daily update
[deliverable/binutils-gdb.git] / gdb / breakpoint.c
1 /* Everything about breakpoints, for GDB.
2
3 Copyright (C) 1986-2014 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20 #include "defs.h"
21 #include "arch-utils.h"
22 #include <ctype.h>
23 #include "hashtab.h"
24 #include "symtab.h"
25 #include "frame.h"
26 #include "breakpoint.h"
27 #include "tracepoint.h"
28 #include "gdbtypes.h"
29 #include "expression.h"
30 #include "gdbcore.h"
31 #include "gdbcmd.h"
32 #include "value.h"
33 #include "command.h"
34 #include "inferior.h"
35 #include "infrun.h"
36 #include "gdbthread.h"
37 #include "target.h"
38 #include "language.h"
39 #include "gdb-demangle.h"
40 #include "filenames.h"
41 #include "annotate.h"
42 #include "symfile.h"
43 #include "objfiles.h"
44 #include "source.h"
45 #include "linespec.h"
46 #include "completer.h"
47 #include "gdb.h"
48 #include "ui-out.h"
49 #include "cli/cli-script.h"
50 #include "block.h"
51 #include "solib.h"
52 #include "solist.h"
53 #include "observer.h"
54 #include "exceptions.h"
55 #include "memattr.h"
56 #include "ada-lang.h"
57 #include "top.h"
58 #include "valprint.h"
59 #include "jit.h"
60 #include "xml-syscall.h"
61 #include "parser-defs.h"
62 #include "gdb_regex.h"
63 #include "probe.h"
64 #include "cli/cli-utils.h"
65 #include "continuations.h"
66 #include "stack.h"
67 #include "skip.h"
68 #include "ax-gdb.h"
69 #include "dummy-frame.h"
70
71 #include "format.h"
72
73 /* readline include files */
74 #include "readline/readline.h"
75 #include "readline/history.h"
76
77 /* readline defines this. */
78 #undef savestring
79
80 #include "mi/mi-common.h"
81 #include "extension.h"
82
83 /* Enums for exception-handling support. */
84 enum exception_event_kind
85 {
86 EX_EVENT_THROW,
87 EX_EVENT_RETHROW,
88 EX_EVENT_CATCH
89 };
90
91 /* Prototypes for local functions. */
92
93 static void enable_delete_command (char *, int);
94
95 static void enable_once_command (char *, int);
96
97 static void enable_count_command (char *, int);
98
99 static void disable_command (char *, int);
100
101 static void enable_command (char *, int);
102
103 static void map_breakpoint_numbers (char *, void (*) (struct breakpoint *,
104 void *),
105 void *);
106
107 static void ignore_command (char *, int);
108
109 static int breakpoint_re_set_one (void *);
110
111 static void breakpoint_re_set_default (struct breakpoint *);
112
113 static void create_sals_from_address_default (char **,
114 struct linespec_result *,
115 enum bptype, char *,
116 char **);
117
118 static void create_breakpoints_sal_default (struct gdbarch *,
119 struct linespec_result *,
120 char *, char *, enum bptype,
121 enum bpdisp, int, int,
122 int,
123 const struct breakpoint_ops *,
124 int, int, int, unsigned);
125
126 static void decode_linespec_default (struct breakpoint *, char **,
127 struct symtabs_and_lines *);
128
129 static void clear_command (char *, int);
130
131 static void catch_command (char *, int);
132
133 static int can_use_hardware_watchpoint (struct value *);
134
135 static void break_command_1 (char *, int, int);
136
137 static void mention (struct breakpoint *);
138
139 static struct breakpoint *set_raw_breakpoint_without_location (struct gdbarch *,
140 enum bptype,
141 const struct breakpoint_ops *);
142 static struct bp_location *add_location_to_breakpoint (struct breakpoint *,
143 const struct symtab_and_line *);
144
145 /* This function is used in gdbtk sources and thus can not be made
146 static. */
147 struct breakpoint *set_raw_breakpoint (struct gdbarch *gdbarch,
148 struct symtab_and_line,
149 enum bptype,
150 const struct breakpoint_ops *);
151
152 static struct breakpoint *
153 momentary_breakpoint_from_master (struct breakpoint *orig,
154 enum bptype type,
155 const struct breakpoint_ops *ops,
156 int loc_enabled);
157
158 static void breakpoint_adjustment_warning (CORE_ADDR, CORE_ADDR, int, int);
159
160 static CORE_ADDR adjust_breakpoint_address (struct gdbarch *gdbarch,
161 CORE_ADDR bpaddr,
162 enum bptype bptype);
163
164 static void describe_other_breakpoints (struct gdbarch *,
165 struct program_space *, CORE_ADDR,
166 struct obj_section *, int);
167
168 static int watchpoint_locations_match (struct bp_location *loc1,
169 struct bp_location *loc2);
170
171 static int breakpoint_location_address_match (struct bp_location *bl,
172 struct address_space *aspace,
173 CORE_ADDR addr);
174
175 static void breakpoints_info (char *, int);
176
177 static void watchpoints_info (char *, int);
178
179 static int breakpoint_1 (char *, int,
180 int (*) (const struct breakpoint *));
181
182 static int breakpoint_cond_eval (void *);
183
184 static void cleanup_executing_breakpoints (void *);
185
186 static void commands_command (char *, int);
187
188 static void condition_command (char *, int);
189
190 typedef enum
191 {
192 mark_inserted,
193 mark_uninserted
194 }
195 insertion_state_t;
196
197 static int remove_breakpoint (struct bp_location *, insertion_state_t);
198 static int remove_breakpoint_1 (struct bp_location *, insertion_state_t);
199
200 static enum print_stop_action print_bp_stop_message (bpstat bs);
201
202 static int watchpoint_check (void *);
203
204 static void maintenance_info_breakpoints (char *, int);
205
206 static int hw_breakpoint_used_count (void);
207
208 static int hw_watchpoint_use_count (struct breakpoint *);
209
210 static int hw_watchpoint_used_count_others (struct breakpoint *except,
211 enum bptype type,
212 int *other_type_used);
213
214 static void hbreak_command (char *, int);
215
216 static void thbreak_command (char *, int);
217
218 static void enable_breakpoint_disp (struct breakpoint *, enum bpdisp,
219 int count);
220
221 static void stop_command (char *arg, int from_tty);
222
223 static void stopin_command (char *arg, int from_tty);
224
225 static void stopat_command (char *arg, int from_tty);
226
227 static void tcatch_command (char *arg, int from_tty);
228
229 static void detach_single_step_breakpoints (void);
230
231 static int find_single_step_breakpoint (struct address_space *aspace,
232 CORE_ADDR pc);
233
234 static void free_bp_location (struct bp_location *loc);
235 static void incref_bp_location (struct bp_location *loc);
236 static void decref_bp_location (struct bp_location **loc);
237
238 static struct bp_location *allocate_bp_location (struct breakpoint *bpt);
239
240 static void update_global_location_list (int);
241
242 static void update_global_location_list_nothrow (int);
243
244 static int is_hardware_watchpoint (const struct breakpoint *bpt);
245
246 static void insert_breakpoint_locations (void);
247
248 static int syscall_catchpoint_p (struct breakpoint *b);
249
250 static void tracepoints_info (char *, int);
251
252 static void delete_trace_command (char *, int);
253
254 static void enable_trace_command (char *, int);
255
256 static void disable_trace_command (char *, int);
257
258 static void trace_pass_command (char *, int);
259
260 static void set_tracepoint_count (int num);
261
262 static int is_masked_watchpoint (const struct breakpoint *b);
263
264 static struct bp_location **get_first_locp_gte_addr (CORE_ADDR address);
265
266 /* Return 1 if B refers to a static tracepoint set by marker ("-m"), zero
267 otherwise. */
268
269 static int strace_marker_p (struct breakpoint *b);
270
271 /* The abstract base class all breakpoint_ops structures inherit
272 from. */
273 struct breakpoint_ops base_breakpoint_ops;
274
275 /* The breakpoint_ops structure to be inherited by all breakpoint_ops
276 that are implemented on top of software or hardware breakpoints
277 (user breakpoints, internal and momentary breakpoints, etc.). */
278 static struct breakpoint_ops bkpt_base_breakpoint_ops;
279
280 /* Internal breakpoints class type. */
281 static struct breakpoint_ops internal_breakpoint_ops;
282
283 /* Momentary breakpoints class type. */
284 static struct breakpoint_ops momentary_breakpoint_ops;
285
286 /* Momentary breakpoints for bp_longjmp and bp_exception class type. */
287 static struct breakpoint_ops longjmp_breakpoint_ops;
288
289 /* The breakpoint_ops structure to be used in regular user created
290 breakpoints. */
291 struct breakpoint_ops bkpt_breakpoint_ops;
292
293 /* Breakpoints set on probes. */
294 static struct breakpoint_ops bkpt_probe_breakpoint_ops;
295
296 /* Dynamic printf class type. */
297 struct breakpoint_ops dprintf_breakpoint_ops;
298
299 /* One (or perhaps two) breakpoints used for software single
300 stepping. */
301
302 static void *single_step_breakpoints[2];
303 static struct gdbarch *single_step_gdbarch[2];
304
305 /* The style in which to perform a dynamic printf. This is a user
306 option because different output options have different tradeoffs;
307 if GDB does the printing, there is better error handling if there
308 is a problem with any of the arguments, but using an inferior
309 function lets you have special-purpose printers and sending of
310 output to the same place as compiled-in print functions. */
311
312 static const char dprintf_style_gdb[] = "gdb";
313 static const char dprintf_style_call[] = "call";
314 static const char dprintf_style_agent[] = "agent";
315 static const char *const dprintf_style_enums[] = {
316 dprintf_style_gdb,
317 dprintf_style_call,
318 dprintf_style_agent,
319 NULL
320 };
321 static const char *dprintf_style = dprintf_style_gdb;
322
323 /* The function to use for dynamic printf if the preferred style is to
324 call into the inferior. The value is simply a string that is
325 copied into the command, so it can be anything that GDB can
326 evaluate to a callable address, not necessarily a function name. */
327
328 static char *dprintf_function = "";
329
330 /* The channel to use for dynamic printf if the preferred style is to
331 call into the inferior; if a nonempty string, it will be passed to
332 the call as the first argument, with the format string as the
333 second. As with the dprintf function, this can be anything that
334 GDB knows how to evaluate, so in addition to common choices like
335 "stderr", this could be an app-specific expression like
336 "mystreams[curlogger]". */
337
338 static char *dprintf_channel = "";
339
340 /* True if dprintf commands should continue to operate even if GDB
341 has disconnected. */
342 static int disconnected_dprintf = 1;
343
344 /* A reference-counted struct command_line. This lets multiple
345 breakpoints share a single command list. */
346 struct counted_command_line
347 {
348 /* The reference count. */
349 int refc;
350
351 /* The command list. */
352 struct command_line *commands;
353 };
354
355 struct command_line *
356 breakpoint_commands (struct breakpoint *b)
357 {
358 return b->commands ? b->commands->commands : NULL;
359 }
360
361 /* Flag indicating that a command has proceeded the inferior past the
362 current breakpoint. */
363
364 static int breakpoint_proceeded;
365
366 const char *
367 bpdisp_text (enum bpdisp disp)
368 {
369 /* NOTE: the following values are a part of MI protocol and
370 represent values of 'disp' field returned when inferior stops at
371 a breakpoint. */
372 static const char * const bpdisps[] = {"del", "dstp", "dis", "keep"};
373
374 return bpdisps[(int) disp];
375 }
376
377 /* Prototypes for exported functions. */
378 /* If FALSE, gdb will not use hardware support for watchpoints, even
379 if such is available. */
380 static int can_use_hw_watchpoints;
381
382 static void
383 show_can_use_hw_watchpoints (struct ui_file *file, int from_tty,
384 struct cmd_list_element *c,
385 const char *value)
386 {
387 fprintf_filtered (file,
388 _("Debugger's willingness to use "
389 "watchpoint hardware is %s.\n"),
390 value);
391 }
392
393 /* If AUTO_BOOLEAN_FALSE, gdb will not attempt to create pending breakpoints.
394 If AUTO_BOOLEAN_TRUE, gdb will automatically create pending breakpoints
395 for unrecognized breakpoint locations.
396 If AUTO_BOOLEAN_AUTO, gdb will query when breakpoints are unrecognized. */
397 static enum auto_boolean pending_break_support;
398 static void
399 show_pending_break_support (struct ui_file *file, int from_tty,
400 struct cmd_list_element *c,
401 const char *value)
402 {
403 fprintf_filtered (file,
404 _("Debugger's behavior regarding "
405 "pending breakpoints is %s.\n"),
406 value);
407 }
408
409 /* If 1, gdb will automatically use hardware breakpoints for breakpoints
410 set with "break" but falling in read-only memory.
411 If 0, gdb will warn about such breakpoints, but won't automatically
412 use hardware breakpoints. */
413 static int automatic_hardware_breakpoints;
414 static void
415 show_automatic_hardware_breakpoints (struct ui_file *file, int from_tty,
416 struct cmd_list_element *c,
417 const char *value)
418 {
419 fprintf_filtered (file,
420 _("Automatic usage of hardware breakpoints is %s.\n"),
421 value);
422 }
423
424 /* If on, gdb will keep breakpoints inserted even as inferior is
425 stopped, and immediately insert any new breakpoints. If off, gdb
426 will insert breakpoints into inferior only when resuming it, and
427 will remove breakpoints upon stop. If auto, GDB will behave as ON
428 if in non-stop mode, and as OFF if all-stop mode.*/
429
430 static enum auto_boolean always_inserted_mode = AUTO_BOOLEAN_AUTO;
431
432 static void
433 show_always_inserted_mode (struct ui_file *file, int from_tty,
434 struct cmd_list_element *c, const char *value)
435 {
436 if (always_inserted_mode == AUTO_BOOLEAN_AUTO)
437 fprintf_filtered (file,
438 _("Always inserted breakpoint "
439 "mode is %s (currently %s).\n"),
440 value,
441 breakpoints_always_inserted_mode () ? "on" : "off");
442 else
443 fprintf_filtered (file, _("Always inserted breakpoint mode is %s.\n"),
444 value);
445 }
446
447 int
448 breakpoints_always_inserted_mode (void)
449 {
450 return (always_inserted_mode == AUTO_BOOLEAN_TRUE
451 || (always_inserted_mode == AUTO_BOOLEAN_AUTO && non_stop));
452 }
453
454 static const char condition_evaluation_both[] = "host or target";
455
456 /* Modes for breakpoint condition evaluation. */
457 static const char condition_evaluation_auto[] = "auto";
458 static const char condition_evaluation_host[] = "host";
459 static const char condition_evaluation_target[] = "target";
460 static const char *const condition_evaluation_enums[] = {
461 condition_evaluation_auto,
462 condition_evaluation_host,
463 condition_evaluation_target,
464 NULL
465 };
466
467 /* Global that holds the current mode for breakpoint condition evaluation. */
468 static const char *condition_evaluation_mode_1 = condition_evaluation_auto;
469
470 /* Global that we use to display information to the user (gets its value from
471 condition_evaluation_mode_1. */
472 static const char *condition_evaluation_mode = condition_evaluation_auto;
473
474 /* Translate a condition evaluation mode MODE into either "host"
475 or "target". This is used mostly to translate from "auto" to the
476 real setting that is being used. It returns the translated
477 evaluation mode. */
478
479 static const char *
480 translate_condition_evaluation_mode (const char *mode)
481 {
482 if (mode == condition_evaluation_auto)
483 {
484 if (target_supports_evaluation_of_breakpoint_conditions ())
485 return condition_evaluation_target;
486 else
487 return condition_evaluation_host;
488 }
489 else
490 return mode;
491 }
492
493 /* Discovers what condition_evaluation_auto translates to. */
494
495 static const char *
496 breakpoint_condition_evaluation_mode (void)
497 {
498 return translate_condition_evaluation_mode (condition_evaluation_mode);
499 }
500
501 /* Return true if GDB should evaluate breakpoint conditions or false
502 otherwise. */
503
504 static int
505 gdb_evaluates_breakpoint_condition_p (void)
506 {
507 const char *mode = breakpoint_condition_evaluation_mode ();
508
509 return (mode == condition_evaluation_host);
510 }
511
512 void _initialize_breakpoint (void);
513
514 /* Are we executing breakpoint commands? */
515 static int executing_breakpoint_commands;
516
517 /* Are overlay event breakpoints enabled? */
518 static int overlay_events_enabled;
519
520 /* See description in breakpoint.h. */
521 int target_exact_watchpoints = 0;
522
523 /* Walk the following statement or block through all breakpoints.
524 ALL_BREAKPOINTS_SAFE does so even if the statement deletes the
525 current breakpoint. */
526
527 #define ALL_BREAKPOINTS(B) for (B = breakpoint_chain; B; B = B->next)
528
529 #define ALL_BREAKPOINTS_SAFE(B,TMP) \
530 for (B = breakpoint_chain; \
531 B ? (TMP=B->next, 1): 0; \
532 B = TMP)
533
534 /* Similar iterator for the low-level breakpoints. SAFE variant is
535 not provided so update_global_location_list must not be called
536 while executing the block of ALL_BP_LOCATIONS. */
537
538 #define ALL_BP_LOCATIONS(B,BP_TMP) \
539 for (BP_TMP = bp_location; \
540 BP_TMP < bp_location + bp_location_count && (B = *BP_TMP); \
541 BP_TMP++)
542
543 /* Iterates through locations with address ADDRESS for the currently selected
544 program space. BP_LOCP_TMP points to each object. BP_LOCP_START points
545 to where the loop should start from.
546 If BP_LOCP_START is a NULL pointer, the macro automatically seeks the
547 appropriate location to start with. */
548
549 #define ALL_BP_LOCATIONS_AT_ADDR(BP_LOCP_TMP, BP_LOCP_START, ADDRESS) \
550 for (BP_LOCP_START = BP_LOCP_START == NULL ? get_first_locp_gte_addr (ADDRESS) : BP_LOCP_START, \
551 BP_LOCP_TMP = BP_LOCP_START; \
552 BP_LOCP_START \
553 && (BP_LOCP_TMP < bp_location + bp_location_count \
554 && (*BP_LOCP_TMP)->address == ADDRESS); \
555 BP_LOCP_TMP++)
556
557 /* Iterator for tracepoints only. */
558
559 #define ALL_TRACEPOINTS(B) \
560 for (B = breakpoint_chain; B; B = B->next) \
561 if (is_tracepoint (B))
562
563 /* Chains of all breakpoints defined. */
564
565 struct breakpoint *breakpoint_chain;
566
567 /* Array is sorted by bp_location_compare - primarily by the ADDRESS. */
568
569 static struct bp_location **bp_location;
570
571 /* Number of elements of BP_LOCATION. */
572
573 static unsigned bp_location_count;
574
575 /* Maximum alignment offset between bp_target_info.PLACED_ADDRESS and
576 ADDRESS for the current elements of BP_LOCATION which get a valid
577 result from bp_location_has_shadow. You can use it for roughly
578 limiting the subrange of BP_LOCATION to scan for shadow bytes for
579 an address you need to read. */
580
581 static CORE_ADDR bp_location_placed_address_before_address_max;
582
583 /* Maximum offset plus alignment between bp_target_info.PLACED_ADDRESS
584 + bp_target_info.SHADOW_LEN and ADDRESS for the current elements of
585 BP_LOCATION which get a valid result from bp_location_has_shadow.
586 You can use it for roughly limiting the subrange of BP_LOCATION to
587 scan for shadow bytes for an address you need to read. */
588
589 static CORE_ADDR bp_location_shadow_len_after_address_max;
590
591 /* The locations that no longer correspond to any breakpoint, unlinked
592 from bp_location array, but for which a hit may still be reported
593 by a target. */
594 VEC(bp_location_p) *moribund_locations = NULL;
595
596 /* Number of last breakpoint made. */
597
598 static int breakpoint_count;
599
600 /* The value of `breakpoint_count' before the last command that
601 created breakpoints. If the last (break-like) command created more
602 than one breakpoint, then the difference between BREAKPOINT_COUNT
603 and PREV_BREAKPOINT_COUNT is more than one. */
604 static int prev_breakpoint_count;
605
606 /* Number of last tracepoint made. */
607
608 static int tracepoint_count;
609
610 static struct cmd_list_element *breakpoint_set_cmdlist;
611 static struct cmd_list_element *breakpoint_show_cmdlist;
612 struct cmd_list_element *save_cmdlist;
613
614 /* Return whether a breakpoint is an active enabled breakpoint. */
615 static int
616 breakpoint_enabled (struct breakpoint *b)
617 {
618 return (b->enable_state == bp_enabled);
619 }
620
621 /* Set breakpoint count to NUM. */
622
623 static void
624 set_breakpoint_count (int num)
625 {
626 prev_breakpoint_count = breakpoint_count;
627 breakpoint_count = num;
628 set_internalvar_integer (lookup_internalvar ("bpnum"), num);
629 }
630
631 /* Used by `start_rbreak_breakpoints' below, to record the current
632 breakpoint count before "rbreak" creates any breakpoint. */
633 static int rbreak_start_breakpoint_count;
634
635 /* Called at the start an "rbreak" command to record the first
636 breakpoint made. */
637
638 void
639 start_rbreak_breakpoints (void)
640 {
641 rbreak_start_breakpoint_count = breakpoint_count;
642 }
643
644 /* Called at the end of an "rbreak" command to record the last
645 breakpoint made. */
646
647 void
648 end_rbreak_breakpoints (void)
649 {
650 prev_breakpoint_count = rbreak_start_breakpoint_count;
651 }
652
653 /* Used in run_command to zero the hit count when a new run starts. */
654
655 void
656 clear_breakpoint_hit_counts (void)
657 {
658 struct breakpoint *b;
659
660 ALL_BREAKPOINTS (b)
661 b->hit_count = 0;
662 }
663
664 /* Allocate a new counted_command_line with reference count of 1.
665 The new structure owns COMMANDS. */
666
667 static struct counted_command_line *
668 alloc_counted_command_line (struct command_line *commands)
669 {
670 struct counted_command_line *result
671 = xmalloc (sizeof (struct counted_command_line));
672
673 result->refc = 1;
674 result->commands = commands;
675 return result;
676 }
677
678 /* Increment reference count. This does nothing if CMD is NULL. */
679
680 static void
681 incref_counted_command_line (struct counted_command_line *cmd)
682 {
683 if (cmd)
684 ++cmd->refc;
685 }
686
687 /* Decrement reference count. If the reference count reaches 0,
688 destroy the counted_command_line. Sets *CMDP to NULL. This does
689 nothing if *CMDP is NULL. */
690
691 static void
692 decref_counted_command_line (struct counted_command_line **cmdp)
693 {
694 if (*cmdp)
695 {
696 if (--(*cmdp)->refc == 0)
697 {
698 free_command_lines (&(*cmdp)->commands);
699 xfree (*cmdp);
700 }
701 *cmdp = NULL;
702 }
703 }
704
705 /* A cleanup function that calls decref_counted_command_line. */
706
707 static void
708 do_cleanup_counted_command_line (void *arg)
709 {
710 decref_counted_command_line (arg);
711 }
712
713 /* Create a cleanup that calls decref_counted_command_line on the
714 argument. */
715
716 static struct cleanup *
717 make_cleanup_decref_counted_command_line (struct counted_command_line **cmdp)
718 {
719 return make_cleanup (do_cleanup_counted_command_line, cmdp);
720 }
721
722 \f
723 /* Return the breakpoint with the specified number, or NULL
724 if the number does not refer to an existing breakpoint. */
725
726 struct breakpoint *
727 get_breakpoint (int num)
728 {
729 struct breakpoint *b;
730
731 ALL_BREAKPOINTS (b)
732 if (b->number == num)
733 return b;
734
735 return NULL;
736 }
737
738 \f
739
740 /* Mark locations as "conditions have changed" in case the target supports
741 evaluating conditions on its side. */
742
743 static void
744 mark_breakpoint_modified (struct breakpoint *b)
745 {
746 struct bp_location *loc;
747
748 /* This is only meaningful if the target is
749 evaluating conditions and if the user has
750 opted for condition evaluation on the target's
751 side. */
752 if (gdb_evaluates_breakpoint_condition_p ()
753 || !target_supports_evaluation_of_breakpoint_conditions ())
754 return;
755
756 if (!is_breakpoint (b))
757 return;
758
759 for (loc = b->loc; loc; loc = loc->next)
760 loc->condition_changed = condition_modified;
761 }
762
763 /* Mark location as "conditions have changed" in case the target supports
764 evaluating conditions on its side. */
765
766 static void
767 mark_breakpoint_location_modified (struct bp_location *loc)
768 {
769 /* This is only meaningful if the target is
770 evaluating conditions and if the user has
771 opted for condition evaluation on the target's
772 side. */
773 if (gdb_evaluates_breakpoint_condition_p ()
774 || !target_supports_evaluation_of_breakpoint_conditions ())
775
776 return;
777
778 if (!is_breakpoint (loc->owner))
779 return;
780
781 loc->condition_changed = condition_modified;
782 }
783
784 /* Sets the condition-evaluation mode using the static global
785 condition_evaluation_mode. */
786
787 static void
788 set_condition_evaluation_mode (char *args, int from_tty,
789 struct cmd_list_element *c)
790 {
791 const char *old_mode, *new_mode;
792
793 if ((condition_evaluation_mode_1 == condition_evaluation_target)
794 && !target_supports_evaluation_of_breakpoint_conditions ())
795 {
796 condition_evaluation_mode_1 = condition_evaluation_mode;
797 warning (_("Target does not support breakpoint condition evaluation.\n"
798 "Using host evaluation mode instead."));
799 return;
800 }
801
802 new_mode = translate_condition_evaluation_mode (condition_evaluation_mode_1);
803 old_mode = translate_condition_evaluation_mode (condition_evaluation_mode);
804
805 /* Flip the switch. Flip it even if OLD_MODE == NEW_MODE as one of the
806 settings was "auto". */
807 condition_evaluation_mode = condition_evaluation_mode_1;
808
809 /* Only update the mode if the user picked a different one. */
810 if (new_mode != old_mode)
811 {
812 struct bp_location *loc, **loc_tmp;
813 /* If the user switched to a different evaluation mode, we
814 need to synch the changes with the target as follows:
815
816 "host" -> "target": Send all (valid) conditions to the target.
817 "target" -> "host": Remove all the conditions from the target.
818 */
819
820 if (new_mode == condition_evaluation_target)
821 {
822 /* Mark everything modified and synch conditions with the
823 target. */
824 ALL_BP_LOCATIONS (loc, loc_tmp)
825 mark_breakpoint_location_modified (loc);
826 }
827 else
828 {
829 /* Manually mark non-duplicate locations to synch conditions
830 with the target. We do this to remove all the conditions the
831 target knows about. */
832 ALL_BP_LOCATIONS (loc, loc_tmp)
833 if (is_breakpoint (loc->owner) && loc->inserted)
834 loc->needs_update = 1;
835 }
836
837 /* Do the update. */
838 update_global_location_list (1);
839 }
840
841 return;
842 }
843
844 /* Shows the current mode of breakpoint condition evaluation. Explicitly shows
845 what "auto" is translating to. */
846
847 static void
848 show_condition_evaluation_mode (struct ui_file *file, int from_tty,
849 struct cmd_list_element *c, const char *value)
850 {
851 if (condition_evaluation_mode == condition_evaluation_auto)
852 fprintf_filtered (file,
853 _("Breakpoint condition evaluation "
854 "mode is %s (currently %s).\n"),
855 value,
856 breakpoint_condition_evaluation_mode ());
857 else
858 fprintf_filtered (file, _("Breakpoint condition evaluation mode is %s.\n"),
859 value);
860 }
861
862 /* A comparison function for bp_location AP and BP that is used by
863 bsearch. This comparison function only cares about addresses, unlike
864 the more general bp_location_compare function. */
865
866 static int
867 bp_location_compare_addrs (const void *ap, const void *bp)
868 {
869 struct bp_location *a = *(void **) ap;
870 struct bp_location *b = *(void **) bp;
871
872 if (a->address == b->address)
873 return 0;
874 else
875 return ((a->address > b->address) - (a->address < b->address));
876 }
877
878 /* Helper function to skip all bp_locations with addresses
879 less than ADDRESS. It returns the first bp_location that
880 is greater than or equal to ADDRESS. If none is found, just
881 return NULL. */
882
883 static struct bp_location **
884 get_first_locp_gte_addr (CORE_ADDR address)
885 {
886 struct bp_location dummy_loc;
887 struct bp_location *dummy_locp = &dummy_loc;
888 struct bp_location **locp_found = NULL;
889
890 /* Initialize the dummy location's address field. */
891 memset (&dummy_loc, 0, sizeof (struct bp_location));
892 dummy_loc.address = address;
893
894 /* Find a close match to the first location at ADDRESS. */
895 locp_found = bsearch (&dummy_locp, bp_location, bp_location_count,
896 sizeof (struct bp_location **),
897 bp_location_compare_addrs);
898
899 /* Nothing was found, nothing left to do. */
900 if (locp_found == NULL)
901 return NULL;
902
903 /* We may have found a location that is at ADDRESS but is not the first in the
904 location's list. Go backwards (if possible) and locate the first one. */
905 while ((locp_found - 1) >= bp_location
906 && (*(locp_found - 1))->address == address)
907 locp_found--;
908
909 return locp_found;
910 }
911
912 void
913 set_breakpoint_condition (struct breakpoint *b, char *exp,
914 int from_tty)
915 {
916 xfree (b->cond_string);
917 b->cond_string = NULL;
918
919 if (is_watchpoint (b))
920 {
921 struct watchpoint *w = (struct watchpoint *) b;
922
923 xfree (w->cond_exp);
924 w->cond_exp = NULL;
925 }
926 else
927 {
928 struct bp_location *loc;
929
930 for (loc = b->loc; loc; loc = loc->next)
931 {
932 xfree (loc->cond);
933 loc->cond = NULL;
934
935 /* No need to free the condition agent expression
936 bytecode (if we have one). We will handle this
937 when we go through update_global_location_list. */
938 }
939 }
940
941 if (*exp == 0)
942 {
943 if (from_tty)
944 printf_filtered (_("Breakpoint %d now unconditional.\n"), b->number);
945 }
946 else
947 {
948 const char *arg = exp;
949
950 /* I don't know if it matters whether this is the string the user
951 typed in or the decompiled expression. */
952 b->cond_string = xstrdup (arg);
953 b->condition_not_parsed = 0;
954
955 if (is_watchpoint (b))
956 {
957 struct watchpoint *w = (struct watchpoint *) b;
958
959 innermost_block = NULL;
960 arg = exp;
961 w->cond_exp = parse_exp_1 (&arg, 0, 0, 0);
962 if (*arg)
963 error (_("Junk at end of expression"));
964 w->cond_exp_valid_block = innermost_block;
965 }
966 else
967 {
968 struct bp_location *loc;
969
970 for (loc = b->loc; loc; loc = loc->next)
971 {
972 arg = exp;
973 loc->cond =
974 parse_exp_1 (&arg, loc->address,
975 block_for_pc (loc->address), 0);
976 if (*arg)
977 error (_("Junk at end of expression"));
978 }
979 }
980 }
981 mark_breakpoint_modified (b);
982
983 observer_notify_breakpoint_modified (b);
984 }
985
986 /* Completion for the "condition" command. */
987
988 static VEC (char_ptr) *
989 condition_completer (struct cmd_list_element *cmd,
990 const char *text, const char *word)
991 {
992 const char *space;
993
994 text = skip_spaces_const (text);
995 space = skip_to_space_const (text);
996 if (*space == '\0')
997 {
998 int len;
999 struct breakpoint *b;
1000 VEC (char_ptr) *result = NULL;
1001
1002 if (text[0] == '$')
1003 {
1004 /* We don't support completion of history indices. */
1005 if (isdigit (text[1]))
1006 return NULL;
1007 return complete_internalvar (&text[1]);
1008 }
1009
1010 /* We're completing the breakpoint number. */
1011 len = strlen (text);
1012
1013 ALL_BREAKPOINTS (b)
1014 {
1015 char number[50];
1016
1017 xsnprintf (number, sizeof (number), "%d", b->number);
1018
1019 if (strncmp (number, text, len) == 0)
1020 VEC_safe_push (char_ptr, result, xstrdup (number));
1021 }
1022
1023 return result;
1024 }
1025
1026 /* We're completing the expression part. */
1027 text = skip_spaces_const (space);
1028 return expression_completer (cmd, text, word);
1029 }
1030
1031 /* condition N EXP -- set break condition of breakpoint N to EXP. */
1032
1033 static void
1034 condition_command (char *arg, int from_tty)
1035 {
1036 struct breakpoint *b;
1037 char *p;
1038 int bnum;
1039
1040 if (arg == 0)
1041 error_no_arg (_("breakpoint number"));
1042
1043 p = arg;
1044 bnum = get_number (&p);
1045 if (bnum == 0)
1046 error (_("Bad breakpoint argument: '%s'"), arg);
1047
1048 ALL_BREAKPOINTS (b)
1049 if (b->number == bnum)
1050 {
1051 /* Check if this breakpoint has a "stop" method implemented in an
1052 extension language. This method and conditions entered into GDB
1053 from the CLI are mutually exclusive. */
1054 const struct extension_language_defn *extlang
1055 = get_breakpoint_cond_ext_lang (b, EXT_LANG_NONE);
1056
1057 if (extlang != NULL)
1058 {
1059 error (_("Only one stop condition allowed. There is currently"
1060 " a %s stop condition defined for this breakpoint."),
1061 ext_lang_capitalized_name (extlang));
1062 }
1063 set_breakpoint_condition (b, p, from_tty);
1064
1065 if (is_breakpoint (b))
1066 update_global_location_list (1);
1067
1068 return;
1069 }
1070
1071 error (_("No breakpoint number %d."), bnum);
1072 }
1073
1074 /* Check that COMMAND do not contain commands that are suitable
1075 only for tracepoints and not suitable for ordinary breakpoints.
1076 Throw if any such commands is found. */
1077
1078 static void
1079 check_no_tracepoint_commands (struct command_line *commands)
1080 {
1081 struct command_line *c;
1082
1083 for (c = commands; c; c = c->next)
1084 {
1085 int i;
1086
1087 if (c->control_type == while_stepping_control)
1088 error (_("The 'while-stepping' command can "
1089 "only be used for tracepoints"));
1090
1091 for (i = 0; i < c->body_count; ++i)
1092 check_no_tracepoint_commands ((c->body_list)[i]);
1093
1094 /* Not that command parsing removes leading whitespace and comment
1095 lines and also empty lines. So, we only need to check for
1096 command directly. */
1097 if (strstr (c->line, "collect ") == c->line)
1098 error (_("The 'collect' command can only be used for tracepoints"));
1099
1100 if (strstr (c->line, "teval ") == c->line)
1101 error (_("The 'teval' command can only be used for tracepoints"));
1102 }
1103 }
1104
1105 /* Encapsulate tests for different types of tracepoints. */
1106
1107 static int
1108 is_tracepoint_type (enum bptype type)
1109 {
1110 return (type == bp_tracepoint
1111 || type == bp_fast_tracepoint
1112 || type == bp_static_tracepoint);
1113 }
1114
1115 int
1116 is_tracepoint (const struct breakpoint *b)
1117 {
1118 return is_tracepoint_type (b->type);
1119 }
1120
1121 /* A helper function that validates that COMMANDS are valid for a
1122 breakpoint. This function will throw an exception if a problem is
1123 found. */
1124
1125 static void
1126 validate_commands_for_breakpoint (struct breakpoint *b,
1127 struct command_line *commands)
1128 {
1129 if (is_tracepoint (b))
1130 {
1131 struct tracepoint *t = (struct tracepoint *) b;
1132 struct command_line *c;
1133 struct command_line *while_stepping = 0;
1134
1135 /* Reset the while-stepping step count. The previous commands
1136 might have included a while-stepping action, while the new
1137 ones might not. */
1138 t->step_count = 0;
1139
1140 /* We need to verify that each top-level element of commands is
1141 valid for tracepoints, that there's at most one
1142 while-stepping element, and that the while-stepping's body
1143 has valid tracing commands excluding nested while-stepping.
1144 We also need to validate the tracepoint action line in the
1145 context of the tracepoint --- validate_actionline actually
1146 has side effects, like setting the tracepoint's
1147 while-stepping STEP_COUNT, in addition to checking if the
1148 collect/teval actions parse and make sense in the
1149 tracepoint's context. */
1150 for (c = commands; c; c = c->next)
1151 {
1152 if (c->control_type == while_stepping_control)
1153 {
1154 if (b->type == bp_fast_tracepoint)
1155 error (_("The 'while-stepping' command "
1156 "cannot be used for fast tracepoint"));
1157 else if (b->type == bp_static_tracepoint)
1158 error (_("The 'while-stepping' command "
1159 "cannot be used for static tracepoint"));
1160
1161 if (while_stepping)
1162 error (_("The 'while-stepping' command "
1163 "can be used only once"));
1164 else
1165 while_stepping = c;
1166 }
1167
1168 validate_actionline (c->line, b);
1169 }
1170 if (while_stepping)
1171 {
1172 struct command_line *c2;
1173
1174 gdb_assert (while_stepping->body_count == 1);
1175 c2 = while_stepping->body_list[0];
1176 for (; c2; c2 = c2->next)
1177 {
1178 if (c2->control_type == while_stepping_control)
1179 error (_("The 'while-stepping' command cannot be nested"));
1180 }
1181 }
1182 }
1183 else
1184 {
1185 check_no_tracepoint_commands (commands);
1186 }
1187 }
1188
1189 /* Return a vector of all the static tracepoints set at ADDR. The
1190 caller is responsible for releasing the vector. */
1191
1192 VEC(breakpoint_p) *
1193 static_tracepoints_here (CORE_ADDR addr)
1194 {
1195 struct breakpoint *b;
1196 VEC(breakpoint_p) *found = 0;
1197 struct bp_location *loc;
1198
1199 ALL_BREAKPOINTS (b)
1200 if (b->type == bp_static_tracepoint)
1201 {
1202 for (loc = b->loc; loc; loc = loc->next)
1203 if (loc->address == addr)
1204 VEC_safe_push(breakpoint_p, found, b);
1205 }
1206
1207 return found;
1208 }
1209
1210 /* Set the command list of B to COMMANDS. If breakpoint is tracepoint,
1211 validate that only allowed commands are included. */
1212
1213 void
1214 breakpoint_set_commands (struct breakpoint *b,
1215 struct command_line *commands)
1216 {
1217 validate_commands_for_breakpoint (b, commands);
1218
1219 decref_counted_command_line (&b->commands);
1220 b->commands = alloc_counted_command_line (commands);
1221 observer_notify_breakpoint_modified (b);
1222 }
1223
1224 /* Set the internal `silent' flag on the breakpoint. Note that this
1225 is not the same as the "silent" that may appear in the breakpoint's
1226 commands. */
1227
1228 void
1229 breakpoint_set_silent (struct breakpoint *b, int silent)
1230 {
1231 int old_silent = b->silent;
1232
1233 b->silent = silent;
1234 if (old_silent != silent)
1235 observer_notify_breakpoint_modified (b);
1236 }
1237
1238 /* Set the thread for this breakpoint. If THREAD is -1, make the
1239 breakpoint work for any thread. */
1240
1241 void
1242 breakpoint_set_thread (struct breakpoint *b, int thread)
1243 {
1244 int old_thread = b->thread;
1245
1246 b->thread = thread;
1247 if (old_thread != thread)
1248 observer_notify_breakpoint_modified (b);
1249 }
1250
1251 /* Set the task for this breakpoint. If TASK is 0, make the
1252 breakpoint work for any task. */
1253
1254 void
1255 breakpoint_set_task (struct breakpoint *b, int task)
1256 {
1257 int old_task = b->task;
1258
1259 b->task = task;
1260 if (old_task != task)
1261 observer_notify_breakpoint_modified (b);
1262 }
1263
1264 void
1265 check_tracepoint_command (char *line, void *closure)
1266 {
1267 struct breakpoint *b = closure;
1268
1269 validate_actionline (line, b);
1270 }
1271
1272 /* A structure used to pass information through
1273 map_breakpoint_numbers. */
1274
1275 struct commands_info
1276 {
1277 /* True if the command was typed at a tty. */
1278 int from_tty;
1279
1280 /* The breakpoint range spec. */
1281 char *arg;
1282
1283 /* Non-NULL if the body of the commands are being read from this
1284 already-parsed command. */
1285 struct command_line *control;
1286
1287 /* The command lines read from the user, or NULL if they have not
1288 yet been read. */
1289 struct counted_command_line *cmd;
1290 };
1291
1292 /* A callback for map_breakpoint_numbers that sets the commands for
1293 commands_command. */
1294
1295 static void
1296 do_map_commands_command (struct breakpoint *b, void *data)
1297 {
1298 struct commands_info *info = data;
1299
1300 if (info->cmd == NULL)
1301 {
1302 struct command_line *l;
1303
1304 if (info->control != NULL)
1305 l = copy_command_lines (info->control->body_list[0]);
1306 else
1307 {
1308 struct cleanup *old_chain;
1309 char *str;
1310
1311 str = xstrprintf (_("Type commands for breakpoint(s) "
1312 "%s, one per line."),
1313 info->arg);
1314
1315 old_chain = make_cleanup (xfree, str);
1316
1317 l = read_command_lines (str,
1318 info->from_tty, 1,
1319 (is_tracepoint (b)
1320 ? check_tracepoint_command : 0),
1321 b);
1322
1323 do_cleanups (old_chain);
1324 }
1325
1326 info->cmd = alloc_counted_command_line (l);
1327 }
1328
1329 /* If a breakpoint was on the list more than once, we don't need to
1330 do anything. */
1331 if (b->commands != info->cmd)
1332 {
1333 validate_commands_for_breakpoint (b, info->cmd->commands);
1334 incref_counted_command_line (info->cmd);
1335 decref_counted_command_line (&b->commands);
1336 b->commands = info->cmd;
1337 observer_notify_breakpoint_modified (b);
1338 }
1339 }
1340
1341 static void
1342 commands_command_1 (char *arg, int from_tty,
1343 struct command_line *control)
1344 {
1345 struct cleanup *cleanups;
1346 struct commands_info info;
1347
1348 info.from_tty = from_tty;
1349 info.control = control;
1350 info.cmd = NULL;
1351 /* If we read command lines from the user, then `info' will hold an
1352 extra reference to the commands that we must clean up. */
1353 cleanups = make_cleanup_decref_counted_command_line (&info.cmd);
1354
1355 if (arg == NULL || !*arg)
1356 {
1357 if (breakpoint_count - prev_breakpoint_count > 1)
1358 arg = xstrprintf ("%d-%d", prev_breakpoint_count + 1,
1359 breakpoint_count);
1360 else if (breakpoint_count > 0)
1361 arg = xstrprintf ("%d", breakpoint_count);
1362 else
1363 {
1364 /* So that we don't try to free the incoming non-NULL
1365 argument in the cleanup below. Mapping breakpoint
1366 numbers will fail in this case. */
1367 arg = NULL;
1368 }
1369 }
1370 else
1371 /* The command loop has some static state, so we need to preserve
1372 our argument. */
1373 arg = xstrdup (arg);
1374
1375 if (arg != NULL)
1376 make_cleanup (xfree, arg);
1377
1378 info.arg = arg;
1379
1380 map_breakpoint_numbers (arg, do_map_commands_command, &info);
1381
1382 if (info.cmd == NULL)
1383 error (_("No breakpoints specified."));
1384
1385 do_cleanups (cleanups);
1386 }
1387
1388 static void
1389 commands_command (char *arg, int from_tty)
1390 {
1391 commands_command_1 (arg, from_tty, NULL);
1392 }
1393
1394 /* Like commands_command, but instead of reading the commands from
1395 input stream, takes them from an already parsed command structure.
1396
1397 This is used by cli-script.c to DTRT with breakpoint commands
1398 that are part of if and while bodies. */
1399 enum command_control_type
1400 commands_from_control_command (char *arg, struct command_line *cmd)
1401 {
1402 commands_command_1 (arg, 0, cmd);
1403 return simple_control;
1404 }
1405
1406 /* Return non-zero if BL->TARGET_INFO contains valid information. */
1407
1408 static int
1409 bp_location_has_shadow (struct bp_location *bl)
1410 {
1411 if (bl->loc_type != bp_loc_software_breakpoint)
1412 return 0;
1413 if (!bl->inserted)
1414 return 0;
1415 if (bl->target_info.shadow_len == 0)
1416 /* BL isn't valid, or doesn't shadow memory. */
1417 return 0;
1418 return 1;
1419 }
1420
1421 /* Update BUF, which is LEN bytes read from the target address
1422 MEMADDR, by replacing a memory breakpoint with its shadowed
1423 contents.
1424
1425 If READBUF is not NULL, this buffer must not overlap with the of
1426 the breakpoint location's shadow_contents buffer. Otherwise, a
1427 failed assertion internal error will be raised. */
1428
1429 static void
1430 one_breakpoint_xfer_memory (gdb_byte *readbuf, gdb_byte *writebuf,
1431 const gdb_byte *writebuf_org,
1432 ULONGEST memaddr, LONGEST len,
1433 struct bp_target_info *target_info,
1434 struct gdbarch *gdbarch)
1435 {
1436 /* Now do full processing of the found relevant range of elements. */
1437 CORE_ADDR bp_addr = 0;
1438 int bp_size = 0;
1439 int bptoffset = 0;
1440
1441 if (!breakpoint_address_match (target_info->placed_address_space, 0,
1442 current_program_space->aspace, 0))
1443 {
1444 /* The breakpoint is inserted in a different address space. */
1445 return;
1446 }
1447
1448 /* Addresses and length of the part of the breakpoint that
1449 we need to copy. */
1450 bp_addr = target_info->placed_address;
1451 bp_size = target_info->shadow_len;
1452
1453 if (bp_addr + bp_size <= memaddr)
1454 {
1455 /* The breakpoint is entirely before the chunk of memory we are
1456 reading. */
1457 return;
1458 }
1459
1460 if (bp_addr >= memaddr + len)
1461 {
1462 /* The breakpoint is entirely after the chunk of memory we are
1463 reading. */
1464 return;
1465 }
1466
1467 /* Offset within shadow_contents. */
1468 if (bp_addr < memaddr)
1469 {
1470 /* Only copy the second part of the breakpoint. */
1471 bp_size -= memaddr - bp_addr;
1472 bptoffset = memaddr - bp_addr;
1473 bp_addr = memaddr;
1474 }
1475
1476 if (bp_addr + bp_size > memaddr + len)
1477 {
1478 /* Only copy the first part of the breakpoint. */
1479 bp_size -= (bp_addr + bp_size) - (memaddr + len);
1480 }
1481
1482 if (readbuf != NULL)
1483 {
1484 /* Verify that the readbuf buffer does not overlap with the
1485 shadow_contents buffer. */
1486 gdb_assert (target_info->shadow_contents >= readbuf + len
1487 || readbuf >= (target_info->shadow_contents
1488 + target_info->shadow_len));
1489
1490 /* Update the read buffer with this inserted breakpoint's
1491 shadow. */
1492 memcpy (readbuf + bp_addr - memaddr,
1493 target_info->shadow_contents + bptoffset, bp_size);
1494 }
1495 else
1496 {
1497 const unsigned char *bp;
1498 CORE_ADDR placed_address = target_info->placed_address;
1499 int placed_size = target_info->placed_size;
1500
1501 /* Update the shadow with what we want to write to memory. */
1502 memcpy (target_info->shadow_contents + bptoffset,
1503 writebuf_org + bp_addr - memaddr, bp_size);
1504
1505 /* Determine appropriate breakpoint contents and size for this
1506 address. */
1507 bp = gdbarch_breakpoint_from_pc (gdbarch, &placed_address, &placed_size);
1508
1509 /* Update the final write buffer with this inserted
1510 breakpoint's INSN. */
1511 memcpy (writebuf + bp_addr - memaddr, bp + bptoffset, bp_size);
1512 }
1513 }
1514
1515 /* Update BUF, which is LEN bytes read from the target address MEMADDR,
1516 by replacing any memory breakpoints with their shadowed contents.
1517
1518 If READBUF is not NULL, this buffer must not overlap with any of
1519 the breakpoint location's shadow_contents buffers. Otherwise,
1520 a failed assertion internal error will be raised.
1521
1522 The range of shadowed area by each bp_location is:
1523 bl->address - bp_location_placed_address_before_address_max
1524 up to bl->address + bp_location_shadow_len_after_address_max
1525 The range we were requested to resolve shadows for is:
1526 memaddr ... memaddr + len
1527 Thus the safe cutoff boundaries for performance optimization are
1528 memaddr + len <= (bl->address
1529 - bp_location_placed_address_before_address_max)
1530 and:
1531 bl->address + bp_location_shadow_len_after_address_max <= memaddr */
1532
1533 void
1534 breakpoint_xfer_memory (gdb_byte *readbuf, gdb_byte *writebuf,
1535 const gdb_byte *writebuf_org,
1536 ULONGEST memaddr, LONGEST len)
1537 {
1538 /* Left boundary, right boundary and median element of our binary
1539 search. */
1540 unsigned bc_l, bc_r, bc;
1541 size_t i;
1542
1543 /* Find BC_L which is a leftmost element which may affect BUF
1544 content. It is safe to report lower value but a failure to
1545 report higher one. */
1546
1547 bc_l = 0;
1548 bc_r = bp_location_count;
1549 while (bc_l + 1 < bc_r)
1550 {
1551 struct bp_location *bl;
1552
1553 bc = (bc_l + bc_r) / 2;
1554 bl = bp_location[bc];
1555
1556 /* Check first BL->ADDRESS will not overflow due to the added
1557 constant. Then advance the left boundary only if we are sure
1558 the BC element can in no way affect the BUF content (MEMADDR
1559 to MEMADDR + LEN range).
1560
1561 Use the BP_LOCATION_SHADOW_LEN_AFTER_ADDRESS_MAX safety
1562 offset so that we cannot miss a breakpoint with its shadow
1563 range tail still reaching MEMADDR. */
1564
1565 if ((bl->address + bp_location_shadow_len_after_address_max
1566 >= bl->address)
1567 && (bl->address + bp_location_shadow_len_after_address_max
1568 <= memaddr))
1569 bc_l = bc;
1570 else
1571 bc_r = bc;
1572 }
1573
1574 /* Due to the binary search above, we need to make sure we pick the
1575 first location that's at BC_L's address. E.g., if there are
1576 multiple locations at the same address, BC_L may end up pointing
1577 at a duplicate location, and miss the "master"/"inserted"
1578 location. Say, given locations L1, L2 and L3 at addresses A and
1579 B:
1580
1581 L1@A, L2@A, L3@B, ...
1582
1583 BC_L could end up pointing at location L2, while the "master"
1584 location could be L1. Since the `loc->inserted' flag is only set
1585 on "master" locations, we'd forget to restore the shadow of L1
1586 and L2. */
1587 while (bc_l > 0
1588 && bp_location[bc_l]->address == bp_location[bc_l - 1]->address)
1589 bc_l--;
1590
1591 /* Now do full processing of the found relevant range of elements. */
1592
1593 for (bc = bc_l; bc < bp_location_count; bc++)
1594 {
1595 struct bp_location *bl = bp_location[bc];
1596 CORE_ADDR bp_addr = 0;
1597 int bp_size = 0;
1598 int bptoffset = 0;
1599
1600 /* bp_location array has BL->OWNER always non-NULL. */
1601 if (bl->owner->type == bp_none)
1602 warning (_("reading through apparently deleted breakpoint #%d?"),
1603 bl->owner->number);
1604
1605 /* Performance optimization: any further element can no longer affect BUF
1606 content. */
1607
1608 if (bl->address >= bp_location_placed_address_before_address_max
1609 && memaddr + len <= (bl->address
1610 - bp_location_placed_address_before_address_max))
1611 break;
1612
1613 if (!bp_location_has_shadow (bl))
1614 continue;
1615
1616 one_breakpoint_xfer_memory (readbuf, writebuf, writebuf_org,
1617 memaddr, len, &bl->target_info, bl->gdbarch);
1618 }
1619
1620 /* Now process single-step breakpoints. These are not found in the
1621 bp_location array. */
1622 for (i = 0; i < 2; i++)
1623 {
1624 struct bp_target_info *bp_tgt = single_step_breakpoints[i];
1625
1626 if (bp_tgt != NULL)
1627 {
1628 struct gdbarch *gdbarch = single_step_gdbarch[i];
1629
1630 one_breakpoint_xfer_memory (readbuf, writebuf, writebuf_org,
1631 memaddr, len, bp_tgt, gdbarch);
1632 }
1633 }
1634 }
1635
1636 \f
1637
1638 /* Return true if BPT is either a software breakpoint or a hardware
1639 breakpoint. */
1640
1641 int
1642 is_breakpoint (const struct breakpoint *bpt)
1643 {
1644 return (bpt->type == bp_breakpoint
1645 || bpt->type == bp_hardware_breakpoint
1646 || bpt->type == bp_dprintf);
1647 }
1648
1649 /* Return true if BPT is of any hardware watchpoint kind. */
1650
1651 static int
1652 is_hardware_watchpoint (const struct breakpoint *bpt)
1653 {
1654 return (bpt->type == bp_hardware_watchpoint
1655 || bpt->type == bp_read_watchpoint
1656 || bpt->type == bp_access_watchpoint);
1657 }
1658
1659 /* Return true if BPT is of any watchpoint kind, hardware or
1660 software. */
1661
1662 int
1663 is_watchpoint (const struct breakpoint *bpt)
1664 {
1665 return (is_hardware_watchpoint (bpt)
1666 || bpt->type == bp_watchpoint);
1667 }
1668
1669 /* Returns true if the current thread and its running state are safe
1670 to evaluate or update watchpoint B. Watchpoints on local
1671 expressions need to be evaluated in the context of the thread that
1672 was current when the watchpoint was created, and, that thread needs
1673 to be stopped to be able to select the correct frame context.
1674 Watchpoints on global expressions can be evaluated on any thread,
1675 and in any state. It is presently left to the target allowing
1676 memory accesses when threads are running. */
1677
1678 static int
1679 watchpoint_in_thread_scope (struct watchpoint *b)
1680 {
1681 return (b->base.pspace == current_program_space
1682 && (ptid_equal (b->watchpoint_thread, null_ptid)
1683 || (ptid_equal (inferior_ptid, b->watchpoint_thread)
1684 && !is_executing (inferior_ptid))));
1685 }
1686
1687 /* Set watchpoint B to disp_del_at_next_stop, even including its possible
1688 associated bp_watchpoint_scope breakpoint. */
1689
1690 static void
1691 watchpoint_del_at_next_stop (struct watchpoint *w)
1692 {
1693 struct breakpoint *b = &w->base;
1694
1695 if (b->related_breakpoint != b)
1696 {
1697 gdb_assert (b->related_breakpoint->type == bp_watchpoint_scope);
1698 gdb_assert (b->related_breakpoint->related_breakpoint == b);
1699 b->related_breakpoint->disposition = disp_del_at_next_stop;
1700 b->related_breakpoint->related_breakpoint = b->related_breakpoint;
1701 b->related_breakpoint = b;
1702 }
1703 b->disposition = disp_del_at_next_stop;
1704 }
1705
1706 /* Assuming that B is a watchpoint:
1707 - Reparse watchpoint expression, if REPARSE is non-zero
1708 - Evaluate expression and store the result in B->val
1709 - Evaluate the condition if there is one, and store the result
1710 in b->loc->cond.
1711 - Update the list of values that must be watched in B->loc.
1712
1713 If the watchpoint disposition is disp_del_at_next_stop, then do
1714 nothing. If this is local watchpoint that is out of scope, delete
1715 it.
1716
1717 Even with `set breakpoint always-inserted on' the watchpoints are
1718 removed + inserted on each stop here. Normal breakpoints must
1719 never be removed because they might be missed by a running thread
1720 when debugging in non-stop mode. On the other hand, hardware
1721 watchpoints (is_hardware_watchpoint; processed here) are specific
1722 to each LWP since they are stored in each LWP's hardware debug
1723 registers. Therefore, such LWP must be stopped first in order to
1724 be able to modify its hardware watchpoints.
1725
1726 Hardware watchpoints must be reset exactly once after being
1727 presented to the user. It cannot be done sooner, because it would
1728 reset the data used to present the watchpoint hit to the user. And
1729 it must not be done later because it could display the same single
1730 watchpoint hit during multiple GDB stops. Note that the latter is
1731 relevant only to the hardware watchpoint types bp_read_watchpoint
1732 and bp_access_watchpoint. False hit by bp_hardware_watchpoint is
1733 not user-visible - its hit is suppressed if the memory content has
1734 not changed.
1735
1736 The following constraints influence the location where we can reset
1737 hardware watchpoints:
1738
1739 * target_stopped_by_watchpoint and target_stopped_data_address are
1740 called several times when GDB stops.
1741
1742 [linux]
1743 * Multiple hardware watchpoints can be hit at the same time,
1744 causing GDB to stop. GDB only presents one hardware watchpoint
1745 hit at a time as the reason for stopping, and all the other hits
1746 are presented later, one after the other, each time the user
1747 requests the execution to be resumed. Execution is not resumed
1748 for the threads still having pending hit event stored in
1749 LWP_INFO->STATUS. While the watchpoint is already removed from
1750 the inferior on the first stop the thread hit event is kept being
1751 reported from its cached value by linux_nat_stopped_data_address
1752 until the real thread resume happens after the watchpoint gets
1753 presented and thus its LWP_INFO->STATUS gets reset.
1754
1755 Therefore the hardware watchpoint hit can get safely reset on the
1756 watchpoint removal from inferior. */
1757
1758 static void
1759 update_watchpoint (struct watchpoint *b, int reparse)
1760 {
1761 int within_current_scope;
1762 struct frame_id saved_frame_id;
1763 int frame_saved;
1764
1765 /* If this is a local watchpoint, we only want to check if the
1766 watchpoint frame is in scope if the current thread is the thread
1767 that was used to create the watchpoint. */
1768 if (!watchpoint_in_thread_scope (b))
1769 return;
1770
1771 if (b->base.disposition == disp_del_at_next_stop)
1772 return;
1773
1774 frame_saved = 0;
1775
1776 /* Determine if the watchpoint is within scope. */
1777 if (b->exp_valid_block == NULL)
1778 within_current_scope = 1;
1779 else
1780 {
1781 struct frame_info *fi = get_current_frame ();
1782 struct gdbarch *frame_arch = get_frame_arch (fi);
1783 CORE_ADDR frame_pc = get_frame_pc (fi);
1784
1785 /* If we're in a function epilogue, unwinding may not work
1786 properly, so do not attempt to recreate locations at this
1787 point. See similar comments in watchpoint_check. */
1788 if (gdbarch_in_function_epilogue_p (frame_arch, frame_pc))
1789 return;
1790
1791 /* Save the current frame's ID so we can restore it after
1792 evaluating the watchpoint expression on its own frame. */
1793 /* FIXME drow/2003-09-09: It would be nice if evaluate_expression
1794 took a frame parameter, so that we didn't have to change the
1795 selected frame. */
1796 frame_saved = 1;
1797 saved_frame_id = get_frame_id (get_selected_frame (NULL));
1798
1799 fi = frame_find_by_id (b->watchpoint_frame);
1800 within_current_scope = (fi != NULL);
1801 if (within_current_scope)
1802 select_frame (fi);
1803 }
1804
1805 /* We don't free locations. They are stored in the bp_location array
1806 and update_global_location_list will eventually delete them and
1807 remove breakpoints if needed. */
1808 b->base.loc = NULL;
1809
1810 if (within_current_scope && reparse)
1811 {
1812 const char *s;
1813
1814 if (b->exp)
1815 {
1816 xfree (b->exp);
1817 b->exp = NULL;
1818 }
1819 s = b->exp_string_reparse ? b->exp_string_reparse : b->exp_string;
1820 b->exp = parse_exp_1 (&s, 0, b->exp_valid_block, 0);
1821 /* If the meaning of expression itself changed, the old value is
1822 no longer relevant. We don't want to report a watchpoint hit
1823 to the user when the old value and the new value may actually
1824 be completely different objects. */
1825 value_free (b->val);
1826 b->val = NULL;
1827 b->val_valid = 0;
1828
1829 /* Note that unlike with breakpoints, the watchpoint's condition
1830 expression is stored in the breakpoint object, not in the
1831 locations (re)created below. */
1832 if (b->base.cond_string != NULL)
1833 {
1834 if (b->cond_exp != NULL)
1835 {
1836 xfree (b->cond_exp);
1837 b->cond_exp = NULL;
1838 }
1839
1840 s = b->base.cond_string;
1841 b->cond_exp = parse_exp_1 (&s, 0, b->cond_exp_valid_block, 0);
1842 }
1843 }
1844
1845 /* If we failed to parse the expression, for example because
1846 it refers to a global variable in a not-yet-loaded shared library,
1847 don't try to insert watchpoint. We don't automatically delete
1848 such watchpoint, though, since failure to parse expression
1849 is different from out-of-scope watchpoint. */
1850 if (!target_has_execution)
1851 {
1852 /* Without execution, memory can't change. No use to try and
1853 set watchpoint locations. The watchpoint will be reset when
1854 the target gains execution, through breakpoint_re_set. */
1855 if (!can_use_hw_watchpoints)
1856 {
1857 if (b->base.ops->works_in_software_mode (&b->base))
1858 b->base.type = bp_watchpoint;
1859 else
1860 error (_("Can't set read/access watchpoint when "
1861 "hardware watchpoints are disabled."));
1862 }
1863 }
1864 else if (within_current_scope && b->exp)
1865 {
1866 int pc = 0;
1867 struct value *val_chain, *v, *result, *next;
1868 struct program_space *frame_pspace;
1869
1870 fetch_subexp_value (b->exp, &pc, &v, &result, &val_chain, 0);
1871
1872 /* Avoid setting b->val if it's already set. The meaning of
1873 b->val is 'the last value' user saw, and we should update
1874 it only if we reported that last value to user. As it
1875 happens, the code that reports it updates b->val directly.
1876 We don't keep track of the memory value for masked
1877 watchpoints. */
1878 if (!b->val_valid && !is_masked_watchpoint (&b->base))
1879 {
1880 b->val = v;
1881 b->val_valid = 1;
1882 }
1883
1884 frame_pspace = get_frame_program_space (get_selected_frame (NULL));
1885
1886 /* Look at each value on the value chain. */
1887 for (v = val_chain; v; v = value_next (v))
1888 {
1889 /* If it's a memory location, and GDB actually needed
1890 its contents to evaluate the expression, then we
1891 must watch it. If the first value returned is
1892 still lazy, that means an error occurred reading it;
1893 watch it anyway in case it becomes readable. */
1894 if (VALUE_LVAL (v) == lval_memory
1895 && (v == val_chain || ! value_lazy (v)))
1896 {
1897 struct type *vtype = check_typedef (value_type (v));
1898
1899 /* We only watch structs and arrays if user asked
1900 for it explicitly, never if they just happen to
1901 appear in the middle of some value chain. */
1902 if (v == result
1903 || (TYPE_CODE (vtype) != TYPE_CODE_STRUCT
1904 && TYPE_CODE (vtype) != TYPE_CODE_ARRAY))
1905 {
1906 CORE_ADDR addr;
1907 int type;
1908 struct bp_location *loc, **tmp;
1909
1910 addr = value_address (v);
1911 type = hw_write;
1912 if (b->base.type == bp_read_watchpoint)
1913 type = hw_read;
1914 else if (b->base.type == bp_access_watchpoint)
1915 type = hw_access;
1916
1917 loc = allocate_bp_location (&b->base);
1918 for (tmp = &(b->base.loc); *tmp != NULL; tmp = &((*tmp)->next))
1919 ;
1920 *tmp = loc;
1921 loc->gdbarch = get_type_arch (value_type (v));
1922
1923 loc->pspace = frame_pspace;
1924 loc->address = addr;
1925 loc->length = TYPE_LENGTH (value_type (v));
1926 loc->watchpoint_type = type;
1927 }
1928 }
1929 }
1930
1931 /* Change the type of breakpoint between hardware assisted or
1932 an ordinary watchpoint depending on the hardware support
1933 and free hardware slots. REPARSE is set when the inferior
1934 is started. */
1935 if (reparse)
1936 {
1937 int reg_cnt;
1938 enum bp_loc_type loc_type;
1939 struct bp_location *bl;
1940
1941 reg_cnt = can_use_hardware_watchpoint (val_chain);
1942
1943 if (reg_cnt)
1944 {
1945 int i, target_resources_ok, other_type_used;
1946 enum bptype type;
1947
1948 /* Use an exact watchpoint when there's only one memory region to be
1949 watched, and only one debug register is needed to watch it. */
1950 b->exact = target_exact_watchpoints && reg_cnt == 1;
1951
1952 /* We need to determine how many resources are already
1953 used for all other hardware watchpoints plus this one
1954 to see if we still have enough resources to also fit
1955 this watchpoint in as well. */
1956
1957 /* If this is a software watchpoint, we try to turn it
1958 to a hardware one -- count resources as if B was of
1959 hardware watchpoint type. */
1960 type = b->base.type;
1961 if (type == bp_watchpoint)
1962 type = bp_hardware_watchpoint;
1963
1964 /* This watchpoint may or may not have been placed on
1965 the list yet at this point (it won't be in the list
1966 if we're trying to create it for the first time,
1967 through watch_command), so always account for it
1968 manually. */
1969
1970 /* Count resources used by all watchpoints except B. */
1971 i = hw_watchpoint_used_count_others (&b->base, type, &other_type_used);
1972
1973 /* Add in the resources needed for B. */
1974 i += hw_watchpoint_use_count (&b->base);
1975
1976 target_resources_ok
1977 = target_can_use_hardware_watchpoint (type, i, other_type_used);
1978 if (target_resources_ok <= 0)
1979 {
1980 int sw_mode = b->base.ops->works_in_software_mode (&b->base);
1981
1982 if (target_resources_ok == 0 && !sw_mode)
1983 error (_("Target does not support this type of "
1984 "hardware watchpoint."));
1985 else if (target_resources_ok < 0 && !sw_mode)
1986 error (_("There are not enough available hardware "
1987 "resources for this watchpoint."));
1988
1989 /* Downgrade to software watchpoint. */
1990 b->base.type = bp_watchpoint;
1991 }
1992 else
1993 {
1994 /* If this was a software watchpoint, we've just
1995 found we have enough resources to turn it to a
1996 hardware watchpoint. Otherwise, this is a
1997 nop. */
1998 b->base.type = type;
1999 }
2000 }
2001 else if (!b->base.ops->works_in_software_mode (&b->base))
2002 {
2003 if (!can_use_hw_watchpoints)
2004 error (_("Can't set read/access watchpoint when "
2005 "hardware watchpoints are disabled."));
2006 else
2007 error (_("Expression cannot be implemented with "
2008 "read/access watchpoint."));
2009 }
2010 else
2011 b->base.type = bp_watchpoint;
2012
2013 loc_type = (b->base.type == bp_watchpoint? bp_loc_other
2014 : bp_loc_hardware_watchpoint);
2015 for (bl = b->base.loc; bl; bl = bl->next)
2016 bl->loc_type = loc_type;
2017 }
2018
2019 for (v = val_chain; v; v = next)
2020 {
2021 next = value_next (v);
2022 if (v != b->val)
2023 value_free (v);
2024 }
2025
2026 /* If a software watchpoint is not watching any memory, then the
2027 above left it without any location set up. But,
2028 bpstat_stop_status requires a location to be able to report
2029 stops, so make sure there's at least a dummy one. */
2030 if (b->base.type == bp_watchpoint && b->base.loc == NULL)
2031 {
2032 struct breakpoint *base = &b->base;
2033 base->loc = allocate_bp_location (base);
2034 base->loc->pspace = frame_pspace;
2035 base->loc->address = -1;
2036 base->loc->length = -1;
2037 base->loc->watchpoint_type = -1;
2038 }
2039 }
2040 else if (!within_current_scope)
2041 {
2042 printf_filtered (_("\
2043 Watchpoint %d deleted because the program has left the block\n\
2044 in which its expression is valid.\n"),
2045 b->base.number);
2046 watchpoint_del_at_next_stop (b);
2047 }
2048
2049 /* Restore the selected frame. */
2050 if (frame_saved)
2051 select_frame (frame_find_by_id (saved_frame_id));
2052 }
2053
2054
2055 /* Returns 1 iff breakpoint location should be
2056 inserted in the inferior. We don't differentiate the type of BL's owner
2057 (breakpoint vs. tracepoint), although insert_location in tracepoint's
2058 breakpoint_ops is not defined, because in insert_bp_location,
2059 tracepoint's insert_location will not be called. */
2060 static int
2061 should_be_inserted (struct bp_location *bl)
2062 {
2063 if (bl->owner == NULL || !breakpoint_enabled (bl->owner))
2064 return 0;
2065
2066 if (bl->owner->disposition == disp_del_at_next_stop)
2067 return 0;
2068
2069 if (!bl->enabled || bl->shlib_disabled || bl->duplicate)
2070 return 0;
2071
2072 if (user_breakpoint_p (bl->owner) && bl->pspace->executing_startup)
2073 return 0;
2074
2075 /* This is set for example, when we're attached to the parent of a
2076 vfork, and have detached from the child. The child is running
2077 free, and we expect it to do an exec or exit, at which point the
2078 OS makes the parent schedulable again (and the target reports
2079 that the vfork is done). Until the child is done with the shared
2080 memory region, do not insert breakpoints in the parent, otherwise
2081 the child could still trip on the parent's breakpoints. Since
2082 the parent is blocked anyway, it won't miss any breakpoint. */
2083 if (bl->pspace->breakpoints_not_allowed)
2084 return 0;
2085
2086 /* Don't insert a breakpoint if we're trying to step past its
2087 location. */
2088 if ((bl->loc_type == bp_loc_software_breakpoint
2089 || bl->loc_type == bp_loc_hardware_breakpoint)
2090 && stepping_past_instruction_at (bl->pspace->aspace,
2091 bl->address))
2092 return 0;
2093
2094 return 1;
2095 }
2096
2097 /* Same as should_be_inserted but does the check assuming
2098 that the location is not duplicated. */
2099
2100 static int
2101 unduplicated_should_be_inserted (struct bp_location *bl)
2102 {
2103 int result;
2104 const int save_duplicate = bl->duplicate;
2105
2106 bl->duplicate = 0;
2107 result = should_be_inserted (bl);
2108 bl->duplicate = save_duplicate;
2109 return result;
2110 }
2111
2112 /* Parses a conditional described by an expression COND into an
2113 agent expression bytecode suitable for evaluation
2114 by the bytecode interpreter. Return NULL if there was
2115 any error during parsing. */
2116
2117 static struct agent_expr *
2118 parse_cond_to_aexpr (CORE_ADDR scope, struct expression *cond)
2119 {
2120 struct agent_expr *aexpr = NULL;
2121 volatile struct gdb_exception ex;
2122
2123 if (!cond)
2124 return NULL;
2125
2126 /* We don't want to stop processing, so catch any errors
2127 that may show up. */
2128 TRY_CATCH (ex, RETURN_MASK_ERROR)
2129 {
2130 aexpr = gen_eval_for_expr (scope, cond);
2131 }
2132
2133 if (ex.reason < 0)
2134 {
2135 /* If we got here, it means the condition could not be parsed to a valid
2136 bytecode expression and thus can't be evaluated on the target's side.
2137 It's no use iterating through the conditions. */
2138 return NULL;
2139 }
2140
2141 /* We have a valid agent expression. */
2142 return aexpr;
2143 }
2144
2145 /* Based on location BL, create a list of breakpoint conditions to be
2146 passed on to the target. If we have duplicated locations with different
2147 conditions, we will add such conditions to the list. The idea is that the
2148 target will evaluate the list of conditions and will only notify GDB when
2149 one of them is true. */
2150
2151 static void
2152 build_target_condition_list (struct bp_location *bl)
2153 {
2154 struct bp_location **locp = NULL, **loc2p;
2155 int null_condition_or_parse_error = 0;
2156 int modified = bl->needs_update;
2157 struct bp_location *loc;
2158
2159 /* Release conditions left over from a previous insert. */
2160 VEC_free (agent_expr_p, bl->target_info.conditions);
2161
2162 /* This is only meaningful if the target is
2163 evaluating conditions and if the user has
2164 opted for condition evaluation on the target's
2165 side. */
2166 if (gdb_evaluates_breakpoint_condition_p ()
2167 || !target_supports_evaluation_of_breakpoint_conditions ())
2168 return;
2169
2170 /* Do a first pass to check for locations with no assigned
2171 conditions or conditions that fail to parse to a valid agent expression
2172 bytecode. If any of these happen, then it's no use to send conditions
2173 to the target since this location will always trigger and generate a
2174 response back to GDB. */
2175 ALL_BP_LOCATIONS_AT_ADDR (loc2p, locp, bl->address)
2176 {
2177 loc = (*loc2p);
2178 if (is_breakpoint (loc->owner) && loc->pspace->num == bl->pspace->num)
2179 {
2180 if (modified)
2181 {
2182 struct agent_expr *aexpr;
2183
2184 /* Re-parse the conditions since something changed. In that
2185 case we already freed the condition bytecodes (see
2186 force_breakpoint_reinsertion). We just
2187 need to parse the condition to bytecodes again. */
2188 aexpr = parse_cond_to_aexpr (bl->address, loc->cond);
2189 loc->cond_bytecode = aexpr;
2190
2191 /* Check if we managed to parse the conditional expression
2192 correctly. If not, we will not send this condition
2193 to the target. */
2194 if (aexpr)
2195 continue;
2196 }
2197
2198 /* If we have a NULL bytecode expression, it means something
2199 went wrong or we have a null condition expression. */
2200 if (!loc->cond_bytecode)
2201 {
2202 null_condition_or_parse_error = 1;
2203 break;
2204 }
2205 }
2206 }
2207
2208 /* If any of these happened, it means we will have to evaluate the conditions
2209 for the location's address on gdb's side. It is no use keeping bytecodes
2210 for all the other duplicate locations, thus we free all of them here.
2211
2212 This is so we have a finer control over which locations' conditions are
2213 being evaluated by GDB or the remote stub. */
2214 if (null_condition_or_parse_error)
2215 {
2216 ALL_BP_LOCATIONS_AT_ADDR (loc2p, locp, bl->address)
2217 {
2218 loc = (*loc2p);
2219 if (is_breakpoint (loc->owner) && loc->pspace->num == bl->pspace->num)
2220 {
2221 /* Only go as far as the first NULL bytecode is
2222 located. */
2223 if (!loc->cond_bytecode)
2224 return;
2225
2226 free_agent_expr (loc->cond_bytecode);
2227 loc->cond_bytecode = NULL;
2228 }
2229 }
2230 }
2231
2232 /* No NULL conditions or failed bytecode generation. Build a condition list
2233 for this location's address. */
2234 ALL_BP_LOCATIONS_AT_ADDR (loc2p, locp, bl->address)
2235 {
2236 loc = (*loc2p);
2237 if (loc->cond
2238 && is_breakpoint (loc->owner)
2239 && loc->pspace->num == bl->pspace->num
2240 && loc->owner->enable_state == bp_enabled
2241 && loc->enabled)
2242 /* Add the condition to the vector. This will be used later to send the
2243 conditions to the target. */
2244 VEC_safe_push (agent_expr_p, bl->target_info.conditions,
2245 loc->cond_bytecode);
2246 }
2247
2248 return;
2249 }
2250
2251 /* Parses a command described by string CMD into an agent expression
2252 bytecode suitable for evaluation by the bytecode interpreter.
2253 Return NULL if there was any error during parsing. */
2254
2255 static struct agent_expr *
2256 parse_cmd_to_aexpr (CORE_ADDR scope, char *cmd)
2257 {
2258 struct cleanup *old_cleanups = 0;
2259 struct expression *expr, **argvec;
2260 struct agent_expr *aexpr = NULL;
2261 volatile struct gdb_exception ex;
2262 const char *cmdrest;
2263 const char *format_start, *format_end;
2264 struct format_piece *fpieces;
2265 int nargs;
2266 struct gdbarch *gdbarch = get_current_arch ();
2267
2268 if (!cmd)
2269 return NULL;
2270
2271 cmdrest = cmd;
2272
2273 if (*cmdrest == ',')
2274 ++cmdrest;
2275 cmdrest = skip_spaces_const (cmdrest);
2276
2277 if (*cmdrest++ != '"')
2278 error (_("No format string following the location"));
2279
2280 format_start = cmdrest;
2281
2282 fpieces = parse_format_string (&cmdrest);
2283
2284 old_cleanups = make_cleanup (free_format_pieces_cleanup, &fpieces);
2285
2286 format_end = cmdrest;
2287
2288 if (*cmdrest++ != '"')
2289 error (_("Bad format string, non-terminated '\"'."));
2290
2291 cmdrest = skip_spaces_const (cmdrest);
2292
2293 if (!(*cmdrest == ',' || *cmdrest == '\0'))
2294 error (_("Invalid argument syntax"));
2295
2296 if (*cmdrest == ',')
2297 cmdrest++;
2298 cmdrest = skip_spaces_const (cmdrest);
2299
2300 /* For each argument, make an expression. */
2301
2302 argvec = (struct expression **) alloca (strlen (cmd)
2303 * sizeof (struct expression *));
2304
2305 nargs = 0;
2306 while (*cmdrest != '\0')
2307 {
2308 const char *cmd1;
2309
2310 cmd1 = cmdrest;
2311 expr = parse_exp_1 (&cmd1, scope, block_for_pc (scope), 1);
2312 argvec[nargs++] = expr;
2313 cmdrest = cmd1;
2314 if (*cmdrest == ',')
2315 ++cmdrest;
2316 }
2317
2318 /* We don't want to stop processing, so catch any errors
2319 that may show up. */
2320 TRY_CATCH (ex, RETURN_MASK_ERROR)
2321 {
2322 aexpr = gen_printf (scope, gdbarch, 0, 0,
2323 format_start, format_end - format_start,
2324 fpieces, nargs, argvec);
2325 }
2326
2327 do_cleanups (old_cleanups);
2328
2329 if (ex.reason < 0)
2330 {
2331 /* If we got here, it means the command could not be parsed to a valid
2332 bytecode expression and thus can't be evaluated on the target's side.
2333 It's no use iterating through the other commands. */
2334 return NULL;
2335 }
2336
2337 /* We have a valid agent expression, return it. */
2338 return aexpr;
2339 }
2340
2341 /* Based on location BL, create a list of breakpoint commands to be
2342 passed on to the target. If we have duplicated locations with
2343 different commands, we will add any such to the list. */
2344
2345 static void
2346 build_target_command_list (struct bp_location *bl)
2347 {
2348 struct bp_location **locp = NULL, **loc2p;
2349 int null_command_or_parse_error = 0;
2350 int modified = bl->needs_update;
2351 struct bp_location *loc;
2352
2353 /* Release commands left over from a previous insert. */
2354 VEC_free (agent_expr_p, bl->target_info.tcommands);
2355
2356 if (!target_can_run_breakpoint_commands ())
2357 return;
2358
2359 /* For now, limit to agent-style dprintf breakpoints. */
2360 if (dprintf_style != dprintf_style_agent)
2361 return;
2362
2363 /* For now, if we have any duplicate location that isn't a dprintf,
2364 don't install the target-side commands, as that would make the
2365 breakpoint not be reported to the core, and we'd lose
2366 control. */
2367 ALL_BP_LOCATIONS_AT_ADDR (loc2p, locp, bl->address)
2368 {
2369 loc = (*loc2p);
2370 if (is_breakpoint (loc->owner)
2371 && loc->pspace->num == bl->pspace->num
2372 && loc->owner->type != bp_dprintf)
2373 return;
2374 }
2375
2376 /* Do a first pass to check for locations with no assigned
2377 conditions or conditions that fail to parse to a valid agent expression
2378 bytecode. If any of these happen, then it's no use to send conditions
2379 to the target since this location will always trigger and generate a
2380 response back to GDB. */
2381 ALL_BP_LOCATIONS_AT_ADDR (loc2p, locp, bl->address)
2382 {
2383 loc = (*loc2p);
2384 if (is_breakpoint (loc->owner) && loc->pspace->num == bl->pspace->num)
2385 {
2386 if (modified)
2387 {
2388 struct agent_expr *aexpr;
2389
2390 /* Re-parse the commands since something changed. In that
2391 case we already freed the command bytecodes (see
2392 force_breakpoint_reinsertion). We just
2393 need to parse the command to bytecodes again. */
2394 aexpr = parse_cmd_to_aexpr (bl->address,
2395 loc->owner->extra_string);
2396 loc->cmd_bytecode = aexpr;
2397
2398 if (!aexpr)
2399 continue;
2400 }
2401
2402 /* If we have a NULL bytecode expression, it means something
2403 went wrong or we have a null command expression. */
2404 if (!loc->cmd_bytecode)
2405 {
2406 null_command_or_parse_error = 1;
2407 break;
2408 }
2409 }
2410 }
2411
2412 /* If anything failed, then we're not doing target-side commands,
2413 and so clean up. */
2414 if (null_command_or_parse_error)
2415 {
2416 ALL_BP_LOCATIONS_AT_ADDR (loc2p, locp, bl->address)
2417 {
2418 loc = (*loc2p);
2419 if (is_breakpoint (loc->owner)
2420 && loc->pspace->num == bl->pspace->num)
2421 {
2422 /* Only go as far as the first NULL bytecode is
2423 located. */
2424 if (loc->cmd_bytecode == NULL)
2425 return;
2426
2427 free_agent_expr (loc->cmd_bytecode);
2428 loc->cmd_bytecode = NULL;
2429 }
2430 }
2431 }
2432
2433 /* No NULL commands or failed bytecode generation. Build a command list
2434 for this location's address. */
2435 ALL_BP_LOCATIONS_AT_ADDR (loc2p, locp, bl->address)
2436 {
2437 loc = (*loc2p);
2438 if (loc->owner->extra_string
2439 && is_breakpoint (loc->owner)
2440 && loc->pspace->num == bl->pspace->num
2441 && loc->owner->enable_state == bp_enabled
2442 && loc->enabled)
2443 /* Add the command to the vector. This will be used later
2444 to send the commands to the target. */
2445 VEC_safe_push (agent_expr_p, bl->target_info.tcommands,
2446 loc->cmd_bytecode);
2447 }
2448
2449 bl->target_info.persist = 0;
2450 /* Maybe flag this location as persistent. */
2451 if (bl->owner->type == bp_dprintf && disconnected_dprintf)
2452 bl->target_info.persist = 1;
2453 }
2454
2455 /* Insert a low-level "breakpoint" of some type. BL is the breakpoint
2456 location. Any error messages are printed to TMP_ERROR_STREAM; and
2457 DISABLED_BREAKS, and HW_BREAKPOINT_ERROR are used to report problems.
2458 Returns 0 for success, 1 if the bp_location type is not supported or
2459 -1 for failure.
2460
2461 NOTE drow/2003-09-09: This routine could be broken down to an
2462 object-style method for each breakpoint or catchpoint type. */
2463 static int
2464 insert_bp_location (struct bp_location *bl,
2465 struct ui_file *tmp_error_stream,
2466 int *disabled_breaks,
2467 int *hw_breakpoint_error,
2468 int *hw_bp_error_explained_already)
2469 {
2470 enum errors bp_err = GDB_NO_ERROR;
2471 const char *bp_err_message = NULL;
2472 volatile struct gdb_exception e;
2473
2474 if (!should_be_inserted (bl) || (bl->inserted && !bl->needs_update))
2475 return 0;
2476
2477 /* Note we don't initialize bl->target_info, as that wipes out
2478 the breakpoint location's shadow_contents if the breakpoint
2479 is still inserted at that location. This in turn breaks
2480 target_read_memory which depends on these buffers when
2481 a memory read is requested at the breakpoint location:
2482 Once the target_info has been wiped, we fail to see that
2483 we have a breakpoint inserted at that address and thus
2484 read the breakpoint instead of returning the data saved in
2485 the breakpoint location's shadow contents. */
2486 bl->target_info.placed_address = bl->address;
2487 bl->target_info.placed_address_space = bl->pspace->aspace;
2488 bl->target_info.length = bl->length;
2489
2490 /* When working with target-side conditions, we must pass all the conditions
2491 for the same breakpoint address down to the target since GDB will not
2492 insert those locations. With a list of breakpoint conditions, the target
2493 can decide when to stop and notify GDB. */
2494
2495 if (is_breakpoint (bl->owner))
2496 {
2497 build_target_condition_list (bl);
2498 build_target_command_list (bl);
2499 /* Reset the modification marker. */
2500 bl->needs_update = 0;
2501 }
2502
2503 if (bl->loc_type == bp_loc_software_breakpoint
2504 || bl->loc_type == bp_loc_hardware_breakpoint)
2505 {
2506 if (bl->owner->type != bp_hardware_breakpoint)
2507 {
2508 /* If the explicitly specified breakpoint type
2509 is not hardware breakpoint, check the memory map to see
2510 if the breakpoint address is in read only memory or not.
2511
2512 Two important cases are:
2513 - location type is not hardware breakpoint, memory
2514 is readonly. We change the type of the location to
2515 hardware breakpoint.
2516 - location type is hardware breakpoint, memory is
2517 read-write. This means we've previously made the
2518 location hardware one, but then the memory map changed,
2519 so we undo.
2520
2521 When breakpoints are removed, remove_breakpoints will use
2522 location types we've just set here, the only possible
2523 problem is that memory map has changed during running
2524 program, but it's not going to work anyway with current
2525 gdb. */
2526 struct mem_region *mr
2527 = lookup_mem_region (bl->target_info.placed_address);
2528
2529 if (mr)
2530 {
2531 if (automatic_hardware_breakpoints)
2532 {
2533 enum bp_loc_type new_type;
2534
2535 if (mr->attrib.mode != MEM_RW)
2536 new_type = bp_loc_hardware_breakpoint;
2537 else
2538 new_type = bp_loc_software_breakpoint;
2539
2540 if (new_type != bl->loc_type)
2541 {
2542 static int said = 0;
2543
2544 bl->loc_type = new_type;
2545 if (!said)
2546 {
2547 fprintf_filtered (gdb_stdout,
2548 _("Note: automatically using "
2549 "hardware breakpoints for "
2550 "read-only addresses.\n"));
2551 said = 1;
2552 }
2553 }
2554 }
2555 else if (bl->loc_type == bp_loc_software_breakpoint
2556 && mr->attrib.mode != MEM_RW)
2557 warning (_("cannot set software breakpoint "
2558 "at readonly address %s"),
2559 paddress (bl->gdbarch, bl->address));
2560 }
2561 }
2562
2563 /* First check to see if we have to handle an overlay. */
2564 if (overlay_debugging == ovly_off
2565 || bl->section == NULL
2566 || !(section_is_overlay (bl->section)))
2567 {
2568 /* No overlay handling: just set the breakpoint. */
2569 TRY_CATCH (e, RETURN_MASK_ALL)
2570 {
2571 int val;
2572
2573 val = bl->owner->ops->insert_location (bl);
2574 if (val)
2575 bp_err = GENERIC_ERROR;
2576 }
2577 if (e.reason < 0)
2578 {
2579 bp_err = e.error;
2580 bp_err_message = e.message;
2581 }
2582 }
2583 else
2584 {
2585 /* This breakpoint is in an overlay section.
2586 Shall we set a breakpoint at the LMA? */
2587 if (!overlay_events_enabled)
2588 {
2589 /* Yes -- overlay event support is not active,
2590 so we must try to set a breakpoint at the LMA.
2591 This will not work for a hardware breakpoint. */
2592 if (bl->loc_type == bp_loc_hardware_breakpoint)
2593 warning (_("hardware breakpoint %d not supported in overlay!"),
2594 bl->owner->number);
2595 else
2596 {
2597 CORE_ADDR addr = overlay_unmapped_address (bl->address,
2598 bl->section);
2599 /* Set a software (trap) breakpoint at the LMA. */
2600 bl->overlay_target_info = bl->target_info;
2601 bl->overlay_target_info.placed_address = addr;
2602
2603 /* No overlay handling: just set the breakpoint. */
2604 TRY_CATCH (e, RETURN_MASK_ALL)
2605 {
2606 int val;
2607
2608 val = target_insert_breakpoint (bl->gdbarch,
2609 &bl->overlay_target_info);
2610 if (val)
2611 bp_err = GENERIC_ERROR;
2612 }
2613 if (e.reason < 0)
2614 {
2615 bp_err = e.error;
2616 bp_err_message = e.message;
2617 }
2618
2619 if (bp_err != GDB_NO_ERROR)
2620 fprintf_unfiltered (tmp_error_stream,
2621 "Overlay breakpoint %d "
2622 "failed: in ROM?\n",
2623 bl->owner->number);
2624 }
2625 }
2626 /* Shall we set a breakpoint at the VMA? */
2627 if (section_is_mapped (bl->section))
2628 {
2629 /* Yes. This overlay section is mapped into memory. */
2630 TRY_CATCH (e, RETURN_MASK_ALL)
2631 {
2632 int val;
2633
2634 val = bl->owner->ops->insert_location (bl);
2635 if (val)
2636 bp_err = GENERIC_ERROR;
2637 }
2638 if (e.reason < 0)
2639 {
2640 bp_err = e.error;
2641 bp_err_message = e.message;
2642 }
2643 }
2644 else
2645 {
2646 /* No. This breakpoint will not be inserted.
2647 No error, but do not mark the bp as 'inserted'. */
2648 return 0;
2649 }
2650 }
2651
2652 if (bp_err != GDB_NO_ERROR)
2653 {
2654 /* Can't set the breakpoint. */
2655
2656 /* In some cases, we might not be able to insert a
2657 breakpoint in a shared library that has already been
2658 removed, but we have not yet processed the shlib unload
2659 event. Unfortunately, some targets that implement
2660 breakpoint insertion themselves can't tell why the
2661 breakpoint insertion failed (e.g., the remote target
2662 doesn't define error codes), so we must treat generic
2663 errors as memory errors. */
2664 if ((bp_err == GENERIC_ERROR || bp_err == MEMORY_ERROR)
2665 && bl->loc_type == bp_loc_software_breakpoint
2666 && (solib_name_from_address (bl->pspace, bl->address)
2667 || shared_objfile_contains_address_p (bl->pspace,
2668 bl->address)))
2669 {
2670 /* See also: disable_breakpoints_in_shlibs. */
2671 bl->shlib_disabled = 1;
2672 observer_notify_breakpoint_modified (bl->owner);
2673 if (!*disabled_breaks)
2674 {
2675 fprintf_unfiltered (tmp_error_stream,
2676 "Cannot insert breakpoint %d.\n",
2677 bl->owner->number);
2678 fprintf_unfiltered (tmp_error_stream,
2679 "Temporarily disabling shared "
2680 "library breakpoints:\n");
2681 }
2682 *disabled_breaks = 1;
2683 fprintf_unfiltered (tmp_error_stream,
2684 "breakpoint #%d\n", bl->owner->number);
2685 return 0;
2686 }
2687 else
2688 {
2689 if (bl->loc_type == bp_loc_hardware_breakpoint)
2690 {
2691 *hw_breakpoint_error = 1;
2692 *hw_bp_error_explained_already = bp_err_message != NULL;
2693 fprintf_unfiltered (tmp_error_stream,
2694 "Cannot insert hardware breakpoint %d%s",
2695 bl->owner->number, bp_err_message ? ":" : ".\n");
2696 if (bp_err_message != NULL)
2697 fprintf_unfiltered (tmp_error_stream, "%s.\n", bp_err_message);
2698 }
2699 else
2700 {
2701 if (bp_err_message == NULL)
2702 {
2703 char *message
2704 = memory_error_message (TARGET_XFER_E_IO,
2705 bl->gdbarch, bl->address);
2706 struct cleanup *old_chain = make_cleanup (xfree, message);
2707
2708 fprintf_unfiltered (tmp_error_stream,
2709 "Cannot insert breakpoint %d.\n"
2710 "%s\n",
2711 bl->owner->number, message);
2712 do_cleanups (old_chain);
2713 }
2714 else
2715 {
2716 fprintf_unfiltered (tmp_error_stream,
2717 "Cannot insert breakpoint %d: %s\n",
2718 bl->owner->number,
2719 bp_err_message);
2720 }
2721 }
2722 return 1;
2723
2724 }
2725 }
2726 else
2727 bl->inserted = 1;
2728
2729 return 0;
2730 }
2731
2732 else if (bl->loc_type == bp_loc_hardware_watchpoint
2733 /* NOTE drow/2003-09-08: This state only exists for removing
2734 watchpoints. It's not clear that it's necessary... */
2735 && bl->owner->disposition != disp_del_at_next_stop)
2736 {
2737 int val;
2738
2739 gdb_assert (bl->owner->ops != NULL
2740 && bl->owner->ops->insert_location != NULL);
2741
2742 val = bl->owner->ops->insert_location (bl);
2743
2744 /* If trying to set a read-watchpoint, and it turns out it's not
2745 supported, try emulating one with an access watchpoint. */
2746 if (val == 1 && bl->watchpoint_type == hw_read)
2747 {
2748 struct bp_location *loc, **loc_temp;
2749
2750 /* But don't try to insert it, if there's already another
2751 hw_access location that would be considered a duplicate
2752 of this one. */
2753 ALL_BP_LOCATIONS (loc, loc_temp)
2754 if (loc != bl
2755 && loc->watchpoint_type == hw_access
2756 && watchpoint_locations_match (bl, loc))
2757 {
2758 bl->duplicate = 1;
2759 bl->inserted = 1;
2760 bl->target_info = loc->target_info;
2761 bl->watchpoint_type = hw_access;
2762 val = 0;
2763 break;
2764 }
2765
2766 if (val == 1)
2767 {
2768 bl->watchpoint_type = hw_access;
2769 val = bl->owner->ops->insert_location (bl);
2770
2771 if (val)
2772 /* Back to the original value. */
2773 bl->watchpoint_type = hw_read;
2774 }
2775 }
2776
2777 bl->inserted = (val == 0);
2778 }
2779
2780 else if (bl->owner->type == bp_catchpoint)
2781 {
2782 int val;
2783
2784 gdb_assert (bl->owner->ops != NULL
2785 && bl->owner->ops->insert_location != NULL);
2786
2787 val = bl->owner->ops->insert_location (bl);
2788 if (val)
2789 {
2790 bl->owner->enable_state = bp_disabled;
2791
2792 if (val == 1)
2793 warning (_("\
2794 Error inserting catchpoint %d: Your system does not support this type\n\
2795 of catchpoint."), bl->owner->number);
2796 else
2797 warning (_("Error inserting catchpoint %d."), bl->owner->number);
2798 }
2799
2800 bl->inserted = (val == 0);
2801
2802 /* We've already printed an error message if there was a problem
2803 inserting this catchpoint, and we've disabled the catchpoint,
2804 so just return success. */
2805 return 0;
2806 }
2807
2808 return 0;
2809 }
2810
2811 /* This function is called when program space PSPACE is about to be
2812 deleted. It takes care of updating breakpoints to not reference
2813 PSPACE anymore. */
2814
2815 void
2816 breakpoint_program_space_exit (struct program_space *pspace)
2817 {
2818 struct breakpoint *b, *b_temp;
2819 struct bp_location *loc, **loc_temp;
2820
2821 /* Remove any breakpoint that was set through this program space. */
2822 ALL_BREAKPOINTS_SAFE (b, b_temp)
2823 {
2824 if (b->pspace == pspace)
2825 delete_breakpoint (b);
2826 }
2827
2828 /* Breakpoints set through other program spaces could have locations
2829 bound to PSPACE as well. Remove those. */
2830 ALL_BP_LOCATIONS (loc, loc_temp)
2831 {
2832 struct bp_location *tmp;
2833
2834 if (loc->pspace == pspace)
2835 {
2836 /* ALL_BP_LOCATIONS bp_location has LOC->OWNER always non-NULL. */
2837 if (loc->owner->loc == loc)
2838 loc->owner->loc = loc->next;
2839 else
2840 for (tmp = loc->owner->loc; tmp->next != NULL; tmp = tmp->next)
2841 if (tmp->next == loc)
2842 {
2843 tmp->next = loc->next;
2844 break;
2845 }
2846 }
2847 }
2848
2849 /* Now update the global location list to permanently delete the
2850 removed locations above. */
2851 update_global_location_list (0);
2852 }
2853
2854 /* Make sure all breakpoints are inserted in inferior.
2855 Throws exception on any error.
2856 A breakpoint that is already inserted won't be inserted
2857 again, so calling this function twice is safe. */
2858 void
2859 insert_breakpoints (void)
2860 {
2861 struct breakpoint *bpt;
2862
2863 ALL_BREAKPOINTS (bpt)
2864 if (is_hardware_watchpoint (bpt))
2865 {
2866 struct watchpoint *w = (struct watchpoint *) bpt;
2867
2868 update_watchpoint (w, 0 /* don't reparse. */);
2869 }
2870
2871 update_global_location_list (1);
2872
2873 /* update_global_location_list does not insert breakpoints when
2874 always_inserted_mode is not enabled. Explicitly insert them
2875 now. */
2876 if (!breakpoints_always_inserted_mode ())
2877 insert_breakpoint_locations ();
2878 }
2879
2880 /* Invoke CALLBACK for each of bp_location. */
2881
2882 void
2883 iterate_over_bp_locations (walk_bp_location_callback callback)
2884 {
2885 struct bp_location *loc, **loc_tmp;
2886
2887 ALL_BP_LOCATIONS (loc, loc_tmp)
2888 {
2889 callback (loc, NULL);
2890 }
2891 }
2892
2893 /* This is used when we need to synch breakpoint conditions between GDB and the
2894 target. It is the case with deleting and disabling of breakpoints when using
2895 always-inserted mode. */
2896
2897 static void
2898 update_inserted_breakpoint_locations (void)
2899 {
2900 struct bp_location *bl, **blp_tmp;
2901 int error_flag = 0;
2902 int val = 0;
2903 int disabled_breaks = 0;
2904 int hw_breakpoint_error = 0;
2905 int hw_bp_details_reported = 0;
2906
2907 struct ui_file *tmp_error_stream = mem_fileopen ();
2908 struct cleanup *cleanups = make_cleanup_ui_file_delete (tmp_error_stream);
2909
2910 /* Explicitly mark the warning -- this will only be printed if
2911 there was an error. */
2912 fprintf_unfiltered (tmp_error_stream, "Warning:\n");
2913
2914 save_current_space_and_thread ();
2915
2916 ALL_BP_LOCATIONS (bl, blp_tmp)
2917 {
2918 /* We only want to update software breakpoints and hardware
2919 breakpoints. */
2920 if (!is_breakpoint (bl->owner))
2921 continue;
2922
2923 /* We only want to update locations that are already inserted
2924 and need updating. This is to avoid unwanted insertion during
2925 deletion of breakpoints. */
2926 if (!bl->inserted || (bl->inserted && !bl->needs_update))
2927 continue;
2928
2929 switch_to_program_space_and_thread (bl->pspace);
2930
2931 /* For targets that support global breakpoints, there's no need
2932 to select an inferior to insert breakpoint to. In fact, even
2933 if we aren't attached to any process yet, we should still
2934 insert breakpoints. */
2935 if (!gdbarch_has_global_breakpoints (target_gdbarch ())
2936 && ptid_equal (inferior_ptid, null_ptid))
2937 continue;
2938
2939 val = insert_bp_location (bl, tmp_error_stream, &disabled_breaks,
2940 &hw_breakpoint_error, &hw_bp_details_reported);
2941 if (val)
2942 error_flag = val;
2943 }
2944
2945 if (error_flag)
2946 {
2947 target_terminal_ours_for_output ();
2948 error_stream (tmp_error_stream);
2949 }
2950
2951 do_cleanups (cleanups);
2952 }
2953
2954 /* Used when starting or continuing the program. */
2955
2956 static void
2957 insert_breakpoint_locations (void)
2958 {
2959 struct breakpoint *bpt;
2960 struct bp_location *bl, **blp_tmp;
2961 int error_flag = 0;
2962 int val = 0;
2963 int disabled_breaks = 0;
2964 int hw_breakpoint_error = 0;
2965 int hw_bp_error_explained_already = 0;
2966
2967 struct ui_file *tmp_error_stream = mem_fileopen ();
2968 struct cleanup *cleanups = make_cleanup_ui_file_delete (tmp_error_stream);
2969
2970 /* Explicitly mark the warning -- this will only be printed if
2971 there was an error. */
2972 fprintf_unfiltered (tmp_error_stream, "Warning:\n");
2973
2974 save_current_space_and_thread ();
2975
2976 ALL_BP_LOCATIONS (bl, blp_tmp)
2977 {
2978 if (!should_be_inserted (bl) || (bl->inserted && !bl->needs_update))
2979 continue;
2980
2981 /* There is no point inserting thread-specific breakpoints if
2982 the thread no longer exists. ALL_BP_LOCATIONS bp_location
2983 has BL->OWNER always non-NULL. */
2984 if (bl->owner->thread != -1
2985 && !valid_thread_id (bl->owner->thread))
2986 continue;
2987
2988 switch_to_program_space_and_thread (bl->pspace);
2989
2990 /* For targets that support global breakpoints, there's no need
2991 to select an inferior to insert breakpoint to. In fact, even
2992 if we aren't attached to any process yet, we should still
2993 insert breakpoints. */
2994 if (!gdbarch_has_global_breakpoints (target_gdbarch ())
2995 && ptid_equal (inferior_ptid, null_ptid))
2996 continue;
2997
2998 val = insert_bp_location (bl, tmp_error_stream, &disabled_breaks,
2999 &hw_breakpoint_error, &hw_bp_error_explained_already);
3000 if (val)
3001 error_flag = val;
3002 }
3003
3004 /* If we failed to insert all locations of a watchpoint, remove
3005 them, as half-inserted watchpoint is of limited use. */
3006 ALL_BREAKPOINTS (bpt)
3007 {
3008 int some_failed = 0;
3009 struct bp_location *loc;
3010
3011 if (!is_hardware_watchpoint (bpt))
3012 continue;
3013
3014 if (!breakpoint_enabled (bpt))
3015 continue;
3016
3017 if (bpt->disposition == disp_del_at_next_stop)
3018 continue;
3019
3020 for (loc = bpt->loc; loc; loc = loc->next)
3021 if (!loc->inserted && should_be_inserted (loc))
3022 {
3023 some_failed = 1;
3024 break;
3025 }
3026 if (some_failed)
3027 {
3028 for (loc = bpt->loc; loc; loc = loc->next)
3029 if (loc->inserted)
3030 remove_breakpoint (loc, mark_uninserted);
3031
3032 hw_breakpoint_error = 1;
3033 fprintf_unfiltered (tmp_error_stream,
3034 "Could not insert hardware watchpoint %d.\n",
3035 bpt->number);
3036 error_flag = -1;
3037 }
3038 }
3039
3040 if (error_flag)
3041 {
3042 /* If a hardware breakpoint or watchpoint was inserted, add a
3043 message about possibly exhausted resources. */
3044 if (hw_breakpoint_error && !hw_bp_error_explained_already)
3045 {
3046 fprintf_unfiltered (tmp_error_stream,
3047 "Could not insert hardware breakpoints:\n\
3048 You may have requested too many hardware breakpoints/watchpoints.\n");
3049 }
3050 target_terminal_ours_for_output ();
3051 error_stream (tmp_error_stream);
3052 }
3053
3054 do_cleanups (cleanups);
3055 }
3056
3057 /* Used when the program stops.
3058 Returns zero if successful, or non-zero if there was a problem
3059 removing a breakpoint location. */
3060
3061 int
3062 remove_breakpoints (void)
3063 {
3064 struct bp_location *bl, **blp_tmp;
3065 int val = 0;
3066
3067 ALL_BP_LOCATIONS (bl, blp_tmp)
3068 {
3069 if (bl->inserted && !is_tracepoint (bl->owner))
3070 val |= remove_breakpoint (bl, mark_uninserted);
3071 }
3072 return val;
3073 }
3074
3075 /* When a thread exits, remove breakpoints that are related to
3076 that thread. */
3077
3078 static void
3079 remove_threaded_breakpoints (struct thread_info *tp, int silent)
3080 {
3081 struct breakpoint *b, *b_tmp;
3082
3083 ALL_BREAKPOINTS_SAFE (b, b_tmp)
3084 {
3085 if (b->thread == tp->num && user_breakpoint_p (b))
3086 {
3087 b->disposition = disp_del_at_next_stop;
3088
3089 printf_filtered (_("\
3090 Thread-specific breakpoint %d deleted - thread %d no longer in the thread list.\n"),
3091 b->number, tp->num);
3092
3093 /* Hide it from the user. */
3094 b->number = 0;
3095 }
3096 }
3097 }
3098
3099 /* Remove breakpoints of process PID. */
3100
3101 int
3102 remove_breakpoints_pid (int pid)
3103 {
3104 struct bp_location *bl, **blp_tmp;
3105 int val;
3106 struct inferior *inf = find_inferior_pid (pid);
3107
3108 ALL_BP_LOCATIONS (bl, blp_tmp)
3109 {
3110 if (bl->pspace != inf->pspace)
3111 continue;
3112
3113 if (bl->owner->type == bp_dprintf)
3114 continue;
3115
3116 if (bl->inserted)
3117 {
3118 val = remove_breakpoint (bl, mark_uninserted);
3119 if (val != 0)
3120 return val;
3121 }
3122 }
3123 return 0;
3124 }
3125
3126 int
3127 reattach_breakpoints (int pid)
3128 {
3129 struct cleanup *old_chain;
3130 struct bp_location *bl, **blp_tmp;
3131 int val;
3132 struct ui_file *tmp_error_stream;
3133 int dummy1 = 0, dummy2 = 0, dummy3 = 0;
3134 struct inferior *inf;
3135 struct thread_info *tp;
3136
3137 tp = any_live_thread_of_process (pid);
3138 if (tp == NULL)
3139 return 1;
3140
3141 inf = find_inferior_pid (pid);
3142 old_chain = save_inferior_ptid ();
3143
3144 inferior_ptid = tp->ptid;
3145
3146 tmp_error_stream = mem_fileopen ();
3147 make_cleanup_ui_file_delete (tmp_error_stream);
3148
3149 ALL_BP_LOCATIONS (bl, blp_tmp)
3150 {
3151 if (bl->pspace != inf->pspace)
3152 continue;
3153
3154 if (bl->inserted)
3155 {
3156 bl->inserted = 0;
3157 val = insert_bp_location (bl, tmp_error_stream, &dummy1, &dummy2, &dummy3);
3158 if (val != 0)
3159 {
3160 do_cleanups (old_chain);
3161 return val;
3162 }
3163 }
3164 }
3165 do_cleanups (old_chain);
3166 return 0;
3167 }
3168
3169 static int internal_breakpoint_number = -1;
3170
3171 /* Set the breakpoint number of B, depending on the value of INTERNAL.
3172 If INTERNAL is non-zero, the breakpoint number will be populated
3173 from internal_breakpoint_number and that variable decremented.
3174 Otherwise the breakpoint number will be populated from
3175 breakpoint_count and that value incremented. Internal breakpoints
3176 do not set the internal var bpnum. */
3177 static void
3178 set_breakpoint_number (int internal, struct breakpoint *b)
3179 {
3180 if (internal)
3181 b->number = internal_breakpoint_number--;
3182 else
3183 {
3184 set_breakpoint_count (breakpoint_count + 1);
3185 b->number = breakpoint_count;
3186 }
3187 }
3188
3189 static struct breakpoint *
3190 create_internal_breakpoint (struct gdbarch *gdbarch,
3191 CORE_ADDR address, enum bptype type,
3192 const struct breakpoint_ops *ops)
3193 {
3194 struct symtab_and_line sal;
3195 struct breakpoint *b;
3196
3197 init_sal (&sal); /* Initialize to zeroes. */
3198
3199 sal.pc = address;
3200 sal.section = find_pc_overlay (sal.pc);
3201 sal.pspace = current_program_space;
3202
3203 b = set_raw_breakpoint (gdbarch, sal, type, ops);
3204 b->number = internal_breakpoint_number--;
3205 b->disposition = disp_donttouch;
3206
3207 return b;
3208 }
3209
3210 static const char *const longjmp_names[] =
3211 {
3212 "longjmp", "_longjmp", "siglongjmp", "_siglongjmp"
3213 };
3214 #define NUM_LONGJMP_NAMES ARRAY_SIZE(longjmp_names)
3215
3216 /* Per-objfile data private to breakpoint.c. */
3217 struct breakpoint_objfile_data
3218 {
3219 /* Minimal symbol for "_ovly_debug_event" (if any). */
3220 struct bound_minimal_symbol overlay_msym;
3221
3222 /* Minimal symbol(s) for "longjmp", "siglongjmp", etc. (if any). */
3223 struct bound_minimal_symbol longjmp_msym[NUM_LONGJMP_NAMES];
3224
3225 /* True if we have looked for longjmp probes. */
3226 int longjmp_searched;
3227
3228 /* SystemTap probe points for longjmp (if any). */
3229 VEC (probe_p) *longjmp_probes;
3230
3231 /* Minimal symbol for "std::terminate()" (if any). */
3232 struct bound_minimal_symbol terminate_msym;
3233
3234 /* Minimal symbol for "_Unwind_DebugHook" (if any). */
3235 struct bound_minimal_symbol exception_msym;
3236
3237 /* True if we have looked for exception probes. */
3238 int exception_searched;
3239
3240 /* SystemTap probe points for unwinding (if any). */
3241 VEC (probe_p) *exception_probes;
3242 };
3243
3244 static const struct objfile_data *breakpoint_objfile_key;
3245
3246 /* Minimal symbol not found sentinel. */
3247 static struct minimal_symbol msym_not_found;
3248
3249 /* Returns TRUE if MSYM point to the "not found" sentinel. */
3250
3251 static int
3252 msym_not_found_p (const struct minimal_symbol *msym)
3253 {
3254 return msym == &msym_not_found;
3255 }
3256
3257 /* Return per-objfile data needed by breakpoint.c.
3258 Allocate the data if necessary. */
3259
3260 static struct breakpoint_objfile_data *
3261 get_breakpoint_objfile_data (struct objfile *objfile)
3262 {
3263 struct breakpoint_objfile_data *bp_objfile_data;
3264
3265 bp_objfile_data = objfile_data (objfile, breakpoint_objfile_key);
3266 if (bp_objfile_data == NULL)
3267 {
3268 bp_objfile_data = obstack_alloc (&objfile->objfile_obstack,
3269 sizeof (*bp_objfile_data));
3270
3271 memset (bp_objfile_data, 0, sizeof (*bp_objfile_data));
3272 set_objfile_data (objfile, breakpoint_objfile_key, bp_objfile_data);
3273 }
3274 return bp_objfile_data;
3275 }
3276
3277 static void
3278 free_breakpoint_probes (struct objfile *obj, void *data)
3279 {
3280 struct breakpoint_objfile_data *bp_objfile_data = data;
3281
3282 VEC_free (probe_p, bp_objfile_data->longjmp_probes);
3283 VEC_free (probe_p, bp_objfile_data->exception_probes);
3284 }
3285
3286 static void
3287 create_overlay_event_breakpoint (void)
3288 {
3289 struct objfile *objfile;
3290 const char *const func_name = "_ovly_debug_event";
3291
3292 ALL_OBJFILES (objfile)
3293 {
3294 struct breakpoint *b;
3295 struct breakpoint_objfile_data *bp_objfile_data;
3296 CORE_ADDR addr;
3297
3298 bp_objfile_data = get_breakpoint_objfile_data (objfile);
3299
3300 if (msym_not_found_p (bp_objfile_data->overlay_msym.minsym))
3301 continue;
3302
3303 if (bp_objfile_data->overlay_msym.minsym == NULL)
3304 {
3305 struct bound_minimal_symbol m;
3306
3307 m = lookup_minimal_symbol_text (func_name, objfile);
3308 if (m.minsym == NULL)
3309 {
3310 /* Avoid future lookups in this objfile. */
3311 bp_objfile_data->overlay_msym.minsym = &msym_not_found;
3312 continue;
3313 }
3314 bp_objfile_data->overlay_msym = m;
3315 }
3316
3317 addr = BMSYMBOL_VALUE_ADDRESS (bp_objfile_data->overlay_msym);
3318 b = create_internal_breakpoint (get_objfile_arch (objfile), addr,
3319 bp_overlay_event,
3320 &internal_breakpoint_ops);
3321 b->addr_string = xstrdup (func_name);
3322
3323 if (overlay_debugging == ovly_auto)
3324 {
3325 b->enable_state = bp_enabled;
3326 overlay_events_enabled = 1;
3327 }
3328 else
3329 {
3330 b->enable_state = bp_disabled;
3331 overlay_events_enabled = 0;
3332 }
3333 }
3334 update_global_location_list (1);
3335 }
3336
3337 static void
3338 create_longjmp_master_breakpoint (void)
3339 {
3340 struct program_space *pspace;
3341 struct cleanup *old_chain;
3342
3343 old_chain = save_current_program_space ();
3344
3345 ALL_PSPACES (pspace)
3346 {
3347 struct objfile *objfile;
3348
3349 set_current_program_space (pspace);
3350
3351 ALL_OBJFILES (objfile)
3352 {
3353 int i;
3354 struct gdbarch *gdbarch;
3355 struct breakpoint_objfile_data *bp_objfile_data;
3356
3357 gdbarch = get_objfile_arch (objfile);
3358
3359 bp_objfile_data = get_breakpoint_objfile_data (objfile);
3360
3361 if (!bp_objfile_data->longjmp_searched)
3362 {
3363 VEC (probe_p) *ret;
3364
3365 ret = find_probes_in_objfile (objfile, "libc", "longjmp");
3366 if (ret != NULL)
3367 {
3368 /* We are only interested in checking one element. */
3369 struct probe *p = VEC_index (probe_p, ret, 0);
3370
3371 if (!can_evaluate_probe_arguments (p))
3372 {
3373 /* We cannot use the probe interface here, because it does
3374 not know how to evaluate arguments. */
3375 VEC_free (probe_p, ret);
3376 ret = NULL;
3377 }
3378 }
3379 bp_objfile_data->longjmp_probes = ret;
3380 bp_objfile_data->longjmp_searched = 1;
3381 }
3382
3383 if (bp_objfile_data->longjmp_probes != NULL)
3384 {
3385 int i;
3386 struct probe *probe;
3387 struct gdbarch *gdbarch = get_objfile_arch (objfile);
3388
3389 for (i = 0;
3390 VEC_iterate (probe_p,
3391 bp_objfile_data->longjmp_probes,
3392 i, probe);
3393 ++i)
3394 {
3395 struct breakpoint *b;
3396
3397 b = create_internal_breakpoint (gdbarch,
3398 get_probe_address (probe,
3399 objfile),
3400 bp_longjmp_master,
3401 &internal_breakpoint_ops);
3402 b->addr_string = xstrdup ("-probe-stap libc:longjmp");
3403 b->enable_state = bp_disabled;
3404 }
3405
3406 continue;
3407 }
3408
3409 if (!gdbarch_get_longjmp_target_p (gdbarch))
3410 continue;
3411
3412 for (i = 0; i < NUM_LONGJMP_NAMES; i++)
3413 {
3414 struct breakpoint *b;
3415 const char *func_name;
3416 CORE_ADDR addr;
3417
3418 if (msym_not_found_p (bp_objfile_data->longjmp_msym[i].minsym))
3419 continue;
3420
3421 func_name = longjmp_names[i];
3422 if (bp_objfile_data->longjmp_msym[i].minsym == NULL)
3423 {
3424 struct bound_minimal_symbol m;
3425
3426 m = lookup_minimal_symbol_text (func_name, objfile);
3427 if (m.minsym == NULL)
3428 {
3429 /* Prevent future lookups in this objfile. */
3430 bp_objfile_data->longjmp_msym[i].minsym = &msym_not_found;
3431 continue;
3432 }
3433 bp_objfile_data->longjmp_msym[i] = m;
3434 }
3435
3436 addr = BMSYMBOL_VALUE_ADDRESS (bp_objfile_data->longjmp_msym[i]);
3437 b = create_internal_breakpoint (gdbarch, addr, bp_longjmp_master,
3438 &internal_breakpoint_ops);
3439 b->addr_string = xstrdup (func_name);
3440 b->enable_state = bp_disabled;
3441 }
3442 }
3443 }
3444 update_global_location_list (1);
3445
3446 do_cleanups (old_chain);
3447 }
3448
3449 /* Create a master std::terminate breakpoint. */
3450 static void
3451 create_std_terminate_master_breakpoint (void)
3452 {
3453 struct program_space *pspace;
3454 struct cleanup *old_chain;
3455 const char *const func_name = "std::terminate()";
3456
3457 old_chain = save_current_program_space ();
3458
3459 ALL_PSPACES (pspace)
3460 {
3461 struct objfile *objfile;
3462 CORE_ADDR addr;
3463
3464 set_current_program_space (pspace);
3465
3466 ALL_OBJFILES (objfile)
3467 {
3468 struct breakpoint *b;
3469 struct breakpoint_objfile_data *bp_objfile_data;
3470
3471 bp_objfile_data = get_breakpoint_objfile_data (objfile);
3472
3473 if (msym_not_found_p (bp_objfile_data->terminate_msym.minsym))
3474 continue;
3475
3476 if (bp_objfile_data->terminate_msym.minsym == NULL)
3477 {
3478 struct bound_minimal_symbol m;
3479
3480 m = lookup_minimal_symbol (func_name, NULL, objfile);
3481 if (m.minsym == NULL || (MSYMBOL_TYPE (m.minsym) != mst_text
3482 && MSYMBOL_TYPE (m.minsym) != mst_file_text))
3483 {
3484 /* Prevent future lookups in this objfile. */
3485 bp_objfile_data->terminate_msym.minsym = &msym_not_found;
3486 continue;
3487 }
3488 bp_objfile_data->terminate_msym = m;
3489 }
3490
3491 addr = BMSYMBOL_VALUE_ADDRESS (bp_objfile_data->terminate_msym);
3492 b = create_internal_breakpoint (get_objfile_arch (objfile), addr,
3493 bp_std_terminate_master,
3494 &internal_breakpoint_ops);
3495 b->addr_string = xstrdup (func_name);
3496 b->enable_state = bp_disabled;
3497 }
3498 }
3499
3500 update_global_location_list (1);
3501
3502 do_cleanups (old_chain);
3503 }
3504
3505 /* Install a master breakpoint on the unwinder's debug hook. */
3506
3507 static void
3508 create_exception_master_breakpoint (void)
3509 {
3510 struct objfile *objfile;
3511 const char *const func_name = "_Unwind_DebugHook";
3512
3513 ALL_OBJFILES (objfile)
3514 {
3515 struct breakpoint *b;
3516 struct gdbarch *gdbarch;
3517 struct breakpoint_objfile_data *bp_objfile_data;
3518 CORE_ADDR addr;
3519
3520 bp_objfile_data = get_breakpoint_objfile_data (objfile);
3521
3522 /* We prefer the SystemTap probe point if it exists. */
3523 if (!bp_objfile_data->exception_searched)
3524 {
3525 VEC (probe_p) *ret;
3526
3527 ret = find_probes_in_objfile (objfile, "libgcc", "unwind");
3528
3529 if (ret != NULL)
3530 {
3531 /* We are only interested in checking one element. */
3532 struct probe *p = VEC_index (probe_p, ret, 0);
3533
3534 if (!can_evaluate_probe_arguments (p))
3535 {
3536 /* We cannot use the probe interface here, because it does
3537 not know how to evaluate arguments. */
3538 VEC_free (probe_p, ret);
3539 ret = NULL;
3540 }
3541 }
3542 bp_objfile_data->exception_probes = ret;
3543 bp_objfile_data->exception_searched = 1;
3544 }
3545
3546 if (bp_objfile_data->exception_probes != NULL)
3547 {
3548 struct gdbarch *gdbarch = get_objfile_arch (objfile);
3549 int i;
3550 struct probe *probe;
3551
3552 for (i = 0;
3553 VEC_iterate (probe_p,
3554 bp_objfile_data->exception_probes,
3555 i, probe);
3556 ++i)
3557 {
3558 struct breakpoint *b;
3559
3560 b = create_internal_breakpoint (gdbarch,
3561 get_probe_address (probe,
3562 objfile),
3563 bp_exception_master,
3564 &internal_breakpoint_ops);
3565 b->addr_string = xstrdup ("-probe-stap libgcc:unwind");
3566 b->enable_state = bp_disabled;
3567 }
3568
3569 continue;
3570 }
3571
3572 /* Otherwise, try the hook function. */
3573
3574 if (msym_not_found_p (bp_objfile_data->exception_msym.minsym))
3575 continue;
3576
3577 gdbarch = get_objfile_arch (objfile);
3578
3579 if (bp_objfile_data->exception_msym.minsym == NULL)
3580 {
3581 struct bound_minimal_symbol debug_hook;
3582
3583 debug_hook = lookup_minimal_symbol (func_name, NULL, objfile);
3584 if (debug_hook.minsym == NULL)
3585 {
3586 bp_objfile_data->exception_msym.minsym = &msym_not_found;
3587 continue;
3588 }
3589
3590 bp_objfile_data->exception_msym = debug_hook;
3591 }
3592
3593 addr = BMSYMBOL_VALUE_ADDRESS (bp_objfile_data->exception_msym);
3594 addr = gdbarch_convert_from_func_ptr_addr (gdbarch, addr,
3595 &current_target);
3596 b = create_internal_breakpoint (gdbarch, addr, bp_exception_master,
3597 &internal_breakpoint_ops);
3598 b->addr_string = xstrdup (func_name);
3599 b->enable_state = bp_disabled;
3600 }
3601
3602 update_global_location_list (1);
3603 }
3604
3605 void
3606 update_breakpoints_after_exec (void)
3607 {
3608 struct breakpoint *b, *b_tmp;
3609 struct bp_location *bploc, **bplocp_tmp;
3610
3611 /* We're about to delete breakpoints from GDB's lists. If the
3612 INSERTED flag is true, GDB will try to lift the breakpoints by
3613 writing the breakpoints' "shadow contents" back into memory. The
3614 "shadow contents" are NOT valid after an exec, so GDB should not
3615 do that. Instead, the target is responsible from marking
3616 breakpoints out as soon as it detects an exec. We don't do that
3617 here instead, because there may be other attempts to delete
3618 breakpoints after detecting an exec and before reaching here. */
3619 ALL_BP_LOCATIONS (bploc, bplocp_tmp)
3620 if (bploc->pspace == current_program_space)
3621 gdb_assert (!bploc->inserted);
3622
3623 ALL_BREAKPOINTS_SAFE (b, b_tmp)
3624 {
3625 if (b->pspace != current_program_space)
3626 continue;
3627
3628 /* Solib breakpoints must be explicitly reset after an exec(). */
3629 if (b->type == bp_shlib_event)
3630 {
3631 delete_breakpoint (b);
3632 continue;
3633 }
3634
3635 /* JIT breakpoints must be explicitly reset after an exec(). */
3636 if (b->type == bp_jit_event)
3637 {
3638 delete_breakpoint (b);
3639 continue;
3640 }
3641
3642 /* Thread event breakpoints must be set anew after an exec(),
3643 as must overlay event and longjmp master breakpoints. */
3644 if (b->type == bp_thread_event || b->type == bp_overlay_event
3645 || b->type == bp_longjmp_master || b->type == bp_std_terminate_master
3646 || b->type == bp_exception_master)
3647 {
3648 delete_breakpoint (b);
3649 continue;
3650 }
3651
3652 /* Step-resume breakpoints are meaningless after an exec(). */
3653 if (b->type == bp_step_resume || b->type == bp_hp_step_resume)
3654 {
3655 delete_breakpoint (b);
3656 continue;
3657 }
3658
3659 /* Longjmp and longjmp-resume breakpoints are also meaningless
3660 after an exec. */
3661 if (b->type == bp_longjmp || b->type == bp_longjmp_resume
3662 || b->type == bp_longjmp_call_dummy
3663 || b->type == bp_exception || b->type == bp_exception_resume)
3664 {
3665 delete_breakpoint (b);
3666 continue;
3667 }
3668
3669 if (b->type == bp_catchpoint)
3670 {
3671 /* For now, none of the bp_catchpoint breakpoints need to
3672 do anything at this point. In the future, if some of
3673 the catchpoints need to something, we will need to add
3674 a new method, and call this method from here. */
3675 continue;
3676 }
3677
3678 /* bp_finish is a special case. The only way we ought to be able
3679 to see one of these when an exec() has happened, is if the user
3680 caught a vfork, and then said "finish". Ordinarily a finish just
3681 carries them to the call-site of the current callee, by setting
3682 a temporary bp there and resuming. But in this case, the finish
3683 will carry them entirely through the vfork & exec.
3684
3685 We don't want to allow a bp_finish to remain inserted now. But
3686 we can't safely delete it, 'cause finish_command has a handle to
3687 the bp on a bpstat, and will later want to delete it. There's a
3688 chance (and I've seen it happen) that if we delete the bp_finish
3689 here, that its storage will get reused by the time finish_command
3690 gets 'round to deleting the "use to be a bp_finish" breakpoint.
3691 We really must allow finish_command to delete a bp_finish.
3692
3693 In the absence of a general solution for the "how do we know
3694 it's safe to delete something others may have handles to?"
3695 problem, what we'll do here is just uninsert the bp_finish, and
3696 let finish_command delete it.
3697
3698 (We know the bp_finish is "doomed" in the sense that it's
3699 momentary, and will be deleted as soon as finish_command sees
3700 the inferior stopped. So it doesn't matter that the bp's
3701 address is probably bogus in the new a.out, unlike e.g., the
3702 solib breakpoints.) */
3703
3704 if (b->type == bp_finish)
3705 {
3706 continue;
3707 }
3708
3709 /* Without a symbolic address, we have little hope of the
3710 pre-exec() address meaning the same thing in the post-exec()
3711 a.out. */
3712 if (b->addr_string == NULL)
3713 {
3714 delete_breakpoint (b);
3715 continue;
3716 }
3717 }
3718 /* FIXME what about longjmp breakpoints? Re-create them here? */
3719 create_overlay_event_breakpoint ();
3720 create_longjmp_master_breakpoint ();
3721 create_std_terminate_master_breakpoint ();
3722 create_exception_master_breakpoint ();
3723 }
3724
3725 int
3726 detach_breakpoints (ptid_t ptid)
3727 {
3728 struct bp_location *bl, **blp_tmp;
3729 int val = 0;
3730 struct cleanup *old_chain = save_inferior_ptid ();
3731 struct inferior *inf = current_inferior ();
3732
3733 if (ptid_get_pid (ptid) == ptid_get_pid (inferior_ptid))
3734 error (_("Cannot detach breakpoints of inferior_ptid"));
3735
3736 /* Set inferior_ptid; remove_breakpoint_1 uses this global. */
3737 inferior_ptid = ptid;
3738 ALL_BP_LOCATIONS (bl, blp_tmp)
3739 {
3740 if (bl->pspace != inf->pspace)
3741 continue;
3742
3743 /* This function must physically remove breakpoints locations
3744 from the specified ptid, without modifying the breakpoint
3745 package's state. Locations of type bp_loc_other are only
3746 maintained at GDB side. So, there is no need to remove
3747 these bp_loc_other locations. Moreover, removing these
3748 would modify the breakpoint package's state. */
3749 if (bl->loc_type == bp_loc_other)
3750 continue;
3751
3752 if (bl->inserted)
3753 val |= remove_breakpoint_1 (bl, mark_inserted);
3754 }
3755
3756 /* Detach single-step breakpoints as well. */
3757 detach_single_step_breakpoints ();
3758
3759 do_cleanups (old_chain);
3760 return val;
3761 }
3762
3763 /* Remove the breakpoint location BL from the current address space.
3764 Note that this is used to detach breakpoints from a child fork.
3765 When we get here, the child isn't in the inferior list, and neither
3766 do we have objects to represent its address space --- we should
3767 *not* look at bl->pspace->aspace here. */
3768
3769 static int
3770 remove_breakpoint_1 (struct bp_location *bl, insertion_state_t is)
3771 {
3772 int val;
3773
3774 /* BL is never in moribund_locations by our callers. */
3775 gdb_assert (bl->owner != NULL);
3776
3777 if (bl->owner->enable_state == bp_permanent)
3778 /* Permanent breakpoints cannot be inserted or removed. */
3779 return 0;
3780
3781 /* The type of none suggests that owner is actually deleted.
3782 This should not ever happen. */
3783 gdb_assert (bl->owner->type != bp_none);
3784
3785 if (bl->loc_type == bp_loc_software_breakpoint
3786 || bl->loc_type == bp_loc_hardware_breakpoint)
3787 {
3788 /* "Normal" instruction breakpoint: either the standard
3789 trap-instruction bp (bp_breakpoint), or a
3790 bp_hardware_breakpoint. */
3791
3792 /* First check to see if we have to handle an overlay. */
3793 if (overlay_debugging == ovly_off
3794 || bl->section == NULL
3795 || !(section_is_overlay (bl->section)))
3796 {
3797 /* No overlay handling: just remove the breakpoint. */
3798
3799 /* If we're trying to uninsert a memory breakpoint that we
3800 know is set in a dynamic object that is marked
3801 shlib_disabled, then either the dynamic object was
3802 removed with "remove-symbol-file" or with
3803 "nosharedlibrary". In the former case, we don't know
3804 whether another dynamic object might have loaded over the
3805 breakpoint's address -- the user might well let us know
3806 about it next with add-symbol-file (the whole point of
3807 add-symbol-file is letting the user manually maintain a
3808 list of dynamically loaded objects). If we have the
3809 breakpoint's shadow memory, that is, this is a software
3810 breakpoint managed by GDB, check whether the breakpoint
3811 is still inserted in memory, to avoid overwriting wrong
3812 code with stale saved shadow contents. Note that HW
3813 breakpoints don't have shadow memory, as they're
3814 implemented using a mechanism that is not dependent on
3815 being able to modify the target's memory, and as such
3816 they should always be removed. */
3817 if (bl->shlib_disabled
3818 && bl->target_info.shadow_len != 0
3819 && !memory_validate_breakpoint (bl->gdbarch, &bl->target_info))
3820 val = 0;
3821 else
3822 val = bl->owner->ops->remove_location (bl);
3823 }
3824 else
3825 {
3826 /* This breakpoint is in an overlay section.
3827 Did we set a breakpoint at the LMA? */
3828 if (!overlay_events_enabled)
3829 {
3830 /* Yes -- overlay event support is not active, so we
3831 should have set a breakpoint at the LMA. Remove it.
3832 */
3833 /* Ignore any failures: if the LMA is in ROM, we will
3834 have already warned when we failed to insert it. */
3835 if (bl->loc_type == bp_loc_hardware_breakpoint)
3836 target_remove_hw_breakpoint (bl->gdbarch,
3837 &bl->overlay_target_info);
3838 else
3839 target_remove_breakpoint (bl->gdbarch,
3840 &bl->overlay_target_info);
3841 }
3842 /* Did we set a breakpoint at the VMA?
3843 If so, we will have marked the breakpoint 'inserted'. */
3844 if (bl->inserted)
3845 {
3846 /* Yes -- remove it. Previously we did not bother to
3847 remove the breakpoint if the section had been
3848 unmapped, but let's not rely on that being safe. We
3849 don't know what the overlay manager might do. */
3850
3851 /* However, we should remove *software* breakpoints only
3852 if the section is still mapped, or else we overwrite
3853 wrong code with the saved shadow contents. */
3854 if (bl->loc_type == bp_loc_hardware_breakpoint
3855 || section_is_mapped (bl->section))
3856 val = bl->owner->ops->remove_location (bl);
3857 else
3858 val = 0;
3859 }
3860 else
3861 {
3862 /* No -- not inserted, so no need to remove. No error. */
3863 val = 0;
3864 }
3865 }
3866
3867 /* In some cases, we might not be able to remove a breakpoint in
3868 a shared library that has already been removed, but we have
3869 not yet processed the shlib unload event. Similarly for an
3870 unloaded add-symbol-file object - the user might not yet have
3871 had the chance to remove-symbol-file it. shlib_disabled will
3872 be set if the library/object has already been removed, but
3873 the breakpoint hasn't been uninserted yet, e.g., after
3874 "nosharedlibrary" or "remove-symbol-file" with breakpoints
3875 always-inserted mode. */
3876 if (val
3877 && (bl->loc_type == bp_loc_software_breakpoint
3878 && (bl->shlib_disabled
3879 || solib_name_from_address (bl->pspace, bl->address)
3880 || shared_objfile_contains_address_p (bl->pspace,
3881 bl->address))))
3882 val = 0;
3883
3884 if (val)
3885 return val;
3886 bl->inserted = (is == mark_inserted);
3887 }
3888 else if (bl->loc_type == bp_loc_hardware_watchpoint)
3889 {
3890 gdb_assert (bl->owner->ops != NULL
3891 && bl->owner->ops->remove_location != NULL);
3892
3893 bl->inserted = (is == mark_inserted);
3894 bl->owner->ops->remove_location (bl);
3895
3896 /* Failure to remove any of the hardware watchpoints comes here. */
3897 if ((is == mark_uninserted) && (bl->inserted))
3898 warning (_("Could not remove hardware watchpoint %d."),
3899 bl->owner->number);
3900 }
3901 else if (bl->owner->type == bp_catchpoint
3902 && breakpoint_enabled (bl->owner)
3903 && !bl->duplicate)
3904 {
3905 gdb_assert (bl->owner->ops != NULL
3906 && bl->owner->ops->remove_location != NULL);
3907
3908 val = bl->owner->ops->remove_location (bl);
3909 if (val)
3910 return val;
3911
3912 bl->inserted = (is == mark_inserted);
3913 }
3914
3915 return 0;
3916 }
3917
3918 static int
3919 remove_breakpoint (struct bp_location *bl, insertion_state_t is)
3920 {
3921 int ret;
3922 struct cleanup *old_chain;
3923
3924 /* BL is never in moribund_locations by our callers. */
3925 gdb_assert (bl->owner != NULL);
3926
3927 if (bl->owner->enable_state == bp_permanent)
3928 /* Permanent breakpoints cannot be inserted or removed. */
3929 return 0;
3930
3931 /* The type of none suggests that owner is actually deleted.
3932 This should not ever happen. */
3933 gdb_assert (bl->owner->type != bp_none);
3934
3935 old_chain = save_current_space_and_thread ();
3936
3937 switch_to_program_space_and_thread (bl->pspace);
3938
3939 ret = remove_breakpoint_1 (bl, is);
3940
3941 do_cleanups (old_chain);
3942 return ret;
3943 }
3944
3945 /* Clear the "inserted" flag in all breakpoints. */
3946
3947 void
3948 mark_breakpoints_out (void)
3949 {
3950 struct bp_location *bl, **blp_tmp;
3951
3952 ALL_BP_LOCATIONS (bl, blp_tmp)
3953 if (bl->pspace == current_program_space)
3954 bl->inserted = 0;
3955 }
3956
3957 /* Clear the "inserted" flag in all breakpoints and delete any
3958 breakpoints which should go away between runs of the program.
3959
3960 Plus other such housekeeping that has to be done for breakpoints
3961 between runs.
3962
3963 Note: this function gets called at the end of a run (by
3964 generic_mourn_inferior) and when a run begins (by
3965 init_wait_for_inferior). */
3966
3967
3968
3969 void
3970 breakpoint_init_inferior (enum inf_context context)
3971 {
3972 struct breakpoint *b, *b_tmp;
3973 struct bp_location *bl, **blp_tmp;
3974 int ix;
3975 struct program_space *pspace = current_program_space;
3976
3977 /* If breakpoint locations are shared across processes, then there's
3978 nothing to do. */
3979 if (gdbarch_has_global_breakpoints (target_gdbarch ()))
3980 return;
3981
3982 ALL_BP_LOCATIONS (bl, blp_tmp)
3983 {
3984 /* ALL_BP_LOCATIONS bp_location has BL->OWNER always non-NULL. */
3985 if (bl->pspace == pspace
3986 && bl->owner->enable_state != bp_permanent)
3987 bl->inserted = 0;
3988 }
3989
3990 ALL_BREAKPOINTS_SAFE (b, b_tmp)
3991 {
3992 if (b->loc && b->loc->pspace != pspace)
3993 continue;
3994
3995 switch (b->type)
3996 {
3997 case bp_call_dummy:
3998 case bp_longjmp_call_dummy:
3999
4000 /* If the call dummy breakpoint is at the entry point it will
4001 cause problems when the inferior is rerun, so we better get
4002 rid of it. */
4003
4004 case bp_watchpoint_scope:
4005
4006 /* Also get rid of scope breakpoints. */
4007
4008 case bp_shlib_event:
4009
4010 /* Also remove solib event breakpoints. Their addresses may
4011 have changed since the last time we ran the program.
4012 Actually we may now be debugging against different target;
4013 and so the solib backend that installed this breakpoint may
4014 not be used in by the target. E.g.,
4015
4016 (gdb) file prog-linux
4017 (gdb) run # native linux target
4018 ...
4019 (gdb) kill
4020 (gdb) file prog-win.exe
4021 (gdb) tar rem :9999 # remote Windows gdbserver.
4022 */
4023
4024 case bp_step_resume:
4025
4026 /* Also remove step-resume breakpoints. */
4027
4028 delete_breakpoint (b);
4029 break;
4030
4031 case bp_watchpoint:
4032 case bp_hardware_watchpoint:
4033 case bp_read_watchpoint:
4034 case bp_access_watchpoint:
4035 {
4036 struct watchpoint *w = (struct watchpoint *) b;
4037
4038 /* Likewise for watchpoints on local expressions. */
4039 if (w->exp_valid_block != NULL)
4040 delete_breakpoint (b);
4041 else if (context == inf_starting)
4042 {
4043 /* Reset val field to force reread of starting value in
4044 insert_breakpoints. */
4045 if (w->val)
4046 value_free (w->val);
4047 w->val = NULL;
4048 w->val_valid = 0;
4049 }
4050 }
4051 break;
4052 default:
4053 break;
4054 }
4055 }
4056
4057 /* Get rid of the moribund locations. */
4058 for (ix = 0; VEC_iterate (bp_location_p, moribund_locations, ix, bl); ++ix)
4059 decref_bp_location (&bl);
4060 VEC_free (bp_location_p, moribund_locations);
4061 }
4062
4063 /* These functions concern about actual breakpoints inserted in the
4064 target --- to e.g. check if we need to do decr_pc adjustment or if
4065 we need to hop over the bkpt --- so we check for address space
4066 match, not program space. */
4067
4068 /* breakpoint_here_p (PC) returns non-zero if an enabled breakpoint
4069 exists at PC. It returns ordinary_breakpoint_here if it's an
4070 ordinary breakpoint, or permanent_breakpoint_here if it's a
4071 permanent breakpoint.
4072 - When continuing from a location with an ordinary breakpoint, we
4073 actually single step once before calling insert_breakpoints.
4074 - When continuing from a location with a permanent breakpoint, we
4075 need to use the `SKIP_PERMANENT_BREAKPOINT' macro, provided by
4076 the target, to advance the PC past the breakpoint. */
4077
4078 enum breakpoint_here
4079 breakpoint_here_p (struct address_space *aspace, CORE_ADDR pc)
4080 {
4081 struct bp_location *bl, **blp_tmp;
4082 int any_breakpoint_here = 0;
4083
4084 ALL_BP_LOCATIONS (bl, blp_tmp)
4085 {
4086 if (bl->loc_type != bp_loc_software_breakpoint
4087 && bl->loc_type != bp_loc_hardware_breakpoint)
4088 continue;
4089
4090 /* ALL_BP_LOCATIONS bp_location has BL->OWNER always non-NULL. */
4091 if ((breakpoint_enabled (bl->owner)
4092 || bl->owner->enable_state == bp_permanent)
4093 && breakpoint_location_address_match (bl, aspace, pc))
4094 {
4095 if (overlay_debugging
4096 && section_is_overlay (bl->section)
4097 && !section_is_mapped (bl->section))
4098 continue; /* unmapped overlay -- can't be a match */
4099 else if (bl->owner->enable_state == bp_permanent)
4100 return permanent_breakpoint_here;
4101 else
4102 any_breakpoint_here = 1;
4103 }
4104 }
4105
4106 return any_breakpoint_here ? ordinary_breakpoint_here : 0;
4107 }
4108
4109 /* Return true if there's a moribund breakpoint at PC. */
4110
4111 int
4112 moribund_breakpoint_here_p (struct address_space *aspace, CORE_ADDR pc)
4113 {
4114 struct bp_location *loc;
4115 int ix;
4116
4117 for (ix = 0; VEC_iterate (bp_location_p, moribund_locations, ix, loc); ++ix)
4118 if (breakpoint_location_address_match (loc, aspace, pc))
4119 return 1;
4120
4121 return 0;
4122 }
4123
4124 /* Returns non-zero if there's a breakpoint inserted at PC, which is
4125 inserted using regular breakpoint_chain / bp_location array
4126 mechanism. This does not check for single-step breakpoints, which
4127 are inserted and removed using direct target manipulation. */
4128
4129 int
4130 regular_breakpoint_inserted_here_p (struct address_space *aspace,
4131 CORE_ADDR pc)
4132 {
4133 struct bp_location *bl, **blp_tmp;
4134
4135 ALL_BP_LOCATIONS (bl, blp_tmp)
4136 {
4137 if (bl->loc_type != bp_loc_software_breakpoint
4138 && bl->loc_type != bp_loc_hardware_breakpoint)
4139 continue;
4140
4141 if (bl->inserted
4142 && breakpoint_location_address_match (bl, aspace, pc))
4143 {
4144 if (overlay_debugging
4145 && section_is_overlay (bl->section)
4146 && !section_is_mapped (bl->section))
4147 continue; /* unmapped overlay -- can't be a match */
4148 else
4149 return 1;
4150 }
4151 }
4152 return 0;
4153 }
4154
4155 /* Returns non-zero iff there's either regular breakpoint
4156 or a single step breakpoint inserted at PC. */
4157
4158 int
4159 breakpoint_inserted_here_p (struct address_space *aspace, CORE_ADDR pc)
4160 {
4161 if (regular_breakpoint_inserted_here_p (aspace, pc))
4162 return 1;
4163
4164 if (single_step_breakpoint_inserted_here_p (aspace, pc))
4165 return 1;
4166
4167 return 0;
4168 }
4169
4170 /* Ignoring deprecated raw breakpoints, return non-zero iff there is a
4171 software breakpoint inserted at PC. */
4172
4173 static struct bp_location *
4174 find_non_raw_software_breakpoint_inserted_here (struct address_space *aspace,
4175 CORE_ADDR pc)
4176 {
4177 struct bp_location *bl, **blp_tmp;
4178
4179 ALL_BP_LOCATIONS (bl, blp_tmp)
4180 {
4181 if (bl->loc_type != bp_loc_software_breakpoint)
4182 continue;
4183
4184 if (bl->inserted
4185 && breakpoint_address_match (bl->pspace->aspace, bl->address,
4186 aspace, pc))
4187 {
4188 if (overlay_debugging
4189 && section_is_overlay (bl->section)
4190 && !section_is_mapped (bl->section))
4191 continue; /* unmapped overlay -- can't be a match */
4192 else
4193 return bl;
4194 }
4195 }
4196
4197 return NULL;
4198 }
4199
4200 /* This function returns non-zero iff there is a software breakpoint
4201 inserted at PC. */
4202
4203 int
4204 software_breakpoint_inserted_here_p (struct address_space *aspace,
4205 CORE_ADDR pc)
4206 {
4207 if (find_non_raw_software_breakpoint_inserted_here (aspace, pc) != NULL)
4208 return 1;
4209
4210 /* Also check for software single-step breakpoints. */
4211 if (single_step_breakpoint_inserted_here_p (aspace, pc))
4212 return 1;
4213
4214 return 0;
4215 }
4216
4217 int
4218 hardware_watchpoint_inserted_in_range (struct address_space *aspace,
4219 CORE_ADDR addr, ULONGEST len)
4220 {
4221 struct breakpoint *bpt;
4222
4223 ALL_BREAKPOINTS (bpt)
4224 {
4225 struct bp_location *loc;
4226
4227 if (bpt->type != bp_hardware_watchpoint
4228 && bpt->type != bp_access_watchpoint)
4229 continue;
4230
4231 if (!breakpoint_enabled (bpt))
4232 continue;
4233
4234 for (loc = bpt->loc; loc; loc = loc->next)
4235 if (loc->pspace->aspace == aspace && loc->inserted)
4236 {
4237 CORE_ADDR l, h;
4238
4239 /* Check for intersection. */
4240 l = max (loc->address, addr);
4241 h = min (loc->address + loc->length, addr + len);
4242 if (l < h)
4243 return 1;
4244 }
4245 }
4246 return 0;
4247 }
4248
4249 /* breakpoint_thread_match (PC, PTID) returns true if the breakpoint at
4250 PC is valid for process/thread PTID. */
4251
4252 int
4253 breakpoint_thread_match (struct address_space *aspace, CORE_ADDR pc,
4254 ptid_t ptid)
4255 {
4256 struct bp_location *bl, **blp_tmp;
4257 /* The thread and task IDs associated to PTID, computed lazily. */
4258 int thread = -1;
4259 int task = 0;
4260
4261 ALL_BP_LOCATIONS (bl, blp_tmp)
4262 {
4263 if (bl->loc_type != bp_loc_software_breakpoint
4264 && bl->loc_type != bp_loc_hardware_breakpoint)
4265 continue;
4266
4267 /* ALL_BP_LOCATIONS bp_location has bl->OWNER always non-NULL. */
4268 if (!breakpoint_enabled (bl->owner)
4269 && bl->owner->enable_state != bp_permanent)
4270 continue;
4271
4272 if (!breakpoint_location_address_match (bl, aspace, pc))
4273 continue;
4274
4275 if (bl->owner->thread != -1)
4276 {
4277 /* This is a thread-specific breakpoint. Check that ptid
4278 matches that thread. If thread hasn't been computed yet,
4279 it is now time to do so. */
4280 if (thread == -1)
4281 thread = pid_to_thread_id (ptid);
4282 if (bl->owner->thread != thread)
4283 continue;
4284 }
4285
4286 if (bl->owner->task != 0)
4287 {
4288 /* This is a task-specific breakpoint. Check that ptid
4289 matches that task. If task hasn't been computed yet,
4290 it is now time to do so. */
4291 if (task == 0)
4292 task = ada_get_task_number (ptid);
4293 if (bl->owner->task != task)
4294 continue;
4295 }
4296
4297 if (overlay_debugging
4298 && section_is_overlay (bl->section)
4299 && !section_is_mapped (bl->section))
4300 continue; /* unmapped overlay -- can't be a match */
4301
4302 return 1;
4303 }
4304
4305 return 0;
4306 }
4307 \f
4308
4309 /* bpstat stuff. External routines' interfaces are documented
4310 in breakpoint.h. */
4311
4312 int
4313 is_catchpoint (struct breakpoint *ep)
4314 {
4315 return (ep->type == bp_catchpoint);
4316 }
4317
4318 /* Frees any storage that is part of a bpstat. Does not walk the
4319 'next' chain. */
4320
4321 static void
4322 bpstat_free (bpstat bs)
4323 {
4324 if (bs->old_val != NULL)
4325 value_free (bs->old_val);
4326 decref_counted_command_line (&bs->commands);
4327 decref_bp_location (&bs->bp_location_at);
4328 xfree (bs);
4329 }
4330
4331 /* Clear a bpstat so that it says we are not at any breakpoint.
4332 Also free any storage that is part of a bpstat. */
4333
4334 void
4335 bpstat_clear (bpstat *bsp)
4336 {
4337 bpstat p;
4338 bpstat q;
4339
4340 if (bsp == 0)
4341 return;
4342 p = *bsp;
4343 while (p != NULL)
4344 {
4345 q = p->next;
4346 bpstat_free (p);
4347 p = q;
4348 }
4349 *bsp = NULL;
4350 }
4351
4352 /* Return a copy of a bpstat. Like "bs1 = bs2" but all storage that
4353 is part of the bpstat is copied as well. */
4354
4355 bpstat
4356 bpstat_copy (bpstat bs)
4357 {
4358 bpstat p = NULL;
4359 bpstat tmp;
4360 bpstat retval = NULL;
4361
4362 if (bs == NULL)
4363 return bs;
4364
4365 for (; bs != NULL; bs = bs->next)
4366 {
4367 tmp = (bpstat) xmalloc (sizeof (*tmp));
4368 memcpy (tmp, bs, sizeof (*tmp));
4369 incref_counted_command_line (tmp->commands);
4370 incref_bp_location (tmp->bp_location_at);
4371 if (bs->old_val != NULL)
4372 {
4373 tmp->old_val = value_copy (bs->old_val);
4374 release_value (tmp->old_val);
4375 }
4376
4377 if (p == NULL)
4378 /* This is the first thing in the chain. */
4379 retval = tmp;
4380 else
4381 p->next = tmp;
4382 p = tmp;
4383 }
4384 p->next = NULL;
4385 return retval;
4386 }
4387
4388 /* Find the bpstat associated with this breakpoint. */
4389
4390 bpstat
4391 bpstat_find_breakpoint (bpstat bsp, struct breakpoint *breakpoint)
4392 {
4393 if (bsp == NULL)
4394 return NULL;
4395
4396 for (; bsp != NULL; bsp = bsp->next)
4397 {
4398 if (bsp->breakpoint_at == breakpoint)
4399 return bsp;
4400 }
4401 return NULL;
4402 }
4403
4404 /* See breakpoint.h. */
4405
4406 int
4407 bpstat_explains_signal (bpstat bsp, enum gdb_signal sig)
4408 {
4409 for (; bsp != NULL; bsp = bsp->next)
4410 {
4411 if (bsp->breakpoint_at == NULL)
4412 {
4413 /* A moribund location can never explain a signal other than
4414 GDB_SIGNAL_TRAP. */
4415 if (sig == GDB_SIGNAL_TRAP)
4416 return 1;
4417 }
4418 else
4419 {
4420 if (bsp->breakpoint_at->ops->explains_signal (bsp->breakpoint_at,
4421 sig))
4422 return 1;
4423 }
4424 }
4425
4426 return 0;
4427 }
4428
4429 /* Put in *NUM the breakpoint number of the first breakpoint we are
4430 stopped at. *BSP upon return is a bpstat which points to the
4431 remaining breakpoints stopped at (but which is not guaranteed to be
4432 good for anything but further calls to bpstat_num).
4433
4434 Return 0 if passed a bpstat which does not indicate any breakpoints.
4435 Return -1 if stopped at a breakpoint that has been deleted since
4436 we set it.
4437 Return 1 otherwise. */
4438
4439 int
4440 bpstat_num (bpstat *bsp, int *num)
4441 {
4442 struct breakpoint *b;
4443
4444 if ((*bsp) == NULL)
4445 return 0; /* No more breakpoint values */
4446
4447 /* We assume we'll never have several bpstats that correspond to a
4448 single breakpoint -- otherwise, this function might return the
4449 same number more than once and this will look ugly. */
4450 b = (*bsp)->breakpoint_at;
4451 *bsp = (*bsp)->next;
4452 if (b == NULL)
4453 return -1; /* breakpoint that's been deleted since */
4454
4455 *num = b->number; /* We have its number */
4456 return 1;
4457 }
4458
4459 /* See breakpoint.h. */
4460
4461 void
4462 bpstat_clear_actions (void)
4463 {
4464 struct thread_info *tp;
4465 bpstat bs;
4466
4467 if (ptid_equal (inferior_ptid, null_ptid))
4468 return;
4469
4470 tp = find_thread_ptid (inferior_ptid);
4471 if (tp == NULL)
4472 return;
4473
4474 for (bs = tp->control.stop_bpstat; bs != NULL; bs = bs->next)
4475 {
4476 decref_counted_command_line (&bs->commands);
4477
4478 if (bs->old_val != NULL)
4479 {
4480 value_free (bs->old_val);
4481 bs->old_val = NULL;
4482 }
4483 }
4484 }
4485
4486 /* Called when a command is about to proceed the inferior. */
4487
4488 static void
4489 breakpoint_about_to_proceed (void)
4490 {
4491 if (!ptid_equal (inferior_ptid, null_ptid))
4492 {
4493 struct thread_info *tp = inferior_thread ();
4494
4495 /* Allow inferior function calls in breakpoint commands to not
4496 interrupt the command list. When the call finishes
4497 successfully, the inferior will be standing at the same
4498 breakpoint as if nothing happened. */
4499 if (tp->control.in_infcall)
4500 return;
4501 }
4502
4503 breakpoint_proceeded = 1;
4504 }
4505
4506 /* Stub for cleaning up our state if we error-out of a breakpoint
4507 command. */
4508 static void
4509 cleanup_executing_breakpoints (void *ignore)
4510 {
4511 executing_breakpoint_commands = 0;
4512 }
4513
4514 /* Return non-zero iff CMD as the first line of a command sequence is `silent'
4515 or its equivalent. */
4516
4517 static int
4518 command_line_is_silent (struct command_line *cmd)
4519 {
4520 return cmd && (strcmp ("silent", cmd->line) == 0
4521 || (xdb_commands && strcmp ("Q", cmd->line) == 0));
4522 }
4523
4524 /* Execute all the commands associated with all the breakpoints at
4525 this location. Any of these commands could cause the process to
4526 proceed beyond this point, etc. We look out for such changes by
4527 checking the global "breakpoint_proceeded" after each command.
4528
4529 Returns true if a breakpoint command resumed the inferior. In that
4530 case, it is the caller's responsibility to recall it again with the
4531 bpstat of the current thread. */
4532
4533 static int
4534 bpstat_do_actions_1 (bpstat *bsp)
4535 {
4536 bpstat bs;
4537 struct cleanup *old_chain;
4538 int again = 0;
4539
4540 /* Avoid endless recursion if a `source' command is contained
4541 in bs->commands. */
4542 if (executing_breakpoint_commands)
4543 return 0;
4544
4545 executing_breakpoint_commands = 1;
4546 old_chain = make_cleanup (cleanup_executing_breakpoints, 0);
4547
4548 prevent_dont_repeat ();
4549
4550 /* This pointer will iterate over the list of bpstat's. */
4551 bs = *bsp;
4552
4553 breakpoint_proceeded = 0;
4554 for (; bs != NULL; bs = bs->next)
4555 {
4556 struct counted_command_line *ccmd;
4557 struct command_line *cmd;
4558 struct cleanup *this_cmd_tree_chain;
4559
4560 /* Take ownership of the BSP's command tree, if it has one.
4561
4562 The command tree could legitimately contain commands like
4563 'step' and 'next', which call clear_proceed_status, which
4564 frees stop_bpstat's command tree. To make sure this doesn't
4565 free the tree we're executing out from under us, we need to
4566 take ownership of the tree ourselves. Since a given bpstat's
4567 commands are only executed once, we don't need to copy it; we
4568 can clear the pointer in the bpstat, and make sure we free
4569 the tree when we're done. */
4570 ccmd = bs->commands;
4571 bs->commands = NULL;
4572 this_cmd_tree_chain = make_cleanup_decref_counted_command_line (&ccmd);
4573 cmd = ccmd ? ccmd->commands : NULL;
4574 if (command_line_is_silent (cmd))
4575 {
4576 /* The action has been already done by bpstat_stop_status. */
4577 cmd = cmd->next;
4578 }
4579
4580 while (cmd != NULL)
4581 {
4582 execute_control_command (cmd);
4583
4584 if (breakpoint_proceeded)
4585 break;
4586 else
4587 cmd = cmd->next;
4588 }
4589
4590 /* We can free this command tree now. */
4591 do_cleanups (this_cmd_tree_chain);
4592
4593 if (breakpoint_proceeded)
4594 {
4595 if (target_can_async_p ())
4596 /* If we are in async mode, then the target might be still
4597 running, not stopped at any breakpoint, so nothing for
4598 us to do here -- just return to the event loop. */
4599 ;
4600 else
4601 /* In sync mode, when execute_control_command returns
4602 we're already standing on the next breakpoint.
4603 Breakpoint commands for that stop were not run, since
4604 execute_command does not run breakpoint commands --
4605 only command_line_handler does, but that one is not
4606 involved in execution of breakpoint commands. So, we
4607 can now execute breakpoint commands. It should be
4608 noted that making execute_command do bpstat actions is
4609 not an option -- in this case we'll have recursive
4610 invocation of bpstat for each breakpoint with a
4611 command, and can easily blow up GDB stack. Instead, we
4612 return true, which will trigger the caller to recall us
4613 with the new stop_bpstat. */
4614 again = 1;
4615 break;
4616 }
4617 }
4618 do_cleanups (old_chain);
4619 return again;
4620 }
4621
4622 void
4623 bpstat_do_actions (void)
4624 {
4625 struct cleanup *cleanup_if_error = make_bpstat_clear_actions_cleanup ();
4626
4627 /* Do any commands attached to breakpoint we are stopped at. */
4628 while (!ptid_equal (inferior_ptid, null_ptid)
4629 && target_has_execution
4630 && !is_exited (inferior_ptid)
4631 && !is_executing (inferior_ptid))
4632 /* Since in sync mode, bpstat_do_actions may resume the inferior,
4633 and only return when it is stopped at the next breakpoint, we
4634 keep doing breakpoint actions until it returns false to
4635 indicate the inferior was not resumed. */
4636 if (!bpstat_do_actions_1 (&inferior_thread ()->control.stop_bpstat))
4637 break;
4638
4639 discard_cleanups (cleanup_if_error);
4640 }
4641
4642 /* Print out the (old or new) value associated with a watchpoint. */
4643
4644 static void
4645 watchpoint_value_print (struct value *val, struct ui_file *stream)
4646 {
4647 if (val == NULL)
4648 fprintf_unfiltered (stream, _("<unreadable>"));
4649 else
4650 {
4651 struct value_print_options opts;
4652 get_user_print_options (&opts);
4653 value_print (val, stream, &opts);
4654 }
4655 }
4656
4657 /* Generic routine for printing messages indicating why we
4658 stopped. The behavior of this function depends on the value
4659 'print_it' in the bpstat structure. Under some circumstances we
4660 may decide not to print anything here and delegate the task to
4661 normal_stop(). */
4662
4663 static enum print_stop_action
4664 print_bp_stop_message (bpstat bs)
4665 {
4666 switch (bs->print_it)
4667 {
4668 case print_it_noop:
4669 /* Nothing should be printed for this bpstat entry. */
4670 return PRINT_UNKNOWN;
4671 break;
4672
4673 case print_it_done:
4674 /* We still want to print the frame, but we already printed the
4675 relevant messages. */
4676 return PRINT_SRC_AND_LOC;
4677 break;
4678
4679 case print_it_normal:
4680 {
4681 struct breakpoint *b = bs->breakpoint_at;
4682
4683 /* bs->breakpoint_at can be NULL if it was a momentary breakpoint
4684 which has since been deleted. */
4685 if (b == NULL)
4686 return PRINT_UNKNOWN;
4687
4688 /* Normal case. Call the breakpoint's print_it method. */
4689 return b->ops->print_it (bs);
4690 }
4691 break;
4692
4693 default:
4694 internal_error (__FILE__, __LINE__,
4695 _("print_bp_stop_message: unrecognized enum value"));
4696 break;
4697 }
4698 }
4699
4700 /* A helper function that prints a shared library stopped event. */
4701
4702 static void
4703 print_solib_event (int is_catchpoint)
4704 {
4705 int any_deleted
4706 = !VEC_empty (char_ptr, current_program_space->deleted_solibs);
4707 int any_added
4708 = !VEC_empty (so_list_ptr, current_program_space->added_solibs);
4709
4710 if (!is_catchpoint)
4711 {
4712 if (any_added || any_deleted)
4713 ui_out_text (current_uiout,
4714 _("Stopped due to shared library event:\n"));
4715 else
4716 ui_out_text (current_uiout,
4717 _("Stopped due to shared library event (no "
4718 "libraries added or removed)\n"));
4719 }
4720
4721 if (ui_out_is_mi_like_p (current_uiout))
4722 ui_out_field_string (current_uiout, "reason",
4723 async_reason_lookup (EXEC_ASYNC_SOLIB_EVENT));
4724
4725 if (any_deleted)
4726 {
4727 struct cleanup *cleanup;
4728 char *name;
4729 int ix;
4730
4731 ui_out_text (current_uiout, _(" Inferior unloaded "));
4732 cleanup = make_cleanup_ui_out_list_begin_end (current_uiout,
4733 "removed");
4734 for (ix = 0;
4735 VEC_iterate (char_ptr, current_program_space->deleted_solibs,
4736 ix, name);
4737 ++ix)
4738 {
4739 if (ix > 0)
4740 ui_out_text (current_uiout, " ");
4741 ui_out_field_string (current_uiout, "library", name);
4742 ui_out_text (current_uiout, "\n");
4743 }
4744
4745 do_cleanups (cleanup);
4746 }
4747
4748 if (any_added)
4749 {
4750 struct so_list *iter;
4751 int ix;
4752 struct cleanup *cleanup;
4753
4754 ui_out_text (current_uiout, _(" Inferior loaded "));
4755 cleanup = make_cleanup_ui_out_list_begin_end (current_uiout,
4756 "added");
4757 for (ix = 0;
4758 VEC_iterate (so_list_ptr, current_program_space->added_solibs,
4759 ix, iter);
4760 ++ix)
4761 {
4762 if (ix > 0)
4763 ui_out_text (current_uiout, " ");
4764 ui_out_field_string (current_uiout, "library", iter->so_name);
4765 ui_out_text (current_uiout, "\n");
4766 }
4767
4768 do_cleanups (cleanup);
4769 }
4770 }
4771
4772 /* Print a message indicating what happened. This is called from
4773 normal_stop(). The input to this routine is the head of the bpstat
4774 list - a list of the eventpoints that caused this stop. KIND is
4775 the target_waitkind for the stopping event. This
4776 routine calls the generic print routine for printing a message
4777 about reasons for stopping. This will print (for example) the
4778 "Breakpoint n," part of the output. The return value of this
4779 routine is one of:
4780
4781 PRINT_UNKNOWN: Means we printed nothing.
4782 PRINT_SRC_AND_LOC: Means we printed something, and expect subsequent
4783 code to print the location. An example is
4784 "Breakpoint 1, " which should be followed by
4785 the location.
4786 PRINT_SRC_ONLY: Means we printed something, but there is no need
4787 to also print the location part of the message.
4788 An example is the catch/throw messages, which
4789 don't require a location appended to the end.
4790 PRINT_NOTHING: We have done some printing and we don't need any
4791 further info to be printed. */
4792
4793 enum print_stop_action
4794 bpstat_print (bpstat bs, int kind)
4795 {
4796 int val;
4797
4798 /* Maybe another breakpoint in the chain caused us to stop.
4799 (Currently all watchpoints go on the bpstat whether hit or not.
4800 That probably could (should) be changed, provided care is taken
4801 with respect to bpstat_explains_signal). */
4802 for (; bs; bs = bs->next)
4803 {
4804 val = print_bp_stop_message (bs);
4805 if (val == PRINT_SRC_ONLY
4806 || val == PRINT_SRC_AND_LOC
4807 || val == PRINT_NOTHING)
4808 return val;
4809 }
4810
4811 /* If we had hit a shared library event breakpoint,
4812 print_bp_stop_message would print out this message. If we hit an
4813 OS-level shared library event, do the same thing. */
4814 if (kind == TARGET_WAITKIND_LOADED)
4815 {
4816 print_solib_event (0);
4817 return PRINT_NOTHING;
4818 }
4819
4820 /* We reached the end of the chain, or we got a null BS to start
4821 with and nothing was printed. */
4822 return PRINT_UNKNOWN;
4823 }
4824
4825 /* Evaluate the expression EXP and return 1 if value is zero.
4826 This returns the inverse of the condition because it is called
4827 from catch_errors which returns 0 if an exception happened, and if an
4828 exception happens we want execution to stop.
4829 The argument is a "struct expression *" that has been cast to a
4830 "void *" to make it pass through catch_errors. */
4831
4832 static int
4833 breakpoint_cond_eval (void *exp)
4834 {
4835 struct value *mark = value_mark ();
4836 int i = !value_true (evaluate_expression ((struct expression *) exp));
4837
4838 value_free_to_mark (mark);
4839 return i;
4840 }
4841
4842 /* Allocate a new bpstat. Link it to the FIFO list by BS_LINK_POINTER. */
4843
4844 static bpstat
4845 bpstat_alloc (struct bp_location *bl, bpstat **bs_link_pointer)
4846 {
4847 bpstat bs;
4848
4849 bs = (bpstat) xmalloc (sizeof (*bs));
4850 bs->next = NULL;
4851 **bs_link_pointer = bs;
4852 *bs_link_pointer = &bs->next;
4853 bs->breakpoint_at = bl->owner;
4854 bs->bp_location_at = bl;
4855 incref_bp_location (bl);
4856 /* If the condition is false, etc., don't do the commands. */
4857 bs->commands = NULL;
4858 bs->old_val = NULL;
4859 bs->print_it = print_it_normal;
4860 return bs;
4861 }
4862 \f
4863 /* The target has stopped with waitstatus WS. Check if any hardware
4864 watchpoints have triggered, according to the target. */
4865
4866 int
4867 watchpoints_triggered (struct target_waitstatus *ws)
4868 {
4869 int stopped_by_watchpoint = target_stopped_by_watchpoint ();
4870 CORE_ADDR addr;
4871 struct breakpoint *b;
4872
4873 if (!stopped_by_watchpoint)
4874 {
4875 /* We were not stopped by a watchpoint. Mark all watchpoints
4876 as not triggered. */
4877 ALL_BREAKPOINTS (b)
4878 if (is_hardware_watchpoint (b))
4879 {
4880 struct watchpoint *w = (struct watchpoint *) b;
4881
4882 w->watchpoint_triggered = watch_triggered_no;
4883 }
4884
4885 return 0;
4886 }
4887
4888 if (!target_stopped_data_address (&current_target, &addr))
4889 {
4890 /* We were stopped by a watchpoint, but we don't know where.
4891 Mark all watchpoints as unknown. */
4892 ALL_BREAKPOINTS (b)
4893 if (is_hardware_watchpoint (b))
4894 {
4895 struct watchpoint *w = (struct watchpoint *) b;
4896
4897 w->watchpoint_triggered = watch_triggered_unknown;
4898 }
4899
4900 return 1;
4901 }
4902
4903 /* The target could report the data address. Mark watchpoints
4904 affected by this data address as triggered, and all others as not
4905 triggered. */
4906
4907 ALL_BREAKPOINTS (b)
4908 if (is_hardware_watchpoint (b))
4909 {
4910 struct watchpoint *w = (struct watchpoint *) b;
4911 struct bp_location *loc;
4912
4913 w->watchpoint_triggered = watch_triggered_no;
4914 for (loc = b->loc; loc; loc = loc->next)
4915 {
4916 if (is_masked_watchpoint (b))
4917 {
4918 CORE_ADDR newaddr = addr & w->hw_wp_mask;
4919 CORE_ADDR start = loc->address & w->hw_wp_mask;
4920
4921 if (newaddr == start)
4922 {
4923 w->watchpoint_triggered = watch_triggered_yes;
4924 break;
4925 }
4926 }
4927 /* Exact match not required. Within range is sufficient. */
4928 else if (target_watchpoint_addr_within_range (&current_target,
4929 addr, loc->address,
4930 loc->length))
4931 {
4932 w->watchpoint_triggered = watch_triggered_yes;
4933 break;
4934 }
4935 }
4936 }
4937
4938 return 1;
4939 }
4940
4941 /* Possible return values for watchpoint_check (this can't be an enum
4942 because of check_errors). */
4943 /* The watchpoint has been deleted. */
4944 #define WP_DELETED 1
4945 /* The value has changed. */
4946 #define WP_VALUE_CHANGED 2
4947 /* The value has not changed. */
4948 #define WP_VALUE_NOT_CHANGED 3
4949 /* Ignore this watchpoint, no matter if the value changed or not. */
4950 #define WP_IGNORE 4
4951
4952 #define BP_TEMPFLAG 1
4953 #define BP_HARDWAREFLAG 2
4954
4955 /* Evaluate watchpoint condition expression and check if its value
4956 changed.
4957
4958 P should be a pointer to struct bpstat, but is defined as a void *
4959 in order for this function to be usable with catch_errors. */
4960
4961 static int
4962 watchpoint_check (void *p)
4963 {
4964 bpstat bs = (bpstat) p;
4965 struct watchpoint *b;
4966 struct frame_info *fr;
4967 int within_current_scope;
4968
4969 /* BS is built from an existing struct breakpoint. */
4970 gdb_assert (bs->breakpoint_at != NULL);
4971 b = (struct watchpoint *) bs->breakpoint_at;
4972
4973 /* If this is a local watchpoint, we only want to check if the
4974 watchpoint frame is in scope if the current thread is the thread
4975 that was used to create the watchpoint. */
4976 if (!watchpoint_in_thread_scope (b))
4977 return WP_IGNORE;
4978
4979 if (b->exp_valid_block == NULL)
4980 within_current_scope = 1;
4981 else
4982 {
4983 struct frame_info *frame = get_current_frame ();
4984 struct gdbarch *frame_arch = get_frame_arch (frame);
4985 CORE_ADDR frame_pc = get_frame_pc (frame);
4986
4987 /* in_function_epilogue_p() returns a non-zero value if we're
4988 still in the function but the stack frame has already been
4989 invalidated. Since we can't rely on the values of local
4990 variables after the stack has been destroyed, we are treating
4991 the watchpoint in that state as `not changed' without further
4992 checking. Don't mark watchpoints as changed if the current
4993 frame is in an epilogue - even if they are in some other
4994 frame, our view of the stack is likely to be wrong and
4995 frame_find_by_id could error out. */
4996 if (gdbarch_in_function_epilogue_p (frame_arch, frame_pc))
4997 return WP_IGNORE;
4998
4999 fr = frame_find_by_id (b->watchpoint_frame);
5000 within_current_scope = (fr != NULL);
5001
5002 /* If we've gotten confused in the unwinder, we might have
5003 returned a frame that can't describe this variable. */
5004 if (within_current_scope)
5005 {
5006 struct symbol *function;
5007
5008 function = get_frame_function (fr);
5009 if (function == NULL
5010 || !contained_in (b->exp_valid_block,
5011 SYMBOL_BLOCK_VALUE (function)))
5012 within_current_scope = 0;
5013 }
5014
5015 if (within_current_scope)
5016 /* If we end up stopping, the current frame will get selected
5017 in normal_stop. So this call to select_frame won't affect
5018 the user. */
5019 select_frame (fr);
5020 }
5021
5022 if (within_current_scope)
5023 {
5024 /* We use value_{,free_to_}mark because it could be a *long*
5025 time before we return to the command level and call
5026 free_all_values. We can't call free_all_values because we
5027 might be in the middle of evaluating a function call. */
5028
5029 int pc = 0;
5030 struct value *mark;
5031 struct value *new_val;
5032
5033 if (is_masked_watchpoint (&b->base))
5034 /* Since we don't know the exact trigger address (from
5035 stopped_data_address), just tell the user we've triggered
5036 a mask watchpoint. */
5037 return WP_VALUE_CHANGED;
5038
5039 mark = value_mark ();
5040 fetch_subexp_value (b->exp, &pc, &new_val, NULL, NULL, 0);
5041
5042 /* We use value_equal_contents instead of value_equal because
5043 the latter coerces an array to a pointer, thus comparing just
5044 the address of the array instead of its contents. This is
5045 not what we want. */
5046 if ((b->val != NULL) != (new_val != NULL)
5047 || (b->val != NULL && !value_equal_contents (b->val, new_val)))
5048 {
5049 if (new_val != NULL)
5050 {
5051 release_value (new_val);
5052 value_free_to_mark (mark);
5053 }
5054 bs->old_val = b->val;
5055 b->val = new_val;
5056 b->val_valid = 1;
5057 return WP_VALUE_CHANGED;
5058 }
5059 else
5060 {
5061 /* Nothing changed. */
5062 value_free_to_mark (mark);
5063 return WP_VALUE_NOT_CHANGED;
5064 }
5065 }
5066 else
5067 {
5068 struct ui_out *uiout = current_uiout;
5069
5070 /* This seems like the only logical thing to do because
5071 if we temporarily ignored the watchpoint, then when
5072 we reenter the block in which it is valid it contains
5073 garbage (in the case of a function, it may have two
5074 garbage values, one before and one after the prologue).
5075 So we can't even detect the first assignment to it and
5076 watch after that (since the garbage may or may not equal
5077 the first value assigned). */
5078 /* We print all the stop information in
5079 breakpoint_ops->print_it, but in this case, by the time we
5080 call breakpoint_ops->print_it this bp will be deleted
5081 already. So we have no choice but print the information
5082 here. */
5083 if (ui_out_is_mi_like_p (uiout))
5084 ui_out_field_string
5085 (uiout, "reason", async_reason_lookup (EXEC_ASYNC_WATCHPOINT_SCOPE));
5086 ui_out_text (uiout, "\nWatchpoint ");
5087 ui_out_field_int (uiout, "wpnum", b->base.number);
5088 ui_out_text (uiout,
5089 " deleted because the program has left the block in\n\
5090 which its expression is valid.\n");
5091
5092 /* Make sure the watchpoint's commands aren't executed. */
5093 decref_counted_command_line (&b->base.commands);
5094 watchpoint_del_at_next_stop (b);
5095
5096 return WP_DELETED;
5097 }
5098 }
5099
5100 /* Return true if it looks like target has stopped due to hitting
5101 breakpoint location BL. This function does not check if we should
5102 stop, only if BL explains the stop. */
5103
5104 static int
5105 bpstat_check_location (const struct bp_location *bl,
5106 struct address_space *aspace, CORE_ADDR bp_addr,
5107 const struct target_waitstatus *ws)
5108 {
5109 struct breakpoint *b = bl->owner;
5110
5111 /* BL is from an existing breakpoint. */
5112 gdb_assert (b != NULL);
5113
5114 return b->ops->breakpoint_hit (bl, aspace, bp_addr, ws);
5115 }
5116
5117 /* Determine if the watched values have actually changed, and we
5118 should stop. If not, set BS->stop to 0. */
5119
5120 static void
5121 bpstat_check_watchpoint (bpstat bs)
5122 {
5123 const struct bp_location *bl;
5124 struct watchpoint *b;
5125
5126 /* BS is built for existing struct breakpoint. */
5127 bl = bs->bp_location_at;
5128 gdb_assert (bl != NULL);
5129 b = (struct watchpoint *) bs->breakpoint_at;
5130 gdb_assert (b != NULL);
5131
5132 {
5133 int must_check_value = 0;
5134
5135 if (b->base.type == bp_watchpoint)
5136 /* For a software watchpoint, we must always check the
5137 watched value. */
5138 must_check_value = 1;
5139 else if (b->watchpoint_triggered == watch_triggered_yes)
5140 /* We have a hardware watchpoint (read, write, or access)
5141 and the target earlier reported an address watched by
5142 this watchpoint. */
5143 must_check_value = 1;
5144 else if (b->watchpoint_triggered == watch_triggered_unknown
5145 && b->base.type == bp_hardware_watchpoint)
5146 /* We were stopped by a hardware watchpoint, but the target could
5147 not report the data address. We must check the watchpoint's
5148 value. Access and read watchpoints are out of luck; without
5149 a data address, we can't figure it out. */
5150 must_check_value = 1;
5151
5152 if (must_check_value)
5153 {
5154 char *message
5155 = xstrprintf ("Error evaluating expression for watchpoint %d\n",
5156 b->base.number);
5157 struct cleanup *cleanups = make_cleanup (xfree, message);
5158 int e = catch_errors (watchpoint_check, bs, message,
5159 RETURN_MASK_ALL);
5160 do_cleanups (cleanups);
5161 switch (e)
5162 {
5163 case WP_DELETED:
5164 /* We've already printed what needs to be printed. */
5165 bs->print_it = print_it_done;
5166 /* Stop. */
5167 break;
5168 case WP_IGNORE:
5169 bs->print_it = print_it_noop;
5170 bs->stop = 0;
5171 break;
5172 case WP_VALUE_CHANGED:
5173 if (b->base.type == bp_read_watchpoint)
5174 {
5175 /* There are two cases to consider here:
5176
5177 1. We're watching the triggered memory for reads.
5178 In that case, trust the target, and always report
5179 the watchpoint hit to the user. Even though
5180 reads don't cause value changes, the value may
5181 have changed since the last time it was read, and
5182 since we're not trapping writes, we will not see
5183 those, and as such we should ignore our notion of
5184 old value.
5185
5186 2. We're watching the triggered memory for both
5187 reads and writes. There are two ways this may
5188 happen:
5189
5190 2.1. This is a target that can't break on data
5191 reads only, but can break on accesses (reads or
5192 writes), such as e.g., x86. We detect this case
5193 at the time we try to insert read watchpoints.
5194
5195 2.2. Otherwise, the target supports read
5196 watchpoints, but, the user set an access or write
5197 watchpoint watching the same memory as this read
5198 watchpoint.
5199
5200 If we're watching memory writes as well as reads,
5201 ignore watchpoint hits when we find that the
5202 value hasn't changed, as reads don't cause
5203 changes. This still gives false positives when
5204 the program writes the same value to memory as
5205 what there was already in memory (we will confuse
5206 it for a read), but it's much better than
5207 nothing. */
5208
5209 int other_write_watchpoint = 0;
5210
5211 if (bl->watchpoint_type == hw_read)
5212 {
5213 struct breakpoint *other_b;
5214
5215 ALL_BREAKPOINTS (other_b)
5216 if (other_b->type == bp_hardware_watchpoint
5217 || other_b->type == bp_access_watchpoint)
5218 {
5219 struct watchpoint *other_w =
5220 (struct watchpoint *) other_b;
5221
5222 if (other_w->watchpoint_triggered
5223 == watch_triggered_yes)
5224 {
5225 other_write_watchpoint = 1;
5226 break;
5227 }
5228 }
5229 }
5230
5231 if (other_write_watchpoint
5232 || bl->watchpoint_type == hw_access)
5233 {
5234 /* We're watching the same memory for writes,
5235 and the value changed since the last time we
5236 updated it, so this trap must be for a write.
5237 Ignore it. */
5238 bs->print_it = print_it_noop;
5239 bs->stop = 0;
5240 }
5241 }
5242 break;
5243 case WP_VALUE_NOT_CHANGED:
5244 if (b->base.type == bp_hardware_watchpoint
5245 || b->base.type == bp_watchpoint)
5246 {
5247 /* Don't stop: write watchpoints shouldn't fire if
5248 the value hasn't changed. */
5249 bs->print_it = print_it_noop;
5250 bs->stop = 0;
5251 }
5252 /* Stop. */
5253 break;
5254 default:
5255 /* Can't happen. */
5256 case 0:
5257 /* Error from catch_errors. */
5258 printf_filtered (_("Watchpoint %d deleted.\n"), b->base.number);
5259 watchpoint_del_at_next_stop (b);
5260 /* We've already printed what needs to be printed. */
5261 bs->print_it = print_it_done;
5262 break;
5263 }
5264 }
5265 else /* must_check_value == 0 */
5266 {
5267 /* This is a case where some watchpoint(s) triggered, but
5268 not at the address of this watchpoint, or else no
5269 watchpoint triggered after all. So don't print
5270 anything for this watchpoint. */
5271 bs->print_it = print_it_noop;
5272 bs->stop = 0;
5273 }
5274 }
5275 }
5276
5277 /* For breakpoints that are currently marked as telling gdb to stop,
5278 check conditions (condition proper, frame, thread and ignore count)
5279 of breakpoint referred to by BS. If we should not stop for this
5280 breakpoint, set BS->stop to 0. */
5281
5282 static void
5283 bpstat_check_breakpoint_conditions (bpstat bs, ptid_t ptid)
5284 {
5285 const struct bp_location *bl;
5286 struct breakpoint *b;
5287 int value_is_zero = 0;
5288 struct expression *cond;
5289
5290 gdb_assert (bs->stop);
5291
5292 /* BS is built for existing struct breakpoint. */
5293 bl = bs->bp_location_at;
5294 gdb_assert (bl != NULL);
5295 b = bs->breakpoint_at;
5296 gdb_assert (b != NULL);
5297
5298 /* Even if the target evaluated the condition on its end and notified GDB, we
5299 need to do so again since GDB does not know if we stopped due to a
5300 breakpoint or a single step breakpoint. */
5301
5302 if (frame_id_p (b->frame_id)
5303 && !frame_id_eq (b->frame_id, get_stack_frame_id (get_current_frame ())))
5304 {
5305 bs->stop = 0;
5306 return;
5307 }
5308
5309 /* If this is a thread/task-specific breakpoint, don't waste cpu
5310 evaluating the condition if this isn't the specified
5311 thread/task. */
5312 if ((b->thread != -1 && b->thread != pid_to_thread_id (ptid))
5313 || (b->task != 0 && b->task != ada_get_task_number (ptid)))
5314
5315 {
5316 bs->stop = 0;
5317 return;
5318 }
5319
5320 /* Evaluate extension language breakpoints that have a "stop" method
5321 implemented. */
5322 bs->stop = breakpoint_ext_lang_cond_says_stop (b);
5323
5324 if (is_watchpoint (b))
5325 {
5326 struct watchpoint *w = (struct watchpoint *) b;
5327
5328 cond = w->cond_exp;
5329 }
5330 else
5331 cond = bl->cond;
5332
5333 if (cond && b->disposition != disp_del_at_next_stop)
5334 {
5335 int within_current_scope = 1;
5336 struct watchpoint * w;
5337
5338 /* We use value_mark and value_free_to_mark because it could
5339 be a long time before we return to the command level and
5340 call free_all_values. We can't call free_all_values
5341 because we might be in the middle of evaluating a
5342 function call. */
5343 struct value *mark = value_mark ();
5344
5345 if (is_watchpoint (b))
5346 w = (struct watchpoint *) b;
5347 else
5348 w = NULL;
5349
5350 /* Need to select the frame, with all that implies so that
5351 the conditions will have the right context. Because we
5352 use the frame, we will not see an inlined function's
5353 variables when we arrive at a breakpoint at the start
5354 of the inlined function; the current frame will be the
5355 call site. */
5356 if (w == NULL || w->cond_exp_valid_block == NULL)
5357 select_frame (get_current_frame ());
5358 else
5359 {
5360 struct frame_info *frame;
5361
5362 /* For local watchpoint expressions, which particular
5363 instance of a local is being watched matters, so we
5364 keep track of the frame to evaluate the expression
5365 in. To evaluate the condition however, it doesn't
5366 really matter which instantiation of the function
5367 where the condition makes sense triggers the
5368 watchpoint. This allows an expression like "watch
5369 global if q > 10" set in `func', catch writes to
5370 global on all threads that call `func', or catch
5371 writes on all recursive calls of `func' by a single
5372 thread. We simply always evaluate the condition in
5373 the innermost frame that's executing where it makes
5374 sense to evaluate the condition. It seems
5375 intuitive. */
5376 frame = block_innermost_frame (w->cond_exp_valid_block);
5377 if (frame != NULL)
5378 select_frame (frame);
5379 else
5380 within_current_scope = 0;
5381 }
5382 if (within_current_scope)
5383 value_is_zero
5384 = catch_errors (breakpoint_cond_eval, cond,
5385 "Error in testing breakpoint condition:\n",
5386 RETURN_MASK_ALL);
5387 else
5388 {
5389 warning (_("Watchpoint condition cannot be tested "
5390 "in the current scope"));
5391 /* If we failed to set the right context for this
5392 watchpoint, unconditionally report it. */
5393 value_is_zero = 0;
5394 }
5395 /* FIXME-someday, should give breakpoint #. */
5396 value_free_to_mark (mark);
5397 }
5398
5399 if (cond && value_is_zero)
5400 {
5401 bs->stop = 0;
5402 }
5403 else if (b->ignore_count > 0)
5404 {
5405 b->ignore_count--;
5406 bs->stop = 0;
5407 /* Increase the hit count even though we don't stop. */
5408 ++(b->hit_count);
5409 observer_notify_breakpoint_modified (b);
5410 }
5411 }
5412
5413
5414 /* Get a bpstat associated with having just stopped at address
5415 BP_ADDR in thread PTID.
5416
5417 Determine whether we stopped at a breakpoint, etc, or whether we
5418 don't understand this stop. Result is a chain of bpstat's such
5419 that:
5420
5421 if we don't understand the stop, the result is a null pointer.
5422
5423 if we understand why we stopped, the result is not null.
5424
5425 Each element of the chain refers to a particular breakpoint or
5426 watchpoint at which we have stopped. (We may have stopped for
5427 several reasons concurrently.)
5428
5429 Each element of the chain has valid next, breakpoint_at,
5430 commands, FIXME??? fields. */
5431
5432 bpstat
5433 bpstat_stop_status (struct address_space *aspace,
5434 CORE_ADDR bp_addr, ptid_t ptid,
5435 const struct target_waitstatus *ws)
5436 {
5437 struct breakpoint *b = NULL;
5438 struct bp_location *bl;
5439 struct bp_location *loc;
5440 /* First item of allocated bpstat's. */
5441 bpstat bs_head = NULL, *bs_link = &bs_head;
5442 /* Pointer to the last thing in the chain currently. */
5443 bpstat bs;
5444 int ix;
5445 int need_remove_insert;
5446 int removed_any;
5447
5448 /* First, build the bpstat chain with locations that explain a
5449 target stop, while being careful to not set the target running,
5450 as that may invalidate locations (in particular watchpoint
5451 locations are recreated). Resuming will happen here with
5452 breakpoint conditions or watchpoint expressions that include
5453 inferior function calls. */
5454
5455 ALL_BREAKPOINTS (b)
5456 {
5457 if (!breakpoint_enabled (b) && b->enable_state != bp_permanent)
5458 continue;
5459
5460 for (bl = b->loc; bl != NULL; bl = bl->next)
5461 {
5462 /* For hardware watchpoints, we look only at the first
5463 location. The watchpoint_check function will work on the
5464 entire expression, not the individual locations. For
5465 read watchpoints, the watchpoints_triggered function has
5466 checked all locations already. */
5467 if (b->type == bp_hardware_watchpoint && bl != b->loc)
5468 break;
5469
5470 if (!bl->enabled || bl->shlib_disabled)
5471 continue;
5472
5473 if (!bpstat_check_location (bl, aspace, bp_addr, ws))
5474 continue;
5475
5476 /* Come here if it's a watchpoint, or if the break address
5477 matches. */
5478
5479 bs = bpstat_alloc (bl, &bs_link); /* Alloc a bpstat to
5480 explain stop. */
5481
5482 /* Assume we stop. Should we find a watchpoint that is not
5483 actually triggered, or if the condition of the breakpoint
5484 evaluates as false, we'll reset 'stop' to 0. */
5485 bs->stop = 1;
5486 bs->print = 1;
5487
5488 /* If this is a scope breakpoint, mark the associated
5489 watchpoint as triggered so that we will handle the
5490 out-of-scope event. We'll get to the watchpoint next
5491 iteration. */
5492 if (b->type == bp_watchpoint_scope && b->related_breakpoint != b)
5493 {
5494 struct watchpoint *w = (struct watchpoint *) b->related_breakpoint;
5495
5496 w->watchpoint_triggered = watch_triggered_yes;
5497 }
5498 }
5499 }
5500
5501 for (ix = 0; VEC_iterate (bp_location_p, moribund_locations, ix, loc); ++ix)
5502 {
5503 if (breakpoint_location_address_match (loc, aspace, bp_addr))
5504 {
5505 bs = bpstat_alloc (loc, &bs_link);
5506 /* For hits of moribund locations, we should just proceed. */
5507 bs->stop = 0;
5508 bs->print = 0;
5509 bs->print_it = print_it_noop;
5510 }
5511 }
5512
5513 /* A bit of special processing for shlib breakpoints. We need to
5514 process solib loading here, so that the lists of loaded and
5515 unloaded libraries are correct before we handle "catch load" and
5516 "catch unload". */
5517 for (bs = bs_head; bs != NULL; bs = bs->next)
5518 {
5519 if (bs->breakpoint_at && bs->breakpoint_at->type == bp_shlib_event)
5520 {
5521 handle_solib_event ();
5522 break;
5523 }
5524 }
5525
5526 /* Now go through the locations that caused the target to stop, and
5527 check whether we're interested in reporting this stop to higher
5528 layers, or whether we should resume the target transparently. */
5529
5530 removed_any = 0;
5531
5532 for (bs = bs_head; bs != NULL; bs = bs->next)
5533 {
5534 if (!bs->stop)
5535 continue;
5536
5537 b = bs->breakpoint_at;
5538 b->ops->check_status (bs);
5539 if (bs->stop)
5540 {
5541 bpstat_check_breakpoint_conditions (bs, ptid);
5542
5543 if (bs->stop)
5544 {
5545 ++(b->hit_count);
5546 observer_notify_breakpoint_modified (b);
5547
5548 /* We will stop here. */
5549 if (b->disposition == disp_disable)
5550 {
5551 --(b->enable_count);
5552 if (b->enable_count <= 0
5553 && b->enable_state != bp_permanent)
5554 b->enable_state = bp_disabled;
5555 removed_any = 1;
5556 }
5557 if (b->silent)
5558 bs->print = 0;
5559 bs->commands = b->commands;
5560 incref_counted_command_line (bs->commands);
5561 if (command_line_is_silent (bs->commands
5562 ? bs->commands->commands : NULL))
5563 bs->print = 0;
5564
5565 b->ops->after_condition_true (bs);
5566 }
5567
5568 }
5569
5570 /* Print nothing for this entry if we don't stop or don't
5571 print. */
5572 if (!bs->stop || !bs->print)
5573 bs->print_it = print_it_noop;
5574 }
5575
5576 /* If we aren't stopping, the value of some hardware watchpoint may
5577 not have changed, but the intermediate memory locations we are
5578 watching may have. Don't bother if we're stopping; this will get
5579 done later. */
5580 need_remove_insert = 0;
5581 if (! bpstat_causes_stop (bs_head))
5582 for (bs = bs_head; bs != NULL; bs = bs->next)
5583 if (!bs->stop
5584 && bs->breakpoint_at
5585 && is_hardware_watchpoint (bs->breakpoint_at))
5586 {
5587 struct watchpoint *w = (struct watchpoint *) bs->breakpoint_at;
5588
5589 update_watchpoint (w, 0 /* don't reparse. */);
5590 need_remove_insert = 1;
5591 }
5592
5593 if (need_remove_insert)
5594 update_global_location_list (1);
5595 else if (removed_any)
5596 update_global_location_list (0);
5597
5598 return bs_head;
5599 }
5600
5601 static void
5602 handle_jit_event (void)
5603 {
5604 struct frame_info *frame;
5605 struct gdbarch *gdbarch;
5606
5607 /* Switch terminal for any messages produced by
5608 breakpoint_re_set. */
5609 target_terminal_ours_for_output ();
5610
5611 frame = get_current_frame ();
5612 gdbarch = get_frame_arch (frame);
5613
5614 jit_event_handler (gdbarch);
5615
5616 target_terminal_inferior ();
5617 }
5618
5619 /* Prepare WHAT final decision for infrun. */
5620
5621 /* Decide what infrun needs to do with this bpstat. */
5622
5623 struct bpstat_what
5624 bpstat_what (bpstat bs_head)
5625 {
5626 struct bpstat_what retval;
5627 int jit_event = 0;
5628 bpstat bs;
5629
5630 retval.main_action = BPSTAT_WHAT_KEEP_CHECKING;
5631 retval.call_dummy = STOP_NONE;
5632 retval.is_longjmp = 0;
5633
5634 for (bs = bs_head; bs != NULL; bs = bs->next)
5635 {
5636 /* Extract this BS's action. After processing each BS, we check
5637 if its action overrides all we've seem so far. */
5638 enum bpstat_what_main_action this_action = BPSTAT_WHAT_KEEP_CHECKING;
5639 enum bptype bptype;
5640
5641 if (bs->breakpoint_at == NULL)
5642 {
5643 /* I suspect this can happen if it was a momentary
5644 breakpoint which has since been deleted. */
5645 bptype = bp_none;
5646 }
5647 else
5648 bptype = bs->breakpoint_at->type;
5649
5650 switch (bptype)
5651 {
5652 case bp_none:
5653 break;
5654 case bp_breakpoint:
5655 case bp_hardware_breakpoint:
5656 case bp_until:
5657 case bp_finish:
5658 case bp_shlib_event:
5659 if (bs->stop)
5660 {
5661 if (bs->print)
5662 this_action = BPSTAT_WHAT_STOP_NOISY;
5663 else
5664 this_action = BPSTAT_WHAT_STOP_SILENT;
5665 }
5666 else
5667 this_action = BPSTAT_WHAT_SINGLE;
5668 break;
5669 case bp_watchpoint:
5670 case bp_hardware_watchpoint:
5671 case bp_read_watchpoint:
5672 case bp_access_watchpoint:
5673 if (bs->stop)
5674 {
5675 if (bs->print)
5676 this_action = BPSTAT_WHAT_STOP_NOISY;
5677 else
5678 this_action = BPSTAT_WHAT_STOP_SILENT;
5679 }
5680 else
5681 {
5682 /* There was a watchpoint, but we're not stopping.
5683 This requires no further action. */
5684 }
5685 break;
5686 case bp_longjmp:
5687 case bp_longjmp_call_dummy:
5688 case bp_exception:
5689 this_action = BPSTAT_WHAT_SET_LONGJMP_RESUME;
5690 retval.is_longjmp = bptype != bp_exception;
5691 break;
5692 case bp_longjmp_resume:
5693 case bp_exception_resume:
5694 this_action = BPSTAT_WHAT_CLEAR_LONGJMP_RESUME;
5695 retval.is_longjmp = bptype == bp_longjmp_resume;
5696 break;
5697 case bp_step_resume:
5698 if (bs->stop)
5699 this_action = BPSTAT_WHAT_STEP_RESUME;
5700 else
5701 {
5702 /* It is for the wrong frame. */
5703 this_action = BPSTAT_WHAT_SINGLE;
5704 }
5705 break;
5706 case bp_hp_step_resume:
5707 if (bs->stop)
5708 this_action = BPSTAT_WHAT_HP_STEP_RESUME;
5709 else
5710 {
5711 /* It is for the wrong frame. */
5712 this_action = BPSTAT_WHAT_SINGLE;
5713 }
5714 break;
5715 case bp_watchpoint_scope:
5716 case bp_thread_event:
5717 case bp_overlay_event:
5718 case bp_longjmp_master:
5719 case bp_std_terminate_master:
5720 case bp_exception_master:
5721 this_action = BPSTAT_WHAT_SINGLE;
5722 break;
5723 case bp_catchpoint:
5724 if (bs->stop)
5725 {
5726 if (bs->print)
5727 this_action = BPSTAT_WHAT_STOP_NOISY;
5728 else
5729 this_action = BPSTAT_WHAT_STOP_SILENT;
5730 }
5731 else
5732 {
5733 /* There was a catchpoint, but we're not stopping.
5734 This requires no further action. */
5735 }
5736 break;
5737 case bp_jit_event:
5738 jit_event = 1;
5739 this_action = BPSTAT_WHAT_SINGLE;
5740 break;
5741 case bp_call_dummy:
5742 /* Make sure the action is stop (silent or noisy),
5743 so infrun.c pops the dummy frame. */
5744 retval.call_dummy = STOP_STACK_DUMMY;
5745 this_action = BPSTAT_WHAT_STOP_SILENT;
5746 break;
5747 case bp_std_terminate:
5748 /* Make sure the action is stop (silent or noisy),
5749 so infrun.c pops the dummy frame. */
5750 retval.call_dummy = STOP_STD_TERMINATE;
5751 this_action = BPSTAT_WHAT_STOP_SILENT;
5752 break;
5753 case bp_tracepoint:
5754 case bp_fast_tracepoint:
5755 case bp_static_tracepoint:
5756 /* Tracepoint hits should not be reported back to GDB, and
5757 if one got through somehow, it should have been filtered
5758 out already. */
5759 internal_error (__FILE__, __LINE__,
5760 _("bpstat_what: tracepoint encountered"));
5761 break;
5762 case bp_gnu_ifunc_resolver:
5763 /* Step over it (and insert bp_gnu_ifunc_resolver_return). */
5764 this_action = BPSTAT_WHAT_SINGLE;
5765 break;
5766 case bp_gnu_ifunc_resolver_return:
5767 /* The breakpoint will be removed, execution will restart from the
5768 PC of the former breakpoint. */
5769 this_action = BPSTAT_WHAT_KEEP_CHECKING;
5770 break;
5771
5772 case bp_dprintf:
5773 if (bs->stop)
5774 this_action = BPSTAT_WHAT_STOP_SILENT;
5775 else
5776 this_action = BPSTAT_WHAT_SINGLE;
5777 break;
5778
5779 default:
5780 internal_error (__FILE__, __LINE__,
5781 _("bpstat_what: unhandled bptype %d"), (int) bptype);
5782 }
5783
5784 retval.main_action = max (retval.main_action, this_action);
5785 }
5786
5787 /* These operations may affect the bs->breakpoint_at state so they are
5788 delayed after MAIN_ACTION is decided above. */
5789
5790 if (jit_event)
5791 {
5792 if (debug_infrun)
5793 fprintf_unfiltered (gdb_stdlog, "bpstat_what: bp_jit_event\n");
5794
5795 handle_jit_event ();
5796 }
5797
5798 for (bs = bs_head; bs != NULL; bs = bs->next)
5799 {
5800 struct breakpoint *b = bs->breakpoint_at;
5801
5802 if (b == NULL)
5803 continue;
5804 switch (b->type)
5805 {
5806 case bp_gnu_ifunc_resolver:
5807 gnu_ifunc_resolver_stop (b);
5808 break;
5809 case bp_gnu_ifunc_resolver_return:
5810 gnu_ifunc_resolver_return_stop (b);
5811 break;
5812 }
5813 }
5814
5815 return retval;
5816 }
5817
5818 /* Nonzero if we should step constantly (e.g. watchpoints on machines
5819 without hardware support). This isn't related to a specific bpstat,
5820 just to things like whether watchpoints are set. */
5821
5822 int
5823 bpstat_should_step (void)
5824 {
5825 struct breakpoint *b;
5826
5827 ALL_BREAKPOINTS (b)
5828 if (breakpoint_enabled (b) && b->type == bp_watchpoint && b->loc != NULL)
5829 return 1;
5830 return 0;
5831 }
5832
5833 int
5834 bpstat_causes_stop (bpstat bs)
5835 {
5836 for (; bs != NULL; bs = bs->next)
5837 if (bs->stop)
5838 return 1;
5839
5840 return 0;
5841 }
5842
5843 \f
5844
5845 /* Compute a string of spaces suitable to indent the next line
5846 so it starts at the position corresponding to the table column
5847 named COL_NAME in the currently active table of UIOUT. */
5848
5849 static char *
5850 wrap_indent_at_field (struct ui_out *uiout, const char *col_name)
5851 {
5852 static char wrap_indent[80];
5853 int i, total_width, width, align;
5854 char *text;
5855
5856 total_width = 0;
5857 for (i = 1; ui_out_query_field (uiout, i, &width, &align, &text); i++)
5858 {
5859 if (strcmp (text, col_name) == 0)
5860 {
5861 gdb_assert (total_width < sizeof wrap_indent);
5862 memset (wrap_indent, ' ', total_width);
5863 wrap_indent[total_width] = 0;
5864
5865 return wrap_indent;
5866 }
5867
5868 total_width += width + 1;
5869 }
5870
5871 return NULL;
5872 }
5873
5874 /* Determine if the locations of this breakpoint will have their conditions
5875 evaluated by the target, host or a mix of both. Returns the following:
5876
5877 "host": Host evals condition.
5878 "host or target": Host or Target evals condition.
5879 "target": Target evals condition.
5880 */
5881
5882 static const char *
5883 bp_condition_evaluator (struct breakpoint *b)
5884 {
5885 struct bp_location *bl;
5886 char host_evals = 0;
5887 char target_evals = 0;
5888
5889 if (!b)
5890 return NULL;
5891
5892 if (!is_breakpoint (b))
5893 return NULL;
5894
5895 if (gdb_evaluates_breakpoint_condition_p ()
5896 || !target_supports_evaluation_of_breakpoint_conditions ())
5897 return condition_evaluation_host;
5898
5899 for (bl = b->loc; bl; bl = bl->next)
5900 {
5901 if (bl->cond_bytecode)
5902 target_evals++;
5903 else
5904 host_evals++;
5905 }
5906
5907 if (host_evals && target_evals)
5908 return condition_evaluation_both;
5909 else if (target_evals)
5910 return condition_evaluation_target;
5911 else
5912 return condition_evaluation_host;
5913 }
5914
5915 /* Determine the breakpoint location's condition evaluator. This is
5916 similar to bp_condition_evaluator, but for locations. */
5917
5918 static const char *
5919 bp_location_condition_evaluator (struct bp_location *bl)
5920 {
5921 if (bl && !is_breakpoint (bl->owner))
5922 return NULL;
5923
5924 if (gdb_evaluates_breakpoint_condition_p ()
5925 || !target_supports_evaluation_of_breakpoint_conditions ())
5926 return condition_evaluation_host;
5927
5928 if (bl && bl->cond_bytecode)
5929 return condition_evaluation_target;
5930 else
5931 return condition_evaluation_host;
5932 }
5933
5934 /* Print the LOC location out of the list of B->LOC locations. */
5935
5936 static void
5937 print_breakpoint_location (struct breakpoint *b,
5938 struct bp_location *loc)
5939 {
5940 struct ui_out *uiout = current_uiout;
5941 struct cleanup *old_chain = save_current_program_space ();
5942
5943 if (loc != NULL && loc->shlib_disabled)
5944 loc = NULL;
5945
5946 if (loc != NULL)
5947 set_current_program_space (loc->pspace);
5948
5949 if (b->display_canonical)
5950 ui_out_field_string (uiout, "what", b->addr_string);
5951 else if (loc && loc->symtab)
5952 {
5953 struct symbol *sym
5954 = find_pc_sect_function (loc->address, loc->section);
5955 if (sym)
5956 {
5957 ui_out_text (uiout, "in ");
5958 ui_out_field_string (uiout, "func",
5959 SYMBOL_PRINT_NAME (sym));
5960 ui_out_text (uiout, " ");
5961 ui_out_wrap_hint (uiout, wrap_indent_at_field (uiout, "what"));
5962 ui_out_text (uiout, "at ");
5963 }
5964 ui_out_field_string (uiout, "file",
5965 symtab_to_filename_for_display (loc->symtab));
5966 ui_out_text (uiout, ":");
5967
5968 if (ui_out_is_mi_like_p (uiout))
5969 ui_out_field_string (uiout, "fullname",
5970 symtab_to_fullname (loc->symtab));
5971
5972 ui_out_field_int (uiout, "line", loc->line_number);
5973 }
5974 else if (loc)
5975 {
5976 struct ui_file *stb = mem_fileopen ();
5977 struct cleanup *stb_chain = make_cleanup_ui_file_delete (stb);
5978
5979 print_address_symbolic (loc->gdbarch, loc->address, stb,
5980 demangle, "");
5981 ui_out_field_stream (uiout, "at", stb);
5982
5983 do_cleanups (stb_chain);
5984 }
5985 else
5986 ui_out_field_string (uiout, "pending", b->addr_string);
5987
5988 if (loc && is_breakpoint (b)
5989 && breakpoint_condition_evaluation_mode () == condition_evaluation_target
5990 && bp_condition_evaluator (b) == condition_evaluation_both)
5991 {
5992 ui_out_text (uiout, " (");
5993 ui_out_field_string (uiout, "evaluated-by",
5994 bp_location_condition_evaluator (loc));
5995 ui_out_text (uiout, ")");
5996 }
5997
5998 do_cleanups (old_chain);
5999 }
6000
6001 static const char *
6002 bptype_string (enum bptype type)
6003 {
6004 struct ep_type_description
6005 {
6006 enum bptype type;
6007 char *description;
6008 };
6009 static struct ep_type_description bptypes[] =
6010 {
6011 {bp_none, "?deleted?"},
6012 {bp_breakpoint, "breakpoint"},
6013 {bp_hardware_breakpoint, "hw breakpoint"},
6014 {bp_until, "until"},
6015 {bp_finish, "finish"},
6016 {bp_watchpoint, "watchpoint"},
6017 {bp_hardware_watchpoint, "hw watchpoint"},
6018 {bp_read_watchpoint, "read watchpoint"},
6019 {bp_access_watchpoint, "acc watchpoint"},
6020 {bp_longjmp, "longjmp"},
6021 {bp_longjmp_resume, "longjmp resume"},
6022 {bp_longjmp_call_dummy, "longjmp for call dummy"},
6023 {bp_exception, "exception"},
6024 {bp_exception_resume, "exception resume"},
6025 {bp_step_resume, "step resume"},
6026 {bp_hp_step_resume, "high-priority step resume"},
6027 {bp_watchpoint_scope, "watchpoint scope"},
6028 {bp_call_dummy, "call dummy"},
6029 {bp_std_terminate, "std::terminate"},
6030 {bp_shlib_event, "shlib events"},
6031 {bp_thread_event, "thread events"},
6032 {bp_overlay_event, "overlay events"},
6033 {bp_longjmp_master, "longjmp master"},
6034 {bp_std_terminate_master, "std::terminate master"},
6035 {bp_exception_master, "exception master"},
6036 {bp_catchpoint, "catchpoint"},
6037 {bp_tracepoint, "tracepoint"},
6038 {bp_fast_tracepoint, "fast tracepoint"},
6039 {bp_static_tracepoint, "static tracepoint"},
6040 {bp_dprintf, "dprintf"},
6041 {bp_jit_event, "jit events"},
6042 {bp_gnu_ifunc_resolver, "STT_GNU_IFUNC resolver"},
6043 {bp_gnu_ifunc_resolver_return, "STT_GNU_IFUNC resolver return"},
6044 };
6045
6046 if (((int) type >= (sizeof (bptypes) / sizeof (bptypes[0])))
6047 || ((int) type != bptypes[(int) type].type))
6048 internal_error (__FILE__, __LINE__,
6049 _("bptypes table does not describe type #%d."),
6050 (int) type);
6051
6052 return bptypes[(int) type].description;
6053 }
6054
6055 /* For MI, output a field named 'thread-groups' with a list as the value.
6056 For CLI, prefix the list with the string 'inf'. */
6057
6058 static void
6059 output_thread_groups (struct ui_out *uiout,
6060 const char *field_name,
6061 VEC(int) *inf_num,
6062 int mi_only)
6063 {
6064 struct cleanup *back_to;
6065 int is_mi = ui_out_is_mi_like_p (uiout);
6066 int inf;
6067 int i;
6068
6069 /* For backward compatibility, don't display inferiors in CLI unless
6070 there are several. Always display them for MI. */
6071 if (!is_mi && mi_only)
6072 return;
6073
6074 back_to = make_cleanup_ui_out_list_begin_end (uiout, field_name);
6075
6076 for (i = 0; VEC_iterate (int, inf_num, i, inf); ++i)
6077 {
6078 if (is_mi)
6079 {
6080 char mi_group[10];
6081
6082 xsnprintf (mi_group, sizeof (mi_group), "i%d", inf);
6083 ui_out_field_string (uiout, NULL, mi_group);
6084 }
6085 else
6086 {
6087 if (i == 0)
6088 ui_out_text (uiout, " inf ");
6089 else
6090 ui_out_text (uiout, ", ");
6091
6092 ui_out_text (uiout, plongest (inf));
6093 }
6094 }
6095
6096 do_cleanups (back_to);
6097 }
6098
6099 /* Print B to gdb_stdout. */
6100
6101 static void
6102 print_one_breakpoint_location (struct breakpoint *b,
6103 struct bp_location *loc,
6104 int loc_number,
6105 struct bp_location **last_loc,
6106 int allflag)
6107 {
6108 struct command_line *l;
6109 static char bpenables[] = "nynny";
6110
6111 struct ui_out *uiout = current_uiout;
6112 int header_of_multiple = 0;
6113 int part_of_multiple = (loc != NULL);
6114 struct value_print_options opts;
6115
6116 get_user_print_options (&opts);
6117
6118 gdb_assert (!loc || loc_number != 0);
6119 /* See comment in print_one_breakpoint concerning treatment of
6120 breakpoints with single disabled location. */
6121 if (loc == NULL
6122 && (b->loc != NULL
6123 && (b->loc->next != NULL || !b->loc->enabled)))
6124 header_of_multiple = 1;
6125 if (loc == NULL)
6126 loc = b->loc;
6127
6128 annotate_record ();
6129
6130 /* 1 */
6131 annotate_field (0);
6132 if (part_of_multiple)
6133 {
6134 char *formatted;
6135 formatted = xstrprintf ("%d.%d", b->number, loc_number);
6136 ui_out_field_string (uiout, "number", formatted);
6137 xfree (formatted);
6138 }
6139 else
6140 {
6141 ui_out_field_int (uiout, "number", b->number);
6142 }
6143
6144 /* 2 */
6145 annotate_field (1);
6146 if (part_of_multiple)
6147 ui_out_field_skip (uiout, "type");
6148 else
6149 ui_out_field_string (uiout, "type", bptype_string (b->type));
6150
6151 /* 3 */
6152 annotate_field (2);
6153 if (part_of_multiple)
6154 ui_out_field_skip (uiout, "disp");
6155 else
6156 ui_out_field_string (uiout, "disp", bpdisp_text (b->disposition));
6157
6158
6159 /* 4 */
6160 annotate_field (3);
6161 if (part_of_multiple)
6162 ui_out_field_string (uiout, "enabled", loc->enabled ? "y" : "n");
6163 else
6164 ui_out_field_fmt (uiout, "enabled", "%c",
6165 bpenables[(int) b->enable_state]);
6166 ui_out_spaces (uiout, 2);
6167
6168
6169 /* 5 and 6 */
6170 if (b->ops != NULL && b->ops->print_one != NULL)
6171 {
6172 /* Although the print_one can possibly print all locations,
6173 calling it here is not likely to get any nice result. So,
6174 make sure there's just one location. */
6175 gdb_assert (b->loc == NULL || b->loc->next == NULL);
6176 b->ops->print_one (b, last_loc);
6177 }
6178 else
6179 switch (b->type)
6180 {
6181 case bp_none:
6182 internal_error (__FILE__, __LINE__,
6183 _("print_one_breakpoint: bp_none encountered\n"));
6184 break;
6185
6186 case bp_watchpoint:
6187 case bp_hardware_watchpoint:
6188 case bp_read_watchpoint:
6189 case bp_access_watchpoint:
6190 {
6191 struct watchpoint *w = (struct watchpoint *) b;
6192
6193 /* Field 4, the address, is omitted (which makes the columns
6194 not line up too nicely with the headers, but the effect
6195 is relatively readable). */
6196 if (opts.addressprint)
6197 ui_out_field_skip (uiout, "addr");
6198 annotate_field (5);
6199 ui_out_field_string (uiout, "what", w->exp_string);
6200 }
6201 break;
6202
6203 case bp_breakpoint:
6204 case bp_hardware_breakpoint:
6205 case bp_until:
6206 case bp_finish:
6207 case bp_longjmp:
6208 case bp_longjmp_resume:
6209 case bp_longjmp_call_dummy:
6210 case bp_exception:
6211 case bp_exception_resume:
6212 case bp_step_resume:
6213 case bp_hp_step_resume:
6214 case bp_watchpoint_scope:
6215 case bp_call_dummy:
6216 case bp_std_terminate:
6217 case bp_shlib_event:
6218 case bp_thread_event:
6219 case bp_overlay_event:
6220 case bp_longjmp_master:
6221 case bp_std_terminate_master:
6222 case bp_exception_master:
6223 case bp_tracepoint:
6224 case bp_fast_tracepoint:
6225 case bp_static_tracepoint:
6226 case bp_dprintf:
6227 case bp_jit_event:
6228 case bp_gnu_ifunc_resolver:
6229 case bp_gnu_ifunc_resolver_return:
6230 if (opts.addressprint)
6231 {
6232 annotate_field (4);
6233 if (header_of_multiple)
6234 ui_out_field_string (uiout, "addr", "<MULTIPLE>");
6235 else if (b->loc == NULL || loc->shlib_disabled)
6236 ui_out_field_string (uiout, "addr", "<PENDING>");
6237 else
6238 ui_out_field_core_addr (uiout, "addr",
6239 loc->gdbarch, loc->address);
6240 }
6241 annotate_field (5);
6242 if (!header_of_multiple)
6243 print_breakpoint_location (b, loc);
6244 if (b->loc)
6245 *last_loc = b->loc;
6246 break;
6247 }
6248
6249
6250 if (loc != NULL && !header_of_multiple)
6251 {
6252 struct inferior *inf;
6253 VEC(int) *inf_num = NULL;
6254 int mi_only = 1;
6255
6256 ALL_INFERIORS (inf)
6257 {
6258 if (inf->pspace == loc->pspace)
6259 VEC_safe_push (int, inf_num, inf->num);
6260 }
6261
6262 /* For backward compatibility, don't display inferiors in CLI unless
6263 there are several. Always display for MI. */
6264 if (allflag
6265 || (!gdbarch_has_global_breakpoints (target_gdbarch ())
6266 && (number_of_program_spaces () > 1
6267 || number_of_inferiors () > 1)
6268 /* LOC is for existing B, it cannot be in
6269 moribund_locations and thus having NULL OWNER. */
6270 && loc->owner->type != bp_catchpoint))
6271 mi_only = 0;
6272 output_thread_groups (uiout, "thread-groups", inf_num, mi_only);
6273 VEC_free (int, inf_num);
6274 }
6275
6276 if (!part_of_multiple)
6277 {
6278 if (b->thread != -1)
6279 {
6280 /* FIXME: This seems to be redundant and lost here; see the
6281 "stop only in" line a little further down. */
6282 ui_out_text (uiout, " thread ");
6283 ui_out_field_int (uiout, "thread", b->thread);
6284 }
6285 else if (b->task != 0)
6286 {
6287 ui_out_text (uiout, " task ");
6288 ui_out_field_int (uiout, "task", b->task);
6289 }
6290 }
6291
6292 ui_out_text (uiout, "\n");
6293
6294 if (!part_of_multiple)
6295 b->ops->print_one_detail (b, uiout);
6296
6297 if (part_of_multiple && frame_id_p (b->frame_id))
6298 {
6299 annotate_field (6);
6300 ui_out_text (uiout, "\tstop only in stack frame at ");
6301 /* FIXME: cagney/2002-12-01: Shouldn't be poking around inside
6302 the frame ID. */
6303 ui_out_field_core_addr (uiout, "frame",
6304 b->gdbarch, b->frame_id.stack_addr);
6305 ui_out_text (uiout, "\n");
6306 }
6307
6308 if (!part_of_multiple && b->cond_string)
6309 {
6310 annotate_field (7);
6311 if (is_tracepoint (b))
6312 ui_out_text (uiout, "\ttrace only if ");
6313 else
6314 ui_out_text (uiout, "\tstop only if ");
6315 ui_out_field_string (uiout, "cond", b->cond_string);
6316
6317 /* Print whether the target is doing the breakpoint's condition
6318 evaluation. If GDB is doing the evaluation, don't print anything. */
6319 if (is_breakpoint (b)
6320 && breakpoint_condition_evaluation_mode ()
6321 == condition_evaluation_target)
6322 {
6323 ui_out_text (uiout, " (");
6324 ui_out_field_string (uiout, "evaluated-by",
6325 bp_condition_evaluator (b));
6326 ui_out_text (uiout, " evals)");
6327 }
6328 ui_out_text (uiout, "\n");
6329 }
6330
6331 if (!part_of_multiple && b->thread != -1)
6332 {
6333 /* FIXME should make an annotation for this. */
6334 ui_out_text (uiout, "\tstop only in thread ");
6335 ui_out_field_int (uiout, "thread", b->thread);
6336 ui_out_text (uiout, "\n");
6337 }
6338
6339 if (!part_of_multiple)
6340 {
6341 if (b->hit_count)
6342 {
6343 /* FIXME should make an annotation for this. */
6344 if (is_catchpoint (b))
6345 ui_out_text (uiout, "\tcatchpoint");
6346 else if (is_tracepoint (b))
6347 ui_out_text (uiout, "\ttracepoint");
6348 else
6349 ui_out_text (uiout, "\tbreakpoint");
6350 ui_out_text (uiout, " already hit ");
6351 ui_out_field_int (uiout, "times", b->hit_count);
6352 if (b->hit_count == 1)
6353 ui_out_text (uiout, " time\n");
6354 else
6355 ui_out_text (uiout, " times\n");
6356 }
6357 else
6358 {
6359 /* Output the count also if it is zero, but only if this is mi. */
6360 if (ui_out_is_mi_like_p (uiout))
6361 ui_out_field_int (uiout, "times", b->hit_count);
6362 }
6363 }
6364
6365 if (!part_of_multiple && b->ignore_count)
6366 {
6367 annotate_field (8);
6368 ui_out_text (uiout, "\tignore next ");
6369 ui_out_field_int (uiout, "ignore", b->ignore_count);
6370 ui_out_text (uiout, " hits\n");
6371 }
6372
6373 /* Note that an enable count of 1 corresponds to "enable once"
6374 behavior, which is reported by the combination of enablement and
6375 disposition, so we don't need to mention it here. */
6376 if (!part_of_multiple && b->enable_count > 1)
6377 {
6378 annotate_field (8);
6379 ui_out_text (uiout, "\tdisable after ");
6380 /* Tweak the wording to clarify that ignore and enable counts
6381 are distinct, and have additive effect. */
6382 if (b->ignore_count)
6383 ui_out_text (uiout, "additional ");
6384 else
6385 ui_out_text (uiout, "next ");
6386 ui_out_field_int (uiout, "enable", b->enable_count);
6387 ui_out_text (uiout, " hits\n");
6388 }
6389
6390 if (!part_of_multiple && is_tracepoint (b))
6391 {
6392 struct tracepoint *tp = (struct tracepoint *) b;
6393
6394 if (tp->traceframe_usage)
6395 {
6396 ui_out_text (uiout, "\ttrace buffer usage ");
6397 ui_out_field_int (uiout, "traceframe-usage", tp->traceframe_usage);
6398 ui_out_text (uiout, " bytes\n");
6399 }
6400 }
6401
6402 l = b->commands ? b->commands->commands : NULL;
6403 if (!part_of_multiple && l)
6404 {
6405 struct cleanup *script_chain;
6406
6407 annotate_field (9);
6408 script_chain = make_cleanup_ui_out_tuple_begin_end (uiout, "script");
6409 print_command_lines (uiout, l, 4);
6410 do_cleanups (script_chain);
6411 }
6412
6413 if (is_tracepoint (b))
6414 {
6415 struct tracepoint *t = (struct tracepoint *) b;
6416
6417 if (!part_of_multiple && t->pass_count)
6418 {
6419 annotate_field (10);
6420 ui_out_text (uiout, "\tpass count ");
6421 ui_out_field_int (uiout, "pass", t->pass_count);
6422 ui_out_text (uiout, " \n");
6423 }
6424
6425 /* Don't display it when tracepoint or tracepoint location is
6426 pending. */
6427 if (!header_of_multiple && loc != NULL && !loc->shlib_disabled)
6428 {
6429 annotate_field (11);
6430
6431 if (ui_out_is_mi_like_p (uiout))
6432 ui_out_field_string (uiout, "installed",
6433 loc->inserted ? "y" : "n");
6434 else
6435 {
6436 if (loc->inserted)
6437 ui_out_text (uiout, "\t");
6438 else
6439 ui_out_text (uiout, "\tnot ");
6440 ui_out_text (uiout, "installed on target\n");
6441 }
6442 }
6443 }
6444
6445 if (ui_out_is_mi_like_p (uiout) && !part_of_multiple)
6446 {
6447 if (is_watchpoint (b))
6448 {
6449 struct watchpoint *w = (struct watchpoint *) b;
6450
6451 ui_out_field_string (uiout, "original-location", w->exp_string);
6452 }
6453 else if (b->addr_string)
6454 ui_out_field_string (uiout, "original-location", b->addr_string);
6455 }
6456 }
6457
6458 static void
6459 print_one_breakpoint (struct breakpoint *b,
6460 struct bp_location **last_loc,
6461 int allflag)
6462 {
6463 struct cleanup *bkpt_chain;
6464 struct ui_out *uiout = current_uiout;
6465
6466 bkpt_chain = make_cleanup_ui_out_tuple_begin_end (uiout, "bkpt");
6467
6468 print_one_breakpoint_location (b, NULL, 0, last_loc, allflag);
6469 do_cleanups (bkpt_chain);
6470
6471 /* If this breakpoint has custom print function,
6472 it's already printed. Otherwise, print individual
6473 locations, if any. */
6474 if (b->ops == NULL || b->ops->print_one == NULL)
6475 {
6476 /* If breakpoint has a single location that is disabled, we
6477 print it as if it had several locations, since otherwise it's
6478 hard to represent "breakpoint enabled, location disabled"
6479 situation.
6480
6481 Note that while hardware watchpoints have several locations
6482 internally, that's not a property exposed to user. */
6483 if (b->loc
6484 && !is_hardware_watchpoint (b)
6485 && (b->loc->next || !b->loc->enabled))
6486 {
6487 struct bp_location *loc;
6488 int n = 1;
6489
6490 for (loc = b->loc; loc; loc = loc->next, ++n)
6491 {
6492 struct cleanup *inner2 =
6493 make_cleanup_ui_out_tuple_begin_end (uiout, NULL);
6494 print_one_breakpoint_location (b, loc, n, last_loc, allflag);
6495 do_cleanups (inner2);
6496 }
6497 }
6498 }
6499 }
6500
6501 static int
6502 breakpoint_address_bits (struct breakpoint *b)
6503 {
6504 int print_address_bits = 0;
6505 struct bp_location *loc;
6506
6507 for (loc = b->loc; loc; loc = loc->next)
6508 {
6509 int addr_bit;
6510
6511 /* Software watchpoints that aren't watching memory don't have
6512 an address to print. */
6513 if (b->type == bp_watchpoint && loc->watchpoint_type == -1)
6514 continue;
6515
6516 addr_bit = gdbarch_addr_bit (loc->gdbarch);
6517 if (addr_bit > print_address_bits)
6518 print_address_bits = addr_bit;
6519 }
6520
6521 return print_address_bits;
6522 }
6523
6524 struct captured_breakpoint_query_args
6525 {
6526 int bnum;
6527 };
6528
6529 static int
6530 do_captured_breakpoint_query (struct ui_out *uiout, void *data)
6531 {
6532 struct captured_breakpoint_query_args *args = data;
6533 struct breakpoint *b;
6534 struct bp_location *dummy_loc = NULL;
6535
6536 ALL_BREAKPOINTS (b)
6537 {
6538 if (args->bnum == b->number)
6539 {
6540 print_one_breakpoint (b, &dummy_loc, 0);
6541 return GDB_RC_OK;
6542 }
6543 }
6544 return GDB_RC_NONE;
6545 }
6546
6547 enum gdb_rc
6548 gdb_breakpoint_query (struct ui_out *uiout, int bnum,
6549 char **error_message)
6550 {
6551 struct captured_breakpoint_query_args args;
6552
6553 args.bnum = bnum;
6554 /* For the moment we don't trust print_one_breakpoint() to not throw
6555 an error. */
6556 if (catch_exceptions_with_msg (uiout, do_captured_breakpoint_query, &args,
6557 error_message, RETURN_MASK_ALL) < 0)
6558 return GDB_RC_FAIL;
6559 else
6560 return GDB_RC_OK;
6561 }
6562
6563 /* Return true if this breakpoint was set by the user, false if it is
6564 internal or momentary. */
6565
6566 int
6567 user_breakpoint_p (struct breakpoint *b)
6568 {
6569 return b->number > 0;
6570 }
6571
6572 /* Print information on user settable breakpoint (watchpoint, etc)
6573 number BNUM. If BNUM is -1 print all user-settable breakpoints.
6574 If ALLFLAG is non-zero, include non-user-settable breakpoints. If
6575 FILTER is non-NULL, call it on each breakpoint and only include the
6576 ones for which it returns non-zero. Return the total number of
6577 breakpoints listed. */
6578
6579 static int
6580 breakpoint_1 (char *args, int allflag,
6581 int (*filter) (const struct breakpoint *))
6582 {
6583 struct breakpoint *b;
6584 struct bp_location *last_loc = NULL;
6585 int nr_printable_breakpoints;
6586 struct cleanup *bkpttbl_chain;
6587 struct value_print_options opts;
6588 int print_address_bits = 0;
6589 int print_type_col_width = 14;
6590 struct ui_out *uiout = current_uiout;
6591
6592 get_user_print_options (&opts);
6593
6594 /* Compute the number of rows in the table, as well as the size
6595 required for address fields. */
6596 nr_printable_breakpoints = 0;
6597 ALL_BREAKPOINTS (b)
6598 {
6599 /* If we have a filter, only list the breakpoints it accepts. */
6600 if (filter && !filter (b))
6601 continue;
6602
6603 /* If we have an "args" string, it is a list of breakpoints to
6604 accept. Skip the others. */
6605 if (args != NULL && *args != '\0')
6606 {
6607 if (allflag && parse_and_eval_long (args) != b->number)
6608 continue;
6609 if (!allflag && !number_is_in_list (args, b->number))
6610 continue;
6611 }
6612
6613 if (allflag || user_breakpoint_p (b))
6614 {
6615 int addr_bit, type_len;
6616
6617 addr_bit = breakpoint_address_bits (b);
6618 if (addr_bit > print_address_bits)
6619 print_address_bits = addr_bit;
6620
6621 type_len = strlen (bptype_string (b->type));
6622 if (type_len > print_type_col_width)
6623 print_type_col_width = type_len;
6624
6625 nr_printable_breakpoints++;
6626 }
6627 }
6628
6629 if (opts.addressprint)
6630 bkpttbl_chain
6631 = make_cleanup_ui_out_table_begin_end (uiout, 6,
6632 nr_printable_breakpoints,
6633 "BreakpointTable");
6634 else
6635 bkpttbl_chain
6636 = make_cleanup_ui_out_table_begin_end (uiout, 5,
6637 nr_printable_breakpoints,
6638 "BreakpointTable");
6639
6640 if (nr_printable_breakpoints > 0)
6641 annotate_breakpoints_headers ();
6642 if (nr_printable_breakpoints > 0)
6643 annotate_field (0);
6644 ui_out_table_header (uiout, 7, ui_left, "number", "Num"); /* 1 */
6645 if (nr_printable_breakpoints > 0)
6646 annotate_field (1);
6647 ui_out_table_header (uiout, print_type_col_width, ui_left,
6648 "type", "Type"); /* 2 */
6649 if (nr_printable_breakpoints > 0)
6650 annotate_field (2);
6651 ui_out_table_header (uiout, 4, ui_left, "disp", "Disp"); /* 3 */
6652 if (nr_printable_breakpoints > 0)
6653 annotate_field (3);
6654 ui_out_table_header (uiout, 3, ui_left, "enabled", "Enb"); /* 4 */
6655 if (opts.addressprint)
6656 {
6657 if (nr_printable_breakpoints > 0)
6658 annotate_field (4);
6659 if (print_address_bits <= 32)
6660 ui_out_table_header (uiout, 10, ui_left,
6661 "addr", "Address"); /* 5 */
6662 else
6663 ui_out_table_header (uiout, 18, ui_left,
6664 "addr", "Address"); /* 5 */
6665 }
6666 if (nr_printable_breakpoints > 0)
6667 annotate_field (5);
6668 ui_out_table_header (uiout, 40, ui_noalign, "what", "What"); /* 6 */
6669 ui_out_table_body (uiout);
6670 if (nr_printable_breakpoints > 0)
6671 annotate_breakpoints_table ();
6672
6673 ALL_BREAKPOINTS (b)
6674 {
6675 QUIT;
6676 /* If we have a filter, only list the breakpoints it accepts. */
6677 if (filter && !filter (b))
6678 continue;
6679
6680 /* If we have an "args" string, it is a list of breakpoints to
6681 accept. Skip the others. */
6682
6683 if (args != NULL && *args != '\0')
6684 {
6685 if (allflag) /* maintenance info breakpoint */
6686 {
6687 if (parse_and_eval_long (args) != b->number)
6688 continue;
6689 }
6690 else /* all others */
6691 {
6692 if (!number_is_in_list (args, b->number))
6693 continue;
6694 }
6695 }
6696 /* We only print out user settable breakpoints unless the
6697 allflag is set. */
6698 if (allflag || user_breakpoint_p (b))
6699 print_one_breakpoint (b, &last_loc, allflag);
6700 }
6701
6702 do_cleanups (bkpttbl_chain);
6703
6704 if (nr_printable_breakpoints == 0)
6705 {
6706 /* If there's a filter, let the caller decide how to report
6707 empty list. */
6708 if (!filter)
6709 {
6710 if (args == NULL || *args == '\0')
6711 ui_out_message (uiout, 0, "No breakpoints or watchpoints.\n");
6712 else
6713 ui_out_message (uiout, 0,
6714 "No breakpoint or watchpoint matching '%s'.\n",
6715 args);
6716 }
6717 }
6718 else
6719 {
6720 if (last_loc && !server_command)
6721 set_next_address (last_loc->gdbarch, last_loc->address);
6722 }
6723
6724 /* FIXME? Should this be moved up so that it is only called when
6725 there have been breakpoints? */
6726 annotate_breakpoints_table_end ();
6727
6728 return nr_printable_breakpoints;
6729 }
6730
6731 /* Display the value of default-collect in a way that is generally
6732 compatible with the breakpoint list. */
6733
6734 static void
6735 default_collect_info (void)
6736 {
6737 struct ui_out *uiout = current_uiout;
6738
6739 /* If it has no value (which is frequently the case), say nothing; a
6740 message like "No default-collect." gets in user's face when it's
6741 not wanted. */
6742 if (!*default_collect)
6743 return;
6744
6745 /* The following phrase lines up nicely with per-tracepoint collect
6746 actions. */
6747 ui_out_text (uiout, "default collect ");
6748 ui_out_field_string (uiout, "default-collect", default_collect);
6749 ui_out_text (uiout, " \n");
6750 }
6751
6752 static void
6753 breakpoints_info (char *args, int from_tty)
6754 {
6755 breakpoint_1 (args, 0, NULL);
6756
6757 default_collect_info ();
6758 }
6759
6760 static void
6761 watchpoints_info (char *args, int from_tty)
6762 {
6763 int num_printed = breakpoint_1 (args, 0, is_watchpoint);
6764 struct ui_out *uiout = current_uiout;
6765
6766 if (num_printed == 0)
6767 {
6768 if (args == NULL || *args == '\0')
6769 ui_out_message (uiout, 0, "No watchpoints.\n");
6770 else
6771 ui_out_message (uiout, 0, "No watchpoint matching '%s'.\n", args);
6772 }
6773 }
6774
6775 static void
6776 maintenance_info_breakpoints (char *args, int from_tty)
6777 {
6778 breakpoint_1 (args, 1, NULL);
6779
6780 default_collect_info ();
6781 }
6782
6783 static int
6784 breakpoint_has_pc (struct breakpoint *b,
6785 struct program_space *pspace,
6786 CORE_ADDR pc, struct obj_section *section)
6787 {
6788 struct bp_location *bl = b->loc;
6789
6790 for (; bl; bl = bl->next)
6791 {
6792 if (bl->pspace == pspace
6793 && bl->address == pc
6794 && (!overlay_debugging || bl->section == section))
6795 return 1;
6796 }
6797 return 0;
6798 }
6799
6800 /* Print a message describing any user-breakpoints set at PC. This
6801 concerns with logical breakpoints, so we match program spaces, not
6802 address spaces. */
6803
6804 static void
6805 describe_other_breakpoints (struct gdbarch *gdbarch,
6806 struct program_space *pspace, CORE_ADDR pc,
6807 struct obj_section *section, int thread)
6808 {
6809 int others = 0;
6810 struct breakpoint *b;
6811
6812 ALL_BREAKPOINTS (b)
6813 others += (user_breakpoint_p (b)
6814 && breakpoint_has_pc (b, pspace, pc, section));
6815 if (others > 0)
6816 {
6817 if (others == 1)
6818 printf_filtered (_("Note: breakpoint "));
6819 else /* if (others == ???) */
6820 printf_filtered (_("Note: breakpoints "));
6821 ALL_BREAKPOINTS (b)
6822 if (user_breakpoint_p (b) && breakpoint_has_pc (b, pspace, pc, section))
6823 {
6824 others--;
6825 printf_filtered ("%d", b->number);
6826 if (b->thread == -1 && thread != -1)
6827 printf_filtered (" (all threads)");
6828 else if (b->thread != -1)
6829 printf_filtered (" (thread %d)", b->thread);
6830 printf_filtered ("%s%s ",
6831 ((b->enable_state == bp_disabled
6832 || b->enable_state == bp_call_disabled)
6833 ? " (disabled)"
6834 : b->enable_state == bp_permanent
6835 ? " (permanent)"
6836 : ""),
6837 (others > 1) ? ","
6838 : ((others == 1) ? " and" : ""));
6839 }
6840 printf_filtered (_("also set at pc "));
6841 fputs_filtered (paddress (gdbarch, pc), gdb_stdout);
6842 printf_filtered (".\n");
6843 }
6844 }
6845 \f
6846
6847 /* Return true iff it is meaningful to use the address member of
6848 BPT. For some breakpoint types, the address member is irrelevant
6849 and it makes no sense to attempt to compare it to other addresses
6850 (or use it for any other purpose either).
6851
6852 More specifically, each of the following breakpoint types will
6853 always have a zero valued address and we don't want to mark
6854 breakpoints of any of these types to be a duplicate of an actual
6855 breakpoint at address zero:
6856
6857 bp_watchpoint
6858 bp_catchpoint
6859
6860 */
6861
6862 static int
6863 breakpoint_address_is_meaningful (struct breakpoint *bpt)
6864 {
6865 enum bptype type = bpt->type;
6866
6867 return (type != bp_watchpoint && type != bp_catchpoint);
6868 }
6869
6870 /* Assuming LOC1 and LOC2's owners are hardware watchpoints, returns
6871 true if LOC1 and LOC2 represent the same watchpoint location. */
6872
6873 static int
6874 watchpoint_locations_match (struct bp_location *loc1,
6875 struct bp_location *loc2)
6876 {
6877 struct watchpoint *w1 = (struct watchpoint *) loc1->owner;
6878 struct watchpoint *w2 = (struct watchpoint *) loc2->owner;
6879
6880 /* Both of them must exist. */
6881 gdb_assert (w1 != NULL);
6882 gdb_assert (w2 != NULL);
6883
6884 /* If the target can evaluate the condition expression in hardware,
6885 then we we need to insert both watchpoints even if they are at
6886 the same place. Otherwise the watchpoint will only trigger when
6887 the condition of whichever watchpoint was inserted evaluates to
6888 true, not giving a chance for GDB to check the condition of the
6889 other watchpoint. */
6890 if ((w1->cond_exp
6891 && target_can_accel_watchpoint_condition (loc1->address,
6892 loc1->length,
6893 loc1->watchpoint_type,
6894 w1->cond_exp))
6895 || (w2->cond_exp
6896 && target_can_accel_watchpoint_condition (loc2->address,
6897 loc2->length,
6898 loc2->watchpoint_type,
6899 w2->cond_exp)))
6900 return 0;
6901
6902 /* Note that this checks the owner's type, not the location's. In
6903 case the target does not support read watchpoints, but does
6904 support access watchpoints, we'll have bp_read_watchpoint
6905 watchpoints with hw_access locations. Those should be considered
6906 duplicates of hw_read locations. The hw_read locations will
6907 become hw_access locations later. */
6908 return (loc1->owner->type == loc2->owner->type
6909 && loc1->pspace->aspace == loc2->pspace->aspace
6910 && loc1->address == loc2->address
6911 && loc1->length == loc2->length);
6912 }
6913
6914 /* See breakpoint.h. */
6915
6916 int
6917 breakpoint_address_match (struct address_space *aspace1, CORE_ADDR addr1,
6918 struct address_space *aspace2, CORE_ADDR addr2)
6919 {
6920 return ((gdbarch_has_global_breakpoints (target_gdbarch ())
6921 || aspace1 == aspace2)
6922 && addr1 == addr2);
6923 }
6924
6925 /* Returns true if {ASPACE2,ADDR2} falls within the range determined by
6926 {ASPACE1,ADDR1,LEN1}. In most targets, this can only be true if ASPACE1
6927 matches ASPACE2. On targets that have global breakpoints, the address
6928 space doesn't really matter. */
6929
6930 static int
6931 breakpoint_address_match_range (struct address_space *aspace1, CORE_ADDR addr1,
6932 int len1, struct address_space *aspace2,
6933 CORE_ADDR addr2)
6934 {
6935 return ((gdbarch_has_global_breakpoints (target_gdbarch ())
6936 || aspace1 == aspace2)
6937 && addr2 >= addr1 && addr2 < addr1 + len1);
6938 }
6939
6940 /* Returns true if {ASPACE,ADDR} matches the breakpoint BL. BL may be
6941 a ranged breakpoint. In most targets, a match happens only if ASPACE
6942 matches the breakpoint's address space. On targets that have global
6943 breakpoints, the address space doesn't really matter. */
6944
6945 static int
6946 breakpoint_location_address_match (struct bp_location *bl,
6947 struct address_space *aspace,
6948 CORE_ADDR addr)
6949 {
6950 return (breakpoint_address_match (bl->pspace->aspace, bl->address,
6951 aspace, addr)
6952 || (bl->length
6953 && breakpoint_address_match_range (bl->pspace->aspace,
6954 bl->address, bl->length,
6955 aspace, addr)));
6956 }
6957
6958 /* If LOC1 and LOC2's owners are not tracepoints, returns false directly.
6959 Then, if LOC1 and LOC2 represent the same tracepoint location, returns
6960 true, otherwise returns false. */
6961
6962 static int
6963 tracepoint_locations_match (struct bp_location *loc1,
6964 struct bp_location *loc2)
6965 {
6966 if (is_tracepoint (loc1->owner) && is_tracepoint (loc2->owner))
6967 /* Since tracepoint locations are never duplicated with others', tracepoint
6968 locations at the same address of different tracepoints are regarded as
6969 different locations. */
6970 return (loc1->address == loc2->address && loc1->owner == loc2->owner);
6971 else
6972 return 0;
6973 }
6974
6975 /* Assuming LOC1 and LOC2's types' have meaningful target addresses
6976 (breakpoint_address_is_meaningful), returns true if LOC1 and LOC2
6977 represent the same location. */
6978
6979 static int
6980 breakpoint_locations_match (struct bp_location *loc1,
6981 struct bp_location *loc2)
6982 {
6983 int hw_point1, hw_point2;
6984
6985 /* Both of them must not be in moribund_locations. */
6986 gdb_assert (loc1->owner != NULL);
6987 gdb_assert (loc2->owner != NULL);
6988
6989 hw_point1 = is_hardware_watchpoint (loc1->owner);
6990 hw_point2 = is_hardware_watchpoint (loc2->owner);
6991
6992 if (hw_point1 != hw_point2)
6993 return 0;
6994 else if (hw_point1)
6995 return watchpoint_locations_match (loc1, loc2);
6996 else if (is_tracepoint (loc1->owner) || is_tracepoint (loc2->owner))
6997 return tracepoint_locations_match (loc1, loc2);
6998 else
6999 /* We compare bp_location.length in order to cover ranged breakpoints. */
7000 return (breakpoint_address_match (loc1->pspace->aspace, loc1->address,
7001 loc2->pspace->aspace, loc2->address)
7002 && loc1->length == loc2->length);
7003 }
7004
7005 static void
7006 breakpoint_adjustment_warning (CORE_ADDR from_addr, CORE_ADDR to_addr,
7007 int bnum, int have_bnum)
7008 {
7009 /* The longest string possibly returned by hex_string_custom
7010 is 50 chars. These must be at least that big for safety. */
7011 char astr1[64];
7012 char astr2[64];
7013
7014 strcpy (astr1, hex_string_custom ((unsigned long) from_addr, 8));
7015 strcpy (astr2, hex_string_custom ((unsigned long) to_addr, 8));
7016 if (have_bnum)
7017 warning (_("Breakpoint %d address previously adjusted from %s to %s."),
7018 bnum, astr1, astr2);
7019 else
7020 warning (_("Breakpoint address adjusted from %s to %s."), astr1, astr2);
7021 }
7022
7023 /* Adjust a breakpoint's address to account for architectural
7024 constraints on breakpoint placement. Return the adjusted address.
7025 Note: Very few targets require this kind of adjustment. For most
7026 targets, this function is simply the identity function. */
7027
7028 static CORE_ADDR
7029 adjust_breakpoint_address (struct gdbarch *gdbarch,
7030 CORE_ADDR bpaddr, enum bptype bptype)
7031 {
7032 if (!gdbarch_adjust_breakpoint_address_p (gdbarch))
7033 {
7034 /* Very few targets need any kind of breakpoint adjustment. */
7035 return bpaddr;
7036 }
7037 else if (bptype == bp_watchpoint
7038 || bptype == bp_hardware_watchpoint
7039 || bptype == bp_read_watchpoint
7040 || bptype == bp_access_watchpoint
7041 || bptype == bp_catchpoint)
7042 {
7043 /* Watchpoints and the various bp_catch_* eventpoints should not
7044 have their addresses modified. */
7045 return bpaddr;
7046 }
7047 else
7048 {
7049 CORE_ADDR adjusted_bpaddr;
7050
7051 /* Some targets have architectural constraints on the placement
7052 of breakpoint instructions. Obtain the adjusted address. */
7053 adjusted_bpaddr = gdbarch_adjust_breakpoint_address (gdbarch, bpaddr);
7054
7055 /* An adjusted breakpoint address can significantly alter
7056 a user's expectations. Print a warning if an adjustment
7057 is required. */
7058 if (adjusted_bpaddr != bpaddr)
7059 breakpoint_adjustment_warning (bpaddr, adjusted_bpaddr, 0, 0);
7060
7061 return adjusted_bpaddr;
7062 }
7063 }
7064
7065 void
7066 init_bp_location (struct bp_location *loc, const struct bp_location_ops *ops,
7067 struct breakpoint *owner)
7068 {
7069 memset (loc, 0, sizeof (*loc));
7070
7071 gdb_assert (ops != NULL);
7072
7073 loc->ops = ops;
7074 loc->owner = owner;
7075 loc->cond = NULL;
7076 loc->cond_bytecode = NULL;
7077 loc->shlib_disabled = 0;
7078 loc->enabled = 1;
7079
7080 switch (owner->type)
7081 {
7082 case bp_breakpoint:
7083 case bp_until:
7084 case bp_finish:
7085 case bp_longjmp:
7086 case bp_longjmp_resume:
7087 case bp_longjmp_call_dummy:
7088 case bp_exception:
7089 case bp_exception_resume:
7090 case bp_step_resume:
7091 case bp_hp_step_resume:
7092 case bp_watchpoint_scope:
7093 case bp_call_dummy:
7094 case bp_std_terminate:
7095 case bp_shlib_event:
7096 case bp_thread_event:
7097 case bp_overlay_event:
7098 case bp_jit_event:
7099 case bp_longjmp_master:
7100 case bp_std_terminate_master:
7101 case bp_exception_master:
7102 case bp_gnu_ifunc_resolver:
7103 case bp_gnu_ifunc_resolver_return:
7104 case bp_dprintf:
7105 loc->loc_type = bp_loc_software_breakpoint;
7106 mark_breakpoint_location_modified (loc);
7107 break;
7108 case bp_hardware_breakpoint:
7109 loc->loc_type = bp_loc_hardware_breakpoint;
7110 mark_breakpoint_location_modified (loc);
7111 break;
7112 case bp_hardware_watchpoint:
7113 case bp_read_watchpoint:
7114 case bp_access_watchpoint:
7115 loc->loc_type = bp_loc_hardware_watchpoint;
7116 break;
7117 case bp_watchpoint:
7118 case bp_catchpoint:
7119 case bp_tracepoint:
7120 case bp_fast_tracepoint:
7121 case bp_static_tracepoint:
7122 loc->loc_type = bp_loc_other;
7123 break;
7124 default:
7125 internal_error (__FILE__, __LINE__, _("unknown breakpoint type"));
7126 }
7127
7128 loc->refc = 1;
7129 }
7130
7131 /* Allocate a struct bp_location. */
7132
7133 static struct bp_location *
7134 allocate_bp_location (struct breakpoint *bpt)
7135 {
7136 return bpt->ops->allocate_location (bpt);
7137 }
7138
7139 static void
7140 free_bp_location (struct bp_location *loc)
7141 {
7142 loc->ops->dtor (loc);
7143 xfree (loc);
7144 }
7145
7146 /* Increment reference count. */
7147
7148 static void
7149 incref_bp_location (struct bp_location *bl)
7150 {
7151 ++bl->refc;
7152 }
7153
7154 /* Decrement reference count. If the reference count reaches 0,
7155 destroy the bp_location. Sets *BLP to NULL. */
7156
7157 static void
7158 decref_bp_location (struct bp_location **blp)
7159 {
7160 gdb_assert ((*blp)->refc > 0);
7161
7162 if (--(*blp)->refc == 0)
7163 free_bp_location (*blp);
7164 *blp = NULL;
7165 }
7166
7167 /* Add breakpoint B at the end of the global breakpoint chain. */
7168
7169 static void
7170 add_to_breakpoint_chain (struct breakpoint *b)
7171 {
7172 struct breakpoint *b1;
7173
7174 /* Add this breakpoint to the end of the chain so that a list of
7175 breakpoints will come out in order of increasing numbers. */
7176
7177 b1 = breakpoint_chain;
7178 if (b1 == 0)
7179 breakpoint_chain = b;
7180 else
7181 {
7182 while (b1->next)
7183 b1 = b1->next;
7184 b1->next = b;
7185 }
7186 }
7187
7188 /* Initializes breakpoint B with type BPTYPE and no locations yet. */
7189
7190 static void
7191 init_raw_breakpoint_without_location (struct breakpoint *b,
7192 struct gdbarch *gdbarch,
7193 enum bptype bptype,
7194 const struct breakpoint_ops *ops)
7195 {
7196 memset (b, 0, sizeof (*b));
7197
7198 gdb_assert (ops != NULL);
7199
7200 b->ops = ops;
7201 b->type = bptype;
7202 b->gdbarch = gdbarch;
7203 b->language = current_language->la_language;
7204 b->input_radix = input_radix;
7205 b->thread = -1;
7206 b->enable_state = bp_enabled;
7207 b->next = 0;
7208 b->silent = 0;
7209 b->ignore_count = 0;
7210 b->commands = NULL;
7211 b->frame_id = null_frame_id;
7212 b->condition_not_parsed = 0;
7213 b->py_bp_object = NULL;
7214 b->related_breakpoint = b;
7215 }
7216
7217 /* Helper to set_raw_breakpoint below. Creates a breakpoint
7218 that has type BPTYPE and has no locations as yet. */
7219
7220 static struct breakpoint *
7221 set_raw_breakpoint_without_location (struct gdbarch *gdbarch,
7222 enum bptype bptype,
7223 const struct breakpoint_ops *ops)
7224 {
7225 struct breakpoint *b = XNEW (struct breakpoint);
7226
7227 init_raw_breakpoint_without_location (b, gdbarch, bptype, ops);
7228 add_to_breakpoint_chain (b);
7229 return b;
7230 }
7231
7232 /* Initialize loc->function_name. EXPLICIT_LOC says no indirect function
7233 resolutions should be made as the user specified the location explicitly
7234 enough. */
7235
7236 static void
7237 set_breakpoint_location_function (struct bp_location *loc, int explicit_loc)
7238 {
7239 gdb_assert (loc->owner != NULL);
7240
7241 if (loc->owner->type == bp_breakpoint
7242 || loc->owner->type == bp_hardware_breakpoint
7243 || is_tracepoint (loc->owner))
7244 {
7245 int is_gnu_ifunc;
7246 const char *function_name;
7247 CORE_ADDR func_addr;
7248
7249 find_pc_partial_function_gnu_ifunc (loc->address, &function_name,
7250 &func_addr, NULL, &is_gnu_ifunc);
7251
7252 if (is_gnu_ifunc && !explicit_loc)
7253 {
7254 struct breakpoint *b = loc->owner;
7255
7256 gdb_assert (loc->pspace == current_program_space);
7257 if (gnu_ifunc_resolve_name (function_name,
7258 &loc->requested_address))
7259 {
7260 /* Recalculate ADDRESS based on new REQUESTED_ADDRESS. */
7261 loc->address = adjust_breakpoint_address (loc->gdbarch,
7262 loc->requested_address,
7263 b->type);
7264 }
7265 else if (b->type == bp_breakpoint && b->loc == loc
7266 && loc->next == NULL && b->related_breakpoint == b)
7267 {
7268 /* Create only the whole new breakpoint of this type but do not
7269 mess more complicated breakpoints with multiple locations. */
7270 b->type = bp_gnu_ifunc_resolver;
7271 /* Remember the resolver's address for use by the return
7272 breakpoint. */
7273 loc->related_address = func_addr;
7274 }
7275 }
7276
7277 if (function_name)
7278 loc->function_name = xstrdup (function_name);
7279 }
7280 }
7281
7282 /* Attempt to determine architecture of location identified by SAL. */
7283 struct gdbarch *
7284 get_sal_arch (struct symtab_and_line sal)
7285 {
7286 if (sal.section)
7287 return get_objfile_arch (sal.section->objfile);
7288 if (sal.symtab)
7289 return get_objfile_arch (sal.symtab->objfile);
7290
7291 return NULL;
7292 }
7293
7294 /* Low level routine for partially initializing a breakpoint of type
7295 BPTYPE. The newly created breakpoint's address, section, source
7296 file name, and line number are provided by SAL.
7297
7298 It is expected that the caller will complete the initialization of
7299 the newly created breakpoint struct as well as output any status
7300 information regarding the creation of a new breakpoint. */
7301
7302 static void
7303 init_raw_breakpoint (struct breakpoint *b, struct gdbarch *gdbarch,
7304 struct symtab_and_line sal, enum bptype bptype,
7305 const struct breakpoint_ops *ops)
7306 {
7307 init_raw_breakpoint_without_location (b, gdbarch, bptype, ops);
7308
7309 add_location_to_breakpoint (b, &sal);
7310
7311 if (bptype != bp_catchpoint)
7312 gdb_assert (sal.pspace != NULL);
7313
7314 /* Store the program space that was used to set the breakpoint,
7315 except for ordinary breakpoints, which are independent of the
7316 program space. */
7317 if (bptype != bp_breakpoint && bptype != bp_hardware_breakpoint)
7318 b->pspace = sal.pspace;
7319 }
7320
7321 /* set_raw_breakpoint is a low level routine for allocating and
7322 partially initializing a breakpoint of type BPTYPE. The newly
7323 created breakpoint's address, section, source file name, and line
7324 number are provided by SAL. The newly created and partially
7325 initialized breakpoint is added to the breakpoint chain and
7326 is also returned as the value of this function.
7327
7328 It is expected that the caller will complete the initialization of
7329 the newly created breakpoint struct as well as output any status
7330 information regarding the creation of a new breakpoint. In
7331 particular, set_raw_breakpoint does NOT set the breakpoint
7332 number! Care should be taken to not allow an error to occur
7333 prior to completing the initialization of the breakpoint. If this
7334 should happen, a bogus breakpoint will be left on the chain. */
7335
7336 struct breakpoint *
7337 set_raw_breakpoint (struct gdbarch *gdbarch,
7338 struct symtab_and_line sal, enum bptype bptype,
7339 const struct breakpoint_ops *ops)
7340 {
7341 struct breakpoint *b = XNEW (struct breakpoint);
7342
7343 init_raw_breakpoint (b, gdbarch, sal, bptype, ops);
7344 add_to_breakpoint_chain (b);
7345 return b;
7346 }
7347
7348
7349 /* Note that the breakpoint object B describes a permanent breakpoint
7350 instruction, hard-wired into the inferior's code. */
7351 void
7352 make_breakpoint_permanent (struct breakpoint *b)
7353 {
7354 struct bp_location *bl;
7355
7356 b->enable_state = bp_permanent;
7357
7358 /* By definition, permanent breakpoints are already present in the
7359 code. Mark all locations as inserted. For now,
7360 make_breakpoint_permanent is called in just one place, so it's
7361 hard to say if it's reasonable to have permanent breakpoint with
7362 multiple locations or not, but it's easy to implement. */
7363 for (bl = b->loc; bl; bl = bl->next)
7364 bl->inserted = 1;
7365 }
7366
7367 /* Call this routine when stepping and nexting to enable a breakpoint
7368 if we do a longjmp() or 'throw' in TP. FRAME is the frame which
7369 initiated the operation. */
7370
7371 void
7372 set_longjmp_breakpoint (struct thread_info *tp, struct frame_id frame)
7373 {
7374 struct breakpoint *b, *b_tmp;
7375 int thread = tp->num;
7376
7377 /* To avoid having to rescan all objfile symbols at every step,
7378 we maintain a list of continually-inserted but always disabled
7379 longjmp "master" breakpoints. Here, we simply create momentary
7380 clones of those and enable them for the requested thread. */
7381 ALL_BREAKPOINTS_SAFE (b, b_tmp)
7382 if (b->pspace == current_program_space
7383 && (b->type == bp_longjmp_master
7384 || b->type == bp_exception_master))
7385 {
7386 enum bptype type = b->type == bp_longjmp_master ? bp_longjmp : bp_exception;
7387 struct breakpoint *clone;
7388
7389 /* longjmp_breakpoint_ops ensures INITIATING_FRAME is cleared again
7390 after their removal. */
7391 clone = momentary_breakpoint_from_master (b, type,
7392 &longjmp_breakpoint_ops, 1);
7393 clone->thread = thread;
7394 }
7395
7396 tp->initiating_frame = frame;
7397 }
7398
7399 /* Delete all longjmp breakpoints from THREAD. */
7400 void
7401 delete_longjmp_breakpoint (int thread)
7402 {
7403 struct breakpoint *b, *b_tmp;
7404
7405 ALL_BREAKPOINTS_SAFE (b, b_tmp)
7406 if (b->type == bp_longjmp || b->type == bp_exception)
7407 {
7408 if (b->thread == thread)
7409 delete_breakpoint (b);
7410 }
7411 }
7412
7413 void
7414 delete_longjmp_breakpoint_at_next_stop (int thread)
7415 {
7416 struct breakpoint *b, *b_tmp;
7417
7418 ALL_BREAKPOINTS_SAFE (b, b_tmp)
7419 if (b->type == bp_longjmp || b->type == bp_exception)
7420 {
7421 if (b->thread == thread)
7422 b->disposition = disp_del_at_next_stop;
7423 }
7424 }
7425
7426 /* Place breakpoints of type bp_longjmp_call_dummy to catch longjmp for
7427 INFERIOR_PTID thread. Chain them all by RELATED_BREAKPOINT and return
7428 pointer to any of them. Return NULL if this system cannot place longjmp
7429 breakpoints. */
7430
7431 struct breakpoint *
7432 set_longjmp_breakpoint_for_call_dummy (void)
7433 {
7434 struct breakpoint *b, *retval = NULL;
7435
7436 ALL_BREAKPOINTS (b)
7437 if (b->pspace == current_program_space && b->type == bp_longjmp_master)
7438 {
7439 struct breakpoint *new_b;
7440
7441 new_b = momentary_breakpoint_from_master (b, bp_longjmp_call_dummy,
7442 &momentary_breakpoint_ops,
7443 1);
7444 new_b->thread = pid_to_thread_id (inferior_ptid);
7445
7446 /* Link NEW_B into the chain of RETVAL breakpoints. */
7447
7448 gdb_assert (new_b->related_breakpoint == new_b);
7449 if (retval == NULL)
7450 retval = new_b;
7451 new_b->related_breakpoint = retval;
7452 while (retval->related_breakpoint != new_b->related_breakpoint)
7453 retval = retval->related_breakpoint;
7454 retval->related_breakpoint = new_b;
7455 }
7456
7457 return retval;
7458 }
7459
7460 /* Verify all existing dummy frames and their associated breakpoints for
7461 TP. Remove those which can no longer be found in the current frame
7462 stack.
7463
7464 You should call this function only at places where it is safe to currently
7465 unwind the whole stack. Failed stack unwind would discard live dummy
7466 frames. */
7467
7468 void
7469 check_longjmp_breakpoint_for_call_dummy (struct thread_info *tp)
7470 {
7471 struct breakpoint *b, *b_tmp;
7472
7473 ALL_BREAKPOINTS_SAFE (b, b_tmp)
7474 if (b->type == bp_longjmp_call_dummy && b->thread == tp->num)
7475 {
7476 struct breakpoint *dummy_b = b->related_breakpoint;
7477
7478 while (dummy_b != b && dummy_b->type != bp_call_dummy)
7479 dummy_b = dummy_b->related_breakpoint;
7480 if (dummy_b->type != bp_call_dummy
7481 || frame_find_by_id (dummy_b->frame_id) != NULL)
7482 continue;
7483
7484 dummy_frame_discard (dummy_b->frame_id, tp->ptid);
7485
7486 while (b->related_breakpoint != b)
7487 {
7488 if (b_tmp == b->related_breakpoint)
7489 b_tmp = b->related_breakpoint->next;
7490 delete_breakpoint (b->related_breakpoint);
7491 }
7492 delete_breakpoint (b);
7493 }
7494 }
7495
7496 void
7497 enable_overlay_breakpoints (void)
7498 {
7499 struct breakpoint *b;
7500
7501 ALL_BREAKPOINTS (b)
7502 if (b->type == bp_overlay_event)
7503 {
7504 b->enable_state = bp_enabled;
7505 update_global_location_list (1);
7506 overlay_events_enabled = 1;
7507 }
7508 }
7509
7510 void
7511 disable_overlay_breakpoints (void)
7512 {
7513 struct breakpoint *b;
7514
7515 ALL_BREAKPOINTS (b)
7516 if (b->type == bp_overlay_event)
7517 {
7518 b->enable_state = bp_disabled;
7519 update_global_location_list (0);
7520 overlay_events_enabled = 0;
7521 }
7522 }
7523
7524 /* Set an active std::terminate breakpoint for each std::terminate
7525 master breakpoint. */
7526 void
7527 set_std_terminate_breakpoint (void)
7528 {
7529 struct breakpoint *b, *b_tmp;
7530
7531 ALL_BREAKPOINTS_SAFE (b, b_tmp)
7532 if (b->pspace == current_program_space
7533 && b->type == bp_std_terminate_master)
7534 {
7535 momentary_breakpoint_from_master (b, bp_std_terminate,
7536 &momentary_breakpoint_ops, 1);
7537 }
7538 }
7539
7540 /* Delete all the std::terminate breakpoints. */
7541 void
7542 delete_std_terminate_breakpoint (void)
7543 {
7544 struct breakpoint *b, *b_tmp;
7545
7546 ALL_BREAKPOINTS_SAFE (b, b_tmp)
7547 if (b->type == bp_std_terminate)
7548 delete_breakpoint (b);
7549 }
7550
7551 struct breakpoint *
7552 create_thread_event_breakpoint (struct gdbarch *gdbarch, CORE_ADDR address)
7553 {
7554 struct breakpoint *b;
7555
7556 b = create_internal_breakpoint (gdbarch, address, bp_thread_event,
7557 &internal_breakpoint_ops);
7558
7559 b->enable_state = bp_enabled;
7560 /* addr_string has to be used or breakpoint_re_set will delete me. */
7561 b->addr_string
7562 = xstrprintf ("*%s", paddress (b->loc->gdbarch, b->loc->address));
7563
7564 update_global_location_list_nothrow (1);
7565
7566 return b;
7567 }
7568
7569 void
7570 remove_thread_event_breakpoints (void)
7571 {
7572 struct breakpoint *b, *b_tmp;
7573
7574 ALL_BREAKPOINTS_SAFE (b, b_tmp)
7575 if (b->type == bp_thread_event
7576 && b->loc->pspace == current_program_space)
7577 delete_breakpoint (b);
7578 }
7579
7580 struct lang_and_radix
7581 {
7582 enum language lang;
7583 int radix;
7584 };
7585
7586 /* Create a breakpoint for JIT code registration and unregistration. */
7587
7588 struct breakpoint *
7589 create_jit_event_breakpoint (struct gdbarch *gdbarch, CORE_ADDR address)
7590 {
7591 struct breakpoint *b;
7592
7593 b = create_internal_breakpoint (gdbarch, address, bp_jit_event,
7594 &internal_breakpoint_ops);
7595 update_global_location_list_nothrow (1);
7596 return b;
7597 }
7598
7599 /* Remove JIT code registration and unregistration breakpoint(s). */
7600
7601 void
7602 remove_jit_event_breakpoints (void)
7603 {
7604 struct breakpoint *b, *b_tmp;
7605
7606 ALL_BREAKPOINTS_SAFE (b, b_tmp)
7607 if (b->type == bp_jit_event
7608 && b->loc->pspace == current_program_space)
7609 delete_breakpoint (b);
7610 }
7611
7612 void
7613 remove_solib_event_breakpoints (void)
7614 {
7615 struct breakpoint *b, *b_tmp;
7616
7617 ALL_BREAKPOINTS_SAFE (b, b_tmp)
7618 if (b->type == bp_shlib_event
7619 && b->loc->pspace == current_program_space)
7620 delete_breakpoint (b);
7621 }
7622
7623 struct breakpoint *
7624 create_solib_event_breakpoint (struct gdbarch *gdbarch, CORE_ADDR address)
7625 {
7626 struct breakpoint *b;
7627
7628 b = create_internal_breakpoint (gdbarch, address, bp_shlib_event,
7629 &internal_breakpoint_ops);
7630 update_global_location_list_nothrow (1);
7631 return b;
7632 }
7633
7634 /* Disable any breakpoints that are on code in shared libraries. Only
7635 apply to enabled breakpoints, disabled ones can just stay disabled. */
7636
7637 void
7638 disable_breakpoints_in_shlibs (void)
7639 {
7640 struct bp_location *loc, **locp_tmp;
7641
7642 ALL_BP_LOCATIONS (loc, locp_tmp)
7643 {
7644 /* ALL_BP_LOCATIONS bp_location has LOC->OWNER always non-NULL. */
7645 struct breakpoint *b = loc->owner;
7646
7647 /* We apply the check to all breakpoints, including disabled for
7648 those with loc->duplicate set. This is so that when breakpoint
7649 becomes enabled, or the duplicate is removed, gdb will try to
7650 insert all breakpoints. If we don't set shlib_disabled here,
7651 we'll try to insert those breakpoints and fail. */
7652 if (((b->type == bp_breakpoint)
7653 || (b->type == bp_jit_event)
7654 || (b->type == bp_hardware_breakpoint)
7655 || (is_tracepoint (b)))
7656 && loc->pspace == current_program_space
7657 && !loc->shlib_disabled
7658 && solib_name_from_address (loc->pspace, loc->address)
7659 )
7660 {
7661 loc->shlib_disabled = 1;
7662 }
7663 }
7664 }
7665
7666 /* Disable any breakpoints and tracepoints that are in SOLIB upon
7667 notification of unloaded_shlib. Only apply to enabled breakpoints,
7668 disabled ones can just stay disabled. */
7669
7670 static void
7671 disable_breakpoints_in_unloaded_shlib (struct so_list *solib)
7672 {
7673 struct bp_location *loc, **locp_tmp;
7674 int disabled_shlib_breaks = 0;
7675
7676 /* SunOS a.out shared libraries are always mapped, so do not
7677 disable breakpoints; they will only be reported as unloaded
7678 through clear_solib when GDB discards its shared library
7679 list. See clear_solib for more information. */
7680 if (exec_bfd != NULL
7681 && bfd_get_flavour (exec_bfd) == bfd_target_aout_flavour)
7682 return;
7683
7684 ALL_BP_LOCATIONS (loc, locp_tmp)
7685 {
7686 /* ALL_BP_LOCATIONS bp_location has LOC->OWNER always non-NULL. */
7687 struct breakpoint *b = loc->owner;
7688
7689 if (solib->pspace == loc->pspace
7690 && !loc->shlib_disabled
7691 && (((b->type == bp_breakpoint
7692 || b->type == bp_jit_event
7693 || b->type == bp_hardware_breakpoint)
7694 && (loc->loc_type == bp_loc_hardware_breakpoint
7695 || loc->loc_type == bp_loc_software_breakpoint))
7696 || is_tracepoint (b))
7697 && solib_contains_address_p (solib, loc->address))
7698 {
7699 loc->shlib_disabled = 1;
7700 /* At this point, we cannot rely on remove_breakpoint
7701 succeeding so we must mark the breakpoint as not inserted
7702 to prevent future errors occurring in remove_breakpoints. */
7703 loc->inserted = 0;
7704
7705 /* This may cause duplicate notifications for the same breakpoint. */
7706 observer_notify_breakpoint_modified (b);
7707
7708 if (!disabled_shlib_breaks)
7709 {
7710 target_terminal_ours_for_output ();
7711 warning (_("Temporarily disabling breakpoints "
7712 "for unloaded shared library \"%s\""),
7713 solib->so_name);
7714 }
7715 disabled_shlib_breaks = 1;
7716 }
7717 }
7718 }
7719
7720 /* Disable any breakpoints and tracepoints in OBJFILE upon
7721 notification of free_objfile. Only apply to enabled breakpoints,
7722 disabled ones can just stay disabled. */
7723
7724 static void
7725 disable_breakpoints_in_freed_objfile (struct objfile *objfile)
7726 {
7727 struct breakpoint *b;
7728
7729 if (objfile == NULL)
7730 return;
7731
7732 /* OBJF_SHARED|OBJF_USERLOADED objfiles are dynamic modules manually
7733 managed by the user with add-symbol-file/remove-symbol-file.
7734 Similarly to how breakpoints in shared libraries are handled in
7735 response to "nosharedlibrary", mark breakpoints in such modules
7736 shlib_disabled so they end up uninserted on the next global
7737 location list update. Shared libraries not loaded by the user
7738 aren't handled here -- they're already handled in
7739 disable_breakpoints_in_unloaded_shlib, called by solib.c's
7740 solib_unloaded observer. We skip objfiles that are not
7741 OBJF_SHARED as those aren't considered dynamic objects (e.g. the
7742 main objfile). */
7743 if ((objfile->flags & OBJF_SHARED) == 0
7744 || (objfile->flags & OBJF_USERLOADED) == 0)
7745 return;
7746
7747 ALL_BREAKPOINTS (b)
7748 {
7749 struct bp_location *loc;
7750 int bp_modified = 0;
7751
7752 if (!is_breakpoint (b) && !is_tracepoint (b))
7753 continue;
7754
7755 for (loc = b->loc; loc != NULL; loc = loc->next)
7756 {
7757 CORE_ADDR loc_addr = loc->address;
7758
7759 if (loc->loc_type != bp_loc_hardware_breakpoint
7760 && loc->loc_type != bp_loc_software_breakpoint)
7761 continue;
7762
7763 if (loc->shlib_disabled != 0)
7764 continue;
7765
7766 if (objfile->pspace != loc->pspace)
7767 continue;
7768
7769 if (loc->loc_type != bp_loc_hardware_breakpoint
7770 && loc->loc_type != bp_loc_software_breakpoint)
7771 continue;
7772
7773 if (is_addr_in_objfile (loc_addr, objfile))
7774 {
7775 loc->shlib_disabled = 1;
7776 /* At this point, we don't know whether the object was
7777 unmapped from the inferior or not, so leave the
7778 inserted flag alone. We'll handle failure to
7779 uninsert quietly, in case the object was indeed
7780 unmapped. */
7781
7782 mark_breakpoint_location_modified (loc);
7783
7784 bp_modified = 1;
7785 }
7786 }
7787
7788 if (bp_modified)
7789 observer_notify_breakpoint_modified (b);
7790 }
7791 }
7792
7793 /* FORK & VFORK catchpoints. */
7794
7795 /* An instance of this type is used to represent a fork or vfork
7796 catchpoint. It includes a "struct breakpoint" as a kind of base
7797 class; users downcast to "struct breakpoint *" when needed. A
7798 breakpoint is really of this type iff its ops pointer points to
7799 CATCH_FORK_BREAKPOINT_OPS. */
7800
7801 struct fork_catchpoint
7802 {
7803 /* The base class. */
7804 struct breakpoint base;
7805
7806 /* Process id of a child process whose forking triggered this
7807 catchpoint. This field is only valid immediately after this
7808 catchpoint has triggered. */
7809 ptid_t forked_inferior_pid;
7810 };
7811
7812 /* Implement the "insert" breakpoint_ops method for fork
7813 catchpoints. */
7814
7815 static int
7816 insert_catch_fork (struct bp_location *bl)
7817 {
7818 return target_insert_fork_catchpoint (ptid_get_pid (inferior_ptid));
7819 }
7820
7821 /* Implement the "remove" breakpoint_ops method for fork
7822 catchpoints. */
7823
7824 static int
7825 remove_catch_fork (struct bp_location *bl)
7826 {
7827 return target_remove_fork_catchpoint (ptid_get_pid (inferior_ptid));
7828 }
7829
7830 /* Implement the "breakpoint_hit" breakpoint_ops method for fork
7831 catchpoints. */
7832
7833 static int
7834 breakpoint_hit_catch_fork (const struct bp_location *bl,
7835 struct address_space *aspace, CORE_ADDR bp_addr,
7836 const struct target_waitstatus *ws)
7837 {
7838 struct fork_catchpoint *c = (struct fork_catchpoint *) bl->owner;
7839
7840 if (ws->kind != TARGET_WAITKIND_FORKED)
7841 return 0;
7842
7843 c->forked_inferior_pid = ws->value.related_pid;
7844 return 1;
7845 }
7846
7847 /* Implement the "print_it" breakpoint_ops method for fork
7848 catchpoints. */
7849
7850 static enum print_stop_action
7851 print_it_catch_fork (bpstat bs)
7852 {
7853 struct ui_out *uiout = current_uiout;
7854 struct breakpoint *b = bs->breakpoint_at;
7855 struct fork_catchpoint *c = (struct fork_catchpoint *) bs->breakpoint_at;
7856
7857 annotate_catchpoint (b->number);
7858 if (b->disposition == disp_del)
7859 ui_out_text (uiout, "\nTemporary catchpoint ");
7860 else
7861 ui_out_text (uiout, "\nCatchpoint ");
7862 if (ui_out_is_mi_like_p (uiout))
7863 {
7864 ui_out_field_string (uiout, "reason",
7865 async_reason_lookup (EXEC_ASYNC_FORK));
7866 ui_out_field_string (uiout, "disp", bpdisp_text (b->disposition));
7867 }
7868 ui_out_field_int (uiout, "bkptno", b->number);
7869 ui_out_text (uiout, " (forked process ");
7870 ui_out_field_int (uiout, "newpid", ptid_get_pid (c->forked_inferior_pid));
7871 ui_out_text (uiout, "), ");
7872 return PRINT_SRC_AND_LOC;
7873 }
7874
7875 /* Implement the "print_one" breakpoint_ops method for fork
7876 catchpoints. */
7877
7878 static void
7879 print_one_catch_fork (struct breakpoint *b, struct bp_location **last_loc)
7880 {
7881 struct fork_catchpoint *c = (struct fork_catchpoint *) b;
7882 struct value_print_options opts;
7883 struct ui_out *uiout = current_uiout;
7884
7885 get_user_print_options (&opts);
7886
7887 /* Field 4, the address, is omitted (which makes the columns not
7888 line up too nicely with the headers, but the effect is relatively
7889 readable). */
7890 if (opts.addressprint)
7891 ui_out_field_skip (uiout, "addr");
7892 annotate_field (5);
7893 ui_out_text (uiout, "fork");
7894 if (!ptid_equal (c->forked_inferior_pid, null_ptid))
7895 {
7896 ui_out_text (uiout, ", process ");
7897 ui_out_field_int (uiout, "what",
7898 ptid_get_pid (c->forked_inferior_pid));
7899 ui_out_spaces (uiout, 1);
7900 }
7901
7902 if (ui_out_is_mi_like_p (uiout))
7903 ui_out_field_string (uiout, "catch-type", "fork");
7904 }
7905
7906 /* Implement the "print_mention" breakpoint_ops method for fork
7907 catchpoints. */
7908
7909 static void
7910 print_mention_catch_fork (struct breakpoint *b)
7911 {
7912 printf_filtered (_("Catchpoint %d (fork)"), b->number);
7913 }
7914
7915 /* Implement the "print_recreate" breakpoint_ops method for fork
7916 catchpoints. */
7917
7918 static void
7919 print_recreate_catch_fork (struct breakpoint *b, struct ui_file *fp)
7920 {
7921 fprintf_unfiltered (fp, "catch fork");
7922 print_recreate_thread (b, fp);
7923 }
7924
7925 /* The breakpoint_ops structure to be used in fork catchpoints. */
7926
7927 static struct breakpoint_ops catch_fork_breakpoint_ops;
7928
7929 /* Implement the "insert" breakpoint_ops method for vfork
7930 catchpoints. */
7931
7932 static int
7933 insert_catch_vfork (struct bp_location *bl)
7934 {
7935 return target_insert_vfork_catchpoint (ptid_get_pid (inferior_ptid));
7936 }
7937
7938 /* Implement the "remove" breakpoint_ops method for vfork
7939 catchpoints. */
7940
7941 static int
7942 remove_catch_vfork (struct bp_location *bl)
7943 {
7944 return target_remove_vfork_catchpoint (ptid_get_pid (inferior_ptid));
7945 }
7946
7947 /* Implement the "breakpoint_hit" breakpoint_ops method for vfork
7948 catchpoints. */
7949
7950 static int
7951 breakpoint_hit_catch_vfork (const struct bp_location *bl,
7952 struct address_space *aspace, CORE_ADDR bp_addr,
7953 const struct target_waitstatus *ws)
7954 {
7955 struct fork_catchpoint *c = (struct fork_catchpoint *) bl->owner;
7956
7957 if (ws->kind != TARGET_WAITKIND_VFORKED)
7958 return 0;
7959
7960 c->forked_inferior_pid = ws->value.related_pid;
7961 return 1;
7962 }
7963
7964 /* Implement the "print_it" breakpoint_ops method for vfork
7965 catchpoints. */
7966
7967 static enum print_stop_action
7968 print_it_catch_vfork (bpstat bs)
7969 {
7970 struct ui_out *uiout = current_uiout;
7971 struct breakpoint *b = bs->breakpoint_at;
7972 struct fork_catchpoint *c = (struct fork_catchpoint *) b;
7973
7974 annotate_catchpoint (b->number);
7975 if (b->disposition == disp_del)
7976 ui_out_text (uiout, "\nTemporary catchpoint ");
7977 else
7978 ui_out_text (uiout, "\nCatchpoint ");
7979 if (ui_out_is_mi_like_p (uiout))
7980 {
7981 ui_out_field_string (uiout, "reason",
7982 async_reason_lookup (EXEC_ASYNC_VFORK));
7983 ui_out_field_string (uiout, "disp", bpdisp_text (b->disposition));
7984 }
7985 ui_out_field_int (uiout, "bkptno", b->number);
7986 ui_out_text (uiout, " (vforked process ");
7987 ui_out_field_int (uiout, "newpid", ptid_get_pid (c->forked_inferior_pid));
7988 ui_out_text (uiout, "), ");
7989 return PRINT_SRC_AND_LOC;
7990 }
7991
7992 /* Implement the "print_one" breakpoint_ops method for vfork
7993 catchpoints. */
7994
7995 static void
7996 print_one_catch_vfork (struct breakpoint *b, struct bp_location **last_loc)
7997 {
7998 struct fork_catchpoint *c = (struct fork_catchpoint *) b;
7999 struct value_print_options opts;
8000 struct ui_out *uiout = current_uiout;
8001
8002 get_user_print_options (&opts);
8003 /* Field 4, the address, is omitted (which makes the columns not
8004 line up too nicely with the headers, but the effect is relatively
8005 readable). */
8006 if (opts.addressprint)
8007 ui_out_field_skip (uiout, "addr");
8008 annotate_field (5);
8009 ui_out_text (uiout, "vfork");
8010 if (!ptid_equal (c->forked_inferior_pid, null_ptid))
8011 {
8012 ui_out_text (uiout, ", process ");
8013 ui_out_field_int (uiout, "what",
8014 ptid_get_pid (c->forked_inferior_pid));
8015 ui_out_spaces (uiout, 1);
8016 }
8017
8018 if (ui_out_is_mi_like_p (uiout))
8019 ui_out_field_string (uiout, "catch-type", "vfork");
8020 }
8021
8022 /* Implement the "print_mention" breakpoint_ops method for vfork
8023 catchpoints. */
8024
8025 static void
8026 print_mention_catch_vfork (struct breakpoint *b)
8027 {
8028 printf_filtered (_("Catchpoint %d (vfork)"), b->number);
8029 }
8030
8031 /* Implement the "print_recreate" breakpoint_ops method for vfork
8032 catchpoints. */
8033
8034 static void
8035 print_recreate_catch_vfork (struct breakpoint *b, struct ui_file *fp)
8036 {
8037 fprintf_unfiltered (fp, "catch vfork");
8038 print_recreate_thread (b, fp);
8039 }
8040
8041 /* The breakpoint_ops structure to be used in vfork catchpoints. */
8042
8043 static struct breakpoint_ops catch_vfork_breakpoint_ops;
8044
8045 /* An instance of this type is used to represent an solib catchpoint.
8046 It includes a "struct breakpoint" as a kind of base class; users
8047 downcast to "struct breakpoint *" when needed. A breakpoint is
8048 really of this type iff its ops pointer points to
8049 CATCH_SOLIB_BREAKPOINT_OPS. */
8050
8051 struct solib_catchpoint
8052 {
8053 /* The base class. */
8054 struct breakpoint base;
8055
8056 /* True for "catch load", false for "catch unload". */
8057 unsigned char is_load;
8058
8059 /* Regular expression to match, if any. COMPILED is only valid when
8060 REGEX is non-NULL. */
8061 char *regex;
8062 regex_t compiled;
8063 };
8064
8065 static void
8066 dtor_catch_solib (struct breakpoint *b)
8067 {
8068 struct solib_catchpoint *self = (struct solib_catchpoint *) b;
8069
8070 if (self->regex)
8071 regfree (&self->compiled);
8072 xfree (self->regex);
8073
8074 base_breakpoint_ops.dtor (b);
8075 }
8076
8077 static int
8078 insert_catch_solib (struct bp_location *ignore)
8079 {
8080 return 0;
8081 }
8082
8083 static int
8084 remove_catch_solib (struct bp_location *ignore)
8085 {
8086 return 0;
8087 }
8088
8089 static int
8090 breakpoint_hit_catch_solib (const struct bp_location *bl,
8091 struct address_space *aspace,
8092 CORE_ADDR bp_addr,
8093 const struct target_waitstatus *ws)
8094 {
8095 struct solib_catchpoint *self = (struct solib_catchpoint *) bl->owner;
8096 struct breakpoint *other;
8097
8098 if (ws->kind == TARGET_WAITKIND_LOADED)
8099 return 1;
8100
8101 ALL_BREAKPOINTS (other)
8102 {
8103 struct bp_location *other_bl;
8104
8105 if (other == bl->owner)
8106 continue;
8107
8108 if (other->type != bp_shlib_event)
8109 continue;
8110
8111 if (self->base.pspace != NULL && other->pspace != self->base.pspace)
8112 continue;
8113
8114 for (other_bl = other->loc; other_bl != NULL; other_bl = other_bl->next)
8115 {
8116 if (other->ops->breakpoint_hit (other_bl, aspace, bp_addr, ws))
8117 return 1;
8118 }
8119 }
8120
8121 return 0;
8122 }
8123
8124 static void
8125 check_status_catch_solib (struct bpstats *bs)
8126 {
8127 struct solib_catchpoint *self
8128 = (struct solib_catchpoint *) bs->breakpoint_at;
8129 int ix;
8130
8131 if (self->is_load)
8132 {
8133 struct so_list *iter;
8134
8135 for (ix = 0;
8136 VEC_iterate (so_list_ptr, current_program_space->added_solibs,
8137 ix, iter);
8138 ++ix)
8139 {
8140 if (!self->regex
8141 || regexec (&self->compiled, iter->so_name, 0, NULL, 0) == 0)
8142 return;
8143 }
8144 }
8145 else
8146 {
8147 char *iter;
8148
8149 for (ix = 0;
8150 VEC_iterate (char_ptr, current_program_space->deleted_solibs,
8151 ix, iter);
8152 ++ix)
8153 {
8154 if (!self->regex
8155 || regexec (&self->compiled, iter, 0, NULL, 0) == 0)
8156 return;
8157 }
8158 }
8159
8160 bs->stop = 0;
8161 bs->print_it = print_it_noop;
8162 }
8163
8164 static enum print_stop_action
8165 print_it_catch_solib (bpstat bs)
8166 {
8167 struct breakpoint *b = bs->breakpoint_at;
8168 struct ui_out *uiout = current_uiout;
8169
8170 annotate_catchpoint (b->number);
8171 if (b->disposition == disp_del)
8172 ui_out_text (uiout, "\nTemporary catchpoint ");
8173 else
8174 ui_out_text (uiout, "\nCatchpoint ");
8175 ui_out_field_int (uiout, "bkptno", b->number);
8176 ui_out_text (uiout, "\n");
8177 if (ui_out_is_mi_like_p (uiout))
8178 ui_out_field_string (uiout, "disp", bpdisp_text (b->disposition));
8179 print_solib_event (1);
8180 return PRINT_SRC_AND_LOC;
8181 }
8182
8183 static void
8184 print_one_catch_solib (struct breakpoint *b, struct bp_location **locs)
8185 {
8186 struct solib_catchpoint *self = (struct solib_catchpoint *) b;
8187 struct value_print_options opts;
8188 struct ui_out *uiout = current_uiout;
8189 char *msg;
8190
8191 get_user_print_options (&opts);
8192 /* Field 4, the address, is omitted (which makes the columns not
8193 line up too nicely with the headers, but the effect is relatively
8194 readable). */
8195 if (opts.addressprint)
8196 {
8197 annotate_field (4);
8198 ui_out_field_skip (uiout, "addr");
8199 }
8200
8201 annotate_field (5);
8202 if (self->is_load)
8203 {
8204 if (self->regex)
8205 msg = xstrprintf (_("load of library matching %s"), self->regex);
8206 else
8207 msg = xstrdup (_("load of library"));
8208 }
8209 else
8210 {
8211 if (self->regex)
8212 msg = xstrprintf (_("unload of library matching %s"), self->regex);
8213 else
8214 msg = xstrdup (_("unload of library"));
8215 }
8216 ui_out_field_string (uiout, "what", msg);
8217 xfree (msg);
8218
8219 if (ui_out_is_mi_like_p (uiout))
8220 ui_out_field_string (uiout, "catch-type",
8221 self->is_load ? "load" : "unload");
8222 }
8223
8224 static void
8225 print_mention_catch_solib (struct breakpoint *b)
8226 {
8227 struct solib_catchpoint *self = (struct solib_catchpoint *) b;
8228
8229 printf_filtered (_("Catchpoint %d (%s)"), b->number,
8230 self->is_load ? "load" : "unload");
8231 }
8232
8233 static void
8234 print_recreate_catch_solib (struct breakpoint *b, struct ui_file *fp)
8235 {
8236 struct solib_catchpoint *self = (struct solib_catchpoint *) b;
8237
8238 fprintf_unfiltered (fp, "%s %s",
8239 b->disposition == disp_del ? "tcatch" : "catch",
8240 self->is_load ? "load" : "unload");
8241 if (self->regex)
8242 fprintf_unfiltered (fp, " %s", self->regex);
8243 fprintf_unfiltered (fp, "\n");
8244 }
8245
8246 static struct breakpoint_ops catch_solib_breakpoint_ops;
8247
8248 /* Shared helper function (MI and CLI) for creating and installing
8249 a shared object event catchpoint. If IS_LOAD is non-zero then
8250 the events to be caught are load events, otherwise they are
8251 unload events. If IS_TEMP is non-zero the catchpoint is a
8252 temporary one. If ENABLED is non-zero the catchpoint is
8253 created in an enabled state. */
8254
8255 void
8256 add_solib_catchpoint (char *arg, int is_load, int is_temp, int enabled)
8257 {
8258 struct solib_catchpoint *c;
8259 struct gdbarch *gdbarch = get_current_arch ();
8260 struct cleanup *cleanup;
8261
8262 if (!arg)
8263 arg = "";
8264 arg = skip_spaces (arg);
8265
8266 c = XCNEW (struct solib_catchpoint);
8267 cleanup = make_cleanup (xfree, c);
8268
8269 if (*arg != '\0')
8270 {
8271 int errcode;
8272
8273 errcode = regcomp (&c->compiled, arg, REG_NOSUB);
8274 if (errcode != 0)
8275 {
8276 char *err = get_regcomp_error (errcode, &c->compiled);
8277
8278 make_cleanup (xfree, err);
8279 error (_("Invalid regexp (%s): %s"), err, arg);
8280 }
8281 c->regex = xstrdup (arg);
8282 }
8283
8284 c->is_load = is_load;
8285 init_catchpoint (&c->base, gdbarch, is_temp, NULL,
8286 &catch_solib_breakpoint_ops);
8287
8288 c->base.enable_state = enabled ? bp_enabled : bp_disabled;
8289
8290 discard_cleanups (cleanup);
8291 install_breakpoint (0, &c->base, 1);
8292 }
8293
8294 /* A helper function that does all the work for "catch load" and
8295 "catch unload". */
8296
8297 static void
8298 catch_load_or_unload (char *arg, int from_tty, int is_load,
8299 struct cmd_list_element *command)
8300 {
8301 int tempflag;
8302 const int enabled = 1;
8303
8304 tempflag = get_cmd_context (command) == CATCH_TEMPORARY;
8305
8306 add_solib_catchpoint (arg, is_load, tempflag, enabled);
8307 }
8308
8309 static void
8310 catch_load_command_1 (char *arg, int from_tty,
8311 struct cmd_list_element *command)
8312 {
8313 catch_load_or_unload (arg, from_tty, 1, command);
8314 }
8315
8316 static void
8317 catch_unload_command_1 (char *arg, int from_tty,
8318 struct cmd_list_element *command)
8319 {
8320 catch_load_or_unload (arg, from_tty, 0, command);
8321 }
8322
8323 /* An instance of this type is used to represent a syscall catchpoint.
8324 It includes a "struct breakpoint" as a kind of base class; users
8325 downcast to "struct breakpoint *" when needed. A breakpoint is
8326 really of this type iff its ops pointer points to
8327 CATCH_SYSCALL_BREAKPOINT_OPS. */
8328
8329 struct syscall_catchpoint
8330 {
8331 /* The base class. */
8332 struct breakpoint base;
8333
8334 /* Syscall numbers used for the 'catch syscall' feature. If no
8335 syscall has been specified for filtering, its value is NULL.
8336 Otherwise, it holds a list of all syscalls to be caught. The
8337 list elements are allocated with xmalloc. */
8338 VEC(int) *syscalls_to_be_caught;
8339 };
8340
8341 /* Implement the "dtor" breakpoint_ops method for syscall
8342 catchpoints. */
8343
8344 static void
8345 dtor_catch_syscall (struct breakpoint *b)
8346 {
8347 struct syscall_catchpoint *c = (struct syscall_catchpoint *) b;
8348
8349 VEC_free (int, c->syscalls_to_be_caught);
8350
8351 base_breakpoint_ops.dtor (b);
8352 }
8353
8354 static const struct inferior_data *catch_syscall_inferior_data = NULL;
8355
8356 struct catch_syscall_inferior_data
8357 {
8358 /* We keep a count of the number of times the user has requested a
8359 particular syscall to be tracked, and pass this information to the
8360 target. This lets capable targets implement filtering directly. */
8361
8362 /* Number of times that "any" syscall is requested. */
8363 int any_syscall_count;
8364
8365 /* Count of each system call. */
8366 VEC(int) *syscalls_counts;
8367
8368 /* This counts all syscall catch requests, so we can readily determine
8369 if any catching is necessary. */
8370 int total_syscalls_count;
8371 };
8372
8373 static struct catch_syscall_inferior_data*
8374 get_catch_syscall_inferior_data (struct inferior *inf)
8375 {
8376 struct catch_syscall_inferior_data *inf_data;
8377
8378 inf_data = inferior_data (inf, catch_syscall_inferior_data);
8379 if (inf_data == NULL)
8380 {
8381 inf_data = XCNEW (struct catch_syscall_inferior_data);
8382 set_inferior_data (inf, catch_syscall_inferior_data, inf_data);
8383 }
8384
8385 return inf_data;
8386 }
8387
8388 static void
8389 catch_syscall_inferior_data_cleanup (struct inferior *inf, void *arg)
8390 {
8391 xfree (arg);
8392 }
8393
8394
8395 /* Implement the "insert" breakpoint_ops method for syscall
8396 catchpoints. */
8397
8398 static int
8399 insert_catch_syscall (struct bp_location *bl)
8400 {
8401 struct syscall_catchpoint *c = (struct syscall_catchpoint *) bl->owner;
8402 struct inferior *inf = current_inferior ();
8403 struct catch_syscall_inferior_data *inf_data
8404 = get_catch_syscall_inferior_data (inf);
8405
8406 ++inf_data->total_syscalls_count;
8407 if (!c->syscalls_to_be_caught)
8408 ++inf_data->any_syscall_count;
8409 else
8410 {
8411 int i, iter;
8412
8413 for (i = 0;
8414 VEC_iterate (int, c->syscalls_to_be_caught, i, iter);
8415 i++)
8416 {
8417 int elem;
8418
8419 if (iter >= VEC_length (int, inf_data->syscalls_counts))
8420 {
8421 int old_size = VEC_length (int, inf_data->syscalls_counts);
8422 uintptr_t vec_addr_offset
8423 = old_size * ((uintptr_t) sizeof (int));
8424 uintptr_t vec_addr;
8425 VEC_safe_grow (int, inf_data->syscalls_counts, iter + 1);
8426 vec_addr = ((uintptr_t) VEC_address (int,
8427 inf_data->syscalls_counts)
8428 + vec_addr_offset);
8429 memset ((void *) vec_addr, 0,
8430 (iter + 1 - old_size) * sizeof (int));
8431 }
8432 elem = VEC_index (int, inf_data->syscalls_counts, iter);
8433 VEC_replace (int, inf_data->syscalls_counts, iter, ++elem);
8434 }
8435 }
8436
8437 return target_set_syscall_catchpoint (ptid_get_pid (inferior_ptid),
8438 inf_data->total_syscalls_count != 0,
8439 inf_data->any_syscall_count,
8440 VEC_length (int,
8441 inf_data->syscalls_counts),
8442 VEC_address (int,
8443 inf_data->syscalls_counts));
8444 }
8445
8446 /* Implement the "remove" breakpoint_ops method for syscall
8447 catchpoints. */
8448
8449 static int
8450 remove_catch_syscall (struct bp_location *bl)
8451 {
8452 struct syscall_catchpoint *c = (struct syscall_catchpoint *) bl->owner;
8453 struct inferior *inf = current_inferior ();
8454 struct catch_syscall_inferior_data *inf_data
8455 = get_catch_syscall_inferior_data (inf);
8456
8457 --inf_data->total_syscalls_count;
8458 if (!c->syscalls_to_be_caught)
8459 --inf_data->any_syscall_count;
8460 else
8461 {
8462 int i, iter;
8463
8464 for (i = 0;
8465 VEC_iterate (int, c->syscalls_to_be_caught, i, iter);
8466 i++)
8467 {
8468 int elem;
8469 if (iter >= VEC_length (int, inf_data->syscalls_counts))
8470 /* Shouldn't happen. */
8471 continue;
8472 elem = VEC_index (int, inf_data->syscalls_counts, iter);
8473 VEC_replace (int, inf_data->syscalls_counts, iter, --elem);
8474 }
8475 }
8476
8477 return target_set_syscall_catchpoint (ptid_get_pid (inferior_ptid),
8478 inf_data->total_syscalls_count != 0,
8479 inf_data->any_syscall_count,
8480 VEC_length (int,
8481 inf_data->syscalls_counts),
8482 VEC_address (int,
8483 inf_data->syscalls_counts));
8484 }
8485
8486 /* Implement the "breakpoint_hit" breakpoint_ops method for syscall
8487 catchpoints. */
8488
8489 static int
8490 breakpoint_hit_catch_syscall (const struct bp_location *bl,
8491 struct address_space *aspace, CORE_ADDR bp_addr,
8492 const struct target_waitstatus *ws)
8493 {
8494 /* We must check if we are catching specific syscalls in this
8495 breakpoint. If we are, then we must guarantee that the called
8496 syscall is the same syscall we are catching. */
8497 int syscall_number = 0;
8498 const struct syscall_catchpoint *c
8499 = (const struct syscall_catchpoint *) bl->owner;
8500
8501 if (ws->kind != TARGET_WAITKIND_SYSCALL_ENTRY
8502 && ws->kind != TARGET_WAITKIND_SYSCALL_RETURN)
8503 return 0;
8504
8505 syscall_number = ws->value.syscall_number;
8506
8507 /* Now, checking if the syscall is the same. */
8508 if (c->syscalls_to_be_caught)
8509 {
8510 int i, iter;
8511
8512 for (i = 0;
8513 VEC_iterate (int, c->syscalls_to_be_caught, i, iter);
8514 i++)
8515 if (syscall_number == iter)
8516 return 1;
8517
8518 return 0;
8519 }
8520
8521 return 1;
8522 }
8523
8524 /* Implement the "print_it" breakpoint_ops method for syscall
8525 catchpoints. */
8526
8527 static enum print_stop_action
8528 print_it_catch_syscall (bpstat bs)
8529 {
8530 struct ui_out *uiout = current_uiout;
8531 struct breakpoint *b = bs->breakpoint_at;
8532 /* These are needed because we want to know in which state a
8533 syscall is. It can be in the TARGET_WAITKIND_SYSCALL_ENTRY
8534 or TARGET_WAITKIND_SYSCALL_RETURN, and depending on it we
8535 must print "called syscall" or "returned from syscall". */
8536 ptid_t ptid;
8537 struct target_waitstatus last;
8538 struct syscall s;
8539
8540 get_last_target_status (&ptid, &last);
8541
8542 get_syscall_by_number (last.value.syscall_number, &s);
8543
8544 annotate_catchpoint (b->number);
8545
8546 if (b->disposition == disp_del)
8547 ui_out_text (uiout, "\nTemporary catchpoint ");
8548 else
8549 ui_out_text (uiout, "\nCatchpoint ");
8550 if (ui_out_is_mi_like_p (uiout))
8551 {
8552 ui_out_field_string (uiout, "reason",
8553 async_reason_lookup (last.kind == TARGET_WAITKIND_SYSCALL_ENTRY
8554 ? EXEC_ASYNC_SYSCALL_ENTRY
8555 : EXEC_ASYNC_SYSCALL_RETURN));
8556 ui_out_field_string (uiout, "disp", bpdisp_text (b->disposition));
8557 }
8558 ui_out_field_int (uiout, "bkptno", b->number);
8559
8560 if (last.kind == TARGET_WAITKIND_SYSCALL_ENTRY)
8561 ui_out_text (uiout, " (call to syscall ");
8562 else
8563 ui_out_text (uiout, " (returned from syscall ");
8564
8565 if (s.name == NULL || ui_out_is_mi_like_p (uiout))
8566 ui_out_field_int (uiout, "syscall-number", last.value.syscall_number);
8567 if (s.name != NULL)
8568 ui_out_field_string (uiout, "syscall-name", s.name);
8569
8570 ui_out_text (uiout, "), ");
8571
8572 return PRINT_SRC_AND_LOC;
8573 }
8574
8575 /* Implement the "print_one" breakpoint_ops method for syscall
8576 catchpoints. */
8577
8578 static void
8579 print_one_catch_syscall (struct breakpoint *b,
8580 struct bp_location **last_loc)
8581 {
8582 struct syscall_catchpoint *c = (struct syscall_catchpoint *) b;
8583 struct value_print_options opts;
8584 struct ui_out *uiout = current_uiout;
8585
8586 get_user_print_options (&opts);
8587 /* Field 4, the address, is omitted (which makes the columns not
8588 line up too nicely with the headers, but the effect is relatively
8589 readable). */
8590 if (opts.addressprint)
8591 ui_out_field_skip (uiout, "addr");
8592 annotate_field (5);
8593
8594 if (c->syscalls_to_be_caught
8595 && VEC_length (int, c->syscalls_to_be_caught) > 1)
8596 ui_out_text (uiout, "syscalls \"");
8597 else
8598 ui_out_text (uiout, "syscall \"");
8599
8600 if (c->syscalls_to_be_caught)
8601 {
8602 int i, iter;
8603 char *text = xstrprintf ("%s", "");
8604
8605 for (i = 0;
8606 VEC_iterate (int, c->syscalls_to_be_caught, i, iter);
8607 i++)
8608 {
8609 char *x = text;
8610 struct syscall s;
8611 get_syscall_by_number (iter, &s);
8612
8613 if (s.name != NULL)
8614 text = xstrprintf ("%s%s, ", text, s.name);
8615 else
8616 text = xstrprintf ("%s%d, ", text, iter);
8617
8618 /* We have to xfree the last 'text' (now stored at 'x')
8619 because xstrprintf dynamically allocates new space for it
8620 on every call. */
8621 xfree (x);
8622 }
8623 /* Remove the last comma. */
8624 text[strlen (text) - 2] = '\0';
8625 ui_out_field_string (uiout, "what", text);
8626 }
8627 else
8628 ui_out_field_string (uiout, "what", "<any syscall>");
8629 ui_out_text (uiout, "\" ");
8630
8631 if (ui_out_is_mi_like_p (uiout))
8632 ui_out_field_string (uiout, "catch-type", "syscall");
8633 }
8634
8635 /* Implement the "print_mention" breakpoint_ops method for syscall
8636 catchpoints. */
8637
8638 static void
8639 print_mention_catch_syscall (struct breakpoint *b)
8640 {
8641 struct syscall_catchpoint *c = (struct syscall_catchpoint *) b;
8642
8643 if (c->syscalls_to_be_caught)
8644 {
8645 int i, iter;
8646
8647 if (VEC_length (int, c->syscalls_to_be_caught) > 1)
8648 printf_filtered (_("Catchpoint %d (syscalls"), b->number);
8649 else
8650 printf_filtered (_("Catchpoint %d (syscall"), b->number);
8651
8652 for (i = 0;
8653 VEC_iterate (int, c->syscalls_to_be_caught, i, iter);
8654 i++)
8655 {
8656 struct syscall s;
8657 get_syscall_by_number (iter, &s);
8658
8659 if (s.name)
8660 printf_filtered (" '%s' [%d]", s.name, s.number);
8661 else
8662 printf_filtered (" %d", s.number);
8663 }
8664 printf_filtered (")");
8665 }
8666 else
8667 printf_filtered (_("Catchpoint %d (any syscall)"),
8668 b->number);
8669 }
8670
8671 /* Implement the "print_recreate" breakpoint_ops method for syscall
8672 catchpoints. */
8673
8674 static void
8675 print_recreate_catch_syscall (struct breakpoint *b, struct ui_file *fp)
8676 {
8677 struct syscall_catchpoint *c = (struct syscall_catchpoint *) b;
8678
8679 fprintf_unfiltered (fp, "catch syscall");
8680
8681 if (c->syscalls_to_be_caught)
8682 {
8683 int i, iter;
8684
8685 for (i = 0;
8686 VEC_iterate (int, c->syscalls_to_be_caught, i, iter);
8687 i++)
8688 {
8689 struct syscall s;
8690
8691 get_syscall_by_number (iter, &s);
8692 if (s.name)
8693 fprintf_unfiltered (fp, " %s", s.name);
8694 else
8695 fprintf_unfiltered (fp, " %d", s.number);
8696 }
8697 }
8698 print_recreate_thread (b, fp);
8699 }
8700
8701 /* The breakpoint_ops structure to be used in syscall catchpoints. */
8702
8703 static struct breakpoint_ops catch_syscall_breakpoint_ops;
8704
8705 /* Returns non-zero if 'b' is a syscall catchpoint. */
8706
8707 static int
8708 syscall_catchpoint_p (struct breakpoint *b)
8709 {
8710 return (b->ops == &catch_syscall_breakpoint_ops);
8711 }
8712
8713 /* Initialize a new breakpoint of the bp_catchpoint kind. If TEMPFLAG
8714 is non-zero, then make the breakpoint temporary. If COND_STRING is
8715 not NULL, then store it in the breakpoint. OPS, if not NULL, is
8716 the breakpoint_ops structure associated to the catchpoint. */
8717
8718 void
8719 init_catchpoint (struct breakpoint *b,
8720 struct gdbarch *gdbarch, int tempflag,
8721 char *cond_string,
8722 const struct breakpoint_ops *ops)
8723 {
8724 struct symtab_and_line sal;
8725
8726 init_sal (&sal);
8727 sal.pspace = current_program_space;
8728
8729 init_raw_breakpoint (b, gdbarch, sal, bp_catchpoint, ops);
8730
8731 b->cond_string = (cond_string == NULL) ? NULL : xstrdup (cond_string);
8732 b->disposition = tempflag ? disp_del : disp_donttouch;
8733 }
8734
8735 void
8736 install_breakpoint (int internal, struct breakpoint *b, int update_gll)
8737 {
8738 add_to_breakpoint_chain (b);
8739 set_breakpoint_number (internal, b);
8740 if (is_tracepoint (b))
8741 set_tracepoint_count (breakpoint_count);
8742 if (!internal)
8743 mention (b);
8744 observer_notify_breakpoint_created (b);
8745
8746 if (update_gll)
8747 update_global_location_list (1);
8748 }
8749
8750 static void
8751 create_fork_vfork_event_catchpoint (struct gdbarch *gdbarch,
8752 int tempflag, char *cond_string,
8753 const struct breakpoint_ops *ops)
8754 {
8755 struct fork_catchpoint *c = XNEW (struct fork_catchpoint);
8756
8757 init_catchpoint (&c->base, gdbarch, tempflag, cond_string, ops);
8758
8759 c->forked_inferior_pid = null_ptid;
8760
8761 install_breakpoint (0, &c->base, 1);
8762 }
8763
8764 /* Exec catchpoints. */
8765
8766 /* An instance of this type is used to represent an exec catchpoint.
8767 It includes a "struct breakpoint" as a kind of base class; users
8768 downcast to "struct breakpoint *" when needed. A breakpoint is
8769 really of this type iff its ops pointer points to
8770 CATCH_EXEC_BREAKPOINT_OPS. */
8771
8772 struct exec_catchpoint
8773 {
8774 /* The base class. */
8775 struct breakpoint base;
8776
8777 /* Filename of a program whose exec triggered this catchpoint.
8778 This field is only valid immediately after this catchpoint has
8779 triggered. */
8780 char *exec_pathname;
8781 };
8782
8783 /* Implement the "dtor" breakpoint_ops method for exec
8784 catchpoints. */
8785
8786 static void
8787 dtor_catch_exec (struct breakpoint *b)
8788 {
8789 struct exec_catchpoint *c = (struct exec_catchpoint *) b;
8790
8791 xfree (c->exec_pathname);
8792
8793 base_breakpoint_ops.dtor (b);
8794 }
8795
8796 static int
8797 insert_catch_exec (struct bp_location *bl)
8798 {
8799 return target_insert_exec_catchpoint (ptid_get_pid (inferior_ptid));
8800 }
8801
8802 static int
8803 remove_catch_exec (struct bp_location *bl)
8804 {
8805 return target_remove_exec_catchpoint (ptid_get_pid (inferior_ptid));
8806 }
8807
8808 static int
8809 breakpoint_hit_catch_exec (const struct bp_location *bl,
8810 struct address_space *aspace, CORE_ADDR bp_addr,
8811 const struct target_waitstatus *ws)
8812 {
8813 struct exec_catchpoint *c = (struct exec_catchpoint *) bl->owner;
8814
8815 if (ws->kind != TARGET_WAITKIND_EXECD)
8816 return 0;
8817
8818 c->exec_pathname = xstrdup (ws->value.execd_pathname);
8819 return 1;
8820 }
8821
8822 static enum print_stop_action
8823 print_it_catch_exec (bpstat bs)
8824 {
8825 struct ui_out *uiout = current_uiout;
8826 struct breakpoint *b = bs->breakpoint_at;
8827 struct exec_catchpoint *c = (struct exec_catchpoint *) b;
8828
8829 annotate_catchpoint (b->number);
8830 if (b->disposition == disp_del)
8831 ui_out_text (uiout, "\nTemporary catchpoint ");
8832 else
8833 ui_out_text (uiout, "\nCatchpoint ");
8834 if (ui_out_is_mi_like_p (uiout))
8835 {
8836 ui_out_field_string (uiout, "reason",
8837 async_reason_lookup (EXEC_ASYNC_EXEC));
8838 ui_out_field_string (uiout, "disp", bpdisp_text (b->disposition));
8839 }
8840 ui_out_field_int (uiout, "bkptno", b->number);
8841 ui_out_text (uiout, " (exec'd ");
8842 ui_out_field_string (uiout, "new-exec", c->exec_pathname);
8843 ui_out_text (uiout, "), ");
8844
8845 return PRINT_SRC_AND_LOC;
8846 }
8847
8848 static void
8849 print_one_catch_exec (struct breakpoint *b, struct bp_location **last_loc)
8850 {
8851 struct exec_catchpoint *c = (struct exec_catchpoint *) b;
8852 struct value_print_options opts;
8853 struct ui_out *uiout = current_uiout;
8854
8855 get_user_print_options (&opts);
8856
8857 /* Field 4, the address, is omitted (which makes the columns
8858 not line up too nicely with the headers, but the effect
8859 is relatively readable). */
8860 if (opts.addressprint)
8861 ui_out_field_skip (uiout, "addr");
8862 annotate_field (5);
8863 ui_out_text (uiout, "exec");
8864 if (c->exec_pathname != NULL)
8865 {
8866 ui_out_text (uiout, ", program \"");
8867 ui_out_field_string (uiout, "what", c->exec_pathname);
8868 ui_out_text (uiout, "\" ");
8869 }
8870
8871 if (ui_out_is_mi_like_p (uiout))
8872 ui_out_field_string (uiout, "catch-type", "exec");
8873 }
8874
8875 static void
8876 print_mention_catch_exec (struct breakpoint *b)
8877 {
8878 printf_filtered (_("Catchpoint %d (exec)"), b->number);
8879 }
8880
8881 /* Implement the "print_recreate" breakpoint_ops method for exec
8882 catchpoints. */
8883
8884 static void
8885 print_recreate_catch_exec (struct breakpoint *b, struct ui_file *fp)
8886 {
8887 fprintf_unfiltered (fp, "catch exec");
8888 print_recreate_thread (b, fp);
8889 }
8890
8891 static struct breakpoint_ops catch_exec_breakpoint_ops;
8892
8893 static void
8894 create_syscall_event_catchpoint (int tempflag, VEC(int) *filter,
8895 const struct breakpoint_ops *ops)
8896 {
8897 struct syscall_catchpoint *c;
8898 struct gdbarch *gdbarch = get_current_arch ();
8899
8900 c = XNEW (struct syscall_catchpoint);
8901 init_catchpoint (&c->base, gdbarch, tempflag, NULL, ops);
8902 c->syscalls_to_be_caught = filter;
8903
8904 install_breakpoint (0, &c->base, 1);
8905 }
8906
8907 static int
8908 hw_breakpoint_used_count (void)
8909 {
8910 int i = 0;
8911 struct breakpoint *b;
8912 struct bp_location *bl;
8913
8914 ALL_BREAKPOINTS (b)
8915 {
8916 if (b->type == bp_hardware_breakpoint && breakpoint_enabled (b))
8917 for (bl = b->loc; bl; bl = bl->next)
8918 {
8919 /* Special types of hardware breakpoints may use more than
8920 one register. */
8921 i += b->ops->resources_needed (bl);
8922 }
8923 }
8924
8925 return i;
8926 }
8927
8928 /* Returns the resources B would use if it were a hardware
8929 watchpoint. */
8930
8931 static int
8932 hw_watchpoint_use_count (struct breakpoint *b)
8933 {
8934 int i = 0;
8935 struct bp_location *bl;
8936
8937 if (!breakpoint_enabled (b))
8938 return 0;
8939
8940 for (bl = b->loc; bl; bl = bl->next)
8941 {
8942 /* Special types of hardware watchpoints may use more than
8943 one register. */
8944 i += b->ops->resources_needed (bl);
8945 }
8946
8947 return i;
8948 }
8949
8950 /* Returns the sum the used resources of all hardware watchpoints of
8951 type TYPE in the breakpoints list. Also returns in OTHER_TYPE_USED
8952 the sum of the used resources of all hardware watchpoints of other
8953 types _not_ TYPE. */
8954
8955 static int
8956 hw_watchpoint_used_count_others (struct breakpoint *except,
8957 enum bptype type, int *other_type_used)
8958 {
8959 int i = 0;
8960 struct breakpoint *b;
8961
8962 *other_type_used = 0;
8963 ALL_BREAKPOINTS (b)
8964 {
8965 if (b == except)
8966 continue;
8967 if (!breakpoint_enabled (b))
8968 continue;
8969
8970 if (b->type == type)
8971 i += hw_watchpoint_use_count (b);
8972 else if (is_hardware_watchpoint (b))
8973 *other_type_used = 1;
8974 }
8975
8976 return i;
8977 }
8978
8979 void
8980 disable_watchpoints_before_interactive_call_start (void)
8981 {
8982 struct breakpoint *b;
8983
8984 ALL_BREAKPOINTS (b)
8985 {
8986 if (is_watchpoint (b) && breakpoint_enabled (b))
8987 {
8988 b->enable_state = bp_call_disabled;
8989 update_global_location_list (0);
8990 }
8991 }
8992 }
8993
8994 void
8995 enable_watchpoints_after_interactive_call_stop (void)
8996 {
8997 struct breakpoint *b;
8998
8999 ALL_BREAKPOINTS (b)
9000 {
9001 if (is_watchpoint (b) && b->enable_state == bp_call_disabled)
9002 {
9003 b->enable_state = bp_enabled;
9004 update_global_location_list (1);
9005 }
9006 }
9007 }
9008
9009 void
9010 disable_breakpoints_before_startup (void)
9011 {
9012 current_program_space->executing_startup = 1;
9013 update_global_location_list (0);
9014 }
9015
9016 void
9017 enable_breakpoints_after_startup (void)
9018 {
9019 current_program_space->executing_startup = 0;
9020 breakpoint_re_set ();
9021 }
9022
9023
9024 /* Set a breakpoint that will evaporate an end of command
9025 at address specified by SAL.
9026 Restrict it to frame FRAME if FRAME is nonzero. */
9027
9028 struct breakpoint *
9029 set_momentary_breakpoint (struct gdbarch *gdbarch, struct symtab_and_line sal,
9030 struct frame_id frame_id, enum bptype type)
9031 {
9032 struct breakpoint *b;
9033
9034 /* If FRAME_ID is valid, it should be a real frame, not an inlined or
9035 tail-called one. */
9036 gdb_assert (!frame_id_artificial_p (frame_id));
9037
9038 b = set_raw_breakpoint (gdbarch, sal, type, &momentary_breakpoint_ops);
9039 b->enable_state = bp_enabled;
9040 b->disposition = disp_donttouch;
9041 b->frame_id = frame_id;
9042
9043 /* If we're debugging a multi-threaded program, then we want
9044 momentary breakpoints to be active in only a single thread of
9045 control. */
9046 if (in_thread_list (inferior_ptid))
9047 b->thread = pid_to_thread_id (inferior_ptid);
9048
9049 update_global_location_list_nothrow (1);
9050
9051 return b;
9052 }
9053
9054 /* Make a momentary breakpoint based on the master breakpoint ORIG.
9055 The new breakpoint will have type TYPE, use OPS as its
9056 breakpoint_ops, and will set enabled to LOC_ENABLED. */
9057
9058 static struct breakpoint *
9059 momentary_breakpoint_from_master (struct breakpoint *orig,
9060 enum bptype type,
9061 const struct breakpoint_ops *ops,
9062 int loc_enabled)
9063 {
9064 struct breakpoint *copy;
9065
9066 copy = set_raw_breakpoint_without_location (orig->gdbarch, type, ops);
9067 copy->loc = allocate_bp_location (copy);
9068 set_breakpoint_location_function (copy->loc, 1);
9069
9070 copy->loc->gdbarch = orig->loc->gdbarch;
9071 copy->loc->requested_address = orig->loc->requested_address;
9072 copy->loc->address = orig->loc->address;
9073 copy->loc->section = orig->loc->section;
9074 copy->loc->pspace = orig->loc->pspace;
9075 copy->loc->probe = orig->loc->probe;
9076 copy->loc->line_number = orig->loc->line_number;
9077 copy->loc->symtab = orig->loc->symtab;
9078 copy->loc->enabled = loc_enabled;
9079 copy->frame_id = orig->frame_id;
9080 copy->thread = orig->thread;
9081 copy->pspace = orig->pspace;
9082
9083 copy->enable_state = bp_enabled;
9084 copy->disposition = disp_donttouch;
9085 copy->number = internal_breakpoint_number--;
9086
9087 update_global_location_list_nothrow (0);
9088 return copy;
9089 }
9090
9091 /* Make a deep copy of momentary breakpoint ORIG. Returns NULL if
9092 ORIG is NULL. */
9093
9094 struct breakpoint *
9095 clone_momentary_breakpoint (struct breakpoint *orig)
9096 {
9097 /* If there's nothing to clone, then return nothing. */
9098 if (orig == NULL)
9099 return NULL;
9100
9101 return momentary_breakpoint_from_master (orig, orig->type, orig->ops, 0);
9102 }
9103
9104 struct breakpoint *
9105 set_momentary_breakpoint_at_pc (struct gdbarch *gdbarch, CORE_ADDR pc,
9106 enum bptype type)
9107 {
9108 struct symtab_and_line sal;
9109
9110 sal = find_pc_line (pc, 0);
9111 sal.pc = pc;
9112 sal.section = find_pc_overlay (pc);
9113 sal.explicit_pc = 1;
9114
9115 return set_momentary_breakpoint (gdbarch, sal, null_frame_id, type);
9116 }
9117 \f
9118
9119 /* Tell the user we have just set a breakpoint B. */
9120
9121 static void
9122 mention (struct breakpoint *b)
9123 {
9124 b->ops->print_mention (b);
9125 if (ui_out_is_mi_like_p (current_uiout))
9126 return;
9127 printf_filtered ("\n");
9128 }
9129 \f
9130
9131 static struct bp_location *
9132 add_location_to_breakpoint (struct breakpoint *b,
9133 const struct symtab_and_line *sal)
9134 {
9135 struct bp_location *loc, **tmp;
9136 CORE_ADDR adjusted_address;
9137 struct gdbarch *loc_gdbarch = get_sal_arch (*sal);
9138
9139 if (loc_gdbarch == NULL)
9140 loc_gdbarch = b->gdbarch;
9141
9142 /* Adjust the breakpoint's address prior to allocating a location.
9143 Once we call allocate_bp_location(), that mostly uninitialized
9144 location will be placed on the location chain. Adjustment of the
9145 breakpoint may cause target_read_memory() to be called and we do
9146 not want its scan of the location chain to find a breakpoint and
9147 location that's only been partially initialized. */
9148 adjusted_address = adjust_breakpoint_address (loc_gdbarch,
9149 sal->pc, b->type);
9150
9151 /* Sort the locations by their ADDRESS. */
9152 loc = allocate_bp_location (b);
9153 for (tmp = &(b->loc); *tmp != NULL && (*tmp)->address <= adjusted_address;
9154 tmp = &((*tmp)->next))
9155 ;
9156 loc->next = *tmp;
9157 *tmp = loc;
9158
9159 loc->requested_address = sal->pc;
9160 loc->address = adjusted_address;
9161 loc->pspace = sal->pspace;
9162 loc->probe.probe = sal->probe;
9163 loc->probe.objfile = sal->objfile;
9164 gdb_assert (loc->pspace != NULL);
9165 loc->section = sal->section;
9166 loc->gdbarch = loc_gdbarch;
9167 loc->line_number = sal->line;
9168 loc->symtab = sal->symtab;
9169
9170 set_breakpoint_location_function (loc,
9171 sal->explicit_pc || sal->explicit_line);
9172 return loc;
9173 }
9174 \f
9175
9176 /* Return 1 if LOC is pointing to a permanent breakpoint,
9177 return 0 otherwise. */
9178
9179 static int
9180 bp_loc_is_permanent (struct bp_location *loc)
9181 {
9182 int len;
9183 CORE_ADDR addr;
9184 const gdb_byte *bpoint;
9185 gdb_byte *target_mem;
9186 struct cleanup *cleanup;
9187 int retval = 0;
9188
9189 gdb_assert (loc != NULL);
9190
9191 addr = loc->address;
9192 bpoint = gdbarch_breakpoint_from_pc (loc->gdbarch, &addr, &len);
9193
9194 /* Software breakpoints unsupported? */
9195 if (bpoint == NULL)
9196 return 0;
9197
9198 target_mem = alloca (len);
9199
9200 /* Enable the automatic memory restoration from breakpoints while
9201 we read the memory. Otherwise we could say about our temporary
9202 breakpoints they are permanent. */
9203 cleanup = save_current_space_and_thread ();
9204
9205 switch_to_program_space_and_thread (loc->pspace);
9206 make_show_memory_breakpoints_cleanup (0);
9207
9208 if (target_read_memory (loc->address, target_mem, len) == 0
9209 && memcmp (target_mem, bpoint, len) == 0)
9210 retval = 1;
9211
9212 do_cleanups (cleanup);
9213
9214 return retval;
9215 }
9216
9217 /* Build a command list for the dprintf corresponding to the current
9218 settings of the dprintf style options. */
9219
9220 static void
9221 update_dprintf_command_list (struct breakpoint *b)
9222 {
9223 char *dprintf_args = b->extra_string;
9224 char *printf_line = NULL;
9225
9226 if (!dprintf_args)
9227 return;
9228
9229 dprintf_args = skip_spaces (dprintf_args);
9230
9231 /* Allow a comma, as it may have terminated a location, but don't
9232 insist on it. */
9233 if (*dprintf_args == ',')
9234 ++dprintf_args;
9235 dprintf_args = skip_spaces (dprintf_args);
9236
9237 if (*dprintf_args != '"')
9238 error (_("Bad format string, missing '\"'."));
9239
9240 if (strcmp (dprintf_style, dprintf_style_gdb) == 0)
9241 printf_line = xstrprintf ("printf %s", dprintf_args);
9242 else if (strcmp (dprintf_style, dprintf_style_call) == 0)
9243 {
9244 if (!dprintf_function)
9245 error (_("No function supplied for dprintf call"));
9246
9247 if (dprintf_channel && strlen (dprintf_channel) > 0)
9248 printf_line = xstrprintf ("call (void) %s (%s,%s)",
9249 dprintf_function,
9250 dprintf_channel,
9251 dprintf_args);
9252 else
9253 printf_line = xstrprintf ("call (void) %s (%s)",
9254 dprintf_function,
9255 dprintf_args);
9256 }
9257 else if (strcmp (dprintf_style, dprintf_style_agent) == 0)
9258 {
9259 if (target_can_run_breakpoint_commands ())
9260 printf_line = xstrprintf ("agent-printf %s", dprintf_args);
9261 else
9262 {
9263 warning (_("Target cannot run dprintf commands, falling back to GDB printf"));
9264 printf_line = xstrprintf ("printf %s", dprintf_args);
9265 }
9266 }
9267 else
9268 internal_error (__FILE__, __LINE__,
9269 _("Invalid dprintf style."));
9270
9271 gdb_assert (printf_line != NULL);
9272 /* Manufacture a printf sequence. */
9273 {
9274 struct command_line *printf_cmd_line
9275 = xmalloc (sizeof (struct command_line));
9276
9277 printf_cmd_line = xmalloc (sizeof (struct command_line));
9278 printf_cmd_line->control_type = simple_control;
9279 printf_cmd_line->body_count = 0;
9280 printf_cmd_line->body_list = NULL;
9281 printf_cmd_line->next = NULL;
9282 printf_cmd_line->line = printf_line;
9283
9284 breakpoint_set_commands (b, printf_cmd_line);
9285 }
9286 }
9287
9288 /* Update all dprintf commands, making their command lists reflect
9289 current style settings. */
9290
9291 static void
9292 update_dprintf_commands (char *args, int from_tty,
9293 struct cmd_list_element *c)
9294 {
9295 struct breakpoint *b;
9296
9297 ALL_BREAKPOINTS (b)
9298 {
9299 if (b->type == bp_dprintf)
9300 update_dprintf_command_list (b);
9301 }
9302 }
9303
9304 /* Create a breakpoint with SAL as location. Use ADDR_STRING
9305 as textual description of the location, and COND_STRING
9306 as condition expression. */
9307
9308 static void
9309 init_breakpoint_sal (struct breakpoint *b, struct gdbarch *gdbarch,
9310 struct symtabs_and_lines sals, char *addr_string,
9311 char *filter, char *cond_string,
9312 char *extra_string,
9313 enum bptype type, enum bpdisp disposition,
9314 int thread, int task, int ignore_count,
9315 const struct breakpoint_ops *ops, int from_tty,
9316 int enabled, int internal, unsigned flags,
9317 int display_canonical)
9318 {
9319 int i;
9320
9321 if (type == bp_hardware_breakpoint)
9322 {
9323 int target_resources_ok;
9324
9325 i = hw_breakpoint_used_count ();
9326 target_resources_ok =
9327 target_can_use_hardware_watchpoint (bp_hardware_breakpoint,
9328 i + 1, 0);
9329 if (target_resources_ok == 0)
9330 error (_("No hardware breakpoint support in the target."));
9331 else if (target_resources_ok < 0)
9332 error (_("Hardware breakpoints used exceeds limit."));
9333 }
9334
9335 gdb_assert (sals.nelts > 0);
9336
9337 for (i = 0; i < sals.nelts; ++i)
9338 {
9339 struct symtab_and_line sal = sals.sals[i];
9340 struct bp_location *loc;
9341
9342 if (from_tty)
9343 {
9344 struct gdbarch *loc_gdbarch = get_sal_arch (sal);
9345 if (!loc_gdbarch)
9346 loc_gdbarch = gdbarch;
9347
9348 describe_other_breakpoints (loc_gdbarch,
9349 sal.pspace, sal.pc, sal.section, thread);
9350 }
9351
9352 if (i == 0)
9353 {
9354 init_raw_breakpoint (b, gdbarch, sal, type, ops);
9355 b->thread = thread;
9356 b->task = task;
9357
9358 b->cond_string = cond_string;
9359 b->extra_string = extra_string;
9360 b->ignore_count = ignore_count;
9361 b->enable_state = enabled ? bp_enabled : bp_disabled;
9362 b->disposition = disposition;
9363
9364 if ((flags & CREATE_BREAKPOINT_FLAGS_INSERTED) != 0)
9365 b->loc->inserted = 1;
9366
9367 if (type == bp_static_tracepoint)
9368 {
9369 struct tracepoint *t = (struct tracepoint *) b;
9370 struct static_tracepoint_marker marker;
9371
9372 if (strace_marker_p (b))
9373 {
9374 /* We already know the marker exists, otherwise, we
9375 wouldn't see a sal for it. */
9376 char *p = &addr_string[3];
9377 char *endp;
9378 char *marker_str;
9379
9380 p = skip_spaces (p);
9381
9382 endp = skip_to_space (p);
9383
9384 marker_str = savestring (p, endp - p);
9385 t->static_trace_marker_id = marker_str;
9386
9387 printf_filtered (_("Probed static tracepoint "
9388 "marker \"%s\"\n"),
9389 t->static_trace_marker_id);
9390 }
9391 else if (target_static_tracepoint_marker_at (sal.pc, &marker))
9392 {
9393 t->static_trace_marker_id = xstrdup (marker.str_id);
9394 release_static_tracepoint_marker (&marker);
9395
9396 printf_filtered (_("Probed static tracepoint "
9397 "marker \"%s\"\n"),
9398 t->static_trace_marker_id);
9399 }
9400 else
9401 warning (_("Couldn't determine the static "
9402 "tracepoint marker to probe"));
9403 }
9404
9405 loc = b->loc;
9406 }
9407 else
9408 {
9409 loc = add_location_to_breakpoint (b, &sal);
9410 if ((flags & CREATE_BREAKPOINT_FLAGS_INSERTED) != 0)
9411 loc->inserted = 1;
9412 }
9413
9414 if (bp_loc_is_permanent (loc))
9415 make_breakpoint_permanent (b);
9416
9417 if (b->cond_string)
9418 {
9419 const char *arg = b->cond_string;
9420
9421 loc->cond = parse_exp_1 (&arg, loc->address,
9422 block_for_pc (loc->address), 0);
9423 if (*arg)
9424 error (_("Garbage '%s' follows condition"), arg);
9425 }
9426
9427 /* Dynamic printf requires and uses additional arguments on the
9428 command line, otherwise it's an error. */
9429 if (type == bp_dprintf)
9430 {
9431 if (b->extra_string)
9432 update_dprintf_command_list (b);
9433 else
9434 error (_("Format string required"));
9435 }
9436 else if (b->extra_string)
9437 error (_("Garbage '%s' at end of command"), b->extra_string);
9438 }
9439
9440 b->display_canonical = display_canonical;
9441 if (addr_string)
9442 b->addr_string = addr_string;
9443 else
9444 /* addr_string has to be used or breakpoint_re_set will delete
9445 me. */
9446 b->addr_string
9447 = xstrprintf ("*%s", paddress (b->loc->gdbarch, b->loc->address));
9448 b->filter = filter;
9449 }
9450
9451 static void
9452 create_breakpoint_sal (struct gdbarch *gdbarch,
9453 struct symtabs_and_lines sals, char *addr_string,
9454 char *filter, char *cond_string,
9455 char *extra_string,
9456 enum bptype type, enum bpdisp disposition,
9457 int thread, int task, int ignore_count,
9458 const struct breakpoint_ops *ops, int from_tty,
9459 int enabled, int internal, unsigned flags,
9460 int display_canonical)
9461 {
9462 struct breakpoint *b;
9463 struct cleanup *old_chain;
9464
9465 if (is_tracepoint_type (type))
9466 {
9467 struct tracepoint *t;
9468
9469 t = XCNEW (struct tracepoint);
9470 b = &t->base;
9471 }
9472 else
9473 b = XNEW (struct breakpoint);
9474
9475 old_chain = make_cleanup (xfree, b);
9476
9477 init_breakpoint_sal (b, gdbarch,
9478 sals, addr_string,
9479 filter, cond_string, extra_string,
9480 type, disposition,
9481 thread, task, ignore_count,
9482 ops, from_tty,
9483 enabled, internal, flags,
9484 display_canonical);
9485 discard_cleanups (old_chain);
9486
9487 install_breakpoint (internal, b, 0);
9488 }
9489
9490 /* Add SALS.nelts breakpoints to the breakpoint table. For each
9491 SALS.sal[i] breakpoint, include the corresponding ADDR_STRING[i]
9492 value. COND_STRING, if not NULL, specified the condition to be
9493 used for all breakpoints. Essentially the only case where
9494 SALS.nelts is not 1 is when we set a breakpoint on an overloaded
9495 function. In that case, it's still not possible to specify
9496 separate conditions for different overloaded functions, so
9497 we take just a single condition string.
9498
9499 NOTE: If the function succeeds, the caller is expected to cleanup
9500 the arrays ADDR_STRING, COND_STRING, and SALS (but not the
9501 array contents). If the function fails (error() is called), the
9502 caller is expected to cleanups both the ADDR_STRING, COND_STRING,
9503 COND and SALS arrays and each of those arrays contents. */
9504
9505 static void
9506 create_breakpoints_sal (struct gdbarch *gdbarch,
9507 struct linespec_result *canonical,
9508 char *cond_string, char *extra_string,
9509 enum bptype type, enum bpdisp disposition,
9510 int thread, int task, int ignore_count,
9511 const struct breakpoint_ops *ops, int from_tty,
9512 int enabled, int internal, unsigned flags)
9513 {
9514 int i;
9515 struct linespec_sals *lsal;
9516
9517 if (canonical->pre_expanded)
9518 gdb_assert (VEC_length (linespec_sals, canonical->sals) == 1);
9519
9520 for (i = 0; VEC_iterate (linespec_sals, canonical->sals, i, lsal); ++i)
9521 {
9522 /* Note that 'addr_string' can be NULL in the case of a plain
9523 'break', without arguments. */
9524 char *addr_string = (canonical->addr_string
9525 ? xstrdup (canonical->addr_string)
9526 : NULL);
9527 char *filter_string = lsal->canonical ? xstrdup (lsal->canonical) : NULL;
9528 struct cleanup *inner = make_cleanup (xfree, addr_string);
9529
9530 make_cleanup (xfree, filter_string);
9531 create_breakpoint_sal (gdbarch, lsal->sals,
9532 addr_string,
9533 filter_string,
9534 cond_string, extra_string,
9535 type, disposition,
9536 thread, task, ignore_count, ops,
9537 from_tty, enabled, internal, flags,
9538 canonical->special_display);
9539 discard_cleanups (inner);
9540 }
9541 }
9542
9543 /* Parse ADDRESS which is assumed to be a SAL specification possibly
9544 followed by conditionals. On return, SALS contains an array of SAL
9545 addresses found. ADDR_STRING contains a vector of (canonical)
9546 address strings. ADDRESS points to the end of the SAL.
9547
9548 The array and the line spec strings are allocated on the heap, it is
9549 the caller's responsibility to free them. */
9550
9551 static void
9552 parse_breakpoint_sals (char **address,
9553 struct linespec_result *canonical)
9554 {
9555 /* If no arg given, or if first arg is 'if ', use the default
9556 breakpoint. */
9557 if ((*address) == NULL
9558 || (strncmp ((*address), "if", 2) == 0 && isspace ((*address)[2])))
9559 {
9560 /* The last displayed codepoint, if it's valid, is our default breakpoint
9561 address. */
9562 if (last_displayed_sal_is_valid ())
9563 {
9564 struct linespec_sals lsal;
9565 struct symtab_and_line sal;
9566 CORE_ADDR pc;
9567
9568 init_sal (&sal); /* Initialize to zeroes. */
9569 lsal.sals.sals = (struct symtab_and_line *)
9570 xmalloc (sizeof (struct symtab_and_line));
9571
9572 /* Set sal's pspace, pc, symtab, and line to the values
9573 corresponding to the last call to print_frame_info.
9574 Be sure to reinitialize LINE with NOTCURRENT == 0
9575 as the breakpoint line number is inappropriate otherwise.
9576 find_pc_line would adjust PC, re-set it back. */
9577 get_last_displayed_sal (&sal);
9578 pc = sal.pc;
9579 sal = find_pc_line (pc, 0);
9580
9581 /* "break" without arguments is equivalent to "break *PC"
9582 where PC is the last displayed codepoint's address. So
9583 make sure to set sal.explicit_pc to prevent GDB from
9584 trying to expand the list of sals to include all other
9585 instances with the same symtab and line. */
9586 sal.pc = pc;
9587 sal.explicit_pc = 1;
9588
9589 lsal.sals.sals[0] = sal;
9590 lsal.sals.nelts = 1;
9591 lsal.canonical = NULL;
9592
9593 VEC_safe_push (linespec_sals, canonical->sals, &lsal);
9594 }
9595 else
9596 error (_("No default breakpoint address now."));
9597 }
9598 else
9599 {
9600 struct symtab_and_line cursal = get_current_source_symtab_and_line ();
9601
9602 /* Force almost all breakpoints to be in terms of the
9603 current_source_symtab (which is decode_line_1's default).
9604 This should produce the results we want almost all of the
9605 time while leaving default_breakpoint_* alone.
9606
9607 ObjC: However, don't match an Objective-C method name which
9608 may have a '+' or '-' succeeded by a '['. */
9609 if (last_displayed_sal_is_valid ()
9610 && (!cursal.symtab
9611 || ((strchr ("+-", (*address)[0]) != NULL)
9612 && ((*address)[1] != '['))))
9613 decode_line_full (address, DECODE_LINE_FUNFIRSTLINE,
9614 get_last_displayed_symtab (),
9615 get_last_displayed_line (),
9616 canonical, NULL, NULL);
9617 else
9618 decode_line_full (address, DECODE_LINE_FUNFIRSTLINE,
9619 cursal.symtab, cursal.line, canonical, NULL, NULL);
9620 }
9621 }
9622
9623
9624 /* Convert each SAL into a real PC. Verify that the PC can be
9625 inserted as a breakpoint. If it can't throw an error. */
9626
9627 static void
9628 breakpoint_sals_to_pc (struct symtabs_and_lines *sals)
9629 {
9630 int i;
9631
9632 for (i = 0; i < sals->nelts; i++)
9633 resolve_sal_pc (&sals->sals[i]);
9634 }
9635
9636 /* Fast tracepoints may have restrictions on valid locations. For
9637 instance, a fast tracepoint using a jump instead of a trap will
9638 likely have to overwrite more bytes than a trap would, and so can
9639 only be placed where the instruction is longer than the jump, or a
9640 multi-instruction sequence does not have a jump into the middle of
9641 it, etc. */
9642
9643 static void
9644 check_fast_tracepoint_sals (struct gdbarch *gdbarch,
9645 struct symtabs_and_lines *sals)
9646 {
9647 int i, rslt;
9648 struct symtab_and_line *sal;
9649 char *msg;
9650 struct cleanup *old_chain;
9651
9652 for (i = 0; i < sals->nelts; i++)
9653 {
9654 struct gdbarch *sarch;
9655
9656 sal = &sals->sals[i];
9657
9658 sarch = get_sal_arch (*sal);
9659 /* We fall back to GDBARCH if there is no architecture
9660 associated with SAL. */
9661 if (sarch == NULL)
9662 sarch = gdbarch;
9663 rslt = gdbarch_fast_tracepoint_valid_at (sarch, sal->pc,
9664 NULL, &msg);
9665 old_chain = make_cleanup (xfree, msg);
9666
9667 if (!rslt)
9668 error (_("May not have a fast tracepoint at 0x%s%s"),
9669 paddress (sarch, sal->pc), (msg ? msg : ""));
9670
9671 do_cleanups (old_chain);
9672 }
9673 }
9674
9675 /* Issue an invalid thread ID error. */
9676
9677 static void ATTRIBUTE_NORETURN
9678 invalid_thread_id_error (int id)
9679 {
9680 error (_("Unknown thread %d."), id);
9681 }
9682
9683 /* Given TOK, a string specification of condition and thread, as
9684 accepted by the 'break' command, extract the condition
9685 string and thread number and set *COND_STRING and *THREAD.
9686 PC identifies the context at which the condition should be parsed.
9687 If no condition is found, *COND_STRING is set to NULL.
9688 If no thread is found, *THREAD is set to -1. */
9689
9690 static void
9691 find_condition_and_thread (const char *tok, CORE_ADDR pc,
9692 char **cond_string, int *thread, int *task,
9693 char **rest)
9694 {
9695 *cond_string = NULL;
9696 *thread = -1;
9697 *task = 0;
9698 *rest = NULL;
9699
9700 while (tok && *tok)
9701 {
9702 const char *end_tok;
9703 int toklen;
9704 const char *cond_start = NULL;
9705 const char *cond_end = NULL;
9706
9707 tok = skip_spaces_const (tok);
9708
9709 if ((*tok == '"' || *tok == ',') && rest)
9710 {
9711 *rest = savestring (tok, strlen (tok));
9712 return;
9713 }
9714
9715 end_tok = skip_to_space_const (tok);
9716
9717 toklen = end_tok - tok;
9718
9719 if (toklen >= 1 && strncmp (tok, "if", toklen) == 0)
9720 {
9721 struct expression *expr;
9722
9723 tok = cond_start = end_tok + 1;
9724 expr = parse_exp_1 (&tok, pc, block_for_pc (pc), 0);
9725 xfree (expr);
9726 cond_end = tok;
9727 *cond_string = savestring (cond_start, cond_end - cond_start);
9728 }
9729 else if (toklen >= 1 && strncmp (tok, "thread", toklen) == 0)
9730 {
9731 char *tmptok;
9732
9733 tok = end_tok + 1;
9734 *thread = strtol (tok, &tmptok, 0);
9735 if (tok == tmptok)
9736 error (_("Junk after thread keyword."));
9737 if (!valid_thread_id (*thread))
9738 invalid_thread_id_error (*thread);
9739 tok = tmptok;
9740 }
9741 else if (toklen >= 1 && strncmp (tok, "task", toklen) == 0)
9742 {
9743 char *tmptok;
9744
9745 tok = end_tok + 1;
9746 *task = strtol (tok, &tmptok, 0);
9747 if (tok == tmptok)
9748 error (_("Junk after task keyword."));
9749 if (!valid_task_id (*task))
9750 error (_("Unknown task %d."), *task);
9751 tok = tmptok;
9752 }
9753 else if (rest)
9754 {
9755 *rest = savestring (tok, strlen (tok));
9756 return;
9757 }
9758 else
9759 error (_("Junk at end of arguments."));
9760 }
9761 }
9762
9763 /* Decode a static tracepoint marker spec. */
9764
9765 static struct symtabs_and_lines
9766 decode_static_tracepoint_spec (char **arg_p)
9767 {
9768 VEC(static_tracepoint_marker_p) *markers = NULL;
9769 struct symtabs_and_lines sals;
9770 struct cleanup *old_chain;
9771 char *p = &(*arg_p)[3];
9772 char *endp;
9773 char *marker_str;
9774 int i;
9775
9776 p = skip_spaces (p);
9777
9778 endp = skip_to_space (p);
9779
9780 marker_str = savestring (p, endp - p);
9781 old_chain = make_cleanup (xfree, marker_str);
9782
9783 markers = target_static_tracepoint_markers_by_strid (marker_str);
9784 if (VEC_empty(static_tracepoint_marker_p, markers))
9785 error (_("No known static tracepoint marker named %s"), marker_str);
9786
9787 sals.nelts = VEC_length(static_tracepoint_marker_p, markers);
9788 sals.sals = xmalloc (sizeof *sals.sals * sals.nelts);
9789
9790 for (i = 0; i < sals.nelts; i++)
9791 {
9792 struct static_tracepoint_marker *marker;
9793
9794 marker = VEC_index (static_tracepoint_marker_p, markers, i);
9795
9796 init_sal (&sals.sals[i]);
9797
9798 sals.sals[i] = find_pc_line (marker->address, 0);
9799 sals.sals[i].pc = marker->address;
9800
9801 release_static_tracepoint_marker (marker);
9802 }
9803
9804 do_cleanups (old_chain);
9805
9806 *arg_p = endp;
9807 return sals;
9808 }
9809
9810 /* Set a breakpoint. This function is shared between CLI and MI
9811 functions for setting a breakpoint. This function has two major
9812 modes of operations, selected by the PARSE_ARG parameter. If
9813 non-zero, the function will parse ARG, extracting location,
9814 condition, thread and extra string. Otherwise, ARG is just the
9815 breakpoint's location, with condition, thread, and extra string
9816 specified by the COND_STRING, THREAD and EXTRA_STRING parameters.
9817 If INTERNAL is non-zero, the breakpoint number will be allocated
9818 from the internal breakpoint count. Returns true if any breakpoint
9819 was created; false otherwise. */
9820
9821 int
9822 create_breakpoint (struct gdbarch *gdbarch,
9823 char *arg, char *cond_string,
9824 int thread, char *extra_string,
9825 int parse_arg,
9826 int tempflag, enum bptype type_wanted,
9827 int ignore_count,
9828 enum auto_boolean pending_break_support,
9829 const struct breakpoint_ops *ops,
9830 int from_tty, int enabled, int internal,
9831 unsigned flags)
9832 {
9833 volatile struct gdb_exception e;
9834 char *copy_arg = NULL;
9835 char *addr_start = arg;
9836 struct linespec_result canonical;
9837 struct cleanup *old_chain;
9838 struct cleanup *bkpt_chain = NULL;
9839 int pending = 0;
9840 int task = 0;
9841 int prev_bkpt_count = breakpoint_count;
9842
9843 gdb_assert (ops != NULL);
9844
9845 init_linespec_result (&canonical);
9846
9847 TRY_CATCH (e, RETURN_MASK_ALL)
9848 {
9849 ops->create_sals_from_address (&arg, &canonical, type_wanted,
9850 addr_start, &copy_arg);
9851 }
9852
9853 /* If caller is interested in rc value from parse, set value. */
9854 switch (e.reason)
9855 {
9856 case GDB_NO_ERROR:
9857 if (VEC_empty (linespec_sals, canonical.sals))
9858 return 0;
9859 break;
9860 case RETURN_ERROR:
9861 switch (e.error)
9862 {
9863 case NOT_FOUND_ERROR:
9864
9865 /* If pending breakpoint support is turned off, throw
9866 error. */
9867
9868 if (pending_break_support == AUTO_BOOLEAN_FALSE)
9869 throw_exception (e);
9870
9871 exception_print (gdb_stderr, e);
9872
9873 /* If pending breakpoint support is auto query and the user
9874 selects no, then simply return the error code. */
9875 if (pending_break_support == AUTO_BOOLEAN_AUTO
9876 && !nquery (_("Make %s pending on future shared library load? "),
9877 bptype_string (type_wanted)))
9878 return 0;
9879
9880 /* At this point, either the user was queried about setting
9881 a pending breakpoint and selected yes, or pending
9882 breakpoint behavior is on and thus a pending breakpoint
9883 is defaulted on behalf of the user. */
9884 {
9885 struct linespec_sals lsal;
9886
9887 copy_arg = xstrdup (addr_start);
9888 lsal.canonical = xstrdup (copy_arg);
9889 lsal.sals.nelts = 1;
9890 lsal.sals.sals = XNEW (struct symtab_and_line);
9891 init_sal (&lsal.sals.sals[0]);
9892 pending = 1;
9893 VEC_safe_push (linespec_sals, canonical.sals, &lsal);
9894 }
9895 break;
9896 default:
9897 throw_exception (e);
9898 }
9899 break;
9900 default:
9901 throw_exception (e);
9902 }
9903
9904 /* Create a chain of things that always need to be cleaned up. */
9905 old_chain = make_cleanup_destroy_linespec_result (&canonical);
9906
9907 /* ----------------------------- SNIP -----------------------------
9908 Anything added to the cleanup chain beyond this point is assumed
9909 to be part of a breakpoint. If the breakpoint create succeeds
9910 then the memory is not reclaimed. */
9911 bkpt_chain = make_cleanup (null_cleanup, 0);
9912
9913 /* Resolve all line numbers to PC's and verify that the addresses
9914 are ok for the target. */
9915 if (!pending)
9916 {
9917 int ix;
9918 struct linespec_sals *iter;
9919
9920 for (ix = 0; VEC_iterate (linespec_sals, canonical.sals, ix, iter); ++ix)
9921 breakpoint_sals_to_pc (&iter->sals);
9922 }
9923
9924 /* Fast tracepoints may have additional restrictions on location. */
9925 if (!pending && type_wanted == bp_fast_tracepoint)
9926 {
9927 int ix;
9928 struct linespec_sals *iter;
9929
9930 for (ix = 0; VEC_iterate (linespec_sals, canonical.sals, ix, iter); ++ix)
9931 check_fast_tracepoint_sals (gdbarch, &iter->sals);
9932 }
9933
9934 /* Verify that condition can be parsed, before setting any
9935 breakpoints. Allocate a separate condition expression for each
9936 breakpoint. */
9937 if (!pending)
9938 {
9939 if (parse_arg)
9940 {
9941 char *rest;
9942 struct linespec_sals *lsal;
9943
9944 lsal = VEC_index (linespec_sals, canonical.sals, 0);
9945
9946 /* Here we only parse 'arg' to separate condition
9947 from thread number, so parsing in context of first
9948 sal is OK. When setting the breakpoint we'll
9949 re-parse it in context of each sal. */
9950
9951 find_condition_and_thread (arg, lsal->sals.sals[0].pc, &cond_string,
9952 &thread, &task, &rest);
9953 if (cond_string)
9954 make_cleanup (xfree, cond_string);
9955 if (rest)
9956 make_cleanup (xfree, rest);
9957 if (rest)
9958 extra_string = rest;
9959 }
9960 else
9961 {
9962 if (*arg != '\0')
9963 error (_("Garbage '%s' at end of location"), arg);
9964
9965 /* Create a private copy of condition string. */
9966 if (cond_string)
9967 {
9968 cond_string = xstrdup (cond_string);
9969 make_cleanup (xfree, cond_string);
9970 }
9971 /* Create a private copy of any extra string. */
9972 if (extra_string)
9973 {
9974 extra_string = xstrdup (extra_string);
9975 make_cleanup (xfree, extra_string);
9976 }
9977 }
9978
9979 ops->create_breakpoints_sal (gdbarch, &canonical,
9980 cond_string, extra_string, type_wanted,
9981 tempflag ? disp_del : disp_donttouch,
9982 thread, task, ignore_count, ops,
9983 from_tty, enabled, internal, flags);
9984 }
9985 else
9986 {
9987 struct breakpoint *b;
9988
9989 make_cleanup (xfree, copy_arg);
9990
9991 if (is_tracepoint_type (type_wanted))
9992 {
9993 struct tracepoint *t;
9994
9995 t = XCNEW (struct tracepoint);
9996 b = &t->base;
9997 }
9998 else
9999 b = XNEW (struct breakpoint);
10000
10001 init_raw_breakpoint_without_location (b, gdbarch, type_wanted, ops);
10002
10003 b->addr_string = copy_arg;
10004 if (parse_arg)
10005 b->cond_string = NULL;
10006 else
10007 {
10008 /* Create a private copy of condition string. */
10009 if (cond_string)
10010 {
10011 cond_string = xstrdup (cond_string);
10012 make_cleanup (xfree, cond_string);
10013 }
10014 b->cond_string = cond_string;
10015 }
10016 b->extra_string = NULL;
10017 b->ignore_count = ignore_count;
10018 b->disposition = tempflag ? disp_del : disp_donttouch;
10019 b->condition_not_parsed = 1;
10020 b->enable_state = enabled ? bp_enabled : bp_disabled;
10021 if ((type_wanted != bp_breakpoint
10022 && type_wanted != bp_hardware_breakpoint) || thread != -1)
10023 b->pspace = current_program_space;
10024
10025 install_breakpoint (internal, b, 0);
10026 }
10027
10028 if (VEC_length (linespec_sals, canonical.sals) > 1)
10029 {
10030 warning (_("Multiple breakpoints were set.\nUse the "
10031 "\"delete\" command to delete unwanted breakpoints."));
10032 prev_breakpoint_count = prev_bkpt_count;
10033 }
10034
10035 /* That's it. Discard the cleanups for data inserted into the
10036 breakpoint. */
10037 discard_cleanups (bkpt_chain);
10038 /* But cleanup everything else. */
10039 do_cleanups (old_chain);
10040
10041 /* error call may happen here - have BKPT_CHAIN already discarded. */
10042 update_global_location_list (1);
10043
10044 return 1;
10045 }
10046
10047 /* Set a breakpoint.
10048 ARG is a string describing breakpoint address,
10049 condition, and thread.
10050 FLAG specifies if a breakpoint is hardware on,
10051 and if breakpoint is temporary, using BP_HARDWARE_FLAG
10052 and BP_TEMPFLAG. */
10053
10054 static void
10055 break_command_1 (char *arg, int flag, int from_tty)
10056 {
10057 int tempflag = flag & BP_TEMPFLAG;
10058 enum bptype type_wanted = (flag & BP_HARDWAREFLAG
10059 ? bp_hardware_breakpoint
10060 : bp_breakpoint);
10061 struct breakpoint_ops *ops;
10062 const char *arg_cp = arg;
10063
10064 /* Matching breakpoints on probes. */
10065 if (arg && probe_linespec_to_ops (&arg_cp) != NULL)
10066 ops = &bkpt_probe_breakpoint_ops;
10067 else
10068 ops = &bkpt_breakpoint_ops;
10069
10070 create_breakpoint (get_current_arch (),
10071 arg,
10072 NULL, 0, NULL, 1 /* parse arg */,
10073 tempflag, type_wanted,
10074 0 /* Ignore count */,
10075 pending_break_support,
10076 ops,
10077 from_tty,
10078 1 /* enabled */,
10079 0 /* internal */,
10080 0);
10081 }
10082
10083 /* Helper function for break_command_1 and disassemble_command. */
10084
10085 void
10086 resolve_sal_pc (struct symtab_and_line *sal)
10087 {
10088 CORE_ADDR pc;
10089
10090 if (sal->pc == 0 && sal->symtab != NULL)
10091 {
10092 if (!find_line_pc (sal->symtab, sal->line, &pc))
10093 error (_("No line %d in file \"%s\"."),
10094 sal->line, symtab_to_filename_for_display (sal->symtab));
10095 sal->pc = pc;
10096
10097 /* If this SAL corresponds to a breakpoint inserted using a line
10098 number, then skip the function prologue if necessary. */
10099 if (sal->explicit_line)
10100 skip_prologue_sal (sal);
10101 }
10102
10103 if (sal->section == 0 && sal->symtab != NULL)
10104 {
10105 const struct blockvector *bv;
10106 const struct block *b;
10107 struct symbol *sym;
10108
10109 bv = blockvector_for_pc_sect (sal->pc, 0, &b, sal->symtab);
10110 if (bv != NULL)
10111 {
10112 sym = block_linkage_function (b);
10113 if (sym != NULL)
10114 {
10115 fixup_symbol_section (sym, sal->symtab->objfile);
10116 sal->section = SYMBOL_OBJ_SECTION (sal->symtab->objfile, sym);
10117 }
10118 else
10119 {
10120 /* It really is worthwhile to have the section, so we'll
10121 just have to look harder. This case can be executed
10122 if we have line numbers but no functions (as can
10123 happen in assembly source). */
10124
10125 struct bound_minimal_symbol msym;
10126 struct cleanup *old_chain = save_current_space_and_thread ();
10127
10128 switch_to_program_space_and_thread (sal->pspace);
10129
10130 msym = lookup_minimal_symbol_by_pc (sal->pc);
10131 if (msym.minsym)
10132 sal->section = MSYMBOL_OBJ_SECTION (msym.objfile, msym.minsym);
10133
10134 do_cleanups (old_chain);
10135 }
10136 }
10137 }
10138 }
10139
10140 void
10141 break_command (char *arg, int from_tty)
10142 {
10143 break_command_1 (arg, 0, from_tty);
10144 }
10145
10146 void
10147 tbreak_command (char *arg, int from_tty)
10148 {
10149 break_command_1 (arg, BP_TEMPFLAG, from_tty);
10150 }
10151
10152 static void
10153 hbreak_command (char *arg, int from_tty)
10154 {
10155 break_command_1 (arg, BP_HARDWAREFLAG, from_tty);
10156 }
10157
10158 static void
10159 thbreak_command (char *arg, int from_tty)
10160 {
10161 break_command_1 (arg, (BP_TEMPFLAG | BP_HARDWAREFLAG), from_tty);
10162 }
10163
10164 static void
10165 stop_command (char *arg, int from_tty)
10166 {
10167 printf_filtered (_("Specify the type of breakpoint to set.\n\
10168 Usage: stop in <function | address>\n\
10169 stop at <line>\n"));
10170 }
10171
10172 static void
10173 stopin_command (char *arg, int from_tty)
10174 {
10175 int badInput = 0;
10176
10177 if (arg == (char *) NULL)
10178 badInput = 1;
10179 else if (*arg != '*')
10180 {
10181 char *argptr = arg;
10182 int hasColon = 0;
10183
10184 /* Look for a ':'. If this is a line number specification, then
10185 say it is bad, otherwise, it should be an address or
10186 function/method name. */
10187 while (*argptr && !hasColon)
10188 {
10189 hasColon = (*argptr == ':');
10190 argptr++;
10191 }
10192
10193 if (hasColon)
10194 badInput = (*argptr != ':'); /* Not a class::method */
10195 else
10196 badInput = isdigit (*arg); /* a simple line number */
10197 }
10198
10199 if (badInput)
10200 printf_filtered (_("Usage: stop in <function | address>\n"));
10201 else
10202 break_command_1 (arg, 0, from_tty);
10203 }
10204
10205 static void
10206 stopat_command (char *arg, int from_tty)
10207 {
10208 int badInput = 0;
10209
10210 if (arg == (char *) NULL || *arg == '*') /* no line number */
10211 badInput = 1;
10212 else
10213 {
10214 char *argptr = arg;
10215 int hasColon = 0;
10216
10217 /* Look for a ':'. If there is a '::' then get out, otherwise
10218 it is probably a line number. */
10219 while (*argptr && !hasColon)
10220 {
10221 hasColon = (*argptr == ':');
10222 argptr++;
10223 }
10224
10225 if (hasColon)
10226 badInput = (*argptr == ':'); /* we have class::method */
10227 else
10228 badInput = !isdigit (*arg); /* not a line number */
10229 }
10230
10231 if (badInput)
10232 printf_filtered (_("Usage: stop at <line>\n"));
10233 else
10234 break_command_1 (arg, 0, from_tty);
10235 }
10236
10237 /* The dynamic printf command is mostly like a regular breakpoint, but
10238 with a prewired command list consisting of a single output command,
10239 built from extra arguments supplied on the dprintf command
10240 line. */
10241
10242 static void
10243 dprintf_command (char *arg, int from_tty)
10244 {
10245 create_breakpoint (get_current_arch (),
10246 arg,
10247 NULL, 0, NULL, 1 /* parse arg */,
10248 0, bp_dprintf,
10249 0 /* Ignore count */,
10250 pending_break_support,
10251 &dprintf_breakpoint_ops,
10252 from_tty,
10253 1 /* enabled */,
10254 0 /* internal */,
10255 0);
10256 }
10257
10258 static void
10259 agent_printf_command (char *arg, int from_tty)
10260 {
10261 error (_("May only run agent-printf on the target"));
10262 }
10263
10264 /* Implement the "breakpoint_hit" breakpoint_ops method for
10265 ranged breakpoints. */
10266
10267 static int
10268 breakpoint_hit_ranged_breakpoint (const struct bp_location *bl,
10269 struct address_space *aspace,
10270 CORE_ADDR bp_addr,
10271 const struct target_waitstatus *ws)
10272 {
10273 if (ws->kind != TARGET_WAITKIND_STOPPED
10274 || ws->value.sig != GDB_SIGNAL_TRAP)
10275 return 0;
10276
10277 return breakpoint_address_match_range (bl->pspace->aspace, bl->address,
10278 bl->length, aspace, bp_addr);
10279 }
10280
10281 /* Implement the "resources_needed" breakpoint_ops method for
10282 ranged breakpoints. */
10283
10284 static int
10285 resources_needed_ranged_breakpoint (const struct bp_location *bl)
10286 {
10287 return target_ranged_break_num_registers ();
10288 }
10289
10290 /* Implement the "print_it" breakpoint_ops method for
10291 ranged breakpoints. */
10292
10293 static enum print_stop_action
10294 print_it_ranged_breakpoint (bpstat bs)
10295 {
10296 struct breakpoint *b = bs->breakpoint_at;
10297 struct bp_location *bl = b->loc;
10298 struct ui_out *uiout = current_uiout;
10299
10300 gdb_assert (b->type == bp_hardware_breakpoint);
10301
10302 /* Ranged breakpoints have only one location. */
10303 gdb_assert (bl && bl->next == NULL);
10304
10305 annotate_breakpoint (b->number);
10306 if (b->disposition == disp_del)
10307 ui_out_text (uiout, "\nTemporary ranged breakpoint ");
10308 else
10309 ui_out_text (uiout, "\nRanged breakpoint ");
10310 if (ui_out_is_mi_like_p (uiout))
10311 {
10312 ui_out_field_string (uiout, "reason",
10313 async_reason_lookup (EXEC_ASYNC_BREAKPOINT_HIT));
10314 ui_out_field_string (uiout, "disp", bpdisp_text (b->disposition));
10315 }
10316 ui_out_field_int (uiout, "bkptno", b->number);
10317 ui_out_text (uiout, ", ");
10318
10319 return PRINT_SRC_AND_LOC;
10320 }
10321
10322 /* Implement the "print_one" breakpoint_ops method for
10323 ranged breakpoints. */
10324
10325 static void
10326 print_one_ranged_breakpoint (struct breakpoint *b,
10327 struct bp_location **last_loc)
10328 {
10329 struct bp_location *bl = b->loc;
10330 struct value_print_options opts;
10331 struct ui_out *uiout = current_uiout;
10332
10333 /* Ranged breakpoints have only one location. */
10334 gdb_assert (bl && bl->next == NULL);
10335
10336 get_user_print_options (&opts);
10337
10338 if (opts.addressprint)
10339 /* We don't print the address range here, it will be printed later
10340 by print_one_detail_ranged_breakpoint. */
10341 ui_out_field_skip (uiout, "addr");
10342 annotate_field (5);
10343 print_breakpoint_location (b, bl);
10344 *last_loc = bl;
10345 }
10346
10347 /* Implement the "print_one_detail" breakpoint_ops method for
10348 ranged breakpoints. */
10349
10350 static void
10351 print_one_detail_ranged_breakpoint (const struct breakpoint *b,
10352 struct ui_out *uiout)
10353 {
10354 CORE_ADDR address_start, address_end;
10355 struct bp_location *bl = b->loc;
10356 struct ui_file *stb = mem_fileopen ();
10357 struct cleanup *cleanup = make_cleanup_ui_file_delete (stb);
10358
10359 gdb_assert (bl);
10360
10361 address_start = bl->address;
10362 address_end = address_start + bl->length - 1;
10363
10364 ui_out_text (uiout, "\taddress range: ");
10365 fprintf_unfiltered (stb, "[%s, %s]",
10366 print_core_address (bl->gdbarch, address_start),
10367 print_core_address (bl->gdbarch, address_end));
10368 ui_out_field_stream (uiout, "addr", stb);
10369 ui_out_text (uiout, "\n");
10370
10371 do_cleanups (cleanup);
10372 }
10373
10374 /* Implement the "print_mention" breakpoint_ops method for
10375 ranged breakpoints. */
10376
10377 static void
10378 print_mention_ranged_breakpoint (struct breakpoint *b)
10379 {
10380 struct bp_location *bl = b->loc;
10381 struct ui_out *uiout = current_uiout;
10382
10383 gdb_assert (bl);
10384 gdb_assert (b->type == bp_hardware_breakpoint);
10385
10386 if (ui_out_is_mi_like_p (uiout))
10387 return;
10388
10389 printf_filtered (_("Hardware assisted ranged breakpoint %d from %s to %s."),
10390 b->number, paddress (bl->gdbarch, bl->address),
10391 paddress (bl->gdbarch, bl->address + bl->length - 1));
10392 }
10393
10394 /* Implement the "print_recreate" breakpoint_ops method for
10395 ranged breakpoints. */
10396
10397 static void
10398 print_recreate_ranged_breakpoint (struct breakpoint *b, struct ui_file *fp)
10399 {
10400 fprintf_unfiltered (fp, "break-range %s, %s", b->addr_string,
10401 b->addr_string_range_end);
10402 print_recreate_thread (b, fp);
10403 }
10404
10405 /* The breakpoint_ops structure to be used in ranged breakpoints. */
10406
10407 static struct breakpoint_ops ranged_breakpoint_ops;
10408
10409 /* Find the address where the end of the breakpoint range should be
10410 placed, given the SAL of the end of the range. This is so that if
10411 the user provides a line number, the end of the range is set to the
10412 last instruction of the given line. */
10413
10414 static CORE_ADDR
10415 find_breakpoint_range_end (struct symtab_and_line sal)
10416 {
10417 CORE_ADDR end;
10418
10419 /* If the user provided a PC value, use it. Otherwise,
10420 find the address of the end of the given location. */
10421 if (sal.explicit_pc)
10422 end = sal.pc;
10423 else
10424 {
10425 int ret;
10426 CORE_ADDR start;
10427
10428 ret = find_line_pc_range (sal, &start, &end);
10429 if (!ret)
10430 error (_("Could not find location of the end of the range."));
10431
10432 /* find_line_pc_range returns the start of the next line. */
10433 end--;
10434 }
10435
10436 return end;
10437 }
10438
10439 /* Implement the "break-range" CLI command. */
10440
10441 static void
10442 break_range_command (char *arg, int from_tty)
10443 {
10444 char *arg_start, *addr_string_start, *addr_string_end;
10445 struct linespec_result canonical_start, canonical_end;
10446 int bp_count, can_use_bp, length;
10447 CORE_ADDR end;
10448 struct breakpoint *b;
10449 struct symtab_and_line sal_start, sal_end;
10450 struct cleanup *cleanup_bkpt;
10451 struct linespec_sals *lsal_start, *lsal_end;
10452
10453 /* We don't support software ranged breakpoints. */
10454 if (target_ranged_break_num_registers () < 0)
10455 error (_("This target does not support hardware ranged breakpoints."));
10456
10457 bp_count = hw_breakpoint_used_count ();
10458 bp_count += target_ranged_break_num_registers ();
10459 can_use_bp = target_can_use_hardware_watchpoint (bp_hardware_breakpoint,
10460 bp_count, 0);
10461 if (can_use_bp < 0)
10462 error (_("Hardware breakpoints used exceeds limit."));
10463
10464 arg = skip_spaces (arg);
10465 if (arg == NULL || arg[0] == '\0')
10466 error(_("No address range specified."));
10467
10468 init_linespec_result (&canonical_start);
10469
10470 arg_start = arg;
10471 parse_breakpoint_sals (&arg, &canonical_start);
10472
10473 cleanup_bkpt = make_cleanup_destroy_linespec_result (&canonical_start);
10474
10475 if (arg[0] != ',')
10476 error (_("Too few arguments."));
10477 else if (VEC_empty (linespec_sals, canonical_start.sals))
10478 error (_("Could not find location of the beginning of the range."));
10479
10480 lsal_start = VEC_index (linespec_sals, canonical_start.sals, 0);
10481
10482 if (VEC_length (linespec_sals, canonical_start.sals) > 1
10483 || lsal_start->sals.nelts != 1)
10484 error (_("Cannot create a ranged breakpoint with multiple locations."));
10485
10486 sal_start = lsal_start->sals.sals[0];
10487 addr_string_start = savestring (arg_start, arg - arg_start);
10488 make_cleanup (xfree, addr_string_start);
10489
10490 arg++; /* Skip the comma. */
10491 arg = skip_spaces (arg);
10492
10493 /* Parse the end location. */
10494
10495 init_linespec_result (&canonical_end);
10496 arg_start = arg;
10497
10498 /* We call decode_line_full directly here instead of using
10499 parse_breakpoint_sals because we need to specify the start location's
10500 symtab and line as the default symtab and line for the end of the
10501 range. This makes it possible to have ranges like "foo.c:27, +14",
10502 where +14 means 14 lines from the start location. */
10503 decode_line_full (&arg, DECODE_LINE_FUNFIRSTLINE,
10504 sal_start.symtab, sal_start.line,
10505 &canonical_end, NULL, NULL);
10506
10507 make_cleanup_destroy_linespec_result (&canonical_end);
10508
10509 if (VEC_empty (linespec_sals, canonical_end.sals))
10510 error (_("Could not find location of the end of the range."));
10511
10512 lsal_end = VEC_index (linespec_sals, canonical_end.sals, 0);
10513 if (VEC_length (linespec_sals, canonical_end.sals) > 1
10514 || lsal_end->sals.nelts != 1)
10515 error (_("Cannot create a ranged breakpoint with multiple locations."));
10516
10517 sal_end = lsal_end->sals.sals[0];
10518 addr_string_end = savestring (arg_start, arg - arg_start);
10519 make_cleanup (xfree, addr_string_end);
10520
10521 end = find_breakpoint_range_end (sal_end);
10522 if (sal_start.pc > end)
10523 error (_("Invalid address range, end precedes start."));
10524
10525 length = end - sal_start.pc + 1;
10526 if (length < 0)
10527 /* Length overflowed. */
10528 error (_("Address range too large."));
10529 else if (length == 1)
10530 {
10531 /* This range is simple enough to be handled by
10532 the `hbreak' command. */
10533 hbreak_command (addr_string_start, 1);
10534
10535 do_cleanups (cleanup_bkpt);
10536
10537 return;
10538 }
10539
10540 /* Now set up the breakpoint. */
10541 b = set_raw_breakpoint (get_current_arch (), sal_start,
10542 bp_hardware_breakpoint, &ranged_breakpoint_ops);
10543 set_breakpoint_count (breakpoint_count + 1);
10544 b->number = breakpoint_count;
10545 b->disposition = disp_donttouch;
10546 b->addr_string = xstrdup (addr_string_start);
10547 b->addr_string_range_end = xstrdup (addr_string_end);
10548 b->loc->length = length;
10549
10550 do_cleanups (cleanup_bkpt);
10551
10552 mention (b);
10553 observer_notify_breakpoint_created (b);
10554 update_global_location_list (1);
10555 }
10556
10557 /* Return non-zero if EXP is verified as constant. Returned zero
10558 means EXP is variable. Also the constant detection may fail for
10559 some constant expressions and in such case still falsely return
10560 zero. */
10561
10562 static int
10563 watchpoint_exp_is_const (const struct expression *exp)
10564 {
10565 int i = exp->nelts;
10566
10567 while (i > 0)
10568 {
10569 int oplenp, argsp;
10570
10571 /* We are only interested in the descriptor of each element. */
10572 operator_length (exp, i, &oplenp, &argsp);
10573 i -= oplenp;
10574
10575 switch (exp->elts[i].opcode)
10576 {
10577 case BINOP_ADD:
10578 case BINOP_SUB:
10579 case BINOP_MUL:
10580 case BINOP_DIV:
10581 case BINOP_REM:
10582 case BINOP_MOD:
10583 case BINOP_LSH:
10584 case BINOP_RSH:
10585 case BINOP_LOGICAL_AND:
10586 case BINOP_LOGICAL_OR:
10587 case BINOP_BITWISE_AND:
10588 case BINOP_BITWISE_IOR:
10589 case BINOP_BITWISE_XOR:
10590 case BINOP_EQUAL:
10591 case BINOP_NOTEQUAL:
10592 case BINOP_LESS:
10593 case BINOP_GTR:
10594 case BINOP_LEQ:
10595 case BINOP_GEQ:
10596 case BINOP_REPEAT:
10597 case BINOP_COMMA:
10598 case BINOP_EXP:
10599 case BINOP_MIN:
10600 case BINOP_MAX:
10601 case BINOP_INTDIV:
10602 case BINOP_CONCAT:
10603 case TERNOP_COND:
10604 case TERNOP_SLICE:
10605
10606 case OP_LONG:
10607 case OP_DOUBLE:
10608 case OP_DECFLOAT:
10609 case OP_LAST:
10610 case OP_COMPLEX:
10611 case OP_STRING:
10612 case OP_ARRAY:
10613 case OP_TYPE:
10614 case OP_TYPEOF:
10615 case OP_DECLTYPE:
10616 case OP_TYPEID:
10617 case OP_NAME:
10618 case OP_OBJC_NSSTRING:
10619
10620 case UNOP_NEG:
10621 case UNOP_LOGICAL_NOT:
10622 case UNOP_COMPLEMENT:
10623 case UNOP_ADDR:
10624 case UNOP_HIGH:
10625 case UNOP_CAST:
10626
10627 case UNOP_CAST_TYPE:
10628 case UNOP_REINTERPRET_CAST:
10629 case UNOP_DYNAMIC_CAST:
10630 /* Unary, binary and ternary operators: We have to check
10631 their operands. If they are constant, then so is the
10632 result of that operation. For instance, if A and B are
10633 determined to be constants, then so is "A + B".
10634
10635 UNOP_IND is one exception to the rule above, because the
10636 value of *ADDR is not necessarily a constant, even when
10637 ADDR is. */
10638 break;
10639
10640 case OP_VAR_VALUE:
10641 /* Check whether the associated symbol is a constant.
10642
10643 We use SYMBOL_CLASS rather than TYPE_CONST because it's
10644 possible that a buggy compiler could mark a variable as
10645 constant even when it is not, and TYPE_CONST would return
10646 true in this case, while SYMBOL_CLASS wouldn't.
10647
10648 We also have to check for function symbols because they
10649 are always constant. */
10650 {
10651 struct symbol *s = exp->elts[i + 2].symbol;
10652
10653 if (SYMBOL_CLASS (s) != LOC_BLOCK
10654 && SYMBOL_CLASS (s) != LOC_CONST
10655 && SYMBOL_CLASS (s) != LOC_CONST_BYTES)
10656 return 0;
10657 break;
10658 }
10659
10660 /* The default action is to return 0 because we are using
10661 the optimistic approach here: If we don't know something,
10662 then it is not a constant. */
10663 default:
10664 return 0;
10665 }
10666 }
10667
10668 return 1;
10669 }
10670
10671 /* Implement the "dtor" breakpoint_ops method for watchpoints. */
10672
10673 static void
10674 dtor_watchpoint (struct breakpoint *self)
10675 {
10676 struct watchpoint *w = (struct watchpoint *) self;
10677
10678 xfree (w->cond_exp);
10679 xfree (w->exp);
10680 xfree (w->exp_string);
10681 xfree (w->exp_string_reparse);
10682 value_free (w->val);
10683
10684 base_breakpoint_ops.dtor (self);
10685 }
10686
10687 /* Implement the "re_set" breakpoint_ops method for watchpoints. */
10688
10689 static void
10690 re_set_watchpoint (struct breakpoint *b)
10691 {
10692 struct watchpoint *w = (struct watchpoint *) b;
10693
10694 /* Watchpoint can be either on expression using entirely global
10695 variables, or it can be on local variables.
10696
10697 Watchpoints of the first kind are never auto-deleted, and even
10698 persist across program restarts. Since they can use variables
10699 from shared libraries, we need to reparse expression as libraries
10700 are loaded and unloaded.
10701
10702 Watchpoints on local variables can also change meaning as result
10703 of solib event. For example, if a watchpoint uses both a local
10704 and a global variables in expression, it's a local watchpoint,
10705 but unloading of a shared library will make the expression
10706 invalid. This is not a very common use case, but we still
10707 re-evaluate expression, to avoid surprises to the user.
10708
10709 Note that for local watchpoints, we re-evaluate it only if
10710 watchpoints frame id is still valid. If it's not, it means the
10711 watchpoint is out of scope and will be deleted soon. In fact,
10712 I'm not sure we'll ever be called in this case.
10713
10714 If a local watchpoint's frame id is still valid, then
10715 w->exp_valid_block is likewise valid, and we can safely use it.
10716
10717 Don't do anything about disabled watchpoints, since they will be
10718 reevaluated again when enabled. */
10719 update_watchpoint (w, 1 /* reparse */);
10720 }
10721
10722 /* Implement the "insert" breakpoint_ops method for hardware watchpoints. */
10723
10724 static int
10725 insert_watchpoint (struct bp_location *bl)
10726 {
10727 struct watchpoint *w = (struct watchpoint *) bl->owner;
10728 int length = w->exact ? 1 : bl->length;
10729
10730 return target_insert_watchpoint (bl->address, length, bl->watchpoint_type,
10731 w->cond_exp);
10732 }
10733
10734 /* Implement the "remove" breakpoint_ops method for hardware watchpoints. */
10735
10736 static int
10737 remove_watchpoint (struct bp_location *bl)
10738 {
10739 struct watchpoint *w = (struct watchpoint *) bl->owner;
10740 int length = w->exact ? 1 : bl->length;
10741
10742 return target_remove_watchpoint (bl->address, length, bl->watchpoint_type,
10743 w->cond_exp);
10744 }
10745
10746 static int
10747 breakpoint_hit_watchpoint (const struct bp_location *bl,
10748 struct address_space *aspace, CORE_ADDR bp_addr,
10749 const struct target_waitstatus *ws)
10750 {
10751 struct breakpoint *b = bl->owner;
10752 struct watchpoint *w = (struct watchpoint *) b;
10753
10754 /* Continuable hardware watchpoints are treated as non-existent if the
10755 reason we stopped wasn't a hardware watchpoint (we didn't stop on
10756 some data address). Otherwise gdb won't stop on a break instruction
10757 in the code (not from a breakpoint) when a hardware watchpoint has
10758 been defined. Also skip watchpoints which we know did not trigger
10759 (did not match the data address). */
10760 if (is_hardware_watchpoint (b)
10761 && w->watchpoint_triggered == watch_triggered_no)
10762 return 0;
10763
10764 return 1;
10765 }
10766
10767 static void
10768 check_status_watchpoint (bpstat bs)
10769 {
10770 gdb_assert (is_watchpoint (bs->breakpoint_at));
10771
10772 bpstat_check_watchpoint (bs);
10773 }
10774
10775 /* Implement the "resources_needed" breakpoint_ops method for
10776 hardware watchpoints. */
10777
10778 static int
10779 resources_needed_watchpoint (const struct bp_location *bl)
10780 {
10781 struct watchpoint *w = (struct watchpoint *) bl->owner;
10782 int length = w->exact? 1 : bl->length;
10783
10784 return target_region_ok_for_hw_watchpoint (bl->address, length);
10785 }
10786
10787 /* Implement the "works_in_software_mode" breakpoint_ops method for
10788 hardware watchpoints. */
10789
10790 static int
10791 works_in_software_mode_watchpoint (const struct breakpoint *b)
10792 {
10793 /* Read and access watchpoints only work with hardware support. */
10794 return b->type == bp_watchpoint || b->type == bp_hardware_watchpoint;
10795 }
10796
10797 static enum print_stop_action
10798 print_it_watchpoint (bpstat bs)
10799 {
10800 struct cleanup *old_chain;
10801 struct breakpoint *b;
10802 struct ui_file *stb;
10803 enum print_stop_action result;
10804 struct watchpoint *w;
10805 struct ui_out *uiout = current_uiout;
10806
10807 gdb_assert (bs->bp_location_at != NULL);
10808
10809 b = bs->breakpoint_at;
10810 w = (struct watchpoint *) b;
10811
10812 stb = mem_fileopen ();
10813 old_chain = make_cleanup_ui_file_delete (stb);
10814
10815 switch (b->type)
10816 {
10817 case bp_watchpoint:
10818 case bp_hardware_watchpoint:
10819 annotate_watchpoint (b->number);
10820 if (ui_out_is_mi_like_p (uiout))
10821 ui_out_field_string
10822 (uiout, "reason",
10823 async_reason_lookup (EXEC_ASYNC_WATCHPOINT_TRIGGER));
10824 mention (b);
10825 make_cleanup_ui_out_tuple_begin_end (uiout, "value");
10826 ui_out_text (uiout, "\nOld value = ");
10827 watchpoint_value_print (bs->old_val, stb);
10828 ui_out_field_stream (uiout, "old", stb);
10829 ui_out_text (uiout, "\nNew value = ");
10830 watchpoint_value_print (w->val, stb);
10831 ui_out_field_stream (uiout, "new", stb);
10832 ui_out_text (uiout, "\n");
10833 /* More than one watchpoint may have been triggered. */
10834 result = PRINT_UNKNOWN;
10835 break;
10836
10837 case bp_read_watchpoint:
10838 if (ui_out_is_mi_like_p (uiout))
10839 ui_out_field_string
10840 (uiout, "reason",
10841 async_reason_lookup (EXEC_ASYNC_READ_WATCHPOINT_TRIGGER));
10842 mention (b);
10843 make_cleanup_ui_out_tuple_begin_end (uiout, "value");
10844 ui_out_text (uiout, "\nValue = ");
10845 watchpoint_value_print (w->val, stb);
10846 ui_out_field_stream (uiout, "value", stb);
10847 ui_out_text (uiout, "\n");
10848 result = PRINT_UNKNOWN;
10849 break;
10850
10851 case bp_access_watchpoint:
10852 if (bs->old_val != NULL)
10853 {
10854 annotate_watchpoint (b->number);
10855 if (ui_out_is_mi_like_p (uiout))
10856 ui_out_field_string
10857 (uiout, "reason",
10858 async_reason_lookup (EXEC_ASYNC_ACCESS_WATCHPOINT_TRIGGER));
10859 mention (b);
10860 make_cleanup_ui_out_tuple_begin_end (uiout, "value");
10861 ui_out_text (uiout, "\nOld value = ");
10862 watchpoint_value_print (bs->old_val, stb);
10863 ui_out_field_stream (uiout, "old", stb);
10864 ui_out_text (uiout, "\nNew value = ");
10865 }
10866 else
10867 {
10868 mention (b);
10869 if (ui_out_is_mi_like_p (uiout))
10870 ui_out_field_string
10871 (uiout, "reason",
10872 async_reason_lookup (EXEC_ASYNC_ACCESS_WATCHPOINT_TRIGGER));
10873 make_cleanup_ui_out_tuple_begin_end (uiout, "value");
10874 ui_out_text (uiout, "\nValue = ");
10875 }
10876 watchpoint_value_print (w->val, stb);
10877 ui_out_field_stream (uiout, "new", stb);
10878 ui_out_text (uiout, "\n");
10879 result = PRINT_UNKNOWN;
10880 break;
10881 default:
10882 result = PRINT_UNKNOWN;
10883 }
10884
10885 do_cleanups (old_chain);
10886 return result;
10887 }
10888
10889 /* Implement the "print_mention" breakpoint_ops method for hardware
10890 watchpoints. */
10891
10892 static void
10893 print_mention_watchpoint (struct breakpoint *b)
10894 {
10895 struct cleanup *ui_out_chain;
10896 struct watchpoint *w = (struct watchpoint *) b;
10897 struct ui_out *uiout = current_uiout;
10898
10899 switch (b->type)
10900 {
10901 case bp_watchpoint:
10902 ui_out_text (uiout, "Watchpoint ");
10903 ui_out_chain = make_cleanup_ui_out_tuple_begin_end (uiout, "wpt");
10904 break;
10905 case bp_hardware_watchpoint:
10906 ui_out_text (uiout, "Hardware watchpoint ");
10907 ui_out_chain = make_cleanup_ui_out_tuple_begin_end (uiout, "wpt");
10908 break;
10909 case bp_read_watchpoint:
10910 ui_out_text (uiout, "Hardware read watchpoint ");
10911 ui_out_chain = make_cleanup_ui_out_tuple_begin_end (uiout, "hw-rwpt");
10912 break;
10913 case bp_access_watchpoint:
10914 ui_out_text (uiout, "Hardware access (read/write) watchpoint ");
10915 ui_out_chain = make_cleanup_ui_out_tuple_begin_end (uiout, "hw-awpt");
10916 break;
10917 default:
10918 internal_error (__FILE__, __LINE__,
10919 _("Invalid hardware watchpoint type."));
10920 }
10921
10922 ui_out_field_int (uiout, "number", b->number);
10923 ui_out_text (uiout, ": ");
10924 ui_out_field_string (uiout, "exp", w->exp_string);
10925 do_cleanups (ui_out_chain);
10926 }
10927
10928 /* Implement the "print_recreate" breakpoint_ops method for
10929 watchpoints. */
10930
10931 static void
10932 print_recreate_watchpoint (struct breakpoint *b, struct ui_file *fp)
10933 {
10934 struct watchpoint *w = (struct watchpoint *) b;
10935
10936 switch (b->type)
10937 {
10938 case bp_watchpoint:
10939 case bp_hardware_watchpoint:
10940 fprintf_unfiltered (fp, "watch");
10941 break;
10942 case bp_read_watchpoint:
10943 fprintf_unfiltered (fp, "rwatch");
10944 break;
10945 case bp_access_watchpoint:
10946 fprintf_unfiltered (fp, "awatch");
10947 break;
10948 default:
10949 internal_error (__FILE__, __LINE__,
10950 _("Invalid watchpoint type."));
10951 }
10952
10953 fprintf_unfiltered (fp, " %s", w->exp_string);
10954 print_recreate_thread (b, fp);
10955 }
10956
10957 /* Implement the "explains_signal" breakpoint_ops method for
10958 watchpoints. */
10959
10960 static int
10961 explains_signal_watchpoint (struct breakpoint *b, enum gdb_signal sig)
10962 {
10963 /* A software watchpoint cannot cause a signal other than
10964 GDB_SIGNAL_TRAP. */
10965 if (b->type == bp_watchpoint && sig != GDB_SIGNAL_TRAP)
10966 return 0;
10967
10968 return 1;
10969 }
10970
10971 /* The breakpoint_ops structure to be used in hardware watchpoints. */
10972
10973 static struct breakpoint_ops watchpoint_breakpoint_ops;
10974
10975 /* Implement the "insert" breakpoint_ops method for
10976 masked hardware watchpoints. */
10977
10978 static int
10979 insert_masked_watchpoint (struct bp_location *bl)
10980 {
10981 struct watchpoint *w = (struct watchpoint *) bl->owner;
10982
10983 return target_insert_mask_watchpoint (bl->address, w->hw_wp_mask,
10984 bl->watchpoint_type);
10985 }
10986
10987 /* Implement the "remove" breakpoint_ops method for
10988 masked hardware watchpoints. */
10989
10990 static int
10991 remove_masked_watchpoint (struct bp_location *bl)
10992 {
10993 struct watchpoint *w = (struct watchpoint *) bl->owner;
10994
10995 return target_remove_mask_watchpoint (bl->address, w->hw_wp_mask,
10996 bl->watchpoint_type);
10997 }
10998
10999 /* Implement the "resources_needed" breakpoint_ops method for
11000 masked hardware watchpoints. */
11001
11002 static int
11003 resources_needed_masked_watchpoint (const struct bp_location *bl)
11004 {
11005 struct watchpoint *w = (struct watchpoint *) bl->owner;
11006
11007 return target_masked_watch_num_registers (bl->address, w->hw_wp_mask);
11008 }
11009
11010 /* Implement the "works_in_software_mode" breakpoint_ops method for
11011 masked hardware watchpoints. */
11012
11013 static int
11014 works_in_software_mode_masked_watchpoint (const struct breakpoint *b)
11015 {
11016 return 0;
11017 }
11018
11019 /* Implement the "print_it" breakpoint_ops method for
11020 masked hardware watchpoints. */
11021
11022 static enum print_stop_action
11023 print_it_masked_watchpoint (bpstat bs)
11024 {
11025 struct breakpoint *b = bs->breakpoint_at;
11026 struct ui_out *uiout = current_uiout;
11027
11028 /* Masked watchpoints have only one location. */
11029 gdb_assert (b->loc && b->loc->next == NULL);
11030
11031 switch (b->type)
11032 {
11033 case bp_hardware_watchpoint:
11034 annotate_watchpoint (b->number);
11035 if (ui_out_is_mi_like_p (uiout))
11036 ui_out_field_string
11037 (uiout, "reason",
11038 async_reason_lookup (EXEC_ASYNC_WATCHPOINT_TRIGGER));
11039 break;
11040
11041 case bp_read_watchpoint:
11042 if (ui_out_is_mi_like_p (uiout))
11043 ui_out_field_string
11044 (uiout, "reason",
11045 async_reason_lookup (EXEC_ASYNC_READ_WATCHPOINT_TRIGGER));
11046 break;
11047
11048 case bp_access_watchpoint:
11049 if (ui_out_is_mi_like_p (uiout))
11050 ui_out_field_string
11051 (uiout, "reason",
11052 async_reason_lookup (EXEC_ASYNC_ACCESS_WATCHPOINT_TRIGGER));
11053 break;
11054 default:
11055 internal_error (__FILE__, __LINE__,
11056 _("Invalid hardware watchpoint type."));
11057 }
11058
11059 mention (b);
11060 ui_out_text (uiout, _("\n\
11061 Check the underlying instruction at PC for the memory\n\
11062 address and value which triggered this watchpoint.\n"));
11063 ui_out_text (uiout, "\n");
11064
11065 /* More than one watchpoint may have been triggered. */
11066 return PRINT_UNKNOWN;
11067 }
11068
11069 /* Implement the "print_one_detail" breakpoint_ops method for
11070 masked hardware watchpoints. */
11071
11072 static void
11073 print_one_detail_masked_watchpoint (const struct breakpoint *b,
11074 struct ui_out *uiout)
11075 {
11076 struct watchpoint *w = (struct watchpoint *) b;
11077
11078 /* Masked watchpoints have only one location. */
11079 gdb_assert (b->loc && b->loc->next == NULL);
11080
11081 ui_out_text (uiout, "\tmask ");
11082 ui_out_field_core_addr (uiout, "mask", b->loc->gdbarch, w->hw_wp_mask);
11083 ui_out_text (uiout, "\n");
11084 }
11085
11086 /* Implement the "print_mention" breakpoint_ops method for
11087 masked hardware watchpoints. */
11088
11089 static void
11090 print_mention_masked_watchpoint (struct breakpoint *b)
11091 {
11092 struct watchpoint *w = (struct watchpoint *) b;
11093 struct ui_out *uiout = current_uiout;
11094 struct cleanup *ui_out_chain;
11095
11096 switch (b->type)
11097 {
11098 case bp_hardware_watchpoint:
11099 ui_out_text (uiout, "Masked hardware watchpoint ");
11100 ui_out_chain = make_cleanup_ui_out_tuple_begin_end (uiout, "wpt");
11101 break;
11102 case bp_read_watchpoint:
11103 ui_out_text (uiout, "Masked hardware read watchpoint ");
11104 ui_out_chain = make_cleanup_ui_out_tuple_begin_end (uiout, "hw-rwpt");
11105 break;
11106 case bp_access_watchpoint:
11107 ui_out_text (uiout, "Masked hardware access (read/write) watchpoint ");
11108 ui_out_chain = make_cleanup_ui_out_tuple_begin_end (uiout, "hw-awpt");
11109 break;
11110 default:
11111 internal_error (__FILE__, __LINE__,
11112 _("Invalid hardware watchpoint type."));
11113 }
11114
11115 ui_out_field_int (uiout, "number", b->number);
11116 ui_out_text (uiout, ": ");
11117 ui_out_field_string (uiout, "exp", w->exp_string);
11118 do_cleanups (ui_out_chain);
11119 }
11120
11121 /* Implement the "print_recreate" breakpoint_ops method for
11122 masked hardware watchpoints. */
11123
11124 static void
11125 print_recreate_masked_watchpoint (struct breakpoint *b, struct ui_file *fp)
11126 {
11127 struct watchpoint *w = (struct watchpoint *) b;
11128 char tmp[40];
11129
11130 switch (b->type)
11131 {
11132 case bp_hardware_watchpoint:
11133 fprintf_unfiltered (fp, "watch");
11134 break;
11135 case bp_read_watchpoint:
11136 fprintf_unfiltered (fp, "rwatch");
11137 break;
11138 case bp_access_watchpoint:
11139 fprintf_unfiltered (fp, "awatch");
11140 break;
11141 default:
11142 internal_error (__FILE__, __LINE__,
11143 _("Invalid hardware watchpoint type."));
11144 }
11145
11146 sprintf_vma (tmp, w->hw_wp_mask);
11147 fprintf_unfiltered (fp, " %s mask 0x%s", w->exp_string, tmp);
11148 print_recreate_thread (b, fp);
11149 }
11150
11151 /* The breakpoint_ops structure to be used in masked hardware watchpoints. */
11152
11153 static struct breakpoint_ops masked_watchpoint_breakpoint_ops;
11154
11155 /* Tell whether the given watchpoint is a masked hardware watchpoint. */
11156
11157 static int
11158 is_masked_watchpoint (const struct breakpoint *b)
11159 {
11160 return b->ops == &masked_watchpoint_breakpoint_ops;
11161 }
11162
11163 /* accessflag: hw_write: watch write,
11164 hw_read: watch read,
11165 hw_access: watch access (read or write) */
11166 static void
11167 watch_command_1 (const char *arg, int accessflag, int from_tty,
11168 int just_location, int internal)
11169 {
11170 volatile struct gdb_exception e;
11171 struct breakpoint *b, *scope_breakpoint = NULL;
11172 struct expression *exp;
11173 const struct block *exp_valid_block = NULL, *cond_exp_valid_block = NULL;
11174 struct value *val, *mark, *result;
11175 struct frame_info *frame;
11176 const char *exp_start = NULL;
11177 const char *exp_end = NULL;
11178 const char *tok, *end_tok;
11179 int toklen = -1;
11180 const char *cond_start = NULL;
11181 const char *cond_end = NULL;
11182 enum bptype bp_type;
11183 int thread = -1;
11184 int pc = 0;
11185 /* Flag to indicate whether we are going to use masks for
11186 the hardware watchpoint. */
11187 int use_mask = 0;
11188 CORE_ADDR mask = 0;
11189 struct watchpoint *w;
11190 char *expression;
11191 struct cleanup *back_to;
11192
11193 /* Make sure that we actually have parameters to parse. */
11194 if (arg != NULL && arg[0] != '\0')
11195 {
11196 const char *value_start;
11197
11198 exp_end = arg + strlen (arg);
11199
11200 /* Look for "parameter value" pairs at the end
11201 of the arguments string. */
11202 for (tok = exp_end - 1; tok > arg; tok--)
11203 {
11204 /* Skip whitespace at the end of the argument list. */
11205 while (tok > arg && (*tok == ' ' || *tok == '\t'))
11206 tok--;
11207
11208 /* Find the beginning of the last token.
11209 This is the value of the parameter. */
11210 while (tok > arg && (*tok != ' ' && *tok != '\t'))
11211 tok--;
11212 value_start = tok + 1;
11213
11214 /* Skip whitespace. */
11215 while (tok > arg && (*tok == ' ' || *tok == '\t'))
11216 tok--;
11217
11218 end_tok = tok;
11219
11220 /* Find the beginning of the second to last token.
11221 This is the parameter itself. */
11222 while (tok > arg && (*tok != ' ' && *tok != '\t'))
11223 tok--;
11224 tok++;
11225 toklen = end_tok - tok + 1;
11226
11227 if (toklen == 6 && !strncmp (tok, "thread", 6))
11228 {
11229 /* At this point we've found a "thread" token, which means
11230 the user is trying to set a watchpoint that triggers
11231 only in a specific thread. */
11232 char *endp;
11233
11234 if (thread != -1)
11235 error(_("You can specify only one thread."));
11236
11237 /* Extract the thread ID from the next token. */
11238 thread = strtol (value_start, &endp, 0);
11239
11240 /* Check if the user provided a valid numeric value for the
11241 thread ID. */
11242 if (*endp != ' ' && *endp != '\t' && *endp != '\0')
11243 error (_("Invalid thread ID specification %s."), value_start);
11244
11245 /* Check if the thread actually exists. */
11246 if (!valid_thread_id (thread))
11247 invalid_thread_id_error (thread);
11248 }
11249 else if (toklen == 4 && !strncmp (tok, "mask", 4))
11250 {
11251 /* We've found a "mask" token, which means the user wants to
11252 create a hardware watchpoint that is going to have the mask
11253 facility. */
11254 struct value *mask_value, *mark;
11255
11256 if (use_mask)
11257 error(_("You can specify only one mask."));
11258
11259 use_mask = just_location = 1;
11260
11261 mark = value_mark ();
11262 mask_value = parse_to_comma_and_eval (&value_start);
11263 mask = value_as_address (mask_value);
11264 value_free_to_mark (mark);
11265 }
11266 else
11267 /* We didn't recognize what we found. We should stop here. */
11268 break;
11269
11270 /* Truncate the string and get rid of the "parameter value" pair before
11271 the arguments string is parsed by the parse_exp_1 function. */
11272 exp_end = tok;
11273 }
11274 }
11275 else
11276 exp_end = arg;
11277
11278 /* Parse the rest of the arguments. From here on out, everything
11279 is in terms of a newly allocated string instead of the original
11280 ARG. */
11281 innermost_block = NULL;
11282 expression = savestring (arg, exp_end - arg);
11283 back_to = make_cleanup (xfree, expression);
11284 exp_start = arg = expression;
11285 exp = parse_exp_1 (&arg, 0, 0, 0);
11286 exp_end = arg;
11287 /* Remove trailing whitespace from the expression before saving it.
11288 This makes the eventual display of the expression string a bit
11289 prettier. */
11290 while (exp_end > exp_start && (exp_end[-1] == ' ' || exp_end[-1] == '\t'))
11291 --exp_end;
11292
11293 /* Checking if the expression is not constant. */
11294 if (watchpoint_exp_is_const (exp))
11295 {
11296 int len;
11297
11298 len = exp_end - exp_start;
11299 while (len > 0 && isspace (exp_start[len - 1]))
11300 len--;
11301 error (_("Cannot watch constant value `%.*s'."), len, exp_start);
11302 }
11303
11304 exp_valid_block = innermost_block;
11305 mark = value_mark ();
11306 fetch_subexp_value (exp, &pc, &val, &result, NULL, just_location);
11307
11308 if (just_location)
11309 {
11310 int ret;
11311
11312 exp_valid_block = NULL;
11313 val = value_addr (result);
11314 release_value (val);
11315 value_free_to_mark (mark);
11316
11317 if (use_mask)
11318 {
11319 ret = target_masked_watch_num_registers (value_as_address (val),
11320 mask);
11321 if (ret == -1)
11322 error (_("This target does not support masked watchpoints."));
11323 else if (ret == -2)
11324 error (_("Invalid mask or memory region."));
11325 }
11326 }
11327 else if (val != NULL)
11328 release_value (val);
11329
11330 tok = skip_spaces_const (arg);
11331 end_tok = skip_to_space_const (tok);
11332
11333 toklen = end_tok - tok;
11334 if (toklen >= 1 && strncmp (tok, "if", toklen) == 0)
11335 {
11336 struct expression *cond;
11337
11338 innermost_block = NULL;
11339 tok = cond_start = end_tok + 1;
11340 cond = parse_exp_1 (&tok, 0, 0, 0);
11341
11342 /* The watchpoint expression may not be local, but the condition
11343 may still be. E.g.: `watch global if local > 0'. */
11344 cond_exp_valid_block = innermost_block;
11345
11346 xfree (cond);
11347 cond_end = tok;
11348 }
11349 if (*tok)
11350 error (_("Junk at end of command."));
11351
11352 frame = block_innermost_frame (exp_valid_block);
11353
11354 /* If the expression is "local", then set up a "watchpoint scope"
11355 breakpoint at the point where we've left the scope of the watchpoint
11356 expression. Create the scope breakpoint before the watchpoint, so
11357 that we will encounter it first in bpstat_stop_status. */
11358 if (exp_valid_block && frame)
11359 {
11360 if (frame_id_p (frame_unwind_caller_id (frame)))
11361 {
11362 scope_breakpoint
11363 = create_internal_breakpoint (frame_unwind_caller_arch (frame),
11364 frame_unwind_caller_pc (frame),
11365 bp_watchpoint_scope,
11366 &momentary_breakpoint_ops);
11367
11368 scope_breakpoint->enable_state = bp_enabled;
11369
11370 /* Automatically delete the breakpoint when it hits. */
11371 scope_breakpoint->disposition = disp_del;
11372
11373 /* Only break in the proper frame (help with recursion). */
11374 scope_breakpoint->frame_id = frame_unwind_caller_id (frame);
11375
11376 /* Set the address at which we will stop. */
11377 scope_breakpoint->loc->gdbarch
11378 = frame_unwind_caller_arch (frame);
11379 scope_breakpoint->loc->requested_address
11380 = frame_unwind_caller_pc (frame);
11381 scope_breakpoint->loc->address
11382 = adjust_breakpoint_address (scope_breakpoint->loc->gdbarch,
11383 scope_breakpoint->loc->requested_address,
11384 scope_breakpoint->type);
11385 }
11386 }
11387
11388 /* Now set up the breakpoint. We create all watchpoints as hardware
11389 watchpoints here even if hardware watchpoints are turned off, a call
11390 to update_watchpoint later in this function will cause the type to
11391 drop back to bp_watchpoint (software watchpoint) if required. */
11392
11393 if (accessflag == hw_read)
11394 bp_type = bp_read_watchpoint;
11395 else if (accessflag == hw_access)
11396 bp_type = bp_access_watchpoint;
11397 else
11398 bp_type = bp_hardware_watchpoint;
11399
11400 w = XCNEW (struct watchpoint);
11401 b = &w->base;
11402 if (use_mask)
11403 init_raw_breakpoint_without_location (b, NULL, bp_type,
11404 &masked_watchpoint_breakpoint_ops);
11405 else
11406 init_raw_breakpoint_without_location (b, NULL, bp_type,
11407 &watchpoint_breakpoint_ops);
11408 b->thread = thread;
11409 b->disposition = disp_donttouch;
11410 b->pspace = current_program_space;
11411 w->exp = exp;
11412 w->exp_valid_block = exp_valid_block;
11413 w->cond_exp_valid_block = cond_exp_valid_block;
11414 if (just_location)
11415 {
11416 struct type *t = value_type (val);
11417 CORE_ADDR addr = value_as_address (val);
11418 char *name;
11419
11420 t = check_typedef (TYPE_TARGET_TYPE (check_typedef (t)));
11421 name = type_to_string (t);
11422
11423 w->exp_string_reparse = xstrprintf ("* (%s *) %s", name,
11424 core_addr_to_string (addr));
11425 xfree (name);
11426
11427 w->exp_string = xstrprintf ("-location %.*s",
11428 (int) (exp_end - exp_start), exp_start);
11429
11430 /* The above expression is in C. */
11431 b->language = language_c;
11432 }
11433 else
11434 w->exp_string = savestring (exp_start, exp_end - exp_start);
11435
11436 if (use_mask)
11437 {
11438 w->hw_wp_mask = mask;
11439 }
11440 else
11441 {
11442 w->val = val;
11443 w->val_valid = 1;
11444 }
11445
11446 if (cond_start)
11447 b->cond_string = savestring (cond_start, cond_end - cond_start);
11448 else
11449 b->cond_string = 0;
11450
11451 if (frame)
11452 {
11453 w->watchpoint_frame = get_frame_id (frame);
11454 w->watchpoint_thread = inferior_ptid;
11455 }
11456 else
11457 {
11458 w->watchpoint_frame = null_frame_id;
11459 w->watchpoint_thread = null_ptid;
11460 }
11461
11462 if (scope_breakpoint != NULL)
11463 {
11464 /* The scope breakpoint is related to the watchpoint. We will
11465 need to act on them together. */
11466 b->related_breakpoint = scope_breakpoint;
11467 scope_breakpoint->related_breakpoint = b;
11468 }
11469
11470 if (!just_location)
11471 value_free_to_mark (mark);
11472
11473 TRY_CATCH (e, RETURN_MASK_ALL)
11474 {
11475 /* Finally update the new watchpoint. This creates the locations
11476 that should be inserted. */
11477 update_watchpoint (w, 1);
11478 }
11479 if (e.reason < 0)
11480 {
11481 delete_breakpoint (b);
11482 throw_exception (e);
11483 }
11484
11485 install_breakpoint (internal, b, 1);
11486 do_cleanups (back_to);
11487 }
11488
11489 /* Return count of debug registers needed to watch the given expression.
11490 If the watchpoint cannot be handled in hardware return zero. */
11491
11492 static int
11493 can_use_hardware_watchpoint (struct value *v)
11494 {
11495 int found_memory_cnt = 0;
11496 struct value *head = v;
11497
11498 /* Did the user specifically forbid us to use hardware watchpoints? */
11499 if (!can_use_hw_watchpoints)
11500 return 0;
11501
11502 /* Make sure that the value of the expression depends only upon
11503 memory contents, and values computed from them within GDB. If we
11504 find any register references or function calls, we can't use a
11505 hardware watchpoint.
11506
11507 The idea here is that evaluating an expression generates a series
11508 of values, one holding the value of every subexpression. (The
11509 expression a*b+c has five subexpressions: a, b, a*b, c, and
11510 a*b+c.) GDB's values hold almost enough information to establish
11511 the criteria given above --- they identify memory lvalues,
11512 register lvalues, computed values, etcetera. So we can evaluate
11513 the expression, and then scan the chain of values that leaves
11514 behind to decide whether we can detect any possible change to the
11515 expression's final value using only hardware watchpoints.
11516
11517 However, I don't think that the values returned by inferior
11518 function calls are special in any way. So this function may not
11519 notice that an expression involving an inferior function call
11520 can't be watched with hardware watchpoints. FIXME. */
11521 for (; v; v = value_next (v))
11522 {
11523 if (VALUE_LVAL (v) == lval_memory)
11524 {
11525 if (v != head && value_lazy (v))
11526 /* A lazy memory lvalue in the chain is one that GDB never
11527 needed to fetch; we either just used its address (e.g.,
11528 `a' in `a.b') or we never needed it at all (e.g., `a'
11529 in `a,b'). This doesn't apply to HEAD; if that is
11530 lazy then it was not readable, but watch it anyway. */
11531 ;
11532 else
11533 {
11534 /* Ahh, memory we actually used! Check if we can cover
11535 it with hardware watchpoints. */
11536 struct type *vtype = check_typedef (value_type (v));
11537
11538 /* We only watch structs and arrays if user asked for it
11539 explicitly, never if they just happen to appear in a
11540 middle of some value chain. */
11541 if (v == head
11542 || (TYPE_CODE (vtype) != TYPE_CODE_STRUCT
11543 && TYPE_CODE (vtype) != TYPE_CODE_ARRAY))
11544 {
11545 CORE_ADDR vaddr = value_address (v);
11546 int len;
11547 int num_regs;
11548
11549 len = (target_exact_watchpoints
11550 && is_scalar_type_recursive (vtype))?
11551 1 : TYPE_LENGTH (value_type (v));
11552
11553 num_regs = target_region_ok_for_hw_watchpoint (vaddr, len);
11554 if (!num_regs)
11555 return 0;
11556 else
11557 found_memory_cnt += num_regs;
11558 }
11559 }
11560 }
11561 else if (VALUE_LVAL (v) != not_lval
11562 && deprecated_value_modifiable (v) == 0)
11563 return 0; /* These are values from the history (e.g., $1). */
11564 else if (VALUE_LVAL (v) == lval_register)
11565 return 0; /* Cannot watch a register with a HW watchpoint. */
11566 }
11567
11568 /* The expression itself looks suitable for using a hardware
11569 watchpoint, but give the target machine a chance to reject it. */
11570 return found_memory_cnt;
11571 }
11572
11573 void
11574 watch_command_wrapper (char *arg, int from_tty, int internal)
11575 {
11576 watch_command_1 (arg, hw_write, from_tty, 0, internal);
11577 }
11578
11579 /* A helper function that looks for the "-location" argument and then
11580 calls watch_command_1. */
11581
11582 static void
11583 watch_maybe_just_location (char *arg, int accessflag, int from_tty)
11584 {
11585 int just_location = 0;
11586
11587 if (arg
11588 && (check_for_argument (&arg, "-location", sizeof ("-location") - 1)
11589 || check_for_argument (&arg, "-l", sizeof ("-l") - 1)))
11590 {
11591 arg = skip_spaces (arg);
11592 just_location = 1;
11593 }
11594
11595 watch_command_1 (arg, accessflag, from_tty, just_location, 0);
11596 }
11597
11598 static void
11599 watch_command (char *arg, int from_tty)
11600 {
11601 watch_maybe_just_location (arg, hw_write, from_tty);
11602 }
11603
11604 void
11605 rwatch_command_wrapper (char *arg, int from_tty, int internal)
11606 {
11607 watch_command_1 (arg, hw_read, from_tty, 0, internal);
11608 }
11609
11610 static void
11611 rwatch_command (char *arg, int from_tty)
11612 {
11613 watch_maybe_just_location (arg, hw_read, from_tty);
11614 }
11615
11616 void
11617 awatch_command_wrapper (char *arg, int from_tty, int internal)
11618 {
11619 watch_command_1 (arg, hw_access, from_tty, 0, internal);
11620 }
11621
11622 static void
11623 awatch_command (char *arg, int from_tty)
11624 {
11625 watch_maybe_just_location (arg, hw_access, from_tty);
11626 }
11627 \f
11628
11629 /* Helper routines for the until_command routine in infcmd.c. Here
11630 because it uses the mechanisms of breakpoints. */
11631
11632 struct until_break_command_continuation_args
11633 {
11634 struct breakpoint *breakpoint;
11635 struct breakpoint *breakpoint2;
11636 int thread_num;
11637 };
11638
11639 /* This function is called by fetch_inferior_event via the
11640 cmd_continuation pointer, to complete the until command. It takes
11641 care of cleaning up the temporary breakpoints set up by the until
11642 command. */
11643 static void
11644 until_break_command_continuation (void *arg, int err)
11645 {
11646 struct until_break_command_continuation_args *a = arg;
11647
11648 delete_breakpoint (a->breakpoint);
11649 if (a->breakpoint2)
11650 delete_breakpoint (a->breakpoint2);
11651 delete_longjmp_breakpoint (a->thread_num);
11652 }
11653
11654 void
11655 until_break_command (char *arg, int from_tty, int anywhere)
11656 {
11657 struct symtabs_and_lines sals;
11658 struct symtab_and_line sal;
11659 struct frame_info *frame;
11660 struct gdbarch *frame_gdbarch;
11661 struct frame_id stack_frame_id;
11662 struct frame_id caller_frame_id;
11663 struct breakpoint *breakpoint;
11664 struct breakpoint *breakpoint2 = NULL;
11665 struct cleanup *old_chain;
11666 int thread;
11667 struct thread_info *tp;
11668
11669 clear_proceed_status (0);
11670
11671 /* Set a breakpoint where the user wants it and at return from
11672 this function. */
11673
11674 if (last_displayed_sal_is_valid ())
11675 sals = decode_line_1 (&arg, DECODE_LINE_FUNFIRSTLINE,
11676 get_last_displayed_symtab (),
11677 get_last_displayed_line ());
11678 else
11679 sals = decode_line_1 (&arg, DECODE_LINE_FUNFIRSTLINE,
11680 (struct symtab *) NULL, 0);
11681
11682 if (sals.nelts != 1)
11683 error (_("Couldn't get information on specified line."));
11684
11685 sal = sals.sals[0];
11686 xfree (sals.sals); /* malloc'd, so freed. */
11687
11688 if (*arg)
11689 error (_("Junk at end of arguments."));
11690
11691 resolve_sal_pc (&sal);
11692
11693 tp = inferior_thread ();
11694 thread = tp->num;
11695
11696 old_chain = make_cleanup (null_cleanup, NULL);
11697
11698 /* Note linespec handling above invalidates the frame chain.
11699 Installing a breakpoint also invalidates the frame chain (as it
11700 may need to switch threads), so do any frame handling before
11701 that. */
11702
11703 frame = get_selected_frame (NULL);
11704 frame_gdbarch = get_frame_arch (frame);
11705 stack_frame_id = get_stack_frame_id (frame);
11706 caller_frame_id = frame_unwind_caller_id (frame);
11707
11708 /* Keep within the current frame, or in frames called by the current
11709 one. */
11710
11711 if (frame_id_p (caller_frame_id))
11712 {
11713 struct symtab_and_line sal2;
11714
11715 sal2 = find_pc_line (frame_unwind_caller_pc (frame), 0);
11716 sal2.pc = frame_unwind_caller_pc (frame);
11717 breakpoint2 = set_momentary_breakpoint (frame_unwind_caller_arch (frame),
11718 sal2,
11719 caller_frame_id,
11720 bp_until);
11721 make_cleanup_delete_breakpoint (breakpoint2);
11722
11723 set_longjmp_breakpoint (tp, caller_frame_id);
11724 make_cleanup (delete_longjmp_breakpoint_cleanup, &thread);
11725 }
11726
11727 /* set_momentary_breakpoint could invalidate FRAME. */
11728 frame = NULL;
11729
11730 if (anywhere)
11731 /* If the user told us to continue until a specified location,
11732 we don't specify a frame at which we need to stop. */
11733 breakpoint = set_momentary_breakpoint (frame_gdbarch, sal,
11734 null_frame_id, bp_until);
11735 else
11736 /* Otherwise, specify the selected frame, because we want to stop
11737 only at the very same frame. */
11738 breakpoint = set_momentary_breakpoint (frame_gdbarch, sal,
11739 stack_frame_id, bp_until);
11740 make_cleanup_delete_breakpoint (breakpoint);
11741
11742 proceed (-1, GDB_SIGNAL_DEFAULT, 0);
11743
11744 /* If we are running asynchronously, and proceed call above has
11745 actually managed to start the target, arrange for breakpoints to
11746 be deleted when the target stops. Otherwise, we're already
11747 stopped and delete breakpoints via cleanup chain. */
11748
11749 if (target_can_async_p () && is_running (inferior_ptid))
11750 {
11751 struct until_break_command_continuation_args *args;
11752 args = xmalloc (sizeof (*args));
11753
11754 args->breakpoint = breakpoint;
11755 args->breakpoint2 = breakpoint2;
11756 args->thread_num = thread;
11757
11758 discard_cleanups (old_chain);
11759 add_continuation (inferior_thread (),
11760 until_break_command_continuation, args,
11761 xfree);
11762 }
11763 else
11764 do_cleanups (old_chain);
11765 }
11766
11767 /* This function attempts to parse an optional "if <cond>" clause
11768 from the arg string. If one is not found, it returns NULL.
11769
11770 Else, it returns a pointer to the condition string. (It does not
11771 attempt to evaluate the string against a particular block.) And,
11772 it updates arg to point to the first character following the parsed
11773 if clause in the arg string. */
11774
11775 char *
11776 ep_parse_optional_if_clause (char **arg)
11777 {
11778 char *cond_string;
11779
11780 if (((*arg)[0] != 'i') || ((*arg)[1] != 'f') || !isspace ((*arg)[2]))
11781 return NULL;
11782
11783 /* Skip the "if" keyword. */
11784 (*arg) += 2;
11785
11786 /* Skip any extra leading whitespace, and record the start of the
11787 condition string. */
11788 *arg = skip_spaces (*arg);
11789 cond_string = *arg;
11790
11791 /* Assume that the condition occupies the remainder of the arg
11792 string. */
11793 (*arg) += strlen (cond_string);
11794
11795 return cond_string;
11796 }
11797
11798 /* Commands to deal with catching events, such as signals, exceptions,
11799 process start/exit, etc. */
11800
11801 typedef enum
11802 {
11803 catch_fork_temporary, catch_vfork_temporary,
11804 catch_fork_permanent, catch_vfork_permanent
11805 }
11806 catch_fork_kind;
11807
11808 static void
11809 catch_fork_command_1 (char *arg, int from_tty,
11810 struct cmd_list_element *command)
11811 {
11812 struct gdbarch *gdbarch = get_current_arch ();
11813 char *cond_string = NULL;
11814 catch_fork_kind fork_kind;
11815 int tempflag;
11816
11817 fork_kind = (catch_fork_kind) (uintptr_t) get_cmd_context (command);
11818 tempflag = (fork_kind == catch_fork_temporary
11819 || fork_kind == catch_vfork_temporary);
11820
11821 if (!arg)
11822 arg = "";
11823 arg = skip_spaces (arg);
11824
11825 /* The allowed syntax is:
11826 catch [v]fork
11827 catch [v]fork if <cond>
11828
11829 First, check if there's an if clause. */
11830 cond_string = ep_parse_optional_if_clause (&arg);
11831
11832 if ((*arg != '\0') && !isspace (*arg))
11833 error (_("Junk at end of arguments."));
11834
11835 /* If this target supports it, create a fork or vfork catchpoint
11836 and enable reporting of such events. */
11837 switch (fork_kind)
11838 {
11839 case catch_fork_temporary:
11840 case catch_fork_permanent:
11841 create_fork_vfork_event_catchpoint (gdbarch, tempflag, cond_string,
11842 &catch_fork_breakpoint_ops);
11843 break;
11844 case catch_vfork_temporary:
11845 case catch_vfork_permanent:
11846 create_fork_vfork_event_catchpoint (gdbarch, tempflag, cond_string,
11847 &catch_vfork_breakpoint_ops);
11848 break;
11849 default:
11850 error (_("unsupported or unknown fork kind; cannot catch it"));
11851 break;
11852 }
11853 }
11854
11855 static void
11856 catch_exec_command_1 (char *arg, int from_tty,
11857 struct cmd_list_element *command)
11858 {
11859 struct exec_catchpoint *c;
11860 struct gdbarch *gdbarch = get_current_arch ();
11861 int tempflag;
11862 char *cond_string = NULL;
11863
11864 tempflag = get_cmd_context (command) == CATCH_TEMPORARY;
11865
11866 if (!arg)
11867 arg = "";
11868 arg = skip_spaces (arg);
11869
11870 /* The allowed syntax is:
11871 catch exec
11872 catch exec if <cond>
11873
11874 First, check if there's an if clause. */
11875 cond_string = ep_parse_optional_if_clause (&arg);
11876
11877 if ((*arg != '\0') && !isspace (*arg))
11878 error (_("Junk at end of arguments."));
11879
11880 c = XNEW (struct exec_catchpoint);
11881 init_catchpoint (&c->base, gdbarch, tempflag, cond_string,
11882 &catch_exec_breakpoint_ops);
11883 c->exec_pathname = NULL;
11884
11885 install_breakpoint (0, &c->base, 1);
11886 }
11887
11888 void
11889 init_ada_exception_breakpoint (struct breakpoint *b,
11890 struct gdbarch *gdbarch,
11891 struct symtab_and_line sal,
11892 char *addr_string,
11893 const struct breakpoint_ops *ops,
11894 int tempflag,
11895 int enabled,
11896 int from_tty)
11897 {
11898 if (from_tty)
11899 {
11900 struct gdbarch *loc_gdbarch = get_sal_arch (sal);
11901 if (!loc_gdbarch)
11902 loc_gdbarch = gdbarch;
11903
11904 describe_other_breakpoints (loc_gdbarch,
11905 sal.pspace, sal.pc, sal.section, -1);
11906 /* FIXME: brobecker/2006-12-28: Actually, re-implement a special
11907 version for exception catchpoints, because two catchpoints
11908 used for different exception names will use the same address.
11909 In this case, a "breakpoint ... also set at..." warning is
11910 unproductive. Besides, the warning phrasing is also a bit
11911 inappropriate, we should use the word catchpoint, and tell
11912 the user what type of catchpoint it is. The above is good
11913 enough for now, though. */
11914 }
11915
11916 init_raw_breakpoint (b, gdbarch, sal, bp_breakpoint, ops);
11917
11918 b->enable_state = enabled ? bp_enabled : bp_disabled;
11919 b->disposition = tempflag ? disp_del : disp_donttouch;
11920 b->addr_string = addr_string;
11921 b->language = language_ada;
11922 }
11923
11924 /* Splits the argument using space as delimiter. Returns an xmalloc'd
11925 filter list, or NULL if no filtering is required. */
11926 static VEC(int) *
11927 catch_syscall_split_args (char *arg)
11928 {
11929 VEC(int) *result = NULL;
11930 struct cleanup *cleanup = make_cleanup (VEC_cleanup (int), &result);
11931
11932 while (*arg != '\0')
11933 {
11934 int i, syscall_number;
11935 char *endptr;
11936 char cur_name[128];
11937 struct syscall s;
11938
11939 /* Skip whitespace. */
11940 arg = skip_spaces (arg);
11941
11942 for (i = 0; i < 127 && arg[i] && !isspace (arg[i]); ++i)
11943 cur_name[i] = arg[i];
11944 cur_name[i] = '\0';
11945 arg += i;
11946
11947 /* Check if the user provided a syscall name or a number. */
11948 syscall_number = (int) strtol (cur_name, &endptr, 0);
11949 if (*endptr == '\0')
11950 get_syscall_by_number (syscall_number, &s);
11951 else
11952 {
11953 /* We have a name. Let's check if it's valid and convert it
11954 to a number. */
11955 get_syscall_by_name (cur_name, &s);
11956
11957 if (s.number == UNKNOWN_SYSCALL)
11958 /* Here we have to issue an error instead of a warning,
11959 because GDB cannot do anything useful if there's no
11960 syscall number to be caught. */
11961 error (_("Unknown syscall name '%s'."), cur_name);
11962 }
11963
11964 /* Ok, it's valid. */
11965 VEC_safe_push (int, result, s.number);
11966 }
11967
11968 discard_cleanups (cleanup);
11969 return result;
11970 }
11971
11972 /* Implement the "catch syscall" command. */
11973
11974 static void
11975 catch_syscall_command_1 (char *arg, int from_tty,
11976 struct cmd_list_element *command)
11977 {
11978 int tempflag;
11979 VEC(int) *filter;
11980 struct syscall s;
11981 struct gdbarch *gdbarch = get_current_arch ();
11982
11983 /* Checking if the feature if supported. */
11984 if (gdbarch_get_syscall_number_p (gdbarch) == 0)
11985 error (_("The feature 'catch syscall' is not supported on \
11986 this architecture yet."));
11987
11988 tempflag = get_cmd_context (command) == CATCH_TEMPORARY;
11989
11990 arg = skip_spaces (arg);
11991
11992 /* We need to do this first "dummy" translation in order
11993 to get the syscall XML file loaded or, most important,
11994 to display a warning to the user if there's no XML file
11995 for his/her architecture. */
11996 get_syscall_by_number (0, &s);
11997
11998 /* The allowed syntax is:
11999 catch syscall
12000 catch syscall <name | number> [<name | number> ... <name | number>]
12001
12002 Let's check if there's a syscall name. */
12003
12004 if (arg != NULL)
12005 filter = catch_syscall_split_args (arg);
12006 else
12007 filter = NULL;
12008
12009 create_syscall_event_catchpoint (tempflag, filter,
12010 &catch_syscall_breakpoint_ops);
12011 }
12012
12013 static void
12014 catch_command (char *arg, int from_tty)
12015 {
12016 error (_("Catch requires an event name."));
12017 }
12018 \f
12019
12020 static void
12021 tcatch_command (char *arg, int from_tty)
12022 {
12023 error (_("Catch requires an event name."));
12024 }
12025
12026 /* A qsort comparison function that sorts breakpoints in order. */
12027
12028 static int
12029 compare_breakpoints (const void *a, const void *b)
12030 {
12031 const breakpoint_p *ba = a;
12032 uintptr_t ua = (uintptr_t) *ba;
12033 const breakpoint_p *bb = b;
12034 uintptr_t ub = (uintptr_t) *bb;
12035
12036 if ((*ba)->number < (*bb)->number)
12037 return -1;
12038 else if ((*ba)->number > (*bb)->number)
12039 return 1;
12040
12041 /* Now sort by address, in case we see, e..g, two breakpoints with
12042 the number 0. */
12043 if (ua < ub)
12044 return -1;
12045 return ua > ub ? 1 : 0;
12046 }
12047
12048 /* Delete breakpoints by address or line. */
12049
12050 static void
12051 clear_command (char *arg, int from_tty)
12052 {
12053 struct breakpoint *b, *prev;
12054 VEC(breakpoint_p) *found = 0;
12055 int ix;
12056 int default_match;
12057 struct symtabs_and_lines sals;
12058 struct symtab_and_line sal;
12059 int i;
12060 struct cleanup *cleanups = make_cleanup (null_cleanup, NULL);
12061
12062 if (arg)
12063 {
12064 sals = decode_line_with_current_source (arg,
12065 (DECODE_LINE_FUNFIRSTLINE
12066 | DECODE_LINE_LIST_MODE));
12067 make_cleanup (xfree, sals.sals);
12068 default_match = 0;
12069 }
12070 else
12071 {
12072 sals.sals = (struct symtab_and_line *)
12073 xmalloc (sizeof (struct symtab_and_line));
12074 make_cleanup (xfree, sals.sals);
12075 init_sal (&sal); /* Initialize to zeroes. */
12076
12077 /* Set sal's line, symtab, pc, and pspace to the values
12078 corresponding to the last call to print_frame_info. If the
12079 codepoint is not valid, this will set all the fields to 0. */
12080 get_last_displayed_sal (&sal);
12081 if (sal.symtab == 0)
12082 error (_("No source file specified."));
12083
12084 sals.sals[0] = sal;
12085 sals.nelts = 1;
12086
12087 default_match = 1;
12088 }
12089
12090 /* We don't call resolve_sal_pc here. That's not as bad as it
12091 seems, because all existing breakpoints typically have both
12092 file/line and pc set. So, if clear is given file/line, we can
12093 match this to existing breakpoint without obtaining pc at all.
12094
12095 We only support clearing given the address explicitly
12096 present in breakpoint table. Say, we've set breakpoint
12097 at file:line. There were several PC values for that file:line,
12098 due to optimization, all in one block.
12099
12100 We've picked one PC value. If "clear" is issued with another
12101 PC corresponding to the same file:line, the breakpoint won't
12102 be cleared. We probably can still clear the breakpoint, but
12103 since the other PC value is never presented to user, user
12104 can only find it by guessing, and it does not seem important
12105 to support that. */
12106
12107 /* For each line spec given, delete bps which correspond to it. Do
12108 it in two passes, solely to preserve the current behavior that
12109 from_tty is forced true if we delete more than one
12110 breakpoint. */
12111
12112 found = NULL;
12113 make_cleanup (VEC_cleanup (breakpoint_p), &found);
12114 for (i = 0; i < sals.nelts; i++)
12115 {
12116 const char *sal_fullname;
12117
12118 /* If exact pc given, clear bpts at that pc.
12119 If line given (pc == 0), clear all bpts on specified line.
12120 If defaulting, clear all bpts on default line
12121 or at default pc.
12122
12123 defaulting sal.pc != 0 tests to do
12124
12125 0 1 pc
12126 1 1 pc _and_ line
12127 0 0 line
12128 1 0 <can't happen> */
12129
12130 sal = sals.sals[i];
12131 sal_fullname = (sal.symtab == NULL
12132 ? NULL : symtab_to_fullname (sal.symtab));
12133
12134 /* Find all matching breakpoints and add them to 'found'. */
12135 ALL_BREAKPOINTS (b)
12136 {
12137 int match = 0;
12138 /* Are we going to delete b? */
12139 if (b->type != bp_none && !is_watchpoint (b))
12140 {
12141 struct bp_location *loc = b->loc;
12142 for (; loc; loc = loc->next)
12143 {
12144 /* If the user specified file:line, don't allow a PC
12145 match. This matches historical gdb behavior. */
12146 int pc_match = (!sal.explicit_line
12147 && sal.pc
12148 && (loc->pspace == sal.pspace)
12149 && (loc->address == sal.pc)
12150 && (!section_is_overlay (loc->section)
12151 || loc->section == sal.section));
12152 int line_match = 0;
12153
12154 if ((default_match || sal.explicit_line)
12155 && loc->symtab != NULL
12156 && sal_fullname != NULL
12157 && sal.pspace == loc->pspace
12158 && loc->line_number == sal.line
12159 && filename_cmp (symtab_to_fullname (loc->symtab),
12160 sal_fullname) == 0)
12161 line_match = 1;
12162
12163 if (pc_match || line_match)
12164 {
12165 match = 1;
12166 break;
12167 }
12168 }
12169 }
12170
12171 if (match)
12172 VEC_safe_push(breakpoint_p, found, b);
12173 }
12174 }
12175
12176 /* Now go thru the 'found' chain and delete them. */
12177 if (VEC_empty(breakpoint_p, found))
12178 {
12179 if (arg)
12180 error (_("No breakpoint at %s."), arg);
12181 else
12182 error (_("No breakpoint at this line."));
12183 }
12184
12185 /* Remove duplicates from the vec. */
12186 qsort (VEC_address (breakpoint_p, found),
12187 VEC_length (breakpoint_p, found),
12188 sizeof (breakpoint_p),
12189 compare_breakpoints);
12190 prev = VEC_index (breakpoint_p, found, 0);
12191 for (ix = 1; VEC_iterate (breakpoint_p, found, ix, b); ++ix)
12192 {
12193 if (b == prev)
12194 {
12195 VEC_ordered_remove (breakpoint_p, found, ix);
12196 --ix;
12197 }
12198 }
12199
12200 if (VEC_length(breakpoint_p, found) > 1)
12201 from_tty = 1; /* Always report if deleted more than one. */
12202 if (from_tty)
12203 {
12204 if (VEC_length(breakpoint_p, found) == 1)
12205 printf_unfiltered (_("Deleted breakpoint "));
12206 else
12207 printf_unfiltered (_("Deleted breakpoints "));
12208 }
12209
12210 for (ix = 0; VEC_iterate(breakpoint_p, found, ix, b); ix++)
12211 {
12212 if (from_tty)
12213 printf_unfiltered ("%d ", b->number);
12214 delete_breakpoint (b);
12215 }
12216 if (from_tty)
12217 putchar_unfiltered ('\n');
12218
12219 do_cleanups (cleanups);
12220 }
12221 \f
12222 /* Delete breakpoint in BS if they are `delete' breakpoints and
12223 all breakpoints that are marked for deletion, whether hit or not.
12224 This is called after any breakpoint is hit, or after errors. */
12225
12226 void
12227 breakpoint_auto_delete (bpstat bs)
12228 {
12229 struct breakpoint *b, *b_tmp;
12230
12231 for (; bs; bs = bs->next)
12232 if (bs->breakpoint_at
12233 && bs->breakpoint_at->disposition == disp_del
12234 && bs->stop)
12235 delete_breakpoint (bs->breakpoint_at);
12236
12237 ALL_BREAKPOINTS_SAFE (b, b_tmp)
12238 {
12239 if (b->disposition == disp_del_at_next_stop)
12240 delete_breakpoint (b);
12241 }
12242 }
12243
12244 /* A comparison function for bp_location AP and BP being interfaced to
12245 qsort. Sort elements primarily by their ADDRESS (no matter what
12246 does breakpoint_address_is_meaningful say for its OWNER),
12247 secondarily by ordering first bp_permanent OWNERed elements and
12248 terciarily just ensuring the array is sorted stable way despite
12249 qsort being an unstable algorithm. */
12250
12251 static int
12252 bp_location_compare (const void *ap, const void *bp)
12253 {
12254 struct bp_location *a = *(void **) ap;
12255 struct bp_location *b = *(void **) bp;
12256 /* A and B come from existing breakpoints having non-NULL OWNER. */
12257 int a_perm = a->owner->enable_state == bp_permanent;
12258 int b_perm = b->owner->enable_state == bp_permanent;
12259
12260 if (a->address != b->address)
12261 return (a->address > b->address) - (a->address < b->address);
12262
12263 /* Sort locations at the same address by their pspace number, keeping
12264 locations of the same inferior (in a multi-inferior environment)
12265 grouped. */
12266
12267 if (a->pspace->num != b->pspace->num)
12268 return ((a->pspace->num > b->pspace->num)
12269 - (a->pspace->num < b->pspace->num));
12270
12271 /* Sort permanent breakpoints first. */
12272 if (a_perm != b_perm)
12273 return (a_perm < b_perm) - (a_perm > b_perm);
12274
12275 /* Make the internal GDB representation stable across GDB runs
12276 where A and B memory inside GDB can differ. Breakpoint locations of
12277 the same type at the same address can be sorted in arbitrary order. */
12278
12279 if (a->owner->number != b->owner->number)
12280 return ((a->owner->number > b->owner->number)
12281 - (a->owner->number < b->owner->number));
12282
12283 return (a > b) - (a < b);
12284 }
12285
12286 /* Set bp_location_placed_address_before_address_max and
12287 bp_location_shadow_len_after_address_max according to the current
12288 content of the bp_location array. */
12289
12290 static void
12291 bp_location_target_extensions_update (void)
12292 {
12293 struct bp_location *bl, **blp_tmp;
12294
12295 bp_location_placed_address_before_address_max = 0;
12296 bp_location_shadow_len_after_address_max = 0;
12297
12298 ALL_BP_LOCATIONS (bl, blp_tmp)
12299 {
12300 CORE_ADDR start, end, addr;
12301
12302 if (!bp_location_has_shadow (bl))
12303 continue;
12304
12305 start = bl->target_info.placed_address;
12306 end = start + bl->target_info.shadow_len;
12307
12308 gdb_assert (bl->address >= start);
12309 addr = bl->address - start;
12310 if (addr > bp_location_placed_address_before_address_max)
12311 bp_location_placed_address_before_address_max = addr;
12312
12313 /* Zero SHADOW_LEN would not pass bp_location_has_shadow. */
12314
12315 gdb_assert (bl->address < end);
12316 addr = end - bl->address;
12317 if (addr > bp_location_shadow_len_after_address_max)
12318 bp_location_shadow_len_after_address_max = addr;
12319 }
12320 }
12321
12322 /* Download tracepoint locations if they haven't been. */
12323
12324 static void
12325 download_tracepoint_locations (void)
12326 {
12327 struct breakpoint *b;
12328 struct cleanup *old_chain;
12329
12330 if (!target_can_download_tracepoint ())
12331 return;
12332
12333 old_chain = save_current_space_and_thread ();
12334
12335 ALL_TRACEPOINTS (b)
12336 {
12337 struct bp_location *bl;
12338 struct tracepoint *t;
12339 int bp_location_downloaded = 0;
12340
12341 if ((b->type == bp_fast_tracepoint
12342 ? !may_insert_fast_tracepoints
12343 : !may_insert_tracepoints))
12344 continue;
12345
12346 for (bl = b->loc; bl; bl = bl->next)
12347 {
12348 /* In tracepoint, locations are _never_ duplicated, so
12349 should_be_inserted is equivalent to
12350 unduplicated_should_be_inserted. */
12351 if (!should_be_inserted (bl) || bl->inserted)
12352 continue;
12353
12354 switch_to_program_space_and_thread (bl->pspace);
12355
12356 target_download_tracepoint (bl);
12357
12358 bl->inserted = 1;
12359 bp_location_downloaded = 1;
12360 }
12361 t = (struct tracepoint *) b;
12362 t->number_on_target = b->number;
12363 if (bp_location_downloaded)
12364 observer_notify_breakpoint_modified (b);
12365 }
12366
12367 do_cleanups (old_chain);
12368 }
12369
12370 /* Swap the insertion/duplication state between two locations. */
12371
12372 static void
12373 swap_insertion (struct bp_location *left, struct bp_location *right)
12374 {
12375 const int left_inserted = left->inserted;
12376 const int left_duplicate = left->duplicate;
12377 const int left_needs_update = left->needs_update;
12378 const struct bp_target_info left_target_info = left->target_info;
12379
12380 /* Locations of tracepoints can never be duplicated. */
12381 if (is_tracepoint (left->owner))
12382 gdb_assert (!left->duplicate);
12383 if (is_tracepoint (right->owner))
12384 gdb_assert (!right->duplicate);
12385
12386 left->inserted = right->inserted;
12387 left->duplicate = right->duplicate;
12388 left->needs_update = right->needs_update;
12389 left->target_info = right->target_info;
12390 right->inserted = left_inserted;
12391 right->duplicate = left_duplicate;
12392 right->needs_update = left_needs_update;
12393 right->target_info = left_target_info;
12394 }
12395
12396 /* Force the re-insertion of the locations at ADDRESS. This is called
12397 once a new/deleted/modified duplicate location is found and we are evaluating
12398 conditions on the target's side. Such conditions need to be updated on
12399 the target. */
12400
12401 static void
12402 force_breakpoint_reinsertion (struct bp_location *bl)
12403 {
12404 struct bp_location **locp = NULL, **loc2p;
12405 struct bp_location *loc;
12406 CORE_ADDR address = 0;
12407 int pspace_num;
12408
12409 address = bl->address;
12410 pspace_num = bl->pspace->num;
12411
12412 /* This is only meaningful if the target is
12413 evaluating conditions and if the user has
12414 opted for condition evaluation on the target's
12415 side. */
12416 if (gdb_evaluates_breakpoint_condition_p ()
12417 || !target_supports_evaluation_of_breakpoint_conditions ())
12418 return;
12419
12420 /* Flag all breakpoint locations with this address and
12421 the same program space as the location
12422 as "its condition has changed". We need to
12423 update the conditions on the target's side. */
12424 ALL_BP_LOCATIONS_AT_ADDR (loc2p, locp, address)
12425 {
12426 loc = *loc2p;
12427
12428 if (!is_breakpoint (loc->owner)
12429 || pspace_num != loc->pspace->num)
12430 continue;
12431
12432 /* Flag the location appropriately. We use a different state to
12433 let everyone know that we already updated the set of locations
12434 with addr bl->address and program space bl->pspace. This is so
12435 we don't have to keep calling these functions just to mark locations
12436 that have already been marked. */
12437 loc->condition_changed = condition_updated;
12438
12439 /* Free the agent expression bytecode as well. We will compute
12440 it later on. */
12441 if (loc->cond_bytecode)
12442 {
12443 free_agent_expr (loc->cond_bytecode);
12444 loc->cond_bytecode = NULL;
12445 }
12446 }
12447 }
12448
12449 /* If SHOULD_INSERT is false, do not insert any breakpoint locations
12450 into the inferior, only remove already-inserted locations that no
12451 longer should be inserted. Functions that delete a breakpoint or
12452 breakpoints should pass false, so that deleting a breakpoint
12453 doesn't have the side effect of inserting the locations of other
12454 breakpoints that are marked not-inserted, but should_be_inserted
12455 returns true on them.
12456
12457 This behaviour is useful is situations close to tear-down -- e.g.,
12458 after an exec, while the target still has execution, but breakpoint
12459 shadows of the previous executable image should *NOT* be restored
12460 to the new image; or before detaching, where the target still has
12461 execution and wants to delete breakpoints from GDB's lists, and all
12462 breakpoints had already been removed from the inferior. */
12463
12464 static void
12465 update_global_location_list (int should_insert)
12466 {
12467 struct breakpoint *b;
12468 struct bp_location **locp, *loc;
12469 struct cleanup *cleanups;
12470 /* Last breakpoint location address that was marked for update. */
12471 CORE_ADDR last_addr = 0;
12472 /* Last breakpoint location program space that was marked for update. */
12473 int last_pspace_num = -1;
12474
12475 /* Used in the duplicates detection below. When iterating over all
12476 bp_locations, points to the first bp_location of a given address.
12477 Breakpoints and watchpoints of different types are never
12478 duplicates of each other. Keep one pointer for each type of
12479 breakpoint/watchpoint, so we only need to loop over all locations
12480 once. */
12481 struct bp_location *bp_loc_first; /* breakpoint */
12482 struct bp_location *wp_loc_first; /* hardware watchpoint */
12483 struct bp_location *awp_loc_first; /* access watchpoint */
12484 struct bp_location *rwp_loc_first; /* read watchpoint */
12485
12486 /* Saved former bp_location array which we compare against the newly
12487 built bp_location from the current state of ALL_BREAKPOINTS. */
12488 struct bp_location **old_location, **old_locp;
12489 unsigned old_location_count;
12490
12491 old_location = bp_location;
12492 old_location_count = bp_location_count;
12493 bp_location = NULL;
12494 bp_location_count = 0;
12495 cleanups = make_cleanup (xfree, old_location);
12496
12497 ALL_BREAKPOINTS (b)
12498 for (loc = b->loc; loc; loc = loc->next)
12499 bp_location_count++;
12500
12501 bp_location = xmalloc (sizeof (*bp_location) * bp_location_count);
12502 locp = bp_location;
12503 ALL_BREAKPOINTS (b)
12504 for (loc = b->loc; loc; loc = loc->next)
12505 *locp++ = loc;
12506 qsort (bp_location, bp_location_count, sizeof (*bp_location),
12507 bp_location_compare);
12508
12509 bp_location_target_extensions_update ();
12510
12511 /* Identify bp_location instances that are no longer present in the
12512 new list, and therefore should be freed. Note that it's not
12513 necessary that those locations should be removed from inferior --
12514 if there's another location at the same address (previously
12515 marked as duplicate), we don't need to remove/insert the
12516 location.
12517
12518 LOCP is kept in sync with OLD_LOCP, each pointing to the current
12519 and former bp_location array state respectively. */
12520
12521 locp = bp_location;
12522 for (old_locp = old_location; old_locp < old_location + old_location_count;
12523 old_locp++)
12524 {
12525 struct bp_location *old_loc = *old_locp;
12526 struct bp_location **loc2p;
12527
12528 /* Tells if 'old_loc' is found among the new locations. If
12529 not, we have to free it. */
12530 int found_object = 0;
12531 /* Tells if the location should remain inserted in the target. */
12532 int keep_in_target = 0;
12533 int removed = 0;
12534
12535 /* Skip LOCP entries which will definitely never be needed.
12536 Stop either at or being the one matching OLD_LOC. */
12537 while (locp < bp_location + bp_location_count
12538 && (*locp)->address < old_loc->address)
12539 locp++;
12540
12541 for (loc2p = locp;
12542 (loc2p < bp_location + bp_location_count
12543 && (*loc2p)->address == old_loc->address);
12544 loc2p++)
12545 {
12546 /* Check if this is a new/duplicated location or a duplicated
12547 location that had its condition modified. If so, we want to send
12548 its condition to the target if evaluation of conditions is taking
12549 place there. */
12550 if ((*loc2p)->condition_changed == condition_modified
12551 && (last_addr != old_loc->address
12552 || last_pspace_num != old_loc->pspace->num))
12553 {
12554 force_breakpoint_reinsertion (*loc2p);
12555 last_pspace_num = old_loc->pspace->num;
12556 }
12557
12558 if (*loc2p == old_loc)
12559 found_object = 1;
12560 }
12561
12562 /* We have already handled this address, update it so that we don't
12563 have to go through updates again. */
12564 last_addr = old_loc->address;
12565
12566 /* Target-side condition evaluation: Handle deleted locations. */
12567 if (!found_object)
12568 force_breakpoint_reinsertion (old_loc);
12569
12570 /* If this location is no longer present, and inserted, look if
12571 there's maybe a new location at the same address. If so,
12572 mark that one inserted, and don't remove this one. This is
12573 needed so that we don't have a time window where a breakpoint
12574 at certain location is not inserted. */
12575
12576 if (old_loc->inserted)
12577 {
12578 /* If the location is inserted now, we might have to remove
12579 it. */
12580
12581 if (found_object && should_be_inserted (old_loc))
12582 {
12583 /* The location is still present in the location list,
12584 and still should be inserted. Don't do anything. */
12585 keep_in_target = 1;
12586 }
12587 else
12588 {
12589 /* This location still exists, but it won't be kept in the
12590 target since it may have been disabled. We proceed to
12591 remove its target-side condition. */
12592
12593 /* The location is either no longer present, or got
12594 disabled. See if there's another location at the
12595 same address, in which case we don't need to remove
12596 this one from the target. */
12597
12598 /* OLD_LOC comes from existing struct breakpoint. */
12599 if (breakpoint_address_is_meaningful (old_loc->owner))
12600 {
12601 for (loc2p = locp;
12602 (loc2p < bp_location + bp_location_count
12603 && (*loc2p)->address == old_loc->address);
12604 loc2p++)
12605 {
12606 struct bp_location *loc2 = *loc2p;
12607
12608 if (breakpoint_locations_match (loc2, old_loc))
12609 {
12610 /* Read watchpoint locations are switched to
12611 access watchpoints, if the former are not
12612 supported, but the latter are. */
12613 if (is_hardware_watchpoint (old_loc->owner))
12614 {
12615 gdb_assert (is_hardware_watchpoint (loc2->owner));
12616 loc2->watchpoint_type = old_loc->watchpoint_type;
12617 }
12618
12619 /* loc2 is a duplicated location. We need to check
12620 if it should be inserted in case it will be
12621 unduplicated. */
12622 if (loc2 != old_loc
12623 && unduplicated_should_be_inserted (loc2))
12624 {
12625 swap_insertion (old_loc, loc2);
12626 keep_in_target = 1;
12627 break;
12628 }
12629 }
12630 }
12631 }
12632 }
12633
12634 if (!keep_in_target)
12635 {
12636 if (remove_breakpoint (old_loc, mark_uninserted))
12637 {
12638 /* This is just about all we can do. We could keep
12639 this location on the global list, and try to
12640 remove it next time, but there's no particular
12641 reason why we will succeed next time.
12642
12643 Note that at this point, old_loc->owner is still
12644 valid, as delete_breakpoint frees the breakpoint
12645 only after calling us. */
12646 printf_filtered (_("warning: Error removing "
12647 "breakpoint %d\n"),
12648 old_loc->owner->number);
12649 }
12650 removed = 1;
12651 }
12652 }
12653
12654 if (!found_object)
12655 {
12656 if (removed && non_stop
12657 && breakpoint_address_is_meaningful (old_loc->owner)
12658 && !is_hardware_watchpoint (old_loc->owner))
12659 {
12660 /* This location was removed from the target. In
12661 non-stop mode, a race condition is possible where
12662 we've removed a breakpoint, but stop events for that
12663 breakpoint are already queued and will arrive later.
12664 We apply an heuristic to be able to distinguish such
12665 SIGTRAPs from other random SIGTRAPs: we keep this
12666 breakpoint location for a bit, and will retire it
12667 after we see some number of events. The theory here
12668 is that reporting of events should, "on the average",
12669 be fair, so after a while we'll see events from all
12670 threads that have anything of interest, and no longer
12671 need to keep this breakpoint location around. We
12672 don't hold locations forever so to reduce chances of
12673 mistaking a non-breakpoint SIGTRAP for a breakpoint
12674 SIGTRAP.
12675
12676 The heuristic failing can be disastrous on
12677 decr_pc_after_break targets.
12678
12679 On decr_pc_after_break targets, like e.g., x86-linux,
12680 if we fail to recognize a late breakpoint SIGTRAP,
12681 because events_till_retirement has reached 0 too
12682 soon, we'll fail to do the PC adjustment, and report
12683 a random SIGTRAP to the user. When the user resumes
12684 the inferior, it will most likely immediately crash
12685 with SIGILL/SIGBUS/SIGSEGV, or worse, get silently
12686 corrupted, because of being resumed e.g., in the
12687 middle of a multi-byte instruction, or skipped a
12688 one-byte instruction. This was actually seen happen
12689 on native x86-linux, and should be less rare on
12690 targets that do not support new thread events, like
12691 remote, due to the heuristic depending on
12692 thread_count.
12693
12694 Mistaking a random SIGTRAP for a breakpoint trap
12695 causes similar symptoms (PC adjustment applied when
12696 it shouldn't), but then again, playing with SIGTRAPs
12697 behind the debugger's back is asking for trouble.
12698
12699 Since hardware watchpoint traps are always
12700 distinguishable from other traps, so we don't need to
12701 apply keep hardware watchpoint moribund locations
12702 around. We simply always ignore hardware watchpoint
12703 traps we can no longer explain. */
12704
12705 old_loc->events_till_retirement = 3 * (thread_count () + 1);
12706 old_loc->owner = NULL;
12707
12708 VEC_safe_push (bp_location_p, moribund_locations, old_loc);
12709 }
12710 else
12711 {
12712 old_loc->owner = NULL;
12713 decref_bp_location (&old_loc);
12714 }
12715 }
12716 }
12717
12718 /* Rescan breakpoints at the same address and section, marking the
12719 first one as "first" and any others as "duplicates". This is so
12720 that the bpt instruction is only inserted once. If we have a
12721 permanent breakpoint at the same place as BPT, make that one the
12722 official one, and the rest as duplicates. Permanent breakpoints
12723 are sorted first for the same address.
12724
12725 Do the same for hardware watchpoints, but also considering the
12726 watchpoint's type (regular/access/read) and length. */
12727
12728 bp_loc_first = NULL;
12729 wp_loc_first = NULL;
12730 awp_loc_first = NULL;
12731 rwp_loc_first = NULL;
12732 ALL_BP_LOCATIONS (loc, locp)
12733 {
12734 /* ALL_BP_LOCATIONS bp_location has LOC->OWNER always
12735 non-NULL. */
12736 struct bp_location **loc_first_p;
12737 b = loc->owner;
12738
12739 if (!unduplicated_should_be_inserted (loc)
12740 || !breakpoint_address_is_meaningful (b)
12741 /* Don't detect duplicate for tracepoint locations because they are
12742 never duplicated. See the comments in field `duplicate' of
12743 `struct bp_location'. */
12744 || is_tracepoint (b))
12745 {
12746 /* Clear the condition modification flag. */
12747 loc->condition_changed = condition_unchanged;
12748 continue;
12749 }
12750
12751 /* Permanent breakpoint should always be inserted. */
12752 if (b->enable_state == bp_permanent && ! loc->inserted)
12753 internal_error (__FILE__, __LINE__,
12754 _("allegedly permanent breakpoint is not "
12755 "actually inserted"));
12756
12757 if (b->type == bp_hardware_watchpoint)
12758 loc_first_p = &wp_loc_first;
12759 else if (b->type == bp_read_watchpoint)
12760 loc_first_p = &rwp_loc_first;
12761 else if (b->type == bp_access_watchpoint)
12762 loc_first_p = &awp_loc_first;
12763 else
12764 loc_first_p = &bp_loc_first;
12765
12766 if (*loc_first_p == NULL
12767 || (overlay_debugging && loc->section != (*loc_first_p)->section)
12768 || !breakpoint_locations_match (loc, *loc_first_p))
12769 {
12770 *loc_first_p = loc;
12771 loc->duplicate = 0;
12772
12773 if (is_breakpoint (loc->owner) && loc->condition_changed)
12774 {
12775 loc->needs_update = 1;
12776 /* Clear the condition modification flag. */
12777 loc->condition_changed = condition_unchanged;
12778 }
12779 continue;
12780 }
12781
12782
12783 /* This and the above ensure the invariant that the first location
12784 is not duplicated, and is the inserted one.
12785 All following are marked as duplicated, and are not inserted. */
12786 if (loc->inserted)
12787 swap_insertion (loc, *loc_first_p);
12788 loc->duplicate = 1;
12789
12790 /* Clear the condition modification flag. */
12791 loc->condition_changed = condition_unchanged;
12792
12793 if ((*loc_first_p)->owner->enable_state == bp_permanent && loc->inserted
12794 && b->enable_state != bp_permanent)
12795 internal_error (__FILE__, __LINE__,
12796 _("another breakpoint was inserted on top of "
12797 "a permanent breakpoint"));
12798 }
12799
12800 if (breakpoints_always_inserted_mode ()
12801 && (have_live_inferiors ()
12802 || (gdbarch_has_global_breakpoints (target_gdbarch ()))))
12803 {
12804 if (should_insert)
12805 insert_breakpoint_locations ();
12806 else
12807 {
12808 /* Though should_insert is false, we may need to update conditions
12809 on the target's side if it is evaluating such conditions. We
12810 only update conditions for locations that are marked
12811 "needs_update". */
12812 update_inserted_breakpoint_locations ();
12813 }
12814 }
12815
12816 if (should_insert)
12817 download_tracepoint_locations ();
12818
12819 do_cleanups (cleanups);
12820 }
12821
12822 void
12823 breakpoint_retire_moribund (void)
12824 {
12825 struct bp_location *loc;
12826 int ix;
12827
12828 for (ix = 0; VEC_iterate (bp_location_p, moribund_locations, ix, loc); ++ix)
12829 if (--(loc->events_till_retirement) == 0)
12830 {
12831 decref_bp_location (&loc);
12832 VEC_unordered_remove (bp_location_p, moribund_locations, ix);
12833 --ix;
12834 }
12835 }
12836
12837 static void
12838 update_global_location_list_nothrow (int inserting)
12839 {
12840 volatile struct gdb_exception e;
12841
12842 TRY_CATCH (e, RETURN_MASK_ERROR)
12843 update_global_location_list (inserting);
12844 }
12845
12846 /* Clear BKP from a BPS. */
12847
12848 static void
12849 bpstat_remove_bp_location (bpstat bps, struct breakpoint *bpt)
12850 {
12851 bpstat bs;
12852
12853 for (bs = bps; bs; bs = bs->next)
12854 if (bs->breakpoint_at == bpt)
12855 {
12856 bs->breakpoint_at = NULL;
12857 bs->old_val = NULL;
12858 /* bs->commands will be freed later. */
12859 }
12860 }
12861
12862 /* Callback for iterate_over_threads. */
12863 static int
12864 bpstat_remove_breakpoint_callback (struct thread_info *th, void *data)
12865 {
12866 struct breakpoint *bpt = data;
12867
12868 bpstat_remove_bp_location (th->control.stop_bpstat, bpt);
12869 return 0;
12870 }
12871
12872 /* Helper for breakpoint and tracepoint breakpoint_ops->mention
12873 callbacks. */
12874
12875 static void
12876 say_where (struct breakpoint *b)
12877 {
12878 struct value_print_options opts;
12879
12880 get_user_print_options (&opts);
12881
12882 /* i18n: cagney/2005-02-11: Below needs to be merged into a
12883 single string. */
12884 if (b->loc == NULL)
12885 {
12886 printf_filtered (_(" (%s) pending."), b->addr_string);
12887 }
12888 else
12889 {
12890 if (opts.addressprint || b->loc->symtab == NULL)
12891 {
12892 printf_filtered (" at ");
12893 fputs_filtered (paddress (b->loc->gdbarch, b->loc->address),
12894 gdb_stdout);
12895 }
12896 if (b->loc->symtab != NULL)
12897 {
12898 /* If there is a single location, we can print the location
12899 more nicely. */
12900 if (b->loc->next == NULL)
12901 printf_filtered (": file %s, line %d.",
12902 symtab_to_filename_for_display (b->loc->symtab),
12903 b->loc->line_number);
12904 else
12905 /* This is not ideal, but each location may have a
12906 different file name, and this at least reflects the
12907 real situation somewhat. */
12908 printf_filtered (": %s.", b->addr_string);
12909 }
12910
12911 if (b->loc->next)
12912 {
12913 struct bp_location *loc = b->loc;
12914 int n = 0;
12915 for (; loc; loc = loc->next)
12916 ++n;
12917 printf_filtered (" (%d locations)", n);
12918 }
12919 }
12920 }
12921
12922 /* Default bp_location_ops methods. */
12923
12924 static void
12925 bp_location_dtor (struct bp_location *self)
12926 {
12927 xfree (self->cond);
12928 if (self->cond_bytecode)
12929 free_agent_expr (self->cond_bytecode);
12930 xfree (self->function_name);
12931
12932 VEC_free (agent_expr_p, self->target_info.conditions);
12933 VEC_free (agent_expr_p, self->target_info.tcommands);
12934 }
12935
12936 static const struct bp_location_ops bp_location_ops =
12937 {
12938 bp_location_dtor
12939 };
12940
12941 /* Default breakpoint_ops methods all breakpoint_ops ultimately
12942 inherit from. */
12943
12944 static void
12945 base_breakpoint_dtor (struct breakpoint *self)
12946 {
12947 decref_counted_command_line (&self->commands);
12948 xfree (self->cond_string);
12949 xfree (self->extra_string);
12950 xfree (self->addr_string);
12951 xfree (self->filter);
12952 xfree (self->addr_string_range_end);
12953 }
12954
12955 static struct bp_location *
12956 base_breakpoint_allocate_location (struct breakpoint *self)
12957 {
12958 struct bp_location *loc;
12959
12960 loc = XNEW (struct bp_location);
12961 init_bp_location (loc, &bp_location_ops, self);
12962 return loc;
12963 }
12964
12965 static void
12966 base_breakpoint_re_set (struct breakpoint *b)
12967 {
12968 /* Nothing to re-set. */
12969 }
12970
12971 #define internal_error_pure_virtual_called() \
12972 gdb_assert_not_reached ("pure virtual function called")
12973
12974 static int
12975 base_breakpoint_insert_location (struct bp_location *bl)
12976 {
12977 internal_error_pure_virtual_called ();
12978 }
12979
12980 static int
12981 base_breakpoint_remove_location (struct bp_location *bl)
12982 {
12983 internal_error_pure_virtual_called ();
12984 }
12985
12986 static int
12987 base_breakpoint_breakpoint_hit (const struct bp_location *bl,
12988 struct address_space *aspace,
12989 CORE_ADDR bp_addr,
12990 const struct target_waitstatus *ws)
12991 {
12992 internal_error_pure_virtual_called ();
12993 }
12994
12995 static void
12996 base_breakpoint_check_status (bpstat bs)
12997 {
12998 /* Always stop. */
12999 }
13000
13001 /* A "works_in_software_mode" breakpoint_ops method that just internal
13002 errors. */
13003
13004 static int
13005 base_breakpoint_works_in_software_mode (const struct breakpoint *b)
13006 {
13007 internal_error_pure_virtual_called ();
13008 }
13009
13010 /* A "resources_needed" breakpoint_ops method that just internal
13011 errors. */
13012
13013 static int
13014 base_breakpoint_resources_needed (const struct bp_location *bl)
13015 {
13016 internal_error_pure_virtual_called ();
13017 }
13018
13019 static enum print_stop_action
13020 base_breakpoint_print_it (bpstat bs)
13021 {
13022 internal_error_pure_virtual_called ();
13023 }
13024
13025 static void
13026 base_breakpoint_print_one_detail (const struct breakpoint *self,
13027 struct ui_out *uiout)
13028 {
13029 /* nothing */
13030 }
13031
13032 static void
13033 base_breakpoint_print_mention (struct breakpoint *b)
13034 {
13035 internal_error_pure_virtual_called ();
13036 }
13037
13038 static void
13039 base_breakpoint_print_recreate (struct breakpoint *b, struct ui_file *fp)
13040 {
13041 internal_error_pure_virtual_called ();
13042 }
13043
13044 static void
13045 base_breakpoint_create_sals_from_address (char **arg,
13046 struct linespec_result *canonical,
13047 enum bptype type_wanted,
13048 char *addr_start,
13049 char **copy_arg)
13050 {
13051 internal_error_pure_virtual_called ();
13052 }
13053
13054 static void
13055 base_breakpoint_create_breakpoints_sal (struct gdbarch *gdbarch,
13056 struct linespec_result *c,
13057 char *cond_string,
13058 char *extra_string,
13059 enum bptype type_wanted,
13060 enum bpdisp disposition,
13061 int thread,
13062 int task, int ignore_count,
13063 const struct breakpoint_ops *o,
13064 int from_tty, int enabled,
13065 int internal, unsigned flags)
13066 {
13067 internal_error_pure_virtual_called ();
13068 }
13069
13070 static void
13071 base_breakpoint_decode_linespec (struct breakpoint *b, char **s,
13072 struct symtabs_and_lines *sals)
13073 {
13074 internal_error_pure_virtual_called ();
13075 }
13076
13077 /* The default 'explains_signal' method. */
13078
13079 static int
13080 base_breakpoint_explains_signal (struct breakpoint *b, enum gdb_signal sig)
13081 {
13082 return 1;
13083 }
13084
13085 /* The default "after_condition_true" method. */
13086
13087 static void
13088 base_breakpoint_after_condition_true (struct bpstats *bs)
13089 {
13090 /* Nothing to do. */
13091 }
13092
13093 struct breakpoint_ops base_breakpoint_ops =
13094 {
13095 base_breakpoint_dtor,
13096 base_breakpoint_allocate_location,
13097 base_breakpoint_re_set,
13098 base_breakpoint_insert_location,
13099 base_breakpoint_remove_location,
13100 base_breakpoint_breakpoint_hit,
13101 base_breakpoint_check_status,
13102 base_breakpoint_resources_needed,
13103 base_breakpoint_works_in_software_mode,
13104 base_breakpoint_print_it,
13105 NULL,
13106 base_breakpoint_print_one_detail,
13107 base_breakpoint_print_mention,
13108 base_breakpoint_print_recreate,
13109 base_breakpoint_create_sals_from_address,
13110 base_breakpoint_create_breakpoints_sal,
13111 base_breakpoint_decode_linespec,
13112 base_breakpoint_explains_signal,
13113 base_breakpoint_after_condition_true,
13114 };
13115
13116 /* Default breakpoint_ops methods. */
13117
13118 static void
13119 bkpt_re_set (struct breakpoint *b)
13120 {
13121 /* FIXME: is this still reachable? */
13122 if (b->addr_string == NULL)
13123 {
13124 /* Anything without a string can't be re-set. */
13125 delete_breakpoint (b);
13126 return;
13127 }
13128
13129 breakpoint_re_set_default (b);
13130 }
13131
13132 /* Copy SRC's shadow buffer and whatever else we'd set if we actually
13133 inserted DEST, so we can remove it later, in case SRC is removed
13134 first. */
13135
13136 static void
13137 bp_target_info_copy_insertion_state (struct bp_target_info *dest,
13138 const struct bp_target_info *src)
13139 {
13140 dest->shadow_len = src->shadow_len;
13141 memcpy (dest->shadow_contents, src->shadow_contents, src->shadow_len);
13142 dest->placed_size = src->placed_size;
13143 }
13144
13145 static int
13146 bkpt_insert_location (struct bp_location *bl)
13147 {
13148 if (bl->loc_type == bp_loc_hardware_breakpoint)
13149 return target_insert_hw_breakpoint (bl->gdbarch,
13150 &bl->target_info);
13151 else
13152 {
13153 struct bp_target_info *bp_tgt = &bl->target_info;
13154 int ret;
13155 int sss_slot;
13156
13157 /* There is no need to insert a breakpoint if an unconditional
13158 raw/sss breakpoint is already inserted at that location. */
13159 sss_slot = find_single_step_breakpoint (bp_tgt->placed_address_space,
13160 bp_tgt->placed_address);
13161 if (sss_slot >= 0)
13162 {
13163 struct bp_target_info *sss_bp_tgt = single_step_breakpoints[sss_slot];
13164
13165 bp_target_info_copy_insertion_state (bp_tgt, sss_bp_tgt);
13166 return 0;
13167 }
13168
13169 return target_insert_breakpoint (bl->gdbarch, bp_tgt);
13170 }
13171 }
13172
13173 static int
13174 bkpt_remove_location (struct bp_location *bl)
13175 {
13176 if (bl->loc_type == bp_loc_hardware_breakpoint)
13177 return target_remove_hw_breakpoint (bl->gdbarch, &bl->target_info);
13178 else
13179 {
13180 struct bp_target_info *bp_tgt = &bl->target_info;
13181 struct address_space *aspace = bp_tgt->placed_address_space;
13182 CORE_ADDR address = bp_tgt->placed_address;
13183
13184 /* Only remove the breakpoint if there is no raw/sss breakpoint
13185 still inserted at this location. Otherwise, we would be
13186 effectively disabling the raw/sss breakpoint. */
13187 if (single_step_breakpoint_inserted_here_p (aspace, address))
13188 return 0;
13189
13190 return target_remove_breakpoint (bl->gdbarch, bp_tgt);
13191 }
13192 }
13193
13194 static int
13195 bkpt_breakpoint_hit (const struct bp_location *bl,
13196 struct address_space *aspace, CORE_ADDR bp_addr,
13197 const struct target_waitstatus *ws)
13198 {
13199 if (ws->kind != TARGET_WAITKIND_STOPPED
13200 || ws->value.sig != GDB_SIGNAL_TRAP)
13201 return 0;
13202
13203 if (!breakpoint_address_match (bl->pspace->aspace, bl->address,
13204 aspace, bp_addr))
13205 return 0;
13206
13207 if (overlay_debugging /* unmapped overlay section */
13208 && section_is_overlay (bl->section)
13209 && !section_is_mapped (bl->section))
13210 return 0;
13211
13212 return 1;
13213 }
13214
13215 static int
13216 dprintf_breakpoint_hit (const struct bp_location *bl,
13217 struct address_space *aspace, CORE_ADDR bp_addr,
13218 const struct target_waitstatus *ws)
13219 {
13220 if (dprintf_style == dprintf_style_agent
13221 && target_can_run_breakpoint_commands ())
13222 {
13223 /* An agent-style dprintf never causes a stop. If we see a trap
13224 for this address it must be for a breakpoint that happens to
13225 be set at the same address. */
13226 return 0;
13227 }
13228
13229 return bkpt_breakpoint_hit (bl, aspace, bp_addr, ws);
13230 }
13231
13232 static int
13233 bkpt_resources_needed (const struct bp_location *bl)
13234 {
13235 gdb_assert (bl->owner->type == bp_hardware_breakpoint);
13236
13237 return 1;
13238 }
13239
13240 static enum print_stop_action
13241 bkpt_print_it (bpstat bs)
13242 {
13243 struct breakpoint *b;
13244 const struct bp_location *bl;
13245 int bp_temp;
13246 struct ui_out *uiout = current_uiout;
13247
13248 gdb_assert (bs->bp_location_at != NULL);
13249
13250 bl = bs->bp_location_at;
13251 b = bs->breakpoint_at;
13252
13253 bp_temp = b->disposition == disp_del;
13254 if (bl->address != bl->requested_address)
13255 breakpoint_adjustment_warning (bl->requested_address,
13256 bl->address,
13257 b->number, 1);
13258 annotate_breakpoint (b->number);
13259 if (bp_temp)
13260 ui_out_text (uiout, "\nTemporary breakpoint ");
13261 else
13262 ui_out_text (uiout, "\nBreakpoint ");
13263 if (ui_out_is_mi_like_p (uiout))
13264 {
13265 ui_out_field_string (uiout, "reason",
13266 async_reason_lookup (EXEC_ASYNC_BREAKPOINT_HIT));
13267 ui_out_field_string (uiout, "disp", bpdisp_text (b->disposition));
13268 }
13269 ui_out_field_int (uiout, "bkptno", b->number);
13270 ui_out_text (uiout, ", ");
13271
13272 return PRINT_SRC_AND_LOC;
13273 }
13274
13275 static void
13276 bkpt_print_mention (struct breakpoint *b)
13277 {
13278 if (ui_out_is_mi_like_p (current_uiout))
13279 return;
13280
13281 switch (b->type)
13282 {
13283 case bp_breakpoint:
13284 case bp_gnu_ifunc_resolver:
13285 if (b->disposition == disp_del)
13286 printf_filtered (_("Temporary breakpoint"));
13287 else
13288 printf_filtered (_("Breakpoint"));
13289 printf_filtered (_(" %d"), b->number);
13290 if (b->type == bp_gnu_ifunc_resolver)
13291 printf_filtered (_(" at gnu-indirect-function resolver"));
13292 break;
13293 case bp_hardware_breakpoint:
13294 printf_filtered (_("Hardware assisted breakpoint %d"), b->number);
13295 break;
13296 case bp_dprintf:
13297 printf_filtered (_("Dprintf %d"), b->number);
13298 break;
13299 }
13300
13301 say_where (b);
13302 }
13303
13304 static void
13305 bkpt_print_recreate (struct breakpoint *tp, struct ui_file *fp)
13306 {
13307 if (tp->type == bp_breakpoint && tp->disposition == disp_del)
13308 fprintf_unfiltered (fp, "tbreak");
13309 else if (tp->type == bp_breakpoint)
13310 fprintf_unfiltered (fp, "break");
13311 else if (tp->type == bp_hardware_breakpoint
13312 && tp->disposition == disp_del)
13313 fprintf_unfiltered (fp, "thbreak");
13314 else if (tp->type == bp_hardware_breakpoint)
13315 fprintf_unfiltered (fp, "hbreak");
13316 else
13317 internal_error (__FILE__, __LINE__,
13318 _("unhandled breakpoint type %d"), (int) tp->type);
13319
13320 fprintf_unfiltered (fp, " %s", tp->addr_string);
13321 print_recreate_thread (tp, fp);
13322 }
13323
13324 static void
13325 bkpt_create_sals_from_address (char **arg,
13326 struct linespec_result *canonical,
13327 enum bptype type_wanted,
13328 char *addr_start, char **copy_arg)
13329 {
13330 create_sals_from_address_default (arg, canonical, type_wanted,
13331 addr_start, copy_arg);
13332 }
13333
13334 static void
13335 bkpt_create_breakpoints_sal (struct gdbarch *gdbarch,
13336 struct linespec_result *canonical,
13337 char *cond_string,
13338 char *extra_string,
13339 enum bptype type_wanted,
13340 enum bpdisp disposition,
13341 int thread,
13342 int task, int ignore_count,
13343 const struct breakpoint_ops *ops,
13344 int from_tty, int enabled,
13345 int internal, unsigned flags)
13346 {
13347 create_breakpoints_sal_default (gdbarch, canonical,
13348 cond_string, extra_string,
13349 type_wanted,
13350 disposition, thread, task,
13351 ignore_count, ops, from_tty,
13352 enabled, internal, flags);
13353 }
13354
13355 static void
13356 bkpt_decode_linespec (struct breakpoint *b, char **s,
13357 struct symtabs_and_lines *sals)
13358 {
13359 decode_linespec_default (b, s, sals);
13360 }
13361
13362 /* Virtual table for internal breakpoints. */
13363
13364 static void
13365 internal_bkpt_re_set (struct breakpoint *b)
13366 {
13367 switch (b->type)
13368 {
13369 /* Delete overlay event and longjmp master breakpoints; they
13370 will be reset later by breakpoint_re_set. */
13371 case bp_overlay_event:
13372 case bp_longjmp_master:
13373 case bp_std_terminate_master:
13374 case bp_exception_master:
13375 delete_breakpoint (b);
13376 break;
13377
13378 /* This breakpoint is special, it's set up when the inferior
13379 starts and we really don't want to touch it. */
13380 case bp_shlib_event:
13381
13382 /* Like bp_shlib_event, this breakpoint type is special. Once
13383 it is set up, we do not want to touch it. */
13384 case bp_thread_event:
13385 break;
13386 }
13387 }
13388
13389 static void
13390 internal_bkpt_check_status (bpstat bs)
13391 {
13392 if (bs->breakpoint_at->type == bp_shlib_event)
13393 {
13394 /* If requested, stop when the dynamic linker notifies GDB of
13395 events. This allows the user to get control and place
13396 breakpoints in initializer routines for dynamically loaded
13397 objects (among other things). */
13398 bs->stop = stop_on_solib_events;
13399 bs->print = stop_on_solib_events;
13400 }
13401 else
13402 bs->stop = 0;
13403 }
13404
13405 static enum print_stop_action
13406 internal_bkpt_print_it (bpstat bs)
13407 {
13408 struct breakpoint *b;
13409
13410 b = bs->breakpoint_at;
13411
13412 switch (b->type)
13413 {
13414 case bp_shlib_event:
13415 /* Did we stop because the user set the stop_on_solib_events
13416 variable? (If so, we report this as a generic, "Stopped due
13417 to shlib event" message.) */
13418 print_solib_event (0);
13419 break;
13420
13421 case bp_thread_event:
13422 /* Not sure how we will get here.
13423 GDB should not stop for these breakpoints. */
13424 printf_filtered (_("Thread Event Breakpoint: gdb should not stop!\n"));
13425 break;
13426
13427 case bp_overlay_event:
13428 /* By analogy with the thread event, GDB should not stop for these. */
13429 printf_filtered (_("Overlay Event Breakpoint: gdb should not stop!\n"));
13430 break;
13431
13432 case bp_longjmp_master:
13433 /* These should never be enabled. */
13434 printf_filtered (_("Longjmp Master Breakpoint: gdb should not stop!\n"));
13435 break;
13436
13437 case bp_std_terminate_master:
13438 /* These should never be enabled. */
13439 printf_filtered (_("std::terminate Master Breakpoint: "
13440 "gdb should not stop!\n"));
13441 break;
13442
13443 case bp_exception_master:
13444 /* These should never be enabled. */
13445 printf_filtered (_("Exception Master Breakpoint: "
13446 "gdb should not stop!\n"));
13447 break;
13448 }
13449
13450 return PRINT_NOTHING;
13451 }
13452
13453 static void
13454 internal_bkpt_print_mention (struct breakpoint *b)
13455 {
13456 /* Nothing to mention. These breakpoints are internal. */
13457 }
13458
13459 /* Virtual table for momentary breakpoints */
13460
13461 static void
13462 momentary_bkpt_re_set (struct breakpoint *b)
13463 {
13464 /* Keep temporary breakpoints, which can be encountered when we step
13465 over a dlopen call and solib_add is resetting the breakpoints.
13466 Otherwise these should have been blown away via the cleanup chain
13467 or by breakpoint_init_inferior when we rerun the executable. */
13468 }
13469
13470 static void
13471 momentary_bkpt_check_status (bpstat bs)
13472 {
13473 /* Nothing. The point of these breakpoints is causing a stop. */
13474 }
13475
13476 static enum print_stop_action
13477 momentary_bkpt_print_it (bpstat bs)
13478 {
13479 struct ui_out *uiout = current_uiout;
13480
13481 if (ui_out_is_mi_like_p (uiout))
13482 {
13483 struct breakpoint *b = bs->breakpoint_at;
13484
13485 switch (b->type)
13486 {
13487 case bp_finish:
13488 ui_out_field_string
13489 (uiout, "reason",
13490 async_reason_lookup (EXEC_ASYNC_FUNCTION_FINISHED));
13491 break;
13492
13493 case bp_until:
13494 ui_out_field_string
13495 (uiout, "reason",
13496 async_reason_lookup (EXEC_ASYNC_LOCATION_REACHED));
13497 break;
13498 }
13499 }
13500
13501 return PRINT_UNKNOWN;
13502 }
13503
13504 static void
13505 momentary_bkpt_print_mention (struct breakpoint *b)
13506 {
13507 /* Nothing to mention. These breakpoints are internal. */
13508 }
13509
13510 /* Ensure INITIATING_FRAME is cleared when no such breakpoint exists.
13511
13512 It gets cleared already on the removal of the first one of such placed
13513 breakpoints. This is OK as they get all removed altogether. */
13514
13515 static void
13516 longjmp_bkpt_dtor (struct breakpoint *self)
13517 {
13518 struct thread_info *tp = find_thread_id (self->thread);
13519
13520 if (tp)
13521 tp->initiating_frame = null_frame_id;
13522
13523 momentary_breakpoint_ops.dtor (self);
13524 }
13525
13526 /* Specific methods for probe breakpoints. */
13527
13528 static int
13529 bkpt_probe_insert_location (struct bp_location *bl)
13530 {
13531 int v = bkpt_insert_location (bl);
13532
13533 if (v == 0)
13534 {
13535 /* The insertion was successful, now let's set the probe's semaphore
13536 if needed. */
13537 bl->probe.probe->pops->set_semaphore (bl->probe.probe,
13538 bl->probe.objfile,
13539 bl->gdbarch);
13540 }
13541
13542 return v;
13543 }
13544
13545 static int
13546 bkpt_probe_remove_location (struct bp_location *bl)
13547 {
13548 /* Let's clear the semaphore before removing the location. */
13549 bl->probe.probe->pops->clear_semaphore (bl->probe.probe,
13550 bl->probe.objfile,
13551 bl->gdbarch);
13552
13553 return bkpt_remove_location (bl);
13554 }
13555
13556 static void
13557 bkpt_probe_create_sals_from_address (char **arg,
13558 struct linespec_result *canonical,
13559 enum bptype type_wanted,
13560 char *addr_start, char **copy_arg)
13561 {
13562 struct linespec_sals lsal;
13563
13564 lsal.sals = parse_probes (arg, canonical);
13565
13566 *copy_arg = xstrdup (canonical->addr_string);
13567 lsal.canonical = xstrdup (*copy_arg);
13568
13569 VEC_safe_push (linespec_sals, canonical->sals, &lsal);
13570 }
13571
13572 static void
13573 bkpt_probe_decode_linespec (struct breakpoint *b, char **s,
13574 struct symtabs_and_lines *sals)
13575 {
13576 *sals = parse_probes (s, NULL);
13577 if (!sals->sals)
13578 error (_("probe not found"));
13579 }
13580
13581 /* The breakpoint_ops structure to be used in tracepoints. */
13582
13583 static void
13584 tracepoint_re_set (struct breakpoint *b)
13585 {
13586 breakpoint_re_set_default (b);
13587 }
13588
13589 static int
13590 tracepoint_breakpoint_hit (const struct bp_location *bl,
13591 struct address_space *aspace, CORE_ADDR bp_addr,
13592 const struct target_waitstatus *ws)
13593 {
13594 /* By definition, the inferior does not report stops at
13595 tracepoints. */
13596 return 0;
13597 }
13598
13599 static void
13600 tracepoint_print_one_detail (const struct breakpoint *self,
13601 struct ui_out *uiout)
13602 {
13603 struct tracepoint *tp = (struct tracepoint *) self;
13604 if (tp->static_trace_marker_id)
13605 {
13606 gdb_assert (self->type == bp_static_tracepoint);
13607
13608 ui_out_text (uiout, "\tmarker id is ");
13609 ui_out_field_string (uiout, "static-tracepoint-marker-string-id",
13610 tp->static_trace_marker_id);
13611 ui_out_text (uiout, "\n");
13612 }
13613 }
13614
13615 static void
13616 tracepoint_print_mention (struct breakpoint *b)
13617 {
13618 if (ui_out_is_mi_like_p (current_uiout))
13619 return;
13620
13621 switch (b->type)
13622 {
13623 case bp_tracepoint:
13624 printf_filtered (_("Tracepoint"));
13625 printf_filtered (_(" %d"), b->number);
13626 break;
13627 case bp_fast_tracepoint:
13628 printf_filtered (_("Fast tracepoint"));
13629 printf_filtered (_(" %d"), b->number);
13630 break;
13631 case bp_static_tracepoint:
13632 printf_filtered (_("Static tracepoint"));
13633 printf_filtered (_(" %d"), b->number);
13634 break;
13635 default:
13636 internal_error (__FILE__, __LINE__,
13637 _("unhandled tracepoint type %d"), (int) b->type);
13638 }
13639
13640 say_where (b);
13641 }
13642
13643 static void
13644 tracepoint_print_recreate (struct breakpoint *self, struct ui_file *fp)
13645 {
13646 struct tracepoint *tp = (struct tracepoint *) self;
13647
13648 if (self->type == bp_fast_tracepoint)
13649 fprintf_unfiltered (fp, "ftrace");
13650 if (self->type == bp_static_tracepoint)
13651 fprintf_unfiltered (fp, "strace");
13652 else if (self->type == bp_tracepoint)
13653 fprintf_unfiltered (fp, "trace");
13654 else
13655 internal_error (__FILE__, __LINE__,
13656 _("unhandled tracepoint type %d"), (int) self->type);
13657
13658 fprintf_unfiltered (fp, " %s", self->addr_string);
13659 print_recreate_thread (self, fp);
13660
13661 if (tp->pass_count)
13662 fprintf_unfiltered (fp, " passcount %d\n", tp->pass_count);
13663 }
13664
13665 static void
13666 tracepoint_create_sals_from_address (char **arg,
13667 struct linespec_result *canonical,
13668 enum bptype type_wanted,
13669 char *addr_start, char **copy_arg)
13670 {
13671 create_sals_from_address_default (arg, canonical, type_wanted,
13672 addr_start, copy_arg);
13673 }
13674
13675 static void
13676 tracepoint_create_breakpoints_sal (struct gdbarch *gdbarch,
13677 struct linespec_result *canonical,
13678 char *cond_string,
13679 char *extra_string,
13680 enum bptype type_wanted,
13681 enum bpdisp disposition,
13682 int thread,
13683 int task, int ignore_count,
13684 const struct breakpoint_ops *ops,
13685 int from_tty, int enabled,
13686 int internal, unsigned flags)
13687 {
13688 create_breakpoints_sal_default (gdbarch, canonical,
13689 cond_string, extra_string,
13690 type_wanted,
13691 disposition, thread, task,
13692 ignore_count, ops, from_tty,
13693 enabled, internal, flags);
13694 }
13695
13696 static void
13697 tracepoint_decode_linespec (struct breakpoint *b, char **s,
13698 struct symtabs_and_lines *sals)
13699 {
13700 decode_linespec_default (b, s, sals);
13701 }
13702
13703 struct breakpoint_ops tracepoint_breakpoint_ops;
13704
13705 /* The breakpoint_ops structure to be use on tracepoints placed in a
13706 static probe. */
13707
13708 static void
13709 tracepoint_probe_create_sals_from_address (char **arg,
13710 struct linespec_result *canonical,
13711 enum bptype type_wanted,
13712 char *addr_start, char **copy_arg)
13713 {
13714 /* We use the same method for breakpoint on probes. */
13715 bkpt_probe_create_sals_from_address (arg, canonical, type_wanted,
13716 addr_start, copy_arg);
13717 }
13718
13719 static void
13720 tracepoint_probe_decode_linespec (struct breakpoint *b, char **s,
13721 struct symtabs_and_lines *sals)
13722 {
13723 /* We use the same method for breakpoint on probes. */
13724 bkpt_probe_decode_linespec (b, s, sals);
13725 }
13726
13727 static struct breakpoint_ops tracepoint_probe_breakpoint_ops;
13728
13729 /* Dprintf breakpoint_ops methods. */
13730
13731 static void
13732 dprintf_re_set (struct breakpoint *b)
13733 {
13734 breakpoint_re_set_default (b);
13735
13736 /* This breakpoint could have been pending, and be resolved now, and
13737 if so, we should now have the extra string. If we don't, the
13738 dprintf was malformed when created, but we couldn't tell because
13739 we can't extract the extra string until the location is
13740 resolved. */
13741 if (b->loc != NULL && b->extra_string == NULL)
13742 error (_("Format string required"));
13743
13744 /* 1 - connect to target 1, that can run breakpoint commands.
13745 2 - create a dprintf, which resolves fine.
13746 3 - disconnect from target 1
13747 4 - connect to target 2, that can NOT run breakpoint commands.
13748
13749 After steps #3/#4, you'll want the dprintf command list to
13750 be updated, because target 1 and 2 may well return different
13751 answers for target_can_run_breakpoint_commands().
13752 Given absence of finer grained resetting, we get to do
13753 it all the time. */
13754 if (b->extra_string != NULL)
13755 update_dprintf_command_list (b);
13756 }
13757
13758 /* Implement the "print_recreate" breakpoint_ops method for dprintf. */
13759
13760 static void
13761 dprintf_print_recreate (struct breakpoint *tp, struct ui_file *fp)
13762 {
13763 fprintf_unfiltered (fp, "dprintf %s%s", tp->addr_string,
13764 tp->extra_string);
13765 print_recreate_thread (tp, fp);
13766 }
13767
13768 /* Implement the "after_condition_true" breakpoint_ops method for
13769 dprintf.
13770
13771 dprintf's are implemented with regular commands in their command
13772 list, but we run the commands here instead of before presenting the
13773 stop to the user, as dprintf's don't actually cause a stop. This
13774 also makes it so that the commands of multiple dprintfs at the same
13775 address are all handled. */
13776
13777 static void
13778 dprintf_after_condition_true (struct bpstats *bs)
13779 {
13780 struct cleanup *old_chain;
13781 struct bpstats tmp_bs = { NULL };
13782 struct bpstats *tmp_bs_p = &tmp_bs;
13783
13784 /* dprintf's never cause a stop. This wasn't set in the
13785 check_status hook instead because that would make the dprintf's
13786 condition not be evaluated. */
13787 bs->stop = 0;
13788
13789 /* Run the command list here. Take ownership of it instead of
13790 copying. We never want these commands to run later in
13791 bpstat_do_actions, if a breakpoint that causes a stop happens to
13792 be set at same address as this dprintf, or even if running the
13793 commands here throws. */
13794 tmp_bs.commands = bs->commands;
13795 bs->commands = NULL;
13796 old_chain = make_cleanup_decref_counted_command_line (&tmp_bs.commands);
13797
13798 bpstat_do_actions_1 (&tmp_bs_p);
13799
13800 /* 'tmp_bs.commands' will usually be NULL by now, but
13801 bpstat_do_actions_1 may return early without processing the whole
13802 list. */
13803 do_cleanups (old_chain);
13804 }
13805
13806 /* The breakpoint_ops structure to be used on static tracepoints with
13807 markers (`-m'). */
13808
13809 static void
13810 strace_marker_create_sals_from_address (char **arg,
13811 struct linespec_result *canonical,
13812 enum bptype type_wanted,
13813 char *addr_start, char **copy_arg)
13814 {
13815 struct linespec_sals lsal;
13816
13817 lsal.sals = decode_static_tracepoint_spec (arg);
13818
13819 *copy_arg = savestring (addr_start, *arg - addr_start);
13820
13821 canonical->addr_string = xstrdup (*copy_arg);
13822 lsal.canonical = xstrdup (*copy_arg);
13823 VEC_safe_push (linespec_sals, canonical->sals, &lsal);
13824 }
13825
13826 static void
13827 strace_marker_create_breakpoints_sal (struct gdbarch *gdbarch,
13828 struct linespec_result *canonical,
13829 char *cond_string,
13830 char *extra_string,
13831 enum bptype type_wanted,
13832 enum bpdisp disposition,
13833 int thread,
13834 int task, int ignore_count,
13835 const struct breakpoint_ops *ops,
13836 int from_tty, int enabled,
13837 int internal, unsigned flags)
13838 {
13839 int i;
13840 struct linespec_sals *lsal = VEC_index (linespec_sals,
13841 canonical->sals, 0);
13842
13843 /* If the user is creating a static tracepoint by marker id
13844 (strace -m MARKER_ID), then store the sals index, so that
13845 breakpoint_re_set can try to match up which of the newly
13846 found markers corresponds to this one, and, don't try to
13847 expand multiple locations for each sal, given than SALS
13848 already should contain all sals for MARKER_ID. */
13849
13850 for (i = 0; i < lsal->sals.nelts; ++i)
13851 {
13852 struct symtabs_and_lines expanded;
13853 struct tracepoint *tp;
13854 struct cleanup *old_chain;
13855 char *addr_string;
13856
13857 expanded.nelts = 1;
13858 expanded.sals = &lsal->sals.sals[i];
13859
13860 addr_string = xstrdup (canonical->addr_string);
13861 old_chain = make_cleanup (xfree, addr_string);
13862
13863 tp = XCNEW (struct tracepoint);
13864 init_breakpoint_sal (&tp->base, gdbarch, expanded,
13865 addr_string, NULL,
13866 cond_string, extra_string,
13867 type_wanted, disposition,
13868 thread, task, ignore_count, ops,
13869 from_tty, enabled, internal, flags,
13870 canonical->special_display);
13871 /* Given that its possible to have multiple markers with
13872 the same string id, if the user is creating a static
13873 tracepoint by marker id ("strace -m MARKER_ID"), then
13874 store the sals index, so that breakpoint_re_set can
13875 try to match up which of the newly found markers
13876 corresponds to this one */
13877 tp->static_trace_marker_id_idx = i;
13878
13879 install_breakpoint (internal, &tp->base, 0);
13880
13881 discard_cleanups (old_chain);
13882 }
13883 }
13884
13885 static void
13886 strace_marker_decode_linespec (struct breakpoint *b, char **s,
13887 struct symtabs_and_lines *sals)
13888 {
13889 struct tracepoint *tp = (struct tracepoint *) b;
13890
13891 *sals = decode_static_tracepoint_spec (s);
13892 if (sals->nelts > tp->static_trace_marker_id_idx)
13893 {
13894 sals->sals[0] = sals->sals[tp->static_trace_marker_id_idx];
13895 sals->nelts = 1;
13896 }
13897 else
13898 error (_("marker %s not found"), tp->static_trace_marker_id);
13899 }
13900
13901 static struct breakpoint_ops strace_marker_breakpoint_ops;
13902
13903 static int
13904 strace_marker_p (struct breakpoint *b)
13905 {
13906 return b->ops == &strace_marker_breakpoint_ops;
13907 }
13908
13909 /* Delete a breakpoint and clean up all traces of it in the data
13910 structures. */
13911
13912 void
13913 delete_breakpoint (struct breakpoint *bpt)
13914 {
13915 struct breakpoint *b;
13916
13917 gdb_assert (bpt != NULL);
13918
13919 /* Has this bp already been deleted? This can happen because
13920 multiple lists can hold pointers to bp's. bpstat lists are
13921 especial culprits.
13922
13923 One example of this happening is a watchpoint's scope bp. When
13924 the scope bp triggers, we notice that the watchpoint is out of
13925 scope, and delete it. We also delete its scope bp. But the
13926 scope bp is marked "auto-deleting", and is already on a bpstat.
13927 That bpstat is then checked for auto-deleting bp's, which are
13928 deleted.
13929
13930 A real solution to this problem might involve reference counts in
13931 bp's, and/or giving them pointers back to their referencing
13932 bpstat's, and teaching delete_breakpoint to only free a bp's
13933 storage when no more references were extent. A cheaper bandaid
13934 was chosen. */
13935 if (bpt->type == bp_none)
13936 return;
13937
13938 /* At least avoid this stale reference until the reference counting
13939 of breakpoints gets resolved. */
13940 if (bpt->related_breakpoint != bpt)
13941 {
13942 struct breakpoint *related;
13943 struct watchpoint *w;
13944
13945 if (bpt->type == bp_watchpoint_scope)
13946 w = (struct watchpoint *) bpt->related_breakpoint;
13947 else if (bpt->related_breakpoint->type == bp_watchpoint_scope)
13948 w = (struct watchpoint *) bpt;
13949 else
13950 w = NULL;
13951 if (w != NULL)
13952 watchpoint_del_at_next_stop (w);
13953
13954 /* Unlink bpt from the bpt->related_breakpoint ring. */
13955 for (related = bpt; related->related_breakpoint != bpt;
13956 related = related->related_breakpoint);
13957 related->related_breakpoint = bpt->related_breakpoint;
13958 bpt->related_breakpoint = bpt;
13959 }
13960
13961 /* watch_command_1 creates a watchpoint but only sets its number if
13962 update_watchpoint succeeds in creating its bp_locations. If there's
13963 a problem in that process, we'll be asked to delete the half-created
13964 watchpoint. In that case, don't announce the deletion. */
13965 if (bpt->number)
13966 observer_notify_breakpoint_deleted (bpt);
13967
13968 if (breakpoint_chain == bpt)
13969 breakpoint_chain = bpt->next;
13970
13971 ALL_BREAKPOINTS (b)
13972 if (b->next == bpt)
13973 {
13974 b->next = bpt->next;
13975 break;
13976 }
13977
13978 /* Be sure no bpstat's are pointing at the breakpoint after it's
13979 been freed. */
13980 /* FIXME, how can we find all bpstat's? We just check stop_bpstat
13981 in all threads for now. Note that we cannot just remove bpstats
13982 pointing at bpt from the stop_bpstat list entirely, as breakpoint
13983 commands are associated with the bpstat; if we remove it here,
13984 then the later call to bpstat_do_actions (&stop_bpstat); in
13985 event-top.c won't do anything, and temporary breakpoints with
13986 commands won't work. */
13987
13988 iterate_over_threads (bpstat_remove_breakpoint_callback, bpt);
13989
13990 /* Now that breakpoint is removed from breakpoint list, update the
13991 global location list. This will remove locations that used to
13992 belong to this breakpoint. Do this before freeing the breakpoint
13993 itself, since remove_breakpoint looks at location's owner. It
13994 might be better design to have location completely
13995 self-contained, but it's not the case now. */
13996 update_global_location_list (0);
13997
13998 bpt->ops->dtor (bpt);
13999 /* On the chance that someone will soon try again to delete this
14000 same bp, we mark it as deleted before freeing its storage. */
14001 bpt->type = bp_none;
14002 xfree (bpt);
14003 }
14004
14005 static void
14006 do_delete_breakpoint_cleanup (void *b)
14007 {
14008 delete_breakpoint (b);
14009 }
14010
14011 struct cleanup *
14012 make_cleanup_delete_breakpoint (struct breakpoint *b)
14013 {
14014 return make_cleanup (do_delete_breakpoint_cleanup, b);
14015 }
14016
14017 /* Iterator function to call a user-provided callback function once
14018 for each of B and its related breakpoints. */
14019
14020 static void
14021 iterate_over_related_breakpoints (struct breakpoint *b,
14022 void (*function) (struct breakpoint *,
14023 void *),
14024 void *data)
14025 {
14026 struct breakpoint *related;
14027
14028 related = b;
14029 do
14030 {
14031 struct breakpoint *next;
14032
14033 /* FUNCTION may delete RELATED. */
14034 next = related->related_breakpoint;
14035
14036 if (next == related)
14037 {
14038 /* RELATED is the last ring entry. */
14039 function (related, data);
14040
14041 /* FUNCTION may have deleted it, so we'd never reach back to
14042 B. There's nothing left to do anyway, so just break
14043 out. */
14044 break;
14045 }
14046 else
14047 function (related, data);
14048
14049 related = next;
14050 }
14051 while (related != b);
14052 }
14053
14054 static void
14055 do_delete_breakpoint (struct breakpoint *b, void *ignore)
14056 {
14057 delete_breakpoint (b);
14058 }
14059
14060 /* A callback for map_breakpoint_numbers that calls
14061 delete_breakpoint. */
14062
14063 static void
14064 do_map_delete_breakpoint (struct breakpoint *b, void *ignore)
14065 {
14066 iterate_over_related_breakpoints (b, do_delete_breakpoint, NULL);
14067 }
14068
14069 void
14070 delete_command (char *arg, int from_tty)
14071 {
14072 struct breakpoint *b, *b_tmp;
14073
14074 dont_repeat ();
14075
14076 if (arg == 0)
14077 {
14078 int breaks_to_delete = 0;
14079
14080 /* Delete all breakpoints if no argument. Do not delete
14081 internal breakpoints, these have to be deleted with an
14082 explicit breakpoint number argument. */
14083 ALL_BREAKPOINTS (b)
14084 if (user_breakpoint_p (b))
14085 {
14086 breaks_to_delete = 1;
14087 break;
14088 }
14089
14090 /* Ask user only if there are some breakpoints to delete. */
14091 if (!from_tty
14092 || (breaks_to_delete && query (_("Delete all breakpoints? "))))
14093 {
14094 ALL_BREAKPOINTS_SAFE (b, b_tmp)
14095 if (user_breakpoint_p (b))
14096 delete_breakpoint (b);
14097 }
14098 }
14099 else
14100 map_breakpoint_numbers (arg, do_map_delete_breakpoint, NULL);
14101 }
14102
14103 static int
14104 all_locations_are_pending (struct bp_location *loc)
14105 {
14106 for (; loc; loc = loc->next)
14107 if (!loc->shlib_disabled
14108 && !loc->pspace->executing_startup)
14109 return 0;
14110 return 1;
14111 }
14112
14113 /* Subroutine of update_breakpoint_locations to simplify it.
14114 Return non-zero if multiple fns in list LOC have the same name.
14115 Null names are ignored. */
14116
14117 static int
14118 ambiguous_names_p (struct bp_location *loc)
14119 {
14120 struct bp_location *l;
14121 htab_t htab = htab_create_alloc (13, htab_hash_string,
14122 (int (*) (const void *,
14123 const void *)) streq,
14124 NULL, xcalloc, xfree);
14125
14126 for (l = loc; l != NULL; l = l->next)
14127 {
14128 const char **slot;
14129 const char *name = l->function_name;
14130
14131 /* Allow for some names to be NULL, ignore them. */
14132 if (name == NULL)
14133 continue;
14134
14135 slot = (const char **) htab_find_slot (htab, (const void *) name,
14136 INSERT);
14137 /* NOTE: We can assume slot != NULL here because xcalloc never
14138 returns NULL. */
14139 if (*slot != NULL)
14140 {
14141 htab_delete (htab);
14142 return 1;
14143 }
14144 *slot = name;
14145 }
14146
14147 htab_delete (htab);
14148 return 0;
14149 }
14150
14151 /* When symbols change, it probably means the sources changed as well,
14152 and it might mean the static tracepoint markers are no longer at
14153 the same address or line numbers they used to be at last we
14154 checked. Losing your static tracepoints whenever you rebuild is
14155 undesirable. This function tries to resync/rematch gdb static
14156 tracepoints with the markers on the target, for static tracepoints
14157 that have not been set by marker id. Static tracepoint that have
14158 been set by marker id are reset by marker id in breakpoint_re_set.
14159 The heuristic is:
14160
14161 1) For a tracepoint set at a specific address, look for a marker at
14162 the old PC. If one is found there, assume to be the same marker.
14163 If the name / string id of the marker found is different from the
14164 previous known name, assume that means the user renamed the marker
14165 in the sources, and output a warning.
14166
14167 2) For a tracepoint set at a given line number, look for a marker
14168 at the new address of the old line number. If one is found there,
14169 assume to be the same marker. If the name / string id of the
14170 marker found is different from the previous known name, assume that
14171 means the user renamed the marker in the sources, and output a
14172 warning.
14173
14174 3) If a marker is no longer found at the same address or line, it
14175 may mean the marker no longer exists. But it may also just mean
14176 the code changed a bit. Maybe the user added a few lines of code
14177 that made the marker move up or down (in line number terms). Ask
14178 the target for info about the marker with the string id as we knew
14179 it. If found, update line number and address in the matching
14180 static tracepoint. This will get confused if there's more than one
14181 marker with the same ID (possible in UST, although unadvised
14182 precisely because it confuses tools). */
14183
14184 static struct symtab_and_line
14185 update_static_tracepoint (struct breakpoint *b, struct symtab_and_line sal)
14186 {
14187 struct tracepoint *tp = (struct tracepoint *) b;
14188 struct static_tracepoint_marker marker;
14189 CORE_ADDR pc;
14190
14191 pc = sal.pc;
14192 if (sal.line)
14193 find_line_pc (sal.symtab, sal.line, &pc);
14194
14195 if (target_static_tracepoint_marker_at (pc, &marker))
14196 {
14197 if (strcmp (tp->static_trace_marker_id, marker.str_id) != 0)
14198 warning (_("static tracepoint %d changed probed marker from %s to %s"),
14199 b->number,
14200 tp->static_trace_marker_id, marker.str_id);
14201
14202 xfree (tp->static_trace_marker_id);
14203 tp->static_trace_marker_id = xstrdup (marker.str_id);
14204 release_static_tracepoint_marker (&marker);
14205
14206 return sal;
14207 }
14208
14209 /* Old marker wasn't found on target at lineno. Try looking it up
14210 by string ID. */
14211 if (!sal.explicit_pc
14212 && sal.line != 0
14213 && sal.symtab != NULL
14214 && tp->static_trace_marker_id != NULL)
14215 {
14216 VEC(static_tracepoint_marker_p) *markers;
14217
14218 markers
14219 = target_static_tracepoint_markers_by_strid (tp->static_trace_marker_id);
14220
14221 if (!VEC_empty(static_tracepoint_marker_p, markers))
14222 {
14223 struct symtab_and_line sal2;
14224 struct symbol *sym;
14225 struct static_tracepoint_marker *tpmarker;
14226 struct ui_out *uiout = current_uiout;
14227
14228 tpmarker = VEC_index (static_tracepoint_marker_p, markers, 0);
14229
14230 xfree (tp->static_trace_marker_id);
14231 tp->static_trace_marker_id = xstrdup (tpmarker->str_id);
14232
14233 warning (_("marker for static tracepoint %d (%s) not "
14234 "found at previous line number"),
14235 b->number, tp->static_trace_marker_id);
14236
14237 init_sal (&sal2);
14238
14239 sal2.pc = tpmarker->address;
14240
14241 sal2 = find_pc_line (tpmarker->address, 0);
14242 sym = find_pc_sect_function (tpmarker->address, NULL);
14243 ui_out_text (uiout, "Now in ");
14244 if (sym)
14245 {
14246 ui_out_field_string (uiout, "func",
14247 SYMBOL_PRINT_NAME (sym));
14248 ui_out_text (uiout, " at ");
14249 }
14250 ui_out_field_string (uiout, "file",
14251 symtab_to_filename_for_display (sal2.symtab));
14252 ui_out_text (uiout, ":");
14253
14254 if (ui_out_is_mi_like_p (uiout))
14255 {
14256 const char *fullname = symtab_to_fullname (sal2.symtab);
14257
14258 ui_out_field_string (uiout, "fullname", fullname);
14259 }
14260
14261 ui_out_field_int (uiout, "line", sal2.line);
14262 ui_out_text (uiout, "\n");
14263
14264 b->loc->line_number = sal2.line;
14265 b->loc->symtab = sym != NULL ? sal2.symtab : NULL;
14266
14267 xfree (b->addr_string);
14268 b->addr_string = xstrprintf ("%s:%d",
14269 symtab_to_filename_for_display (sal2.symtab),
14270 b->loc->line_number);
14271
14272 /* Might be nice to check if function changed, and warn if
14273 so. */
14274
14275 release_static_tracepoint_marker (tpmarker);
14276 }
14277 }
14278 return sal;
14279 }
14280
14281 /* Returns 1 iff locations A and B are sufficiently same that
14282 we don't need to report breakpoint as changed. */
14283
14284 static int
14285 locations_are_equal (struct bp_location *a, struct bp_location *b)
14286 {
14287 while (a && b)
14288 {
14289 if (a->address != b->address)
14290 return 0;
14291
14292 if (a->shlib_disabled != b->shlib_disabled)
14293 return 0;
14294
14295 if (a->enabled != b->enabled)
14296 return 0;
14297
14298 a = a->next;
14299 b = b->next;
14300 }
14301
14302 if ((a == NULL) != (b == NULL))
14303 return 0;
14304
14305 return 1;
14306 }
14307
14308 /* Create new breakpoint locations for B (a hardware or software breakpoint)
14309 based on SALS and SALS_END. If SALS_END.NELTS is not zero, then B is
14310 a ranged breakpoint. */
14311
14312 void
14313 update_breakpoint_locations (struct breakpoint *b,
14314 struct symtabs_and_lines sals,
14315 struct symtabs_and_lines sals_end)
14316 {
14317 int i;
14318 struct bp_location *existing_locations = b->loc;
14319
14320 if (sals_end.nelts != 0 && (sals.nelts != 1 || sals_end.nelts != 1))
14321 {
14322 /* Ranged breakpoints have only one start location and one end
14323 location. */
14324 b->enable_state = bp_disabled;
14325 update_global_location_list (1);
14326 printf_unfiltered (_("Could not reset ranged breakpoint %d: "
14327 "multiple locations found\n"),
14328 b->number);
14329 return;
14330 }
14331
14332 /* If there's no new locations, and all existing locations are
14333 pending, don't do anything. This optimizes the common case where
14334 all locations are in the same shared library, that was unloaded.
14335 We'd like to retain the location, so that when the library is
14336 loaded again, we don't loose the enabled/disabled status of the
14337 individual locations. */
14338 if (all_locations_are_pending (existing_locations) && sals.nelts == 0)
14339 return;
14340
14341 b->loc = NULL;
14342
14343 for (i = 0; i < sals.nelts; ++i)
14344 {
14345 struct bp_location *new_loc;
14346
14347 switch_to_program_space_and_thread (sals.sals[i].pspace);
14348
14349 new_loc = add_location_to_breakpoint (b, &(sals.sals[i]));
14350
14351 /* Reparse conditions, they might contain references to the
14352 old symtab. */
14353 if (b->cond_string != NULL)
14354 {
14355 const char *s;
14356 volatile struct gdb_exception e;
14357
14358 s = b->cond_string;
14359 TRY_CATCH (e, RETURN_MASK_ERROR)
14360 {
14361 new_loc->cond = parse_exp_1 (&s, sals.sals[i].pc,
14362 block_for_pc (sals.sals[i].pc),
14363 0);
14364 }
14365 if (e.reason < 0)
14366 {
14367 warning (_("failed to reevaluate condition "
14368 "for breakpoint %d: %s"),
14369 b->number, e.message);
14370 new_loc->enabled = 0;
14371 }
14372 }
14373
14374 if (sals_end.nelts)
14375 {
14376 CORE_ADDR end = find_breakpoint_range_end (sals_end.sals[0]);
14377
14378 new_loc->length = end - sals.sals[0].pc + 1;
14379 }
14380 }
14381
14382 /* Update locations of permanent breakpoints. */
14383 if (b->enable_state == bp_permanent)
14384 make_breakpoint_permanent (b);
14385
14386 /* If possible, carry over 'disable' status from existing
14387 breakpoints. */
14388 {
14389 struct bp_location *e = existing_locations;
14390 /* If there are multiple breakpoints with the same function name,
14391 e.g. for inline functions, comparing function names won't work.
14392 Instead compare pc addresses; this is just a heuristic as things
14393 may have moved, but in practice it gives the correct answer
14394 often enough until a better solution is found. */
14395 int have_ambiguous_names = ambiguous_names_p (b->loc);
14396
14397 for (; e; e = e->next)
14398 {
14399 if (!e->enabled && e->function_name)
14400 {
14401 struct bp_location *l = b->loc;
14402 if (have_ambiguous_names)
14403 {
14404 for (; l; l = l->next)
14405 if (breakpoint_locations_match (e, l))
14406 {
14407 l->enabled = 0;
14408 break;
14409 }
14410 }
14411 else
14412 {
14413 for (; l; l = l->next)
14414 if (l->function_name
14415 && strcmp (e->function_name, l->function_name) == 0)
14416 {
14417 l->enabled = 0;
14418 break;
14419 }
14420 }
14421 }
14422 }
14423 }
14424
14425 if (!locations_are_equal (existing_locations, b->loc))
14426 observer_notify_breakpoint_modified (b);
14427
14428 update_global_location_list (1);
14429 }
14430
14431 /* Find the SaL locations corresponding to the given ADDR_STRING.
14432 On return, FOUND will be 1 if any SaL was found, zero otherwise. */
14433
14434 static struct symtabs_and_lines
14435 addr_string_to_sals (struct breakpoint *b, char *addr_string, int *found)
14436 {
14437 char *s;
14438 struct symtabs_and_lines sals = {0};
14439 volatile struct gdb_exception e;
14440
14441 gdb_assert (b->ops != NULL);
14442 s = addr_string;
14443
14444 TRY_CATCH (e, RETURN_MASK_ERROR)
14445 {
14446 b->ops->decode_linespec (b, &s, &sals);
14447 }
14448 if (e.reason < 0)
14449 {
14450 int not_found_and_ok = 0;
14451 /* For pending breakpoints, it's expected that parsing will
14452 fail until the right shared library is loaded. User has
14453 already told to create pending breakpoints and don't need
14454 extra messages. If breakpoint is in bp_shlib_disabled
14455 state, then user already saw the message about that
14456 breakpoint being disabled, and don't want to see more
14457 errors. */
14458 if (e.error == NOT_FOUND_ERROR
14459 && (b->condition_not_parsed
14460 || (b->loc && b->loc->shlib_disabled)
14461 || (b->loc && b->loc->pspace->executing_startup)
14462 || b->enable_state == bp_disabled))
14463 not_found_and_ok = 1;
14464
14465 if (!not_found_and_ok)
14466 {
14467 /* We surely don't want to warn about the same breakpoint
14468 10 times. One solution, implemented here, is disable
14469 the breakpoint on error. Another solution would be to
14470 have separate 'warning emitted' flag. Since this
14471 happens only when a binary has changed, I don't know
14472 which approach is better. */
14473 b->enable_state = bp_disabled;
14474 throw_exception (e);
14475 }
14476 }
14477
14478 if (e.reason == 0 || e.error != NOT_FOUND_ERROR)
14479 {
14480 int i;
14481
14482 for (i = 0; i < sals.nelts; ++i)
14483 resolve_sal_pc (&sals.sals[i]);
14484 if (b->condition_not_parsed && s && s[0])
14485 {
14486 char *cond_string, *extra_string;
14487 int thread, task;
14488
14489 find_condition_and_thread (s, sals.sals[0].pc,
14490 &cond_string, &thread, &task,
14491 &extra_string);
14492 if (cond_string)
14493 b->cond_string = cond_string;
14494 b->thread = thread;
14495 b->task = task;
14496 if (extra_string)
14497 b->extra_string = extra_string;
14498 b->condition_not_parsed = 0;
14499 }
14500
14501 if (b->type == bp_static_tracepoint && !strace_marker_p (b))
14502 sals.sals[0] = update_static_tracepoint (b, sals.sals[0]);
14503
14504 *found = 1;
14505 }
14506 else
14507 *found = 0;
14508
14509 return sals;
14510 }
14511
14512 /* The default re_set method, for typical hardware or software
14513 breakpoints. Reevaluate the breakpoint and recreate its
14514 locations. */
14515
14516 static void
14517 breakpoint_re_set_default (struct breakpoint *b)
14518 {
14519 int found;
14520 struct symtabs_and_lines sals, sals_end;
14521 struct symtabs_and_lines expanded = {0};
14522 struct symtabs_and_lines expanded_end = {0};
14523
14524 sals = addr_string_to_sals (b, b->addr_string, &found);
14525 if (found)
14526 {
14527 make_cleanup (xfree, sals.sals);
14528 expanded = sals;
14529 }
14530
14531 if (b->addr_string_range_end)
14532 {
14533 sals_end = addr_string_to_sals (b, b->addr_string_range_end, &found);
14534 if (found)
14535 {
14536 make_cleanup (xfree, sals_end.sals);
14537 expanded_end = sals_end;
14538 }
14539 }
14540
14541 update_breakpoint_locations (b, expanded, expanded_end);
14542 }
14543
14544 /* Default method for creating SALs from an address string. It basically
14545 calls parse_breakpoint_sals. Return 1 for success, zero for failure. */
14546
14547 static void
14548 create_sals_from_address_default (char **arg,
14549 struct linespec_result *canonical,
14550 enum bptype type_wanted,
14551 char *addr_start, char **copy_arg)
14552 {
14553 parse_breakpoint_sals (arg, canonical);
14554 }
14555
14556 /* Call create_breakpoints_sal for the given arguments. This is the default
14557 function for the `create_breakpoints_sal' method of
14558 breakpoint_ops. */
14559
14560 static void
14561 create_breakpoints_sal_default (struct gdbarch *gdbarch,
14562 struct linespec_result *canonical,
14563 char *cond_string,
14564 char *extra_string,
14565 enum bptype type_wanted,
14566 enum bpdisp disposition,
14567 int thread,
14568 int task, int ignore_count,
14569 const struct breakpoint_ops *ops,
14570 int from_tty, int enabled,
14571 int internal, unsigned flags)
14572 {
14573 create_breakpoints_sal (gdbarch, canonical, cond_string,
14574 extra_string,
14575 type_wanted, disposition,
14576 thread, task, ignore_count, ops, from_tty,
14577 enabled, internal, flags);
14578 }
14579
14580 /* Decode the line represented by S by calling decode_line_full. This is the
14581 default function for the `decode_linespec' method of breakpoint_ops. */
14582
14583 static void
14584 decode_linespec_default (struct breakpoint *b, char **s,
14585 struct symtabs_and_lines *sals)
14586 {
14587 struct linespec_result canonical;
14588
14589 init_linespec_result (&canonical);
14590 decode_line_full (s, DECODE_LINE_FUNFIRSTLINE,
14591 (struct symtab *) NULL, 0,
14592 &canonical, multiple_symbols_all,
14593 b->filter);
14594
14595 /* We should get 0 or 1 resulting SALs. */
14596 gdb_assert (VEC_length (linespec_sals, canonical.sals) < 2);
14597
14598 if (VEC_length (linespec_sals, canonical.sals) > 0)
14599 {
14600 struct linespec_sals *lsal;
14601
14602 lsal = VEC_index (linespec_sals, canonical.sals, 0);
14603 *sals = lsal->sals;
14604 /* Arrange it so the destructor does not free the
14605 contents. */
14606 lsal->sals.sals = NULL;
14607 }
14608
14609 destroy_linespec_result (&canonical);
14610 }
14611
14612 /* Prepare the global context for a re-set of breakpoint B. */
14613
14614 static struct cleanup *
14615 prepare_re_set_context (struct breakpoint *b)
14616 {
14617 struct cleanup *cleanups;
14618
14619 input_radix = b->input_radix;
14620 cleanups = save_current_space_and_thread ();
14621 if (b->pspace != NULL)
14622 switch_to_program_space_and_thread (b->pspace);
14623 set_language (b->language);
14624
14625 return cleanups;
14626 }
14627
14628 /* Reset a breakpoint given it's struct breakpoint * BINT.
14629 The value we return ends up being the return value from catch_errors.
14630 Unused in this case. */
14631
14632 static int
14633 breakpoint_re_set_one (void *bint)
14634 {
14635 /* Get past catch_errs. */
14636 struct breakpoint *b = (struct breakpoint *) bint;
14637 struct cleanup *cleanups;
14638
14639 cleanups = prepare_re_set_context (b);
14640 b->ops->re_set (b);
14641 do_cleanups (cleanups);
14642 return 0;
14643 }
14644
14645 /* Re-set all breakpoints after symbols have been re-loaded. */
14646 void
14647 breakpoint_re_set (void)
14648 {
14649 struct breakpoint *b, *b_tmp;
14650 enum language save_language;
14651 int save_input_radix;
14652 struct cleanup *old_chain;
14653
14654 save_language = current_language->la_language;
14655 save_input_radix = input_radix;
14656 old_chain = save_current_program_space ();
14657
14658 ALL_BREAKPOINTS_SAFE (b, b_tmp)
14659 {
14660 /* Format possible error msg. */
14661 char *message = xstrprintf ("Error in re-setting breakpoint %d: ",
14662 b->number);
14663 struct cleanup *cleanups = make_cleanup (xfree, message);
14664 catch_errors (breakpoint_re_set_one, b, message, RETURN_MASK_ALL);
14665 do_cleanups (cleanups);
14666 }
14667 set_language (save_language);
14668 input_radix = save_input_radix;
14669
14670 jit_breakpoint_re_set ();
14671
14672 do_cleanups (old_chain);
14673
14674 create_overlay_event_breakpoint ();
14675 create_longjmp_master_breakpoint ();
14676 create_std_terminate_master_breakpoint ();
14677 create_exception_master_breakpoint ();
14678 }
14679 \f
14680 /* Reset the thread number of this breakpoint:
14681
14682 - If the breakpoint is for all threads, leave it as-is.
14683 - Else, reset it to the current thread for inferior_ptid. */
14684 void
14685 breakpoint_re_set_thread (struct breakpoint *b)
14686 {
14687 if (b->thread != -1)
14688 {
14689 if (in_thread_list (inferior_ptid))
14690 b->thread = pid_to_thread_id (inferior_ptid);
14691
14692 /* We're being called after following a fork. The new fork is
14693 selected as current, and unless this was a vfork will have a
14694 different program space from the original thread. Reset that
14695 as well. */
14696 b->loc->pspace = current_program_space;
14697 }
14698 }
14699
14700 /* Set ignore-count of breakpoint number BPTNUM to COUNT.
14701 If from_tty is nonzero, it prints a message to that effect,
14702 which ends with a period (no newline). */
14703
14704 void
14705 set_ignore_count (int bptnum, int count, int from_tty)
14706 {
14707 struct breakpoint *b;
14708
14709 if (count < 0)
14710 count = 0;
14711
14712 ALL_BREAKPOINTS (b)
14713 if (b->number == bptnum)
14714 {
14715 if (is_tracepoint (b))
14716 {
14717 if (from_tty && count != 0)
14718 printf_filtered (_("Ignore count ignored for tracepoint %d."),
14719 bptnum);
14720 return;
14721 }
14722
14723 b->ignore_count = count;
14724 if (from_tty)
14725 {
14726 if (count == 0)
14727 printf_filtered (_("Will stop next time "
14728 "breakpoint %d is reached."),
14729 bptnum);
14730 else if (count == 1)
14731 printf_filtered (_("Will ignore next crossing of breakpoint %d."),
14732 bptnum);
14733 else
14734 printf_filtered (_("Will ignore next %d "
14735 "crossings of breakpoint %d."),
14736 count, bptnum);
14737 }
14738 observer_notify_breakpoint_modified (b);
14739 return;
14740 }
14741
14742 error (_("No breakpoint number %d."), bptnum);
14743 }
14744
14745 /* Command to set ignore-count of breakpoint N to COUNT. */
14746
14747 static void
14748 ignore_command (char *args, int from_tty)
14749 {
14750 char *p = args;
14751 int num;
14752
14753 if (p == 0)
14754 error_no_arg (_("a breakpoint number"));
14755
14756 num = get_number (&p);
14757 if (num == 0)
14758 error (_("bad breakpoint number: '%s'"), args);
14759 if (*p == 0)
14760 error (_("Second argument (specified ignore-count) is missing."));
14761
14762 set_ignore_count (num,
14763 longest_to_int (value_as_long (parse_and_eval (p))),
14764 from_tty);
14765 if (from_tty)
14766 printf_filtered ("\n");
14767 }
14768 \f
14769 /* Call FUNCTION on each of the breakpoints
14770 whose numbers are given in ARGS. */
14771
14772 static void
14773 map_breakpoint_numbers (char *args, void (*function) (struct breakpoint *,
14774 void *),
14775 void *data)
14776 {
14777 int num;
14778 struct breakpoint *b, *tmp;
14779 int match;
14780 struct get_number_or_range_state state;
14781
14782 if (args == 0)
14783 error_no_arg (_("one or more breakpoint numbers"));
14784
14785 init_number_or_range (&state, args);
14786
14787 while (!state.finished)
14788 {
14789 const char *p = state.string;
14790
14791 match = 0;
14792
14793 num = get_number_or_range (&state);
14794 if (num == 0)
14795 {
14796 warning (_("bad breakpoint number at or near '%s'"), p);
14797 }
14798 else
14799 {
14800 ALL_BREAKPOINTS_SAFE (b, tmp)
14801 if (b->number == num)
14802 {
14803 match = 1;
14804 function (b, data);
14805 break;
14806 }
14807 if (match == 0)
14808 printf_unfiltered (_("No breakpoint number %d.\n"), num);
14809 }
14810 }
14811 }
14812
14813 static struct bp_location *
14814 find_location_by_number (char *number)
14815 {
14816 char *dot = strchr (number, '.');
14817 char *p1;
14818 int bp_num;
14819 int loc_num;
14820 struct breakpoint *b;
14821 struct bp_location *loc;
14822
14823 *dot = '\0';
14824
14825 p1 = number;
14826 bp_num = get_number (&p1);
14827 if (bp_num == 0)
14828 error (_("Bad breakpoint number '%s'"), number);
14829
14830 ALL_BREAKPOINTS (b)
14831 if (b->number == bp_num)
14832 {
14833 break;
14834 }
14835
14836 if (!b || b->number != bp_num)
14837 error (_("Bad breakpoint number '%s'"), number);
14838
14839 p1 = dot+1;
14840 loc_num = get_number (&p1);
14841 if (loc_num == 0)
14842 error (_("Bad breakpoint location number '%s'"), number);
14843
14844 --loc_num;
14845 loc = b->loc;
14846 for (;loc_num && loc; --loc_num, loc = loc->next)
14847 ;
14848 if (!loc)
14849 error (_("Bad breakpoint location number '%s'"), dot+1);
14850
14851 return loc;
14852 }
14853
14854
14855 /* Set ignore-count of breakpoint number BPTNUM to COUNT.
14856 If from_tty is nonzero, it prints a message to that effect,
14857 which ends with a period (no newline). */
14858
14859 void
14860 disable_breakpoint (struct breakpoint *bpt)
14861 {
14862 /* Never disable a watchpoint scope breakpoint; we want to
14863 hit them when we leave scope so we can delete both the
14864 watchpoint and its scope breakpoint at that time. */
14865 if (bpt->type == bp_watchpoint_scope)
14866 return;
14867
14868 /* You can't disable permanent breakpoints. */
14869 if (bpt->enable_state == bp_permanent)
14870 return;
14871
14872 bpt->enable_state = bp_disabled;
14873
14874 /* Mark breakpoint locations modified. */
14875 mark_breakpoint_modified (bpt);
14876
14877 if (target_supports_enable_disable_tracepoint ()
14878 && current_trace_status ()->running && is_tracepoint (bpt))
14879 {
14880 struct bp_location *location;
14881
14882 for (location = bpt->loc; location; location = location->next)
14883 target_disable_tracepoint (location);
14884 }
14885
14886 update_global_location_list (0);
14887
14888 observer_notify_breakpoint_modified (bpt);
14889 }
14890
14891 /* A callback for iterate_over_related_breakpoints. */
14892
14893 static void
14894 do_disable_breakpoint (struct breakpoint *b, void *ignore)
14895 {
14896 disable_breakpoint (b);
14897 }
14898
14899 /* A callback for map_breakpoint_numbers that calls
14900 disable_breakpoint. */
14901
14902 static void
14903 do_map_disable_breakpoint (struct breakpoint *b, void *ignore)
14904 {
14905 iterate_over_related_breakpoints (b, do_disable_breakpoint, NULL);
14906 }
14907
14908 static void
14909 disable_command (char *args, int from_tty)
14910 {
14911 if (args == 0)
14912 {
14913 struct breakpoint *bpt;
14914
14915 ALL_BREAKPOINTS (bpt)
14916 if (user_breakpoint_p (bpt))
14917 disable_breakpoint (bpt);
14918 }
14919 else
14920 {
14921 char *num = extract_arg (&args);
14922
14923 while (num)
14924 {
14925 if (strchr (num, '.'))
14926 {
14927 struct bp_location *loc = find_location_by_number (num);
14928
14929 if (loc)
14930 {
14931 if (loc->enabled)
14932 {
14933 loc->enabled = 0;
14934 mark_breakpoint_location_modified (loc);
14935 }
14936 if (target_supports_enable_disable_tracepoint ()
14937 && current_trace_status ()->running && loc->owner
14938 && is_tracepoint (loc->owner))
14939 target_disable_tracepoint (loc);
14940 }
14941 update_global_location_list (0);
14942 }
14943 else
14944 map_breakpoint_numbers (num, do_map_disable_breakpoint, NULL);
14945 num = extract_arg (&args);
14946 }
14947 }
14948 }
14949
14950 static void
14951 enable_breakpoint_disp (struct breakpoint *bpt, enum bpdisp disposition,
14952 int count)
14953 {
14954 int target_resources_ok;
14955
14956 if (bpt->type == bp_hardware_breakpoint)
14957 {
14958 int i;
14959 i = hw_breakpoint_used_count ();
14960 target_resources_ok =
14961 target_can_use_hardware_watchpoint (bp_hardware_breakpoint,
14962 i + 1, 0);
14963 if (target_resources_ok == 0)
14964 error (_("No hardware breakpoint support in the target."));
14965 else if (target_resources_ok < 0)
14966 error (_("Hardware breakpoints used exceeds limit."));
14967 }
14968
14969 if (is_watchpoint (bpt))
14970 {
14971 /* Initialize it just to avoid a GCC false warning. */
14972 enum enable_state orig_enable_state = 0;
14973 volatile struct gdb_exception e;
14974
14975 TRY_CATCH (e, RETURN_MASK_ALL)
14976 {
14977 struct watchpoint *w = (struct watchpoint *) bpt;
14978
14979 orig_enable_state = bpt->enable_state;
14980 bpt->enable_state = bp_enabled;
14981 update_watchpoint (w, 1 /* reparse */);
14982 }
14983 if (e.reason < 0)
14984 {
14985 bpt->enable_state = orig_enable_state;
14986 exception_fprintf (gdb_stderr, e, _("Cannot enable watchpoint %d: "),
14987 bpt->number);
14988 return;
14989 }
14990 }
14991
14992 if (bpt->enable_state != bp_permanent)
14993 bpt->enable_state = bp_enabled;
14994
14995 bpt->enable_state = bp_enabled;
14996
14997 /* Mark breakpoint locations modified. */
14998 mark_breakpoint_modified (bpt);
14999
15000 if (target_supports_enable_disable_tracepoint ()
15001 && current_trace_status ()->running && is_tracepoint (bpt))
15002 {
15003 struct bp_location *location;
15004
15005 for (location = bpt->loc; location; location = location->next)
15006 target_enable_tracepoint (location);
15007 }
15008
15009 bpt->disposition = disposition;
15010 bpt->enable_count = count;
15011 update_global_location_list (1);
15012
15013 observer_notify_breakpoint_modified (bpt);
15014 }
15015
15016
15017 void
15018 enable_breakpoint (struct breakpoint *bpt)
15019 {
15020 enable_breakpoint_disp (bpt, bpt->disposition, 0);
15021 }
15022
15023 static void
15024 do_enable_breakpoint (struct breakpoint *bpt, void *arg)
15025 {
15026 enable_breakpoint (bpt);
15027 }
15028
15029 /* A callback for map_breakpoint_numbers that calls
15030 enable_breakpoint. */
15031
15032 static void
15033 do_map_enable_breakpoint (struct breakpoint *b, void *ignore)
15034 {
15035 iterate_over_related_breakpoints (b, do_enable_breakpoint, NULL);
15036 }
15037
15038 /* The enable command enables the specified breakpoints (or all defined
15039 breakpoints) so they once again become (or continue to be) effective
15040 in stopping the inferior. */
15041
15042 static void
15043 enable_command (char *args, int from_tty)
15044 {
15045 if (args == 0)
15046 {
15047 struct breakpoint *bpt;
15048
15049 ALL_BREAKPOINTS (bpt)
15050 if (user_breakpoint_p (bpt))
15051 enable_breakpoint (bpt);
15052 }
15053 else
15054 {
15055 char *num = extract_arg (&args);
15056
15057 while (num)
15058 {
15059 if (strchr (num, '.'))
15060 {
15061 struct bp_location *loc = find_location_by_number (num);
15062
15063 if (loc)
15064 {
15065 if (!loc->enabled)
15066 {
15067 loc->enabled = 1;
15068 mark_breakpoint_location_modified (loc);
15069 }
15070 if (target_supports_enable_disable_tracepoint ()
15071 && current_trace_status ()->running && loc->owner
15072 && is_tracepoint (loc->owner))
15073 target_enable_tracepoint (loc);
15074 }
15075 update_global_location_list (1);
15076 }
15077 else
15078 map_breakpoint_numbers (num, do_map_enable_breakpoint, NULL);
15079 num = extract_arg (&args);
15080 }
15081 }
15082 }
15083
15084 /* This struct packages up disposition data for application to multiple
15085 breakpoints. */
15086
15087 struct disp_data
15088 {
15089 enum bpdisp disp;
15090 int count;
15091 };
15092
15093 static void
15094 do_enable_breakpoint_disp (struct breakpoint *bpt, void *arg)
15095 {
15096 struct disp_data disp_data = *(struct disp_data *) arg;
15097
15098 enable_breakpoint_disp (bpt, disp_data.disp, disp_data.count);
15099 }
15100
15101 static void
15102 do_map_enable_once_breakpoint (struct breakpoint *bpt, void *ignore)
15103 {
15104 struct disp_data disp = { disp_disable, 1 };
15105
15106 iterate_over_related_breakpoints (bpt, do_enable_breakpoint_disp, &disp);
15107 }
15108
15109 static void
15110 enable_once_command (char *args, int from_tty)
15111 {
15112 map_breakpoint_numbers (args, do_map_enable_once_breakpoint, NULL);
15113 }
15114
15115 static void
15116 do_map_enable_count_breakpoint (struct breakpoint *bpt, void *countptr)
15117 {
15118 struct disp_data disp = { disp_disable, *(int *) countptr };
15119
15120 iterate_over_related_breakpoints (bpt, do_enable_breakpoint_disp, &disp);
15121 }
15122
15123 static void
15124 enable_count_command (char *args, int from_tty)
15125 {
15126 int count = get_number (&args);
15127
15128 map_breakpoint_numbers (args, do_map_enable_count_breakpoint, &count);
15129 }
15130
15131 static void
15132 do_map_enable_delete_breakpoint (struct breakpoint *bpt, void *ignore)
15133 {
15134 struct disp_data disp = { disp_del, 1 };
15135
15136 iterate_over_related_breakpoints (bpt, do_enable_breakpoint_disp, &disp);
15137 }
15138
15139 static void
15140 enable_delete_command (char *args, int from_tty)
15141 {
15142 map_breakpoint_numbers (args, do_map_enable_delete_breakpoint, NULL);
15143 }
15144 \f
15145 static void
15146 set_breakpoint_cmd (char *args, int from_tty)
15147 {
15148 }
15149
15150 static void
15151 show_breakpoint_cmd (char *args, int from_tty)
15152 {
15153 }
15154
15155 /* Invalidate last known value of any hardware watchpoint if
15156 the memory which that value represents has been written to by
15157 GDB itself. */
15158
15159 static void
15160 invalidate_bp_value_on_memory_change (struct inferior *inferior,
15161 CORE_ADDR addr, ssize_t len,
15162 const bfd_byte *data)
15163 {
15164 struct breakpoint *bp;
15165
15166 ALL_BREAKPOINTS (bp)
15167 if (bp->enable_state == bp_enabled
15168 && bp->type == bp_hardware_watchpoint)
15169 {
15170 struct watchpoint *wp = (struct watchpoint *) bp;
15171
15172 if (wp->val_valid && wp->val)
15173 {
15174 struct bp_location *loc;
15175
15176 for (loc = bp->loc; loc != NULL; loc = loc->next)
15177 if (loc->loc_type == bp_loc_hardware_watchpoint
15178 && loc->address + loc->length > addr
15179 && addr + len > loc->address)
15180 {
15181 value_free (wp->val);
15182 wp->val = NULL;
15183 wp->val_valid = 0;
15184 }
15185 }
15186 }
15187 }
15188
15189 /* Create and insert a raw software breakpoint at PC. Return an
15190 identifier, which should be used to remove the breakpoint later.
15191 In general, places which call this should be using something on the
15192 breakpoint chain instead; this function should be eliminated
15193 someday. */
15194
15195 void *
15196 deprecated_insert_raw_breakpoint (struct gdbarch *gdbarch,
15197 struct address_space *aspace, CORE_ADDR pc)
15198 {
15199 struct bp_target_info *bp_tgt;
15200 struct bp_location *bl;
15201
15202 bp_tgt = XCNEW (struct bp_target_info);
15203
15204 bp_tgt->placed_address_space = aspace;
15205 bp_tgt->placed_address = pc;
15206
15207 /* If an unconditional non-raw breakpoint is already inserted at
15208 that location, there's no need to insert another. However, with
15209 target-side evaluation of breakpoint conditions, if the
15210 breakpoint that is currently inserted on the target is
15211 conditional, we need to make it unconditional. Note that a
15212 breakpoint with target-side commands is not reported even if
15213 unconditional, so we need to remove the commands from the target
15214 as well. */
15215 bl = find_non_raw_software_breakpoint_inserted_here (aspace, pc);
15216 if (bl != NULL
15217 && VEC_empty (agent_expr_p, bl->target_info.conditions)
15218 && VEC_empty (agent_expr_p, bl->target_info.tcommands))
15219 {
15220 bp_target_info_copy_insertion_state (bp_tgt, &bl->target_info);
15221 return bp_tgt;
15222 }
15223
15224 if (target_insert_breakpoint (gdbarch, bp_tgt) != 0)
15225 {
15226 /* Could not insert the breakpoint. */
15227 xfree (bp_tgt);
15228 return NULL;
15229 }
15230
15231 return bp_tgt;
15232 }
15233
15234 /* Remove a breakpoint BP inserted by
15235 deprecated_insert_raw_breakpoint. */
15236
15237 int
15238 deprecated_remove_raw_breakpoint (struct gdbarch *gdbarch, void *bp)
15239 {
15240 struct bp_target_info *bp_tgt = bp;
15241 struct address_space *aspace = bp_tgt->placed_address_space;
15242 CORE_ADDR address = bp_tgt->placed_address;
15243 struct bp_location *bl;
15244 int ret;
15245
15246 bl = find_non_raw_software_breakpoint_inserted_here (aspace, address);
15247
15248 /* Only remove the raw breakpoint if there are no other non-raw
15249 breakpoints still inserted at this location. Otherwise, we would
15250 be effectively disabling those breakpoints. */
15251 if (bl == NULL)
15252 ret = target_remove_breakpoint (gdbarch, bp_tgt);
15253 else if (!VEC_empty (agent_expr_p, bl->target_info.conditions)
15254 || !VEC_empty (agent_expr_p, bl->target_info.tcommands))
15255 {
15256 /* The target is evaluating conditions, and when we inserted the
15257 software single-step breakpoint, we had made the breakpoint
15258 unconditional and command-less on the target side. Reinsert
15259 to restore the conditions/commands. */
15260 ret = target_insert_breakpoint (bl->gdbarch, &bl->target_info);
15261 }
15262 else
15263 ret = 0;
15264
15265 xfree (bp_tgt);
15266
15267 return ret;
15268 }
15269
15270 /* Create and insert a breakpoint for software single step. */
15271
15272 void
15273 insert_single_step_breakpoint (struct gdbarch *gdbarch,
15274 struct address_space *aspace,
15275 CORE_ADDR next_pc)
15276 {
15277 void **bpt_p;
15278
15279 if (single_step_breakpoints[0] == NULL)
15280 {
15281 bpt_p = &single_step_breakpoints[0];
15282 single_step_gdbarch[0] = gdbarch;
15283 }
15284 else
15285 {
15286 gdb_assert (single_step_breakpoints[1] == NULL);
15287 bpt_p = &single_step_breakpoints[1];
15288 single_step_gdbarch[1] = gdbarch;
15289 }
15290
15291 /* NOTE drow/2006-04-11: A future improvement to this function would
15292 be to only create the breakpoints once, and actually put them on
15293 the breakpoint chain. That would let us use set_raw_breakpoint.
15294 We could adjust the addresses each time they were needed. Doing
15295 this requires corresponding changes elsewhere where single step
15296 breakpoints are handled, however. So, for now, we use this. */
15297
15298 *bpt_p = deprecated_insert_raw_breakpoint (gdbarch, aspace, next_pc);
15299 if (*bpt_p == NULL)
15300 error (_("Could not insert single-step breakpoint at %s"),
15301 paddress (gdbarch, next_pc));
15302 }
15303
15304 /* Check if the breakpoints used for software single stepping
15305 were inserted or not. */
15306
15307 int
15308 single_step_breakpoints_inserted (void)
15309 {
15310 return (single_step_breakpoints[0] != NULL
15311 || single_step_breakpoints[1] != NULL);
15312 }
15313
15314 /* Remove and delete any breakpoints used for software single step. */
15315
15316 void
15317 remove_single_step_breakpoints (void)
15318 {
15319 gdb_assert (single_step_breakpoints[0] != NULL);
15320
15321 /* See insert_single_step_breakpoint for more about this deprecated
15322 call. */
15323 deprecated_remove_raw_breakpoint (single_step_gdbarch[0],
15324 single_step_breakpoints[0]);
15325 single_step_gdbarch[0] = NULL;
15326 single_step_breakpoints[0] = NULL;
15327
15328 if (single_step_breakpoints[1] != NULL)
15329 {
15330 deprecated_remove_raw_breakpoint (single_step_gdbarch[1],
15331 single_step_breakpoints[1]);
15332 single_step_gdbarch[1] = NULL;
15333 single_step_breakpoints[1] = NULL;
15334 }
15335 }
15336
15337 /* Delete software single step breakpoints without removing them from
15338 the inferior. This is intended to be used if the inferior's address
15339 space where they were inserted is already gone, e.g. after exit or
15340 exec. */
15341
15342 void
15343 cancel_single_step_breakpoints (void)
15344 {
15345 int i;
15346
15347 for (i = 0; i < 2; i++)
15348 if (single_step_breakpoints[i])
15349 {
15350 xfree (single_step_breakpoints[i]);
15351 single_step_breakpoints[i] = NULL;
15352 single_step_gdbarch[i] = NULL;
15353 }
15354 }
15355
15356 /* Detach software single-step breakpoints from INFERIOR_PTID without
15357 removing them. */
15358
15359 static void
15360 detach_single_step_breakpoints (void)
15361 {
15362 int i;
15363
15364 for (i = 0; i < 2; i++)
15365 if (single_step_breakpoints[i])
15366 target_remove_breakpoint (single_step_gdbarch[i],
15367 single_step_breakpoints[i]);
15368 }
15369
15370 /* Find the software single-step breakpoint that inserted at PC.
15371 Returns its slot if found, and -1 if not found. */
15372
15373 static int
15374 find_single_step_breakpoint (struct address_space *aspace,
15375 CORE_ADDR pc)
15376 {
15377 int i;
15378
15379 for (i = 0; i < 2; i++)
15380 {
15381 struct bp_target_info *bp_tgt = single_step_breakpoints[i];
15382 if (bp_tgt
15383 && breakpoint_address_match (bp_tgt->placed_address_space,
15384 bp_tgt->placed_address,
15385 aspace, pc))
15386 return i;
15387 }
15388
15389 return -1;
15390 }
15391
15392 /* Check whether a software single-step breakpoint is inserted at
15393 PC. */
15394
15395 int
15396 single_step_breakpoint_inserted_here_p (struct address_space *aspace,
15397 CORE_ADDR pc)
15398 {
15399 return find_single_step_breakpoint (aspace, pc) >= 0;
15400 }
15401
15402 /* Returns 0 if 'bp' is NOT a syscall catchpoint,
15403 non-zero otherwise. */
15404 static int
15405 is_syscall_catchpoint_enabled (struct breakpoint *bp)
15406 {
15407 if (syscall_catchpoint_p (bp)
15408 && bp->enable_state != bp_disabled
15409 && bp->enable_state != bp_call_disabled)
15410 return 1;
15411 else
15412 return 0;
15413 }
15414
15415 int
15416 catch_syscall_enabled (void)
15417 {
15418 struct catch_syscall_inferior_data *inf_data
15419 = get_catch_syscall_inferior_data (current_inferior ());
15420
15421 return inf_data->total_syscalls_count != 0;
15422 }
15423
15424 int
15425 catching_syscall_number (int syscall_number)
15426 {
15427 struct breakpoint *bp;
15428
15429 ALL_BREAKPOINTS (bp)
15430 if (is_syscall_catchpoint_enabled (bp))
15431 {
15432 struct syscall_catchpoint *c = (struct syscall_catchpoint *) bp;
15433
15434 if (c->syscalls_to_be_caught)
15435 {
15436 int i, iter;
15437 for (i = 0;
15438 VEC_iterate (int, c->syscalls_to_be_caught, i, iter);
15439 i++)
15440 if (syscall_number == iter)
15441 return 1;
15442 }
15443 else
15444 return 1;
15445 }
15446
15447 return 0;
15448 }
15449
15450 /* Complete syscall names. Used by "catch syscall". */
15451 static VEC (char_ptr) *
15452 catch_syscall_completer (struct cmd_list_element *cmd,
15453 const char *text, const char *word)
15454 {
15455 const char **list = get_syscall_names ();
15456 VEC (char_ptr) *retlist
15457 = (list == NULL) ? NULL : complete_on_enum (list, word, word);
15458
15459 xfree (list);
15460 return retlist;
15461 }
15462
15463 /* Tracepoint-specific operations. */
15464
15465 /* Set tracepoint count to NUM. */
15466 static void
15467 set_tracepoint_count (int num)
15468 {
15469 tracepoint_count = num;
15470 set_internalvar_integer (lookup_internalvar ("tpnum"), num);
15471 }
15472
15473 static void
15474 trace_command (char *arg, int from_tty)
15475 {
15476 struct breakpoint_ops *ops;
15477 const char *arg_cp = arg;
15478
15479 if (arg && probe_linespec_to_ops (&arg_cp))
15480 ops = &tracepoint_probe_breakpoint_ops;
15481 else
15482 ops = &tracepoint_breakpoint_ops;
15483
15484 create_breakpoint (get_current_arch (),
15485 arg,
15486 NULL, 0, NULL, 1 /* parse arg */,
15487 0 /* tempflag */,
15488 bp_tracepoint /* type_wanted */,
15489 0 /* Ignore count */,
15490 pending_break_support,
15491 ops,
15492 from_tty,
15493 1 /* enabled */,
15494 0 /* internal */, 0);
15495 }
15496
15497 static void
15498 ftrace_command (char *arg, int from_tty)
15499 {
15500 create_breakpoint (get_current_arch (),
15501 arg,
15502 NULL, 0, NULL, 1 /* parse arg */,
15503 0 /* tempflag */,
15504 bp_fast_tracepoint /* type_wanted */,
15505 0 /* Ignore count */,
15506 pending_break_support,
15507 &tracepoint_breakpoint_ops,
15508 from_tty,
15509 1 /* enabled */,
15510 0 /* internal */, 0);
15511 }
15512
15513 /* strace command implementation. Creates a static tracepoint. */
15514
15515 static void
15516 strace_command (char *arg, int from_tty)
15517 {
15518 struct breakpoint_ops *ops;
15519
15520 /* Decide if we are dealing with a static tracepoint marker (`-m'),
15521 or with a normal static tracepoint. */
15522 if (arg && strncmp (arg, "-m", 2) == 0 && isspace (arg[2]))
15523 ops = &strace_marker_breakpoint_ops;
15524 else
15525 ops = &tracepoint_breakpoint_ops;
15526
15527 create_breakpoint (get_current_arch (),
15528 arg,
15529 NULL, 0, NULL, 1 /* parse arg */,
15530 0 /* tempflag */,
15531 bp_static_tracepoint /* type_wanted */,
15532 0 /* Ignore count */,
15533 pending_break_support,
15534 ops,
15535 from_tty,
15536 1 /* enabled */,
15537 0 /* internal */, 0);
15538 }
15539
15540 /* Set up a fake reader function that gets command lines from a linked
15541 list that was acquired during tracepoint uploading. */
15542
15543 static struct uploaded_tp *this_utp;
15544 static int next_cmd;
15545
15546 static char *
15547 read_uploaded_action (void)
15548 {
15549 char *rslt;
15550
15551 VEC_iterate (char_ptr, this_utp->cmd_strings, next_cmd, rslt);
15552
15553 next_cmd++;
15554
15555 return rslt;
15556 }
15557
15558 /* Given information about a tracepoint as recorded on a target (which
15559 can be either a live system or a trace file), attempt to create an
15560 equivalent GDB tracepoint. This is not a reliable process, since
15561 the target does not necessarily have all the information used when
15562 the tracepoint was originally defined. */
15563
15564 struct tracepoint *
15565 create_tracepoint_from_upload (struct uploaded_tp *utp)
15566 {
15567 char *addr_str, small_buf[100];
15568 struct tracepoint *tp;
15569
15570 if (utp->at_string)
15571 addr_str = utp->at_string;
15572 else
15573 {
15574 /* In the absence of a source location, fall back to raw
15575 address. Since there is no way to confirm that the address
15576 means the same thing as when the trace was started, warn the
15577 user. */
15578 warning (_("Uploaded tracepoint %d has no "
15579 "source location, using raw address"),
15580 utp->number);
15581 xsnprintf (small_buf, sizeof (small_buf), "*%s", hex_string (utp->addr));
15582 addr_str = small_buf;
15583 }
15584
15585 /* There's not much we can do with a sequence of bytecodes. */
15586 if (utp->cond && !utp->cond_string)
15587 warning (_("Uploaded tracepoint %d condition "
15588 "has no source form, ignoring it"),
15589 utp->number);
15590
15591 if (!create_breakpoint (get_current_arch (),
15592 addr_str,
15593 utp->cond_string, -1, NULL,
15594 0 /* parse cond/thread */,
15595 0 /* tempflag */,
15596 utp->type /* type_wanted */,
15597 0 /* Ignore count */,
15598 pending_break_support,
15599 &tracepoint_breakpoint_ops,
15600 0 /* from_tty */,
15601 utp->enabled /* enabled */,
15602 0 /* internal */,
15603 CREATE_BREAKPOINT_FLAGS_INSERTED))
15604 return NULL;
15605
15606 /* Get the tracepoint we just created. */
15607 tp = get_tracepoint (tracepoint_count);
15608 gdb_assert (tp != NULL);
15609
15610 if (utp->pass > 0)
15611 {
15612 xsnprintf (small_buf, sizeof (small_buf), "%d %d", utp->pass,
15613 tp->base.number);
15614
15615 trace_pass_command (small_buf, 0);
15616 }
15617
15618 /* If we have uploaded versions of the original commands, set up a
15619 special-purpose "reader" function and call the usual command line
15620 reader, then pass the result to the breakpoint command-setting
15621 function. */
15622 if (!VEC_empty (char_ptr, utp->cmd_strings))
15623 {
15624 struct command_line *cmd_list;
15625
15626 this_utp = utp;
15627 next_cmd = 0;
15628
15629 cmd_list = read_command_lines_1 (read_uploaded_action, 1, NULL, NULL);
15630
15631 breakpoint_set_commands (&tp->base, cmd_list);
15632 }
15633 else if (!VEC_empty (char_ptr, utp->actions)
15634 || !VEC_empty (char_ptr, utp->step_actions))
15635 warning (_("Uploaded tracepoint %d actions "
15636 "have no source form, ignoring them"),
15637 utp->number);
15638
15639 /* Copy any status information that might be available. */
15640 tp->base.hit_count = utp->hit_count;
15641 tp->traceframe_usage = utp->traceframe_usage;
15642
15643 return tp;
15644 }
15645
15646 /* Print information on tracepoint number TPNUM_EXP, or all if
15647 omitted. */
15648
15649 static void
15650 tracepoints_info (char *args, int from_tty)
15651 {
15652 struct ui_out *uiout = current_uiout;
15653 int num_printed;
15654
15655 num_printed = breakpoint_1 (args, 0, is_tracepoint);
15656
15657 if (num_printed == 0)
15658 {
15659 if (args == NULL || *args == '\0')
15660 ui_out_message (uiout, 0, "No tracepoints.\n");
15661 else
15662 ui_out_message (uiout, 0, "No tracepoint matching '%s'.\n", args);
15663 }
15664
15665 default_collect_info ();
15666 }
15667
15668 /* The 'enable trace' command enables tracepoints.
15669 Not supported by all targets. */
15670 static void
15671 enable_trace_command (char *args, int from_tty)
15672 {
15673 enable_command (args, from_tty);
15674 }
15675
15676 /* The 'disable trace' command disables tracepoints.
15677 Not supported by all targets. */
15678 static void
15679 disable_trace_command (char *args, int from_tty)
15680 {
15681 disable_command (args, from_tty);
15682 }
15683
15684 /* Remove a tracepoint (or all if no argument). */
15685 static void
15686 delete_trace_command (char *arg, int from_tty)
15687 {
15688 struct breakpoint *b, *b_tmp;
15689
15690 dont_repeat ();
15691
15692 if (arg == 0)
15693 {
15694 int breaks_to_delete = 0;
15695
15696 /* Delete all breakpoints if no argument.
15697 Do not delete internal or call-dummy breakpoints, these
15698 have to be deleted with an explicit breakpoint number
15699 argument. */
15700 ALL_TRACEPOINTS (b)
15701 if (is_tracepoint (b) && user_breakpoint_p (b))
15702 {
15703 breaks_to_delete = 1;
15704 break;
15705 }
15706
15707 /* Ask user only if there are some breakpoints to delete. */
15708 if (!from_tty
15709 || (breaks_to_delete && query (_("Delete all tracepoints? "))))
15710 {
15711 ALL_BREAKPOINTS_SAFE (b, b_tmp)
15712 if (is_tracepoint (b) && user_breakpoint_p (b))
15713 delete_breakpoint (b);
15714 }
15715 }
15716 else
15717 map_breakpoint_numbers (arg, do_map_delete_breakpoint, NULL);
15718 }
15719
15720 /* Helper function for trace_pass_command. */
15721
15722 static void
15723 trace_pass_set_count (struct tracepoint *tp, int count, int from_tty)
15724 {
15725 tp->pass_count = count;
15726 observer_notify_breakpoint_modified (&tp->base);
15727 if (from_tty)
15728 printf_filtered (_("Setting tracepoint %d's passcount to %d\n"),
15729 tp->base.number, count);
15730 }
15731
15732 /* Set passcount for tracepoint.
15733
15734 First command argument is passcount, second is tracepoint number.
15735 If tracepoint number omitted, apply to most recently defined.
15736 Also accepts special argument "all". */
15737
15738 static void
15739 trace_pass_command (char *args, int from_tty)
15740 {
15741 struct tracepoint *t1;
15742 unsigned int count;
15743
15744 if (args == 0 || *args == 0)
15745 error (_("passcount command requires an "
15746 "argument (count + optional TP num)"));
15747
15748 count = strtoul (args, &args, 10); /* Count comes first, then TP num. */
15749
15750 args = skip_spaces (args);
15751 if (*args && strncasecmp (args, "all", 3) == 0)
15752 {
15753 struct breakpoint *b;
15754
15755 args += 3; /* Skip special argument "all". */
15756 if (*args)
15757 error (_("Junk at end of arguments."));
15758
15759 ALL_TRACEPOINTS (b)
15760 {
15761 t1 = (struct tracepoint *) b;
15762 trace_pass_set_count (t1, count, from_tty);
15763 }
15764 }
15765 else if (*args == '\0')
15766 {
15767 t1 = get_tracepoint_by_number (&args, NULL);
15768 if (t1)
15769 trace_pass_set_count (t1, count, from_tty);
15770 }
15771 else
15772 {
15773 struct get_number_or_range_state state;
15774
15775 init_number_or_range (&state, args);
15776 while (!state.finished)
15777 {
15778 t1 = get_tracepoint_by_number (&args, &state);
15779 if (t1)
15780 trace_pass_set_count (t1, count, from_tty);
15781 }
15782 }
15783 }
15784
15785 struct tracepoint *
15786 get_tracepoint (int num)
15787 {
15788 struct breakpoint *t;
15789
15790 ALL_TRACEPOINTS (t)
15791 if (t->number == num)
15792 return (struct tracepoint *) t;
15793
15794 return NULL;
15795 }
15796
15797 /* Find the tracepoint with the given target-side number (which may be
15798 different from the tracepoint number after disconnecting and
15799 reconnecting). */
15800
15801 struct tracepoint *
15802 get_tracepoint_by_number_on_target (int num)
15803 {
15804 struct breakpoint *b;
15805
15806 ALL_TRACEPOINTS (b)
15807 {
15808 struct tracepoint *t = (struct tracepoint *) b;
15809
15810 if (t->number_on_target == num)
15811 return t;
15812 }
15813
15814 return NULL;
15815 }
15816
15817 /* Utility: parse a tracepoint number and look it up in the list.
15818 If STATE is not NULL, use, get_number_or_range_state and ignore ARG.
15819 If the argument is missing, the most recent tracepoint
15820 (tracepoint_count) is returned. */
15821
15822 struct tracepoint *
15823 get_tracepoint_by_number (char **arg,
15824 struct get_number_or_range_state *state)
15825 {
15826 struct breakpoint *t;
15827 int tpnum;
15828 char *instring = arg == NULL ? NULL : *arg;
15829
15830 if (state)
15831 {
15832 gdb_assert (!state->finished);
15833 tpnum = get_number_or_range (state);
15834 }
15835 else if (arg == NULL || *arg == NULL || ! **arg)
15836 tpnum = tracepoint_count;
15837 else
15838 tpnum = get_number (arg);
15839
15840 if (tpnum <= 0)
15841 {
15842 if (instring && *instring)
15843 printf_filtered (_("bad tracepoint number at or near '%s'\n"),
15844 instring);
15845 else
15846 printf_filtered (_("No previous tracepoint\n"));
15847 return NULL;
15848 }
15849
15850 ALL_TRACEPOINTS (t)
15851 if (t->number == tpnum)
15852 {
15853 return (struct tracepoint *) t;
15854 }
15855
15856 printf_unfiltered ("No tracepoint number %d.\n", tpnum);
15857 return NULL;
15858 }
15859
15860 void
15861 print_recreate_thread (struct breakpoint *b, struct ui_file *fp)
15862 {
15863 if (b->thread != -1)
15864 fprintf_unfiltered (fp, " thread %d", b->thread);
15865
15866 if (b->task != 0)
15867 fprintf_unfiltered (fp, " task %d", b->task);
15868
15869 fprintf_unfiltered (fp, "\n");
15870 }
15871
15872 /* Save information on user settable breakpoints (watchpoints, etc) to
15873 a new script file named FILENAME. If FILTER is non-NULL, call it
15874 on each breakpoint and only include the ones for which it returns
15875 non-zero. */
15876
15877 static void
15878 save_breakpoints (char *filename, int from_tty,
15879 int (*filter) (const struct breakpoint *))
15880 {
15881 struct breakpoint *tp;
15882 int any = 0;
15883 struct cleanup *cleanup;
15884 struct ui_file *fp;
15885 int extra_trace_bits = 0;
15886
15887 if (filename == 0 || *filename == 0)
15888 error (_("Argument required (file name in which to save)"));
15889
15890 /* See if we have anything to save. */
15891 ALL_BREAKPOINTS (tp)
15892 {
15893 /* Skip internal and momentary breakpoints. */
15894 if (!user_breakpoint_p (tp))
15895 continue;
15896
15897 /* If we have a filter, only save the breakpoints it accepts. */
15898 if (filter && !filter (tp))
15899 continue;
15900
15901 any = 1;
15902
15903 if (is_tracepoint (tp))
15904 {
15905 extra_trace_bits = 1;
15906
15907 /* We can stop searching. */
15908 break;
15909 }
15910 }
15911
15912 if (!any)
15913 {
15914 warning (_("Nothing to save."));
15915 return;
15916 }
15917
15918 filename = tilde_expand (filename);
15919 cleanup = make_cleanup (xfree, filename);
15920 fp = gdb_fopen (filename, "w");
15921 if (!fp)
15922 error (_("Unable to open file '%s' for saving (%s)"),
15923 filename, safe_strerror (errno));
15924 make_cleanup_ui_file_delete (fp);
15925
15926 if (extra_trace_bits)
15927 save_trace_state_variables (fp);
15928
15929 ALL_BREAKPOINTS (tp)
15930 {
15931 /* Skip internal and momentary breakpoints. */
15932 if (!user_breakpoint_p (tp))
15933 continue;
15934
15935 /* If we have a filter, only save the breakpoints it accepts. */
15936 if (filter && !filter (tp))
15937 continue;
15938
15939 tp->ops->print_recreate (tp, fp);
15940
15941 /* Note, we can't rely on tp->number for anything, as we can't
15942 assume the recreated breakpoint numbers will match. Use $bpnum
15943 instead. */
15944
15945 if (tp->cond_string)
15946 fprintf_unfiltered (fp, " condition $bpnum %s\n", tp->cond_string);
15947
15948 if (tp->ignore_count)
15949 fprintf_unfiltered (fp, " ignore $bpnum %d\n", tp->ignore_count);
15950
15951 if (tp->type != bp_dprintf && tp->commands)
15952 {
15953 volatile struct gdb_exception ex;
15954
15955 fprintf_unfiltered (fp, " commands\n");
15956
15957 ui_out_redirect (current_uiout, fp);
15958 TRY_CATCH (ex, RETURN_MASK_ALL)
15959 {
15960 print_command_lines (current_uiout, tp->commands->commands, 2);
15961 }
15962 ui_out_redirect (current_uiout, NULL);
15963
15964 if (ex.reason < 0)
15965 throw_exception (ex);
15966
15967 fprintf_unfiltered (fp, " end\n");
15968 }
15969
15970 if (tp->enable_state == bp_disabled)
15971 fprintf_unfiltered (fp, "disable\n");
15972
15973 /* If this is a multi-location breakpoint, check if the locations
15974 should be individually disabled. Watchpoint locations are
15975 special, and not user visible. */
15976 if (!is_watchpoint (tp) && tp->loc && tp->loc->next)
15977 {
15978 struct bp_location *loc;
15979 int n = 1;
15980
15981 for (loc = tp->loc; loc != NULL; loc = loc->next, n++)
15982 if (!loc->enabled)
15983 fprintf_unfiltered (fp, "disable $bpnum.%d\n", n);
15984 }
15985 }
15986
15987 if (extra_trace_bits && *default_collect)
15988 fprintf_unfiltered (fp, "set default-collect %s\n", default_collect);
15989
15990 if (from_tty)
15991 printf_filtered (_("Saved to file '%s'.\n"), filename);
15992 do_cleanups (cleanup);
15993 }
15994
15995 /* The `save breakpoints' command. */
15996
15997 static void
15998 save_breakpoints_command (char *args, int from_tty)
15999 {
16000 save_breakpoints (args, from_tty, NULL);
16001 }
16002
16003 /* The `save tracepoints' command. */
16004
16005 static void
16006 save_tracepoints_command (char *args, int from_tty)
16007 {
16008 save_breakpoints (args, from_tty, is_tracepoint);
16009 }
16010
16011 /* Create a vector of all tracepoints. */
16012
16013 VEC(breakpoint_p) *
16014 all_tracepoints (void)
16015 {
16016 VEC(breakpoint_p) *tp_vec = 0;
16017 struct breakpoint *tp;
16018
16019 ALL_TRACEPOINTS (tp)
16020 {
16021 VEC_safe_push (breakpoint_p, tp_vec, tp);
16022 }
16023
16024 return tp_vec;
16025 }
16026
16027 \f
16028 /* This help string is used for the break, hbreak, tbreak and thbreak
16029 commands. It is defined as a macro to prevent duplication.
16030 COMMAND should be a string constant containing the name of the
16031 command. */
16032 #define BREAK_ARGS_HELP(command) \
16033 command" [PROBE_MODIFIER] [LOCATION] [thread THREADNUM] [if CONDITION]\n\
16034 PROBE_MODIFIER shall be present if the command is to be placed in a\n\
16035 probe point. Accepted values are `-probe' (for a generic, automatically\n\
16036 guessed probe type) or `-probe-stap' (for a SystemTap probe).\n\
16037 LOCATION may be a line number, function name, or \"*\" and an address.\n\
16038 If a line number is specified, break at start of code for that line.\n\
16039 If a function is specified, break at start of code for that function.\n\
16040 If an address is specified, break at that exact address.\n\
16041 With no LOCATION, uses current execution address of the selected\n\
16042 stack frame. This is useful for breaking on return to a stack frame.\n\
16043 \n\
16044 THREADNUM is the number from \"info threads\".\n\
16045 CONDITION is a boolean expression.\n\
16046 \n\
16047 Multiple breakpoints at one place are permitted, and useful if their\n\
16048 conditions are different.\n\
16049 \n\
16050 Do \"help breakpoints\" for info on other commands dealing with breakpoints."
16051
16052 /* List of subcommands for "catch". */
16053 static struct cmd_list_element *catch_cmdlist;
16054
16055 /* List of subcommands for "tcatch". */
16056 static struct cmd_list_element *tcatch_cmdlist;
16057
16058 void
16059 add_catch_command (char *name, char *docstring,
16060 cmd_sfunc_ftype *sfunc,
16061 completer_ftype *completer,
16062 void *user_data_catch,
16063 void *user_data_tcatch)
16064 {
16065 struct cmd_list_element *command;
16066
16067 command = add_cmd (name, class_breakpoint, NULL, docstring,
16068 &catch_cmdlist);
16069 set_cmd_sfunc (command, sfunc);
16070 set_cmd_context (command, user_data_catch);
16071 set_cmd_completer (command, completer);
16072
16073 command = add_cmd (name, class_breakpoint, NULL, docstring,
16074 &tcatch_cmdlist);
16075 set_cmd_sfunc (command, sfunc);
16076 set_cmd_context (command, user_data_tcatch);
16077 set_cmd_completer (command, completer);
16078 }
16079
16080 static void
16081 clear_syscall_counts (struct inferior *inf)
16082 {
16083 struct catch_syscall_inferior_data *inf_data
16084 = get_catch_syscall_inferior_data (inf);
16085
16086 inf_data->total_syscalls_count = 0;
16087 inf_data->any_syscall_count = 0;
16088 VEC_free (int, inf_data->syscalls_counts);
16089 }
16090
16091 static void
16092 save_command (char *arg, int from_tty)
16093 {
16094 printf_unfiltered (_("\"save\" must be followed by "
16095 "the name of a save subcommand.\n"));
16096 help_list (save_cmdlist, "save ", all_commands, gdb_stdout);
16097 }
16098
16099 struct breakpoint *
16100 iterate_over_breakpoints (int (*callback) (struct breakpoint *, void *),
16101 void *data)
16102 {
16103 struct breakpoint *b, *b_tmp;
16104
16105 ALL_BREAKPOINTS_SAFE (b, b_tmp)
16106 {
16107 if ((*callback) (b, data))
16108 return b;
16109 }
16110
16111 return NULL;
16112 }
16113
16114 /* Zero if any of the breakpoint's locations could be a location where
16115 functions have been inlined, nonzero otherwise. */
16116
16117 static int
16118 is_non_inline_function (struct breakpoint *b)
16119 {
16120 /* The shared library event breakpoint is set on the address of a
16121 non-inline function. */
16122 if (b->type == bp_shlib_event)
16123 return 1;
16124
16125 return 0;
16126 }
16127
16128 /* Nonzero if the specified PC cannot be a location where functions
16129 have been inlined. */
16130
16131 int
16132 pc_at_non_inline_function (struct address_space *aspace, CORE_ADDR pc,
16133 const struct target_waitstatus *ws)
16134 {
16135 struct breakpoint *b;
16136 struct bp_location *bl;
16137
16138 ALL_BREAKPOINTS (b)
16139 {
16140 if (!is_non_inline_function (b))
16141 continue;
16142
16143 for (bl = b->loc; bl != NULL; bl = bl->next)
16144 {
16145 if (!bl->shlib_disabled
16146 && bpstat_check_location (bl, aspace, pc, ws))
16147 return 1;
16148 }
16149 }
16150
16151 return 0;
16152 }
16153
16154 /* Remove any references to OBJFILE which is going to be freed. */
16155
16156 void
16157 breakpoint_free_objfile (struct objfile *objfile)
16158 {
16159 struct bp_location **locp, *loc;
16160
16161 ALL_BP_LOCATIONS (loc, locp)
16162 if (loc->symtab != NULL && loc->symtab->objfile == objfile)
16163 loc->symtab = NULL;
16164 }
16165
16166 void
16167 initialize_breakpoint_ops (void)
16168 {
16169 static int initialized = 0;
16170
16171 struct breakpoint_ops *ops;
16172
16173 if (initialized)
16174 return;
16175 initialized = 1;
16176
16177 /* The breakpoint_ops structure to be inherit by all kinds of
16178 breakpoints (real breakpoints, i.e., user "break" breakpoints,
16179 internal and momentary breakpoints, etc.). */
16180 ops = &bkpt_base_breakpoint_ops;
16181 *ops = base_breakpoint_ops;
16182 ops->re_set = bkpt_re_set;
16183 ops->insert_location = bkpt_insert_location;
16184 ops->remove_location = bkpt_remove_location;
16185 ops->breakpoint_hit = bkpt_breakpoint_hit;
16186 ops->create_sals_from_address = bkpt_create_sals_from_address;
16187 ops->create_breakpoints_sal = bkpt_create_breakpoints_sal;
16188 ops->decode_linespec = bkpt_decode_linespec;
16189
16190 /* The breakpoint_ops structure to be used in regular breakpoints. */
16191 ops = &bkpt_breakpoint_ops;
16192 *ops = bkpt_base_breakpoint_ops;
16193 ops->re_set = bkpt_re_set;
16194 ops->resources_needed = bkpt_resources_needed;
16195 ops->print_it = bkpt_print_it;
16196 ops->print_mention = bkpt_print_mention;
16197 ops->print_recreate = bkpt_print_recreate;
16198
16199 /* Ranged breakpoints. */
16200 ops = &ranged_breakpoint_ops;
16201 *ops = bkpt_breakpoint_ops;
16202 ops->breakpoint_hit = breakpoint_hit_ranged_breakpoint;
16203 ops->resources_needed = resources_needed_ranged_breakpoint;
16204 ops->print_it = print_it_ranged_breakpoint;
16205 ops->print_one = print_one_ranged_breakpoint;
16206 ops->print_one_detail = print_one_detail_ranged_breakpoint;
16207 ops->print_mention = print_mention_ranged_breakpoint;
16208 ops->print_recreate = print_recreate_ranged_breakpoint;
16209
16210 /* Internal breakpoints. */
16211 ops = &internal_breakpoint_ops;
16212 *ops = bkpt_base_breakpoint_ops;
16213 ops->re_set = internal_bkpt_re_set;
16214 ops->check_status = internal_bkpt_check_status;
16215 ops->print_it = internal_bkpt_print_it;
16216 ops->print_mention = internal_bkpt_print_mention;
16217
16218 /* Momentary breakpoints. */
16219 ops = &momentary_breakpoint_ops;
16220 *ops = bkpt_base_breakpoint_ops;
16221 ops->re_set = momentary_bkpt_re_set;
16222 ops->check_status = momentary_bkpt_check_status;
16223 ops->print_it = momentary_bkpt_print_it;
16224 ops->print_mention = momentary_bkpt_print_mention;
16225
16226 /* Momentary breakpoints for bp_longjmp and bp_exception. */
16227 ops = &longjmp_breakpoint_ops;
16228 *ops = momentary_breakpoint_ops;
16229 ops->dtor = longjmp_bkpt_dtor;
16230
16231 /* Probe breakpoints. */
16232 ops = &bkpt_probe_breakpoint_ops;
16233 *ops = bkpt_breakpoint_ops;
16234 ops->insert_location = bkpt_probe_insert_location;
16235 ops->remove_location = bkpt_probe_remove_location;
16236 ops->create_sals_from_address = bkpt_probe_create_sals_from_address;
16237 ops->decode_linespec = bkpt_probe_decode_linespec;
16238
16239 /* Watchpoints. */
16240 ops = &watchpoint_breakpoint_ops;
16241 *ops = base_breakpoint_ops;
16242 ops->dtor = dtor_watchpoint;
16243 ops->re_set = re_set_watchpoint;
16244 ops->insert_location = insert_watchpoint;
16245 ops->remove_location = remove_watchpoint;
16246 ops->breakpoint_hit = breakpoint_hit_watchpoint;
16247 ops->check_status = check_status_watchpoint;
16248 ops->resources_needed = resources_needed_watchpoint;
16249 ops->works_in_software_mode = works_in_software_mode_watchpoint;
16250 ops->print_it = print_it_watchpoint;
16251 ops->print_mention = print_mention_watchpoint;
16252 ops->print_recreate = print_recreate_watchpoint;
16253 ops->explains_signal = explains_signal_watchpoint;
16254
16255 /* Masked watchpoints. */
16256 ops = &masked_watchpoint_breakpoint_ops;
16257 *ops = watchpoint_breakpoint_ops;
16258 ops->insert_location = insert_masked_watchpoint;
16259 ops->remove_location = remove_masked_watchpoint;
16260 ops->resources_needed = resources_needed_masked_watchpoint;
16261 ops->works_in_software_mode = works_in_software_mode_masked_watchpoint;
16262 ops->print_it = print_it_masked_watchpoint;
16263 ops->print_one_detail = print_one_detail_masked_watchpoint;
16264 ops->print_mention = print_mention_masked_watchpoint;
16265 ops->print_recreate = print_recreate_masked_watchpoint;
16266
16267 /* Tracepoints. */
16268 ops = &tracepoint_breakpoint_ops;
16269 *ops = base_breakpoint_ops;
16270 ops->re_set = tracepoint_re_set;
16271 ops->breakpoint_hit = tracepoint_breakpoint_hit;
16272 ops->print_one_detail = tracepoint_print_one_detail;
16273 ops->print_mention = tracepoint_print_mention;
16274 ops->print_recreate = tracepoint_print_recreate;
16275 ops->create_sals_from_address = tracepoint_create_sals_from_address;
16276 ops->create_breakpoints_sal = tracepoint_create_breakpoints_sal;
16277 ops->decode_linespec = tracepoint_decode_linespec;
16278
16279 /* Probe tracepoints. */
16280 ops = &tracepoint_probe_breakpoint_ops;
16281 *ops = tracepoint_breakpoint_ops;
16282 ops->create_sals_from_address = tracepoint_probe_create_sals_from_address;
16283 ops->decode_linespec = tracepoint_probe_decode_linespec;
16284
16285 /* Static tracepoints with marker (`-m'). */
16286 ops = &strace_marker_breakpoint_ops;
16287 *ops = tracepoint_breakpoint_ops;
16288 ops->create_sals_from_address = strace_marker_create_sals_from_address;
16289 ops->create_breakpoints_sal = strace_marker_create_breakpoints_sal;
16290 ops->decode_linespec = strace_marker_decode_linespec;
16291
16292 /* Fork catchpoints. */
16293 ops = &catch_fork_breakpoint_ops;
16294 *ops = base_breakpoint_ops;
16295 ops->insert_location = insert_catch_fork;
16296 ops->remove_location = remove_catch_fork;
16297 ops->breakpoint_hit = breakpoint_hit_catch_fork;
16298 ops->print_it = print_it_catch_fork;
16299 ops->print_one = print_one_catch_fork;
16300 ops->print_mention = print_mention_catch_fork;
16301 ops->print_recreate = print_recreate_catch_fork;
16302
16303 /* Vfork catchpoints. */
16304 ops = &catch_vfork_breakpoint_ops;
16305 *ops = base_breakpoint_ops;
16306 ops->insert_location = insert_catch_vfork;
16307 ops->remove_location = remove_catch_vfork;
16308 ops->breakpoint_hit = breakpoint_hit_catch_vfork;
16309 ops->print_it = print_it_catch_vfork;
16310 ops->print_one = print_one_catch_vfork;
16311 ops->print_mention = print_mention_catch_vfork;
16312 ops->print_recreate = print_recreate_catch_vfork;
16313
16314 /* Exec catchpoints. */
16315 ops = &catch_exec_breakpoint_ops;
16316 *ops = base_breakpoint_ops;
16317 ops->dtor = dtor_catch_exec;
16318 ops->insert_location = insert_catch_exec;
16319 ops->remove_location = remove_catch_exec;
16320 ops->breakpoint_hit = breakpoint_hit_catch_exec;
16321 ops->print_it = print_it_catch_exec;
16322 ops->print_one = print_one_catch_exec;
16323 ops->print_mention = print_mention_catch_exec;
16324 ops->print_recreate = print_recreate_catch_exec;
16325
16326 /* Syscall catchpoints. */
16327 ops = &catch_syscall_breakpoint_ops;
16328 *ops = base_breakpoint_ops;
16329 ops->dtor = dtor_catch_syscall;
16330 ops->insert_location = insert_catch_syscall;
16331 ops->remove_location = remove_catch_syscall;
16332 ops->breakpoint_hit = breakpoint_hit_catch_syscall;
16333 ops->print_it = print_it_catch_syscall;
16334 ops->print_one = print_one_catch_syscall;
16335 ops->print_mention = print_mention_catch_syscall;
16336 ops->print_recreate = print_recreate_catch_syscall;
16337
16338 /* Solib-related catchpoints. */
16339 ops = &catch_solib_breakpoint_ops;
16340 *ops = base_breakpoint_ops;
16341 ops->dtor = dtor_catch_solib;
16342 ops->insert_location = insert_catch_solib;
16343 ops->remove_location = remove_catch_solib;
16344 ops->breakpoint_hit = breakpoint_hit_catch_solib;
16345 ops->check_status = check_status_catch_solib;
16346 ops->print_it = print_it_catch_solib;
16347 ops->print_one = print_one_catch_solib;
16348 ops->print_mention = print_mention_catch_solib;
16349 ops->print_recreate = print_recreate_catch_solib;
16350
16351 ops = &dprintf_breakpoint_ops;
16352 *ops = bkpt_base_breakpoint_ops;
16353 ops->re_set = dprintf_re_set;
16354 ops->resources_needed = bkpt_resources_needed;
16355 ops->print_it = bkpt_print_it;
16356 ops->print_mention = bkpt_print_mention;
16357 ops->print_recreate = dprintf_print_recreate;
16358 ops->after_condition_true = dprintf_after_condition_true;
16359 ops->breakpoint_hit = dprintf_breakpoint_hit;
16360 }
16361
16362 /* Chain containing all defined "enable breakpoint" subcommands. */
16363
16364 static struct cmd_list_element *enablebreaklist = NULL;
16365
16366 void
16367 _initialize_breakpoint (void)
16368 {
16369 struct cmd_list_element *c;
16370
16371 initialize_breakpoint_ops ();
16372
16373 observer_attach_solib_unloaded (disable_breakpoints_in_unloaded_shlib);
16374 observer_attach_free_objfile (disable_breakpoints_in_freed_objfile);
16375 observer_attach_inferior_exit (clear_syscall_counts);
16376 observer_attach_memory_changed (invalidate_bp_value_on_memory_change);
16377
16378 breakpoint_objfile_key
16379 = register_objfile_data_with_cleanup (NULL, free_breakpoint_probes);
16380
16381 catch_syscall_inferior_data
16382 = register_inferior_data_with_cleanup (NULL,
16383 catch_syscall_inferior_data_cleanup);
16384
16385 breakpoint_chain = 0;
16386 /* Don't bother to call set_breakpoint_count. $bpnum isn't useful
16387 before a breakpoint is set. */
16388 breakpoint_count = 0;
16389
16390 tracepoint_count = 0;
16391
16392 add_com ("ignore", class_breakpoint, ignore_command, _("\
16393 Set ignore-count of breakpoint number N to COUNT.\n\
16394 Usage is `ignore N COUNT'."));
16395 if (xdb_commands)
16396 add_com_alias ("bc", "ignore", class_breakpoint, 1);
16397
16398 add_com ("commands", class_breakpoint, commands_command, _("\
16399 Set commands to be executed when a breakpoint is hit.\n\
16400 Give breakpoint number as argument after \"commands\".\n\
16401 With no argument, the targeted breakpoint is the last one set.\n\
16402 The commands themselves follow starting on the next line.\n\
16403 Type a line containing \"end\" to indicate the end of them.\n\
16404 Give \"silent\" as the first line to make the breakpoint silent;\n\
16405 then no output is printed when it is hit, except what the commands print."));
16406
16407 c = add_com ("condition", class_breakpoint, condition_command, _("\
16408 Specify breakpoint number N to break only if COND is true.\n\
16409 Usage is `condition N COND', where N is an integer and COND is an\n\
16410 expression to be evaluated whenever breakpoint N is reached."));
16411 set_cmd_completer (c, condition_completer);
16412
16413 c = add_com ("tbreak", class_breakpoint, tbreak_command, _("\
16414 Set a temporary breakpoint.\n\
16415 Like \"break\" except the breakpoint is only temporary,\n\
16416 so it will be deleted when hit. Equivalent to \"break\" followed\n\
16417 by using \"enable delete\" on the breakpoint number.\n\
16418 \n"
16419 BREAK_ARGS_HELP ("tbreak")));
16420 set_cmd_completer (c, location_completer);
16421
16422 c = add_com ("hbreak", class_breakpoint, hbreak_command, _("\
16423 Set a hardware assisted breakpoint.\n\
16424 Like \"break\" except the breakpoint requires hardware support,\n\
16425 some target hardware may not have this support.\n\
16426 \n"
16427 BREAK_ARGS_HELP ("hbreak")));
16428 set_cmd_completer (c, location_completer);
16429
16430 c = add_com ("thbreak", class_breakpoint, thbreak_command, _("\
16431 Set a temporary hardware assisted breakpoint.\n\
16432 Like \"hbreak\" except the breakpoint is only temporary,\n\
16433 so it will be deleted when hit.\n\
16434 \n"
16435 BREAK_ARGS_HELP ("thbreak")));
16436 set_cmd_completer (c, location_completer);
16437
16438 add_prefix_cmd ("enable", class_breakpoint, enable_command, _("\
16439 Enable some breakpoints.\n\
16440 Give breakpoint numbers (separated by spaces) as arguments.\n\
16441 With no subcommand, breakpoints are enabled until you command otherwise.\n\
16442 This is used to cancel the effect of the \"disable\" command.\n\
16443 With a subcommand you can enable temporarily."),
16444 &enablelist, "enable ", 1, &cmdlist);
16445 if (xdb_commands)
16446 add_com ("ab", class_breakpoint, enable_command, _("\
16447 Enable some breakpoints.\n\
16448 Give breakpoint numbers (separated by spaces) as arguments.\n\
16449 With no subcommand, breakpoints are enabled until you command otherwise.\n\
16450 This is used to cancel the effect of the \"disable\" command.\n\
16451 With a subcommand you can enable temporarily."));
16452
16453 add_com_alias ("en", "enable", class_breakpoint, 1);
16454
16455 add_prefix_cmd ("breakpoints", class_breakpoint, enable_command, _("\
16456 Enable some breakpoints.\n\
16457 Give breakpoint numbers (separated by spaces) as arguments.\n\
16458 This is used to cancel the effect of the \"disable\" command.\n\
16459 May be abbreviated to simply \"enable\".\n"),
16460 &enablebreaklist, "enable breakpoints ", 1, &enablelist);
16461
16462 add_cmd ("once", no_class, enable_once_command, _("\
16463 Enable breakpoints for one hit. Give breakpoint numbers.\n\
16464 If a breakpoint is hit while enabled in this fashion, it becomes disabled."),
16465 &enablebreaklist);
16466
16467 add_cmd ("delete", no_class, enable_delete_command, _("\
16468 Enable breakpoints and delete when hit. Give breakpoint numbers.\n\
16469 If a breakpoint is hit while enabled in this fashion, it is deleted."),
16470 &enablebreaklist);
16471
16472 add_cmd ("count", no_class, enable_count_command, _("\
16473 Enable breakpoints for COUNT hits. Give count and then breakpoint numbers.\n\
16474 If a breakpoint is hit while enabled in this fashion,\n\
16475 the count is decremented; when it reaches zero, the breakpoint is disabled."),
16476 &enablebreaklist);
16477
16478 add_cmd ("delete", no_class, enable_delete_command, _("\
16479 Enable breakpoints and delete when hit. Give breakpoint numbers.\n\
16480 If a breakpoint is hit while enabled in this fashion, it is deleted."),
16481 &enablelist);
16482
16483 add_cmd ("once", no_class, enable_once_command, _("\
16484 Enable breakpoints for one hit. Give breakpoint numbers.\n\
16485 If a breakpoint is hit while enabled in this fashion, it becomes disabled."),
16486 &enablelist);
16487
16488 add_cmd ("count", no_class, enable_count_command, _("\
16489 Enable breakpoints for COUNT hits. Give count and then breakpoint numbers.\n\
16490 If a breakpoint is hit while enabled in this fashion,\n\
16491 the count is decremented; when it reaches zero, the breakpoint is disabled."),
16492 &enablelist);
16493
16494 add_prefix_cmd ("disable", class_breakpoint, disable_command, _("\
16495 Disable some breakpoints.\n\
16496 Arguments are breakpoint numbers with spaces in between.\n\
16497 To disable all breakpoints, give no argument.\n\
16498 A disabled breakpoint is not forgotten, but has no effect until re-enabled."),
16499 &disablelist, "disable ", 1, &cmdlist);
16500 add_com_alias ("dis", "disable", class_breakpoint, 1);
16501 add_com_alias ("disa", "disable", class_breakpoint, 1);
16502 if (xdb_commands)
16503 add_com ("sb", class_breakpoint, disable_command, _("\
16504 Disable some breakpoints.\n\
16505 Arguments are breakpoint numbers with spaces in between.\n\
16506 To disable all breakpoints, give no argument.\n\
16507 A disabled breakpoint is not forgotten, but has no effect until re-enabled."));
16508
16509 add_cmd ("breakpoints", class_alias, disable_command, _("\
16510 Disable some breakpoints.\n\
16511 Arguments are breakpoint numbers with spaces in between.\n\
16512 To disable all breakpoints, give no argument.\n\
16513 A disabled breakpoint is not forgotten, but has no effect until re-enabled.\n\
16514 This command may be abbreviated \"disable\"."),
16515 &disablelist);
16516
16517 add_prefix_cmd ("delete", class_breakpoint, delete_command, _("\
16518 Delete some breakpoints or auto-display expressions.\n\
16519 Arguments are breakpoint numbers with spaces in between.\n\
16520 To delete all breakpoints, give no argument.\n\
16521 \n\
16522 Also a prefix command for deletion of other GDB objects.\n\
16523 The \"unset\" command is also an alias for \"delete\"."),
16524 &deletelist, "delete ", 1, &cmdlist);
16525 add_com_alias ("d", "delete", class_breakpoint, 1);
16526 add_com_alias ("del", "delete", class_breakpoint, 1);
16527 if (xdb_commands)
16528 add_com ("db", class_breakpoint, delete_command, _("\
16529 Delete some breakpoints.\n\
16530 Arguments are breakpoint numbers with spaces in between.\n\
16531 To delete all breakpoints, give no argument.\n"));
16532
16533 add_cmd ("breakpoints", class_alias, delete_command, _("\
16534 Delete some breakpoints or auto-display expressions.\n\
16535 Arguments are breakpoint numbers with spaces in between.\n\
16536 To delete all breakpoints, give no argument.\n\
16537 This command may be abbreviated \"delete\"."),
16538 &deletelist);
16539
16540 add_com ("clear", class_breakpoint, clear_command, _("\
16541 Clear breakpoint at specified line or function.\n\
16542 Argument may be line number, function name, or \"*\" and an address.\n\
16543 If line number is specified, all breakpoints in that line are cleared.\n\
16544 If function is specified, breakpoints at beginning of function are cleared.\n\
16545 If an address is specified, breakpoints at that address are cleared.\n\
16546 \n\
16547 With no argument, clears all breakpoints in the line that the selected frame\n\
16548 is executing in.\n\
16549 \n\
16550 See also the \"delete\" command which clears breakpoints by number."));
16551 add_com_alias ("cl", "clear", class_breakpoint, 1);
16552
16553 c = add_com ("break", class_breakpoint, break_command, _("\
16554 Set breakpoint at specified line or function.\n"
16555 BREAK_ARGS_HELP ("break")));
16556 set_cmd_completer (c, location_completer);
16557
16558 add_com_alias ("b", "break", class_run, 1);
16559 add_com_alias ("br", "break", class_run, 1);
16560 add_com_alias ("bre", "break", class_run, 1);
16561 add_com_alias ("brea", "break", class_run, 1);
16562
16563 if (xdb_commands)
16564 add_com_alias ("ba", "break", class_breakpoint, 1);
16565
16566 if (dbx_commands)
16567 {
16568 add_abbrev_prefix_cmd ("stop", class_breakpoint, stop_command, _("\
16569 Break in function/address or break at a line in the current file."),
16570 &stoplist, "stop ", 1, &cmdlist);
16571 add_cmd ("in", class_breakpoint, stopin_command,
16572 _("Break in function or address."), &stoplist);
16573 add_cmd ("at", class_breakpoint, stopat_command,
16574 _("Break at a line in the current file."), &stoplist);
16575 add_com ("status", class_info, breakpoints_info, _("\
16576 Status of user-settable breakpoints, or breakpoint number NUMBER.\n\
16577 The \"Type\" column indicates one of:\n\
16578 \tbreakpoint - normal breakpoint\n\
16579 \twatchpoint - watchpoint\n\
16580 The \"Disp\" column contains one of \"keep\", \"del\", or \"dis\" to indicate\n\
16581 the disposition of the breakpoint after it gets hit. \"dis\" means that the\n\
16582 breakpoint will be disabled. The \"Address\" and \"What\" columns indicate the\n\
16583 address and file/line number respectively.\n\
16584 \n\
16585 Convenience variable \"$_\" and default examine address for \"x\"\n\
16586 are set to the address of the last breakpoint listed unless the command\n\
16587 is prefixed with \"server \".\n\n\
16588 Convenience variable \"$bpnum\" contains the number of the last\n\
16589 breakpoint set."));
16590 }
16591
16592 add_info ("breakpoints", breakpoints_info, _("\
16593 Status of specified breakpoints (all user-settable breakpoints if no argument).\n\
16594 The \"Type\" column indicates one of:\n\
16595 \tbreakpoint - normal breakpoint\n\
16596 \twatchpoint - watchpoint\n\
16597 The \"Disp\" column contains one of \"keep\", \"del\", or \"dis\" to indicate\n\
16598 the disposition of the breakpoint after it gets hit. \"dis\" means that the\n\
16599 breakpoint will be disabled. The \"Address\" and \"What\" columns indicate the\n\
16600 address and file/line number respectively.\n\
16601 \n\
16602 Convenience variable \"$_\" and default examine address for \"x\"\n\
16603 are set to the address of the last breakpoint listed unless the command\n\
16604 is prefixed with \"server \".\n\n\
16605 Convenience variable \"$bpnum\" contains the number of the last\n\
16606 breakpoint set."));
16607
16608 add_info_alias ("b", "breakpoints", 1);
16609
16610 if (xdb_commands)
16611 add_com ("lb", class_breakpoint, breakpoints_info, _("\
16612 Status of user-settable breakpoints, or breakpoint number NUMBER.\n\
16613 The \"Type\" column indicates one of:\n\
16614 \tbreakpoint - normal breakpoint\n\
16615 \twatchpoint - watchpoint\n\
16616 The \"Disp\" column contains one of \"keep\", \"del\", or \"dis\" to indicate\n\
16617 the disposition of the breakpoint after it gets hit. \"dis\" means that the\n\
16618 breakpoint will be disabled. The \"Address\" and \"What\" columns indicate the\n\
16619 address and file/line number respectively.\n\
16620 \n\
16621 Convenience variable \"$_\" and default examine address for \"x\"\n\
16622 are set to the address of the last breakpoint listed unless the command\n\
16623 is prefixed with \"server \".\n\n\
16624 Convenience variable \"$bpnum\" contains the number of the last\n\
16625 breakpoint set."));
16626
16627 add_cmd ("breakpoints", class_maintenance, maintenance_info_breakpoints, _("\
16628 Status of all breakpoints, or breakpoint number NUMBER.\n\
16629 The \"Type\" column indicates one of:\n\
16630 \tbreakpoint - normal breakpoint\n\
16631 \twatchpoint - watchpoint\n\
16632 \tlongjmp - internal breakpoint used to step through longjmp()\n\
16633 \tlongjmp resume - internal breakpoint at the target of longjmp()\n\
16634 \tuntil - internal breakpoint used by the \"until\" command\n\
16635 \tfinish - internal breakpoint used by the \"finish\" command\n\
16636 The \"Disp\" column contains one of \"keep\", \"del\", or \"dis\" to indicate\n\
16637 the disposition of the breakpoint after it gets hit. \"dis\" means that the\n\
16638 breakpoint will be disabled. The \"Address\" and \"What\" columns indicate the\n\
16639 address and file/line number respectively.\n\
16640 \n\
16641 Convenience variable \"$_\" and default examine address for \"x\"\n\
16642 are set to the address of the last breakpoint listed unless the command\n\
16643 is prefixed with \"server \".\n\n\
16644 Convenience variable \"$bpnum\" contains the number of the last\n\
16645 breakpoint set."),
16646 &maintenanceinfolist);
16647
16648 add_prefix_cmd ("catch", class_breakpoint, catch_command, _("\
16649 Set catchpoints to catch events."),
16650 &catch_cmdlist, "catch ",
16651 0/*allow-unknown*/, &cmdlist);
16652
16653 add_prefix_cmd ("tcatch", class_breakpoint, tcatch_command, _("\
16654 Set temporary catchpoints to catch events."),
16655 &tcatch_cmdlist, "tcatch ",
16656 0/*allow-unknown*/, &cmdlist);
16657
16658 add_catch_command ("fork", _("Catch calls to fork."),
16659 catch_fork_command_1,
16660 NULL,
16661 (void *) (uintptr_t) catch_fork_permanent,
16662 (void *) (uintptr_t) catch_fork_temporary);
16663 add_catch_command ("vfork", _("Catch calls to vfork."),
16664 catch_fork_command_1,
16665 NULL,
16666 (void *) (uintptr_t) catch_vfork_permanent,
16667 (void *) (uintptr_t) catch_vfork_temporary);
16668 add_catch_command ("exec", _("Catch calls to exec."),
16669 catch_exec_command_1,
16670 NULL,
16671 CATCH_PERMANENT,
16672 CATCH_TEMPORARY);
16673 add_catch_command ("load", _("Catch loads of shared libraries.\n\
16674 Usage: catch load [REGEX]\n\
16675 If REGEX is given, only stop for libraries matching the regular expression."),
16676 catch_load_command_1,
16677 NULL,
16678 CATCH_PERMANENT,
16679 CATCH_TEMPORARY);
16680 add_catch_command ("unload", _("Catch unloads of shared libraries.\n\
16681 Usage: catch unload [REGEX]\n\
16682 If REGEX is given, only stop for libraries matching the regular expression."),
16683 catch_unload_command_1,
16684 NULL,
16685 CATCH_PERMANENT,
16686 CATCH_TEMPORARY);
16687 add_catch_command ("syscall", _("\
16688 Catch system calls by their names and/or numbers.\n\
16689 Arguments say which system calls to catch. If no arguments\n\
16690 are given, every system call will be caught.\n\
16691 Arguments, if given, should be one or more system call names\n\
16692 (if your system supports that), or system call numbers."),
16693 catch_syscall_command_1,
16694 catch_syscall_completer,
16695 CATCH_PERMANENT,
16696 CATCH_TEMPORARY);
16697
16698 c = add_com ("watch", class_breakpoint, watch_command, _("\
16699 Set a watchpoint for an expression.\n\
16700 Usage: watch [-l|-location] EXPRESSION\n\
16701 A watchpoint stops execution of your program whenever the value of\n\
16702 an expression changes.\n\
16703 If -l or -location is given, this evaluates EXPRESSION and watches\n\
16704 the memory to which it refers."));
16705 set_cmd_completer (c, expression_completer);
16706
16707 c = add_com ("rwatch", class_breakpoint, rwatch_command, _("\
16708 Set a read watchpoint for an expression.\n\
16709 Usage: rwatch [-l|-location] EXPRESSION\n\
16710 A watchpoint stops execution of your program whenever the value of\n\
16711 an expression is read.\n\
16712 If -l or -location is given, this evaluates EXPRESSION and watches\n\
16713 the memory to which it refers."));
16714 set_cmd_completer (c, expression_completer);
16715
16716 c = add_com ("awatch", class_breakpoint, awatch_command, _("\
16717 Set a watchpoint for an expression.\n\
16718 Usage: awatch [-l|-location] EXPRESSION\n\
16719 A watchpoint stops execution of your program whenever the value of\n\
16720 an expression is either read or written.\n\
16721 If -l or -location is given, this evaluates EXPRESSION and watches\n\
16722 the memory to which it refers."));
16723 set_cmd_completer (c, expression_completer);
16724
16725 add_info ("watchpoints", watchpoints_info, _("\
16726 Status of specified watchpoints (all watchpoints if no argument)."));
16727
16728 /* XXX: cagney/2005-02-23: This should be a boolean, and should
16729 respond to changes - contrary to the description. */
16730 add_setshow_zinteger_cmd ("can-use-hw-watchpoints", class_support,
16731 &can_use_hw_watchpoints, _("\
16732 Set debugger's willingness to use watchpoint hardware."), _("\
16733 Show debugger's willingness to use watchpoint hardware."), _("\
16734 If zero, gdb will not use hardware for new watchpoints, even if\n\
16735 such is available. (However, any hardware watchpoints that were\n\
16736 created before setting this to nonzero, will continue to use watchpoint\n\
16737 hardware.)"),
16738 NULL,
16739 show_can_use_hw_watchpoints,
16740 &setlist, &showlist);
16741
16742 can_use_hw_watchpoints = 1;
16743
16744 /* Tracepoint manipulation commands. */
16745
16746 c = add_com ("trace", class_breakpoint, trace_command, _("\
16747 Set a tracepoint at specified line or function.\n\
16748 \n"
16749 BREAK_ARGS_HELP ("trace") "\n\
16750 Do \"help tracepoints\" for info on other tracepoint commands."));
16751 set_cmd_completer (c, location_completer);
16752
16753 add_com_alias ("tp", "trace", class_alias, 0);
16754 add_com_alias ("tr", "trace", class_alias, 1);
16755 add_com_alias ("tra", "trace", class_alias, 1);
16756 add_com_alias ("trac", "trace", class_alias, 1);
16757
16758 c = add_com ("ftrace", class_breakpoint, ftrace_command, _("\
16759 Set a fast tracepoint at specified line or function.\n\
16760 \n"
16761 BREAK_ARGS_HELP ("ftrace") "\n\
16762 Do \"help tracepoints\" for info on other tracepoint commands."));
16763 set_cmd_completer (c, location_completer);
16764
16765 c = add_com ("strace", class_breakpoint, strace_command, _("\
16766 Set a static tracepoint at specified line, function or marker.\n\
16767 \n\
16768 strace [LOCATION] [if CONDITION]\n\
16769 LOCATION may be a line number, function name, \"*\" and an address,\n\
16770 or -m MARKER_ID.\n\
16771 If a line number is specified, probe the marker at start of code\n\
16772 for that line. If a function is specified, probe the marker at start\n\
16773 of code for that function. If an address is specified, probe the marker\n\
16774 at that exact address. If a marker id is specified, probe the marker\n\
16775 with that name. With no LOCATION, uses current execution address of\n\
16776 the selected stack frame.\n\
16777 Static tracepoints accept an extra collect action -- ``collect $_sdata''.\n\
16778 This collects arbitrary user data passed in the probe point call to the\n\
16779 tracing library. You can inspect it when analyzing the trace buffer,\n\
16780 by printing the $_sdata variable like any other convenience variable.\n\
16781 \n\
16782 CONDITION is a boolean expression.\n\
16783 \n\
16784 Multiple tracepoints at one place are permitted, and useful if their\n\
16785 conditions are different.\n\
16786 \n\
16787 Do \"help breakpoints\" for info on other commands dealing with breakpoints.\n\
16788 Do \"help tracepoints\" for info on other tracepoint commands."));
16789 set_cmd_completer (c, location_completer);
16790
16791 add_info ("tracepoints", tracepoints_info, _("\
16792 Status of specified tracepoints (all tracepoints if no argument).\n\
16793 Convenience variable \"$tpnum\" contains the number of the\n\
16794 last tracepoint set."));
16795
16796 add_info_alias ("tp", "tracepoints", 1);
16797
16798 add_cmd ("tracepoints", class_trace, delete_trace_command, _("\
16799 Delete specified tracepoints.\n\
16800 Arguments are tracepoint numbers, separated by spaces.\n\
16801 No argument means delete all tracepoints."),
16802 &deletelist);
16803 add_alias_cmd ("tr", "tracepoints", class_trace, 1, &deletelist);
16804
16805 c = add_cmd ("tracepoints", class_trace, disable_trace_command, _("\
16806 Disable specified tracepoints.\n\
16807 Arguments are tracepoint numbers, separated by spaces.\n\
16808 No argument means disable all tracepoints."),
16809 &disablelist);
16810 deprecate_cmd (c, "disable");
16811
16812 c = add_cmd ("tracepoints", class_trace, enable_trace_command, _("\
16813 Enable specified tracepoints.\n\
16814 Arguments are tracepoint numbers, separated by spaces.\n\
16815 No argument means enable all tracepoints."),
16816 &enablelist);
16817 deprecate_cmd (c, "enable");
16818
16819 add_com ("passcount", class_trace, trace_pass_command, _("\
16820 Set the passcount for a tracepoint.\n\
16821 The trace will end when the tracepoint has been passed 'count' times.\n\
16822 Usage: passcount COUNT TPNUM, where TPNUM may also be \"all\";\n\
16823 if TPNUM is omitted, passcount refers to the last tracepoint defined."));
16824
16825 add_prefix_cmd ("save", class_breakpoint, save_command,
16826 _("Save breakpoint definitions as a script."),
16827 &save_cmdlist, "save ",
16828 0/*allow-unknown*/, &cmdlist);
16829
16830 c = add_cmd ("breakpoints", class_breakpoint, save_breakpoints_command, _("\
16831 Save current breakpoint definitions as a script.\n\
16832 This includes all types of breakpoints (breakpoints, watchpoints,\n\
16833 catchpoints, tracepoints). Use the 'source' command in another debug\n\
16834 session to restore them."),
16835 &save_cmdlist);
16836 set_cmd_completer (c, filename_completer);
16837
16838 c = add_cmd ("tracepoints", class_trace, save_tracepoints_command, _("\
16839 Save current tracepoint definitions as a script.\n\
16840 Use the 'source' command in another debug session to restore them."),
16841 &save_cmdlist);
16842 set_cmd_completer (c, filename_completer);
16843
16844 c = add_com_alias ("save-tracepoints", "save tracepoints", class_trace, 0);
16845 deprecate_cmd (c, "save tracepoints");
16846
16847 add_prefix_cmd ("breakpoint", class_maintenance, set_breakpoint_cmd, _("\
16848 Breakpoint specific settings\n\
16849 Configure various breakpoint-specific variables such as\n\
16850 pending breakpoint behavior"),
16851 &breakpoint_set_cmdlist, "set breakpoint ",
16852 0/*allow-unknown*/, &setlist);
16853 add_prefix_cmd ("breakpoint", class_maintenance, show_breakpoint_cmd, _("\
16854 Breakpoint specific settings\n\
16855 Configure various breakpoint-specific variables such as\n\
16856 pending breakpoint behavior"),
16857 &breakpoint_show_cmdlist, "show breakpoint ",
16858 0/*allow-unknown*/, &showlist);
16859
16860 add_setshow_auto_boolean_cmd ("pending", no_class,
16861 &pending_break_support, _("\
16862 Set debugger's behavior regarding pending breakpoints."), _("\
16863 Show debugger's behavior regarding pending breakpoints."), _("\
16864 If on, an unrecognized breakpoint location will cause gdb to create a\n\
16865 pending breakpoint. If off, an unrecognized breakpoint location results in\n\
16866 an error. If auto, an unrecognized breakpoint location results in a\n\
16867 user-query to see if a pending breakpoint should be created."),
16868 NULL,
16869 show_pending_break_support,
16870 &breakpoint_set_cmdlist,
16871 &breakpoint_show_cmdlist);
16872
16873 pending_break_support = AUTO_BOOLEAN_AUTO;
16874
16875 add_setshow_boolean_cmd ("auto-hw", no_class,
16876 &automatic_hardware_breakpoints, _("\
16877 Set automatic usage of hardware breakpoints."), _("\
16878 Show automatic usage of hardware breakpoints."), _("\
16879 If set, the debugger will automatically use hardware breakpoints for\n\
16880 breakpoints set with \"break\" but falling in read-only memory. If not set,\n\
16881 a warning will be emitted for such breakpoints."),
16882 NULL,
16883 show_automatic_hardware_breakpoints,
16884 &breakpoint_set_cmdlist,
16885 &breakpoint_show_cmdlist);
16886
16887 add_setshow_auto_boolean_cmd ("always-inserted", class_support,
16888 &always_inserted_mode, _("\
16889 Set mode for inserting breakpoints."), _("\
16890 Show mode for inserting breakpoints."), _("\
16891 When this mode is off, breakpoints are inserted in inferior when it is\n\
16892 resumed, and removed when execution stops. When this mode is on,\n\
16893 breakpoints are inserted immediately and removed only when the user\n\
16894 deletes the breakpoint. When this mode is auto (which is the default),\n\
16895 the behaviour depends on the non-stop setting (see help set non-stop).\n\
16896 In this case, if gdb is controlling the inferior in non-stop mode, gdb\n\
16897 behaves as if always-inserted mode is on; if gdb is controlling the\n\
16898 inferior in all-stop mode, gdb behaves as if always-inserted mode is off."),
16899 NULL,
16900 &show_always_inserted_mode,
16901 &breakpoint_set_cmdlist,
16902 &breakpoint_show_cmdlist);
16903
16904 add_setshow_enum_cmd ("condition-evaluation", class_breakpoint,
16905 condition_evaluation_enums,
16906 &condition_evaluation_mode_1, _("\
16907 Set mode of breakpoint condition evaluation."), _("\
16908 Show mode of breakpoint condition evaluation."), _("\
16909 When this is set to \"host\", breakpoint conditions will be\n\
16910 evaluated on the host's side by GDB. When it is set to \"target\",\n\
16911 breakpoint conditions will be downloaded to the target (if the target\n\
16912 supports such feature) and conditions will be evaluated on the target's side.\n\
16913 If this is set to \"auto\" (default), this will be automatically set to\n\
16914 \"target\" if it supports condition evaluation, otherwise it will\n\
16915 be set to \"gdb\""),
16916 &set_condition_evaluation_mode,
16917 &show_condition_evaluation_mode,
16918 &breakpoint_set_cmdlist,
16919 &breakpoint_show_cmdlist);
16920
16921 add_com ("break-range", class_breakpoint, break_range_command, _("\
16922 Set a breakpoint for an address range.\n\
16923 break-range START-LOCATION, END-LOCATION\n\
16924 where START-LOCATION and END-LOCATION can be one of the following:\n\
16925 LINENUM, for that line in the current file,\n\
16926 FILE:LINENUM, for that line in that file,\n\
16927 +OFFSET, for that number of lines after the current line\n\
16928 or the start of the range\n\
16929 FUNCTION, for the first line in that function,\n\
16930 FILE:FUNCTION, to distinguish among like-named static functions.\n\
16931 *ADDRESS, for the instruction at that address.\n\
16932 \n\
16933 The breakpoint will stop execution of the inferior whenever it executes\n\
16934 an instruction at any address within the [START-LOCATION, END-LOCATION]\n\
16935 range (including START-LOCATION and END-LOCATION)."));
16936
16937 c = add_com ("dprintf", class_breakpoint, dprintf_command, _("\
16938 Set a dynamic printf at specified line or function.\n\
16939 dprintf location,format string,arg1,arg2,...\n\
16940 location may be a line number, function name, or \"*\" and an address.\n\
16941 If a line number is specified, break at start of code for that line.\n\
16942 If a function is specified, break at start of code for that function."));
16943 set_cmd_completer (c, location_completer);
16944
16945 add_setshow_enum_cmd ("dprintf-style", class_support,
16946 dprintf_style_enums, &dprintf_style, _("\
16947 Set the style of usage for dynamic printf."), _("\
16948 Show the style of usage for dynamic printf."), _("\
16949 This setting chooses how GDB will do a dynamic printf.\n\
16950 If the value is \"gdb\", then the printing is done by GDB to its own\n\
16951 console, as with the \"printf\" command.\n\
16952 If the value is \"call\", the print is done by calling a function in your\n\
16953 program; by default printf(), but you can choose a different function or\n\
16954 output stream by setting dprintf-function and dprintf-channel."),
16955 update_dprintf_commands, NULL,
16956 &setlist, &showlist);
16957
16958 dprintf_function = xstrdup ("printf");
16959 add_setshow_string_cmd ("dprintf-function", class_support,
16960 &dprintf_function, _("\
16961 Set the function to use for dynamic printf"), _("\
16962 Show the function to use for dynamic printf"), NULL,
16963 update_dprintf_commands, NULL,
16964 &setlist, &showlist);
16965
16966 dprintf_channel = xstrdup ("");
16967 add_setshow_string_cmd ("dprintf-channel", class_support,
16968 &dprintf_channel, _("\
16969 Set the channel to use for dynamic printf"), _("\
16970 Show the channel to use for dynamic printf"), NULL,
16971 update_dprintf_commands, NULL,
16972 &setlist, &showlist);
16973
16974 add_setshow_boolean_cmd ("disconnected-dprintf", no_class,
16975 &disconnected_dprintf, _("\
16976 Set whether dprintf continues after GDB disconnects."), _("\
16977 Show whether dprintf continues after GDB disconnects."), _("\
16978 Use this to let dprintf commands continue to hit and produce output\n\
16979 even if GDB disconnects or detaches from the target."),
16980 NULL,
16981 NULL,
16982 &setlist, &showlist);
16983
16984 add_com ("agent-printf", class_vars, agent_printf_command, _("\
16985 agent-printf \"printf format string\", arg1, arg2, arg3, ..., argn\n\
16986 (target agent only) This is useful for formatted output in user-defined commands."));
16987
16988 automatic_hardware_breakpoints = 1;
16989
16990 observer_attach_about_to_proceed (breakpoint_about_to_proceed);
16991 observer_attach_thread_exit (remove_threaded_breakpoints);
16992 }
This page took 0.520881 seconds and 4 git commands to generate.