Initial version of ROCgdb
[deliverable/binutils-gdb.git] / gdb / breakpoint.c
1 /* Everything about breakpoints, for GDB.
2
3 Copyright (C) 1986-2019 Free Software Foundation, Inc.
4 Copyright (C) 2019 Advanced Micro Devices, Inc. All rights reserved.
5
6 This file is part of GDB.
7
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 3 of the License, or
11 (at your option) any later version.
12
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with this program. If not, see <http://www.gnu.org/licenses/>. */
20
21 #include "defs.h"
22 #include "arch-utils.h"
23 #include <ctype.h>
24 #include "hashtab.h"
25 #include "symtab.h"
26 #include "frame.h"
27 #include "breakpoint.h"
28 #include "tracepoint.h"
29 #include "gdbtypes.h"
30 #include "expression.h"
31 #include "gdbcore.h"
32 #include "gdbcmd.h"
33 #include "value.h"
34 #include "command.h"
35 #include "inferior.h"
36 #include "infrun.h"
37 #include "gdbthread.h"
38 #include "target.h"
39 #include "language.h"
40 #include "gdb-demangle.h"
41 #include "filenames.h"
42 #include "annotate.h"
43 #include "symfile.h"
44 #include "objfiles.h"
45 #include "source.h"
46 #include "linespec.h"
47 #include "completer.h"
48 #include "ui-out.h"
49 #include "cli/cli-script.h"
50 #include "block.h"
51 #include "solib.h"
52 #include "solist.h"
53 #include "observable.h"
54 #include "memattr.h"
55 #include "ada-lang.h"
56 #include "top.h"
57 #include "valprint.h"
58 #include "jit.h"
59 #include "parser-defs.h"
60 #include "gdb_regex.h"
61 #include "probe.h"
62 #include "cli/cli-utils.h"
63 #include "stack.h"
64 #include "ax-gdb.h"
65 #include "dummy-frame.h"
66 #include "interps.h"
67 #include "gdbsupport/format.h"
68 #include "thread-fsm.h"
69 #include "tid-parse.h"
70 #include "cli/cli-style.h"
71
72 /* readline include files */
73 #include "readline/tilde.h"
74
75 /* readline defines this. */
76 #undef savestring
77
78 #include "mi/mi-common.h"
79 #include "extension.h"
80 #include <algorithm>
81 #include "progspace-and-thread.h"
82 #include "gdbsupport/array-view.h"
83 #include "gdbsupport/gdb_optional.h"
84
85 /* Prototypes for local functions. */
86
87 static void map_breakpoint_numbers (const char *,
88 gdb::function_view<void (breakpoint *)>);
89
90 static void breakpoint_re_set_default (struct breakpoint *);
91
92 static void
93 create_sals_from_location_default (const struct event_location *location,
94 struct linespec_result *canonical,
95 enum bptype type_wanted);
96
97 static void create_breakpoints_sal_default (struct gdbarch *,
98 struct linespec_result *,
99 gdb::unique_xmalloc_ptr<char>,
100 gdb::unique_xmalloc_ptr<char>,
101 enum bptype,
102 enum bpdisp, int, int,
103 int,
104 const struct breakpoint_ops *,
105 int, int, int, unsigned);
106
107 static std::vector<symtab_and_line> decode_location_default
108 (struct breakpoint *b, const struct event_location *location,
109 struct program_space *search_pspace);
110
111 static int can_use_hardware_watchpoint
112 (const std::vector<value_ref_ptr> &vals);
113
114 static void mention (struct breakpoint *);
115
116 static struct breakpoint *set_raw_breakpoint_without_location (struct gdbarch *,
117 enum bptype,
118 const struct breakpoint_ops *);
119 static struct bp_location *add_location_to_breakpoint (struct breakpoint *,
120 const struct symtab_and_line *);
121
122 /* This function is used in gdbtk sources and thus can not be made
123 static. */
124 struct breakpoint *set_raw_breakpoint (struct gdbarch *gdbarch,
125 struct symtab_and_line,
126 enum bptype,
127 const struct breakpoint_ops *);
128
129 static struct breakpoint *
130 momentary_breakpoint_from_master (struct breakpoint *orig,
131 enum bptype type,
132 const struct breakpoint_ops *ops,
133 int loc_enabled);
134
135 static void breakpoint_adjustment_warning (CORE_ADDR, CORE_ADDR, int, int);
136
137 static CORE_ADDR adjust_breakpoint_address (struct gdbarch *gdbarch,
138 CORE_ADDR bpaddr,
139 enum bptype bptype);
140
141 static void describe_other_breakpoints (struct gdbarch *,
142 struct program_space *, CORE_ADDR,
143 struct obj_section *, int);
144
145 static int watchpoint_locations_match (struct bp_location *loc1,
146 struct bp_location *loc2);
147
148 static int breakpoint_location_address_match (struct bp_location *bl,
149 const struct address_space *aspace,
150 CORE_ADDR addr);
151
152 static int breakpoint_location_address_range_overlap (struct bp_location *,
153 const address_space *,
154 CORE_ADDR, int);
155
156 static int remove_breakpoint (struct bp_location *);
157 static int remove_breakpoint_1 (struct bp_location *, enum remove_bp_reason);
158
159 static enum print_stop_action print_bp_stop_message (bpstat bs);
160
161 static int hw_breakpoint_used_count (void);
162
163 static int hw_watchpoint_use_count (struct breakpoint *);
164
165 static int hw_watchpoint_used_count_others (struct breakpoint *except,
166 enum bptype type,
167 int *other_type_used);
168
169 static void enable_breakpoint_disp (struct breakpoint *, enum bpdisp,
170 int count);
171
172 static void free_bp_location (struct bp_location *loc);
173 static void incref_bp_location (struct bp_location *loc);
174 static void decref_bp_location (struct bp_location **loc);
175
176 static struct bp_location *allocate_bp_location (struct breakpoint *bpt);
177
178 /* update_global_location_list's modes of operation wrt to whether to
179 insert locations now. */
180 enum ugll_insert_mode
181 {
182 /* Don't insert any breakpoint locations into the inferior, only
183 remove already-inserted locations that no longer should be
184 inserted. Functions that delete a breakpoint or breakpoints
185 should specify this mode, so that deleting a breakpoint doesn't
186 have the side effect of inserting the locations of other
187 breakpoints that are marked not-inserted, but should_be_inserted
188 returns true on them.
189
190 This behavior is useful is situations close to tear-down -- e.g.,
191 after an exec, while the target still has execution, but
192 breakpoint shadows of the previous executable image should *NOT*
193 be restored to the new image; or before detaching, where the
194 target still has execution and wants to delete breakpoints from
195 GDB's lists, and all breakpoints had already been removed from
196 the inferior. */
197 UGLL_DONT_INSERT,
198
199 /* May insert breakpoints iff breakpoints_should_be_inserted_now
200 claims breakpoints should be inserted now. */
201 UGLL_MAY_INSERT,
202
203 /* Insert locations now, irrespective of
204 breakpoints_should_be_inserted_now. E.g., say all threads are
205 stopped right now, and the user did "continue". We need to
206 insert breakpoints _before_ resuming the target, but
207 UGLL_MAY_INSERT wouldn't insert them, because
208 breakpoints_should_be_inserted_now returns false at that point,
209 as no thread is running yet. */
210 UGLL_INSERT
211 };
212
213 static void update_global_location_list (enum ugll_insert_mode);
214
215 static void update_global_location_list_nothrow (enum ugll_insert_mode);
216
217 static void insert_breakpoint_locations (void);
218
219 static void trace_pass_command (const char *, int);
220
221 static void set_tracepoint_count (int num);
222
223 static bool is_masked_watchpoint (const struct breakpoint *b);
224
225 static struct bp_location **get_first_locp_gte_addr (CORE_ADDR address);
226
227 /* Return 1 if B refers to a static tracepoint set by marker ("-m"), zero
228 otherwise. */
229
230 static int strace_marker_p (struct breakpoint *b);
231
232 /* The breakpoint_ops structure to be inherited by all breakpoint_ops
233 that are implemented on top of software or hardware breakpoints
234 (user breakpoints, internal and momentary breakpoints, etc.). */
235 static struct breakpoint_ops bkpt_base_breakpoint_ops;
236
237 /* Internal breakpoints class type. */
238 static struct breakpoint_ops internal_breakpoint_ops;
239
240 /* Momentary breakpoints class type. */
241 static struct breakpoint_ops momentary_breakpoint_ops;
242
243 /* The breakpoint_ops structure to be used in regular user created
244 breakpoints. */
245 struct breakpoint_ops bkpt_breakpoint_ops;
246
247 /* Breakpoints set on probes. */
248 static struct breakpoint_ops bkpt_probe_breakpoint_ops;
249
250 /* Dynamic printf class type. */
251 struct breakpoint_ops dprintf_breakpoint_ops;
252
253 /* The style in which to perform a dynamic printf. This is a user
254 option because different output options have different tradeoffs;
255 if GDB does the printing, there is better error handling if there
256 is a problem with any of the arguments, but using an inferior
257 function lets you have special-purpose printers and sending of
258 output to the same place as compiled-in print functions. */
259
260 static const char dprintf_style_gdb[] = "gdb";
261 static const char dprintf_style_call[] = "call";
262 static const char dprintf_style_agent[] = "agent";
263 static const char *const dprintf_style_enums[] = {
264 dprintf_style_gdb,
265 dprintf_style_call,
266 dprintf_style_agent,
267 NULL
268 };
269 static const char *dprintf_style = dprintf_style_gdb;
270
271 /* The function to use for dynamic printf if the preferred style is to
272 call into the inferior. The value is simply a string that is
273 copied into the command, so it can be anything that GDB can
274 evaluate to a callable address, not necessarily a function name. */
275
276 static char *dprintf_function;
277
278 /* The channel to use for dynamic printf if the preferred style is to
279 call into the inferior; if a nonempty string, it will be passed to
280 the call as the first argument, with the format string as the
281 second. As with the dprintf function, this can be anything that
282 GDB knows how to evaluate, so in addition to common choices like
283 "stderr", this could be an app-specific expression like
284 "mystreams[curlogger]". */
285
286 static char *dprintf_channel;
287
288 /* True if dprintf commands should continue to operate even if GDB
289 has disconnected. */
290 static bool disconnected_dprintf = true;
291
292 struct command_line *
293 breakpoint_commands (struct breakpoint *b)
294 {
295 return b->commands ? b->commands.get () : NULL;
296 }
297
298 /* Flag indicating that a command has proceeded the inferior past the
299 current breakpoint. */
300
301 static bool breakpoint_proceeded;
302
303 const char *
304 bpdisp_text (enum bpdisp disp)
305 {
306 /* NOTE: the following values are a part of MI protocol and
307 represent values of 'disp' field returned when inferior stops at
308 a breakpoint. */
309 static const char * const bpdisps[] = {"del", "dstp", "dis", "keep"};
310
311 return bpdisps[(int) disp];
312 }
313
314 /* Prototypes for exported functions. */
315 /* If FALSE, gdb will not use hardware support for watchpoints, even
316 if such is available. */
317 static int can_use_hw_watchpoints;
318
319 static void
320 show_can_use_hw_watchpoints (struct ui_file *file, int from_tty,
321 struct cmd_list_element *c,
322 const char *value)
323 {
324 fprintf_filtered (file,
325 _("Debugger's willingness to use "
326 "watchpoint hardware is %s.\n"),
327 value);
328 }
329
330 /* If AUTO_BOOLEAN_FALSE, gdb will not attempt to create pending breakpoints.
331 If AUTO_BOOLEAN_TRUE, gdb will automatically create pending breakpoints
332 for unrecognized breakpoint locations.
333 If AUTO_BOOLEAN_AUTO, gdb will query when breakpoints are unrecognized. */
334 static enum auto_boolean pending_break_support;
335 static void
336 show_pending_break_support (struct ui_file *file, int from_tty,
337 struct cmd_list_element *c,
338 const char *value)
339 {
340 fprintf_filtered (file,
341 _("Debugger's behavior regarding "
342 "pending breakpoints is %s.\n"),
343 value);
344 }
345
346 /* If true, gdb will automatically use hardware breakpoints for breakpoints
347 set with "break" but falling in read-only memory.
348 If false, gdb will warn about such breakpoints, but won't automatically
349 use hardware breakpoints. */
350 static bool automatic_hardware_breakpoints;
351 static void
352 show_automatic_hardware_breakpoints (struct ui_file *file, int from_tty,
353 struct cmd_list_element *c,
354 const char *value)
355 {
356 fprintf_filtered (file,
357 _("Automatic usage of hardware breakpoints is %s.\n"),
358 value);
359 }
360
361 /* If on, GDB keeps breakpoints inserted even if the inferior is
362 stopped, and immediately inserts any new breakpoints as soon as
363 they're created. If off (default), GDB keeps breakpoints off of
364 the target as long as possible. That is, it delays inserting
365 breakpoints until the next resume, and removes them again when the
366 target fully stops. This is a bit safer in case GDB crashes while
367 processing user input. */
368 /* FIXME: this is a temporary workaround to make sure waves created while
369 all known threads are stopped, and the gdb prompt is presented, do not
370 execute past the enabled breakpoints. */
371 static bool always_inserted_mode = true;
372
373 static void
374 show_always_inserted_mode (struct ui_file *file, int from_tty,
375 struct cmd_list_element *c, const char *value)
376 {
377 fprintf_filtered (file, _("Always inserted breakpoint mode is %s.\n"),
378 value);
379 }
380
381 /* See breakpoint.h. */
382
383 int
384 breakpoints_should_be_inserted_now (void)
385 {
386 if (gdbarch_has_global_breakpoints (target_gdbarch ()))
387 {
388 /* If breakpoints are global, they should be inserted even if no
389 thread under gdb's control is running, or even if there are
390 no threads under GDB's control yet. */
391 return 1;
392 }
393 else if (target_has_execution)
394 {
395 if (always_inserted_mode)
396 {
397 /* The user wants breakpoints inserted even if all threads
398 are stopped. */
399 return 1;
400 }
401
402 if (threads_are_executing ())
403 return 1;
404
405 /* Don't remove breakpoints yet if, even though all threads are
406 stopped, we still have events to process. */
407 for (thread_info *tp : all_non_exited_threads ())
408 if (tp->resumed
409 && tp->suspend.waitstatus_pending_p)
410 return 1;
411 }
412 return 0;
413 }
414
415 static const char condition_evaluation_both[] = "host or target";
416
417 /* Modes for breakpoint condition evaluation. */
418 static const char condition_evaluation_auto[] = "auto";
419 static const char condition_evaluation_host[] = "host";
420 static const char condition_evaluation_target[] = "target";
421 static const char *const condition_evaluation_enums[] = {
422 condition_evaluation_auto,
423 condition_evaluation_host,
424 condition_evaluation_target,
425 NULL
426 };
427
428 /* Global that holds the current mode for breakpoint condition evaluation. */
429 static const char *condition_evaluation_mode_1 = condition_evaluation_auto;
430
431 /* Global that we use to display information to the user (gets its value from
432 condition_evaluation_mode_1. */
433 static const char *condition_evaluation_mode = condition_evaluation_auto;
434
435 /* Translate a condition evaluation mode MODE into either "host"
436 or "target". This is used mostly to translate from "auto" to the
437 real setting that is being used. It returns the translated
438 evaluation mode. */
439
440 static const char *
441 translate_condition_evaluation_mode (const char *mode)
442 {
443 if (mode == condition_evaluation_auto)
444 {
445 if (target_supports_evaluation_of_breakpoint_conditions ())
446 return condition_evaluation_target;
447 else
448 return condition_evaluation_host;
449 }
450 else
451 return mode;
452 }
453
454 /* Discovers what condition_evaluation_auto translates to. */
455
456 static const char *
457 breakpoint_condition_evaluation_mode (void)
458 {
459 return translate_condition_evaluation_mode (condition_evaluation_mode);
460 }
461
462 /* Return true if GDB should evaluate breakpoint conditions or false
463 otherwise. */
464
465 static int
466 gdb_evaluates_breakpoint_condition_p (void)
467 {
468 const char *mode = breakpoint_condition_evaluation_mode ();
469
470 return (mode == condition_evaluation_host);
471 }
472
473 /* Are we executing breakpoint commands? */
474 static int executing_breakpoint_commands;
475
476 /* Are overlay event breakpoints enabled? */
477 static int overlay_events_enabled;
478
479 /* See description in breakpoint.h. */
480 bool target_exact_watchpoints = false;
481
482 /* Walk the following statement or block through all breakpoints.
483 ALL_BREAKPOINTS_SAFE does so even if the statement deletes the
484 current breakpoint. */
485
486 #define ALL_BREAKPOINTS(B) for (B = breakpoint_chain; B; B = B->next)
487
488 #define ALL_BREAKPOINTS_SAFE(B,TMP) \
489 for (B = breakpoint_chain; \
490 B ? (TMP=B->next, 1): 0; \
491 B = TMP)
492
493 /* Similar iterator for the low-level breakpoints. SAFE variant is
494 not provided so update_global_location_list must not be called
495 while executing the block of ALL_BP_LOCATIONS. */
496
497 #define ALL_BP_LOCATIONS(B,BP_TMP) \
498 for (BP_TMP = bp_locations; \
499 BP_TMP < bp_locations + bp_locations_count && (B = *BP_TMP);\
500 BP_TMP++)
501
502 /* Iterates through locations with address ADDRESS for the currently selected
503 program space. BP_LOCP_TMP points to each object. BP_LOCP_START points
504 to where the loop should start from.
505 If BP_LOCP_START is a NULL pointer, the macro automatically seeks the
506 appropriate location to start with. */
507
508 #define ALL_BP_LOCATIONS_AT_ADDR(BP_LOCP_TMP, BP_LOCP_START, ADDRESS) \
509 for (BP_LOCP_START = BP_LOCP_START == NULL ? get_first_locp_gte_addr (ADDRESS) : BP_LOCP_START, \
510 BP_LOCP_TMP = BP_LOCP_START; \
511 BP_LOCP_START \
512 && (BP_LOCP_TMP < bp_locations + bp_locations_count \
513 && (*BP_LOCP_TMP)->address == ADDRESS); \
514 BP_LOCP_TMP++)
515
516 /* Iterator for tracepoints only. */
517
518 #define ALL_TRACEPOINTS(B) \
519 for (B = breakpoint_chain; B; B = B->next) \
520 if (is_tracepoint (B))
521
522 /* Chains of all breakpoints defined. */
523
524 static struct breakpoint *breakpoint_chain;
525
526 /* Array is sorted by bp_location_is_less_than - primarily by the ADDRESS. */
527
528 static struct bp_location **bp_locations;
529
530 /* Number of elements of BP_LOCATIONS. */
531
532 static unsigned bp_locations_count;
533
534 /* Maximum alignment offset between bp_target_info.PLACED_ADDRESS and
535 ADDRESS for the current elements of BP_LOCATIONS which get a valid
536 result from bp_location_has_shadow. You can use it for roughly
537 limiting the subrange of BP_LOCATIONS to scan for shadow bytes for
538 an address you need to read. */
539
540 static CORE_ADDR bp_locations_placed_address_before_address_max;
541
542 /* Maximum offset plus alignment between bp_target_info.PLACED_ADDRESS
543 + bp_target_info.SHADOW_LEN and ADDRESS for the current elements of
544 BP_LOCATIONS which get a valid result from bp_location_has_shadow.
545 You can use it for roughly limiting the subrange of BP_LOCATIONS to
546 scan for shadow bytes for an address you need to read. */
547
548 static CORE_ADDR bp_locations_shadow_len_after_address_max;
549
550 /* The locations that no longer correspond to any breakpoint, unlinked
551 from the bp_locations array, but for which a hit may still be
552 reported by a target. */
553 static std::vector<bp_location *> moribund_locations;
554
555 /* Number of last breakpoint made. */
556
557 static int breakpoint_count;
558
559 /* The value of `breakpoint_count' before the last command that
560 created breakpoints. If the last (break-like) command created more
561 than one breakpoint, then the difference between BREAKPOINT_COUNT
562 and PREV_BREAKPOINT_COUNT is more than one. */
563 static int prev_breakpoint_count;
564
565 /* Number of last tracepoint made. */
566
567 static int tracepoint_count;
568
569 static struct cmd_list_element *breakpoint_set_cmdlist;
570 static struct cmd_list_element *breakpoint_show_cmdlist;
571 struct cmd_list_element *save_cmdlist;
572
573 /* See declaration at breakpoint.h. */
574
575 struct breakpoint *
576 breakpoint_find_if (int (*func) (struct breakpoint *b, void *d),
577 void *user_data)
578 {
579 struct breakpoint *b = NULL;
580
581 ALL_BREAKPOINTS (b)
582 {
583 if (func (b, user_data) != 0)
584 break;
585 }
586
587 return b;
588 }
589
590 /* Return whether a breakpoint is an active enabled breakpoint. */
591 static int
592 breakpoint_enabled (struct breakpoint *b)
593 {
594 return (b->enable_state == bp_enabled);
595 }
596
597 /* Set breakpoint count to NUM. */
598
599 static void
600 set_breakpoint_count (int num)
601 {
602 prev_breakpoint_count = breakpoint_count;
603 breakpoint_count = num;
604 set_internalvar_integer (lookup_internalvar ("bpnum"), num);
605 }
606
607 /* Used by `start_rbreak_breakpoints' below, to record the current
608 breakpoint count before "rbreak" creates any breakpoint. */
609 static int rbreak_start_breakpoint_count;
610
611 /* Called at the start an "rbreak" command to record the first
612 breakpoint made. */
613
614 scoped_rbreak_breakpoints::scoped_rbreak_breakpoints ()
615 {
616 rbreak_start_breakpoint_count = breakpoint_count;
617 }
618
619 /* Called at the end of an "rbreak" command to record the last
620 breakpoint made. */
621
622 scoped_rbreak_breakpoints::~scoped_rbreak_breakpoints ()
623 {
624 prev_breakpoint_count = rbreak_start_breakpoint_count;
625 }
626
627 /* Used in run_command to zero the hit count when a new run starts. */
628
629 void
630 clear_breakpoint_hit_counts (void)
631 {
632 struct breakpoint *b;
633
634 ALL_BREAKPOINTS (b)
635 b->hit_count = 0;
636 }
637
638 \f
639 /* Return the breakpoint with the specified number, or NULL
640 if the number does not refer to an existing breakpoint. */
641
642 struct breakpoint *
643 get_breakpoint (int num)
644 {
645 struct breakpoint *b;
646
647 ALL_BREAKPOINTS (b)
648 if (b->number == num)
649 return b;
650
651 return NULL;
652 }
653
654 \f
655
656 /* Mark locations as "conditions have changed" in case the target supports
657 evaluating conditions on its side. */
658
659 static void
660 mark_breakpoint_modified (struct breakpoint *b)
661 {
662 struct bp_location *loc;
663
664 /* This is only meaningful if the target is
665 evaluating conditions and if the user has
666 opted for condition evaluation on the target's
667 side. */
668 if (gdb_evaluates_breakpoint_condition_p ()
669 || !target_supports_evaluation_of_breakpoint_conditions ())
670 return;
671
672 if (!is_breakpoint (b))
673 return;
674
675 for (loc = b->loc; loc; loc = loc->next)
676 loc->condition_changed = condition_modified;
677 }
678
679 /* Mark location as "conditions have changed" in case the target supports
680 evaluating conditions on its side. */
681
682 static void
683 mark_breakpoint_location_modified (struct bp_location *loc)
684 {
685 /* This is only meaningful if the target is
686 evaluating conditions and if the user has
687 opted for condition evaluation on the target's
688 side. */
689 if (gdb_evaluates_breakpoint_condition_p ()
690 || !target_supports_evaluation_of_breakpoint_conditions ())
691
692 return;
693
694 if (!is_breakpoint (loc->owner))
695 return;
696
697 loc->condition_changed = condition_modified;
698 }
699
700 /* Sets the condition-evaluation mode using the static global
701 condition_evaluation_mode. */
702
703 static void
704 set_condition_evaluation_mode (const char *args, int from_tty,
705 struct cmd_list_element *c)
706 {
707 const char *old_mode, *new_mode;
708
709 if ((condition_evaluation_mode_1 == condition_evaluation_target)
710 && !target_supports_evaluation_of_breakpoint_conditions ())
711 {
712 condition_evaluation_mode_1 = condition_evaluation_mode;
713 warning (_("Target does not support breakpoint condition evaluation.\n"
714 "Using host evaluation mode instead."));
715 return;
716 }
717
718 new_mode = translate_condition_evaluation_mode (condition_evaluation_mode_1);
719 old_mode = translate_condition_evaluation_mode (condition_evaluation_mode);
720
721 /* Flip the switch. Flip it even if OLD_MODE == NEW_MODE as one of the
722 settings was "auto". */
723 condition_evaluation_mode = condition_evaluation_mode_1;
724
725 /* Only update the mode if the user picked a different one. */
726 if (new_mode != old_mode)
727 {
728 struct bp_location *loc, **loc_tmp;
729 /* If the user switched to a different evaluation mode, we
730 need to synch the changes with the target as follows:
731
732 "host" -> "target": Send all (valid) conditions to the target.
733 "target" -> "host": Remove all the conditions from the target.
734 */
735
736 if (new_mode == condition_evaluation_target)
737 {
738 /* Mark everything modified and synch conditions with the
739 target. */
740 ALL_BP_LOCATIONS (loc, loc_tmp)
741 mark_breakpoint_location_modified (loc);
742 }
743 else
744 {
745 /* Manually mark non-duplicate locations to synch conditions
746 with the target. We do this to remove all the conditions the
747 target knows about. */
748 ALL_BP_LOCATIONS (loc, loc_tmp)
749 if (is_breakpoint (loc->owner) && loc->inserted)
750 loc->needs_update = 1;
751 }
752
753 /* Do the update. */
754 update_global_location_list (UGLL_MAY_INSERT);
755 }
756
757 return;
758 }
759
760 /* Shows the current mode of breakpoint condition evaluation. Explicitly shows
761 what "auto" is translating to. */
762
763 static void
764 show_condition_evaluation_mode (struct ui_file *file, int from_tty,
765 struct cmd_list_element *c, const char *value)
766 {
767 if (condition_evaluation_mode == condition_evaluation_auto)
768 fprintf_filtered (file,
769 _("Breakpoint condition evaluation "
770 "mode is %s (currently %s).\n"),
771 value,
772 breakpoint_condition_evaluation_mode ());
773 else
774 fprintf_filtered (file, _("Breakpoint condition evaluation mode is %s.\n"),
775 value);
776 }
777
778 /* A comparison function for bp_location AP and BP that is used by
779 bsearch. This comparison function only cares about addresses, unlike
780 the more general bp_location_is_less_than function. */
781
782 static int
783 bp_locations_compare_addrs (const void *ap, const void *bp)
784 {
785 const struct bp_location *a = *(const struct bp_location **) ap;
786 const struct bp_location *b = *(const struct bp_location **) bp;
787
788 if (a->address == b->address)
789 return 0;
790 else
791 return ((a->address > b->address) - (a->address < b->address));
792 }
793
794 /* Helper function to skip all bp_locations with addresses
795 less than ADDRESS. It returns the first bp_location that
796 is greater than or equal to ADDRESS. If none is found, just
797 return NULL. */
798
799 static struct bp_location **
800 get_first_locp_gte_addr (CORE_ADDR address)
801 {
802 struct bp_location dummy_loc;
803 struct bp_location *dummy_locp = &dummy_loc;
804 struct bp_location **locp_found = NULL;
805
806 /* Initialize the dummy location's address field. */
807 dummy_loc.address = address;
808
809 /* Find a close match to the first location at ADDRESS. */
810 locp_found = ((struct bp_location **)
811 bsearch (&dummy_locp, bp_locations, bp_locations_count,
812 sizeof (struct bp_location **),
813 bp_locations_compare_addrs));
814
815 /* Nothing was found, nothing left to do. */
816 if (locp_found == NULL)
817 return NULL;
818
819 /* We may have found a location that is at ADDRESS but is not the first in the
820 location's list. Go backwards (if possible) and locate the first one. */
821 while ((locp_found - 1) >= bp_locations
822 && (*(locp_found - 1))->address == address)
823 locp_found--;
824
825 return locp_found;
826 }
827
828 void
829 set_breakpoint_condition (struct breakpoint *b, const char *exp,
830 int from_tty)
831 {
832 xfree (b->cond_string);
833 b->cond_string = NULL;
834
835 if (is_watchpoint (b))
836 {
837 struct watchpoint *w = (struct watchpoint *) b;
838
839 w->cond_exp.reset ();
840 }
841 else
842 {
843 struct bp_location *loc;
844
845 for (loc = b->loc; loc; loc = loc->next)
846 {
847 loc->cond.reset ();
848
849 /* No need to free the condition agent expression
850 bytecode (if we have one). We will handle this
851 when we go through update_global_location_list. */
852 }
853 }
854
855 if (*exp == 0)
856 {
857 if (from_tty)
858 printf_filtered (_("Breakpoint %d now unconditional.\n"), b->number);
859 }
860 else
861 {
862 const char *arg = exp;
863
864 /* I don't know if it matters whether this is the string the user
865 typed in or the decompiled expression. */
866 b->cond_string = xstrdup (arg);
867 b->condition_not_parsed = 0;
868
869 if (is_watchpoint (b))
870 {
871 struct watchpoint *w = (struct watchpoint *) b;
872
873 innermost_block_tracker tracker;
874 arg = exp;
875 w->cond_exp = parse_exp_1 (&arg, 0, 0, 0, &tracker);
876 if (*arg)
877 error (_("Junk at end of expression"));
878 w->cond_exp_valid_block = tracker.block ();
879 }
880 else
881 {
882 struct bp_location *loc;
883
884 for (loc = b->loc; loc; loc = loc->next)
885 {
886 arg = exp;
887 loc->cond =
888 parse_exp_1 (&arg, loc->address,
889 block_for_pc (loc->address), 0);
890 if (*arg)
891 error (_("Junk at end of expression"));
892 }
893 }
894 }
895 mark_breakpoint_modified (b);
896
897 gdb::observers::breakpoint_modified.notify (b);
898 }
899
900 /* Completion for the "condition" command. */
901
902 static void
903 condition_completer (struct cmd_list_element *cmd,
904 completion_tracker &tracker,
905 const char *text, const char *word)
906 {
907 const char *space;
908
909 text = skip_spaces (text);
910 space = skip_to_space (text);
911 if (*space == '\0')
912 {
913 int len;
914 struct breakpoint *b;
915
916 if (text[0] == '$')
917 {
918 /* We don't support completion of history indices. */
919 if (!isdigit (text[1]))
920 complete_internalvar (tracker, &text[1]);
921 return;
922 }
923
924 /* We're completing the breakpoint number. */
925 len = strlen (text);
926
927 ALL_BREAKPOINTS (b)
928 {
929 char number[50];
930
931 xsnprintf (number, sizeof (number), "%d", b->number);
932
933 if (strncmp (number, text, len) == 0)
934 tracker.add_completion (make_unique_xstrdup (number));
935 }
936
937 return;
938 }
939
940 /* We're completing the expression part. */
941 text = skip_spaces (space);
942 expression_completer (cmd, tracker, text, word);
943 }
944
945 /* condition N EXP -- set break condition of breakpoint N to EXP. */
946
947 static void
948 condition_command (const char *arg, int from_tty)
949 {
950 struct breakpoint *b;
951 const char *p;
952 int bnum;
953
954 if (arg == 0)
955 error_no_arg (_("breakpoint number"));
956
957 p = arg;
958 bnum = get_number (&p);
959 if (bnum == 0)
960 error (_("Bad breakpoint argument: '%s'"), arg);
961
962 ALL_BREAKPOINTS (b)
963 if (b->number == bnum)
964 {
965 /* Check if this breakpoint has a "stop" method implemented in an
966 extension language. This method and conditions entered into GDB
967 from the CLI are mutually exclusive. */
968 const struct extension_language_defn *extlang
969 = get_breakpoint_cond_ext_lang (b, EXT_LANG_NONE);
970
971 if (extlang != NULL)
972 {
973 error (_("Only one stop condition allowed. There is currently"
974 " a %s stop condition defined for this breakpoint."),
975 ext_lang_capitalized_name (extlang));
976 }
977 set_breakpoint_condition (b, p, from_tty);
978
979 if (is_breakpoint (b))
980 update_global_location_list (UGLL_MAY_INSERT);
981
982 return;
983 }
984
985 error (_("No breakpoint number %d."), bnum);
986 }
987
988 /* Check that COMMAND do not contain commands that are suitable
989 only for tracepoints and not suitable for ordinary breakpoints.
990 Throw if any such commands is found. */
991
992 static void
993 check_no_tracepoint_commands (struct command_line *commands)
994 {
995 struct command_line *c;
996
997 for (c = commands; c; c = c->next)
998 {
999 if (c->control_type == while_stepping_control)
1000 error (_("The 'while-stepping' command can "
1001 "only be used for tracepoints"));
1002
1003 check_no_tracepoint_commands (c->body_list_0.get ());
1004 check_no_tracepoint_commands (c->body_list_1.get ());
1005
1006 /* Not that command parsing removes leading whitespace and comment
1007 lines and also empty lines. So, we only need to check for
1008 command directly. */
1009 if (strstr (c->line, "collect ") == c->line)
1010 error (_("The 'collect' command can only be used for tracepoints"));
1011
1012 if (strstr (c->line, "teval ") == c->line)
1013 error (_("The 'teval' command can only be used for tracepoints"));
1014 }
1015 }
1016
1017 struct longjmp_breakpoint : public breakpoint
1018 {
1019 ~longjmp_breakpoint () override;
1020 };
1021
1022 /* Encapsulate tests for different types of tracepoints. */
1023
1024 static bool
1025 is_tracepoint_type (bptype type)
1026 {
1027 return (type == bp_tracepoint
1028 || type == bp_fast_tracepoint
1029 || type == bp_static_tracepoint);
1030 }
1031
1032 static bool
1033 is_longjmp_type (bptype type)
1034 {
1035 return type == bp_longjmp || type == bp_exception;
1036 }
1037
1038 /* See breakpoint.h. */
1039
1040 bool
1041 is_tracepoint (const struct breakpoint *b)
1042 {
1043 return is_tracepoint_type (b->type);
1044 }
1045
1046 /* Factory function to create an appropriate instance of breakpoint given
1047 TYPE. */
1048
1049 static std::unique_ptr<breakpoint>
1050 new_breakpoint_from_type (bptype type)
1051 {
1052 breakpoint *b;
1053
1054 if (is_tracepoint_type (type))
1055 b = new tracepoint ();
1056 else if (is_longjmp_type (type))
1057 b = new longjmp_breakpoint ();
1058 else
1059 b = new breakpoint ();
1060
1061 return std::unique_ptr<breakpoint> (b);
1062 }
1063
1064 /* A helper function that validates that COMMANDS are valid for a
1065 breakpoint. This function will throw an exception if a problem is
1066 found. */
1067
1068 static void
1069 validate_commands_for_breakpoint (struct breakpoint *b,
1070 struct command_line *commands)
1071 {
1072 if (is_tracepoint (b))
1073 {
1074 struct tracepoint *t = (struct tracepoint *) b;
1075 struct command_line *c;
1076 struct command_line *while_stepping = 0;
1077
1078 /* Reset the while-stepping step count. The previous commands
1079 might have included a while-stepping action, while the new
1080 ones might not. */
1081 t->step_count = 0;
1082
1083 /* We need to verify that each top-level element of commands is
1084 valid for tracepoints, that there's at most one
1085 while-stepping element, and that the while-stepping's body
1086 has valid tracing commands excluding nested while-stepping.
1087 We also need to validate the tracepoint action line in the
1088 context of the tracepoint --- validate_actionline actually
1089 has side effects, like setting the tracepoint's
1090 while-stepping STEP_COUNT, in addition to checking if the
1091 collect/teval actions parse and make sense in the
1092 tracepoint's context. */
1093 for (c = commands; c; c = c->next)
1094 {
1095 if (c->control_type == while_stepping_control)
1096 {
1097 if (b->type == bp_fast_tracepoint)
1098 error (_("The 'while-stepping' command "
1099 "cannot be used for fast tracepoint"));
1100 else if (b->type == bp_static_tracepoint)
1101 error (_("The 'while-stepping' command "
1102 "cannot be used for static tracepoint"));
1103
1104 if (while_stepping)
1105 error (_("The 'while-stepping' command "
1106 "can be used only once"));
1107 else
1108 while_stepping = c;
1109 }
1110
1111 validate_actionline (c->line, b);
1112 }
1113 if (while_stepping)
1114 {
1115 struct command_line *c2;
1116
1117 gdb_assert (while_stepping->body_list_1 == nullptr);
1118 c2 = while_stepping->body_list_0.get ();
1119 for (; c2; c2 = c2->next)
1120 {
1121 if (c2->control_type == while_stepping_control)
1122 error (_("The 'while-stepping' command cannot be nested"));
1123 }
1124 }
1125 }
1126 else
1127 {
1128 check_no_tracepoint_commands (commands);
1129 }
1130 }
1131
1132 /* Return a vector of all the static tracepoints set at ADDR. The
1133 caller is responsible for releasing the vector. */
1134
1135 std::vector<breakpoint *>
1136 static_tracepoints_here (CORE_ADDR addr)
1137 {
1138 struct breakpoint *b;
1139 std::vector<breakpoint *> found;
1140 struct bp_location *loc;
1141
1142 ALL_BREAKPOINTS (b)
1143 if (b->type == bp_static_tracepoint)
1144 {
1145 for (loc = b->loc; loc; loc = loc->next)
1146 if (loc->address == addr)
1147 found.push_back (b);
1148 }
1149
1150 return found;
1151 }
1152
1153 /* Set the command list of B to COMMANDS. If breakpoint is tracepoint,
1154 validate that only allowed commands are included. */
1155
1156 void
1157 breakpoint_set_commands (struct breakpoint *b,
1158 counted_command_line &&commands)
1159 {
1160 validate_commands_for_breakpoint (b, commands.get ());
1161
1162 b->commands = std::move (commands);
1163 gdb::observers::breakpoint_modified.notify (b);
1164 }
1165
1166 /* Set the internal `silent' flag on the breakpoint. Note that this
1167 is not the same as the "silent" that may appear in the breakpoint's
1168 commands. */
1169
1170 void
1171 breakpoint_set_silent (struct breakpoint *b, int silent)
1172 {
1173 int old_silent = b->silent;
1174
1175 b->silent = silent;
1176 if (old_silent != silent)
1177 gdb::observers::breakpoint_modified.notify (b);
1178 }
1179
1180 /* Set the thread for this breakpoint. If THREAD is -1, make the
1181 breakpoint work for any thread. */
1182
1183 void
1184 breakpoint_set_thread (struct breakpoint *b, int thread)
1185 {
1186 int old_thread = b->thread;
1187
1188 b->thread = thread;
1189 if (old_thread != thread)
1190 gdb::observers::breakpoint_modified.notify (b);
1191 }
1192
1193 /* Set the task for this breakpoint. If TASK is 0, make the
1194 breakpoint work for any task. */
1195
1196 void
1197 breakpoint_set_task (struct breakpoint *b, int task)
1198 {
1199 int old_task = b->task;
1200
1201 b->task = task;
1202 if (old_task != task)
1203 gdb::observers::breakpoint_modified.notify (b);
1204 }
1205
1206 static void
1207 commands_command_1 (const char *arg, int from_tty,
1208 struct command_line *control)
1209 {
1210 counted_command_line cmd;
1211 /* cmd_read will be true once we have read cmd. Note that cmd might still be
1212 NULL after the call to read_command_lines if the user provides an empty
1213 list of command by just typing "end". */
1214 bool cmd_read = false;
1215
1216 std::string new_arg;
1217
1218 if (arg == NULL || !*arg)
1219 {
1220 if (breakpoint_count - prev_breakpoint_count > 1)
1221 new_arg = string_printf ("%d-%d", prev_breakpoint_count + 1,
1222 breakpoint_count);
1223 else if (breakpoint_count > 0)
1224 new_arg = string_printf ("%d", breakpoint_count);
1225 arg = new_arg.c_str ();
1226 }
1227
1228 map_breakpoint_numbers
1229 (arg, [&] (breakpoint *b)
1230 {
1231 if (!cmd_read)
1232 {
1233 gdb_assert (cmd == NULL);
1234 if (control != NULL)
1235 cmd = control->body_list_0;
1236 else
1237 {
1238 std::string str
1239 = string_printf (_("Type commands for breakpoint(s) "
1240 "%s, one per line."),
1241 arg);
1242
1243 auto do_validate = [=] (const char *line)
1244 {
1245 validate_actionline (line, b);
1246 };
1247 gdb::function_view<void (const char *)> validator;
1248 if (is_tracepoint (b))
1249 validator = do_validate;
1250
1251 cmd = read_command_lines (str.c_str (), from_tty, 1, validator);
1252 }
1253 cmd_read = true;
1254 }
1255
1256 /* If a breakpoint was on the list more than once, we don't need to
1257 do anything. */
1258 if (b->commands != cmd)
1259 {
1260 validate_commands_for_breakpoint (b, cmd.get ());
1261 b->commands = cmd;
1262 gdb::observers::breakpoint_modified.notify (b);
1263 }
1264 });
1265 }
1266
1267 static void
1268 commands_command (const char *arg, int from_tty)
1269 {
1270 commands_command_1 (arg, from_tty, NULL);
1271 }
1272
1273 /* Like commands_command, but instead of reading the commands from
1274 input stream, takes them from an already parsed command structure.
1275
1276 This is used by cli-script.c to DTRT with breakpoint commands
1277 that are part of if and while bodies. */
1278 enum command_control_type
1279 commands_from_control_command (const char *arg, struct command_line *cmd)
1280 {
1281 commands_command_1 (arg, 0, cmd);
1282 return simple_control;
1283 }
1284
1285 /* Return non-zero if BL->TARGET_INFO contains valid information. */
1286
1287 static int
1288 bp_location_has_shadow (struct bp_location *bl)
1289 {
1290 if (bl->loc_type != bp_loc_software_breakpoint)
1291 return 0;
1292 if (!bl->inserted)
1293 return 0;
1294 if (bl->target_info.shadow_len == 0)
1295 /* BL isn't valid, or doesn't shadow memory. */
1296 return 0;
1297 return 1;
1298 }
1299
1300 /* Update BUF, which is LEN bytes read from the target address
1301 MEMADDR, by replacing a memory breakpoint with its shadowed
1302 contents.
1303
1304 If READBUF is not NULL, this buffer must not overlap with the of
1305 the breakpoint location's shadow_contents buffer. Otherwise, a
1306 failed assertion internal error will be raised. */
1307
1308 static void
1309 one_breakpoint_xfer_memory (gdb_byte *readbuf, gdb_byte *writebuf,
1310 const gdb_byte *writebuf_org,
1311 ULONGEST memaddr, LONGEST len,
1312 struct bp_target_info *target_info,
1313 struct gdbarch *gdbarch)
1314 {
1315 /* Now do full processing of the found relevant range of elements. */
1316 CORE_ADDR bp_addr = 0;
1317 int bp_size = 0;
1318 int bptoffset = 0;
1319
1320 if (!breakpoint_address_match (target_info->placed_address_space, 0,
1321 current_program_space->aspace, 0))
1322 {
1323 /* The breakpoint is inserted in a different address space. */
1324 return;
1325 }
1326
1327 /* Addresses and length of the part of the breakpoint that
1328 we need to copy. */
1329 bp_addr = target_info->placed_address;
1330 bp_size = target_info->shadow_len;
1331
1332 if (bp_addr + bp_size <= memaddr)
1333 {
1334 /* The breakpoint is entirely before the chunk of memory we are
1335 reading. */
1336 return;
1337 }
1338
1339 if (bp_addr >= memaddr + len)
1340 {
1341 /* The breakpoint is entirely after the chunk of memory we are
1342 reading. */
1343 return;
1344 }
1345
1346 /* Offset within shadow_contents. */
1347 if (bp_addr < memaddr)
1348 {
1349 /* Only copy the second part of the breakpoint. */
1350 bp_size -= memaddr - bp_addr;
1351 bptoffset = memaddr - bp_addr;
1352 bp_addr = memaddr;
1353 }
1354
1355 if (bp_addr + bp_size > memaddr + len)
1356 {
1357 /* Only copy the first part of the breakpoint. */
1358 bp_size -= (bp_addr + bp_size) - (memaddr + len);
1359 }
1360
1361 if (readbuf != NULL)
1362 {
1363 /* Verify that the readbuf buffer does not overlap with the
1364 shadow_contents buffer. */
1365 gdb_assert (target_info->shadow_contents >= readbuf + len
1366 || readbuf >= (target_info->shadow_contents
1367 + target_info->shadow_len));
1368
1369 /* Update the read buffer with this inserted breakpoint's
1370 shadow. */
1371 memcpy (readbuf + bp_addr - memaddr,
1372 target_info->shadow_contents + bptoffset, bp_size);
1373 }
1374 else
1375 {
1376 const unsigned char *bp;
1377 CORE_ADDR addr = target_info->reqstd_address;
1378 int placed_size;
1379
1380 /* Update the shadow with what we want to write to memory. */
1381 memcpy (target_info->shadow_contents + bptoffset,
1382 writebuf_org + bp_addr - memaddr, bp_size);
1383
1384 /* Determine appropriate breakpoint contents and size for this
1385 address. */
1386 bp = gdbarch_breakpoint_from_pc (gdbarch, &addr, &placed_size);
1387
1388 /* Update the final write buffer with this inserted
1389 breakpoint's INSN. */
1390 memcpy (writebuf + bp_addr - memaddr, bp + bptoffset, bp_size);
1391 }
1392 }
1393
1394 /* Update BUF, which is LEN bytes read from the target address MEMADDR,
1395 by replacing any memory breakpoints with their shadowed contents.
1396
1397 If READBUF is not NULL, this buffer must not overlap with any of
1398 the breakpoint location's shadow_contents buffers. Otherwise,
1399 a failed assertion internal error will be raised.
1400
1401 The range of shadowed area by each bp_location is:
1402 bl->address - bp_locations_placed_address_before_address_max
1403 up to bl->address + bp_locations_shadow_len_after_address_max
1404 The range we were requested to resolve shadows for is:
1405 memaddr ... memaddr + len
1406 Thus the safe cutoff boundaries for performance optimization are
1407 memaddr + len <= (bl->address
1408 - bp_locations_placed_address_before_address_max)
1409 and:
1410 bl->address + bp_locations_shadow_len_after_address_max <= memaddr */
1411
1412 void
1413 breakpoint_xfer_memory (gdb_byte *readbuf, gdb_byte *writebuf,
1414 const gdb_byte *writebuf_org,
1415 ULONGEST memaddr, LONGEST len)
1416 {
1417 /* Left boundary, right boundary and median element of our binary
1418 search. */
1419 unsigned bc_l, bc_r, bc;
1420
1421 /* Find BC_L which is a leftmost element which may affect BUF
1422 content. It is safe to report lower value but a failure to
1423 report higher one. */
1424
1425 bc_l = 0;
1426 bc_r = bp_locations_count;
1427 while (bc_l + 1 < bc_r)
1428 {
1429 struct bp_location *bl;
1430
1431 bc = (bc_l + bc_r) / 2;
1432 bl = bp_locations[bc];
1433
1434 /* Check first BL->ADDRESS will not overflow due to the added
1435 constant. Then advance the left boundary only if we are sure
1436 the BC element can in no way affect the BUF content (MEMADDR
1437 to MEMADDR + LEN range).
1438
1439 Use the BP_LOCATIONS_SHADOW_LEN_AFTER_ADDRESS_MAX safety
1440 offset so that we cannot miss a breakpoint with its shadow
1441 range tail still reaching MEMADDR. */
1442
1443 if ((bl->address + bp_locations_shadow_len_after_address_max
1444 >= bl->address)
1445 && (bl->address + bp_locations_shadow_len_after_address_max
1446 <= memaddr))
1447 bc_l = bc;
1448 else
1449 bc_r = bc;
1450 }
1451
1452 /* Due to the binary search above, we need to make sure we pick the
1453 first location that's at BC_L's address. E.g., if there are
1454 multiple locations at the same address, BC_L may end up pointing
1455 at a duplicate location, and miss the "master"/"inserted"
1456 location. Say, given locations L1, L2 and L3 at addresses A and
1457 B:
1458
1459 L1@A, L2@A, L3@B, ...
1460
1461 BC_L could end up pointing at location L2, while the "master"
1462 location could be L1. Since the `loc->inserted' flag is only set
1463 on "master" locations, we'd forget to restore the shadow of L1
1464 and L2. */
1465 while (bc_l > 0
1466 && bp_locations[bc_l]->address == bp_locations[bc_l - 1]->address)
1467 bc_l--;
1468
1469 /* Now do full processing of the found relevant range of elements. */
1470
1471 for (bc = bc_l; bc < bp_locations_count; bc++)
1472 {
1473 struct bp_location *bl = bp_locations[bc];
1474
1475 /* bp_location array has BL->OWNER always non-NULL. */
1476 if (bl->owner->type == bp_none)
1477 warning (_("reading through apparently deleted breakpoint #%d?"),
1478 bl->owner->number);
1479
1480 /* Performance optimization: any further element can no longer affect BUF
1481 content. */
1482
1483 if (bl->address >= bp_locations_placed_address_before_address_max
1484 && memaddr + len <= (bl->address
1485 - bp_locations_placed_address_before_address_max))
1486 break;
1487
1488 if (!bp_location_has_shadow (bl))
1489 continue;
1490
1491 one_breakpoint_xfer_memory (readbuf, writebuf, writebuf_org,
1492 memaddr, len, &bl->target_info, bl->gdbarch);
1493 }
1494 }
1495
1496 /* See breakpoint.h. */
1497
1498 bool
1499 is_breakpoint (const struct breakpoint *bpt)
1500 {
1501 return (bpt->type == bp_breakpoint
1502 || bpt->type == bp_hardware_breakpoint
1503 || bpt->type == bp_dprintf);
1504 }
1505
1506 /* Return true if BPT is of any hardware watchpoint kind. */
1507
1508 static bool
1509 is_hardware_watchpoint (const struct breakpoint *bpt)
1510 {
1511 return (bpt->type == bp_hardware_watchpoint
1512 || bpt->type == bp_read_watchpoint
1513 || bpt->type == bp_access_watchpoint);
1514 }
1515
1516 /* See breakpoint.h. */
1517
1518 bool
1519 is_watchpoint (const struct breakpoint *bpt)
1520 {
1521 return (is_hardware_watchpoint (bpt)
1522 || bpt->type == bp_watchpoint);
1523 }
1524
1525 /* Returns true if the current thread and its running state are safe
1526 to evaluate or update watchpoint B. Watchpoints on local
1527 expressions need to be evaluated in the context of the thread that
1528 was current when the watchpoint was created, and, that thread needs
1529 to be stopped to be able to select the correct frame context.
1530 Watchpoints on global expressions can be evaluated on any thread,
1531 and in any state. It is presently left to the target allowing
1532 memory accesses when threads are running. */
1533
1534 static int
1535 watchpoint_in_thread_scope (struct watchpoint *b)
1536 {
1537 return (b->pspace == current_program_space
1538 && (b->watchpoint_thread == null_ptid
1539 || (inferior_ptid == b->watchpoint_thread
1540 && !inferior_thread ()->executing)));
1541 }
1542
1543 /* Set watchpoint B to disp_del_at_next_stop, even including its possible
1544 associated bp_watchpoint_scope breakpoint. */
1545
1546 static void
1547 watchpoint_del_at_next_stop (struct watchpoint *w)
1548 {
1549 if (w->related_breakpoint != w)
1550 {
1551 gdb_assert (w->related_breakpoint->type == bp_watchpoint_scope);
1552 gdb_assert (w->related_breakpoint->related_breakpoint == w);
1553 w->related_breakpoint->disposition = disp_del_at_next_stop;
1554 w->related_breakpoint->related_breakpoint = w->related_breakpoint;
1555 w->related_breakpoint = w;
1556 }
1557 w->disposition = disp_del_at_next_stop;
1558 }
1559
1560 /* Extract a bitfield value from value VAL using the bit parameters contained in
1561 watchpoint W. */
1562
1563 static struct value *
1564 extract_bitfield_from_watchpoint_value (struct watchpoint *w, struct value *val)
1565 {
1566 struct value *bit_val;
1567
1568 if (val == NULL)
1569 return NULL;
1570
1571 bit_val = allocate_value (value_type (val));
1572
1573 unpack_value_bitfield (bit_val,
1574 w->val_bitpos,
1575 w->val_bitsize,
1576 value_contents_for_printing (val),
1577 value_offset (val),
1578 val);
1579
1580 return bit_val;
1581 }
1582
1583 /* Allocate a dummy location and add it to B, which must be a software
1584 watchpoint. This is required because even if a software watchpoint
1585 is not watching any memory, bpstat_stop_status requires a location
1586 to be able to report stops. */
1587
1588 static void
1589 software_watchpoint_add_no_memory_location (struct breakpoint *b,
1590 struct program_space *pspace)
1591 {
1592 gdb_assert (b->type == bp_watchpoint && b->loc == NULL);
1593
1594 b->loc = allocate_bp_location (b);
1595 b->loc->pspace = pspace;
1596 b->loc->address = -1;
1597 b->loc->length = -1;
1598 }
1599
1600 /* Returns true if B is a software watchpoint that is not watching any
1601 memory (e.g., "watch $pc"). */
1602
1603 static bool
1604 is_no_memory_software_watchpoint (struct breakpoint *b)
1605 {
1606 return (b->type == bp_watchpoint
1607 && b->loc != NULL
1608 && b->loc->next == NULL
1609 && b->loc->address == -1
1610 && b->loc->length == -1);
1611 }
1612
1613 /* Assuming that B is a watchpoint:
1614 - Reparse watchpoint expression, if REPARSE is non-zero
1615 - Evaluate expression and store the result in B->val
1616 - Evaluate the condition if there is one, and store the result
1617 in b->loc->cond.
1618 - Update the list of values that must be watched in B->loc.
1619
1620 If the watchpoint disposition is disp_del_at_next_stop, then do
1621 nothing. If this is local watchpoint that is out of scope, delete
1622 it.
1623
1624 Even with `set breakpoint always-inserted on' the watchpoints are
1625 removed + inserted on each stop here. Normal breakpoints must
1626 never be removed because they might be missed by a running thread
1627 when debugging in non-stop mode. On the other hand, hardware
1628 watchpoints (is_hardware_watchpoint; processed here) are specific
1629 to each LWP since they are stored in each LWP's hardware debug
1630 registers. Therefore, such LWP must be stopped first in order to
1631 be able to modify its hardware watchpoints.
1632
1633 Hardware watchpoints must be reset exactly once after being
1634 presented to the user. It cannot be done sooner, because it would
1635 reset the data used to present the watchpoint hit to the user. And
1636 it must not be done later because it could display the same single
1637 watchpoint hit during multiple GDB stops. Note that the latter is
1638 relevant only to the hardware watchpoint types bp_read_watchpoint
1639 and bp_access_watchpoint. False hit by bp_hardware_watchpoint is
1640 not user-visible - its hit is suppressed if the memory content has
1641 not changed.
1642
1643 The following constraints influence the location where we can reset
1644 hardware watchpoints:
1645
1646 * target_stopped_by_watchpoint and target_stopped_data_address are
1647 called several times when GDB stops.
1648
1649 [linux]
1650 * Multiple hardware watchpoints can be hit at the same time,
1651 causing GDB to stop. GDB only presents one hardware watchpoint
1652 hit at a time as the reason for stopping, and all the other hits
1653 are presented later, one after the other, each time the user
1654 requests the execution to be resumed. Execution is not resumed
1655 for the threads still having pending hit event stored in
1656 LWP_INFO->STATUS. While the watchpoint is already removed from
1657 the inferior on the first stop the thread hit event is kept being
1658 reported from its cached value by linux_nat_stopped_data_address
1659 until the real thread resume happens after the watchpoint gets
1660 presented and thus its LWP_INFO->STATUS gets reset.
1661
1662 Therefore the hardware watchpoint hit can get safely reset on the
1663 watchpoint removal from inferior. */
1664
1665 static void
1666 update_watchpoint (struct watchpoint *b, int reparse)
1667 {
1668 int within_current_scope;
1669 struct frame_id saved_frame_id;
1670 int frame_saved;
1671
1672 /* If this is a local watchpoint, we only want to check if the
1673 watchpoint frame is in scope if the current thread is the thread
1674 that was used to create the watchpoint. */
1675 if (!watchpoint_in_thread_scope (b))
1676 return;
1677
1678 if (b->disposition == disp_del_at_next_stop)
1679 return;
1680
1681 frame_saved = 0;
1682
1683 /* Determine if the watchpoint is within scope. */
1684 if (b->exp_valid_block == NULL)
1685 within_current_scope = 1;
1686 else
1687 {
1688 struct frame_info *fi = get_current_frame ();
1689 struct gdbarch *frame_arch = get_frame_arch (fi);
1690 CORE_ADDR frame_pc = get_frame_pc (fi);
1691
1692 /* If we're at a point where the stack has been destroyed
1693 (e.g. in a function epilogue), unwinding may not work
1694 properly. Do not attempt to recreate locations at this
1695 point. See similar comments in watchpoint_check. */
1696 if (gdbarch_stack_frame_destroyed_p (frame_arch, frame_pc))
1697 return;
1698
1699 /* Save the current frame's ID so we can restore it after
1700 evaluating the watchpoint expression on its own frame. */
1701 /* FIXME drow/2003-09-09: It would be nice if evaluate_expression
1702 took a frame parameter, so that we didn't have to change the
1703 selected frame. */
1704 frame_saved = 1;
1705 saved_frame_id = get_frame_id (get_selected_frame (NULL));
1706
1707 fi = frame_find_by_id (b->watchpoint_frame);
1708 within_current_scope = (fi != NULL);
1709 if (within_current_scope)
1710 select_frame (fi);
1711 }
1712
1713 /* We don't free locations. They are stored in the bp_location array
1714 and update_global_location_list will eventually delete them and
1715 remove breakpoints if needed. */
1716 b->loc = NULL;
1717
1718 if (within_current_scope && reparse)
1719 {
1720 const char *s;
1721
1722 b->exp.reset ();
1723 s = b->exp_string_reparse ? b->exp_string_reparse : b->exp_string;
1724 b->exp = parse_exp_1 (&s, 0, b->exp_valid_block, 0);
1725 /* If the meaning of expression itself changed, the old value is
1726 no longer relevant. We don't want to report a watchpoint hit
1727 to the user when the old value and the new value may actually
1728 be completely different objects. */
1729 b->val = NULL;
1730 b->val_valid = false;
1731
1732 /* Note that unlike with breakpoints, the watchpoint's condition
1733 expression is stored in the breakpoint object, not in the
1734 locations (re)created below. */
1735 if (b->cond_string != NULL)
1736 {
1737 b->cond_exp.reset ();
1738
1739 s = b->cond_string;
1740 b->cond_exp = parse_exp_1 (&s, 0, b->cond_exp_valid_block, 0);
1741 }
1742 }
1743
1744 /* If we failed to parse the expression, for example because
1745 it refers to a global variable in a not-yet-loaded shared library,
1746 don't try to insert watchpoint. We don't automatically delete
1747 such watchpoint, though, since failure to parse expression
1748 is different from out-of-scope watchpoint. */
1749 if (!target_has_execution)
1750 {
1751 /* Without execution, memory can't change. No use to try and
1752 set watchpoint locations. The watchpoint will be reset when
1753 the target gains execution, through breakpoint_re_set. */
1754 if (!can_use_hw_watchpoints)
1755 {
1756 if (b->ops->works_in_software_mode (b))
1757 b->type = bp_watchpoint;
1758 else
1759 error (_("Can't set read/access watchpoint when "
1760 "hardware watchpoints are disabled."));
1761 }
1762 }
1763 else if (within_current_scope && b->exp)
1764 {
1765 int pc = 0;
1766 std::vector<value_ref_ptr> val_chain;
1767 struct value *v, *result;
1768 struct program_space *frame_pspace;
1769
1770 fetch_subexp_value (b->exp.get (), &pc, &v, &result, &val_chain, 0);
1771
1772 /* Avoid setting b->val if it's already set. The meaning of
1773 b->val is 'the last value' user saw, and we should update
1774 it only if we reported that last value to user. As it
1775 happens, the code that reports it updates b->val directly.
1776 We don't keep track of the memory value for masked
1777 watchpoints. */
1778 if (!b->val_valid && !is_masked_watchpoint (b))
1779 {
1780 if (b->val_bitsize != 0)
1781 v = extract_bitfield_from_watchpoint_value (b, v);
1782 b->val = release_value (v);
1783 b->val_valid = true;
1784 }
1785
1786 frame_pspace = get_frame_program_space (get_selected_frame (NULL));
1787
1788 /* Look at each value on the value chain. */
1789 gdb_assert (!val_chain.empty ());
1790 for (const value_ref_ptr &iter : val_chain)
1791 {
1792 v = iter.get ();
1793
1794 /* If it's a memory location, and GDB actually needed
1795 its contents to evaluate the expression, then we
1796 must watch it. If the first value returned is
1797 still lazy, that means an error occurred reading it;
1798 watch it anyway in case it becomes readable. */
1799 if (VALUE_LVAL (v) == lval_memory
1800 && (v == val_chain[0] || ! value_lazy (v)))
1801 {
1802 struct type *vtype = check_typedef (value_type (v));
1803
1804 /* We only watch structs and arrays if user asked
1805 for it explicitly, never if they just happen to
1806 appear in the middle of some value chain. */
1807 if (v == result
1808 || (TYPE_CODE (vtype) != TYPE_CODE_STRUCT
1809 && TYPE_CODE (vtype) != TYPE_CODE_ARRAY))
1810 {
1811 CORE_ADDR addr;
1812 enum target_hw_bp_type type;
1813 struct bp_location *loc, **tmp;
1814 int bitpos = 0, bitsize = 0;
1815
1816 if (value_bitsize (v) != 0)
1817 {
1818 /* Extract the bit parameters out from the bitfield
1819 sub-expression. */
1820 bitpos = value_bitpos (v);
1821 bitsize = value_bitsize (v);
1822 }
1823 else if (v == result && b->val_bitsize != 0)
1824 {
1825 /* If VAL_BITSIZE != 0 then RESULT is actually a bitfield
1826 lvalue whose bit parameters are saved in the fields
1827 VAL_BITPOS and VAL_BITSIZE. */
1828 bitpos = b->val_bitpos;
1829 bitsize = b->val_bitsize;
1830 }
1831
1832 addr = value_address (v);
1833 if (bitsize != 0)
1834 {
1835 /* Skip the bytes that don't contain the bitfield. */
1836 addr += bitpos / 8;
1837 }
1838
1839 type = hw_write;
1840 if (b->type == bp_read_watchpoint)
1841 type = hw_read;
1842 else if (b->type == bp_access_watchpoint)
1843 type = hw_access;
1844
1845 loc = allocate_bp_location (b);
1846 for (tmp = &(b->loc); *tmp != NULL; tmp = &((*tmp)->next))
1847 ;
1848 *tmp = loc;
1849 loc->gdbarch = get_type_arch (value_type (v));
1850
1851 loc->pspace = frame_pspace;
1852 loc->address = address_significant (loc->gdbarch, addr);
1853
1854 if (bitsize != 0)
1855 {
1856 /* Just cover the bytes that make up the bitfield. */
1857 loc->length = ((bitpos % 8) + bitsize + 7) / 8;
1858 }
1859 else
1860 loc->length = TYPE_LENGTH (value_type (v));
1861
1862 loc->watchpoint_type = type;
1863 }
1864 }
1865 }
1866
1867 /* Change the type of breakpoint between hardware assisted or
1868 an ordinary watchpoint depending on the hardware support
1869 and free hardware slots. REPARSE is set when the inferior
1870 is started. */
1871 if (reparse)
1872 {
1873 int reg_cnt;
1874 enum bp_loc_type loc_type;
1875 struct bp_location *bl;
1876
1877 reg_cnt = can_use_hardware_watchpoint (val_chain);
1878
1879 if (reg_cnt)
1880 {
1881 int i, target_resources_ok, other_type_used;
1882 enum bptype type;
1883
1884 /* Use an exact watchpoint when there's only one memory region to be
1885 watched, and only one debug register is needed to watch it. */
1886 b->exact = target_exact_watchpoints && reg_cnt == 1;
1887
1888 /* We need to determine how many resources are already
1889 used for all other hardware watchpoints plus this one
1890 to see if we still have enough resources to also fit
1891 this watchpoint in as well. */
1892
1893 /* If this is a software watchpoint, we try to turn it
1894 to a hardware one -- count resources as if B was of
1895 hardware watchpoint type. */
1896 type = b->type;
1897 if (type == bp_watchpoint)
1898 type = bp_hardware_watchpoint;
1899
1900 /* This watchpoint may or may not have been placed on
1901 the list yet at this point (it won't be in the list
1902 if we're trying to create it for the first time,
1903 through watch_command), so always account for it
1904 manually. */
1905
1906 /* Count resources used by all watchpoints except B. */
1907 i = hw_watchpoint_used_count_others (b, type, &other_type_used);
1908
1909 /* Add in the resources needed for B. */
1910 i += hw_watchpoint_use_count (b);
1911
1912 target_resources_ok
1913 = target_can_use_hardware_watchpoint (type, i, other_type_used);
1914 if (target_resources_ok <= 0)
1915 {
1916 int sw_mode = b->ops->works_in_software_mode (b);
1917
1918 if (target_resources_ok == 0 && !sw_mode)
1919 error (_("Target does not support this type of "
1920 "hardware watchpoint."));
1921 else if (target_resources_ok < 0 && !sw_mode)
1922 error (_("There are not enough available hardware "
1923 "resources for this watchpoint."));
1924
1925 /* Downgrade to software watchpoint. */
1926 b->type = bp_watchpoint;
1927 }
1928 else
1929 {
1930 /* If this was a software watchpoint, we've just
1931 found we have enough resources to turn it to a
1932 hardware watchpoint. Otherwise, this is a
1933 nop. */
1934 b->type = type;
1935 }
1936 }
1937 else if (!b->ops->works_in_software_mode (b))
1938 {
1939 if (!can_use_hw_watchpoints)
1940 error (_("Can't set read/access watchpoint when "
1941 "hardware watchpoints are disabled."));
1942 else
1943 error (_("Expression cannot be implemented with "
1944 "read/access watchpoint."));
1945 }
1946 else
1947 b->type = bp_watchpoint;
1948
1949 loc_type = (b->type == bp_watchpoint? bp_loc_other
1950 : bp_loc_hardware_watchpoint);
1951 for (bl = b->loc; bl; bl = bl->next)
1952 bl->loc_type = loc_type;
1953 }
1954
1955 /* If a software watchpoint is not watching any memory, then the
1956 above left it without any location set up. But,
1957 bpstat_stop_status requires a location to be able to report
1958 stops, so make sure there's at least a dummy one. */
1959 if (b->type == bp_watchpoint && b->loc == NULL)
1960 software_watchpoint_add_no_memory_location (b, frame_pspace);
1961 }
1962 else if (!within_current_scope)
1963 {
1964 printf_filtered (_("\
1965 Watchpoint %d deleted because the program has left the block\n\
1966 in which its expression is valid.\n"),
1967 b->number);
1968 watchpoint_del_at_next_stop (b);
1969 }
1970
1971 /* Restore the selected frame. */
1972 if (frame_saved)
1973 select_frame (frame_find_by_id (saved_frame_id));
1974 }
1975
1976
1977 /* Returns 1 iff breakpoint location should be
1978 inserted in the inferior. We don't differentiate the type of BL's owner
1979 (breakpoint vs. tracepoint), although insert_location in tracepoint's
1980 breakpoint_ops is not defined, because in insert_bp_location,
1981 tracepoint's insert_location will not be called. */
1982 static int
1983 should_be_inserted (struct bp_location *bl)
1984 {
1985 if (bl->owner == NULL || !breakpoint_enabled (bl->owner))
1986 return 0;
1987
1988 if (bl->owner->disposition == disp_del_at_next_stop)
1989 return 0;
1990
1991 if (!bl->enabled || bl->shlib_disabled || bl->duplicate)
1992 return 0;
1993
1994 if (user_breakpoint_p (bl->owner) && bl->pspace->executing_startup)
1995 return 0;
1996
1997 /* This is set for example, when we're attached to the parent of a
1998 vfork, and have detached from the child. The child is running
1999 free, and we expect it to do an exec or exit, at which point the
2000 OS makes the parent schedulable again (and the target reports
2001 that the vfork is done). Until the child is done with the shared
2002 memory region, do not insert breakpoints in the parent, otherwise
2003 the child could still trip on the parent's breakpoints. Since
2004 the parent is blocked anyway, it won't miss any breakpoint. */
2005 if (bl->pspace->breakpoints_not_allowed)
2006 return 0;
2007
2008 /* Don't insert a breakpoint if we're trying to step past its
2009 location, except if the breakpoint is a single-step breakpoint,
2010 and the breakpoint's thread is the thread which is stepping past
2011 a breakpoint. */
2012 if ((bl->loc_type == bp_loc_software_breakpoint
2013 || bl->loc_type == bp_loc_hardware_breakpoint)
2014 && stepping_past_instruction_at (bl->pspace->aspace,
2015 bl->address)
2016 /* The single-step breakpoint may be inserted at the location
2017 we're trying to step if the instruction branches to itself.
2018 However, the instruction won't be executed at all and it may
2019 break the semantics of the instruction, for example, the
2020 instruction is a conditional branch or updates some flags.
2021 We can't fix it unless GDB is able to emulate the instruction
2022 or switch to displaced stepping. */
2023 && !(bl->owner->type == bp_single_step
2024 && thread_is_stepping_over_breakpoint (bl->owner->thread)))
2025 {
2026 if (debug_infrun)
2027 {
2028 fprintf_unfiltered (gdb_stdlog,
2029 "infrun: skipping breakpoint: "
2030 "stepping past insn at: %s\n",
2031 paddress (bl->gdbarch, bl->address));
2032 }
2033 return 0;
2034 }
2035
2036 /* Don't insert watchpoints if we're trying to step past the
2037 instruction that triggered one. */
2038 if ((bl->loc_type == bp_loc_hardware_watchpoint)
2039 && stepping_past_nonsteppable_watchpoint ())
2040 {
2041 if (debug_infrun)
2042 {
2043 fprintf_unfiltered (gdb_stdlog,
2044 "infrun: stepping past non-steppable watchpoint. "
2045 "skipping watchpoint at %s:%d\n",
2046 paddress (bl->gdbarch, bl->address),
2047 bl->length);
2048 }
2049 return 0;
2050 }
2051
2052 return 1;
2053 }
2054
2055 /* Same as should_be_inserted but does the check assuming
2056 that the location is not duplicated. */
2057
2058 static int
2059 unduplicated_should_be_inserted (struct bp_location *bl)
2060 {
2061 int result;
2062 const int save_duplicate = bl->duplicate;
2063
2064 bl->duplicate = 0;
2065 result = should_be_inserted (bl);
2066 bl->duplicate = save_duplicate;
2067 return result;
2068 }
2069
2070 /* Parses a conditional described by an expression COND into an
2071 agent expression bytecode suitable for evaluation
2072 by the bytecode interpreter. Return NULL if there was
2073 any error during parsing. */
2074
2075 static agent_expr_up
2076 parse_cond_to_aexpr (CORE_ADDR scope, struct expression *cond)
2077 {
2078 if (cond == NULL)
2079 return NULL;
2080
2081 agent_expr_up aexpr;
2082
2083 /* We don't want to stop processing, so catch any errors
2084 that may show up. */
2085 try
2086 {
2087 aexpr = gen_eval_for_expr (scope, cond);
2088 }
2089
2090 catch (const gdb_exception_error &ex)
2091 {
2092 /* If we got here, it means the condition could not be parsed to a valid
2093 bytecode expression and thus can't be evaluated on the target's side.
2094 It's no use iterating through the conditions. */
2095 }
2096
2097 /* We have a valid agent expression. */
2098 return aexpr;
2099 }
2100
2101 /* Based on location BL, create a list of breakpoint conditions to be
2102 passed on to the target. If we have duplicated locations with different
2103 conditions, we will add such conditions to the list. The idea is that the
2104 target will evaluate the list of conditions and will only notify GDB when
2105 one of them is true. */
2106
2107 static void
2108 build_target_condition_list (struct bp_location *bl)
2109 {
2110 struct bp_location **locp = NULL, **loc2p;
2111 int null_condition_or_parse_error = 0;
2112 int modified = bl->needs_update;
2113 struct bp_location *loc;
2114
2115 /* Release conditions left over from a previous insert. */
2116 bl->target_info.conditions.clear ();
2117
2118 /* This is only meaningful if the target is
2119 evaluating conditions and if the user has
2120 opted for condition evaluation on the target's
2121 side. */
2122 if (gdb_evaluates_breakpoint_condition_p ()
2123 || !target_supports_evaluation_of_breakpoint_conditions ())
2124 return;
2125
2126 /* Do a first pass to check for locations with no assigned
2127 conditions or conditions that fail to parse to a valid agent expression
2128 bytecode. If any of these happen, then it's no use to send conditions
2129 to the target since this location will always trigger and generate a
2130 response back to GDB. */
2131 ALL_BP_LOCATIONS_AT_ADDR (loc2p, locp, bl->address)
2132 {
2133 loc = (*loc2p);
2134 if (is_breakpoint (loc->owner) && loc->pspace->num == bl->pspace->num)
2135 {
2136 if (modified)
2137 {
2138 /* Re-parse the conditions since something changed. In that
2139 case we already freed the condition bytecodes (see
2140 force_breakpoint_reinsertion). We just
2141 need to parse the condition to bytecodes again. */
2142 loc->cond_bytecode = parse_cond_to_aexpr (bl->address,
2143 loc->cond.get ());
2144 }
2145
2146 /* If we have a NULL bytecode expression, it means something
2147 went wrong or we have a null condition expression. */
2148 if (!loc->cond_bytecode)
2149 {
2150 null_condition_or_parse_error = 1;
2151 break;
2152 }
2153 }
2154 }
2155
2156 /* If any of these happened, it means we will have to evaluate the conditions
2157 for the location's address on gdb's side. It is no use keeping bytecodes
2158 for all the other duplicate locations, thus we free all of them here.
2159
2160 This is so we have a finer control over which locations' conditions are
2161 being evaluated by GDB or the remote stub. */
2162 if (null_condition_or_parse_error)
2163 {
2164 ALL_BP_LOCATIONS_AT_ADDR (loc2p, locp, bl->address)
2165 {
2166 loc = (*loc2p);
2167 if (is_breakpoint (loc->owner) && loc->pspace->num == bl->pspace->num)
2168 {
2169 /* Only go as far as the first NULL bytecode is
2170 located. */
2171 if (!loc->cond_bytecode)
2172 return;
2173
2174 loc->cond_bytecode.reset ();
2175 }
2176 }
2177 }
2178
2179 /* No NULL conditions or failed bytecode generation. Build a condition list
2180 for this location's address. */
2181 ALL_BP_LOCATIONS_AT_ADDR (loc2p, locp, bl->address)
2182 {
2183 loc = (*loc2p);
2184 if (loc->cond
2185 && is_breakpoint (loc->owner)
2186 && loc->pspace->num == bl->pspace->num
2187 && loc->owner->enable_state == bp_enabled
2188 && loc->enabled)
2189 {
2190 /* Add the condition to the vector. This will be used later
2191 to send the conditions to the target. */
2192 bl->target_info.conditions.push_back (loc->cond_bytecode.get ());
2193 }
2194 }
2195
2196 return;
2197 }
2198
2199 /* Parses a command described by string CMD into an agent expression
2200 bytecode suitable for evaluation by the bytecode interpreter.
2201 Return NULL if there was any error during parsing. */
2202
2203 static agent_expr_up
2204 parse_cmd_to_aexpr (CORE_ADDR scope, char *cmd)
2205 {
2206 const char *cmdrest;
2207 const char *format_start, *format_end;
2208 struct gdbarch *gdbarch = get_current_arch ();
2209
2210 if (cmd == NULL)
2211 return NULL;
2212
2213 cmdrest = cmd;
2214
2215 if (*cmdrest == ',')
2216 ++cmdrest;
2217 cmdrest = skip_spaces (cmdrest);
2218
2219 if (*cmdrest++ != '"')
2220 error (_("No format string following the location"));
2221
2222 format_start = cmdrest;
2223
2224 format_pieces fpieces (&cmdrest);
2225
2226 format_end = cmdrest;
2227
2228 if (*cmdrest++ != '"')
2229 error (_("Bad format string, non-terminated '\"'."));
2230
2231 cmdrest = skip_spaces (cmdrest);
2232
2233 if (!(*cmdrest == ',' || *cmdrest == '\0'))
2234 error (_("Invalid argument syntax"));
2235
2236 if (*cmdrest == ',')
2237 cmdrest++;
2238 cmdrest = skip_spaces (cmdrest);
2239
2240 /* For each argument, make an expression. */
2241
2242 std::vector<struct expression *> argvec;
2243 while (*cmdrest != '\0')
2244 {
2245 const char *cmd1;
2246
2247 cmd1 = cmdrest;
2248 expression_up expr = parse_exp_1 (&cmd1, scope, block_for_pc (scope), 1);
2249 argvec.push_back (expr.release ());
2250 cmdrest = cmd1;
2251 if (*cmdrest == ',')
2252 ++cmdrest;
2253 }
2254
2255 agent_expr_up aexpr;
2256
2257 /* We don't want to stop processing, so catch any errors
2258 that may show up. */
2259 try
2260 {
2261 aexpr = gen_printf (scope, gdbarch, 0, 0,
2262 format_start, format_end - format_start,
2263 argvec.size (), argvec.data ());
2264 }
2265 catch (const gdb_exception_error &ex)
2266 {
2267 /* If we got here, it means the command could not be parsed to a valid
2268 bytecode expression and thus can't be evaluated on the target's side.
2269 It's no use iterating through the other commands. */
2270 }
2271
2272 /* We have a valid agent expression, return it. */
2273 return aexpr;
2274 }
2275
2276 /* Based on location BL, create a list of breakpoint commands to be
2277 passed on to the target. If we have duplicated locations with
2278 different commands, we will add any such to the list. */
2279
2280 static void
2281 build_target_command_list (struct bp_location *bl)
2282 {
2283 struct bp_location **locp = NULL, **loc2p;
2284 int null_command_or_parse_error = 0;
2285 int modified = bl->needs_update;
2286 struct bp_location *loc;
2287
2288 /* Clear commands left over from a previous insert. */
2289 bl->target_info.tcommands.clear ();
2290
2291 if (!target_can_run_breakpoint_commands ())
2292 return;
2293
2294 /* For now, limit to agent-style dprintf breakpoints. */
2295 if (dprintf_style != dprintf_style_agent)
2296 return;
2297
2298 /* For now, if we have any duplicate location that isn't a dprintf,
2299 don't install the target-side commands, as that would make the
2300 breakpoint not be reported to the core, and we'd lose
2301 control. */
2302 ALL_BP_LOCATIONS_AT_ADDR (loc2p, locp, bl->address)
2303 {
2304 loc = (*loc2p);
2305 if (is_breakpoint (loc->owner)
2306 && loc->pspace->num == bl->pspace->num
2307 && loc->owner->type != bp_dprintf)
2308 return;
2309 }
2310
2311 /* Do a first pass to check for locations with no assigned
2312 conditions or conditions that fail to parse to a valid agent expression
2313 bytecode. If any of these happen, then it's no use to send conditions
2314 to the target since this location will always trigger and generate a
2315 response back to GDB. */
2316 ALL_BP_LOCATIONS_AT_ADDR (loc2p, locp, bl->address)
2317 {
2318 loc = (*loc2p);
2319 if (is_breakpoint (loc->owner) && loc->pspace->num == bl->pspace->num)
2320 {
2321 if (modified)
2322 {
2323 /* Re-parse the commands since something changed. In that
2324 case we already freed the command bytecodes (see
2325 force_breakpoint_reinsertion). We just
2326 need to parse the command to bytecodes again. */
2327 loc->cmd_bytecode
2328 = parse_cmd_to_aexpr (bl->address,
2329 loc->owner->extra_string);
2330 }
2331
2332 /* If we have a NULL bytecode expression, it means something
2333 went wrong or we have a null command expression. */
2334 if (!loc->cmd_bytecode)
2335 {
2336 null_command_or_parse_error = 1;
2337 break;
2338 }
2339 }
2340 }
2341
2342 /* If anything failed, then we're not doing target-side commands,
2343 and so clean up. */
2344 if (null_command_or_parse_error)
2345 {
2346 ALL_BP_LOCATIONS_AT_ADDR (loc2p, locp, bl->address)
2347 {
2348 loc = (*loc2p);
2349 if (is_breakpoint (loc->owner)
2350 && loc->pspace->num == bl->pspace->num)
2351 {
2352 /* Only go as far as the first NULL bytecode is
2353 located. */
2354 if (loc->cmd_bytecode == NULL)
2355 return;
2356
2357 loc->cmd_bytecode.reset ();
2358 }
2359 }
2360 }
2361
2362 /* No NULL commands or failed bytecode generation. Build a command list
2363 for this location's address. */
2364 ALL_BP_LOCATIONS_AT_ADDR (loc2p, locp, bl->address)
2365 {
2366 loc = (*loc2p);
2367 if (loc->owner->extra_string
2368 && is_breakpoint (loc->owner)
2369 && loc->pspace->num == bl->pspace->num
2370 && loc->owner->enable_state == bp_enabled
2371 && loc->enabled)
2372 {
2373 /* Add the command to the vector. This will be used later
2374 to send the commands to the target. */
2375 bl->target_info.tcommands.push_back (loc->cmd_bytecode.get ());
2376 }
2377 }
2378
2379 bl->target_info.persist = 0;
2380 /* Maybe flag this location as persistent. */
2381 if (bl->owner->type == bp_dprintf && disconnected_dprintf)
2382 bl->target_info.persist = 1;
2383 }
2384
2385 /* Return the kind of breakpoint on address *ADDR. Get the kind
2386 of breakpoint according to ADDR except single-step breakpoint.
2387 Get the kind of single-step breakpoint according to the current
2388 registers state. */
2389
2390 static int
2391 breakpoint_kind (struct bp_location *bl, CORE_ADDR *addr)
2392 {
2393 if (bl->owner->type == bp_single_step)
2394 {
2395 struct thread_info *thr = find_thread_global_id (bl->owner->thread);
2396 struct regcache *regcache;
2397
2398 regcache = get_thread_regcache (thr);
2399
2400 return gdbarch_breakpoint_kind_from_current_state (bl->gdbarch,
2401 regcache, addr);
2402 }
2403 else
2404 return gdbarch_breakpoint_kind_from_pc (bl->gdbarch, addr);
2405 }
2406
2407 /* Insert a low-level "breakpoint" of some type. BL is the breakpoint
2408 location. Any error messages are printed to TMP_ERROR_STREAM; and
2409 DISABLED_BREAKS, and HW_BREAKPOINT_ERROR are used to report problems.
2410 Returns 0 for success, 1 if the bp_location type is not supported or
2411 -1 for failure.
2412
2413 NOTE drow/2003-09-09: This routine could be broken down to an
2414 object-style method for each breakpoint or catchpoint type. */
2415 static int
2416 insert_bp_location (struct bp_location *bl,
2417 struct ui_file *tmp_error_stream,
2418 int *disabled_breaks,
2419 int *hw_breakpoint_error,
2420 int *hw_bp_error_explained_already)
2421 {
2422 gdb_exception bp_excpt;
2423
2424 if (!should_be_inserted (bl) || (bl->inserted && !bl->needs_update))
2425 return 0;
2426
2427 /* Note we don't initialize bl->target_info, as that wipes out
2428 the breakpoint location's shadow_contents if the breakpoint
2429 is still inserted at that location. This in turn breaks
2430 target_read_memory which depends on these buffers when
2431 a memory read is requested at the breakpoint location:
2432 Once the target_info has been wiped, we fail to see that
2433 we have a breakpoint inserted at that address and thus
2434 read the breakpoint instead of returning the data saved in
2435 the breakpoint location's shadow contents. */
2436 bl->target_info.reqstd_address = bl->address;
2437 bl->target_info.placed_address_space = bl->pspace->aspace;
2438 bl->target_info.length = bl->length;
2439
2440 /* When working with target-side conditions, we must pass all the conditions
2441 for the same breakpoint address down to the target since GDB will not
2442 insert those locations. With a list of breakpoint conditions, the target
2443 can decide when to stop and notify GDB. */
2444
2445 if (is_breakpoint (bl->owner))
2446 {
2447 build_target_condition_list (bl);
2448 build_target_command_list (bl);
2449 /* Reset the modification marker. */
2450 bl->needs_update = 0;
2451 }
2452
2453 if (bl->loc_type == bp_loc_software_breakpoint
2454 || bl->loc_type == bp_loc_hardware_breakpoint)
2455 {
2456 if (bl->owner->type != bp_hardware_breakpoint)
2457 {
2458 /* If the explicitly specified breakpoint type
2459 is not hardware breakpoint, check the memory map to see
2460 if the breakpoint address is in read only memory or not.
2461
2462 Two important cases are:
2463 - location type is not hardware breakpoint, memory
2464 is readonly. We change the type of the location to
2465 hardware breakpoint.
2466 - location type is hardware breakpoint, memory is
2467 read-write. This means we've previously made the
2468 location hardware one, but then the memory map changed,
2469 so we undo.
2470
2471 When breakpoints are removed, remove_breakpoints will use
2472 location types we've just set here, the only possible
2473 problem is that memory map has changed during running
2474 program, but it's not going to work anyway with current
2475 gdb. */
2476 struct mem_region *mr
2477 = lookup_mem_region (bl->target_info.reqstd_address);
2478
2479 if (mr)
2480 {
2481 if (automatic_hardware_breakpoints)
2482 {
2483 enum bp_loc_type new_type;
2484
2485 if (mr->attrib.mode != MEM_RW)
2486 new_type = bp_loc_hardware_breakpoint;
2487 else
2488 new_type = bp_loc_software_breakpoint;
2489
2490 if (new_type != bl->loc_type)
2491 {
2492 static int said = 0;
2493
2494 bl->loc_type = new_type;
2495 if (!said)
2496 {
2497 fprintf_filtered (gdb_stdout,
2498 _("Note: automatically using "
2499 "hardware breakpoints for "
2500 "read-only addresses.\n"));
2501 said = 1;
2502 }
2503 }
2504 }
2505 else if (bl->loc_type == bp_loc_software_breakpoint
2506 && mr->attrib.mode != MEM_RW)
2507 {
2508 fprintf_unfiltered (tmp_error_stream,
2509 _("Cannot insert breakpoint %d.\n"
2510 "Cannot set software breakpoint "
2511 "at read-only address %s\n"),
2512 bl->owner->number,
2513 paddress (bl->gdbarch, bl->address));
2514 return 1;
2515 }
2516 }
2517 }
2518
2519 /* First check to see if we have to handle an overlay. */
2520 if (overlay_debugging == ovly_off
2521 || bl->section == NULL
2522 || !(section_is_overlay (bl->section)))
2523 {
2524 /* No overlay handling: just set the breakpoint. */
2525 try
2526 {
2527 int val;
2528
2529 val = bl->owner->ops->insert_location (bl);
2530 if (val)
2531 bp_excpt = gdb_exception {RETURN_ERROR, GENERIC_ERROR};
2532 }
2533 catch (gdb_exception &e)
2534 {
2535 bp_excpt = std::move (e);
2536 }
2537 }
2538 else
2539 {
2540 /* This breakpoint is in an overlay section.
2541 Shall we set a breakpoint at the LMA? */
2542 if (!overlay_events_enabled)
2543 {
2544 /* Yes -- overlay event support is not active,
2545 so we must try to set a breakpoint at the LMA.
2546 This will not work for a hardware breakpoint. */
2547 if (bl->loc_type == bp_loc_hardware_breakpoint)
2548 warning (_("hardware breakpoint %d not supported in overlay!"),
2549 bl->owner->number);
2550 else
2551 {
2552 CORE_ADDR addr = overlay_unmapped_address (bl->address,
2553 bl->section);
2554 /* Set a software (trap) breakpoint at the LMA. */
2555 bl->overlay_target_info = bl->target_info;
2556 bl->overlay_target_info.reqstd_address = addr;
2557
2558 /* No overlay handling: just set the breakpoint. */
2559 try
2560 {
2561 int val;
2562
2563 bl->overlay_target_info.kind
2564 = breakpoint_kind (bl, &addr);
2565 bl->overlay_target_info.placed_address = addr;
2566 val = target_insert_breakpoint (bl->gdbarch,
2567 &bl->overlay_target_info);
2568 if (val)
2569 bp_excpt
2570 = gdb_exception {RETURN_ERROR, GENERIC_ERROR};
2571 }
2572 catch (gdb_exception &e)
2573 {
2574 bp_excpt = std::move (e);
2575 }
2576
2577 if (bp_excpt.reason != 0)
2578 fprintf_unfiltered (tmp_error_stream,
2579 "Overlay breakpoint %d "
2580 "failed: in ROM?\n",
2581 bl->owner->number);
2582 }
2583 }
2584 /* Shall we set a breakpoint at the VMA? */
2585 if (section_is_mapped (bl->section))
2586 {
2587 /* Yes. This overlay section is mapped into memory. */
2588 try
2589 {
2590 int val;
2591
2592 val = bl->owner->ops->insert_location (bl);
2593 if (val)
2594 bp_excpt = gdb_exception {RETURN_ERROR, GENERIC_ERROR};
2595 }
2596 catch (gdb_exception &e)
2597 {
2598 bp_excpt = std::move (e);
2599 }
2600 }
2601 else
2602 {
2603 /* No. This breakpoint will not be inserted.
2604 No error, but do not mark the bp as 'inserted'. */
2605 return 0;
2606 }
2607 }
2608
2609 if (bp_excpt.reason != 0)
2610 {
2611 /* Can't set the breakpoint. */
2612
2613 /* In some cases, we might not be able to insert a
2614 breakpoint in a shared library that has already been
2615 removed, but we have not yet processed the shlib unload
2616 event. Unfortunately, some targets that implement
2617 breakpoint insertion themselves can't tell why the
2618 breakpoint insertion failed (e.g., the remote target
2619 doesn't define error codes), so we must treat generic
2620 errors as memory errors. */
2621 if (bp_excpt.reason == RETURN_ERROR
2622 && (bp_excpt.error == GENERIC_ERROR
2623 || bp_excpt.error == MEMORY_ERROR)
2624 && bl->loc_type == bp_loc_software_breakpoint
2625 && (solib_name_from_address (bl->pspace, bl->address)
2626 || shared_objfile_contains_address_p (bl->pspace,
2627 bl->address)))
2628 {
2629 /* See also: disable_breakpoints_in_shlibs. */
2630 bl->shlib_disabled = 1;
2631 gdb::observers::breakpoint_modified.notify (bl->owner);
2632 if (!*disabled_breaks)
2633 {
2634 fprintf_unfiltered (tmp_error_stream,
2635 "Cannot insert breakpoint %d.\n",
2636 bl->owner->number);
2637 fprintf_unfiltered (tmp_error_stream,
2638 "Temporarily disabling shared "
2639 "library breakpoints:\n");
2640 }
2641 *disabled_breaks = 1;
2642 fprintf_unfiltered (tmp_error_stream,
2643 "breakpoint #%d\n", bl->owner->number);
2644 return 0;
2645 }
2646 else
2647 {
2648 if (bl->loc_type == bp_loc_hardware_breakpoint)
2649 {
2650 *hw_breakpoint_error = 1;
2651 *hw_bp_error_explained_already = bp_excpt.message != NULL;
2652 fprintf_unfiltered (tmp_error_stream,
2653 "Cannot insert hardware breakpoint %d%s",
2654 bl->owner->number,
2655 bp_excpt.message ? ":" : ".\n");
2656 if (bp_excpt.message != NULL)
2657 fprintf_unfiltered (tmp_error_stream, "%s.\n",
2658 bp_excpt.what ());
2659 }
2660 else
2661 {
2662 if (bp_excpt.message == NULL)
2663 {
2664 std::string message
2665 = memory_error_message (TARGET_XFER_E_IO,
2666 bl->gdbarch, bl->address);
2667
2668 fprintf_unfiltered (tmp_error_stream,
2669 "Cannot insert breakpoint %d.\n"
2670 "%s\n",
2671 bl->owner->number, message.c_str ());
2672 }
2673 else
2674 {
2675 fprintf_unfiltered (tmp_error_stream,
2676 "Cannot insert breakpoint %d: %s\n",
2677 bl->owner->number,
2678 bp_excpt.what ());
2679 }
2680 }
2681 return 1;
2682
2683 }
2684 }
2685 else
2686 bl->inserted = 1;
2687
2688 return 0;
2689 }
2690
2691 else if (bl->loc_type == bp_loc_hardware_watchpoint
2692 /* NOTE drow/2003-09-08: This state only exists for removing
2693 watchpoints. It's not clear that it's necessary... */
2694 && bl->owner->disposition != disp_del_at_next_stop)
2695 {
2696 int val;
2697
2698 gdb_assert (bl->owner->ops != NULL
2699 && bl->owner->ops->insert_location != NULL);
2700
2701 val = bl->owner->ops->insert_location (bl);
2702
2703 /* If trying to set a read-watchpoint, and it turns out it's not
2704 supported, try emulating one with an access watchpoint. */
2705 if (val == 1 && bl->watchpoint_type == hw_read)
2706 {
2707 struct bp_location *loc, **loc_temp;
2708
2709 /* But don't try to insert it, if there's already another
2710 hw_access location that would be considered a duplicate
2711 of this one. */
2712 ALL_BP_LOCATIONS (loc, loc_temp)
2713 if (loc != bl
2714 && loc->watchpoint_type == hw_access
2715 && watchpoint_locations_match (bl, loc))
2716 {
2717 bl->duplicate = 1;
2718 bl->inserted = 1;
2719 bl->target_info = loc->target_info;
2720 bl->watchpoint_type = hw_access;
2721 val = 0;
2722 break;
2723 }
2724
2725 if (val == 1)
2726 {
2727 bl->watchpoint_type = hw_access;
2728 val = bl->owner->ops->insert_location (bl);
2729
2730 if (val)
2731 /* Back to the original value. */
2732 bl->watchpoint_type = hw_read;
2733 }
2734 }
2735
2736 bl->inserted = (val == 0);
2737 }
2738
2739 else if (bl->owner->type == bp_catchpoint)
2740 {
2741 int val;
2742
2743 gdb_assert (bl->owner->ops != NULL
2744 && bl->owner->ops->insert_location != NULL);
2745
2746 val = bl->owner->ops->insert_location (bl);
2747 if (val)
2748 {
2749 bl->owner->enable_state = bp_disabled;
2750
2751 if (val == 1)
2752 warning (_("\
2753 Error inserting catchpoint %d: Your system does not support this type\n\
2754 of catchpoint."), bl->owner->number);
2755 else
2756 warning (_("Error inserting catchpoint %d."), bl->owner->number);
2757 }
2758
2759 bl->inserted = (val == 0);
2760
2761 /* We've already printed an error message if there was a problem
2762 inserting this catchpoint, and we've disabled the catchpoint,
2763 so just return success. */
2764 return 0;
2765 }
2766
2767 return 0;
2768 }
2769
2770 /* This function is called when program space PSPACE is about to be
2771 deleted. It takes care of updating breakpoints to not reference
2772 PSPACE anymore. */
2773
2774 void
2775 breakpoint_program_space_exit (struct program_space *pspace)
2776 {
2777 struct breakpoint *b, *b_temp;
2778 struct bp_location *loc, **loc_temp;
2779
2780 /* Remove any breakpoint that was set through this program space. */
2781 ALL_BREAKPOINTS_SAFE (b, b_temp)
2782 {
2783 if (b->pspace == pspace)
2784 delete_breakpoint (b);
2785 }
2786
2787 /* Breakpoints set through other program spaces could have locations
2788 bound to PSPACE as well. Remove those. */
2789 ALL_BP_LOCATIONS (loc, loc_temp)
2790 {
2791 struct bp_location *tmp;
2792
2793 if (loc->pspace == pspace)
2794 {
2795 /* ALL_BP_LOCATIONS bp_location has LOC->OWNER always non-NULL. */
2796 if (loc->owner->loc == loc)
2797 loc->owner->loc = loc->next;
2798 else
2799 for (tmp = loc->owner->loc; tmp->next != NULL; tmp = tmp->next)
2800 if (tmp->next == loc)
2801 {
2802 tmp->next = loc->next;
2803 break;
2804 }
2805 }
2806 }
2807
2808 /* Now update the global location list to permanently delete the
2809 removed locations above. */
2810 update_global_location_list (UGLL_DONT_INSERT);
2811 }
2812
2813 /* Make sure all breakpoints are inserted in inferior.
2814 Throws exception on any error.
2815 A breakpoint that is already inserted won't be inserted
2816 again, so calling this function twice is safe. */
2817 void
2818 insert_breakpoints (void)
2819 {
2820 struct breakpoint *bpt;
2821
2822 ALL_BREAKPOINTS (bpt)
2823 if (is_hardware_watchpoint (bpt))
2824 {
2825 struct watchpoint *w = (struct watchpoint *) bpt;
2826
2827 update_watchpoint (w, 0 /* don't reparse. */);
2828 }
2829
2830 /* Updating watchpoints creates new locations, so update the global
2831 location list. Explicitly tell ugll to insert locations and
2832 ignore breakpoints_always_inserted_mode. */
2833 update_global_location_list (UGLL_INSERT);
2834 }
2835
2836 /* Invoke CALLBACK for each of bp_location. */
2837
2838 void
2839 iterate_over_bp_locations (walk_bp_location_callback callback)
2840 {
2841 struct bp_location *loc, **loc_tmp;
2842
2843 ALL_BP_LOCATIONS (loc, loc_tmp)
2844 {
2845 callback (loc, NULL);
2846 }
2847 }
2848
2849 /* This is used when we need to synch breakpoint conditions between GDB and the
2850 target. It is the case with deleting and disabling of breakpoints when using
2851 always-inserted mode. */
2852
2853 static void
2854 update_inserted_breakpoint_locations (void)
2855 {
2856 struct bp_location *bl, **blp_tmp;
2857 int error_flag = 0;
2858 int val = 0;
2859 int disabled_breaks = 0;
2860 int hw_breakpoint_error = 0;
2861 int hw_bp_details_reported = 0;
2862
2863 string_file tmp_error_stream;
2864
2865 /* Explicitly mark the warning -- this will only be printed if
2866 there was an error. */
2867 tmp_error_stream.puts ("Warning:\n");
2868
2869 scoped_restore_current_pspace_and_thread restore_pspace_thread;
2870
2871 ALL_BP_LOCATIONS (bl, blp_tmp)
2872 {
2873 /* We only want to update software breakpoints and hardware
2874 breakpoints. */
2875 if (!is_breakpoint (bl->owner))
2876 continue;
2877
2878 /* We only want to update locations that are already inserted
2879 and need updating. This is to avoid unwanted insertion during
2880 deletion of breakpoints. */
2881 if (!bl->inserted || !bl->needs_update)
2882 continue;
2883
2884 switch_to_program_space_and_thread (bl->pspace);
2885
2886 /* For targets that support global breakpoints, there's no need
2887 to select an inferior to insert breakpoint to. In fact, even
2888 if we aren't attached to any process yet, we should still
2889 insert breakpoints. */
2890 if (!gdbarch_has_global_breakpoints (target_gdbarch ())
2891 && inferior_ptid == null_ptid)
2892 continue;
2893
2894 val = insert_bp_location (bl, &tmp_error_stream, &disabled_breaks,
2895 &hw_breakpoint_error, &hw_bp_details_reported);
2896 if (val)
2897 error_flag = val;
2898 }
2899
2900 if (error_flag)
2901 {
2902 target_terminal::ours_for_output ();
2903 error_stream (tmp_error_stream);
2904 }
2905 }
2906
2907 /* Used when starting or continuing the program. */
2908
2909 static void
2910 insert_breakpoint_locations (void)
2911 {
2912 struct breakpoint *bpt;
2913 struct bp_location *bl, **blp_tmp;
2914 int error_flag = 0;
2915 int val = 0;
2916 int disabled_breaks = 0;
2917 int hw_breakpoint_error = 0;
2918 int hw_bp_error_explained_already = 0;
2919
2920 string_file tmp_error_stream;
2921
2922 /* Explicitly mark the warning -- this will only be printed if
2923 there was an error. */
2924 tmp_error_stream.puts ("Warning:\n");
2925
2926 scoped_restore_current_pspace_and_thread restore_pspace_thread;
2927
2928 ALL_BP_LOCATIONS (bl, blp_tmp)
2929 {
2930 if (!should_be_inserted (bl) || (bl->inserted && !bl->needs_update))
2931 continue;
2932
2933 /* There is no point inserting thread-specific breakpoints if
2934 the thread no longer exists. ALL_BP_LOCATIONS bp_location
2935 has BL->OWNER always non-NULL. */
2936 if (bl->owner->thread != -1
2937 && !valid_global_thread_id (bl->owner->thread))
2938 continue;
2939
2940 switch_to_program_space_and_thread (bl->pspace);
2941
2942 /* For targets that support global breakpoints, there's no need
2943 to select an inferior to insert breakpoint to. In fact, even
2944 if we aren't attached to any process yet, we should still
2945 insert breakpoints. */
2946 if (!gdbarch_has_global_breakpoints (target_gdbarch ())
2947 && inferior_ptid == null_ptid)
2948 continue;
2949
2950 val = insert_bp_location (bl, &tmp_error_stream, &disabled_breaks,
2951 &hw_breakpoint_error, &hw_bp_error_explained_already);
2952 if (val)
2953 error_flag = val;
2954 }
2955
2956 /* If we failed to insert all locations of a watchpoint, remove
2957 them, as half-inserted watchpoint is of limited use. */
2958 ALL_BREAKPOINTS (bpt)
2959 {
2960 int some_failed = 0;
2961 struct bp_location *loc;
2962
2963 if (!is_hardware_watchpoint (bpt))
2964 continue;
2965
2966 if (!breakpoint_enabled (bpt))
2967 continue;
2968
2969 if (bpt->disposition == disp_del_at_next_stop)
2970 continue;
2971
2972 for (loc = bpt->loc; loc; loc = loc->next)
2973 if (!loc->inserted && should_be_inserted (loc))
2974 {
2975 some_failed = 1;
2976 break;
2977 }
2978 if (some_failed)
2979 {
2980 for (loc = bpt->loc; loc; loc = loc->next)
2981 if (loc->inserted)
2982 remove_breakpoint (loc);
2983
2984 hw_breakpoint_error = 1;
2985 tmp_error_stream.printf ("Could not insert "
2986 "hardware watchpoint %d.\n",
2987 bpt->number);
2988 error_flag = -1;
2989 }
2990 }
2991
2992 if (error_flag)
2993 {
2994 /* If a hardware breakpoint or watchpoint was inserted, add a
2995 message about possibly exhausted resources. */
2996 if (hw_breakpoint_error && !hw_bp_error_explained_already)
2997 {
2998 tmp_error_stream.printf ("Could not insert hardware breakpoints:\n\
2999 You may have requested too many hardware breakpoints/watchpoints.\n");
3000 }
3001 target_terminal::ours_for_output ();
3002 error_stream (tmp_error_stream);
3003 }
3004 }
3005
3006 /* Used when the program stops.
3007 Returns zero if successful, or non-zero if there was a problem
3008 removing a breakpoint location. */
3009
3010 int
3011 remove_breakpoints (void)
3012 {
3013 struct bp_location *bl, **blp_tmp;
3014 int val = 0;
3015
3016 ALL_BP_LOCATIONS (bl, blp_tmp)
3017 {
3018 if (bl->inserted && !is_tracepoint (bl->owner))
3019 val |= remove_breakpoint (bl);
3020 }
3021 return val;
3022 }
3023
3024 /* When a thread exits, remove breakpoints that are related to
3025 that thread. */
3026
3027 static void
3028 remove_threaded_breakpoints (struct thread_info *tp, int silent)
3029 {
3030 struct breakpoint *b, *b_tmp;
3031
3032 ALL_BREAKPOINTS_SAFE (b, b_tmp)
3033 {
3034 if (b->thread == tp->global_num && user_breakpoint_p (b))
3035 {
3036 b->disposition = disp_del_at_next_stop;
3037
3038 printf_filtered (_("\
3039 Thread-specific breakpoint %d deleted - thread %s no longer in the thread list.\n"),
3040 b->number, print_thread_id (tp));
3041
3042 /* Hide it from the user. */
3043 b->number = 0;
3044 }
3045 }
3046 }
3047
3048 /* See breakpoint.h. */
3049
3050 void
3051 remove_breakpoints_inf (inferior *inf)
3052 {
3053 struct bp_location *bl, **blp_tmp;
3054 int val;
3055
3056 ALL_BP_LOCATIONS (bl, blp_tmp)
3057 {
3058 if (bl->pspace != inf->pspace)
3059 continue;
3060
3061 if (bl->inserted && !bl->target_info.persist)
3062 {
3063 val = remove_breakpoint (bl);
3064 if (val != 0)
3065 return;
3066 }
3067 }
3068 }
3069
3070 static int internal_breakpoint_number = -1;
3071
3072 /* Set the breakpoint number of B, depending on the value of INTERNAL.
3073 If INTERNAL is non-zero, the breakpoint number will be populated
3074 from internal_breakpoint_number and that variable decremented.
3075 Otherwise the breakpoint number will be populated from
3076 breakpoint_count and that value incremented. Internal breakpoints
3077 do not set the internal var bpnum. */
3078 static void
3079 set_breakpoint_number (int internal, struct breakpoint *b)
3080 {
3081 if (internal)
3082 b->number = internal_breakpoint_number--;
3083 else
3084 {
3085 set_breakpoint_count (breakpoint_count + 1);
3086 b->number = breakpoint_count;
3087 }
3088 }
3089
3090 static struct breakpoint *
3091 create_internal_breakpoint (struct gdbarch *gdbarch,
3092 CORE_ADDR address, enum bptype type,
3093 const struct breakpoint_ops *ops)
3094 {
3095 symtab_and_line sal;
3096 sal.pc = address;
3097 sal.section = find_pc_overlay (sal.pc);
3098 sal.pspace = current_program_space;
3099
3100 breakpoint *b = set_raw_breakpoint (gdbarch, sal, type, ops);
3101 b->number = internal_breakpoint_number--;
3102 b->disposition = disp_donttouch;
3103
3104 return b;
3105 }
3106
3107 static const char *const longjmp_names[] =
3108 {
3109 "longjmp", "_longjmp", "siglongjmp", "_siglongjmp"
3110 };
3111 #define NUM_LONGJMP_NAMES ARRAY_SIZE(longjmp_names)
3112
3113 /* Per-objfile data private to breakpoint.c. */
3114 struct breakpoint_objfile_data
3115 {
3116 /* Minimal symbol for "_ovly_debug_event" (if any). */
3117 struct bound_minimal_symbol overlay_msym {};
3118
3119 /* Minimal symbol(s) for "longjmp", "siglongjmp", etc. (if any). */
3120 struct bound_minimal_symbol longjmp_msym[NUM_LONGJMP_NAMES] {};
3121
3122 /* True if we have looked for longjmp probes. */
3123 int longjmp_searched = 0;
3124
3125 /* SystemTap probe points for longjmp (if any). These are non-owning
3126 references. */
3127 std::vector<probe *> longjmp_probes;
3128
3129 /* Minimal symbol for "std::terminate()" (if any). */
3130 struct bound_minimal_symbol terminate_msym {};
3131
3132 /* Minimal symbol for "_Unwind_DebugHook" (if any). */
3133 struct bound_minimal_symbol exception_msym {};
3134
3135 /* True if we have looked for exception probes. */
3136 int exception_searched = 0;
3137
3138 /* SystemTap probe points for unwinding (if any). These are non-owning
3139 references. */
3140 std::vector<probe *> exception_probes;
3141 };
3142
3143 static const struct objfile_key<breakpoint_objfile_data>
3144 breakpoint_objfile_key;
3145
3146 /* Minimal symbol not found sentinel. */
3147 static struct minimal_symbol msym_not_found;
3148
3149 /* Returns TRUE if MSYM point to the "not found" sentinel. */
3150
3151 static int
3152 msym_not_found_p (const struct minimal_symbol *msym)
3153 {
3154 return msym == &msym_not_found;
3155 }
3156
3157 /* Return per-objfile data needed by breakpoint.c.
3158 Allocate the data if necessary. */
3159
3160 static struct breakpoint_objfile_data *
3161 get_breakpoint_objfile_data (struct objfile *objfile)
3162 {
3163 struct breakpoint_objfile_data *bp_objfile_data;
3164
3165 bp_objfile_data = breakpoint_objfile_key.get (objfile);
3166 if (bp_objfile_data == NULL)
3167 bp_objfile_data = breakpoint_objfile_key.emplace (objfile);
3168 return bp_objfile_data;
3169 }
3170
3171 static void
3172 create_overlay_event_breakpoint (void)
3173 {
3174 const char *const func_name = "_ovly_debug_event";
3175
3176 for (objfile *objfile : current_program_space->objfiles ())
3177 {
3178 struct breakpoint *b;
3179 struct breakpoint_objfile_data *bp_objfile_data;
3180 CORE_ADDR addr;
3181 struct explicit_location explicit_loc;
3182
3183 bp_objfile_data = get_breakpoint_objfile_data (objfile);
3184
3185 if (msym_not_found_p (bp_objfile_data->overlay_msym.minsym))
3186 continue;
3187
3188 if (bp_objfile_data->overlay_msym.minsym == NULL)
3189 {
3190 struct bound_minimal_symbol m;
3191
3192 m = lookup_minimal_symbol_text (func_name, objfile);
3193 if (m.minsym == NULL)
3194 {
3195 /* Avoid future lookups in this objfile. */
3196 bp_objfile_data->overlay_msym.minsym = &msym_not_found;
3197 continue;
3198 }
3199 bp_objfile_data->overlay_msym = m;
3200 }
3201
3202 addr = BMSYMBOL_VALUE_ADDRESS (bp_objfile_data->overlay_msym);
3203 b = create_internal_breakpoint (get_objfile_arch (objfile), addr,
3204 bp_overlay_event,
3205 &internal_breakpoint_ops);
3206 initialize_explicit_location (&explicit_loc);
3207 explicit_loc.function_name = ASTRDUP (func_name);
3208 b->location = new_explicit_location (&explicit_loc);
3209
3210 if (overlay_debugging == ovly_auto)
3211 {
3212 b->enable_state = bp_enabled;
3213 overlay_events_enabled = 1;
3214 }
3215 else
3216 {
3217 b->enable_state = bp_disabled;
3218 overlay_events_enabled = 0;
3219 }
3220 }
3221 }
3222
3223 static void
3224 create_longjmp_master_breakpoint (void)
3225 {
3226 struct program_space *pspace;
3227
3228 scoped_restore_current_program_space restore_pspace;
3229
3230 ALL_PSPACES (pspace)
3231 {
3232 set_current_program_space (pspace);
3233
3234 for (objfile *objfile : current_program_space->objfiles ())
3235 {
3236 int i;
3237 struct gdbarch *gdbarch;
3238 struct breakpoint_objfile_data *bp_objfile_data;
3239
3240 gdbarch = get_objfile_arch (objfile);
3241
3242 bp_objfile_data = get_breakpoint_objfile_data (objfile);
3243
3244 if (!bp_objfile_data->longjmp_searched)
3245 {
3246 std::vector<probe *> ret
3247 = find_probes_in_objfile (objfile, "libc", "longjmp");
3248
3249 if (!ret.empty ())
3250 {
3251 /* We are only interested in checking one element. */
3252 probe *p = ret[0];
3253
3254 if (!p->can_evaluate_arguments ())
3255 {
3256 /* We cannot use the probe interface here, because it does
3257 not know how to evaluate arguments. */
3258 ret.clear ();
3259 }
3260 }
3261 bp_objfile_data->longjmp_probes = ret;
3262 bp_objfile_data->longjmp_searched = 1;
3263 }
3264
3265 if (!bp_objfile_data->longjmp_probes.empty ())
3266 {
3267 for (probe *p : bp_objfile_data->longjmp_probes)
3268 {
3269 struct breakpoint *b;
3270
3271 b = create_internal_breakpoint (gdbarch,
3272 p->get_relocated_address (objfile),
3273 bp_longjmp_master,
3274 &internal_breakpoint_ops);
3275 b->location = new_probe_location ("-probe-stap libc:longjmp");
3276 b->enable_state = bp_disabled;
3277 }
3278
3279 continue;
3280 }
3281
3282 if (!gdbarch_get_longjmp_target_p (gdbarch))
3283 continue;
3284
3285 for (i = 0; i < NUM_LONGJMP_NAMES; i++)
3286 {
3287 struct breakpoint *b;
3288 const char *func_name;
3289 CORE_ADDR addr;
3290 struct explicit_location explicit_loc;
3291
3292 if (msym_not_found_p (bp_objfile_data->longjmp_msym[i].minsym))
3293 continue;
3294
3295 func_name = longjmp_names[i];
3296 if (bp_objfile_data->longjmp_msym[i].minsym == NULL)
3297 {
3298 struct bound_minimal_symbol m;
3299
3300 m = lookup_minimal_symbol_text (func_name, objfile);
3301 if (m.minsym == NULL)
3302 {
3303 /* Prevent future lookups in this objfile. */
3304 bp_objfile_data->longjmp_msym[i].minsym = &msym_not_found;
3305 continue;
3306 }
3307 bp_objfile_data->longjmp_msym[i] = m;
3308 }
3309
3310 addr = BMSYMBOL_VALUE_ADDRESS (bp_objfile_data->longjmp_msym[i]);
3311 b = create_internal_breakpoint (gdbarch, addr, bp_longjmp_master,
3312 &internal_breakpoint_ops);
3313 initialize_explicit_location (&explicit_loc);
3314 explicit_loc.function_name = ASTRDUP (func_name);
3315 b->location = new_explicit_location (&explicit_loc);
3316 b->enable_state = bp_disabled;
3317 }
3318 }
3319 }
3320 }
3321
3322 /* Create a master std::terminate breakpoint. */
3323 static void
3324 create_std_terminate_master_breakpoint (void)
3325 {
3326 struct program_space *pspace;
3327 const char *const func_name = "std::terminate()";
3328
3329 scoped_restore_current_program_space restore_pspace;
3330
3331 ALL_PSPACES (pspace)
3332 {
3333 CORE_ADDR addr;
3334
3335 set_current_program_space (pspace);
3336
3337 for (objfile *objfile : current_program_space->objfiles ())
3338 {
3339 struct breakpoint *b;
3340 struct breakpoint_objfile_data *bp_objfile_data;
3341 struct explicit_location explicit_loc;
3342
3343 bp_objfile_data = get_breakpoint_objfile_data (objfile);
3344
3345 if (msym_not_found_p (bp_objfile_data->terminate_msym.minsym))
3346 continue;
3347
3348 if (bp_objfile_data->terminate_msym.minsym == NULL)
3349 {
3350 struct bound_minimal_symbol m;
3351
3352 m = lookup_minimal_symbol (func_name, NULL, objfile);
3353 if (m.minsym == NULL || (MSYMBOL_TYPE (m.minsym) != mst_text
3354 && MSYMBOL_TYPE (m.minsym) != mst_file_text))
3355 {
3356 /* Prevent future lookups in this objfile. */
3357 bp_objfile_data->terminate_msym.minsym = &msym_not_found;
3358 continue;
3359 }
3360 bp_objfile_data->terminate_msym = m;
3361 }
3362
3363 addr = BMSYMBOL_VALUE_ADDRESS (bp_objfile_data->terminate_msym);
3364 b = create_internal_breakpoint (get_objfile_arch (objfile), addr,
3365 bp_std_terminate_master,
3366 &internal_breakpoint_ops);
3367 initialize_explicit_location (&explicit_loc);
3368 explicit_loc.function_name = ASTRDUP (func_name);
3369 b->location = new_explicit_location (&explicit_loc);
3370 b->enable_state = bp_disabled;
3371 }
3372 }
3373 }
3374
3375 /* Install a master breakpoint on the unwinder's debug hook. */
3376
3377 static void
3378 create_exception_master_breakpoint (void)
3379 {
3380 const char *const func_name = "_Unwind_DebugHook";
3381
3382 for (objfile *objfile : current_program_space->objfiles ())
3383 {
3384 struct breakpoint *b;
3385 struct gdbarch *gdbarch;
3386 struct breakpoint_objfile_data *bp_objfile_data;
3387 CORE_ADDR addr;
3388 struct explicit_location explicit_loc;
3389
3390 bp_objfile_data = get_breakpoint_objfile_data (objfile);
3391
3392 /* We prefer the SystemTap probe point if it exists. */
3393 if (!bp_objfile_data->exception_searched)
3394 {
3395 std::vector<probe *> ret
3396 = find_probes_in_objfile (objfile, "libgcc", "unwind");
3397
3398 if (!ret.empty ())
3399 {
3400 /* We are only interested in checking one element. */
3401 probe *p = ret[0];
3402
3403 if (!p->can_evaluate_arguments ())
3404 {
3405 /* We cannot use the probe interface here, because it does
3406 not know how to evaluate arguments. */
3407 ret.clear ();
3408 }
3409 }
3410 bp_objfile_data->exception_probes = ret;
3411 bp_objfile_data->exception_searched = 1;
3412 }
3413
3414 if (!bp_objfile_data->exception_probes.empty ())
3415 {
3416 gdbarch = get_objfile_arch (objfile);
3417
3418 for (probe *p : bp_objfile_data->exception_probes)
3419 {
3420 b = create_internal_breakpoint (gdbarch,
3421 p->get_relocated_address (objfile),
3422 bp_exception_master,
3423 &internal_breakpoint_ops);
3424 b->location = new_probe_location ("-probe-stap libgcc:unwind");
3425 b->enable_state = bp_disabled;
3426 }
3427
3428 continue;
3429 }
3430
3431 /* Otherwise, try the hook function. */
3432
3433 if (msym_not_found_p (bp_objfile_data->exception_msym.minsym))
3434 continue;
3435
3436 gdbarch = get_objfile_arch (objfile);
3437
3438 if (bp_objfile_data->exception_msym.minsym == NULL)
3439 {
3440 struct bound_minimal_symbol debug_hook;
3441
3442 debug_hook = lookup_minimal_symbol (func_name, NULL, objfile);
3443 if (debug_hook.minsym == NULL)
3444 {
3445 bp_objfile_data->exception_msym.minsym = &msym_not_found;
3446 continue;
3447 }
3448
3449 bp_objfile_data->exception_msym = debug_hook;
3450 }
3451
3452 addr = BMSYMBOL_VALUE_ADDRESS (bp_objfile_data->exception_msym);
3453 addr = gdbarch_convert_from_func_ptr_addr (gdbarch, addr,
3454 current_top_target ());
3455 b = create_internal_breakpoint (gdbarch, addr, bp_exception_master,
3456 &internal_breakpoint_ops);
3457 initialize_explicit_location (&explicit_loc);
3458 explicit_loc.function_name = ASTRDUP (func_name);
3459 b->location = new_explicit_location (&explicit_loc);
3460 b->enable_state = bp_disabled;
3461 }
3462 }
3463
3464 /* Does B have a location spec? */
3465
3466 static int
3467 breakpoint_event_location_empty_p (const struct breakpoint *b)
3468 {
3469 return b->location != NULL && event_location_empty_p (b->location.get ());
3470 }
3471
3472 void
3473 update_breakpoints_after_exec (void)
3474 {
3475 struct breakpoint *b, *b_tmp;
3476 struct bp_location *bploc, **bplocp_tmp;
3477
3478 /* We're about to delete breakpoints from GDB's lists. If the
3479 INSERTED flag is true, GDB will try to lift the breakpoints by
3480 writing the breakpoints' "shadow contents" back into memory. The
3481 "shadow contents" are NOT valid after an exec, so GDB should not
3482 do that. Instead, the target is responsible from marking
3483 breakpoints out as soon as it detects an exec. We don't do that
3484 here instead, because there may be other attempts to delete
3485 breakpoints after detecting an exec and before reaching here. */
3486 ALL_BP_LOCATIONS (bploc, bplocp_tmp)
3487 if (bploc->pspace == current_program_space)
3488 gdb_assert (!bploc->inserted);
3489
3490 ALL_BREAKPOINTS_SAFE (b, b_tmp)
3491 {
3492 if (b->pspace != current_program_space)
3493 continue;
3494
3495 /* Solib breakpoints must be explicitly reset after an exec(). */
3496 if (b->type == bp_shlib_event)
3497 {
3498 delete_breakpoint (b);
3499 continue;
3500 }
3501
3502 /* JIT breakpoints must be explicitly reset after an exec(). */
3503 if (b->type == bp_jit_event)
3504 {
3505 delete_breakpoint (b);
3506 continue;
3507 }
3508
3509 /* Thread event breakpoints must be set anew after an exec(),
3510 as must overlay event and longjmp master breakpoints. */
3511 if (b->type == bp_thread_event || b->type == bp_overlay_event
3512 || b->type == bp_longjmp_master || b->type == bp_std_terminate_master
3513 || b->type == bp_exception_master)
3514 {
3515 delete_breakpoint (b);
3516 continue;
3517 }
3518
3519 /* Step-resume breakpoints are meaningless after an exec(). */
3520 if (b->type == bp_step_resume || b->type == bp_hp_step_resume)
3521 {
3522 delete_breakpoint (b);
3523 continue;
3524 }
3525
3526 /* Just like single-step breakpoints. */
3527 if (b->type == bp_single_step)
3528 {
3529 delete_breakpoint (b);
3530 continue;
3531 }
3532
3533 /* Longjmp and longjmp-resume breakpoints are also meaningless
3534 after an exec. */
3535 if (b->type == bp_longjmp || b->type == bp_longjmp_resume
3536 || b->type == bp_longjmp_call_dummy
3537 || b->type == bp_exception || b->type == bp_exception_resume)
3538 {
3539 delete_breakpoint (b);
3540 continue;
3541 }
3542
3543 if (b->type == bp_catchpoint)
3544 {
3545 /* For now, none of the bp_catchpoint breakpoints need to
3546 do anything at this point. In the future, if some of
3547 the catchpoints need to something, we will need to add
3548 a new method, and call this method from here. */
3549 continue;
3550 }
3551
3552 /* bp_finish is a special case. The only way we ought to be able
3553 to see one of these when an exec() has happened, is if the user
3554 caught a vfork, and then said "finish". Ordinarily a finish just
3555 carries them to the call-site of the current callee, by setting
3556 a temporary bp there and resuming. But in this case, the finish
3557 will carry them entirely through the vfork & exec.
3558
3559 We don't want to allow a bp_finish to remain inserted now. But
3560 we can't safely delete it, 'cause finish_command has a handle to
3561 the bp on a bpstat, and will later want to delete it. There's a
3562 chance (and I've seen it happen) that if we delete the bp_finish
3563 here, that its storage will get reused by the time finish_command
3564 gets 'round to deleting the "use to be a bp_finish" breakpoint.
3565 We really must allow finish_command to delete a bp_finish.
3566
3567 In the absence of a general solution for the "how do we know
3568 it's safe to delete something others may have handles to?"
3569 problem, what we'll do here is just uninsert the bp_finish, and
3570 let finish_command delete it.
3571
3572 (We know the bp_finish is "doomed" in the sense that it's
3573 momentary, and will be deleted as soon as finish_command sees
3574 the inferior stopped. So it doesn't matter that the bp's
3575 address is probably bogus in the new a.out, unlike e.g., the
3576 solib breakpoints.) */
3577
3578 if (b->type == bp_finish)
3579 {
3580 continue;
3581 }
3582
3583 /* Without a symbolic address, we have little hope of the
3584 pre-exec() address meaning the same thing in the post-exec()
3585 a.out. */
3586 if (breakpoint_event_location_empty_p (b))
3587 {
3588 delete_breakpoint (b);
3589 continue;
3590 }
3591 }
3592 }
3593
3594 int
3595 detach_breakpoints (ptid_t ptid)
3596 {
3597 struct bp_location *bl, **blp_tmp;
3598 int val = 0;
3599 scoped_restore save_inferior_ptid = make_scoped_restore (&inferior_ptid);
3600 struct inferior *inf = current_inferior ();
3601
3602 if (ptid.pid () == inferior_ptid.pid ())
3603 error (_("Cannot detach breakpoints of inferior_ptid"));
3604
3605 /* Set inferior_ptid; remove_breakpoint_1 uses this global. */
3606 inferior_ptid = ptid;
3607 ALL_BP_LOCATIONS (bl, blp_tmp)
3608 {
3609 if (bl->pspace != inf->pspace)
3610 continue;
3611
3612 /* This function must physically remove breakpoints locations
3613 from the specified ptid, without modifying the breakpoint
3614 package's state. Locations of type bp_loc_other are only
3615 maintained at GDB side. So, there is no need to remove
3616 these bp_loc_other locations. Moreover, removing these
3617 would modify the breakpoint package's state. */
3618 if (bl->loc_type == bp_loc_other)
3619 continue;
3620
3621 if (bl->inserted)
3622 val |= remove_breakpoint_1 (bl, DETACH_BREAKPOINT);
3623 }
3624
3625 return val;
3626 }
3627
3628 /* Remove the breakpoint location BL from the current address space.
3629 Note that this is used to detach breakpoints from a child fork.
3630 When we get here, the child isn't in the inferior list, and neither
3631 do we have objects to represent its address space --- we should
3632 *not* look at bl->pspace->aspace here. */
3633
3634 static int
3635 remove_breakpoint_1 (struct bp_location *bl, enum remove_bp_reason reason)
3636 {
3637 int val;
3638
3639 /* BL is never in moribund_locations by our callers. */
3640 gdb_assert (bl->owner != NULL);
3641
3642 /* The type of none suggests that owner is actually deleted.
3643 This should not ever happen. */
3644 gdb_assert (bl->owner->type != bp_none);
3645
3646 if (bl->loc_type == bp_loc_software_breakpoint
3647 || bl->loc_type == bp_loc_hardware_breakpoint)
3648 {
3649 /* "Normal" instruction breakpoint: either the standard
3650 trap-instruction bp (bp_breakpoint), or a
3651 bp_hardware_breakpoint. */
3652
3653 /* First check to see if we have to handle an overlay. */
3654 if (overlay_debugging == ovly_off
3655 || bl->section == NULL
3656 || !(section_is_overlay (bl->section)))
3657 {
3658 /* No overlay handling: just remove the breakpoint. */
3659
3660 /* If we're trying to uninsert a memory breakpoint that we
3661 know is set in a dynamic object that is marked
3662 shlib_disabled, then either the dynamic object was
3663 removed with "remove-symbol-file" or with
3664 "nosharedlibrary". In the former case, we don't know
3665 whether another dynamic object might have loaded over the
3666 breakpoint's address -- the user might well let us know
3667 about it next with add-symbol-file (the whole point of
3668 add-symbol-file is letting the user manually maintain a
3669 list of dynamically loaded objects). If we have the
3670 breakpoint's shadow memory, that is, this is a software
3671 breakpoint managed by GDB, check whether the breakpoint
3672 is still inserted in memory, to avoid overwriting wrong
3673 code with stale saved shadow contents. Note that HW
3674 breakpoints don't have shadow memory, as they're
3675 implemented using a mechanism that is not dependent on
3676 being able to modify the target's memory, and as such
3677 they should always be removed. */
3678 if (bl->shlib_disabled
3679 && bl->target_info.shadow_len != 0
3680 && !memory_validate_breakpoint (bl->gdbarch, &bl->target_info))
3681 val = 0;
3682 else
3683 val = bl->owner->ops->remove_location (bl, reason);
3684 }
3685 else
3686 {
3687 /* This breakpoint is in an overlay section.
3688 Did we set a breakpoint at the LMA? */
3689 if (!overlay_events_enabled)
3690 {
3691 /* Yes -- overlay event support is not active, so we
3692 should have set a breakpoint at the LMA. Remove it.
3693 */
3694 /* Ignore any failures: if the LMA is in ROM, we will
3695 have already warned when we failed to insert it. */
3696 if (bl->loc_type == bp_loc_hardware_breakpoint)
3697 target_remove_hw_breakpoint (bl->gdbarch,
3698 &bl->overlay_target_info);
3699 else
3700 target_remove_breakpoint (bl->gdbarch,
3701 &bl->overlay_target_info,
3702 reason);
3703 }
3704 /* Did we set a breakpoint at the VMA?
3705 If so, we will have marked the breakpoint 'inserted'. */
3706 if (bl->inserted)
3707 {
3708 /* Yes -- remove it. Previously we did not bother to
3709 remove the breakpoint if the section had been
3710 unmapped, but let's not rely on that being safe. We
3711 don't know what the overlay manager might do. */
3712
3713 /* However, we should remove *software* breakpoints only
3714 if the section is still mapped, or else we overwrite
3715 wrong code with the saved shadow contents. */
3716 if (bl->loc_type == bp_loc_hardware_breakpoint
3717 || section_is_mapped (bl->section))
3718 val = bl->owner->ops->remove_location (bl, reason);
3719 else
3720 val = 0;
3721 }
3722 else
3723 {
3724 /* No -- not inserted, so no need to remove. No error. */
3725 val = 0;
3726 }
3727 }
3728
3729 /* In some cases, we might not be able to remove a breakpoint in
3730 a shared library that has already been removed, but we have
3731 not yet processed the shlib unload event. Similarly for an
3732 unloaded add-symbol-file object - the user might not yet have
3733 had the chance to remove-symbol-file it. shlib_disabled will
3734 be set if the library/object has already been removed, but
3735 the breakpoint hasn't been uninserted yet, e.g., after
3736 "nosharedlibrary" or "remove-symbol-file" with breakpoints
3737 always-inserted mode. */
3738 if (val
3739 && (bl->loc_type == bp_loc_software_breakpoint
3740 && (bl->shlib_disabled
3741 || solib_name_from_address (bl->pspace, bl->address)
3742 || shared_objfile_contains_address_p (bl->pspace,
3743 bl->address))))
3744 val = 0;
3745
3746 if (val)
3747 return val;
3748 bl->inserted = (reason == DETACH_BREAKPOINT);
3749 }
3750 else if (bl->loc_type == bp_loc_hardware_watchpoint)
3751 {
3752 gdb_assert (bl->owner->ops != NULL
3753 && bl->owner->ops->remove_location != NULL);
3754
3755 bl->inserted = (reason == DETACH_BREAKPOINT);
3756 bl->owner->ops->remove_location (bl, reason);
3757
3758 /* Failure to remove any of the hardware watchpoints comes here. */
3759 if (reason == REMOVE_BREAKPOINT && bl->inserted)
3760 warning (_("Could not remove hardware watchpoint %d."),
3761 bl->owner->number);
3762 }
3763 else if (bl->owner->type == bp_catchpoint
3764 && breakpoint_enabled (bl->owner)
3765 && !bl->duplicate)
3766 {
3767 gdb_assert (bl->owner->ops != NULL
3768 && bl->owner->ops->remove_location != NULL);
3769
3770 val = bl->owner->ops->remove_location (bl, reason);
3771 if (val)
3772 return val;
3773
3774 bl->inserted = (reason == DETACH_BREAKPOINT);
3775 }
3776
3777 return 0;
3778 }
3779
3780 static int
3781 remove_breakpoint (struct bp_location *bl)
3782 {
3783 /* BL is never in moribund_locations by our callers. */
3784 gdb_assert (bl->owner != NULL);
3785
3786 /* The type of none suggests that owner is actually deleted.
3787 This should not ever happen. */
3788 gdb_assert (bl->owner->type != bp_none);
3789
3790 scoped_restore_current_pspace_and_thread restore_pspace_thread;
3791
3792 switch_to_program_space_and_thread (bl->pspace);
3793
3794 return remove_breakpoint_1 (bl, REMOVE_BREAKPOINT);
3795 }
3796
3797 /* Clear the "inserted" flag in all breakpoints. */
3798
3799 void
3800 mark_breakpoints_out (void)
3801 {
3802 struct bp_location *bl, **blp_tmp;
3803
3804 ALL_BP_LOCATIONS (bl, blp_tmp)
3805 if (bl->pspace == current_program_space)
3806 bl->inserted = 0;
3807 }
3808
3809 /* Clear the "inserted" flag in all breakpoints and delete any
3810 breakpoints which should go away between runs of the program.
3811
3812 Plus other such housekeeping that has to be done for breakpoints
3813 between runs.
3814
3815 Note: this function gets called at the end of a run (by
3816 generic_mourn_inferior) and when a run begins (by
3817 init_wait_for_inferior). */
3818
3819
3820
3821 void
3822 breakpoint_init_inferior (enum inf_context context)
3823 {
3824 struct breakpoint *b, *b_tmp;
3825 struct program_space *pspace = current_program_space;
3826
3827 /* If breakpoint locations are shared across processes, then there's
3828 nothing to do. */
3829 if (gdbarch_has_global_breakpoints (target_gdbarch ()))
3830 return;
3831
3832 mark_breakpoints_out ();
3833
3834 ALL_BREAKPOINTS_SAFE (b, b_tmp)
3835 {
3836 if (b->loc && b->loc->pspace != pspace)
3837 continue;
3838
3839 switch (b->type)
3840 {
3841 case bp_call_dummy:
3842 case bp_longjmp_call_dummy:
3843
3844 /* If the call dummy breakpoint is at the entry point it will
3845 cause problems when the inferior is rerun, so we better get
3846 rid of it. */
3847
3848 case bp_watchpoint_scope:
3849
3850 /* Also get rid of scope breakpoints. */
3851
3852 case bp_shlib_event:
3853
3854 /* Also remove solib event breakpoints. Their addresses may
3855 have changed since the last time we ran the program.
3856 Actually we may now be debugging against different target;
3857 and so the solib backend that installed this breakpoint may
3858 not be used in by the target. E.g.,
3859
3860 (gdb) file prog-linux
3861 (gdb) run # native linux target
3862 ...
3863 (gdb) kill
3864 (gdb) file prog-win.exe
3865 (gdb) tar rem :9999 # remote Windows gdbserver.
3866 */
3867
3868 case bp_step_resume:
3869
3870 /* Also remove step-resume breakpoints. */
3871
3872 case bp_single_step:
3873
3874 /* Also remove single-step breakpoints. */
3875
3876 delete_breakpoint (b);
3877 break;
3878
3879 case bp_watchpoint:
3880 case bp_hardware_watchpoint:
3881 case bp_read_watchpoint:
3882 case bp_access_watchpoint:
3883 {
3884 struct watchpoint *w = (struct watchpoint *) b;
3885
3886 /* Likewise for watchpoints on local expressions. */
3887 if (w->exp_valid_block != NULL)
3888 delete_breakpoint (b);
3889 else
3890 {
3891 /* Get rid of existing locations, which are no longer
3892 valid. New ones will be created in
3893 update_watchpoint, when the inferior is restarted.
3894 The next update_global_location_list call will
3895 garbage collect them. */
3896 b->loc = NULL;
3897
3898 if (context == inf_starting)
3899 {
3900 /* Reset val field to force reread of starting value in
3901 insert_breakpoints. */
3902 w->val.reset (nullptr);
3903 w->val_valid = false;
3904 }
3905 }
3906 }
3907 break;
3908 default:
3909 break;
3910 }
3911 }
3912
3913 /* Get rid of the moribund locations. */
3914 for (bp_location *bl : moribund_locations)
3915 decref_bp_location (&bl);
3916 moribund_locations.clear ();
3917 }
3918
3919 /* These functions concern about actual breakpoints inserted in the
3920 target --- to e.g. check if we need to do decr_pc adjustment or if
3921 we need to hop over the bkpt --- so we check for address space
3922 match, not program space. */
3923
3924 /* breakpoint_here_p (PC) returns non-zero if an enabled breakpoint
3925 exists at PC. It returns ordinary_breakpoint_here if it's an
3926 ordinary breakpoint, or permanent_breakpoint_here if it's a
3927 permanent breakpoint.
3928 - When continuing from a location with an ordinary breakpoint, we
3929 actually single step once before calling insert_breakpoints.
3930 - When continuing from a location with a permanent breakpoint, we
3931 need to use the `SKIP_PERMANENT_BREAKPOINT' macro, provided by
3932 the target, to advance the PC past the breakpoint. */
3933
3934 enum breakpoint_here
3935 breakpoint_here_p (const address_space *aspace, CORE_ADDR pc)
3936 {
3937 struct bp_location *bl, **blp_tmp;
3938 int any_breakpoint_here = 0;
3939
3940 ALL_BP_LOCATIONS (bl, blp_tmp)
3941 {
3942 if (bl->loc_type != bp_loc_software_breakpoint
3943 && bl->loc_type != bp_loc_hardware_breakpoint)
3944 continue;
3945
3946 /* ALL_BP_LOCATIONS bp_location has BL->OWNER always non-NULL. */
3947 if ((breakpoint_enabled (bl->owner)
3948 || bl->permanent)
3949 && breakpoint_location_address_match (bl, aspace, pc))
3950 {
3951 if (overlay_debugging
3952 && section_is_overlay (bl->section)
3953 && !section_is_mapped (bl->section))
3954 continue; /* unmapped overlay -- can't be a match */
3955 else if (bl->permanent)
3956 return permanent_breakpoint_here;
3957 else
3958 any_breakpoint_here = 1;
3959 }
3960 }
3961
3962 return any_breakpoint_here ? ordinary_breakpoint_here : no_breakpoint_here;
3963 }
3964
3965 /* See breakpoint.h. */
3966
3967 int
3968 breakpoint_in_range_p (const address_space *aspace,
3969 CORE_ADDR addr, ULONGEST len)
3970 {
3971 struct bp_location *bl, **blp_tmp;
3972
3973 ALL_BP_LOCATIONS (bl, blp_tmp)
3974 {
3975 if (bl->loc_type != bp_loc_software_breakpoint
3976 && bl->loc_type != bp_loc_hardware_breakpoint)
3977 continue;
3978
3979 if ((breakpoint_enabled (bl->owner)
3980 || bl->permanent)
3981 && breakpoint_location_address_range_overlap (bl, aspace,
3982 addr, len))
3983 {
3984 if (overlay_debugging
3985 && section_is_overlay (bl->section)
3986 && !section_is_mapped (bl->section))
3987 {
3988 /* Unmapped overlay -- can't be a match. */
3989 continue;
3990 }
3991
3992 return 1;
3993 }
3994 }
3995
3996 return 0;
3997 }
3998
3999 /* Return true if there's a moribund breakpoint at PC. */
4000
4001 int
4002 moribund_breakpoint_here_p (const address_space *aspace, CORE_ADDR pc)
4003 {
4004 for (bp_location *loc : moribund_locations)
4005 if (breakpoint_location_address_match (loc, aspace, pc))
4006 return 1;
4007
4008 return 0;
4009 }
4010
4011 /* Returns non-zero iff BL is inserted at PC, in address space
4012 ASPACE. */
4013
4014 static int
4015 bp_location_inserted_here_p (struct bp_location *bl,
4016 const address_space *aspace, CORE_ADDR pc)
4017 {
4018 if (bl->inserted
4019 && breakpoint_address_match (bl->pspace->aspace, bl->address,
4020 aspace, pc))
4021 {
4022 if (overlay_debugging
4023 && section_is_overlay (bl->section)
4024 && !section_is_mapped (bl->section))
4025 return 0; /* unmapped overlay -- can't be a match */
4026 else
4027 return 1;
4028 }
4029 return 0;
4030 }
4031
4032 /* Returns non-zero iff there's a breakpoint inserted at PC. */
4033
4034 int
4035 breakpoint_inserted_here_p (const address_space *aspace, CORE_ADDR pc)
4036 {
4037 struct bp_location **blp, **blp_tmp = NULL;
4038
4039 ALL_BP_LOCATIONS_AT_ADDR (blp, blp_tmp, pc)
4040 {
4041 struct bp_location *bl = *blp;
4042
4043 if (bl->loc_type != bp_loc_software_breakpoint
4044 && bl->loc_type != bp_loc_hardware_breakpoint)
4045 continue;
4046
4047 if (bp_location_inserted_here_p (bl, aspace, pc))
4048 return 1;
4049 }
4050 return 0;
4051 }
4052
4053 /* This function returns non-zero iff there is a software breakpoint
4054 inserted at PC. */
4055
4056 int
4057 software_breakpoint_inserted_here_p (const address_space *aspace,
4058 CORE_ADDR pc)
4059 {
4060 struct bp_location **blp, **blp_tmp = NULL;
4061
4062 ALL_BP_LOCATIONS_AT_ADDR (blp, blp_tmp, pc)
4063 {
4064 struct bp_location *bl = *blp;
4065
4066 if (bl->loc_type != bp_loc_software_breakpoint)
4067 continue;
4068
4069 if (bp_location_inserted_here_p (bl, aspace, pc))
4070 return 1;
4071 }
4072
4073 return 0;
4074 }
4075
4076 /* See breakpoint.h. */
4077
4078 int
4079 hardware_breakpoint_inserted_here_p (const address_space *aspace,
4080 CORE_ADDR pc)
4081 {
4082 struct bp_location **blp, **blp_tmp = NULL;
4083
4084 ALL_BP_LOCATIONS_AT_ADDR (blp, blp_tmp, pc)
4085 {
4086 struct bp_location *bl = *blp;
4087
4088 if (bl->loc_type != bp_loc_hardware_breakpoint)
4089 continue;
4090
4091 if (bp_location_inserted_here_p (bl, aspace, pc))
4092 return 1;
4093 }
4094
4095 return 0;
4096 }
4097
4098 int
4099 hardware_watchpoint_inserted_in_range (const address_space *aspace,
4100 CORE_ADDR addr, ULONGEST len)
4101 {
4102 struct breakpoint *bpt;
4103
4104 ALL_BREAKPOINTS (bpt)
4105 {
4106 struct bp_location *loc;
4107
4108 if (bpt->type != bp_hardware_watchpoint
4109 && bpt->type != bp_access_watchpoint)
4110 continue;
4111
4112 if (!breakpoint_enabled (bpt))
4113 continue;
4114
4115 for (loc = bpt->loc; loc; loc = loc->next)
4116 if (loc->pspace->aspace == aspace && loc->inserted)
4117 {
4118 CORE_ADDR l, h;
4119
4120 /* Check for intersection. */
4121 l = std::max<CORE_ADDR> (loc->address, addr);
4122 h = std::min<CORE_ADDR> (loc->address + loc->length, addr + len);
4123 if (l < h)
4124 return 1;
4125 }
4126 }
4127 return 0;
4128 }
4129
4130 /* See breakpoint.h. */
4131
4132 bool
4133 is_catchpoint (struct breakpoint *b)
4134 {
4135 return (b->type == bp_catchpoint);
4136 }
4137
4138 /* Frees any storage that is part of a bpstat. Does not walk the
4139 'next' chain. */
4140
4141 bpstats::~bpstats ()
4142 {
4143 if (bp_location_at != NULL)
4144 decref_bp_location (&bp_location_at);
4145 }
4146
4147 /* Clear a bpstat so that it says we are not at any breakpoint.
4148 Also free any storage that is part of a bpstat. */
4149
4150 void
4151 bpstat_clear (bpstat *bsp)
4152 {
4153 bpstat p;
4154 bpstat q;
4155
4156 if (bsp == 0)
4157 return;
4158 p = *bsp;
4159 while (p != NULL)
4160 {
4161 q = p->next;
4162 delete p;
4163 p = q;
4164 }
4165 *bsp = NULL;
4166 }
4167
4168 bpstats::bpstats (const bpstats &other)
4169 : next (NULL),
4170 bp_location_at (other.bp_location_at),
4171 breakpoint_at (other.breakpoint_at),
4172 commands (other.commands),
4173 print (other.print),
4174 stop (other.stop),
4175 print_it (other.print_it)
4176 {
4177 if (other.old_val != NULL)
4178 old_val = release_value (value_copy (other.old_val.get ()));
4179 incref_bp_location (bp_location_at);
4180 }
4181
4182 /* Return a copy of a bpstat. Like "bs1 = bs2" but all storage that
4183 is part of the bpstat is copied as well. */
4184
4185 bpstat
4186 bpstat_copy (bpstat bs)
4187 {
4188 bpstat p = NULL;
4189 bpstat tmp;
4190 bpstat retval = NULL;
4191
4192 if (bs == NULL)
4193 return bs;
4194
4195 for (; bs != NULL; bs = bs->next)
4196 {
4197 tmp = new bpstats (*bs);
4198
4199 if (p == NULL)
4200 /* This is the first thing in the chain. */
4201 retval = tmp;
4202 else
4203 p->next = tmp;
4204 p = tmp;
4205 }
4206 p->next = NULL;
4207 return retval;
4208 }
4209
4210 /* Find the bpstat associated with this breakpoint. */
4211
4212 bpstat
4213 bpstat_find_breakpoint (bpstat bsp, struct breakpoint *breakpoint)
4214 {
4215 if (bsp == NULL)
4216 return NULL;
4217
4218 for (; bsp != NULL; bsp = bsp->next)
4219 {
4220 if (bsp->breakpoint_at == breakpoint)
4221 return bsp;
4222 }
4223 return NULL;
4224 }
4225
4226 /* See breakpoint.h. */
4227
4228 bool
4229 bpstat_explains_signal (bpstat bsp, enum gdb_signal sig)
4230 {
4231 for (; bsp != NULL; bsp = bsp->next)
4232 {
4233 if (bsp->breakpoint_at == NULL)
4234 {
4235 /* A moribund location can never explain a signal other than
4236 GDB_SIGNAL_TRAP. */
4237 if (sig == GDB_SIGNAL_TRAP)
4238 return true;
4239 }
4240 else
4241 {
4242 if (bsp->breakpoint_at->ops->explains_signal (bsp->breakpoint_at,
4243 sig))
4244 return true;
4245 }
4246 }
4247
4248 return false;
4249 }
4250
4251 /* Put in *NUM the breakpoint number of the first breakpoint we are
4252 stopped at. *BSP upon return is a bpstat which points to the
4253 remaining breakpoints stopped at (but which is not guaranteed to be
4254 good for anything but further calls to bpstat_num).
4255
4256 Return 0 if passed a bpstat which does not indicate any breakpoints.
4257 Return -1 if stopped at a breakpoint that has been deleted since
4258 we set it.
4259 Return 1 otherwise. */
4260
4261 int
4262 bpstat_num (bpstat *bsp, int *num)
4263 {
4264 struct breakpoint *b;
4265
4266 if ((*bsp) == NULL)
4267 return 0; /* No more breakpoint values */
4268
4269 /* We assume we'll never have several bpstats that correspond to a
4270 single breakpoint -- otherwise, this function might return the
4271 same number more than once and this will look ugly. */
4272 b = (*bsp)->breakpoint_at;
4273 *bsp = (*bsp)->next;
4274 if (b == NULL)
4275 return -1; /* breakpoint that's been deleted since */
4276
4277 *num = b->number; /* We have its number */
4278 return 1;
4279 }
4280
4281 /* See breakpoint.h. */
4282
4283 void
4284 bpstat_clear_actions (void)
4285 {
4286 bpstat bs;
4287
4288 if (inferior_ptid == null_ptid)
4289 return;
4290
4291 thread_info *tp = inferior_thread ();
4292 for (bs = tp->control.stop_bpstat; bs != NULL; bs = bs->next)
4293 {
4294 bs->commands = NULL;
4295 bs->old_val.reset (nullptr);
4296 }
4297 }
4298
4299 /* Called when a command is about to proceed the inferior. */
4300
4301 static void
4302 breakpoint_about_to_proceed (void)
4303 {
4304 if (inferior_ptid != null_ptid)
4305 {
4306 struct thread_info *tp = inferior_thread ();
4307
4308 /* Allow inferior function calls in breakpoint commands to not
4309 interrupt the command list. When the call finishes
4310 successfully, the inferior will be standing at the same
4311 breakpoint as if nothing happened. */
4312 if (tp->control.in_infcall)
4313 return;
4314 }
4315
4316 breakpoint_proceeded = 1;
4317 }
4318
4319 /* Return non-zero iff CMD as the first line of a command sequence is `silent'
4320 or its equivalent. */
4321
4322 static int
4323 command_line_is_silent (struct command_line *cmd)
4324 {
4325 return cmd && (strcmp ("silent", cmd->line) == 0);
4326 }
4327
4328 /* Execute all the commands associated with all the breakpoints at
4329 this location. Any of these commands could cause the process to
4330 proceed beyond this point, etc. We look out for such changes by
4331 checking the global "breakpoint_proceeded" after each command.
4332
4333 Returns true if a breakpoint command resumed the inferior. In that
4334 case, it is the caller's responsibility to recall it again with the
4335 bpstat of the current thread. */
4336
4337 static int
4338 bpstat_do_actions_1 (bpstat *bsp)
4339 {
4340 bpstat bs;
4341 int again = 0;
4342
4343 /* Avoid endless recursion if a `source' command is contained
4344 in bs->commands. */
4345 if (executing_breakpoint_commands)
4346 return 0;
4347
4348 scoped_restore save_executing
4349 = make_scoped_restore (&executing_breakpoint_commands, 1);
4350
4351 scoped_restore preventer = prevent_dont_repeat ();
4352
4353 /* This pointer will iterate over the list of bpstat's. */
4354 bs = *bsp;
4355
4356 breakpoint_proceeded = 0;
4357 for (; bs != NULL; bs = bs->next)
4358 {
4359 struct command_line *cmd = NULL;
4360
4361 /* Take ownership of the BSP's command tree, if it has one.
4362
4363 The command tree could legitimately contain commands like
4364 'step' and 'next', which call clear_proceed_status, which
4365 frees stop_bpstat's command tree. To make sure this doesn't
4366 free the tree we're executing out from under us, we need to
4367 take ownership of the tree ourselves. Since a given bpstat's
4368 commands are only executed once, we don't need to copy it; we
4369 can clear the pointer in the bpstat, and make sure we free
4370 the tree when we're done. */
4371 counted_command_line ccmd = bs->commands;
4372 bs->commands = NULL;
4373 if (ccmd != NULL)
4374 cmd = ccmd.get ();
4375 if (command_line_is_silent (cmd))
4376 {
4377 /* The action has been already done by bpstat_stop_status. */
4378 cmd = cmd->next;
4379 }
4380
4381 while (cmd != NULL)
4382 {
4383 execute_control_command (cmd);
4384
4385 if (breakpoint_proceeded)
4386 break;
4387 else
4388 cmd = cmd->next;
4389 }
4390
4391 if (breakpoint_proceeded)
4392 {
4393 if (current_ui->async)
4394 /* If we are in async mode, then the target might be still
4395 running, not stopped at any breakpoint, so nothing for
4396 us to do here -- just return to the event loop. */
4397 ;
4398 else
4399 /* In sync mode, when execute_control_command returns
4400 we're already standing on the next breakpoint.
4401 Breakpoint commands for that stop were not run, since
4402 execute_command does not run breakpoint commands --
4403 only command_line_handler does, but that one is not
4404 involved in execution of breakpoint commands. So, we
4405 can now execute breakpoint commands. It should be
4406 noted that making execute_command do bpstat actions is
4407 not an option -- in this case we'll have recursive
4408 invocation of bpstat for each breakpoint with a
4409 command, and can easily blow up GDB stack. Instead, we
4410 return true, which will trigger the caller to recall us
4411 with the new stop_bpstat. */
4412 again = 1;
4413 break;
4414 }
4415 }
4416 return again;
4417 }
4418
4419 /* Helper for bpstat_do_actions. Get the current thread, if there's
4420 one, is alive and has execution. Return NULL otherwise. */
4421
4422 static thread_info *
4423 get_bpstat_thread ()
4424 {
4425 if (inferior_ptid == null_ptid || !target_has_execution)
4426 return NULL;
4427
4428 thread_info *tp = inferior_thread ();
4429 if (tp->state == THREAD_EXITED || tp->executing)
4430 return NULL;
4431 return tp;
4432 }
4433
4434 void
4435 bpstat_do_actions (void)
4436 {
4437 auto cleanup_if_error = make_scope_exit (bpstat_clear_actions);
4438 thread_info *tp;
4439
4440 /* Do any commands attached to breakpoint we are stopped at. */
4441 while ((tp = get_bpstat_thread ()) != NULL)
4442 {
4443 /* Since in sync mode, bpstat_do_actions may resume the
4444 inferior, and only return when it is stopped at the next
4445 breakpoint, we keep doing breakpoint actions until it returns
4446 false to indicate the inferior was not resumed. */
4447 if (!bpstat_do_actions_1 (&tp->control.stop_bpstat))
4448 break;
4449 }
4450
4451 cleanup_if_error.release ();
4452 }
4453
4454 /* Print out the (old or new) value associated with a watchpoint. */
4455
4456 static void
4457 watchpoint_value_print (struct value *val, struct ui_file *stream)
4458 {
4459 if (val == NULL)
4460 fprintf_styled (stream, metadata_style.style (), _("<unreadable>"));
4461 else
4462 {
4463 struct value_print_options opts;
4464 get_user_print_options (&opts);
4465 value_print (val, stream, &opts);
4466 }
4467 }
4468
4469 /* Print the "Thread ID hit" part of "Thread ID hit Breakpoint N" if
4470 debugging multiple threads. */
4471
4472 void
4473 maybe_print_thread_hit_breakpoint (struct ui_out *uiout)
4474 {
4475 if (uiout->is_mi_like_p ())
4476 return;
4477
4478 uiout->text ("\n");
4479
4480 if (show_thread_that_caused_stop ())
4481 {
4482 const char *name;
4483 struct thread_info *thr = inferior_thread ();
4484
4485 uiout->text ("Thread ");
4486 uiout->field_string ("thread-id", print_thread_id (thr));
4487
4488 name = thr->name != NULL ? thr->name : target_thread_name (thr);
4489 if (name != NULL)
4490 {
4491 uiout->text (" \"");
4492 uiout->field_string ("name", name);
4493 uiout->text ("\"");
4494 }
4495
4496 uiout->text (" hit ");
4497 }
4498 }
4499
4500 /* Generic routine for printing messages indicating why we
4501 stopped. The behavior of this function depends on the value
4502 'print_it' in the bpstat structure. Under some circumstances we
4503 may decide not to print anything here and delegate the task to
4504 normal_stop(). */
4505
4506 static enum print_stop_action
4507 print_bp_stop_message (bpstat bs)
4508 {
4509 switch (bs->print_it)
4510 {
4511 case print_it_noop:
4512 /* Nothing should be printed for this bpstat entry. */
4513 return PRINT_UNKNOWN;
4514 break;
4515
4516 case print_it_done:
4517 /* We still want to print the frame, but we already printed the
4518 relevant messages. */
4519 return PRINT_SRC_AND_LOC;
4520 break;
4521
4522 case print_it_normal:
4523 {
4524 struct breakpoint *b = bs->breakpoint_at;
4525
4526 /* bs->breakpoint_at can be NULL if it was a momentary breakpoint
4527 which has since been deleted. */
4528 if (b == NULL)
4529 return PRINT_UNKNOWN;
4530
4531 /* Normal case. Call the breakpoint's print_it method. */
4532 return b->ops->print_it (bs);
4533 }
4534 break;
4535
4536 default:
4537 internal_error (__FILE__, __LINE__,
4538 _("print_bp_stop_message: unrecognized enum value"));
4539 break;
4540 }
4541 }
4542
4543 /* A helper function that prints a shared library stopped event. */
4544
4545 static void
4546 print_solib_event (int is_catchpoint)
4547 {
4548 bool any_deleted = !current_program_space->deleted_solibs.empty ();
4549 bool any_added = !current_program_space->added_solibs.empty ();
4550
4551 if (!is_catchpoint)
4552 {
4553 if (any_added || any_deleted)
4554 current_uiout->text (_("Stopped due to shared library event:\n"));
4555 else
4556 current_uiout->text (_("Stopped due to shared library event (no "
4557 "libraries added or removed)\n"));
4558 }
4559
4560 if (current_uiout->is_mi_like_p ())
4561 current_uiout->field_string ("reason",
4562 async_reason_lookup (EXEC_ASYNC_SOLIB_EVENT));
4563
4564 if (any_deleted)
4565 {
4566 current_uiout->text (_(" Inferior unloaded "));
4567 ui_out_emit_list list_emitter (current_uiout, "removed");
4568 for (int ix = 0; ix < current_program_space->deleted_solibs.size (); ix++)
4569 {
4570 const std::string &name = current_program_space->deleted_solibs[ix];
4571
4572 if (ix > 0)
4573 current_uiout->text (" ");
4574 current_uiout->field_string ("library", name);
4575 current_uiout->text ("\n");
4576 }
4577 }
4578
4579 if (any_added)
4580 {
4581 current_uiout->text (_(" Inferior loaded "));
4582 ui_out_emit_list list_emitter (current_uiout, "added");
4583 bool first = true;
4584 for (so_list *iter : current_program_space->added_solibs)
4585 {
4586 if (!first)
4587 current_uiout->text (" ");
4588 first = false;
4589 current_uiout->field_string ("library", iter->so_name);
4590 current_uiout->text ("\n");
4591 }
4592 }
4593 }
4594
4595 /* Print a message indicating what happened. This is called from
4596 normal_stop(). The input to this routine is the head of the bpstat
4597 list - a list of the eventpoints that caused this stop. KIND is
4598 the target_waitkind for the stopping event. This
4599 routine calls the generic print routine for printing a message
4600 about reasons for stopping. This will print (for example) the
4601 "Breakpoint n," part of the output. The return value of this
4602 routine is one of:
4603
4604 PRINT_UNKNOWN: Means we printed nothing.
4605 PRINT_SRC_AND_LOC: Means we printed something, and expect subsequent
4606 code to print the location. An example is
4607 "Breakpoint 1, " which should be followed by
4608 the location.
4609 PRINT_SRC_ONLY: Means we printed something, but there is no need
4610 to also print the location part of the message.
4611 An example is the catch/throw messages, which
4612 don't require a location appended to the end.
4613 PRINT_NOTHING: We have done some printing and we don't need any
4614 further info to be printed. */
4615
4616 enum print_stop_action
4617 bpstat_print (bpstat bs, int kind)
4618 {
4619 enum print_stop_action val;
4620
4621 /* Maybe another breakpoint in the chain caused us to stop.
4622 (Currently all watchpoints go on the bpstat whether hit or not.
4623 That probably could (should) be changed, provided care is taken
4624 with respect to bpstat_explains_signal). */
4625 for (; bs; bs = bs->next)
4626 {
4627 val = print_bp_stop_message (bs);
4628 if (val == PRINT_SRC_ONLY
4629 || val == PRINT_SRC_AND_LOC
4630 || val == PRINT_NOTHING)
4631 return val;
4632 }
4633
4634 /* If we had hit a shared library event breakpoint,
4635 print_bp_stop_message would print out this message. If we hit an
4636 OS-level shared library event, do the same thing. */
4637 if (kind == TARGET_WAITKIND_LOADED)
4638 {
4639 print_solib_event (0);
4640 return PRINT_NOTHING;
4641 }
4642
4643 /* We reached the end of the chain, or we got a null BS to start
4644 with and nothing was printed. */
4645 return PRINT_UNKNOWN;
4646 }
4647
4648 /* Evaluate the boolean expression EXP and return the result. */
4649
4650 static bool
4651 breakpoint_cond_eval (expression *exp)
4652 {
4653 struct value *mark = value_mark ();
4654 bool res = value_true (evaluate_expression (exp));
4655
4656 value_free_to_mark (mark);
4657 return res;
4658 }
4659
4660 /* Allocate a new bpstat. Link it to the FIFO list by BS_LINK_POINTER. */
4661
4662 bpstats::bpstats (struct bp_location *bl, bpstat **bs_link_pointer)
4663 : next (NULL),
4664 bp_location_at (bl),
4665 breakpoint_at (bl->owner),
4666 commands (NULL),
4667 print (0),
4668 stop (0),
4669 print_it (print_it_normal)
4670 {
4671 incref_bp_location (bl);
4672 **bs_link_pointer = this;
4673 *bs_link_pointer = &next;
4674 }
4675
4676 bpstats::bpstats ()
4677 : next (NULL),
4678 bp_location_at (NULL),
4679 breakpoint_at (NULL),
4680 commands (NULL),
4681 print (0),
4682 stop (0),
4683 print_it (print_it_normal)
4684 {
4685 }
4686 \f
4687 /* The target has stopped with waitstatus WS. Check if any hardware
4688 watchpoints have triggered, according to the target. */
4689
4690 int
4691 watchpoints_triggered (struct target_waitstatus *ws)
4692 {
4693 bool stopped_by_watchpoint = target_stopped_by_watchpoint ();
4694 CORE_ADDR addr;
4695 struct breakpoint *b;
4696
4697 if (!stopped_by_watchpoint)
4698 {
4699 /* We were not stopped by a watchpoint. Mark all watchpoints
4700 as not triggered. */
4701 ALL_BREAKPOINTS (b)
4702 if (is_hardware_watchpoint (b))
4703 {
4704 struct watchpoint *w = (struct watchpoint *) b;
4705
4706 w->watchpoint_triggered = watch_triggered_no;
4707 }
4708
4709 return 0;
4710 }
4711
4712 if (!target_stopped_data_address (current_top_target (), &addr))
4713 {
4714 /* We were stopped by a watchpoint, but we don't know where.
4715 Mark all watchpoints as unknown. */
4716 ALL_BREAKPOINTS (b)
4717 if (is_hardware_watchpoint (b))
4718 {
4719 struct watchpoint *w = (struct watchpoint *) b;
4720
4721 w->watchpoint_triggered = watch_triggered_unknown;
4722 }
4723
4724 return 1;
4725 }
4726
4727 /* The target could report the data address. Mark watchpoints
4728 affected by this data address as triggered, and all others as not
4729 triggered. */
4730
4731 ALL_BREAKPOINTS (b)
4732 if (is_hardware_watchpoint (b))
4733 {
4734 struct watchpoint *w = (struct watchpoint *) b;
4735 struct bp_location *loc;
4736
4737 w->watchpoint_triggered = watch_triggered_no;
4738 for (loc = b->loc; loc; loc = loc->next)
4739 {
4740 if (is_masked_watchpoint (b))
4741 {
4742 CORE_ADDR newaddr = addr & w->hw_wp_mask;
4743 CORE_ADDR start = loc->address & w->hw_wp_mask;
4744
4745 if (newaddr == start)
4746 {
4747 w->watchpoint_triggered = watch_triggered_yes;
4748 break;
4749 }
4750 }
4751 /* Exact match not required. Within range is sufficient. */
4752 else if (target_watchpoint_addr_within_range (current_top_target (),
4753 addr, loc->address,
4754 loc->length))
4755 {
4756 w->watchpoint_triggered = watch_triggered_yes;
4757 break;
4758 }
4759 }
4760 }
4761
4762 return 1;
4763 }
4764
4765 /* Possible return values for watchpoint_check. */
4766 enum wp_check_result
4767 {
4768 /* The watchpoint has been deleted. */
4769 WP_DELETED = 1,
4770
4771 /* The value has changed. */
4772 WP_VALUE_CHANGED = 2,
4773
4774 /* The value has not changed. */
4775 WP_VALUE_NOT_CHANGED = 3,
4776
4777 /* Ignore this watchpoint, no matter if the value changed or not. */
4778 WP_IGNORE = 4,
4779 };
4780
4781 #define BP_TEMPFLAG 1
4782 #define BP_HARDWAREFLAG 2
4783
4784 /* Evaluate watchpoint condition expression and check if its value
4785 changed. */
4786
4787 static wp_check_result
4788 watchpoint_check (bpstat bs)
4789 {
4790 struct watchpoint *b;
4791 struct frame_info *fr;
4792 int within_current_scope;
4793
4794 /* BS is built from an existing struct breakpoint. */
4795 gdb_assert (bs->breakpoint_at != NULL);
4796 b = (struct watchpoint *) bs->breakpoint_at;
4797
4798 /* If this is a local watchpoint, we only want to check if the
4799 watchpoint frame is in scope if the current thread is the thread
4800 that was used to create the watchpoint. */
4801 if (!watchpoint_in_thread_scope (b))
4802 return WP_IGNORE;
4803
4804 if (b->exp_valid_block == NULL)
4805 within_current_scope = 1;
4806 else
4807 {
4808 struct frame_info *frame = get_current_frame ();
4809 struct gdbarch *frame_arch = get_frame_arch (frame);
4810 CORE_ADDR frame_pc = get_frame_pc (frame);
4811
4812 /* stack_frame_destroyed_p() returns a non-zero value if we're
4813 still in the function but the stack frame has already been
4814 invalidated. Since we can't rely on the values of local
4815 variables after the stack has been destroyed, we are treating
4816 the watchpoint in that state as `not changed' without further
4817 checking. Don't mark watchpoints as changed if the current
4818 frame is in an epilogue - even if they are in some other
4819 frame, our view of the stack is likely to be wrong and
4820 frame_find_by_id could error out. */
4821 if (gdbarch_stack_frame_destroyed_p (frame_arch, frame_pc))
4822 return WP_IGNORE;
4823
4824 fr = frame_find_by_id (b->watchpoint_frame);
4825 within_current_scope = (fr != NULL);
4826
4827 /* If we've gotten confused in the unwinder, we might have
4828 returned a frame that can't describe this variable. */
4829 if (within_current_scope)
4830 {
4831 struct symbol *function;
4832
4833 function = get_frame_function (fr);
4834 if (function == NULL
4835 || !contained_in (b->exp_valid_block,
4836 SYMBOL_BLOCK_VALUE (function)))
4837 within_current_scope = 0;
4838 }
4839
4840 if (within_current_scope)
4841 /* If we end up stopping, the current frame will get selected
4842 in normal_stop. So this call to select_frame won't affect
4843 the user. */
4844 select_frame (fr);
4845 }
4846
4847 if (within_current_scope)
4848 {
4849 /* We use value_{,free_to_}mark because it could be a *long*
4850 time before we return to the command level and call
4851 free_all_values. We can't call free_all_values because we
4852 might be in the middle of evaluating a function call. */
4853
4854 int pc = 0;
4855 struct value *mark;
4856 struct value *new_val;
4857
4858 if (is_masked_watchpoint (b))
4859 /* Since we don't know the exact trigger address (from
4860 stopped_data_address), just tell the user we've triggered
4861 a mask watchpoint. */
4862 return WP_VALUE_CHANGED;
4863
4864 mark = value_mark ();
4865 fetch_subexp_value (b->exp.get (), &pc, &new_val, NULL, NULL, 0);
4866
4867 if (b->val_bitsize != 0)
4868 new_val = extract_bitfield_from_watchpoint_value (b, new_val);
4869
4870 /* We use value_equal_contents instead of value_equal because
4871 the latter coerces an array to a pointer, thus comparing just
4872 the address of the array instead of its contents. This is
4873 not what we want. */
4874 if ((b->val != NULL) != (new_val != NULL)
4875 || (b->val != NULL && !value_equal_contents (b->val.get (),
4876 new_val)))
4877 {
4878 bs->old_val = b->val;
4879 b->val = release_value (new_val);
4880 b->val_valid = true;
4881 if (new_val != NULL)
4882 value_free_to_mark (mark);
4883 return WP_VALUE_CHANGED;
4884 }
4885 else
4886 {
4887 /* Nothing changed. */
4888 value_free_to_mark (mark);
4889 return WP_VALUE_NOT_CHANGED;
4890 }
4891 }
4892 else
4893 {
4894 /* This seems like the only logical thing to do because
4895 if we temporarily ignored the watchpoint, then when
4896 we reenter the block in which it is valid it contains
4897 garbage (in the case of a function, it may have two
4898 garbage values, one before and one after the prologue).
4899 So we can't even detect the first assignment to it and
4900 watch after that (since the garbage may or may not equal
4901 the first value assigned). */
4902 /* We print all the stop information in
4903 breakpoint_ops->print_it, but in this case, by the time we
4904 call breakpoint_ops->print_it this bp will be deleted
4905 already. So we have no choice but print the information
4906 here. */
4907
4908 SWITCH_THRU_ALL_UIS ()
4909 {
4910 struct ui_out *uiout = current_uiout;
4911
4912 if (uiout->is_mi_like_p ())
4913 uiout->field_string
4914 ("reason", async_reason_lookup (EXEC_ASYNC_WATCHPOINT_SCOPE));
4915 uiout->message ("\nWatchpoint %pF deleted because the program has "
4916 "left the block in\n"
4917 "which its expression is valid.\n",
4918 signed_field ("wpnum", b->number));
4919 }
4920
4921 /* Make sure the watchpoint's commands aren't executed. */
4922 b->commands = NULL;
4923 watchpoint_del_at_next_stop (b);
4924
4925 return WP_DELETED;
4926 }
4927 }
4928
4929 /* Return true if it looks like target has stopped due to hitting
4930 breakpoint location BL. This function does not check if we should
4931 stop, only if BL explains the stop. */
4932
4933 static int
4934 bpstat_check_location (const struct bp_location *bl,
4935 const address_space *aspace, CORE_ADDR bp_addr,
4936 const struct target_waitstatus *ws)
4937 {
4938 struct breakpoint *b = bl->owner;
4939
4940 /* BL is from an existing breakpoint. */
4941 gdb_assert (b != NULL);
4942
4943 return b->ops->breakpoint_hit (bl, aspace, bp_addr, ws);
4944 }
4945
4946 /* Determine if the watched values have actually changed, and we
4947 should stop. If not, set BS->stop to 0. */
4948
4949 static void
4950 bpstat_check_watchpoint (bpstat bs)
4951 {
4952 const struct bp_location *bl;
4953 struct watchpoint *b;
4954
4955 /* BS is built for existing struct breakpoint. */
4956 bl = bs->bp_location_at;
4957 gdb_assert (bl != NULL);
4958 b = (struct watchpoint *) bs->breakpoint_at;
4959 gdb_assert (b != NULL);
4960
4961 {
4962 int must_check_value = 0;
4963
4964 if (b->type == bp_watchpoint)
4965 /* For a software watchpoint, we must always check the
4966 watched value. */
4967 must_check_value = 1;
4968 else if (b->watchpoint_triggered == watch_triggered_yes)
4969 /* We have a hardware watchpoint (read, write, or access)
4970 and the target earlier reported an address watched by
4971 this watchpoint. */
4972 must_check_value = 1;
4973 else if (b->watchpoint_triggered == watch_triggered_unknown
4974 && b->type == bp_hardware_watchpoint)
4975 /* We were stopped by a hardware watchpoint, but the target could
4976 not report the data address. We must check the watchpoint's
4977 value. Access and read watchpoints are out of luck; without
4978 a data address, we can't figure it out. */
4979 must_check_value = 1;
4980
4981 if (must_check_value)
4982 {
4983 wp_check_result e;
4984
4985 try
4986 {
4987 e = watchpoint_check (bs);
4988 }
4989 catch (const gdb_exception &ex)
4990 {
4991 exception_fprintf (gdb_stderr, ex,
4992 "Error evaluating expression "
4993 "for watchpoint %d\n",
4994 b->number);
4995
4996 SWITCH_THRU_ALL_UIS ()
4997 {
4998 printf_filtered (_("Watchpoint %d deleted.\n"),
4999 b->number);
5000 }
5001 watchpoint_del_at_next_stop (b);
5002 e = WP_DELETED;
5003 }
5004
5005 switch (e)
5006 {
5007 case WP_DELETED:
5008 /* We've already printed what needs to be printed. */
5009 bs->print_it = print_it_done;
5010 /* Stop. */
5011 break;
5012 case WP_IGNORE:
5013 bs->print_it = print_it_noop;
5014 bs->stop = 0;
5015 break;
5016 case WP_VALUE_CHANGED:
5017 if (b->type == bp_read_watchpoint)
5018 {
5019 /* There are two cases to consider here:
5020
5021 1. We're watching the triggered memory for reads.
5022 In that case, trust the target, and always report
5023 the watchpoint hit to the user. Even though
5024 reads don't cause value changes, the value may
5025 have changed since the last time it was read, and
5026 since we're not trapping writes, we will not see
5027 those, and as such we should ignore our notion of
5028 old value.
5029
5030 2. We're watching the triggered memory for both
5031 reads and writes. There are two ways this may
5032 happen:
5033
5034 2.1. This is a target that can't break on data
5035 reads only, but can break on accesses (reads or
5036 writes), such as e.g., x86. We detect this case
5037 at the time we try to insert read watchpoints.
5038
5039 2.2. Otherwise, the target supports read
5040 watchpoints, but, the user set an access or write
5041 watchpoint watching the same memory as this read
5042 watchpoint.
5043
5044 If we're watching memory writes as well as reads,
5045 ignore watchpoint hits when we find that the
5046 value hasn't changed, as reads don't cause
5047 changes. This still gives false positives when
5048 the program writes the same value to memory as
5049 what there was already in memory (we will confuse
5050 it for a read), but it's much better than
5051 nothing. */
5052
5053 int other_write_watchpoint = 0;
5054
5055 if (bl->watchpoint_type == hw_read)
5056 {
5057 struct breakpoint *other_b;
5058
5059 ALL_BREAKPOINTS (other_b)
5060 if (other_b->type == bp_hardware_watchpoint
5061 || other_b->type == bp_access_watchpoint)
5062 {
5063 struct watchpoint *other_w =
5064 (struct watchpoint *) other_b;
5065
5066 if (other_w->watchpoint_triggered
5067 == watch_triggered_yes)
5068 {
5069 other_write_watchpoint = 1;
5070 break;
5071 }
5072 }
5073 }
5074
5075 if (other_write_watchpoint
5076 || bl->watchpoint_type == hw_access)
5077 {
5078 /* We're watching the same memory for writes,
5079 and the value changed since the last time we
5080 updated it, so this trap must be for a write.
5081 Ignore it. */
5082 bs->print_it = print_it_noop;
5083 bs->stop = 0;
5084 }
5085 }
5086 break;
5087 case WP_VALUE_NOT_CHANGED:
5088 if (b->type == bp_hardware_watchpoint
5089 || b->type == bp_watchpoint)
5090 {
5091 /* Don't stop: write watchpoints shouldn't fire if
5092 the value hasn't changed. */
5093 bs->print_it = print_it_noop;
5094 bs->stop = 0;
5095 }
5096 /* Stop. */
5097 break;
5098 default:
5099 /* Can't happen. */
5100 break;
5101 }
5102 }
5103 else /* must_check_value == 0 */
5104 {
5105 /* This is a case where some watchpoint(s) triggered, but
5106 not at the address of this watchpoint, or else no
5107 watchpoint triggered after all. So don't print
5108 anything for this watchpoint. */
5109 bs->print_it = print_it_noop;
5110 bs->stop = 0;
5111 }
5112 }
5113 }
5114
5115 /* For breakpoints that are currently marked as telling gdb to stop,
5116 check conditions (condition proper, frame, thread and ignore count)
5117 of breakpoint referred to by BS. If we should not stop for this
5118 breakpoint, set BS->stop to 0. */
5119
5120 static void
5121 bpstat_check_breakpoint_conditions (bpstat bs, thread_info *thread)
5122 {
5123 const struct bp_location *bl;
5124 struct breakpoint *b;
5125 /* Assume stop. */
5126 bool condition_result = true;
5127 struct expression *cond;
5128
5129 gdb_assert (bs->stop);
5130
5131 /* BS is built for existing struct breakpoint. */
5132 bl = bs->bp_location_at;
5133 gdb_assert (bl != NULL);
5134 b = bs->breakpoint_at;
5135 gdb_assert (b != NULL);
5136
5137 /* Even if the target evaluated the condition on its end and notified GDB, we
5138 need to do so again since GDB does not know if we stopped due to a
5139 breakpoint or a single step breakpoint. */
5140
5141 if (frame_id_p (b->frame_id)
5142 && !frame_id_eq (b->frame_id, get_stack_frame_id (get_current_frame ())))
5143 {
5144 bs->stop = 0;
5145 return;
5146 }
5147
5148 /* If this is a thread/task-specific breakpoint, don't waste cpu
5149 evaluating the condition if this isn't the specified
5150 thread/task. */
5151 if ((b->thread != -1 && b->thread != thread->global_num)
5152 || (b->task != 0 && b->task != ada_get_task_number (thread)))
5153 {
5154 bs->stop = 0;
5155 return;
5156 }
5157
5158 /* Evaluate extension language breakpoints that have a "stop" method
5159 implemented. */
5160 bs->stop = breakpoint_ext_lang_cond_says_stop (b);
5161
5162 if (is_watchpoint (b))
5163 {
5164 struct watchpoint *w = (struct watchpoint *) b;
5165
5166 cond = w->cond_exp.get ();
5167 }
5168 else
5169 cond = bl->cond.get ();
5170
5171 if (cond && b->disposition != disp_del_at_next_stop)
5172 {
5173 int within_current_scope = 1;
5174 struct watchpoint * w;
5175
5176 /* We use value_mark and value_free_to_mark because it could
5177 be a long time before we return to the command level and
5178 call free_all_values. We can't call free_all_values
5179 because we might be in the middle of evaluating a
5180 function call. */
5181 struct value *mark = value_mark ();
5182
5183 if (is_watchpoint (b))
5184 w = (struct watchpoint *) b;
5185 else
5186 w = NULL;
5187
5188 /* Need to select the frame, with all that implies so that
5189 the conditions will have the right context. Because we
5190 use the frame, we will not see an inlined function's
5191 variables when we arrive at a breakpoint at the start
5192 of the inlined function; the current frame will be the
5193 call site. */
5194 if (w == NULL || w->cond_exp_valid_block == NULL)
5195 select_frame (get_current_frame ());
5196 else
5197 {
5198 struct frame_info *frame;
5199
5200 /* For local watchpoint expressions, which particular
5201 instance of a local is being watched matters, so we
5202 keep track of the frame to evaluate the expression
5203 in. To evaluate the condition however, it doesn't
5204 really matter which instantiation of the function
5205 where the condition makes sense triggers the
5206 watchpoint. This allows an expression like "watch
5207 global if q > 10" set in `func', catch writes to
5208 global on all threads that call `func', or catch
5209 writes on all recursive calls of `func' by a single
5210 thread. We simply always evaluate the condition in
5211 the innermost frame that's executing where it makes
5212 sense to evaluate the condition. It seems
5213 intuitive. */
5214 frame = block_innermost_frame (w->cond_exp_valid_block);
5215 if (frame != NULL)
5216 select_frame (frame);
5217 else
5218 within_current_scope = 0;
5219 }
5220 if (within_current_scope)
5221 {
5222 try
5223 {
5224 condition_result = breakpoint_cond_eval (cond);
5225 }
5226 catch (const gdb_exception &ex)
5227 {
5228 exception_fprintf (gdb_stderr, ex,
5229 "Error in testing breakpoint condition:\n");
5230 }
5231 }
5232 else
5233 {
5234 warning (_("Watchpoint condition cannot be tested "
5235 "in the current scope"));
5236 /* If we failed to set the right context for this
5237 watchpoint, unconditionally report it. */
5238 }
5239 /* FIXME-someday, should give breakpoint #. */
5240 value_free_to_mark (mark);
5241 }
5242
5243 if (cond && !condition_result)
5244 {
5245 bs->stop = 0;
5246 }
5247 else if (b->ignore_count > 0)
5248 {
5249 b->ignore_count--;
5250 bs->stop = 0;
5251 /* Increase the hit count even though we don't stop. */
5252 ++(b->hit_count);
5253 gdb::observers::breakpoint_modified.notify (b);
5254 }
5255 }
5256
5257 /* Returns true if we need to track moribund locations of LOC's type
5258 on the current target. */
5259
5260 static int
5261 need_moribund_for_location_type (struct bp_location *loc)
5262 {
5263 return ((loc->loc_type == bp_loc_software_breakpoint
5264 && !target_supports_stopped_by_sw_breakpoint ())
5265 || (loc->loc_type == bp_loc_hardware_breakpoint
5266 && !target_supports_stopped_by_hw_breakpoint ()));
5267 }
5268
5269 /* See breakpoint.h. */
5270
5271 bpstat
5272 build_bpstat_chain (const address_space *aspace, CORE_ADDR bp_addr,
5273 const struct target_waitstatus *ws)
5274 {
5275 struct breakpoint *b;
5276 bpstat bs_head = NULL, *bs_link = &bs_head;
5277
5278 ALL_BREAKPOINTS (b)
5279 {
5280 if (!breakpoint_enabled (b))
5281 continue;
5282
5283 for (bp_location *bl = b->loc; bl != NULL; bl = bl->next)
5284 {
5285 /* For hardware watchpoints, we look only at the first
5286 location. The watchpoint_check function will work on the
5287 entire expression, not the individual locations. For
5288 read watchpoints, the watchpoints_triggered function has
5289 checked all locations already. */
5290 if (b->type == bp_hardware_watchpoint && bl != b->loc)
5291 break;
5292
5293 if (!bl->enabled || bl->shlib_disabled)
5294 continue;
5295
5296 if (!bpstat_check_location (bl, aspace, bp_addr, ws))
5297 continue;
5298
5299 /* Come here if it's a watchpoint, or if the break address
5300 matches. */
5301
5302 bpstat bs = new bpstats (bl, &bs_link); /* Alloc a bpstat to
5303 explain stop. */
5304
5305 /* Assume we stop. Should we find a watchpoint that is not
5306 actually triggered, or if the condition of the breakpoint
5307 evaluates as false, we'll reset 'stop' to 0. */
5308 bs->stop = 1;
5309 bs->print = 1;
5310
5311 /* If this is a scope breakpoint, mark the associated
5312 watchpoint as triggered so that we will handle the
5313 out-of-scope event. We'll get to the watchpoint next
5314 iteration. */
5315 if (b->type == bp_watchpoint_scope && b->related_breakpoint != b)
5316 {
5317 struct watchpoint *w = (struct watchpoint *) b->related_breakpoint;
5318
5319 w->watchpoint_triggered = watch_triggered_yes;
5320 }
5321 }
5322 }
5323
5324 /* Check if a moribund breakpoint explains the stop. */
5325 if (!target_supports_stopped_by_sw_breakpoint ()
5326 || !target_supports_stopped_by_hw_breakpoint ())
5327 {
5328 for (bp_location *loc : moribund_locations)
5329 {
5330 if (breakpoint_location_address_match (loc, aspace, bp_addr)
5331 && need_moribund_for_location_type (loc))
5332 {
5333 bpstat bs = new bpstats (loc, &bs_link);
5334 /* For hits of moribund locations, we should just proceed. */
5335 bs->stop = 0;
5336 bs->print = 0;
5337 bs->print_it = print_it_noop;
5338 }
5339 }
5340 }
5341
5342 return bs_head;
5343 }
5344
5345 /* See breakpoint.h. */
5346
5347 bpstat
5348 bpstat_stop_status (const address_space *aspace,
5349 CORE_ADDR bp_addr, thread_info *thread,
5350 const struct target_waitstatus *ws,
5351 bpstat stop_chain)
5352 {
5353 struct breakpoint *b = NULL;
5354 /* First item of allocated bpstat's. */
5355 bpstat bs_head = stop_chain;
5356 bpstat bs;
5357 int need_remove_insert;
5358 int removed_any;
5359
5360 /* First, build the bpstat chain with locations that explain a
5361 target stop, while being careful to not set the target running,
5362 as that may invalidate locations (in particular watchpoint
5363 locations are recreated). Resuming will happen here with
5364 breakpoint conditions or watchpoint expressions that include
5365 inferior function calls. */
5366 if (bs_head == NULL)
5367 bs_head = build_bpstat_chain (aspace, bp_addr, ws);
5368
5369 /* A bit of special processing for shlib breakpoints. We need to
5370 process solib loading here, so that the lists of loaded and
5371 unloaded libraries are correct before we handle "catch load" and
5372 "catch unload". */
5373 for (bs = bs_head; bs != NULL; bs = bs->next)
5374 {
5375 if (bs->breakpoint_at && bs->breakpoint_at->type == bp_shlib_event)
5376 {
5377 handle_solib_event ();
5378 break;
5379 }
5380 }
5381
5382 /* Now go through the locations that caused the target to stop, and
5383 check whether we're interested in reporting this stop to higher
5384 layers, or whether we should resume the target transparently. */
5385
5386 removed_any = 0;
5387
5388 for (bs = bs_head; bs != NULL; bs = bs->next)
5389 {
5390 if (!bs->stop)
5391 continue;
5392
5393 b = bs->breakpoint_at;
5394 b->ops->check_status (bs);
5395 if (bs->stop)
5396 {
5397 bpstat_check_breakpoint_conditions (bs, thread);
5398
5399 if (bs->stop)
5400 {
5401 ++(b->hit_count);
5402 gdb::observers::breakpoint_modified.notify (b);
5403
5404 /* We will stop here. */
5405 if (b->disposition == disp_disable)
5406 {
5407 --(b->enable_count);
5408 if (b->enable_count <= 0)
5409 b->enable_state = bp_disabled;
5410 removed_any = 1;
5411 }
5412 if (b->silent)
5413 bs->print = 0;
5414 bs->commands = b->commands;
5415 if (command_line_is_silent (bs->commands
5416 ? bs->commands.get () : NULL))
5417 bs->print = 0;
5418
5419 b->ops->after_condition_true (bs);
5420 }
5421
5422 }
5423
5424 /* Print nothing for this entry if we don't stop or don't
5425 print. */
5426 if (!bs->stop || !bs->print)
5427 bs->print_it = print_it_noop;
5428 }
5429
5430 /* If we aren't stopping, the value of some hardware watchpoint may
5431 not have changed, but the intermediate memory locations we are
5432 watching may have. Don't bother if we're stopping; this will get
5433 done later. */
5434 need_remove_insert = 0;
5435 if (! bpstat_causes_stop (bs_head))
5436 for (bs = bs_head; bs != NULL; bs = bs->next)
5437 if (!bs->stop
5438 && bs->breakpoint_at
5439 && is_hardware_watchpoint (bs->breakpoint_at))
5440 {
5441 struct watchpoint *w = (struct watchpoint *) bs->breakpoint_at;
5442
5443 update_watchpoint (w, 0 /* don't reparse. */);
5444 need_remove_insert = 1;
5445 }
5446
5447 if (need_remove_insert)
5448 update_global_location_list (UGLL_MAY_INSERT);
5449 else if (removed_any)
5450 update_global_location_list (UGLL_DONT_INSERT);
5451
5452 return bs_head;
5453 }
5454
5455 static void
5456 handle_jit_event (void)
5457 {
5458 struct frame_info *frame;
5459 struct gdbarch *gdbarch;
5460
5461 if (debug_infrun)
5462 fprintf_unfiltered (gdb_stdlog, "handling bp_jit_event\n");
5463
5464 /* Switch terminal for any messages produced by
5465 breakpoint_re_set. */
5466 target_terminal::ours_for_output ();
5467
5468 frame = get_current_frame ();
5469 gdbarch = get_frame_arch (frame);
5470
5471 jit_event_handler (gdbarch);
5472
5473 target_terminal::inferior ();
5474 }
5475
5476 /* Prepare WHAT final decision for infrun. */
5477
5478 /* Decide what infrun needs to do with this bpstat. */
5479
5480 struct bpstat_what
5481 bpstat_what (bpstat bs_head)
5482 {
5483 struct bpstat_what retval;
5484 bpstat bs;
5485
5486 retval.main_action = BPSTAT_WHAT_KEEP_CHECKING;
5487 retval.call_dummy = STOP_NONE;
5488 retval.is_longjmp = false;
5489
5490 for (bs = bs_head; bs != NULL; bs = bs->next)
5491 {
5492 /* Extract this BS's action. After processing each BS, we check
5493 if its action overrides all we've seem so far. */
5494 enum bpstat_what_main_action this_action = BPSTAT_WHAT_KEEP_CHECKING;
5495 enum bptype bptype;
5496
5497 if (bs->breakpoint_at == NULL)
5498 {
5499 /* I suspect this can happen if it was a momentary
5500 breakpoint which has since been deleted. */
5501 bptype = bp_none;
5502 }
5503 else
5504 bptype = bs->breakpoint_at->type;
5505
5506 switch (bptype)
5507 {
5508 case bp_none:
5509 break;
5510 case bp_breakpoint:
5511 case bp_hardware_breakpoint:
5512 case bp_single_step:
5513 case bp_until:
5514 case bp_finish:
5515 case bp_shlib_event:
5516 if (bs->stop)
5517 {
5518 if (bs->print)
5519 this_action = BPSTAT_WHAT_STOP_NOISY;
5520 else
5521 this_action = BPSTAT_WHAT_STOP_SILENT;
5522 }
5523 else
5524 this_action = BPSTAT_WHAT_SINGLE;
5525 break;
5526 case bp_watchpoint:
5527 case bp_hardware_watchpoint:
5528 case bp_read_watchpoint:
5529 case bp_access_watchpoint:
5530 if (bs->stop)
5531 {
5532 if (bs->print)
5533 this_action = BPSTAT_WHAT_STOP_NOISY;
5534 else
5535 this_action = BPSTAT_WHAT_STOP_SILENT;
5536 }
5537 else
5538 {
5539 /* There was a watchpoint, but we're not stopping.
5540 This requires no further action. */
5541 }
5542 break;
5543 case bp_longjmp:
5544 case bp_longjmp_call_dummy:
5545 case bp_exception:
5546 if (bs->stop)
5547 {
5548 this_action = BPSTAT_WHAT_SET_LONGJMP_RESUME;
5549 retval.is_longjmp = bptype != bp_exception;
5550 }
5551 else
5552 this_action = BPSTAT_WHAT_SINGLE;
5553 break;
5554 case bp_longjmp_resume:
5555 case bp_exception_resume:
5556 if (bs->stop)
5557 {
5558 this_action = BPSTAT_WHAT_CLEAR_LONGJMP_RESUME;
5559 retval.is_longjmp = bptype == bp_longjmp_resume;
5560 }
5561 else
5562 this_action = BPSTAT_WHAT_SINGLE;
5563 break;
5564 case bp_step_resume:
5565 if (bs->stop)
5566 this_action = BPSTAT_WHAT_STEP_RESUME;
5567 else
5568 {
5569 /* It is for the wrong frame. */
5570 this_action = BPSTAT_WHAT_SINGLE;
5571 }
5572 break;
5573 case bp_hp_step_resume:
5574 if (bs->stop)
5575 this_action = BPSTAT_WHAT_HP_STEP_RESUME;
5576 else
5577 {
5578 /* It is for the wrong frame. */
5579 this_action = BPSTAT_WHAT_SINGLE;
5580 }
5581 break;
5582 case bp_watchpoint_scope:
5583 case bp_thread_event:
5584 case bp_overlay_event:
5585 case bp_longjmp_master:
5586 case bp_std_terminate_master:
5587 case bp_exception_master:
5588 this_action = BPSTAT_WHAT_SINGLE;
5589 break;
5590 case bp_catchpoint:
5591 if (bs->stop)
5592 {
5593 if (bs->print)
5594 this_action = BPSTAT_WHAT_STOP_NOISY;
5595 else
5596 this_action = BPSTAT_WHAT_STOP_SILENT;
5597 }
5598 else
5599 {
5600 /* Some catchpoints are implemented with breakpoints.
5601 For those, we need to step over the breakpoint. */
5602 if (bs->bp_location_at->loc_type != bp_loc_other)
5603 this_action = BPSTAT_WHAT_SINGLE;
5604 }
5605 break;
5606 case bp_jit_event:
5607 this_action = BPSTAT_WHAT_SINGLE;
5608 break;
5609 case bp_call_dummy:
5610 /* Make sure the action is stop (silent or noisy),
5611 so infrun.c pops the dummy frame. */
5612 retval.call_dummy = STOP_STACK_DUMMY;
5613 this_action = BPSTAT_WHAT_STOP_SILENT;
5614 break;
5615 case bp_std_terminate:
5616 /* Make sure the action is stop (silent or noisy),
5617 so infrun.c pops the dummy frame. */
5618 retval.call_dummy = STOP_STD_TERMINATE;
5619 this_action = BPSTAT_WHAT_STOP_SILENT;
5620 break;
5621 case bp_tracepoint:
5622 case bp_fast_tracepoint:
5623 case bp_static_tracepoint:
5624 /* Tracepoint hits should not be reported back to GDB, and
5625 if one got through somehow, it should have been filtered
5626 out already. */
5627 internal_error (__FILE__, __LINE__,
5628 _("bpstat_what: tracepoint encountered"));
5629 break;
5630 case bp_gnu_ifunc_resolver:
5631 /* Step over it (and insert bp_gnu_ifunc_resolver_return). */
5632 this_action = BPSTAT_WHAT_SINGLE;
5633 break;
5634 case bp_gnu_ifunc_resolver_return:
5635 /* The breakpoint will be removed, execution will restart from the
5636 PC of the former breakpoint. */
5637 this_action = BPSTAT_WHAT_KEEP_CHECKING;
5638 break;
5639
5640 case bp_dprintf:
5641 if (bs->stop)
5642 this_action = BPSTAT_WHAT_STOP_SILENT;
5643 else
5644 this_action = BPSTAT_WHAT_SINGLE;
5645 break;
5646
5647 default:
5648 internal_error (__FILE__, __LINE__,
5649 _("bpstat_what: unhandled bptype %d"), (int) bptype);
5650 }
5651
5652 retval.main_action = std::max (retval.main_action, this_action);
5653 }
5654
5655 return retval;
5656 }
5657
5658 void
5659 bpstat_run_callbacks (bpstat bs_head)
5660 {
5661 bpstat bs;
5662
5663 for (bs = bs_head; bs != NULL; bs = bs->next)
5664 {
5665 struct breakpoint *b = bs->breakpoint_at;
5666
5667 if (b == NULL)
5668 continue;
5669 switch (b->type)
5670 {
5671 case bp_jit_event:
5672 handle_jit_event ();
5673 break;
5674 case bp_gnu_ifunc_resolver:
5675 gnu_ifunc_resolver_stop (b);
5676 break;
5677 case bp_gnu_ifunc_resolver_return:
5678 gnu_ifunc_resolver_return_stop (b);
5679 break;
5680 }
5681 }
5682 }
5683
5684 /* See breakpoint.h. */
5685
5686 bool
5687 bpstat_should_step ()
5688 {
5689 struct breakpoint *b;
5690
5691 ALL_BREAKPOINTS (b)
5692 if (breakpoint_enabled (b) && b->type == bp_watchpoint && b->loc != NULL)
5693 return true;
5694 return false;
5695 }
5696
5697 /* See breakpoint.h. */
5698
5699 bool
5700 bpstat_causes_stop (bpstat bs)
5701 {
5702 for (; bs != NULL; bs = bs->next)
5703 if (bs->stop)
5704 return true;
5705
5706 return false;
5707 }
5708
5709 \f
5710
5711 /* Compute a string of spaces suitable to indent the next line
5712 so it starts at the position corresponding to the table column
5713 named COL_NAME in the currently active table of UIOUT. */
5714
5715 static char *
5716 wrap_indent_at_field (struct ui_out *uiout, const char *col_name)
5717 {
5718 static char wrap_indent[80];
5719 int i, total_width, width, align;
5720 const char *text;
5721
5722 total_width = 0;
5723 for (i = 1; uiout->query_table_field (i, &width, &align, &text); i++)
5724 {
5725 if (strcmp (text, col_name) == 0)
5726 {
5727 gdb_assert (total_width < sizeof wrap_indent);
5728 memset (wrap_indent, ' ', total_width);
5729 wrap_indent[total_width] = 0;
5730
5731 return wrap_indent;
5732 }
5733
5734 total_width += width + 1;
5735 }
5736
5737 return NULL;
5738 }
5739
5740 /* Determine if the locations of this breakpoint will have their conditions
5741 evaluated by the target, host or a mix of both. Returns the following:
5742
5743 "host": Host evals condition.
5744 "host or target": Host or Target evals condition.
5745 "target": Target evals condition.
5746 */
5747
5748 static const char *
5749 bp_condition_evaluator (struct breakpoint *b)
5750 {
5751 struct bp_location *bl;
5752 char host_evals = 0;
5753 char target_evals = 0;
5754
5755 if (!b)
5756 return NULL;
5757
5758 if (!is_breakpoint (b))
5759 return NULL;
5760
5761 if (gdb_evaluates_breakpoint_condition_p ()
5762 || !target_supports_evaluation_of_breakpoint_conditions ())
5763 return condition_evaluation_host;
5764
5765 for (bl = b->loc; bl; bl = bl->next)
5766 {
5767 if (bl->cond_bytecode)
5768 target_evals++;
5769 else
5770 host_evals++;
5771 }
5772
5773 if (host_evals && target_evals)
5774 return condition_evaluation_both;
5775 else if (target_evals)
5776 return condition_evaluation_target;
5777 else
5778 return condition_evaluation_host;
5779 }
5780
5781 /* Determine the breakpoint location's condition evaluator. This is
5782 similar to bp_condition_evaluator, but for locations. */
5783
5784 static const char *
5785 bp_location_condition_evaluator (struct bp_location *bl)
5786 {
5787 if (bl && !is_breakpoint (bl->owner))
5788 return NULL;
5789
5790 if (gdb_evaluates_breakpoint_condition_p ()
5791 || !target_supports_evaluation_of_breakpoint_conditions ())
5792 return condition_evaluation_host;
5793
5794 if (bl && bl->cond_bytecode)
5795 return condition_evaluation_target;
5796 else
5797 return condition_evaluation_host;
5798 }
5799
5800 /* Print the LOC location out of the list of B->LOC locations. */
5801
5802 static void
5803 print_breakpoint_location (struct breakpoint *b,
5804 struct bp_location *loc)
5805 {
5806 struct ui_out *uiout = current_uiout;
5807
5808 scoped_restore_current_program_space restore_pspace;
5809
5810 if (loc != NULL && loc->shlib_disabled)
5811 loc = NULL;
5812
5813 if (loc != NULL)
5814 set_current_program_space (loc->pspace);
5815
5816 if (b->display_canonical)
5817 uiout->field_string ("what", event_location_to_string (b->location.get ()));
5818 else if (loc && loc->symtab)
5819 {
5820 const struct symbol *sym = loc->symbol;
5821
5822 if (sym)
5823 {
5824 uiout->text ("in ");
5825 uiout->field_string ("func", sym->print_name (),
5826 function_name_style.style ());
5827 uiout->text (" ");
5828 uiout->wrap_hint (wrap_indent_at_field (uiout, "what"));
5829 uiout->text ("at ");
5830 }
5831 uiout->field_string ("file",
5832 symtab_to_filename_for_display (loc->symtab),
5833 file_name_style.style ());
5834 uiout->text (":");
5835
5836 if (uiout->is_mi_like_p ())
5837 uiout->field_string ("fullname", symtab_to_fullname (loc->symtab));
5838
5839 uiout->field_signed ("line", loc->line_number);
5840 }
5841 else if (loc)
5842 {
5843 string_file stb;
5844
5845 print_address_symbolic (loc->gdbarch, loc->address, &stb,
5846 demangle, "");
5847 uiout->field_stream ("at", stb);
5848 }
5849 else
5850 {
5851 uiout->field_string ("pending",
5852 event_location_to_string (b->location.get ()));
5853 /* If extra_string is available, it could be holding a condition
5854 or dprintf arguments. In either case, make sure it is printed,
5855 too, but only for non-MI streams. */
5856 if (!uiout->is_mi_like_p () && b->extra_string != NULL)
5857 {
5858 if (b->type == bp_dprintf)
5859 uiout->text (",");
5860 else
5861 uiout->text (" ");
5862 uiout->text (b->extra_string);
5863 }
5864 }
5865
5866 if (loc && is_breakpoint (b)
5867 && breakpoint_condition_evaluation_mode () == condition_evaluation_target
5868 && bp_condition_evaluator (b) == condition_evaluation_both)
5869 {
5870 uiout->text (" (");
5871 uiout->field_string ("evaluated-by",
5872 bp_location_condition_evaluator (loc));
5873 uiout->text (")");
5874 }
5875 }
5876
5877 static const char *
5878 bptype_string (enum bptype type)
5879 {
5880 struct ep_type_description
5881 {
5882 enum bptype type;
5883 const char *description;
5884 };
5885 static struct ep_type_description bptypes[] =
5886 {
5887 {bp_none, "?deleted?"},
5888 {bp_breakpoint, "breakpoint"},
5889 {bp_hardware_breakpoint, "hw breakpoint"},
5890 {bp_single_step, "sw single-step"},
5891 {bp_until, "until"},
5892 {bp_finish, "finish"},
5893 {bp_watchpoint, "watchpoint"},
5894 {bp_hardware_watchpoint, "hw watchpoint"},
5895 {bp_read_watchpoint, "read watchpoint"},
5896 {bp_access_watchpoint, "acc watchpoint"},
5897 {bp_longjmp, "longjmp"},
5898 {bp_longjmp_resume, "longjmp resume"},
5899 {bp_longjmp_call_dummy, "longjmp for call dummy"},
5900 {bp_exception, "exception"},
5901 {bp_exception_resume, "exception resume"},
5902 {bp_step_resume, "step resume"},
5903 {bp_hp_step_resume, "high-priority step resume"},
5904 {bp_watchpoint_scope, "watchpoint scope"},
5905 {bp_call_dummy, "call dummy"},
5906 {bp_std_terminate, "std::terminate"},
5907 {bp_shlib_event, "shlib events"},
5908 {bp_thread_event, "thread events"},
5909 {bp_overlay_event, "overlay events"},
5910 {bp_longjmp_master, "longjmp master"},
5911 {bp_std_terminate_master, "std::terminate master"},
5912 {bp_exception_master, "exception master"},
5913 {bp_catchpoint, "catchpoint"},
5914 {bp_tracepoint, "tracepoint"},
5915 {bp_fast_tracepoint, "fast tracepoint"},
5916 {bp_static_tracepoint, "static tracepoint"},
5917 {bp_dprintf, "dprintf"},
5918 {bp_jit_event, "jit events"},
5919 {bp_gnu_ifunc_resolver, "STT_GNU_IFUNC resolver"},
5920 {bp_gnu_ifunc_resolver_return, "STT_GNU_IFUNC resolver return"},
5921 };
5922
5923 if (((int) type >= (sizeof (bptypes) / sizeof (bptypes[0])))
5924 || ((int) type != bptypes[(int) type].type))
5925 internal_error (__FILE__, __LINE__,
5926 _("bptypes table does not describe type #%d."),
5927 (int) type);
5928
5929 return bptypes[(int) type].description;
5930 }
5931
5932 /* For MI, output a field named 'thread-groups' with a list as the value.
5933 For CLI, prefix the list with the string 'inf'. */
5934
5935 static void
5936 output_thread_groups (struct ui_out *uiout,
5937 const char *field_name,
5938 const std::vector<int> &inf_nums,
5939 int mi_only)
5940 {
5941 int is_mi = uiout->is_mi_like_p ();
5942
5943 /* For backward compatibility, don't display inferiors in CLI unless
5944 there are several. Always display them for MI. */
5945 if (!is_mi && mi_only)
5946 return;
5947
5948 ui_out_emit_list list_emitter (uiout, field_name);
5949
5950 for (size_t i = 0; i < inf_nums.size (); i++)
5951 {
5952 if (is_mi)
5953 {
5954 char mi_group[10];
5955
5956 xsnprintf (mi_group, sizeof (mi_group), "i%d", inf_nums[i]);
5957 uiout->field_string (NULL, mi_group);
5958 }
5959 else
5960 {
5961 if (i == 0)
5962 uiout->text (" inf ");
5963 else
5964 uiout->text (", ");
5965
5966 uiout->text (plongest (inf_nums[i]));
5967 }
5968 }
5969 }
5970
5971 /* Print B to gdb_stdout. If RAW_LOC, print raw breakpoint locations
5972 instead of going via breakpoint_ops::print_one. This makes "maint
5973 info breakpoints" show the software breakpoint locations of
5974 catchpoints, which are considered internal implementation
5975 detail. */
5976
5977 static void
5978 print_one_breakpoint_location (struct breakpoint *b,
5979 struct bp_location *loc,
5980 int loc_number,
5981 struct bp_location **last_loc,
5982 int allflag, bool raw_loc)
5983 {
5984 struct command_line *l;
5985 static char bpenables[] = "nynny";
5986
5987 struct ui_out *uiout = current_uiout;
5988 int header_of_multiple = 0;
5989 int part_of_multiple = (loc != NULL);
5990 struct value_print_options opts;
5991
5992 get_user_print_options (&opts);
5993
5994 gdb_assert (!loc || loc_number != 0);
5995 /* See comment in print_one_breakpoint concerning treatment of
5996 breakpoints with single disabled location. */
5997 if (loc == NULL
5998 && (b->loc != NULL
5999 && (b->loc->next != NULL || !b->loc->enabled)))
6000 header_of_multiple = 1;
6001 if (loc == NULL)
6002 loc = b->loc;
6003
6004 annotate_record ();
6005
6006 /* 1 */
6007 annotate_field (0);
6008 if (part_of_multiple)
6009 uiout->field_fmt ("number", "%d.%d", b->number, loc_number);
6010 else
6011 uiout->field_signed ("number", b->number);
6012
6013 /* 2 */
6014 annotate_field (1);
6015 if (part_of_multiple)
6016 uiout->field_skip ("type");
6017 else
6018 uiout->field_string ("type", bptype_string (b->type));
6019
6020 /* 3 */
6021 annotate_field (2);
6022 if (part_of_multiple)
6023 uiout->field_skip ("disp");
6024 else
6025 uiout->field_string ("disp", bpdisp_text (b->disposition));
6026
6027 /* 4 */
6028 annotate_field (3);
6029 if (part_of_multiple)
6030 uiout->field_string ("enabled", loc->enabled ? "y" : "n");
6031 else
6032 uiout->field_fmt ("enabled", "%c", bpenables[(int) b->enable_state]);
6033
6034 /* 5 and 6 */
6035 if (!raw_loc && b->ops != NULL && b->ops->print_one != NULL)
6036 b->ops->print_one (b, last_loc);
6037 else
6038 {
6039 if (is_watchpoint (b))
6040 {
6041 struct watchpoint *w = (struct watchpoint *) b;
6042
6043 /* Field 4, the address, is omitted (which makes the columns
6044 not line up too nicely with the headers, but the effect
6045 is relatively readable). */
6046 if (opts.addressprint)
6047 uiout->field_skip ("addr");
6048 annotate_field (5);
6049 uiout->field_string ("what", w->exp_string);
6050 }
6051 else if (!is_catchpoint (b) || is_exception_catchpoint (b)
6052 || is_ada_exception_catchpoint (b))
6053 {
6054 if (opts.addressprint)
6055 {
6056 annotate_field (4);
6057 if (header_of_multiple)
6058 uiout->field_string ("addr", "<MULTIPLE>",
6059 metadata_style.style ());
6060 else if (b->loc == NULL || loc->shlib_disabled)
6061 uiout->field_string ("addr", "<PENDING>",
6062 metadata_style.style ());
6063 else
6064 uiout->field_core_addr ("addr",
6065 loc->gdbarch, loc->address);
6066 }
6067 annotate_field (5);
6068 if (!header_of_multiple)
6069 print_breakpoint_location (b, loc);
6070 if (b->loc)
6071 *last_loc = b->loc;
6072 }
6073 }
6074
6075 if (loc != NULL && !header_of_multiple)
6076 {
6077 std::vector<int> inf_nums;
6078 int mi_only = 1;
6079
6080 for (inferior *inf : all_inferiors ())
6081 {
6082 if (inf->pspace == loc->pspace)
6083 inf_nums.push_back (inf->num);
6084 }
6085
6086 /* For backward compatibility, don't display inferiors in CLI unless
6087 there are several. Always display for MI. */
6088 if (allflag
6089 || (!gdbarch_has_global_breakpoints (target_gdbarch ())
6090 && (number_of_program_spaces () > 1
6091 || number_of_inferiors () > 1)
6092 /* LOC is for existing B, it cannot be in
6093 moribund_locations and thus having NULL OWNER. */
6094 && loc->owner->type != bp_catchpoint))
6095 mi_only = 0;
6096 output_thread_groups (uiout, "thread-groups", inf_nums, mi_only);
6097 }
6098
6099 if (!part_of_multiple)
6100 {
6101 if (b->thread != -1)
6102 {
6103 /* FIXME: This seems to be redundant and lost here; see the
6104 "stop only in" line a little further down. */
6105 uiout->text (" thread ");
6106 uiout->field_signed ("thread", b->thread);
6107 }
6108 else if (b->task != 0)
6109 {
6110 uiout->text (" task ");
6111 uiout->field_signed ("task", b->task);
6112 }
6113 }
6114
6115 uiout->text ("\n");
6116
6117 if (!part_of_multiple)
6118 b->ops->print_one_detail (b, uiout);
6119
6120 if (part_of_multiple && frame_id_p (b->frame_id))
6121 {
6122 annotate_field (6);
6123 uiout->text ("\tstop only in stack frame at ");
6124 /* FIXME: cagney/2002-12-01: Shouldn't be poking around inside
6125 the frame ID. */
6126 uiout->field_core_addr ("frame",
6127 b->gdbarch, b->frame_id.stack_addr);
6128 uiout->text ("\n");
6129 }
6130
6131 if (!part_of_multiple && b->cond_string)
6132 {
6133 annotate_field (7);
6134 if (is_tracepoint (b))
6135 uiout->text ("\ttrace only if ");
6136 else
6137 uiout->text ("\tstop only if ");
6138 uiout->field_string ("cond", b->cond_string);
6139
6140 /* Print whether the target is doing the breakpoint's condition
6141 evaluation. If GDB is doing the evaluation, don't print anything. */
6142 if (is_breakpoint (b)
6143 && breakpoint_condition_evaluation_mode ()
6144 == condition_evaluation_target)
6145 {
6146 uiout->message (" (%pF evals)",
6147 string_field ("evaluated-by",
6148 bp_condition_evaluator (b)));
6149 }
6150 uiout->text ("\n");
6151 }
6152
6153 if (!part_of_multiple && b->thread != -1)
6154 {
6155 /* FIXME should make an annotation for this. */
6156 uiout->text ("\tstop only in thread ");
6157 if (uiout->is_mi_like_p ())
6158 uiout->field_signed ("thread", b->thread);
6159 else
6160 {
6161 struct thread_info *thr = find_thread_global_id (b->thread);
6162
6163 uiout->field_string ("thread", print_thread_id (thr));
6164 }
6165 uiout->text ("\n");
6166 }
6167
6168 if (!part_of_multiple)
6169 {
6170 if (b->hit_count)
6171 {
6172 /* FIXME should make an annotation for this. */
6173 if (is_catchpoint (b))
6174 uiout->text ("\tcatchpoint");
6175 else if (is_tracepoint (b))
6176 uiout->text ("\ttracepoint");
6177 else
6178 uiout->text ("\tbreakpoint");
6179 uiout->text (" already hit ");
6180 uiout->field_signed ("times", b->hit_count);
6181 if (b->hit_count == 1)
6182 uiout->text (" time\n");
6183 else
6184 uiout->text (" times\n");
6185 }
6186 else
6187 {
6188 /* Output the count also if it is zero, but only if this is mi. */
6189 if (uiout->is_mi_like_p ())
6190 uiout->field_signed ("times", b->hit_count);
6191 }
6192 }
6193
6194 if (!part_of_multiple && b->ignore_count)
6195 {
6196 annotate_field (8);
6197 uiout->message ("\tignore next %pF hits\n",
6198 signed_field ("ignore", b->ignore_count));
6199 }
6200
6201 /* Note that an enable count of 1 corresponds to "enable once"
6202 behavior, which is reported by the combination of enablement and
6203 disposition, so we don't need to mention it here. */
6204 if (!part_of_multiple && b->enable_count > 1)
6205 {
6206 annotate_field (8);
6207 uiout->text ("\tdisable after ");
6208 /* Tweak the wording to clarify that ignore and enable counts
6209 are distinct, and have additive effect. */
6210 if (b->ignore_count)
6211 uiout->text ("additional ");
6212 else
6213 uiout->text ("next ");
6214 uiout->field_signed ("enable", b->enable_count);
6215 uiout->text (" hits\n");
6216 }
6217
6218 if (!part_of_multiple && is_tracepoint (b))
6219 {
6220 struct tracepoint *tp = (struct tracepoint *) b;
6221
6222 if (tp->traceframe_usage)
6223 {
6224 uiout->text ("\ttrace buffer usage ");
6225 uiout->field_signed ("traceframe-usage", tp->traceframe_usage);
6226 uiout->text (" bytes\n");
6227 }
6228 }
6229
6230 l = b->commands ? b->commands.get () : NULL;
6231 if (!part_of_multiple && l)
6232 {
6233 annotate_field (9);
6234 ui_out_emit_tuple tuple_emitter (uiout, "script");
6235 print_command_lines (uiout, l, 4);
6236 }
6237
6238 if (is_tracepoint (b))
6239 {
6240 struct tracepoint *t = (struct tracepoint *) b;
6241
6242 if (!part_of_multiple && t->pass_count)
6243 {
6244 annotate_field (10);
6245 uiout->text ("\tpass count ");
6246 uiout->field_signed ("pass", t->pass_count);
6247 uiout->text (" \n");
6248 }
6249
6250 /* Don't display it when tracepoint or tracepoint location is
6251 pending. */
6252 if (!header_of_multiple && loc != NULL && !loc->shlib_disabled)
6253 {
6254 annotate_field (11);
6255
6256 if (uiout->is_mi_like_p ())
6257 uiout->field_string ("installed",
6258 loc->inserted ? "y" : "n");
6259 else
6260 {
6261 if (loc->inserted)
6262 uiout->text ("\t");
6263 else
6264 uiout->text ("\tnot ");
6265 uiout->text ("installed on target\n");
6266 }
6267 }
6268 }
6269
6270 if (uiout->is_mi_like_p () && !part_of_multiple)
6271 {
6272 if (is_watchpoint (b))
6273 {
6274 struct watchpoint *w = (struct watchpoint *) b;
6275
6276 uiout->field_string ("original-location", w->exp_string);
6277 }
6278 else if (b->location != NULL
6279 && event_location_to_string (b->location.get ()) != NULL)
6280 uiout->field_string ("original-location",
6281 event_location_to_string (b->location.get ()));
6282 }
6283 }
6284
6285 /* See breakpoint.h. */
6286
6287 bool fix_multi_location_breakpoint_output_globally = false;
6288
6289 static void
6290 print_one_breakpoint (struct breakpoint *b,
6291 struct bp_location **last_loc,
6292 int allflag)
6293 {
6294 struct ui_out *uiout = current_uiout;
6295 bool use_fixed_output
6296 = (uiout->test_flags (fix_multi_location_breakpoint_output)
6297 || fix_multi_location_breakpoint_output_globally);
6298
6299 gdb::optional<ui_out_emit_tuple> bkpt_tuple_emitter (gdb::in_place, uiout, "bkpt");
6300 print_one_breakpoint_location (b, NULL, 0, last_loc, allflag, false);
6301
6302 /* The mi2 broken format: the main breakpoint tuple ends here, the locations
6303 are outside. */
6304 if (!use_fixed_output)
6305 bkpt_tuple_emitter.reset ();
6306
6307 /* If this breakpoint has custom print function,
6308 it's already printed. Otherwise, print individual
6309 locations, if any. */
6310 if (b->ops == NULL
6311 || b->ops->print_one == NULL
6312 || allflag)
6313 {
6314 /* If breakpoint has a single location that is disabled, we
6315 print it as if it had several locations, since otherwise it's
6316 hard to represent "breakpoint enabled, location disabled"
6317 situation.
6318
6319 Note that while hardware watchpoints have several locations
6320 internally, that's not a property exposed to users.
6321
6322 Likewise, while catchpoints may be implemented with
6323 breakpoints (e.g., catch throw), that's not a property
6324 exposed to users. We do however display the internal
6325 breakpoint locations with "maint info breakpoints". */
6326 if (!is_hardware_watchpoint (b)
6327 && (!is_catchpoint (b) || is_exception_catchpoint (b)
6328 || is_ada_exception_catchpoint (b))
6329 && (allflag
6330 || (b->loc && (b->loc->next || !b->loc->enabled))))
6331 {
6332 gdb::optional<ui_out_emit_list> locations_list;
6333
6334 /* For MI version <= 2, keep the behavior where GDB outputs an invalid
6335 MI record. For later versions, place breakpoint locations in a
6336 list. */
6337 if (uiout->is_mi_like_p () && use_fixed_output)
6338 locations_list.emplace (uiout, "locations");
6339
6340 int n = 1;
6341 for (bp_location *loc = b->loc; loc != NULL; loc = loc->next, ++n)
6342 {
6343 ui_out_emit_tuple loc_tuple_emitter (uiout, NULL);
6344 print_one_breakpoint_location (b, loc, n, last_loc,
6345 allflag, allflag);
6346 }
6347 }
6348 }
6349 }
6350
6351 static int
6352 breakpoint_address_bits (struct breakpoint *b)
6353 {
6354 int print_address_bits = 0;
6355 struct bp_location *loc;
6356
6357 /* Software watchpoints that aren't watching memory don't have an
6358 address to print. */
6359 if (is_no_memory_software_watchpoint (b))
6360 return 0;
6361
6362 for (loc = b->loc; loc; loc = loc->next)
6363 {
6364 int addr_bit;
6365
6366 addr_bit = gdbarch_addr_bit (loc->gdbarch);
6367 if (addr_bit > print_address_bits)
6368 print_address_bits = addr_bit;
6369 }
6370
6371 return print_address_bits;
6372 }
6373
6374 /* See breakpoint.h. */
6375
6376 void
6377 print_breakpoint (breakpoint *b)
6378 {
6379 struct bp_location *dummy_loc = NULL;
6380 print_one_breakpoint (b, &dummy_loc, 0);
6381 }
6382
6383 /* Return true if this breakpoint was set by the user, false if it is
6384 internal or momentary. */
6385
6386 int
6387 user_breakpoint_p (struct breakpoint *b)
6388 {
6389 return b->number > 0;
6390 }
6391
6392 /* See breakpoint.h. */
6393
6394 int
6395 pending_breakpoint_p (struct breakpoint *b)
6396 {
6397 return b->loc == NULL;
6398 }
6399
6400 /* Print information on breakpoints (including watchpoints and tracepoints).
6401
6402 If non-NULL, BP_NUM_LIST is a list of numbers and number ranges as
6403 understood by number_or_range_parser. Only breakpoints included in this
6404 list are then printed.
6405
6406 If SHOW_INTERNAL is true, print internal breakpoints.
6407
6408 If FILTER is non-NULL, call it on each breakpoint and only include the
6409 ones for which it returns true.
6410
6411 Return the total number of breakpoints listed. */
6412
6413 static int
6414 breakpoint_1 (const char *bp_num_list, bool show_internal,
6415 bool (*filter) (const struct breakpoint *))
6416 {
6417 struct breakpoint *b;
6418 struct bp_location *last_loc = NULL;
6419 int nr_printable_breakpoints;
6420 struct value_print_options opts;
6421 int print_address_bits = 0;
6422 int print_type_col_width = 14;
6423 struct ui_out *uiout = current_uiout;
6424
6425 get_user_print_options (&opts);
6426
6427 /* Compute the number of rows in the table, as well as the size
6428 required for address fields. */
6429 nr_printable_breakpoints = 0;
6430 ALL_BREAKPOINTS (b)
6431 {
6432 /* If we have a filter, only list the breakpoints it accepts. */
6433 if (filter && !filter (b))
6434 continue;
6435
6436 /* If we have a BP_NUM_LIST string, it is a list of breakpoints to
6437 accept. Skip the others. */
6438 if (bp_num_list != NULL && *bp_num_list != '\0')
6439 {
6440 if (show_internal && parse_and_eval_long (bp_num_list) != b->number)
6441 continue;
6442 if (!show_internal && !number_is_in_list (bp_num_list, b->number))
6443 continue;
6444 }
6445
6446 if (show_internal || user_breakpoint_p (b))
6447 {
6448 int addr_bit, type_len;
6449
6450 addr_bit = breakpoint_address_bits (b);
6451 if (addr_bit > print_address_bits)
6452 print_address_bits = addr_bit;
6453
6454 type_len = strlen (bptype_string (b->type));
6455 if (type_len > print_type_col_width)
6456 print_type_col_width = type_len;
6457
6458 nr_printable_breakpoints++;
6459 }
6460 }
6461
6462 {
6463 ui_out_emit_table table_emitter (uiout,
6464 opts.addressprint ? 6 : 5,
6465 nr_printable_breakpoints,
6466 "BreakpointTable");
6467
6468 if (nr_printable_breakpoints > 0)
6469 annotate_breakpoints_headers ();
6470 if (nr_printable_breakpoints > 0)
6471 annotate_field (0);
6472 uiout->table_header (7, ui_left, "number", "Num"); /* 1 */
6473 if (nr_printable_breakpoints > 0)
6474 annotate_field (1);
6475 uiout->table_header (print_type_col_width, ui_left, "type", "Type"); /* 2 */
6476 if (nr_printable_breakpoints > 0)
6477 annotate_field (2);
6478 uiout->table_header (4, ui_left, "disp", "Disp"); /* 3 */
6479 if (nr_printable_breakpoints > 0)
6480 annotate_field (3);
6481 uiout->table_header (3, ui_left, "enabled", "Enb"); /* 4 */
6482 if (opts.addressprint)
6483 {
6484 if (nr_printable_breakpoints > 0)
6485 annotate_field (4);
6486 if (print_address_bits <= 32)
6487 uiout->table_header (10, ui_left, "addr", "Address"); /* 5 */
6488 else
6489 uiout->table_header (18, ui_left, "addr", "Address"); /* 5 */
6490 }
6491 if (nr_printable_breakpoints > 0)
6492 annotate_field (5);
6493 uiout->table_header (40, ui_noalign, "what", "What"); /* 6 */
6494 uiout->table_body ();
6495 if (nr_printable_breakpoints > 0)
6496 annotate_breakpoints_table ();
6497
6498 ALL_BREAKPOINTS (b)
6499 {
6500 QUIT;
6501 /* If we have a filter, only list the breakpoints it accepts. */
6502 if (filter && !filter (b))
6503 continue;
6504
6505 /* If we have a BP_NUM_LIST string, it is a list of breakpoints to
6506 accept. Skip the others. */
6507
6508 if (bp_num_list != NULL && *bp_num_list != '\0')
6509 {
6510 if (show_internal) /* maintenance info breakpoint */
6511 {
6512 if (parse_and_eval_long (bp_num_list) != b->number)
6513 continue;
6514 }
6515 else /* all others */
6516 {
6517 if (!number_is_in_list (bp_num_list, b->number))
6518 continue;
6519 }
6520 }
6521 /* We only print out user settable breakpoints unless the
6522 show_internal is set. */
6523 if (show_internal || user_breakpoint_p (b))
6524 print_one_breakpoint (b, &last_loc, show_internal);
6525 }
6526 }
6527
6528 if (nr_printable_breakpoints == 0)
6529 {
6530 /* If there's a filter, let the caller decide how to report
6531 empty list. */
6532 if (!filter)
6533 {
6534 if (bp_num_list == NULL || *bp_num_list == '\0')
6535 uiout->message ("No breakpoints or watchpoints.\n");
6536 else
6537 uiout->message ("No breakpoint or watchpoint matching '%s'.\n",
6538 bp_num_list);
6539 }
6540 }
6541 else
6542 {
6543 if (last_loc && !server_command)
6544 set_next_address (last_loc->gdbarch, last_loc->address);
6545 }
6546
6547 /* FIXME? Should this be moved up so that it is only called when
6548 there have been breakpoints? */
6549 annotate_breakpoints_table_end ();
6550
6551 return nr_printable_breakpoints;
6552 }
6553
6554 /* Display the value of default-collect in a way that is generally
6555 compatible with the breakpoint list. */
6556
6557 static void
6558 default_collect_info (void)
6559 {
6560 struct ui_out *uiout = current_uiout;
6561
6562 /* If it has no value (which is frequently the case), say nothing; a
6563 message like "No default-collect." gets in user's face when it's
6564 not wanted. */
6565 if (!*default_collect)
6566 return;
6567
6568 /* The following phrase lines up nicely with per-tracepoint collect
6569 actions. */
6570 uiout->text ("default collect ");
6571 uiout->field_string ("default-collect", default_collect);
6572 uiout->text (" \n");
6573 }
6574
6575 static void
6576 info_breakpoints_command (const char *args, int from_tty)
6577 {
6578 breakpoint_1 (args, false, NULL);
6579
6580 default_collect_info ();
6581 }
6582
6583 static void
6584 info_watchpoints_command (const char *args, int from_tty)
6585 {
6586 int num_printed = breakpoint_1 (args, false, is_watchpoint);
6587 struct ui_out *uiout = current_uiout;
6588
6589 if (num_printed == 0)
6590 {
6591 if (args == NULL || *args == '\0')
6592 uiout->message ("No watchpoints.\n");
6593 else
6594 uiout->message ("No watchpoint matching '%s'.\n", args);
6595 }
6596 }
6597
6598 static void
6599 maintenance_info_breakpoints (const char *args, int from_tty)
6600 {
6601 breakpoint_1 (args, true, NULL);
6602
6603 default_collect_info ();
6604 }
6605
6606 static int
6607 breakpoint_has_pc (struct breakpoint *b,
6608 struct program_space *pspace,
6609 CORE_ADDR pc, struct obj_section *section)
6610 {
6611 struct bp_location *bl = b->loc;
6612
6613 for (; bl; bl = bl->next)
6614 {
6615 if (bl->pspace == pspace
6616 && bl->address == pc
6617 && (!overlay_debugging || bl->section == section))
6618 return 1;
6619 }
6620 return 0;
6621 }
6622
6623 /* Print a message describing any user-breakpoints set at PC. This
6624 concerns with logical breakpoints, so we match program spaces, not
6625 address spaces. */
6626
6627 static void
6628 describe_other_breakpoints (struct gdbarch *gdbarch,
6629 struct program_space *pspace, CORE_ADDR pc,
6630 struct obj_section *section, int thread)
6631 {
6632 int others = 0;
6633 struct breakpoint *b;
6634
6635 ALL_BREAKPOINTS (b)
6636 others += (user_breakpoint_p (b)
6637 && breakpoint_has_pc (b, pspace, pc, section));
6638 if (others > 0)
6639 {
6640 if (others == 1)
6641 printf_filtered (_("Note: breakpoint "));
6642 else /* if (others == ???) */
6643 printf_filtered (_("Note: breakpoints "));
6644 ALL_BREAKPOINTS (b)
6645 if (user_breakpoint_p (b) && breakpoint_has_pc (b, pspace, pc, section))
6646 {
6647 others--;
6648 printf_filtered ("%d", b->number);
6649 if (b->thread == -1 && thread != -1)
6650 printf_filtered (" (all threads)");
6651 else if (b->thread != -1)
6652 printf_filtered (" (thread %d)", b->thread);
6653 printf_filtered ("%s%s ",
6654 ((b->enable_state == bp_disabled
6655 || b->enable_state == bp_call_disabled)
6656 ? " (disabled)"
6657 : ""),
6658 (others > 1) ? ","
6659 : ((others == 1) ? " and" : ""));
6660 }
6661 current_uiout->message (_("also set at pc %ps.\n"),
6662 styled_string (address_style.style (),
6663 paddress (gdbarch, pc)));
6664 }
6665 }
6666 \f
6667
6668 /* Return true iff it is meaningful to use the address member of LOC.
6669 For some breakpoint types, the locations' address members are
6670 irrelevant and it makes no sense to attempt to compare them to
6671 other addresses (or use them for any other purpose either).
6672
6673 More specifically, software watchpoints and catchpoints that are
6674 not backed by breakpoints always have a zero valued location
6675 address and we don't want to mark breakpoints of any of these types
6676 to be a duplicate of an actual breakpoint location at address
6677 zero. */
6678
6679 static bool
6680 bl_address_is_meaningful (bp_location *loc)
6681 {
6682 return loc->loc_type != bp_loc_other;
6683 }
6684
6685 /* Assuming LOC1 and LOC2's owners are hardware watchpoints, returns
6686 true if LOC1 and LOC2 represent the same watchpoint location. */
6687
6688 static int
6689 watchpoint_locations_match (struct bp_location *loc1,
6690 struct bp_location *loc2)
6691 {
6692 struct watchpoint *w1 = (struct watchpoint *) loc1->owner;
6693 struct watchpoint *w2 = (struct watchpoint *) loc2->owner;
6694
6695 /* Both of them must exist. */
6696 gdb_assert (w1 != NULL);
6697 gdb_assert (w2 != NULL);
6698
6699 /* If the target can evaluate the condition expression in hardware,
6700 then we we need to insert both watchpoints even if they are at
6701 the same place. Otherwise the watchpoint will only trigger when
6702 the condition of whichever watchpoint was inserted evaluates to
6703 true, not giving a chance for GDB to check the condition of the
6704 other watchpoint. */
6705 if ((w1->cond_exp
6706 && target_can_accel_watchpoint_condition (loc1->address,
6707 loc1->length,
6708 loc1->watchpoint_type,
6709 w1->cond_exp.get ()))
6710 || (w2->cond_exp
6711 && target_can_accel_watchpoint_condition (loc2->address,
6712 loc2->length,
6713 loc2->watchpoint_type,
6714 w2->cond_exp.get ())))
6715 return 0;
6716
6717 /* Note that this checks the owner's type, not the location's. In
6718 case the target does not support read watchpoints, but does
6719 support access watchpoints, we'll have bp_read_watchpoint
6720 watchpoints with hw_access locations. Those should be considered
6721 duplicates of hw_read locations. The hw_read locations will
6722 become hw_access locations later. */
6723 return (loc1->owner->type == loc2->owner->type
6724 && loc1->pspace->aspace == loc2->pspace->aspace
6725 && loc1->address == loc2->address
6726 && loc1->length == loc2->length);
6727 }
6728
6729 /* See breakpoint.h. */
6730
6731 int
6732 breakpoint_address_match (const address_space *aspace1, CORE_ADDR addr1,
6733 const address_space *aspace2, CORE_ADDR addr2)
6734 {
6735 return ((gdbarch_has_global_breakpoints (target_gdbarch ())
6736 || aspace1 == aspace2)
6737 && addr1 == addr2);
6738 }
6739
6740 /* Returns true if {ASPACE2,ADDR2} falls within the range determined by
6741 {ASPACE1,ADDR1,LEN1}. In most targets, this can only be true if ASPACE1
6742 matches ASPACE2. On targets that have global breakpoints, the address
6743 space doesn't really matter. */
6744
6745 static int
6746 breakpoint_address_match_range (const address_space *aspace1,
6747 CORE_ADDR addr1,
6748 int len1, const address_space *aspace2,
6749 CORE_ADDR addr2)
6750 {
6751 return ((gdbarch_has_global_breakpoints (target_gdbarch ())
6752 || aspace1 == aspace2)
6753 && addr2 >= addr1 && addr2 < addr1 + len1);
6754 }
6755
6756 /* Returns true if {ASPACE,ADDR} matches the breakpoint BL. BL may be
6757 a ranged breakpoint. In most targets, a match happens only if ASPACE
6758 matches the breakpoint's address space. On targets that have global
6759 breakpoints, the address space doesn't really matter. */
6760
6761 static int
6762 breakpoint_location_address_match (struct bp_location *bl,
6763 const address_space *aspace,
6764 CORE_ADDR addr)
6765 {
6766 return (breakpoint_address_match (bl->pspace->aspace, bl->address,
6767 aspace, addr)
6768 || (bl->length
6769 && breakpoint_address_match_range (bl->pspace->aspace,
6770 bl->address, bl->length,
6771 aspace, addr)));
6772 }
6773
6774 /* Returns true if the [ADDR,ADDR+LEN) range in ASPACE overlaps
6775 breakpoint BL. BL may be a ranged breakpoint. In most targets, a
6776 match happens only if ASPACE matches the breakpoint's address
6777 space. On targets that have global breakpoints, the address space
6778 doesn't really matter. */
6779
6780 static int
6781 breakpoint_location_address_range_overlap (struct bp_location *bl,
6782 const address_space *aspace,
6783 CORE_ADDR addr, int len)
6784 {
6785 if (gdbarch_has_global_breakpoints (target_gdbarch ())
6786 || bl->pspace->aspace == aspace)
6787 {
6788 int bl_len = bl->length != 0 ? bl->length : 1;
6789
6790 if (mem_ranges_overlap (addr, len, bl->address, bl_len))
6791 return 1;
6792 }
6793 return 0;
6794 }
6795
6796 /* If LOC1 and LOC2's owners are not tracepoints, returns false directly.
6797 Then, if LOC1 and LOC2 represent the same tracepoint location, returns
6798 true, otherwise returns false. */
6799
6800 static int
6801 tracepoint_locations_match (struct bp_location *loc1,
6802 struct bp_location *loc2)
6803 {
6804 if (is_tracepoint (loc1->owner) && is_tracepoint (loc2->owner))
6805 /* Since tracepoint locations are never duplicated with others', tracepoint
6806 locations at the same address of different tracepoints are regarded as
6807 different locations. */
6808 return (loc1->address == loc2->address && loc1->owner == loc2->owner);
6809 else
6810 return 0;
6811 }
6812
6813 /* Assuming LOC1 and LOC2's types' have meaningful target addresses
6814 (bl_address_is_meaningful), returns true if LOC1 and LOC2 represent
6815 the same location. */
6816
6817 static int
6818 breakpoint_locations_match (struct bp_location *loc1,
6819 struct bp_location *loc2)
6820 {
6821 int hw_point1, hw_point2;
6822
6823 /* Both of them must not be in moribund_locations. */
6824 gdb_assert (loc1->owner != NULL);
6825 gdb_assert (loc2->owner != NULL);
6826
6827 hw_point1 = is_hardware_watchpoint (loc1->owner);
6828 hw_point2 = is_hardware_watchpoint (loc2->owner);
6829
6830 if (hw_point1 != hw_point2)
6831 return 0;
6832 else if (hw_point1)
6833 return watchpoint_locations_match (loc1, loc2);
6834 else if (is_tracepoint (loc1->owner) || is_tracepoint (loc2->owner))
6835 return tracepoint_locations_match (loc1, loc2);
6836 else
6837 /* We compare bp_location.length in order to cover ranged breakpoints. */
6838 return (breakpoint_address_match (loc1->pspace->aspace, loc1->address,
6839 loc2->pspace->aspace, loc2->address)
6840 && loc1->length == loc2->length);
6841 }
6842
6843 static void
6844 breakpoint_adjustment_warning (CORE_ADDR from_addr, CORE_ADDR to_addr,
6845 int bnum, int have_bnum)
6846 {
6847 /* The longest string possibly returned by hex_string_custom
6848 is 50 chars. These must be at least that big for safety. */
6849 char astr1[64];
6850 char astr2[64];
6851
6852 strcpy (astr1, hex_string_custom ((unsigned long) from_addr, 8));
6853 strcpy (astr2, hex_string_custom ((unsigned long) to_addr, 8));
6854 if (have_bnum)
6855 warning (_("Breakpoint %d address previously adjusted from %s to %s."),
6856 bnum, astr1, astr2);
6857 else
6858 warning (_("Breakpoint address adjusted from %s to %s."), astr1, astr2);
6859 }
6860
6861 /* Adjust a breakpoint's address to account for architectural
6862 constraints on breakpoint placement. Return the adjusted address.
6863 Note: Very few targets require this kind of adjustment. For most
6864 targets, this function is simply the identity function. */
6865
6866 static CORE_ADDR
6867 adjust_breakpoint_address (struct gdbarch *gdbarch,
6868 CORE_ADDR bpaddr, enum bptype bptype)
6869 {
6870 if (bptype == bp_watchpoint
6871 || bptype == bp_hardware_watchpoint
6872 || bptype == bp_read_watchpoint
6873 || bptype == bp_access_watchpoint
6874 || bptype == bp_catchpoint)
6875 {
6876 /* Watchpoints and the various bp_catch_* eventpoints should not
6877 have their addresses modified. */
6878 return bpaddr;
6879 }
6880 else if (bptype == bp_single_step)
6881 {
6882 /* Single-step breakpoints should not have their addresses
6883 modified. If there's any architectural constrain that
6884 applies to this address, then it should have already been
6885 taken into account when the breakpoint was created in the
6886 first place. If we didn't do this, stepping through e.g.,
6887 Thumb-2 IT blocks would break. */
6888 return bpaddr;
6889 }
6890 else
6891 {
6892 CORE_ADDR adjusted_bpaddr = bpaddr;
6893
6894 if (gdbarch_adjust_breakpoint_address_p (gdbarch))
6895 {
6896 /* Some targets have architectural constraints on the placement
6897 of breakpoint instructions. Obtain the adjusted address. */
6898 adjusted_bpaddr = gdbarch_adjust_breakpoint_address (gdbarch, bpaddr);
6899 }
6900
6901 adjusted_bpaddr = address_significant (gdbarch, adjusted_bpaddr);
6902
6903 /* An adjusted breakpoint address can significantly alter
6904 a user's expectations. Print a warning if an adjustment
6905 is required. */
6906 if (adjusted_bpaddr != bpaddr)
6907 breakpoint_adjustment_warning (bpaddr, adjusted_bpaddr, 0, 0);
6908
6909 return adjusted_bpaddr;
6910 }
6911 }
6912
6913 static bp_loc_type
6914 bp_location_from_bp_type (bptype type)
6915 {
6916 switch (type)
6917 {
6918 case bp_breakpoint:
6919 case bp_single_step:
6920 case bp_until:
6921 case bp_finish:
6922 case bp_longjmp:
6923 case bp_longjmp_resume:
6924 case bp_longjmp_call_dummy:
6925 case bp_exception:
6926 case bp_exception_resume:
6927 case bp_step_resume:
6928 case bp_hp_step_resume:
6929 case bp_watchpoint_scope:
6930 case bp_call_dummy:
6931 case bp_std_terminate:
6932 case bp_shlib_event:
6933 case bp_thread_event:
6934 case bp_overlay_event:
6935 case bp_jit_event:
6936 case bp_longjmp_master:
6937 case bp_std_terminate_master:
6938 case bp_exception_master:
6939 case bp_gnu_ifunc_resolver:
6940 case bp_gnu_ifunc_resolver_return:
6941 case bp_dprintf:
6942 return bp_loc_software_breakpoint;
6943 case bp_hardware_breakpoint:
6944 return bp_loc_hardware_breakpoint;
6945 case bp_hardware_watchpoint:
6946 case bp_read_watchpoint:
6947 case bp_access_watchpoint:
6948 return bp_loc_hardware_watchpoint;
6949 case bp_watchpoint:
6950 case bp_catchpoint:
6951 case bp_tracepoint:
6952 case bp_fast_tracepoint:
6953 case bp_static_tracepoint:
6954 return bp_loc_other;
6955 default:
6956 internal_error (__FILE__, __LINE__, _("unknown breakpoint type"));
6957 }
6958 }
6959
6960 bp_location::bp_location (breakpoint *owner, bp_loc_type type)
6961 {
6962 this->owner = owner;
6963 this->cond_bytecode = NULL;
6964 this->shlib_disabled = 0;
6965 this->enabled = 1;
6966
6967 this->loc_type = type;
6968
6969 if (this->loc_type == bp_loc_software_breakpoint
6970 || this->loc_type == bp_loc_hardware_breakpoint)
6971 mark_breakpoint_location_modified (this);
6972
6973 this->refc = 1;
6974 }
6975
6976 bp_location::bp_location (breakpoint *owner)
6977 : bp_location::bp_location (owner,
6978 bp_location_from_bp_type (owner->type))
6979 {
6980 }
6981
6982 /* Allocate a struct bp_location. */
6983
6984 static struct bp_location *
6985 allocate_bp_location (struct breakpoint *bpt)
6986 {
6987 return bpt->ops->allocate_location (bpt);
6988 }
6989
6990 static void
6991 free_bp_location (struct bp_location *loc)
6992 {
6993 delete loc;
6994 }
6995
6996 /* Increment reference count. */
6997
6998 static void
6999 incref_bp_location (struct bp_location *bl)
7000 {
7001 ++bl->refc;
7002 }
7003
7004 /* Decrement reference count. If the reference count reaches 0,
7005 destroy the bp_location. Sets *BLP to NULL. */
7006
7007 static void
7008 decref_bp_location (struct bp_location **blp)
7009 {
7010 gdb_assert ((*blp)->refc > 0);
7011
7012 if (--(*blp)->refc == 0)
7013 free_bp_location (*blp);
7014 *blp = NULL;
7015 }
7016
7017 /* Add breakpoint B at the end of the global breakpoint chain. */
7018
7019 static breakpoint *
7020 add_to_breakpoint_chain (std::unique_ptr<breakpoint> &&b)
7021 {
7022 struct breakpoint *b1;
7023 struct breakpoint *result = b.get ();
7024
7025 /* Add this breakpoint to the end of the chain so that a list of
7026 breakpoints will come out in order of increasing numbers. */
7027
7028 b1 = breakpoint_chain;
7029 if (b1 == 0)
7030 breakpoint_chain = b.release ();
7031 else
7032 {
7033 while (b1->next)
7034 b1 = b1->next;
7035 b1->next = b.release ();
7036 }
7037
7038 return result;
7039 }
7040
7041 /* Initializes breakpoint B with type BPTYPE and no locations yet. */
7042
7043 static void
7044 init_raw_breakpoint_without_location (struct breakpoint *b,
7045 struct gdbarch *gdbarch,
7046 enum bptype bptype,
7047 const struct breakpoint_ops *ops)
7048 {
7049 gdb_assert (ops != NULL);
7050
7051 b->ops = ops;
7052 b->type = bptype;
7053 b->gdbarch = gdbarch;
7054 b->language = current_language->la_language;
7055 b->input_radix = input_radix;
7056 b->related_breakpoint = b;
7057 }
7058
7059 /* Helper to set_raw_breakpoint below. Creates a breakpoint
7060 that has type BPTYPE and has no locations as yet. */
7061
7062 static struct breakpoint *
7063 set_raw_breakpoint_without_location (struct gdbarch *gdbarch,
7064 enum bptype bptype,
7065 const struct breakpoint_ops *ops)
7066 {
7067 std::unique_ptr<breakpoint> b = new_breakpoint_from_type (bptype);
7068
7069 init_raw_breakpoint_without_location (b.get (), gdbarch, bptype, ops);
7070 return add_to_breakpoint_chain (std::move (b));
7071 }
7072
7073 /* Initialize loc->function_name. */
7074
7075 static void
7076 set_breakpoint_location_function (struct bp_location *loc)
7077 {
7078 gdb_assert (loc->owner != NULL);
7079
7080 if (loc->owner->type == bp_breakpoint
7081 || loc->owner->type == bp_hardware_breakpoint
7082 || is_tracepoint (loc->owner))
7083 {
7084 const char *function_name;
7085
7086 if (loc->msymbol != NULL
7087 && (MSYMBOL_TYPE (loc->msymbol) == mst_text_gnu_ifunc
7088 || MSYMBOL_TYPE (loc->msymbol) == mst_data_gnu_ifunc))
7089 {
7090 struct breakpoint *b = loc->owner;
7091
7092 function_name = loc->msymbol->linkage_name ();
7093
7094 if (b->type == bp_breakpoint && b->loc == loc
7095 && loc->next == NULL && b->related_breakpoint == b)
7096 {
7097 /* Create only the whole new breakpoint of this type but do not
7098 mess more complicated breakpoints with multiple locations. */
7099 b->type = bp_gnu_ifunc_resolver;
7100 /* Remember the resolver's address for use by the return
7101 breakpoint. */
7102 loc->related_address = loc->address;
7103 }
7104 }
7105 else
7106 find_pc_partial_function (loc->address, &function_name, NULL, NULL);
7107
7108 if (function_name)
7109 loc->function_name = xstrdup (function_name);
7110 }
7111 }
7112
7113 /* Attempt to determine architecture of location identified by SAL. */
7114 struct gdbarch *
7115 get_sal_arch (struct symtab_and_line sal)
7116 {
7117 if (sal.section)
7118 return get_objfile_arch (sal.section->objfile);
7119 if (sal.symtab)
7120 return get_objfile_arch (SYMTAB_OBJFILE (sal.symtab));
7121
7122 return NULL;
7123 }
7124
7125 /* Low level routine for partially initializing a breakpoint of type
7126 BPTYPE. The newly created breakpoint's address, section, source
7127 file name, and line number are provided by SAL.
7128
7129 It is expected that the caller will complete the initialization of
7130 the newly created breakpoint struct as well as output any status
7131 information regarding the creation of a new breakpoint. */
7132
7133 static void
7134 init_raw_breakpoint (struct breakpoint *b, struct gdbarch *gdbarch,
7135 struct symtab_and_line sal, enum bptype bptype,
7136 const struct breakpoint_ops *ops)
7137 {
7138 init_raw_breakpoint_without_location (b, gdbarch, bptype, ops);
7139
7140 add_location_to_breakpoint (b, &sal);
7141
7142 if (bptype != bp_catchpoint)
7143 gdb_assert (sal.pspace != NULL);
7144
7145 /* Store the program space that was used to set the breakpoint,
7146 except for ordinary breakpoints, which are independent of the
7147 program space. */
7148 if (bptype != bp_breakpoint && bptype != bp_hardware_breakpoint)
7149 b->pspace = sal.pspace;
7150 }
7151
7152 /* set_raw_breakpoint is a low level routine for allocating and
7153 partially initializing a breakpoint of type BPTYPE. The newly
7154 created breakpoint's address, section, source file name, and line
7155 number are provided by SAL. The newly created and partially
7156 initialized breakpoint is added to the breakpoint chain and
7157 is also returned as the value of this function.
7158
7159 It is expected that the caller will complete the initialization of
7160 the newly created breakpoint struct as well as output any status
7161 information regarding the creation of a new breakpoint. In
7162 particular, set_raw_breakpoint does NOT set the breakpoint
7163 number! Care should be taken to not allow an error to occur
7164 prior to completing the initialization of the breakpoint. If this
7165 should happen, a bogus breakpoint will be left on the chain. */
7166
7167 struct breakpoint *
7168 set_raw_breakpoint (struct gdbarch *gdbarch,
7169 struct symtab_and_line sal, enum bptype bptype,
7170 const struct breakpoint_ops *ops)
7171 {
7172 std::unique_ptr<breakpoint> b = new_breakpoint_from_type (bptype);
7173
7174 init_raw_breakpoint (b.get (), gdbarch, sal, bptype, ops);
7175 return add_to_breakpoint_chain (std::move (b));
7176 }
7177
7178 /* Call this routine when stepping and nexting to enable a breakpoint
7179 if we do a longjmp() or 'throw' in TP. FRAME is the frame which
7180 initiated the operation. */
7181
7182 void
7183 set_longjmp_breakpoint (struct thread_info *tp, struct frame_id frame)
7184 {
7185 struct breakpoint *b, *b_tmp;
7186 int thread = tp->global_num;
7187
7188 /* To avoid having to rescan all objfile symbols at every step,
7189 we maintain a list of continually-inserted but always disabled
7190 longjmp "master" breakpoints. Here, we simply create momentary
7191 clones of those and enable them for the requested thread. */
7192 ALL_BREAKPOINTS_SAFE (b, b_tmp)
7193 if (b->pspace == current_program_space
7194 && (b->type == bp_longjmp_master
7195 || b->type == bp_exception_master))
7196 {
7197 enum bptype type = b->type == bp_longjmp_master ? bp_longjmp : bp_exception;
7198 struct breakpoint *clone;
7199
7200 /* longjmp_breakpoint_ops ensures INITIATING_FRAME is cleared again
7201 after their removal. */
7202 clone = momentary_breakpoint_from_master (b, type,
7203 &momentary_breakpoint_ops, 1);
7204 clone->thread = thread;
7205 }
7206
7207 tp->initiating_frame = frame;
7208 }
7209
7210 /* Delete all longjmp breakpoints from THREAD. */
7211 void
7212 delete_longjmp_breakpoint (int thread)
7213 {
7214 struct breakpoint *b, *b_tmp;
7215
7216 ALL_BREAKPOINTS_SAFE (b, b_tmp)
7217 if (b->type == bp_longjmp || b->type == bp_exception)
7218 {
7219 if (b->thread == thread)
7220 delete_breakpoint (b);
7221 }
7222 }
7223
7224 void
7225 delete_longjmp_breakpoint_at_next_stop (int thread)
7226 {
7227 struct breakpoint *b, *b_tmp;
7228
7229 ALL_BREAKPOINTS_SAFE (b, b_tmp)
7230 if (b->type == bp_longjmp || b->type == bp_exception)
7231 {
7232 if (b->thread == thread)
7233 b->disposition = disp_del_at_next_stop;
7234 }
7235 }
7236
7237 /* Place breakpoints of type bp_longjmp_call_dummy to catch longjmp for
7238 INFERIOR_PTID thread. Chain them all by RELATED_BREAKPOINT and return
7239 pointer to any of them. Return NULL if this system cannot place longjmp
7240 breakpoints. */
7241
7242 struct breakpoint *
7243 set_longjmp_breakpoint_for_call_dummy (void)
7244 {
7245 struct breakpoint *b, *retval = NULL;
7246
7247 ALL_BREAKPOINTS (b)
7248 if (b->pspace == current_program_space && b->type == bp_longjmp_master)
7249 {
7250 struct breakpoint *new_b;
7251
7252 new_b = momentary_breakpoint_from_master (b, bp_longjmp_call_dummy,
7253 &momentary_breakpoint_ops,
7254 1);
7255 new_b->thread = inferior_thread ()->global_num;
7256
7257 /* Link NEW_B into the chain of RETVAL breakpoints. */
7258
7259 gdb_assert (new_b->related_breakpoint == new_b);
7260 if (retval == NULL)
7261 retval = new_b;
7262 new_b->related_breakpoint = retval;
7263 while (retval->related_breakpoint != new_b->related_breakpoint)
7264 retval = retval->related_breakpoint;
7265 retval->related_breakpoint = new_b;
7266 }
7267
7268 return retval;
7269 }
7270
7271 /* Verify all existing dummy frames and their associated breakpoints for
7272 TP. Remove those which can no longer be found in the current frame
7273 stack.
7274
7275 You should call this function only at places where it is safe to currently
7276 unwind the whole stack. Failed stack unwind would discard live dummy
7277 frames. */
7278
7279 void
7280 check_longjmp_breakpoint_for_call_dummy (struct thread_info *tp)
7281 {
7282 struct breakpoint *b, *b_tmp;
7283
7284 ALL_BREAKPOINTS_SAFE (b, b_tmp)
7285 if (b->type == bp_longjmp_call_dummy && b->thread == tp->global_num)
7286 {
7287 struct breakpoint *dummy_b = b->related_breakpoint;
7288
7289 while (dummy_b != b && dummy_b->type != bp_call_dummy)
7290 dummy_b = dummy_b->related_breakpoint;
7291 if (dummy_b->type != bp_call_dummy
7292 || frame_find_by_id (dummy_b->frame_id) != NULL)
7293 continue;
7294
7295 dummy_frame_discard (dummy_b->frame_id, tp);
7296
7297 while (b->related_breakpoint != b)
7298 {
7299 if (b_tmp == b->related_breakpoint)
7300 b_tmp = b->related_breakpoint->next;
7301 delete_breakpoint (b->related_breakpoint);
7302 }
7303 delete_breakpoint (b);
7304 }
7305 }
7306
7307 void
7308 enable_overlay_breakpoints (void)
7309 {
7310 struct breakpoint *b;
7311
7312 ALL_BREAKPOINTS (b)
7313 if (b->type == bp_overlay_event)
7314 {
7315 b->enable_state = bp_enabled;
7316 update_global_location_list (UGLL_MAY_INSERT);
7317 overlay_events_enabled = 1;
7318 }
7319 }
7320
7321 void
7322 disable_overlay_breakpoints (void)
7323 {
7324 struct breakpoint *b;
7325
7326 ALL_BREAKPOINTS (b)
7327 if (b->type == bp_overlay_event)
7328 {
7329 b->enable_state = bp_disabled;
7330 update_global_location_list (UGLL_DONT_INSERT);
7331 overlay_events_enabled = 0;
7332 }
7333 }
7334
7335 /* Set an active std::terminate breakpoint for each std::terminate
7336 master breakpoint. */
7337 void
7338 set_std_terminate_breakpoint (void)
7339 {
7340 struct breakpoint *b, *b_tmp;
7341
7342 ALL_BREAKPOINTS_SAFE (b, b_tmp)
7343 if (b->pspace == current_program_space
7344 && b->type == bp_std_terminate_master)
7345 {
7346 momentary_breakpoint_from_master (b, bp_std_terminate,
7347 &momentary_breakpoint_ops, 1);
7348 }
7349 }
7350
7351 /* Delete all the std::terminate breakpoints. */
7352 void
7353 delete_std_terminate_breakpoint (void)
7354 {
7355 struct breakpoint *b, *b_tmp;
7356
7357 ALL_BREAKPOINTS_SAFE (b, b_tmp)
7358 if (b->type == bp_std_terminate)
7359 delete_breakpoint (b);
7360 }
7361
7362 struct breakpoint *
7363 create_thread_event_breakpoint (struct gdbarch *gdbarch, CORE_ADDR address)
7364 {
7365 struct breakpoint *b;
7366
7367 b = create_internal_breakpoint (gdbarch, address, bp_thread_event,
7368 &internal_breakpoint_ops);
7369
7370 b->enable_state = bp_enabled;
7371 /* location has to be used or breakpoint_re_set will delete me. */
7372 b->location = new_address_location (b->loc->address, NULL, 0);
7373
7374 update_global_location_list_nothrow (UGLL_MAY_INSERT);
7375
7376 return b;
7377 }
7378
7379 struct lang_and_radix
7380 {
7381 enum language lang;
7382 int radix;
7383 };
7384
7385 /* Create a breakpoint for JIT code registration and unregistration. */
7386
7387 struct breakpoint *
7388 create_jit_event_breakpoint (struct gdbarch *gdbarch, CORE_ADDR address)
7389 {
7390 return create_internal_breakpoint (gdbarch, address, bp_jit_event,
7391 &internal_breakpoint_ops);
7392 }
7393
7394 /* Remove JIT code registration and unregistration breakpoint(s). */
7395
7396 void
7397 remove_jit_event_breakpoints (void)
7398 {
7399 struct breakpoint *b, *b_tmp;
7400
7401 ALL_BREAKPOINTS_SAFE (b, b_tmp)
7402 if (b->type == bp_jit_event
7403 && b->loc->pspace == current_program_space)
7404 delete_breakpoint (b);
7405 }
7406
7407 void
7408 remove_solib_event_breakpoints (void)
7409 {
7410 struct breakpoint *b, *b_tmp;
7411
7412 ALL_BREAKPOINTS_SAFE (b, b_tmp)
7413 if (b->type == bp_shlib_event
7414 && b->loc->pspace == current_program_space)
7415 delete_breakpoint (b);
7416 }
7417
7418 /* See breakpoint.h. */
7419
7420 void
7421 remove_solib_event_breakpoints_at_next_stop (void)
7422 {
7423 struct breakpoint *b, *b_tmp;
7424
7425 ALL_BREAKPOINTS_SAFE (b, b_tmp)
7426 if (b->type == bp_shlib_event
7427 && b->loc->pspace == current_program_space)
7428 b->disposition = disp_del_at_next_stop;
7429 }
7430
7431 /* Helper for create_solib_event_breakpoint /
7432 create_and_insert_solib_event_breakpoint. Allows specifying which
7433 INSERT_MODE to pass through to update_global_location_list. */
7434
7435 static struct breakpoint *
7436 create_solib_event_breakpoint_1 (struct gdbarch *gdbarch, CORE_ADDR address,
7437 enum ugll_insert_mode insert_mode)
7438 {
7439 struct breakpoint *b;
7440
7441 b = create_internal_breakpoint (gdbarch, address, bp_shlib_event,
7442 &internal_breakpoint_ops);
7443 update_global_location_list_nothrow (insert_mode);
7444 return b;
7445 }
7446
7447 struct breakpoint *
7448 create_solib_event_breakpoint (struct gdbarch *gdbarch, CORE_ADDR address)
7449 {
7450 return create_solib_event_breakpoint_1 (gdbarch, address, UGLL_MAY_INSERT);
7451 }
7452
7453 /* See breakpoint.h. */
7454
7455 struct breakpoint *
7456 create_and_insert_solib_event_breakpoint (struct gdbarch *gdbarch, CORE_ADDR address)
7457 {
7458 struct breakpoint *b;
7459
7460 /* Explicitly tell update_global_location_list to insert
7461 locations. */
7462 b = create_solib_event_breakpoint_1 (gdbarch, address, UGLL_INSERT);
7463 if (!b->loc->inserted)
7464 {
7465 delete_breakpoint (b);
7466 return NULL;
7467 }
7468 return b;
7469 }
7470
7471 /* Disable any breakpoints that are on code in shared libraries. Only
7472 apply to enabled breakpoints, disabled ones can just stay disabled. */
7473
7474 void
7475 disable_breakpoints_in_shlibs (void)
7476 {
7477 struct bp_location *loc, **locp_tmp;
7478
7479 ALL_BP_LOCATIONS (loc, locp_tmp)
7480 {
7481 /* ALL_BP_LOCATIONS bp_location has LOC->OWNER always non-NULL. */
7482 struct breakpoint *b = loc->owner;
7483
7484 /* We apply the check to all breakpoints, including disabled for
7485 those with loc->duplicate set. This is so that when breakpoint
7486 becomes enabled, or the duplicate is removed, gdb will try to
7487 insert all breakpoints. If we don't set shlib_disabled here,
7488 we'll try to insert those breakpoints and fail. */
7489 if (((b->type == bp_breakpoint)
7490 || (b->type == bp_jit_event)
7491 || (b->type == bp_hardware_breakpoint)
7492 || (is_tracepoint (b)))
7493 && loc->pspace == current_program_space
7494 && !loc->shlib_disabled
7495 && solib_name_from_address (loc->pspace, loc->address)
7496 )
7497 {
7498 loc->shlib_disabled = 1;
7499 }
7500 }
7501 }
7502
7503 /* Disable any breakpoints and tracepoints that are in SOLIB upon
7504 notification of unloaded_shlib. Only apply to enabled breakpoints,
7505 disabled ones can just stay disabled. */
7506
7507 static void
7508 disable_breakpoints_in_unloaded_shlib (struct so_list *solib)
7509 {
7510 struct bp_location *loc, **locp_tmp;
7511 int disabled_shlib_breaks = 0;
7512
7513 ALL_BP_LOCATIONS (loc, locp_tmp)
7514 {
7515 /* ALL_BP_LOCATIONS bp_location has LOC->OWNER always non-NULL. */
7516 struct breakpoint *b = loc->owner;
7517
7518 if (solib->pspace == loc->pspace
7519 && !loc->shlib_disabled
7520 && (((b->type == bp_breakpoint
7521 || b->type == bp_jit_event
7522 || b->type == bp_hardware_breakpoint)
7523 && (loc->loc_type == bp_loc_hardware_breakpoint
7524 || loc->loc_type == bp_loc_software_breakpoint))
7525 || is_tracepoint (b))
7526 && solib_contains_address_p (solib, loc->address))
7527 {
7528 loc->shlib_disabled = 1;
7529 /* At this point, we cannot rely on remove_breakpoint
7530 succeeding so we must mark the breakpoint as not inserted
7531 to prevent future errors occurring in remove_breakpoints. */
7532 loc->inserted = 0;
7533
7534 /* This may cause duplicate notifications for the same breakpoint. */
7535 gdb::observers::breakpoint_modified.notify (b);
7536
7537 if (!disabled_shlib_breaks)
7538 {
7539 target_terminal::ours_for_output ();
7540 warning (_("Temporarily disabling breakpoints "
7541 "for unloaded shared library \"%s\""),
7542 solib->so_name);
7543 }
7544 disabled_shlib_breaks = 1;
7545 }
7546 }
7547 }
7548
7549 /* Disable any breakpoints and tracepoints in OBJFILE upon
7550 notification of free_objfile. Only apply to enabled breakpoints,
7551 disabled ones can just stay disabled. */
7552
7553 static void
7554 disable_breakpoints_in_freed_objfile (struct objfile *objfile)
7555 {
7556 struct breakpoint *b;
7557
7558 if (objfile == NULL)
7559 return;
7560
7561 /* OBJF_SHARED|OBJF_USERLOADED objfiles are dynamic modules manually
7562 managed by the user with add-symbol-file/remove-symbol-file.
7563 Similarly to how breakpoints in shared libraries are handled in
7564 response to "nosharedlibrary", mark breakpoints in such modules
7565 shlib_disabled so they end up uninserted on the next global
7566 location list update. Shared libraries not loaded by the user
7567 aren't handled here -- they're already handled in
7568 disable_breakpoints_in_unloaded_shlib, called by solib.c's
7569 solib_unloaded observer. We skip objfiles that are not
7570 OBJF_SHARED as those aren't considered dynamic objects (e.g. the
7571 main objfile). */
7572 if ((objfile->flags & OBJF_SHARED) == 0
7573 || (objfile->flags & OBJF_USERLOADED) == 0)
7574 return;
7575
7576 ALL_BREAKPOINTS (b)
7577 {
7578 struct bp_location *loc;
7579 int bp_modified = 0;
7580
7581 if (!is_breakpoint (b) && !is_tracepoint (b))
7582 continue;
7583
7584 for (loc = b->loc; loc != NULL; loc = loc->next)
7585 {
7586 CORE_ADDR loc_addr = loc->address;
7587
7588 if (loc->loc_type != bp_loc_hardware_breakpoint
7589 && loc->loc_type != bp_loc_software_breakpoint)
7590 continue;
7591
7592 if (loc->shlib_disabled != 0)
7593 continue;
7594
7595 if (objfile->pspace != loc->pspace)
7596 continue;
7597
7598 if (loc->loc_type != bp_loc_hardware_breakpoint
7599 && loc->loc_type != bp_loc_software_breakpoint)
7600 continue;
7601
7602 if (is_addr_in_objfile (loc_addr, objfile))
7603 {
7604 loc->shlib_disabled = 1;
7605 /* At this point, we don't know whether the object was
7606 unmapped from the inferior or not, so leave the
7607 inserted flag alone. We'll handle failure to
7608 uninsert quietly, in case the object was indeed
7609 unmapped. */
7610
7611 mark_breakpoint_location_modified (loc);
7612
7613 bp_modified = 1;
7614 }
7615 }
7616
7617 if (bp_modified)
7618 gdb::observers::breakpoint_modified.notify (b);
7619 }
7620 }
7621
7622 /* FORK & VFORK catchpoints. */
7623
7624 /* An instance of this type is used to represent a fork or vfork
7625 catchpoint. A breakpoint is really of this type iff its ops pointer points
7626 to CATCH_FORK_BREAKPOINT_OPS. */
7627
7628 struct fork_catchpoint : public breakpoint
7629 {
7630 /* Process id of a child process whose forking triggered this
7631 catchpoint. This field is only valid immediately after this
7632 catchpoint has triggered. */
7633 ptid_t forked_inferior_pid;
7634 };
7635
7636 /* Implement the "insert" breakpoint_ops method for fork
7637 catchpoints. */
7638
7639 static int
7640 insert_catch_fork (struct bp_location *bl)
7641 {
7642 return target_insert_fork_catchpoint (inferior_ptid.pid ());
7643 }
7644
7645 /* Implement the "remove" breakpoint_ops method for fork
7646 catchpoints. */
7647
7648 static int
7649 remove_catch_fork (struct bp_location *bl, enum remove_bp_reason reason)
7650 {
7651 return target_remove_fork_catchpoint (inferior_ptid.pid ());
7652 }
7653
7654 /* Implement the "breakpoint_hit" breakpoint_ops method for fork
7655 catchpoints. */
7656
7657 static int
7658 breakpoint_hit_catch_fork (const struct bp_location *bl,
7659 const address_space *aspace, CORE_ADDR bp_addr,
7660 const struct target_waitstatus *ws)
7661 {
7662 struct fork_catchpoint *c = (struct fork_catchpoint *) bl->owner;
7663
7664 if (ws->kind != TARGET_WAITKIND_FORKED)
7665 return 0;
7666
7667 c->forked_inferior_pid = ws->value.related_pid;
7668 return 1;
7669 }
7670
7671 /* Implement the "print_it" breakpoint_ops method for fork
7672 catchpoints. */
7673
7674 static enum print_stop_action
7675 print_it_catch_fork (bpstat bs)
7676 {
7677 struct ui_out *uiout = current_uiout;
7678 struct breakpoint *b = bs->breakpoint_at;
7679 struct fork_catchpoint *c = (struct fork_catchpoint *) bs->breakpoint_at;
7680
7681 annotate_catchpoint (b->number);
7682 maybe_print_thread_hit_breakpoint (uiout);
7683 if (b->disposition == disp_del)
7684 uiout->text ("Temporary catchpoint ");
7685 else
7686 uiout->text ("Catchpoint ");
7687 if (uiout->is_mi_like_p ())
7688 {
7689 uiout->field_string ("reason", async_reason_lookup (EXEC_ASYNC_FORK));
7690 uiout->field_string ("disp", bpdisp_text (b->disposition));
7691 }
7692 uiout->field_signed ("bkptno", b->number);
7693 uiout->text (" (forked process ");
7694 uiout->field_signed ("newpid", c->forked_inferior_pid.pid ());
7695 uiout->text ("), ");
7696 return PRINT_SRC_AND_LOC;
7697 }
7698
7699 /* Implement the "print_one" breakpoint_ops method for fork
7700 catchpoints. */
7701
7702 static void
7703 print_one_catch_fork (struct breakpoint *b, struct bp_location **last_loc)
7704 {
7705 struct fork_catchpoint *c = (struct fork_catchpoint *) b;
7706 struct value_print_options opts;
7707 struct ui_out *uiout = current_uiout;
7708
7709 get_user_print_options (&opts);
7710
7711 /* Field 4, the address, is omitted (which makes the columns not
7712 line up too nicely with the headers, but the effect is relatively
7713 readable). */
7714 if (opts.addressprint)
7715 uiout->field_skip ("addr");
7716 annotate_field (5);
7717 uiout->text ("fork");
7718 if (c->forked_inferior_pid != null_ptid)
7719 {
7720 uiout->text (", process ");
7721 uiout->field_signed ("what", c->forked_inferior_pid.pid ());
7722 uiout->spaces (1);
7723 }
7724
7725 if (uiout->is_mi_like_p ())
7726 uiout->field_string ("catch-type", "fork");
7727 }
7728
7729 /* Implement the "print_mention" breakpoint_ops method for fork
7730 catchpoints. */
7731
7732 static void
7733 print_mention_catch_fork (struct breakpoint *b)
7734 {
7735 printf_filtered (_("Catchpoint %d (fork)"), b->number);
7736 }
7737
7738 /* Implement the "print_recreate" breakpoint_ops method for fork
7739 catchpoints. */
7740
7741 static void
7742 print_recreate_catch_fork (struct breakpoint *b, struct ui_file *fp)
7743 {
7744 fprintf_unfiltered (fp, "catch fork");
7745 print_recreate_thread (b, fp);
7746 }
7747
7748 /* The breakpoint_ops structure to be used in fork catchpoints. */
7749
7750 static struct breakpoint_ops catch_fork_breakpoint_ops;
7751
7752 /* Implement the "insert" breakpoint_ops method for vfork
7753 catchpoints. */
7754
7755 static int
7756 insert_catch_vfork (struct bp_location *bl)
7757 {
7758 return target_insert_vfork_catchpoint (inferior_ptid.pid ());
7759 }
7760
7761 /* Implement the "remove" breakpoint_ops method for vfork
7762 catchpoints. */
7763
7764 static int
7765 remove_catch_vfork (struct bp_location *bl, enum remove_bp_reason reason)
7766 {
7767 return target_remove_vfork_catchpoint (inferior_ptid.pid ());
7768 }
7769
7770 /* Implement the "breakpoint_hit" breakpoint_ops method for vfork
7771 catchpoints. */
7772
7773 static int
7774 breakpoint_hit_catch_vfork (const struct bp_location *bl,
7775 const address_space *aspace, CORE_ADDR bp_addr,
7776 const struct target_waitstatus *ws)
7777 {
7778 struct fork_catchpoint *c = (struct fork_catchpoint *) bl->owner;
7779
7780 if (ws->kind != TARGET_WAITKIND_VFORKED)
7781 return 0;
7782
7783 c->forked_inferior_pid = ws->value.related_pid;
7784 return 1;
7785 }
7786
7787 /* Implement the "print_it" breakpoint_ops method for vfork
7788 catchpoints. */
7789
7790 static enum print_stop_action
7791 print_it_catch_vfork (bpstat bs)
7792 {
7793 struct ui_out *uiout = current_uiout;
7794 struct breakpoint *b = bs->breakpoint_at;
7795 struct fork_catchpoint *c = (struct fork_catchpoint *) b;
7796
7797 annotate_catchpoint (b->number);
7798 maybe_print_thread_hit_breakpoint (uiout);
7799 if (b->disposition == disp_del)
7800 uiout->text ("Temporary catchpoint ");
7801 else
7802 uiout->text ("Catchpoint ");
7803 if (uiout->is_mi_like_p ())
7804 {
7805 uiout->field_string ("reason", async_reason_lookup (EXEC_ASYNC_VFORK));
7806 uiout->field_string ("disp", bpdisp_text (b->disposition));
7807 }
7808 uiout->field_signed ("bkptno", b->number);
7809 uiout->text (" (vforked process ");
7810 uiout->field_signed ("newpid", c->forked_inferior_pid.pid ());
7811 uiout->text ("), ");
7812 return PRINT_SRC_AND_LOC;
7813 }
7814
7815 /* Implement the "print_one" breakpoint_ops method for vfork
7816 catchpoints. */
7817
7818 static void
7819 print_one_catch_vfork (struct breakpoint *b, struct bp_location **last_loc)
7820 {
7821 struct fork_catchpoint *c = (struct fork_catchpoint *) b;
7822 struct value_print_options opts;
7823 struct ui_out *uiout = current_uiout;
7824
7825 get_user_print_options (&opts);
7826 /* Field 4, the address, is omitted (which makes the columns not
7827 line up too nicely with the headers, but the effect is relatively
7828 readable). */
7829 if (opts.addressprint)
7830 uiout->field_skip ("addr");
7831 annotate_field (5);
7832 uiout->text ("vfork");
7833 if (c->forked_inferior_pid != null_ptid)
7834 {
7835 uiout->text (", process ");
7836 uiout->field_signed ("what", c->forked_inferior_pid.pid ());
7837 uiout->spaces (1);
7838 }
7839
7840 if (uiout->is_mi_like_p ())
7841 uiout->field_string ("catch-type", "vfork");
7842 }
7843
7844 /* Implement the "print_mention" breakpoint_ops method for vfork
7845 catchpoints. */
7846
7847 static void
7848 print_mention_catch_vfork (struct breakpoint *b)
7849 {
7850 printf_filtered (_("Catchpoint %d (vfork)"), b->number);
7851 }
7852
7853 /* Implement the "print_recreate" breakpoint_ops method for vfork
7854 catchpoints. */
7855
7856 static void
7857 print_recreate_catch_vfork (struct breakpoint *b, struct ui_file *fp)
7858 {
7859 fprintf_unfiltered (fp, "catch vfork");
7860 print_recreate_thread (b, fp);
7861 }
7862
7863 /* The breakpoint_ops structure to be used in vfork catchpoints. */
7864
7865 static struct breakpoint_ops catch_vfork_breakpoint_ops;
7866
7867 /* An instance of this type is used to represent an solib catchpoint.
7868 A breakpoint is really of this type iff its ops pointer points to
7869 CATCH_SOLIB_BREAKPOINT_OPS. */
7870
7871 struct solib_catchpoint : public breakpoint
7872 {
7873 ~solib_catchpoint () override;
7874
7875 /* True for "catch load", false for "catch unload". */
7876 unsigned char is_load;
7877
7878 /* Regular expression to match, if any. COMPILED is only valid when
7879 REGEX is non-NULL. */
7880 char *regex;
7881 std::unique_ptr<compiled_regex> compiled;
7882 };
7883
7884 solib_catchpoint::~solib_catchpoint ()
7885 {
7886 xfree (this->regex);
7887 }
7888
7889 static int
7890 insert_catch_solib (struct bp_location *ignore)
7891 {
7892 return 0;
7893 }
7894
7895 static int
7896 remove_catch_solib (struct bp_location *ignore, enum remove_bp_reason reason)
7897 {
7898 return 0;
7899 }
7900
7901 static int
7902 breakpoint_hit_catch_solib (const struct bp_location *bl,
7903 const address_space *aspace,
7904 CORE_ADDR bp_addr,
7905 const struct target_waitstatus *ws)
7906 {
7907 struct solib_catchpoint *self = (struct solib_catchpoint *) bl->owner;
7908 struct breakpoint *other;
7909
7910 if (ws->kind == TARGET_WAITKIND_LOADED)
7911 return 1;
7912
7913 ALL_BREAKPOINTS (other)
7914 {
7915 struct bp_location *other_bl;
7916
7917 if (other == bl->owner)
7918 continue;
7919
7920 if (other->type != bp_shlib_event)
7921 continue;
7922
7923 if (self->pspace != NULL && other->pspace != self->pspace)
7924 continue;
7925
7926 for (other_bl = other->loc; other_bl != NULL; other_bl = other_bl->next)
7927 {
7928 if (other->ops->breakpoint_hit (other_bl, aspace, bp_addr, ws))
7929 return 1;
7930 }
7931 }
7932
7933 return 0;
7934 }
7935
7936 static void
7937 check_status_catch_solib (struct bpstats *bs)
7938 {
7939 struct solib_catchpoint *self
7940 = (struct solib_catchpoint *) bs->breakpoint_at;
7941
7942 if (self->is_load)
7943 {
7944 for (so_list *iter : current_program_space->added_solibs)
7945 {
7946 if (!self->regex
7947 || self->compiled->exec (iter->so_name, 0, NULL, 0) == 0)
7948 return;
7949 }
7950 }
7951 else
7952 {
7953 for (const std::string &iter : current_program_space->deleted_solibs)
7954 {
7955 if (!self->regex
7956 || self->compiled->exec (iter.c_str (), 0, NULL, 0) == 0)
7957 return;
7958 }
7959 }
7960
7961 bs->stop = 0;
7962 bs->print_it = print_it_noop;
7963 }
7964
7965 static enum print_stop_action
7966 print_it_catch_solib (bpstat bs)
7967 {
7968 struct breakpoint *b = bs->breakpoint_at;
7969 struct ui_out *uiout = current_uiout;
7970
7971 annotate_catchpoint (b->number);
7972 maybe_print_thread_hit_breakpoint (uiout);
7973 if (b->disposition == disp_del)
7974 uiout->text ("Temporary catchpoint ");
7975 else
7976 uiout->text ("Catchpoint ");
7977 uiout->field_signed ("bkptno", b->number);
7978 uiout->text ("\n");
7979 if (uiout->is_mi_like_p ())
7980 uiout->field_string ("disp", bpdisp_text (b->disposition));
7981 print_solib_event (1);
7982 return PRINT_SRC_AND_LOC;
7983 }
7984
7985 static void
7986 print_one_catch_solib (struct breakpoint *b, struct bp_location **locs)
7987 {
7988 struct solib_catchpoint *self = (struct solib_catchpoint *) b;
7989 struct value_print_options opts;
7990 struct ui_out *uiout = current_uiout;
7991
7992 get_user_print_options (&opts);
7993 /* Field 4, the address, is omitted (which makes the columns not
7994 line up too nicely with the headers, but the effect is relatively
7995 readable). */
7996 if (opts.addressprint)
7997 {
7998 annotate_field (4);
7999 uiout->field_skip ("addr");
8000 }
8001
8002 std::string msg;
8003 annotate_field (5);
8004 if (self->is_load)
8005 {
8006 if (self->regex)
8007 msg = string_printf (_("load of library matching %s"), self->regex);
8008 else
8009 msg = _("load of library");
8010 }
8011 else
8012 {
8013 if (self->regex)
8014 msg = string_printf (_("unload of library matching %s"), self->regex);
8015 else
8016 msg = _("unload of library");
8017 }
8018 uiout->field_string ("what", msg);
8019
8020 if (uiout->is_mi_like_p ())
8021 uiout->field_string ("catch-type", self->is_load ? "load" : "unload");
8022 }
8023
8024 static void
8025 print_mention_catch_solib (struct breakpoint *b)
8026 {
8027 struct solib_catchpoint *self = (struct solib_catchpoint *) b;
8028
8029 printf_filtered (_("Catchpoint %d (%s)"), b->number,
8030 self->is_load ? "load" : "unload");
8031 }
8032
8033 static void
8034 print_recreate_catch_solib (struct breakpoint *b, struct ui_file *fp)
8035 {
8036 struct solib_catchpoint *self = (struct solib_catchpoint *) b;
8037
8038 fprintf_unfiltered (fp, "%s %s",
8039 b->disposition == disp_del ? "tcatch" : "catch",
8040 self->is_load ? "load" : "unload");
8041 if (self->regex)
8042 fprintf_unfiltered (fp, " %s", self->regex);
8043 fprintf_unfiltered (fp, "\n");
8044 }
8045
8046 static struct breakpoint_ops catch_solib_breakpoint_ops;
8047
8048 /* Shared helper function (MI and CLI) for creating and installing
8049 a shared object event catchpoint. If IS_LOAD is non-zero then
8050 the events to be caught are load events, otherwise they are
8051 unload events. If IS_TEMP is non-zero the catchpoint is a
8052 temporary one. If ENABLED is non-zero the catchpoint is
8053 created in an enabled state. */
8054
8055 void
8056 add_solib_catchpoint (const char *arg, int is_load, int is_temp, int enabled)
8057 {
8058 struct gdbarch *gdbarch = get_current_arch ();
8059
8060 if (!arg)
8061 arg = "";
8062 arg = skip_spaces (arg);
8063
8064 std::unique_ptr<solib_catchpoint> c (new solib_catchpoint ());
8065
8066 if (*arg != '\0')
8067 {
8068 c->compiled.reset (new compiled_regex (arg, REG_NOSUB,
8069 _("Invalid regexp")));
8070 c->regex = xstrdup (arg);
8071 }
8072
8073 c->is_load = is_load;
8074 init_catchpoint (c.get (), gdbarch, is_temp, NULL,
8075 &catch_solib_breakpoint_ops);
8076
8077 c->enable_state = enabled ? bp_enabled : bp_disabled;
8078
8079 install_breakpoint (0, std::move (c), 1);
8080 }
8081
8082 /* A helper function that does all the work for "catch load" and
8083 "catch unload". */
8084
8085 static void
8086 catch_load_or_unload (const char *arg, int from_tty, int is_load,
8087 struct cmd_list_element *command)
8088 {
8089 int tempflag;
8090 const int enabled = 1;
8091
8092 tempflag = get_cmd_context (command) == CATCH_TEMPORARY;
8093
8094 add_solib_catchpoint (arg, is_load, tempflag, enabled);
8095 }
8096
8097 static void
8098 catch_load_command_1 (const char *arg, int from_tty,
8099 struct cmd_list_element *command)
8100 {
8101 catch_load_or_unload (arg, from_tty, 1, command);
8102 }
8103
8104 static void
8105 catch_unload_command_1 (const char *arg, int from_tty,
8106 struct cmd_list_element *command)
8107 {
8108 catch_load_or_unload (arg, from_tty, 0, command);
8109 }
8110
8111 /* Initialize a new breakpoint of the bp_catchpoint kind. If TEMPFLAG
8112 is non-zero, then make the breakpoint temporary. If COND_STRING is
8113 not NULL, then store it in the breakpoint. OPS, if not NULL, is
8114 the breakpoint_ops structure associated to the catchpoint. */
8115
8116 void
8117 init_catchpoint (struct breakpoint *b,
8118 struct gdbarch *gdbarch, int tempflag,
8119 const char *cond_string,
8120 const struct breakpoint_ops *ops)
8121 {
8122 symtab_and_line sal;
8123 sal.pspace = current_program_space;
8124
8125 init_raw_breakpoint (b, gdbarch, sal, bp_catchpoint, ops);
8126
8127 b->cond_string = (cond_string == NULL) ? NULL : xstrdup (cond_string);
8128 b->disposition = tempflag ? disp_del : disp_donttouch;
8129 }
8130
8131 void
8132 install_breakpoint (int internal, std::unique_ptr<breakpoint> &&arg, int update_gll)
8133 {
8134 breakpoint *b = add_to_breakpoint_chain (std::move (arg));
8135 set_breakpoint_number (internal, b);
8136 if (is_tracepoint (b))
8137 set_tracepoint_count (breakpoint_count);
8138 if (!internal)
8139 mention (b);
8140 gdb::observers::breakpoint_created.notify (b);
8141
8142 if (update_gll)
8143 update_global_location_list (UGLL_MAY_INSERT);
8144 }
8145
8146 static void
8147 create_fork_vfork_event_catchpoint (struct gdbarch *gdbarch,
8148 int tempflag, const char *cond_string,
8149 const struct breakpoint_ops *ops)
8150 {
8151 std::unique_ptr<fork_catchpoint> c (new fork_catchpoint ());
8152
8153 init_catchpoint (c.get (), gdbarch, tempflag, cond_string, ops);
8154
8155 c->forked_inferior_pid = null_ptid;
8156
8157 install_breakpoint (0, std::move (c), 1);
8158 }
8159
8160 /* Exec catchpoints. */
8161
8162 /* An instance of this type is used to represent an exec catchpoint.
8163 A breakpoint is really of this type iff its ops pointer points to
8164 CATCH_EXEC_BREAKPOINT_OPS. */
8165
8166 struct exec_catchpoint : public breakpoint
8167 {
8168 ~exec_catchpoint () override;
8169
8170 /* Filename of a program whose exec triggered this catchpoint.
8171 This field is only valid immediately after this catchpoint has
8172 triggered. */
8173 char *exec_pathname;
8174 };
8175
8176 /* Exec catchpoint destructor. */
8177
8178 exec_catchpoint::~exec_catchpoint ()
8179 {
8180 xfree (this->exec_pathname);
8181 }
8182
8183 static int
8184 insert_catch_exec (struct bp_location *bl)
8185 {
8186 return target_insert_exec_catchpoint (inferior_ptid.pid ());
8187 }
8188
8189 static int
8190 remove_catch_exec (struct bp_location *bl, enum remove_bp_reason reason)
8191 {
8192 return target_remove_exec_catchpoint (inferior_ptid.pid ());
8193 }
8194
8195 static int
8196 breakpoint_hit_catch_exec (const struct bp_location *bl,
8197 const address_space *aspace, CORE_ADDR bp_addr,
8198 const struct target_waitstatus *ws)
8199 {
8200 struct exec_catchpoint *c = (struct exec_catchpoint *) bl->owner;
8201
8202 if (ws->kind != TARGET_WAITKIND_EXECD)
8203 return 0;
8204
8205 c->exec_pathname = xstrdup (ws->value.execd_pathname);
8206 return 1;
8207 }
8208
8209 static enum print_stop_action
8210 print_it_catch_exec (bpstat bs)
8211 {
8212 struct ui_out *uiout = current_uiout;
8213 struct breakpoint *b = bs->breakpoint_at;
8214 struct exec_catchpoint *c = (struct exec_catchpoint *) b;
8215
8216 annotate_catchpoint (b->number);
8217 maybe_print_thread_hit_breakpoint (uiout);
8218 if (b->disposition == disp_del)
8219 uiout->text ("Temporary catchpoint ");
8220 else
8221 uiout->text ("Catchpoint ");
8222 if (uiout->is_mi_like_p ())
8223 {
8224 uiout->field_string ("reason", async_reason_lookup (EXEC_ASYNC_EXEC));
8225 uiout->field_string ("disp", bpdisp_text (b->disposition));
8226 }
8227 uiout->field_signed ("bkptno", b->number);
8228 uiout->text (" (exec'd ");
8229 uiout->field_string ("new-exec", c->exec_pathname);
8230 uiout->text ("), ");
8231
8232 return PRINT_SRC_AND_LOC;
8233 }
8234
8235 static void
8236 print_one_catch_exec (struct breakpoint *b, struct bp_location **last_loc)
8237 {
8238 struct exec_catchpoint *c = (struct exec_catchpoint *) b;
8239 struct value_print_options opts;
8240 struct ui_out *uiout = current_uiout;
8241
8242 get_user_print_options (&opts);
8243
8244 /* Field 4, the address, is omitted (which makes the columns
8245 not line up too nicely with the headers, but the effect
8246 is relatively readable). */
8247 if (opts.addressprint)
8248 uiout->field_skip ("addr");
8249 annotate_field (5);
8250 uiout->text ("exec");
8251 if (c->exec_pathname != NULL)
8252 {
8253 uiout->text (", program \"");
8254 uiout->field_string ("what", c->exec_pathname);
8255 uiout->text ("\" ");
8256 }
8257
8258 if (uiout->is_mi_like_p ())
8259 uiout->field_string ("catch-type", "exec");
8260 }
8261
8262 static void
8263 print_mention_catch_exec (struct breakpoint *b)
8264 {
8265 printf_filtered (_("Catchpoint %d (exec)"), b->number);
8266 }
8267
8268 /* Implement the "print_recreate" breakpoint_ops method for exec
8269 catchpoints. */
8270
8271 static void
8272 print_recreate_catch_exec (struct breakpoint *b, struct ui_file *fp)
8273 {
8274 fprintf_unfiltered (fp, "catch exec");
8275 print_recreate_thread (b, fp);
8276 }
8277
8278 static struct breakpoint_ops catch_exec_breakpoint_ops;
8279
8280 static int
8281 hw_breakpoint_used_count (void)
8282 {
8283 int i = 0;
8284 struct breakpoint *b;
8285 struct bp_location *bl;
8286
8287 ALL_BREAKPOINTS (b)
8288 {
8289 if (b->type == bp_hardware_breakpoint && breakpoint_enabled (b))
8290 for (bl = b->loc; bl; bl = bl->next)
8291 {
8292 /* Special types of hardware breakpoints may use more than
8293 one register. */
8294 i += b->ops->resources_needed (bl);
8295 }
8296 }
8297
8298 return i;
8299 }
8300
8301 /* Returns the resources B would use if it were a hardware
8302 watchpoint. */
8303
8304 static int
8305 hw_watchpoint_use_count (struct breakpoint *b)
8306 {
8307 int i = 0;
8308 struct bp_location *bl;
8309
8310 if (!breakpoint_enabled (b))
8311 return 0;
8312
8313 for (bl = b->loc; bl; bl = bl->next)
8314 {
8315 /* Special types of hardware watchpoints may use more than
8316 one register. */
8317 i += b->ops->resources_needed (bl);
8318 }
8319
8320 return i;
8321 }
8322
8323 /* Returns the sum the used resources of all hardware watchpoints of
8324 type TYPE in the breakpoints list. Also returns in OTHER_TYPE_USED
8325 the sum of the used resources of all hardware watchpoints of other
8326 types _not_ TYPE. */
8327
8328 static int
8329 hw_watchpoint_used_count_others (struct breakpoint *except,
8330 enum bptype type, int *other_type_used)
8331 {
8332 int i = 0;
8333 struct breakpoint *b;
8334
8335 *other_type_used = 0;
8336 ALL_BREAKPOINTS (b)
8337 {
8338 if (b == except)
8339 continue;
8340 if (!breakpoint_enabled (b))
8341 continue;
8342
8343 if (b->type == type)
8344 i += hw_watchpoint_use_count (b);
8345 else if (is_hardware_watchpoint (b))
8346 *other_type_used = 1;
8347 }
8348
8349 return i;
8350 }
8351
8352 void
8353 disable_watchpoints_before_interactive_call_start (void)
8354 {
8355 struct breakpoint *b;
8356
8357 ALL_BREAKPOINTS (b)
8358 {
8359 if (is_watchpoint (b) && breakpoint_enabled (b))
8360 {
8361 b->enable_state = bp_call_disabled;
8362 update_global_location_list (UGLL_DONT_INSERT);
8363 }
8364 }
8365 }
8366
8367 void
8368 enable_watchpoints_after_interactive_call_stop (void)
8369 {
8370 struct breakpoint *b;
8371
8372 ALL_BREAKPOINTS (b)
8373 {
8374 if (is_watchpoint (b) && b->enable_state == bp_call_disabled)
8375 {
8376 b->enable_state = bp_enabled;
8377 update_global_location_list (UGLL_MAY_INSERT);
8378 }
8379 }
8380 }
8381
8382 void
8383 disable_breakpoints_before_startup (void)
8384 {
8385 current_program_space->executing_startup = 1;
8386 update_global_location_list (UGLL_DONT_INSERT);
8387 }
8388
8389 void
8390 enable_breakpoints_after_startup (void)
8391 {
8392 current_program_space->executing_startup = 0;
8393 breakpoint_re_set ();
8394 }
8395
8396 /* Create a new single-step breakpoint for thread THREAD, with no
8397 locations. */
8398
8399 static struct breakpoint *
8400 new_single_step_breakpoint (int thread, struct gdbarch *gdbarch)
8401 {
8402 std::unique_ptr<breakpoint> b (new breakpoint ());
8403
8404 init_raw_breakpoint_without_location (b.get (), gdbarch, bp_single_step,
8405 &momentary_breakpoint_ops);
8406
8407 b->disposition = disp_donttouch;
8408 b->frame_id = null_frame_id;
8409
8410 b->thread = thread;
8411 gdb_assert (b->thread != 0);
8412
8413 return add_to_breakpoint_chain (std::move (b));
8414 }
8415
8416 /* Set a momentary breakpoint of type TYPE at address specified by
8417 SAL. If FRAME_ID is valid, the breakpoint is restricted to that
8418 frame. */
8419
8420 breakpoint_up
8421 set_momentary_breakpoint (struct gdbarch *gdbarch, struct symtab_and_line sal,
8422 struct frame_id frame_id, enum bptype type)
8423 {
8424 struct breakpoint *b;
8425
8426 /* If FRAME_ID is valid, it should be a real frame, not an inlined or
8427 tail-called one. */
8428 gdb_assert (!frame_id_artificial_p (frame_id));
8429
8430 b = set_raw_breakpoint (gdbarch, sal, type, &momentary_breakpoint_ops);
8431 b->enable_state = bp_enabled;
8432 b->disposition = disp_donttouch;
8433 b->frame_id = frame_id;
8434
8435 b->thread = inferior_thread ()->global_num;
8436
8437 update_global_location_list_nothrow (UGLL_MAY_INSERT);
8438
8439 return breakpoint_up (b);
8440 }
8441
8442 /* Make a momentary breakpoint based on the master breakpoint ORIG.
8443 The new breakpoint will have type TYPE, use OPS as its
8444 breakpoint_ops, and will set enabled to LOC_ENABLED. */
8445
8446 static struct breakpoint *
8447 momentary_breakpoint_from_master (struct breakpoint *orig,
8448 enum bptype type,
8449 const struct breakpoint_ops *ops,
8450 int loc_enabled)
8451 {
8452 struct breakpoint *copy;
8453
8454 copy = set_raw_breakpoint_without_location (orig->gdbarch, type, ops);
8455 copy->loc = allocate_bp_location (copy);
8456 set_breakpoint_location_function (copy->loc);
8457
8458 copy->loc->gdbarch = orig->loc->gdbarch;
8459 copy->loc->requested_address = orig->loc->requested_address;
8460 copy->loc->address = orig->loc->address;
8461 copy->loc->section = orig->loc->section;
8462 copy->loc->pspace = orig->loc->pspace;
8463 copy->loc->probe = orig->loc->probe;
8464 copy->loc->line_number = orig->loc->line_number;
8465 copy->loc->symtab = orig->loc->symtab;
8466 copy->loc->enabled = loc_enabled;
8467 copy->frame_id = orig->frame_id;
8468 copy->thread = orig->thread;
8469 copy->pspace = orig->pspace;
8470
8471 copy->enable_state = bp_enabled;
8472 copy->disposition = disp_donttouch;
8473 copy->number = internal_breakpoint_number--;
8474
8475 update_global_location_list_nothrow (UGLL_DONT_INSERT);
8476 return copy;
8477 }
8478
8479 /* Make a deep copy of momentary breakpoint ORIG. Returns NULL if
8480 ORIG is NULL. */
8481
8482 struct breakpoint *
8483 clone_momentary_breakpoint (struct breakpoint *orig)
8484 {
8485 /* If there's nothing to clone, then return nothing. */
8486 if (orig == NULL)
8487 return NULL;
8488
8489 return momentary_breakpoint_from_master (orig, orig->type, orig->ops, 0);
8490 }
8491
8492 breakpoint_up
8493 set_momentary_breakpoint_at_pc (struct gdbarch *gdbarch, CORE_ADDR pc,
8494 enum bptype type)
8495 {
8496 struct symtab_and_line sal;
8497
8498 sal = find_pc_line (pc, 0);
8499 sal.pc = pc;
8500 sal.section = find_pc_overlay (pc);
8501 sal.explicit_pc = 1;
8502
8503 return set_momentary_breakpoint (gdbarch, sal, null_frame_id, type);
8504 }
8505 \f
8506
8507 /* Tell the user we have just set a breakpoint B. */
8508
8509 static void
8510 mention (struct breakpoint *b)
8511 {
8512 b->ops->print_mention (b);
8513 if (current_uiout->is_mi_like_p ())
8514 return;
8515 printf_filtered ("\n");
8516 }
8517 \f
8518
8519 static int bp_loc_is_permanent (struct bp_location *loc);
8520
8521 static struct bp_location *
8522 add_location_to_breakpoint (struct breakpoint *b,
8523 const struct symtab_and_line *sal)
8524 {
8525 struct bp_location *loc, **tmp;
8526 CORE_ADDR adjusted_address;
8527 struct gdbarch *loc_gdbarch = get_sal_arch (*sal);
8528
8529 if (loc_gdbarch == NULL)
8530 loc_gdbarch = b->gdbarch;
8531
8532 /* Adjust the breakpoint's address prior to allocating a location.
8533 Once we call allocate_bp_location(), that mostly uninitialized
8534 location will be placed on the location chain. Adjustment of the
8535 breakpoint may cause target_read_memory() to be called and we do
8536 not want its scan of the location chain to find a breakpoint and
8537 location that's only been partially initialized. */
8538 adjusted_address = adjust_breakpoint_address (loc_gdbarch,
8539 sal->pc, b->type);
8540
8541 /* Sort the locations by their ADDRESS. */
8542 loc = allocate_bp_location (b);
8543 for (tmp = &(b->loc); *tmp != NULL && (*tmp)->address <= adjusted_address;
8544 tmp = &((*tmp)->next))
8545 ;
8546 loc->next = *tmp;
8547 *tmp = loc;
8548
8549 loc->requested_address = sal->pc;
8550 loc->address = adjusted_address;
8551 loc->pspace = sal->pspace;
8552 loc->probe.prob = sal->prob;
8553 loc->probe.objfile = sal->objfile;
8554 gdb_assert (loc->pspace != NULL);
8555 loc->section = sal->section;
8556 loc->gdbarch = loc_gdbarch;
8557 loc->line_number = sal->line;
8558 loc->symtab = sal->symtab;
8559 loc->symbol = sal->symbol;
8560 loc->msymbol = sal->msymbol;
8561 loc->objfile = sal->objfile;
8562
8563 set_breakpoint_location_function (loc);
8564
8565 /* While by definition, permanent breakpoints are already present in the
8566 code, we don't mark the location as inserted. Normally one would expect
8567 that GDB could rely on that breakpoint instruction to stop the program,
8568 thus removing the need to insert its own breakpoint, except that executing
8569 the breakpoint instruction can kill the target instead of reporting a
8570 SIGTRAP. E.g., on SPARC, when interrupts are disabled, executing the
8571 instruction resets the CPU, so QEMU 2.0.0 for SPARC correspondingly dies
8572 with "Trap 0x02 while interrupts disabled, Error state". Letting the
8573 breakpoint be inserted normally results in QEMU knowing about the GDB
8574 breakpoint, and thus trap before the breakpoint instruction is executed.
8575 (If GDB later needs to continue execution past the permanent breakpoint,
8576 it manually increments the PC, thus avoiding executing the breakpoint
8577 instruction.) */
8578 if (bp_loc_is_permanent (loc))
8579 loc->permanent = 1;
8580
8581 return loc;
8582 }
8583 \f
8584
8585 /* See breakpoint.h. */
8586
8587 int
8588 program_breakpoint_here_p (struct gdbarch *gdbarch, CORE_ADDR address)
8589 {
8590 int len;
8591 CORE_ADDR addr;
8592 const gdb_byte *bpoint;
8593 gdb_byte *target_mem;
8594
8595 addr = address;
8596 bpoint = gdbarch_breakpoint_from_pc (gdbarch, &addr, &len);
8597
8598 /* Software breakpoints unsupported? */
8599 if (bpoint == NULL)
8600 return 0;
8601
8602 target_mem = (gdb_byte *) alloca (len);
8603
8604 /* Enable the automatic memory restoration from breakpoints while
8605 we read the memory. Otherwise we could say about our temporary
8606 breakpoints they are permanent. */
8607 scoped_restore restore_memory
8608 = make_scoped_restore_show_memory_breakpoints (0);
8609
8610 if (target_read_memory (address, target_mem, len) == 0
8611 && memcmp (target_mem, bpoint, len) == 0)
8612 return 1;
8613
8614 return 0;
8615 }
8616
8617 /* Return 1 if LOC is pointing to a permanent breakpoint,
8618 return 0 otherwise. */
8619
8620 static int
8621 bp_loc_is_permanent (struct bp_location *loc)
8622 {
8623 gdb_assert (loc != NULL);
8624
8625 /* If we have a non-breakpoint-backed catchpoint or a software
8626 watchpoint, just return 0. We should not attempt to read from
8627 the addresses the locations of these breakpoint types point to.
8628 program_breakpoint_here_p, below, will attempt to read
8629 memory. */
8630 if (!bl_address_is_meaningful (loc))
8631 return 0;
8632
8633 scoped_restore_current_pspace_and_thread restore_pspace_thread;
8634 switch_to_program_space_and_thread (loc->pspace);
8635 return program_breakpoint_here_p (loc->gdbarch, loc->address);
8636 }
8637
8638 /* Build a command list for the dprintf corresponding to the current
8639 settings of the dprintf style options. */
8640
8641 static void
8642 update_dprintf_command_list (struct breakpoint *b)
8643 {
8644 char *dprintf_args = b->extra_string;
8645 char *printf_line = NULL;
8646
8647 if (!dprintf_args)
8648 return;
8649
8650 dprintf_args = skip_spaces (dprintf_args);
8651
8652 /* Allow a comma, as it may have terminated a location, but don't
8653 insist on it. */
8654 if (*dprintf_args == ',')
8655 ++dprintf_args;
8656 dprintf_args = skip_spaces (dprintf_args);
8657
8658 if (*dprintf_args != '"')
8659 error (_("Bad format string, missing '\"'."));
8660
8661 if (strcmp (dprintf_style, dprintf_style_gdb) == 0)
8662 printf_line = xstrprintf ("printf %s", dprintf_args);
8663 else if (strcmp (dprintf_style, dprintf_style_call) == 0)
8664 {
8665 if (!dprintf_function)
8666 error (_("No function supplied for dprintf call"));
8667
8668 if (dprintf_channel && strlen (dprintf_channel) > 0)
8669 printf_line = xstrprintf ("call (void) %s (%s,%s)",
8670 dprintf_function,
8671 dprintf_channel,
8672 dprintf_args);
8673 else
8674 printf_line = xstrprintf ("call (void) %s (%s)",
8675 dprintf_function,
8676 dprintf_args);
8677 }
8678 else if (strcmp (dprintf_style, dprintf_style_agent) == 0)
8679 {
8680 if (target_can_run_breakpoint_commands ())
8681 printf_line = xstrprintf ("agent-printf %s", dprintf_args);
8682 else
8683 {
8684 warning (_("Target cannot run dprintf commands, falling back to GDB printf"));
8685 printf_line = xstrprintf ("printf %s", dprintf_args);
8686 }
8687 }
8688 else
8689 internal_error (__FILE__, __LINE__,
8690 _("Invalid dprintf style."));
8691
8692 gdb_assert (printf_line != NULL);
8693
8694 /* Manufacture a printf sequence. */
8695 struct command_line *printf_cmd_line
8696 = new struct command_line (simple_control, printf_line);
8697 breakpoint_set_commands (b, counted_command_line (printf_cmd_line,
8698 command_lines_deleter ()));
8699 }
8700
8701 /* Update all dprintf commands, making their command lists reflect
8702 current style settings. */
8703
8704 static void
8705 update_dprintf_commands (const char *args, int from_tty,
8706 struct cmd_list_element *c)
8707 {
8708 struct breakpoint *b;
8709
8710 ALL_BREAKPOINTS (b)
8711 {
8712 if (b->type == bp_dprintf)
8713 update_dprintf_command_list (b);
8714 }
8715 }
8716
8717 /* Create a breakpoint with SAL as location. Use LOCATION
8718 as a description of the location, and COND_STRING
8719 as condition expression. If LOCATION is NULL then create an
8720 "address location" from the address in the SAL. */
8721
8722 static void
8723 init_breakpoint_sal (struct breakpoint *b, struct gdbarch *gdbarch,
8724 gdb::array_view<const symtab_and_line> sals,
8725 event_location_up &&location,
8726 gdb::unique_xmalloc_ptr<char> filter,
8727 gdb::unique_xmalloc_ptr<char> cond_string,
8728 gdb::unique_xmalloc_ptr<char> extra_string,
8729 enum bptype type, enum bpdisp disposition,
8730 int thread, int task, int ignore_count,
8731 const struct breakpoint_ops *ops, int from_tty,
8732 int enabled, int internal, unsigned flags,
8733 int display_canonical)
8734 {
8735 int i;
8736
8737 if (type == bp_hardware_breakpoint)
8738 {
8739 int target_resources_ok;
8740
8741 i = hw_breakpoint_used_count ();
8742 target_resources_ok =
8743 target_can_use_hardware_watchpoint (bp_hardware_breakpoint,
8744 i + 1, 0);
8745 if (target_resources_ok == 0)
8746 error (_("No hardware breakpoint support in the target."));
8747 else if (target_resources_ok < 0)
8748 error (_("Hardware breakpoints used exceeds limit."));
8749 }
8750
8751 gdb_assert (!sals.empty ());
8752
8753 for (const auto &sal : sals)
8754 {
8755 struct bp_location *loc;
8756
8757 if (from_tty)
8758 {
8759 struct gdbarch *loc_gdbarch = get_sal_arch (sal);
8760 if (!loc_gdbarch)
8761 loc_gdbarch = gdbarch;
8762
8763 describe_other_breakpoints (loc_gdbarch,
8764 sal.pspace, sal.pc, sal.section, thread);
8765 }
8766
8767 if (&sal == &sals[0])
8768 {
8769 init_raw_breakpoint (b, gdbarch, sal, type, ops);
8770 b->thread = thread;
8771 b->task = task;
8772
8773 b->cond_string = cond_string.release ();
8774 b->extra_string = extra_string.release ();
8775 b->ignore_count = ignore_count;
8776 b->enable_state = enabled ? bp_enabled : bp_disabled;
8777 b->disposition = disposition;
8778
8779 if ((flags & CREATE_BREAKPOINT_FLAGS_INSERTED) != 0)
8780 b->loc->inserted = 1;
8781
8782 if (type == bp_static_tracepoint)
8783 {
8784 struct tracepoint *t = (struct tracepoint *) b;
8785 struct static_tracepoint_marker marker;
8786
8787 if (strace_marker_p (b))
8788 {
8789 /* We already know the marker exists, otherwise, we
8790 wouldn't see a sal for it. */
8791 const char *p
8792 = &event_location_to_string (b->location.get ())[3];
8793 const char *endp;
8794
8795 p = skip_spaces (p);
8796
8797 endp = skip_to_space (p);
8798
8799 t->static_trace_marker_id.assign (p, endp - p);
8800
8801 printf_filtered (_("Probed static tracepoint "
8802 "marker \"%s\"\n"),
8803 t->static_trace_marker_id.c_str ());
8804 }
8805 else if (target_static_tracepoint_marker_at (sal.pc, &marker))
8806 {
8807 t->static_trace_marker_id = std::move (marker.str_id);
8808
8809 printf_filtered (_("Probed static tracepoint "
8810 "marker \"%s\"\n"),
8811 t->static_trace_marker_id.c_str ());
8812 }
8813 else
8814 warning (_("Couldn't determine the static "
8815 "tracepoint marker to probe"));
8816 }
8817
8818 loc = b->loc;
8819 }
8820 else
8821 {
8822 loc = add_location_to_breakpoint (b, &sal);
8823 if ((flags & CREATE_BREAKPOINT_FLAGS_INSERTED) != 0)
8824 loc->inserted = 1;
8825 }
8826
8827 if (b->cond_string)
8828 {
8829 const char *arg = b->cond_string;
8830
8831 loc->cond = parse_exp_1 (&arg, loc->address,
8832 block_for_pc (loc->address), 0);
8833 if (*arg)
8834 error (_("Garbage '%s' follows condition"), arg);
8835 }
8836
8837 /* Dynamic printf requires and uses additional arguments on the
8838 command line, otherwise it's an error. */
8839 if (type == bp_dprintf)
8840 {
8841 if (b->extra_string)
8842 update_dprintf_command_list (b);
8843 else
8844 error (_("Format string required"));
8845 }
8846 else if (b->extra_string)
8847 error (_("Garbage '%s' at end of command"), b->extra_string);
8848 }
8849
8850 b->display_canonical = display_canonical;
8851 if (location != NULL)
8852 b->location = std::move (location);
8853 else
8854 b->location = new_address_location (b->loc->address, NULL, 0);
8855 b->filter = std::move (filter);
8856 }
8857
8858 static void
8859 create_breakpoint_sal (struct gdbarch *gdbarch,
8860 gdb::array_view<const symtab_and_line> sals,
8861 event_location_up &&location,
8862 gdb::unique_xmalloc_ptr<char> filter,
8863 gdb::unique_xmalloc_ptr<char> cond_string,
8864 gdb::unique_xmalloc_ptr<char> extra_string,
8865 enum bptype type, enum bpdisp disposition,
8866 int thread, int task, int ignore_count,
8867 const struct breakpoint_ops *ops, int from_tty,
8868 int enabled, int internal, unsigned flags,
8869 int display_canonical)
8870 {
8871 std::unique_ptr<breakpoint> b = new_breakpoint_from_type (type);
8872
8873 init_breakpoint_sal (b.get (), gdbarch,
8874 sals, std::move (location),
8875 std::move (filter),
8876 std::move (cond_string),
8877 std::move (extra_string),
8878 type, disposition,
8879 thread, task, ignore_count,
8880 ops, from_tty,
8881 enabled, internal, flags,
8882 display_canonical);
8883
8884 install_breakpoint (internal, std::move (b), 0);
8885 }
8886
8887 /* Add SALS.nelts breakpoints to the breakpoint table. For each
8888 SALS.sal[i] breakpoint, include the corresponding ADDR_STRING[i]
8889 value. COND_STRING, if not NULL, specified the condition to be
8890 used for all breakpoints. Essentially the only case where
8891 SALS.nelts is not 1 is when we set a breakpoint on an overloaded
8892 function. In that case, it's still not possible to specify
8893 separate conditions for different overloaded functions, so
8894 we take just a single condition string.
8895
8896 NOTE: If the function succeeds, the caller is expected to cleanup
8897 the arrays ADDR_STRING, COND_STRING, and SALS (but not the
8898 array contents). If the function fails (error() is called), the
8899 caller is expected to cleanups both the ADDR_STRING, COND_STRING,
8900 COND and SALS arrays and each of those arrays contents. */
8901
8902 static void
8903 create_breakpoints_sal (struct gdbarch *gdbarch,
8904 struct linespec_result *canonical,
8905 gdb::unique_xmalloc_ptr<char> cond_string,
8906 gdb::unique_xmalloc_ptr<char> extra_string,
8907 enum bptype type, enum bpdisp disposition,
8908 int thread, int task, int ignore_count,
8909 const struct breakpoint_ops *ops, int from_tty,
8910 int enabled, int internal, unsigned flags)
8911 {
8912 if (canonical->pre_expanded)
8913 gdb_assert (canonical->lsals.size () == 1);
8914
8915 for (const auto &lsal : canonical->lsals)
8916 {
8917 /* Note that 'location' can be NULL in the case of a plain
8918 'break', without arguments. */
8919 event_location_up location
8920 = (canonical->location != NULL
8921 ? copy_event_location (canonical->location.get ()) : NULL);
8922 gdb::unique_xmalloc_ptr<char> filter_string
8923 (lsal.canonical != NULL ? xstrdup (lsal.canonical) : NULL);
8924
8925 create_breakpoint_sal (gdbarch, lsal.sals,
8926 std::move (location),
8927 std::move (filter_string),
8928 std::move (cond_string),
8929 std::move (extra_string),
8930 type, disposition,
8931 thread, task, ignore_count, ops,
8932 from_tty, enabled, internal, flags,
8933 canonical->special_display);
8934 }
8935 }
8936
8937 /* Parse LOCATION which is assumed to be a SAL specification possibly
8938 followed by conditionals. On return, SALS contains an array of SAL
8939 addresses found. LOCATION points to the end of the SAL (for
8940 linespec locations).
8941
8942 The array and the line spec strings are allocated on the heap, it is
8943 the caller's responsibility to free them. */
8944
8945 static void
8946 parse_breakpoint_sals (const struct event_location *location,
8947 struct linespec_result *canonical)
8948 {
8949 struct symtab_and_line cursal;
8950
8951 if (event_location_type (location) == LINESPEC_LOCATION)
8952 {
8953 const char *spec = get_linespec_location (location)->spec_string;
8954
8955 if (spec == NULL)
8956 {
8957 /* The last displayed codepoint, if it's valid, is our default
8958 breakpoint address. */
8959 if (last_displayed_sal_is_valid ())
8960 {
8961 /* Set sal's pspace, pc, symtab, and line to the values
8962 corresponding to the last call to print_frame_info.
8963 Be sure to reinitialize LINE with NOTCURRENT == 0
8964 as the breakpoint line number is inappropriate otherwise.
8965 find_pc_line would adjust PC, re-set it back. */
8966 symtab_and_line sal = get_last_displayed_sal ();
8967 CORE_ADDR pc = sal.pc;
8968
8969 sal = find_pc_line (pc, 0);
8970
8971 /* "break" without arguments is equivalent to "break *PC"
8972 where PC is the last displayed codepoint's address. So
8973 make sure to set sal.explicit_pc to prevent GDB from
8974 trying to expand the list of sals to include all other
8975 instances with the same symtab and line. */
8976 sal.pc = pc;
8977 sal.explicit_pc = 1;
8978
8979 struct linespec_sals lsal;
8980 lsal.sals = {sal};
8981 lsal.canonical = NULL;
8982
8983 canonical->lsals.push_back (std::move (lsal));
8984 return;
8985 }
8986 else
8987 error (_("No default breakpoint address now."));
8988 }
8989 }
8990
8991 /* Force almost all breakpoints to be in terms of the
8992 current_source_symtab (which is decode_line_1's default).
8993 This should produce the results we want almost all of the
8994 time while leaving default_breakpoint_* alone.
8995
8996 ObjC: However, don't match an Objective-C method name which
8997 may have a '+' or '-' succeeded by a '['. */
8998 cursal = get_current_source_symtab_and_line ();
8999 if (last_displayed_sal_is_valid ())
9000 {
9001 const char *spec = NULL;
9002
9003 if (event_location_type (location) == LINESPEC_LOCATION)
9004 spec = get_linespec_location (location)->spec_string;
9005
9006 if (!cursal.symtab
9007 || (spec != NULL
9008 && strchr ("+-", spec[0]) != NULL
9009 && spec[1] != '['))
9010 {
9011 decode_line_full (location, DECODE_LINE_FUNFIRSTLINE, NULL,
9012 get_last_displayed_symtab (),
9013 get_last_displayed_line (),
9014 canonical, NULL, NULL);
9015 return;
9016 }
9017 }
9018
9019 decode_line_full (location, DECODE_LINE_FUNFIRSTLINE, NULL,
9020 cursal.symtab, cursal.line, canonical, NULL, NULL);
9021 }
9022
9023
9024 /* Convert each SAL into a real PC. Verify that the PC can be
9025 inserted as a breakpoint. If it can't throw an error. */
9026
9027 static void
9028 breakpoint_sals_to_pc (std::vector<symtab_and_line> &sals)
9029 {
9030 for (auto &sal : sals)
9031 resolve_sal_pc (&sal);
9032 }
9033
9034 /* Fast tracepoints may have restrictions on valid locations. For
9035 instance, a fast tracepoint using a jump instead of a trap will
9036 likely have to overwrite more bytes than a trap would, and so can
9037 only be placed where the instruction is longer than the jump, or a
9038 multi-instruction sequence does not have a jump into the middle of
9039 it, etc. */
9040
9041 static void
9042 check_fast_tracepoint_sals (struct gdbarch *gdbarch,
9043 gdb::array_view<const symtab_and_line> sals)
9044 {
9045 for (const auto &sal : sals)
9046 {
9047 struct gdbarch *sarch;
9048
9049 sarch = get_sal_arch (sal);
9050 /* We fall back to GDBARCH if there is no architecture
9051 associated with SAL. */
9052 if (sarch == NULL)
9053 sarch = gdbarch;
9054 std::string msg;
9055 if (!gdbarch_fast_tracepoint_valid_at (sarch, sal.pc, &msg))
9056 error (_("May not have a fast tracepoint at %s%s"),
9057 paddress (sarch, sal.pc), msg.c_str ());
9058 }
9059 }
9060
9061 /* Given TOK, a string specification of condition and thread, as
9062 accepted by the 'break' command, extract the condition
9063 string and thread number and set *COND_STRING and *THREAD.
9064 PC identifies the context at which the condition should be parsed.
9065 If no condition is found, *COND_STRING is set to NULL.
9066 If no thread is found, *THREAD is set to -1. */
9067
9068 static void
9069 find_condition_and_thread (const char *tok, CORE_ADDR pc,
9070 char **cond_string, int *thread, int *task,
9071 char **rest)
9072 {
9073 *cond_string = NULL;
9074 *thread = -1;
9075 *task = 0;
9076 *rest = NULL;
9077
9078 while (tok && *tok)
9079 {
9080 const char *end_tok;
9081 int toklen;
9082 const char *cond_start = NULL;
9083 const char *cond_end = NULL;
9084
9085 tok = skip_spaces (tok);
9086
9087 if ((*tok == '"' || *tok == ',') && rest)
9088 {
9089 *rest = savestring (tok, strlen (tok));
9090 return;
9091 }
9092
9093 end_tok = skip_to_space (tok);
9094
9095 toklen = end_tok - tok;
9096
9097 if (toklen >= 1 && strncmp (tok, "if", toklen) == 0)
9098 {
9099 tok = cond_start = end_tok + 1;
9100 parse_exp_1 (&tok, pc, block_for_pc (pc), 0);
9101 cond_end = tok;
9102 *cond_string = savestring (cond_start, cond_end - cond_start);
9103 }
9104 else if (toklen >= 1 && strncmp (tok, "thread", toklen) == 0)
9105 {
9106 const char *tmptok;
9107 struct thread_info *thr;
9108
9109 tok = end_tok + 1;
9110 thr = parse_thread_id (tok, &tmptok);
9111 if (tok == tmptok)
9112 error (_("Junk after thread keyword."));
9113 *thread = thr->global_num;
9114 tok = tmptok;
9115 }
9116 else if (toklen >= 1 && strncmp (tok, "task", toklen) == 0)
9117 {
9118 char *tmptok;
9119
9120 tok = end_tok + 1;
9121 *task = strtol (tok, &tmptok, 0);
9122 if (tok == tmptok)
9123 error (_("Junk after task keyword."));
9124 if (!valid_task_id (*task))
9125 error (_("Unknown task %d."), *task);
9126 tok = tmptok;
9127 }
9128 else if (rest)
9129 {
9130 *rest = savestring (tok, strlen (tok));
9131 return;
9132 }
9133 else
9134 error (_("Junk at end of arguments."));
9135 }
9136 }
9137
9138 /* Decode a static tracepoint marker spec. */
9139
9140 static std::vector<symtab_and_line>
9141 decode_static_tracepoint_spec (const char **arg_p)
9142 {
9143 const char *p = &(*arg_p)[3];
9144 const char *endp;
9145
9146 p = skip_spaces (p);
9147
9148 endp = skip_to_space (p);
9149
9150 std::string marker_str (p, endp - p);
9151
9152 std::vector<static_tracepoint_marker> markers
9153 = target_static_tracepoint_markers_by_strid (marker_str.c_str ());
9154 if (markers.empty ())
9155 error (_("No known static tracepoint marker named %s"),
9156 marker_str.c_str ());
9157
9158 std::vector<symtab_and_line> sals;
9159 sals.reserve (markers.size ());
9160
9161 for (const static_tracepoint_marker &marker : markers)
9162 {
9163 symtab_and_line sal = find_pc_line (marker.address, 0);
9164 sal.pc = marker.address;
9165 sals.push_back (sal);
9166 }
9167
9168 *arg_p = endp;
9169 return sals;
9170 }
9171
9172 /* See breakpoint.h. */
9173
9174 int
9175 create_breakpoint (struct gdbarch *gdbarch,
9176 const struct event_location *location,
9177 const char *cond_string,
9178 int thread, const char *extra_string,
9179 int parse_extra,
9180 int tempflag, enum bptype type_wanted,
9181 int ignore_count,
9182 enum auto_boolean pending_break_support,
9183 const struct breakpoint_ops *ops,
9184 int from_tty, int enabled, int internal,
9185 unsigned flags)
9186 {
9187 struct linespec_result canonical;
9188 int pending = 0;
9189 int task = 0;
9190 int prev_bkpt_count = breakpoint_count;
9191
9192 gdb_assert (ops != NULL);
9193
9194 /* If extra_string isn't useful, set it to NULL. */
9195 if (extra_string != NULL && *extra_string == '\0')
9196 extra_string = NULL;
9197
9198 try
9199 {
9200 ops->create_sals_from_location (location, &canonical, type_wanted);
9201 }
9202 catch (const gdb_exception_error &e)
9203 {
9204 /* If caller is interested in rc value from parse, set
9205 value. */
9206 if (e.error == NOT_FOUND_ERROR)
9207 {
9208 /* If pending breakpoint support is turned off, throw
9209 error. */
9210
9211 if (pending_break_support == AUTO_BOOLEAN_FALSE)
9212 throw;
9213
9214 exception_print (gdb_stderr, e);
9215
9216 /* If pending breakpoint support is auto query and the user
9217 selects no, then simply return the error code. */
9218 if (pending_break_support == AUTO_BOOLEAN_AUTO
9219 && !nquery (_("Make %s pending on future shared library load? "),
9220 bptype_string (type_wanted)))
9221 return 0;
9222
9223 /* At this point, either the user was queried about setting
9224 a pending breakpoint and selected yes, or pending
9225 breakpoint behavior is on and thus a pending breakpoint
9226 is defaulted on behalf of the user. */
9227 pending = 1;
9228 }
9229 else
9230 throw;
9231 }
9232
9233 if (!pending && canonical.lsals.empty ())
9234 return 0;
9235
9236 /* Resolve all line numbers to PC's and verify that the addresses
9237 are ok for the target. */
9238 if (!pending)
9239 {
9240 for (auto &lsal : canonical.lsals)
9241 breakpoint_sals_to_pc (lsal.sals);
9242 }
9243
9244 /* Fast tracepoints may have additional restrictions on location. */
9245 if (!pending && type_wanted == bp_fast_tracepoint)
9246 {
9247 for (const auto &lsal : canonical.lsals)
9248 check_fast_tracepoint_sals (gdbarch, lsal.sals);
9249 }
9250
9251 /* Verify that condition can be parsed, before setting any
9252 breakpoints. Allocate a separate condition expression for each
9253 breakpoint. */
9254 if (!pending)
9255 {
9256 gdb::unique_xmalloc_ptr<char> cond_string_copy;
9257 gdb::unique_xmalloc_ptr<char> extra_string_copy;
9258
9259 if (parse_extra)
9260 {
9261 char *rest;
9262 char *cond;
9263
9264 const linespec_sals &lsal = canonical.lsals[0];
9265
9266 /* Here we only parse 'arg' to separate condition
9267 from thread number, so parsing in context of first
9268 sal is OK. When setting the breakpoint we'll
9269 re-parse it in context of each sal. */
9270
9271 find_condition_and_thread (extra_string, lsal.sals[0].pc,
9272 &cond, &thread, &task, &rest);
9273 cond_string_copy.reset (cond);
9274 extra_string_copy.reset (rest);
9275 }
9276 else
9277 {
9278 if (type_wanted != bp_dprintf
9279 && extra_string != NULL && *extra_string != '\0')
9280 error (_("Garbage '%s' at end of location"), extra_string);
9281
9282 /* Create a private copy of condition string. */
9283 if (cond_string)
9284 cond_string_copy.reset (xstrdup (cond_string));
9285 /* Create a private copy of any extra string. */
9286 if (extra_string)
9287 extra_string_copy.reset (xstrdup (extra_string));
9288 }
9289
9290 ops->create_breakpoints_sal (gdbarch, &canonical,
9291 std::move (cond_string_copy),
9292 std::move (extra_string_copy),
9293 type_wanted,
9294 tempflag ? disp_del : disp_donttouch,
9295 thread, task, ignore_count, ops,
9296 from_tty, enabled, internal, flags);
9297 }
9298 else
9299 {
9300 std::unique_ptr <breakpoint> b = new_breakpoint_from_type (type_wanted);
9301
9302 init_raw_breakpoint_without_location (b.get (), gdbarch, type_wanted, ops);
9303 b->location = copy_event_location (location);
9304
9305 if (parse_extra)
9306 b->cond_string = NULL;
9307 else
9308 {
9309 /* Create a private copy of condition string. */
9310 b->cond_string = cond_string != NULL ? xstrdup (cond_string) : NULL;
9311 b->thread = thread;
9312 }
9313
9314 /* Create a private copy of any extra string. */
9315 b->extra_string = extra_string != NULL ? xstrdup (extra_string) : NULL;
9316 b->ignore_count = ignore_count;
9317 b->disposition = tempflag ? disp_del : disp_donttouch;
9318 b->condition_not_parsed = 1;
9319 b->enable_state = enabled ? bp_enabled : bp_disabled;
9320 if ((type_wanted != bp_breakpoint
9321 && type_wanted != bp_hardware_breakpoint) || thread != -1)
9322 b->pspace = current_program_space;
9323
9324 install_breakpoint (internal, std::move (b), 0);
9325 }
9326
9327 if (canonical.lsals.size () > 1)
9328 {
9329 warning (_("Multiple breakpoints were set.\nUse the "
9330 "\"delete\" command to delete unwanted breakpoints."));
9331 prev_breakpoint_count = prev_bkpt_count;
9332 }
9333
9334 update_global_location_list (UGLL_MAY_INSERT);
9335
9336 return 1;
9337 }
9338
9339 /* Set a breakpoint.
9340 ARG is a string describing breakpoint address,
9341 condition, and thread.
9342 FLAG specifies if a breakpoint is hardware on,
9343 and if breakpoint is temporary, using BP_HARDWARE_FLAG
9344 and BP_TEMPFLAG. */
9345
9346 static void
9347 break_command_1 (const char *arg, int flag, int from_tty)
9348 {
9349 int tempflag = flag & BP_TEMPFLAG;
9350 enum bptype type_wanted = (flag & BP_HARDWAREFLAG
9351 ? bp_hardware_breakpoint
9352 : bp_breakpoint);
9353 struct breakpoint_ops *ops;
9354
9355 event_location_up location = string_to_event_location (&arg, current_language);
9356
9357 /* Matching breakpoints on probes. */
9358 if (location != NULL
9359 && event_location_type (location.get ()) == PROBE_LOCATION)
9360 ops = &bkpt_probe_breakpoint_ops;
9361 else
9362 ops = &bkpt_breakpoint_ops;
9363
9364 create_breakpoint (get_current_arch (),
9365 location.get (),
9366 NULL, 0, arg, 1 /* parse arg */,
9367 tempflag, type_wanted,
9368 0 /* Ignore count */,
9369 pending_break_support,
9370 ops,
9371 from_tty,
9372 1 /* enabled */,
9373 0 /* internal */,
9374 0);
9375 }
9376
9377 /* Helper function for break_command_1 and disassemble_command. */
9378
9379 void
9380 resolve_sal_pc (struct symtab_and_line *sal)
9381 {
9382 CORE_ADDR pc;
9383
9384 if (sal->pc == 0 && sal->symtab != NULL)
9385 {
9386 if (!find_line_pc (sal->symtab, sal->line, &pc))
9387 error (_("No line %d in file \"%s\"."),
9388 sal->line, symtab_to_filename_for_display (sal->symtab));
9389 sal->pc = pc;
9390
9391 /* If this SAL corresponds to a breakpoint inserted using a line
9392 number, then skip the function prologue if necessary. */
9393 if (sal->explicit_line)
9394 skip_prologue_sal (sal);
9395 }
9396
9397 if (sal->section == 0 && sal->symtab != NULL)
9398 {
9399 const struct blockvector *bv;
9400 const struct block *b;
9401 struct symbol *sym;
9402
9403 bv = blockvector_for_pc_sect (sal->pc, 0, &b,
9404 SYMTAB_COMPUNIT (sal->symtab));
9405 if (bv != NULL)
9406 {
9407 sym = block_linkage_function (b);
9408 if (sym != NULL)
9409 {
9410 fixup_symbol_section (sym, SYMTAB_OBJFILE (sal->symtab));
9411 sal->section = SYMBOL_OBJ_SECTION (SYMTAB_OBJFILE (sal->symtab),
9412 sym);
9413 }
9414 else
9415 {
9416 /* It really is worthwhile to have the section, so we'll
9417 just have to look harder. This case can be executed
9418 if we have line numbers but no functions (as can
9419 happen in assembly source). */
9420
9421 scoped_restore_current_pspace_and_thread restore_pspace_thread;
9422 switch_to_program_space_and_thread (sal->pspace);
9423
9424 bound_minimal_symbol msym = lookup_minimal_symbol_by_pc (sal->pc);
9425 if (msym.minsym)
9426 sal->section = MSYMBOL_OBJ_SECTION (msym.objfile, msym.minsym);
9427 }
9428 }
9429 }
9430 }
9431
9432 void
9433 break_command (const char *arg, int from_tty)
9434 {
9435 break_command_1 (arg, 0, from_tty);
9436 }
9437
9438 void
9439 tbreak_command (const char *arg, int from_tty)
9440 {
9441 break_command_1 (arg, BP_TEMPFLAG, from_tty);
9442 }
9443
9444 static void
9445 hbreak_command (const char *arg, int from_tty)
9446 {
9447 break_command_1 (arg, BP_HARDWAREFLAG, from_tty);
9448 }
9449
9450 static void
9451 thbreak_command (const char *arg, int from_tty)
9452 {
9453 break_command_1 (arg, (BP_TEMPFLAG | BP_HARDWAREFLAG), from_tty);
9454 }
9455
9456 static void
9457 stop_command (const char *arg, int from_tty)
9458 {
9459 printf_filtered (_("Specify the type of breakpoint to set.\n\
9460 Usage: stop in <function | address>\n\
9461 stop at <line>\n"));
9462 }
9463
9464 static void
9465 stopin_command (const char *arg, int from_tty)
9466 {
9467 int badInput = 0;
9468
9469 if (arg == NULL)
9470 badInput = 1;
9471 else if (*arg != '*')
9472 {
9473 const char *argptr = arg;
9474 int hasColon = 0;
9475
9476 /* Look for a ':'. If this is a line number specification, then
9477 say it is bad, otherwise, it should be an address or
9478 function/method name. */
9479 while (*argptr && !hasColon)
9480 {
9481 hasColon = (*argptr == ':');
9482 argptr++;
9483 }
9484
9485 if (hasColon)
9486 badInput = (*argptr != ':'); /* Not a class::method */
9487 else
9488 badInput = isdigit (*arg); /* a simple line number */
9489 }
9490
9491 if (badInput)
9492 printf_filtered (_("Usage: stop in <function | address>\n"));
9493 else
9494 break_command_1 (arg, 0, from_tty);
9495 }
9496
9497 static void
9498 stopat_command (const char *arg, int from_tty)
9499 {
9500 int badInput = 0;
9501
9502 if (arg == NULL || *arg == '*') /* no line number */
9503 badInput = 1;
9504 else
9505 {
9506 const char *argptr = arg;
9507 int hasColon = 0;
9508
9509 /* Look for a ':'. If there is a '::' then get out, otherwise
9510 it is probably a line number. */
9511 while (*argptr && !hasColon)
9512 {
9513 hasColon = (*argptr == ':');
9514 argptr++;
9515 }
9516
9517 if (hasColon)
9518 badInput = (*argptr == ':'); /* we have class::method */
9519 else
9520 badInput = !isdigit (*arg); /* not a line number */
9521 }
9522
9523 if (badInput)
9524 printf_filtered (_("Usage: stop at LINE\n"));
9525 else
9526 break_command_1 (arg, 0, from_tty);
9527 }
9528
9529 /* The dynamic printf command is mostly like a regular breakpoint, but
9530 with a prewired command list consisting of a single output command,
9531 built from extra arguments supplied on the dprintf command
9532 line. */
9533
9534 static void
9535 dprintf_command (const char *arg, int from_tty)
9536 {
9537 event_location_up location = string_to_event_location (&arg, current_language);
9538
9539 /* If non-NULL, ARG should have been advanced past the location;
9540 the next character must be ','. */
9541 if (arg != NULL)
9542 {
9543 if (arg[0] != ',' || arg[1] == '\0')
9544 error (_("Format string required"));
9545 else
9546 {
9547 /* Skip the comma. */
9548 ++arg;
9549 }
9550 }
9551
9552 create_breakpoint (get_current_arch (),
9553 location.get (),
9554 NULL, 0, arg, 1 /* parse arg */,
9555 0, bp_dprintf,
9556 0 /* Ignore count */,
9557 pending_break_support,
9558 &dprintf_breakpoint_ops,
9559 from_tty,
9560 1 /* enabled */,
9561 0 /* internal */,
9562 0);
9563 }
9564
9565 static void
9566 agent_printf_command (const char *arg, int from_tty)
9567 {
9568 error (_("May only run agent-printf on the target"));
9569 }
9570
9571 /* Implement the "breakpoint_hit" breakpoint_ops method for
9572 ranged breakpoints. */
9573
9574 static int
9575 breakpoint_hit_ranged_breakpoint (const struct bp_location *bl,
9576 const address_space *aspace,
9577 CORE_ADDR bp_addr,
9578 const struct target_waitstatus *ws)
9579 {
9580 if (ws->kind != TARGET_WAITKIND_STOPPED
9581 || ws->value.sig != GDB_SIGNAL_TRAP)
9582 return 0;
9583
9584 return breakpoint_address_match_range (bl->pspace->aspace, bl->address,
9585 bl->length, aspace, bp_addr);
9586 }
9587
9588 /* Implement the "resources_needed" breakpoint_ops method for
9589 ranged breakpoints. */
9590
9591 static int
9592 resources_needed_ranged_breakpoint (const struct bp_location *bl)
9593 {
9594 return target_ranged_break_num_registers ();
9595 }
9596
9597 /* Implement the "print_it" breakpoint_ops method for
9598 ranged breakpoints. */
9599
9600 static enum print_stop_action
9601 print_it_ranged_breakpoint (bpstat bs)
9602 {
9603 struct breakpoint *b = bs->breakpoint_at;
9604 struct bp_location *bl = b->loc;
9605 struct ui_out *uiout = current_uiout;
9606
9607 gdb_assert (b->type == bp_hardware_breakpoint);
9608
9609 /* Ranged breakpoints have only one location. */
9610 gdb_assert (bl && bl->next == NULL);
9611
9612 annotate_breakpoint (b->number);
9613
9614 maybe_print_thread_hit_breakpoint (uiout);
9615
9616 if (b->disposition == disp_del)
9617 uiout->text ("Temporary ranged breakpoint ");
9618 else
9619 uiout->text ("Ranged breakpoint ");
9620 if (uiout->is_mi_like_p ())
9621 {
9622 uiout->field_string ("reason",
9623 async_reason_lookup (EXEC_ASYNC_BREAKPOINT_HIT));
9624 uiout->field_string ("disp", bpdisp_text (b->disposition));
9625 }
9626 uiout->field_signed ("bkptno", b->number);
9627 uiout->text (", ");
9628
9629 return PRINT_SRC_AND_LOC;
9630 }
9631
9632 /* Implement the "print_one" breakpoint_ops method for
9633 ranged breakpoints. */
9634
9635 static void
9636 print_one_ranged_breakpoint (struct breakpoint *b,
9637 struct bp_location **last_loc)
9638 {
9639 struct bp_location *bl = b->loc;
9640 struct value_print_options opts;
9641 struct ui_out *uiout = current_uiout;
9642
9643 /* Ranged breakpoints have only one location. */
9644 gdb_assert (bl && bl->next == NULL);
9645
9646 get_user_print_options (&opts);
9647
9648 if (opts.addressprint)
9649 /* We don't print the address range here, it will be printed later
9650 by print_one_detail_ranged_breakpoint. */
9651 uiout->field_skip ("addr");
9652 annotate_field (5);
9653 print_breakpoint_location (b, bl);
9654 *last_loc = bl;
9655 }
9656
9657 /* Implement the "print_one_detail" breakpoint_ops method for
9658 ranged breakpoints. */
9659
9660 static void
9661 print_one_detail_ranged_breakpoint (const struct breakpoint *b,
9662 struct ui_out *uiout)
9663 {
9664 CORE_ADDR address_start, address_end;
9665 struct bp_location *bl = b->loc;
9666 string_file stb;
9667
9668 gdb_assert (bl);
9669
9670 address_start = bl->address;
9671 address_end = address_start + bl->length - 1;
9672
9673 uiout->text ("\taddress range: ");
9674 stb.printf ("[%s, %s]",
9675 print_core_address (bl->gdbarch, address_start),
9676 print_core_address (bl->gdbarch, address_end));
9677 uiout->field_stream ("addr", stb);
9678 uiout->text ("\n");
9679 }
9680
9681 /* Implement the "print_mention" breakpoint_ops method for
9682 ranged breakpoints. */
9683
9684 static void
9685 print_mention_ranged_breakpoint (struct breakpoint *b)
9686 {
9687 struct bp_location *bl = b->loc;
9688 struct ui_out *uiout = current_uiout;
9689
9690 gdb_assert (bl);
9691 gdb_assert (b->type == bp_hardware_breakpoint);
9692
9693 uiout->message (_("Hardware assisted ranged breakpoint %d from %s to %s."),
9694 b->number, paddress (bl->gdbarch, bl->address),
9695 paddress (bl->gdbarch, bl->address + bl->length - 1));
9696 }
9697
9698 /* Implement the "print_recreate" breakpoint_ops method for
9699 ranged breakpoints. */
9700
9701 static void
9702 print_recreate_ranged_breakpoint (struct breakpoint *b, struct ui_file *fp)
9703 {
9704 fprintf_unfiltered (fp, "break-range %s, %s",
9705 event_location_to_string (b->location.get ()),
9706 event_location_to_string (b->location_range_end.get ()));
9707 print_recreate_thread (b, fp);
9708 }
9709
9710 /* The breakpoint_ops structure to be used in ranged breakpoints. */
9711
9712 static struct breakpoint_ops ranged_breakpoint_ops;
9713
9714 /* Find the address where the end of the breakpoint range should be
9715 placed, given the SAL of the end of the range. This is so that if
9716 the user provides a line number, the end of the range is set to the
9717 last instruction of the given line. */
9718
9719 static CORE_ADDR
9720 find_breakpoint_range_end (struct symtab_and_line sal)
9721 {
9722 CORE_ADDR end;
9723
9724 /* If the user provided a PC value, use it. Otherwise,
9725 find the address of the end of the given location. */
9726 if (sal.explicit_pc)
9727 end = sal.pc;
9728 else
9729 {
9730 int ret;
9731 CORE_ADDR start;
9732
9733 ret = find_line_pc_range (sal, &start, &end);
9734 if (!ret)
9735 error (_("Could not find location of the end of the range."));
9736
9737 /* find_line_pc_range returns the start of the next line. */
9738 end--;
9739 }
9740
9741 return end;
9742 }
9743
9744 /* Implement the "break-range" CLI command. */
9745
9746 static void
9747 break_range_command (const char *arg, int from_tty)
9748 {
9749 const char *arg_start;
9750 struct linespec_result canonical_start, canonical_end;
9751 int bp_count, can_use_bp, length;
9752 CORE_ADDR end;
9753 struct breakpoint *b;
9754
9755 /* We don't support software ranged breakpoints. */
9756 if (target_ranged_break_num_registers () < 0)
9757 error (_("This target does not support hardware ranged breakpoints."));
9758
9759 bp_count = hw_breakpoint_used_count ();
9760 bp_count += target_ranged_break_num_registers ();
9761 can_use_bp = target_can_use_hardware_watchpoint (bp_hardware_breakpoint,
9762 bp_count, 0);
9763 if (can_use_bp < 0)
9764 error (_("Hardware breakpoints used exceeds limit."));
9765
9766 arg = skip_spaces (arg);
9767 if (arg == NULL || arg[0] == '\0')
9768 error(_("No address range specified."));
9769
9770 arg_start = arg;
9771 event_location_up start_location = string_to_event_location (&arg,
9772 current_language);
9773 parse_breakpoint_sals (start_location.get (), &canonical_start);
9774
9775 if (arg[0] != ',')
9776 error (_("Too few arguments."));
9777 else if (canonical_start.lsals.empty ())
9778 error (_("Could not find location of the beginning of the range."));
9779
9780 const linespec_sals &lsal_start = canonical_start.lsals[0];
9781
9782 if (canonical_start.lsals.size () > 1
9783 || lsal_start.sals.size () != 1)
9784 error (_("Cannot create a ranged breakpoint with multiple locations."));
9785
9786 const symtab_and_line &sal_start = lsal_start.sals[0];
9787 std::string addr_string_start (arg_start, arg - arg_start);
9788
9789 arg++; /* Skip the comma. */
9790 arg = skip_spaces (arg);
9791
9792 /* Parse the end location. */
9793
9794 arg_start = arg;
9795
9796 /* We call decode_line_full directly here instead of using
9797 parse_breakpoint_sals because we need to specify the start location's
9798 symtab and line as the default symtab and line for the end of the
9799 range. This makes it possible to have ranges like "foo.c:27, +14",
9800 where +14 means 14 lines from the start location. */
9801 event_location_up end_location = string_to_event_location (&arg,
9802 current_language);
9803 decode_line_full (end_location.get (), DECODE_LINE_FUNFIRSTLINE, NULL,
9804 sal_start.symtab, sal_start.line,
9805 &canonical_end, NULL, NULL);
9806
9807 if (canonical_end.lsals.empty ())
9808 error (_("Could not find location of the end of the range."));
9809
9810 const linespec_sals &lsal_end = canonical_end.lsals[0];
9811 if (canonical_end.lsals.size () > 1
9812 || lsal_end.sals.size () != 1)
9813 error (_("Cannot create a ranged breakpoint with multiple locations."));
9814
9815 const symtab_and_line &sal_end = lsal_end.sals[0];
9816
9817 end = find_breakpoint_range_end (sal_end);
9818 if (sal_start.pc > end)
9819 error (_("Invalid address range, end precedes start."));
9820
9821 length = end - sal_start.pc + 1;
9822 if (length < 0)
9823 /* Length overflowed. */
9824 error (_("Address range too large."));
9825 else if (length == 1)
9826 {
9827 /* This range is simple enough to be handled by
9828 the `hbreak' command. */
9829 hbreak_command (&addr_string_start[0], 1);
9830
9831 return;
9832 }
9833
9834 /* Now set up the breakpoint. */
9835 b = set_raw_breakpoint (get_current_arch (), sal_start,
9836 bp_hardware_breakpoint, &ranged_breakpoint_ops);
9837 set_breakpoint_count (breakpoint_count + 1);
9838 b->number = breakpoint_count;
9839 b->disposition = disp_donttouch;
9840 b->location = std::move (start_location);
9841 b->location_range_end = std::move (end_location);
9842 b->loc->length = length;
9843
9844 mention (b);
9845 gdb::observers::breakpoint_created.notify (b);
9846 update_global_location_list (UGLL_MAY_INSERT);
9847 }
9848
9849 /* Return non-zero if EXP is verified as constant. Returned zero
9850 means EXP is variable. Also the constant detection may fail for
9851 some constant expressions and in such case still falsely return
9852 zero. */
9853
9854 static int
9855 watchpoint_exp_is_const (const struct expression *exp)
9856 {
9857 int i = exp->nelts;
9858
9859 while (i > 0)
9860 {
9861 int oplenp, argsp;
9862
9863 /* We are only interested in the descriptor of each element. */
9864 operator_length (exp, i, &oplenp, &argsp);
9865 i -= oplenp;
9866
9867 switch (exp->elts[i].opcode)
9868 {
9869 case BINOP_ADD:
9870 case BINOP_SUB:
9871 case BINOP_MUL:
9872 case BINOP_DIV:
9873 case BINOP_REM:
9874 case BINOP_MOD:
9875 case BINOP_LSH:
9876 case BINOP_RSH:
9877 case BINOP_LOGICAL_AND:
9878 case BINOP_LOGICAL_OR:
9879 case BINOP_BITWISE_AND:
9880 case BINOP_BITWISE_IOR:
9881 case BINOP_BITWISE_XOR:
9882 case BINOP_EQUAL:
9883 case BINOP_NOTEQUAL:
9884 case BINOP_LESS:
9885 case BINOP_GTR:
9886 case BINOP_LEQ:
9887 case BINOP_GEQ:
9888 case BINOP_REPEAT:
9889 case BINOP_COMMA:
9890 case BINOP_EXP:
9891 case BINOP_MIN:
9892 case BINOP_MAX:
9893 case BINOP_INTDIV:
9894 case BINOP_CONCAT:
9895 case TERNOP_COND:
9896 case TERNOP_SLICE:
9897
9898 case OP_LONG:
9899 case OP_FLOAT:
9900 case OP_LAST:
9901 case OP_COMPLEX:
9902 case OP_STRING:
9903 case OP_ARRAY:
9904 case OP_TYPE:
9905 case OP_TYPEOF:
9906 case OP_DECLTYPE:
9907 case OP_TYPEID:
9908 case OP_NAME:
9909 case OP_OBJC_NSSTRING:
9910
9911 case UNOP_NEG:
9912 case UNOP_LOGICAL_NOT:
9913 case UNOP_COMPLEMENT:
9914 case UNOP_ADDR:
9915 case UNOP_HIGH:
9916 case UNOP_CAST:
9917
9918 case UNOP_CAST_TYPE:
9919 case UNOP_REINTERPRET_CAST:
9920 case UNOP_DYNAMIC_CAST:
9921 /* Unary, binary and ternary operators: We have to check
9922 their operands. If they are constant, then so is the
9923 result of that operation. For instance, if A and B are
9924 determined to be constants, then so is "A + B".
9925
9926 UNOP_IND is one exception to the rule above, because the
9927 value of *ADDR is not necessarily a constant, even when
9928 ADDR is. */
9929 break;
9930
9931 case OP_VAR_VALUE:
9932 /* Check whether the associated symbol is a constant.
9933
9934 We use SYMBOL_CLASS rather than TYPE_CONST because it's
9935 possible that a buggy compiler could mark a variable as
9936 constant even when it is not, and TYPE_CONST would return
9937 true in this case, while SYMBOL_CLASS wouldn't.
9938
9939 We also have to check for function symbols because they
9940 are always constant. */
9941 {
9942 struct symbol *s = exp->elts[i + 2].symbol;
9943
9944 if (SYMBOL_CLASS (s) != LOC_BLOCK
9945 && SYMBOL_CLASS (s) != LOC_CONST
9946 && SYMBOL_CLASS (s) != LOC_CONST_BYTES)
9947 return 0;
9948 break;
9949 }
9950
9951 /* The default action is to return 0 because we are using
9952 the optimistic approach here: If we don't know something,
9953 then it is not a constant. */
9954 default:
9955 return 0;
9956 }
9957 }
9958
9959 return 1;
9960 }
9961
9962 /* Watchpoint destructor. */
9963
9964 watchpoint::~watchpoint ()
9965 {
9966 xfree (this->exp_string);
9967 xfree (this->exp_string_reparse);
9968 }
9969
9970 /* Implement the "re_set" breakpoint_ops method for watchpoints. */
9971
9972 static void
9973 re_set_watchpoint (struct breakpoint *b)
9974 {
9975 struct watchpoint *w = (struct watchpoint *) b;
9976
9977 /* Watchpoint can be either on expression using entirely global
9978 variables, or it can be on local variables.
9979
9980 Watchpoints of the first kind are never auto-deleted, and even
9981 persist across program restarts. Since they can use variables
9982 from shared libraries, we need to reparse expression as libraries
9983 are loaded and unloaded.
9984
9985 Watchpoints on local variables can also change meaning as result
9986 of solib event. For example, if a watchpoint uses both a local
9987 and a global variables in expression, it's a local watchpoint,
9988 but unloading of a shared library will make the expression
9989 invalid. This is not a very common use case, but we still
9990 re-evaluate expression, to avoid surprises to the user.
9991
9992 Note that for local watchpoints, we re-evaluate it only if
9993 watchpoints frame id is still valid. If it's not, it means the
9994 watchpoint is out of scope and will be deleted soon. In fact,
9995 I'm not sure we'll ever be called in this case.
9996
9997 If a local watchpoint's frame id is still valid, then
9998 w->exp_valid_block is likewise valid, and we can safely use it.
9999
10000 Don't do anything about disabled watchpoints, since they will be
10001 reevaluated again when enabled. */
10002 update_watchpoint (w, 1 /* reparse */);
10003 }
10004
10005 /* Implement the "insert" breakpoint_ops method for hardware watchpoints. */
10006
10007 static int
10008 insert_watchpoint (struct bp_location *bl)
10009 {
10010 struct watchpoint *w = (struct watchpoint *) bl->owner;
10011 int length = w->exact ? 1 : bl->length;
10012
10013 return target_insert_watchpoint (bl->address, length, bl->watchpoint_type,
10014 w->cond_exp.get ());
10015 }
10016
10017 /* Implement the "remove" breakpoint_ops method for hardware watchpoints. */
10018
10019 static int
10020 remove_watchpoint (struct bp_location *bl, enum remove_bp_reason reason)
10021 {
10022 struct watchpoint *w = (struct watchpoint *) bl->owner;
10023 int length = w->exact ? 1 : bl->length;
10024
10025 return target_remove_watchpoint (bl->address, length, bl->watchpoint_type,
10026 w->cond_exp.get ());
10027 }
10028
10029 static int
10030 breakpoint_hit_watchpoint (const struct bp_location *bl,
10031 const address_space *aspace, CORE_ADDR bp_addr,
10032 const struct target_waitstatus *ws)
10033 {
10034 struct breakpoint *b = bl->owner;
10035 struct watchpoint *w = (struct watchpoint *) b;
10036
10037 /* Continuable hardware watchpoints are treated as non-existent if the
10038 reason we stopped wasn't a hardware watchpoint (we didn't stop on
10039 some data address). Otherwise gdb won't stop on a break instruction
10040 in the code (not from a breakpoint) when a hardware watchpoint has
10041 been defined. Also skip watchpoints which we know did not trigger
10042 (did not match the data address). */
10043 if (is_hardware_watchpoint (b)
10044 && w->watchpoint_triggered == watch_triggered_no)
10045 return 0;
10046
10047 return 1;
10048 }
10049
10050 static void
10051 check_status_watchpoint (bpstat bs)
10052 {
10053 gdb_assert (is_watchpoint (bs->breakpoint_at));
10054
10055 bpstat_check_watchpoint (bs);
10056 }
10057
10058 /* Implement the "resources_needed" breakpoint_ops method for
10059 hardware watchpoints. */
10060
10061 static int
10062 resources_needed_watchpoint (const struct bp_location *bl)
10063 {
10064 struct watchpoint *w = (struct watchpoint *) bl->owner;
10065 int length = w->exact? 1 : bl->length;
10066
10067 return target_region_ok_for_hw_watchpoint (bl->address, length);
10068 }
10069
10070 /* Implement the "works_in_software_mode" breakpoint_ops method for
10071 hardware watchpoints. */
10072
10073 static int
10074 works_in_software_mode_watchpoint (const struct breakpoint *b)
10075 {
10076 /* Read and access watchpoints only work with hardware support. */
10077 return b->type == bp_watchpoint || b->type == bp_hardware_watchpoint;
10078 }
10079
10080 static enum print_stop_action
10081 print_it_watchpoint (bpstat bs)
10082 {
10083 struct breakpoint *b;
10084 enum print_stop_action result;
10085 struct watchpoint *w;
10086 struct ui_out *uiout = current_uiout;
10087
10088 gdb_assert (bs->bp_location_at != NULL);
10089
10090 b = bs->breakpoint_at;
10091 w = (struct watchpoint *) b;
10092
10093 annotate_watchpoint (b->number);
10094 maybe_print_thread_hit_breakpoint (uiout);
10095
10096 string_file stb;
10097
10098 gdb::optional<ui_out_emit_tuple> tuple_emitter;
10099 switch (b->type)
10100 {
10101 case bp_watchpoint:
10102 case bp_hardware_watchpoint:
10103 if (uiout->is_mi_like_p ())
10104 uiout->field_string
10105 ("reason", async_reason_lookup (EXEC_ASYNC_WATCHPOINT_TRIGGER));
10106 mention (b);
10107 tuple_emitter.emplace (uiout, "value");
10108 uiout->text ("\nOld value = ");
10109 watchpoint_value_print (bs->old_val.get (), &stb);
10110 uiout->field_stream ("old", stb);
10111 uiout->text ("\nNew value = ");
10112 watchpoint_value_print (w->val.get (), &stb);
10113 uiout->field_stream ("new", stb);
10114 uiout->text ("\n");
10115 /* More than one watchpoint may have been triggered. */
10116 result = PRINT_UNKNOWN;
10117 break;
10118
10119 case bp_read_watchpoint:
10120 if (uiout->is_mi_like_p ())
10121 uiout->field_string
10122 ("reason", async_reason_lookup (EXEC_ASYNC_READ_WATCHPOINT_TRIGGER));
10123 mention (b);
10124 tuple_emitter.emplace (uiout, "value");
10125 uiout->text ("\nValue = ");
10126 watchpoint_value_print (w->val.get (), &stb);
10127 uiout->field_stream ("value", stb);
10128 uiout->text ("\n");
10129 result = PRINT_UNKNOWN;
10130 break;
10131
10132 case bp_access_watchpoint:
10133 if (bs->old_val != NULL)
10134 {
10135 if (uiout->is_mi_like_p ())
10136 uiout->field_string
10137 ("reason",
10138 async_reason_lookup (EXEC_ASYNC_ACCESS_WATCHPOINT_TRIGGER));
10139 mention (b);
10140 tuple_emitter.emplace (uiout, "value");
10141 uiout->text ("\nOld value = ");
10142 watchpoint_value_print (bs->old_val.get (), &stb);
10143 uiout->field_stream ("old", stb);
10144 uiout->text ("\nNew value = ");
10145 }
10146 else
10147 {
10148 mention (b);
10149 if (uiout->is_mi_like_p ())
10150 uiout->field_string
10151 ("reason",
10152 async_reason_lookup (EXEC_ASYNC_ACCESS_WATCHPOINT_TRIGGER));
10153 tuple_emitter.emplace (uiout, "value");
10154 uiout->text ("\nValue = ");
10155 }
10156 watchpoint_value_print (w->val.get (), &stb);
10157 uiout->field_stream ("new", stb);
10158 uiout->text ("\n");
10159 result = PRINT_UNKNOWN;
10160 break;
10161 default:
10162 result = PRINT_UNKNOWN;
10163 }
10164
10165 return result;
10166 }
10167
10168 /* Implement the "print_mention" breakpoint_ops method for hardware
10169 watchpoints. */
10170
10171 static void
10172 print_mention_watchpoint (struct breakpoint *b)
10173 {
10174 struct watchpoint *w = (struct watchpoint *) b;
10175 struct ui_out *uiout = current_uiout;
10176 const char *tuple_name;
10177
10178 switch (b->type)
10179 {
10180 case bp_watchpoint:
10181 uiout->text ("Watchpoint ");
10182 tuple_name = "wpt";
10183 break;
10184 case bp_hardware_watchpoint:
10185 uiout->text ("Hardware watchpoint ");
10186 tuple_name = "wpt";
10187 break;
10188 case bp_read_watchpoint:
10189 uiout->text ("Hardware read watchpoint ");
10190 tuple_name = "hw-rwpt";
10191 break;
10192 case bp_access_watchpoint:
10193 uiout->text ("Hardware access (read/write) watchpoint ");
10194 tuple_name = "hw-awpt";
10195 break;
10196 default:
10197 internal_error (__FILE__, __LINE__,
10198 _("Invalid hardware watchpoint type."));
10199 }
10200
10201 ui_out_emit_tuple tuple_emitter (uiout, tuple_name);
10202 uiout->field_signed ("number", b->number);
10203 uiout->text (": ");
10204 uiout->field_string ("exp", w->exp_string);
10205 }
10206
10207 /* Implement the "print_recreate" breakpoint_ops method for
10208 watchpoints. */
10209
10210 static void
10211 print_recreate_watchpoint (struct breakpoint *b, struct ui_file *fp)
10212 {
10213 struct watchpoint *w = (struct watchpoint *) b;
10214
10215 switch (b->type)
10216 {
10217 case bp_watchpoint:
10218 case bp_hardware_watchpoint:
10219 fprintf_unfiltered (fp, "watch");
10220 break;
10221 case bp_read_watchpoint:
10222 fprintf_unfiltered (fp, "rwatch");
10223 break;
10224 case bp_access_watchpoint:
10225 fprintf_unfiltered (fp, "awatch");
10226 break;
10227 default:
10228 internal_error (__FILE__, __LINE__,
10229 _("Invalid watchpoint type."));
10230 }
10231
10232 fprintf_unfiltered (fp, " %s", w->exp_string);
10233 print_recreate_thread (b, fp);
10234 }
10235
10236 /* Implement the "explains_signal" breakpoint_ops method for
10237 watchpoints. */
10238
10239 static int
10240 explains_signal_watchpoint (struct breakpoint *b, enum gdb_signal sig)
10241 {
10242 /* A software watchpoint cannot cause a signal other than
10243 GDB_SIGNAL_TRAP. */
10244 if (b->type == bp_watchpoint && sig != GDB_SIGNAL_TRAP)
10245 return 0;
10246
10247 return 1;
10248 }
10249
10250 /* The breakpoint_ops structure to be used in hardware watchpoints. */
10251
10252 static struct breakpoint_ops watchpoint_breakpoint_ops;
10253
10254 /* Implement the "insert" breakpoint_ops method for
10255 masked hardware watchpoints. */
10256
10257 static int
10258 insert_masked_watchpoint (struct bp_location *bl)
10259 {
10260 struct watchpoint *w = (struct watchpoint *) bl->owner;
10261
10262 return target_insert_mask_watchpoint (bl->address, w->hw_wp_mask,
10263 bl->watchpoint_type);
10264 }
10265
10266 /* Implement the "remove" breakpoint_ops method for
10267 masked hardware watchpoints. */
10268
10269 static int
10270 remove_masked_watchpoint (struct bp_location *bl, enum remove_bp_reason reason)
10271 {
10272 struct watchpoint *w = (struct watchpoint *) bl->owner;
10273
10274 return target_remove_mask_watchpoint (bl->address, w->hw_wp_mask,
10275 bl->watchpoint_type);
10276 }
10277
10278 /* Implement the "resources_needed" breakpoint_ops method for
10279 masked hardware watchpoints. */
10280
10281 static int
10282 resources_needed_masked_watchpoint (const struct bp_location *bl)
10283 {
10284 struct watchpoint *w = (struct watchpoint *) bl->owner;
10285
10286 return target_masked_watch_num_registers (bl->address, w->hw_wp_mask);
10287 }
10288
10289 /* Implement the "works_in_software_mode" breakpoint_ops method for
10290 masked hardware watchpoints. */
10291
10292 static int
10293 works_in_software_mode_masked_watchpoint (const struct breakpoint *b)
10294 {
10295 return 0;
10296 }
10297
10298 /* Implement the "print_it" breakpoint_ops method for
10299 masked hardware watchpoints. */
10300
10301 static enum print_stop_action
10302 print_it_masked_watchpoint (bpstat bs)
10303 {
10304 struct breakpoint *b = bs->breakpoint_at;
10305 struct ui_out *uiout = current_uiout;
10306
10307 /* Masked watchpoints have only one location. */
10308 gdb_assert (b->loc && b->loc->next == NULL);
10309
10310 annotate_watchpoint (b->number);
10311 maybe_print_thread_hit_breakpoint (uiout);
10312
10313 switch (b->type)
10314 {
10315 case bp_hardware_watchpoint:
10316 if (uiout->is_mi_like_p ())
10317 uiout->field_string
10318 ("reason", async_reason_lookup (EXEC_ASYNC_WATCHPOINT_TRIGGER));
10319 break;
10320
10321 case bp_read_watchpoint:
10322 if (uiout->is_mi_like_p ())
10323 uiout->field_string
10324 ("reason", async_reason_lookup (EXEC_ASYNC_READ_WATCHPOINT_TRIGGER));
10325 break;
10326
10327 case bp_access_watchpoint:
10328 if (uiout->is_mi_like_p ())
10329 uiout->field_string
10330 ("reason",
10331 async_reason_lookup (EXEC_ASYNC_ACCESS_WATCHPOINT_TRIGGER));
10332 break;
10333 default:
10334 internal_error (__FILE__, __LINE__,
10335 _("Invalid hardware watchpoint type."));
10336 }
10337
10338 mention (b);
10339 uiout->text (_("\n\
10340 Check the underlying instruction at PC for the memory\n\
10341 address and value which triggered this watchpoint.\n"));
10342 uiout->text ("\n");
10343
10344 /* More than one watchpoint may have been triggered. */
10345 return PRINT_UNKNOWN;
10346 }
10347
10348 /* Implement the "print_one_detail" breakpoint_ops method for
10349 masked hardware watchpoints. */
10350
10351 static void
10352 print_one_detail_masked_watchpoint (const struct breakpoint *b,
10353 struct ui_out *uiout)
10354 {
10355 struct watchpoint *w = (struct watchpoint *) b;
10356
10357 /* Masked watchpoints have only one location. */
10358 gdb_assert (b->loc && b->loc->next == NULL);
10359
10360 uiout->text ("\tmask ");
10361 uiout->field_core_addr ("mask", b->loc->gdbarch, w->hw_wp_mask);
10362 uiout->text ("\n");
10363 }
10364
10365 /* Implement the "print_mention" breakpoint_ops method for
10366 masked hardware watchpoints. */
10367
10368 static void
10369 print_mention_masked_watchpoint (struct breakpoint *b)
10370 {
10371 struct watchpoint *w = (struct watchpoint *) b;
10372 struct ui_out *uiout = current_uiout;
10373 const char *tuple_name;
10374
10375 switch (b->type)
10376 {
10377 case bp_hardware_watchpoint:
10378 uiout->text ("Masked hardware watchpoint ");
10379 tuple_name = "wpt";
10380 break;
10381 case bp_read_watchpoint:
10382 uiout->text ("Masked hardware read watchpoint ");
10383 tuple_name = "hw-rwpt";
10384 break;
10385 case bp_access_watchpoint:
10386 uiout->text ("Masked hardware access (read/write) watchpoint ");
10387 tuple_name = "hw-awpt";
10388 break;
10389 default:
10390 internal_error (__FILE__, __LINE__,
10391 _("Invalid hardware watchpoint type."));
10392 }
10393
10394 ui_out_emit_tuple tuple_emitter (uiout, tuple_name);
10395 uiout->field_signed ("number", b->number);
10396 uiout->text (": ");
10397 uiout->field_string ("exp", w->exp_string);
10398 }
10399
10400 /* Implement the "print_recreate" breakpoint_ops method for
10401 masked hardware watchpoints. */
10402
10403 static void
10404 print_recreate_masked_watchpoint (struct breakpoint *b, struct ui_file *fp)
10405 {
10406 struct watchpoint *w = (struct watchpoint *) b;
10407 char tmp[40];
10408
10409 switch (b->type)
10410 {
10411 case bp_hardware_watchpoint:
10412 fprintf_unfiltered (fp, "watch");
10413 break;
10414 case bp_read_watchpoint:
10415 fprintf_unfiltered (fp, "rwatch");
10416 break;
10417 case bp_access_watchpoint:
10418 fprintf_unfiltered (fp, "awatch");
10419 break;
10420 default:
10421 internal_error (__FILE__, __LINE__,
10422 _("Invalid hardware watchpoint type."));
10423 }
10424
10425 sprintf_vma (tmp, w->hw_wp_mask);
10426 fprintf_unfiltered (fp, " %s mask 0x%s", w->exp_string, tmp);
10427 print_recreate_thread (b, fp);
10428 }
10429
10430 /* The breakpoint_ops structure to be used in masked hardware watchpoints. */
10431
10432 static struct breakpoint_ops masked_watchpoint_breakpoint_ops;
10433
10434 /* Tell whether the given watchpoint is a masked hardware watchpoint. */
10435
10436 static bool
10437 is_masked_watchpoint (const struct breakpoint *b)
10438 {
10439 return b->ops == &masked_watchpoint_breakpoint_ops;
10440 }
10441
10442 /* accessflag: hw_write: watch write,
10443 hw_read: watch read,
10444 hw_access: watch access (read or write) */
10445 static void
10446 watch_command_1 (const char *arg, int accessflag, int from_tty,
10447 int just_location, int internal)
10448 {
10449 struct breakpoint *scope_breakpoint = NULL;
10450 const struct block *exp_valid_block = NULL, *cond_exp_valid_block = NULL;
10451 struct value *result;
10452 int saved_bitpos = 0, saved_bitsize = 0;
10453 const char *exp_start = NULL;
10454 const char *exp_end = NULL;
10455 const char *tok, *end_tok;
10456 int toklen = -1;
10457 const char *cond_start = NULL;
10458 const char *cond_end = NULL;
10459 enum bptype bp_type;
10460 int thread = -1;
10461 int pc = 0;
10462 /* Flag to indicate whether we are going to use masks for
10463 the hardware watchpoint. */
10464 int use_mask = 0;
10465 CORE_ADDR mask = 0;
10466
10467 /* Make sure that we actually have parameters to parse. */
10468 if (arg != NULL && arg[0] != '\0')
10469 {
10470 const char *value_start;
10471
10472 exp_end = arg + strlen (arg);
10473
10474 /* Look for "parameter value" pairs at the end
10475 of the arguments string. */
10476 for (tok = exp_end - 1; tok > arg; tok--)
10477 {
10478 /* Skip whitespace at the end of the argument list. */
10479 while (tok > arg && (*tok == ' ' || *tok == '\t'))
10480 tok--;
10481
10482 /* Find the beginning of the last token.
10483 This is the value of the parameter. */
10484 while (tok > arg && (*tok != ' ' && *tok != '\t'))
10485 tok--;
10486 value_start = tok + 1;
10487
10488 /* Skip whitespace. */
10489 while (tok > arg && (*tok == ' ' || *tok == '\t'))
10490 tok--;
10491
10492 end_tok = tok;
10493
10494 /* Find the beginning of the second to last token.
10495 This is the parameter itself. */
10496 while (tok > arg && (*tok != ' ' && *tok != '\t'))
10497 tok--;
10498 tok++;
10499 toklen = end_tok - tok + 1;
10500
10501 if (toklen == 6 && startswith (tok, "thread"))
10502 {
10503 struct thread_info *thr;
10504 /* At this point we've found a "thread" token, which means
10505 the user is trying to set a watchpoint that triggers
10506 only in a specific thread. */
10507 const char *endp;
10508
10509 if (thread != -1)
10510 error(_("You can specify only one thread."));
10511
10512 /* Extract the thread ID from the next token. */
10513 thr = parse_thread_id (value_start, &endp);
10514
10515 /* Check if the user provided a valid thread ID. */
10516 if (*endp != ' ' && *endp != '\t' && *endp != '\0')
10517 invalid_thread_id_error (value_start);
10518
10519 thread = thr->global_num;
10520 }
10521 else if (toklen == 4 && startswith (tok, "mask"))
10522 {
10523 /* We've found a "mask" token, which means the user wants to
10524 create a hardware watchpoint that is going to have the mask
10525 facility. */
10526 struct value *mask_value, *mark;
10527
10528 if (use_mask)
10529 error(_("You can specify only one mask."));
10530
10531 use_mask = just_location = 1;
10532
10533 mark = value_mark ();
10534 mask_value = parse_to_comma_and_eval (&value_start);
10535 mask = value_as_address (mask_value);
10536 value_free_to_mark (mark);
10537 }
10538 else
10539 /* We didn't recognize what we found. We should stop here. */
10540 break;
10541
10542 /* Truncate the string and get rid of the "parameter value" pair before
10543 the arguments string is parsed by the parse_exp_1 function. */
10544 exp_end = tok;
10545 }
10546 }
10547 else
10548 exp_end = arg;
10549
10550 /* Parse the rest of the arguments. From here on out, everything
10551 is in terms of a newly allocated string instead of the original
10552 ARG. */
10553 std::string expression (arg, exp_end - arg);
10554 exp_start = arg = expression.c_str ();
10555 innermost_block_tracker tracker;
10556 expression_up exp = parse_exp_1 (&arg, 0, 0, 0, &tracker);
10557 exp_end = arg;
10558 /* Remove trailing whitespace from the expression before saving it.
10559 This makes the eventual display of the expression string a bit
10560 prettier. */
10561 while (exp_end > exp_start && (exp_end[-1] == ' ' || exp_end[-1] == '\t'))
10562 --exp_end;
10563
10564 /* Checking if the expression is not constant. */
10565 if (watchpoint_exp_is_const (exp.get ()))
10566 {
10567 int len;
10568
10569 len = exp_end - exp_start;
10570 while (len > 0 && isspace (exp_start[len - 1]))
10571 len--;
10572 error (_("Cannot watch constant value `%.*s'."), len, exp_start);
10573 }
10574
10575 exp_valid_block = tracker.block ();
10576 struct value *mark = value_mark ();
10577 struct value *val_as_value = nullptr;
10578 fetch_subexp_value (exp.get (), &pc, &val_as_value, &result, NULL,
10579 just_location);
10580
10581 if (val_as_value != NULL && just_location)
10582 {
10583 saved_bitpos = value_bitpos (val_as_value);
10584 saved_bitsize = value_bitsize (val_as_value);
10585 }
10586
10587 value_ref_ptr val;
10588 if (just_location)
10589 {
10590 int ret;
10591
10592 exp_valid_block = NULL;
10593 val = release_value (value_addr (result));
10594 value_free_to_mark (mark);
10595
10596 if (use_mask)
10597 {
10598 ret = target_masked_watch_num_registers (value_as_address (val.get ()),
10599 mask);
10600 if (ret == -1)
10601 error (_("This target does not support masked watchpoints."));
10602 else if (ret == -2)
10603 error (_("Invalid mask or memory region."));
10604 }
10605 }
10606 else if (val_as_value != NULL)
10607 val = release_value (val_as_value);
10608
10609 tok = skip_spaces (arg);
10610 end_tok = skip_to_space (tok);
10611
10612 toklen = end_tok - tok;
10613 if (toklen >= 1 && strncmp (tok, "if", toklen) == 0)
10614 {
10615 tok = cond_start = end_tok + 1;
10616 innermost_block_tracker if_tracker;
10617 parse_exp_1 (&tok, 0, 0, 0, &if_tracker);
10618
10619 /* The watchpoint expression may not be local, but the condition
10620 may still be. E.g.: `watch global if local > 0'. */
10621 cond_exp_valid_block = if_tracker.block ();
10622
10623 cond_end = tok;
10624 }
10625 if (*tok)
10626 error (_("Junk at end of command."));
10627
10628 frame_info *wp_frame = block_innermost_frame (exp_valid_block);
10629
10630 /* Save this because create_internal_breakpoint below invalidates
10631 'wp_frame'. */
10632 frame_id watchpoint_frame = get_frame_id (wp_frame);
10633
10634 /* If the expression is "local", then set up a "watchpoint scope"
10635 breakpoint at the point where we've left the scope of the watchpoint
10636 expression. Create the scope breakpoint before the watchpoint, so
10637 that we will encounter it first in bpstat_stop_status. */
10638 if (exp_valid_block != NULL && wp_frame != NULL)
10639 {
10640 frame_id caller_frame_id = frame_unwind_caller_id (wp_frame);
10641
10642 if (frame_id_p (caller_frame_id))
10643 {
10644 gdbarch *caller_arch = frame_unwind_caller_arch (wp_frame);
10645 CORE_ADDR caller_pc = frame_unwind_caller_pc (wp_frame);
10646
10647 scope_breakpoint
10648 = create_internal_breakpoint (caller_arch, caller_pc,
10649 bp_watchpoint_scope,
10650 &momentary_breakpoint_ops);
10651
10652 /* create_internal_breakpoint could invalidate WP_FRAME. */
10653 wp_frame = NULL;
10654
10655 scope_breakpoint->enable_state = bp_enabled;
10656
10657 /* Automatically delete the breakpoint when it hits. */
10658 scope_breakpoint->disposition = disp_del;
10659
10660 /* Only break in the proper frame (help with recursion). */
10661 scope_breakpoint->frame_id = caller_frame_id;
10662
10663 /* Set the address at which we will stop. */
10664 scope_breakpoint->loc->gdbarch = caller_arch;
10665 scope_breakpoint->loc->requested_address = caller_pc;
10666 scope_breakpoint->loc->address
10667 = adjust_breakpoint_address (scope_breakpoint->loc->gdbarch,
10668 scope_breakpoint->loc->requested_address,
10669 scope_breakpoint->type);
10670 }
10671 }
10672
10673 /* Now set up the breakpoint. We create all watchpoints as hardware
10674 watchpoints here even if hardware watchpoints are turned off, a call
10675 to update_watchpoint later in this function will cause the type to
10676 drop back to bp_watchpoint (software watchpoint) if required. */
10677
10678 if (accessflag == hw_read)
10679 bp_type = bp_read_watchpoint;
10680 else if (accessflag == hw_access)
10681 bp_type = bp_access_watchpoint;
10682 else
10683 bp_type = bp_hardware_watchpoint;
10684
10685 std::unique_ptr<watchpoint> w (new watchpoint ());
10686
10687 if (use_mask)
10688 init_raw_breakpoint_without_location (w.get (), NULL, bp_type,
10689 &masked_watchpoint_breakpoint_ops);
10690 else
10691 init_raw_breakpoint_without_location (w.get (), NULL, bp_type,
10692 &watchpoint_breakpoint_ops);
10693 w->thread = thread;
10694 w->disposition = disp_donttouch;
10695 w->pspace = current_program_space;
10696 w->exp = std::move (exp);
10697 w->exp_valid_block = exp_valid_block;
10698 w->cond_exp_valid_block = cond_exp_valid_block;
10699 if (just_location)
10700 {
10701 struct type *t = value_type (val.get ());
10702 CORE_ADDR addr = value_as_address (val.get ());
10703
10704 w->exp_string_reparse
10705 = current_language->la_watch_location_expression (t, addr).release ();
10706
10707 w->exp_string = xstrprintf ("-location %.*s",
10708 (int) (exp_end - exp_start), exp_start);
10709 }
10710 else
10711 w->exp_string = savestring (exp_start, exp_end - exp_start);
10712
10713 if (use_mask)
10714 {
10715 w->hw_wp_mask = mask;
10716 }
10717 else
10718 {
10719 w->val = val;
10720 w->val_bitpos = saved_bitpos;
10721 w->val_bitsize = saved_bitsize;
10722 w->val_valid = true;
10723 }
10724
10725 if (cond_start)
10726 w->cond_string = savestring (cond_start, cond_end - cond_start);
10727 else
10728 w->cond_string = 0;
10729
10730 if (frame_id_p (watchpoint_frame))
10731 {
10732 w->watchpoint_frame = watchpoint_frame;
10733 w->watchpoint_thread = inferior_ptid;
10734 }
10735 else
10736 {
10737 w->watchpoint_frame = null_frame_id;
10738 w->watchpoint_thread = null_ptid;
10739 }
10740
10741 if (scope_breakpoint != NULL)
10742 {
10743 /* The scope breakpoint is related to the watchpoint. We will
10744 need to act on them together. */
10745 w->related_breakpoint = scope_breakpoint;
10746 scope_breakpoint->related_breakpoint = w.get ();
10747 }
10748
10749 if (!just_location)
10750 value_free_to_mark (mark);
10751
10752 /* Finally update the new watchpoint. This creates the locations
10753 that should be inserted. */
10754 update_watchpoint (w.get (), 1);
10755
10756 install_breakpoint (internal, std::move (w), 1);
10757 }
10758
10759 /* Return count of debug registers needed to watch the given expression.
10760 If the watchpoint cannot be handled in hardware return zero. */
10761
10762 static int
10763 can_use_hardware_watchpoint (const std::vector<value_ref_ptr> &vals)
10764 {
10765 int found_memory_cnt = 0;
10766
10767 /* Did the user specifically forbid us to use hardware watchpoints? */
10768 if (!can_use_hw_watchpoints)
10769 return 0;
10770
10771 gdb_assert (!vals.empty ());
10772 struct value *head = vals[0].get ();
10773
10774 /* Make sure that the value of the expression depends only upon
10775 memory contents, and values computed from them within GDB. If we
10776 find any register references or function calls, we can't use a
10777 hardware watchpoint.
10778
10779 The idea here is that evaluating an expression generates a series
10780 of values, one holding the value of every subexpression. (The
10781 expression a*b+c has five subexpressions: a, b, a*b, c, and
10782 a*b+c.) GDB's values hold almost enough information to establish
10783 the criteria given above --- they identify memory lvalues,
10784 register lvalues, computed values, etcetera. So we can evaluate
10785 the expression, and then scan the chain of values that leaves
10786 behind to decide whether we can detect any possible change to the
10787 expression's final value using only hardware watchpoints.
10788
10789 However, I don't think that the values returned by inferior
10790 function calls are special in any way. So this function may not
10791 notice that an expression involving an inferior function call
10792 can't be watched with hardware watchpoints. FIXME. */
10793 for (const value_ref_ptr &iter : vals)
10794 {
10795 struct value *v = iter.get ();
10796
10797 if (VALUE_LVAL (v) == lval_memory)
10798 {
10799 if (v != head && value_lazy (v))
10800 /* A lazy memory lvalue in the chain is one that GDB never
10801 needed to fetch; we either just used its address (e.g.,
10802 `a' in `a.b') or we never needed it at all (e.g., `a'
10803 in `a,b'). This doesn't apply to HEAD; if that is
10804 lazy then it was not readable, but watch it anyway. */
10805 ;
10806 else
10807 {
10808 /* Ahh, memory we actually used! Check if we can cover
10809 it with hardware watchpoints. */
10810 struct type *vtype = check_typedef (value_type (v));
10811
10812 /* We only watch structs and arrays if user asked for it
10813 explicitly, never if they just happen to appear in a
10814 middle of some value chain. */
10815 if (v == head
10816 || (TYPE_CODE (vtype) != TYPE_CODE_STRUCT
10817 && TYPE_CODE (vtype) != TYPE_CODE_ARRAY))
10818 {
10819 CORE_ADDR vaddr = value_address (v);
10820 int len;
10821 int num_regs;
10822
10823 len = (target_exact_watchpoints
10824 && is_scalar_type_recursive (vtype))?
10825 1 : TYPE_LENGTH (value_type (v));
10826
10827 num_regs = target_region_ok_for_hw_watchpoint (vaddr, len);
10828 if (!num_regs)
10829 return 0;
10830 else
10831 found_memory_cnt += num_regs;
10832 }
10833 }
10834 }
10835 else if (VALUE_LVAL (v) != not_lval
10836 && deprecated_value_modifiable (v) == 0)
10837 return 0; /* These are values from the history (e.g., $1). */
10838 else if (VALUE_LVAL (v) == lval_register)
10839 return 0; /* Cannot watch a register with a HW watchpoint. */
10840 }
10841
10842 /* The expression itself looks suitable for using a hardware
10843 watchpoint, but give the target machine a chance to reject it. */
10844 return found_memory_cnt;
10845 }
10846
10847 void
10848 watch_command_wrapper (const char *arg, int from_tty, int internal)
10849 {
10850 watch_command_1 (arg, hw_write, from_tty, 0, internal);
10851 }
10852
10853 /* A helper function that looks for the "-location" argument and then
10854 calls watch_command_1. */
10855
10856 static void
10857 watch_maybe_just_location (const char *arg, int accessflag, int from_tty)
10858 {
10859 int just_location = 0;
10860
10861 if (arg
10862 && (check_for_argument (&arg, "-location", sizeof ("-location") - 1)
10863 || check_for_argument (&arg, "-l", sizeof ("-l") - 1)))
10864 just_location = 1;
10865
10866 watch_command_1 (arg, accessflag, from_tty, just_location, 0);
10867 }
10868
10869 static void
10870 watch_command (const char *arg, int from_tty)
10871 {
10872 watch_maybe_just_location (arg, hw_write, from_tty);
10873 }
10874
10875 void
10876 rwatch_command_wrapper (const char *arg, int from_tty, int internal)
10877 {
10878 watch_command_1 (arg, hw_read, from_tty, 0, internal);
10879 }
10880
10881 static void
10882 rwatch_command (const char *arg, int from_tty)
10883 {
10884 watch_maybe_just_location (arg, hw_read, from_tty);
10885 }
10886
10887 void
10888 awatch_command_wrapper (const char *arg, int from_tty, int internal)
10889 {
10890 watch_command_1 (arg, hw_access, from_tty, 0, internal);
10891 }
10892
10893 static void
10894 awatch_command (const char *arg, int from_tty)
10895 {
10896 watch_maybe_just_location (arg, hw_access, from_tty);
10897 }
10898 \f
10899
10900 /* Data for the FSM that manages the until(location)/advance commands
10901 in infcmd.c. Here because it uses the mechanisms of
10902 breakpoints. */
10903
10904 struct until_break_fsm : public thread_fsm
10905 {
10906 /* The thread that was current when the command was executed. */
10907 int thread;
10908
10909 /* The breakpoint set at the destination location. */
10910 breakpoint_up location_breakpoint;
10911
10912 /* Breakpoint set at the return address in the caller frame. May be
10913 NULL. */
10914 breakpoint_up caller_breakpoint;
10915
10916 until_break_fsm (struct interp *cmd_interp, int thread,
10917 breakpoint_up &&location_breakpoint,
10918 breakpoint_up &&caller_breakpoint)
10919 : thread_fsm (cmd_interp),
10920 thread (thread),
10921 location_breakpoint (std::move (location_breakpoint)),
10922 caller_breakpoint (std::move (caller_breakpoint))
10923 {
10924 }
10925
10926 void clean_up (struct thread_info *thread) override;
10927 bool should_stop (struct thread_info *thread) override;
10928 enum async_reply_reason do_async_reply_reason () override;
10929 };
10930
10931 /* Implementation of the 'should_stop' FSM method for the
10932 until(location)/advance commands. */
10933
10934 bool
10935 until_break_fsm::should_stop (struct thread_info *tp)
10936 {
10937 if (bpstat_find_breakpoint (tp->control.stop_bpstat,
10938 location_breakpoint.get ()) != NULL
10939 || (caller_breakpoint != NULL
10940 && bpstat_find_breakpoint (tp->control.stop_bpstat,
10941 caller_breakpoint.get ()) != NULL))
10942 set_finished ();
10943
10944 return true;
10945 }
10946
10947 /* Implementation of the 'clean_up' FSM method for the
10948 until(location)/advance commands. */
10949
10950 void
10951 until_break_fsm::clean_up (struct thread_info *)
10952 {
10953 /* Clean up our temporary breakpoints. */
10954 location_breakpoint.reset ();
10955 caller_breakpoint.reset ();
10956 delete_longjmp_breakpoint (thread);
10957 }
10958
10959 /* Implementation of the 'async_reply_reason' FSM method for the
10960 until(location)/advance commands. */
10961
10962 enum async_reply_reason
10963 until_break_fsm::do_async_reply_reason ()
10964 {
10965 return EXEC_ASYNC_LOCATION_REACHED;
10966 }
10967
10968 void
10969 until_break_command (const char *arg, int from_tty, int anywhere)
10970 {
10971 struct frame_info *frame;
10972 struct gdbarch *frame_gdbarch;
10973 struct frame_id stack_frame_id;
10974 struct frame_id caller_frame_id;
10975 int thread;
10976 struct thread_info *tp;
10977
10978 clear_proceed_status (0);
10979
10980 /* Set a breakpoint where the user wants it and at return from
10981 this function. */
10982
10983 event_location_up location = string_to_event_location (&arg, current_language);
10984
10985 std::vector<symtab_and_line> sals
10986 = (last_displayed_sal_is_valid ()
10987 ? decode_line_1 (location.get (), DECODE_LINE_FUNFIRSTLINE, NULL,
10988 get_last_displayed_symtab (),
10989 get_last_displayed_line ())
10990 : decode_line_1 (location.get (), DECODE_LINE_FUNFIRSTLINE,
10991 NULL, NULL, 0));
10992
10993 if (sals.size () != 1)
10994 error (_("Couldn't get information on specified line."));
10995
10996 symtab_and_line &sal = sals[0];
10997
10998 if (*arg)
10999 error (_("Junk at end of arguments."));
11000
11001 resolve_sal_pc (&sal);
11002
11003 tp = inferior_thread ();
11004 thread = tp->global_num;
11005
11006 /* Note linespec handling above invalidates the frame chain.
11007 Installing a breakpoint also invalidates the frame chain (as it
11008 may need to switch threads), so do any frame handling before
11009 that. */
11010
11011 frame = get_selected_frame (NULL);
11012 frame_gdbarch = get_frame_arch (frame);
11013 stack_frame_id = get_stack_frame_id (frame);
11014 caller_frame_id = frame_unwind_caller_id (frame);
11015
11016 /* Keep within the current frame, or in frames called by the current
11017 one. */
11018
11019 breakpoint_up caller_breakpoint;
11020
11021 gdb::optional<delete_longjmp_breakpoint_cleanup> lj_deleter;
11022
11023 if (frame_id_p (caller_frame_id))
11024 {
11025 struct symtab_and_line sal2;
11026 struct gdbarch *caller_gdbarch;
11027
11028 sal2 = find_pc_line (frame_unwind_caller_pc (frame), 0);
11029 sal2.pc = frame_unwind_caller_pc (frame);
11030 caller_gdbarch = frame_unwind_caller_arch (frame);
11031 caller_breakpoint = set_momentary_breakpoint (caller_gdbarch,
11032 sal2,
11033 caller_frame_id,
11034 bp_until);
11035
11036 set_longjmp_breakpoint (tp, caller_frame_id);
11037 lj_deleter.emplace (thread);
11038 }
11039
11040 /* set_momentary_breakpoint could invalidate FRAME. */
11041 frame = NULL;
11042
11043 breakpoint_up location_breakpoint;
11044 if (anywhere)
11045 /* If the user told us to continue until a specified location,
11046 we don't specify a frame at which we need to stop. */
11047 location_breakpoint = set_momentary_breakpoint (frame_gdbarch, sal,
11048 null_frame_id, bp_until);
11049 else
11050 /* Otherwise, specify the selected frame, because we want to stop
11051 only at the very same frame. */
11052 location_breakpoint = set_momentary_breakpoint (frame_gdbarch, sal,
11053 stack_frame_id, bp_until);
11054
11055 tp->thread_fsm = new until_break_fsm (command_interp (), tp->global_num,
11056 std::move (location_breakpoint),
11057 std::move (caller_breakpoint));
11058
11059 if (lj_deleter)
11060 lj_deleter->release ();
11061
11062 proceed (-1, GDB_SIGNAL_DEFAULT);
11063 }
11064
11065 /* This function attempts to parse an optional "if <cond>" clause
11066 from the arg string. If one is not found, it returns NULL.
11067
11068 Else, it returns a pointer to the condition string. (It does not
11069 attempt to evaluate the string against a particular block.) And,
11070 it updates arg to point to the first character following the parsed
11071 if clause in the arg string. */
11072
11073 const char *
11074 ep_parse_optional_if_clause (const char **arg)
11075 {
11076 const char *cond_string;
11077
11078 if (((*arg)[0] != 'i') || ((*arg)[1] != 'f') || !isspace ((*arg)[2]))
11079 return NULL;
11080
11081 /* Skip the "if" keyword. */
11082 (*arg) += 2;
11083
11084 /* Skip any extra leading whitespace, and record the start of the
11085 condition string. */
11086 *arg = skip_spaces (*arg);
11087 cond_string = *arg;
11088
11089 /* Assume that the condition occupies the remainder of the arg
11090 string. */
11091 (*arg) += strlen (cond_string);
11092
11093 return cond_string;
11094 }
11095
11096 /* Commands to deal with catching events, such as signals, exceptions,
11097 process start/exit, etc. */
11098
11099 typedef enum
11100 {
11101 catch_fork_temporary, catch_vfork_temporary,
11102 catch_fork_permanent, catch_vfork_permanent
11103 }
11104 catch_fork_kind;
11105
11106 static void
11107 catch_fork_command_1 (const char *arg, int from_tty,
11108 struct cmd_list_element *command)
11109 {
11110 struct gdbarch *gdbarch = get_current_arch ();
11111 const char *cond_string = NULL;
11112 catch_fork_kind fork_kind;
11113 int tempflag;
11114
11115 fork_kind = (catch_fork_kind) (uintptr_t) get_cmd_context (command);
11116 tempflag = (fork_kind == catch_fork_temporary
11117 || fork_kind == catch_vfork_temporary);
11118
11119 if (!arg)
11120 arg = "";
11121 arg = skip_spaces (arg);
11122
11123 /* The allowed syntax is:
11124 catch [v]fork
11125 catch [v]fork if <cond>
11126
11127 First, check if there's an if clause. */
11128 cond_string = ep_parse_optional_if_clause (&arg);
11129
11130 if ((*arg != '\0') && !isspace (*arg))
11131 error (_("Junk at end of arguments."));
11132
11133 /* If this target supports it, create a fork or vfork catchpoint
11134 and enable reporting of such events. */
11135 switch (fork_kind)
11136 {
11137 case catch_fork_temporary:
11138 case catch_fork_permanent:
11139 create_fork_vfork_event_catchpoint (gdbarch, tempflag, cond_string,
11140 &catch_fork_breakpoint_ops);
11141 break;
11142 case catch_vfork_temporary:
11143 case catch_vfork_permanent:
11144 create_fork_vfork_event_catchpoint (gdbarch, tempflag, cond_string,
11145 &catch_vfork_breakpoint_ops);
11146 break;
11147 default:
11148 error (_("unsupported or unknown fork kind; cannot catch it"));
11149 break;
11150 }
11151 }
11152
11153 static void
11154 catch_exec_command_1 (const char *arg, int from_tty,
11155 struct cmd_list_element *command)
11156 {
11157 struct gdbarch *gdbarch = get_current_arch ();
11158 int tempflag;
11159 const char *cond_string = NULL;
11160
11161 tempflag = get_cmd_context (command) == CATCH_TEMPORARY;
11162
11163 if (!arg)
11164 arg = "";
11165 arg = skip_spaces (arg);
11166
11167 /* The allowed syntax is:
11168 catch exec
11169 catch exec if <cond>
11170
11171 First, check if there's an if clause. */
11172 cond_string = ep_parse_optional_if_clause (&arg);
11173
11174 if ((*arg != '\0') && !isspace (*arg))
11175 error (_("Junk at end of arguments."));
11176
11177 std::unique_ptr<exec_catchpoint> c (new exec_catchpoint ());
11178 init_catchpoint (c.get (), gdbarch, tempflag, cond_string,
11179 &catch_exec_breakpoint_ops);
11180 c->exec_pathname = NULL;
11181
11182 install_breakpoint (0, std::move (c), 1);
11183 }
11184
11185 void
11186 init_ada_exception_breakpoint (struct breakpoint *b,
11187 struct gdbarch *gdbarch,
11188 struct symtab_and_line sal,
11189 const char *addr_string,
11190 const struct breakpoint_ops *ops,
11191 int tempflag,
11192 int enabled,
11193 int from_tty)
11194 {
11195 if (from_tty)
11196 {
11197 struct gdbarch *loc_gdbarch = get_sal_arch (sal);
11198 if (!loc_gdbarch)
11199 loc_gdbarch = gdbarch;
11200
11201 describe_other_breakpoints (loc_gdbarch,
11202 sal.pspace, sal.pc, sal.section, -1);
11203 /* FIXME: brobecker/2006-12-28: Actually, re-implement a special
11204 version for exception catchpoints, because two catchpoints
11205 used for different exception names will use the same address.
11206 In this case, a "breakpoint ... also set at..." warning is
11207 unproductive. Besides, the warning phrasing is also a bit
11208 inappropriate, we should use the word catchpoint, and tell
11209 the user what type of catchpoint it is. The above is good
11210 enough for now, though. */
11211 }
11212
11213 init_raw_breakpoint (b, gdbarch, sal, bp_catchpoint, ops);
11214
11215 b->enable_state = enabled ? bp_enabled : bp_disabled;
11216 b->disposition = tempflag ? disp_del : disp_donttouch;
11217 b->location = string_to_event_location (&addr_string,
11218 language_def (language_ada));
11219 b->language = language_ada;
11220 }
11221
11222 static void
11223 catch_command (const char *arg, int from_tty)
11224 {
11225 error (_("Catch requires an event name."));
11226 }
11227 \f
11228
11229 static void
11230 tcatch_command (const char *arg, int from_tty)
11231 {
11232 error (_("Catch requires an event name."));
11233 }
11234
11235 /* Compare two breakpoints and return a strcmp-like result. */
11236
11237 static int
11238 compare_breakpoints (const breakpoint *a, const breakpoint *b)
11239 {
11240 uintptr_t ua = (uintptr_t) a;
11241 uintptr_t ub = (uintptr_t) b;
11242
11243 if (a->number < b->number)
11244 return -1;
11245 else if (a->number > b->number)
11246 return 1;
11247
11248 /* Now sort by address, in case we see, e..g, two breakpoints with
11249 the number 0. */
11250 if (ua < ub)
11251 return -1;
11252 return ua > ub ? 1 : 0;
11253 }
11254
11255 /* Delete breakpoints by address or line. */
11256
11257 static void
11258 clear_command (const char *arg, int from_tty)
11259 {
11260 struct breakpoint *b;
11261 int default_match;
11262
11263 std::vector<symtab_and_line> decoded_sals;
11264 symtab_and_line last_sal;
11265 gdb::array_view<symtab_and_line> sals;
11266 if (arg)
11267 {
11268 decoded_sals
11269 = decode_line_with_current_source (arg,
11270 (DECODE_LINE_FUNFIRSTLINE
11271 | DECODE_LINE_LIST_MODE));
11272 default_match = 0;
11273 sals = decoded_sals;
11274 }
11275 else
11276 {
11277 /* Set sal's line, symtab, pc, and pspace to the values
11278 corresponding to the last call to print_frame_info. If the
11279 codepoint is not valid, this will set all the fields to 0. */
11280 last_sal = get_last_displayed_sal ();
11281 if (last_sal.symtab == 0)
11282 error (_("No source file specified."));
11283
11284 default_match = 1;
11285 sals = last_sal;
11286 }
11287
11288 /* We don't call resolve_sal_pc here. That's not as bad as it
11289 seems, because all existing breakpoints typically have both
11290 file/line and pc set. So, if clear is given file/line, we can
11291 match this to existing breakpoint without obtaining pc at all.
11292
11293 We only support clearing given the address explicitly
11294 present in breakpoint table. Say, we've set breakpoint
11295 at file:line. There were several PC values for that file:line,
11296 due to optimization, all in one block.
11297
11298 We've picked one PC value. If "clear" is issued with another
11299 PC corresponding to the same file:line, the breakpoint won't
11300 be cleared. We probably can still clear the breakpoint, but
11301 since the other PC value is never presented to user, user
11302 can only find it by guessing, and it does not seem important
11303 to support that. */
11304
11305 /* For each line spec given, delete bps which correspond to it. Do
11306 it in two passes, solely to preserve the current behavior that
11307 from_tty is forced true if we delete more than one
11308 breakpoint. */
11309
11310 std::vector<struct breakpoint *> found;
11311 for (const auto &sal : sals)
11312 {
11313 const char *sal_fullname;
11314
11315 /* If exact pc given, clear bpts at that pc.
11316 If line given (pc == 0), clear all bpts on specified line.
11317 If defaulting, clear all bpts on default line
11318 or at default pc.
11319
11320 defaulting sal.pc != 0 tests to do
11321
11322 0 1 pc
11323 1 1 pc _and_ line
11324 0 0 line
11325 1 0 <can't happen> */
11326
11327 sal_fullname = (sal.symtab == NULL
11328 ? NULL : symtab_to_fullname (sal.symtab));
11329
11330 /* Find all matching breakpoints and add them to 'found'. */
11331 ALL_BREAKPOINTS (b)
11332 {
11333 int match = 0;
11334 /* Are we going to delete b? */
11335 if (b->type != bp_none && !is_watchpoint (b))
11336 {
11337 struct bp_location *loc = b->loc;
11338 for (; loc; loc = loc->next)
11339 {
11340 /* If the user specified file:line, don't allow a PC
11341 match. This matches historical gdb behavior. */
11342 int pc_match = (!sal.explicit_line
11343 && sal.pc
11344 && (loc->pspace == sal.pspace)
11345 && (loc->address == sal.pc)
11346 && (!section_is_overlay (loc->section)
11347 || loc->section == sal.section));
11348 int line_match = 0;
11349
11350 if ((default_match || sal.explicit_line)
11351 && loc->symtab != NULL
11352 && sal_fullname != NULL
11353 && sal.pspace == loc->pspace
11354 && loc->line_number == sal.line
11355 && filename_cmp (symtab_to_fullname (loc->symtab),
11356 sal_fullname) == 0)
11357 line_match = 1;
11358
11359 if (pc_match || line_match)
11360 {
11361 match = 1;
11362 break;
11363 }
11364 }
11365 }
11366
11367 if (match)
11368 found.push_back (b);
11369 }
11370 }
11371
11372 /* Now go thru the 'found' chain and delete them. */
11373 if (found.empty ())
11374 {
11375 if (arg)
11376 error (_("No breakpoint at %s."), arg);
11377 else
11378 error (_("No breakpoint at this line."));
11379 }
11380
11381 /* Remove duplicates from the vec. */
11382 std::sort (found.begin (), found.end (),
11383 [] (const breakpoint *bp_a, const breakpoint *bp_b)
11384 {
11385 return compare_breakpoints (bp_a, bp_b) < 0;
11386 });
11387 found.erase (std::unique (found.begin (), found.end (),
11388 [] (const breakpoint *bp_a, const breakpoint *bp_b)
11389 {
11390 return compare_breakpoints (bp_a, bp_b) == 0;
11391 }),
11392 found.end ());
11393
11394 if (found.size () > 1)
11395 from_tty = 1; /* Always report if deleted more than one. */
11396 if (from_tty)
11397 {
11398 if (found.size () == 1)
11399 printf_unfiltered (_("Deleted breakpoint "));
11400 else
11401 printf_unfiltered (_("Deleted breakpoints "));
11402 }
11403
11404 for (breakpoint *iter : found)
11405 {
11406 if (from_tty)
11407 printf_unfiltered ("%d ", iter->number);
11408 delete_breakpoint (iter);
11409 }
11410 if (from_tty)
11411 putchar_unfiltered ('\n');
11412 }
11413 \f
11414 /* Delete breakpoint in BS if they are `delete' breakpoints and
11415 all breakpoints that are marked for deletion, whether hit or not.
11416 This is called after any breakpoint is hit, or after errors. */
11417
11418 void
11419 breakpoint_auto_delete (bpstat bs)
11420 {
11421 struct breakpoint *b, *b_tmp;
11422
11423 for (; bs; bs = bs->next)
11424 if (bs->breakpoint_at
11425 && bs->breakpoint_at->disposition == disp_del
11426 && bs->stop)
11427 delete_breakpoint (bs->breakpoint_at);
11428
11429 ALL_BREAKPOINTS_SAFE (b, b_tmp)
11430 {
11431 if (b->disposition == disp_del_at_next_stop)
11432 delete_breakpoint (b);
11433 }
11434 }
11435
11436 /* A comparison function for bp_location AP and BP being interfaced to
11437 std::sort. Sort elements primarily by their ADDRESS (no matter what
11438 bl_address_is_meaningful says), secondarily by ordering first
11439 permanent elements and terciarily just ensuring the array is sorted
11440 stable way despite std::sort being an unstable algorithm. */
11441
11442 static int
11443 bp_location_is_less_than (const bp_location *a, const bp_location *b)
11444 {
11445 if (a->address != b->address)
11446 return a->address < b->address;
11447
11448 /* Sort locations at the same address by their pspace number, keeping
11449 locations of the same inferior (in a multi-inferior environment)
11450 grouped. */
11451
11452 if (a->pspace->num != b->pspace->num)
11453 return a->pspace->num < b->pspace->num;
11454
11455 /* Sort permanent breakpoints first. */
11456 if (a->permanent != b->permanent)
11457 return a->permanent > b->permanent;
11458
11459 /* Make the internal GDB representation stable across GDB runs
11460 where A and B memory inside GDB can differ. Breakpoint locations of
11461 the same type at the same address can be sorted in arbitrary order. */
11462
11463 if (a->owner->number != b->owner->number)
11464 return a->owner->number < b->owner->number;
11465
11466 return a < b;
11467 }
11468
11469 /* Set bp_locations_placed_address_before_address_max and
11470 bp_locations_shadow_len_after_address_max according to the current
11471 content of the bp_locations array. */
11472
11473 static void
11474 bp_locations_target_extensions_update (void)
11475 {
11476 struct bp_location *bl, **blp_tmp;
11477
11478 bp_locations_placed_address_before_address_max = 0;
11479 bp_locations_shadow_len_after_address_max = 0;
11480
11481 ALL_BP_LOCATIONS (bl, blp_tmp)
11482 {
11483 CORE_ADDR start, end, addr;
11484
11485 if (!bp_location_has_shadow (bl))
11486 continue;
11487
11488 start = bl->target_info.placed_address;
11489 end = start + bl->target_info.shadow_len;
11490
11491 gdb_assert (bl->address >= start);
11492 addr = bl->address - start;
11493 if (addr > bp_locations_placed_address_before_address_max)
11494 bp_locations_placed_address_before_address_max = addr;
11495
11496 /* Zero SHADOW_LEN would not pass bp_location_has_shadow. */
11497
11498 gdb_assert (bl->address < end);
11499 addr = end - bl->address;
11500 if (addr > bp_locations_shadow_len_after_address_max)
11501 bp_locations_shadow_len_after_address_max = addr;
11502 }
11503 }
11504
11505 /* Download tracepoint locations if they haven't been. */
11506
11507 static void
11508 download_tracepoint_locations (void)
11509 {
11510 struct breakpoint *b;
11511 enum tribool can_download_tracepoint = TRIBOOL_UNKNOWN;
11512
11513 scoped_restore_current_pspace_and_thread restore_pspace_thread;
11514
11515 ALL_TRACEPOINTS (b)
11516 {
11517 struct bp_location *bl;
11518 struct tracepoint *t;
11519 int bp_location_downloaded = 0;
11520
11521 if ((b->type == bp_fast_tracepoint
11522 ? !may_insert_fast_tracepoints
11523 : !may_insert_tracepoints))
11524 continue;
11525
11526 if (can_download_tracepoint == TRIBOOL_UNKNOWN)
11527 {
11528 if (target_can_download_tracepoint ())
11529 can_download_tracepoint = TRIBOOL_TRUE;
11530 else
11531 can_download_tracepoint = TRIBOOL_FALSE;
11532 }
11533
11534 if (can_download_tracepoint == TRIBOOL_FALSE)
11535 break;
11536
11537 for (bl = b->loc; bl; bl = bl->next)
11538 {
11539 /* In tracepoint, locations are _never_ duplicated, so
11540 should_be_inserted is equivalent to
11541 unduplicated_should_be_inserted. */
11542 if (!should_be_inserted (bl) || bl->inserted)
11543 continue;
11544
11545 switch_to_program_space_and_thread (bl->pspace);
11546
11547 target_download_tracepoint (bl);
11548
11549 bl->inserted = 1;
11550 bp_location_downloaded = 1;
11551 }
11552 t = (struct tracepoint *) b;
11553 t->number_on_target = b->number;
11554 if (bp_location_downloaded)
11555 gdb::observers::breakpoint_modified.notify (b);
11556 }
11557 }
11558
11559 /* Swap the insertion/duplication state between two locations. */
11560
11561 static void
11562 swap_insertion (struct bp_location *left, struct bp_location *right)
11563 {
11564 const int left_inserted = left->inserted;
11565 const int left_duplicate = left->duplicate;
11566 const int left_needs_update = left->needs_update;
11567 const struct bp_target_info left_target_info = left->target_info;
11568
11569 /* Locations of tracepoints can never be duplicated. */
11570 if (is_tracepoint (left->owner))
11571 gdb_assert (!left->duplicate);
11572 if (is_tracepoint (right->owner))
11573 gdb_assert (!right->duplicate);
11574
11575 left->inserted = right->inserted;
11576 left->duplicate = right->duplicate;
11577 left->needs_update = right->needs_update;
11578 left->target_info = right->target_info;
11579 right->inserted = left_inserted;
11580 right->duplicate = left_duplicate;
11581 right->needs_update = left_needs_update;
11582 right->target_info = left_target_info;
11583 }
11584
11585 /* Force the re-insertion of the locations at ADDRESS. This is called
11586 once a new/deleted/modified duplicate location is found and we are evaluating
11587 conditions on the target's side. Such conditions need to be updated on
11588 the target. */
11589
11590 static void
11591 force_breakpoint_reinsertion (struct bp_location *bl)
11592 {
11593 struct bp_location **locp = NULL, **loc2p;
11594 struct bp_location *loc;
11595 CORE_ADDR address = 0;
11596 int pspace_num;
11597
11598 address = bl->address;
11599 pspace_num = bl->pspace->num;
11600
11601 /* This is only meaningful if the target is
11602 evaluating conditions and if the user has
11603 opted for condition evaluation on the target's
11604 side. */
11605 if (gdb_evaluates_breakpoint_condition_p ()
11606 || !target_supports_evaluation_of_breakpoint_conditions ())
11607 return;
11608
11609 /* Flag all breakpoint locations with this address and
11610 the same program space as the location
11611 as "its condition has changed". We need to
11612 update the conditions on the target's side. */
11613 ALL_BP_LOCATIONS_AT_ADDR (loc2p, locp, address)
11614 {
11615 loc = *loc2p;
11616
11617 if (!is_breakpoint (loc->owner)
11618 || pspace_num != loc->pspace->num)
11619 continue;
11620
11621 /* Flag the location appropriately. We use a different state to
11622 let everyone know that we already updated the set of locations
11623 with addr bl->address and program space bl->pspace. This is so
11624 we don't have to keep calling these functions just to mark locations
11625 that have already been marked. */
11626 loc->condition_changed = condition_updated;
11627
11628 /* Free the agent expression bytecode as well. We will compute
11629 it later on. */
11630 loc->cond_bytecode.reset ();
11631 }
11632 }
11633 /* Called whether new breakpoints are created, or existing breakpoints
11634 deleted, to update the global location list and recompute which
11635 locations are duplicate of which.
11636
11637 The INSERT_MODE flag determines whether locations may not, may, or
11638 shall be inserted now. See 'enum ugll_insert_mode' for more
11639 info. */
11640
11641 static void
11642 update_global_location_list (enum ugll_insert_mode insert_mode)
11643 {
11644 struct breakpoint *b;
11645 struct bp_location **locp, *loc;
11646 /* Last breakpoint location address that was marked for update. */
11647 CORE_ADDR last_addr = 0;
11648 /* Last breakpoint location program space that was marked for update. */
11649 int last_pspace_num = -1;
11650
11651 /* Used in the duplicates detection below. When iterating over all
11652 bp_locations, points to the first bp_location of a given address.
11653 Breakpoints and watchpoints of different types are never
11654 duplicates of each other. Keep one pointer for each type of
11655 breakpoint/watchpoint, so we only need to loop over all locations
11656 once. */
11657 struct bp_location *bp_loc_first; /* breakpoint */
11658 struct bp_location *wp_loc_first; /* hardware watchpoint */
11659 struct bp_location *awp_loc_first; /* access watchpoint */
11660 struct bp_location *rwp_loc_first; /* read watchpoint */
11661
11662 /* Saved former bp_locations array which we compare against the newly
11663 built bp_locations from the current state of ALL_BREAKPOINTS. */
11664 struct bp_location **old_locp;
11665 unsigned old_locations_count;
11666 gdb::unique_xmalloc_ptr<struct bp_location *> old_locations (bp_locations);
11667
11668 old_locations_count = bp_locations_count;
11669 bp_locations = NULL;
11670 bp_locations_count = 0;
11671
11672 ALL_BREAKPOINTS (b)
11673 for (loc = b->loc; loc; loc = loc->next)
11674 bp_locations_count++;
11675
11676 bp_locations = XNEWVEC (struct bp_location *, bp_locations_count);
11677 locp = bp_locations;
11678 ALL_BREAKPOINTS (b)
11679 for (loc = b->loc; loc; loc = loc->next)
11680 *locp++ = loc;
11681 std::sort (bp_locations, bp_locations + bp_locations_count,
11682 bp_location_is_less_than);
11683
11684 bp_locations_target_extensions_update ();
11685
11686 /* Identify bp_location instances that are no longer present in the
11687 new list, and therefore should be freed. Note that it's not
11688 necessary that those locations should be removed from inferior --
11689 if there's another location at the same address (previously
11690 marked as duplicate), we don't need to remove/insert the
11691 location.
11692
11693 LOCP is kept in sync with OLD_LOCP, each pointing to the current
11694 and former bp_location array state respectively. */
11695
11696 locp = bp_locations;
11697 for (old_locp = old_locations.get ();
11698 old_locp < old_locations.get () + old_locations_count;
11699 old_locp++)
11700 {
11701 struct bp_location *old_loc = *old_locp;
11702 struct bp_location **loc2p;
11703
11704 /* Tells if 'old_loc' is found among the new locations. If
11705 not, we have to free it. */
11706 int found_object = 0;
11707 /* Tells if the location should remain inserted in the target. */
11708 int keep_in_target = 0;
11709 int removed = 0;
11710
11711 /* Skip LOCP entries which will definitely never be needed.
11712 Stop either at or being the one matching OLD_LOC. */
11713 while (locp < bp_locations + bp_locations_count
11714 && (*locp)->address < old_loc->address)
11715 locp++;
11716
11717 for (loc2p = locp;
11718 (loc2p < bp_locations + bp_locations_count
11719 && (*loc2p)->address == old_loc->address);
11720 loc2p++)
11721 {
11722 /* Check if this is a new/duplicated location or a duplicated
11723 location that had its condition modified. If so, we want to send
11724 its condition to the target if evaluation of conditions is taking
11725 place there. */
11726 if ((*loc2p)->condition_changed == condition_modified
11727 && (last_addr != old_loc->address
11728 || last_pspace_num != old_loc->pspace->num))
11729 {
11730 force_breakpoint_reinsertion (*loc2p);
11731 last_pspace_num = old_loc->pspace->num;
11732 }
11733
11734 if (*loc2p == old_loc)
11735 found_object = 1;
11736 }
11737
11738 /* We have already handled this address, update it so that we don't
11739 have to go through updates again. */
11740 last_addr = old_loc->address;
11741
11742 /* Target-side condition evaluation: Handle deleted locations. */
11743 if (!found_object)
11744 force_breakpoint_reinsertion (old_loc);
11745
11746 /* If this location is no longer present, and inserted, look if
11747 there's maybe a new location at the same address. If so,
11748 mark that one inserted, and don't remove this one. This is
11749 needed so that we don't have a time window where a breakpoint
11750 at certain location is not inserted. */
11751
11752 if (old_loc->inserted)
11753 {
11754 /* If the location is inserted now, we might have to remove
11755 it. */
11756
11757 if (found_object && should_be_inserted (old_loc))
11758 {
11759 /* The location is still present in the location list,
11760 and still should be inserted. Don't do anything. */
11761 keep_in_target = 1;
11762 }
11763 else
11764 {
11765 /* This location still exists, but it won't be kept in the
11766 target since it may have been disabled. We proceed to
11767 remove its target-side condition. */
11768
11769 /* The location is either no longer present, or got
11770 disabled. See if there's another location at the
11771 same address, in which case we don't need to remove
11772 this one from the target. */
11773
11774 /* OLD_LOC comes from existing struct breakpoint. */
11775 if (bl_address_is_meaningful (old_loc))
11776 {
11777 for (loc2p = locp;
11778 (loc2p < bp_locations + bp_locations_count
11779 && (*loc2p)->address == old_loc->address);
11780 loc2p++)
11781 {
11782 struct bp_location *loc2 = *loc2p;
11783
11784 if (breakpoint_locations_match (loc2, old_loc))
11785 {
11786 /* Read watchpoint locations are switched to
11787 access watchpoints, if the former are not
11788 supported, but the latter are. */
11789 if (is_hardware_watchpoint (old_loc->owner))
11790 {
11791 gdb_assert (is_hardware_watchpoint (loc2->owner));
11792 loc2->watchpoint_type = old_loc->watchpoint_type;
11793 }
11794
11795 /* loc2 is a duplicated location. We need to check
11796 if it should be inserted in case it will be
11797 unduplicated. */
11798 if (loc2 != old_loc
11799 && unduplicated_should_be_inserted (loc2))
11800 {
11801 swap_insertion (old_loc, loc2);
11802 keep_in_target = 1;
11803 break;
11804 }
11805 }
11806 }
11807 }
11808 }
11809
11810 if (!keep_in_target)
11811 {
11812 if (remove_breakpoint (old_loc))
11813 {
11814 /* This is just about all we can do. We could keep
11815 this location on the global list, and try to
11816 remove it next time, but there's no particular
11817 reason why we will succeed next time.
11818
11819 Note that at this point, old_loc->owner is still
11820 valid, as delete_breakpoint frees the breakpoint
11821 only after calling us. */
11822 printf_filtered (_("warning: Error removing "
11823 "breakpoint %d\n"),
11824 old_loc->owner->number);
11825 }
11826 removed = 1;
11827 }
11828 }
11829
11830 if (!found_object)
11831 {
11832 if (removed && target_is_non_stop_p ()
11833 && need_moribund_for_location_type (old_loc))
11834 {
11835 /* This location was removed from the target. In
11836 non-stop mode, a race condition is possible where
11837 we've removed a breakpoint, but stop events for that
11838 breakpoint are already queued and will arrive later.
11839 We apply an heuristic to be able to distinguish such
11840 SIGTRAPs from other random SIGTRAPs: we keep this
11841 breakpoint location for a bit, and will retire it
11842 after we see some number of events. The theory here
11843 is that reporting of events should, "on the average",
11844 be fair, so after a while we'll see events from all
11845 threads that have anything of interest, and no longer
11846 need to keep this breakpoint location around. We
11847 don't hold locations forever so to reduce chances of
11848 mistaking a non-breakpoint SIGTRAP for a breakpoint
11849 SIGTRAP.
11850
11851 The heuristic failing can be disastrous on
11852 decr_pc_after_break targets.
11853
11854 On decr_pc_after_break targets, like e.g., x86-linux,
11855 if we fail to recognize a late breakpoint SIGTRAP,
11856 because events_till_retirement has reached 0 too
11857 soon, we'll fail to do the PC adjustment, and report
11858 a random SIGTRAP to the user. When the user resumes
11859 the inferior, it will most likely immediately crash
11860 with SIGILL/SIGBUS/SIGSEGV, or worse, get silently
11861 corrupted, because of being resumed e.g., in the
11862 middle of a multi-byte instruction, or skipped a
11863 one-byte instruction. This was actually seen happen
11864 on native x86-linux, and should be less rare on
11865 targets that do not support new thread events, like
11866 remote, due to the heuristic depending on
11867 thread_count.
11868
11869 Mistaking a random SIGTRAP for a breakpoint trap
11870 causes similar symptoms (PC adjustment applied when
11871 it shouldn't), but then again, playing with SIGTRAPs
11872 behind the debugger's back is asking for trouble.
11873
11874 Since hardware watchpoint traps are always
11875 distinguishable from other traps, so we don't need to
11876 apply keep hardware watchpoint moribund locations
11877 around. We simply always ignore hardware watchpoint
11878 traps we can no longer explain. */
11879
11880 old_loc->events_till_retirement = 3 * (thread_count () + 1);
11881 old_loc->owner = NULL;
11882
11883 moribund_locations.push_back (old_loc);
11884 }
11885 else
11886 {
11887 old_loc->owner = NULL;
11888 decref_bp_location (&old_loc);
11889 }
11890 }
11891 }
11892
11893 /* Rescan breakpoints at the same address and section, marking the
11894 first one as "first" and any others as "duplicates". This is so
11895 that the bpt instruction is only inserted once. If we have a
11896 permanent breakpoint at the same place as BPT, make that one the
11897 official one, and the rest as duplicates. Permanent breakpoints
11898 are sorted first for the same address.
11899
11900 Do the same for hardware watchpoints, but also considering the
11901 watchpoint's type (regular/access/read) and length. */
11902
11903 bp_loc_first = NULL;
11904 wp_loc_first = NULL;
11905 awp_loc_first = NULL;
11906 rwp_loc_first = NULL;
11907 ALL_BP_LOCATIONS (loc, locp)
11908 {
11909 /* ALL_BP_LOCATIONS bp_location has LOC->OWNER always
11910 non-NULL. */
11911 struct bp_location **loc_first_p;
11912 b = loc->owner;
11913
11914 if (!unduplicated_should_be_inserted (loc)
11915 || !bl_address_is_meaningful (loc)
11916 /* Don't detect duplicate for tracepoint locations because they are
11917 never duplicated. See the comments in field `duplicate' of
11918 `struct bp_location'. */
11919 || is_tracepoint (b))
11920 {
11921 /* Clear the condition modification flag. */
11922 loc->condition_changed = condition_unchanged;
11923 continue;
11924 }
11925
11926 if (b->type == bp_hardware_watchpoint)
11927 loc_first_p = &wp_loc_first;
11928 else if (b->type == bp_read_watchpoint)
11929 loc_first_p = &rwp_loc_first;
11930 else if (b->type == bp_access_watchpoint)
11931 loc_first_p = &awp_loc_first;
11932 else
11933 loc_first_p = &bp_loc_first;
11934
11935 if (*loc_first_p == NULL
11936 || (overlay_debugging && loc->section != (*loc_first_p)->section)
11937 || !breakpoint_locations_match (loc, *loc_first_p))
11938 {
11939 *loc_first_p = loc;
11940 loc->duplicate = 0;
11941
11942 if (is_breakpoint (loc->owner) && loc->condition_changed)
11943 {
11944 loc->needs_update = 1;
11945 /* Clear the condition modification flag. */
11946 loc->condition_changed = condition_unchanged;
11947 }
11948 continue;
11949 }
11950
11951
11952 /* This and the above ensure the invariant that the first location
11953 is not duplicated, and is the inserted one.
11954 All following are marked as duplicated, and are not inserted. */
11955 if (loc->inserted)
11956 swap_insertion (loc, *loc_first_p);
11957 loc->duplicate = 1;
11958
11959 /* Clear the condition modification flag. */
11960 loc->condition_changed = condition_unchanged;
11961 }
11962
11963 if (insert_mode == UGLL_INSERT || breakpoints_should_be_inserted_now ())
11964 {
11965 if (insert_mode != UGLL_DONT_INSERT)
11966 insert_breakpoint_locations ();
11967 else
11968 {
11969 /* Even though the caller told us to not insert new
11970 locations, we may still need to update conditions on the
11971 target's side of breakpoints that were already inserted
11972 if the target is evaluating breakpoint conditions. We
11973 only update conditions for locations that are marked
11974 "needs_update". */
11975 update_inserted_breakpoint_locations ();
11976 }
11977 }
11978
11979 if (insert_mode != UGLL_DONT_INSERT)
11980 download_tracepoint_locations ();
11981 }
11982
11983 void
11984 breakpoint_retire_moribund (void)
11985 {
11986 for (int ix = 0; ix < moribund_locations.size (); ++ix)
11987 {
11988 struct bp_location *loc = moribund_locations[ix];
11989 if (--(loc->events_till_retirement) == 0)
11990 {
11991 decref_bp_location (&loc);
11992 unordered_remove (moribund_locations, ix);
11993 --ix;
11994 }
11995 }
11996 }
11997
11998 static void
11999 update_global_location_list_nothrow (enum ugll_insert_mode insert_mode)
12000 {
12001
12002 try
12003 {
12004 update_global_location_list (insert_mode);
12005 }
12006 catch (const gdb_exception_error &e)
12007 {
12008 }
12009 }
12010
12011 /* Clear BKP from a BPS. */
12012
12013 static void
12014 bpstat_remove_bp_location (bpstat bps, struct breakpoint *bpt)
12015 {
12016 bpstat bs;
12017
12018 for (bs = bps; bs; bs = bs->next)
12019 if (bs->breakpoint_at == bpt)
12020 {
12021 bs->breakpoint_at = NULL;
12022 bs->old_val = NULL;
12023 /* bs->commands will be freed later. */
12024 }
12025 }
12026
12027 /* Callback for iterate_over_threads. */
12028 static int
12029 bpstat_remove_breakpoint_callback (struct thread_info *th, void *data)
12030 {
12031 struct breakpoint *bpt = (struct breakpoint *) data;
12032
12033 bpstat_remove_bp_location (th->control.stop_bpstat, bpt);
12034 return 0;
12035 }
12036
12037 /* Helper for breakpoint and tracepoint breakpoint_ops->mention
12038 callbacks. */
12039
12040 static void
12041 say_where (struct breakpoint *b)
12042 {
12043 struct value_print_options opts;
12044
12045 get_user_print_options (&opts);
12046
12047 /* i18n: cagney/2005-02-11: Below needs to be merged into a
12048 single string. */
12049 if (b->loc == NULL)
12050 {
12051 /* For pending locations, the output differs slightly based
12052 on b->extra_string. If this is non-NULL, it contains either
12053 a condition or dprintf arguments. */
12054 if (b->extra_string == NULL)
12055 {
12056 printf_filtered (_(" (%s) pending."),
12057 event_location_to_string (b->location.get ()));
12058 }
12059 else if (b->type == bp_dprintf)
12060 {
12061 printf_filtered (_(" (%s,%s) pending."),
12062 event_location_to_string (b->location.get ()),
12063 b->extra_string);
12064 }
12065 else
12066 {
12067 printf_filtered (_(" (%s %s) pending."),
12068 event_location_to_string (b->location.get ()),
12069 b->extra_string);
12070 }
12071 }
12072 else
12073 {
12074 if (opts.addressprint || b->loc->symtab == NULL)
12075 printf_filtered (" at %ps",
12076 styled_string (address_style.style (),
12077 paddress (b->loc->gdbarch,
12078 b->loc->address)));
12079 if (b->loc->symtab != NULL)
12080 {
12081 /* If there is a single location, we can print the location
12082 more nicely. */
12083 if (b->loc->next == NULL)
12084 {
12085 const char *filename
12086 = symtab_to_filename_for_display (b->loc->symtab);
12087 printf_filtered (": file %ps, line %d.",
12088 styled_string (file_name_style.style (),
12089 filename),
12090 b->loc->line_number);
12091 }
12092 else
12093 /* This is not ideal, but each location may have a
12094 different file name, and this at least reflects the
12095 real situation somewhat. */
12096 printf_filtered (": %s.",
12097 event_location_to_string (b->location.get ()));
12098 }
12099
12100 if (b->loc->next)
12101 {
12102 struct bp_location *loc = b->loc;
12103 int n = 0;
12104 for (; loc; loc = loc->next)
12105 ++n;
12106 printf_filtered (" (%d locations)", n);
12107 }
12108 }
12109 }
12110
12111 bp_location::~bp_location ()
12112 {
12113 xfree (function_name);
12114 }
12115
12116 /* Destructor for the breakpoint base class. */
12117
12118 breakpoint::~breakpoint ()
12119 {
12120 xfree (this->cond_string);
12121 xfree (this->extra_string);
12122 }
12123
12124 static struct bp_location *
12125 base_breakpoint_allocate_location (struct breakpoint *self)
12126 {
12127 return new bp_location (self);
12128 }
12129
12130 static void
12131 base_breakpoint_re_set (struct breakpoint *b)
12132 {
12133 /* Nothing to re-set. */
12134 }
12135
12136 #define internal_error_pure_virtual_called() \
12137 gdb_assert_not_reached ("pure virtual function called")
12138
12139 static int
12140 base_breakpoint_insert_location (struct bp_location *bl)
12141 {
12142 internal_error_pure_virtual_called ();
12143 }
12144
12145 static int
12146 base_breakpoint_remove_location (struct bp_location *bl,
12147 enum remove_bp_reason reason)
12148 {
12149 internal_error_pure_virtual_called ();
12150 }
12151
12152 static int
12153 base_breakpoint_breakpoint_hit (const struct bp_location *bl,
12154 const address_space *aspace,
12155 CORE_ADDR bp_addr,
12156 const struct target_waitstatus *ws)
12157 {
12158 internal_error_pure_virtual_called ();
12159 }
12160
12161 static void
12162 base_breakpoint_check_status (bpstat bs)
12163 {
12164 /* Always stop. */
12165 }
12166
12167 /* A "works_in_software_mode" breakpoint_ops method that just internal
12168 errors. */
12169
12170 static int
12171 base_breakpoint_works_in_software_mode (const struct breakpoint *b)
12172 {
12173 internal_error_pure_virtual_called ();
12174 }
12175
12176 /* A "resources_needed" breakpoint_ops method that just internal
12177 errors. */
12178
12179 static int
12180 base_breakpoint_resources_needed (const struct bp_location *bl)
12181 {
12182 internal_error_pure_virtual_called ();
12183 }
12184
12185 static enum print_stop_action
12186 base_breakpoint_print_it (bpstat bs)
12187 {
12188 internal_error_pure_virtual_called ();
12189 }
12190
12191 static void
12192 base_breakpoint_print_one_detail (const struct breakpoint *self,
12193 struct ui_out *uiout)
12194 {
12195 /* nothing */
12196 }
12197
12198 static void
12199 base_breakpoint_print_mention (struct breakpoint *b)
12200 {
12201 internal_error_pure_virtual_called ();
12202 }
12203
12204 static void
12205 base_breakpoint_print_recreate (struct breakpoint *b, struct ui_file *fp)
12206 {
12207 internal_error_pure_virtual_called ();
12208 }
12209
12210 static void
12211 base_breakpoint_create_sals_from_location
12212 (const struct event_location *location,
12213 struct linespec_result *canonical,
12214 enum bptype type_wanted)
12215 {
12216 internal_error_pure_virtual_called ();
12217 }
12218
12219 static void
12220 base_breakpoint_create_breakpoints_sal (struct gdbarch *gdbarch,
12221 struct linespec_result *c,
12222 gdb::unique_xmalloc_ptr<char> cond_string,
12223 gdb::unique_xmalloc_ptr<char> extra_string,
12224 enum bptype type_wanted,
12225 enum bpdisp disposition,
12226 int thread,
12227 int task, int ignore_count,
12228 const struct breakpoint_ops *o,
12229 int from_tty, int enabled,
12230 int internal, unsigned flags)
12231 {
12232 internal_error_pure_virtual_called ();
12233 }
12234
12235 static std::vector<symtab_and_line>
12236 base_breakpoint_decode_location (struct breakpoint *b,
12237 const struct event_location *location,
12238 struct program_space *search_pspace)
12239 {
12240 internal_error_pure_virtual_called ();
12241 }
12242
12243 /* The default 'explains_signal' method. */
12244
12245 static int
12246 base_breakpoint_explains_signal (struct breakpoint *b, enum gdb_signal sig)
12247 {
12248 return 1;
12249 }
12250
12251 /* The default "after_condition_true" method. */
12252
12253 static void
12254 base_breakpoint_after_condition_true (struct bpstats *bs)
12255 {
12256 /* Nothing to do. */
12257 }
12258
12259 struct breakpoint_ops base_breakpoint_ops =
12260 {
12261 base_breakpoint_allocate_location,
12262 base_breakpoint_re_set,
12263 base_breakpoint_insert_location,
12264 base_breakpoint_remove_location,
12265 base_breakpoint_breakpoint_hit,
12266 base_breakpoint_check_status,
12267 base_breakpoint_resources_needed,
12268 base_breakpoint_works_in_software_mode,
12269 base_breakpoint_print_it,
12270 NULL,
12271 base_breakpoint_print_one_detail,
12272 base_breakpoint_print_mention,
12273 base_breakpoint_print_recreate,
12274 base_breakpoint_create_sals_from_location,
12275 base_breakpoint_create_breakpoints_sal,
12276 base_breakpoint_decode_location,
12277 base_breakpoint_explains_signal,
12278 base_breakpoint_after_condition_true,
12279 };
12280
12281 /* Default breakpoint_ops methods. */
12282
12283 static void
12284 bkpt_re_set (struct breakpoint *b)
12285 {
12286 /* FIXME: is this still reachable? */
12287 if (breakpoint_event_location_empty_p (b))
12288 {
12289 /* Anything without a location can't be re-set. */
12290 delete_breakpoint (b);
12291 return;
12292 }
12293
12294 breakpoint_re_set_default (b);
12295 }
12296
12297 static int
12298 bkpt_insert_location (struct bp_location *bl)
12299 {
12300 CORE_ADDR addr = bl->target_info.reqstd_address;
12301
12302 bl->target_info.kind = breakpoint_kind (bl, &addr);
12303 bl->target_info.placed_address = addr;
12304
12305 if (bl->loc_type == bp_loc_hardware_breakpoint)
12306 return target_insert_hw_breakpoint (bl->gdbarch, &bl->target_info);
12307 else
12308 return target_insert_breakpoint (bl->gdbarch, &bl->target_info);
12309 }
12310
12311 static int
12312 bkpt_remove_location (struct bp_location *bl, enum remove_bp_reason reason)
12313 {
12314 if (bl->loc_type == bp_loc_hardware_breakpoint)
12315 return target_remove_hw_breakpoint (bl->gdbarch, &bl->target_info);
12316 else
12317 return target_remove_breakpoint (bl->gdbarch, &bl->target_info, reason);
12318 }
12319
12320 static int
12321 bkpt_breakpoint_hit (const struct bp_location *bl,
12322 const address_space *aspace, CORE_ADDR bp_addr,
12323 const struct target_waitstatus *ws)
12324 {
12325 if (ws->kind != TARGET_WAITKIND_STOPPED
12326 || ws->value.sig != GDB_SIGNAL_TRAP)
12327 return 0;
12328
12329 if (!breakpoint_address_match (bl->pspace->aspace, bl->address,
12330 aspace, bp_addr))
12331 return 0;
12332
12333 if (overlay_debugging /* unmapped overlay section */
12334 && section_is_overlay (bl->section)
12335 && !section_is_mapped (bl->section))
12336 return 0;
12337
12338 return 1;
12339 }
12340
12341 static int
12342 dprintf_breakpoint_hit (const struct bp_location *bl,
12343 const address_space *aspace, CORE_ADDR bp_addr,
12344 const struct target_waitstatus *ws)
12345 {
12346 if (dprintf_style == dprintf_style_agent
12347 && target_can_run_breakpoint_commands ())
12348 {
12349 /* An agent-style dprintf never causes a stop. If we see a trap
12350 for this address it must be for a breakpoint that happens to
12351 be set at the same address. */
12352 return 0;
12353 }
12354
12355 return bkpt_breakpoint_hit (bl, aspace, bp_addr, ws);
12356 }
12357
12358 static int
12359 bkpt_resources_needed (const struct bp_location *bl)
12360 {
12361 gdb_assert (bl->owner->type == bp_hardware_breakpoint);
12362
12363 return 1;
12364 }
12365
12366 static enum print_stop_action
12367 bkpt_print_it (bpstat bs)
12368 {
12369 struct breakpoint *b;
12370 const struct bp_location *bl;
12371 int bp_temp;
12372 struct ui_out *uiout = current_uiout;
12373
12374 gdb_assert (bs->bp_location_at != NULL);
12375
12376 bl = bs->bp_location_at;
12377 b = bs->breakpoint_at;
12378
12379 bp_temp = b->disposition == disp_del;
12380 if (bl->address != bl->requested_address)
12381 breakpoint_adjustment_warning (bl->requested_address,
12382 bl->address,
12383 b->number, 1);
12384 annotate_breakpoint (b->number);
12385 maybe_print_thread_hit_breakpoint (uiout);
12386
12387 if (uiout->is_mi_like_p ())
12388 {
12389 uiout->field_string ("reason",
12390 async_reason_lookup (EXEC_ASYNC_BREAKPOINT_HIT));
12391 uiout->field_string ("disp", bpdisp_text (b->disposition));
12392 }
12393 if (bp_temp)
12394 uiout->message ("Temporary breakpoint %pF, ",
12395 signed_field ("bkptno", b->number));
12396 else
12397 uiout->message ("Breakpoint %pF, ",
12398 signed_field ("bkptno", b->number));
12399
12400 return PRINT_SRC_AND_LOC;
12401 }
12402
12403 static void
12404 bkpt_print_mention (struct breakpoint *b)
12405 {
12406 if (current_uiout->is_mi_like_p ())
12407 return;
12408
12409 switch (b->type)
12410 {
12411 case bp_breakpoint:
12412 case bp_gnu_ifunc_resolver:
12413 if (b->disposition == disp_del)
12414 printf_filtered (_("Temporary breakpoint"));
12415 else
12416 printf_filtered (_("Breakpoint"));
12417 printf_filtered (_(" %d"), b->number);
12418 if (b->type == bp_gnu_ifunc_resolver)
12419 printf_filtered (_(" at gnu-indirect-function resolver"));
12420 break;
12421 case bp_hardware_breakpoint:
12422 printf_filtered (_("Hardware assisted breakpoint %d"), b->number);
12423 break;
12424 case bp_dprintf:
12425 printf_filtered (_("Dprintf %d"), b->number);
12426 break;
12427 }
12428
12429 say_where (b);
12430 }
12431
12432 static void
12433 bkpt_print_recreate (struct breakpoint *tp, struct ui_file *fp)
12434 {
12435 if (tp->type == bp_breakpoint && tp->disposition == disp_del)
12436 fprintf_unfiltered (fp, "tbreak");
12437 else if (tp->type == bp_breakpoint)
12438 fprintf_unfiltered (fp, "break");
12439 else if (tp->type == bp_hardware_breakpoint
12440 && tp->disposition == disp_del)
12441 fprintf_unfiltered (fp, "thbreak");
12442 else if (tp->type == bp_hardware_breakpoint)
12443 fprintf_unfiltered (fp, "hbreak");
12444 else
12445 internal_error (__FILE__, __LINE__,
12446 _("unhandled breakpoint type %d"), (int) tp->type);
12447
12448 fprintf_unfiltered (fp, " %s",
12449 event_location_to_string (tp->location.get ()));
12450
12451 /* Print out extra_string if this breakpoint is pending. It might
12452 contain, for example, conditions that were set by the user. */
12453 if (tp->loc == NULL && tp->extra_string != NULL)
12454 fprintf_unfiltered (fp, " %s", tp->extra_string);
12455
12456 print_recreate_thread (tp, fp);
12457 }
12458
12459 static void
12460 bkpt_create_sals_from_location (const struct event_location *location,
12461 struct linespec_result *canonical,
12462 enum bptype type_wanted)
12463 {
12464 create_sals_from_location_default (location, canonical, type_wanted);
12465 }
12466
12467 static void
12468 bkpt_create_breakpoints_sal (struct gdbarch *gdbarch,
12469 struct linespec_result *canonical,
12470 gdb::unique_xmalloc_ptr<char> cond_string,
12471 gdb::unique_xmalloc_ptr<char> extra_string,
12472 enum bptype type_wanted,
12473 enum bpdisp disposition,
12474 int thread,
12475 int task, int ignore_count,
12476 const struct breakpoint_ops *ops,
12477 int from_tty, int enabled,
12478 int internal, unsigned flags)
12479 {
12480 create_breakpoints_sal_default (gdbarch, canonical,
12481 std::move (cond_string),
12482 std::move (extra_string),
12483 type_wanted,
12484 disposition, thread, task,
12485 ignore_count, ops, from_tty,
12486 enabled, internal, flags);
12487 }
12488
12489 static std::vector<symtab_and_line>
12490 bkpt_decode_location (struct breakpoint *b,
12491 const struct event_location *location,
12492 struct program_space *search_pspace)
12493 {
12494 return decode_location_default (b, location, search_pspace);
12495 }
12496
12497 /* Virtual table for internal breakpoints. */
12498
12499 static void
12500 internal_bkpt_re_set (struct breakpoint *b)
12501 {
12502 switch (b->type)
12503 {
12504 /* Delete overlay event and longjmp master breakpoints; they
12505 will be reset later by breakpoint_re_set. */
12506 case bp_overlay_event:
12507 case bp_longjmp_master:
12508 case bp_std_terminate_master:
12509 case bp_exception_master:
12510 delete_breakpoint (b);
12511 break;
12512
12513 /* This breakpoint is special, it's set up when the inferior
12514 starts and we really don't want to touch it. */
12515 case bp_shlib_event:
12516
12517 /* Like bp_shlib_event, this breakpoint type is special. Once
12518 it is set up, we do not want to touch it. */
12519 case bp_thread_event:
12520 break;
12521 }
12522 }
12523
12524 static void
12525 internal_bkpt_check_status (bpstat bs)
12526 {
12527 if (bs->breakpoint_at->type == bp_shlib_event)
12528 {
12529 /* If requested, stop when the dynamic linker notifies GDB of
12530 events. This allows the user to get control and place
12531 breakpoints in initializer routines for dynamically loaded
12532 objects (among other things). */
12533 bs->stop = stop_on_solib_events;
12534 bs->print = stop_on_solib_events;
12535 }
12536 else
12537 bs->stop = 0;
12538 }
12539
12540 static enum print_stop_action
12541 internal_bkpt_print_it (bpstat bs)
12542 {
12543 struct breakpoint *b;
12544
12545 b = bs->breakpoint_at;
12546
12547 switch (b->type)
12548 {
12549 case bp_shlib_event:
12550 /* Did we stop because the user set the stop_on_solib_events
12551 variable? (If so, we report this as a generic, "Stopped due
12552 to shlib event" message.) */
12553 print_solib_event (0);
12554 break;
12555
12556 case bp_thread_event:
12557 /* Not sure how we will get here.
12558 GDB should not stop for these breakpoints. */
12559 printf_filtered (_("Thread Event Breakpoint: gdb should not stop!\n"));
12560 break;
12561
12562 case bp_overlay_event:
12563 /* By analogy with the thread event, GDB should not stop for these. */
12564 printf_filtered (_("Overlay Event Breakpoint: gdb should not stop!\n"));
12565 break;
12566
12567 case bp_longjmp_master:
12568 /* These should never be enabled. */
12569 printf_filtered (_("Longjmp Master Breakpoint: gdb should not stop!\n"));
12570 break;
12571
12572 case bp_std_terminate_master:
12573 /* These should never be enabled. */
12574 printf_filtered (_("std::terminate Master Breakpoint: "
12575 "gdb should not stop!\n"));
12576 break;
12577
12578 case bp_exception_master:
12579 /* These should never be enabled. */
12580 printf_filtered (_("Exception Master Breakpoint: "
12581 "gdb should not stop!\n"));
12582 break;
12583 }
12584
12585 return PRINT_NOTHING;
12586 }
12587
12588 static void
12589 internal_bkpt_print_mention (struct breakpoint *b)
12590 {
12591 /* Nothing to mention. These breakpoints are internal. */
12592 }
12593
12594 /* Virtual table for momentary breakpoints */
12595
12596 static void
12597 momentary_bkpt_re_set (struct breakpoint *b)
12598 {
12599 /* Keep temporary breakpoints, which can be encountered when we step
12600 over a dlopen call and solib_add is resetting the breakpoints.
12601 Otherwise these should have been blown away via the cleanup chain
12602 or by breakpoint_init_inferior when we rerun the executable. */
12603 }
12604
12605 static void
12606 momentary_bkpt_check_status (bpstat bs)
12607 {
12608 /* Nothing. The point of these breakpoints is causing a stop. */
12609 }
12610
12611 static enum print_stop_action
12612 momentary_bkpt_print_it (bpstat bs)
12613 {
12614 return PRINT_UNKNOWN;
12615 }
12616
12617 static void
12618 momentary_bkpt_print_mention (struct breakpoint *b)
12619 {
12620 /* Nothing to mention. These breakpoints are internal. */
12621 }
12622
12623 /* Ensure INITIATING_FRAME is cleared when no such breakpoint exists.
12624
12625 It gets cleared already on the removal of the first one of such placed
12626 breakpoints. This is OK as they get all removed altogether. */
12627
12628 longjmp_breakpoint::~longjmp_breakpoint ()
12629 {
12630 thread_info *tp = find_thread_global_id (this->thread);
12631
12632 if (tp != NULL)
12633 tp->initiating_frame = null_frame_id;
12634 }
12635
12636 /* Specific methods for probe breakpoints. */
12637
12638 static int
12639 bkpt_probe_insert_location (struct bp_location *bl)
12640 {
12641 int v = bkpt_insert_location (bl);
12642
12643 if (v == 0)
12644 {
12645 /* The insertion was successful, now let's set the probe's semaphore
12646 if needed. */
12647 bl->probe.prob->set_semaphore (bl->probe.objfile, bl->gdbarch);
12648 }
12649
12650 return v;
12651 }
12652
12653 static int
12654 bkpt_probe_remove_location (struct bp_location *bl,
12655 enum remove_bp_reason reason)
12656 {
12657 /* Let's clear the semaphore before removing the location. */
12658 bl->probe.prob->clear_semaphore (bl->probe.objfile, bl->gdbarch);
12659
12660 return bkpt_remove_location (bl, reason);
12661 }
12662
12663 static void
12664 bkpt_probe_create_sals_from_location (const struct event_location *location,
12665 struct linespec_result *canonical,
12666 enum bptype type_wanted)
12667 {
12668 struct linespec_sals lsal;
12669
12670 lsal.sals = parse_probes (location, NULL, canonical);
12671 lsal.canonical
12672 = xstrdup (event_location_to_string (canonical->location.get ()));
12673 canonical->lsals.push_back (std::move (lsal));
12674 }
12675
12676 static std::vector<symtab_and_line>
12677 bkpt_probe_decode_location (struct breakpoint *b,
12678 const struct event_location *location,
12679 struct program_space *search_pspace)
12680 {
12681 std::vector<symtab_and_line> sals = parse_probes (location, search_pspace, NULL);
12682 if (sals.empty ())
12683 error (_("probe not found"));
12684 return sals;
12685 }
12686
12687 /* The breakpoint_ops structure to be used in tracepoints. */
12688
12689 static void
12690 tracepoint_re_set (struct breakpoint *b)
12691 {
12692 breakpoint_re_set_default (b);
12693 }
12694
12695 static int
12696 tracepoint_breakpoint_hit (const struct bp_location *bl,
12697 const address_space *aspace, CORE_ADDR bp_addr,
12698 const struct target_waitstatus *ws)
12699 {
12700 /* By definition, the inferior does not report stops at
12701 tracepoints. */
12702 return 0;
12703 }
12704
12705 static void
12706 tracepoint_print_one_detail (const struct breakpoint *self,
12707 struct ui_out *uiout)
12708 {
12709 struct tracepoint *tp = (struct tracepoint *) self;
12710 if (!tp->static_trace_marker_id.empty ())
12711 {
12712 gdb_assert (self->type == bp_static_tracepoint);
12713
12714 uiout->message ("\tmarker id is %pF\n",
12715 string_field ("static-tracepoint-marker-string-id",
12716 tp->static_trace_marker_id.c_str ()));
12717 }
12718 }
12719
12720 static void
12721 tracepoint_print_mention (struct breakpoint *b)
12722 {
12723 if (current_uiout->is_mi_like_p ())
12724 return;
12725
12726 switch (b->type)
12727 {
12728 case bp_tracepoint:
12729 printf_filtered (_("Tracepoint"));
12730 printf_filtered (_(" %d"), b->number);
12731 break;
12732 case bp_fast_tracepoint:
12733 printf_filtered (_("Fast tracepoint"));
12734 printf_filtered (_(" %d"), b->number);
12735 break;
12736 case bp_static_tracepoint:
12737 printf_filtered (_("Static tracepoint"));
12738 printf_filtered (_(" %d"), b->number);
12739 break;
12740 default:
12741 internal_error (__FILE__, __LINE__,
12742 _("unhandled tracepoint type %d"), (int) b->type);
12743 }
12744
12745 say_where (b);
12746 }
12747
12748 static void
12749 tracepoint_print_recreate (struct breakpoint *self, struct ui_file *fp)
12750 {
12751 struct tracepoint *tp = (struct tracepoint *) self;
12752
12753 if (self->type == bp_fast_tracepoint)
12754 fprintf_unfiltered (fp, "ftrace");
12755 else if (self->type == bp_static_tracepoint)
12756 fprintf_unfiltered (fp, "strace");
12757 else if (self->type == bp_tracepoint)
12758 fprintf_unfiltered (fp, "trace");
12759 else
12760 internal_error (__FILE__, __LINE__,
12761 _("unhandled tracepoint type %d"), (int) self->type);
12762
12763 fprintf_unfiltered (fp, " %s",
12764 event_location_to_string (self->location.get ()));
12765 print_recreate_thread (self, fp);
12766
12767 if (tp->pass_count)
12768 fprintf_unfiltered (fp, " passcount %d\n", tp->pass_count);
12769 }
12770
12771 static void
12772 tracepoint_create_sals_from_location (const struct event_location *location,
12773 struct linespec_result *canonical,
12774 enum bptype type_wanted)
12775 {
12776 create_sals_from_location_default (location, canonical, type_wanted);
12777 }
12778
12779 static void
12780 tracepoint_create_breakpoints_sal (struct gdbarch *gdbarch,
12781 struct linespec_result *canonical,
12782 gdb::unique_xmalloc_ptr<char> cond_string,
12783 gdb::unique_xmalloc_ptr<char> extra_string,
12784 enum bptype type_wanted,
12785 enum bpdisp disposition,
12786 int thread,
12787 int task, int ignore_count,
12788 const struct breakpoint_ops *ops,
12789 int from_tty, int enabled,
12790 int internal, unsigned flags)
12791 {
12792 create_breakpoints_sal_default (gdbarch, canonical,
12793 std::move (cond_string),
12794 std::move (extra_string),
12795 type_wanted,
12796 disposition, thread, task,
12797 ignore_count, ops, from_tty,
12798 enabled, internal, flags);
12799 }
12800
12801 static std::vector<symtab_and_line>
12802 tracepoint_decode_location (struct breakpoint *b,
12803 const struct event_location *location,
12804 struct program_space *search_pspace)
12805 {
12806 return decode_location_default (b, location, search_pspace);
12807 }
12808
12809 struct breakpoint_ops tracepoint_breakpoint_ops;
12810
12811 /* The breakpoint_ops structure to be use on tracepoints placed in a
12812 static probe. */
12813
12814 static void
12815 tracepoint_probe_create_sals_from_location
12816 (const struct event_location *location,
12817 struct linespec_result *canonical,
12818 enum bptype type_wanted)
12819 {
12820 /* We use the same method for breakpoint on probes. */
12821 bkpt_probe_create_sals_from_location (location, canonical, type_wanted);
12822 }
12823
12824 static std::vector<symtab_and_line>
12825 tracepoint_probe_decode_location (struct breakpoint *b,
12826 const struct event_location *location,
12827 struct program_space *search_pspace)
12828 {
12829 /* We use the same method for breakpoint on probes. */
12830 return bkpt_probe_decode_location (b, location, search_pspace);
12831 }
12832
12833 static struct breakpoint_ops tracepoint_probe_breakpoint_ops;
12834
12835 /* Dprintf breakpoint_ops methods. */
12836
12837 static void
12838 dprintf_re_set (struct breakpoint *b)
12839 {
12840 breakpoint_re_set_default (b);
12841
12842 /* extra_string should never be non-NULL for dprintf. */
12843 gdb_assert (b->extra_string != NULL);
12844
12845 /* 1 - connect to target 1, that can run breakpoint commands.
12846 2 - create a dprintf, which resolves fine.
12847 3 - disconnect from target 1
12848 4 - connect to target 2, that can NOT run breakpoint commands.
12849
12850 After steps #3/#4, you'll want the dprintf command list to
12851 be updated, because target 1 and 2 may well return different
12852 answers for target_can_run_breakpoint_commands().
12853 Given absence of finer grained resetting, we get to do
12854 it all the time. */
12855 if (b->extra_string != NULL)
12856 update_dprintf_command_list (b);
12857 }
12858
12859 /* Implement the "print_recreate" breakpoint_ops method for dprintf. */
12860
12861 static void
12862 dprintf_print_recreate (struct breakpoint *tp, struct ui_file *fp)
12863 {
12864 fprintf_unfiltered (fp, "dprintf %s,%s",
12865 event_location_to_string (tp->location.get ()),
12866 tp->extra_string);
12867 print_recreate_thread (tp, fp);
12868 }
12869
12870 /* Implement the "after_condition_true" breakpoint_ops method for
12871 dprintf.
12872
12873 dprintf's are implemented with regular commands in their command
12874 list, but we run the commands here instead of before presenting the
12875 stop to the user, as dprintf's don't actually cause a stop. This
12876 also makes it so that the commands of multiple dprintfs at the same
12877 address are all handled. */
12878
12879 static void
12880 dprintf_after_condition_true (struct bpstats *bs)
12881 {
12882 struct bpstats tmp_bs;
12883 struct bpstats *tmp_bs_p = &tmp_bs;
12884
12885 /* dprintf's never cause a stop. This wasn't set in the
12886 check_status hook instead because that would make the dprintf's
12887 condition not be evaluated. */
12888 bs->stop = 0;
12889
12890 /* Run the command list here. Take ownership of it instead of
12891 copying. We never want these commands to run later in
12892 bpstat_do_actions, if a breakpoint that causes a stop happens to
12893 be set at same address as this dprintf, or even if running the
12894 commands here throws. */
12895 tmp_bs.commands = bs->commands;
12896 bs->commands = NULL;
12897
12898 bpstat_do_actions_1 (&tmp_bs_p);
12899
12900 /* 'tmp_bs.commands' will usually be NULL by now, but
12901 bpstat_do_actions_1 may return early without processing the whole
12902 list. */
12903 }
12904
12905 /* The breakpoint_ops structure to be used on static tracepoints with
12906 markers (`-m'). */
12907
12908 static void
12909 strace_marker_create_sals_from_location (const struct event_location *location,
12910 struct linespec_result *canonical,
12911 enum bptype type_wanted)
12912 {
12913 struct linespec_sals lsal;
12914 const char *arg_start, *arg;
12915
12916 arg = arg_start = get_linespec_location (location)->spec_string;
12917 lsal.sals = decode_static_tracepoint_spec (&arg);
12918
12919 std::string str (arg_start, arg - arg_start);
12920 const char *ptr = str.c_str ();
12921 canonical->location
12922 = new_linespec_location (&ptr, symbol_name_match_type::FULL);
12923
12924 lsal.canonical
12925 = xstrdup (event_location_to_string (canonical->location.get ()));
12926 canonical->lsals.push_back (std::move (lsal));
12927 }
12928
12929 static void
12930 strace_marker_create_breakpoints_sal (struct gdbarch *gdbarch,
12931 struct linespec_result *canonical,
12932 gdb::unique_xmalloc_ptr<char> cond_string,
12933 gdb::unique_xmalloc_ptr<char> extra_string,
12934 enum bptype type_wanted,
12935 enum bpdisp disposition,
12936 int thread,
12937 int task, int ignore_count,
12938 const struct breakpoint_ops *ops,
12939 int from_tty, int enabled,
12940 int internal, unsigned flags)
12941 {
12942 const linespec_sals &lsal = canonical->lsals[0];
12943
12944 /* If the user is creating a static tracepoint by marker id
12945 (strace -m MARKER_ID), then store the sals index, so that
12946 breakpoint_re_set can try to match up which of the newly
12947 found markers corresponds to this one, and, don't try to
12948 expand multiple locations for each sal, given than SALS
12949 already should contain all sals for MARKER_ID. */
12950
12951 for (size_t i = 0; i < lsal.sals.size (); i++)
12952 {
12953 event_location_up location
12954 = copy_event_location (canonical->location.get ());
12955
12956 std::unique_ptr<tracepoint> tp (new tracepoint ());
12957 init_breakpoint_sal (tp.get (), gdbarch, lsal.sals[i],
12958 std::move (location), NULL,
12959 std::move (cond_string),
12960 std::move (extra_string),
12961 type_wanted, disposition,
12962 thread, task, ignore_count, ops,
12963 from_tty, enabled, internal, flags,
12964 canonical->special_display);
12965 /* Given that its possible to have multiple markers with
12966 the same string id, if the user is creating a static
12967 tracepoint by marker id ("strace -m MARKER_ID"), then
12968 store the sals index, so that breakpoint_re_set can
12969 try to match up which of the newly found markers
12970 corresponds to this one */
12971 tp->static_trace_marker_id_idx = i;
12972
12973 install_breakpoint (internal, std::move (tp), 0);
12974 }
12975 }
12976
12977 static std::vector<symtab_and_line>
12978 strace_marker_decode_location (struct breakpoint *b,
12979 const struct event_location *location,
12980 struct program_space *search_pspace)
12981 {
12982 struct tracepoint *tp = (struct tracepoint *) b;
12983 const char *s = get_linespec_location (location)->spec_string;
12984
12985 std::vector<symtab_and_line> sals = decode_static_tracepoint_spec (&s);
12986 if (sals.size () > tp->static_trace_marker_id_idx)
12987 {
12988 sals[0] = sals[tp->static_trace_marker_id_idx];
12989 sals.resize (1);
12990 return sals;
12991 }
12992 else
12993 error (_("marker %s not found"), tp->static_trace_marker_id.c_str ());
12994 }
12995
12996 static struct breakpoint_ops strace_marker_breakpoint_ops;
12997
12998 static int
12999 strace_marker_p (struct breakpoint *b)
13000 {
13001 return b->ops == &strace_marker_breakpoint_ops;
13002 }
13003
13004 /* Delete a breakpoint and clean up all traces of it in the data
13005 structures. */
13006
13007 void
13008 delete_breakpoint (struct breakpoint *bpt)
13009 {
13010 struct breakpoint *b;
13011
13012 gdb_assert (bpt != NULL);
13013
13014 /* Has this bp already been deleted? This can happen because
13015 multiple lists can hold pointers to bp's. bpstat lists are
13016 especial culprits.
13017
13018 One example of this happening is a watchpoint's scope bp. When
13019 the scope bp triggers, we notice that the watchpoint is out of
13020 scope, and delete it. We also delete its scope bp. But the
13021 scope bp is marked "auto-deleting", and is already on a bpstat.
13022 That bpstat is then checked for auto-deleting bp's, which are
13023 deleted.
13024
13025 A real solution to this problem might involve reference counts in
13026 bp's, and/or giving them pointers back to their referencing
13027 bpstat's, and teaching delete_breakpoint to only free a bp's
13028 storage when no more references were extent. A cheaper bandaid
13029 was chosen. */
13030 if (bpt->type == bp_none)
13031 return;
13032
13033 /* At least avoid this stale reference until the reference counting
13034 of breakpoints gets resolved. */
13035 if (bpt->related_breakpoint != bpt)
13036 {
13037 struct breakpoint *related;
13038 struct watchpoint *w;
13039
13040 if (bpt->type == bp_watchpoint_scope)
13041 w = (struct watchpoint *) bpt->related_breakpoint;
13042 else if (bpt->related_breakpoint->type == bp_watchpoint_scope)
13043 w = (struct watchpoint *) bpt;
13044 else
13045 w = NULL;
13046 if (w != NULL)
13047 watchpoint_del_at_next_stop (w);
13048
13049 /* Unlink bpt from the bpt->related_breakpoint ring. */
13050 for (related = bpt; related->related_breakpoint != bpt;
13051 related = related->related_breakpoint);
13052 related->related_breakpoint = bpt->related_breakpoint;
13053 bpt->related_breakpoint = bpt;
13054 }
13055
13056 /* watch_command_1 creates a watchpoint but only sets its number if
13057 update_watchpoint succeeds in creating its bp_locations. If there's
13058 a problem in that process, we'll be asked to delete the half-created
13059 watchpoint. In that case, don't announce the deletion. */
13060 if (bpt->number)
13061 gdb::observers::breakpoint_deleted.notify (bpt);
13062
13063 if (breakpoint_chain == bpt)
13064 breakpoint_chain = bpt->next;
13065
13066 ALL_BREAKPOINTS (b)
13067 if (b->next == bpt)
13068 {
13069 b->next = bpt->next;
13070 break;
13071 }
13072
13073 /* Be sure no bpstat's are pointing at the breakpoint after it's
13074 been freed. */
13075 /* FIXME, how can we find all bpstat's? We just check stop_bpstat
13076 in all threads for now. Note that we cannot just remove bpstats
13077 pointing at bpt from the stop_bpstat list entirely, as breakpoint
13078 commands are associated with the bpstat; if we remove it here,
13079 then the later call to bpstat_do_actions (&stop_bpstat); in
13080 event-top.c won't do anything, and temporary breakpoints with
13081 commands won't work. */
13082
13083 iterate_over_threads (bpstat_remove_breakpoint_callback, bpt);
13084
13085 /* Now that breakpoint is removed from breakpoint list, update the
13086 global location list. This will remove locations that used to
13087 belong to this breakpoint. Do this before freeing the breakpoint
13088 itself, since remove_breakpoint looks at location's owner. It
13089 might be better design to have location completely
13090 self-contained, but it's not the case now. */
13091 update_global_location_list (UGLL_DONT_INSERT);
13092
13093 /* On the chance that someone will soon try again to delete this
13094 same bp, we mark it as deleted before freeing its storage. */
13095 bpt->type = bp_none;
13096 delete bpt;
13097 }
13098
13099 /* Iterator function to call a user-provided callback function once
13100 for each of B and its related breakpoints. */
13101
13102 static void
13103 iterate_over_related_breakpoints (struct breakpoint *b,
13104 gdb::function_view<void (breakpoint *)> function)
13105 {
13106 struct breakpoint *related;
13107
13108 related = b;
13109 do
13110 {
13111 struct breakpoint *next;
13112
13113 /* FUNCTION may delete RELATED. */
13114 next = related->related_breakpoint;
13115
13116 if (next == related)
13117 {
13118 /* RELATED is the last ring entry. */
13119 function (related);
13120
13121 /* FUNCTION may have deleted it, so we'd never reach back to
13122 B. There's nothing left to do anyway, so just break
13123 out. */
13124 break;
13125 }
13126 else
13127 function (related);
13128
13129 related = next;
13130 }
13131 while (related != b);
13132 }
13133
13134 static void
13135 delete_command (const char *arg, int from_tty)
13136 {
13137 struct breakpoint *b, *b_tmp;
13138
13139 dont_repeat ();
13140
13141 if (arg == 0)
13142 {
13143 int breaks_to_delete = 0;
13144
13145 /* Delete all breakpoints if no argument. Do not delete
13146 internal breakpoints, these have to be deleted with an
13147 explicit breakpoint number argument. */
13148 ALL_BREAKPOINTS (b)
13149 if (user_breakpoint_p (b))
13150 {
13151 breaks_to_delete = 1;
13152 break;
13153 }
13154
13155 /* Ask user only if there are some breakpoints to delete. */
13156 if (!from_tty
13157 || (breaks_to_delete && query (_("Delete all breakpoints? "))))
13158 {
13159 ALL_BREAKPOINTS_SAFE (b, b_tmp)
13160 if (user_breakpoint_p (b))
13161 delete_breakpoint (b);
13162 }
13163 }
13164 else
13165 map_breakpoint_numbers
13166 (arg, [&] (breakpoint *br)
13167 {
13168 iterate_over_related_breakpoints (br, delete_breakpoint);
13169 });
13170 }
13171
13172 /* Return true if all locations of B bound to PSPACE are pending. If
13173 PSPACE is NULL, all locations of all program spaces are
13174 considered. */
13175
13176 static int
13177 all_locations_are_pending (struct breakpoint *b, struct program_space *pspace)
13178 {
13179 struct bp_location *loc;
13180
13181 for (loc = b->loc; loc != NULL; loc = loc->next)
13182 if ((pspace == NULL
13183 || loc->pspace == pspace)
13184 && !loc->shlib_disabled
13185 && !loc->pspace->executing_startup)
13186 return 0;
13187 return 1;
13188 }
13189
13190 /* Subroutine of update_breakpoint_locations to simplify it.
13191 Return non-zero if multiple fns in list LOC have the same name.
13192 Null names are ignored. */
13193
13194 static int
13195 ambiguous_names_p (struct bp_location *loc)
13196 {
13197 struct bp_location *l;
13198 htab_t htab = htab_create_alloc (13, htab_hash_string, streq_hash, NULL,
13199 xcalloc, xfree);
13200
13201 for (l = loc; l != NULL; l = l->next)
13202 {
13203 const char **slot;
13204 const char *name = l->function_name;
13205
13206 /* Allow for some names to be NULL, ignore them. */
13207 if (name == NULL)
13208 continue;
13209
13210 slot = (const char **) htab_find_slot (htab, (const void *) name,
13211 INSERT);
13212 /* NOTE: We can assume slot != NULL here because xcalloc never
13213 returns NULL. */
13214 if (*slot != NULL)
13215 {
13216 htab_delete (htab);
13217 return 1;
13218 }
13219 *slot = name;
13220 }
13221
13222 htab_delete (htab);
13223 return 0;
13224 }
13225
13226 /* When symbols change, it probably means the sources changed as well,
13227 and it might mean the static tracepoint markers are no longer at
13228 the same address or line numbers they used to be at last we
13229 checked. Losing your static tracepoints whenever you rebuild is
13230 undesirable. This function tries to resync/rematch gdb static
13231 tracepoints with the markers on the target, for static tracepoints
13232 that have not been set by marker id. Static tracepoint that have
13233 been set by marker id are reset by marker id in breakpoint_re_set.
13234 The heuristic is:
13235
13236 1) For a tracepoint set at a specific address, look for a marker at
13237 the old PC. If one is found there, assume to be the same marker.
13238 If the name / string id of the marker found is different from the
13239 previous known name, assume that means the user renamed the marker
13240 in the sources, and output a warning.
13241
13242 2) For a tracepoint set at a given line number, look for a marker
13243 at the new address of the old line number. If one is found there,
13244 assume to be the same marker. If the name / string id of the
13245 marker found is different from the previous known name, assume that
13246 means the user renamed the marker in the sources, and output a
13247 warning.
13248
13249 3) If a marker is no longer found at the same address or line, it
13250 may mean the marker no longer exists. But it may also just mean
13251 the code changed a bit. Maybe the user added a few lines of code
13252 that made the marker move up or down (in line number terms). Ask
13253 the target for info about the marker with the string id as we knew
13254 it. If found, update line number and address in the matching
13255 static tracepoint. This will get confused if there's more than one
13256 marker with the same ID (possible in UST, although unadvised
13257 precisely because it confuses tools). */
13258
13259 static struct symtab_and_line
13260 update_static_tracepoint (struct breakpoint *b, struct symtab_and_line sal)
13261 {
13262 struct tracepoint *tp = (struct tracepoint *) b;
13263 struct static_tracepoint_marker marker;
13264 CORE_ADDR pc;
13265
13266 pc = sal.pc;
13267 if (sal.line)
13268 find_line_pc (sal.symtab, sal.line, &pc);
13269
13270 if (target_static_tracepoint_marker_at (pc, &marker))
13271 {
13272 if (tp->static_trace_marker_id != marker.str_id)
13273 warning (_("static tracepoint %d changed probed marker from %s to %s"),
13274 b->number, tp->static_trace_marker_id.c_str (),
13275 marker.str_id.c_str ());
13276
13277 tp->static_trace_marker_id = std::move (marker.str_id);
13278
13279 return sal;
13280 }
13281
13282 /* Old marker wasn't found on target at lineno. Try looking it up
13283 by string ID. */
13284 if (!sal.explicit_pc
13285 && sal.line != 0
13286 && sal.symtab != NULL
13287 && !tp->static_trace_marker_id.empty ())
13288 {
13289 std::vector<static_tracepoint_marker> markers
13290 = target_static_tracepoint_markers_by_strid
13291 (tp->static_trace_marker_id.c_str ());
13292
13293 if (!markers.empty ())
13294 {
13295 struct symbol *sym;
13296 struct static_tracepoint_marker *tpmarker;
13297 struct ui_out *uiout = current_uiout;
13298 struct explicit_location explicit_loc;
13299
13300 tpmarker = &markers[0];
13301
13302 tp->static_trace_marker_id = std::move (tpmarker->str_id);
13303
13304 warning (_("marker for static tracepoint %d (%s) not "
13305 "found at previous line number"),
13306 b->number, tp->static_trace_marker_id.c_str ());
13307
13308 symtab_and_line sal2 = find_pc_line (tpmarker->address, 0);
13309 sym = find_pc_sect_function (tpmarker->address, NULL);
13310 uiout->text ("Now in ");
13311 if (sym)
13312 {
13313 uiout->field_string ("func", sym->print_name (),
13314 function_name_style.style ());
13315 uiout->text (" at ");
13316 }
13317 uiout->field_string ("file",
13318 symtab_to_filename_for_display (sal2.symtab),
13319 file_name_style.style ());
13320 uiout->text (":");
13321
13322 if (uiout->is_mi_like_p ())
13323 {
13324 const char *fullname = symtab_to_fullname (sal2.symtab);
13325
13326 uiout->field_string ("fullname", fullname);
13327 }
13328
13329 uiout->field_signed ("line", sal2.line);
13330 uiout->text ("\n");
13331
13332 b->loc->line_number = sal2.line;
13333 b->loc->symtab = sym != NULL ? sal2.symtab : NULL;
13334
13335 b->location.reset (NULL);
13336 initialize_explicit_location (&explicit_loc);
13337 explicit_loc.source_filename
13338 = ASTRDUP (symtab_to_filename_for_display (sal2.symtab));
13339 explicit_loc.line_offset.offset = b->loc->line_number;
13340 explicit_loc.line_offset.sign = LINE_OFFSET_NONE;
13341 b->location = new_explicit_location (&explicit_loc);
13342
13343 /* Might be nice to check if function changed, and warn if
13344 so. */
13345 }
13346 }
13347 return sal;
13348 }
13349
13350 /* Returns 1 iff locations A and B are sufficiently same that
13351 we don't need to report breakpoint as changed. */
13352
13353 static int
13354 locations_are_equal (struct bp_location *a, struct bp_location *b)
13355 {
13356 while (a && b)
13357 {
13358 if (a->address != b->address)
13359 return 0;
13360
13361 if (a->shlib_disabled != b->shlib_disabled)
13362 return 0;
13363
13364 if (a->enabled != b->enabled)
13365 return 0;
13366
13367 a = a->next;
13368 b = b->next;
13369 }
13370
13371 if ((a == NULL) != (b == NULL))
13372 return 0;
13373
13374 return 1;
13375 }
13376
13377 /* Split all locations of B that are bound to PSPACE out of B's
13378 location list to a separate list and return that list's head. If
13379 PSPACE is NULL, hoist out all locations of B. */
13380
13381 static struct bp_location *
13382 hoist_existing_locations (struct breakpoint *b, struct program_space *pspace)
13383 {
13384 struct bp_location head;
13385 struct bp_location *i = b->loc;
13386 struct bp_location **i_link = &b->loc;
13387 struct bp_location *hoisted = &head;
13388
13389 if (pspace == NULL)
13390 {
13391 i = b->loc;
13392 b->loc = NULL;
13393 return i;
13394 }
13395
13396 head.next = NULL;
13397
13398 while (i != NULL)
13399 {
13400 if (i->pspace == pspace)
13401 {
13402 *i_link = i->next;
13403 i->next = NULL;
13404 hoisted->next = i;
13405 hoisted = i;
13406 }
13407 else
13408 i_link = &i->next;
13409 i = *i_link;
13410 }
13411
13412 return head.next;
13413 }
13414
13415 /* Create new breakpoint locations for B (a hardware or software
13416 breakpoint) based on SALS and SALS_END. If SALS_END.NELTS is not
13417 zero, then B is a ranged breakpoint. Only recreates locations for
13418 FILTER_PSPACE. Locations of other program spaces are left
13419 untouched. */
13420
13421 void
13422 update_breakpoint_locations (struct breakpoint *b,
13423 struct program_space *filter_pspace,
13424 gdb::array_view<const symtab_and_line> sals,
13425 gdb::array_view<const symtab_and_line> sals_end)
13426 {
13427 struct bp_location *existing_locations;
13428
13429 if (!sals_end.empty () && (sals.size () != 1 || sals_end.size () != 1))
13430 {
13431 /* Ranged breakpoints have only one start location and one end
13432 location. */
13433 b->enable_state = bp_disabled;
13434 printf_unfiltered (_("Could not reset ranged breakpoint %d: "
13435 "multiple locations found\n"),
13436 b->number);
13437 return;
13438 }
13439
13440 /* If there's no new locations, and all existing locations are
13441 pending, don't do anything. This optimizes the common case where
13442 all locations are in the same shared library, that was unloaded.
13443 We'd like to retain the location, so that when the library is
13444 loaded again, we don't loose the enabled/disabled status of the
13445 individual locations. */
13446 if (all_locations_are_pending (b, filter_pspace) && sals.empty ())
13447 return;
13448
13449 existing_locations = hoist_existing_locations (b, filter_pspace);
13450
13451 for (const auto &sal : sals)
13452 {
13453 struct bp_location *new_loc;
13454
13455 switch_to_program_space_and_thread (sal.pspace);
13456
13457 new_loc = add_location_to_breakpoint (b, &sal);
13458
13459 /* Reparse conditions, they might contain references to the
13460 old symtab. */
13461 if (b->cond_string != NULL)
13462 {
13463 const char *s;
13464
13465 s = b->cond_string;
13466 try
13467 {
13468 new_loc->cond = parse_exp_1 (&s, sal.pc,
13469 block_for_pc (sal.pc),
13470 0);
13471 }
13472 catch (const gdb_exception_error &e)
13473 {
13474 warning (_("failed to reevaluate condition "
13475 "for breakpoint %d: %s"),
13476 b->number, e.what ());
13477 new_loc->enabled = 0;
13478 }
13479 }
13480
13481 if (!sals_end.empty ())
13482 {
13483 CORE_ADDR end = find_breakpoint_range_end (sals_end[0]);
13484
13485 new_loc->length = end - sals[0].pc + 1;
13486 }
13487 }
13488
13489 /* If possible, carry over 'disable' status from existing
13490 breakpoints. */
13491 {
13492 struct bp_location *e = existing_locations;
13493 /* If there are multiple breakpoints with the same function name,
13494 e.g. for inline functions, comparing function names won't work.
13495 Instead compare pc addresses; this is just a heuristic as things
13496 may have moved, but in practice it gives the correct answer
13497 often enough until a better solution is found. */
13498 int have_ambiguous_names = ambiguous_names_p (b->loc);
13499
13500 for (; e; e = e->next)
13501 {
13502 if (!e->enabled && e->function_name)
13503 {
13504 struct bp_location *l = b->loc;
13505 if (have_ambiguous_names)
13506 {
13507 for (; l; l = l->next)
13508 if (breakpoint_locations_match (e, l))
13509 {
13510 l->enabled = 0;
13511 break;
13512 }
13513 }
13514 else
13515 {
13516 for (; l; l = l->next)
13517 if (l->function_name
13518 && strcmp (e->function_name, l->function_name) == 0)
13519 {
13520 l->enabled = 0;
13521 break;
13522 }
13523 }
13524 }
13525 }
13526 }
13527
13528 if (!locations_are_equal (existing_locations, b->loc))
13529 gdb::observers::breakpoint_modified.notify (b);
13530 }
13531
13532 /* Find the SaL locations corresponding to the given LOCATION.
13533 On return, FOUND will be 1 if any SaL was found, zero otherwise. */
13534
13535 static std::vector<symtab_and_line>
13536 location_to_sals (struct breakpoint *b, struct event_location *location,
13537 struct program_space *search_pspace, int *found)
13538 {
13539 struct gdb_exception exception;
13540
13541 gdb_assert (b->ops != NULL);
13542
13543 std::vector<symtab_and_line> sals;
13544
13545 try
13546 {
13547 sals = b->ops->decode_location (b, location, search_pspace);
13548 }
13549 catch (gdb_exception_error &e)
13550 {
13551 int not_found_and_ok = 0;
13552
13553 /* For pending breakpoints, it's expected that parsing will
13554 fail until the right shared library is loaded. User has
13555 already told to create pending breakpoints and don't need
13556 extra messages. If breakpoint is in bp_shlib_disabled
13557 state, then user already saw the message about that
13558 breakpoint being disabled, and don't want to see more
13559 errors. */
13560 if (e.error == NOT_FOUND_ERROR
13561 && (b->condition_not_parsed
13562 || (b->loc != NULL
13563 && search_pspace != NULL
13564 && b->loc->pspace != search_pspace)
13565 || (b->loc && b->loc->shlib_disabled)
13566 || (b->loc && b->loc->pspace->executing_startup)
13567 || b->enable_state == bp_disabled))
13568 not_found_and_ok = 1;
13569
13570 if (!not_found_and_ok)
13571 {
13572 /* We surely don't want to warn about the same breakpoint
13573 10 times. One solution, implemented here, is disable
13574 the breakpoint on error. Another solution would be to
13575 have separate 'warning emitted' flag. Since this
13576 happens only when a binary has changed, I don't know
13577 which approach is better. */
13578 b->enable_state = bp_disabled;
13579 throw;
13580 }
13581
13582 exception = std::move (e);
13583 }
13584
13585 if (exception.reason == 0 || exception.error != NOT_FOUND_ERROR)
13586 {
13587 for (auto &sal : sals)
13588 resolve_sal_pc (&sal);
13589 if (b->condition_not_parsed && b->extra_string != NULL)
13590 {
13591 char *cond_string, *extra_string;
13592 int thread, task;
13593
13594 find_condition_and_thread (b->extra_string, sals[0].pc,
13595 &cond_string, &thread, &task,
13596 &extra_string);
13597 gdb_assert (b->cond_string == NULL);
13598 if (cond_string)
13599 b->cond_string = cond_string;
13600 b->thread = thread;
13601 b->task = task;
13602 if (extra_string)
13603 {
13604 xfree (b->extra_string);
13605 b->extra_string = extra_string;
13606 }
13607 b->condition_not_parsed = 0;
13608 }
13609
13610 if (b->type == bp_static_tracepoint && !strace_marker_p (b))
13611 sals[0] = update_static_tracepoint (b, sals[0]);
13612
13613 *found = 1;
13614 }
13615 else
13616 *found = 0;
13617
13618 return sals;
13619 }
13620
13621 /* The default re_set method, for typical hardware or software
13622 breakpoints. Reevaluate the breakpoint and recreate its
13623 locations. */
13624
13625 static void
13626 breakpoint_re_set_default (struct breakpoint *b)
13627 {
13628 struct program_space *filter_pspace = current_program_space;
13629 std::vector<symtab_and_line> expanded, expanded_end;
13630
13631 int found;
13632 std::vector<symtab_and_line> sals = location_to_sals (b, b->location.get (),
13633 filter_pspace, &found);
13634 if (found)
13635 expanded = std::move (sals);
13636
13637 if (b->location_range_end != NULL)
13638 {
13639 std::vector<symtab_and_line> sals_end
13640 = location_to_sals (b, b->location_range_end.get (),
13641 filter_pspace, &found);
13642 if (found)
13643 expanded_end = std::move (sals_end);
13644 }
13645
13646 update_breakpoint_locations (b, filter_pspace, expanded, expanded_end);
13647 }
13648
13649 /* Default method for creating SALs from an address string. It basically
13650 calls parse_breakpoint_sals. Return 1 for success, zero for failure. */
13651
13652 static void
13653 create_sals_from_location_default (const struct event_location *location,
13654 struct linespec_result *canonical,
13655 enum bptype type_wanted)
13656 {
13657 parse_breakpoint_sals (location, canonical);
13658 }
13659
13660 /* Call create_breakpoints_sal for the given arguments. This is the default
13661 function for the `create_breakpoints_sal' method of
13662 breakpoint_ops. */
13663
13664 static void
13665 create_breakpoints_sal_default (struct gdbarch *gdbarch,
13666 struct linespec_result *canonical,
13667 gdb::unique_xmalloc_ptr<char> cond_string,
13668 gdb::unique_xmalloc_ptr<char> extra_string,
13669 enum bptype type_wanted,
13670 enum bpdisp disposition,
13671 int thread,
13672 int task, int ignore_count,
13673 const struct breakpoint_ops *ops,
13674 int from_tty, int enabled,
13675 int internal, unsigned flags)
13676 {
13677 create_breakpoints_sal (gdbarch, canonical,
13678 std::move (cond_string),
13679 std::move (extra_string),
13680 type_wanted, disposition,
13681 thread, task, ignore_count, ops, from_tty,
13682 enabled, internal, flags);
13683 }
13684
13685 /* Decode the line represented by S by calling decode_line_full. This is the
13686 default function for the `decode_location' method of breakpoint_ops. */
13687
13688 static std::vector<symtab_and_line>
13689 decode_location_default (struct breakpoint *b,
13690 const struct event_location *location,
13691 struct program_space *search_pspace)
13692 {
13693 struct linespec_result canonical;
13694
13695 decode_line_full (location, DECODE_LINE_FUNFIRSTLINE, search_pspace,
13696 NULL, 0, &canonical, multiple_symbols_all,
13697 b->filter.get ());
13698
13699 /* We should get 0 or 1 resulting SALs. */
13700 gdb_assert (canonical.lsals.size () < 2);
13701
13702 if (!canonical.lsals.empty ())
13703 {
13704 const linespec_sals &lsal = canonical.lsals[0];
13705 return std::move (lsal.sals);
13706 }
13707 return {};
13708 }
13709
13710 /* Reset a breakpoint. */
13711
13712 static void
13713 breakpoint_re_set_one (breakpoint *b)
13714 {
13715 input_radix = b->input_radix;
13716 set_language (b->language);
13717
13718 b->ops->re_set (b);
13719 }
13720
13721 /* Re-set breakpoint locations for the current program space.
13722 Locations bound to other program spaces are left untouched. */
13723
13724 void
13725 breakpoint_re_set (void)
13726 {
13727 struct breakpoint *b, *b_tmp;
13728
13729 {
13730 scoped_restore_current_language save_language;
13731 scoped_restore save_input_radix = make_scoped_restore (&input_radix);
13732 scoped_restore_current_pspace_and_thread restore_pspace_thread;
13733
13734 /* breakpoint_re_set_one sets the current_language to the language
13735 of the breakpoint it is resetting (see prepare_re_set_context)
13736 before re-evaluating the breakpoint's location. This change can
13737 unfortunately get undone by accident if the language_mode is set
13738 to auto, and we either switch frames, or more likely in this context,
13739 we select the current frame.
13740
13741 We prevent this by temporarily turning the language_mode to
13742 language_mode_manual. We restore it once all breakpoints
13743 have been reset. */
13744 scoped_restore save_language_mode = make_scoped_restore (&language_mode);
13745 language_mode = language_mode_manual;
13746
13747 /* Note: we must not try to insert locations until after all
13748 breakpoints have been re-set. Otherwise, e.g., when re-setting
13749 breakpoint 1, we'd insert the locations of breakpoint 2, which
13750 hadn't been re-set yet, and thus may have stale locations. */
13751
13752 ALL_BREAKPOINTS_SAFE (b, b_tmp)
13753 {
13754 try
13755 {
13756 breakpoint_re_set_one (b);
13757 }
13758 catch (const gdb_exception &ex)
13759 {
13760 exception_fprintf (gdb_stderr, ex,
13761 "Error in re-setting breakpoint %d: ",
13762 b->number);
13763 }
13764 }
13765
13766 jit_breakpoint_re_set ();
13767 }
13768
13769 create_overlay_event_breakpoint ();
13770 create_longjmp_master_breakpoint ();
13771 create_std_terminate_master_breakpoint ();
13772 create_exception_master_breakpoint ();
13773
13774 /* Now we can insert. */
13775 update_global_location_list (UGLL_MAY_INSERT);
13776 }
13777 \f
13778 /* Reset the thread number of this breakpoint:
13779
13780 - If the breakpoint is for all threads, leave it as-is.
13781 - Else, reset it to the current thread for inferior_ptid. */
13782 void
13783 breakpoint_re_set_thread (struct breakpoint *b)
13784 {
13785 if (b->thread != -1)
13786 {
13787 b->thread = inferior_thread ()->global_num;
13788
13789 /* We're being called after following a fork. The new fork is
13790 selected as current, and unless this was a vfork will have a
13791 different program space from the original thread. Reset that
13792 as well. */
13793 b->loc->pspace = current_program_space;
13794 }
13795 }
13796
13797 /* Set ignore-count of breakpoint number BPTNUM to COUNT.
13798 If from_tty is nonzero, it prints a message to that effect,
13799 which ends with a period (no newline). */
13800
13801 void
13802 set_ignore_count (int bptnum, int count, int from_tty)
13803 {
13804 struct breakpoint *b;
13805
13806 if (count < 0)
13807 count = 0;
13808
13809 ALL_BREAKPOINTS (b)
13810 if (b->number == bptnum)
13811 {
13812 if (is_tracepoint (b))
13813 {
13814 if (from_tty && count != 0)
13815 printf_filtered (_("Ignore count ignored for tracepoint %d."),
13816 bptnum);
13817 return;
13818 }
13819
13820 b->ignore_count = count;
13821 if (from_tty)
13822 {
13823 if (count == 0)
13824 printf_filtered (_("Will stop next time "
13825 "breakpoint %d is reached."),
13826 bptnum);
13827 else if (count == 1)
13828 printf_filtered (_("Will ignore next crossing of breakpoint %d."),
13829 bptnum);
13830 else
13831 printf_filtered (_("Will ignore next %d "
13832 "crossings of breakpoint %d."),
13833 count, bptnum);
13834 }
13835 gdb::observers::breakpoint_modified.notify (b);
13836 return;
13837 }
13838
13839 error (_("No breakpoint number %d."), bptnum);
13840 }
13841
13842 /* Command to set ignore-count of breakpoint N to COUNT. */
13843
13844 static void
13845 ignore_command (const char *args, int from_tty)
13846 {
13847 const char *p = args;
13848 int num;
13849
13850 if (p == 0)
13851 error_no_arg (_("a breakpoint number"));
13852
13853 num = get_number (&p);
13854 if (num == 0)
13855 error (_("bad breakpoint number: '%s'"), args);
13856 if (*p == 0)
13857 error (_("Second argument (specified ignore-count) is missing."));
13858
13859 set_ignore_count (num,
13860 longest_to_int (value_as_long (parse_and_eval (p))),
13861 from_tty);
13862 if (from_tty)
13863 printf_filtered ("\n");
13864 }
13865 \f
13866
13867 /* Call FUNCTION on each of the breakpoints with numbers in the range
13868 defined by BP_NUM_RANGE (an inclusive range). */
13869
13870 static void
13871 map_breakpoint_number_range (std::pair<int, int> bp_num_range,
13872 gdb::function_view<void (breakpoint *)> function)
13873 {
13874 if (bp_num_range.first == 0)
13875 {
13876 warning (_("bad breakpoint number at or near '%d'"),
13877 bp_num_range.first);
13878 }
13879 else
13880 {
13881 struct breakpoint *b, *tmp;
13882
13883 for (int i = bp_num_range.first; i <= bp_num_range.second; i++)
13884 {
13885 bool match = false;
13886
13887 ALL_BREAKPOINTS_SAFE (b, tmp)
13888 if (b->number == i)
13889 {
13890 match = true;
13891 function (b);
13892 break;
13893 }
13894 if (!match)
13895 printf_unfiltered (_("No breakpoint number %d.\n"), i);
13896 }
13897 }
13898 }
13899
13900 /* Call FUNCTION on each of the breakpoints whose numbers are given in
13901 ARGS. */
13902
13903 static void
13904 map_breakpoint_numbers (const char *args,
13905 gdb::function_view<void (breakpoint *)> function)
13906 {
13907 if (args == NULL || *args == '\0')
13908 error_no_arg (_("one or more breakpoint numbers"));
13909
13910 number_or_range_parser parser (args);
13911
13912 while (!parser.finished ())
13913 {
13914 int num = parser.get_number ();
13915 map_breakpoint_number_range (std::make_pair (num, num), function);
13916 }
13917 }
13918
13919 /* Return the breakpoint location structure corresponding to the
13920 BP_NUM and LOC_NUM values. */
13921
13922 static struct bp_location *
13923 find_location_by_number (int bp_num, int loc_num)
13924 {
13925 struct breakpoint *b;
13926
13927 ALL_BREAKPOINTS (b)
13928 if (b->number == bp_num)
13929 {
13930 break;
13931 }
13932
13933 if (!b || b->number != bp_num)
13934 error (_("Bad breakpoint number '%d'"), bp_num);
13935
13936 if (loc_num == 0)
13937 error (_("Bad breakpoint location number '%d'"), loc_num);
13938
13939 int n = 0;
13940 for (bp_location *loc = b->loc; loc != NULL; loc = loc->next)
13941 if (++n == loc_num)
13942 return loc;
13943
13944 error (_("Bad breakpoint location number '%d'"), loc_num);
13945 }
13946
13947 /* Modes of operation for extract_bp_num. */
13948 enum class extract_bp_kind
13949 {
13950 /* Extracting a breakpoint number. */
13951 bp,
13952
13953 /* Extracting a location number. */
13954 loc,
13955 };
13956
13957 /* Extract a breakpoint or location number (as determined by KIND)
13958 from the string starting at START. TRAILER is a character which
13959 can be found after the number. If you don't want a trailer, use
13960 '\0'. If END_OUT is not NULL, it is set to point after the parsed
13961 string. This always returns a positive integer. */
13962
13963 static int
13964 extract_bp_num (extract_bp_kind kind, const char *start,
13965 int trailer, const char **end_out = NULL)
13966 {
13967 const char *end = start;
13968 int num = get_number_trailer (&end, trailer);
13969 if (num < 0)
13970 error (kind == extract_bp_kind::bp
13971 ? _("Negative breakpoint number '%.*s'")
13972 : _("Negative breakpoint location number '%.*s'"),
13973 int (end - start), start);
13974 if (num == 0)
13975 error (kind == extract_bp_kind::bp
13976 ? _("Bad breakpoint number '%.*s'")
13977 : _("Bad breakpoint location number '%.*s'"),
13978 int (end - start), start);
13979
13980 if (end_out != NULL)
13981 *end_out = end;
13982 return num;
13983 }
13984
13985 /* Extract a breakpoint or location range (as determined by KIND) in
13986 the form NUM1-NUM2 stored at &ARG[arg_offset]. Returns a std::pair
13987 representing the (inclusive) range. The returned pair's elements
13988 are always positive integers. */
13989
13990 static std::pair<int, int>
13991 extract_bp_or_bp_range (extract_bp_kind kind,
13992 const std::string &arg,
13993 std::string::size_type arg_offset)
13994 {
13995 std::pair<int, int> range;
13996 const char *bp_loc = &arg[arg_offset];
13997 std::string::size_type dash = arg.find ('-', arg_offset);
13998 if (dash != std::string::npos)
13999 {
14000 /* bp_loc is a range (x-z). */
14001 if (arg.length () == dash + 1)
14002 error (kind == extract_bp_kind::bp
14003 ? _("Bad breakpoint number at or near: '%s'")
14004 : _("Bad breakpoint location number at or near: '%s'"),
14005 bp_loc);
14006
14007 const char *end;
14008 const char *start_first = bp_loc;
14009 const char *start_second = &arg[dash + 1];
14010 range.first = extract_bp_num (kind, start_first, '-');
14011 range.second = extract_bp_num (kind, start_second, '\0', &end);
14012
14013 if (range.first > range.second)
14014 error (kind == extract_bp_kind::bp
14015 ? _("Inverted breakpoint range at '%.*s'")
14016 : _("Inverted breakpoint location range at '%.*s'"),
14017 int (end - start_first), start_first);
14018 }
14019 else
14020 {
14021 /* bp_loc is a single value. */
14022 range.first = extract_bp_num (kind, bp_loc, '\0');
14023 range.second = range.first;
14024 }
14025 return range;
14026 }
14027
14028 /* Extract the breakpoint/location range specified by ARG. Returns
14029 the breakpoint range in BP_NUM_RANGE, and the location range in
14030 BP_LOC_RANGE.
14031
14032 ARG may be in any of the following forms:
14033
14034 x where 'x' is a breakpoint number.
14035 x-y where 'x' and 'y' specify a breakpoint numbers range.
14036 x.y where 'x' is a breakpoint number and 'y' a location number.
14037 x.y-z where 'x' is a breakpoint number and 'y' and 'z' specify a
14038 location number range.
14039 */
14040
14041 static void
14042 extract_bp_number_and_location (const std::string &arg,
14043 std::pair<int, int> &bp_num_range,
14044 std::pair<int, int> &bp_loc_range)
14045 {
14046 std::string::size_type dot = arg.find ('.');
14047
14048 if (dot != std::string::npos)
14049 {
14050 /* Handle 'x.y' and 'x.y-z' cases. */
14051
14052 if (arg.length () == dot + 1 || dot == 0)
14053 error (_("Bad breakpoint number at or near: '%s'"), arg.c_str ());
14054
14055 bp_num_range.first
14056 = extract_bp_num (extract_bp_kind::bp, arg.c_str (), '.');
14057 bp_num_range.second = bp_num_range.first;
14058
14059 bp_loc_range = extract_bp_or_bp_range (extract_bp_kind::loc,
14060 arg, dot + 1);
14061 }
14062 else
14063 {
14064 /* Handle x and x-y cases. */
14065
14066 bp_num_range = extract_bp_or_bp_range (extract_bp_kind::bp, arg, 0);
14067 bp_loc_range.first = 0;
14068 bp_loc_range.second = 0;
14069 }
14070 }
14071
14072 /* Enable or disable a breakpoint location BP_NUM.LOC_NUM. ENABLE
14073 specifies whether to enable or disable. */
14074
14075 static void
14076 enable_disable_bp_num_loc (int bp_num, int loc_num, bool enable)
14077 {
14078 struct bp_location *loc = find_location_by_number (bp_num, loc_num);
14079 if (loc != NULL)
14080 {
14081 if (loc->enabled != enable)
14082 {
14083 loc->enabled = enable;
14084 mark_breakpoint_location_modified (loc);
14085 }
14086 if (target_supports_enable_disable_tracepoint ()
14087 && current_trace_status ()->running && loc->owner
14088 && is_tracepoint (loc->owner))
14089 target_disable_tracepoint (loc);
14090 }
14091 update_global_location_list (UGLL_DONT_INSERT);
14092
14093 gdb::observers::breakpoint_modified.notify (loc->owner);
14094 }
14095
14096 /* Enable or disable a range of breakpoint locations. BP_NUM is the
14097 number of the breakpoint, and BP_LOC_RANGE specifies the
14098 (inclusive) range of location numbers of that breakpoint to
14099 enable/disable. ENABLE specifies whether to enable or disable the
14100 location. */
14101
14102 static void
14103 enable_disable_breakpoint_location_range (int bp_num,
14104 std::pair<int, int> &bp_loc_range,
14105 bool enable)
14106 {
14107 for (int i = bp_loc_range.first; i <= bp_loc_range.second; i++)
14108 enable_disable_bp_num_loc (bp_num, i, enable);
14109 }
14110
14111 /* Set ignore-count of breakpoint number BPTNUM to COUNT.
14112 If from_tty is nonzero, it prints a message to that effect,
14113 which ends with a period (no newline). */
14114
14115 void
14116 disable_breakpoint (struct breakpoint *bpt)
14117 {
14118 /* Never disable a watchpoint scope breakpoint; we want to
14119 hit them when we leave scope so we can delete both the
14120 watchpoint and its scope breakpoint at that time. */
14121 if (bpt->type == bp_watchpoint_scope)
14122 return;
14123
14124 bpt->enable_state = bp_disabled;
14125
14126 /* Mark breakpoint locations modified. */
14127 mark_breakpoint_modified (bpt);
14128
14129 if (target_supports_enable_disable_tracepoint ()
14130 && current_trace_status ()->running && is_tracepoint (bpt))
14131 {
14132 struct bp_location *location;
14133
14134 for (location = bpt->loc; location; location = location->next)
14135 target_disable_tracepoint (location);
14136 }
14137
14138 update_global_location_list (UGLL_DONT_INSERT);
14139
14140 gdb::observers::breakpoint_modified.notify (bpt);
14141 }
14142
14143 /* Enable or disable the breakpoint(s) or breakpoint location(s)
14144 specified in ARGS. ARGS may be in any of the formats handled by
14145 extract_bp_number_and_location. ENABLE specifies whether to enable
14146 or disable the breakpoints/locations. */
14147
14148 static void
14149 enable_disable_command (const char *args, int from_tty, bool enable)
14150 {
14151 if (args == 0)
14152 {
14153 struct breakpoint *bpt;
14154
14155 ALL_BREAKPOINTS (bpt)
14156 if (user_breakpoint_p (bpt))
14157 {
14158 if (enable)
14159 enable_breakpoint (bpt);
14160 else
14161 disable_breakpoint (bpt);
14162 }
14163 }
14164 else
14165 {
14166 std::string num = extract_arg (&args);
14167
14168 while (!num.empty ())
14169 {
14170 std::pair<int, int> bp_num_range, bp_loc_range;
14171
14172 extract_bp_number_and_location (num, bp_num_range, bp_loc_range);
14173
14174 if (bp_loc_range.first == bp_loc_range.second
14175 && bp_loc_range.first == 0)
14176 {
14177 /* Handle breakpoint ids with formats 'x' or 'x-z'. */
14178 map_breakpoint_number_range (bp_num_range,
14179 enable
14180 ? enable_breakpoint
14181 : disable_breakpoint);
14182 }
14183 else
14184 {
14185 /* Handle breakpoint ids with formats 'x.y' or
14186 'x.y-z'. */
14187 enable_disable_breakpoint_location_range
14188 (bp_num_range.first, bp_loc_range, enable);
14189 }
14190 num = extract_arg (&args);
14191 }
14192 }
14193 }
14194
14195 /* The disable command disables the specified breakpoints/locations
14196 (or all defined breakpoints) so they're no longer effective in
14197 stopping the inferior. ARGS may be in any of the forms defined in
14198 extract_bp_number_and_location. */
14199
14200 static void
14201 disable_command (const char *args, int from_tty)
14202 {
14203 enable_disable_command (args, from_tty, false);
14204 }
14205
14206 static void
14207 enable_breakpoint_disp (struct breakpoint *bpt, enum bpdisp disposition,
14208 int count)
14209 {
14210 int target_resources_ok;
14211
14212 if (bpt->type == bp_hardware_breakpoint)
14213 {
14214 int i;
14215 i = hw_breakpoint_used_count ();
14216 target_resources_ok =
14217 target_can_use_hardware_watchpoint (bp_hardware_breakpoint,
14218 i + 1, 0);
14219 if (target_resources_ok == 0)
14220 error (_("No hardware breakpoint support in the target."));
14221 else if (target_resources_ok < 0)
14222 error (_("Hardware breakpoints used exceeds limit."));
14223 }
14224
14225 if (is_watchpoint (bpt))
14226 {
14227 /* Initialize it just to avoid a GCC false warning. */
14228 enum enable_state orig_enable_state = bp_disabled;
14229
14230 try
14231 {
14232 struct watchpoint *w = (struct watchpoint *) bpt;
14233
14234 orig_enable_state = bpt->enable_state;
14235 bpt->enable_state = bp_enabled;
14236 update_watchpoint (w, 1 /* reparse */);
14237 }
14238 catch (const gdb_exception &e)
14239 {
14240 bpt->enable_state = orig_enable_state;
14241 exception_fprintf (gdb_stderr, e, _("Cannot enable watchpoint %d: "),
14242 bpt->number);
14243 return;
14244 }
14245 }
14246
14247 bpt->enable_state = bp_enabled;
14248
14249 /* Mark breakpoint locations modified. */
14250 mark_breakpoint_modified (bpt);
14251
14252 if (target_supports_enable_disable_tracepoint ()
14253 && current_trace_status ()->running && is_tracepoint (bpt))
14254 {
14255 struct bp_location *location;
14256
14257 for (location = bpt->loc; location; location = location->next)
14258 target_enable_tracepoint (location);
14259 }
14260
14261 bpt->disposition = disposition;
14262 bpt->enable_count = count;
14263 update_global_location_list (UGLL_MAY_INSERT);
14264
14265 gdb::observers::breakpoint_modified.notify (bpt);
14266 }
14267
14268
14269 void
14270 enable_breakpoint (struct breakpoint *bpt)
14271 {
14272 enable_breakpoint_disp (bpt, bpt->disposition, 0);
14273 }
14274
14275 /* The enable command enables the specified breakpoints/locations (or
14276 all defined breakpoints) so they once again become (or continue to
14277 be) effective in stopping the inferior. ARGS may be in any of the
14278 forms defined in extract_bp_number_and_location. */
14279
14280 static void
14281 enable_command (const char *args, int from_tty)
14282 {
14283 enable_disable_command (args, from_tty, true);
14284 }
14285
14286 static void
14287 enable_once_command (const char *args, int from_tty)
14288 {
14289 map_breakpoint_numbers
14290 (args, [&] (breakpoint *b)
14291 {
14292 iterate_over_related_breakpoints
14293 (b, [&] (breakpoint *bpt)
14294 {
14295 enable_breakpoint_disp (bpt, disp_disable, 1);
14296 });
14297 });
14298 }
14299
14300 static void
14301 enable_count_command (const char *args, int from_tty)
14302 {
14303 int count;
14304
14305 if (args == NULL)
14306 error_no_arg (_("hit count"));
14307
14308 count = get_number (&args);
14309
14310 map_breakpoint_numbers
14311 (args, [&] (breakpoint *b)
14312 {
14313 iterate_over_related_breakpoints
14314 (b, [&] (breakpoint *bpt)
14315 {
14316 enable_breakpoint_disp (bpt, disp_disable, count);
14317 });
14318 });
14319 }
14320
14321 static void
14322 enable_delete_command (const char *args, int from_tty)
14323 {
14324 map_breakpoint_numbers
14325 (args, [&] (breakpoint *b)
14326 {
14327 iterate_over_related_breakpoints
14328 (b, [&] (breakpoint *bpt)
14329 {
14330 enable_breakpoint_disp (bpt, disp_del, 1);
14331 });
14332 });
14333 }
14334 \f
14335 static void
14336 set_breakpoint_cmd (const char *args, int from_tty)
14337 {
14338 }
14339
14340 static void
14341 show_breakpoint_cmd (const char *args, int from_tty)
14342 {
14343 }
14344
14345 /* Invalidate last known value of any hardware watchpoint if
14346 the memory which that value represents has been written to by
14347 GDB itself. */
14348
14349 static void
14350 invalidate_bp_value_on_memory_change (struct inferior *inferior,
14351 CORE_ADDR addr, ssize_t len,
14352 const bfd_byte *data)
14353 {
14354 struct breakpoint *bp;
14355
14356 ALL_BREAKPOINTS (bp)
14357 if (bp->enable_state == bp_enabled
14358 && bp->type == bp_hardware_watchpoint)
14359 {
14360 struct watchpoint *wp = (struct watchpoint *) bp;
14361
14362 if (wp->val_valid && wp->val != nullptr)
14363 {
14364 struct bp_location *loc;
14365
14366 for (loc = bp->loc; loc != NULL; loc = loc->next)
14367 if (loc->loc_type == bp_loc_hardware_watchpoint
14368 && loc->address + loc->length > addr
14369 && addr + len > loc->address)
14370 {
14371 wp->val = NULL;
14372 wp->val_valid = false;
14373 }
14374 }
14375 }
14376 }
14377
14378 /* Create and insert a breakpoint for software single step. */
14379
14380 void
14381 insert_single_step_breakpoint (struct gdbarch *gdbarch,
14382 const address_space *aspace,
14383 CORE_ADDR next_pc)
14384 {
14385 struct thread_info *tp = inferior_thread ();
14386 struct symtab_and_line sal;
14387 CORE_ADDR pc = next_pc;
14388
14389 if (tp->control.single_step_breakpoints == NULL)
14390 {
14391 tp->control.single_step_breakpoints
14392 = new_single_step_breakpoint (tp->global_num, gdbarch);
14393 }
14394
14395 sal = find_pc_line (pc, 0);
14396 sal.pc = pc;
14397 sal.section = find_pc_overlay (pc);
14398 sal.explicit_pc = 1;
14399 add_location_to_breakpoint (tp->control.single_step_breakpoints, &sal);
14400
14401 update_global_location_list (UGLL_INSERT);
14402 }
14403
14404 /* Insert single step breakpoints according to the current state. */
14405
14406 int
14407 insert_single_step_breakpoints (struct gdbarch *gdbarch)
14408 {
14409 struct regcache *regcache = get_current_regcache ();
14410 std::vector<CORE_ADDR> next_pcs;
14411
14412 next_pcs = gdbarch_software_single_step (gdbarch, regcache);
14413
14414 if (!next_pcs.empty ())
14415 {
14416 struct frame_info *frame = get_current_frame ();
14417 const address_space *aspace = get_frame_address_space (frame);
14418
14419 for (CORE_ADDR pc : next_pcs)
14420 insert_single_step_breakpoint (gdbarch, aspace, pc);
14421
14422 return 1;
14423 }
14424 else
14425 return 0;
14426 }
14427
14428 /* See breakpoint.h. */
14429
14430 int
14431 breakpoint_has_location_inserted_here (struct breakpoint *bp,
14432 const address_space *aspace,
14433 CORE_ADDR pc)
14434 {
14435 struct bp_location *loc;
14436
14437 for (loc = bp->loc; loc != NULL; loc = loc->next)
14438 if (loc->inserted
14439 && breakpoint_location_address_match (loc, aspace, pc))
14440 return 1;
14441
14442 return 0;
14443 }
14444
14445 /* Check whether a software single-step breakpoint is inserted at
14446 PC. */
14447
14448 int
14449 single_step_breakpoint_inserted_here_p (const address_space *aspace,
14450 CORE_ADDR pc)
14451 {
14452 struct breakpoint *bpt;
14453
14454 ALL_BREAKPOINTS (bpt)
14455 {
14456 if (bpt->type == bp_single_step
14457 && breakpoint_has_location_inserted_here (bpt, aspace, pc))
14458 return 1;
14459 }
14460 return 0;
14461 }
14462
14463 /* Tracepoint-specific operations. */
14464
14465 /* Set tracepoint count to NUM. */
14466 static void
14467 set_tracepoint_count (int num)
14468 {
14469 tracepoint_count = num;
14470 set_internalvar_integer (lookup_internalvar ("tpnum"), num);
14471 }
14472
14473 static void
14474 trace_command (const char *arg, int from_tty)
14475 {
14476 struct breakpoint_ops *ops;
14477
14478 event_location_up location = string_to_event_location (&arg,
14479 current_language);
14480 if (location != NULL
14481 && event_location_type (location.get ()) == PROBE_LOCATION)
14482 ops = &tracepoint_probe_breakpoint_ops;
14483 else
14484 ops = &tracepoint_breakpoint_ops;
14485
14486 create_breakpoint (get_current_arch (),
14487 location.get (),
14488 NULL, 0, arg, 1 /* parse arg */,
14489 0 /* tempflag */,
14490 bp_tracepoint /* type_wanted */,
14491 0 /* Ignore count */,
14492 pending_break_support,
14493 ops,
14494 from_tty,
14495 1 /* enabled */,
14496 0 /* internal */, 0);
14497 }
14498
14499 static void
14500 ftrace_command (const char *arg, int from_tty)
14501 {
14502 event_location_up location = string_to_event_location (&arg,
14503 current_language);
14504 create_breakpoint (get_current_arch (),
14505 location.get (),
14506 NULL, 0, arg, 1 /* parse arg */,
14507 0 /* tempflag */,
14508 bp_fast_tracepoint /* type_wanted */,
14509 0 /* Ignore count */,
14510 pending_break_support,
14511 &tracepoint_breakpoint_ops,
14512 from_tty,
14513 1 /* enabled */,
14514 0 /* internal */, 0);
14515 }
14516
14517 /* strace command implementation. Creates a static tracepoint. */
14518
14519 static void
14520 strace_command (const char *arg, int from_tty)
14521 {
14522 struct breakpoint_ops *ops;
14523 event_location_up location;
14524
14525 /* Decide if we are dealing with a static tracepoint marker (`-m'),
14526 or with a normal static tracepoint. */
14527 if (arg && startswith (arg, "-m") && isspace (arg[2]))
14528 {
14529 ops = &strace_marker_breakpoint_ops;
14530 location = new_linespec_location (&arg, symbol_name_match_type::FULL);
14531 }
14532 else
14533 {
14534 ops = &tracepoint_breakpoint_ops;
14535 location = string_to_event_location (&arg, current_language);
14536 }
14537
14538 create_breakpoint (get_current_arch (),
14539 location.get (),
14540 NULL, 0, arg, 1 /* parse arg */,
14541 0 /* tempflag */,
14542 bp_static_tracepoint /* type_wanted */,
14543 0 /* Ignore count */,
14544 pending_break_support,
14545 ops,
14546 from_tty,
14547 1 /* enabled */,
14548 0 /* internal */, 0);
14549 }
14550
14551 /* Set up a fake reader function that gets command lines from a linked
14552 list that was acquired during tracepoint uploading. */
14553
14554 static struct uploaded_tp *this_utp;
14555 static int next_cmd;
14556
14557 static char *
14558 read_uploaded_action (void)
14559 {
14560 char *rslt = nullptr;
14561
14562 if (next_cmd < this_utp->cmd_strings.size ())
14563 {
14564 rslt = this_utp->cmd_strings[next_cmd].get ();
14565 next_cmd++;
14566 }
14567
14568 return rslt;
14569 }
14570
14571 /* Given information about a tracepoint as recorded on a target (which
14572 can be either a live system or a trace file), attempt to create an
14573 equivalent GDB tracepoint. This is not a reliable process, since
14574 the target does not necessarily have all the information used when
14575 the tracepoint was originally defined. */
14576
14577 struct tracepoint *
14578 create_tracepoint_from_upload (struct uploaded_tp *utp)
14579 {
14580 const char *addr_str;
14581 char small_buf[100];
14582 struct tracepoint *tp;
14583
14584 if (utp->at_string)
14585 addr_str = utp->at_string.get ();
14586 else
14587 {
14588 /* In the absence of a source location, fall back to raw
14589 address. Since there is no way to confirm that the address
14590 means the same thing as when the trace was started, warn the
14591 user. */
14592 warning (_("Uploaded tracepoint %d has no "
14593 "source location, using raw address"),
14594 utp->number);
14595 xsnprintf (small_buf, sizeof (small_buf), "*%s", hex_string (utp->addr));
14596 addr_str = small_buf;
14597 }
14598
14599 /* There's not much we can do with a sequence of bytecodes. */
14600 if (utp->cond && !utp->cond_string)
14601 warning (_("Uploaded tracepoint %d condition "
14602 "has no source form, ignoring it"),
14603 utp->number);
14604
14605 event_location_up location = string_to_event_location (&addr_str,
14606 current_language);
14607 if (!create_breakpoint (get_current_arch (),
14608 location.get (),
14609 utp->cond_string.get (), -1, addr_str,
14610 0 /* parse cond/thread */,
14611 0 /* tempflag */,
14612 utp->type /* type_wanted */,
14613 0 /* Ignore count */,
14614 pending_break_support,
14615 &tracepoint_breakpoint_ops,
14616 0 /* from_tty */,
14617 utp->enabled /* enabled */,
14618 0 /* internal */,
14619 CREATE_BREAKPOINT_FLAGS_INSERTED))
14620 return NULL;
14621
14622 /* Get the tracepoint we just created. */
14623 tp = get_tracepoint (tracepoint_count);
14624 gdb_assert (tp != NULL);
14625
14626 if (utp->pass > 0)
14627 {
14628 xsnprintf (small_buf, sizeof (small_buf), "%d %d", utp->pass,
14629 tp->number);
14630
14631 trace_pass_command (small_buf, 0);
14632 }
14633
14634 /* If we have uploaded versions of the original commands, set up a
14635 special-purpose "reader" function and call the usual command line
14636 reader, then pass the result to the breakpoint command-setting
14637 function. */
14638 if (!utp->cmd_strings.empty ())
14639 {
14640 counted_command_line cmd_list;
14641
14642 this_utp = utp;
14643 next_cmd = 0;
14644
14645 cmd_list = read_command_lines_1 (read_uploaded_action, 1, NULL);
14646
14647 breakpoint_set_commands (tp, std::move (cmd_list));
14648 }
14649 else if (!utp->actions.empty ()
14650 || !utp->step_actions.empty ())
14651 warning (_("Uploaded tracepoint %d actions "
14652 "have no source form, ignoring them"),
14653 utp->number);
14654
14655 /* Copy any status information that might be available. */
14656 tp->hit_count = utp->hit_count;
14657 tp->traceframe_usage = utp->traceframe_usage;
14658
14659 return tp;
14660 }
14661
14662 /* Print information on tracepoint number TPNUM_EXP, or all if
14663 omitted. */
14664
14665 static void
14666 info_tracepoints_command (const char *args, int from_tty)
14667 {
14668 struct ui_out *uiout = current_uiout;
14669 int num_printed;
14670
14671 num_printed = breakpoint_1 (args, false, is_tracepoint);
14672
14673 if (num_printed == 0)
14674 {
14675 if (args == NULL || *args == '\0')
14676 uiout->message ("No tracepoints.\n");
14677 else
14678 uiout->message ("No tracepoint matching '%s'.\n", args);
14679 }
14680
14681 default_collect_info ();
14682 }
14683
14684 /* The 'enable trace' command enables tracepoints.
14685 Not supported by all targets. */
14686 static void
14687 enable_trace_command (const char *args, int from_tty)
14688 {
14689 enable_command (args, from_tty);
14690 }
14691
14692 /* The 'disable trace' command disables tracepoints.
14693 Not supported by all targets. */
14694 static void
14695 disable_trace_command (const char *args, int from_tty)
14696 {
14697 disable_command (args, from_tty);
14698 }
14699
14700 /* Remove a tracepoint (or all if no argument). */
14701 static void
14702 delete_trace_command (const char *arg, int from_tty)
14703 {
14704 struct breakpoint *b, *b_tmp;
14705
14706 dont_repeat ();
14707
14708 if (arg == 0)
14709 {
14710 int breaks_to_delete = 0;
14711
14712 /* Delete all breakpoints if no argument.
14713 Do not delete internal or call-dummy breakpoints, these
14714 have to be deleted with an explicit breakpoint number
14715 argument. */
14716 ALL_TRACEPOINTS (b)
14717 if (is_tracepoint (b) && user_breakpoint_p (b))
14718 {
14719 breaks_to_delete = 1;
14720 break;
14721 }
14722
14723 /* Ask user only if there are some breakpoints to delete. */
14724 if (!from_tty
14725 || (breaks_to_delete && query (_("Delete all tracepoints? "))))
14726 {
14727 ALL_BREAKPOINTS_SAFE (b, b_tmp)
14728 if (is_tracepoint (b) && user_breakpoint_p (b))
14729 delete_breakpoint (b);
14730 }
14731 }
14732 else
14733 map_breakpoint_numbers
14734 (arg, [&] (breakpoint *br)
14735 {
14736 iterate_over_related_breakpoints (br, delete_breakpoint);
14737 });
14738 }
14739
14740 /* Helper function for trace_pass_command. */
14741
14742 static void
14743 trace_pass_set_count (struct tracepoint *tp, int count, int from_tty)
14744 {
14745 tp->pass_count = count;
14746 gdb::observers::breakpoint_modified.notify (tp);
14747 if (from_tty)
14748 printf_filtered (_("Setting tracepoint %d's passcount to %d\n"),
14749 tp->number, count);
14750 }
14751
14752 /* Set passcount for tracepoint.
14753
14754 First command argument is passcount, second is tracepoint number.
14755 If tracepoint number omitted, apply to most recently defined.
14756 Also accepts special argument "all". */
14757
14758 static void
14759 trace_pass_command (const char *args, int from_tty)
14760 {
14761 struct tracepoint *t1;
14762 ULONGEST count;
14763
14764 if (args == 0 || *args == 0)
14765 error (_("passcount command requires an "
14766 "argument (count + optional TP num)"));
14767
14768 count = strtoulst (args, &args, 10); /* Count comes first, then TP num. */
14769
14770 args = skip_spaces (args);
14771 if (*args && strncasecmp (args, "all", 3) == 0)
14772 {
14773 struct breakpoint *b;
14774
14775 args += 3; /* Skip special argument "all". */
14776 if (*args)
14777 error (_("Junk at end of arguments."));
14778
14779 ALL_TRACEPOINTS (b)
14780 {
14781 t1 = (struct tracepoint *) b;
14782 trace_pass_set_count (t1, count, from_tty);
14783 }
14784 }
14785 else if (*args == '\0')
14786 {
14787 t1 = get_tracepoint_by_number (&args, NULL);
14788 if (t1)
14789 trace_pass_set_count (t1, count, from_tty);
14790 }
14791 else
14792 {
14793 number_or_range_parser parser (args);
14794 while (!parser.finished ())
14795 {
14796 t1 = get_tracepoint_by_number (&args, &parser);
14797 if (t1)
14798 trace_pass_set_count (t1, count, from_tty);
14799 }
14800 }
14801 }
14802
14803 struct tracepoint *
14804 get_tracepoint (int num)
14805 {
14806 struct breakpoint *t;
14807
14808 ALL_TRACEPOINTS (t)
14809 if (t->number == num)
14810 return (struct tracepoint *) t;
14811
14812 return NULL;
14813 }
14814
14815 /* Find the tracepoint with the given target-side number (which may be
14816 different from the tracepoint number after disconnecting and
14817 reconnecting). */
14818
14819 struct tracepoint *
14820 get_tracepoint_by_number_on_target (int num)
14821 {
14822 struct breakpoint *b;
14823
14824 ALL_TRACEPOINTS (b)
14825 {
14826 struct tracepoint *t = (struct tracepoint *) b;
14827
14828 if (t->number_on_target == num)
14829 return t;
14830 }
14831
14832 return NULL;
14833 }
14834
14835 /* Utility: parse a tracepoint number and look it up in the list.
14836 If STATE is not NULL, use, get_number_or_range_state and ignore ARG.
14837 If the argument is missing, the most recent tracepoint
14838 (tracepoint_count) is returned. */
14839
14840 struct tracepoint *
14841 get_tracepoint_by_number (const char **arg,
14842 number_or_range_parser *parser)
14843 {
14844 struct breakpoint *t;
14845 int tpnum;
14846 const char *instring = arg == NULL ? NULL : *arg;
14847
14848 if (parser != NULL)
14849 {
14850 gdb_assert (!parser->finished ());
14851 tpnum = parser->get_number ();
14852 }
14853 else if (arg == NULL || *arg == NULL || ! **arg)
14854 tpnum = tracepoint_count;
14855 else
14856 tpnum = get_number (arg);
14857
14858 if (tpnum <= 0)
14859 {
14860 if (instring && *instring)
14861 printf_filtered (_("bad tracepoint number at or near '%s'\n"),
14862 instring);
14863 else
14864 printf_filtered (_("No previous tracepoint\n"));
14865 return NULL;
14866 }
14867
14868 ALL_TRACEPOINTS (t)
14869 if (t->number == tpnum)
14870 {
14871 return (struct tracepoint *) t;
14872 }
14873
14874 printf_unfiltered ("No tracepoint number %d.\n", tpnum);
14875 return NULL;
14876 }
14877
14878 void
14879 print_recreate_thread (struct breakpoint *b, struct ui_file *fp)
14880 {
14881 if (b->thread != -1)
14882 fprintf_unfiltered (fp, " thread %d", b->thread);
14883
14884 if (b->task != 0)
14885 fprintf_unfiltered (fp, " task %d", b->task);
14886
14887 fprintf_unfiltered (fp, "\n");
14888 }
14889
14890 /* Save information on user settable breakpoints (watchpoints, etc) to
14891 a new script file named FILENAME. If FILTER is non-NULL, call it
14892 on each breakpoint and only include the ones for which it returns
14893 true. */
14894
14895 static void
14896 save_breakpoints (const char *filename, int from_tty,
14897 bool (*filter) (const struct breakpoint *))
14898 {
14899 struct breakpoint *tp;
14900 int any = 0;
14901 int extra_trace_bits = 0;
14902
14903 if (filename == 0 || *filename == 0)
14904 error (_("Argument required (file name in which to save)"));
14905
14906 /* See if we have anything to save. */
14907 ALL_BREAKPOINTS (tp)
14908 {
14909 /* Skip internal and momentary breakpoints. */
14910 if (!user_breakpoint_p (tp))
14911 continue;
14912
14913 /* If we have a filter, only save the breakpoints it accepts. */
14914 if (filter && !filter (tp))
14915 continue;
14916
14917 any = 1;
14918
14919 if (is_tracepoint (tp))
14920 {
14921 extra_trace_bits = 1;
14922
14923 /* We can stop searching. */
14924 break;
14925 }
14926 }
14927
14928 if (!any)
14929 {
14930 warning (_("Nothing to save."));
14931 return;
14932 }
14933
14934 gdb::unique_xmalloc_ptr<char> expanded_filename (tilde_expand (filename));
14935
14936 stdio_file fp;
14937
14938 if (!fp.open (expanded_filename.get (), "w"))
14939 error (_("Unable to open file '%s' for saving (%s)"),
14940 expanded_filename.get (), safe_strerror (errno));
14941
14942 if (extra_trace_bits)
14943 save_trace_state_variables (&fp);
14944
14945 ALL_BREAKPOINTS (tp)
14946 {
14947 /* Skip internal and momentary breakpoints. */
14948 if (!user_breakpoint_p (tp))
14949 continue;
14950
14951 /* If we have a filter, only save the breakpoints it accepts. */
14952 if (filter && !filter (tp))
14953 continue;
14954
14955 tp->ops->print_recreate (tp, &fp);
14956
14957 /* Note, we can't rely on tp->number for anything, as we can't
14958 assume the recreated breakpoint numbers will match. Use $bpnum
14959 instead. */
14960
14961 if (tp->cond_string)
14962 fp.printf (" condition $bpnum %s\n", tp->cond_string);
14963
14964 if (tp->ignore_count)
14965 fp.printf (" ignore $bpnum %d\n", tp->ignore_count);
14966
14967 if (tp->type != bp_dprintf && tp->commands)
14968 {
14969 fp.puts (" commands\n");
14970
14971 current_uiout->redirect (&fp);
14972 try
14973 {
14974 print_command_lines (current_uiout, tp->commands.get (), 2);
14975 }
14976 catch (const gdb_exception &ex)
14977 {
14978 current_uiout->redirect (NULL);
14979 throw;
14980 }
14981
14982 current_uiout->redirect (NULL);
14983 fp.puts (" end\n");
14984 }
14985
14986 if (tp->enable_state == bp_disabled)
14987 fp.puts ("disable $bpnum\n");
14988
14989 /* If this is a multi-location breakpoint, check if the locations
14990 should be individually disabled. Watchpoint locations are
14991 special, and not user visible. */
14992 if (!is_watchpoint (tp) && tp->loc && tp->loc->next)
14993 {
14994 struct bp_location *loc;
14995 int n = 1;
14996
14997 for (loc = tp->loc; loc != NULL; loc = loc->next, n++)
14998 if (!loc->enabled)
14999 fp.printf ("disable $bpnum.%d\n", n);
15000 }
15001 }
15002
15003 if (extra_trace_bits && *default_collect)
15004 fp.printf ("set default-collect %s\n", default_collect);
15005
15006 if (from_tty)
15007 printf_filtered (_("Saved to file '%s'.\n"), expanded_filename.get ());
15008 }
15009
15010 /* The `save breakpoints' command. */
15011
15012 static void
15013 save_breakpoints_command (const char *args, int from_tty)
15014 {
15015 save_breakpoints (args, from_tty, NULL);
15016 }
15017
15018 /* The `save tracepoints' command. */
15019
15020 static void
15021 save_tracepoints_command (const char *args, int from_tty)
15022 {
15023 save_breakpoints (args, from_tty, is_tracepoint);
15024 }
15025
15026 /* Create a vector of all tracepoints. */
15027
15028 std::vector<breakpoint *>
15029 all_tracepoints (void)
15030 {
15031 std::vector<breakpoint *> tp_vec;
15032 struct breakpoint *tp;
15033
15034 ALL_TRACEPOINTS (tp)
15035 {
15036 tp_vec.push_back (tp);
15037 }
15038
15039 return tp_vec;
15040 }
15041
15042 \f
15043 /* This help string is used to consolidate all the help string for specifying
15044 locations used by several commands. */
15045
15046 #define LOCATION_HELP_STRING \
15047 "Linespecs are colon-separated lists of location parameters, such as\n\
15048 source filename, function name, label name, and line number.\n\
15049 Example: To specify the start of a label named \"the_top\" in the\n\
15050 function \"fact\" in the file \"factorial.c\", use\n\
15051 \"factorial.c:fact:the_top\".\n\
15052 \n\
15053 Address locations begin with \"*\" and specify an exact address in the\n\
15054 program. Example: To specify the fourth byte past the start function\n\
15055 \"main\", use \"*main + 4\".\n\
15056 \n\
15057 Explicit locations are similar to linespecs but use an option/argument\n\
15058 syntax to specify location parameters.\n\
15059 Example: To specify the start of the label named \"the_top\" in the\n\
15060 function \"fact\" in the file \"factorial.c\", use \"-source factorial.c\n\
15061 -function fact -label the_top\".\n\
15062 \n\
15063 By default, a specified function is matched against the program's\n\
15064 functions in all scopes. For C++, this means in all namespaces and\n\
15065 classes. For Ada, this means in all packages. E.g., in C++,\n\
15066 \"func()\" matches \"A::func()\", \"A::B::func()\", etc. The\n\
15067 \"-qualified\" flag overrides this behavior, making GDB interpret the\n\
15068 specified name as a complete fully-qualified name instead."
15069
15070 /* This help string is used for the break, hbreak, tbreak and thbreak
15071 commands. It is defined as a macro to prevent duplication.
15072 COMMAND should be a string constant containing the name of the
15073 command. */
15074
15075 #define BREAK_ARGS_HELP(command) \
15076 command" [PROBE_MODIFIER] [LOCATION] [thread THREADNUM] [if CONDITION]\n\
15077 PROBE_MODIFIER shall be present if the command is to be placed in a\n\
15078 probe point. Accepted values are `-probe' (for a generic, automatically\n\
15079 guessed probe type), `-probe-stap' (for a SystemTap probe) or \n\
15080 `-probe-dtrace' (for a DTrace probe).\n\
15081 LOCATION may be a linespec, address, or explicit location as described\n\
15082 below.\n\
15083 \n\
15084 With no LOCATION, uses current execution address of the selected\n\
15085 stack frame. This is useful for breaking on return to a stack frame.\n\
15086 \n\
15087 THREADNUM is the number from \"info threads\".\n\
15088 CONDITION is a boolean expression.\n\
15089 \n" LOCATION_HELP_STRING "\n\n\
15090 Multiple breakpoints at one place are permitted, and useful if their\n\
15091 conditions are different.\n\
15092 \n\
15093 Do \"help breakpoints\" for info on other commands dealing with breakpoints."
15094
15095 /* List of subcommands for "catch". */
15096 static struct cmd_list_element *catch_cmdlist;
15097
15098 /* List of subcommands for "tcatch". */
15099 static struct cmd_list_element *tcatch_cmdlist;
15100
15101 void
15102 add_catch_command (const char *name, const char *docstring,
15103 cmd_const_sfunc_ftype *sfunc,
15104 completer_ftype *completer,
15105 void *user_data_catch,
15106 void *user_data_tcatch)
15107 {
15108 struct cmd_list_element *command;
15109
15110 command = add_cmd (name, class_breakpoint, docstring,
15111 &catch_cmdlist);
15112 set_cmd_sfunc (command, sfunc);
15113 set_cmd_context (command, user_data_catch);
15114 set_cmd_completer (command, completer);
15115
15116 command = add_cmd (name, class_breakpoint, docstring,
15117 &tcatch_cmdlist);
15118 set_cmd_sfunc (command, sfunc);
15119 set_cmd_context (command, user_data_tcatch);
15120 set_cmd_completer (command, completer);
15121 }
15122
15123 static void
15124 save_command (const char *arg, int from_tty)
15125 {
15126 printf_unfiltered (_("\"save\" must be followed by "
15127 "the name of a save subcommand.\n"));
15128 help_list (save_cmdlist, "save ", all_commands, gdb_stdout);
15129 }
15130
15131 struct breakpoint *
15132 iterate_over_breakpoints (gdb::function_view<bool (breakpoint *)> callback)
15133 {
15134 struct breakpoint *b, *b_tmp;
15135
15136 ALL_BREAKPOINTS_SAFE (b, b_tmp)
15137 {
15138 if (callback (b))
15139 return b;
15140 }
15141
15142 return NULL;
15143 }
15144
15145 /* Zero if any of the breakpoint's locations could be a location where
15146 functions have been inlined, nonzero otherwise. */
15147
15148 static int
15149 is_non_inline_function (struct breakpoint *b)
15150 {
15151 /* The shared library event breakpoint is set on the address of a
15152 non-inline function. */
15153 if (b->type == bp_shlib_event)
15154 return 1;
15155
15156 return 0;
15157 }
15158
15159 /* Nonzero if the specified PC cannot be a location where functions
15160 have been inlined. */
15161
15162 int
15163 pc_at_non_inline_function (const address_space *aspace, CORE_ADDR pc,
15164 const struct target_waitstatus *ws)
15165 {
15166 struct breakpoint *b;
15167 struct bp_location *bl;
15168
15169 ALL_BREAKPOINTS (b)
15170 {
15171 if (!is_non_inline_function (b))
15172 continue;
15173
15174 for (bl = b->loc; bl != NULL; bl = bl->next)
15175 {
15176 if (!bl->shlib_disabled
15177 && bpstat_check_location (bl, aspace, pc, ws))
15178 return 1;
15179 }
15180 }
15181
15182 return 0;
15183 }
15184
15185 /* Remove any references to OBJFILE which is going to be freed. */
15186
15187 void
15188 breakpoint_free_objfile (struct objfile *objfile)
15189 {
15190 struct bp_location **locp, *loc;
15191
15192 ALL_BP_LOCATIONS (loc, locp)
15193 if (loc->symtab != NULL && SYMTAB_OBJFILE (loc->symtab) == objfile)
15194 loc->symtab = NULL;
15195 }
15196
15197 void
15198 initialize_breakpoint_ops (void)
15199 {
15200 static int initialized = 0;
15201
15202 struct breakpoint_ops *ops;
15203
15204 if (initialized)
15205 return;
15206 initialized = 1;
15207
15208 /* The breakpoint_ops structure to be inherit by all kinds of
15209 breakpoints (real breakpoints, i.e., user "break" breakpoints,
15210 internal and momentary breakpoints, etc.). */
15211 ops = &bkpt_base_breakpoint_ops;
15212 *ops = base_breakpoint_ops;
15213 ops->re_set = bkpt_re_set;
15214 ops->insert_location = bkpt_insert_location;
15215 ops->remove_location = bkpt_remove_location;
15216 ops->breakpoint_hit = bkpt_breakpoint_hit;
15217 ops->create_sals_from_location = bkpt_create_sals_from_location;
15218 ops->create_breakpoints_sal = bkpt_create_breakpoints_sal;
15219 ops->decode_location = bkpt_decode_location;
15220
15221 /* The breakpoint_ops structure to be used in regular breakpoints. */
15222 ops = &bkpt_breakpoint_ops;
15223 *ops = bkpt_base_breakpoint_ops;
15224 ops->re_set = bkpt_re_set;
15225 ops->resources_needed = bkpt_resources_needed;
15226 ops->print_it = bkpt_print_it;
15227 ops->print_mention = bkpt_print_mention;
15228 ops->print_recreate = bkpt_print_recreate;
15229
15230 /* Ranged breakpoints. */
15231 ops = &ranged_breakpoint_ops;
15232 *ops = bkpt_breakpoint_ops;
15233 ops->breakpoint_hit = breakpoint_hit_ranged_breakpoint;
15234 ops->resources_needed = resources_needed_ranged_breakpoint;
15235 ops->print_it = print_it_ranged_breakpoint;
15236 ops->print_one = print_one_ranged_breakpoint;
15237 ops->print_one_detail = print_one_detail_ranged_breakpoint;
15238 ops->print_mention = print_mention_ranged_breakpoint;
15239 ops->print_recreate = print_recreate_ranged_breakpoint;
15240
15241 /* Internal breakpoints. */
15242 ops = &internal_breakpoint_ops;
15243 *ops = bkpt_base_breakpoint_ops;
15244 ops->re_set = internal_bkpt_re_set;
15245 ops->check_status = internal_bkpt_check_status;
15246 ops->print_it = internal_bkpt_print_it;
15247 ops->print_mention = internal_bkpt_print_mention;
15248
15249 /* Momentary breakpoints. */
15250 ops = &momentary_breakpoint_ops;
15251 *ops = bkpt_base_breakpoint_ops;
15252 ops->re_set = momentary_bkpt_re_set;
15253 ops->check_status = momentary_bkpt_check_status;
15254 ops->print_it = momentary_bkpt_print_it;
15255 ops->print_mention = momentary_bkpt_print_mention;
15256
15257 /* Probe breakpoints. */
15258 ops = &bkpt_probe_breakpoint_ops;
15259 *ops = bkpt_breakpoint_ops;
15260 ops->insert_location = bkpt_probe_insert_location;
15261 ops->remove_location = bkpt_probe_remove_location;
15262 ops->create_sals_from_location = bkpt_probe_create_sals_from_location;
15263 ops->decode_location = bkpt_probe_decode_location;
15264
15265 /* Watchpoints. */
15266 ops = &watchpoint_breakpoint_ops;
15267 *ops = base_breakpoint_ops;
15268 ops->re_set = re_set_watchpoint;
15269 ops->insert_location = insert_watchpoint;
15270 ops->remove_location = remove_watchpoint;
15271 ops->breakpoint_hit = breakpoint_hit_watchpoint;
15272 ops->check_status = check_status_watchpoint;
15273 ops->resources_needed = resources_needed_watchpoint;
15274 ops->works_in_software_mode = works_in_software_mode_watchpoint;
15275 ops->print_it = print_it_watchpoint;
15276 ops->print_mention = print_mention_watchpoint;
15277 ops->print_recreate = print_recreate_watchpoint;
15278 ops->explains_signal = explains_signal_watchpoint;
15279
15280 /* Masked watchpoints. */
15281 ops = &masked_watchpoint_breakpoint_ops;
15282 *ops = watchpoint_breakpoint_ops;
15283 ops->insert_location = insert_masked_watchpoint;
15284 ops->remove_location = remove_masked_watchpoint;
15285 ops->resources_needed = resources_needed_masked_watchpoint;
15286 ops->works_in_software_mode = works_in_software_mode_masked_watchpoint;
15287 ops->print_it = print_it_masked_watchpoint;
15288 ops->print_one_detail = print_one_detail_masked_watchpoint;
15289 ops->print_mention = print_mention_masked_watchpoint;
15290 ops->print_recreate = print_recreate_masked_watchpoint;
15291
15292 /* Tracepoints. */
15293 ops = &tracepoint_breakpoint_ops;
15294 *ops = base_breakpoint_ops;
15295 ops->re_set = tracepoint_re_set;
15296 ops->breakpoint_hit = tracepoint_breakpoint_hit;
15297 ops->print_one_detail = tracepoint_print_one_detail;
15298 ops->print_mention = tracepoint_print_mention;
15299 ops->print_recreate = tracepoint_print_recreate;
15300 ops->create_sals_from_location = tracepoint_create_sals_from_location;
15301 ops->create_breakpoints_sal = tracepoint_create_breakpoints_sal;
15302 ops->decode_location = tracepoint_decode_location;
15303
15304 /* Probe tracepoints. */
15305 ops = &tracepoint_probe_breakpoint_ops;
15306 *ops = tracepoint_breakpoint_ops;
15307 ops->create_sals_from_location = tracepoint_probe_create_sals_from_location;
15308 ops->decode_location = tracepoint_probe_decode_location;
15309
15310 /* Static tracepoints with marker (`-m'). */
15311 ops = &strace_marker_breakpoint_ops;
15312 *ops = tracepoint_breakpoint_ops;
15313 ops->create_sals_from_location = strace_marker_create_sals_from_location;
15314 ops->create_breakpoints_sal = strace_marker_create_breakpoints_sal;
15315 ops->decode_location = strace_marker_decode_location;
15316
15317 /* Fork catchpoints. */
15318 ops = &catch_fork_breakpoint_ops;
15319 *ops = base_breakpoint_ops;
15320 ops->insert_location = insert_catch_fork;
15321 ops->remove_location = remove_catch_fork;
15322 ops->breakpoint_hit = breakpoint_hit_catch_fork;
15323 ops->print_it = print_it_catch_fork;
15324 ops->print_one = print_one_catch_fork;
15325 ops->print_mention = print_mention_catch_fork;
15326 ops->print_recreate = print_recreate_catch_fork;
15327
15328 /* Vfork catchpoints. */
15329 ops = &catch_vfork_breakpoint_ops;
15330 *ops = base_breakpoint_ops;
15331 ops->insert_location = insert_catch_vfork;
15332 ops->remove_location = remove_catch_vfork;
15333 ops->breakpoint_hit = breakpoint_hit_catch_vfork;
15334 ops->print_it = print_it_catch_vfork;
15335 ops->print_one = print_one_catch_vfork;
15336 ops->print_mention = print_mention_catch_vfork;
15337 ops->print_recreate = print_recreate_catch_vfork;
15338
15339 /* Exec catchpoints. */
15340 ops = &catch_exec_breakpoint_ops;
15341 *ops = base_breakpoint_ops;
15342 ops->insert_location = insert_catch_exec;
15343 ops->remove_location = remove_catch_exec;
15344 ops->breakpoint_hit = breakpoint_hit_catch_exec;
15345 ops->print_it = print_it_catch_exec;
15346 ops->print_one = print_one_catch_exec;
15347 ops->print_mention = print_mention_catch_exec;
15348 ops->print_recreate = print_recreate_catch_exec;
15349
15350 /* Solib-related catchpoints. */
15351 ops = &catch_solib_breakpoint_ops;
15352 *ops = base_breakpoint_ops;
15353 ops->insert_location = insert_catch_solib;
15354 ops->remove_location = remove_catch_solib;
15355 ops->breakpoint_hit = breakpoint_hit_catch_solib;
15356 ops->check_status = check_status_catch_solib;
15357 ops->print_it = print_it_catch_solib;
15358 ops->print_one = print_one_catch_solib;
15359 ops->print_mention = print_mention_catch_solib;
15360 ops->print_recreate = print_recreate_catch_solib;
15361
15362 ops = &dprintf_breakpoint_ops;
15363 *ops = bkpt_base_breakpoint_ops;
15364 ops->re_set = dprintf_re_set;
15365 ops->resources_needed = bkpt_resources_needed;
15366 ops->print_it = bkpt_print_it;
15367 ops->print_mention = bkpt_print_mention;
15368 ops->print_recreate = dprintf_print_recreate;
15369 ops->after_condition_true = dprintf_after_condition_true;
15370 ops->breakpoint_hit = dprintf_breakpoint_hit;
15371 }
15372
15373 /* Chain containing all defined "enable breakpoint" subcommands. */
15374
15375 static struct cmd_list_element *enablebreaklist = NULL;
15376
15377 /* See breakpoint.h. */
15378
15379 cmd_list_element *commands_cmd_element = nullptr;
15380
15381 void
15382 _initialize_breakpoint (void)
15383 {
15384 struct cmd_list_element *c;
15385
15386 initialize_breakpoint_ops ();
15387
15388 gdb::observers::solib_unloaded.attach (disable_breakpoints_in_unloaded_shlib);
15389 gdb::observers::free_objfile.attach (disable_breakpoints_in_freed_objfile);
15390 gdb::observers::memory_changed.attach (invalidate_bp_value_on_memory_change);
15391
15392 breakpoint_chain = 0;
15393 /* Don't bother to call set_breakpoint_count. $bpnum isn't useful
15394 before a breakpoint is set. */
15395 breakpoint_count = 0;
15396
15397 tracepoint_count = 0;
15398
15399 add_com ("ignore", class_breakpoint, ignore_command, _("\
15400 Set ignore-count of breakpoint number N to COUNT.\n\
15401 Usage is `ignore N COUNT'."));
15402
15403 commands_cmd_element = add_com ("commands", class_breakpoint,
15404 commands_command, _("\
15405 Set commands to be executed when the given breakpoints are hit.\n\
15406 Give a space-separated breakpoint list as argument after \"commands\".\n\
15407 A list element can be a breakpoint number (e.g. `5') or a range of numbers\n\
15408 (e.g. `5-7').\n\
15409 With no argument, the targeted breakpoint is the last one set.\n\
15410 The commands themselves follow starting on the next line.\n\
15411 Type a line containing \"end\" to indicate the end of them.\n\
15412 Give \"silent\" as the first line to make the breakpoint silent;\n\
15413 then no output is printed when it is hit, except what the commands print."));
15414
15415 c = add_com ("condition", class_breakpoint, condition_command, _("\
15416 Specify breakpoint number N to break only if COND is true.\n\
15417 Usage is `condition N COND', where N is an integer and COND is an\n\
15418 expression to be evaluated whenever breakpoint N is reached."));
15419 set_cmd_completer (c, condition_completer);
15420
15421 c = add_com ("tbreak", class_breakpoint, tbreak_command, _("\
15422 Set a temporary breakpoint.\n\
15423 Like \"break\" except the breakpoint is only temporary,\n\
15424 so it will be deleted when hit. Equivalent to \"break\" followed\n\
15425 by using \"enable delete\" on the breakpoint number.\n\
15426 \n"
15427 BREAK_ARGS_HELP ("tbreak")));
15428 set_cmd_completer (c, location_completer);
15429
15430 c = add_com ("hbreak", class_breakpoint, hbreak_command, _("\
15431 Set a hardware assisted breakpoint.\n\
15432 Like \"break\" except the breakpoint requires hardware support,\n\
15433 some target hardware may not have this support.\n\
15434 \n"
15435 BREAK_ARGS_HELP ("hbreak")));
15436 set_cmd_completer (c, location_completer);
15437
15438 c = add_com ("thbreak", class_breakpoint, thbreak_command, _("\
15439 Set a temporary hardware assisted breakpoint.\n\
15440 Like \"hbreak\" except the breakpoint is only temporary,\n\
15441 so it will be deleted when hit.\n\
15442 \n"
15443 BREAK_ARGS_HELP ("thbreak")));
15444 set_cmd_completer (c, location_completer);
15445
15446 add_prefix_cmd ("enable", class_breakpoint, enable_command, _("\
15447 Enable all or some breakpoints.\n\
15448 Usage: enable [BREAKPOINTNUM]...\n\
15449 Give breakpoint numbers (separated by spaces) as arguments.\n\
15450 With no subcommand, breakpoints are enabled until you command otherwise.\n\
15451 This is used to cancel the effect of the \"disable\" command.\n\
15452 With a subcommand you can enable temporarily."),
15453 &enablelist, "enable ", 1, &cmdlist);
15454
15455 add_com_alias ("en", "enable", class_breakpoint, 1);
15456
15457 add_prefix_cmd ("breakpoints", class_breakpoint, enable_command, _("\
15458 Enable all or some breakpoints.\n\
15459 Usage: enable breakpoints [BREAKPOINTNUM]...\n\
15460 Give breakpoint numbers (separated by spaces) as arguments.\n\
15461 This is used to cancel the effect of the \"disable\" command.\n\
15462 May be abbreviated to simply \"enable\"."),
15463 &enablebreaklist, "enable breakpoints ", 1, &enablelist);
15464
15465 add_cmd ("once", no_class, enable_once_command, _("\
15466 Enable some breakpoints for one hit.\n\
15467 Usage: enable breakpoints once BREAKPOINTNUM...\n\
15468 If a breakpoint is hit while enabled in this fashion, it becomes disabled."),
15469 &enablebreaklist);
15470
15471 add_cmd ("delete", no_class, enable_delete_command, _("\
15472 Enable some breakpoints and delete when hit.\n\
15473 Usage: enable breakpoints delete BREAKPOINTNUM...\n\
15474 If a breakpoint is hit while enabled in this fashion, it is deleted."),
15475 &enablebreaklist);
15476
15477 add_cmd ("count", no_class, enable_count_command, _("\
15478 Enable some breakpoints for COUNT hits.\n\
15479 Usage: enable breakpoints count COUNT BREAKPOINTNUM...\n\
15480 If a breakpoint is hit while enabled in this fashion,\n\
15481 the count is decremented; when it reaches zero, the breakpoint is disabled."),
15482 &enablebreaklist);
15483
15484 add_cmd ("delete", no_class, enable_delete_command, _("\
15485 Enable some breakpoints and delete when hit.\n\
15486 Usage: enable delete BREAKPOINTNUM...\n\
15487 If a breakpoint is hit while enabled in this fashion, it is deleted."),
15488 &enablelist);
15489
15490 add_cmd ("once", no_class, enable_once_command, _("\
15491 Enable some breakpoints for one hit.\n\
15492 Usage: enable once BREAKPOINTNUM...\n\
15493 If a breakpoint is hit while enabled in this fashion, it becomes disabled."),
15494 &enablelist);
15495
15496 add_cmd ("count", no_class, enable_count_command, _("\
15497 Enable some breakpoints for COUNT hits.\n\
15498 Usage: enable count COUNT BREAKPOINTNUM...\n\
15499 If a breakpoint is hit while enabled in this fashion,\n\
15500 the count is decremented; when it reaches zero, the breakpoint is disabled."),
15501 &enablelist);
15502
15503 add_prefix_cmd ("disable", class_breakpoint, disable_command, _("\
15504 Disable all or some breakpoints.\n\
15505 Usage: disable [BREAKPOINTNUM]...\n\
15506 Arguments are breakpoint numbers with spaces in between.\n\
15507 To disable all breakpoints, give no argument.\n\
15508 A disabled breakpoint is not forgotten, but has no effect until re-enabled."),
15509 &disablelist, "disable ", 1, &cmdlist);
15510 add_com_alias ("dis", "disable", class_breakpoint, 1);
15511 add_com_alias ("disa", "disable", class_breakpoint, 1);
15512
15513 add_cmd ("breakpoints", class_alias, disable_command, _("\
15514 Disable all or some breakpoints.\n\
15515 Usage: disable breakpoints [BREAKPOINTNUM]...\n\
15516 Arguments are breakpoint numbers with spaces in between.\n\
15517 To disable all breakpoints, give no argument.\n\
15518 A disabled breakpoint is not forgotten, but has no effect until re-enabled.\n\
15519 This command may be abbreviated \"disable\"."),
15520 &disablelist);
15521
15522 add_prefix_cmd ("delete", class_breakpoint, delete_command, _("\
15523 Delete all or some breakpoints.\n\
15524 Usage: delete [BREAKPOINTNUM]...\n\
15525 Arguments are breakpoint numbers with spaces in between.\n\
15526 To delete all breakpoints, give no argument.\n\
15527 \n\
15528 Also a prefix command for deletion of other GDB objects."),
15529 &deletelist, "delete ", 1, &cmdlist);
15530 add_com_alias ("d", "delete", class_breakpoint, 1);
15531 add_com_alias ("del", "delete", class_breakpoint, 1);
15532
15533 add_cmd ("breakpoints", class_alias, delete_command, _("\
15534 Delete all or some breakpoints or auto-display expressions.\n\
15535 Usage: delete breakpoints [BREAKPOINTNUM]...\n\
15536 Arguments are breakpoint numbers with spaces in between.\n\
15537 To delete all breakpoints, give no argument.\n\
15538 This command may be abbreviated \"delete\"."),
15539 &deletelist);
15540
15541 add_com ("clear", class_breakpoint, clear_command, _("\
15542 Clear breakpoint at specified location.\n\
15543 Argument may be a linespec, explicit, or address location as described below.\n\
15544 \n\
15545 With no argument, clears all breakpoints in the line that the selected frame\n\
15546 is executing in.\n"
15547 "\n" LOCATION_HELP_STRING "\n\n\
15548 See also the \"delete\" command which clears breakpoints by number."));
15549 add_com_alias ("cl", "clear", class_breakpoint, 1);
15550
15551 c = add_com ("break", class_breakpoint, break_command, _("\
15552 Set breakpoint at specified location.\n"
15553 BREAK_ARGS_HELP ("break")));
15554 set_cmd_completer (c, location_completer);
15555
15556 add_com_alias ("b", "break", class_run, 1);
15557 add_com_alias ("br", "break", class_run, 1);
15558 add_com_alias ("bre", "break", class_run, 1);
15559 add_com_alias ("brea", "break", class_run, 1);
15560
15561 if (dbx_commands)
15562 {
15563 add_abbrev_prefix_cmd ("stop", class_breakpoint, stop_command, _("\
15564 Break in function/address or break at a line in the current file."),
15565 &stoplist, "stop ", 1, &cmdlist);
15566 add_cmd ("in", class_breakpoint, stopin_command,
15567 _("Break in function or address."), &stoplist);
15568 add_cmd ("at", class_breakpoint, stopat_command,
15569 _("Break at a line in the current file."), &stoplist);
15570 add_com ("status", class_info, info_breakpoints_command, _("\
15571 Status of user-settable breakpoints, or breakpoint number NUMBER.\n\
15572 The \"Type\" column indicates one of:\n\
15573 \tbreakpoint - normal breakpoint\n\
15574 \twatchpoint - watchpoint\n\
15575 The \"Disp\" column contains one of \"keep\", \"del\", or \"dis\" to indicate\n\
15576 the disposition of the breakpoint after it gets hit. \"dis\" means that the\n\
15577 breakpoint will be disabled. The \"Address\" and \"What\" columns indicate the\n\
15578 address and file/line number respectively.\n\
15579 \n\
15580 Convenience variable \"$_\" and default examine address for \"x\"\n\
15581 are set to the address of the last breakpoint listed unless the command\n\
15582 is prefixed with \"server \".\n\n\
15583 Convenience variable \"$bpnum\" contains the number of the last\n\
15584 breakpoint set."));
15585 }
15586
15587 add_info ("breakpoints", info_breakpoints_command, _("\
15588 Status of specified breakpoints (all user-settable breakpoints if no argument).\n\
15589 The \"Type\" column indicates one of:\n\
15590 \tbreakpoint - normal breakpoint\n\
15591 \twatchpoint - watchpoint\n\
15592 The \"Disp\" column contains one of \"keep\", \"del\", or \"dis\" to indicate\n\
15593 the disposition of the breakpoint after it gets hit. \"dis\" means that the\n\
15594 breakpoint will be disabled. The \"Address\" and \"What\" columns indicate the\n\
15595 address and file/line number respectively.\n\
15596 \n\
15597 Convenience variable \"$_\" and default examine address for \"x\"\n\
15598 are set to the address of the last breakpoint listed unless the command\n\
15599 is prefixed with \"server \".\n\n\
15600 Convenience variable \"$bpnum\" contains the number of the last\n\
15601 breakpoint set."));
15602
15603 add_info_alias ("b", "breakpoints", 1);
15604
15605 add_cmd ("breakpoints", class_maintenance, maintenance_info_breakpoints, _("\
15606 Status of all breakpoints, or breakpoint number NUMBER.\n\
15607 The \"Type\" column indicates one of:\n\
15608 \tbreakpoint - normal breakpoint\n\
15609 \twatchpoint - watchpoint\n\
15610 \tlongjmp - internal breakpoint used to step through longjmp()\n\
15611 \tlongjmp resume - internal breakpoint at the target of longjmp()\n\
15612 \tuntil - internal breakpoint used by the \"until\" command\n\
15613 \tfinish - internal breakpoint used by the \"finish\" command\n\
15614 The \"Disp\" column contains one of \"keep\", \"del\", or \"dis\" to indicate\n\
15615 the disposition of the breakpoint after it gets hit. \"dis\" means that the\n\
15616 breakpoint will be disabled. The \"Address\" and \"What\" columns indicate the\n\
15617 address and file/line number respectively.\n\
15618 \n\
15619 Convenience variable \"$_\" and default examine address for \"x\"\n\
15620 are set to the address of the last breakpoint listed unless the command\n\
15621 is prefixed with \"server \".\n\n\
15622 Convenience variable \"$bpnum\" contains the number of the last\n\
15623 breakpoint set."),
15624 &maintenanceinfolist);
15625
15626 add_prefix_cmd ("catch", class_breakpoint, catch_command, _("\
15627 Set catchpoints to catch events."),
15628 &catch_cmdlist, "catch ",
15629 0/*allow-unknown*/, &cmdlist);
15630
15631 add_prefix_cmd ("tcatch", class_breakpoint, tcatch_command, _("\
15632 Set temporary catchpoints to catch events."),
15633 &tcatch_cmdlist, "tcatch ",
15634 0/*allow-unknown*/, &cmdlist);
15635
15636 add_catch_command ("fork", _("Catch calls to fork."),
15637 catch_fork_command_1,
15638 NULL,
15639 (void *) (uintptr_t) catch_fork_permanent,
15640 (void *) (uintptr_t) catch_fork_temporary);
15641 add_catch_command ("vfork", _("Catch calls to vfork."),
15642 catch_fork_command_1,
15643 NULL,
15644 (void *) (uintptr_t) catch_vfork_permanent,
15645 (void *) (uintptr_t) catch_vfork_temporary);
15646 add_catch_command ("exec", _("Catch calls to exec."),
15647 catch_exec_command_1,
15648 NULL,
15649 CATCH_PERMANENT,
15650 CATCH_TEMPORARY);
15651 add_catch_command ("load", _("Catch loads of shared libraries.\n\
15652 Usage: catch load [REGEX]\n\
15653 If REGEX is given, only stop for libraries matching the regular expression."),
15654 catch_load_command_1,
15655 NULL,
15656 CATCH_PERMANENT,
15657 CATCH_TEMPORARY);
15658 add_catch_command ("unload", _("Catch unloads of shared libraries.\n\
15659 Usage: catch unload [REGEX]\n\
15660 If REGEX is given, only stop for libraries matching the regular expression."),
15661 catch_unload_command_1,
15662 NULL,
15663 CATCH_PERMANENT,
15664 CATCH_TEMPORARY);
15665
15666 c = add_com ("watch", class_breakpoint, watch_command, _("\
15667 Set a watchpoint for an expression.\n\
15668 Usage: watch [-l|-location] EXPRESSION\n\
15669 A watchpoint stops execution of your program whenever the value of\n\
15670 an expression changes.\n\
15671 If -l or -location is given, this evaluates EXPRESSION and watches\n\
15672 the memory to which it refers."));
15673 set_cmd_completer (c, expression_completer);
15674
15675 c = add_com ("rwatch", class_breakpoint, rwatch_command, _("\
15676 Set a read watchpoint for an expression.\n\
15677 Usage: rwatch [-l|-location] EXPRESSION\n\
15678 A watchpoint stops execution of your program whenever the value of\n\
15679 an expression is read.\n\
15680 If -l or -location is given, this evaluates EXPRESSION and watches\n\
15681 the memory to which it refers."));
15682 set_cmd_completer (c, expression_completer);
15683
15684 c = add_com ("awatch", class_breakpoint, awatch_command, _("\
15685 Set a watchpoint for an expression.\n\
15686 Usage: awatch [-l|-location] EXPRESSION\n\
15687 A watchpoint stops execution of your program whenever the value of\n\
15688 an expression is either read or written.\n\
15689 If -l or -location is given, this evaluates EXPRESSION and watches\n\
15690 the memory to which it refers."));
15691 set_cmd_completer (c, expression_completer);
15692
15693 add_info ("watchpoints", info_watchpoints_command, _("\
15694 Status of specified watchpoints (all watchpoints if no argument)."));
15695
15696 /* XXX: cagney/2005-02-23: This should be a boolean, and should
15697 respond to changes - contrary to the description. */
15698 add_setshow_zinteger_cmd ("can-use-hw-watchpoints", class_support,
15699 &can_use_hw_watchpoints, _("\
15700 Set debugger's willingness to use watchpoint hardware."), _("\
15701 Show debugger's willingness to use watchpoint hardware."), _("\
15702 If zero, gdb will not use hardware for new watchpoints, even if\n\
15703 such is available. (However, any hardware watchpoints that were\n\
15704 created before setting this to nonzero, will continue to use watchpoint\n\
15705 hardware.)"),
15706 NULL,
15707 show_can_use_hw_watchpoints,
15708 &setlist, &showlist);
15709
15710 can_use_hw_watchpoints = 1;
15711
15712 /* Tracepoint manipulation commands. */
15713
15714 c = add_com ("trace", class_breakpoint, trace_command, _("\
15715 Set a tracepoint at specified location.\n\
15716 \n"
15717 BREAK_ARGS_HELP ("trace") "\n\
15718 Do \"help tracepoints\" for info on other tracepoint commands."));
15719 set_cmd_completer (c, location_completer);
15720
15721 add_com_alias ("tp", "trace", class_alias, 0);
15722 add_com_alias ("tr", "trace", class_alias, 1);
15723 add_com_alias ("tra", "trace", class_alias, 1);
15724 add_com_alias ("trac", "trace", class_alias, 1);
15725
15726 c = add_com ("ftrace", class_breakpoint, ftrace_command, _("\
15727 Set a fast tracepoint at specified location.\n\
15728 \n"
15729 BREAK_ARGS_HELP ("ftrace") "\n\
15730 Do \"help tracepoints\" for info on other tracepoint commands."));
15731 set_cmd_completer (c, location_completer);
15732
15733 c = add_com ("strace", class_breakpoint, strace_command, _("\
15734 Set a static tracepoint at location or marker.\n\
15735 \n\
15736 strace [LOCATION] [if CONDITION]\n\
15737 LOCATION may be a linespec, explicit, or address location (described below) \n\
15738 or -m MARKER_ID.\n\n\
15739 If a marker id is specified, probe the marker with that name. With\n\
15740 no LOCATION, uses current execution address of the selected stack frame.\n\
15741 Static tracepoints accept an extra collect action -- ``collect $_sdata''.\n\
15742 This collects arbitrary user data passed in the probe point call to the\n\
15743 tracing library. You can inspect it when analyzing the trace buffer,\n\
15744 by printing the $_sdata variable like any other convenience variable.\n\
15745 \n\
15746 CONDITION is a boolean expression.\n\
15747 \n" LOCATION_HELP_STRING "\n\n\
15748 Multiple tracepoints at one place are permitted, and useful if their\n\
15749 conditions are different.\n\
15750 \n\
15751 Do \"help breakpoints\" for info on other commands dealing with breakpoints.\n\
15752 Do \"help tracepoints\" for info on other tracepoint commands."));
15753 set_cmd_completer (c, location_completer);
15754
15755 add_info ("tracepoints", info_tracepoints_command, _("\
15756 Status of specified tracepoints (all tracepoints if no argument).\n\
15757 Convenience variable \"$tpnum\" contains the number of the\n\
15758 last tracepoint set."));
15759
15760 add_info_alias ("tp", "tracepoints", 1);
15761
15762 add_cmd ("tracepoints", class_trace, delete_trace_command, _("\
15763 Delete specified tracepoints.\n\
15764 Arguments are tracepoint numbers, separated by spaces.\n\
15765 No argument means delete all tracepoints."),
15766 &deletelist);
15767 add_alias_cmd ("tr", "tracepoints", class_trace, 1, &deletelist);
15768
15769 c = add_cmd ("tracepoints", class_trace, disable_trace_command, _("\
15770 Disable specified tracepoints.\n\
15771 Arguments are tracepoint numbers, separated by spaces.\n\
15772 No argument means disable all tracepoints."),
15773 &disablelist);
15774 deprecate_cmd (c, "disable");
15775
15776 c = add_cmd ("tracepoints", class_trace, enable_trace_command, _("\
15777 Enable specified tracepoints.\n\
15778 Arguments are tracepoint numbers, separated by spaces.\n\
15779 No argument means enable all tracepoints."),
15780 &enablelist);
15781 deprecate_cmd (c, "enable");
15782
15783 add_com ("passcount", class_trace, trace_pass_command, _("\
15784 Set the passcount for a tracepoint.\n\
15785 The trace will end when the tracepoint has been passed 'count' times.\n\
15786 Usage: passcount COUNT TPNUM, where TPNUM may also be \"all\";\n\
15787 if TPNUM is omitted, passcount refers to the last tracepoint defined."));
15788
15789 add_prefix_cmd ("save", class_breakpoint, save_command,
15790 _("Save breakpoint definitions as a script."),
15791 &save_cmdlist, "save ",
15792 0/*allow-unknown*/, &cmdlist);
15793
15794 c = add_cmd ("breakpoints", class_breakpoint, save_breakpoints_command, _("\
15795 Save current breakpoint definitions as a script.\n\
15796 This includes all types of breakpoints (breakpoints, watchpoints,\n\
15797 catchpoints, tracepoints). Use the 'source' command in another debug\n\
15798 session to restore them."),
15799 &save_cmdlist);
15800 set_cmd_completer (c, filename_completer);
15801
15802 c = add_cmd ("tracepoints", class_trace, save_tracepoints_command, _("\
15803 Save current tracepoint definitions as a script.\n\
15804 Use the 'source' command in another debug session to restore them."),
15805 &save_cmdlist);
15806 set_cmd_completer (c, filename_completer);
15807
15808 c = add_com_alias ("save-tracepoints", "save tracepoints", class_trace, 0);
15809 deprecate_cmd (c, "save tracepoints");
15810
15811 add_prefix_cmd ("breakpoint", class_maintenance, set_breakpoint_cmd, _("\
15812 Breakpoint specific settings.\n\
15813 Configure various breakpoint-specific variables such as\n\
15814 pending breakpoint behavior."),
15815 &breakpoint_set_cmdlist, "set breakpoint ",
15816 0/*allow-unknown*/, &setlist);
15817 add_prefix_cmd ("breakpoint", class_maintenance, show_breakpoint_cmd, _("\
15818 Breakpoint specific settings.\n\
15819 Configure various breakpoint-specific variables such as\n\
15820 pending breakpoint behavior."),
15821 &breakpoint_show_cmdlist, "show breakpoint ",
15822 0/*allow-unknown*/, &showlist);
15823
15824 add_setshow_auto_boolean_cmd ("pending", no_class,
15825 &pending_break_support, _("\
15826 Set debugger's behavior regarding pending breakpoints."), _("\
15827 Show debugger's behavior regarding pending breakpoints."), _("\
15828 If on, an unrecognized breakpoint location will cause gdb to create a\n\
15829 pending breakpoint. If off, an unrecognized breakpoint location results in\n\
15830 an error. If auto, an unrecognized breakpoint location results in a\n\
15831 user-query to see if a pending breakpoint should be created."),
15832 NULL,
15833 show_pending_break_support,
15834 &breakpoint_set_cmdlist,
15835 &breakpoint_show_cmdlist);
15836
15837 pending_break_support = AUTO_BOOLEAN_AUTO;
15838
15839 add_setshow_boolean_cmd ("auto-hw", no_class,
15840 &automatic_hardware_breakpoints, _("\
15841 Set automatic usage of hardware breakpoints."), _("\
15842 Show automatic usage of hardware breakpoints."), _("\
15843 If set, the debugger will automatically use hardware breakpoints for\n\
15844 breakpoints set with \"break\" but falling in read-only memory. If not set,\n\
15845 a warning will be emitted for such breakpoints."),
15846 NULL,
15847 show_automatic_hardware_breakpoints,
15848 &breakpoint_set_cmdlist,
15849 &breakpoint_show_cmdlist);
15850
15851 add_setshow_boolean_cmd ("always-inserted", class_support,
15852 &always_inserted_mode, _("\
15853 Set mode for inserting breakpoints."), _("\
15854 Show mode for inserting breakpoints."), _("\
15855 When this mode is on, breakpoints are inserted immediately as soon as\n\
15856 they're created, kept inserted even when execution stops, and removed\n\
15857 only when the user deletes them. When this mode is off (the default),\n\
15858 breakpoints are inserted only when execution continues, and removed\n\
15859 when execution stops."),
15860 NULL,
15861 &show_always_inserted_mode,
15862 &breakpoint_set_cmdlist,
15863 &breakpoint_show_cmdlist);
15864
15865 add_setshow_enum_cmd ("condition-evaluation", class_breakpoint,
15866 condition_evaluation_enums,
15867 &condition_evaluation_mode_1, _("\
15868 Set mode of breakpoint condition evaluation."), _("\
15869 Show mode of breakpoint condition evaluation."), _("\
15870 When this is set to \"host\", breakpoint conditions will be\n\
15871 evaluated on the host's side by GDB. When it is set to \"target\",\n\
15872 breakpoint conditions will be downloaded to the target (if the target\n\
15873 supports such feature) and conditions will be evaluated on the target's side.\n\
15874 If this is set to \"auto\" (default), this will be automatically set to\n\
15875 \"target\" if it supports condition evaluation, otherwise it will\n\
15876 be set to \"gdb\""),
15877 &set_condition_evaluation_mode,
15878 &show_condition_evaluation_mode,
15879 &breakpoint_set_cmdlist,
15880 &breakpoint_show_cmdlist);
15881
15882 add_com ("break-range", class_breakpoint, break_range_command, _("\
15883 Set a breakpoint for an address range.\n\
15884 break-range START-LOCATION, END-LOCATION\n\
15885 where START-LOCATION and END-LOCATION can be one of the following:\n\
15886 LINENUM, for that line in the current file,\n\
15887 FILE:LINENUM, for that line in that file,\n\
15888 +OFFSET, for that number of lines after the current line\n\
15889 or the start of the range\n\
15890 FUNCTION, for the first line in that function,\n\
15891 FILE:FUNCTION, to distinguish among like-named static functions.\n\
15892 *ADDRESS, for the instruction at that address.\n\
15893 \n\
15894 The breakpoint will stop execution of the inferior whenever it executes\n\
15895 an instruction at any address within the [START-LOCATION, END-LOCATION]\n\
15896 range (including START-LOCATION and END-LOCATION)."));
15897
15898 c = add_com ("dprintf", class_breakpoint, dprintf_command, _("\
15899 Set a dynamic printf at specified location.\n\
15900 dprintf location,format string,arg1,arg2,...\n\
15901 location may be a linespec, explicit, or address location.\n"
15902 "\n" LOCATION_HELP_STRING));
15903 set_cmd_completer (c, location_completer);
15904
15905 add_setshow_enum_cmd ("dprintf-style", class_support,
15906 dprintf_style_enums, &dprintf_style, _("\
15907 Set the style of usage for dynamic printf."), _("\
15908 Show the style of usage for dynamic printf."), _("\
15909 This setting chooses how GDB will do a dynamic printf.\n\
15910 If the value is \"gdb\", then the printing is done by GDB to its own\n\
15911 console, as with the \"printf\" command.\n\
15912 If the value is \"call\", the print is done by calling a function in your\n\
15913 program; by default printf(), but you can choose a different function or\n\
15914 output stream by setting dprintf-function and dprintf-channel."),
15915 update_dprintf_commands, NULL,
15916 &setlist, &showlist);
15917
15918 dprintf_function = xstrdup ("printf");
15919 add_setshow_string_cmd ("dprintf-function", class_support,
15920 &dprintf_function, _("\
15921 Set the function to use for dynamic printf."), _("\
15922 Show the function to use for dynamic printf."), NULL,
15923 update_dprintf_commands, NULL,
15924 &setlist, &showlist);
15925
15926 dprintf_channel = xstrdup ("");
15927 add_setshow_string_cmd ("dprintf-channel", class_support,
15928 &dprintf_channel, _("\
15929 Set the channel to use for dynamic printf."), _("\
15930 Show the channel to use for dynamic printf."), NULL,
15931 update_dprintf_commands, NULL,
15932 &setlist, &showlist);
15933
15934 add_setshow_boolean_cmd ("disconnected-dprintf", no_class,
15935 &disconnected_dprintf, _("\
15936 Set whether dprintf continues after GDB disconnects."), _("\
15937 Show whether dprintf continues after GDB disconnects."), _("\
15938 Use this to let dprintf commands continue to hit and produce output\n\
15939 even if GDB disconnects or detaches from the target."),
15940 NULL,
15941 NULL,
15942 &setlist, &showlist);
15943
15944 add_com ("agent-printf", class_vars, agent_printf_command, _("\
15945 Target agent only formatted printing, like the C \"printf\" function.\n\
15946 Usage: agent-printf \"format string\", ARG1, ARG2, ARG3, ..., ARGN\n\
15947 This supports most C printf format specifications, like %s, %d, etc.\n\
15948 This is useful for formatted output in user-defined commands."));
15949
15950 automatic_hardware_breakpoints = true;
15951
15952 gdb::observers::about_to_proceed.attach (breakpoint_about_to_proceed);
15953 gdb::observers::thread_exit.attach (remove_threaded_breakpoints);
15954 }
This page took 0.420165 seconds and 4 git commands to generate.