gdb/
[deliverable/binutils-gdb.git] / gdb / breakpoint.c
1 /* Everything about breakpoints, for GDB.
2
3 Copyright (C) 1986-2012 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20 #include "defs.h"
21 #include "arch-utils.h"
22 #include <ctype.h>
23 #include "hashtab.h"
24 #include "symtab.h"
25 #include "frame.h"
26 #include "breakpoint.h"
27 #include "tracepoint.h"
28 #include "gdbtypes.h"
29 #include "expression.h"
30 #include "gdbcore.h"
31 #include "gdbcmd.h"
32 #include "value.h"
33 #include "command.h"
34 #include "inferior.h"
35 #include "gdbthread.h"
36 #include "target.h"
37 #include "language.h"
38 #include "gdb_string.h"
39 #include "gdb-demangle.h"
40 #include "filenames.h"
41 #include "annotate.h"
42 #include "symfile.h"
43 #include "objfiles.h"
44 #include "source.h"
45 #include "linespec.h"
46 #include "completer.h"
47 #include "gdb.h"
48 #include "ui-out.h"
49 #include "cli/cli-script.h"
50 #include "gdb_assert.h"
51 #include "block.h"
52 #include "solib.h"
53 #include "solist.h"
54 #include "observer.h"
55 #include "exceptions.h"
56 #include "memattr.h"
57 #include "ada-lang.h"
58 #include "top.h"
59 #include "valprint.h"
60 #include "jit.h"
61 #include "xml-syscall.h"
62 #include "parser-defs.h"
63 #include "gdb_regex.h"
64 #include "probe.h"
65 #include "cli/cli-utils.h"
66 #include "continuations.h"
67 #include "stack.h"
68 #include "skip.h"
69 #include "gdb_regex.h"
70 #include "ax-gdb.h"
71 #include "dummy-frame.h"
72
73 #include "format.h"
74
75 /* readline include files */
76 #include "readline/readline.h"
77 #include "readline/history.h"
78
79 /* readline defines this. */
80 #undef savestring
81
82 #include "mi/mi-common.h"
83 #include "python/python.h"
84
85 /* Prototypes for local functions. */
86
87 static void enable_delete_command (char *, int);
88
89 static void enable_once_command (char *, int);
90
91 static void enable_count_command (char *, int);
92
93 static void disable_command (char *, int);
94
95 static void enable_command (char *, int);
96
97 static void map_breakpoint_numbers (char *, void (*) (struct breakpoint *,
98 void *),
99 void *);
100
101 static void ignore_command (char *, int);
102
103 static int breakpoint_re_set_one (void *);
104
105 static void breakpoint_re_set_default (struct breakpoint *);
106
107 static void create_sals_from_address_default (char **,
108 struct linespec_result *,
109 enum bptype, char *,
110 char **);
111
112 static void create_breakpoints_sal_default (struct gdbarch *,
113 struct linespec_result *,
114 struct linespec_sals *,
115 char *, char *, enum bptype,
116 enum bpdisp, int, int,
117 int,
118 const struct breakpoint_ops *,
119 int, int, int, unsigned);
120
121 static void decode_linespec_default (struct breakpoint *, char **,
122 struct symtabs_and_lines *);
123
124 static void clear_command (char *, int);
125
126 static void catch_command (char *, int);
127
128 static int can_use_hardware_watchpoint (struct value *);
129
130 static void break_command_1 (char *, int, int);
131
132 static void mention (struct breakpoint *);
133
134 static struct breakpoint *set_raw_breakpoint_without_location (struct gdbarch *,
135 enum bptype,
136 const struct breakpoint_ops *);
137 static struct bp_location *add_location_to_breakpoint (struct breakpoint *,
138 const struct symtab_and_line *);
139
140 /* This function is used in gdbtk sources and thus can not be made
141 static. */
142 struct breakpoint *set_raw_breakpoint (struct gdbarch *gdbarch,
143 struct symtab_and_line,
144 enum bptype,
145 const struct breakpoint_ops *);
146
147 static struct breakpoint *
148 momentary_breakpoint_from_master (struct breakpoint *orig,
149 enum bptype type,
150 const struct breakpoint_ops *ops);
151
152 static void breakpoint_adjustment_warning (CORE_ADDR, CORE_ADDR, int, int);
153
154 static CORE_ADDR adjust_breakpoint_address (struct gdbarch *gdbarch,
155 CORE_ADDR bpaddr,
156 enum bptype bptype);
157
158 static void describe_other_breakpoints (struct gdbarch *,
159 struct program_space *, CORE_ADDR,
160 struct obj_section *, int);
161
162 static int breakpoint_address_match (struct address_space *aspace1,
163 CORE_ADDR addr1,
164 struct address_space *aspace2,
165 CORE_ADDR addr2);
166
167 static int watchpoint_locations_match (struct bp_location *loc1,
168 struct bp_location *loc2);
169
170 static int breakpoint_location_address_match (struct bp_location *bl,
171 struct address_space *aspace,
172 CORE_ADDR addr);
173
174 static void breakpoints_info (char *, int);
175
176 static void watchpoints_info (char *, int);
177
178 static int breakpoint_1 (char *, int,
179 int (*) (const struct breakpoint *));
180
181 static int breakpoint_cond_eval (void *);
182
183 static void cleanup_executing_breakpoints (void *);
184
185 static void commands_command (char *, int);
186
187 static void condition_command (char *, int);
188
189 typedef enum
190 {
191 mark_inserted,
192 mark_uninserted
193 }
194 insertion_state_t;
195
196 static int remove_breakpoint (struct bp_location *, insertion_state_t);
197 static int remove_breakpoint_1 (struct bp_location *, insertion_state_t);
198
199 static enum print_stop_action print_bp_stop_message (bpstat bs);
200
201 static int watchpoint_check (void *);
202
203 static void maintenance_info_breakpoints (char *, int);
204
205 static int hw_breakpoint_used_count (void);
206
207 static int hw_watchpoint_use_count (struct breakpoint *);
208
209 static int hw_watchpoint_used_count_others (struct breakpoint *except,
210 enum bptype type,
211 int *other_type_used);
212
213 static void hbreak_command (char *, int);
214
215 static void thbreak_command (char *, int);
216
217 static void enable_breakpoint_disp (struct breakpoint *, enum bpdisp,
218 int count);
219
220 static void stop_command (char *arg, int from_tty);
221
222 static void stopin_command (char *arg, int from_tty);
223
224 static void stopat_command (char *arg, int from_tty);
225
226 static char *ep_parse_optional_if_clause (char **arg);
227
228 static void catch_exception_command_1 (enum exception_event_kind ex_event,
229 char *arg, int tempflag, int from_tty);
230
231 static void tcatch_command (char *arg, int from_tty);
232
233 static void detach_single_step_breakpoints (void);
234
235 static int single_step_breakpoint_inserted_here_p (struct address_space *,
236 CORE_ADDR pc);
237
238 static void free_bp_location (struct bp_location *loc);
239 static void incref_bp_location (struct bp_location *loc);
240 static void decref_bp_location (struct bp_location **loc);
241
242 static struct bp_location *allocate_bp_location (struct breakpoint *bpt);
243
244 static void update_global_location_list (int);
245
246 static void update_global_location_list_nothrow (int);
247
248 static int is_hardware_watchpoint (const struct breakpoint *bpt);
249
250 static void insert_breakpoint_locations (void);
251
252 static int syscall_catchpoint_p (struct breakpoint *b);
253
254 static void tracepoints_info (char *, int);
255
256 static void delete_trace_command (char *, int);
257
258 static void enable_trace_command (char *, int);
259
260 static void disable_trace_command (char *, int);
261
262 static void trace_pass_command (char *, int);
263
264 static void set_tracepoint_count (int num);
265
266 static int is_masked_watchpoint (const struct breakpoint *b);
267
268 static struct bp_location **get_first_locp_gte_addr (CORE_ADDR address);
269
270 /* Return 1 if B refers to a static tracepoint set by marker ("-m"), zero
271 otherwise. */
272
273 static int strace_marker_p (struct breakpoint *b);
274
275 static void init_catchpoint (struct breakpoint *b,
276 struct gdbarch *gdbarch, int tempflag,
277 char *cond_string,
278 const struct breakpoint_ops *ops);
279
280 /* The abstract base class all breakpoint_ops structures inherit
281 from. */
282 static struct breakpoint_ops base_breakpoint_ops;
283
284 /* The breakpoint_ops structure to be inherited by all breakpoint_ops
285 that are implemented on top of software or hardware breakpoints
286 (user breakpoints, internal and momentary breakpoints, etc.). */
287 static struct breakpoint_ops bkpt_base_breakpoint_ops;
288
289 /* Internal breakpoints class type. */
290 static struct breakpoint_ops internal_breakpoint_ops;
291
292 /* Momentary breakpoints class type. */
293 static struct breakpoint_ops momentary_breakpoint_ops;
294
295 /* Momentary breakpoints for bp_longjmp and bp_exception class type. */
296 static struct breakpoint_ops longjmp_breakpoint_ops;
297
298 /* The breakpoint_ops structure to be used in regular user created
299 breakpoints. */
300 struct breakpoint_ops bkpt_breakpoint_ops;
301
302 /* Breakpoints set on probes. */
303 static struct breakpoint_ops bkpt_probe_breakpoint_ops;
304
305 /* Dynamic printf class type. */
306 static struct breakpoint_ops dprintf_breakpoint_ops;
307
308 /* The style in which to perform a dynamic printf. This is a user
309 option because different output options have different tradeoffs;
310 if GDB does the printing, there is better error handling if there
311 is a problem with any of the arguments, but using an inferior
312 function lets you have special-purpose printers and sending of
313 output to the same place as compiled-in print functions. */
314
315 static const char dprintf_style_gdb[] = "gdb";
316 static const char dprintf_style_call[] = "call";
317 static const char dprintf_style_agent[] = "agent";
318 static const char *const dprintf_style_enums[] = {
319 dprintf_style_gdb,
320 dprintf_style_call,
321 dprintf_style_agent,
322 NULL
323 };
324 static const char *dprintf_style = dprintf_style_gdb;
325
326 /* The function to use for dynamic printf if the preferred style is to
327 call into the inferior. The value is simply a string that is
328 copied into the command, so it can be anything that GDB can
329 evaluate to a callable address, not necessarily a function name. */
330
331 static char *dprintf_function = "";
332
333 /* The channel to use for dynamic printf if the preferred style is to
334 call into the inferior; if a nonempty string, it will be passed to
335 the call as the first argument, with the format string as the
336 second. As with the dprintf function, this can be anything that
337 GDB knows how to evaluate, so in addition to common choices like
338 "stderr", this could be an app-specific expression like
339 "mystreams[curlogger]". */
340
341 static char *dprintf_channel = "";
342
343 /* True if dprintf commands should continue to operate even if GDB
344 has disconnected. */
345 static int disconnected_dprintf = 1;
346
347 /* A reference-counted struct command_line. This lets multiple
348 breakpoints share a single command list. */
349 struct counted_command_line
350 {
351 /* The reference count. */
352 int refc;
353
354 /* The command list. */
355 struct command_line *commands;
356 };
357
358 struct command_line *
359 breakpoint_commands (struct breakpoint *b)
360 {
361 return b->commands ? b->commands->commands : NULL;
362 }
363
364 /* Flag indicating that a command has proceeded the inferior past the
365 current breakpoint. */
366
367 static int breakpoint_proceeded;
368
369 const char *
370 bpdisp_text (enum bpdisp disp)
371 {
372 /* NOTE: the following values are a part of MI protocol and
373 represent values of 'disp' field returned when inferior stops at
374 a breakpoint. */
375 static const char * const bpdisps[] = {"del", "dstp", "dis", "keep"};
376
377 return bpdisps[(int) disp];
378 }
379
380 /* Prototypes for exported functions. */
381 /* If FALSE, gdb will not use hardware support for watchpoints, even
382 if such is available. */
383 static int can_use_hw_watchpoints;
384
385 static void
386 show_can_use_hw_watchpoints (struct ui_file *file, int from_tty,
387 struct cmd_list_element *c,
388 const char *value)
389 {
390 fprintf_filtered (file,
391 _("Debugger's willingness to use "
392 "watchpoint hardware is %s.\n"),
393 value);
394 }
395
396 /* If AUTO_BOOLEAN_FALSE, gdb will not attempt to create pending breakpoints.
397 If AUTO_BOOLEAN_TRUE, gdb will automatically create pending breakpoints
398 for unrecognized breakpoint locations.
399 If AUTO_BOOLEAN_AUTO, gdb will query when breakpoints are unrecognized. */
400 static enum auto_boolean pending_break_support;
401 static void
402 show_pending_break_support (struct ui_file *file, int from_tty,
403 struct cmd_list_element *c,
404 const char *value)
405 {
406 fprintf_filtered (file,
407 _("Debugger's behavior regarding "
408 "pending breakpoints is %s.\n"),
409 value);
410 }
411
412 /* If 1, gdb will automatically use hardware breakpoints for breakpoints
413 set with "break" but falling in read-only memory.
414 If 0, gdb will warn about such breakpoints, but won't automatically
415 use hardware breakpoints. */
416 static int automatic_hardware_breakpoints;
417 static void
418 show_automatic_hardware_breakpoints (struct ui_file *file, int from_tty,
419 struct cmd_list_element *c,
420 const char *value)
421 {
422 fprintf_filtered (file,
423 _("Automatic usage of hardware breakpoints is %s.\n"),
424 value);
425 }
426
427 /* If on, gdb will keep breakpoints inserted even as inferior is
428 stopped, and immediately insert any new breakpoints. If off, gdb
429 will insert breakpoints into inferior only when resuming it, and
430 will remove breakpoints upon stop. If auto, GDB will behave as ON
431 if in non-stop mode, and as OFF if all-stop mode.*/
432
433 static enum auto_boolean always_inserted_mode = AUTO_BOOLEAN_AUTO;
434
435 static void
436 show_always_inserted_mode (struct ui_file *file, int from_tty,
437 struct cmd_list_element *c, const char *value)
438 {
439 if (always_inserted_mode == AUTO_BOOLEAN_AUTO)
440 fprintf_filtered (file,
441 _("Always inserted breakpoint "
442 "mode is %s (currently %s).\n"),
443 value,
444 breakpoints_always_inserted_mode () ? "on" : "off");
445 else
446 fprintf_filtered (file, _("Always inserted breakpoint mode is %s.\n"),
447 value);
448 }
449
450 int
451 breakpoints_always_inserted_mode (void)
452 {
453 return (always_inserted_mode == AUTO_BOOLEAN_TRUE
454 || (always_inserted_mode == AUTO_BOOLEAN_AUTO && non_stop));
455 }
456
457 static const char condition_evaluation_both[] = "host or target";
458
459 /* Modes for breakpoint condition evaluation. */
460 static const char condition_evaluation_auto[] = "auto";
461 static const char condition_evaluation_host[] = "host";
462 static const char condition_evaluation_target[] = "target";
463 static const char *const condition_evaluation_enums[] = {
464 condition_evaluation_auto,
465 condition_evaluation_host,
466 condition_evaluation_target,
467 NULL
468 };
469
470 /* Global that holds the current mode for breakpoint condition evaluation. */
471 static const char *condition_evaluation_mode_1 = condition_evaluation_auto;
472
473 /* Global that we use to display information to the user (gets its value from
474 condition_evaluation_mode_1. */
475 static const char *condition_evaluation_mode = condition_evaluation_auto;
476
477 /* Translate a condition evaluation mode MODE into either "host"
478 or "target". This is used mostly to translate from "auto" to the
479 real setting that is being used. It returns the translated
480 evaluation mode. */
481
482 static const char *
483 translate_condition_evaluation_mode (const char *mode)
484 {
485 if (mode == condition_evaluation_auto)
486 {
487 if (target_supports_evaluation_of_breakpoint_conditions ())
488 return condition_evaluation_target;
489 else
490 return condition_evaluation_host;
491 }
492 else
493 return mode;
494 }
495
496 /* Discovers what condition_evaluation_auto translates to. */
497
498 static const char *
499 breakpoint_condition_evaluation_mode (void)
500 {
501 return translate_condition_evaluation_mode (condition_evaluation_mode);
502 }
503
504 /* Return true if GDB should evaluate breakpoint conditions or false
505 otherwise. */
506
507 static int
508 gdb_evaluates_breakpoint_condition_p (void)
509 {
510 const char *mode = breakpoint_condition_evaluation_mode ();
511
512 return (mode == condition_evaluation_host);
513 }
514
515 void _initialize_breakpoint (void);
516
517 /* Are we executing breakpoint commands? */
518 static int executing_breakpoint_commands;
519
520 /* Are overlay event breakpoints enabled? */
521 static int overlay_events_enabled;
522
523 /* See description in breakpoint.h. */
524 int target_exact_watchpoints = 0;
525
526 /* Walk the following statement or block through all breakpoints.
527 ALL_BREAKPOINTS_SAFE does so even if the statement deletes the
528 current breakpoint. */
529
530 #define ALL_BREAKPOINTS(B) for (B = breakpoint_chain; B; B = B->next)
531
532 #define ALL_BREAKPOINTS_SAFE(B,TMP) \
533 for (B = breakpoint_chain; \
534 B ? (TMP=B->next, 1): 0; \
535 B = TMP)
536
537 /* Similar iterator for the low-level breakpoints. SAFE variant is
538 not provided so update_global_location_list must not be called
539 while executing the block of ALL_BP_LOCATIONS. */
540
541 #define ALL_BP_LOCATIONS(B,BP_TMP) \
542 for (BP_TMP = bp_location; \
543 BP_TMP < bp_location + bp_location_count && (B = *BP_TMP); \
544 BP_TMP++)
545
546 /* Iterates through locations with address ADDRESS for the currently selected
547 program space. BP_LOCP_TMP points to each object. BP_LOCP_START points
548 to where the loop should start from.
549 If BP_LOCP_START is a NULL pointer, the macro automatically seeks the
550 appropriate location to start with. */
551
552 #define ALL_BP_LOCATIONS_AT_ADDR(BP_LOCP_TMP, BP_LOCP_START, ADDRESS) \
553 for (BP_LOCP_START = BP_LOCP_START == NULL ? get_first_locp_gte_addr (ADDRESS) : BP_LOCP_START, \
554 BP_LOCP_TMP = BP_LOCP_START; \
555 BP_LOCP_START \
556 && (BP_LOCP_TMP < bp_location + bp_location_count \
557 && (*BP_LOCP_TMP)->address == ADDRESS); \
558 BP_LOCP_TMP++)
559
560 /* Iterator for tracepoints only. */
561
562 #define ALL_TRACEPOINTS(B) \
563 for (B = breakpoint_chain; B; B = B->next) \
564 if (is_tracepoint (B))
565
566 /* Chains of all breakpoints defined. */
567
568 struct breakpoint *breakpoint_chain;
569
570 /* Array is sorted by bp_location_compare - primarily by the ADDRESS. */
571
572 static struct bp_location **bp_location;
573
574 /* Number of elements of BP_LOCATION. */
575
576 static unsigned bp_location_count;
577
578 /* Maximum alignment offset between bp_target_info.PLACED_ADDRESS and
579 ADDRESS for the current elements of BP_LOCATION which get a valid
580 result from bp_location_has_shadow. You can use it for roughly
581 limiting the subrange of BP_LOCATION to scan for shadow bytes for
582 an address you need to read. */
583
584 static CORE_ADDR bp_location_placed_address_before_address_max;
585
586 /* Maximum offset plus alignment between bp_target_info.PLACED_ADDRESS
587 + bp_target_info.SHADOW_LEN and ADDRESS for the current elements of
588 BP_LOCATION which get a valid result from bp_location_has_shadow.
589 You can use it for roughly limiting the subrange of BP_LOCATION to
590 scan for shadow bytes for an address you need to read. */
591
592 static CORE_ADDR bp_location_shadow_len_after_address_max;
593
594 /* The locations that no longer correspond to any breakpoint, unlinked
595 from bp_location array, but for which a hit may still be reported
596 by a target. */
597 VEC(bp_location_p) *moribund_locations = NULL;
598
599 /* Number of last breakpoint made. */
600
601 static int breakpoint_count;
602
603 /* The value of `breakpoint_count' before the last command that
604 created breakpoints. If the last (break-like) command created more
605 than one breakpoint, then the difference between BREAKPOINT_COUNT
606 and PREV_BREAKPOINT_COUNT is more than one. */
607 static int prev_breakpoint_count;
608
609 /* Number of last tracepoint made. */
610
611 static int tracepoint_count;
612
613 static struct cmd_list_element *breakpoint_set_cmdlist;
614 static struct cmd_list_element *breakpoint_show_cmdlist;
615 struct cmd_list_element *save_cmdlist;
616
617 /* Return whether a breakpoint is an active enabled breakpoint. */
618 static int
619 breakpoint_enabled (struct breakpoint *b)
620 {
621 return (b->enable_state == bp_enabled);
622 }
623
624 /* Set breakpoint count to NUM. */
625
626 static void
627 set_breakpoint_count (int num)
628 {
629 prev_breakpoint_count = breakpoint_count;
630 breakpoint_count = num;
631 set_internalvar_integer (lookup_internalvar ("bpnum"), num);
632 }
633
634 /* Used by `start_rbreak_breakpoints' below, to record the current
635 breakpoint count before "rbreak" creates any breakpoint. */
636 static int rbreak_start_breakpoint_count;
637
638 /* Called at the start an "rbreak" command to record the first
639 breakpoint made. */
640
641 void
642 start_rbreak_breakpoints (void)
643 {
644 rbreak_start_breakpoint_count = breakpoint_count;
645 }
646
647 /* Called at the end of an "rbreak" command to record the last
648 breakpoint made. */
649
650 void
651 end_rbreak_breakpoints (void)
652 {
653 prev_breakpoint_count = rbreak_start_breakpoint_count;
654 }
655
656 /* Used in run_command to zero the hit count when a new run starts. */
657
658 void
659 clear_breakpoint_hit_counts (void)
660 {
661 struct breakpoint *b;
662
663 ALL_BREAKPOINTS (b)
664 b->hit_count = 0;
665 }
666
667 /* Allocate a new counted_command_line with reference count of 1.
668 The new structure owns COMMANDS. */
669
670 static struct counted_command_line *
671 alloc_counted_command_line (struct command_line *commands)
672 {
673 struct counted_command_line *result
674 = xmalloc (sizeof (struct counted_command_line));
675
676 result->refc = 1;
677 result->commands = commands;
678 return result;
679 }
680
681 /* Increment reference count. This does nothing if CMD is NULL. */
682
683 static void
684 incref_counted_command_line (struct counted_command_line *cmd)
685 {
686 if (cmd)
687 ++cmd->refc;
688 }
689
690 /* Decrement reference count. If the reference count reaches 0,
691 destroy the counted_command_line. Sets *CMDP to NULL. This does
692 nothing if *CMDP is NULL. */
693
694 static void
695 decref_counted_command_line (struct counted_command_line **cmdp)
696 {
697 if (*cmdp)
698 {
699 if (--(*cmdp)->refc == 0)
700 {
701 free_command_lines (&(*cmdp)->commands);
702 xfree (*cmdp);
703 }
704 *cmdp = NULL;
705 }
706 }
707
708 /* A cleanup function that calls decref_counted_command_line. */
709
710 static void
711 do_cleanup_counted_command_line (void *arg)
712 {
713 decref_counted_command_line (arg);
714 }
715
716 /* Create a cleanup that calls decref_counted_command_line on the
717 argument. */
718
719 static struct cleanup *
720 make_cleanup_decref_counted_command_line (struct counted_command_line **cmdp)
721 {
722 return make_cleanup (do_cleanup_counted_command_line, cmdp);
723 }
724
725 \f
726 /* Return the breakpoint with the specified number, or NULL
727 if the number does not refer to an existing breakpoint. */
728
729 struct breakpoint *
730 get_breakpoint (int num)
731 {
732 struct breakpoint *b;
733
734 ALL_BREAKPOINTS (b)
735 if (b->number == num)
736 return b;
737
738 return NULL;
739 }
740
741 \f
742
743 /* Mark locations as "conditions have changed" in case the target supports
744 evaluating conditions on its side. */
745
746 static void
747 mark_breakpoint_modified (struct breakpoint *b)
748 {
749 struct bp_location *loc;
750
751 /* This is only meaningful if the target is
752 evaluating conditions and if the user has
753 opted for condition evaluation on the target's
754 side. */
755 if (gdb_evaluates_breakpoint_condition_p ()
756 || !target_supports_evaluation_of_breakpoint_conditions ())
757 return;
758
759 if (!is_breakpoint (b))
760 return;
761
762 for (loc = b->loc; loc; loc = loc->next)
763 loc->condition_changed = condition_modified;
764 }
765
766 /* Mark location as "conditions have changed" in case the target supports
767 evaluating conditions on its side. */
768
769 static void
770 mark_breakpoint_location_modified (struct bp_location *loc)
771 {
772 /* This is only meaningful if the target is
773 evaluating conditions and if the user has
774 opted for condition evaluation on the target's
775 side. */
776 if (gdb_evaluates_breakpoint_condition_p ()
777 || !target_supports_evaluation_of_breakpoint_conditions ())
778
779 return;
780
781 if (!is_breakpoint (loc->owner))
782 return;
783
784 loc->condition_changed = condition_modified;
785 }
786
787 /* Sets the condition-evaluation mode using the static global
788 condition_evaluation_mode. */
789
790 static void
791 set_condition_evaluation_mode (char *args, int from_tty,
792 struct cmd_list_element *c)
793 {
794 const char *old_mode, *new_mode;
795
796 if ((condition_evaluation_mode_1 == condition_evaluation_target)
797 && !target_supports_evaluation_of_breakpoint_conditions ())
798 {
799 condition_evaluation_mode_1 = condition_evaluation_mode;
800 warning (_("Target does not support breakpoint condition evaluation.\n"
801 "Using host evaluation mode instead."));
802 return;
803 }
804
805 new_mode = translate_condition_evaluation_mode (condition_evaluation_mode_1);
806 old_mode = translate_condition_evaluation_mode (condition_evaluation_mode);
807
808 /* Flip the switch. Flip it even if OLD_MODE == NEW_MODE as one of the
809 settings was "auto". */
810 condition_evaluation_mode = condition_evaluation_mode_1;
811
812 /* Only update the mode if the user picked a different one. */
813 if (new_mode != old_mode)
814 {
815 struct bp_location *loc, **loc_tmp;
816 /* If the user switched to a different evaluation mode, we
817 need to synch the changes with the target as follows:
818
819 "host" -> "target": Send all (valid) conditions to the target.
820 "target" -> "host": Remove all the conditions from the target.
821 */
822
823 if (new_mode == condition_evaluation_target)
824 {
825 /* Mark everything modified and synch conditions with the
826 target. */
827 ALL_BP_LOCATIONS (loc, loc_tmp)
828 mark_breakpoint_location_modified (loc);
829 }
830 else
831 {
832 /* Manually mark non-duplicate locations to synch conditions
833 with the target. We do this to remove all the conditions the
834 target knows about. */
835 ALL_BP_LOCATIONS (loc, loc_tmp)
836 if (is_breakpoint (loc->owner) && loc->inserted)
837 loc->needs_update = 1;
838 }
839
840 /* Do the update. */
841 update_global_location_list (1);
842 }
843
844 return;
845 }
846
847 /* Shows the current mode of breakpoint condition evaluation. Explicitly shows
848 what "auto" is translating to. */
849
850 static void
851 show_condition_evaluation_mode (struct ui_file *file, int from_tty,
852 struct cmd_list_element *c, const char *value)
853 {
854 if (condition_evaluation_mode == condition_evaluation_auto)
855 fprintf_filtered (file,
856 _("Breakpoint condition evaluation "
857 "mode is %s (currently %s).\n"),
858 value,
859 breakpoint_condition_evaluation_mode ());
860 else
861 fprintf_filtered (file, _("Breakpoint condition evaluation mode is %s.\n"),
862 value);
863 }
864
865 /* A comparison function for bp_location AP and BP that is used by
866 bsearch. This comparison function only cares about addresses, unlike
867 the more general bp_location_compare function. */
868
869 static int
870 bp_location_compare_addrs (const void *ap, const void *bp)
871 {
872 struct bp_location *a = *(void **) ap;
873 struct bp_location *b = *(void **) bp;
874
875 if (a->address == b->address)
876 return 0;
877 else
878 return ((a->address > b->address) - (a->address < b->address));
879 }
880
881 /* Helper function to skip all bp_locations with addresses
882 less than ADDRESS. It returns the first bp_location that
883 is greater than or equal to ADDRESS. If none is found, just
884 return NULL. */
885
886 static struct bp_location **
887 get_first_locp_gte_addr (CORE_ADDR address)
888 {
889 struct bp_location dummy_loc;
890 struct bp_location *dummy_locp = &dummy_loc;
891 struct bp_location **locp_found = NULL;
892
893 /* Initialize the dummy location's address field. */
894 memset (&dummy_loc, 0, sizeof (struct bp_location));
895 dummy_loc.address = address;
896
897 /* Find a close match to the first location at ADDRESS. */
898 locp_found = bsearch (&dummy_locp, bp_location, bp_location_count,
899 sizeof (struct bp_location **),
900 bp_location_compare_addrs);
901
902 /* Nothing was found, nothing left to do. */
903 if (locp_found == NULL)
904 return NULL;
905
906 /* We may have found a location that is at ADDRESS but is not the first in the
907 location's list. Go backwards (if possible) and locate the first one. */
908 while ((locp_found - 1) >= bp_location
909 && (*(locp_found - 1))->address == address)
910 locp_found--;
911
912 return locp_found;
913 }
914
915 void
916 set_breakpoint_condition (struct breakpoint *b, char *exp,
917 int from_tty)
918 {
919 xfree (b->cond_string);
920 b->cond_string = NULL;
921
922 if (is_watchpoint (b))
923 {
924 struct watchpoint *w = (struct watchpoint *) b;
925
926 xfree (w->cond_exp);
927 w->cond_exp = NULL;
928 }
929 else
930 {
931 struct bp_location *loc;
932
933 for (loc = b->loc; loc; loc = loc->next)
934 {
935 xfree (loc->cond);
936 loc->cond = NULL;
937
938 /* No need to free the condition agent expression
939 bytecode (if we have one). We will handle this
940 when we go through update_global_location_list. */
941 }
942 }
943
944 if (*exp == 0)
945 {
946 if (from_tty)
947 printf_filtered (_("Breakpoint %d now unconditional.\n"), b->number);
948 }
949 else
950 {
951 char *arg = exp;
952
953 /* I don't know if it matters whether this is the string the user
954 typed in or the decompiled expression. */
955 b->cond_string = xstrdup (arg);
956 b->condition_not_parsed = 0;
957
958 if (is_watchpoint (b))
959 {
960 struct watchpoint *w = (struct watchpoint *) b;
961
962 innermost_block = NULL;
963 arg = exp;
964 w->cond_exp = parse_exp_1 (&arg, 0, 0, 0);
965 if (*arg)
966 error (_("Junk at end of expression"));
967 w->cond_exp_valid_block = innermost_block;
968 }
969 else
970 {
971 struct bp_location *loc;
972
973 for (loc = b->loc; loc; loc = loc->next)
974 {
975 arg = exp;
976 loc->cond =
977 parse_exp_1 (&arg, loc->address,
978 block_for_pc (loc->address), 0);
979 if (*arg)
980 error (_("Junk at end of expression"));
981 }
982 }
983 }
984 mark_breakpoint_modified (b);
985
986 annotate_breakpoints_changed ();
987 observer_notify_breakpoint_modified (b);
988 }
989
990 /* Completion for the "condition" command. */
991
992 static VEC (char_ptr) *
993 condition_completer (struct cmd_list_element *cmd, char *text, char *word)
994 {
995 char *space;
996
997 text = skip_spaces (text);
998 space = skip_to_space (text);
999 if (*space == '\0')
1000 {
1001 int len;
1002 struct breakpoint *b;
1003 VEC (char_ptr) *result = NULL;
1004
1005 if (text[0] == '$')
1006 {
1007 /* We don't support completion of history indices. */
1008 if (isdigit (text[1]))
1009 return NULL;
1010 return complete_internalvar (&text[1]);
1011 }
1012
1013 /* We're completing the breakpoint number. */
1014 len = strlen (text);
1015
1016 ALL_BREAKPOINTS (b)
1017 {
1018 int single = b->loc->next == NULL;
1019 struct bp_location *loc;
1020 int count = 1;
1021
1022 for (loc = b->loc; loc; loc = loc->next)
1023 {
1024 char location[50];
1025
1026 if (single)
1027 xsnprintf (location, sizeof (location), "%d", b->number);
1028 else
1029 xsnprintf (location, sizeof (location), "%d.%d", b->number,
1030 count);
1031
1032 if (strncmp (location, text, len) == 0)
1033 VEC_safe_push (char_ptr, result, xstrdup (location));
1034
1035 ++count;
1036 }
1037 }
1038
1039 return result;
1040 }
1041
1042 /* We're completing the expression part. */
1043 text = skip_spaces (space);
1044 return expression_completer (cmd, text, word);
1045 }
1046
1047 /* condition N EXP -- set break condition of breakpoint N to EXP. */
1048
1049 static void
1050 condition_command (char *arg, int from_tty)
1051 {
1052 struct breakpoint *b;
1053 char *p;
1054 int bnum;
1055
1056 if (arg == 0)
1057 error_no_arg (_("breakpoint number"));
1058
1059 p = arg;
1060 bnum = get_number (&p);
1061 if (bnum == 0)
1062 error (_("Bad breakpoint argument: '%s'"), arg);
1063
1064 ALL_BREAKPOINTS (b)
1065 if (b->number == bnum)
1066 {
1067 /* Check if this breakpoint has a Python object assigned to
1068 it, and if it has a definition of the "stop"
1069 method. This method and conditions entered into GDB from
1070 the CLI are mutually exclusive. */
1071 if (b->py_bp_object
1072 && gdbpy_breakpoint_has_py_cond (b->py_bp_object))
1073 error (_("Cannot set a condition where a Python 'stop' "
1074 "method has been defined in the breakpoint."));
1075 set_breakpoint_condition (b, p, from_tty);
1076
1077 if (is_breakpoint (b))
1078 update_global_location_list (1);
1079
1080 return;
1081 }
1082
1083 error (_("No breakpoint number %d."), bnum);
1084 }
1085
1086 /* Check that COMMAND do not contain commands that are suitable
1087 only for tracepoints and not suitable for ordinary breakpoints.
1088 Throw if any such commands is found. */
1089
1090 static void
1091 check_no_tracepoint_commands (struct command_line *commands)
1092 {
1093 struct command_line *c;
1094
1095 for (c = commands; c; c = c->next)
1096 {
1097 int i;
1098
1099 if (c->control_type == while_stepping_control)
1100 error (_("The 'while-stepping' command can "
1101 "only be used for tracepoints"));
1102
1103 for (i = 0; i < c->body_count; ++i)
1104 check_no_tracepoint_commands ((c->body_list)[i]);
1105
1106 /* Not that command parsing removes leading whitespace and comment
1107 lines and also empty lines. So, we only need to check for
1108 command directly. */
1109 if (strstr (c->line, "collect ") == c->line)
1110 error (_("The 'collect' command can only be used for tracepoints"));
1111
1112 if (strstr (c->line, "teval ") == c->line)
1113 error (_("The 'teval' command can only be used for tracepoints"));
1114 }
1115 }
1116
1117 /* Encapsulate tests for different types of tracepoints. */
1118
1119 static int
1120 is_tracepoint_type (enum bptype type)
1121 {
1122 return (type == bp_tracepoint
1123 || type == bp_fast_tracepoint
1124 || type == bp_static_tracepoint);
1125 }
1126
1127 int
1128 is_tracepoint (const struct breakpoint *b)
1129 {
1130 return is_tracepoint_type (b->type);
1131 }
1132
1133 /* A helper function that validates that COMMANDS are valid for a
1134 breakpoint. This function will throw an exception if a problem is
1135 found. */
1136
1137 static void
1138 validate_commands_for_breakpoint (struct breakpoint *b,
1139 struct command_line *commands)
1140 {
1141 if (is_tracepoint (b))
1142 {
1143 /* We need to verify that each top-level element of commands is
1144 valid for tracepoints, that there's at most one
1145 while-stepping element, and that while-stepping's body has
1146 valid tracing commands excluding nested while-stepping. */
1147 struct command_line *c;
1148 struct command_line *while_stepping = 0;
1149 for (c = commands; c; c = c->next)
1150 {
1151 if (c->control_type == while_stepping_control)
1152 {
1153 if (b->type == bp_fast_tracepoint)
1154 error (_("The 'while-stepping' command "
1155 "cannot be used for fast tracepoint"));
1156 else if (b->type == bp_static_tracepoint)
1157 error (_("The 'while-stepping' command "
1158 "cannot be used for static tracepoint"));
1159
1160 if (while_stepping)
1161 error (_("The 'while-stepping' command "
1162 "can be used only once"));
1163 else
1164 while_stepping = c;
1165 }
1166 }
1167 if (while_stepping)
1168 {
1169 struct command_line *c2;
1170
1171 gdb_assert (while_stepping->body_count == 1);
1172 c2 = while_stepping->body_list[0];
1173 for (; c2; c2 = c2->next)
1174 {
1175 if (c2->control_type == while_stepping_control)
1176 error (_("The 'while-stepping' command cannot be nested"));
1177 }
1178 }
1179 }
1180 else
1181 {
1182 check_no_tracepoint_commands (commands);
1183 }
1184 }
1185
1186 /* Return a vector of all the static tracepoints set at ADDR. The
1187 caller is responsible for releasing the vector. */
1188
1189 VEC(breakpoint_p) *
1190 static_tracepoints_here (CORE_ADDR addr)
1191 {
1192 struct breakpoint *b;
1193 VEC(breakpoint_p) *found = 0;
1194 struct bp_location *loc;
1195
1196 ALL_BREAKPOINTS (b)
1197 if (b->type == bp_static_tracepoint)
1198 {
1199 for (loc = b->loc; loc; loc = loc->next)
1200 if (loc->address == addr)
1201 VEC_safe_push(breakpoint_p, found, b);
1202 }
1203
1204 return found;
1205 }
1206
1207 /* Set the command list of B to COMMANDS. If breakpoint is tracepoint,
1208 validate that only allowed commands are included. */
1209
1210 void
1211 breakpoint_set_commands (struct breakpoint *b,
1212 struct command_line *commands)
1213 {
1214 validate_commands_for_breakpoint (b, commands);
1215
1216 decref_counted_command_line (&b->commands);
1217 b->commands = alloc_counted_command_line (commands);
1218 annotate_breakpoints_changed ();
1219 observer_notify_breakpoint_modified (b);
1220 }
1221
1222 /* Set the internal `silent' flag on the breakpoint. Note that this
1223 is not the same as the "silent" that may appear in the breakpoint's
1224 commands. */
1225
1226 void
1227 breakpoint_set_silent (struct breakpoint *b, int silent)
1228 {
1229 int old_silent = b->silent;
1230
1231 b->silent = silent;
1232 if (old_silent != silent)
1233 observer_notify_breakpoint_modified (b);
1234 }
1235
1236 /* Set the thread for this breakpoint. If THREAD is -1, make the
1237 breakpoint work for any thread. */
1238
1239 void
1240 breakpoint_set_thread (struct breakpoint *b, int thread)
1241 {
1242 int old_thread = b->thread;
1243
1244 b->thread = thread;
1245 if (old_thread != thread)
1246 observer_notify_breakpoint_modified (b);
1247 }
1248
1249 /* Set the task for this breakpoint. If TASK is 0, make the
1250 breakpoint work for any task. */
1251
1252 void
1253 breakpoint_set_task (struct breakpoint *b, int task)
1254 {
1255 int old_task = b->task;
1256
1257 b->task = task;
1258 if (old_task != task)
1259 observer_notify_breakpoint_modified (b);
1260 }
1261
1262 void
1263 check_tracepoint_command (char *line, void *closure)
1264 {
1265 struct breakpoint *b = closure;
1266
1267 validate_actionline (&line, b);
1268 }
1269
1270 /* A structure used to pass information through
1271 map_breakpoint_numbers. */
1272
1273 struct commands_info
1274 {
1275 /* True if the command was typed at a tty. */
1276 int from_tty;
1277
1278 /* The breakpoint range spec. */
1279 char *arg;
1280
1281 /* Non-NULL if the body of the commands are being read from this
1282 already-parsed command. */
1283 struct command_line *control;
1284
1285 /* The command lines read from the user, or NULL if they have not
1286 yet been read. */
1287 struct counted_command_line *cmd;
1288 };
1289
1290 /* A callback for map_breakpoint_numbers that sets the commands for
1291 commands_command. */
1292
1293 static void
1294 do_map_commands_command (struct breakpoint *b, void *data)
1295 {
1296 struct commands_info *info = data;
1297
1298 if (info->cmd == NULL)
1299 {
1300 struct command_line *l;
1301
1302 if (info->control != NULL)
1303 l = copy_command_lines (info->control->body_list[0]);
1304 else
1305 {
1306 struct cleanup *old_chain;
1307 char *str;
1308
1309 str = xstrprintf (_("Type commands for breakpoint(s) "
1310 "%s, one per line."),
1311 info->arg);
1312
1313 old_chain = make_cleanup (xfree, str);
1314
1315 l = read_command_lines (str,
1316 info->from_tty, 1,
1317 (is_tracepoint (b)
1318 ? check_tracepoint_command : 0),
1319 b);
1320
1321 do_cleanups (old_chain);
1322 }
1323
1324 info->cmd = alloc_counted_command_line (l);
1325 }
1326
1327 /* If a breakpoint was on the list more than once, we don't need to
1328 do anything. */
1329 if (b->commands != info->cmd)
1330 {
1331 validate_commands_for_breakpoint (b, info->cmd->commands);
1332 incref_counted_command_line (info->cmd);
1333 decref_counted_command_line (&b->commands);
1334 b->commands = info->cmd;
1335 annotate_breakpoints_changed ();
1336 observer_notify_breakpoint_modified (b);
1337 }
1338 }
1339
1340 static void
1341 commands_command_1 (char *arg, int from_tty,
1342 struct command_line *control)
1343 {
1344 struct cleanup *cleanups;
1345 struct commands_info info;
1346
1347 info.from_tty = from_tty;
1348 info.control = control;
1349 info.cmd = NULL;
1350 /* If we read command lines from the user, then `info' will hold an
1351 extra reference to the commands that we must clean up. */
1352 cleanups = make_cleanup_decref_counted_command_line (&info.cmd);
1353
1354 if (arg == NULL || !*arg)
1355 {
1356 if (breakpoint_count - prev_breakpoint_count > 1)
1357 arg = xstrprintf ("%d-%d", prev_breakpoint_count + 1,
1358 breakpoint_count);
1359 else if (breakpoint_count > 0)
1360 arg = xstrprintf ("%d", breakpoint_count);
1361 else
1362 {
1363 /* So that we don't try to free the incoming non-NULL
1364 argument in the cleanup below. Mapping breakpoint
1365 numbers will fail in this case. */
1366 arg = NULL;
1367 }
1368 }
1369 else
1370 /* The command loop has some static state, so we need to preserve
1371 our argument. */
1372 arg = xstrdup (arg);
1373
1374 if (arg != NULL)
1375 make_cleanup (xfree, arg);
1376
1377 info.arg = arg;
1378
1379 map_breakpoint_numbers (arg, do_map_commands_command, &info);
1380
1381 if (info.cmd == NULL)
1382 error (_("No breakpoints specified."));
1383
1384 do_cleanups (cleanups);
1385 }
1386
1387 static void
1388 commands_command (char *arg, int from_tty)
1389 {
1390 commands_command_1 (arg, from_tty, NULL);
1391 }
1392
1393 /* Like commands_command, but instead of reading the commands from
1394 input stream, takes them from an already parsed command structure.
1395
1396 This is used by cli-script.c to DTRT with breakpoint commands
1397 that are part of if and while bodies. */
1398 enum command_control_type
1399 commands_from_control_command (char *arg, struct command_line *cmd)
1400 {
1401 commands_command_1 (arg, 0, cmd);
1402 return simple_control;
1403 }
1404
1405 /* Return non-zero if BL->TARGET_INFO contains valid information. */
1406
1407 static int
1408 bp_location_has_shadow (struct bp_location *bl)
1409 {
1410 if (bl->loc_type != bp_loc_software_breakpoint)
1411 return 0;
1412 if (!bl->inserted)
1413 return 0;
1414 if (bl->target_info.shadow_len == 0)
1415 /* BL isn't valid, or doesn't shadow memory. */
1416 return 0;
1417 return 1;
1418 }
1419
1420 /* Update BUF, which is LEN bytes read from the target address MEMADDR,
1421 by replacing any memory breakpoints with their shadowed contents.
1422
1423 If READBUF is not NULL, this buffer must not overlap with any of
1424 the breakpoint location's shadow_contents buffers. Otherwise,
1425 a failed assertion internal error will be raised.
1426
1427 The range of shadowed area by each bp_location is:
1428 bl->address - bp_location_placed_address_before_address_max
1429 up to bl->address + bp_location_shadow_len_after_address_max
1430 The range we were requested to resolve shadows for is:
1431 memaddr ... memaddr + len
1432 Thus the safe cutoff boundaries for performance optimization are
1433 memaddr + len <= (bl->address
1434 - bp_location_placed_address_before_address_max)
1435 and:
1436 bl->address + bp_location_shadow_len_after_address_max <= memaddr */
1437
1438 void
1439 breakpoint_xfer_memory (gdb_byte *readbuf, gdb_byte *writebuf,
1440 const gdb_byte *writebuf_org,
1441 ULONGEST memaddr, LONGEST len)
1442 {
1443 /* Left boundary, right boundary and median element of our binary
1444 search. */
1445 unsigned bc_l, bc_r, bc;
1446
1447 /* Find BC_L which is a leftmost element which may affect BUF
1448 content. It is safe to report lower value but a failure to
1449 report higher one. */
1450
1451 bc_l = 0;
1452 bc_r = bp_location_count;
1453 while (bc_l + 1 < bc_r)
1454 {
1455 struct bp_location *bl;
1456
1457 bc = (bc_l + bc_r) / 2;
1458 bl = bp_location[bc];
1459
1460 /* Check first BL->ADDRESS will not overflow due to the added
1461 constant. Then advance the left boundary only if we are sure
1462 the BC element can in no way affect the BUF content (MEMADDR
1463 to MEMADDR + LEN range).
1464
1465 Use the BP_LOCATION_SHADOW_LEN_AFTER_ADDRESS_MAX safety
1466 offset so that we cannot miss a breakpoint with its shadow
1467 range tail still reaching MEMADDR. */
1468
1469 if ((bl->address + bp_location_shadow_len_after_address_max
1470 >= bl->address)
1471 && (bl->address + bp_location_shadow_len_after_address_max
1472 <= memaddr))
1473 bc_l = bc;
1474 else
1475 bc_r = bc;
1476 }
1477
1478 /* Due to the binary search above, we need to make sure we pick the
1479 first location that's at BC_L's address. E.g., if there are
1480 multiple locations at the same address, BC_L may end up pointing
1481 at a duplicate location, and miss the "master"/"inserted"
1482 location. Say, given locations L1, L2 and L3 at addresses A and
1483 B:
1484
1485 L1@A, L2@A, L3@B, ...
1486
1487 BC_L could end up pointing at location L2, while the "master"
1488 location could be L1. Since the `loc->inserted' flag is only set
1489 on "master" locations, we'd forget to restore the shadow of L1
1490 and L2. */
1491 while (bc_l > 0
1492 && bp_location[bc_l]->address == bp_location[bc_l - 1]->address)
1493 bc_l--;
1494
1495 /* Now do full processing of the found relevant range of elements. */
1496
1497 for (bc = bc_l; bc < bp_location_count; bc++)
1498 {
1499 struct bp_location *bl = bp_location[bc];
1500 CORE_ADDR bp_addr = 0;
1501 int bp_size = 0;
1502 int bptoffset = 0;
1503
1504 /* bp_location array has BL->OWNER always non-NULL. */
1505 if (bl->owner->type == bp_none)
1506 warning (_("reading through apparently deleted breakpoint #%d?"),
1507 bl->owner->number);
1508
1509 /* Performance optimization: any further element can no longer affect BUF
1510 content. */
1511
1512 if (bl->address >= bp_location_placed_address_before_address_max
1513 && memaddr + len <= (bl->address
1514 - bp_location_placed_address_before_address_max))
1515 break;
1516
1517 if (!bp_location_has_shadow (bl))
1518 continue;
1519 if (!breakpoint_address_match (bl->target_info.placed_address_space, 0,
1520 current_program_space->aspace, 0))
1521 continue;
1522
1523 /* Addresses and length of the part of the breakpoint that
1524 we need to copy. */
1525 bp_addr = bl->target_info.placed_address;
1526 bp_size = bl->target_info.shadow_len;
1527
1528 if (bp_addr + bp_size <= memaddr)
1529 /* The breakpoint is entirely before the chunk of memory we
1530 are reading. */
1531 continue;
1532
1533 if (bp_addr >= memaddr + len)
1534 /* The breakpoint is entirely after the chunk of memory we are
1535 reading. */
1536 continue;
1537
1538 /* Offset within shadow_contents. */
1539 if (bp_addr < memaddr)
1540 {
1541 /* Only copy the second part of the breakpoint. */
1542 bp_size -= memaddr - bp_addr;
1543 bptoffset = memaddr - bp_addr;
1544 bp_addr = memaddr;
1545 }
1546
1547 if (bp_addr + bp_size > memaddr + len)
1548 {
1549 /* Only copy the first part of the breakpoint. */
1550 bp_size -= (bp_addr + bp_size) - (memaddr + len);
1551 }
1552
1553 if (readbuf != NULL)
1554 {
1555 /* Verify that the readbuf buffer does not overlap with
1556 the shadow_contents buffer. */
1557 gdb_assert (bl->target_info.shadow_contents >= readbuf + len
1558 || readbuf >= (bl->target_info.shadow_contents
1559 + bl->target_info.shadow_len));
1560
1561 /* Update the read buffer with this inserted breakpoint's
1562 shadow. */
1563 memcpy (readbuf + bp_addr - memaddr,
1564 bl->target_info.shadow_contents + bptoffset, bp_size);
1565 }
1566 else
1567 {
1568 struct gdbarch *gdbarch = bl->gdbarch;
1569 const unsigned char *bp;
1570 CORE_ADDR placed_address = bl->target_info.placed_address;
1571 unsigned placed_size = bl->target_info.placed_size;
1572
1573 /* Update the shadow with what we want to write to memory. */
1574 memcpy (bl->target_info.shadow_contents + bptoffset,
1575 writebuf_org + bp_addr - memaddr, bp_size);
1576
1577 /* Determine appropriate breakpoint contents and size for this
1578 address. */
1579 bp = gdbarch_breakpoint_from_pc (gdbarch, &placed_address, &placed_size);
1580
1581 /* Update the final write buffer with this inserted
1582 breakpoint's INSN. */
1583 memcpy (writebuf + bp_addr - memaddr, bp + bptoffset, bp_size);
1584 }
1585 }
1586 }
1587 \f
1588
1589 /* Return true if BPT is either a software breakpoint or a hardware
1590 breakpoint. */
1591
1592 int
1593 is_breakpoint (const struct breakpoint *bpt)
1594 {
1595 return (bpt->type == bp_breakpoint
1596 || bpt->type == bp_hardware_breakpoint
1597 || bpt->type == bp_dprintf);
1598 }
1599
1600 /* Return true if BPT is of any hardware watchpoint kind. */
1601
1602 static int
1603 is_hardware_watchpoint (const struct breakpoint *bpt)
1604 {
1605 return (bpt->type == bp_hardware_watchpoint
1606 || bpt->type == bp_read_watchpoint
1607 || bpt->type == bp_access_watchpoint);
1608 }
1609
1610 /* Return true if BPT is of any watchpoint kind, hardware or
1611 software. */
1612
1613 int
1614 is_watchpoint (const struct breakpoint *bpt)
1615 {
1616 return (is_hardware_watchpoint (bpt)
1617 || bpt->type == bp_watchpoint);
1618 }
1619
1620 /* Returns true if the current thread and its running state are safe
1621 to evaluate or update watchpoint B. Watchpoints on local
1622 expressions need to be evaluated in the context of the thread that
1623 was current when the watchpoint was created, and, that thread needs
1624 to be stopped to be able to select the correct frame context.
1625 Watchpoints on global expressions can be evaluated on any thread,
1626 and in any state. It is presently left to the target allowing
1627 memory accesses when threads are running. */
1628
1629 static int
1630 watchpoint_in_thread_scope (struct watchpoint *b)
1631 {
1632 return (b->base.pspace == current_program_space
1633 && (ptid_equal (b->watchpoint_thread, null_ptid)
1634 || (ptid_equal (inferior_ptid, b->watchpoint_thread)
1635 && !is_executing (inferior_ptid))));
1636 }
1637
1638 /* Set watchpoint B to disp_del_at_next_stop, even including its possible
1639 associated bp_watchpoint_scope breakpoint. */
1640
1641 static void
1642 watchpoint_del_at_next_stop (struct watchpoint *w)
1643 {
1644 struct breakpoint *b = &w->base;
1645
1646 if (b->related_breakpoint != b)
1647 {
1648 gdb_assert (b->related_breakpoint->type == bp_watchpoint_scope);
1649 gdb_assert (b->related_breakpoint->related_breakpoint == b);
1650 b->related_breakpoint->disposition = disp_del_at_next_stop;
1651 b->related_breakpoint->related_breakpoint = b->related_breakpoint;
1652 b->related_breakpoint = b;
1653 }
1654 b->disposition = disp_del_at_next_stop;
1655 }
1656
1657 /* Assuming that B is a watchpoint:
1658 - Reparse watchpoint expression, if REPARSE is non-zero
1659 - Evaluate expression and store the result in B->val
1660 - Evaluate the condition if there is one, and store the result
1661 in b->loc->cond.
1662 - Update the list of values that must be watched in B->loc.
1663
1664 If the watchpoint disposition is disp_del_at_next_stop, then do
1665 nothing. If this is local watchpoint that is out of scope, delete
1666 it.
1667
1668 Even with `set breakpoint always-inserted on' the watchpoints are
1669 removed + inserted on each stop here. Normal breakpoints must
1670 never be removed because they might be missed by a running thread
1671 when debugging in non-stop mode. On the other hand, hardware
1672 watchpoints (is_hardware_watchpoint; processed here) are specific
1673 to each LWP since they are stored in each LWP's hardware debug
1674 registers. Therefore, such LWP must be stopped first in order to
1675 be able to modify its hardware watchpoints.
1676
1677 Hardware watchpoints must be reset exactly once after being
1678 presented to the user. It cannot be done sooner, because it would
1679 reset the data used to present the watchpoint hit to the user. And
1680 it must not be done later because it could display the same single
1681 watchpoint hit during multiple GDB stops. Note that the latter is
1682 relevant only to the hardware watchpoint types bp_read_watchpoint
1683 and bp_access_watchpoint. False hit by bp_hardware_watchpoint is
1684 not user-visible - its hit is suppressed if the memory content has
1685 not changed.
1686
1687 The following constraints influence the location where we can reset
1688 hardware watchpoints:
1689
1690 * target_stopped_by_watchpoint and target_stopped_data_address are
1691 called several times when GDB stops.
1692
1693 [linux]
1694 * Multiple hardware watchpoints can be hit at the same time,
1695 causing GDB to stop. GDB only presents one hardware watchpoint
1696 hit at a time as the reason for stopping, and all the other hits
1697 are presented later, one after the other, each time the user
1698 requests the execution to be resumed. Execution is not resumed
1699 for the threads still having pending hit event stored in
1700 LWP_INFO->STATUS. While the watchpoint is already removed from
1701 the inferior on the first stop the thread hit event is kept being
1702 reported from its cached value by linux_nat_stopped_data_address
1703 until the real thread resume happens after the watchpoint gets
1704 presented and thus its LWP_INFO->STATUS gets reset.
1705
1706 Therefore the hardware watchpoint hit can get safely reset on the
1707 watchpoint removal from inferior. */
1708
1709 static void
1710 update_watchpoint (struct watchpoint *b, int reparse)
1711 {
1712 int within_current_scope;
1713 struct frame_id saved_frame_id;
1714 int frame_saved;
1715
1716 /* If this is a local watchpoint, we only want to check if the
1717 watchpoint frame is in scope if the current thread is the thread
1718 that was used to create the watchpoint. */
1719 if (!watchpoint_in_thread_scope (b))
1720 return;
1721
1722 if (b->base.disposition == disp_del_at_next_stop)
1723 return;
1724
1725 frame_saved = 0;
1726
1727 /* Determine if the watchpoint is within scope. */
1728 if (b->exp_valid_block == NULL)
1729 within_current_scope = 1;
1730 else
1731 {
1732 struct frame_info *fi = get_current_frame ();
1733 struct gdbarch *frame_arch = get_frame_arch (fi);
1734 CORE_ADDR frame_pc = get_frame_pc (fi);
1735
1736 /* If we're in a function epilogue, unwinding may not work
1737 properly, so do not attempt to recreate locations at this
1738 point. See similar comments in watchpoint_check. */
1739 if (gdbarch_in_function_epilogue_p (frame_arch, frame_pc))
1740 return;
1741
1742 /* Save the current frame's ID so we can restore it after
1743 evaluating the watchpoint expression on its own frame. */
1744 /* FIXME drow/2003-09-09: It would be nice if evaluate_expression
1745 took a frame parameter, so that we didn't have to change the
1746 selected frame. */
1747 frame_saved = 1;
1748 saved_frame_id = get_frame_id (get_selected_frame (NULL));
1749
1750 fi = frame_find_by_id (b->watchpoint_frame);
1751 within_current_scope = (fi != NULL);
1752 if (within_current_scope)
1753 select_frame (fi);
1754 }
1755
1756 /* We don't free locations. They are stored in the bp_location array
1757 and update_global_location_list will eventually delete them and
1758 remove breakpoints if needed. */
1759 b->base.loc = NULL;
1760
1761 if (within_current_scope && reparse)
1762 {
1763 char *s;
1764
1765 if (b->exp)
1766 {
1767 xfree (b->exp);
1768 b->exp = NULL;
1769 }
1770 s = b->exp_string_reparse ? b->exp_string_reparse : b->exp_string;
1771 b->exp = parse_exp_1 (&s, 0, b->exp_valid_block, 0);
1772 /* If the meaning of expression itself changed, the old value is
1773 no longer relevant. We don't want to report a watchpoint hit
1774 to the user when the old value and the new value may actually
1775 be completely different objects. */
1776 value_free (b->val);
1777 b->val = NULL;
1778 b->val_valid = 0;
1779
1780 /* Note that unlike with breakpoints, the watchpoint's condition
1781 expression is stored in the breakpoint object, not in the
1782 locations (re)created below. */
1783 if (b->base.cond_string != NULL)
1784 {
1785 if (b->cond_exp != NULL)
1786 {
1787 xfree (b->cond_exp);
1788 b->cond_exp = NULL;
1789 }
1790
1791 s = b->base.cond_string;
1792 b->cond_exp = parse_exp_1 (&s, 0, b->cond_exp_valid_block, 0);
1793 }
1794 }
1795
1796 /* If we failed to parse the expression, for example because
1797 it refers to a global variable in a not-yet-loaded shared library,
1798 don't try to insert watchpoint. We don't automatically delete
1799 such watchpoint, though, since failure to parse expression
1800 is different from out-of-scope watchpoint. */
1801 if ( !target_has_execution)
1802 {
1803 /* Without execution, memory can't change. No use to try and
1804 set watchpoint locations. The watchpoint will be reset when
1805 the target gains execution, through breakpoint_re_set. */
1806 }
1807 else if (within_current_scope && b->exp)
1808 {
1809 int pc = 0;
1810 struct value *val_chain, *v, *result, *next;
1811 struct program_space *frame_pspace;
1812
1813 fetch_subexp_value (b->exp, &pc, &v, &result, &val_chain);
1814
1815 /* Avoid setting b->val if it's already set. The meaning of
1816 b->val is 'the last value' user saw, and we should update
1817 it only if we reported that last value to user. As it
1818 happens, the code that reports it updates b->val directly.
1819 We don't keep track of the memory value for masked
1820 watchpoints. */
1821 if (!b->val_valid && !is_masked_watchpoint (&b->base))
1822 {
1823 b->val = v;
1824 b->val_valid = 1;
1825 }
1826
1827 frame_pspace = get_frame_program_space (get_selected_frame (NULL));
1828
1829 /* Look at each value on the value chain. */
1830 for (v = val_chain; v; v = value_next (v))
1831 {
1832 /* If it's a memory location, and GDB actually needed
1833 its contents to evaluate the expression, then we
1834 must watch it. If the first value returned is
1835 still lazy, that means an error occurred reading it;
1836 watch it anyway in case it becomes readable. */
1837 if (VALUE_LVAL (v) == lval_memory
1838 && (v == val_chain || ! value_lazy (v)))
1839 {
1840 struct type *vtype = check_typedef (value_type (v));
1841
1842 /* We only watch structs and arrays if user asked
1843 for it explicitly, never if they just happen to
1844 appear in the middle of some value chain. */
1845 if (v == result
1846 || (TYPE_CODE (vtype) != TYPE_CODE_STRUCT
1847 && TYPE_CODE (vtype) != TYPE_CODE_ARRAY))
1848 {
1849 CORE_ADDR addr;
1850 int type;
1851 struct bp_location *loc, **tmp;
1852
1853 addr = value_address (v);
1854 type = hw_write;
1855 if (b->base.type == bp_read_watchpoint)
1856 type = hw_read;
1857 else if (b->base.type == bp_access_watchpoint)
1858 type = hw_access;
1859
1860 loc = allocate_bp_location (&b->base);
1861 for (tmp = &(b->base.loc); *tmp != NULL; tmp = &((*tmp)->next))
1862 ;
1863 *tmp = loc;
1864 loc->gdbarch = get_type_arch (value_type (v));
1865
1866 loc->pspace = frame_pspace;
1867 loc->address = addr;
1868 loc->length = TYPE_LENGTH (value_type (v));
1869 loc->watchpoint_type = type;
1870 }
1871 }
1872 }
1873
1874 /* Change the type of breakpoint between hardware assisted or
1875 an ordinary watchpoint depending on the hardware support
1876 and free hardware slots. REPARSE is set when the inferior
1877 is started. */
1878 if (reparse)
1879 {
1880 int reg_cnt;
1881 enum bp_loc_type loc_type;
1882 struct bp_location *bl;
1883
1884 reg_cnt = can_use_hardware_watchpoint (val_chain);
1885
1886 if (reg_cnt)
1887 {
1888 int i, target_resources_ok, other_type_used;
1889 enum bptype type;
1890
1891 /* Use an exact watchpoint when there's only one memory region to be
1892 watched, and only one debug register is needed to watch it. */
1893 b->exact = target_exact_watchpoints && reg_cnt == 1;
1894
1895 /* We need to determine how many resources are already
1896 used for all other hardware watchpoints plus this one
1897 to see if we still have enough resources to also fit
1898 this watchpoint in as well. */
1899
1900 /* If this is a software watchpoint, we try to turn it
1901 to a hardware one -- count resources as if B was of
1902 hardware watchpoint type. */
1903 type = b->base.type;
1904 if (type == bp_watchpoint)
1905 type = bp_hardware_watchpoint;
1906
1907 /* This watchpoint may or may not have been placed on
1908 the list yet at this point (it won't be in the list
1909 if we're trying to create it for the first time,
1910 through watch_command), so always account for it
1911 manually. */
1912
1913 /* Count resources used by all watchpoints except B. */
1914 i = hw_watchpoint_used_count_others (&b->base, type, &other_type_used);
1915
1916 /* Add in the resources needed for B. */
1917 i += hw_watchpoint_use_count (&b->base);
1918
1919 target_resources_ok
1920 = target_can_use_hardware_watchpoint (type, i, other_type_used);
1921 if (target_resources_ok <= 0)
1922 {
1923 int sw_mode = b->base.ops->works_in_software_mode (&b->base);
1924
1925 if (target_resources_ok == 0 && !sw_mode)
1926 error (_("Target does not support this type of "
1927 "hardware watchpoint."));
1928 else if (target_resources_ok < 0 && !sw_mode)
1929 error (_("There are not enough available hardware "
1930 "resources for this watchpoint."));
1931
1932 /* Downgrade to software watchpoint. */
1933 b->base.type = bp_watchpoint;
1934 }
1935 else
1936 {
1937 /* If this was a software watchpoint, we've just
1938 found we have enough resources to turn it to a
1939 hardware watchpoint. Otherwise, this is a
1940 nop. */
1941 b->base.type = type;
1942 }
1943 }
1944 else if (!b->base.ops->works_in_software_mode (&b->base))
1945 error (_("Expression cannot be implemented with "
1946 "read/access watchpoint."));
1947 else
1948 b->base.type = bp_watchpoint;
1949
1950 loc_type = (b->base.type == bp_watchpoint? bp_loc_other
1951 : bp_loc_hardware_watchpoint);
1952 for (bl = b->base.loc; bl; bl = bl->next)
1953 bl->loc_type = loc_type;
1954 }
1955
1956 for (v = val_chain; v; v = next)
1957 {
1958 next = value_next (v);
1959 if (v != b->val)
1960 value_free (v);
1961 }
1962
1963 /* If a software watchpoint is not watching any memory, then the
1964 above left it without any location set up. But,
1965 bpstat_stop_status requires a location to be able to report
1966 stops, so make sure there's at least a dummy one. */
1967 if (b->base.type == bp_watchpoint && b->base.loc == NULL)
1968 {
1969 struct breakpoint *base = &b->base;
1970 base->loc = allocate_bp_location (base);
1971 base->loc->pspace = frame_pspace;
1972 base->loc->address = -1;
1973 base->loc->length = -1;
1974 base->loc->watchpoint_type = -1;
1975 }
1976 }
1977 else if (!within_current_scope)
1978 {
1979 printf_filtered (_("\
1980 Watchpoint %d deleted because the program has left the block\n\
1981 in which its expression is valid.\n"),
1982 b->base.number);
1983 watchpoint_del_at_next_stop (b);
1984 }
1985
1986 /* Restore the selected frame. */
1987 if (frame_saved)
1988 select_frame (frame_find_by_id (saved_frame_id));
1989 }
1990
1991
1992 /* Returns 1 iff breakpoint location should be
1993 inserted in the inferior. We don't differentiate the type of BL's owner
1994 (breakpoint vs. tracepoint), although insert_location in tracepoint's
1995 breakpoint_ops is not defined, because in insert_bp_location,
1996 tracepoint's insert_location will not be called. */
1997 static int
1998 should_be_inserted (struct bp_location *bl)
1999 {
2000 if (bl->owner == NULL || !breakpoint_enabled (bl->owner))
2001 return 0;
2002
2003 if (bl->owner->disposition == disp_del_at_next_stop)
2004 return 0;
2005
2006 if (!bl->enabled || bl->shlib_disabled || bl->duplicate)
2007 return 0;
2008
2009 if (user_breakpoint_p (bl->owner) && bl->pspace->executing_startup)
2010 return 0;
2011
2012 /* This is set for example, when we're attached to the parent of a
2013 vfork, and have detached from the child. The child is running
2014 free, and we expect it to do an exec or exit, at which point the
2015 OS makes the parent schedulable again (and the target reports
2016 that the vfork is done). Until the child is done with the shared
2017 memory region, do not insert breakpoints in the parent, otherwise
2018 the child could still trip on the parent's breakpoints. Since
2019 the parent is blocked anyway, it won't miss any breakpoint. */
2020 if (bl->pspace->breakpoints_not_allowed)
2021 return 0;
2022
2023 return 1;
2024 }
2025
2026 /* Same as should_be_inserted but does the check assuming
2027 that the location is not duplicated. */
2028
2029 static int
2030 unduplicated_should_be_inserted (struct bp_location *bl)
2031 {
2032 int result;
2033 const int save_duplicate = bl->duplicate;
2034
2035 bl->duplicate = 0;
2036 result = should_be_inserted (bl);
2037 bl->duplicate = save_duplicate;
2038 return result;
2039 }
2040
2041 /* Parses a conditional described by an expression COND into an
2042 agent expression bytecode suitable for evaluation
2043 by the bytecode interpreter. Return NULL if there was
2044 any error during parsing. */
2045
2046 static struct agent_expr *
2047 parse_cond_to_aexpr (CORE_ADDR scope, struct expression *cond)
2048 {
2049 struct agent_expr *aexpr = NULL;
2050 struct cleanup *old_chain = NULL;
2051 volatile struct gdb_exception ex;
2052
2053 if (!cond)
2054 return NULL;
2055
2056 /* We don't want to stop processing, so catch any errors
2057 that may show up. */
2058 TRY_CATCH (ex, RETURN_MASK_ERROR)
2059 {
2060 aexpr = gen_eval_for_expr (scope, cond);
2061 }
2062
2063 if (ex.reason < 0)
2064 {
2065 /* If we got here, it means the condition could not be parsed to a valid
2066 bytecode expression and thus can't be evaluated on the target's side.
2067 It's no use iterating through the conditions. */
2068 return NULL;
2069 }
2070
2071 /* We have a valid agent expression. */
2072 return aexpr;
2073 }
2074
2075 /* Based on location BL, create a list of breakpoint conditions to be
2076 passed on to the target. If we have duplicated locations with different
2077 conditions, we will add such conditions to the list. The idea is that the
2078 target will evaluate the list of conditions and will only notify GDB when
2079 one of them is true. */
2080
2081 static void
2082 build_target_condition_list (struct bp_location *bl)
2083 {
2084 struct bp_location **locp = NULL, **loc2p;
2085 int null_condition_or_parse_error = 0;
2086 int modified = bl->needs_update;
2087 struct bp_location *loc;
2088
2089 /* This is only meaningful if the target is
2090 evaluating conditions and if the user has
2091 opted for condition evaluation on the target's
2092 side. */
2093 if (gdb_evaluates_breakpoint_condition_p ()
2094 || !target_supports_evaluation_of_breakpoint_conditions ())
2095 return;
2096
2097 /* Do a first pass to check for locations with no assigned
2098 conditions or conditions that fail to parse to a valid agent expression
2099 bytecode. If any of these happen, then it's no use to send conditions
2100 to the target since this location will always trigger and generate a
2101 response back to GDB. */
2102 ALL_BP_LOCATIONS_AT_ADDR (loc2p, locp, bl->address)
2103 {
2104 loc = (*loc2p);
2105 if (is_breakpoint (loc->owner) && loc->pspace->num == bl->pspace->num)
2106 {
2107 if (modified)
2108 {
2109 struct agent_expr *aexpr;
2110
2111 /* Re-parse the conditions since something changed. In that
2112 case we already freed the condition bytecodes (see
2113 force_breakpoint_reinsertion). We just
2114 need to parse the condition to bytecodes again. */
2115 aexpr = parse_cond_to_aexpr (bl->address, loc->cond);
2116 loc->cond_bytecode = aexpr;
2117
2118 /* Check if we managed to parse the conditional expression
2119 correctly. If not, we will not send this condition
2120 to the target. */
2121 if (aexpr)
2122 continue;
2123 }
2124
2125 /* If we have a NULL bytecode expression, it means something
2126 went wrong or we have a null condition expression. */
2127 if (!loc->cond_bytecode)
2128 {
2129 null_condition_or_parse_error = 1;
2130 break;
2131 }
2132 }
2133 }
2134
2135 /* If any of these happened, it means we will have to evaluate the conditions
2136 for the location's address on gdb's side. It is no use keeping bytecodes
2137 for all the other duplicate locations, thus we free all of them here.
2138
2139 This is so we have a finer control over which locations' conditions are
2140 being evaluated by GDB or the remote stub. */
2141 if (null_condition_or_parse_error)
2142 {
2143 ALL_BP_LOCATIONS_AT_ADDR (loc2p, locp, bl->address)
2144 {
2145 loc = (*loc2p);
2146 if (is_breakpoint (loc->owner) && loc->pspace->num == bl->pspace->num)
2147 {
2148 /* Only go as far as the first NULL bytecode is
2149 located. */
2150 if (!loc->cond_bytecode)
2151 return;
2152
2153 free_agent_expr (loc->cond_bytecode);
2154 loc->cond_bytecode = NULL;
2155 }
2156 }
2157 }
2158
2159 /* No NULL conditions or failed bytecode generation. Build a condition list
2160 for this location's address. */
2161 ALL_BP_LOCATIONS_AT_ADDR (loc2p, locp, bl->address)
2162 {
2163 loc = (*loc2p);
2164 if (loc->cond
2165 && is_breakpoint (loc->owner)
2166 && loc->pspace->num == bl->pspace->num
2167 && loc->owner->enable_state == bp_enabled
2168 && loc->enabled)
2169 /* Add the condition to the vector. This will be used later to send the
2170 conditions to the target. */
2171 VEC_safe_push (agent_expr_p, bl->target_info.conditions,
2172 loc->cond_bytecode);
2173 }
2174
2175 return;
2176 }
2177
2178 /* Parses a command described by string CMD into an agent expression
2179 bytecode suitable for evaluation by the bytecode interpreter.
2180 Return NULL if there was any error during parsing. */
2181
2182 static struct agent_expr *
2183 parse_cmd_to_aexpr (CORE_ADDR scope, char *cmd)
2184 {
2185 struct cleanup *old_cleanups = 0;
2186 struct expression *expr, **argvec;
2187 struct agent_expr *aexpr = NULL;
2188 struct cleanup *old_chain = NULL;
2189 volatile struct gdb_exception ex;
2190 char *cmdrest;
2191 char *format_start, *format_end;
2192 struct format_piece *fpieces;
2193 int nargs;
2194 struct gdbarch *gdbarch = get_current_arch ();
2195
2196 if (!cmd)
2197 return NULL;
2198
2199 cmdrest = cmd;
2200
2201 if (*cmdrest == ',')
2202 ++cmdrest;
2203 cmdrest = skip_spaces (cmdrest);
2204
2205 if (*cmdrest++ != '"')
2206 error (_("No format string following the location"));
2207
2208 format_start = cmdrest;
2209
2210 fpieces = parse_format_string (&cmdrest);
2211
2212 old_cleanups = make_cleanup (free_format_pieces_cleanup, &fpieces);
2213
2214 format_end = cmdrest;
2215
2216 if (*cmdrest++ != '"')
2217 error (_("Bad format string, non-terminated '\"'."));
2218
2219 cmdrest = skip_spaces (cmdrest);
2220
2221 if (!(*cmdrest == ',' || *cmdrest == '\0'))
2222 error (_("Invalid argument syntax"));
2223
2224 if (*cmdrest == ',')
2225 cmdrest++;
2226 cmdrest = skip_spaces (cmdrest);
2227
2228 /* For each argument, make an expression. */
2229
2230 argvec = (struct expression **) alloca (strlen (cmd)
2231 * sizeof (struct expression *));
2232
2233 nargs = 0;
2234 while (*cmdrest != '\0')
2235 {
2236 char *cmd1;
2237
2238 cmd1 = cmdrest;
2239 expr = parse_exp_1 (&cmd1, scope, block_for_pc (scope), 1);
2240 argvec[nargs++] = expr;
2241 cmdrest = cmd1;
2242 if (*cmdrest == ',')
2243 ++cmdrest;
2244 }
2245
2246 /* We don't want to stop processing, so catch any errors
2247 that may show up. */
2248 TRY_CATCH (ex, RETURN_MASK_ERROR)
2249 {
2250 aexpr = gen_printf (scope, gdbarch, 0, 0,
2251 format_start, format_end - format_start,
2252 fpieces, nargs, argvec);
2253 }
2254
2255 if (ex.reason < 0)
2256 {
2257 /* If we got here, it means the command could not be parsed to a valid
2258 bytecode expression and thus can't be evaluated on the target's side.
2259 It's no use iterating through the other commands. */
2260 return NULL;
2261 }
2262
2263 do_cleanups (old_cleanups);
2264
2265 /* We have a valid agent expression, return it. */
2266 return aexpr;
2267 }
2268
2269 /* Based on location BL, create a list of breakpoint commands to be
2270 passed on to the target. If we have duplicated locations with
2271 different commands, we will add any such to the list. */
2272
2273 static void
2274 build_target_command_list (struct bp_location *bl)
2275 {
2276 struct bp_location **locp = NULL, **loc2p;
2277 int null_command_or_parse_error = 0;
2278 int modified = bl->needs_update;
2279 struct bp_location *loc;
2280
2281 /* For now, limit to agent-style dprintf breakpoints. */
2282 if (bl->owner->type != bp_dprintf
2283 || strcmp (dprintf_style, dprintf_style_agent) != 0)
2284 return;
2285
2286 if (!target_can_run_breakpoint_commands ())
2287 return;
2288
2289 /* Do a first pass to check for locations with no assigned
2290 conditions or conditions that fail to parse to a valid agent expression
2291 bytecode. If any of these happen, then it's no use to send conditions
2292 to the target since this location will always trigger and generate a
2293 response back to GDB. */
2294 ALL_BP_LOCATIONS_AT_ADDR (loc2p, locp, bl->address)
2295 {
2296 loc = (*loc2p);
2297 if (is_breakpoint (loc->owner) && loc->pspace->num == bl->pspace->num)
2298 {
2299 if (modified)
2300 {
2301 struct agent_expr *aexpr;
2302
2303 /* Re-parse the commands since something changed. In that
2304 case we already freed the command bytecodes (see
2305 force_breakpoint_reinsertion). We just
2306 need to parse the command to bytecodes again. */
2307 aexpr = parse_cmd_to_aexpr (bl->address,
2308 loc->owner->extra_string);
2309 loc->cmd_bytecode = aexpr;
2310
2311 if (!aexpr)
2312 continue;
2313 }
2314
2315 /* If we have a NULL bytecode expression, it means something
2316 went wrong or we have a null command expression. */
2317 if (!loc->cmd_bytecode)
2318 {
2319 null_command_or_parse_error = 1;
2320 break;
2321 }
2322 }
2323 }
2324
2325 /* If anything failed, then we're not doing target-side commands,
2326 and so clean up. */
2327 if (null_command_or_parse_error)
2328 {
2329 ALL_BP_LOCATIONS_AT_ADDR (loc2p, locp, bl->address)
2330 {
2331 loc = (*loc2p);
2332 if (is_breakpoint (loc->owner)
2333 && loc->pspace->num == bl->pspace->num)
2334 {
2335 /* Only go as far as the first NULL bytecode is
2336 located. */
2337 if (!loc->cond_bytecode)
2338 return;
2339
2340 free_agent_expr (loc->cond_bytecode);
2341 loc->cond_bytecode = NULL;
2342 }
2343 }
2344 }
2345
2346 /* No NULL commands or failed bytecode generation. Build a command list
2347 for this location's address. */
2348 ALL_BP_LOCATIONS_AT_ADDR (loc2p, locp, bl->address)
2349 {
2350 loc = (*loc2p);
2351 if (loc->owner->extra_string
2352 && is_breakpoint (loc->owner)
2353 && loc->pspace->num == bl->pspace->num
2354 && loc->owner->enable_state == bp_enabled
2355 && loc->enabled)
2356 /* Add the command to the vector. This will be used later
2357 to send the commands to the target. */
2358 VEC_safe_push (agent_expr_p, bl->target_info.tcommands,
2359 loc->cmd_bytecode);
2360 }
2361
2362 bl->target_info.persist = 0;
2363 /* Maybe flag this location as persistent. */
2364 if (bl->owner->type == bp_dprintf && disconnected_dprintf)
2365 bl->target_info.persist = 1;
2366 }
2367
2368 /* Insert a low-level "breakpoint" of some type. BL is the breakpoint
2369 location. Any error messages are printed to TMP_ERROR_STREAM; and
2370 DISABLED_BREAKS, and HW_BREAKPOINT_ERROR are used to report problems.
2371 Returns 0 for success, 1 if the bp_location type is not supported or
2372 -1 for failure.
2373
2374 NOTE drow/2003-09-09: This routine could be broken down to an
2375 object-style method for each breakpoint or catchpoint type. */
2376 static int
2377 insert_bp_location (struct bp_location *bl,
2378 struct ui_file *tmp_error_stream,
2379 int *disabled_breaks,
2380 int *hw_breakpoint_error,
2381 int *hw_bp_error_explained_already)
2382 {
2383 int val = 0;
2384 char *hw_bp_err_string = NULL;
2385 struct gdb_exception e;
2386
2387 if (!should_be_inserted (bl) || (bl->inserted && !bl->needs_update))
2388 return 0;
2389
2390 /* Note we don't initialize bl->target_info, as that wipes out
2391 the breakpoint location's shadow_contents if the breakpoint
2392 is still inserted at that location. This in turn breaks
2393 target_read_memory which depends on these buffers when
2394 a memory read is requested at the breakpoint location:
2395 Once the target_info has been wiped, we fail to see that
2396 we have a breakpoint inserted at that address and thus
2397 read the breakpoint instead of returning the data saved in
2398 the breakpoint location's shadow contents. */
2399 bl->target_info.placed_address = bl->address;
2400 bl->target_info.placed_address_space = bl->pspace->aspace;
2401 bl->target_info.length = bl->length;
2402
2403 /* When working with target-side conditions, we must pass all the conditions
2404 for the same breakpoint address down to the target since GDB will not
2405 insert those locations. With a list of breakpoint conditions, the target
2406 can decide when to stop and notify GDB. */
2407
2408 if (is_breakpoint (bl->owner))
2409 {
2410 build_target_condition_list (bl);
2411 build_target_command_list (bl);
2412 /* Reset the modification marker. */
2413 bl->needs_update = 0;
2414 }
2415
2416 if (bl->loc_type == bp_loc_software_breakpoint
2417 || bl->loc_type == bp_loc_hardware_breakpoint)
2418 {
2419 if (bl->owner->type != bp_hardware_breakpoint)
2420 {
2421 /* If the explicitly specified breakpoint type
2422 is not hardware breakpoint, check the memory map to see
2423 if the breakpoint address is in read only memory or not.
2424
2425 Two important cases are:
2426 - location type is not hardware breakpoint, memory
2427 is readonly. We change the type of the location to
2428 hardware breakpoint.
2429 - location type is hardware breakpoint, memory is
2430 read-write. This means we've previously made the
2431 location hardware one, but then the memory map changed,
2432 so we undo.
2433
2434 When breakpoints are removed, remove_breakpoints will use
2435 location types we've just set here, the only possible
2436 problem is that memory map has changed during running
2437 program, but it's not going to work anyway with current
2438 gdb. */
2439 struct mem_region *mr
2440 = lookup_mem_region (bl->target_info.placed_address);
2441
2442 if (mr)
2443 {
2444 if (automatic_hardware_breakpoints)
2445 {
2446 enum bp_loc_type new_type;
2447
2448 if (mr->attrib.mode != MEM_RW)
2449 new_type = bp_loc_hardware_breakpoint;
2450 else
2451 new_type = bp_loc_software_breakpoint;
2452
2453 if (new_type != bl->loc_type)
2454 {
2455 static int said = 0;
2456
2457 bl->loc_type = new_type;
2458 if (!said)
2459 {
2460 fprintf_filtered (gdb_stdout,
2461 _("Note: automatically using "
2462 "hardware breakpoints for "
2463 "read-only addresses.\n"));
2464 said = 1;
2465 }
2466 }
2467 }
2468 else if (bl->loc_type == bp_loc_software_breakpoint
2469 && mr->attrib.mode != MEM_RW)
2470 warning (_("cannot set software breakpoint "
2471 "at readonly address %s"),
2472 paddress (bl->gdbarch, bl->address));
2473 }
2474 }
2475
2476 /* First check to see if we have to handle an overlay. */
2477 if (overlay_debugging == ovly_off
2478 || bl->section == NULL
2479 || !(section_is_overlay (bl->section)))
2480 {
2481 /* No overlay handling: just set the breakpoint. */
2482 TRY_CATCH (e, RETURN_MASK_ALL)
2483 {
2484 val = bl->owner->ops->insert_location (bl);
2485 }
2486 if (e.reason < 0)
2487 {
2488 val = 1;
2489 hw_bp_err_string = (char *) e.message;
2490 }
2491 }
2492 else
2493 {
2494 /* This breakpoint is in an overlay section.
2495 Shall we set a breakpoint at the LMA? */
2496 if (!overlay_events_enabled)
2497 {
2498 /* Yes -- overlay event support is not active,
2499 so we must try to set a breakpoint at the LMA.
2500 This will not work for a hardware breakpoint. */
2501 if (bl->loc_type == bp_loc_hardware_breakpoint)
2502 warning (_("hardware breakpoint %d not supported in overlay!"),
2503 bl->owner->number);
2504 else
2505 {
2506 CORE_ADDR addr = overlay_unmapped_address (bl->address,
2507 bl->section);
2508 /* Set a software (trap) breakpoint at the LMA. */
2509 bl->overlay_target_info = bl->target_info;
2510 bl->overlay_target_info.placed_address = addr;
2511 val = target_insert_breakpoint (bl->gdbarch,
2512 &bl->overlay_target_info);
2513 if (val != 0)
2514 fprintf_unfiltered (tmp_error_stream,
2515 "Overlay breakpoint %d "
2516 "failed: in ROM?\n",
2517 bl->owner->number);
2518 }
2519 }
2520 /* Shall we set a breakpoint at the VMA? */
2521 if (section_is_mapped (bl->section))
2522 {
2523 /* Yes. This overlay section is mapped into memory. */
2524 TRY_CATCH (e, RETURN_MASK_ALL)
2525 {
2526 val = bl->owner->ops->insert_location (bl);
2527 }
2528 if (e.reason < 0)
2529 {
2530 val = 1;
2531 hw_bp_err_string = (char *) e.message;
2532 }
2533 }
2534 else
2535 {
2536 /* No. This breakpoint will not be inserted.
2537 No error, but do not mark the bp as 'inserted'. */
2538 return 0;
2539 }
2540 }
2541
2542 if (val)
2543 {
2544 /* Can't set the breakpoint. */
2545 if (solib_name_from_address (bl->pspace, bl->address))
2546 {
2547 /* See also: disable_breakpoints_in_shlibs. */
2548 val = 0;
2549 bl->shlib_disabled = 1;
2550 observer_notify_breakpoint_modified (bl->owner);
2551 if (!*disabled_breaks)
2552 {
2553 fprintf_unfiltered (tmp_error_stream,
2554 "Cannot insert breakpoint %d.\n",
2555 bl->owner->number);
2556 fprintf_unfiltered (tmp_error_stream,
2557 "Temporarily disabling shared "
2558 "library breakpoints:\n");
2559 }
2560 *disabled_breaks = 1;
2561 fprintf_unfiltered (tmp_error_stream,
2562 "breakpoint #%d\n", bl->owner->number);
2563 }
2564 else
2565 {
2566 if (bl->loc_type == bp_loc_hardware_breakpoint)
2567 {
2568 *hw_breakpoint_error = 1;
2569 *hw_bp_error_explained_already = hw_bp_err_string != NULL;
2570 fprintf_unfiltered (tmp_error_stream,
2571 "Cannot insert hardware breakpoint %d%s",
2572 bl->owner->number, hw_bp_err_string ? ":" : ".\n");
2573 if (hw_bp_err_string)
2574 fprintf_unfiltered (tmp_error_stream, "%s.\n", hw_bp_err_string);
2575 }
2576 else
2577 {
2578 fprintf_unfiltered (tmp_error_stream,
2579 "Cannot insert breakpoint %d.\n",
2580 bl->owner->number);
2581 fprintf_filtered (tmp_error_stream,
2582 "Error accessing memory address ");
2583 fputs_filtered (paddress (bl->gdbarch, bl->address),
2584 tmp_error_stream);
2585 fprintf_filtered (tmp_error_stream, ": %s.\n",
2586 safe_strerror (val));
2587 }
2588
2589 }
2590 }
2591 else
2592 bl->inserted = 1;
2593
2594 return val;
2595 }
2596
2597 else if (bl->loc_type == bp_loc_hardware_watchpoint
2598 /* NOTE drow/2003-09-08: This state only exists for removing
2599 watchpoints. It's not clear that it's necessary... */
2600 && bl->owner->disposition != disp_del_at_next_stop)
2601 {
2602 gdb_assert (bl->owner->ops != NULL
2603 && bl->owner->ops->insert_location != NULL);
2604
2605 val = bl->owner->ops->insert_location (bl);
2606
2607 /* If trying to set a read-watchpoint, and it turns out it's not
2608 supported, try emulating one with an access watchpoint. */
2609 if (val == 1 && bl->watchpoint_type == hw_read)
2610 {
2611 struct bp_location *loc, **loc_temp;
2612
2613 /* But don't try to insert it, if there's already another
2614 hw_access location that would be considered a duplicate
2615 of this one. */
2616 ALL_BP_LOCATIONS (loc, loc_temp)
2617 if (loc != bl
2618 && loc->watchpoint_type == hw_access
2619 && watchpoint_locations_match (bl, loc))
2620 {
2621 bl->duplicate = 1;
2622 bl->inserted = 1;
2623 bl->target_info = loc->target_info;
2624 bl->watchpoint_type = hw_access;
2625 val = 0;
2626 break;
2627 }
2628
2629 if (val == 1)
2630 {
2631 bl->watchpoint_type = hw_access;
2632 val = bl->owner->ops->insert_location (bl);
2633
2634 if (val)
2635 /* Back to the original value. */
2636 bl->watchpoint_type = hw_read;
2637 }
2638 }
2639
2640 bl->inserted = (val == 0);
2641 }
2642
2643 else if (bl->owner->type == bp_catchpoint)
2644 {
2645 gdb_assert (bl->owner->ops != NULL
2646 && bl->owner->ops->insert_location != NULL);
2647
2648 val = bl->owner->ops->insert_location (bl);
2649 if (val)
2650 {
2651 bl->owner->enable_state = bp_disabled;
2652
2653 if (val == 1)
2654 warning (_("\
2655 Error inserting catchpoint %d: Your system does not support this type\n\
2656 of catchpoint."), bl->owner->number);
2657 else
2658 warning (_("Error inserting catchpoint %d."), bl->owner->number);
2659 }
2660
2661 bl->inserted = (val == 0);
2662
2663 /* We've already printed an error message if there was a problem
2664 inserting this catchpoint, and we've disabled the catchpoint,
2665 so just return success. */
2666 return 0;
2667 }
2668
2669 return 0;
2670 }
2671
2672 /* This function is called when program space PSPACE is about to be
2673 deleted. It takes care of updating breakpoints to not reference
2674 PSPACE anymore. */
2675
2676 void
2677 breakpoint_program_space_exit (struct program_space *pspace)
2678 {
2679 struct breakpoint *b, *b_temp;
2680 struct bp_location *loc, **loc_temp;
2681
2682 /* Remove any breakpoint that was set through this program space. */
2683 ALL_BREAKPOINTS_SAFE (b, b_temp)
2684 {
2685 if (b->pspace == pspace)
2686 delete_breakpoint (b);
2687 }
2688
2689 /* Breakpoints set through other program spaces could have locations
2690 bound to PSPACE as well. Remove those. */
2691 ALL_BP_LOCATIONS (loc, loc_temp)
2692 {
2693 struct bp_location *tmp;
2694
2695 if (loc->pspace == pspace)
2696 {
2697 /* ALL_BP_LOCATIONS bp_location has LOC->OWNER always non-NULL. */
2698 if (loc->owner->loc == loc)
2699 loc->owner->loc = loc->next;
2700 else
2701 for (tmp = loc->owner->loc; tmp->next != NULL; tmp = tmp->next)
2702 if (tmp->next == loc)
2703 {
2704 tmp->next = loc->next;
2705 break;
2706 }
2707 }
2708 }
2709
2710 /* Now update the global location list to permanently delete the
2711 removed locations above. */
2712 update_global_location_list (0);
2713 }
2714
2715 /* Make sure all breakpoints are inserted in inferior.
2716 Throws exception on any error.
2717 A breakpoint that is already inserted won't be inserted
2718 again, so calling this function twice is safe. */
2719 void
2720 insert_breakpoints (void)
2721 {
2722 struct breakpoint *bpt;
2723
2724 ALL_BREAKPOINTS (bpt)
2725 if (is_hardware_watchpoint (bpt))
2726 {
2727 struct watchpoint *w = (struct watchpoint *) bpt;
2728
2729 update_watchpoint (w, 0 /* don't reparse. */);
2730 }
2731
2732 update_global_location_list (1);
2733
2734 /* update_global_location_list does not insert breakpoints when
2735 always_inserted_mode is not enabled. Explicitly insert them
2736 now. */
2737 if (!breakpoints_always_inserted_mode ())
2738 insert_breakpoint_locations ();
2739 }
2740
2741 /* Invoke CALLBACK for each of bp_location. */
2742
2743 void
2744 iterate_over_bp_locations (walk_bp_location_callback callback)
2745 {
2746 struct bp_location *loc, **loc_tmp;
2747
2748 ALL_BP_LOCATIONS (loc, loc_tmp)
2749 {
2750 callback (loc, NULL);
2751 }
2752 }
2753
2754 /* This is used when we need to synch breakpoint conditions between GDB and the
2755 target. It is the case with deleting and disabling of breakpoints when using
2756 always-inserted mode. */
2757
2758 static void
2759 update_inserted_breakpoint_locations (void)
2760 {
2761 struct bp_location *bl, **blp_tmp;
2762 int error_flag = 0;
2763 int val = 0;
2764 int disabled_breaks = 0;
2765 int hw_breakpoint_error = 0;
2766 int hw_bp_details_reported = 0;
2767
2768 struct ui_file *tmp_error_stream = mem_fileopen ();
2769 struct cleanup *cleanups = make_cleanup_ui_file_delete (tmp_error_stream);
2770
2771 /* Explicitly mark the warning -- this will only be printed if
2772 there was an error. */
2773 fprintf_unfiltered (tmp_error_stream, "Warning:\n");
2774
2775 save_current_space_and_thread ();
2776
2777 ALL_BP_LOCATIONS (bl, blp_tmp)
2778 {
2779 /* We only want to update software breakpoints and hardware
2780 breakpoints. */
2781 if (!is_breakpoint (bl->owner))
2782 continue;
2783
2784 /* We only want to update locations that are already inserted
2785 and need updating. This is to avoid unwanted insertion during
2786 deletion of breakpoints. */
2787 if (!bl->inserted || (bl->inserted && !bl->needs_update))
2788 continue;
2789
2790 switch_to_program_space_and_thread (bl->pspace);
2791
2792 /* For targets that support global breakpoints, there's no need
2793 to select an inferior to insert breakpoint to. In fact, even
2794 if we aren't attached to any process yet, we should still
2795 insert breakpoints. */
2796 if (!gdbarch_has_global_breakpoints (target_gdbarch ())
2797 && ptid_equal (inferior_ptid, null_ptid))
2798 continue;
2799
2800 val = insert_bp_location (bl, tmp_error_stream, &disabled_breaks,
2801 &hw_breakpoint_error, &hw_bp_details_reported);
2802 if (val)
2803 error_flag = val;
2804 }
2805
2806 if (error_flag)
2807 {
2808 target_terminal_ours_for_output ();
2809 error_stream (tmp_error_stream);
2810 }
2811
2812 do_cleanups (cleanups);
2813 }
2814
2815 /* Used when starting or continuing the program. */
2816
2817 static void
2818 insert_breakpoint_locations (void)
2819 {
2820 struct breakpoint *bpt;
2821 struct bp_location *bl, **blp_tmp;
2822 int error_flag = 0;
2823 int val = 0;
2824 int disabled_breaks = 0;
2825 int hw_breakpoint_error = 0;
2826 int hw_bp_error_explained_already = 0;
2827
2828 struct ui_file *tmp_error_stream = mem_fileopen ();
2829 struct cleanup *cleanups = make_cleanup_ui_file_delete (tmp_error_stream);
2830
2831 /* Explicitly mark the warning -- this will only be printed if
2832 there was an error. */
2833 fprintf_unfiltered (tmp_error_stream, "Warning:\n");
2834
2835 save_current_space_and_thread ();
2836
2837 ALL_BP_LOCATIONS (bl, blp_tmp)
2838 {
2839 if (!should_be_inserted (bl) || (bl->inserted && !bl->needs_update))
2840 continue;
2841
2842 /* There is no point inserting thread-specific breakpoints if
2843 the thread no longer exists. ALL_BP_LOCATIONS bp_location
2844 has BL->OWNER always non-NULL. */
2845 if (bl->owner->thread != -1
2846 && !valid_thread_id (bl->owner->thread))
2847 continue;
2848
2849 switch_to_program_space_and_thread (bl->pspace);
2850
2851 /* For targets that support global breakpoints, there's no need
2852 to select an inferior to insert breakpoint to. In fact, even
2853 if we aren't attached to any process yet, we should still
2854 insert breakpoints. */
2855 if (!gdbarch_has_global_breakpoints (target_gdbarch ())
2856 && ptid_equal (inferior_ptid, null_ptid))
2857 continue;
2858
2859 val = insert_bp_location (bl, tmp_error_stream, &disabled_breaks,
2860 &hw_breakpoint_error, &hw_bp_error_explained_already);
2861 if (val)
2862 error_flag = val;
2863 }
2864
2865 /* If we failed to insert all locations of a watchpoint, remove
2866 them, as half-inserted watchpoint is of limited use. */
2867 ALL_BREAKPOINTS (bpt)
2868 {
2869 int some_failed = 0;
2870 struct bp_location *loc;
2871
2872 if (!is_hardware_watchpoint (bpt))
2873 continue;
2874
2875 if (!breakpoint_enabled (bpt))
2876 continue;
2877
2878 if (bpt->disposition == disp_del_at_next_stop)
2879 continue;
2880
2881 for (loc = bpt->loc; loc; loc = loc->next)
2882 if (!loc->inserted && should_be_inserted (loc))
2883 {
2884 some_failed = 1;
2885 break;
2886 }
2887 if (some_failed)
2888 {
2889 for (loc = bpt->loc; loc; loc = loc->next)
2890 if (loc->inserted)
2891 remove_breakpoint (loc, mark_uninserted);
2892
2893 hw_breakpoint_error = 1;
2894 fprintf_unfiltered (tmp_error_stream,
2895 "Could not insert hardware watchpoint %d.\n",
2896 bpt->number);
2897 error_flag = -1;
2898 }
2899 }
2900
2901 if (error_flag)
2902 {
2903 /* If a hardware breakpoint or watchpoint was inserted, add a
2904 message about possibly exhausted resources. */
2905 if (hw_breakpoint_error && !hw_bp_error_explained_already)
2906 {
2907 fprintf_unfiltered (tmp_error_stream,
2908 "Could not insert hardware breakpoints:\n\
2909 You may have requested too many hardware breakpoints/watchpoints.\n");
2910 }
2911 target_terminal_ours_for_output ();
2912 error_stream (tmp_error_stream);
2913 }
2914
2915 do_cleanups (cleanups);
2916 }
2917
2918 /* Used when the program stops.
2919 Returns zero if successful, or non-zero if there was a problem
2920 removing a breakpoint location. */
2921
2922 int
2923 remove_breakpoints (void)
2924 {
2925 struct bp_location *bl, **blp_tmp;
2926 int val = 0;
2927
2928 ALL_BP_LOCATIONS (bl, blp_tmp)
2929 {
2930 if (bl->inserted && !is_tracepoint (bl->owner))
2931 val |= remove_breakpoint (bl, mark_uninserted);
2932 }
2933 return val;
2934 }
2935
2936 /* Remove breakpoints of process PID. */
2937
2938 int
2939 remove_breakpoints_pid (int pid)
2940 {
2941 struct bp_location *bl, **blp_tmp;
2942 int val;
2943 struct inferior *inf = find_inferior_pid (pid);
2944
2945 ALL_BP_LOCATIONS (bl, blp_tmp)
2946 {
2947 if (bl->pspace != inf->pspace)
2948 continue;
2949
2950 if (bl->owner->type == bp_dprintf)
2951 continue;
2952
2953 if (bl->inserted)
2954 {
2955 val = remove_breakpoint (bl, mark_uninserted);
2956 if (val != 0)
2957 return val;
2958 }
2959 }
2960 return 0;
2961 }
2962
2963 int
2964 reattach_breakpoints (int pid)
2965 {
2966 struct cleanup *old_chain;
2967 struct bp_location *bl, **blp_tmp;
2968 int val;
2969 struct ui_file *tmp_error_stream;
2970 int dummy1 = 0, dummy2 = 0, dummy3 = 0;
2971 struct inferior *inf;
2972 struct thread_info *tp;
2973
2974 tp = any_live_thread_of_process (pid);
2975 if (tp == NULL)
2976 return 1;
2977
2978 inf = find_inferior_pid (pid);
2979 old_chain = save_inferior_ptid ();
2980
2981 inferior_ptid = tp->ptid;
2982
2983 tmp_error_stream = mem_fileopen ();
2984 make_cleanup_ui_file_delete (tmp_error_stream);
2985
2986 ALL_BP_LOCATIONS (bl, blp_tmp)
2987 {
2988 if (bl->pspace != inf->pspace)
2989 continue;
2990
2991 if (bl->inserted)
2992 {
2993 bl->inserted = 0;
2994 val = insert_bp_location (bl, tmp_error_stream, &dummy1, &dummy2, &dummy3);
2995 if (val != 0)
2996 {
2997 do_cleanups (old_chain);
2998 return val;
2999 }
3000 }
3001 }
3002 do_cleanups (old_chain);
3003 return 0;
3004 }
3005
3006 static int internal_breakpoint_number = -1;
3007
3008 /* Set the breakpoint number of B, depending on the value of INTERNAL.
3009 If INTERNAL is non-zero, the breakpoint number will be populated
3010 from internal_breakpoint_number and that variable decremented.
3011 Otherwise the breakpoint number will be populated from
3012 breakpoint_count and that value incremented. Internal breakpoints
3013 do not set the internal var bpnum. */
3014 static void
3015 set_breakpoint_number (int internal, struct breakpoint *b)
3016 {
3017 if (internal)
3018 b->number = internal_breakpoint_number--;
3019 else
3020 {
3021 set_breakpoint_count (breakpoint_count + 1);
3022 b->number = breakpoint_count;
3023 }
3024 }
3025
3026 static struct breakpoint *
3027 create_internal_breakpoint (struct gdbarch *gdbarch,
3028 CORE_ADDR address, enum bptype type,
3029 const struct breakpoint_ops *ops)
3030 {
3031 struct symtab_and_line sal;
3032 struct breakpoint *b;
3033
3034 init_sal (&sal); /* Initialize to zeroes. */
3035
3036 sal.pc = address;
3037 sal.section = find_pc_overlay (sal.pc);
3038 sal.pspace = current_program_space;
3039
3040 b = set_raw_breakpoint (gdbarch, sal, type, ops);
3041 b->number = internal_breakpoint_number--;
3042 b->disposition = disp_donttouch;
3043
3044 return b;
3045 }
3046
3047 static const char *const longjmp_names[] =
3048 {
3049 "longjmp", "_longjmp", "siglongjmp", "_siglongjmp"
3050 };
3051 #define NUM_LONGJMP_NAMES ARRAY_SIZE(longjmp_names)
3052
3053 /* Per-objfile data private to breakpoint.c. */
3054 struct breakpoint_objfile_data
3055 {
3056 /* Minimal symbol for "_ovly_debug_event" (if any). */
3057 struct minimal_symbol *overlay_msym;
3058
3059 /* Minimal symbol(s) for "longjmp", "siglongjmp", etc. (if any). */
3060 struct minimal_symbol *longjmp_msym[NUM_LONGJMP_NAMES];
3061
3062 /* True if we have looked for longjmp probes. */
3063 int longjmp_searched;
3064
3065 /* SystemTap probe points for longjmp (if any). */
3066 VEC (probe_p) *longjmp_probes;
3067
3068 /* Minimal symbol for "std::terminate()" (if any). */
3069 struct minimal_symbol *terminate_msym;
3070
3071 /* Minimal symbol for "_Unwind_DebugHook" (if any). */
3072 struct minimal_symbol *exception_msym;
3073
3074 /* True if we have looked for exception probes. */
3075 int exception_searched;
3076
3077 /* SystemTap probe points for unwinding (if any). */
3078 VEC (probe_p) *exception_probes;
3079 };
3080
3081 static const struct objfile_data *breakpoint_objfile_key;
3082
3083 /* Minimal symbol not found sentinel. */
3084 static struct minimal_symbol msym_not_found;
3085
3086 /* Returns TRUE if MSYM point to the "not found" sentinel. */
3087
3088 static int
3089 msym_not_found_p (const struct minimal_symbol *msym)
3090 {
3091 return msym == &msym_not_found;
3092 }
3093
3094 /* Return per-objfile data needed by breakpoint.c.
3095 Allocate the data if necessary. */
3096
3097 static struct breakpoint_objfile_data *
3098 get_breakpoint_objfile_data (struct objfile *objfile)
3099 {
3100 struct breakpoint_objfile_data *bp_objfile_data;
3101
3102 bp_objfile_data = objfile_data (objfile, breakpoint_objfile_key);
3103 if (bp_objfile_data == NULL)
3104 {
3105 bp_objfile_data = obstack_alloc (&objfile->objfile_obstack,
3106 sizeof (*bp_objfile_data));
3107
3108 memset (bp_objfile_data, 0, sizeof (*bp_objfile_data));
3109 set_objfile_data (objfile, breakpoint_objfile_key, bp_objfile_data);
3110 }
3111 return bp_objfile_data;
3112 }
3113
3114 static void
3115 free_breakpoint_probes (struct objfile *obj, void *data)
3116 {
3117 struct breakpoint_objfile_data *bp_objfile_data = data;
3118
3119 VEC_free (probe_p, bp_objfile_data->longjmp_probes);
3120 VEC_free (probe_p, bp_objfile_data->exception_probes);
3121 }
3122
3123 static void
3124 create_overlay_event_breakpoint (void)
3125 {
3126 struct objfile *objfile;
3127 const char *const func_name = "_ovly_debug_event";
3128
3129 ALL_OBJFILES (objfile)
3130 {
3131 struct breakpoint *b;
3132 struct breakpoint_objfile_data *bp_objfile_data;
3133 CORE_ADDR addr;
3134
3135 bp_objfile_data = get_breakpoint_objfile_data (objfile);
3136
3137 if (msym_not_found_p (bp_objfile_data->overlay_msym))
3138 continue;
3139
3140 if (bp_objfile_data->overlay_msym == NULL)
3141 {
3142 struct minimal_symbol *m;
3143
3144 m = lookup_minimal_symbol_text (func_name, objfile);
3145 if (m == NULL)
3146 {
3147 /* Avoid future lookups in this objfile. */
3148 bp_objfile_data->overlay_msym = &msym_not_found;
3149 continue;
3150 }
3151 bp_objfile_data->overlay_msym = m;
3152 }
3153
3154 addr = SYMBOL_VALUE_ADDRESS (bp_objfile_data->overlay_msym);
3155 b = create_internal_breakpoint (get_objfile_arch (objfile), addr,
3156 bp_overlay_event,
3157 &internal_breakpoint_ops);
3158 b->addr_string = xstrdup (func_name);
3159
3160 if (overlay_debugging == ovly_auto)
3161 {
3162 b->enable_state = bp_enabled;
3163 overlay_events_enabled = 1;
3164 }
3165 else
3166 {
3167 b->enable_state = bp_disabled;
3168 overlay_events_enabled = 0;
3169 }
3170 }
3171 update_global_location_list (1);
3172 }
3173
3174 static void
3175 create_longjmp_master_breakpoint (void)
3176 {
3177 struct program_space *pspace;
3178 struct cleanup *old_chain;
3179
3180 old_chain = save_current_program_space ();
3181
3182 ALL_PSPACES (pspace)
3183 {
3184 struct objfile *objfile;
3185
3186 set_current_program_space (pspace);
3187
3188 ALL_OBJFILES (objfile)
3189 {
3190 int i;
3191 struct gdbarch *gdbarch;
3192 struct breakpoint_objfile_data *bp_objfile_data;
3193
3194 gdbarch = get_objfile_arch (objfile);
3195 if (!gdbarch_get_longjmp_target_p (gdbarch))
3196 continue;
3197
3198 bp_objfile_data = get_breakpoint_objfile_data (objfile);
3199
3200 if (!bp_objfile_data->longjmp_searched)
3201 {
3202 bp_objfile_data->longjmp_probes
3203 = find_probes_in_objfile (objfile, "libc", "longjmp");
3204 bp_objfile_data->longjmp_searched = 1;
3205 }
3206
3207 if (bp_objfile_data->longjmp_probes != NULL)
3208 {
3209 int i;
3210 struct probe *probe;
3211 struct gdbarch *gdbarch = get_objfile_arch (objfile);
3212
3213 for (i = 0;
3214 VEC_iterate (probe_p,
3215 bp_objfile_data->longjmp_probes,
3216 i, probe);
3217 ++i)
3218 {
3219 struct breakpoint *b;
3220
3221 b = create_internal_breakpoint (gdbarch, probe->address,
3222 bp_longjmp_master,
3223 &internal_breakpoint_ops);
3224 b->addr_string = xstrdup ("-probe-stap libc:longjmp");
3225 b->enable_state = bp_disabled;
3226 }
3227
3228 continue;
3229 }
3230
3231 for (i = 0; i < NUM_LONGJMP_NAMES; i++)
3232 {
3233 struct breakpoint *b;
3234 const char *func_name;
3235 CORE_ADDR addr;
3236
3237 if (msym_not_found_p (bp_objfile_data->longjmp_msym[i]))
3238 continue;
3239
3240 func_name = longjmp_names[i];
3241 if (bp_objfile_data->longjmp_msym[i] == NULL)
3242 {
3243 struct minimal_symbol *m;
3244
3245 m = lookup_minimal_symbol_text (func_name, objfile);
3246 if (m == NULL)
3247 {
3248 /* Prevent future lookups in this objfile. */
3249 bp_objfile_data->longjmp_msym[i] = &msym_not_found;
3250 continue;
3251 }
3252 bp_objfile_data->longjmp_msym[i] = m;
3253 }
3254
3255 addr = SYMBOL_VALUE_ADDRESS (bp_objfile_data->longjmp_msym[i]);
3256 b = create_internal_breakpoint (gdbarch, addr, bp_longjmp_master,
3257 &internal_breakpoint_ops);
3258 b->addr_string = xstrdup (func_name);
3259 b->enable_state = bp_disabled;
3260 }
3261 }
3262 }
3263 update_global_location_list (1);
3264
3265 do_cleanups (old_chain);
3266 }
3267
3268 /* Create a master std::terminate breakpoint. */
3269 static void
3270 create_std_terminate_master_breakpoint (void)
3271 {
3272 struct program_space *pspace;
3273 struct cleanup *old_chain;
3274 const char *const func_name = "std::terminate()";
3275
3276 old_chain = save_current_program_space ();
3277
3278 ALL_PSPACES (pspace)
3279 {
3280 struct objfile *objfile;
3281 CORE_ADDR addr;
3282
3283 set_current_program_space (pspace);
3284
3285 ALL_OBJFILES (objfile)
3286 {
3287 struct breakpoint *b;
3288 struct breakpoint_objfile_data *bp_objfile_data;
3289
3290 bp_objfile_data = get_breakpoint_objfile_data (objfile);
3291
3292 if (msym_not_found_p (bp_objfile_data->terminate_msym))
3293 continue;
3294
3295 if (bp_objfile_data->terminate_msym == NULL)
3296 {
3297 struct minimal_symbol *m;
3298
3299 m = lookup_minimal_symbol (func_name, NULL, objfile);
3300 if (m == NULL || (MSYMBOL_TYPE (m) != mst_text
3301 && MSYMBOL_TYPE (m) != mst_file_text))
3302 {
3303 /* Prevent future lookups in this objfile. */
3304 bp_objfile_data->terminate_msym = &msym_not_found;
3305 continue;
3306 }
3307 bp_objfile_data->terminate_msym = m;
3308 }
3309
3310 addr = SYMBOL_VALUE_ADDRESS (bp_objfile_data->terminate_msym);
3311 b = create_internal_breakpoint (get_objfile_arch (objfile), addr,
3312 bp_std_terminate_master,
3313 &internal_breakpoint_ops);
3314 b->addr_string = xstrdup (func_name);
3315 b->enable_state = bp_disabled;
3316 }
3317 }
3318
3319 update_global_location_list (1);
3320
3321 do_cleanups (old_chain);
3322 }
3323
3324 /* Install a master breakpoint on the unwinder's debug hook. */
3325
3326 static void
3327 create_exception_master_breakpoint (void)
3328 {
3329 struct objfile *objfile;
3330 const char *const func_name = "_Unwind_DebugHook";
3331
3332 ALL_OBJFILES (objfile)
3333 {
3334 struct breakpoint *b;
3335 struct gdbarch *gdbarch;
3336 struct breakpoint_objfile_data *bp_objfile_data;
3337 CORE_ADDR addr;
3338
3339 bp_objfile_data = get_breakpoint_objfile_data (objfile);
3340
3341 /* We prefer the SystemTap probe point if it exists. */
3342 if (!bp_objfile_data->exception_searched)
3343 {
3344 bp_objfile_data->exception_probes
3345 = find_probes_in_objfile (objfile, "libgcc", "unwind");
3346 bp_objfile_data->exception_searched = 1;
3347 }
3348
3349 if (bp_objfile_data->exception_probes != NULL)
3350 {
3351 struct gdbarch *gdbarch = get_objfile_arch (objfile);
3352 int i;
3353 struct probe *probe;
3354
3355 for (i = 0;
3356 VEC_iterate (probe_p,
3357 bp_objfile_data->exception_probes,
3358 i, probe);
3359 ++i)
3360 {
3361 struct breakpoint *b;
3362
3363 b = create_internal_breakpoint (gdbarch, probe->address,
3364 bp_exception_master,
3365 &internal_breakpoint_ops);
3366 b->addr_string = xstrdup ("-probe-stap libgcc:unwind");
3367 b->enable_state = bp_disabled;
3368 }
3369
3370 continue;
3371 }
3372
3373 /* Otherwise, try the hook function. */
3374
3375 if (msym_not_found_p (bp_objfile_data->exception_msym))
3376 continue;
3377
3378 gdbarch = get_objfile_arch (objfile);
3379
3380 if (bp_objfile_data->exception_msym == NULL)
3381 {
3382 struct minimal_symbol *debug_hook;
3383
3384 debug_hook = lookup_minimal_symbol (func_name, NULL, objfile);
3385 if (debug_hook == NULL)
3386 {
3387 bp_objfile_data->exception_msym = &msym_not_found;
3388 continue;
3389 }
3390
3391 bp_objfile_data->exception_msym = debug_hook;
3392 }
3393
3394 addr = SYMBOL_VALUE_ADDRESS (bp_objfile_data->exception_msym);
3395 addr = gdbarch_convert_from_func_ptr_addr (gdbarch, addr,
3396 &current_target);
3397 b = create_internal_breakpoint (gdbarch, addr, bp_exception_master,
3398 &internal_breakpoint_ops);
3399 b->addr_string = xstrdup (func_name);
3400 b->enable_state = bp_disabled;
3401 }
3402
3403 update_global_location_list (1);
3404 }
3405
3406 void
3407 update_breakpoints_after_exec (void)
3408 {
3409 struct breakpoint *b, *b_tmp;
3410 struct bp_location *bploc, **bplocp_tmp;
3411
3412 /* We're about to delete breakpoints from GDB's lists. If the
3413 INSERTED flag is true, GDB will try to lift the breakpoints by
3414 writing the breakpoints' "shadow contents" back into memory. The
3415 "shadow contents" are NOT valid after an exec, so GDB should not
3416 do that. Instead, the target is responsible from marking
3417 breakpoints out as soon as it detects an exec. We don't do that
3418 here instead, because there may be other attempts to delete
3419 breakpoints after detecting an exec and before reaching here. */
3420 ALL_BP_LOCATIONS (bploc, bplocp_tmp)
3421 if (bploc->pspace == current_program_space)
3422 gdb_assert (!bploc->inserted);
3423
3424 ALL_BREAKPOINTS_SAFE (b, b_tmp)
3425 {
3426 if (b->pspace != current_program_space)
3427 continue;
3428
3429 /* Solib breakpoints must be explicitly reset after an exec(). */
3430 if (b->type == bp_shlib_event)
3431 {
3432 delete_breakpoint (b);
3433 continue;
3434 }
3435
3436 /* JIT breakpoints must be explicitly reset after an exec(). */
3437 if (b->type == bp_jit_event)
3438 {
3439 delete_breakpoint (b);
3440 continue;
3441 }
3442
3443 /* Thread event breakpoints must be set anew after an exec(),
3444 as must overlay event and longjmp master breakpoints. */
3445 if (b->type == bp_thread_event || b->type == bp_overlay_event
3446 || b->type == bp_longjmp_master || b->type == bp_std_terminate_master
3447 || b->type == bp_exception_master)
3448 {
3449 delete_breakpoint (b);
3450 continue;
3451 }
3452
3453 /* Step-resume breakpoints are meaningless after an exec(). */
3454 if (b->type == bp_step_resume || b->type == bp_hp_step_resume)
3455 {
3456 delete_breakpoint (b);
3457 continue;
3458 }
3459
3460 /* Longjmp and longjmp-resume breakpoints are also meaningless
3461 after an exec. */
3462 if (b->type == bp_longjmp || b->type == bp_longjmp_resume
3463 || b->type == bp_longjmp_call_dummy
3464 || b->type == bp_exception || b->type == bp_exception_resume)
3465 {
3466 delete_breakpoint (b);
3467 continue;
3468 }
3469
3470 if (b->type == bp_catchpoint)
3471 {
3472 /* For now, none of the bp_catchpoint breakpoints need to
3473 do anything at this point. In the future, if some of
3474 the catchpoints need to something, we will need to add
3475 a new method, and call this method from here. */
3476 continue;
3477 }
3478
3479 /* bp_finish is a special case. The only way we ought to be able
3480 to see one of these when an exec() has happened, is if the user
3481 caught a vfork, and then said "finish". Ordinarily a finish just
3482 carries them to the call-site of the current callee, by setting
3483 a temporary bp there and resuming. But in this case, the finish
3484 will carry them entirely through the vfork & exec.
3485
3486 We don't want to allow a bp_finish to remain inserted now. But
3487 we can't safely delete it, 'cause finish_command has a handle to
3488 the bp on a bpstat, and will later want to delete it. There's a
3489 chance (and I've seen it happen) that if we delete the bp_finish
3490 here, that its storage will get reused by the time finish_command
3491 gets 'round to deleting the "use to be a bp_finish" breakpoint.
3492 We really must allow finish_command to delete a bp_finish.
3493
3494 In the absence of a general solution for the "how do we know
3495 it's safe to delete something others may have handles to?"
3496 problem, what we'll do here is just uninsert the bp_finish, and
3497 let finish_command delete it.
3498
3499 (We know the bp_finish is "doomed" in the sense that it's
3500 momentary, and will be deleted as soon as finish_command sees
3501 the inferior stopped. So it doesn't matter that the bp's
3502 address is probably bogus in the new a.out, unlike e.g., the
3503 solib breakpoints.) */
3504
3505 if (b->type == bp_finish)
3506 {
3507 continue;
3508 }
3509
3510 /* Without a symbolic address, we have little hope of the
3511 pre-exec() address meaning the same thing in the post-exec()
3512 a.out. */
3513 if (b->addr_string == NULL)
3514 {
3515 delete_breakpoint (b);
3516 continue;
3517 }
3518 }
3519 /* FIXME what about longjmp breakpoints? Re-create them here? */
3520 create_overlay_event_breakpoint ();
3521 create_longjmp_master_breakpoint ();
3522 create_std_terminate_master_breakpoint ();
3523 create_exception_master_breakpoint ();
3524 }
3525
3526 int
3527 detach_breakpoints (ptid_t ptid)
3528 {
3529 struct bp_location *bl, **blp_tmp;
3530 int val = 0;
3531 struct cleanup *old_chain = save_inferior_ptid ();
3532 struct inferior *inf = current_inferior ();
3533
3534 if (PIDGET (ptid) == PIDGET (inferior_ptid))
3535 error (_("Cannot detach breakpoints of inferior_ptid"));
3536
3537 /* Set inferior_ptid; remove_breakpoint_1 uses this global. */
3538 inferior_ptid = ptid;
3539 ALL_BP_LOCATIONS (bl, blp_tmp)
3540 {
3541 if (bl->pspace != inf->pspace)
3542 continue;
3543
3544 if (bl->inserted)
3545 val |= remove_breakpoint_1 (bl, mark_inserted);
3546 }
3547
3548 /* Detach single-step breakpoints as well. */
3549 detach_single_step_breakpoints ();
3550
3551 do_cleanups (old_chain);
3552 return val;
3553 }
3554
3555 /* Remove the breakpoint location BL from the current address space.
3556 Note that this is used to detach breakpoints from a child fork.
3557 When we get here, the child isn't in the inferior list, and neither
3558 do we have objects to represent its address space --- we should
3559 *not* look at bl->pspace->aspace here. */
3560
3561 static int
3562 remove_breakpoint_1 (struct bp_location *bl, insertion_state_t is)
3563 {
3564 int val;
3565
3566 /* BL is never in moribund_locations by our callers. */
3567 gdb_assert (bl->owner != NULL);
3568
3569 if (bl->owner->enable_state == bp_permanent)
3570 /* Permanent breakpoints cannot be inserted or removed. */
3571 return 0;
3572
3573 /* The type of none suggests that owner is actually deleted.
3574 This should not ever happen. */
3575 gdb_assert (bl->owner->type != bp_none);
3576
3577 if (bl->loc_type == bp_loc_software_breakpoint
3578 || bl->loc_type == bp_loc_hardware_breakpoint)
3579 {
3580 /* "Normal" instruction breakpoint: either the standard
3581 trap-instruction bp (bp_breakpoint), or a
3582 bp_hardware_breakpoint. */
3583
3584 /* First check to see if we have to handle an overlay. */
3585 if (overlay_debugging == ovly_off
3586 || bl->section == NULL
3587 || !(section_is_overlay (bl->section)))
3588 {
3589 /* No overlay handling: just remove the breakpoint. */
3590 val = bl->owner->ops->remove_location (bl);
3591 }
3592 else
3593 {
3594 /* This breakpoint is in an overlay section.
3595 Did we set a breakpoint at the LMA? */
3596 if (!overlay_events_enabled)
3597 {
3598 /* Yes -- overlay event support is not active, so we
3599 should have set a breakpoint at the LMA. Remove it.
3600 */
3601 /* Ignore any failures: if the LMA is in ROM, we will
3602 have already warned when we failed to insert it. */
3603 if (bl->loc_type == bp_loc_hardware_breakpoint)
3604 target_remove_hw_breakpoint (bl->gdbarch,
3605 &bl->overlay_target_info);
3606 else
3607 target_remove_breakpoint (bl->gdbarch,
3608 &bl->overlay_target_info);
3609 }
3610 /* Did we set a breakpoint at the VMA?
3611 If so, we will have marked the breakpoint 'inserted'. */
3612 if (bl->inserted)
3613 {
3614 /* Yes -- remove it. Previously we did not bother to
3615 remove the breakpoint if the section had been
3616 unmapped, but let's not rely on that being safe. We
3617 don't know what the overlay manager might do. */
3618
3619 /* However, we should remove *software* breakpoints only
3620 if the section is still mapped, or else we overwrite
3621 wrong code with the saved shadow contents. */
3622 if (bl->loc_type == bp_loc_hardware_breakpoint
3623 || section_is_mapped (bl->section))
3624 val = bl->owner->ops->remove_location (bl);
3625 else
3626 val = 0;
3627 }
3628 else
3629 {
3630 /* No -- not inserted, so no need to remove. No error. */
3631 val = 0;
3632 }
3633 }
3634
3635 /* In some cases, we might not be able to remove a breakpoint
3636 in a shared library that has already been removed, but we
3637 have not yet processed the shlib unload event. */
3638 if (val && solib_name_from_address (bl->pspace, bl->address))
3639 val = 0;
3640
3641 if (val)
3642 return val;
3643 bl->inserted = (is == mark_inserted);
3644 }
3645 else if (bl->loc_type == bp_loc_hardware_watchpoint)
3646 {
3647 gdb_assert (bl->owner->ops != NULL
3648 && bl->owner->ops->remove_location != NULL);
3649
3650 bl->inserted = (is == mark_inserted);
3651 bl->owner->ops->remove_location (bl);
3652
3653 /* Failure to remove any of the hardware watchpoints comes here. */
3654 if ((is == mark_uninserted) && (bl->inserted))
3655 warning (_("Could not remove hardware watchpoint %d."),
3656 bl->owner->number);
3657 }
3658 else if (bl->owner->type == bp_catchpoint
3659 && breakpoint_enabled (bl->owner)
3660 && !bl->duplicate)
3661 {
3662 gdb_assert (bl->owner->ops != NULL
3663 && bl->owner->ops->remove_location != NULL);
3664
3665 val = bl->owner->ops->remove_location (bl);
3666 if (val)
3667 return val;
3668
3669 bl->inserted = (is == mark_inserted);
3670 }
3671
3672 return 0;
3673 }
3674
3675 static int
3676 remove_breakpoint (struct bp_location *bl, insertion_state_t is)
3677 {
3678 int ret;
3679 struct cleanup *old_chain;
3680
3681 /* BL is never in moribund_locations by our callers. */
3682 gdb_assert (bl->owner != NULL);
3683
3684 if (bl->owner->enable_state == bp_permanent)
3685 /* Permanent breakpoints cannot be inserted or removed. */
3686 return 0;
3687
3688 /* The type of none suggests that owner is actually deleted.
3689 This should not ever happen. */
3690 gdb_assert (bl->owner->type != bp_none);
3691
3692 old_chain = save_current_space_and_thread ();
3693
3694 switch_to_program_space_and_thread (bl->pspace);
3695
3696 ret = remove_breakpoint_1 (bl, is);
3697
3698 do_cleanups (old_chain);
3699 return ret;
3700 }
3701
3702 /* Clear the "inserted" flag in all breakpoints. */
3703
3704 void
3705 mark_breakpoints_out (void)
3706 {
3707 struct bp_location *bl, **blp_tmp;
3708
3709 ALL_BP_LOCATIONS (bl, blp_tmp)
3710 if (bl->pspace == current_program_space)
3711 bl->inserted = 0;
3712 }
3713
3714 /* Clear the "inserted" flag in all breakpoints and delete any
3715 breakpoints which should go away between runs of the program.
3716
3717 Plus other such housekeeping that has to be done for breakpoints
3718 between runs.
3719
3720 Note: this function gets called at the end of a run (by
3721 generic_mourn_inferior) and when a run begins (by
3722 init_wait_for_inferior). */
3723
3724
3725
3726 void
3727 breakpoint_init_inferior (enum inf_context context)
3728 {
3729 struct breakpoint *b, *b_tmp;
3730 struct bp_location *bl, **blp_tmp;
3731 int ix;
3732 struct program_space *pspace = current_program_space;
3733
3734 /* If breakpoint locations are shared across processes, then there's
3735 nothing to do. */
3736 if (gdbarch_has_global_breakpoints (target_gdbarch ()))
3737 return;
3738
3739 ALL_BP_LOCATIONS (bl, blp_tmp)
3740 {
3741 /* ALL_BP_LOCATIONS bp_location has BL->OWNER always non-NULL. */
3742 if (bl->pspace == pspace
3743 && bl->owner->enable_state != bp_permanent)
3744 bl->inserted = 0;
3745 }
3746
3747 ALL_BREAKPOINTS_SAFE (b, b_tmp)
3748 {
3749 if (b->loc && b->loc->pspace != pspace)
3750 continue;
3751
3752 switch (b->type)
3753 {
3754 case bp_call_dummy:
3755 case bp_longjmp_call_dummy:
3756
3757 /* If the call dummy breakpoint is at the entry point it will
3758 cause problems when the inferior is rerun, so we better get
3759 rid of it. */
3760
3761 case bp_watchpoint_scope:
3762
3763 /* Also get rid of scope breakpoints. */
3764
3765 case bp_shlib_event:
3766
3767 /* Also remove solib event breakpoints. Their addresses may
3768 have changed since the last time we ran the program.
3769 Actually we may now be debugging against different target;
3770 and so the solib backend that installed this breakpoint may
3771 not be used in by the target. E.g.,
3772
3773 (gdb) file prog-linux
3774 (gdb) run # native linux target
3775 ...
3776 (gdb) kill
3777 (gdb) file prog-win.exe
3778 (gdb) tar rem :9999 # remote Windows gdbserver.
3779 */
3780
3781 case bp_step_resume:
3782
3783 /* Also remove step-resume breakpoints. */
3784
3785 delete_breakpoint (b);
3786 break;
3787
3788 case bp_watchpoint:
3789 case bp_hardware_watchpoint:
3790 case bp_read_watchpoint:
3791 case bp_access_watchpoint:
3792 {
3793 struct watchpoint *w = (struct watchpoint *) b;
3794
3795 /* Likewise for watchpoints on local expressions. */
3796 if (w->exp_valid_block != NULL)
3797 delete_breakpoint (b);
3798 else if (context == inf_starting)
3799 {
3800 /* Reset val field to force reread of starting value in
3801 insert_breakpoints. */
3802 if (w->val)
3803 value_free (w->val);
3804 w->val = NULL;
3805 w->val_valid = 0;
3806 }
3807 }
3808 break;
3809 default:
3810 break;
3811 }
3812 }
3813
3814 /* Get rid of the moribund locations. */
3815 for (ix = 0; VEC_iterate (bp_location_p, moribund_locations, ix, bl); ++ix)
3816 decref_bp_location (&bl);
3817 VEC_free (bp_location_p, moribund_locations);
3818 }
3819
3820 /* These functions concern about actual breakpoints inserted in the
3821 target --- to e.g. check if we need to do decr_pc adjustment or if
3822 we need to hop over the bkpt --- so we check for address space
3823 match, not program space. */
3824
3825 /* breakpoint_here_p (PC) returns non-zero if an enabled breakpoint
3826 exists at PC. It returns ordinary_breakpoint_here if it's an
3827 ordinary breakpoint, or permanent_breakpoint_here if it's a
3828 permanent breakpoint.
3829 - When continuing from a location with an ordinary breakpoint, we
3830 actually single step once before calling insert_breakpoints.
3831 - When continuing from a location with a permanent breakpoint, we
3832 need to use the `SKIP_PERMANENT_BREAKPOINT' macro, provided by
3833 the target, to advance the PC past the breakpoint. */
3834
3835 enum breakpoint_here
3836 breakpoint_here_p (struct address_space *aspace, CORE_ADDR pc)
3837 {
3838 struct bp_location *bl, **blp_tmp;
3839 int any_breakpoint_here = 0;
3840
3841 ALL_BP_LOCATIONS (bl, blp_tmp)
3842 {
3843 if (bl->loc_type != bp_loc_software_breakpoint
3844 && bl->loc_type != bp_loc_hardware_breakpoint)
3845 continue;
3846
3847 /* ALL_BP_LOCATIONS bp_location has BL->OWNER always non-NULL. */
3848 if ((breakpoint_enabled (bl->owner)
3849 || bl->owner->enable_state == bp_permanent)
3850 && breakpoint_location_address_match (bl, aspace, pc))
3851 {
3852 if (overlay_debugging
3853 && section_is_overlay (bl->section)
3854 && !section_is_mapped (bl->section))
3855 continue; /* unmapped overlay -- can't be a match */
3856 else if (bl->owner->enable_state == bp_permanent)
3857 return permanent_breakpoint_here;
3858 else
3859 any_breakpoint_here = 1;
3860 }
3861 }
3862
3863 return any_breakpoint_here ? ordinary_breakpoint_here : 0;
3864 }
3865
3866 /* Return true if there's a moribund breakpoint at PC. */
3867
3868 int
3869 moribund_breakpoint_here_p (struct address_space *aspace, CORE_ADDR pc)
3870 {
3871 struct bp_location *loc;
3872 int ix;
3873
3874 for (ix = 0; VEC_iterate (bp_location_p, moribund_locations, ix, loc); ++ix)
3875 if (breakpoint_location_address_match (loc, aspace, pc))
3876 return 1;
3877
3878 return 0;
3879 }
3880
3881 /* Returns non-zero if there's a breakpoint inserted at PC, which is
3882 inserted using regular breakpoint_chain / bp_location array
3883 mechanism. This does not check for single-step breakpoints, which
3884 are inserted and removed using direct target manipulation. */
3885
3886 int
3887 regular_breakpoint_inserted_here_p (struct address_space *aspace,
3888 CORE_ADDR pc)
3889 {
3890 struct bp_location *bl, **blp_tmp;
3891
3892 ALL_BP_LOCATIONS (bl, blp_tmp)
3893 {
3894 if (bl->loc_type != bp_loc_software_breakpoint
3895 && bl->loc_type != bp_loc_hardware_breakpoint)
3896 continue;
3897
3898 if (bl->inserted
3899 && breakpoint_location_address_match (bl, aspace, pc))
3900 {
3901 if (overlay_debugging
3902 && section_is_overlay (bl->section)
3903 && !section_is_mapped (bl->section))
3904 continue; /* unmapped overlay -- can't be a match */
3905 else
3906 return 1;
3907 }
3908 }
3909 return 0;
3910 }
3911
3912 /* Returns non-zero iff there's either regular breakpoint
3913 or a single step breakpoint inserted at PC. */
3914
3915 int
3916 breakpoint_inserted_here_p (struct address_space *aspace, CORE_ADDR pc)
3917 {
3918 if (regular_breakpoint_inserted_here_p (aspace, pc))
3919 return 1;
3920
3921 if (single_step_breakpoint_inserted_here_p (aspace, pc))
3922 return 1;
3923
3924 return 0;
3925 }
3926
3927 /* This function returns non-zero iff there is a software breakpoint
3928 inserted at PC. */
3929
3930 int
3931 software_breakpoint_inserted_here_p (struct address_space *aspace,
3932 CORE_ADDR pc)
3933 {
3934 struct bp_location *bl, **blp_tmp;
3935
3936 ALL_BP_LOCATIONS (bl, blp_tmp)
3937 {
3938 if (bl->loc_type != bp_loc_software_breakpoint)
3939 continue;
3940
3941 if (bl->inserted
3942 && breakpoint_address_match (bl->pspace->aspace, bl->address,
3943 aspace, pc))
3944 {
3945 if (overlay_debugging
3946 && section_is_overlay (bl->section)
3947 && !section_is_mapped (bl->section))
3948 continue; /* unmapped overlay -- can't be a match */
3949 else
3950 return 1;
3951 }
3952 }
3953
3954 /* Also check for software single-step breakpoints. */
3955 if (single_step_breakpoint_inserted_here_p (aspace, pc))
3956 return 1;
3957
3958 return 0;
3959 }
3960
3961 int
3962 hardware_watchpoint_inserted_in_range (struct address_space *aspace,
3963 CORE_ADDR addr, ULONGEST len)
3964 {
3965 struct breakpoint *bpt;
3966
3967 ALL_BREAKPOINTS (bpt)
3968 {
3969 struct bp_location *loc;
3970
3971 if (bpt->type != bp_hardware_watchpoint
3972 && bpt->type != bp_access_watchpoint)
3973 continue;
3974
3975 if (!breakpoint_enabled (bpt))
3976 continue;
3977
3978 for (loc = bpt->loc; loc; loc = loc->next)
3979 if (loc->pspace->aspace == aspace && loc->inserted)
3980 {
3981 CORE_ADDR l, h;
3982
3983 /* Check for intersection. */
3984 l = max (loc->address, addr);
3985 h = min (loc->address + loc->length, addr + len);
3986 if (l < h)
3987 return 1;
3988 }
3989 }
3990 return 0;
3991 }
3992
3993 /* breakpoint_thread_match (PC, PTID) returns true if the breakpoint at
3994 PC is valid for process/thread PTID. */
3995
3996 int
3997 breakpoint_thread_match (struct address_space *aspace, CORE_ADDR pc,
3998 ptid_t ptid)
3999 {
4000 struct bp_location *bl, **blp_tmp;
4001 /* The thread and task IDs associated to PTID, computed lazily. */
4002 int thread = -1;
4003 int task = 0;
4004
4005 ALL_BP_LOCATIONS (bl, blp_tmp)
4006 {
4007 if (bl->loc_type != bp_loc_software_breakpoint
4008 && bl->loc_type != bp_loc_hardware_breakpoint)
4009 continue;
4010
4011 /* ALL_BP_LOCATIONS bp_location has bl->OWNER always non-NULL. */
4012 if (!breakpoint_enabled (bl->owner)
4013 && bl->owner->enable_state != bp_permanent)
4014 continue;
4015
4016 if (!breakpoint_location_address_match (bl, aspace, pc))
4017 continue;
4018
4019 if (bl->owner->thread != -1)
4020 {
4021 /* This is a thread-specific breakpoint. Check that ptid
4022 matches that thread. If thread hasn't been computed yet,
4023 it is now time to do so. */
4024 if (thread == -1)
4025 thread = pid_to_thread_id (ptid);
4026 if (bl->owner->thread != thread)
4027 continue;
4028 }
4029
4030 if (bl->owner->task != 0)
4031 {
4032 /* This is a task-specific breakpoint. Check that ptid
4033 matches that task. If task hasn't been computed yet,
4034 it is now time to do so. */
4035 if (task == 0)
4036 task = ada_get_task_number (ptid);
4037 if (bl->owner->task != task)
4038 continue;
4039 }
4040
4041 if (overlay_debugging
4042 && section_is_overlay (bl->section)
4043 && !section_is_mapped (bl->section))
4044 continue; /* unmapped overlay -- can't be a match */
4045
4046 return 1;
4047 }
4048
4049 return 0;
4050 }
4051 \f
4052
4053 /* bpstat stuff. External routines' interfaces are documented
4054 in breakpoint.h. */
4055
4056 int
4057 is_catchpoint (struct breakpoint *ep)
4058 {
4059 return (ep->type == bp_catchpoint);
4060 }
4061
4062 /* Frees any storage that is part of a bpstat. Does not walk the
4063 'next' chain. */
4064
4065 static void
4066 bpstat_free (bpstat bs)
4067 {
4068 if (bs->old_val != NULL)
4069 value_free (bs->old_val);
4070 decref_counted_command_line (&bs->commands);
4071 decref_bp_location (&bs->bp_location_at);
4072 xfree (bs);
4073 }
4074
4075 /* Clear a bpstat so that it says we are not at any breakpoint.
4076 Also free any storage that is part of a bpstat. */
4077
4078 void
4079 bpstat_clear (bpstat *bsp)
4080 {
4081 bpstat p;
4082 bpstat q;
4083
4084 if (bsp == 0)
4085 return;
4086 p = *bsp;
4087 while (p != NULL)
4088 {
4089 q = p->next;
4090 bpstat_free (p);
4091 p = q;
4092 }
4093 *bsp = NULL;
4094 }
4095
4096 /* Return a copy of a bpstat. Like "bs1 = bs2" but all storage that
4097 is part of the bpstat is copied as well. */
4098
4099 bpstat
4100 bpstat_copy (bpstat bs)
4101 {
4102 bpstat p = NULL;
4103 bpstat tmp;
4104 bpstat retval = NULL;
4105
4106 if (bs == NULL)
4107 return bs;
4108
4109 for (; bs != NULL; bs = bs->next)
4110 {
4111 tmp = (bpstat) xmalloc (sizeof (*tmp));
4112 memcpy (tmp, bs, sizeof (*tmp));
4113 incref_counted_command_line (tmp->commands);
4114 incref_bp_location (tmp->bp_location_at);
4115 if (bs->old_val != NULL)
4116 {
4117 tmp->old_val = value_copy (bs->old_val);
4118 release_value (tmp->old_val);
4119 }
4120
4121 if (p == NULL)
4122 /* This is the first thing in the chain. */
4123 retval = tmp;
4124 else
4125 p->next = tmp;
4126 p = tmp;
4127 }
4128 p->next = NULL;
4129 return retval;
4130 }
4131
4132 /* Find the bpstat associated with this breakpoint. */
4133
4134 bpstat
4135 bpstat_find_breakpoint (bpstat bsp, struct breakpoint *breakpoint)
4136 {
4137 if (bsp == NULL)
4138 return NULL;
4139
4140 for (; bsp != NULL; bsp = bsp->next)
4141 {
4142 if (bsp->breakpoint_at == breakpoint)
4143 return bsp;
4144 }
4145 return NULL;
4146 }
4147
4148 /* Put in *NUM the breakpoint number of the first breakpoint we are
4149 stopped at. *BSP upon return is a bpstat which points to the
4150 remaining breakpoints stopped at (but which is not guaranteed to be
4151 good for anything but further calls to bpstat_num).
4152
4153 Return 0 if passed a bpstat which does not indicate any breakpoints.
4154 Return -1 if stopped at a breakpoint that has been deleted since
4155 we set it.
4156 Return 1 otherwise. */
4157
4158 int
4159 bpstat_num (bpstat *bsp, int *num)
4160 {
4161 struct breakpoint *b;
4162
4163 if ((*bsp) == NULL)
4164 return 0; /* No more breakpoint values */
4165
4166 /* We assume we'll never have several bpstats that correspond to a
4167 single breakpoint -- otherwise, this function might return the
4168 same number more than once and this will look ugly. */
4169 b = (*bsp)->breakpoint_at;
4170 *bsp = (*bsp)->next;
4171 if (b == NULL)
4172 return -1; /* breakpoint that's been deleted since */
4173
4174 *num = b->number; /* We have its number */
4175 return 1;
4176 }
4177
4178 /* See breakpoint.h. */
4179
4180 void
4181 bpstat_clear_actions (void)
4182 {
4183 struct thread_info *tp;
4184 bpstat bs;
4185
4186 if (ptid_equal (inferior_ptid, null_ptid))
4187 return;
4188
4189 tp = find_thread_ptid (inferior_ptid);
4190 if (tp == NULL)
4191 return;
4192
4193 for (bs = tp->control.stop_bpstat; bs != NULL; bs = bs->next)
4194 {
4195 decref_counted_command_line (&bs->commands);
4196
4197 if (bs->old_val != NULL)
4198 {
4199 value_free (bs->old_val);
4200 bs->old_val = NULL;
4201 }
4202 }
4203 }
4204
4205 /* Called when a command is about to proceed the inferior. */
4206
4207 static void
4208 breakpoint_about_to_proceed (void)
4209 {
4210 if (!ptid_equal (inferior_ptid, null_ptid))
4211 {
4212 struct thread_info *tp = inferior_thread ();
4213
4214 /* Allow inferior function calls in breakpoint commands to not
4215 interrupt the command list. When the call finishes
4216 successfully, the inferior will be standing at the same
4217 breakpoint as if nothing happened. */
4218 if (tp->control.in_infcall)
4219 return;
4220 }
4221
4222 breakpoint_proceeded = 1;
4223 }
4224
4225 /* Stub for cleaning up our state if we error-out of a breakpoint
4226 command. */
4227 static void
4228 cleanup_executing_breakpoints (void *ignore)
4229 {
4230 executing_breakpoint_commands = 0;
4231 }
4232
4233 /* Return non-zero iff CMD as the first line of a command sequence is `silent'
4234 or its equivalent. */
4235
4236 static int
4237 command_line_is_silent (struct command_line *cmd)
4238 {
4239 return cmd && (strcmp ("silent", cmd->line) == 0
4240 || (xdb_commands && strcmp ("Q", cmd->line) == 0));
4241 }
4242
4243 /* Execute all the commands associated with all the breakpoints at
4244 this location. Any of these commands could cause the process to
4245 proceed beyond this point, etc. We look out for such changes by
4246 checking the global "breakpoint_proceeded" after each command.
4247
4248 Returns true if a breakpoint command resumed the inferior. In that
4249 case, it is the caller's responsibility to recall it again with the
4250 bpstat of the current thread. */
4251
4252 static int
4253 bpstat_do_actions_1 (bpstat *bsp)
4254 {
4255 bpstat bs;
4256 struct cleanup *old_chain;
4257 int again = 0;
4258
4259 /* Avoid endless recursion if a `source' command is contained
4260 in bs->commands. */
4261 if (executing_breakpoint_commands)
4262 return 0;
4263
4264 executing_breakpoint_commands = 1;
4265 old_chain = make_cleanup (cleanup_executing_breakpoints, 0);
4266
4267 prevent_dont_repeat ();
4268
4269 /* This pointer will iterate over the list of bpstat's. */
4270 bs = *bsp;
4271
4272 breakpoint_proceeded = 0;
4273 for (; bs != NULL; bs = bs->next)
4274 {
4275 struct counted_command_line *ccmd;
4276 struct command_line *cmd;
4277 struct cleanup *this_cmd_tree_chain;
4278
4279 /* Take ownership of the BSP's command tree, if it has one.
4280
4281 The command tree could legitimately contain commands like
4282 'step' and 'next', which call clear_proceed_status, which
4283 frees stop_bpstat's command tree. To make sure this doesn't
4284 free the tree we're executing out from under us, we need to
4285 take ownership of the tree ourselves. Since a given bpstat's
4286 commands are only executed once, we don't need to copy it; we
4287 can clear the pointer in the bpstat, and make sure we free
4288 the tree when we're done. */
4289 ccmd = bs->commands;
4290 bs->commands = NULL;
4291 this_cmd_tree_chain = make_cleanup_decref_counted_command_line (&ccmd);
4292 cmd = ccmd ? ccmd->commands : NULL;
4293 if (command_line_is_silent (cmd))
4294 {
4295 /* The action has been already done by bpstat_stop_status. */
4296 cmd = cmd->next;
4297 }
4298
4299 while (cmd != NULL)
4300 {
4301 execute_control_command (cmd);
4302
4303 if (breakpoint_proceeded)
4304 break;
4305 else
4306 cmd = cmd->next;
4307 }
4308
4309 /* We can free this command tree now. */
4310 do_cleanups (this_cmd_tree_chain);
4311
4312 if (breakpoint_proceeded)
4313 {
4314 if (target_can_async_p ())
4315 /* If we are in async mode, then the target might be still
4316 running, not stopped at any breakpoint, so nothing for
4317 us to do here -- just return to the event loop. */
4318 ;
4319 else
4320 /* In sync mode, when execute_control_command returns
4321 we're already standing on the next breakpoint.
4322 Breakpoint commands for that stop were not run, since
4323 execute_command does not run breakpoint commands --
4324 only command_line_handler does, but that one is not
4325 involved in execution of breakpoint commands. So, we
4326 can now execute breakpoint commands. It should be
4327 noted that making execute_command do bpstat actions is
4328 not an option -- in this case we'll have recursive
4329 invocation of bpstat for each breakpoint with a
4330 command, and can easily blow up GDB stack. Instead, we
4331 return true, which will trigger the caller to recall us
4332 with the new stop_bpstat. */
4333 again = 1;
4334 break;
4335 }
4336 }
4337 do_cleanups (old_chain);
4338 return again;
4339 }
4340
4341 void
4342 bpstat_do_actions (void)
4343 {
4344 struct cleanup *cleanup_if_error = make_bpstat_clear_actions_cleanup ();
4345
4346 /* Do any commands attached to breakpoint we are stopped at. */
4347 while (!ptid_equal (inferior_ptid, null_ptid)
4348 && target_has_execution
4349 && !is_exited (inferior_ptid)
4350 && !is_executing (inferior_ptid))
4351 /* Since in sync mode, bpstat_do_actions may resume the inferior,
4352 and only return when it is stopped at the next breakpoint, we
4353 keep doing breakpoint actions until it returns false to
4354 indicate the inferior was not resumed. */
4355 if (!bpstat_do_actions_1 (&inferior_thread ()->control.stop_bpstat))
4356 break;
4357
4358 discard_cleanups (cleanup_if_error);
4359 }
4360
4361 /* Print out the (old or new) value associated with a watchpoint. */
4362
4363 static void
4364 watchpoint_value_print (struct value *val, struct ui_file *stream)
4365 {
4366 if (val == NULL)
4367 fprintf_unfiltered (stream, _("<unreadable>"));
4368 else
4369 {
4370 struct value_print_options opts;
4371 get_user_print_options (&opts);
4372 value_print (val, stream, &opts);
4373 }
4374 }
4375
4376 /* Generic routine for printing messages indicating why we
4377 stopped. The behavior of this function depends on the value
4378 'print_it' in the bpstat structure. Under some circumstances we
4379 may decide not to print anything here and delegate the task to
4380 normal_stop(). */
4381
4382 static enum print_stop_action
4383 print_bp_stop_message (bpstat bs)
4384 {
4385 switch (bs->print_it)
4386 {
4387 case print_it_noop:
4388 /* Nothing should be printed for this bpstat entry. */
4389 return PRINT_UNKNOWN;
4390 break;
4391
4392 case print_it_done:
4393 /* We still want to print the frame, but we already printed the
4394 relevant messages. */
4395 return PRINT_SRC_AND_LOC;
4396 break;
4397
4398 case print_it_normal:
4399 {
4400 struct breakpoint *b = bs->breakpoint_at;
4401
4402 /* bs->breakpoint_at can be NULL if it was a momentary breakpoint
4403 which has since been deleted. */
4404 if (b == NULL)
4405 return PRINT_UNKNOWN;
4406
4407 /* Normal case. Call the breakpoint's print_it method. */
4408 return b->ops->print_it (bs);
4409 }
4410 break;
4411
4412 default:
4413 internal_error (__FILE__, __LINE__,
4414 _("print_bp_stop_message: unrecognized enum value"));
4415 break;
4416 }
4417 }
4418
4419 /* A helper function that prints a shared library stopped event. */
4420
4421 static void
4422 print_solib_event (int is_catchpoint)
4423 {
4424 int any_deleted
4425 = !VEC_empty (char_ptr, current_program_space->deleted_solibs);
4426 int any_added
4427 = !VEC_empty (so_list_ptr, current_program_space->added_solibs);
4428
4429 if (!is_catchpoint)
4430 {
4431 if (any_added || any_deleted)
4432 ui_out_text (current_uiout,
4433 _("Stopped due to shared library event:\n"));
4434 else
4435 ui_out_text (current_uiout,
4436 _("Stopped due to shared library event (no "
4437 "libraries added or removed)\n"));
4438 }
4439
4440 if (ui_out_is_mi_like_p (current_uiout))
4441 ui_out_field_string (current_uiout, "reason",
4442 async_reason_lookup (EXEC_ASYNC_SOLIB_EVENT));
4443
4444 if (any_deleted)
4445 {
4446 struct cleanup *cleanup;
4447 char *name;
4448 int ix;
4449
4450 ui_out_text (current_uiout, _(" Inferior unloaded "));
4451 cleanup = make_cleanup_ui_out_list_begin_end (current_uiout,
4452 "removed");
4453 for (ix = 0;
4454 VEC_iterate (char_ptr, current_program_space->deleted_solibs,
4455 ix, name);
4456 ++ix)
4457 {
4458 if (ix > 0)
4459 ui_out_text (current_uiout, " ");
4460 ui_out_field_string (current_uiout, "library", name);
4461 ui_out_text (current_uiout, "\n");
4462 }
4463
4464 do_cleanups (cleanup);
4465 }
4466
4467 if (any_added)
4468 {
4469 struct so_list *iter;
4470 int ix;
4471 struct cleanup *cleanup;
4472
4473 ui_out_text (current_uiout, _(" Inferior loaded "));
4474 cleanup = make_cleanup_ui_out_list_begin_end (current_uiout,
4475 "added");
4476 for (ix = 0;
4477 VEC_iterate (so_list_ptr, current_program_space->added_solibs,
4478 ix, iter);
4479 ++ix)
4480 {
4481 if (ix > 0)
4482 ui_out_text (current_uiout, " ");
4483 ui_out_field_string (current_uiout, "library", iter->so_name);
4484 ui_out_text (current_uiout, "\n");
4485 }
4486
4487 do_cleanups (cleanup);
4488 }
4489 }
4490
4491 /* Print a message indicating what happened. This is called from
4492 normal_stop(). The input to this routine is the head of the bpstat
4493 list - a list of the eventpoints that caused this stop. KIND is
4494 the target_waitkind for the stopping event. This
4495 routine calls the generic print routine for printing a message
4496 about reasons for stopping. This will print (for example) the
4497 "Breakpoint n," part of the output. The return value of this
4498 routine is one of:
4499
4500 PRINT_UNKNOWN: Means we printed nothing.
4501 PRINT_SRC_AND_LOC: Means we printed something, and expect subsequent
4502 code to print the location. An example is
4503 "Breakpoint 1, " which should be followed by
4504 the location.
4505 PRINT_SRC_ONLY: Means we printed something, but there is no need
4506 to also print the location part of the message.
4507 An example is the catch/throw messages, which
4508 don't require a location appended to the end.
4509 PRINT_NOTHING: We have done some printing and we don't need any
4510 further info to be printed. */
4511
4512 enum print_stop_action
4513 bpstat_print (bpstat bs, int kind)
4514 {
4515 int val;
4516
4517 /* Maybe another breakpoint in the chain caused us to stop.
4518 (Currently all watchpoints go on the bpstat whether hit or not.
4519 That probably could (should) be changed, provided care is taken
4520 with respect to bpstat_explains_signal). */
4521 for (; bs; bs = bs->next)
4522 {
4523 val = print_bp_stop_message (bs);
4524 if (val == PRINT_SRC_ONLY
4525 || val == PRINT_SRC_AND_LOC
4526 || val == PRINT_NOTHING)
4527 return val;
4528 }
4529
4530 /* If we had hit a shared library event breakpoint,
4531 print_bp_stop_message would print out this message. If we hit an
4532 OS-level shared library event, do the same thing. */
4533 if (kind == TARGET_WAITKIND_LOADED)
4534 {
4535 print_solib_event (0);
4536 return PRINT_NOTHING;
4537 }
4538
4539 /* We reached the end of the chain, or we got a null BS to start
4540 with and nothing was printed. */
4541 return PRINT_UNKNOWN;
4542 }
4543
4544 /* Evaluate the expression EXP and return 1 if value is zero. This is
4545 used inside a catch_errors to evaluate the breakpoint condition.
4546 The argument is a "struct expression *" that has been cast to a
4547 "char *" to make it pass through catch_errors. */
4548
4549 static int
4550 breakpoint_cond_eval (void *exp)
4551 {
4552 struct value *mark = value_mark ();
4553 int i = !value_true (evaluate_expression ((struct expression *) exp));
4554
4555 value_free_to_mark (mark);
4556 return i;
4557 }
4558
4559 /* Allocate a new bpstat. Link it to the FIFO list by BS_LINK_POINTER. */
4560
4561 static bpstat
4562 bpstat_alloc (struct bp_location *bl, bpstat **bs_link_pointer)
4563 {
4564 bpstat bs;
4565
4566 bs = (bpstat) xmalloc (sizeof (*bs));
4567 bs->next = NULL;
4568 **bs_link_pointer = bs;
4569 *bs_link_pointer = &bs->next;
4570 bs->breakpoint_at = bl->owner;
4571 bs->bp_location_at = bl;
4572 incref_bp_location (bl);
4573 /* If the condition is false, etc., don't do the commands. */
4574 bs->commands = NULL;
4575 bs->old_val = NULL;
4576 bs->print_it = print_it_normal;
4577 return bs;
4578 }
4579 \f
4580 /* The target has stopped with waitstatus WS. Check if any hardware
4581 watchpoints have triggered, according to the target. */
4582
4583 int
4584 watchpoints_triggered (struct target_waitstatus *ws)
4585 {
4586 int stopped_by_watchpoint = target_stopped_by_watchpoint ();
4587 CORE_ADDR addr;
4588 struct breakpoint *b;
4589
4590 if (!stopped_by_watchpoint)
4591 {
4592 /* We were not stopped by a watchpoint. Mark all watchpoints
4593 as not triggered. */
4594 ALL_BREAKPOINTS (b)
4595 if (is_hardware_watchpoint (b))
4596 {
4597 struct watchpoint *w = (struct watchpoint *) b;
4598
4599 w->watchpoint_triggered = watch_triggered_no;
4600 }
4601
4602 return 0;
4603 }
4604
4605 if (!target_stopped_data_address (&current_target, &addr))
4606 {
4607 /* We were stopped by a watchpoint, but we don't know where.
4608 Mark all watchpoints as unknown. */
4609 ALL_BREAKPOINTS (b)
4610 if (is_hardware_watchpoint (b))
4611 {
4612 struct watchpoint *w = (struct watchpoint *) b;
4613
4614 w->watchpoint_triggered = watch_triggered_unknown;
4615 }
4616
4617 return stopped_by_watchpoint;
4618 }
4619
4620 /* The target could report the data address. Mark watchpoints
4621 affected by this data address as triggered, and all others as not
4622 triggered. */
4623
4624 ALL_BREAKPOINTS (b)
4625 if (is_hardware_watchpoint (b))
4626 {
4627 struct watchpoint *w = (struct watchpoint *) b;
4628 struct bp_location *loc;
4629
4630 w->watchpoint_triggered = watch_triggered_no;
4631 for (loc = b->loc; loc; loc = loc->next)
4632 {
4633 if (is_masked_watchpoint (b))
4634 {
4635 CORE_ADDR newaddr = addr & w->hw_wp_mask;
4636 CORE_ADDR start = loc->address & w->hw_wp_mask;
4637
4638 if (newaddr == start)
4639 {
4640 w->watchpoint_triggered = watch_triggered_yes;
4641 break;
4642 }
4643 }
4644 /* Exact match not required. Within range is sufficient. */
4645 else if (target_watchpoint_addr_within_range (&current_target,
4646 addr, loc->address,
4647 loc->length))
4648 {
4649 w->watchpoint_triggered = watch_triggered_yes;
4650 break;
4651 }
4652 }
4653 }
4654
4655 return 1;
4656 }
4657
4658 /* Possible return values for watchpoint_check (this can't be an enum
4659 because of check_errors). */
4660 /* The watchpoint has been deleted. */
4661 #define WP_DELETED 1
4662 /* The value has changed. */
4663 #define WP_VALUE_CHANGED 2
4664 /* The value has not changed. */
4665 #define WP_VALUE_NOT_CHANGED 3
4666 /* Ignore this watchpoint, no matter if the value changed or not. */
4667 #define WP_IGNORE 4
4668
4669 #define BP_TEMPFLAG 1
4670 #define BP_HARDWAREFLAG 2
4671
4672 /* Evaluate watchpoint condition expression and check if its value
4673 changed.
4674
4675 P should be a pointer to struct bpstat, but is defined as a void *
4676 in order for this function to be usable with catch_errors. */
4677
4678 static int
4679 watchpoint_check (void *p)
4680 {
4681 bpstat bs = (bpstat) p;
4682 struct watchpoint *b;
4683 struct frame_info *fr;
4684 int within_current_scope;
4685
4686 /* BS is built from an existing struct breakpoint. */
4687 gdb_assert (bs->breakpoint_at != NULL);
4688 b = (struct watchpoint *) bs->breakpoint_at;
4689
4690 /* If this is a local watchpoint, we only want to check if the
4691 watchpoint frame is in scope if the current thread is the thread
4692 that was used to create the watchpoint. */
4693 if (!watchpoint_in_thread_scope (b))
4694 return WP_IGNORE;
4695
4696 if (b->exp_valid_block == NULL)
4697 within_current_scope = 1;
4698 else
4699 {
4700 struct frame_info *frame = get_current_frame ();
4701 struct gdbarch *frame_arch = get_frame_arch (frame);
4702 CORE_ADDR frame_pc = get_frame_pc (frame);
4703
4704 /* in_function_epilogue_p() returns a non-zero value if we're
4705 still in the function but the stack frame has already been
4706 invalidated. Since we can't rely on the values of local
4707 variables after the stack has been destroyed, we are treating
4708 the watchpoint in that state as `not changed' without further
4709 checking. Don't mark watchpoints as changed if the current
4710 frame is in an epilogue - even if they are in some other
4711 frame, our view of the stack is likely to be wrong and
4712 frame_find_by_id could error out. */
4713 if (gdbarch_in_function_epilogue_p (frame_arch, frame_pc))
4714 return WP_IGNORE;
4715
4716 fr = frame_find_by_id (b->watchpoint_frame);
4717 within_current_scope = (fr != NULL);
4718
4719 /* If we've gotten confused in the unwinder, we might have
4720 returned a frame that can't describe this variable. */
4721 if (within_current_scope)
4722 {
4723 struct symbol *function;
4724
4725 function = get_frame_function (fr);
4726 if (function == NULL
4727 || !contained_in (b->exp_valid_block,
4728 SYMBOL_BLOCK_VALUE (function)))
4729 within_current_scope = 0;
4730 }
4731
4732 if (within_current_scope)
4733 /* If we end up stopping, the current frame will get selected
4734 in normal_stop. So this call to select_frame won't affect
4735 the user. */
4736 select_frame (fr);
4737 }
4738
4739 if (within_current_scope)
4740 {
4741 /* We use value_{,free_to_}mark because it could be a *long*
4742 time before we return to the command level and call
4743 free_all_values. We can't call free_all_values because we
4744 might be in the middle of evaluating a function call. */
4745
4746 int pc = 0;
4747 struct value *mark;
4748 struct value *new_val;
4749
4750 if (is_masked_watchpoint (&b->base))
4751 /* Since we don't know the exact trigger address (from
4752 stopped_data_address), just tell the user we've triggered
4753 a mask watchpoint. */
4754 return WP_VALUE_CHANGED;
4755
4756 mark = value_mark ();
4757 fetch_subexp_value (b->exp, &pc, &new_val, NULL, NULL);
4758
4759 /* We use value_equal_contents instead of value_equal because
4760 the latter coerces an array to a pointer, thus comparing just
4761 the address of the array instead of its contents. This is
4762 not what we want. */
4763 if ((b->val != NULL) != (new_val != NULL)
4764 || (b->val != NULL && !value_equal_contents (b->val, new_val)))
4765 {
4766 if (new_val != NULL)
4767 {
4768 release_value (new_val);
4769 value_free_to_mark (mark);
4770 }
4771 bs->old_val = b->val;
4772 b->val = new_val;
4773 b->val_valid = 1;
4774 return WP_VALUE_CHANGED;
4775 }
4776 else
4777 {
4778 /* Nothing changed. */
4779 value_free_to_mark (mark);
4780 return WP_VALUE_NOT_CHANGED;
4781 }
4782 }
4783 else
4784 {
4785 struct ui_out *uiout = current_uiout;
4786
4787 /* This seems like the only logical thing to do because
4788 if we temporarily ignored the watchpoint, then when
4789 we reenter the block in which it is valid it contains
4790 garbage (in the case of a function, it may have two
4791 garbage values, one before and one after the prologue).
4792 So we can't even detect the first assignment to it and
4793 watch after that (since the garbage may or may not equal
4794 the first value assigned). */
4795 /* We print all the stop information in
4796 breakpoint_ops->print_it, but in this case, by the time we
4797 call breakpoint_ops->print_it this bp will be deleted
4798 already. So we have no choice but print the information
4799 here. */
4800 if (ui_out_is_mi_like_p (uiout))
4801 ui_out_field_string
4802 (uiout, "reason", async_reason_lookup (EXEC_ASYNC_WATCHPOINT_SCOPE));
4803 ui_out_text (uiout, "\nWatchpoint ");
4804 ui_out_field_int (uiout, "wpnum", b->base.number);
4805 ui_out_text (uiout,
4806 " deleted because the program has left the block in\n\
4807 which its expression is valid.\n");
4808
4809 /* Make sure the watchpoint's commands aren't executed. */
4810 decref_counted_command_line (&b->base.commands);
4811 watchpoint_del_at_next_stop (b);
4812
4813 return WP_DELETED;
4814 }
4815 }
4816
4817 /* Return true if it looks like target has stopped due to hitting
4818 breakpoint location BL. This function does not check if we should
4819 stop, only if BL explains the stop. */
4820
4821 static int
4822 bpstat_check_location (const struct bp_location *bl,
4823 struct address_space *aspace, CORE_ADDR bp_addr,
4824 const struct target_waitstatus *ws)
4825 {
4826 struct breakpoint *b = bl->owner;
4827
4828 /* BL is from an existing breakpoint. */
4829 gdb_assert (b != NULL);
4830
4831 return b->ops->breakpoint_hit (bl, aspace, bp_addr, ws);
4832 }
4833
4834 /* Determine if the watched values have actually changed, and we
4835 should stop. If not, set BS->stop to 0. */
4836
4837 static void
4838 bpstat_check_watchpoint (bpstat bs)
4839 {
4840 const struct bp_location *bl;
4841 struct watchpoint *b;
4842
4843 /* BS is built for existing struct breakpoint. */
4844 bl = bs->bp_location_at;
4845 gdb_assert (bl != NULL);
4846 b = (struct watchpoint *) bs->breakpoint_at;
4847 gdb_assert (b != NULL);
4848
4849 {
4850 int must_check_value = 0;
4851
4852 if (b->base.type == bp_watchpoint)
4853 /* For a software watchpoint, we must always check the
4854 watched value. */
4855 must_check_value = 1;
4856 else if (b->watchpoint_triggered == watch_triggered_yes)
4857 /* We have a hardware watchpoint (read, write, or access)
4858 and the target earlier reported an address watched by
4859 this watchpoint. */
4860 must_check_value = 1;
4861 else if (b->watchpoint_triggered == watch_triggered_unknown
4862 && b->base.type == bp_hardware_watchpoint)
4863 /* We were stopped by a hardware watchpoint, but the target could
4864 not report the data address. We must check the watchpoint's
4865 value. Access and read watchpoints are out of luck; without
4866 a data address, we can't figure it out. */
4867 must_check_value = 1;
4868
4869 if (must_check_value)
4870 {
4871 char *message
4872 = xstrprintf ("Error evaluating expression for watchpoint %d\n",
4873 b->base.number);
4874 struct cleanup *cleanups = make_cleanup (xfree, message);
4875 int e = catch_errors (watchpoint_check, bs, message,
4876 RETURN_MASK_ALL);
4877 do_cleanups (cleanups);
4878 switch (e)
4879 {
4880 case WP_DELETED:
4881 /* We've already printed what needs to be printed. */
4882 bs->print_it = print_it_done;
4883 /* Stop. */
4884 break;
4885 case WP_IGNORE:
4886 bs->print_it = print_it_noop;
4887 bs->stop = 0;
4888 break;
4889 case WP_VALUE_CHANGED:
4890 if (b->base.type == bp_read_watchpoint)
4891 {
4892 /* There are two cases to consider here:
4893
4894 1. We're watching the triggered memory for reads.
4895 In that case, trust the target, and always report
4896 the watchpoint hit to the user. Even though
4897 reads don't cause value changes, the value may
4898 have changed since the last time it was read, and
4899 since we're not trapping writes, we will not see
4900 those, and as such we should ignore our notion of
4901 old value.
4902
4903 2. We're watching the triggered memory for both
4904 reads and writes. There are two ways this may
4905 happen:
4906
4907 2.1. This is a target that can't break on data
4908 reads only, but can break on accesses (reads or
4909 writes), such as e.g., x86. We detect this case
4910 at the time we try to insert read watchpoints.
4911
4912 2.2. Otherwise, the target supports read
4913 watchpoints, but, the user set an access or write
4914 watchpoint watching the same memory as this read
4915 watchpoint.
4916
4917 If we're watching memory writes as well as reads,
4918 ignore watchpoint hits when we find that the
4919 value hasn't changed, as reads don't cause
4920 changes. This still gives false positives when
4921 the program writes the same value to memory as
4922 what there was already in memory (we will confuse
4923 it for a read), but it's much better than
4924 nothing. */
4925
4926 int other_write_watchpoint = 0;
4927
4928 if (bl->watchpoint_type == hw_read)
4929 {
4930 struct breakpoint *other_b;
4931
4932 ALL_BREAKPOINTS (other_b)
4933 if (other_b->type == bp_hardware_watchpoint
4934 || other_b->type == bp_access_watchpoint)
4935 {
4936 struct watchpoint *other_w =
4937 (struct watchpoint *) other_b;
4938
4939 if (other_w->watchpoint_triggered
4940 == watch_triggered_yes)
4941 {
4942 other_write_watchpoint = 1;
4943 break;
4944 }
4945 }
4946 }
4947
4948 if (other_write_watchpoint
4949 || bl->watchpoint_type == hw_access)
4950 {
4951 /* We're watching the same memory for writes,
4952 and the value changed since the last time we
4953 updated it, so this trap must be for a write.
4954 Ignore it. */
4955 bs->print_it = print_it_noop;
4956 bs->stop = 0;
4957 }
4958 }
4959 break;
4960 case WP_VALUE_NOT_CHANGED:
4961 if (b->base.type == bp_hardware_watchpoint
4962 || b->base.type == bp_watchpoint)
4963 {
4964 /* Don't stop: write watchpoints shouldn't fire if
4965 the value hasn't changed. */
4966 bs->print_it = print_it_noop;
4967 bs->stop = 0;
4968 }
4969 /* Stop. */
4970 break;
4971 default:
4972 /* Can't happen. */
4973 case 0:
4974 /* Error from catch_errors. */
4975 printf_filtered (_("Watchpoint %d deleted.\n"), b->base.number);
4976 watchpoint_del_at_next_stop (b);
4977 /* We've already printed what needs to be printed. */
4978 bs->print_it = print_it_done;
4979 break;
4980 }
4981 }
4982 else /* must_check_value == 0 */
4983 {
4984 /* This is a case where some watchpoint(s) triggered, but
4985 not at the address of this watchpoint, or else no
4986 watchpoint triggered after all. So don't print
4987 anything for this watchpoint. */
4988 bs->print_it = print_it_noop;
4989 bs->stop = 0;
4990 }
4991 }
4992 }
4993
4994
4995 /* Check conditions (condition proper, frame, thread and ignore count)
4996 of breakpoint referred to by BS. If we should not stop for this
4997 breakpoint, set BS->stop to 0. */
4998
4999 static void
5000 bpstat_check_breakpoint_conditions (bpstat bs, ptid_t ptid)
5001 {
5002 int thread_id = pid_to_thread_id (ptid);
5003 const struct bp_location *bl;
5004 struct breakpoint *b;
5005
5006 /* BS is built for existing struct breakpoint. */
5007 bl = bs->bp_location_at;
5008 gdb_assert (bl != NULL);
5009 b = bs->breakpoint_at;
5010 gdb_assert (b != NULL);
5011
5012 /* Even if the target evaluated the condition on its end and notified GDB, we
5013 need to do so again since GDB does not know if we stopped due to a
5014 breakpoint or a single step breakpoint. */
5015
5016 if (frame_id_p (b->frame_id)
5017 && !frame_id_eq (b->frame_id, get_stack_frame_id (get_current_frame ())))
5018 bs->stop = 0;
5019 else if (bs->stop)
5020 {
5021 int value_is_zero = 0;
5022 struct expression *cond;
5023
5024 /* Evaluate Python breakpoints that have a "stop"
5025 method implemented. */
5026 if (b->py_bp_object)
5027 bs->stop = gdbpy_should_stop (b->py_bp_object);
5028
5029 if (is_watchpoint (b))
5030 {
5031 struct watchpoint *w = (struct watchpoint *) b;
5032
5033 cond = w->cond_exp;
5034 }
5035 else
5036 cond = bl->cond;
5037
5038 if (cond && b->disposition != disp_del_at_next_stop)
5039 {
5040 int within_current_scope = 1;
5041 struct watchpoint * w;
5042
5043 /* We use value_mark and value_free_to_mark because it could
5044 be a long time before we return to the command level and
5045 call free_all_values. We can't call free_all_values
5046 because we might be in the middle of evaluating a
5047 function call. */
5048 struct value *mark = value_mark ();
5049
5050 if (is_watchpoint (b))
5051 w = (struct watchpoint *) b;
5052 else
5053 w = NULL;
5054
5055 /* Need to select the frame, with all that implies so that
5056 the conditions will have the right context. Because we
5057 use the frame, we will not see an inlined function's
5058 variables when we arrive at a breakpoint at the start
5059 of the inlined function; the current frame will be the
5060 call site. */
5061 if (w == NULL || w->cond_exp_valid_block == NULL)
5062 select_frame (get_current_frame ());
5063 else
5064 {
5065 struct frame_info *frame;
5066
5067 /* For local watchpoint expressions, which particular
5068 instance of a local is being watched matters, so we
5069 keep track of the frame to evaluate the expression
5070 in. To evaluate the condition however, it doesn't
5071 really matter which instantiation of the function
5072 where the condition makes sense triggers the
5073 watchpoint. This allows an expression like "watch
5074 global if q > 10" set in `func', catch writes to
5075 global on all threads that call `func', or catch
5076 writes on all recursive calls of `func' by a single
5077 thread. We simply always evaluate the condition in
5078 the innermost frame that's executing where it makes
5079 sense to evaluate the condition. It seems
5080 intuitive. */
5081 frame = block_innermost_frame (w->cond_exp_valid_block);
5082 if (frame != NULL)
5083 select_frame (frame);
5084 else
5085 within_current_scope = 0;
5086 }
5087 if (within_current_scope)
5088 value_is_zero
5089 = catch_errors (breakpoint_cond_eval, cond,
5090 "Error in testing breakpoint condition:\n",
5091 RETURN_MASK_ALL);
5092 else
5093 {
5094 warning (_("Watchpoint condition cannot be tested "
5095 "in the current scope"));
5096 /* If we failed to set the right context for this
5097 watchpoint, unconditionally report it. */
5098 value_is_zero = 0;
5099 }
5100 /* FIXME-someday, should give breakpoint #. */
5101 value_free_to_mark (mark);
5102 }
5103
5104 if (cond && value_is_zero)
5105 {
5106 bs->stop = 0;
5107 }
5108 else if (b->thread != -1 && b->thread != thread_id)
5109 {
5110 bs->stop = 0;
5111 }
5112 else if (b->ignore_count > 0)
5113 {
5114 b->ignore_count--;
5115 annotate_ignore_count_change ();
5116 bs->stop = 0;
5117 /* Increase the hit count even though we don't stop. */
5118 ++(b->hit_count);
5119 observer_notify_breakpoint_modified (b);
5120 }
5121 }
5122 }
5123
5124
5125 /* Get a bpstat associated with having just stopped at address
5126 BP_ADDR in thread PTID.
5127
5128 Determine whether we stopped at a breakpoint, etc, or whether we
5129 don't understand this stop. Result is a chain of bpstat's such
5130 that:
5131
5132 if we don't understand the stop, the result is a null pointer.
5133
5134 if we understand why we stopped, the result is not null.
5135
5136 Each element of the chain refers to a particular breakpoint or
5137 watchpoint at which we have stopped. (We may have stopped for
5138 several reasons concurrently.)
5139
5140 Each element of the chain has valid next, breakpoint_at,
5141 commands, FIXME??? fields. */
5142
5143 bpstat
5144 bpstat_stop_status (struct address_space *aspace,
5145 CORE_ADDR bp_addr, ptid_t ptid,
5146 const struct target_waitstatus *ws)
5147 {
5148 struct breakpoint *b = NULL;
5149 struct bp_location *bl;
5150 struct bp_location *loc;
5151 /* First item of allocated bpstat's. */
5152 bpstat bs_head = NULL, *bs_link = &bs_head;
5153 /* Pointer to the last thing in the chain currently. */
5154 bpstat bs;
5155 int ix;
5156 int need_remove_insert;
5157 int removed_any;
5158
5159 /* First, build the bpstat chain with locations that explain a
5160 target stop, while being careful to not set the target running,
5161 as that may invalidate locations (in particular watchpoint
5162 locations are recreated). Resuming will happen here with
5163 breakpoint conditions or watchpoint expressions that include
5164 inferior function calls. */
5165
5166 ALL_BREAKPOINTS (b)
5167 {
5168 if (!breakpoint_enabled (b) && b->enable_state != bp_permanent)
5169 continue;
5170
5171 for (bl = b->loc; bl != NULL; bl = bl->next)
5172 {
5173 /* For hardware watchpoints, we look only at the first
5174 location. The watchpoint_check function will work on the
5175 entire expression, not the individual locations. For
5176 read watchpoints, the watchpoints_triggered function has
5177 checked all locations already. */
5178 if (b->type == bp_hardware_watchpoint && bl != b->loc)
5179 break;
5180
5181 if (!bl->enabled || bl->shlib_disabled)
5182 continue;
5183
5184 if (!bpstat_check_location (bl, aspace, bp_addr, ws))
5185 continue;
5186
5187 /* Come here if it's a watchpoint, or if the break address
5188 matches. */
5189
5190 bs = bpstat_alloc (bl, &bs_link); /* Alloc a bpstat to
5191 explain stop. */
5192
5193 /* Assume we stop. Should we find a watchpoint that is not
5194 actually triggered, or if the condition of the breakpoint
5195 evaluates as false, we'll reset 'stop' to 0. */
5196 bs->stop = 1;
5197 bs->print = 1;
5198
5199 /* If this is a scope breakpoint, mark the associated
5200 watchpoint as triggered so that we will handle the
5201 out-of-scope event. We'll get to the watchpoint next
5202 iteration. */
5203 if (b->type == bp_watchpoint_scope && b->related_breakpoint != b)
5204 {
5205 struct watchpoint *w = (struct watchpoint *) b->related_breakpoint;
5206
5207 w->watchpoint_triggered = watch_triggered_yes;
5208 }
5209 }
5210 }
5211
5212 for (ix = 0; VEC_iterate (bp_location_p, moribund_locations, ix, loc); ++ix)
5213 {
5214 if (breakpoint_location_address_match (loc, aspace, bp_addr))
5215 {
5216 bs = bpstat_alloc (loc, &bs_link);
5217 /* For hits of moribund locations, we should just proceed. */
5218 bs->stop = 0;
5219 bs->print = 0;
5220 bs->print_it = print_it_noop;
5221 }
5222 }
5223
5224 /* A bit of special processing for shlib breakpoints. We need to
5225 process solib loading here, so that the lists of loaded and
5226 unloaded libraries are correct before we handle "catch load" and
5227 "catch unload". */
5228 for (bs = bs_head; bs != NULL; bs = bs->next)
5229 {
5230 if (bs->breakpoint_at && bs->breakpoint_at->type == bp_shlib_event)
5231 {
5232 handle_solib_event ();
5233 break;
5234 }
5235 }
5236
5237 /* Now go through the locations that caused the target to stop, and
5238 check whether we're interested in reporting this stop to higher
5239 layers, or whether we should resume the target transparently. */
5240
5241 removed_any = 0;
5242
5243 for (bs = bs_head; bs != NULL; bs = bs->next)
5244 {
5245 if (!bs->stop)
5246 continue;
5247
5248 b = bs->breakpoint_at;
5249 b->ops->check_status (bs);
5250 if (bs->stop)
5251 {
5252 bpstat_check_breakpoint_conditions (bs, ptid);
5253
5254 if (bs->stop)
5255 {
5256 ++(b->hit_count);
5257 observer_notify_breakpoint_modified (b);
5258
5259 /* We will stop here. */
5260 if (b->disposition == disp_disable)
5261 {
5262 --(b->enable_count);
5263 if (b->enable_count <= 0
5264 && b->enable_state != bp_permanent)
5265 b->enable_state = bp_disabled;
5266 removed_any = 1;
5267 }
5268 if (b->silent)
5269 bs->print = 0;
5270 bs->commands = b->commands;
5271 incref_counted_command_line (bs->commands);
5272 if (command_line_is_silent (bs->commands
5273 ? bs->commands->commands : NULL))
5274 bs->print = 0;
5275 }
5276
5277 }
5278
5279 /* Print nothing for this entry if we don't stop or don't
5280 print. */
5281 if (!bs->stop || !bs->print)
5282 bs->print_it = print_it_noop;
5283 }
5284
5285 /* If we aren't stopping, the value of some hardware watchpoint may
5286 not have changed, but the intermediate memory locations we are
5287 watching may have. Don't bother if we're stopping; this will get
5288 done later. */
5289 need_remove_insert = 0;
5290 if (! bpstat_causes_stop (bs_head))
5291 for (bs = bs_head; bs != NULL; bs = bs->next)
5292 if (!bs->stop
5293 && bs->breakpoint_at
5294 && is_hardware_watchpoint (bs->breakpoint_at))
5295 {
5296 struct watchpoint *w = (struct watchpoint *) bs->breakpoint_at;
5297
5298 update_watchpoint (w, 0 /* don't reparse. */);
5299 need_remove_insert = 1;
5300 }
5301
5302 if (need_remove_insert)
5303 update_global_location_list (1);
5304 else if (removed_any)
5305 update_global_location_list (0);
5306
5307 return bs_head;
5308 }
5309
5310 static void
5311 handle_jit_event (void)
5312 {
5313 struct frame_info *frame;
5314 struct gdbarch *gdbarch;
5315
5316 /* Switch terminal for any messages produced by
5317 breakpoint_re_set. */
5318 target_terminal_ours_for_output ();
5319
5320 frame = get_current_frame ();
5321 gdbarch = get_frame_arch (frame);
5322
5323 jit_event_handler (gdbarch);
5324
5325 target_terminal_inferior ();
5326 }
5327
5328 /* Handle an solib event by calling solib_add. */
5329
5330 void
5331 handle_solib_event (void)
5332 {
5333 clear_program_space_solib_cache (current_inferior ()->pspace);
5334
5335 /* Check for any newly added shared libraries if we're supposed to
5336 be adding them automatically. Switch terminal for any messages
5337 produced by breakpoint_re_set. */
5338 target_terminal_ours_for_output ();
5339 #ifdef SOLIB_ADD
5340 SOLIB_ADD (NULL, 0, &current_target, auto_solib_add);
5341 #else
5342 solib_add (NULL, 0, &current_target, auto_solib_add);
5343 #endif
5344 target_terminal_inferior ();
5345 }
5346
5347 /* Prepare WHAT final decision for infrun. */
5348
5349 /* Decide what infrun needs to do with this bpstat. */
5350
5351 struct bpstat_what
5352 bpstat_what (bpstat bs_head)
5353 {
5354 struct bpstat_what retval;
5355 int jit_event = 0;
5356 bpstat bs;
5357
5358 retval.main_action = BPSTAT_WHAT_KEEP_CHECKING;
5359 retval.call_dummy = STOP_NONE;
5360 retval.is_longjmp = 0;
5361
5362 for (bs = bs_head; bs != NULL; bs = bs->next)
5363 {
5364 /* Extract this BS's action. After processing each BS, we check
5365 if its action overrides all we've seem so far. */
5366 enum bpstat_what_main_action this_action = BPSTAT_WHAT_KEEP_CHECKING;
5367 enum bptype bptype;
5368
5369 if (bs->breakpoint_at == NULL)
5370 {
5371 /* I suspect this can happen if it was a momentary
5372 breakpoint which has since been deleted. */
5373 bptype = bp_none;
5374 }
5375 else
5376 bptype = bs->breakpoint_at->type;
5377
5378 switch (bptype)
5379 {
5380 case bp_none:
5381 break;
5382 case bp_breakpoint:
5383 case bp_hardware_breakpoint:
5384 case bp_until:
5385 case bp_finish:
5386 case bp_shlib_event:
5387 if (bs->stop)
5388 {
5389 if (bs->print)
5390 this_action = BPSTAT_WHAT_STOP_NOISY;
5391 else
5392 this_action = BPSTAT_WHAT_STOP_SILENT;
5393 }
5394 else
5395 this_action = BPSTAT_WHAT_SINGLE;
5396 break;
5397 case bp_watchpoint:
5398 case bp_hardware_watchpoint:
5399 case bp_read_watchpoint:
5400 case bp_access_watchpoint:
5401 if (bs->stop)
5402 {
5403 if (bs->print)
5404 this_action = BPSTAT_WHAT_STOP_NOISY;
5405 else
5406 this_action = BPSTAT_WHAT_STOP_SILENT;
5407 }
5408 else
5409 {
5410 /* There was a watchpoint, but we're not stopping.
5411 This requires no further action. */
5412 }
5413 break;
5414 case bp_longjmp:
5415 case bp_longjmp_call_dummy:
5416 case bp_exception:
5417 this_action = BPSTAT_WHAT_SET_LONGJMP_RESUME;
5418 retval.is_longjmp = bptype != bp_exception;
5419 break;
5420 case bp_longjmp_resume:
5421 case bp_exception_resume:
5422 this_action = BPSTAT_WHAT_CLEAR_LONGJMP_RESUME;
5423 retval.is_longjmp = bptype == bp_longjmp_resume;
5424 break;
5425 case bp_step_resume:
5426 if (bs->stop)
5427 this_action = BPSTAT_WHAT_STEP_RESUME;
5428 else
5429 {
5430 /* It is for the wrong frame. */
5431 this_action = BPSTAT_WHAT_SINGLE;
5432 }
5433 break;
5434 case bp_hp_step_resume:
5435 if (bs->stop)
5436 this_action = BPSTAT_WHAT_HP_STEP_RESUME;
5437 else
5438 {
5439 /* It is for the wrong frame. */
5440 this_action = BPSTAT_WHAT_SINGLE;
5441 }
5442 break;
5443 case bp_watchpoint_scope:
5444 case bp_thread_event:
5445 case bp_overlay_event:
5446 case bp_longjmp_master:
5447 case bp_std_terminate_master:
5448 case bp_exception_master:
5449 this_action = BPSTAT_WHAT_SINGLE;
5450 break;
5451 case bp_catchpoint:
5452 if (bs->stop)
5453 {
5454 if (bs->print)
5455 this_action = BPSTAT_WHAT_STOP_NOISY;
5456 else
5457 this_action = BPSTAT_WHAT_STOP_SILENT;
5458 }
5459 else
5460 {
5461 /* There was a catchpoint, but we're not stopping.
5462 This requires no further action. */
5463 }
5464 break;
5465 case bp_jit_event:
5466 jit_event = 1;
5467 this_action = BPSTAT_WHAT_SINGLE;
5468 break;
5469 case bp_call_dummy:
5470 /* Make sure the action is stop (silent or noisy),
5471 so infrun.c pops the dummy frame. */
5472 retval.call_dummy = STOP_STACK_DUMMY;
5473 this_action = BPSTAT_WHAT_STOP_SILENT;
5474 break;
5475 case bp_std_terminate:
5476 /* Make sure the action is stop (silent or noisy),
5477 so infrun.c pops the dummy frame. */
5478 retval.call_dummy = STOP_STD_TERMINATE;
5479 this_action = BPSTAT_WHAT_STOP_SILENT;
5480 break;
5481 case bp_tracepoint:
5482 case bp_fast_tracepoint:
5483 case bp_static_tracepoint:
5484 /* Tracepoint hits should not be reported back to GDB, and
5485 if one got through somehow, it should have been filtered
5486 out already. */
5487 internal_error (__FILE__, __LINE__,
5488 _("bpstat_what: tracepoint encountered"));
5489 break;
5490 case bp_gnu_ifunc_resolver:
5491 /* Step over it (and insert bp_gnu_ifunc_resolver_return). */
5492 this_action = BPSTAT_WHAT_SINGLE;
5493 break;
5494 case bp_gnu_ifunc_resolver_return:
5495 /* The breakpoint will be removed, execution will restart from the
5496 PC of the former breakpoint. */
5497 this_action = BPSTAT_WHAT_KEEP_CHECKING;
5498 break;
5499
5500 case bp_dprintf:
5501 this_action = BPSTAT_WHAT_STOP_SILENT;
5502 break;
5503
5504 default:
5505 internal_error (__FILE__, __LINE__,
5506 _("bpstat_what: unhandled bptype %d"), (int) bptype);
5507 }
5508
5509 retval.main_action = max (retval.main_action, this_action);
5510 }
5511
5512 /* These operations may affect the bs->breakpoint_at state so they are
5513 delayed after MAIN_ACTION is decided above. */
5514
5515 if (jit_event)
5516 {
5517 if (debug_infrun)
5518 fprintf_unfiltered (gdb_stdlog, "bpstat_what: bp_jit_event\n");
5519
5520 handle_jit_event ();
5521 }
5522
5523 for (bs = bs_head; bs != NULL; bs = bs->next)
5524 {
5525 struct breakpoint *b = bs->breakpoint_at;
5526
5527 if (b == NULL)
5528 continue;
5529 switch (b->type)
5530 {
5531 case bp_gnu_ifunc_resolver:
5532 gnu_ifunc_resolver_stop (b);
5533 break;
5534 case bp_gnu_ifunc_resolver_return:
5535 gnu_ifunc_resolver_return_stop (b);
5536 break;
5537 }
5538 }
5539
5540 return retval;
5541 }
5542
5543 /* Nonzero if we should step constantly (e.g. watchpoints on machines
5544 without hardware support). This isn't related to a specific bpstat,
5545 just to things like whether watchpoints are set. */
5546
5547 int
5548 bpstat_should_step (void)
5549 {
5550 struct breakpoint *b;
5551
5552 ALL_BREAKPOINTS (b)
5553 if (breakpoint_enabled (b) && b->type == bp_watchpoint && b->loc != NULL)
5554 return 1;
5555 return 0;
5556 }
5557
5558 int
5559 bpstat_causes_stop (bpstat bs)
5560 {
5561 for (; bs != NULL; bs = bs->next)
5562 if (bs->stop)
5563 return 1;
5564
5565 return 0;
5566 }
5567
5568 \f
5569
5570 /* Compute a string of spaces suitable to indent the next line
5571 so it starts at the position corresponding to the table column
5572 named COL_NAME in the currently active table of UIOUT. */
5573
5574 static char *
5575 wrap_indent_at_field (struct ui_out *uiout, const char *col_name)
5576 {
5577 static char wrap_indent[80];
5578 int i, total_width, width, align;
5579 char *text;
5580
5581 total_width = 0;
5582 for (i = 1; ui_out_query_field (uiout, i, &width, &align, &text); i++)
5583 {
5584 if (strcmp (text, col_name) == 0)
5585 {
5586 gdb_assert (total_width < sizeof wrap_indent);
5587 memset (wrap_indent, ' ', total_width);
5588 wrap_indent[total_width] = 0;
5589
5590 return wrap_indent;
5591 }
5592
5593 total_width += width + 1;
5594 }
5595
5596 return NULL;
5597 }
5598
5599 /* Determine if the locations of this breakpoint will have their conditions
5600 evaluated by the target, host or a mix of both. Returns the following:
5601
5602 "host": Host evals condition.
5603 "host or target": Host or Target evals condition.
5604 "target": Target evals condition.
5605 */
5606
5607 static const char *
5608 bp_condition_evaluator (struct breakpoint *b)
5609 {
5610 struct bp_location *bl;
5611 char host_evals = 0;
5612 char target_evals = 0;
5613
5614 if (!b)
5615 return NULL;
5616
5617 if (!is_breakpoint (b))
5618 return NULL;
5619
5620 if (gdb_evaluates_breakpoint_condition_p ()
5621 || !target_supports_evaluation_of_breakpoint_conditions ())
5622 return condition_evaluation_host;
5623
5624 for (bl = b->loc; bl; bl = bl->next)
5625 {
5626 if (bl->cond_bytecode)
5627 target_evals++;
5628 else
5629 host_evals++;
5630 }
5631
5632 if (host_evals && target_evals)
5633 return condition_evaluation_both;
5634 else if (target_evals)
5635 return condition_evaluation_target;
5636 else
5637 return condition_evaluation_host;
5638 }
5639
5640 /* Determine the breakpoint location's condition evaluator. This is
5641 similar to bp_condition_evaluator, but for locations. */
5642
5643 static const char *
5644 bp_location_condition_evaluator (struct bp_location *bl)
5645 {
5646 if (bl && !is_breakpoint (bl->owner))
5647 return NULL;
5648
5649 if (gdb_evaluates_breakpoint_condition_p ()
5650 || !target_supports_evaluation_of_breakpoint_conditions ())
5651 return condition_evaluation_host;
5652
5653 if (bl && bl->cond_bytecode)
5654 return condition_evaluation_target;
5655 else
5656 return condition_evaluation_host;
5657 }
5658
5659 /* Print the LOC location out of the list of B->LOC locations. */
5660
5661 static void
5662 print_breakpoint_location (struct breakpoint *b,
5663 struct bp_location *loc)
5664 {
5665 struct ui_out *uiout = current_uiout;
5666 struct cleanup *old_chain = save_current_program_space ();
5667
5668 if (loc != NULL && loc->shlib_disabled)
5669 loc = NULL;
5670
5671 if (loc != NULL)
5672 set_current_program_space (loc->pspace);
5673
5674 if (b->display_canonical)
5675 ui_out_field_string (uiout, "what", b->addr_string);
5676 else if (loc && loc->source_file)
5677 {
5678 struct symbol *sym
5679 = find_pc_sect_function (loc->address, loc->section);
5680 if (sym)
5681 {
5682 ui_out_text (uiout, "in ");
5683 ui_out_field_string (uiout, "func",
5684 SYMBOL_PRINT_NAME (sym));
5685 ui_out_text (uiout, " ");
5686 ui_out_wrap_hint (uiout, wrap_indent_at_field (uiout, "what"));
5687 ui_out_text (uiout, "at ");
5688 }
5689 ui_out_field_string (uiout, "file", loc->source_file);
5690 ui_out_text (uiout, ":");
5691
5692 if (ui_out_is_mi_like_p (uiout))
5693 {
5694 struct symtab_and_line sal = find_pc_line (loc->address, 0);
5695 const char *fullname = symtab_to_fullname (sal.symtab);
5696
5697 ui_out_field_string (uiout, "fullname", fullname);
5698 }
5699
5700 ui_out_field_int (uiout, "line", loc->line_number);
5701 }
5702 else if (loc)
5703 {
5704 struct ui_file *stb = mem_fileopen ();
5705 struct cleanup *stb_chain = make_cleanup_ui_file_delete (stb);
5706
5707 print_address_symbolic (loc->gdbarch, loc->address, stb,
5708 demangle, "");
5709 ui_out_field_stream (uiout, "at", stb);
5710
5711 do_cleanups (stb_chain);
5712 }
5713 else
5714 ui_out_field_string (uiout, "pending", b->addr_string);
5715
5716 if (loc && is_breakpoint (b)
5717 && breakpoint_condition_evaluation_mode () == condition_evaluation_target
5718 && bp_condition_evaluator (b) == condition_evaluation_both)
5719 {
5720 ui_out_text (uiout, " (");
5721 ui_out_field_string (uiout, "evaluated-by",
5722 bp_location_condition_evaluator (loc));
5723 ui_out_text (uiout, ")");
5724 }
5725
5726 do_cleanups (old_chain);
5727 }
5728
5729 static const char *
5730 bptype_string (enum bptype type)
5731 {
5732 struct ep_type_description
5733 {
5734 enum bptype type;
5735 char *description;
5736 };
5737 static struct ep_type_description bptypes[] =
5738 {
5739 {bp_none, "?deleted?"},
5740 {bp_breakpoint, "breakpoint"},
5741 {bp_hardware_breakpoint, "hw breakpoint"},
5742 {bp_until, "until"},
5743 {bp_finish, "finish"},
5744 {bp_watchpoint, "watchpoint"},
5745 {bp_hardware_watchpoint, "hw watchpoint"},
5746 {bp_read_watchpoint, "read watchpoint"},
5747 {bp_access_watchpoint, "acc watchpoint"},
5748 {bp_longjmp, "longjmp"},
5749 {bp_longjmp_resume, "longjmp resume"},
5750 {bp_longjmp_call_dummy, "longjmp for call dummy"},
5751 {bp_exception, "exception"},
5752 {bp_exception_resume, "exception resume"},
5753 {bp_step_resume, "step resume"},
5754 {bp_hp_step_resume, "high-priority step resume"},
5755 {bp_watchpoint_scope, "watchpoint scope"},
5756 {bp_call_dummy, "call dummy"},
5757 {bp_std_terminate, "std::terminate"},
5758 {bp_shlib_event, "shlib events"},
5759 {bp_thread_event, "thread events"},
5760 {bp_overlay_event, "overlay events"},
5761 {bp_longjmp_master, "longjmp master"},
5762 {bp_std_terminate_master, "std::terminate master"},
5763 {bp_exception_master, "exception master"},
5764 {bp_catchpoint, "catchpoint"},
5765 {bp_tracepoint, "tracepoint"},
5766 {bp_fast_tracepoint, "fast tracepoint"},
5767 {bp_static_tracepoint, "static tracepoint"},
5768 {bp_dprintf, "dprintf"},
5769 {bp_jit_event, "jit events"},
5770 {bp_gnu_ifunc_resolver, "STT_GNU_IFUNC resolver"},
5771 {bp_gnu_ifunc_resolver_return, "STT_GNU_IFUNC resolver return"},
5772 };
5773
5774 if (((int) type >= (sizeof (bptypes) / sizeof (bptypes[0])))
5775 || ((int) type != bptypes[(int) type].type))
5776 internal_error (__FILE__, __LINE__,
5777 _("bptypes table does not describe type #%d."),
5778 (int) type);
5779
5780 return bptypes[(int) type].description;
5781 }
5782
5783 /* Print B to gdb_stdout. */
5784
5785 static void
5786 print_one_breakpoint_location (struct breakpoint *b,
5787 struct bp_location *loc,
5788 int loc_number,
5789 struct bp_location **last_loc,
5790 int allflag)
5791 {
5792 struct command_line *l;
5793 static char bpenables[] = "nynny";
5794
5795 struct ui_out *uiout = current_uiout;
5796 int header_of_multiple = 0;
5797 int part_of_multiple = (loc != NULL);
5798 struct value_print_options opts;
5799
5800 get_user_print_options (&opts);
5801
5802 gdb_assert (!loc || loc_number != 0);
5803 /* See comment in print_one_breakpoint concerning treatment of
5804 breakpoints with single disabled location. */
5805 if (loc == NULL
5806 && (b->loc != NULL
5807 && (b->loc->next != NULL || !b->loc->enabled)))
5808 header_of_multiple = 1;
5809 if (loc == NULL)
5810 loc = b->loc;
5811
5812 annotate_record ();
5813
5814 /* 1 */
5815 annotate_field (0);
5816 if (part_of_multiple)
5817 {
5818 char *formatted;
5819 formatted = xstrprintf ("%d.%d", b->number, loc_number);
5820 ui_out_field_string (uiout, "number", formatted);
5821 xfree (formatted);
5822 }
5823 else
5824 {
5825 ui_out_field_int (uiout, "number", b->number);
5826 }
5827
5828 /* 2 */
5829 annotate_field (1);
5830 if (part_of_multiple)
5831 ui_out_field_skip (uiout, "type");
5832 else
5833 ui_out_field_string (uiout, "type", bptype_string (b->type));
5834
5835 /* 3 */
5836 annotate_field (2);
5837 if (part_of_multiple)
5838 ui_out_field_skip (uiout, "disp");
5839 else
5840 ui_out_field_string (uiout, "disp", bpdisp_text (b->disposition));
5841
5842
5843 /* 4 */
5844 annotate_field (3);
5845 if (part_of_multiple)
5846 ui_out_field_string (uiout, "enabled", loc->enabled ? "y" : "n");
5847 else
5848 ui_out_field_fmt (uiout, "enabled", "%c",
5849 bpenables[(int) b->enable_state]);
5850 ui_out_spaces (uiout, 2);
5851
5852
5853 /* 5 and 6 */
5854 if (b->ops != NULL && b->ops->print_one != NULL)
5855 {
5856 /* Although the print_one can possibly print all locations,
5857 calling it here is not likely to get any nice result. So,
5858 make sure there's just one location. */
5859 gdb_assert (b->loc == NULL || b->loc->next == NULL);
5860 b->ops->print_one (b, last_loc);
5861 }
5862 else
5863 switch (b->type)
5864 {
5865 case bp_none:
5866 internal_error (__FILE__, __LINE__,
5867 _("print_one_breakpoint: bp_none encountered\n"));
5868 break;
5869
5870 case bp_watchpoint:
5871 case bp_hardware_watchpoint:
5872 case bp_read_watchpoint:
5873 case bp_access_watchpoint:
5874 {
5875 struct watchpoint *w = (struct watchpoint *) b;
5876
5877 /* Field 4, the address, is omitted (which makes the columns
5878 not line up too nicely with the headers, but the effect
5879 is relatively readable). */
5880 if (opts.addressprint)
5881 ui_out_field_skip (uiout, "addr");
5882 annotate_field (5);
5883 ui_out_field_string (uiout, "what", w->exp_string);
5884 }
5885 break;
5886
5887 case bp_breakpoint:
5888 case bp_hardware_breakpoint:
5889 case bp_until:
5890 case bp_finish:
5891 case bp_longjmp:
5892 case bp_longjmp_resume:
5893 case bp_longjmp_call_dummy:
5894 case bp_exception:
5895 case bp_exception_resume:
5896 case bp_step_resume:
5897 case bp_hp_step_resume:
5898 case bp_watchpoint_scope:
5899 case bp_call_dummy:
5900 case bp_std_terminate:
5901 case bp_shlib_event:
5902 case bp_thread_event:
5903 case bp_overlay_event:
5904 case bp_longjmp_master:
5905 case bp_std_terminate_master:
5906 case bp_exception_master:
5907 case bp_tracepoint:
5908 case bp_fast_tracepoint:
5909 case bp_static_tracepoint:
5910 case bp_dprintf:
5911 case bp_jit_event:
5912 case bp_gnu_ifunc_resolver:
5913 case bp_gnu_ifunc_resolver_return:
5914 if (opts.addressprint)
5915 {
5916 annotate_field (4);
5917 if (header_of_multiple)
5918 ui_out_field_string (uiout, "addr", "<MULTIPLE>");
5919 else if (b->loc == NULL || loc->shlib_disabled)
5920 ui_out_field_string (uiout, "addr", "<PENDING>");
5921 else
5922 ui_out_field_core_addr (uiout, "addr",
5923 loc->gdbarch, loc->address);
5924 }
5925 annotate_field (5);
5926 if (!header_of_multiple)
5927 print_breakpoint_location (b, loc);
5928 if (b->loc)
5929 *last_loc = b->loc;
5930 break;
5931 }
5932
5933
5934 /* For backward compatibility, don't display inferiors unless there
5935 are several. */
5936 if (loc != NULL
5937 && !header_of_multiple
5938 && (allflag
5939 || (!gdbarch_has_global_breakpoints (target_gdbarch ())
5940 && (number_of_program_spaces () > 1
5941 || number_of_inferiors () > 1)
5942 /* LOC is for existing B, it cannot be in
5943 moribund_locations and thus having NULL OWNER. */
5944 && loc->owner->type != bp_catchpoint)))
5945 {
5946 struct inferior *inf;
5947 int first = 1;
5948
5949 for (inf = inferior_list; inf != NULL; inf = inf->next)
5950 {
5951 if (inf->pspace == loc->pspace)
5952 {
5953 if (first)
5954 {
5955 first = 0;
5956 ui_out_text (uiout, " inf ");
5957 }
5958 else
5959 ui_out_text (uiout, ", ");
5960 ui_out_text (uiout, plongest (inf->num));
5961 }
5962 }
5963 }
5964
5965 if (!part_of_multiple)
5966 {
5967 if (b->thread != -1)
5968 {
5969 /* FIXME: This seems to be redundant and lost here; see the
5970 "stop only in" line a little further down. */
5971 ui_out_text (uiout, " thread ");
5972 ui_out_field_int (uiout, "thread", b->thread);
5973 }
5974 else if (b->task != 0)
5975 {
5976 ui_out_text (uiout, " task ");
5977 ui_out_field_int (uiout, "task", b->task);
5978 }
5979 }
5980
5981 ui_out_text (uiout, "\n");
5982
5983 if (!part_of_multiple)
5984 b->ops->print_one_detail (b, uiout);
5985
5986 if (part_of_multiple && frame_id_p (b->frame_id))
5987 {
5988 annotate_field (6);
5989 ui_out_text (uiout, "\tstop only in stack frame at ");
5990 /* FIXME: cagney/2002-12-01: Shouldn't be poking around inside
5991 the frame ID. */
5992 ui_out_field_core_addr (uiout, "frame",
5993 b->gdbarch, b->frame_id.stack_addr);
5994 ui_out_text (uiout, "\n");
5995 }
5996
5997 if (!part_of_multiple && b->cond_string)
5998 {
5999 annotate_field (7);
6000 if (is_tracepoint (b))
6001 ui_out_text (uiout, "\ttrace only if ");
6002 else
6003 ui_out_text (uiout, "\tstop only if ");
6004 ui_out_field_string (uiout, "cond", b->cond_string);
6005
6006 /* Print whether the target is doing the breakpoint's condition
6007 evaluation. If GDB is doing the evaluation, don't print anything. */
6008 if (is_breakpoint (b)
6009 && breakpoint_condition_evaluation_mode ()
6010 == condition_evaluation_target)
6011 {
6012 ui_out_text (uiout, " (");
6013 ui_out_field_string (uiout, "evaluated-by",
6014 bp_condition_evaluator (b));
6015 ui_out_text (uiout, " evals)");
6016 }
6017 ui_out_text (uiout, "\n");
6018 }
6019
6020 if (!part_of_multiple && b->thread != -1)
6021 {
6022 /* FIXME should make an annotation for this. */
6023 ui_out_text (uiout, "\tstop only in thread ");
6024 ui_out_field_int (uiout, "thread", b->thread);
6025 ui_out_text (uiout, "\n");
6026 }
6027
6028 if (!part_of_multiple)
6029 {
6030 if (b->hit_count)
6031 {
6032 /* FIXME should make an annotation for this. */
6033 if (is_catchpoint (b))
6034 ui_out_text (uiout, "\tcatchpoint");
6035 else if (is_tracepoint (b))
6036 ui_out_text (uiout, "\ttracepoint");
6037 else
6038 ui_out_text (uiout, "\tbreakpoint");
6039 ui_out_text (uiout, " already hit ");
6040 ui_out_field_int (uiout, "times", b->hit_count);
6041 if (b->hit_count == 1)
6042 ui_out_text (uiout, " time\n");
6043 else
6044 ui_out_text (uiout, " times\n");
6045 }
6046 else
6047 {
6048 /* Output the count also if it is zero, but only if this is mi. */
6049 if (ui_out_is_mi_like_p (uiout))
6050 ui_out_field_int (uiout, "times", b->hit_count);
6051 }
6052 }
6053
6054 if (!part_of_multiple && b->ignore_count)
6055 {
6056 annotate_field (8);
6057 ui_out_text (uiout, "\tignore next ");
6058 ui_out_field_int (uiout, "ignore", b->ignore_count);
6059 ui_out_text (uiout, " hits\n");
6060 }
6061
6062 /* Note that an enable count of 1 corresponds to "enable once"
6063 behavior, which is reported by the combination of enablement and
6064 disposition, so we don't need to mention it here. */
6065 if (!part_of_multiple && b->enable_count > 1)
6066 {
6067 annotate_field (8);
6068 ui_out_text (uiout, "\tdisable after ");
6069 /* Tweak the wording to clarify that ignore and enable counts
6070 are distinct, and have additive effect. */
6071 if (b->ignore_count)
6072 ui_out_text (uiout, "additional ");
6073 else
6074 ui_out_text (uiout, "next ");
6075 ui_out_field_int (uiout, "enable", b->enable_count);
6076 ui_out_text (uiout, " hits\n");
6077 }
6078
6079 if (!part_of_multiple && is_tracepoint (b))
6080 {
6081 struct tracepoint *tp = (struct tracepoint *) b;
6082
6083 if (tp->traceframe_usage)
6084 {
6085 ui_out_text (uiout, "\ttrace buffer usage ");
6086 ui_out_field_int (uiout, "traceframe-usage", tp->traceframe_usage);
6087 ui_out_text (uiout, " bytes\n");
6088 }
6089 }
6090
6091 if (!part_of_multiple && b->extra_string
6092 && b->type == bp_dprintf && !b->commands)
6093 {
6094 annotate_field (7);
6095 ui_out_text (uiout, "\t(agent printf) ");
6096 ui_out_field_string (uiout, "printf", b->extra_string);
6097 ui_out_text (uiout, "\n");
6098 }
6099
6100 l = b->commands ? b->commands->commands : NULL;
6101 if (!part_of_multiple && l)
6102 {
6103 struct cleanup *script_chain;
6104
6105 annotate_field (9);
6106 script_chain = make_cleanup_ui_out_tuple_begin_end (uiout, "script");
6107 print_command_lines (uiout, l, 4);
6108 do_cleanups (script_chain);
6109 }
6110
6111 if (is_tracepoint (b))
6112 {
6113 struct tracepoint *t = (struct tracepoint *) b;
6114
6115 if (!part_of_multiple && t->pass_count)
6116 {
6117 annotate_field (10);
6118 ui_out_text (uiout, "\tpass count ");
6119 ui_out_field_int (uiout, "pass", t->pass_count);
6120 ui_out_text (uiout, " \n");
6121 }
6122
6123 /* Don't display it when tracepoint or tracepoint location is
6124 pending. */
6125 if (!header_of_multiple && loc != NULL && !loc->shlib_disabled)
6126 {
6127 annotate_field (11);
6128
6129 if (ui_out_is_mi_like_p (uiout))
6130 ui_out_field_string (uiout, "installed",
6131 loc->inserted ? "y" : "n");
6132 else
6133 {
6134 if (loc->inserted)
6135 ui_out_text (uiout, "\t");
6136 else
6137 ui_out_text (uiout, "\tnot ");
6138 ui_out_text (uiout, "installed on target\n");
6139 }
6140 }
6141 }
6142
6143 if (ui_out_is_mi_like_p (uiout) && !part_of_multiple)
6144 {
6145 if (is_watchpoint (b))
6146 {
6147 struct watchpoint *w = (struct watchpoint *) b;
6148
6149 ui_out_field_string (uiout, "original-location", w->exp_string);
6150 }
6151 else if (b->addr_string)
6152 ui_out_field_string (uiout, "original-location", b->addr_string);
6153 }
6154 }
6155
6156 static void
6157 print_one_breakpoint (struct breakpoint *b,
6158 struct bp_location **last_loc,
6159 int allflag)
6160 {
6161 struct cleanup *bkpt_chain;
6162 struct ui_out *uiout = current_uiout;
6163
6164 bkpt_chain = make_cleanup_ui_out_tuple_begin_end (uiout, "bkpt");
6165
6166 print_one_breakpoint_location (b, NULL, 0, last_loc, allflag);
6167 do_cleanups (bkpt_chain);
6168
6169 /* If this breakpoint has custom print function,
6170 it's already printed. Otherwise, print individual
6171 locations, if any. */
6172 if (b->ops == NULL || b->ops->print_one == NULL)
6173 {
6174 /* If breakpoint has a single location that is disabled, we
6175 print it as if it had several locations, since otherwise it's
6176 hard to represent "breakpoint enabled, location disabled"
6177 situation.
6178
6179 Note that while hardware watchpoints have several locations
6180 internally, that's not a property exposed to user. */
6181 if (b->loc
6182 && !is_hardware_watchpoint (b)
6183 && (b->loc->next || !b->loc->enabled))
6184 {
6185 struct bp_location *loc;
6186 int n = 1;
6187
6188 for (loc = b->loc; loc; loc = loc->next, ++n)
6189 {
6190 struct cleanup *inner2 =
6191 make_cleanup_ui_out_tuple_begin_end (uiout, NULL);
6192 print_one_breakpoint_location (b, loc, n, last_loc, allflag);
6193 do_cleanups (inner2);
6194 }
6195 }
6196 }
6197 }
6198
6199 static int
6200 breakpoint_address_bits (struct breakpoint *b)
6201 {
6202 int print_address_bits = 0;
6203 struct bp_location *loc;
6204
6205 for (loc = b->loc; loc; loc = loc->next)
6206 {
6207 int addr_bit;
6208
6209 /* Software watchpoints that aren't watching memory don't have
6210 an address to print. */
6211 if (b->type == bp_watchpoint && loc->watchpoint_type == -1)
6212 continue;
6213
6214 addr_bit = gdbarch_addr_bit (loc->gdbarch);
6215 if (addr_bit > print_address_bits)
6216 print_address_bits = addr_bit;
6217 }
6218
6219 return print_address_bits;
6220 }
6221
6222 struct captured_breakpoint_query_args
6223 {
6224 int bnum;
6225 };
6226
6227 static int
6228 do_captured_breakpoint_query (struct ui_out *uiout, void *data)
6229 {
6230 struct captured_breakpoint_query_args *args = data;
6231 struct breakpoint *b;
6232 struct bp_location *dummy_loc = NULL;
6233
6234 ALL_BREAKPOINTS (b)
6235 {
6236 if (args->bnum == b->number)
6237 {
6238 print_one_breakpoint (b, &dummy_loc, 0);
6239 return GDB_RC_OK;
6240 }
6241 }
6242 return GDB_RC_NONE;
6243 }
6244
6245 enum gdb_rc
6246 gdb_breakpoint_query (struct ui_out *uiout, int bnum,
6247 char **error_message)
6248 {
6249 struct captured_breakpoint_query_args args;
6250
6251 args.bnum = bnum;
6252 /* For the moment we don't trust print_one_breakpoint() to not throw
6253 an error. */
6254 if (catch_exceptions_with_msg (uiout, do_captured_breakpoint_query, &args,
6255 error_message, RETURN_MASK_ALL) < 0)
6256 return GDB_RC_FAIL;
6257 else
6258 return GDB_RC_OK;
6259 }
6260
6261 /* Return true if this breakpoint was set by the user, false if it is
6262 internal or momentary. */
6263
6264 int
6265 user_breakpoint_p (struct breakpoint *b)
6266 {
6267 return b->number > 0;
6268 }
6269
6270 /* Print information on user settable breakpoint (watchpoint, etc)
6271 number BNUM. If BNUM is -1 print all user-settable breakpoints.
6272 If ALLFLAG is non-zero, include non-user-settable breakpoints. If
6273 FILTER is non-NULL, call it on each breakpoint and only include the
6274 ones for which it returns non-zero. Return the total number of
6275 breakpoints listed. */
6276
6277 static int
6278 breakpoint_1 (char *args, int allflag,
6279 int (*filter) (const struct breakpoint *))
6280 {
6281 struct breakpoint *b;
6282 struct bp_location *last_loc = NULL;
6283 int nr_printable_breakpoints;
6284 struct cleanup *bkpttbl_chain;
6285 struct value_print_options opts;
6286 int print_address_bits = 0;
6287 int print_type_col_width = 14;
6288 struct ui_out *uiout = current_uiout;
6289
6290 get_user_print_options (&opts);
6291
6292 /* Compute the number of rows in the table, as well as the size
6293 required for address fields. */
6294 nr_printable_breakpoints = 0;
6295 ALL_BREAKPOINTS (b)
6296 {
6297 /* If we have a filter, only list the breakpoints it accepts. */
6298 if (filter && !filter (b))
6299 continue;
6300
6301 /* If we have an "args" string, it is a list of breakpoints to
6302 accept. Skip the others. */
6303 if (args != NULL && *args != '\0')
6304 {
6305 if (allflag && parse_and_eval_long (args) != b->number)
6306 continue;
6307 if (!allflag && !number_is_in_list (args, b->number))
6308 continue;
6309 }
6310
6311 if (allflag || user_breakpoint_p (b))
6312 {
6313 int addr_bit, type_len;
6314
6315 addr_bit = breakpoint_address_bits (b);
6316 if (addr_bit > print_address_bits)
6317 print_address_bits = addr_bit;
6318
6319 type_len = strlen (bptype_string (b->type));
6320 if (type_len > print_type_col_width)
6321 print_type_col_width = type_len;
6322
6323 nr_printable_breakpoints++;
6324 }
6325 }
6326
6327 if (opts.addressprint)
6328 bkpttbl_chain
6329 = make_cleanup_ui_out_table_begin_end (uiout, 6,
6330 nr_printable_breakpoints,
6331 "BreakpointTable");
6332 else
6333 bkpttbl_chain
6334 = make_cleanup_ui_out_table_begin_end (uiout, 5,
6335 nr_printable_breakpoints,
6336 "BreakpointTable");
6337
6338 if (nr_printable_breakpoints > 0)
6339 annotate_breakpoints_headers ();
6340 if (nr_printable_breakpoints > 0)
6341 annotate_field (0);
6342 ui_out_table_header (uiout, 7, ui_left, "number", "Num"); /* 1 */
6343 if (nr_printable_breakpoints > 0)
6344 annotate_field (1);
6345 ui_out_table_header (uiout, print_type_col_width, ui_left,
6346 "type", "Type"); /* 2 */
6347 if (nr_printable_breakpoints > 0)
6348 annotate_field (2);
6349 ui_out_table_header (uiout, 4, ui_left, "disp", "Disp"); /* 3 */
6350 if (nr_printable_breakpoints > 0)
6351 annotate_field (3);
6352 ui_out_table_header (uiout, 3, ui_left, "enabled", "Enb"); /* 4 */
6353 if (opts.addressprint)
6354 {
6355 if (nr_printable_breakpoints > 0)
6356 annotate_field (4);
6357 if (print_address_bits <= 32)
6358 ui_out_table_header (uiout, 10, ui_left,
6359 "addr", "Address"); /* 5 */
6360 else
6361 ui_out_table_header (uiout, 18, ui_left,
6362 "addr", "Address"); /* 5 */
6363 }
6364 if (nr_printable_breakpoints > 0)
6365 annotate_field (5);
6366 ui_out_table_header (uiout, 40, ui_noalign, "what", "What"); /* 6 */
6367 ui_out_table_body (uiout);
6368 if (nr_printable_breakpoints > 0)
6369 annotate_breakpoints_table ();
6370
6371 ALL_BREAKPOINTS (b)
6372 {
6373 QUIT;
6374 /* If we have a filter, only list the breakpoints it accepts. */
6375 if (filter && !filter (b))
6376 continue;
6377
6378 /* If we have an "args" string, it is a list of breakpoints to
6379 accept. Skip the others. */
6380
6381 if (args != NULL && *args != '\0')
6382 {
6383 if (allflag) /* maintenance info breakpoint */
6384 {
6385 if (parse_and_eval_long (args) != b->number)
6386 continue;
6387 }
6388 else /* all others */
6389 {
6390 if (!number_is_in_list (args, b->number))
6391 continue;
6392 }
6393 }
6394 /* We only print out user settable breakpoints unless the
6395 allflag is set. */
6396 if (allflag || user_breakpoint_p (b))
6397 print_one_breakpoint (b, &last_loc, allflag);
6398 }
6399
6400 do_cleanups (bkpttbl_chain);
6401
6402 if (nr_printable_breakpoints == 0)
6403 {
6404 /* If there's a filter, let the caller decide how to report
6405 empty list. */
6406 if (!filter)
6407 {
6408 if (args == NULL || *args == '\0')
6409 ui_out_message (uiout, 0, "No breakpoints or watchpoints.\n");
6410 else
6411 ui_out_message (uiout, 0,
6412 "No breakpoint or watchpoint matching '%s'.\n",
6413 args);
6414 }
6415 }
6416 else
6417 {
6418 if (last_loc && !server_command)
6419 set_next_address (last_loc->gdbarch, last_loc->address);
6420 }
6421
6422 /* FIXME? Should this be moved up so that it is only called when
6423 there have been breakpoints? */
6424 annotate_breakpoints_table_end ();
6425
6426 return nr_printable_breakpoints;
6427 }
6428
6429 /* Display the value of default-collect in a way that is generally
6430 compatible with the breakpoint list. */
6431
6432 static void
6433 default_collect_info (void)
6434 {
6435 struct ui_out *uiout = current_uiout;
6436
6437 /* If it has no value (which is frequently the case), say nothing; a
6438 message like "No default-collect." gets in user's face when it's
6439 not wanted. */
6440 if (!*default_collect)
6441 return;
6442
6443 /* The following phrase lines up nicely with per-tracepoint collect
6444 actions. */
6445 ui_out_text (uiout, "default collect ");
6446 ui_out_field_string (uiout, "default-collect", default_collect);
6447 ui_out_text (uiout, " \n");
6448 }
6449
6450 static void
6451 breakpoints_info (char *args, int from_tty)
6452 {
6453 breakpoint_1 (args, 0, NULL);
6454
6455 default_collect_info ();
6456 }
6457
6458 static void
6459 watchpoints_info (char *args, int from_tty)
6460 {
6461 int num_printed = breakpoint_1 (args, 0, is_watchpoint);
6462 struct ui_out *uiout = current_uiout;
6463
6464 if (num_printed == 0)
6465 {
6466 if (args == NULL || *args == '\0')
6467 ui_out_message (uiout, 0, "No watchpoints.\n");
6468 else
6469 ui_out_message (uiout, 0, "No watchpoint matching '%s'.\n", args);
6470 }
6471 }
6472
6473 static void
6474 maintenance_info_breakpoints (char *args, int from_tty)
6475 {
6476 breakpoint_1 (args, 1, NULL);
6477
6478 default_collect_info ();
6479 }
6480
6481 static int
6482 breakpoint_has_pc (struct breakpoint *b,
6483 struct program_space *pspace,
6484 CORE_ADDR pc, struct obj_section *section)
6485 {
6486 struct bp_location *bl = b->loc;
6487
6488 for (; bl; bl = bl->next)
6489 {
6490 if (bl->pspace == pspace
6491 && bl->address == pc
6492 && (!overlay_debugging || bl->section == section))
6493 return 1;
6494 }
6495 return 0;
6496 }
6497
6498 /* Print a message describing any user-breakpoints set at PC. This
6499 concerns with logical breakpoints, so we match program spaces, not
6500 address spaces. */
6501
6502 static void
6503 describe_other_breakpoints (struct gdbarch *gdbarch,
6504 struct program_space *pspace, CORE_ADDR pc,
6505 struct obj_section *section, int thread)
6506 {
6507 int others = 0;
6508 struct breakpoint *b;
6509
6510 ALL_BREAKPOINTS (b)
6511 others += (user_breakpoint_p (b)
6512 && breakpoint_has_pc (b, pspace, pc, section));
6513 if (others > 0)
6514 {
6515 if (others == 1)
6516 printf_filtered (_("Note: breakpoint "));
6517 else /* if (others == ???) */
6518 printf_filtered (_("Note: breakpoints "));
6519 ALL_BREAKPOINTS (b)
6520 if (user_breakpoint_p (b) && breakpoint_has_pc (b, pspace, pc, section))
6521 {
6522 others--;
6523 printf_filtered ("%d", b->number);
6524 if (b->thread == -1 && thread != -1)
6525 printf_filtered (" (all threads)");
6526 else if (b->thread != -1)
6527 printf_filtered (" (thread %d)", b->thread);
6528 printf_filtered ("%s%s ",
6529 ((b->enable_state == bp_disabled
6530 || b->enable_state == bp_call_disabled)
6531 ? " (disabled)"
6532 : b->enable_state == bp_permanent
6533 ? " (permanent)"
6534 : ""),
6535 (others > 1) ? ","
6536 : ((others == 1) ? " and" : ""));
6537 }
6538 printf_filtered (_("also set at pc "));
6539 fputs_filtered (paddress (gdbarch, pc), gdb_stdout);
6540 printf_filtered (".\n");
6541 }
6542 }
6543 \f
6544
6545 /* Return true iff it is meaningful to use the address member of
6546 BPT. For some breakpoint types, the address member is irrelevant
6547 and it makes no sense to attempt to compare it to other addresses
6548 (or use it for any other purpose either).
6549
6550 More specifically, each of the following breakpoint types will
6551 always have a zero valued address and we don't want to mark
6552 breakpoints of any of these types to be a duplicate of an actual
6553 breakpoint at address zero:
6554
6555 bp_watchpoint
6556 bp_catchpoint
6557
6558 */
6559
6560 static int
6561 breakpoint_address_is_meaningful (struct breakpoint *bpt)
6562 {
6563 enum bptype type = bpt->type;
6564
6565 return (type != bp_watchpoint && type != bp_catchpoint);
6566 }
6567
6568 /* Assuming LOC1 and LOC2's owners are hardware watchpoints, returns
6569 true if LOC1 and LOC2 represent the same watchpoint location. */
6570
6571 static int
6572 watchpoint_locations_match (struct bp_location *loc1,
6573 struct bp_location *loc2)
6574 {
6575 struct watchpoint *w1 = (struct watchpoint *) loc1->owner;
6576 struct watchpoint *w2 = (struct watchpoint *) loc2->owner;
6577
6578 /* Both of them must exist. */
6579 gdb_assert (w1 != NULL);
6580 gdb_assert (w2 != NULL);
6581
6582 /* If the target can evaluate the condition expression in hardware,
6583 then we we need to insert both watchpoints even if they are at
6584 the same place. Otherwise the watchpoint will only trigger when
6585 the condition of whichever watchpoint was inserted evaluates to
6586 true, not giving a chance for GDB to check the condition of the
6587 other watchpoint. */
6588 if ((w1->cond_exp
6589 && target_can_accel_watchpoint_condition (loc1->address,
6590 loc1->length,
6591 loc1->watchpoint_type,
6592 w1->cond_exp))
6593 || (w2->cond_exp
6594 && target_can_accel_watchpoint_condition (loc2->address,
6595 loc2->length,
6596 loc2->watchpoint_type,
6597 w2->cond_exp)))
6598 return 0;
6599
6600 /* Note that this checks the owner's type, not the location's. In
6601 case the target does not support read watchpoints, but does
6602 support access watchpoints, we'll have bp_read_watchpoint
6603 watchpoints with hw_access locations. Those should be considered
6604 duplicates of hw_read locations. The hw_read locations will
6605 become hw_access locations later. */
6606 return (loc1->owner->type == loc2->owner->type
6607 && loc1->pspace->aspace == loc2->pspace->aspace
6608 && loc1->address == loc2->address
6609 && loc1->length == loc2->length);
6610 }
6611
6612 /* Returns true if {ASPACE1,ADDR1} and {ASPACE2,ADDR2} represent the
6613 same breakpoint location. In most targets, this can only be true
6614 if ASPACE1 matches ASPACE2. On targets that have global
6615 breakpoints, the address space doesn't really matter. */
6616
6617 static int
6618 breakpoint_address_match (struct address_space *aspace1, CORE_ADDR addr1,
6619 struct address_space *aspace2, CORE_ADDR addr2)
6620 {
6621 return ((gdbarch_has_global_breakpoints (target_gdbarch ())
6622 || aspace1 == aspace2)
6623 && addr1 == addr2);
6624 }
6625
6626 /* Returns true if {ASPACE2,ADDR2} falls within the range determined by
6627 {ASPACE1,ADDR1,LEN1}. In most targets, this can only be true if ASPACE1
6628 matches ASPACE2. On targets that have global breakpoints, the address
6629 space doesn't really matter. */
6630
6631 static int
6632 breakpoint_address_match_range (struct address_space *aspace1, CORE_ADDR addr1,
6633 int len1, struct address_space *aspace2,
6634 CORE_ADDR addr2)
6635 {
6636 return ((gdbarch_has_global_breakpoints (target_gdbarch ())
6637 || aspace1 == aspace2)
6638 && addr2 >= addr1 && addr2 < addr1 + len1);
6639 }
6640
6641 /* Returns true if {ASPACE,ADDR} matches the breakpoint BL. BL may be
6642 a ranged breakpoint. In most targets, a match happens only if ASPACE
6643 matches the breakpoint's address space. On targets that have global
6644 breakpoints, the address space doesn't really matter. */
6645
6646 static int
6647 breakpoint_location_address_match (struct bp_location *bl,
6648 struct address_space *aspace,
6649 CORE_ADDR addr)
6650 {
6651 return (breakpoint_address_match (bl->pspace->aspace, bl->address,
6652 aspace, addr)
6653 || (bl->length
6654 && breakpoint_address_match_range (bl->pspace->aspace,
6655 bl->address, bl->length,
6656 aspace, addr)));
6657 }
6658
6659 /* If LOC1 and LOC2's owners are not tracepoints, returns false directly.
6660 Then, if LOC1 and LOC2 represent the same tracepoint location, returns
6661 true, otherwise returns false. */
6662
6663 static int
6664 tracepoint_locations_match (struct bp_location *loc1,
6665 struct bp_location *loc2)
6666 {
6667 if (is_tracepoint (loc1->owner) && is_tracepoint (loc2->owner))
6668 /* Since tracepoint locations are never duplicated with others', tracepoint
6669 locations at the same address of different tracepoints are regarded as
6670 different locations. */
6671 return (loc1->address == loc2->address && loc1->owner == loc2->owner);
6672 else
6673 return 0;
6674 }
6675
6676 /* Assuming LOC1 and LOC2's types' have meaningful target addresses
6677 (breakpoint_address_is_meaningful), returns true if LOC1 and LOC2
6678 represent the same location. */
6679
6680 static int
6681 breakpoint_locations_match (struct bp_location *loc1,
6682 struct bp_location *loc2)
6683 {
6684 int hw_point1, hw_point2;
6685
6686 /* Both of them must not be in moribund_locations. */
6687 gdb_assert (loc1->owner != NULL);
6688 gdb_assert (loc2->owner != NULL);
6689
6690 hw_point1 = is_hardware_watchpoint (loc1->owner);
6691 hw_point2 = is_hardware_watchpoint (loc2->owner);
6692
6693 if (hw_point1 != hw_point2)
6694 return 0;
6695 else if (hw_point1)
6696 return watchpoint_locations_match (loc1, loc2);
6697 else if (is_tracepoint (loc1->owner) || is_tracepoint (loc2->owner))
6698 return tracepoint_locations_match (loc1, loc2);
6699 else
6700 /* We compare bp_location.length in order to cover ranged breakpoints. */
6701 return (breakpoint_address_match (loc1->pspace->aspace, loc1->address,
6702 loc2->pspace->aspace, loc2->address)
6703 && loc1->length == loc2->length);
6704 }
6705
6706 static void
6707 breakpoint_adjustment_warning (CORE_ADDR from_addr, CORE_ADDR to_addr,
6708 int bnum, int have_bnum)
6709 {
6710 /* The longest string possibly returned by hex_string_custom
6711 is 50 chars. These must be at least that big for safety. */
6712 char astr1[64];
6713 char astr2[64];
6714
6715 strcpy (astr1, hex_string_custom ((unsigned long) from_addr, 8));
6716 strcpy (astr2, hex_string_custom ((unsigned long) to_addr, 8));
6717 if (have_bnum)
6718 warning (_("Breakpoint %d address previously adjusted from %s to %s."),
6719 bnum, astr1, astr2);
6720 else
6721 warning (_("Breakpoint address adjusted from %s to %s."), astr1, astr2);
6722 }
6723
6724 /* Adjust a breakpoint's address to account for architectural
6725 constraints on breakpoint placement. Return the adjusted address.
6726 Note: Very few targets require this kind of adjustment. For most
6727 targets, this function is simply the identity function. */
6728
6729 static CORE_ADDR
6730 adjust_breakpoint_address (struct gdbarch *gdbarch,
6731 CORE_ADDR bpaddr, enum bptype bptype)
6732 {
6733 if (!gdbarch_adjust_breakpoint_address_p (gdbarch))
6734 {
6735 /* Very few targets need any kind of breakpoint adjustment. */
6736 return bpaddr;
6737 }
6738 else if (bptype == bp_watchpoint
6739 || bptype == bp_hardware_watchpoint
6740 || bptype == bp_read_watchpoint
6741 || bptype == bp_access_watchpoint
6742 || bptype == bp_catchpoint)
6743 {
6744 /* Watchpoints and the various bp_catch_* eventpoints should not
6745 have their addresses modified. */
6746 return bpaddr;
6747 }
6748 else
6749 {
6750 CORE_ADDR adjusted_bpaddr;
6751
6752 /* Some targets have architectural constraints on the placement
6753 of breakpoint instructions. Obtain the adjusted address. */
6754 adjusted_bpaddr = gdbarch_adjust_breakpoint_address (gdbarch, bpaddr);
6755
6756 /* An adjusted breakpoint address can significantly alter
6757 a user's expectations. Print a warning if an adjustment
6758 is required. */
6759 if (adjusted_bpaddr != bpaddr)
6760 breakpoint_adjustment_warning (bpaddr, adjusted_bpaddr, 0, 0);
6761
6762 return adjusted_bpaddr;
6763 }
6764 }
6765
6766 void
6767 init_bp_location (struct bp_location *loc, const struct bp_location_ops *ops,
6768 struct breakpoint *owner)
6769 {
6770 memset (loc, 0, sizeof (*loc));
6771
6772 gdb_assert (ops != NULL);
6773
6774 loc->ops = ops;
6775 loc->owner = owner;
6776 loc->cond = NULL;
6777 loc->cond_bytecode = NULL;
6778 loc->shlib_disabled = 0;
6779 loc->enabled = 1;
6780
6781 switch (owner->type)
6782 {
6783 case bp_breakpoint:
6784 case bp_until:
6785 case bp_finish:
6786 case bp_longjmp:
6787 case bp_longjmp_resume:
6788 case bp_longjmp_call_dummy:
6789 case bp_exception:
6790 case bp_exception_resume:
6791 case bp_step_resume:
6792 case bp_hp_step_resume:
6793 case bp_watchpoint_scope:
6794 case bp_call_dummy:
6795 case bp_std_terminate:
6796 case bp_shlib_event:
6797 case bp_thread_event:
6798 case bp_overlay_event:
6799 case bp_jit_event:
6800 case bp_longjmp_master:
6801 case bp_std_terminate_master:
6802 case bp_exception_master:
6803 case bp_gnu_ifunc_resolver:
6804 case bp_gnu_ifunc_resolver_return:
6805 case bp_dprintf:
6806 loc->loc_type = bp_loc_software_breakpoint;
6807 mark_breakpoint_location_modified (loc);
6808 break;
6809 case bp_hardware_breakpoint:
6810 loc->loc_type = bp_loc_hardware_breakpoint;
6811 mark_breakpoint_location_modified (loc);
6812 break;
6813 case bp_hardware_watchpoint:
6814 case bp_read_watchpoint:
6815 case bp_access_watchpoint:
6816 loc->loc_type = bp_loc_hardware_watchpoint;
6817 break;
6818 case bp_watchpoint:
6819 case bp_catchpoint:
6820 case bp_tracepoint:
6821 case bp_fast_tracepoint:
6822 case bp_static_tracepoint:
6823 loc->loc_type = bp_loc_other;
6824 break;
6825 default:
6826 internal_error (__FILE__, __LINE__, _("unknown breakpoint type"));
6827 }
6828
6829 loc->refc = 1;
6830 }
6831
6832 /* Allocate a struct bp_location. */
6833
6834 static struct bp_location *
6835 allocate_bp_location (struct breakpoint *bpt)
6836 {
6837 return bpt->ops->allocate_location (bpt);
6838 }
6839
6840 static void
6841 free_bp_location (struct bp_location *loc)
6842 {
6843 loc->ops->dtor (loc);
6844 xfree (loc);
6845 }
6846
6847 /* Increment reference count. */
6848
6849 static void
6850 incref_bp_location (struct bp_location *bl)
6851 {
6852 ++bl->refc;
6853 }
6854
6855 /* Decrement reference count. If the reference count reaches 0,
6856 destroy the bp_location. Sets *BLP to NULL. */
6857
6858 static void
6859 decref_bp_location (struct bp_location **blp)
6860 {
6861 gdb_assert ((*blp)->refc > 0);
6862
6863 if (--(*blp)->refc == 0)
6864 free_bp_location (*blp);
6865 *blp = NULL;
6866 }
6867
6868 /* Add breakpoint B at the end of the global breakpoint chain. */
6869
6870 static void
6871 add_to_breakpoint_chain (struct breakpoint *b)
6872 {
6873 struct breakpoint *b1;
6874
6875 /* Add this breakpoint to the end of the chain so that a list of
6876 breakpoints will come out in order of increasing numbers. */
6877
6878 b1 = breakpoint_chain;
6879 if (b1 == 0)
6880 breakpoint_chain = b;
6881 else
6882 {
6883 while (b1->next)
6884 b1 = b1->next;
6885 b1->next = b;
6886 }
6887 }
6888
6889 /* Initializes breakpoint B with type BPTYPE and no locations yet. */
6890
6891 static void
6892 init_raw_breakpoint_without_location (struct breakpoint *b,
6893 struct gdbarch *gdbarch,
6894 enum bptype bptype,
6895 const struct breakpoint_ops *ops)
6896 {
6897 memset (b, 0, sizeof (*b));
6898
6899 gdb_assert (ops != NULL);
6900
6901 b->ops = ops;
6902 b->type = bptype;
6903 b->gdbarch = gdbarch;
6904 b->language = current_language->la_language;
6905 b->input_radix = input_radix;
6906 b->thread = -1;
6907 b->enable_state = bp_enabled;
6908 b->next = 0;
6909 b->silent = 0;
6910 b->ignore_count = 0;
6911 b->commands = NULL;
6912 b->frame_id = null_frame_id;
6913 b->condition_not_parsed = 0;
6914 b->py_bp_object = NULL;
6915 b->related_breakpoint = b;
6916 }
6917
6918 /* Helper to set_raw_breakpoint below. Creates a breakpoint
6919 that has type BPTYPE and has no locations as yet. */
6920
6921 static struct breakpoint *
6922 set_raw_breakpoint_without_location (struct gdbarch *gdbarch,
6923 enum bptype bptype,
6924 const struct breakpoint_ops *ops)
6925 {
6926 struct breakpoint *b = XNEW (struct breakpoint);
6927
6928 init_raw_breakpoint_without_location (b, gdbarch, bptype, ops);
6929 add_to_breakpoint_chain (b);
6930 return b;
6931 }
6932
6933 /* Initialize loc->function_name. EXPLICIT_LOC says no indirect function
6934 resolutions should be made as the user specified the location explicitly
6935 enough. */
6936
6937 static void
6938 set_breakpoint_location_function (struct bp_location *loc, int explicit_loc)
6939 {
6940 gdb_assert (loc->owner != NULL);
6941
6942 if (loc->owner->type == bp_breakpoint
6943 || loc->owner->type == bp_hardware_breakpoint
6944 || is_tracepoint (loc->owner))
6945 {
6946 int is_gnu_ifunc;
6947 const char *function_name;
6948 CORE_ADDR func_addr;
6949
6950 find_pc_partial_function_gnu_ifunc (loc->address, &function_name,
6951 &func_addr, NULL, &is_gnu_ifunc);
6952
6953 if (is_gnu_ifunc && !explicit_loc)
6954 {
6955 struct breakpoint *b = loc->owner;
6956
6957 gdb_assert (loc->pspace == current_program_space);
6958 if (gnu_ifunc_resolve_name (function_name,
6959 &loc->requested_address))
6960 {
6961 /* Recalculate ADDRESS based on new REQUESTED_ADDRESS. */
6962 loc->address = adjust_breakpoint_address (loc->gdbarch,
6963 loc->requested_address,
6964 b->type);
6965 }
6966 else if (b->type == bp_breakpoint && b->loc == loc
6967 && loc->next == NULL && b->related_breakpoint == b)
6968 {
6969 /* Create only the whole new breakpoint of this type but do not
6970 mess more complicated breakpoints with multiple locations. */
6971 b->type = bp_gnu_ifunc_resolver;
6972 /* Remember the resolver's address for use by the return
6973 breakpoint. */
6974 loc->related_address = func_addr;
6975 }
6976 }
6977
6978 if (function_name)
6979 loc->function_name = xstrdup (function_name);
6980 }
6981 }
6982
6983 /* Attempt to determine architecture of location identified by SAL. */
6984 struct gdbarch *
6985 get_sal_arch (struct symtab_and_line sal)
6986 {
6987 if (sal.section)
6988 return get_objfile_arch (sal.section->objfile);
6989 if (sal.symtab)
6990 return get_objfile_arch (sal.symtab->objfile);
6991
6992 return NULL;
6993 }
6994
6995 /* Low level routine for partially initializing a breakpoint of type
6996 BPTYPE. The newly created breakpoint's address, section, source
6997 file name, and line number are provided by SAL.
6998
6999 It is expected that the caller will complete the initialization of
7000 the newly created breakpoint struct as well as output any status
7001 information regarding the creation of a new breakpoint. */
7002
7003 static void
7004 init_raw_breakpoint (struct breakpoint *b, struct gdbarch *gdbarch,
7005 struct symtab_and_line sal, enum bptype bptype,
7006 const struct breakpoint_ops *ops)
7007 {
7008 init_raw_breakpoint_without_location (b, gdbarch, bptype, ops);
7009
7010 add_location_to_breakpoint (b, &sal);
7011
7012 if (bptype != bp_catchpoint)
7013 gdb_assert (sal.pspace != NULL);
7014
7015 /* Store the program space that was used to set the breakpoint,
7016 except for ordinary breakpoints, which are independent of the
7017 program space. */
7018 if (bptype != bp_breakpoint && bptype != bp_hardware_breakpoint)
7019 b->pspace = sal.pspace;
7020
7021 annotate_breakpoints_changed ();
7022 }
7023
7024 /* set_raw_breakpoint is a low level routine for allocating and
7025 partially initializing a breakpoint of type BPTYPE. The newly
7026 created breakpoint's address, section, source file name, and line
7027 number are provided by SAL. The newly created and partially
7028 initialized breakpoint is added to the breakpoint chain and
7029 is also returned as the value of this function.
7030
7031 It is expected that the caller will complete the initialization of
7032 the newly created breakpoint struct as well as output any status
7033 information regarding the creation of a new breakpoint. In
7034 particular, set_raw_breakpoint does NOT set the breakpoint
7035 number! Care should be taken to not allow an error to occur
7036 prior to completing the initialization of the breakpoint. If this
7037 should happen, a bogus breakpoint will be left on the chain. */
7038
7039 struct breakpoint *
7040 set_raw_breakpoint (struct gdbarch *gdbarch,
7041 struct symtab_and_line sal, enum bptype bptype,
7042 const struct breakpoint_ops *ops)
7043 {
7044 struct breakpoint *b = XNEW (struct breakpoint);
7045
7046 init_raw_breakpoint (b, gdbarch, sal, bptype, ops);
7047 add_to_breakpoint_chain (b);
7048 return b;
7049 }
7050
7051
7052 /* Note that the breakpoint object B describes a permanent breakpoint
7053 instruction, hard-wired into the inferior's code. */
7054 void
7055 make_breakpoint_permanent (struct breakpoint *b)
7056 {
7057 struct bp_location *bl;
7058
7059 b->enable_state = bp_permanent;
7060
7061 /* By definition, permanent breakpoints are already present in the
7062 code. Mark all locations as inserted. For now,
7063 make_breakpoint_permanent is called in just one place, so it's
7064 hard to say if it's reasonable to have permanent breakpoint with
7065 multiple locations or not, but it's easy to implement. */
7066 for (bl = b->loc; bl; bl = bl->next)
7067 bl->inserted = 1;
7068 }
7069
7070 /* Call this routine when stepping and nexting to enable a breakpoint
7071 if we do a longjmp() or 'throw' in TP. FRAME is the frame which
7072 initiated the operation. */
7073
7074 void
7075 set_longjmp_breakpoint (struct thread_info *tp, struct frame_id frame)
7076 {
7077 struct breakpoint *b, *b_tmp;
7078 int thread = tp->num;
7079
7080 /* To avoid having to rescan all objfile symbols at every step,
7081 we maintain a list of continually-inserted but always disabled
7082 longjmp "master" breakpoints. Here, we simply create momentary
7083 clones of those and enable them for the requested thread. */
7084 ALL_BREAKPOINTS_SAFE (b, b_tmp)
7085 if (b->pspace == current_program_space
7086 && (b->type == bp_longjmp_master
7087 || b->type == bp_exception_master))
7088 {
7089 enum bptype type = b->type == bp_longjmp_master ? bp_longjmp : bp_exception;
7090 struct breakpoint *clone;
7091
7092 /* longjmp_breakpoint_ops ensures INITIATING_FRAME is cleared again
7093 after their removal. */
7094 clone = momentary_breakpoint_from_master (b, type,
7095 &longjmp_breakpoint_ops);
7096 clone->thread = thread;
7097 }
7098
7099 tp->initiating_frame = frame;
7100 }
7101
7102 /* Delete all longjmp breakpoints from THREAD. */
7103 void
7104 delete_longjmp_breakpoint (int thread)
7105 {
7106 struct breakpoint *b, *b_tmp;
7107
7108 ALL_BREAKPOINTS_SAFE (b, b_tmp)
7109 if (b->type == bp_longjmp || b->type == bp_exception)
7110 {
7111 if (b->thread == thread)
7112 delete_breakpoint (b);
7113 }
7114 }
7115
7116 void
7117 delete_longjmp_breakpoint_at_next_stop (int thread)
7118 {
7119 struct breakpoint *b, *b_tmp;
7120
7121 ALL_BREAKPOINTS_SAFE (b, b_tmp)
7122 if (b->type == bp_longjmp || b->type == bp_exception)
7123 {
7124 if (b->thread == thread)
7125 b->disposition = disp_del_at_next_stop;
7126 }
7127 }
7128
7129 /* Place breakpoints of type bp_longjmp_call_dummy to catch longjmp for
7130 INFERIOR_PTID thread. Chain them all by RELATED_BREAKPOINT and return
7131 pointer to any of them. Return NULL if this system cannot place longjmp
7132 breakpoints. */
7133
7134 struct breakpoint *
7135 set_longjmp_breakpoint_for_call_dummy (void)
7136 {
7137 struct breakpoint *b, *retval = NULL;
7138
7139 ALL_BREAKPOINTS (b)
7140 if (b->pspace == current_program_space && b->type == bp_longjmp_master)
7141 {
7142 struct breakpoint *new_b;
7143
7144 new_b = momentary_breakpoint_from_master (b, bp_longjmp_call_dummy,
7145 &momentary_breakpoint_ops);
7146 new_b->thread = pid_to_thread_id (inferior_ptid);
7147
7148 /* Link NEW_B into the chain of RETVAL breakpoints. */
7149
7150 gdb_assert (new_b->related_breakpoint == new_b);
7151 if (retval == NULL)
7152 retval = new_b;
7153 new_b->related_breakpoint = retval;
7154 while (retval->related_breakpoint != new_b->related_breakpoint)
7155 retval = retval->related_breakpoint;
7156 retval->related_breakpoint = new_b;
7157 }
7158
7159 return retval;
7160 }
7161
7162 /* Verify all existing dummy frames and their associated breakpoints for
7163 THREAD. Remove those which can no longer be found in the current frame
7164 stack.
7165
7166 You should call this function only at places where it is safe to currently
7167 unwind the whole stack. Failed stack unwind would discard live dummy
7168 frames. */
7169
7170 void
7171 check_longjmp_breakpoint_for_call_dummy (int thread)
7172 {
7173 struct breakpoint *b, *b_tmp;
7174
7175 ALL_BREAKPOINTS_SAFE (b, b_tmp)
7176 if (b->type == bp_longjmp_call_dummy && b->thread == thread)
7177 {
7178 struct breakpoint *dummy_b = b->related_breakpoint;
7179
7180 while (dummy_b != b && dummy_b->type != bp_call_dummy)
7181 dummy_b = dummy_b->related_breakpoint;
7182 if (dummy_b->type != bp_call_dummy
7183 || frame_find_by_id (dummy_b->frame_id) != NULL)
7184 continue;
7185
7186 dummy_frame_discard (dummy_b->frame_id);
7187
7188 while (b->related_breakpoint != b)
7189 {
7190 if (b_tmp == b->related_breakpoint)
7191 b_tmp = b->related_breakpoint->next;
7192 delete_breakpoint (b->related_breakpoint);
7193 }
7194 delete_breakpoint (b);
7195 }
7196 }
7197
7198 void
7199 enable_overlay_breakpoints (void)
7200 {
7201 struct breakpoint *b;
7202
7203 ALL_BREAKPOINTS (b)
7204 if (b->type == bp_overlay_event)
7205 {
7206 b->enable_state = bp_enabled;
7207 update_global_location_list (1);
7208 overlay_events_enabled = 1;
7209 }
7210 }
7211
7212 void
7213 disable_overlay_breakpoints (void)
7214 {
7215 struct breakpoint *b;
7216
7217 ALL_BREAKPOINTS (b)
7218 if (b->type == bp_overlay_event)
7219 {
7220 b->enable_state = bp_disabled;
7221 update_global_location_list (0);
7222 overlay_events_enabled = 0;
7223 }
7224 }
7225
7226 /* Set an active std::terminate breakpoint for each std::terminate
7227 master breakpoint. */
7228 void
7229 set_std_terminate_breakpoint (void)
7230 {
7231 struct breakpoint *b, *b_tmp;
7232
7233 ALL_BREAKPOINTS_SAFE (b, b_tmp)
7234 if (b->pspace == current_program_space
7235 && b->type == bp_std_terminate_master)
7236 {
7237 momentary_breakpoint_from_master (b, bp_std_terminate,
7238 &momentary_breakpoint_ops);
7239 }
7240 }
7241
7242 /* Delete all the std::terminate breakpoints. */
7243 void
7244 delete_std_terminate_breakpoint (void)
7245 {
7246 struct breakpoint *b, *b_tmp;
7247
7248 ALL_BREAKPOINTS_SAFE (b, b_tmp)
7249 if (b->type == bp_std_terminate)
7250 delete_breakpoint (b);
7251 }
7252
7253 struct breakpoint *
7254 create_thread_event_breakpoint (struct gdbarch *gdbarch, CORE_ADDR address)
7255 {
7256 struct breakpoint *b;
7257
7258 b = create_internal_breakpoint (gdbarch, address, bp_thread_event,
7259 &internal_breakpoint_ops);
7260
7261 b->enable_state = bp_enabled;
7262 /* addr_string has to be used or breakpoint_re_set will delete me. */
7263 b->addr_string
7264 = xstrprintf ("*%s", paddress (b->loc->gdbarch, b->loc->address));
7265
7266 update_global_location_list_nothrow (1);
7267
7268 return b;
7269 }
7270
7271 void
7272 remove_thread_event_breakpoints (void)
7273 {
7274 struct breakpoint *b, *b_tmp;
7275
7276 ALL_BREAKPOINTS_SAFE (b, b_tmp)
7277 if (b->type == bp_thread_event
7278 && b->loc->pspace == current_program_space)
7279 delete_breakpoint (b);
7280 }
7281
7282 struct lang_and_radix
7283 {
7284 enum language lang;
7285 int radix;
7286 };
7287
7288 /* Create a breakpoint for JIT code registration and unregistration. */
7289
7290 struct breakpoint *
7291 create_jit_event_breakpoint (struct gdbarch *gdbarch, CORE_ADDR address)
7292 {
7293 struct breakpoint *b;
7294
7295 b = create_internal_breakpoint (gdbarch, address, bp_jit_event,
7296 &internal_breakpoint_ops);
7297 update_global_location_list_nothrow (1);
7298 return b;
7299 }
7300
7301 /* Remove JIT code registration and unregistration breakpoint(s). */
7302
7303 void
7304 remove_jit_event_breakpoints (void)
7305 {
7306 struct breakpoint *b, *b_tmp;
7307
7308 ALL_BREAKPOINTS_SAFE (b, b_tmp)
7309 if (b->type == bp_jit_event
7310 && b->loc->pspace == current_program_space)
7311 delete_breakpoint (b);
7312 }
7313
7314 void
7315 remove_solib_event_breakpoints (void)
7316 {
7317 struct breakpoint *b, *b_tmp;
7318
7319 ALL_BREAKPOINTS_SAFE (b, b_tmp)
7320 if (b->type == bp_shlib_event
7321 && b->loc->pspace == current_program_space)
7322 delete_breakpoint (b);
7323 }
7324
7325 struct breakpoint *
7326 create_solib_event_breakpoint (struct gdbarch *gdbarch, CORE_ADDR address)
7327 {
7328 struct breakpoint *b;
7329
7330 b = create_internal_breakpoint (gdbarch, address, bp_shlib_event,
7331 &internal_breakpoint_ops);
7332 update_global_location_list_nothrow (1);
7333 return b;
7334 }
7335
7336 /* Disable any breakpoints that are on code in shared libraries. Only
7337 apply to enabled breakpoints, disabled ones can just stay disabled. */
7338
7339 void
7340 disable_breakpoints_in_shlibs (void)
7341 {
7342 struct bp_location *loc, **locp_tmp;
7343
7344 ALL_BP_LOCATIONS (loc, locp_tmp)
7345 {
7346 /* ALL_BP_LOCATIONS bp_location has LOC->OWNER always non-NULL. */
7347 struct breakpoint *b = loc->owner;
7348
7349 /* We apply the check to all breakpoints, including disabled for
7350 those with loc->duplicate set. This is so that when breakpoint
7351 becomes enabled, or the duplicate is removed, gdb will try to
7352 insert all breakpoints. If we don't set shlib_disabled here,
7353 we'll try to insert those breakpoints and fail. */
7354 if (((b->type == bp_breakpoint)
7355 || (b->type == bp_jit_event)
7356 || (b->type == bp_hardware_breakpoint)
7357 || (is_tracepoint (b)))
7358 && loc->pspace == current_program_space
7359 && !loc->shlib_disabled
7360 #ifdef PC_SOLIB
7361 && PC_SOLIB (loc->address)
7362 #else
7363 && solib_name_from_address (loc->pspace, loc->address)
7364 #endif
7365 )
7366 {
7367 loc->shlib_disabled = 1;
7368 }
7369 }
7370 }
7371
7372 /* Disable any breakpoints and tracepoints that are in an unloaded shared
7373 library. Only apply to enabled breakpoints, disabled ones can just stay
7374 disabled. */
7375
7376 static void
7377 disable_breakpoints_in_unloaded_shlib (struct so_list *solib)
7378 {
7379 struct bp_location *loc, **locp_tmp;
7380 int disabled_shlib_breaks = 0;
7381
7382 /* SunOS a.out shared libraries are always mapped, so do not
7383 disable breakpoints; they will only be reported as unloaded
7384 through clear_solib when GDB discards its shared library
7385 list. See clear_solib for more information. */
7386 if (exec_bfd != NULL
7387 && bfd_get_flavour (exec_bfd) == bfd_target_aout_flavour)
7388 return;
7389
7390 ALL_BP_LOCATIONS (loc, locp_tmp)
7391 {
7392 /* ALL_BP_LOCATIONS bp_location has LOC->OWNER always non-NULL. */
7393 struct breakpoint *b = loc->owner;
7394
7395 if (solib->pspace == loc->pspace
7396 && !loc->shlib_disabled
7397 && (((b->type == bp_breakpoint
7398 || b->type == bp_jit_event
7399 || b->type == bp_hardware_breakpoint)
7400 && (loc->loc_type == bp_loc_hardware_breakpoint
7401 || loc->loc_type == bp_loc_software_breakpoint))
7402 || is_tracepoint (b))
7403 && solib_contains_address_p (solib, loc->address))
7404 {
7405 loc->shlib_disabled = 1;
7406 /* At this point, we cannot rely on remove_breakpoint
7407 succeeding so we must mark the breakpoint as not inserted
7408 to prevent future errors occurring in remove_breakpoints. */
7409 loc->inserted = 0;
7410
7411 /* This may cause duplicate notifications for the same breakpoint. */
7412 observer_notify_breakpoint_modified (b);
7413
7414 if (!disabled_shlib_breaks)
7415 {
7416 target_terminal_ours_for_output ();
7417 warning (_("Temporarily disabling breakpoints "
7418 "for unloaded shared library \"%s\""),
7419 solib->so_name);
7420 }
7421 disabled_shlib_breaks = 1;
7422 }
7423 }
7424 }
7425
7426 /* FORK & VFORK catchpoints. */
7427
7428 /* An instance of this type is used to represent a fork or vfork
7429 catchpoint. It includes a "struct breakpoint" as a kind of base
7430 class; users downcast to "struct breakpoint *" when needed. A
7431 breakpoint is really of this type iff its ops pointer points to
7432 CATCH_FORK_BREAKPOINT_OPS. */
7433
7434 struct fork_catchpoint
7435 {
7436 /* The base class. */
7437 struct breakpoint base;
7438
7439 /* Process id of a child process whose forking triggered this
7440 catchpoint. This field is only valid immediately after this
7441 catchpoint has triggered. */
7442 ptid_t forked_inferior_pid;
7443 };
7444
7445 /* Implement the "insert" breakpoint_ops method for fork
7446 catchpoints. */
7447
7448 static int
7449 insert_catch_fork (struct bp_location *bl)
7450 {
7451 return target_insert_fork_catchpoint (PIDGET (inferior_ptid));
7452 }
7453
7454 /* Implement the "remove" breakpoint_ops method for fork
7455 catchpoints. */
7456
7457 static int
7458 remove_catch_fork (struct bp_location *bl)
7459 {
7460 return target_remove_fork_catchpoint (PIDGET (inferior_ptid));
7461 }
7462
7463 /* Implement the "breakpoint_hit" breakpoint_ops method for fork
7464 catchpoints. */
7465
7466 static int
7467 breakpoint_hit_catch_fork (const struct bp_location *bl,
7468 struct address_space *aspace, CORE_ADDR bp_addr,
7469 const struct target_waitstatus *ws)
7470 {
7471 struct fork_catchpoint *c = (struct fork_catchpoint *) bl->owner;
7472
7473 if (ws->kind != TARGET_WAITKIND_FORKED)
7474 return 0;
7475
7476 c->forked_inferior_pid = ws->value.related_pid;
7477 return 1;
7478 }
7479
7480 /* Implement the "print_it" breakpoint_ops method for fork
7481 catchpoints. */
7482
7483 static enum print_stop_action
7484 print_it_catch_fork (bpstat bs)
7485 {
7486 struct ui_out *uiout = current_uiout;
7487 struct breakpoint *b = bs->breakpoint_at;
7488 struct fork_catchpoint *c = (struct fork_catchpoint *) bs->breakpoint_at;
7489
7490 annotate_catchpoint (b->number);
7491 if (b->disposition == disp_del)
7492 ui_out_text (uiout, "\nTemporary catchpoint ");
7493 else
7494 ui_out_text (uiout, "\nCatchpoint ");
7495 if (ui_out_is_mi_like_p (uiout))
7496 {
7497 ui_out_field_string (uiout, "reason",
7498 async_reason_lookup (EXEC_ASYNC_FORK));
7499 ui_out_field_string (uiout, "disp", bpdisp_text (b->disposition));
7500 }
7501 ui_out_field_int (uiout, "bkptno", b->number);
7502 ui_out_text (uiout, " (forked process ");
7503 ui_out_field_int (uiout, "newpid", ptid_get_pid (c->forked_inferior_pid));
7504 ui_out_text (uiout, "), ");
7505 return PRINT_SRC_AND_LOC;
7506 }
7507
7508 /* Implement the "print_one" breakpoint_ops method for fork
7509 catchpoints. */
7510
7511 static void
7512 print_one_catch_fork (struct breakpoint *b, struct bp_location **last_loc)
7513 {
7514 struct fork_catchpoint *c = (struct fork_catchpoint *) b;
7515 struct value_print_options opts;
7516 struct ui_out *uiout = current_uiout;
7517
7518 get_user_print_options (&opts);
7519
7520 /* Field 4, the address, is omitted (which makes the columns not
7521 line up too nicely with the headers, but the effect is relatively
7522 readable). */
7523 if (opts.addressprint)
7524 ui_out_field_skip (uiout, "addr");
7525 annotate_field (5);
7526 ui_out_text (uiout, "fork");
7527 if (!ptid_equal (c->forked_inferior_pid, null_ptid))
7528 {
7529 ui_out_text (uiout, ", process ");
7530 ui_out_field_int (uiout, "what",
7531 ptid_get_pid (c->forked_inferior_pid));
7532 ui_out_spaces (uiout, 1);
7533 }
7534 }
7535
7536 /* Implement the "print_mention" breakpoint_ops method for fork
7537 catchpoints. */
7538
7539 static void
7540 print_mention_catch_fork (struct breakpoint *b)
7541 {
7542 printf_filtered (_("Catchpoint %d (fork)"), b->number);
7543 }
7544
7545 /* Implement the "print_recreate" breakpoint_ops method for fork
7546 catchpoints. */
7547
7548 static void
7549 print_recreate_catch_fork (struct breakpoint *b, struct ui_file *fp)
7550 {
7551 fprintf_unfiltered (fp, "catch fork");
7552 print_recreate_thread (b, fp);
7553 }
7554
7555 /* The breakpoint_ops structure to be used in fork catchpoints. */
7556
7557 static struct breakpoint_ops catch_fork_breakpoint_ops;
7558
7559 /* Implement the "insert" breakpoint_ops method for vfork
7560 catchpoints. */
7561
7562 static int
7563 insert_catch_vfork (struct bp_location *bl)
7564 {
7565 return target_insert_vfork_catchpoint (PIDGET (inferior_ptid));
7566 }
7567
7568 /* Implement the "remove" breakpoint_ops method for vfork
7569 catchpoints. */
7570
7571 static int
7572 remove_catch_vfork (struct bp_location *bl)
7573 {
7574 return target_remove_vfork_catchpoint (PIDGET (inferior_ptid));
7575 }
7576
7577 /* Implement the "breakpoint_hit" breakpoint_ops method for vfork
7578 catchpoints. */
7579
7580 static int
7581 breakpoint_hit_catch_vfork (const struct bp_location *bl,
7582 struct address_space *aspace, CORE_ADDR bp_addr,
7583 const struct target_waitstatus *ws)
7584 {
7585 struct fork_catchpoint *c = (struct fork_catchpoint *) bl->owner;
7586
7587 if (ws->kind != TARGET_WAITKIND_VFORKED)
7588 return 0;
7589
7590 c->forked_inferior_pid = ws->value.related_pid;
7591 return 1;
7592 }
7593
7594 /* Implement the "print_it" breakpoint_ops method for vfork
7595 catchpoints. */
7596
7597 static enum print_stop_action
7598 print_it_catch_vfork (bpstat bs)
7599 {
7600 struct ui_out *uiout = current_uiout;
7601 struct breakpoint *b = bs->breakpoint_at;
7602 struct fork_catchpoint *c = (struct fork_catchpoint *) b;
7603
7604 annotate_catchpoint (b->number);
7605 if (b->disposition == disp_del)
7606 ui_out_text (uiout, "\nTemporary catchpoint ");
7607 else
7608 ui_out_text (uiout, "\nCatchpoint ");
7609 if (ui_out_is_mi_like_p (uiout))
7610 {
7611 ui_out_field_string (uiout, "reason",
7612 async_reason_lookup (EXEC_ASYNC_VFORK));
7613 ui_out_field_string (uiout, "disp", bpdisp_text (b->disposition));
7614 }
7615 ui_out_field_int (uiout, "bkptno", b->number);
7616 ui_out_text (uiout, " (vforked process ");
7617 ui_out_field_int (uiout, "newpid", ptid_get_pid (c->forked_inferior_pid));
7618 ui_out_text (uiout, "), ");
7619 return PRINT_SRC_AND_LOC;
7620 }
7621
7622 /* Implement the "print_one" breakpoint_ops method for vfork
7623 catchpoints. */
7624
7625 static void
7626 print_one_catch_vfork (struct breakpoint *b, struct bp_location **last_loc)
7627 {
7628 struct fork_catchpoint *c = (struct fork_catchpoint *) b;
7629 struct value_print_options opts;
7630 struct ui_out *uiout = current_uiout;
7631
7632 get_user_print_options (&opts);
7633 /* Field 4, the address, is omitted (which makes the columns not
7634 line up too nicely with the headers, but the effect is relatively
7635 readable). */
7636 if (opts.addressprint)
7637 ui_out_field_skip (uiout, "addr");
7638 annotate_field (5);
7639 ui_out_text (uiout, "vfork");
7640 if (!ptid_equal (c->forked_inferior_pid, null_ptid))
7641 {
7642 ui_out_text (uiout, ", process ");
7643 ui_out_field_int (uiout, "what",
7644 ptid_get_pid (c->forked_inferior_pid));
7645 ui_out_spaces (uiout, 1);
7646 }
7647 }
7648
7649 /* Implement the "print_mention" breakpoint_ops method for vfork
7650 catchpoints. */
7651
7652 static void
7653 print_mention_catch_vfork (struct breakpoint *b)
7654 {
7655 printf_filtered (_("Catchpoint %d (vfork)"), b->number);
7656 }
7657
7658 /* Implement the "print_recreate" breakpoint_ops method for vfork
7659 catchpoints. */
7660
7661 static void
7662 print_recreate_catch_vfork (struct breakpoint *b, struct ui_file *fp)
7663 {
7664 fprintf_unfiltered (fp, "catch vfork");
7665 print_recreate_thread (b, fp);
7666 }
7667
7668 /* The breakpoint_ops structure to be used in vfork catchpoints. */
7669
7670 static struct breakpoint_ops catch_vfork_breakpoint_ops;
7671
7672 /* An instance of this type is used to represent an solib catchpoint.
7673 It includes a "struct breakpoint" as a kind of base class; users
7674 downcast to "struct breakpoint *" when needed. A breakpoint is
7675 really of this type iff its ops pointer points to
7676 CATCH_SOLIB_BREAKPOINT_OPS. */
7677
7678 struct solib_catchpoint
7679 {
7680 /* The base class. */
7681 struct breakpoint base;
7682
7683 /* True for "catch load", false for "catch unload". */
7684 unsigned char is_load;
7685
7686 /* Regular expression to match, if any. COMPILED is only valid when
7687 REGEX is non-NULL. */
7688 char *regex;
7689 regex_t compiled;
7690 };
7691
7692 static void
7693 dtor_catch_solib (struct breakpoint *b)
7694 {
7695 struct solib_catchpoint *self = (struct solib_catchpoint *) b;
7696
7697 if (self->regex)
7698 regfree (&self->compiled);
7699 xfree (self->regex);
7700
7701 base_breakpoint_ops.dtor (b);
7702 }
7703
7704 static int
7705 insert_catch_solib (struct bp_location *ignore)
7706 {
7707 return 0;
7708 }
7709
7710 static int
7711 remove_catch_solib (struct bp_location *ignore)
7712 {
7713 return 0;
7714 }
7715
7716 static int
7717 breakpoint_hit_catch_solib (const struct bp_location *bl,
7718 struct address_space *aspace,
7719 CORE_ADDR bp_addr,
7720 const struct target_waitstatus *ws)
7721 {
7722 struct solib_catchpoint *self = (struct solib_catchpoint *) bl->owner;
7723 struct breakpoint *other;
7724
7725 if (ws->kind == TARGET_WAITKIND_LOADED)
7726 return 1;
7727
7728 ALL_BREAKPOINTS (other)
7729 {
7730 struct bp_location *other_bl;
7731
7732 if (other == bl->owner)
7733 continue;
7734
7735 if (other->type != bp_shlib_event)
7736 continue;
7737
7738 if (self->base.pspace != NULL && other->pspace != self->base.pspace)
7739 continue;
7740
7741 for (other_bl = other->loc; other_bl != NULL; other_bl = other_bl->next)
7742 {
7743 if (other->ops->breakpoint_hit (other_bl, aspace, bp_addr, ws))
7744 return 1;
7745 }
7746 }
7747
7748 return 0;
7749 }
7750
7751 static void
7752 check_status_catch_solib (struct bpstats *bs)
7753 {
7754 struct solib_catchpoint *self
7755 = (struct solib_catchpoint *) bs->breakpoint_at;
7756 int ix;
7757
7758 if (self->is_load)
7759 {
7760 struct so_list *iter;
7761
7762 for (ix = 0;
7763 VEC_iterate (so_list_ptr, current_program_space->added_solibs,
7764 ix, iter);
7765 ++ix)
7766 {
7767 if (!self->regex
7768 || regexec (&self->compiled, iter->so_name, 0, NULL, 0) == 0)
7769 return;
7770 }
7771 }
7772 else
7773 {
7774 char *iter;
7775
7776 for (ix = 0;
7777 VEC_iterate (char_ptr, current_program_space->deleted_solibs,
7778 ix, iter);
7779 ++ix)
7780 {
7781 if (!self->regex
7782 || regexec (&self->compiled, iter, 0, NULL, 0) == 0)
7783 return;
7784 }
7785 }
7786
7787 bs->stop = 0;
7788 bs->print_it = print_it_noop;
7789 }
7790
7791 static enum print_stop_action
7792 print_it_catch_solib (bpstat bs)
7793 {
7794 struct breakpoint *b = bs->breakpoint_at;
7795 struct ui_out *uiout = current_uiout;
7796
7797 annotate_catchpoint (b->number);
7798 if (b->disposition == disp_del)
7799 ui_out_text (uiout, "\nTemporary catchpoint ");
7800 else
7801 ui_out_text (uiout, "\nCatchpoint ");
7802 ui_out_field_int (uiout, "bkptno", b->number);
7803 ui_out_text (uiout, "\n");
7804 if (ui_out_is_mi_like_p (uiout))
7805 ui_out_field_string (uiout, "disp", bpdisp_text (b->disposition));
7806 print_solib_event (1);
7807 return PRINT_SRC_AND_LOC;
7808 }
7809
7810 static void
7811 print_one_catch_solib (struct breakpoint *b, struct bp_location **locs)
7812 {
7813 struct solib_catchpoint *self = (struct solib_catchpoint *) b;
7814 struct value_print_options opts;
7815 struct ui_out *uiout = current_uiout;
7816 char *msg;
7817
7818 get_user_print_options (&opts);
7819 /* Field 4, the address, is omitted (which makes the columns not
7820 line up too nicely with the headers, but the effect is relatively
7821 readable). */
7822 if (opts.addressprint)
7823 {
7824 annotate_field (4);
7825 ui_out_field_skip (uiout, "addr");
7826 }
7827
7828 annotate_field (5);
7829 if (self->is_load)
7830 {
7831 if (self->regex)
7832 msg = xstrprintf (_("load of library matching %s"), self->regex);
7833 else
7834 msg = xstrdup (_("load of library"));
7835 }
7836 else
7837 {
7838 if (self->regex)
7839 msg = xstrprintf (_("unload of library matching %s"), self->regex);
7840 else
7841 msg = xstrdup (_("unload of library"));
7842 }
7843 ui_out_field_string (uiout, "what", msg);
7844 xfree (msg);
7845 }
7846
7847 static void
7848 print_mention_catch_solib (struct breakpoint *b)
7849 {
7850 struct solib_catchpoint *self = (struct solib_catchpoint *) b;
7851
7852 printf_filtered (_("Catchpoint %d (%s)"), b->number,
7853 self->is_load ? "load" : "unload");
7854 }
7855
7856 static void
7857 print_recreate_catch_solib (struct breakpoint *b, struct ui_file *fp)
7858 {
7859 struct solib_catchpoint *self = (struct solib_catchpoint *) b;
7860
7861 fprintf_unfiltered (fp, "%s %s",
7862 b->disposition == disp_del ? "tcatch" : "catch",
7863 self->is_load ? "load" : "unload");
7864 if (self->regex)
7865 fprintf_unfiltered (fp, " %s", self->regex);
7866 fprintf_unfiltered (fp, "\n");
7867 }
7868
7869 static struct breakpoint_ops catch_solib_breakpoint_ops;
7870
7871 /* Shared helper function (MI and CLI) for creating and installing
7872 a shared object event catchpoint. If IS_LOAD is non-zero then
7873 the events to be caught are load events, otherwise they are
7874 unload events. If IS_TEMP is non-zero the catchpoint is a
7875 temporary one. If ENABLED is non-zero the catchpoint is
7876 created in an enabled state. */
7877
7878 void
7879 add_solib_catchpoint (char *arg, int is_load, int is_temp, int enabled)
7880 {
7881 struct solib_catchpoint *c;
7882 struct gdbarch *gdbarch = get_current_arch ();
7883 struct cleanup *cleanup;
7884
7885 if (!arg)
7886 arg = "";
7887 arg = skip_spaces (arg);
7888
7889 c = XCNEW (struct solib_catchpoint);
7890 cleanup = make_cleanup (xfree, c);
7891
7892 if (*arg != '\0')
7893 {
7894 int errcode;
7895
7896 errcode = regcomp (&c->compiled, arg, REG_NOSUB);
7897 if (errcode != 0)
7898 {
7899 char *err = get_regcomp_error (errcode, &c->compiled);
7900
7901 make_cleanup (xfree, err);
7902 error (_("Invalid regexp (%s): %s"), err, arg);
7903 }
7904 c->regex = xstrdup (arg);
7905 }
7906
7907 c->is_load = is_load;
7908 init_catchpoint (&c->base, gdbarch, is_temp, NULL,
7909 &catch_solib_breakpoint_ops);
7910
7911 c->base.enable_state = enabled ? bp_enabled : bp_disabled;
7912
7913 discard_cleanups (cleanup);
7914 install_breakpoint (0, &c->base, 1);
7915 }
7916
7917 /* A helper function that does all the work for "catch load" and
7918 "catch unload". */
7919
7920 static void
7921 catch_load_or_unload (char *arg, int from_tty, int is_load,
7922 struct cmd_list_element *command)
7923 {
7924 int tempflag;
7925 const int enabled = 1;
7926
7927 tempflag = get_cmd_context (command) == CATCH_TEMPORARY;
7928
7929 add_solib_catchpoint (arg, is_load, tempflag, enabled);
7930 }
7931
7932 static void
7933 catch_load_command_1 (char *arg, int from_tty,
7934 struct cmd_list_element *command)
7935 {
7936 catch_load_or_unload (arg, from_tty, 1, command);
7937 }
7938
7939 static void
7940 catch_unload_command_1 (char *arg, int from_tty,
7941 struct cmd_list_element *command)
7942 {
7943 catch_load_or_unload (arg, from_tty, 0, command);
7944 }
7945
7946 DEF_VEC_I(int);
7947
7948 /* An instance of this type is used to represent a syscall catchpoint.
7949 It includes a "struct breakpoint" as a kind of base class; users
7950 downcast to "struct breakpoint *" when needed. A breakpoint is
7951 really of this type iff its ops pointer points to
7952 CATCH_SYSCALL_BREAKPOINT_OPS. */
7953
7954 struct syscall_catchpoint
7955 {
7956 /* The base class. */
7957 struct breakpoint base;
7958
7959 /* Syscall numbers used for the 'catch syscall' feature. If no
7960 syscall has been specified for filtering, its value is NULL.
7961 Otherwise, it holds a list of all syscalls to be caught. The
7962 list elements are allocated with xmalloc. */
7963 VEC(int) *syscalls_to_be_caught;
7964 };
7965
7966 /* Implement the "dtor" breakpoint_ops method for syscall
7967 catchpoints. */
7968
7969 static void
7970 dtor_catch_syscall (struct breakpoint *b)
7971 {
7972 struct syscall_catchpoint *c = (struct syscall_catchpoint *) b;
7973
7974 VEC_free (int, c->syscalls_to_be_caught);
7975
7976 base_breakpoint_ops.dtor (b);
7977 }
7978
7979 static const struct inferior_data *catch_syscall_inferior_data = NULL;
7980
7981 struct catch_syscall_inferior_data
7982 {
7983 /* We keep a count of the number of times the user has requested a
7984 particular syscall to be tracked, and pass this information to the
7985 target. This lets capable targets implement filtering directly. */
7986
7987 /* Number of times that "any" syscall is requested. */
7988 int any_syscall_count;
7989
7990 /* Count of each system call. */
7991 VEC(int) *syscalls_counts;
7992
7993 /* This counts all syscall catch requests, so we can readily determine
7994 if any catching is necessary. */
7995 int total_syscalls_count;
7996 };
7997
7998 static struct catch_syscall_inferior_data*
7999 get_catch_syscall_inferior_data (struct inferior *inf)
8000 {
8001 struct catch_syscall_inferior_data *inf_data;
8002
8003 inf_data = inferior_data (inf, catch_syscall_inferior_data);
8004 if (inf_data == NULL)
8005 {
8006 inf_data = XZALLOC (struct catch_syscall_inferior_data);
8007 set_inferior_data (inf, catch_syscall_inferior_data, inf_data);
8008 }
8009
8010 return inf_data;
8011 }
8012
8013 static void
8014 catch_syscall_inferior_data_cleanup (struct inferior *inf, void *arg)
8015 {
8016 xfree (arg);
8017 }
8018
8019
8020 /* Implement the "insert" breakpoint_ops method for syscall
8021 catchpoints. */
8022
8023 static int
8024 insert_catch_syscall (struct bp_location *bl)
8025 {
8026 struct syscall_catchpoint *c = (struct syscall_catchpoint *) bl->owner;
8027 struct inferior *inf = current_inferior ();
8028 struct catch_syscall_inferior_data *inf_data
8029 = get_catch_syscall_inferior_data (inf);
8030
8031 ++inf_data->total_syscalls_count;
8032 if (!c->syscalls_to_be_caught)
8033 ++inf_data->any_syscall_count;
8034 else
8035 {
8036 int i, iter;
8037
8038 for (i = 0;
8039 VEC_iterate (int, c->syscalls_to_be_caught, i, iter);
8040 i++)
8041 {
8042 int elem;
8043
8044 if (iter >= VEC_length (int, inf_data->syscalls_counts))
8045 {
8046 int old_size = VEC_length (int, inf_data->syscalls_counts);
8047 uintptr_t vec_addr_offset
8048 = old_size * ((uintptr_t) sizeof (int));
8049 uintptr_t vec_addr;
8050 VEC_safe_grow (int, inf_data->syscalls_counts, iter + 1);
8051 vec_addr = ((uintptr_t) VEC_address (int,
8052 inf_data->syscalls_counts)
8053 + vec_addr_offset);
8054 memset ((void *) vec_addr, 0,
8055 (iter + 1 - old_size) * sizeof (int));
8056 }
8057 elem = VEC_index (int, inf_data->syscalls_counts, iter);
8058 VEC_replace (int, inf_data->syscalls_counts, iter, ++elem);
8059 }
8060 }
8061
8062 return target_set_syscall_catchpoint (PIDGET (inferior_ptid),
8063 inf_data->total_syscalls_count != 0,
8064 inf_data->any_syscall_count,
8065 VEC_length (int,
8066 inf_data->syscalls_counts),
8067 VEC_address (int,
8068 inf_data->syscalls_counts));
8069 }
8070
8071 /* Implement the "remove" breakpoint_ops method for syscall
8072 catchpoints. */
8073
8074 static int
8075 remove_catch_syscall (struct bp_location *bl)
8076 {
8077 struct syscall_catchpoint *c = (struct syscall_catchpoint *) bl->owner;
8078 struct inferior *inf = current_inferior ();
8079 struct catch_syscall_inferior_data *inf_data
8080 = get_catch_syscall_inferior_data (inf);
8081
8082 --inf_data->total_syscalls_count;
8083 if (!c->syscalls_to_be_caught)
8084 --inf_data->any_syscall_count;
8085 else
8086 {
8087 int i, iter;
8088
8089 for (i = 0;
8090 VEC_iterate (int, c->syscalls_to_be_caught, i, iter);
8091 i++)
8092 {
8093 int elem;
8094 if (iter >= VEC_length (int, inf_data->syscalls_counts))
8095 /* Shouldn't happen. */
8096 continue;
8097 elem = VEC_index (int, inf_data->syscalls_counts, iter);
8098 VEC_replace (int, inf_data->syscalls_counts, iter, --elem);
8099 }
8100 }
8101
8102 return target_set_syscall_catchpoint (PIDGET (inferior_ptid),
8103 inf_data->total_syscalls_count != 0,
8104 inf_data->any_syscall_count,
8105 VEC_length (int,
8106 inf_data->syscalls_counts),
8107 VEC_address (int,
8108 inf_data->syscalls_counts));
8109 }
8110
8111 /* Implement the "breakpoint_hit" breakpoint_ops method for syscall
8112 catchpoints. */
8113
8114 static int
8115 breakpoint_hit_catch_syscall (const struct bp_location *bl,
8116 struct address_space *aspace, CORE_ADDR bp_addr,
8117 const struct target_waitstatus *ws)
8118 {
8119 /* We must check if we are catching specific syscalls in this
8120 breakpoint. If we are, then we must guarantee that the called
8121 syscall is the same syscall we are catching. */
8122 int syscall_number = 0;
8123 const struct syscall_catchpoint *c
8124 = (const struct syscall_catchpoint *) bl->owner;
8125
8126 if (ws->kind != TARGET_WAITKIND_SYSCALL_ENTRY
8127 && ws->kind != TARGET_WAITKIND_SYSCALL_RETURN)
8128 return 0;
8129
8130 syscall_number = ws->value.syscall_number;
8131
8132 /* Now, checking if the syscall is the same. */
8133 if (c->syscalls_to_be_caught)
8134 {
8135 int i, iter;
8136
8137 for (i = 0;
8138 VEC_iterate (int, c->syscalls_to_be_caught, i, iter);
8139 i++)
8140 if (syscall_number == iter)
8141 break;
8142 /* Not the same. */
8143 if (!iter)
8144 return 0;
8145 }
8146
8147 return 1;
8148 }
8149
8150 /* Implement the "print_it" breakpoint_ops method for syscall
8151 catchpoints. */
8152
8153 static enum print_stop_action
8154 print_it_catch_syscall (bpstat bs)
8155 {
8156 struct ui_out *uiout = current_uiout;
8157 struct breakpoint *b = bs->breakpoint_at;
8158 /* These are needed because we want to know in which state a
8159 syscall is. It can be in the TARGET_WAITKIND_SYSCALL_ENTRY
8160 or TARGET_WAITKIND_SYSCALL_RETURN, and depending on it we
8161 must print "called syscall" or "returned from syscall". */
8162 ptid_t ptid;
8163 struct target_waitstatus last;
8164 struct syscall s;
8165
8166 get_last_target_status (&ptid, &last);
8167
8168 get_syscall_by_number (last.value.syscall_number, &s);
8169
8170 annotate_catchpoint (b->number);
8171
8172 if (b->disposition == disp_del)
8173 ui_out_text (uiout, "\nTemporary catchpoint ");
8174 else
8175 ui_out_text (uiout, "\nCatchpoint ");
8176 if (ui_out_is_mi_like_p (uiout))
8177 {
8178 ui_out_field_string (uiout, "reason",
8179 async_reason_lookup (last.kind == TARGET_WAITKIND_SYSCALL_ENTRY
8180 ? EXEC_ASYNC_SYSCALL_ENTRY
8181 : EXEC_ASYNC_SYSCALL_RETURN));
8182 ui_out_field_string (uiout, "disp", bpdisp_text (b->disposition));
8183 }
8184 ui_out_field_int (uiout, "bkptno", b->number);
8185
8186 if (last.kind == TARGET_WAITKIND_SYSCALL_ENTRY)
8187 ui_out_text (uiout, " (call to syscall ");
8188 else
8189 ui_out_text (uiout, " (returned from syscall ");
8190
8191 if (s.name == NULL || ui_out_is_mi_like_p (uiout))
8192 ui_out_field_int (uiout, "syscall-number", last.value.syscall_number);
8193 if (s.name != NULL)
8194 ui_out_field_string (uiout, "syscall-name", s.name);
8195
8196 ui_out_text (uiout, "), ");
8197
8198 return PRINT_SRC_AND_LOC;
8199 }
8200
8201 /* Implement the "print_one" breakpoint_ops method for syscall
8202 catchpoints. */
8203
8204 static void
8205 print_one_catch_syscall (struct breakpoint *b,
8206 struct bp_location **last_loc)
8207 {
8208 struct syscall_catchpoint *c = (struct syscall_catchpoint *) b;
8209 struct value_print_options opts;
8210 struct ui_out *uiout = current_uiout;
8211
8212 get_user_print_options (&opts);
8213 /* Field 4, the address, is omitted (which makes the columns not
8214 line up too nicely with the headers, but the effect is relatively
8215 readable). */
8216 if (opts.addressprint)
8217 ui_out_field_skip (uiout, "addr");
8218 annotate_field (5);
8219
8220 if (c->syscalls_to_be_caught
8221 && VEC_length (int, c->syscalls_to_be_caught) > 1)
8222 ui_out_text (uiout, "syscalls \"");
8223 else
8224 ui_out_text (uiout, "syscall \"");
8225
8226 if (c->syscalls_to_be_caught)
8227 {
8228 int i, iter;
8229 char *text = xstrprintf ("%s", "");
8230
8231 for (i = 0;
8232 VEC_iterate (int, c->syscalls_to_be_caught, i, iter);
8233 i++)
8234 {
8235 char *x = text;
8236 struct syscall s;
8237 get_syscall_by_number (iter, &s);
8238
8239 if (s.name != NULL)
8240 text = xstrprintf ("%s%s, ", text, s.name);
8241 else
8242 text = xstrprintf ("%s%d, ", text, iter);
8243
8244 /* We have to xfree the last 'text' (now stored at 'x')
8245 because xstrprintf dynamically allocates new space for it
8246 on every call. */
8247 xfree (x);
8248 }
8249 /* Remove the last comma. */
8250 text[strlen (text) - 2] = '\0';
8251 ui_out_field_string (uiout, "what", text);
8252 }
8253 else
8254 ui_out_field_string (uiout, "what", "<any syscall>");
8255 ui_out_text (uiout, "\" ");
8256 }
8257
8258 /* Implement the "print_mention" breakpoint_ops method for syscall
8259 catchpoints. */
8260
8261 static void
8262 print_mention_catch_syscall (struct breakpoint *b)
8263 {
8264 struct syscall_catchpoint *c = (struct syscall_catchpoint *) b;
8265
8266 if (c->syscalls_to_be_caught)
8267 {
8268 int i, iter;
8269
8270 if (VEC_length (int, c->syscalls_to_be_caught) > 1)
8271 printf_filtered (_("Catchpoint %d (syscalls"), b->number);
8272 else
8273 printf_filtered (_("Catchpoint %d (syscall"), b->number);
8274
8275 for (i = 0;
8276 VEC_iterate (int, c->syscalls_to_be_caught, i, iter);
8277 i++)
8278 {
8279 struct syscall s;
8280 get_syscall_by_number (iter, &s);
8281
8282 if (s.name)
8283 printf_filtered (" '%s' [%d]", s.name, s.number);
8284 else
8285 printf_filtered (" %d", s.number);
8286 }
8287 printf_filtered (")");
8288 }
8289 else
8290 printf_filtered (_("Catchpoint %d (any syscall)"),
8291 b->number);
8292 }
8293
8294 /* Implement the "print_recreate" breakpoint_ops method for syscall
8295 catchpoints. */
8296
8297 static void
8298 print_recreate_catch_syscall (struct breakpoint *b, struct ui_file *fp)
8299 {
8300 struct syscall_catchpoint *c = (struct syscall_catchpoint *) b;
8301
8302 fprintf_unfiltered (fp, "catch syscall");
8303
8304 if (c->syscalls_to_be_caught)
8305 {
8306 int i, iter;
8307
8308 for (i = 0;
8309 VEC_iterate (int, c->syscalls_to_be_caught, i, iter);
8310 i++)
8311 {
8312 struct syscall s;
8313
8314 get_syscall_by_number (iter, &s);
8315 if (s.name)
8316 fprintf_unfiltered (fp, " %s", s.name);
8317 else
8318 fprintf_unfiltered (fp, " %d", s.number);
8319 }
8320 }
8321 print_recreate_thread (b, fp);
8322 }
8323
8324 /* The breakpoint_ops structure to be used in syscall catchpoints. */
8325
8326 static struct breakpoint_ops catch_syscall_breakpoint_ops;
8327
8328 /* Returns non-zero if 'b' is a syscall catchpoint. */
8329
8330 static int
8331 syscall_catchpoint_p (struct breakpoint *b)
8332 {
8333 return (b->ops == &catch_syscall_breakpoint_ops);
8334 }
8335
8336 /* Initialize a new breakpoint of the bp_catchpoint kind. If TEMPFLAG
8337 is non-zero, then make the breakpoint temporary. If COND_STRING is
8338 not NULL, then store it in the breakpoint. OPS, if not NULL, is
8339 the breakpoint_ops structure associated to the catchpoint. */
8340
8341 static void
8342 init_catchpoint (struct breakpoint *b,
8343 struct gdbarch *gdbarch, int tempflag,
8344 char *cond_string,
8345 const struct breakpoint_ops *ops)
8346 {
8347 struct symtab_and_line sal;
8348
8349 init_sal (&sal);
8350 sal.pspace = current_program_space;
8351
8352 init_raw_breakpoint (b, gdbarch, sal, bp_catchpoint, ops);
8353
8354 b->cond_string = (cond_string == NULL) ? NULL : xstrdup (cond_string);
8355 b->disposition = tempflag ? disp_del : disp_donttouch;
8356 }
8357
8358 void
8359 install_breakpoint (int internal, struct breakpoint *b, int update_gll)
8360 {
8361 add_to_breakpoint_chain (b);
8362 set_breakpoint_number (internal, b);
8363 if (is_tracepoint (b))
8364 set_tracepoint_count (breakpoint_count);
8365 if (!internal)
8366 mention (b);
8367 observer_notify_breakpoint_created (b);
8368
8369 if (update_gll)
8370 update_global_location_list (1);
8371 }
8372
8373 static void
8374 create_fork_vfork_event_catchpoint (struct gdbarch *gdbarch,
8375 int tempflag, char *cond_string,
8376 const struct breakpoint_ops *ops)
8377 {
8378 struct fork_catchpoint *c = XNEW (struct fork_catchpoint);
8379
8380 init_catchpoint (&c->base, gdbarch, tempflag, cond_string, ops);
8381
8382 c->forked_inferior_pid = null_ptid;
8383
8384 install_breakpoint (0, &c->base, 1);
8385 }
8386
8387 /* Exec catchpoints. */
8388
8389 /* An instance of this type is used to represent an exec catchpoint.
8390 It includes a "struct breakpoint" as a kind of base class; users
8391 downcast to "struct breakpoint *" when needed. A breakpoint is
8392 really of this type iff its ops pointer points to
8393 CATCH_EXEC_BREAKPOINT_OPS. */
8394
8395 struct exec_catchpoint
8396 {
8397 /* The base class. */
8398 struct breakpoint base;
8399
8400 /* Filename of a program whose exec triggered this catchpoint.
8401 This field is only valid immediately after this catchpoint has
8402 triggered. */
8403 char *exec_pathname;
8404 };
8405
8406 /* Implement the "dtor" breakpoint_ops method for exec
8407 catchpoints. */
8408
8409 static void
8410 dtor_catch_exec (struct breakpoint *b)
8411 {
8412 struct exec_catchpoint *c = (struct exec_catchpoint *) b;
8413
8414 xfree (c->exec_pathname);
8415
8416 base_breakpoint_ops.dtor (b);
8417 }
8418
8419 static int
8420 insert_catch_exec (struct bp_location *bl)
8421 {
8422 return target_insert_exec_catchpoint (PIDGET (inferior_ptid));
8423 }
8424
8425 static int
8426 remove_catch_exec (struct bp_location *bl)
8427 {
8428 return target_remove_exec_catchpoint (PIDGET (inferior_ptid));
8429 }
8430
8431 static int
8432 breakpoint_hit_catch_exec (const struct bp_location *bl,
8433 struct address_space *aspace, CORE_ADDR bp_addr,
8434 const struct target_waitstatus *ws)
8435 {
8436 struct exec_catchpoint *c = (struct exec_catchpoint *) bl->owner;
8437
8438 if (ws->kind != TARGET_WAITKIND_EXECD)
8439 return 0;
8440
8441 c->exec_pathname = xstrdup (ws->value.execd_pathname);
8442 return 1;
8443 }
8444
8445 static enum print_stop_action
8446 print_it_catch_exec (bpstat bs)
8447 {
8448 struct ui_out *uiout = current_uiout;
8449 struct breakpoint *b = bs->breakpoint_at;
8450 struct exec_catchpoint *c = (struct exec_catchpoint *) b;
8451
8452 annotate_catchpoint (b->number);
8453 if (b->disposition == disp_del)
8454 ui_out_text (uiout, "\nTemporary catchpoint ");
8455 else
8456 ui_out_text (uiout, "\nCatchpoint ");
8457 if (ui_out_is_mi_like_p (uiout))
8458 {
8459 ui_out_field_string (uiout, "reason",
8460 async_reason_lookup (EXEC_ASYNC_EXEC));
8461 ui_out_field_string (uiout, "disp", bpdisp_text (b->disposition));
8462 }
8463 ui_out_field_int (uiout, "bkptno", b->number);
8464 ui_out_text (uiout, " (exec'd ");
8465 ui_out_field_string (uiout, "new-exec", c->exec_pathname);
8466 ui_out_text (uiout, "), ");
8467
8468 return PRINT_SRC_AND_LOC;
8469 }
8470
8471 static void
8472 print_one_catch_exec (struct breakpoint *b, struct bp_location **last_loc)
8473 {
8474 struct exec_catchpoint *c = (struct exec_catchpoint *) b;
8475 struct value_print_options opts;
8476 struct ui_out *uiout = current_uiout;
8477
8478 get_user_print_options (&opts);
8479
8480 /* Field 4, the address, is omitted (which makes the columns
8481 not line up too nicely with the headers, but the effect
8482 is relatively readable). */
8483 if (opts.addressprint)
8484 ui_out_field_skip (uiout, "addr");
8485 annotate_field (5);
8486 ui_out_text (uiout, "exec");
8487 if (c->exec_pathname != NULL)
8488 {
8489 ui_out_text (uiout, ", program \"");
8490 ui_out_field_string (uiout, "what", c->exec_pathname);
8491 ui_out_text (uiout, "\" ");
8492 }
8493 }
8494
8495 static void
8496 print_mention_catch_exec (struct breakpoint *b)
8497 {
8498 printf_filtered (_("Catchpoint %d (exec)"), b->number);
8499 }
8500
8501 /* Implement the "print_recreate" breakpoint_ops method for exec
8502 catchpoints. */
8503
8504 static void
8505 print_recreate_catch_exec (struct breakpoint *b, struct ui_file *fp)
8506 {
8507 fprintf_unfiltered (fp, "catch exec");
8508 print_recreate_thread (b, fp);
8509 }
8510
8511 static struct breakpoint_ops catch_exec_breakpoint_ops;
8512
8513 static void
8514 create_syscall_event_catchpoint (int tempflag, VEC(int) *filter,
8515 const struct breakpoint_ops *ops)
8516 {
8517 struct syscall_catchpoint *c;
8518 struct gdbarch *gdbarch = get_current_arch ();
8519
8520 c = XNEW (struct syscall_catchpoint);
8521 init_catchpoint (&c->base, gdbarch, tempflag, NULL, ops);
8522 c->syscalls_to_be_caught = filter;
8523
8524 install_breakpoint (0, &c->base, 1);
8525 }
8526
8527 static int
8528 hw_breakpoint_used_count (void)
8529 {
8530 int i = 0;
8531 struct breakpoint *b;
8532 struct bp_location *bl;
8533
8534 ALL_BREAKPOINTS (b)
8535 {
8536 if (b->type == bp_hardware_breakpoint && breakpoint_enabled (b))
8537 for (bl = b->loc; bl; bl = bl->next)
8538 {
8539 /* Special types of hardware breakpoints may use more than
8540 one register. */
8541 i += b->ops->resources_needed (bl);
8542 }
8543 }
8544
8545 return i;
8546 }
8547
8548 /* Returns the resources B would use if it were a hardware
8549 watchpoint. */
8550
8551 static int
8552 hw_watchpoint_use_count (struct breakpoint *b)
8553 {
8554 int i = 0;
8555 struct bp_location *bl;
8556
8557 if (!breakpoint_enabled (b))
8558 return 0;
8559
8560 for (bl = b->loc; bl; bl = bl->next)
8561 {
8562 /* Special types of hardware watchpoints may use more than
8563 one register. */
8564 i += b->ops->resources_needed (bl);
8565 }
8566
8567 return i;
8568 }
8569
8570 /* Returns the sum the used resources of all hardware watchpoints of
8571 type TYPE in the breakpoints list. Also returns in OTHER_TYPE_USED
8572 the sum of the used resources of all hardware watchpoints of other
8573 types _not_ TYPE. */
8574
8575 static int
8576 hw_watchpoint_used_count_others (struct breakpoint *except,
8577 enum bptype type, int *other_type_used)
8578 {
8579 int i = 0;
8580 struct breakpoint *b;
8581
8582 *other_type_used = 0;
8583 ALL_BREAKPOINTS (b)
8584 {
8585 if (b == except)
8586 continue;
8587 if (!breakpoint_enabled (b))
8588 continue;
8589
8590 if (b->type == type)
8591 i += hw_watchpoint_use_count (b);
8592 else if (is_hardware_watchpoint (b))
8593 *other_type_used = 1;
8594 }
8595
8596 return i;
8597 }
8598
8599 void
8600 disable_watchpoints_before_interactive_call_start (void)
8601 {
8602 struct breakpoint *b;
8603
8604 ALL_BREAKPOINTS (b)
8605 {
8606 if (is_watchpoint (b) && breakpoint_enabled (b))
8607 {
8608 b->enable_state = bp_call_disabled;
8609 update_global_location_list (0);
8610 }
8611 }
8612 }
8613
8614 void
8615 enable_watchpoints_after_interactive_call_stop (void)
8616 {
8617 struct breakpoint *b;
8618
8619 ALL_BREAKPOINTS (b)
8620 {
8621 if (is_watchpoint (b) && b->enable_state == bp_call_disabled)
8622 {
8623 b->enable_state = bp_enabled;
8624 update_global_location_list (1);
8625 }
8626 }
8627 }
8628
8629 void
8630 disable_breakpoints_before_startup (void)
8631 {
8632 current_program_space->executing_startup = 1;
8633 update_global_location_list (0);
8634 }
8635
8636 void
8637 enable_breakpoints_after_startup (void)
8638 {
8639 current_program_space->executing_startup = 0;
8640 breakpoint_re_set ();
8641 }
8642
8643
8644 /* Set a breakpoint that will evaporate an end of command
8645 at address specified by SAL.
8646 Restrict it to frame FRAME if FRAME is nonzero. */
8647
8648 struct breakpoint *
8649 set_momentary_breakpoint (struct gdbarch *gdbarch, struct symtab_and_line sal,
8650 struct frame_id frame_id, enum bptype type)
8651 {
8652 struct breakpoint *b;
8653
8654 /* If FRAME_ID is valid, it should be a real frame, not an inlined or
8655 tail-called one. */
8656 gdb_assert (!frame_id_artificial_p (frame_id));
8657
8658 b = set_raw_breakpoint (gdbarch, sal, type, &momentary_breakpoint_ops);
8659 b->enable_state = bp_enabled;
8660 b->disposition = disp_donttouch;
8661 b->frame_id = frame_id;
8662
8663 /* If we're debugging a multi-threaded program, then we want
8664 momentary breakpoints to be active in only a single thread of
8665 control. */
8666 if (in_thread_list (inferior_ptid))
8667 b->thread = pid_to_thread_id (inferior_ptid);
8668
8669 update_global_location_list_nothrow (1);
8670
8671 return b;
8672 }
8673
8674 /* Make a momentary breakpoint based on the master breakpoint ORIG.
8675 The new breakpoint will have type TYPE, and use OPS as it
8676 breakpoint_ops. */
8677
8678 static struct breakpoint *
8679 momentary_breakpoint_from_master (struct breakpoint *orig,
8680 enum bptype type,
8681 const struct breakpoint_ops *ops)
8682 {
8683 struct breakpoint *copy;
8684
8685 copy = set_raw_breakpoint_without_location (orig->gdbarch, type, ops);
8686 copy->loc = allocate_bp_location (copy);
8687 set_breakpoint_location_function (copy->loc, 1);
8688
8689 copy->loc->gdbarch = orig->loc->gdbarch;
8690 copy->loc->requested_address = orig->loc->requested_address;
8691 copy->loc->address = orig->loc->address;
8692 copy->loc->section = orig->loc->section;
8693 copy->loc->pspace = orig->loc->pspace;
8694 copy->loc->probe = orig->loc->probe;
8695
8696 if (orig->loc->source_file != NULL)
8697 copy->loc->source_file = xstrdup (orig->loc->source_file);
8698
8699 copy->loc->line_number = orig->loc->line_number;
8700 copy->frame_id = orig->frame_id;
8701 copy->thread = orig->thread;
8702 copy->pspace = orig->pspace;
8703
8704 copy->enable_state = bp_enabled;
8705 copy->disposition = disp_donttouch;
8706 copy->number = internal_breakpoint_number--;
8707
8708 update_global_location_list_nothrow (0);
8709 return copy;
8710 }
8711
8712 /* Make a deep copy of momentary breakpoint ORIG. Returns NULL if
8713 ORIG is NULL. */
8714
8715 struct breakpoint *
8716 clone_momentary_breakpoint (struct breakpoint *orig)
8717 {
8718 /* If there's nothing to clone, then return nothing. */
8719 if (orig == NULL)
8720 return NULL;
8721
8722 return momentary_breakpoint_from_master (orig, orig->type, orig->ops);
8723 }
8724
8725 struct breakpoint *
8726 set_momentary_breakpoint_at_pc (struct gdbarch *gdbarch, CORE_ADDR pc,
8727 enum bptype type)
8728 {
8729 struct symtab_and_line sal;
8730
8731 sal = find_pc_line (pc, 0);
8732 sal.pc = pc;
8733 sal.section = find_pc_overlay (pc);
8734 sal.explicit_pc = 1;
8735
8736 return set_momentary_breakpoint (gdbarch, sal, null_frame_id, type);
8737 }
8738 \f
8739
8740 /* Tell the user we have just set a breakpoint B. */
8741
8742 static void
8743 mention (struct breakpoint *b)
8744 {
8745 b->ops->print_mention (b);
8746 if (ui_out_is_mi_like_p (current_uiout))
8747 return;
8748 printf_filtered ("\n");
8749 }
8750 \f
8751
8752 static struct bp_location *
8753 add_location_to_breakpoint (struct breakpoint *b,
8754 const struct symtab_and_line *sal)
8755 {
8756 struct bp_location *loc, **tmp;
8757 CORE_ADDR adjusted_address;
8758 struct gdbarch *loc_gdbarch = get_sal_arch (*sal);
8759
8760 if (loc_gdbarch == NULL)
8761 loc_gdbarch = b->gdbarch;
8762
8763 /* Adjust the breakpoint's address prior to allocating a location.
8764 Once we call allocate_bp_location(), that mostly uninitialized
8765 location will be placed on the location chain. Adjustment of the
8766 breakpoint may cause target_read_memory() to be called and we do
8767 not want its scan of the location chain to find a breakpoint and
8768 location that's only been partially initialized. */
8769 adjusted_address = adjust_breakpoint_address (loc_gdbarch,
8770 sal->pc, b->type);
8771
8772 loc = allocate_bp_location (b);
8773 for (tmp = &(b->loc); *tmp != NULL; tmp = &((*tmp)->next))
8774 ;
8775 *tmp = loc;
8776
8777 loc->requested_address = sal->pc;
8778 loc->address = adjusted_address;
8779 loc->pspace = sal->pspace;
8780 loc->probe = sal->probe;
8781 gdb_assert (loc->pspace != NULL);
8782 loc->section = sal->section;
8783 loc->gdbarch = loc_gdbarch;
8784
8785 if (sal->symtab != NULL)
8786 loc->source_file = xstrdup (sal->symtab->filename);
8787 loc->line_number = sal->line;
8788
8789 set_breakpoint_location_function (loc,
8790 sal->explicit_pc || sal->explicit_line);
8791 return loc;
8792 }
8793 \f
8794
8795 /* Return 1 if LOC is pointing to a permanent breakpoint,
8796 return 0 otherwise. */
8797
8798 static int
8799 bp_loc_is_permanent (struct bp_location *loc)
8800 {
8801 int len;
8802 CORE_ADDR addr;
8803 const gdb_byte *bpoint;
8804 gdb_byte *target_mem;
8805 struct cleanup *cleanup;
8806 int retval = 0;
8807
8808 gdb_assert (loc != NULL);
8809
8810 addr = loc->address;
8811 bpoint = gdbarch_breakpoint_from_pc (loc->gdbarch, &addr, &len);
8812
8813 /* Software breakpoints unsupported? */
8814 if (bpoint == NULL)
8815 return 0;
8816
8817 target_mem = alloca (len);
8818
8819 /* Enable the automatic memory restoration from breakpoints while
8820 we read the memory. Otherwise we could say about our temporary
8821 breakpoints they are permanent. */
8822 cleanup = save_current_space_and_thread ();
8823
8824 switch_to_program_space_and_thread (loc->pspace);
8825 make_show_memory_breakpoints_cleanup (0);
8826
8827 if (target_read_memory (loc->address, target_mem, len) == 0
8828 && memcmp (target_mem, bpoint, len) == 0)
8829 retval = 1;
8830
8831 do_cleanups (cleanup);
8832
8833 return retval;
8834 }
8835
8836 /* Build a command list for the dprintf corresponding to the current
8837 settings of the dprintf style options. */
8838
8839 static void
8840 update_dprintf_command_list (struct breakpoint *b)
8841 {
8842 char *dprintf_args = b->extra_string;
8843 char *printf_line = NULL;
8844
8845 if (!dprintf_args)
8846 return;
8847
8848 dprintf_args = skip_spaces (dprintf_args);
8849
8850 /* Allow a comma, as it may have terminated a location, but don't
8851 insist on it. */
8852 if (*dprintf_args == ',')
8853 ++dprintf_args;
8854 dprintf_args = skip_spaces (dprintf_args);
8855
8856 if (*dprintf_args != '"')
8857 error (_("Bad format string, missing '\"'."));
8858
8859 if (strcmp (dprintf_style, dprintf_style_gdb) == 0)
8860 printf_line = xstrprintf ("printf %s", dprintf_args);
8861 else if (strcmp (dprintf_style, dprintf_style_call) == 0)
8862 {
8863 if (!dprintf_function)
8864 error (_("No function supplied for dprintf call"));
8865
8866 if (dprintf_channel && strlen (dprintf_channel) > 0)
8867 printf_line = xstrprintf ("call (void) %s (%s,%s)",
8868 dprintf_function,
8869 dprintf_channel,
8870 dprintf_args);
8871 else
8872 printf_line = xstrprintf ("call (void) %s (%s)",
8873 dprintf_function,
8874 dprintf_args);
8875 }
8876 else if (strcmp (dprintf_style, dprintf_style_agent) == 0)
8877 {
8878 if (target_can_run_breakpoint_commands ())
8879 printf_line = xstrprintf ("agent-printf %s", dprintf_args);
8880 else
8881 {
8882 warning (_("Target cannot run dprintf commands, falling back to GDB printf"));
8883 printf_line = xstrprintf ("printf %s", dprintf_args);
8884 }
8885 }
8886 else
8887 internal_error (__FILE__, __LINE__,
8888 _("Invalid dprintf style."));
8889
8890 /* Manufacture a printf/continue sequence. */
8891 if (printf_line)
8892 {
8893 struct command_line *printf_cmd_line, *cont_cmd_line = NULL;
8894
8895 if (strcmp (dprintf_style, dprintf_style_agent) != 0)
8896 {
8897 cont_cmd_line = xmalloc (sizeof (struct command_line));
8898 cont_cmd_line->control_type = simple_control;
8899 cont_cmd_line->body_count = 0;
8900 cont_cmd_line->body_list = NULL;
8901 cont_cmd_line->next = NULL;
8902 cont_cmd_line->line = xstrdup ("continue");
8903 }
8904
8905 printf_cmd_line = xmalloc (sizeof (struct command_line));
8906 printf_cmd_line->control_type = simple_control;
8907 printf_cmd_line->body_count = 0;
8908 printf_cmd_line->body_list = NULL;
8909 printf_cmd_line->next = cont_cmd_line;
8910 printf_cmd_line->line = printf_line;
8911
8912 breakpoint_set_commands (b, printf_cmd_line);
8913 }
8914 }
8915
8916 /* Update all dprintf commands, making their command lists reflect
8917 current style settings. */
8918
8919 static void
8920 update_dprintf_commands (char *args, int from_tty,
8921 struct cmd_list_element *c)
8922 {
8923 struct breakpoint *b;
8924
8925 ALL_BREAKPOINTS (b)
8926 {
8927 if (b->type == bp_dprintf)
8928 update_dprintf_command_list (b);
8929 }
8930 }
8931
8932 /* Create a breakpoint with SAL as location. Use ADDR_STRING
8933 as textual description of the location, and COND_STRING
8934 as condition expression. */
8935
8936 static void
8937 init_breakpoint_sal (struct breakpoint *b, struct gdbarch *gdbarch,
8938 struct symtabs_and_lines sals, char *addr_string,
8939 char *filter, char *cond_string,
8940 char *extra_string,
8941 enum bptype type, enum bpdisp disposition,
8942 int thread, int task, int ignore_count,
8943 const struct breakpoint_ops *ops, int from_tty,
8944 int enabled, int internal, unsigned flags,
8945 int display_canonical)
8946 {
8947 int i;
8948
8949 if (type == bp_hardware_breakpoint)
8950 {
8951 int target_resources_ok;
8952
8953 i = hw_breakpoint_used_count ();
8954 target_resources_ok =
8955 target_can_use_hardware_watchpoint (bp_hardware_breakpoint,
8956 i + 1, 0);
8957 if (target_resources_ok == 0)
8958 error (_("No hardware breakpoint support in the target."));
8959 else if (target_resources_ok < 0)
8960 error (_("Hardware breakpoints used exceeds limit."));
8961 }
8962
8963 gdb_assert (sals.nelts > 0);
8964
8965 for (i = 0; i < sals.nelts; ++i)
8966 {
8967 struct symtab_and_line sal = sals.sals[i];
8968 struct bp_location *loc;
8969
8970 if (from_tty)
8971 {
8972 struct gdbarch *loc_gdbarch = get_sal_arch (sal);
8973 if (!loc_gdbarch)
8974 loc_gdbarch = gdbarch;
8975
8976 describe_other_breakpoints (loc_gdbarch,
8977 sal.pspace, sal.pc, sal.section, thread);
8978 }
8979
8980 if (i == 0)
8981 {
8982 init_raw_breakpoint (b, gdbarch, sal, type, ops);
8983 b->thread = thread;
8984 b->task = task;
8985
8986 b->cond_string = cond_string;
8987 b->extra_string = extra_string;
8988 b->ignore_count = ignore_count;
8989 b->enable_state = enabled ? bp_enabled : bp_disabled;
8990 b->disposition = disposition;
8991
8992 if ((flags & CREATE_BREAKPOINT_FLAGS_INSERTED) != 0)
8993 b->loc->inserted = 1;
8994
8995 if (type == bp_static_tracepoint)
8996 {
8997 struct tracepoint *t = (struct tracepoint *) b;
8998 struct static_tracepoint_marker marker;
8999
9000 if (strace_marker_p (b))
9001 {
9002 /* We already know the marker exists, otherwise, we
9003 wouldn't see a sal for it. */
9004 char *p = &addr_string[3];
9005 char *endp;
9006 char *marker_str;
9007
9008 p = skip_spaces (p);
9009
9010 endp = skip_to_space (p);
9011
9012 marker_str = savestring (p, endp - p);
9013 t->static_trace_marker_id = marker_str;
9014
9015 printf_filtered (_("Probed static tracepoint "
9016 "marker \"%s\"\n"),
9017 t->static_trace_marker_id);
9018 }
9019 else if (target_static_tracepoint_marker_at (sal.pc, &marker))
9020 {
9021 t->static_trace_marker_id = xstrdup (marker.str_id);
9022 release_static_tracepoint_marker (&marker);
9023
9024 printf_filtered (_("Probed static tracepoint "
9025 "marker \"%s\"\n"),
9026 t->static_trace_marker_id);
9027 }
9028 else
9029 warning (_("Couldn't determine the static "
9030 "tracepoint marker to probe"));
9031 }
9032
9033 loc = b->loc;
9034 }
9035 else
9036 {
9037 loc = add_location_to_breakpoint (b, &sal);
9038 if ((flags & CREATE_BREAKPOINT_FLAGS_INSERTED) != 0)
9039 loc->inserted = 1;
9040 }
9041
9042 if (bp_loc_is_permanent (loc))
9043 make_breakpoint_permanent (b);
9044
9045 if (b->cond_string)
9046 {
9047 char *arg = b->cond_string;
9048 loc->cond = parse_exp_1 (&arg, loc->address,
9049 block_for_pc (loc->address), 0);
9050 if (*arg)
9051 error (_("Garbage '%s' follows condition"), arg);
9052 }
9053
9054 /* Dynamic printf requires and uses additional arguments on the
9055 command line, otherwise it's an error. */
9056 if (type == bp_dprintf)
9057 {
9058 if (b->extra_string)
9059 update_dprintf_command_list (b);
9060 else
9061 error (_("Format string required"));
9062 }
9063 else if (b->extra_string)
9064 error (_("Garbage '%s' at end of command"), b->extra_string);
9065 }
9066
9067 b->display_canonical = display_canonical;
9068 if (addr_string)
9069 b->addr_string = addr_string;
9070 else
9071 /* addr_string has to be used or breakpoint_re_set will delete
9072 me. */
9073 b->addr_string
9074 = xstrprintf ("*%s", paddress (b->loc->gdbarch, b->loc->address));
9075 b->filter = filter;
9076 }
9077
9078 static void
9079 create_breakpoint_sal (struct gdbarch *gdbarch,
9080 struct symtabs_and_lines sals, char *addr_string,
9081 char *filter, char *cond_string,
9082 char *extra_string,
9083 enum bptype type, enum bpdisp disposition,
9084 int thread, int task, int ignore_count,
9085 const struct breakpoint_ops *ops, int from_tty,
9086 int enabled, int internal, unsigned flags,
9087 int display_canonical)
9088 {
9089 struct breakpoint *b;
9090 struct cleanup *old_chain;
9091
9092 if (is_tracepoint_type (type))
9093 {
9094 struct tracepoint *t;
9095
9096 t = XCNEW (struct tracepoint);
9097 b = &t->base;
9098 }
9099 else
9100 b = XNEW (struct breakpoint);
9101
9102 old_chain = make_cleanup (xfree, b);
9103
9104 init_breakpoint_sal (b, gdbarch,
9105 sals, addr_string,
9106 filter, cond_string, extra_string,
9107 type, disposition,
9108 thread, task, ignore_count,
9109 ops, from_tty,
9110 enabled, internal, flags,
9111 display_canonical);
9112 discard_cleanups (old_chain);
9113
9114 install_breakpoint (internal, b, 0);
9115 }
9116
9117 /* Add SALS.nelts breakpoints to the breakpoint table. For each
9118 SALS.sal[i] breakpoint, include the corresponding ADDR_STRING[i]
9119 value. COND_STRING, if not NULL, specified the condition to be
9120 used for all breakpoints. Essentially the only case where
9121 SALS.nelts is not 1 is when we set a breakpoint on an overloaded
9122 function. In that case, it's still not possible to specify
9123 separate conditions for different overloaded functions, so
9124 we take just a single condition string.
9125
9126 NOTE: If the function succeeds, the caller is expected to cleanup
9127 the arrays ADDR_STRING, COND_STRING, and SALS (but not the
9128 array contents). If the function fails (error() is called), the
9129 caller is expected to cleanups both the ADDR_STRING, COND_STRING,
9130 COND and SALS arrays and each of those arrays contents. */
9131
9132 static void
9133 create_breakpoints_sal (struct gdbarch *gdbarch,
9134 struct linespec_result *canonical,
9135 char *cond_string, char *extra_string,
9136 enum bptype type, enum bpdisp disposition,
9137 int thread, int task, int ignore_count,
9138 const struct breakpoint_ops *ops, int from_tty,
9139 int enabled, int internal, unsigned flags)
9140 {
9141 int i;
9142 struct linespec_sals *lsal;
9143
9144 if (canonical->pre_expanded)
9145 gdb_assert (VEC_length (linespec_sals, canonical->sals) == 1);
9146
9147 for (i = 0; VEC_iterate (linespec_sals, canonical->sals, i, lsal); ++i)
9148 {
9149 /* Note that 'addr_string' can be NULL in the case of a plain
9150 'break', without arguments. */
9151 char *addr_string = (canonical->addr_string
9152 ? xstrdup (canonical->addr_string)
9153 : NULL);
9154 char *filter_string = lsal->canonical ? xstrdup (lsal->canonical) : NULL;
9155 struct cleanup *inner = make_cleanup (xfree, addr_string);
9156
9157 make_cleanup (xfree, filter_string);
9158 create_breakpoint_sal (gdbarch, lsal->sals,
9159 addr_string,
9160 filter_string,
9161 cond_string, extra_string,
9162 type, disposition,
9163 thread, task, ignore_count, ops,
9164 from_tty, enabled, internal, flags,
9165 canonical->special_display);
9166 discard_cleanups (inner);
9167 }
9168 }
9169
9170 /* Parse ADDRESS which is assumed to be a SAL specification possibly
9171 followed by conditionals. On return, SALS contains an array of SAL
9172 addresses found. ADDR_STRING contains a vector of (canonical)
9173 address strings. ADDRESS points to the end of the SAL.
9174
9175 The array and the line spec strings are allocated on the heap, it is
9176 the caller's responsibility to free them. */
9177
9178 static void
9179 parse_breakpoint_sals (char **address,
9180 struct linespec_result *canonical)
9181 {
9182 /* If no arg given, or if first arg is 'if ', use the default
9183 breakpoint. */
9184 if ((*address) == NULL
9185 || (strncmp ((*address), "if", 2) == 0 && isspace ((*address)[2])))
9186 {
9187 /* The last displayed codepoint, if it's valid, is our default breakpoint
9188 address. */
9189 if (last_displayed_sal_is_valid ())
9190 {
9191 struct linespec_sals lsal;
9192 struct symtab_and_line sal;
9193 CORE_ADDR pc;
9194
9195 init_sal (&sal); /* Initialize to zeroes. */
9196 lsal.sals.sals = (struct symtab_and_line *)
9197 xmalloc (sizeof (struct symtab_and_line));
9198
9199 /* Set sal's pspace, pc, symtab, and line to the values
9200 corresponding to the last call to print_frame_info.
9201 Be sure to reinitialize LINE with NOTCURRENT == 0
9202 as the breakpoint line number is inappropriate otherwise.
9203 find_pc_line would adjust PC, re-set it back. */
9204 get_last_displayed_sal (&sal);
9205 pc = sal.pc;
9206 sal = find_pc_line (pc, 0);
9207
9208 /* "break" without arguments is equivalent to "break *PC"
9209 where PC is the last displayed codepoint's address. So
9210 make sure to set sal.explicit_pc to prevent GDB from
9211 trying to expand the list of sals to include all other
9212 instances with the same symtab and line. */
9213 sal.pc = pc;
9214 sal.explicit_pc = 1;
9215
9216 lsal.sals.sals[0] = sal;
9217 lsal.sals.nelts = 1;
9218 lsal.canonical = NULL;
9219
9220 VEC_safe_push (linespec_sals, canonical->sals, &lsal);
9221 }
9222 else
9223 error (_("No default breakpoint address now."));
9224 }
9225 else
9226 {
9227 struct symtab_and_line cursal = get_current_source_symtab_and_line ();
9228
9229 /* Force almost all breakpoints to be in terms of the
9230 current_source_symtab (which is decode_line_1's default).
9231 This should produce the results we want almost all of the
9232 time while leaving default_breakpoint_* alone.
9233
9234 ObjC: However, don't match an Objective-C method name which
9235 may have a '+' or '-' succeeded by a '['. */
9236 if (last_displayed_sal_is_valid ()
9237 && (!cursal.symtab
9238 || ((strchr ("+-", (*address)[0]) != NULL)
9239 && ((*address)[1] != '['))))
9240 decode_line_full (address, DECODE_LINE_FUNFIRSTLINE,
9241 get_last_displayed_symtab (),
9242 get_last_displayed_line (),
9243 canonical, NULL, NULL);
9244 else
9245 decode_line_full (address, DECODE_LINE_FUNFIRSTLINE,
9246 cursal.symtab, cursal.line, canonical, NULL, NULL);
9247 }
9248 }
9249
9250
9251 /* Convert each SAL into a real PC. Verify that the PC can be
9252 inserted as a breakpoint. If it can't throw an error. */
9253
9254 static void
9255 breakpoint_sals_to_pc (struct symtabs_and_lines *sals)
9256 {
9257 int i;
9258
9259 for (i = 0; i < sals->nelts; i++)
9260 resolve_sal_pc (&sals->sals[i]);
9261 }
9262
9263 /* Fast tracepoints may have restrictions on valid locations. For
9264 instance, a fast tracepoint using a jump instead of a trap will
9265 likely have to overwrite more bytes than a trap would, and so can
9266 only be placed where the instruction is longer than the jump, or a
9267 multi-instruction sequence does not have a jump into the middle of
9268 it, etc. */
9269
9270 static void
9271 check_fast_tracepoint_sals (struct gdbarch *gdbarch,
9272 struct symtabs_and_lines *sals)
9273 {
9274 int i, rslt;
9275 struct symtab_and_line *sal;
9276 char *msg;
9277 struct cleanup *old_chain;
9278
9279 for (i = 0; i < sals->nelts; i++)
9280 {
9281 struct gdbarch *sarch;
9282
9283 sal = &sals->sals[i];
9284
9285 sarch = get_sal_arch (*sal);
9286 /* We fall back to GDBARCH if there is no architecture
9287 associated with SAL. */
9288 if (sarch == NULL)
9289 sarch = gdbarch;
9290 rslt = gdbarch_fast_tracepoint_valid_at (sarch, sal->pc,
9291 NULL, &msg);
9292 old_chain = make_cleanup (xfree, msg);
9293
9294 if (!rslt)
9295 error (_("May not have a fast tracepoint at 0x%s%s"),
9296 paddress (sarch, sal->pc), (msg ? msg : ""));
9297
9298 do_cleanups (old_chain);
9299 }
9300 }
9301
9302 /* Issue an invalid thread ID error. */
9303
9304 static void ATTRIBUTE_NORETURN
9305 invalid_thread_id_error (int id)
9306 {
9307 error (_("Unknown thread %d."), id);
9308 }
9309
9310 /* Given TOK, a string specification of condition and thread, as
9311 accepted by the 'break' command, extract the condition
9312 string and thread number and set *COND_STRING and *THREAD.
9313 PC identifies the context at which the condition should be parsed.
9314 If no condition is found, *COND_STRING is set to NULL.
9315 If no thread is found, *THREAD is set to -1. */
9316
9317 static void
9318 find_condition_and_thread (char *tok, CORE_ADDR pc,
9319 char **cond_string, int *thread, int *task,
9320 char **rest)
9321 {
9322 *cond_string = NULL;
9323 *thread = -1;
9324 *task = 0;
9325 *rest = NULL;
9326
9327 while (tok && *tok)
9328 {
9329 char *end_tok;
9330 int toklen;
9331 char *cond_start = NULL;
9332 char *cond_end = NULL;
9333
9334 tok = skip_spaces (tok);
9335
9336 if ((*tok == '"' || *tok == ',') && rest)
9337 {
9338 *rest = savestring (tok, strlen (tok));
9339 return;
9340 }
9341
9342 end_tok = skip_to_space (tok);
9343
9344 toklen = end_tok - tok;
9345
9346 if (toklen >= 1 && strncmp (tok, "if", toklen) == 0)
9347 {
9348 struct expression *expr;
9349
9350 tok = cond_start = end_tok + 1;
9351 expr = parse_exp_1 (&tok, pc, block_for_pc (pc), 0);
9352 xfree (expr);
9353 cond_end = tok;
9354 *cond_string = savestring (cond_start, cond_end - cond_start);
9355 }
9356 else if (toklen >= 1 && strncmp (tok, "thread", toklen) == 0)
9357 {
9358 char *tmptok;
9359
9360 tok = end_tok + 1;
9361 tmptok = tok;
9362 *thread = strtol (tok, &tok, 0);
9363 if (tok == tmptok)
9364 error (_("Junk after thread keyword."));
9365 if (!valid_thread_id (*thread))
9366 invalid_thread_id_error (*thread);
9367 }
9368 else if (toklen >= 1 && strncmp (tok, "task", toklen) == 0)
9369 {
9370 char *tmptok;
9371
9372 tok = end_tok + 1;
9373 tmptok = tok;
9374 *task = strtol (tok, &tok, 0);
9375 if (tok == tmptok)
9376 error (_("Junk after task keyword."));
9377 if (!valid_task_id (*task))
9378 error (_("Unknown task %d."), *task);
9379 }
9380 else if (rest)
9381 {
9382 *rest = savestring (tok, strlen (tok));
9383 return;
9384 }
9385 else
9386 error (_("Junk at end of arguments."));
9387 }
9388 }
9389
9390 /* Decode a static tracepoint marker spec. */
9391
9392 static struct symtabs_and_lines
9393 decode_static_tracepoint_spec (char **arg_p)
9394 {
9395 VEC(static_tracepoint_marker_p) *markers = NULL;
9396 struct symtabs_and_lines sals;
9397 struct cleanup *old_chain;
9398 char *p = &(*arg_p)[3];
9399 char *endp;
9400 char *marker_str;
9401 int i;
9402
9403 p = skip_spaces (p);
9404
9405 endp = skip_to_space (p);
9406
9407 marker_str = savestring (p, endp - p);
9408 old_chain = make_cleanup (xfree, marker_str);
9409
9410 markers = target_static_tracepoint_markers_by_strid (marker_str);
9411 if (VEC_empty(static_tracepoint_marker_p, markers))
9412 error (_("No known static tracepoint marker named %s"), marker_str);
9413
9414 sals.nelts = VEC_length(static_tracepoint_marker_p, markers);
9415 sals.sals = xmalloc (sizeof *sals.sals * sals.nelts);
9416
9417 for (i = 0; i < sals.nelts; i++)
9418 {
9419 struct static_tracepoint_marker *marker;
9420
9421 marker = VEC_index (static_tracepoint_marker_p, markers, i);
9422
9423 init_sal (&sals.sals[i]);
9424
9425 sals.sals[i] = find_pc_line (marker->address, 0);
9426 sals.sals[i].pc = marker->address;
9427
9428 release_static_tracepoint_marker (marker);
9429 }
9430
9431 do_cleanups (old_chain);
9432
9433 *arg_p = endp;
9434 return sals;
9435 }
9436
9437 /* Set a breakpoint. This function is shared between CLI and MI
9438 functions for setting a breakpoint. This function has two major
9439 modes of operations, selected by the PARSE_CONDITION_AND_THREAD
9440 parameter. If non-zero, the function will parse arg, extracting
9441 breakpoint location, address and thread. Otherwise, ARG is just
9442 the location of breakpoint, with condition and thread specified by
9443 the COND_STRING and THREAD parameters. If INTERNAL is non-zero,
9444 the breakpoint number will be allocated from the internal
9445 breakpoint count. Returns true if any breakpoint was created;
9446 false otherwise. */
9447
9448 int
9449 create_breakpoint (struct gdbarch *gdbarch,
9450 char *arg, char *cond_string,
9451 int thread, char *extra_string,
9452 int parse_condition_and_thread,
9453 int tempflag, enum bptype type_wanted,
9454 int ignore_count,
9455 enum auto_boolean pending_break_support,
9456 const struct breakpoint_ops *ops,
9457 int from_tty, int enabled, int internal,
9458 unsigned flags)
9459 {
9460 volatile struct gdb_exception e;
9461 char *copy_arg = NULL;
9462 char *addr_start = arg;
9463 struct linespec_result canonical;
9464 struct cleanup *old_chain;
9465 struct cleanup *bkpt_chain = NULL;
9466 int pending = 0;
9467 int task = 0;
9468 int prev_bkpt_count = breakpoint_count;
9469
9470 gdb_assert (ops != NULL);
9471
9472 init_linespec_result (&canonical);
9473
9474 TRY_CATCH (e, RETURN_MASK_ALL)
9475 {
9476 ops->create_sals_from_address (&arg, &canonical, type_wanted,
9477 addr_start, &copy_arg);
9478 }
9479
9480 /* If caller is interested in rc value from parse, set value. */
9481 switch (e.reason)
9482 {
9483 case GDB_NO_ERROR:
9484 if (VEC_empty (linespec_sals, canonical.sals))
9485 return 0;
9486 break;
9487 case RETURN_ERROR:
9488 switch (e.error)
9489 {
9490 case NOT_FOUND_ERROR:
9491
9492 /* If pending breakpoint support is turned off, throw
9493 error. */
9494
9495 if (pending_break_support == AUTO_BOOLEAN_FALSE)
9496 throw_exception (e);
9497
9498 exception_print (gdb_stderr, e);
9499
9500 /* If pending breakpoint support is auto query and the user
9501 selects no, then simply return the error code. */
9502 if (pending_break_support == AUTO_BOOLEAN_AUTO
9503 && !nquery (_("Make %s pending on future shared library load? "),
9504 bptype_string (type_wanted)))
9505 return 0;
9506
9507 /* At this point, either the user was queried about setting
9508 a pending breakpoint and selected yes, or pending
9509 breakpoint behavior is on and thus a pending breakpoint
9510 is defaulted on behalf of the user. */
9511 {
9512 struct linespec_sals lsal;
9513
9514 copy_arg = xstrdup (addr_start);
9515 lsal.canonical = xstrdup (copy_arg);
9516 lsal.sals.nelts = 1;
9517 lsal.sals.sals = XNEW (struct symtab_and_line);
9518 init_sal (&lsal.sals.sals[0]);
9519 pending = 1;
9520 VEC_safe_push (linespec_sals, canonical.sals, &lsal);
9521 }
9522 break;
9523 default:
9524 throw_exception (e);
9525 }
9526 break;
9527 default:
9528 throw_exception (e);
9529 }
9530
9531 /* Create a chain of things that always need to be cleaned up. */
9532 old_chain = make_cleanup_destroy_linespec_result (&canonical);
9533
9534 /* ----------------------------- SNIP -----------------------------
9535 Anything added to the cleanup chain beyond this point is assumed
9536 to be part of a breakpoint. If the breakpoint create succeeds
9537 then the memory is not reclaimed. */
9538 bkpt_chain = make_cleanup (null_cleanup, 0);
9539
9540 /* Resolve all line numbers to PC's and verify that the addresses
9541 are ok for the target. */
9542 if (!pending)
9543 {
9544 int ix;
9545 struct linespec_sals *iter;
9546
9547 for (ix = 0; VEC_iterate (linespec_sals, canonical.sals, ix, iter); ++ix)
9548 breakpoint_sals_to_pc (&iter->sals);
9549 }
9550
9551 /* Fast tracepoints may have additional restrictions on location. */
9552 if (!pending && type_wanted == bp_fast_tracepoint)
9553 {
9554 int ix;
9555 struct linespec_sals *iter;
9556
9557 for (ix = 0; VEC_iterate (linespec_sals, canonical.sals, ix, iter); ++ix)
9558 check_fast_tracepoint_sals (gdbarch, &iter->sals);
9559 }
9560
9561 /* Verify that condition can be parsed, before setting any
9562 breakpoints. Allocate a separate condition expression for each
9563 breakpoint. */
9564 if (!pending)
9565 {
9566 struct linespec_sals *lsal;
9567
9568 lsal = VEC_index (linespec_sals, canonical.sals, 0);
9569
9570 if (parse_condition_and_thread)
9571 {
9572 char *rest;
9573 /* Here we only parse 'arg' to separate condition
9574 from thread number, so parsing in context of first
9575 sal is OK. When setting the breakpoint we'll
9576 re-parse it in context of each sal. */
9577
9578 find_condition_and_thread (arg, lsal->sals.sals[0].pc, &cond_string,
9579 &thread, &task, &rest);
9580 if (cond_string)
9581 make_cleanup (xfree, cond_string);
9582 if (rest)
9583 make_cleanup (xfree, rest);
9584 if (rest)
9585 extra_string = rest;
9586 }
9587 else
9588 {
9589 /* Create a private copy of condition string. */
9590 if (cond_string)
9591 {
9592 cond_string = xstrdup (cond_string);
9593 make_cleanup (xfree, cond_string);
9594 }
9595 /* Create a private copy of any extra string. */
9596 if (extra_string)
9597 {
9598 extra_string = xstrdup (extra_string);
9599 make_cleanup (xfree, extra_string);
9600 }
9601 }
9602
9603 ops->create_breakpoints_sal (gdbarch, &canonical, lsal,
9604 cond_string, extra_string, type_wanted,
9605 tempflag ? disp_del : disp_donttouch,
9606 thread, task, ignore_count, ops,
9607 from_tty, enabled, internal, flags);
9608 }
9609 else
9610 {
9611 struct breakpoint *b;
9612
9613 make_cleanup (xfree, copy_arg);
9614
9615 if (is_tracepoint_type (type_wanted))
9616 {
9617 struct tracepoint *t;
9618
9619 t = XCNEW (struct tracepoint);
9620 b = &t->base;
9621 }
9622 else
9623 b = XNEW (struct breakpoint);
9624
9625 init_raw_breakpoint_without_location (b, gdbarch, type_wanted, ops);
9626
9627 b->addr_string = copy_arg;
9628 if (parse_condition_and_thread)
9629 b->cond_string = NULL;
9630 else
9631 {
9632 /* Create a private copy of condition string. */
9633 if (cond_string)
9634 {
9635 cond_string = xstrdup (cond_string);
9636 make_cleanup (xfree, cond_string);
9637 }
9638 b->cond_string = cond_string;
9639 }
9640 b->extra_string = NULL;
9641 b->ignore_count = ignore_count;
9642 b->disposition = tempflag ? disp_del : disp_donttouch;
9643 b->condition_not_parsed = 1;
9644 b->enable_state = enabled ? bp_enabled : bp_disabled;
9645 if ((type_wanted != bp_breakpoint
9646 && type_wanted != bp_hardware_breakpoint) || thread != -1)
9647 b->pspace = current_program_space;
9648
9649 install_breakpoint (internal, b, 0);
9650 }
9651
9652 if (VEC_length (linespec_sals, canonical.sals) > 1)
9653 {
9654 warning (_("Multiple breakpoints were set.\nUse the "
9655 "\"delete\" command to delete unwanted breakpoints."));
9656 prev_breakpoint_count = prev_bkpt_count;
9657 }
9658
9659 /* That's it. Discard the cleanups for data inserted into the
9660 breakpoint. */
9661 discard_cleanups (bkpt_chain);
9662 /* But cleanup everything else. */
9663 do_cleanups (old_chain);
9664
9665 /* error call may happen here - have BKPT_CHAIN already discarded. */
9666 update_global_location_list (1);
9667
9668 return 1;
9669 }
9670
9671 /* Set a breakpoint.
9672 ARG is a string describing breakpoint address,
9673 condition, and thread.
9674 FLAG specifies if a breakpoint is hardware on,
9675 and if breakpoint is temporary, using BP_HARDWARE_FLAG
9676 and BP_TEMPFLAG. */
9677
9678 static void
9679 break_command_1 (char *arg, int flag, int from_tty)
9680 {
9681 int tempflag = flag & BP_TEMPFLAG;
9682 enum bptype type_wanted = (flag & BP_HARDWAREFLAG
9683 ? bp_hardware_breakpoint
9684 : bp_breakpoint);
9685 struct breakpoint_ops *ops;
9686 const char *arg_cp = arg;
9687
9688 /* Matching breakpoints on probes. */
9689 if (arg && probe_linespec_to_ops (&arg_cp) != NULL)
9690 ops = &bkpt_probe_breakpoint_ops;
9691 else
9692 ops = &bkpt_breakpoint_ops;
9693
9694 create_breakpoint (get_current_arch (),
9695 arg,
9696 NULL, 0, NULL, 1 /* parse arg */,
9697 tempflag, type_wanted,
9698 0 /* Ignore count */,
9699 pending_break_support,
9700 ops,
9701 from_tty,
9702 1 /* enabled */,
9703 0 /* internal */,
9704 0);
9705 }
9706
9707 /* Helper function for break_command_1 and disassemble_command. */
9708
9709 void
9710 resolve_sal_pc (struct symtab_and_line *sal)
9711 {
9712 CORE_ADDR pc;
9713
9714 if (sal->pc == 0 && sal->symtab != NULL)
9715 {
9716 if (!find_line_pc (sal->symtab, sal->line, &pc))
9717 error (_("No line %d in file \"%s\"."),
9718 sal->line, sal->symtab->filename);
9719 sal->pc = pc;
9720
9721 /* If this SAL corresponds to a breakpoint inserted using a line
9722 number, then skip the function prologue if necessary. */
9723 if (sal->explicit_line)
9724 skip_prologue_sal (sal);
9725 }
9726
9727 if (sal->section == 0 && sal->symtab != NULL)
9728 {
9729 struct blockvector *bv;
9730 struct block *b;
9731 struct symbol *sym;
9732
9733 bv = blockvector_for_pc_sect (sal->pc, 0, &b, sal->symtab);
9734 if (bv != NULL)
9735 {
9736 sym = block_linkage_function (b);
9737 if (sym != NULL)
9738 {
9739 fixup_symbol_section (sym, sal->symtab->objfile);
9740 sal->section = SYMBOL_OBJ_SECTION (sym);
9741 }
9742 else
9743 {
9744 /* It really is worthwhile to have the section, so we'll
9745 just have to look harder. This case can be executed
9746 if we have line numbers but no functions (as can
9747 happen in assembly source). */
9748
9749 struct minimal_symbol *msym;
9750 struct cleanup *old_chain = save_current_space_and_thread ();
9751
9752 switch_to_program_space_and_thread (sal->pspace);
9753
9754 msym = lookup_minimal_symbol_by_pc (sal->pc);
9755 if (msym)
9756 sal->section = SYMBOL_OBJ_SECTION (msym);
9757
9758 do_cleanups (old_chain);
9759 }
9760 }
9761 }
9762 }
9763
9764 void
9765 break_command (char *arg, int from_tty)
9766 {
9767 break_command_1 (arg, 0, from_tty);
9768 }
9769
9770 void
9771 tbreak_command (char *arg, int from_tty)
9772 {
9773 break_command_1 (arg, BP_TEMPFLAG, from_tty);
9774 }
9775
9776 static void
9777 hbreak_command (char *arg, int from_tty)
9778 {
9779 break_command_1 (arg, BP_HARDWAREFLAG, from_tty);
9780 }
9781
9782 static void
9783 thbreak_command (char *arg, int from_tty)
9784 {
9785 break_command_1 (arg, (BP_TEMPFLAG | BP_HARDWAREFLAG), from_tty);
9786 }
9787
9788 static void
9789 stop_command (char *arg, int from_tty)
9790 {
9791 printf_filtered (_("Specify the type of breakpoint to set.\n\
9792 Usage: stop in <function | address>\n\
9793 stop at <line>\n"));
9794 }
9795
9796 static void
9797 stopin_command (char *arg, int from_tty)
9798 {
9799 int badInput = 0;
9800
9801 if (arg == (char *) NULL)
9802 badInput = 1;
9803 else if (*arg != '*')
9804 {
9805 char *argptr = arg;
9806 int hasColon = 0;
9807
9808 /* Look for a ':'. If this is a line number specification, then
9809 say it is bad, otherwise, it should be an address or
9810 function/method name. */
9811 while (*argptr && !hasColon)
9812 {
9813 hasColon = (*argptr == ':');
9814 argptr++;
9815 }
9816
9817 if (hasColon)
9818 badInput = (*argptr != ':'); /* Not a class::method */
9819 else
9820 badInput = isdigit (*arg); /* a simple line number */
9821 }
9822
9823 if (badInput)
9824 printf_filtered (_("Usage: stop in <function | address>\n"));
9825 else
9826 break_command_1 (arg, 0, from_tty);
9827 }
9828
9829 static void
9830 stopat_command (char *arg, int from_tty)
9831 {
9832 int badInput = 0;
9833
9834 if (arg == (char *) NULL || *arg == '*') /* no line number */
9835 badInput = 1;
9836 else
9837 {
9838 char *argptr = arg;
9839 int hasColon = 0;
9840
9841 /* Look for a ':'. If there is a '::' then get out, otherwise
9842 it is probably a line number. */
9843 while (*argptr && !hasColon)
9844 {
9845 hasColon = (*argptr == ':');
9846 argptr++;
9847 }
9848
9849 if (hasColon)
9850 badInput = (*argptr == ':'); /* we have class::method */
9851 else
9852 badInput = !isdigit (*arg); /* not a line number */
9853 }
9854
9855 if (badInput)
9856 printf_filtered (_("Usage: stop at <line>\n"));
9857 else
9858 break_command_1 (arg, 0, from_tty);
9859 }
9860
9861 /* The dynamic printf command is mostly like a regular breakpoint, but
9862 with a prewired command list consisting of a single output command,
9863 built from extra arguments supplied on the dprintf command
9864 line. */
9865
9866 static void
9867 dprintf_command (char *arg, int from_tty)
9868 {
9869 create_breakpoint (get_current_arch (),
9870 arg,
9871 NULL, 0, NULL, 1 /* parse arg */,
9872 0, bp_dprintf,
9873 0 /* Ignore count */,
9874 pending_break_support,
9875 &dprintf_breakpoint_ops,
9876 from_tty,
9877 1 /* enabled */,
9878 0 /* internal */,
9879 0);
9880 }
9881
9882 static void
9883 agent_printf_command (char *arg, int from_tty)
9884 {
9885 error (_("May only run agent-printf on the target"));
9886 }
9887
9888 /* Implement the "breakpoint_hit" breakpoint_ops method for
9889 ranged breakpoints. */
9890
9891 static int
9892 breakpoint_hit_ranged_breakpoint (const struct bp_location *bl,
9893 struct address_space *aspace,
9894 CORE_ADDR bp_addr,
9895 const struct target_waitstatus *ws)
9896 {
9897 if (ws->kind != TARGET_WAITKIND_STOPPED
9898 || ws->value.sig != GDB_SIGNAL_TRAP)
9899 return 0;
9900
9901 return breakpoint_address_match_range (bl->pspace->aspace, bl->address,
9902 bl->length, aspace, bp_addr);
9903 }
9904
9905 /* Implement the "resources_needed" breakpoint_ops method for
9906 ranged breakpoints. */
9907
9908 static int
9909 resources_needed_ranged_breakpoint (const struct bp_location *bl)
9910 {
9911 return target_ranged_break_num_registers ();
9912 }
9913
9914 /* Implement the "print_it" breakpoint_ops method for
9915 ranged breakpoints. */
9916
9917 static enum print_stop_action
9918 print_it_ranged_breakpoint (bpstat bs)
9919 {
9920 struct breakpoint *b = bs->breakpoint_at;
9921 struct bp_location *bl = b->loc;
9922 struct ui_out *uiout = current_uiout;
9923
9924 gdb_assert (b->type == bp_hardware_breakpoint);
9925
9926 /* Ranged breakpoints have only one location. */
9927 gdb_assert (bl && bl->next == NULL);
9928
9929 annotate_breakpoint (b->number);
9930 if (b->disposition == disp_del)
9931 ui_out_text (uiout, "\nTemporary ranged breakpoint ");
9932 else
9933 ui_out_text (uiout, "\nRanged breakpoint ");
9934 if (ui_out_is_mi_like_p (uiout))
9935 {
9936 ui_out_field_string (uiout, "reason",
9937 async_reason_lookup (EXEC_ASYNC_BREAKPOINT_HIT));
9938 ui_out_field_string (uiout, "disp", bpdisp_text (b->disposition));
9939 }
9940 ui_out_field_int (uiout, "bkptno", b->number);
9941 ui_out_text (uiout, ", ");
9942
9943 return PRINT_SRC_AND_LOC;
9944 }
9945
9946 /* Implement the "print_one" breakpoint_ops method for
9947 ranged breakpoints. */
9948
9949 static void
9950 print_one_ranged_breakpoint (struct breakpoint *b,
9951 struct bp_location **last_loc)
9952 {
9953 struct bp_location *bl = b->loc;
9954 struct value_print_options opts;
9955 struct ui_out *uiout = current_uiout;
9956
9957 /* Ranged breakpoints have only one location. */
9958 gdb_assert (bl && bl->next == NULL);
9959
9960 get_user_print_options (&opts);
9961
9962 if (opts.addressprint)
9963 /* We don't print the address range here, it will be printed later
9964 by print_one_detail_ranged_breakpoint. */
9965 ui_out_field_skip (uiout, "addr");
9966 annotate_field (5);
9967 print_breakpoint_location (b, bl);
9968 *last_loc = bl;
9969 }
9970
9971 /* Implement the "print_one_detail" breakpoint_ops method for
9972 ranged breakpoints. */
9973
9974 static void
9975 print_one_detail_ranged_breakpoint (const struct breakpoint *b,
9976 struct ui_out *uiout)
9977 {
9978 CORE_ADDR address_start, address_end;
9979 struct bp_location *bl = b->loc;
9980 struct ui_file *stb = mem_fileopen ();
9981 struct cleanup *cleanup = make_cleanup_ui_file_delete (stb);
9982
9983 gdb_assert (bl);
9984
9985 address_start = bl->address;
9986 address_end = address_start + bl->length - 1;
9987
9988 ui_out_text (uiout, "\taddress range: ");
9989 fprintf_unfiltered (stb, "[%s, %s]",
9990 print_core_address (bl->gdbarch, address_start),
9991 print_core_address (bl->gdbarch, address_end));
9992 ui_out_field_stream (uiout, "addr", stb);
9993 ui_out_text (uiout, "\n");
9994
9995 do_cleanups (cleanup);
9996 }
9997
9998 /* Implement the "print_mention" breakpoint_ops method for
9999 ranged breakpoints. */
10000
10001 static void
10002 print_mention_ranged_breakpoint (struct breakpoint *b)
10003 {
10004 struct bp_location *bl = b->loc;
10005 struct ui_out *uiout = current_uiout;
10006
10007 gdb_assert (bl);
10008 gdb_assert (b->type == bp_hardware_breakpoint);
10009
10010 if (ui_out_is_mi_like_p (uiout))
10011 return;
10012
10013 printf_filtered (_("Hardware assisted ranged breakpoint %d from %s to %s."),
10014 b->number, paddress (bl->gdbarch, bl->address),
10015 paddress (bl->gdbarch, bl->address + bl->length - 1));
10016 }
10017
10018 /* Implement the "print_recreate" breakpoint_ops method for
10019 ranged breakpoints. */
10020
10021 static void
10022 print_recreate_ranged_breakpoint (struct breakpoint *b, struct ui_file *fp)
10023 {
10024 fprintf_unfiltered (fp, "break-range %s, %s", b->addr_string,
10025 b->addr_string_range_end);
10026 print_recreate_thread (b, fp);
10027 }
10028
10029 /* The breakpoint_ops structure to be used in ranged breakpoints. */
10030
10031 static struct breakpoint_ops ranged_breakpoint_ops;
10032
10033 /* Find the address where the end of the breakpoint range should be
10034 placed, given the SAL of the end of the range. This is so that if
10035 the user provides a line number, the end of the range is set to the
10036 last instruction of the given line. */
10037
10038 static CORE_ADDR
10039 find_breakpoint_range_end (struct symtab_and_line sal)
10040 {
10041 CORE_ADDR end;
10042
10043 /* If the user provided a PC value, use it. Otherwise,
10044 find the address of the end of the given location. */
10045 if (sal.explicit_pc)
10046 end = sal.pc;
10047 else
10048 {
10049 int ret;
10050 CORE_ADDR start;
10051
10052 ret = find_line_pc_range (sal, &start, &end);
10053 if (!ret)
10054 error (_("Could not find location of the end of the range."));
10055
10056 /* find_line_pc_range returns the start of the next line. */
10057 end--;
10058 }
10059
10060 return end;
10061 }
10062
10063 /* Implement the "break-range" CLI command. */
10064
10065 static void
10066 break_range_command (char *arg, int from_tty)
10067 {
10068 char *arg_start, *addr_string_start, *addr_string_end;
10069 struct linespec_result canonical_start, canonical_end;
10070 int bp_count, can_use_bp, length;
10071 CORE_ADDR end;
10072 struct breakpoint *b;
10073 struct symtab_and_line sal_start, sal_end;
10074 struct cleanup *cleanup_bkpt;
10075 struct linespec_sals *lsal_start, *lsal_end;
10076
10077 /* We don't support software ranged breakpoints. */
10078 if (target_ranged_break_num_registers () < 0)
10079 error (_("This target does not support hardware ranged breakpoints."));
10080
10081 bp_count = hw_breakpoint_used_count ();
10082 bp_count += target_ranged_break_num_registers ();
10083 can_use_bp = target_can_use_hardware_watchpoint (bp_hardware_breakpoint,
10084 bp_count, 0);
10085 if (can_use_bp < 0)
10086 error (_("Hardware breakpoints used exceeds limit."));
10087
10088 arg = skip_spaces (arg);
10089 if (arg == NULL || arg[0] == '\0')
10090 error(_("No address range specified."));
10091
10092 init_linespec_result (&canonical_start);
10093
10094 arg_start = arg;
10095 parse_breakpoint_sals (&arg, &canonical_start);
10096
10097 cleanup_bkpt = make_cleanup_destroy_linespec_result (&canonical_start);
10098
10099 if (arg[0] != ',')
10100 error (_("Too few arguments."));
10101 else if (VEC_empty (linespec_sals, canonical_start.sals))
10102 error (_("Could not find location of the beginning of the range."));
10103
10104 lsal_start = VEC_index (linespec_sals, canonical_start.sals, 0);
10105
10106 if (VEC_length (linespec_sals, canonical_start.sals) > 1
10107 || lsal_start->sals.nelts != 1)
10108 error (_("Cannot create a ranged breakpoint with multiple locations."));
10109
10110 sal_start = lsal_start->sals.sals[0];
10111 addr_string_start = savestring (arg_start, arg - arg_start);
10112 make_cleanup (xfree, addr_string_start);
10113
10114 arg++; /* Skip the comma. */
10115 arg = skip_spaces (arg);
10116
10117 /* Parse the end location. */
10118
10119 init_linespec_result (&canonical_end);
10120 arg_start = arg;
10121
10122 /* We call decode_line_full directly here instead of using
10123 parse_breakpoint_sals because we need to specify the start location's
10124 symtab and line as the default symtab and line for the end of the
10125 range. This makes it possible to have ranges like "foo.c:27, +14",
10126 where +14 means 14 lines from the start location. */
10127 decode_line_full (&arg, DECODE_LINE_FUNFIRSTLINE,
10128 sal_start.symtab, sal_start.line,
10129 &canonical_end, NULL, NULL);
10130
10131 make_cleanup_destroy_linespec_result (&canonical_end);
10132
10133 if (VEC_empty (linespec_sals, canonical_end.sals))
10134 error (_("Could not find location of the end of the range."));
10135
10136 lsal_end = VEC_index (linespec_sals, canonical_end.sals, 0);
10137 if (VEC_length (linespec_sals, canonical_end.sals) > 1
10138 || lsal_end->sals.nelts != 1)
10139 error (_("Cannot create a ranged breakpoint with multiple locations."));
10140
10141 sal_end = lsal_end->sals.sals[0];
10142 addr_string_end = savestring (arg_start, arg - arg_start);
10143 make_cleanup (xfree, addr_string_end);
10144
10145 end = find_breakpoint_range_end (sal_end);
10146 if (sal_start.pc > end)
10147 error (_("Invalid address range, end precedes start."));
10148
10149 length = end - sal_start.pc + 1;
10150 if (length < 0)
10151 /* Length overflowed. */
10152 error (_("Address range too large."));
10153 else if (length == 1)
10154 {
10155 /* This range is simple enough to be handled by
10156 the `hbreak' command. */
10157 hbreak_command (addr_string_start, 1);
10158
10159 do_cleanups (cleanup_bkpt);
10160
10161 return;
10162 }
10163
10164 /* Now set up the breakpoint. */
10165 b = set_raw_breakpoint (get_current_arch (), sal_start,
10166 bp_hardware_breakpoint, &ranged_breakpoint_ops);
10167 set_breakpoint_count (breakpoint_count + 1);
10168 b->number = breakpoint_count;
10169 b->disposition = disp_donttouch;
10170 b->addr_string = xstrdup (addr_string_start);
10171 b->addr_string_range_end = xstrdup (addr_string_end);
10172 b->loc->length = length;
10173
10174 do_cleanups (cleanup_bkpt);
10175
10176 mention (b);
10177 observer_notify_breakpoint_created (b);
10178 update_global_location_list (1);
10179 }
10180
10181 /* Return non-zero if EXP is verified as constant. Returned zero
10182 means EXP is variable. Also the constant detection may fail for
10183 some constant expressions and in such case still falsely return
10184 zero. */
10185
10186 static int
10187 watchpoint_exp_is_const (const struct expression *exp)
10188 {
10189 int i = exp->nelts;
10190
10191 while (i > 0)
10192 {
10193 int oplenp, argsp;
10194
10195 /* We are only interested in the descriptor of each element. */
10196 operator_length (exp, i, &oplenp, &argsp);
10197 i -= oplenp;
10198
10199 switch (exp->elts[i].opcode)
10200 {
10201 case BINOP_ADD:
10202 case BINOP_SUB:
10203 case BINOP_MUL:
10204 case BINOP_DIV:
10205 case BINOP_REM:
10206 case BINOP_MOD:
10207 case BINOP_LSH:
10208 case BINOP_RSH:
10209 case BINOP_LOGICAL_AND:
10210 case BINOP_LOGICAL_OR:
10211 case BINOP_BITWISE_AND:
10212 case BINOP_BITWISE_IOR:
10213 case BINOP_BITWISE_XOR:
10214 case BINOP_EQUAL:
10215 case BINOP_NOTEQUAL:
10216 case BINOP_LESS:
10217 case BINOP_GTR:
10218 case BINOP_LEQ:
10219 case BINOP_GEQ:
10220 case BINOP_REPEAT:
10221 case BINOP_COMMA:
10222 case BINOP_EXP:
10223 case BINOP_MIN:
10224 case BINOP_MAX:
10225 case BINOP_INTDIV:
10226 case BINOP_CONCAT:
10227 case BINOP_IN:
10228 case BINOP_RANGE:
10229 case TERNOP_COND:
10230 case TERNOP_SLICE:
10231
10232 case OP_LONG:
10233 case OP_DOUBLE:
10234 case OP_DECFLOAT:
10235 case OP_LAST:
10236 case OP_COMPLEX:
10237 case OP_STRING:
10238 case OP_ARRAY:
10239 case OP_TYPE:
10240 case OP_TYPEOF:
10241 case OP_DECLTYPE:
10242 case OP_NAME:
10243 case OP_OBJC_NSSTRING:
10244
10245 case UNOP_NEG:
10246 case UNOP_LOGICAL_NOT:
10247 case UNOP_COMPLEMENT:
10248 case UNOP_ADDR:
10249 case UNOP_HIGH:
10250 case UNOP_CAST:
10251
10252 case UNOP_CAST_TYPE:
10253 case UNOP_REINTERPRET_CAST:
10254 case UNOP_DYNAMIC_CAST:
10255 /* Unary, binary and ternary operators: We have to check
10256 their operands. If they are constant, then so is the
10257 result of that operation. For instance, if A and B are
10258 determined to be constants, then so is "A + B".
10259
10260 UNOP_IND is one exception to the rule above, because the
10261 value of *ADDR is not necessarily a constant, even when
10262 ADDR is. */
10263 break;
10264
10265 case OP_VAR_VALUE:
10266 /* Check whether the associated symbol is a constant.
10267
10268 We use SYMBOL_CLASS rather than TYPE_CONST because it's
10269 possible that a buggy compiler could mark a variable as
10270 constant even when it is not, and TYPE_CONST would return
10271 true in this case, while SYMBOL_CLASS wouldn't.
10272
10273 We also have to check for function symbols because they
10274 are always constant. */
10275 {
10276 struct symbol *s = exp->elts[i + 2].symbol;
10277
10278 if (SYMBOL_CLASS (s) != LOC_BLOCK
10279 && SYMBOL_CLASS (s) != LOC_CONST
10280 && SYMBOL_CLASS (s) != LOC_CONST_BYTES)
10281 return 0;
10282 break;
10283 }
10284
10285 /* The default action is to return 0 because we are using
10286 the optimistic approach here: If we don't know something,
10287 then it is not a constant. */
10288 default:
10289 return 0;
10290 }
10291 }
10292
10293 return 1;
10294 }
10295
10296 /* Implement the "dtor" breakpoint_ops method for watchpoints. */
10297
10298 static void
10299 dtor_watchpoint (struct breakpoint *self)
10300 {
10301 struct watchpoint *w = (struct watchpoint *) self;
10302
10303 xfree (w->cond_exp);
10304 xfree (w->exp);
10305 xfree (w->exp_string);
10306 xfree (w->exp_string_reparse);
10307 value_free (w->val);
10308
10309 base_breakpoint_ops.dtor (self);
10310 }
10311
10312 /* Implement the "re_set" breakpoint_ops method for watchpoints. */
10313
10314 static void
10315 re_set_watchpoint (struct breakpoint *b)
10316 {
10317 struct watchpoint *w = (struct watchpoint *) b;
10318
10319 /* Watchpoint can be either on expression using entirely global
10320 variables, or it can be on local variables.
10321
10322 Watchpoints of the first kind are never auto-deleted, and even
10323 persist across program restarts. Since they can use variables
10324 from shared libraries, we need to reparse expression as libraries
10325 are loaded and unloaded.
10326
10327 Watchpoints on local variables can also change meaning as result
10328 of solib event. For example, if a watchpoint uses both a local
10329 and a global variables in expression, it's a local watchpoint,
10330 but unloading of a shared library will make the expression
10331 invalid. This is not a very common use case, but we still
10332 re-evaluate expression, to avoid surprises to the user.
10333
10334 Note that for local watchpoints, we re-evaluate it only if
10335 watchpoints frame id is still valid. If it's not, it means the
10336 watchpoint is out of scope and will be deleted soon. In fact,
10337 I'm not sure we'll ever be called in this case.
10338
10339 If a local watchpoint's frame id is still valid, then
10340 w->exp_valid_block is likewise valid, and we can safely use it.
10341
10342 Don't do anything about disabled watchpoints, since they will be
10343 reevaluated again when enabled. */
10344 update_watchpoint (w, 1 /* reparse */);
10345 }
10346
10347 /* Implement the "insert" breakpoint_ops method for hardware watchpoints. */
10348
10349 static int
10350 insert_watchpoint (struct bp_location *bl)
10351 {
10352 struct watchpoint *w = (struct watchpoint *) bl->owner;
10353 int length = w->exact ? 1 : bl->length;
10354
10355 return target_insert_watchpoint (bl->address, length, bl->watchpoint_type,
10356 w->cond_exp);
10357 }
10358
10359 /* Implement the "remove" breakpoint_ops method for hardware watchpoints. */
10360
10361 static int
10362 remove_watchpoint (struct bp_location *bl)
10363 {
10364 struct watchpoint *w = (struct watchpoint *) bl->owner;
10365 int length = w->exact ? 1 : bl->length;
10366
10367 return target_remove_watchpoint (bl->address, length, bl->watchpoint_type,
10368 w->cond_exp);
10369 }
10370
10371 static int
10372 breakpoint_hit_watchpoint (const struct bp_location *bl,
10373 struct address_space *aspace, CORE_ADDR bp_addr,
10374 const struct target_waitstatus *ws)
10375 {
10376 struct breakpoint *b = bl->owner;
10377 struct watchpoint *w = (struct watchpoint *) b;
10378
10379 /* Continuable hardware watchpoints are treated as non-existent if the
10380 reason we stopped wasn't a hardware watchpoint (we didn't stop on
10381 some data address). Otherwise gdb won't stop on a break instruction
10382 in the code (not from a breakpoint) when a hardware watchpoint has
10383 been defined. Also skip watchpoints which we know did not trigger
10384 (did not match the data address). */
10385 if (is_hardware_watchpoint (b)
10386 && w->watchpoint_triggered == watch_triggered_no)
10387 return 0;
10388
10389 return 1;
10390 }
10391
10392 static void
10393 check_status_watchpoint (bpstat bs)
10394 {
10395 gdb_assert (is_watchpoint (bs->breakpoint_at));
10396
10397 bpstat_check_watchpoint (bs);
10398 }
10399
10400 /* Implement the "resources_needed" breakpoint_ops method for
10401 hardware watchpoints. */
10402
10403 static int
10404 resources_needed_watchpoint (const struct bp_location *bl)
10405 {
10406 struct watchpoint *w = (struct watchpoint *) bl->owner;
10407 int length = w->exact? 1 : bl->length;
10408
10409 return target_region_ok_for_hw_watchpoint (bl->address, length);
10410 }
10411
10412 /* Implement the "works_in_software_mode" breakpoint_ops method for
10413 hardware watchpoints. */
10414
10415 static int
10416 works_in_software_mode_watchpoint (const struct breakpoint *b)
10417 {
10418 /* Read and access watchpoints only work with hardware support. */
10419 return b->type == bp_watchpoint || b->type == bp_hardware_watchpoint;
10420 }
10421
10422 static enum print_stop_action
10423 print_it_watchpoint (bpstat bs)
10424 {
10425 struct cleanup *old_chain;
10426 struct breakpoint *b;
10427 const struct bp_location *bl;
10428 struct ui_file *stb;
10429 enum print_stop_action result;
10430 struct watchpoint *w;
10431 struct ui_out *uiout = current_uiout;
10432
10433 gdb_assert (bs->bp_location_at != NULL);
10434
10435 bl = bs->bp_location_at;
10436 b = bs->breakpoint_at;
10437 w = (struct watchpoint *) b;
10438
10439 stb = mem_fileopen ();
10440 old_chain = make_cleanup_ui_file_delete (stb);
10441
10442 switch (b->type)
10443 {
10444 case bp_watchpoint:
10445 case bp_hardware_watchpoint:
10446 annotate_watchpoint (b->number);
10447 if (ui_out_is_mi_like_p (uiout))
10448 ui_out_field_string
10449 (uiout, "reason",
10450 async_reason_lookup (EXEC_ASYNC_WATCHPOINT_TRIGGER));
10451 mention (b);
10452 make_cleanup_ui_out_tuple_begin_end (uiout, "value");
10453 ui_out_text (uiout, "\nOld value = ");
10454 watchpoint_value_print (bs->old_val, stb);
10455 ui_out_field_stream (uiout, "old", stb);
10456 ui_out_text (uiout, "\nNew value = ");
10457 watchpoint_value_print (w->val, stb);
10458 ui_out_field_stream (uiout, "new", stb);
10459 ui_out_text (uiout, "\n");
10460 /* More than one watchpoint may have been triggered. */
10461 result = PRINT_UNKNOWN;
10462 break;
10463
10464 case bp_read_watchpoint:
10465 if (ui_out_is_mi_like_p (uiout))
10466 ui_out_field_string
10467 (uiout, "reason",
10468 async_reason_lookup (EXEC_ASYNC_READ_WATCHPOINT_TRIGGER));
10469 mention (b);
10470 make_cleanup_ui_out_tuple_begin_end (uiout, "value");
10471 ui_out_text (uiout, "\nValue = ");
10472 watchpoint_value_print (w->val, stb);
10473 ui_out_field_stream (uiout, "value", stb);
10474 ui_out_text (uiout, "\n");
10475 result = PRINT_UNKNOWN;
10476 break;
10477
10478 case bp_access_watchpoint:
10479 if (bs->old_val != NULL)
10480 {
10481 annotate_watchpoint (b->number);
10482 if (ui_out_is_mi_like_p (uiout))
10483 ui_out_field_string
10484 (uiout, "reason",
10485 async_reason_lookup (EXEC_ASYNC_ACCESS_WATCHPOINT_TRIGGER));
10486 mention (b);
10487 make_cleanup_ui_out_tuple_begin_end (uiout, "value");
10488 ui_out_text (uiout, "\nOld value = ");
10489 watchpoint_value_print (bs->old_val, stb);
10490 ui_out_field_stream (uiout, "old", stb);
10491 ui_out_text (uiout, "\nNew value = ");
10492 }
10493 else
10494 {
10495 mention (b);
10496 if (ui_out_is_mi_like_p (uiout))
10497 ui_out_field_string
10498 (uiout, "reason",
10499 async_reason_lookup (EXEC_ASYNC_ACCESS_WATCHPOINT_TRIGGER));
10500 make_cleanup_ui_out_tuple_begin_end (uiout, "value");
10501 ui_out_text (uiout, "\nValue = ");
10502 }
10503 watchpoint_value_print (w->val, stb);
10504 ui_out_field_stream (uiout, "new", stb);
10505 ui_out_text (uiout, "\n");
10506 result = PRINT_UNKNOWN;
10507 break;
10508 default:
10509 result = PRINT_UNKNOWN;
10510 }
10511
10512 do_cleanups (old_chain);
10513 return result;
10514 }
10515
10516 /* Implement the "print_mention" breakpoint_ops method for hardware
10517 watchpoints. */
10518
10519 static void
10520 print_mention_watchpoint (struct breakpoint *b)
10521 {
10522 struct cleanup *ui_out_chain;
10523 struct watchpoint *w = (struct watchpoint *) b;
10524 struct ui_out *uiout = current_uiout;
10525
10526 switch (b->type)
10527 {
10528 case bp_watchpoint:
10529 ui_out_text (uiout, "Watchpoint ");
10530 ui_out_chain = make_cleanup_ui_out_tuple_begin_end (uiout, "wpt");
10531 break;
10532 case bp_hardware_watchpoint:
10533 ui_out_text (uiout, "Hardware watchpoint ");
10534 ui_out_chain = make_cleanup_ui_out_tuple_begin_end (uiout, "wpt");
10535 break;
10536 case bp_read_watchpoint:
10537 ui_out_text (uiout, "Hardware read watchpoint ");
10538 ui_out_chain = make_cleanup_ui_out_tuple_begin_end (uiout, "hw-rwpt");
10539 break;
10540 case bp_access_watchpoint:
10541 ui_out_text (uiout, "Hardware access (read/write) watchpoint ");
10542 ui_out_chain = make_cleanup_ui_out_tuple_begin_end (uiout, "hw-awpt");
10543 break;
10544 default:
10545 internal_error (__FILE__, __LINE__,
10546 _("Invalid hardware watchpoint type."));
10547 }
10548
10549 ui_out_field_int (uiout, "number", b->number);
10550 ui_out_text (uiout, ": ");
10551 ui_out_field_string (uiout, "exp", w->exp_string);
10552 do_cleanups (ui_out_chain);
10553 }
10554
10555 /* Implement the "print_recreate" breakpoint_ops method for
10556 watchpoints. */
10557
10558 static void
10559 print_recreate_watchpoint (struct breakpoint *b, struct ui_file *fp)
10560 {
10561 struct watchpoint *w = (struct watchpoint *) b;
10562
10563 switch (b->type)
10564 {
10565 case bp_watchpoint:
10566 case bp_hardware_watchpoint:
10567 fprintf_unfiltered (fp, "watch");
10568 break;
10569 case bp_read_watchpoint:
10570 fprintf_unfiltered (fp, "rwatch");
10571 break;
10572 case bp_access_watchpoint:
10573 fprintf_unfiltered (fp, "awatch");
10574 break;
10575 default:
10576 internal_error (__FILE__, __LINE__,
10577 _("Invalid watchpoint type."));
10578 }
10579
10580 fprintf_unfiltered (fp, " %s", w->exp_string);
10581 print_recreate_thread (b, fp);
10582 }
10583
10584 /* The breakpoint_ops structure to be used in hardware watchpoints. */
10585
10586 static struct breakpoint_ops watchpoint_breakpoint_ops;
10587
10588 /* Implement the "insert" breakpoint_ops method for
10589 masked hardware watchpoints. */
10590
10591 static int
10592 insert_masked_watchpoint (struct bp_location *bl)
10593 {
10594 struct watchpoint *w = (struct watchpoint *) bl->owner;
10595
10596 return target_insert_mask_watchpoint (bl->address, w->hw_wp_mask,
10597 bl->watchpoint_type);
10598 }
10599
10600 /* Implement the "remove" breakpoint_ops method for
10601 masked hardware watchpoints. */
10602
10603 static int
10604 remove_masked_watchpoint (struct bp_location *bl)
10605 {
10606 struct watchpoint *w = (struct watchpoint *) bl->owner;
10607
10608 return target_remove_mask_watchpoint (bl->address, w->hw_wp_mask,
10609 bl->watchpoint_type);
10610 }
10611
10612 /* Implement the "resources_needed" breakpoint_ops method for
10613 masked hardware watchpoints. */
10614
10615 static int
10616 resources_needed_masked_watchpoint (const struct bp_location *bl)
10617 {
10618 struct watchpoint *w = (struct watchpoint *) bl->owner;
10619
10620 return target_masked_watch_num_registers (bl->address, w->hw_wp_mask);
10621 }
10622
10623 /* Implement the "works_in_software_mode" breakpoint_ops method for
10624 masked hardware watchpoints. */
10625
10626 static int
10627 works_in_software_mode_masked_watchpoint (const struct breakpoint *b)
10628 {
10629 return 0;
10630 }
10631
10632 /* Implement the "print_it" breakpoint_ops method for
10633 masked hardware watchpoints. */
10634
10635 static enum print_stop_action
10636 print_it_masked_watchpoint (bpstat bs)
10637 {
10638 struct breakpoint *b = bs->breakpoint_at;
10639 struct ui_out *uiout = current_uiout;
10640
10641 /* Masked watchpoints have only one location. */
10642 gdb_assert (b->loc && b->loc->next == NULL);
10643
10644 switch (b->type)
10645 {
10646 case bp_hardware_watchpoint:
10647 annotate_watchpoint (b->number);
10648 if (ui_out_is_mi_like_p (uiout))
10649 ui_out_field_string
10650 (uiout, "reason",
10651 async_reason_lookup (EXEC_ASYNC_WATCHPOINT_TRIGGER));
10652 break;
10653
10654 case bp_read_watchpoint:
10655 if (ui_out_is_mi_like_p (uiout))
10656 ui_out_field_string
10657 (uiout, "reason",
10658 async_reason_lookup (EXEC_ASYNC_READ_WATCHPOINT_TRIGGER));
10659 break;
10660
10661 case bp_access_watchpoint:
10662 if (ui_out_is_mi_like_p (uiout))
10663 ui_out_field_string
10664 (uiout, "reason",
10665 async_reason_lookup (EXEC_ASYNC_ACCESS_WATCHPOINT_TRIGGER));
10666 break;
10667 default:
10668 internal_error (__FILE__, __LINE__,
10669 _("Invalid hardware watchpoint type."));
10670 }
10671
10672 mention (b);
10673 ui_out_text (uiout, _("\n\
10674 Check the underlying instruction at PC for the memory\n\
10675 address and value which triggered this watchpoint.\n"));
10676 ui_out_text (uiout, "\n");
10677
10678 /* More than one watchpoint may have been triggered. */
10679 return PRINT_UNKNOWN;
10680 }
10681
10682 /* Implement the "print_one_detail" breakpoint_ops method for
10683 masked hardware watchpoints. */
10684
10685 static void
10686 print_one_detail_masked_watchpoint (const struct breakpoint *b,
10687 struct ui_out *uiout)
10688 {
10689 struct watchpoint *w = (struct watchpoint *) b;
10690
10691 /* Masked watchpoints have only one location. */
10692 gdb_assert (b->loc && b->loc->next == NULL);
10693
10694 ui_out_text (uiout, "\tmask ");
10695 ui_out_field_core_addr (uiout, "mask", b->loc->gdbarch, w->hw_wp_mask);
10696 ui_out_text (uiout, "\n");
10697 }
10698
10699 /* Implement the "print_mention" breakpoint_ops method for
10700 masked hardware watchpoints. */
10701
10702 static void
10703 print_mention_masked_watchpoint (struct breakpoint *b)
10704 {
10705 struct watchpoint *w = (struct watchpoint *) b;
10706 struct ui_out *uiout = current_uiout;
10707 struct cleanup *ui_out_chain;
10708
10709 switch (b->type)
10710 {
10711 case bp_hardware_watchpoint:
10712 ui_out_text (uiout, "Masked hardware watchpoint ");
10713 ui_out_chain = make_cleanup_ui_out_tuple_begin_end (uiout, "wpt");
10714 break;
10715 case bp_read_watchpoint:
10716 ui_out_text (uiout, "Masked hardware read watchpoint ");
10717 ui_out_chain = make_cleanup_ui_out_tuple_begin_end (uiout, "hw-rwpt");
10718 break;
10719 case bp_access_watchpoint:
10720 ui_out_text (uiout, "Masked hardware access (read/write) watchpoint ");
10721 ui_out_chain = make_cleanup_ui_out_tuple_begin_end (uiout, "hw-awpt");
10722 break;
10723 default:
10724 internal_error (__FILE__, __LINE__,
10725 _("Invalid hardware watchpoint type."));
10726 }
10727
10728 ui_out_field_int (uiout, "number", b->number);
10729 ui_out_text (uiout, ": ");
10730 ui_out_field_string (uiout, "exp", w->exp_string);
10731 do_cleanups (ui_out_chain);
10732 }
10733
10734 /* Implement the "print_recreate" breakpoint_ops method for
10735 masked hardware watchpoints. */
10736
10737 static void
10738 print_recreate_masked_watchpoint (struct breakpoint *b, struct ui_file *fp)
10739 {
10740 struct watchpoint *w = (struct watchpoint *) b;
10741 char tmp[40];
10742
10743 switch (b->type)
10744 {
10745 case bp_hardware_watchpoint:
10746 fprintf_unfiltered (fp, "watch");
10747 break;
10748 case bp_read_watchpoint:
10749 fprintf_unfiltered (fp, "rwatch");
10750 break;
10751 case bp_access_watchpoint:
10752 fprintf_unfiltered (fp, "awatch");
10753 break;
10754 default:
10755 internal_error (__FILE__, __LINE__,
10756 _("Invalid hardware watchpoint type."));
10757 }
10758
10759 sprintf_vma (tmp, w->hw_wp_mask);
10760 fprintf_unfiltered (fp, " %s mask 0x%s", w->exp_string, tmp);
10761 print_recreate_thread (b, fp);
10762 }
10763
10764 /* The breakpoint_ops structure to be used in masked hardware watchpoints. */
10765
10766 static struct breakpoint_ops masked_watchpoint_breakpoint_ops;
10767
10768 /* Tell whether the given watchpoint is a masked hardware watchpoint. */
10769
10770 static int
10771 is_masked_watchpoint (const struct breakpoint *b)
10772 {
10773 return b->ops == &masked_watchpoint_breakpoint_ops;
10774 }
10775
10776 /* accessflag: hw_write: watch write,
10777 hw_read: watch read,
10778 hw_access: watch access (read or write) */
10779 static void
10780 watch_command_1 (char *arg, int accessflag, int from_tty,
10781 int just_location, int internal)
10782 {
10783 volatile struct gdb_exception e;
10784 struct breakpoint *b, *scope_breakpoint = NULL;
10785 struct expression *exp;
10786 const struct block *exp_valid_block = NULL, *cond_exp_valid_block = NULL;
10787 struct value *val, *mark, *result;
10788 struct frame_info *frame;
10789 char *exp_start = NULL;
10790 char *exp_end = NULL;
10791 char *tok, *end_tok;
10792 int toklen = -1;
10793 char *cond_start = NULL;
10794 char *cond_end = NULL;
10795 enum bptype bp_type;
10796 int thread = -1;
10797 int pc = 0;
10798 /* Flag to indicate whether we are going to use masks for
10799 the hardware watchpoint. */
10800 int use_mask = 0;
10801 CORE_ADDR mask = 0;
10802 struct watchpoint *w;
10803
10804 /* Make sure that we actually have parameters to parse. */
10805 if (arg != NULL && arg[0] != '\0')
10806 {
10807 char *value_start;
10808
10809 /* Look for "parameter value" pairs at the end
10810 of the arguments string. */
10811 for (tok = arg + strlen (arg) - 1; tok > arg; tok--)
10812 {
10813 /* Skip whitespace at the end of the argument list. */
10814 while (tok > arg && (*tok == ' ' || *tok == '\t'))
10815 tok--;
10816
10817 /* Find the beginning of the last token.
10818 This is the value of the parameter. */
10819 while (tok > arg && (*tok != ' ' && *tok != '\t'))
10820 tok--;
10821 value_start = tok + 1;
10822
10823 /* Skip whitespace. */
10824 while (tok > arg && (*tok == ' ' || *tok == '\t'))
10825 tok--;
10826
10827 end_tok = tok;
10828
10829 /* Find the beginning of the second to last token.
10830 This is the parameter itself. */
10831 while (tok > arg && (*tok != ' ' && *tok != '\t'))
10832 tok--;
10833 tok++;
10834 toklen = end_tok - tok + 1;
10835
10836 if (toklen == 6 && !strncmp (tok, "thread", 6))
10837 {
10838 /* At this point we've found a "thread" token, which means
10839 the user is trying to set a watchpoint that triggers
10840 only in a specific thread. */
10841 char *endp;
10842
10843 if (thread != -1)
10844 error(_("You can specify only one thread."));
10845
10846 /* Extract the thread ID from the next token. */
10847 thread = strtol (value_start, &endp, 0);
10848
10849 /* Check if the user provided a valid numeric value for the
10850 thread ID. */
10851 if (*endp != ' ' && *endp != '\t' && *endp != '\0')
10852 error (_("Invalid thread ID specification %s."), value_start);
10853
10854 /* Check if the thread actually exists. */
10855 if (!valid_thread_id (thread))
10856 invalid_thread_id_error (thread);
10857 }
10858 else if (toklen == 4 && !strncmp (tok, "mask", 4))
10859 {
10860 /* We've found a "mask" token, which means the user wants to
10861 create a hardware watchpoint that is going to have the mask
10862 facility. */
10863 struct value *mask_value, *mark;
10864
10865 if (use_mask)
10866 error(_("You can specify only one mask."));
10867
10868 use_mask = just_location = 1;
10869
10870 mark = value_mark ();
10871 mask_value = parse_to_comma_and_eval (&value_start);
10872 mask = value_as_address (mask_value);
10873 value_free_to_mark (mark);
10874 }
10875 else
10876 /* We didn't recognize what we found. We should stop here. */
10877 break;
10878
10879 /* Truncate the string and get rid of the "parameter value" pair before
10880 the arguments string is parsed by the parse_exp_1 function. */
10881 *tok = '\0';
10882 }
10883 }
10884
10885 /* Parse the rest of the arguments. */
10886 innermost_block = NULL;
10887 exp_start = arg;
10888 exp = parse_exp_1 (&arg, 0, 0, 0);
10889 exp_end = arg;
10890 /* Remove trailing whitespace from the expression before saving it.
10891 This makes the eventual display of the expression string a bit
10892 prettier. */
10893 while (exp_end > exp_start && (exp_end[-1] == ' ' || exp_end[-1] == '\t'))
10894 --exp_end;
10895
10896 /* Checking if the expression is not constant. */
10897 if (watchpoint_exp_is_const (exp))
10898 {
10899 int len;
10900
10901 len = exp_end - exp_start;
10902 while (len > 0 && isspace (exp_start[len - 1]))
10903 len--;
10904 error (_("Cannot watch constant value `%.*s'."), len, exp_start);
10905 }
10906
10907 exp_valid_block = innermost_block;
10908 mark = value_mark ();
10909 fetch_subexp_value (exp, &pc, &val, &result, NULL);
10910
10911 if (just_location)
10912 {
10913 int ret;
10914
10915 exp_valid_block = NULL;
10916 val = value_addr (result);
10917 release_value (val);
10918 value_free_to_mark (mark);
10919
10920 if (use_mask)
10921 {
10922 ret = target_masked_watch_num_registers (value_as_address (val),
10923 mask);
10924 if (ret == -1)
10925 error (_("This target does not support masked watchpoints."));
10926 else if (ret == -2)
10927 error (_("Invalid mask or memory region."));
10928 }
10929 }
10930 else if (val != NULL)
10931 release_value (val);
10932
10933 tok = skip_spaces (arg);
10934 end_tok = skip_to_space (tok);
10935
10936 toklen = end_tok - tok;
10937 if (toklen >= 1 && strncmp (tok, "if", toklen) == 0)
10938 {
10939 struct expression *cond;
10940
10941 innermost_block = NULL;
10942 tok = cond_start = end_tok + 1;
10943 cond = parse_exp_1 (&tok, 0, 0, 0);
10944
10945 /* The watchpoint expression may not be local, but the condition
10946 may still be. E.g.: `watch global if local > 0'. */
10947 cond_exp_valid_block = innermost_block;
10948
10949 xfree (cond);
10950 cond_end = tok;
10951 }
10952 if (*tok)
10953 error (_("Junk at end of command."));
10954
10955 if (accessflag == hw_read)
10956 bp_type = bp_read_watchpoint;
10957 else if (accessflag == hw_access)
10958 bp_type = bp_access_watchpoint;
10959 else
10960 bp_type = bp_hardware_watchpoint;
10961
10962 frame = block_innermost_frame (exp_valid_block);
10963
10964 /* If the expression is "local", then set up a "watchpoint scope"
10965 breakpoint at the point where we've left the scope of the watchpoint
10966 expression. Create the scope breakpoint before the watchpoint, so
10967 that we will encounter it first in bpstat_stop_status. */
10968 if (exp_valid_block && frame)
10969 {
10970 if (frame_id_p (frame_unwind_caller_id (frame)))
10971 {
10972 scope_breakpoint
10973 = create_internal_breakpoint (frame_unwind_caller_arch (frame),
10974 frame_unwind_caller_pc (frame),
10975 bp_watchpoint_scope,
10976 &momentary_breakpoint_ops);
10977
10978 scope_breakpoint->enable_state = bp_enabled;
10979
10980 /* Automatically delete the breakpoint when it hits. */
10981 scope_breakpoint->disposition = disp_del;
10982
10983 /* Only break in the proper frame (help with recursion). */
10984 scope_breakpoint->frame_id = frame_unwind_caller_id (frame);
10985
10986 /* Set the address at which we will stop. */
10987 scope_breakpoint->loc->gdbarch
10988 = frame_unwind_caller_arch (frame);
10989 scope_breakpoint->loc->requested_address
10990 = frame_unwind_caller_pc (frame);
10991 scope_breakpoint->loc->address
10992 = adjust_breakpoint_address (scope_breakpoint->loc->gdbarch,
10993 scope_breakpoint->loc->requested_address,
10994 scope_breakpoint->type);
10995 }
10996 }
10997
10998 /* Now set up the breakpoint. */
10999
11000 w = XCNEW (struct watchpoint);
11001 b = &w->base;
11002 if (use_mask)
11003 init_raw_breakpoint_without_location (b, NULL, bp_type,
11004 &masked_watchpoint_breakpoint_ops);
11005 else
11006 init_raw_breakpoint_without_location (b, NULL, bp_type,
11007 &watchpoint_breakpoint_ops);
11008 b->thread = thread;
11009 b->disposition = disp_donttouch;
11010 b->pspace = current_program_space;
11011 w->exp = exp;
11012 w->exp_valid_block = exp_valid_block;
11013 w->cond_exp_valid_block = cond_exp_valid_block;
11014 if (just_location)
11015 {
11016 struct type *t = value_type (val);
11017 CORE_ADDR addr = value_as_address (val);
11018 char *name;
11019
11020 t = check_typedef (TYPE_TARGET_TYPE (check_typedef (t)));
11021 name = type_to_string (t);
11022
11023 w->exp_string_reparse = xstrprintf ("* (%s *) %s", name,
11024 core_addr_to_string (addr));
11025 xfree (name);
11026
11027 w->exp_string = xstrprintf ("-location %.*s",
11028 (int) (exp_end - exp_start), exp_start);
11029
11030 /* The above expression is in C. */
11031 b->language = language_c;
11032 }
11033 else
11034 w->exp_string = savestring (exp_start, exp_end - exp_start);
11035
11036 if (use_mask)
11037 {
11038 w->hw_wp_mask = mask;
11039 }
11040 else
11041 {
11042 w->val = val;
11043 w->val_valid = 1;
11044 }
11045
11046 if (cond_start)
11047 b->cond_string = savestring (cond_start, cond_end - cond_start);
11048 else
11049 b->cond_string = 0;
11050
11051 if (frame)
11052 {
11053 w->watchpoint_frame = get_frame_id (frame);
11054 w->watchpoint_thread = inferior_ptid;
11055 }
11056 else
11057 {
11058 w->watchpoint_frame = null_frame_id;
11059 w->watchpoint_thread = null_ptid;
11060 }
11061
11062 if (scope_breakpoint != NULL)
11063 {
11064 /* The scope breakpoint is related to the watchpoint. We will
11065 need to act on them together. */
11066 b->related_breakpoint = scope_breakpoint;
11067 scope_breakpoint->related_breakpoint = b;
11068 }
11069
11070 if (!just_location)
11071 value_free_to_mark (mark);
11072
11073 TRY_CATCH (e, RETURN_MASK_ALL)
11074 {
11075 /* Finally update the new watchpoint. This creates the locations
11076 that should be inserted. */
11077 update_watchpoint (w, 1);
11078 }
11079 if (e.reason < 0)
11080 {
11081 delete_breakpoint (b);
11082 throw_exception (e);
11083 }
11084
11085 install_breakpoint (internal, b, 1);
11086 }
11087
11088 /* Return count of debug registers needed to watch the given expression.
11089 If the watchpoint cannot be handled in hardware return zero. */
11090
11091 static int
11092 can_use_hardware_watchpoint (struct value *v)
11093 {
11094 int found_memory_cnt = 0;
11095 struct value *head = v;
11096
11097 /* Did the user specifically forbid us to use hardware watchpoints? */
11098 if (!can_use_hw_watchpoints)
11099 return 0;
11100
11101 /* Make sure that the value of the expression depends only upon
11102 memory contents, and values computed from them within GDB. If we
11103 find any register references or function calls, we can't use a
11104 hardware watchpoint.
11105
11106 The idea here is that evaluating an expression generates a series
11107 of values, one holding the value of every subexpression. (The
11108 expression a*b+c has five subexpressions: a, b, a*b, c, and
11109 a*b+c.) GDB's values hold almost enough information to establish
11110 the criteria given above --- they identify memory lvalues,
11111 register lvalues, computed values, etcetera. So we can evaluate
11112 the expression, and then scan the chain of values that leaves
11113 behind to decide whether we can detect any possible change to the
11114 expression's final value using only hardware watchpoints.
11115
11116 However, I don't think that the values returned by inferior
11117 function calls are special in any way. So this function may not
11118 notice that an expression involving an inferior function call
11119 can't be watched with hardware watchpoints. FIXME. */
11120 for (; v; v = value_next (v))
11121 {
11122 if (VALUE_LVAL (v) == lval_memory)
11123 {
11124 if (v != head && value_lazy (v))
11125 /* A lazy memory lvalue in the chain is one that GDB never
11126 needed to fetch; we either just used its address (e.g.,
11127 `a' in `a.b') or we never needed it at all (e.g., `a'
11128 in `a,b'). This doesn't apply to HEAD; if that is
11129 lazy then it was not readable, but watch it anyway. */
11130 ;
11131 else
11132 {
11133 /* Ahh, memory we actually used! Check if we can cover
11134 it with hardware watchpoints. */
11135 struct type *vtype = check_typedef (value_type (v));
11136
11137 /* We only watch structs and arrays if user asked for it
11138 explicitly, never if they just happen to appear in a
11139 middle of some value chain. */
11140 if (v == head
11141 || (TYPE_CODE (vtype) != TYPE_CODE_STRUCT
11142 && TYPE_CODE (vtype) != TYPE_CODE_ARRAY))
11143 {
11144 CORE_ADDR vaddr = value_address (v);
11145 int len;
11146 int num_regs;
11147
11148 len = (target_exact_watchpoints
11149 && is_scalar_type_recursive (vtype))?
11150 1 : TYPE_LENGTH (value_type (v));
11151
11152 num_regs = target_region_ok_for_hw_watchpoint (vaddr, len);
11153 if (!num_regs)
11154 return 0;
11155 else
11156 found_memory_cnt += num_regs;
11157 }
11158 }
11159 }
11160 else if (VALUE_LVAL (v) != not_lval
11161 && deprecated_value_modifiable (v) == 0)
11162 return 0; /* These are values from the history (e.g., $1). */
11163 else if (VALUE_LVAL (v) == lval_register)
11164 return 0; /* Cannot watch a register with a HW watchpoint. */
11165 }
11166
11167 /* The expression itself looks suitable for using a hardware
11168 watchpoint, but give the target machine a chance to reject it. */
11169 return found_memory_cnt;
11170 }
11171
11172 void
11173 watch_command_wrapper (char *arg, int from_tty, int internal)
11174 {
11175 watch_command_1 (arg, hw_write, from_tty, 0, internal);
11176 }
11177
11178 /* A helper function that looks for the "-location" argument and then
11179 calls watch_command_1. */
11180
11181 static void
11182 watch_maybe_just_location (char *arg, int accessflag, int from_tty)
11183 {
11184 int just_location = 0;
11185
11186 if (arg
11187 && (check_for_argument (&arg, "-location", sizeof ("-location") - 1)
11188 || check_for_argument (&arg, "-l", sizeof ("-l") - 1)))
11189 {
11190 arg = skip_spaces (arg);
11191 just_location = 1;
11192 }
11193
11194 watch_command_1 (arg, accessflag, from_tty, just_location, 0);
11195 }
11196
11197 static void
11198 watch_command (char *arg, int from_tty)
11199 {
11200 watch_maybe_just_location (arg, hw_write, from_tty);
11201 }
11202
11203 void
11204 rwatch_command_wrapper (char *arg, int from_tty, int internal)
11205 {
11206 watch_command_1 (arg, hw_read, from_tty, 0, internal);
11207 }
11208
11209 static void
11210 rwatch_command (char *arg, int from_tty)
11211 {
11212 watch_maybe_just_location (arg, hw_read, from_tty);
11213 }
11214
11215 void
11216 awatch_command_wrapper (char *arg, int from_tty, int internal)
11217 {
11218 watch_command_1 (arg, hw_access, from_tty, 0, internal);
11219 }
11220
11221 static void
11222 awatch_command (char *arg, int from_tty)
11223 {
11224 watch_maybe_just_location (arg, hw_access, from_tty);
11225 }
11226 \f
11227
11228 /* Helper routines for the until_command routine in infcmd.c. Here
11229 because it uses the mechanisms of breakpoints. */
11230
11231 struct until_break_command_continuation_args
11232 {
11233 struct breakpoint *breakpoint;
11234 struct breakpoint *breakpoint2;
11235 int thread_num;
11236 };
11237
11238 /* This function is called by fetch_inferior_event via the
11239 cmd_continuation pointer, to complete the until command. It takes
11240 care of cleaning up the temporary breakpoints set up by the until
11241 command. */
11242 static void
11243 until_break_command_continuation (void *arg, int err)
11244 {
11245 struct until_break_command_continuation_args *a = arg;
11246
11247 delete_breakpoint (a->breakpoint);
11248 if (a->breakpoint2)
11249 delete_breakpoint (a->breakpoint2);
11250 delete_longjmp_breakpoint (a->thread_num);
11251 }
11252
11253 void
11254 until_break_command (char *arg, int from_tty, int anywhere)
11255 {
11256 struct symtabs_and_lines sals;
11257 struct symtab_and_line sal;
11258 struct frame_info *frame;
11259 struct gdbarch *frame_gdbarch;
11260 struct frame_id stack_frame_id;
11261 struct frame_id caller_frame_id;
11262 struct breakpoint *breakpoint;
11263 struct breakpoint *breakpoint2 = NULL;
11264 struct cleanup *old_chain;
11265 int thread;
11266 struct thread_info *tp;
11267
11268 clear_proceed_status ();
11269
11270 /* Set a breakpoint where the user wants it and at return from
11271 this function. */
11272
11273 if (last_displayed_sal_is_valid ())
11274 sals = decode_line_1 (&arg, DECODE_LINE_FUNFIRSTLINE,
11275 get_last_displayed_symtab (),
11276 get_last_displayed_line ());
11277 else
11278 sals = decode_line_1 (&arg, DECODE_LINE_FUNFIRSTLINE,
11279 (struct symtab *) NULL, 0);
11280
11281 if (sals.nelts != 1)
11282 error (_("Couldn't get information on specified line."));
11283
11284 sal = sals.sals[0];
11285 xfree (sals.sals); /* malloc'd, so freed. */
11286
11287 if (*arg)
11288 error (_("Junk at end of arguments."));
11289
11290 resolve_sal_pc (&sal);
11291
11292 tp = inferior_thread ();
11293 thread = tp->num;
11294
11295 old_chain = make_cleanup (null_cleanup, NULL);
11296
11297 /* Note linespec handling above invalidates the frame chain.
11298 Installing a breakpoint also invalidates the frame chain (as it
11299 may need to switch threads), so do any frame handling before
11300 that. */
11301
11302 frame = get_selected_frame (NULL);
11303 frame_gdbarch = get_frame_arch (frame);
11304 stack_frame_id = get_stack_frame_id (frame);
11305 caller_frame_id = frame_unwind_caller_id (frame);
11306
11307 /* Keep within the current frame, or in frames called by the current
11308 one. */
11309
11310 if (frame_id_p (caller_frame_id))
11311 {
11312 struct symtab_and_line sal2;
11313
11314 sal2 = find_pc_line (frame_unwind_caller_pc (frame), 0);
11315 sal2.pc = frame_unwind_caller_pc (frame);
11316 breakpoint2 = set_momentary_breakpoint (frame_unwind_caller_arch (frame),
11317 sal2,
11318 caller_frame_id,
11319 bp_until);
11320 make_cleanup_delete_breakpoint (breakpoint2);
11321
11322 set_longjmp_breakpoint (tp, caller_frame_id);
11323 make_cleanup (delete_longjmp_breakpoint_cleanup, &thread);
11324 }
11325
11326 /* set_momentary_breakpoint could invalidate FRAME. */
11327 frame = NULL;
11328
11329 if (anywhere)
11330 /* If the user told us to continue until a specified location,
11331 we don't specify a frame at which we need to stop. */
11332 breakpoint = set_momentary_breakpoint (frame_gdbarch, sal,
11333 null_frame_id, bp_until);
11334 else
11335 /* Otherwise, specify the selected frame, because we want to stop
11336 only at the very same frame. */
11337 breakpoint = set_momentary_breakpoint (frame_gdbarch, sal,
11338 stack_frame_id, bp_until);
11339 make_cleanup_delete_breakpoint (breakpoint);
11340
11341 proceed (-1, GDB_SIGNAL_DEFAULT, 0);
11342
11343 /* If we are running asynchronously, and proceed call above has
11344 actually managed to start the target, arrange for breakpoints to
11345 be deleted when the target stops. Otherwise, we're already
11346 stopped and delete breakpoints via cleanup chain. */
11347
11348 if (target_can_async_p () && is_running (inferior_ptid))
11349 {
11350 struct until_break_command_continuation_args *args;
11351 args = xmalloc (sizeof (*args));
11352
11353 args->breakpoint = breakpoint;
11354 args->breakpoint2 = breakpoint2;
11355 args->thread_num = thread;
11356
11357 discard_cleanups (old_chain);
11358 add_continuation (inferior_thread (),
11359 until_break_command_continuation, args,
11360 xfree);
11361 }
11362 else
11363 do_cleanups (old_chain);
11364 }
11365
11366 /* This function attempts to parse an optional "if <cond>" clause
11367 from the arg string. If one is not found, it returns NULL.
11368
11369 Else, it returns a pointer to the condition string. (It does not
11370 attempt to evaluate the string against a particular block.) And,
11371 it updates arg to point to the first character following the parsed
11372 if clause in the arg string. */
11373
11374 static char *
11375 ep_parse_optional_if_clause (char **arg)
11376 {
11377 char *cond_string;
11378
11379 if (((*arg)[0] != 'i') || ((*arg)[1] != 'f') || !isspace ((*arg)[2]))
11380 return NULL;
11381
11382 /* Skip the "if" keyword. */
11383 (*arg) += 2;
11384
11385 /* Skip any extra leading whitespace, and record the start of the
11386 condition string. */
11387 *arg = skip_spaces (*arg);
11388 cond_string = *arg;
11389
11390 /* Assume that the condition occupies the remainder of the arg
11391 string. */
11392 (*arg) += strlen (cond_string);
11393
11394 return cond_string;
11395 }
11396
11397 /* Commands to deal with catching events, such as signals, exceptions,
11398 process start/exit, etc. */
11399
11400 typedef enum
11401 {
11402 catch_fork_temporary, catch_vfork_temporary,
11403 catch_fork_permanent, catch_vfork_permanent
11404 }
11405 catch_fork_kind;
11406
11407 static void
11408 catch_fork_command_1 (char *arg, int from_tty,
11409 struct cmd_list_element *command)
11410 {
11411 struct gdbarch *gdbarch = get_current_arch ();
11412 char *cond_string = NULL;
11413 catch_fork_kind fork_kind;
11414 int tempflag;
11415
11416 fork_kind = (catch_fork_kind) (uintptr_t) get_cmd_context (command);
11417 tempflag = (fork_kind == catch_fork_temporary
11418 || fork_kind == catch_vfork_temporary);
11419
11420 if (!arg)
11421 arg = "";
11422 arg = skip_spaces (arg);
11423
11424 /* The allowed syntax is:
11425 catch [v]fork
11426 catch [v]fork if <cond>
11427
11428 First, check if there's an if clause. */
11429 cond_string = ep_parse_optional_if_clause (&arg);
11430
11431 if ((*arg != '\0') && !isspace (*arg))
11432 error (_("Junk at end of arguments."));
11433
11434 /* If this target supports it, create a fork or vfork catchpoint
11435 and enable reporting of such events. */
11436 switch (fork_kind)
11437 {
11438 case catch_fork_temporary:
11439 case catch_fork_permanent:
11440 create_fork_vfork_event_catchpoint (gdbarch, tempflag, cond_string,
11441 &catch_fork_breakpoint_ops);
11442 break;
11443 case catch_vfork_temporary:
11444 case catch_vfork_permanent:
11445 create_fork_vfork_event_catchpoint (gdbarch, tempflag, cond_string,
11446 &catch_vfork_breakpoint_ops);
11447 break;
11448 default:
11449 error (_("unsupported or unknown fork kind; cannot catch it"));
11450 break;
11451 }
11452 }
11453
11454 static void
11455 catch_exec_command_1 (char *arg, int from_tty,
11456 struct cmd_list_element *command)
11457 {
11458 struct exec_catchpoint *c;
11459 struct gdbarch *gdbarch = get_current_arch ();
11460 int tempflag;
11461 char *cond_string = NULL;
11462
11463 tempflag = get_cmd_context (command) == CATCH_TEMPORARY;
11464
11465 if (!arg)
11466 arg = "";
11467 arg = skip_spaces (arg);
11468
11469 /* The allowed syntax is:
11470 catch exec
11471 catch exec if <cond>
11472
11473 First, check if there's an if clause. */
11474 cond_string = ep_parse_optional_if_clause (&arg);
11475
11476 if ((*arg != '\0') && !isspace (*arg))
11477 error (_("Junk at end of arguments."));
11478
11479 c = XNEW (struct exec_catchpoint);
11480 init_catchpoint (&c->base, gdbarch, tempflag, cond_string,
11481 &catch_exec_breakpoint_ops);
11482 c->exec_pathname = NULL;
11483
11484 install_breakpoint (0, &c->base, 1);
11485 }
11486
11487 static enum print_stop_action
11488 print_it_exception_catchpoint (bpstat bs)
11489 {
11490 struct ui_out *uiout = current_uiout;
11491 struct breakpoint *b = bs->breakpoint_at;
11492 int bp_temp, bp_throw;
11493
11494 annotate_catchpoint (b->number);
11495
11496 bp_throw = strstr (b->addr_string, "throw") != NULL;
11497 if (b->loc->address != b->loc->requested_address)
11498 breakpoint_adjustment_warning (b->loc->requested_address,
11499 b->loc->address,
11500 b->number, 1);
11501 bp_temp = b->disposition == disp_del;
11502 ui_out_text (uiout,
11503 bp_temp ? "Temporary catchpoint "
11504 : "Catchpoint ");
11505 if (!ui_out_is_mi_like_p (uiout))
11506 ui_out_field_int (uiout, "bkptno", b->number);
11507 ui_out_text (uiout,
11508 bp_throw ? " (exception thrown), "
11509 : " (exception caught), ");
11510 if (ui_out_is_mi_like_p (uiout))
11511 {
11512 ui_out_field_string (uiout, "reason",
11513 async_reason_lookup (EXEC_ASYNC_BREAKPOINT_HIT));
11514 ui_out_field_string (uiout, "disp", bpdisp_text (b->disposition));
11515 ui_out_field_int (uiout, "bkptno", b->number);
11516 }
11517 return PRINT_SRC_AND_LOC;
11518 }
11519
11520 static void
11521 print_one_exception_catchpoint (struct breakpoint *b,
11522 struct bp_location **last_loc)
11523 {
11524 struct value_print_options opts;
11525 struct ui_out *uiout = current_uiout;
11526
11527 get_user_print_options (&opts);
11528 if (opts.addressprint)
11529 {
11530 annotate_field (4);
11531 if (b->loc == NULL || b->loc->shlib_disabled)
11532 ui_out_field_string (uiout, "addr", "<PENDING>");
11533 else
11534 ui_out_field_core_addr (uiout, "addr",
11535 b->loc->gdbarch, b->loc->address);
11536 }
11537 annotate_field (5);
11538 if (b->loc)
11539 *last_loc = b->loc;
11540 if (strstr (b->addr_string, "throw") != NULL)
11541 ui_out_field_string (uiout, "what", "exception throw");
11542 else
11543 ui_out_field_string (uiout, "what", "exception catch");
11544 }
11545
11546 static void
11547 print_mention_exception_catchpoint (struct breakpoint *b)
11548 {
11549 struct ui_out *uiout = current_uiout;
11550 int bp_temp;
11551 int bp_throw;
11552
11553 bp_temp = b->disposition == disp_del;
11554 bp_throw = strstr (b->addr_string, "throw") != NULL;
11555 ui_out_text (uiout, bp_temp ? _("Temporary catchpoint ")
11556 : _("Catchpoint "));
11557 ui_out_field_int (uiout, "bkptno", b->number);
11558 ui_out_text (uiout, bp_throw ? _(" (throw)")
11559 : _(" (catch)"));
11560 }
11561
11562 /* Implement the "print_recreate" breakpoint_ops method for throw and
11563 catch catchpoints. */
11564
11565 static void
11566 print_recreate_exception_catchpoint (struct breakpoint *b,
11567 struct ui_file *fp)
11568 {
11569 int bp_temp;
11570 int bp_throw;
11571
11572 bp_temp = b->disposition == disp_del;
11573 bp_throw = strstr (b->addr_string, "throw") != NULL;
11574 fprintf_unfiltered (fp, bp_temp ? "tcatch " : "catch ");
11575 fprintf_unfiltered (fp, bp_throw ? "throw" : "catch");
11576 print_recreate_thread (b, fp);
11577 }
11578
11579 static struct breakpoint_ops gnu_v3_exception_catchpoint_ops;
11580
11581 static int
11582 handle_gnu_v3_exceptions (int tempflag, char *cond_string,
11583 enum exception_event_kind ex_event, int from_tty)
11584 {
11585 char *trigger_func_name;
11586
11587 if (ex_event == EX_EVENT_CATCH)
11588 trigger_func_name = "__cxa_begin_catch";
11589 else
11590 trigger_func_name = "__cxa_throw";
11591
11592 create_breakpoint (get_current_arch (),
11593 trigger_func_name, cond_string, -1, NULL,
11594 0 /* condition and thread are valid. */,
11595 tempflag, bp_breakpoint,
11596 0,
11597 AUTO_BOOLEAN_TRUE /* pending */,
11598 &gnu_v3_exception_catchpoint_ops, from_tty,
11599 1 /* enabled */,
11600 0 /* internal */,
11601 0);
11602
11603 return 1;
11604 }
11605
11606 /* Deal with "catch catch" and "catch throw" commands. */
11607
11608 static void
11609 catch_exception_command_1 (enum exception_event_kind ex_event, char *arg,
11610 int tempflag, int from_tty)
11611 {
11612 char *cond_string = NULL;
11613
11614 if (!arg)
11615 arg = "";
11616 arg = skip_spaces (arg);
11617
11618 cond_string = ep_parse_optional_if_clause (&arg);
11619
11620 if ((*arg != '\0') && !isspace (*arg))
11621 error (_("Junk at end of arguments."));
11622
11623 if (ex_event != EX_EVENT_THROW
11624 && ex_event != EX_EVENT_CATCH)
11625 error (_("Unsupported or unknown exception event; cannot catch it"));
11626
11627 if (handle_gnu_v3_exceptions (tempflag, cond_string, ex_event, from_tty))
11628 return;
11629
11630 warning (_("Unsupported with this platform/compiler combination."));
11631 }
11632
11633 /* Implementation of "catch catch" command. */
11634
11635 static void
11636 catch_catch_command (char *arg, int from_tty, struct cmd_list_element *command)
11637 {
11638 int tempflag = get_cmd_context (command) == CATCH_TEMPORARY;
11639
11640 catch_exception_command_1 (EX_EVENT_CATCH, arg, tempflag, from_tty);
11641 }
11642
11643 /* Implementation of "catch throw" command. */
11644
11645 static void
11646 catch_throw_command (char *arg, int from_tty, struct cmd_list_element *command)
11647 {
11648 int tempflag = get_cmd_context (command) == CATCH_TEMPORARY;
11649
11650 catch_exception_command_1 (EX_EVENT_THROW, arg, tempflag, from_tty);
11651 }
11652
11653 void
11654 init_ada_exception_breakpoint (struct breakpoint *b,
11655 struct gdbarch *gdbarch,
11656 struct symtab_and_line sal,
11657 char *addr_string,
11658 const struct breakpoint_ops *ops,
11659 int tempflag,
11660 int from_tty)
11661 {
11662 if (from_tty)
11663 {
11664 struct gdbarch *loc_gdbarch = get_sal_arch (sal);
11665 if (!loc_gdbarch)
11666 loc_gdbarch = gdbarch;
11667
11668 describe_other_breakpoints (loc_gdbarch,
11669 sal.pspace, sal.pc, sal.section, -1);
11670 /* FIXME: brobecker/2006-12-28: Actually, re-implement a special
11671 version for exception catchpoints, because two catchpoints
11672 used for different exception names will use the same address.
11673 In this case, a "breakpoint ... also set at..." warning is
11674 unproductive. Besides, the warning phrasing is also a bit
11675 inappropriate, we should use the word catchpoint, and tell
11676 the user what type of catchpoint it is. The above is good
11677 enough for now, though. */
11678 }
11679
11680 init_raw_breakpoint (b, gdbarch, sal, bp_breakpoint, ops);
11681
11682 b->enable_state = bp_enabled;
11683 b->disposition = tempflag ? disp_del : disp_donttouch;
11684 b->addr_string = addr_string;
11685 b->language = language_ada;
11686 }
11687
11688 /* Splits the argument using space as delimiter. Returns an xmalloc'd
11689 filter list, or NULL if no filtering is required. */
11690 static VEC(int) *
11691 catch_syscall_split_args (char *arg)
11692 {
11693 VEC(int) *result = NULL;
11694 struct cleanup *cleanup = make_cleanup (VEC_cleanup (int), &result);
11695
11696 while (*arg != '\0')
11697 {
11698 int i, syscall_number;
11699 char *endptr;
11700 char cur_name[128];
11701 struct syscall s;
11702
11703 /* Skip whitespace. */
11704 while (isspace (*arg))
11705 arg++;
11706
11707 for (i = 0; i < 127 && arg[i] && !isspace (arg[i]); ++i)
11708 cur_name[i] = arg[i];
11709 cur_name[i] = '\0';
11710 arg += i;
11711
11712 /* Check if the user provided a syscall name or a number. */
11713 syscall_number = (int) strtol (cur_name, &endptr, 0);
11714 if (*endptr == '\0')
11715 get_syscall_by_number (syscall_number, &s);
11716 else
11717 {
11718 /* We have a name. Let's check if it's valid and convert it
11719 to a number. */
11720 get_syscall_by_name (cur_name, &s);
11721
11722 if (s.number == UNKNOWN_SYSCALL)
11723 /* Here we have to issue an error instead of a warning,
11724 because GDB cannot do anything useful if there's no
11725 syscall number to be caught. */
11726 error (_("Unknown syscall name '%s'."), cur_name);
11727 }
11728
11729 /* Ok, it's valid. */
11730 VEC_safe_push (int, result, s.number);
11731 }
11732
11733 discard_cleanups (cleanup);
11734 return result;
11735 }
11736
11737 /* Implement the "catch syscall" command. */
11738
11739 static void
11740 catch_syscall_command_1 (char *arg, int from_tty,
11741 struct cmd_list_element *command)
11742 {
11743 int tempflag;
11744 VEC(int) *filter;
11745 struct syscall s;
11746 struct gdbarch *gdbarch = get_current_arch ();
11747
11748 /* Checking if the feature if supported. */
11749 if (gdbarch_get_syscall_number_p (gdbarch) == 0)
11750 error (_("The feature 'catch syscall' is not supported on \
11751 this architecture yet."));
11752
11753 tempflag = get_cmd_context (command) == CATCH_TEMPORARY;
11754
11755 arg = skip_spaces (arg);
11756
11757 /* We need to do this first "dummy" translation in order
11758 to get the syscall XML file loaded or, most important,
11759 to display a warning to the user if there's no XML file
11760 for his/her architecture. */
11761 get_syscall_by_number (0, &s);
11762
11763 /* The allowed syntax is:
11764 catch syscall
11765 catch syscall <name | number> [<name | number> ... <name | number>]
11766
11767 Let's check if there's a syscall name. */
11768
11769 if (arg != NULL)
11770 filter = catch_syscall_split_args (arg);
11771 else
11772 filter = NULL;
11773
11774 create_syscall_event_catchpoint (tempflag, filter,
11775 &catch_syscall_breakpoint_ops);
11776 }
11777
11778 static void
11779 catch_command (char *arg, int from_tty)
11780 {
11781 error (_("Catch requires an event name."));
11782 }
11783 \f
11784
11785 static void
11786 tcatch_command (char *arg, int from_tty)
11787 {
11788 error (_("Catch requires an event name."));
11789 }
11790
11791 /* A qsort comparison function that sorts breakpoints in order. */
11792
11793 static int
11794 compare_breakpoints (const void *a, const void *b)
11795 {
11796 const breakpoint_p *ba = a;
11797 uintptr_t ua = (uintptr_t) *ba;
11798 const breakpoint_p *bb = b;
11799 uintptr_t ub = (uintptr_t) *bb;
11800
11801 if ((*ba)->number < (*bb)->number)
11802 return -1;
11803 else if ((*ba)->number > (*bb)->number)
11804 return 1;
11805
11806 /* Now sort by address, in case we see, e..g, two breakpoints with
11807 the number 0. */
11808 if (ua < ub)
11809 return -1;
11810 return ua > ub ? 1 : 0;
11811 }
11812
11813 /* Delete breakpoints by address or line. */
11814
11815 static void
11816 clear_command (char *arg, int from_tty)
11817 {
11818 struct breakpoint *b, *prev;
11819 VEC(breakpoint_p) *found = 0;
11820 int ix;
11821 int default_match;
11822 struct symtabs_and_lines sals;
11823 struct symtab_and_line sal;
11824 int i;
11825 struct cleanup *cleanups = make_cleanup (null_cleanup, NULL);
11826
11827 if (arg)
11828 {
11829 sals = decode_line_with_current_source (arg,
11830 (DECODE_LINE_FUNFIRSTLINE
11831 | DECODE_LINE_LIST_MODE));
11832 make_cleanup (xfree, sals.sals);
11833 default_match = 0;
11834 }
11835 else
11836 {
11837 sals.sals = (struct symtab_and_line *)
11838 xmalloc (sizeof (struct symtab_and_line));
11839 make_cleanup (xfree, sals.sals);
11840 init_sal (&sal); /* Initialize to zeroes. */
11841
11842 /* Set sal's line, symtab, pc, and pspace to the values
11843 corresponding to the last call to print_frame_info. If the
11844 codepoint is not valid, this will set all the fields to 0. */
11845 get_last_displayed_sal (&sal);
11846 if (sal.symtab == 0)
11847 error (_("No source file specified."));
11848
11849 sals.sals[0] = sal;
11850 sals.nelts = 1;
11851
11852 default_match = 1;
11853 }
11854
11855 /* We don't call resolve_sal_pc here. That's not as bad as it
11856 seems, because all existing breakpoints typically have both
11857 file/line and pc set. So, if clear is given file/line, we can
11858 match this to existing breakpoint without obtaining pc at all.
11859
11860 We only support clearing given the address explicitly
11861 present in breakpoint table. Say, we've set breakpoint
11862 at file:line. There were several PC values for that file:line,
11863 due to optimization, all in one block.
11864
11865 We've picked one PC value. If "clear" is issued with another
11866 PC corresponding to the same file:line, the breakpoint won't
11867 be cleared. We probably can still clear the breakpoint, but
11868 since the other PC value is never presented to user, user
11869 can only find it by guessing, and it does not seem important
11870 to support that. */
11871
11872 /* For each line spec given, delete bps which correspond to it. Do
11873 it in two passes, solely to preserve the current behavior that
11874 from_tty is forced true if we delete more than one
11875 breakpoint. */
11876
11877 found = NULL;
11878 make_cleanup (VEC_cleanup (breakpoint_p), &found);
11879 for (i = 0; i < sals.nelts; i++)
11880 {
11881 int is_abs;
11882
11883 /* If exact pc given, clear bpts at that pc.
11884 If line given (pc == 0), clear all bpts on specified line.
11885 If defaulting, clear all bpts on default line
11886 or at default pc.
11887
11888 defaulting sal.pc != 0 tests to do
11889
11890 0 1 pc
11891 1 1 pc _and_ line
11892 0 0 line
11893 1 0 <can't happen> */
11894
11895 sal = sals.sals[i];
11896 is_abs = sal.symtab == NULL ? 1 : IS_ABSOLUTE_PATH (sal.symtab->filename);
11897
11898 /* Find all matching breakpoints and add them to 'found'. */
11899 ALL_BREAKPOINTS (b)
11900 {
11901 int match = 0;
11902 /* Are we going to delete b? */
11903 if (b->type != bp_none && !is_watchpoint (b))
11904 {
11905 struct bp_location *loc = b->loc;
11906 for (; loc; loc = loc->next)
11907 {
11908 /* If the user specified file:line, don't allow a PC
11909 match. This matches historical gdb behavior. */
11910 int pc_match = (!sal.explicit_line
11911 && sal.pc
11912 && (loc->pspace == sal.pspace)
11913 && (loc->address == sal.pc)
11914 && (!section_is_overlay (loc->section)
11915 || loc->section == sal.section));
11916 int line_match = 0;
11917
11918 if ((default_match || sal.explicit_line)
11919 && loc->source_file != NULL
11920 && sal.symtab != NULL
11921 && sal.pspace == loc->pspace
11922 && loc->line_number == sal.line)
11923 {
11924 if (filename_cmp (loc->source_file,
11925 sal.symtab->filename) == 0)
11926 line_match = 1;
11927 else if (!IS_ABSOLUTE_PATH (sal.symtab->filename)
11928 && compare_filenames_for_search (loc->source_file,
11929 sal.symtab->filename))
11930 line_match = 1;
11931 }
11932
11933 if (pc_match || line_match)
11934 {
11935 match = 1;
11936 break;
11937 }
11938 }
11939 }
11940
11941 if (match)
11942 VEC_safe_push(breakpoint_p, found, b);
11943 }
11944 }
11945
11946 /* Now go thru the 'found' chain and delete them. */
11947 if (VEC_empty(breakpoint_p, found))
11948 {
11949 if (arg)
11950 error (_("No breakpoint at %s."), arg);
11951 else
11952 error (_("No breakpoint at this line."));
11953 }
11954
11955 /* Remove duplicates from the vec. */
11956 qsort (VEC_address (breakpoint_p, found),
11957 VEC_length (breakpoint_p, found),
11958 sizeof (breakpoint_p),
11959 compare_breakpoints);
11960 prev = VEC_index (breakpoint_p, found, 0);
11961 for (ix = 1; VEC_iterate (breakpoint_p, found, ix, b); ++ix)
11962 {
11963 if (b == prev)
11964 {
11965 VEC_ordered_remove (breakpoint_p, found, ix);
11966 --ix;
11967 }
11968 }
11969
11970 if (VEC_length(breakpoint_p, found) > 1)
11971 from_tty = 1; /* Always report if deleted more than one. */
11972 if (from_tty)
11973 {
11974 if (VEC_length(breakpoint_p, found) == 1)
11975 printf_unfiltered (_("Deleted breakpoint "));
11976 else
11977 printf_unfiltered (_("Deleted breakpoints "));
11978 }
11979 annotate_breakpoints_changed ();
11980
11981 for (ix = 0; VEC_iterate(breakpoint_p, found, ix, b); ix++)
11982 {
11983 if (from_tty)
11984 printf_unfiltered ("%d ", b->number);
11985 delete_breakpoint (b);
11986 }
11987 if (from_tty)
11988 putchar_unfiltered ('\n');
11989
11990 do_cleanups (cleanups);
11991 }
11992 \f
11993 /* Delete breakpoint in BS if they are `delete' breakpoints and
11994 all breakpoints that are marked for deletion, whether hit or not.
11995 This is called after any breakpoint is hit, or after errors. */
11996
11997 void
11998 breakpoint_auto_delete (bpstat bs)
11999 {
12000 struct breakpoint *b, *b_tmp;
12001
12002 for (; bs; bs = bs->next)
12003 if (bs->breakpoint_at
12004 && bs->breakpoint_at->disposition == disp_del
12005 && bs->stop)
12006 delete_breakpoint (bs->breakpoint_at);
12007
12008 ALL_BREAKPOINTS_SAFE (b, b_tmp)
12009 {
12010 if (b->disposition == disp_del_at_next_stop)
12011 delete_breakpoint (b);
12012 }
12013 }
12014
12015 /* A comparison function for bp_location AP and BP being interfaced to
12016 qsort. Sort elements primarily by their ADDRESS (no matter what
12017 does breakpoint_address_is_meaningful say for its OWNER),
12018 secondarily by ordering first bp_permanent OWNERed elements and
12019 terciarily just ensuring the array is sorted stable way despite
12020 qsort being an unstable algorithm. */
12021
12022 static int
12023 bp_location_compare (const void *ap, const void *bp)
12024 {
12025 struct bp_location *a = *(void **) ap;
12026 struct bp_location *b = *(void **) bp;
12027 /* A and B come from existing breakpoints having non-NULL OWNER. */
12028 int a_perm = a->owner->enable_state == bp_permanent;
12029 int b_perm = b->owner->enable_state == bp_permanent;
12030
12031 if (a->address != b->address)
12032 return (a->address > b->address) - (a->address < b->address);
12033
12034 /* Sort locations at the same address by their pspace number, keeping
12035 locations of the same inferior (in a multi-inferior environment)
12036 grouped. */
12037
12038 if (a->pspace->num != b->pspace->num)
12039 return ((a->pspace->num > b->pspace->num)
12040 - (a->pspace->num < b->pspace->num));
12041
12042 /* Sort permanent breakpoints first. */
12043 if (a_perm != b_perm)
12044 return (a_perm < b_perm) - (a_perm > b_perm);
12045
12046 /* Make the internal GDB representation stable across GDB runs
12047 where A and B memory inside GDB can differ. Breakpoint locations of
12048 the same type at the same address can be sorted in arbitrary order. */
12049
12050 if (a->owner->number != b->owner->number)
12051 return ((a->owner->number > b->owner->number)
12052 - (a->owner->number < b->owner->number));
12053
12054 return (a > b) - (a < b);
12055 }
12056
12057 /* Set bp_location_placed_address_before_address_max and
12058 bp_location_shadow_len_after_address_max according to the current
12059 content of the bp_location array. */
12060
12061 static void
12062 bp_location_target_extensions_update (void)
12063 {
12064 struct bp_location *bl, **blp_tmp;
12065
12066 bp_location_placed_address_before_address_max = 0;
12067 bp_location_shadow_len_after_address_max = 0;
12068
12069 ALL_BP_LOCATIONS (bl, blp_tmp)
12070 {
12071 CORE_ADDR start, end, addr;
12072
12073 if (!bp_location_has_shadow (bl))
12074 continue;
12075
12076 start = bl->target_info.placed_address;
12077 end = start + bl->target_info.shadow_len;
12078
12079 gdb_assert (bl->address >= start);
12080 addr = bl->address - start;
12081 if (addr > bp_location_placed_address_before_address_max)
12082 bp_location_placed_address_before_address_max = addr;
12083
12084 /* Zero SHADOW_LEN would not pass bp_location_has_shadow. */
12085
12086 gdb_assert (bl->address < end);
12087 addr = end - bl->address;
12088 if (addr > bp_location_shadow_len_after_address_max)
12089 bp_location_shadow_len_after_address_max = addr;
12090 }
12091 }
12092
12093 /* Download tracepoint locations if they haven't been. */
12094
12095 static void
12096 download_tracepoint_locations (void)
12097 {
12098 struct breakpoint *b;
12099 struct cleanup *old_chain;
12100
12101 if (!target_can_download_tracepoint ())
12102 return;
12103
12104 old_chain = save_current_space_and_thread ();
12105
12106 ALL_TRACEPOINTS (b)
12107 {
12108 struct bp_location *bl;
12109 struct tracepoint *t;
12110 int bp_location_downloaded = 0;
12111
12112 if ((b->type == bp_fast_tracepoint
12113 ? !may_insert_fast_tracepoints
12114 : !may_insert_tracepoints))
12115 continue;
12116
12117 for (bl = b->loc; bl; bl = bl->next)
12118 {
12119 /* In tracepoint, locations are _never_ duplicated, so
12120 should_be_inserted is equivalent to
12121 unduplicated_should_be_inserted. */
12122 if (!should_be_inserted (bl) || bl->inserted)
12123 continue;
12124
12125 switch_to_program_space_and_thread (bl->pspace);
12126
12127 target_download_tracepoint (bl);
12128
12129 bl->inserted = 1;
12130 bp_location_downloaded = 1;
12131 }
12132 t = (struct tracepoint *) b;
12133 t->number_on_target = b->number;
12134 if (bp_location_downloaded)
12135 observer_notify_breakpoint_modified (b);
12136 }
12137
12138 do_cleanups (old_chain);
12139 }
12140
12141 /* Swap the insertion/duplication state between two locations. */
12142
12143 static void
12144 swap_insertion (struct bp_location *left, struct bp_location *right)
12145 {
12146 const int left_inserted = left->inserted;
12147 const int left_duplicate = left->duplicate;
12148 const int left_needs_update = left->needs_update;
12149 const struct bp_target_info left_target_info = left->target_info;
12150
12151 /* Locations of tracepoints can never be duplicated. */
12152 if (is_tracepoint (left->owner))
12153 gdb_assert (!left->duplicate);
12154 if (is_tracepoint (right->owner))
12155 gdb_assert (!right->duplicate);
12156
12157 left->inserted = right->inserted;
12158 left->duplicate = right->duplicate;
12159 left->needs_update = right->needs_update;
12160 left->target_info = right->target_info;
12161 right->inserted = left_inserted;
12162 right->duplicate = left_duplicate;
12163 right->needs_update = left_needs_update;
12164 right->target_info = left_target_info;
12165 }
12166
12167 /* Force the re-insertion of the locations at ADDRESS. This is called
12168 once a new/deleted/modified duplicate location is found and we are evaluating
12169 conditions on the target's side. Such conditions need to be updated on
12170 the target. */
12171
12172 static void
12173 force_breakpoint_reinsertion (struct bp_location *bl)
12174 {
12175 struct bp_location **locp = NULL, **loc2p;
12176 struct bp_location *loc;
12177 CORE_ADDR address = 0;
12178 int pspace_num;
12179
12180 address = bl->address;
12181 pspace_num = bl->pspace->num;
12182
12183 /* This is only meaningful if the target is
12184 evaluating conditions and if the user has
12185 opted for condition evaluation on the target's
12186 side. */
12187 if (gdb_evaluates_breakpoint_condition_p ()
12188 || !target_supports_evaluation_of_breakpoint_conditions ())
12189 return;
12190
12191 /* Flag all breakpoint locations with this address and
12192 the same program space as the location
12193 as "its condition has changed". We need to
12194 update the conditions on the target's side. */
12195 ALL_BP_LOCATIONS_AT_ADDR (loc2p, locp, address)
12196 {
12197 loc = *loc2p;
12198
12199 if (!is_breakpoint (loc->owner)
12200 || pspace_num != loc->pspace->num)
12201 continue;
12202
12203 /* Flag the location appropriately. We use a different state to
12204 let everyone know that we already updated the set of locations
12205 with addr bl->address and program space bl->pspace. This is so
12206 we don't have to keep calling these functions just to mark locations
12207 that have already been marked. */
12208 loc->condition_changed = condition_updated;
12209
12210 /* Free the agent expression bytecode as well. We will compute
12211 it later on. */
12212 if (loc->cond_bytecode)
12213 {
12214 free_agent_expr (loc->cond_bytecode);
12215 loc->cond_bytecode = NULL;
12216 }
12217 }
12218 }
12219
12220 /* If SHOULD_INSERT is false, do not insert any breakpoint locations
12221 into the inferior, only remove already-inserted locations that no
12222 longer should be inserted. Functions that delete a breakpoint or
12223 breakpoints should pass false, so that deleting a breakpoint
12224 doesn't have the side effect of inserting the locations of other
12225 breakpoints that are marked not-inserted, but should_be_inserted
12226 returns true on them.
12227
12228 This behaviour is useful is situations close to tear-down -- e.g.,
12229 after an exec, while the target still has execution, but breakpoint
12230 shadows of the previous executable image should *NOT* be restored
12231 to the new image; or before detaching, where the target still has
12232 execution and wants to delete breakpoints from GDB's lists, and all
12233 breakpoints had already been removed from the inferior. */
12234
12235 static void
12236 update_global_location_list (int should_insert)
12237 {
12238 struct breakpoint *b;
12239 struct bp_location **locp, *loc;
12240 struct cleanup *cleanups;
12241 /* Last breakpoint location address that was marked for update. */
12242 CORE_ADDR last_addr = 0;
12243 /* Last breakpoint location program space that was marked for update. */
12244 int last_pspace_num = -1;
12245
12246 /* Used in the duplicates detection below. When iterating over all
12247 bp_locations, points to the first bp_location of a given address.
12248 Breakpoints and watchpoints of different types are never
12249 duplicates of each other. Keep one pointer for each type of
12250 breakpoint/watchpoint, so we only need to loop over all locations
12251 once. */
12252 struct bp_location *bp_loc_first; /* breakpoint */
12253 struct bp_location *wp_loc_first; /* hardware watchpoint */
12254 struct bp_location *awp_loc_first; /* access watchpoint */
12255 struct bp_location *rwp_loc_first; /* read watchpoint */
12256
12257 /* Saved former bp_location array which we compare against the newly
12258 built bp_location from the current state of ALL_BREAKPOINTS. */
12259 struct bp_location **old_location, **old_locp;
12260 unsigned old_location_count;
12261
12262 old_location = bp_location;
12263 old_location_count = bp_location_count;
12264 bp_location = NULL;
12265 bp_location_count = 0;
12266 cleanups = make_cleanup (xfree, old_location);
12267
12268 ALL_BREAKPOINTS (b)
12269 for (loc = b->loc; loc; loc = loc->next)
12270 bp_location_count++;
12271
12272 bp_location = xmalloc (sizeof (*bp_location) * bp_location_count);
12273 locp = bp_location;
12274 ALL_BREAKPOINTS (b)
12275 for (loc = b->loc; loc; loc = loc->next)
12276 *locp++ = loc;
12277 qsort (bp_location, bp_location_count, sizeof (*bp_location),
12278 bp_location_compare);
12279
12280 bp_location_target_extensions_update ();
12281
12282 /* Identify bp_location instances that are no longer present in the
12283 new list, and therefore should be freed. Note that it's not
12284 necessary that those locations should be removed from inferior --
12285 if there's another location at the same address (previously
12286 marked as duplicate), we don't need to remove/insert the
12287 location.
12288
12289 LOCP is kept in sync with OLD_LOCP, each pointing to the current
12290 and former bp_location array state respectively. */
12291
12292 locp = bp_location;
12293 for (old_locp = old_location; old_locp < old_location + old_location_count;
12294 old_locp++)
12295 {
12296 struct bp_location *old_loc = *old_locp;
12297 struct bp_location **loc2p;
12298
12299 /* Tells if 'old_loc' is found among the new locations. If
12300 not, we have to free it. */
12301 int found_object = 0;
12302 /* Tells if the location should remain inserted in the target. */
12303 int keep_in_target = 0;
12304 int removed = 0;
12305
12306 /* Skip LOCP entries which will definitely never be needed.
12307 Stop either at or being the one matching OLD_LOC. */
12308 while (locp < bp_location + bp_location_count
12309 && (*locp)->address < old_loc->address)
12310 locp++;
12311
12312 for (loc2p = locp;
12313 (loc2p < bp_location + bp_location_count
12314 && (*loc2p)->address == old_loc->address);
12315 loc2p++)
12316 {
12317 /* Check if this is a new/duplicated location or a duplicated
12318 location that had its condition modified. If so, we want to send
12319 its condition to the target if evaluation of conditions is taking
12320 place there. */
12321 if ((*loc2p)->condition_changed == condition_modified
12322 && (last_addr != old_loc->address
12323 || last_pspace_num != old_loc->pspace->num))
12324 {
12325 force_breakpoint_reinsertion (*loc2p);
12326 last_pspace_num = old_loc->pspace->num;
12327 }
12328
12329 if (*loc2p == old_loc)
12330 found_object = 1;
12331 }
12332
12333 /* We have already handled this address, update it so that we don't
12334 have to go through updates again. */
12335 last_addr = old_loc->address;
12336
12337 /* Target-side condition evaluation: Handle deleted locations. */
12338 if (!found_object)
12339 force_breakpoint_reinsertion (old_loc);
12340
12341 /* If this location is no longer present, and inserted, look if
12342 there's maybe a new location at the same address. If so,
12343 mark that one inserted, and don't remove this one. This is
12344 needed so that we don't have a time window where a breakpoint
12345 at certain location is not inserted. */
12346
12347 if (old_loc->inserted)
12348 {
12349 /* If the location is inserted now, we might have to remove
12350 it. */
12351
12352 if (found_object && should_be_inserted (old_loc))
12353 {
12354 /* The location is still present in the location list,
12355 and still should be inserted. Don't do anything. */
12356 keep_in_target = 1;
12357 }
12358 else
12359 {
12360 /* This location still exists, but it won't be kept in the
12361 target since it may have been disabled. We proceed to
12362 remove its target-side condition. */
12363
12364 /* The location is either no longer present, or got
12365 disabled. See if there's another location at the
12366 same address, in which case we don't need to remove
12367 this one from the target. */
12368
12369 /* OLD_LOC comes from existing struct breakpoint. */
12370 if (breakpoint_address_is_meaningful (old_loc->owner))
12371 {
12372 for (loc2p = locp;
12373 (loc2p < bp_location + bp_location_count
12374 && (*loc2p)->address == old_loc->address);
12375 loc2p++)
12376 {
12377 struct bp_location *loc2 = *loc2p;
12378
12379 if (breakpoint_locations_match (loc2, old_loc))
12380 {
12381 /* Read watchpoint locations are switched to
12382 access watchpoints, if the former are not
12383 supported, but the latter are. */
12384 if (is_hardware_watchpoint (old_loc->owner))
12385 {
12386 gdb_assert (is_hardware_watchpoint (loc2->owner));
12387 loc2->watchpoint_type = old_loc->watchpoint_type;
12388 }
12389
12390 /* loc2 is a duplicated location. We need to check
12391 if it should be inserted in case it will be
12392 unduplicated. */
12393 if (loc2 != old_loc
12394 && unduplicated_should_be_inserted (loc2))
12395 {
12396 swap_insertion (old_loc, loc2);
12397 keep_in_target = 1;
12398 break;
12399 }
12400 }
12401 }
12402 }
12403 }
12404
12405 if (!keep_in_target)
12406 {
12407 if (remove_breakpoint (old_loc, mark_uninserted))
12408 {
12409 /* This is just about all we can do. We could keep
12410 this location on the global list, and try to
12411 remove it next time, but there's no particular
12412 reason why we will succeed next time.
12413
12414 Note that at this point, old_loc->owner is still
12415 valid, as delete_breakpoint frees the breakpoint
12416 only after calling us. */
12417 printf_filtered (_("warning: Error removing "
12418 "breakpoint %d\n"),
12419 old_loc->owner->number);
12420 }
12421 removed = 1;
12422 }
12423 }
12424
12425 if (!found_object)
12426 {
12427 if (removed && non_stop
12428 && breakpoint_address_is_meaningful (old_loc->owner)
12429 && !is_hardware_watchpoint (old_loc->owner))
12430 {
12431 /* This location was removed from the target. In
12432 non-stop mode, a race condition is possible where
12433 we've removed a breakpoint, but stop events for that
12434 breakpoint are already queued and will arrive later.
12435 We apply an heuristic to be able to distinguish such
12436 SIGTRAPs from other random SIGTRAPs: we keep this
12437 breakpoint location for a bit, and will retire it
12438 after we see some number of events. The theory here
12439 is that reporting of events should, "on the average",
12440 be fair, so after a while we'll see events from all
12441 threads that have anything of interest, and no longer
12442 need to keep this breakpoint location around. We
12443 don't hold locations forever so to reduce chances of
12444 mistaking a non-breakpoint SIGTRAP for a breakpoint
12445 SIGTRAP.
12446
12447 The heuristic failing can be disastrous on
12448 decr_pc_after_break targets.
12449
12450 On decr_pc_after_break targets, like e.g., x86-linux,
12451 if we fail to recognize a late breakpoint SIGTRAP,
12452 because events_till_retirement has reached 0 too
12453 soon, we'll fail to do the PC adjustment, and report
12454 a random SIGTRAP to the user. When the user resumes
12455 the inferior, it will most likely immediately crash
12456 with SIGILL/SIGBUS/SIGSEGV, or worse, get silently
12457 corrupted, because of being resumed e.g., in the
12458 middle of a multi-byte instruction, or skipped a
12459 one-byte instruction. This was actually seen happen
12460 on native x86-linux, and should be less rare on
12461 targets that do not support new thread events, like
12462 remote, due to the heuristic depending on
12463 thread_count.
12464
12465 Mistaking a random SIGTRAP for a breakpoint trap
12466 causes similar symptoms (PC adjustment applied when
12467 it shouldn't), but then again, playing with SIGTRAPs
12468 behind the debugger's back is asking for trouble.
12469
12470 Since hardware watchpoint traps are always
12471 distinguishable from other traps, so we don't need to
12472 apply keep hardware watchpoint moribund locations
12473 around. We simply always ignore hardware watchpoint
12474 traps we can no longer explain. */
12475
12476 old_loc->events_till_retirement = 3 * (thread_count () + 1);
12477 old_loc->owner = NULL;
12478
12479 VEC_safe_push (bp_location_p, moribund_locations, old_loc);
12480 }
12481 else
12482 {
12483 old_loc->owner = NULL;
12484 decref_bp_location (&old_loc);
12485 }
12486 }
12487 }
12488
12489 /* Rescan breakpoints at the same address and section, marking the
12490 first one as "first" and any others as "duplicates". This is so
12491 that the bpt instruction is only inserted once. If we have a
12492 permanent breakpoint at the same place as BPT, make that one the
12493 official one, and the rest as duplicates. Permanent breakpoints
12494 are sorted first for the same address.
12495
12496 Do the same for hardware watchpoints, but also considering the
12497 watchpoint's type (regular/access/read) and length. */
12498
12499 bp_loc_first = NULL;
12500 wp_loc_first = NULL;
12501 awp_loc_first = NULL;
12502 rwp_loc_first = NULL;
12503 ALL_BP_LOCATIONS (loc, locp)
12504 {
12505 /* ALL_BP_LOCATIONS bp_location has LOC->OWNER always
12506 non-NULL. */
12507 struct bp_location **loc_first_p;
12508 b = loc->owner;
12509
12510 if (!unduplicated_should_be_inserted (loc)
12511 || !breakpoint_address_is_meaningful (b)
12512 /* Don't detect duplicate for tracepoint locations because they are
12513 never duplicated. See the comments in field `duplicate' of
12514 `struct bp_location'. */
12515 || is_tracepoint (b))
12516 {
12517 /* Clear the condition modification flag. */
12518 loc->condition_changed = condition_unchanged;
12519 continue;
12520 }
12521
12522 /* Permanent breakpoint should always be inserted. */
12523 if (b->enable_state == bp_permanent && ! loc->inserted)
12524 internal_error (__FILE__, __LINE__,
12525 _("allegedly permanent breakpoint is not "
12526 "actually inserted"));
12527
12528 if (b->type == bp_hardware_watchpoint)
12529 loc_first_p = &wp_loc_first;
12530 else if (b->type == bp_read_watchpoint)
12531 loc_first_p = &rwp_loc_first;
12532 else if (b->type == bp_access_watchpoint)
12533 loc_first_p = &awp_loc_first;
12534 else
12535 loc_first_p = &bp_loc_first;
12536
12537 if (*loc_first_p == NULL
12538 || (overlay_debugging && loc->section != (*loc_first_p)->section)
12539 || !breakpoint_locations_match (loc, *loc_first_p))
12540 {
12541 *loc_first_p = loc;
12542 loc->duplicate = 0;
12543
12544 if (is_breakpoint (loc->owner) && loc->condition_changed)
12545 {
12546 loc->needs_update = 1;
12547 /* Clear the condition modification flag. */
12548 loc->condition_changed = condition_unchanged;
12549 }
12550 continue;
12551 }
12552
12553
12554 /* This and the above ensure the invariant that the first location
12555 is not duplicated, and is the inserted one.
12556 All following are marked as duplicated, and are not inserted. */
12557 if (loc->inserted)
12558 swap_insertion (loc, *loc_first_p);
12559 loc->duplicate = 1;
12560
12561 /* Clear the condition modification flag. */
12562 loc->condition_changed = condition_unchanged;
12563
12564 if ((*loc_first_p)->owner->enable_state == bp_permanent && loc->inserted
12565 && b->enable_state != bp_permanent)
12566 internal_error (__FILE__, __LINE__,
12567 _("another breakpoint was inserted on top of "
12568 "a permanent breakpoint"));
12569 }
12570
12571 if (breakpoints_always_inserted_mode ()
12572 && (have_live_inferiors ()
12573 || (gdbarch_has_global_breakpoints (target_gdbarch ()))))
12574 {
12575 if (should_insert)
12576 insert_breakpoint_locations ();
12577 else
12578 {
12579 /* Though should_insert is false, we may need to update conditions
12580 on the target's side if it is evaluating such conditions. We
12581 only update conditions for locations that are marked
12582 "needs_update". */
12583 update_inserted_breakpoint_locations ();
12584 }
12585 }
12586
12587 if (should_insert)
12588 download_tracepoint_locations ();
12589
12590 do_cleanups (cleanups);
12591 }
12592
12593 void
12594 breakpoint_retire_moribund (void)
12595 {
12596 struct bp_location *loc;
12597 int ix;
12598
12599 for (ix = 0; VEC_iterate (bp_location_p, moribund_locations, ix, loc); ++ix)
12600 if (--(loc->events_till_retirement) == 0)
12601 {
12602 decref_bp_location (&loc);
12603 VEC_unordered_remove (bp_location_p, moribund_locations, ix);
12604 --ix;
12605 }
12606 }
12607
12608 static void
12609 update_global_location_list_nothrow (int inserting)
12610 {
12611 volatile struct gdb_exception e;
12612
12613 TRY_CATCH (e, RETURN_MASK_ERROR)
12614 update_global_location_list (inserting);
12615 }
12616
12617 /* Clear BKP from a BPS. */
12618
12619 static void
12620 bpstat_remove_bp_location (bpstat bps, struct breakpoint *bpt)
12621 {
12622 bpstat bs;
12623
12624 for (bs = bps; bs; bs = bs->next)
12625 if (bs->breakpoint_at == bpt)
12626 {
12627 bs->breakpoint_at = NULL;
12628 bs->old_val = NULL;
12629 /* bs->commands will be freed later. */
12630 }
12631 }
12632
12633 /* Callback for iterate_over_threads. */
12634 static int
12635 bpstat_remove_breakpoint_callback (struct thread_info *th, void *data)
12636 {
12637 struct breakpoint *bpt = data;
12638
12639 bpstat_remove_bp_location (th->control.stop_bpstat, bpt);
12640 return 0;
12641 }
12642
12643 /* Helper for breakpoint and tracepoint breakpoint_ops->mention
12644 callbacks. */
12645
12646 static void
12647 say_where (struct breakpoint *b)
12648 {
12649 struct ui_out *uiout = current_uiout;
12650 struct value_print_options opts;
12651
12652 get_user_print_options (&opts);
12653
12654 /* i18n: cagney/2005-02-11: Below needs to be merged into a
12655 single string. */
12656 if (b->loc == NULL)
12657 {
12658 printf_filtered (_(" (%s) pending."), b->addr_string);
12659 }
12660 else
12661 {
12662 if (opts.addressprint || b->loc->source_file == NULL)
12663 {
12664 printf_filtered (" at ");
12665 fputs_filtered (paddress (b->loc->gdbarch, b->loc->address),
12666 gdb_stdout);
12667 }
12668 if (b->loc->source_file)
12669 {
12670 /* If there is a single location, we can print the location
12671 more nicely. */
12672 if (b->loc->next == NULL)
12673 printf_filtered (": file %s, line %d.",
12674 b->loc->source_file, b->loc->line_number);
12675 else
12676 /* This is not ideal, but each location may have a
12677 different file name, and this at least reflects the
12678 real situation somewhat. */
12679 printf_filtered (": %s.", b->addr_string);
12680 }
12681
12682 if (b->loc->next)
12683 {
12684 struct bp_location *loc = b->loc;
12685 int n = 0;
12686 for (; loc; loc = loc->next)
12687 ++n;
12688 printf_filtered (" (%d locations)", n);
12689 }
12690 }
12691 }
12692
12693 /* Default bp_location_ops methods. */
12694
12695 static void
12696 bp_location_dtor (struct bp_location *self)
12697 {
12698 xfree (self->cond);
12699 if (self->cond_bytecode)
12700 free_agent_expr (self->cond_bytecode);
12701 xfree (self->function_name);
12702 xfree (self->source_file);
12703 }
12704
12705 static const struct bp_location_ops bp_location_ops =
12706 {
12707 bp_location_dtor
12708 };
12709
12710 /* Default breakpoint_ops methods all breakpoint_ops ultimately
12711 inherit from. */
12712
12713 static void
12714 base_breakpoint_dtor (struct breakpoint *self)
12715 {
12716 decref_counted_command_line (&self->commands);
12717 xfree (self->cond_string);
12718 xfree (self->addr_string);
12719 xfree (self->filter);
12720 xfree (self->addr_string_range_end);
12721 }
12722
12723 static struct bp_location *
12724 base_breakpoint_allocate_location (struct breakpoint *self)
12725 {
12726 struct bp_location *loc;
12727
12728 loc = XNEW (struct bp_location);
12729 init_bp_location (loc, &bp_location_ops, self);
12730 return loc;
12731 }
12732
12733 static void
12734 base_breakpoint_re_set (struct breakpoint *b)
12735 {
12736 /* Nothing to re-set. */
12737 }
12738
12739 #define internal_error_pure_virtual_called() \
12740 gdb_assert_not_reached ("pure virtual function called")
12741
12742 static int
12743 base_breakpoint_insert_location (struct bp_location *bl)
12744 {
12745 internal_error_pure_virtual_called ();
12746 }
12747
12748 static int
12749 base_breakpoint_remove_location (struct bp_location *bl)
12750 {
12751 internal_error_pure_virtual_called ();
12752 }
12753
12754 static int
12755 base_breakpoint_breakpoint_hit (const struct bp_location *bl,
12756 struct address_space *aspace,
12757 CORE_ADDR bp_addr,
12758 const struct target_waitstatus *ws)
12759 {
12760 internal_error_pure_virtual_called ();
12761 }
12762
12763 static void
12764 base_breakpoint_check_status (bpstat bs)
12765 {
12766 /* Always stop. */
12767 }
12768
12769 /* A "works_in_software_mode" breakpoint_ops method that just internal
12770 errors. */
12771
12772 static int
12773 base_breakpoint_works_in_software_mode (const struct breakpoint *b)
12774 {
12775 internal_error_pure_virtual_called ();
12776 }
12777
12778 /* A "resources_needed" breakpoint_ops method that just internal
12779 errors. */
12780
12781 static int
12782 base_breakpoint_resources_needed (const struct bp_location *bl)
12783 {
12784 internal_error_pure_virtual_called ();
12785 }
12786
12787 static enum print_stop_action
12788 base_breakpoint_print_it (bpstat bs)
12789 {
12790 internal_error_pure_virtual_called ();
12791 }
12792
12793 static void
12794 base_breakpoint_print_one_detail (const struct breakpoint *self,
12795 struct ui_out *uiout)
12796 {
12797 /* nothing */
12798 }
12799
12800 static void
12801 base_breakpoint_print_mention (struct breakpoint *b)
12802 {
12803 internal_error_pure_virtual_called ();
12804 }
12805
12806 static void
12807 base_breakpoint_print_recreate (struct breakpoint *b, struct ui_file *fp)
12808 {
12809 internal_error_pure_virtual_called ();
12810 }
12811
12812 static void
12813 base_breakpoint_create_sals_from_address (char **arg,
12814 struct linespec_result *canonical,
12815 enum bptype type_wanted,
12816 char *addr_start,
12817 char **copy_arg)
12818 {
12819 internal_error_pure_virtual_called ();
12820 }
12821
12822 static void
12823 base_breakpoint_create_breakpoints_sal (struct gdbarch *gdbarch,
12824 struct linespec_result *c,
12825 struct linespec_sals *lsal,
12826 char *cond_string,
12827 char *extra_string,
12828 enum bptype type_wanted,
12829 enum bpdisp disposition,
12830 int thread,
12831 int task, int ignore_count,
12832 const struct breakpoint_ops *o,
12833 int from_tty, int enabled,
12834 int internal, unsigned flags)
12835 {
12836 internal_error_pure_virtual_called ();
12837 }
12838
12839 static void
12840 base_breakpoint_decode_linespec (struct breakpoint *b, char **s,
12841 struct symtabs_and_lines *sals)
12842 {
12843 internal_error_pure_virtual_called ();
12844 }
12845
12846 static struct breakpoint_ops base_breakpoint_ops =
12847 {
12848 base_breakpoint_dtor,
12849 base_breakpoint_allocate_location,
12850 base_breakpoint_re_set,
12851 base_breakpoint_insert_location,
12852 base_breakpoint_remove_location,
12853 base_breakpoint_breakpoint_hit,
12854 base_breakpoint_check_status,
12855 base_breakpoint_resources_needed,
12856 base_breakpoint_works_in_software_mode,
12857 base_breakpoint_print_it,
12858 NULL,
12859 base_breakpoint_print_one_detail,
12860 base_breakpoint_print_mention,
12861 base_breakpoint_print_recreate,
12862 base_breakpoint_create_sals_from_address,
12863 base_breakpoint_create_breakpoints_sal,
12864 base_breakpoint_decode_linespec,
12865 };
12866
12867 /* Default breakpoint_ops methods. */
12868
12869 static void
12870 bkpt_re_set (struct breakpoint *b)
12871 {
12872 /* FIXME: is this still reachable? */
12873 if (b->addr_string == NULL)
12874 {
12875 /* Anything without a string can't be re-set. */
12876 delete_breakpoint (b);
12877 return;
12878 }
12879
12880 breakpoint_re_set_default (b);
12881 }
12882
12883 static int
12884 bkpt_insert_location (struct bp_location *bl)
12885 {
12886 if (bl->loc_type == bp_loc_hardware_breakpoint)
12887 return target_insert_hw_breakpoint (bl->gdbarch,
12888 &bl->target_info);
12889 else
12890 return target_insert_breakpoint (bl->gdbarch,
12891 &bl->target_info);
12892 }
12893
12894 static int
12895 bkpt_remove_location (struct bp_location *bl)
12896 {
12897 if (bl->loc_type == bp_loc_hardware_breakpoint)
12898 return target_remove_hw_breakpoint (bl->gdbarch, &bl->target_info);
12899 else
12900 return target_remove_breakpoint (bl->gdbarch, &bl->target_info);
12901 }
12902
12903 static int
12904 bkpt_breakpoint_hit (const struct bp_location *bl,
12905 struct address_space *aspace, CORE_ADDR bp_addr,
12906 const struct target_waitstatus *ws)
12907 {
12908 struct breakpoint *b = bl->owner;
12909
12910 if (ws->kind != TARGET_WAITKIND_STOPPED
12911 || ws->value.sig != GDB_SIGNAL_TRAP)
12912 return 0;
12913
12914 if (!breakpoint_address_match (bl->pspace->aspace, bl->address,
12915 aspace, bp_addr))
12916 return 0;
12917
12918 if (overlay_debugging /* unmapped overlay section */
12919 && section_is_overlay (bl->section)
12920 && !section_is_mapped (bl->section))
12921 return 0;
12922
12923 return 1;
12924 }
12925
12926 static int
12927 bkpt_resources_needed (const struct bp_location *bl)
12928 {
12929 gdb_assert (bl->owner->type == bp_hardware_breakpoint);
12930
12931 return 1;
12932 }
12933
12934 static enum print_stop_action
12935 bkpt_print_it (bpstat bs)
12936 {
12937 struct breakpoint *b;
12938 const struct bp_location *bl;
12939 int bp_temp;
12940 struct ui_out *uiout = current_uiout;
12941
12942 gdb_assert (bs->bp_location_at != NULL);
12943
12944 bl = bs->bp_location_at;
12945 b = bs->breakpoint_at;
12946
12947 bp_temp = b->disposition == disp_del;
12948 if (bl->address != bl->requested_address)
12949 breakpoint_adjustment_warning (bl->requested_address,
12950 bl->address,
12951 b->number, 1);
12952 annotate_breakpoint (b->number);
12953 if (bp_temp)
12954 ui_out_text (uiout, "\nTemporary breakpoint ");
12955 else
12956 ui_out_text (uiout, "\nBreakpoint ");
12957 if (ui_out_is_mi_like_p (uiout))
12958 {
12959 ui_out_field_string (uiout, "reason",
12960 async_reason_lookup (EXEC_ASYNC_BREAKPOINT_HIT));
12961 ui_out_field_string (uiout, "disp", bpdisp_text (b->disposition));
12962 }
12963 ui_out_field_int (uiout, "bkptno", b->number);
12964 ui_out_text (uiout, ", ");
12965
12966 return PRINT_SRC_AND_LOC;
12967 }
12968
12969 static void
12970 bkpt_print_mention (struct breakpoint *b)
12971 {
12972 if (ui_out_is_mi_like_p (current_uiout))
12973 return;
12974
12975 switch (b->type)
12976 {
12977 case bp_breakpoint:
12978 case bp_gnu_ifunc_resolver:
12979 if (b->disposition == disp_del)
12980 printf_filtered (_("Temporary breakpoint"));
12981 else
12982 printf_filtered (_("Breakpoint"));
12983 printf_filtered (_(" %d"), b->number);
12984 if (b->type == bp_gnu_ifunc_resolver)
12985 printf_filtered (_(" at gnu-indirect-function resolver"));
12986 break;
12987 case bp_hardware_breakpoint:
12988 printf_filtered (_("Hardware assisted breakpoint %d"), b->number);
12989 break;
12990 case bp_dprintf:
12991 printf_filtered (_("Dprintf %d"), b->number);
12992 break;
12993 }
12994
12995 say_where (b);
12996 }
12997
12998 static void
12999 bkpt_print_recreate (struct breakpoint *tp, struct ui_file *fp)
13000 {
13001 if (tp->type == bp_breakpoint && tp->disposition == disp_del)
13002 fprintf_unfiltered (fp, "tbreak");
13003 else if (tp->type == bp_breakpoint)
13004 fprintf_unfiltered (fp, "break");
13005 else if (tp->type == bp_hardware_breakpoint
13006 && tp->disposition == disp_del)
13007 fprintf_unfiltered (fp, "thbreak");
13008 else if (tp->type == bp_hardware_breakpoint)
13009 fprintf_unfiltered (fp, "hbreak");
13010 else
13011 internal_error (__FILE__, __LINE__,
13012 _("unhandled breakpoint type %d"), (int) tp->type);
13013
13014 fprintf_unfiltered (fp, " %s", tp->addr_string);
13015 print_recreate_thread (tp, fp);
13016 }
13017
13018 static void
13019 bkpt_create_sals_from_address (char **arg,
13020 struct linespec_result *canonical,
13021 enum bptype type_wanted,
13022 char *addr_start, char **copy_arg)
13023 {
13024 create_sals_from_address_default (arg, canonical, type_wanted,
13025 addr_start, copy_arg);
13026 }
13027
13028 static void
13029 bkpt_create_breakpoints_sal (struct gdbarch *gdbarch,
13030 struct linespec_result *canonical,
13031 struct linespec_sals *lsal,
13032 char *cond_string,
13033 char *extra_string,
13034 enum bptype type_wanted,
13035 enum bpdisp disposition,
13036 int thread,
13037 int task, int ignore_count,
13038 const struct breakpoint_ops *ops,
13039 int from_tty, int enabled,
13040 int internal, unsigned flags)
13041 {
13042 create_breakpoints_sal_default (gdbarch, canonical, lsal,
13043 cond_string, extra_string,
13044 type_wanted,
13045 disposition, thread, task,
13046 ignore_count, ops, from_tty,
13047 enabled, internal, flags);
13048 }
13049
13050 static void
13051 bkpt_decode_linespec (struct breakpoint *b, char **s,
13052 struct symtabs_and_lines *sals)
13053 {
13054 decode_linespec_default (b, s, sals);
13055 }
13056
13057 /* Virtual table for internal breakpoints. */
13058
13059 static void
13060 internal_bkpt_re_set (struct breakpoint *b)
13061 {
13062 switch (b->type)
13063 {
13064 /* Delete overlay event and longjmp master breakpoints; they
13065 will be reset later by breakpoint_re_set. */
13066 case bp_overlay_event:
13067 case bp_longjmp_master:
13068 case bp_std_terminate_master:
13069 case bp_exception_master:
13070 delete_breakpoint (b);
13071 break;
13072
13073 /* This breakpoint is special, it's set up when the inferior
13074 starts and we really don't want to touch it. */
13075 case bp_shlib_event:
13076
13077 /* Like bp_shlib_event, this breakpoint type is special. Once
13078 it is set up, we do not want to touch it. */
13079 case bp_thread_event:
13080 break;
13081 }
13082 }
13083
13084 static void
13085 internal_bkpt_check_status (bpstat bs)
13086 {
13087 if (bs->breakpoint_at->type == bp_shlib_event)
13088 {
13089 /* If requested, stop when the dynamic linker notifies GDB of
13090 events. This allows the user to get control and place
13091 breakpoints in initializer routines for dynamically loaded
13092 objects (among other things). */
13093 bs->stop = stop_on_solib_events;
13094 bs->print = stop_on_solib_events;
13095 }
13096 else
13097 bs->stop = 0;
13098 }
13099
13100 static enum print_stop_action
13101 internal_bkpt_print_it (bpstat bs)
13102 {
13103 struct ui_out *uiout = current_uiout;
13104 struct breakpoint *b;
13105
13106 b = bs->breakpoint_at;
13107
13108 switch (b->type)
13109 {
13110 case bp_shlib_event:
13111 /* Did we stop because the user set the stop_on_solib_events
13112 variable? (If so, we report this as a generic, "Stopped due
13113 to shlib event" message.) */
13114 print_solib_event (0);
13115 break;
13116
13117 case bp_thread_event:
13118 /* Not sure how we will get here.
13119 GDB should not stop for these breakpoints. */
13120 printf_filtered (_("Thread Event Breakpoint: gdb should not stop!\n"));
13121 break;
13122
13123 case bp_overlay_event:
13124 /* By analogy with the thread event, GDB should not stop for these. */
13125 printf_filtered (_("Overlay Event Breakpoint: gdb should not stop!\n"));
13126 break;
13127
13128 case bp_longjmp_master:
13129 /* These should never be enabled. */
13130 printf_filtered (_("Longjmp Master Breakpoint: gdb should not stop!\n"));
13131 break;
13132
13133 case bp_std_terminate_master:
13134 /* These should never be enabled. */
13135 printf_filtered (_("std::terminate Master Breakpoint: "
13136 "gdb should not stop!\n"));
13137 break;
13138
13139 case bp_exception_master:
13140 /* These should never be enabled. */
13141 printf_filtered (_("Exception Master Breakpoint: "
13142 "gdb should not stop!\n"));
13143 break;
13144 }
13145
13146 return PRINT_NOTHING;
13147 }
13148
13149 static void
13150 internal_bkpt_print_mention (struct breakpoint *b)
13151 {
13152 /* Nothing to mention. These breakpoints are internal. */
13153 }
13154
13155 /* Virtual table for momentary breakpoints */
13156
13157 static void
13158 momentary_bkpt_re_set (struct breakpoint *b)
13159 {
13160 /* Keep temporary breakpoints, which can be encountered when we step
13161 over a dlopen call and SOLIB_ADD is resetting the breakpoints.
13162 Otherwise these should have been blown away via the cleanup chain
13163 or by breakpoint_init_inferior when we rerun the executable. */
13164 }
13165
13166 static void
13167 momentary_bkpt_check_status (bpstat bs)
13168 {
13169 /* Nothing. The point of these breakpoints is causing a stop. */
13170 }
13171
13172 static enum print_stop_action
13173 momentary_bkpt_print_it (bpstat bs)
13174 {
13175 struct ui_out *uiout = current_uiout;
13176
13177 if (ui_out_is_mi_like_p (uiout))
13178 {
13179 struct breakpoint *b = bs->breakpoint_at;
13180
13181 switch (b->type)
13182 {
13183 case bp_finish:
13184 ui_out_field_string
13185 (uiout, "reason",
13186 async_reason_lookup (EXEC_ASYNC_FUNCTION_FINISHED));
13187 break;
13188
13189 case bp_until:
13190 ui_out_field_string
13191 (uiout, "reason",
13192 async_reason_lookup (EXEC_ASYNC_LOCATION_REACHED));
13193 break;
13194 }
13195 }
13196
13197 return PRINT_UNKNOWN;
13198 }
13199
13200 static void
13201 momentary_bkpt_print_mention (struct breakpoint *b)
13202 {
13203 /* Nothing to mention. These breakpoints are internal. */
13204 }
13205
13206 /* Ensure INITIATING_FRAME is cleared when no such breakpoint exists.
13207
13208 It gets cleared already on the removal of the first one of such placed
13209 breakpoints. This is OK as they get all removed altogether. */
13210
13211 static void
13212 longjmp_bkpt_dtor (struct breakpoint *self)
13213 {
13214 struct thread_info *tp = find_thread_id (self->thread);
13215
13216 if (tp)
13217 tp->initiating_frame = null_frame_id;
13218
13219 momentary_breakpoint_ops.dtor (self);
13220 }
13221
13222 /* Specific methods for probe breakpoints. */
13223
13224 static int
13225 bkpt_probe_insert_location (struct bp_location *bl)
13226 {
13227 int v = bkpt_insert_location (bl);
13228
13229 if (v == 0)
13230 {
13231 /* The insertion was successful, now let's set the probe's semaphore
13232 if needed. */
13233 bl->probe->pops->set_semaphore (bl->probe, bl->gdbarch);
13234 }
13235
13236 return v;
13237 }
13238
13239 static int
13240 bkpt_probe_remove_location (struct bp_location *bl)
13241 {
13242 /* Let's clear the semaphore before removing the location. */
13243 bl->probe->pops->clear_semaphore (bl->probe, bl->gdbarch);
13244
13245 return bkpt_remove_location (bl);
13246 }
13247
13248 static void
13249 bkpt_probe_create_sals_from_address (char **arg,
13250 struct linespec_result *canonical,
13251 enum bptype type_wanted,
13252 char *addr_start, char **copy_arg)
13253 {
13254 struct linespec_sals lsal;
13255
13256 lsal.sals = parse_probes (arg, canonical);
13257
13258 *copy_arg = xstrdup (canonical->addr_string);
13259 lsal.canonical = xstrdup (*copy_arg);
13260
13261 VEC_safe_push (linespec_sals, canonical->sals, &lsal);
13262 }
13263
13264 static void
13265 bkpt_probe_decode_linespec (struct breakpoint *b, char **s,
13266 struct symtabs_and_lines *sals)
13267 {
13268 *sals = parse_probes (s, NULL);
13269 if (!sals->sals)
13270 error (_("probe not found"));
13271 }
13272
13273 /* The breakpoint_ops structure to be used in tracepoints. */
13274
13275 static void
13276 tracepoint_re_set (struct breakpoint *b)
13277 {
13278 breakpoint_re_set_default (b);
13279 }
13280
13281 static int
13282 tracepoint_breakpoint_hit (const struct bp_location *bl,
13283 struct address_space *aspace, CORE_ADDR bp_addr,
13284 const struct target_waitstatus *ws)
13285 {
13286 /* By definition, the inferior does not report stops at
13287 tracepoints. */
13288 return 0;
13289 }
13290
13291 static void
13292 tracepoint_print_one_detail (const struct breakpoint *self,
13293 struct ui_out *uiout)
13294 {
13295 struct tracepoint *tp = (struct tracepoint *) self;
13296 if (tp->static_trace_marker_id)
13297 {
13298 gdb_assert (self->type == bp_static_tracepoint);
13299
13300 ui_out_text (uiout, "\tmarker id is ");
13301 ui_out_field_string (uiout, "static-tracepoint-marker-string-id",
13302 tp->static_trace_marker_id);
13303 ui_out_text (uiout, "\n");
13304 }
13305 }
13306
13307 static void
13308 tracepoint_print_mention (struct breakpoint *b)
13309 {
13310 if (ui_out_is_mi_like_p (current_uiout))
13311 return;
13312
13313 switch (b->type)
13314 {
13315 case bp_tracepoint:
13316 printf_filtered (_("Tracepoint"));
13317 printf_filtered (_(" %d"), b->number);
13318 break;
13319 case bp_fast_tracepoint:
13320 printf_filtered (_("Fast tracepoint"));
13321 printf_filtered (_(" %d"), b->number);
13322 break;
13323 case bp_static_tracepoint:
13324 printf_filtered (_("Static tracepoint"));
13325 printf_filtered (_(" %d"), b->number);
13326 break;
13327 default:
13328 internal_error (__FILE__, __LINE__,
13329 _("unhandled tracepoint type %d"), (int) b->type);
13330 }
13331
13332 say_where (b);
13333 }
13334
13335 static void
13336 tracepoint_print_recreate (struct breakpoint *self, struct ui_file *fp)
13337 {
13338 struct tracepoint *tp = (struct tracepoint *) self;
13339
13340 if (self->type == bp_fast_tracepoint)
13341 fprintf_unfiltered (fp, "ftrace");
13342 if (self->type == bp_static_tracepoint)
13343 fprintf_unfiltered (fp, "strace");
13344 else if (self->type == bp_tracepoint)
13345 fprintf_unfiltered (fp, "trace");
13346 else
13347 internal_error (__FILE__, __LINE__,
13348 _("unhandled tracepoint type %d"), (int) self->type);
13349
13350 fprintf_unfiltered (fp, " %s", self->addr_string);
13351 print_recreate_thread (self, fp);
13352
13353 if (tp->pass_count)
13354 fprintf_unfiltered (fp, " passcount %d\n", tp->pass_count);
13355 }
13356
13357 static void
13358 tracepoint_create_sals_from_address (char **arg,
13359 struct linespec_result *canonical,
13360 enum bptype type_wanted,
13361 char *addr_start, char **copy_arg)
13362 {
13363 create_sals_from_address_default (arg, canonical, type_wanted,
13364 addr_start, copy_arg);
13365 }
13366
13367 static void
13368 tracepoint_create_breakpoints_sal (struct gdbarch *gdbarch,
13369 struct linespec_result *canonical,
13370 struct linespec_sals *lsal,
13371 char *cond_string,
13372 char *extra_string,
13373 enum bptype type_wanted,
13374 enum bpdisp disposition,
13375 int thread,
13376 int task, int ignore_count,
13377 const struct breakpoint_ops *ops,
13378 int from_tty, int enabled,
13379 int internal, unsigned flags)
13380 {
13381 create_breakpoints_sal_default (gdbarch, canonical, lsal,
13382 cond_string, extra_string,
13383 type_wanted,
13384 disposition, thread, task,
13385 ignore_count, ops, from_tty,
13386 enabled, internal, flags);
13387 }
13388
13389 static void
13390 tracepoint_decode_linespec (struct breakpoint *b, char **s,
13391 struct symtabs_and_lines *sals)
13392 {
13393 decode_linespec_default (b, s, sals);
13394 }
13395
13396 struct breakpoint_ops tracepoint_breakpoint_ops;
13397
13398 /* The breakpoint_ops structure to be use on tracepoints placed in a
13399 static probe. */
13400
13401 static void
13402 tracepoint_probe_create_sals_from_address (char **arg,
13403 struct linespec_result *canonical,
13404 enum bptype type_wanted,
13405 char *addr_start, char **copy_arg)
13406 {
13407 /* We use the same method for breakpoint on probes. */
13408 bkpt_probe_create_sals_from_address (arg, canonical, type_wanted,
13409 addr_start, copy_arg);
13410 }
13411
13412 static void
13413 tracepoint_probe_decode_linespec (struct breakpoint *b, char **s,
13414 struct symtabs_and_lines *sals)
13415 {
13416 /* We use the same method for breakpoint on probes. */
13417 bkpt_probe_decode_linespec (b, s, sals);
13418 }
13419
13420 static struct breakpoint_ops tracepoint_probe_breakpoint_ops;
13421
13422 /* The breakpoint_ops structure to be used on static tracepoints with
13423 markers (`-m'). */
13424
13425 static void
13426 strace_marker_create_sals_from_address (char **arg,
13427 struct linespec_result *canonical,
13428 enum bptype type_wanted,
13429 char *addr_start, char **copy_arg)
13430 {
13431 struct linespec_sals lsal;
13432
13433 lsal.sals = decode_static_tracepoint_spec (arg);
13434
13435 *copy_arg = savestring (addr_start, *arg - addr_start);
13436
13437 canonical->addr_string = xstrdup (*copy_arg);
13438 lsal.canonical = xstrdup (*copy_arg);
13439 VEC_safe_push (linespec_sals, canonical->sals, &lsal);
13440 }
13441
13442 static void
13443 strace_marker_create_breakpoints_sal (struct gdbarch *gdbarch,
13444 struct linespec_result *canonical,
13445 struct linespec_sals *lsal,
13446 char *cond_string,
13447 char *extra_string,
13448 enum bptype type_wanted,
13449 enum bpdisp disposition,
13450 int thread,
13451 int task, int ignore_count,
13452 const struct breakpoint_ops *ops,
13453 int from_tty, int enabled,
13454 int internal, unsigned flags)
13455 {
13456 int i;
13457
13458 /* If the user is creating a static tracepoint by marker id
13459 (strace -m MARKER_ID), then store the sals index, so that
13460 breakpoint_re_set can try to match up which of the newly
13461 found markers corresponds to this one, and, don't try to
13462 expand multiple locations for each sal, given than SALS
13463 already should contain all sals for MARKER_ID. */
13464
13465 for (i = 0; i < lsal->sals.nelts; ++i)
13466 {
13467 struct symtabs_and_lines expanded;
13468 struct tracepoint *tp;
13469 struct cleanup *old_chain;
13470 char *addr_string;
13471
13472 expanded.nelts = 1;
13473 expanded.sals = &lsal->sals.sals[i];
13474
13475 addr_string = xstrdup (canonical->addr_string);
13476 old_chain = make_cleanup (xfree, addr_string);
13477
13478 tp = XCNEW (struct tracepoint);
13479 init_breakpoint_sal (&tp->base, gdbarch, expanded,
13480 addr_string, NULL,
13481 cond_string, extra_string,
13482 type_wanted, disposition,
13483 thread, task, ignore_count, ops,
13484 from_tty, enabled, internal, flags,
13485 canonical->special_display);
13486 /* Given that its possible to have multiple markers with
13487 the same string id, if the user is creating a static
13488 tracepoint by marker id ("strace -m MARKER_ID"), then
13489 store the sals index, so that breakpoint_re_set can
13490 try to match up which of the newly found markers
13491 corresponds to this one */
13492 tp->static_trace_marker_id_idx = i;
13493
13494 install_breakpoint (internal, &tp->base, 0);
13495
13496 discard_cleanups (old_chain);
13497 }
13498 }
13499
13500 static void
13501 strace_marker_decode_linespec (struct breakpoint *b, char **s,
13502 struct symtabs_and_lines *sals)
13503 {
13504 struct tracepoint *tp = (struct tracepoint *) b;
13505
13506 *sals = decode_static_tracepoint_spec (s);
13507 if (sals->nelts > tp->static_trace_marker_id_idx)
13508 {
13509 sals->sals[0] = sals->sals[tp->static_trace_marker_id_idx];
13510 sals->nelts = 1;
13511 }
13512 else
13513 error (_("marker %s not found"), tp->static_trace_marker_id);
13514 }
13515
13516 static struct breakpoint_ops strace_marker_breakpoint_ops;
13517
13518 static int
13519 strace_marker_p (struct breakpoint *b)
13520 {
13521 return b->ops == &strace_marker_breakpoint_ops;
13522 }
13523
13524 /* Delete a breakpoint and clean up all traces of it in the data
13525 structures. */
13526
13527 void
13528 delete_breakpoint (struct breakpoint *bpt)
13529 {
13530 struct breakpoint *b;
13531
13532 gdb_assert (bpt != NULL);
13533
13534 /* Has this bp already been deleted? This can happen because
13535 multiple lists can hold pointers to bp's. bpstat lists are
13536 especial culprits.
13537
13538 One example of this happening is a watchpoint's scope bp. When
13539 the scope bp triggers, we notice that the watchpoint is out of
13540 scope, and delete it. We also delete its scope bp. But the
13541 scope bp is marked "auto-deleting", and is already on a bpstat.
13542 That bpstat is then checked for auto-deleting bp's, which are
13543 deleted.
13544
13545 A real solution to this problem might involve reference counts in
13546 bp's, and/or giving them pointers back to their referencing
13547 bpstat's, and teaching delete_breakpoint to only free a bp's
13548 storage when no more references were extent. A cheaper bandaid
13549 was chosen. */
13550 if (bpt->type == bp_none)
13551 return;
13552
13553 /* At least avoid this stale reference until the reference counting
13554 of breakpoints gets resolved. */
13555 if (bpt->related_breakpoint != bpt)
13556 {
13557 struct breakpoint *related;
13558 struct watchpoint *w;
13559
13560 if (bpt->type == bp_watchpoint_scope)
13561 w = (struct watchpoint *) bpt->related_breakpoint;
13562 else if (bpt->related_breakpoint->type == bp_watchpoint_scope)
13563 w = (struct watchpoint *) bpt;
13564 else
13565 w = NULL;
13566 if (w != NULL)
13567 watchpoint_del_at_next_stop (w);
13568
13569 /* Unlink bpt from the bpt->related_breakpoint ring. */
13570 for (related = bpt; related->related_breakpoint != bpt;
13571 related = related->related_breakpoint);
13572 related->related_breakpoint = bpt->related_breakpoint;
13573 bpt->related_breakpoint = bpt;
13574 }
13575
13576 /* watch_command_1 creates a watchpoint but only sets its number if
13577 update_watchpoint succeeds in creating its bp_locations. If there's
13578 a problem in that process, we'll be asked to delete the half-created
13579 watchpoint. In that case, don't announce the deletion. */
13580 if (bpt->number)
13581 observer_notify_breakpoint_deleted (bpt);
13582
13583 if (breakpoint_chain == bpt)
13584 breakpoint_chain = bpt->next;
13585
13586 ALL_BREAKPOINTS (b)
13587 if (b->next == bpt)
13588 {
13589 b->next = bpt->next;
13590 break;
13591 }
13592
13593 /* Be sure no bpstat's are pointing at the breakpoint after it's
13594 been freed. */
13595 /* FIXME, how can we find all bpstat's? We just check stop_bpstat
13596 in all threads for now. Note that we cannot just remove bpstats
13597 pointing at bpt from the stop_bpstat list entirely, as breakpoint
13598 commands are associated with the bpstat; if we remove it here,
13599 then the later call to bpstat_do_actions (&stop_bpstat); in
13600 event-top.c won't do anything, and temporary breakpoints with
13601 commands won't work. */
13602
13603 iterate_over_threads (bpstat_remove_breakpoint_callback, bpt);
13604
13605 /* Now that breakpoint is removed from breakpoint list, update the
13606 global location list. This will remove locations that used to
13607 belong to this breakpoint. Do this before freeing the breakpoint
13608 itself, since remove_breakpoint looks at location's owner. It
13609 might be better design to have location completely
13610 self-contained, but it's not the case now. */
13611 update_global_location_list (0);
13612
13613 bpt->ops->dtor (bpt);
13614 /* On the chance that someone will soon try again to delete this
13615 same bp, we mark it as deleted before freeing its storage. */
13616 bpt->type = bp_none;
13617 xfree (bpt);
13618 }
13619
13620 static void
13621 do_delete_breakpoint_cleanup (void *b)
13622 {
13623 delete_breakpoint (b);
13624 }
13625
13626 struct cleanup *
13627 make_cleanup_delete_breakpoint (struct breakpoint *b)
13628 {
13629 return make_cleanup (do_delete_breakpoint_cleanup, b);
13630 }
13631
13632 /* Iterator function to call a user-provided callback function once
13633 for each of B and its related breakpoints. */
13634
13635 static void
13636 iterate_over_related_breakpoints (struct breakpoint *b,
13637 void (*function) (struct breakpoint *,
13638 void *),
13639 void *data)
13640 {
13641 struct breakpoint *related;
13642
13643 related = b;
13644 do
13645 {
13646 struct breakpoint *next;
13647
13648 /* FUNCTION may delete RELATED. */
13649 next = related->related_breakpoint;
13650
13651 if (next == related)
13652 {
13653 /* RELATED is the last ring entry. */
13654 function (related, data);
13655
13656 /* FUNCTION may have deleted it, so we'd never reach back to
13657 B. There's nothing left to do anyway, so just break
13658 out. */
13659 break;
13660 }
13661 else
13662 function (related, data);
13663
13664 related = next;
13665 }
13666 while (related != b);
13667 }
13668
13669 static void
13670 do_delete_breakpoint (struct breakpoint *b, void *ignore)
13671 {
13672 delete_breakpoint (b);
13673 }
13674
13675 /* A callback for map_breakpoint_numbers that calls
13676 delete_breakpoint. */
13677
13678 static void
13679 do_map_delete_breakpoint (struct breakpoint *b, void *ignore)
13680 {
13681 iterate_over_related_breakpoints (b, do_delete_breakpoint, NULL);
13682 }
13683
13684 void
13685 delete_command (char *arg, int from_tty)
13686 {
13687 struct breakpoint *b, *b_tmp;
13688
13689 dont_repeat ();
13690
13691 if (arg == 0)
13692 {
13693 int breaks_to_delete = 0;
13694
13695 /* Delete all breakpoints if no argument. Do not delete
13696 internal breakpoints, these have to be deleted with an
13697 explicit breakpoint number argument. */
13698 ALL_BREAKPOINTS (b)
13699 if (user_breakpoint_p (b))
13700 {
13701 breaks_to_delete = 1;
13702 break;
13703 }
13704
13705 /* Ask user only if there are some breakpoints to delete. */
13706 if (!from_tty
13707 || (breaks_to_delete && query (_("Delete all breakpoints? "))))
13708 {
13709 ALL_BREAKPOINTS_SAFE (b, b_tmp)
13710 if (user_breakpoint_p (b))
13711 delete_breakpoint (b);
13712 }
13713 }
13714 else
13715 map_breakpoint_numbers (arg, do_map_delete_breakpoint, NULL);
13716 }
13717
13718 static int
13719 all_locations_are_pending (struct bp_location *loc)
13720 {
13721 for (; loc; loc = loc->next)
13722 if (!loc->shlib_disabled
13723 && !loc->pspace->executing_startup)
13724 return 0;
13725 return 1;
13726 }
13727
13728 /* Subroutine of update_breakpoint_locations to simplify it.
13729 Return non-zero if multiple fns in list LOC have the same name.
13730 Null names are ignored. */
13731
13732 static int
13733 ambiguous_names_p (struct bp_location *loc)
13734 {
13735 struct bp_location *l;
13736 htab_t htab = htab_create_alloc (13, htab_hash_string,
13737 (int (*) (const void *,
13738 const void *)) streq,
13739 NULL, xcalloc, xfree);
13740
13741 for (l = loc; l != NULL; l = l->next)
13742 {
13743 const char **slot;
13744 const char *name = l->function_name;
13745
13746 /* Allow for some names to be NULL, ignore them. */
13747 if (name == NULL)
13748 continue;
13749
13750 slot = (const char **) htab_find_slot (htab, (const void *) name,
13751 INSERT);
13752 /* NOTE: We can assume slot != NULL here because xcalloc never
13753 returns NULL. */
13754 if (*slot != NULL)
13755 {
13756 htab_delete (htab);
13757 return 1;
13758 }
13759 *slot = name;
13760 }
13761
13762 htab_delete (htab);
13763 return 0;
13764 }
13765
13766 /* When symbols change, it probably means the sources changed as well,
13767 and it might mean the static tracepoint markers are no longer at
13768 the same address or line numbers they used to be at last we
13769 checked. Losing your static tracepoints whenever you rebuild is
13770 undesirable. This function tries to resync/rematch gdb static
13771 tracepoints with the markers on the target, for static tracepoints
13772 that have not been set by marker id. Static tracepoint that have
13773 been set by marker id are reset by marker id in breakpoint_re_set.
13774 The heuristic is:
13775
13776 1) For a tracepoint set at a specific address, look for a marker at
13777 the old PC. If one is found there, assume to be the same marker.
13778 If the name / string id of the marker found is different from the
13779 previous known name, assume that means the user renamed the marker
13780 in the sources, and output a warning.
13781
13782 2) For a tracepoint set at a given line number, look for a marker
13783 at the new address of the old line number. If one is found there,
13784 assume to be the same marker. If the name / string id of the
13785 marker found is different from the previous known name, assume that
13786 means the user renamed the marker in the sources, and output a
13787 warning.
13788
13789 3) If a marker is no longer found at the same address or line, it
13790 may mean the marker no longer exists. But it may also just mean
13791 the code changed a bit. Maybe the user added a few lines of code
13792 that made the marker move up or down (in line number terms). Ask
13793 the target for info about the marker with the string id as we knew
13794 it. If found, update line number and address in the matching
13795 static tracepoint. This will get confused if there's more than one
13796 marker with the same ID (possible in UST, although unadvised
13797 precisely because it confuses tools). */
13798
13799 static struct symtab_and_line
13800 update_static_tracepoint (struct breakpoint *b, struct symtab_and_line sal)
13801 {
13802 struct tracepoint *tp = (struct tracepoint *) b;
13803 struct static_tracepoint_marker marker;
13804 CORE_ADDR pc;
13805
13806 pc = sal.pc;
13807 if (sal.line)
13808 find_line_pc (sal.symtab, sal.line, &pc);
13809
13810 if (target_static_tracepoint_marker_at (pc, &marker))
13811 {
13812 if (strcmp (tp->static_trace_marker_id, marker.str_id) != 0)
13813 warning (_("static tracepoint %d changed probed marker from %s to %s"),
13814 b->number,
13815 tp->static_trace_marker_id, marker.str_id);
13816
13817 xfree (tp->static_trace_marker_id);
13818 tp->static_trace_marker_id = xstrdup (marker.str_id);
13819 release_static_tracepoint_marker (&marker);
13820
13821 return sal;
13822 }
13823
13824 /* Old marker wasn't found on target at lineno. Try looking it up
13825 by string ID. */
13826 if (!sal.explicit_pc
13827 && sal.line != 0
13828 && sal.symtab != NULL
13829 && tp->static_trace_marker_id != NULL)
13830 {
13831 VEC(static_tracepoint_marker_p) *markers;
13832
13833 markers
13834 = target_static_tracepoint_markers_by_strid (tp->static_trace_marker_id);
13835
13836 if (!VEC_empty(static_tracepoint_marker_p, markers))
13837 {
13838 struct symtab_and_line sal2;
13839 struct symbol *sym;
13840 struct static_tracepoint_marker *tpmarker;
13841 struct ui_out *uiout = current_uiout;
13842
13843 tpmarker = VEC_index (static_tracepoint_marker_p, markers, 0);
13844
13845 xfree (tp->static_trace_marker_id);
13846 tp->static_trace_marker_id = xstrdup (tpmarker->str_id);
13847
13848 warning (_("marker for static tracepoint %d (%s) not "
13849 "found at previous line number"),
13850 b->number, tp->static_trace_marker_id);
13851
13852 init_sal (&sal2);
13853
13854 sal2.pc = tpmarker->address;
13855
13856 sal2 = find_pc_line (tpmarker->address, 0);
13857 sym = find_pc_sect_function (tpmarker->address, NULL);
13858 ui_out_text (uiout, "Now in ");
13859 if (sym)
13860 {
13861 ui_out_field_string (uiout, "func",
13862 SYMBOL_PRINT_NAME (sym));
13863 ui_out_text (uiout, " at ");
13864 }
13865 ui_out_field_string (uiout, "file", sal2.symtab->filename);
13866 ui_out_text (uiout, ":");
13867
13868 if (ui_out_is_mi_like_p (uiout))
13869 {
13870 const char *fullname = symtab_to_fullname (sal2.symtab);
13871
13872 ui_out_field_string (uiout, "fullname", fullname);
13873 }
13874
13875 ui_out_field_int (uiout, "line", sal2.line);
13876 ui_out_text (uiout, "\n");
13877
13878 b->loc->line_number = sal2.line;
13879
13880 xfree (b->loc->source_file);
13881 if (sym)
13882 b->loc->source_file = xstrdup (sal2.symtab->filename);
13883 else
13884 b->loc->source_file = NULL;
13885
13886 xfree (b->addr_string);
13887 b->addr_string = xstrprintf ("%s:%d",
13888 sal2.symtab->filename,
13889 b->loc->line_number);
13890
13891 /* Might be nice to check if function changed, and warn if
13892 so. */
13893
13894 release_static_tracepoint_marker (tpmarker);
13895 }
13896 }
13897 return sal;
13898 }
13899
13900 /* Returns 1 iff locations A and B are sufficiently same that
13901 we don't need to report breakpoint as changed. */
13902
13903 static int
13904 locations_are_equal (struct bp_location *a, struct bp_location *b)
13905 {
13906 while (a && b)
13907 {
13908 if (a->address != b->address)
13909 return 0;
13910
13911 if (a->shlib_disabled != b->shlib_disabled)
13912 return 0;
13913
13914 if (a->enabled != b->enabled)
13915 return 0;
13916
13917 a = a->next;
13918 b = b->next;
13919 }
13920
13921 if ((a == NULL) != (b == NULL))
13922 return 0;
13923
13924 return 1;
13925 }
13926
13927 /* Create new breakpoint locations for B (a hardware or software breakpoint)
13928 based on SALS and SALS_END. If SALS_END.NELTS is not zero, then B is
13929 a ranged breakpoint. */
13930
13931 void
13932 update_breakpoint_locations (struct breakpoint *b,
13933 struct symtabs_and_lines sals,
13934 struct symtabs_and_lines sals_end)
13935 {
13936 int i;
13937 struct bp_location *existing_locations = b->loc;
13938
13939 if (sals_end.nelts != 0 && (sals.nelts != 1 || sals_end.nelts != 1))
13940 {
13941 /* Ranged breakpoints have only one start location and one end
13942 location. */
13943 b->enable_state = bp_disabled;
13944 update_global_location_list (1);
13945 printf_unfiltered (_("Could not reset ranged breakpoint %d: "
13946 "multiple locations found\n"),
13947 b->number);
13948 return;
13949 }
13950
13951 /* If there's no new locations, and all existing locations are
13952 pending, don't do anything. This optimizes the common case where
13953 all locations are in the same shared library, that was unloaded.
13954 We'd like to retain the location, so that when the library is
13955 loaded again, we don't loose the enabled/disabled status of the
13956 individual locations. */
13957 if (all_locations_are_pending (existing_locations) && sals.nelts == 0)
13958 return;
13959
13960 b->loc = NULL;
13961
13962 for (i = 0; i < sals.nelts; ++i)
13963 {
13964 struct bp_location *new_loc;
13965
13966 switch_to_program_space_and_thread (sals.sals[i].pspace);
13967
13968 new_loc = add_location_to_breakpoint (b, &(sals.sals[i]));
13969
13970 /* Reparse conditions, they might contain references to the
13971 old symtab. */
13972 if (b->cond_string != NULL)
13973 {
13974 char *s;
13975 volatile struct gdb_exception e;
13976
13977 s = b->cond_string;
13978 TRY_CATCH (e, RETURN_MASK_ERROR)
13979 {
13980 new_loc->cond = parse_exp_1 (&s, sals.sals[i].pc,
13981 block_for_pc (sals.sals[i].pc),
13982 0);
13983 }
13984 if (e.reason < 0)
13985 {
13986 warning (_("failed to reevaluate condition "
13987 "for breakpoint %d: %s"),
13988 b->number, e.message);
13989 new_loc->enabled = 0;
13990 }
13991 }
13992
13993 if (sals_end.nelts)
13994 {
13995 CORE_ADDR end = find_breakpoint_range_end (sals_end.sals[0]);
13996
13997 new_loc->length = end - sals.sals[0].pc + 1;
13998 }
13999 }
14000
14001 /* Update locations of permanent breakpoints. */
14002 if (b->enable_state == bp_permanent)
14003 make_breakpoint_permanent (b);
14004
14005 /* If possible, carry over 'disable' status from existing
14006 breakpoints. */
14007 {
14008 struct bp_location *e = existing_locations;
14009 /* If there are multiple breakpoints with the same function name,
14010 e.g. for inline functions, comparing function names won't work.
14011 Instead compare pc addresses; this is just a heuristic as things
14012 may have moved, but in practice it gives the correct answer
14013 often enough until a better solution is found. */
14014 int have_ambiguous_names = ambiguous_names_p (b->loc);
14015
14016 for (; e; e = e->next)
14017 {
14018 if (!e->enabled && e->function_name)
14019 {
14020 struct bp_location *l = b->loc;
14021 if (have_ambiguous_names)
14022 {
14023 for (; l; l = l->next)
14024 if (breakpoint_locations_match (e, l))
14025 {
14026 l->enabled = 0;
14027 break;
14028 }
14029 }
14030 else
14031 {
14032 for (; l; l = l->next)
14033 if (l->function_name
14034 && strcmp (e->function_name, l->function_name) == 0)
14035 {
14036 l->enabled = 0;
14037 break;
14038 }
14039 }
14040 }
14041 }
14042 }
14043
14044 if (!locations_are_equal (existing_locations, b->loc))
14045 observer_notify_breakpoint_modified (b);
14046
14047 update_global_location_list (1);
14048 }
14049
14050 /* Find the SaL locations corresponding to the given ADDR_STRING.
14051 On return, FOUND will be 1 if any SaL was found, zero otherwise. */
14052
14053 static struct symtabs_and_lines
14054 addr_string_to_sals (struct breakpoint *b, char *addr_string, int *found)
14055 {
14056 char *s;
14057 struct symtabs_and_lines sals = {0};
14058 volatile struct gdb_exception e;
14059
14060 gdb_assert (b->ops != NULL);
14061 s = addr_string;
14062
14063 TRY_CATCH (e, RETURN_MASK_ERROR)
14064 {
14065 b->ops->decode_linespec (b, &s, &sals);
14066 }
14067 if (e.reason < 0)
14068 {
14069 int not_found_and_ok = 0;
14070 /* For pending breakpoints, it's expected that parsing will
14071 fail until the right shared library is loaded. User has
14072 already told to create pending breakpoints and don't need
14073 extra messages. If breakpoint is in bp_shlib_disabled
14074 state, then user already saw the message about that
14075 breakpoint being disabled, and don't want to see more
14076 errors. */
14077 if (e.error == NOT_FOUND_ERROR
14078 && (b->condition_not_parsed
14079 || (b->loc && b->loc->shlib_disabled)
14080 || (b->loc && b->loc->pspace->executing_startup)
14081 || b->enable_state == bp_disabled))
14082 not_found_and_ok = 1;
14083
14084 if (!not_found_and_ok)
14085 {
14086 /* We surely don't want to warn about the same breakpoint
14087 10 times. One solution, implemented here, is disable
14088 the breakpoint on error. Another solution would be to
14089 have separate 'warning emitted' flag. Since this
14090 happens only when a binary has changed, I don't know
14091 which approach is better. */
14092 b->enable_state = bp_disabled;
14093 throw_exception (e);
14094 }
14095 }
14096
14097 if (e.reason == 0 || e.error != NOT_FOUND_ERROR)
14098 {
14099 int i;
14100
14101 for (i = 0; i < sals.nelts; ++i)
14102 resolve_sal_pc (&sals.sals[i]);
14103 if (b->condition_not_parsed && s && s[0])
14104 {
14105 char *cond_string, *extra_string;
14106 int thread, task;
14107
14108 find_condition_and_thread (s, sals.sals[0].pc,
14109 &cond_string, &thread, &task,
14110 &extra_string);
14111 if (cond_string)
14112 b->cond_string = cond_string;
14113 b->thread = thread;
14114 b->task = task;
14115 if (extra_string)
14116 b->extra_string = extra_string;
14117 b->condition_not_parsed = 0;
14118 }
14119
14120 if (b->type == bp_static_tracepoint && !strace_marker_p (b))
14121 sals.sals[0] = update_static_tracepoint (b, sals.sals[0]);
14122
14123 *found = 1;
14124 }
14125 else
14126 *found = 0;
14127
14128 return sals;
14129 }
14130
14131 /* The default re_set method, for typical hardware or software
14132 breakpoints. Reevaluate the breakpoint and recreate its
14133 locations. */
14134
14135 static void
14136 breakpoint_re_set_default (struct breakpoint *b)
14137 {
14138 int found;
14139 struct symtabs_and_lines sals, sals_end;
14140 struct symtabs_and_lines expanded = {0};
14141 struct symtabs_and_lines expanded_end = {0};
14142
14143 sals = addr_string_to_sals (b, b->addr_string, &found);
14144 if (found)
14145 {
14146 make_cleanup (xfree, sals.sals);
14147 expanded = sals;
14148 }
14149
14150 if (b->addr_string_range_end)
14151 {
14152 sals_end = addr_string_to_sals (b, b->addr_string_range_end, &found);
14153 if (found)
14154 {
14155 make_cleanup (xfree, sals_end.sals);
14156 expanded_end = sals_end;
14157 }
14158 }
14159
14160 update_breakpoint_locations (b, expanded, expanded_end);
14161 }
14162
14163 /* Default method for creating SALs from an address string. It basically
14164 calls parse_breakpoint_sals. Return 1 for success, zero for failure. */
14165
14166 static void
14167 create_sals_from_address_default (char **arg,
14168 struct linespec_result *canonical,
14169 enum bptype type_wanted,
14170 char *addr_start, char **copy_arg)
14171 {
14172 parse_breakpoint_sals (arg, canonical);
14173 }
14174
14175 /* Call create_breakpoints_sal for the given arguments. This is the default
14176 function for the `create_breakpoints_sal' method of
14177 breakpoint_ops. */
14178
14179 static void
14180 create_breakpoints_sal_default (struct gdbarch *gdbarch,
14181 struct linespec_result *canonical,
14182 struct linespec_sals *lsal,
14183 char *cond_string,
14184 char *extra_string,
14185 enum bptype type_wanted,
14186 enum bpdisp disposition,
14187 int thread,
14188 int task, int ignore_count,
14189 const struct breakpoint_ops *ops,
14190 int from_tty, int enabled,
14191 int internal, unsigned flags)
14192 {
14193 create_breakpoints_sal (gdbarch, canonical, cond_string,
14194 extra_string,
14195 type_wanted, disposition,
14196 thread, task, ignore_count, ops, from_tty,
14197 enabled, internal, flags);
14198 }
14199
14200 /* Decode the line represented by S by calling decode_line_full. This is the
14201 default function for the `decode_linespec' method of breakpoint_ops. */
14202
14203 static void
14204 decode_linespec_default (struct breakpoint *b, char **s,
14205 struct symtabs_and_lines *sals)
14206 {
14207 struct linespec_result canonical;
14208
14209 init_linespec_result (&canonical);
14210 decode_line_full (s, DECODE_LINE_FUNFIRSTLINE,
14211 (struct symtab *) NULL, 0,
14212 &canonical, multiple_symbols_all,
14213 b->filter);
14214
14215 /* We should get 0 or 1 resulting SALs. */
14216 gdb_assert (VEC_length (linespec_sals, canonical.sals) < 2);
14217
14218 if (VEC_length (linespec_sals, canonical.sals) > 0)
14219 {
14220 struct linespec_sals *lsal;
14221
14222 lsal = VEC_index (linespec_sals, canonical.sals, 0);
14223 *sals = lsal->sals;
14224 /* Arrange it so the destructor does not free the
14225 contents. */
14226 lsal->sals.sals = NULL;
14227 }
14228
14229 destroy_linespec_result (&canonical);
14230 }
14231
14232 /* Prepare the global context for a re-set of breakpoint B. */
14233
14234 static struct cleanup *
14235 prepare_re_set_context (struct breakpoint *b)
14236 {
14237 struct cleanup *cleanups;
14238
14239 input_radix = b->input_radix;
14240 cleanups = save_current_space_and_thread ();
14241 if (b->pspace != NULL)
14242 switch_to_program_space_and_thread (b->pspace);
14243 set_language (b->language);
14244
14245 return cleanups;
14246 }
14247
14248 /* Reset a breakpoint given it's struct breakpoint * BINT.
14249 The value we return ends up being the return value from catch_errors.
14250 Unused in this case. */
14251
14252 static int
14253 breakpoint_re_set_one (void *bint)
14254 {
14255 /* Get past catch_errs. */
14256 struct breakpoint *b = (struct breakpoint *) bint;
14257 struct cleanup *cleanups;
14258
14259 cleanups = prepare_re_set_context (b);
14260 b->ops->re_set (b);
14261 do_cleanups (cleanups);
14262 return 0;
14263 }
14264
14265 /* Re-set all breakpoints after symbols have been re-loaded. */
14266 void
14267 breakpoint_re_set (void)
14268 {
14269 struct breakpoint *b, *b_tmp;
14270 enum language save_language;
14271 int save_input_radix;
14272 struct cleanup *old_chain;
14273
14274 save_language = current_language->la_language;
14275 save_input_radix = input_radix;
14276 old_chain = save_current_program_space ();
14277
14278 ALL_BREAKPOINTS_SAFE (b, b_tmp)
14279 {
14280 /* Format possible error msg. */
14281 char *message = xstrprintf ("Error in re-setting breakpoint %d: ",
14282 b->number);
14283 struct cleanup *cleanups = make_cleanup (xfree, message);
14284 catch_errors (breakpoint_re_set_one, b, message, RETURN_MASK_ALL);
14285 do_cleanups (cleanups);
14286 }
14287 set_language (save_language);
14288 input_radix = save_input_radix;
14289
14290 jit_breakpoint_re_set ();
14291
14292 do_cleanups (old_chain);
14293
14294 create_overlay_event_breakpoint ();
14295 create_longjmp_master_breakpoint ();
14296 create_std_terminate_master_breakpoint ();
14297 create_exception_master_breakpoint ();
14298 }
14299 \f
14300 /* Reset the thread number of this breakpoint:
14301
14302 - If the breakpoint is for all threads, leave it as-is.
14303 - Else, reset it to the current thread for inferior_ptid. */
14304 void
14305 breakpoint_re_set_thread (struct breakpoint *b)
14306 {
14307 if (b->thread != -1)
14308 {
14309 if (in_thread_list (inferior_ptid))
14310 b->thread = pid_to_thread_id (inferior_ptid);
14311
14312 /* We're being called after following a fork. The new fork is
14313 selected as current, and unless this was a vfork will have a
14314 different program space from the original thread. Reset that
14315 as well. */
14316 b->loc->pspace = current_program_space;
14317 }
14318 }
14319
14320 /* Set ignore-count of breakpoint number BPTNUM to COUNT.
14321 If from_tty is nonzero, it prints a message to that effect,
14322 which ends with a period (no newline). */
14323
14324 void
14325 set_ignore_count (int bptnum, int count, int from_tty)
14326 {
14327 struct breakpoint *b;
14328
14329 if (count < 0)
14330 count = 0;
14331
14332 ALL_BREAKPOINTS (b)
14333 if (b->number == bptnum)
14334 {
14335 if (is_tracepoint (b))
14336 {
14337 if (from_tty && count != 0)
14338 printf_filtered (_("Ignore count ignored for tracepoint %d."),
14339 bptnum);
14340 return;
14341 }
14342
14343 b->ignore_count = count;
14344 if (from_tty)
14345 {
14346 if (count == 0)
14347 printf_filtered (_("Will stop next time "
14348 "breakpoint %d is reached."),
14349 bptnum);
14350 else if (count == 1)
14351 printf_filtered (_("Will ignore next crossing of breakpoint %d."),
14352 bptnum);
14353 else
14354 printf_filtered (_("Will ignore next %d "
14355 "crossings of breakpoint %d."),
14356 count, bptnum);
14357 }
14358 annotate_breakpoints_changed ();
14359 observer_notify_breakpoint_modified (b);
14360 return;
14361 }
14362
14363 error (_("No breakpoint number %d."), bptnum);
14364 }
14365
14366 /* Command to set ignore-count of breakpoint N to COUNT. */
14367
14368 static void
14369 ignore_command (char *args, int from_tty)
14370 {
14371 char *p = args;
14372 int num;
14373
14374 if (p == 0)
14375 error_no_arg (_("a breakpoint number"));
14376
14377 num = get_number (&p);
14378 if (num == 0)
14379 error (_("bad breakpoint number: '%s'"), args);
14380 if (*p == 0)
14381 error (_("Second argument (specified ignore-count) is missing."));
14382
14383 set_ignore_count (num,
14384 longest_to_int (value_as_long (parse_and_eval (p))),
14385 from_tty);
14386 if (from_tty)
14387 printf_filtered ("\n");
14388 }
14389 \f
14390 /* Call FUNCTION on each of the breakpoints
14391 whose numbers are given in ARGS. */
14392
14393 static void
14394 map_breakpoint_numbers (char *args, void (*function) (struct breakpoint *,
14395 void *),
14396 void *data)
14397 {
14398 int num;
14399 struct breakpoint *b, *tmp;
14400 int match;
14401 struct get_number_or_range_state state;
14402
14403 if (args == 0)
14404 error_no_arg (_("one or more breakpoint numbers"));
14405
14406 init_number_or_range (&state, args);
14407
14408 while (!state.finished)
14409 {
14410 char *p = state.string;
14411
14412 match = 0;
14413
14414 num = get_number_or_range (&state);
14415 if (num == 0)
14416 {
14417 warning (_("bad breakpoint number at or near '%s'"), p);
14418 }
14419 else
14420 {
14421 ALL_BREAKPOINTS_SAFE (b, tmp)
14422 if (b->number == num)
14423 {
14424 match = 1;
14425 function (b, data);
14426 break;
14427 }
14428 if (match == 0)
14429 printf_unfiltered (_("No breakpoint number %d.\n"), num);
14430 }
14431 }
14432 }
14433
14434 static struct bp_location *
14435 find_location_by_number (char *number)
14436 {
14437 char *dot = strchr (number, '.');
14438 char *p1;
14439 int bp_num;
14440 int loc_num;
14441 struct breakpoint *b;
14442 struct bp_location *loc;
14443
14444 *dot = '\0';
14445
14446 p1 = number;
14447 bp_num = get_number (&p1);
14448 if (bp_num == 0)
14449 error (_("Bad breakpoint number '%s'"), number);
14450
14451 ALL_BREAKPOINTS (b)
14452 if (b->number == bp_num)
14453 {
14454 break;
14455 }
14456
14457 if (!b || b->number != bp_num)
14458 error (_("Bad breakpoint number '%s'"), number);
14459
14460 p1 = dot+1;
14461 loc_num = get_number (&p1);
14462 if (loc_num == 0)
14463 error (_("Bad breakpoint location number '%s'"), number);
14464
14465 --loc_num;
14466 loc = b->loc;
14467 for (;loc_num && loc; --loc_num, loc = loc->next)
14468 ;
14469 if (!loc)
14470 error (_("Bad breakpoint location number '%s'"), dot+1);
14471
14472 return loc;
14473 }
14474
14475
14476 /* Set ignore-count of breakpoint number BPTNUM to COUNT.
14477 If from_tty is nonzero, it prints a message to that effect,
14478 which ends with a period (no newline). */
14479
14480 void
14481 disable_breakpoint (struct breakpoint *bpt)
14482 {
14483 /* Never disable a watchpoint scope breakpoint; we want to
14484 hit them when we leave scope so we can delete both the
14485 watchpoint and its scope breakpoint at that time. */
14486 if (bpt->type == bp_watchpoint_scope)
14487 return;
14488
14489 /* You can't disable permanent breakpoints. */
14490 if (bpt->enable_state == bp_permanent)
14491 return;
14492
14493 bpt->enable_state = bp_disabled;
14494
14495 /* Mark breakpoint locations modified. */
14496 mark_breakpoint_modified (bpt);
14497
14498 if (target_supports_enable_disable_tracepoint ()
14499 && current_trace_status ()->running && is_tracepoint (bpt))
14500 {
14501 struct bp_location *location;
14502
14503 for (location = bpt->loc; location; location = location->next)
14504 target_disable_tracepoint (location);
14505 }
14506
14507 update_global_location_list (0);
14508
14509 observer_notify_breakpoint_modified (bpt);
14510 }
14511
14512 /* A callback for iterate_over_related_breakpoints. */
14513
14514 static void
14515 do_disable_breakpoint (struct breakpoint *b, void *ignore)
14516 {
14517 disable_breakpoint (b);
14518 }
14519
14520 /* A callback for map_breakpoint_numbers that calls
14521 disable_breakpoint. */
14522
14523 static void
14524 do_map_disable_breakpoint (struct breakpoint *b, void *ignore)
14525 {
14526 iterate_over_related_breakpoints (b, do_disable_breakpoint, NULL);
14527 }
14528
14529 static void
14530 disable_command (char *args, int from_tty)
14531 {
14532 if (args == 0)
14533 {
14534 struct breakpoint *bpt;
14535
14536 ALL_BREAKPOINTS (bpt)
14537 if (user_breakpoint_p (bpt))
14538 disable_breakpoint (bpt);
14539 }
14540 else if (strchr (args, '.'))
14541 {
14542 struct bp_location *loc = find_location_by_number (args);
14543 if (loc)
14544 {
14545 if (loc->enabled)
14546 {
14547 loc->enabled = 0;
14548 mark_breakpoint_location_modified (loc);
14549 }
14550 if (target_supports_enable_disable_tracepoint ()
14551 && current_trace_status ()->running && loc->owner
14552 && is_tracepoint (loc->owner))
14553 target_disable_tracepoint (loc);
14554 }
14555 update_global_location_list (0);
14556 }
14557 else
14558 map_breakpoint_numbers (args, do_map_disable_breakpoint, NULL);
14559 }
14560
14561 static void
14562 enable_breakpoint_disp (struct breakpoint *bpt, enum bpdisp disposition,
14563 int count)
14564 {
14565 int target_resources_ok;
14566
14567 if (bpt->type == bp_hardware_breakpoint)
14568 {
14569 int i;
14570 i = hw_breakpoint_used_count ();
14571 target_resources_ok =
14572 target_can_use_hardware_watchpoint (bp_hardware_breakpoint,
14573 i + 1, 0);
14574 if (target_resources_ok == 0)
14575 error (_("No hardware breakpoint support in the target."));
14576 else if (target_resources_ok < 0)
14577 error (_("Hardware breakpoints used exceeds limit."));
14578 }
14579
14580 if (is_watchpoint (bpt))
14581 {
14582 /* Initialize it just to avoid a GCC false warning. */
14583 enum enable_state orig_enable_state = 0;
14584 volatile struct gdb_exception e;
14585
14586 TRY_CATCH (e, RETURN_MASK_ALL)
14587 {
14588 struct watchpoint *w = (struct watchpoint *) bpt;
14589
14590 orig_enable_state = bpt->enable_state;
14591 bpt->enable_state = bp_enabled;
14592 update_watchpoint (w, 1 /* reparse */);
14593 }
14594 if (e.reason < 0)
14595 {
14596 bpt->enable_state = orig_enable_state;
14597 exception_fprintf (gdb_stderr, e, _("Cannot enable watchpoint %d: "),
14598 bpt->number);
14599 return;
14600 }
14601 }
14602
14603 if (bpt->enable_state != bp_permanent)
14604 bpt->enable_state = bp_enabled;
14605
14606 bpt->enable_state = bp_enabled;
14607
14608 /* Mark breakpoint locations modified. */
14609 mark_breakpoint_modified (bpt);
14610
14611 if (target_supports_enable_disable_tracepoint ()
14612 && current_trace_status ()->running && is_tracepoint (bpt))
14613 {
14614 struct bp_location *location;
14615
14616 for (location = bpt->loc; location; location = location->next)
14617 target_enable_tracepoint (location);
14618 }
14619
14620 bpt->disposition = disposition;
14621 bpt->enable_count = count;
14622 update_global_location_list (1);
14623 annotate_breakpoints_changed ();
14624
14625 observer_notify_breakpoint_modified (bpt);
14626 }
14627
14628
14629 void
14630 enable_breakpoint (struct breakpoint *bpt)
14631 {
14632 enable_breakpoint_disp (bpt, bpt->disposition, 0);
14633 }
14634
14635 static void
14636 do_enable_breakpoint (struct breakpoint *bpt, void *arg)
14637 {
14638 enable_breakpoint (bpt);
14639 }
14640
14641 /* A callback for map_breakpoint_numbers that calls
14642 enable_breakpoint. */
14643
14644 static void
14645 do_map_enable_breakpoint (struct breakpoint *b, void *ignore)
14646 {
14647 iterate_over_related_breakpoints (b, do_enable_breakpoint, NULL);
14648 }
14649
14650 /* The enable command enables the specified breakpoints (or all defined
14651 breakpoints) so they once again become (or continue to be) effective
14652 in stopping the inferior. */
14653
14654 static void
14655 enable_command (char *args, int from_tty)
14656 {
14657 if (args == 0)
14658 {
14659 struct breakpoint *bpt;
14660
14661 ALL_BREAKPOINTS (bpt)
14662 if (user_breakpoint_p (bpt))
14663 enable_breakpoint (bpt);
14664 }
14665 else if (strchr (args, '.'))
14666 {
14667 struct bp_location *loc = find_location_by_number (args);
14668 if (loc)
14669 {
14670 if (!loc->enabled)
14671 {
14672 loc->enabled = 1;
14673 mark_breakpoint_location_modified (loc);
14674 }
14675 if (target_supports_enable_disable_tracepoint ()
14676 && current_trace_status ()->running && loc->owner
14677 && is_tracepoint (loc->owner))
14678 target_enable_tracepoint (loc);
14679 }
14680 update_global_location_list (1);
14681 }
14682 else
14683 map_breakpoint_numbers (args, do_map_enable_breakpoint, NULL);
14684 }
14685
14686 /* This struct packages up disposition data for application to multiple
14687 breakpoints. */
14688
14689 struct disp_data
14690 {
14691 enum bpdisp disp;
14692 int count;
14693 };
14694
14695 static void
14696 do_enable_breakpoint_disp (struct breakpoint *bpt, void *arg)
14697 {
14698 struct disp_data disp_data = *(struct disp_data *) arg;
14699
14700 enable_breakpoint_disp (bpt, disp_data.disp, disp_data.count);
14701 }
14702
14703 static void
14704 do_map_enable_once_breakpoint (struct breakpoint *bpt, void *ignore)
14705 {
14706 struct disp_data disp = { disp_disable, 1 };
14707
14708 iterate_over_related_breakpoints (bpt, do_enable_breakpoint_disp, &disp);
14709 }
14710
14711 static void
14712 enable_once_command (char *args, int from_tty)
14713 {
14714 map_breakpoint_numbers (args, do_map_enable_once_breakpoint, NULL);
14715 }
14716
14717 static void
14718 do_map_enable_count_breakpoint (struct breakpoint *bpt, void *countptr)
14719 {
14720 struct disp_data disp = { disp_disable, *(int *) countptr };
14721
14722 iterate_over_related_breakpoints (bpt, do_enable_breakpoint_disp, &disp);
14723 }
14724
14725 static void
14726 enable_count_command (char *args, int from_tty)
14727 {
14728 int count = get_number (&args);
14729
14730 map_breakpoint_numbers (args, do_map_enable_count_breakpoint, &count);
14731 }
14732
14733 static void
14734 do_map_enable_delete_breakpoint (struct breakpoint *bpt, void *ignore)
14735 {
14736 struct disp_data disp = { disp_del, 1 };
14737
14738 iterate_over_related_breakpoints (bpt, do_enable_breakpoint_disp, &disp);
14739 }
14740
14741 static void
14742 enable_delete_command (char *args, int from_tty)
14743 {
14744 map_breakpoint_numbers (args, do_map_enable_delete_breakpoint, NULL);
14745 }
14746 \f
14747 static void
14748 set_breakpoint_cmd (char *args, int from_tty)
14749 {
14750 }
14751
14752 static void
14753 show_breakpoint_cmd (char *args, int from_tty)
14754 {
14755 }
14756
14757 /* Invalidate last known value of any hardware watchpoint if
14758 the memory which that value represents has been written to by
14759 GDB itself. */
14760
14761 static void
14762 invalidate_bp_value_on_memory_change (struct inferior *inferior,
14763 CORE_ADDR addr, ssize_t len,
14764 const bfd_byte *data)
14765 {
14766 struct breakpoint *bp;
14767
14768 ALL_BREAKPOINTS (bp)
14769 if (bp->enable_state == bp_enabled
14770 && bp->type == bp_hardware_watchpoint)
14771 {
14772 struct watchpoint *wp = (struct watchpoint *) bp;
14773
14774 if (wp->val_valid && wp->val)
14775 {
14776 struct bp_location *loc;
14777
14778 for (loc = bp->loc; loc != NULL; loc = loc->next)
14779 if (loc->loc_type == bp_loc_hardware_watchpoint
14780 && loc->address + loc->length > addr
14781 && addr + len > loc->address)
14782 {
14783 value_free (wp->val);
14784 wp->val = NULL;
14785 wp->val_valid = 0;
14786 }
14787 }
14788 }
14789 }
14790
14791 /* Create and insert a raw software breakpoint at PC. Return an
14792 identifier, which should be used to remove the breakpoint later.
14793 In general, places which call this should be using something on the
14794 breakpoint chain instead; this function should be eliminated
14795 someday. */
14796
14797 void *
14798 deprecated_insert_raw_breakpoint (struct gdbarch *gdbarch,
14799 struct address_space *aspace, CORE_ADDR pc)
14800 {
14801 struct bp_target_info *bp_tgt;
14802
14803 bp_tgt = XZALLOC (struct bp_target_info);
14804
14805 bp_tgt->placed_address_space = aspace;
14806 bp_tgt->placed_address = pc;
14807
14808 if (target_insert_breakpoint (gdbarch, bp_tgt) != 0)
14809 {
14810 /* Could not insert the breakpoint. */
14811 xfree (bp_tgt);
14812 return NULL;
14813 }
14814
14815 return bp_tgt;
14816 }
14817
14818 /* Remove a breakpoint BP inserted by
14819 deprecated_insert_raw_breakpoint. */
14820
14821 int
14822 deprecated_remove_raw_breakpoint (struct gdbarch *gdbarch, void *bp)
14823 {
14824 struct bp_target_info *bp_tgt = bp;
14825 int ret;
14826
14827 ret = target_remove_breakpoint (gdbarch, bp_tgt);
14828 xfree (bp_tgt);
14829
14830 return ret;
14831 }
14832
14833 /* One (or perhaps two) breakpoints used for software single
14834 stepping. */
14835
14836 static void *single_step_breakpoints[2];
14837 static struct gdbarch *single_step_gdbarch[2];
14838
14839 /* Create and insert a breakpoint for software single step. */
14840
14841 void
14842 insert_single_step_breakpoint (struct gdbarch *gdbarch,
14843 struct address_space *aspace,
14844 CORE_ADDR next_pc)
14845 {
14846 void **bpt_p;
14847
14848 if (single_step_breakpoints[0] == NULL)
14849 {
14850 bpt_p = &single_step_breakpoints[0];
14851 single_step_gdbarch[0] = gdbarch;
14852 }
14853 else
14854 {
14855 gdb_assert (single_step_breakpoints[1] == NULL);
14856 bpt_p = &single_step_breakpoints[1];
14857 single_step_gdbarch[1] = gdbarch;
14858 }
14859
14860 /* NOTE drow/2006-04-11: A future improvement to this function would
14861 be to only create the breakpoints once, and actually put them on
14862 the breakpoint chain. That would let us use set_raw_breakpoint.
14863 We could adjust the addresses each time they were needed. Doing
14864 this requires corresponding changes elsewhere where single step
14865 breakpoints are handled, however. So, for now, we use this. */
14866
14867 *bpt_p = deprecated_insert_raw_breakpoint (gdbarch, aspace, next_pc);
14868 if (*bpt_p == NULL)
14869 error (_("Could not insert single-step breakpoint at %s"),
14870 paddress (gdbarch, next_pc));
14871 }
14872
14873 /* Check if the breakpoints used for software single stepping
14874 were inserted or not. */
14875
14876 int
14877 single_step_breakpoints_inserted (void)
14878 {
14879 return (single_step_breakpoints[0] != NULL
14880 || single_step_breakpoints[1] != NULL);
14881 }
14882
14883 /* Remove and delete any breakpoints used for software single step. */
14884
14885 void
14886 remove_single_step_breakpoints (void)
14887 {
14888 gdb_assert (single_step_breakpoints[0] != NULL);
14889
14890 /* See insert_single_step_breakpoint for more about this deprecated
14891 call. */
14892 deprecated_remove_raw_breakpoint (single_step_gdbarch[0],
14893 single_step_breakpoints[0]);
14894 single_step_gdbarch[0] = NULL;
14895 single_step_breakpoints[0] = NULL;
14896
14897 if (single_step_breakpoints[1] != NULL)
14898 {
14899 deprecated_remove_raw_breakpoint (single_step_gdbarch[1],
14900 single_step_breakpoints[1]);
14901 single_step_gdbarch[1] = NULL;
14902 single_step_breakpoints[1] = NULL;
14903 }
14904 }
14905
14906 /* Delete software single step breakpoints without removing them from
14907 the inferior. This is intended to be used if the inferior's address
14908 space where they were inserted is already gone, e.g. after exit or
14909 exec. */
14910
14911 void
14912 cancel_single_step_breakpoints (void)
14913 {
14914 int i;
14915
14916 for (i = 0; i < 2; i++)
14917 if (single_step_breakpoints[i])
14918 {
14919 xfree (single_step_breakpoints[i]);
14920 single_step_breakpoints[i] = NULL;
14921 single_step_gdbarch[i] = NULL;
14922 }
14923 }
14924
14925 /* Detach software single-step breakpoints from INFERIOR_PTID without
14926 removing them. */
14927
14928 static void
14929 detach_single_step_breakpoints (void)
14930 {
14931 int i;
14932
14933 for (i = 0; i < 2; i++)
14934 if (single_step_breakpoints[i])
14935 target_remove_breakpoint (single_step_gdbarch[i],
14936 single_step_breakpoints[i]);
14937 }
14938
14939 /* Check whether a software single-step breakpoint is inserted at
14940 PC. */
14941
14942 static int
14943 single_step_breakpoint_inserted_here_p (struct address_space *aspace,
14944 CORE_ADDR pc)
14945 {
14946 int i;
14947
14948 for (i = 0; i < 2; i++)
14949 {
14950 struct bp_target_info *bp_tgt = single_step_breakpoints[i];
14951 if (bp_tgt
14952 && breakpoint_address_match (bp_tgt->placed_address_space,
14953 bp_tgt->placed_address,
14954 aspace, pc))
14955 return 1;
14956 }
14957
14958 return 0;
14959 }
14960
14961 /* Returns 0 if 'bp' is NOT a syscall catchpoint,
14962 non-zero otherwise. */
14963 static int
14964 is_syscall_catchpoint_enabled (struct breakpoint *bp)
14965 {
14966 if (syscall_catchpoint_p (bp)
14967 && bp->enable_state != bp_disabled
14968 && bp->enable_state != bp_call_disabled)
14969 return 1;
14970 else
14971 return 0;
14972 }
14973
14974 int
14975 catch_syscall_enabled (void)
14976 {
14977 struct catch_syscall_inferior_data *inf_data
14978 = get_catch_syscall_inferior_data (current_inferior ());
14979
14980 return inf_data->total_syscalls_count != 0;
14981 }
14982
14983 int
14984 catching_syscall_number (int syscall_number)
14985 {
14986 struct breakpoint *bp;
14987
14988 ALL_BREAKPOINTS (bp)
14989 if (is_syscall_catchpoint_enabled (bp))
14990 {
14991 struct syscall_catchpoint *c = (struct syscall_catchpoint *) bp;
14992
14993 if (c->syscalls_to_be_caught)
14994 {
14995 int i, iter;
14996 for (i = 0;
14997 VEC_iterate (int, c->syscalls_to_be_caught, i, iter);
14998 i++)
14999 if (syscall_number == iter)
15000 return 1;
15001 }
15002 else
15003 return 1;
15004 }
15005
15006 return 0;
15007 }
15008
15009 /* Complete syscall names. Used by "catch syscall". */
15010 static VEC (char_ptr) *
15011 catch_syscall_completer (struct cmd_list_element *cmd,
15012 char *text, char *word)
15013 {
15014 const char **list = get_syscall_names ();
15015 VEC (char_ptr) *retlist
15016 = (list == NULL) ? NULL : complete_on_enum (list, word, word);
15017
15018 xfree (list);
15019 return retlist;
15020 }
15021
15022 /* Tracepoint-specific operations. */
15023
15024 /* Set tracepoint count to NUM. */
15025 static void
15026 set_tracepoint_count (int num)
15027 {
15028 tracepoint_count = num;
15029 set_internalvar_integer (lookup_internalvar ("tpnum"), num);
15030 }
15031
15032 static void
15033 trace_command (char *arg, int from_tty)
15034 {
15035 struct breakpoint_ops *ops;
15036 const char *arg_cp = arg;
15037
15038 if (arg && probe_linespec_to_ops (&arg_cp))
15039 ops = &tracepoint_probe_breakpoint_ops;
15040 else
15041 ops = &tracepoint_breakpoint_ops;
15042
15043 create_breakpoint (get_current_arch (),
15044 arg,
15045 NULL, 0, NULL, 1 /* parse arg */,
15046 0 /* tempflag */,
15047 bp_tracepoint /* type_wanted */,
15048 0 /* Ignore count */,
15049 pending_break_support,
15050 ops,
15051 from_tty,
15052 1 /* enabled */,
15053 0 /* internal */, 0);
15054 }
15055
15056 static void
15057 ftrace_command (char *arg, int from_tty)
15058 {
15059 create_breakpoint (get_current_arch (),
15060 arg,
15061 NULL, 0, NULL, 1 /* parse arg */,
15062 0 /* tempflag */,
15063 bp_fast_tracepoint /* type_wanted */,
15064 0 /* Ignore count */,
15065 pending_break_support,
15066 &tracepoint_breakpoint_ops,
15067 from_tty,
15068 1 /* enabled */,
15069 0 /* internal */, 0);
15070 }
15071
15072 /* strace command implementation. Creates a static tracepoint. */
15073
15074 static void
15075 strace_command (char *arg, int from_tty)
15076 {
15077 struct breakpoint_ops *ops;
15078
15079 /* Decide if we are dealing with a static tracepoint marker (`-m'),
15080 or with a normal static tracepoint. */
15081 if (arg && strncmp (arg, "-m", 2) == 0 && isspace (arg[2]))
15082 ops = &strace_marker_breakpoint_ops;
15083 else
15084 ops = &tracepoint_breakpoint_ops;
15085
15086 create_breakpoint (get_current_arch (),
15087 arg,
15088 NULL, 0, NULL, 1 /* parse arg */,
15089 0 /* tempflag */,
15090 bp_static_tracepoint /* type_wanted */,
15091 0 /* Ignore count */,
15092 pending_break_support,
15093 ops,
15094 from_tty,
15095 1 /* enabled */,
15096 0 /* internal */, 0);
15097 }
15098
15099 /* Set up a fake reader function that gets command lines from a linked
15100 list that was acquired during tracepoint uploading. */
15101
15102 static struct uploaded_tp *this_utp;
15103 static int next_cmd;
15104
15105 static char *
15106 read_uploaded_action (void)
15107 {
15108 char *rslt;
15109
15110 VEC_iterate (char_ptr, this_utp->cmd_strings, next_cmd, rslt);
15111
15112 next_cmd++;
15113
15114 return rslt;
15115 }
15116
15117 /* Given information about a tracepoint as recorded on a target (which
15118 can be either a live system or a trace file), attempt to create an
15119 equivalent GDB tracepoint. This is not a reliable process, since
15120 the target does not necessarily have all the information used when
15121 the tracepoint was originally defined. */
15122
15123 struct tracepoint *
15124 create_tracepoint_from_upload (struct uploaded_tp *utp)
15125 {
15126 char *addr_str, small_buf[100];
15127 struct tracepoint *tp;
15128
15129 if (utp->at_string)
15130 addr_str = utp->at_string;
15131 else
15132 {
15133 /* In the absence of a source location, fall back to raw
15134 address. Since there is no way to confirm that the address
15135 means the same thing as when the trace was started, warn the
15136 user. */
15137 warning (_("Uploaded tracepoint %d has no "
15138 "source location, using raw address"),
15139 utp->number);
15140 xsnprintf (small_buf, sizeof (small_buf), "*%s", hex_string (utp->addr));
15141 addr_str = small_buf;
15142 }
15143
15144 /* There's not much we can do with a sequence of bytecodes. */
15145 if (utp->cond && !utp->cond_string)
15146 warning (_("Uploaded tracepoint %d condition "
15147 "has no source form, ignoring it"),
15148 utp->number);
15149
15150 if (!create_breakpoint (get_current_arch (),
15151 addr_str,
15152 utp->cond_string, -1, NULL,
15153 0 /* parse cond/thread */,
15154 0 /* tempflag */,
15155 utp->type /* type_wanted */,
15156 0 /* Ignore count */,
15157 pending_break_support,
15158 &tracepoint_breakpoint_ops,
15159 0 /* from_tty */,
15160 utp->enabled /* enabled */,
15161 0 /* internal */,
15162 CREATE_BREAKPOINT_FLAGS_INSERTED))
15163 return NULL;
15164
15165 /* Get the tracepoint we just created. */
15166 tp = get_tracepoint (tracepoint_count);
15167 gdb_assert (tp != NULL);
15168
15169 if (utp->pass > 0)
15170 {
15171 xsnprintf (small_buf, sizeof (small_buf), "%d %d", utp->pass,
15172 tp->base.number);
15173
15174 trace_pass_command (small_buf, 0);
15175 }
15176
15177 /* If we have uploaded versions of the original commands, set up a
15178 special-purpose "reader" function and call the usual command line
15179 reader, then pass the result to the breakpoint command-setting
15180 function. */
15181 if (!VEC_empty (char_ptr, utp->cmd_strings))
15182 {
15183 struct command_line *cmd_list;
15184
15185 this_utp = utp;
15186 next_cmd = 0;
15187
15188 cmd_list = read_command_lines_1 (read_uploaded_action, 1, NULL, NULL);
15189
15190 breakpoint_set_commands (&tp->base, cmd_list);
15191 }
15192 else if (!VEC_empty (char_ptr, utp->actions)
15193 || !VEC_empty (char_ptr, utp->step_actions))
15194 warning (_("Uploaded tracepoint %d actions "
15195 "have no source form, ignoring them"),
15196 utp->number);
15197
15198 /* Copy any status information that might be available. */
15199 tp->base.hit_count = utp->hit_count;
15200 tp->traceframe_usage = utp->traceframe_usage;
15201
15202 return tp;
15203 }
15204
15205 /* Print information on tracepoint number TPNUM_EXP, or all if
15206 omitted. */
15207
15208 static void
15209 tracepoints_info (char *args, int from_tty)
15210 {
15211 struct ui_out *uiout = current_uiout;
15212 int num_printed;
15213
15214 num_printed = breakpoint_1 (args, 0, is_tracepoint);
15215
15216 if (num_printed == 0)
15217 {
15218 if (args == NULL || *args == '\0')
15219 ui_out_message (uiout, 0, "No tracepoints.\n");
15220 else
15221 ui_out_message (uiout, 0, "No tracepoint matching '%s'.\n", args);
15222 }
15223
15224 default_collect_info ();
15225 }
15226
15227 /* The 'enable trace' command enables tracepoints.
15228 Not supported by all targets. */
15229 static void
15230 enable_trace_command (char *args, int from_tty)
15231 {
15232 enable_command (args, from_tty);
15233 }
15234
15235 /* The 'disable trace' command disables tracepoints.
15236 Not supported by all targets. */
15237 static void
15238 disable_trace_command (char *args, int from_tty)
15239 {
15240 disable_command (args, from_tty);
15241 }
15242
15243 /* Remove a tracepoint (or all if no argument). */
15244 static void
15245 delete_trace_command (char *arg, int from_tty)
15246 {
15247 struct breakpoint *b, *b_tmp;
15248
15249 dont_repeat ();
15250
15251 if (arg == 0)
15252 {
15253 int breaks_to_delete = 0;
15254
15255 /* Delete all breakpoints if no argument.
15256 Do not delete internal or call-dummy breakpoints, these
15257 have to be deleted with an explicit breakpoint number
15258 argument. */
15259 ALL_TRACEPOINTS (b)
15260 if (is_tracepoint (b) && user_breakpoint_p (b))
15261 {
15262 breaks_to_delete = 1;
15263 break;
15264 }
15265
15266 /* Ask user only if there are some breakpoints to delete. */
15267 if (!from_tty
15268 || (breaks_to_delete && query (_("Delete all tracepoints? "))))
15269 {
15270 ALL_BREAKPOINTS_SAFE (b, b_tmp)
15271 if (is_tracepoint (b) && user_breakpoint_p (b))
15272 delete_breakpoint (b);
15273 }
15274 }
15275 else
15276 map_breakpoint_numbers (arg, do_map_delete_breakpoint, NULL);
15277 }
15278
15279 /* Helper function for trace_pass_command. */
15280
15281 static void
15282 trace_pass_set_count (struct tracepoint *tp, int count, int from_tty)
15283 {
15284 tp->pass_count = count;
15285 observer_notify_breakpoint_modified (&tp->base);
15286 if (from_tty)
15287 printf_filtered (_("Setting tracepoint %d's passcount to %d\n"),
15288 tp->base.number, count);
15289 }
15290
15291 /* Set passcount for tracepoint.
15292
15293 First command argument is passcount, second is tracepoint number.
15294 If tracepoint number omitted, apply to most recently defined.
15295 Also accepts special argument "all". */
15296
15297 static void
15298 trace_pass_command (char *args, int from_tty)
15299 {
15300 struct tracepoint *t1;
15301 unsigned int count;
15302
15303 if (args == 0 || *args == 0)
15304 error (_("passcount command requires an "
15305 "argument (count + optional TP num)"));
15306
15307 count = strtoul (args, &args, 10); /* Count comes first, then TP num. */
15308
15309 while (*args && isspace ((int) *args))
15310 args++;
15311
15312 if (*args && strncasecmp (args, "all", 3) == 0)
15313 {
15314 struct breakpoint *b;
15315
15316 args += 3; /* Skip special argument "all". */
15317 if (*args)
15318 error (_("Junk at end of arguments."));
15319
15320 ALL_TRACEPOINTS (b)
15321 {
15322 t1 = (struct tracepoint *) b;
15323 trace_pass_set_count (t1, count, from_tty);
15324 }
15325 }
15326 else if (*args == '\0')
15327 {
15328 t1 = get_tracepoint_by_number (&args, NULL, 1);
15329 if (t1)
15330 trace_pass_set_count (t1, count, from_tty);
15331 }
15332 else
15333 {
15334 struct get_number_or_range_state state;
15335
15336 init_number_or_range (&state, args);
15337 while (!state.finished)
15338 {
15339 t1 = get_tracepoint_by_number (&args, &state, 1);
15340 if (t1)
15341 trace_pass_set_count (t1, count, from_tty);
15342 }
15343 }
15344 }
15345
15346 struct tracepoint *
15347 get_tracepoint (int num)
15348 {
15349 struct breakpoint *t;
15350
15351 ALL_TRACEPOINTS (t)
15352 if (t->number == num)
15353 return (struct tracepoint *) t;
15354
15355 return NULL;
15356 }
15357
15358 /* Find the tracepoint with the given target-side number (which may be
15359 different from the tracepoint number after disconnecting and
15360 reconnecting). */
15361
15362 struct tracepoint *
15363 get_tracepoint_by_number_on_target (int num)
15364 {
15365 struct breakpoint *b;
15366
15367 ALL_TRACEPOINTS (b)
15368 {
15369 struct tracepoint *t = (struct tracepoint *) b;
15370
15371 if (t->number_on_target == num)
15372 return t;
15373 }
15374
15375 return NULL;
15376 }
15377
15378 /* Utility: parse a tracepoint number and look it up in the list.
15379 If STATE is not NULL, use, get_number_or_range_state and ignore ARG.
15380 If OPTIONAL_P is true, then if the argument is missing, the most
15381 recent tracepoint (tracepoint_count) is returned. */
15382 struct tracepoint *
15383 get_tracepoint_by_number (char **arg,
15384 struct get_number_or_range_state *state,
15385 int optional_p)
15386 {
15387 struct breakpoint *t;
15388 int tpnum;
15389 char *instring = arg == NULL ? NULL : *arg;
15390
15391 if (state)
15392 {
15393 gdb_assert (!state->finished);
15394 tpnum = get_number_or_range (state);
15395 }
15396 else if (arg == NULL || *arg == NULL || ! **arg)
15397 {
15398 if (optional_p)
15399 tpnum = tracepoint_count;
15400 else
15401 error_no_arg (_("tracepoint number"));
15402 }
15403 else
15404 tpnum = get_number (arg);
15405
15406 if (tpnum <= 0)
15407 {
15408 if (instring && *instring)
15409 printf_filtered (_("bad tracepoint number at or near '%s'\n"),
15410 instring);
15411 else
15412 printf_filtered (_("Tracepoint argument missing "
15413 "and no previous tracepoint\n"));
15414 return NULL;
15415 }
15416
15417 ALL_TRACEPOINTS (t)
15418 if (t->number == tpnum)
15419 {
15420 return (struct tracepoint *) t;
15421 }
15422
15423 printf_unfiltered ("No tracepoint number %d.\n", tpnum);
15424 return NULL;
15425 }
15426
15427 void
15428 print_recreate_thread (struct breakpoint *b, struct ui_file *fp)
15429 {
15430 if (b->thread != -1)
15431 fprintf_unfiltered (fp, " thread %d", b->thread);
15432
15433 if (b->task != 0)
15434 fprintf_unfiltered (fp, " task %d", b->task);
15435
15436 fprintf_unfiltered (fp, "\n");
15437 }
15438
15439 /* Save information on user settable breakpoints (watchpoints, etc) to
15440 a new script file named FILENAME. If FILTER is non-NULL, call it
15441 on each breakpoint and only include the ones for which it returns
15442 non-zero. */
15443
15444 static void
15445 save_breakpoints (char *filename, int from_tty,
15446 int (*filter) (const struct breakpoint *))
15447 {
15448 struct breakpoint *tp;
15449 int any = 0;
15450 char *pathname;
15451 struct cleanup *cleanup;
15452 struct ui_file *fp;
15453 int extra_trace_bits = 0;
15454
15455 if (filename == 0 || *filename == 0)
15456 error (_("Argument required (file name in which to save)"));
15457
15458 /* See if we have anything to save. */
15459 ALL_BREAKPOINTS (tp)
15460 {
15461 /* Skip internal and momentary breakpoints. */
15462 if (!user_breakpoint_p (tp))
15463 continue;
15464
15465 /* If we have a filter, only save the breakpoints it accepts. */
15466 if (filter && !filter (tp))
15467 continue;
15468
15469 any = 1;
15470
15471 if (is_tracepoint (tp))
15472 {
15473 extra_trace_bits = 1;
15474
15475 /* We can stop searching. */
15476 break;
15477 }
15478 }
15479
15480 if (!any)
15481 {
15482 warning (_("Nothing to save."));
15483 return;
15484 }
15485
15486 pathname = tilde_expand (filename);
15487 cleanup = make_cleanup (xfree, pathname);
15488 fp = gdb_fopen (pathname, "w");
15489 if (!fp)
15490 error (_("Unable to open file '%s' for saving (%s)"),
15491 filename, safe_strerror (errno));
15492 make_cleanup_ui_file_delete (fp);
15493
15494 if (extra_trace_bits)
15495 save_trace_state_variables (fp);
15496
15497 ALL_BREAKPOINTS (tp)
15498 {
15499 /* Skip internal and momentary breakpoints. */
15500 if (!user_breakpoint_p (tp))
15501 continue;
15502
15503 /* If we have a filter, only save the breakpoints it accepts. */
15504 if (filter && !filter (tp))
15505 continue;
15506
15507 tp->ops->print_recreate (tp, fp);
15508
15509 /* Note, we can't rely on tp->number for anything, as we can't
15510 assume the recreated breakpoint numbers will match. Use $bpnum
15511 instead. */
15512
15513 if (tp->cond_string)
15514 fprintf_unfiltered (fp, " condition $bpnum %s\n", tp->cond_string);
15515
15516 if (tp->ignore_count)
15517 fprintf_unfiltered (fp, " ignore $bpnum %d\n", tp->ignore_count);
15518
15519 if (tp->commands)
15520 {
15521 volatile struct gdb_exception ex;
15522
15523 fprintf_unfiltered (fp, " commands\n");
15524
15525 ui_out_redirect (current_uiout, fp);
15526 TRY_CATCH (ex, RETURN_MASK_ALL)
15527 {
15528 print_command_lines (current_uiout, tp->commands->commands, 2);
15529 }
15530 ui_out_redirect (current_uiout, NULL);
15531
15532 if (ex.reason < 0)
15533 throw_exception (ex);
15534
15535 fprintf_unfiltered (fp, " end\n");
15536 }
15537
15538 if (tp->enable_state == bp_disabled)
15539 fprintf_unfiltered (fp, "disable\n");
15540
15541 /* If this is a multi-location breakpoint, check if the locations
15542 should be individually disabled. Watchpoint locations are
15543 special, and not user visible. */
15544 if (!is_watchpoint (tp) && tp->loc && tp->loc->next)
15545 {
15546 struct bp_location *loc;
15547 int n = 1;
15548
15549 for (loc = tp->loc; loc != NULL; loc = loc->next, n++)
15550 if (!loc->enabled)
15551 fprintf_unfiltered (fp, "disable $bpnum.%d\n", n);
15552 }
15553 }
15554
15555 if (extra_trace_bits && *default_collect)
15556 fprintf_unfiltered (fp, "set default-collect %s\n", default_collect);
15557
15558 do_cleanups (cleanup);
15559 if (from_tty)
15560 printf_filtered (_("Saved to file '%s'.\n"), filename);
15561 }
15562
15563 /* The `save breakpoints' command. */
15564
15565 static void
15566 save_breakpoints_command (char *args, int from_tty)
15567 {
15568 save_breakpoints (args, from_tty, NULL);
15569 }
15570
15571 /* The `save tracepoints' command. */
15572
15573 static void
15574 save_tracepoints_command (char *args, int from_tty)
15575 {
15576 save_breakpoints (args, from_tty, is_tracepoint);
15577 }
15578
15579 /* Create a vector of all tracepoints. */
15580
15581 VEC(breakpoint_p) *
15582 all_tracepoints (void)
15583 {
15584 VEC(breakpoint_p) *tp_vec = 0;
15585 struct breakpoint *tp;
15586
15587 ALL_TRACEPOINTS (tp)
15588 {
15589 VEC_safe_push (breakpoint_p, tp_vec, tp);
15590 }
15591
15592 return tp_vec;
15593 }
15594
15595 \f
15596 /* This help string is used for the break, hbreak, tbreak and thbreak
15597 commands. It is defined as a macro to prevent duplication.
15598 COMMAND should be a string constant containing the name of the
15599 command. */
15600 #define BREAK_ARGS_HELP(command) \
15601 command" [PROBE_MODIFIER] [LOCATION] [thread THREADNUM] [if CONDITION]\n\
15602 PROBE_MODIFIER shall be present if the command is to be placed in a\n\
15603 probe point. Accepted values are `-probe' (for a generic, automatically\n\
15604 guessed probe type) or `-probe-stap' (for a SystemTap probe).\n\
15605 LOCATION may be a line number, function name, or \"*\" and an address.\n\
15606 If a line number is specified, break at start of code for that line.\n\
15607 If a function is specified, break at start of code for that function.\n\
15608 If an address is specified, break at that exact address.\n\
15609 With no LOCATION, uses current execution address of the selected\n\
15610 stack frame. This is useful for breaking on return to a stack frame.\n\
15611 \n\
15612 THREADNUM is the number from \"info threads\".\n\
15613 CONDITION is a boolean expression.\n\
15614 \n\
15615 Multiple breakpoints at one place are permitted, and useful if their\n\
15616 conditions are different.\n\
15617 \n\
15618 Do \"help breakpoints\" for info on other commands dealing with breakpoints."
15619
15620 /* List of subcommands for "catch". */
15621 static struct cmd_list_element *catch_cmdlist;
15622
15623 /* List of subcommands for "tcatch". */
15624 static struct cmd_list_element *tcatch_cmdlist;
15625
15626 void
15627 add_catch_command (char *name, char *docstring,
15628 void (*sfunc) (char *args, int from_tty,
15629 struct cmd_list_element *command),
15630 completer_ftype *completer,
15631 void *user_data_catch,
15632 void *user_data_tcatch)
15633 {
15634 struct cmd_list_element *command;
15635
15636 command = add_cmd (name, class_breakpoint, NULL, docstring,
15637 &catch_cmdlist);
15638 set_cmd_sfunc (command, sfunc);
15639 set_cmd_context (command, user_data_catch);
15640 set_cmd_completer (command, completer);
15641
15642 command = add_cmd (name, class_breakpoint, NULL, docstring,
15643 &tcatch_cmdlist);
15644 set_cmd_sfunc (command, sfunc);
15645 set_cmd_context (command, user_data_tcatch);
15646 set_cmd_completer (command, completer);
15647 }
15648
15649 static void
15650 clear_syscall_counts (struct inferior *inf)
15651 {
15652 struct catch_syscall_inferior_data *inf_data
15653 = get_catch_syscall_inferior_data (inf);
15654
15655 inf_data->total_syscalls_count = 0;
15656 inf_data->any_syscall_count = 0;
15657 VEC_free (int, inf_data->syscalls_counts);
15658 }
15659
15660 static void
15661 save_command (char *arg, int from_tty)
15662 {
15663 printf_unfiltered (_("\"save\" must be followed by "
15664 "the name of a save subcommand.\n"));
15665 help_list (save_cmdlist, "save ", -1, gdb_stdout);
15666 }
15667
15668 struct breakpoint *
15669 iterate_over_breakpoints (int (*callback) (struct breakpoint *, void *),
15670 void *data)
15671 {
15672 struct breakpoint *b, *b_tmp;
15673
15674 ALL_BREAKPOINTS_SAFE (b, b_tmp)
15675 {
15676 if ((*callback) (b, data))
15677 return b;
15678 }
15679
15680 return NULL;
15681 }
15682
15683 /* Zero if any of the breakpoint's locations could be a location where
15684 functions have been inlined, nonzero otherwise. */
15685
15686 static int
15687 is_non_inline_function (struct breakpoint *b)
15688 {
15689 /* The shared library event breakpoint is set on the address of a
15690 non-inline function. */
15691 if (b->type == bp_shlib_event)
15692 return 1;
15693
15694 return 0;
15695 }
15696
15697 /* Nonzero if the specified PC cannot be a location where functions
15698 have been inlined. */
15699
15700 int
15701 pc_at_non_inline_function (struct address_space *aspace, CORE_ADDR pc,
15702 const struct target_waitstatus *ws)
15703 {
15704 struct breakpoint *b;
15705 struct bp_location *bl;
15706
15707 ALL_BREAKPOINTS (b)
15708 {
15709 if (!is_non_inline_function (b))
15710 continue;
15711
15712 for (bl = b->loc; bl != NULL; bl = bl->next)
15713 {
15714 if (!bl->shlib_disabled
15715 && bpstat_check_location (bl, aspace, pc, ws))
15716 return 1;
15717 }
15718 }
15719
15720 return 0;
15721 }
15722
15723 void
15724 initialize_breakpoint_ops (void)
15725 {
15726 static int initialized = 0;
15727
15728 struct breakpoint_ops *ops;
15729
15730 if (initialized)
15731 return;
15732 initialized = 1;
15733
15734 /* The breakpoint_ops structure to be inherit by all kinds of
15735 breakpoints (real breakpoints, i.e., user "break" breakpoints,
15736 internal and momentary breakpoints, etc.). */
15737 ops = &bkpt_base_breakpoint_ops;
15738 *ops = base_breakpoint_ops;
15739 ops->re_set = bkpt_re_set;
15740 ops->insert_location = bkpt_insert_location;
15741 ops->remove_location = bkpt_remove_location;
15742 ops->breakpoint_hit = bkpt_breakpoint_hit;
15743 ops->create_sals_from_address = bkpt_create_sals_from_address;
15744 ops->create_breakpoints_sal = bkpt_create_breakpoints_sal;
15745 ops->decode_linespec = bkpt_decode_linespec;
15746
15747 /* The breakpoint_ops structure to be used in regular breakpoints. */
15748 ops = &bkpt_breakpoint_ops;
15749 *ops = bkpt_base_breakpoint_ops;
15750 ops->re_set = bkpt_re_set;
15751 ops->resources_needed = bkpt_resources_needed;
15752 ops->print_it = bkpt_print_it;
15753 ops->print_mention = bkpt_print_mention;
15754 ops->print_recreate = bkpt_print_recreate;
15755
15756 /* Ranged breakpoints. */
15757 ops = &ranged_breakpoint_ops;
15758 *ops = bkpt_breakpoint_ops;
15759 ops->breakpoint_hit = breakpoint_hit_ranged_breakpoint;
15760 ops->resources_needed = resources_needed_ranged_breakpoint;
15761 ops->print_it = print_it_ranged_breakpoint;
15762 ops->print_one = print_one_ranged_breakpoint;
15763 ops->print_one_detail = print_one_detail_ranged_breakpoint;
15764 ops->print_mention = print_mention_ranged_breakpoint;
15765 ops->print_recreate = print_recreate_ranged_breakpoint;
15766
15767 /* Internal breakpoints. */
15768 ops = &internal_breakpoint_ops;
15769 *ops = bkpt_base_breakpoint_ops;
15770 ops->re_set = internal_bkpt_re_set;
15771 ops->check_status = internal_bkpt_check_status;
15772 ops->print_it = internal_bkpt_print_it;
15773 ops->print_mention = internal_bkpt_print_mention;
15774
15775 /* Momentary breakpoints. */
15776 ops = &momentary_breakpoint_ops;
15777 *ops = bkpt_base_breakpoint_ops;
15778 ops->re_set = momentary_bkpt_re_set;
15779 ops->check_status = momentary_bkpt_check_status;
15780 ops->print_it = momentary_bkpt_print_it;
15781 ops->print_mention = momentary_bkpt_print_mention;
15782
15783 /* Momentary breakpoints for bp_longjmp and bp_exception. */
15784 ops = &longjmp_breakpoint_ops;
15785 *ops = momentary_breakpoint_ops;
15786 ops->dtor = longjmp_bkpt_dtor;
15787
15788 /* Probe breakpoints. */
15789 ops = &bkpt_probe_breakpoint_ops;
15790 *ops = bkpt_breakpoint_ops;
15791 ops->insert_location = bkpt_probe_insert_location;
15792 ops->remove_location = bkpt_probe_remove_location;
15793 ops->create_sals_from_address = bkpt_probe_create_sals_from_address;
15794 ops->decode_linespec = bkpt_probe_decode_linespec;
15795
15796 /* GNU v3 exception catchpoints. */
15797 ops = &gnu_v3_exception_catchpoint_ops;
15798 *ops = bkpt_breakpoint_ops;
15799 ops->print_it = print_it_exception_catchpoint;
15800 ops->print_one = print_one_exception_catchpoint;
15801 ops->print_mention = print_mention_exception_catchpoint;
15802 ops->print_recreate = print_recreate_exception_catchpoint;
15803
15804 /* Watchpoints. */
15805 ops = &watchpoint_breakpoint_ops;
15806 *ops = base_breakpoint_ops;
15807 ops->dtor = dtor_watchpoint;
15808 ops->re_set = re_set_watchpoint;
15809 ops->insert_location = insert_watchpoint;
15810 ops->remove_location = remove_watchpoint;
15811 ops->breakpoint_hit = breakpoint_hit_watchpoint;
15812 ops->check_status = check_status_watchpoint;
15813 ops->resources_needed = resources_needed_watchpoint;
15814 ops->works_in_software_mode = works_in_software_mode_watchpoint;
15815 ops->print_it = print_it_watchpoint;
15816 ops->print_mention = print_mention_watchpoint;
15817 ops->print_recreate = print_recreate_watchpoint;
15818
15819 /* Masked watchpoints. */
15820 ops = &masked_watchpoint_breakpoint_ops;
15821 *ops = watchpoint_breakpoint_ops;
15822 ops->insert_location = insert_masked_watchpoint;
15823 ops->remove_location = remove_masked_watchpoint;
15824 ops->resources_needed = resources_needed_masked_watchpoint;
15825 ops->works_in_software_mode = works_in_software_mode_masked_watchpoint;
15826 ops->print_it = print_it_masked_watchpoint;
15827 ops->print_one_detail = print_one_detail_masked_watchpoint;
15828 ops->print_mention = print_mention_masked_watchpoint;
15829 ops->print_recreate = print_recreate_masked_watchpoint;
15830
15831 /* Tracepoints. */
15832 ops = &tracepoint_breakpoint_ops;
15833 *ops = base_breakpoint_ops;
15834 ops->re_set = tracepoint_re_set;
15835 ops->breakpoint_hit = tracepoint_breakpoint_hit;
15836 ops->print_one_detail = tracepoint_print_one_detail;
15837 ops->print_mention = tracepoint_print_mention;
15838 ops->print_recreate = tracepoint_print_recreate;
15839 ops->create_sals_from_address = tracepoint_create_sals_from_address;
15840 ops->create_breakpoints_sal = tracepoint_create_breakpoints_sal;
15841 ops->decode_linespec = tracepoint_decode_linespec;
15842
15843 /* Probe tracepoints. */
15844 ops = &tracepoint_probe_breakpoint_ops;
15845 *ops = tracepoint_breakpoint_ops;
15846 ops->create_sals_from_address = tracepoint_probe_create_sals_from_address;
15847 ops->decode_linespec = tracepoint_probe_decode_linespec;
15848
15849 /* Static tracepoints with marker (`-m'). */
15850 ops = &strace_marker_breakpoint_ops;
15851 *ops = tracepoint_breakpoint_ops;
15852 ops->create_sals_from_address = strace_marker_create_sals_from_address;
15853 ops->create_breakpoints_sal = strace_marker_create_breakpoints_sal;
15854 ops->decode_linespec = strace_marker_decode_linespec;
15855
15856 /* Fork catchpoints. */
15857 ops = &catch_fork_breakpoint_ops;
15858 *ops = base_breakpoint_ops;
15859 ops->insert_location = insert_catch_fork;
15860 ops->remove_location = remove_catch_fork;
15861 ops->breakpoint_hit = breakpoint_hit_catch_fork;
15862 ops->print_it = print_it_catch_fork;
15863 ops->print_one = print_one_catch_fork;
15864 ops->print_mention = print_mention_catch_fork;
15865 ops->print_recreate = print_recreate_catch_fork;
15866
15867 /* Vfork catchpoints. */
15868 ops = &catch_vfork_breakpoint_ops;
15869 *ops = base_breakpoint_ops;
15870 ops->insert_location = insert_catch_vfork;
15871 ops->remove_location = remove_catch_vfork;
15872 ops->breakpoint_hit = breakpoint_hit_catch_vfork;
15873 ops->print_it = print_it_catch_vfork;
15874 ops->print_one = print_one_catch_vfork;
15875 ops->print_mention = print_mention_catch_vfork;
15876 ops->print_recreate = print_recreate_catch_vfork;
15877
15878 /* Exec catchpoints. */
15879 ops = &catch_exec_breakpoint_ops;
15880 *ops = base_breakpoint_ops;
15881 ops->dtor = dtor_catch_exec;
15882 ops->insert_location = insert_catch_exec;
15883 ops->remove_location = remove_catch_exec;
15884 ops->breakpoint_hit = breakpoint_hit_catch_exec;
15885 ops->print_it = print_it_catch_exec;
15886 ops->print_one = print_one_catch_exec;
15887 ops->print_mention = print_mention_catch_exec;
15888 ops->print_recreate = print_recreate_catch_exec;
15889
15890 /* Syscall catchpoints. */
15891 ops = &catch_syscall_breakpoint_ops;
15892 *ops = base_breakpoint_ops;
15893 ops->dtor = dtor_catch_syscall;
15894 ops->insert_location = insert_catch_syscall;
15895 ops->remove_location = remove_catch_syscall;
15896 ops->breakpoint_hit = breakpoint_hit_catch_syscall;
15897 ops->print_it = print_it_catch_syscall;
15898 ops->print_one = print_one_catch_syscall;
15899 ops->print_mention = print_mention_catch_syscall;
15900 ops->print_recreate = print_recreate_catch_syscall;
15901
15902 /* Solib-related catchpoints. */
15903 ops = &catch_solib_breakpoint_ops;
15904 *ops = base_breakpoint_ops;
15905 ops->dtor = dtor_catch_solib;
15906 ops->insert_location = insert_catch_solib;
15907 ops->remove_location = remove_catch_solib;
15908 ops->breakpoint_hit = breakpoint_hit_catch_solib;
15909 ops->check_status = check_status_catch_solib;
15910 ops->print_it = print_it_catch_solib;
15911 ops->print_one = print_one_catch_solib;
15912 ops->print_mention = print_mention_catch_solib;
15913 ops->print_recreate = print_recreate_catch_solib;
15914
15915 ops = &dprintf_breakpoint_ops;
15916 *ops = bkpt_base_breakpoint_ops;
15917 ops->re_set = bkpt_re_set;
15918 ops->resources_needed = bkpt_resources_needed;
15919 ops->print_it = bkpt_print_it;
15920 ops->print_mention = bkpt_print_mention;
15921 ops->print_recreate = bkpt_print_recreate;
15922 }
15923
15924 /* Chain containing all defined "enable breakpoint" subcommands. */
15925
15926 static struct cmd_list_element *enablebreaklist = NULL;
15927
15928 void
15929 _initialize_breakpoint (void)
15930 {
15931 struct cmd_list_element *c;
15932
15933 initialize_breakpoint_ops ();
15934
15935 observer_attach_solib_unloaded (disable_breakpoints_in_unloaded_shlib);
15936 observer_attach_inferior_exit (clear_syscall_counts);
15937 observer_attach_memory_changed (invalidate_bp_value_on_memory_change);
15938
15939 breakpoint_objfile_key
15940 = register_objfile_data_with_cleanup (NULL, free_breakpoint_probes);
15941
15942 catch_syscall_inferior_data
15943 = register_inferior_data_with_cleanup (NULL,
15944 catch_syscall_inferior_data_cleanup);
15945
15946 breakpoint_chain = 0;
15947 /* Don't bother to call set_breakpoint_count. $bpnum isn't useful
15948 before a breakpoint is set. */
15949 breakpoint_count = 0;
15950
15951 tracepoint_count = 0;
15952
15953 add_com ("ignore", class_breakpoint, ignore_command, _("\
15954 Set ignore-count of breakpoint number N to COUNT.\n\
15955 Usage is `ignore N COUNT'."));
15956 if (xdb_commands)
15957 add_com_alias ("bc", "ignore", class_breakpoint, 1);
15958
15959 add_com ("commands", class_breakpoint, commands_command, _("\
15960 Set commands to be executed when a breakpoint is hit.\n\
15961 Give breakpoint number as argument after \"commands\".\n\
15962 With no argument, the targeted breakpoint is the last one set.\n\
15963 The commands themselves follow starting on the next line.\n\
15964 Type a line containing \"end\" to indicate the end of them.\n\
15965 Give \"silent\" as the first line to make the breakpoint silent;\n\
15966 then no output is printed when it is hit, except what the commands print."));
15967
15968 c = add_com ("condition", class_breakpoint, condition_command, _("\
15969 Specify breakpoint number N to break only if COND is true.\n\
15970 Usage is `condition N COND', where N is an integer and COND is an\n\
15971 expression to be evaluated whenever breakpoint N is reached."));
15972 set_cmd_completer (c, condition_completer);
15973
15974 c = add_com ("tbreak", class_breakpoint, tbreak_command, _("\
15975 Set a temporary breakpoint.\n\
15976 Like \"break\" except the breakpoint is only temporary,\n\
15977 so it will be deleted when hit. Equivalent to \"break\" followed\n\
15978 by using \"enable delete\" on the breakpoint number.\n\
15979 \n"
15980 BREAK_ARGS_HELP ("tbreak")));
15981 set_cmd_completer (c, location_completer);
15982
15983 c = add_com ("hbreak", class_breakpoint, hbreak_command, _("\
15984 Set a hardware assisted breakpoint.\n\
15985 Like \"break\" except the breakpoint requires hardware support,\n\
15986 some target hardware may not have this support.\n\
15987 \n"
15988 BREAK_ARGS_HELP ("hbreak")));
15989 set_cmd_completer (c, location_completer);
15990
15991 c = add_com ("thbreak", class_breakpoint, thbreak_command, _("\
15992 Set a temporary hardware assisted breakpoint.\n\
15993 Like \"hbreak\" except the breakpoint is only temporary,\n\
15994 so it will be deleted when hit.\n\
15995 \n"
15996 BREAK_ARGS_HELP ("thbreak")));
15997 set_cmd_completer (c, location_completer);
15998
15999 add_prefix_cmd ("enable", class_breakpoint, enable_command, _("\
16000 Enable some breakpoints.\n\
16001 Give breakpoint numbers (separated by spaces) as arguments.\n\
16002 With no subcommand, breakpoints are enabled until you command otherwise.\n\
16003 This is used to cancel the effect of the \"disable\" command.\n\
16004 With a subcommand you can enable temporarily."),
16005 &enablelist, "enable ", 1, &cmdlist);
16006 if (xdb_commands)
16007 add_com ("ab", class_breakpoint, enable_command, _("\
16008 Enable some breakpoints.\n\
16009 Give breakpoint numbers (separated by spaces) as arguments.\n\
16010 With no subcommand, breakpoints are enabled until you command otherwise.\n\
16011 This is used to cancel the effect of the \"disable\" command.\n\
16012 With a subcommand you can enable temporarily."));
16013
16014 add_com_alias ("en", "enable", class_breakpoint, 1);
16015
16016 add_prefix_cmd ("breakpoints", class_breakpoint, enable_command, _("\
16017 Enable some breakpoints.\n\
16018 Give breakpoint numbers (separated by spaces) as arguments.\n\
16019 This is used to cancel the effect of the \"disable\" command.\n\
16020 May be abbreviated to simply \"enable\".\n"),
16021 &enablebreaklist, "enable breakpoints ", 1, &enablelist);
16022
16023 add_cmd ("once", no_class, enable_once_command, _("\
16024 Enable breakpoints for one hit. Give breakpoint numbers.\n\
16025 If a breakpoint is hit while enabled in this fashion, it becomes disabled."),
16026 &enablebreaklist);
16027
16028 add_cmd ("delete", no_class, enable_delete_command, _("\
16029 Enable breakpoints and delete when hit. Give breakpoint numbers.\n\
16030 If a breakpoint is hit while enabled in this fashion, it is deleted."),
16031 &enablebreaklist);
16032
16033 add_cmd ("count", no_class, enable_count_command, _("\
16034 Enable breakpoints for COUNT hits. Give count and then breakpoint numbers.\n\
16035 If a breakpoint is hit while enabled in this fashion,\n\
16036 the count is decremented; when it reaches zero, the breakpoint is disabled."),
16037 &enablebreaklist);
16038
16039 add_cmd ("delete", no_class, enable_delete_command, _("\
16040 Enable breakpoints and delete when hit. Give breakpoint numbers.\n\
16041 If a breakpoint is hit while enabled in this fashion, it is deleted."),
16042 &enablelist);
16043
16044 add_cmd ("once", no_class, enable_once_command, _("\
16045 Enable breakpoints for one hit. Give breakpoint numbers.\n\
16046 If a breakpoint is hit while enabled in this fashion, it becomes disabled."),
16047 &enablelist);
16048
16049 add_cmd ("count", no_class, enable_count_command, _("\
16050 Enable breakpoints for COUNT hits. Give count and then breakpoint numbers.\n\
16051 If a breakpoint is hit while enabled in this fashion,\n\
16052 the count is decremented; when it reaches zero, the breakpoint is disabled."),
16053 &enablelist);
16054
16055 add_prefix_cmd ("disable", class_breakpoint, disable_command, _("\
16056 Disable some breakpoints.\n\
16057 Arguments are breakpoint numbers with spaces in between.\n\
16058 To disable all breakpoints, give no argument.\n\
16059 A disabled breakpoint is not forgotten, but has no effect until re-enabled."),
16060 &disablelist, "disable ", 1, &cmdlist);
16061 add_com_alias ("dis", "disable", class_breakpoint, 1);
16062 add_com_alias ("disa", "disable", class_breakpoint, 1);
16063 if (xdb_commands)
16064 add_com ("sb", class_breakpoint, disable_command, _("\
16065 Disable some breakpoints.\n\
16066 Arguments are breakpoint numbers with spaces in between.\n\
16067 To disable all breakpoints, give no argument.\n\
16068 A disabled breakpoint is not forgotten, but has no effect until re-enabled."));
16069
16070 add_cmd ("breakpoints", class_alias, disable_command, _("\
16071 Disable some breakpoints.\n\
16072 Arguments are breakpoint numbers with spaces in between.\n\
16073 To disable all breakpoints, give no argument.\n\
16074 A disabled breakpoint is not forgotten, but has no effect until re-enabled.\n\
16075 This command may be abbreviated \"disable\"."),
16076 &disablelist);
16077
16078 add_prefix_cmd ("delete", class_breakpoint, delete_command, _("\
16079 Delete some breakpoints or auto-display expressions.\n\
16080 Arguments are breakpoint numbers with spaces in between.\n\
16081 To delete all breakpoints, give no argument.\n\
16082 \n\
16083 Also a prefix command for deletion of other GDB objects.\n\
16084 The \"unset\" command is also an alias for \"delete\"."),
16085 &deletelist, "delete ", 1, &cmdlist);
16086 add_com_alias ("d", "delete", class_breakpoint, 1);
16087 add_com_alias ("del", "delete", class_breakpoint, 1);
16088 if (xdb_commands)
16089 add_com ("db", class_breakpoint, delete_command, _("\
16090 Delete some breakpoints.\n\
16091 Arguments are breakpoint numbers with spaces in between.\n\
16092 To delete all breakpoints, give no argument.\n"));
16093
16094 add_cmd ("breakpoints", class_alias, delete_command, _("\
16095 Delete some breakpoints or auto-display expressions.\n\
16096 Arguments are breakpoint numbers with spaces in between.\n\
16097 To delete all breakpoints, give no argument.\n\
16098 This command may be abbreviated \"delete\"."),
16099 &deletelist);
16100
16101 add_com ("clear", class_breakpoint, clear_command, _("\
16102 Clear breakpoint at specified line or function.\n\
16103 Argument may be line number, function name, or \"*\" and an address.\n\
16104 If line number is specified, all breakpoints in that line are cleared.\n\
16105 If function is specified, breakpoints at beginning of function are cleared.\n\
16106 If an address is specified, breakpoints at that address are cleared.\n\
16107 \n\
16108 With no argument, clears all breakpoints in the line that the selected frame\n\
16109 is executing in.\n\
16110 \n\
16111 See also the \"delete\" command which clears breakpoints by number."));
16112 add_com_alias ("cl", "clear", class_breakpoint, 1);
16113
16114 c = add_com ("break", class_breakpoint, break_command, _("\
16115 Set breakpoint at specified line or function.\n"
16116 BREAK_ARGS_HELP ("break")));
16117 set_cmd_completer (c, location_completer);
16118
16119 add_com_alias ("b", "break", class_run, 1);
16120 add_com_alias ("br", "break", class_run, 1);
16121 add_com_alias ("bre", "break", class_run, 1);
16122 add_com_alias ("brea", "break", class_run, 1);
16123
16124 if (xdb_commands)
16125 add_com_alias ("ba", "break", class_breakpoint, 1);
16126
16127 if (dbx_commands)
16128 {
16129 add_abbrev_prefix_cmd ("stop", class_breakpoint, stop_command, _("\
16130 Break in function/address or break at a line in the current file."),
16131 &stoplist, "stop ", 1, &cmdlist);
16132 add_cmd ("in", class_breakpoint, stopin_command,
16133 _("Break in function or address."), &stoplist);
16134 add_cmd ("at", class_breakpoint, stopat_command,
16135 _("Break at a line in the current file."), &stoplist);
16136 add_com ("status", class_info, breakpoints_info, _("\
16137 Status of user-settable breakpoints, or breakpoint number NUMBER.\n\
16138 The \"Type\" column indicates one of:\n\
16139 \tbreakpoint - normal breakpoint\n\
16140 \twatchpoint - watchpoint\n\
16141 The \"Disp\" column contains one of \"keep\", \"del\", or \"dis\" to indicate\n\
16142 the disposition of the breakpoint after it gets hit. \"dis\" means that the\n\
16143 breakpoint will be disabled. The \"Address\" and \"What\" columns indicate the\n\
16144 address and file/line number respectively.\n\
16145 \n\
16146 Convenience variable \"$_\" and default examine address for \"x\"\n\
16147 are set to the address of the last breakpoint listed unless the command\n\
16148 is prefixed with \"server \".\n\n\
16149 Convenience variable \"$bpnum\" contains the number of the last\n\
16150 breakpoint set."));
16151 }
16152
16153 add_info ("breakpoints", breakpoints_info, _("\
16154 Status of specified breakpoints (all user-settable breakpoints if no argument).\n\
16155 The \"Type\" column indicates one of:\n\
16156 \tbreakpoint - normal breakpoint\n\
16157 \twatchpoint - watchpoint\n\
16158 The \"Disp\" column contains one of \"keep\", \"del\", or \"dis\" to indicate\n\
16159 the disposition of the breakpoint after it gets hit. \"dis\" means that the\n\
16160 breakpoint will be disabled. The \"Address\" and \"What\" columns indicate the\n\
16161 address and file/line number respectively.\n\
16162 \n\
16163 Convenience variable \"$_\" and default examine address for \"x\"\n\
16164 are set to the address of the last breakpoint listed unless the command\n\
16165 is prefixed with \"server \".\n\n\
16166 Convenience variable \"$bpnum\" contains the number of the last\n\
16167 breakpoint set."));
16168
16169 add_info_alias ("b", "breakpoints", 1);
16170
16171 if (xdb_commands)
16172 add_com ("lb", class_breakpoint, breakpoints_info, _("\
16173 Status of user-settable breakpoints, or breakpoint number NUMBER.\n\
16174 The \"Type\" column indicates one of:\n\
16175 \tbreakpoint - normal breakpoint\n\
16176 \twatchpoint - watchpoint\n\
16177 The \"Disp\" column contains one of \"keep\", \"del\", or \"dis\" to indicate\n\
16178 the disposition of the breakpoint after it gets hit. \"dis\" means that the\n\
16179 breakpoint will be disabled. The \"Address\" and \"What\" columns indicate the\n\
16180 address and file/line number respectively.\n\
16181 \n\
16182 Convenience variable \"$_\" and default examine address for \"x\"\n\
16183 are set to the address of the last breakpoint listed unless the command\n\
16184 is prefixed with \"server \".\n\n\
16185 Convenience variable \"$bpnum\" contains the number of the last\n\
16186 breakpoint set."));
16187
16188 add_cmd ("breakpoints", class_maintenance, maintenance_info_breakpoints, _("\
16189 Status of all breakpoints, or breakpoint number NUMBER.\n\
16190 The \"Type\" column indicates one of:\n\
16191 \tbreakpoint - normal breakpoint\n\
16192 \twatchpoint - watchpoint\n\
16193 \tlongjmp - internal breakpoint used to step through longjmp()\n\
16194 \tlongjmp resume - internal breakpoint at the target of longjmp()\n\
16195 \tuntil - internal breakpoint used by the \"until\" command\n\
16196 \tfinish - internal breakpoint used by the \"finish\" command\n\
16197 The \"Disp\" column contains one of \"keep\", \"del\", or \"dis\" to indicate\n\
16198 the disposition of the breakpoint after it gets hit. \"dis\" means that the\n\
16199 breakpoint will be disabled. The \"Address\" and \"What\" columns indicate the\n\
16200 address and file/line number respectively.\n\
16201 \n\
16202 Convenience variable \"$_\" and default examine address for \"x\"\n\
16203 are set to the address of the last breakpoint listed unless the command\n\
16204 is prefixed with \"server \".\n\n\
16205 Convenience variable \"$bpnum\" contains the number of the last\n\
16206 breakpoint set."),
16207 &maintenanceinfolist);
16208
16209 add_prefix_cmd ("catch", class_breakpoint, catch_command, _("\
16210 Set catchpoints to catch events."),
16211 &catch_cmdlist, "catch ",
16212 0/*allow-unknown*/, &cmdlist);
16213
16214 add_prefix_cmd ("tcatch", class_breakpoint, tcatch_command, _("\
16215 Set temporary catchpoints to catch events."),
16216 &tcatch_cmdlist, "tcatch ",
16217 0/*allow-unknown*/, &cmdlist);
16218
16219 /* Add catch and tcatch sub-commands. */
16220 add_catch_command ("catch", _("\
16221 Catch an exception, when caught."),
16222 catch_catch_command,
16223 NULL,
16224 CATCH_PERMANENT,
16225 CATCH_TEMPORARY);
16226 add_catch_command ("throw", _("\
16227 Catch an exception, when thrown."),
16228 catch_throw_command,
16229 NULL,
16230 CATCH_PERMANENT,
16231 CATCH_TEMPORARY);
16232 add_catch_command ("fork", _("Catch calls to fork."),
16233 catch_fork_command_1,
16234 NULL,
16235 (void *) (uintptr_t) catch_fork_permanent,
16236 (void *) (uintptr_t) catch_fork_temporary);
16237 add_catch_command ("vfork", _("Catch calls to vfork."),
16238 catch_fork_command_1,
16239 NULL,
16240 (void *) (uintptr_t) catch_vfork_permanent,
16241 (void *) (uintptr_t) catch_vfork_temporary);
16242 add_catch_command ("exec", _("Catch calls to exec."),
16243 catch_exec_command_1,
16244 NULL,
16245 CATCH_PERMANENT,
16246 CATCH_TEMPORARY);
16247 add_catch_command ("load", _("Catch loads of shared libraries.\n\
16248 Usage: catch load [REGEX]\n\
16249 If REGEX is given, only stop for libraries matching the regular expression."),
16250 catch_load_command_1,
16251 NULL,
16252 CATCH_PERMANENT,
16253 CATCH_TEMPORARY);
16254 add_catch_command ("unload", _("Catch unloads of shared libraries.\n\
16255 Usage: catch unload [REGEX]\n\
16256 If REGEX is given, only stop for libraries matching the regular expression."),
16257 catch_unload_command_1,
16258 NULL,
16259 CATCH_PERMANENT,
16260 CATCH_TEMPORARY);
16261 add_catch_command ("syscall", _("\
16262 Catch system calls by their names and/or numbers.\n\
16263 Arguments say which system calls to catch. If no arguments\n\
16264 are given, every system call will be caught.\n\
16265 Arguments, if given, should be one or more system call names\n\
16266 (if your system supports that), or system call numbers."),
16267 catch_syscall_command_1,
16268 catch_syscall_completer,
16269 CATCH_PERMANENT,
16270 CATCH_TEMPORARY);
16271
16272 c = add_com ("watch", class_breakpoint, watch_command, _("\
16273 Set a watchpoint for an expression.\n\
16274 Usage: watch [-l|-location] EXPRESSION\n\
16275 A watchpoint stops execution of your program whenever the value of\n\
16276 an expression changes.\n\
16277 If -l or -location is given, this evaluates EXPRESSION and watches\n\
16278 the memory to which it refers."));
16279 set_cmd_completer (c, expression_completer);
16280
16281 c = add_com ("rwatch", class_breakpoint, rwatch_command, _("\
16282 Set a read watchpoint for an expression.\n\
16283 Usage: rwatch [-l|-location] EXPRESSION\n\
16284 A watchpoint stops execution of your program whenever the value of\n\
16285 an expression is read.\n\
16286 If -l or -location is given, this evaluates EXPRESSION and watches\n\
16287 the memory to which it refers."));
16288 set_cmd_completer (c, expression_completer);
16289
16290 c = add_com ("awatch", class_breakpoint, awatch_command, _("\
16291 Set a watchpoint for an expression.\n\
16292 Usage: awatch [-l|-location] EXPRESSION\n\
16293 A watchpoint stops execution of your program whenever the value of\n\
16294 an expression is either read or written.\n\
16295 If -l or -location is given, this evaluates EXPRESSION and watches\n\
16296 the memory to which it refers."));
16297 set_cmd_completer (c, expression_completer);
16298
16299 add_info ("watchpoints", watchpoints_info, _("\
16300 Status of specified watchpoints (all watchpoints if no argument)."));
16301
16302 /* XXX: cagney/2005-02-23: This should be a boolean, and should
16303 respond to changes - contrary to the description. */
16304 add_setshow_zinteger_cmd ("can-use-hw-watchpoints", class_support,
16305 &can_use_hw_watchpoints, _("\
16306 Set debugger's willingness to use watchpoint hardware."), _("\
16307 Show debugger's willingness to use watchpoint hardware."), _("\
16308 If zero, gdb will not use hardware for new watchpoints, even if\n\
16309 such is available. (However, any hardware watchpoints that were\n\
16310 created before setting this to nonzero, will continue to use watchpoint\n\
16311 hardware.)"),
16312 NULL,
16313 show_can_use_hw_watchpoints,
16314 &setlist, &showlist);
16315
16316 can_use_hw_watchpoints = 1;
16317
16318 /* Tracepoint manipulation commands. */
16319
16320 c = add_com ("trace", class_breakpoint, trace_command, _("\
16321 Set a tracepoint at specified line or function.\n\
16322 \n"
16323 BREAK_ARGS_HELP ("trace") "\n\
16324 Do \"help tracepoints\" for info on other tracepoint commands."));
16325 set_cmd_completer (c, location_completer);
16326
16327 add_com_alias ("tp", "trace", class_alias, 0);
16328 add_com_alias ("tr", "trace", class_alias, 1);
16329 add_com_alias ("tra", "trace", class_alias, 1);
16330 add_com_alias ("trac", "trace", class_alias, 1);
16331
16332 c = add_com ("ftrace", class_breakpoint, ftrace_command, _("\
16333 Set a fast tracepoint at specified line or function.\n\
16334 \n"
16335 BREAK_ARGS_HELP ("ftrace") "\n\
16336 Do \"help tracepoints\" for info on other tracepoint commands."));
16337 set_cmd_completer (c, location_completer);
16338
16339 c = add_com ("strace", class_breakpoint, strace_command, _("\
16340 Set a static tracepoint at specified line, function or marker.\n\
16341 \n\
16342 strace [LOCATION] [if CONDITION]\n\
16343 LOCATION may be a line number, function name, \"*\" and an address,\n\
16344 or -m MARKER_ID.\n\
16345 If a line number is specified, probe the marker at start of code\n\
16346 for that line. If a function is specified, probe the marker at start\n\
16347 of code for that function. If an address is specified, probe the marker\n\
16348 at that exact address. If a marker id is specified, probe the marker\n\
16349 with that name. With no LOCATION, uses current execution address of\n\
16350 the selected stack frame.\n\
16351 Static tracepoints accept an extra collect action -- ``collect $_sdata''.\n\
16352 This collects arbitrary user data passed in the probe point call to the\n\
16353 tracing library. You can inspect it when analyzing the trace buffer,\n\
16354 by printing the $_sdata variable like any other convenience variable.\n\
16355 \n\
16356 CONDITION is a boolean expression.\n\
16357 \n\
16358 Multiple tracepoints at one place are permitted, and useful if their\n\
16359 conditions are different.\n\
16360 \n\
16361 Do \"help breakpoints\" for info on other commands dealing with breakpoints.\n\
16362 Do \"help tracepoints\" for info on other tracepoint commands."));
16363 set_cmd_completer (c, location_completer);
16364
16365 add_info ("tracepoints", tracepoints_info, _("\
16366 Status of specified tracepoints (all tracepoints if no argument).\n\
16367 Convenience variable \"$tpnum\" contains the number of the\n\
16368 last tracepoint set."));
16369
16370 add_info_alias ("tp", "tracepoints", 1);
16371
16372 add_cmd ("tracepoints", class_trace, delete_trace_command, _("\
16373 Delete specified tracepoints.\n\
16374 Arguments are tracepoint numbers, separated by spaces.\n\
16375 No argument means delete all tracepoints."),
16376 &deletelist);
16377 add_alias_cmd ("tr", "tracepoints", class_trace, 1, &deletelist);
16378
16379 c = add_cmd ("tracepoints", class_trace, disable_trace_command, _("\
16380 Disable specified tracepoints.\n\
16381 Arguments are tracepoint numbers, separated by spaces.\n\
16382 No argument means disable all tracepoints."),
16383 &disablelist);
16384 deprecate_cmd (c, "disable");
16385
16386 c = add_cmd ("tracepoints", class_trace, enable_trace_command, _("\
16387 Enable specified tracepoints.\n\
16388 Arguments are tracepoint numbers, separated by spaces.\n\
16389 No argument means enable all tracepoints."),
16390 &enablelist);
16391 deprecate_cmd (c, "enable");
16392
16393 add_com ("passcount", class_trace, trace_pass_command, _("\
16394 Set the passcount for a tracepoint.\n\
16395 The trace will end when the tracepoint has been passed 'count' times.\n\
16396 Usage: passcount COUNT TPNUM, where TPNUM may also be \"all\";\n\
16397 if TPNUM is omitted, passcount refers to the last tracepoint defined."));
16398
16399 add_prefix_cmd ("save", class_breakpoint, save_command,
16400 _("Save breakpoint definitions as a script."),
16401 &save_cmdlist, "save ",
16402 0/*allow-unknown*/, &cmdlist);
16403
16404 c = add_cmd ("breakpoints", class_breakpoint, save_breakpoints_command, _("\
16405 Save current breakpoint definitions as a script.\n\
16406 This includes all types of breakpoints (breakpoints, watchpoints,\n\
16407 catchpoints, tracepoints). Use the 'source' command in another debug\n\
16408 session to restore them."),
16409 &save_cmdlist);
16410 set_cmd_completer (c, filename_completer);
16411
16412 c = add_cmd ("tracepoints", class_trace, save_tracepoints_command, _("\
16413 Save current tracepoint definitions as a script.\n\
16414 Use the 'source' command in another debug session to restore them."),
16415 &save_cmdlist);
16416 set_cmd_completer (c, filename_completer);
16417
16418 c = add_com_alias ("save-tracepoints", "save tracepoints", class_trace, 0);
16419 deprecate_cmd (c, "save tracepoints");
16420
16421 add_prefix_cmd ("breakpoint", class_maintenance, set_breakpoint_cmd, _("\
16422 Breakpoint specific settings\n\
16423 Configure various breakpoint-specific variables such as\n\
16424 pending breakpoint behavior"),
16425 &breakpoint_set_cmdlist, "set breakpoint ",
16426 0/*allow-unknown*/, &setlist);
16427 add_prefix_cmd ("breakpoint", class_maintenance, show_breakpoint_cmd, _("\
16428 Breakpoint specific settings\n\
16429 Configure various breakpoint-specific variables such as\n\
16430 pending breakpoint behavior"),
16431 &breakpoint_show_cmdlist, "show breakpoint ",
16432 0/*allow-unknown*/, &showlist);
16433
16434 add_setshow_auto_boolean_cmd ("pending", no_class,
16435 &pending_break_support, _("\
16436 Set debugger's behavior regarding pending breakpoints."), _("\
16437 Show debugger's behavior regarding pending breakpoints."), _("\
16438 If on, an unrecognized breakpoint location will cause gdb to create a\n\
16439 pending breakpoint. If off, an unrecognized breakpoint location results in\n\
16440 an error. If auto, an unrecognized breakpoint location results in a\n\
16441 user-query to see if a pending breakpoint should be created."),
16442 NULL,
16443 show_pending_break_support,
16444 &breakpoint_set_cmdlist,
16445 &breakpoint_show_cmdlist);
16446
16447 pending_break_support = AUTO_BOOLEAN_AUTO;
16448
16449 add_setshow_boolean_cmd ("auto-hw", no_class,
16450 &automatic_hardware_breakpoints, _("\
16451 Set automatic usage of hardware breakpoints."), _("\
16452 Show automatic usage of hardware breakpoints."), _("\
16453 If set, the debugger will automatically use hardware breakpoints for\n\
16454 breakpoints set with \"break\" but falling in read-only memory. If not set,\n\
16455 a warning will be emitted for such breakpoints."),
16456 NULL,
16457 show_automatic_hardware_breakpoints,
16458 &breakpoint_set_cmdlist,
16459 &breakpoint_show_cmdlist);
16460
16461 add_setshow_auto_boolean_cmd ("always-inserted", class_support,
16462 &always_inserted_mode, _("\
16463 Set mode for inserting breakpoints."), _("\
16464 Show mode for inserting breakpoints."), _("\
16465 When this mode is off, breakpoints are inserted in inferior when it is\n\
16466 resumed, and removed when execution stops. When this mode is on,\n\
16467 breakpoints are inserted immediately and removed only when the user\n\
16468 deletes the breakpoint. When this mode is auto (which is the default),\n\
16469 the behaviour depends on the non-stop setting (see help set non-stop).\n\
16470 In this case, if gdb is controlling the inferior in non-stop mode, gdb\n\
16471 behaves as if always-inserted mode is on; if gdb is controlling the\n\
16472 inferior in all-stop mode, gdb behaves as if always-inserted mode is off."),
16473 NULL,
16474 &show_always_inserted_mode,
16475 &breakpoint_set_cmdlist,
16476 &breakpoint_show_cmdlist);
16477
16478 add_setshow_enum_cmd ("condition-evaluation", class_breakpoint,
16479 condition_evaluation_enums,
16480 &condition_evaluation_mode_1, _("\
16481 Set mode of breakpoint condition evaluation."), _("\
16482 Show mode of breakpoint condition evaluation."), _("\
16483 When this is set to \"host\", breakpoint conditions will be\n\
16484 evaluated on the host's side by GDB. When it is set to \"target\",\n\
16485 breakpoint conditions will be downloaded to the target (if the target\n\
16486 supports such feature) and conditions will be evaluated on the target's side.\n\
16487 If this is set to \"auto\" (default), this will be automatically set to\n\
16488 \"target\" if it supports condition evaluation, otherwise it will\n\
16489 be set to \"gdb\""),
16490 &set_condition_evaluation_mode,
16491 &show_condition_evaluation_mode,
16492 &breakpoint_set_cmdlist,
16493 &breakpoint_show_cmdlist);
16494
16495 add_com ("break-range", class_breakpoint, break_range_command, _("\
16496 Set a breakpoint for an address range.\n\
16497 break-range START-LOCATION, END-LOCATION\n\
16498 where START-LOCATION and END-LOCATION can be one of the following:\n\
16499 LINENUM, for that line in the current file,\n\
16500 FILE:LINENUM, for that line in that file,\n\
16501 +OFFSET, for that number of lines after the current line\n\
16502 or the start of the range\n\
16503 FUNCTION, for the first line in that function,\n\
16504 FILE:FUNCTION, to distinguish among like-named static functions.\n\
16505 *ADDRESS, for the instruction at that address.\n\
16506 \n\
16507 The breakpoint will stop execution of the inferior whenever it executes\n\
16508 an instruction at any address within the [START-LOCATION, END-LOCATION]\n\
16509 range (including START-LOCATION and END-LOCATION)."));
16510
16511 c = add_com ("dprintf", class_breakpoint, dprintf_command, _("\
16512 Set a dynamic printf at specified line or function.\n\
16513 dprintf location,format string,arg1,arg2,...\n\
16514 location may be a line number, function name, or \"*\" and an address.\n\
16515 If a line number is specified, break at start of code for that line.\n\
16516 If a function is specified, break at start of code for that function.\n\
16517 "));
16518 set_cmd_completer (c, location_completer);
16519
16520 add_setshow_enum_cmd ("dprintf-style", class_support,
16521 dprintf_style_enums, &dprintf_style, _("\
16522 Set the style of usage for dynamic printf."), _("\
16523 Show the style of usage for dynamic printf."), _("\
16524 This setting chooses how GDB will do a dynamic printf.\n\
16525 If the value is \"gdb\", then the printing is done by GDB to its own\n\
16526 console, as with the \"printf\" command.\n\
16527 If the value is \"call\", the print is done by calling a function in your\n\
16528 program; by default printf(), but you can choose a different function or\n\
16529 output stream by setting dprintf-function and dprintf-channel."),
16530 update_dprintf_commands, NULL,
16531 &setlist, &showlist);
16532
16533 dprintf_function = xstrdup ("printf");
16534 add_setshow_string_cmd ("dprintf-function", class_support,
16535 &dprintf_function, _("\
16536 Set the function to use for dynamic printf"), _("\
16537 Show the function to use for dynamic printf"), NULL,
16538 update_dprintf_commands, NULL,
16539 &setlist, &showlist);
16540
16541 dprintf_channel = xstrdup ("");
16542 add_setshow_string_cmd ("dprintf-channel", class_support,
16543 &dprintf_channel, _("\
16544 Set the channel to use for dynamic printf"), _("\
16545 Show the channel to use for dynamic printf"), NULL,
16546 update_dprintf_commands, NULL,
16547 &setlist, &showlist);
16548
16549 add_setshow_boolean_cmd ("disconnected-dprintf", no_class,
16550 &disconnected_dprintf, _("\
16551 Set whether dprintf continues after GDB disconnects."), _("\
16552 Show whether dprintf continues after GDB disconnects."), _("\
16553 Use this to let dprintf commands continue to hit and produce output\n\
16554 even if GDB disconnects or detaches from the target."),
16555 NULL,
16556 NULL,
16557 &setlist, &showlist);
16558
16559 add_com ("agent-printf", class_vars, agent_printf_command, _("\
16560 agent-printf \"printf format string\", arg1, arg2, arg3, ..., argn\n\
16561 (target agent only) This is useful for formatted output in user-defined commands."));
16562
16563 automatic_hardware_breakpoints = 1;
16564
16565 observer_attach_about_to_proceed (breakpoint_about_to_proceed);
16566 }
This page took 0.39737 seconds and 4 git commands to generate.