690 return 0; /* These are values from the history (e.g., $1). */
11691 else if (VALUE_LVAL (v) == lval_register)
11692 return 0; /* Cannot watch a register with a HW watchpoint. */
11693 }
11694
11695 /* The expression itself looks suitable for using a hardware
11696 watchpoint, but give the target machine a chance to reject it. */
11697 return found_memory_cnt;
11698 }
11699
11700 void
11701 watch_command_wrapper (char *arg, int from_tty, int internal)
11702 {
11703 watch_command_1 (arg, hw_write, from_tty, 0, internal);
11704 }
11705
11706 /* A helper function that looks for the "-location" argument and then
11707 calls watch_command_1. */
11708
11709 static void
11710 watch_maybe_just_location (char *arg, int accessflag, int from_tty)
11711 {
11712 int just_location = 0;
11713
11714 if (arg
11715 && (check_for_argument (&arg, "-location", sizeof ("-location") - 1)
11716 || check_for_argument (&arg, "-l", sizeof ("-l") - 1)))
11717 {
11718 arg = skip_spaces (arg);
11719 just_location = 1;
11720 }
11721
11722 watch_command_1 (arg, accessflag, from_tty, just_location, 0);
11723 }
11724
11725 static void
11726 watch_command (char *arg, int from_tty)
11727 {
11728 watch_maybe_just_location (arg, hw_write, from_tty);
11729 }
11730
11731 void
11732 rwatch_command_wrapper (char *arg, int from_tty, int internal)
11733 {
11734 watch_command_1 (arg, hw_read, from_tty, 0, internal);
11735 }
11736
11737 static void
11738 rwatch_command (char *arg, int from_tty)
11739 {
11740 watch_maybe_just_location (arg, hw_read, from_tty);
11741 }
11742
11743 void
11744 awatch_command_wrapper (char *arg, int from_tty, int internal)
11745 {
11746 watch_command_1 (arg, hw_access, from_tty, 0, internal);
11747 }
11748
11749 static void
11750 awatch_command (char *arg, int from_tty)
11751 {
11752 watch_maybe_just_location (arg, hw_access, from_tty);
11753 }
11754 \f
11755
11756 /* Helper routines for the until_command routine in infcmd.c. Here
11757 because it uses the mechanisms of breakpoints. */
11758
11759 struct until_break_command_continuation_args
11760 {
11761 struct breakpoint *breakpoint;
11762 struct breakpoint *breakpoint2;
11763 int thread_num;
11764 };
11765
11766 /* This function is called by fetch_inferior_event via the
11767 cmd_continuation pointer, to complete the until command. It takes
11768 care of cleaning up the temporary breakpoints set up by the until
11769 command. */
11770 static void
11771 until_break_command_continuation (void *arg, int err)
11772 {
11773 struct until_break_command_continuation_args *a = arg;
11774
11775 delete_breakpoint (a->breakpoint);
11776 if (a->breakpoint2)
11777 delete_breakpoint (a->breakpoint2);
11778 delete_longjmp_breakpoint (a->thread_num);
11779 }
11780
11781 void
11782 until_break_command (char *arg, int from_tty, int anywhere)
11783 {
11784 struct symtabs_and_lines sals;
11785 struct symtab_and_line sal;
11786 struct frame_info *frame;
11787 struct gdbarch *frame_gdbarch;
11788 struct frame_id stack_frame_id;
11789 struct frame_id caller_frame_id;
11790 struct breakpoint *breakpoint;
11791 struct breakpoint *breakpoint2 = NULL;
11792 struct cleanup *old_chain;
11793 int thread;
11794 struct thread_info *tp;
11795
11796 clear_proceed_status (0);
11797
11798 /* Set a breakpoint where the user wants it and at return from
11799 this function. */
11800
11801 if (last_displayed_sal_is_valid ())
11802 sals = decode_line_1 (&arg, DECODE_LINE_FUNFIRSTLINE,
11803 get_last_displayed_symtab (),
11804 get_last_displayed_line ());
11805 else
11806 sals = decode_line_1 (&arg, DECODE_LINE_FUNFIRSTLINE,
11807 (struct symtab *) NULL, 0);
11808
11809 if (sals.nelts != 1)
11810 error (_("Couldn't get information on specified line."));
11811
11812 sal = sals.sals[0];
11813 xfree (sals.sals); /* malloc'd, so freed. */
11814
11815 if (*arg)
11816 error (_("Junk at end of arguments."));
11817
11818 resolve_sal_pc (&sal);
11819
11820 tp = inferior_thread ();
11821 thread = tp->num;
11822
11823 old_chain = make_cleanup (null_cleanup, NULL);
11824
11825 /* Note linespec handling above invalidates the frame chain.
11826 Installing a breakpoint also invalidates the frame chain (as it
11827 may need to switch threads), so do any frame handling before
11828 that. */
11829
11830 frame = get_selected_frame (NULL);
11831 frame_gdbarch = get_frame_arch (frame);
11832 stack_frame_id = get_stack_frame_id (frame);
11833 caller_frame_id = frame_unwind_caller_id (frame);
11834
11835 /* Keep within the current frame, or in frames called by the current
11836 one. */
11837
11838 if (frame_id_p (caller_frame_id))
11839 {
11840 struct symtab_and_line sal2;
11841
11842 sal2 = find_pc_line (frame_unwind_caller_pc (frame), 0);
11843 sal2.pc = frame_unwind_caller_pc (frame);
11844 breakpoint2 = set_momentary_breakpoint (frame_unwind_caller_arch (frame),
11845 sal2,
11846 caller_frame_id,
11847 bp_until);
11848 make_cleanup_delete_breakpoint (breakpoint2);
11849
11850 set_longjmp_breakpoint (tp, caller_frame_id);
11851 make_cleanup (delete_longjmp_breakpoint_cleanup, &thread);
11852 }
11853
11854 /* set_momentary_breakpoint could invalidate FRAME. */
11855 frame = NULL;
11856
11857 if (anywhere)
11858 /* If the user told us to continue until a specified location,
11859 we don't specify a frame at which we need to stop. */
11860 breakpoint = set_momentary_breakpoint (frame_gdbarch, sal,
11861 null_frame_id, bp_until);
11862 else
11863 /* Otherwise, specify the selected frame, because we want to stop
11864 only at the very same frame. */
11865 breakpoint = set_momentary_breakpoint (frame_gdbarch, sal,
11866 stack_frame_id, bp_until);
11867 make_cleanup_delete_breakpoint (breakpoint);
11868
11869 proceed (-1, GDB_SIGNAL_DEFAULT, 0);
11870
11871 /* If we are running asynchronously, and proceed call above has
11872 actually managed to start the target, arrange for breakpoints to
11873 be deleted when the target stops. Otherwise, we're already
11874 stopped and delete breakpoints via cleanup chain. */
11875
11876 if (target_can_async_p () && is_running (inferior_ptid))
11877 {
11878 struct until_break_command_continuation_args *args;
11879 args = xmalloc (sizeof (*args));
11880
11881 args->breakpoint = breakpoint;
11882 args->breakpoint2 = breakpoint2;
11883 args->thread_num = thread;
11884
11885 discard_cleanups (old_chain);
11886 add_continuation (inferior_thread (),
11887 until_break_command_continuation, args,
11888 xfree);
11889 }
11890 else
11891 do_cleanups (old_chain);
11892 }
11893
11894 /* This function attempts to parse an optional "if <cond>" clause
11895 from the arg string. If one is not found, it returns NULL.
11896
11897 Else, it returns a pointer to the condition string. (It does not
11898 attempt to evaluate the string against a particular block.) And,
11899 it updates arg to point to the first character following the parsed
11900 if clause in the arg string. */
11901
11902 char *
11903 ep_parse_optional_if_clause (char **arg)
11904 {
11905 char *cond_string;
11906
11907 if (((*arg)[0] != 'i') || ((*arg)[1] != 'f') || !isspace ((*arg)[2]))
11908 return NULL;
11909
11910 /* Skip the "if" keyword. */
11911 (*arg) += 2;
11912
11913 /* Skip any extra leading whitespace, and record the start of the
11914 condition string. */
11915 *arg = skip_spaces (*arg);
11916 cond_string = *arg;
11917
11918 /* Assume that the condition occupies the remainder of the arg
11919 string. */
11920 (*arg) += strlen (cond_string);
11921
11922 return cond_string;
11923 }
11924
11925 /* Commands to deal with catching events, such as signals, exceptions,
11926 process start/exit, etc. */
11927
11928 typedef enum
11929 {
11930 catch_fork_temporary, catch_vfork_temporary,
11931 catch_fork_permanent, catch_vfork_permanent
11932 }
11933 catch_fork_kind;
11934
11935 static void
11936 catch_fork_command_1 (char *arg, int from_tty,
11937 struct cmd_list_element *command)
11938 {
11939 struct gdbarch *gdbarch = get_current_arch ();
11940 char *cond_string = NULL;
11941 catch_fork_kind fork_kind;
11942 int tempflag;
11943
11944 fork_kind = (catch_fork_kind) (uintptr_t) get_cmd_context (command);
11945 tempflag = (fork_kind == catch_fork_temporary
11946 || fork_kind == catch_vfork_temporary);
11947
11948 if (!arg)
11949 arg = "";
11950 arg = skip_spaces (arg);
11951
11952 /* The allowed syntax is:
11953 catch [v]fork
11954 catch [v]fork if <cond>
11955
11956 First, check if there's an if clause. */
11957 cond_string = ep_parse_optional_if_clause (&arg);
11958
11959 if ((*arg != '\0') && !isspace (*arg))
11960 error (_("Junk at end of arguments."));
11961
11962 /* If this target supports it, create a fork or vfork catchpoint
11963 and enable reporting of such events. */
11964 switch (fork_kind)
11965 {
11966 case catch_fork_temporary:
11967 case catch_fork_permanent:
11968 create_fork_vfork_event_catchpoint (gdbarch, tempflag, cond_string,
11969 &catch_fork_breakpoint_ops);
11970 break;
11971 case catch_vfork_temporary:
11972 case catch_vfork_permanent:
11973 create_fork_vfork_event_catchpoint (gdbarch, tempflag, cond_string,
11974 &catch_vfork_breakpoint_ops);
11975 break;
11976 default:
11977 error (_("unsupported or unknown fork kind; cannot catch it"));
11978 break;
11979 }
11980 }
11981
11982 static void
11983 catch_exec_command_1 (char *arg, int from_tty,
11984 struct cmd_list_element *command)
11985 {
11986 struct exec_catchpoint *c;
11987 struct gdbarch *gdbarch = get_current_arch ();
11988 int tempflag;
11989 char *cond_string = NULL;
11990
11991 tempflag = get_cmd_context (command) == CATCH_TEMPORARY;
11992
11993 if (!arg)
11994 arg = "";
11995 arg = skip_spaces (arg);
11996
11997 /* The allowed syntax is:
11998 catch exec
11999 catch exec if <cond>
12000
12001 First, check if there's an if clause. */
12002 cond_string = ep_parse_optional_if_clause (&arg);
12003
12004 if ((*arg != '\0') && !isspace (*arg))
12005 error (_("Junk at end of arguments."));
12006
12007 c = XNEW (struct exec_catchpoint);
12008 init_catchpoint (&c->base, gdbarch, tempflag, cond_string,
12009 &catch_exec_breakpoint_ops);
12010 c->exec_pathname = NULL;
12011
12012 install_breakpoint (0, &c->base, 1);
12013 }
12014
12015 void
12016 init_ada_exception_breakpoint (struct breakpoint *b,
12017 struct gdbarch *gdbarch,
12018 struct symtab_and_line sal,
12019 char *addr_string,
12020 const struct breakpoint_ops *ops,
12021 int tempflag,
12022 int enabled,
12023 int from_tty)
12024 {
12025 if (from_tty)
12026 {
12027 struct gdbarch *loc_gdbarch = get_sal_arch (sal);
12028 if (!loc_gdbarch)
12029 loc_gdbarch = gdbarch;
12030
12031 describe_other_breakpoints (loc_gdbarch,
12032 sal.pspace, sal.pc, sal.section, -1);
12033 /* FIXME: brobecker/2006-12-28: Actually, re-implement a special
12034 version for exception catchpoints, because two catchpoints
12035 used for different exception names will use the same address.
12036 In this case, a "breakpoint ... also set at..." warning is
12037 unproductive. Besides, the warning phrasing is also a bit
12038 inappropriate, we should use the word catchpoint, and tell
12039 the user what type of catchpoint it is. The above is good
12040 enough for now, though. */
12041 }
12042
12043 init_raw_breakpoint (b, gdbarch, sal, bp_breakpoint, ops);
12044
12045 b->enable_state = enabled ? bp_enabled : bp_disabled;
12046 b->disposition = tempflag ? disp_del : disp_donttouch;
12047 b->addr_string = addr_string;
12048 b->language = language_ada;
12049 }
12050
12051 /* Splits the argument using space as delimiter. Returns an xmalloc'd
12052 filter list, or NULL if no filtering is required. */
12053 static VEC(int) *
12054 catch_syscall_split_args (char *arg)
12055 {
12056 VEC(int) *result = NULL;
12057 struct cleanup *cleanup = make_cleanup (VEC_cleanup (int), &result);
12058 struct gdbarch *gdbarch = target_gdbarch ();
12059
12060 while (*arg != '\0')
12061 {
12062 int i, syscall_number;
12063 char *endptr;
12064 char cur_name[128];
12065 struct syscall s;
12066
12067 /* Skip whitespace. */
12068 arg = skip_spaces (arg);
12069
12070 for (i = 0; i < 127 && arg[i] && !isspace (arg[i]); ++i)
12071 cur_name[i] = arg[i];
12072 cur_name[i] = '\0';
12073 arg += i;
12074
12075 /* Check if the user provided a syscall name or a number. */
12076 syscall_number = (int) strtol (cur_name, &endptr, 0);
12077 if (*endptr == '\0')
12078 get_syscall_by_number (gdbarch, syscall_number, &s);
12079 else
12080 {
12081 /* We have a name. Let's check if it's valid and convert it
12082 to a number. */
12083 get_syscall_by_name (gdbarch, cur_name, &s);
12084
12085 if (s.number == UNKNOWN_SYSCALL)
12086 /* Here we have to issue an error instead of a warning,
12087 because GDB cannot do anything useful if there's no
12088 syscall number to be caught. */
12089 error (_("Unknown syscall name '%s'."), cur_name);
12090 }
12091
12092 /* Ok, it's valid. */
12093 VEC_safe_push (int, result, s.number);
12094 }
12095
12096 discard_cleanups (cleanup);
12097 return result;
12098 }
12099
12100 /* Implement the "catch syscall" command. */
12101
12102 static void
12103 catch_syscall_command_1 (char *arg, int from_tty,
12104 struct cmd_list_element *command)
12105 {
12106 int tempflag;
12107 VEC(int) *filter;
12108 struct syscall s;
12109 struct gdbarch *gdbarch = get_current_arch ();
12110
12111 /* Checking if the feature if supported. */
12112 if (gdbarch_get_syscall_number_p (gdbarch) == 0)
12113 error (_("The feature 'catch syscall' is not supported on \
12114 this architecture yet."));
12115
12116 tempflag = get_cmd_context (command) == CATCH_TEMPORARY;
12117
12118 arg = skip_spaces (arg);
12119
12120 /* We need to do this first "dummy" translation in order
12121 to get the syscall XML file loaded or, most important,
12122 to display a warning to the user if there's no XML file
12123 for his/her architecture. */
12124 get_syscall_by_number (gdbarch, 0, &s);
12125
12126 /* The allowed syntax is:
12127 catch syscall
12128 catch syscall <name | number> [<name | number> ... <name | number>]
12129
12130 Let's check if there's a syscall name. */
12131
12132 if (arg != NULL)
12133 filter = catch_syscall_split_args (arg);
12134 else
12135 filter = NULL;
12136
12137 create_syscall_event_catchpoint (tempflag, filter,
12138 &catch_syscall_breakpoint_ops);
12139 }
12140
12141 static void
12142 catch_command (char *arg, int from_tty)
12143 {
12144 error (_("Catch requires an event name."));
12145 }
12146 \f
12147
12148 static void
12149 tcatch_command (char *arg, int from_tty)
12150 {
12151 error (_("Catch requires an event name."));
12152 }
12153
12154 /* A qsort comparison function that sorts breakpoints in order. */
12155
12156 static int
12157 compare_breakpoints (const void *a, const void *b)
12158 {
12159 const breakpoint_p *ba = a;
12160 uintptr_t ua = (uintptr_t) *ba;
12161 const breakpoint_p *bb = b;
12162 uintptr_t ub = (uintptr_t) *bb;
12163
12164 if ((*ba)->number < (*bb)->number)
12165 return -1;
12166 else if ((*ba)->number > (*bb)->number)
12167 return 1;
12168
12169 /* Now sort by address, in case we see, e..g, two breakpoints with
12170 the number 0. */
12171 if (ua < ub)
12172 return -1;
12173 return ua > ub ? 1 : 0;
12174 }
12175
12176 /* Delete breakpoints by address or line. */
12177
12178 static void
12179 clear_command (char *arg, int from_tty)
12180 {
12181 struct breakpoint *b, *prev;
12182 VEC(breakpoint_p) *found = 0;
12183 int ix;
12184 int default_match;
12185 struct symtabs_and_lines sals;
12186 struct symtab_and_line sal;
12187 int i;
12188 struct cleanup *cleanups = make_cleanup (null_cleanup, NULL);
12189
12190 if (arg)
12191 {
12192 sals = decode_line_with_current_source (arg,
12193 (DECODE_LINE_FUNFIRSTLINE
12194 | DECODE_LINE_LIST_MODE));
12195 make_cleanup (xfree, sals.sals);
12196 default_match = 0;
12197 }
12198 else
12199 {
12200 sals.sals = (struct symtab_and_line *)
12201 xmalloc (sizeof (struct symtab_and_line));
12202 make_cleanup (xfree, sals.sals);
12203 init_sal (&sal); /* Initialize to zeroes. */
12204
12205 /* Set sal's line, symtab, pc, and pspace to the values
12206 corresponding to the last call to print_frame_info. If the
12207 codepoint is not valid, this will set all the fields to 0. */
12208 get_last_displayed_sal (&sal);
12209 if (sal.symtab == 0)
12210 error (_("No source file specified."));
12211
12212 sals.sals[0] = sal;
12213 sals.nelts = 1;
12214
12215 default_match = 1;
12216 }
12217
12218 /* We don't call resolve_sal_pc here. That's not as bad as it
12219 seems, because all existing breakpoints typically have both
12220 file/line and pc set. So, if clear is given file/line, we can
12221 match this to existing breakpoint without obtaining pc at all.
12222
12223 We only support clearing given the address explicitly
12224 present in breakpoint table. Say, we've set breakpoint
12225 at file:line. There were several PC values for that file:line,
12226 due to optimization, all in one block.
12227
12228 We've picked one PC value. If "clear" is issued with another
12229 PC corresponding to the same file:line, the breakpoint won't
12230 be cleared. We probably can still clear the breakpoint, but
12231 since the other PC value is never presented to user, user
12232 can only find it by guessing, and it does not seem important
12233 to support that. */
12234
12235 /* For each line spec given, delete bps which correspond to it. Do
12236 it in two passes, solely to preserve the current behavior that
12237 from_tty is forced true if we delete more than one
12238 breakpoint. */
12239
12240 found = NULL;
12241 make_cleanup (VEC_cleanup (breakpoint_p), &found);
12242 for (i = 0; i < sals.nelts; i++)
12243 {
12244 const char *sal_fullname;
12245
12246 /* If exact pc given, clear bpts at that pc.
12247 If line given (pc == 0), clear all bpts on specified line.
12248 If defaulting, clear all bpts on default line
12249 or at default pc.
12250
12251 defaulting sal.pc != 0 tests to do
12252
12253 0 1 pc
12254 1 1 pc _and_ line
12255 0 0 line
12256 1 0 <can't happen> */
12257
12258 sal = sals.sals[i];
12259 sal_fullname = (sal.symtab == NULL
12260 ? NULL : symtab_to_fullname (sal.symtab));
12261
12262 /* Find all matching breakpoints and add them to 'found'. */
12263 ALL_BREAKPOINTS (b)
12264 {
12265 int match = 0;
12266 /* Are we going to delete b? */
12267 if (b->type != bp_none && !is_watchpoint (b))
12268 {
12269 struct bp_location *loc = b->loc;
12270 for (; loc; loc = loc->next)
12271 {
12272 /* If the user specified file:line, don't allow a PC
12273 match. This matches historical gdb behavior. */
12274 int pc_match = (!sal.explicit_line
12275 && sal.pc
12276 && (loc->pspace == sal.pspace)
12277 && (loc->address == sal.pc)
12278 && (!section_is_overlay (loc->section)
12279 || loc->section == sal.section));
12280 int line_match = 0;
12281
12282 if ((default_match || sal.explicit_line)
12283 && loc->symtab != NULL
12284 && sal_fullname != NULL
12285 && sal.pspace == loc->pspace
12286 && loc->line_number == sal.line
12287 && filename_cmp (symtab_to_fullname (loc->symtab),
12288 sal_fullname) == 0)
12289 line_match = 1;
12290
12291 if (pc_match || line_match)
12292 {
12293 match = 1;
12294 break;
12295 }
12296 }
12297 }
12298
12299 if (match)
12300 VEC_safe_push(breakpoint_p, found, b);
12301 }
12302 }
12303
12304 /* Now go thru the 'found' chain and delete them. */
12305 if (VEC_empty(breakpoint_p, found))
12306 {
12307 if (arg)
12308 error (_("No breakpoint at %s."), arg);
12309 else
12310 error (_("No breakpoint at this line."));
12311 }
12312
12313 /* Remove duplicates from the vec. */
12314 qsort (VEC_address (breakpoint_p, found),
12315 VEC_length (breakpoint_p, found),
12316 sizeof (breakpoint_p),
12317 compare_breakpoints);
12318 prev = VEC_index (breakpoint_p, found, 0);
12319 for (ix = 1; VEC_iterate (breakpoint_p, found, ix, b); ++ix)
12320 {
12321 if (b == prev)
12322 {
12323 VEC_ordered_remove (breakpoint_p, found, ix);
12324 --ix;
12325 }
12326 }
12327
12328 if (VEC_length(breakpoint_p, found) > 1)
12329 from_tty = 1; /* Always report if deleted more than one. */
12330 if (from_tty)
12331 {
12332 if (VEC_length(breakpoint_p, found) == 1)
12333 printf_unfiltered (_("Deleted breakpoint "));
12334 else
12335 printf_unfiltered (_("Deleted breakpoints "));
12336 }
12337
12338 for (ix = 0; VEC_iterate(breakpoint_p, found, ix, b); ix++)
12339 {
12340 if (from_tty)
12341 printf_unfiltered ("%d ", b->number);
12342 delete_breakpoint (b);
12343 }
12344 if (from_tty)
12345 putchar_unfiltered ('\n');
12346
12347 do_cleanups (cleanups);
12348 }
12349 \f
12350 /* Delete breakpoint in BS if they are `delete' breakpoints and
12351 all breakpoints that are marked for deletion, whether hit or not.
12352 This is called after any breakpoint is hit, or after errors. */
12353
12354 void
12355 breakpoint_auto_delete (bpstat bs)
12356 {
12357 struct breakpoint *b, *b_tmp;
12358
12359 for (; bs; bs = bs->next)
12360 if (bs->breakpoint_at
12361 && bs->breakpoint_at->disposition == disp_del
12362 && bs->stop)
12363 delete_breakpoint (bs->breakpoint_at);
12364
12365 ALL_BREAKPOINTS_SAFE (b, b_tmp)
12366 {
12367 if (b->disposition == disp_del_at_next_stop)
12368 delete_breakpoint (b);
12369 }
12370 }
12371
12372 /* A comparison function for bp_location AP and BP being interfaced to
12373 qsort. Sort elements primarily by their ADDRESS (no matter what
12374 does breakpoint_address_is_meaningful say for its OWNER),
12375 secondarily by ordering first permanent elements and
12376 terciarily just ensuring the array is sorted stable way despite
12377 qsort being an unstable algorithm. */
12378
12379 static int
12380 bp_location_compare (const void *ap, const void *bp)
12381 {
12382 struct bp_location *a = *(void **) ap;
12383 struct bp_location *b = *(void **) bp;
12384
12385 if (a->address != b->address)
12386 return (a->address > b->address) - (a->address < b->address);
12387
12388 /* Sort locations at the same address by their pspace number, keeping
12389 locations of the same inferior (in a multi-inferior environment)
12390 grouped. */
12391
12392 if (a->pspace->num != b->pspace->num)
12393 return ((a->pspace->num > b->pspace->num)
12394 - (a->pspace->num < b->pspace->num));
12395
12396 /* Sort permanent breakpoints first. */
12397 if (a->permanent != b->permanent)
12398 return (a->permanent < b->permanent) - (a->permanent > b->permanent);
12399
12400 /* Make the internal GDB representation stable across GDB runs
12401 where A and B memory inside GDB can differ. Breakpoint locations of
12402 the same type at the same address can be sorted in arbitrary order. */
12403
12404 if (a->owner->number != b->owner->number)
12405 return ((a->owner->number > b->owner->number)
12406 - (a->owner->number < b->owner->number));
12407
12408 return (a > b) - (a < b);
12409 }
12410
12411 /* Set bp_location_placed_address_before_address_max and
12412 bp_location_shadow_len_after_address_max according to the current
12413 content of the bp_location array. */
12414
12415 static void
12416 bp_location_target_extensions_update (void)
12417 {
12418 struct bp_location *bl, **blp_tmp;
12419
12420 bp_location_placed_address_before_address_max = 0;
12421 bp_location_shadow_len_after_address_max = 0;
12422
12423 ALL_BP_LOCATIONS (bl, blp_tmp)
12424 {
12425 CORE_ADDR start, end, addr;
12426
12427 if (!bp_location_has_shadow (bl))
12428 continue;
12429
12430 start = bl->target_info.placed_address;
12431 end = start + bl->target_info.shadow_len;
12432
12433 gdb_assert (bl->address >= start);
12434 addr = bl->address - start;
12435 if (addr > bp_location_placed_address_before_address_max)
12436 bp_location_placed_address_before_address_max = addr;
12437
12438 /* Zero SHADOW_LEN would not pass bp_location_has_shadow. */
12439
12440 gdb_assert (bl->address < end);
12441 addr = end - bl->address;
12442 if (addr > bp_location_shadow_len_after_address_max)
12443 bp_location_shadow_len_after_address_max = addr;
12444 }
12445 }
12446
12447 /* Download tracepoint locations if they haven't been. */
12448
12449 static void
12450 download_tracepoint_locations (void)
12451 {
12452 struct breakpoint *b;
12453 struct cleanup *old_chain;
12454
12455 if (!target_can_download_tracepoint ())
12456 return;
12457
12458 old_chain = save_current_space_and_thread ();
12459
12460 ALL_TRACEPOINTS (b)
12461 {
12462 struct bp_location *bl;
12463 struct tracepoint *t;
12464 int bp_location_downloaded = 0;
12465
12466 if ((b->type == bp_fast_tracepoint
12467 ? !may_insert_fast_tracepoints
12468 : !may_insert_tracepoints))
12469 continue;
12470
12471 for (bl = b->loc; bl; bl = bl->next)
12472 {
12473 /* In tracepoint, locations are _never_ duplicated, so
12474 should_be_inserted is equivalent to
12475 unduplicated_should_be_inserted. */
12476 if (!should_be_inserted (bl) || bl->inserted)
12477 continue;
12478
12479 switch_to_program_space_and_thread (bl->pspace);
12480
12481 target_download_tracepoint (bl);
12482
12483 bl->inserted = 1;
12484 bp_location_downloaded = 1;
12485 }
12486 t = (struct tracepoint *) b;
12487 t->number_on_target = b->number;
12488 if (bp_location_downloaded)
12489 observer_notify_breakpoint_modified (b);
12490 }
12491
12492 do_cleanups (old_chain);
12493 }
12494
12495 /* Swap the insertion/duplication state between two locations. */
12496
12497 static void
12498 swap_insertion (struct bp_location *left, struct bp_location *right)
12499 {
12500 const int left_inserted = left->inserted;
12501 const int left_duplicate = left->duplicate;
12502 const int left_needs_update = left->needs_update;
12503 const struct bp_target_info left_target_info = left->target_info;
12504
12505 /* Locations of tracepoints can never be duplicated. */
12506 if (is_tracepoint (left->owner))
12507 gdb_assert (!left->duplicate);
12508 if (is_tracepoint (right->owner))
12509 gdb_assert (!right->duplicate);
12510
12511 left->inserted = right->inserted;
12512 left->duplicate = right->duplicate;
12513 left->needs_update = right->needs_update;
12514 left->target_info = right->target_info;
12515 right->inserted = left_inserted;
12516 right->duplicate = left_duplicate;
12517 right->needs_update = left_needs_update;
12518 right->target_info = left_target_info;
12519 }
12520
12521 /* Force the re-insertion of the locations at ADDRESS. This is called
12522 once a new/deleted/modified duplicate location is found and we are evaluating
12523 conditions on the target's side. Such conditions need to be updated on
12524 the target. */
12525
12526 static void
12527 force_breakpoint_reinsertion (struct bp_location *bl)
12528 {
12529 struct bp_location **locp = NULL, **loc2p;
12530 struct bp_location *loc;
12531 CORE_ADDR address = 0;
12532 int pspace_num;
12533
12534 address = bl->address;
12535 pspace_num = bl->pspace->num;
12536
12537 /* This is only meaningful if the target is
12538 evaluating conditions and if the user has
12539 opted for condition evaluation on the target's
12540 side. */
12541 if (gdb_evaluates_breakpoint_condition_p ()
12542 || !target_supports_evaluation_of_breakpoint_conditions ())
12543 return;
12544
12545 /* Flag all breakpoint locations with this address and
12546 the same program space as the location
12547 as "its condition has changed". We need to
12548 update the conditions on the target's side. */
12549 ALL_BP_LOCATIONS_AT_ADDR (loc2p, locp, address)
12550 {
12551 loc = *loc2p;
12552
12553 if (!is_breakpoint (loc->owner)
12554 || pspace_num != loc->pspace->num)
12555 continue;
12556
12557 /* Flag the location appropriately. We use a different state to
12558 let everyone know that we already updated the set of locations
12559 with addr bl->address and program space bl->pspace. This is so
12560 we don't have to keep calling these functions just to mark locations
12561 that have already been marked. */
12562 loc->condition_changed = condition_updated;
12563
12564 /* Free the agent expression bytecode as well. We will compute
12565 it later on. */
12566 if (loc->cond_bytecode)
12567 {
12568 free_agent_expr (loc->cond_bytecode);
12569 loc->cond_bytecode = NULL;
12570 }
12571 }
12572 }
12573 /* Called whether new breakpoints are created, or existing breakpoints
12574 deleted, to update the global location list and recompute which
12575 locations are duplicate of which.
12576
12577 The INSERT_MODE flag determines whether locations may not, may, or
12578 shall be inserted now. See 'enum ugll_insert_mode' for more
12579 info. */
12580
12581 static void
12582 update_global_location_list (enum ugll_insert_mode insert_mode)
12583 {
12584 struct breakpoint *b;
12585 struct bp_location **locp, *loc;
12586 struct cleanup *cleanups;
12587 /* Last breakpoint location address that was marked for update. */
12588 CORE_ADDR last_addr = 0;
12589 /* Last breakpoint location program space that was marked for update. */
12590 int last_pspace_num = -1;
12591
12592 /* Used in the duplicates detection below. When iterating over all
12593 bp_locations, points to the first bp_location of a given address.
12594 Breakpoints and watchpoints of different types are never
12595 duplicates of each other. Keep one pointer for each type of
12596 breakpoint/watchpoint, so we only need to loop over all locations
12597 once. */
12598 struct bp_location *bp_loc_first; /* breakpoint */
12599 struct bp_location *wp_loc_first; /* hardware watchpoint */
12600 struct bp_location *awp_loc_first; /* access watchpoint */
12601 struct bp_location *rwp_loc_first; /* read watchpoint */
12602
12603 /* Saved former bp_location array which we compare against the newly
12604 built bp_location from the current state of ALL_BREAKPOINTS. */
12605 struct bp_location **old_location, **old_locp;
12606 unsigned old_location_count;
12607
12608 old_location = bp_location;
12609 old_location_count = bp_location_count;
12610 bp_location = NULL;
12611 bp_location_count = 0;
12612 cleanups = make_cleanup (xfree, old_location);
12613
12614 ALL_BREAKPOINTS (b)
12615 for (loc = b->loc; loc; loc = loc->next)
12616 bp_location_count++;
12617
12618 bp_location = xmalloc (sizeof (*bp_location) * bp_location_count);
12619 locp = bp_location;
12620 ALL_BREAKPOINTS (b)
12621 for (loc = b->loc; loc; loc = loc->next)
12622 *locp++ = loc;
12623 qsort (bp_location, bp_location_count, sizeof (*bp_location),
12624 bp_location_compare);
12625
12626 bp_location_target_extensions_update ();
12627
12628 /* Identify bp_location instances that are no longer present in the
12629 new list, and therefore should be freed. Note that it's not
12630 necessary that those locations should be removed from inferior --
12631 if there's another location at the same address (previously
12632 marked as duplicate), we don't need to remove/insert the
12633 location.
12634
12635 LOCP is kept in sync with OLD_LOCP, each pointing to the current
12636 and former bp_location array state respectively. */
12637
12638 locp = bp_location;
12639 for (old_locp = old_location; old_locp < old_location + old_location_count;
12640 old_locp++)
12641 {
12642 struct bp_location *old_loc = *old_locp;
12643 struct bp_location **loc2p;
12644
12645 /* Tells if 'old_loc' is found among the new locations. If
12646 not, we have to free it. */
12647 int found_object = 0;
12648 /* Tells if the location should remain inserted in the target. */
12649 int keep_in_target = 0;
12650 int removed = 0;
12651
12652 /* Skip LOCP entries which will definitely never be needed.
12653 Stop either at or being the one matching OLD_LOC. */
12654 while (locp < bp_location + bp_location_count
12655 && (*locp)->address < old_loc->address)
12656 locp++;
12657
12658 for (loc2p = locp;
12659 (loc2p < bp_location + bp_location_count
12660 && (*loc2p)->address == old_loc->address);
12661 loc2p++)
12662 {
12663 /* Check if this is a new/duplicated location or a duplicated
12664 location that had its condition modified. If so, we want to send
12665 its condition to the target if evaluation of conditions is taking
12666 place there. */
12667 if ((*loc2p)->condition_changed == condition_modified
12668 && (last_addr != old_loc->address
12669 || last_pspace_num != old_loc->pspace->num))
12670 {
12671 force_breakpoint_reinsertion (*loc2p);
12672 last_pspace_num = old_loc->pspace->num;
12673 }
12674
12675 if (*loc2p == old_loc)
12676 found_object = 1;
12677 }
12678
12679 /* We have already handled this address, update it so that we don't
12680 have to go through updates again. */
12681 last_addr = old_loc->address;
12682
12683 /* Target-side condition evaluation: Handle deleted locations. */
12684 if (!found_object)
12685 force_breakpoint_reinsertion (old_loc);
12686
12687 /* If this location is no longer present, and inserted, look if
12688 there's maybe a new location at the same address. If so,
12689 mark that one inserted, and don't remove this one. This is
12690 needed so that we don't have a time window where a breakpoint
12691 at certain location is not inserted. */
12692
12693 if (old_loc->inserted)
12694 {
12695 /* If the location is inserted now, we might have to remove
12696 it. */
12697
12698 if (found_object && should_be_inserted (old_loc))
12699 {
12700 /* The location is still present in the location list,
12701 and still should be inserted. Don't do anything. */
12702 keep_in_target = 1;
12703 }
12704 else
12705 {
12706 /* This location still exists, but it won't be kept in the
12707 target since it may have been disabled. We proceed to
12708 remove its target-side condition. */
12709
12710 /* The location is either no longer present, or got
12711 disabled. See if there's another location at the
12712 same address, in which case we don't need to remove
12713 this one from the target. */
12714
12715 /* OLD_LOC comes from existing struct breakpoint. */
12716 if (breakpoint_address_is_meaningful (old_loc->owner))
12717 {
12718 for (loc2p = locp;
12719 (loc2p < bp_location + bp_location_count
12720 && (*loc2p)->address == old_loc->address);
12721 loc2p++)
12722 {
12723 struct bp_location *loc2 = *loc2p;
12724
12725 if (breakpoint_locations_match (loc2, old_loc))
12726 {
12727 /* Read watchpoint locations are switched to
12728 access watchpoints, if the former are not
12729 supported, but the latter are. */
12730 if (is_hardware_watchpoint (old_loc->owner))
12731 {
12732 gdb_assert (is_hardware_watchpoint (loc2->owner));
12733 loc2->watchpoint_type = old_loc->watchpoint_type;
12734 }
12735
12736 /* loc2 is a duplicated location. We need to check
12737 if it should be inserted in case it will be
12738 unduplicated. */
12739 if (loc2 != old_loc
12740 && unduplicated_should_be_inserted (loc2))
12741 {
12742 swap_insertion (old_loc, loc2);
12743 keep_in_target = 1;
12744 break;
12745 }
12746 }
12747 }
12748 }
12749 }
12750
12751 if (!keep_in_target)
12752 {
12753 if (remove_breakpoint (old_loc, mark_uninserted))
12754 {
12755 /* This is just about all we can do. We could keep
12756 this location on the global list, and try to
12757 remove it next time, but there's no particular
12758 reason why we will succeed next time.
12759
12760 Note that at this point, old_loc->owner is still
12761 valid, as delete_breakpoint frees the breakpoint
12762 only after calling us. */
12763 printf_filtered (_("warning: Error removing "
12764 "breakpoint %d\n"),
12765 old_loc->owner->number);
12766 }
12767 removed = 1;
12768 }
12769 }
12770
12771 if (!found_object)
12772 {
12773 if (removed && non_stop
12774 && breakpoint_address_is_meaningful (old_loc->owner)
12775 && !is_hardware_watchpoint (old_loc->owner))
12776 {
12777 /* This location was removed from the target. In
12778 non-stop mode, a race condition is possible where
12779 we've removed a breakpoint, but stop events for that
12780 breakpoint are already queued and will arrive later.
12781 We apply an heuristic to be able to distinguish such
12782 SIGTRAPs from other random SIGTRAPs: we keep this
12783 breakpoint location for a bit, and will retire it
12784 after we see some number of events. The theory here
12785 is that reporting of events should, "on the average",
12786 be fair, so after a while we'll see events from all
12787 threads that have anything of interest, and no longer
12788 need to keep this breakpoint location around. We
12789 don't hold locations forever so to reduce chances of
12790 mistaking a non-breakpoint SIGTRAP for a breakpoint
12791 SIGTRAP.
12792
12793 The heuristic failing can be disastrous on
12794 decr_pc_after_break targets.
12795
12796 On decr_pc_after_break targets, like e.g., x86-linux,
12797 if we fail to recognize a late breakpoint SIGTRAP,
12798 because events_till_retirement has reached 0 too
12799 soon, we'll fail to do the PC adjustment, and report
12800 a random SIGTRAP to the user. When the user resumes
12801 the inferior, it will most likely immediately crash
12802 with SIGILL/SIGBUS/SIGSEGV, or worse, get silently
12803 corrupted, because of being resumed e.g., in the
12804 middle of a multi-byte instruction, or skipped a
12805 one-byte instruction. This was actually seen happen
12806 on native x86-linux, and should be less rare on
12807 targets that do not support new thread events, like
12808 remote, due to the heuristic depending on
12809 thread_count.
12810
12811 Mistaking a random SIGTRAP for a breakpoint trap
12812 causes similar symptoms (PC adjustment applied when
12813 it shouldn't), but then again, playing with SIGTRAPs
12814 behind the debugger's back is asking for trouble.
12815
12816 Since hardware watchpoint traps are always
12817 distinguishable from other traps, so we don't need to
12818 apply keep hardware watchpoint moribund locations
12819 around. We simply always ignore hardware watchpoint
12820 traps we can no longer explain. */
12821
12822 old_loc->events_till_retirement = 3 * (thread_count () + 1);
12823 old_loc->owner = NULL;
12824
12825 VEC_safe_push (bp_location_p, moribund_locations, old_loc);
12826 }
12827 else
12828 {
12829 old_loc->owner = NULL;
12830 decref_bp_location (&old_loc);
12831 }
12832 }
12833 }
12834
12835 /* Rescan breakpoints at the same address and section, marking the
12836 first one as "first" and any others as "duplicates". This is so
12837 that the bpt instruction is only inserted once. If we have a
12838 permanent breakpoint at the same place as BPT, make that one the
12839 official one, and the rest as duplicates. Permanent breakpoints
12840 are sorted first for the same address.
12841
12842 Do the same for hardware watchpoints, but also considering the
12843 watchpoint's type (regular/access/read) and length. */
12844
12845 bp_loc_first = NULL;
12846 wp_loc_first = NULL;
12847 awp_loc_first = NULL;
12848 rwp_loc_first = NULL;
12849 ALL_BP_LOCATIONS (loc, locp)
12850 {
12851 /* ALL_BP_LOCATIONS bp_location has LOC->OWNER always
12852 non-NULL. */
12853 struct bp_location **loc_first_p;
12854 b = loc->owner;
12855
12856 if (!unduplicated_should_be_inserted (loc)
12857 || !breakpoint_address_is_meaningful (b)
12858 /* Don't detect duplicate for tracepoint locations because they are
12859 never duplicated. See the comments in field `duplicate' of
12860 `struct bp_location'. */
12861 || is_tracepoint (b))
12862 {
12863 /* Clear the condition modification flag. */
12864 loc->condition_changed = condition_unchanged;
12865 continue;
12866 }
12867
12868 /* Permanent breakpoint should always be inserted. */
12869 if (loc->permanent && ! loc->inserted)
12870 internal_error (__FILE__, __LINE__,
12871 _("allegedly permanent breakpoint is not "
12872 "actually inserted"));
12873
12874 if (b->type == bp_hardware_watchpoint)
12875 loc_first_p = &wp_loc_first;
12876 else if (b->type == bp_read_watchpoint)
12877 loc_first_p = &rwp_loc_first;
12878 else if (b->type == bp_access_watchpoint)
12879 loc_first_p = &awp_loc_first;
12880 else
12881 loc_first_p = &bp_loc_first;
12882
12883 if (*loc_first_p == NULL
12884 || (overlay_debugging && loc->section != (*loc_first_p)->section)
12885 || !breakpoint_locations_match (loc, *loc_first_p))
12886 {
12887 *loc_first_p = loc;
12888 loc->duplicate = 0;
12889
12890 if (is_breakpoint (loc->owner) && loc->condition_changed)
12891 {
12892 loc->needs_update = 1;
12893 /* Clear the condition modification flag. */
12894 loc->condition_changed = condition_unchanged;
12895 }
12896 continue;
12897 }
12898
12899
12900 /* This and the above ensure the invariant that the first location
12901 is not duplicated, and is the inserted one.
12902 All following are marked as duplicated, and are not inserted. */
12903 if (loc->inserted)
12904 swap_insertion (loc, *loc_first_p);
12905 loc->duplicate = 1;
12906
12907 /* Clear the condition modification flag. */
12908 loc->condition_changed = condition_unchanged;
12909
12910 if (loc->inserted && !loc->permanent
12911 && (*loc_first_p)->permanent)
12912 internal_error (__FILE__, __LINE__,
12913 _("another breakpoint was inserted on top of "
12914 "a permanent breakpoint"));
12915 }
12916
12917 if (insert_mode == UGLL_INSERT || breakpoints_should_be_inserted_now ())
12918 {
12919 if (insert_mode != UGLL_DONT_INSERT)
12920 insert_breakpoint_locations ();
12921 else
12922 {
12923 /* Even though the caller told us to not insert new
12924 locations, we may still need to update conditions on the
12925 target's side of breakpoints that were already inserted
12926 if the target is evaluating breakpoint conditions. We
12927 only update conditions for locations that are marked
12928 "needs_update". */
12929 update_inserted_breakpoint_locations ();
12930 }
12931 }
12932
12933 if (insert_mode != UGLL_DONT_INSERT)
12934 download_tracepoint_locations ();
12935
12936 do_cleanups (cleanups);
12937 }
12938
12939 void
12940 breakpoint_retire_moribund (void)
12941 {
12942 struct bp_location *loc;
12943 int ix;
12944
12945 for (ix = 0; VEC_iterate (bp_location_p, moribund_locations, ix, loc); ++ix)
12946 if (--(loc->events_till_retirement) == 0)
12947 {
12948 decref_bp_location (&loc);
12949 VEC_unordered_remove (bp_location_p, moribund_locations, ix);
12950 --ix;
12951 }
12952 }
12953
12954 static void
12955 update_global_location_list_nothrow (enum ugll_insert_mode insert_mode)
12956 {
12957 volatile struct gdb_exception e;
12958
12959 TRY_CATCH (e, RETURN_MASK_ERROR)
12960 update_global_location_list (insert_mode);
12961 }
12962
12963 /* Clear BKP from a BPS. */
12964
12965 static void
12966 bpstat_remove_bp_location (bpstat bps, struct breakpoint *bpt)
12967 {
12968 bpstat bs;
12969
12970 for (bs = bps; bs; bs = bs->next)
12971 if (bs->breakpoint_at == bpt)
12972 {
12973 bs->breakpoint_at = NULL;
12974 bs->old_val = NULL;
12975 /* bs->commands will be freed later. */
12976 }
12977 }
12978
12979 /* Callback for iterate_over_threads. */
12980 static int
12981 bpstat_remove_breakpoint_callback (struct thread_info *th, void *data)
12982 {
12983 struct breakpoint *bpt = data;
12984
12985 bpstat_remove_bp_location (th->control.stop_bpstat, bpt);
12986 return 0;
12987 }
12988
12989 /* Helper for breakpoint and tracepoint breakpoint_ops->mention
12990 callbacks. */
12991
12992 static void
12993 say_where (struct breakpoint *b)
12994 {
12995 struct value_print_options opts;
12996
12997 get_user_print_options (&opts);
12998
12999 /* i18n: cagney/2005-02-11: Below needs to be merged into a
13000 single string. */
13001 if (b->loc == NULL)
13002 {
13003 printf_filtered (_(" (%s) pending."), b->addr_string);
13004 }
13005 else
13006 {
13007 if (opts.addressprint || b->loc->symtab == NULL)
13008 {
13009 printf_filtered (" at ");
13010 fputs_filtered (paddress (b->loc->gdbarch, b->loc->address),
13011 gdb_stdout);
13012 }
13013 if (b->loc->symtab != NULL)
13014 {
13015 /* If there is a single location, we can print the location
13016 more nicely. */
13017 if (b->loc->next == NULL)
13018 printf_filtered (": file %s, line %d.",
13019 symtab_to_filename_for_display (b->loc->symtab),
13020 b->loc->line_number);
13021 else
13022 /* This is not ideal, but each location may have a
13023 different file name, and this at least reflects the
13024 real situation somewhat. */
13025 printf_filtered (": %s.", b->addr_string);
13026 }
13027
13028 if (b->loc->next)
13029 {
13030 struct bp_location *loc = b->loc;
13031 int n = 0;
13032 for (; loc; loc = loc->next)
13033 ++n;
13034 printf_filtered (" (%d locations)", n);
13035 }
13036 }
13037 }
13038
13039 /* Default bp_location_ops methods. */
13040
13041 static void
13042 bp_location_dtor (struct bp_location *self)
13043 {
13044 xfree (self->cond);
13045 if (self->cond_bytecode)
13046 free_agent_expr (self->cond_bytecode);
13047 xfree (self->function_name);
13048
13049 VEC_free (agent_expr_p, self->target_info.conditions);
13050 VEC_free (agent_expr_p, self->target_info.tcommands);
13051 }
13052
13053 static const struct bp_location_ops bp_location_ops =
13054 {
13055 bp_location_dtor
13056 };
13057
13058 /* Default breakpoint_ops methods all breakpoint_ops ultimately
13059 inherit from. */
13060
13061 static void
13062 base_breakpoint_dtor (struct breakpoint *self)
13063 {
13064 decref_counted_command_line (&self->commands);
13065 xfree (self->cond_string);
13066 xfree (self->extra_string);
13067 xfree (self->addr_string);
13068 xfree (self->filter);
13069 xfree (self->addr_string_range_end);
13070 }
13071
13072 static struct bp_location *
13073 base_breakpoint_allocate_location (struct breakpoint *self)
13074 {
13075 struct bp_location *loc;
13076
13077 loc = XNEW (struct bp_location);
13078 init_bp_location (loc, &bp_location_ops, self);
13079 return loc;
13080 }
13081
13082 static void
13083 base_breakpoint_re_set (struct breakpoint *b)
13084 {
13085 /* Nothing to re-set. */
13086 }
13087
13088 #define internal_error_pure_virtual_called() \
13089 gdb_assert_not_reached ("pure virtual function called")
13090
13091 static int
13092 base_breakpoint_insert_location (struct bp_location *bl)
13093 {
13094 internal_error_pure_virtual_called ();
13095 }
13096
13097 static int
13098 base_breakpoint_remove_location (struct bp_location *bl)
13099 {
13100 internal_error_pure_virtual_called ();
13101 }
13102
13103 static int
13104 base_breakpoint_breakpoint_hit (const struct bp_location *bl,
13105 struct address_space *aspace,
13106 CORE_ADDR bp_addr,
13107 const struct target_waitstatus *ws)
13108 {
13109 internal_error_pure_virtual_called ();
13110 }
13111
13112 static void
13113 base_breakpoint_check_status (bpstat bs)
13114 {
13115 /* Always stop. */
13116 }
13117
13118 /* A "works_in_software_mode" breakpoint_ops method that just internal
13119 errors. */
13120
13121 static int
13122 base_breakpoint_works_in_software_mode (const struct breakpoint *b)
13123 {
13124 internal_error_pure_virtual_called ();
13125 }
13126
13127 /* A "resources_needed" breakpoint_ops method that just internal
13128 errors. */
13129
13130 static int
13131 base_breakpoint_resources_needed (const struct bp_location *bl)
13132 {
13133 internal_error_pure_virtual_called ();
13134 }
13135
13136 static enum print_stop_action
13137 base_breakpoint_print_it (bpstat bs)
13138 {
13139 internal_error_pure_virtual_called ();
13140 }
13141
13142 static void
13143 base_breakpoint_print_one_detail (const struct breakpoint *self,
13144 struct ui_out *uiout)
13145 {
13146 /* nothing */
13147 }
13148
13149 static void
13150 base_breakpoint_print_mention (struct breakpoint *b)
13151 {
13152 internal_error_pure_virtual_called ();
13153 }
13154
13155 static void
13156 base_breakpoint_print_recreate (struct breakpoint *b, struct ui_file *fp)
13157 {
13158 internal_error_pure_virtual_called ();
13159 }
13160
13161 static void
13162 base_breakpoint_create_sals_from_address (char **arg,
13163 struct linespec_result *canonical,
13164 enum bptype type_wanted,
13165 char *addr_start,
13166 char **copy_arg)
13167 {
13168 internal_error_pure_virtual_called ();
13169 }
13170
13171 static void
13172 base_breakpoint_create_breakpoints_sal (struct gdbarch *gdbarch,
13173 struct linespec_result *c,
13174 char *cond_string,
13175 char *extra_string,
13176 enum bptype type_wanted,
13177 enum bpdisp disposition,
13178 int thread,
13179 int task, int ignore_count,
13180 const struct breakpoint_ops *o,
13181 int from_tty, int enabled,
13182 int internal, unsigned flags)
13183 {
13184 internal_error_pure_virtual_called ();
13185 }
13186
13187 static void
13188 base_breakpoint_decode_linespec (struct breakpoint *b, char **s,
13189 struct symtabs_and_lines *sals)
13190 {
13191 internal_error_pure_virtual_called ();
13192 }
13193
13194 /* The default 'explains_signal' method. */
13195
13196 static int
13197 base_breakpoint_explains_signal (struct breakpoint *b, enum gdb_signal sig)
13198 {
13199 return 1;
13200 }
13201
13202 /* The default "after_condition_true" method. */
13203
13204 static void
13205 base_breakpoint_after_condition_true (struct bpstats *bs)
13206 {
13207 /* Nothing to do. */
13208 }
13209
13210 struct breakpoint_ops base_breakpoint_ops =
13211 {
13212 base_breakpoint_dtor,
13213 base_breakpoint_allocate_location,
13214 base_breakpoint_re_set,
13215 base_breakpoint_insert_location,
13216 base_breakpoint_remove_location,
13217 base_breakpoint_breakpoint_hit,
13218 base_breakpoint_check_status,
13219 base_breakpoint_resources_needed,
13220 base_breakpoint_works_in_software_mode,
13221 base_breakpoint_print_it,
13222 NULL,
13223 base_breakpoint_print_one_detail,
13224 base_breakpoint_print_mention,
13225 base_breakpoint_print_recreate,
13226 base_breakpoint_create_sals_from_address,
13227 base_breakpoint_create_breakpoints_sal,
13228 base_breakpoint_decode_linespec,
13229 base_breakpoint_explains_signal,
13230 base_breakpoint_after_condition_true,
13231 };
13232
13233 /* Default breakpoint_ops methods. */
13234
13235 static void
13236 bkpt_re_set (struct breakpoint *b)
13237 {
13238 /* FIXME: is this still reachable? */
13239 if (b->addr_string == NULL)
13240 {
13241 /* Anything without a string can't be re-set. */
13242 delete_breakpoint (b);
13243 return;
13244 }
13245
13246 breakpoint_re_set_default (b);
13247 }
13248
13249 static int
13250 bkpt_insert_location (struct bp_location *bl)
13251 {
13252 if (bl->loc_type == bp_loc_hardware_breakpoint)
13253 return target_insert_hw_breakpoint (bl->gdbarch, &bl->target_info);
13254 else
13255 return target_insert_breakpoint (bl->gdbarch, &bl->target_info);
13256 }
13257
13258 static int
13259 bkpt_remove_location (struct bp_location *bl)
13260 {
13261 if (bl->loc_type == bp_loc_hardware_breakpoint)
13262 return target_remove_hw_breakpoint (bl->gdbarch, &bl->target_info);
13263 else
13264 return target_remove_breakpoint (bl->gdbarch, &bl->target_info);
13265 }
13266
13267 static int
13268 bkpt_breakpoint_hit (const struct bp_location *bl,
13269 struct address_space *aspace, CORE_ADDR bp_addr,
13270 const struct target_waitstatus *ws)
13271 {
13272 if (ws->kind != TARGET_WAITKIND_STOPPED
13273 || ws->value.sig != GDB_SIGNAL_TRAP)
13274 return 0;
13275
13276 if (!breakpoint_address_match (bl->pspace->aspace, bl->address,
13277 aspace, bp_addr))
13278 return 0;
13279
13280 if (overlay_debugging /* unmapped overlay section */
13281 && section_is_overlay (bl->section)
13282 && !section_is_mapped (bl->section))
13283 return 0;
13284
13285 return 1;
13286 }
13287
13288 static int
13289 dprintf_breakpoint_hit (const struct bp_location *bl,
13290 struct address_space *aspace, CORE_ADDR bp_addr,
13291 const struct target_waitstatus *ws)
13292 {
13293 if (dprintf_style == dprintf_style_agent
13294 && target_can_run_breakpoint_commands ())
13295 {
13296 /* An agent-style dprintf never causes a stop. If we see a trap
13297 for this address it must be for a breakpoint that happens to
13298 be set at the same address. */
13299 return 0;
13300 }
13301
13302 return bkpt_breakpoint_hit (bl, aspace, bp_addr, ws);
13303 }
13304
13305 static int
13306 bkpt_resources_needed (const struct bp_location *bl)
13307 {
13308 gdb_assert (bl->owner->type == bp_hardware_breakpoint);
13309
13310 return 1;
13311 }
13312
13313 static enum print_stop_action
13314 bkpt_print_it (bpstat bs)
13315 {
13316 struct breakpoint *b;
13317 const struct bp_location *bl;
13318 int bp_temp;
13319 struct ui_out *uiout = current_uiout;
13320
13321 gdb_assert (bs->bp_location_at != NULL);
13322
13323 bl = bs->bp_location_at;
13324 b = bs->breakpoint_at;
13325
13326 bp_temp = b->disposition == disp_del;
13327 if (bl->address != bl->requested_address)
13328 breakpoint_adjustment_warning (bl->requested_address,
13329 bl->address,
13330 b->number, 1);
13331 annotate_breakpoint (b->number);
13332 if (bp_temp)
13333 ui_out_text (uiout, "\nTemporary breakpoint ");
13334 else
13335 ui_out_text (uiout, "\nBreakpoint ");
13336 if (ui_out_is_mi_like_p (uiout))
13337 {
13338 ui_out_field_string (uiout, "reason",
13339 async_reason_lookup (EXEC_ASYNC_BREAKPOINT_HIT));
13340 ui_out_field_string (uiout, "disp", bpdisp_text (b->disposition));
13341 }
13342 ui_out_field_int (uiout, "bkptno", b->number);
13343 ui_out_text (uiout, ", ");
13344
13345 return PRINT_SRC_AND_LOC;
13346 }
13347
13348 static void
13349 bkpt_print_mention (struct breakpoint *b)
13350 {
13351 if (ui_out_is_mi_like_p (current_uiout))
13352 return;
13353
13354 switch (b->type)
13355 {
13356 case bp_breakpoint:
13357 case bp_gnu_ifunc_resolver:
13358 if (b->disposition == disp_del)
13359 printf_filtered (_("Temporary breakpoint"));
13360 else
13361 printf_filtered (_("Breakpoint"));
13362 printf_filtered (_(" %d"), b->number);
13363 if (b->type == bp_gnu_ifunc_resolver)
13364 printf_filtered (_(" at gnu-indirect-function resolver"));
13365 break;
13366 case bp_hardware_breakpoint:
13367 printf_filtered (_("Hardware assisted breakpoint %d"), b->number);
13368 break;
13369 case bp_dprintf:
13370 printf_filtered (_("Dprintf %d"), b->number);
13371 break;
13372 }
13373
13374 say_where (b);
13375 }
13376
13377 static void
13378 bkpt_print_recreate (struct breakpoint *tp, struct ui_file *fp)
13379 {
13380 if (tp->type == bp_breakpoint && tp->disposition == disp_del)
13381 fprintf_unfiltered (fp, "tbreak");
13382 else if (tp->type == bp_breakpoint)
13383 fprintf_unfiltered (fp, "break");
13384 else if (tp->type == bp_hardware_breakpoint
13385 && tp->disposition == disp_del)
13386 fprintf_unfiltered (fp, "thbreak");
13387 else if (tp->type == bp_hardware_breakpoint)
13388 fprintf_unfiltered (fp, "hbreak");
13389 else
13390 internal_error (__FILE__, __LINE__,
13391 _("unhandled breakpoint type %d"), (int) tp->type);
13392
13393 fprintf_unfiltered (fp, " %s", tp->addr_string);
13394 print_recreate_thread (tp, fp);
13395 }
13396
13397 static void
13398 bkpt_create_sals_from_address (char **arg,
13399 struct linespec_result *canonical,
13400 enum bptype type_wanted,
13401 char *addr_start, char **copy_arg)
13402 {
13403 create_sals_from_address_default (arg, canonical, type_wanted,
13404 addr_start, copy_arg);
13405 }
13406
13407 static void
13408 bkpt_create_breakpoints_sal (struct gdbarch *gdbarch,
13409 struct linespec_result *canonical,
13410 char *cond_string,
13411 char *extra_string,
13412 enum bptype type_wanted,
13413 enum bpdisp disposition,
13414 int thread,
13415 int task, int ignore_count,
13416 const struct breakpoint_ops *ops,
13417 int from_tty, int enabled,
13418 int internal, unsigned flags)
13419 {
13420 create_breakpoints_sal_default (gdbarch, canonical,
13421 cond_string, extra_string,
13422 type_wanted,
13423 disposition, thread, task,
13424 ignore_count, ops, from_tty,
13425 enabled, internal, flags);
13426 }
13427
13428 static void
13429 bkpt_decode_linespec (struct breakpoint *b, char **s,
13430 struct symtabs_and_lines *sals)
13431 {
13432 decode_linespec_default (b, s, sals);
13433 }
13434
13435 /* Virtual table for internal breakpoints. */
13436
13437 static void
13438 internal_bkpt_re_set (struct breakpoint *b)
13439 {
13440 switch (b->type)
13441 {
13442 /* Delete overlay event and longjmp master breakpoints; they
13443 will be reset later by breakpoint_re_set. */
13444 case bp_overlay_event:
13445 case bp_longjmp_master:
13446 case bp_std_terminate_master:
13447 case bp_exception_master:
13448 delete_breakpoint (b);
13449 break;
13450
13451 /* This breakpoint is special, it's set up when the inferior
13452 starts and we really don't want to touch it. */
13453 case bp_shlib_event:
13454
13455 /* Like bp_shlib_event, this breakpoint type is special. Once
13456 it is set up, we do not want to touch it. */
13457 case bp_thread_event:
13458 break;
13459 }
13460 }
13461
13462 static void
13463 internal_bkpt_check_status (bpstat bs)
13464 {
13465 if (bs->breakpoint_at->type == bp_shlib_event)
13466 {
13467 /* If requested, stop when the dynamic linker notifies GDB of
13468 events. This allows the user to get control and place
13469 breakpoints in initializer routines for dynamically loaded
13470 objects (among other things). */
13471 bs->stop = stop_on_solib_events;
13472 bs->print = stop_on_solib_events;
13473 }
13474 else
13475 bs->stop = 0;
13476 }
13477
13478 static enum print_stop_action
13479 internal_bkpt_print_it (bpstat bs)
13480 {
13481 struct breakpoint *b;
13482
13483 b = bs->breakpoint_at;
13484
13485 switch (b->type)
13486 {
13487 case bp_shlib_event:
13488 /* Did we stop because the user set the stop_on_solib_events
13489 variable? (If so, we report this as a generic, "Stopped due
13490 to shlib event" message.) */
13491 print_solib_event (0);
13492 break;
13493
13494 case bp_thread_event:
13495 /* Not sure how we will get here.
13496 GDB should not stop for these breakpoints. */
13497 printf_filtered (_("Thread Event Breakpoint: gdb should not stop!\n"));
13498 break;
13499
13500 case bp_overlay_event:
13501 /* By analogy with the thread event, GDB should not stop for these. */
13502 printf_filtered (_("Overlay Event Breakpoint: gdb should not stop!\n"));
13503 break;
13504
13505 case bp_longjmp_master:
13506 /* These should never be enabled. */
13507 printf_filtered (_("Longjmp Master Breakpoint: gdb should not stop!\n"));
13508 break;
13509
13510 case bp_std_terminate_master:
13511 /* These should never be enabled. */
13512 printf_filtered (_("std::terminate Master Breakpoint: "
13513 "gdb should not stop!\n"));
13514 break;
13515
13516 case bp_exception_master:
13517 /* These should never be enabled. */
13518 printf_filtered (_("Exception Master Breakpoint: "
13519 "gdb should not stop!\n"));
13520 break;
13521 }
13522
13523 return PRINT_NOTHING;
13524 }
13525
13526 static void
13527 internal_bkpt_print_mention (struct breakpoint *b)
13528 {
13529 /* Nothing to mention. These breakpoints are internal. */
13530 }
13531
13532 /* Virtual table for momentary breakpoints */
13533
13534 static void
13535 momentary_bkpt_re_set (struct breakpoint *b)
13536 {
13537 /* Keep temporary breakpoints, which can be encountered when we step
13538 over a dlopen call and solib_add is resetting the breakpoints.
13539 Otherwise these should have been blown away via the cleanup chain
13540 or by breakpoint_init_inferior when we rerun the executable. */
13541 }
13542
13543 static void
13544 momentary_bkpt_check_status (bpstat bs)
13545 {
13546 /* Nothing. The point of these breakpoints is causing a stop. */
13547 }
13548
13549 static enum print_stop_action
13550 momentary_bkpt_print_it (bpstat bs)
13551 {
13552 struct ui_out *uiout = current_uiout;
13553
13554 if (ui_out_is_mi_like_p (uiout))
13555 {
13556 struct breakpoint *b = bs->breakpoint_at;
13557
13558 switch (b->type)
13559 {
13560 case bp_finish:
13561 ui_out_field_string
13562 (uiout, "reason",
13563 async_reason_lookup (EXEC_ASYNC_FUNCTION_FINISHED));
13564 break;
13565
13566 case bp_until:
13567 ui_out_field_string
13568 (uiout, "reason",
13569 async_reason_lookup (EXEC_ASYNC_LOCATION_REACHED));
13570 break;
13571 }
13572 }
13573
13574 return PRINT_UNKNOWN;
13575 }
13576
13577 static void
13578 momentary_bkpt_print_mention (struct breakpoint *b)
13579 {
13580 /* Nothing to mention. These breakpoints are internal. */
13581 }
13582
13583 /* Ensure INITIATING_FRAME is cleared when no such breakpoint exists.
13584
13585 It gets cleared already on the removal of the first one of such placed
13586 breakpoints. This is OK as they get all removed altogether. */
13587
13588 static void
13589 longjmp_bkpt_dtor (struct breakpoint *self)
13590 {
13591 struct thread_info *tp = find_thread_id (self->thread);
13592
13593 if (tp)
13594 tp->initiating_frame = null_frame_id;
13595
13596 momentary_breakpoint_ops.dtor (self);
13597 }
13598
13599 /* Specific methods for probe breakpoints. */
13600
13601 static int
13602 bkpt_probe_insert_location (struct bp_location *bl)
13603 {
13604 int v = bkpt_insert_location (bl);
13605
13606 if (v == 0)
13607 {
13608 /* The insertion was successful, now let's set the probe's semaphore
13609 if needed. */
13610 if (bl->probe.probe->pops->set_semaphore != NULL)
13611 bl->probe.probe->pops->set_semaphore (bl->probe.probe,
13612 bl->probe.objfile,
13613 bl->gdbarch);
13614 }
13615
13616 return v;
13617 }
13618
13619 static int
13620 bkpt_probe_remove_location (struct bp_location *bl)
13621 {
13622 /* Let's clear the semaphore before removing the location. */
13623 if (bl->probe.probe->pops->clear_semaphore != NULL)
13624 bl->probe.probe->pops->clear_semaphore (bl->probe.probe,
13625 bl->probe.objfile,
13626 bl->gdbarch);
13627
13628 return bkpt_remove_location (bl);
13629 }
13630
13631 static void
13632 bkpt_probe_create_sals_from_address (char **arg,
13633 struct linespec_result *canonical,
13634 enum bptype type_wanted,
13635 char *addr_start, char **copy_arg)
13636 {
13637 struct linespec_sals lsal;
13638
13639 lsal.sals = parse_probes (arg, canonical);
13640
13641 *copy_arg = xstrdup (canonical->addr_string);
13642 lsal.canonical = xstrdup (*copy_arg);
13643
13644 VEC_safe_push (linespec_sals, canonical->sals, &lsal);
13645 }
13646
13647 static void
13648 bkpt_probe_decode_linespec (struct breakpoint *b, char **s,
13649 struct symtabs_and_lines *sals)
13650 {
13651 *sals = parse_probes (s, NULL);
13652 if (!sals->sals)
13653 error (_("probe not found"));
13654 }
13655
13656 /* The breakpoint_ops structure to be used in tracepoints. */
13657
13658 static void
13659 tracepoint_re_set (struct breakpoint *b)
13660 {
13661 breakpoint_re_set_default (b);
13662 }
13663
13664 static int
13665 tracepoint_breakpoint_hit (const struct bp_location *bl,
13666 struct address_space *aspace, CORE_ADDR bp_addr,
13667 const struct target_waitstatus *ws)
13668 {
13669 /* By definition, the inferior does not report stops at
13670 tracepoints. */
13671 return 0;
13672 }
13673
13674 static void
13675 tracepoint_print_one_detail (const struct breakpoint *self,
13676 struct ui_out *uiout)
13677 {
13678 struct tracepoint *tp = (struct tracepoint *) self;
13679 if (tp->static_trace_marker_id)
13680 {
13681 gdb_assert (self->type == bp_static_tracepoint);
13682
13683 ui_out_text (uiout, "\tmarker id is ");
13684 ui_out_field_string (uiout, "static-tracepoint-marker-string-id",
13685 tp->static_trace_marker_id);
13686 ui_out_text (uiout, "\n");
13687 }
13688 }
13689
13690 static void
13691 tracepoint_print_mention (struct breakpoint *b)
13692 {
13693 if (ui_out_is_mi_like_p (current_uiout))
13694 return;
13695
13696 switch (b->type)
13697 {
13698 case bp_tracepoint:
13699 printf_filtered (_("Tracepoint"));
13700 printf_filtered (_(" %d"), b->number);
13701 break;
13702 case bp_fast_tracepoint:
13703 printf_filtered (_("Fast tracepoint"));
13704 printf_filtered (_(" %d"), b->number);
13705 break;
13706 case bp_static_tracepoint:
13707 printf_filtered (_("Static tracepoint"));
13708 printf_filtered (_(" %d"), b->number);
13709 break;
13710 default:
13711 internal_error (__FILE__, __LINE__,
13712 _("unhandled tracepoint type %d"), (int) b->type);
13713 }
13714
13715 say_where (b);
13716 }
13717
13718 static void
13719 tracepoint_print_recreate (struct breakpoint *self, struct ui_file *fp)
13720 {
13721 struct tracepoint *tp = (struct tracepoint *) self;
13722
13723 if (self->type == bp_fast_tracepoint)
13724 fprintf_unfiltered (fp, "ftrace");
13725 if (self->type == bp_static_tracepoint)
13726 fprintf_unfiltered (fp, "strace");
13727 else if (self->type == bp_tracepoint)
13728 fprintf_unfiltered (fp, "trace");
13729 else
13730 internal_error (__FILE__, __LINE__,
13731 _("unhandled tracepoint type %d"), (int) self->type);
13732
13733 fprintf_unfiltered (fp, " %s", self->addr_string);
13734 print_recreate_thread (self, fp);
13735
13736 if (tp->pass_count)
13737 fprintf_unfiltered (fp, " passcount %d\n", tp->pass_count);
13738 }
13739
13740 static void
13741 tracepoint_create_sals_from_address (char **arg,
13742 struct linespec_result *canonical,
13743 enum bptype type_wanted,
13744 char *addr_start, char **copy_arg)
13745 {
13746 create_sals_from_address_default (arg, canonical, type_wanted,
13747 addr_start, copy_arg);
13748 }
13749
13750 static void
13751 tracepoint_create_breakpoints_sal (struct gdbarch *gdbarch,
13752 struct linespec_result *canonical,
13753 char *cond_string,
13754 char *extra_string,
13755 enum bptype type_wanted,
13756 enum bpdisp disposition,
13757 int thread,
13758 int task, int ignore_count,
13759 const struct breakpoint_ops *ops,
13760 int from_tty, int enabled,
13761 int internal, unsigned flags)
13762 {
13763 create_breakpoints_sal_default (gdbarch, canonical,
13764 cond_string, extra_string,
13765 type_wanted,
13766 disposition, thread, task,
13767 ignore_count, ops, from_tty,
13768 enabled, internal, flags);
13769 }
13770
13771 static void
13772 tracepoint_decode_linespec (struct breakpoint *b, char **s,
13773 struct symtabs_and_lines *sals)
13774 {
13775 decode_linespec_default (b, s, sals);
13776 }
13777
13778 struct breakpoint_ops tracepoint_breakpoint_ops;
13779
13780 /* The breakpoint_ops structure to be use on tracepoints placed in a
13781 static probe. */
13782
13783 static void
13784 tracepoint_probe_create_sals_from_address (char **arg,
13785 struct linespec_result *canonical,
13786 enum bptype type_wanted,
13787 char *addr_start, char **copy_arg)
13788 {
13789 /* We use the same method for breakpoint on probes. */
13790 bkpt_probe_create_sals_from_address (arg, canonical, type_wanted,
13791 addr_start, copy_arg);
13792 }
13793
13794 static void
13795 tracepoint_probe_decode_linespec (struct breakpoint *b, char **s,
13796 struct symtabs_and_lines *sals)
13797 {
13798 /* We use the same method for breakpoint on probes. */
13799 bkpt_probe_decode_linespec (b, s, sals);
13800 }
13801
13802 static struct breakpoint_ops tracepoint_probe_breakpoint_ops;
13803
13804 /* Dprintf breakpoint_ops methods. */
13805
13806 static void
13807 dprintf_re_set (struct breakpoint *b)
13808 {
13809 breakpoint_re_set_default (b);
13810
13811 /* This breakpoint could have been pending, and be resolved now, and
13812 if so, we should now have the extra string. If we don't, the
13813 dprintf was malformed when created, but we couldn't tell because
13814 we can't extract the extra string until the location is
13815 resolved. */
13816 if (b->loc != NULL && b->extra_string == NULL)
13817 error (_("Format string required"));
13818
13819 /* 1 - connect to target 1, that can run breakpoint commands.
13820 2 - create a dprintf, which resolves fine.
13821 3 - disconnect from target 1
13822 4 - connect to target 2, that can NOT run breakpoint commands.
13823
13824 After steps #3/#4, you'll want the dprintf command list to
13825 be updated, because target 1 and 2 may well return different
13826 answers for target_can_run_breakpoint_commands().
13827 Given absence of finer grained resetting, we get to do
13828 it all the time. */
13829 if (b->extra_string != NULL)
13830 update_dprintf_command_list (b);
13831 }
13832
13833 /* Implement the "print_recreate" breakpoint_ops method for dprintf. */
13834
13835 static void
13836 dprintf_print_recreate (struct breakpoint *tp, struct ui_file *fp)
13837 {
13838 fprintf_unfiltered (fp, "dprintf %s%s", tp->addr_string,
13839 tp->extra_string);
13840 print_recreate_thread (tp, fp);
13841 }
13842
13843 /* Implement the "after_condition_true" breakpoint_ops method for
13844 dprintf.
13845
13846 dprintf's are implemented with regular commands in their command
13847 list, but we run the commands here instead of before presenting the
13848 stop to the user, as dprintf's don't actually cause a stop. This
13849 also makes it so that the commands of multiple dprintfs at the same
13850 address are all handled. */
13851
13852 static void
13853 dprintf_after_condition_true (struct bpstats *bs)
13854 {
13855 struct cleanup *old_chain;
13856 struct bpstats tmp_bs = { NULL };
13857 struct bpstats *tmp_bs_p = &tmp_bs;
13858
13859 /* dprintf's never cause a stop. This wasn't set in the
13860 check_status hook instead because that would make the dprintf's
13861 condition not be evaluated. */
13862 bs->stop = 0;
13863
13864 /* Run the command list here. Take ownership of it instead of
13865 copying. We never want these commands to run later in
13866 bpstat_do_actions, if a breakpoint that causes a stop happens to
13867 be set at same address as this dprintf, or even if running the
13868 commands here throws. */
13869 tmp_bs.commands = bs->commands;
13870 bs->commands = NULL;
13871 old_chain = make_cleanup_decref_counted_command_line (&tmp_bs.commands);
13872
13873 bpstat_do_actions_1 (&tmp_bs_p);
13874
13875 /* 'tmp_bs.commands' will usually be NULL by now, but
13876 bpstat_do_actions_1 may return early without processing the whole
13877 list. */
13878 do_cleanups (old_chain);
13879 }
13880
13881 /* The breakpoint_ops structure to be used on static tracepoints with
13882 markers (`-m'). */
13883
13884 static void
13885 strace_marker_create_sals_from_address (char **arg,
13886 struct linespec_result *canonical,
13887 enum bptype type_wanted,
13888 char *addr_start, char **copy_arg)
13889 {
13890 struct linespec_sals lsal;
13891
13892 lsal.sals = decode_static_tracepoint_spec (arg);
13893
13894 *copy_arg = savestring (addr_start, *arg - addr_start);
13895
13896 canonical->addr_string = xstrdup (*copy_arg);
13897 lsal.canonical = xstrdup (*copy_arg);
13898 VEC_safe_push (linespec_sals, canonical->sals, &lsal);
13899 }
13900
13901 static void
13902 strace_marker_create_breakpoints_sal (struct gdbarch *gdbarch,
13903 struct linespec_result *canonical,
13904 char *cond_string,
13905 char *extra_string,
13906 enum bptype type_wanted,
13907 enum bpdisp disposition,
13908 int thread,
13909 int task, int ignore_count,
13910 const struct breakpoint_ops *ops,
13911 int from_tty, int enabled,
13912 int internal, unsigned flags)
13913 {
13914 int i;
13915 struct linespec_sals *lsal = VEC_index (linespec_sals,
13916 canonical->sals, 0);
13917
13918 /* If the user is creating a static tracepoint by marker id
13919 (strace -m MARKER_ID), then store the sals index, so that
13920 breakpoint_re_set can try to match up which of the newly
13921 found markers corresponds to this one, and, don't try to
13922 expand multiple locations for each sal, given than SALS
13923 already should contain all sals for MARKER_ID. */
13924
13925 for (i = 0; i < lsal->sals.nelts; ++i)
13926 {
13927 struct symtabs_and_lines expanded;
13928 struct tracepoint *tp;
13929 struct cleanup *old_chain;
13930 char *addr_string;
13931
13932 expanded.nelts = 1;
13933 expanded.sals = &lsal->sals.sals[i];
13934
13935 addr_string = xstrdup (canonical->addr_string);
13936 old_chain = make_cleanup (xfree, addr_string);
13937
13938 tp = XCNEW (struct tracepoint);
13939 init_breakpoint_sal (&tp->base, gdbarch, expanded,
13940 addr_string, NULL,
13941 cond_string, extra_string,
13942 type_wanted, disposition,
13943 thread, task, ignore_count, ops,
13944 from_tty, enabled, internal, flags,
13945 canonical->special_display);
13946 /* Given that its possible to have multiple markers with
13947 the same string id, if the user is creating a static
13948 tracepoint by marker id ("strace -m MARKER_ID"), then
13949 store the sals index, so that breakpoint_re_set can
13950 try to match up which of the newly found markers
13951 corresponds to this one */
13952 tp->static_trace_marker_id_idx = i;
13953
13954 install_breakpoint (internal, &tp->base, 0);
13955
13956 discard_cleanups (old_chain);
13957 }
13958 }
13959
13960 static void
13961 strace_marker_decode_linespec (struct breakpoint *b, char **s,
13962 struct symtabs_and_lines *sals)
13963 {
13964 struct tracepoint *tp = (struct tracepoint *) b;
13965
13966 *sals = decode_static_tracepoint_spec (s);
13967 if (sals->nelts > tp->static_trace_marker_id_idx)
13968 {
13969 sals->sals[0] = sals->sals[tp->static_trace_marker_id_idx];
13970 sals->nelts = 1;
13971 }
13972 else
13973 error (_("marker %s not found"), tp->static_trace_marker_id);
13974 }
13975
13976 static struct breakpoint_ops strace_marker_breakpoint_ops;
13977
13978 static int
13979 strace_marker_p (struct breakpoint *b)
13980 {
13981 return b->ops == &strace_marker_breakpoint_ops;
13982 }
13983
13984 /* Delete a breakpoint and clean up all traces of it in the data
13985 structures. */
13986
13987 void
13988 delete_breakpoint (struct breakpoint *bpt)
13989 {
13990 struct breakpoint *b;
13991
13992 gdb_assert (bpt != NULL);
13993
13994 /* Has this bp already been deleted? This can happen because
13995 multiple lists can hold pointers to bp's. bpstat lists are
13996 especial culprits.
13997
13998 One example of this happening is a watchpoint's scope bp. When
13999 the scope bp triggers, we notice that the watchpoint is out of
14000 scope, and delete it. We also delete its scope bp. But the
14001 scope bp is marked "auto-deleting", and is already on a bpstat.
14002 That bpstat is then checked for auto-deleting bp's, which are
14003 deleted.
14004
14005 A real solution to this problem might involve reference counts in
14006 bp's, and/or giving them pointers back to their referencing
14007 bpstat's, and teaching delete_breakpoint to only free a bp's
14008 storage when no more references were extent. A cheaper bandaid
14009 was chosen. */
14010 if (bpt->type == bp_none)
14011 return;
14012
14013 /* At least avoid this stale reference until the reference counting
14014 of breakpoints gets resolved. */
14015 if (bpt->related_breakpoint != bpt)
14016 {
14017 struct breakpoint *related;
14018 struct watchpoint *w;
14019
14020 if (bpt->type == bp_watchpoint_scope)
14021 w = (struct watchpoint *) bpt->related_breakpoint;
14022 else if (bpt->related_breakpoint->type == bp_watchpoint_scope)
14023 w = (struct watchpoint *) bpt;
14024 else
14025 w = NULL;
14026 if (w != NULL)
14027 watchpoint_del_at_next_stop (w);
14028
14029 /* Unlink bpt from the bpt->related_breakpoint ring. */
14030 for (related = bpt; related->related_breakpoint != bpt;
14031 related = related->related_breakpoint);
14032 related->related_breakpoint = bpt->related_breakpoint;
14033 bpt->related_breakpoint = bpt;
14034 }
14035
14036 /* watch_command_1 creates a watchpoint but only sets its number if
14037 update_watchpoint succeeds in creating its bp_locations. If there's
14038 a problem in that process, we'll be asked to delete the half-created
14039 watchpoint. In that case, don't announce the deletion. */
14040 if (bpt->number)
14041 observer_notify_breakpoint_deleted (bpt);
14042
14043 if (breakpoint_chain == bpt)
14044 breakpoint_chain = bpt->next;
14045
14046 ALL_BREAKPOINTS (b)
14047 if (b->next == bpt)
14048 {
14049 b->next = bpt->next;
14050 break;
14051 }
14052
14053 /* Be sure no bpstat's are pointing at the breakpoint after it's
14054 been freed. */
14055 /* FIXME, how can we find all bpstat's? We just check stop_bpstat
14056 in all threads for now. Note that we cannot just remove bpstats
14057 pointing at bpt from the stop_bpstat list entirely, as breakpoint
14058 commands are associated with the bpstat; if we remove it here,
14059 then the later call to bpstat_do_actions (&stop_bpstat); in
14060 event-top.c won't do anything, and temporary breakpoints with
14061 commands won't work. */
14062
14063 iterate_over_threads (bpstat_remove_breakpoint_callback, bpt);
14064
14065 /* Now that breakpoint is removed from breakpoint list, update the
14066 global location list. This will remove locations that used to
14067 belong to this breakpoint. Do this before freeing the breakpoint
14068 itself, since remove_breakpoint looks at location's owner. It
14069 might be better design to have location completely
14070 self-contained, but it's not the case now. */
14071 update_global_location_list (UGLL_DONT_INSERT);
14072
14073 bpt->ops->dtor (bpt);
14074 /* On the chance that someone will soon try again to delete this
14075 same bp, we mark it as deleted before freeing its storage. */
14076 bpt->type = bp_none;
14077 xfree (bpt);
14078 }
14079
14080 static void
14081 do_delete_breakpoint_cleanup (void *b)
14082 {
14083 delete_breakpoint (b);
14084 }
14085
14086 struct cleanup *
14087 make_cleanup_delete_breakpoint (struct breakpoint *b)
14088 {
14089 return make_cleanup (do_delete_breakpoint_cleanup, b);
14090 }
14091
14092 /* Iterator function to call a user-provided callback function once
14093 for each of B and its related breakpoints. */
14094
14095 static void
14096 iterate_over_related_breakpoints (struct breakpoint *b,
14097 void (*function) (struct breakpoint *,
14098 void *),
14099 void *data)
14100 {
14101 struct breakpoint *related;
14102
14103 related = b;
14104 do
14105 {
14106 struct breakpoint *next;
14107
14108 /* FUNCTION may delete RELATED. */
14109 next = related->related_breakpoint;
14110
14111 if (next == related)
14112 {
14113 /* RELATED is the last ring entry. */
14114 function (related, data);
14115
14116 /* FUNCTION may have deleted it, so we'd never reach back to
14117 B. There's nothing left to do anyway, so just break
14118 out. */
14119 break;
14120 }
14121 else
14122 function (related, data);
14123
14124 related = next;
14125 }
14126 while (related != b);
14127 }
14128
14129 static void
14130 do_delete_breakpoint (struct breakpoint *b, void *ignore)
14131 {
14132 delete_breakpoint (b);
14133 }
14134
14135 /* A callback for map_breakpoint_numbers that calls
14136 delete_breakpoint. */
14137
14138 static void
14139 do_map_delete_breakpoint (struct breakpoint *b, void *ignore)
14140 {
14141 iterate_over_related_breakpoints (b, do_delete_breakpoint, NULL);
14142 }
14143
14144 void
14145 delete_command (char *arg, int from_tty)
14146 {
14147 struct breakpoint *b, *b_tmp;
14148
14149 dont_repeat ();
14150
14151 if (arg == 0)
14152 {
14153 int breaks_to_delete = 0;
14154
14155 /* Delete all breakpoints if no argument. Do not delete
14156 internal breakpoints, these have to be deleted with an
14157 explicit breakpoint number argument. */
14158 ALL_BREAKPOINTS (b)
14159 if (user_breakpoint_p (b))
14160 {
14161 breaks_to_delete = 1;
14162 break;
14163 }
14164
14165 /* Ask user only if there are some breakpoints to delete. */
14166 if (!from_tty
14167 || (breaks_to_delete && query (_("Delete all breakpoints? "))))
14168 {
14169 ALL_BREAKPOINTS_SAFE (b, b_tmp)
14170 if (user_breakpoint_p (b))
14171 delete_breakpoint (b);
14172 }
14173 }
14174 else
14175 map_breakpoint_numbers (arg, do_map_delete_breakpoint, NULL);
14176 }
14177
14178 static int
14179 all_locations_are_pending (struct bp_location *loc)
14180 {
14181 for (; loc; loc = loc->next)
14182 if (!loc->shlib_disabled
14183 && !loc->pspace->executing_startup)
14184 return 0;
14185 return 1;
14186 }
14187
14188 /* Subroutine of update_breakpoint_locations to simplify it.
14189 Return non-zero if multiple fns in list LOC have the same name.
14190 Null names are ignored. */
14191
14192 static int
14193 ambiguous_names_p (struct bp_location *loc)
14194 {
14195 struct bp_location *l;
14196 htab_t htab = htab_create_alloc (13, htab_hash_string,
14197 (int (*) (const void *,
14198 const void *)) streq,
14199 NULL, xcalloc, xfree);
14200
14201 for (l = loc; l != NULL; l = l->next)
14202 {
14203 const char **slot;
14204 const char *name = l->function_name;
14205
14206 /* Allow for some names to be NULL, ignore them. */
14207 if (name == NULL)
14208 continue;
14209
14210 slot = (const char **) htab_find_slot (htab, (const void *) name,
14211 INSERT);
14212 /* NOTE: We can assume slot != NULL here because xcalloc never
14213 returns NULL. */
14214 if (*slot != NULL)
14215 {
14216 htab_delete (htab);
14217 return 1;
14218 }
14219 *slot = name;
14220 }
14221
14222 htab_delete (htab);
14223 return 0;
14224 }
14225
14226 /* When symbols change, it probably means the sources changed as well,
14227 and it might mean the static tracepoint markers are no longer at
14228 the same address or line numbers they used to be at last we
14229 checked. Losing your static tracepoints whenever you rebuild is
14230 undesirable. This function tries to resync/rematch gdb static
14231 tracepoints with the markers on the target, for static tracepoints
14232 that have not been set by marker id. Static tracepoint that have
14233 been set by marker id are reset by marker id in breakpoint_re_set.
14234 The heuristic is:
14235
14236 1) For a tracepoint set at a specific address, look for a marker at
14237 the old PC. If one is found there, assume to be the same marker.
14238 If the name / string id of the marker found is different from the
14239 previous known name, assume that means the user renamed the marker
14240 in the sources, and output a warning.
14241
14242 2) For a tracepoint set at a given line number, look for a marker
14243 at the new address of the old line number. If one is found there,
14244 assume to be the same marker. If the name / string id of the
14245 marker found is different from the previous known name, assume that
14246 means the user renamed the marker in the sources, and output a
14247 warning.
14248
14249 3) If a marker is no longer found at the same address or line, it
14250 may mean the marker no longer exists. But it may also just mean
14251 the code changed a bit. Maybe the user added a few lines of code
14252 that made the marker move up or down (in line number terms). Ask
14253 the target for info about the marker with the string id as we knew
14254 it. If found, update line number and address in the matching
14255 static tracepoint. This will get confused if there's more than one
14256 marker with the same ID (possible in UST, although unadvised
14257 precisely because it confuses tools). */
14258
14259 static struct symtab_and_line
14260 update_static_tracepoint (struct breakpoint *b, struct symtab_and_line sal)
14261 {
14262 struct tracepoint *tp = (struct tracepoint *) b;
14263 struct static_tracepoint_marker marker;
14264 CORE_ADDR pc;
14265
14266 pc = sal.pc;
14267 if (sal.line)
14268 find_line_pc (sal.symtab, sal.line, &pc);
14269
14270 if (target_static_tracepoint_marker_at (pc, &marker))
14271 {
14272 if (strcmp (tp->static_trace_marker_id, marker.str_id) != 0)
14273 warning (_("static tracepoint %d changed probed marker from %s to %s"),
14274 b->number,
14275 tp->static_trace_marker_id, marker.str_id);
14276
14277 xfree (tp->static_trace_marker_id);
14278 tp->static_trace_marker_id = xstrdup (marker.str_id);
14279 release_static_tracepoint_marker (&marker);
14280
14281 return sal;
14282 }
14283
14284 /* Old marker wasn't found on target at lineno. Try looking it up
14285 by string ID. */
14286 if (!sal.explicit_pc
14287 && sal.line != 0
14288 && sal.symtab != NULL
14289 && tp->static_trace_marker_id != NULL)
14290 {
14291 VEC(static_tracepoint_marker_p) *markers;
14292
14293 markers
14294 = target_static_tracepoint_markers_by_strid (tp->static_trace_marker_id);
14295
14296 if (!VEC_empty(static_tracepoint_marker_p, markers))
14297 {
14298 struct symtab_and_line sal2;
14299 struct symbol *sym;
14300 struct static_tracepoint_marker *tpmarker;
14301 struct ui_out *uiout = current_uiout;
14302
14303 tpmarker = VEC_index (static_tracepoint_marker_p, markers, 0);
14304
14305 xfree (tp->static_trace_marker_id);
14306 tp->static_trace_marker_id = xstrdup (tpmarker->str_id);
14307
14308 warning (_("marker for static tracepoint %d (%s) not "
14309 "found at previous line number"),
14310 b->number, tp->static_trace_marker_id);
14311
14312 init_sal (&sal2);
14313
14314 sal2.pc = tpmarker->address;
14315
14316 sal2 = find_pc_line (tpmarker->address, 0);
14317 sym = find_pc_sect_function (tpmarker->address, NULL);
14318 ui_out_text (uiout, "Now in ");
14319 if (sym)
14320 {
14321 ui_out_field_string (uiout, "func",
14322 SYMBOL_PRINT_NAME (sym));
14323 ui_out_text (uiout, " at ");
14324 }
14325 ui_out_field_string (uiout, "file",
14326 symtab_to_filename_for_display (sal2.symtab));
14327 ui_out_text (uiout, ":");
14328
14329 if (ui_out_is_mi_like_p (uiout))
14330 {
14331 const char *fullname = symtab_to_fullname (sal2.symtab);
14332
14333 ui_out_field_string (uiout, "fullname", fullname);
14334 }
14335
14336 ui_out_field_int (uiout, "line", sal2.line);
14337 ui_out_text (uiout, "\n");
14338
14339 b->loc->line_number = sal2.line;
14340 b->loc->symtab = sym != NULL ? sal2.symtab : NULL;
14341
14342 xfree (b->addr_string);
14343 b->addr_string = xstrprintf ("%s:%d",
14344 symtab_to_filename_for_display (sal2.symtab),
14345 b->loc->line_number);
14346
14347 /* Might be nice to check if function changed, and warn if
14348 so. */
14349
14350 release_static_tracepoint_marker (tpmarker);
14351 }
14352 }
14353 return sal;
14354 }
14355
14356 /* Returns 1 iff locations A and B are sufficiently same that
14357 we don't need to report breakpoint as changed. */
14358
14359 static int
14360 locations_are_equal (struct bp_location *a, struct bp_location *b)
14361 {
14362 while (a && b)
14363 {
14364 if (a->address != b->address)
14365 return 0;
14366
14367 if (a->shlib_disabled != b->shlib_disabled)
14368 return 0;
14369
14370 if (a->enabled != b->enabled)
14371 return 0;
14372
14373 a = a->next;
14374 b = b->next;
14375 }
14376
14377 if ((a == NULL) != (b == NULL))
14378 return 0;
14379
14380 return 1;
14381 }
14382
14383 /* Create new breakpoint locations for B (a hardware or software breakpoint)
14384 based on SALS and SALS_END. If SALS_END.NELTS is not zero, then B is
14385 a ranged breakpoint. */
14386
14387 void
14388 update_breakpoint_locations (struct breakpoint *b,
14389 struct symtabs_and_lines sals,
14390 struct symtabs_and_lines sals_end)
14391 {
14392 int i;
14393 struct bp_location *existing_locations = b->loc;
14394
14395 if (sals_end.nelts != 0 && (sals.nelts != 1 || sals_end.nelts != 1))
14396 {
14397 /* Ranged breakpoints have only one start location and one end
14398 location. */
14399 b->enable_state = bp_disabled;
14400 update_global_location_list (UGLL_MAY_INSERT);
14401 printf_unfiltered (_("Could not reset ranged breakpoint %d: "
14402 "multiple locations found\n"),
14403 b->number);
14404 return;
14405 }
14406
14407 /* If there's no new locations, and all existing locations are
14408 pending, don't do anything. This optimizes the common case where
14409 all locations are in the same shared library, that was unloaded.
14410 We'd like to retain the location, so that when the library is
14411 loaded again, we don't loose the enabled/disabled status of the
14412 individual locations. */
14413 if (all_locations_are_pending (existing_locations) && sals.nelts == 0)
14414 return;
14415
14416 b->loc = NULL;
14417
14418 for (i = 0; i < sals.nelts; ++i)
14419 {
14420 struct bp_location *new_loc;
14421
14422 switch_to_program_space_and_thread (sals.sals[i].pspace);
14423
14424 new_loc = add_location_to_breakpoint (b, &(sals.sals[i]));
14425
14426 /* Reparse conditions, they might contain references to the
14427 old symtab. */
14428 if (b->cond_string != NULL)
14429 {
14430 const char *s;
14431 volatile struct gdb_exception e;
14432
14433 s = b->cond_string;
14434 TRY_CATCH (e, RETURN_MASK_ERROR)
14435 {
14436 new_loc->cond = parse_exp_1 (&s, sals.sals[i].pc,
14437 block_for_pc (sals.sals[i].pc),
14438 0);
14439 }
14440 if (e.reason < 0)
14441 {
14442 warning (_("failed to reevaluate condition "
14443 "for breakpoint %d: %s"),
14444 b->number, e.message);
14445 new_loc->enabled = 0;
14446 }
14447 }
14448
14449 if (sals_end.nelts)
14450 {
14451 CORE_ADDR end = find_breakpoint_range_end (sals_end.sals[0]);
14452
14453 new_loc->length = end - sals.sals[0].pc + 1;
14454 }
14455 }
14456
14457 /* If possible, carry over 'disable' status from existing
14458 breakpoints. */
14459 {
14460 struct bp_location *e = existing_locations;
14461 /* If there are multiple breakpoints with the same function name,
14462 e.g. for inline functions, comparing function names won't work.
14463 Instead compare pc addresses; this is just a heuristic as things
14464 may have moved, but in practice it gives the correct answer
14465 often enough until a better solution is found. */
14466 int have_ambiguous_names = ambiguous_names_p (b->loc);
14467
14468 for (; e; e = e->next)
14469 {
14470 if (!e->enabled && e->function_name)
14471 {
14472 struct bp_location *l = b->loc;
14473 if (have_ambiguous_names)
14474 {
14475 for (; l; l = l->next)
14476 if (breakpoint_locations_match (e, l))
14477 {
14478 l->enabled = 0;
14479 break;
14480 }
14481 }
14482 else
14483 {
14484 for (; l; l = l->next)
14485 if (l->function_name
14486 && strcmp (e->function_name, l->function_name) == 0)
14487 {
14488 l->enabled = 0;
14489 break;
14490 }
14491 }
14492 }
14493 }
14494 }
14495
14496 if (!locations_are_equal (existing_locations, b->loc))
14497 observer_notify_breakpoint_modified (b);
14498
14499 update_global_location_list (UGLL_MAY_INSERT);
14500 }
14501
14502 /* Find the SaL locations corresponding to the given ADDR_STRING.
14503 On return, FOUND will be 1 if any SaL was found, zero otherwise. */
14504
14505 static struct symtabs_and_lines
14506 addr_string_to_sals (struct breakpoint *b, char *addr_string, int *found)
14507 {
14508 char *s;
14509 struct symtabs_and_lines sals = {0};
14510 volatile struct gdb_exception e;
14511
14512 gdb_assert (b->ops != NULL);
14513 s = addr_string;
14514
14515 TRY_CATCH (e, RETURN_MASK_ERROR)
14516 {
14517 b->ops->decode_linespec (b, &s, &sals);
14518 }
14519 if (e.reason < 0)
14520 {
14521 int not_found_and_ok = 0;
14522 /* For pending breakpoints, it's expected that parsing will
14523 fail until the right shared library is loaded. User has
14524 already told to create pending breakpoints and don't need
14525 extra messages. If breakpoint is in bp_shlib_disabled
14526 state, then user already saw the message about that
14527 breakpoint being disabled, and don't want to see more
14528 errors. */
14529 if (e.error == NOT_FOUND_ERROR
14530 && (b->condition_not_parsed
14531 || (b->loc && b->loc->shlib_disabled)
14532 || (b->loc && b->loc->pspace->executing_startup)
14533 || b->enable_state == bp_disabled))
14534 not_found_and_ok = 1;
14535
14536 if (!not_found_and_ok)
14537 {
14538 /* We surely don't want to warn about the same breakpoint
14539 10 times. One solution, implemented here, is disable
14540 the breakpoint on error. Another solution would be to
14541 have separate 'warning emitted' flag. Since this
14542 happens only when a binary has changed, I don't know
14543 which approach is better. */
14544 b->enable_state = bp_disabled;
14545 throw_exception (e);
14546 }
14547 }
14548
14549 if (e.reason == 0 || e.error != NOT_FOUND_ERROR)
14550 {
14551 int i;
14552
14553 for (i = 0; i < sals.nelts; ++i)
14554 resolve_sal_pc (&sals.sals[i]);
14555 if (b->condition_not_parsed && s && s[0])
14556 {
14557 char *cond_string, *extra_string;
14558 int thread, task;
14559
14560 find_condition_and_thread (s, sals.sals[0].pc,
14561 &cond_string, &thread, &task,
14562 &extra_string);
14563 if (cond_string)
14564 b->cond_string = cond_string;
14565 b->thread = thread;
14566 b->task = task;
14567 if (extra_string)
14568 b->extra_string = extra_string;
14569 b->condition_not_parsed = 0;
14570 }
14571
14572 if (b->type == bp_static_tracepoint && !strace_marker_p (b))
14573 sals.sals[0] = update_static_tracepoint (b, sals.sals[0]);
14574
14575 *found = 1;
14576 }
14577 else
14578 *found = 0;
14579
14580 return sals;
14581 }
14582
14583 /* The default re_set method, for typical hardware or software
14584 breakpoints. Reevaluate the breakpoint and recreate its
14585 locations. */
14586
14587 static void
14588 breakpoint_re_set_default (struct breakpoint *b)
14589 {
14590 int found;
14591 struct symtabs_and_lines sals, sals_end;
14592 struct symtabs_and_lines expanded = {0};
14593 struct symtabs_and_lines expanded_end = {0};
14594
14595 sals = addr_string_to_sals (b, b->addr_string, &found);
14596 if (found)
14597 {
14598 make_cleanup (xfree, sals.sals);
14599 expanded = sals;
14600 }
14601
14602 if (b->addr_string_range_end)
14603 {
14604 sals_end = addr_string_to_sals (b, b->addr_string_range_end, &found);
14605 if (found)
14606 {
14607 make_cleanup (xfree, sals_end.sals);
14608 expanded_end = sals_end;
14609 }
14610 }
14611
14612 update_breakpoint_locations (b, expanded, expanded_end);
14613 }
14614
14615 /* Default method for creating SALs from an address string. It basically
14616 calls parse_breakpoint_sals. Return 1 for success, zero for failure. */
14617
14618 static void
14619 create_sals_from_address_default (char **arg,
14620 struct linespec_result *canonical,
14621 enum bptype type_wanted,
14622 char *addr_start, char **copy_arg)
14623 {
14624 parse_breakpoint_sals (arg, canonical);
14625 }
14626
14627 /* Call create_breakpoints_sal for the given arguments. This is the default
14628 function for the `create_breakpoints_sal' method of
14629 breakpoint_ops. */
14630
14631 static void
14632 create_breakpoints_sal_default (struct gdbarch *gdbarch,
14633 struct linespec_result *canonical,
14634 char *cond_string,
14635 char *extra_string,
14636 enum bptype type_wanted,
14637 enum bpdisp disposition,
14638 int thread,
14639 int task, int ignore_count,
14640 const struct breakpoint_ops *ops,
14641 int from_tty, int enabled,
14642 int internal, unsigned flags)
14643 {
14644 create_breakpoints_sal (gdbarch, canonical, cond_string,
14645 extra_string,
14646 type_wanted, disposition,
14647 thread, task, ignore_count, ops, from_tty,
14648 enabled, internal, flags);
14649 }
14650
14651 /* Decode the line represented by S by calling decode_line_full. This is the
14652 default function for the `decode_linespec' method of breakpoint_ops. */
14653
14654 static void
14655 decode_linespec_default (struct breakpoint *b, char **s,
14656 struct symtabs_and_lines *sals)
14657 {
14658 struct linespec_result canonical;
14659
14660 init_linespec_result (&canonical);
14661 decode_line_full (s, DECODE_LINE_FUNFIRSTLINE,
14662 (struct symtab *) NULL, 0,
14663 &canonical, multiple_symbols_all,
14664 b->filter);
14665
14666 /* We should get 0 or 1 resulting SALs. */
14667 gdb_assert (VEC_length (linespec_sals, canonical.sals) < 2);
14668
14669 if (VEC_length (linespec_sals, canonical.sals) > 0)
14670 {
14671 struct linespec_sals *lsal;
14672
14673 lsal = VEC_index (linespec_sals, canonical.sals, 0);
14674 *sals = lsal->sals;
14675 /* Arrange it so the destructor does not free the
14676 contents. */
14677 lsal->sals.sals = NULL;
14678 }
14679
14680 destroy_linespec_result (&canonical);
14681 }
14682
14683 /* Prepare the global context for a re-set of breakpoint B. */
14684
14685 static struct cleanup *
14686 prepare_re_set_context (struct breakpoint *b)
14687 {
14688 struct cleanup *cleanups;
14689
14690 input_radix = b->input_radix;
14691 cleanups = save_current_space_and_thread ();
14692 if (b->pspace != NULL)
14693 switch_to_program_space_and_thread (b->pspace);
14694 set_language (b->language);
14695
14696 return cleanups;
14697 }
14698
14699 /* Reset a breakpoint given it's struct breakpoint * BINT.
14700 The value we return ends up being the return value from catch_errors.
14701 Unused in this case. */
14702
14703 static int
14704 breakpoint_re_set_one (void *bint)
14705 {
14706 /* Get past catch_errs. */
14707 struct breakpoint *b = (struct breakpoint *) bint;
14708 struct cleanup *cleanups;
14709
14710 cleanups = prepare_re_set_context (b);
14711 b->ops->re_set (b);
14712 do_cleanups (cleanups);
14713 return 0;
14714 }
14715
14716 /* Re-set all breakpoints after symbols have been re-loaded. */
14717 void
14718 breakpoint_re_set (void)
14719 {
14720 struct breakpoint *b, *b_tmp;
14721 enum language save_language;
14722 int save_input_radix;
14723 struct cleanup *old_chain;
14724
14725 save_language = current_language->la_language;
14726 save_input_radix = input_radix;
14727 old_chain = save_current_program_space ();
14728
14729 ALL_BREAKPOINTS_SAFE (b, b_tmp)
14730 {
14731 /* Format possible error msg. */
14732 char *message = xstrprintf ("Error in re-setting breakpoint %d: ",
14733 b->number);
14734 struct cleanup *cleanups = make_cleanup (xfree, message);
14735 catch_errors (breakpoint_re_set_one, b, message, RETURN_MASK_ALL);
14736 do_cleanups (cleanups);
14737 }
14738 set_language (save_language);
14739 input_radix = save_input_radix;
14740
14741 jit_breakpoint_re_set ();
14742
14743 do_cleanups (old_chain);
14744
14745 create_overlay_event_breakpoint ();
14746 create_longjmp_master_breakpoint ();
14747 create_std_terminate_master_breakpoint ();
14748 create_exception_master_breakpoint ();
14749 }
14750 \f
14751 /* Reset the thread number of this breakpoint:
14752
14753 - If the breakpoint is for all threads, leave it as-is.
14754 - Else, reset it to the current thread for inferior_ptid. */
14755 void
14756 breakpoint_re_set_thread (struct breakpoint *b)
14757 {
14758 if (b->thread != -1)
14759 {
14760 if (in_thread_list (inferior_ptid))
14761 b->thread = pid_to_thread_id (inferior_ptid);
14762
14763 /* We're being called after following a fork. The new fork is
14764 selected as current, and unless this was a vfork will have a
14765 different program space from the original thread. Reset that
14766 as well. */
14767 b->loc->pspace = current_program_space;
14768 }
14769 }
14770
14771 /* Set ignore-count of breakpoint number BPTNUM to COUNT.
14772 If from_tty is nonzero, it prints a message to that effect,
14773 which ends with a period (no newline). */
14774
14775 void
14776 set_ignore_count (int bptnum, int count, int from_tty)
14777 {
14778 struct breakpoint *b;
14779
14780 if (count < 0)
14781 count = 0;
14782
14783 ALL_BREAKPOINTS (b)
14784 if (b->number == bptnum)
14785 {
14786 if (is_tracepoint (b))
14787 {
14788 if (from_tty && count != 0)
14789 printf_filtered (_("Ignore count ignored for tracepoint %d."),
14790 bptnum);
14791 return;
14792 }
14793
14794 b->ignore_count = count;
14795 if (from_tty)
14796 {
14797 if (count == 0)
14798 printf_filtered (_("Will stop next time "
14799 "breakpoint %d is reached."),
14800 bptnum);
14801 else if (count == 1)
14802 printf_filtered (_("Will ignore next crossing of breakpoint %d."),
14803 bptnum);
14804 else
14805 printf_filtered (_("Will ignore next %d "
14806 "crossings of breakpoint %d."),
14807 count, bptnum);
14808 }
14809 observer_notify_breakpoint_modified (b);
14810 return;
14811 }
14812
14813 error (_("No breakpoint number %d."), bptnum);
14814 }
14815
14816 /* Command to set ignore-count of breakpoint N to COUNT. */
14817
14818 static void
14819 ignore_command (char *args, int from_tty)
14820 {
14821 char *p = args;
14822 int num;
14823
14824 if (p == 0)
14825 error_no_arg (_("a breakpoint number"));
14826
14827 num = get_number (&p);
14828 if (num == 0)
14829 error (_("bad breakpoint number: '%s'"), args);
14830 if (*p == 0)
14831 error (_("Second argument (specified ignore-count) is missing."));
14832
14833 set_ignore_count (num,
14834 longest_to_int (value_as_long (parse_and_eval (p))),
14835 from_tty);
14836 if (from_tty)
14837 printf_filtered ("\n");
14838 }
14839 \f
14840 /* Call FUNCTION on each of the breakpoints
14841 whose numbers are given in ARGS. */
14842
14843 static void
14844 map_breakpoint_numbers (char *args, void (*function) (struct breakpoint *,
14845 void *),
14846 void *data)
14847 {
14848 int num;
14849 struct breakpoint *b, *tmp;
14850 int match;
14851 struct get_number_or_range_state state;
14852
14853 if (args == 0)
14854 error_no_arg (_("one or more breakpoint numbers"));
14855
14856 init_number_or_range (&state, args);
14857
14858 while (!state.finished)
14859 {
14860 const char *p = state.string;
14861
14862 match = 0;
14863
14864 num = get_number_or_range (&state);
14865 if (num == 0)
14866 {
14867 warning (_("bad breakpoint number at or near '%s'"), p);
14868 }
14869 else
14870 {
14871 ALL_BREAKPOINTS_SAFE (b, tmp)
14872 if (b->number == num)
14873 {
14874 match = 1;
14875 function (b, data);
14876 break;
14877 }
14878 if (match == 0)
14879 printf_unfiltered (_("No breakpoint number %d.\n"), num);
14880 }
14881 }
14882 }
14883
14884 static struct bp_location *
14885 find_location_by_number (char *number)
14886 {
14887 char *dot = strchr (number, '.');
14888 char *p1;
14889 int bp_num;
14890 int loc_num;
14891 struct breakpoint *b;
14892 struct bp_location *loc;
14893
14894 *dot = '\0';
14895
14896 p1 = number;
14897 bp_num = get_number (&p1);
14898 if (bp_num == 0)
14899 error (_("Bad breakpoint number '%s'"), number);
14900
14901 ALL_BREAKPOINTS (b)
14902 if (b->number == bp_num)
14903 {
14904 break;
14905 }
14906
14907 if (!b || b->number != bp_num)
14908 error (_("Bad breakpoint number '%s'"), number);
14909
14910 p1 = dot+1;
14911 loc_num = get_number (&p1);
14912 if (loc_num == 0)
14913 error (_("Bad breakpoint location number '%s'"), number);
14914
14915 --loc_num;
14916 loc = b->loc;
14917 for (;loc_num && loc; --loc_num, loc = loc->next)
14918 ;
14919 if (!loc)
14920 error (_("Bad breakpoint location number '%s'"), dot+1);
14921
14922 return loc;
14923 }
14924
14925
14926 /* Set ignore-count of breakpoint number BPTNUM to COUNT.
14927 If from_tty is nonzero, it prints a message to that effect,
14928 which ends with a period (no newline). */
14929
14930 void
14931 disable_breakpoint (struct breakpoint *bpt)
14932 {
14933 /* Never disable a watchpoint scope breakpoint; we want to
14934 hit them when we leave scope so we can delete both the
14935 watchpoint and its scope breakpoint at that time. */
14936 if (bpt->type == bp_watchpoint_scope)
14937 return;
14938
14939 bpt->enable_state = bp_disabled;
14940
14941 /* Mark breakpoint locations modified. */
14942 mark_breakpoint_modified (bpt);
14943
14944 if (target_supports_enable_disable_tracepoint ()
14945 && current_trace_status ()->running && is_tracepoint (bpt))
14946 {
14947 struct bp_location *location;
14948
14949 for (location = bpt->loc; location; location = location->next)
14950 target_disable_tracepoint (location);
14951 }
14952
14953 update_global_location_list (UGLL_DONT_INSERT);
14954
14955 observer_notify_breakpoint_modified (bpt);
14956 }
14957
14958 /* A callback for iterate_over_related_breakpoints. */
14959
14960 static void
14961 do_disable_breakpoint (struct breakpoint *b, void *ignore)
14962 {
14963 disable_breakpoint (b);
14964 }
14965
14966 /* A callback for map_breakpoint_numbers that calls
14967 disable_breakpoint. */
14968
14969 static void
14970 do_map_disable_breakpoint (struct breakpoint *b, void *ignore)
14971 {
14972 iterate_over_related_breakpoints (b, do_disable_breakpoint, NULL);
14973 }
14974
14975 static void
14976 disable_command (char *args, int from_tty)
14977 {
14978 if (args == 0)
14979 {
14980 struct breakpoint *bpt;
14981
14982 ALL_BREAKPOINTS (bpt)
14983 if (user_breakpoint_p (bpt))
14984 disable_breakpoint (bpt);
14985 }
14986 else
14987 {
14988 char *num = extract_arg (&args);
14989
14990 while (num)
14991 {
14992 if (strchr (num, '.'))
14993 {
14994 struct bp_location *loc = find_location_by_number (num);
14995
14996 if (loc)
14997 {
14998 if (loc->enabled)
14999 {
15000 loc->enabled = 0;
15001 mark_breakpoint_location_modified (loc);
15002 }
15003 if (target_supports_enable_disable_tracepoint ()
15004 && current_trace_status ()->running && loc->owner
15005 && is_tracepoint (loc->owner))
15006 target_disable_tracepoint (loc);
15007 }
15008 update_global_location_list (UGLL_DONT_INSERT);
15009 }
15010 else
15011 map_breakpoint_numbers (num, do_map_disable_breakpoint, NULL);
15012 num = extract_arg (&args);
15013 }
15014 }
15015 }
15016
15017 static void
15018 enable_breakpoint_disp (struct breakpoint *bpt, enum bpdisp disposition,
15019 int count)
15020 {
15021 int target_resources_ok;
15022
15023 if (bpt->type == bp_hardware_breakpoint)
15024 {
15025 int i;
15026 i = hw_breakpoint_used_count ();
15027 target_resources_ok =
15028 target_can_use_hardware_watchpoint (bp_hardware_breakpoint,
15029 i + 1, 0);
15030 if (target_resources_ok == 0)
15031 error (_("No hardware breakpoint support in the target."));
15032 else if (target_resources_ok < 0)
15033 error (_("Hardware breakpoints used exceeds limit."));
15034 }
15035
15036 if (is_watchpoint (bpt))
15037 {
15038 /* Initialize it just to avoid a GCC false warning. */
15039 enum enable_state orig_enable_state = 0;
15040 volatile struct gdb_exception e;
15041
15042 TRY_CATCH (e, RETURN_MASK_ALL)
15043 {
15044 struct watchpoint *w = (struct watchpoint *) bpt;
15045
15046 orig_enable_state = bpt->enable_state;
15047 bpt->enable_state = bp_enabled;
15048 update_watchpoint (w, 1 /* reparse */);
15049 }
15050 if (e.reason < 0)
15051 {
15052 bpt->enable_state = orig_enable_state;
15053 exception_fprintf (gdb_stderr, e, _("Cannot enable watchpoint %d: "),
15054 bpt->number);
15055 return;
15056 }
15057 }
15058
15059 bpt->enable_state = bp_enabled;
15060
15061 /* Mark breakpoint locations modified. */
15062 mark_breakpoint_modified (bpt);
15063
15064 if (target_supports_enable_disable_tracepoint ()
15065 && current_trace_status ()->running && is_tracepoint (bpt))
15066 {
15067 struct bp_location *location;
15068
15069 for (location = bpt->loc; location; location = location->next)
15070 target_enable_tracepoint (location);
15071 }
15072
15073 bpt->disposition = disposition;
15074 bpt->enable_count = count;
15075 update_global_location_list (UGLL_MAY_INSERT);
15076
15077 observer_notify_breakpoint_modified (bpt);
15078 }
15079
15080
15081 void
15082 enable_breakpoint (struct breakpoint *bpt)
15083 {
15084 enable_breakpoint_disp (bpt, bpt->disposition, 0);
15085 }
15086
15087 static void
15088 do_enable_breakpoint (struct breakpoint *bpt, void *arg)
15089 {
15090 enable_breakpoint (bpt);
15091 }
15092
15093 /* A callback for map_breakpoint_numbers that calls
15094 enable_breakpoint. */
15095
15096 static void
15097 do_map_enable_breakpoint (struct breakpoint *b, void *ignore)
15098 {
15099 iterate_over_related_breakpoints (b, do_enable_breakpoint, NULL);
15100 }
15101
15102 /* The enable command enables the specified breakpoints (or all defined
15103 breakpoints) so they once again become (or continue to be) effective
15104 in stopping the inferior. */
15105
15106 static void
15107 enable_command (char *args, int from_tty)
15108 {
15109 if (args == 0)
15110 {
15111 struct breakpoint *bpt;
15112
15113 ALL_BREAKPOINTS (bpt)
15114 if (user_breakpoint_p (bpt))
15115 enable_breakpoint (bpt);
15116 }
15117 else
15118 {
15119 char *num = extract_arg (&args);
15120
15121 while (num)
15122 {
15123 if (strchr (num, '.'))
15124 {
15125 struct bp_location *loc = find_location_by_number (num);
15126
15127 if (loc)
15128 {
15129 if (!loc->enabled)
15130 {
15131 loc->enabled = 1;
15132 mark_breakpoint_location_modified (loc);
15133 }
15134 if (target_supports_enable_disable_tracepoint ()
15135 && current_trace_status ()->running && loc->owner
15136 && is_tracepoint (loc->owner))
15137 target_enable_tracepoint (loc);
15138 }
15139 update_global_location_list (UGLL_MAY_INSERT);
15140 }
15141 else
15142 map_breakpoint_numbers (num, do_map_enable_breakpoint, NULL);
15143 num = extract_arg (&args);
15144 }
15145 }
15146 }
15147
15148 /* This struct packages up disposition data for application to multiple
15149 breakpoints. */
15150
15151 struct disp_data
15152 {
15153 enum bpdisp disp;
15154 int count;
15155 };
15156
15157 static void
15158 do_enable_breakpoint_disp (struct breakpoint *bpt, void *arg)
15159 {
15160 struct disp_data disp_data = *(struct disp_data *) arg;
15161
15162 enable_breakpoint_disp (bpt, disp_data.disp, disp_data.count);
15163 }
15164
15165 static void
15166 do_map_enable_once_breakpoint (struct breakpoint *bpt, void *ignore)
15167 {
15168 struct disp_data disp = { disp_disable, 1 };
15169
15170 iterate_over_related_breakpoints (bpt, do_enable_breakpoint_disp, &disp);
15171 }
15172
15173 static void
15174 enable_once_command (char *args, int from_tty)
15175 {
15176 map_breakpoint_numbers (args, do_map_enable_once_breakpoint, NULL);
15177 }
15178
15179 static void
15180 do_map_enable_count_breakpoint (struct breakpoint *bpt, void *countptr)
15181 {
15182 struct disp_data disp = { disp_disable, *(int *) countptr };
15183
15184 iterate_over_related_breakpoints (bpt, do_enable_breakpoint_disp, &disp);
15185 }
15186
15187 static void
15188 enable_count_command (char *args, int from_tty)
15189 {
15190 int count = get_number (&args);
15191
15192 map_breakpoint_numbers (args, do_map_enable_count_breakpoint, &count);
15193 }
15194
15195 static void
15196 do_map_enable_delete_breakpoint (struct breakpoint *bpt, void *ignore)
15197 {
15198 struct disp_data disp = { disp_del, 1 };
15199
15200 iterate_over_related_breakpoints (bpt, do_enable_breakpoint_disp, &disp);
15201 }
15202
15203 static void
15204 enable_delete_command (char *args, int from_tty)
15205 {
15206 map_breakpoint_numbers (args, do_map_enable_delete_breakpoint, NULL);
15207 }
15208 \f
15209 static void
15210 set_breakpoint_cmd (char *args, int from_tty)
15211 {
15212 }
15213
15214 static void
15215 show_breakpoint_cmd (char *args, int from_tty)
15216 {
15217 }
15218
15219 /* Invalidate last known value of any hardware watchpoint if
15220 the memory which that value represents has been written to by
15221 GDB itself. */
15222
15223 static void
15224 invalidate_bp_value_on_memory_change (struct inferior *inferior,
15225 CORE_ADDR addr, ssize_t len,
15226 const bfd_byte *data)
15227 {
15228 struct breakpoint *bp;
15229
15230 ALL_BREAKPOINTS (bp)
15231 if (bp->enable_state == bp_enabled
15232 && bp->type == bp_hardware_watchpoint)
15233 {
15234 struct watchpoint *wp = (struct watchpoint *) bp;
15235
15236 if (wp->val_valid && wp->val)
15237 {
15238 struct bp_location *loc;
15239
15240 for (loc = bp->loc; loc != NULL; loc = loc->next)
15241 if (loc->loc_type == bp_loc_hardware_watchpoint
15242 && loc->address + loc->length > addr
15243 && addr + len > loc->address)
15244 {
15245 value_free (wp->val);
15246 wp->val = NULL;
15247 wp->val_valid = 0;
15248 }
15249 }
15250 }
15251 }
15252
15253 /* Create and insert a breakpoint for software single step. */
15254
15255 void
15256 insert_single_step_breakpoint (struct gdbarch *gdbarch,
15257 struct address_space *aspace,
15258 CORE_ADDR next_pc)
15259 {
15260 struct thread_info *tp = inferior_thread ();
15261 struct symtab_and_line sal;
15262 CORE_ADDR pc = next_pc;
15263
15264 if (tp->control.single_step_breakpoints == NULL)
15265 {
15266 tp->control.single_step_breakpoints
15267 = new_single_step_breakpoint (tp->num, gdbarch);
15268 }
15269
15270 sal = find_pc_line (pc, 0);
15271 sal.pc = pc;
15272 sal.section = find_pc_overlay (pc);
15273 sal.explicit_pc = 1;
15274 add_location_to_breakpoint (tp->control.single_step_breakpoints, &sal);
15275
15276 update_global_location_list (UGLL_INSERT);
15277 }
15278
15279 /* See breakpoint.h. */
15280
15281 int
15282 breakpoint_has_location_inserted_here (struct breakpoint *bp,
15283 struct address_space *aspace,
15284 CORE_ADDR pc)
15285 {
15286 struct bp_location *loc;
15287
15288 for (loc = bp->loc; loc != NULL; loc = loc->next)
15289 if (loc->inserted
15290 && breakpoint_location_address_match (loc, aspace, pc))
15291 return 1;
15292
15293 return 0;
15294 }
15295
15296 /* Check whether a software single-step breakpoint is inserted at
15297 PC. */
15298
15299 int
15300 single_step_breakpoint_inserted_here_p (struct address_space *aspace,
15301 CORE_ADDR pc)
15302 {
15303 struct breakpoint *bpt;
15304
15305 ALL_BREAKPOINTS (bpt)
15306 {
15307 if (bpt->type == bp_single_step
15308 && breakpoint_has_location_inserted_here (bpt, aspace, pc))
15309 return 1;
15310 }
15311 return 0;
15312 }
15313
15314 /* Returns 0 if 'bp' is NOT a syscall catchpoint,
15315 non-zero otherwise. */
15316 static int
15317 is_syscall_catchpoint_enabled (struct breakpoint *bp)
15318 {
15319 if (syscall_catchpoint_p (bp)
15320 && bp->enable_state != bp_disabled
15321 && bp->enable_state != bp_call_disabled)
15322 return 1;
15323 else
15324 return 0;
15325 }
15326
15327 int
15328 catch_syscall_enabled (void)
15329 {
15330 struct catch_syscall_inferior_data *inf_data
15331 = get_catch_syscall_inferior_data (current_inferior ());
15332
15333 return inf_data->total_syscalls_count != 0;
15334 }
15335
15336 int
15337 catching_syscall_number (int syscall_number)
15338 {
15339 struct breakpoint *bp;
15340
15341 ALL_BREAKPOINTS (bp)
15342 if (is_syscall_catchpoint_enabled (bp))
15343 {
15344 struct syscall_catchpoint *c = (struct syscall_catchpoint *) bp;
15345
15346 if (c->syscalls_to_be_caught)
15347 {
15348 int i, iter;
15349 for (i = 0;
15350 VEC_iterate (int, c->syscalls_to_be_caught, i, iter);
15351 i++)
15352 if (syscall_number == iter)
15353 return 1;
15354 }
15355 else
15356 return 1;
15357 }
15358
15359 return 0;
15360 }
15361
15362 /* Complete syscall names. Used by "catch syscall". */
15363 static VEC (char_ptr) *
15364 catch_syscall_completer (struct cmd_list_element *cmd,
15365 const char *text, const char *word)
15366 {
15367 const char **list = get_syscall_names (get_current_arch ());
15368 VEC (char_ptr) *retlist
15369 = (list == NULL) ? NULL : complete_on_enum (list, word, word);
15370
15371 xfree (list);
15372 return retlist;
15373 }
15374
15375 /* Tracepoint-specific operations. */
15376
15377 /* Set tracepoint count to NUM. */
15378 static void
15379 set_tracepoint_count (int num)
15380 {
15381 tracepoint_count = num;
15382 set_internalvar_integer (lookup_internalvar ("tpnum"), num);
15383 }
15384
15385 static void
15386 trace_command (char *arg, int from_tty)
15387 {
15388 struct breakpoint_ops *ops;
15389 const char *arg_cp = arg;
15390
15391 if (arg && probe_linespec_to_ops (&arg_cp))
15392 ops = &tracepoint_probe_breakpoint_ops;
15393 else
15394 ops = &tracepoint_breakpoint_ops;
15395
15396 create_breakpoint (get_current_arch (),
15397 arg,
15398 NULL, 0, NULL, 1 /* parse arg */,
15399 0 /* tempflag */,
15400 bp_tracepoint /* type_wanted */,
15401 0 /* Ignore count */,
15402 pending_break_support,
15403 ops,
15404 from_tty,
15405 1 /* enabled */,
15406 0 /* internal */, 0);
15407 }
15408
15409 static void
15410 ftrace_command (char *arg, int from_tty)
15411 {
15412 create_breakpoint (get_current_arch (),
15413 arg,
15414 NULL, 0, NULL, 1 /* parse arg */,
15415 0 /* tempflag */,
15416 bp_fast_tracepoint /* type_wanted */,
15417 0 /* Ignore count */,
15418 pending_break_support,
15419 &tracepoint_breakpoint_ops,
15420 from_tty,
15421 1 /* enabled */,
15422 0 /* internal */, 0);
15423 }
15424
15425 /* strace command implementation. Creates a static tracepoint. */
15426
15427 static void
15428 strace_command (char *arg, int from_tty)
15429 {
15430 struct breakpoint_ops *ops;
15431
15432 /* Decide if we are dealing with a static tracepoint marker (`-m'),
15433 or with a normal static tracepoint. */
15434 if (arg && strncmp (arg, "-m", 2) == 0 && isspace (arg[2]))
15435 ops = &strace_marker_breakpoint_ops;
15436 else
15437 ops = &tracepoint_breakpoint_ops;
15438
15439 create_breakpoint (get_current_arch (),
15440 arg,
15441 NULL, 0, NULL, 1 /* parse arg */,
15442 0 /* tempflag */,
15443 bp_static_tracepoint /* type_wanted */,
15444 0 /* Ignore count */,
15445 pending_break_support,
15446 ops,
15447 from_tty,
15448 1 /* enabled */,
15449 0 /* internal */, 0);
15450 }
15451
15452 /* Set up a fake reader function that gets command lines from a linked
15453 list that was acquired during tracepoint uploading. */
15454
15455 static struct uploaded_tp *this_utp;
15456 static int next_cmd;
15457
15458 static char *
15459 read_uploaded_action (void)
15460 {
15461 char *rslt;
15462
15463 VEC_iterate (char_ptr, this_utp->cmd_strings, next_cmd, rslt);
15464
15465 next_cmd++;
15466
15467 return rslt;
15468 }
15469
15470 /* Given information about a tracepoint as recorded on a target (which
15471 can be either a live system or a trace file), attempt to create an
15472 equivalent GDB tracepoint. This is not a reliable process, since
15473 the target does not necessarily have all the information used when
15474 the tracepoint was originally defined. */
15475
15476 struct tracepoint *
15477 create_tracepoint_from_upload (struct uploaded_tp *utp)
15478 {
15479 char *addr_str, small_buf[100];
15480 struct tracepoint *tp;
15481
15482 if (utp->at_string)
15483 addr_str = utp->at_string;
15484 else
15485 {
15486 /* In the absence of a source location, fall back to raw
15487 address. Since there is no way to confirm that the address
15488 means the same thing as when the trace was started, warn the
15489 user. */
15490 warning (_("Uploaded tracepoint %d has no "
15491 "source location, using raw address"),
15492 utp->number);
15493 xsnprintf (small_buf, sizeof (small_buf), "*%s", hex_string (utp->addr));
15494 addr_str = small_buf;
15495 }
15496
15497 /* There's not much we can do with a sequence of bytecodes. */
15498 if (utp->cond && !utp->cond_string)
15499 warning (_("Uploaded tracepoint %d condition "
15500 "has no source form, ignoring it"),
15501 utp->number);
15502
15503 if (!create_breakpoint (get_current_arch (),
15504 addr_str,
15505 utp->cond_string, -1, NULL,
15506 0 /* parse cond/thread */,
15507 0 /* tempflag */,
15508 utp->type /* type_wanted */,
15509 0 /* Ignore count */,
15510 pending_break_support,
15511 &tracepoint_breakpoint_ops,
15512 0 /* from_tty */,
15513 utp->enabled /* enabled */,
15514 0 /* internal */,
15515 CREATE_BREAKPOINT_FLAGS_INSERTED))
15516 return NULL;
15517
15518 /* Get the tracepoint we just created. */
15519 tp = get_tracepoint (tracepoint_count);
15520 gdb_assert (tp != NULL);
15521
15522 if (utp->pass > 0)
15523 {
15524 xsnprintf (small_buf, sizeof (small_buf), "%d %d", utp->pass,
15525 tp->base.number);
15526
15527 trace_pass_command (small_buf, 0);
15528 }
15529
15530 /* If we have uploaded versions of the original commands, set up a
15531 special-purpose "reader" function and call the usual command line
15532 reader, then pass the result to the breakpoint command-setting
15533 function. */
15534 if (!VEC_empty (char_ptr, utp->cmd_strings))
15535 {
15536 struct command_line *cmd_list;
15537
15538 this_utp = utp;
15539 next_cmd = 0;
15540
15541 cmd_list = read_command_lines_1 (read_uploaded_action, 1, NULL, NULL);
15542
15543 breakpoint_set_commands (&tp->base, cmd_list);
15544 }
15545 else if (!VEC_empty (char_ptr, utp->actions)
15546 || !VEC_empty (char_ptr, utp->step_actions))
15547 warning (_("Uploaded tracepoint %d actions "
15548 "have no source form, ignoring them"),
15549 utp->number);
15550
15551 /* Copy any status information that might be available. */
15552 tp->base.hit_count = utp->hit_count;
15553 tp->traceframe_usage = utp->traceframe_usage;
15554
15555 return tp;
15556 }
15557
15558 /* Print information on tracepoint number TPNUM_EXP, or all if
15559 omitted. */
15560
15561 static void
15562 tracepoints_info (char *args, int from_tty)
15563 {
15564 struct ui_out *uiout = current_uiout;
15565 int num_printed;
15566
15567 num_printed = breakpoint_1 (args, 0, is_tracepoint);
15568
15569 if (num_printed == 0)
15570 {
15571 if (args == NULL || *args == '\0')
15572 ui_out_message (uiout, 0, "No tracepoints.\n");
15573 else
15574 ui_out_message (uiout, 0, "No tracepoint matching '%s'.\n", args);
15575 }
15576
15577 default_collect_info ();
15578 }
15579
15580 /* The 'enable trace' command enables tracepoints.
15581 Not supported by all targets. */
15582 static void
15583 enable_trace_command (char *args, int from_tty)
15584 {
15585 enable_command (args, from_tty);
15586 }
15587
15588 /* The 'disable trace' command disables tracepoints.
15589 Not supported by all targets. */
15590 static void
15591 disable_trace_command (char *args, int from_tty)
15592 {
15593 disable_command (args, from_tty);
15594 }
15595
15596 /* Remove a tracepoint (or all if no argument). */
15597 static void
15598 delete_trace_command (char *arg, int from_tty)
15599 {
15600 struct breakpoint *b, *b_tmp;
15601
15602 dont_repeat ();
15603
15604 if (arg == 0)
15605 {
15606 int breaks_to_delete = 0;
15607
15608 /* Delete all breakpoints if no argument.
15609 Do not delete internal or call-dummy breakpoints, these
15610 have to be deleted with an explicit breakpoint number
15611 argument. */
15612 ALL_TRACEPOINTS (b)
15613 if (is_tracepoint (b) && user_breakpoint_p (b))
15614 {
15615 breaks_to_delete = 1;
15616 break;
15617 }
15618
15619 /* Ask user only if there are some breakpoints to delete. */
15620 if (!from_tty
15621 || (breaks_to_delete && query (_("Delete all tracepoints? "))))
15622 {
15623 ALL_BREAKPOINTS_SAFE (b, b_tmp)
15624 if (is_tracepoint (b) && user_breakpoint_p (b))
15625 delete_breakpoint (b);
15626 }
15627 }
15628 else
15629 map_breakpoint_numbers (arg, do_map_delete_breakpoint, NULL);
15630 }
15631
15632 /* Helper function for trace_pass_command. */
15633
15634 static void
15635 trace_pass_set_count (struct tracepoint *tp, int count, int from_tty)
15636 {
15637 tp->pass_count = count;
15638 observer_notify_breakpoint_modified (&tp->base);
15639 if (from_tty)
15640 printf_filtered (_("Setting tracepoint %d's passcount to %d\n"),
15641 tp->base.number, count);
15642 }
15643
15644 /* Set passcount for tracepoint.
15645
15646 First command argument is passcount, second is tracepoint number.
15647 If tracepoint number omitted, apply to most recently defined.
15648 Also accepts special argument "all". */
15649
15650 static void
15651 trace_pass_command (char *args, int from_tty)
15652 {
15653 struct tracepoint *t1;
15654 unsigned int count;
15655
15656 if (args == 0 || *args == 0)
15657 error (_("passcount command requires an "
15658 "argument (count + optional TP num)"));
15659
15660 count = strtoul (args, &args, 10); /* Count comes first, then TP num. */
15661
15662 args = skip_spaces (args);
15663 if (*args && strncasecmp (args, "all", 3) == 0)
15664 {
15665 struct breakpoint *b;
15666
15667 args += 3; /* Skip special argument "all". */
15668 if (*args)
15669 error (_("Junk at end of arguments."));
15670
15671 ALL_TRACEPOINTS (b)
15672 {
15673 t1 = (struct tracepoint *) b;
15674 trace_pass_set_count (t1, count, from_tty);
15675 }
15676 }
15677 else if (*args == '\0')
15678 {
15679 t1 = get_tracepoint_by_number (&args, NULL);
15680 if (t1)
15681 trace_pass_set_count (t1, count, from_tty);
15682 }
15683 else
15684 {
15685 struct get_number_or_range_state state;
15686
15687 init_number_or_range (&state, args);
15688 while (!state.finished)
15689 {
15690 t1 = get_tracepoint_by_number (&args, &state);
15691 if (t1)
15692 trace_pass_set_count (t1, count, from_tty);
15693 }
15694 }
15695 }
15696
15697 struct tracepoint *
15698 get_tracepoint (int num)
15699 {
15700 struct breakpoint *t;
15701
15702 ALL_TRACEPOINTS (t)
15703 if (t->number == num)
15704 return (struct tracepoint *) t;
15705
15706 return NULL;
15707 }
15708
15709 /* Find the tracepoint with the given target-side number (which may be
15710 different from the tracepoint number after disconnecting and
15711 reconnecting). */
15712
15713 struct tracepoint *
15714 get_tracepoint_by_number_on_target (int num)
15715 {
15716 struct breakpoint *b;
15717
15718 ALL_TRACEPOINTS (b)
15719 {
15720 struct tracepoint *t = (struct tracepoint *) b;
15721
15722 if (t->number_on_target == num)
15723 return t;
15724 }
15725
15726 return NULL;
15727 }
15728
15729 /* Utility: parse a tracepoint number and look it up in the list.
15730 If STATE is not NULL, use, get_number_or_range_state and ignore ARG.
15731 If the argument is missing, the most recent tracepoint
15732 (tracepoint_count) is returned. */
15733
15734 struct tracepoint *
15735 get_tracepoint_by_number (char **arg,
15736 struct get_number_or_range_state *state)
15737 {
15738 struct breakpoint *t;
15739 int tpnum;
15740 char *instring = arg == NULL ? NULL : *arg;
15741
15742 if (state)
15743 {
15744 gdb_assert (!state->finished);
15745 tpnum = get_number_or_range (state);
15746 }
15747 else if (arg == NULL || *arg == NULL || ! **arg)
15748 tpnum = tracepoint_count;
15749 else
15750 tpnum = get_number (arg);
15751
15752 if (tpnum <= 0)
15753 {
15754 if (instring && *instring)
15755 printf_filtered (_("bad tracepoint number at or near '%s'\n"),
15756 instring);
15757 else
15758 printf_filtered (_("No previous tracepoint\n"));
15759 return NULL;
15760 }
15761
15762 ALL_TRACEPOINTS (t)
15763 if (t->number == tpnum)
15764 {
15765 return (struct tracepoint *) t;
15766 }
15767
15768 printf_unfiltered ("No tracepoint number %d.\n", tpnum);
15769 return NULL;
15770 }
15771
15772 void
15773 print_recreate_thread (struct breakpoint *b, struct ui_file *fp)
15774 {
15775 if (b->thread != -1)
15776 fprintf_unfiltered (fp, " thread %d", b->thread);
15777
15778 if (b->task != 0)
15779 fprintf_unfiltered (fp, " task %d", b->task);
15780
15781 fprintf_unfiltered (fp, "\n");
15782 }
15783
15784 /* Save information on user settable breakpoints (watchpoints, etc) to
15785 a new script file named FILENAME. If FILTER is non-NULL, call it
15786 on each breakpoint and only include the ones for which it returns
15787 non-zero. */
15788
15789 static void
15790 save_breakpoints (char *filename, int from_tty,
15791 int (*filter) (const struct breakpoint *))
15792 {
15793 struct breakpoint *tp;
15794 int any = 0;
15795 struct cleanup *cleanup;
15796 struct ui_file *fp;
15797 int extra_trace_bits = 0;
15798
15799 if (filename == 0 || *filename == 0)
15800 error (_("Argument required (file name in which to save)"));
15801
15802 /* See if we have anything to save. */
15803 ALL_BREAKPOINTS (tp)
15804 {
15805 /* Skip internal and momentary breakpoints. */
15806 if (!user_breakpoint_p (tp))
15807 continue;
15808
15809 /* If we have a filter, only save the breakpoints it accepts. */
15810 if (filter && !filter (tp))
15811 continue;
15812
15813 any = 1;
15814
15815 if (is_tracepoint (tp))
15816 {
15817 extra_trace_bits = 1;
15818
15819 /* We can stop searching. */
15820 break;
15821 }
15822 }
15823
15824 if (!any)
15825 {
15826 warning (_("Nothing to save."));
15827 return;
15828 }
15829
15830 filename = tilde_expand (filename);
15831 cleanup = make_cleanup (xfree, filename);
15832 fp = gdb_fopen (filename, "w");
15833 if (!fp)
15834 error (_("Unable to open file '%s' for saving (%s)"),
15835 filename, safe_strerror (errno));
15836 make_cleanup_ui_file_delete (fp);
15837
15838 if (extra_trace_bits)
15839 save_trace_state_variables (fp);
15840
15841 ALL_BREAKPOINTS (tp)
15842 {
15843 /* Skip internal and momentary breakpoints. */
15844 if (!user_breakpoint_p (tp))
15845 continue;
15846
15847 /* If we have a filter, only save the breakpoints it accepts. */
15848 if (filter && !filter (tp))
15849 continue;
15850
15851 tp->ops->print_recreate (tp, fp);
15852
15853 /* Note, we can't rely on tp->number for anything, as we can't
15854 assume the recreated breakpoint numbers will match. Use $bpnum
15855 instead. */
15856
15857 if (tp->cond_string)
15858 fprintf_unfiltered (fp, " condition $bpnum %s\n", tp->cond_string);
15859
15860 if (tp->ignore_count)
15861 fprintf_unfiltered (fp, " ignore $bpnum %d\n", tp->ignore_count);
15862
15863 if (tp->type != bp_dprintf && tp->commands)
15864 {
15865 volatile struct gdb_exception ex;
15866
15867 fprintf_unfiltered (fp, " commands\n");
15868
15869 ui_out_redirect (current_uiout, fp);
15870 TRY_CATCH (ex, RETURN_MASK_ALL)
15871 {
15872 print_command_lines (current_uiout, tp->commands->commands, 2);
15873 }
15874 ui_out_redirect (current_uiout, NULL);
15875
15876 if (ex.reason < 0)
15877 throw_exception (ex);
15878
15879 fprintf_unfiltered (fp, " end\n");
15880 }
15881
15882 if (tp->enable_state == bp_disabled)
15883 fprintf_unfiltered (fp, "disable $bpnum\n");
15884
15885 /* If this is a multi-location breakpoint, check if the locations
15886 should be individually disabled. Watchpoint locations are
15887 special, and not user visible. */
15888 if (!is_watchpoint (tp) && tp->loc && tp->loc->next)
15889 {
15890 struct bp_location *loc;
15891 int n = 1;
15892
15893 for (loc = tp->loc; loc != NULL; loc = loc->next, n++)
15894 if (!loc->enabled)
15895 fprintf_unfiltered (fp, "disable $bpnum.%d\n", n);
15896 }
15897 }
15898
15899 if (extra_trace_bits && *default_collect)
15900 fprintf_unfiltered (fp, "set default-collect %s\n", default_collect);
15901
15902 if (from_tty)
15903 printf_filtered (_("Saved to file '%s'.\n"), filename);
15904 do_cleanups (cleanup);
15905 }
15906
15907 /* The `save breakpoints' command. */
15908
15909 static void
15910 save_breakpoints_command (char *args, int from_tty)
15911 {
15912 save_breakpoints (args, from_tty, NULL);
15913 }
15914
15915 /* The `save tracepoints' command. */
15916
15917 static void
15918 save_tracepoints_command (char *args, int from_tty)
15919 {
15920 save_breakpoints (args, from_tty, is_tracepoint);
15921 }
15922
15923 /* Create a vector of all tracepoints. */
15924
15925 VEC(breakpoint_p) *
15926 all_tracepoints (void)
15927 {
15928 VEC(breakpoint_p) *tp_vec = 0;
15929 struct breakpoint *tp;
15930
15931 ALL_TRACEPOINTS (tp)
15932 {
15933 VEC_safe_push (breakpoint_p, tp_vec, tp);
15934 }
15935
15936 return tp_vec;
15937 }
15938
15939 \f
15940 /* This help string is used for the break, hbreak, tbreak and thbreak
15941 commands. It is defined as a macro to prevent duplication.
15942 COMMAND should be a string constant containing the name of the
15943 command. */
15944 #define BREAK_ARGS_HELP(command) \
15945 command" [PROBE_MODIFIER] [LOCATION] [thread THREADNUM] [if CONDITION]\n\
15946 PROBE_MODIFIER shall be present if the command is to be placed in a\n\
15947 probe point. Accepted values are `-probe' (for a generic, automatically\n\
15948 guessed probe type) or `-probe-stap' (for a SystemTap probe).\n\
15949 LOCATION may be a line number, function name, or \"*\" and an address.\n\
15950 If a line number is specified, break at start of code for that line.\n\
15951 If a function is specified, break at start of code for that function.\n\
15952 If an address is specified, break at that exact address.\n\
15953 With no LOCATION, uses current execution address of the selected\n\
15954 stack frame. This is useful for breaking on return to a stack frame.\n\
15955 \n\
15956 THREADNUM is the number from \"info threads\".\n\
15957 CONDITION is a boolean expression.\n\
15958 \n\
15959 Multiple breakpoints at one place are permitted, and useful if their\n\
15960 conditions are different.\n\
15961 \n\
15962 Do \"help breakpoints\" for info on other commands dealing with breakpoints."
15963
15964 /* List of subcommands for "catch". */
15965 static struct cmd_list_element *catch_cmdlist;
15966
15967 /* List of subcommands for "tcatch". */
15968 static struct cmd_list_element *tcatch_cmdlist;
15969
15970 void
15971 add_catch_command (char *name, char *docstring,
15972 cmd_sfunc_ftype *sfunc,
15973 completer_ftype *completer,
15974 void *user_data_catch,
15975 void *user_data_tcatch)
15976 {
15977 struct cmd_list_element *command;
15978
15979 command = add_cmd (name, class_breakpoint, NULL, docstring,
15980 &catch_cmdlist);
15981 set_cmd_sfunc (command, sfunc);
15982 set_cmd_context (command, user_data_catch);
15983 set_cmd_completer (command, completer);
15984
15985 command = add_cmd (name, class_breakpoint, NULL, docstring,
15986 &tcatch_cmdlist);
15987 set_cmd_sfunc (command, sfunc);
15988 set_cmd_context (command, user_data_tcatch);
15989 set_cmd_completer (command, completer);
15990 }
15991
15992 static void
15993 clear_syscall_counts (struct inferior *inf)
15994 {
15995 struct catch_syscall_inferior_data *inf_data
15996 = get_catch_syscall_inferior_data (inf);
15997
15998 inf_data->total_syscalls_count = 0;
15999 inf_data->any_syscall_count = 0;
16000 VEC_free (int, inf_data->syscalls_counts);
16001 }
16002
16003 static void
16004 save_command (char *arg, int from_tty)
16005 {
16006 printf_unfiltered (_("\"save\" must be followed by "
16007 "the name of a save subcommand.\n"));
16008 help_list (save_cmdlist, "save ", all_commands, gdb_stdout);
16009 }
16010
16011 struct breakpoint *
16012 iterate_over_breakpoints (int (*callback) (struct breakpoint *, void *),
16013 void *data)
16014 {
16015 struct breakpoint *b, *b_tmp;
16016
16017 ALL_BREAKPOINTS_SAFE (b, b_tmp)
16018 {
16019 if ((*callback) (b, data))
16020 return b;
16021 }
16022
16023 return NULL;
16024 }
16025
16026 /* Zero if any of the breakpoint's locations could be a location where
16027 functions have been inlined, nonzero otherwise. */
16028
16029 static int
16030 is_non_inline_function (struct breakpoint *b)
16031 {
16032 /* The shared library event breakpoint is set on the address of a
16033 non-inline function. */
16034 if (b->type == bp_shlib_event)
16035 return 1;
16036
16037 return 0;
16038 }
16039
16040 /* Nonzero if the specified PC cannot be a location where functions
16041 have been inlined. */
16042
16043 int
16044 pc_at_non_inline_function (struct address_space *aspace, CORE_ADDR pc,
16045 const struct target_waitstatus *ws)
16046 {
16047 struct breakpoint *b;
16048 struct bp_location *bl;
16049
16050 ALL_BREAKPOINTS (b)
16051 {
16052 if (!is_non_inline_function (b))
16053 continue;
16054
16055 for (bl = b->loc; bl != NULL; bl = bl->next)
16056 {
16057 if (!bl->shlib_disabled
16058 && bpstat_check_location (bl, aspace, pc, ws))
16059 return 1;
16060 }
16061 }
16062
16063 return 0;
16064 }
16065
16066 /* Remove any references to OBJFILE which is going to be freed. */
16067
16068 void
16069 breakpoint_free_objfile (struct objfile *objfile)
16070 {
16071 struct bp_location **locp, *loc;
16072
16073 ALL_BP_LOCATIONS (loc, locp)
16074 if (loc->symtab != NULL && SYMTAB_OBJFILE (loc->symtab) == objfile)
16075 loc->symtab = NULL;
16076 }
16077
16078 void
16079 initialize_breakpoint_ops (void)
16080 {
16081 static int initialized = 0;
16082
16083 struct breakpoint_ops *ops;
16084
16085 if (initialized)
16086 return;
16087 initialized = 1;
16088
16089 /* The breakpoint_ops structure to be inherit by all kinds of
16090 breakpoints (real breakpoints, i.e., user "break" breakpoints,
16091 internal and momentary breakpoints, etc.). */
16092 ops = &bkpt_base_breakpoint_ops;
16093 *ops = base_breakpoint_ops;
16094 ops->re_set = bkpt_re_set;
16095 ops->insert_location = bkpt_insert_location;
16096 ops->remove_location = bkpt_remove_location;
16097 ops->breakpoint_hit = bkpt_breakpoint_hit;
16098 ops->create_sals_from_address = bkpt_create_sals_from_address;
16099 ops->create_breakpoints_sal = bkpt_create_breakpoints_sal;
16100 ops->decode_linespec = bkpt_decode_linespec;
16101
16102 /* The breakpoint_ops structure to be used in regular breakpoints. */
16103 ops = &bkpt_breakpoint_ops;
16104 *ops = bkpt_base_breakpoint_ops;
16105 ops->re_set = bkpt_re_set;
16106 ops->resources_needed = bkpt_resources_needed;
16107 ops->print_it = bkpt_print_it;
16108 ops->print_mention = bkpt_print_mention;
16109 ops->print_recreate = bkpt_print_recreate;
16110
16111 /* Ranged breakpoints. */
16112 ops = &ranged_breakpoint_ops;
16113 *ops = bkpt_breakpoint_ops;
16114 ops->breakpoint_hit = breakpoint_hit_ranged_breakpoint;
16115 ops->resources_needed = resources_needed_ranged_breakpoint;
16116 ops->print_it = print_it_ranged_breakpoint;
16117 ops->print_one = print_one_ranged_breakpoint;
16118 ops->print_one_detail = print_one_detail_ranged_breakpoint;
16119 ops->print_mention = print_mention_ranged_breakpoint;
16120 ops->print_recreate = print_recreate_ranged_breakpoint;
16121
16122 /* Internal breakpoints. */
16123 ops = &internal_breakpoint_ops;
16124 *ops = bkpt_base_breakpoint_ops;
16125 ops->re_set = internal_bkpt_re_set;
16126 ops->check_status = internal_bkpt_check_status;
16127 ops->print_it = internal_bkpt_print_it;
16128 ops->print_mention = internal_bkpt_print_mention;
16129
16130 /* Momentary breakpoints. */
16131 ops = &momentary_breakpoint_ops;
16132 *ops = bkpt_base_breakpoint_ops;
16133 ops->re_set = momentary_bkpt_re_set;
16134 ops->check_status = momentary_bkpt_check_status;
16135 ops->print_it = momentary_bkpt_print_it;
16136 ops->print_mention = momentary_bkpt_print_mention;
16137
16138 /* Momentary breakpoints for bp_longjmp and bp_exception. */
16139 ops = &longjmp_breakpoint_ops;
16140 *ops = momentary_breakpoint_ops;
16141 ops->dtor = longjmp_bkpt_dtor;
16142
16143 /* Probe breakpoints. */
16144 ops = &bkpt_probe_breakpoint_ops;
16145 *ops = bkpt_breakpoint_ops;
16146 ops->insert_location = bkpt_probe_insert_location;
16147 ops->remove_location = bkpt_probe_remove_location;
16148 ops->create_sals_from_address = bkpt_probe_create_sals_from_address;
16149 ops->decode_linespec = bkpt_probe_decode_linespec;
16150
16151 /* Watchpoints. */
16152 ops = &watchpoint_breakpoint_ops;
16153 *ops = base_breakpoint_ops;
16154 ops->dtor = dtor_watchpoint;
16155 ops->re_set = re_set_watchpoint;
16156 ops->insert_location = insert_watchpoint;
16157 ops->remove_location = remove_watchpoint;
16158 ops->breakpoint_hit = breakpoint_hit_watchpoint;
16159 ops->check_status = check_status_watchpoint;
16160 ops->resources_needed = resources_needed_watchpoint;
16161 ops->works_in_software_mode = works_in_software_mode_watchpoint;
16162 ops->print_it = print_it_watchpoint;
16163 ops->print_mention = print_mention_watchpoint;
16164 ops->print_recreate = print_recreate_watchpoint;
16165 ops->explains_signal = explains_signal_watchpoint;
16166
16167 /* Masked watchpoints. */
16168 ops = &masked_watchpoint_breakpoint_ops;
16169 *ops = watchpoint_breakpoint_ops;
16170 ops->insert_location = insert_masked_watchpoint;
16171 ops->remove_location = remove_masked_watchpoint;
16172 ops->resources_needed = resources_needed_masked_watchpoint;
16173 ops->works_in_software_mode = works_in_software_mode_masked_watchpoint;
16174 ops->print_it = print_it_masked_watchpoint;
16175 ops->print_one_detail = print_one_detail_masked_watchpoint;
16176 ops->print_mention = print_mention_masked_watchpoint;
16177 ops->print_recreate = print_recreate_masked_watchpoint;
16178
16179 /* Tracepoints. */
16180 ops = &tracepoint_breakpoint_ops;
16181 *ops = base_breakpoint_ops;
16182 ops->re_set = tracepoint_re_set;
16183 ops->breakpoint_hit = tracepoint_breakpoint_hit;
16184 ops->print_one_detail = tracepoint_print_one_detail;
16185 ops->print_mention = tracepoint_print_mention;
16186 ops->print_recreate = tracepoint_print_recreate;
16187 ops->create_sals_from_address = tracepoint_create_sals_from_address;
16188 ops->create_breakpoints_sal = tracepoint_create_breakpoints_sal;
16189 ops->decode_linespec = tracepoint_decode_linespec;
16190
16191 /* Probe tracepoints. */
16192 ops = &tracepoint_probe_breakpoint_ops;
16193 *ops = tracepoint_breakpoint_ops;
16194 ops->create_sals_from_address = tracepoint_probe_create_sals_from_address;
16195 ops->decode_linespec = tracepoint_probe_decode_linespec;
16196
16197 /* Static tracepoints with marker (`-m'). */
16198 ops = &strace_marker_breakpoint_ops;
16199 *ops = tracepoint_breakpoint_ops;
16200 ops->create_sals_from_address = strace_marker_create_sals_from_address;
16201 ops->create_breakpoints_sal = strace_marker_create_breakpoints_sal;
16202 ops->decode_linespec = strace_marker_decode_linespec;
16203
16204 /* Fork catchpoints. */
16205 ops = &catch_fork_breakpoint_ops;
16206 *ops = base_breakpoint_ops;
16207 ops->insert_location = insert_catch_fork;
16208 ops->remove_location = remove_catch_fork;
16209 ops->breakpoint_hit = breakpoint_hit_catch_fork;
16210 ops->print_it = print_it_catch_fork;
16211 ops->print_one = print_one_catch_fork;
16212 ops->print_mention = print_mention_catch_fork;
16213 ops->print_recreate = print_recreate_catch_fork;
16214
16215 /* Vfork catchpoints. */
16216 ops = &catch_vfork_breakpoint_ops;
16217 *ops = base_breakpoint_ops;
16218 ops->insert_location = insert_catch_vfork;
16219 ops->remove_location = remove_catch_vfork;
16220 ops->breakpoint_hit = breakpoint_hit_catch_vfork;
16221 ops->print_it = print_it_catch_vfork;
16222 ops->print_one = print_one_catch_vfork;
16223 ops->print_mention = print_mention_catch_vfork;
16224 ops->print_recreate = print_recreate_catch_vfork;
16225
16226 /* Exec catchpoints. */
16227 ops = &catch_exec_breakpoint_ops;
16228 *ops = base_breakpoint_ops;
16229 ops->dtor = dtor_catch_exec;
16230 ops->insert_location = insert_catch_exec;
16231 ops->remove_location = remove_catch_exec;
16232 ops->breakpoint_hit = breakpoint_hit_catch_exec;
16233 ops->print_it = print_it_catch_exec;
16234 ops->print_one = print_one_catch_exec;
16235 ops->print_mention = print_mention_catch_exec;
16236 ops->print_recreate = print_recreate_catch_exec;
16237
16238 /* Syscall catchpoints. */
16239 ops = &catch_syscall_breakpoint_ops;
16240 *ops = base_breakpoint_ops;
16241 ops->dtor = dtor_catch_syscall;
16242 ops->insert_location = insert_catch_syscall;
16243 ops->remove_location = remove_catch_syscall;
16244 ops->breakpoint_hit = breakpoint_hit_catch_syscall;
16245 ops->print_it = print_it_catch_syscall;
16246 ops->print_one = print_one_catch_syscall;
16247 ops->print_mention = print_mention_catch_syscall;
16248 ops->print_recreate = print_recreate_catch_syscall;
16249
16250 /* Solib-related catchpoints. */
16251 ops = &catch_solib_breakpoint_ops;
16252 *ops = base_breakpoint_ops;
16253 ops->dtor = dtor_catch_solib;
16254 ops->insert_location = insert_catch_solib;
16255 ops->remove_location = remove_catch_solib;
16256 ops->breakpoint_hit = breakpoint_hit_catch_solib;
16257 ops->check_status = check_status_catch_solib;
16258 ops->print_it = print_it_catch_solib;
16259 ops->print_one = print_one_catch_solib;
16260 ops->print_mention = print_mention_catch_solib;
16261 ops->print_recreate = print_recreate_catch_solib;
16262
16263 ops = &dprintf_breakpoint_ops;
16264 *ops = bkpt_base_breakpoint_ops;
16265 ops->re_set = dprintf_re_set;
16266 ops->resources_needed = bkpt_resources_needed;
16267 ops->print_it = bkpt_print_it;
16268 ops->print_mention = bkpt_print_mention;
16269 ops->print_recreate = dprintf_print_recreate;
16270 ops->after_condition_true = dprintf_after_condition_true;
16271 ops->breakpoint_hit = dprintf_breakpoint_hit;
16272 }
16273
16274 /* Chain containing all defined "enable breakpoint" subcommands. */
16275
16276 static struct cmd_list_element *enablebreaklist = NULL;
16277
16278 void
16279 _initialize_breakpoint (void)
16280 {
16281 struct cmd_list_element *c;
16282
16283 initialize_breakpoint_ops ();
16284
16285 observer_attach_solib_unloaded (disable_breakpoints_in_unloaded_shlib);
16286 observer_attach_free_objfile (disable_breakpoints_in_freed_objfile);
16287 observer_attach_inferior_exit (clear_syscall_counts);
16288 observer_attach_memory_changed (invalidate_bp_value_on_memory_change);
16289
16290 breakpoint_objfile_key
16291 = register_objfile_data_with_cleanup (NULL, free_breakpoint_probes);
16292
16293 catch_syscall_inferior_data
16294 = register_inferior_data_with_cleanup (NULL,
16295 catch_syscall_inferior_data_cleanup);
16296
16297 breakpoint_chain = 0;
16298 /* Don't bother to call set_breakpoint_count. $bpnum isn't useful
16299 before a breakpoint is set. */
16300 breakpoint_count = 0;
16301
16302 tracepoint_count = 0;
16303
16304 add_com ("ignore", class_breakpoint, ignore_command, _("\
16305 Set ignore-count of breakpoint number N to COUNT.\n\
16306 Usage is `ignore N COUNT'."));
16307 if (xdb_commands)
16308 add_com_alias ("bc", "ignore", class_breakpoint, 1);
16309
16310 add_com ("commands", class_breakpoint, commands_command, _("\
16311 Set commands to be executed when a breakpoint is hit.\n\
16312 Give breakpoint number as argument after \"commands\".\n\
16313 With no argument, the targeted breakpoint is the last one set.\n\
16314 The commands themselves follow starting on the next line.\n\
16315 Type a line containing \"end\" to indicate the end of them.\n\
16316 Give \"silent\" as the first line to make the breakpoint silent;\n\
16317 then no output is printed when it is hit, except what the commands print."));
16318
16319 c = add_com ("condition", class_breakpoint, condition_command, _("\
16320 Specify breakpoint number N to break only if COND is true.\n\
16321 Usage is `condition N COND', where N is an integer and COND is an\n\
16322 expression to be evaluated whenever breakpoint N is reached."));
16323 set_cmd_completer (c, condition_completer);
16324
16325 c = add_com ("tbreak", class_breakpoint, tbreak_command, _("\
16326 Set a temporary breakpoint.\n\
16327 Like \"break\" except the breakpoint is only temporary,\n\
16328 so it will be deleted when hit. Equivalent to \"break\" followed\n\
16329 by using \"enable delete\" on the breakpoint number.\n\
16330 \n"
16331 BREAK_ARGS_HELP ("tbreak")));
16332 set_cmd_completer (c, location_completer);
16333
16334 c = add_com ("hbreak", class_breakpoint, hbreak_command, _("\
16335 Set a hardware assisted breakpoint.\n\
16336 Like \"break\" except the breakpoint requires hardware support,\n\
16337 some target hardware may not have this support.\n\
16338 \n"
16339 BREAK_ARGS_HELP ("hbreak")));
16340 set_cmd_completer (c, location_completer);
16341
16342 c = add_com ("thbreak", class_breakpoint, thbreak_command, _("\
16343 Set a temporary hardware assisted breakpoint.\n\
16344 Like \"hbreak\" except the breakpoint is only temporary,\n\
16345 so it will be deleted when hit.\n\
16346 \n"
16347 BREAK_ARGS_HELP ("thbreak")));
16348 set_cmd_completer (c, location_completer);
16349
16350 add_prefix_cmd ("enable", class_breakpoint, enable_command, _("\
16351 Enable some breakpoints.\n\
16352 Give breakpoint numbers (separated by spaces) as arguments.\n\
16353 With no subcommand, breakpoints are enabled until you command otherwise.\n\
16354 This is used to cancel the effect of the \"disable\" command.\n\
16355 With a subcommand you can enable temporarily."),
16356 &enablelist, "enable ", 1, &cmdlist);
16357 if (xdb_commands)
16358 add_com ("ab", class_breakpoint, enable_command, _("\
16359 Enable some breakpoints.\n\
16360 Give breakpoint numbers (separated by spaces) as arguments.\n\
16361 With no subcommand, breakpoints are enabled until you command otherwise.\n\
16362 This is used to cancel the effect of the \"disable\" command.\n\
16363 With a subcommand you can enable temporarily."));
16364
16365 add_com_alias ("en", "enable", class_breakpoint, 1);
16366
16367 add_prefix_cmd ("breakpoints", class_breakpoint, enable_command, _("\
16368 Enable some breakpoints.\n\
16369 Give breakpoint numbers (separated by spaces) as arguments.\n\
16370 This is used to cancel the effect of the \"disable\" command.\n\
16371 May be abbreviated to simply \"enable\".\n"),
16372 &enablebreaklist, "enable breakpoints ", 1, &enablelist);
16373
16374 add_cmd ("once", no_class, enable_once_command, _("\
16375 Enable breakpoints for one hit. Give breakpoint numbers.\n\
16376 If a breakpoint is hit while enabled in this fashion, it becomes disabled."),
16377 &enablebreaklist);
16378
16379 add_cmd ("delete", no_class, enable_delete_command, _("\
16380 Enable breakpoints and delete when hit. Give breakpoint numbers.\n\
16381 If a breakpoint is hit while enabled in this fashion, it is deleted."),
16382 &enablebreaklist);
16383
16384 add_cmd ("count", no_class, enable_count_command, _("\
16385 Enable breakpoints for COUNT hits. Give count and then breakpoint numbers.\n\
16386 If a breakpoint is hit while enabled in this fashion,\n\
16387 the count is decremented; when it reaches zero, the breakpoint is disabled."),
16388 &enablebreaklist);
16389
16390 add_cmd ("delete", no_class, enable_delete_command, _("\
16391 Enable breakpoints and delete when hit. Give breakpoint numbers.\n\
16392 If a breakpoint is hit while enabled in this fashion, it is deleted."),
16393 &enablelist);
16394
16395 add_cmd ("once", no_class, enable_once_command, _("\
16396 Enable breakpoints for one hit. Give breakpoint numbers.\n\
16397 If a breakpoint is hit while enabled in this fashion, it becomes disabled."),
16398 &enablelist);
16399
16400 add_cmd ("count", no_class, enable_count_command, _("\
16401 Enable breakpoints for COUNT hits. Give count and then breakpoint numbers.\n\
16402 If a breakpoint is hit while enabled in this fashion,\n\
16403 the count is decremented; when it reaches zero, the breakpoint is disabled."),
16404 &enablelist);
16405
16406 add_prefix_cmd ("disable", class_breakpoint, disable_command, _("\
16407 Disable some breakpoints.\n\
16408 Arguments are breakpoint numbers with spaces in between.\n\
16409 To disable all breakpoints, give no argument.\n\
16410 A disabled breakpoint is not forgotten, but has no effect until re-enabled."),
16411 &disablelist, "disable ", 1, &cmdlist);
16412 add_com_alias ("dis", "disable", class_breakpoint, 1);
16413 add_com_alias ("disa", "disable", class_breakpoint, 1);
16414 if (xdb_commands)
16415 add_com ("sb", class_breakpoint, disable_command, _("\
16416 Disable some breakpoints.\n\
16417 Arguments are breakpoint numbers with spaces in between.\n\
16418 To disable all breakpoints, give no argument.\n\
16419 A disabled breakpoint is not forgotten, but has no effect until re-enabled."));
16420
16421 add_cmd ("breakpoints", class_alias, disable_command, _("\
16422 Disable some breakpoints.\n\
16423 Arguments are breakpoint numbers with spaces in between.\n\
16424 To disable all breakpoints, give no argument.\n\
16425 A disabled breakpoint is not forgotten, but has no effect until re-enabled.\n\
16426 This command may be abbreviated \"disable\"."),
16427 &disablelist);
16428
16429 add_prefix_cmd ("delete", class_breakpoint, delete_command, _("\
16430 Delete some breakpoints or auto-display expressions.\n\
16431 Arguments are breakpoint numbers with spaces in between.\n\
16432 To delete all breakpoints, give no argument.\n\
16433 \n\
16434 Also a prefix command for deletion of other GDB objects.\n\
16435 The \"unset\" command is also an alias for \"delete\"."),
16436 &deletelist, "delete ", 1, &cmdlist);
16437 add_com_alias ("d", "delete", class_breakpoint, 1);
16438 add_com_alias ("del", "delete", class_breakpoint, 1);
16439 if (xdb_commands)
16440 add_com ("db", class_breakpoint, delete_command, _("\
16441 Delete some breakpoints.\n\
16442 Arguments are breakpoint numbers with spaces in between.\n\
16443 To delete all breakpoints, give no argument.\n"));
16444
16445 add_cmd ("breakpoints", class_alias, delete_command, _("\
16446 Delete some breakpoints or auto-display expressions.\n\
16447 Arguments are breakpoint numbers with spaces in between.\n\
16448 To delete all breakpoints, give no argument.\n\
16449 This command may be abbreviated \"delete\"."),
16450 &deletelist);
16451
16452 add_com ("clear", class_breakpoint, clear_command, _("\
16453 Clear breakpoint at specified line or function.\n\
16454 Argument may be line number, function name, or \"*\" and an address.\n\
16455 If line number is specified, all breakpoints in that line are cleared.\n\
16456 If function is specified, breakpoints at beginning of function are cleared.\n\
16457 If an address is specified, breakpoints at that address are cleared.\n\
16458 \n\
16459 With no argument, clears all breakpoints in the line that the selected frame\n\
16460 is executing in.\n\
16461 \n\
16462 See also the \"delete\" command which clears breakpoints by number."));
16463 add_com_alias ("cl", "clear", class_breakpoint, 1);
16464
16465 c = add_com ("break", class_breakpoint, break_command, _("\
16466 Set breakpoint at specified line or function.\n"
16467 BREAK_ARGS_HELP ("break")));
16468 set_cmd_completer (c, location_completer);
16469
16470 add_com_alias ("b", "break", class_run, 1);
16471 add_com_alias ("br", "break", class_run, 1);
16472 add_com_alias ("bre", "break", class_run, 1);
16473 add_com_alias ("brea", "break", class_run, 1);
16474
16475 if (xdb_commands)
16476 add_com_alias ("ba", "break", class_breakpoint, 1);
16477
16478 if (dbx_commands)
16479 {
16480 add_abbrev_prefix_cmd ("stop", class_breakpoint, stop_command, _("\
16481 Break in function/address or break at a line in the current file."),
16482 &stoplist, "stop ", 1, &cmdlist);
16483 add_cmd ("in", class_breakpoint, stopin_command,
16484 _("Break in function or address."), &stoplist);
16485 add_cmd ("at", class_breakpoint, stopat_command,
16486 _("Break at a line in the current file."), &stoplist);
16487 add_com ("status", class_info, breakpoints_info, _("\
16488 Status of user-settable breakpoints, or breakpoint number NUMBER.\n\
16489 The \"Type\" column indicates one of:\n\
16490 \tbreakpoint - normal breakpoint\n\
16491 \twatchpoint - watchpoint\n\
16492 The \"Disp\" column contains one of \"keep\", \"del\", or \"dis\" to indicate\n\
16493 the disposition of the breakpoint after it gets hit. \"dis\" means that the\n\
16494 breakpoint will be disabled. The \"Address\" and \"What\" columns indicate the\n\
16495 address and file/line number respectively.\n\
16496 \n\
16497 Convenience variable \"$_\" and default examine address for \"x\"\n\
16498 are set to the address of the last breakpoint listed unless the command\n\
16499 is prefixed with \"server \".\n\n\
16500 Convenience variable \"$bpnum\" contains the number of the last\n\
16501 breakpoint set."));
16502 }
16503
16504 add_info ("breakpoints", breakpoints_info, _("\
16505 Status of specified breakpoints (all user-settable breakpoints if no argument).\n\
16506 The \"Type\" column indicates one of:\n\
16507 \tbreakpoint - normal breakpoint\n\
16508 \twatchpoint - watchpoint\n\
16509 The \"Disp\" column contains one of \"keep\", \"del\", or \"dis\" to indicate\n\
16510 the disposition of the breakpoint after it gets hit. \"dis\" means that the\n\
16511 breakpoint will be disabled. The \"Address\" and \"What\" columns indicate the\n\
16512 address and file/line number respectively.\n\
16513 \n\
16514 Convenience variable \"$_\" and default examine address for \"x\"\n\
16515 are set to the address of the last breakpoint listed unless the command\n\
16516 is prefixed with \"server \".\n\n\
16517 Convenience variable \"$bpnum\" contains the number of the last\n\
16518 breakpoint set."));
16519
16520 add_info_alias ("b", "breakpoints", 1);
16521
16522 if (xdb_commands)
16523 add_com ("lb", class_breakpoint, breakpoints_info, _("\
16524 Status of user-settable breakpoints, or breakpoint number NUMBER.\n\
16525 The \"Type\" column indicates one of:\n\
16526 \tbreakpoint - normal breakpoint\n\
16527 \twatchpoint - watchpoint\n\
16528 The \"Disp\" column contains one of \"keep\", \"del\", or \"dis\" to indicate\n\
16529 the disposition of the breakpoint after it gets hit. \"dis\" means that the\n\
16530 breakpoint will be disabled. The \"Address\" and \"What\" columns indicate the\n\
16531 address and file/line number respectively.\n\
16532 \n\
16533 Convenience variable \"$_\" and default examine address for \"x\"\n\
16534 are set to the address of the last breakpoint listed unless the command\n\
16535 is prefixed with \"server \".\n\n\
16536 Convenience variable \"$bpnum\" contains the number of the last\n\
16537 breakpoint set."));
16538
16539 add_cmd ("breakpoints", class_maintenance, maintenance_info_breakpoints, _("\
16540 Status of all breakpoints, or breakpoint number NUMBER.\n\
16541 The \"Type\" column indicates one of:\n\
16542 \tbreakpoint - normal breakpoint\n\
16543 \twatchpoint - watchpoint\n\
16544 \tlongjmp - internal breakpoint used to step through longjmp()\n\
16545 \tlongjmp resume - internal breakpoint at the target of longjmp()\n\
16546 \tuntil - internal breakpoint used by the \"until\" command\n\
16547 \tfinish - internal breakpoint used by the \"finish\" command\n\
16548 The \"Disp\" column contains one of \"keep\", \"del\", or \"dis\" to indicate\n\
16549 the disposition of the breakpoint after it gets hit. \"dis\" means that the\n\
16550 breakpoint will be disabled. The \"Address\" and \"What\" columns indicate the\n\
16551 address and file/line number respectively.\n\
16552 \n\
16553 Convenience variable \"$_\" and default examine address for \"x\"\n\
16554 are set to the address of the last breakpoint listed unless the command\n\
16555 is prefixed with \"server \".\n\n\
16556 Convenience variable \"$bpnum\" contains the number of the last\n\
16557 breakpoint set."),
16558 &maintenanceinfolist);
16559
16560 add_prefix_cmd ("catch", class_breakpoint, catch_command, _("\
16561 Set catchpoints to catch events."),
16562 &catch_cmdlist, "catch ",
16563 0/*allow-unknown*/, &cmdlist);
16564
16565 add_prefix_cmd ("tcatch", class_breakpoint, tcatch_command, _("\
16566 Set temporary catchpoints to catch events."),
16567 &tcatch_cmdlist, "tcatch ",
16568 0/*allow-unknown*/, &cmdlist);
16569
16570 add_catch_command ("fork", _("Catch calls to fork."),
16571 catch_fork_command_1,
16572 NULL,
16573 (void *) (uintptr_t) catch_fork_permanent,
16574 (void *) (uintptr_t) catch_fork_temporary);
16575 add_catch_command ("vfork", _("Catch calls to vfork."),
16576 catch_fork_command_1,
16577 NULL,
16578 (void *) (uintptr_t) catch_vfork_permanent,
16579 (void *) (uintptr_t) catch_vfork_temporary);
16580 add_catch_command ("exec", _("Catch calls to exec."),
16581 catch_exec_command_1,
16582 NULL,
16583 CATCH_PERMANENT,
16584 CATCH_TEMPORARY);
16585 add_catch_command ("load", _("Catch loads of shared libraries.\n\
16586 Usage: catch load [REGEX]\n\
16587 If REGEX is given, only stop for libraries matching the regular expression."),
16588 catch_load_command_1,
16589 NULL,
16590 CATCH_PERMANENT,
16591 CATCH_TEMPORARY);
16592 add_catch_command ("unload", _("Catch unloads of shared libraries.\n\
16593 Usage: catch unload [REGEX]\n\
16594 If REGEX is given, only stop for libraries matching the regular expression."),
16595 catch_unload_command_1,
16596 NULL,
16597 CATCH_PERMANENT,
16598 CATCH_TEMPORARY);
16599 add_catch_command ("syscall", _("\
16600 Catch system calls by their names and/or numbers.\n\
16601 Arguments say which system calls to catch. If no arguments\n\
16602 are given, every system call will be caught.\n\
16603 Arguments, if given, should be one or more system call names\n\
16604 (if your system supports that), or system call numbers."),
16605 catch_syscall_command_1,
16606 catch_syscall_completer,
16607 CATCH_PERMANENT,
16608 CATCH_TEMPORARY);
16609
16610 c = add_com ("watch", class_breakpoint, watch_command, _("\
16611 Set a watchpoint for an expression.\n\
16612 Usage: watch [-l|-location] EXPRESSION\n\
16613 A watchpoint stops execution of your program whenever the value of\n\
16614 an expression changes.\n\
16615 If -l or -location is given, this evaluates EXPRESSION and watches\n\
16616 the memory to which it refers."));
16617 set_cmd_completer (c, expression_completer);
16618
16619 c = add_com ("rwatch", class_breakpoint, rwatch_command, _("\
16620 Set a read watchpoint for an expression.\n\
16621 Usage: rwatch [-l|-location] EXPRESSION\n\
16622 A watchpoint stops execution of your program whenever the value of\n\
16623 an expression is read.\n\
16624 If -l or -location is given, this evaluates EXPRESSION and watches\n\
16625 the memory to which it refers."));
16626 set_cmd_completer (c, expression_completer);
16627
16628 c = add_com ("awatch", class_breakpoint, awatch_command, _("\
16629 Set a watchpoint for an expression.\n\
16630 Usage: awatch [-l|-location] EXPRESSION\n\
16631 A watchpoint stops execution of your program whenever the value of\n\
16632 an expression is either read or written.\n\
16633 If -l or -location is given, this evaluates EXPRESSION and watches\n\
16634 the memory to which it refers."));
16635 set_cmd_completer (c, expression_completer);
16636
16637 add_info ("watchpoints", watchpoints_info, _("\
16638 Status of specified watchpoints (all watchpoints if no argument)."));
16639
16640 /* XXX: cagney/2005-02-23: This should be a boolean, and should
16641 respond to changes - contrary to the description. */
16642 add_setshow_zinteger_cmd ("can-use-hw-watchpoints", class_support,
16643 &can_use_hw_watchpoints, _("\
16644 Set debugger's willingness to use watchpoint hardware."), _("\
16645 Show debugger's willingness to use watchpoint hardware."), _("\
16646 If zero, gdb will not use hardware for new watchpoints, even if\n\
16647 such is available. (However, any hardware watchpoints that were\n\
16648 created before setting this to nonzero, will continue to use watchpoint\n\
16649 hardware.)"),
16650 NULL,
16651 show_can_use_hw_watchpoints,
16652 &setlist, &showlist);
16653
16654 can_use_hw_watchpoints = 1;
16655
16656 /* Tracepoint manipulation commands. */
16657
16658 c = add_com ("trace", class_breakpoint, trace_command, _("\
16659 Set a tracepoint at specified line or function.\n\
16660 \n"
16661 BREAK_ARGS_HELP ("trace") "\n\
16662 Do \"help tracepoints\" for info on other tracepoint commands."));
16663 set_cmd_completer (c, location_completer);
16664
16665 add_com_alias ("tp", "trace", class_alias, 0);
16666 add_com_alias ("tr", "trace", class_alias, 1);
16667 add_com_alias ("tra", "trace", class_alias, 1);
16668 add_com_alias ("trac", "trace", class_alias, 1);
16669
16670 c = add_com ("ftrace", class_breakpoint, ftrace_command, _("\
16671 Set a fast tracepoint at specified line or function.\n\
16672 \n"
16673 BREAK_ARGS_HELP ("ftrace") "\n\
16674 Do \"help tracepoints\" for info on other tracepoint commands."));
16675 set_cmd_completer (c, location_completer);
16676
16677 c = add_com ("strace", class_breakpoint, strace_command, _("\
16678 Set a static tracepoint at specified line, function or marker.\n\
16679 \n\
16680 strace [LOCATION] [if CONDITION]\n\
16681 LOCATION may be a line number, function name, \"*\" and an address,\n\
16682 or -m MARKER_ID.\n\
16683 If a line number is specified, probe the marker at start of code\n\
16684 for that line. If a function is specified, probe the marker at start\n\
16685 of code for that function. If an address is specified, probe the marker\n\
16686 at that exact address. If a marker id is specified, probe the marker\n\
16687 with that name. With no LOCATION, uses current execution address of\n\
16688 the selected stack frame.\n\
16689 Static tracepoints accept an extra collect action -- ``collect $_sdata''.\n\
16690 This collects arbitrary user data passed in the probe point call to the\n\
16691 tracing library. You can inspect it when analyzing the trace buffer,\n\
16692 by printing the $_sdata variable like any other convenience variable.\n\
16693 \n\
16694 CONDITION is a boolean expression.\n\
16695 \n\
16696 Multiple tracepoints at one place are permitted, and useful if their\n\
16697 conditions are different.\n\
16698 \n\
16699 Do \"help breakpoints\" for info on other commands dealing with breakpoints.\n\
16700 Do \"help tracepoints\" for info on other tracepoint commands."));
16701 set_cmd_completer (c, location_completer);
16702
16703 add_info ("tracepoints", tracepoints_info, _("\
16704 Status of specified tracepoints (all tracepoints if no argument).\n\
16705 Convenience variable \"$tpnum\" contains the number of the\n\
16706 last tracepoint set."));
16707
16708 add_info_alias ("tp", "tracepoints", 1);
16709
16710 add_cmd ("tracepoints", class_trace, delete_trace_command, _("\
16711 Delete specified tracepoints.\n\
16712 Arguments are tracepoint numbers, separated by spaces.\n\
16713 No argument means delete all tracepoints."),
16714 &deletelist);
16715 add_alias_cmd ("tr", "tracepoints", class_trace, 1, &deletelist);
16716
16717 c = add_cmd ("tracepoints", class_trace, disable_trace_command, _("\
16718 Disable specified tracepoints.\n\
16719 Arguments are tracepoint numbers, separated by spaces.\n\
16720 No argument means disable all tracepoints."),
16721 &disablelist);
16722 deprecate_cmd (c, "disable");
16723
16724 c = add_cmd ("tracepoints", class_trace, enable_trace_command, _("\
16725 Enable specified tracepoints.\n\
16726 Arguments are tracepoint numbers, separated by spaces.\n\
16727 No argument means enable all tracepoints."),
16728 &enablelist);
16729 deprecate_cmd (c, "enable");
16730
16731 add_com ("passcount", class_trace, trace_pass_command, _("\
16732 Set the passcount for a tracepoint.\n\
16733 The trace will end when the tracepoint has been passed 'count' times.\n\
16734 Usage: passcount COUNT TPNUM, where TPNUM may also be \"all\";\n\
16735 if TPNUM is omitted, passcount refers to the last tracepoint defined."));
16736
16737 add_prefix_cmd ("save", class_breakpoint, save_command,
16738 _("Save breakpoint definitions as a script."),
16739 &save_cmdlist, "save ",
16740 0/*allow-unknown*/, &cmdlist);
16741
16742 c = add_cmd ("breakpoints", class_breakpoint, save_breakpoints_command, _("\
16743 Save current breakpoint definitions as a script.\n\
16744 This includes all types of breakpoints (breakpoints, watchpoints,\n\
16745 catchpoints, tracepoints). Use the 'source' command in another debug\n\
16746 session to restore them."),
16747 &save_cmdlist);
16748 set_cmd_completer (c, filename_completer);
16749
16750 c = add_cmd ("tracepoints", class_trace, save_tracepoints_command, _("\
16751 Save current tracepoint definitions as a script.\n\
16752 Use the 'source' command in another debug session to restore them."),
16753 &save_cmdlist);
16754 set_cmd_completer (c, filename_completer);
16755
16756 c = add_com_alias ("save-tracepoints", "save tracepoints", class_trace, 0);
16757 deprecate_cmd (c, "save tracepoints");
16758
16759 add_prefix_cmd ("breakpoint", class_maintenance, set_breakpoint_cmd, _("\
16760 Breakpoint specific settings\n\
16761 Configure various breakpoint-specific variables such as\n\
16762 pending breakpoint behavior"),
16763 &breakpoint_set_cmdlist, "set breakpoint ",
16764 0/*allow-unknown*/, &setlist);
16765 add_prefix_cmd ("breakpoint", class_maintenance, show_breakpoint_cmd, _("\
16766 Breakpoint specific settings\n\
16767 Configure various breakpoint-specific variables such as\n\
16768 pending breakpoint behavior"),
16769 &breakpoint_show_cmdlist, "show breakpoint ",
16770 0/*allow-unknown*/, &showlist);
16771
16772 add_setshow_auto_boolean_cmd ("pending", no_class,
16773 &pending_break_support, _("\
16774 Set debugger's behavior regarding pending breakpoints."), _("\
16775 Show debugger's behavior regarding pending breakpoints."), _("\
16776 If on, an unrecognized breakpoint location will cause gdb to create a\n\
16777 pending breakpoint. If off, an unrecognized breakpoint location results in\n\
16778 an error. If auto, an unrecognized breakpoint location results in a\n\
16779 user-query to see if a pending breakpoint should be created."),
16780 NULL,
16781 show_pending_break_support,
16782 &breakpoint_set_cmdlist,
16783 &breakpoint_show_cmdlist);
16784
16785 pending_break_support = AUTO_BOOLEAN_AUTO;
16786
16787 add_setshow_boolean_cmd ("auto-hw", no_class,
16788 &automatic_hardware_breakpoints, _("\
16789 Set automatic usage of hardware breakpoints."), _("\
16790 Show automatic usage of hardware breakpoints."), _("\
16791 If set, the debugger will automatically use hardware breakpoints for\n\
16792 breakpoints set with \"break\" but falling in read-only memory. If not set,\n\
16793 a warning will be emitted for such breakpoints."),
16794 NULL,
16795 show_automatic_hardware_breakpoints,
16796 &breakpoint_set_cmdlist,
16797 &breakpoint_show_cmdlist);
16798
16799 add_setshow_boolean_cmd ("always-inserted", class_support,
16800 &always_inserted_mode, _("\
16801 Set mode for inserting breakpoints."), _("\
16802 Show mode for inserting breakpoints."), _("\
16803 When this mode is on, breakpoints are inserted immediately as soon as\n\
16804 they're created, kept inserted even when execution stops, and removed\n\
16805 only when the user deletes them. When this mode is off (the default),\n\
16806 breakpoints are inserted only when execution continues, and removed\n\
16807 when execution stops."),
16808 NULL,
16809 &show_always_inserted_mode,
16810 &breakpoint_set_cmdlist,
16811 &breakpoint_show_cmdlist);
16812
16813 add_setshow_enum_cmd ("condition-evaluation", class_breakpoint,
16814 condition_evaluation_enums,
16815 &condition_evaluation_mode_1, _("\
16816 Set mode of breakpoint condition evaluation."), _("\
16817 Show mode of breakpoint condition evaluation."), _("\
16818 When this is set to \"host\", breakpoint conditions will be\n\
16819 evaluated on the host's side by GDB. When it is set to \"target\",\n\
16820 breakpoint conditions will be downloaded to the target (if the target\n\
16821 supports such feature) and conditions will be evaluated on the target's side.\n\
16822 If this is set to \"auto\" (default), this will be automatically set to\n\
16823 \"target\" if it supports condition evaluation, otherwise it will\n\
16824 be set to \"gdb\""),
16825 &set_condition_evaluation_mode,
16826 &show_condition_evaluation_mode,
16827 &breakpoint_set_cmdlist,
16828 &breakpoint_show_cmdlist);
16829
16830 add_com ("break-range", class_breakpoint, break_range_command, _("\
16831 Set a breakpoint for an address range.\n\
16832 break-range START-LOCATION, END-LOCATION\n\
16833 where START-LOCATION and END-LOCATION can be one of the following:\n\
16834 LINENUM, for that line in the current file,\n\
16835 FILE:LINENUM, for that line in that file,\n\
16836 +OFFSET, for that number of lines after the current line\n\
16837 or the start of the range\n\
16838 FUNCTION, for the first line in that function,\n\
16839 FILE:FUNCTION, to distinguish among like-named static functions.\n\
16840 *ADDRESS, for the instruction at that address.\n\
16841 \n\
16842 The breakpoint will stop execution of the inferior whenever it executes\n\
16843 an instruction at any address within the [START-LOCATION, END-LOCATION]\n\
16844 range (including START-LOCATION and END-LOCATION)."));
16845
16846 c = add_com ("dprintf", class_breakpoint, dprintf_command, _("\
16847 Set a dynamic printf at specified line or function.\n\
16848 dprintf location,format string,arg1,arg2,...\n\
16849 location may be a line number, function name, or \"*\" and an address.\n\
16850 If a line number is specified, break at start of code for that line.\n\
16851 If a function is specified, break at start of code for that function."));
16852 set_cmd_completer (c, location_completer);
16853
16854 add_setshow_enum_cmd ("dprintf-style", class_support,
16855 dprintf_style_enums, &dprintf_style, _("\
16856 Set the style of usage for dynamic printf."), _("\
16857 Show the style of usage for dynamic printf."), _("\
16858 This setting chooses how GDB will do a dynamic printf.\n\
16859 If the value is \"gdb\", then the printing is done by GDB to its own\n\
16860 console, as with the \"printf\" command.\n\
16861 If the value is \"call\", the print is done by calling a function in your\n\
16862 program; by default printf(), but you can choose a different function or\n\
16863 output stream by setting dprintf-function and dprintf-channel."),
16864 update_dprintf_commands, NULL,
16865 &setlist, &showlist);
16866
16867 dprintf_function = xstrdup ("printf");
16868 add_setshow_string_cmd ("dprintf-function", class_support,
16869 &dprintf_function, _("\
16870 Set the function to use for dynamic printf"), _("\
16871 Show the function to use for dynamic printf"), NULL,
16872 update_dprintf_commands, NULL,
16873 &setlist, &showlist);
16874
16875 dprintf_channel = xstrdup ("");
16876 add_setshow_string_cmd ("dprintf-channel", class_support,
16877 &dprintf_channel, _("\
16878 Set the channel to use for dynamic printf"), _("\
16879 Show the channel to use for dynamic printf"), NULL,
16880 update_dprintf_commands, NULL,
16881 &setlist, &showlist);
16882
16883 add_setshow_boolean_cmd ("disconnected-dprintf", no_class,
16884 &disconnected_dprintf, _("\
16885 Set whether dprintf continues after GDB disconnects."), _("\
16886 Show whether dprintf continues after GDB disconnects."), _("\
16887 Use this to let dprintf commands continue to hit and produce output\n\
16888 even if GDB disconnects or detaches from the target."),
16889 NULL,
16890 NULL,
16891 &setlist, &showlist);
16892
16893 add_com ("agent-printf", class_vars, agent_printf_command, _("\
16894 agent-printf \"printf format string\", arg1, arg2, arg3, ..., argn\n\
16895 (target agent only) This is useful for formatted output in user-defined commands."));
16896
16897 automatic_hardware_breakpoints = 1;
16898
16899 observer_attach_about_to_proceed (breakpoint_about_to_proceed);
16900 observer_attach_thread_exit (remove_threaded_breakpoints);
16901 }
This page took 0.386275 seconds and 4 git commands to generate.