59a4dad3cf7e7f716b1e8f9410b87d33204c248b
[deliverable/binutils-gdb.git] / gdb / breakpoint.c
1 /* Everything about breakpoints, for GDB.
2
3 Copyright (C) 1986-2017 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20 #include "defs.h"
21 #include "arch-utils.h"
22 #include <ctype.h>
23 #include "hashtab.h"
24 #include "symtab.h"
25 #include "frame.h"
26 #include "breakpoint.h"
27 #include "tracepoint.h"
28 #include "gdbtypes.h"
29 #include "expression.h"
30 #include "gdbcore.h"
31 #include "gdbcmd.h"
32 #include "value.h"
33 #include "command.h"
34 #include "inferior.h"
35 #include "infrun.h"
36 #include "gdbthread.h"
37 #include "target.h"
38 #include "language.h"
39 #include "gdb-demangle.h"
40 #include "filenames.h"
41 #include "annotate.h"
42 #include "symfile.h"
43 #include "objfiles.h"
44 #include "source.h"
45 #include "linespec.h"
46 #include "completer.h"
47 #include "ui-out.h"
48 #include "cli/cli-script.h"
49 #include "block.h"
50 #include "solib.h"
51 #include "solist.h"
52 #include "observer.h"
53 #include "memattr.h"
54 #include "ada-lang.h"
55 #include "top.h"
56 #include "valprint.h"
57 #include "jit.h"
58 #include "parser-defs.h"
59 #include "gdb_regex.h"
60 #include "probe.h"
61 #include "cli/cli-utils.h"
62 #include "continuations.h"
63 #include "stack.h"
64 #include "skip.h"
65 #include "ax-gdb.h"
66 #include "dummy-frame.h"
67 #include "interps.h"
68 #include "format.h"
69 #include "thread-fsm.h"
70 #include "tid-parse.h"
71
72 /* readline include files */
73 #include "readline/readline.h"
74 #include "readline/history.h"
75
76 /* readline defines this. */
77 #undef savestring
78
79 #include "mi/mi-common.h"
80 #include "extension.h"
81 #include <algorithm>
82 #include "progspace-and-thread.h"
83 #include "common/array-view.h"
84 #include "common/gdb_optional.h"
85
86 /* Enums for exception-handling support. */
87 enum exception_event_kind
88 {
89 EX_EVENT_THROW,
90 EX_EVENT_RETHROW,
91 EX_EVENT_CATCH
92 };
93
94 /* Prototypes for local functions. */
95
96 static void map_breakpoint_numbers (const char *,
97 gdb::function_view<void (breakpoint *)>);
98
99 static void breakpoint_re_set_default (struct breakpoint *);
100
101 static void
102 create_sals_from_location_default (const struct event_location *location,
103 struct linespec_result *canonical,
104 enum bptype type_wanted);
105
106 static void create_breakpoints_sal_default (struct gdbarch *,
107 struct linespec_result *,
108 gdb::unique_xmalloc_ptr<char>,
109 gdb::unique_xmalloc_ptr<char>,
110 enum bptype,
111 enum bpdisp, int, int,
112 int,
113 const struct breakpoint_ops *,
114 int, int, int, unsigned);
115
116 static std::vector<symtab_and_line> decode_location_default
117 (struct breakpoint *b, const struct event_location *location,
118 struct program_space *search_pspace);
119
120 static int can_use_hardware_watchpoint (struct value *);
121
122 static void mention (struct breakpoint *);
123
124 static struct breakpoint *set_raw_breakpoint_without_location (struct gdbarch *,
125 enum bptype,
126 const struct breakpoint_ops *);
127 static struct bp_location *add_location_to_breakpoint (struct breakpoint *,
128 const struct symtab_and_line *);
129
130 /* This function is used in gdbtk sources and thus can not be made
131 static. */
132 struct breakpoint *set_raw_breakpoint (struct gdbarch *gdbarch,
133 struct symtab_and_line,
134 enum bptype,
135 const struct breakpoint_ops *);
136
137 static struct breakpoint *
138 momentary_breakpoint_from_master (struct breakpoint *orig,
139 enum bptype type,
140 const struct breakpoint_ops *ops,
141 int loc_enabled);
142
143 static void breakpoint_adjustment_warning (CORE_ADDR, CORE_ADDR, int, int);
144
145 static CORE_ADDR adjust_breakpoint_address (struct gdbarch *gdbarch,
146 CORE_ADDR bpaddr,
147 enum bptype bptype);
148
149 static void describe_other_breakpoints (struct gdbarch *,
150 struct program_space *, CORE_ADDR,
151 struct obj_section *, int);
152
153 static int watchpoint_locations_match (struct bp_location *loc1,
154 struct bp_location *loc2);
155
156 static int breakpoint_location_address_match (struct bp_location *bl,
157 const struct address_space *aspace,
158 CORE_ADDR addr);
159
160 static int breakpoint_location_address_range_overlap (struct bp_location *,
161 const address_space *,
162 CORE_ADDR, int);
163
164 static int remove_breakpoint (struct bp_location *);
165 static int remove_breakpoint_1 (struct bp_location *, enum remove_bp_reason);
166
167 static enum print_stop_action print_bp_stop_message (bpstat bs);
168
169 static int hw_breakpoint_used_count (void);
170
171 static int hw_watchpoint_use_count (struct breakpoint *);
172
173 static int hw_watchpoint_used_count_others (struct breakpoint *except,
174 enum bptype type,
175 int *other_type_used);
176
177 static void enable_breakpoint_disp (struct breakpoint *, enum bpdisp,
178 int count);
179
180 static void free_bp_location (struct bp_location *loc);
181 static void incref_bp_location (struct bp_location *loc);
182 static void decref_bp_location (struct bp_location **loc);
183
184 static struct bp_location *allocate_bp_location (struct breakpoint *bpt);
185
186 /* update_global_location_list's modes of operation wrt to whether to
187 insert locations now. */
188 enum ugll_insert_mode
189 {
190 /* Don't insert any breakpoint locations into the inferior, only
191 remove already-inserted locations that no longer should be
192 inserted. Functions that delete a breakpoint or breakpoints
193 should specify this mode, so that deleting a breakpoint doesn't
194 have the side effect of inserting the locations of other
195 breakpoints that are marked not-inserted, but should_be_inserted
196 returns true on them.
197
198 This behavior is useful is situations close to tear-down -- e.g.,
199 after an exec, while the target still has execution, but
200 breakpoint shadows of the previous executable image should *NOT*
201 be restored to the new image; or before detaching, where the
202 target still has execution and wants to delete breakpoints from
203 GDB's lists, and all breakpoints had already been removed from
204 the inferior. */
205 UGLL_DONT_INSERT,
206
207 /* May insert breakpoints iff breakpoints_should_be_inserted_now
208 claims breakpoints should be inserted now. */
209 UGLL_MAY_INSERT,
210
211 /* Insert locations now, irrespective of
212 breakpoints_should_be_inserted_now. E.g., say all threads are
213 stopped right now, and the user did "continue". We need to
214 insert breakpoints _before_ resuming the target, but
215 UGLL_MAY_INSERT wouldn't insert them, because
216 breakpoints_should_be_inserted_now returns false at that point,
217 as no thread is running yet. */
218 UGLL_INSERT
219 };
220
221 static void update_global_location_list (enum ugll_insert_mode);
222
223 static void update_global_location_list_nothrow (enum ugll_insert_mode);
224
225 static int is_hardware_watchpoint (const struct breakpoint *bpt);
226
227 static void insert_breakpoint_locations (void);
228
229 static void trace_pass_command (const char *, int);
230
231 static void set_tracepoint_count (int num);
232
233 static int is_masked_watchpoint (const struct breakpoint *b);
234
235 static struct bp_location **get_first_locp_gte_addr (CORE_ADDR address);
236
237 /* Return 1 if B refers to a static tracepoint set by marker ("-m"), zero
238 otherwise. */
239
240 static int strace_marker_p (struct breakpoint *b);
241
242 /* The breakpoint_ops structure to be inherited by all breakpoint_ops
243 that are implemented on top of software or hardware breakpoints
244 (user breakpoints, internal and momentary breakpoints, etc.). */
245 static struct breakpoint_ops bkpt_base_breakpoint_ops;
246
247 /* Internal breakpoints class type. */
248 static struct breakpoint_ops internal_breakpoint_ops;
249
250 /* Momentary breakpoints class type. */
251 static struct breakpoint_ops momentary_breakpoint_ops;
252
253 /* The breakpoint_ops structure to be used in regular user created
254 breakpoints. */
255 struct breakpoint_ops bkpt_breakpoint_ops;
256
257 /* Breakpoints set on probes. */
258 static struct breakpoint_ops bkpt_probe_breakpoint_ops;
259
260 /* Dynamic printf class type. */
261 struct breakpoint_ops dprintf_breakpoint_ops;
262
263 /* The style in which to perform a dynamic printf. This is a user
264 option because different output options have different tradeoffs;
265 if GDB does the printing, there is better error handling if there
266 is a problem with any of the arguments, but using an inferior
267 function lets you have special-purpose printers and sending of
268 output to the same place as compiled-in print functions. */
269
270 static const char dprintf_style_gdb[] = "gdb";
271 static const char dprintf_style_call[] = "call";
272 static const char dprintf_style_agent[] = "agent";
273 static const char *const dprintf_style_enums[] = {
274 dprintf_style_gdb,
275 dprintf_style_call,
276 dprintf_style_agent,
277 NULL
278 };
279 static const char *dprintf_style = dprintf_style_gdb;
280
281 /* The function to use for dynamic printf if the preferred style is to
282 call into the inferior. The value is simply a string that is
283 copied into the command, so it can be anything that GDB can
284 evaluate to a callable address, not necessarily a function name. */
285
286 static char *dprintf_function;
287
288 /* The channel to use for dynamic printf if the preferred style is to
289 call into the inferior; if a nonempty string, it will be passed to
290 the call as the first argument, with the format string as the
291 second. As with the dprintf function, this can be anything that
292 GDB knows how to evaluate, so in addition to common choices like
293 "stderr", this could be an app-specific expression like
294 "mystreams[curlogger]". */
295
296 static char *dprintf_channel;
297
298 /* True if dprintf commands should continue to operate even if GDB
299 has disconnected. */
300 static int disconnected_dprintf = 1;
301
302 struct command_line *
303 breakpoint_commands (struct breakpoint *b)
304 {
305 return b->commands ? b->commands.get () : NULL;
306 }
307
308 /* Flag indicating that a command has proceeded the inferior past the
309 current breakpoint. */
310
311 static int breakpoint_proceeded;
312
313 const char *
314 bpdisp_text (enum bpdisp disp)
315 {
316 /* NOTE: the following values are a part of MI protocol and
317 represent values of 'disp' field returned when inferior stops at
318 a breakpoint. */
319 static const char * const bpdisps[] = {"del", "dstp", "dis", "keep"};
320
321 return bpdisps[(int) disp];
322 }
323
324 /* Prototypes for exported functions. */
325 /* If FALSE, gdb will not use hardware support for watchpoints, even
326 if such is available. */
327 static int can_use_hw_watchpoints;
328
329 static void
330 show_can_use_hw_watchpoints (struct ui_file *file, int from_tty,
331 struct cmd_list_element *c,
332 const char *value)
333 {
334 fprintf_filtered (file,
335 _("Debugger's willingness to use "
336 "watchpoint hardware is %s.\n"),
337 value);
338 }
339
340 /* If AUTO_BOOLEAN_FALSE, gdb will not attempt to create pending breakpoints.
341 If AUTO_BOOLEAN_TRUE, gdb will automatically create pending breakpoints
342 for unrecognized breakpoint locations.
343 If AUTO_BOOLEAN_AUTO, gdb will query when breakpoints are unrecognized. */
344 static enum auto_boolean pending_break_support;
345 static void
346 show_pending_break_support (struct ui_file *file, int from_tty,
347 struct cmd_list_element *c,
348 const char *value)
349 {
350 fprintf_filtered (file,
351 _("Debugger's behavior regarding "
352 "pending breakpoints is %s.\n"),
353 value);
354 }
355
356 /* If 1, gdb will automatically use hardware breakpoints for breakpoints
357 set with "break" but falling in read-only memory.
358 If 0, gdb will warn about such breakpoints, but won't automatically
359 use hardware breakpoints. */
360 static int automatic_hardware_breakpoints;
361 static void
362 show_automatic_hardware_breakpoints (struct ui_file *file, int from_tty,
363 struct cmd_list_element *c,
364 const char *value)
365 {
366 fprintf_filtered (file,
367 _("Automatic usage of hardware breakpoints is %s.\n"),
368 value);
369 }
370
371 /* If on, GDB keeps breakpoints inserted even if the inferior is
372 stopped, and immediately inserts any new breakpoints as soon as
373 they're created. If off (default), GDB keeps breakpoints off of
374 the target as long as possible. That is, it delays inserting
375 breakpoints until the next resume, and removes them again when the
376 target fully stops. This is a bit safer in case GDB crashes while
377 processing user input. */
378 static int always_inserted_mode = 0;
379
380 static void
381 show_always_inserted_mode (struct ui_file *file, int from_tty,
382 struct cmd_list_element *c, const char *value)
383 {
384 fprintf_filtered (file, _("Always inserted breakpoint mode is %s.\n"),
385 value);
386 }
387
388 /* See breakpoint.h. */
389
390 int
391 breakpoints_should_be_inserted_now (void)
392 {
393 if (gdbarch_has_global_breakpoints (target_gdbarch ()))
394 {
395 /* If breakpoints are global, they should be inserted even if no
396 thread under gdb's control is running, or even if there are
397 no threads under GDB's control yet. */
398 return 1;
399 }
400 else if (target_has_execution)
401 {
402 struct thread_info *tp;
403
404 if (always_inserted_mode)
405 {
406 /* The user wants breakpoints inserted even if all threads
407 are stopped. */
408 return 1;
409 }
410
411 if (threads_are_executing ())
412 return 1;
413
414 /* Don't remove breakpoints yet if, even though all threads are
415 stopped, we still have events to process. */
416 ALL_NON_EXITED_THREADS (tp)
417 if (tp->resumed
418 && tp->suspend.waitstatus_pending_p)
419 return 1;
420 }
421 return 0;
422 }
423
424 static const char condition_evaluation_both[] = "host or target";
425
426 /* Modes for breakpoint condition evaluation. */
427 static const char condition_evaluation_auto[] = "auto";
428 static const char condition_evaluation_host[] = "host";
429 static const char condition_evaluation_target[] = "target";
430 static const char *const condition_evaluation_enums[] = {
431 condition_evaluation_auto,
432 condition_evaluation_host,
433 condition_evaluation_target,
434 NULL
435 };
436
437 /* Global that holds the current mode for breakpoint condition evaluation. */
438 static const char *condition_evaluation_mode_1 = condition_evaluation_auto;
439
440 /* Global that we use to display information to the user (gets its value from
441 condition_evaluation_mode_1. */
442 static const char *condition_evaluation_mode = condition_evaluation_auto;
443
444 /* Translate a condition evaluation mode MODE into either "host"
445 or "target". This is used mostly to translate from "auto" to the
446 real setting that is being used. It returns the translated
447 evaluation mode. */
448
449 static const char *
450 translate_condition_evaluation_mode (const char *mode)
451 {
452 if (mode == condition_evaluation_auto)
453 {
454 if (target_supports_evaluation_of_breakpoint_conditions ())
455 return condition_evaluation_target;
456 else
457 return condition_evaluation_host;
458 }
459 else
460 return mode;
461 }
462
463 /* Discovers what condition_evaluation_auto translates to. */
464
465 static const char *
466 breakpoint_condition_evaluation_mode (void)
467 {
468 return translate_condition_evaluation_mode (condition_evaluation_mode);
469 }
470
471 /* Return true if GDB should evaluate breakpoint conditions or false
472 otherwise. */
473
474 static int
475 gdb_evaluates_breakpoint_condition_p (void)
476 {
477 const char *mode = breakpoint_condition_evaluation_mode ();
478
479 return (mode == condition_evaluation_host);
480 }
481
482 /* Are we executing breakpoint commands? */
483 static int executing_breakpoint_commands;
484
485 /* Are overlay event breakpoints enabled? */
486 static int overlay_events_enabled;
487
488 /* See description in breakpoint.h. */
489 int target_exact_watchpoints = 0;
490
491 /* Walk the following statement or block through all breakpoints.
492 ALL_BREAKPOINTS_SAFE does so even if the statement deletes the
493 current breakpoint. */
494
495 #define ALL_BREAKPOINTS(B) for (B = breakpoint_chain; B; B = B->next)
496
497 #define ALL_BREAKPOINTS_SAFE(B,TMP) \
498 for (B = breakpoint_chain; \
499 B ? (TMP=B->next, 1): 0; \
500 B = TMP)
501
502 /* Similar iterator for the low-level breakpoints. SAFE variant is
503 not provided so update_global_location_list must not be called
504 while executing the block of ALL_BP_LOCATIONS. */
505
506 #define ALL_BP_LOCATIONS(B,BP_TMP) \
507 for (BP_TMP = bp_locations; \
508 BP_TMP < bp_locations + bp_locations_count && (B = *BP_TMP);\
509 BP_TMP++)
510
511 /* Iterates through locations with address ADDRESS for the currently selected
512 program space. BP_LOCP_TMP points to each object. BP_LOCP_START points
513 to where the loop should start from.
514 If BP_LOCP_START is a NULL pointer, the macro automatically seeks the
515 appropriate location to start with. */
516
517 #define ALL_BP_LOCATIONS_AT_ADDR(BP_LOCP_TMP, BP_LOCP_START, ADDRESS) \
518 for (BP_LOCP_START = BP_LOCP_START == NULL ? get_first_locp_gte_addr (ADDRESS) : BP_LOCP_START, \
519 BP_LOCP_TMP = BP_LOCP_START; \
520 BP_LOCP_START \
521 && (BP_LOCP_TMP < bp_locations + bp_locations_count \
522 && (*BP_LOCP_TMP)->address == ADDRESS); \
523 BP_LOCP_TMP++)
524
525 /* Iterator for tracepoints only. */
526
527 #define ALL_TRACEPOINTS(B) \
528 for (B = breakpoint_chain; B; B = B->next) \
529 if (is_tracepoint (B))
530
531 /* Chains of all breakpoints defined. */
532
533 struct breakpoint *breakpoint_chain;
534
535 /* Array is sorted by bp_locations_compare - primarily by the ADDRESS. */
536
537 static struct bp_location **bp_locations;
538
539 /* Number of elements of BP_LOCATIONS. */
540
541 static unsigned bp_locations_count;
542
543 /* Maximum alignment offset between bp_target_info.PLACED_ADDRESS and
544 ADDRESS for the current elements of BP_LOCATIONS which get a valid
545 result from bp_location_has_shadow. You can use it for roughly
546 limiting the subrange of BP_LOCATIONS to scan for shadow bytes for
547 an address you need to read. */
548
549 static CORE_ADDR bp_locations_placed_address_before_address_max;
550
551 /* Maximum offset plus alignment between bp_target_info.PLACED_ADDRESS
552 + bp_target_info.SHADOW_LEN and ADDRESS for the current elements of
553 BP_LOCATIONS which get a valid result from bp_location_has_shadow.
554 You can use it for roughly limiting the subrange of BP_LOCATIONS to
555 scan for shadow bytes for an address you need to read. */
556
557 static CORE_ADDR bp_locations_shadow_len_after_address_max;
558
559 /* The locations that no longer correspond to any breakpoint, unlinked
560 from the bp_locations array, but for which a hit may still be
561 reported by a target. */
562 VEC(bp_location_p) *moribund_locations = NULL;
563
564 /* Number of last breakpoint made. */
565
566 static int breakpoint_count;
567
568 /* The value of `breakpoint_count' before the last command that
569 created breakpoints. If the last (break-like) command created more
570 than one breakpoint, then the difference between BREAKPOINT_COUNT
571 and PREV_BREAKPOINT_COUNT is more than one. */
572 static int prev_breakpoint_count;
573
574 /* Number of last tracepoint made. */
575
576 static int tracepoint_count;
577
578 static struct cmd_list_element *breakpoint_set_cmdlist;
579 static struct cmd_list_element *breakpoint_show_cmdlist;
580 struct cmd_list_element *save_cmdlist;
581
582 /* See declaration at breakpoint.h. */
583
584 struct breakpoint *
585 breakpoint_find_if (int (*func) (struct breakpoint *b, void *d),
586 void *user_data)
587 {
588 struct breakpoint *b = NULL;
589
590 ALL_BREAKPOINTS (b)
591 {
592 if (func (b, user_data) != 0)
593 break;
594 }
595
596 return b;
597 }
598
599 /* Return whether a breakpoint is an active enabled breakpoint. */
600 static int
601 breakpoint_enabled (struct breakpoint *b)
602 {
603 return (b->enable_state == bp_enabled);
604 }
605
606 /* Set breakpoint count to NUM. */
607
608 static void
609 set_breakpoint_count (int num)
610 {
611 prev_breakpoint_count = breakpoint_count;
612 breakpoint_count = num;
613 set_internalvar_integer (lookup_internalvar ("bpnum"), num);
614 }
615
616 /* Used by `start_rbreak_breakpoints' below, to record the current
617 breakpoint count before "rbreak" creates any breakpoint. */
618 static int rbreak_start_breakpoint_count;
619
620 /* Called at the start an "rbreak" command to record the first
621 breakpoint made. */
622
623 scoped_rbreak_breakpoints::scoped_rbreak_breakpoints ()
624 {
625 rbreak_start_breakpoint_count = breakpoint_count;
626 }
627
628 /* Called at the end of an "rbreak" command to record the last
629 breakpoint made. */
630
631 scoped_rbreak_breakpoints::~scoped_rbreak_breakpoints ()
632 {
633 prev_breakpoint_count = rbreak_start_breakpoint_count;
634 }
635
636 /* Used in run_command to zero the hit count when a new run starts. */
637
638 void
639 clear_breakpoint_hit_counts (void)
640 {
641 struct breakpoint *b;
642
643 ALL_BREAKPOINTS (b)
644 b->hit_count = 0;
645 }
646
647 \f
648 /* Return the breakpoint with the specified number, or NULL
649 if the number does not refer to an existing breakpoint. */
650
651 struct breakpoint *
652 get_breakpoint (int num)
653 {
654 struct breakpoint *b;
655
656 ALL_BREAKPOINTS (b)
657 if (b->number == num)
658 return b;
659
660 return NULL;
661 }
662
663 \f
664
665 /* Mark locations as "conditions have changed" in case the target supports
666 evaluating conditions on its side. */
667
668 static void
669 mark_breakpoint_modified (struct breakpoint *b)
670 {
671 struct bp_location *loc;
672
673 /* This is only meaningful if the target is
674 evaluating conditions and if the user has
675 opted for condition evaluation on the target's
676 side. */
677 if (gdb_evaluates_breakpoint_condition_p ()
678 || !target_supports_evaluation_of_breakpoint_conditions ())
679 return;
680
681 if (!is_breakpoint (b))
682 return;
683
684 for (loc = b->loc; loc; loc = loc->next)
685 loc->condition_changed = condition_modified;
686 }
687
688 /* Mark location as "conditions have changed" in case the target supports
689 evaluating conditions on its side. */
690
691 static void
692 mark_breakpoint_location_modified (struct bp_location *loc)
693 {
694 /* This is only meaningful if the target is
695 evaluating conditions and if the user has
696 opted for condition evaluation on the target's
697 side. */
698 if (gdb_evaluates_breakpoint_condition_p ()
699 || !target_supports_evaluation_of_breakpoint_conditions ())
700
701 return;
702
703 if (!is_breakpoint (loc->owner))
704 return;
705
706 loc->condition_changed = condition_modified;
707 }
708
709 /* Sets the condition-evaluation mode using the static global
710 condition_evaluation_mode. */
711
712 static void
713 set_condition_evaluation_mode (const char *args, int from_tty,
714 struct cmd_list_element *c)
715 {
716 const char *old_mode, *new_mode;
717
718 if ((condition_evaluation_mode_1 == condition_evaluation_target)
719 && !target_supports_evaluation_of_breakpoint_conditions ())
720 {
721 condition_evaluation_mode_1 = condition_evaluation_mode;
722 warning (_("Target does not support breakpoint condition evaluation.\n"
723 "Using host evaluation mode instead."));
724 return;
725 }
726
727 new_mode = translate_condition_evaluation_mode (condition_evaluation_mode_1);
728 old_mode = translate_condition_evaluation_mode (condition_evaluation_mode);
729
730 /* Flip the switch. Flip it even if OLD_MODE == NEW_MODE as one of the
731 settings was "auto". */
732 condition_evaluation_mode = condition_evaluation_mode_1;
733
734 /* Only update the mode if the user picked a different one. */
735 if (new_mode != old_mode)
736 {
737 struct bp_location *loc, **loc_tmp;
738 /* If the user switched to a different evaluation mode, we
739 need to synch the changes with the target as follows:
740
741 "host" -> "target": Send all (valid) conditions to the target.
742 "target" -> "host": Remove all the conditions from the target.
743 */
744
745 if (new_mode == condition_evaluation_target)
746 {
747 /* Mark everything modified and synch conditions with the
748 target. */
749 ALL_BP_LOCATIONS (loc, loc_tmp)
750 mark_breakpoint_location_modified (loc);
751 }
752 else
753 {
754 /* Manually mark non-duplicate locations to synch conditions
755 with the target. We do this to remove all the conditions the
756 target knows about. */
757 ALL_BP_LOCATIONS (loc, loc_tmp)
758 if (is_breakpoint (loc->owner) && loc->inserted)
759 loc->needs_update = 1;
760 }
761
762 /* Do the update. */
763 update_global_location_list (UGLL_MAY_INSERT);
764 }
765
766 return;
767 }
768
769 /* Shows the current mode of breakpoint condition evaluation. Explicitly shows
770 what "auto" is translating to. */
771
772 static void
773 show_condition_evaluation_mode (struct ui_file *file, int from_tty,
774 struct cmd_list_element *c, const char *value)
775 {
776 if (condition_evaluation_mode == condition_evaluation_auto)
777 fprintf_filtered (file,
778 _("Breakpoint condition evaluation "
779 "mode is %s (currently %s).\n"),
780 value,
781 breakpoint_condition_evaluation_mode ());
782 else
783 fprintf_filtered (file, _("Breakpoint condition evaluation mode is %s.\n"),
784 value);
785 }
786
787 /* A comparison function for bp_location AP and BP that is used by
788 bsearch. This comparison function only cares about addresses, unlike
789 the more general bp_locations_compare function. */
790
791 static int
792 bp_locations_compare_addrs (const void *ap, const void *bp)
793 {
794 const struct bp_location *a = *(const struct bp_location **) ap;
795 const struct bp_location *b = *(const struct bp_location **) bp;
796
797 if (a->address == b->address)
798 return 0;
799 else
800 return ((a->address > b->address) - (a->address < b->address));
801 }
802
803 /* Helper function to skip all bp_locations with addresses
804 less than ADDRESS. It returns the first bp_location that
805 is greater than or equal to ADDRESS. If none is found, just
806 return NULL. */
807
808 static struct bp_location **
809 get_first_locp_gte_addr (CORE_ADDR address)
810 {
811 struct bp_location dummy_loc;
812 struct bp_location *dummy_locp = &dummy_loc;
813 struct bp_location **locp_found = NULL;
814
815 /* Initialize the dummy location's address field. */
816 dummy_loc.address = address;
817
818 /* Find a close match to the first location at ADDRESS. */
819 locp_found = ((struct bp_location **)
820 bsearch (&dummy_locp, bp_locations, bp_locations_count,
821 sizeof (struct bp_location **),
822 bp_locations_compare_addrs));
823
824 /* Nothing was found, nothing left to do. */
825 if (locp_found == NULL)
826 return NULL;
827
828 /* We may have found a location that is at ADDRESS but is not the first in the
829 location's list. Go backwards (if possible) and locate the first one. */
830 while ((locp_found - 1) >= bp_locations
831 && (*(locp_found - 1))->address == address)
832 locp_found--;
833
834 return locp_found;
835 }
836
837 void
838 set_breakpoint_condition (struct breakpoint *b, const char *exp,
839 int from_tty)
840 {
841 xfree (b->cond_string);
842 b->cond_string = NULL;
843
844 if (is_watchpoint (b))
845 {
846 struct watchpoint *w = (struct watchpoint *) b;
847
848 w->cond_exp.reset ();
849 }
850 else
851 {
852 struct bp_location *loc;
853
854 for (loc = b->loc; loc; loc = loc->next)
855 {
856 loc->cond.reset ();
857
858 /* No need to free the condition agent expression
859 bytecode (if we have one). We will handle this
860 when we go through update_global_location_list. */
861 }
862 }
863
864 if (*exp == 0)
865 {
866 if (from_tty)
867 printf_filtered (_("Breakpoint %d now unconditional.\n"), b->number);
868 }
869 else
870 {
871 const char *arg = exp;
872
873 /* I don't know if it matters whether this is the string the user
874 typed in or the decompiled expression. */
875 b->cond_string = xstrdup (arg);
876 b->condition_not_parsed = 0;
877
878 if (is_watchpoint (b))
879 {
880 struct watchpoint *w = (struct watchpoint *) b;
881
882 innermost_block = NULL;
883 arg = exp;
884 w->cond_exp = parse_exp_1 (&arg, 0, 0, 0);
885 if (*arg)
886 error (_("Junk at end of expression"));
887 w->cond_exp_valid_block = innermost_block;
888 }
889 else
890 {
891 struct bp_location *loc;
892
893 for (loc = b->loc; loc; loc = loc->next)
894 {
895 arg = exp;
896 loc->cond =
897 parse_exp_1 (&arg, loc->address,
898 block_for_pc (loc->address), 0);
899 if (*arg)
900 error (_("Junk at end of expression"));
901 }
902 }
903 }
904 mark_breakpoint_modified (b);
905
906 observer_notify_breakpoint_modified (b);
907 }
908
909 /* Completion for the "condition" command. */
910
911 static void
912 condition_completer (struct cmd_list_element *cmd,
913 completion_tracker &tracker,
914 const char *text, const char *word)
915 {
916 const char *space;
917
918 text = skip_spaces (text);
919 space = skip_to_space (text);
920 if (*space == '\0')
921 {
922 int len;
923 struct breakpoint *b;
924
925 if (text[0] == '$')
926 {
927 /* We don't support completion of history indices. */
928 if (!isdigit (text[1]))
929 complete_internalvar (tracker, &text[1]);
930 return;
931 }
932
933 /* We're completing the breakpoint number. */
934 len = strlen (text);
935
936 ALL_BREAKPOINTS (b)
937 {
938 char number[50];
939
940 xsnprintf (number, sizeof (number), "%d", b->number);
941
942 if (strncmp (number, text, len) == 0)
943 {
944 gdb::unique_xmalloc_ptr<char> copy (xstrdup (number));
945 tracker.add_completion (std::move (copy));
946 }
947 }
948
949 return;
950 }
951
952 /* We're completing the expression part. */
953 text = skip_spaces (space);
954 expression_completer (cmd, tracker, text, word);
955 }
956
957 /* condition N EXP -- set break condition of breakpoint N to EXP. */
958
959 static void
960 condition_command (const char *arg, int from_tty)
961 {
962 struct breakpoint *b;
963 const char *p;
964 int bnum;
965
966 if (arg == 0)
967 error_no_arg (_("breakpoint number"));
968
969 p = arg;
970 bnum = get_number (&p);
971 if (bnum == 0)
972 error (_("Bad breakpoint argument: '%s'"), arg);
973
974 ALL_BREAKPOINTS (b)
975 if (b->number == bnum)
976 {
977 /* Check if this breakpoint has a "stop" method implemented in an
978 extension language. This method and conditions entered into GDB
979 from the CLI are mutually exclusive. */
980 const struct extension_language_defn *extlang
981 = get_breakpoint_cond_ext_lang (b, EXT_LANG_NONE);
982
983 if (extlang != NULL)
984 {
985 error (_("Only one stop condition allowed. There is currently"
986 " a %s stop condition defined for this breakpoint."),
987 ext_lang_capitalized_name (extlang));
988 }
989 set_breakpoint_condition (b, p, from_tty);
990
991 if (is_breakpoint (b))
992 update_global_location_list (UGLL_MAY_INSERT);
993
994 return;
995 }
996
997 error (_("No breakpoint number %d."), bnum);
998 }
999
1000 /* Check that COMMAND do not contain commands that are suitable
1001 only for tracepoints and not suitable for ordinary breakpoints.
1002 Throw if any such commands is found. */
1003
1004 static void
1005 check_no_tracepoint_commands (struct command_line *commands)
1006 {
1007 struct command_line *c;
1008
1009 for (c = commands; c; c = c->next)
1010 {
1011 int i;
1012
1013 if (c->control_type == while_stepping_control)
1014 error (_("The 'while-stepping' command can "
1015 "only be used for tracepoints"));
1016
1017 for (i = 0; i < c->body_count; ++i)
1018 check_no_tracepoint_commands ((c->body_list)[i]);
1019
1020 /* Not that command parsing removes leading whitespace and comment
1021 lines and also empty lines. So, we only need to check for
1022 command directly. */
1023 if (strstr (c->line, "collect ") == c->line)
1024 error (_("The 'collect' command can only be used for tracepoints"));
1025
1026 if (strstr (c->line, "teval ") == c->line)
1027 error (_("The 'teval' command can only be used for tracepoints"));
1028 }
1029 }
1030
1031 struct longjmp_breakpoint : public breakpoint
1032 {
1033 ~longjmp_breakpoint () override;
1034 };
1035
1036 /* Encapsulate tests for different types of tracepoints. */
1037
1038 static bool
1039 is_tracepoint_type (bptype type)
1040 {
1041 return (type == bp_tracepoint
1042 || type == bp_fast_tracepoint
1043 || type == bp_static_tracepoint);
1044 }
1045
1046 static bool
1047 is_longjmp_type (bptype type)
1048 {
1049 return type == bp_longjmp || type == bp_exception;
1050 }
1051
1052 int
1053 is_tracepoint (const struct breakpoint *b)
1054 {
1055 return is_tracepoint_type (b->type);
1056 }
1057
1058 /* Factory function to create an appropriate instance of breakpoint given
1059 TYPE. */
1060
1061 static std::unique_ptr<breakpoint>
1062 new_breakpoint_from_type (bptype type)
1063 {
1064 breakpoint *b;
1065
1066 if (is_tracepoint_type (type))
1067 b = new tracepoint ();
1068 else if (is_longjmp_type (type))
1069 b = new longjmp_breakpoint ();
1070 else
1071 b = new breakpoint ();
1072
1073 return std::unique_ptr<breakpoint> (b);
1074 }
1075
1076 /* A helper function that validates that COMMANDS are valid for a
1077 breakpoint. This function will throw an exception if a problem is
1078 found. */
1079
1080 static void
1081 validate_commands_for_breakpoint (struct breakpoint *b,
1082 struct command_line *commands)
1083 {
1084 if (is_tracepoint (b))
1085 {
1086 struct tracepoint *t = (struct tracepoint *) b;
1087 struct command_line *c;
1088 struct command_line *while_stepping = 0;
1089
1090 /* Reset the while-stepping step count. The previous commands
1091 might have included a while-stepping action, while the new
1092 ones might not. */
1093 t->step_count = 0;
1094
1095 /* We need to verify that each top-level element of commands is
1096 valid for tracepoints, that there's at most one
1097 while-stepping element, and that the while-stepping's body
1098 has valid tracing commands excluding nested while-stepping.
1099 We also need to validate the tracepoint action line in the
1100 context of the tracepoint --- validate_actionline actually
1101 has side effects, like setting the tracepoint's
1102 while-stepping STEP_COUNT, in addition to checking if the
1103 collect/teval actions parse and make sense in the
1104 tracepoint's context. */
1105 for (c = commands; c; c = c->next)
1106 {
1107 if (c->control_type == while_stepping_control)
1108 {
1109 if (b->type == bp_fast_tracepoint)
1110 error (_("The 'while-stepping' command "
1111 "cannot be used for fast tracepoint"));
1112 else if (b->type == bp_static_tracepoint)
1113 error (_("The 'while-stepping' command "
1114 "cannot be used for static tracepoint"));
1115
1116 if (while_stepping)
1117 error (_("The 'while-stepping' command "
1118 "can be used only once"));
1119 else
1120 while_stepping = c;
1121 }
1122
1123 validate_actionline (c->line, b);
1124 }
1125 if (while_stepping)
1126 {
1127 struct command_line *c2;
1128
1129 gdb_assert (while_stepping->body_count == 1);
1130 c2 = while_stepping->body_list[0];
1131 for (; c2; c2 = c2->next)
1132 {
1133 if (c2->control_type == while_stepping_control)
1134 error (_("The 'while-stepping' command cannot be nested"));
1135 }
1136 }
1137 }
1138 else
1139 {
1140 check_no_tracepoint_commands (commands);
1141 }
1142 }
1143
1144 /* Return a vector of all the static tracepoints set at ADDR. The
1145 caller is responsible for releasing the vector. */
1146
1147 VEC(breakpoint_p) *
1148 static_tracepoints_here (CORE_ADDR addr)
1149 {
1150 struct breakpoint *b;
1151 VEC(breakpoint_p) *found = 0;
1152 struct bp_location *loc;
1153
1154 ALL_BREAKPOINTS (b)
1155 if (b->type == bp_static_tracepoint)
1156 {
1157 for (loc = b->loc; loc; loc = loc->next)
1158 if (loc->address == addr)
1159 VEC_safe_push(breakpoint_p, found, b);
1160 }
1161
1162 return found;
1163 }
1164
1165 /* Set the command list of B to COMMANDS. If breakpoint is tracepoint,
1166 validate that only allowed commands are included. */
1167
1168 void
1169 breakpoint_set_commands (struct breakpoint *b,
1170 command_line_up &&commands)
1171 {
1172 validate_commands_for_breakpoint (b, commands.get ());
1173
1174 b->commands = std::move (commands);
1175 observer_notify_breakpoint_modified (b);
1176 }
1177
1178 /* Set the internal `silent' flag on the breakpoint. Note that this
1179 is not the same as the "silent" that may appear in the breakpoint's
1180 commands. */
1181
1182 void
1183 breakpoint_set_silent (struct breakpoint *b, int silent)
1184 {
1185 int old_silent = b->silent;
1186
1187 b->silent = silent;
1188 if (old_silent != silent)
1189 observer_notify_breakpoint_modified (b);
1190 }
1191
1192 /* Set the thread for this breakpoint. If THREAD is -1, make the
1193 breakpoint work for any thread. */
1194
1195 void
1196 breakpoint_set_thread (struct breakpoint *b, int thread)
1197 {
1198 int old_thread = b->thread;
1199
1200 b->thread = thread;
1201 if (old_thread != thread)
1202 observer_notify_breakpoint_modified (b);
1203 }
1204
1205 /* Set the task for this breakpoint. If TASK is 0, make the
1206 breakpoint work for any task. */
1207
1208 void
1209 breakpoint_set_task (struct breakpoint *b, int task)
1210 {
1211 int old_task = b->task;
1212
1213 b->task = task;
1214 if (old_task != task)
1215 observer_notify_breakpoint_modified (b);
1216 }
1217
1218 void
1219 check_tracepoint_command (char *line, void *closure)
1220 {
1221 struct breakpoint *b = (struct breakpoint *) closure;
1222
1223 validate_actionline (line, b);
1224 }
1225
1226 static void
1227 commands_command_1 (const char *arg, int from_tty,
1228 struct command_line *control)
1229 {
1230 counted_command_line cmd;
1231
1232 std::string new_arg;
1233
1234 if (arg == NULL || !*arg)
1235 {
1236 if (breakpoint_count - prev_breakpoint_count > 1)
1237 new_arg = string_printf ("%d-%d", prev_breakpoint_count + 1,
1238 breakpoint_count);
1239 else if (breakpoint_count > 0)
1240 new_arg = string_printf ("%d", breakpoint_count);
1241 arg = new_arg.c_str ();
1242 }
1243
1244 map_breakpoint_numbers
1245 (arg, [&] (breakpoint *b)
1246 {
1247 if (cmd == NULL)
1248 {
1249 if (control != NULL)
1250 cmd = copy_command_lines (control->body_list[0]);
1251 else
1252 {
1253 std::string str
1254 = string_printf (_("Type commands for breakpoint(s) "
1255 "%s, one per line."),
1256 arg);
1257
1258 cmd = read_command_lines (&str[0],
1259 from_tty, 1,
1260 (is_tracepoint (b)
1261 ? check_tracepoint_command : 0),
1262 b);
1263 }
1264 }
1265
1266 /* If a breakpoint was on the list more than once, we don't need to
1267 do anything. */
1268 if (b->commands != cmd)
1269 {
1270 validate_commands_for_breakpoint (b, cmd.get ());
1271 b->commands = cmd;
1272 observer_notify_breakpoint_modified (b);
1273 }
1274 });
1275 }
1276
1277 static void
1278 commands_command (const char *arg, int from_tty)
1279 {
1280 commands_command_1 (arg, from_tty, NULL);
1281 }
1282
1283 /* Like commands_command, but instead of reading the commands from
1284 input stream, takes them from an already parsed command structure.
1285
1286 This is used by cli-script.c to DTRT with breakpoint commands
1287 that are part of if and while bodies. */
1288 enum command_control_type
1289 commands_from_control_command (const char *arg, struct command_line *cmd)
1290 {
1291 commands_command_1 (arg, 0, cmd);
1292 return simple_control;
1293 }
1294
1295 /* Return non-zero if BL->TARGET_INFO contains valid information. */
1296
1297 static int
1298 bp_location_has_shadow (struct bp_location *bl)
1299 {
1300 if (bl->loc_type != bp_loc_software_breakpoint)
1301 return 0;
1302 if (!bl->inserted)
1303 return 0;
1304 if (bl->target_info.shadow_len == 0)
1305 /* BL isn't valid, or doesn't shadow memory. */
1306 return 0;
1307 return 1;
1308 }
1309
1310 /* Update BUF, which is LEN bytes read from the target address
1311 MEMADDR, by replacing a memory breakpoint with its shadowed
1312 contents.
1313
1314 If READBUF is not NULL, this buffer must not overlap with the of
1315 the breakpoint location's shadow_contents buffer. Otherwise, a
1316 failed assertion internal error will be raised. */
1317
1318 static void
1319 one_breakpoint_xfer_memory (gdb_byte *readbuf, gdb_byte *writebuf,
1320 const gdb_byte *writebuf_org,
1321 ULONGEST memaddr, LONGEST len,
1322 struct bp_target_info *target_info,
1323 struct gdbarch *gdbarch)
1324 {
1325 /* Now do full processing of the found relevant range of elements. */
1326 CORE_ADDR bp_addr = 0;
1327 int bp_size = 0;
1328 int bptoffset = 0;
1329
1330 if (!breakpoint_address_match (target_info->placed_address_space, 0,
1331 current_program_space->aspace, 0))
1332 {
1333 /* The breakpoint is inserted in a different address space. */
1334 return;
1335 }
1336
1337 /* Addresses and length of the part of the breakpoint that
1338 we need to copy. */
1339 bp_addr = target_info->placed_address;
1340 bp_size = target_info->shadow_len;
1341
1342 if (bp_addr + bp_size <= memaddr)
1343 {
1344 /* The breakpoint is entirely before the chunk of memory we are
1345 reading. */
1346 return;
1347 }
1348
1349 if (bp_addr >= memaddr + len)
1350 {
1351 /* The breakpoint is entirely after the chunk of memory we are
1352 reading. */
1353 return;
1354 }
1355
1356 /* Offset within shadow_contents. */
1357 if (bp_addr < memaddr)
1358 {
1359 /* Only copy the second part of the breakpoint. */
1360 bp_size -= memaddr - bp_addr;
1361 bptoffset = memaddr - bp_addr;
1362 bp_addr = memaddr;
1363 }
1364
1365 if (bp_addr + bp_size > memaddr + len)
1366 {
1367 /* Only copy the first part of the breakpoint. */
1368 bp_size -= (bp_addr + bp_size) - (memaddr + len);
1369 }
1370
1371 if (readbuf != NULL)
1372 {
1373 /* Verify that the readbuf buffer does not overlap with the
1374 shadow_contents buffer. */
1375 gdb_assert (target_info->shadow_contents >= readbuf + len
1376 || readbuf >= (target_info->shadow_contents
1377 + target_info->shadow_len));
1378
1379 /* Update the read buffer with this inserted breakpoint's
1380 shadow. */
1381 memcpy (readbuf + bp_addr - memaddr,
1382 target_info->shadow_contents + bptoffset, bp_size);
1383 }
1384 else
1385 {
1386 const unsigned char *bp;
1387 CORE_ADDR addr = target_info->reqstd_address;
1388 int placed_size;
1389
1390 /* Update the shadow with what we want to write to memory. */
1391 memcpy (target_info->shadow_contents + bptoffset,
1392 writebuf_org + bp_addr - memaddr, bp_size);
1393
1394 /* Determine appropriate breakpoint contents and size for this
1395 address. */
1396 bp = gdbarch_breakpoint_from_pc (gdbarch, &addr, &placed_size);
1397
1398 /* Update the final write buffer with this inserted
1399 breakpoint's INSN. */
1400 memcpy (writebuf + bp_addr - memaddr, bp + bptoffset, bp_size);
1401 }
1402 }
1403
1404 /* Update BUF, which is LEN bytes read from the target address MEMADDR,
1405 by replacing any memory breakpoints with their shadowed contents.
1406
1407 If READBUF is not NULL, this buffer must not overlap with any of
1408 the breakpoint location's shadow_contents buffers. Otherwise,
1409 a failed assertion internal error will be raised.
1410
1411 The range of shadowed area by each bp_location is:
1412 bl->address - bp_locations_placed_address_before_address_max
1413 up to bl->address + bp_locations_shadow_len_after_address_max
1414 The range we were requested to resolve shadows for is:
1415 memaddr ... memaddr + len
1416 Thus the safe cutoff boundaries for performance optimization are
1417 memaddr + len <= (bl->address
1418 - bp_locations_placed_address_before_address_max)
1419 and:
1420 bl->address + bp_locations_shadow_len_after_address_max <= memaddr */
1421
1422 void
1423 breakpoint_xfer_memory (gdb_byte *readbuf, gdb_byte *writebuf,
1424 const gdb_byte *writebuf_org,
1425 ULONGEST memaddr, LONGEST len)
1426 {
1427 /* Left boundary, right boundary and median element of our binary
1428 search. */
1429 unsigned bc_l, bc_r, bc;
1430
1431 /* Find BC_L which is a leftmost element which may affect BUF
1432 content. It is safe to report lower value but a failure to
1433 report higher one. */
1434
1435 bc_l = 0;
1436 bc_r = bp_locations_count;
1437 while (bc_l + 1 < bc_r)
1438 {
1439 struct bp_location *bl;
1440
1441 bc = (bc_l + bc_r) / 2;
1442 bl = bp_locations[bc];
1443
1444 /* Check first BL->ADDRESS will not overflow due to the added
1445 constant. Then advance the left boundary only if we are sure
1446 the BC element can in no way affect the BUF content (MEMADDR
1447 to MEMADDR + LEN range).
1448
1449 Use the BP_LOCATIONS_SHADOW_LEN_AFTER_ADDRESS_MAX safety
1450 offset so that we cannot miss a breakpoint with its shadow
1451 range tail still reaching MEMADDR. */
1452
1453 if ((bl->address + bp_locations_shadow_len_after_address_max
1454 >= bl->address)
1455 && (bl->address + bp_locations_shadow_len_after_address_max
1456 <= memaddr))
1457 bc_l = bc;
1458 else
1459 bc_r = bc;
1460 }
1461
1462 /* Due to the binary search above, we need to make sure we pick the
1463 first location that's at BC_L's address. E.g., if there are
1464 multiple locations at the same address, BC_L may end up pointing
1465 at a duplicate location, and miss the "master"/"inserted"
1466 location. Say, given locations L1, L2 and L3 at addresses A and
1467 B:
1468
1469 L1@A, L2@A, L3@B, ...
1470
1471 BC_L could end up pointing at location L2, while the "master"
1472 location could be L1. Since the `loc->inserted' flag is only set
1473 on "master" locations, we'd forget to restore the shadow of L1
1474 and L2. */
1475 while (bc_l > 0
1476 && bp_locations[bc_l]->address == bp_locations[bc_l - 1]->address)
1477 bc_l--;
1478
1479 /* Now do full processing of the found relevant range of elements. */
1480
1481 for (bc = bc_l; bc < bp_locations_count; bc++)
1482 {
1483 struct bp_location *bl = bp_locations[bc];
1484
1485 /* bp_location array has BL->OWNER always non-NULL. */
1486 if (bl->owner->type == bp_none)
1487 warning (_("reading through apparently deleted breakpoint #%d?"),
1488 bl->owner->number);
1489
1490 /* Performance optimization: any further element can no longer affect BUF
1491 content. */
1492
1493 if (bl->address >= bp_locations_placed_address_before_address_max
1494 && memaddr + len <= (bl->address
1495 - bp_locations_placed_address_before_address_max))
1496 break;
1497
1498 if (!bp_location_has_shadow (bl))
1499 continue;
1500
1501 one_breakpoint_xfer_memory (readbuf, writebuf, writebuf_org,
1502 memaddr, len, &bl->target_info, bl->gdbarch);
1503 }
1504 }
1505
1506 \f
1507
1508 /* Return true if BPT is either a software breakpoint or a hardware
1509 breakpoint. */
1510
1511 int
1512 is_breakpoint (const struct breakpoint *bpt)
1513 {
1514 return (bpt->type == bp_breakpoint
1515 || bpt->type == bp_hardware_breakpoint
1516 || bpt->type == bp_dprintf);
1517 }
1518
1519 /* Return true if BPT is of any hardware watchpoint kind. */
1520
1521 static int
1522 is_hardware_watchpoint (const struct breakpoint *bpt)
1523 {
1524 return (bpt->type == bp_hardware_watchpoint
1525 || bpt->type == bp_read_watchpoint
1526 || bpt->type == bp_access_watchpoint);
1527 }
1528
1529 /* Return true if BPT is of any watchpoint kind, hardware or
1530 software. */
1531
1532 int
1533 is_watchpoint (const struct breakpoint *bpt)
1534 {
1535 return (is_hardware_watchpoint (bpt)
1536 || bpt->type == bp_watchpoint);
1537 }
1538
1539 /* Returns true if the current thread and its running state are safe
1540 to evaluate or update watchpoint B. Watchpoints on local
1541 expressions need to be evaluated in the context of the thread that
1542 was current when the watchpoint was created, and, that thread needs
1543 to be stopped to be able to select the correct frame context.
1544 Watchpoints on global expressions can be evaluated on any thread,
1545 and in any state. It is presently left to the target allowing
1546 memory accesses when threads are running. */
1547
1548 static int
1549 watchpoint_in_thread_scope (struct watchpoint *b)
1550 {
1551 return (b->pspace == current_program_space
1552 && (ptid_equal (b->watchpoint_thread, null_ptid)
1553 || (ptid_equal (inferior_ptid, b->watchpoint_thread)
1554 && !is_executing (inferior_ptid))));
1555 }
1556
1557 /* Set watchpoint B to disp_del_at_next_stop, even including its possible
1558 associated bp_watchpoint_scope breakpoint. */
1559
1560 static void
1561 watchpoint_del_at_next_stop (struct watchpoint *w)
1562 {
1563 if (w->related_breakpoint != w)
1564 {
1565 gdb_assert (w->related_breakpoint->type == bp_watchpoint_scope);
1566 gdb_assert (w->related_breakpoint->related_breakpoint == w);
1567 w->related_breakpoint->disposition = disp_del_at_next_stop;
1568 w->related_breakpoint->related_breakpoint = w->related_breakpoint;
1569 w->related_breakpoint = w;
1570 }
1571 w->disposition = disp_del_at_next_stop;
1572 }
1573
1574 /* Extract a bitfield value from value VAL using the bit parameters contained in
1575 watchpoint W. */
1576
1577 static struct value *
1578 extract_bitfield_from_watchpoint_value (struct watchpoint *w, struct value *val)
1579 {
1580 struct value *bit_val;
1581
1582 if (val == NULL)
1583 return NULL;
1584
1585 bit_val = allocate_value (value_type (val));
1586
1587 unpack_value_bitfield (bit_val,
1588 w->val_bitpos,
1589 w->val_bitsize,
1590 value_contents_for_printing (val),
1591 value_offset (val),
1592 val);
1593
1594 return bit_val;
1595 }
1596
1597 /* Allocate a dummy location and add it to B, which must be a software
1598 watchpoint. This is required because even if a software watchpoint
1599 is not watching any memory, bpstat_stop_status requires a location
1600 to be able to report stops. */
1601
1602 static void
1603 software_watchpoint_add_no_memory_location (struct breakpoint *b,
1604 struct program_space *pspace)
1605 {
1606 gdb_assert (b->type == bp_watchpoint && b->loc == NULL);
1607
1608 b->loc = allocate_bp_location (b);
1609 b->loc->pspace = pspace;
1610 b->loc->address = -1;
1611 b->loc->length = -1;
1612 }
1613
1614 /* Returns true if B is a software watchpoint that is not watching any
1615 memory (e.g., "watch $pc"). */
1616
1617 static int
1618 is_no_memory_software_watchpoint (struct breakpoint *b)
1619 {
1620 return (b->type == bp_watchpoint
1621 && b->loc != NULL
1622 && b->loc->next == NULL
1623 && b->loc->address == -1
1624 && b->loc->length == -1);
1625 }
1626
1627 /* Assuming that B is a watchpoint:
1628 - Reparse watchpoint expression, if REPARSE is non-zero
1629 - Evaluate expression and store the result in B->val
1630 - Evaluate the condition if there is one, and store the result
1631 in b->loc->cond.
1632 - Update the list of values that must be watched in B->loc.
1633
1634 If the watchpoint disposition is disp_del_at_next_stop, then do
1635 nothing. If this is local watchpoint that is out of scope, delete
1636 it.
1637
1638 Even with `set breakpoint always-inserted on' the watchpoints are
1639 removed + inserted on each stop here. Normal breakpoints must
1640 never be removed because they might be missed by a running thread
1641 when debugging in non-stop mode. On the other hand, hardware
1642 watchpoints (is_hardware_watchpoint; processed here) are specific
1643 to each LWP since they are stored in each LWP's hardware debug
1644 registers. Therefore, such LWP must be stopped first in order to
1645 be able to modify its hardware watchpoints.
1646
1647 Hardware watchpoints must be reset exactly once after being
1648 presented to the user. It cannot be done sooner, because it would
1649 reset the data used to present the watchpoint hit to the user. And
1650 it must not be done later because it could display the same single
1651 watchpoint hit during multiple GDB stops. Note that the latter is
1652 relevant only to the hardware watchpoint types bp_read_watchpoint
1653 and bp_access_watchpoint. False hit by bp_hardware_watchpoint is
1654 not user-visible - its hit is suppressed if the memory content has
1655 not changed.
1656
1657 The following constraints influence the location where we can reset
1658 hardware watchpoints:
1659
1660 * target_stopped_by_watchpoint and target_stopped_data_address are
1661 called several times when GDB stops.
1662
1663 [linux]
1664 * Multiple hardware watchpoints can be hit at the same time,
1665 causing GDB to stop. GDB only presents one hardware watchpoint
1666 hit at a time as the reason for stopping, and all the other hits
1667 are presented later, one after the other, each time the user
1668 requests the execution to be resumed. Execution is not resumed
1669 for the threads still having pending hit event stored in
1670 LWP_INFO->STATUS. While the watchpoint is already removed from
1671 the inferior on the first stop the thread hit event is kept being
1672 reported from its cached value by linux_nat_stopped_data_address
1673 until the real thread resume happens after the watchpoint gets
1674 presented and thus its LWP_INFO->STATUS gets reset.
1675
1676 Therefore the hardware watchpoint hit can get safely reset on the
1677 watchpoint removal from inferior. */
1678
1679 static void
1680 update_watchpoint (struct watchpoint *b, int reparse)
1681 {
1682 int within_current_scope;
1683 struct frame_id saved_frame_id;
1684 int frame_saved;
1685
1686 /* If this is a local watchpoint, we only want to check if the
1687 watchpoint frame is in scope if the current thread is the thread
1688 that was used to create the watchpoint. */
1689 if (!watchpoint_in_thread_scope (b))
1690 return;
1691
1692 if (b->disposition == disp_del_at_next_stop)
1693 return;
1694
1695 frame_saved = 0;
1696
1697 /* Determine if the watchpoint is within scope. */
1698 if (b->exp_valid_block == NULL)
1699 within_current_scope = 1;
1700 else
1701 {
1702 struct frame_info *fi = get_current_frame ();
1703 struct gdbarch *frame_arch = get_frame_arch (fi);
1704 CORE_ADDR frame_pc = get_frame_pc (fi);
1705
1706 /* If we're at a point where the stack has been destroyed
1707 (e.g. in a function epilogue), unwinding may not work
1708 properly. Do not attempt to recreate locations at this
1709 point. See similar comments in watchpoint_check. */
1710 if (gdbarch_stack_frame_destroyed_p (frame_arch, frame_pc))
1711 return;
1712
1713 /* Save the current frame's ID so we can restore it after
1714 evaluating the watchpoint expression on its own frame. */
1715 /* FIXME drow/2003-09-09: It would be nice if evaluate_expression
1716 took a frame parameter, so that we didn't have to change the
1717 selected frame. */
1718 frame_saved = 1;
1719 saved_frame_id = get_frame_id (get_selected_frame (NULL));
1720
1721 fi = frame_find_by_id (b->watchpoint_frame);
1722 within_current_scope = (fi != NULL);
1723 if (within_current_scope)
1724 select_frame (fi);
1725 }
1726
1727 /* We don't free locations. They are stored in the bp_location array
1728 and update_global_location_list will eventually delete them and
1729 remove breakpoints if needed. */
1730 b->loc = NULL;
1731
1732 if (within_current_scope && reparse)
1733 {
1734 const char *s;
1735
1736 b->exp.reset ();
1737 s = b->exp_string_reparse ? b->exp_string_reparse : b->exp_string;
1738 b->exp = parse_exp_1 (&s, 0, b->exp_valid_block, 0);
1739 /* If the meaning of expression itself changed, the old value is
1740 no longer relevant. We don't want to report a watchpoint hit
1741 to the user when the old value and the new value may actually
1742 be completely different objects. */
1743 value_free (b->val);
1744 b->val = NULL;
1745 b->val_valid = 0;
1746
1747 /* Note that unlike with breakpoints, the watchpoint's condition
1748 expression is stored in the breakpoint object, not in the
1749 locations (re)created below. */
1750 if (b->cond_string != NULL)
1751 {
1752 b->cond_exp.reset ();
1753
1754 s = b->cond_string;
1755 b->cond_exp = parse_exp_1 (&s, 0, b->cond_exp_valid_block, 0);
1756 }
1757 }
1758
1759 /* If we failed to parse the expression, for example because
1760 it refers to a global variable in a not-yet-loaded shared library,
1761 don't try to insert watchpoint. We don't automatically delete
1762 such watchpoint, though, since failure to parse expression
1763 is different from out-of-scope watchpoint. */
1764 if (!target_has_execution)
1765 {
1766 /* Without execution, memory can't change. No use to try and
1767 set watchpoint locations. The watchpoint will be reset when
1768 the target gains execution, through breakpoint_re_set. */
1769 if (!can_use_hw_watchpoints)
1770 {
1771 if (b->ops->works_in_software_mode (b))
1772 b->type = bp_watchpoint;
1773 else
1774 error (_("Can't set read/access watchpoint when "
1775 "hardware watchpoints are disabled."));
1776 }
1777 }
1778 else if (within_current_scope && b->exp)
1779 {
1780 int pc = 0;
1781 struct value *val_chain, *v, *result, *next;
1782 struct program_space *frame_pspace;
1783
1784 fetch_subexp_value (b->exp.get (), &pc, &v, &result, &val_chain, 0);
1785
1786 /* Avoid setting b->val if it's already set. The meaning of
1787 b->val is 'the last value' user saw, and we should update
1788 it only if we reported that last value to user. As it
1789 happens, the code that reports it updates b->val directly.
1790 We don't keep track of the memory value for masked
1791 watchpoints. */
1792 if (!b->val_valid && !is_masked_watchpoint (b))
1793 {
1794 if (b->val_bitsize != 0)
1795 {
1796 v = extract_bitfield_from_watchpoint_value (b, v);
1797 if (v != NULL)
1798 release_value (v);
1799 }
1800 b->val = v;
1801 b->val_valid = 1;
1802 }
1803
1804 frame_pspace = get_frame_program_space (get_selected_frame (NULL));
1805
1806 /* Look at each value on the value chain. */
1807 for (v = val_chain; v; v = value_next (v))
1808 {
1809 /* If it's a memory location, and GDB actually needed
1810 its contents to evaluate the expression, then we
1811 must watch it. If the first value returned is
1812 still lazy, that means an error occurred reading it;
1813 watch it anyway in case it becomes readable. */
1814 if (VALUE_LVAL (v) == lval_memory
1815 && (v == val_chain || ! value_lazy (v)))
1816 {
1817 struct type *vtype = check_typedef (value_type (v));
1818
1819 /* We only watch structs and arrays if user asked
1820 for it explicitly, never if they just happen to
1821 appear in the middle of some value chain. */
1822 if (v == result
1823 || (TYPE_CODE (vtype) != TYPE_CODE_STRUCT
1824 && TYPE_CODE (vtype) != TYPE_CODE_ARRAY))
1825 {
1826 CORE_ADDR addr;
1827 enum target_hw_bp_type type;
1828 struct bp_location *loc, **tmp;
1829 int bitpos = 0, bitsize = 0;
1830
1831 if (value_bitsize (v) != 0)
1832 {
1833 /* Extract the bit parameters out from the bitfield
1834 sub-expression. */
1835 bitpos = value_bitpos (v);
1836 bitsize = value_bitsize (v);
1837 }
1838 else if (v == result && b->val_bitsize != 0)
1839 {
1840 /* If VAL_BITSIZE != 0 then RESULT is actually a bitfield
1841 lvalue whose bit parameters are saved in the fields
1842 VAL_BITPOS and VAL_BITSIZE. */
1843 bitpos = b->val_bitpos;
1844 bitsize = b->val_bitsize;
1845 }
1846
1847 addr = value_address (v);
1848 if (bitsize != 0)
1849 {
1850 /* Skip the bytes that don't contain the bitfield. */
1851 addr += bitpos / 8;
1852 }
1853
1854 type = hw_write;
1855 if (b->type == bp_read_watchpoint)
1856 type = hw_read;
1857 else if (b->type == bp_access_watchpoint)
1858 type = hw_access;
1859
1860 loc = allocate_bp_location (b);
1861 for (tmp = &(b->loc); *tmp != NULL; tmp = &((*tmp)->next))
1862 ;
1863 *tmp = loc;
1864 loc->gdbarch = get_type_arch (value_type (v));
1865
1866 loc->pspace = frame_pspace;
1867 loc->address = addr;
1868
1869 if (bitsize != 0)
1870 {
1871 /* Just cover the bytes that make up the bitfield. */
1872 loc->length = ((bitpos % 8) + bitsize + 7) / 8;
1873 }
1874 else
1875 loc->length = TYPE_LENGTH (value_type (v));
1876
1877 loc->watchpoint_type = type;
1878 }
1879 }
1880 }
1881
1882 /* Change the type of breakpoint between hardware assisted or
1883 an ordinary watchpoint depending on the hardware support
1884 and free hardware slots. REPARSE is set when the inferior
1885 is started. */
1886 if (reparse)
1887 {
1888 int reg_cnt;
1889 enum bp_loc_type loc_type;
1890 struct bp_location *bl;
1891
1892 reg_cnt = can_use_hardware_watchpoint (val_chain);
1893
1894 if (reg_cnt)
1895 {
1896 int i, target_resources_ok, other_type_used;
1897 enum bptype type;
1898
1899 /* Use an exact watchpoint when there's only one memory region to be
1900 watched, and only one debug register is needed to watch it. */
1901 b->exact = target_exact_watchpoints && reg_cnt == 1;
1902
1903 /* We need to determine how many resources are already
1904 used for all other hardware watchpoints plus this one
1905 to see if we still have enough resources to also fit
1906 this watchpoint in as well. */
1907
1908 /* If this is a software watchpoint, we try to turn it
1909 to a hardware one -- count resources as if B was of
1910 hardware watchpoint type. */
1911 type = b->type;
1912 if (type == bp_watchpoint)
1913 type = bp_hardware_watchpoint;
1914
1915 /* This watchpoint may or may not have been placed on
1916 the list yet at this point (it won't be in the list
1917 if we're trying to create it for the first time,
1918 through watch_command), so always account for it
1919 manually. */
1920
1921 /* Count resources used by all watchpoints except B. */
1922 i = hw_watchpoint_used_count_others (b, type, &other_type_used);
1923
1924 /* Add in the resources needed for B. */
1925 i += hw_watchpoint_use_count (b);
1926
1927 target_resources_ok
1928 = target_can_use_hardware_watchpoint (type, i, other_type_used);
1929 if (target_resources_ok <= 0)
1930 {
1931 int sw_mode = b->ops->works_in_software_mode (b);
1932
1933 if (target_resources_ok == 0 && !sw_mode)
1934 error (_("Target does not support this type of "
1935 "hardware watchpoint."));
1936 else if (target_resources_ok < 0 && !sw_mode)
1937 error (_("There are not enough available hardware "
1938 "resources for this watchpoint."));
1939
1940 /* Downgrade to software watchpoint. */
1941 b->type = bp_watchpoint;
1942 }
1943 else
1944 {
1945 /* If this was a software watchpoint, we've just
1946 found we have enough resources to turn it to a
1947 hardware watchpoint. Otherwise, this is a
1948 nop. */
1949 b->type = type;
1950 }
1951 }
1952 else if (!b->ops->works_in_software_mode (b))
1953 {
1954 if (!can_use_hw_watchpoints)
1955 error (_("Can't set read/access watchpoint when "
1956 "hardware watchpoints are disabled."));
1957 else
1958 error (_("Expression cannot be implemented with "
1959 "read/access watchpoint."));
1960 }
1961 else
1962 b->type = bp_watchpoint;
1963
1964 loc_type = (b->type == bp_watchpoint? bp_loc_other
1965 : bp_loc_hardware_watchpoint);
1966 for (bl = b->loc; bl; bl = bl->next)
1967 bl->loc_type = loc_type;
1968 }
1969
1970 for (v = val_chain; v; v = next)
1971 {
1972 next = value_next (v);
1973 if (v != b->val)
1974 value_free (v);
1975 }
1976
1977 /* If a software watchpoint is not watching any memory, then the
1978 above left it without any location set up. But,
1979 bpstat_stop_status requires a location to be able to report
1980 stops, so make sure there's at least a dummy one. */
1981 if (b->type == bp_watchpoint && b->loc == NULL)
1982 software_watchpoint_add_no_memory_location (b, frame_pspace);
1983 }
1984 else if (!within_current_scope)
1985 {
1986 printf_filtered (_("\
1987 Watchpoint %d deleted because the program has left the block\n\
1988 in which its expression is valid.\n"),
1989 b->number);
1990 watchpoint_del_at_next_stop (b);
1991 }
1992
1993 /* Restore the selected frame. */
1994 if (frame_saved)
1995 select_frame (frame_find_by_id (saved_frame_id));
1996 }
1997
1998
1999 /* Returns 1 iff breakpoint location should be
2000 inserted in the inferior. We don't differentiate the type of BL's owner
2001 (breakpoint vs. tracepoint), although insert_location in tracepoint's
2002 breakpoint_ops is not defined, because in insert_bp_location,
2003 tracepoint's insert_location will not be called. */
2004 static int
2005 should_be_inserted (struct bp_location *bl)
2006 {
2007 if (bl->owner == NULL || !breakpoint_enabled (bl->owner))
2008 return 0;
2009
2010 if (bl->owner->disposition == disp_del_at_next_stop)
2011 return 0;
2012
2013 if (!bl->enabled || bl->shlib_disabled || bl->duplicate)
2014 return 0;
2015
2016 if (user_breakpoint_p (bl->owner) && bl->pspace->executing_startup)
2017 return 0;
2018
2019 /* This is set for example, when we're attached to the parent of a
2020 vfork, and have detached from the child. The child is running
2021 free, and we expect it to do an exec or exit, at which point the
2022 OS makes the parent schedulable again (and the target reports
2023 that the vfork is done). Until the child is done with the shared
2024 memory region, do not insert breakpoints in the parent, otherwise
2025 the child could still trip on the parent's breakpoints. Since
2026 the parent is blocked anyway, it won't miss any breakpoint. */
2027 if (bl->pspace->breakpoints_not_allowed)
2028 return 0;
2029
2030 /* Don't insert a breakpoint if we're trying to step past its
2031 location, except if the breakpoint is a single-step breakpoint,
2032 and the breakpoint's thread is the thread which is stepping past
2033 a breakpoint. */
2034 if ((bl->loc_type == bp_loc_software_breakpoint
2035 || bl->loc_type == bp_loc_hardware_breakpoint)
2036 && stepping_past_instruction_at (bl->pspace->aspace,
2037 bl->address)
2038 /* The single-step breakpoint may be inserted at the location
2039 we're trying to step if the instruction branches to itself.
2040 However, the instruction won't be executed at all and it may
2041 break the semantics of the instruction, for example, the
2042 instruction is a conditional branch or updates some flags.
2043 We can't fix it unless GDB is able to emulate the instruction
2044 or switch to displaced stepping. */
2045 && !(bl->owner->type == bp_single_step
2046 && thread_is_stepping_over_breakpoint (bl->owner->thread)))
2047 {
2048 if (debug_infrun)
2049 {
2050 fprintf_unfiltered (gdb_stdlog,
2051 "infrun: skipping breakpoint: "
2052 "stepping past insn at: %s\n",
2053 paddress (bl->gdbarch, bl->address));
2054 }
2055 return 0;
2056 }
2057
2058 /* Don't insert watchpoints if we're trying to step past the
2059 instruction that triggered one. */
2060 if ((bl->loc_type == bp_loc_hardware_watchpoint)
2061 && stepping_past_nonsteppable_watchpoint ())
2062 {
2063 if (debug_infrun)
2064 {
2065 fprintf_unfiltered (gdb_stdlog,
2066 "infrun: stepping past non-steppable watchpoint. "
2067 "skipping watchpoint at %s:%d\n",
2068 paddress (bl->gdbarch, bl->address),
2069 bl->length);
2070 }
2071 return 0;
2072 }
2073
2074 return 1;
2075 }
2076
2077 /* Same as should_be_inserted but does the check assuming
2078 that the location is not duplicated. */
2079
2080 static int
2081 unduplicated_should_be_inserted (struct bp_location *bl)
2082 {
2083 int result;
2084 const int save_duplicate = bl->duplicate;
2085
2086 bl->duplicate = 0;
2087 result = should_be_inserted (bl);
2088 bl->duplicate = save_duplicate;
2089 return result;
2090 }
2091
2092 /* Parses a conditional described by an expression COND into an
2093 agent expression bytecode suitable for evaluation
2094 by the bytecode interpreter. Return NULL if there was
2095 any error during parsing. */
2096
2097 static agent_expr_up
2098 parse_cond_to_aexpr (CORE_ADDR scope, struct expression *cond)
2099 {
2100 if (cond == NULL)
2101 return NULL;
2102
2103 agent_expr_up aexpr;
2104
2105 /* We don't want to stop processing, so catch any errors
2106 that may show up. */
2107 TRY
2108 {
2109 aexpr = gen_eval_for_expr (scope, cond);
2110 }
2111
2112 CATCH (ex, RETURN_MASK_ERROR)
2113 {
2114 /* If we got here, it means the condition could not be parsed to a valid
2115 bytecode expression and thus can't be evaluated on the target's side.
2116 It's no use iterating through the conditions. */
2117 }
2118 END_CATCH
2119
2120 /* We have a valid agent expression. */
2121 return aexpr;
2122 }
2123
2124 /* Based on location BL, create a list of breakpoint conditions to be
2125 passed on to the target. If we have duplicated locations with different
2126 conditions, we will add such conditions to the list. The idea is that the
2127 target will evaluate the list of conditions and will only notify GDB when
2128 one of them is true. */
2129
2130 static void
2131 build_target_condition_list (struct bp_location *bl)
2132 {
2133 struct bp_location **locp = NULL, **loc2p;
2134 int null_condition_or_parse_error = 0;
2135 int modified = bl->needs_update;
2136 struct bp_location *loc;
2137
2138 /* Release conditions left over from a previous insert. */
2139 bl->target_info.conditions.clear ();
2140
2141 /* This is only meaningful if the target is
2142 evaluating conditions and if the user has
2143 opted for condition evaluation on the target's
2144 side. */
2145 if (gdb_evaluates_breakpoint_condition_p ()
2146 || !target_supports_evaluation_of_breakpoint_conditions ())
2147 return;
2148
2149 /* Do a first pass to check for locations with no assigned
2150 conditions or conditions that fail to parse to a valid agent expression
2151 bytecode. If any of these happen, then it's no use to send conditions
2152 to the target since this location will always trigger and generate a
2153 response back to GDB. */
2154 ALL_BP_LOCATIONS_AT_ADDR (loc2p, locp, bl->address)
2155 {
2156 loc = (*loc2p);
2157 if (is_breakpoint (loc->owner) && loc->pspace->num == bl->pspace->num)
2158 {
2159 if (modified)
2160 {
2161 /* Re-parse the conditions since something changed. In that
2162 case we already freed the condition bytecodes (see
2163 force_breakpoint_reinsertion). We just
2164 need to parse the condition to bytecodes again. */
2165 loc->cond_bytecode = parse_cond_to_aexpr (bl->address,
2166 loc->cond.get ());
2167 }
2168
2169 /* If we have a NULL bytecode expression, it means something
2170 went wrong or we have a null condition expression. */
2171 if (!loc->cond_bytecode)
2172 {
2173 null_condition_or_parse_error = 1;
2174 break;
2175 }
2176 }
2177 }
2178
2179 /* If any of these happened, it means we will have to evaluate the conditions
2180 for the location's address on gdb's side. It is no use keeping bytecodes
2181 for all the other duplicate locations, thus we free all of them here.
2182
2183 This is so we have a finer control over which locations' conditions are
2184 being evaluated by GDB or the remote stub. */
2185 if (null_condition_or_parse_error)
2186 {
2187 ALL_BP_LOCATIONS_AT_ADDR (loc2p, locp, bl->address)
2188 {
2189 loc = (*loc2p);
2190 if (is_breakpoint (loc->owner) && loc->pspace->num == bl->pspace->num)
2191 {
2192 /* Only go as far as the first NULL bytecode is
2193 located. */
2194 if (!loc->cond_bytecode)
2195 return;
2196
2197 loc->cond_bytecode.reset ();
2198 }
2199 }
2200 }
2201
2202 /* No NULL conditions or failed bytecode generation. Build a condition list
2203 for this location's address. */
2204 ALL_BP_LOCATIONS_AT_ADDR (loc2p, locp, bl->address)
2205 {
2206 loc = (*loc2p);
2207 if (loc->cond
2208 && is_breakpoint (loc->owner)
2209 && loc->pspace->num == bl->pspace->num
2210 && loc->owner->enable_state == bp_enabled
2211 && loc->enabled)
2212 {
2213 /* Add the condition to the vector. This will be used later
2214 to send the conditions to the target. */
2215 bl->target_info.conditions.push_back (loc->cond_bytecode.get ());
2216 }
2217 }
2218
2219 return;
2220 }
2221
2222 /* Parses a command described by string CMD into an agent expression
2223 bytecode suitable for evaluation by the bytecode interpreter.
2224 Return NULL if there was any error during parsing. */
2225
2226 static agent_expr_up
2227 parse_cmd_to_aexpr (CORE_ADDR scope, char *cmd)
2228 {
2229 struct cleanup *old_cleanups = 0;
2230 struct expression **argvec;
2231 const char *cmdrest;
2232 const char *format_start, *format_end;
2233 struct format_piece *fpieces;
2234 int nargs;
2235 struct gdbarch *gdbarch = get_current_arch ();
2236
2237 if (cmd == NULL)
2238 return NULL;
2239
2240 cmdrest = cmd;
2241
2242 if (*cmdrest == ',')
2243 ++cmdrest;
2244 cmdrest = skip_spaces (cmdrest);
2245
2246 if (*cmdrest++ != '"')
2247 error (_("No format string following the location"));
2248
2249 format_start = cmdrest;
2250
2251 fpieces = parse_format_string (&cmdrest);
2252
2253 old_cleanups = make_cleanup (free_format_pieces_cleanup, &fpieces);
2254
2255 format_end = cmdrest;
2256
2257 if (*cmdrest++ != '"')
2258 error (_("Bad format string, non-terminated '\"'."));
2259
2260 cmdrest = skip_spaces (cmdrest);
2261
2262 if (!(*cmdrest == ',' || *cmdrest == '\0'))
2263 error (_("Invalid argument syntax"));
2264
2265 if (*cmdrest == ',')
2266 cmdrest++;
2267 cmdrest = skip_spaces (cmdrest);
2268
2269 /* For each argument, make an expression. */
2270
2271 argvec = (struct expression **) alloca (strlen (cmd)
2272 * sizeof (struct expression *));
2273
2274 nargs = 0;
2275 while (*cmdrest != '\0')
2276 {
2277 const char *cmd1;
2278
2279 cmd1 = cmdrest;
2280 expression_up expr = parse_exp_1 (&cmd1, scope, block_for_pc (scope), 1);
2281 argvec[nargs++] = expr.release ();
2282 cmdrest = cmd1;
2283 if (*cmdrest == ',')
2284 ++cmdrest;
2285 }
2286
2287 agent_expr_up aexpr;
2288
2289 /* We don't want to stop processing, so catch any errors
2290 that may show up. */
2291 TRY
2292 {
2293 aexpr = gen_printf (scope, gdbarch, 0, 0,
2294 format_start, format_end - format_start,
2295 fpieces, nargs, argvec);
2296 }
2297 CATCH (ex, RETURN_MASK_ERROR)
2298 {
2299 /* If we got here, it means the command could not be parsed to a valid
2300 bytecode expression and thus can't be evaluated on the target's side.
2301 It's no use iterating through the other commands. */
2302 }
2303 END_CATCH
2304
2305 do_cleanups (old_cleanups);
2306
2307 /* We have a valid agent expression, return it. */
2308 return aexpr;
2309 }
2310
2311 /* Based on location BL, create a list of breakpoint commands to be
2312 passed on to the target. If we have duplicated locations with
2313 different commands, we will add any such to the list. */
2314
2315 static void
2316 build_target_command_list (struct bp_location *bl)
2317 {
2318 struct bp_location **locp = NULL, **loc2p;
2319 int null_command_or_parse_error = 0;
2320 int modified = bl->needs_update;
2321 struct bp_location *loc;
2322
2323 /* Clear commands left over from a previous insert. */
2324 bl->target_info.tcommands.clear ();
2325
2326 if (!target_can_run_breakpoint_commands ())
2327 return;
2328
2329 /* For now, limit to agent-style dprintf breakpoints. */
2330 if (dprintf_style != dprintf_style_agent)
2331 return;
2332
2333 /* For now, if we have any duplicate location that isn't a dprintf,
2334 don't install the target-side commands, as that would make the
2335 breakpoint not be reported to the core, and we'd lose
2336 control. */
2337 ALL_BP_LOCATIONS_AT_ADDR (loc2p, locp, bl->address)
2338 {
2339 loc = (*loc2p);
2340 if (is_breakpoint (loc->owner)
2341 && loc->pspace->num == bl->pspace->num
2342 && loc->owner->type != bp_dprintf)
2343 return;
2344 }
2345
2346 /* Do a first pass to check for locations with no assigned
2347 conditions or conditions that fail to parse to a valid agent expression
2348 bytecode. If any of these happen, then it's no use to send conditions
2349 to the target since this location will always trigger and generate a
2350 response back to GDB. */
2351 ALL_BP_LOCATIONS_AT_ADDR (loc2p, locp, bl->address)
2352 {
2353 loc = (*loc2p);
2354 if (is_breakpoint (loc->owner) && loc->pspace->num == bl->pspace->num)
2355 {
2356 if (modified)
2357 {
2358 /* Re-parse the commands since something changed. In that
2359 case we already freed the command bytecodes (see
2360 force_breakpoint_reinsertion). We just
2361 need to parse the command to bytecodes again. */
2362 loc->cmd_bytecode
2363 = parse_cmd_to_aexpr (bl->address,
2364 loc->owner->extra_string);
2365 }
2366
2367 /* If we have a NULL bytecode expression, it means something
2368 went wrong or we have a null command expression. */
2369 if (!loc->cmd_bytecode)
2370 {
2371 null_command_or_parse_error = 1;
2372 break;
2373 }
2374 }
2375 }
2376
2377 /* If anything failed, then we're not doing target-side commands,
2378 and so clean up. */
2379 if (null_command_or_parse_error)
2380 {
2381 ALL_BP_LOCATIONS_AT_ADDR (loc2p, locp, bl->address)
2382 {
2383 loc = (*loc2p);
2384 if (is_breakpoint (loc->owner)
2385 && loc->pspace->num == bl->pspace->num)
2386 {
2387 /* Only go as far as the first NULL bytecode is
2388 located. */
2389 if (loc->cmd_bytecode == NULL)
2390 return;
2391
2392 loc->cmd_bytecode.reset ();
2393 }
2394 }
2395 }
2396
2397 /* No NULL commands or failed bytecode generation. Build a command list
2398 for this location's address. */
2399 ALL_BP_LOCATIONS_AT_ADDR (loc2p, locp, bl->address)
2400 {
2401 loc = (*loc2p);
2402 if (loc->owner->extra_string
2403 && is_breakpoint (loc->owner)
2404 && loc->pspace->num == bl->pspace->num
2405 && loc->owner->enable_state == bp_enabled
2406 && loc->enabled)
2407 {
2408 /* Add the command to the vector. This will be used later
2409 to send the commands to the target. */
2410 bl->target_info.tcommands.push_back (loc->cmd_bytecode.get ());
2411 }
2412 }
2413
2414 bl->target_info.persist = 0;
2415 /* Maybe flag this location as persistent. */
2416 if (bl->owner->type == bp_dprintf && disconnected_dprintf)
2417 bl->target_info.persist = 1;
2418 }
2419
2420 /* Return the kind of breakpoint on address *ADDR. Get the kind
2421 of breakpoint according to ADDR except single-step breakpoint.
2422 Get the kind of single-step breakpoint according to the current
2423 registers state. */
2424
2425 static int
2426 breakpoint_kind (struct bp_location *bl, CORE_ADDR *addr)
2427 {
2428 if (bl->owner->type == bp_single_step)
2429 {
2430 struct thread_info *thr = find_thread_global_id (bl->owner->thread);
2431 struct regcache *regcache;
2432
2433 regcache = get_thread_regcache (thr->ptid);
2434
2435 return gdbarch_breakpoint_kind_from_current_state (bl->gdbarch,
2436 regcache, addr);
2437 }
2438 else
2439 return gdbarch_breakpoint_kind_from_pc (bl->gdbarch, addr);
2440 }
2441
2442 /* Insert a low-level "breakpoint" of some type. BL is the breakpoint
2443 location. Any error messages are printed to TMP_ERROR_STREAM; and
2444 DISABLED_BREAKS, and HW_BREAKPOINT_ERROR are used to report problems.
2445 Returns 0 for success, 1 if the bp_location type is not supported or
2446 -1 for failure.
2447
2448 NOTE drow/2003-09-09: This routine could be broken down to an
2449 object-style method for each breakpoint or catchpoint type. */
2450 static int
2451 insert_bp_location (struct bp_location *bl,
2452 struct ui_file *tmp_error_stream,
2453 int *disabled_breaks,
2454 int *hw_breakpoint_error,
2455 int *hw_bp_error_explained_already)
2456 {
2457 gdb_exception bp_excpt = exception_none;
2458
2459 if (!should_be_inserted (bl) || (bl->inserted && !bl->needs_update))
2460 return 0;
2461
2462 /* Note we don't initialize bl->target_info, as that wipes out
2463 the breakpoint location's shadow_contents if the breakpoint
2464 is still inserted at that location. This in turn breaks
2465 target_read_memory which depends on these buffers when
2466 a memory read is requested at the breakpoint location:
2467 Once the target_info has been wiped, we fail to see that
2468 we have a breakpoint inserted at that address and thus
2469 read the breakpoint instead of returning the data saved in
2470 the breakpoint location's shadow contents. */
2471 bl->target_info.reqstd_address = bl->address;
2472 bl->target_info.placed_address_space = bl->pspace->aspace;
2473 bl->target_info.length = bl->length;
2474
2475 /* When working with target-side conditions, we must pass all the conditions
2476 for the same breakpoint address down to the target since GDB will not
2477 insert those locations. With a list of breakpoint conditions, the target
2478 can decide when to stop and notify GDB. */
2479
2480 if (is_breakpoint (bl->owner))
2481 {
2482 build_target_condition_list (bl);
2483 build_target_command_list (bl);
2484 /* Reset the modification marker. */
2485 bl->needs_update = 0;
2486 }
2487
2488 if (bl->loc_type == bp_loc_software_breakpoint
2489 || bl->loc_type == bp_loc_hardware_breakpoint)
2490 {
2491 if (bl->owner->type != bp_hardware_breakpoint)
2492 {
2493 /* If the explicitly specified breakpoint type
2494 is not hardware breakpoint, check the memory map to see
2495 if the breakpoint address is in read only memory or not.
2496
2497 Two important cases are:
2498 - location type is not hardware breakpoint, memory
2499 is readonly. We change the type of the location to
2500 hardware breakpoint.
2501 - location type is hardware breakpoint, memory is
2502 read-write. This means we've previously made the
2503 location hardware one, but then the memory map changed,
2504 so we undo.
2505
2506 When breakpoints are removed, remove_breakpoints will use
2507 location types we've just set here, the only possible
2508 problem is that memory map has changed during running
2509 program, but it's not going to work anyway with current
2510 gdb. */
2511 struct mem_region *mr
2512 = lookup_mem_region (bl->target_info.reqstd_address);
2513
2514 if (mr)
2515 {
2516 if (automatic_hardware_breakpoints)
2517 {
2518 enum bp_loc_type new_type;
2519
2520 if (mr->attrib.mode != MEM_RW)
2521 new_type = bp_loc_hardware_breakpoint;
2522 else
2523 new_type = bp_loc_software_breakpoint;
2524
2525 if (new_type != bl->loc_type)
2526 {
2527 static int said = 0;
2528
2529 bl->loc_type = new_type;
2530 if (!said)
2531 {
2532 fprintf_filtered (gdb_stdout,
2533 _("Note: automatically using "
2534 "hardware breakpoints for "
2535 "read-only addresses.\n"));
2536 said = 1;
2537 }
2538 }
2539 }
2540 else if (bl->loc_type == bp_loc_software_breakpoint
2541 && mr->attrib.mode != MEM_RW)
2542 {
2543 fprintf_unfiltered (tmp_error_stream,
2544 _("Cannot insert breakpoint %d.\n"
2545 "Cannot set software breakpoint "
2546 "at read-only address %s\n"),
2547 bl->owner->number,
2548 paddress (bl->gdbarch, bl->address));
2549 return 1;
2550 }
2551 }
2552 }
2553
2554 /* First check to see if we have to handle an overlay. */
2555 if (overlay_debugging == ovly_off
2556 || bl->section == NULL
2557 || !(section_is_overlay (bl->section)))
2558 {
2559 /* No overlay handling: just set the breakpoint. */
2560 TRY
2561 {
2562 int val;
2563
2564 val = bl->owner->ops->insert_location (bl);
2565 if (val)
2566 bp_excpt = gdb_exception {RETURN_ERROR, GENERIC_ERROR};
2567 }
2568 CATCH (e, RETURN_MASK_ALL)
2569 {
2570 bp_excpt = e;
2571 }
2572 END_CATCH
2573 }
2574 else
2575 {
2576 /* This breakpoint is in an overlay section.
2577 Shall we set a breakpoint at the LMA? */
2578 if (!overlay_events_enabled)
2579 {
2580 /* Yes -- overlay event support is not active,
2581 so we must try to set a breakpoint at the LMA.
2582 This will not work for a hardware breakpoint. */
2583 if (bl->loc_type == bp_loc_hardware_breakpoint)
2584 warning (_("hardware breakpoint %d not supported in overlay!"),
2585 bl->owner->number);
2586 else
2587 {
2588 CORE_ADDR addr = overlay_unmapped_address (bl->address,
2589 bl->section);
2590 /* Set a software (trap) breakpoint at the LMA. */
2591 bl->overlay_target_info = bl->target_info;
2592 bl->overlay_target_info.reqstd_address = addr;
2593
2594 /* No overlay handling: just set the breakpoint. */
2595 TRY
2596 {
2597 int val;
2598
2599 bl->overlay_target_info.kind
2600 = breakpoint_kind (bl, &addr);
2601 bl->overlay_target_info.placed_address = addr;
2602 val = target_insert_breakpoint (bl->gdbarch,
2603 &bl->overlay_target_info);
2604 if (val)
2605 bp_excpt
2606 = gdb_exception {RETURN_ERROR, GENERIC_ERROR};
2607 }
2608 CATCH (e, RETURN_MASK_ALL)
2609 {
2610 bp_excpt = e;
2611 }
2612 END_CATCH
2613
2614 if (bp_excpt.reason != 0)
2615 fprintf_unfiltered (tmp_error_stream,
2616 "Overlay breakpoint %d "
2617 "failed: in ROM?\n",
2618 bl->owner->number);
2619 }
2620 }
2621 /* Shall we set a breakpoint at the VMA? */
2622 if (section_is_mapped (bl->section))
2623 {
2624 /* Yes. This overlay section is mapped into memory. */
2625 TRY
2626 {
2627 int val;
2628
2629 val = bl->owner->ops->insert_location (bl);
2630 if (val)
2631 bp_excpt = gdb_exception {RETURN_ERROR, GENERIC_ERROR};
2632 }
2633 CATCH (e, RETURN_MASK_ALL)
2634 {
2635 bp_excpt = e;
2636 }
2637 END_CATCH
2638 }
2639 else
2640 {
2641 /* No. This breakpoint will not be inserted.
2642 No error, but do not mark the bp as 'inserted'. */
2643 return 0;
2644 }
2645 }
2646
2647 if (bp_excpt.reason != 0)
2648 {
2649 /* Can't set the breakpoint. */
2650
2651 /* In some cases, we might not be able to insert a
2652 breakpoint in a shared library that has already been
2653 removed, but we have not yet processed the shlib unload
2654 event. Unfortunately, some targets that implement
2655 breakpoint insertion themselves can't tell why the
2656 breakpoint insertion failed (e.g., the remote target
2657 doesn't define error codes), so we must treat generic
2658 errors as memory errors. */
2659 if (bp_excpt.reason == RETURN_ERROR
2660 && (bp_excpt.error == GENERIC_ERROR
2661 || bp_excpt.error == MEMORY_ERROR)
2662 && bl->loc_type == bp_loc_software_breakpoint
2663 && (solib_name_from_address (bl->pspace, bl->address)
2664 || shared_objfile_contains_address_p (bl->pspace,
2665 bl->address)))
2666 {
2667 /* See also: disable_breakpoints_in_shlibs. */
2668 bl->shlib_disabled = 1;
2669 observer_notify_breakpoint_modified (bl->owner);
2670 if (!*disabled_breaks)
2671 {
2672 fprintf_unfiltered (tmp_error_stream,
2673 "Cannot insert breakpoint %d.\n",
2674 bl->owner->number);
2675 fprintf_unfiltered (tmp_error_stream,
2676 "Temporarily disabling shared "
2677 "library breakpoints:\n");
2678 }
2679 *disabled_breaks = 1;
2680 fprintf_unfiltered (tmp_error_stream,
2681 "breakpoint #%d\n", bl->owner->number);
2682 return 0;
2683 }
2684 else
2685 {
2686 if (bl->loc_type == bp_loc_hardware_breakpoint)
2687 {
2688 *hw_breakpoint_error = 1;
2689 *hw_bp_error_explained_already = bp_excpt.message != NULL;
2690 fprintf_unfiltered (tmp_error_stream,
2691 "Cannot insert hardware breakpoint %d%s",
2692 bl->owner->number,
2693 bp_excpt.message ? ":" : ".\n");
2694 if (bp_excpt.message != NULL)
2695 fprintf_unfiltered (tmp_error_stream, "%s.\n",
2696 bp_excpt.message);
2697 }
2698 else
2699 {
2700 if (bp_excpt.message == NULL)
2701 {
2702 std::string message
2703 = memory_error_message (TARGET_XFER_E_IO,
2704 bl->gdbarch, bl->address);
2705
2706 fprintf_unfiltered (tmp_error_stream,
2707 "Cannot insert breakpoint %d.\n"
2708 "%s\n",
2709 bl->owner->number, message.c_str ());
2710 }
2711 else
2712 {
2713 fprintf_unfiltered (tmp_error_stream,
2714 "Cannot insert breakpoint %d: %s\n",
2715 bl->owner->number,
2716 bp_excpt.message);
2717 }
2718 }
2719 return 1;
2720
2721 }
2722 }
2723 else
2724 bl->inserted = 1;
2725
2726 return 0;
2727 }
2728
2729 else if (bl->loc_type == bp_loc_hardware_watchpoint
2730 /* NOTE drow/2003-09-08: This state only exists for removing
2731 watchpoints. It's not clear that it's necessary... */
2732 && bl->owner->disposition != disp_del_at_next_stop)
2733 {
2734 int val;
2735
2736 gdb_assert (bl->owner->ops != NULL
2737 && bl->owner->ops->insert_location != NULL);
2738
2739 val = bl->owner->ops->insert_location (bl);
2740
2741 /* If trying to set a read-watchpoint, and it turns out it's not
2742 supported, try emulating one with an access watchpoint. */
2743 if (val == 1 && bl->watchpoint_type == hw_read)
2744 {
2745 struct bp_location *loc, **loc_temp;
2746
2747 /* But don't try to insert it, if there's already another
2748 hw_access location that would be considered a duplicate
2749 of this one. */
2750 ALL_BP_LOCATIONS (loc, loc_temp)
2751 if (loc != bl
2752 && loc->watchpoint_type == hw_access
2753 && watchpoint_locations_match (bl, loc))
2754 {
2755 bl->duplicate = 1;
2756 bl->inserted = 1;
2757 bl->target_info = loc->target_info;
2758 bl->watchpoint_type = hw_access;
2759 val = 0;
2760 break;
2761 }
2762
2763 if (val == 1)
2764 {
2765 bl->watchpoint_type = hw_access;
2766 val = bl->owner->ops->insert_location (bl);
2767
2768 if (val)
2769 /* Back to the original value. */
2770 bl->watchpoint_type = hw_read;
2771 }
2772 }
2773
2774 bl->inserted = (val == 0);
2775 }
2776
2777 else if (bl->owner->type == bp_catchpoint)
2778 {
2779 int val;
2780
2781 gdb_assert (bl->owner->ops != NULL
2782 && bl->owner->ops->insert_location != NULL);
2783
2784 val = bl->owner->ops->insert_location (bl);
2785 if (val)
2786 {
2787 bl->owner->enable_state = bp_disabled;
2788
2789 if (val == 1)
2790 warning (_("\
2791 Error inserting catchpoint %d: Your system does not support this type\n\
2792 of catchpoint."), bl->owner->number);
2793 else
2794 warning (_("Error inserting catchpoint %d."), bl->owner->number);
2795 }
2796
2797 bl->inserted = (val == 0);
2798
2799 /* We've already printed an error message if there was a problem
2800 inserting this catchpoint, and we've disabled the catchpoint,
2801 so just return success. */
2802 return 0;
2803 }
2804
2805 return 0;
2806 }
2807
2808 /* This function is called when program space PSPACE is about to be
2809 deleted. It takes care of updating breakpoints to not reference
2810 PSPACE anymore. */
2811
2812 void
2813 breakpoint_program_space_exit (struct program_space *pspace)
2814 {
2815 struct breakpoint *b, *b_temp;
2816 struct bp_location *loc, **loc_temp;
2817
2818 /* Remove any breakpoint that was set through this program space. */
2819 ALL_BREAKPOINTS_SAFE (b, b_temp)
2820 {
2821 if (b->pspace == pspace)
2822 delete_breakpoint (b);
2823 }
2824
2825 /* Breakpoints set through other program spaces could have locations
2826 bound to PSPACE as well. Remove those. */
2827 ALL_BP_LOCATIONS (loc, loc_temp)
2828 {
2829 struct bp_location *tmp;
2830
2831 if (loc->pspace == pspace)
2832 {
2833 /* ALL_BP_LOCATIONS bp_location has LOC->OWNER always non-NULL. */
2834 if (loc->owner->loc == loc)
2835 loc->owner->loc = loc->next;
2836 else
2837 for (tmp = loc->owner->loc; tmp->next != NULL; tmp = tmp->next)
2838 if (tmp->next == loc)
2839 {
2840 tmp->next = loc->next;
2841 break;
2842 }
2843 }
2844 }
2845
2846 /* Now update the global location list to permanently delete the
2847 removed locations above. */
2848 update_global_location_list (UGLL_DONT_INSERT);
2849 }
2850
2851 /* Make sure all breakpoints are inserted in inferior.
2852 Throws exception on any error.
2853 A breakpoint that is already inserted won't be inserted
2854 again, so calling this function twice is safe. */
2855 void
2856 insert_breakpoints (void)
2857 {
2858 struct breakpoint *bpt;
2859
2860 ALL_BREAKPOINTS (bpt)
2861 if (is_hardware_watchpoint (bpt))
2862 {
2863 struct watchpoint *w = (struct watchpoint *) bpt;
2864
2865 update_watchpoint (w, 0 /* don't reparse. */);
2866 }
2867
2868 /* Updating watchpoints creates new locations, so update the global
2869 location list. Explicitly tell ugll to insert locations and
2870 ignore breakpoints_always_inserted_mode. */
2871 update_global_location_list (UGLL_INSERT);
2872 }
2873
2874 /* Invoke CALLBACK for each of bp_location. */
2875
2876 void
2877 iterate_over_bp_locations (walk_bp_location_callback callback)
2878 {
2879 struct bp_location *loc, **loc_tmp;
2880
2881 ALL_BP_LOCATIONS (loc, loc_tmp)
2882 {
2883 callback (loc, NULL);
2884 }
2885 }
2886
2887 /* This is used when we need to synch breakpoint conditions between GDB and the
2888 target. It is the case with deleting and disabling of breakpoints when using
2889 always-inserted mode. */
2890
2891 static void
2892 update_inserted_breakpoint_locations (void)
2893 {
2894 struct bp_location *bl, **blp_tmp;
2895 int error_flag = 0;
2896 int val = 0;
2897 int disabled_breaks = 0;
2898 int hw_breakpoint_error = 0;
2899 int hw_bp_details_reported = 0;
2900
2901 string_file tmp_error_stream;
2902
2903 /* Explicitly mark the warning -- this will only be printed if
2904 there was an error. */
2905 tmp_error_stream.puts ("Warning:\n");
2906
2907 scoped_restore_current_pspace_and_thread restore_pspace_thread;
2908
2909 ALL_BP_LOCATIONS (bl, blp_tmp)
2910 {
2911 /* We only want to update software breakpoints and hardware
2912 breakpoints. */
2913 if (!is_breakpoint (bl->owner))
2914 continue;
2915
2916 /* We only want to update locations that are already inserted
2917 and need updating. This is to avoid unwanted insertion during
2918 deletion of breakpoints. */
2919 if (!bl->inserted || (bl->inserted && !bl->needs_update))
2920 continue;
2921
2922 switch_to_program_space_and_thread (bl->pspace);
2923
2924 /* For targets that support global breakpoints, there's no need
2925 to select an inferior to insert breakpoint to. In fact, even
2926 if we aren't attached to any process yet, we should still
2927 insert breakpoints. */
2928 if (!gdbarch_has_global_breakpoints (target_gdbarch ())
2929 && ptid_equal (inferior_ptid, null_ptid))
2930 continue;
2931
2932 val = insert_bp_location (bl, &tmp_error_stream, &disabled_breaks,
2933 &hw_breakpoint_error, &hw_bp_details_reported);
2934 if (val)
2935 error_flag = val;
2936 }
2937
2938 if (error_flag)
2939 {
2940 target_terminal::ours_for_output ();
2941 error_stream (tmp_error_stream);
2942 }
2943 }
2944
2945 /* Used when starting or continuing the program. */
2946
2947 static void
2948 insert_breakpoint_locations (void)
2949 {
2950 struct breakpoint *bpt;
2951 struct bp_location *bl, **blp_tmp;
2952 int error_flag = 0;
2953 int val = 0;
2954 int disabled_breaks = 0;
2955 int hw_breakpoint_error = 0;
2956 int hw_bp_error_explained_already = 0;
2957
2958 string_file tmp_error_stream;
2959
2960 /* Explicitly mark the warning -- this will only be printed if
2961 there was an error. */
2962 tmp_error_stream.puts ("Warning:\n");
2963
2964 scoped_restore_current_pspace_and_thread restore_pspace_thread;
2965
2966 ALL_BP_LOCATIONS (bl, blp_tmp)
2967 {
2968 if (!should_be_inserted (bl) || (bl->inserted && !bl->needs_update))
2969 continue;
2970
2971 /* There is no point inserting thread-specific breakpoints if
2972 the thread no longer exists. ALL_BP_LOCATIONS bp_location
2973 has BL->OWNER always non-NULL. */
2974 if (bl->owner->thread != -1
2975 && !valid_global_thread_id (bl->owner->thread))
2976 continue;
2977
2978 switch_to_program_space_and_thread (bl->pspace);
2979
2980 /* For targets that support global breakpoints, there's no need
2981 to select an inferior to insert breakpoint to. In fact, even
2982 if we aren't attached to any process yet, we should still
2983 insert breakpoints. */
2984 if (!gdbarch_has_global_breakpoints (target_gdbarch ())
2985 && ptid_equal (inferior_ptid, null_ptid))
2986 continue;
2987
2988 val = insert_bp_location (bl, &tmp_error_stream, &disabled_breaks,
2989 &hw_breakpoint_error, &hw_bp_error_explained_already);
2990 if (val)
2991 error_flag = val;
2992 }
2993
2994 /* If we failed to insert all locations of a watchpoint, remove
2995 them, as half-inserted watchpoint is of limited use. */
2996 ALL_BREAKPOINTS (bpt)
2997 {
2998 int some_failed = 0;
2999 struct bp_location *loc;
3000
3001 if (!is_hardware_watchpoint (bpt))
3002 continue;
3003
3004 if (!breakpoint_enabled (bpt))
3005 continue;
3006
3007 if (bpt->disposition == disp_del_at_next_stop)
3008 continue;
3009
3010 for (loc = bpt->loc; loc; loc = loc->next)
3011 if (!loc->inserted && should_be_inserted (loc))
3012 {
3013 some_failed = 1;
3014 break;
3015 }
3016 if (some_failed)
3017 {
3018 for (loc = bpt->loc; loc; loc = loc->next)
3019 if (loc->inserted)
3020 remove_breakpoint (loc);
3021
3022 hw_breakpoint_error = 1;
3023 tmp_error_stream.printf ("Could not insert "
3024 "hardware watchpoint %d.\n",
3025 bpt->number);
3026 error_flag = -1;
3027 }
3028 }
3029
3030 if (error_flag)
3031 {
3032 /* If a hardware breakpoint or watchpoint was inserted, add a
3033 message about possibly exhausted resources. */
3034 if (hw_breakpoint_error && !hw_bp_error_explained_already)
3035 {
3036 tmp_error_stream.printf ("Could not insert hardware breakpoints:\n\
3037 You may have requested too many hardware breakpoints/watchpoints.\n");
3038 }
3039 target_terminal::ours_for_output ();
3040 error_stream (tmp_error_stream);
3041 }
3042 }
3043
3044 /* Used when the program stops.
3045 Returns zero if successful, or non-zero if there was a problem
3046 removing a breakpoint location. */
3047
3048 int
3049 remove_breakpoints (void)
3050 {
3051 struct bp_location *bl, **blp_tmp;
3052 int val = 0;
3053
3054 ALL_BP_LOCATIONS (bl, blp_tmp)
3055 {
3056 if (bl->inserted && !is_tracepoint (bl->owner))
3057 val |= remove_breakpoint (bl);
3058 }
3059 return val;
3060 }
3061
3062 /* When a thread exits, remove breakpoints that are related to
3063 that thread. */
3064
3065 static void
3066 remove_threaded_breakpoints (struct thread_info *tp, int silent)
3067 {
3068 struct breakpoint *b, *b_tmp;
3069
3070 ALL_BREAKPOINTS_SAFE (b, b_tmp)
3071 {
3072 if (b->thread == tp->global_num && user_breakpoint_p (b))
3073 {
3074 b->disposition = disp_del_at_next_stop;
3075
3076 printf_filtered (_("\
3077 Thread-specific breakpoint %d deleted - thread %s no longer in the thread list.\n"),
3078 b->number, print_thread_id (tp));
3079
3080 /* Hide it from the user. */
3081 b->number = 0;
3082 }
3083 }
3084 }
3085
3086 /* Remove breakpoints of process PID. */
3087
3088 int
3089 remove_breakpoints_pid (int pid)
3090 {
3091 struct bp_location *bl, **blp_tmp;
3092 int val;
3093 struct inferior *inf = find_inferior_pid (pid);
3094
3095 ALL_BP_LOCATIONS (bl, blp_tmp)
3096 {
3097 if (bl->pspace != inf->pspace)
3098 continue;
3099
3100 if (bl->inserted && !bl->target_info.persist)
3101 {
3102 val = remove_breakpoint (bl);
3103 if (val != 0)
3104 return val;
3105 }
3106 }
3107 return 0;
3108 }
3109
3110 static int internal_breakpoint_number = -1;
3111
3112 /* Set the breakpoint number of B, depending on the value of INTERNAL.
3113 If INTERNAL is non-zero, the breakpoint number will be populated
3114 from internal_breakpoint_number and that variable decremented.
3115 Otherwise the breakpoint number will be populated from
3116 breakpoint_count and that value incremented. Internal breakpoints
3117 do not set the internal var bpnum. */
3118 static void
3119 set_breakpoint_number (int internal, struct breakpoint *b)
3120 {
3121 if (internal)
3122 b->number = internal_breakpoint_number--;
3123 else
3124 {
3125 set_breakpoint_count (breakpoint_count + 1);
3126 b->number = breakpoint_count;
3127 }
3128 }
3129
3130 static struct breakpoint *
3131 create_internal_breakpoint (struct gdbarch *gdbarch,
3132 CORE_ADDR address, enum bptype type,
3133 const struct breakpoint_ops *ops)
3134 {
3135 symtab_and_line sal;
3136 sal.pc = address;
3137 sal.section = find_pc_overlay (sal.pc);
3138 sal.pspace = current_program_space;
3139
3140 breakpoint *b = set_raw_breakpoint (gdbarch, sal, type, ops);
3141 b->number = internal_breakpoint_number--;
3142 b->disposition = disp_donttouch;
3143
3144 return b;
3145 }
3146
3147 static const char *const longjmp_names[] =
3148 {
3149 "longjmp", "_longjmp", "siglongjmp", "_siglongjmp"
3150 };
3151 #define NUM_LONGJMP_NAMES ARRAY_SIZE(longjmp_names)
3152
3153 /* Per-objfile data private to breakpoint.c. */
3154 struct breakpoint_objfile_data
3155 {
3156 /* Minimal symbol for "_ovly_debug_event" (if any). */
3157 struct bound_minimal_symbol overlay_msym {};
3158
3159 /* Minimal symbol(s) for "longjmp", "siglongjmp", etc. (if any). */
3160 struct bound_minimal_symbol longjmp_msym[NUM_LONGJMP_NAMES] {};
3161
3162 /* True if we have looked for longjmp probes. */
3163 int longjmp_searched = 0;
3164
3165 /* SystemTap probe points for longjmp (if any). These are non-owning
3166 references. */
3167 std::vector<probe *> longjmp_probes;
3168
3169 /* Minimal symbol for "std::terminate()" (if any). */
3170 struct bound_minimal_symbol terminate_msym {};
3171
3172 /* Minimal symbol for "_Unwind_DebugHook" (if any). */
3173 struct bound_minimal_symbol exception_msym {};
3174
3175 /* True if we have looked for exception probes. */
3176 int exception_searched = 0;
3177
3178 /* SystemTap probe points for unwinding (if any). These are non-owning
3179 references. */
3180 std::vector<probe *> exception_probes;
3181 };
3182
3183 static const struct objfile_data *breakpoint_objfile_key;
3184
3185 /* Minimal symbol not found sentinel. */
3186 static struct minimal_symbol msym_not_found;
3187
3188 /* Returns TRUE if MSYM point to the "not found" sentinel. */
3189
3190 static int
3191 msym_not_found_p (const struct minimal_symbol *msym)
3192 {
3193 return msym == &msym_not_found;
3194 }
3195
3196 /* Return per-objfile data needed by breakpoint.c.
3197 Allocate the data if necessary. */
3198
3199 static struct breakpoint_objfile_data *
3200 get_breakpoint_objfile_data (struct objfile *objfile)
3201 {
3202 struct breakpoint_objfile_data *bp_objfile_data;
3203
3204 bp_objfile_data = ((struct breakpoint_objfile_data *)
3205 objfile_data (objfile, breakpoint_objfile_key));
3206 if (bp_objfile_data == NULL)
3207 {
3208 bp_objfile_data = new breakpoint_objfile_data ();
3209 set_objfile_data (objfile, breakpoint_objfile_key, bp_objfile_data);
3210 }
3211 return bp_objfile_data;
3212 }
3213
3214 static void
3215 free_breakpoint_objfile_data (struct objfile *obj, void *data)
3216 {
3217 struct breakpoint_objfile_data *bp_objfile_data
3218 = (struct breakpoint_objfile_data *) data;
3219
3220 delete bp_objfile_data;
3221 }
3222
3223 static void
3224 create_overlay_event_breakpoint (void)
3225 {
3226 struct objfile *objfile;
3227 const char *const func_name = "_ovly_debug_event";
3228
3229 ALL_OBJFILES (objfile)
3230 {
3231 struct breakpoint *b;
3232 struct breakpoint_objfile_data *bp_objfile_data;
3233 CORE_ADDR addr;
3234 struct explicit_location explicit_loc;
3235
3236 bp_objfile_data = get_breakpoint_objfile_data (objfile);
3237
3238 if (msym_not_found_p (bp_objfile_data->overlay_msym.minsym))
3239 continue;
3240
3241 if (bp_objfile_data->overlay_msym.minsym == NULL)
3242 {
3243 struct bound_minimal_symbol m;
3244
3245 m = lookup_minimal_symbol_text (func_name, objfile);
3246 if (m.minsym == NULL)
3247 {
3248 /* Avoid future lookups in this objfile. */
3249 bp_objfile_data->overlay_msym.minsym = &msym_not_found;
3250 continue;
3251 }
3252 bp_objfile_data->overlay_msym = m;
3253 }
3254
3255 addr = BMSYMBOL_VALUE_ADDRESS (bp_objfile_data->overlay_msym);
3256 b = create_internal_breakpoint (get_objfile_arch (objfile), addr,
3257 bp_overlay_event,
3258 &internal_breakpoint_ops);
3259 initialize_explicit_location (&explicit_loc);
3260 explicit_loc.function_name = ASTRDUP (func_name);
3261 b->location = new_explicit_location (&explicit_loc);
3262
3263 if (overlay_debugging == ovly_auto)
3264 {
3265 b->enable_state = bp_enabled;
3266 overlay_events_enabled = 1;
3267 }
3268 else
3269 {
3270 b->enable_state = bp_disabled;
3271 overlay_events_enabled = 0;
3272 }
3273 }
3274 }
3275
3276 static void
3277 create_longjmp_master_breakpoint (void)
3278 {
3279 struct program_space *pspace;
3280
3281 scoped_restore_current_program_space restore_pspace;
3282
3283 ALL_PSPACES (pspace)
3284 {
3285 struct objfile *objfile;
3286
3287 set_current_program_space (pspace);
3288
3289 ALL_OBJFILES (objfile)
3290 {
3291 int i;
3292 struct gdbarch *gdbarch;
3293 struct breakpoint_objfile_data *bp_objfile_data;
3294
3295 gdbarch = get_objfile_arch (objfile);
3296
3297 bp_objfile_data = get_breakpoint_objfile_data (objfile);
3298
3299 if (!bp_objfile_data->longjmp_searched)
3300 {
3301 std::vector<probe *> ret
3302 = find_probes_in_objfile (objfile, "libc", "longjmp");
3303
3304 if (!ret.empty ())
3305 {
3306 /* We are only interested in checking one element. */
3307 probe *p = ret[0];
3308
3309 if (!p->can_evaluate_arguments ())
3310 {
3311 /* We cannot use the probe interface here, because it does
3312 not know how to evaluate arguments. */
3313 ret.clear ();
3314 }
3315 }
3316 bp_objfile_data->longjmp_probes = ret;
3317 bp_objfile_data->longjmp_searched = 1;
3318 }
3319
3320 if (!bp_objfile_data->longjmp_probes.empty ())
3321 {
3322 struct gdbarch *gdbarch = get_objfile_arch (objfile);
3323
3324 for (probe *p : bp_objfile_data->longjmp_probes)
3325 {
3326 struct breakpoint *b;
3327
3328 b = create_internal_breakpoint (gdbarch,
3329 p->get_relocated_address (objfile),
3330 bp_longjmp_master,
3331 &internal_breakpoint_ops);
3332 b->location = new_probe_location ("-probe-stap libc:longjmp");
3333 b->enable_state = bp_disabled;
3334 }
3335
3336 continue;
3337 }
3338
3339 if (!gdbarch_get_longjmp_target_p (gdbarch))
3340 continue;
3341
3342 for (i = 0; i < NUM_LONGJMP_NAMES; i++)
3343 {
3344 struct breakpoint *b;
3345 const char *func_name;
3346 CORE_ADDR addr;
3347 struct explicit_location explicit_loc;
3348
3349 if (msym_not_found_p (bp_objfile_data->longjmp_msym[i].minsym))
3350 continue;
3351
3352 func_name = longjmp_names[i];
3353 if (bp_objfile_data->longjmp_msym[i].minsym == NULL)
3354 {
3355 struct bound_minimal_symbol m;
3356
3357 m = lookup_minimal_symbol_text (func_name, objfile);
3358 if (m.minsym == NULL)
3359 {
3360 /* Prevent future lookups in this objfile. */
3361 bp_objfile_data->longjmp_msym[i].minsym = &msym_not_found;
3362 continue;
3363 }
3364 bp_objfile_data->longjmp_msym[i] = m;
3365 }
3366
3367 addr = BMSYMBOL_VALUE_ADDRESS (bp_objfile_data->longjmp_msym[i]);
3368 b = create_internal_breakpoint (gdbarch, addr, bp_longjmp_master,
3369 &internal_breakpoint_ops);
3370 initialize_explicit_location (&explicit_loc);
3371 explicit_loc.function_name = ASTRDUP (func_name);
3372 b->location = new_explicit_location (&explicit_loc);
3373 b->enable_state = bp_disabled;
3374 }
3375 }
3376 }
3377 }
3378
3379 /* Create a master std::terminate breakpoint. */
3380 static void
3381 create_std_terminate_master_breakpoint (void)
3382 {
3383 struct program_space *pspace;
3384 const char *const func_name = "std::terminate()";
3385
3386 scoped_restore_current_program_space restore_pspace;
3387
3388 ALL_PSPACES (pspace)
3389 {
3390 struct objfile *objfile;
3391 CORE_ADDR addr;
3392
3393 set_current_program_space (pspace);
3394
3395 ALL_OBJFILES (objfile)
3396 {
3397 struct breakpoint *b;
3398 struct breakpoint_objfile_data *bp_objfile_data;
3399 struct explicit_location explicit_loc;
3400
3401 bp_objfile_data = get_breakpoint_objfile_data (objfile);
3402
3403 if (msym_not_found_p (bp_objfile_data->terminate_msym.minsym))
3404 continue;
3405
3406 if (bp_objfile_data->terminate_msym.minsym == NULL)
3407 {
3408 struct bound_minimal_symbol m;
3409
3410 m = lookup_minimal_symbol (func_name, NULL, objfile);
3411 if (m.minsym == NULL || (MSYMBOL_TYPE (m.minsym) != mst_text
3412 && MSYMBOL_TYPE (m.minsym) != mst_file_text))
3413 {
3414 /* Prevent future lookups in this objfile. */
3415 bp_objfile_data->terminate_msym.minsym = &msym_not_found;
3416 continue;
3417 }
3418 bp_objfile_data->terminate_msym = m;
3419 }
3420
3421 addr = BMSYMBOL_VALUE_ADDRESS (bp_objfile_data->terminate_msym);
3422 b = create_internal_breakpoint (get_objfile_arch (objfile), addr,
3423 bp_std_terminate_master,
3424 &internal_breakpoint_ops);
3425 initialize_explicit_location (&explicit_loc);
3426 explicit_loc.function_name = ASTRDUP (func_name);
3427 b->location = new_explicit_location (&explicit_loc);
3428 b->enable_state = bp_disabled;
3429 }
3430 }
3431 }
3432
3433 /* Install a master breakpoint on the unwinder's debug hook. */
3434
3435 static void
3436 create_exception_master_breakpoint (void)
3437 {
3438 struct objfile *objfile;
3439 const char *const func_name = "_Unwind_DebugHook";
3440
3441 ALL_OBJFILES (objfile)
3442 {
3443 struct breakpoint *b;
3444 struct gdbarch *gdbarch;
3445 struct breakpoint_objfile_data *bp_objfile_data;
3446 CORE_ADDR addr;
3447 struct explicit_location explicit_loc;
3448
3449 bp_objfile_data = get_breakpoint_objfile_data (objfile);
3450
3451 /* We prefer the SystemTap probe point if it exists. */
3452 if (!bp_objfile_data->exception_searched)
3453 {
3454 std::vector<probe *> ret
3455 = find_probes_in_objfile (objfile, "libgcc", "unwind");
3456
3457 if (!ret.empty ())
3458 {
3459 /* We are only interested in checking one element. */
3460 probe *p = ret[0];
3461
3462 if (!p->can_evaluate_arguments ())
3463 {
3464 /* We cannot use the probe interface here, because it does
3465 not know how to evaluate arguments. */
3466 ret.clear ();
3467 }
3468 }
3469 bp_objfile_data->exception_probes = ret;
3470 bp_objfile_data->exception_searched = 1;
3471 }
3472
3473 if (!bp_objfile_data->exception_probes.empty ())
3474 {
3475 struct gdbarch *gdbarch = get_objfile_arch (objfile);
3476
3477 for (probe *p : bp_objfile_data->exception_probes)
3478 {
3479 struct breakpoint *b;
3480
3481 b = create_internal_breakpoint (gdbarch,
3482 p->get_relocated_address (objfile),
3483 bp_exception_master,
3484 &internal_breakpoint_ops);
3485 b->location = new_probe_location ("-probe-stap libgcc:unwind");
3486 b->enable_state = bp_disabled;
3487 }
3488
3489 continue;
3490 }
3491
3492 /* Otherwise, try the hook function. */
3493
3494 if (msym_not_found_p (bp_objfile_data->exception_msym.minsym))
3495 continue;
3496
3497 gdbarch = get_objfile_arch (objfile);
3498
3499 if (bp_objfile_data->exception_msym.minsym == NULL)
3500 {
3501 struct bound_minimal_symbol debug_hook;
3502
3503 debug_hook = lookup_minimal_symbol (func_name, NULL, objfile);
3504 if (debug_hook.minsym == NULL)
3505 {
3506 bp_objfile_data->exception_msym.minsym = &msym_not_found;
3507 continue;
3508 }
3509
3510 bp_objfile_data->exception_msym = debug_hook;
3511 }
3512
3513 addr = BMSYMBOL_VALUE_ADDRESS (bp_objfile_data->exception_msym);
3514 addr = gdbarch_convert_from_func_ptr_addr (gdbarch, addr,
3515 &current_target);
3516 b = create_internal_breakpoint (gdbarch, addr, bp_exception_master,
3517 &internal_breakpoint_ops);
3518 initialize_explicit_location (&explicit_loc);
3519 explicit_loc.function_name = ASTRDUP (func_name);
3520 b->location = new_explicit_location (&explicit_loc);
3521 b->enable_state = bp_disabled;
3522 }
3523 }
3524
3525 /* Does B have a location spec? */
3526
3527 static int
3528 breakpoint_event_location_empty_p (const struct breakpoint *b)
3529 {
3530 return b->location != NULL && event_location_empty_p (b->location.get ());
3531 }
3532
3533 void
3534 update_breakpoints_after_exec (void)
3535 {
3536 struct breakpoint *b, *b_tmp;
3537 struct bp_location *bploc, **bplocp_tmp;
3538
3539 /* We're about to delete breakpoints from GDB's lists. If the
3540 INSERTED flag is true, GDB will try to lift the breakpoints by
3541 writing the breakpoints' "shadow contents" back into memory. The
3542 "shadow contents" are NOT valid after an exec, so GDB should not
3543 do that. Instead, the target is responsible from marking
3544 breakpoints out as soon as it detects an exec. We don't do that
3545 here instead, because there may be other attempts to delete
3546 breakpoints after detecting an exec and before reaching here. */
3547 ALL_BP_LOCATIONS (bploc, bplocp_tmp)
3548 if (bploc->pspace == current_program_space)
3549 gdb_assert (!bploc->inserted);
3550
3551 ALL_BREAKPOINTS_SAFE (b, b_tmp)
3552 {
3553 if (b->pspace != current_program_space)
3554 continue;
3555
3556 /* Solib breakpoints must be explicitly reset after an exec(). */
3557 if (b->type == bp_shlib_event)
3558 {
3559 delete_breakpoint (b);
3560 continue;
3561 }
3562
3563 /* JIT breakpoints must be explicitly reset after an exec(). */
3564 if (b->type == bp_jit_event)
3565 {
3566 delete_breakpoint (b);
3567 continue;
3568 }
3569
3570 /* Thread event breakpoints must be set anew after an exec(),
3571 as must overlay event and longjmp master breakpoints. */
3572 if (b->type == bp_thread_event || b->type == bp_overlay_event
3573 || b->type == bp_longjmp_master || b->type == bp_std_terminate_master
3574 || b->type == bp_exception_master)
3575 {
3576 delete_breakpoint (b);
3577 continue;
3578 }
3579
3580 /* Step-resume breakpoints are meaningless after an exec(). */
3581 if (b->type == bp_step_resume || b->type == bp_hp_step_resume)
3582 {
3583 delete_breakpoint (b);
3584 continue;
3585 }
3586
3587 /* Just like single-step breakpoints. */
3588 if (b->type == bp_single_step)
3589 {
3590 delete_breakpoint (b);
3591 continue;
3592 }
3593
3594 /* Longjmp and longjmp-resume breakpoints are also meaningless
3595 after an exec. */
3596 if (b->type == bp_longjmp || b->type == bp_longjmp_resume
3597 || b->type == bp_longjmp_call_dummy
3598 || b->type == bp_exception || b->type == bp_exception_resume)
3599 {
3600 delete_breakpoint (b);
3601 continue;
3602 }
3603
3604 if (b->type == bp_catchpoint)
3605 {
3606 /* For now, none of the bp_catchpoint breakpoints need to
3607 do anything at this point. In the future, if some of
3608 the catchpoints need to something, we will need to add
3609 a new method, and call this method from here. */
3610 continue;
3611 }
3612
3613 /* bp_finish is a special case. The only way we ought to be able
3614 to see one of these when an exec() has happened, is if the user
3615 caught a vfork, and then said "finish". Ordinarily a finish just
3616 carries them to the call-site of the current callee, by setting
3617 a temporary bp there and resuming. But in this case, the finish
3618 will carry them entirely through the vfork & exec.
3619
3620 We don't want to allow a bp_finish to remain inserted now. But
3621 we can't safely delete it, 'cause finish_command has a handle to
3622 the bp on a bpstat, and will later want to delete it. There's a
3623 chance (and I've seen it happen) that if we delete the bp_finish
3624 here, that its storage will get reused by the time finish_command
3625 gets 'round to deleting the "use to be a bp_finish" breakpoint.
3626 We really must allow finish_command to delete a bp_finish.
3627
3628 In the absence of a general solution for the "how do we know
3629 it's safe to delete something others may have handles to?"
3630 problem, what we'll do here is just uninsert the bp_finish, and
3631 let finish_command delete it.
3632
3633 (We know the bp_finish is "doomed" in the sense that it's
3634 momentary, and will be deleted as soon as finish_command sees
3635 the inferior stopped. So it doesn't matter that the bp's
3636 address is probably bogus in the new a.out, unlike e.g., the
3637 solib breakpoints.) */
3638
3639 if (b->type == bp_finish)
3640 {
3641 continue;
3642 }
3643
3644 /* Without a symbolic address, we have little hope of the
3645 pre-exec() address meaning the same thing in the post-exec()
3646 a.out. */
3647 if (breakpoint_event_location_empty_p (b))
3648 {
3649 delete_breakpoint (b);
3650 continue;
3651 }
3652 }
3653 }
3654
3655 int
3656 detach_breakpoints (ptid_t ptid)
3657 {
3658 struct bp_location *bl, **blp_tmp;
3659 int val = 0;
3660 scoped_restore save_inferior_ptid = make_scoped_restore (&inferior_ptid);
3661 struct inferior *inf = current_inferior ();
3662
3663 if (ptid_get_pid (ptid) == ptid_get_pid (inferior_ptid))
3664 error (_("Cannot detach breakpoints of inferior_ptid"));
3665
3666 /* Set inferior_ptid; remove_breakpoint_1 uses this global. */
3667 inferior_ptid = ptid;
3668 ALL_BP_LOCATIONS (bl, blp_tmp)
3669 {
3670 if (bl->pspace != inf->pspace)
3671 continue;
3672
3673 /* This function must physically remove breakpoints locations
3674 from the specified ptid, without modifying the breakpoint
3675 package's state. Locations of type bp_loc_other are only
3676 maintained at GDB side. So, there is no need to remove
3677 these bp_loc_other locations. Moreover, removing these
3678 would modify the breakpoint package's state. */
3679 if (bl->loc_type == bp_loc_other)
3680 continue;
3681
3682 if (bl->inserted)
3683 val |= remove_breakpoint_1 (bl, DETACH_BREAKPOINT);
3684 }
3685
3686 return val;
3687 }
3688
3689 /* Remove the breakpoint location BL from the current address space.
3690 Note that this is used to detach breakpoints from a child fork.
3691 When we get here, the child isn't in the inferior list, and neither
3692 do we have objects to represent its address space --- we should
3693 *not* look at bl->pspace->aspace here. */
3694
3695 static int
3696 remove_breakpoint_1 (struct bp_location *bl, enum remove_bp_reason reason)
3697 {
3698 int val;
3699
3700 /* BL is never in moribund_locations by our callers. */
3701 gdb_assert (bl->owner != NULL);
3702
3703 /* The type of none suggests that owner is actually deleted.
3704 This should not ever happen. */
3705 gdb_assert (bl->owner->type != bp_none);
3706
3707 if (bl->loc_type == bp_loc_software_breakpoint
3708 || bl->loc_type == bp_loc_hardware_breakpoint)
3709 {
3710 /* "Normal" instruction breakpoint: either the standard
3711 trap-instruction bp (bp_breakpoint), or a
3712 bp_hardware_breakpoint. */
3713
3714 /* First check to see if we have to handle an overlay. */
3715 if (overlay_debugging == ovly_off
3716 || bl->section == NULL
3717 || !(section_is_overlay (bl->section)))
3718 {
3719 /* No overlay handling: just remove the breakpoint. */
3720
3721 /* If we're trying to uninsert a memory breakpoint that we
3722 know is set in a dynamic object that is marked
3723 shlib_disabled, then either the dynamic object was
3724 removed with "remove-symbol-file" or with
3725 "nosharedlibrary". In the former case, we don't know
3726 whether another dynamic object might have loaded over the
3727 breakpoint's address -- the user might well let us know
3728 about it next with add-symbol-file (the whole point of
3729 add-symbol-file is letting the user manually maintain a
3730 list of dynamically loaded objects). If we have the
3731 breakpoint's shadow memory, that is, this is a software
3732 breakpoint managed by GDB, check whether the breakpoint
3733 is still inserted in memory, to avoid overwriting wrong
3734 code with stale saved shadow contents. Note that HW
3735 breakpoints don't have shadow memory, as they're
3736 implemented using a mechanism that is not dependent on
3737 being able to modify the target's memory, and as such
3738 they should always be removed. */
3739 if (bl->shlib_disabled
3740 && bl->target_info.shadow_len != 0
3741 && !memory_validate_breakpoint (bl->gdbarch, &bl->target_info))
3742 val = 0;
3743 else
3744 val = bl->owner->ops->remove_location (bl, reason);
3745 }
3746 else
3747 {
3748 /* This breakpoint is in an overlay section.
3749 Did we set a breakpoint at the LMA? */
3750 if (!overlay_events_enabled)
3751 {
3752 /* Yes -- overlay event support is not active, so we
3753 should have set a breakpoint at the LMA. Remove it.
3754 */
3755 /* Ignore any failures: if the LMA is in ROM, we will
3756 have already warned when we failed to insert it. */
3757 if (bl->loc_type == bp_loc_hardware_breakpoint)
3758 target_remove_hw_breakpoint (bl->gdbarch,
3759 &bl->overlay_target_info);
3760 else
3761 target_remove_breakpoint (bl->gdbarch,
3762 &bl->overlay_target_info,
3763 reason);
3764 }
3765 /* Did we set a breakpoint at the VMA?
3766 If so, we will have marked the breakpoint 'inserted'. */
3767 if (bl->inserted)
3768 {
3769 /* Yes -- remove it. Previously we did not bother to
3770 remove the breakpoint if the section had been
3771 unmapped, but let's not rely on that being safe. We
3772 don't know what the overlay manager might do. */
3773
3774 /* However, we should remove *software* breakpoints only
3775 if the section is still mapped, or else we overwrite
3776 wrong code with the saved shadow contents. */
3777 if (bl->loc_type == bp_loc_hardware_breakpoint
3778 || section_is_mapped (bl->section))
3779 val = bl->owner->ops->remove_location (bl, reason);
3780 else
3781 val = 0;
3782 }
3783 else
3784 {
3785 /* No -- not inserted, so no need to remove. No error. */
3786 val = 0;
3787 }
3788 }
3789
3790 /* In some cases, we might not be able to remove a breakpoint in
3791 a shared library that has already been removed, but we have
3792 not yet processed the shlib unload event. Similarly for an
3793 unloaded add-symbol-file object - the user might not yet have
3794 had the chance to remove-symbol-file it. shlib_disabled will
3795 be set if the library/object has already been removed, but
3796 the breakpoint hasn't been uninserted yet, e.g., after
3797 "nosharedlibrary" or "remove-symbol-file" with breakpoints
3798 always-inserted mode. */
3799 if (val
3800 && (bl->loc_type == bp_loc_software_breakpoint
3801 && (bl->shlib_disabled
3802 || solib_name_from_address (bl->pspace, bl->address)
3803 || shared_objfile_contains_address_p (bl->pspace,
3804 bl->address))))
3805 val = 0;
3806
3807 if (val)
3808 return val;
3809 bl->inserted = (reason == DETACH_BREAKPOINT);
3810 }
3811 else if (bl->loc_type == bp_loc_hardware_watchpoint)
3812 {
3813 gdb_assert (bl->owner->ops != NULL
3814 && bl->owner->ops->remove_location != NULL);
3815
3816 bl->inserted = (reason == DETACH_BREAKPOINT);
3817 bl->owner->ops->remove_location (bl, reason);
3818
3819 /* Failure to remove any of the hardware watchpoints comes here. */
3820 if (reason == REMOVE_BREAKPOINT && bl->inserted)
3821 warning (_("Could not remove hardware watchpoint %d."),
3822 bl->owner->number);
3823 }
3824 else if (bl->owner->type == bp_catchpoint
3825 && breakpoint_enabled (bl->owner)
3826 && !bl->duplicate)
3827 {
3828 gdb_assert (bl->owner->ops != NULL
3829 && bl->owner->ops->remove_location != NULL);
3830
3831 val = bl->owner->ops->remove_location (bl, reason);
3832 if (val)
3833 return val;
3834
3835 bl->inserted = (reason == DETACH_BREAKPOINT);
3836 }
3837
3838 return 0;
3839 }
3840
3841 static int
3842 remove_breakpoint (struct bp_location *bl)
3843 {
3844 /* BL is never in moribund_locations by our callers. */
3845 gdb_assert (bl->owner != NULL);
3846
3847 /* The type of none suggests that owner is actually deleted.
3848 This should not ever happen. */
3849 gdb_assert (bl->owner->type != bp_none);
3850
3851 scoped_restore_current_pspace_and_thread restore_pspace_thread;
3852
3853 switch_to_program_space_and_thread (bl->pspace);
3854
3855 return remove_breakpoint_1 (bl, REMOVE_BREAKPOINT);
3856 }
3857
3858 /* Clear the "inserted" flag in all breakpoints. */
3859
3860 void
3861 mark_breakpoints_out (void)
3862 {
3863 struct bp_location *bl, **blp_tmp;
3864
3865 ALL_BP_LOCATIONS (bl, blp_tmp)
3866 if (bl->pspace == current_program_space)
3867 bl->inserted = 0;
3868 }
3869
3870 /* Clear the "inserted" flag in all breakpoints and delete any
3871 breakpoints which should go away between runs of the program.
3872
3873 Plus other such housekeeping that has to be done for breakpoints
3874 between runs.
3875
3876 Note: this function gets called at the end of a run (by
3877 generic_mourn_inferior) and when a run begins (by
3878 init_wait_for_inferior). */
3879
3880
3881
3882 void
3883 breakpoint_init_inferior (enum inf_context context)
3884 {
3885 struct breakpoint *b, *b_tmp;
3886 struct bp_location *bl;
3887 int ix;
3888 struct program_space *pspace = current_program_space;
3889
3890 /* If breakpoint locations are shared across processes, then there's
3891 nothing to do. */
3892 if (gdbarch_has_global_breakpoints (target_gdbarch ()))
3893 return;
3894
3895 mark_breakpoints_out ();
3896
3897 ALL_BREAKPOINTS_SAFE (b, b_tmp)
3898 {
3899 if (b->loc && b->loc->pspace != pspace)
3900 continue;
3901
3902 switch (b->type)
3903 {
3904 case bp_call_dummy:
3905 case bp_longjmp_call_dummy:
3906
3907 /* If the call dummy breakpoint is at the entry point it will
3908 cause problems when the inferior is rerun, so we better get
3909 rid of it. */
3910
3911 case bp_watchpoint_scope:
3912
3913 /* Also get rid of scope breakpoints. */
3914
3915 case bp_shlib_event:
3916
3917 /* Also remove solib event breakpoints. Their addresses may
3918 have changed since the last time we ran the program.
3919 Actually we may now be debugging against different target;
3920 and so the solib backend that installed this breakpoint may
3921 not be used in by the target. E.g.,
3922
3923 (gdb) file prog-linux
3924 (gdb) run # native linux target
3925 ...
3926 (gdb) kill
3927 (gdb) file prog-win.exe
3928 (gdb) tar rem :9999 # remote Windows gdbserver.
3929 */
3930
3931 case bp_step_resume:
3932
3933 /* Also remove step-resume breakpoints. */
3934
3935 case bp_single_step:
3936
3937 /* Also remove single-step breakpoints. */
3938
3939 delete_breakpoint (b);
3940 break;
3941
3942 case bp_watchpoint:
3943 case bp_hardware_watchpoint:
3944 case bp_read_watchpoint:
3945 case bp_access_watchpoint:
3946 {
3947 struct watchpoint *w = (struct watchpoint *) b;
3948
3949 /* Likewise for watchpoints on local expressions. */
3950 if (w->exp_valid_block != NULL)
3951 delete_breakpoint (b);
3952 else
3953 {
3954 /* Get rid of existing locations, which are no longer
3955 valid. New ones will be created in
3956 update_watchpoint, when the inferior is restarted.
3957 The next update_global_location_list call will
3958 garbage collect them. */
3959 b->loc = NULL;
3960
3961 if (context == inf_starting)
3962 {
3963 /* Reset val field to force reread of starting value in
3964 insert_breakpoints. */
3965 if (w->val)
3966 value_free (w->val);
3967 w->val = NULL;
3968 w->val_valid = 0;
3969 }
3970 }
3971 }
3972 break;
3973 default:
3974 break;
3975 }
3976 }
3977
3978 /* Get rid of the moribund locations. */
3979 for (ix = 0; VEC_iterate (bp_location_p, moribund_locations, ix, bl); ++ix)
3980 decref_bp_location (&bl);
3981 VEC_free (bp_location_p, moribund_locations);
3982 }
3983
3984 /* These functions concern about actual breakpoints inserted in the
3985 target --- to e.g. check if we need to do decr_pc adjustment or if
3986 we need to hop over the bkpt --- so we check for address space
3987 match, not program space. */
3988
3989 /* breakpoint_here_p (PC) returns non-zero if an enabled breakpoint
3990 exists at PC. It returns ordinary_breakpoint_here if it's an
3991 ordinary breakpoint, or permanent_breakpoint_here if it's a
3992 permanent breakpoint.
3993 - When continuing from a location with an ordinary breakpoint, we
3994 actually single step once before calling insert_breakpoints.
3995 - When continuing from a location with a permanent breakpoint, we
3996 need to use the `SKIP_PERMANENT_BREAKPOINT' macro, provided by
3997 the target, to advance the PC past the breakpoint. */
3998
3999 enum breakpoint_here
4000 breakpoint_here_p (const address_space *aspace, CORE_ADDR pc)
4001 {
4002 struct bp_location *bl, **blp_tmp;
4003 int any_breakpoint_here = 0;
4004
4005 ALL_BP_LOCATIONS (bl, blp_tmp)
4006 {
4007 if (bl->loc_type != bp_loc_software_breakpoint
4008 && bl->loc_type != bp_loc_hardware_breakpoint)
4009 continue;
4010
4011 /* ALL_BP_LOCATIONS bp_location has BL->OWNER always non-NULL. */
4012 if ((breakpoint_enabled (bl->owner)
4013 || bl->permanent)
4014 && breakpoint_location_address_match (bl, aspace, pc))
4015 {
4016 if (overlay_debugging
4017 && section_is_overlay (bl->section)
4018 && !section_is_mapped (bl->section))
4019 continue; /* unmapped overlay -- can't be a match */
4020 else if (bl->permanent)
4021 return permanent_breakpoint_here;
4022 else
4023 any_breakpoint_here = 1;
4024 }
4025 }
4026
4027 return any_breakpoint_here ? ordinary_breakpoint_here : no_breakpoint_here;
4028 }
4029
4030 /* See breakpoint.h. */
4031
4032 int
4033 breakpoint_in_range_p (const address_space *aspace,
4034 CORE_ADDR addr, ULONGEST len)
4035 {
4036 struct bp_location *bl, **blp_tmp;
4037
4038 ALL_BP_LOCATIONS (bl, blp_tmp)
4039 {
4040 if (bl->loc_type != bp_loc_software_breakpoint
4041 && bl->loc_type != bp_loc_hardware_breakpoint)
4042 continue;
4043
4044 if ((breakpoint_enabled (bl->owner)
4045 || bl->permanent)
4046 && breakpoint_location_address_range_overlap (bl, aspace,
4047 addr, len))
4048 {
4049 if (overlay_debugging
4050 && section_is_overlay (bl->section)
4051 && !section_is_mapped (bl->section))
4052 {
4053 /* Unmapped overlay -- can't be a match. */
4054 continue;
4055 }
4056
4057 return 1;
4058 }
4059 }
4060
4061 return 0;
4062 }
4063
4064 /* Return true if there's a moribund breakpoint at PC. */
4065
4066 int
4067 moribund_breakpoint_here_p (const address_space *aspace, CORE_ADDR pc)
4068 {
4069 struct bp_location *loc;
4070 int ix;
4071
4072 for (ix = 0; VEC_iterate (bp_location_p, moribund_locations, ix, loc); ++ix)
4073 if (breakpoint_location_address_match (loc, aspace, pc))
4074 return 1;
4075
4076 return 0;
4077 }
4078
4079 /* Returns non-zero iff BL is inserted at PC, in address space
4080 ASPACE. */
4081
4082 static int
4083 bp_location_inserted_here_p (struct bp_location *bl,
4084 const address_space *aspace, CORE_ADDR pc)
4085 {
4086 if (bl->inserted
4087 && breakpoint_address_match (bl->pspace->aspace, bl->address,
4088 aspace, pc))
4089 {
4090 if (overlay_debugging
4091 && section_is_overlay (bl->section)
4092 && !section_is_mapped (bl->section))
4093 return 0; /* unmapped overlay -- can't be a match */
4094 else
4095 return 1;
4096 }
4097 return 0;
4098 }
4099
4100 /* Returns non-zero iff there's a breakpoint inserted at PC. */
4101
4102 int
4103 breakpoint_inserted_here_p (const address_space *aspace, CORE_ADDR pc)
4104 {
4105 struct bp_location **blp, **blp_tmp = NULL;
4106
4107 ALL_BP_LOCATIONS_AT_ADDR (blp, blp_tmp, pc)
4108 {
4109 struct bp_location *bl = *blp;
4110
4111 if (bl->loc_type != bp_loc_software_breakpoint
4112 && bl->loc_type != bp_loc_hardware_breakpoint)
4113 continue;
4114
4115 if (bp_location_inserted_here_p (bl, aspace, pc))
4116 return 1;
4117 }
4118 return 0;
4119 }
4120
4121 /* This function returns non-zero iff there is a software breakpoint
4122 inserted at PC. */
4123
4124 int
4125 software_breakpoint_inserted_here_p (const address_space *aspace,
4126 CORE_ADDR pc)
4127 {
4128 struct bp_location **blp, **blp_tmp = NULL;
4129
4130 ALL_BP_LOCATIONS_AT_ADDR (blp, blp_tmp, pc)
4131 {
4132 struct bp_location *bl = *blp;
4133
4134 if (bl->loc_type != bp_loc_software_breakpoint)
4135 continue;
4136
4137 if (bp_location_inserted_here_p (bl, aspace, pc))
4138 return 1;
4139 }
4140
4141 return 0;
4142 }
4143
4144 /* See breakpoint.h. */
4145
4146 int
4147 hardware_breakpoint_inserted_here_p (const address_space *aspace,
4148 CORE_ADDR pc)
4149 {
4150 struct bp_location **blp, **blp_tmp = NULL;
4151
4152 ALL_BP_LOCATIONS_AT_ADDR (blp, blp_tmp, pc)
4153 {
4154 struct bp_location *bl = *blp;
4155
4156 if (bl->loc_type != bp_loc_hardware_breakpoint)
4157 continue;
4158
4159 if (bp_location_inserted_here_p (bl, aspace, pc))
4160 return 1;
4161 }
4162
4163 return 0;
4164 }
4165
4166 int
4167 hardware_watchpoint_inserted_in_range (const address_space *aspace,
4168 CORE_ADDR addr, ULONGEST len)
4169 {
4170 struct breakpoint *bpt;
4171
4172 ALL_BREAKPOINTS (bpt)
4173 {
4174 struct bp_location *loc;
4175
4176 if (bpt->type != bp_hardware_watchpoint
4177 && bpt->type != bp_access_watchpoint)
4178 continue;
4179
4180 if (!breakpoint_enabled (bpt))
4181 continue;
4182
4183 for (loc = bpt->loc; loc; loc = loc->next)
4184 if (loc->pspace->aspace == aspace && loc->inserted)
4185 {
4186 CORE_ADDR l, h;
4187
4188 /* Check for intersection. */
4189 l = std::max<CORE_ADDR> (loc->address, addr);
4190 h = std::min<CORE_ADDR> (loc->address + loc->length, addr + len);
4191 if (l < h)
4192 return 1;
4193 }
4194 }
4195 return 0;
4196 }
4197 \f
4198
4199 /* bpstat stuff. External routines' interfaces are documented
4200 in breakpoint.h. */
4201
4202 int
4203 is_catchpoint (struct breakpoint *ep)
4204 {
4205 return (ep->type == bp_catchpoint);
4206 }
4207
4208 /* Frees any storage that is part of a bpstat. Does not walk the
4209 'next' chain. */
4210
4211 bpstats::~bpstats ()
4212 {
4213 if (old_val != NULL)
4214 value_free (old_val);
4215 if (bp_location_at != NULL)
4216 decref_bp_location (&bp_location_at);
4217 }
4218
4219 /* Clear a bpstat so that it says we are not at any breakpoint.
4220 Also free any storage that is part of a bpstat. */
4221
4222 void
4223 bpstat_clear (bpstat *bsp)
4224 {
4225 bpstat p;
4226 bpstat q;
4227
4228 if (bsp == 0)
4229 return;
4230 p = *bsp;
4231 while (p != NULL)
4232 {
4233 q = p->next;
4234 delete p;
4235 p = q;
4236 }
4237 *bsp = NULL;
4238 }
4239
4240 bpstats::bpstats (const bpstats &other)
4241 : next (NULL),
4242 bp_location_at (other.bp_location_at),
4243 breakpoint_at (other.breakpoint_at),
4244 commands (other.commands),
4245 old_val (other.old_val),
4246 print (other.print),
4247 stop (other.stop),
4248 print_it (other.print_it)
4249 {
4250 if (old_val != NULL)
4251 {
4252 old_val = value_copy (old_val);
4253 release_value (old_val);
4254 }
4255 incref_bp_location (bp_location_at);
4256 }
4257
4258 /* Return a copy of a bpstat. Like "bs1 = bs2" but all storage that
4259 is part of the bpstat is copied as well. */
4260
4261 bpstat
4262 bpstat_copy (bpstat bs)
4263 {
4264 bpstat p = NULL;
4265 bpstat tmp;
4266 bpstat retval = NULL;
4267
4268 if (bs == NULL)
4269 return bs;
4270
4271 for (; bs != NULL; bs = bs->next)
4272 {
4273 tmp = new bpstats (*bs);
4274
4275 if (p == NULL)
4276 /* This is the first thing in the chain. */
4277 retval = tmp;
4278 else
4279 p->next = tmp;
4280 p = tmp;
4281 }
4282 p->next = NULL;
4283 return retval;
4284 }
4285
4286 /* Find the bpstat associated with this breakpoint. */
4287
4288 bpstat
4289 bpstat_find_breakpoint (bpstat bsp, struct breakpoint *breakpoint)
4290 {
4291 if (bsp == NULL)
4292 return NULL;
4293
4294 for (; bsp != NULL; bsp = bsp->next)
4295 {
4296 if (bsp->breakpoint_at == breakpoint)
4297 return bsp;
4298 }
4299 return NULL;
4300 }
4301
4302 /* See breakpoint.h. */
4303
4304 int
4305 bpstat_explains_signal (bpstat bsp, enum gdb_signal sig)
4306 {
4307 for (; bsp != NULL; bsp = bsp->next)
4308 {
4309 if (bsp->breakpoint_at == NULL)
4310 {
4311 /* A moribund location can never explain a signal other than
4312 GDB_SIGNAL_TRAP. */
4313 if (sig == GDB_SIGNAL_TRAP)
4314 return 1;
4315 }
4316 else
4317 {
4318 if (bsp->breakpoint_at->ops->explains_signal (bsp->breakpoint_at,
4319 sig))
4320 return 1;
4321 }
4322 }
4323
4324 return 0;
4325 }
4326
4327 /* Put in *NUM the breakpoint number of the first breakpoint we are
4328 stopped at. *BSP upon return is a bpstat which points to the
4329 remaining breakpoints stopped at (but which is not guaranteed to be
4330 good for anything but further calls to bpstat_num).
4331
4332 Return 0 if passed a bpstat which does not indicate any breakpoints.
4333 Return -1 if stopped at a breakpoint that has been deleted since
4334 we set it.
4335 Return 1 otherwise. */
4336
4337 int
4338 bpstat_num (bpstat *bsp, int *num)
4339 {
4340 struct breakpoint *b;
4341
4342 if ((*bsp) == NULL)
4343 return 0; /* No more breakpoint values */
4344
4345 /* We assume we'll never have several bpstats that correspond to a
4346 single breakpoint -- otherwise, this function might return the
4347 same number more than once and this will look ugly. */
4348 b = (*bsp)->breakpoint_at;
4349 *bsp = (*bsp)->next;
4350 if (b == NULL)
4351 return -1; /* breakpoint that's been deleted since */
4352
4353 *num = b->number; /* We have its number */
4354 return 1;
4355 }
4356
4357 /* See breakpoint.h. */
4358
4359 void
4360 bpstat_clear_actions (void)
4361 {
4362 struct thread_info *tp;
4363 bpstat bs;
4364
4365 if (ptid_equal (inferior_ptid, null_ptid))
4366 return;
4367
4368 tp = find_thread_ptid (inferior_ptid);
4369 if (tp == NULL)
4370 return;
4371
4372 for (bs = tp->control.stop_bpstat; bs != NULL; bs = bs->next)
4373 {
4374 bs->commands = NULL;
4375
4376 if (bs->old_val != NULL)
4377 {
4378 value_free (bs->old_val);
4379 bs->old_val = NULL;
4380 }
4381 }
4382 }
4383
4384 /* Called when a command is about to proceed the inferior. */
4385
4386 static void
4387 breakpoint_about_to_proceed (void)
4388 {
4389 if (!ptid_equal (inferior_ptid, null_ptid))
4390 {
4391 struct thread_info *tp = inferior_thread ();
4392
4393 /* Allow inferior function calls in breakpoint commands to not
4394 interrupt the command list. When the call finishes
4395 successfully, the inferior will be standing at the same
4396 breakpoint as if nothing happened. */
4397 if (tp->control.in_infcall)
4398 return;
4399 }
4400
4401 breakpoint_proceeded = 1;
4402 }
4403
4404 /* Return non-zero iff CMD as the first line of a command sequence is `silent'
4405 or its equivalent. */
4406
4407 static int
4408 command_line_is_silent (struct command_line *cmd)
4409 {
4410 return cmd && (strcmp ("silent", cmd->line) == 0);
4411 }
4412
4413 /* Execute all the commands associated with all the breakpoints at
4414 this location. Any of these commands could cause the process to
4415 proceed beyond this point, etc. We look out for such changes by
4416 checking the global "breakpoint_proceeded" after each command.
4417
4418 Returns true if a breakpoint command resumed the inferior. In that
4419 case, it is the caller's responsibility to recall it again with the
4420 bpstat of the current thread. */
4421
4422 static int
4423 bpstat_do_actions_1 (bpstat *bsp)
4424 {
4425 bpstat bs;
4426 int again = 0;
4427
4428 /* Avoid endless recursion if a `source' command is contained
4429 in bs->commands. */
4430 if (executing_breakpoint_commands)
4431 return 0;
4432
4433 scoped_restore save_executing
4434 = make_scoped_restore (&executing_breakpoint_commands, 1);
4435
4436 scoped_restore preventer = prevent_dont_repeat ();
4437
4438 /* This pointer will iterate over the list of bpstat's. */
4439 bs = *bsp;
4440
4441 breakpoint_proceeded = 0;
4442 for (; bs != NULL; bs = bs->next)
4443 {
4444 struct command_line *cmd = NULL;
4445
4446 /* Take ownership of the BSP's command tree, if it has one.
4447
4448 The command tree could legitimately contain commands like
4449 'step' and 'next', which call clear_proceed_status, which
4450 frees stop_bpstat's command tree. To make sure this doesn't
4451 free the tree we're executing out from under us, we need to
4452 take ownership of the tree ourselves. Since a given bpstat's
4453 commands are only executed once, we don't need to copy it; we
4454 can clear the pointer in the bpstat, and make sure we free
4455 the tree when we're done. */
4456 counted_command_line ccmd = bs->commands;
4457 bs->commands = NULL;
4458 if (ccmd != NULL)
4459 cmd = ccmd.get ();
4460 if (command_line_is_silent (cmd))
4461 {
4462 /* The action has been already done by bpstat_stop_status. */
4463 cmd = cmd->next;
4464 }
4465
4466 while (cmd != NULL)
4467 {
4468 execute_control_command (cmd);
4469
4470 if (breakpoint_proceeded)
4471 break;
4472 else
4473 cmd = cmd->next;
4474 }
4475
4476 if (breakpoint_proceeded)
4477 {
4478 if (current_ui->async)
4479 /* If we are in async mode, then the target might be still
4480 running, not stopped at any breakpoint, so nothing for
4481 us to do here -- just return to the event loop. */
4482 ;
4483 else
4484 /* In sync mode, when execute_control_command returns
4485 we're already standing on the next breakpoint.
4486 Breakpoint commands for that stop were not run, since
4487 execute_command does not run breakpoint commands --
4488 only command_line_handler does, but that one is not
4489 involved in execution of breakpoint commands. So, we
4490 can now execute breakpoint commands. It should be
4491 noted that making execute_command do bpstat actions is
4492 not an option -- in this case we'll have recursive
4493 invocation of bpstat for each breakpoint with a
4494 command, and can easily blow up GDB stack. Instead, we
4495 return true, which will trigger the caller to recall us
4496 with the new stop_bpstat. */
4497 again = 1;
4498 break;
4499 }
4500 }
4501 return again;
4502 }
4503
4504 void
4505 bpstat_do_actions (void)
4506 {
4507 struct cleanup *cleanup_if_error = make_bpstat_clear_actions_cleanup ();
4508
4509 /* Do any commands attached to breakpoint we are stopped at. */
4510 while (!ptid_equal (inferior_ptid, null_ptid)
4511 && target_has_execution
4512 && !is_exited (inferior_ptid)
4513 && !is_executing (inferior_ptid))
4514 /* Since in sync mode, bpstat_do_actions may resume the inferior,
4515 and only return when it is stopped at the next breakpoint, we
4516 keep doing breakpoint actions until it returns false to
4517 indicate the inferior was not resumed. */
4518 if (!bpstat_do_actions_1 (&inferior_thread ()->control.stop_bpstat))
4519 break;
4520
4521 discard_cleanups (cleanup_if_error);
4522 }
4523
4524 /* Print out the (old or new) value associated with a watchpoint. */
4525
4526 static void
4527 watchpoint_value_print (struct value *val, struct ui_file *stream)
4528 {
4529 if (val == NULL)
4530 fprintf_unfiltered (stream, _("<unreadable>"));
4531 else
4532 {
4533 struct value_print_options opts;
4534 get_user_print_options (&opts);
4535 value_print (val, stream, &opts);
4536 }
4537 }
4538
4539 /* Print the "Thread ID hit" part of "Thread ID hit Breakpoint N" if
4540 debugging multiple threads. */
4541
4542 void
4543 maybe_print_thread_hit_breakpoint (struct ui_out *uiout)
4544 {
4545 if (uiout->is_mi_like_p ())
4546 return;
4547
4548 uiout->text ("\n");
4549
4550 if (show_thread_that_caused_stop ())
4551 {
4552 const char *name;
4553 struct thread_info *thr = inferior_thread ();
4554
4555 uiout->text ("Thread ");
4556 uiout->field_fmt ("thread-id", "%s", print_thread_id (thr));
4557
4558 name = thr->name != NULL ? thr->name : target_thread_name (thr);
4559 if (name != NULL)
4560 {
4561 uiout->text (" \"");
4562 uiout->field_fmt ("name", "%s", name);
4563 uiout->text ("\"");
4564 }
4565
4566 uiout->text (" hit ");
4567 }
4568 }
4569
4570 /* Generic routine for printing messages indicating why we
4571 stopped. The behavior of this function depends on the value
4572 'print_it' in the bpstat structure. Under some circumstances we
4573 may decide not to print anything here and delegate the task to
4574 normal_stop(). */
4575
4576 static enum print_stop_action
4577 print_bp_stop_message (bpstat bs)
4578 {
4579 switch (bs->print_it)
4580 {
4581 case print_it_noop:
4582 /* Nothing should be printed for this bpstat entry. */
4583 return PRINT_UNKNOWN;
4584 break;
4585
4586 case print_it_done:
4587 /* We still want to print the frame, but we already printed the
4588 relevant messages. */
4589 return PRINT_SRC_AND_LOC;
4590 break;
4591
4592 case print_it_normal:
4593 {
4594 struct breakpoint *b = bs->breakpoint_at;
4595
4596 /* bs->breakpoint_at can be NULL if it was a momentary breakpoint
4597 which has since been deleted. */
4598 if (b == NULL)
4599 return PRINT_UNKNOWN;
4600
4601 /* Normal case. Call the breakpoint's print_it method. */
4602 return b->ops->print_it (bs);
4603 }
4604 break;
4605
4606 default:
4607 internal_error (__FILE__, __LINE__,
4608 _("print_bp_stop_message: unrecognized enum value"));
4609 break;
4610 }
4611 }
4612
4613 /* A helper function that prints a shared library stopped event. */
4614
4615 static void
4616 print_solib_event (int is_catchpoint)
4617 {
4618 int any_deleted
4619 = !VEC_empty (char_ptr, current_program_space->deleted_solibs);
4620 int any_added
4621 = !VEC_empty (so_list_ptr, current_program_space->added_solibs);
4622
4623 if (!is_catchpoint)
4624 {
4625 if (any_added || any_deleted)
4626 current_uiout->text (_("Stopped due to shared library event:\n"));
4627 else
4628 current_uiout->text (_("Stopped due to shared library event (no "
4629 "libraries added or removed)\n"));
4630 }
4631
4632 if (current_uiout->is_mi_like_p ())
4633 current_uiout->field_string ("reason",
4634 async_reason_lookup (EXEC_ASYNC_SOLIB_EVENT));
4635
4636 if (any_deleted)
4637 {
4638 char *name;
4639 int ix;
4640
4641 current_uiout->text (_(" Inferior unloaded "));
4642 ui_out_emit_list list_emitter (current_uiout, "removed");
4643 for (ix = 0;
4644 VEC_iterate (char_ptr, current_program_space->deleted_solibs,
4645 ix, name);
4646 ++ix)
4647 {
4648 if (ix > 0)
4649 current_uiout->text (" ");
4650 current_uiout->field_string ("library", name);
4651 current_uiout->text ("\n");
4652 }
4653 }
4654
4655 if (any_added)
4656 {
4657 struct so_list *iter;
4658 int ix;
4659
4660 current_uiout->text (_(" Inferior loaded "));
4661 ui_out_emit_list list_emitter (current_uiout, "added");
4662 for (ix = 0;
4663 VEC_iterate (so_list_ptr, current_program_space->added_solibs,
4664 ix, iter);
4665 ++ix)
4666 {
4667 if (ix > 0)
4668 current_uiout->text (" ");
4669 current_uiout->field_string ("library", iter->so_name);
4670 current_uiout->text ("\n");
4671 }
4672 }
4673 }
4674
4675 /* Print a message indicating what happened. This is called from
4676 normal_stop(). The input to this routine is the head of the bpstat
4677 list - a list of the eventpoints that caused this stop. KIND is
4678 the target_waitkind for the stopping event. This
4679 routine calls the generic print routine for printing a message
4680 about reasons for stopping. This will print (for example) the
4681 "Breakpoint n," part of the output. The return value of this
4682 routine is one of:
4683
4684 PRINT_UNKNOWN: Means we printed nothing.
4685 PRINT_SRC_AND_LOC: Means we printed something, and expect subsequent
4686 code to print the location. An example is
4687 "Breakpoint 1, " which should be followed by
4688 the location.
4689 PRINT_SRC_ONLY: Means we printed something, but there is no need
4690 to also print the location part of the message.
4691 An example is the catch/throw messages, which
4692 don't require a location appended to the end.
4693 PRINT_NOTHING: We have done some printing and we don't need any
4694 further info to be printed. */
4695
4696 enum print_stop_action
4697 bpstat_print (bpstat bs, int kind)
4698 {
4699 enum print_stop_action val;
4700
4701 /* Maybe another breakpoint in the chain caused us to stop.
4702 (Currently all watchpoints go on the bpstat whether hit or not.
4703 That probably could (should) be changed, provided care is taken
4704 with respect to bpstat_explains_signal). */
4705 for (; bs; bs = bs->next)
4706 {
4707 val = print_bp_stop_message (bs);
4708 if (val == PRINT_SRC_ONLY
4709 || val == PRINT_SRC_AND_LOC
4710 || val == PRINT_NOTHING)
4711 return val;
4712 }
4713
4714 /* If we had hit a shared library event breakpoint,
4715 print_bp_stop_message would print out this message. If we hit an
4716 OS-level shared library event, do the same thing. */
4717 if (kind == TARGET_WAITKIND_LOADED)
4718 {
4719 print_solib_event (0);
4720 return PRINT_NOTHING;
4721 }
4722
4723 /* We reached the end of the chain, or we got a null BS to start
4724 with and nothing was printed. */
4725 return PRINT_UNKNOWN;
4726 }
4727
4728 /* Evaluate the boolean expression EXP and return the result. */
4729
4730 static bool
4731 breakpoint_cond_eval (expression *exp)
4732 {
4733 struct value *mark = value_mark ();
4734 bool res = value_true (evaluate_expression (exp));
4735
4736 value_free_to_mark (mark);
4737 return res;
4738 }
4739
4740 /* Allocate a new bpstat. Link it to the FIFO list by BS_LINK_POINTER. */
4741
4742 bpstats::bpstats (struct bp_location *bl, bpstat **bs_link_pointer)
4743 : next (NULL),
4744 bp_location_at (bl),
4745 breakpoint_at (bl->owner),
4746 commands (NULL),
4747 old_val (NULL),
4748 print (0),
4749 stop (0),
4750 print_it (print_it_normal)
4751 {
4752 incref_bp_location (bl);
4753 **bs_link_pointer = this;
4754 *bs_link_pointer = &next;
4755 }
4756
4757 bpstats::bpstats ()
4758 : next (NULL),
4759 bp_location_at (NULL),
4760 breakpoint_at (NULL),
4761 commands (NULL),
4762 old_val (NULL),
4763 print (0),
4764 stop (0),
4765 print_it (print_it_normal)
4766 {
4767 }
4768 \f
4769 /* The target has stopped with waitstatus WS. Check if any hardware
4770 watchpoints have triggered, according to the target. */
4771
4772 int
4773 watchpoints_triggered (struct target_waitstatus *ws)
4774 {
4775 int stopped_by_watchpoint = target_stopped_by_watchpoint ();
4776 CORE_ADDR addr;
4777 struct breakpoint *b;
4778
4779 if (!stopped_by_watchpoint)
4780 {
4781 /* We were not stopped by a watchpoint. Mark all watchpoints
4782 as not triggered. */
4783 ALL_BREAKPOINTS (b)
4784 if (is_hardware_watchpoint (b))
4785 {
4786 struct watchpoint *w = (struct watchpoint *) b;
4787
4788 w->watchpoint_triggered = watch_triggered_no;
4789 }
4790
4791 return 0;
4792 }
4793
4794 if (!target_stopped_data_address (&current_target, &addr))
4795 {
4796 /* We were stopped by a watchpoint, but we don't know where.
4797 Mark all watchpoints as unknown. */
4798 ALL_BREAKPOINTS (b)
4799 if (is_hardware_watchpoint (b))
4800 {
4801 struct watchpoint *w = (struct watchpoint *) b;
4802
4803 w->watchpoint_triggered = watch_triggered_unknown;
4804 }
4805
4806 return 1;
4807 }
4808
4809 /* The target could report the data address. Mark watchpoints
4810 affected by this data address as triggered, and all others as not
4811 triggered. */
4812
4813 ALL_BREAKPOINTS (b)
4814 if (is_hardware_watchpoint (b))
4815 {
4816 struct watchpoint *w = (struct watchpoint *) b;
4817 struct bp_location *loc;
4818
4819 w->watchpoint_triggered = watch_triggered_no;
4820 for (loc = b->loc; loc; loc = loc->next)
4821 {
4822 if (is_masked_watchpoint (b))
4823 {
4824 CORE_ADDR newaddr = addr & w->hw_wp_mask;
4825 CORE_ADDR start = loc->address & w->hw_wp_mask;
4826
4827 if (newaddr == start)
4828 {
4829 w->watchpoint_triggered = watch_triggered_yes;
4830 break;
4831 }
4832 }
4833 /* Exact match not required. Within range is sufficient. */
4834 else if (target_watchpoint_addr_within_range (&current_target,
4835 addr, loc->address,
4836 loc->length))
4837 {
4838 w->watchpoint_triggered = watch_triggered_yes;
4839 break;
4840 }
4841 }
4842 }
4843
4844 return 1;
4845 }
4846
4847 /* Possible return values for watchpoint_check. */
4848 enum wp_check_result
4849 {
4850 /* The watchpoint has been deleted. */
4851 WP_DELETED = 1,
4852
4853 /* The value has changed. */
4854 WP_VALUE_CHANGED = 2,
4855
4856 /* The value has not changed. */
4857 WP_VALUE_NOT_CHANGED = 3,
4858
4859 /* Ignore this watchpoint, no matter if the value changed or not. */
4860 WP_IGNORE = 4,
4861 };
4862
4863 #define BP_TEMPFLAG 1
4864 #define BP_HARDWAREFLAG 2
4865
4866 /* Evaluate watchpoint condition expression and check if its value
4867 changed. */
4868
4869 static wp_check_result
4870 watchpoint_check (bpstat bs)
4871 {
4872 struct watchpoint *b;
4873 struct frame_info *fr;
4874 int within_current_scope;
4875
4876 /* BS is built from an existing struct breakpoint. */
4877 gdb_assert (bs->breakpoint_at != NULL);
4878 b = (struct watchpoint *) bs->breakpoint_at;
4879
4880 /* If this is a local watchpoint, we only want to check if the
4881 watchpoint frame is in scope if the current thread is the thread
4882 that was used to create the watchpoint. */
4883 if (!watchpoint_in_thread_scope (b))
4884 return WP_IGNORE;
4885
4886 if (b->exp_valid_block == NULL)
4887 within_current_scope = 1;
4888 else
4889 {
4890 struct frame_info *frame = get_current_frame ();
4891 struct gdbarch *frame_arch = get_frame_arch (frame);
4892 CORE_ADDR frame_pc = get_frame_pc (frame);
4893
4894 /* stack_frame_destroyed_p() returns a non-zero value if we're
4895 still in the function but the stack frame has already been
4896 invalidated. Since we can't rely on the values of local
4897 variables after the stack has been destroyed, we are treating
4898 the watchpoint in that state as `not changed' without further
4899 checking. Don't mark watchpoints as changed if the current
4900 frame is in an epilogue - even if they are in some other
4901 frame, our view of the stack is likely to be wrong and
4902 frame_find_by_id could error out. */
4903 if (gdbarch_stack_frame_destroyed_p (frame_arch, frame_pc))
4904 return WP_IGNORE;
4905
4906 fr = frame_find_by_id (b->watchpoint_frame);
4907 within_current_scope = (fr != NULL);
4908
4909 /* If we've gotten confused in the unwinder, we might have
4910 returned a frame that can't describe this variable. */
4911 if (within_current_scope)
4912 {
4913 struct symbol *function;
4914
4915 function = get_frame_function (fr);
4916 if (function == NULL
4917 || !contained_in (b->exp_valid_block,
4918 SYMBOL_BLOCK_VALUE (function)))
4919 within_current_scope = 0;
4920 }
4921
4922 if (within_current_scope)
4923 /* If we end up stopping, the current frame will get selected
4924 in normal_stop. So this call to select_frame won't affect
4925 the user. */
4926 select_frame (fr);
4927 }
4928
4929 if (within_current_scope)
4930 {
4931 /* We use value_{,free_to_}mark because it could be a *long*
4932 time before we return to the command level and call
4933 free_all_values. We can't call free_all_values because we
4934 might be in the middle of evaluating a function call. */
4935
4936 int pc = 0;
4937 struct value *mark;
4938 struct value *new_val;
4939
4940 if (is_masked_watchpoint (b))
4941 /* Since we don't know the exact trigger address (from
4942 stopped_data_address), just tell the user we've triggered
4943 a mask watchpoint. */
4944 return WP_VALUE_CHANGED;
4945
4946 mark = value_mark ();
4947 fetch_subexp_value (b->exp.get (), &pc, &new_val, NULL, NULL, 0);
4948
4949 if (b->val_bitsize != 0)
4950 new_val = extract_bitfield_from_watchpoint_value (b, new_val);
4951
4952 /* We use value_equal_contents instead of value_equal because
4953 the latter coerces an array to a pointer, thus comparing just
4954 the address of the array instead of its contents. This is
4955 not what we want. */
4956 if ((b->val != NULL) != (new_val != NULL)
4957 || (b->val != NULL && !value_equal_contents (b->val, new_val)))
4958 {
4959 if (new_val != NULL)
4960 {
4961 release_value (new_val);
4962 value_free_to_mark (mark);
4963 }
4964 bs->old_val = b->val;
4965 b->val = new_val;
4966 b->val_valid = 1;
4967 return WP_VALUE_CHANGED;
4968 }
4969 else
4970 {
4971 /* Nothing changed. */
4972 value_free_to_mark (mark);
4973 return WP_VALUE_NOT_CHANGED;
4974 }
4975 }
4976 else
4977 {
4978 /* This seems like the only logical thing to do because
4979 if we temporarily ignored the watchpoint, then when
4980 we reenter the block in which it is valid it contains
4981 garbage (in the case of a function, it may have two
4982 garbage values, one before and one after the prologue).
4983 So we can't even detect the first assignment to it and
4984 watch after that (since the garbage may or may not equal
4985 the first value assigned). */
4986 /* We print all the stop information in
4987 breakpoint_ops->print_it, but in this case, by the time we
4988 call breakpoint_ops->print_it this bp will be deleted
4989 already. So we have no choice but print the information
4990 here. */
4991
4992 SWITCH_THRU_ALL_UIS ()
4993 {
4994 struct ui_out *uiout = current_uiout;
4995
4996 if (uiout->is_mi_like_p ())
4997 uiout->field_string
4998 ("reason", async_reason_lookup (EXEC_ASYNC_WATCHPOINT_SCOPE));
4999 uiout->text ("\nWatchpoint ");
5000 uiout->field_int ("wpnum", b->number);
5001 uiout->text (" deleted because the program has left the block in\n"
5002 "which its expression is valid.\n");
5003 }
5004
5005 /* Make sure the watchpoint's commands aren't executed. */
5006 b->commands = NULL;
5007 watchpoint_del_at_next_stop (b);
5008
5009 return WP_DELETED;
5010 }
5011 }
5012
5013 /* Return true if it looks like target has stopped due to hitting
5014 breakpoint location BL. This function does not check if we should
5015 stop, only if BL explains the stop. */
5016
5017 static int
5018 bpstat_check_location (const struct bp_location *bl,
5019 const address_space *aspace, CORE_ADDR bp_addr,
5020 const struct target_waitstatus *ws)
5021 {
5022 struct breakpoint *b = bl->owner;
5023
5024 /* BL is from an existing breakpoint. */
5025 gdb_assert (b != NULL);
5026
5027 return b->ops->breakpoint_hit (bl, aspace, bp_addr, ws);
5028 }
5029
5030 /* Determine if the watched values have actually changed, and we
5031 should stop. If not, set BS->stop to 0. */
5032
5033 static void
5034 bpstat_check_watchpoint (bpstat bs)
5035 {
5036 const struct bp_location *bl;
5037 struct watchpoint *b;
5038
5039 /* BS is built for existing struct breakpoint. */
5040 bl = bs->bp_location_at;
5041 gdb_assert (bl != NULL);
5042 b = (struct watchpoint *) bs->breakpoint_at;
5043 gdb_assert (b != NULL);
5044
5045 {
5046 int must_check_value = 0;
5047
5048 if (b->type == bp_watchpoint)
5049 /* For a software watchpoint, we must always check the
5050 watched value. */
5051 must_check_value = 1;
5052 else if (b->watchpoint_triggered == watch_triggered_yes)
5053 /* We have a hardware watchpoint (read, write, or access)
5054 and the target earlier reported an address watched by
5055 this watchpoint. */
5056 must_check_value = 1;
5057 else if (b->watchpoint_triggered == watch_triggered_unknown
5058 && b->type == bp_hardware_watchpoint)
5059 /* We were stopped by a hardware watchpoint, but the target could
5060 not report the data address. We must check the watchpoint's
5061 value. Access and read watchpoints are out of luck; without
5062 a data address, we can't figure it out. */
5063 must_check_value = 1;
5064
5065 if (must_check_value)
5066 {
5067 wp_check_result e;
5068
5069 TRY
5070 {
5071 e = watchpoint_check (bs);
5072 }
5073 CATCH (ex, RETURN_MASK_ALL)
5074 {
5075 exception_fprintf (gdb_stderr, ex,
5076 "Error evaluating expression "
5077 "for watchpoint %d\n",
5078 b->number);
5079
5080 SWITCH_THRU_ALL_UIS ()
5081 {
5082 printf_filtered (_("Watchpoint %d deleted.\n"),
5083 b->number);
5084 }
5085 watchpoint_del_at_next_stop (b);
5086 e = WP_DELETED;
5087 }
5088 END_CATCH
5089
5090 switch (e)
5091 {
5092 case WP_DELETED:
5093 /* We've already printed what needs to be printed. */
5094 bs->print_it = print_it_done;
5095 /* Stop. */
5096 break;
5097 case WP_IGNORE:
5098 bs->print_it = print_it_noop;
5099 bs->stop = 0;
5100 break;
5101 case WP_VALUE_CHANGED:
5102 if (b->type == bp_read_watchpoint)
5103 {
5104 /* There are two cases to consider here:
5105
5106 1. We're watching the triggered memory for reads.
5107 In that case, trust the target, and always report
5108 the watchpoint hit to the user. Even though
5109 reads don't cause value changes, the value may
5110 have changed since the last time it was read, and
5111 since we're not trapping writes, we will not see
5112 those, and as such we should ignore our notion of
5113 old value.
5114
5115 2. We're watching the triggered memory for both
5116 reads and writes. There are two ways this may
5117 happen:
5118
5119 2.1. This is a target that can't break on data
5120 reads only, but can break on accesses (reads or
5121 writes), such as e.g., x86. We detect this case
5122 at the time we try to insert read watchpoints.
5123
5124 2.2. Otherwise, the target supports read
5125 watchpoints, but, the user set an access or write
5126 watchpoint watching the same memory as this read
5127 watchpoint.
5128
5129 If we're watching memory writes as well as reads,
5130 ignore watchpoint hits when we find that the
5131 value hasn't changed, as reads don't cause
5132 changes. This still gives false positives when
5133 the program writes the same value to memory as
5134 what there was already in memory (we will confuse
5135 it for a read), but it's much better than
5136 nothing. */
5137
5138 int other_write_watchpoint = 0;
5139
5140 if (bl->watchpoint_type == hw_read)
5141 {
5142 struct breakpoint *other_b;
5143
5144 ALL_BREAKPOINTS (other_b)
5145 if (other_b->type == bp_hardware_watchpoint
5146 || other_b->type == bp_access_watchpoint)
5147 {
5148 struct watchpoint *other_w =
5149 (struct watchpoint *) other_b;
5150
5151 if (other_w->watchpoint_triggered
5152 == watch_triggered_yes)
5153 {
5154 other_write_watchpoint = 1;
5155 break;
5156 }
5157 }
5158 }
5159
5160 if (other_write_watchpoint
5161 || bl->watchpoint_type == hw_access)
5162 {
5163 /* We're watching the same memory for writes,
5164 and the value changed since the last time we
5165 updated it, so this trap must be for a write.
5166 Ignore it. */
5167 bs->print_it = print_it_noop;
5168 bs->stop = 0;
5169 }
5170 }
5171 break;
5172 case WP_VALUE_NOT_CHANGED:
5173 if (b->type == bp_hardware_watchpoint
5174 || b->type == bp_watchpoint)
5175 {
5176 /* Don't stop: write watchpoints shouldn't fire if
5177 the value hasn't changed. */
5178 bs->print_it = print_it_noop;
5179 bs->stop = 0;
5180 }
5181 /* Stop. */
5182 break;
5183 default:
5184 /* Can't happen. */
5185 break;
5186 }
5187 }
5188 else /* must_check_value == 0 */
5189 {
5190 /* This is a case where some watchpoint(s) triggered, but
5191 not at the address of this watchpoint, or else no
5192 watchpoint triggered after all. So don't print
5193 anything for this watchpoint. */
5194 bs->print_it = print_it_noop;
5195 bs->stop = 0;
5196 }
5197 }
5198 }
5199
5200 /* For breakpoints that are currently marked as telling gdb to stop,
5201 check conditions (condition proper, frame, thread and ignore count)
5202 of breakpoint referred to by BS. If we should not stop for this
5203 breakpoint, set BS->stop to 0. */
5204
5205 static void
5206 bpstat_check_breakpoint_conditions (bpstat bs, ptid_t ptid)
5207 {
5208 const struct bp_location *bl;
5209 struct breakpoint *b;
5210 /* Assume stop. */
5211 bool condition_result = true;
5212 struct expression *cond;
5213
5214 gdb_assert (bs->stop);
5215
5216 /* BS is built for existing struct breakpoint. */
5217 bl = bs->bp_location_at;
5218 gdb_assert (bl != NULL);
5219 b = bs->breakpoint_at;
5220 gdb_assert (b != NULL);
5221
5222 /* Even if the target evaluated the condition on its end and notified GDB, we
5223 need to do so again since GDB does not know if we stopped due to a
5224 breakpoint or a single step breakpoint. */
5225
5226 if (frame_id_p (b->frame_id)
5227 && !frame_id_eq (b->frame_id, get_stack_frame_id (get_current_frame ())))
5228 {
5229 bs->stop = 0;
5230 return;
5231 }
5232
5233 /* If this is a thread/task-specific breakpoint, don't waste cpu
5234 evaluating the condition if this isn't the specified
5235 thread/task. */
5236 if ((b->thread != -1 && b->thread != ptid_to_global_thread_id (ptid))
5237 || (b->task != 0 && b->task != ada_get_task_number (ptid)))
5238
5239 {
5240 bs->stop = 0;
5241 return;
5242 }
5243
5244 /* Evaluate extension language breakpoints that have a "stop" method
5245 implemented. */
5246 bs->stop = breakpoint_ext_lang_cond_says_stop (b);
5247
5248 if (is_watchpoint (b))
5249 {
5250 struct watchpoint *w = (struct watchpoint *) b;
5251
5252 cond = w->cond_exp.get ();
5253 }
5254 else
5255 cond = bl->cond.get ();
5256
5257 if (cond && b->disposition != disp_del_at_next_stop)
5258 {
5259 int within_current_scope = 1;
5260 struct watchpoint * w;
5261
5262 /* We use value_mark and value_free_to_mark because it could
5263 be a long time before we return to the command level and
5264 call free_all_values. We can't call free_all_values
5265 because we might be in the middle of evaluating a
5266 function call. */
5267 struct value *mark = value_mark ();
5268
5269 if (is_watchpoint (b))
5270 w = (struct watchpoint *) b;
5271 else
5272 w = NULL;
5273
5274 /* Need to select the frame, with all that implies so that
5275 the conditions will have the right context. Because we
5276 use the frame, we will not see an inlined function's
5277 variables when we arrive at a breakpoint at the start
5278 of the inlined function; the current frame will be the
5279 call site. */
5280 if (w == NULL || w->cond_exp_valid_block == NULL)
5281 select_frame (get_current_frame ());
5282 else
5283 {
5284 struct frame_info *frame;
5285
5286 /* For local watchpoint expressions, which particular
5287 instance of a local is being watched matters, so we
5288 keep track of the frame to evaluate the expression
5289 in. To evaluate the condition however, it doesn't
5290 really matter which instantiation of the function
5291 where the condition makes sense triggers the
5292 watchpoint. This allows an expression like "watch
5293 global if q > 10" set in `func', catch writes to
5294 global on all threads that call `func', or catch
5295 writes on all recursive calls of `func' by a single
5296 thread. We simply always evaluate the condition in
5297 the innermost frame that's executing where it makes
5298 sense to evaluate the condition. It seems
5299 intuitive. */
5300 frame = block_innermost_frame (w->cond_exp_valid_block);
5301 if (frame != NULL)
5302 select_frame (frame);
5303 else
5304 within_current_scope = 0;
5305 }
5306 if (within_current_scope)
5307 {
5308 TRY
5309 {
5310 condition_result = breakpoint_cond_eval (cond);
5311 }
5312 CATCH (ex, RETURN_MASK_ALL)
5313 {
5314 exception_fprintf (gdb_stderr, ex,
5315 "Error in testing breakpoint condition:\n");
5316 }
5317 END_CATCH
5318 }
5319 else
5320 {
5321 warning (_("Watchpoint condition cannot be tested "
5322 "in the current scope"));
5323 /* If we failed to set the right context for this
5324 watchpoint, unconditionally report it. */
5325 }
5326 /* FIXME-someday, should give breakpoint #. */
5327 value_free_to_mark (mark);
5328 }
5329
5330 if (cond && !condition_result)
5331 {
5332 bs->stop = 0;
5333 }
5334 else if (b->ignore_count > 0)
5335 {
5336 b->ignore_count--;
5337 bs->stop = 0;
5338 /* Increase the hit count even though we don't stop. */
5339 ++(b->hit_count);
5340 observer_notify_breakpoint_modified (b);
5341 }
5342 }
5343
5344 /* Returns true if we need to track moribund locations of LOC's type
5345 on the current target. */
5346
5347 static int
5348 need_moribund_for_location_type (struct bp_location *loc)
5349 {
5350 return ((loc->loc_type == bp_loc_software_breakpoint
5351 && !target_supports_stopped_by_sw_breakpoint ())
5352 || (loc->loc_type == bp_loc_hardware_breakpoint
5353 && !target_supports_stopped_by_hw_breakpoint ()));
5354 }
5355
5356
5357 /* Get a bpstat associated with having just stopped at address
5358 BP_ADDR in thread PTID.
5359
5360 Determine whether we stopped at a breakpoint, etc, or whether we
5361 don't understand this stop. Result is a chain of bpstat's such
5362 that:
5363
5364 if we don't understand the stop, the result is a null pointer.
5365
5366 if we understand why we stopped, the result is not null.
5367
5368 Each element of the chain refers to a particular breakpoint or
5369 watchpoint at which we have stopped. (We may have stopped for
5370 several reasons concurrently.)
5371
5372 Each element of the chain has valid next, breakpoint_at,
5373 commands, FIXME??? fields. */
5374
5375 bpstat
5376 bpstat_stop_status (const address_space *aspace,
5377 CORE_ADDR bp_addr, ptid_t ptid,
5378 const struct target_waitstatus *ws)
5379 {
5380 struct breakpoint *b = NULL;
5381 struct bp_location *bl;
5382 struct bp_location *loc;
5383 /* First item of allocated bpstat's. */
5384 bpstat bs_head = NULL, *bs_link = &bs_head;
5385 /* Pointer to the last thing in the chain currently. */
5386 bpstat bs;
5387 int ix;
5388 int need_remove_insert;
5389 int removed_any;
5390
5391 /* First, build the bpstat chain with locations that explain a
5392 target stop, while being careful to not set the target running,
5393 as that may invalidate locations (in particular watchpoint
5394 locations are recreated). Resuming will happen here with
5395 breakpoint conditions or watchpoint expressions that include
5396 inferior function calls. */
5397
5398 ALL_BREAKPOINTS (b)
5399 {
5400 if (!breakpoint_enabled (b))
5401 continue;
5402
5403 for (bl = b->loc; bl != NULL; bl = bl->next)
5404 {
5405 /* For hardware watchpoints, we look only at the first
5406 location. The watchpoint_check function will work on the
5407 entire expression, not the individual locations. For
5408 read watchpoints, the watchpoints_triggered function has
5409 checked all locations already. */
5410 if (b->type == bp_hardware_watchpoint && bl != b->loc)
5411 break;
5412
5413 if (!bl->enabled || bl->shlib_disabled)
5414 continue;
5415
5416 if (!bpstat_check_location (bl, aspace, bp_addr, ws))
5417 continue;
5418
5419 /* Come here if it's a watchpoint, or if the break address
5420 matches. */
5421
5422 bs = new bpstats (bl, &bs_link); /* Alloc a bpstat to
5423 explain stop. */
5424
5425 /* Assume we stop. Should we find a watchpoint that is not
5426 actually triggered, or if the condition of the breakpoint
5427 evaluates as false, we'll reset 'stop' to 0. */
5428 bs->stop = 1;
5429 bs->print = 1;
5430
5431 /* If this is a scope breakpoint, mark the associated
5432 watchpoint as triggered so that we will handle the
5433 out-of-scope event. We'll get to the watchpoint next
5434 iteration. */
5435 if (b->type == bp_watchpoint_scope && b->related_breakpoint != b)
5436 {
5437 struct watchpoint *w = (struct watchpoint *) b->related_breakpoint;
5438
5439 w->watchpoint_triggered = watch_triggered_yes;
5440 }
5441 }
5442 }
5443
5444 /* Check if a moribund breakpoint explains the stop. */
5445 if (!target_supports_stopped_by_sw_breakpoint ()
5446 || !target_supports_stopped_by_hw_breakpoint ())
5447 {
5448 for (ix = 0; VEC_iterate (bp_location_p, moribund_locations, ix, loc); ++ix)
5449 {
5450 if (breakpoint_location_address_match (loc, aspace, bp_addr)
5451 && need_moribund_for_location_type (loc))
5452 {
5453 bs = new bpstats (loc, &bs_link);
5454 /* For hits of moribund locations, we should just proceed. */
5455 bs->stop = 0;
5456 bs->print = 0;
5457 bs->print_it = print_it_noop;
5458 }
5459 }
5460 }
5461
5462 /* A bit of special processing for shlib breakpoints. We need to
5463 process solib loading here, so that the lists of loaded and
5464 unloaded libraries are correct before we handle "catch load" and
5465 "catch unload". */
5466 for (bs = bs_head; bs != NULL; bs = bs->next)
5467 {
5468 if (bs->breakpoint_at && bs->breakpoint_at->type == bp_shlib_event)
5469 {
5470 handle_solib_event ();
5471 break;
5472 }
5473 }
5474
5475 /* Now go through the locations that caused the target to stop, and
5476 check whether we're interested in reporting this stop to higher
5477 layers, or whether we should resume the target transparently. */
5478
5479 removed_any = 0;
5480
5481 for (bs = bs_head; bs != NULL; bs = bs->next)
5482 {
5483 if (!bs->stop)
5484 continue;
5485
5486 b = bs->breakpoint_at;
5487 b->ops->check_status (bs);
5488 if (bs->stop)
5489 {
5490 bpstat_check_breakpoint_conditions (bs, ptid);
5491
5492 if (bs->stop)
5493 {
5494 ++(b->hit_count);
5495 observer_notify_breakpoint_modified (b);
5496
5497 /* We will stop here. */
5498 if (b->disposition == disp_disable)
5499 {
5500 --(b->enable_count);
5501 if (b->enable_count <= 0)
5502 b->enable_state = bp_disabled;
5503 removed_any = 1;
5504 }
5505 if (b->silent)
5506 bs->print = 0;
5507 bs->commands = b->commands;
5508 if (command_line_is_silent (bs->commands
5509 ? bs->commands.get () : NULL))
5510 bs->print = 0;
5511
5512 b->ops->after_condition_true (bs);
5513 }
5514
5515 }
5516
5517 /* Print nothing for this entry if we don't stop or don't
5518 print. */
5519 if (!bs->stop || !bs->print)
5520 bs->print_it = print_it_noop;
5521 }
5522
5523 /* If we aren't stopping, the value of some hardware watchpoint may
5524 not have changed, but the intermediate memory locations we are
5525 watching may have. Don't bother if we're stopping; this will get
5526 done later. */
5527 need_remove_insert = 0;
5528 if (! bpstat_causes_stop (bs_head))
5529 for (bs = bs_head; bs != NULL; bs = bs->next)
5530 if (!bs->stop
5531 && bs->breakpoint_at
5532 && is_hardware_watchpoint (bs->breakpoint_at))
5533 {
5534 struct watchpoint *w = (struct watchpoint *) bs->breakpoint_at;
5535
5536 update_watchpoint (w, 0 /* don't reparse. */);
5537 need_remove_insert = 1;
5538 }
5539
5540 if (need_remove_insert)
5541 update_global_location_list (UGLL_MAY_INSERT);
5542 else if (removed_any)
5543 update_global_location_list (UGLL_DONT_INSERT);
5544
5545 return bs_head;
5546 }
5547
5548 static void
5549 handle_jit_event (void)
5550 {
5551 struct frame_info *frame;
5552 struct gdbarch *gdbarch;
5553
5554 if (debug_infrun)
5555 fprintf_unfiltered (gdb_stdlog, "handling bp_jit_event\n");
5556
5557 /* Switch terminal for any messages produced by
5558 breakpoint_re_set. */
5559 target_terminal::ours_for_output ();
5560
5561 frame = get_current_frame ();
5562 gdbarch = get_frame_arch (frame);
5563
5564 jit_event_handler (gdbarch);
5565
5566 target_terminal::inferior ();
5567 }
5568
5569 /* Prepare WHAT final decision for infrun. */
5570
5571 /* Decide what infrun needs to do with this bpstat. */
5572
5573 struct bpstat_what
5574 bpstat_what (bpstat bs_head)
5575 {
5576 struct bpstat_what retval;
5577 bpstat bs;
5578
5579 retval.main_action = BPSTAT_WHAT_KEEP_CHECKING;
5580 retval.call_dummy = STOP_NONE;
5581 retval.is_longjmp = 0;
5582
5583 for (bs = bs_head; bs != NULL; bs = bs->next)
5584 {
5585 /* Extract this BS's action. After processing each BS, we check
5586 if its action overrides all we've seem so far. */
5587 enum bpstat_what_main_action this_action = BPSTAT_WHAT_KEEP_CHECKING;
5588 enum bptype bptype;
5589
5590 if (bs->breakpoint_at == NULL)
5591 {
5592 /* I suspect this can happen if it was a momentary
5593 breakpoint which has since been deleted. */
5594 bptype = bp_none;
5595 }
5596 else
5597 bptype = bs->breakpoint_at->type;
5598
5599 switch (bptype)
5600 {
5601 case bp_none:
5602 break;
5603 case bp_breakpoint:
5604 case bp_hardware_breakpoint:
5605 case bp_single_step:
5606 case bp_until:
5607 case bp_finish:
5608 case bp_shlib_event:
5609 if (bs->stop)
5610 {
5611 if (bs->print)
5612 this_action = BPSTAT_WHAT_STOP_NOISY;
5613 else
5614 this_action = BPSTAT_WHAT_STOP_SILENT;
5615 }
5616 else
5617 this_action = BPSTAT_WHAT_SINGLE;
5618 break;
5619 case bp_watchpoint:
5620 case bp_hardware_watchpoint:
5621 case bp_read_watchpoint:
5622 case bp_access_watchpoint:
5623 if (bs->stop)
5624 {
5625 if (bs->print)
5626 this_action = BPSTAT_WHAT_STOP_NOISY;
5627 else
5628 this_action = BPSTAT_WHAT_STOP_SILENT;
5629 }
5630 else
5631 {
5632 /* There was a watchpoint, but we're not stopping.
5633 This requires no further action. */
5634 }
5635 break;
5636 case bp_longjmp:
5637 case bp_longjmp_call_dummy:
5638 case bp_exception:
5639 if (bs->stop)
5640 {
5641 this_action = BPSTAT_WHAT_SET_LONGJMP_RESUME;
5642 retval.is_longjmp = bptype != bp_exception;
5643 }
5644 else
5645 this_action = BPSTAT_WHAT_SINGLE;
5646 break;
5647 case bp_longjmp_resume:
5648 case bp_exception_resume:
5649 if (bs->stop)
5650 {
5651 this_action = BPSTAT_WHAT_CLEAR_LONGJMP_RESUME;
5652 retval.is_longjmp = bptype == bp_longjmp_resume;
5653 }
5654 else
5655 this_action = BPSTAT_WHAT_SINGLE;
5656 break;
5657 case bp_step_resume:
5658 if (bs->stop)
5659 this_action = BPSTAT_WHAT_STEP_RESUME;
5660 else
5661 {
5662 /* It is for the wrong frame. */
5663 this_action = BPSTAT_WHAT_SINGLE;
5664 }
5665 break;
5666 case bp_hp_step_resume:
5667 if (bs->stop)
5668 this_action = BPSTAT_WHAT_HP_STEP_RESUME;
5669 else
5670 {
5671 /* It is for the wrong frame. */
5672 this_action = BPSTAT_WHAT_SINGLE;
5673 }
5674 break;
5675 case bp_watchpoint_scope:
5676 case bp_thread_event:
5677 case bp_overlay_event:
5678 case bp_longjmp_master:
5679 case bp_std_terminate_master:
5680 case bp_exception_master:
5681 this_action = BPSTAT_WHAT_SINGLE;
5682 break;
5683 case bp_catchpoint:
5684 if (bs->stop)
5685 {
5686 if (bs->print)
5687 this_action = BPSTAT_WHAT_STOP_NOISY;
5688 else
5689 this_action = BPSTAT_WHAT_STOP_SILENT;
5690 }
5691 else
5692 {
5693 /* There was a catchpoint, but we're not stopping.
5694 This requires no further action. */
5695 }
5696 break;
5697 case bp_jit_event:
5698 this_action = BPSTAT_WHAT_SINGLE;
5699 break;
5700 case bp_call_dummy:
5701 /* Make sure the action is stop (silent or noisy),
5702 so infrun.c pops the dummy frame. */
5703 retval.call_dummy = STOP_STACK_DUMMY;
5704 this_action = BPSTAT_WHAT_STOP_SILENT;
5705 break;
5706 case bp_std_terminate:
5707 /* Make sure the action is stop (silent or noisy),
5708 so infrun.c pops the dummy frame. */
5709 retval.call_dummy = STOP_STD_TERMINATE;
5710 this_action = BPSTAT_WHAT_STOP_SILENT;
5711 break;
5712 case bp_tracepoint:
5713 case bp_fast_tracepoint:
5714 case bp_static_tracepoint:
5715 /* Tracepoint hits should not be reported back to GDB, and
5716 if one got through somehow, it should have been filtered
5717 out already. */
5718 internal_error (__FILE__, __LINE__,
5719 _("bpstat_what: tracepoint encountered"));
5720 break;
5721 case bp_gnu_ifunc_resolver:
5722 /* Step over it (and insert bp_gnu_ifunc_resolver_return). */
5723 this_action = BPSTAT_WHAT_SINGLE;
5724 break;
5725 case bp_gnu_ifunc_resolver_return:
5726 /* The breakpoint will be removed, execution will restart from the
5727 PC of the former breakpoint. */
5728 this_action = BPSTAT_WHAT_KEEP_CHECKING;
5729 break;
5730
5731 case bp_dprintf:
5732 if (bs->stop)
5733 this_action = BPSTAT_WHAT_STOP_SILENT;
5734 else
5735 this_action = BPSTAT_WHAT_SINGLE;
5736 break;
5737
5738 default:
5739 internal_error (__FILE__, __LINE__,
5740 _("bpstat_what: unhandled bptype %d"), (int) bptype);
5741 }
5742
5743 retval.main_action = std::max (retval.main_action, this_action);
5744 }
5745
5746 return retval;
5747 }
5748
5749 void
5750 bpstat_run_callbacks (bpstat bs_head)
5751 {
5752 bpstat bs;
5753
5754 for (bs = bs_head; bs != NULL; bs = bs->next)
5755 {
5756 struct breakpoint *b = bs->breakpoint_at;
5757
5758 if (b == NULL)
5759 continue;
5760 switch (b->type)
5761 {
5762 case bp_jit_event:
5763 handle_jit_event ();
5764 break;
5765 case bp_gnu_ifunc_resolver:
5766 gnu_ifunc_resolver_stop (b);
5767 break;
5768 case bp_gnu_ifunc_resolver_return:
5769 gnu_ifunc_resolver_return_stop (b);
5770 break;
5771 }
5772 }
5773 }
5774
5775 /* Nonzero if we should step constantly (e.g. watchpoints on machines
5776 without hardware support). This isn't related to a specific bpstat,
5777 just to things like whether watchpoints are set. */
5778
5779 int
5780 bpstat_should_step (void)
5781 {
5782 struct breakpoint *b;
5783
5784 ALL_BREAKPOINTS (b)
5785 if (breakpoint_enabled (b) && b->type == bp_watchpoint && b->loc != NULL)
5786 return 1;
5787 return 0;
5788 }
5789
5790 int
5791 bpstat_causes_stop (bpstat bs)
5792 {
5793 for (; bs != NULL; bs = bs->next)
5794 if (bs->stop)
5795 return 1;
5796
5797 return 0;
5798 }
5799
5800 \f
5801
5802 /* Compute a string of spaces suitable to indent the next line
5803 so it starts at the position corresponding to the table column
5804 named COL_NAME in the currently active table of UIOUT. */
5805
5806 static char *
5807 wrap_indent_at_field (struct ui_out *uiout, const char *col_name)
5808 {
5809 static char wrap_indent[80];
5810 int i, total_width, width, align;
5811 const char *text;
5812
5813 total_width = 0;
5814 for (i = 1; uiout->query_table_field (i, &width, &align, &text); i++)
5815 {
5816 if (strcmp (text, col_name) == 0)
5817 {
5818 gdb_assert (total_width < sizeof wrap_indent);
5819 memset (wrap_indent, ' ', total_width);
5820 wrap_indent[total_width] = 0;
5821
5822 return wrap_indent;
5823 }
5824
5825 total_width += width + 1;
5826 }
5827
5828 return NULL;
5829 }
5830
5831 /* Determine if the locations of this breakpoint will have their conditions
5832 evaluated by the target, host or a mix of both. Returns the following:
5833
5834 "host": Host evals condition.
5835 "host or target": Host or Target evals condition.
5836 "target": Target evals condition.
5837 */
5838
5839 static const char *
5840 bp_condition_evaluator (struct breakpoint *b)
5841 {
5842 struct bp_location *bl;
5843 char host_evals = 0;
5844 char target_evals = 0;
5845
5846 if (!b)
5847 return NULL;
5848
5849 if (!is_breakpoint (b))
5850 return NULL;
5851
5852 if (gdb_evaluates_breakpoint_condition_p ()
5853 || !target_supports_evaluation_of_breakpoint_conditions ())
5854 return condition_evaluation_host;
5855
5856 for (bl = b->loc; bl; bl = bl->next)
5857 {
5858 if (bl->cond_bytecode)
5859 target_evals++;
5860 else
5861 host_evals++;
5862 }
5863
5864 if (host_evals && target_evals)
5865 return condition_evaluation_both;
5866 else if (target_evals)
5867 return condition_evaluation_target;
5868 else
5869 return condition_evaluation_host;
5870 }
5871
5872 /* Determine the breakpoint location's condition evaluator. This is
5873 similar to bp_condition_evaluator, but for locations. */
5874
5875 static const char *
5876 bp_location_condition_evaluator (struct bp_location *bl)
5877 {
5878 if (bl && !is_breakpoint (bl->owner))
5879 return NULL;
5880
5881 if (gdb_evaluates_breakpoint_condition_p ()
5882 || !target_supports_evaluation_of_breakpoint_conditions ())
5883 return condition_evaluation_host;
5884
5885 if (bl && bl->cond_bytecode)
5886 return condition_evaluation_target;
5887 else
5888 return condition_evaluation_host;
5889 }
5890
5891 /* Print the LOC location out of the list of B->LOC locations. */
5892
5893 static void
5894 print_breakpoint_location (struct breakpoint *b,
5895 struct bp_location *loc)
5896 {
5897 struct ui_out *uiout = current_uiout;
5898
5899 scoped_restore_current_program_space restore_pspace;
5900
5901 if (loc != NULL && loc->shlib_disabled)
5902 loc = NULL;
5903
5904 if (loc != NULL)
5905 set_current_program_space (loc->pspace);
5906
5907 if (b->display_canonical)
5908 uiout->field_string ("what", event_location_to_string (b->location.get ()));
5909 else if (loc && loc->symtab)
5910 {
5911 const struct symbol *sym = loc->symbol;
5912
5913 if (sym == NULL)
5914 sym = find_pc_sect_function (loc->address, loc->section);
5915
5916 if (sym)
5917 {
5918 uiout->text ("in ");
5919 uiout->field_string ("func", SYMBOL_PRINT_NAME (sym));
5920 uiout->text (" ");
5921 uiout->wrap_hint (wrap_indent_at_field (uiout, "what"));
5922 uiout->text ("at ");
5923 }
5924 uiout->field_string ("file",
5925 symtab_to_filename_for_display (loc->symtab));
5926 uiout->text (":");
5927
5928 if (uiout->is_mi_like_p ())
5929 uiout->field_string ("fullname", symtab_to_fullname (loc->symtab));
5930
5931 uiout->field_int ("line", loc->line_number);
5932 }
5933 else if (loc)
5934 {
5935 string_file stb;
5936
5937 print_address_symbolic (loc->gdbarch, loc->address, &stb,
5938 demangle, "");
5939 uiout->field_stream ("at", stb);
5940 }
5941 else
5942 {
5943 uiout->field_string ("pending",
5944 event_location_to_string (b->location.get ()));
5945 /* If extra_string is available, it could be holding a condition
5946 or dprintf arguments. In either case, make sure it is printed,
5947 too, but only for non-MI streams. */
5948 if (!uiout->is_mi_like_p () && b->extra_string != NULL)
5949 {
5950 if (b->type == bp_dprintf)
5951 uiout->text (",");
5952 else
5953 uiout->text (" ");
5954 uiout->text (b->extra_string);
5955 }
5956 }
5957
5958 if (loc && is_breakpoint (b)
5959 && breakpoint_condition_evaluation_mode () == condition_evaluation_target
5960 && bp_condition_evaluator (b) == condition_evaluation_both)
5961 {
5962 uiout->text (" (");
5963 uiout->field_string ("evaluated-by",
5964 bp_location_condition_evaluator (loc));
5965 uiout->text (")");
5966 }
5967 }
5968
5969 static const char *
5970 bptype_string (enum bptype type)
5971 {
5972 struct ep_type_description
5973 {
5974 enum bptype type;
5975 const char *description;
5976 };
5977 static struct ep_type_description bptypes[] =
5978 {
5979 {bp_none, "?deleted?"},
5980 {bp_breakpoint, "breakpoint"},
5981 {bp_hardware_breakpoint, "hw breakpoint"},
5982 {bp_single_step, "sw single-step"},
5983 {bp_until, "until"},
5984 {bp_finish, "finish"},
5985 {bp_watchpoint, "watchpoint"},
5986 {bp_hardware_watchpoint, "hw watchpoint"},
5987 {bp_read_watchpoint, "read watchpoint"},
5988 {bp_access_watchpoint, "acc watchpoint"},
5989 {bp_longjmp, "longjmp"},
5990 {bp_longjmp_resume, "longjmp resume"},
5991 {bp_longjmp_call_dummy, "longjmp for call dummy"},
5992 {bp_exception, "exception"},
5993 {bp_exception_resume, "exception resume"},
5994 {bp_step_resume, "step resume"},
5995 {bp_hp_step_resume, "high-priority step resume"},
5996 {bp_watchpoint_scope, "watchpoint scope"},
5997 {bp_call_dummy, "call dummy"},
5998 {bp_std_terminate, "std::terminate"},
5999 {bp_shlib_event, "shlib events"},
6000 {bp_thread_event, "thread events"},
6001 {bp_overlay_event, "overlay events"},
6002 {bp_longjmp_master, "longjmp master"},
6003 {bp_std_terminate_master, "std::terminate master"},
6004 {bp_exception_master, "exception master"},
6005 {bp_catchpoint, "catchpoint"},
6006 {bp_tracepoint, "tracepoint"},
6007 {bp_fast_tracepoint, "fast tracepoint"},
6008 {bp_static_tracepoint, "static tracepoint"},
6009 {bp_dprintf, "dprintf"},
6010 {bp_jit_event, "jit events"},
6011 {bp_gnu_ifunc_resolver, "STT_GNU_IFUNC resolver"},
6012 {bp_gnu_ifunc_resolver_return, "STT_GNU_IFUNC resolver return"},
6013 };
6014
6015 if (((int) type >= (sizeof (bptypes) / sizeof (bptypes[0])))
6016 || ((int) type != bptypes[(int) type].type))
6017 internal_error (__FILE__, __LINE__,
6018 _("bptypes table does not describe type #%d."),
6019 (int) type);
6020
6021 return bptypes[(int) type].description;
6022 }
6023
6024 /* For MI, output a field named 'thread-groups' with a list as the value.
6025 For CLI, prefix the list with the string 'inf'. */
6026
6027 static void
6028 output_thread_groups (struct ui_out *uiout,
6029 const char *field_name,
6030 const std::vector<int> &inf_nums,
6031 int mi_only)
6032 {
6033 int is_mi = uiout->is_mi_like_p ();
6034
6035 /* For backward compatibility, don't display inferiors in CLI unless
6036 there are several. Always display them for MI. */
6037 if (!is_mi && mi_only)
6038 return;
6039
6040 ui_out_emit_list list_emitter (uiout, field_name);
6041
6042 for (size_t i = 0; i < inf_nums.size (); i++)
6043 {
6044 if (is_mi)
6045 {
6046 char mi_group[10];
6047
6048 xsnprintf (mi_group, sizeof (mi_group), "i%d", inf_nums[i]);
6049 uiout->field_string (NULL, mi_group);
6050 }
6051 else
6052 {
6053 if (i == 0)
6054 uiout->text (" inf ");
6055 else
6056 uiout->text (", ");
6057
6058 uiout->text (plongest (inf_nums[i]));
6059 }
6060 }
6061 }
6062
6063 /* Print B to gdb_stdout. */
6064
6065 static void
6066 print_one_breakpoint_location (struct breakpoint *b,
6067 struct bp_location *loc,
6068 int loc_number,
6069 struct bp_location **last_loc,
6070 int allflag)
6071 {
6072 struct command_line *l;
6073 static char bpenables[] = "nynny";
6074
6075 struct ui_out *uiout = current_uiout;
6076 int header_of_multiple = 0;
6077 int part_of_multiple = (loc != NULL);
6078 struct value_print_options opts;
6079
6080 get_user_print_options (&opts);
6081
6082 gdb_assert (!loc || loc_number != 0);
6083 /* See comment in print_one_breakpoint concerning treatment of
6084 breakpoints with single disabled location. */
6085 if (loc == NULL
6086 && (b->loc != NULL
6087 && (b->loc->next != NULL || !b->loc->enabled)))
6088 header_of_multiple = 1;
6089 if (loc == NULL)
6090 loc = b->loc;
6091
6092 annotate_record ();
6093
6094 /* 1 */
6095 annotate_field (0);
6096 if (part_of_multiple)
6097 {
6098 char *formatted;
6099 formatted = xstrprintf ("%d.%d", b->number, loc_number);
6100 uiout->field_string ("number", formatted);
6101 xfree (formatted);
6102 }
6103 else
6104 {
6105 uiout->field_int ("number", b->number);
6106 }
6107
6108 /* 2 */
6109 annotate_field (1);
6110 if (part_of_multiple)
6111 uiout->field_skip ("type");
6112 else
6113 uiout->field_string ("type", bptype_string (b->type));
6114
6115 /* 3 */
6116 annotate_field (2);
6117 if (part_of_multiple)
6118 uiout->field_skip ("disp");
6119 else
6120 uiout->field_string ("disp", bpdisp_text (b->disposition));
6121
6122
6123 /* 4 */
6124 annotate_field (3);
6125 if (part_of_multiple)
6126 uiout->field_string ("enabled", loc->enabled ? "y" : "n");
6127 else
6128 uiout->field_fmt ("enabled", "%c", bpenables[(int) b->enable_state]);
6129 uiout->spaces (2);
6130
6131
6132 /* 5 and 6 */
6133 if (b->ops != NULL && b->ops->print_one != NULL)
6134 {
6135 /* Although the print_one can possibly print all locations,
6136 calling it here is not likely to get any nice result. So,
6137 make sure there's just one location. */
6138 gdb_assert (b->loc == NULL || b->loc->next == NULL);
6139 b->ops->print_one (b, last_loc);
6140 }
6141 else
6142 switch (b->type)
6143 {
6144 case bp_none:
6145 internal_error (__FILE__, __LINE__,
6146 _("print_one_breakpoint: bp_none encountered\n"));
6147 break;
6148
6149 case bp_watchpoint:
6150 case bp_hardware_watchpoint:
6151 case bp_read_watchpoint:
6152 case bp_access_watchpoint:
6153 {
6154 struct watchpoint *w = (struct watchpoint *) b;
6155
6156 /* Field 4, the address, is omitted (which makes the columns
6157 not line up too nicely with the headers, but the effect
6158 is relatively readable). */
6159 if (opts.addressprint)
6160 uiout->field_skip ("addr");
6161 annotate_field (5);
6162 uiout->field_string ("what", w->exp_string);
6163 }
6164 break;
6165
6166 case bp_breakpoint:
6167 case bp_hardware_breakpoint:
6168 case bp_single_step:
6169 case bp_until:
6170 case bp_finish:
6171 case bp_longjmp:
6172 case bp_longjmp_resume:
6173 case bp_longjmp_call_dummy:
6174 case bp_exception:
6175 case bp_exception_resume:
6176 case bp_step_resume:
6177 case bp_hp_step_resume:
6178 case bp_watchpoint_scope:
6179 case bp_call_dummy:
6180 case bp_std_terminate:
6181 case bp_shlib_event:
6182 case bp_thread_event:
6183 case bp_overlay_event:
6184 case bp_longjmp_master:
6185 case bp_std_terminate_master:
6186 case bp_exception_master:
6187 case bp_tracepoint:
6188 case bp_fast_tracepoint:
6189 case bp_static_tracepoint:
6190 case bp_dprintf:
6191 case bp_jit_event:
6192 case bp_gnu_ifunc_resolver:
6193 case bp_gnu_ifunc_resolver_return:
6194 if (opts.addressprint)
6195 {
6196 annotate_field (4);
6197 if (header_of_multiple)
6198 uiout->field_string ("addr", "<MULTIPLE>");
6199 else if (b->loc == NULL || loc->shlib_disabled)
6200 uiout->field_string ("addr", "<PENDING>");
6201 else
6202 uiout->field_core_addr ("addr",
6203 loc->gdbarch, loc->address);
6204 }
6205 annotate_field (5);
6206 if (!header_of_multiple)
6207 print_breakpoint_location (b, loc);
6208 if (b->loc)
6209 *last_loc = b->loc;
6210 break;
6211 }
6212
6213
6214 if (loc != NULL && !header_of_multiple)
6215 {
6216 struct inferior *inf;
6217 std::vector<int> inf_nums;
6218 int mi_only = 1;
6219
6220 ALL_INFERIORS (inf)
6221 {
6222 if (inf->pspace == loc->pspace)
6223 inf_nums.push_back (inf->num);
6224 }
6225
6226 /* For backward compatibility, don't display inferiors in CLI unless
6227 there are several. Always display for MI. */
6228 if (allflag
6229 || (!gdbarch_has_global_breakpoints (target_gdbarch ())
6230 && (number_of_program_spaces () > 1
6231 || number_of_inferiors () > 1)
6232 /* LOC is for existing B, it cannot be in
6233 moribund_locations and thus having NULL OWNER. */
6234 && loc->owner->type != bp_catchpoint))
6235 mi_only = 0;
6236 output_thread_groups (uiout, "thread-groups", inf_nums, mi_only);
6237 }
6238
6239 if (!part_of_multiple)
6240 {
6241 if (b->thread != -1)
6242 {
6243 /* FIXME: This seems to be redundant and lost here; see the
6244 "stop only in" line a little further down. */
6245 uiout->text (" thread ");
6246 uiout->field_int ("thread", b->thread);
6247 }
6248 else if (b->task != 0)
6249 {
6250 uiout->text (" task ");
6251 uiout->field_int ("task", b->task);
6252 }
6253 }
6254
6255 uiout->text ("\n");
6256
6257 if (!part_of_multiple)
6258 b->ops->print_one_detail (b, uiout);
6259
6260 if (part_of_multiple && frame_id_p (b->frame_id))
6261 {
6262 annotate_field (6);
6263 uiout->text ("\tstop only in stack frame at ");
6264 /* FIXME: cagney/2002-12-01: Shouldn't be poking around inside
6265 the frame ID. */
6266 uiout->field_core_addr ("frame",
6267 b->gdbarch, b->frame_id.stack_addr);
6268 uiout->text ("\n");
6269 }
6270
6271 if (!part_of_multiple && b->cond_string)
6272 {
6273 annotate_field (7);
6274 if (is_tracepoint (b))
6275 uiout->text ("\ttrace only if ");
6276 else
6277 uiout->text ("\tstop only if ");
6278 uiout->field_string ("cond", b->cond_string);
6279
6280 /* Print whether the target is doing the breakpoint's condition
6281 evaluation. If GDB is doing the evaluation, don't print anything. */
6282 if (is_breakpoint (b)
6283 && breakpoint_condition_evaluation_mode ()
6284 == condition_evaluation_target)
6285 {
6286 uiout->text (" (");
6287 uiout->field_string ("evaluated-by",
6288 bp_condition_evaluator (b));
6289 uiout->text (" evals)");
6290 }
6291 uiout->text ("\n");
6292 }
6293
6294 if (!part_of_multiple && b->thread != -1)
6295 {
6296 /* FIXME should make an annotation for this. */
6297 uiout->text ("\tstop only in thread ");
6298 if (uiout->is_mi_like_p ())
6299 uiout->field_int ("thread", b->thread);
6300 else
6301 {
6302 struct thread_info *thr = find_thread_global_id (b->thread);
6303
6304 uiout->field_string ("thread", print_thread_id (thr));
6305 }
6306 uiout->text ("\n");
6307 }
6308
6309 if (!part_of_multiple)
6310 {
6311 if (b->hit_count)
6312 {
6313 /* FIXME should make an annotation for this. */
6314 if (is_catchpoint (b))
6315 uiout->text ("\tcatchpoint");
6316 else if (is_tracepoint (b))
6317 uiout->text ("\ttracepoint");
6318 else
6319 uiout->text ("\tbreakpoint");
6320 uiout->text (" already hit ");
6321 uiout->field_int ("times", b->hit_count);
6322 if (b->hit_count == 1)
6323 uiout->text (" time\n");
6324 else
6325 uiout->text (" times\n");
6326 }
6327 else
6328 {
6329 /* Output the count also if it is zero, but only if this is mi. */
6330 if (uiout->is_mi_like_p ())
6331 uiout->field_int ("times", b->hit_count);
6332 }
6333 }
6334
6335 if (!part_of_multiple && b->ignore_count)
6336 {
6337 annotate_field (8);
6338 uiout->text ("\tignore next ");
6339 uiout->field_int ("ignore", b->ignore_count);
6340 uiout->text (" hits\n");
6341 }
6342
6343 /* Note that an enable count of 1 corresponds to "enable once"
6344 behavior, which is reported by the combination of enablement and
6345 disposition, so we don't need to mention it here. */
6346 if (!part_of_multiple && b->enable_count > 1)
6347 {
6348 annotate_field (8);
6349 uiout->text ("\tdisable after ");
6350 /* Tweak the wording to clarify that ignore and enable counts
6351 are distinct, and have additive effect. */
6352 if (b->ignore_count)
6353 uiout->text ("additional ");
6354 else
6355 uiout->text ("next ");
6356 uiout->field_int ("enable", b->enable_count);
6357 uiout->text (" hits\n");
6358 }
6359
6360 if (!part_of_multiple && is_tracepoint (b))
6361 {
6362 struct tracepoint *tp = (struct tracepoint *) b;
6363
6364 if (tp->traceframe_usage)
6365 {
6366 uiout->text ("\ttrace buffer usage ");
6367 uiout->field_int ("traceframe-usage", tp->traceframe_usage);
6368 uiout->text (" bytes\n");
6369 }
6370 }
6371
6372 l = b->commands ? b->commands.get () : NULL;
6373 if (!part_of_multiple && l)
6374 {
6375 annotate_field (9);
6376 ui_out_emit_tuple tuple_emitter (uiout, "script");
6377 print_command_lines (uiout, l, 4);
6378 }
6379
6380 if (is_tracepoint (b))
6381 {
6382 struct tracepoint *t = (struct tracepoint *) b;
6383
6384 if (!part_of_multiple && t->pass_count)
6385 {
6386 annotate_field (10);
6387 uiout->text ("\tpass count ");
6388 uiout->field_int ("pass", t->pass_count);
6389 uiout->text (" \n");
6390 }
6391
6392 /* Don't display it when tracepoint or tracepoint location is
6393 pending. */
6394 if (!header_of_multiple && loc != NULL && !loc->shlib_disabled)
6395 {
6396 annotate_field (11);
6397
6398 if (uiout->is_mi_like_p ())
6399 uiout->field_string ("installed",
6400 loc->inserted ? "y" : "n");
6401 else
6402 {
6403 if (loc->inserted)
6404 uiout->text ("\t");
6405 else
6406 uiout->text ("\tnot ");
6407 uiout->text ("installed on target\n");
6408 }
6409 }
6410 }
6411
6412 if (uiout->is_mi_like_p () && !part_of_multiple)
6413 {
6414 if (is_watchpoint (b))
6415 {
6416 struct watchpoint *w = (struct watchpoint *) b;
6417
6418 uiout->field_string ("original-location", w->exp_string);
6419 }
6420 else if (b->location != NULL
6421 && event_location_to_string (b->location.get ()) != NULL)
6422 uiout->field_string ("original-location",
6423 event_location_to_string (b->location.get ()));
6424 }
6425 }
6426
6427 static void
6428 print_one_breakpoint (struct breakpoint *b,
6429 struct bp_location **last_loc,
6430 int allflag)
6431 {
6432 struct ui_out *uiout = current_uiout;
6433
6434 {
6435 ui_out_emit_tuple tuple_emitter (uiout, "bkpt");
6436
6437 print_one_breakpoint_location (b, NULL, 0, last_loc, allflag);
6438 }
6439
6440 /* If this breakpoint has custom print function,
6441 it's already printed. Otherwise, print individual
6442 locations, if any. */
6443 if (b->ops == NULL || b->ops->print_one == NULL)
6444 {
6445 /* If breakpoint has a single location that is disabled, we
6446 print it as if it had several locations, since otherwise it's
6447 hard to represent "breakpoint enabled, location disabled"
6448 situation.
6449
6450 Note that while hardware watchpoints have several locations
6451 internally, that's not a property exposed to user. */
6452 if (b->loc
6453 && !is_hardware_watchpoint (b)
6454 && (b->loc->next || !b->loc->enabled))
6455 {
6456 struct bp_location *loc;
6457 int n = 1;
6458
6459 for (loc = b->loc; loc; loc = loc->next, ++n)
6460 {
6461 ui_out_emit_tuple tuple_emitter (uiout, NULL);
6462 print_one_breakpoint_location (b, loc, n, last_loc, allflag);
6463 }
6464 }
6465 }
6466 }
6467
6468 static int
6469 breakpoint_address_bits (struct breakpoint *b)
6470 {
6471 int print_address_bits = 0;
6472 struct bp_location *loc;
6473
6474 /* Software watchpoints that aren't watching memory don't have an
6475 address to print. */
6476 if (is_no_memory_software_watchpoint (b))
6477 return 0;
6478
6479 for (loc = b->loc; loc; loc = loc->next)
6480 {
6481 int addr_bit;
6482
6483 addr_bit = gdbarch_addr_bit (loc->gdbarch);
6484 if (addr_bit > print_address_bits)
6485 print_address_bits = addr_bit;
6486 }
6487
6488 return print_address_bits;
6489 }
6490
6491 /* See breakpoint.h. */
6492
6493 void
6494 print_breakpoint (breakpoint *b)
6495 {
6496 struct bp_location *dummy_loc = NULL;
6497 print_one_breakpoint (b, &dummy_loc, 0);
6498 }
6499
6500 /* Return true if this breakpoint was set by the user, false if it is
6501 internal or momentary. */
6502
6503 int
6504 user_breakpoint_p (struct breakpoint *b)
6505 {
6506 return b->number > 0;
6507 }
6508
6509 /* See breakpoint.h. */
6510
6511 int
6512 pending_breakpoint_p (struct breakpoint *b)
6513 {
6514 return b->loc == NULL;
6515 }
6516
6517 /* Print information on user settable breakpoint (watchpoint, etc)
6518 number BNUM. If BNUM is -1 print all user-settable breakpoints.
6519 If ALLFLAG is non-zero, include non-user-settable breakpoints. If
6520 FILTER is non-NULL, call it on each breakpoint and only include the
6521 ones for which it returns non-zero. Return the total number of
6522 breakpoints listed. */
6523
6524 static int
6525 breakpoint_1 (const char *args, int allflag,
6526 int (*filter) (const struct breakpoint *))
6527 {
6528 struct breakpoint *b;
6529 struct bp_location *last_loc = NULL;
6530 int nr_printable_breakpoints;
6531 struct value_print_options opts;
6532 int print_address_bits = 0;
6533 int print_type_col_width = 14;
6534 struct ui_out *uiout = current_uiout;
6535
6536 get_user_print_options (&opts);
6537
6538 /* Compute the number of rows in the table, as well as the size
6539 required for address fields. */
6540 nr_printable_breakpoints = 0;
6541 ALL_BREAKPOINTS (b)
6542 {
6543 /* If we have a filter, only list the breakpoints it accepts. */
6544 if (filter && !filter (b))
6545 continue;
6546
6547 /* If we have an "args" string, it is a list of breakpoints to
6548 accept. Skip the others. */
6549 if (args != NULL && *args != '\0')
6550 {
6551 if (allflag && parse_and_eval_long (args) != b->number)
6552 continue;
6553 if (!allflag && !number_is_in_list (args, b->number))
6554 continue;
6555 }
6556
6557 if (allflag || user_breakpoint_p (b))
6558 {
6559 int addr_bit, type_len;
6560
6561 addr_bit = breakpoint_address_bits (b);
6562 if (addr_bit > print_address_bits)
6563 print_address_bits = addr_bit;
6564
6565 type_len = strlen (bptype_string (b->type));
6566 if (type_len > print_type_col_width)
6567 print_type_col_width = type_len;
6568
6569 nr_printable_breakpoints++;
6570 }
6571 }
6572
6573 {
6574 ui_out_emit_table table_emitter (uiout,
6575 opts.addressprint ? 6 : 5,
6576 nr_printable_breakpoints,
6577 "BreakpointTable");
6578
6579 if (nr_printable_breakpoints > 0)
6580 annotate_breakpoints_headers ();
6581 if (nr_printable_breakpoints > 0)
6582 annotate_field (0);
6583 uiout->table_header (7, ui_left, "number", "Num"); /* 1 */
6584 if (nr_printable_breakpoints > 0)
6585 annotate_field (1);
6586 uiout->table_header (print_type_col_width, ui_left, "type", "Type"); /* 2 */
6587 if (nr_printable_breakpoints > 0)
6588 annotate_field (2);
6589 uiout->table_header (4, ui_left, "disp", "Disp"); /* 3 */
6590 if (nr_printable_breakpoints > 0)
6591 annotate_field (3);
6592 uiout->table_header (3, ui_left, "enabled", "Enb"); /* 4 */
6593 if (opts.addressprint)
6594 {
6595 if (nr_printable_breakpoints > 0)
6596 annotate_field (4);
6597 if (print_address_bits <= 32)
6598 uiout->table_header (10, ui_left, "addr", "Address"); /* 5 */
6599 else
6600 uiout->table_header (18, ui_left, "addr", "Address"); /* 5 */
6601 }
6602 if (nr_printable_breakpoints > 0)
6603 annotate_field (5);
6604 uiout->table_header (40, ui_noalign, "what", "What"); /* 6 */
6605 uiout->table_body ();
6606 if (nr_printable_breakpoints > 0)
6607 annotate_breakpoints_table ();
6608
6609 ALL_BREAKPOINTS (b)
6610 {
6611 QUIT;
6612 /* If we have a filter, only list the breakpoints it accepts. */
6613 if (filter && !filter (b))
6614 continue;
6615
6616 /* If we have an "args" string, it is a list of breakpoints to
6617 accept. Skip the others. */
6618
6619 if (args != NULL && *args != '\0')
6620 {
6621 if (allflag) /* maintenance info breakpoint */
6622 {
6623 if (parse_and_eval_long (args) != b->number)
6624 continue;
6625 }
6626 else /* all others */
6627 {
6628 if (!number_is_in_list (args, b->number))
6629 continue;
6630 }
6631 }
6632 /* We only print out user settable breakpoints unless the
6633 allflag is set. */
6634 if (allflag || user_breakpoint_p (b))
6635 print_one_breakpoint (b, &last_loc, allflag);
6636 }
6637 }
6638
6639 if (nr_printable_breakpoints == 0)
6640 {
6641 /* If there's a filter, let the caller decide how to report
6642 empty list. */
6643 if (!filter)
6644 {
6645 if (args == NULL || *args == '\0')
6646 uiout->message ("No breakpoints or watchpoints.\n");
6647 else
6648 uiout->message ("No breakpoint or watchpoint matching '%s'.\n",
6649 args);
6650 }
6651 }
6652 else
6653 {
6654 if (last_loc && !server_command)
6655 set_next_address (last_loc->gdbarch, last_loc->address);
6656 }
6657
6658 /* FIXME? Should this be moved up so that it is only called when
6659 there have been breakpoints? */
6660 annotate_breakpoints_table_end ();
6661
6662 return nr_printable_breakpoints;
6663 }
6664
6665 /* Display the value of default-collect in a way that is generally
6666 compatible with the breakpoint list. */
6667
6668 static void
6669 default_collect_info (void)
6670 {
6671 struct ui_out *uiout = current_uiout;
6672
6673 /* If it has no value (which is frequently the case), say nothing; a
6674 message like "No default-collect." gets in user's face when it's
6675 not wanted. */
6676 if (!*default_collect)
6677 return;
6678
6679 /* The following phrase lines up nicely with per-tracepoint collect
6680 actions. */
6681 uiout->text ("default collect ");
6682 uiout->field_string ("default-collect", default_collect);
6683 uiout->text (" \n");
6684 }
6685
6686 static void
6687 info_breakpoints_command (const char *args, int from_tty)
6688 {
6689 breakpoint_1 (args, 0, NULL);
6690
6691 default_collect_info ();
6692 }
6693
6694 static void
6695 info_watchpoints_command (const char *args, int from_tty)
6696 {
6697 int num_printed = breakpoint_1 (args, 0, is_watchpoint);
6698 struct ui_out *uiout = current_uiout;
6699
6700 if (num_printed == 0)
6701 {
6702 if (args == NULL || *args == '\0')
6703 uiout->message ("No watchpoints.\n");
6704 else
6705 uiout->message ("No watchpoint matching '%s'.\n", args);
6706 }
6707 }
6708
6709 static void
6710 maintenance_info_breakpoints (const char *args, int from_tty)
6711 {
6712 breakpoint_1 (args, 1, NULL);
6713
6714 default_collect_info ();
6715 }
6716
6717 static int
6718 breakpoint_has_pc (struct breakpoint *b,
6719 struct program_space *pspace,
6720 CORE_ADDR pc, struct obj_section *section)
6721 {
6722 struct bp_location *bl = b->loc;
6723
6724 for (; bl; bl = bl->next)
6725 {
6726 if (bl->pspace == pspace
6727 && bl->address == pc
6728 && (!overlay_debugging || bl->section == section))
6729 return 1;
6730 }
6731 return 0;
6732 }
6733
6734 /* Print a message describing any user-breakpoints set at PC. This
6735 concerns with logical breakpoints, so we match program spaces, not
6736 address spaces. */
6737
6738 static void
6739 describe_other_breakpoints (struct gdbarch *gdbarch,
6740 struct program_space *pspace, CORE_ADDR pc,
6741 struct obj_section *section, int thread)
6742 {
6743 int others = 0;
6744 struct breakpoint *b;
6745
6746 ALL_BREAKPOINTS (b)
6747 others += (user_breakpoint_p (b)
6748 && breakpoint_has_pc (b, pspace, pc, section));
6749 if (others > 0)
6750 {
6751 if (others == 1)
6752 printf_filtered (_("Note: breakpoint "));
6753 else /* if (others == ???) */
6754 printf_filtered (_("Note: breakpoints "));
6755 ALL_BREAKPOINTS (b)
6756 if (user_breakpoint_p (b) && breakpoint_has_pc (b, pspace, pc, section))
6757 {
6758 others--;
6759 printf_filtered ("%d", b->number);
6760 if (b->thread == -1 && thread != -1)
6761 printf_filtered (" (all threads)");
6762 else if (b->thread != -1)
6763 printf_filtered (" (thread %d)", b->thread);
6764 printf_filtered ("%s%s ",
6765 ((b->enable_state == bp_disabled
6766 || b->enable_state == bp_call_disabled)
6767 ? " (disabled)"
6768 : ""),
6769 (others > 1) ? ","
6770 : ((others == 1) ? " and" : ""));
6771 }
6772 printf_filtered (_("also set at pc "));
6773 fputs_filtered (paddress (gdbarch, pc), gdb_stdout);
6774 printf_filtered (".\n");
6775 }
6776 }
6777 \f
6778
6779 /* Return true iff it is meaningful to use the address member of
6780 BPT locations. For some breakpoint types, the locations' address members
6781 are irrelevant and it makes no sense to attempt to compare them to other
6782 addresses (or use them for any other purpose either).
6783
6784 More specifically, each of the following breakpoint types will
6785 always have a zero valued location address and we don't want to mark
6786 breakpoints of any of these types to be a duplicate of an actual
6787 breakpoint location at address zero:
6788
6789 bp_watchpoint
6790 bp_catchpoint
6791
6792 */
6793
6794 static int
6795 breakpoint_address_is_meaningful (struct breakpoint *bpt)
6796 {
6797 enum bptype type = bpt->type;
6798
6799 return (type != bp_watchpoint && type != bp_catchpoint);
6800 }
6801
6802 /* Assuming LOC1 and LOC2's owners are hardware watchpoints, returns
6803 true if LOC1 and LOC2 represent the same watchpoint location. */
6804
6805 static int
6806 watchpoint_locations_match (struct bp_location *loc1,
6807 struct bp_location *loc2)
6808 {
6809 struct watchpoint *w1 = (struct watchpoint *) loc1->owner;
6810 struct watchpoint *w2 = (struct watchpoint *) loc2->owner;
6811
6812 /* Both of them must exist. */
6813 gdb_assert (w1 != NULL);
6814 gdb_assert (w2 != NULL);
6815
6816 /* If the target can evaluate the condition expression in hardware,
6817 then we we need to insert both watchpoints even if they are at
6818 the same place. Otherwise the watchpoint will only trigger when
6819 the condition of whichever watchpoint was inserted evaluates to
6820 true, not giving a chance for GDB to check the condition of the
6821 other watchpoint. */
6822 if ((w1->cond_exp
6823 && target_can_accel_watchpoint_condition (loc1->address,
6824 loc1->length,
6825 loc1->watchpoint_type,
6826 w1->cond_exp.get ()))
6827 || (w2->cond_exp
6828 && target_can_accel_watchpoint_condition (loc2->address,
6829 loc2->length,
6830 loc2->watchpoint_type,
6831 w2->cond_exp.get ())))
6832 return 0;
6833
6834 /* Note that this checks the owner's type, not the location's. In
6835 case the target does not support read watchpoints, but does
6836 support access watchpoints, we'll have bp_read_watchpoint
6837 watchpoints with hw_access locations. Those should be considered
6838 duplicates of hw_read locations. The hw_read locations will
6839 become hw_access locations later. */
6840 return (loc1->owner->type == loc2->owner->type
6841 && loc1->pspace->aspace == loc2->pspace->aspace
6842 && loc1->address == loc2->address
6843 && loc1->length == loc2->length);
6844 }
6845
6846 /* See breakpoint.h. */
6847
6848 int
6849 breakpoint_address_match (const address_space *aspace1, CORE_ADDR addr1,
6850 const address_space *aspace2, CORE_ADDR addr2)
6851 {
6852 return ((gdbarch_has_global_breakpoints (target_gdbarch ())
6853 || aspace1 == aspace2)
6854 && addr1 == addr2);
6855 }
6856
6857 /* Returns true if {ASPACE2,ADDR2} falls within the range determined by
6858 {ASPACE1,ADDR1,LEN1}. In most targets, this can only be true if ASPACE1
6859 matches ASPACE2. On targets that have global breakpoints, the address
6860 space doesn't really matter. */
6861
6862 static int
6863 breakpoint_address_match_range (const address_space *aspace1,
6864 CORE_ADDR addr1,
6865 int len1, const address_space *aspace2,
6866 CORE_ADDR addr2)
6867 {
6868 return ((gdbarch_has_global_breakpoints (target_gdbarch ())
6869 || aspace1 == aspace2)
6870 && addr2 >= addr1 && addr2 < addr1 + len1);
6871 }
6872
6873 /* Returns true if {ASPACE,ADDR} matches the breakpoint BL. BL may be
6874 a ranged breakpoint. In most targets, a match happens only if ASPACE
6875 matches the breakpoint's address space. On targets that have global
6876 breakpoints, the address space doesn't really matter. */
6877
6878 static int
6879 breakpoint_location_address_match (struct bp_location *bl,
6880 const address_space *aspace,
6881 CORE_ADDR addr)
6882 {
6883 return (breakpoint_address_match (bl->pspace->aspace, bl->address,
6884 aspace, addr)
6885 || (bl->length
6886 && breakpoint_address_match_range (bl->pspace->aspace,
6887 bl->address, bl->length,
6888 aspace, addr)));
6889 }
6890
6891 /* Returns true if the [ADDR,ADDR+LEN) range in ASPACE overlaps
6892 breakpoint BL. BL may be a ranged breakpoint. In most targets, a
6893 match happens only if ASPACE matches the breakpoint's address
6894 space. On targets that have global breakpoints, the address space
6895 doesn't really matter. */
6896
6897 static int
6898 breakpoint_location_address_range_overlap (struct bp_location *bl,
6899 const address_space *aspace,
6900 CORE_ADDR addr, int len)
6901 {
6902 if (gdbarch_has_global_breakpoints (target_gdbarch ())
6903 || bl->pspace->aspace == aspace)
6904 {
6905 int bl_len = bl->length != 0 ? bl->length : 1;
6906
6907 if (mem_ranges_overlap (addr, len, bl->address, bl_len))
6908 return 1;
6909 }
6910 return 0;
6911 }
6912
6913 /* If LOC1 and LOC2's owners are not tracepoints, returns false directly.
6914 Then, if LOC1 and LOC2 represent the same tracepoint location, returns
6915 true, otherwise returns false. */
6916
6917 static int
6918 tracepoint_locations_match (struct bp_location *loc1,
6919 struct bp_location *loc2)
6920 {
6921 if (is_tracepoint (loc1->owner) && is_tracepoint (loc2->owner))
6922 /* Since tracepoint locations are never duplicated with others', tracepoint
6923 locations at the same address of different tracepoints are regarded as
6924 different locations. */
6925 return (loc1->address == loc2->address && loc1->owner == loc2->owner);
6926 else
6927 return 0;
6928 }
6929
6930 /* Assuming LOC1 and LOC2's types' have meaningful target addresses
6931 (breakpoint_address_is_meaningful), returns true if LOC1 and LOC2
6932 represent the same location. */
6933
6934 static int
6935 breakpoint_locations_match (struct bp_location *loc1,
6936 struct bp_location *loc2)
6937 {
6938 int hw_point1, hw_point2;
6939
6940 /* Both of them must not be in moribund_locations. */
6941 gdb_assert (loc1->owner != NULL);
6942 gdb_assert (loc2->owner != NULL);
6943
6944 hw_point1 = is_hardware_watchpoint (loc1->owner);
6945 hw_point2 = is_hardware_watchpoint (loc2->owner);
6946
6947 if (hw_point1 != hw_point2)
6948 return 0;
6949 else if (hw_point1)
6950 return watchpoint_locations_match (loc1, loc2);
6951 else if (is_tracepoint (loc1->owner) || is_tracepoint (loc2->owner))
6952 return tracepoint_locations_match (loc1, loc2);
6953 else
6954 /* We compare bp_location.length in order to cover ranged breakpoints. */
6955 return (breakpoint_address_match (loc1->pspace->aspace, loc1->address,
6956 loc2->pspace->aspace, loc2->address)
6957 && loc1->length == loc2->length);
6958 }
6959
6960 static void
6961 breakpoint_adjustment_warning (CORE_ADDR from_addr, CORE_ADDR to_addr,
6962 int bnum, int have_bnum)
6963 {
6964 /* The longest string possibly returned by hex_string_custom
6965 is 50 chars. These must be at least that big for safety. */
6966 char astr1[64];
6967 char astr2[64];
6968
6969 strcpy (astr1, hex_string_custom ((unsigned long) from_addr, 8));
6970 strcpy (astr2, hex_string_custom ((unsigned long) to_addr, 8));
6971 if (have_bnum)
6972 warning (_("Breakpoint %d address previously adjusted from %s to %s."),
6973 bnum, astr1, astr2);
6974 else
6975 warning (_("Breakpoint address adjusted from %s to %s."), astr1, astr2);
6976 }
6977
6978 /* Adjust a breakpoint's address to account for architectural
6979 constraints on breakpoint placement. Return the adjusted address.
6980 Note: Very few targets require this kind of adjustment. For most
6981 targets, this function is simply the identity function. */
6982
6983 static CORE_ADDR
6984 adjust_breakpoint_address (struct gdbarch *gdbarch,
6985 CORE_ADDR bpaddr, enum bptype bptype)
6986 {
6987 if (!gdbarch_adjust_breakpoint_address_p (gdbarch))
6988 {
6989 /* Very few targets need any kind of breakpoint adjustment. */
6990 return bpaddr;
6991 }
6992 else if (bptype == bp_watchpoint
6993 || bptype == bp_hardware_watchpoint
6994 || bptype == bp_read_watchpoint
6995 || bptype == bp_access_watchpoint
6996 || bptype == bp_catchpoint)
6997 {
6998 /* Watchpoints and the various bp_catch_* eventpoints should not
6999 have their addresses modified. */
7000 return bpaddr;
7001 }
7002 else if (bptype == bp_single_step)
7003 {
7004 /* Single-step breakpoints should not have their addresses
7005 modified. If there's any architectural constrain that
7006 applies to this address, then it should have already been
7007 taken into account when the breakpoint was created in the
7008 first place. If we didn't do this, stepping through e.g.,
7009 Thumb-2 IT blocks would break. */
7010 return bpaddr;
7011 }
7012 else
7013 {
7014 CORE_ADDR adjusted_bpaddr;
7015
7016 /* Some targets have architectural constraints on the placement
7017 of breakpoint instructions. Obtain the adjusted address. */
7018 adjusted_bpaddr = gdbarch_adjust_breakpoint_address (gdbarch, bpaddr);
7019
7020 /* An adjusted breakpoint address can significantly alter
7021 a user's expectations. Print a warning if an adjustment
7022 is required. */
7023 if (adjusted_bpaddr != bpaddr)
7024 breakpoint_adjustment_warning (bpaddr, adjusted_bpaddr, 0, 0);
7025
7026 return adjusted_bpaddr;
7027 }
7028 }
7029
7030 bp_location::bp_location (const bp_location_ops *ops, breakpoint *owner)
7031 {
7032 bp_location *loc = this;
7033
7034 gdb_assert (ops != NULL);
7035
7036 loc->ops = ops;
7037 loc->owner = owner;
7038 loc->cond_bytecode = NULL;
7039 loc->shlib_disabled = 0;
7040 loc->enabled = 1;
7041
7042 switch (owner->type)
7043 {
7044 case bp_breakpoint:
7045 case bp_single_step:
7046 case bp_until:
7047 case bp_finish:
7048 case bp_longjmp:
7049 case bp_longjmp_resume:
7050 case bp_longjmp_call_dummy:
7051 case bp_exception:
7052 case bp_exception_resume:
7053 case bp_step_resume:
7054 case bp_hp_step_resume:
7055 case bp_watchpoint_scope:
7056 case bp_call_dummy:
7057 case bp_std_terminate:
7058 case bp_shlib_event:
7059 case bp_thread_event:
7060 case bp_overlay_event:
7061 case bp_jit_event:
7062 case bp_longjmp_master:
7063 case bp_std_terminate_master:
7064 case bp_exception_master:
7065 case bp_gnu_ifunc_resolver:
7066 case bp_gnu_ifunc_resolver_return:
7067 case bp_dprintf:
7068 loc->loc_type = bp_loc_software_breakpoint;
7069 mark_breakpoint_location_modified (loc);
7070 break;
7071 case bp_hardware_breakpoint:
7072 loc->loc_type = bp_loc_hardware_breakpoint;
7073 mark_breakpoint_location_modified (loc);
7074 break;
7075 case bp_hardware_watchpoint:
7076 case bp_read_watchpoint:
7077 case bp_access_watchpoint:
7078 loc->loc_type = bp_loc_hardware_watchpoint;
7079 break;
7080 case bp_watchpoint:
7081 case bp_catchpoint:
7082 case bp_tracepoint:
7083 case bp_fast_tracepoint:
7084 case bp_static_tracepoint:
7085 loc->loc_type = bp_loc_other;
7086 break;
7087 default:
7088 internal_error (__FILE__, __LINE__, _("unknown breakpoint type"));
7089 }
7090
7091 loc->refc = 1;
7092 }
7093
7094 /* Allocate a struct bp_location. */
7095
7096 static struct bp_location *
7097 allocate_bp_location (struct breakpoint *bpt)
7098 {
7099 return bpt->ops->allocate_location (bpt);
7100 }
7101
7102 static void
7103 free_bp_location (struct bp_location *loc)
7104 {
7105 loc->ops->dtor (loc);
7106 delete loc;
7107 }
7108
7109 /* Increment reference count. */
7110
7111 static void
7112 incref_bp_location (struct bp_location *bl)
7113 {
7114 ++bl->refc;
7115 }
7116
7117 /* Decrement reference count. If the reference count reaches 0,
7118 destroy the bp_location. Sets *BLP to NULL. */
7119
7120 static void
7121 decref_bp_location (struct bp_location **blp)
7122 {
7123 gdb_assert ((*blp)->refc > 0);
7124
7125 if (--(*blp)->refc == 0)
7126 free_bp_location (*blp);
7127 *blp = NULL;
7128 }
7129
7130 /* Add breakpoint B at the end of the global breakpoint chain. */
7131
7132 static breakpoint *
7133 add_to_breakpoint_chain (std::unique_ptr<breakpoint> &&b)
7134 {
7135 struct breakpoint *b1;
7136 struct breakpoint *result = b.get ();
7137
7138 /* Add this breakpoint to the end of the chain so that a list of
7139 breakpoints will come out in order of increasing numbers. */
7140
7141 b1 = breakpoint_chain;
7142 if (b1 == 0)
7143 breakpoint_chain = b.release ();
7144 else
7145 {
7146 while (b1->next)
7147 b1 = b1->next;
7148 b1->next = b.release ();
7149 }
7150
7151 return result;
7152 }
7153
7154 /* Initializes breakpoint B with type BPTYPE and no locations yet. */
7155
7156 static void
7157 init_raw_breakpoint_without_location (struct breakpoint *b,
7158 struct gdbarch *gdbarch,
7159 enum bptype bptype,
7160 const struct breakpoint_ops *ops)
7161 {
7162 gdb_assert (ops != NULL);
7163
7164 b->ops = ops;
7165 b->type = bptype;
7166 b->gdbarch = gdbarch;
7167 b->language = current_language->la_language;
7168 b->input_radix = input_radix;
7169 b->related_breakpoint = b;
7170 }
7171
7172 /* Helper to set_raw_breakpoint below. Creates a breakpoint
7173 that has type BPTYPE and has no locations as yet. */
7174
7175 static struct breakpoint *
7176 set_raw_breakpoint_without_location (struct gdbarch *gdbarch,
7177 enum bptype bptype,
7178 const struct breakpoint_ops *ops)
7179 {
7180 std::unique_ptr<breakpoint> b = new_breakpoint_from_type (bptype);
7181
7182 init_raw_breakpoint_without_location (b.get (), gdbarch, bptype, ops);
7183 return add_to_breakpoint_chain (std::move (b));
7184 }
7185
7186 /* Initialize loc->function_name. EXPLICIT_LOC says no indirect function
7187 resolutions should be made as the user specified the location explicitly
7188 enough. */
7189
7190 static void
7191 set_breakpoint_location_function (struct bp_location *loc, int explicit_loc)
7192 {
7193 gdb_assert (loc->owner != NULL);
7194
7195 if (loc->owner->type == bp_breakpoint
7196 || loc->owner->type == bp_hardware_breakpoint
7197 || is_tracepoint (loc->owner))
7198 {
7199 int is_gnu_ifunc;
7200 const char *function_name;
7201 CORE_ADDR func_addr;
7202
7203 find_pc_partial_function_gnu_ifunc (loc->address, &function_name,
7204 &func_addr, NULL, &is_gnu_ifunc);
7205
7206 if (is_gnu_ifunc && !explicit_loc)
7207 {
7208 struct breakpoint *b = loc->owner;
7209
7210 gdb_assert (loc->pspace == current_program_space);
7211 if (gnu_ifunc_resolve_name (function_name,
7212 &loc->requested_address))
7213 {
7214 /* Recalculate ADDRESS based on new REQUESTED_ADDRESS. */
7215 loc->address = adjust_breakpoint_address (loc->gdbarch,
7216 loc->requested_address,
7217 b->type);
7218 }
7219 else if (b->type == bp_breakpoint && b->loc == loc
7220 && loc->next == NULL && b->related_breakpoint == b)
7221 {
7222 /* Create only the whole new breakpoint of this type but do not
7223 mess more complicated breakpoints with multiple locations. */
7224 b->type = bp_gnu_ifunc_resolver;
7225 /* Remember the resolver's address for use by the return
7226 breakpoint. */
7227 loc->related_address = func_addr;
7228 }
7229 }
7230
7231 if (function_name)
7232 loc->function_name = xstrdup (function_name);
7233 }
7234 }
7235
7236 /* Attempt to determine architecture of location identified by SAL. */
7237 struct gdbarch *
7238 get_sal_arch (struct symtab_and_line sal)
7239 {
7240 if (sal.section)
7241 return get_objfile_arch (sal.section->objfile);
7242 if (sal.symtab)
7243 return get_objfile_arch (SYMTAB_OBJFILE (sal.symtab));
7244
7245 return NULL;
7246 }
7247
7248 /* Low level routine for partially initializing a breakpoint of type
7249 BPTYPE. The newly created breakpoint's address, section, source
7250 file name, and line number are provided by SAL.
7251
7252 It is expected that the caller will complete the initialization of
7253 the newly created breakpoint struct as well as output any status
7254 information regarding the creation of a new breakpoint. */
7255
7256 static void
7257 init_raw_breakpoint (struct breakpoint *b, struct gdbarch *gdbarch,
7258 struct symtab_and_line sal, enum bptype bptype,
7259 const struct breakpoint_ops *ops)
7260 {
7261 init_raw_breakpoint_without_location (b, gdbarch, bptype, ops);
7262
7263 add_location_to_breakpoint (b, &sal);
7264
7265 if (bptype != bp_catchpoint)
7266 gdb_assert (sal.pspace != NULL);
7267
7268 /* Store the program space that was used to set the breakpoint,
7269 except for ordinary breakpoints, which are independent of the
7270 program space. */
7271 if (bptype != bp_breakpoint && bptype != bp_hardware_breakpoint)
7272 b->pspace = sal.pspace;
7273 }
7274
7275 /* set_raw_breakpoint is a low level routine for allocating and
7276 partially initializing a breakpoint of type BPTYPE. The newly
7277 created breakpoint's address, section, source file name, and line
7278 number are provided by SAL. The newly created and partially
7279 initialized breakpoint is added to the breakpoint chain and
7280 is also returned as the value of this function.
7281
7282 It is expected that the caller will complete the initialization of
7283 the newly created breakpoint struct as well as output any status
7284 information regarding the creation of a new breakpoint. In
7285 particular, set_raw_breakpoint does NOT set the breakpoint
7286 number! Care should be taken to not allow an error to occur
7287 prior to completing the initialization of the breakpoint. If this
7288 should happen, a bogus breakpoint will be left on the chain. */
7289
7290 struct breakpoint *
7291 set_raw_breakpoint (struct gdbarch *gdbarch,
7292 struct symtab_and_line sal, enum bptype bptype,
7293 const struct breakpoint_ops *ops)
7294 {
7295 std::unique_ptr<breakpoint> b = new_breakpoint_from_type (bptype);
7296
7297 init_raw_breakpoint (b.get (), gdbarch, sal, bptype, ops);
7298 return add_to_breakpoint_chain (std::move (b));
7299 }
7300
7301 /* Call this routine when stepping and nexting to enable a breakpoint
7302 if we do a longjmp() or 'throw' in TP. FRAME is the frame which
7303 initiated the operation. */
7304
7305 void
7306 set_longjmp_breakpoint (struct thread_info *tp, struct frame_id frame)
7307 {
7308 struct breakpoint *b, *b_tmp;
7309 int thread = tp->global_num;
7310
7311 /* To avoid having to rescan all objfile symbols at every step,
7312 we maintain a list of continually-inserted but always disabled
7313 longjmp "master" breakpoints. Here, we simply create momentary
7314 clones of those and enable them for the requested thread. */
7315 ALL_BREAKPOINTS_SAFE (b, b_tmp)
7316 if (b->pspace == current_program_space
7317 && (b->type == bp_longjmp_master
7318 || b->type == bp_exception_master))
7319 {
7320 enum bptype type = b->type == bp_longjmp_master ? bp_longjmp : bp_exception;
7321 struct breakpoint *clone;
7322
7323 /* longjmp_breakpoint_ops ensures INITIATING_FRAME is cleared again
7324 after their removal. */
7325 clone = momentary_breakpoint_from_master (b, type,
7326 &momentary_breakpoint_ops, 1);
7327 clone->thread = thread;
7328 }
7329
7330 tp->initiating_frame = frame;
7331 }
7332
7333 /* Delete all longjmp breakpoints from THREAD. */
7334 void
7335 delete_longjmp_breakpoint (int thread)
7336 {
7337 struct breakpoint *b, *b_tmp;
7338
7339 ALL_BREAKPOINTS_SAFE (b, b_tmp)
7340 if (b->type == bp_longjmp || b->type == bp_exception)
7341 {
7342 if (b->thread == thread)
7343 delete_breakpoint (b);
7344 }
7345 }
7346
7347 void
7348 delete_longjmp_breakpoint_at_next_stop (int thread)
7349 {
7350 struct breakpoint *b, *b_tmp;
7351
7352 ALL_BREAKPOINTS_SAFE (b, b_tmp)
7353 if (b->type == bp_longjmp || b->type == bp_exception)
7354 {
7355 if (b->thread == thread)
7356 b->disposition = disp_del_at_next_stop;
7357 }
7358 }
7359
7360 /* Place breakpoints of type bp_longjmp_call_dummy to catch longjmp for
7361 INFERIOR_PTID thread. Chain them all by RELATED_BREAKPOINT and return
7362 pointer to any of them. Return NULL if this system cannot place longjmp
7363 breakpoints. */
7364
7365 struct breakpoint *
7366 set_longjmp_breakpoint_for_call_dummy (void)
7367 {
7368 struct breakpoint *b, *retval = NULL;
7369
7370 ALL_BREAKPOINTS (b)
7371 if (b->pspace == current_program_space && b->type == bp_longjmp_master)
7372 {
7373 struct breakpoint *new_b;
7374
7375 new_b = momentary_breakpoint_from_master (b, bp_longjmp_call_dummy,
7376 &momentary_breakpoint_ops,
7377 1);
7378 new_b->thread = ptid_to_global_thread_id (inferior_ptid);
7379
7380 /* Link NEW_B into the chain of RETVAL breakpoints. */
7381
7382 gdb_assert (new_b->related_breakpoint == new_b);
7383 if (retval == NULL)
7384 retval = new_b;
7385 new_b->related_breakpoint = retval;
7386 while (retval->related_breakpoint != new_b->related_breakpoint)
7387 retval = retval->related_breakpoint;
7388 retval->related_breakpoint = new_b;
7389 }
7390
7391 return retval;
7392 }
7393
7394 /* Verify all existing dummy frames and their associated breakpoints for
7395 TP. Remove those which can no longer be found in the current frame
7396 stack.
7397
7398 You should call this function only at places where it is safe to currently
7399 unwind the whole stack. Failed stack unwind would discard live dummy
7400 frames. */
7401
7402 void
7403 check_longjmp_breakpoint_for_call_dummy (struct thread_info *tp)
7404 {
7405 struct breakpoint *b, *b_tmp;
7406
7407 ALL_BREAKPOINTS_SAFE (b, b_tmp)
7408 if (b->type == bp_longjmp_call_dummy && b->thread == tp->global_num)
7409 {
7410 struct breakpoint *dummy_b = b->related_breakpoint;
7411
7412 while (dummy_b != b && dummy_b->type != bp_call_dummy)
7413 dummy_b = dummy_b->related_breakpoint;
7414 if (dummy_b->type != bp_call_dummy
7415 || frame_find_by_id (dummy_b->frame_id) != NULL)
7416 continue;
7417
7418 dummy_frame_discard (dummy_b->frame_id, tp->ptid);
7419
7420 while (b->related_breakpoint != b)
7421 {
7422 if (b_tmp == b->related_breakpoint)
7423 b_tmp = b->related_breakpoint->next;
7424 delete_breakpoint (b->related_breakpoint);
7425 }
7426 delete_breakpoint (b);
7427 }
7428 }
7429
7430 void
7431 enable_overlay_breakpoints (void)
7432 {
7433 struct breakpoint *b;
7434
7435 ALL_BREAKPOINTS (b)
7436 if (b->type == bp_overlay_event)
7437 {
7438 b->enable_state = bp_enabled;
7439 update_global_location_list (UGLL_MAY_INSERT);
7440 overlay_events_enabled = 1;
7441 }
7442 }
7443
7444 void
7445 disable_overlay_breakpoints (void)
7446 {
7447 struct breakpoint *b;
7448
7449 ALL_BREAKPOINTS (b)
7450 if (b->type == bp_overlay_event)
7451 {
7452 b->enable_state = bp_disabled;
7453 update_global_location_list (UGLL_DONT_INSERT);
7454 overlay_events_enabled = 0;
7455 }
7456 }
7457
7458 /* Set an active std::terminate breakpoint for each std::terminate
7459 master breakpoint. */
7460 void
7461 set_std_terminate_breakpoint (void)
7462 {
7463 struct breakpoint *b, *b_tmp;
7464
7465 ALL_BREAKPOINTS_SAFE (b, b_tmp)
7466 if (b->pspace == current_program_space
7467 && b->type == bp_std_terminate_master)
7468 {
7469 momentary_breakpoint_from_master (b, bp_std_terminate,
7470 &momentary_breakpoint_ops, 1);
7471 }
7472 }
7473
7474 /* Delete all the std::terminate breakpoints. */
7475 void
7476 delete_std_terminate_breakpoint (void)
7477 {
7478 struct breakpoint *b, *b_tmp;
7479
7480 ALL_BREAKPOINTS_SAFE (b, b_tmp)
7481 if (b->type == bp_std_terminate)
7482 delete_breakpoint (b);
7483 }
7484
7485 struct breakpoint *
7486 create_thread_event_breakpoint (struct gdbarch *gdbarch, CORE_ADDR address)
7487 {
7488 struct breakpoint *b;
7489
7490 b = create_internal_breakpoint (gdbarch, address, bp_thread_event,
7491 &internal_breakpoint_ops);
7492
7493 b->enable_state = bp_enabled;
7494 /* location has to be used or breakpoint_re_set will delete me. */
7495 b->location = new_address_location (b->loc->address, NULL, 0);
7496
7497 update_global_location_list_nothrow (UGLL_MAY_INSERT);
7498
7499 return b;
7500 }
7501
7502 struct lang_and_radix
7503 {
7504 enum language lang;
7505 int radix;
7506 };
7507
7508 /* Create a breakpoint for JIT code registration and unregistration. */
7509
7510 struct breakpoint *
7511 create_jit_event_breakpoint (struct gdbarch *gdbarch, CORE_ADDR address)
7512 {
7513 return create_internal_breakpoint (gdbarch, address, bp_jit_event,
7514 &internal_breakpoint_ops);
7515 }
7516
7517 /* Remove JIT code registration and unregistration breakpoint(s). */
7518
7519 void
7520 remove_jit_event_breakpoints (void)
7521 {
7522 struct breakpoint *b, *b_tmp;
7523
7524 ALL_BREAKPOINTS_SAFE (b, b_tmp)
7525 if (b->type == bp_jit_event
7526 && b->loc->pspace == current_program_space)
7527 delete_breakpoint (b);
7528 }
7529
7530 void
7531 remove_solib_event_breakpoints (void)
7532 {
7533 struct breakpoint *b, *b_tmp;
7534
7535 ALL_BREAKPOINTS_SAFE (b, b_tmp)
7536 if (b->type == bp_shlib_event
7537 && b->loc->pspace == current_program_space)
7538 delete_breakpoint (b);
7539 }
7540
7541 /* See breakpoint.h. */
7542
7543 void
7544 remove_solib_event_breakpoints_at_next_stop (void)
7545 {
7546 struct breakpoint *b, *b_tmp;
7547
7548 ALL_BREAKPOINTS_SAFE (b, b_tmp)
7549 if (b->type == bp_shlib_event
7550 && b->loc->pspace == current_program_space)
7551 b->disposition = disp_del_at_next_stop;
7552 }
7553
7554 /* Helper for create_solib_event_breakpoint /
7555 create_and_insert_solib_event_breakpoint. Allows specifying which
7556 INSERT_MODE to pass through to update_global_location_list. */
7557
7558 static struct breakpoint *
7559 create_solib_event_breakpoint_1 (struct gdbarch *gdbarch, CORE_ADDR address,
7560 enum ugll_insert_mode insert_mode)
7561 {
7562 struct breakpoint *b;
7563
7564 b = create_internal_breakpoint (gdbarch, address, bp_shlib_event,
7565 &internal_breakpoint_ops);
7566 update_global_location_list_nothrow (insert_mode);
7567 return b;
7568 }
7569
7570 struct breakpoint *
7571 create_solib_event_breakpoint (struct gdbarch *gdbarch, CORE_ADDR address)
7572 {
7573 return create_solib_event_breakpoint_1 (gdbarch, address, UGLL_MAY_INSERT);
7574 }
7575
7576 /* See breakpoint.h. */
7577
7578 struct breakpoint *
7579 create_and_insert_solib_event_breakpoint (struct gdbarch *gdbarch, CORE_ADDR address)
7580 {
7581 struct breakpoint *b;
7582
7583 /* Explicitly tell update_global_location_list to insert
7584 locations. */
7585 b = create_solib_event_breakpoint_1 (gdbarch, address, UGLL_INSERT);
7586 if (!b->loc->inserted)
7587 {
7588 delete_breakpoint (b);
7589 return NULL;
7590 }
7591 return b;
7592 }
7593
7594 /* Disable any breakpoints that are on code in shared libraries. Only
7595 apply to enabled breakpoints, disabled ones can just stay disabled. */
7596
7597 void
7598 disable_breakpoints_in_shlibs (void)
7599 {
7600 struct bp_location *loc, **locp_tmp;
7601
7602 ALL_BP_LOCATIONS (loc, locp_tmp)
7603 {
7604 /* ALL_BP_LOCATIONS bp_location has LOC->OWNER always non-NULL. */
7605 struct breakpoint *b = loc->owner;
7606
7607 /* We apply the check to all breakpoints, including disabled for
7608 those with loc->duplicate set. This is so that when breakpoint
7609 becomes enabled, or the duplicate is removed, gdb will try to
7610 insert all breakpoints. If we don't set shlib_disabled here,
7611 we'll try to insert those breakpoints and fail. */
7612 if (((b->type == bp_breakpoint)
7613 || (b->type == bp_jit_event)
7614 || (b->type == bp_hardware_breakpoint)
7615 || (is_tracepoint (b)))
7616 && loc->pspace == current_program_space
7617 && !loc->shlib_disabled
7618 && solib_name_from_address (loc->pspace, loc->address)
7619 )
7620 {
7621 loc->shlib_disabled = 1;
7622 }
7623 }
7624 }
7625
7626 /* Disable any breakpoints and tracepoints that are in SOLIB upon
7627 notification of unloaded_shlib. Only apply to enabled breakpoints,
7628 disabled ones can just stay disabled. */
7629
7630 static void
7631 disable_breakpoints_in_unloaded_shlib (struct so_list *solib)
7632 {
7633 struct bp_location *loc, **locp_tmp;
7634 int disabled_shlib_breaks = 0;
7635
7636 ALL_BP_LOCATIONS (loc, locp_tmp)
7637 {
7638 /* ALL_BP_LOCATIONS bp_location has LOC->OWNER always non-NULL. */
7639 struct breakpoint *b = loc->owner;
7640
7641 if (solib->pspace == loc->pspace
7642 && !loc->shlib_disabled
7643 && (((b->type == bp_breakpoint
7644 || b->type == bp_jit_event
7645 || b->type == bp_hardware_breakpoint)
7646 && (loc->loc_type == bp_loc_hardware_breakpoint
7647 || loc->loc_type == bp_loc_software_breakpoint))
7648 || is_tracepoint (b))
7649 && solib_contains_address_p (solib, loc->address))
7650 {
7651 loc->shlib_disabled = 1;
7652 /* At this point, we cannot rely on remove_breakpoint
7653 succeeding so we must mark the breakpoint as not inserted
7654 to prevent future errors occurring in remove_breakpoints. */
7655 loc->inserted = 0;
7656
7657 /* This may cause duplicate notifications for the same breakpoint. */
7658 observer_notify_breakpoint_modified (b);
7659
7660 if (!disabled_shlib_breaks)
7661 {
7662 target_terminal::ours_for_output ();
7663 warning (_("Temporarily disabling breakpoints "
7664 "for unloaded shared library \"%s\""),
7665 solib->so_name);
7666 }
7667 disabled_shlib_breaks = 1;
7668 }
7669 }
7670 }
7671
7672 /* Disable any breakpoints and tracepoints in OBJFILE upon
7673 notification of free_objfile. Only apply to enabled breakpoints,
7674 disabled ones can just stay disabled. */
7675
7676 static void
7677 disable_breakpoints_in_freed_objfile (struct objfile *objfile)
7678 {
7679 struct breakpoint *b;
7680
7681 if (objfile == NULL)
7682 return;
7683
7684 /* OBJF_SHARED|OBJF_USERLOADED objfiles are dynamic modules manually
7685 managed by the user with add-symbol-file/remove-symbol-file.
7686 Similarly to how breakpoints in shared libraries are handled in
7687 response to "nosharedlibrary", mark breakpoints in such modules
7688 shlib_disabled so they end up uninserted on the next global
7689 location list update. Shared libraries not loaded by the user
7690 aren't handled here -- they're already handled in
7691 disable_breakpoints_in_unloaded_shlib, called by solib.c's
7692 solib_unloaded observer. We skip objfiles that are not
7693 OBJF_SHARED as those aren't considered dynamic objects (e.g. the
7694 main objfile). */
7695 if ((objfile->flags & OBJF_SHARED) == 0
7696 || (objfile->flags & OBJF_USERLOADED) == 0)
7697 return;
7698
7699 ALL_BREAKPOINTS (b)
7700 {
7701 struct bp_location *loc;
7702 int bp_modified = 0;
7703
7704 if (!is_breakpoint (b) && !is_tracepoint (b))
7705 continue;
7706
7707 for (loc = b->loc; loc != NULL; loc = loc->next)
7708 {
7709 CORE_ADDR loc_addr = loc->address;
7710
7711 if (loc->loc_type != bp_loc_hardware_breakpoint
7712 && loc->loc_type != bp_loc_software_breakpoint)
7713 continue;
7714
7715 if (loc->shlib_disabled != 0)
7716 continue;
7717
7718 if (objfile->pspace != loc->pspace)
7719 continue;
7720
7721 if (loc->loc_type != bp_loc_hardware_breakpoint
7722 && loc->loc_type != bp_loc_software_breakpoint)
7723 continue;
7724
7725 if (is_addr_in_objfile (loc_addr, objfile))
7726 {
7727 loc->shlib_disabled = 1;
7728 /* At this point, we don't know whether the object was
7729 unmapped from the inferior or not, so leave the
7730 inserted flag alone. We'll handle failure to
7731 uninsert quietly, in case the object was indeed
7732 unmapped. */
7733
7734 mark_breakpoint_location_modified (loc);
7735
7736 bp_modified = 1;
7737 }
7738 }
7739
7740 if (bp_modified)
7741 observer_notify_breakpoint_modified (b);
7742 }
7743 }
7744
7745 /* FORK & VFORK catchpoints. */
7746
7747 /* An instance of this type is used to represent a fork or vfork
7748 catchpoint. A breakpoint is really of this type iff its ops pointer points
7749 to CATCH_FORK_BREAKPOINT_OPS. */
7750
7751 struct fork_catchpoint : public breakpoint
7752 {
7753 /* Process id of a child process whose forking triggered this
7754 catchpoint. This field is only valid immediately after this
7755 catchpoint has triggered. */
7756 ptid_t forked_inferior_pid;
7757 };
7758
7759 /* Implement the "insert" breakpoint_ops method for fork
7760 catchpoints. */
7761
7762 static int
7763 insert_catch_fork (struct bp_location *bl)
7764 {
7765 return target_insert_fork_catchpoint (ptid_get_pid (inferior_ptid));
7766 }
7767
7768 /* Implement the "remove" breakpoint_ops method for fork
7769 catchpoints. */
7770
7771 static int
7772 remove_catch_fork (struct bp_location *bl, enum remove_bp_reason reason)
7773 {
7774 return target_remove_fork_catchpoint (ptid_get_pid (inferior_ptid));
7775 }
7776
7777 /* Implement the "breakpoint_hit" breakpoint_ops method for fork
7778 catchpoints. */
7779
7780 static int
7781 breakpoint_hit_catch_fork (const struct bp_location *bl,
7782 const address_space *aspace, CORE_ADDR bp_addr,
7783 const struct target_waitstatus *ws)
7784 {
7785 struct fork_catchpoint *c = (struct fork_catchpoint *) bl->owner;
7786
7787 if (ws->kind != TARGET_WAITKIND_FORKED)
7788 return 0;
7789
7790 c->forked_inferior_pid = ws->value.related_pid;
7791 return 1;
7792 }
7793
7794 /* Implement the "print_it" breakpoint_ops method for fork
7795 catchpoints. */
7796
7797 static enum print_stop_action
7798 print_it_catch_fork (bpstat bs)
7799 {
7800 struct ui_out *uiout = current_uiout;
7801 struct breakpoint *b = bs->breakpoint_at;
7802 struct fork_catchpoint *c = (struct fork_catchpoint *) bs->breakpoint_at;
7803
7804 annotate_catchpoint (b->number);
7805 maybe_print_thread_hit_breakpoint (uiout);
7806 if (b->disposition == disp_del)
7807 uiout->text ("Temporary catchpoint ");
7808 else
7809 uiout->text ("Catchpoint ");
7810 if (uiout->is_mi_like_p ())
7811 {
7812 uiout->field_string ("reason", async_reason_lookup (EXEC_ASYNC_FORK));
7813 uiout->field_string ("disp", bpdisp_text (b->disposition));
7814 }
7815 uiout->field_int ("bkptno", b->number);
7816 uiout->text (" (forked process ");
7817 uiout->field_int ("newpid", ptid_get_pid (c->forked_inferior_pid));
7818 uiout->text ("), ");
7819 return PRINT_SRC_AND_LOC;
7820 }
7821
7822 /* Implement the "print_one" breakpoint_ops method for fork
7823 catchpoints. */
7824
7825 static void
7826 print_one_catch_fork (struct breakpoint *b, struct bp_location **last_loc)
7827 {
7828 struct fork_catchpoint *c = (struct fork_catchpoint *) b;
7829 struct value_print_options opts;
7830 struct ui_out *uiout = current_uiout;
7831
7832 get_user_print_options (&opts);
7833
7834 /* Field 4, the address, is omitted (which makes the columns not
7835 line up too nicely with the headers, but the effect is relatively
7836 readable). */
7837 if (opts.addressprint)
7838 uiout->field_skip ("addr");
7839 annotate_field (5);
7840 uiout->text ("fork");
7841 if (!ptid_equal (c->forked_inferior_pid, null_ptid))
7842 {
7843 uiout->text (", process ");
7844 uiout->field_int ("what", ptid_get_pid (c->forked_inferior_pid));
7845 uiout->spaces (1);
7846 }
7847
7848 if (uiout->is_mi_like_p ())
7849 uiout->field_string ("catch-type", "fork");
7850 }
7851
7852 /* Implement the "print_mention" breakpoint_ops method for fork
7853 catchpoints. */
7854
7855 static void
7856 print_mention_catch_fork (struct breakpoint *b)
7857 {
7858 printf_filtered (_("Catchpoint %d (fork)"), b->number);
7859 }
7860
7861 /* Implement the "print_recreate" breakpoint_ops method for fork
7862 catchpoints. */
7863
7864 static void
7865 print_recreate_catch_fork (struct breakpoint *b, struct ui_file *fp)
7866 {
7867 fprintf_unfiltered (fp, "catch fork");
7868 print_recreate_thread (b, fp);
7869 }
7870
7871 /* The breakpoint_ops structure to be used in fork catchpoints. */
7872
7873 static struct breakpoint_ops catch_fork_breakpoint_ops;
7874
7875 /* Implement the "insert" breakpoint_ops method for vfork
7876 catchpoints. */
7877
7878 static int
7879 insert_catch_vfork (struct bp_location *bl)
7880 {
7881 return target_insert_vfork_catchpoint (ptid_get_pid (inferior_ptid));
7882 }
7883
7884 /* Implement the "remove" breakpoint_ops method for vfork
7885 catchpoints. */
7886
7887 static int
7888 remove_catch_vfork (struct bp_location *bl, enum remove_bp_reason reason)
7889 {
7890 return target_remove_vfork_catchpoint (ptid_get_pid (inferior_ptid));
7891 }
7892
7893 /* Implement the "breakpoint_hit" breakpoint_ops method for vfork
7894 catchpoints. */
7895
7896 static int
7897 breakpoint_hit_catch_vfork (const struct bp_location *bl,
7898 const address_space *aspace, CORE_ADDR bp_addr,
7899 const struct target_waitstatus *ws)
7900 {
7901 struct fork_catchpoint *c = (struct fork_catchpoint *) bl->owner;
7902
7903 if (ws->kind != TARGET_WAITKIND_VFORKED)
7904 return 0;
7905
7906 c->forked_inferior_pid = ws->value.related_pid;
7907 return 1;
7908 }
7909
7910 /* Implement the "print_it" breakpoint_ops method for vfork
7911 catchpoints. */
7912
7913 static enum print_stop_action
7914 print_it_catch_vfork (bpstat bs)
7915 {
7916 struct ui_out *uiout = current_uiout;
7917 struct breakpoint *b = bs->breakpoint_at;
7918 struct fork_catchpoint *c = (struct fork_catchpoint *) b;
7919
7920 annotate_catchpoint (b->number);
7921 maybe_print_thread_hit_breakpoint (uiout);
7922 if (b->disposition == disp_del)
7923 uiout->text ("Temporary catchpoint ");
7924 else
7925 uiout->text ("Catchpoint ");
7926 if (uiout->is_mi_like_p ())
7927 {
7928 uiout->field_string ("reason", async_reason_lookup (EXEC_ASYNC_VFORK));
7929 uiout->field_string ("disp", bpdisp_text (b->disposition));
7930 }
7931 uiout->field_int ("bkptno", b->number);
7932 uiout->text (" (vforked process ");
7933 uiout->field_int ("newpid", ptid_get_pid (c->forked_inferior_pid));
7934 uiout->text ("), ");
7935 return PRINT_SRC_AND_LOC;
7936 }
7937
7938 /* Implement the "print_one" breakpoint_ops method for vfork
7939 catchpoints. */
7940
7941 static void
7942 print_one_catch_vfork (struct breakpoint *b, struct bp_location **last_loc)
7943 {
7944 struct fork_catchpoint *c = (struct fork_catchpoint *) b;
7945 struct value_print_options opts;
7946 struct ui_out *uiout = current_uiout;
7947
7948 get_user_print_options (&opts);
7949 /* Field 4, the address, is omitted (which makes the columns not
7950 line up too nicely with the headers, but the effect is relatively
7951 readable). */
7952 if (opts.addressprint)
7953 uiout->field_skip ("addr");
7954 annotate_field (5);
7955 uiout->text ("vfork");
7956 if (!ptid_equal (c->forked_inferior_pid, null_ptid))
7957 {
7958 uiout->text (", process ");
7959 uiout->field_int ("what", ptid_get_pid (c->forked_inferior_pid));
7960 uiout->spaces (1);
7961 }
7962
7963 if (uiout->is_mi_like_p ())
7964 uiout->field_string ("catch-type", "vfork");
7965 }
7966
7967 /* Implement the "print_mention" breakpoint_ops method for vfork
7968 catchpoints. */
7969
7970 static void
7971 print_mention_catch_vfork (struct breakpoint *b)
7972 {
7973 printf_filtered (_("Catchpoint %d (vfork)"), b->number);
7974 }
7975
7976 /* Implement the "print_recreate" breakpoint_ops method for vfork
7977 catchpoints. */
7978
7979 static void
7980 print_recreate_catch_vfork (struct breakpoint *b, struct ui_file *fp)
7981 {
7982 fprintf_unfiltered (fp, "catch vfork");
7983 print_recreate_thread (b, fp);
7984 }
7985
7986 /* The breakpoint_ops structure to be used in vfork catchpoints. */
7987
7988 static struct breakpoint_ops catch_vfork_breakpoint_ops;
7989
7990 /* An instance of this type is used to represent an solib catchpoint.
7991 A breakpoint is really of this type iff its ops pointer points to
7992 CATCH_SOLIB_BREAKPOINT_OPS. */
7993
7994 struct solib_catchpoint : public breakpoint
7995 {
7996 ~solib_catchpoint () override;
7997
7998 /* True for "catch load", false for "catch unload". */
7999 unsigned char is_load;
8000
8001 /* Regular expression to match, if any. COMPILED is only valid when
8002 REGEX is non-NULL. */
8003 char *regex;
8004 std::unique_ptr<compiled_regex> compiled;
8005 };
8006
8007 solib_catchpoint::~solib_catchpoint ()
8008 {
8009 xfree (this->regex);
8010 }
8011
8012 static int
8013 insert_catch_solib (struct bp_location *ignore)
8014 {
8015 return 0;
8016 }
8017
8018 static int
8019 remove_catch_solib (struct bp_location *ignore, enum remove_bp_reason reason)
8020 {
8021 return 0;
8022 }
8023
8024 static int
8025 breakpoint_hit_catch_solib (const struct bp_location *bl,
8026 const address_space *aspace,
8027 CORE_ADDR bp_addr,
8028 const struct target_waitstatus *ws)
8029 {
8030 struct solib_catchpoint *self = (struct solib_catchpoint *) bl->owner;
8031 struct breakpoint *other;
8032
8033 if (ws->kind == TARGET_WAITKIND_LOADED)
8034 return 1;
8035
8036 ALL_BREAKPOINTS (other)
8037 {
8038 struct bp_location *other_bl;
8039
8040 if (other == bl->owner)
8041 continue;
8042
8043 if (other->type != bp_shlib_event)
8044 continue;
8045
8046 if (self->pspace != NULL && other->pspace != self->pspace)
8047 continue;
8048
8049 for (other_bl = other->loc; other_bl != NULL; other_bl = other_bl->next)
8050 {
8051 if (other->ops->breakpoint_hit (other_bl, aspace, bp_addr, ws))
8052 return 1;
8053 }
8054 }
8055
8056 return 0;
8057 }
8058
8059 static void
8060 check_status_catch_solib (struct bpstats *bs)
8061 {
8062 struct solib_catchpoint *self
8063 = (struct solib_catchpoint *) bs->breakpoint_at;
8064 int ix;
8065
8066 if (self->is_load)
8067 {
8068 struct so_list *iter;
8069
8070 for (ix = 0;
8071 VEC_iterate (so_list_ptr, current_program_space->added_solibs,
8072 ix, iter);
8073 ++ix)
8074 {
8075 if (!self->regex
8076 || self->compiled->exec (iter->so_name, 0, NULL, 0) == 0)
8077 return;
8078 }
8079 }
8080 else
8081 {
8082 char *iter;
8083
8084 for (ix = 0;
8085 VEC_iterate (char_ptr, current_program_space->deleted_solibs,
8086 ix, iter);
8087 ++ix)
8088 {
8089 if (!self->regex
8090 || self->compiled->exec (iter, 0, NULL, 0) == 0)
8091 return;
8092 }
8093 }
8094
8095 bs->stop = 0;
8096 bs->print_it = print_it_noop;
8097 }
8098
8099 static enum print_stop_action
8100 print_it_catch_solib (bpstat bs)
8101 {
8102 struct breakpoint *b = bs->breakpoint_at;
8103 struct ui_out *uiout = current_uiout;
8104
8105 annotate_catchpoint (b->number);
8106 maybe_print_thread_hit_breakpoint (uiout);
8107 if (b->disposition == disp_del)
8108 uiout->text ("Temporary catchpoint ");
8109 else
8110 uiout->text ("Catchpoint ");
8111 uiout->field_int ("bkptno", b->number);
8112 uiout->text ("\n");
8113 if (uiout->is_mi_like_p ())
8114 uiout->field_string ("disp", bpdisp_text (b->disposition));
8115 print_solib_event (1);
8116 return PRINT_SRC_AND_LOC;
8117 }
8118
8119 static void
8120 print_one_catch_solib (struct breakpoint *b, struct bp_location **locs)
8121 {
8122 struct solib_catchpoint *self = (struct solib_catchpoint *) b;
8123 struct value_print_options opts;
8124 struct ui_out *uiout = current_uiout;
8125 char *msg;
8126
8127 get_user_print_options (&opts);
8128 /* Field 4, the address, is omitted (which makes the columns not
8129 line up too nicely with the headers, but the effect is relatively
8130 readable). */
8131 if (opts.addressprint)
8132 {
8133 annotate_field (4);
8134 uiout->field_skip ("addr");
8135 }
8136
8137 annotate_field (5);
8138 if (self->is_load)
8139 {
8140 if (self->regex)
8141 msg = xstrprintf (_("load of library matching %s"), self->regex);
8142 else
8143 msg = xstrdup (_("load of library"));
8144 }
8145 else
8146 {
8147 if (self->regex)
8148 msg = xstrprintf (_("unload of library matching %s"), self->regex);
8149 else
8150 msg = xstrdup (_("unload of library"));
8151 }
8152 uiout->field_string ("what", msg);
8153 xfree (msg);
8154
8155 if (uiout->is_mi_like_p ())
8156 uiout->field_string ("catch-type", self->is_load ? "load" : "unload");
8157 }
8158
8159 static void
8160 print_mention_catch_solib (struct breakpoint *b)
8161 {
8162 struct solib_catchpoint *self = (struct solib_catchpoint *) b;
8163
8164 printf_filtered (_("Catchpoint %d (%s)"), b->number,
8165 self->is_load ? "load" : "unload");
8166 }
8167
8168 static void
8169 print_recreate_catch_solib (struct breakpoint *b, struct ui_file *fp)
8170 {
8171 struct solib_catchpoint *self = (struct solib_catchpoint *) b;
8172
8173 fprintf_unfiltered (fp, "%s %s",
8174 b->disposition == disp_del ? "tcatch" : "catch",
8175 self->is_load ? "load" : "unload");
8176 if (self->regex)
8177 fprintf_unfiltered (fp, " %s", self->regex);
8178 fprintf_unfiltered (fp, "\n");
8179 }
8180
8181 static struct breakpoint_ops catch_solib_breakpoint_ops;
8182
8183 /* Shared helper function (MI and CLI) for creating and installing
8184 a shared object event catchpoint. If IS_LOAD is non-zero then
8185 the events to be caught are load events, otherwise they are
8186 unload events. If IS_TEMP is non-zero the catchpoint is a
8187 temporary one. If ENABLED is non-zero the catchpoint is
8188 created in an enabled state. */
8189
8190 void
8191 add_solib_catchpoint (const char *arg, int is_load, int is_temp, int enabled)
8192 {
8193 struct gdbarch *gdbarch = get_current_arch ();
8194
8195 if (!arg)
8196 arg = "";
8197 arg = skip_spaces (arg);
8198
8199 std::unique_ptr<solib_catchpoint> c (new solib_catchpoint ());
8200
8201 if (*arg != '\0')
8202 {
8203 c->compiled.reset (new compiled_regex (arg, REG_NOSUB,
8204 _("Invalid regexp")));
8205 c->regex = xstrdup (arg);
8206 }
8207
8208 c->is_load = is_load;
8209 init_catchpoint (c.get (), gdbarch, is_temp, NULL,
8210 &catch_solib_breakpoint_ops);
8211
8212 c->enable_state = enabled ? bp_enabled : bp_disabled;
8213
8214 install_breakpoint (0, std::move (c), 1);
8215 }
8216
8217 /* A helper function that does all the work for "catch load" and
8218 "catch unload". */
8219
8220 static void
8221 catch_load_or_unload (const char *arg, int from_tty, int is_load,
8222 struct cmd_list_element *command)
8223 {
8224 int tempflag;
8225 const int enabled = 1;
8226
8227 tempflag = get_cmd_context (command) == CATCH_TEMPORARY;
8228
8229 add_solib_catchpoint (arg, is_load, tempflag, enabled);
8230 }
8231
8232 static void
8233 catch_load_command_1 (const char *arg, int from_tty,
8234 struct cmd_list_element *command)
8235 {
8236 catch_load_or_unload (arg, from_tty, 1, command);
8237 }
8238
8239 static void
8240 catch_unload_command_1 (const char *arg, int from_tty,
8241 struct cmd_list_element *command)
8242 {
8243 catch_load_or_unload (arg, from_tty, 0, command);
8244 }
8245
8246 /* Initialize a new breakpoint of the bp_catchpoint kind. If TEMPFLAG
8247 is non-zero, then make the breakpoint temporary. If COND_STRING is
8248 not NULL, then store it in the breakpoint. OPS, if not NULL, is
8249 the breakpoint_ops structure associated to the catchpoint. */
8250
8251 void
8252 init_catchpoint (struct breakpoint *b,
8253 struct gdbarch *gdbarch, int tempflag,
8254 const char *cond_string,
8255 const struct breakpoint_ops *ops)
8256 {
8257 symtab_and_line sal;
8258 sal.pspace = current_program_space;
8259
8260 init_raw_breakpoint (b, gdbarch, sal, bp_catchpoint, ops);
8261
8262 b->cond_string = (cond_string == NULL) ? NULL : xstrdup (cond_string);
8263 b->disposition = tempflag ? disp_del : disp_donttouch;
8264 }
8265
8266 void
8267 install_breakpoint (int internal, std::unique_ptr<breakpoint> &&arg, int update_gll)
8268 {
8269 breakpoint *b = add_to_breakpoint_chain (std::move (arg));
8270 set_breakpoint_number (internal, b);
8271 if (is_tracepoint (b))
8272 set_tracepoint_count (breakpoint_count);
8273 if (!internal)
8274 mention (b);
8275 observer_notify_breakpoint_created (b);
8276
8277 if (update_gll)
8278 update_global_location_list (UGLL_MAY_INSERT);
8279 }
8280
8281 static void
8282 create_fork_vfork_event_catchpoint (struct gdbarch *gdbarch,
8283 int tempflag, const char *cond_string,
8284 const struct breakpoint_ops *ops)
8285 {
8286 std::unique_ptr<fork_catchpoint> c (new fork_catchpoint ());
8287
8288 init_catchpoint (c.get (), gdbarch, tempflag, cond_string, ops);
8289
8290 c->forked_inferior_pid = null_ptid;
8291
8292 install_breakpoint (0, std::move (c), 1);
8293 }
8294
8295 /* Exec catchpoints. */
8296
8297 /* An instance of this type is used to represent an exec catchpoint.
8298 A breakpoint is really of this type iff its ops pointer points to
8299 CATCH_EXEC_BREAKPOINT_OPS. */
8300
8301 struct exec_catchpoint : public breakpoint
8302 {
8303 ~exec_catchpoint () override;
8304
8305 /* Filename of a program whose exec triggered this catchpoint.
8306 This field is only valid immediately after this catchpoint has
8307 triggered. */
8308 char *exec_pathname;
8309 };
8310
8311 /* Exec catchpoint destructor. */
8312
8313 exec_catchpoint::~exec_catchpoint ()
8314 {
8315 xfree (this->exec_pathname);
8316 }
8317
8318 static int
8319 insert_catch_exec (struct bp_location *bl)
8320 {
8321 return target_insert_exec_catchpoint (ptid_get_pid (inferior_ptid));
8322 }
8323
8324 static int
8325 remove_catch_exec (struct bp_location *bl, enum remove_bp_reason reason)
8326 {
8327 return target_remove_exec_catchpoint (ptid_get_pid (inferior_ptid));
8328 }
8329
8330 static int
8331 breakpoint_hit_catch_exec (const struct bp_location *bl,
8332 const address_space *aspace, CORE_ADDR bp_addr,
8333 const struct target_waitstatus *ws)
8334 {
8335 struct exec_catchpoint *c = (struct exec_catchpoint *) bl->owner;
8336
8337 if (ws->kind != TARGET_WAITKIND_EXECD)
8338 return 0;
8339
8340 c->exec_pathname = xstrdup (ws->value.execd_pathname);
8341 return 1;
8342 }
8343
8344 static enum print_stop_action
8345 print_it_catch_exec (bpstat bs)
8346 {
8347 struct ui_out *uiout = current_uiout;
8348 struct breakpoint *b = bs->breakpoint_at;
8349 struct exec_catchpoint *c = (struct exec_catchpoint *) b;
8350
8351 annotate_catchpoint (b->number);
8352 maybe_print_thread_hit_breakpoint (uiout);
8353 if (b->disposition == disp_del)
8354 uiout->text ("Temporary catchpoint ");
8355 else
8356 uiout->text ("Catchpoint ");
8357 if (uiout->is_mi_like_p ())
8358 {
8359 uiout->field_string ("reason", async_reason_lookup (EXEC_ASYNC_EXEC));
8360 uiout->field_string ("disp", bpdisp_text (b->disposition));
8361 }
8362 uiout->field_int ("bkptno", b->number);
8363 uiout->text (" (exec'd ");
8364 uiout->field_string ("new-exec", c->exec_pathname);
8365 uiout->text ("), ");
8366
8367 return PRINT_SRC_AND_LOC;
8368 }
8369
8370 static void
8371 print_one_catch_exec (struct breakpoint *b, struct bp_location **last_loc)
8372 {
8373 struct exec_catchpoint *c = (struct exec_catchpoint *) b;
8374 struct value_print_options opts;
8375 struct ui_out *uiout = current_uiout;
8376
8377 get_user_print_options (&opts);
8378
8379 /* Field 4, the address, is omitted (which makes the columns
8380 not line up too nicely with the headers, but the effect
8381 is relatively readable). */
8382 if (opts.addressprint)
8383 uiout->field_skip ("addr");
8384 annotate_field (5);
8385 uiout->text ("exec");
8386 if (c->exec_pathname != NULL)
8387 {
8388 uiout->text (", program \"");
8389 uiout->field_string ("what", c->exec_pathname);
8390 uiout->text ("\" ");
8391 }
8392
8393 if (uiout->is_mi_like_p ())
8394 uiout->field_string ("catch-type", "exec");
8395 }
8396
8397 static void
8398 print_mention_catch_exec (struct breakpoint *b)
8399 {
8400 printf_filtered (_("Catchpoint %d (exec)"), b->number);
8401 }
8402
8403 /* Implement the "print_recreate" breakpoint_ops method for exec
8404 catchpoints. */
8405
8406 static void
8407 print_recreate_catch_exec (struct breakpoint *b, struct ui_file *fp)
8408 {
8409 fprintf_unfiltered (fp, "catch exec");
8410 print_recreate_thread (b, fp);
8411 }
8412
8413 static struct breakpoint_ops catch_exec_breakpoint_ops;
8414
8415 static int
8416 hw_breakpoint_used_count (void)
8417 {
8418 int i = 0;
8419 struct breakpoint *b;
8420 struct bp_location *bl;
8421
8422 ALL_BREAKPOINTS (b)
8423 {
8424 if (b->type == bp_hardware_breakpoint && breakpoint_enabled (b))
8425 for (bl = b->loc; bl; bl = bl->next)
8426 {
8427 /* Special types of hardware breakpoints may use more than
8428 one register. */
8429 i += b->ops->resources_needed (bl);
8430 }
8431 }
8432
8433 return i;
8434 }
8435
8436 /* Returns the resources B would use if it were a hardware
8437 watchpoint. */
8438
8439 static int
8440 hw_watchpoint_use_count (struct breakpoint *b)
8441 {
8442 int i = 0;
8443 struct bp_location *bl;
8444
8445 if (!breakpoint_enabled (b))
8446 return 0;
8447
8448 for (bl = b->loc; bl; bl = bl->next)
8449 {
8450 /* Special types of hardware watchpoints may use more than
8451 one register. */
8452 i += b->ops->resources_needed (bl);
8453 }
8454
8455 return i;
8456 }
8457
8458 /* Returns the sum the used resources of all hardware watchpoints of
8459 type TYPE in the breakpoints list. Also returns in OTHER_TYPE_USED
8460 the sum of the used resources of all hardware watchpoints of other
8461 types _not_ TYPE. */
8462
8463 static int
8464 hw_watchpoint_used_count_others (struct breakpoint *except,
8465 enum bptype type, int *other_type_used)
8466 {
8467 int i = 0;
8468 struct breakpoint *b;
8469
8470 *other_type_used = 0;
8471 ALL_BREAKPOINTS (b)
8472 {
8473 if (b == except)
8474 continue;
8475 if (!breakpoint_enabled (b))
8476 continue;
8477
8478 if (b->type == type)
8479 i += hw_watchpoint_use_count (b);
8480 else if (is_hardware_watchpoint (b))
8481 *other_type_used = 1;
8482 }
8483
8484 return i;
8485 }
8486
8487 void
8488 disable_watchpoints_before_interactive_call_start (void)
8489 {
8490 struct breakpoint *b;
8491
8492 ALL_BREAKPOINTS (b)
8493 {
8494 if (is_watchpoint (b) && breakpoint_enabled (b))
8495 {
8496 b->enable_state = bp_call_disabled;
8497 update_global_location_list (UGLL_DONT_INSERT);
8498 }
8499 }
8500 }
8501
8502 void
8503 enable_watchpoints_after_interactive_call_stop (void)
8504 {
8505 struct breakpoint *b;
8506
8507 ALL_BREAKPOINTS (b)
8508 {
8509 if (is_watchpoint (b) && b->enable_state == bp_call_disabled)
8510 {
8511 b->enable_state = bp_enabled;
8512 update_global_location_list (UGLL_MAY_INSERT);
8513 }
8514 }
8515 }
8516
8517 void
8518 disable_breakpoints_before_startup (void)
8519 {
8520 current_program_space->executing_startup = 1;
8521 update_global_location_list (UGLL_DONT_INSERT);
8522 }
8523
8524 void
8525 enable_breakpoints_after_startup (void)
8526 {
8527 current_program_space->executing_startup = 0;
8528 breakpoint_re_set ();
8529 }
8530
8531 /* Create a new single-step breakpoint for thread THREAD, with no
8532 locations. */
8533
8534 static struct breakpoint *
8535 new_single_step_breakpoint (int thread, struct gdbarch *gdbarch)
8536 {
8537 std::unique_ptr<breakpoint> b (new breakpoint ());
8538
8539 init_raw_breakpoint_without_location (b.get (), gdbarch, bp_single_step,
8540 &momentary_breakpoint_ops);
8541
8542 b->disposition = disp_donttouch;
8543 b->frame_id = null_frame_id;
8544
8545 b->thread = thread;
8546 gdb_assert (b->thread != 0);
8547
8548 return add_to_breakpoint_chain (std::move (b));
8549 }
8550
8551 /* Set a momentary breakpoint of type TYPE at address specified by
8552 SAL. If FRAME_ID is valid, the breakpoint is restricted to that
8553 frame. */
8554
8555 breakpoint_up
8556 set_momentary_breakpoint (struct gdbarch *gdbarch, struct symtab_and_line sal,
8557 struct frame_id frame_id, enum bptype type)
8558 {
8559 struct breakpoint *b;
8560
8561 /* If FRAME_ID is valid, it should be a real frame, not an inlined or
8562 tail-called one. */
8563 gdb_assert (!frame_id_artificial_p (frame_id));
8564
8565 b = set_raw_breakpoint (gdbarch, sal, type, &momentary_breakpoint_ops);
8566 b->enable_state = bp_enabled;
8567 b->disposition = disp_donttouch;
8568 b->frame_id = frame_id;
8569
8570 /* If we're debugging a multi-threaded program, then we want
8571 momentary breakpoints to be active in only a single thread of
8572 control. */
8573 if (in_thread_list (inferior_ptid))
8574 b->thread = ptid_to_global_thread_id (inferior_ptid);
8575
8576 update_global_location_list_nothrow (UGLL_MAY_INSERT);
8577
8578 return breakpoint_up (b);
8579 }
8580
8581 /* Make a momentary breakpoint based on the master breakpoint ORIG.
8582 The new breakpoint will have type TYPE, use OPS as its
8583 breakpoint_ops, and will set enabled to LOC_ENABLED. */
8584
8585 static struct breakpoint *
8586 momentary_breakpoint_from_master (struct breakpoint *orig,
8587 enum bptype type,
8588 const struct breakpoint_ops *ops,
8589 int loc_enabled)
8590 {
8591 struct breakpoint *copy;
8592
8593 copy = set_raw_breakpoint_without_location (orig->gdbarch, type, ops);
8594 copy->loc = allocate_bp_location (copy);
8595 set_breakpoint_location_function (copy->loc, 1);
8596
8597 copy->loc->gdbarch = orig->loc->gdbarch;
8598 copy->loc->requested_address = orig->loc->requested_address;
8599 copy->loc->address = orig->loc->address;
8600 copy->loc->section = orig->loc->section;
8601 copy->loc->pspace = orig->loc->pspace;
8602 copy->loc->probe = orig->loc->probe;
8603 copy->loc->line_number = orig->loc->line_number;
8604 copy->loc->symtab = orig->loc->symtab;
8605 copy->loc->enabled = loc_enabled;
8606 copy->frame_id = orig->frame_id;
8607 copy->thread = orig->thread;
8608 copy->pspace = orig->pspace;
8609
8610 copy->enable_state = bp_enabled;
8611 copy->disposition = disp_donttouch;
8612 copy->number = internal_breakpoint_number--;
8613
8614 update_global_location_list_nothrow (UGLL_DONT_INSERT);
8615 return copy;
8616 }
8617
8618 /* Make a deep copy of momentary breakpoint ORIG. Returns NULL if
8619 ORIG is NULL. */
8620
8621 struct breakpoint *
8622 clone_momentary_breakpoint (struct breakpoint *orig)
8623 {
8624 /* If there's nothing to clone, then return nothing. */
8625 if (orig == NULL)
8626 return NULL;
8627
8628 return momentary_breakpoint_from_master (orig, orig->type, orig->ops, 0);
8629 }
8630
8631 breakpoint_up
8632 set_momentary_breakpoint_at_pc (struct gdbarch *gdbarch, CORE_ADDR pc,
8633 enum bptype type)
8634 {
8635 struct symtab_and_line sal;
8636
8637 sal = find_pc_line (pc, 0);
8638 sal.pc = pc;
8639 sal.section = find_pc_overlay (pc);
8640 sal.explicit_pc = 1;
8641
8642 return set_momentary_breakpoint (gdbarch, sal, null_frame_id, type);
8643 }
8644 \f
8645
8646 /* Tell the user we have just set a breakpoint B. */
8647
8648 static void
8649 mention (struct breakpoint *b)
8650 {
8651 b->ops->print_mention (b);
8652 if (current_uiout->is_mi_like_p ())
8653 return;
8654 printf_filtered ("\n");
8655 }
8656 \f
8657
8658 static int bp_loc_is_permanent (struct bp_location *loc);
8659
8660 static struct bp_location *
8661 add_location_to_breakpoint (struct breakpoint *b,
8662 const struct symtab_and_line *sal)
8663 {
8664 struct bp_location *loc, **tmp;
8665 CORE_ADDR adjusted_address;
8666 struct gdbarch *loc_gdbarch = get_sal_arch (*sal);
8667
8668 if (loc_gdbarch == NULL)
8669 loc_gdbarch = b->gdbarch;
8670
8671 /* Adjust the breakpoint's address prior to allocating a location.
8672 Once we call allocate_bp_location(), that mostly uninitialized
8673 location will be placed on the location chain. Adjustment of the
8674 breakpoint may cause target_read_memory() to be called and we do
8675 not want its scan of the location chain to find a breakpoint and
8676 location that's only been partially initialized. */
8677 adjusted_address = adjust_breakpoint_address (loc_gdbarch,
8678 sal->pc, b->type);
8679
8680 /* Sort the locations by their ADDRESS. */
8681 loc = allocate_bp_location (b);
8682 for (tmp = &(b->loc); *tmp != NULL && (*tmp)->address <= adjusted_address;
8683 tmp = &((*tmp)->next))
8684 ;
8685 loc->next = *tmp;
8686 *tmp = loc;
8687
8688 loc->requested_address = sal->pc;
8689 loc->address = adjusted_address;
8690 loc->pspace = sal->pspace;
8691 loc->probe.prob = sal->prob;
8692 loc->probe.objfile = sal->objfile;
8693 gdb_assert (loc->pspace != NULL);
8694 loc->section = sal->section;
8695 loc->gdbarch = loc_gdbarch;
8696 loc->line_number = sal->line;
8697 loc->symtab = sal->symtab;
8698 loc->symbol = sal->symbol;
8699
8700 set_breakpoint_location_function (loc,
8701 sal->explicit_pc || sal->explicit_line);
8702
8703 /* While by definition, permanent breakpoints are already present in the
8704 code, we don't mark the location as inserted. Normally one would expect
8705 that GDB could rely on that breakpoint instruction to stop the program,
8706 thus removing the need to insert its own breakpoint, except that executing
8707 the breakpoint instruction can kill the target instead of reporting a
8708 SIGTRAP. E.g., on SPARC, when interrupts are disabled, executing the
8709 instruction resets the CPU, so QEMU 2.0.0 for SPARC correspondingly dies
8710 with "Trap 0x02 while interrupts disabled, Error state". Letting the
8711 breakpoint be inserted normally results in QEMU knowing about the GDB
8712 breakpoint, and thus trap before the breakpoint instruction is executed.
8713 (If GDB later needs to continue execution past the permanent breakpoint,
8714 it manually increments the PC, thus avoiding executing the breakpoint
8715 instruction.) */
8716 if (bp_loc_is_permanent (loc))
8717 loc->permanent = 1;
8718
8719 return loc;
8720 }
8721 \f
8722
8723 /* See breakpoint.h. */
8724
8725 int
8726 program_breakpoint_here_p (struct gdbarch *gdbarch, CORE_ADDR address)
8727 {
8728 int len;
8729 CORE_ADDR addr;
8730 const gdb_byte *bpoint;
8731 gdb_byte *target_mem;
8732
8733 addr = address;
8734 bpoint = gdbarch_breakpoint_from_pc (gdbarch, &addr, &len);
8735
8736 /* Software breakpoints unsupported? */
8737 if (bpoint == NULL)
8738 return 0;
8739
8740 target_mem = (gdb_byte *) alloca (len);
8741
8742 /* Enable the automatic memory restoration from breakpoints while
8743 we read the memory. Otherwise we could say about our temporary
8744 breakpoints they are permanent. */
8745 scoped_restore restore_memory
8746 = make_scoped_restore_show_memory_breakpoints (0);
8747
8748 if (target_read_memory (address, target_mem, len) == 0
8749 && memcmp (target_mem, bpoint, len) == 0)
8750 return 1;
8751
8752 return 0;
8753 }
8754
8755 /* Return 1 if LOC is pointing to a permanent breakpoint,
8756 return 0 otherwise. */
8757
8758 static int
8759 bp_loc_is_permanent (struct bp_location *loc)
8760 {
8761 gdb_assert (loc != NULL);
8762
8763 /* If we have a catchpoint or a watchpoint, just return 0. We should not
8764 attempt to read from the addresses the locations of these breakpoint types
8765 point to. program_breakpoint_here_p, below, will attempt to read
8766 memory. */
8767 if (!breakpoint_address_is_meaningful (loc->owner))
8768 return 0;
8769
8770 scoped_restore_current_pspace_and_thread restore_pspace_thread;
8771 switch_to_program_space_and_thread (loc->pspace);
8772 return program_breakpoint_here_p (loc->gdbarch, loc->address);
8773 }
8774
8775 /* Build a command list for the dprintf corresponding to the current
8776 settings of the dprintf style options. */
8777
8778 static void
8779 update_dprintf_command_list (struct breakpoint *b)
8780 {
8781 char *dprintf_args = b->extra_string;
8782 char *printf_line = NULL;
8783
8784 if (!dprintf_args)
8785 return;
8786
8787 dprintf_args = skip_spaces (dprintf_args);
8788
8789 /* Allow a comma, as it may have terminated a location, but don't
8790 insist on it. */
8791 if (*dprintf_args == ',')
8792 ++dprintf_args;
8793 dprintf_args = skip_spaces (dprintf_args);
8794
8795 if (*dprintf_args != '"')
8796 error (_("Bad format string, missing '\"'."));
8797
8798 if (strcmp (dprintf_style, dprintf_style_gdb) == 0)
8799 printf_line = xstrprintf ("printf %s", dprintf_args);
8800 else if (strcmp (dprintf_style, dprintf_style_call) == 0)
8801 {
8802 if (!dprintf_function)
8803 error (_("No function supplied for dprintf call"));
8804
8805 if (dprintf_channel && strlen (dprintf_channel) > 0)
8806 printf_line = xstrprintf ("call (void) %s (%s,%s)",
8807 dprintf_function,
8808 dprintf_channel,
8809 dprintf_args);
8810 else
8811 printf_line = xstrprintf ("call (void) %s (%s)",
8812 dprintf_function,
8813 dprintf_args);
8814 }
8815 else if (strcmp (dprintf_style, dprintf_style_agent) == 0)
8816 {
8817 if (target_can_run_breakpoint_commands ())
8818 printf_line = xstrprintf ("agent-printf %s", dprintf_args);
8819 else
8820 {
8821 warning (_("Target cannot run dprintf commands, falling back to GDB printf"));
8822 printf_line = xstrprintf ("printf %s", dprintf_args);
8823 }
8824 }
8825 else
8826 internal_error (__FILE__, __LINE__,
8827 _("Invalid dprintf style."));
8828
8829 gdb_assert (printf_line != NULL);
8830 /* Manufacture a printf sequence. */
8831 {
8832 struct command_line *printf_cmd_line = XNEW (struct command_line);
8833
8834 printf_cmd_line->control_type = simple_control;
8835 printf_cmd_line->body_count = 0;
8836 printf_cmd_line->body_list = NULL;
8837 printf_cmd_line->next = NULL;
8838 printf_cmd_line->line = printf_line;
8839
8840 breakpoint_set_commands (b, command_line_up (printf_cmd_line));
8841 }
8842 }
8843
8844 /* Update all dprintf commands, making their command lists reflect
8845 current style settings. */
8846
8847 static void
8848 update_dprintf_commands (const char *args, int from_tty,
8849 struct cmd_list_element *c)
8850 {
8851 struct breakpoint *b;
8852
8853 ALL_BREAKPOINTS (b)
8854 {
8855 if (b->type == bp_dprintf)
8856 update_dprintf_command_list (b);
8857 }
8858 }
8859
8860 /* Create a breakpoint with SAL as location. Use LOCATION
8861 as a description of the location, and COND_STRING
8862 as condition expression. If LOCATION is NULL then create an
8863 "address location" from the address in the SAL. */
8864
8865 static void
8866 init_breakpoint_sal (struct breakpoint *b, struct gdbarch *gdbarch,
8867 gdb::array_view<const symtab_and_line> sals,
8868 event_location_up &&location,
8869 gdb::unique_xmalloc_ptr<char> filter,
8870 gdb::unique_xmalloc_ptr<char> cond_string,
8871 gdb::unique_xmalloc_ptr<char> extra_string,
8872 enum bptype type, enum bpdisp disposition,
8873 int thread, int task, int ignore_count,
8874 const struct breakpoint_ops *ops, int from_tty,
8875 int enabled, int internal, unsigned flags,
8876 int display_canonical)
8877 {
8878 int i;
8879
8880 if (type == bp_hardware_breakpoint)
8881 {
8882 int target_resources_ok;
8883
8884 i = hw_breakpoint_used_count ();
8885 target_resources_ok =
8886 target_can_use_hardware_watchpoint (bp_hardware_breakpoint,
8887 i + 1, 0);
8888 if (target_resources_ok == 0)
8889 error (_("No hardware breakpoint support in the target."));
8890 else if (target_resources_ok < 0)
8891 error (_("Hardware breakpoints used exceeds limit."));
8892 }
8893
8894 gdb_assert (!sals.empty ());
8895
8896 for (const auto &sal : sals)
8897 {
8898 struct bp_location *loc;
8899
8900 if (from_tty)
8901 {
8902 struct gdbarch *loc_gdbarch = get_sal_arch (sal);
8903 if (!loc_gdbarch)
8904 loc_gdbarch = gdbarch;
8905
8906 describe_other_breakpoints (loc_gdbarch,
8907 sal.pspace, sal.pc, sal.section, thread);
8908 }
8909
8910 if (&sal == &sals[0])
8911 {
8912 init_raw_breakpoint (b, gdbarch, sal, type, ops);
8913 b->thread = thread;
8914 b->task = task;
8915
8916 b->cond_string = cond_string.release ();
8917 b->extra_string = extra_string.release ();
8918 b->ignore_count = ignore_count;
8919 b->enable_state = enabled ? bp_enabled : bp_disabled;
8920 b->disposition = disposition;
8921
8922 if ((flags & CREATE_BREAKPOINT_FLAGS_INSERTED) != 0)
8923 b->loc->inserted = 1;
8924
8925 if (type == bp_static_tracepoint)
8926 {
8927 struct tracepoint *t = (struct tracepoint *) b;
8928 struct static_tracepoint_marker marker;
8929
8930 if (strace_marker_p (b))
8931 {
8932 /* We already know the marker exists, otherwise, we
8933 wouldn't see a sal for it. */
8934 const char *p
8935 = &event_location_to_string (b->location.get ())[3];
8936 const char *endp;
8937 char *marker_str;
8938
8939 p = skip_spaces (p);
8940
8941 endp = skip_to_space (p);
8942
8943 marker_str = savestring (p, endp - p);
8944 t->static_trace_marker_id = marker_str;
8945
8946 printf_filtered (_("Probed static tracepoint "
8947 "marker \"%s\"\n"),
8948 t->static_trace_marker_id);
8949 }
8950 else if (target_static_tracepoint_marker_at (sal.pc, &marker))
8951 {
8952 t->static_trace_marker_id = xstrdup (marker.str_id);
8953 release_static_tracepoint_marker (&marker);
8954
8955 printf_filtered (_("Probed static tracepoint "
8956 "marker \"%s\"\n"),
8957 t->static_trace_marker_id);
8958 }
8959 else
8960 warning (_("Couldn't determine the static "
8961 "tracepoint marker to probe"));
8962 }
8963
8964 loc = b->loc;
8965 }
8966 else
8967 {
8968 loc = add_location_to_breakpoint (b, &sal);
8969 if ((flags & CREATE_BREAKPOINT_FLAGS_INSERTED) != 0)
8970 loc->inserted = 1;
8971 }
8972
8973 if (b->cond_string)
8974 {
8975 const char *arg = b->cond_string;
8976
8977 loc->cond = parse_exp_1 (&arg, loc->address,
8978 block_for_pc (loc->address), 0);
8979 if (*arg)
8980 error (_("Garbage '%s' follows condition"), arg);
8981 }
8982
8983 /* Dynamic printf requires and uses additional arguments on the
8984 command line, otherwise it's an error. */
8985 if (type == bp_dprintf)
8986 {
8987 if (b->extra_string)
8988 update_dprintf_command_list (b);
8989 else
8990 error (_("Format string required"));
8991 }
8992 else if (b->extra_string)
8993 error (_("Garbage '%s' at end of command"), b->extra_string);
8994 }
8995
8996 b->display_canonical = display_canonical;
8997 if (location != NULL)
8998 b->location = std::move (location);
8999 else
9000 b->location = new_address_location (b->loc->address, NULL, 0);
9001 b->filter = filter.release ();
9002 }
9003
9004 static void
9005 create_breakpoint_sal (struct gdbarch *gdbarch,
9006 gdb::array_view<const symtab_and_line> sals,
9007 event_location_up &&location,
9008 gdb::unique_xmalloc_ptr<char> filter,
9009 gdb::unique_xmalloc_ptr<char> cond_string,
9010 gdb::unique_xmalloc_ptr<char> extra_string,
9011 enum bptype type, enum bpdisp disposition,
9012 int thread, int task, int ignore_count,
9013 const struct breakpoint_ops *ops, int from_tty,
9014 int enabled, int internal, unsigned flags,
9015 int display_canonical)
9016 {
9017 std::unique_ptr<breakpoint> b = new_breakpoint_from_type (type);
9018
9019 init_breakpoint_sal (b.get (), gdbarch,
9020 sals, std::move (location),
9021 std::move (filter),
9022 std::move (cond_string),
9023 std::move (extra_string),
9024 type, disposition,
9025 thread, task, ignore_count,
9026 ops, from_tty,
9027 enabled, internal, flags,
9028 display_canonical);
9029
9030 install_breakpoint (internal, std::move (b), 0);
9031 }
9032
9033 /* Add SALS.nelts breakpoints to the breakpoint table. For each
9034 SALS.sal[i] breakpoint, include the corresponding ADDR_STRING[i]
9035 value. COND_STRING, if not NULL, specified the condition to be
9036 used for all breakpoints. Essentially the only case where
9037 SALS.nelts is not 1 is when we set a breakpoint on an overloaded
9038 function. In that case, it's still not possible to specify
9039 separate conditions for different overloaded functions, so
9040 we take just a single condition string.
9041
9042 NOTE: If the function succeeds, the caller is expected to cleanup
9043 the arrays ADDR_STRING, COND_STRING, and SALS (but not the
9044 array contents). If the function fails (error() is called), the
9045 caller is expected to cleanups both the ADDR_STRING, COND_STRING,
9046 COND and SALS arrays and each of those arrays contents. */
9047
9048 static void
9049 create_breakpoints_sal (struct gdbarch *gdbarch,
9050 struct linespec_result *canonical,
9051 gdb::unique_xmalloc_ptr<char> cond_string,
9052 gdb::unique_xmalloc_ptr<char> extra_string,
9053 enum bptype type, enum bpdisp disposition,
9054 int thread, int task, int ignore_count,
9055 const struct breakpoint_ops *ops, int from_tty,
9056 int enabled, int internal, unsigned flags)
9057 {
9058 if (canonical->pre_expanded)
9059 gdb_assert (canonical->lsals.size () == 1);
9060
9061 for (const auto &lsal : canonical->lsals)
9062 {
9063 /* Note that 'location' can be NULL in the case of a plain
9064 'break', without arguments. */
9065 event_location_up location
9066 = (canonical->location != NULL
9067 ? copy_event_location (canonical->location.get ()) : NULL);
9068 gdb::unique_xmalloc_ptr<char> filter_string
9069 (lsal.canonical != NULL ? xstrdup (lsal.canonical) : NULL);
9070
9071 create_breakpoint_sal (gdbarch, lsal.sals,
9072 std::move (location),
9073 std::move (filter_string),
9074 std::move (cond_string),
9075 std::move (extra_string),
9076 type, disposition,
9077 thread, task, ignore_count, ops,
9078 from_tty, enabled, internal, flags,
9079 canonical->special_display);
9080 }
9081 }
9082
9083 /* Parse LOCATION which is assumed to be a SAL specification possibly
9084 followed by conditionals. On return, SALS contains an array of SAL
9085 addresses found. LOCATION points to the end of the SAL (for
9086 linespec locations).
9087
9088 The array and the line spec strings are allocated on the heap, it is
9089 the caller's responsibility to free them. */
9090
9091 static void
9092 parse_breakpoint_sals (const struct event_location *location,
9093 struct linespec_result *canonical)
9094 {
9095 struct symtab_and_line cursal;
9096
9097 if (event_location_type (location) == LINESPEC_LOCATION)
9098 {
9099 const char *spec = get_linespec_location (location)->spec_string;
9100
9101 if (spec == NULL)
9102 {
9103 /* The last displayed codepoint, if it's valid, is our default
9104 breakpoint address. */
9105 if (last_displayed_sal_is_valid ())
9106 {
9107 /* Set sal's pspace, pc, symtab, and line to the values
9108 corresponding to the last call to print_frame_info.
9109 Be sure to reinitialize LINE with NOTCURRENT == 0
9110 as the breakpoint line number is inappropriate otherwise.
9111 find_pc_line would adjust PC, re-set it back. */
9112 symtab_and_line sal = get_last_displayed_sal ();
9113 CORE_ADDR pc = sal.pc;
9114
9115 sal = find_pc_line (pc, 0);
9116
9117 /* "break" without arguments is equivalent to "break *PC"
9118 where PC is the last displayed codepoint's address. So
9119 make sure to set sal.explicit_pc to prevent GDB from
9120 trying to expand the list of sals to include all other
9121 instances with the same symtab and line. */
9122 sal.pc = pc;
9123 sal.explicit_pc = 1;
9124
9125 struct linespec_sals lsal;
9126 lsal.sals = {sal};
9127 lsal.canonical = NULL;
9128
9129 canonical->lsals.push_back (std::move (lsal));
9130 return;
9131 }
9132 else
9133 error (_("No default breakpoint address now."));
9134 }
9135 }
9136
9137 /* Force almost all breakpoints to be in terms of the
9138 current_source_symtab (which is decode_line_1's default).
9139 This should produce the results we want almost all of the
9140 time while leaving default_breakpoint_* alone.
9141
9142 ObjC: However, don't match an Objective-C method name which
9143 may have a '+' or '-' succeeded by a '['. */
9144 cursal = get_current_source_symtab_and_line ();
9145 if (last_displayed_sal_is_valid ())
9146 {
9147 const char *spec = NULL;
9148
9149 if (event_location_type (location) == LINESPEC_LOCATION)
9150 spec = get_linespec_location (location)->spec_string;
9151
9152 if (!cursal.symtab
9153 || (spec != NULL
9154 && strchr ("+-", spec[0]) != NULL
9155 && spec[1] != '['))
9156 {
9157 decode_line_full (location, DECODE_LINE_FUNFIRSTLINE, NULL,
9158 get_last_displayed_symtab (),
9159 get_last_displayed_line (),
9160 canonical, NULL, NULL);
9161 return;
9162 }
9163 }
9164
9165 decode_line_full (location, DECODE_LINE_FUNFIRSTLINE, NULL,
9166 cursal.symtab, cursal.line, canonical, NULL, NULL);
9167 }
9168
9169
9170 /* Convert each SAL into a real PC. Verify that the PC can be
9171 inserted as a breakpoint. If it can't throw an error. */
9172
9173 static void
9174 breakpoint_sals_to_pc (std::vector<symtab_and_line> &sals)
9175 {
9176 for (auto &sal : sals)
9177 resolve_sal_pc (&sal);
9178 }
9179
9180 /* Fast tracepoints may have restrictions on valid locations. For
9181 instance, a fast tracepoint using a jump instead of a trap will
9182 likely have to overwrite more bytes than a trap would, and so can
9183 only be placed where the instruction is longer than the jump, or a
9184 multi-instruction sequence does not have a jump into the middle of
9185 it, etc. */
9186
9187 static void
9188 check_fast_tracepoint_sals (struct gdbarch *gdbarch,
9189 gdb::array_view<const symtab_and_line> sals)
9190 {
9191 int rslt;
9192 char *msg;
9193 struct cleanup *old_chain;
9194
9195 for (const auto &sal : sals)
9196 {
9197 struct gdbarch *sarch;
9198
9199 sarch = get_sal_arch (sal);
9200 /* We fall back to GDBARCH if there is no architecture
9201 associated with SAL. */
9202 if (sarch == NULL)
9203 sarch = gdbarch;
9204 rslt = gdbarch_fast_tracepoint_valid_at (sarch, sal.pc, &msg);
9205 old_chain = make_cleanup (xfree, msg);
9206
9207 if (!rslt)
9208 error (_("May not have a fast tracepoint at %s%s"),
9209 paddress (sarch, sal.pc), (msg ? msg : ""));
9210
9211 do_cleanups (old_chain);
9212 }
9213 }
9214
9215 /* Given TOK, a string specification of condition and thread, as
9216 accepted by the 'break' command, extract the condition
9217 string and thread number and set *COND_STRING and *THREAD.
9218 PC identifies the context at which the condition should be parsed.
9219 If no condition is found, *COND_STRING is set to NULL.
9220 If no thread is found, *THREAD is set to -1. */
9221
9222 static void
9223 find_condition_and_thread (const char *tok, CORE_ADDR pc,
9224 char **cond_string, int *thread, int *task,
9225 char **rest)
9226 {
9227 *cond_string = NULL;
9228 *thread = -1;
9229 *task = 0;
9230 *rest = NULL;
9231
9232 while (tok && *tok)
9233 {
9234 const char *end_tok;
9235 int toklen;
9236 const char *cond_start = NULL;
9237 const char *cond_end = NULL;
9238
9239 tok = skip_spaces (tok);
9240
9241 if ((*tok == '"' || *tok == ',') && rest)
9242 {
9243 *rest = savestring (tok, strlen (tok));
9244 return;
9245 }
9246
9247 end_tok = skip_to_space (tok);
9248
9249 toklen = end_tok - tok;
9250
9251 if (toklen >= 1 && strncmp (tok, "if", toklen) == 0)
9252 {
9253 tok = cond_start = end_tok + 1;
9254 parse_exp_1 (&tok, pc, block_for_pc (pc), 0);
9255 cond_end = tok;
9256 *cond_string = savestring (cond_start, cond_end - cond_start);
9257 }
9258 else if (toklen >= 1 && strncmp (tok, "thread", toklen) == 0)
9259 {
9260 const char *tmptok;
9261 struct thread_info *thr;
9262
9263 tok = end_tok + 1;
9264 thr = parse_thread_id (tok, &tmptok);
9265 if (tok == tmptok)
9266 error (_("Junk after thread keyword."));
9267 *thread = thr->global_num;
9268 tok = tmptok;
9269 }
9270 else if (toklen >= 1 && strncmp (tok, "task", toklen) == 0)
9271 {
9272 char *tmptok;
9273
9274 tok = end_tok + 1;
9275 *task = strtol (tok, &tmptok, 0);
9276 if (tok == tmptok)
9277 error (_("Junk after task keyword."));
9278 if (!valid_task_id (*task))
9279 error (_("Unknown task %d."), *task);
9280 tok = tmptok;
9281 }
9282 else if (rest)
9283 {
9284 *rest = savestring (tok, strlen (tok));
9285 return;
9286 }
9287 else
9288 error (_("Junk at end of arguments."));
9289 }
9290 }
9291
9292 /* Decode a static tracepoint marker spec. */
9293
9294 static std::vector<symtab_and_line>
9295 decode_static_tracepoint_spec (const char **arg_p)
9296 {
9297 VEC(static_tracepoint_marker_p) *markers = NULL;
9298 const char *p = &(*arg_p)[3];
9299 const char *endp;
9300 int i;
9301
9302 p = skip_spaces (p);
9303
9304 endp = skip_to_space (p);
9305
9306 std::string marker_str (p, endp - p);
9307
9308 markers = target_static_tracepoint_markers_by_strid (marker_str.c_str ());
9309 if (VEC_empty(static_tracepoint_marker_p, markers))
9310 error (_("No known static tracepoint marker named %s"),
9311 marker_str.c_str ());
9312
9313 std::vector<symtab_and_line> sals;
9314 sals.reserve (VEC_length(static_tracepoint_marker_p, markers));
9315
9316 for (i = 0; i < VEC_length(static_tracepoint_marker_p, markers); i++)
9317 {
9318 struct static_tracepoint_marker *marker;
9319
9320 marker = VEC_index (static_tracepoint_marker_p, markers, i);
9321
9322 symtab_and_line sal = find_pc_line (marker->address, 0);
9323 sal.pc = marker->address;
9324 sals.push_back (sal);
9325
9326 release_static_tracepoint_marker (marker);
9327 }
9328
9329 *arg_p = endp;
9330 return sals;
9331 }
9332
9333 /* See breakpoint.h. */
9334
9335 int
9336 create_breakpoint (struct gdbarch *gdbarch,
9337 const struct event_location *location,
9338 const char *cond_string,
9339 int thread, const char *extra_string,
9340 int parse_extra,
9341 int tempflag, enum bptype type_wanted,
9342 int ignore_count,
9343 enum auto_boolean pending_break_support,
9344 const struct breakpoint_ops *ops,
9345 int from_tty, int enabled, int internal,
9346 unsigned flags)
9347 {
9348 struct linespec_result canonical;
9349 struct cleanup *bkpt_chain = NULL;
9350 int pending = 0;
9351 int task = 0;
9352 int prev_bkpt_count = breakpoint_count;
9353
9354 gdb_assert (ops != NULL);
9355
9356 /* If extra_string isn't useful, set it to NULL. */
9357 if (extra_string != NULL && *extra_string == '\0')
9358 extra_string = NULL;
9359
9360 TRY
9361 {
9362 ops->create_sals_from_location (location, &canonical, type_wanted);
9363 }
9364 CATCH (e, RETURN_MASK_ERROR)
9365 {
9366 /* If caller is interested in rc value from parse, set
9367 value. */
9368 if (e.error == NOT_FOUND_ERROR)
9369 {
9370 /* If pending breakpoint support is turned off, throw
9371 error. */
9372
9373 if (pending_break_support == AUTO_BOOLEAN_FALSE)
9374 throw_exception (e);
9375
9376 exception_print (gdb_stderr, e);
9377
9378 /* If pending breakpoint support is auto query and the user
9379 selects no, then simply return the error code. */
9380 if (pending_break_support == AUTO_BOOLEAN_AUTO
9381 && !nquery (_("Make %s pending on future shared library load? "),
9382 bptype_string (type_wanted)))
9383 return 0;
9384
9385 /* At this point, either the user was queried about setting
9386 a pending breakpoint and selected yes, or pending
9387 breakpoint behavior is on and thus a pending breakpoint
9388 is defaulted on behalf of the user. */
9389 pending = 1;
9390 }
9391 else
9392 throw_exception (e);
9393 }
9394 END_CATCH
9395
9396 if (!pending && canonical.lsals.empty ())
9397 return 0;
9398
9399 /* ----------------------------- SNIP -----------------------------
9400 Anything added to the cleanup chain beyond this point is assumed
9401 to be part of a breakpoint. If the breakpoint create succeeds
9402 then the memory is not reclaimed. */
9403 bkpt_chain = make_cleanup (null_cleanup, 0);
9404
9405 /* Resolve all line numbers to PC's and verify that the addresses
9406 are ok for the target. */
9407 if (!pending)
9408 {
9409 for (auto &lsal : canonical.lsals)
9410 breakpoint_sals_to_pc (lsal.sals);
9411 }
9412
9413 /* Fast tracepoints may have additional restrictions on location. */
9414 if (!pending && type_wanted == bp_fast_tracepoint)
9415 {
9416 for (const auto &lsal : canonical.lsals)
9417 check_fast_tracepoint_sals (gdbarch, lsal.sals);
9418 }
9419
9420 /* Verify that condition can be parsed, before setting any
9421 breakpoints. Allocate a separate condition expression for each
9422 breakpoint. */
9423 if (!pending)
9424 {
9425 gdb::unique_xmalloc_ptr<char> cond_string_copy;
9426 gdb::unique_xmalloc_ptr<char> extra_string_copy;
9427
9428 if (parse_extra)
9429 {
9430 char *rest;
9431 char *cond;
9432
9433 const linespec_sals &lsal = canonical.lsals[0];
9434
9435 /* Here we only parse 'arg' to separate condition
9436 from thread number, so parsing in context of first
9437 sal is OK. When setting the breakpoint we'll
9438 re-parse it in context of each sal. */
9439
9440 find_condition_and_thread (extra_string, lsal.sals[0].pc,
9441 &cond, &thread, &task, &rest);
9442 cond_string_copy.reset (cond);
9443 extra_string_copy.reset (rest);
9444 }
9445 else
9446 {
9447 if (type_wanted != bp_dprintf
9448 && extra_string != NULL && *extra_string != '\0')
9449 error (_("Garbage '%s' at end of location"), extra_string);
9450
9451 /* Create a private copy of condition string. */
9452 if (cond_string)
9453 cond_string_copy.reset (xstrdup (cond_string));
9454 /* Create a private copy of any extra string. */
9455 if (extra_string)
9456 extra_string_copy.reset (xstrdup (extra_string));
9457 }
9458
9459 ops->create_breakpoints_sal (gdbarch, &canonical,
9460 std::move (cond_string_copy),
9461 std::move (extra_string_copy),
9462 type_wanted,
9463 tempflag ? disp_del : disp_donttouch,
9464 thread, task, ignore_count, ops,
9465 from_tty, enabled, internal, flags);
9466 }
9467 else
9468 {
9469 std::unique_ptr <breakpoint> b = new_breakpoint_from_type (type_wanted);
9470
9471 init_raw_breakpoint_without_location (b.get (), gdbarch, type_wanted, ops);
9472 b->location = copy_event_location (location);
9473
9474 if (parse_extra)
9475 b->cond_string = NULL;
9476 else
9477 {
9478 /* Create a private copy of condition string. */
9479 b->cond_string = cond_string != NULL ? xstrdup (cond_string) : NULL;
9480 b->thread = thread;
9481 }
9482
9483 /* Create a private copy of any extra string. */
9484 b->extra_string = extra_string != NULL ? xstrdup (extra_string) : NULL;
9485 b->ignore_count = ignore_count;
9486 b->disposition = tempflag ? disp_del : disp_donttouch;
9487 b->condition_not_parsed = 1;
9488 b->enable_state = enabled ? bp_enabled : bp_disabled;
9489 if ((type_wanted != bp_breakpoint
9490 && type_wanted != bp_hardware_breakpoint) || thread != -1)
9491 b->pspace = current_program_space;
9492
9493 install_breakpoint (internal, std::move (b), 0);
9494 }
9495
9496 if (canonical.lsals.size () > 1)
9497 {
9498 warning (_("Multiple breakpoints were set.\nUse the "
9499 "\"delete\" command to delete unwanted breakpoints."));
9500 prev_breakpoint_count = prev_bkpt_count;
9501 }
9502
9503 /* That's it. Discard the cleanups for data inserted into the
9504 breakpoint. */
9505 discard_cleanups (bkpt_chain);
9506
9507 /* error call may happen here - have BKPT_CHAIN already discarded. */
9508 update_global_location_list (UGLL_MAY_INSERT);
9509
9510 return 1;
9511 }
9512
9513 /* Set a breakpoint.
9514 ARG is a string describing breakpoint address,
9515 condition, and thread.
9516 FLAG specifies if a breakpoint is hardware on,
9517 and if breakpoint is temporary, using BP_HARDWARE_FLAG
9518 and BP_TEMPFLAG. */
9519
9520 static void
9521 break_command_1 (const char *arg, int flag, int from_tty)
9522 {
9523 int tempflag = flag & BP_TEMPFLAG;
9524 enum bptype type_wanted = (flag & BP_HARDWAREFLAG
9525 ? bp_hardware_breakpoint
9526 : bp_breakpoint);
9527 struct breakpoint_ops *ops;
9528
9529 event_location_up location = string_to_event_location (&arg, current_language);
9530
9531 /* Matching breakpoints on probes. */
9532 if (location != NULL
9533 && event_location_type (location.get ()) == PROBE_LOCATION)
9534 ops = &bkpt_probe_breakpoint_ops;
9535 else
9536 ops = &bkpt_breakpoint_ops;
9537
9538 create_breakpoint (get_current_arch (),
9539 location.get (),
9540 NULL, 0, arg, 1 /* parse arg */,
9541 tempflag, type_wanted,
9542 0 /* Ignore count */,
9543 pending_break_support,
9544 ops,
9545 from_tty,
9546 1 /* enabled */,
9547 0 /* internal */,
9548 0);
9549 }
9550
9551 /* Helper function for break_command_1 and disassemble_command. */
9552
9553 void
9554 resolve_sal_pc (struct symtab_and_line *sal)
9555 {
9556 CORE_ADDR pc;
9557
9558 if (sal->pc == 0 && sal->symtab != NULL)
9559 {
9560 if (!find_line_pc (sal->symtab, sal->line, &pc))
9561 error (_("No line %d in file \"%s\"."),
9562 sal->line, symtab_to_filename_for_display (sal->symtab));
9563 sal->pc = pc;
9564
9565 /* If this SAL corresponds to a breakpoint inserted using a line
9566 number, then skip the function prologue if necessary. */
9567 if (sal->explicit_line)
9568 skip_prologue_sal (sal);
9569 }
9570
9571 if (sal->section == 0 && sal->symtab != NULL)
9572 {
9573 const struct blockvector *bv;
9574 const struct block *b;
9575 struct symbol *sym;
9576
9577 bv = blockvector_for_pc_sect (sal->pc, 0, &b,
9578 SYMTAB_COMPUNIT (sal->symtab));
9579 if (bv != NULL)
9580 {
9581 sym = block_linkage_function (b);
9582 if (sym != NULL)
9583 {
9584 fixup_symbol_section (sym, SYMTAB_OBJFILE (sal->symtab));
9585 sal->section = SYMBOL_OBJ_SECTION (SYMTAB_OBJFILE (sal->symtab),
9586 sym);
9587 }
9588 else
9589 {
9590 /* It really is worthwhile to have the section, so we'll
9591 just have to look harder. This case can be executed
9592 if we have line numbers but no functions (as can
9593 happen in assembly source). */
9594
9595 scoped_restore_current_pspace_and_thread restore_pspace_thread;
9596 switch_to_program_space_and_thread (sal->pspace);
9597
9598 bound_minimal_symbol msym = lookup_minimal_symbol_by_pc (sal->pc);
9599 if (msym.minsym)
9600 sal->section = MSYMBOL_OBJ_SECTION (msym.objfile, msym.minsym);
9601 }
9602 }
9603 }
9604 }
9605
9606 void
9607 break_command (const char *arg, int from_tty)
9608 {
9609 break_command_1 (arg, 0, from_tty);
9610 }
9611
9612 void
9613 tbreak_command (const char *arg, int from_tty)
9614 {
9615 break_command_1 (arg, BP_TEMPFLAG, from_tty);
9616 }
9617
9618 static void
9619 hbreak_command (const char *arg, int from_tty)
9620 {
9621 break_command_1 (arg, BP_HARDWAREFLAG, from_tty);
9622 }
9623
9624 static void
9625 thbreak_command (const char *arg, int from_tty)
9626 {
9627 break_command_1 (arg, (BP_TEMPFLAG | BP_HARDWAREFLAG), from_tty);
9628 }
9629
9630 static void
9631 stop_command (const char *arg, int from_tty)
9632 {
9633 printf_filtered (_("Specify the type of breakpoint to set.\n\
9634 Usage: stop in <function | address>\n\
9635 stop at <line>\n"));
9636 }
9637
9638 static void
9639 stopin_command (const char *arg, int from_tty)
9640 {
9641 int badInput = 0;
9642
9643 if (arg == (char *) NULL)
9644 badInput = 1;
9645 else if (*arg != '*')
9646 {
9647 const char *argptr = arg;
9648 int hasColon = 0;
9649
9650 /* Look for a ':'. If this is a line number specification, then
9651 say it is bad, otherwise, it should be an address or
9652 function/method name. */
9653 while (*argptr && !hasColon)
9654 {
9655 hasColon = (*argptr == ':');
9656 argptr++;
9657 }
9658
9659 if (hasColon)
9660 badInput = (*argptr != ':'); /* Not a class::method */
9661 else
9662 badInput = isdigit (*arg); /* a simple line number */
9663 }
9664
9665 if (badInput)
9666 printf_filtered (_("Usage: stop in <function | address>\n"));
9667 else
9668 break_command_1 (arg, 0, from_tty);
9669 }
9670
9671 static void
9672 stopat_command (const char *arg, int from_tty)
9673 {
9674 int badInput = 0;
9675
9676 if (arg == (char *) NULL || *arg == '*') /* no line number */
9677 badInput = 1;
9678 else
9679 {
9680 const char *argptr = arg;
9681 int hasColon = 0;
9682
9683 /* Look for a ':'. If there is a '::' then get out, otherwise
9684 it is probably a line number. */
9685 while (*argptr && !hasColon)
9686 {
9687 hasColon = (*argptr == ':');
9688 argptr++;
9689 }
9690
9691 if (hasColon)
9692 badInput = (*argptr == ':'); /* we have class::method */
9693 else
9694 badInput = !isdigit (*arg); /* not a line number */
9695 }
9696
9697 if (badInput)
9698 printf_filtered (_("Usage: stop at <line>\n"));
9699 else
9700 break_command_1 (arg, 0, from_tty);
9701 }
9702
9703 /* The dynamic printf command is mostly like a regular breakpoint, but
9704 with a prewired command list consisting of a single output command,
9705 built from extra arguments supplied on the dprintf command
9706 line. */
9707
9708 static void
9709 dprintf_command (const char *arg, int from_tty)
9710 {
9711 event_location_up location = string_to_event_location (&arg, current_language);
9712
9713 /* If non-NULL, ARG should have been advanced past the location;
9714 the next character must be ','. */
9715 if (arg != NULL)
9716 {
9717 if (arg[0] != ',' || arg[1] == '\0')
9718 error (_("Format string required"));
9719 else
9720 {
9721 /* Skip the comma. */
9722 ++arg;
9723 }
9724 }
9725
9726 create_breakpoint (get_current_arch (),
9727 location.get (),
9728 NULL, 0, arg, 1 /* parse arg */,
9729 0, bp_dprintf,
9730 0 /* Ignore count */,
9731 pending_break_support,
9732 &dprintf_breakpoint_ops,
9733 from_tty,
9734 1 /* enabled */,
9735 0 /* internal */,
9736 0);
9737 }
9738
9739 static void
9740 agent_printf_command (const char *arg, int from_tty)
9741 {
9742 error (_("May only run agent-printf on the target"));
9743 }
9744
9745 /* Implement the "breakpoint_hit" breakpoint_ops method for
9746 ranged breakpoints. */
9747
9748 static int
9749 breakpoint_hit_ranged_breakpoint (const struct bp_location *bl,
9750 const address_space *aspace,
9751 CORE_ADDR bp_addr,
9752 const struct target_waitstatus *ws)
9753 {
9754 if (ws->kind != TARGET_WAITKIND_STOPPED
9755 || ws->value.sig != GDB_SIGNAL_TRAP)
9756 return 0;
9757
9758 return breakpoint_address_match_range (bl->pspace->aspace, bl->address,
9759 bl->length, aspace, bp_addr);
9760 }
9761
9762 /* Implement the "resources_needed" breakpoint_ops method for
9763 ranged breakpoints. */
9764
9765 static int
9766 resources_needed_ranged_breakpoint (const struct bp_location *bl)
9767 {
9768 return target_ranged_break_num_registers ();
9769 }
9770
9771 /* Implement the "print_it" breakpoint_ops method for
9772 ranged breakpoints. */
9773
9774 static enum print_stop_action
9775 print_it_ranged_breakpoint (bpstat bs)
9776 {
9777 struct breakpoint *b = bs->breakpoint_at;
9778 struct bp_location *bl = b->loc;
9779 struct ui_out *uiout = current_uiout;
9780
9781 gdb_assert (b->type == bp_hardware_breakpoint);
9782
9783 /* Ranged breakpoints have only one location. */
9784 gdb_assert (bl && bl->next == NULL);
9785
9786 annotate_breakpoint (b->number);
9787
9788 maybe_print_thread_hit_breakpoint (uiout);
9789
9790 if (b->disposition == disp_del)
9791 uiout->text ("Temporary ranged breakpoint ");
9792 else
9793 uiout->text ("Ranged breakpoint ");
9794 if (uiout->is_mi_like_p ())
9795 {
9796 uiout->field_string ("reason",
9797 async_reason_lookup (EXEC_ASYNC_BREAKPOINT_HIT));
9798 uiout->field_string ("disp", bpdisp_text (b->disposition));
9799 }
9800 uiout->field_int ("bkptno", b->number);
9801 uiout->text (", ");
9802
9803 return PRINT_SRC_AND_LOC;
9804 }
9805
9806 /* Implement the "print_one" breakpoint_ops method for
9807 ranged breakpoints. */
9808
9809 static void
9810 print_one_ranged_breakpoint (struct breakpoint *b,
9811 struct bp_location **last_loc)
9812 {
9813 struct bp_location *bl = b->loc;
9814 struct value_print_options opts;
9815 struct ui_out *uiout = current_uiout;
9816
9817 /* Ranged breakpoints have only one location. */
9818 gdb_assert (bl && bl->next == NULL);
9819
9820 get_user_print_options (&opts);
9821
9822 if (opts.addressprint)
9823 /* We don't print the address range here, it will be printed later
9824 by print_one_detail_ranged_breakpoint. */
9825 uiout->field_skip ("addr");
9826 annotate_field (5);
9827 print_breakpoint_location (b, bl);
9828 *last_loc = bl;
9829 }
9830
9831 /* Implement the "print_one_detail" breakpoint_ops method for
9832 ranged breakpoints. */
9833
9834 static void
9835 print_one_detail_ranged_breakpoint (const struct breakpoint *b,
9836 struct ui_out *uiout)
9837 {
9838 CORE_ADDR address_start, address_end;
9839 struct bp_location *bl = b->loc;
9840 string_file stb;
9841
9842 gdb_assert (bl);
9843
9844 address_start = bl->address;
9845 address_end = address_start + bl->length - 1;
9846
9847 uiout->text ("\taddress range: ");
9848 stb.printf ("[%s, %s]",
9849 print_core_address (bl->gdbarch, address_start),
9850 print_core_address (bl->gdbarch, address_end));
9851 uiout->field_stream ("addr", stb);
9852 uiout->text ("\n");
9853 }
9854
9855 /* Implement the "print_mention" breakpoint_ops method for
9856 ranged breakpoints. */
9857
9858 static void
9859 print_mention_ranged_breakpoint (struct breakpoint *b)
9860 {
9861 struct bp_location *bl = b->loc;
9862 struct ui_out *uiout = current_uiout;
9863
9864 gdb_assert (bl);
9865 gdb_assert (b->type == bp_hardware_breakpoint);
9866
9867 if (uiout->is_mi_like_p ())
9868 return;
9869
9870 printf_filtered (_("Hardware assisted ranged breakpoint %d from %s to %s."),
9871 b->number, paddress (bl->gdbarch, bl->address),
9872 paddress (bl->gdbarch, bl->address + bl->length - 1));
9873 }
9874
9875 /* Implement the "print_recreate" breakpoint_ops method for
9876 ranged breakpoints. */
9877
9878 static void
9879 print_recreate_ranged_breakpoint (struct breakpoint *b, struct ui_file *fp)
9880 {
9881 fprintf_unfiltered (fp, "break-range %s, %s",
9882 event_location_to_string (b->location.get ()),
9883 event_location_to_string (b->location_range_end.get ()));
9884 print_recreate_thread (b, fp);
9885 }
9886
9887 /* The breakpoint_ops structure to be used in ranged breakpoints. */
9888
9889 static struct breakpoint_ops ranged_breakpoint_ops;
9890
9891 /* Find the address where the end of the breakpoint range should be
9892 placed, given the SAL of the end of the range. This is so that if
9893 the user provides a line number, the end of the range is set to the
9894 last instruction of the given line. */
9895
9896 static CORE_ADDR
9897 find_breakpoint_range_end (struct symtab_and_line sal)
9898 {
9899 CORE_ADDR end;
9900
9901 /* If the user provided a PC value, use it. Otherwise,
9902 find the address of the end of the given location. */
9903 if (sal.explicit_pc)
9904 end = sal.pc;
9905 else
9906 {
9907 int ret;
9908 CORE_ADDR start;
9909
9910 ret = find_line_pc_range (sal, &start, &end);
9911 if (!ret)
9912 error (_("Could not find location of the end of the range."));
9913
9914 /* find_line_pc_range returns the start of the next line. */
9915 end--;
9916 }
9917
9918 return end;
9919 }
9920
9921 /* Implement the "break-range" CLI command. */
9922
9923 static void
9924 break_range_command (const char *arg, int from_tty)
9925 {
9926 const char *arg_start;
9927 struct linespec_result canonical_start, canonical_end;
9928 int bp_count, can_use_bp, length;
9929 CORE_ADDR end;
9930 struct breakpoint *b;
9931
9932 /* We don't support software ranged breakpoints. */
9933 if (target_ranged_break_num_registers () < 0)
9934 error (_("This target does not support hardware ranged breakpoints."));
9935
9936 bp_count = hw_breakpoint_used_count ();
9937 bp_count += target_ranged_break_num_registers ();
9938 can_use_bp = target_can_use_hardware_watchpoint (bp_hardware_breakpoint,
9939 bp_count, 0);
9940 if (can_use_bp < 0)
9941 error (_("Hardware breakpoints used exceeds limit."));
9942
9943 arg = skip_spaces (arg);
9944 if (arg == NULL || arg[0] == '\0')
9945 error(_("No address range specified."));
9946
9947 arg_start = arg;
9948 event_location_up start_location = string_to_event_location (&arg,
9949 current_language);
9950 parse_breakpoint_sals (start_location.get (), &canonical_start);
9951
9952 if (arg[0] != ',')
9953 error (_("Too few arguments."));
9954 else if (canonical_start.lsals.empty ())
9955 error (_("Could not find location of the beginning of the range."));
9956
9957 const linespec_sals &lsal_start = canonical_start.lsals[0];
9958
9959 if (canonical_start.lsals.size () > 1
9960 || lsal_start.sals.size () != 1)
9961 error (_("Cannot create a ranged breakpoint with multiple locations."));
9962
9963 const symtab_and_line &sal_start = lsal_start.sals[0];
9964 std::string addr_string_start (arg_start, arg - arg_start);
9965
9966 arg++; /* Skip the comma. */
9967 arg = skip_spaces (arg);
9968
9969 /* Parse the end location. */
9970
9971 arg_start = arg;
9972
9973 /* We call decode_line_full directly here instead of using
9974 parse_breakpoint_sals because we need to specify the start location's
9975 symtab and line as the default symtab and line for the end of the
9976 range. This makes it possible to have ranges like "foo.c:27, +14",
9977 where +14 means 14 lines from the start location. */
9978 event_location_up end_location = string_to_event_location (&arg,
9979 current_language);
9980 decode_line_full (end_location.get (), DECODE_LINE_FUNFIRSTLINE, NULL,
9981 sal_start.symtab, sal_start.line,
9982 &canonical_end, NULL, NULL);
9983
9984 if (canonical_end.lsals.empty ())
9985 error (_("Could not find location of the end of the range."));
9986
9987 const linespec_sals &lsal_end = canonical_end.lsals[0];
9988 if (canonical_end.lsals.size () > 1
9989 || lsal_end.sals.size () != 1)
9990 error (_("Cannot create a ranged breakpoint with multiple locations."));
9991
9992 const symtab_and_line &sal_end = lsal_end.sals[0];
9993
9994 end = find_breakpoint_range_end (sal_end);
9995 if (sal_start.pc > end)
9996 error (_("Invalid address range, end precedes start."));
9997
9998 length = end - sal_start.pc + 1;
9999 if (length < 0)
10000 /* Length overflowed. */
10001 error (_("Address range too large."));
10002 else if (length == 1)
10003 {
10004 /* This range is simple enough to be handled by
10005 the `hbreak' command. */
10006 hbreak_command (&addr_string_start[0], 1);
10007
10008 return;
10009 }
10010
10011 /* Now set up the breakpoint. */
10012 b = set_raw_breakpoint (get_current_arch (), sal_start,
10013 bp_hardware_breakpoint, &ranged_breakpoint_ops);
10014 set_breakpoint_count (breakpoint_count + 1);
10015 b->number = breakpoint_count;
10016 b->disposition = disp_donttouch;
10017 b->location = std::move (start_location);
10018 b->location_range_end = std::move (end_location);
10019 b->loc->length = length;
10020
10021 mention (b);
10022 observer_notify_breakpoint_created (b);
10023 update_global_location_list (UGLL_MAY_INSERT);
10024 }
10025
10026 /* Return non-zero if EXP is verified as constant. Returned zero
10027 means EXP is variable. Also the constant detection may fail for
10028 some constant expressions and in such case still falsely return
10029 zero. */
10030
10031 static int
10032 watchpoint_exp_is_const (const struct expression *exp)
10033 {
10034 int i = exp->nelts;
10035
10036 while (i > 0)
10037 {
10038 int oplenp, argsp;
10039
10040 /* We are only interested in the descriptor of each element. */
10041 operator_length (exp, i, &oplenp, &argsp);
10042 i -= oplenp;
10043
10044 switch (exp->elts[i].opcode)
10045 {
10046 case BINOP_ADD:
10047 case BINOP_SUB:
10048 case BINOP_MUL:
10049 case BINOP_DIV:
10050 case BINOP_REM:
10051 case BINOP_MOD:
10052 case BINOP_LSH:
10053 case BINOP_RSH:
10054 case BINOP_LOGICAL_AND:
10055 case BINOP_LOGICAL_OR:
10056 case BINOP_BITWISE_AND:
10057 case BINOP_BITWISE_IOR:
10058 case BINOP_BITWISE_XOR:
10059 case BINOP_EQUAL:
10060 case BINOP_NOTEQUAL:
10061 case BINOP_LESS:
10062 case BINOP_GTR:
10063 case BINOP_LEQ:
10064 case BINOP_GEQ:
10065 case BINOP_REPEAT:
10066 case BINOP_COMMA:
10067 case BINOP_EXP:
10068 case BINOP_MIN:
10069 case BINOP_MAX:
10070 case BINOP_INTDIV:
10071 case BINOP_CONCAT:
10072 case TERNOP_COND:
10073 case TERNOP_SLICE:
10074
10075 case OP_LONG:
10076 case OP_FLOAT:
10077 case OP_LAST:
10078 case OP_COMPLEX:
10079 case OP_STRING:
10080 case OP_ARRAY:
10081 case OP_TYPE:
10082 case OP_TYPEOF:
10083 case OP_DECLTYPE:
10084 case OP_TYPEID:
10085 case OP_NAME:
10086 case OP_OBJC_NSSTRING:
10087
10088 case UNOP_NEG:
10089 case UNOP_LOGICAL_NOT:
10090 case UNOP_COMPLEMENT:
10091 case UNOP_ADDR:
10092 case UNOP_HIGH:
10093 case UNOP_CAST:
10094
10095 case UNOP_CAST_TYPE:
10096 case UNOP_REINTERPRET_CAST:
10097 case UNOP_DYNAMIC_CAST:
10098 /* Unary, binary and ternary operators: We have to check
10099 their operands. If they are constant, then so is the
10100 result of that operation. For instance, if A and B are
10101 determined to be constants, then so is "A + B".
10102
10103 UNOP_IND is one exception to the rule above, because the
10104 value of *ADDR is not necessarily a constant, even when
10105 ADDR is. */
10106 break;
10107
10108 case OP_VAR_VALUE:
10109 /* Check whether the associated symbol is a constant.
10110
10111 We use SYMBOL_CLASS rather than TYPE_CONST because it's
10112 possible that a buggy compiler could mark a variable as
10113 constant even when it is not, and TYPE_CONST would return
10114 true in this case, while SYMBOL_CLASS wouldn't.
10115
10116 We also have to check for function symbols because they
10117 are always constant. */
10118 {
10119 struct symbol *s = exp->elts[i + 2].symbol;
10120
10121 if (SYMBOL_CLASS (s) != LOC_BLOCK
10122 && SYMBOL_CLASS (s) != LOC_CONST
10123 && SYMBOL_CLASS (s) != LOC_CONST_BYTES)
10124 return 0;
10125 break;
10126 }
10127
10128 /* The default action is to return 0 because we are using
10129 the optimistic approach here: If we don't know something,
10130 then it is not a constant. */
10131 default:
10132 return 0;
10133 }
10134 }
10135
10136 return 1;
10137 }
10138
10139 /* Watchpoint destructor. */
10140
10141 watchpoint::~watchpoint ()
10142 {
10143 xfree (this->exp_string);
10144 xfree (this->exp_string_reparse);
10145 value_free (this->val);
10146 }
10147
10148 /* Implement the "re_set" breakpoint_ops method for watchpoints. */
10149
10150 static void
10151 re_set_watchpoint (struct breakpoint *b)
10152 {
10153 struct watchpoint *w = (struct watchpoint *) b;
10154
10155 /* Watchpoint can be either on expression using entirely global
10156 variables, or it can be on local variables.
10157
10158 Watchpoints of the first kind are never auto-deleted, and even
10159 persist across program restarts. Since they can use variables
10160 from shared libraries, we need to reparse expression as libraries
10161 are loaded and unloaded.
10162
10163 Watchpoints on local variables can also change meaning as result
10164 of solib event. For example, if a watchpoint uses both a local
10165 and a global variables in expression, it's a local watchpoint,
10166 but unloading of a shared library will make the expression
10167 invalid. This is not a very common use case, but we still
10168 re-evaluate expression, to avoid surprises to the user.
10169
10170 Note that for local watchpoints, we re-evaluate it only if
10171 watchpoints frame id is still valid. If it's not, it means the
10172 watchpoint is out of scope and will be deleted soon. In fact,
10173 I'm not sure we'll ever be called in this case.
10174
10175 If a local watchpoint's frame id is still valid, then
10176 w->exp_valid_block is likewise valid, and we can safely use it.
10177
10178 Don't do anything about disabled watchpoints, since they will be
10179 reevaluated again when enabled. */
10180 update_watchpoint (w, 1 /* reparse */);
10181 }
10182
10183 /* Implement the "insert" breakpoint_ops method for hardware watchpoints. */
10184
10185 static int
10186 insert_watchpoint (struct bp_location *bl)
10187 {
10188 struct watchpoint *w = (struct watchpoint *) bl->owner;
10189 int length = w->exact ? 1 : bl->length;
10190
10191 return target_insert_watchpoint (bl->address, length, bl->watchpoint_type,
10192 w->cond_exp.get ());
10193 }
10194
10195 /* Implement the "remove" breakpoint_ops method for hardware watchpoints. */
10196
10197 static int
10198 remove_watchpoint (struct bp_location *bl, enum remove_bp_reason reason)
10199 {
10200 struct watchpoint *w = (struct watchpoint *) bl->owner;
10201 int length = w->exact ? 1 : bl->length;
10202
10203 return target_remove_watchpoint (bl->address, length, bl->watchpoint_type,
10204 w->cond_exp.get ());
10205 }
10206
10207 static int
10208 breakpoint_hit_watchpoint (const struct bp_location *bl,
10209 const address_space *aspace, CORE_ADDR bp_addr,
10210 const struct target_waitstatus *ws)
10211 {
10212 struct breakpoint *b = bl->owner;
10213 struct watchpoint *w = (struct watchpoint *) b;
10214
10215 /* Continuable hardware watchpoints are treated as non-existent if the
10216 reason we stopped wasn't a hardware watchpoint (we didn't stop on
10217 some data address). Otherwise gdb won't stop on a break instruction
10218 in the code (not from a breakpoint) when a hardware watchpoint has
10219 been defined. Also skip watchpoints which we know did not trigger
10220 (did not match the data address). */
10221 if (is_hardware_watchpoint (b)
10222 && w->watchpoint_triggered == watch_triggered_no)
10223 return 0;
10224
10225 return 1;
10226 }
10227
10228 static void
10229 check_status_watchpoint (bpstat bs)
10230 {
10231 gdb_assert (is_watchpoint (bs->breakpoint_at));
10232
10233 bpstat_check_watchpoint (bs);
10234 }
10235
10236 /* Implement the "resources_needed" breakpoint_ops method for
10237 hardware watchpoints. */
10238
10239 static int
10240 resources_needed_watchpoint (const struct bp_location *bl)
10241 {
10242 struct watchpoint *w = (struct watchpoint *) bl->owner;
10243 int length = w->exact? 1 : bl->length;
10244
10245 return target_region_ok_for_hw_watchpoint (bl->address, length);
10246 }
10247
10248 /* Implement the "works_in_software_mode" breakpoint_ops method for
10249 hardware watchpoints. */
10250
10251 static int
10252 works_in_software_mode_watchpoint (const struct breakpoint *b)
10253 {
10254 /* Read and access watchpoints only work with hardware support. */
10255 return b->type == bp_watchpoint || b->type == bp_hardware_watchpoint;
10256 }
10257
10258 static enum print_stop_action
10259 print_it_watchpoint (bpstat bs)
10260 {
10261 struct breakpoint *b;
10262 enum print_stop_action result;
10263 struct watchpoint *w;
10264 struct ui_out *uiout = current_uiout;
10265
10266 gdb_assert (bs->bp_location_at != NULL);
10267
10268 b = bs->breakpoint_at;
10269 w = (struct watchpoint *) b;
10270
10271 annotate_watchpoint (b->number);
10272 maybe_print_thread_hit_breakpoint (uiout);
10273
10274 string_file stb;
10275
10276 gdb::optional<ui_out_emit_tuple> tuple_emitter;
10277 switch (b->type)
10278 {
10279 case bp_watchpoint:
10280 case bp_hardware_watchpoint:
10281 if (uiout->is_mi_like_p ())
10282 uiout->field_string
10283 ("reason", async_reason_lookup (EXEC_ASYNC_WATCHPOINT_TRIGGER));
10284 mention (b);
10285 tuple_emitter.emplace (uiout, "value");
10286 uiout->text ("\nOld value = ");
10287 watchpoint_value_print (bs->old_val, &stb);
10288 uiout->field_stream ("old", stb);
10289 uiout->text ("\nNew value = ");
10290 watchpoint_value_print (w->val, &stb);
10291 uiout->field_stream ("new", stb);
10292 uiout->text ("\n");
10293 /* More than one watchpoint may have been triggered. */
10294 result = PRINT_UNKNOWN;
10295 break;
10296
10297 case bp_read_watchpoint:
10298 if (uiout->is_mi_like_p ())
10299 uiout->field_string
10300 ("reason", async_reason_lookup (EXEC_ASYNC_READ_WATCHPOINT_TRIGGER));
10301 mention (b);
10302 tuple_emitter.emplace (uiout, "value");
10303 uiout->text ("\nValue = ");
10304 watchpoint_value_print (w->val, &stb);
10305 uiout->field_stream ("value", stb);
10306 uiout->text ("\n");
10307 result = PRINT_UNKNOWN;
10308 break;
10309
10310 case bp_access_watchpoint:
10311 if (bs->old_val != NULL)
10312 {
10313 if (uiout->is_mi_like_p ())
10314 uiout->field_string
10315 ("reason",
10316 async_reason_lookup (EXEC_ASYNC_ACCESS_WATCHPOINT_TRIGGER));
10317 mention (b);
10318 tuple_emitter.emplace (uiout, "value");
10319 uiout->text ("\nOld value = ");
10320 watchpoint_value_print (bs->old_val, &stb);
10321 uiout->field_stream ("old", stb);
10322 uiout->text ("\nNew value = ");
10323 }
10324 else
10325 {
10326 mention (b);
10327 if (uiout->is_mi_like_p ())
10328 uiout->field_string
10329 ("reason",
10330 async_reason_lookup (EXEC_ASYNC_ACCESS_WATCHPOINT_TRIGGER));
10331 tuple_emitter.emplace (uiout, "value");
10332 uiout->text ("\nValue = ");
10333 }
10334 watchpoint_value_print (w->val, &stb);
10335 uiout->field_stream ("new", stb);
10336 uiout->text ("\n");
10337 result = PRINT_UNKNOWN;
10338 break;
10339 default:
10340 result = PRINT_UNKNOWN;
10341 }
10342
10343 return result;
10344 }
10345
10346 /* Implement the "print_mention" breakpoint_ops method for hardware
10347 watchpoints. */
10348
10349 static void
10350 print_mention_watchpoint (struct breakpoint *b)
10351 {
10352 struct watchpoint *w = (struct watchpoint *) b;
10353 struct ui_out *uiout = current_uiout;
10354 const char *tuple_name;
10355
10356 switch (b->type)
10357 {
10358 case bp_watchpoint:
10359 uiout->text ("Watchpoint ");
10360 tuple_name = "wpt";
10361 break;
10362 case bp_hardware_watchpoint:
10363 uiout->text ("Hardware watchpoint ");
10364 tuple_name = "wpt";
10365 break;
10366 case bp_read_watchpoint:
10367 uiout->text ("Hardware read watchpoint ");
10368 tuple_name = "hw-rwpt";
10369 break;
10370 case bp_access_watchpoint:
10371 uiout->text ("Hardware access (read/write) watchpoint ");
10372 tuple_name = "hw-awpt";
10373 break;
10374 default:
10375 internal_error (__FILE__, __LINE__,
10376 _("Invalid hardware watchpoint type."));
10377 }
10378
10379 ui_out_emit_tuple tuple_emitter (uiout, tuple_name);
10380 uiout->field_int ("number", b->number);
10381 uiout->text (": ");
10382 uiout->field_string ("exp", w->exp_string);
10383 }
10384
10385 /* Implement the "print_recreate" breakpoint_ops method for
10386 watchpoints. */
10387
10388 static void
10389 print_recreate_watchpoint (struct breakpoint *b, struct ui_file *fp)
10390 {
10391 struct watchpoint *w = (struct watchpoint *) b;
10392
10393 switch (b->type)
10394 {
10395 case bp_watchpoint:
10396 case bp_hardware_watchpoint:
10397 fprintf_unfiltered (fp, "watch");
10398 break;
10399 case bp_read_watchpoint:
10400 fprintf_unfiltered (fp, "rwatch");
10401 break;
10402 case bp_access_watchpoint:
10403 fprintf_unfiltered (fp, "awatch");
10404 break;
10405 default:
10406 internal_error (__FILE__, __LINE__,
10407 _("Invalid watchpoint type."));
10408 }
10409
10410 fprintf_unfiltered (fp, " %s", w->exp_string);
10411 print_recreate_thread (b, fp);
10412 }
10413
10414 /* Implement the "explains_signal" breakpoint_ops method for
10415 watchpoints. */
10416
10417 static int
10418 explains_signal_watchpoint (struct breakpoint *b, enum gdb_signal sig)
10419 {
10420 /* A software watchpoint cannot cause a signal other than
10421 GDB_SIGNAL_TRAP. */
10422 if (b->type == bp_watchpoint && sig != GDB_SIGNAL_TRAP)
10423 return 0;
10424
10425 return 1;
10426 }
10427
10428 /* The breakpoint_ops structure to be used in hardware watchpoints. */
10429
10430 static struct breakpoint_ops watchpoint_breakpoint_ops;
10431
10432 /* Implement the "insert" breakpoint_ops method for
10433 masked hardware watchpoints. */
10434
10435 static int
10436 insert_masked_watchpoint (struct bp_location *bl)
10437 {
10438 struct watchpoint *w = (struct watchpoint *) bl->owner;
10439
10440 return target_insert_mask_watchpoint (bl->address, w->hw_wp_mask,
10441 bl->watchpoint_type);
10442 }
10443
10444 /* Implement the "remove" breakpoint_ops method for
10445 masked hardware watchpoints. */
10446
10447 static int
10448 remove_masked_watchpoint (struct bp_location *bl, enum remove_bp_reason reason)
10449 {
10450 struct watchpoint *w = (struct watchpoint *) bl->owner;
10451
10452 return target_remove_mask_watchpoint (bl->address, w->hw_wp_mask,
10453 bl->watchpoint_type);
10454 }
10455
10456 /* Implement the "resources_needed" breakpoint_ops method for
10457 masked hardware watchpoints. */
10458
10459 static int
10460 resources_needed_masked_watchpoint (const struct bp_location *bl)
10461 {
10462 struct watchpoint *w = (struct watchpoint *) bl->owner;
10463
10464 return target_masked_watch_num_registers (bl->address, w->hw_wp_mask);
10465 }
10466
10467 /* Implement the "works_in_software_mode" breakpoint_ops method for
10468 masked hardware watchpoints. */
10469
10470 static int
10471 works_in_software_mode_masked_watchpoint (const struct breakpoint *b)
10472 {
10473 return 0;
10474 }
10475
10476 /* Implement the "print_it" breakpoint_ops method for
10477 masked hardware watchpoints. */
10478
10479 static enum print_stop_action
10480 print_it_masked_watchpoint (bpstat bs)
10481 {
10482 struct breakpoint *b = bs->breakpoint_at;
10483 struct ui_out *uiout = current_uiout;
10484
10485 /* Masked watchpoints have only one location. */
10486 gdb_assert (b->loc && b->loc->next == NULL);
10487
10488 annotate_watchpoint (b->number);
10489 maybe_print_thread_hit_breakpoint (uiout);
10490
10491 switch (b->type)
10492 {
10493 case bp_hardware_watchpoint:
10494 if (uiout->is_mi_like_p ())
10495 uiout->field_string
10496 ("reason", async_reason_lookup (EXEC_ASYNC_WATCHPOINT_TRIGGER));
10497 break;
10498
10499 case bp_read_watchpoint:
10500 if (uiout->is_mi_like_p ())
10501 uiout->field_string
10502 ("reason", async_reason_lookup (EXEC_ASYNC_READ_WATCHPOINT_TRIGGER));
10503 break;
10504
10505 case bp_access_watchpoint:
10506 if (uiout->is_mi_like_p ())
10507 uiout->field_string
10508 ("reason",
10509 async_reason_lookup (EXEC_ASYNC_ACCESS_WATCHPOINT_TRIGGER));
10510 break;
10511 default:
10512 internal_error (__FILE__, __LINE__,
10513 _("Invalid hardware watchpoint type."));
10514 }
10515
10516 mention (b);
10517 uiout->text (_("\n\
10518 Check the underlying instruction at PC for the memory\n\
10519 address and value which triggered this watchpoint.\n"));
10520 uiout->text ("\n");
10521
10522 /* More than one watchpoint may have been triggered. */
10523 return PRINT_UNKNOWN;
10524 }
10525
10526 /* Implement the "print_one_detail" breakpoint_ops method for
10527 masked hardware watchpoints. */
10528
10529 static void
10530 print_one_detail_masked_watchpoint (const struct breakpoint *b,
10531 struct ui_out *uiout)
10532 {
10533 struct watchpoint *w = (struct watchpoint *) b;
10534
10535 /* Masked watchpoints have only one location. */
10536 gdb_assert (b->loc && b->loc->next == NULL);
10537
10538 uiout->text ("\tmask ");
10539 uiout->field_core_addr ("mask", b->loc->gdbarch, w->hw_wp_mask);
10540 uiout->text ("\n");
10541 }
10542
10543 /* Implement the "print_mention" breakpoint_ops method for
10544 masked hardware watchpoints. */
10545
10546 static void
10547 print_mention_masked_watchpoint (struct breakpoint *b)
10548 {
10549 struct watchpoint *w = (struct watchpoint *) b;
10550 struct ui_out *uiout = current_uiout;
10551 const char *tuple_name;
10552
10553 switch (b->type)
10554 {
10555 case bp_hardware_watchpoint:
10556 uiout->text ("Masked hardware watchpoint ");
10557 tuple_name = "wpt";
10558 break;
10559 case bp_read_watchpoint:
10560 uiout->text ("Masked hardware read watchpoint ");
10561 tuple_name = "hw-rwpt";
10562 break;
10563 case bp_access_watchpoint:
10564 uiout->text ("Masked hardware access (read/write) watchpoint ");
10565 tuple_name = "hw-awpt";
10566 break;
10567 default:
10568 internal_error (__FILE__, __LINE__,
10569 _("Invalid hardware watchpoint type."));
10570 }
10571
10572 ui_out_emit_tuple tuple_emitter (uiout, tuple_name);
10573 uiout->field_int ("number", b->number);
10574 uiout->text (": ");
10575 uiout->field_string ("exp", w->exp_string);
10576 }
10577
10578 /* Implement the "print_recreate" breakpoint_ops method for
10579 masked hardware watchpoints. */
10580
10581 static void
10582 print_recreate_masked_watchpoint (struct breakpoint *b, struct ui_file *fp)
10583 {
10584 struct watchpoint *w = (struct watchpoint *) b;
10585 char tmp[40];
10586
10587 switch (b->type)
10588 {
10589 case bp_hardware_watchpoint:
10590 fprintf_unfiltered (fp, "watch");
10591 break;
10592 case bp_read_watchpoint:
10593 fprintf_unfiltered (fp, "rwatch");
10594 break;
10595 case bp_access_watchpoint:
10596 fprintf_unfiltered (fp, "awatch");
10597 break;
10598 default:
10599 internal_error (__FILE__, __LINE__,
10600 _("Invalid hardware watchpoint type."));
10601 }
10602
10603 sprintf_vma (tmp, w->hw_wp_mask);
10604 fprintf_unfiltered (fp, " %s mask 0x%s", w->exp_string, tmp);
10605 print_recreate_thread (b, fp);
10606 }
10607
10608 /* The breakpoint_ops structure to be used in masked hardware watchpoints. */
10609
10610 static struct breakpoint_ops masked_watchpoint_breakpoint_ops;
10611
10612 /* Tell whether the given watchpoint is a masked hardware watchpoint. */
10613
10614 static int
10615 is_masked_watchpoint (const struct breakpoint *b)
10616 {
10617 return b->ops == &masked_watchpoint_breakpoint_ops;
10618 }
10619
10620 /* accessflag: hw_write: watch write,
10621 hw_read: watch read,
10622 hw_access: watch access (read or write) */
10623 static void
10624 watch_command_1 (const char *arg, int accessflag, int from_tty,
10625 int just_location, int internal)
10626 {
10627 struct breakpoint *scope_breakpoint = NULL;
10628 const struct block *exp_valid_block = NULL, *cond_exp_valid_block = NULL;
10629 struct value *val, *mark, *result;
10630 int saved_bitpos = 0, saved_bitsize = 0;
10631 const char *exp_start = NULL;
10632 const char *exp_end = NULL;
10633 const char *tok, *end_tok;
10634 int toklen = -1;
10635 const char *cond_start = NULL;
10636 const char *cond_end = NULL;
10637 enum bptype bp_type;
10638 int thread = -1;
10639 int pc = 0;
10640 /* Flag to indicate whether we are going to use masks for
10641 the hardware watchpoint. */
10642 int use_mask = 0;
10643 CORE_ADDR mask = 0;
10644
10645 /* Make sure that we actually have parameters to parse. */
10646 if (arg != NULL && arg[0] != '\0')
10647 {
10648 const char *value_start;
10649
10650 exp_end = arg + strlen (arg);
10651
10652 /* Look for "parameter value" pairs at the end
10653 of the arguments string. */
10654 for (tok = exp_end - 1; tok > arg; tok--)
10655 {
10656 /* Skip whitespace at the end of the argument list. */
10657 while (tok > arg && (*tok == ' ' || *tok == '\t'))
10658 tok--;
10659
10660 /* Find the beginning of the last token.
10661 This is the value of the parameter. */
10662 while (tok > arg && (*tok != ' ' && *tok != '\t'))
10663 tok--;
10664 value_start = tok + 1;
10665
10666 /* Skip whitespace. */
10667 while (tok > arg && (*tok == ' ' || *tok == '\t'))
10668 tok--;
10669
10670 end_tok = tok;
10671
10672 /* Find the beginning of the second to last token.
10673 This is the parameter itself. */
10674 while (tok > arg && (*tok != ' ' && *tok != '\t'))
10675 tok--;
10676 tok++;
10677 toklen = end_tok - tok + 1;
10678
10679 if (toklen == 6 && startswith (tok, "thread"))
10680 {
10681 struct thread_info *thr;
10682 /* At this point we've found a "thread" token, which means
10683 the user is trying to set a watchpoint that triggers
10684 only in a specific thread. */
10685 const char *endp;
10686
10687 if (thread != -1)
10688 error(_("You can specify only one thread."));
10689
10690 /* Extract the thread ID from the next token. */
10691 thr = parse_thread_id (value_start, &endp);
10692
10693 /* Check if the user provided a valid thread ID. */
10694 if (*endp != ' ' && *endp != '\t' && *endp != '\0')
10695 invalid_thread_id_error (value_start);
10696
10697 thread = thr->global_num;
10698 }
10699 else if (toklen == 4 && startswith (tok, "mask"))
10700 {
10701 /* We've found a "mask" token, which means the user wants to
10702 create a hardware watchpoint that is going to have the mask
10703 facility. */
10704 struct value *mask_value, *mark;
10705
10706 if (use_mask)
10707 error(_("You can specify only one mask."));
10708
10709 use_mask = just_location = 1;
10710
10711 mark = value_mark ();
10712 mask_value = parse_to_comma_and_eval (&value_start);
10713 mask = value_as_address (mask_value);
10714 value_free_to_mark (mark);
10715 }
10716 else
10717 /* We didn't recognize what we found. We should stop here. */
10718 break;
10719
10720 /* Truncate the string and get rid of the "parameter value" pair before
10721 the arguments string is parsed by the parse_exp_1 function. */
10722 exp_end = tok;
10723 }
10724 }
10725 else
10726 exp_end = arg;
10727
10728 /* Parse the rest of the arguments. From here on out, everything
10729 is in terms of a newly allocated string instead of the original
10730 ARG. */
10731 innermost_block = NULL;
10732 std::string expression (arg, exp_end - arg);
10733 exp_start = arg = expression.c_str ();
10734 expression_up exp = parse_exp_1 (&arg, 0, 0, 0);
10735 exp_end = arg;
10736 /* Remove trailing whitespace from the expression before saving it.
10737 This makes the eventual display of the expression string a bit
10738 prettier. */
10739 while (exp_end > exp_start && (exp_end[-1] == ' ' || exp_end[-1] == '\t'))
10740 --exp_end;
10741
10742 /* Checking if the expression is not constant. */
10743 if (watchpoint_exp_is_const (exp.get ()))
10744 {
10745 int len;
10746
10747 len = exp_end - exp_start;
10748 while (len > 0 && isspace (exp_start[len - 1]))
10749 len--;
10750 error (_("Cannot watch constant value `%.*s'."), len, exp_start);
10751 }
10752
10753 exp_valid_block = innermost_block;
10754 mark = value_mark ();
10755 fetch_subexp_value (exp.get (), &pc, &val, &result, NULL, just_location);
10756
10757 if (val != NULL && just_location)
10758 {
10759 saved_bitpos = value_bitpos (val);
10760 saved_bitsize = value_bitsize (val);
10761 }
10762
10763 if (just_location)
10764 {
10765 int ret;
10766
10767 exp_valid_block = NULL;
10768 val = value_addr (result);
10769 release_value (val);
10770 value_free_to_mark (mark);
10771
10772 if (use_mask)
10773 {
10774 ret = target_masked_watch_num_registers (value_as_address (val),
10775 mask);
10776 if (ret == -1)
10777 error (_("This target does not support masked watchpoints."));
10778 else if (ret == -2)
10779 error (_("Invalid mask or memory region."));
10780 }
10781 }
10782 else if (val != NULL)
10783 release_value (val);
10784
10785 tok = skip_spaces (arg);
10786 end_tok = skip_to_space (tok);
10787
10788 toklen = end_tok - tok;
10789 if (toklen >= 1 && strncmp (tok, "if", toklen) == 0)
10790 {
10791 innermost_block = NULL;
10792 tok = cond_start = end_tok + 1;
10793 parse_exp_1 (&tok, 0, 0, 0);
10794
10795 /* The watchpoint expression may not be local, but the condition
10796 may still be. E.g.: `watch global if local > 0'. */
10797 cond_exp_valid_block = innermost_block;
10798
10799 cond_end = tok;
10800 }
10801 if (*tok)
10802 error (_("Junk at end of command."));
10803
10804 frame_info *wp_frame = block_innermost_frame (exp_valid_block);
10805
10806 /* Save this because create_internal_breakpoint below invalidates
10807 'wp_frame'. */
10808 frame_id watchpoint_frame = get_frame_id (wp_frame);
10809
10810 /* If the expression is "local", then set up a "watchpoint scope"
10811 breakpoint at the point where we've left the scope of the watchpoint
10812 expression. Create the scope breakpoint before the watchpoint, so
10813 that we will encounter it first in bpstat_stop_status. */
10814 if (exp_valid_block != NULL && wp_frame != NULL)
10815 {
10816 frame_id caller_frame_id = frame_unwind_caller_id (wp_frame);
10817
10818 if (frame_id_p (caller_frame_id))
10819 {
10820 gdbarch *caller_arch = frame_unwind_caller_arch (wp_frame);
10821 CORE_ADDR caller_pc = frame_unwind_caller_pc (wp_frame);
10822
10823 scope_breakpoint
10824 = create_internal_breakpoint (caller_arch, caller_pc,
10825 bp_watchpoint_scope,
10826 &momentary_breakpoint_ops);
10827
10828 /* create_internal_breakpoint could invalidate WP_FRAME. */
10829 wp_frame = NULL;
10830
10831 scope_breakpoint->enable_state = bp_enabled;
10832
10833 /* Automatically delete the breakpoint when it hits. */
10834 scope_breakpoint->disposition = disp_del;
10835
10836 /* Only break in the proper frame (help with recursion). */
10837 scope_breakpoint->frame_id = caller_frame_id;
10838
10839 /* Set the address at which we will stop. */
10840 scope_breakpoint->loc->gdbarch = caller_arch;
10841 scope_breakpoint->loc->requested_address = caller_pc;
10842 scope_breakpoint->loc->address
10843 = adjust_breakpoint_address (scope_breakpoint->loc->gdbarch,
10844 scope_breakpoint->loc->requested_address,
10845 scope_breakpoint->type);
10846 }
10847 }
10848
10849 /* Now set up the breakpoint. We create all watchpoints as hardware
10850 watchpoints here even if hardware watchpoints are turned off, a call
10851 to update_watchpoint later in this function will cause the type to
10852 drop back to bp_watchpoint (software watchpoint) if required. */
10853
10854 if (accessflag == hw_read)
10855 bp_type = bp_read_watchpoint;
10856 else if (accessflag == hw_access)
10857 bp_type = bp_access_watchpoint;
10858 else
10859 bp_type = bp_hardware_watchpoint;
10860
10861 std::unique_ptr<watchpoint> w (new watchpoint ());
10862
10863 if (use_mask)
10864 init_raw_breakpoint_without_location (w.get (), NULL, bp_type,
10865 &masked_watchpoint_breakpoint_ops);
10866 else
10867 init_raw_breakpoint_without_location (w.get (), NULL, bp_type,
10868 &watchpoint_breakpoint_ops);
10869 w->thread = thread;
10870 w->disposition = disp_donttouch;
10871 w->pspace = current_program_space;
10872 w->exp = std::move (exp);
10873 w->exp_valid_block = exp_valid_block;
10874 w->cond_exp_valid_block = cond_exp_valid_block;
10875 if (just_location)
10876 {
10877 struct type *t = value_type (val);
10878 CORE_ADDR addr = value_as_address (val);
10879
10880 w->exp_string_reparse
10881 = current_language->la_watch_location_expression (t, addr).release ();
10882
10883 w->exp_string = xstrprintf ("-location %.*s",
10884 (int) (exp_end - exp_start), exp_start);
10885 }
10886 else
10887 w->exp_string = savestring (exp_start, exp_end - exp_start);
10888
10889 if (use_mask)
10890 {
10891 w->hw_wp_mask = mask;
10892 }
10893 else
10894 {
10895 w->val = val;
10896 w->val_bitpos = saved_bitpos;
10897 w->val_bitsize = saved_bitsize;
10898 w->val_valid = 1;
10899 }
10900
10901 if (cond_start)
10902 w->cond_string = savestring (cond_start, cond_end - cond_start);
10903 else
10904 w->cond_string = 0;
10905
10906 if (frame_id_p (watchpoint_frame))
10907 {
10908 w->watchpoint_frame = watchpoint_frame;
10909 w->watchpoint_thread = inferior_ptid;
10910 }
10911 else
10912 {
10913 w->watchpoint_frame = null_frame_id;
10914 w->watchpoint_thread = null_ptid;
10915 }
10916
10917 if (scope_breakpoint != NULL)
10918 {
10919 /* The scope breakpoint is related to the watchpoint. We will
10920 need to act on them together. */
10921 w->related_breakpoint = scope_breakpoint;
10922 scope_breakpoint->related_breakpoint = w.get ();
10923 }
10924
10925 if (!just_location)
10926 value_free_to_mark (mark);
10927
10928 /* Finally update the new watchpoint. This creates the locations
10929 that should be inserted. */
10930 update_watchpoint (w.get (), 1);
10931
10932 install_breakpoint (internal, std::move (w), 1);
10933 }
10934
10935 /* Return count of debug registers needed to watch the given expression.
10936 If the watchpoint cannot be handled in hardware return zero. */
10937
10938 static int
10939 can_use_hardware_watchpoint (struct value *v)
10940 {
10941 int found_memory_cnt = 0;
10942 struct value *head = v;
10943
10944 /* Did the user specifically forbid us to use hardware watchpoints? */
10945 if (!can_use_hw_watchpoints)
10946 return 0;
10947
10948 /* Make sure that the value of the expression depends only upon
10949 memory contents, and values computed from them within GDB. If we
10950 find any register references or function calls, we can't use a
10951 hardware watchpoint.
10952
10953 The idea here is that evaluating an expression generates a series
10954 of values, one holding the value of every subexpression. (The
10955 expression a*b+c has five subexpressions: a, b, a*b, c, and
10956 a*b+c.) GDB's values hold almost enough information to establish
10957 the criteria given above --- they identify memory lvalues,
10958 register lvalues, computed values, etcetera. So we can evaluate
10959 the expression, and then scan the chain of values that leaves
10960 behind to decide whether we can detect any possible change to the
10961 expression's final value using only hardware watchpoints.
10962
10963 However, I don't think that the values returned by inferior
10964 function calls are special in any way. So this function may not
10965 notice that an expression involving an inferior function call
10966 can't be watched with hardware watchpoints. FIXME. */
10967 for (; v; v = value_next (v))
10968 {
10969 if (VALUE_LVAL (v) == lval_memory)
10970 {
10971 if (v != head && value_lazy (v))
10972 /* A lazy memory lvalue in the chain is one that GDB never
10973 needed to fetch; we either just used its address (e.g.,
10974 `a' in `a.b') or we never needed it at all (e.g., `a'
10975 in `a,b'). This doesn't apply to HEAD; if that is
10976 lazy then it was not readable, but watch it anyway. */
10977 ;
10978 else
10979 {
10980 /* Ahh, memory we actually used! Check if we can cover
10981 it with hardware watchpoints. */
10982 struct type *vtype = check_typedef (value_type (v));
10983
10984 /* We only watch structs and arrays if user asked for it
10985 explicitly, never if they just happen to appear in a
10986 middle of some value chain. */
10987 if (v == head
10988 || (TYPE_CODE (vtype) != TYPE_CODE_STRUCT
10989 && TYPE_CODE (vtype) != TYPE_CODE_ARRAY))
10990 {
10991 CORE_ADDR vaddr = value_address (v);
10992 int len;
10993 int num_regs;
10994
10995 len = (target_exact_watchpoints
10996 && is_scalar_type_recursive (vtype))?
10997 1 : TYPE_LENGTH (value_type (v));
10998
10999 num_regs = target_region_ok_for_hw_watchpoint (vaddr, len);
11000 if (!num_regs)
11001 return 0;
11002 else
11003 found_memory_cnt += num_regs;
11004 }
11005 }
11006 }
11007 else if (VALUE_LVAL (v) != not_lval
11008 && deprecated_value_modifiable (v) == 0)
11009 return 0; /* These are values from the history (e.g., $1). */
11010 else if (VALUE_LVAL (v) == lval_register)
11011 return 0; /* Cannot watch a register with a HW watchpoint. */
11012 }
11013
11014 /* The expression itself looks suitable for using a hardware
11015 watchpoint, but give the target machine a chance to reject it. */
11016 return found_memory_cnt;
11017 }
11018
11019 void
11020 watch_command_wrapper (const char *arg, int from_tty, int internal)
11021 {
11022 watch_command_1 (arg, hw_write, from_tty, 0, internal);
11023 }
11024
11025 /* A helper function that looks for the "-location" argument and then
11026 calls watch_command_1. */
11027
11028 static void
11029 watch_maybe_just_location (const char *arg, int accessflag, int from_tty)
11030 {
11031 int just_location = 0;
11032
11033 if (arg
11034 && (check_for_argument (&arg, "-location", sizeof ("-location") - 1)
11035 || check_for_argument (&arg, "-l", sizeof ("-l") - 1)))
11036 {
11037 arg = skip_spaces (arg);
11038 just_location = 1;
11039 }
11040
11041 watch_command_1 (arg, accessflag, from_tty, just_location, 0);
11042 }
11043
11044 static void
11045 watch_command (const char *arg, int from_tty)
11046 {
11047 watch_maybe_just_location (arg, hw_write, from_tty);
11048 }
11049
11050 void
11051 rwatch_command_wrapper (const char *arg, int from_tty, int internal)
11052 {
11053 watch_command_1 (arg, hw_read, from_tty, 0, internal);
11054 }
11055
11056 static void
11057 rwatch_command (const char *arg, int from_tty)
11058 {
11059 watch_maybe_just_location (arg, hw_read, from_tty);
11060 }
11061
11062 void
11063 awatch_command_wrapper (const char *arg, int from_tty, int internal)
11064 {
11065 watch_command_1 (arg, hw_access, from_tty, 0, internal);
11066 }
11067
11068 static void
11069 awatch_command (const char *arg, int from_tty)
11070 {
11071 watch_maybe_just_location (arg, hw_access, from_tty);
11072 }
11073 \f
11074
11075 /* Data for the FSM that manages the until(location)/advance commands
11076 in infcmd.c. Here because it uses the mechanisms of
11077 breakpoints. */
11078
11079 struct until_break_fsm
11080 {
11081 /* The base class. */
11082 struct thread_fsm thread_fsm;
11083
11084 /* The thread that as current when the command was executed. */
11085 int thread;
11086
11087 /* The breakpoint set at the destination location. */
11088 struct breakpoint *location_breakpoint;
11089
11090 /* Breakpoint set at the return address in the caller frame. May be
11091 NULL. */
11092 struct breakpoint *caller_breakpoint;
11093 };
11094
11095 static void until_break_fsm_clean_up (struct thread_fsm *self,
11096 struct thread_info *thread);
11097 static int until_break_fsm_should_stop (struct thread_fsm *self,
11098 struct thread_info *thread);
11099 static enum async_reply_reason
11100 until_break_fsm_async_reply_reason (struct thread_fsm *self);
11101
11102 /* until_break_fsm's vtable. */
11103
11104 static struct thread_fsm_ops until_break_fsm_ops =
11105 {
11106 NULL, /* dtor */
11107 until_break_fsm_clean_up,
11108 until_break_fsm_should_stop,
11109 NULL, /* return_value */
11110 until_break_fsm_async_reply_reason,
11111 };
11112
11113 /* Allocate a new until_break_command_fsm. */
11114
11115 static struct until_break_fsm *
11116 new_until_break_fsm (struct interp *cmd_interp, int thread,
11117 breakpoint_up &&location_breakpoint,
11118 breakpoint_up &&caller_breakpoint)
11119 {
11120 struct until_break_fsm *sm;
11121
11122 sm = XCNEW (struct until_break_fsm);
11123 thread_fsm_ctor (&sm->thread_fsm, &until_break_fsm_ops, cmd_interp);
11124
11125 sm->thread = thread;
11126 sm->location_breakpoint = location_breakpoint.release ();
11127 sm->caller_breakpoint = caller_breakpoint.release ();
11128
11129 return sm;
11130 }
11131
11132 /* Implementation of the 'should_stop' FSM method for the
11133 until(location)/advance commands. */
11134
11135 static int
11136 until_break_fsm_should_stop (struct thread_fsm *self,
11137 struct thread_info *tp)
11138 {
11139 struct until_break_fsm *sm = (struct until_break_fsm *) self;
11140
11141 if (bpstat_find_breakpoint (tp->control.stop_bpstat,
11142 sm->location_breakpoint) != NULL
11143 || (sm->caller_breakpoint != NULL
11144 && bpstat_find_breakpoint (tp->control.stop_bpstat,
11145 sm->caller_breakpoint) != NULL))
11146 thread_fsm_set_finished (self);
11147
11148 return 1;
11149 }
11150
11151 /* Implementation of the 'clean_up' FSM method for the
11152 until(location)/advance commands. */
11153
11154 static void
11155 until_break_fsm_clean_up (struct thread_fsm *self,
11156 struct thread_info *thread)
11157 {
11158 struct until_break_fsm *sm = (struct until_break_fsm *) self;
11159
11160 /* Clean up our temporary breakpoints. */
11161 if (sm->location_breakpoint != NULL)
11162 {
11163 delete_breakpoint (sm->location_breakpoint);
11164 sm->location_breakpoint = NULL;
11165 }
11166 if (sm->caller_breakpoint != NULL)
11167 {
11168 delete_breakpoint (sm->caller_breakpoint);
11169 sm->caller_breakpoint = NULL;
11170 }
11171 delete_longjmp_breakpoint (sm->thread);
11172 }
11173
11174 /* Implementation of the 'async_reply_reason' FSM method for the
11175 until(location)/advance commands. */
11176
11177 static enum async_reply_reason
11178 until_break_fsm_async_reply_reason (struct thread_fsm *self)
11179 {
11180 return EXEC_ASYNC_LOCATION_REACHED;
11181 }
11182
11183 void
11184 until_break_command (const char *arg, int from_tty, int anywhere)
11185 {
11186 struct frame_info *frame;
11187 struct gdbarch *frame_gdbarch;
11188 struct frame_id stack_frame_id;
11189 struct frame_id caller_frame_id;
11190 struct cleanup *old_chain;
11191 int thread;
11192 struct thread_info *tp;
11193 struct until_break_fsm *sm;
11194
11195 clear_proceed_status (0);
11196
11197 /* Set a breakpoint where the user wants it and at return from
11198 this function. */
11199
11200 event_location_up location = string_to_event_location (&arg, current_language);
11201
11202 std::vector<symtab_and_line> sals
11203 = (last_displayed_sal_is_valid ()
11204 ? decode_line_1 (location.get (), DECODE_LINE_FUNFIRSTLINE, NULL,
11205 get_last_displayed_symtab (),
11206 get_last_displayed_line ())
11207 : decode_line_1 (location.get (), DECODE_LINE_FUNFIRSTLINE,
11208 NULL, (struct symtab *) NULL, 0));
11209
11210 if (sals.size () != 1)
11211 error (_("Couldn't get information on specified line."));
11212
11213 symtab_and_line &sal = sals[0];
11214
11215 if (*arg)
11216 error (_("Junk at end of arguments."));
11217
11218 resolve_sal_pc (&sal);
11219
11220 tp = inferior_thread ();
11221 thread = tp->global_num;
11222
11223 old_chain = make_cleanup (null_cleanup, NULL);
11224
11225 /* Note linespec handling above invalidates the frame chain.
11226 Installing a breakpoint also invalidates the frame chain (as it
11227 may need to switch threads), so do any frame handling before
11228 that. */
11229
11230 frame = get_selected_frame (NULL);
11231 frame_gdbarch = get_frame_arch (frame);
11232 stack_frame_id = get_stack_frame_id (frame);
11233 caller_frame_id = frame_unwind_caller_id (frame);
11234
11235 /* Keep within the current frame, or in frames called by the current
11236 one. */
11237
11238 breakpoint_up caller_breakpoint;
11239 if (frame_id_p (caller_frame_id))
11240 {
11241 struct symtab_and_line sal2;
11242 struct gdbarch *caller_gdbarch;
11243
11244 sal2 = find_pc_line (frame_unwind_caller_pc (frame), 0);
11245 sal2.pc = frame_unwind_caller_pc (frame);
11246 caller_gdbarch = frame_unwind_caller_arch (frame);
11247 caller_breakpoint = set_momentary_breakpoint (caller_gdbarch,
11248 sal2,
11249 caller_frame_id,
11250 bp_until);
11251
11252 set_longjmp_breakpoint (tp, caller_frame_id);
11253 make_cleanup (delete_longjmp_breakpoint_cleanup, &thread);
11254 }
11255
11256 /* set_momentary_breakpoint could invalidate FRAME. */
11257 frame = NULL;
11258
11259 breakpoint_up location_breakpoint;
11260 if (anywhere)
11261 /* If the user told us to continue until a specified location,
11262 we don't specify a frame at which we need to stop. */
11263 location_breakpoint = set_momentary_breakpoint (frame_gdbarch, sal,
11264 null_frame_id, bp_until);
11265 else
11266 /* Otherwise, specify the selected frame, because we want to stop
11267 only at the very same frame. */
11268 location_breakpoint = set_momentary_breakpoint (frame_gdbarch, sal,
11269 stack_frame_id, bp_until);
11270
11271 sm = new_until_break_fsm (command_interp (), tp->global_num,
11272 std::move (location_breakpoint),
11273 std::move (caller_breakpoint));
11274 tp->thread_fsm = &sm->thread_fsm;
11275
11276 discard_cleanups (old_chain);
11277
11278 proceed (-1, GDB_SIGNAL_DEFAULT);
11279 }
11280
11281 /* This function attempts to parse an optional "if <cond>" clause
11282 from the arg string. If one is not found, it returns NULL.
11283
11284 Else, it returns a pointer to the condition string. (It does not
11285 attempt to evaluate the string against a particular block.) And,
11286 it updates arg to point to the first character following the parsed
11287 if clause in the arg string. */
11288
11289 const char *
11290 ep_parse_optional_if_clause (const char **arg)
11291 {
11292 const char *cond_string;
11293
11294 if (((*arg)[0] != 'i') || ((*arg)[1] != 'f') || !isspace ((*arg)[2]))
11295 return NULL;
11296
11297 /* Skip the "if" keyword. */
11298 (*arg) += 2;
11299
11300 /* Skip any extra leading whitespace, and record the start of the
11301 condition string. */
11302 *arg = skip_spaces (*arg);
11303 cond_string = *arg;
11304
11305 /* Assume that the condition occupies the remainder of the arg
11306 string. */
11307 (*arg) += strlen (cond_string);
11308
11309 return cond_string;
11310 }
11311
11312 /* Commands to deal with catching events, such as signals, exceptions,
11313 process start/exit, etc. */
11314
11315 typedef enum
11316 {
11317 catch_fork_temporary, catch_vfork_temporary,
11318 catch_fork_permanent, catch_vfork_permanent
11319 }
11320 catch_fork_kind;
11321
11322 static void
11323 catch_fork_command_1 (const char *arg, int from_tty,
11324 struct cmd_list_element *command)
11325 {
11326 struct gdbarch *gdbarch = get_current_arch ();
11327 const char *cond_string = NULL;
11328 catch_fork_kind fork_kind;
11329 int tempflag;
11330
11331 fork_kind = (catch_fork_kind) (uintptr_t) get_cmd_context (command);
11332 tempflag = (fork_kind == catch_fork_temporary
11333 || fork_kind == catch_vfork_temporary);
11334
11335 if (!arg)
11336 arg = "";
11337 arg = skip_spaces (arg);
11338
11339 /* The allowed syntax is:
11340 catch [v]fork
11341 catch [v]fork if <cond>
11342
11343 First, check if there's an if clause. */
11344 cond_string = ep_parse_optional_if_clause (&arg);
11345
11346 if ((*arg != '\0') && !isspace (*arg))
11347 error (_("Junk at end of arguments."));
11348
11349 /* If this target supports it, create a fork or vfork catchpoint
11350 and enable reporting of such events. */
11351 switch (fork_kind)
11352 {
11353 case catch_fork_temporary:
11354 case catch_fork_permanent:
11355 create_fork_vfork_event_catchpoint (gdbarch, tempflag, cond_string,
11356 &catch_fork_breakpoint_ops);
11357 break;
11358 case catch_vfork_temporary:
11359 case catch_vfork_permanent:
11360 create_fork_vfork_event_catchpoint (gdbarch, tempflag, cond_string,
11361 &catch_vfork_breakpoint_ops);
11362 break;
11363 default:
11364 error (_("unsupported or unknown fork kind; cannot catch it"));
11365 break;
11366 }
11367 }
11368
11369 static void
11370 catch_exec_command_1 (const char *arg, int from_tty,
11371 struct cmd_list_element *command)
11372 {
11373 struct gdbarch *gdbarch = get_current_arch ();
11374 int tempflag;
11375 const char *cond_string = NULL;
11376
11377 tempflag = get_cmd_context (command) == CATCH_TEMPORARY;
11378
11379 if (!arg)
11380 arg = "";
11381 arg = skip_spaces (arg);
11382
11383 /* The allowed syntax is:
11384 catch exec
11385 catch exec if <cond>
11386
11387 First, check if there's an if clause. */
11388 cond_string = ep_parse_optional_if_clause (&arg);
11389
11390 if ((*arg != '\0') && !isspace (*arg))
11391 error (_("Junk at end of arguments."));
11392
11393 std::unique_ptr<exec_catchpoint> c (new exec_catchpoint ());
11394 init_catchpoint (c.get (), gdbarch, tempflag, cond_string,
11395 &catch_exec_breakpoint_ops);
11396 c->exec_pathname = NULL;
11397
11398 install_breakpoint (0, std::move (c), 1);
11399 }
11400
11401 void
11402 init_ada_exception_breakpoint (struct breakpoint *b,
11403 struct gdbarch *gdbarch,
11404 struct symtab_and_line sal,
11405 const char *addr_string,
11406 const struct breakpoint_ops *ops,
11407 int tempflag,
11408 int enabled,
11409 int from_tty)
11410 {
11411 if (from_tty)
11412 {
11413 struct gdbarch *loc_gdbarch = get_sal_arch (sal);
11414 if (!loc_gdbarch)
11415 loc_gdbarch = gdbarch;
11416
11417 describe_other_breakpoints (loc_gdbarch,
11418 sal.pspace, sal.pc, sal.section, -1);
11419 /* FIXME: brobecker/2006-12-28: Actually, re-implement a special
11420 version for exception catchpoints, because two catchpoints
11421 used for different exception names will use the same address.
11422 In this case, a "breakpoint ... also set at..." warning is
11423 unproductive. Besides, the warning phrasing is also a bit
11424 inappropriate, we should use the word catchpoint, and tell
11425 the user what type of catchpoint it is. The above is good
11426 enough for now, though. */
11427 }
11428
11429 init_raw_breakpoint (b, gdbarch, sal, bp_breakpoint, ops);
11430
11431 b->enable_state = enabled ? bp_enabled : bp_disabled;
11432 b->disposition = tempflag ? disp_del : disp_donttouch;
11433 b->location = string_to_event_location (&addr_string,
11434 language_def (language_ada));
11435 b->language = language_ada;
11436 }
11437
11438 static void
11439 catch_command (const char *arg, int from_tty)
11440 {
11441 error (_("Catch requires an event name."));
11442 }
11443 \f
11444
11445 static void
11446 tcatch_command (const char *arg, int from_tty)
11447 {
11448 error (_("Catch requires an event name."));
11449 }
11450
11451 /* Compare two breakpoints and return a strcmp-like result. */
11452
11453 static int
11454 compare_breakpoints (const breakpoint *a, const breakpoint *b)
11455 {
11456 uintptr_t ua = (uintptr_t) a;
11457 uintptr_t ub = (uintptr_t) b;
11458
11459 if (a->number < b->number)
11460 return -1;
11461 else if (a->number > b->number)
11462 return 1;
11463
11464 /* Now sort by address, in case we see, e..g, two breakpoints with
11465 the number 0. */
11466 if (ua < ub)
11467 return -1;
11468 return ua > ub ? 1 : 0;
11469 }
11470
11471 /* Delete breakpoints by address or line. */
11472
11473 static void
11474 clear_command (const char *arg, int from_tty)
11475 {
11476 struct breakpoint *b;
11477 int default_match;
11478
11479 std::vector<symtab_and_line> decoded_sals;
11480 symtab_and_line last_sal;
11481 gdb::array_view<symtab_and_line> sals;
11482 if (arg)
11483 {
11484 decoded_sals
11485 = decode_line_with_current_source (arg,
11486 (DECODE_LINE_FUNFIRSTLINE
11487 | DECODE_LINE_LIST_MODE));
11488 default_match = 0;
11489 sals = decoded_sals;
11490 }
11491 else
11492 {
11493 /* Set sal's line, symtab, pc, and pspace to the values
11494 corresponding to the last call to print_frame_info. If the
11495 codepoint is not valid, this will set all the fields to 0. */
11496 last_sal = get_last_displayed_sal ();
11497 if (last_sal.symtab == 0)
11498 error (_("No source file specified."));
11499
11500 default_match = 1;
11501 sals = last_sal;
11502 }
11503
11504 /* We don't call resolve_sal_pc here. That's not as bad as it
11505 seems, because all existing breakpoints typically have both
11506 file/line and pc set. So, if clear is given file/line, we can
11507 match this to existing breakpoint without obtaining pc at all.
11508
11509 We only support clearing given the address explicitly
11510 present in breakpoint table. Say, we've set breakpoint
11511 at file:line. There were several PC values for that file:line,
11512 due to optimization, all in one block.
11513
11514 We've picked one PC value. If "clear" is issued with another
11515 PC corresponding to the same file:line, the breakpoint won't
11516 be cleared. We probably can still clear the breakpoint, but
11517 since the other PC value is never presented to user, user
11518 can only find it by guessing, and it does not seem important
11519 to support that. */
11520
11521 /* For each line spec given, delete bps which correspond to it. Do
11522 it in two passes, solely to preserve the current behavior that
11523 from_tty is forced true if we delete more than one
11524 breakpoint. */
11525
11526 std::vector<struct breakpoint *> found;
11527 for (const auto &sal : sals)
11528 {
11529 const char *sal_fullname;
11530
11531 /* If exact pc given, clear bpts at that pc.
11532 If line given (pc == 0), clear all bpts on specified line.
11533 If defaulting, clear all bpts on default line
11534 or at default pc.
11535
11536 defaulting sal.pc != 0 tests to do
11537
11538 0 1 pc
11539 1 1 pc _and_ line
11540 0 0 line
11541 1 0 <can't happen> */
11542
11543 sal_fullname = (sal.symtab == NULL
11544 ? NULL : symtab_to_fullname (sal.symtab));
11545
11546 /* Find all matching breakpoints and add them to 'found'. */
11547 ALL_BREAKPOINTS (b)
11548 {
11549 int match = 0;
11550 /* Are we going to delete b? */
11551 if (b->type != bp_none && !is_watchpoint (b))
11552 {
11553 struct bp_location *loc = b->loc;
11554 for (; loc; loc = loc->next)
11555 {
11556 /* If the user specified file:line, don't allow a PC
11557 match. This matches historical gdb behavior. */
11558 int pc_match = (!sal.explicit_line
11559 && sal.pc
11560 && (loc->pspace == sal.pspace)
11561 && (loc->address == sal.pc)
11562 && (!section_is_overlay (loc->section)
11563 || loc->section == sal.section));
11564 int line_match = 0;
11565
11566 if ((default_match || sal.explicit_line)
11567 && loc->symtab != NULL
11568 && sal_fullname != NULL
11569 && sal.pspace == loc->pspace
11570 && loc->line_number == sal.line
11571 && filename_cmp (symtab_to_fullname (loc->symtab),
11572 sal_fullname) == 0)
11573 line_match = 1;
11574
11575 if (pc_match || line_match)
11576 {
11577 match = 1;
11578 break;
11579 }
11580 }
11581 }
11582
11583 if (match)
11584 found.push_back (b);
11585 }
11586 }
11587
11588 /* Now go thru the 'found' chain and delete them. */
11589 if (found.empty ())
11590 {
11591 if (arg)
11592 error (_("No breakpoint at %s."), arg);
11593 else
11594 error (_("No breakpoint at this line."));
11595 }
11596
11597 /* Remove duplicates from the vec. */
11598 std::sort (found.begin (), found.end (),
11599 [] (const breakpoint *a, const breakpoint *b)
11600 {
11601 return compare_breakpoints (a, b) < 0;
11602 });
11603 found.erase (std::unique (found.begin (), found.end (),
11604 [] (const breakpoint *a, const breakpoint *b)
11605 {
11606 return compare_breakpoints (a, b) == 0;
11607 }),
11608 found.end ());
11609
11610 if (found.size () > 1)
11611 from_tty = 1; /* Always report if deleted more than one. */
11612 if (from_tty)
11613 {
11614 if (found.size () == 1)
11615 printf_unfiltered (_("Deleted breakpoint "));
11616 else
11617 printf_unfiltered (_("Deleted breakpoints "));
11618 }
11619
11620 for (breakpoint *iter : found)
11621 {
11622 if (from_tty)
11623 printf_unfiltered ("%d ", iter->number);
11624 delete_breakpoint (iter);
11625 }
11626 if (from_tty)
11627 putchar_unfiltered ('\n');
11628 }
11629 \f
11630 /* Delete breakpoint in BS if they are `delete' breakpoints and
11631 all breakpoints that are marked for deletion, whether hit or not.
11632 This is called after any breakpoint is hit, or after errors. */
11633
11634 void
11635 breakpoint_auto_delete (bpstat bs)
11636 {
11637 struct breakpoint *b, *b_tmp;
11638
11639 for (; bs; bs = bs->next)
11640 if (bs->breakpoint_at
11641 && bs->breakpoint_at->disposition == disp_del
11642 && bs->stop)
11643 delete_breakpoint (bs->breakpoint_at);
11644
11645 ALL_BREAKPOINTS_SAFE (b, b_tmp)
11646 {
11647 if (b->disposition == disp_del_at_next_stop)
11648 delete_breakpoint (b);
11649 }
11650 }
11651
11652 /* A comparison function for bp_location AP and BP being interfaced to
11653 qsort. Sort elements primarily by their ADDRESS (no matter what
11654 does breakpoint_address_is_meaningful say for its OWNER),
11655 secondarily by ordering first permanent elements and
11656 terciarily just ensuring the array is sorted stable way despite
11657 qsort being an unstable algorithm. */
11658
11659 static int
11660 bp_locations_compare (const void *ap, const void *bp)
11661 {
11662 const struct bp_location *a = *(const struct bp_location **) ap;
11663 const struct bp_location *b = *(const struct bp_location **) bp;
11664
11665 if (a->address != b->address)
11666 return (a->address > b->address) - (a->address < b->address);
11667
11668 /* Sort locations at the same address by their pspace number, keeping
11669 locations of the same inferior (in a multi-inferior environment)
11670 grouped. */
11671
11672 if (a->pspace->num != b->pspace->num)
11673 return ((a->pspace->num > b->pspace->num)
11674 - (a->pspace->num < b->pspace->num));
11675
11676 /* Sort permanent breakpoints first. */
11677 if (a->permanent != b->permanent)
11678 return (a->permanent < b->permanent) - (a->permanent > b->permanent);
11679
11680 /* Make the internal GDB representation stable across GDB runs
11681 where A and B memory inside GDB can differ. Breakpoint locations of
11682 the same type at the same address can be sorted in arbitrary order. */
11683
11684 if (a->owner->number != b->owner->number)
11685 return ((a->owner->number > b->owner->number)
11686 - (a->owner->number < b->owner->number));
11687
11688 return (a > b) - (a < b);
11689 }
11690
11691 /* Set bp_locations_placed_address_before_address_max and
11692 bp_locations_shadow_len_after_address_max according to the current
11693 content of the bp_locations array. */
11694
11695 static void
11696 bp_locations_target_extensions_update (void)
11697 {
11698 struct bp_location *bl, **blp_tmp;
11699
11700 bp_locations_placed_address_before_address_max = 0;
11701 bp_locations_shadow_len_after_address_max = 0;
11702
11703 ALL_BP_LOCATIONS (bl, blp_tmp)
11704 {
11705 CORE_ADDR start, end, addr;
11706
11707 if (!bp_location_has_shadow (bl))
11708 continue;
11709
11710 start = bl->target_info.placed_address;
11711 end = start + bl->target_info.shadow_len;
11712
11713 gdb_assert (bl->address >= start);
11714 addr = bl->address - start;
11715 if (addr > bp_locations_placed_address_before_address_max)
11716 bp_locations_placed_address_before_address_max = addr;
11717
11718 /* Zero SHADOW_LEN would not pass bp_location_has_shadow. */
11719
11720 gdb_assert (bl->address < end);
11721 addr = end - bl->address;
11722 if (addr > bp_locations_shadow_len_after_address_max)
11723 bp_locations_shadow_len_after_address_max = addr;
11724 }
11725 }
11726
11727 /* Download tracepoint locations if they haven't been. */
11728
11729 static void
11730 download_tracepoint_locations (void)
11731 {
11732 struct breakpoint *b;
11733 enum tribool can_download_tracepoint = TRIBOOL_UNKNOWN;
11734
11735 scoped_restore_current_pspace_and_thread restore_pspace_thread;
11736
11737 ALL_TRACEPOINTS (b)
11738 {
11739 struct bp_location *bl;
11740 struct tracepoint *t;
11741 int bp_location_downloaded = 0;
11742
11743 if ((b->type == bp_fast_tracepoint
11744 ? !may_insert_fast_tracepoints
11745 : !may_insert_tracepoints))
11746 continue;
11747
11748 if (can_download_tracepoint == TRIBOOL_UNKNOWN)
11749 {
11750 if (target_can_download_tracepoint ())
11751 can_download_tracepoint = TRIBOOL_TRUE;
11752 else
11753 can_download_tracepoint = TRIBOOL_FALSE;
11754 }
11755
11756 if (can_download_tracepoint == TRIBOOL_FALSE)
11757 break;
11758
11759 for (bl = b->loc; bl; bl = bl->next)
11760 {
11761 /* In tracepoint, locations are _never_ duplicated, so
11762 should_be_inserted is equivalent to
11763 unduplicated_should_be_inserted. */
11764 if (!should_be_inserted (bl) || bl->inserted)
11765 continue;
11766
11767 switch_to_program_space_and_thread (bl->pspace);
11768
11769 target_download_tracepoint (bl);
11770
11771 bl->inserted = 1;
11772 bp_location_downloaded = 1;
11773 }
11774 t = (struct tracepoint *) b;
11775 t->number_on_target = b->number;
11776 if (bp_location_downloaded)
11777 observer_notify_breakpoint_modified (b);
11778 }
11779 }
11780
11781 /* Swap the insertion/duplication state between two locations. */
11782
11783 static void
11784 swap_insertion (struct bp_location *left, struct bp_location *right)
11785 {
11786 const int left_inserted = left->inserted;
11787 const int left_duplicate = left->duplicate;
11788 const int left_needs_update = left->needs_update;
11789 const struct bp_target_info left_target_info = left->target_info;
11790
11791 /* Locations of tracepoints can never be duplicated. */
11792 if (is_tracepoint (left->owner))
11793 gdb_assert (!left->duplicate);
11794 if (is_tracepoint (right->owner))
11795 gdb_assert (!right->duplicate);
11796
11797 left->inserted = right->inserted;
11798 left->duplicate = right->duplicate;
11799 left->needs_update = right->needs_update;
11800 left->target_info = right->target_info;
11801 right->inserted = left_inserted;
11802 right->duplicate = left_duplicate;
11803 right->needs_update = left_needs_update;
11804 right->target_info = left_target_info;
11805 }
11806
11807 /* Force the re-insertion of the locations at ADDRESS. This is called
11808 once a new/deleted/modified duplicate location is found and we are evaluating
11809 conditions on the target's side. Such conditions need to be updated on
11810 the target. */
11811
11812 static void
11813 force_breakpoint_reinsertion (struct bp_location *bl)
11814 {
11815 struct bp_location **locp = NULL, **loc2p;
11816 struct bp_location *loc;
11817 CORE_ADDR address = 0;
11818 int pspace_num;
11819
11820 address = bl->address;
11821 pspace_num = bl->pspace->num;
11822
11823 /* This is only meaningful if the target is
11824 evaluating conditions and if the user has
11825 opted for condition evaluation on the target's
11826 side. */
11827 if (gdb_evaluates_breakpoint_condition_p ()
11828 || !target_supports_evaluation_of_breakpoint_conditions ())
11829 return;
11830
11831 /* Flag all breakpoint locations with this address and
11832 the same program space as the location
11833 as "its condition has changed". We need to
11834 update the conditions on the target's side. */
11835 ALL_BP_LOCATIONS_AT_ADDR (loc2p, locp, address)
11836 {
11837 loc = *loc2p;
11838
11839 if (!is_breakpoint (loc->owner)
11840 || pspace_num != loc->pspace->num)
11841 continue;
11842
11843 /* Flag the location appropriately. We use a different state to
11844 let everyone know that we already updated the set of locations
11845 with addr bl->address and program space bl->pspace. This is so
11846 we don't have to keep calling these functions just to mark locations
11847 that have already been marked. */
11848 loc->condition_changed = condition_updated;
11849
11850 /* Free the agent expression bytecode as well. We will compute
11851 it later on. */
11852 loc->cond_bytecode.reset ();
11853 }
11854 }
11855 /* Called whether new breakpoints are created, or existing breakpoints
11856 deleted, to update the global location list and recompute which
11857 locations are duplicate of which.
11858
11859 The INSERT_MODE flag determines whether locations may not, may, or
11860 shall be inserted now. See 'enum ugll_insert_mode' for more
11861 info. */
11862
11863 static void
11864 update_global_location_list (enum ugll_insert_mode insert_mode)
11865 {
11866 struct breakpoint *b;
11867 struct bp_location **locp, *loc;
11868 /* Last breakpoint location address that was marked for update. */
11869 CORE_ADDR last_addr = 0;
11870 /* Last breakpoint location program space that was marked for update. */
11871 int last_pspace_num = -1;
11872
11873 /* Used in the duplicates detection below. When iterating over all
11874 bp_locations, points to the first bp_location of a given address.
11875 Breakpoints and watchpoints of different types are never
11876 duplicates of each other. Keep one pointer for each type of
11877 breakpoint/watchpoint, so we only need to loop over all locations
11878 once. */
11879 struct bp_location *bp_loc_first; /* breakpoint */
11880 struct bp_location *wp_loc_first; /* hardware watchpoint */
11881 struct bp_location *awp_loc_first; /* access watchpoint */
11882 struct bp_location *rwp_loc_first; /* read watchpoint */
11883
11884 /* Saved former bp_locations array which we compare against the newly
11885 built bp_locations from the current state of ALL_BREAKPOINTS. */
11886 struct bp_location **old_locp;
11887 unsigned old_locations_count;
11888 gdb::unique_xmalloc_ptr<struct bp_location *> old_locations (bp_locations);
11889
11890 old_locations_count = bp_locations_count;
11891 bp_locations = NULL;
11892 bp_locations_count = 0;
11893
11894 ALL_BREAKPOINTS (b)
11895 for (loc = b->loc; loc; loc = loc->next)
11896 bp_locations_count++;
11897
11898 bp_locations = XNEWVEC (struct bp_location *, bp_locations_count);
11899 locp = bp_locations;
11900 ALL_BREAKPOINTS (b)
11901 for (loc = b->loc; loc; loc = loc->next)
11902 *locp++ = loc;
11903 qsort (bp_locations, bp_locations_count, sizeof (*bp_locations),
11904 bp_locations_compare);
11905
11906 bp_locations_target_extensions_update ();
11907
11908 /* Identify bp_location instances that are no longer present in the
11909 new list, and therefore should be freed. Note that it's not
11910 necessary that those locations should be removed from inferior --
11911 if there's another location at the same address (previously
11912 marked as duplicate), we don't need to remove/insert the
11913 location.
11914
11915 LOCP is kept in sync with OLD_LOCP, each pointing to the current
11916 and former bp_location array state respectively. */
11917
11918 locp = bp_locations;
11919 for (old_locp = old_locations.get ();
11920 old_locp < old_locations.get () + old_locations_count;
11921 old_locp++)
11922 {
11923 struct bp_location *old_loc = *old_locp;
11924 struct bp_location **loc2p;
11925
11926 /* Tells if 'old_loc' is found among the new locations. If
11927 not, we have to free it. */
11928 int found_object = 0;
11929 /* Tells if the location should remain inserted in the target. */
11930 int keep_in_target = 0;
11931 int removed = 0;
11932
11933 /* Skip LOCP entries which will definitely never be needed.
11934 Stop either at or being the one matching OLD_LOC. */
11935 while (locp < bp_locations + bp_locations_count
11936 && (*locp)->address < old_loc->address)
11937 locp++;
11938
11939 for (loc2p = locp;
11940 (loc2p < bp_locations + bp_locations_count
11941 && (*loc2p)->address == old_loc->address);
11942 loc2p++)
11943 {
11944 /* Check if this is a new/duplicated location or a duplicated
11945 location that had its condition modified. If so, we want to send
11946 its condition to the target if evaluation of conditions is taking
11947 place there. */
11948 if ((*loc2p)->condition_changed == condition_modified
11949 && (last_addr != old_loc->address
11950 || last_pspace_num != old_loc->pspace->num))
11951 {
11952 force_breakpoint_reinsertion (*loc2p);
11953 last_pspace_num = old_loc->pspace->num;
11954 }
11955
11956 if (*loc2p == old_loc)
11957 found_object = 1;
11958 }
11959
11960 /* We have already handled this address, update it so that we don't
11961 have to go through updates again. */
11962 last_addr = old_loc->address;
11963
11964 /* Target-side condition evaluation: Handle deleted locations. */
11965 if (!found_object)
11966 force_breakpoint_reinsertion (old_loc);
11967
11968 /* If this location is no longer present, and inserted, look if
11969 there's maybe a new location at the same address. If so,
11970 mark that one inserted, and don't remove this one. This is
11971 needed so that we don't have a time window where a breakpoint
11972 at certain location is not inserted. */
11973
11974 if (old_loc->inserted)
11975 {
11976 /* If the location is inserted now, we might have to remove
11977 it. */
11978
11979 if (found_object && should_be_inserted (old_loc))
11980 {
11981 /* The location is still present in the location list,
11982 and still should be inserted. Don't do anything. */
11983 keep_in_target = 1;
11984 }
11985 else
11986 {
11987 /* This location still exists, but it won't be kept in the
11988 target since it may have been disabled. We proceed to
11989 remove its target-side condition. */
11990
11991 /* The location is either no longer present, or got
11992 disabled. See if there's another location at the
11993 same address, in which case we don't need to remove
11994 this one from the target. */
11995
11996 /* OLD_LOC comes from existing struct breakpoint. */
11997 if (breakpoint_address_is_meaningful (old_loc->owner))
11998 {
11999 for (loc2p = locp;
12000 (loc2p < bp_locations + bp_locations_count
12001 && (*loc2p)->address == old_loc->address);
12002 loc2p++)
12003 {
12004 struct bp_location *loc2 = *loc2p;
12005
12006 if (breakpoint_locations_match (loc2, old_loc))
12007 {
12008 /* Read watchpoint locations are switched to
12009 access watchpoints, if the former are not
12010 supported, but the latter are. */
12011 if (is_hardware_watchpoint (old_loc->owner))
12012 {
12013 gdb_assert (is_hardware_watchpoint (loc2->owner));
12014 loc2->watchpoint_type = old_loc->watchpoint_type;
12015 }
12016
12017 /* loc2 is a duplicated location. We need to check
12018 if it should be inserted in case it will be
12019 unduplicated. */
12020 if (loc2 != old_loc
12021 && unduplicated_should_be_inserted (loc2))
12022 {
12023 swap_insertion (old_loc, loc2);
12024 keep_in_target = 1;
12025 break;
12026 }
12027 }
12028 }
12029 }
12030 }
12031
12032 if (!keep_in_target)
12033 {
12034 if (remove_breakpoint (old_loc))
12035 {
12036 /* This is just about all we can do. We could keep
12037 this location on the global list, and try to
12038 remove it next time, but there's no particular
12039 reason why we will succeed next time.
12040
12041 Note that at this point, old_loc->owner is still
12042 valid, as delete_breakpoint frees the breakpoint
12043 only after calling us. */
12044 printf_filtered (_("warning: Error removing "
12045 "breakpoint %d\n"),
12046 old_loc->owner->number);
12047 }
12048 removed = 1;
12049 }
12050 }
12051
12052 if (!found_object)
12053 {
12054 if (removed && target_is_non_stop_p ()
12055 && need_moribund_for_location_type (old_loc))
12056 {
12057 /* This location was removed from the target. In
12058 non-stop mode, a race condition is possible where
12059 we've removed a breakpoint, but stop events for that
12060 breakpoint are already queued and will arrive later.
12061 We apply an heuristic to be able to distinguish such
12062 SIGTRAPs from other random SIGTRAPs: we keep this
12063 breakpoint location for a bit, and will retire it
12064 after we see some number of events. The theory here
12065 is that reporting of events should, "on the average",
12066 be fair, so after a while we'll see events from all
12067 threads that have anything of interest, and no longer
12068 need to keep this breakpoint location around. We
12069 don't hold locations forever so to reduce chances of
12070 mistaking a non-breakpoint SIGTRAP for a breakpoint
12071 SIGTRAP.
12072
12073 The heuristic failing can be disastrous on
12074 decr_pc_after_break targets.
12075
12076 On decr_pc_after_break targets, like e.g., x86-linux,
12077 if we fail to recognize a late breakpoint SIGTRAP,
12078 because events_till_retirement has reached 0 too
12079 soon, we'll fail to do the PC adjustment, and report
12080 a random SIGTRAP to the user. When the user resumes
12081 the inferior, it will most likely immediately crash
12082 with SIGILL/SIGBUS/SIGSEGV, or worse, get silently
12083 corrupted, because of being resumed e.g., in the
12084 middle of a multi-byte instruction, or skipped a
12085 one-byte instruction. This was actually seen happen
12086 on native x86-linux, and should be less rare on
12087 targets that do not support new thread events, like
12088 remote, due to the heuristic depending on
12089 thread_count.
12090
12091 Mistaking a random SIGTRAP for a breakpoint trap
12092 causes similar symptoms (PC adjustment applied when
12093 it shouldn't), but then again, playing with SIGTRAPs
12094 behind the debugger's back is asking for trouble.
12095
12096 Since hardware watchpoint traps are always
12097 distinguishable from other traps, so we don't need to
12098 apply keep hardware watchpoint moribund locations
12099 around. We simply always ignore hardware watchpoint
12100 traps we can no longer explain. */
12101
12102 old_loc->events_till_retirement = 3 * (thread_count () + 1);
12103 old_loc->owner = NULL;
12104
12105 VEC_safe_push (bp_location_p, moribund_locations, old_loc);
12106 }
12107 else
12108 {
12109 old_loc->owner = NULL;
12110 decref_bp_location (&old_loc);
12111 }
12112 }
12113 }
12114
12115 /* Rescan breakpoints at the same address and section, marking the
12116 first one as "first" and any others as "duplicates". This is so
12117 that the bpt instruction is only inserted once. If we have a
12118 permanent breakpoint at the same place as BPT, make that one the
12119 official one, and the rest as duplicates. Permanent breakpoints
12120 are sorted first for the same address.
12121
12122 Do the same for hardware watchpoints, but also considering the
12123 watchpoint's type (regular/access/read) and length. */
12124
12125 bp_loc_first = NULL;
12126 wp_loc_first = NULL;
12127 awp_loc_first = NULL;
12128 rwp_loc_first = NULL;
12129 ALL_BP_LOCATIONS (loc, locp)
12130 {
12131 /* ALL_BP_LOCATIONS bp_location has LOC->OWNER always
12132 non-NULL. */
12133 struct bp_location **loc_first_p;
12134 b = loc->owner;
12135
12136 if (!unduplicated_should_be_inserted (loc)
12137 || !breakpoint_address_is_meaningful (b)
12138 /* Don't detect duplicate for tracepoint locations because they are
12139 never duplicated. See the comments in field `duplicate' of
12140 `struct bp_location'. */
12141 || is_tracepoint (b))
12142 {
12143 /* Clear the condition modification flag. */
12144 loc->condition_changed = condition_unchanged;
12145 continue;
12146 }
12147
12148 if (b->type == bp_hardware_watchpoint)
12149 loc_first_p = &wp_loc_first;
12150 else if (b->type == bp_read_watchpoint)
12151 loc_first_p = &rwp_loc_first;
12152 else if (b->type == bp_access_watchpoint)
12153 loc_first_p = &awp_loc_first;
12154 else
12155 loc_first_p = &bp_loc_first;
12156
12157 if (*loc_first_p == NULL
12158 || (overlay_debugging && loc->section != (*loc_first_p)->section)
12159 || !breakpoint_locations_match (loc, *loc_first_p))
12160 {
12161 *loc_first_p = loc;
12162 loc->duplicate = 0;
12163
12164 if (is_breakpoint (loc->owner) && loc->condition_changed)
12165 {
12166 loc->needs_update = 1;
12167 /* Clear the condition modification flag. */
12168 loc->condition_changed = condition_unchanged;
12169 }
12170 continue;
12171 }
12172
12173
12174 /* This and the above ensure the invariant that the first location
12175 is not duplicated, and is the inserted one.
12176 All following are marked as duplicated, and are not inserted. */
12177 if (loc->inserted)
12178 swap_insertion (loc, *loc_first_p);
12179 loc->duplicate = 1;
12180
12181 /* Clear the condition modification flag. */
12182 loc->condition_changed = condition_unchanged;
12183 }
12184
12185 if (insert_mode == UGLL_INSERT || breakpoints_should_be_inserted_now ())
12186 {
12187 if (insert_mode != UGLL_DONT_INSERT)
12188 insert_breakpoint_locations ();
12189 else
12190 {
12191 /* Even though the caller told us to not insert new
12192 locations, we may still need to update conditions on the
12193 target's side of breakpoints that were already inserted
12194 if the target is evaluating breakpoint conditions. We
12195 only update conditions for locations that are marked
12196 "needs_update". */
12197 update_inserted_breakpoint_locations ();
12198 }
12199 }
12200
12201 if (insert_mode != UGLL_DONT_INSERT)
12202 download_tracepoint_locations ();
12203 }
12204
12205 void
12206 breakpoint_retire_moribund (void)
12207 {
12208 struct bp_location *loc;
12209 int ix;
12210
12211 for (ix = 0; VEC_iterate (bp_location_p, moribund_locations, ix, loc); ++ix)
12212 if (--(loc->events_till_retirement) == 0)
12213 {
12214 decref_bp_location (&loc);
12215 VEC_unordered_remove (bp_location_p, moribund_locations, ix);
12216 --ix;
12217 }
12218 }
12219
12220 static void
12221 update_global_location_list_nothrow (enum ugll_insert_mode insert_mode)
12222 {
12223
12224 TRY
12225 {
12226 update_global_location_list (insert_mode);
12227 }
12228 CATCH (e, RETURN_MASK_ERROR)
12229 {
12230 }
12231 END_CATCH
12232 }
12233
12234 /* Clear BKP from a BPS. */
12235
12236 static void
12237 bpstat_remove_bp_location (bpstat bps, struct breakpoint *bpt)
12238 {
12239 bpstat bs;
12240
12241 for (bs = bps; bs; bs = bs->next)
12242 if (bs->breakpoint_at == bpt)
12243 {
12244 bs->breakpoint_at = NULL;
12245 bs->old_val = NULL;
12246 /* bs->commands will be freed later. */
12247 }
12248 }
12249
12250 /* Callback for iterate_over_threads. */
12251 static int
12252 bpstat_remove_breakpoint_callback (struct thread_info *th, void *data)
12253 {
12254 struct breakpoint *bpt = (struct breakpoint *) data;
12255
12256 bpstat_remove_bp_location (th->control.stop_bpstat, bpt);
12257 return 0;
12258 }
12259
12260 /* Helper for breakpoint and tracepoint breakpoint_ops->mention
12261 callbacks. */
12262
12263 static void
12264 say_where (struct breakpoint *b)
12265 {
12266 struct value_print_options opts;
12267
12268 get_user_print_options (&opts);
12269
12270 /* i18n: cagney/2005-02-11: Below needs to be merged into a
12271 single string. */
12272 if (b->loc == NULL)
12273 {
12274 /* For pending locations, the output differs slightly based
12275 on b->extra_string. If this is non-NULL, it contains either
12276 a condition or dprintf arguments. */
12277 if (b->extra_string == NULL)
12278 {
12279 printf_filtered (_(" (%s) pending."),
12280 event_location_to_string (b->location.get ()));
12281 }
12282 else if (b->type == bp_dprintf)
12283 {
12284 printf_filtered (_(" (%s,%s) pending."),
12285 event_location_to_string (b->location.get ()),
12286 b->extra_string);
12287 }
12288 else
12289 {
12290 printf_filtered (_(" (%s %s) pending."),
12291 event_location_to_string (b->location.get ()),
12292 b->extra_string);
12293 }
12294 }
12295 else
12296 {
12297 if (opts.addressprint || b->loc->symtab == NULL)
12298 {
12299 printf_filtered (" at ");
12300 fputs_filtered (paddress (b->loc->gdbarch, b->loc->address),
12301 gdb_stdout);
12302 }
12303 if (b->loc->symtab != NULL)
12304 {
12305 /* If there is a single location, we can print the location
12306 more nicely. */
12307 if (b->loc->next == NULL)
12308 printf_filtered (": file %s, line %d.",
12309 symtab_to_filename_for_display (b->loc->symtab),
12310 b->loc->line_number);
12311 else
12312 /* This is not ideal, but each location may have a
12313 different file name, and this at least reflects the
12314 real situation somewhat. */
12315 printf_filtered (": %s.",
12316 event_location_to_string (b->location.get ()));
12317 }
12318
12319 if (b->loc->next)
12320 {
12321 struct bp_location *loc = b->loc;
12322 int n = 0;
12323 for (; loc; loc = loc->next)
12324 ++n;
12325 printf_filtered (" (%d locations)", n);
12326 }
12327 }
12328 }
12329
12330 /* Default bp_location_ops methods. */
12331
12332 static void
12333 bp_location_dtor (struct bp_location *self)
12334 {
12335 xfree (self->function_name);
12336 }
12337
12338 static const struct bp_location_ops bp_location_ops =
12339 {
12340 bp_location_dtor
12341 };
12342
12343 /* Destructor for the breakpoint base class. */
12344
12345 breakpoint::~breakpoint ()
12346 {
12347 xfree (this->cond_string);
12348 xfree (this->extra_string);
12349 xfree (this->filter);
12350 }
12351
12352 static struct bp_location *
12353 base_breakpoint_allocate_location (struct breakpoint *self)
12354 {
12355 return new bp_location (&bp_location_ops, self);
12356 }
12357
12358 static void
12359 base_breakpoint_re_set (struct breakpoint *b)
12360 {
12361 /* Nothing to re-set. */
12362 }
12363
12364 #define internal_error_pure_virtual_called() \
12365 gdb_assert_not_reached ("pure virtual function called")
12366
12367 static int
12368 base_breakpoint_insert_location (struct bp_location *bl)
12369 {
12370 internal_error_pure_virtual_called ();
12371 }
12372
12373 static int
12374 base_breakpoint_remove_location (struct bp_location *bl,
12375 enum remove_bp_reason reason)
12376 {
12377 internal_error_pure_virtual_called ();
12378 }
12379
12380 static int
12381 base_breakpoint_breakpoint_hit (const struct bp_location *bl,
12382 const address_space *aspace,
12383 CORE_ADDR bp_addr,
12384 const struct target_waitstatus *ws)
12385 {
12386 internal_error_pure_virtual_called ();
12387 }
12388
12389 static void
12390 base_breakpoint_check_status (bpstat bs)
12391 {
12392 /* Always stop. */
12393 }
12394
12395 /* A "works_in_software_mode" breakpoint_ops method that just internal
12396 errors. */
12397
12398 static int
12399 base_breakpoint_works_in_software_mode (const struct breakpoint *b)
12400 {
12401 internal_error_pure_virtual_called ();
12402 }
12403
12404 /* A "resources_needed" breakpoint_ops method that just internal
12405 errors. */
12406
12407 static int
12408 base_breakpoint_resources_needed (const struct bp_location *bl)
12409 {
12410 internal_error_pure_virtual_called ();
12411 }
12412
12413 static enum print_stop_action
12414 base_breakpoint_print_it (bpstat bs)
12415 {
12416 internal_error_pure_virtual_called ();
12417 }
12418
12419 static void
12420 base_breakpoint_print_one_detail (const struct breakpoint *self,
12421 struct ui_out *uiout)
12422 {
12423 /* nothing */
12424 }
12425
12426 static void
12427 base_breakpoint_print_mention (struct breakpoint *b)
12428 {
12429 internal_error_pure_virtual_called ();
12430 }
12431
12432 static void
12433 base_breakpoint_print_recreate (struct breakpoint *b, struct ui_file *fp)
12434 {
12435 internal_error_pure_virtual_called ();
12436 }
12437
12438 static void
12439 base_breakpoint_create_sals_from_location
12440 (const struct event_location *location,
12441 struct linespec_result *canonical,
12442 enum bptype type_wanted)
12443 {
12444 internal_error_pure_virtual_called ();
12445 }
12446
12447 static void
12448 base_breakpoint_create_breakpoints_sal (struct gdbarch *gdbarch,
12449 struct linespec_result *c,
12450 gdb::unique_xmalloc_ptr<char> cond_string,
12451 gdb::unique_xmalloc_ptr<char> extra_string,
12452 enum bptype type_wanted,
12453 enum bpdisp disposition,
12454 int thread,
12455 int task, int ignore_count,
12456 const struct breakpoint_ops *o,
12457 int from_tty, int enabled,
12458 int internal, unsigned flags)
12459 {
12460 internal_error_pure_virtual_called ();
12461 }
12462
12463 static std::vector<symtab_and_line>
12464 base_breakpoint_decode_location (struct breakpoint *b,
12465 const struct event_location *location,
12466 struct program_space *search_pspace)
12467 {
12468 internal_error_pure_virtual_called ();
12469 }
12470
12471 /* The default 'explains_signal' method. */
12472
12473 static int
12474 base_breakpoint_explains_signal (struct breakpoint *b, enum gdb_signal sig)
12475 {
12476 return 1;
12477 }
12478
12479 /* The default "after_condition_true" method. */
12480
12481 static void
12482 base_breakpoint_after_condition_true (struct bpstats *bs)
12483 {
12484 /* Nothing to do. */
12485 }
12486
12487 struct breakpoint_ops base_breakpoint_ops =
12488 {
12489 base_breakpoint_allocate_location,
12490 base_breakpoint_re_set,
12491 base_breakpoint_insert_location,
12492 base_breakpoint_remove_location,
12493 base_breakpoint_breakpoint_hit,
12494 base_breakpoint_check_status,
12495 base_breakpoint_resources_needed,
12496 base_breakpoint_works_in_software_mode,
12497 base_breakpoint_print_it,
12498 NULL,
12499 base_breakpoint_print_one_detail,
12500 base_breakpoint_print_mention,
12501 base_breakpoint_print_recreate,
12502 base_breakpoint_create_sals_from_location,
12503 base_breakpoint_create_breakpoints_sal,
12504 base_breakpoint_decode_location,
12505 base_breakpoint_explains_signal,
12506 base_breakpoint_after_condition_true,
12507 };
12508
12509 /* Default breakpoint_ops methods. */
12510
12511 static void
12512 bkpt_re_set (struct breakpoint *b)
12513 {
12514 /* FIXME: is this still reachable? */
12515 if (breakpoint_event_location_empty_p (b))
12516 {
12517 /* Anything without a location can't be re-set. */
12518 delete_breakpoint (b);
12519 return;
12520 }
12521
12522 breakpoint_re_set_default (b);
12523 }
12524
12525 static int
12526 bkpt_insert_location (struct bp_location *bl)
12527 {
12528 CORE_ADDR addr = bl->target_info.reqstd_address;
12529
12530 bl->target_info.kind = breakpoint_kind (bl, &addr);
12531 bl->target_info.placed_address = addr;
12532
12533 if (bl->loc_type == bp_loc_hardware_breakpoint)
12534 return target_insert_hw_breakpoint (bl->gdbarch, &bl->target_info);
12535 else
12536 return target_insert_breakpoint (bl->gdbarch, &bl->target_info);
12537 }
12538
12539 static int
12540 bkpt_remove_location (struct bp_location *bl, enum remove_bp_reason reason)
12541 {
12542 if (bl->loc_type == bp_loc_hardware_breakpoint)
12543 return target_remove_hw_breakpoint (bl->gdbarch, &bl->target_info);
12544 else
12545 return target_remove_breakpoint (bl->gdbarch, &bl->target_info, reason);
12546 }
12547
12548 static int
12549 bkpt_breakpoint_hit (const struct bp_location *bl,
12550 const address_space *aspace, CORE_ADDR bp_addr,
12551 const struct target_waitstatus *ws)
12552 {
12553 if (ws->kind != TARGET_WAITKIND_STOPPED
12554 || ws->value.sig != GDB_SIGNAL_TRAP)
12555 return 0;
12556
12557 if (!breakpoint_address_match (bl->pspace->aspace, bl->address,
12558 aspace, bp_addr))
12559 return 0;
12560
12561 if (overlay_debugging /* unmapped overlay section */
12562 && section_is_overlay (bl->section)
12563 && !section_is_mapped (bl->section))
12564 return 0;
12565
12566 return 1;
12567 }
12568
12569 static int
12570 dprintf_breakpoint_hit (const struct bp_location *bl,
12571 const address_space *aspace, CORE_ADDR bp_addr,
12572 const struct target_waitstatus *ws)
12573 {
12574 if (dprintf_style == dprintf_style_agent
12575 && target_can_run_breakpoint_commands ())
12576 {
12577 /* An agent-style dprintf never causes a stop. If we see a trap
12578 for this address it must be for a breakpoint that happens to
12579 be set at the same address. */
12580 return 0;
12581 }
12582
12583 return bkpt_breakpoint_hit (bl, aspace, bp_addr, ws);
12584 }
12585
12586 static int
12587 bkpt_resources_needed (const struct bp_location *bl)
12588 {
12589 gdb_assert (bl->owner->type == bp_hardware_breakpoint);
12590
12591 return 1;
12592 }
12593
12594 static enum print_stop_action
12595 bkpt_print_it (bpstat bs)
12596 {
12597 struct breakpoint *b;
12598 const struct bp_location *bl;
12599 int bp_temp;
12600 struct ui_out *uiout = current_uiout;
12601
12602 gdb_assert (bs->bp_location_at != NULL);
12603
12604 bl = bs->bp_location_at;
12605 b = bs->breakpoint_at;
12606
12607 bp_temp = b->disposition == disp_del;
12608 if (bl->address != bl->requested_address)
12609 breakpoint_adjustment_warning (bl->requested_address,
12610 bl->address,
12611 b->number, 1);
12612 annotate_breakpoint (b->number);
12613 maybe_print_thread_hit_breakpoint (uiout);
12614
12615 if (bp_temp)
12616 uiout->text ("Temporary breakpoint ");
12617 else
12618 uiout->text ("Breakpoint ");
12619 if (uiout->is_mi_like_p ())
12620 {
12621 uiout->field_string ("reason",
12622 async_reason_lookup (EXEC_ASYNC_BREAKPOINT_HIT));
12623 uiout->field_string ("disp", bpdisp_text (b->disposition));
12624 }
12625 uiout->field_int ("bkptno", b->number);
12626 uiout->text (", ");
12627
12628 return PRINT_SRC_AND_LOC;
12629 }
12630
12631 static void
12632 bkpt_print_mention (struct breakpoint *b)
12633 {
12634 if (current_uiout->is_mi_like_p ())
12635 return;
12636
12637 switch (b->type)
12638 {
12639 case bp_breakpoint:
12640 case bp_gnu_ifunc_resolver:
12641 if (b->disposition == disp_del)
12642 printf_filtered (_("Temporary breakpoint"));
12643 else
12644 printf_filtered (_("Breakpoint"));
12645 printf_filtered (_(" %d"), b->number);
12646 if (b->type == bp_gnu_ifunc_resolver)
12647 printf_filtered (_(" at gnu-indirect-function resolver"));
12648 break;
12649 case bp_hardware_breakpoint:
12650 printf_filtered (_("Hardware assisted breakpoint %d"), b->number);
12651 break;
12652 case bp_dprintf:
12653 printf_filtered (_("Dprintf %d"), b->number);
12654 break;
12655 }
12656
12657 say_where (b);
12658 }
12659
12660 static void
12661 bkpt_print_recreate (struct breakpoint *tp, struct ui_file *fp)
12662 {
12663 if (tp->type == bp_breakpoint && tp->disposition == disp_del)
12664 fprintf_unfiltered (fp, "tbreak");
12665 else if (tp->type == bp_breakpoint)
12666 fprintf_unfiltered (fp, "break");
12667 else if (tp->type == bp_hardware_breakpoint
12668 && tp->disposition == disp_del)
12669 fprintf_unfiltered (fp, "thbreak");
12670 else if (tp->type == bp_hardware_breakpoint)
12671 fprintf_unfiltered (fp, "hbreak");
12672 else
12673 internal_error (__FILE__, __LINE__,
12674 _("unhandled breakpoint type %d"), (int) tp->type);
12675
12676 fprintf_unfiltered (fp, " %s",
12677 event_location_to_string (tp->location.get ()));
12678
12679 /* Print out extra_string if this breakpoint is pending. It might
12680 contain, for example, conditions that were set by the user. */
12681 if (tp->loc == NULL && tp->extra_string != NULL)
12682 fprintf_unfiltered (fp, " %s", tp->extra_string);
12683
12684 print_recreate_thread (tp, fp);
12685 }
12686
12687 static void
12688 bkpt_create_sals_from_location (const struct event_location *location,
12689 struct linespec_result *canonical,
12690 enum bptype type_wanted)
12691 {
12692 create_sals_from_location_default (location, canonical, type_wanted);
12693 }
12694
12695 static void
12696 bkpt_create_breakpoints_sal (struct gdbarch *gdbarch,
12697 struct linespec_result *canonical,
12698 gdb::unique_xmalloc_ptr<char> cond_string,
12699 gdb::unique_xmalloc_ptr<char> extra_string,
12700 enum bptype type_wanted,
12701 enum bpdisp disposition,
12702 int thread,
12703 int task, int ignore_count,
12704 const struct breakpoint_ops *ops,
12705 int from_tty, int enabled,
12706 int internal, unsigned flags)
12707 {
12708 create_breakpoints_sal_default (gdbarch, canonical,
12709 std::move (cond_string),
12710 std::move (extra_string),
12711 type_wanted,
12712 disposition, thread, task,
12713 ignore_count, ops, from_tty,
12714 enabled, internal, flags);
12715 }
12716
12717 static std::vector<symtab_and_line>
12718 bkpt_decode_location (struct breakpoint *b,
12719 const struct event_location *location,
12720 struct program_space *search_pspace)
12721 {
12722 return decode_location_default (b, location, search_pspace);
12723 }
12724
12725 /* Virtual table for internal breakpoints. */
12726
12727 static void
12728 internal_bkpt_re_set (struct breakpoint *b)
12729 {
12730 switch (b->type)
12731 {
12732 /* Delete overlay event and longjmp master breakpoints; they
12733 will be reset later by breakpoint_re_set. */
12734 case bp_overlay_event:
12735 case bp_longjmp_master:
12736 case bp_std_terminate_master:
12737 case bp_exception_master:
12738 delete_breakpoint (b);
12739 break;
12740
12741 /* This breakpoint is special, it's set up when the inferior
12742 starts and we really don't want to touch it. */
12743 case bp_shlib_event:
12744
12745 /* Like bp_shlib_event, this breakpoint type is special. Once
12746 it is set up, we do not want to touch it. */
12747 case bp_thread_event:
12748 break;
12749 }
12750 }
12751
12752 static void
12753 internal_bkpt_check_status (bpstat bs)
12754 {
12755 if (bs->breakpoint_at->type == bp_shlib_event)
12756 {
12757 /* If requested, stop when the dynamic linker notifies GDB of
12758 events. This allows the user to get control and place
12759 breakpoints in initializer routines for dynamically loaded
12760 objects (among other things). */
12761 bs->stop = stop_on_solib_events;
12762 bs->print = stop_on_solib_events;
12763 }
12764 else
12765 bs->stop = 0;
12766 }
12767
12768 static enum print_stop_action
12769 internal_bkpt_print_it (bpstat bs)
12770 {
12771 struct breakpoint *b;
12772
12773 b = bs->breakpoint_at;
12774
12775 switch (b->type)
12776 {
12777 case bp_shlib_event:
12778 /* Did we stop because the user set the stop_on_solib_events
12779 variable? (If so, we report this as a generic, "Stopped due
12780 to shlib event" message.) */
12781 print_solib_event (0);
12782 break;
12783
12784 case bp_thread_event:
12785 /* Not sure how we will get here.
12786 GDB should not stop for these breakpoints. */
12787 printf_filtered (_("Thread Event Breakpoint: gdb should not stop!\n"));
12788 break;
12789
12790 case bp_overlay_event:
12791 /* By analogy with the thread event, GDB should not stop for these. */
12792 printf_filtered (_("Overlay Event Breakpoint: gdb should not stop!\n"));
12793 break;
12794
12795 case bp_longjmp_master:
12796 /* These should never be enabled. */
12797 printf_filtered (_("Longjmp Master Breakpoint: gdb should not stop!\n"));
12798 break;
12799
12800 case bp_std_terminate_master:
12801 /* These should never be enabled. */
12802 printf_filtered (_("std::terminate Master Breakpoint: "
12803 "gdb should not stop!\n"));
12804 break;
12805
12806 case bp_exception_master:
12807 /* These should never be enabled. */
12808 printf_filtered (_("Exception Master Breakpoint: "
12809 "gdb should not stop!\n"));
12810 break;
12811 }
12812
12813 return PRINT_NOTHING;
12814 }
12815
12816 static void
12817 internal_bkpt_print_mention (struct breakpoint *b)
12818 {
12819 /* Nothing to mention. These breakpoints are internal. */
12820 }
12821
12822 /* Virtual table for momentary breakpoints */
12823
12824 static void
12825 momentary_bkpt_re_set (struct breakpoint *b)
12826 {
12827 /* Keep temporary breakpoints, which can be encountered when we step
12828 over a dlopen call and solib_add is resetting the breakpoints.
12829 Otherwise these should have been blown away via the cleanup chain
12830 or by breakpoint_init_inferior when we rerun the executable. */
12831 }
12832
12833 static void
12834 momentary_bkpt_check_status (bpstat bs)
12835 {
12836 /* Nothing. The point of these breakpoints is causing a stop. */
12837 }
12838
12839 static enum print_stop_action
12840 momentary_bkpt_print_it (bpstat bs)
12841 {
12842 return PRINT_UNKNOWN;
12843 }
12844
12845 static void
12846 momentary_bkpt_print_mention (struct breakpoint *b)
12847 {
12848 /* Nothing to mention. These breakpoints are internal. */
12849 }
12850
12851 /* Ensure INITIATING_FRAME is cleared when no such breakpoint exists.
12852
12853 It gets cleared already on the removal of the first one of such placed
12854 breakpoints. This is OK as they get all removed altogether. */
12855
12856 longjmp_breakpoint::~longjmp_breakpoint ()
12857 {
12858 thread_info *tp = find_thread_global_id (this->thread);
12859
12860 if (tp != NULL)
12861 tp->initiating_frame = null_frame_id;
12862 }
12863
12864 /* Specific methods for probe breakpoints. */
12865
12866 static int
12867 bkpt_probe_insert_location (struct bp_location *bl)
12868 {
12869 int v = bkpt_insert_location (bl);
12870
12871 if (v == 0)
12872 {
12873 /* The insertion was successful, now let's set the probe's semaphore
12874 if needed. */
12875 bl->probe.prob->set_semaphore (bl->probe.objfile, bl->gdbarch);
12876 }
12877
12878 return v;
12879 }
12880
12881 static int
12882 bkpt_probe_remove_location (struct bp_location *bl,
12883 enum remove_bp_reason reason)
12884 {
12885 /* Let's clear the semaphore before removing the location. */
12886 bl->probe.prob->clear_semaphore (bl->probe.objfile, bl->gdbarch);
12887
12888 return bkpt_remove_location (bl, reason);
12889 }
12890
12891 static void
12892 bkpt_probe_create_sals_from_location (const struct event_location *location,
12893 struct linespec_result *canonical,
12894 enum bptype type_wanted)
12895 {
12896 struct linespec_sals lsal;
12897
12898 lsal.sals = parse_probes (location, NULL, canonical);
12899 lsal.canonical
12900 = xstrdup (event_location_to_string (canonical->location.get ()));
12901 canonical->lsals.push_back (std::move (lsal));
12902 }
12903
12904 static std::vector<symtab_and_line>
12905 bkpt_probe_decode_location (struct breakpoint *b,
12906 const struct event_location *location,
12907 struct program_space *search_pspace)
12908 {
12909 std::vector<symtab_and_line> sals = parse_probes (location, search_pspace, NULL);
12910 if (sals.empty ())
12911 error (_("probe not found"));
12912 return sals;
12913 }
12914
12915 /* The breakpoint_ops structure to be used in tracepoints. */
12916
12917 static void
12918 tracepoint_re_set (struct breakpoint *b)
12919 {
12920 breakpoint_re_set_default (b);
12921 }
12922
12923 static int
12924 tracepoint_breakpoint_hit (const struct bp_location *bl,
12925 const address_space *aspace, CORE_ADDR bp_addr,
12926 const struct target_waitstatus *ws)
12927 {
12928 /* By definition, the inferior does not report stops at
12929 tracepoints. */
12930 return 0;
12931 }
12932
12933 static void
12934 tracepoint_print_one_detail (const struct breakpoint *self,
12935 struct ui_out *uiout)
12936 {
12937 struct tracepoint *tp = (struct tracepoint *) self;
12938 if (tp->static_trace_marker_id)
12939 {
12940 gdb_assert (self->type == bp_static_tracepoint);
12941
12942 uiout->text ("\tmarker id is ");
12943 uiout->field_string ("static-tracepoint-marker-string-id",
12944 tp->static_trace_marker_id);
12945 uiout->text ("\n");
12946 }
12947 }
12948
12949 static void
12950 tracepoint_print_mention (struct breakpoint *b)
12951 {
12952 if (current_uiout->is_mi_like_p ())
12953 return;
12954
12955 switch (b->type)
12956 {
12957 case bp_tracepoint:
12958 printf_filtered (_("Tracepoint"));
12959 printf_filtered (_(" %d"), b->number);
12960 break;
12961 case bp_fast_tracepoint:
12962 printf_filtered (_("Fast tracepoint"));
12963 printf_filtered (_(" %d"), b->number);
12964 break;
12965 case bp_static_tracepoint:
12966 printf_filtered (_("Static tracepoint"));
12967 printf_filtered (_(" %d"), b->number);
12968 break;
12969 default:
12970 internal_error (__FILE__, __LINE__,
12971 _("unhandled tracepoint type %d"), (int) b->type);
12972 }
12973
12974 say_where (b);
12975 }
12976
12977 static void
12978 tracepoint_print_recreate (struct breakpoint *self, struct ui_file *fp)
12979 {
12980 struct tracepoint *tp = (struct tracepoint *) self;
12981
12982 if (self->type == bp_fast_tracepoint)
12983 fprintf_unfiltered (fp, "ftrace");
12984 else if (self->type == bp_static_tracepoint)
12985 fprintf_unfiltered (fp, "strace");
12986 else if (self->type == bp_tracepoint)
12987 fprintf_unfiltered (fp, "trace");
12988 else
12989 internal_error (__FILE__, __LINE__,
12990 _("unhandled tracepoint type %d"), (int) self->type);
12991
12992 fprintf_unfiltered (fp, " %s",
12993 event_location_to_string (self->location.get ()));
12994 print_recreate_thread (self, fp);
12995
12996 if (tp->pass_count)
12997 fprintf_unfiltered (fp, " passcount %d\n", tp->pass_count);
12998 }
12999
13000 static void
13001 tracepoint_create_sals_from_location (const struct event_location *location,
13002 struct linespec_result *canonical,
13003 enum bptype type_wanted)
13004 {
13005 create_sals_from_location_default (location, canonical, type_wanted);
13006 }
13007
13008 static void
13009 tracepoint_create_breakpoints_sal (struct gdbarch *gdbarch,
13010 struct linespec_result *canonical,
13011 gdb::unique_xmalloc_ptr<char> cond_string,
13012 gdb::unique_xmalloc_ptr<char> extra_string,
13013 enum bptype type_wanted,
13014 enum bpdisp disposition,
13015 int thread,
13016 int task, int ignore_count,
13017 const struct breakpoint_ops *ops,
13018 int from_tty, int enabled,
13019 int internal, unsigned flags)
13020 {
13021 create_breakpoints_sal_default (gdbarch, canonical,
13022 std::move (cond_string),
13023 std::move (extra_string),
13024 type_wanted,
13025 disposition, thread, task,
13026 ignore_count, ops, from_tty,
13027 enabled, internal, flags);
13028 }
13029
13030 static std::vector<symtab_and_line>
13031 tracepoint_decode_location (struct breakpoint *b,
13032 const struct event_location *location,
13033 struct program_space *search_pspace)
13034 {
13035 return decode_location_default (b, location, search_pspace);
13036 }
13037
13038 struct breakpoint_ops tracepoint_breakpoint_ops;
13039
13040 /* The breakpoint_ops structure to be use on tracepoints placed in a
13041 static probe. */
13042
13043 static void
13044 tracepoint_probe_create_sals_from_location
13045 (const struct event_location *location,
13046 struct linespec_result *canonical,
13047 enum bptype type_wanted)
13048 {
13049 /* We use the same method for breakpoint on probes. */
13050 bkpt_probe_create_sals_from_location (location, canonical, type_wanted);
13051 }
13052
13053 static std::vector<symtab_and_line>
13054 tracepoint_probe_decode_location (struct breakpoint *b,
13055 const struct event_location *location,
13056 struct program_space *search_pspace)
13057 {
13058 /* We use the same method for breakpoint on probes. */
13059 return bkpt_probe_decode_location (b, location, search_pspace);
13060 }
13061
13062 static struct breakpoint_ops tracepoint_probe_breakpoint_ops;
13063
13064 /* Dprintf breakpoint_ops methods. */
13065
13066 static void
13067 dprintf_re_set (struct breakpoint *b)
13068 {
13069 breakpoint_re_set_default (b);
13070
13071 /* extra_string should never be non-NULL for dprintf. */
13072 gdb_assert (b->extra_string != NULL);
13073
13074 /* 1 - connect to target 1, that can run breakpoint commands.
13075 2 - create a dprintf, which resolves fine.
13076 3 - disconnect from target 1
13077 4 - connect to target 2, that can NOT run breakpoint commands.
13078
13079 After steps #3/#4, you'll want the dprintf command list to
13080 be updated, because target 1 and 2 may well return different
13081 answers for target_can_run_breakpoint_commands().
13082 Given absence of finer grained resetting, we get to do
13083 it all the time. */
13084 if (b->extra_string != NULL)
13085 update_dprintf_command_list (b);
13086 }
13087
13088 /* Implement the "print_recreate" breakpoint_ops method for dprintf. */
13089
13090 static void
13091 dprintf_print_recreate (struct breakpoint *tp, struct ui_file *fp)
13092 {
13093 fprintf_unfiltered (fp, "dprintf %s,%s",
13094 event_location_to_string (tp->location.get ()),
13095 tp->extra_string);
13096 print_recreate_thread (tp, fp);
13097 }
13098
13099 /* Implement the "after_condition_true" breakpoint_ops method for
13100 dprintf.
13101
13102 dprintf's are implemented with regular commands in their command
13103 list, but we run the commands here instead of before presenting the
13104 stop to the user, as dprintf's don't actually cause a stop. This
13105 also makes it so that the commands of multiple dprintfs at the same
13106 address are all handled. */
13107
13108 static void
13109 dprintf_after_condition_true (struct bpstats *bs)
13110 {
13111 struct bpstats tmp_bs;
13112 struct bpstats *tmp_bs_p = &tmp_bs;
13113
13114 /* dprintf's never cause a stop. This wasn't set in the
13115 check_status hook instead because that would make the dprintf's
13116 condition not be evaluated. */
13117 bs->stop = 0;
13118
13119 /* Run the command list here. Take ownership of it instead of
13120 copying. We never want these commands to run later in
13121 bpstat_do_actions, if a breakpoint that causes a stop happens to
13122 be set at same address as this dprintf, or even if running the
13123 commands here throws. */
13124 tmp_bs.commands = bs->commands;
13125 bs->commands = NULL;
13126
13127 bpstat_do_actions_1 (&tmp_bs_p);
13128
13129 /* 'tmp_bs.commands' will usually be NULL by now, but
13130 bpstat_do_actions_1 may return early without processing the whole
13131 list. */
13132 }
13133
13134 /* The breakpoint_ops structure to be used on static tracepoints with
13135 markers (`-m'). */
13136
13137 static void
13138 strace_marker_create_sals_from_location (const struct event_location *location,
13139 struct linespec_result *canonical,
13140 enum bptype type_wanted)
13141 {
13142 struct linespec_sals lsal;
13143 const char *arg_start, *arg;
13144
13145 arg = arg_start = get_linespec_location (location)->spec_string;
13146 lsal.sals = decode_static_tracepoint_spec (&arg);
13147
13148 std::string str (arg_start, arg - arg_start);
13149 const char *ptr = str.c_str ();
13150 canonical->location
13151 = new_linespec_location (&ptr, symbol_name_match_type::FULL);
13152
13153 lsal.canonical
13154 = xstrdup (event_location_to_string (canonical->location.get ()));
13155 canonical->lsals.push_back (std::move (lsal));
13156 }
13157
13158 static void
13159 strace_marker_create_breakpoints_sal (struct gdbarch *gdbarch,
13160 struct linespec_result *canonical,
13161 gdb::unique_xmalloc_ptr<char> cond_string,
13162 gdb::unique_xmalloc_ptr<char> extra_string,
13163 enum bptype type_wanted,
13164 enum bpdisp disposition,
13165 int thread,
13166 int task, int ignore_count,
13167 const struct breakpoint_ops *ops,
13168 int from_tty, int enabled,
13169 int internal, unsigned flags)
13170 {
13171 const linespec_sals &lsal = canonical->lsals[0];
13172
13173 /* If the user is creating a static tracepoint by marker id
13174 (strace -m MARKER_ID), then store the sals index, so that
13175 breakpoint_re_set can try to match up which of the newly
13176 found markers corresponds to this one, and, don't try to
13177 expand multiple locations for each sal, given than SALS
13178 already should contain all sals for MARKER_ID. */
13179
13180 for (size_t i = 0; i < lsal.sals.size (); i++)
13181 {
13182 event_location_up location
13183 = copy_event_location (canonical->location.get ());
13184
13185 std::unique_ptr<tracepoint> tp (new tracepoint ());
13186 init_breakpoint_sal (tp.get (), gdbarch, lsal.sals[i],
13187 std::move (location), NULL,
13188 std::move (cond_string),
13189 std::move (extra_string),
13190 type_wanted, disposition,
13191 thread, task, ignore_count, ops,
13192 from_tty, enabled, internal, flags,
13193 canonical->special_display);
13194 /* Given that its possible to have multiple markers with
13195 the same string id, if the user is creating a static
13196 tracepoint by marker id ("strace -m MARKER_ID"), then
13197 store the sals index, so that breakpoint_re_set can
13198 try to match up which of the newly found markers
13199 corresponds to this one */
13200 tp->static_trace_marker_id_idx = i;
13201
13202 install_breakpoint (internal, std::move (tp), 0);
13203 }
13204 }
13205
13206 static std::vector<symtab_and_line>
13207 strace_marker_decode_location (struct breakpoint *b,
13208 const struct event_location *location,
13209 struct program_space *search_pspace)
13210 {
13211 struct tracepoint *tp = (struct tracepoint *) b;
13212 const char *s = get_linespec_location (location)->spec_string;
13213
13214 std::vector<symtab_and_line> sals = decode_static_tracepoint_spec (&s);
13215 if (sals.size () > tp->static_trace_marker_id_idx)
13216 {
13217 sals[0] = sals[tp->static_trace_marker_id_idx];
13218 sals.resize (1);
13219 return sals;
13220 }
13221 else
13222 error (_("marker %s not found"), tp->static_trace_marker_id);
13223 }
13224
13225 static struct breakpoint_ops strace_marker_breakpoint_ops;
13226
13227 static int
13228 strace_marker_p (struct breakpoint *b)
13229 {
13230 return b->ops == &strace_marker_breakpoint_ops;
13231 }
13232
13233 /* Delete a breakpoint and clean up all traces of it in the data
13234 structures. */
13235
13236 void
13237 delete_breakpoint (struct breakpoint *bpt)
13238 {
13239 struct breakpoint *b;
13240
13241 gdb_assert (bpt != NULL);
13242
13243 /* Has this bp already been deleted? This can happen because
13244 multiple lists can hold pointers to bp's. bpstat lists are
13245 especial culprits.
13246
13247 One example of this happening is a watchpoint's scope bp. When
13248 the scope bp triggers, we notice that the watchpoint is out of
13249 scope, and delete it. We also delete its scope bp. But the
13250 scope bp is marked "auto-deleting", and is already on a bpstat.
13251 That bpstat is then checked for auto-deleting bp's, which are
13252 deleted.
13253
13254 A real solution to this problem might involve reference counts in
13255 bp's, and/or giving them pointers back to their referencing
13256 bpstat's, and teaching delete_breakpoint to only free a bp's
13257 storage when no more references were extent. A cheaper bandaid
13258 was chosen. */
13259 if (bpt->type == bp_none)
13260 return;
13261
13262 /* At least avoid this stale reference until the reference counting
13263 of breakpoints gets resolved. */
13264 if (bpt->related_breakpoint != bpt)
13265 {
13266 struct breakpoint *related;
13267 struct watchpoint *w;
13268
13269 if (bpt->type == bp_watchpoint_scope)
13270 w = (struct watchpoint *) bpt->related_breakpoint;
13271 else if (bpt->related_breakpoint->type == bp_watchpoint_scope)
13272 w = (struct watchpoint *) bpt;
13273 else
13274 w = NULL;
13275 if (w != NULL)
13276 watchpoint_del_at_next_stop (w);
13277
13278 /* Unlink bpt from the bpt->related_breakpoint ring. */
13279 for (related = bpt; related->related_breakpoint != bpt;
13280 related = related->related_breakpoint);
13281 related->related_breakpoint = bpt->related_breakpoint;
13282 bpt->related_breakpoint = bpt;
13283 }
13284
13285 /* watch_command_1 creates a watchpoint but only sets its number if
13286 update_watchpoint succeeds in creating its bp_locations. If there's
13287 a problem in that process, we'll be asked to delete the half-created
13288 watchpoint. In that case, don't announce the deletion. */
13289 if (bpt->number)
13290 observer_notify_breakpoint_deleted (bpt);
13291
13292 if (breakpoint_chain == bpt)
13293 breakpoint_chain = bpt->next;
13294
13295 ALL_BREAKPOINTS (b)
13296 if (b->next == bpt)
13297 {
13298 b->next = bpt->next;
13299 break;
13300 }
13301
13302 /* Be sure no bpstat's are pointing at the breakpoint after it's
13303 been freed. */
13304 /* FIXME, how can we find all bpstat's? We just check stop_bpstat
13305 in all threads for now. Note that we cannot just remove bpstats
13306 pointing at bpt from the stop_bpstat list entirely, as breakpoint
13307 commands are associated with the bpstat; if we remove it here,
13308 then the later call to bpstat_do_actions (&stop_bpstat); in
13309 event-top.c won't do anything, and temporary breakpoints with
13310 commands won't work. */
13311
13312 iterate_over_threads (bpstat_remove_breakpoint_callback, bpt);
13313
13314 /* Now that breakpoint is removed from breakpoint list, update the
13315 global location list. This will remove locations that used to
13316 belong to this breakpoint. Do this before freeing the breakpoint
13317 itself, since remove_breakpoint looks at location's owner. It
13318 might be better design to have location completely
13319 self-contained, but it's not the case now. */
13320 update_global_location_list (UGLL_DONT_INSERT);
13321
13322 /* On the chance that someone will soon try again to delete this
13323 same bp, we mark it as deleted before freeing its storage. */
13324 bpt->type = bp_none;
13325 delete bpt;
13326 }
13327
13328 /* Iterator function to call a user-provided callback function once
13329 for each of B and its related breakpoints. */
13330
13331 static void
13332 iterate_over_related_breakpoints (struct breakpoint *b,
13333 gdb::function_view<void (breakpoint *)> function)
13334 {
13335 struct breakpoint *related;
13336
13337 related = b;
13338 do
13339 {
13340 struct breakpoint *next;
13341
13342 /* FUNCTION may delete RELATED. */
13343 next = related->related_breakpoint;
13344
13345 if (next == related)
13346 {
13347 /* RELATED is the last ring entry. */
13348 function (related);
13349
13350 /* FUNCTION may have deleted it, so we'd never reach back to
13351 B. There's nothing left to do anyway, so just break
13352 out. */
13353 break;
13354 }
13355 else
13356 function (related);
13357
13358 related = next;
13359 }
13360 while (related != b);
13361 }
13362
13363 static void
13364 delete_command (const char *arg, int from_tty)
13365 {
13366 struct breakpoint *b, *b_tmp;
13367
13368 dont_repeat ();
13369
13370 if (arg == 0)
13371 {
13372 int breaks_to_delete = 0;
13373
13374 /* Delete all breakpoints if no argument. Do not delete
13375 internal breakpoints, these have to be deleted with an
13376 explicit breakpoint number argument. */
13377 ALL_BREAKPOINTS (b)
13378 if (user_breakpoint_p (b))
13379 {
13380 breaks_to_delete = 1;
13381 break;
13382 }
13383
13384 /* Ask user only if there are some breakpoints to delete. */
13385 if (!from_tty
13386 || (breaks_to_delete && query (_("Delete all breakpoints? "))))
13387 {
13388 ALL_BREAKPOINTS_SAFE (b, b_tmp)
13389 if (user_breakpoint_p (b))
13390 delete_breakpoint (b);
13391 }
13392 }
13393 else
13394 map_breakpoint_numbers
13395 (arg, [&] (breakpoint *b)
13396 {
13397 iterate_over_related_breakpoints (b, delete_breakpoint);
13398 });
13399 }
13400
13401 /* Return true if all locations of B bound to PSPACE are pending. If
13402 PSPACE is NULL, all locations of all program spaces are
13403 considered. */
13404
13405 static int
13406 all_locations_are_pending (struct breakpoint *b, struct program_space *pspace)
13407 {
13408 struct bp_location *loc;
13409
13410 for (loc = b->loc; loc != NULL; loc = loc->next)
13411 if ((pspace == NULL
13412 || loc->pspace == pspace)
13413 && !loc->shlib_disabled
13414 && !loc->pspace->executing_startup)
13415 return 0;
13416 return 1;
13417 }
13418
13419 /* Subroutine of update_breakpoint_locations to simplify it.
13420 Return non-zero if multiple fns in list LOC have the same name.
13421 Null names are ignored. */
13422
13423 static int
13424 ambiguous_names_p (struct bp_location *loc)
13425 {
13426 struct bp_location *l;
13427 htab_t htab = htab_create_alloc (13, htab_hash_string,
13428 (int (*) (const void *,
13429 const void *)) streq,
13430 NULL, xcalloc, xfree);
13431
13432 for (l = loc; l != NULL; l = l->next)
13433 {
13434 const char **slot;
13435 const char *name = l->function_name;
13436
13437 /* Allow for some names to be NULL, ignore them. */
13438 if (name == NULL)
13439 continue;
13440
13441 slot = (const char **) htab_find_slot (htab, (const void *) name,
13442 INSERT);
13443 /* NOTE: We can assume slot != NULL here because xcalloc never
13444 returns NULL. */
13445 if (*slot != NULL)
13446 {
13447 htab_delete (htab);
13448 return 1;
13449 }
13450 *slot = name;
13451 }
13452
13453 htab_delete (htab);
13454 return 0;
13455 }
13456
13457 /* When symbols change, it probably means the sources changed as well,
13458 and it might mean the static tracepoint markers are no longer at
13459 the same address or line numbers they used to be at last we
13460 checked. Losing your static tracepoints whenever you rebuild is
13461 undesirable. This function tries to resync/rematch gdb static
13462 tracepoints with the markers on the target, for static tracepoints
13463 that have not been set by marker id. Static tracepoint that have
13464 been set by marker id are reset by marker id in breakpoint_re_set.
13465 The heuristic is:
13466
13467 1) For a tracepoint set at a specific address, look for a marker at
13468 the old PC. If one is found there, assume to be the same marker.
13469 If the name / string id of the marker found is different from the
13470 previous known name, assume that means the user renamed the marker
13471 in the sources, and output a warning.
13472
13473 2) For a tracepoint set at a given line number, look for a marker
13474 at the new address of the old line number. If one is found there,
13475 assume to be the same marker. If the name / string id of the
13476 marker found is different from the previous known name, assume that
13477 means the user renamed the marker in the sources, and output a
13478 warning.
13479
13480 3) If a marker is no longer found at the same address or line, it
13481 may mean the marker no longer exists. But it may also just mean
13482 the code changed a bit. Maybe the user added a few lines of code
13483 that made the marker move up or down (in line number terms). Ask
13484 the target for info about the marker with the string id as we knew
13485 it. If found, update line number and address in the matching
13486 static tracepoint. This will get confused if there's more than one
13487 marker with the same ID (possible in UST, although unadvised
13488 precisely because it confuses tools). */
13489
13490 static struct symtab_and_line
13491 update_static_tracepoint (struct breakpoint *b, struct symtab_and_line sal)
13492 {
13493 struct tracepoint *tp = (struct tracepoint *) b;
13494 struct static_tracepoint_marker marker;
13495 CORE_ADDR pc;
13496
13497 pc = sal.pc;
13498 if (sal.line)
13499 find_line_pc (sal.symtab, sal.line, &pc);
13500
13501 if (target_static_tracepoint_marker_at (pc, &marker))
13502 {
13503 if (strcmp (tp->static_trace_marker_id, marker.str_id) != 0)
13504 warning (_("static tracepoint %d changed probed marker from %s to %s"),
13505 b->number,
13506 tp->static_trace_marker_id, marker.str_id);
13507
13508 xfree (tp->static_trace_marker_id);
13509 tp->static_trace_marker_id = xstrdup (marker.str_id);
13510 release_static_tracepoint_marker (&marker);
13511
13512 return sal;
13513 }
13514
13515 /* Old marker wasn't found on target at lineno. Try looking it up
13516 by string ID. */
13517 if (!sal.explicit_pc
13518 && sal.line != 0
13519 && sal.symtab != NULL
13520 && tp->static_trace_marker_id != NULL)
13521 {
13522 VEC(static_tracepoint_marker_p) *markers;
13523
13524 markers
13525 = target_static_tracepoint_markers_by_strid (tp->static_trace_marker_id);
13526
13527 if (!VEC_empty(static_tracepoint_marker_p, markers))
13528 {
13529 struct symbol *sym;
13530 struct static_tracepoint_marker *tpmarker;
13531 struct ui_out *uiout = current_uiout;
13532 struct explicit_location explicit_loc;
13533
13534 tpmarker = VEC_index (static_tracepoint_marker_p, markers, 0);
13535
13536 xfree (tp->static_trace_marker_id);
13537 tp->static_trace_marker_id = xstrdup (tpmarker->str_id);
13538
13539 warning (_("marker for static tracepoint %d (%s) not "
13540 "found at previous line number"),
13541 b->number, tp->static_trace_marker_id);
13542
13543 symtab_and_line sal2 = find_pc_line (tpmarker->address, 0);
13544 sym = find_pc_sect_function (tpmarker->address, NULL);
13545 uiout->text ("Now in ");
13546 if (sym)
13547 {
13548 uiout->field_string ("func", SYMBOL_PRINT_NAME (sym));
13549 uiout->text (" at ");
13550 }
13551 uiout->field_string ("file",
13552 symtab_to_filename_for_display (sal2.symtab));
13553 uiout->text (":");
13554
13555 if (uiout->is_mi_like_p ())
13556 {
13557 const char *fullname = symtab_to_fullname (sal2.symtab);
13558
13559 uiout->field_string ("fullname", fullname);
13560 }
13561
13562 uiout->field_int ("line", sal2.line);
13563 uiout->text ("\n");
13564
13565 b->loc->line_number = sal2.line;
13566 b->loc->symtab = sym != NULL ? sal2.symtab : NULL;
13567
13568 b->location.reset (NULL);
13569 initialize_explicit_location (&explicit_loc);
13570 explicit_loc.source_filename
13571 = ASTRDUP (symtab_to_filename_for_display (sal2.symtab));
13572 explicit_loc.line_offset.offset = b->loc->line_number;
13573 explicit_loc.line_offset.sign = LINE_OFFSET_NONE;
13574 b->location = new_explicit_location (&explicit_loc);
13575
13576 /* Might be nice to check if function changed, and warn if
13577 so. */
13578
13579 release_static_tracepoint_marker (tpmarker);
13580 }
13581 }
13582 return sal;
13583 }
13584
13585 /* Returns 1 iff locations A and B are sufficiently same that
13586 we don't need to report breakpoint as changed. */
13587
13588 static int
13589 locations_are_equal (struct bp_location *a, struct bp_location *b)
13590 {
13591 while (a && b)
13592 {
13593 if (a->address != b->address)
13594 return 0;
13595
13596 if (a->shlib_disabled != b->shlib_disabled)
13597 return 0;
13598
13599 if (a->enabled != b->enabled)
13600 return 0;
13601
13602 a = a->next;
13603 b = b->next;
13604 }
13605
13606 if ((a == NULL) != (b == NULL))
13607 return 0;
13608
13609 return 1;
13610 }
13611
13612 /* Split all locations of B that are bound to PSPACE out of B's
13613 location list to a separate list and return that list's head. If
13614 PSPACE is NULL, hoist out all locations of B. */
13615
13616 static struct bp_location *
13617 hoist_existing_locations (struct breakpoint *b, struct program_space *pspace)
13618 {
13619 struct bp_location head;
13620 struct bp_location *i = b->loc;
13621 struct bp_location **i_link = &b->loc;
13622 struct bp_location *hoisted = &head;
13623
13624 if (pspace == NULL)
13625 {
13626 i = b->loc;
13627 b->loc = NULL;
13628 return i;
13629 }
13630
13631 head.next = NULL;
13632
13633 while (i != NULL)
13634 {
13635 if (i->pspace == pspace)
13636 {
13637 *i_link = i->next;
13638 i->next = NULL;
13639 hoisted->next = i;
13640 hoisted = i;
13641 }
13642 else
13643 i_link = &i->next;
13644 i = *i_link;
13645 }
13646
13647 return head.next;
13648 }
13649
13650 /* Create new breakpoint locations for B (a hardware or software
13651 breakpoint) based on SALS and SALS_END. If SALS_END.NELTS is not
13652 zero, then B is a ranged breakpoint. Only recreates locations for
13653 FILTER_PSPACE. Locations of other program spaces are left
13654 untouched. */
13655
13656 void
13657 update_breakpoint_locations (struct breakpoint *b,
13658 struct program_space *filter_pspace,
13659 gdb::array_view<const symtab_and_line> sals,
13660 gdb::array_view<const symtab_and_line> sals_end)
13661 {
13662 struct bp_location *existing_locations;
13663
13664 if (!sals_end.empty () && (sals.size () != 1 || sals_end.size () != 1))
13665 {
13666 /* Ranged breakpoints have only one start location and one end
13667 location. */
13668 b->enable_state = bp_disabled;
13669 printf_unfiltered (_("Could not reset ranged breakpoint %d: "
13670 "multiple locations found\n"),
13671 b->number);
13672 return;
13673 }
13674
13675 /* If there's no new locations, and all existing locations are
13676 pending, don't do anything. This optimizes the common case where
13677 all locations are in the same shared library, that was unloaded.
13678 We'd like to retain the location, so that when the library is
13679 loaded again, we don't loose the enabled/disabled status of the
13680 individual locations. */
13681 if (all_locations_are_pending (b, filter_pspace) && sals.empty ())
13682 return;
13683
13684 existing_locations = hoist_existing_locations (b, filter_pspace);
13685
13686 for (const auto &sal : sals)
13687 {
13688 struct bp_location *new_loc;
13689
13690 switch_to_program_space_and_thread (sal.pspace);
13691
13692 new_loc = add_location_to_breakpoint (b, &sal);
13693
13694 /* Reparse conditions, they might contain references to the
13695 old symtab. */
13696 if (b->cond_string != NULL)
13697 {
13698 const char *s;
13699
13700 s = b->cond_string;
13701 TRY
13702 {
13703 new_loc->cond = parse_exp_1 (&s, sal.pc,
13704 block_for_pc (sal.pc),
13705 0);
13706 }
13707 CATCH (e, RETURN_MASK_ERROR)
13708 {
13709 warning (_("failed to reevaluate condition "
13710 "for breakpoint %d: %s"),
13711 b->number, e.message);
13712 new_loc->enabled = 0;
13713 }
13714 END_CATCH
13715 }
13716
13717 if (!sals_end.empty ())
13718 {
13719 CORE_ADDR end = find_breakpoint_range_end (sals_end[0]);
13720
13721 new_loc->length = end - sals[0].pc + 1;
13722 }
13723 }
13724
13725 /* If possible, carry over 'disable' status from existing
13726 breakpoints. */
13727 {
13728 struct bp_location *e = existing_locations;
13729 /* If there are multiple breakpoints with the same function name,
13730 e.g. for inline functions, comparing function names won't work.
13731 Instead compare pc addresses; this is just a heuristic as things
13732 may have moved, but in practice it gives the correct answer
13733 often enough until a better solution is found. */
13734 int have_ambiguous_names = ambiguous_names_p (b->loc);
13735
13736 for (; e; e = e->next)
13737 {
13738 if (!e->enabled && e->function_name)
13739 {
13740 struct bp_location *l = b->loc;
13741 if (have_ambiguous_names)
13742 {
13743 for (; l; l = l->next)
13744 if (breakpoint_locations_match (e, l))
13745 {
13746 l->enabled = 0;
13747 break;
13748 }
13749 }
13750 else
13751 {
13752 for (; l; l = l->next)
13753 if (l->function_name
13754 && strcmp (e->function_name, l->function_name) == 0)
13755 {
13756 l->enabled = 0;
13757 break;
13758 }
13759 }
13760 }
13761 }
13762 }
13763
13764 if (!locations_are_equal (existing_locations, b->loc))
13765 observer_notify_breakpoint_modified (b);
13766 }
13767
13768 /* Find the SaL locations corresponding to the given LOCATION.
13769 On return, FOUND will be 1 if any SaL was found, zero otherwise. */
13770
13771 static std::vector<symtab_and_line>
13772 location_to_sals (struct breakpoint *b, struct event_location *location,
13773 struct program_space *search_pspace, int *found)
13774 {
13775 struct gdb_exception exception = exception_none;
13776
13777 gdb_assert (b->ops != NULL);
13778
13779 std::vector<symtab_and_line> sals;
13780
13781 TRY
13782 {
13783 sals = b->ops->decode_location (b, location, search_pspace);
13784 }
13785 CATCH (e, RETURN_MASK_ERROR)
13786 {
13787 int not_found_and_ok = 0;
13788
13789 exception = e;
13790
13791 /* For pending breakpoints, it's expected that parsing will
13792 fail until the right shared library is loaded. User has
13793 already told to create pending breakpoints and don't need
13794 extra messages. If breakpoint is in bp_shlib_disabled
13795 state, then user already saw the message about that
13796 breakpoint being disabled, and don't want to see more
13797 errors. */
13798 if (e.error == NOT_FOUND_ERROR
13799 && (b->condition_not_parsed
13800 || (b->loc != NULL
13801 && search_pspace != NULL
13802 && b->loc->pspace != search_pspace)
13803 || (b->loc && b->loc->shlib_disabled)
13804 || (b->loc && b->loc->pspace->executing_startup)
13805 || b->enable_state == bp_disabled))
13806 not_found_and_ok = 1;
13807
13808 if (!not_found_and_ok)
13809 {
13810 /* We surely don't want to warn about the same breakpoint
13811 10 times. One solution, implemented here, is disable
13812 the breakpoint on error. Another solution would be to
13813 have separate 'warning emitted' flag. Since this
13814 happens only when a binary has changed, I don't know
13815 which approach is better. */
13816 b->enable_state = bp_disabled;
13817 throw_exception (e);
13818 }
13819 }
13820 END_CATCH
13821
13822 if (exception.reason == 0 || exception.error != NOT_FOUND_ERROR)
13823 {
13824 for (auto &sal : sals)
13825 resolve_sal_pc (&sal);
13826 if (b->condition_not_parsed && b->extra_string != NULL)
13827 {
13828 char *cond_string, *extra_string;
13829 int thread, task;
13830
13831 find_condition_and_thread (b->extra_string, sals[0].pc,
13832 &cond_string, &thread, &task,
13833 &extra_string);
13834 gdb_assert (b->cond_string == NULL);
13835 if (cond_string)
13836 b->cond_string = cond_string;
13837 b->thread = thread;
13838 b->task = task;
13839 if (extra_string)
13840 {
13841 xfree (b->extra_string);
13842 b->extra_string = extra_string;
13843 }
13844 b->condition_not_parsed = 0;
13845 }
13846
13847 if (b->type == bp_static_tracepoint && !strace_marker_p (b))
13848 sals[0] = update_static_tracepoint (b, sals[0]);
13849
13850 *found = 1;
13851 }
13852 else
13853 *found = 0;
13854
13855 return sals;
13856 }
13857
13858 /* The default re_set method, for typical hardware or software
13859 breakpoints. Reevaluate the breakpoint and recreate its
13860 locations. */
13861
13862 static void
13863 breakpoint_re_set_default (struct breakpoint *b)
13864 {
13865 struct program_space *filter_pspace = current_program_space;
13866 std::vector<symtab_and_line> expanded, expanded_end;
13867
13868 int found;
13869 std::vector<symtab_and_line> sals = location_to_sals (b, b->location.get (),
13870 filter_pspace, &found);
13871 if (found)
13872 expanded = std::move (sals);
13873
13874 if (b->location_range_end != NULL)
13875 {
13876 std::vector<symtab_and_line> sals_end
13877 = location_to_sals (b, b->location_range_end.get (),
13878 filter_pspace, &found);
13879 if (found)
13880 expanded_end = std::move (sals_end);
13881 }
13882
13883 update_breakpoint_locations (b, filter_pspace, expanded, expanded_end);
13884 }
13885
13886 /* Default method for creating SALs from an address string. It basically
13887 calls parse_breakpoint_sals. Return 1 for success, zero for failure. */
13888
13889 static void
13890 create_sals_from_location_default (const struct event_location *location,
13891 struct linespec_result *canonical,
13892 enum bptype type_wanted)
13893 {
13894 parse_breakpoint_sals (location, canonical);
13895 }
13896
13897 /* Call create_breakpoints_sal for the given arguments. This is the default
13898 function for the `create_breakpoints_sal' method of
13899 breakpoint_ops. */
13900
13901 static void
13902 create_breakpoints_sal_default (struct gdbarch *gdbarch,
13903 struct linespec_result *canonical,
13904 gdb::unique_xmalloc_ptr<char> cond_string,
13905 gdb::unique_xmalloc_ptr<char> extra_string,
13906 enum bptype type_wanted,
13907 enum bpdisp disposition,
13908 int thread,
13909 int task, int ignore_count,
13910 const struct breakpoint_ops *ops,
13911 int from_tty, int enabled,
13912 int internal, unsigned flags)
13913 {
13914 create_breakpoints_sal (gdbarch, canonical,
13915 std::move (cond_string),
13916 std::move (extra_string),
13917 type_wanted, disposition,
13918 thread, task, ignore_count, ops, from_tty,
13919 enabled, internal, flags);
13920 }
13921
13922 /* Decode the line represented by S by calling decode_line_full. This is the
13923 default function for the `decode_location' method of breakpoint_ops. */
13924
13925 static std::vector<symtab_and_line>
13926 decode_location_default (struct breakpoint *b,
13927 const struct event_location *location,
13928 struct program_space *search_pspace)
13929 {
13930 struct linespec_result canonical;
13931
13932 decode_line_full (location, DECODE_LINE_FUNFIRSTLINE, search_pspace,
13933 (struct symtab *) NULL, 0,
13934 &canonical, multiple_symbols_all,
13935 b->filter);
13936
13937 /* We should get 0 or 1 resulting SALs. */
13938 gdb_assert (canonical.lsals.size () < 2);
13939
13940 if (!canonical.lsals.empty ())
13941 {
13942 const linespec_sals &lsal = canonical.lsals[0];
13943 return std::move (lsal.sals);
13944 }
13945 return {};
13946 }
13947
13948 /* Reset a breakpoint. */
13949
13950 static void
13951 breakpoint_re_set_one (breakpoint *b)
13952 {
13953 input_radix = b->input_radix;
13954 set_language (b->language);
13955
13956 b->ops->re_set (b);
13957 }
13958
13959 /* Re-set breakpoint locations for the current program space.
13960 Locations bound to other program spaces are left untouched. */
13961
13962 void
13963 breakpoint_re_set (void)
13964 {
13965 struct breakpoint *b, *b_tmp;
13966
13967 {
13968 scoped_restore_current_language save_language;
13969 scoped_restore save_input_radix = make_scoped_restore (&input_radix);
13970 scoped_restore_current_pspace_and_thread restore_pspace_thread;
13971
13972 /* Note: we must not try to insert locations until after all
13973 breakpoints have been re-set. Otherwise, e.g., when re-setting
13974 breakpoint 1, we'd insert the locations of breakpoint 2, which
13975 hadn't been re-set yet, and thus may have stale locations. */
13976
13977 ALL_BREAKPOINTS_SAFE (b, b_tmp)
13978 {
13979 TRY
13980 {
13981 breakpoint_re_set_one (b);
13982 }
13983 CATCH (ex, RETURN_MASK_ALL)
13984 {
13985 exception_fprintf (gdb_stderr, ex,
13986 "Error in re-setting breakpoint %d: ",
13987 b->number);
13988 }
13989 END_CATCH
13990 }
13991
13992 jit_breakpoint_re_set ();
13993 }
13994
13995 create_overlay_event_breakpoint ();
13996 create_longjmp_master_breakpoint ();
13997 create_std_terminate_master_breakpoint ();
13998 create_exception_master_breakpoint ();
13999
14000 /* Now we can insert. */
14001 update_global_location_list (UGLL_MAY_INSERT);
14002 }
14003 \f
14004 /* Reset the thread number of this breakpoint:
14005
14006 - If the breakpoint is for all threads, leave it as-is.
14007 - Else, reset it to the current thread for inferior_ptid. */
14008 void
14009 breakpoint_re_set_thread (struct breakpoint *b)
14010 {
14011 if (b->thread != -1)
14012 {
14013 if (in_thread_list (inferior_ptid))
14014 b->thread = ptid_to_global_thread_id (inferior_ptid);
14015
14016 /* We're being called after following a fork. The new fork is
14017 selected as current, and unless this was a vfork will have a
14018 different program space from the original thread. Reset that
14019 as well. */
14020 b->loc->pspace = current_program_space;
14021 }
14022 }
14023
14024 /* Set ignore-count of breakpoint number BPTNUM to COUNT.
14025 If from_tty is nonzero, it prints a message to that effect,
14026 which ends with a period (no newline). */
14027
14028 void
14029 set_ignore_count (int bptnum, int count, int from_tty)
14030 {
14031 struct breakpoint *b;
14032
14033 if (count < 0)
14034 count = 0;
14035
14036 ALL_BREAKPOINTS (b)
14037 if (b->number == bptnum)
14038 {
14039 if (is_tracepoint (b))
14040 {
14041 if (from_tty && count != 0)
14042 printf_filtered (_("Ignore count ignored for tracepoint %d."),
14043 bptnum);
14044 return;
14045 }
14046
14047 b->ignore_count = count;
14048 if (from_tty)
14049 {
14050 if (count == 0)
14051 printf_filtered (_("Will stop next time "
14052 "breakpoint %d is reached."),
14053 bptnum);
14054 else if (count == 1)
14055 printf_filtered (_("Will ignore next crossing of breakpoint %d."),
14056 bptnum);
14057 else
14058 printf_filtered (_("Will ignore next %d "
14059 "crossings of breakpoint %d."),
14060 count, bptnum);
14061 }
14062 observer_notify_breakpoint_modified (b);
14063 return;
14064 }
14065
14066 error (_("No breakpoint number %d."), bptnum);
14067 }
14068
14069 /* Command to set ignore-count of breakpoint N to COUNT. */
14070
14071 static void
14072 ignore_command (const char *args, int from_tty)
14073 {
14074 const char *p = args;
14075 int num;
14076
14077 if (p == 0)
14078 error_no_arg (_("a breakpoint number"));
14079
14080 num = get_number (&p);
14081 if (num == 0)
14082 error (_("bad breakpoint number: '%s'"), args);
14083 if (*p == 0)
14084 error (_("Second argument (specified ignore-count) is missing."));
14085
14086 set_ignore_count (num,
14087 longest_to_int (value_as_long (parse_and_eval (p))),
14088 from_tty);
14089 if (from_tty)
14090 printf_filtered ("\n");
14091 }
14092 \f
14093
14094 /* Call FUNCTION on each of the breakpoints with numbers in the range
14095 defined by BP_NUM_RANGE (an inclusive range). */
14096
14097 static void
14098 map_breakpoint_number_range (std::pair<int, int> bp_num_range,
14099 gdb::function_view<void (breakpoint *)> function)
14100 {
14101 if (bp_num_range.first == 0)
14102 {
14103 warning (_("bad breakpoint number at or near '%d'"),
14104 bp_num_range.first);
14105 }
14106 else
14107 {
14108 struct breakpoint *b, *tmp;
14109
14110 for (int i = bp_num_range.first; i <= bp_num_range.second; i++)
14111 {
14112 bool match = false;
14113
14114 ALL_BREAKPOINTS_SAFE (b, tmp)
14115 if (b->number == i)
14116 {
14117 match = true;
14118 function (b);
14119 break;
14120 }
14121 if (!match)
14122 printf_unfiltered (_("No breakpoint number %d.\n"), i);
14123 }
14124 }
14125 }
14126
14127 /* Call FUNCTION on each of the breakpoints whose numbers are given in
14128 ARGS. */
14129
14130 static void
14131 map_breakpoint_numbers (const char *args,
14132 gdb::function_view<void (breakpoint *)> function)
14133 {
14134 if (args == NULL || *args == '\0')
14135 error_no_arg (_("one or more breakpoint numbers"));
14136
14137 number_or_range_parser parser (args);
14138
14139 while (!parser.finished ())
14140 {
14141 int num = parser.get_number ();
14142 map_breakpoint_number_range (std::make_pair (num, num), function);
14143 }
14144 }
14145
14146 /* Return the breakpoint location structure corresponding to the
14147 BP_NUM and LOC_NUM values. */
14148
14149 static struct bp_location *
14150 find_location_by_number (int bp_num, int loc_num)
14151 {
14152 struct breakpoint *b;
14153
14154 ALL_BREAKPOINTS (b)
14155 if (b->number == bp_num)
14156 {
14157 break;
14158 }
14159
14160 if (!b || b->number != bp_num)
14161 error (_("Bad breakpoint number '%d'"), bp_num);
14162
14163 if (loc_num == 0)
14164 error (_("Bad breakpoint location number '%d'"), loc_num);
14165
14166 int n = 0;
14167 for (bp_location *loc = b->loc; loc != NULL; loc = loc->next)
14168 if (++n == loc_num)
14169 return loc;
14170
14171 error (_("Bad breakpoint location number '%d'"), loc_num);
14172 }
14173
14174 /* Modes of operation for extract_bp_num. */
14175 enum class extract_bp_kind
14176 {
14177 /* Extracting a breakpoint number. */
14178 bp,
14179
14180 /* Extracting a location number. */
14181 loc,
14182 };
14183
14184 /* Extract a breakpoint or location number (as determined by KIND)
14185 from the string starting at START. TRAILER is a character which
14186 can be found after the number. If you don't want a trailer, use
14187 '\0'. If END_OUT is not NULL, it is set to point after the parsed
14188 string. This always returns a positive integer. */
14189
14190 static int
14191 extract_bp_num (extract_bp_kind kind, const char *start,
14192 int trailer, const char **end_out = NULL)
14193 {
14194 const char *end = start;
14195 int num = get_number_trailer (&end, trailer);
14196 if (num < 0)
14197 error (kind == extract_bp_kind::bp
14198 ? _("Negative breakpoint number '%.*s'")
14199 : _("Negative breakpoint location number '%.*s'"),
14200 int (end - start), start);
14201 if (num == 0)
14202 error (kind == extract_bp_kind::bp
14203 ? _("Bad breakpoint number '%.*s'")
14204 : _("Bad breakpoint location number '%.*s'"),
14205 int (end - start), start);
14206
14207 if (end_out != NULL)
14208 *end_out = end;
14209 return num;
14210 }
14211
14212 /* Extract a breakpoint or location range (as determined by KIND) in
14213 the form NUM1-NUM2 stored at &ARG[arg_offset]. Returns a std::pair
14214 representing the (inclusive) range. The returned pair's elements
14215 are always positive integers. */
14216
14217 static std::pair<int, int>
14218 extract_bp_or_bp_range (extract_bp_kind kind,
14219 const std::string &arg,
14220 std::string::size_type arg_offset)
14221 {
14222 std::pair<int, int> range;
14223 const char *bp_loc = &arg[arg_offset];
14224 std::string::size_type dash = arg.find ('-', arg_offset);
14225 if (dash != std::string::npos)
14226 {
14227 /* bp_loc is a range (x-z). */
14228 if (arg.length () == dash + 1)
14229 error (kind == extract_bp_kind::bp
14230 ? _("Bad breakpoint number at or near: '%s'")
14231 : _("Bad breakpoint location number at or near: '%s'"),
14232 bp_loc);
14233
14234 const char *end;
14235 const char *start_first = bp_loc;
14236 const char *start_second = &arg[dash + 1];
14237 range.first = extract_bp_num (kind, start_first, '-');
14238 range.second = extract_bp_num (kind, start_second, '\0', &end);
14239
14240 if (range.first > range.second)
14241 error (kind == extract_bp_kind::bp
14242 ? _("Inverted breakpoint range at '%.*s'")
14243 : _("Inverted breakpoint location range at '%.*s'"),
14244 int (end - start_first), start_first);
14245 }
14246 else
14247 {
14248 /* bp_loc is a single value. */
14249 range.first = extract_bp_num (kind, bp_loc, '\0');
14250 range.second = range.first;
14251 }
14252 return range;
14253 }
14254
14255 /* Extract the breakpoint/location range specified by ARG. Returns
14256 the breakpoint range in BP_NUM_RANGE, and the location range in
14257 BP_LOC_RANGE.
14258
14259 ARG may be in any of the following forms:
14260
14261 x where 'x' is a breakpoint number.
14262 x-y where 'x' and 'y' specify a breakpoint numbers range.
14263 x.y where 'x' is a breakpoint number and 'y' a location number.
14264 x.y-z where 'x' is a breakpoint number and 'y' and 'z' specify a
14265 location number range.
14266 */
14267
14268 static void
14269 extract_bp_number_and_location (const std::string &arg,
14270 std::pair<int, int> &bp_num_range,
14271 std::pair<int, int> &bp_loc_range)
14272 {
14273 std::string::size_type dot = arg.find ('.');
14274
14275 if (dot != std::string::npos)
14276 {
14277 /* Handle 'x.y' and 'x.y-z' cases. */
14278
14279 if (arg.length () == dot + 1 || dot == 0)
14280 error (_("Bad breakpoint number at or near: '%s'"), arg.c_str ());
14281
14282 bp_num_range.first
14283 = extract_bp_num (extract_bp_kind::bp, arg.c_str (), '.');
14284 bp_num_range.second = bp_num_range.first;
14285
14286 bp_loc_range = extract_bp_or_bp_range (extract_bp_kind::loc,
14287 arg, dot + 1);
14288 }
14289 else
14290 {
14291 /* Handle x and x-y cases. */
14292
14293 bp_num_range = extract_bp_or_bp_range (extract_bp_kind::bp, arg, 0);
14294 bp_loc_range.first = 0;
14295 bp_loc_range.second = 0;
14296 }
14297 }
14298
14299 /* Enable or disable a breakpoint location BP_NUM.LOC_NUM. ENABLE
14300 specifies whether to enable or disable. */
14301
14302 static void
14303 enable_disable_bp_num_loc (int bp_num, int loc_num, bool enable)
14304 {
14305 struct bp_location *loc = find_location_by_number (bp_num, loc_num);
14306 if (loc != NULL)
14307 {
14308 if (loc->enabled != enable)
14309 {
14310 loc->enabled = enable;
14311 mark_breakpoint_location_modified (loc);
14312 }
14313 if (target_supports_enable_disable_tracepoint ()
14314 && current_trace_status ()->running && loc->owner
14315 && is_tracepoint (loc->owner))
14316 target_disable_tracepoint (loc);
14317 }
14318 update_global_location_list (UGLL_DONT_INSERT);
14319 }
14320
14321 /* Enable or disable a range of breakpoint locations. BP_NUM is the
14322 number of the breakpoint, and BP_LOC_RANGE specifies the
14323 (inclusive) range of location numbers of that breakpoint to
14324 enable/disable. ENABLE specifies whether to enable or disable the
14325 location. */
14326
14327 static void
14328 enable_disable_breakpoint_location_range (int bp_num,
14329 std::pair<int, int> &bp_loc_range,
14330 bool enable)
14331 {
14332 for (int i = bp_loc_range.first; i <= bp_loc_range.second; i++)
14333 enable_disable_bp_num_loc (bp_num, i, enable);
14334 }
14335
14336 /* Set ignore-count of breakpoint number BPTNUM to COUNT.
14337 If from_tty is nonzero, it prints a message to that effect,
14338 which ends with a period (no newline). */
14339
14340 void
14341 disable_breakpoint (struct breakpoint *bpt)
14342 {
14343 /* Never disable a watchpoint scope breakpoint; we want to
14344 hit them when we leave scope so we can delete both the
14345 watchpoint and its scope breakpoint at that time. */
14346 if (bpt->type == bp_watchpoint_scope)
14347 return;
14348
14349 bpt->enable_state = bp_disabled;
14350
14351 /* Mark breakpoint locations modified. */
14352 mark_breakpoint_modified (bpt);
14353
14354 if (target_supports_enable_disable_tracepoint ()
14355 && current_trace_status ()->running && is_tracepoint (bpt))
14356 {
14357 struct bp_location *location;
14358
14359 for (location = bpt->loc; location; location = location->next)
14360 target_disable_tracepoint (location);
14361 }
14362
14363 update_global_location_list (UGLL_DONT_INSERT);
14364
14365 observer_notify_breakpoint_modified (bpt);
14366 }
14367
14368 /* Enable or disable the breakpoint(s) or breakpoint location(s)
14369 specified in ARGS. ARGS may be in any of the formats handled by
14370 extract_bp_number_and_location. ENABLE specifies whether to enable
14371 or disable the breakpoints/locations. */
14372
14373 static void
14374 enable_disable_command (const char *args, int from_tty, bool enable)
14375 {
14376 if (args == 0)
14377 {
14378 struct breakpoint *bpt;
14379
14380 ALL_BREAKPOINTS (bpt)
14381 if (user_breakpoint_p (bpt))
14382 {
14383 if (enable)
14384 enable_breakpoint (bpt);
14385 else
14386 disable_breakpoint (bpt);
14387 }
14388 }
14389 else
14390 {
14391 std::string num = extract_arg (&args);
14392
14393 while (!num.empty ())
14394 {
14395 std::pair<int, int> bp_num_range, bp_loc_range;
14396
14397 extract_bp_number_and_location (num, bp_num_range, bp_loc_range);
14398
14399 if (bp_loc_range.first == bp_loc_range.second
14400 && bp_loc_range.first == 0)
14401 {
14402 /* Handle breakpoint ids with formats 'x' or 'x-z'. */
14403 map_breakpoint_number_range (bp_num_range,
14404 enable
14405 ? enable_breakpoint
14406 : disable_breakpoint);
14407 }
14408 else
14409 {
14410 /* Handle breakpoint ids with formats 'x.y' or
14411 'x.y-z'. */
14412 enable_disable_breakpoint_location_range
14413 (bp_num_range.first, bp_loc_range, enable);
14414 }
14415 num = extract_arg (&args);
14416 }
14417 }
14418 }
14419
14420 /* The disable command disables the specified breakpoints/locations
14421 (or all defined breakpoints) so they're no longer effective in
14422 stopping the inferior. ARGS may be in any of the forms defined in
14423 extract_bp_number_and_location. */
14424
14425 static void
14426 disable_command (const char *args, int from_tty)
14427 {
14428 enable_disable_command (args, from_tty, false);
14429 }
14430
14431 static void
14432 enable_breakpoint_disp (struct breakpoint *bpt, enum bpdisp disposition,
14433 int count)
14434 {
14435 int target_resources_ok;
14436
14437 if (bpt->type == bp_hardware_breakpoint)
14438 {
14439 int i;
14440 i = hw_breakpoint_used_count ();
14441 target_resources_ok =
14442 target_can_use_hardware_watchpoint (bp_hardware_breakpoint,
14443 i + 1, 0);
14444 if (target_resources_ok == 0)
14445 error (_("No hardware breakpoint support in the target."));
14446 else if (target_resources_ok < 0)
14447 error (_("Hardware breakpoints used exceeds limit."));
14448 }
14449
14450 if (is_watchpoint (bpt))
14451 {
14452 /* Initialize it just to avoid a GCC false warning. */
14453 enum enable_state orig_enable_state = bp_disabled;
14454
14455 TRY
14456 {
14457 struct watchpoint *w = (struct watchpoint *) bpt;
14458
14459 orig_enable_state = bpt->enable_state;
14460 bpt->enable_state = bp_enabled;
14461 update_watchpoint (w, 1 /* reparse */);
14462 }
14463 CATCH (e, RETURN_MASK_ALL)
14464 {
14465 bpt->enable_state = orig_enable_state;
14466 exception_fprintf (gdb_stderr, e, _("Cannot enable watchpoint %d: "),
14467 bpt->number);
14468 return;
14469 }
14470 END_CATCH
14471 }
14472
14473 bpt->enable_state = bp_enabled;
14474
14475 /* Mark breakpoint locations modified. */
14476 mark_breakpoint_modified (bpt);
14477
14478 if (target_supports_enable_disable_tracepoint ()
14479 && current_trace_status ()->running && is_tracepoint (bpt))
14480 {
14481 struct bp_location *location;
14482
14483 for (location = bpt->loc; location; location = location->next)
14484 target_enable_tracepoint (location);
14485 }
14486
14487 bpt->disposition = disposition;
14488 bpt->enable_count = count;
14489 update_global_location_list (UGLL_MAY_INSERT);
14490
14491 observer_notify_breakpoint_modified (bpt);
14492 }
14493
14494
14495 void
14496 enable_breakpoint (struct breakpoint *bpt)
14497 {
14498 enable_breakpoint_disp (bpt, bpt->disposition, 0);
14499 }
14500
14501 /* The enable command enables the specified breakpoints/locations (or
14502 all defined breakpoints) so they once again become (or continue to
14503 be) effective in stopping the inferior. ARGS may be in any of the
14504 forms defined in extract_bp_number_and_location. */
14505
14506 static void
14507 enable_command (const char *args, int from_tty)
14508 {
14509 enable_disable_command (args, from_tty, true);
14510 }
14511
14512 static void
14513 enable_once_command (const char *args, int from_tty)
14514 {
14515 map_breakpoint_numbers
14516 (args, [&] (breakpoint *b)
14517 {
14518 iterate_over_related_breakpoints
14519 (b, [&] (breakpoint *bpt)
14520 {
14521 enable_breakpoint_disp (bpt, disp_disable, 1);
14522 });
14523 });
14524 }
14525
14526 static void
14527 enable_count_command (const char *args, int from_tty)
14528 {
14529 int count;
14530
14531 if (args == NULL)
14532 error_no_arg (_("hit count"));
14533
14534 count = get_number (&args);
14535
14536 map_breakpoint_numbers
14537 (args, [&] (breakpoint *b)
14538 {
14539 iterate_over_related_breakpoints
14540 (b, [&] (breakpoint *bpt)
14541 {
14542 enable_breakpoint_disp (bpt, disp_disable, count);
14543 });
14544 });
14545 }
14546
14547 static void
14548 enable_delete_command (const char *args, int from_tty)
14549 {
14550 map_breakpoint_numbers
14551 (args, [&] (breakpoint *b)
14552 {
14553 iterate_over_related_breakpoints
14554 (b, [&] (breakpoint *bpt)
14555 {
14556 enable_breakpoint_disp (bpt, disp_del, 1);
14557 });
14558 });
14559 }
14560 \f
14561 static void
14562 set_breakpoint_cmd (const char *args, int from_tty)
14563 {
14564 }
14565
14566 static void
14567 show_breakpoint_cmd (const char *args, int from_tty)
14568 {
14569 }
14570
14571 /* Invalidate last known value of any hardware watchpoint if
14572 the memory which that value represents has been written to by
14573 GDB itself. */
14574
14575 static void
14576 invalidate_bp_value_on_memory_change (struct inferior *inferior,
14577 CORE_ADDR addr, ssize_t len,
14578 const bfd_byte *data)
14579 {
14580 struct breakpoint *bp;
14581
14582 ALL_BREAKPOINTS (bp)
14583 if (bp->enable_state == bp_enabled
14584 && bp->type == bp_hardware_watchpoint)
14585 {
14586 struct watchpoint *wp = (struct watchpoint *) bp;
14587
14588 if (wp->val_valid && wp->val)
14589 {
14590 struct bp_location *loc;
14591
14592 for (loc = bp->loc; loc != NULL; loc = loc->next)
14593 if (loc->loc_type == bp_loc_hardware_watchpoint
14594 && loc->address + loc->length > addr
14595 && addr + len > loc->address)
14596 {
14597 value_free (wp->val);
14598 wp->val = NULL;
14599 wp->val_valid = 0;
14600 }
14601 }
14602 }
14603 }
14604
14605 /* Create and insert a breakpoint for software single step. */
14606
14607 void
14608 insert_single_step_breakpoint (struct gdbarch *gdbarch,
14609 const address_space *aspace,
14610 CORE_ADDR next_pc)
14611 {
14612 struct thread_info *tp = inferior_thread ();
14613 struct symtab_and_line sal;
14614 CORE_ADDR pc = next_pc;
14615
14616 if (tp->control.single_step_breakpoints == NULL)
14617 {
14618 tp->control.single_step_breakpoints
14619 = new_single_step_breakpoint (tp->global_num, gdbarch);
14620 }
14621
14622 sal = find_pc_line (pc, 0);
14623 sal.pc = pc;
14624 sal.section = find_pc_overlay (pc);
14625 sal.explicit_pc = 1;
14626 add_location_to_breakpoint (tp->control.single_step_breakpoints, &sal);
14627
14628 update_global_location_list (UGLL_INSERT);
14629 }
14630
14631 /* Insert single step breakpoints according to the current state. */
14632
14633 int
14634 insert_single_step_breakpoints (struct gdbarch *gdbarch)
14635 {
14636 struct regcache *regcache = get_current_regcache ();
14637 std::vector<CORE_ADDR> next_pcs;
14638
14639 next_pcs = gdbarch_software_single_step (gdbarch, regcache);
14640
14641 if (!next_pcs.empty ())
14642 {
14643 struct frame_info *frame = get_current_frame ();
14644 const address_space *aspace = get_frame_address_space (frame);
14645
14646 for (CORE_ADDR pc : next_pcs)
14647 insert_single_step_breakpoint (gdbarch, aspace, pc);
14648
14649 return 1;
14650 }
14651 else
14652 return 0;
14653 }
14654
14655 /* See breakpoint.h. */
14656
14657 int
14658 breakpoint_has_location_inserted_here (struct breakpoint *bp,
14659 const address_space *aspace,
14660 CORE_ADDR pc)
14661 {
14662 struct bp_location *loc;
14663
14664 for (loc = bp->loc; loc != NULL; loc = loc->next)
14665 if (loc->inserted
14666 && breakpoint_location_address_match (loc, aspace, pc))
14667 return 1;
14668
14669 return 0;
14670 }
14671
14672 /* Check whether a software single-step breakpoint is inserted at
14673 PC. */
14674
14675 int
14676 single_step_breakpoint_inserted_here_p (const address_space *aspace,
14677 CORE_ADDR pc)
14678 {
14679 struct breakpoint *bpt;
14680
14681 ALL_BREAKPOINTS (bpt)
14682 {
14683 if (bpt->type == bp_single_step
14684 && breakpoint_has_location_inserted_here (bpt, aspace, pc))
14685 return 1;
14686 }
14687 return 0;
14688 }
14689
14690 /* Tracepoint-specific operations. */
14691
14692 /* Set tracepoint count to NUM. */
14693 static void
14694 set_tracepoint_count (int num)
14695 {
14696 tracepoint_count = num;
14697 set_internalvar_integer (lookup_internalvar ("tpnum"), num);
14698 }
14699
14700 static void
14701 trace_command (const char *arg, int from_tty)
14702 {
14703 struct breakpoint_ops *ops;
14704
14705 event_location_up location = string_to_event_location (&arg,
14706 current_language);
14707 if (location != NULL
14708 && event_location_type (location.get ()) == PROBE_LOCATION)
14709 ops = &tracepoint_probe_breakpoint_ops;
14710 else
14711 ops = &tracepoint_breakpoint_ops;
14712
14713 create_breakpoint (get_current_arch (),
14714 location.get (),
14715 NULL, 0, arg, 1 /* parse arg */,
14716 0 /* tempflag */,
14717 bp_tracepoint /* type_wanted */,
14718 0 /* Ignore count */,
14719 pending_break_support,
14720 ops,
14721 from_tty,
14722 1 /* enabled */,
14723 0 /* internal */, 0);
14724 }
14725
14726 static void
14727 ftrace_command (const char *arg, int from_tty)
14728 {
14729 event_location_up location = string_to_event_location (&arg,
14730 current_language);
14731 create_breakpoint (get_current_arch (),
14732 location.get (),
14733 NULL, 0, arg, 1 /* parse arg */,
14734 0 /* tempflag */,
14735 bp_fast_tracepoint /* type_wanted */,
14736 0 /* Ignore count */,
14737 pending_break_support,
14738 &tracepoint_breakpoint_ops,
14739 from_tty,
14740 1 /* enabled */,
14741 0 /* internal */, 0);
14742 }
14743
14744 /* strace command implementation. Creates a static tracepoint. */
14745
14746 static void
14747 strace_command (const char *arg, int from_tty)
14748 {
14749 struct breakpoint_ops *ops;
14750 event_location_up location;
14751
14752 /* Decide if we are dealing with a static tracepoint marker (`-m'),
14753 or with a normal static tracepoint. */
14754 if (arg && startswith (arg, "-m") && isspace (arg[2]))
14755 {
14756 ops = &strace_marker_breakpoint_ops;
14757 location = new_linespec_location (&arg, symbol_name_match_type::FULL);
14758 }
14759 else
14760 {
14761 ops = &tracepoint_breakpoint_ops;
14762 location = string_to_event_location (&arg, current_language);
14763 }
14764
14765 create_breakpoint (get_current_arch (),
14766 location.get (),
14767 NULL, 0, arg, 1 /* parse arg */,
14768 0 /* tempflag */,
14769 bp_static_tracepoint /* type_wanted */,
14770 0 /* Ignore count */,
14771 pending_break_support,
14772 ops,
14773 from_tty,
14774 1 /* enabled */,
14775 0 /* internal */, 0);
14776 }
14777
14778 /* Set up a fake reader function that gets command lines from a linked
14779 list that was acquired during tracepoint uploading. */
14780
14781 static struct uploaded_tp *this_utp;
14782 static int next_cmd;
14783
14784 static char *
14785 read_uploaded_action (void)
14786 {
14787 char *rslt;
14788
14789 VEC_iterate (char_ptr, this_utp->cmd_strings, next_cmd, rslt);
14790
14791 next_cmd++;
14792
14793 return rslt;
14794 }
14795
14796 /* Given information about a tracepoint as recorded on a target (which
14797 can be either a live system or a trace file), attempt to create an
14798 equivalent GDB tracepoint. This is not a reliable process, since
14799 the target does not necessarily have all the information used when
14800 the tracepoint was originally defined. */
14801
14802 struct tracepoint *
14803 create_tracepoint_from_upload (struct uploaded_tp *utp)
14804 {
14805 const char *addr_str;
14806 char small_buf[100];
14807 struct tracepoint *tp;
14808
14809 if (utp->at_string)
14810 addr_str = utp->at_string;
14811 else
14812 {
14813 /* In the absence of a source location, fall back to raw
14814 address. Since there is no way to confirm that the address
14815 means the same thing as when the trace was started, warn the
14816 user. */
14817 warning (_("Uploaded tracepoint %d has no "
14818 "source location, using raw address"),
14819 utp->number);
14820 xsnprintf (small_buf, sizeof (small_buf), "*%s", hex_string (utp->addr));
14821 addr_str = small_buf;
14822 }
14823
14824 /* There's not much we can do with a sequence of bytecodes. */
14825 if (utp->cond && !utp->cond_string)
14826 warning (_("Uploaded tracepoint %d condition "
14827 "has no source form, ignoring it"),
14828 utp->number);
14829
14830 event_location_up location = string_to_event_location (&addr_str,
14831 current_language);
14832 if (!create_breakpoint (get_current_arch (),
14833 location.get (),
14834 utp->cond_string, -1, addr_str,
14835 0 /* parse cond/thread */,
14836 0 /* tempflag */,
14837 utp->type /* type_wanted */,
14838 0 /* Ignore count */,
14839 pending_break_support,
14840 &tracepoint_breakpoint_ops,
14841 0 /* from_tty */,
14842 utp->enabled /* enabled */,
14843 0 /* internal */,
14844 CREATE_BREAKPOINT_FLAGS_INSERTED))
14845 return NULL;
14846
14847 /* Get the tracepoint we just created. */
14848 tp = get_tracepoint (tracepoint_count);
14849 gdb_assert (tp != NULL);
14850
14851 if (utp->pass > 0)
14852 {
14853 xsnprintf (small_buf, sizeof (small_buf), "%d %d", utp->pass,
14854 tp->number);
14855
14856 trace_pass_command (small_buf, 0);
14857 }
14858
14859 /* If we have uploaded versions of the original commands, set up a
14860 special-purpose "reader" function and call the usual command line
14861 reader, then pass the result to the breakpoint command-setting
14862 function. */
14863 if (!VEC_empty (char_ptr, utp->cmd_strings))
14864 {
14865 command_line_up cmd_list;
14866
14867 this_utp = utp;
14868 next_cmd = 0;
14869
14870 cmd_list = read_command_lines_1 (read_uploaded_action, 1, NULL, NULL);
14871
14872 breakpoint_set_commands (tp, std::move (cmd_list));
14873 }
14874 else if (!VEC_empty (char_ptr, utp->actions)
14875 || !VEC_empty (char_ptr, utp->step_actions))
14876 warning (_("Uploaded tracepoint %d actions "
14877 "have no source form, ignoring them"),
14878 utp->number);
14879
14880 /* Copy any status information that might be available. */
14881 tp->hit_count = utp->hit_count;
14882 tp->traceframe_usage = utp->traceframe_usage;
14883
14884 return tp;
14885 }
14886
14887 /* Print information on tracepoint number TPNUM_EXP, or all if
14888 omitted. */
14889
14890 static void
14891 info_tracepoints_command (const char *args, int from_tty)
14892 {
14893 struct ui_out *uiout = current_uiout;
14894 int num_printed;
14895
14896 num_printed = breakpoint_1 (args, 0, is_tracepoint);
14897
14898 if (num_printed == 0)
14899 {
14900 if (args == NULL || *args == '\0')
14901 uiout->message ("No tracepoints.\n");
14902 else
14903 uiout->message ("No tracepoint matching '%s'.\n", args);
14904 }
14905
14906 default_collect_info ();
14907 }
14908
14909 /* The 'enable trace' command enables tracepoints.
14910 Not supported by all targets. */
14911 static void
14912 enable_trace_command (const char *args, int from_tty)
14913 {
14914 enable_command (args, from_tty);
14915 }
14916
14917 /* The 'disable trace' command disables tracepoints.
14918 Not supported by all targets. */
14919 static void
14920 disable_trace_command (const char *args, int from_tty)
14921 {
14922 disable_command (args, from_tty);
14923 }
14924
14925 /* Remove a tracepoint (or all if no argument). */
14926 static void
14927 delete_trace_command (const char *arg, int from_tty)
14928 {
14929 struct breakpoint *b, *b_tmp;
14930
14931 dont_repeat ();
14932
14933 if (arg == 0)
14934 {
14935 int breaks_to_delete = 0;
14936
14937 /* Delete all breakpoints if no argument.
14938 Do not delete internal or call-dummy breakpoints, these
14939 have to be deleted with an explicit breakpoint number
14940 argument. */
14941 ALL_TRACEPOINTS (b)
14942 if (is_tracepoint (b) && user_breakpoint_p (b))
14943 {
14944 breaks_to_delete = 1;
14945 break;
14946 }
14947
14948 /* Ask user only if there are some breakpoints to delete. */
14949 if (!from_tty
14950 || (breaks_to_delete && query (_("Delete all tracepoints? "))))
14951 {
14952 ALL_BREAKPOINTS_SAFE (b, b_tmp)
14953 if (is_tracepoint (b) && user_breakpoint_p (b))
14954 delete_breakpoint (b);
14955 }
14956 }
14957 else
14958 map_breakpoint_numbers
14959 (arg, [&] (breakpoint *b)
14960 {
14961 iterate_over_related_breakpoints (b, delete_breakpoint);
14962 });
14963 }
14964
14965 /* Helper function for trace_pass_command. */
14966
14967 static void
14968 trace_pass_set_count (struct tracepoint *tp, int count, int from_tty)
14969 {
14970 tp->pass_count = count;
14971 observer_notify_breakpoint_modified (tp);
14972 if (from_tty)
14973 printf_filtered (_("Setting tracepoint %d's passcount to %d\n"),
14974 tp->number, count);
14975 }
14976
14977 /* Set passcount for tracepoint.
14978
14979 First command argument is passcount, second is tracepoint number.
14980 If tracepoint number omitted, apply to most recently defined.
14981 Also accepts special argument "all". */
14982
14983 static void
14984 trace_pass_command (const char *args, int from_tty)
14985 {
14986 struct tracepoint *t1;
14987 ULONGEST count;
14988
14989 if (args == 0 || *args == 0)
14990 error (_("passcount command requires an "
14991 "argument (count + optional TP num)"));
14992
14993 count = strtoulst (args, &args, 10); /* Count comes first, then TP num. */
14994
14995 args = skip_spaces (args);
14996 if (*args && strncasecmp (args, "all", 3) == 0)
14997 {
14998 struct breakpoint *b;
14999
15000 args += 3; /* Skip special argument "all". */
15001 if (*args)
15002 error (_("Junk at end of arguments."));
15003
15004 ALL_TRACEPOINTS (b)
15005 {
15006 t1 = (struct tracepoint *) b;
15007 trace_pass_set_count (t1, count, from_tty);
15008 }
15009 }
15010 else if (*args == '\0')
15011 {
15012 t1 = get_tracepoint_by_number (&args, NULL);
15013 if (t1)
15014 trace_pass_set_count (t1, count, from_tty);
15015 }
15016 else
15017 {
15018 number_or_range_parser parser (args);
15019 while (!parser.finished ())
15020 {
15021 t1 = get_tracepoint_by_number (&args, &parser);
15022 if (t1)
15023 trace_pass_set_count (t1, count, from_tty);
15024 }
15025 }
15026 }
15027
15028 struct tracepoint *
15029 get_tracepoint (int num)
15030 {
15031 struct breakpoint *t;
15032
15033 ALL_TRACEPOINTS (t)
15034 if (t->number == num)
15035 return (struct tracepoint *) t;
15036
15037 return NULL;
15038 }
15039
15040 /* Find the tracepoint with the given target-side number (which may be
15041 different from the tracepoint number after disconnecting and
15042 reconnecting). */
15043
15044 struct tracepoint *
15045 get_tracepoint_by_number_on_target (int num)
15046 {
15047 struct breakpoint *b;
15048
15049 ALL_TRACEPOINTS (b)
15050 {
15051 struct tracepoint *t = (struct tracepoint *) b;
15052
15053 if (t->number_on_target == num)
15054 return t;
15055 }
15056
15057 return NULL;
15058 }
15059
15060 /* Utility: parse a tracepoint number and look it up in the list.
15061 If STATE is not NULL, use, get_number_or_range_state and ignore ARG.
15062 If the argument is missing, the most recent tracepoint
15063 (tracepoint_count) is returned. */
15064
15065 struct tracepoint *
15066 get_tracepoint_by_number (const char **arg,
15067 number_or_range_parser *parser)
15068 {
15069 struct breakpoint *t;
15070 int tpnum;
15071 const char *instring = arg == NULL ? NULL : *arg;
15072
15073 if (parser != NULL)
15074 {
15075 gdb_assert (!parser->finished ());
15076 tpnum = parser->get_number ();
15077 }
15078 else if (arg == NULL || *arg == NULL || ! **arg)
15079 tpnum = tracepoint_count;
15080 else
15081 tpnum = get_number (arg);
15082
15083 if (tpnum <= 0)
15084 {
15085 if (instring && *instring)
15086 printf_filtered (_("bad tracepoint number at or near '%s'\n"),
15087 instring);
15088 else
15089 printf_filtered (_("No previous tracepoint\n"));
15090 return NULL;
15091 }
15092
15093 ALL_TRACEPOINTS (t)
15094 if (t->number == tpnum)
15095 {
15096 return (struct tracepoint *) t;
15097 }
15098
15099 printf_unfiltered ("No tracepoint number %d.\n", tpnum);
15100 return NULL;
15101 }
15102
15103 void
15104 print_recreate_thread (struct breakpoint *b, struct ui_file *fp)
15105 {
15106 if (b->thread != -1)
15107 fprintf_unfiltered (fp, " thread %d", b->thread);
15108
15109 if (b->task != 0)
15110 fprintf_unfiltered (fp, " task %d", b->task);
15111
15112 fprintf_unfiltered (fp, "\n");
15113 }
15114
15115 /* Save information on user settable breakpoints (watchpoints, etc) to
15116 a new script file named FILENAME. If FILTER is non-NULL, call it
15117 on each breakpoint and only include the ones for which it returns
15118 non-zero. */
15119
15120 static void
15121 save_breakpoints (const char *filename, int from_tty,
15122 int (*filter) (const struct breakpoint *))
15123 {
15124 struct breakpoint *tp;
15125 int any = 0;
15126 int extra_trace_bits = 0;
15127
15128 if (filename == 0 || *filename == 0)
15129 error (_("Argument required (file name in which to save)"));
15130
15131 /* See if we have anything to save. */
15132 ALL_BREAKPOINTS (tp)
15133 {
15134 /* Skip internal and momentary breakpoints. */
15135 if (!user_breakpoint_p (tp))
15136 continue;
15137
15138 /* If we have a filter, only save the breakpoints it accepts. */
15139 if (filter && !filter (tp))
15140 continue;
15141
15142 any = 1;
15143
15144 if (is_tracepoint (tp))
15145 {
15146 extra_trace_bits = 1;
15147
15148 /* We can stop searching. */
15149 break;
15150 }
15151 }
15152
15153 if (!any)
15154 {
15155 warning (_("Nothing to save."));
15156 return;
15157 }
15158
15159 gdb::unique_xmalloc_ptr<char> expanded_filename (tilde_expand (filename));
15160
15161 stdio_file fp;
15162
15163 if (!fp.open (expanded_filename.get (), "w"))
15164 error (_("Unable to open file '%s' for saving (%s)"),
15165 expanded_filename.get (), safe_strerror (errno));
15166
15167 if (extra_trace_bits)
15168 save_trace_state_variables (&fp);
15169
15170 ALL_BREAKPOINTS (tp)
15171 {
15172 /* Skip internal and momentary breakpoints. */
15173 if (!user_breakpoint_p (tp))
15174 continue;
15175
15176 /* If we have a filter, only save the breakpoints it accepts. */
15177 if (filter && !filter (tp))
15178 continue;
15179
15180 tp->ops->print_recreate (tp, &fp);
15181
15182 /* Note, we can't rely on tp->number for anything, as we can't
15183 assume the recreated breakpoint numbers will match. Use $bpnum
15184 instead. */
15185
15186 if (tp->cond_string)
15187 fp.printf (" condition $bpnum %s\n", tp->cond_string);
15188
15189 if (tp->ignore_count)
15190 fp.printf (" ignore $bpnum %d\n", tp->ignore_count);
15191
15192 if (tp->type != bp_dprintf && tp->commands)
15193 {
15194 fp.puts (" commands\n");
15195
15196 current_uiout->redirect (&fp);
15197 TRY
15198 {
15199 print_command_lines (current_uiout, tp->commands.get (), 2);
15200 }
15201 CATCH (ex, RETURN_MASK_ALL)
15202 {
15203 current_uiout->redirect (NULL);
15204 throw_exception (ex);
15205 }
15206 END_CATCH
15207
15208 current_uiout->redirect (NULL);
15209 fp.puts (" end\n");
15210 }
15211
15212 if (tp->enable_state == bp_disabled)
15213 fp.puts ("disable $bpnum\n");
15214
15215 /* If this is a multi-location breakpoint, check if the locations
15216 should be individually disabled. Watchpoint locations are
15217 special, and not user visible. */
15218 if (!is_watchpoint (tp) && tp->loc && tp->loc->next)
15219 {
15220 struct bp_location *loc;
15221 int n = 1;
15222
15223 for (loc = tp->loc; loc != NULL; loc = loc->next, n++)
15224 if (!loc->enabled)
15225 fp.printf ("disable $bpnum.%d\n", n);
15226 }
15227 }
15228
15229 if (extra_trace_bits && *default_collect)
15230 fp.printf ("set default-collect %s\n", default_collect);
15231
15232 if (from_tty)
15233 printf_filtered (_("Saved to file '%s'.\n"), expanded_filename.get ());
15234 }
15235
15236 /* The `save breakpoints' command. */
15237
15238 static void
15239 save_breakpoints_command (const char *args, int from_tty)
15240 {
15241 save_breakpoints (args, from_tty, NULL);
15242 }
15243
15244 /* The `save tracepoints' command. */
15245
15246 static void
15247 save_tracepoints_command (const char *args, int from_tty)
15248 {
15249 save_breakpoints (args, from_tty, is_tracepoint);
15250 }
15251
15252 /* Create a vector of all tracepoints. */
15253
15254 VEC(breakpoint_p) *
15255 all_tracepoints (void)
15256 {
15257 VEC(breakpoint_p) *tp_vec = 0;
15258 struct breakpoint *tp;
15259
15260 ALL_TRACEPOINTS (tp)
15261 {
15262 VEC_safe_push (breakpoint_p, tp_vec, tp);
15263 }
15264
15265 return tp_vec;
15266 }
15267
15268 \f
15269 /* This help string is used to consolidate all the help string for specifying
15270 locations used by several commands. */
15271
15272 #define LOCATION_HELP_STRING \
15273 "Linespecs are colon-separated lists of location parameters, such as\n\
15274 source filename, function name, label name, and line number.\n\
15275 Example: To specify the start of a label named \"the_top\" in the\n\
15276 function \"fact\" in the file \"factorial.c\", use\n\
15277 \"factorial.c:fact:the_top\".\n\
15278 \n\
15279 Address locations begin with \"*\" and specify an exact address in the\n\
15280 program. Example: To specify the fourth byte past the start function\n\
15281 \"main\", use \"*main + 4\".\n\
15282 \n\
15283 Explicit locations are similar to linespecs but use an option/argument\n\
15284 syntax to specify location parameters.\n\
15285 Example: To specify the start of the label named \"the_top\" in the\n\
15286 function \"fact\" in the file \"factorial.c\", use \"-source factorial.c\n\
15287 -function fact -label the_top\".\n\
15288 \n\
15289 By default, a specified function is matched against the program's\n\
15290 functions in all scopes. For C++, this means in all namespaces and\n\
15291 classes. For Ada, this means in all packages. E.g., in C++,\n\
15292 \"func()\" matches \"A::func()\", \"A::B::func()\", etc. The\n\
15293 \"-qualified\" flag overrides this behavior, making GDB interpret the\n\
15294 specified name as a complete fully-qualified name instead.\n"
15295
15296 /* This help string is used for the break, hbreak, tbreak and thbreak
15297 commands. It is defined as a macro to prevent duplication.
15298 COMMAND should be a string constant containing the name of the
15299 command. */
15300
15301 #define BREAK_ARGS_HELP(command) \
15302 command" [PROBE_MODIFIER] [LOCATION] [thread THREADNUM] [if CONDITION]\n\
15303 PROBE_MODIFIER shall be present if the command is to be placed in a\n\
15304 probe point. Accepted values are `-probe' (for a generic, automatically\n\
15305 guessed probe type), `-probe-stap' (for a SystemTap probe) or \n\
15306 `-probe-dtrace' (for a DTrace probe).\n\
15307 LOCATION may be a linespec, address, or explicit location as described\n\
15308 below.\n\
15309 \n\
15310 With no LOCATION, uses current execution address of the selected\n\
15311 stack frame. This is useful for breaking on return to a stack frame.\n\
15312 \n\
15313 THREADNUM is the number from \"info threads\".\n\
15314 CONDITION is a boolean expression.\n\
15315 \n" LOCATION_HELP_STRING "\n\
15316 Multiple breakpoints at one place are permitted, and useful if their\n\
15317 conditions are different.\n\
15318 \n\
15319 Do \"help breakpoints\" for info on other commands dealing with breakpoints."
15320
15321 /* List of subcommands for "catch". */
15322 static struct cmd_list_element *catch_cmdlist;
15323
15324 /* List of subcommands for "tcatch". */
15325 static struct cmd_list_element *tcatch_cmdlist;
15326
15327 void
15328 add_catch_command (const char *name, const char *docstring,
15329 cmd_const_sfunc_ftype *sfunc,
15330 completer_ftype *completer,
15331 void *user_data_catch,
15332 void *user_data_tcatch)
15333 {
15334 struct cmd_list_element *command;
15335
15336 command = add_cmd (name, class_breakpoint, docstring,
15337 &catch_cmdlist);
15338 set_cmd_sfunc (command, sfunc);
15339 set_cmd_context (command, user_data_catch);
15340 set_cmd_completer (command, completer);
15341
15342 command = add_cmd (name, class_breakpoint, docstring,
15343 &tcatch_cmdlist);
15344 set_cmd_sfunc (command, sfunc);
15345 set_cmd_context (command, user_data_tcatch);
15346 set_cmd_completer (command, completer);
15347 }
15348
15349 static void
15350 save_command (const char *arg, int from_tty)
15351 {
15352 printf_unfiltered (_("\"save\" must be followed by "
15353 "the name of a save subcommand.\n"));
15354 help_list (save_cmdlist, "save ", all_commands, gdb_stdout);
15355 }
15356
15357 struct breakpoint *
15358 iterate_over_breakpoints (int (*callback) (struct breakpoint *, void *),
15359 void *data)
15360 {
15361 struct breakpoint *b, *b_tmp;
15362
15363 ALL_BREAKPOINTS_SAFE (b, b_tmp)
15364 {
15365 if ((*callback) (b, data))
15366 return b;
15367 }
15368
15369 return NULL;
15370 }
15371
15372 /* Zero if any of the breakpoint's locations could be a location where
15373 functions have been inlined, nonzero otherwise. */
15374
15375 static int
15376 is_non_inline_function (struct breakpoint *b)
15377 {
15378 /* The shared library event breakpoint is set on the address of a
15379 non-inline function. */
15380 if (b->type == bp_shlib_event)
15381 return 1;
15382
15383 return 0;
15384 }
15385
15386 /* Nonzero if the specified PC cannot be a location where functions
15387 have been inlined. */
15388
15389 int
15390 pc_at_non_inline_function (const address_space *aspace, CORE_ADDR pc,
15391 const struct target_waitstatus *ws)
15392 {
15393 struct breakpoint *b;
15394 struct bp_location *bl;
15395
15396 ALL_BREAKPOINTS (b)
15397 {
15398 if (!is_non_inline_function (b))
15399 continue;
15400
15401 for (bl = b->loc; bl != NULL; bl = bl->next)
15402 {
15403 if (!bl->shlib_disabled
15404 && bpstat_check_location (bl, aspace, pc, ws))
15405 return 1;
15406 }
15407 }
15408
15409 return 0;
15410 }
15411
15412 /* Remove any references to OBJFILE which is going to be freed. */
15413
15414 void
15415 breakpoint_free_objfile (struct objfile *objfile)
15416 {
15417 struct bp_location **locp, *loc;
15418
15419 ALL_BP_LOCATIONS (loc, locp)
15420 if (loc->symtab != NULL && SYMTAB_OBJFILE (loc->symtab) == objfile)
15421 loc->symtab = NULL;
15422 }
15423
15424 void
15425 initialize_breakpoint_ops (void)
15426 {
15427 static int initialized = 0;
15428
15429 struct breakpoint_ops *ops;
15430
15431 if (initialized)
15432 return;
15433 initialized = 1;
15434
15435 /* The breakpoint_ops structure to be inherit by all kinds of
15436 breakpoints (real breakpoints, i.e., user "break" breakpoints,
15437 internal and momentary breakpoints, etc.). */
15438 ops = &bkpt_base_breakpoint_ops;
15439 *ops = base_breakpoint_ops;
15440 ops->re_set = bkpt_re_set;
15441 ops->insert_location = bkpt_insert_location;
15442 ops->remove_location = bkpt_remove_location;
15443 ops->breakpoint_hit = bkpt_breakpoint_hit;
15444 ops->create_sals_from_location = bkpt_create_sals_from_location;
15445 ops->create_breakpoints_sal = bkpt_create_breakpoints_sal;
15446 ops->decode_location = bkpt_decode_location;
15447
15448 /* The breakpoint_ops structure to be used in regular breakpoints. */
15449 ops = &bkpt_breakpoint_ops;
15450 *ops = bkpt_base_breakpoint_ops;
15451 ops->re_set = bkpt_re_set;
15452 ops->resources_needed = bkpt_resources_needed;
15453 ops->print_it = bkpt_print_it;
15454 ops->print_mention = bkpt_print_mention;
15455 ops->print_recreate = bkpt_print_recreate;
15456
15457 /* Ranged breakpoints. */
15458 ops = &ranged_breakpoint_ops;
15459 *ops = bkpt_breakpoint_ops;
15460 ops->breakpoint_hit = breakpoint_hit_ranged_breakpoint;
15461 ops->resources_needed = resources_needed_ranged_breakpoint;
15462 ops->print_it = print_it_ranged_breakpoint;
15463 ops->print_one = print_one_ranged_breakpoint;
15464 ops->print_one_detail = print_one_detail_ranged_breakpoint;
15465 ops->print_mention = print_mention_ranged_breakpoint;
15466 ops->print_recreate = print_recreate_ranged_breakpoint;
15467
15468 /* Internal breakpoints. */
15469 ops = &internal_breakpoint_ops;
15470 *ops = bkpt_base_breakpoint_ops;
15471 ops->re_set = internal_bkpt_re_set;
15472 ops->check_status = internal_bkpt_check_status;
15473 ops->print_it = internal_bkpt_print_it;
15474 ops->print_mention = internal_bkpt_print_mention;
15475
15476 /* Momentary breakpoints. */
15477 ops = &momentary_breakpoint_ops;
15478 *ops = bkpt_base_breakpoint_ops;
15479 ops->re_set = momentary_bkpt_re_set;
15480 ops->check_status = momentary_bkpt_check_status;
15481 ops->print_it = momentary_bkpt_print_it;
15482 ops->print_mention = momentary_bkpt_print_mention;
15483
15484 /* Probe breakpoints. */
15485 ops = &bkpt_probe_breakpoint_ops;
15486 *ops = bkpt_breakpoint_ops;
15487 ops->insert_location = bkpt_probe_insert_location;
15488 ops->remove_location = bkpt_probe_remove_location;
15489 ops->create_sals_from_location = bkpt_probe_create_sals_from_location;
15490 ops->decode_location = bkpt_probe_decode_location;
15491
15492 /* Watchpoints. */
15493 ops = &watchpoint_breakpoint_ops;
15494 *ops = base_breakpoint_ops;
15495 ops->re_set = re_set_watchpoint;
15496 ops->insert_location = insert_watchpoint;
15497 ops->remove_location = remove_watchpoint;
15498 ops->breakpoint_hit = breakpoint_hit_watchpoint;
15499 ops->check_status = check_status_watchpoint;
15500 ops->resources_needed = resources_needed_watchpoint;
15501 ops->works_in_software_mode = works_in_software_mode_watchpoint;
15502 ops->print_it = print_it_watchpoint;
15503 ops->print_mention = print_mention_watchpoint;
15504 ops->print_recreate = print_recreate_watchpoint;
15505 ops->explains_signal = explains_signal_watchpoint;
15506
15507 /* Masked watchpoints. */
15508 ops = &masked_watchpoint_breakpoint_ops;
15509 *ops = watchpoint_breakpoint_ops;
15510 ops->insert_location = insert_masked_watchpoint;
15511 ops->remove_location = remove_masked_watchpoint;
15512 ops->resources_needed = resources_needed_masked_watchpoint;
15513 ops->works_in_software_mode = works_in_software_mode_masked_watchpoint;
15514 ops->print_it = print_it_masked_watchpoint;
15515 ops->print_one_detail = print_one_detail_masked_watchpoint;
15516 ops->print_mention = print_mention_masked_watchpoint;
15517 ops->print_recreate = print_recreate_masked_watchpoint;
15518
15519 /* Tracepoints. */
15520 ops = &tracepoint_breakpoint_ops;
15521 *ops = base_breakpoint_ops;
15522 ops->re_set = tracepoint_re_set;
15523 ops->breakpoint_hit = tracepoint_breakpoint_hit;
15524 ops->print_one_detail = tracepoint_print_one_detail;
15525 ops->print_mention = tracepoint_print_mention;
15526 ops->print_recreate = tracepoint_print_recreate;
15527 ops->create_sals_from_location = tracepoint_create_sals_from_location;
15528 ops->create_breakpoints_sal = tracepoint_create_breakpoints_sal;
15529 ops->decode_location = tracepoint_decode_location;
15530
15531 /* Probe tracepoints. */
15532 ops = &tracepoint_probe_breakpoint_ops;
15533 *ops = tracepoint_breakpoint_ops;
15534 ops->create_sals_from_location = tracepoint_probe_create_sals_from_location;
15535 ops->decode_location = tracepoint_probe_decode_location;
15536
15537 /* Static tracepoints with marker (`-m'). */
15538 ops = &strace_marker_breakpoint_ops;
15539 *ops = tracepoint_breakpoint_ops;
15540 ops->create_sals_from_location = strace_marker_create_sals_from_location;
15541 ops->create_breakpoints_sal = strace_marker_create_breakpoints_sal;
15542 ops->decode_location = strace_marker_decode_location;
15543
15544 /* Fork catchpoints. */
15545 ops = &catch_fork_breakpoint_ops;
15546 *ops = base_breakpoint_ops;
15547 ops->insert_location = insert_catch_fork;
15548 ops->remove_location = remove_catch_fork;
15549 ops->breakpoint_hit = breakpoint_hit_catch_fork;
15550 ops->print_it = print_it_catch_fork;
15551 ops->print_one = print_one_catch_fork;
15552 ops->print_mention = print_mention_catch_fork;
15553 ops->print_recreate = print_recreate_catch_fork;
15554
15555 /* Vfork catchpoints. */
15556 ops = &catch_vfork_breakpoint_ops;
15557 *ops = base_breakpoint_ops;
15558 ops->insert_location = insert_catch_vfork;
15559 ops->remove_location = remove_catch_vfork;
15560 ops->breakpoint_hit = breakpoint_hit_catch_vfork;
15561 ops->print_it = print_it_catch_vfork;
15562 ops->print_one = print_one_catch_vfork;
15563 ops->print_mention = print_mention_catch_vfork;
15564 ops->print_recreate = print_recreate_catch_vfork;
15565
15566 /* Exec catchpoints. */
15567 ops = &catch_exec_breakpoint_ops;
15568 *ops = base_breakpoint_ops;
15569 ops->insert_location = insert_catch_exec;
15570 ops->remove_location = remove_catch_exec;
15571 ops->breakpoint_hit = breakpoint_hit_catch_exec;
15572 ops->print_it = print_it_catch_exec;
15573 ops->print_one = print_one_catch_exec;
15574 ops->print_mention = print_mention_catch_exec;
15575 ops->print_recreate = print_recreate_catch_exec;
15576
15577 /* Solib-related catchpoints. */
15578 ops = &catch_solib_breakpoint_ops;
15579 *ops = base_breakpoint_ops;
15580 ops->insert_location = insert_catch_solib;
15581 ops->remove_location = remove_catch_solib;
15582 ops->breakpoint_hit = breakpoint_hit_catch_solib;
15583 ops->check_status = check_status_catch_solib;
15584 ops->print_it = print_it_catch_solib;
15585 ops->print_one = print_one_catch_solib;
15586 ops->print_mention = print_mention_catch_solib;
15587 ops->print_recreate = print_recreate_catch_solib;
15588
15589 ops = &dprintf_breakpoint_ops;
15590 *ops = bkpt_base_breakpoint_ops;
15591 ops->re_set = dprintf_re_set;
15592 ops->resources_needed = bkpt_resources_needed;
15593 ops->print_it = bkpt_print_it;
15594 ops->print_mention = bkpt_print_mention;
15595 ops->print_recreate = dprintf_print_recreate;
15596 ops->after_condition_true = dprintf_after_condition_true;
15597 ops->breakpoint_hit = dprintf_breakpoint_hit;
15598 }
15599
15600 /* Chain containing all defined "enable breakpoint" subcommands. */
15601
15602 static struct cmd_list_element *enablebreaklist = NULL;
15603
15604 void
15605 _initialize_breakpoint (void)
15606 {
15607 struct cmd_list_element *c;
15608
15609 initialize_breakpoint_ops ();
15610
15611 observer_attach_solib_unloaded (disable_breakpoints_in_unloaded_shlib);
15612 observer_attach_free_objfile (disable_breakpoints_in_freed_objfile);
15613 observer_attach_memory_changed (invalidate_bp_value_on_memory_change);
15614
15615 breakpoint_objfile_key
15616 = register_objfile_data_with_cleanup (NULL, free_breakpoint_objfile_data);
15617
15618 breakpoint_chain = 0;
15619 /* Don't bother to call set_breakpoint_count. $bpnum isn't useful
15620 before a breakpoint is set. */
15621 breakpoint_count = 0;
15622
15623 tracepoint_count = 0;
15624
15625 add_com ("ignore", class_breakpoint, ignore_command, _("\
15626 Set ignore-count of breakpoint number N to COUNT.\n\
15627 Usage is `ignore N COUNT'."));
15628
15629 add_com ("commands", class_breakpoint, commands_command, _("\
15630 Set commands to be executed when the given breakpoints are hit.\n\
15631 Give a space-separated breakpoint list as argument after \"commands\".\n\
15632 A list element can be a breakpoint number (e.g. `5') or a range of numbers\n\
15633 (e.g. `5-7').\n\
15634 With no argument, the targeted breakpoint is the last one set.\n\
15635 The commands themselves follow starting on the next line.\n\
15636 Type a line containing \"end\" to indicate the end of them.\n\
15637 Give \"silent\" as the first line to make the breakpoint silent;\n\
15638 then no output is printed when it is hit, except what the commands print."));
15639
15640 c = add_com ("condition", class_breakpoint, condition_command, _("\
15641 Specify breakpoint number N to break only if COND is true.\n\
15642 Usage is `condition N COND', where N is an integer and COND is an\n\
15643 expression to be evaluated whenever breakpoint N is reached."));
15644 set_cmd_completer (c, condition_completer);
15645
15646 c = add_com ("tbreak", class_breakpoint, tbreak_command, _("\
15647 Set a temporary breakpoint.\n\
15648 Like \"break\" except the breakpoint is only temporary,\n\
15649 so it will be deleted when hit. Equivalent to \"break\" followed\n\
15650 by using \"enable delete\" on the breakpoint number.\n\
15651 \n"
15652 BREAK_ARGS_HELP ("tbreak")));
15653 set_cmd_completer (c, location_completer);
15654
15655 c = add_com ("hbreak", class_breakpoint, hbreak_command, _("\
15656 Set a hardware assisted breakpoint.\n\
15657 Like \"break\" except the breakpoint requires hardware support,\n\
15658 some target hardware may not have this support.\n\
15659 \n"
15660 BREAK_ARGS_HELP ("hbreak")));
15661 set_cmd_completer (c, location_completer);
15662
15663 c = add_com ("thbreak", class_breakpoint, thbreak_command, _("\
15664 Set a temporary hardware assisted breakpoint.\n\
15665 Like \"hbreak\" except the breakpoint is only temporary,\n\
15666 so it will be deleted when hit.\n\
15667 \n"
15668 BREAK_ARGS_HELP ("thbreak")));
15669 set_cmd_completer (c, location_completer);
15670
15671 add_prefix_cmd ("enable", class_breakpoint, enable_command, _("\
15672 Enable some breakpoints.\n\
15673 Give breakpoint numbers (separated by spaces) as arguments.\n\
15674 With no subcommand, breakpoints are enabled until you command otherwise.\n\
15675 This is used to cancel the effect of the \"disable\" command.\n\
15676 With a subcommand you can enable temporarily."),
15677 &enablelist, "enable ", 1, &cmdlist);
15678
15679 add_com_alias ("en", "enable", class_breakpoint, 1);
15680
15681 add_prefix_cmd ("breakpoints", class_breakpoint, enable_command, _("\
15682 Enable some breakpoints.\n\
15683 Give breakpoint numbers (separated by spaces) as arguments.\n\
15684 This is used to cancel the effect of the \"disable\" command.\n\
15685 May be abbreviated to simply \"enable\".\n"),
15686 &enablebreaklist, "enable breakpoints ", 1, &enablelist);
15687
15688 add_cmd ("once", no_class, enable_once_command, _("\
15689 Enable breakpoints for one hit. Give breakpoint numbers.\n\
15690 If a breakpoint is hit while enabled in this fashion, it becomes disabled."),
15691 &enablebreaklist);
15692
15693 add_cmd ("delete", no_class, enable_delete_command, _("\
15694 Enable breakpoints and delete when hit. Give breakpoint numbers.\n\
15695 If a breakpoint is hit while enabled in this fashion, it is deleted."),
15696 &enablebreaklist);
15697
15698 add_cmd ("count", no_class, enable_count_command, _("\
15699 Enable breakpoints for COUNT hits. Give count and then breakpoint numbers.\n\
15700 If a breakpoint is hit while enabled in this fashion,\n\
15701 the count is decremented; when it reaches zero, the breakpoint is disabled."),
15702 &enablebreaklist);
15703
15704 add_cmd ("delete", no_class, enable_delete_command, _("\
15705 Enable breakpoints and delete when hit. Give breakpoint numbers.\n\
15706 If a breakpoint is hit while enabled in this fashion, it is deleted."),
15707 &enablelist);
15708
15709 add_cmd ("once", no_class, enable_once_command, _("\
15710 Enable breakpoints for one hit. Give breakpoint numbers.\n\
15711 If a breakpoint is hit while enabled in this fashion, it becomes disabled."),
15712 &enablelist);
15713
15714 add_cmd ("count", no_class, enable_count_command, _("\
15715 Enable breakpoints for COUNT hits. Give count and then breakpoint numbers.\n\
15716 If a breakpoint is hit while enabled in this fashion,\n\
15717 the count is decremented; when it reaches zero, the breakpoint is disabled."),
15718 &enablelist);
15719
15720 add_prefix_cmd ("disable", class_breakpoint, disable_command, _("\
15721 Disable some breakpoints.\n\
15722 Arguments are breakpoint numbers with spaces in between.\n\
15723 To disable all breakpoints, give no argument.\n\
15724 A disabled breakpoint is not forgotten, but has no effect until re-enabled."),
15725 &disablelist, "disable ", 1, &cmdlist);
15726 add_com_alias ("dis", "disable", class_breakpoint, 1);
15727 add_com_alias ("disa", "disable", class_breakpoint, 1);
15728
15729 add_cmd ("breakpoints", class_alias, disable_command, _("\
15730 Disable some breakpoints.\n\
15731 Arguments are breakpoint numbers with spaces in between.\n\
15732 To disable all breakpoints, give no argument.\n\
15733 A disabled breakpoint is not forgotten, but has no effect until re-enabled.\n\
15734 This command may be abbreviated \"disable\"."),
15735 &disablelist);
15736
15737 add_prefix_cmd ("delete", class_breakpoint, delete_command, _("\
15738 Delete some breakpoints or auto-display expressions.\n\
15739 Arguments are breakpoint numbers with spaces in between.\n\
15740 To delete all breakpoints, give no argument.\n\
15741 \n\
15742 Also a prefix command for deletion of other GDB objects.\n\
15743 The \"unset\" command is also an alias for \"delete\"."),
15744 &deletelist, "delete ", 1, &cmdlist);
15745 add_com_alias ("d", "delete", class_breakpoint, 1);
15746 add_com_alias ("del", "delete", class_breakpoint, 1);
15747
15748 add_cmd ("breakpoints", class_alias, delete_command, _("\
15749 Delete some breakpoints or auto-display expressions.\n\
15750 Arguments are breakpoint numbers with spaces in between.\n\
15751 To delete all breakpoints, give no argument.\n\
15752 This command may be abbreviated \"delete\"."),
15753 &deletelist);
15754
15755 add_com ("clear", class_breakpoint, clear_command, _("\
15756 Clear breakpoint at specified location.\n\
15757 Argument may be a linespec, explicit, or address location as described below.\n\
15758 \n\
15759 With no argument, clears all breakpoints in the line that the selected frame\n\
15760 is executing in.\n"
15761 "\n" LOCATION_HELP_STRING "\n\
15762 See also the \"delete\" command which clears breakpoints by number."));
15763 add_com_alias ("cl", "clear", class_breakpoint, 1);
15764
15765 c = add_com ("break", class_breakpoint, break_command, _("\
15766 Set breakpoint at specified location.\n"
15767 BREAK_ARGS_HELP ("break")));
15768 set_cmd_completer (c, location_completer);
15769
15770 add_com_alias ("b", "break", class_run, 1);
15771 add_com_alias ("br", "break", class_run, 1);
15772 add_com_alias ("bre", "break", class_run, 1);
15773 add_com_alias ("brea", "break", class_run, 1);
15774
15775 if (dbx_commands)
15776 {
15777 add_abbrev_prefix_cmd ("stop", class_breakpoint, stop_command, _("\
15778 Break in function/address or break at a line in the current file."),
15779 &stoplist, "stop ", 1, &cmdlist);
15780 add_cmd ("in", class_breakpoint, stopin_command,
15781 _("Break in function or address."), &stoplist);
15782 add_cmd ("at", class_breakpoint, stopat_command,
15783 _("Break at a line in the current file."), &stoplist);
15784 add_com ("status", class_info, info_breakpoints_command, _("\
15785 Status of user-settable breakpoints, or breakpoint number NUMBER.\n\
15786 The \"Type\" column indicates one of:\n\
15787 \tbreakpoint - normal breakpoint\n\
15788 \twatchpoint - watchpoint\n\
15789 The \"Disp\" column contains one of \"keep\", \"del\", or \"dis\" to indicate\n\
15790 the disposition of the breakpoint after it gets hit. \"dis\" means that the\n\
15791 breakpoint will be disabled. The \"Address\" and \"What\" columns indicate the\n\
15792 address and file/line number respectively.\n\
15793 \n\
15794 Convenience variable \"$_\" and default examine address for \"x\"\n\
15795 are set to the address of the last breakpoint listed unless the command\n\
15796 is prefixed with \"server \".\n\n\
15797 Convenience variable \"$bpnum\" contains the number of the last\n\
15798 breakpoint set."));
15799 }
15800
15801 add_info ("breakpoints", info_breakpoints_command, _("\
15802 Status of specified breakpoints (all user-settable breakpoints if no argument).\n\
15803 The \"Type\" column indicates one of:\n\
15804 \tbreakpoint - normal breakpoint\n\
15805 \twatchpoint - watchpoint\n\
15806 The \"Disp\" column contains one of \"keep\", \"del\", or \"dis\" to indicate\n\
15807 the disposition of the breakpoint after it gets hit. \"dis\" means that the\n\
15808 breakpoint will be disabled. The \"Address\" and \"What\" columns indicate the\n\
15809 address and file/line number respectively.\n\
15810 \n\
15811 Convenience variable \"$_\" and default examine address for \"x\"\n\
15812 are set to the address of the last breakpoint listed unless the command\n\
15813 is prefixed with \"server \".\n\n\
15814 Convenience variable \"$bpnum\" contains the number of the last\n\
15815 breakpoint set."));
15816
15817 add_info_alias ("b", "breakpoints", 1);
15818
15819 add_cmd ("breakpoints", class_maintenance, maintenance_info_breakpoints, _("\
15820 Status of all breakpoints, or breakpoint number NUMBER.\n\
15821 The \"Type\" column indicates one of:\n\
15822 \tbreakpoint - normal breakpoint\n\
15823 \twatchpoint - watchpoint\n\
15824 \tlongjmp - internal breakpoint used to step through longjmp()\n\
15825 \tlongjmp resume - internal breakpoint at the target of longjmp()\n\
15826 \tuntil - internal breakpoint used by the \"until\" command\n\
15827 \tfinish - internal breakpoint used by the \"finish\" command\n\
15828 The \"Disp\" column contains one of \"keep\", \"del\", or \"dis\" to indicate\n\
15829 the disposition of the breakpoint after it gets hit. \"dis\" means that the\n\
15830 breakpoint will be disabled. The \"Address\" and \"What\" columns indicate the\n\
15831 address and file/line number respectively.\n\
15832 \n\
15833 Convenience variable \"$_\" and default examine address for \"x\"\n\
15834 are set to the address of the last breakpoint listed unless the command\n\
15835 is prefixed with \"server \".\n\n\
15836 Convenience variable \"$bpnum\" contains the number of the last\n\
15837 breakpoint set."),
15838 &maintenanceinfolist);
15839
15840 add_prefix_cmd ("catch", class_breakpoint, catch_command, _("\
15841 Set catchpoints to catch events."),
15842 &catch_cmdlist, "catch ",
15843 0/*allow-unknown*/, &cmdlist);
15844
15845 add_prefix_cmd ("tcatch", class_breakpoint, tcatch_command, _("\
15846 Set temporary catchpoints to catch events."),
15847 &tcatch_cmdlist, "tcatch ",
15848 0/*allow-unknown*/, &cmdlist);
15849
15850 add_catch_command ("fork", _("Catch calls to fork."),
15851 catch_fork_command_1,
15852 NULL,
15853 (void *) (uintptr_t) catch_fork_permanent,
15854 (void *) (uintptr_t) catch_fork_temporary);
15855 add_catch_command ("vfork", _("Catch calls to vfork."),
15856 catch_fork_command_1,
15857 NULL,
15858 (void *) (uintptr_t) catch_vfork_permanent,
15859 (void *) (uintptr_t) catch_vfork_temporary);
15860 add_catch_command ("exec", _("Catch calls to exec."),
15861 catch_exec_command_1,
15862 NULL,
15863 CATCH_PERMANENT,
15864 CATCH_TEMPORARY);
15865 add_catch_command ("load", _("Catch loads of shared libraries.\n\
15866 Usage: catch load [REGEX]\n\
15867 If REGEX is given, only stop for libraries matching the regular expression."),
15868 catch_load_command_1,
15869 NULL,
15870 CATCH_PERMANENT,
15871 CATCH_TEMPORARY);
15872 add_catch_command ("unload", _("Catch unloads of shared libraries.\n\
15873 Usage: catch unload [REGEX]\n\
15874 If REGEX is given, only stop for libraries matching the regular expression."),
15875 catch_unload_command_1,
15876 NULL,
15877 CATCH_PERMANENT,
15878 CATCH_TEMPORARY);
15879
15880 c = add_com ("watch", class_breakpoint, watch_command, _("\
15881 Set a watchpoint for an expression.\n\
15882 Usage: watch [-l|-location] EXPRESSION\n\
15883 A watchpoint stops execution of your program whenever the value of\n\
15884 an expression changes.\n\
15885 If -l or -location is given, this evaluates EXPRESSION and watches\n\
15886 the memory to which it refers."));
15887 set_cmd_completer (c, expression_completer);
15888
15889 c = add_com ("rwatch", class_breakpoint, rwatch_command, _("\
15890 Set a read watchpoint for an expression.\n\
15891 Usage: rwatch [-l|-location] EXPRESSION\n\
15892 A watchpoint stops execution of your program whenever the value of\n\
15893 an expression is read.\n\
15894 If -l or -location is given, this evaluates EXPRESSION and watches\n\
15895 the memory to which it refers."));
15896 set_cmd_completer (c, expression_completer);
15897
15898 c = add_com ("awatch", class_breakpoint, awatch_command, _("\
15899 Set a watchpoint for an expression.\n\
15900 Usage: awatch [-l|-location] EXPRESSION\n\
15901 A watchpoint stops execution of your program whenever the value of\n\
15902 an expression is either read or written.\n\
15903 If -l or -location is given, this evaluates EXPRESSION and watches\n\
15904 the memory to which it refers."));
15905 set_cmd_completer (c, expression_completer);
15906
15907 add_info ("watchpoints", info_watchpoints_command, _("\
15908 Status of specified watchpoints (all watchpoints if no argument)."));
15909
15910 /* XXX: cagney/2005-02-23: This should be a boolean, and should
15911 respond to changes - contrary to the description. */
15912 add_setshow_zinteger_cmd ("can-use-hw-watchpoints", class_support,
15913 &can_use_hw_watchpoints, _("\
15914 Set debugger's willingness to use watchpoint hardware."), _("\
15915 Show debugger's willingness to use watchpoint hardware."), _("\
15916 If zero, gdb will not use hardware for new watchpoints, even if\n\
15917 such is available. (However, any hardware watchpoints that were\n\
15918 created before setting this to nonzero, will continue to use watchpoint\n\
15919 hardware.)"),
15920 NULL,
15921 show_can_use_hw_watchpoints,
15922 &setlist, &showlist);
15923
15924 can_use_hw_watchpoints = 1;
15925
15926 /* Tracepoint manipulation commands. */
15927
15928 c = add_com ("trace", class_breakpoint, trace_command, _("\
15929 Set a tracepoint at specified location.\n\
15930 \n"
15931 BREAK_ARGS_HELP ("trace") "\n\
15932 Do \"help tracepoints\" for info on other tracepoint commands."));
15933 set_cmd_completer (c, location_completer);
15934
15935 add_com_alias ("tp", "trace", class_alias, 0);
15936 add_com_alias ("tr", "trace", class_alias, 1);
15937 add_com_alias ("tra", "trace", class_alias, 1);
15938 add_com_alias ("trac", "trace", class_alias, 1);
15939
15940 c = add_com ("ftrace", class_breakpoint, ftrace_command, _("\
15941 Set a fast tracepoint at specified location.\n\
15942 \n"
15943 BREAK_ARGS_HELP ("ftrace") "\n\
15944 Do \"help tracepoints\" for info on other tracepoint commands."));
15945 set_cmd_completer (c, location_completer);
15946
15947 c = add_com ("strace", class_breakpoint, strace_command, _("\
15948 Set a static tracepoint at location or marker.\n\
15949 \n\
15950 strace [LOCATION] [if CONDITION]\n\
15951 LOCATION may be a linespec, explicit, or address location (described below) \n\
15952 or -m MARKER_ID.\n\n\
15953 If a marker id is specified, probe the marker with that name. With\n\
15954 no LOCATION, uses current execution address of the selected stack frame.\n\
15955 Static tracepoints accept an extra collect action -- ``collect $_sdata''.\n\
15956 This collects arbitrary user data passed in the probe point call to the\n\
15957 tracing library. You can inspect it when analyzing the trace buffer,\n\
15958 by printing the $_sdata variable like any other convenience variable.\n\
15959 \n\
15960 CONDITION is a boolean expression.\n\
15961 \n" LOCATION_HELP_STRING "\n\
15962 Multiple tracepoints at one place are permitted, and useful if their\n\
15963 conditions are different.\n\
15964 \n\
15965 Do \"help breakpoints\" for info on other commands dealing with breakpoints.\n\
15966 Do \"help tracepoints\" for info on other tracepoint commands."));
15967 set_cmd_completer (c, location_completer);
15968
15969 add_info ("tracepoints", info_tracepoints_command, _("\
15970 Status of specified tracepoints (all tracepoints if no argument).\n\
15971 Convenience variable \"$tpnum\" contains the number of the\n\
15972 last tracepoint set."));
15973
15974 add_info_alias ("tp", "tracepoints", 1);
15975
15976 add_cmd ("tracepoints", class_trace, delete_trace_command, _("\
15977 Delete specified tracepoints.\n\
15978 Arguments are tracepoint numbers, separated by spaces.\n\
15979 No argument means delete all tracepoints."),
15980 &deletelist);
15981 add_alias_cmd ("tr", "tracepoints", class_trace, 1, &deletelist);
15982
15983 c = add_cmd ("tracepoints", class_trace, disable_trace_command, _("\
15984 Disable specified tracepoints.\n\
15985 Arguments are tracepoint numbers, separated by spaces.\n\
15986 No argument means disable all tracepoints."),
15987 &disablelist);
15988 deprecate_cmd (c, "disable");
15989
15990 c = add_cmd ("tracepoints", class_trace, enable_trace_command, _("\
15991 Enable specified tracepoints.\n\
15992 Arguments are tracepoint numbers, separated by spaces.\n\
15993 No argument means enable all tracepoints."),
15994 &enablelist);
15995 deprecate_cmd (c, "enable");
15996
15997 add_com ("passcount", class_trace, trace_pass_command, _("\
15998 Set the passcount for a tracepoint.\n\
15999 The trace will end when the tracepoint has been passed 'count' times.\n\
16000 Usage: passcount COUNT TPNUM, where TPNUM may also be \"all\";\n\
16001 if TPNUM is omitted, passcount refers to the last tracepoint defined."));
16002
16003 add_prefix_cmd ("save", class_breakpoint, save_command,
16004 _("Save breakpoint definitions as a script."),
16005 &save_cmdlist, "save ",
16006 0/*allow-unknown*/, &cmdlist);
16007
16008 c = add_cmd ("breakpoints", class_breakpoint, save_breakpoints_command, _("\
16009 Save current breakpoint definitions as a script.\n\
16010 This includes all types of breakpoints (breakpoints, watchpoints,\n\
16011 catchpoints, tracepoints). Use the 'source' command in another debug\n\
16012 session to restore them."),
16013 &save_cmdlist);
16014 set_cmd_completer (c, filename_completer);
16015
16016 c = add_cmd ("tracepoints", class_trace, save_tracepoints_command, _("\
16017 Save current tracepoint definitions as a script.\n\
16018 Use the 'source' command in another debug session to restore them."),
16019 &save_cmdlist);
16020 set_cmd_completer (c, filename_completer);
16021
16022 c = add_com_alias ("save-tracepoints", "save tracepoints", class_trace, 0);
16023 deprecate_cmd (c, "save tracepoints");
16024
16025 add_prefix_cmd ("breakpoint", class_maintenance, set_breakpoint_cmd, _("\
16026 Breakpoint specific settings\n\
16027 Configure various breakpoint-specific variables such as\n\
16028 pending breakpoint behavior"),
16029 &breakpoint_set_cmdlist, "set breakpoint ",
16030 0/*allow-unknown*/, &setlist);
16031 add_prefix_cmd ("breakpoint", class_maintenance, show_breakpoint_cmd, _("\
16032 Breakpoint specific settings\n\
16033 Configure various breakpoint-specific variables such as\n\
16034 pending breakpoint behavior"),
16035 &breakpoint_show_cmdlist, "show breakpoint ",
16036 0/*allow-unknown*/, &showlist);
16037
16038 add_setshow_auto_boolean_cmd ("pending", no_class,
16039 &pending_break_support, _("\
16040 Set debugger's behavior regarding pending breakpoints."), _("\
16041 Show debugger's behavior regarding pending breakpoints."), _("\
16042 If on, an unrecognized breakpoint location will cause gdb to create a\n\
16043 pending breakpoint. If off, an unrecognized breakpoint location results in\n\
16044 an error. If auto, an unrecognized breakpoint location results in a\n\
16045 user-query to see if a pending breakpoint should be created."),
16046 NULL,
16047 show_pending_break_support,
16048 &breakpoint_set_cmdlist,
16049 &breakpoint_show_cmdlist);
16050
16051 pending_break_support = AUTO_BOOLEAN_AUTO;
16052
16053 add_setshow_boolean_cmd ("auto-hw", no_class,
16054 &automatic_hardware_breakpoints, _("\
16055 Set automatic usage of hardware breakpoints."), _("\
16056 Show automatic usage of hardware breakpoints."), _("\
16057 If set, the debugger will automatically use hardware breakpoints for\n\
16058 breakpoints set with \"break\" but falling in read-only memory. If not set,\n\
16059 a warning will be emitted for such breakpoints."),
16060 NULL,
16061 show_automatic_hardware_breakpoints,
16062 &breakpoint_set_cmdlist,
16063 &breakpoint_show_cmdlist);
16064
16065 add_setshow_boolean_cmd ("always-inserted", class_support,
16066 &always_inserted_mode, _("\
16067 Set mode for inserting breakpoints."), _("\
16068 Show mode for inserting breakpoints."), _("\
16069 When this mode is on, breakpoints are inserted immediately as soon as\n\
16070 they're created, kept inserted even when execution stops, and removed\n\
16071 only when the user deletes them. When this mode is off (the default),\n\
16072 breakpoints are inserted only when execution continues, and removed\n\
16073 when execution stops."),
16074 NULL,
16075 &show_always_inserted_mode,
16076 &breakpoint_set_cmdlist,
16077 &breakpoint_show_cmdlist);
16078
16079 add_setshow_enum_cmd ("condition-evaluation", class_breakpoint,
16080 condition_evaluation_enums,
16081 &condition_evaluation_mode_1, _("\
16082 Set mode of breakpoint condition evaluation."), _("\
16083 Show mode of breakpoint condition evaluation."), _("\
16084 When this is set to \"host\", breakpoint conditions will be\n\
16085 evaluated on the host's side by GDB. When it is set to \"target\",\n\
16086 breakpoint conditions will be downloaded to the target (if the target\n\
16087 supports such feature) and conditions will be evaluated on the target's side.\n\
16088 If this is set to \"auto\" (default), this will be automatically set to\n\
16089 \"target\" if it supports condition evaluation, otherwise it will\n\
16090 be set to \"gdb\""),
16091 &set_condition_evaluation_mode,
16092 &show_condition_evaluation_mode,
16093 &breakpoint_set_cmdlist,
16094 &breakpoint_show_cmdlist);
16095
16096 add_com ("break-range", class_breakpoint, break_range_command, _("\
16097 Set a breakpoint for an address range.\n\
16098 break-range START-LOCATION, END-LOCATION\n\
16099 where START-LOCATION and END-LOCATION can be one of the following:\n\
16100 LINENUM, for that line in the current file,\n\
16101 FILE:LINENUM, for that line in that file,\n\
16102 +OFFSET, for that number of lines after the current line\n\
16103 or the start of the range\n\
16104 FUNCTION, for the first line in that function,\n\
16105 FILE:FUNCTION, to distinguish among like-named static functions.\n\
16106 *ADDRESS, for the instruction at that address.\n\
16107 \n\
16108 The breakpoint will stop execution of the inferior whenever it executes\n\
16109 an instruction at any address within the [START-LOCATION, END-LOCATION]\n\
16110 range (including START-LOCATION and END-LOCATION)."));
16111
16112 c = add_com ("dprintf", class_breakpoint, dprintf_command, _("\
16113 Set a dynamic printf at specified location.\n\
16114 dprintf location,format string,arg1,arg2,...\n\
16115 location may be a linespec, explicit, or address location.\n"
16116 "\n" LOCATION_HELP_STRING));
16117 set_cmd_completer (c, location_completer);
16118
16119 add_setshow_enum_cmd ("dprintf-style", class_support,
16120 dprintf_style_enums, &dprintf_style, _("\
16121 Set the style of usage for dynamic printf."), _("\
16122 Show the style of usage for dynamic printf."), _("\
16123 This setting chooses how GDB will do a dynamic printf.\n\
16124 If the value is \"gdb\", then the printing is done by GDB to its own\n\
16125 console, as with the \"printf\" command.\n\
16126 If the value is \"call\", the print is done by calling a function in your\n\
16127 program; by default printf(), but you can choose a different function or\n\
16128 output stream by setting dprintf-function and dprintf-channel."),
16129 update_dprintf_commands, NULL,
16130 &setlist, &showlist);
16131
16132 dprintf_function = xstrdup ("printf");
16133 add_setshow_string_cmd ("dprintf-function", class_support,
16134 &dprintf_function, _("\
16135 Set the function to use for dynamic printf"), _("\
16136 Show the function to use for dynamic printf"), NULL,
16137 update_dprintf_commands, NULL,
16138 &setlist, &showlist);
16139
16140 dprintf_channel = xstrdup ("");
16141 add_setshow_string_cmd ("dprintf-channel", class_support,
16142 &dprintf_channel, _("\
16143 Set the channel to use for dynamic printf"), _("\
16144 Show the channel to use for dynamic printf"), NULL,
16145 update_dprintf_commands, NULL,
16146 &setlist, &showlist);
16147
16148 add_setshow_boolean_cmd ("disconnected-dprintf", no_class,
16149 &disconnected_dprintf, _("\
16150 Set whether dprintf continues after GDB disconnects."), _("\
16151 Show whether dprintf continues after GDB disconnects."), _("\
16152 Use this to let dprintf commands continue to hit and produce output\n\
16153 even if GDB disconnects or detaches from the target."),
16154 NULL,
16155 NULL,
16156 &setlist, &showlist);
16157
16158 add_com ("agent-printf", class_vars, agent_printf_command, _("\
16159 agent-printf \"printf format string\", arg1, arg2, arg3, ..., argn\n\
16160 (target agent only) This is useful for formatted output in user-defined commands."));
16161
16162 automatic_hardware_breakpoints = 1;
16163
16164 observer_attach_about_to_proceed (breakpoint_about_to_proceed);
16165 observer_attach_thread_exit (remove_threaded_breakpoints);
16166 }
This page took 0.369231 seconds and 4 git commands to generate.