Improve MSP430 section placement.
[deliverable/binutils-gdb.git] / gdb / breakpoint.c
1 /* Everything about breakpoints, for GDB.
2
3 Copyright (C) 1986-2017 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20 #include "defs.h"
21 #include "arch-utils.h"
22 #include <ctype.h>
23 #include "hashtab.h"
24 #include "symtab.h"
25 #include "frame.h"
26 #include "breakpoint.h"
27 #include "tracepoint.h"
28 #include "gdbtypes.h"
29 #include "expression.h"
30 #include "gdbcore.h"
31 #include "gdbcmd.h"
32 #include "value.h"
33 #include "command.h"
34 #include "inferior.h"
35 #include "infrun.h"
36 #include "gdbthread.h"
37 #include "target.h"
38 #include "language.h"
39 #include "gdb-demangle.h"
40 #include "filenames.h"
41 #include "annotate.h"
42 #include "symfile.h"
43 #include "objfiles.h"
44 #include "source.h"
45 #include "linespec.h"
46 #include "completer.h"
47 #include "gdb.h"
48 #include "ui-out.h"
49 #include "cli/cli-script.h"
50 #include "block.h"
51 #include "solib.h"
52 #include "solist.h"
53 #include "observer.h"
54 #include "memattr.h"
55 #include "ada-lang.h"
56 #include "top.h"
57 #include "valprint.h"
58 #include "jit.h"
59 #include "parser-defs.h"
60 #include "gdb_regex.h"
61 #include "probe.h"
62 #include "cli/cli-utils.h"
63 #include "continuations.h"
64 #include "stack.h"
65 #include "skip.h"
66 #include "ax-gdb.h"
67 #include "dummy-frame.h"
68 #include "interps.h"
69 #include "format.h"
70 #include "thread-fsm.h"
71 #include "tid-parse.h"
72
73 /* readline include files */
74 #include "readline/readline.h"
75 #include "readline/history.h"
76
77 /* readline defines this. */
78 #undef savestring
79
80 #include "mi/mi-common.h"
81 #include "extension.h"
82 #include <algorithm>
83 #include "progspace-and-thread.h"
84
85 /* Enums for exception-handling support. */
86 enum exception_event_kind
87 {
88 EX_EVENT_THROW,
89 EX_EVENT_RETHROW,
90 EX_EVENT_CATCH
91 };
92
93 /* Prototypes for local functions. */
94
95 static void enable_delete_command (char *, int);
96
97 static void enable_once_command (char *, int);
98
99 static void enable_count_command (char *, int);
100
101 static void disable_command (char *, int);
102
103 static void enable_command (char *, int);
104
105 static void map_breakpoint_numbers (const char *,
106 void (*) (struct breakpoint *,
107 void *),
108 void *);
109
110 static void ignore_command (char *, int);
111
112 static int breakpoint_re_set_one (void *);
113
114 static void breakpoint_re_set_default (struct breakpoint *);
115
116 static void
117 create_sals_from_location_default (const struct event_location *location,
118 struct linespec_result *canonical,
119 enum bptype type_wanted);
120
121 static void create_breakpoints_sal_default (struct gdbarch *,
122 struct linespec_result *,
123 gdb::unique_xmalloc_ptr<char>,
124 gdb::unique_xmalloc_ptr<char>,
125 enum bptype,
126 enum bpdisp, int, int,
127 int,
128 const struct breakpoint_ops *,
129 int, int, int, unsigned);
130
131 static void decode_location_default (struct breakpoint *b,
132 const struct event_location *location,
133 struct program_space *search_pspace,
134 struct symtabs_and_lines *sals);
135
136 static void clear_command (char *, int);
137
138 static void catch_command (char *, int);
139
140 static int can_use_hardware_watchpoint (struct value *);
141
142 static void break_command_1 (char *, int, int);
143
144 static void mention (struct breakpoint *);
145
146 static struct breakpoint *set_raw_breakpoint_without_location (struct gdbarch *,
147 enum bptype,
148 const struct breakpoint_ops *);
149 static struct bp_location *add_location_to_breakpoint (struct breakpoint *,
150 const struct symtab_and_line *);
151
152 /* This function is used in gdbtk sources and thus can not be made
153 static. */
154 struct breakpoint *set_raw_breakpoint (struct gdbarch *gdbarch,
155 struct symtab_and_line,
156 enum bptype,
157 const struct breakpoint_ops *);
158
159 static struct breakpoint *
160 momentary_breakpoint_from_master (struct breakpoint *orig,
161 enum bptype type,
162 const struct breakpoint_ops *ops,
163 int loc_enabled);
164
165 static void breakpoint_adjustment_warning (CORE_ADDR, CORE_ADDR, int, int);
166
167 static CORE_ADDR adjust_breakpoint_address (struct gdbarch *gdbarch,
168 CORE_ADDR bpaddr,
169 enum bptype bptype);
170
171 static void describe_other_breakpoints (struct gdbarch *,
172 struct program_space *, CORE_ADDR,
173 struct obj_section *, int);
174
175 static int watchpoint_locations_match (struct bp_location *loc1,
176 struct bp_location *loc2);
177
178 static int breakpoint_location_address_match (struct bp_location *bl,
179 struct address_space *aspace,
180 CORE_ADDR addr);
181
182 static int breakpoint_location_address_range_overlap (struct bp_location *,
183 struct address_space *,
184 CORE_ADDR, int);
185
186 static void info_breakpoints_command (char *, int);
187
188 static void info_watchpoints_command (char *, int);
189
190 static int breakpoint_1 (char *, int,
191 int (*) (const struct breakpoint *));
192
193 static int breakpoint_cond_eval (void *);
194
195 static void cleanup_executing_breakpoints (void *);
196
197 static void commands_command (char *, int);
198
199 static void condition_command (char *, int);
200
201 static int remove_breakpoint (struct bp_location *);
202 static int remove_breakpoint_1 (struct bp_location *, enum remove_bp_reason);
203
204 static enum print_stop_action print_bp_stop_message (bpstat bs);
205
206 static int watchpoint_check (void *);
207
208 static void maintenance_info_breakpoints (char *, int);
209
210 static int hw_breakpoint_used_count (void);
211
212 static int hw_watchpoint_use_count (struct breakpoint *);
213
214 static int hw_watchpoint_used_count_others (struct breakpoint *except,
215 enum bptype type,
216 int *other_type_used);
217
218 static void hbreak_command (char *, int);
219
220 static void thbreak_command (char *, int);
221
222 static void enable_breakpoint_disp (struct breakpoint *, enum bpdisp,
223 int count);
224
225 static void stop_command (char *arg, int from_tty);
226
227 static void stopin_command (char *arg, int from_tty);
228
229 static void stopat_command (char *arg, int from_tty);
230
231 static void tcatch_command (char *arg, int from_tty);
232
233 static void free_bp_location (struct bp_location *loc);
234 static void incref_bp_location (struct bp_location *loc);
235 static void decref_bp_location (struct bp_location **loc);
236
237 static struct bp_location *allocate_bp_location (struct breakpoint *bpt);
238
239 /* update_global_location_list's modes of operation wrt to whether to
240 insert locations now. */
241 enum ugll_insert_mode
242 {
243 /* Don't insert any breakpoint locations into the inferior, only
244 remove already-inserted locations that no longer should be
245 inserted. Functions that delete a breakpoint or breakpoints
246 should specify this mode, so that deleting a breakpoint doesn't
247 have the side effect of inserting the locations of other
248 breakpoints that are marked not-inserted, but should_be_inserted
249 returns true on them.
250
251 This behavior is useful is situations close to tear-down -- e.g.,
252 after an exec, while the target still has execution, but
253 breakpoint shadows of the previous executable image should *NOT*
254 be restored to the new image; or before detaching, where the
255 target still has execution and wants to delete breakpoints from
256 GDB's lists, and all breakpoints had already been removed from
257 the inferior. */
258 UGLL_DONT_INSERT,
259
260 /* May insert breakpoints iff breakpoints_should_be_inserted_now
261 claims breakpoints should be inserted now. */
262 UGLL_MAY_INSERT,
263
264 /* Insert locations now, irrespective of
265 breakpoints_should_be_inserted_now. E.g., say all threads are
266 stopped right now, and the user did "continue". We need to
267 insert breakpoints _before_ resuming the target, but
268 UGLL_MAY_INSERT wouldn't insert them, because
269 breakpoints_should_be_inserted_now returns false at that point,
270 as no thread is running yet. */
271 UGLL_INSERT
272 };
273
274 static void update_global_location_list (enum ugll_insert_mode);
275
276 static void update_global_location_list_nothrow (enum ugll_insert_mode);
277
278 static int is_hardware_watchpoint (const struct breakpoint *bpt);
279
280 static void insert_breakpoint_locations (void);
281
282 static void info_tracepoints_command (char *, int);
283
284 static void delete_trace_command (char *, int);
285
286 static void enable_trace_command (char *, int);
287
288 static void disable_trace_command (char *, int);
289
290 static void trace_pass_command (char *, int);
291
292 static void set_tracepoint_count (int num);
293
294 static int is_masked_watchpoint (const struct breakpoint *b);
295
296 static struct bp_location **get_first_locp_gte_addr (CORE_ADDR address);
297
298 /* Return 1 if B refers to a static tracepoint set by marker ("-m"), zero
299 otherwise. */
300
301 static int strace_marker_p (struct breakpoint *b);
302
303 /* The breakpoint_ops structure to be inherited by all breakpoint_ops
304 that are implemented on top of software or hardware breakpoints
305 (user breakpoints, internal and momentary breakpoints, etc.). */
306 static struct breakpoint_ops bkpt_base_breakpoint_ops;
307
308 /* Internal breakpoints class type. */
309 static struct breakpoint_ops internal_breakpoint_ops;
310
311 /* Momentary breakpoints class type. */
312 static struct breakpoint_ops momentary_breakpoint_ops;
313
314 /* The breakpoint_ops structure to be used in regular user created
315 breakpoints. */
316 struct breakpoint_ops bkpt_breakpoint_ops;
317
318 /* Breakpoints set on probes. */
319 static struct breakpoint_ops bkpt_probe_breakpoint_ops;
320
321 /* Dynamic printf class type. */
322 struct breakpoint_ops dprintf_breakpoint_ops;
323
324 /* The style in which to perform a dynamic printf. This is a user
325 option because different output options have different tradeoffs;
326 if GDB does the printing, there is better error handling if there
327 is a problem with any of the arguments, but using an inferior
328 function lets you have special-purpose printers and sending of
329 output to the same place as compiled-in print functions. */
330
331 static const char dprintf_style_gdb[] = "gdb";
332 static const char dprintf_style_call[] = "call";
333 static const char dprintf_style_agent[] = "agent";
334 static const char *const dprintf_style_enums[] = {
335 dprintf_style_gdb,
336 dprintf_style_call,
337 dprintf_style_agent,
338 NULL
339 };
340 static const char *dprintf_style = dprintf_style_gdb;
341
342 /* The function to use for dynamic printf if the preferred style is to
343 call into the inferior. The value is simply a string that is
344 copied into the command, so it can be anything that GDB can
345 evaluate to a callable address, not necessarily a function name. */
346
347 static char *dprintf_function;
348
349 /* The channel to use for dynamic printf if the preferred style is to
350 call into the inferior; if a nonempty string, it will be passed to
351 the call as the first argument, with the format string as the
352 second. As with the dprintf function, this can be anything that
353 GDB knows how to evaluate, so in addition to common choices like
354 "stderr", this could be an app-specific expression like
355 "mystreams[curlogger]". */
356
357 static char *dprintf_channel;
358
359 /* True if dprintf commands should continue to operate even if GDB
360 has disconnected. */
361 static int disconnected_dprintf = 1;
362
363 /* A reference-counted struct command_line. This lets multiple
364 breakpoints share a single command list. */
365 struct counted_command_line
366 {
367 /* The reference count. */
368 int refc;
369
370 /* The command list. */
371 struct command_line *commands;
372 };
373
374 struct command_line *
375 breakpoint_commands (struct breakpoint *b)
376 {
377 return b->commands ? b->commands->commands : NULL;
378 }
379
380 /* Flag indicating that a command has proceeded the inferior past the
381 current breakpoint. */
382
383 static int breakpoint_proceeded;
384
385 const char *
386 bpdisp_text (enum bpdisp disp)
387 {
388 /* NOTE: the following values are a part of MI protocol and
389 represent values of 'disp' field returned when inferior stops at
390 a breakpoint. */
391 static const char * const bpdisps[] = {"del", "dstp", "dis", "keep"};
392
393 return bpdisps[(int) disp];
394 }
395
396 /* Prototypes for exported functions. */
397 /* If FALSE, gdb will not use hardware support for watchpoints, even
398 if such is available. */
399 static int can_use_hw_watchpoints;
400
401 static void
402 show_can_use_hw_watchpoints (struct ui_file *file, int from_tty,
403 struct cmd_list_element *c,
404 const char *value)
405 {
406 fprintf_filtered (file,
407 _("Debugger's willingness to use "
408 "watchpoint hardware is %s.\n"),
409 value);
410 }
411
412 /* If AUTO_BOOLEAN_FALSE, gdb will not attempt to create pending breakpoints.
413 If AUTO_BOOLEAN_TRUE, gdb will automatically create pending breakpoints
414 for unrecognized breakpoint locations.
415 If AUTO_BOOLEAN_AUTO, gdb will query when breakpoints are unrecognized. */
416 static enum auto_boolean pending_break_support;
417 static void
418 show_pending_break_support (struct ui_file *file, int from_tty,
419 struct cmd_list_element *c,
420 const char *value)
421 {
422 fprintf_filtered (file,
423 _("Debugger's behavior regarding "
424 "pending breakpoints is %s.\n"),
425 value);
426 }
427
428 /* If 1, gdb will automatically use hardware breakpoints for breakpoints
429 set with "break" but falling in read-only memory.
430 If 0, gdb will warn about such breakpoints, but won't automatically
431 use hardware breakpoints. */
432 static int automatic_hardware_breakpoints;
433 static void
434 show_automatic_hardware_breakpoints (struct ui_file *file, int from_tty,
435 struct cmd_list_element *c,
436 const char *value)
437 {
438 fprintf_filtered (file,
439 _("Automatic usage of hardware breakpoints is %s.\n"),
440 value);
441 }
442
443 /* If on, GDB keeps breakpoints inserted even if the inferior is
444 stopped, and immediately inserts any new breakpoints as soon as
445 they're created. If off (default), GDB keeps breakpoints off of
446 the target as long as possible. That is, it delays inserting
447 breakpoints until the next resume, and removes them again when the
448 target fully stops. This is a bit safer in case GDB crashes while
449 processing user input. */
450 static int always_inserted_mode = 0;
451
452 static void
453 show_always_inserted_mode (struct ui_file *file, int from_tty,
454 struct cmd_list_element *c, const char *value)
455 {
456 fprintf_filtered (file, _("Always inserted breakpoint mode is %s.\n"),
457 value);
458 }
459
460 /* See breakpoint.h. */
461
462 int
463 breakpoints_should_be_inserted_now (void)
464 {
465 if (gdbarch_has_global_breakpoints (target_gdbarch ()))
466 {
467 /* If breakpoints are global, they should be inserted even if no
468 thread under gdb's control is running, or even if there are
469 no threads under GDB's control yet. */
470 return 1;
471 }
472 else if (target_has_execution)
473 {
474 struct thread_info *tp;
475
476 if (always_inserted_mode)
477 {
478 /* The user wants breakpoints inserted even if all threads
479 are stopped. */
480 return 1;
481 }
482
483 if (threads_are_executing ())
484 return 1;
485
486 /* Don't remove breakpoints yet if, even though all threads are
487 stopped, we still have events to process. */
488 ALL_NON_EXITED_THREADS (tp)
489 if (tp->resumed
490 && tp->suspend.waitstatus_pending_p)
491 return 1;
492 }
493 return 0;
494 }
495
496 static const char condition_evaluation_both[] = "host or target";
497
498 /* Modes for breakpoint condition evaluation. */
499 static const char condition_evaluation_auto[] = "auto";
500 static const char condition_evaluation_host[] = "host";
501 static const char condition_evaluation_target[] = "target";
502 static const char *const condition_evaluation_enums[] = {
503 condition_evaluation_auto,
504 condition_evaluation_host,
505 condition_evaluation_target,
506 NULL
507 };
508
509 /* Global that holds the current mode for breakpoint condition evaluation. */
510 static const char *condition_evaluation_mode_1 = condition_evaluation_auto;
511
512 /* Global that we use to display information to the user (gets its value from
513 condition_evaluation_mode_1. */
514 static const char *condition_evaluation_mode = condition_evaluation_auto;
515
516 /* Translate a condition evaluation mode MODE into either "host"
517 or "target". This is used mostly to translate from "auto" to the
518 real setting that is being used. It returns the translated
519 evaluation mode. */
520
521 static const char *
522 translate_condition_evaluation_mode (const char *mode)
523 {
524 if (mode == condition_evaluation_auto)
525 {
526 if (target_supports_evaluation_of_breakpoint_conditions ())
527 return condition_evaluation_target;
528 else
529 return condition_evaluation_host;
530 }
531 else
532 return mode;
533 }
534
535 /* Discovers what condition_evaluation_auto translates to. */
536
537 static const char *
538 breakpoint_condition_evaluation_mode (void)
539 {
540 return translate_condition_evaluation_mode (condition_evaluation_mode);
541 }
542
543 /* Return true if GDB should evaluate breakpoint conditions or false
544 otherwise. */
545
546 static int
547 gdb_evaluates_breakpoint_condition_p (void)
548 {
549 const char *mode = breakpoint_condition_evaluation_mode ();
550
551 return (mode == condition_evaluation_host);
552 }
553
554 void _initialize_breakpoint (void);
555
556 /* Are we executing breakpoint commands? */
557 static int executing_breakpoint_commands;
558
559 /* Are overlay event breakpoints enabled? */
560 static int overlay_events_enabled;
561
562 /* See description in breakpoint.h. */
563 int target_exact_watchpoints = 0;
564
565 /* Walk the following statement or block through all breakpoints.
566 ALL_BREAKPOINTS_SAFE does so even if the statement deletes the
567 current breakpoint. */
568
569 #define ALL_BREAKPOINTS(B) for (B = breakpoint_chain; B; B = B->next)
570
571 #define ALL_BREAKPOINTS_SAFE(B,TMP) \
572 for (B = breakpoint_chain; \
573 B ? (TMP=B->next, 1): 0; \
574 B = TMP)
575
576 /* Similar iterator for the low-level breakpoints. SAFE variant is
577 not provided so update_global_location_list must not be called
578 while executing the block of ALL_BP_LOCATIONS. */
579
580 #define ALL_BP_LOCATIONS(B,BP_TMP) \
581 for (BP_TMP = bp_locations; \
582 BP_TMP < bp_locations + bp_locations_count && (B = *BP_TMP);\
583 BP_TMP++)
584
585 /* Iterates through locations with address ADDRESS for the currently selected
586 program space. BP_LOCP_TMP points to each object. BP_LOCP_START points
587 to where the loop should start from.
588 If BP_LOCP_START is a NULL pointer, the macro automatically seeks the
589 appropriate location to start with. */
590
591 #define ALL_BP_LOCATIONS_AT_ADDR(BP_LOCP_TMP, BP_LOCP_START, ADDRESS) \
592 for (BP_LOCP_START = BP_LOCP_START == NULL ? get_first_locp_gte_addr (ADDRESS) : BP_LOCP_START, \
593 BP_LOCP_TMP = BP_LOCP_START; \
594 BP_LOCP_START \
595 && (BP_LOCP_TMP < bp_locations + bp_locations_count \
596 && (*BP_LOCP_TMP)->address == ADDRESS); \
597 BP_LOCP_TMP++)
598
599 /* Iterator for tracepoints only. */
600
601 #define ALL_TRACEPOINTS(B) \
602 for (B = breakpoint_chain; B; B = B->next) \
603 if (is_tracepoint (B))
604
605 /* Chains of all breakpoints defined. */
606
607 struct breakpoint *breakpoint_chain;
608
609 /* Array is sorted by bp_locations_compare - primarily by the ADDRESS. */
610
611 static struct bp_location **bp_locations;
612
613 /* Number of elements of BP_LOCATIONS. */
614
615 static unsigned bp_locations_count;
616
617 /* Maximum alignment offset between bp_target_info.PLACED_ADDRESS and
618 ADDRESS for the current elements of BP_LOCATIONS which get a valid
619 result from bp_location_has_shadow. You can use it for roughly
620 limiting the subrange of BP_LOCATIONS to scan for shadow bytes for
621 an address you need to read. */
622
623 static CORE_ADDR bp_locations_placed_address_before_address_max;
624
625 /* Maximum offset plus alignment between bp_target_info.PLACED_ADDRESS
626 + bp_target_info.SHADOW_LEN and ADDRESS for the current elements of
627 BP_LOCATIONS which get a valid result from bp_location_has_shadow.
628 You can use it for roughly limiting the subrange of BP_LOCATIONS to
629 scan for shadow bytes for an address you need to read. */
630
631 static CORE_ADDR bp_locations_shadow_len_after_address_max;
632
633 /* The locations that no longer correspond to any breakpoint, unlinked
634 from the bp_locations array, but for which a hit may still be
635 reported by a target. */
636 VEC(bp_location_p) *moribund_locations = NULL;
637
638 /* Number of last breakpoint made. */
639
640 static int breakpoint_count;
641
642 /* The value of `breakpoint_count' before the last command that
643 created breakpoints. If the last (break-like) command created more
644 than one breakpoint, then the difference between BREAKPOINT_COUNT
645 and PREV_BREAKPOINT_COUNT is more than one. */
646 static int prev_breakpoint_count;
647
648 /* Number of last tracepoint made. */
649
650 static int tracepoint_count;
651
652 static struct cmd_list_element *breakpoint_set_cmdlist;
653 static struct cmd_list_element *breakpoint_show_cmdlist;
654 struct cmd_list_element *save_cmdlist;
655
656 /* See declaration at breakpoint.h. */
657
658 struct breakpoint *
659 breakpoint_find_if (int (*func) (struct breakpoint *b, void *d),
660 void *user_data)
661 {
662 struct breakpoint *b = NULL;
663
664 ALL_BREAKPOINTS (b)
665 {
666 if (func (b, user_data) != 0)
667 break;
668 }
669
670 return b;
671 }
672
673 /* Return whether a breakpoint is an active enabled breakpoint. */
674 static int
675 breakpoint_enabled (struct breakpoint *b)
676 {
677 return (b->enable_state == bp_enabled);
678 }
679
680 /* Set breakpoint count to NUM. */
681
682 static void
683 set_breakpoint_count (int num)
684 {
685 prev_breakpoint_count = breakpoint_count;
686 breakpoint_count = num;
687 set_internalvar_integer (lookup_internalvar ("bpnum"), num);
688 }
689
690 /* Used by `start_rbreak_breakpoints' below, to record the current
691 breakpoint count before "rbreak" creates any breakpoint. */
692 static int rbreak_start_breakpoint_count;
693
694 /* Called at the start an "rbreak" command to record the first
695 breakpoint made. */
696
697 void
698 start_rbreak_breakpoints (void)
699 {
700 rbreak_start_breakpoint_count = breakpoint_count;
701 }
702
703 /* Called at the end of an "rbreak" command to record the last
704 breakpoint made. */
705
706 void
707 end_rbreak_breakpoints (void)
708 {
709 prev_breakpoint_count = rbreak_start_breakpoint_count;
710 }
711
712 /* Used in run_command to zero the hit count when a new run starts. */
713
714 void
715 clear_breakpoint_hit_counts (void)
716 {
717 struct breakpoint *b;
718
719 ALL_BREAKPOINTS (b)
720 b->hit_count = 0;
721 }
722
723 /* Allocate a new counted_command_line with reference count of 1.
724 The new structure owns COMMANDS. */
725
726 static struct counted_command_line *
727 alloc_counted_command_line (struct command_line *commands)
728 {
729 struct counted_command_line *result = XNEW (struct counted_command_line);
730
731 result->refc = 1;
732 result->commands = commands;
733
734 return result;
735 }
736
737 /* Increment reference count. This does nothing if CMD is NULL. */
738
739 static void
740 incref_counted_command_line (struct counted_command_line *cmd)
741 {
742 if (cmd)
743 ++cmd->refc;
744 }
745
746 /* Decrement reference count. If the reference count reaches 0,
747 destroy the counted_command_line. Sets *CMDP to NULL. This does
748 nothing if *CMDP is NULL. */
749
750 static void
751 decref_counted_command_line (struct counted_command_line **cmdp)
752 {
753 if (*cmdp)
754 {
755 if (--(*cmdp)->refc == 0)
756 {
757 free_command_lines (&(*cmdp)->commands);
758 xfree (*cmdp);
759 }
760 *cmdp = NULL;
761 }
762 }
763
764 /* A cleanup function that calls decref_counted_command_line. */
765
766 static void
767 do_cleanup_counted_command_line (void *arg)
768 {
769 decref_counted_command_line ((struct counted_command_line **) arg);
770 }
771
772 /* Create a cleanup that calls decref_counted_command_line on the
773 argument. */
774
775 static struct cleanup *
776 make_cleanup_decref_counted_command_line (struct counted_command_line **cmdp)
777 {
778 return make_cleanup (do_cleanup_counted_command_line, cmdp);
779 }
780
781 \f
782 /* Return the breakpoint with the specified number, or NULL
783 if the number does not refer to an existing breakpoint. */
784
785 struct breakpoint *
786 get_breakpoint (int num)
787 {
788 struct breakpoint *b;
789
790 ALL_BREAKPOINTS (b)
791 if (b->number == num)
792 return b;
793
794 return NULL;
795 }
796
797 \f
798
799 /* Mark locations as "conditions have changed" in case the target supports
800 evaluating conditions on its side. */
801
802 static void
803 mark_breakpoint_modified (struct breakpoint *b)
804 {
805 struct bp_location *loc;
806
807 /* This is only meaningful if the target is
808 evaluating conditions and if the user has
809 opted for condition evaluation on the target's
810 side. */
811 if (gdb_evaluates_breakpoint_condition_p ()
812 || !target_supports_evaluation_of_breakpoint_conditions ())
813 return;
814
815 if (!is_breakpoint (b))
816 return;
817
818 for (loc = b->loc; loc; loc = loc->next)
819 loc->condition_changed = condition_modified;
820 }
821
822 /* Mark location as "conditions have changed" in case the target supports
823 evaluating conditions on its side. */
824
825 static void
826 mark_breakpoint_location_modified (struct bp_location *loc)
827 {
828 /* This is only meaningful if the target is
829 evaluating conditions and if the user has
830 opted for condition evaluation on the target's
831 side. */
832 if (gdb_evaluates_breakpoint_condition_p ()
833 || !target_supports_evaluation_of_breakpoint_conditions ())
834
835 return;
836
837 if (!is_breakpoint (loc->owner))
838 return;
839
840 loc->condition_changed = condition_modified;
841 }
842
843 /* Sets the condition-evaluation mode using the static global
844 condition_evaluation_mode. */
845
846 static void
847 set_condition_evaluation_mode (char *args, int from_tty,
848 struct cmd_list_element *c)
849 {
850 const char *old_mode, *new_mode;
851
852 if ((condition_evaluation_mode_1 == condition_evaluation_target)
853 && !target_supports_evaluation_of_breakpoint_conditions ())
854 {
855 condition_evaluation_mode_1 = condition_evaluation_mode;
856 warning (_("Target does not support breakpoint condition evaluation.\n"
857 "Using host evaluation mode instead."));
858 return;
859 }
860
861 new_mode = translate_condition_evaluation_mode (condition_evaluation_mode_1);
862 old_mode = translate_condition_evaluation_mode (condition_evaluation_mode);
863
864 /* Flip the switch. Flip it even if OLD_MODE == NEW_MODE as one of the
865 settings was "auto". */
866 condition_evaluation_mode = condition_evaluation_mode_1;
867
868 /* Only update the mode if the user picked a different one. */
869 if (new_mode != old_mode)
870 {
871 struct bp_location *loc, **loc_tmp;
872 /* If the user switched to a different evaluation mode, we
873 need to synch the changes with the target as follows:
874
875 "host" -> "target": Send all (valid) conditions to the target.
876 "target" -> "host": Remove all the conditions from the target.
877 */
878
879 if (new_mode == condition_evaluation_target)
880 {
881 /* Mark everything modified and synch conditions with the
882 target. */
883 ALL_BP_LOCATIONS (loc, loc_tmp)
884 mark_breakpoint_location_modified (loc);
885 }
886 else
887 {
888 /* Manually mark non-duplicate locations to synch conditions
889 with the target. We do this to remove all the conditions the
890 target knows about. */
891 ALL_BP_LOCATIONS (loc, loc_tmp)
892 if (is_breakpoint (loc->owner) && loc->inserted)
893 loc->needs_update = 1;
894 }
895
896 /* Do the update. */
897 update_global_location_list (UGLL_MAY_INSERT);
898 }
899
900 return;
901 }
902
903 /* Shows the current mode of breakpoint condition evaluation. Explicitly shows
904 what "auto" is translating to. */
905
906 static void
907 show_condition_evaluation_mode (struct ui_file *file, int from_tty,
908 struct cmd_list_element *c, const char *value)
909 {
910 if (condition_evaluation_mode == condition_evaluation_auto)
911 fprintf_filtered (file,
912 _("Breakpoint condition evaluation "
913 "mode is %s (currently %s).\n"),
914 value,
915 breakpoint_condition_evaluation_mode ());
916 else
917 fprintf_filtered (file, _("Breakpoint condition evaluation mode is %s.\n"),
918 value);
919 }
920
921 /* A comparison function for bp_location AP and BP that is used by
922 bsearch. This comparison function only cares about addresses, unlike
923 the more general bp_locations_compare function. */
924
925 static int
926 bp_locations_compare_addrs (const void *ap, const void *bp)
927 {
928 const struct bp_location *a = *(const struct bp_location **) ap;
929 const struct bp_location *b = *(const struct bp_location **) bp;
930
931 if (a->address == b->address)
932 return 0;
933 else
934 return ((a->address > b->address) - (a->address < b->address));
935 }
936
937 /* Helper function to skip all bp_locations with addresses
938 less than ADDRESS. It returns the first bp_location that
939 is greater than or equal to ADDRESS. If none is found, just
940 return NULL. */
941
942 static struct bp_location **
943 get_first_locp_gte_addr (CORE_ADDR address)
944 {
945 struct bp_location dummy_loc;
946 struct bp_location *dummy_locp = &dummy_loc;
947 struct bp_location **locp_found = NULL;
948
949 /* Initialize the dummy location's address field. */
950 dummy_loc.address = address;
951
952 /* Find a close match to the first location at ADDRESS. */
953 locp_found = ((struct bp_location **)
954 bsearch (&dummy_locp, bp_locations, bp_locations_count,
955 sizeof (struct bp_location **),
956 bp_locations_compare_addrs));
957
958 /* Nothing was found, nothing left to do. */
959 if (locp_found == NULL)
960 return NULL;
961
962 /* We may have found a location that is at ADDRESS but is not the first in the
963 location's list. Go backwards (if possible) and locate the first one. */
964 while ((locp_found - 1) >= bp_locations
965 && (*(locp_found - 1))->address == address)
966 locp_found--;
967
968 return locp_found;
969 }
970
971 void
972 set_breakpoint_condition (struct breakpoint *b, const char *exp,
973 int from_tty)
974 {
975 xfree (b->cond_string);
976 b->cond_string = NULL;
977
978 if (is_watchpoint (b))
979 {
980 struct watchpoint *w = (struct watchpoint *) b;
981
982 w->cond_exp.reset ();
983 }
984 else
985 {
986 struct bp_location *loc;
987
988 for (loc = b->loc; loc; loc = loc->next)
989 {
990 loc->cond.reset ();
991
992 /* No need to free the condition agent expression
993 bytecode (if we have one). We will handle this
994 when we go through update_global_location_list. */
995 }
996 }
997
998 if (*exp == 0)
999 {
1000 if (from_tty)
1001 printf_filtered (_("Breakpoint %d now unconditional.\n"), b->number);
1002 }
1003 else
1004 {
1005 const char *arg = exp;
1006
1007 /* I don't know if it matters whether this is the string the user
1008 typed in or the decompiled expression. */
1009 b->cond_string = xstrdup (arg);
1010 b->condition_not_parsed = 0;
1011
1012 if (is_watchpoint (b))
1013 {
1014 struct watchpoint *w = (struct watchpoint *) b;
1015
1016 innermost_block = NULL;
1017 arg = exp;
1018 w->cond_exp = parse_exp_1 (&arg, 0, 0, 0);
1019 if (*arg)
1020 error (_("Junk at end of expression"));
1021 w->cond_exp_valid_block = innermost_block;
1022 }
1023 else
1024 {
1025 struct bp_location *loc;
1026
1027 for (loc = b->loc; loc; loc = loc->next)
1028 {
1029 arg = exp;
1030 loc->cond =
1031 parse_exp_1 (&arg, loc->address,
1032 block_for_pc (loc->address), 0);
1033 if (*arg)
1034 error (_("Junk at end of expression"));
1035 }
1036 }
1037 }
1038 mark_breakpoint_modified (b);
1039
1040 observer_notify_breakpoint_modified (b);
1041 }
1042
1043 /* Completion for the "condition" command. */
1044
1045 static void
1046 condition_completer (struct cmd_list_element *cmd,
1047 completion_tracker &tracker,
1048 const char *text, const char *word)
1049 {
1050 const char *space;
1051
1052 text = skip_spaces_const (text);
1053 space = skip_to_space_const (text);
1054 if (*space == '\0')
1055 {
1056 int len;
1057 struct breakpoint *b;
1058 VEC (char_ptr) *result = NULL;
1059
1060 if (text[0] == '$')
1061 {
1062 /* We don't support completion of history indices. */
1063 if (!isdigit (text[1]))
1064 complete_internalvar (tracker, &text[1]);
1065 return;
1066 }
1067
1068 /* We're completing the breakpoint number. */
1069 len = strlen (text);
1070
1071 ALL_BREAKPOINTS (b)
1072 {
1073 char number[50];
1074
1075 xsnprintf (number, sizeof (number), "%d", b->number);
1076
1077 if (strncmp (number, text, len) == 0)
1078 {
1079 gdb::unique_xmalloc_ptr<char> copy (xstrdup (number));
1080 tracker.add_completion (std::move (copy));
1081 }
1082 }
1083
1084 return;
1085 }
1086
1087 /* We're completing the expression part. */
1088 text = skip_spaces_const (space);
1089 expression_completer (cmd, tracker, text, word);
1090 }
1091
1092 /* condition N EXP -- set break condition of breakpoint N to EXP. */
1093
1094 static void
1095 condition_command (char *arg, int from_tty)
1096 {
1097 struct breakpoint *b;
1098 char *p;
1099 int bnum;
1100
1101 if (arg == 0)
1102 error_no_arg (_("breakpoint number"));
1103
1104 p = arg;
1105 bnum = get_number (&p);
1106 if (bnum == 0)
1107 error (_("Bad breakpoint argument: '%s'"), arg);
1108
1109 ALL_BREAKPOINTS (b)
1110 if (b->number == bnum)
1111 {
1112 /* Check if this breakpoint has a "stop" method implemented in an
1113 extension language. This method and conditions entered into GDB
1114 from the CLI are mutually exclusive. */
1115 const struct extension_language_defn *extlang
1116 = get_breakpoint_cond_ext_lang (b, EXT_LANG_NONE);
1117
1118 if (extlang != NULL)
1119 {
1120 error (_("Only one stop condition allowed. There is currently"
1121 " a %s stop condition defined for this breakpoint."),
1122 ext_lang_capitalized_name (extlang));
1123 }
1124 set_breakpoint_condition (b, p, from_tty);
1125
1126 if (is_breakpoint (b))
1127 update_global_location_list (UGLL_MAY_INSERT);
1128
1129 return;
1130 }
1131
1132 error (_("No breakpoint number %d."), bnum);
1133 }
1134
1135 /* Check that COMMAND do not contain commands that are suitable
1136 only for tracepoints and not suitable for ordinary breakpoints.
1137 Throw if any such commands is found. */
1138
1139 static void
1140 check_no_tracepoint_commands (struct command_line *commands)
1141 {
1142 struct command_line *c;
1143
1144 for (c = commands; c; c = c->next)
1145 {
1146 int i;
1147
1148 if (c->control_type == while_stepping_control)
1149 error (_("The 'while-stepping' command can "
1150 "only be used for tracepoints"));
1151
1152 for (i = 0; i < c->body_count; ++i)
1153 check_no_tracepoint_commands ((c->body_list)[i]);
1154
1155 /* Not that command parsing removes leading whitespace and comment
1156 lines and also empty lines. So, we only need to check for
1157 command directly. */
1158 if (strstr (c->line, "collect ") == c->line)
1159 error (_("The 'collect' command can only be used for tracepoints"));
1160
1161 if (strstr (c->line, "teval ") == c->line)
1162 error (_("The 'teval' command can only be used for tracepoints"));
1163 }
1164 }
1165
1166 struct longjmp_breakpoint : public breakpoint
1167 {
1168 ~longjmp_breakpoint () override;
1169 };
1170
1171 /* Encapsulate tests for different types of tracepoints. */
1172
1173 static bool
1174 is_tracepoint_type (bptype type)
1175 {
1176 return (type == bp_tracepoint
1177 || type == bp_fast_tracepoint
1178 || type == bp_static_tracepoint);
1179 }
1180
1181 static bool
1182 is_longjmp_type (bptype type)
1183 {
1184 return type == bp_longjmp || type == bp_exception;
1185 }
1186
1187 int
1188 is_tracepoint (const struct breakpoint *b)
1189 {
1190 return is_tracepoint_type (b->type);
1191 }
1192
1193 /* Factory function to create an appropriate instance of breakpoint given
1194 TYPE. */
1195
1196 static std::unique_ptr<breakpoint>
1197 new_breakpoint_from_type (bptype type)
1198 {
1199 breakpoint *b;
1200
1201 if (is_tracepoint_type (type))
1202 b = new tracepoint ();
1203 else if (is_longjmp_type (type))
1204 b = new longjmp_breakpoint ();
1205 else
1206 b = new breakpoint ();
1207
1208 return std::unique_ptr<breakpoint> (b);
1209 }
1210
1211 /* A helper function that validates that COMMANDS are valid for a
1212 breakpoint. This function will throw an exception if a problem is
1213 found. */
1214
1215 static void
1216 validate_commands_for_breakpoint (struct breakpoint *b,
1217 struct command_line *commands)
1218 {
1219 if (is_tracepoint (b))
1220 {
1221 struct tracepoint *t = (struct tracepoint *) b;
1222 struct command_line *c;
1223 struct command_line *while_stepping = 0;
1224
1225 /* Reset the while-stepping step count. The previous commands
1226 might have included a while-stepping action, while the new
1227 ones might not. */
1228 t->step_count = 0;
1229
1230 /* We need to verify that each top-level element of commands is
1231 valid for tracepoints, that there's at most one
1232 while-stepping element, and that the while-stepping's body
1233 has valid tracing commands excluding nested while-stepping.
1234 We also need to validate the tracepoint action line in the
1235 context of the tracepoint --- validate_actionline actually
1236 has side effects, like setting the tracepoint's
1237 while-stepping STEP_COUNT, in addition to checking if the
1238 collect/teval actions parse and make sense in the
1239 tracepoint's context. */
1240 for (c = commands; c; c = c->next)
1241 {
1242 if (c->control_type == while_stepping_control)
1243 {
1244 if (b->type == bp_fast_tracepoint)
1245 error (_("The 'while-stepping' command "
1246 "cannot be used for fast tracepoint"));
1247 else if (b->type == bp_static_tracepoint)
1248 error (_("The 'while-stepping' command "
1249 "cannot be used for static tracepoint"));
1250
1251 if (while_stepping)
1252 error (_("The 'while-stepping' command "
1253 "can be used only once"));
1254 else
1255 while_stepping = c;
1256 }
1257
1258 validate_actionline (c->line, b);
1259 }
1260 if (while_stepping)
1261 {
1262 struct command_line *c2;
1263
1264 gdb_assert (while_stepping->body_count == 1);
1265 c2 = while_stepping->body_list[0];
1266 for (; c2; c2 = c2->next)
1267 {
1268 if (c2->control_type == while_stepping_control)
1269 error (_("The 'while-stepping' command cannot be nested"));
1270 }
1271 }
1272 }
1273 else
1274 {
1275 check_no_tracepoint_commands (commands);
1276 }
1277 }
1278
1279 /* Return a vector of all the static tracepoints set at ADDR. The
1280 caller is responsible for releasing the vector. */
1281
1282 VEC(breakpoint_p) *
1283 static_tracepoints_here (CORE_ADDR addr)
1284 {
1285 struct breakpoint *b;
1286 VEC(breakpoint_p) *found = 0;
1287 struct bp_location *loc;
1288
1289 ALL_BREAKPOINTS (b)
1290 if (b->type == bp_static_tracepoint)
1291 {
1292 for (loc = b->loc; loc; loc = loc->next)
1293 if (loc->address == addr)
1294 VEC_safe_push(breakpoint_p, found, b);
1295 }
1296
1297 return found;
1298 }
1299
1300 /* Set the command list of B to COMMANDS. If breakpoint is tracepoint,
1301 validate that only allowed commands are included. */
1302
1303 void
1304 breakpoint_set_commands (struct breakpoint *b,
1305 command_line_up &&commands)
1306 {
1307 validate_commands_for_breakpoint (b, commands.get ());
1308
1309 decref_counted_command_line (&b->commands);
1310 b->commands = alloc_counted_command_line (commands.release ());
1311 observer_notify_breakpoint_modified (b);
1312 }
1313
1314 /* Set the internal `silent' flag on the breakpoint. Note that this
1315 is not the same as the "silent" that may appear in the breakpoint's
1316 commands. */
1317
1318 void
1319 breakpoint_set_silent (struct breakpoint *b, int silent)
1320 {
1321 int old_silent = b->silent;
1322
1323 b->silent = silent;
1324 if (old_silent != silent)
1325 observer_notify_breakpoint_modified (b);
1326 }
1327
1328 /* Set the thread for this breakpoint. If THREAD is -1, make the
1329 breakpoint work for any thread. */
1330
1331 void
1332 breakpoint_set_thread (struct breakpoint *b, int thread)
1333 {
1334 int old_thread = b->thread;
1335
1336 b->thread = thread;
1337 if (old_thread != thread)
1338 observer_notify_breakpoint_modified (b);
1339 }
1340
1341 /* Set the task for this breakpoint. If TASK is 0, make the
1342 breakpoint work for any task. */
1343
1344 void
1345 breakpoint_set_task (struct breakpoint *b, int task)
1346 {
1347 int old_task = b->task;
1348
1349 b->task = task;
1350 if (old_task != task)
1351 observer_notify_breakpoint_modified (b);
1352 }
1353
1354 void
1355 check_tracepoint_command (char *line, void *closure)
1356 {
1357 struct breakpoint *b = (struct breakpoint *) closure;
1358
1359 validate_actionline (line, b);
1360 }
1361
1362 /* A structure used to pass information through
1363 map_breakpoint_numbers. */
1364
1365 struct commands_info
1366 {
1367 /* True if the command was typed at a tty. */
1368 int from_tty;
1369
1370 /* The breakpoint range spec. */
1371 const char *arg;
1372
1373 /* Non-NULL if the body of the commands are being read from this
1374 already-parsed command. */
1375 struct command_line *control;
1376
1377 /* The command lines read from the user, or NULL if they have not
1378 yet been read. */
1379 struct counted_command_line *cmd;
1380 };
1381
1382 /* A callback for map_breakpoint_numbers that sets the commands for
1383 commands_command. */
1384
1385 static void
1386 do_map_commands_command (struct breakpoint *b, void *data)
1387 {
1388 struct commands_info *info = (struct commands_info *) data;
1389
1390 if (info->cmd == NULL)
1391 {
1392 command_line_up l;
1393
1394 if (info->control != NULL)
1395 l = copy_command_lines (info->control->body_list[0]);
1396 else
1397 {
1398 struct cleanup *old_chain;
1399 char *str;
1400
1401 str = xstrprintf (_("Type commands for breakpoint(s) "
1402 "%s, one per line."),
1403 info->arg);
1404
1405 old_chain = make_cleanup (xfree, str);
1406
1407 l = read_command_lines (str,
1408 info->from_tty, 1,
1409 (is_tracepoint (b)
1410 ? check_tracepoint_command : 0),
1411 b);
1412
1413 do_cleanups (old_chain);
1414 }
1415
1416 info->cmd = alloc_counted_command_line (l.release ());
1417 }
1418
1419 /* If a breakpoint was on the list more than once, we don't need to
1420 do anything. */
1421 if (b->commands != info->cmd)
1422 {
1423 validate_commands_for_breakpoint (b, info->cmd->commands);
1424 incref_counted_command_line (info->cmd);
1425 decref_counted_command_line (&b->commands);
1426 b->commands = info->cmd;
1427 observer_notify_breakpoint_modified (b);
1428 }
1429 }
1430
1431 static void
1432 commands_command_1 (const char *arg, int from_tty,
1433 struct command_line *control)
1434 {
1435 struct cleanup *cleanups;
1436 struct commands_info info;
1437
1438 info.from_tty = from_tty;
1439 info.control = control;
1440 info.cmd = NULL;
1441 /* If we read command lines from the user, then `info' will hold an
1442 extra reference to the commands that we must clean up. */
1443 cleanups = make_cleanup_decref_counted_command_line (&info.cmd);
1444
1445 std::string new_arg;
1446
1447 if (arg == NULL || !*arg)
1448 {
1449 if (breakpoint_count - prev_breakpoint_count > 1)
1450 new_arg = string_printf ("%d-%d", prev_breakpoint_count + 1,
1451 breakpoint_count);
1452 else if (breakpoint_count > 0)
1453 new_arg = string_printf ("%d", breakpoint_count);
1454 }
1455 else
1456 new_arg = arg;
1457
1458 info.arg = new_arg.c_str ();
1459
1460 map_breakpoint_numbers (info.arg, do_map_commands_command, &info);
1461
1462 if (info.cmd == NULL)
1463 error (_("No breakpoints specified."));
1464
1465 do_cleanups (cleanups);
1466 }
1467
1468 static void
1469 commands_command (char *arg, int from_tty)
1470 {
1471 commands_command_1 (arg, from_tty, NULL);
1472 }
1473
1474 /* Like commands_command, but instead of reading the commands from
1475 input stream, takes them from an already parsed command structure.
1476
1477 This is used by cli-script.c to DTRT with breakpoint commands
1478 that are part of if and while bodies. */
1479 enum command_control_type
1480 commands_from_control_command (const char *arg, struct command_line *cmd)
1481 {
1482 commands_command_1 (arg, 0, cmd);
1483 return simple_control;
1484 }
1485
1486 /* Return non-zero if BL->TARGET_INFO contains valid information. */
1487
1488 static int
1489 bp_location_has_shadow (struct bp_location *bl)
1490 {
1491 if (bl->loc_type != bp_loc_software_breakpoint)
1492 return 0;
1493 if (!bl->inserted)
1494 return 0;
1495 if (bl->target_info.shadow_len == 0)
1496 /* BL isn't valid, or doesn't shadow memory. */
1497 return 0;
1498 return 1;
1499 }
1500
1501 /* Update BUF, which is LEN bytes read from the target address
1502 MEMADDR, by replacing a memory breakpoint with its shadowed
1503 contents.
1504
1505 If READBUF is not NULL, this buffer must not overlap with the of
1506 the breakpoint location's shadow_contents buffer. Otherwise, a
1507 failed assertion internal error will be raised. */
1508
1509 static void
1510 one_breakpoint_xfer_memory (gdb_byte *readbuf, gdb_byte *writebuf,
1511 const gdb_byte *writebuf_org,
1512 ULONGEST memaddr, LONGEST len,
1513 struct bp_target_info *target_info,
1514 struct gdbarch *gdbarch)
1515 {
1516 /* Now do full processing of the found relevant range of elements. */
1517 CORE_ADDR bp_addr = 0;
1518 int bp_size = 0;
1519 int bptoffset = 0;
1520
1521 if (!breakpoint_address_match (target_info->placed_address_space, 0,
1522 current_program_space->aspace, 0))
1523 {
1524 /* The breakpoint is inserted in a different address space. */
1525 return;
1526 }
1527
1528 /* Addresses and length of the part of the breakpoint that
1529 we need to copy. */
1530 bp_addr = target_info->placed_address;
1531 bp_size = target_info->shadow_len;
1532
1533 if (bp_addr + bp_size <= memaddr)
1534 {
1535 /* The breakpoint is entirely before the chunk of memory we are
1536 reading. */
1537 return;
1538 }
1539
1540 if (bp_addr >= memaddr + len)
1541 {
1542 /* The breakpoint is entirely after the chunk of memory we are
1543 reading. */
1544 return;
1545 }
1546
1547 /* Offset within shadow_contents. */
1548 if (bp_addr < memaddr)
1549 {
1550 /* Only copy the second part of the breakpoint. */
1551 bp_size -= memaddr - bp_addr;
1552 bptoffset = memaddr - bp_addr;
1553 bp_addr = memaddr;
1554 }
1555
1556 if (bp_addr + bp_size > memaddr + len)
1557 {
1558 /* Only copy the first part of the breakpoint. */
1559 bp_size -= (bp_addr + bp_size) - (memaddr + len);
1560 }
1561
1562 if (readbuf != NULL)
1563 {
1564 /* Verify that the readbuf buffer does not overlap with the
1565 shadow_contents buffer. */
1566 gdb_assert (target_info->shadow_contents >= readbuf + len
1567 || readbuf >= (target_info->shadow_contents
1568 + target_info->shadow_len));
1569
1570 /* Update the read buffer with this inserted breakpoint's
1571 shadow. */
1572 memcpy (readbuf + bp_addr - memaddr,
1573 target_info->shadow_contents + bptoffset, bp_size);
1574 }
1575 else
1576 {
1577 const unsigned char *bp;
1578 CORE_ADDR addr = target_info->reqstd_address;
1579 int placed_size;
1580
1581 /* Update the shadow with what we want to write to memory. */
1582 memcpy (target_info->shadow_contents + bptoffset,
1583 writebuf_org + bp_addr - memaddr, bp_size);
1584
1585 /* Determine appropriate breakpoint contents and size for this
1586 address. */
1587 bp = gdbarch_breakpoint_from_pc (gdbarch, &addr, &placed_size);
1588
1589 /* Update the final write buffer with this inserted
1590 breakpoint's INSN. */
1591 memcpy (writebuf + bp_addr - memaddr, bp + bptoffset, bp_size);
1592 }
1593 }
1594
1595 /* Update BUF, which is LEN bytes read from the target address MEMADDR,
1596 by replacing any memory breakpoints with their shadowed contents.
1597
1598 If READBUF is not NULL, this buffer must not overlap with any of
1599 the breakpoint location's shadow_contents buffers. Otherwise,
1600 a failed assertion internal error will be raised.
1601
1602 The range of shadowed area by each bp_location is:
1603 bl->address - bp_locations_placed_address_before_address_max
1604 up to bl->address + bp_locations_shadow_len_after_address_max
1605 The range we were requested to resolve shadows for is:
1606 memaddr ... memaddr + len
1607 Thus the safe cutoff boundaries for performance optimization are
1608 memaddr + len <= (bl->address
1609 - bp_locations_placed_address_before_address_max)
1610 and:
1611 bl->address + bp_locations_shadow_len_after_address_max <= memaddr */
1612
1613 void
1614 breakpoint_xfer_memory (gdb_byte *readbuf, gdb_byte *writebuf,
1615 const gdb_byte *writebuf_org,
1616 ULONGEST memaddr, LONGEST len)
1617 {
1618 /* Left boundary, right boundary and median element of our binary
1619 search. */
1620 unsigned bc_l, bc_r, bc;
1621
1622 /* Find BC_L which is a leftmost element which may affect BUF
1623 content. It is safe to report lower value but a failure to
1624 report higher one. */
1625
1626 bc_l = 0;
1627 bc_r = bp_locations_count;
1628 while (bc_l + 1 < bc_r)
1629 {
1630 struct bp_location *bl;
1631
1632 bc = (bc_l + bc_r) / 2;
1633 bl = bp_locations[bc];
1634
1635 /* Check first BL->ADDRESS will not overflow due to the added
1636 constant. Then advance the left boundary only if we are sure
1637 the BC element can in no way affect the BUF content (MEMADDR
1638 to MEMADDR + LEN range).
1639
1640 Use the BP_LOCATIONS_SHADOW_LEN_AFTER_ADDRESS_MAX safety
1641 offset so that we cannot miss a breakpoint with its shadow
1642 range tail still reaching MEMADDR. */
1643
1644 if ((bl->address + bp_locations_shadow_len_after_address_max
1645 >= bl->address)
1646 && (bl->address + bp_locations_shadow_len_after_address_max
1647 <= memaddr))
1648 bc_l = bc;
1649 else
1650 bc_r = bc;
1651 }
1652
1653 /* Due to the binary search above, we need to make sure we pick the
1654 first location that's at BC_L's address. E.g., if there are
1655 multiple locations at the same address, BC_L may end up pointing
1656 at a duplicate location, and miss the "master"/"inserted"
1657 location. Say, given locations L1, L2 and L3 at addresses A and
1658 B:
1659
1660 L1@A, L2@A, L3@B, ...
1661
1662 BC_L could end up pointing at location L2, while the "master"
1663 location could be L1. Since the `loc->inserted' flag is only set
1664 on "master" locations, we'd forget to restore the shadow of L1
1665 and L2. */
1666 while (bc_l > 0
1667 && bp_locations[bc_l]->address == bp_locations[bc_l - 1]->address)
1668 bc_l--;
1669
1670 /* Now do full processing of the found relevant range of elements. */
1671
1672 for (bc = bc_l; bc < bp_locations_count; bc++)
1673 {
1674 struct bp_location *bl = bp_locations[bc];
1675
1676 /* bp_location array has BL->OWNER always non-NULL. */
1677 if (bl->owner->type == bp_none)
1678 warning (_("reading through apparently deleted breakpoint #%d?"),
1679 bl->owner->number);
1680
1681 /* Performance optimization: any further element can no longer affect BUF
1682 content. */
1683
1684 if (bl->address >= bp_locations_placed_address_before_address_max
1685 && memaddr + len <= (bl->address
1686 - bp_locations_placed_address_before_address_max))
1687 break;
1688
1689 if (!bp_location_has_shadow (bl))
1690 continue;
1691
1692 one_breakpoint_xfer_memory (readbuf, writebuf, writebuf_org,
1693 memaddr, len, &bl->target_info, bl->gdbarch);
1694 }
1695 }
1696
1697 \f
1698
1699 /* Return true if BPT is either a software breakpoint or a hardware
1700 breakpoint. */
1701
1702 int
1703 is_breakpoint (const struct breakpoint *bpt)
1704 {
1705 return (bpt->type == bp_breakpoint
1706 || bpt->type == bp_hardware_breakpoint
1707 || bpt->type == bp_dprintf);
1708 }
1709
1710 /* Return true if BPT is of any hardware watchpoint kind. */
1711
1712 static int
1713 is_hardware_watchpoint (const struct breakpoint *bpt)
1714 {
1715 return (bpt->type == bp_hardware_watchpoint
1716 || bpt->type == bp_read_watchpoint
1717 || bpt->type == bp_access_watchpoint);
1718 }
1719
1720 /* Return true if BPT is of any watchpoint kind, hardware or
1721 software. */
1722
1723 int
1724 is_watchpoint (const struct breakpoint *bpt)
1725 {
1726 return (is_hardware_watchpoint (bpt)
1727 || bpt->type == bp_watchpoint);
1728 }
1729
1730 /* Returns true if the current thread and its running state are safe
1731 to evaluate or update watchpoint B. Watchpoints on local
1732 expressions need to be evaluated in the context of the thread that
1733 was current when the watchpoint was created, and, that thread needs
1734 to be stopped to be able to select the correct frame context.
1735 Watchpoints on global expressions can be evaluated on any thread,
1736 and in any state. It is presently left to the target allowing
1737 memory accesses when threads are running. */
1738
1739 static int
1740 watchpoint_in_thread_scope (struct watchpoint *b)
1741 {
1742 return (b->pspace == current_program_space
1743 && (ptid_equal (b->watchpoint_thread, null_ptid)
1744 || (ptid_equal (inferior_ptid, b->watchpoint_thread)
1745 && !is_executing (inferior_ptid))));
1746 }
1747
1748 /* Set watchpoint B to disp_del_at_next_stop, even including its possible
1749 associated bp_watchpoint_scope breakpoint. */
1750
1751 static void
1752 watchpoint_del_at_next_stop (struct watchpoint *w)
1753 {
1754 if (w->related_breakpoint != w)
1755 {
1756 gdb_assert (w->related_breakpoint->type == bp_watchpoint_scope);
1757 gdb_assert (w->related_breakpoint->related_breakpoint == w);
1758 w->related_breakpoint->disposition = disp_del_at_next_stop;
1759 w->related_breakpoint->related_breakpoint = w->related_breakpoint;
1760 w->related_breakpoint = w;
1761 }
1762 w->disposition = disp_del_at_next_stop;
1763 }
1764
1765 /* Extract a bitfield value from value VAL using the bit parameters contained in
1766 watchpoint W. */
1767
1768 static struct value *
1769 extract_bitfield_from_watchpoint_value (struct watchpoint *w, struct value *val)
1770 {
1771 struct value *bit_val;
1772
1773 if (val == NULL)
1774 return NULL;
1775
1776 bit_val = allocate_value (value_type (val));
1777
1778 unpack_value_bitfield (bit_val,
1779 w->val_bitpos,
1780 w->val_bitsize,
1781 value_contents_for_printing (val),
1782 value_offset (val),
1783 val);
1784
1785 return bit_val;
1786 }
1787
1788 /* Allocate a dummy location and add it to B, which must be a software
1789 watchpoint. This is required because even if a software watchpoint
1790 is not watching any memory, bpstat_stop_status requires a location
1791 to be able to report stops. */
1792
1793 static void
1794 software_watchpoint_add_no_memory_location (struct breakpoint *b,
1795 struct program_space *pspace)
1796 {
1797 gdb_assert (b->type == bp_watchpoint && b->loc == NULL);
1798
1799 b->loc = allocate_bp_location (b);
1800 b->loc->pspace = pspace;
1801 b->loc->address = -1;
1802 b->loc->length = -1;
1803 }
1804
1805 /* Returns true if B is a software watchpoint that is not watching any
1806 memory (e.g., "watch $pc"). */
1807
1808 static int
1809 is_no_memory_software_watchpoint (struct breakpoint *b)
1810 {
1811 return (b->type == bp_watchpoint
1812 && b->loc != NULL
1813 && b->loc->next == NULL
1814 && b->loc->address == -1
1815 && b->loc->length == -1);
1816 }
1817
1818 /* Assuming that B is a watchpoint:
1819 - Reparse watchpoint expression, if REPARSE is non-zero
1820 - Evaluate expression and store the result in B->val
1821 - Evaluate the condition if there is one, and store the result
1822 in b->loc->cond.
1823 - Update the list of values that must be watched in B->loc.
1824
1825 If the watchpoint disposition is disp_del_at_next_stop, then do
1826 nothing. If this is local watchpoint that is out of scope, delete
1827 it.
1828
1829 Even with `set breakpoint always-inserted on' the watchpoints are
1830 removed + inserted on each stop here. Normal breakpoints must
1831 never be removed because they might be missed by a running thread
1832 when debugging in non-stop mode. On the other hand, hardware
1833 watchpoints (is_hardware_watchpoint; processed here) are specific
1834 to each LWP since they are stored in each LWP's hardware debug
1835 registers. Therefore, such LWP must be stopped first in order to
1836 be able to modify its hardware watchpoints.
1837
1838 Hardware watchpoints must be reset exactly once after being
1839 presented to the user. It cannot be done sooner, because it would
1840 reset the data used to present the watchpoint hit to the user. And
1841 it must not be done later because it could display the same single
1842 watchpoint hit during multiple GDB stops. Note that the latter is
1843 relevant only to the hardware watchpoint types bp_read_watchpoint
1844 and bp_access_watchpoint. False hit by bp_hardware_watchpoint is
1845 not user-visible - its hit is suppressed if the memory content has
1846 not changed.
1847
1848 The following constraints influence the location where we can reset
1849 hardware watchpoints:
1850
1851 * target_stopped_by_watchpoint and target_stopped_data_address are
1852 called several times when GDB stops.
1853
1854 [linux]
1855 * Multiple hardware watchpoints can be hit at the same time,
1856 causing GDB to stop. GDB only presents one hardware watchpoint
1857 hit at a time as the reason for stopping, and all the other hits
1858 are presented later, one after the other, each time the user
1859 requests the execution to be resumed. Execution is not resumed
1860 for the threads still having pending hit event stored in
1861 LWP_INFO->STATUS. While the watchpoint is already removed from
1862 the inferior on the first stop the thread hit event is kept being
1863 reported from its cached value by linux_nat_stopped_data_address
1864 until the real thread resume happens after the watchpoint gets
1865 presented and thus its LWP_INFO->STATUS gets reset.
1866
1867 Therefore the hardware watchpoint hit can get safely reset on the
1868 watchpoint removal from inferior. */
1869
1870 static void
1871 update_watchpoint (struct watchpoint *b, int reparse)
1872 {
1873 int within_current_scope;
1874 struct frame_id saved_frame_id;
1875 int frame_saved;
1876
1877 /* If this is a local watchpoint, we only want to check if the
1878 watchpoint frame is in scope if the current thread is the thread
1879 that was used to create the watchpoint. */
1880 if (!watchpoint_in_thread_scope (b))
1881 return;
1882
1883 if (b->disposition == disp_del_at_next_stop)
1884 return;
1885
1886 frame_saved = 0;
1887
1888 /* Determine if the watchpoint is within scope. */
1889 if (b->exp_valid_block == NULL)
1890 within_current_scope = 1;
1891 else
1892 {
1893 struct frame_info *fi = get_current_frame ();
1894 struct gdbarch *frame_arch = get_frame_arch (fi);
1895 CORE_ADDR frame_pc = get_frame_pc (fi);
1896
1897 /* If we're at a point where the stack has been destroyed
1898 (e.g. in a function epilogue), unwinding may not work
1899 properly. Do not attempt to recreate locations at this
1900 point. See similar comments in watchpoint_check. */
1901 if (gdbarch_stack_frame_destroyed_p (frame_arch, frame_pc))
1902 return;
1903
1904 /* Save the current frame's ID so we can restore it after
1905 evaluating the watchpoint expression on its own frame. */
1906 /* FIXME drow/2003-09-09: It would be nice if evaluate_expression
1907 took a frame parameter, so that we didn't have to change the
1908 selected frame. */
1909 frame_saved = 1;
1910 saved_frame_id = get_frame_id (get_selected_frame (NULL));
1911
1912 fi = frame_find_by_id (b->watchpoint_frame);
1913 within_current_scope = (fi != NULL);
1914 if (within_current_scope)
1915 select_frame (fi);
1916 }
1917
1918 /* We don't free locations. They are stored in the bp_location array
1919 and update_global_location_list will eventually delete them and
1920 remove breakpoints if needed. */
1921 b->loc = NULL;
1922
1923 if (within_current_scope && reparse)
1924 {
1925 const char *s;
1926
1927 b->exp.reset ();
1928 s = b->exp_string_reparse ? b->exp_string_reparse : b->exp_string;
1929 b->exp = parse_exp_1 (&s, 0, b->exp_valid_block, 0);
1930 /* If the meaning of expression itself changed, the old value is
1931 no longer relevant. We don't want to report a watchpoint hit
1932 to the user when the old value and the new value may actually
1933 be completely different objects. */
1934 value_free (b->val);
1935 b->val = NULL;
1936 b->val_valid = 0;
1937
1938 /* Note that unlike with breakpoints, the watchpoint's condition
1939 expression is stored in the breakpoint object, not in the
1940 locations (re)created below. */
1941 if (b->cond_string != NULL)
1942 {
1943 b->cond_exp.reset ();
1944
1945 s = b->cond_string;
1946 b->cond_exp = parse_exp_1 (&s, 0, b->cond_exp_valid_block, 0);
1947 }
1948 }
1949
1950 /* If we failed to parse the expression, for example because
1951 it refers to a global variable in a not-yet-loaded shared library,
1952 don't try to insert watchpoint. We don't automatically delete
1953 such watchpoint, though, since failure to parse expression
1954 is different from out-of-scope watchpoint. */
1955 if (!target_has_execution)
1956 {
1957 /* Without execution, memory can't change. No use to try and
1958 set watchpoint locations. The watchpoint will be reset when
1959 the target gains execution, through breakpoint_re_set. */
1960 if (!can_use_hw_watchpoints)
1961 {
1962 if (b->ops->works_in_software_mode (b))
1963 b->type = bp_watchpoint;
1964 else
1965 error (_("Can't set read/access watchpoint when "
1966 "hardware watchpoints are disabled."));
1967 }
1968 }
1969 else if (within_current_scope && b->exp)
1970 {
1971 int pc = 0;
1972 struct value *val_chain, *v, *result, *next;
1973 struct program_space *frame_pspace;
1974
1975 fetch_subexp_value (b->exp.get (), &pc, &v, &result, &val_chain, 0);
1976
1977 /* Avoid setting b->val if it's already set. The meaning of
1978 b->val is 'the last value' user saw, and we should update
1979 it only if we reported that last value to user. As it
1980 happens, the code that reports it updates b->val directly.
1981 We don't keep track of the memory value for masked
1982 watchpoints. */
1983 if (!b->val_valid && !is_masked_watchpoint (b))
1984 {
1985 if (b->val_bitsize != 0)
1986 {
1987 v = extract_bitfield_from_watchpoint_value (b, v);
1988 if (v != NULL)
1989 release_value (v);
1990 }
1991 b->val = v;
1992 b->val_valid = 1;
1993 }
1994
1995 frame_pspace = get_frame_program_space (get_selected_frame (NULL));
1996
1997 /* Look at each value on the value chain. */
1998 for (v = val_chain; v; v = value_next (v))
1999 {
2000 /* If it's a memory location, and GDB actually needed
2001 its contents to evaluate the expression, then we
2002 must watch it. If the first value returned is
2003 still lazy, that means an error occurred reading it;
2004 watch it anyway in case it becomes readable. */
2005 if (VALUE_LVAL (v) == lval_memory
2006 && (v == val_chain || ! value_lazy (v)))
2007 {
2008 struct type *vtype = check_typedef (value_type (v));
2009
2010 /* We only watch structs and arrays if user asked
2011 for it explicitly, never if they just happen to
2012 appear in the middle of some value chain. */
2013 if (v == result
2014 || (TYPE_CODE (vtype) != TYPE_CODE_STRUCT
2015 && TYPE_CODE (vtype) != TYPE_CODE_ARRAY))
2016 {
2017 CORE_ADDR addr;
2018 enum target_hw_bp_type type;
2019 struct bp_location *loc, **tmp;
2020 int bitpos = 0, bitsize = 0;
2021
2022 if (value_bitsize (v) != 0)
2023 {
2024 /* Extract the bit parameters out from the bitfield
2025 sub-expression. */
2026 bitpos = value_bitpos (v);
2027 bitsize = value_bitsize (v);
2028 }
2029 else if (v == result && b->val_bitsize != 0)
2030 {
2031 /* If VAL_BITSIZE != 0 then RESULT is actually a bitfield
2032 lvalue whose bit parameters are saved in the fields
2033 VAL_BITPOS and VAL_BITSIZE. */
2034 bitpos = b->val_bitpos;
2035 bitsize = b->val_bitsize;
2036 }
2037
2038 addr = value_address (v);
2039 if (bitsize != 0)
2040 {
2041 /* Skip the bytes that don't contain the bitfield. */
2042 addr += bitpos / 8;
2043 }
2044
2045 type = hw_write;
2046 if (b->type == bp_read_watchpoint)
2047 type = hw_read;
2048 else if (b->type == bp_access_watchpoint)
2049 type = hw_access;
2050
2051 loc = allocate_bp_location (b);
2052 for (tmp = &(b->loc); *tmp != NULL; tmp = &((*tmp)->next))
2053 ;
2054 *tmp = loc;
2055 loc->gdbarch = get_type_arch (value_type (v));
2056
2057 loc->pspace = frame_pspace;
2058 loc->address = addr;
2059
2060 if (bitsize != 0)
2061 {
2062 /* Just cover the bytes that make up the bitfield. */
2063 loc->length = ((bitpos % 8) + bitsize + 7) / 8;
2064 }
2065 else
2066 loc->length = TYPE_LENGTH (value_type (v));
2067
2068 loc->watchpoint_type = type;
2069 }
2070 }
2071 }
2072
2073 /* Change the type of breakpoint between hardware assisted or
2074 an ordinary watchpoint depending on the hardware support
2075 and free hardware slots. REPARSE is set when the inferior
2076 is started. */
2077 if (reparse)
2078 {
2079 int reg_cnt;
2080 enum bp_loc_type loc_type;
2081 struct bp_location *bl;
2082
2083 reg_cnt = can_use_hardware_watchpoint (val_chain);
2084
2085 if (reg_cnt)
2086 {
2087 int i, target_resources_ok, other_type_used;
2088 enum bptype type;
2089
2090 /* Use an exact watchpoint when there's only one memory region to be
2091 watched, and only one debug register is needed to watch it. */
2092 b->exact = target_exact_watchpoints && reg_cnt == 1;
2093
2094 /* We need to determine how many resources are already
2095 used for all other hardware watchpoints plus this one
2096 to see if we still have enough resources to also fit
2097 this watchpoint in as well. */
2098
2099 /* If this is a software watchpoint, we try to turn it
2100 to a hardware one -- count resources as if B was of
2101 hardware watchpoint type. */
2102 type = b->type;
2103 if (type == bp_watchpoint)
2104 type = bp_hardware_watchpoint;
2105
2106 /* This watchpoint may or may not have been placed on
2107 the list yet at this point (it won't be in the list
2108 if we're trying to create it for the first time,
2109 through watch_command), so always account for it
2110 manually. */
2111
2112 /* Count resources used by all watchpoints except B. */
2113 i = hw_watchpoint_used_count_others (b, type, &other_type_used);
2114
2115 /* Add in the resources needed for B. */
2116 i += hw_watchpoint_use_count (b);
2117
2118 target_resources_ok
2119 = target_can_use_hardware_watchpoint (type, i, other_type_used);
2120 if (target_resources_ok <= 0)
2121 {
2122 int sw_mode = b->ops->works_in_software_mode (b);
2123
2124 if (target_resources_ok == 0 && !sw_mode)
2125 error (_("Target does not support this type of "
2126 "hardware watchpoint."));
2127 else if (target_resources_ok < 0 && !sw_mode)
2128 error (_("There are not enough available hardware "
2129 "resources for this watchpoint."));
2130
2131 /* Downgrade to software watchpoint. */
2132 b->type = bp_watchpoint;
2133 }
2134 else
2135 {
2136 /* If this was a software watchpoint, we've just
2137 found we have enough resources to turn it to a
2138 hardware watchpoint. Otherwise, this is a
2139 nop. */
2140 b->type = type;
2141 }
2142 }
2143 else if (!b->ops->works_in_software_mode (b))
2144 {
2145 if (!can_use_hw_watchpoints)
2146 error (_("Can't set read/access watchpoint when "
2147 "hardware watchpoints are disabled."));
2148 else
2149 error (_("Expression cannot be implemented with "
2150 "read/access watchpoint."));
2151 }
2152 else
2153 b->type = bp_watchpoint;
2154
2155 loc_type = (b->type == bp_watchpoint? bp_loc_other
2156 : bp_loc_hardware_watchpoint);
2157 for (bl = b->loc; bl; bl = bl->next)
2158 bl->loc_type = loc_type;
2159 }
2160
2161 for (v = val_chain; v; v = next)
2162 {
2163 next = value_next (v);
2164 if (v != b->val)
2165 value_free (v);
2166 }
2167
2168 /* If a software watchpoint is not watching any memory, then the
2169 above left it without any location set up. But,
2170 bpstat_stop_status requires a location to be able to report
2171 stops, so make sure there's at least a dummy one. */
2172 if (b->type == bp_watchpoint && b->loc == NULL)
2173 software_watchpoint_add_no_memory_location (b, frame_pspace);
2174 }
2175 else if (!within_current_scope)
2176 {
2177 printf_filtered (_("\
2178 Watchpoint %d deleted because the program has left the block\n\
2179 in which its expression is valid.\n"),
2180 b->number);
2181 watchpoint_del_at_next_stop (b);
2182 }
2183
2184 /* Restore the selected frame. */
2185 if (frame_saved)
2186 select_frame (frame_find_by_id (saved_frame_id));
2187 }
2188
2189
2190 /* Returns 1 iff breakpoint location should be
2191 inserted in the inferior. We don't differentiate the type of BL's owner
2192 (breakpoint vs. tracepoint), although insert_location in tracepoint's
2193 breakpoint_ops is not defined, because in insert_bp_location,
2194 tracepoint's insert_location will not be called. */
2195 static int
2196 should_be_inserted (struct bp_location *bl)
2197 {
2198 if (bl->owner == NULL || !breakpoint_enabled (bl->owner))
2199 return 0;
2200
2201 if (bl->owner->disposition == disp_del_at_next_stop)
2202 return 0;
2203
2204 if (!bl->enabled || bl->shlib_disabled || bl->duplicate)
2205 return 0;
2206
2207 if (user_breakpoint_p (bl->owner) && bl->pspace->executing_startup)
2208 return 0;
2209
2210 /* This is set for example, when we're attached to the parent of a
2211 vfork, and have detached from the child. The child is running
2212 free, and we expect it to do an exec or exit, at which point the
2213 OS makes the parent schedulable again (and the target reports
2214 that the vfork is done). Until the child is done with the shared
2215 memory region, do not insert breakpoints in the parent, otherwise
2216 the child could still trip on the parent's breakpoints. Since
2217 the parent is blocked anyway, it won't miss any breakpoint. */
2218 if (bl->pspace->breakpoints_not_allowed)
2219 return 0;
2220
2221 /* Don't insert a breakpoint if we're trying to step past its
2222 location, except if the breakpoint is a single-step breakpoint,
2223 and the breakpoint's thread is the thread which is stepping past
2224 a breakpoint. */
2225 if ((bl->loc_type == bp_loc_software_breakpoint
2226 || bl->loc_type == bp_loc_hardware_breakpoint)
2227 && stepping_past_instruction_at (bl->pspace->aspace,
2228 bl->address)
2229 /* The single-step breakpoint may be inserted at the location
2230 we're trying to step if the instruction branches to itself.
2231 However, the instruction won't be executed at all and it may
2232 break the semantics of the instruction, for example, the
2233 instruction is a conditional branch or updates some flags.
2234 We can't fix it unless GDB is able to emulate the instruction
2235 or switch to displaced stepping. */
2236 && !(bl->owner->type == bp_single_step
2237 && thread_is_stepping_over_breakpoint (bl->owner->thread)))
2238 {
2239 if (debug_infrun)
2240 {
2241 fprintf_unfiltered (gdb_stdlog,
2242 "infrun: skipping breakpoint: "
2243 "stepping past insn at: %s\n",
2244 paddress (bl->gdbarch, bl->address));
2245 }
2246 return 0;
2247 }
2248
2249 /* Don't insert watchpoints if we're trying to step past the
2250 instruction that triggered one. */
2251 if ((bl->loc_type == bp_loc_hardware_watchpoint)
2252 && stepping_past_nonsteppable_watchpoint ())
2253 {
2254 if (debug_infrun)
2255 {
2256 fprintf_unfiltered (gdb_stdlog,
2257 "infrun: stepping past non-steppable watchpoint. "
2258 "skipping watchpoint at %s:%d\n",
2259 paddress (bl->gdbarch, bl->address),
2260 bl->length);
2261 }
2262 return 0;
2263 }
2264
2265 return 1;
2266 }
2267
2268 /* Same as should_be_inserted but does the check assuming
2269 that the location is not duplicated. */
2270
2271 static int
2272 unduplicated_should_be_inserted (struct bp_location *bl)
2273 {
2274 int result;
2275 const int save_duplicate = bl->duplicate;
2276
2277 bl->duplicate = 0;
2278 result = should_be_inserted (bl);
2279 bl->duplicate = save_duplicate;
2280 return result;
2281 }
2282
2283 /* Parses a conditional described by an expression COND into an
2284 agent expression bytecode suitable for evaluation
2285 by the bytecode interpreter. Return NULL if there was
2286 any error during parsing. */
2287
2288 static agent_expr_up
2289 parse_cond_to_aexpr (CORE_ADDR scope, struct expression *cond)
2290 {
2291 if (cond == NULL)
2292 return NULL;
2293
2294 agent_expr_up aexpr;
2295
2296 /* We don't want to stop processing, so catch any errors
2297 that may show up. */
2298 TRY
2299 {
2300 aexpr = gen_eval_for_expr (scope, cond);
2301 }
2302
2303 CATCH (ex, RETURN_MASK_ERROR)
2304 {
2305 /* If we got here, it means the condition could not be parsed to a valid
2306 bytecode expression and thus can't be evaluated on the target's side.
2307 It's no use iterating through the conditions. */
2308 }
2309 END_CATCH
2310
2311 /* We have a valid agent expression. */
2312 return aexpr;
2313 }
2314
2315 /* Based on location BL, create a list of breakpoint conditions to be
2316 passed on to the target. If we have duplicated locations with different
2317 conditions, we will add such conditions to the list. The idea is that the
2318 target will evaluate the list of conditions and will only notify GDB when
2319 one of them is true. */
2320
2321 static void
2322 build_target_condition_list (struct bp_location *bl)
2323 {
2324 struct bp_location **locp = NULL, **loc2p;
2325 int null_condition_or_parse_error = 0;
2326 int modified = bl->needs_update;
2327 struct bp_location *loc;
2328
2329 /* Release conditions left over from a previous insert. */
2330 bl->target_info.conditions.clear ();
2331
2332 /* This is only meaningful if the target is
2333 evaluating conditions and if the user has
2334 opted for condition evaluation on the target's
2335 side. */
2336 if (gdb_evaluates_breakpoint_condition_p ()
2337 || !target_supports_evaluation_of_breakpoint_conditions ())
2338 return;
2339
2340 /* Do a first pass to check for locations with no assigned
2341 conditions or conditions that fail to parse to a valid agent expression
2342 bytecode. If any of these happen, then it's no use to send conditions
2343 to the target since this location will always trigger and generate a
2344 response back to GDB. */
2345 ALL_BP_LOCATIONS_AT_ADDR (loc2p, locp, bl->address)
2346 {
2347 loc = (*loc2p);
2348 if (is_breakpoint (loc->owner) && loc->pspace->num == bl->pspace->num)
2349 {
2350 if (modified)
2351 {
2352 /* Re-parse the conditions since something changed. In that
2353 case we already freed the condition bytecodes (see
2354 force_breakpoint_reinsertion). We just
2355 need to parse the condition to bytecodes again. */
2356 loc->cond_bytecode = parse_cond_to_aexpr (bl->address,
2357 loc->cond.get ());
2358 }
2359
2360 /* If we have a NULL bytecode expression, it means something
2361 went wrong or we have a null condition expression. */
2362 if (!loc->cond_bytecode)
2363 {
2364 null_condition_or_parse_error = 1;
2365 break;
2366 }
2367 }
2368 }
2369
2370 /* If any of these happened, it means we will have to evaluate the conditions
2371 for the location's address on gdb's side. It is no use keeping bytecodes
2372 for all the other duplicate locations, thus we free all of them here.
2373
2374 This is so we have a finer control over which locations' conditions are
2375 being evaluated by GDB or the remote stub. */
2376 if (null_condition_or_parse_error)
2377 {
2378 ALL_BP_LOCATIONS_AT_ADDR (loc2p, locp, bl->address)
2379 {
2380 loc = (*loc2p);
2381 if (is_breakpoint (loc->owner) && loc->pspace->num == bl->pspace->num)
2382 {
2383 /* Only go as far as the first NULL bytecode is
2384 located. */
2385 if (!loc->cond_bytecode)
2386 return;
2387
2388 loc->cond_bytecode.reset ();
2389 }
2390 }
2391 }
2392
2393 /* No NULL conditions or failed bytecode generation. Build a condition list
2394 for this location's address. */
2395 ALL_BP_LOCATIONS_AT_ADDR (loc2p, locp, bl->address)
2396 {
2397 loc = (*loc2p);
2398 if (loc->cond
2399 && is_breakpoint (loc->owner)
2400 && loc->pspace->num == bl->pspace->num
2401 && loc->owner->enable_state == bp_enabled
2402 && loc->enabled)
2403 {
2404 /* Add the condition to the vector. This will be used later
2405 to send the conditions to the target. */
2406 bl->target_info.conditions.push_back (loc->cond_bytecode.get ());
2407 }
2408 }
2409
2410 return;
2411 }
2412
2413 /* Parses a command described by string CMD into an agent expression
2414 bytecode suitable for evaluation by the bytecode interpreter.
2415 Return NULL if there was any error during parsing. */
2416
2417 static agent_expr_up
2418 parse_cmd_to_aexpr (CORE_ADDR scope, char *cmd)
2419 {
2420 struct cleanup *old_cleanups = 0;
2421 struct expression **argvec;
2422 const char *cmdrest;
2423 const char *format_start, *format_end;
2424 struct format_piece *fpieces;
2425 int nargs;
2426 struct gdbarch *gdbarch = get_current_arch ();
2427
2428 if (cmd == NULL)
2429 return NULL;
2430
2431 cmdrest = cmd;
2432
2433 if (*cmdrest == ',')
2434 ++cmdrest;
2435 cmdrest = skip_spaces_const (cmdrest);
2436
2437 if (*cmdrest++ != '"')
2438 error (_("No format string following the location"));
2439
2440 format_start = cmdrest;
2441
2442 fpieces = parse_format_string (&cmdrest);
2443
2444 old_cleanups = make_cleanup (free_format_pieces_cleanup, &fpieces);
2445
2446 format_end = cmdrest;
2447
2448 if (*cmdrest++ != '"')
2449 error (_("Bad format string, non-terminated '\"'."));
2450
2451 cmdrest = skip_spaces_const (cmdrest);
2452
2453 if (!(*cmdrest == ',' || *cmdrest == '\0'))
2454 error (_("Invalid argument syntax"));
2455
2456 if (*cmdrest == ',')
2457 cmdrest++;
2458 cmdrest = skip_spaces_const (cmdrest);
2459
2460 /* For each argument, make an expression. */
2461
2462 argvec = (struct expression **) alloca (strlen (cmd)
2463 * sizeof (struct expression *));
2464
2465 nargs = 0;
2466 while (*cmdrest != '\0')
2467 {
2468 const char *cmd1;
2469
2470 cmd1 = cmdrest;
2471 expression_up expr = parse_exp_1 (&cmd1, scope, block_for_pc (scope), 1);
2472 argvec[nargs++] = expr.release ();
2473 cmdrest = cmd1;
2474 if (*cmdrest == ',')
2475 ++cmdrest;
2476 }
2477
2478 agent_expr_up aexpr;
2479
2480 /* We don't want to stop processing, so catch any errors
2481 that may show up. */
2482 TRY
2483 {
2484 aexpr = gen_printf (scope, gdbarch, 0, 0,
2485 format_start, format_end - format_start,
2486 fpieces, nargs, argvec);
2487 }
2488 CATCH (ex, RETURN_MASK_ERROR)
2489 {
2490 /* If we got here, it means the command could not be parsed to a valid
2491 bytecode expression and thus can't be evaluated on the target's side.
2492 It's no use iterating through the other commands. */
2493 }
2494 END_CATCH
2495
2496 do_cleanups (old_cleanups);
2497
2498 /* We have a valid agent expression, return it. */
2499 return aexpr;
2500 }
2501
2502 /* Based on location BL, create a list of breakpoint commands to be
2503 passed on to the target. If we have duplicated locations with
2504 different commands, we will add any such to the list. */
2505
2506 static void
2507 build_target_command_list (struct bp_location *bl)
2508 {
2509 struct bp_location **locp = NULL, **loc2p;
2510 int null_command_or_parse_error = 0;
2511 int modified = bl->needs_update;
2512 struct bp_location *loc;
2513
2514 /* Clear commands left over from a previous insert. */
2515 bl->target_info.tcommands.clear ();
2516
2517 if (!target_can_run_breakpoint_commands ())
2518 return;
2519
2520 /* For now, limit to agent-style dprintf breakpoints. */
2521 if (dprintf_style != dprintf_style_agent)
2522 return;
2523
2524 /* For now, if we have any duplicate location that isn't a dprintf,
2525 don't install the target-side commands, as that would make the
2526 breakpoint not be reported to the core, and we'd lose
2527 control. */
2528 ALL_BP_LOCATIONS_AT_ADDR (loc2p, locp, bl->address)
2529 {
2530 loc = (*loc2p);
2531 if (is_breakpoint (loc->owner)
2532 && loc->pspace->num == bl->pspace->num
2533 && loc->owner->type != bp_dprintf)
2534 return;
2535 }
2536
2537 /* Do a first pass to check for locations with no assigned
2538 conditions or conditions that fail to parse to a valid agent expression
2539 bytecode. If any of these happen, then it's no use to send conditions
2540 to the target since this location will always trigger and generate a
2541 response back to GDB. */
2542 ALL_BP_LOCATIONS_AT_ADDR (loc2p, locp, bl->address)
2543 {
2544 loc = (*loc2p);
2545 if (is_breakpoint (loc->owner) && loc->pspace->num == bl->pspace->num)
2546 {
2547 if (modified)
2548 {
2549 /* Re-parse the commands since something changed. In that
2550 case we already freed the command bytecodes (see
2551 force_breakpoint_reinsertion). We just
2552 need to parse the command to bytecodes again. */
2553 loc->cmd_bytecode
2554 = parse_cmd_to_aexpr (bl->address,
2555 loc->owner->extra_string);
2556 }
2557
2558 /* If we have a NULL bytecode expression, it means something
2559 went wrong or we have a null command expression. */
2560 if (!loc->cmd_bytecode)
2561 {
2562 null_command_or_parse_error = 1;
2563 break;
2564 }
2565 }
2566 }
2567
2568 /* If anything failed, then we're not doing target-side commands,
2569 and so clean up. */
2570 if (null_command_or_parse_error)
2571 {
2572 ALL_BP_LOCATIONS_AT_ADDR (loc2p, locp, bl->address)
2573 {
2574 loc = (*loc2p);
2575 if (is_breakpoint (loc->owner)
2576 && loc->pspace->num == bl->pspace->num)
2577 {
2578 /* Only go as far as the first NULL bytecode is
2579 located. */
2580 if (loc->cmd_bytecode == NULL)
2581 return;
2582
2583 loc->cmd_bytecode.reset ();
2584 }
2585 }
2586 }
2587
2588 /* No NULL commands or failed bytecode generation. Build a command list
2589 for this location's address. */
2590 ALL_BP_LOCATIONS_AT_ADDR (loc2p, locp, bl->address)
2591 {
2592 loc = (*loc2p);
2593 if (loc->owner->extra_string
2594 && is_breakpoint (loc->owner)
2595 && loc->pspace->num == bl->pspace->num
2596 && loc->owner->enable_state == bp_enabled
2597 && loc->enabled)
2598 {
2599 /* Add the command to the vector. This will be used later
2600 to send the commands to the target. */
2601 bl->target_info.tcommands.push_back (loc->cmd_bytecode.get ());
2602 }
2603 }
2604
2605 bl->target_info.persist = 0;
2606 /* Maybe flag this location as persistent. */
2607 if (bl->owner->type == bp_dprintf && disconnected_dprintf)
2608 bl->target_info.persist = 1;
2609 }
2610
2611 /* Return the kind of breakpoint on address *ADDR. Get the kind
2612 of breakpoint according to ADDR except single-step breakpoint.
2613 Get the kind of single-step breakpoint according to the current
2614 registers state. */
2615
2616 static int
2617 breakpoint_kind (struct bp_location *bl, CORE_ADDR *addr)
2618 {
2619 if (bl->owner->type == bp_single_step)
2620 {
2621 struct thread_info *thr = find_thread_global_id (bl->owner->thread);
2622 struct regcache *regcache;
2623
2624 regcache = get_thread_regcache (thr->ptid);
2625
2626 return gdbarch_breakpoint_kind_from_current_state (bl->gdbarch,
2627 regcache, addr);
2628 }
2629 else
2630 return gdbarch_breakpoint_kind_from_pc (bl->gdbarch, addr);
2631 }
2632
2633 /* Insert a low-level "breakpoint" of some type. BL is the breakpoint
2634 location. Any error messages are printed to TMP_ERROR_STREAM; and
2635 DISABLED_BREAKS, and HW_BREAKPOINT_ERROR are used to report problems.
2636 Returns 0 for success, 1 if the bp_location type is not supported or
2637 -1 for failure.
2638
2639 NOTE drow/2003-09-09: This routine could be broken down to an
2640 object-style method for each breakpoint or catchpoint type. */
2641 static int
2642 insert_bp_location (struct bp_location *bl,
2643 struct ui_file *tmp_error_stream,
2644 int *disabled_breaks,
2645 int *hw_breakpoint_error,
2646 int *hw_bp_error_explained_already)
2647 {
2648 enum errors bp_err = GDB_NO_ERROR;
2649 const char *bp_err_message = NULL;
2650
2651 if (!should_be_inserted (bl) || (bl->inserted && !bl->needs_update))
2652 return 0;
2653
2654 /* Note we don't initialize bl->target_info, as that wipes out
2655 the breakpoint location's shadow_contents if the breakpoint
2656 is still inserted at that location. This in turn breaks
2657 target_read_memory which depends on these buffers when
2658 a memory read is requested at the breakpoint location:
2659 Once the target_info has been wiped, we fail to see that
2660 we have a breakpoint inserted at that address and thus
2661 read the breakpoint instead of returning the data saved in
2662 the breakpoint location's shadow contents. */
2663 bl->target_info.reqstd_address = bl->address;
2664 bl->target_info.placed_address_space = bl->pspace->aspace;
2665 bl->target_info.length = bl->length;
2666
2667 /* When working with target-side conditions, we must pass all the conditions
2668 for the same breakpoint address down to the target since GDB will not
2669 insert those locations. With a list of breakpoint conditions, the target
2670 can decide when to stop and notify GDB. */
2671
2672 if (is_breakpoint (bl->owner))
2673 {
2674 build_target_condition_list (bl);
2675 build_target_command_list (bl);
2676 /* Reset the modification marker. */
2677 bl->needs_update = 0;
2678 }
2679
2680 if (bl->loc_type == bp_loc_software_breakpoint
2681 || bl->loc_type == bp_loc_hardware_breakpoint)
2682 {
2683 if (bl->owner->type != bp_hardware_breakpoint)
2684 {
2685 /* If the explicitly specified breakpoint type
2686 is not hardware breakpoint, check the memory map to see
2687 if the breakpoint address is in read only memory or not.
2688
2689 Two important cases are:
2690 - location type is not hardware breakpoint, memory
2691 is readonly. We change the type of the location to
2692 hardware breakpoint.
2693 - location type is hardware breakpoint, memory is
2694 read-write. This means we've previously made the
2695 location hardware one, but then the memory map changed,
2696 so we undo.
2697
2698 When breakpoints are removed, remove_breakpoints will use
2699 location types we've just set here, the only possible
2700 problem is that memory map has changed during running
2701 program, but it's not going to work anyway with current
2702 gdb. */
2703 struct mem_region *mr
2704 = lookup_mem_region (bl->target_info.reqstd_address);
2705
2706 if (mr)
2707 {
2708 if (automatic_hardware_breakpoints)
2709 {
2710 enum bp_loc_type new_type;
2711
2712 if (mr->attrib.mode != MEM_RW)
2713 new_type = bp_loc_hardware_breakpoint;
2714 else
2715 new_type = bp_loc_software_breakpoint;
2716
2717 if (new_type != bl->loc_type)
2718 {
2719 static int said = 0;
2720
2721 bl->loc_type = new_type;
2722 if (!said)
2723 {
2724 fprintf_filtered (gdb_stdout,
2725 _("Note: automatically using "
2726 "hardware breakpoints for "
2727 "read-only addresses.\n"));
2728 said = 1;
2729 }
2730 }
2731 }
2732 else if (bl->loc_type == bp_loc_software_breakpoint
2733 && mr->attrib.mode != MEM_RW)
2734 {
2735 fprintf_unfiltered (tmp_error_stream,
2736 _("Cannot insert breakpoint %d.\n"
2737 "Cannot set software breakpoint "
2738 "at read-only address %s\n"),
2739 bl->owner->number,
2740 paddress (bl->gdbarch, bl->address));
2741 return 1;
2742 }
2743 }
2744 }
2745
2746 /* First check to see if we have to handle an overlay. */
2747 if (overlay_debugging == ovly_off
2748 || bl->section == NULL
2749 || !(section_is_overlay (bl->section)))
2750 {
2751 /* No overlay handling: just set the breakpoint. */
2752 TRY
2753 {
2754 int val;
2755
2756 val = bl->owner->ops->insert_location (bl);
2757 if (val)
2758 bp_err = GENERIC_ERROR;
2759 }
2760 CATCH (e, RETURN_MASK_ALL)
2761 {
2762 bp_err = e.error;
2763 bp_err_message = e.message;
2764 }
2765 END_CATCH
2766 }
2767 else
2768 {
2769 /* This breakpoint is in an overlay section.
2770 Shall we set a breakpoint at the LMA? */
2771 if (!overlay_events_enabled)
2772 {
2773 /* Yes -- overlay event support is not active,
2774 so we must try to set a breakpoint at the LMA.
2775 This will not work for a hardware breakpoint. */
2776 if (bl->loc_type == bp_loc_hardware_breakpoint)
2777 warning (_("hardware breakpoint %d not supported in overlay!"),
2778 bl->owner->number);
2779 else
2780 {
2781 CORE_ADDR addr = overlay_unmapped_address (bl->address,
2782 bl->section);
2783 /* Set a software (trap) breakpoint at the LMA. */
2784 bl->overlay_target_info = bl->target_info;
2785 bl->overlay_target_info.reqstd_address = addr;
2786
2787 /* No overlay handling: just set the breakpoint. */
2788 TRY
2789 {
2790 int val;
2791
2792 bl->overlay_target_info.kind
2793 = breakpoint_kind (bl, &addr);
2794 bl->overlay_target_info.placed_address = addr;
2795 val = target_insert_breakpoint (bl->gdbarch,
2796 &bl->overlay_target_info);
2797 if (val)
2798 bp_err = GENERIC_ERROR;
2799 }
2800 CATCH (e, RETURN_MASK_ALL)
2801 {
2802 bp_err = e.error;
2803 bp_err_message = e.message;
2804 }
2805 END_CATCH
2806
2807 if (bp_err != GDB_NO_ERROR)
2808 fprintf_unfiltered (tmp_error_stream,
2809 "Overlay breakpoint %d "
2810 "failed: in ROM?\n",
2811 bl->owner->number);
2812 }
2813 }
2814 /* Shall we set a breakpoint at the VMA? */
2815 if (section_is_mapped (bl->section))
2816 {
2817 /* Yes. This overlay section is mapped into memory. */
2818 TRY
2819 {
2820 int val;
2821
2822 val = bl->owner->ops->insert_location (bl);
2823 if (val)
2824 bp_err = GENERIC_ERROR;
2825 }
2826 CATCH (e, RETURN_MASK_ALL)
2827 {
2828 bp_err = e.error;
2829 bp_err_message = e.message;
2830 }
2831 END_CATCH
2832 }
2833 else
2834 {
2835 /* No. This breakpoint will not be inserted.
2836 No error, but do not mark the bp as 'inserted'. */
2837 return 0;
2838 }
2839 }
2840
2841 if (bp_err != GDB_NO_ERROR)
2842 {
2843 /* Can't set the breakpoint. */
2844
2845 /* In some cases, we might not be able to insert a
2846 breakpoint in a shared library that has already been
2847 removed, but we have not yet processed the shlib unload
2848 event. Unfortunately, some targets that implement
2849 breakpoint insertion themselves can't tell why the
2850 breakpoint insertion failed (e.g., the remote target
2851 doesn't define error codes), so we must treat generic
2852 errors as memory errors. */
2853 if ((bp_err == GENERIC_ERROR || bp_err == MEMORY_ERROR)
2854 && bl->loc_type == bp_loc_software_breakpoint
2855 && (solib_name_from_address (bl->pspace, bl->address)
2856 || shared_objfile_contains_address_p (bl->pspace,
2857 bl->address)))
2858 {
2859 /* See also: disable_breakpoints_in_shlibs. */
2860 bl->shlib_disabled = 1;
2861 observer_notify_breakpoint_modified (bl->owner);
2862 if (!*disabled_breaks)
2863 {
2864 fprintf_unfiltered (tmp_error_stream,
2865 "Cannot insert breakpoint %d.\n",
2866 bl->owner->number);
2867 fprintf_unfiltered (tmp_error_stream,
2868 "Temporarily disabling shared "
2869 "library breakpoints:\n");
2870 }
2871 *disabled_breaks = 1;
2872 fprintf_unfiltered (tmp_error_stream,
2873 "breakpoint #%d\n", bl->owner->number);
2874 return 0;
2875 }
2876 else
2877 {
2878 if (bl->loc_type == bp_loc_hardware_breakpoint)
2879 {
2880 *hw_breakpoint_error = 1;
2881 *hw_bp_error_explained_already = bp_err_message != NULL;
2882 fprintf_unfiltered (tmp_error_stream,
2883 "Cannot insert hardware breakpoint %d%s",
2884 bl->owner->number, bp_err_message ? ":" : ".\n");
2885 if (bp_err_message != NULL)
2886 fprintf_unfiltered (tmp_error_stream, "%s.\n", bp_err_message);
2887 }
2888 else
2889 {
2890 if (bp_err_message == NULL)
2891 {
2892 char *message
2893 = memory_error_message (TARGET_XFER_E_IO,
2894 bl->gdbarch, bl->address);
2895 struct cleanup *old_chain = make_cleanup (xfree, message);
2896
2897 fprintf_unfiltered (tmp_error_stream,
2898 "Cannot insert breakpoint %d.\n"
2899 "%s\n",
2900 bl->owner->number, message);
2901 do_cleanups (old_chain);
2902 }
2903 else
2904 {
2905 fprintf_unfiltered (tmp_error_stream,
2906 "Cannot insert breakpoint %d: %s\n",
2907 bl->owner->number,
2908 bp_err_message);
2909 }
2910 }
2911 return 1;
2912
2913 }
2914 }
2915 else
2916 bl->inserted = 1;
2917
2918 return 0;
2919 }
2920
2921 else if (bl->loc_type == bp_loc_hardware_watchpoint
2922 /* NOTE drow/2003-09-08: This state only exists for removing
2923 watchpoints. It's not clear that it's necessary... */
2924 && bl->owner->disposition != disp_del_at_next_stop)
2925 {
2926 int val;
2927
2928 gdb_assert (bl->owner->ops != NULL
2929 && bl->owner->ops->insert_location != NULL);
2930
2931 val = bl->owner->ops->insert_location (bl);
2932
2933 /* If trying to set a read-watchpoint, and it turns out it's not
2934 supported, try emulating one with an access watchpoint. */
2935 if (val == 1 && bl->watchpoint_type == hw_read)
2936 {
2937 struct bp_location *loc, **loc_temp;
2938
2939 /* But don't try to insert it, if there's already another
2940 hw_access location that would be considered a duplicate
2941 of this one. */
2942 ALL_BP_LOCATIONS (loc, loc_temp)
2943 if (loc != bl
2944 && loc->watchpoint_type == hw_access
2945 && watchpoint_locations_match (bl, loc))
2946 {
2947 bl->duplicate = 1;
2948 bl->inserted = 1;
2949 bl->target_info = loc->target_info;
2950 bl->watchpoint_type = hw_access;
2951 val = 0;
2952 break;
2953 }
2954
2955 if (val == 1)
2956 {
2957 bl->watchpoint_type = hw_access;
2958 val = bl->owner->ops->insert_location (bl);
2959
2960 if (val)
2961 /* Back to the original value. */
2962 bl->watchpoint_type = hw_read;
2963 }
2964 }
2965
2966 bl->inserted = (val == 0);
2967 }
2968
2969 else if (bl->owner->type == bp_catchpoint)
2970 {
2971 int val;
2972
2973 gdb_assert (bl->owner->ops != NULL
2974 && bl->owner->ops->insert_location != NULL);
2975
2976 val = bl->owner->ops->insert_location (bl);
2977 if (val)
2978 {
2979 bl->owner->enable_state = bp_disabled;
2980
2981 if (val == 1)
2982 warning (_("\
2983 Error inserting catchpoint %d: Your system does not support this type\n\
2984 of catchpoint."), bl->owner->number);
2985 else
2986 warning (_("Error inserting catchpoint %d."), bl->owner->number);
2987 }
2988
2989 bl->inserted = (val == 0);
2990
2991 /* We've already printed an error message if there was a problem
2992 inserting this catchpoint, and we've disabled the catchpoint,
2993 so just return success. */
2994 return 0;
2995 }
2996
2997 return 0;
2998 }
2999
3000 /* This function is called when program space PSPACE is about to be
3001 deleted. It takes care of updating breakpoints to not reference
3002 PSPACE anymore. */
3003
3004 void
3005 breakpoint_program_space_exit (struct program_space *pspace)
3006 {
3007 struct breakpoint *b, *b_temp;
3008 struct bp_location *loc, **loc_temp;
3009
3010 /* Remove any breakpoint that was set through this program space. */
3011 ALL_BREAKPOINTS_SAFE (b, b_temp)
3012 {
3013 if (b->pspace == pspace)
3014 delete_breakpoint (b);
3015 }
3016
3017 /* Breakpoints set through other program spaces could have locations
3018 bound to PSPACE as well. Remove those. */
3019 ALL_BP_LOCATIONS (loc, loc_temp)
3020 {
3021 struct bp_location *tmp;
3022
3023 if (loc->pspace == pspace)
3024 {
3025 /* ALL_BP_LOCATIONS bp_location has LOC->OWNER always non-NULL. */
3026 if (loc->owner->loc == loc)
3027 loc->owner->loc = loc->next;
3028 else
3029 for (tmp = loc->owner->loc; tmp->next != NULL; tmp = tmp->next)
3030 if (tmp->next == loc)
3031 {
3032 tmp->next = loc->next;
3033 break;
3034 }
3035 }
3036 }
3037
3038 /* Now update the global location list to permanently delete the
3039 removed locations above. */
3040 update_global_location_list (UGLL_DONT_INSERT);
3041 }
3042
3043 /* Make sure all breakpoints are inserted in inferior.
3044 Throws exception on any error.
3045 A breakpoint that is already inserted won't be inserted
3046 again, so calling this function twice is safe. */
3047 void
3048 insert_breakpoints (void)
3049 {
3050 struct breakpoint *bpt;
3051
3052 ALL_BREAKPOINTS (bpt)
3053 if (is_hardware_watchpoint (bpt))
3054 {
3055 struct watchpoint *w = (struct watchpoint *) bpt;
3056
3057 update_watchpoint (w, 0 /* don't reparse. */);
3058 }
3059
3060 /* Updating watchpoints creates new locations, so update the global
3061 location list. Explicitly tell ugll to insert locations and
3062 ignore breakpoints_always_inserted_mode. */
3063 update_global_location_list (UGLL_INSERT);
3064 }
3065
3066 /* Invoke CALLBACK for each of bp_location. */
3067
3068 void
3069 iterate_over_bp_locations (walk_bp_location_callback callback)
3070 {
3071 struct bp_location *loc, **loc_tmp;
3072
3073 ALL_BP_LOCATIONS (loc, loc_tmp)
3074 {
3075 callback (loc, NULL);
3076 }
3077 }
3078
3079 /* This is used when we need to synch breakpoint conditions between GDB and the
3080 target. It is the case with deleting and disabling of breakpoints when using
3081 always-inserted mode. */
3082
3083 static void
3084 update_inserted_breakpoint_locations (void)
3085 {
3086 struct bp_location *bl, **blp_tmp;
3087 int error_flag = 0;
3088 int val = 0;
3089 int disabled_breaks = 0;
3090 int hw_breakpoint_error = 0;
3091 int hw_bp_details_reported = 0;
3092
3093 string_file tmp_error_stream;
3094
3095 /* Explicitly mark the warning -- this will only be printed if
3096 there was an error. */
3097 tmp_error_stream.puts ("Warning:\n");
3098
3099 scoped_restore_current_pspace_and_thread restore_pspace_thread;
3100
3101 ALL_BP_LOCATIONS (bl, blp_tmp)
3102 {
3103 /* We only want to update software breakpoints and hardware
3104 breakpoints. */
3105 if (!is_breakpoint (bl->owner))
3106 continue;
3107
3108 /* We only want to update locations that are already inserted
3109 and need updating. This is to avoid unwanted insertion during
3110 deletion of breakpoints. */
3111 if (!bl->inserted || (bl->inserted && !bl->needs_update))
3112 continue;
3113
3114 switch_to_program_space_and_thread (bl->pspace);
3115
3116 /* For targets that support global breakpoints, there's no need
3117 to select an inferior to insert breakpoint to. In fact, even
3118 if we aren't attached to any process yet, we should still
3119 insert breakpoints. */
3120 if (!gdbarch_has_global_breakpoints (target_gdbarch ())
3121 && ptid_equal (inferior_ptid, null_ptid))
3122 continue;
3123
3124 val = insert_bp_location (bl, &tmp_error_stream, &disabled_breaks,
3125 &hw_breakpoint_error, &hw_bp_details_reported);
3126 if (val)
3127 error_flag = val;
3128 }
3129
3130 if (error_flag)
3131 {
3132 target_terminal_ours_for_output ();
3133 error_stream (tmp_error_stream);
3134 }
3135 }
3136
3137 /* Used when starting or continuing the program. */
3138
3139 static void
3140 insert_breakpoint_locations (void)
3141 {
3142 struct breakpoint *bpt;
3143 struct bp_location *bl, **blp_tmp;
3144 int error_flag = 0;
3145 int val = 0;
3146 int disabled_breaks = 0;
3147 int hw_breakpoint_error = 0;
3148 int hw_bp_error_explained_already = 0;
3149
3150 string_file tmp_error_stream;
3151
3152 /* Explicitly mark the warning -- this will only be printed if
3153 there was an error. */
3154 tmp_error_stream.puts ("Warning:\n");
3155
3156 scoped_restore_current_pspace_and_thread restore_pspace_thread;
3157
3158 ALL_BP_LOCATIONS (bl, blp_tmp)
3159 {
3160 if (!should_be_inserted (bl) || (bl->inserted && !bl->needs_update))
3161 continue;
3162
3163 /* There is no point inserting thread-specific breakpoints if
3164 the thread no longer exists. ALL_BP_LOCATIONS bp_location
3165 has BL->OWNER always non-NULL. */
3166 if (bl->owner->thread != -1
3167 && !valid_global_thread_id (bl->owner->thread))
3168 continue;
3169
3170 switch_to_program_space_and_thread (bl->pspace);
3171
3172 /* For targets that support global breakpoints, there's no need
3173 to select an inferior to insert breakpoint to. In fact, even
3174 if we aren't attached to any process yet, we should still
3175 insert breakpoints. */
3176 if (!gdbarch_has_global_breakpoints (target_gdbarch ())
3177 && ptid_equal (inferior_ptid, null_ptid))
3178 continue;
3179
3180 val = insert_bp_location (bl, &tmp_error_stream, &disabled_breaks,
3181 &hw_breakpoint_error, &hw_bp_error_explained_already);
3182 if (val)
3183 error_flag = val;
3184 }
3185
3186 /* If we failed to insert all locations of a watchpoint, remove
3187 them, as half-inserted watchpoint is of limited use. */
3188 ALL_BREAKPOINTS (bpt)
3189 {
3190 int some_failed = 0;
3191 struct bp_location *loc;
3192
3193 if (!is_hardware_watchpoint (bpt))
3194 continue;
3195
3196 if (!breakpoint_enabled (bpt))
3197 continue;
3198
3199 if (bpt->disposition == disp_del_at_next_stop)
3200 continue;
3201
3202 for (loc = bpt->loc; loc; loc = loc->next)
3203 if (!loc->inserted && should_be_inserted (loc))
3204 {
3205 some_failed = 1;
3206 break;
3207 }
3208 if (some_failed)
3209 {
3210 for (loc = bpt->loc; loc; loc = loc->next)
3211 if (loc->inserted)
3212 remove_breakpoint (loc);
3213
3214 hw_breakpoint_error = 1;
3215 tmp_error_stream.printf ("Could not insert "
3216 "hardware watchpoint %d.\n",
3217 bpt->number);
3218 error_flag = -1;
3219 }
3220 }
3221
3222 if (error_flag)
3223 {
3224 /* If a hardware breakpoint or watchpoint was inserted, add a
3225 message about possibly exhausted resources. */
3226 if (hw_breakpoint_error && !hw_bp_error_explained_already)
3227 {
3228 tmp_error_stream.printf ("Could not insert hardware breakpoints:\n\
3229 You may have requested too many hardware breakpoints/watchpoints.\n");
3230 }
3231 target_terminal_ours_for_output ();
3232 error_stream (tmp_error_stream);
3233 }
3234 }
3235
3236 /* Used when the program stops.
3237 Returns zero if successful, or non-zero if there was a problem
3238 removing a breakpoint location. */
3239
3240 int
3241 remove_breakpoints (void)
3242 {
3243 struct bp_location *bl, **blp_tmp;
3244 int val = 0;
3245
3246 ALL_BP_LOCATIONS (bl, blp_tmp)
3247 {
3248 if (bl->inserted && !is_tracepoint (bl->owner))
3249 val |= remove_breakpoint (bl);
3250 }
3251 return val;
3252 }
3253
3254 /* When a thread exits, remove breakpoints that are related to
3255 that thread. */
3256
3257 static void
3258 remove_threaded_breakpoints (struct thread_info *tp, int silent)
3259 {
3260 struct breakpoint *b, *b_tmp;
3261
3262 ALL_BREAKPOINTS_SAFE (b, b_tmp)
3263 {
3264 if (b->thread == tp->global_num && user_breakpoint_p (b))
3265 {
3266 b->disposition = disp_del_at_next_stop;
3267
3268 printf_filtered (_("\
3269 Thread-specific breakpoint %d deleted - thread %s no longer in the thread list.\n"),
3270 b->number, print_thread_id (tp));
3271
3272 /* Hide it from the user. */
3273 b->number = 0;
3274 }
3275 }
3276 }
3277
3278 /* Remove breakpoints of process PID. */
3279
3280 int
3281 remove_breakpoints_pid (int pid)
3282 {
3283 struct bp_location *bl, **blp_tmp;
3284 int val;
3285 struct inferior *inf = find_inferior_pid (pid);
3286
3287 ALL_BP_LOCATIONS (bl, blp_tmp)
3288 {
3289 if (bl->pspace != inf->pspace)
3290 continue;
3291
3292 if (bl->inserted && !bl->target_info.persist)
3293 {
3294 val = remove_breakpoint (bl);
3295 if (val != 0)
3296 return val;
3297 }
3298 }
3299 return 0;
3300 }
3301
3302 int
3303 reattach_breakpoints (int pid)
3304 {
3305 struct bp_location *bl, **blp_tmp;
3306 int val;
3307 int dummy1 = 0, dummy2 = 0, dummy3 = 0;
3308 struct inferior *inf;
3309 struct thread_info *tp;
3310
3311 tp = any_live_thread_of_process (pid);
3312 if (tp == NULL)
3313 return 1;
3314
3315 inf = find_inferior_pid (pid);
3316
3317 scoped_restore save_inferior_ptid = make_scoped_restore (&inferior_ptid);
3318 inferior_ptid = tp->ptid;
3319
3320 string_file tmp_error_stream;
3321
3322 ALL_BP_LOCATIONS (bl, blp_tmp)
3323 {
3324 if (bl->pspace != inf->pspace)
3325 continue;
3326
3327 if (bl->inserted)
3328 {
3329 bl->inserted = 0;
3330 val = insert_bp_location (bl, &tmp_error_stream, &dummy1, &dummy2, &dummy3);
3331 if (val != 0)
3332 return val;
3333 }
3334 }
3335 return 0;
3336 }
3337
3338 static int internal_breakpoint_number = -1;
3339
3340 /* Set the breakpoint number of B, depending on the value of INTERNAL.
3341 If INTERNAL is non-zero, the breakpoint number will be populated
3342 from internal_breakpoint_number and that variable decremented.
3343 Otherwise the breakpoint number will be populated from
3344 breakpoint_count and that value incremented. Internal breakpoints
3345 do not set the internal var bpnum. */
3346 static void
3347 set_breakpoint_number (int internal, struct breakpoint *b)
3348 {
3349 if (internal)
3350 b->number = internal_breakpoint_number--;
3351 else
3352 {
3353 set_breakpoint_count (breakpoint_count + 1);
3354 b->number = breakpoint_count;
3355 }
3356 }
3357
3358 static struct breakpoint *
3359 create_internal_breakpoint (struct gdbarch *gdbarch,
3360 CORE_ADDR address, enum bptype type,
3361 const struct breakpoint_ops *ops)
3362 {
3363 struct symtab_and_line sal;
3364 struct breakpoint *b;
3365
3366 init_sal (&sal); /* Initialize to zeroes. */
3367
3368 sal.pc = address;
3369 sal.section = find_pc_overlay (sal.pc);
3370 sal.pspace = current_program_space;
3371
3372 b = set_raw_breakpoint (gdbarch, sal, type, ops);
3373 b->number = internal_breakpoint_number--;
3374 b->disposition = disp_donttouch;
3375
3376 return b;
3377 }
3378
3379 static const char *const longjmp_names[] =
3380 {
3381 "longjmp", "_longjmp", "siglongjmp", "_siglongjmp"
3382 };
3383 #define NUM_LONGJMP_NAMES ARRAY_SIZE(longjmp_names)
3384
3385 /* Per-objfile data private to breakpoint.c. */
3386 struct breakpoint_objfile_data
3387 {
3388 /* Minimal symbol for "_ovly_debug_event" (if any). */
3389 struct bound_minimal_symbol overlay_msym;
3390
3391 /* Minimal symbol(s) for "longjmp", "siglongjmp", etc. (if any). */
3392 struct bound_minimal_symbol longjmp_msym[NUM_LONGJMP_NAMES];
3393
3394 /* True if we have looked for longjmp probes. */
3395 int longjmp_searched;
3396
3397 /* SystemTap probe points for longjmp (if any). */
3398 VEC (probe_p) *longjmp_probes;
3399
3400 /* Minimal symbol for "std::terminate()" (if any). */
3401 struct bound_minimal_symbol terminate_msym;
3402
3403 /* Minimal symbol for "_Unwind_DebugHook" (if any). */
3404 struct bound_minimal_symbol exception_msym;
3405
3406 /* True if we have looked for exception probes. */
3407 int exception_searched;
3408
3409 /* SystemTap probe points for unwinding (if any). */
3410 VEC (probe_p) *exception_probes;
3411 };
3412
3413 static const struct objfile_data *breakpoint_objfile_key;
3414
3415 /* Minimal symbol not found sentinel. */
3416 static struct minimal_symbol msym_not_found;
3417
3418 /* Returns TRUE if MSYM point to the "not found" sentinel. */
3419
3420 static int
3421 msym_not_found_p (const struct minimal_symbol *msym)
3422 {
3423 return msym == &msym_not_found;
3424 }
3425
3426 /* Return per-objfile data needed by breakpoint.c.
3427 Allocate the data if necessary. */
3428
3429 static struct breakpoint_objfile_data *
3430 get_breakpoint_objfile_data (struct objfile *objfile)
3431 {
3432 struct breakpoint_objfile_data *bp_objfile_data;
3433
3434 bp_objfile_data = ((struct breakpoint_objfile_data *)
3435 objfile_data (objfile, breakpoint_objfile_key));
3436 if (bp_objfile_data == NULL)
3437 {
3438 bp_objfile_data =
3439 XOBNEW (&objfile->objfile_obstack, struct breakpoint_objfile_data);
3440
3441 memset (bp_objfile_data, 0, sizeof (*bp_objfile_data));
3442 set_objfile_data (objfile, breakpoint_objfile_key, bp_objfile_data);
3443 }
3444 return bp_objfile_data;
3445 }
3446
3447 static void
3448 free_breakpoint_probes (struct objfile *obj, void *data)
3449 {
3450 struct breakpoint_objfile_data *bp_objfile_data
3451 = (struct breakpoint_objfile_data *) data;
3452
3453 VEC_free (probe_p, bp_objfile_data->longjmp_probes);
3454 VEC_free (probe_p, bp_objfile_data->exception_probes);
3455 }
3456
3457 static void
3458 create_overlay_event_breakpoint (void)
3459 {
3460 struct objfile *objfile;
3461 const char *const func_name = "_ovly_debug_event";
3462
3463 ALL_OBJFILES (objfile)
3464 {
3465 struct breakpoint *b;
3466 struct breakpoint_objfile_data *bp_objfile_data;
3467 CORE_ADDR addr;
3468 struct explicit_location explicit_loc;
3469
3470 bp_objfile_data = get_breakpoint_objfile_data (objfile);
3471
3472 if (msym_not_found_p (bp_objfile_data->overlay_msym.minsym))
3473 continue;
3474
3475 if (bp_objfile_data->overlay_msym.minsym == NULL)
3476 {
3477 struct bound_minimal_symbol m;
3478
3479 m = lookup_minimal_symbol_text (func_name, objfile);
3480 if (m.minsym == NULL)
3481 {
3482 /* Avoid future lookups in this objfile. */
3483 bp_objfile_data->overlay_msym.minsym = &msym_not_found;
3484 continue;
3485 }
3486 bp_objfile_data->overlay_msym = m;
3487 }
3488
3489 addr = BMSYMBOL_VALUE_ADDRESS (bp_objfile_data->overlay_msym);
3490 b = create_internal_breakpoint (get_objfile_arch (objfile), addr,
3491 bp_overlay_event,
3492 &internal_breakpoint_ops);
3493 initialize_explicit_location (&explicit_loc);
3494 explicit_loc.function_name = ASTRDUP (func_name);
3495 b->location = new_explicit_location (&explicit_loc);
3496
3497 if (overlay_debugging == ovly_auto)
3498 {
3499 b->enable_state = bp_enabled;
3500 overlay_events_enabled = 1;
3501 }
3502 else
3503 {
3504 b->enable_state = bp_disabled;
3505 overlay_events_enabled = 0;
3506 }
3507 }
3508 }
3509
3510 static void
3511 create_longjmp_master_breakpoint (void)
3512 {
3513 struct program_space *pspace;
3514
3515 scoped_restore_current_program_space restore_pspace;
3516
3517 ALL_PSPACES (pspace)
3518 {
3519 struct objfile *objfile;
3520
3521 set_current_program_space (pspace);
3522
3523 ALL_OBJFILES (objfile)
3524 {
3525 int i;
3526 struct gdbarch *gdbarch;
3527 struct breakpoint_objfile_data *bp_objfile_data;
3528
3529 gdbarch = get_objfile_arch (objfile);
3530
3531 bp_objfile_data = get_breakpoint_objfile_data (objfile);
3532
3533 if (!bp_objfile_data->longjmp_searched)
3534 {
3535 VEC (probe_p) *ret;
3536
3537 ret = find_probes_in_objfile (objfile, "libc", "longjmp");
3538 if (ret != NULL)
3539 {
3540 /* We are only interested in checking one element. */
3541 struct probe *p = VEC_index (probe_p, ret, 0);
3542
3543 if (!can_evaluate_probe_arguments (p))
3544 {
3545 /* We cannot use the probe interface here, because it does
3546 not know how to evaluate arguments. */
3547 VEC_free (probe_p, ret);
3548 ret = NULL;
3549 }
3550 }
3551 bp_objfile_data->longjmp_probes = ret;
3552 bp_objfile_data->longjmp_searched = 1;
3553 }
3554
3555 if (bp_objfile_data->longjmp_probes != NULL)
3556 {
3557 int i;
3558 struct probe *probe;
3559 struct gdbarch *gdbarch = get_objfile_arch (objfile);
3560
3561 for (i = 0;
3562 VEC_iterate (probe_p,
3563 bp_objfile_data->longjmp_probes,
3564 i, probe);
3565 ++i)
3566 {
3567 struct breakpoint *b;
3568
3569 b = create_internal_breakpoint (gdbarch,
3570 get_probe_address (probe,
3571 objfile),
3572 bp_longjmp_master,
3573 &internal_breakpoint_ops);
3574 b->location = new_probe_location ("-probe-stap libc:longjmp");
3575 b->enable_state = bp_disabled;
3576 }
3577
3578 continue;
3579 }
3580
3581 if (!gdbarch_get_longjmp_target_p (gdbarch))
3582 continue;
3583
3584 for (i = 0; i < NUM_LONGJMP_NAMES; i++)
3585 {
3586 struct breakpoint *b;
3587 const char *func_name;
3588 CORE_ADDR addr;
3589 struct explicit_location explicit_loc;
3590
3591 if (msym_not_found_p (bp_objfile_data->longjmp_msym[i].minsym))
3592 continue;
3593
3594 func_name = longjmp_names[i];
3595 if (bp_objfile_data->longjmp_msym[i].minsym == NULL)
3596 {
3597 struct bound_minimal_symbol m;
3598
3599 m = lookup_minimal_symbol_text (func_name, objfile);
3600 if (m.minsym == NULL)
3601 {
3602 /* Prevent future lookups in this objfile. */
3603 bp_objfile_data->longjmp_msym[i].minsym = &msym_not_found;
3604 continue;
3605 }
3606 bp_objfile_data->longjmp_msym[i] = m;
3607 }
3608
3609 addr = BMSYMBOL_VALUE_ADDRESS (bp_objfile_data->longjmp_msym[i]);
3610 b = create_internal_breakpoint (gdbarch, addr, bp_longjmp_master,
3611 &internal_breakpoint_ops);
3612 initialize_explicit_location (&explicit_loc);
3613 explicit_loc.function_name = ASTRDUP (func_name);
3614 b->location = new_explicit_location (&explicit_loc);
3615 b->enable_state = bp_disabled;
3616 }
3617 }
3618 }
3619 }
3620
3621 /* Create a master std::terminate breakpoint. */
3622 static void
3623 create_std_terminate_master_breakpoint (void)
3624 {
3625 struct program_space *pspace;
3626 const char *const func_name = "std::terminate()";
3627
3628 scoped_restore_current_program_space restore_pspace;
3629
3630 ALL_PSPACES (pspace)
3631 {
3632 struct objfile *objfile;
3633 CORE_ADDR addr;
3634
3635 set_current_program_space (pspace);
3636
3637 ALL_OBJFILES (objfile)
3638 {
3639 struct breakpoint *b;
3640 struct breakpoint_objfile_data *bp_objfile_data;
3641 struct explicit_location explicit_loc;
3642
3643 bp_objfile_data = get_breakpoint_objfile_data (objfile);
3644
3645 if (msym_not_found_p (bp_objfile_data->terminate_msym.minsym))
3646 continue;
3647
3648 if (bp_objfile_data->terminate_msym.minsym == NULL)
3649 {
3650 struct bound_minimal_symbol m;
3651
3652 m = lookup_minimal_symbol (func_name, NULL, objfile);
3653 if (m.minsym == NULL || (MSYMBOL_TYPE (m.minsym) != mst_text
3654 && MSYMBOL_TYPE (m.minsym) != mst_file_text))
3655 {
3656 /* Prevent future lookups in this objfile. */
3657 bp_objfile_data->terminate_msym.minsym = &msym_not_found;
3658 continue;
3659 }
3660 bp_objfile_data->terminate_msym = m;
3661 }
3662
3663 addr = BMSYMBOL_VALUE_ADDRESS (bp_objfile_data->terminate_msym);
3664 b = create_internal_breakpoint (get_objfile_arch (objfile), addr,
3665 bp_std_terminate_master,
3666 &internal_breakpoint_ops);
3667 initialize_explicit_location (&explicit_loc);
3668 explicit_loc.function_name = ASTRDUP (func_name);
3669 b->location = new_explicit_location (&explicit_loc);
3670 b->enable_state = bp_disabled;
3671 }
3672 }
3673 }
3674
3675 /* Install a master breakpoint on the unwinder's debug hook. */
3676
3677 static void
3678 create_exception_master_breakpoint (void)
3679 {
3680 struct objfile *objfile;
3681 const char *const func_name = "_Unwind_DebugHook";
3682
3683 ALL_OBJFILES (objfile)
3684 {
3685 struct breakpoint *b;
3686 struct gdbarch *gdbarch;
3687 struct breakpoint_objfile_data *bp_objfile_data;
3688 CORE_ADDR addr;
3689 struct explicit_location explicit_loc;
3690
3691 bp_objfile_data = get_breakpoint_objfile_data (objfile);
3692
3693 /* We prefer the SystemTap probe point if it exists. */
3694 if (!bp_objfile_data->exception_searched)
3695 {
3696 VEC (probe_p) *ret;
3697
3698 ret = find_probes_in_objfile (objfile, "libgcc", "unwind");
3699
3700 if (ret != NULL)
3701 {
3702 /* We are only interested in checking one element. */
3703 struct probe *p = VEC_index (probe_p, ret, 0);
3704
3705 if (!can_evaluate_probe_arguments (p))
3706 {
3707 /* We cannot use the probe interface here, because it does
3708 not know how to evaluate arguments. */
3709 VEC_free (probe_p, ret);
3710 ret = NULL;
3711 }
3712 }
3713 bp_objfile_data->exception_probes = ret;
3714 bp_objfile_data->exception_searched = 1;
3715 }
3716
3717 if (bp_objfile_data->exception_probes != NULL)
3718 {
3719 struct gdbarch *gdbarch = get_objfile_arch (objfile);
3720 int i;
3721 struct probe *probe;
3722
3723 for (i = 0;
3724 VEC_iterate (probe_p,
3725 bp_objfile_data->exception_probes,
3726 i, probe);
3727 ++i)
3728 {
3729 struct breakpoint *b;
3730
3731 b = create_internal_breakpoint (gdbarch,
3732 get_probe_address (probe,
3733 objfile),
3734 bp_exception_master,
3735 &internal_breakpoint_ops);
3736 b->location = new_probe_location ("-probe-stap libgcc:unwind");
3737 b->enable_state = bp_disabled;
3738 }
3739
3740 continue;
3741 }
3742
3743 /* Otherwise, try the hook function. */
3744
3745 if (msym_not_found_p (bp_objfile_data->exception_msym.minsym))
3746 continue;
3747
3748 gdbarch = get_objfile_arch (objfile);
3749
3750 if (bp_objfile_data->exception_msym.minsym == NULL)
3751 {
3752 struct bound_minimal_symbol debug_hook;
3753
3754 debug_hook = lookup_minimal_symbol (func_name, NULL, objfile);
3755 if (debug_hook.minsym == NULL)
3756 {
3757 bp_objfile_data->exception_msym.minsym = &msym_not_found;
3758 continue;
3759 }
3760
3761 bp_objfile_data->exception_msym = debug_hook;
3762 }
3763
3764 addr = BMSYMBOL_VALUE_ADDRESS (bp_objfile_data->exception_msym);
3765 addr = gdbarch_convert_from_func_ptr_addr (gdbarch, addr,
3766 &current_target);
3767 b = create_internal_breakpoint (gdbarch, addr, bp_exception_master,
3768 &internal_breakpoint_ops);
3769 initialize_explicit_location (&explicit_loc);
3770 explicit_loc.function_name = ASTRDUP (func_name);
3771 b->location = new_explicit_location (&explicit_loc);
3772 b->enable_state = bp_disabled;
3773 }
3774 }
3775
3776 /* Does B have a location spec? */
3777
3778 static int
3779 breakpoint_event_location_empty_p (const struct breakpoint *b)
3780 {
3781 return b->location != NULL && event_location_empty_p (b->location.get ());
3782 }
3783
3784 void
3785 update_breakpoints_after_exec (void)
3786 {
3787 struct breakpoint *b, *b_tmp;
3788 struct bp_location *bploc, **bplocp_tmp;
3789
3790 /* We're about to delete breakpoints from GDB's lists. If the
3791 INSERTED flag is true, GDB will try to lift the breakpoints by
3792 writing the breakpoints' "shadow contents" back into memory. The
3793 "shadow contents" are NOT valid after an exec, so GDB should not
3794 do that. Instead, the target is responsible from marking
3795 breakpoints out as soon as it detects an exec. We don't do that
3796 here instead, because there may be other attempts to delete
3797 breakpoints after detecting an exec and before reaching here. */
3798 ALL_BP_LOCATIONS (bploc, bplocp_tmp)
3799 if (bploc->pspace == current_program_space)
3800 gdb_assert (!bploc->inserted);
3801
3802 ALL_BREAKPOINTS_SAFE (b, b_tmp)
3803 {
3804 if (b->pspace != current_program_space)
3805 continue;
3806
3807 /* Solib breakpoints must be explicitly reset after an exec(). */
3808 if (b->type == bp_shlib_event)
3809 {
3810 delete_breakpoint (b);
3811 continue;
3812 }
3813
3814 /* JIT breakpoints must be explicitly reset after an exec(). */
3815 if (b->type == bp_jit_event)
3816 {
3817 delete_breakpoint (b);
3818 continue;
3819 }
3820
3821 /* Thread event breakpoints must be set anew after an exec(),
3822 as must overlay event and longjmp master breakpoints. */
3823 if (b->type == bp_thread_event || b->type == bp_overlay_event
3824 || b->type == bp_longjmp_master || b->type == bp_std_terminate_master
3825 || b->type == bp_exception_master)
3826 {
3827 delete_breakpoint (b);
3828 continue;
3829 }
3830
3831 /* Step-resume breakpoints are meaningless after an exec(). */
3832 if (b->type == bp_step_resume || b->type == bp_hp_step_resume)
3833 {
3834 delete_breakpoint (b);
3835 continue;
3836 }
3837
3838 /* Just like single-step breakpoints. */
3839 if (b->type == bp_single_step)
3840 {
3841 delete_breakpoint (b);
3842 continue;
3843 }
3844
3845 /* Longjmp and longjmp-resume breakpoints are also meaningless
3846 after an exec. */
3847 if (b->type == bp_longjmp || b->type == bp_longjmp_resume
3848 || b->type == bp_longjmp_call_dummy
3849 || b->type == bp_exception || b->type == bp_exception_resume)
3850 {
3851 delete_breakpoint (b);
3852 continue;
3853 }
3854
3855 if (b->type == bp_catchpoint)
3856 {
3857 /* For now, none of the bp_catchpoint breakpoints need to
3858 do anything at this point. In the future, if some of
3859 the catchpoints need to something, we will need to add
3860 a new method, and call this method from here. */
3861 continue;
3862 }
3863
3864 /* bp_finish is a special case. The only way we ought to be able
3865 to see one of these when an exec() has happened, is if the user
3866 caught a vfork, and then said "finish". Ordinarily a finish just
3867 carries them to the call-site of the current callee, by setting
3868 a temporary bp there and resuming. But in this case, the finish
3869 will carry them entirely through the vfork & exec.
3870
3871 We don't want to allow a bp_finish to remain inserted now. But
3872 we can't safely delete it, 'cause finish_command has a handle to
3873 the bp on a bpstat, and will later want to delete it. There's a
3874 chance (and I've seen it happen) that if we delete the bp_finish
3875 here, that its storage will get reused by the time finish_command
3876 gets 'round to deleting the "use to be a bp_finish" breakpoint.
3877 We really must allow finish_command to delete a bp_finish.
3878
3879 In the absence of a general solution for the "how do we know
3880 it's safe to delete something others may have handles to?"
3881 problem, what we'll do here is just uninsert the bp_finish, and
3882 let finish_command delete it.
3883
3884 (We know the bp_finish is "doomed" in the sense that it's
3885 momentary, and will be deleted as soon as finish_command sees
3886 the inferior stopped. So it doesn't matter that the bp's
3887 address is probably bogus in the new a.out, unlike e.g., the
3888 solib breakpoints.) */
3889
3890 if (b->type == bp_finish)
3891 {
3892 continue;
3893 }
3894
3895 /* Without a symbolic address, we have little hope of the
3896 pre-exec() address meaning the same thing in the post-exec()
3897 a.out. */
3898 if (breakpoint_event_location_empty_p (b))
3899 {
3900 delete_breakpoint (b);
3901 continue;
3902 }
3903 }
3904 }
3905
3906 int
3907 detach_breakpoints (ptid_t ptid)
3908 {
3909 struct bp_location *bl, **blp_tmp;
3910 int val = 0;
3911 scoped_restore save_inferior_ptid = make_scoped_restore (&inferior_ptid);
3912 struct inferior *inf = current_inferior ();
3913
3914 if (ptid_get_pid (ptid) == ptid_get_pid (inferior_ptid))
3915 error (_("Cannot detach breakpoints of inferior_ptid"));
3916
3917 /* Set inferior_ptid; remove_breakpoint_1 uses this global. */
3918 inferior_ptid = ptid;
3919 ALL_BP_LOCATIONS (bl, blp_tmp)
3920 {
3921 if (bl->pspace != inf->pspace)
3922 continue;
3923
3924 /* This function must physically remove breakpoints locations
3925 from the specified ptid, without modifying the breakpoint
3926 package's state. Locations of type bp_loc_other are only
3927 maintained at GDB side. So, there is no need to remove
3928 these bp_loc_other locations. Moreover, removing these
3929 would modify the breakpoint package's state. */
3930 if (bl->loc_type == bp_loc_other)
3931 continue;
3932
3933 if (bl->inserted)
3934 val |= remove_breakpoint_1 (bl, DETACH_BREAKPOINT);
3935 }
3936
3937 return val;
3938 }
3939
3940 /* Remove the breakpoint location BL from the current address space.
3941 Note that this is used to detach breakpoints from a child fork.
3942 When we get here, the child isn't in the inferior list, and neither
3943 do we have objects to represent its address space --- we should
3944 *not* look at bl->pspace->aspace here. */
3945
3946 static int
3947 remove_breakpoint_1 (struct bp_location *bl, enum remove_bp_reason reason)
3948 {
3949 int val;
3950
3951 /* BL is never in moribund_locations by our callers. */
3952 gdb_assert (bl->owner != NULL);
3953
3954 /* The type of none suggests that owner is actually deleted.
3955 This should not ever happen. */
3956 gdb_assert (bl->owner->type != bp_none);
3957
3958 if (bl->loc_type == bp_loc_software_breakpoint
3959 || bl->loc_type == bp_loc_hardware_breakpoint)
3960 {
3961 /* "Normal" instruction breakpoint: either the standard
3962 trap-instruction bp (bp_breakpoint), or a
3963 bp_hardware_breakpoint. */
3964
3965 /* First check to see if we have to handle an overlay. */
3966 if (overlay_debugging == ovly_off
3967 || bl->section == NULL
3968 || !(section_is_overlay (bl->section)))
3969 {
3970 /* No overlay handling: just remove the breakpoint. */
3971
3972 /* If we're trying to uninsert a memory breakpoint that we
3973 know is set in a dynamic object that is marked
3974 shlib_disabled, then either the dynamic object was
3975 removed with "remove-symbol-file" or with
3976 "nosharedlibrary". In the former case, we don't know
3977 whether another dynamic object might have loaded over the
3978 breakpoint's address -- the user might well let us know
3979 about it next with add-symbol-file (the whole point of
3980 add-symbol-file is letting the user manually maintain a
3981 list of dynamically loaded objects). If we have the
3982 breakpoint's shadow memory, that is, this is a software
3983 breakpoint managed by GDB, check whether the breakpoint
3984 is still inserted in memory, to avoid overwriting wrong
3985 code with stale saved shadow contents. Note that HW
3986 breakpoints don't have shadow memory, as they're
3987 implemented using a mechanism that is not dependent on
3988 being able to modify the target's memory, and as such
3989 they should always be removed. */
3990 if (bl->shlib_disabled
3991 && bl->target_info.shadow_len != 0
3992 && !memory_validate_breakpoint (bl->gdbarch, &bl->target_info))
3993 val = 0;
3994 else
3995 val = bl->owner->ops->remove_location (bl, reason);
3996 }
3997 else
3998 {
3999 /* This breakpoint is in an overlay section.
4000 Did we set a breakpoint at the LMA? */
4001 if (!overlay_events_enabled)
4002 {
4003 /* Yes -- overlay event support is not active, so we
4004 should have set a breakpoint at the LMA. Remove it.
4005 */
4006 /* Ignore any failures: if the LMA is in ROM, we will
4007 have already warned when we failed to insert it. */
4008 if (bl->loc_type == bp_loc_hardware_breakpoint)
4009 target_remove_hw_breakpoint (bl->gdbarch,
4010 &bl->overlay_target_info);
4011 else
4012 target_remove_breakpoint (bl->gdbarch,
4013 &bl->overlay_target_info,
4014 reason);
4015 }
4016 /* Did we set a breakpoint at the VMA?
4017 If so, we will have marked the breakpoint 'inserted'. */
4018 if (bl->inserted)
4019 {
4020 /* Yes -- remove it. Previously we did not bother to
4021 remove the breakpoint if the section had been
4022 unmapped, but let's not rely on that being safe. We
4023 don't know what the overlay manager might do. */
4024
4025 /* However, we should remove *software* breakpoints only
4026 if the section is still mapped, or else we overwrite
4027 wrong code with the saved shadow contents. */
4028 if (bl->loc_type == bp_loc_hardware_breakpoint
4029 || section_is_mapped (bl->section))
4030 val = bl->owner->ops->remove_location (bl, reason);
4031 else
4032 val = 0;
4033 }
4034 else
4035 {
4036 /* No -- not inserted, so no need to remove. No error. */
4037 val = 0;
4038 }
4039 }
4040
4041 /* In some cases, we might not be able to remove a breakpoint in
4042 a shared library that has already been removed, but we have
4043 not yet processed the shlib unload event. Similarly for an
4044 unloaded add-symbol-file object - the user might not yet have
4045 had the chance to remove-symbol-file it. shlib_disabled will
4046 be set if the library/object has already been removed, but
4047 the breakpoint hasn't been uninserted yet, e.g., after
4048 "nosharedlibrary" or "remove-symbol-file" with breakpoints
4049 always-inserted mode. */
4050 if (val
4051 && (bl->loc_type == bp_loc_software_breakpoint
4052 && (bl->shlib_disabled
4053 || solib_name_from_address (bl->pspace, bl->address)
4054 || shared_objfile_contains_address_p (bl->pspace,
4055 bl->address))))
4056 val = 0;
4057
4058 if (val)
4059 return val;
4060 bl->inserted = (reason == DETACH_BREAKPOINT);
4061 }
4062 else if (bl->loc_type == bp_loc_hardware_watchpoint)
4063 {
4064 gdb_assert (bl->owner->ops != NULL
4065 && bl->owner->ops->remove_location != NULL);
4066
4067 bl->inserted = (reason == DETACH_BREAKPOINT);
4068 bl->owner->ops->remove_location (bl, reason);
4069
4070 /* Failure to remove any of the hardware watchpoints comes here. */
4071 if (reason == REMOVE_BREAKPOINT && bl->inserted)
4072 warning (_("Could not remove hardware watchpoint %d."),
4073 bl->owner->number);
4074 }
4075 else if (bl->owner->type == bp_catchpoint
4076 && breakpoint_enabled (bl->owner)
4077 && !bl->duplicate)
4078 {
4079 gdb_assert (bl->owner->ops != NULL
4080 && bl->owner->ops->remove_location != NULL);
4081
4082 val = bl->owner->ops->remove_location (bl, reason);
4083 if (val)
4084 return val;
4085
4086 bl->inserted = (reason == DETACH_BREAKPOINT);
4087 }
4088
4089 return 0;
4090 }
4091
4092 static int
4093 remove_breakpoint (struct bp_location *bl)
4094 {
4095 /* BL is never in moribund_locations by our callers. */
4096 gdb_assert (bl->owner != NULL);
4097
4098 /* The type of none suggests that owner is actually deleted.
4099 This should not ever happen. */
4100 gdb_assert (bl->owner->type != bp_none);
4101
4102 scoped_restore_current_pspace_and_thread restore_pspace_thread;
4103
4104 switch_to_program_space_and_thread (bl->pspace);
4105
4106 return remove_breakpoint_1 (bl, REMOVE_BREAKPOINT);
4107 }
4108
4109 /* Clear the "inserted" flag in all breakpoints. */
4110
4111 void
4112 mark_breakpoints_out (void)
4113 {
4114 struct bp_location *bl, **blp_tmp;
4115
4116 ALL_BP_LOCATIONS (bl, blp_tmp)
4117 if (bl->pspace == current_program_space)
4118 bl->inserted = 0;
4119 }
4120
4121 /* Clear the "inserted" flag in all breakpoints and delete any
4122 breakpoints which should go away between runs of the program.
4123
4124 Plus other such housekeeping that has to be done for breakpoints
4125 between runs.
4126
4127 Note: this function gets called at the end of a run (by
4128 generic_mourn_inferior) and when a run begins (by
4129 init_wait_for_inferior). */
4130
4131
4132
4133 void
4134 breakpoint_init_inferior (enum inf_context context)
4135 {
4136 struct breakpoint *b, *b_tmp;
4137 struct bp_location *bl;
4138 int ix;
4139 struct program_space *pspace = current_program_space;
4140
4141 /* If breakpoint locations are shared across processes, then there's
4142 nothing to do. */
4143 if (gdbarch_has_global_breakpoints (target_gdbarch ()))
4144 return;
4145
4146 mark_breakpoints_out ();
4147
4148 ALL_BREAKPOINTS_SAFE (b, b_tmp)
4149 {
4150 if (b->loc && b->loc->pspace != pspace)
4151 continue;
4152
4153 switch (b->type)
4154 {
4155 case bp_call_dummy:
4156 case bp_longjmp_call_dummy:
4157
4158 /* If the call dummy breakpoint is at the entry point it will
4159 cause problems when the inferior is rerun, so we better get
4160 rid of it. */
4161
4162 case bp_watchpoint_scope:
4163
4164 /* Also get rid of scope breakpoints. */
4165
4166 case bp_shlib_event:
4167
4168 /* Also remove solib event breakpoints. Their addresses may
4169 have changed since the last time we ran the program.
4170 Actually we may now be debugging against different target;
4171 and so the solib backend that installed this breakpoint may
4172 not be used in by the target. E.g.,
4173
4174 (gdb) file prog-linux
4175 (gdb) run # native linux target
4176 ...
4177 (gdb) kill
4178 (gdb) file prog-win.exe
4179 (gdb) tar rem :9999 # remote Windows gdbserver.
4180 */
4181
4182 case bp_step_resume:
4183
4184 /* Also remove step-resume breakpoints. */
4185
4186 case bp_single_step:
4187
4188 /* Also remove single-step breakpoints. */
4189
4190 delete_breakpoint (b);
4191 break;
4192
4193 case bp_watchpoint:
4194 case bp_hardware_watchpoint:
4195 case bp_read_watchpoint:
4196 case bp_access_watchpoint:
4197 {
4198 struct watchpoint *w = (struct watchpoint *) b;
4199
4200 /* Likewise for watchpoints on local expressions. */
4201 if (w->exp_valid_block != NULL)
4202 delete_breakpoint (b);
4203 else
4204 {
4205 /* Get rid of existing locations, which are no longer
4206 valid. New ones will be created in
4207 update_watchpoint, when the inferior is restarted.
4208 The next update_global_location_list call will
4209 garbage collect them. */
4210 b->loc = NULL;
4211
4212 if (context == inf_starting)
4213 {
4214 /* Reset val field to force reread of starting value in
4215 insert_breakpoints. */
4216 if (w->val)
4217 value_free (w->val);
4218 w->val = NULL;
4219 w->val_valid = 0;
4220 }
4221 }
4222 }
4223 break;
4224 default:
4225 break;
4226 }
4227 }
4228
4229 /* Get rid of the moribund locations. */
4230 for (ix = 0; VEC_iterate (bp_location_p, moribund_locations, ix, bl); ++ix)
4231 decref_bp_location (&bl);
4232 VEC_free (bp_location_p, moribund_locations);
4233 }
4234
4235 /* These functions concern about actual breakpoints inserted in the
4236 target --- to e.g. check if we need to do decr_pc adjustment or if
4237 we need to hop over the bkpt --- so we check for address space
4238 match, not program space. */
4239
4240 /* breakpoint_here_p (PC) returns non-zero if an enabled breakpoint
4241 exists at PC. It returns ordinary_breakpoint_here if it's an
4242 ordinary breakpoint, or permanent_breakpoint_here if it's a
4243 permanent breakpoint.
4244 - When continuing from a location with an ordinary breakpoint, we
4245 actually single step once before calling insert_breakpoints.
4246 - When continuing from a location with a permanent breakpoint, we
4247 need to use the `SKIP_PERMANENT_BREAKPOINT' macro, provided by
4248 the target, to advance the PC past the breakpoint. */
4249
4250 enum breakpoint_here
4251 breakpoint_here_p (struct address_space *aspace, CORE_ADDR pc)
4252 {
4253 struct bp_location *bl, **blp_tmp;
4254 int any_breakpoint_here = 0;
4255
4256 ALL_BP_LOCATIONS (bl, blp_tmp)
4257 {
4258 if (bl->loc_type != bp_loc_software_breakpoint
4259 && bl->loc_type != bp_loc_hardware_breakpoint)
4260 continue;
4261
4262 /* ALL_BP_LOCATIONS bp_location has BL->OWNER always non-NULL. */
4263 if ((breakpoint_enabled (bl->owner)
4264 || bl->permanent)
4265 && breakpoint_location_address_match (bl, aspace, pc))
4266 {
4267 if (overlay_debugging
4268 && section_is_overlay (bl->section)
4269 && !section_is_mapped (bl->section))
4270 continue; /* unmapped overlay -- can't be a match */
4271 else if (bl->permanent)
4272 return permanent_breakpoint_here;
4273 else
4274 any_breakpoint_here = 1;
4275 }
4276 }
4277
4278 return any_breakpoint_here ? ordinary_breakpoint_here : no_breakpoint_here;
4279 }
4280
4281 /* See breakpoint.h. */
4282
4283 int
4284 breakpoint_in_range_p (struct address_space *aspace,
4285 CORE_ADDR addr, ULONGEST len)
4286 {
4287 struct bp_location *bl, **blp_tmp;
4288
4289 ALL_BP_LOCATIONS (bl, blp_tmp)
4290 {
4291 if (bl->loc_type != bp_loc_software_breakpoint
4292 && bl->loc_type != bp_loc_hardware_breakpoint)
4293 continue;
4294
4295 if ((breakpoint_enabled (bl->owner)
4296 || bl->permanent)
4297 && breakpoint_location_address_range_overlap (bl, aspace,
4298 addr, len))
4299 {
4300 if (overlay_debugging
4301 && section_is_overlay (bl->section)
4302 && !section_is_mapped (bl->section))
4303 {
4304 /* Unmapped overlay -- can't be a match. */
4305 continue;
4306 }
4307
4308 return 1;
4309 }
4310 }
4311
4312 return 0;
4313 }
4314
4315 /* Return true if there's a moribund breakpoint at PC. */
4316
4317 int
4318 moribund_breakpoint_here_p (struct address_space *aspace, CORE_ADDR pc)
4319 {
4320 struct bp_location *loc;
4321 int ix;
4322
4323 for (ix = 0; VEC_iterate (bp_location_p, moribund_locations, ix, loc); ++ix)
4324 if (breakpoint_location_address_match (loc, aspace, pc))
4325 return 1;
4326
4327 return 0;
4328 }
4329
4330 /* Returns non-zero iff BL is inserted at PC, in address space
4331 ASPACE. */
4332
4333 static int
4334 bp_location_inserted_here_p (struct bp_location *bl,
4335 struct address_space *aspace, CORE_ADDR pc)
4336 {
4337 if (bl->inserted
4338 && breakpoint_address_match (bl->pspace->aspace, bl->address,
4339 aspace, pc))
4340 {
4341 if (overlay_debugging
4342 && section_is_overlay (bl->section)
4343 && !section_is_mapped (bl->section))
4344 return 0; /* unmapped overlay -- can't be a match */
4345 else
4346 return 1;
4347 }
4348 return 0;
4349 }
4350
4351 /* Returns non-zero iff there's a breakpoint inserted at PC. */
4352
4353 int
4354 breakpoint_inserted_here_p (struct address_space *aspace, CORE_ADDR pc)
4355 {
4356 struct bp_location **blp, **blp_tmp = NULL;
4357
4358 ALL_BP_LOCATIONS_AT_ADDR (blp, blp_tmp, pc)
4359 {
4360 struct bp_location *bl = *blp;
4361
4362 if (bl->loc_type != bp_loc_software_breakpoint
4363 && bl->loc_type != bp_loc_hardware_breakpoint)
4364 continue;
4365
4366 if (bp_location_inserted_here_p (bl, aspace, pc))
4367 return 1;
4368 }
4369 return 0;
4370 }
4371
4372 /* This function returns non-zero iff there is a software breakpoint
4373 inserted at PC. */
4374
4375 int
4376 software_breakpoint_inserted_here_p (struct address_space *aspace,
4377 CORE_ADDR pc)
4378 {
4379 struct bp_location **blp, **blp_tmp = NULL;
4380
4381 ALL_BP_LOCATIONS_AT_ADDR (blp, blp_tmp, pc)
4382 {
4383 struct bp_location *bl = *blp;
4384
4385 if (bl->loc_type != bp_loc_software_breakpoint)
4386 continue;
4387
4388 if (bp_location_inserted_here_p (bl, aspace, pc))
4389 return 1;
4390 }
4391
4392 return 0;
4393 }
4394
4395 /* See breakpoint.h. */
4396
4397 int
4398 hardware_breakpoint_inserted_here_p (struct address_space *aspace,
4399 CORE_ADDR pc)
4400 {
4401 struct bp_location **blp, **blp_tmp = NULL;
4402
4403 ALL_BP_LOCATIONS_AT_ADDR (blp, blp_tmp, pc)
4404 {
4405 struct bp_location *bl = *blp;
4406
4407 if (bl->loc_type != bp_loc_hardware_breakpoint)
4408 continue;
4409
4410 if (bp_location_inserted_here_p (bl, aspace, pc))
4411 return 1;
4412 }
4413
4414 return 0;
4415 }
4416
4417 int
4418 hardware_watchpoint_inserted_in_range (struct address_space *aspace,
4419 CORE_ADDR addr, ULONGEST len)
4420 {
4421 struct breakpoint *bpt;
4422
4423 ALL_BREAKPOINTS (bpt)
4424 {
4425 struct bp_location *loc;
4426
4427 if (bpt->type != bp_hardware_watchpoint
4428 && bpt->type != bp_access_watchpoint)
4429 continue;
4430
4431 if (!breakpoint_enabled (bpt))
4432 continue;
4433
4434 for (loc = bpt->loc; loc; loc = loc->next)
4435 if (loc->pspace->aspace == aspace && loc->inserted)
4436 {
4437 CORE_ADDR l, h;
4438
4439 /* Check for intersection. */
4440 l = std::max<CORE_ADDR> (loc->address, addr);
4441 h = std::min<CORE_ADDR> (loc->address + loc->length, addr + len);
4442 if (l < h)
4443 return 1;
4444 }
4445 }
4446 return 0;
4447 }
4448 \f
4449
4450 /* bpstat stuff. External routines' interfaces are documented
4451 in breakpoint.h. */
4452
4453 int
4454 is_catchpoint (struct breakpoint *ep)
4455 {
4456 return (ep->type == bp_catchpoint);
4457 }
4458
4459 /* Frees any storage that is part of a bpstat. Does not walk the
4460 'next' chain. */
4461
4462 static void
4463 bpstat_free (bpstat bs)
4464 {
4465 if (bs->old_val != NULL)
4466 value_free (bs->old_val);
4467 decref_counted_command_line (&bs->commands);
4468 decref_bp_location (&bs->bp_location_at);
4469 xfree (bs);
4470 }
4471
4472 /* Clear a bpstat so that it says we are not at any breakpoint.
4473 Also free any storage that is part of a bpstat. */
4474
4475 void
4476 bpstat_clear (bpstat *bsp)
4477 {
4478 bpstat p;
4479 bpstat q;
4480
4481 if (bsp == 0)
4482 return;
4483 p = *bsp;
4484 while (p != NULL)
4485 {
4486 q = p->next;
4487 bpstat_free (p);
4488 p = q;
4489 }
4490 *bsp = NULL;
4491 }
4492
4493 /* Return a copy of a bpstat. Like "bs1 = bs2" but all storage that
4494 is part of the bpstat is copied as well. */
4495
4496 bpstat
4497 bpstat_copy (bpstat bs)
4498 {
4499 bpstat p = NULL;
4500 bpstat tmp;
4501 bpstat retval = NULL;
4502
4503 if (bs == NULL)
4504 return bs;
4505
4506 for (; bs != NULL; bs = bs->next)
4507 {
4508 tmp = (bpstat) xmalloc (sizeof (*tmp));
4509 memcpy (tmp, bs, sizeof (*tmp));
4510 incref_counted_command_line (tmp->commands);
4511 incref_bp_location (tmp->bp_location_at);
4512 if (bs->old_val != NULL)
4513 {
4514 tmp->old_val = value_copy (bs->old_val);
4515 release_value (tmp->old_val);
4516 }
4517
4518 if (p == NULL)
4519 /* This is the first thing in the chain. */
4520 retval = tmp;
4521 else
4522 p->next = tmp;
4523 p = tmp;
4524 }
4525 p->next = NULL;
4526 return retval;
4527 }
4528
4529 /* Find the bpstat associated with this breakpoint. */
4530
4531 bpstat
4532 bpstat_find_breakpoint (bpstat bsp, struct breakpoint *breakpoint)
4533 {
4534 if (bsp == NULL)
4535 return NULL;
4536
4537 for (; bsp != NULL; bsp = bsp->next)
4538 {
4539 if (bsp->breakpoint_at == breakpoint)
4540 return bsp;
4541 }
4542 return NULL;
4543 }
4544
4545 /* See breakpoint.h. */
4546
4547 int
4548 bpstat_explains_signal (bpstat bsp, enum gdb_signal sig)
4549 {
4550 for (; bsp != NULL; bsp = bsp->next)
4551 {
4552 if (bsp->breakpoint_at == NULL)
4553 {
4554 /* A moribund location can never explain a signal other than
4555 GDB_SIGNAL_TRAP. */
4556 if (sig == GDB_SIGNAL_TRAP)
4557 return 1;
4558 }
4559 else
4560 {
4561 if (bsp->breakpoint_at->ops->explains_signal (bsp->breakpoint_at,
4562 sig))
4563 return 1;
4564 }
4565 }
4566
4567 return 0;
4568 }
4569
4570 /* Put in *NUM the breakpoint number of the first breakpoint we are
4571 stopped at. *BSP upon return is a bpstat which points to the
4572 remaining breakpoints stopped at (but which is not guaranteed to be
4573 good for anything but further calls to bpstat_num).
4574
4575 Return 0 if passed a bpstat which does not indicate any breakpoints.
4576 Return -1 if stopped at a breakpoint that has been deleted since
4577 we set it.
4578 Return 1 otherwise. */
4579
4580 int
4581 bpstat_num (bpstat *bsp, int *num)
4582 {
4583 struct breakpoint *b;
4584
4585 if ((*bsp) == NULL)
4586 return 0; /* No more breakpoint values */
4587
4588 /* We assume we'll never have several bpstats that correspond to a
4589 single breakpoint -- otherwise, this function might return the
4590 same number more than once and this will look ugly. */
4591 b = (*bsp)->breakpoint_at;
4592 *bsp = (*bsp)->next;
4593 if (b == NULL)
4594 return -1; /* breakpoint that's been deleted since */
4595
4596 *num = b->number; /* We have its number */
4597 return 1;
4598 }
4599
4600 /* See breakpoint.h. */
4601
4602 void
4603 bpstat_clear_actions (void)
4604 {
4605 struct thread_info *tp;
4606 bpstat bs;
4607
4608 if (ptid_equal (inferior_ptid, null_ptid))
4609 return;
4610
4611 tp = find_thread_ptid (inferior_ptid);
4612 if (tp == NULL)
4613 return;
4614
4615 for (bs = tp->control.stop_bpstat; bs != NULL; bs = bs->next)
4616 {
4617 decref_counted_command_line (&bs->commands);
4618
4619 if (bs->old_val != NULL)
4620 {
4621 value_free (bs->old_val);
4622 bs->old_val = NULL;
4623 }
4624 }
4625 }
4626
4627 /* Called when a command is about to proceed the inferior. */
4628
4629 static void
4630 breakpoint_about_to_proceed (void)
4631 {
4632 if (!ptid_equal (inferior_ptid, null_ptid))
4633 {
4634 struct thread_info *tp = inferior_thread ();
4635
4636 /* Allow inferior function calls in breakpoint commands to not
4637 interrupt the command list. When the call finishes
4638 successfully, the inferior will be standing at the same
4639 breakpoint as if nothing happened. */
4640 if (tp->control.in_infcall)
4641 return;
4642 }
4643
4644 breakpoint_proceeded = 1;
4645 }
4646
4647 /* Stub for cleaning up our state if we error-out of a breakpoint
4648 command. */
4649 static void
4650 cleanup_executing_breakpoints (void *ignore)
4651 {
4652 executing_breakpoint_commands = 0;
4653 }
4654
4655 /* Return non-zero iff CMD as the first line of a command sequence is `silent'
4656 or its equivalent. */
4657
4658 static int
4659 command_line_is_silent (struct command_line *cmd)
4660 {
4661 return cmd && (strcmp ("silent", cmd->line) == 0);
4662 }
4663
4664 /* Execute all the commands associated with all the breakpoints at
4665 this location. Any of these commands could cause the process to
4666 proceed beyond this point, etc. We look out for such changes by
4667 checking the global "breakpoint_proceeded" after each command.
4668
4669 Returns true if a breakpoint command resumed the inferior. In that
4670 case, it is the caller's responsibility to recall it again with the
4671 bpstat of the current thread. */
4672
4673 static int
4674 bpstat_do_actions_1 (bpstat *bsp)
4675 {
4676 bpstat bs;
4677 struct cleanup *old_chain;
4678 int again = 0;
4679
4680 /* Avoid endless recursion if a `source' command is contained
4681 in bs->commands. */
4682 if (executing_breakpoint_commands)
4683 return 0;
4684
4685 executing_breakpoint_commands = 1;
4686 old_chain = make_cleanup (cleanup_executing_breakpoints, 0);
4687
4688 scoped_restore preventer = prevent_dont_repeat ();
4689
4690 /* This pointer will iterate over the list of bpstat's. */
4691 bs = *bsp;
4692
4693 breakpoint_proceeded = 0;
4694 for (; bs != NULL; bs = bs->next)
4695 {
4696 struct counted_command_line *ccmd;
4697 struct command_line *cmd;
4698 struct cleanup *this_cmd_tree_chain;
4699
4700 /* Take ownership of the BSP's command tree, if it has one.
4701
4702 The command tree could legitimately contain commands like
4703 'step' and 'next', which call clear_proceed_status, which
4704 frees stop_bpstat's command tree. To make sure this doesn't
4705 free the tree we're executing out from under us, we need to
4706 take ownership of the tree ourselves. Since a given bpstat's
4707 commands are only executed once, we don't need to copy it; we
4708 can clear the pointer in the bpstat, and make sure we free
4709 the tree when we're done. */
4710 ccmd = bs->commands;
4711 bs->commands = NULL;
4712 this_cmd_tree_chain = make_cleanup_decref_counted_command_line (&ccmd);
4713 cmd = ccmd ? ccmd->commands : NULL;
4714 if (command_line_is_silent (cmd))
4715 {
4716 /* The action has been already done by bpstat_stop_status. */
4717 cmd = cmd->next;
4718 }
4719
4720 while (cmd != NULL)
4721 {
4722 execute_control_command (cmd);
4723
4724 if (breakpoint_proceeded)
4725 break;
4726 else
4727 cmd = cmd->next;
4728 }
4729
4730 /* We can free this command tree now. */
4731 do_cleanups (this_cmd_tree_chain);
4732
4733 if (breakpoint_proceeded)
4734 {
4735 if (current_ui->async)
4736 /* If we are in async mode, then the target might be still
4737 running, not stopped at any breakpoint, so nothing for
4738 us to do here -- just return to the event loop. */
4739 ;
4740 else
4741 /* In sync mode, when execute_control_command returns
4742 we're already standing on the next breakpoint.
4743 Breakpoint commands for that stop were not run, since
4744 execute_command does not run breakpoint commands --
4745 only command_line_handler does, but that one is not
4746 involved in execution of breakpoint commands. So, we
4747 can now execute breakpoint commands. It should be
4748 noted that making execute_command do bpstat actions is
4749 not an option -- in this case we'll have recursive
4750 invocation of bpstat for each breakpoint with a
4751 command, and can easily blow up GDB stack. Instead, we
4752 return true, which will trigger the caller to recall us
4753 with the new stop_bpstat. */
4754 again = 1;
4755 break;
4756 }
4757 }
4758 do_cleanups (old_chain);
4759 return again;
4760 }
4761
4762 void
4763 bpstat_do_actions (void)
4764 {
4765 struct cleanup *cleanup_if_error = make_bpstat_clear_actions_cleanup ();
4766
4767 /* Do any commands attached to breakpoint we are stopped at. */
4768 while (!ptid_equal (inferior_ptid, null_ptid)
4769 && target_has_execution
4770 && !is_exited (inferior_ptid)
4771 && !is_executing (inferior_ptid))
4772 /* Since in sync mode, bpstat_do_actions may resume the inferior,
4773 and only return when it is stopped at the next breakpoint, we
4774 keep doing breakpoint actions until it returns false to
4775 indicate the inferior was not resumed. */
4776 if (!bpstat_do_actions_1 (&inferior_thread ()->control.stop_bpstat))
4777 break;
4778
4779 discard_cleanups (cleanup_if_error);
4780 }
4781
4782 /* Print out the (old or new) value associated with a watchpoint. */
4783
4784 static void
4785 watchpoint_value_print (struct value *val, struct ui_file *stream)
4786 {
4787 if (val == NULL)
4788 fprintf_unfiltered (stream, _("<unreadable>"));
4789 else
4790 {
4791 struct value_print_options opts;
4792 get_user_print_options (&opts);
4793 value_print (val, stream, &opts);
4794 }
4795 }
4796
4797 /* Print the "Thread ID hit" part of "Thread ID hit Breakpoint N" if
4798 debugging multiple threads. */
4799
4800 void
4801 maybe_print_thread_hit_breakpoint (struct ui_out *uiout)
4802 {
4803 if (uiout->is_mi_like_p ())
4804 return;
4805
4806 uiout->text ("\n");
4807
4808 if (show_thread_that_caused_stop ())
4809 {
4810 const char *name;
4811 struct thread_info *thr = inferior_thread ();
4812
4813 uiout->text ("Thread ");
4814 uiout->field_fmt ("thread-id", "%s", print_thread_id (thr));
4815
4816 name = thr->name != NULL ? thr->name : target_thread_name (thr);
4817 if (name != NULL)
4818 {
4819 uiout->text (" \"");
4820 uiout->field_fmt ("name", "%s", name);
4821 uiout->text ("\"");
4822 }
4823
4824 uiout->text (" hit ");
4825 }
4826 }
4827
4828 /* Generic routine for printing messages indicating why we
4829 stopped. The behavior of this function depends on the value
4830 'print_it' in the bpstat structure. Under some circumstances we
4831 may decide not to print anything here and delegate the task to
4832 normal_stop(). */
4833
4834 static enum print_stop_action
4835 print_bp_stop_message (bpstat bs)
4836 {
4837 switch (bs->print_it)
4838 {
4839 case print_it_noop:
4840 /* Nothing should be printed for this bpstat entry. */
4841 return PRINT_UNKNOWN;
4842 break;
4843
4844 case print_it_done:
4845 /* We still want to print the frame, but we already printed the
4846 relevant messages. */
4847 return PRINT_SRC_AND_LOC;
4848 break;
4849
4850 case print_it_normal:
4851 {
4852 struct breakpoint *b = bs->breakpoint_at;
4853
4854 /* bs->breakpoint_at can be NULL if it was a momentary breakpoint
4855 which has since been deleted. */
4856 if (b == NULL)
4857 return PRINT_UNKNOWN;
4858
4859 /* Normal case. Call the breakpoint's print_it method. */
4860 return b->ops->print_it (bs);
4861 }
4862 break;
4863
4864 default:
4865 internal_error (__FILE__, __LINE__,
4866 _("print_bp_stop_message: unrecognized enum value"));
4867 break;
4868 }
4869 }
4870
4871 /* A helper function that prints a shared library stopped event. */
4872
4873 static void
4874 print_solib_event (int is_catchpoint)
4875 {
4876 int any_deleted
4877 = !VEC_empty (char_ptr, current_program_space->deleted_solibs);
4878 int any_added
4879 = !VEC_empty (so_list_ptr, current_program_space->added_solibs);
4880
4881 if (!is_catchpoint)
4882 {
4883 if (any_added || any_deleted)
4884 current_uiout->text (_("Stopped due to shared library event:\n"));
4885 else
4886 current_uiout->text (_("Stopped due to shared library event (no "
4887 "libraries added or removed)\n"));
4888 }
4889
4890 if (current_uiout->is_mi_like_p ())
4891 current_uiout->field_string ("reason",
4892 async_reason_lookup (EXEC_ASYNC_SOLIB_EVENT));
4893
4894 if (any_deleted)
4895 {
4896 char *name;
4897 int ix;
4898
4899 current_uiout->text (_(" Inferior unloaded "));
4900 ui_out_emit_list list_emitter (current_uiout, "removed");
4901 for (ix = 0;
4902 VEC_iterate (char_ptr, current_program_space->deleted_solibs,
4903 ix, name);
4904 ++ix)
4905 {
4906 if (ix > 0)
4907 current_uiout->text (" ");
4908 current_uiout->field_string ("library", name);
4909 current_uiout->text ("\n");
4910 }
4911 }
4912
4913 if (any_added)
4914 {
4915 struct so_list *iter;
4916 int ix;
4917
4918 current_uiout->text (_(" Inferior loaded "));
4919 ui_out_emit_list list_emitter (current_uiout, "added");
4920 for (ix = 0;
4921 VEC_iterate (so_list_ptr, current_program_space->added_solibs,
4922 ix, iter);
4923 ++ix)
4924 {
4925 if (ix > 0)
4926 current_uiout->text (" ");
4927 current_uiout->field_string ("library", iter->so_name);
4928 current_uiout->text ("\n");
4929 }
4930 }
4931 }
4932
4933 /* Print a message indicating what happened. This is called from
4934 normal_stop(). The input to this routine is the head of the bpstat
4935 list - a list of the eventpoints that caused this stop. KIND is
4936 the target_waitkind for the stopping event. This
4937 routine calls the generic print routine for printing a message
4938 about reasons for stopping. This will print (for example) the
4939 "Breakpoint n," part of the output. The return value of this
4940 routine is one of:
4941
4942 PRINT_UNKNOWN: Means we printed nothing.
4943 PRINT_SRC_AND_LOC: Means we printed something, and expect subsequent
4944 code to print the location. An example is
4945 "Breakpoint 1, " which should be followed by
4946 the location.
4947 PRINT_SRC_ONLY: Means we printed something, but there is no need
4948 to also print the location part of the message.
4949 An example is the catch/throw messages, which
4950 don't require a location appended to the end.
4951 PRINT_NOTHING: We have done some printing and we don't need any
4952 further info to be printed. */
4953
4954 enum print_stop_action
4955 bpstat_print (bpstat bs, int kind)
4956 {
4957 enum print_stop_action val;
4958
4959 /* Maybe another breakpoint in the chain caused us to stop.
4960 (Currently all watchpoints go on the bpstat whether hit or not.
4961 That probably could (should) be changed, provided care is taken
4962 with respect to bpstat_explains_signal). */
4963 for (; bs; bs = bs->next)
4964 {
4965 val = print_bp_stop_message (bs);
4966 if (val == PRINT_SRC_ONLY
4967 || val == PRINT_SRC_AND_LOC
4968 || val == PRINT_NOTHING)
4969 return val;
4970 }
4971
4972 /* If we had hit a shared library event breakpoint,
4973 print_bp_stop_message would print out this message. If we hit an
4974 OS-level shared library event, do the same thing. */
4975 if (kind == TARGET_WAITKIND_LOADED)
4976 {
4977 print_solib_event (0);
4978 return PRINT_NOTHING;
4979 }
4980
4981 /* We reached the end of the chain, or we got a null BS to start
4982 with and nothing was printed. */
4983 return PRINT_UNKNOWN;
4984 }
4985
4986 /* Evaluate the expression EXP and return 1 if value is zero.
4987 This returns the inverse of the condition because it is called
4988 from catch_errors which returns 0 if an exception happened, and if an
4989 exception happens we want execution to stop.
4990 The argument is a "struct expression *" that has been cast to a
4991 "void *" to make it pass through catch_errors. */
4992
4993 static int
4994 breakpoint_cond_eval (void *exp)
4995 {
4996 struct value *mark = value_mark ();
4997 int i = !value_true (evaluate_expression ((struct expression *) exp));
4998
4999 value_free_to_mark (mark);
5000 return i;
5001 }
5002
5003 /* Allocate a new bpstat. Link it to the FIFO list by BS_LINK_POINTER. */
5004
5005 static bpstat
5006 bpstat_alloc (struct bp_location *bl, bpstat **bs_link_pointer)
5007 {
5008 bpstat bs;
5009
5010 bs = (bpstat) xmalloc (sizeof (*bs));
5011 bs->next = NULL;
5012 **bs_link_pointer = bs;
5013 *bs_link_pointer = &bs->next;
5014 bs->breakpoint_at = bl->owner;
5015 bs->bp_location_at = bl;
5016 incref_bp_location (bl);
5017 /* If the condition is false, etc., don't do the commands. */
5018 bs->commands = NULL;
5019 bs->old_val = NULL;
5020 bs->print_it = print_it_normal;
5021 return bs;
5022 }
5023 \f
5024 /* The target has stopped with waitstatus WS. Check if any hardware
5025 watchpoints have triggered, according to the target. */
5026
5027 int
5028 watchpoints_triggered (struct target_waitstatus *ws)
5029 {
5030 int stopped_by_watchpoint = target_stopped_by_watchpoint ();
5031 CORE_ADDR addr;
5032 struct breakpoint *b;
5033
5034 if (!stopped_by_watchpoint)
5035 {
5036 /* We were not stopped by a watchpoint. Mark all watchpoints
5037 as not triggered. */
5038 ALL_BREAKPOINTS (b)
5039 if (is_hardware_watchpoint (b))
5040 {
5041 struct watchpoint *w = (struct watchpoint *) b;
5042
5043 w->watchpoint_triggered = watch_triggered_no;
5044 }
5045
5046 return 0;
5047 }
5048
5049 if (!target_stopped_data_address (&current_target, &addr))
5050 {
5051 /* We were stopped by a watchpoint, but we don't know where.
5052 Mark all watchpoints as unknown. */
5053 ALL_BREAKPOINTS (b)
5054 if (is_hardware_watchpoint (b))
5055 {
5056 struct watchpoint *w = (struct watchpoint *) b;
5057
5058 w->watchpoint_triggered = watch_triggered_unknown;
5059 }
5060
5061 return 1;
5062 }
5063
5064 /* The target could report the data address. Mark watchpoints
5065 affected by this data address as triggered, and all others as not
5066 triggered. */
5067
5068 ALL_BREAKPOINTS (b)
5069 if (is_hardware_watchpoint (b))
5070 {
5071 struct watchpoint *w = (struct watchpoint *) b;
5072 struct bp_location *loc;
5073
5074 w->watchpoint_triggered = watch_triggered_no;
5075 for (loc = b->loc; loc; loc = loc->next)
5076 {
5077 if (is_masked_watchpoint (b))
5078 {
5079 CORE_ADDR newaddr = addr & w->hw_wp_mask;
5080 CORE_ADDR start = loc->address & w->hw_wp_mask;
5081
5082 if (newaddr == start)
5083 {
5084 w->watchpoint_triggered = watch_triggered_yes;
5085 break;
5086 }
5087 }
5088 /* Exact match not required. Within range is sufficient. */
5089 else if (target_watchpoint_addr_within_range (&current_target,
5090 addr, loc->address,
5091 loc->length))
5092 {
5093 w->watchpoint_triggered = watch_triggered_yes;
5094 break;
5095 }
5096 }
5097 }
5098
5099 return 1;
5100 }
5101
5102 /* Possible return values for watchpoint_check (this can't be an enum
5103 because of check_errors). */
5104 /* The watchpoint has been deleted. */
5105 #define WP_DELETED 1
5106 /* The value has changed. */
5107 #define WP_VALUE_CHANGED 2
5108 /* The value has not changed. */
5109 #define WP_VALUE_NOT_CHANGED 3
5110 /* Ignore this watchpoint, no matter if the value changed or not. */
5111 #define WP_IGNORE 4
5112
5113 #define BP_TEMPFLAG 1
5114 #define BP_HARDWAREFLAG 2
5115
5116 /* Evaluate watchpoint condition expression and check if its value
5117 changed.
5118
5119 P should be a pointer to struct bpstat, but is defined as a void *
5120 in order for this function to be usable with catch_errors. */
5121
5122 static int
5123 watchpoint_check (void *p)
5124 {
5125 bpstat bs = (bpstat) p;
5126 struct watchpoint *b;
5127 struct frame_info *fr;
5128 int within_current_scope;
5129
5130 /* BS is built from an existing struct breakpoint. */
5131 gdb_assert (bs->breakpoint_at != NULL);
5132 b = (struct watchpoint *) bs->breakpoint_at;
5133
5134 /* If this is a local watchpoint, we only want to check if the
5135 watchpoint frame is in scope if the current thread is the thread
5136 that was used to create the watchpoint. */
5137 if (!watchpoint_in_thread_scope (b))
5138 return WP_IGNORE;
5139
5140 if (b->exp_valid_block == NULL)
5141 within_current_scope = 1;
5142 else
5143 {
5144 struct frame_info *frame = get_current_frame ();
5145 struct gdbarch *frame_arch = get_frame_arch (frame);
5146 CORE_ADDR frame_pc = get_frame_pc (frame);
5147
5148 /* stack_frame_destroyed_p() returns a non-zero value if we're
5149 still in the function but the stack frame has already been
5150 invalidated. Since we can't rely on the values of local
5151 variables after the stack has been destroyed, we are treating
5152 the watchpoint in that state as `not changed' without further
5153 checking. Don't mark watchpoints as changed if the current
5154 frame is in an epilogue - even if they are in some other
5155 frame, our view of the stack is likely to be wrong and
5156 frame_find_by_id could error out. */
5157 if (gdbarch_stack_frame_destroyed_p (frame_arch, frame_pc))
5158 return WP_IGNORE;
5159
5160 fr = frame_find_by_id (b->watchpoint_frame);
5161 within_current_scope = (fr != NULL);
5162
5163 /* If we've gotten confused in the unwinder, we might have
5164 returned a frame that can't describe this variable. */
5165 if (within_current_scope)
5166 {
5167 struct symbol *function;
5168
5169 function = get_frame_function (fr);
5170 if (function == NULL
5171 || !contained_in (b->exp_valid_block,
5172 SYMBOL_BLOCK_VALUE (function)))
5173 within_current_scope = 0;
5174 }
5175
5176 if (within_current_scope)
5177 /* If we end up stopping, the current frame will get selected
5178 in normal_stop. So this call to select_frame won't affect
5179 the user. */
5180 select_frame (fr);
5181 }
5182
5183 if (within_current_scope)
5184 {
5185 /* We use value_{,free_to_}mark because it could be a *long*
5186 time before we return to the command level and call
5187 free_all_values. We can't call free_all_values because we
5188 might be in the middle of evaluating a function call. */
5189
5190 int pc = 0;
5191 struct value *mark;
5192 struct value *new_val;
5193
5194 if (is_masked_watchpoint (b))
5195 /* Since we don't know the exact trigger address (from
5196 stopped_data_address), just tell the user we've triggered
5197 a mask watchpoint. */
5198 return WP_VALUE_CHANGED;
5199
5200 mark = value_mark ();
5201 fetch_subexp_value (b->exp.get (), &pc, &new_val, NULL, NULL, 0);
5202
5203 if (b->val_bitsize != 0)
5204 new_val = extract_bitfield_from_watchpoint_value (b, new_val);
5205
5206 /* We use value_equal_contents instead of value_equal because
5207 the latter coerces an array to a pointer, thus comparing just
5208 the address of the array instead of its contents. This is
5209 not what we want. */
5210 if ((b->val != NULL) != (new_val != NULL)
5211 || (b->val != NULL && !value_equal_contents (b->val, new_val)))
5212 {
5213 if (new_val != NULL)
5214 {
5215 release_value (new_val);
5216 value_free_to_mark (mark);
5217 }
5218 bs->old_val = b->val;
5219 b->val = new_val;
5220 b->val_valid = 1;
5221 return WP_VALUE_CHANGED;
5222 }
5223 else
5224 {
5225 /* Nothing changed. */
5226 value_free_to_mark (mark);
5227 return WP_VALUE_NOT_CHANGED;
5228 }
5229 }
5230 else
5231 {
5232 /* This seems like the only logical thing to do because
5233 if we temporarily ignored the watchpoint, then when
5234 we reenter the block in which it is valid it contains
5235 garbage (in the case of a function, it may have two
5236 garbage values, one before and one after the prologue).
5237 So we can't even detect the first assignment to it and
5238 watch after that (since the garbage may or may not equal
5239 the first value assigned). */
5240 /* We print all the stop information in
5241 breakpoint_ops->print_it, but in this case, by the time we
5242 call breakpoint_ops->print_it this bp will be deleted
5243 already. So we have no choice but print the information
5244 here. */
5245
5246 SWITCH_THRU_ALL_UIS ()
5247 {
5248 struct ui_out *uiout = current_uiout;
5249
5250 if (uiout->is_mi_like_p ())
5251 uiout->field_string
5252 ("reason", async_reason_lookup (EXEC_ASYNC_WATCHPOINT_SCOPE));
5253 uiout->text ("\nWatchpoint ");
5254 uiout->field_int ("wpnum", b->number);
5255 uiout->text (" deleted because the program has left the block in\n"
5256 "which its expression is valid.\n");
5257 }
5258
5259 /* Make sure the watchpoint's commands aren't executed. */
5260 decref_counted_command_line (&b->commands);
5261 watchpoint_del_at_next_stop (b);
5262
5263 return WP_DELETED;
5264 }
5265 }
5266
5267 /* Return true if it looks like target has stopped due to hitting
5268 breakpoint location BL. This function does not check if we should
5269 stop, only if BL explains the stop. */
5270
5271 static int
5272 bpstat_check_location (const struct bp_location *bl,
5273 struct address_space *aspace, CORE_ADDR bp_addr,
5274 const struct target_waitstatus *ws)
5275 {
5276 struct breakpoint *b = bl->owner;
5277
5278 /* BL is from an existing breakpoint. */
5279 gdb_assert (b != NULL);
5280
5281 return b->ops->breakpoint_hit (bl, aspace, bp_addr, ws);
5282 }
5283
5284 /* Determine if the watched values have actually changed, and we
5285 should stop. If not, set BS->stop to 0. */
5286
5287 static void
5288 bpstat_check_watchpoint (bpstat bs)
5289 {
5290 const struct bp_location *bl;
5291 struct watchpoint *b;
5292
5293 /* BS is built for existing struct breakpoint. */
5294 bl = bs->bp_location_at;
5295 gdb_assert (bl != NULL);
5296 b = (struct watchpoint *) bs->breakpoint_at;
5297 gdb_assert (b != NULL);
5298
5299 {
5300 int must_check_value = 0;
5301
5302 if (b->type == bp_watchpoint)
5303 /* For a software watchpoint, we must always check the
5304 watched value. */
5305 must_check_value = 1;
5306 else if (b->watchpoint_triggered == watch_triggered_yes)
5307 /* We have a hardware watchpoint (read, write, or access)
5308 and the target earlier reported an address watched by
5309 this watchpoint. */
5310 must_check_value = 1;
5311 else if (b->watchpoint_triggered == watch_triggered_unknown
5312 && b->type == bp_hardware_watchpoint)
5313 /* We were stopped by a hardware watchpoint, but the target could
5314 not report the data address. We must check the watchpoint's
5315 value. Access and read watchpoints are out of luck; without
5316 a data address, we can't figure it out. */
5317 must_check_value = 1;
5318
5319 if (must_check_value)
5320 {
5321 char *message
5322 = xstrprintf ("Error evaluating expression for watchpoint %d\n",
5323 b->number);
5324 struct cleanup *cleanups = make_cleanup (xfree, message);
5325 int e = catch_errors (watchpoint_check, bs, message,
5326 RETURN_MASK_ALL);
5327 do_cleanups (cleanups);
5328 switch (e)
5329 {
5330 case WP_DELETED:
5331 /* We've already printed what needs to be printed. */
5332 bs->print_it = print_it_done;
5333 /* Stop. */
5334 break;
5335 case WP_IGNORE:
5336 bs->print_it = print_it_noop;
5337 bs->stop = 0;
5338 break;
5339 case WP_VALUE_CHANGED:
5340 if (b->type == bp_read_watchpoint)
5341 {
5342 /* There are two cases to consider here:
5343
5344 1. We're watching the triggered memory for reads.
5345 In that case, trust the target, and always report
5346 the watchpoint hit to the user. Even though
5347 reads don't cause value changes, the value may
5348 have changed since the last time it was read, and
5349 since we're not trapping writes, we will not see
5350 those, and as such we should ignore our notion of
5351 old value.
5352
5353 2. We're watching the triggered memory for both
5354 reads and writes. There are two ways this may
5355 happen:
5356
5357 2.1. This is a target that can't break on data
5358 reads only, but can break on accesses (reads or
5359 writes), such as e.g., x86. We detect this case
5360 at the time we try to insert read watchpoints.
5361
5362 2.2. Otherwise, the target supports read
5363 watchpoints, but, the user set an access or write
5364 watchpoint watching the same memory as this read
5365 watchpoint.
5366
5367 If we're watching memory writes as well as reads,
5368 ignore watchpoint hits when we find that the
5369 value hasn't changed, as reads don't cause
5370 changes. This still gives false positives when
5371 the program writes the same value to memory as
5372 what there was already in memory (we will confuse
5373 it for a read), but it's much better than
5374 nothing. */
5375
5376 int other_write_watchpoint = 0;
5377
5378 if (bl->watchpoint_type == hw_read)
5379 {
5380 struct breakpoint *other_b;
5381
5382 ALL_BREAKPOINTS (other_b)
5383 if (other_b->type == bp_hardware_watchpoint
5384 || other_b->type == bp_access_watchpoint)
5385 {
5386 struct watchpoint *other_w =
5387 (struct watchpoint *) other_b;
5388
5389 if (other_w->watchpoint_triggered
5390 == watch_triggered_yes)
5391 {
5392 other_write_watchpoint = 1;
5393 break;
5394 }
5395 }
5396 }
5397
5398 if (other_write_watchpoint
5399 || bl->watchpoint_type == hw_access)
5400 {
5401 /* We're watching the same memory for writes,
5402 and the value changed since the last time we
5403 updated it, so this trap must be for a write.
5404 Ignore it. */
5405 bs->print_it = print_it_noop;
5406 bs->stop = 0;
5407 }
5408 }
5409 break;
5410 case WP_VALUE_NOT_CHANGED:
5411 if (b->type == bp_hardware_watchpoint
5412 || b->type == bp_watchpoint)
5413 {
5414 /* Don't stop: write watchpoints shouldn't fire if
5415 the value hasn't changed. */
5416 bs->print_it = print_it_noop;
5417 bs->stop = 0;
5418 }
5419 /* Stop. */
5420 break;
5421 default:
5422 /* Can't happen. */
5423 case 0:
5424 /* Error from catch_errors. */
5425 {
5426 SWITCH_THRU_ALL_UIS ()
5427 {
5428 printf_filtered (_("Watchpoint %d deleted.\n"),
5429 b->number);
5430 }
5431 watchpoint_del_at_next_stop (b);
5432 /* We've already printed what needs to be printed. */
5433 bs->print_it = print_it_done;
5434 }
5435 break;
5436 }
5437 }
5438 else /* must_check_value == 0 */
5439 {
5440 /* This is a case where some watchpoint(s) triggered, but
5441 not at the address of this watchpoint, or else no
5442 watchpoint triggered after all. So don't print
5443 anything for this watchpoint. */
5444 bs->print_it = print_it_noop;
5445 bs->stop = 0;
5446 }
5447 }
5448 }
5449
5450 /* For breakpoints that are currently marked as telling gdb to stop,
5451 check conditions (condition proper, frame, thread and ignore count)
5452 of breakpoint referred to by BS. If we should not stop for this
5453 breakpoint, set BS->stop to 0. */
5454
5455 static void
5456 bpstat_check_breakpoint_conditions (bpstat bs, ptid_t ptid)
5457 {
5458 const struct bp_location *bl;
5459 struct breakpoint *b;
5460 int value_is_zero = 0;
5461 struct expression *cond;
5462
5463 gdb_assert (bs->stop);
5464
5465 /* BS is built for existing struct breakpoint. */
5466 bl = bs->bp_location_at;
5467 gdb_assert (bl != NULL);
5468 b = bs->breakpoint_at;
5469 gdb_assert (b != NULL);
5470
5471 /* Even if the target evaluated the condition on its end and notified GDB, we
5472 need to do so again since GDB does not know if we stopped due to a
5473 breakpoint or a single step breakpoint. */
5474
5475 if (frame_id_p (b->frame_id)
5476 && !frame_id_eq (b->frame_id, get_stack_frame_id (get_current_frame ())))
5477 {
5478 bs->stop = 0;
5479 return;
5480 }
5481
5482 /* If this is a thread/task-specific breakpoint, don't waste cpu
5483 evaluating the condition if this isn't the specified
5484 thread/task. */
5485 if ((b->thread != -1 && b->thread != ptid_to_global_thread_id (ptid))
5486 || (b->task != 0 && b->task != ada_get_task_number (ptid)))
5487
5488 {
5489 bs->stop = 0;
5490 return;
5491 }
5492
5493 /* Evaluate extension language breakpoints that have a "stop" method
5494 implemented. */
5495 bs->stop = breakpoint_ext_lang_cond_says_stop (b);
5496
5497 if (is_watchpoint (b))
5498 {
5499 struct watchpoint *w = (struct watchpoint *) b;
5500
5501 cond = w->cond_exp.get ();
5502 }
5503 else
5504 cond = bl->cond.get ();
5505
5506 if (cond && b->disposition != disp_del_at_next_stop)
5507 {
5508 int within_current_scope = 1;
5509 struct watchpoint * w;
5510
5511 /* We use value_mark and value_free_to_mark because it could
5512 be a long time before we return to the command level and
5513 call free_all_values. We can't call free_all_values
5514 because we might be in the middle of evaluating a
5515 function call. */
5516 struct value *mark = value_mark ();
5517
5518 if (is_watchpoint (b))
5519 w = (struct watchpoint *) b;
5520 else
5521 w = NULL;
5522
5523 /* Need to select the frame, with all that implies so that
5524 the conditions will have the right context. Because we
5525 use the frame, we will not see an inlined function's
5526 variables when we arrive at a breakpoint at the start
5527 of the inlined function; the current frame will be the
5528 call site. */
5529 if (w == NULL || w->cond_exp_valid_block == NULL)
5530 select_frame (get_current_frame ());
5531 else
5532 {
5533 struct frame_info *frame;
5534
5535 /* For local watchpoint expressions, which particular
5536 instance of a local is being watched matters, so we
5537 keep track of the frame to evaluate the expression
5538 in. To evaluate the condition however, it doesn't
5539 really matter which instantiation of the function
5540 where the condition makes sense triggers the
5541 watchpoint. This allows an expression like "watch
5542 global if q > 10" set in `func', catch writes to
5543 global on all threads that call `func', or catch
5544 writes on all recursive calls of `func' by a single
5545 thread. We simply always evaluate the condition in
5546 the innermost frame that's executing where it makes
5547 sense to evaluate the condition. It seems
5548 intuitive. */
5549 frame = block_innermost_frame (w->cond_exp_valid_block);
5550 if (frame != NULL)
5551 select_frame (frame);
5552 else
5553 within_current_scope = 0;
5554 }
5555 if (within_current_scope)
5556 value_is_zero
5557 = catch_errors (breakpoint_cond_eval, cond,
5558 "Error in testing breakpoint condition:\n",
5559 RETURN_MASK_ALL);
5560 else
5561 {
5562 warning (_("Watchpoint condition cannot be tested "
5563 "in the current scope"));
5564 /* If we failed to set the right context for this
5565 watchpoint, unconditionally report it. */
5566 value_is_zero = 0;
5567 }
5568 /* FIXME-someday, should give breakpoint #. */
5569 value_free_to_mark (mark);
5570 }
5571
5572 if (cond && value_is_zero)
5573 {
5574 bs->stop = 0;
5575 }
5576 else if (b->ignore_count > 0)
5577 {
5578 b->ignore_count--;
5579 bs->stop = 0;
5580 /* Increase the hit count even though we don't stop. */
5581 ++(b->hit_count);
5582 observer_notify_breakpoint_modified (b);
5583 }
5584 }
5585
5586 /* Returns true if we need to track moribund locations of LOC's type
5587 on the current target. */
5588
5589 static int
5590 need_moribund_for_location_type (struct bp_location *loc)
5591 {
5592 return ((loc->loc_type == bp_loc_software_breakpoint
5593 && !target_supports_stopped_by_sw_breakpoint ())
5594 || (loc->loc_type == bp_loc_hardware_breakpoint
5595 && !target_supports_stopped_by_hw_breakpoint ()));
5596 }
5597
5598
5599 /* Get a bpstat associated with having just stopped at address
5600 BP_ADDR in thread PTID.
5601
5602 Determine whether we stopped at a breakpoint, etc, or whether we
5603 don't understand this stop. Result is a chain of bpstat's such
5604 that:
5605
5606 if we don't understand the stop, the result is a null pointer.
5607
5608 if we understand why we stopped, the result is not null.
5609
5610 Each element of the chain refers to a particular breakpoint or
5611 watchpoint at which we have stopped. (We may have stopped for
5612 several reasons concurrently.)
5613
5614 Each element of the chain has valid next, breakpoint_at,
5615 commands, FIXME??? fields. */
5616
5617 bpstat
5618 bpstat_stop_status (struct address_space *aspace,
5619 CORE_ADDR bp_addr, ptid_t ptid,
5620 const struct target_waitstatus *ws)
5621 {
5622 struct breakpoint *b = NULL;
5623 struct bp_location *bl;
5624 struct bp_location *loc;
5625 /* First item of allocated bpstat's. */
5626 bpstat bs_head = NULL, *bs_link = &bs_head;
5627 /* Pointer to the last thing in the chain currently. */
5628 bpstat bs;
5629 int ix;
5630 int need_remove_insert;
5631 int removed_any;
5632
5633 /* First, build the bpstat chain with locations that explain a
5634 target stop, while being careful to not set the target running,
5635 as that may invalidate locations (in particular watchpoint
5636 locations are recreated). Resuming will happen here with
5637 breakpoint conditions or watchpoint expressions that include
5638 inferior function calls. */
5639
5640 ALL_BREAKPOINTS (b)
5641 {
5642 if (!breakpoint_enabled (b))
5643 continue;
5644
5645 for (bl = b->loc; bl != NULL; bl = bl->next)
5646 {
5647 /* For hardware watchpoints, we look only at the first
5648 location. The watchpoint_check function will work on the
5649 entire expression, not the individual locations. For
5650 read watchpoints, the watchpoints_triggered function has
5651 checked all locations already. */
5652 if (b->type == bp_hardware_watchpoint && bl != b->loc)
5653 break;
5654
5655 if (!bl->enabled || bl->shlib_disabled)
5656 continue;
5657
5658 if (!bpstat_check_location (bl, aspace, bp_addr, ws))
5659 continue;
5660
5661 /* Come here if it's a watchpoint, or if the break address
5662 matches. */
5663
5664 bs = bpstat_alloc (bl, &bs_link); /* Alloc a bpstat to
5665 explain stop. */
5666
5667 /* Assume we stop. Should we find a watchpoint that is not
5668 actually triggered, or if the condition of the breakpoint
5669 evaluates as false, we'll reset 'stop' to 0. */
5670 bs->stop = 1;
5671 bs->print = 1;
5672
5673 /* If this is a scope breakpoint, mark the associated
5674 watchpoint as triggered so that we will handle the
5675 out-of-scope event. We'll get to the watchpoint next
5676 iteration. */
5677 if (b->type == bp_watchpoint_scope && b->related_breakpoint != b)
5678 {
5679 struct watchpoint *w = (struct watchpoint *) b->related_breakpoint;
5680
5681 w->watchpoint_triggered = watch_triggered_yes;
5682 }
5683 }
5684 }
5685
5686 /* Check if a moribund breakpoint explains the stop. */
5687 if (!target_supports_stopped_by_sw_breakpoint ()
5688 || !target_supports_stopped_by_hw_breakpoint ())
5689 {
5690 for (ix = 0; VEC_iterate (bp_location_p, moribund_locations, ix, loc); ++ix)
5691 {
5692 if (breakpoint_location_address_match (loc, aspace, bp_addr)
5693 && need_moribund_for_location_type (loc))
5694 {
5695 bs = bpstat_alloc (loc, &bs_link);
5696 /* For hits of moribund locations, we should just proceed. */
5697 bs->stop = 0;
5698 bs->print = 0;
5699 bs->print_it = print_it_noop;
5700 }
5701 }
5702 }
5703
5704 /* A bit of special processing for shlib breakpoints. We need to
5705 process solib loading here, so that the lists of loaded and
5706 unloaded libraries are correct before we handle "catch load" and
5707 "catch unload". */
5708 for (bs = bs_head; bs != NULL; bs = bs->next)
5709 {
5710 if (bs->breakpoint_at && bs->breakpoint_at->type == bp_shlib_event)
5711 {
5712 handle_solib_event ();
5713 break;
5714 }
5715 }
5716
5717 /* Now go through the locations that caused the target to stop, and
5718 check whether we're interested in reporting this stop to higher
5719 layers, or whether we should resume the target transparently. */
5720
5721 removed_any = 0;
5722
5723 for (bs = bs_head; bs != NULL; bs = bs->next)
5724 {
5725 if (!bs->stop)
5726 continue;
5727
5728 b = bs->breakpoint_at;
5729 b->ops->check_status (bs);
5730 if (bs->stop)
5731 {
5732 bpstat_check_breakpoint_conditions (bs, ptid);
5733
5734 if (bs->stop)
5735 {
5736 ++(b->hit_count);
5737 observer_notify_breakpoint_modified (b);
5738
5739 /* We will stop here. */
5740 if (b->disposition == disp_disable)
5741 {
5742 --(b->enable_count);
5743 if (b->enable_count <= 0)
5744 b->enable_state = bp_disabled;
5745 removed_any = 1;
5746 }
5747 if (b->silent)
5748 bs->print = 0;
5749 bs->commands = b->commands;
5750 incref_counted_command_line (bs->commands);
5751 if (command_line_is_silent (bs->commands
5752 ? bs->commands->commands : NULL))
5753 bs->print = 0;
5754
5755 b->ops->after_condition_true (bs);
5756 }
5757
5758 }
5759
5760 /* Print nothing for this entry if we don't stop or don't
5761 print. */
5762 if (!bs->stop || !bs->print)
5763 bs->print_it = print_it_noop;
5764 }
5765
5766 /* If we aren't stopping, the value of some hardware watchpoint may
5767 not have changed, but the intermediate memory locations we are
5768 watching may have. Don't bother if we're stopping; this will get
5769 done later. */
5770 need_remove_insert = 0;
5771 if (! bpstat_causes_stop (bs_head))
5772 for (bs = bs_head; bs != NULL; bs = bs->next)
5773 if (!bs->stop
5774 && bs->breakpoint_at
5775 && is_hardware_watchpoint (bs->breakpoint_at))
5776 {
5777 struct watchpoint *w = (struct watchpoint *) bs->breakpoint_at;
5778
5779 update_watchpoint (w, 0 /* don't reparse. */);
5780 need_remove_insert = 1;
5781 }
5782
5783 if (need_remove_insert)
5784 update_global_location_list (UGLL_MAY_INSERT);
5785 else if (removed_any)
5786 update_global_location_list (UGLL_DONT_INSERT);
5787
5788 return bs_head;
5789 }
5790
5791 static void
5792 handle_jit_event (void)
5793 {
5794 struct frame_info *frame;
5795 struct gdbarch *gdbarch;
5796
5797 if (debug_infrun)
5798 fprintf_unfiltered (gdb_stdlog, "handling bp_jit_event\n");
5799
5800 /* Switch terminal for any messages produced by
5801 breakpoint_re_set. */
5802 target_terminal_ours_for_output ();
5803
5804 frame = get_current_frame ();
5805 gdbarch = get_frame_arch (frame);
5806
5807 jit_event_handler (gdbarch);
5808
5809 target_terminal_inferior ();
5810 }
5811
5812 /* Prepare WHAT final decision for infrun. */
5813
5814 /* Decide what infrun needs to do with this bpstat. */
5815
5816 struct bpstat_what
5817 bpstat_what (bpstat bs_head)
5818 {
5819 struct bpstat_what retval;
5820 bpstat bs;
5821
5822 retval.main_action = BPSTAT_WHAT_KEEP_CHECKING;
5823 retval.call_dummy = STOP_NONE;
5824 retval.is_longjmp = 0;
5825
5826 for (bs = bs_head; bs != NULL; bs = bs->next)
5827 {
5828 /* Extract this BS's action. After processing each BS, we check
5829 if its action overrides all we've seem so far. */
5830 enum bpstat_what_main_action this_action = BPSTAT_WHAT_KEEP_CHECKING;
5831 enum bptype bptype;
5832
5833 if (bs->breakpoint_at == NULL)
5834 {
5835 /* I suspect this can happen if it was a momentary
5836 breakpoint which has since been deleted. */
5837 bptype = bp_none;
5838 }
5839 else
5840 bptype = bs->breakpoint_at->type;
5841
5842 switch (bptype)
5843 {
5844 case bp_none:
5845 break;
5846 case bp_breakpoint:
5847 case bp_hardware_breakpoint:
5848 case bp_single_step:
5849 case bp_until:
5850 case bp_finish:
5851 case bp_shlib_event:
5852 if (bs->stop)
5853 {
5854 if (bs->print)
5855 this_action = BPSTAT_WHAT_STOP_NOISY;
5856 else
5857 this_action = BPSTAT_WHAT_STOP_SILENT;
5858 }
5859 else
5860 this_action = BPSTAT_WHAT_SINGLE;
5861 break;
5862 case bp_watchpoint:
5863 case bp_hardware_watchpoint:
5864 case bp_read_watchpoint:
5865 case bp_access_watchpoint:
5866 if (bs->stop)
5867 {
5868 if (bs->print)
5869 this_action = BPSTAT_WHAT_STOP_NOISY;
5870 else
5871 this_action = BPSTAT_WHAT_STOP_SILENT;
5872 }
5873 else
5874 {
5875 /* There was a watchpoint, but we're not stopping.
5876 This requires no further action. */
5877 }
5878 break;
5879 case bp_longjmp:
5880 case bp_longjmp_call_dummy:
5881 case bp_exception:
5882 if (bs->stop)
5883 {
5884 this_action = BPSTAT_WHAT_SET_LONGJMP_RESUME;
5885 retval.is_longjmp = bptype != bp_exception;
5886 }
5887 else
5888 this_action = BPSTAT_WHAT_SINGLE;
5889 break;
5890 case bp_longjmp_resume:
5891 case bp_exception_resume:
5892 if (bs->stop)
5893 {
5894 this_action = BPSTAT_WHAT_CLEAR_LONGJMP_RESUME;
5895 retval.is_longjmp = bptype == bp_longjmp_resume;
5896 }
5897 else
5898 this_action = BPSTAT_WHAT_SINGLE;
5899 break;
5900 case bp_step_resume:
5901 if (bs->stop)
5902 this_action = BPSTAT_WHAT_STEP_RESUME;
5903 else
5904 {
5905 /* It is for the wrong frame. */
5906 this_action = BPSTAT_WHAT_SINGLE;
5907 }
5908 break;
5909 case bp_hp_step_resume:
5910 if (bs->stop)
5911 this_action = BPSTAT_WHAT_HP_STEP_RESUME;
5912 else
5913 {
5914 /* It is for the wrong frame. */
5915 this_action = BPSTAT_WHAT_SINGLE;
5916 }
5917 break;
5918 case bp_watchpoint_scope:
5919 case bp_thread_event:
5920 case bp_overlay_event:
5921 case bp_longjmp_master:
5922 case bp_std_terminate_master:
5923 case bp_exception_master:
5924 this_action = BPSTAT_WHAT_SINGLE;
5925 break;
5926 case bp_catchpoint:
5927 if (bs->stop)
5928 {
5929 if (bs->print)
5930 this_action = BPSTAT_WHAT_STOP_NOISY;
5931 else
5932 this_action = BPSTAT_WHAT_STOP_SILENT;
5933 }
5934 else
5935 {
5936 /* There was a catchpoint, but we're not stopping.
5937 This requires no further action. */
5938 }
5939 break;
5940 case bp_jit_event:
5941 this_action = BPSTAT_WHAT_SINGLE;
5942 break;
5943 case bp_call_dummy:
5944 /* Make sure the action is stop (silent or noisy),
5945 so infrun.c pops the dummy frame. */
5946 retval.call_dummy = STOP_STACK_DUMMY;
5947 this_action = BPSTAT_WHAT_STOP_SILENT;
5948 break;
5949 case bp_std_terminate:
5950 /* Make sure the action is stop (silent or noisy),
5951 so infrun.c pops the dummy frame. */
5952 retval.call_dummy = STOP_STD_TERMINATE;
5953 this_action = BPSTAT_WHAT_STOP_SILENT;
5954 break;
5955 case bp_tracepoint:
5956 case bp_fast_tracepoint:
5957 case bp_static_tracepoint:
5958 /* Tracepoint hits should not be reported back to GDB, and
5959 if one got through somehow, it should have been filtered
5960 out already. */
5961 internal_error (__FILE__, __LINE__,
5962 _("bpstat_what: tracepoint encountered"));
5963 break;
5964 case bp_gnu_ifunc_resolver:
5965 /* Step over it (and insert bp_gnu_ifunc_resolver_return). */
5966 this_action = BPSTAT_WHAT_SINGLE;
5967 break;
5968 case bp_gnu_ifunc_resolver_return:
5969 /* The breakpoint will be removed, execution will restart from the
5970 PC of the former breakpoint. */
5971 this_action = BPSTAT_WHAT_KEEP_CHECKING;
5972 break;
5973
5974 case bp_dprintf:
5975 if (bs->stop)
5976 this_action = BPSTAT_WHAT_STOP_SILENT;
5977 else
5978 this_action = BPSTAT_WHAT_SINGLE;
5979 break;
5980
5981 default:
5982 internal_error (__FILE__, __LINE__,
5983 _("bpstat_what: unhandled bptype %d"), (int) bptype);
5984 }
5985
5986 retval.main_action = std::max (retval.main_action, this_action);
5987 }
5988
5989 return retval;
5990 }
5991
5992 void
5993 bpstat_run_callbacks (bpstat bs_head)
5994 {
5995 bpstat bs;
5996
5997 for (bs = bs_head; bs != NULL; bs = bs->next)
5998 {
5999 struct breakpoint *b = bs->breakpoint_at;
6000
6001 if (b == NULL)
6002 continue;
6003 switch (b->type)
6004 {
6005 case bp_jit_event:
6006 handle_jit_event ();
6007 break;
6008 case bp_gnu_ifunc_resolver:
6009 gnu_ifunc_resolver_stop (b);
6010 break;
6011 case bp_gnu_ifunc_resolver_return:
6012 gnu_ifunc_resolver_return_stop (b);
6013 break;
6014 }
6015 }
6016 }
6017
6018 /* Nonzero if we should step constantly (e.g. watchpoints on machines
6019 without hardware support). This isn't related to a specific bpstat,
6020 just to things like whether watchpoints are set. */
6021
6022 int
6023 bpstat_should_step (void)
6024 {
6025 struct breakpoint *b;
6026
6027 ALL_BREAKPOINTS (b)
6028 if (breakpoint_enabled (b) && b->type == bp_watchpoint && b->loc != NULL)
6029 return 1;
6030 return 0;
6031 }
6032
6033 int
6034 bpstat_causes_stop (bpstat bs)
6035 {
6036 for (; bs != NULL; bs = bs->next)
6037 if (bs->stop)
6038 return 1;
6039
6040 return 0;
6041 }
6042
6043 \f
6044
6045 /* Compute a string of spaces suitable to indent the next line
6046 so it starts at the position corresponding to the table column
6047 named COL_NAME in the currently active table of UIOUT. */
6048
6049 static char *
6050 wrap_indent_at_field (struct ui_out *uiout, const char *col_name)
6051 {
6052 static char wrap_indent[80];
6053 int i, total_width, width, align;
6054 const char *text;
6055
6056 total_width = 0;
6057 for (i = 1; uiout->query_table_field (i, &width, &align, &text); i++)
6058 {
6059 if (strcmp (text, col_name) == 0)
6060 {
6061 gdb_assert (total_width < sizeof wrap_indent);
6062 memset (wrap_indent, ' ', total_width);
6063 wrap_indent[total_width] = 0;
6064
6065 return wrap_indent;
6066 }
6067
6068 total_width += width + 1;
6069 }
6070
6071 return NULL;
6072 }
6073
6074 /* Determine if the locations of this breakpoint will have their conditions
6075 evaluated by the target, host or a mix of both. Returns the following:
6076
6077 "host": Host evals condition.
6078 "host or target": Host or Target evals condition.
6079 "target": Target evals condition.
6080 */
6081
6082 static const char *
6083 bp_condition_evaluator (struct breakpoint *b)
6084 {
6085 struct bp_location *bl;
6086 char host_evals = 0;
6087 char target_evals = 0;
6088
6089 if (!b)
6090 return NULL;
6091
6092 if (!is_breakpoint (b))
6093 return NULL;
6094
6095 if (gdb_evaluates_breakpoint_condition_p ()
6096 || !target_supports_evaluation_of_breakpoint_conditions ())
6097 return condition_evaluation_host;
6098
6099 for (bl = b->loc; bl; bl = bl->next)
6100 {
6101 if (bl->cond_bytecode)
6102 target_evals++;
6103 else
6104 host_evals++;
6105 }
6106
6107 if (host_evals && target_evals)
6108 return condition_evaluation_both;
6109 else if (target_evals)
6110 return condition_evaluation_target;
6111 else
6112 return condition_evaluation_host;
6113 }
6114
6115 /* Determine the breakpoint location's condition evaluator. This is
6116 similar to bp_condition_evaluator, but for locations. */
6117
6118 static const char *
6119 bp_location_condition_evaluator (struct bp_location *bl)
6120 {
6121 if (bl && !is_breakpoint (bl->owner))
6122 return NULL;
6123
6124 if (gdb_evaluates_breakpoint_condition_p ()
6125 || !target_supports_evaluation_of_breakpoint_conditions ())
6126 return condition_evaluation_host;
6127
6128 if (bl && bl->cond_bytecode)
6129 return condition_evaluation_target;
6130 else
6131 return condition_evaluation_host;
6132 }
6133
6134 /* Print the LOC location out of the list of B->LOC locations. */
6135
6136 static void
6137 print_breakpoint_location (struct breakpoint *b,
6138 struct bp_location *loc)
6139 {
6140 struct ui_out *uiout = current_uiout;
6141
6142 scoped_restore_current_program_space restore_pspace;
6143
6144 if (loc != NULL && loc->shlib_disabled)
6145 loc = NULL;
6146
6147 if (loc != NULL)
6148 set_current_program_space (loc->pspace);
6149
6150 if (b->display_canonical)
6151 uiout->field_string ("what", event_location_to_string (b->location.get ()));
6152 else if (loc && loc->symtab)
6153 {
6154 struct symbol *sym
6155 = find_pc_sect_function (loc->address, loc->section);
6156 if (sym)
6157 {
6158 uiout->text ("in ");
6159 uiout->field_string ("func", SYMBOL_PRINT_NAME (sym));
6160 uiout->text (" ");
6161 uiout->wrap_hint (wrap_indent_at_field (uiout, "what"));
6162 uiout->text ("at ");
6163 }
6164 uiout->field_string ("file",
6165 symtab_to_filename_for_display (loc->symtab));
6166 uiout->text (":");
6167
6168 if (uiout->is_mi_like_p ())
6169 uiout->field_string ("fullname", symtab_to_fullname (loc->symtab));
6170
6171 uiout->field_int ("line", loc->line_number);
6172 }
6173 else if (loc)
6174 {
6175 string_file stb;
6176
6177 print_address_symbolic (loc->gdbarch, loc->address, &stb,
6178 demangle, "");
6179 uiout->field_stream ("at", stb);
6180 }
6181 else
6182 {
6183 uiout->field_string ("pending",
6184 event_location_to_string (b->location.get ()));
6185 /* If extra_string is available, it could be holding a condition
6186 or dprintf arguments. In either case, make sure it is printed,
6187 too, but only for non-MI streams. */
6188 if (!uiout->is_mi_like_p () && b->extra_string != NULL)
6189 {
6190 if (b->type == bp_dprintf)
6191 uiout->text (",");
6192 else
6193 uiout->text (" ");
6194 uiout->text (b->extra_string);
6195 }
6196 }
6197
6198 if (loc && is_breakpoint (b)
6199 && breakpoint_condition_evaluation_mode () == condition_evaluation_target
6200 && bp_condition_evaluator (b) == condition_evaluation_both)
6201 {
6202 uiout->text (" (");
6203 uiout->field_string ("evaluated-by",
6204 bp_location_condition_evaluator (loc));
6205 uiout->text (")");
6206 }
6207 }
6208
6209 static const char *
6210 bptype_string (enum bptype type)
6211 {
6212 struct ep_type_description
6213 {
6214 enum bptype type;
6215 const char *description;
6216 };
6217 static struct ep_type_description bptypes[] =
6218 {
6219 {bp_none, "?deleted?"},
6220 {bp_breakpoint, "breakpoint"},
6221 {bp_hardware_breakpoint, "hw breakpoint"},
6222 {bp_single_step, "sw single-step"},
6223 {bp_until, "until"},
6224 {bp_finish, "finish"},
6225 {bp_watchpoint, "watchpoint"},
6226 {bp_hardware_watchpoint, "hw watchpoint"},
6227 {bp_read_watchpoint, "read watchpoint"},
6228 {bp_access_watchpoint, "acc watchpoint"},
6229 {bp_longjmp, "longjmp"},
6230 {bp_longjmp_resume, "longjmp resume"},
6231 {bp_longjmp_call_dummy, "longjmp for call dummy"},
6232 {bp_exception, "exception"},
6233 {bp_exception_resume, "exception resume"},
6234 {bp_step_resume, "step resume"},
6235 {bp_hp_step_resume, "high-priority step resume"},
6236 {bp_watchpoint_scope, "watchpoint scope"},
6237 {bp_call_dummy, "call dummy"},
6238 {bp_std_terminate, "std::terminate"},
6239 {bp_shlib_event, "shlib events"},
6240 {bp_thread_event, "thread events"},
6241 {bp_overlay_event, "overlay events"},
6242 {bp_longjmp_master, "longjmp master"},
6243 {bp_std_terminate_master, "std::terminate master"},
6244 {bp_exception_master, "exception master"},
6245 {bp_catchpoint, "catchpoint"},
6246 {bp_tracepoint, "tracepoint"},
6247 {bp_fast_tracepoint, "fast tracepoint"},
6248 {bp_static_tracepoint, "static tracepoint"},
6249 {bp_dprintf, "dprintf"},
6250 {bp_jit_event, "jit events"},
6251 {bp_gnu_ifunc_resolver, "STT_GNU_IFUNC resolver"},
6252 {bp_gnu_ifunc_resolver_return, "STT_GNU_IFUNC resolver return"},
6253 };
6254
6255 if (((int) type >= (sizeof (bptypes) / sizeof (bptypes[0])))
6256 || ((int) type != bptypes[(int) type].type))
6257 internal_error (__FILE__, __LINE__,
6258 _("bptypes table does not describe type #%d."),
6259 (int) type);
6260
6261 return bptypes[(int) type].description;
6262 }
6263
6264 /* For MI, output a field named 'thread-groups' with a list as the value.
6265 For CLI, prefix the list with the string 'inf'. */
6266
6267 static void
6268 output_thread_groups (struct ui_out *uiout,
6269 const char *field_name,
6270 VEC(int) *inf_num,
6271 int mi_only)
6272 {
6273 int is_mi = uiout->is_mi_like_p ();
6274 int inf;
6275 int i;
6276
6277 /* For backward compatibility, don't display inferiors in CLI unless
6278 there are several. Always display them for MI. */
6279 if (!is_mi && mi_only)
6280 return;
6281
6282 ui_out_emit_list list_emitter (uiout, field_name);
6283
6284 for (i = 0; VEC_iterate (int, inf_num, i, inf); ++i)
6285 {
6286 if (is_mi)
6287 {
6288 char mi_group[10];
6289
6290 xsnprintf (mi_group, sizeof (mi_group), "i%d", inf);
6291 uiout->field_string (NULL, mi_group);
6292 }
6293 else
6294 {
6295 if (i == 0)
6296 uiout->text (" inf ");
6297 else
6298 uiout->text (", ");
6299
6300 uiout->text (plongest (inf));
6301 }
6302 }
6303 }
6304
6305 /* Print B to gdb_stdout. */
6306
6307 static void
6308 print_one_breakpoint_location (struct breakpoint *b,
6309 struct bp_location *loc,
6310 int loc_number,
6311 struct bp_location **last_loc,
6312 int allflag)
6313 {
6314 struct command_line *l;
6315 static char bpenables[] = "nynny";
6316
6317 struct ui_out *uiout = current_uiout;
6318 int header_of_multiple = 0;
6319 int part_of_multiple = (loc != NULL);
6320 struct value_print_options opts;
6321
6322 get_user_print_options (&opts);
6323
6324 gdb_assert (!loc || loc_number != 0);
6325 /* See comment in print_one_breakpoint concerning treatment of
6326 breakpoints with single disabled location. */
6327 if (loc == NULL
6328 && (b->loc != NULL
6329 && (b->loc->next != NULL || !b->loc->enabled)))
6330 header_of_multiple = 1;
6331 if (loc == NULL)
6332 loc = b->loc;
6333
6334 annotate_record ();
6335
6336 /* 1 */
6337 annotate_field (0);
6338 if (part_of_multiple)
6339 {
6340 char *formatted;
6341 formatted = xstrprintf ("%d.%d", b->number, loc_number);
6342 uiout->field_string ("number", formatted);
6343 xfree (formatted);
6344 }
6345 else
6346 {
6347 uiout->field_int ("number", b->number);
6348 }
6349
6350 /* 2 */
6351 annotate_field (1);
6352 if (part_of_multiple)
6353 uiout->field_skip ("type");
6354 else
6355 uiout->field_string ("type", bptype_string (b->type));
6356
6357 /* 3 */
6358 annotate_field (2);
6359 if (part_of_multiple)
6360 uiout->field_skip ("disp");
6361 else
6362 uiout->field_string ("disp", bpdisp_text (b->disposition));
6363
6364
6365 /* 4 */
6366 annotate_field (3);
6367 if (part_of_multiple)
6368 uiout->field_string ("enabled", loc->enabled ? "y" : "n");
6369 else
6370 uiout->field_fmt ("enabled", "%c", bpenables[(int) b->enable_state]);
6371 uiout->spaces (2);
6372
6373
6374 /* 5 and 6 */
6375 if (b->ops != NULL && b->ops->print_one != NULL)
6376 {
6377 /* Although the print_one can possibly print all locations,
6378 calling it here is not likely to get any nice result. So,
6379 make sure there's just one location. */
6380 gdb_assert (b->loc == NULL || b->loc->next == NULL);
6381 b->ops->print_one (b, last_loc);
6382 }
6383 else
6384 switch (b->type)
6385 {
6386 case bp_none:
6387 internal_error (__FILE__, __LINE__,
6388 _("print_one_breakpoint: bp_none encountered\n"));
6389 break;
6390
6391 case bp_watchpoint:
6392 case bp_hardware_watchpoint:
6393 case bp_read_watchpoint:
6394 case bp_access_watchpoint:
6395 {
6396 struct watchpoint *w = (struct watchpoint *) b;
6397
6398 /* Field 4, the address, is omitted (which makes the columns
6399 not line up too nicely with the headers, but the effect
6400 is relatively readable). */
6401 if (opts.addressprint)
6402 uiout->field_skip ("addr");
6403 annotate_field (5);
6404 uiout->field_string ("what", w->exp_string);
6405 }
6406 break;
6407
6408 case bp_breakpoint:
6409 case bp_hardware_breakpoint:
6410 case bp_single_step:
6411 case bp_until:
6412 case bp_finish:
6413 case bp_longjmp:
6414 case bp_longjmp_resume:
6415 case bp_longjmp_call_dummy:
6416 case bp_exception:
6417 case bp_exception_resume:
6418 case bp_step_resume:
6419 case bp_hp_step_resume:
6420 case bp_watchpoint_scope:
6421 case bp_call_dummy:
6422 case bp_std_terminate:
6423 case bp_shlib_event:
6424 case bp_thread_event:
6425 case bp_overlay_event:
6426 case bp_longjmp_master:
6427 case bp_std_terminate_master:
6428 case bp_exception_master:
6429 case bp_tracepoint:
6430 case bp_fast_tracepoint:
6431 case bp_static_tracepoint:
6432 case bp_dprintf:
6433 case bp_jit_event:
6434 case bp_gnu_ifunc_resolver:
6435 case bp_gnu_ifunc_resolver_return:
6436 if (opts.addressprint)
6437 {
6438 annotate_field (4);
6439 if (header_of_multiple)
6440 uiout->field_string ("addr", "<MULTIPLE>");
6441 else if (b->loc == NULL || loc->shlib_disabled)
6442 uiout->field_string ("addr", "<PENDING>");
6443 else
6444 uiout->field_core_addr ("addr",
6445 loc->gdbarch, loc->address);
6446 }
6447 annotate_field (5);
6448 if (!header_of_multiple)
6449 print_breakpoint_location (b, loc);
6450 if (b->loc)
6451 *last_loc = b->loc;
6452 break;
6453 }
6454
6455
6456 if (loc != NULL && !header_of_multiple)
6457 {
6458 struct inferior *inf;
6459 VEC(int) *inf_num = NULL;
6460 int mi_only = 1;
6461
6462 ALL_INFERIORS (inf)
6463 {
6464 if (inf->pspace == loc->pspace)
6465 VEC_safe_push (int, inf_num, inf->num);
6466 }
6467
6468 /* For backward compatibility, don't display inferiors in CLI unless
6469 there are several. Always display for MI. */
6470 if (allflag
6471 || (!gdbarch_has_global_breakpoints (target_gdbarch ())
6472 && (number_of_program_spaces () > 1
6473 || number_of_inferiors () > 1)
6474 /* LOC is for existing B, it cannot be in
6475 moribund_locations and thus having NULL OWNER. */
6476 && loc->owner->type != bp_catchpoint))
6477 mi_only = 0;
6478 output_thread_groups (uiout, "thread-groups", inf_num, mi_only);
6479 VEC_free (int, inf_num);
6480 }
6481
6482 if (!part_of_multiple)
6483 {
6484 if (b->thread != -1)
6485 {
6486 /* FIXME: This seems to be redundant and lost here; see the
6487 "stop only in" line a little further down. */
6488 uiout->text (" thread ");
6489 uiout->field_int ("thread", b->thread);
6490 }
6491 else if (b->task != 0)
6492 {
6493 uiout->text (" task ");
6494 uiout->field_int ("task", b->task);
6495 }
6496 }
6497
6498 uiout->text ("\n");
6499
6500 if (!part_of_multiple)
6501 b->ops->print_one_detail (b, uiout);
6502
6503 if (part_of_multiple && frame_id_p (b->frame_id))
6504 {
6505 annotate_field (6);
6506 uiout->text ("\tstop only in stack frame at ");
6507 /* FIXME: cagney/2002-12-01: Shouldn't be poking around inside
6508 the frame ID. */
6509 uiout->field_core_addr ("frame",
6510 b->gdbarch, b->frame_id.stack_addr);
6511 uiout->text ("\n");
6512 }
6513
6514 if (!part_of_multiple && b->cond_string)
6515 {
6516 annotate_field (7);
6517 if (is_tracepoint (b))
6518 uiout->text ("\ttrace only if ");
6519 else
6520 uiout->text ("\tstop only if ");
6521 uiout->field_string ("cond", b->cond_string);
6522
6523 /* Print whether the target is doing the breakpoint's condition
6524 evaluation. If GDB is doing the evaluation, don't print anything. */
6525 if (is_breakpoint (b)
6526 && breakpoint_condition_evaluation_mode ()
6527 == condition_evaluation_target)
6528 {
6529 uiout->text (" (");
6530 uiout->field_string ("evaluated-by",
6531 bp_condition_evaluator (b));
6532 uiout->text (" evals)");
6533 }
6534 uiout->text ("\n");
6535 }
6536
6537 if (!part_of_multiple && b->thread != -1)
6538 {
6539 /* FIXME should make an annotation for this. */
6540 uiout->text ("\tstop only in thread ");
6541 if (uiout->is_mi_like_p ())
6542 uiout->field_int ("thread", b->thread);
6543 else
6544 {
6545 struct thread_info *thr = find_thread_global_id (b->thread);
6546
6547 uiout->field_string ("thread", print_thread_id (thr));
6548 }
6549 uiout->text ("\n");
6550 }
6551
6552 if (!part_of_multiple)
6553 {
6554 if (b->hit_count)
6555 {
6556 /* FIXME should make an annotation for this. */
6557 if (is_catchpoint (b))
6558 uiout->text ("\tcatchpoint");
6559 else if (is_tracepoint (b))
6560 uiout->text ("\ttracepoint");
6561 else
6562 uiout->text ("\tbreakpoint");
6563 uiout->text (" already hit ");
6564 uiout->field_int ("times", b->hit_count);
6565 if (b->hit_count == 1)
6566 uiout->text (" time\n");
6567 else
6568 uiout->text (" times\n");
6569 }
6570 else
6571 {
6572 /* Output the count also if it is zero, but only if this is mi. */
6573 if (uiout->is_mi_like_p ())
6574 uiout->field_int ("times", b->hit_count);
6575 }
6576 }
6577
6578 if (!part_of_multiple && b->ignore_count)
6579 {
6580 annotate_field (8);
6581 uiout->text ("\tignore next ");
6582 uiout->field_int ("ignore", b->ignore_count);
6583 uiout->text (" hits\n");
6584 }
6585
6586 /* Note that an enable count of 1 corresponds to "enable once"
6587 behavior, which is reported by the combination of enablement and
6588 disposition, so we don't need to mention it here. */
6589 if (!part_of_multiple && b->enable_count > 1)
6590 {
6591 annotate_field (8);
6592 uiout->text ("\tdisable after ");
6593 /* Tweak the wording to clarify that ignore and enable counts
6594 are distinct, and have additive effect. */
6595 if (b->ignore_count)
6596 uiout->text ("additional ");
6597 else
6598 uiout->text ("next ");
6599 uiout->field_int ("enable", b->enable_count);
6600 uiout->text (" hits\n");
6601 }
6602
6603 if (!part_of_multiple && is_tracepoint (b))
6604 {
6605 struct tracepoint *tp = (struct tracepoint *) b;
6606
6607 if (tp->traceframe_usage)
6608 {
6609 uiout->text ("\ttrace buffer usage ");
6610 uiout->field_int ("traceframe-usage", tp->traceframe_usage);
6611 uiout->text (" bytes\n");
6612 }
6613 }
6614
6615 l = b->commands ? b->commands->commands : NULL;
6616 if (!part_of_multiple && l)
6617 {
6618 annotate_field (9);
6619 ui_out_emit_tuple tuple_emitter (uiout, "script");
6620 print_command_lines (uiout, l, 4);
6621 }
6622
6623 if (is_tracepoint (b))
6624 {
6625 struct tracepoint *t = (struct tracepoint *) b;
6626
6627 if (!part_of_multiple && t->pass_count)
6628 {
6629 annotate_field (10);
6630 uiout->text ("\tpass count ");
6631 uiout->field_int ("pass", t->pass_count);
6632 uiout->text (" \n");
6633 }
6634
6635 /* Don't display it when tracepoint or tracepoint location is
6636 pending. */
6637 if (!header_of_multiple && loc != NULL && !loc->shlib_disabled)
6638 {
6639 annotate_field (11);
6640
6641 if (uiout->is_mi_like_p ())
6642 uiout->field_string ("installed",
6643 loc->inserted ? "y" : "n");
6644 else
6645 {
6646 if (loc->inserted)
6647 uiout->text ("\t");
6648 else
6649 uiout->text ("\tnot ");
6650 uiout->text ("installed on target\n");
6651 }
6652 }
6653 }
6654
6655 if (uiout->is_mi_like_p () && !part_of_multiple)
6656 {
6657 if (is_watchpoint (b))
6658 {
6659 struct watchpoint *w = (struct watchpoint *) b;
6660
6661 uiout->field_string ("original-location", w->exp_string);
6662 }
6663 else if (b->location != NULL
6664 && event_location_to_string (b->location.get ()) != NULL)
6665 uiout->field_string ("original-location",
6666 event_location_to_string (b->location.get ()));
6667 }
6668 }
6669
6670 static void
6671 print_one_breakpoint (struct breakpoint *b,
6672 struct bp_location **last_loc,
6673 int allflag)
6674 {
6675 struct ui_out *uiout = current_uiout;
6676
6677 {
6678 ui_out_emit_tuple tuple_emitter (uiout, "bkpt");
6679
6680 print_one_breakpoint_location (b, NULL, 0, last_loc, allflag);
6681 }
6682
6683 /* If this breakpoint has custom print function,
6684 it's already printed. Otherwise, print individual
6685 locations, if any. */
6686 if (b->ops == NULL || b->ops->print_one == NULL)
6687 {
6688 /* If breakpoint has a single location that is disabled, we
6689 print it as if it had several locations, since otherwise it's
6690 hard to represent "breakpoint enabled, location disabled"
6691 situation.
6692
6693 Note that while hardware watchpoints have several locations
6694 internally, that's not a property exposed to user. */
6695 if (b->loc
6696 && !is_hardware_watchpoint (b)
6697 && (b->loc->next || !b->loc->enabled))
6698 {
6699 struct bp_location *loc;
6700 int n = 1;
6701
6702 for (loc = b->loc; loc; loc = loc->next, ++n)
6703 {
6704 ui_out_emit_tuple tuple_emitter (uiout, NULL);
6705 print_one_breakpoint_location (b, loc, n, last_loc, allflag);
6706 }
6707 }
6708 }
6709 }
6710
6711 static int
6712 breakpoint_address_bits (struct breakpoint *b)
6713 {
6714 int print_address_bits = 0;
6715 struct bp_location *loc;
6716
6717 /* Software watchpoints that aren't watching memory don't have an
6718 address to print. */
6719 if (is_no_memory_software_watchpoint (b))
6720 return 0;
6721
6722 for (loc = b->loc; loc; loc = loc->next)
6723 {
6724 int addr_bit;
6725
6726 addr_bit = gdbarch_addr_bit (loc->gdbarch);
6727 if (addr_bit > print_address_bits)
6728 print_address_bits = addr_bit;
6729 }
6730
6731 return print_address_bits;
6732 }
6733
6734 struct captured_breakpoint_query_args
6735 {
6736 int bnum;
6737 };
6738
6739 static int
6740 do_captured_breakpoint_query (struct ui_out *uiout, void *data)
6741 {
6742 struct captured_breakpoint_query_args *args
6743 = (struct captured_breakpoint_query_args *) data;
6744 struct breakpoint *b;
6745 struct bp_location *dummy_loc = NULL;
6746
6747 ALL_BREAKPOINTS (b)
6748 {
6749 if (args->bnum == b->number)
6750 {
6751 print_one_breakpoint (b, &dummy_loc, 0);
6752 return GDB_RC_OK;
6753 }
6754 }
6755 return GDB_RC_NONE;
6756 }
6757
6758 enum gdb_rc
6759 gdb_breakpoint_query (struct ui_out *uiout, int bnum,
6760 char **error_message)
6761 {
6762 struct captured_breakpoint_query_args args;
6763
6764 args.bnum = bnum;
6765 /* For the moment we don't trust print_one_breakpoint() to not throw
6766 an error. */
6767 if (catch_exceptions_with_msg (uiout, do_captured_breakpoint_query, &args,
6768 error_message, RETURN_MASK_ALL) < 0)
6769 return GDB_RC_FAIL;
6770 else
6771 return GDB_RC_OK;
6772 }
6773
6774 /* Return true if this breakpoint was set by the user, false if it is
6775 internal or momentary. */
6776
6777 int
6778 user_breakpoint_p (struct breakpoint *b)
6779 {
6780 return b->number > 0;
6781 }
6782
6783 /* See breakpoint.h. */
6784
6785 int
6786 pending_breakpoint_p (struct breakpoint *b)
6787 {
6788 return b->loc == NULL;
6789 }
6790
6791 /* Print information on user settable breakpoint (watchpoint, etc)
6792 number BNUM. If BNUM is -1 print all user-settable breakpoints.
6793 If ALLFLAG is non-zero, include non-user-settable breakpoints. If
6794 FILTER is non-NULL, call it on each breakpoint and only include the
6795 ones for which it returns non-zero. Return the total number of
6796 breakpoints listed. */
6797
6798 static int
6799 breakpoint_1 (char *args, int allflag,
6800 int (*filter) (const struct breakpoint *))
6801 {
6802 struct breakpoint *b;
6803 struct bp_location *last_loc = NULL;
6804 int nr_printable_breakpoints;
6805 struct value_print_options opts;
6806 int print_address_bits = 0;
6807 int print_type_col_width = 14;
6808 struct ui_out *uiout = current_uiout;
6809
6810 get_user_print_options (&opts);
6811
6812 /* Compute the number of rows in the table, as well as the size
6813 required for address fields. */
6814 nr_printable_breakpoints = 0;
6815 ALL_BREAKPOINTS (b)
6816 {
6817 /* If we have a filter, only list the breakpoints it accepts. */
6818 if (filter && !filter (b))
6819 continue;
6820
6821 /* If we have an "args" string, it is a list of breakpoints to
6822 accept. Skip the others. */
6823 if (args != NULL && *args != '\0')
6824 {
6825 if (allflag && parse_and_eval_long (args) != b->number)
6826 continue;
6827 if (!allflag && !number_is_in_list (args, b->number))
6828 continue;
6829 }
6830
6831 if (allflag || user_breakpoint_p (b))
6832 {
6833 int addr_bit, type_len;
6834
6835 addr_bit = breakpoint_address_bits (b);
6836 if (addr_bit > print_address_bits)
6837 print_address_bits = addr_bit;
6838
6839 type_len = strlen (bptype_string (b->type));
6840 if (type_len > print_type_col_width)
6841 print_type_col_width = type_len;
6842
6843 nr_printable_breakpoints++;
6844 }
6845 }
6846
6847 {
6848 ui_out_emit_table table_emitter (uiout,
6849 opts.addressprint ? 6 : 5,
6850 nr_printable_breakpoints,
6851 "BreakpointTable");
6852
6853 if (nr_printable_breakpoints > 0)
6854 annotate_breakpoints_headers ();
6855 if (nr_printable_breakpoints > 0)
6856 annotate_field (0);
6857 uiout->table_header (7, ui_left, "number", "Num"); /* 1 */
6858 if (nr_printable_breakpoints > 0)
6859 annotate_field (1);
6860 uiout->table_header (print_type_col_width, ui_left, "type", "Type"); /* 2 */
6861 if (nr_printable_breakpoints > 0)
6862 annotate_field (2);
6863 uiout->table_header (4, ui_left, "disp", "Disp"); /* 3 */
6864 if (nr_printable_breakpoints > 0)
6865 annotate_field (3);
6866 uiout->table_header (3, ui_left, "enabled", "Enb"); /* 4 */
6867 if (opts.addressprint)
6868 {
6869 if (nr_printable_breakpoints > 0)
6870 annotate_field (4);
6871 if (print_address_bits <= 32)
6872 uiout->table_header (10, ui_left, "addr", "Address"); /* 5 */
6873 else
6874 uiout->table_header (18, ui_left, "addr", "Address"); /* 5 */
6875 }
6876 if (nr_printable_breakpoints > 0)
6877 annotate_field (5);
6878 uiout->table_header (40, ui_noalign, "what", "What"); /* 6 */
6879 uiout->table_body ();
6880 if (nr_printable_breakpoints > 0)
6881 annotate_breakpoints_table ();
6882
6883 ALL_BREAKPOINTS (b)
6884 {
6885 QUIT;
6886 /* If we have a filter, only list the breakpoints it accepts. */
6887 if (filter && !filter (b))
6888 continue;
6889
6890 /* If we have an "args" string, it is a list of breakpoints to
6891 accept. Skip the others. */
6892
6893 if (args != NULL && *args != '\0')
6894 {
6895 if (allflag) /* maintenance info breakpoint */
6896 {
6897 if (parse_and_eval_long (args) != b->number)
6898 continue;
6899 }
6900 else /* all others */
6901 {
6902 if (!number_is_in_list (args, b->number))
6903 continue;
6904 }
6905 }
6906 /* We only print out user settable breakpoints unless the
6907 allflag is set. */
6908 if (allflag || user_breakpoint_p (b))
6909 print_one_breakpoint (b, &last_loc, allflag);
6910 }
6911 }
6912
6913 if (nr_printable_breakpoints == 0)
6914 {
6915 /* If there's a filter, let the caller decide how to report
6916 empty list. */
6917 if (!filter)
6918 {
6919 if (args == NULL || *args == '\0')
6920 uiout->message ("No breakpoints or watchpoints.\n");
6921 else
6922 uiout->message ("No breakpoint or watchpoint matching '%s'.\n",
6923 args);
6924 }
6925 }
6926 else
6927 {
6928 if (last_loc && !server_command)
6929 set_next_address (last_loc->gdbarch, last_loc->address);
6930 }
6931
6932 /* FIXME? Should this be moved up so that it is only called when
6933 there have been breakpoints? */
6934 annotate_breakpoints_table_end ();
6935
6936 return nr_printable_breakpoints;
6937 }
6938
6939 /* Display the value of default-collect in a way that is generally
6940 compatible with the breakpoint list. */
6941
6942 static void
6943 default_collect_info (void)
6944 {
6945 struct ui_out *uiout = current_uiout;
6946
6947 /* If it has no value (which is frequently the case), say nothing; a
6948 message like "No default-collect." gets in user's face when it's
6949 not wanted. */
6950 if (!*default_collect)
6951 return;
6952
6953 /* The following phrase lines up nicely with per-tracepoint collect
6954 actions. */
6955 uiout->text ("default collect ");
6956 uiout->field_string ("default-collect", default_collect);
6957 uiout->text (" \n");
6958 }
6959
6960 static void
6961 info_breakpoints_command (char *args, int from_tty)
6962 {
6963 breakpoint_1 (args, 0, NULL);
6964
6965 default_collect_info ();
6966 }
6967
6968 static void
6969 info_watchpoints_command (char *args, int from_tty)
6970 {
6971 int num_printed = breakpoint_1 (args, 0, is_watchpoint);
6972 struct ui_out *uiout = current_uiout;
6973
6974 if (num_printed == 0)
6975 {
6976 if (args == NULL || *args == '\0')
6977 uiout->message ("No watchpoints.\n");
6978 else
6979 uiout->message ("No watchpoint matching '%s'.\n", args);
6980 }
6981 }
6982
6983 static void
6984 maintenance_info_breakpoints (char *args, int from_tty)
6985 {
6986 breakpoint_1 (args, 1, NULL);
6987
6988 default_collect_info ();
6989 }
6990
6991 static int
6992 breakpoint_has_pc (struct breakpoint *b,
6993 struct program_space *pspace,
6994 CORE_ADDR pc, struct obj_section *section)
6995 {
6996 struct bp_location *bl = b->loc;
6997
6998 for (; bl; bl = bl->next)
6999 {
7000 if (bl->pspace == pspace
7001 && bl->address == pc
7002 && (!overlay_debugging || bl->section == section))
7003 return 1;
7004 }
7005 return 0;
7006 }
7007
7008 /* Print a message describing any user-breakpoints set at PC. This
7009 concerns with logical breakpoints, so we match program spaces, not
7010 address spaces. */
7011
7012 static void
7013 describe_other_breakpoints (struct gdbarch *gdbarch,
7014 struct program_space *pspace, CORE_ADDR pc,
7015 struct obj_section *section, int thread)
7016 {
7017 int others = 0;
7018 struct breakpoint *b;
7019
7020 ALL_BREAKPOINTS (b)
7021 others += (user_breakpoint_p (b)
7022 && breakpoint_has_pc (b, pspace, pc, section));
7023 if (others > 0)
7024 {
7025 if (others == 1)
7026 printf_filtered (_("Note: breakpoint "));
7027 else /* if (others == ???) */
7028 printf_filtered (_("Note: breakpoints "));
7029 ALL_BREAKPOINTS (b)
7030 if (user_breakpoint_p (b) && breakpoint_has_pc (b, pspace, pc, section))
7031 {
7032 others--;
7033 printf_filtered ("%d", b->number);
7034 if (b->thread == -1 && thread != -1)
7035 printf_filtered (" (all threads)");
7036 else if (b->thread != -1)
7037 printf_filtered (" (thread %d)", b->thread);
7038 printf_filtered ("%s%s ",
7039 ((b->enable_state == bp_disabled
7040 || b->enable_state == bp_call_disabled)
7041 ? " (disabled)"
7042 : ""),
7043 (others > 1) ? ","
7044 : ((others == 1) ? " and" : ""));
7045 }
7046 printf_filtered (_("also set at pc "));
7047 fputs_filtered (paddress (gdbarch, pc), gdb_stdout);
7048 printf_filtered (".\n");
7049 }
7050 }
7051 \f
7052
7053 /* Return true iff it is meaningful to use the address member of
7054 BPT locations. For some breakpoint types, the locations' address members
7055 are irrelevant and it makes no sense to attempt to compare them to other
7056 addresses (or use them for any other purpose either).
7057
7058 More specifically, each of the following breakpoint types will
7059 always have a zero valued location address and we don't want to mark
7060 breakpoints of any of these types to be a duplicate of an actual
7061 breakpoint location at address zero:
7062
7063 bp_watchpoint
7064 bp_catchpoint
7065
7066 */
7067
7068 static int
7069 breakpoint_address_is_meaningful (struct breakpoint *bpt)
7070 {
7071 enum bptype type = bpt->type;
7072
7073 return (type != bp_watchpoint && type != bp_catchpoint);
7074 }
7075
7076 /* Assuming LOC1 and LOC2's owners are hardware watchpoints, returns
7077 true if LOC1 and LOC2 represent the same watchpoint location. */
7078
7079 static int
7080 watchpoint_locations_match (struct bp_location *loc1,
7081 struct bp_location *loc2)
7082 {
7083 struct watchpoint *w1 = (struct watchpoint *) loc1->owner;
7084 struct watchpoint *w2 = (struct watchpoint *) loc2->owner;
7085
7086 /* Both of them must exist. */
7087 gdb_assert (w1 != NULL);
7088 gdb_assert (w2 != NULL);
7089
7090 /* If the target can evaluate the condition expression in hardware,
7091 then we we need to insert both watchpoints even if they are at
7092 the same place. Otherwise the watchpoint will only trigger when
7093 the condition of whichever watchpoint was inserted evaluates to
7094 true, not giving a chance for GDB to check the condition of the
7095 other watchpoint. */
7096 if ((w1->cond_exp
7097 && target_can_accel_watchpoint_condition (loc1->address,
7098 loc1->length,
7099 loc1->watchpoint_type,
7100 w1->cond_exp.get ()))
7101 || (w2->cond_exp
7102 && target_can_accel_watchpoint_condition (loc2->address,
7103 loc2->length,
7104 loc2->watchpoint_type,
7105 w2->cond_exp.get ())))
7106 return 0;
7107
7108 /* Note that this checks the owner's type, not the location's. In
7109 case the target does not support read watchpoints, but does
7110 support access watchpoints, we'll have bp_read_watchpoint
7111 watchpoints with hw_access locations. Those should be considered
7112 duplicates of hw_read locations. The hw_read locations will
7113 become hw_access locations later. */
7114 return (loc1->owner->type == loc2->owner->type
7115 && loc1->pspace->aspace == loc2->pspace->aspace
7116 && loc1->address == loc2->address
7117 && loc1->length == loc2->length);
7118 }
7119
7120 /* See breakpoint.h. */
7121
7122 int
7123 breakpoint_address_match (struct address_space *aspace1, CORE_ADDR addr1,
7124 struct address_space *aspace2, CORE_ADDR addr2)
7125 {
7126 return ((gdbarch_has_global_breakpoints (target_gdbarch ())
7127 || aspace1 == aspace2)
7128 && addr1 == addr2);
7129 }
7130
7131 /* Returns true if {ASPACE2,ADDR2} falls within the range determined by
7132 {ASPACE1,ADDR1,LEN1}. In most targets, this can only be true if ASPACE1
7133 matches ASPACE2. On targets that have global breakpoints, the address
7134 space doesn't really matter. */
7135
7136 static int
7137 breakpoint_address_match_range (struct address_space *aspace1, CORE_ADDR addr1,
7138 int len1, struct address_space *aspace2,
7139 CORE_ADDR addr2)
7140 {
7141 return ((gdbarch_has_global_breakpoints (target_gdbarch ())
7142 || aspace1 == aspace2)
7143 && addr2 >= addr1 && addr2 < addr1 + len1);
7144 }
7145
7146 /* Returns true if {ASPACE,ADDR} matches the breakpoint BL. BL may be
7147 a ranged breakpoint. In most targets, a match happens only if ASPACE
7148 matches the breakpoint's address space. On targets that have global
7149 breakpoints, the address space doesn't really matter. */
7150
7151 static int
7152 breakpoint_location_address_match (struct bp_location *bl,
7153 struct address_space *aspace,
7154 CORE_ADDR addr)
7155 {
7156 return (breakpoint_address_match (bl->pspace->aspace, bl->address,
7157 aspace, addr)
7158 || (bl->length
7159 && breakpoint_address_match_range (bl->pspace->aspace,
7160 bl->address, bl->length,
7161 aspace, addr)));
7162 }
7163
7164 /* Returns true if the [ADDR,ADDR+LEN) range in ASPACE overlaps
7165 breakpoint BL. BL may be a ranged breakpoint. In most targets, a
7166 match happens only if ASPACE matches the breakpoint's address
7167 space. On targets that have global breakpoints, the address space
7168 doesn't really matter. */
7169
7170 static int
7171 breakpoint_location_address_range_overlap (struct bp_location *bl,
7172 struct address_space *aspace,
7173 CORE_ADDR addr, int len)
7174 {
7175 if (gdbarch_has_global_breakpoints (target_gdbarch ())
7176 || bl->pspace->aspace == aspace)
7177 {
7178 int bl_len = bl->length != 0 ? bl->length : 1;
7179
7180 if (mem_ranges_overlap (addr, len, bl->address, bl_len))
7181 return 1;
7182 }
7183 return 0;
7184 }
7185
7186 /* If LOC1 and LOC2's owners are not tracepoints, returns false directly.
7187 Then, if LOC1 and LOC2 represent the same tracepoint location, returns
7188 true, otherwise returns false. */
7189
7190 static int
7191 tracepoint_locations_match (struct bp_location *loc1,
7192 struct bp_location *loc2)
7193 {
7194 if (is_tracepoint (loc1->owner) && is_tracepoint (loc2->owner))
7195 /* Since tracepoint locations are never duplicated with others', tracepoint
7196 locations at the same address of different tracepoints are regarded as
7197 different locations. */
7198 return (loc1->address == loc2->address && loc1->owner == loc2->owner);
7199 else
7200 return 0;
7201 }
7202
7203 /* Assuming LOC1 and LOC2's types' have meaningful target addresses
7204 (breakpoint_address_is_meaningful), returns true if LOC1 and LOC2
7205 represent the same location. */
7206
7207 static int
7208 breakpoint_locations_match (struct bp_location *loc1,
7209 struct bp_location *loc2)
7210 {
7211 int hw_point1, hw_point2;
7212
7213 /* Both of them must not be in moribund_locations. */
7214 gdb_assert (loc1->owner != NULL);
7215 gdb_assert (loc2->owner != NULL);
7216
7217 hw_point1 = is_hardware_watchpoint (loc1->owner);
7218 hw_point2 = is_hardware_watchpoint (loc2->owner);
7219
7220 if (hw_point1 != hw_point2)
7221 return 0;
7222 else if (hw_point1)
7223 return watchpoint_locations_match (loc1, loc2);
7224 else if (is_tracepoint (loc1->owner) || is_tracepoint (loc2->owner))
7225 return tracepoint_locations_match (loc1, loc2);
7226 else
7227 /* We compare bp_location.length in order to cover ranged breakpoints. */
7228 return (breakpoint_address_match (loc1->pspace->aspace, loc1->address,
7229 loc2->pspace->aspace, loc2->address)
7230 && loc1->length == loc2->length);
7231 }
7232
7233 static void
7234 breakpoint_adjustment_warning (CORE_ADDR from_addr, CORE_ADDR to_addr,
7235 int bnum, int have_bnum)
7236 {
7237 /* The longest string possibly returned by hex_string_custom
7238 is 50 chars. These must be at least that big for safety. */
7239 char astr1[64];
7240 char astr2[64];
7241
7242 strcpy (astr1, hex_string_custom ((unsigned long) from_addr, 8));
7243 strcpy (astr2, hex_string_custom ((unsigned long) to_addr, 8));
7244 if (have_bnum)
7245 warning (_("Breakpoint %d address previously adjusted from %s to %s."),
7246 bnum, astr1, astr2);
7247 else
7248 warning (_("Breakpoint address adjusted from %s to %s."), astr1, astr2);
7249 }
7250
7251 /* Adjust a breakpoint's address to account for architectural
7252 constraints on breakpoint placement. Return the adjusted address.
7253 Note: Very few targets require this kind of adjustment. For most
7254 targets, this function is simply the identity function. */
7255
7256 static CORE_ADDR
7257 adjust_breakpoint_address (struct gdbarch *gdbarch,
7258 CORE_ADDR bpaddr, enum bptype bptype)
7259 {
7260 if (!gdbarch_adjust_breakpoint_address_p (gdbarch))
7261 {
7262 /* Very few targets need any kind of breakpoint adjustment. */
7263 return bpaddr;
7264 }
7265 else if (bptype == bp_watchpoint
7266 || bptype == bp_hardware_watchpoint
7267 || bptype == bp_read_watchpoint
7268 || bptype == bp_access_watchpoint
7269 || bptype == bp_catchpoint)
7270 {
7271 /* Watchpoints and the various bp_catch_* eventpoints should not
7272 have their addresses modified. */
7273 return bpaddr;
7274 }
7275 else if (bptype == bp_single_step)
7276 {
7277 /* Single-step breakpoints should not have their addresses
7278 modified. If there's any architectural constrain that
7279 applies to this address, then it should have already been
7280 taken into account when the breakpoint was created in the
7281 first place. If we didn't do this, stepping through e.g.,
7282 Thumb-2 IT blocks would break. */
7283 return bpaddr;
7284 }
7285 else
7286 {
7287 CORE_ADDR adjusted_bpaddr;
7288
7289 /* Some targets have architectural constraints on the placement
7290 of breakpoint instructions. Obtain the adjusted address. */
7291 adjusted_bpaddr = gdbarch_adjust_breakpoint_address (gdbarch, bpaddr);
7292
7293 /* An adjusted breakpoint address can significantly alter
7294 a user's expectations. Print a warning if an adjustment
7295 is required. */
7296 if (adjusted_bpaddr != bpaddr)
7297 breakpoint_adjustment_warning (bpaddr, adjusted_bpaddr, 0, 0);
7298
7299 return adjusted_bpaddr;
7300 }
7301 }
7302
7303 bp_location::bp_location (const bp_location_ops *ops, breakpoint *owner)
7304 {
7305 bp_location *loc = this;
7306
7307 gdb_assert (ops != NULL);
7308
7309 loc->ops = ops;
7310 loc->owner = owner;
7311 loc->cond_bytecode = NULL;
7312 loc->shlib_disabled = 0;
7313 loc->enabled = 1;
7314
7315 switch (owner->type)
7316 {
7317 case bp_breakpoint:
7318 case bp_single_step:
7319 case bp_until:
7320 case bp_finish:
7321 case bp_longjmp:
7322 case bp_longjmp_resume:
7323 case bp_longjmp_call_dummy:
7324 case bp_exception:
7325 case bp_exception_resume:
7326 case bp_step_resume:
7327 case bp_hp_step_resume:
7328 case bp_watchpoint_scope:
7329 case bp_call_dummy:
7330 case bp_std_terminate:
7331 case bp_shlib_event:
7332 case bp_thread_event:
7333 case bp_overlay_event:
7334 case bp_jit_event:
7335 case bp_longjmp_master:
7336 case bp_std_terminate_master:
7337 case bp_exception_master:
7338 case bp_gnu_ifunc_resolver:
7339 case bp_gnu_ifunc_resolver_return:
7340 case bp_dprintf:
7341 loc->loc_type = bp_loc_software_breakpoint;
7342 mark_breakpoint_location_modified (loc);
7343 break;
7344 case bp_hardware_breakpoint:
7345 loc->loc_type = bp_loc_hardware_breakpoint;
7346 mark_breakpoint_location_modified (loc);
7347 break;
7348 case bp_hardware_watchpoint:
7349 case bp_read_watchpoint:
7350 case bp_access_watchpoint:
7351 loc->loc_type = bp_loc_hardware_watchpoint;
7352 break;
7353 case bp_watchpoint:
7354 case bp_catchpoint:
7355 case bp_tracepoint:
7356 case bp_fast_tracepoint:
7357 case bp_static_tracepoint:
7358 loc->loc_type = bp_loc_other;
7359 break;
7360 default:
7361 internal_error (__FILE__, __LINE__, _("unknown breakpoint type"));
7362 }
7363
7364 loc->refc = 1;
7365 }
7366
7367 /* Allocate a struct bp_location. */
7368
7369 static struct bp_location *
7370 allocate_bp_location (struct breakpoint *bpt)
7371 {
7372 return bpt->ops->allocate_location (bpt);
7373 }
7374
7375 static void
7376 free_bp_location (struct bp_location *loc)
7377 {
7378 loc->ops->dtor (loc);
7379 delete loc;
7380 }
7381
7382 /* Increment reference count. */
7383
7384 static void
7385 incref_bp_location (struct bp_location *bl)
7386 {
7387 ++bl->refc;
7388 }
7389
7390 /* Decrement reference count. If the reference count reaches 0,
7391 destroy the bp_location. Sets *BLP to NULL. */
7392
7393 static void
7394 decref_bp_location (struct bp_location **blp)
7395 {
7396 gdb_assert ((*blp)->refc > 0);
7397
7398 if (--(*blp)->refc == 0)
7399 free_bp_location (*blp);
7400 *blp = NULL;
7401 }
7402
7403 /* Add breakpoint B at the end of the global breakpoint chain. */
7404
7405 static breakpoint *
7406 add_to_breakpoint_chain (std::unique_ptr<breakpoint> &&b)
7407 {
7408 struct breakpoint *b1;
7409 struct breakpoint *result = b.get ();
7410
7411 /* Add this breakpoint to the end of the chain so that a list of
7412 breakpoints will come out in order of increasing numbers. */
7413
7414 b1 = breakpoint_chain;
7415 if (b1 == 0)
7416 breakpoint_chain = b.release ();
7417 else
7418 {
7419 while (b1->next)
7420 b1 = b1->next;
7421 b1->next = b.release ();
7422 }
7423
7424 return result;
7425 }
7426
7427 /* Initializes breakpoint B with type BPTYPE and no locations yet. */
7428
7429 static void
7430 init_raw_breakpoint_without_location (struct breakpoint *b,
7431 struct gdbarch *gdbarch,
7432 enum bptype bptype,
7433 const struct breakpoint_ops *ops)
7434 {
7435 gdb_assert (ops != NULL);
7436
7437 b->ops = ops;
7438 b->type = bptype;
7439 b->gdbarch = gdbarch;
7440 b->language = current_language->la_language;
7441 b->input_radix = input_radix;
7442 b->related_breakpoint = b;
7443 }
7444
7445 /* Helper to set_raw_breakpoint below. Creates a breakpoint
7446 that has type BPTYPE and has no locations as yet. */
7447
7448 static struct breakpoint *
7449 set_raw_breakpoint_without_location (struct gdbarch *gdbarch,
7450 enum bptype bptype,
7451 const struct breakpoint_ops *ops)
7452 {
7453 std::unique_ptr<breakpoint> b = new_breakpoint_from_type (bptype);
7454
7455 init_raw_breakpoint_without_location (b.get (), gdbarch, bptype, ops);
7456 return add_to_breakpoint_chain (std::move (b));
7457 }
7458
7459 /* Initialize loc->function_name. EXPLICIT_LOC says no indirect function
7460 resolutions should be made as the user specified the location explicitly
7461 enough. */
7462
7463 static void
7464 set_breakpoint_location_function (struct bp_location *loc, int explicit_loc)
7465 {
7466 gdb_assert (loc->owner != NULL);
7467
7468 if (loc->owner->type == bp_breakpoint
7469 || loc->owner->type == bp_hardware_breakpoint
7470 || is_tracepoint (loc->owner))
7471 {
7472 int is_gnu_ifunc;
7473 const char *function_name;
7474 CORE_ADDR func_addr;
7475
7476 find_pc_partial_function_gnu_ifunc (loc->address, &function_name,
7477 &func_addr, NULL, &is_gnu_ifunc);
7478
7479 if (is_gnu_ifunc && !explicit_loc)
7480 {
7481 struct breakpoint *b = loc->owner;
7482
7483 gdb_assert (loc->pspace == current_program_space);
7484 if (gnu_ifunc_resolve_name (function_name,
7485 &loc->requested_address))
7486 {
7487 /* Recalculate ADDRESS based on new REQUESTED_ADDRESS. */
7488 loc->address = adjust_breakpoint_address (loc->gdbarch,
7489 loc->requested_address,
7490 b->type);
7491 }
7492 else if (b->type == bp_breakpoint && b->loc == loc
7493 && loc->next == NULL && b->related_breakpoint == b)
7494 {
7495 /* Create only the whole new breakpoint of this type but do not
7496 mess more complicated breakpoints with multiple locations. */
7497 b->type = bp_gnu_ifunc_resolver;
7498 /* Remember the resolver's address for use by the return
7499 breakpoint. */
7500 loc->related_address = func_addr;
7501 }
7502 }
7503
7504 if (function_name)
7505 loc->function_name = xstrdup (function_name);
7506 }
7507 }
7508
7509 /* Attempt to determine architecture of location identified by SAL. */
7510 struct gdbarch *
7511 get_sal_arch (struct symtab_and_line sal)
7512 {
7513 if (sal.section)
7514 return get_objfile_arch (sal.section->objfile);
7515 if (sal.symtab)
7516 return get_objfile_arch (SYMTAB_OBJFILE (sal.symtab));
7517
7518 return NULL;
7519 }
7520
7521 /* Low level routine for partially initializing a breakpoint of type
7522 BPTYPE. The newly created breakpoint's address, section, source
7523 file name, and line number are provided by SAL.
7524
7525 It is expected that the caller will complete the initialization of
7526 the newly created breakpoint struct as well as output any status
7527 information regarding the creation of a new breakpoint. */
7528
7529 static void
7530 init_raw_breakpoint (struct breakpoint *b, struct gdbarch *gdbarch,
7531 struct symtab_and_line sal, enum bptype bptype,
7532 const struct breakpoint_ops *ops)
7533 {
7534 init_raw_breakpoint_without_location (b, gdbarch, bptype, ops);
7535
7536 add_location_to_breakpoint (b, &sal);
7537
7538 if (bptype != bp_catchpoint)
7539 gdb_assert (sal.pspace != NULL);
7540
7541 /* Store the program space that was used to set the breakpoint,
7542 except for ordinary breakpoints, which are independent of the
7543 program space. */
7544 if (bptype != bp_breakpoint && bptype != bp_hardware_breakpoint)
7545 b->pspace = sal.pspace;
7546 }
7547
7548 /* set_raw_breakpoint is a low level routine for allocating and
7549 partially initializing a breakpoint of type BPTYPE. The newly
7550 created breakpoint's address, section, source file name, and line
7551 number are provided by SAL. The newly created and partially
7552 initialized breakpoint is added to the breakpoint chain and
7553 is also returned as the value of this function.
7554
7555 It is expected that the caller will complete the initialization of
7556 the newly created breakpoint struct as well as output any status
7557 information regarding the creation of a new breakpoint. In
7558 particular, set_raw_breakpoint does NOT set the breakpoint
7559 number! Care should be taken to not allow an error to occur
7560 prior to completing the initialization of the breakpoint. If this
7561 should happen, a bogus breakpoint will be left on the chain. */
7562
7563 struct breakpoint *
7564 set_raw_breakpoint (struct gdbarch *gdbarch,
7565 struct symtab_and_line sal, enum bptype bptype,
7566 const struct breakpoint_ops *ops)
7567 {
7568 std::unique_ptr<breakpoint> b = new_breakpoint_from_type (bptype);
7569
7570 init_raw_breakpoint (b.get (), gdbarch, sal, bptype, ops);
7571 return add_to_breakpoint_chain (std::move (b));
7572 }
7573
7574 /* Call this routine when stepping and nexting to enable a breakpoint
7575 if we do a longjmp() or 'throw' in TP. FRAME is the frame which
7576 initiated the operation. */
7577
7578 void
7579 set_longjmp_breakpoint (struct thread_info *tp, struct frame_id frame)
7580 {
7581 struct breakpoint *b, *b_tmp;
7582 int thread = tp->global_num;
7583
7584 /* To avoid having to rescan all objfile symbols at every step,
7585 we maintain a list of continually-inserted but always disabled
7586 longjmp "master" breakpoints. Here, we simply create momentary
7587 clones of those and enable them for the requested thread. */
7588 ALL_BREAKPOINTS_SAFE (b, b_tmp)
7589 if (b->pspace == current_program_space
7590 && (b->type == bp_longjmp_master
7591 || b->type == bp_exception_master))
7592 {
7593 enum bptype type = b->type == bp_longjmp_master ? bp_longjmp : bp_exception;
7594 struct breakpoint *clone;
7595
7596 /* longjmp_breakpoint_ops ensures INITIATING_FRAME is cleared again
7597 after their removal. */
7598 clone = momentary_breakpoint_from_master (b, type,
7599 &momentary_breakpoint_ops, 1);
7600 clone->thread = thread;
7601 }
7602
7603 tp->initiating_frame = frame;
7604 }
7605
7606 /* Delete all longjmp breakpoints from THREAD. */
7607 void
7608 delete_longjmp_breakpoint (int thread)
7609 {
7610 struct breakpoint *b, *b_tmp;
7611
7612 ALL_BREAKPOINTS_SAFE (b, b_tmp)
7613 if (b->type == bp_longjmp || b->type == bp_exception)
7614 {
7615 if (b->thread == thread)
7616 delete_breakpoint (b);
7617 }
7618 }
7619
7620 void
7621 delete_longjmp_breakpoint_at_next_stop (int thread)
7622 {
7623 struct breakpoint *b, *b_tmp;
7624
7625 ALL_BREAKPOINTS_SAFE (b, b_tmp)
7626 if (b->type == bp_longjmp || b->type == bp_exception)
7627 {
7628 if (b->thread == thread)
7629 b->disposition = disp_del_at_next_stop;
7630 }
7631 }
7632
7633 /* Place breakpoints of type bp_longjmp_call_dummy to catch longjmp for
7634 INFERIOR_PTID thread. Chain them all by RELATED_BREAKPOINT and return
7635 pointer to any of them. Return NULL if this system cannot place longjmp
7636 breakpoints. */
7637
7638 struct breakpoint *
7639 set_longjmp_breakpoint_for_call_dummy (void)
7640 {
7641 struct breakpoint *b, *retval = NULL;
7642
7643 ALL_BREAKPOINTS (b)
7644 if (b->pspace == current_program_space && b->type == bp_longjmp_master)
7645 {
7646 struct breakpoint *new_b;
7647
7648 new_b = momentary_breakpoint_from_master (b, bp_longjmp_call_dummy,
7649 &momentary_breakpoint_ops,
7650 1);
7651 new_b->thread = ptid_to_global_thread_id (inferior_ptid);
7652
7653 /* Link NEW_B into the chain of RETVAL breakpoints. */
7654
7655 gdb_assert (new_b->related_breakpoint == new_b);
7656 if (retval == NULL)
7657 retval = new_b;
7658 new_b->related_breakpoint = retval;
7659 while (retval->related_breakpoint != new_b->related_breakpoint)
7660 retval = retval->related_breakpoint;
7661 retval->related_breakpoint = new_b;
7662 }
7663
7664 return retval;
7665 }
7666
7667 /* Verify all existing dummy frames and their associated breakpoints for
7668 TP. Remove those which can no longer be found in the current frame
7669 stack.
7670
7671 You should call this function only at places where it is safe to currently
7672 unwind the whole stack. Failed stack unwind would discard live dummy
7673 frames. */
7674
7675 void
7676 check_longjmp_breakpoint_for_call_dummy (struct thread_info *tp)
7677 {
7678 struct breakpoint *b, *b_tmp;
7679
7680 ALL_BREAKPOINTS_SAFE (b, b_tmp)
7681 if (b->type == bp_longjmp_call_dummy && b->thread == tp->global_num)
7682 {
7683 struct breakpoint *dummy_b = b->related_breakpoint;
7684
7685 while (dummy_b != b && dummy_b->type != bp_call_dummy)
7686 dummy_b = dummy_b->related_breakpoint;
7687 if (dummy_b->type != bp_call_dummy
7688 || frame_find_by_id (dummy_b->frame_id) != NULL)
7689 continue;
7690
7691 dummy_frame_discard (dummy_b->frame_id, tp->ptid);
7692
7693 while (b->related_breakpoint != b)
7694 {
7695 if (b_tmp == b->related_breakpoint)
7696 b_tmp = b->related_breakpoint->next;
7697 delete_breakpoint (b->related_breakpoint);
7698 }
7699 delete_breakpoint (b);
7700 }
7701 }
7702
7703 void
7704 enable_overlay_breakpoints (void)
7705 {
7706 struct breakpoint *b;
7707
7708 ALL_BREAKPOINTS (b)
7709 if (b->type == bp_overlay_event)
7710 {
7711 b->enable_state = bp_enabled;
7712 update_global_location_list (UGLL_MAY_INSERT);
7713 overlay_events_enabled = 1;
7714 }
7715 }
7716
7717 void
7718 disable_overlay_breakpoints (void)
7719 {
7720 struct breakpoint *b;
7721
7722 ALL_BREAKPOINTS (b)
7723 if (b->type == bp_overlay_event)
7724 {
7725 b->enable_state = bp_disabled;
7726 update_global_location_list (UGLL_DONT_INSERT);
7727 overlay_events_enabled = 0;
7728 }
7729 }
7730
7731 /* Set an active std::terminate breakpoint for each std::terminate
7732 master breakpoint. */
7733 void
7734 set_std_terminate_breakpoint (void)
7735 {
7736 struct breakpoint *b, *b_tmp;
7737
7738 ALL_BREAKPOINTS_SAFE (b, b_tmp)
7739 if (b->pspace == current_program_space
7740 && b->type == bp_std_terminate_master)
7741 {
7742 momentary_breakpoint_from_master (b, bp_std_terminate,
7743 &momentary_breakpoint_ops, 1);
7744 }
7745 }
7746
7747 /* Delete all the std::terminate breakpoints. */
7748 void
7749 delete_std_terminate_breakpoint (void)
7750 {
7751 struct breakpoint *b, *b_tmp;
7752
7753 ALL_BREAKPOINTS_SAFE (b, b_tmp)
7754 if (b->type == bp_std_terminate)
7755 delete_breakpoint (b);
7756 }
7757
7758 struct breakpoint *
7759 create_thread_event_breakpoint (struct gdbarch *gdbarch, CORE_ADDR address)
7760 {
7761 struct breakpoint *b;
7762
7763 b = create_internal_breakpoint (gdbarch, address, bp_thread_event,
7764 &internal_breakpoint_ops);
7765
7766 b->enable_state = bp_enabled;
7767 /* location has to be used or breakpoint_re_set will delete me. */
7768 b->location = new_address_location (b->loc->address, NULL, 0);
7769
7770 update_global_location_list_nothrow (UGLL_MAY_INSERT);
7771
7772 return b;
7773 }
7774
7775 struct lang_and_radix
7776 {
7777 enum language lang;
7778 int radix;
7779 };
7780
7781 /* Create a breakpoint for JIT code registration and unregistration. */
7782
7783 struct breakpoint *
7784 create_jit_event_breakpoint (struct gdbarch *gdbarch, CORE_ADDR address)
7785 {
7786 return create_internal_breakpoint (gdbarch, address, bp_jit_event,
7787 &internal_breakpoint_ops);
7788 }
7789
7790 /* Remove JIT code registration and unregistration breakpoint(s). */
7791
7792 void
7793 remove_jit_event_breakpoints (void)
7794 {
7795 struct breakpoint *b, *b_tmp;
7796
7797 ALL_BREAKPOINTS_SAFE (b, b_tmp)
7798 if (b->type == bp_jit_event
7799 && b->loc->pspace == current_program_space)
7800 delete_breakpoint (b);
7801 }
7802
7803 void
7804 remove_solib_event_breakpoints (void)
7805 {
7806 struct breakpoint *b, *b_tmp;
7807
7808 ALL_BREAKPOINTS_SAFE (b, b_tmp)
7809 if (b->type == bp_shlib_event
7810 && b->loc->pspace == current_program_space)
7811 delete_breakpoint (b);
7812 }
7813
7814 /* See breakpoint.h. */
7815
7816 void
7817 remove_solib_event_breakpoints_at_next_stop (void)
7818 {
7819 struct breakpoint *b, *b_tmp;
7820
7821 ALL_BREAKPOINTS_SAFE (b, b_tmp)
7822 if (b->type == bp_shlib_event
7823 && b->loc->pspace == current_program_space)
7824 b->disposition = disp_del_at_next_stop;
7825 }
7826
7827 /* Helper for create_solib_event_breakpoint /
7828 create_and_insert_solib_event_breakpoint. Allows specifying which
7829 INSERT_MODE to pass through to update_global_location_list. */
7830
7831 static struct breakpoint *
7832 create_solib_event_breakpoint_1 (struct gdbarch *gdbarch, CORE_ADDR address,
7833 enum ugll_insert_mode insert_mode)
7834 {
7835 struct breakpoint *b;
7836
7837 b = create_internal_breakpoint (gdbarch, address, bp_shlib_event,
7838 &internal_breakpoint_ops);
7839 update_global_location_list_nothrow (insert_mode);
7840 return b;
7841 }
7842
7843 struct breakpoint *
7844 create_solib_event_breakpoint (struct gdbarch *gdbarch, CORE_ADDR address)
7845 {
7846 return create_solib_event_breakpoint_1 (gdbarch, address, UGLL_MAY_INSERT);
7847 }
7848
7849 /* See breakpoint.h. */
7850
7851 struct breakpoint *
7852 create_and_insert_solib_event_breakpoint (struct gdbarch *gdbarch, CORE_ADDR address)
7853 {
7854 struct breakpoint *b;
7855
7856 /* Explicitly tell update_global_location_list to insert
7857 locations. */
7858 b = create_solib_event_breakpoint_1 (gdbarch, address, UGLL_INSERT);
7859 if (!b->loc->inserted)
7860 {
7861 delete_breakpoint (b);
7862 return NULL;
7863 }
7864 return b;
7865 }
7866
7867 /* Disable any breakpoints that are on code in shared libraries. Only
7868 apply to enabled breakpoints, disabled ones can just stay disabled. */
7869
7870 void
7871 disable_breakpoints_in_shlibs (void)
7872 {
7873 struct bp_location *loc, **locp_tmp;
7874
7875 ALL_BP_LOCATIONS (loc, locp_tmp)
7876 {
7877 /* ALL_BP_LOCATIONS bp_location has LOC->OWNER always non-NULL. */
7878 struct breakpoint *b = loc->owner;
7879
7880 /* We apply the check to all breakpoints, including disabled for
7881 those with loc->duplicate set. This is so that when breakpoint
7882 becomes enabled, or the duplicate is removed, gdb will try to
7883 insert all breakpoints. If we don't set shlib_disabled here,
7884 we'll try to insert those breakpoints and fail. */
7885 if (((b->type == bp_breakpoint)
7886 || (b->type == bp_jit_event)
7887 || (b->type == bp_hardware_breakpoint)
7888 || (is_tracepoint (b)))
7889 && loc->pspace == current_program_space
7890 && !loc->shlib_disabled
7891 && solib_name_from_address (loc->pspace, loc->address)
7892 )
7893 {
7894 loc->shlib_disabled = 1;
7895 }
7896 }
7897 }
7898
7899 /* Disable any breakpoints and tracepoints that are in SOLIB upon
7900 notification of unloaded_shlib. Only apply to enabled breakpoints,
7901 disabled ones can just stay disabled. */
7902
7903 static void
7904 disable_breakpoints_in_unloaded_shlib (struct so_list *solib)
7905 {
7906 struct bp_location *loc, **locp_tmp;
7907 int disabled_shlib_breaks = 0;
7908
7909 ALL_BP_LOCATIONS (loc, locp_tmp)
7910 {
7911 /* ALL_BP_LOCATIONS bp_location has LOC->OWNER always non-NULL. */
7912 struct breakpoint *b = loc->owner;
7913
7914 if (solib->pspace == loc->pspace
7915 && !loc->shlib_disabled
7916 && (((b->type == bp_breakpoint
7917 || b->type == bp_jit_event
7918 || b->type == bp_hardware_breakpoint)
7919 && (loc->loc_type == bp_loc_hardware_breakpoint
7920 || loc->loc_type == bp_loc_software_breakpoint))
7921 || is_tracepoint (b))
7922 && solib_contains_address_p (solib, loc->address))
7923 {
7924 loc->shlib_disabled = 1;
7925 /* At this point, we cannot rely on remove_breakpoint
7926 succeeding so we must mark the breakpoint as not inserted
7927 to prevent future errors occurring in remove_breakpoints. */
7928 loc->inserted = 0;
7929
7930 /* This may cause duplicate notifications for the same breakpoint. */
7931 observer_notify_breakpoint_modified (b);
7932
7933 if (!disabled_shlib_breaks)
7934 {
7935 target_terminal_ours_for_output ();
7936 warning (_("Temporarily disabling breakpoints "
7937 "for unloaded shared library \"%s\""),
7938 solib->so_name);
7939 }
7940 disabled_shlib_breaks = 1;
7941 }
7942 }
7943 }
7944
7945 /* Disable any breakpoints and tracepoints in OBJFILE upon
7946 notification of free_objfile. Only apply to enabled breakpoints,
7947 disabled ones can just stay disabled. */
7948
7949 static void
7950 disable_breakpoints_in_freed_objfile (struct objfile *objfile)
7951 {
7952 struct breakpoint *b;
7953
7954 if (objfile == NULL)
7955 return;
7956
7957 /* OBJF_SHARED|OBJF_USERLOADED objfiles are dynamic modules manually
7958 managed by the user with add-symbol-file/remove-symbol-file.
7959 Similarly to how breakpoints in shared libraries are handled in
7960 response to "nosharedlibrary", mark breakpoints in such modules
7961 shlib_disabled so they end up uninserted on the next global
7962 location list update. Shared libraries not loaded by the user
7963 aren't handled here -- they're already handled in
7964 disable_breakpoints_in_unloaded_shlib, called by solib.c's
7965 solib_unloaded observer. We skip objfiles that are not
7966 OBJF_SHARED as those aren't considered dynamic objects (e.g. the
7967 main objfile). */
7968 if ((objfile->flags & OBJF_SHARED) == 0
7969 || (objfile->flags & OBJF_USERLOADED) == 0)
7970 return;
7971
7972 ALL_BREAKPOINTS (b)
7973 {
7974 struct bp_location *loc;
7975 int bp_modified = 0;
7976
7977 if (!is_breakpoint (b) && !is_tracepoint (b))
7978 continue;
7979
7980 for (loc = b->loc; loc != NULL; loc = loc->next)
7981 {
7982 CORE_ADDR loc_addr = loc->address;
7983
7984 if (loc->loc_type != bp_loc_hardware_breakpoint
7985 && loc->loc_type != bp_loc_software_breakpoint)
7986 continue;
7987
7988 if (loc->shlib_disabled != 0)
7989 continue;
7990
7991 if (objfile->pspace != loc->pspace)
7992 continue;
7993
7994 if (loc->loc_type != bp_loc_hardware_breakpoint
7995 && loc->loc_type != bp_loc_software_breakpoint)
7996 continue;
7997
7998 if (is_addr_in_objfile (loc_addr, objfile))
7999 {
8000 loc->shlib_disabled = 1;
8001 /* At this point, we don't know whether the object was
8002 unmapped from the inferior or not, so leave the
8003 inserted flag alone. We'll handle failure to
8004 uninsert quietly, in case the object was indeed
8005 unmapped. */
8006
8007 mark_breakpoint_location_modified (loc);
8008
8009 bp_modified = 1;
8010 }
8011 }
8012
8013 if (bp_modified)
8014 observer_notify_breakpoint_modified (b);
8015 }
8016 }
8017
8018 /* FORK & VFORK catchpoints. */
8019
8020 /* An instance of this type is used to represent a fork or vfork
8021 catchpoint. A breakpoint is really of this type iff its ops pointer points
8022 to CATCH_FORK_BREAKPOINT_OPS. */
8023
8024 struct fork_catchpoint : public breakpoint
8025 {
8026 /* Process id of a child process whose forking triggered this
8027 catchpoint. This field is only valid immediately after this
8028 catchpoint has triggered. */
8029 ptid_t forked_inferior_pid;
8030 };
8031
8032 /* Implement the "insert" breakpoint_ops method for fork
8033 catchpoints. */
8034
8035 static int
8036 insert_catch_fork (struct bp_location *bl)
8037 {
8038 return target_insert_fork_catchpoint (ptid_get_pid (inferior_ptid));
8039 }
8040
8041 /* Implement the "remove" breakpoint_ops method for fork
8042 catchpoints. */
8043
8044 static int
8045 remove_catch_fork (struct bp_location *bl, enum remove_bp_reason reason)
8046 {
8047 return target_remove_fork_catchpoint (ptid_get_pid (inferior_ptid));
8048 }
8049
8050 /* Implement the "breakpoint_hit" breakpoint_ops method for fork
8051 catchpoints. */
8052
8053 static int
8054 breakpoint_hit_catch_fork (const struct bp_location *bl,
8055 struct address_space *aspace, CORE_ADDR bp_addr,
8056 const struct target_waitstatus *ws)
8057 {
8058 struct fork_catchpoint *c = (struct fork_catchpoint *) bl->owner;
8059
8060 if (ws->kind != TARGET_WAITKIND_FORKED)
8061 return 0;
8062
8063 c->forked_inferior_pid = ws->value.related_pid;
8064 return 1;
8065 }
8066
8067 /* Implement the "print_it" breakpoint_ops method for fork
8068 catchpoints. */
8069
8070 static enum print_stop_action
8071 print_it_catch_fork (bpstat bs)
8072 {
8073 struct ui_out *uiout = current_uiout;
8074 struct breakpoint *b = bs->breakpoint_at;
8075 struct fork_catchpoint *c = (struct fork_catchpoint *) bs->breakpoint_at;
8076
8077 annotate_catchpoint (b->number);
8078 maybe_print_thread_hit_breakpoint (uiout);
8079 if (b->disposition == disp_del)
8080 uiout->text ("Temporary catchpoint ");
8081 else
8082 uiout->text ("Catchpoint ");
8083 if (uiout->is_mi_like_p ())
8084 {
8085 uiout->field_string ("reason", async_reason_lookup (EXEC_ASYNC_FORK));
8086 uiout->field_string ("disp", bpdisp_text (b->disposition));
8087 }
8088 uiout->field_int ("bkptno", b->number);
8089 uiout->text (" (forked process ");
8090 uiout->field_int ("newpid", ptid_get_pid (c->forked_inferior_pid));
8091 uiout->text ("), ");
8092 return PRINT_SRC_AND_LOC;
8093 }
8094
8095 /* Implement the "print_one" breakpoint_ops method for fork
8096 catchpoints. */
8097
8098 static void
8099 print_one_catch_fork (struct breakpoint *b, struct bp_location **last_loc)
8100 {
8101 struct fork_catchpoint *c = (struct fork_catchpoint *) b;
8102 struct value_print_options opts;
8103 struct ui_out *uiout = current_uiout;
8104
8105 get_user_print_options (&opts);
8106
8107 /* Field 4, the address, is omitted (which makes the columns not
8108 line up too nicely with the headers, but the effect is relatively
8109 readable). */
8110 if (opts.addressprint)
8111 uiout->field_skip ("addr");
8112 annotate_field (5);
8113 uiout->text ("fork");
8114 if (!ptid_equal (c->forked_inferior_pid, null_ptid))
8115 {
8116 uiout->text (", process ");
8117 uiout->field_int ("what", ptid_get_pid (c->forked_inferior_pid));
8118 uiout->spaces (1);
8119 }
8120
8121 if (uiout->is_mi_like_p ())
8122 uiout->field_string ("catch-type", "fork");
8123 }
8124
8125 /* Implement the "print_mention" breakpoint_ops method for fork
8126 catchpoints. */
8127
8128 static void
8129 print_mention_catch_fork (struct breakpoint *b)
8130 {
8131 printf_filtered (_("Catchpoint %d (fork)"), b->number);
8132 }
8133
8134 /* Implement the "print_recreate" breakpoint_ops method for fork
8135 catchpoints. */
8136
8137 static void
8138 print_recreate_catch_fork (struct breakpoint *b, struct ui_file *fp)
8139 {
8140 fprintf_unfiltered (fp, "catch fork");
8141 print_recreate_thread (b, fp);
8142 }
8143
8144 /* The breakpoint_ops structure to be used in fork catchpoints. */
8145
8146 static struct breakpoint_ops catch_fork_breakpoint_ops;
8147
8148 /* Implement the "insert" breakpoint_ops method for vfork
8149 catchpoints. */
8150
8151 static int
8152 insert_catch_vfork (struct bp_location *bl)
8153 {
8154 return target_insert_vfork_catchpoint (ptid_get_pid (inferior_ptid));
8155 }
8156
8157 /* Implement the "remove" breakpoint_ops method for vfork
8158 catchpoints. */
8159
8160 static int
8161 remove_catch_vfork (struct bp_location *bl, enum remove_bp_reason reason)
8162 {
8163 return target_remove_vfork_catchpoint (ptid_get_pid (inferior_ptid));
8164 }
8165
8166 /* Implement the "breakpoint_hit" breakpoint_ops method for vfork
8167 catchpoints. */
8168
8169 static int
8170 breakpoint_hit_catch_vfork (const struct bp_location *bl,
8171 struct address_space *aspace, CORE_ADDR bp_addr,
8172 const struct target_waitstatus *ws)
8173 {
8174 struct fork_catchpoint *c = (struct fork_catchpoint *) bl->owner;
8175
8176 if (ws->kind != TARGET_WAITKIND_VFORKED)
8177 return 0;
8178
8179 c->forked_inferior_pid = ws->value.related_pid;
8180 return 1;
8181 }
8182
8183 /* Implement the "print_it" breakpoint_ops method for vfork
8184 catchpoints. */
8185
8186 static enum print_stop_action
8187 print_it_catch_vfork (bpstat bs)
8188 {
8189 struct ui_out *uiout = current_uiout;
8190 struct breakpoint *b = bs->breakpoint_at;
8191 struct fork_catchpoint *c = (struct fork_catchpoint *) b;
8192
8193 annotate_catchpoint (b->number);
8194 maybe_print_thread_hit_breakpoint (uiout);
8195 if (b->disposition == disp_del)
8196 uiout->text ("Temporary catchpoint ");
8197 else
8198 uiout->text ("Catchpoint ");
8199 if (uiout->is_mi_like_p ())
8200 {
8201 uiout->field_string ("reason", async_reason_lookup (EXEC_ASYNC_VFORK));
8202 uiout->field_string ("disp", bpdisp_text (b->disposition));
8203 }
8204 uiout->field_int ("bkptno", b->number);
8205 uiout->text (" (vforked process ");
8206 uiout->field_int ("newpid", ptid_get_pid (c->forked_inferior_pid));
8207 uiout->text ("), ");
8208 return PRINT_SRC_AND_LOC;
8209 }
8210
8211 /* Implement the "print_one" breakpoint_ops method for vfork
8212 catchpoints. */
8213
8214 static void
8215 print_one_catch_vfork (struct breakpoint *b, struct bp_location **last_loc)
8216 {
8217 struct fork_catchpoint *c = (struct fork_catchpoint *) b;
8218 struct value_print_options opts;
8219 struct ui_out *uiout = current_uiout;
8220
8221 get_user_print_options (&opts);
8222 /* Field 4, the address, is omitted (which makes the columns not
8223 line up too nicely with the headers, but the effect is relatively
8224 readable). */
8225 if (opts.addressprint)
8226 uiout->field_skip ("addr");
8227 annotate_field (5);
8228 uiout->text ("vfork");
8229 if (!ptid_equal (c->forked_inferior_pid, null_ptid))
8230 {
8231 uiout->text (", process ");
8232 uiout->field_int ("what", ptid_get_pid (c->forked_inferior_pid));
8233 uiout->spaces (1);
8234 }
8235
8236 if (uiout->is_mi_like_p ())
8237 uiout->field_string ("catch-type", "vfork");
8238 }
8239
8240 /* Implement the "print_mention" breakpoint_ops method for vfork
8241 catchpoints. */
8242
8243 static void
8244 print_mention_catch_vfork (struct breakpoint *b)
8245 {
8246 printf_filtered (_("Catchpoint %d (vfork)"), b->number);
8247 }
8248
8249 /* Implement the "print_recreate" breakpoint_ops method for vfork
8250 catchpoints. */
8251
8252 static void
8253 print_recreate_catch_vfork (struct breakpoint *b, struct ui_file *fp)
8254 {
8255 fprintf_unfiltered (fp, "catch vfork");
8256 print_recreate_thread (b, fp);
8257 }
8258
8259 /* The breakpoint_ops structure to be used in vfork catchpoints. */
8260
8261 static struct breakpoint_ops catch_vfork_breakpoint_ops;
8262
8263 /* An instance of this type is used to represent an solib catchpoint.
8264 A breakpoint is really of this type iff its ops pointer points to
8265 CATCH_SOLIB_BREAKPOINT_OPS. */
8266
8267 struct solib_catchpoint : public breakpoint
8268 {
8269 ~solib_catchpoint () override;
8270
8271 /* True for "catch load", false for "catch unload". */
8272 unsigned char is_load;
8273
8274 /* Regular expression to match, if any. COMPILED is only valid when
8275 REGEX is non-NULL. */
8276 char *regex;
8277 std::unique_ptr<compiled_regex> compiled;
8278 };
8279
8280 solib_catchpoint::~solib_catchpoint ()
8281 {
8282 xfree (this->regex);
8283 }
8284
8285 static int
8286 insert_catch_solib (struct bp_location *ignore)
8287 {
8288 return 0;
8289 }
8290
8291 static int
8292 remove_catch_solib (struct bp_location *ignore, enum remove_bp_reason reason)
8293 {
8294 return 0;
8295 }
8296
8297 static int
8298 breakpoint_hit_catch_solib (const struct bp_location *bl,
8299 struct address_space *aspace,
8300 CORE_ADDR bp_addr,
8301 const struct target_waitstatus *ws)
8302 {
8303 struct solib_catchpoint *self = (struct solib_catchpoint *) bl->owner;
8304 struct breakpoint *other;
8305
8306 if (ws->kind == TARGET_WAITKIND_LOADED)
8307 return 1;
8308
8309 ALL_BREAKPOINTS (other)
8310 {
8311 struct bp_location *other_bl;
8312
8313 if (other == bl->owner)
8314 continue;
8315
8316 if (other->type != bp_shlib_event)
8317 continue;
8318
8319 if (self->pspace != NULL && other->pspace != self->pspace)
8320 continue;
8321
8322 for (other_bl = other->loc; other_bl != NULL; other_bl = other_bl->next)
8323 {
8324 if (other->ops->breakpoint_hit (other_bl, aspace, bp_addr, ws))
8325 return 1;
8326 }
8327 }
8328
8329 return 0;
8330 }
8331
8332 static void
8333 check_status_catch_solib (struct bpstats *bs)
8334 {
8335 struct solib_catchpoint *self
8336 = (struct solib_catchpoint *) bs->breakpoint_at;
8337 int ix;
8338
8339 if (self->is_load)
8340 {
8341 struct so_list *iter;
8342
8343 for (ix = 0;
8344 VEC_iterate (so_list_ptr, current_program_space->added_solibs,
8345 ix, iter);
8346 ++ix)
8347 {
8348 if (!self->regex
8349 || self->compiled->exec (iter->so_name, 0, NULL, 0) == 0)
8350 return;
8351 }
8352 }
8353 else
8354 {
8355 char *iter;
8356
8357 for (ix = 0;
8358 VEC_iterate (char_ptr, current_program_space->deleted_solibs,
8359 ix, iter);
8360 ++ix)
8361 {
8362 if (!self->regex
8363 || self->compiled->exec (iter, 0, NULL, 0) == 0)
8364 return;
8365 }
8366 }
8367
8368 bs->stop = 0;
8369 bs->print_it = print_it_noop;
8370 }
8371
8372 static enum print_stop_action
8373 print_it_catch_solib (bpstat bs)
8374 {
8375 struct breakpoint *b = bs->breakpoint_at;
8376 struct ui_out *uiout = current_uiout;
8377
8378 annotate_catchpoint (b->number);
8379 maybe_print_thread_hit_breakpoint (uiout);
8380 if (b->disposition == disp_del)
8381 uiout->text ("Temporary catchpoint ");
8382 else
8383 uiout->text ("Catchpoint ");
8384 uiout->field_int ("bkptno", b->number);
8385 uiout->text ("\n");
8386 if (uiout->is_mi_like_p ())
8387 uiout->field_string ("disp", bpdisp_text (b->disposition));
8388 print_solib_event (1);
8389 return PRINT_SRC_AND_LOC;
8390 }
8391
8392 static void
8393 print_one_catch_solib (struct breakpoint *b, struct bp_location **locs)
8394 {
8395 struct solib_catchpoint *self = (struct solib_catchpoint *) b;
8396 struct value_print_options opts;
8397 struct ui_out *uiout = current_uiout;
8398 char *msg;
8399
8400 get_user_print_options (&opts);
8401 /* Field 4, the address, is omitted (which makes the columns not
8402 line up too nicely with the headers, but the effect is relatively
8403 readable). */
8404 if (opts.addressprint)
8405 {
8406 annotate_field (4);
8407 uiout->field_skip ("addr");
8408 }
8409
8410 annotate_field (5);
8411 if (self->is_load)
8412 {
8413 if (self->regex)
8414 msg = xstrprintf (_("load of library matching %s"), self->regex);
8415 else
8416 msg = xstrdup (_("load of library"));
8417 }
8418 else
8419 {
8420 if (self->regex)
8421 msg = xstrprintf (_("unload of library matching %s"), self->regex);
8422 else
8423 msg = xstrdup (_("unload of library"));
8424 }
8425 uiout->field_string ("what", msg);
8426 xfree (msg);
8427
8428 if (uiout->is_mi_like_p ())
8429 uiout->field_string ("catch-type", self->is_load ? "load" : "unload");
8430 }
8431
8432 static void
8433 print_mention_catch_solib (struct breakpoint *b)
8434 {
8435 struct solib_catchpoint *self = (struct solib_catchpoint *) b;
8436
8437 printf_filtered (_("Catchpoint %d (%s)"), b->number,
8438 self->is_load ? "load" : "unload");
8439 }
8440
8441 static void
8442 print_recreate_catch_solib (struct breakpoint *b, struct ui_file *fp)
8443 {
8444 struct solib_catchpoint *self = (struct solib_catchpoint *) b;
8445
8446 fprintf_unfiltered (fp, "%s %s",
8447 b->disposition == disp_del ? "tcatch" : "catch",
8448 self->is_load ? "load" : "unload");
8449 if (self->regex)
8450 fprintf_unfiltered (fp, " %s", self->regex);
8451 fprintf_unfiltered (fp, "\n");
8452 }
8453
8454 static struct breakpoint_ops catch_solib_breakpoint_ops;
8455
8456 /* Shared helper function (MI and CLI) for creating and installing
8457 a shared object event catchpoint. If IS_LOAD is non-zero then
8458 the events to be caught are load events, otherwise they are
8459 unload events. If IS_TEMP is non-zero the catchpoint is a
8460 temporary one. If ENABLED is non-zero the catchpoint is
8461 created in an enabled state. */
8462
8463 void
8464 add_solib_catchpoint (const char *arg, int is_load, int is_temp, int enabled)
8465 {
8466 struct gdbarch *gdbarch = get_current_arch ();
8467
8468 if (!arg)
8469 arg = "";
8470 arg = skip_spaces_const (arg);
8471
8472 std::unique_ptr<solib_catchpoint> c (new solib_catchpoint ());
8473
8474 if (*arg != '\0')
8475 {
8476 c->compiled.reset (new compiled_regex (arg, REG_NOSUB,
8477 _("Invalid regexp")));
8478 c->regex = xstrdup (arg);
8479 }
8480
8481 c->is_load = is_load;
8482 init_catchpoint (c.get (), gdbarch, is_temp, NULL,
8483 &catch_solib_breakpoint_ops);
8484
8485 c->enable_state = enabled ? bp_enabled : bp_disabled;
8486
8487 install_breakpoint (0, std::move (c), 1);
8488 }
8489
8490 /* A helper function that does all the work for "catch load" and
8491 "catch unload". */
8492
8493 static void
8494 catch_load_or_unload (char *arg, int from_tty, int is_load,
8495 struct cmd_list_element *command)
8496 {
8497 int tempflag;
8498 const int enabled = 1;
8499
8500 tempflag = get_cmd_context (command) == CATCH_TEMPORARY;
8501
8502 add_solib_catchpoint (arg, is_load, tempflag, enabled);
8503 }
8504
8505 static void
8506 catch_load_command_1 (char *arg, int from_tty,
8507 struct cmd_list_element *command)
8508 {
8509 catch_load_or_unload (arg, from_tty, 1, command);
8510 }
8511
8512 static void
8513 catch_unload_command_1 (char *arg, int from_tty,
8514 struct cmd_list_element *command)
8515 {
8516 catch_load_or_unload (arg, from_tty, 0, command);
8517 }
8518
8519 /* Initialize a new breakpoint of the bp_catchpoint kind. If TEMPFLAG
8520 is non-zero, then make the breakpoint temporary. If COND_STRING is
8521 not NULL, then store it in the breakpoint. OPS, if not NULL, is
8522 the breakpoint_ops structure associated to the catchpoint. */
8523
8524 void
8525 init_catchpoint (struct breakpoint *b,
8526 struct gdbarch *gdbarch, int tempflag,
8527 const char *cond_string,
8528 const struct breakpoint_ops *ops)
8529 {
8530 struct symtab_and_line sal;
8531
8532 init_sal (&sal);
8533 sal.pspace = current_program_space;
8534
8535 init_raw_breakpoint (b, gdbarch, sal, bp_catchpoint, ops);
8536
8537 b->cond_string = (cond_string == NULL) ? NULL : xstrdup (cond_string);
8538 b->disposition = tempflag ? disp_del : disp_donttouch;
8539 }
8540
8541 void
8542 install_breakpoint (int internal, std::unique_ptr<breakpoint> &&arg, int update_gll)
8543 {
8544 breakpoint *b = add_to_breakpoint_chain (std::move (arg));
8545 set_breakpoint_number (internal, b);
8546 if (is_tracepoint (b))
8547 set_tracepoint_count (breakpoint_count);
8548 if (!internal)
8549 mention (b);
8550 observer_notify_breakpoint_created (b);
8551
8552 if (update_gll)
8553 update_global_location_list (UGLL_MAY_INSERT);
8554 }
8555
8556 static void
8557 create_fork_vfork_event_catchpoint (struct gdbarch *gdbarch,
8558 int tempflag, const char *cond_string,
8559 const struct breakpoint_ops *ops)
8560 {
8561 std::unique_ptr<fork_catchpoint> c (new fork_catchpoint ());
8562
8563 init_catchpoint (c.get (), gdbarch, tempflag, cond_string, ops);
8564
8565 c->forked_inferior_pid = null_ptid;
8566
8567 install_breakpoint (0, std::move (c), 1);
8568 }
8569
8570 /* Exec catchpoints. */
8571
8572 /* An instance of this type is used to represent an exec catchpoint.
8573 A breakpoint is really of this type iff its ops pointer points to
8574 CATCH_EXEC_BREAKPOINT_OPS. */
8575
8576 struct exec_catchpoint : public breakpoint
8577 {
8578 ~exec_catchpoint () override;
8579
8580 /* Filename of a program whose exec triggered this catchpoint.
8581 This field is only valid immediately after this catchpoint has
8582 triggered. */
8583 char *exec_pathname;
8584 };
8585
8586 /* Exec catchpoint destructor. */
8587
8588 exec_catchpoint::~exec_catchpoint ()
8589 {
8590 xfree (this->exec_pathname);
8591 }
8592
8593 static int
8594 insert_catch_exec (struct bp_location *bl)
8595 {
8596 return target_insert_exec_catchpoint (ptid_get_pid (inferior_ptid));
8597 }
8598
8599 static int
8600 remove_catch_exec (struct bp_location *bl, enum remove_bp_reason reason)
8601 {
8602 return target_remove_exec_catchpoint (ptid_get_pid (inferior_ptid));
8603 }
8604
8605 static int
8606 breakpoint_hit_catch_exec (const struct bp_location *bl,
8607 struct address_space *aspace, CORE_ADDR bp_addr,
8608 const struct target_waitstatus *ws)
8609 {
8610 struct exec_catchpoint *c = (struct exec_catchpoint *) bl->owner;
8611
8612 if (ws->kind != TARGET_WAITKIND_EXECD)
8613 return 0;
8614
8615 c->exec_pathname = xstrdup (ws->value.execd_pathname);
8616 return 1;
8617 }
8618
8619 static enum print_stop_action
8620 print_it_catch_exec (bpstat bs)
8621 {
8622 struct ui_out *uiout = current_uiout;
8623 struct breakpoint *b = bs->breakpoint_at;
8624 struct exec_catchpoint *c = (struct exec_catchpoint *) b;
8625
8626 annotate_catchpoint (b->number);
8627 maybe_print_thread_hit_breakpoint (uiout);
8628 if (b->disposition == disp_del)
8629 uiout->text ("Temporary catchpoint ");
8630 else
8631 uiout->text ("Catchpoint ");
8632 if (uiout->is_mi_like_p ())
8633 {
8634 uiout->field_string ("reason", async_reason_lookup (EXEC_ASYNC_EXEC));
8635 uiout->field_string ("disp", bpdisp_text (b->disposition));
8636 }
8637 uiout->field_int ("bkptno", b->number);
8638 uiout->text (" (exec'd ");
8639 uiout->field_string ("new-exec", c->exec_pathname);
8640 uiout->text ("), ");
8641
8642 return PRINT_SRC_AND_LOC;
8643 }
8644
8645 static void
8646 print_one_catch_exec (struct breakpoint *b, struct bp_location **last_loc)
8647 {
8648 struct exec_catchpoint *c = (struct exec_catchpoint *) b;
8649 struct value_print_options opts;
8650 struct ui_out *uiout = current_uiout;
8651
8652 get_user_print_options (&opts);
8653
8654 /* Field 4, the address, is omitted (which makes the columns
8655 not line up too nicely with the headers, but the effect
8656 is relatively readable). */
8657 if (opts.addressprint)
8658 uiout->field_skip ("addr");
8659 annotate_field (5);
8660 uiout->text ("exec");
8661 if (c->exec_pathname != NULL)
8662 {
8663 uiout->text (", program \"");
8664 uiout->field_string ("what", c->exec_pathname);
8665 uiout->text ("\" ");
8666 }
8667
8668 if (uiout->is_mi_like_p ())
8669 uiout->field_string ("catch-type", "exec");
8670 }
8671
8672 static void
8673 print_mention_catch_exec (struct breakpoint *b)
8674 {
8675 printf_filtered (_("Catchpoint %d (exec)"), b->number);
8676 }
8677
8678 /* Implement the "print_recreate" breakpoint_ops method for exec
8679 catchpoints. */
8680
8681 static void
8682 print_recreate_catch_exec (struct breakpoint *b, struct ui_file *fp)
8683 {
8684 fprintf_unfiltered (fp, "catch exec");
8685 print_recreate_thread (b, fp);
8686 }
8687
8688 static struct breakpoint_ops catch_exec_breakpoint_ops;
8689
8690 static int
8691 hw_breakpoint_used_count (void)
8692 {
8693 int i = 0;
8694 struct breakpoint *b;
8695 struct bp_location *bl;
8696
8697 ALL_BREAKPOINTS (b)
8698 {
8699 if (b->type == bp_hardware_breakpoint && breakpoint_enabled (b))
8700 for (bl = b->loc; bl; bl = bl->next)
8701 {
8702 /* Special types of hardware breakpoints may use more than
8703 one register. */
8704 i += b->ops->resources_needed (bl);
8705 }
8706 }
8707
8708 return i;
8709 }
8710
8711 /* Returns the resources B would use if it were a hardware
8712 watchpoint. */
8713
8714 static int
8715 hw_watchpoint_use_count (struct breakpoint *b)
8716 {
8717 int i = 0;
8718 struct bp_location *bl;
8719
8720 if (!breakpoint_enabled (b))
8721 return 0;
8722
8723 for (bl = b->loc; bl; bl = bl->next)
8724 {
8725 /* Special types of hardware watchpoints may use more than
8726 one register. */
8727 i += b->ops->resources_needed (bl);
8728 }
8729
8730 return i;
8731 }
8732
8733 /* Returns the sum the used resources of all hardware watchpoints of
8734 type TYPE in the breakpoints list. Also returns in OTHER_TYPE_USED
8735 the sum of the used resources of all hardware watchpoints of other
8736 types _not_ TYPE. */
8737
8738 static int
8739 hw_watchpoint_used_count_others (struct breakpoint *except,
8740 enum bptype type, int *other_type_used)
8741 {
8742 int i = 0;
8743 struct breakpoint *b;
8744
8745 *other_type_used = 0;
8746 ALL_BREAKPOINTS (b)
8747 {
8748 if (b == except)
8749 continue;
8750 if (!breakpoint_enabled (b))
8751 continue;
8752
8753 if (b->type == type)
8754 i += hw_watchpoint_use_count (b);
8755 else if (is_hardware_watchpoint (b))
8756 *other_type_used = 1;
8757 }
8758
8759 return i;
8760 }
8761
8762 void
8763 disable_watchpoints_before_interactive_call_start (void)
8764 {
8765 struct breakpoint *b;
8766
8767 ALL_BREAKPOINTS (b)
8768 {
8769 if (is_watchpoint (b) && breakpoint_enabled (b))
8770 {
8771 b->enable_state = bp_call_disabled;
8772 update_global_location_list (UGLL_DONT_INSERT);
8773 }
8774 }
8775 }
8776
8777 void
8778 enable_watchpoints_after_interactive_call_stop (void)
8779 {
8780 struct breakpoint *b;
8781
8782 ALL_BREAKPOINTS (b)
8783 {
8784 if (is_watchpoint (b) && b->enable_state == bp_call_disabled)
8785 {
8786 b->enable_state = bp_enabled;
8787 update_global_location_list (UGLL_MAY_INSERT);
8788 }
8789 }
8790 }
8791
8792 void
8793 disable_breakpoints_before_startup (void)
8794 {
8795 current_program_space->executing_startup = 1;
8796 update_global_location_list (UGLL_DONT_INSERT);
8797 }
8798
8799 void
8800 enable_breakpoints_after_startup (void)
8801 {
8802 current_program_space->executing_startup = 0;
8803 breakpoint_re_set ();
8804 }
8805
8806 /* Create a new single-step breakpoint for thread THREAD, with no
8807 locations. */
8808
8809 static struct breakpoint *
8810 new_single_step_breakpoint (int thread, struct gdbarch *gdbarch)
8811 {
8812 std::unique_ptr<breakpoint> b (new breakpoint ());
8813
8814 init_raw_breakpoint_without_location (b.get (), gdbarch, bp_single_step,
8815 &momentary_breakpoint_ops);
8816
8817 b->disposition = disp_donttouch;
8818 b->frame_id = null_frame_id;
8819
8820 b->thread = thread;
8821 gdb_assert (b->thread != 0);
8822
8823 return add_to_breakpoint_chain (std::move (b));
8824 }
8825
8826 /* Set a momentary breakpoint of type TYPE at address specified by
8827 SAL. If FRAME_ID is valid, the breakpoint is restricted to that
8828 frame. */
8829
8830 struct breakpoint *
8831 set_momentary_breakpoint (struct gdbarch *gdbarch, struct symtab_and_line sal,
8832 struct frame_id frame_id, enum bptype type)
8833 {
8834 struct breakpoint *b;
8835
8836 /* If FRAME_ID is valid, it should be a real frame, not an inlined or
8837 tail-called one. */
8838 gdb_assert (!frame_id_artificial_p (frame_id));
8839
8840 b = set_raw_breakpoint (gdbarch, sal, type, &momentary_breakpoint_ops);
8841 b->enable_state = bp_enabled;
8842 b->disposition = disp_donttouch;
8843 b->frame_id = frame_id;
8844
8845 /* If we're debugging a multi-threaded program, then we want
8846 momentary breakpoints to be active in only a single thread of
8847 control. */
8848 if (in_thread_list (inferior_ptid))
8849 b->thread = ptid_to_global_thread_id (inferior_ptid);
8850
8851 update_global_location_list_nothrow (UGLL_MAY_INSERT);
8852
8853 return b;
8854 }
8855
8856 /* Make a momentary breakpoint based on the master breakpoint ORIG.
8857 The new breakpoint will have type TYPE, use OPS as its
8858 breakpoint_ops, and will set enabled to LOC_ENABLED. */
8859
8860 static struct breakpoint *
8861 momentary_breakpoint_from_master (struct breakpoint *orig,
8862 enum bptype type,
8863 const struct breakpoint_ops *ops,
8864 int loc_enabled)
8865 {
8866 struct breakpoint *copy;
8867
8868 copy = set_raw_breakpoint_without_location (orig->gdbarch, type, ops);
8869 copy->loc = allocate_bp_location (copy);
8870 set_breakpoint_location_function (copy->loc, 1);
8871
8872 copy->loc->gdbarch = orig->loc->gdbarch;
8873 copy->loc->requested_address = orig->loc->requested_address;
8874 copy->loc->address = orig->loc->address;
8875 copy->loc->section = orig->loc->section;
8876 copy->loc->pspace = orig->loc->pspace;
8877 copy->loc->probe = orig->loc->probe;
8878 copy->loc->line_number = orig->loc->line_number;
8879 copy->loc->symtab = orig->loc->symtab;
8880 copy->loc->enabled = loc_enabled;
8881 copy->frame_id = orig->frame_id;
8882 copy->thread = orig->thread;
8883 copy->pspace = orig->pspace;
8884
8885 copy->enable_state = bp_enabled;
8886 copy->disposition = disp_donttouch;
8887 copy->number = internal_breakpoint_number--;
8888
8889 update_global_location_list_nothrow (UGLL_DONT_INSERT);
8890 return copy;
8891 }
8892
8893 /* Make a deep copy of momentary breakpoint ORIG. Returns NULL if
8894 ORIG is NULL. */
8895
8896 struct breakpoint *
8897 clone_momentary_breakpoint (struct breakpoint *orig)
8898 {
8899 /* If there's nothing to clone, then return nothing. */
8900 if (orig == NULL)
8901 return NULL;
8902
8903 return momentary_breakpoint_from_master (orig, orig->type, orig->ops, 0);
8904 }
8905
8906 struct breakpoint *
8907 set_momentary_breakpoint_at_pc (struct gdbarch *gdbarch, CORE_ADDR pc,
8908 enum bptype type)
8909 {
8910 struct symtab_and_line sal;
8911
8912 sal = find_pc_line (pc, 0);
8913 sal.pc = pc;
8914 sal.section = find_pc_overlay (pc);
8915 sal.explicit_pc = 1;
8916
8917 return set_momentary_breakpoint (gdbarch, sal, null_frame_id, type);
8918 }
8919 \f
8920
8921 /* Tell the user we have just set a breakpoint B. */
8922
8923 static void
8924 mention (struct breakpoint *b)
8925 {
8926 b->ops->print_mention (b);
8927 if (current_uiout->is_mi_like_p ())
8928 return;
8929 printf_filtered ("\n");
8930 }
8931 \f
8932
8933 static int bp_loc_is_permanent (struct bp_location *loc);
8934
8935 static struct bp_location *
8936 add_location_to_breakpoint (struct breakpoint *b,
8937 const struct symtab_and_line *sal)
8938 {
8939 struct bp_location *loc, **tmp;
8940 CORE_ADDR adjusted_address;
8941 struct gdbarch *loc_gdbarch = get_sal_arch (*sal);
8942
8943 if (loc_gdbarch == NULL)
8944 loc_gdbarch = b->gdbarch;
8945
8946 /* Adjust the breakpoint's address prior to allocating a location.
8947 Once we call allocate_bp_location(), that mostly uninitialized
8948 location will be placed on the location chain. Adjustment of the
8949 breakpoint may cause target_read_memory() to be called and we do
8950 not want its scan of the location chain to find a breakpoint and
8951 location that's only been partially initialized. */
8952 adjusted_address = adjust_breakpoint_address (loc_gdbarch,
8953 sal->pc, b->type);
8954
8955 /* Sort the locations by their ADDRESS. */
8956 loc = allocate_bp_location (b);
8957 for (tmp = &(b->loc); *tmp != NULL && (*tmp)->address <= adjusted_address;
8958 tmp = &((*tmp)->next))
8959 ;
8960 loc->next = *tmp;
8961 *tmp = loc;
8962
8963 loc->requested_address = sal->pc;
8964 loc->address = adjusted_address;
8965 loc->pspace = sal->pspace;
8966 loc->probe.probe = sal->probe;
8967 loc->probe.objfile = sal->objfile;
8968 gdb_assert (loc->pspace != NULL);
8969 loc->section = sal->section;
8970 loc->gdbarch = loc_gdbarch;
8971 loc->line_number = sal->line;
8972 loc->symtab = sal->symtab;
8973
8974 set_breakpoint_location_function (loc,
8975 sal->explicit_pc || sal->explicit_line);
8976
8977 /* While by definition, permanent breakpoints are already present in the
8978 code, we don't mark the location as inserted. Normally one would expect
8979 that GDB could rely on that breakpoint instruction to stop the program,
8980 thus removing the need to insert its own breakpoint, except that executing
8981 the breakpoint instruction can kill the target instead of reporting a
8982 SIGTRAP. E.g., on SPARC, when interrupts are disabled, executing the
8983 instruction resets the CPU, so QEMU 2.0.0 for SPARC correspondingly dies
8984 with "Trap 0x02 while interrupts disabled, Error state". Letting the
8985 breakpoint be inserted normally results in QEMU knowing about the GDB
8986 breakpoint, and thus trap before the breakpoint instruction is executed.
8987 (If GDB later needs to continue execution past the permanent breakpoint,
8988 it manually increments the PC, thus avoiding executing the breakpoint
8989 instruction.) */
8990 if (bp_loc_is_permanent (loc))
8991 loc->permanent = 1;
8992
8993 return loc;
8994 }
8995 \f
8996
8997 /* See breakpoint.h. */
8998
8999 int
9000 program_breakpoint_here_p (struct gdbarch *gdbarch, CORE_ADDR address)
9001 {
9002 int len;
9003 CORE_ADDR addr;
9004 const gdb_byte *bpoint;
9005 gdb_byte *target_mem;
9006 struct cleanup *cleanup;
9007 int retval = 0;
9008
9009 addr = address;
9010 bpoint = gdbarch_breakpoint_from_pc (gdbarch, &addr, &len);
9011
9012 /* Software breakpoints unsupported? */
9013 if (bpoint == NULL)
9014 return 0;
9015
9016 target_mem = (gdb_byte *) alloca (len);
9017
9018 /* Enable the automatic memory restoration from breakpoints while
9019 we read the memory. Otherwise we could say about our temporary
9020 breakpoints they are permanent. */
9021 cleanup = make_show_memory_breakpoints_cleanup (0);
9022
9023 if (target_read_memory (address, target_mem, len) == 0
9024 && memcmp (target_mem, bpoint, len) == 0)
9025 retval = 1;
9026
9027 do_cleanups (cleanup);
9028
9029 return retval;
9030 }
9031
9032 /* Return 1 if LOC is pointing to a permanent breakpoint,
9033 return 0 otherwise. */
9034
9035 static int
9036 bp_loc_is_permanent (struct bp_location *loc)
9037 {
9038 gdb_assert (loc != NULL);
9039
9040 /* If we have a catchpoint or a watchpoint, just return 0. We should not
9041 attempt to read from the addresses the locations of these breakpoint types
9042 point to. program_breakpoint_here_p, below, will attempt to read
9043 memory. */
9044 if (!breakpoint_address_is_meaningful (loc->owner))
9045 return 0;
9046
9047 scoped_restore_current_pspace_and_thread restore_pspace_thread;
9048 switch_to_program_space_and_thread (loc->pspace);
9049 return program_breakpoint_here_p (loc->gdbarch, loc->address);
9050 }
9051
9052 /* Build a command list for the dprintf corresponding to the current
9053 settings of the dprintf style options. */
9054
9055 static void
9056 update_dprintf_command_list (struct breakpoint *b)
9057 {
9058 char *dprintf_args = b->extra_string;
9059 char *printf_line = NULL;
9060
9061 if (!dprintf_args)
9062 return;
9063
9064 dprintf_args = skip_spaces (dprintf_args);
9065
9066 /* Allow a comma, as it may have terminated a location, but don't
9067 insist on it. */
9068 if (*dprintf_args == ',')
9069 ++dprintf_args;
9070 dprintf_args = skip_spaces (dprintf_args);
9071
9072 if (*dprintf_args != '"')
9073 error (_("Bad format string, missing '\"'."));
9074
9075 if (strcmp (dprintf_style, dprintf_style_gdb) == 0)
9076 printf_line = xstrprintf ("printf %s", dprintf_args);
9077 else if (strcmp (dprintf_style, dprintf_style_call) == 0)
9078 {
9079 if (!dprintf_function)
9080 error (_("No function supplied for dprintf call"));
9081
9082 if (dprintf_channel && strlen (dprintf_channel) > 0)
9083 printf_line = xstrprintf ("call (void) %s (%s,%s)",
9084 dprintf_function,
9085 dprintf_channel,
9086 dprintf_args);
9087 else
9088 printf_line = xstrprintf ("call (void) %s (%s)",
9089 dprintf_function,
9090 dprintf_args);
9091 }
9092 else if (strcmp (dprintf_style, dprintf_style_agent) == 0)
9093 {
9094 if (target_can_run_breakpoint_commands ())
9095 printf_line = xstrprintf ("agent-printf %s", dprintf_args);
9096 else
9097 {
9098 warning (_("Target cannot run dprintf commands, falling back to GDB printf"));
9099 printf_line = xstrprintf ("printf %s", dprintf_args);
9100 }
9101 }
9102 else
9103 internal_error (__FILE__, __LINE__,
9104 _("Invalid dprintf style."));
9105
9106 gdb_assert (printf_line != NULL);
9107 /* Manufacture a printf sequence. */
9108 {
9109 struct command_line *printf_cmd_line = XNEW (struct command_line);
9110
9111 printf_cmd_line->control_type = simple_control;
9112 printf_cmd_line->body_count = 0;
9113 printf_cmd_line->body_list = NULL;
9114 printf_cmd_line->next = NULL;
9115 printf_cmd_line->line = printf_line;
9116
9117 breakpoint_set_commands (b, command_line_up (printf_cmd_line));
9118 }
9119 }
9120
9121 /* Update all dprintf commands, making their command lists reflect
9122 current style settings. */
9123
9124 static void
9125 update_dprintf_commands (char *args, int from_tty,
9126 struct cmd_list_element *c)
9127 {
9128 struct breakpoint *b;
9129
9130 ALL_BREAKPOINTS (b)
9131 {
9132 if (b->type == bp_dprintf)
9133 update_dprintf_command_list (b);
9134 }
9135 }
9136
9137 /* Create a breakpoint with SAL as location. Use LOCATION
9138 as a description of the location, and COND_STRING
9139 as condition expression. If LOCATION is NULL then create an
9140 "address location" from the address in the SAL. */
9141
9142 static void
9143 init_breakpoint_sal (struct breakpoint *b, struct gdbarch *gdbarch,
9144 struct symtabs_and_lines sals,
9145 event_location_up &&location,
9146 gdb::unique_xmalloc_ptr<char> filter,
9147 gdb::unique_xmalloc_ptr<char> cond_string,
9148 gdb::unique_xmalloc_ptr<char> extra_string,
9149 enum bptype type, enum bpdisp disposition,
9150 int thread, int task, int ignore_count,
9151 const struct breakpoint_ops *ops, int from_tty,
9152 int enabled, int internal, unsigned flags,
9153 int display_canonical)
9154 {
9155 int i;
9156
9157 if (type == bp_hardware_breakpoint)
9158 {
9159 int target_resources_ok;
9160
9161 i = hw_breakpoint_used_count ();
9162 target_resources_ok =
9163 target_can_use_hardware_watchpoint (bp_hardware_breakpoint,
9164 i + 1, 0);
9165 if (target_resources_ok == 0)
9166 error (_("No hardware breakpoint support in the target."));
9167 else if (target_resources_ok < 0)
9168 error (_("Hardware breakpoints used exceeds limit."));
9169 }
9170
9171 gdb_assert (sals.nelts > 0);
9172
9173 for (i = 0; i < sals.nelts; ++i)
9174 {
9175 struct symtab_and_line sal = sals.sals[i];
9176 struct bp_location *loc;
9177
9178 if (from_tty)
9179 {
9180 struct gdbarch *loc_gdbarch = get_sal_arch (sal);
9181 if (!loc_gdbarch)
9182 loc_gdbarch = gdbarch;
9183
9184 describe_other_breakpoints (loc_gdbarch,
9185 sal.pspace, sal.pc, sal.section, thread);
9186 }
9187
9188 if (i == 0)
9189 {
9190 init_raw_breakpoint (b, gdbarch, sal, type, ops);
9191 b->thread = thread;
9192 b->task = task;
9193
9194 b->cond_string = cond_string.release ();
9195 b->extra_string = extra_string.release ();
9196 b->ignore_count = ignore_count;
9197 b->enable_state = enabled ? bp_enabled : bp_disabled;
9198 b->disposition = disposition;
9199
9200 if ((flags & CREATE_BREAKPOINT_FLAGS_INSERTED) != 0)
9201 b->loc->inserted = 1;
9202
9203 if (type == bp_static_tracepoint)
9204 {
9205 struct tracepoint *t = (struct tracepoint *) b;
9206 struct static_tracepoint_marker marker;
9207
9208 if (strace_marker_p (b))
9209 {
9210 /* We already know the marker exists, otherwise, we
9211 wouldn't see a sal for it. */
9212 const char *p
9213 = &event_location_to_string (b->location.get ())[3];
9214 const char *endp;
9215 char *marker_str;
9216
9217 p = skip_spaces_const (p);
9218
9219 endp = skip_to_space_const (p);
9220
9221 marker_str = savestring (p, endp - p);
9222 t->static_trace_marker_id = marker_str;
9223
9224 printf_filtered (_("Probed static tracepoint "
9225 "marker \"%s\"\n"),
9226 t->static_trace_marker_id);
9227 }
9228 else if (target_static_tracepoint_marker_at (sal.pc, &marker))
9229 {
9230 t->static_trace_marker_id = xstrdup (marker.str_id);
9231 release_static_tracepoint_marker (&marker);
9232
9233 printf_filtered (_("Probed static tracepoint "
9234 "marker \"%s\"\n"),
9235 t->static_trace_marker_id);
9236 }
9237 else
9238 warning (_("Couldn't determine the static "
9239 "tracepoint marker to probe"));
9240 }
9241
9242 loc = b->loc;
9243 }
9244 else
9245 {
9246 loc = add_location_to_breakpoint (b, &sal);
9247 if ((flags & CREATE_BREAKPOINT_FLAGS_INSERTED) != 0)
9248 loc->inserted = 1;
9249 }
9250
9251 if (b->cond_string)
9252 {
9253 const char *arg = b->cond_string;
9254
9255 loc->cond = parse_exp_1 (&arg, loc->address,
9256 block_for_pc (loc->address), 0);
9257 if (*arg)
9258 error (_("Garbage '%s' follows condition"), arg);
9259 }
9260
9261 /* Dynamic printf requires and uses additional arguments on the
9262 command line, otherwise it's an error. */
9263 if (type == bp_dprintf)
9264 {
9265 if (b->extra_string)
9266 update_dprintf_command_list (b);
9267 else
9268 error (_("Format string required"));
9269 }
9270 else if (b->extra_string)
9271 error (_("Garbage '%s' at end of command"), b->extra_string);
9272 }
9273
9274 b->display_canonical = display_canonical;
9275 if (location != NULL)
9276 b->location = std::move (location);
9277 else
9278 b->location = new_address_location (b->loc->address, NULL, 0);
9279 b->filter = filter.release ();
9280 }
9281
9282 static void
9283 create_breakpoint_sal (struct gdbarch *gdbarch,
9284 struct symtabs_and_lines sals,
9285 event_location_up &&location,
9286 gdb::unique_xmalloc_ptr<char> filter,
9287 gdb::unique_xmalloc_ptr<char> cond_string,
9288 gdb::unique_xmalloc_ptr<char> extra_string,
9289 enum bptype type, enum bpdisp disposition,
9290 int thread, int task, int ignore_count,
9291 const struct breakpoint_ops *ops, int from_tty,
9292 int enabled, int internal, unsigned flags,
9293 int display_canonical)
9294 {
9295 std::unique_ptr<breakpoint> b = new_breakpoint_from_type (type);
9296
9297 init_breakpoint_sal (b.get (), gdbarch,
9298 sals, std::move (location),
9299 std::move (filter),
9300 std::move (cond_string),
9301 std::move (extra_string),
9302 type, disposition,
9303 thread, task, ignore_count,
9304 ops, from_tty,
9305 enabled, internal, flags,
9306 display_canonical);
9307
9308 install_breakpoint (internal, std::move (b), 0);
9309 }
9310
9311 /* Add SALS.nelts breakpoints to the breakpoint table. For each
9312 SALS.sal[i] breakpoint, include the corresponding ADDR_STRING[i]
9313 value. COND_STRING, if not NULL, specified the condition to be
9314 used for all breakpoints. Essentially the only case where
9315 SALS.nelts is not 1 is when we set a breakpoint on an overloaded
9316 function. In that case, it's still not possible to specify
9317 separate conditions for different overloaded functions, so
9318 we take just a single condition string.
9319
9320 NOTE: If the function succeeds, the caller is expected to cleanup
9321 the arrays ADDR_STRING, COND_STRING, and SALS (but not the
9322 array contents). If the function fails (error() is called), the
9323 caller is expected to cleanups both the ADDR_STRING, COND_STRING,
9324 COND and SALS arrays and each of those arrays contents. */
9325
9326 static void
9327 create_breakpoints_sal (struct gdbarch *gdbarch,
9328 struct linespec_result *canonical,
9329 gdb::unique_xmalloc_ptr<char> cond_string,
9330 gdb::unique_xmalloc_ptr<char> extra_string,
9331 enum bptype type, enum bpdisp disposition,
9332 int thread, int task, int ignore_count,
9333 const struct breakpoint_ops *ops, int from_tty,
9334 int enabled, int internal, unsigned flags)
9335 {
9336 int i;
9337 struct linespec_sals *lsal;
9338
9339 if (canonical->pre_expanded)
9340 gdb_assert (VEC_length (linespec_sals, canonical->sals) == 1);
9341
9342 for (i = 0; VEC_iterate (linespec_sals, canonical->sals, i, lsal); ++i)
9343 {
9344 /* Note that 'location' can be NULL in the case of a plain
9345 'break', without arguments. */
9346 event_location_up location
9347 = (canonical->location != NULL
9348 ? copy_event_location (canonical->location.get ()) : NULL);
9349 gdb::unique_xmalloc_ptr<char> filter_string
9350 (lsal->canonical != NULL ? xstrdup (lsal->canonical) : NULL);
9351
9352 create_breakpoint_sal (gdbarch, lsal->sals,
9353 std::move (location),
9354 std::move (filter_string),
9355 std::move (cond_string),
9356 std::move (extra_string),
9357 type, disposition,
9358 thread, task, ignore_count, ops,
9359 from_tty, enabled, internal, flags,
9360 canonical->special_display);
9361 }
9362 }
9363
9364 /* Parse LOCATION which is assumed to be a SAL specification possibly
9365 followed by conditionals. On return, SALS contains an array of SAL
9366 addresses found. LOCATION points to the end of the SAL (for
9367 linespec locations).
9368
9369 The array and the line spec strings are allocated on the heap, it is
9370 the caller's responsibility to free them. */
9371
9372 static void
9373 parse_breakpoint_sals (const struct event_location *location,
9374 struct linespec_result *canonical)
9375 {
9376 struct symtab_and_line cursal;
9377
9378 if (event_location_type (location) == LINESPEC_LOCATION)
9379 {
9380 const char *address = get_linespec_location (location);
9381
9382 if (address == NULL)
9383 {
9384 /* The last displayed codepoint, if it's valid, is our default
9385 breakpoint address. */
9386 if (last_displayed_sal_is_valid ())
9387 {
9388 struct linespec_sals lsal;
9389 struct symtab_and_line sal;
9390 CORE_ADDR pc;
9391
9392 init_sal (&sal); /* Initialize to zeroes. */
9393 lsal.sals.sals = XNEW (struct symtab_and_line);
9394
9395 /* Set sal's pspace, pc, symtab, and line to the values
9396 corresponding to the last call to print_frame_info.
9397 Be sure to reinitialize LINE with NOTCURRENT == 0
9398 as the breakpoint line number is inappropriate otherwise.
9399 find_pc_line would adjust PC, re-set it back. */
9400 get_last_displayed_sal (&sal);
9401 pc = sal.pc;
9402 sal = find_pc_line (pc, 0);
9403
9404 /* "break" without arguments is equivalent to "break *PC"
9405 where PC is the last displayed codepoint's address. So
9406 make sure to set sal.explicit_pc to prevent GDB from
9407 trying to expand the list of sals to include all other
9408 instances with the same symtab and line. */
9409 sal.pc = pc;
9410 sal.explicit_pc = 1;
9411
9412 lsal.sals.sals[0] = sal;
9413 lsal.sals.nelts = 1;
9414 lsal.canonical = NULL;
9415
9416 VEC_safe_push (linespec_sals, canonical->sals, &lsal);
9417 return;
9418 }
9419 else
9420 error (_("No default breakpoint address now."));
9421 }
9422 }
9423
9424 /* Force almost all breakpoints to be in terms of the
9425 current_source_symtab (which is decode_line_1's default).
9426 This should produce the results we want almost all of the
9427 time while leaving default_breakpoint_* alone.
9428
9429 ObjC: However, don't match an Objective-C method name which
9430 may have a '+' or '-' succeeded by a '['. */
9431 cursal = get_current_source_symtab_and_line ();
9432 if (last_displayed_sal_is_valid ())
9433 {
9434 const char *address = NULL;
9435
9436 if (event_location_type (location) == LINESPEC_LOCATION)
9437 address = get_linespec_location (location);
9438
9439 if (!cursal.symtab
9440 || (address != NULL
9441 && strchr ("+-", address[0]) != NULL
9442 && address[1] != '['))
9443 {
9444 decode_line_full (location, DECODE_LINE_FUNFIRSTLINE, NULL,
9445 get_last_displayed_symtab (),
9446 get_last_displayed_line (),
9447 canonical, NULL, NULL);
9448 return;
9449 }
9450 }
9451
9452 decode_line_full (location, DECODE_LINE_FUNFIRSTLINE, NULL,
9453 cursal.symtab, cursal.line, canonical, NULL, NULL);
9454 }
9455
9456
9457 /* Convert each SAL into a real PC. Verify that the PC can be
9458 inserted as a breakpoint. If it can't throw an error. */
9459
9460 static void
9461 breakpoint_sals_to_pc (struct symtabs_and_lines *sals)
9462 {
9463 int i;
9464
9465 for (i = 0; i < sals->nelts; i++)
9466 resolve_sal_pc (&sals->sals[i]);
9467 }
9468
9469 /* Fast tracepoints may have restrictions on valid locations. For
9470 instance, a fast tracepoint using a jump instead of a trap will
9471 likely have to overwrite more bytes than a trap would, and so can
9472 only be placed where the instruction is longer than the jump, or a
9473 multi-instruction sequence does not have a jump into the middle of
9474 it, etc. */
9475
9476 static void
9477 check_fast_tracepoint_sals (struct gdbarch *gdbarch,
9478 struct symtabs_and_lines *sals)
9479 {
9480 int i, rslt;
9481 struct symtab_and_line *sal;
9482 char *msg;
9483 struct cleanup *old_chain;
9484
9485 for (i = 0; i < sals->nelts; i++)
9486 {
9487 struct gdbarch *sarch;
9488
9489 sal = &sals->sals[i];
9490
9491 sarch = get_sal_arch (*sal);
9492 /* We fall back to GDBARCH if there is no architecture
9493 associated with SAL. */
9494 if (sarch == NULL)
9495 sarch = gdbarch;
9496 rslt = gdbarch_fast_tracepoint_valid_at (sarch, sal->pc, &msg);
9497 old_chain = make_cleanup (xfree, msg);
9498
9499 if (!rslt)
9500 error (_("May not have a fast tracepoint at %s%s"),
9501 paddress (sarch, sal->pc), (msg ? msg : ""));
9502
9503 do_cleanups (old_chain);
9504 }
9505 }
9506
9507 /* Given TOK, a string specification of condition and thread, as
9508 accepted by the 'break' command, extract the condition
9509 string and thread number and set *COND_STRING and *THREAD.
9510 PC identifies the context at which the condition should be parsed.
9511 If no condition is found, *COND_STRING is set to NULL.
9512 If no thread is found, *THREAD is set to -1. */
9513
9514 static void
9515 find_condition_and_thread (const char *tok, CORE_ADDR pc,
9516 char **cond_string, int *thread, int *task,
9517 char **rest)
9518 {
9519 *cond_string = NULL;
9520 *thread = -1;
9521 *task = 0;
9522 *rest = NULL;
9523
9524 while (tok && *tok)
9525 {
9526 const char *end_tok;
9527 int toklen;
9528 const char *cond_start = NULL;
9529 const char *cond_end = NULL;
9530
9531 tok = skip_spaces_const (tok);
9532
9533 if ((*tok == '"' || *tok == ',') && rest)
9534 {
9535 *rest = savestring (tok, strlen (tok));
9536 return;
9537 }
9538
9539 end_tok = skip_to_space_const (tok);
9540
9541 toklen = end_tok - tok;
9542
9543 if (toklen >= 1 && strncmp (tok, "if", toklen) == 0)
9544 {
9545 tok = cond_start = end_tok + 1;
9546 parse_exp_1 (&tok, pc, block_for_pc (pc), 0);
9547 cond_end = tok;
9548 *cond_string = savestring (cond_start, cond_end - cond_start);
9549 }
9550 else if (toklen >= 1 && strncmp (tok, "thread", toklen) == 0)
9551 {
9552 const char *tmptok;
9553 struct thread_info *thr;
9554
9555 tok = end_tok + 1;
9556 thr = parse_thread_id (tok, &tmptok);
9557 if (tok == tmptok)
9558 error (_("Junk after thread keyword."));
9559 *thread = thr->global_num;
9560 tok = tmptok;
9561 }
9562 else if (toklen >= 1 && strncmp (tok, "task", toklen) == 0)
9563 {
9564 char *tmptok;
9565
9566 tok = end_tok + 1;
9567 *task = strtol (tok, &tmptok, 0);
9568 if (tok == tmptok)
9569 error (_("Junk after task keyword."));
9570 if (!valid_task_id (*task))
9571 error (_("Unknown task %d."), *task);
9572 tok = tmptok;
9573 }
9574 else if (rest)
9575 {
9576 *rest = savestring (tok, strlen (tok));
9577 return;
9578 }
9579 else
9580 error (_("Junk at end of arguments."));
9581 }
9582 }
9583
9584 /* Decode a static tracepoint marker spec. */
9585
9586 static struct symtabs_and_lines
9587 decode_static_tracepoint_spec (const char **arg_p)
9588 {
9589 VEC(static_tracepoint_marker_p) *markers = NULL;
9590 struct symtabs_and_lines sals;
9591 struct cleanup *old_chain;
9592 const char *p = &(*arg_p)[3];
9593 const char *endp;
9594 char *marker_str;
9595 int i;
9596
9597 p = skip_spaces_const (p);
9598
9599 endp = skip_to_space_const (p);
9600
9601 marker_str = savestring (p, endp - p);
9602 old_chain = make_cleanup (xfree, marker_str);
9603
9604 markers = target_static_tracepoint_markers_by_strid (marker_str);
9605 if (VEC_empty(static_tracepoint_marker_p, markers))
9606 error (_("No known static tracepoint marker named %s"), marker_str);
9607
9608 sals.nelts = VEC_length(static_tracepoint_marker_p, markers);
9609 sals.sals = XNEWVEC (struct symtab_and_line, sals.nelts);
9610
9611 for (i = 0; i < sals.nelts; i++)
9612 {
9613 struct static_tracepoint_marker *marker;
9614
9615 marker = VEC_index (static_tracepoint_marker_p, markers, i);
9616
9617 init_sal (&sals.sals[i]);
9618
9619 sals.sals[i] = find_pc_line (marker->address, 0);
9620 sals.sals[i].pc = marker->address;
9621
9622 release_static_tracepoint_marker (marker);
9623 }
9624
9625 do_cleanups (old_chain);
9626
9627 *arg_p = endp;
9628 return sals;
9629 }
9630
9631 /* See breakpoint.h. */
9632
9633 int
9634 create_breakpoint (struct gdbarch *gdbarch,
9635 const struct event_location *location,
9636 const char *cond_string,
9637 int thread, const char *extra_string,
9638 int parse_extra,
9639 int tempflag, enum bptype type_wanted,
9640 int ignore_count,
9641 enum auto_boolean pending_break_support,
9642 const struct breakpoint_ops *ops,
9643 int from_tty, int enabled, int internal,
9644 unsigned flags)
9645 {
9646 struct linespec_result canonical;
9647 struct cleanup *bkpt_chain = NULL;
9648 int pending = 0;
9649 int task = 0;
9650 int prev_bkpt_count = breakpoint_count;
9651
9652 gdb_assert (ops != NULL);
9653
9654 /* If extra_string isn't useful, set it to NULL. */
9655 if (extra_string != NULL && *extra_string == '\0')
9656 extra_string = NULL;
9657
9658 TRY
9659 {
9660 ops->create_sals_from_location (location, &canonical, type_wanted);
9661 }
9662 CATCH (e, RETURN_MASK_ERROR)
9663 {
9664 /* If caller is interested in rc value from parse, set
9665 value. */
9666 if (e.error == NOT_FOUND_ERROR)
9667 {
9668 /* If pending breakpoint support is turned off, throw
9669 error. */
9670
9671 if (pending_break_support == AUTO_BOOLEAN_FALSE)
9672 throw_exception (e);
9673
9674 exception_print (gdb_stderr, e);
9675
9676 /* If pending breakpoint support is auto query and the user
9677 selects no, then simply return the error code. */
9678 if (pending_break_support == AUTO_BOOLEAN_AUTO
9679 && !nquery (_("Make %s pending on future shared library load? "),
9680 bptype_string (type_wanted)))
9681 return 0;
9682
9683 /* At this point, either the user was queried about setting
9684 a pending breakpoint and selected yes, or pending
9685 breakpoint behavior is on and thus a pending breakpoint
9686 is defaulted on behalf of the user. */
9687 pending = 1;
9688 }
9689 else
9690 throw_exception (e);
9691 }
9692 END_CATCH
9693
9694 if (!pending && VEC_empty (linespec_sals, canonical.sals))
9695 return 0;
9696
9697 /* ----------------------------- SNIP -----------------------------
9698 Anything added to the cleanup chain beyond this point is assumed
9699 to be part of a breakpoint. If the breakpoint create succeeds
9700 then the memory is not reclaimed. */
9701 bkpt_chain = make_cleanup (null_cleanup, 0);
9702
9703 /* Resolve all line numbers to PC's and verify that the addresses
9704 are ok for the target. */
9705 if (!pending)
9706 {
9707 int ix;
9708 struct linespec_sals *iter;
9709
9710 for (ix = 0; VEC_iterate (linespec_sals, canonical.sals, ix, iter); ++ix)
9711 breakpoint_sals_to_pc (&iter->sals);
9712 }
9713
9714 /* Fast tracepoints may have additional restrictions on location. */
9715 if (!pending && type_wanted == bp_fast_tracepoint)
9716 {
9717 int ix;
9718 struct linespec_sals *iter;
9719
9720 for (ix = 0; VEC_iterate (linespec_sals, canonical.sals, ix, iter); ++ix)
9721 check_fast_tracepoint_sals (gdbarch, &iter->sals);
9722 }
9723
9724 /* Verify that condition can be parsed, before setting any
9725 breakpoints. Allocate a separate condition expression for each
9726 breakpoint. */
9727 if (!pending)
9728 {
9729 gdb::unique_xmalloc_ptr<char> cond_string_copy;
9730 gdb::unique_xmalloc_ptr<char> extra_string_copy;
9731
9732 if (parse_extra)
9733 {
9734 char *rest;
9735 char *cond;
9736 struct linespec_sals *lsal;
9737
9738 lsal = VEC_index (linespec_sals, canonical.sals, 0);
9739
9740 /* Here we only parse 'arg' to separate condition
9741 from thread number, so parsing in context of first
9742 sal is OK. When setting the breakpoint we'll
9743 re-parse it in context of each sal. */
9744
9745 find_condition_and_thread (extra_string, lsal->sals.sals[0].pc,
9746 &cond, &thread, &task, &rest);
9747 cond_string_copy.reset (cond);
9748 extra_string_copy.reset (rest);
9749 }
9750 else
9751 {
9752 if (type_wanted != bp_dprintf
9753 && extra_string != NULL && *extra_string != '\0')
9754 error (_("Garbage '%s' at end of location"), extra_string);
9755
9756 /* Create a private copy of condition string. */
9757 if (cond_string)
9758 cond_string_copy.reset (xstrdup (cond_string));
9759 /* Create a private copy of any extra string. */
9760 if (extra_string)
9761 extra_string_copy.reset (xstrdup (extra_string));
9762 }
9763
9764 ops->create_breakpoints_sal (gdbarch, &canonical,
9765 std::move (cond_string_copy),
9766 std::move (extra_string_copy),
9767 type_wanted,
9768 tempflag ? disp_del : disp_donttouch,
9769 thread, task, ignore_count, ops,
9770 from_tty, enabled, internal, flags);
9771 }
9772 else
9773 {
9774 std::unique_ptr <breakpoint> b = new_breakpoint_from_type (type_wanted);
9775
9776 init_raw_breakpoint_without_location (b.get (), gdbarch, type_wanted, ops);
9777 b->location = copy_event_location (location);
9778
9779 if (parse_extra)
9780 b->cond_string = NULL;
9781 else
9782 {
9783 /* Create a private copy of condition string. */
9784 b->cond_string = cond_string != NULL ? xstrdup (cond_string) : NULL;
9785 b->thread = thread;
9786 }
9787
9788 /* Create a private copy of any extra string. */
9789 b->extra_string = extra_string != NULL ? xstrdup (extra_string) : NULL;
9790 b->ignore_count = ignore_count;
9791 b->disposition = tempflag ? disp_del : disp_donttouch;
9792 b->condition_not_parsed = 1;
9793 b->enable_state = enabled ? bp_enabled : bp_disabled;
9794 if ((type_wanted != bp_breakpoint
9795 && type_wanted != bp_hardware_breakpoint) || thread != -1)
9796 b->pspace = current_program_space;
9797
9798 install_breakpoint (internal, std::move (b), 0);
9799 }
9800
9801 if (VEC_length (linespec_sals, canonical.sals) > 1)
9802 {
9803 warning (_("Multiple breakpoints were set.\nUse the "
9804 "\"delete\" command to delete unwanted breakpoints."));
9805 prev_breakpoint_count = prev_bkpt_count;
9806 }
9807
9808 /* That's it. Discard the cleanups for data inserted into the
9809 breakpoint. */
9810 discard_cleanups (bkpt_chain);
9811
9812 /* error call may happen here - have BKPT_CHAIN already discarded. */
9813 update_global_location_list (UGLL_MAY_INSERT);
9814
9815 return 1;
9816 }
9817
9818 /* Set a breakpoint.
9819 ARG is a string describing breakpoint address,
9820 condition, and thread.
9821 FLAG specifies if a breakpoint is hardware on,
9822 and if breakpoint is temporary, using BP_HARDWARE_FLAG
9823 and BP_TEMPFLAG. */
9824
9825 static void
9826 break_command_1 (char *arg, int flag, int from_tty)
9827 {
9828 int tempflag = flag & BP_TEMPFLAG;
9829 enum bptype type_wanted = (flag & BP_HARDWAREFLAG
9830 ? bp_hardware_breakpoint
9831 : bp_breakpoint);
9832 struct breakpoint_ops *ops;
9833
9834 event_location_up location = string_to_event_location (&arg, current_language);
9835
9836 /* Matching breakpoints on probes. */
9837 if (location != NULL
9838 && event_location_type (location.get ()) == PROBE_LOCATION)
9839 ops = &bkpt_probe_breakpoint_ops;
9840 else
9841 ops = &bkpt_breakpoint_ops;
9842
9843 create_breakpoint (get_current_arch (),
9844 location.get (),
9845 NULL, 0, arg, 1 /* parse arg */,
9846 tempflag, type_wanted,
9847 0 /* Ignore count */,
9848 pending_break_support,
9849 ops,
9850 from_tty,
9851 1 /* enabled */,
9852 0 /* internal */,
9853 0);
9854 }
9855
9856 /* Helper function for break_command_1 and disassemble_command. */
9857
9858 void
9859 resolve_sal_pc (struct symtab_and_line *sal)
9860 {
9861 CORE_ADDR pc;
9862
9863 if (sal->pc == 0 && sal->symtab != NULL)
9864 {
9865 if (!find_line_pc (sal->symtab, sal->line, &pc))
9866 error (_("No line %d in file \"%s\"."),
9867 sal->line, symtab_to_filename_for_display (sal->symtab));
9868 sal->pc = pc;
9869
9870 /* If this SAL corresponds to a breakpoint inserted using a line
9871 number, then skip the function prologue if necessary. */
9872 if (sal->explicit_line)
9873 skip_prologue_sal (sal);
9874 }
9875
9876 if (sal->section == 0 && sal->symtab != NULL)
9877 {
9878 const struct blockvector *bv;
9879 const struct block *b;
9880 struct symbol *sym;
9881
9882 bv = blockvector_for_pc_sect (sal->pc, 0, &b,
9883 SYMTAB_COMPUNIT (sal->symtab));
9884 if (bv != NULL)
9885 {
9886 sym = block_linkage_function (b);
9887 if (sym != NULL)
9888 {
9889 fixup_symbol_section (sym, SYMTAB_OBJFILE (sal->symtab));
9890 sal->section = SYMBOL_OBJ_SECTION (SYMTAB_OBJFILE (sal->symtab),
9891 sym);
9892 }
9893 else
9894 {
9895 /* It really is worthwhile to have the section, so we'll
9896 just have to look harder. This case can be executed
9897 if we have line numbers but no functions (as can
9898 happen in assembly source). */
9899
9900 scoped_restore_current_pspace_and_thread restore_pspace_thread;
9901 switch_to_program_space_and_thread (sal->pspace);
9902
9903 bound_minimal_symbol msym = lookup_minimal_symbol_by_pc (sal->pc);
9904 if (msym.minsym)
9905 sal->section = MSYMBOL_OBJ_SECTION (msym.objfile, msym.minsym);
9906 }
9907 }
9908 }
9909 }
9910
9911 void
9912 break_command (char *arg, int from_tty)
9913 {
9914 break_command_1 (arg, 0, from_tty);
9915 }
9916
9917 void
9918 tbreak_command (char *arg, int from_tty)
9919 {
9920 break_command_1 (arg, BP_TEMPFLAG, from_tty);
9921 }
9922
9923 static void
9924 hbreak_command (char *arg, int from_tty)
9925 {
9926 break_command_1 (arg, BP_HARDWAREFLAG, from_tty);
9927 }
9928
9929 static void
9930 thbreak_command (char *arg, int from_tty)
9931 {
9932 break_command_1 (arg, (BP_TEMPFLAG | BP_HARDWAREFLAG), from_tty);
9933 }
9934
9935 static void
9936 stop_command (char *arg, int from_tty)
9937 {
9938 printf_filtered (_("Specify the type of breakpoint to set.\n\
9939 Usage: stop in <function | address>\n\
9940 stop at <line>\n"));
9941 }
9942
9943 static void
9944 stopin_command (char *arg, int from_tty)
9945 {
9946 int badInput = 0;
9947
9948 if (arg == (char *) NULL)
9949 badInput = 1;
9950 else if (*arg != '*')
9951 {
9952 char *argptr = arg;
9953 int hasColon = 0;
9954
9955 /* Look for a ':'. If this is a line number specification, then
9956 say it is bad, otherwise, it should be an address or
9957 function/method name. */
9958 while (*argptr && !hasColon)
9959 {
9960 hasColon = (*argptr == ':');
9961 argptr++;
9962 }
9963
9964 if (hasColon)
9965 badInput = (*argptr != ':'); /* Not a class::method */
9966 else
9967 badInput = isdigit (*arg); /* a simple line number */
9968 }
9969
9970 if (badInput)
9971 printf_filtered (_("Usage: stop in <function | address>\n"));
9972 else
9973 break_command_1 (arg, 0, from_tty);
9974 }
9975
9976 static void
9977 stopat_command (char *arg, int from_tty)
9978 {
9979 int badInput = 0;
9980
9981 if (arg == (char *) NULL || *arg == '*') /* no line number */
9982 badInput = 1;
9983 else
9984 {
9985 char *argptr = arg;
9986 int hasColon = 0;
9987
9988 /* Look for a ':'. If there is a '::' then get out, otherwise
9989 it is probably a line number. */
9990 while (*argptr && !hasColon)
9991 {
9992 hasColon = (*argptr == ':');
9993 argptr++;
9994 }
9995
9996 if (hasColon)
9997 badInput = (*argptr == ':'); /* we have class::method */
9998 else
9999 badInput = !isdigit (*arg); /* not a line number */
10000 }
10001
10002 if (badInput)
10003 printf_filtered (_("Usage: stop at <line>\n"));
10004 else
10005 break_command_1 (arg, 0, from_tty);
10006 }
10007
10008 /* The dynamic printf command is mostly like a regular breakpoint, but
10009 with a prewired command list consisting of a single output command,
10010 built from extra arguments supplied on the dprintf command
10011 line. */
10012
10013 static void
10014 dprintf_command (char *arg, int from_tty)
10015 {
10016 event_location_up location = string_to_event_location (&arg, current_language);
10017
10018 /* If non-NULL, ARG should have been advanced past the location;
10019 the next character must be ','. */
10020 if (arg != NULL)
10021 {
10022 if (arg[0] != ',' || arg[1] == '\0')
10023 error (_("Format string required"));
10024 else
10025 {
10026 /* Skip the comma. */
10027 ++arg;
10028 }
10029 }
10030
10031 create_breakpoint (get_current_arch (),
10032 location.get (),
10033 NULL, 0, arg, 1 /* parse arg */,
10034 0, bp_dprintf,
10035 0 /* Ignore count */,
10036 pending_break_support,
10037 &dprintf_breakpoint_ops,
10038 from_tty,
10039 1 /* enabled */,
10040 0 /* internal */,
10041 0);
10042 }
10043
10044 static void
10045 agent_printf_command (char *arg, int from_tty)
10046 {
10047 error (_("May only run agent-printf on the target"));
10048 }
10049
10050 /* Implement the "breakpoint_hit" breakpoint_ops method for
10051 ranged breakpoints. */
10052
10053 static int
10054 breakpoint_hit_ranged_breakpoint (const struct bp_location *bl,
10055 struct address_space *aspace,
10056 CORE_ADDR bp_addr,
10057 const struct target_waitstatus *ws)
10058 {
10059 if (ws->kind != TARGET_WAITKIND_STOPPED
10060 || ws->value.sig != GDB_SIGNAL_TRAP)
10061 return 0;
10062
10063 return breakpoint_address_match_range (bl->pspace->aspace, bl->address,
10064 bl->length, aspace, bp_addr);
10065 }
10066
10067 /* Implement the "resources_needed" breakpoint_ops method for
10068 ranged breakpoints. */
10069
10070 static int
10071 resources_needed_ranged_breakpoint (const struct bp_location *bl)
10072 {
10073 return target_ranged_break_num_registers ();
10074 }
10075
10076 /* Implement the "print_it" breakpoint_ops method for
10077 ranged breakpoints. */
10078
10079 static enum print_stop_action
10080 print_it_ranged_breakpoint (bpstat bs)
10081 {
10082 struct breakpoint *b = bs->breakpoint_at;
10083 struct bp_location *bl = b->loc;
10084 struct ui_out *uiout = current_uiout;
10085
10086 gdb_assert (b->type == bp_hardware_breakpoint);
10087
10088 /* Ranged breakpoints have only one location. */
10089 gdb_assert (bl && bl->next == NULL);
10090
10091 annotate_breakpoint (b->number);
10092
10093 maybe_print_thread_hit_breakpoint (uiout);
10094
10095 if (b->disposition == disp_del)
10096 uiout->text ("Temporary ranged breakpoint ");
10097 else
10098 uiout->text ("Ranged breakpoint ");
10099 if (uiout->is_mi_like_p ())
10100 {
10101 uiout->field_string ("reason",
10102 async_reason_lookup (EXEC_ASYNC_BREAKPOINT_HIT));
10103 uiout->field_string ("disp", bpdisp_text (b->disposition));
10104 }
10105 uiout->field_int ("bkptno", b->number);
10106 uiout->text (", ");
10107
10108 return PRINT_SRC_AND_LOC;
10109 }
10110
10111 /* Implement the "print_one" breakpoint_ops method for
10112 ranged breakpoints. */
10113
10114 static void
10115 print_one_ranged_breakpoint (struct breakpoint *b,
10116 struct bp_location **last_loc)
10117 {
10118 struct bp_location *bl = b->loc;
10119 struct value_print_options opts;
10120 struct ui_out *uiout = current_uiout;
10121
10122 /* Ranged breakpoints have only one location. */
10123 gdb_assert (bl && bl->next == NULL);
10124
10125 get_user_print_options (&opts);
10126
10127 if (opts.addressprint)
10128 /* We don't print the address range here, it will be printed later
10129 by print_one_detail_ranged_breakpoint. */
10130 uiout->field_skip ("addr");
10131 annotate_field (5);
10132 print_breakpoint_location (b, bl);
10133 *last_loc = bl;
10134 }
10135
10136 /* Implement the "print_one_detail" breakpoint_ops method for
10137 ranged breakpoints. */
10138
10139 static void
10140 print_one_detail_ranged_breakpoint (const struct breakpoint *b,
10141 struct ui_out *uiout)
10142 {
10143 CORE_ADDR address_start, address_end;
10144 struct bp_location *bl = b->loc;
10145 string_file stb;
10146
10147 gdb_assert (bl);
10148
10149 address_start = bl->address;
10150 address_end = address_start + bl->length - 1;
10151
10152 uiout->text ("\taddress range: ");
10153 stb.printf ("[%s, %s]",
10154 print_core_address (bl->gdbarch, address_start),
10155 print_core_address (bl->gdbarch, address_end));
10156 uiout->field_stream ("addr", stb);
10157 uiout->text ("\n");
10158 }
10159
10160 /* Implement the "print_mention" breakpoint_ops method for
10161 ranged breakpoints. */
10162
10163 static void
10164 print_mention_ranged_breakpoint (struct breakpoint *b)
10165 {
10166 struct bp_location *bl = b->loc;
10167 struct ui_out *uiout = current_uiout;
10168
10169 gdb_assert (bl);
10170 gdb_assert (b->type == bp_hardware_breakpoint);
10171
10172 if (uiout->is_mi_like_p ())
10173 return;
10174
10175 printf_filtered (_("Hardware assisted ranged breakpoint %d from %s to %s."),
10176 b->number, paddress (bl->gdbarch, bl->address),
10177 paddress (bl->gdbarch, bl->address + bl->length - 1));
10178 }
10179
10180 /* Implement the "print_recreate" breakpoint_ops method for
10181 ranged breakpoints. */
10182
10183 static void
10184 print_recreate_ranged_breakpoint (struct breakpoint *b, struct ui_file *fp)
10185 {
10186 fprintf_unfiltered (fp, "break-range %s, %s",
10187 event_location_to_string (b->location.get ()),
10188 event_location_to_string (b->location_range_end.get ()));
10189 print_recreate_thread (b, fp);
10190 }
10191
10192 /* The breakpoint_ops structure to be used in ranged breakpoints. */
10193
10194 static struct breakpoint_ops ranged_breakpoint_ops;
10195
10196 /* Find the address where the end of the breakpoint range should be
10197 placed, given the SAL of the end of the range. This is so that if
10198 the user provides a line number, the end of the range is set to the
10199 last instruction of the given line. */
10200
10201 static CORE_ADDR
10202 find_breakpoint_range_end (struct symtab_and_line sal)
10203 {
10204 CORE_ADDR end;
10205
10206 /* If the user provided a PC value, use it. Otherwise,
10207 find the address of the end of the given location. */
10208 if (sal.explicit_pc)
10209 end = sal.pc;
10210 else
10211 {
10212 int ret;
10213 CORE_ADDR start;
10214
10215 ret = find_line_pc_range (sal, &start, &end);
10216 if (!ret)
10217 error (_("Could not find location of the end of the range."));
10218
10219 /* find_line_pc_range returns the start of the next line. */
10220 end--;
10221 }
10222
10223 return end;
10224 }
10225
10226 /* Implement the "break-range" CLI command. */
10227
10228 static void
10229 break_range_command (char *arg, int from_tty)
10230 {
10231 char *arg_start, *addr_string_start;
10232 struct linespec_result canonical_start, canonical_end;
10233 int bp_count, can_use_bp, length;
10234 CORE_ADDR end;
10235 struct breakpoint *b;
10236 struct symtab_and_line sal_start, sal_end;
10237 struct cleanup *cleanup_bkpt;
10238 struct linespec_sals *lsal_start, *lsal_end;
10239
10240 /* We don't support software ranged breakpoints. */
10241 if (target_ranged_break_num_registers () < 0)
10242 error (_("This target does not support hardware ranged breakpoints."));
10243
10244 bp_count = hw_breakpoint_used_count ();
10245 bp_count += target_ranged_break_num_registers ();
10246 can_use_bp = target_can_use_hardware_watchpoint (bp_hardware_breakpoint,
10247 bp_count, 0);
10248 if (can_use_bp < 0)
10249 error (_("Hardware breakpoints used exceeds limit."));
10250
10251 arg = skip_spaces (arg);
10252 if (arg == NULL || arg[0] == '\0')
10253 error(_("No address range specified."));
10254
10255 arg_start = arg;
10256 event_location_up start_location = string_to_event_location (&arg,
10257 current_language);
10258 parse_breakpoint_sals (start_location.get (), &canonical_start);
10259
10260 if (arg[0] != ',')
10261 error (_("Too few arguments."));
10262 else if (VEC_empty (linespec_sals, canonical_start.sals))
10263 error (_("Could not find location of the beginning of the range."));
10264
10265 lsal_start = VEC_index (linespec_sals, canonical_start.sals, 0);
10266
10267 if (VEC_length (linespec_sals, canonical_start.sals) > 1
10268 || lsal_start->sals.nelts != 1)
10269 error (_("Cannot create a ranged breakpoint with multiple locations."));
10270
10271 sal_start = lsal_start->sals.sals[0];
10272 addr_string_start = savestring (arg_start, arg - arg_start);
10273 cleanup_bkpt = make_cleanup (xfree, addr_string_start);
10274
10275 arg++; /* Skip the comma. */
10276 arg = skip_spaces (arg);
10277
10278 /* Parse the end location. */
10279
10280 arg_start = arg;
10281
10282 /* We call decode_line_full directly here instead of using
10283 parse_breakpoint_sals because we need to specify the start location's
10284 symtab and line as the default symtab and line for the end of the
10285 range. This makes it possible to have ranges like "foo.c:27, +14",
10286 where +14 means 14 lines from the start location. */
10287 event_location_up end_location = string_to_event_location (&arg,
10288 current_language);
10289 decode_line_full (end_location.get (), DECODE_LINE_FUNFIRSTLINE, NULL,
10290 sal_start.symtab, sal_start.line,
10291 &canonical_end, NULL, NULL);
10292
10293 if (VEC_empty (linespec_sals, canonical_end.sals))
10294 error (_("Could not find location of the end of the range."));
10295
10296 lsal_end = VEC_index (linespec_sals, canonical_end.sals, 0);
10297 if (VEC_length (linespec_sals, canonical_end.sals) > 1
10298 || lsal_end->sals.nelts != 1)
10299 error (_("Cannot create a ranged breakpoint with multiple locations."));
10300
10301 sal_end = lsal_end->sals.sals[0];
10302
10303 end = find_breakpoint_range_end (sal_end);
10304 if (sal_start.pc > end)
10305 error (_("Invalid address range, end precedes start."));
10306
10307 length = end - sal_start.pc + 1;
10308 if (length < 0)
10309 /* Length overflowed. */
10310 error (_("Address range too large."));
10311 else if (length == 1)
10312 {
10313 /* This range is simple enough to be handled by
10314 the `hbreak' command. */
10315 hbreak_command (addr_string_start, 1);
10316
10317 do_cleanups (cleanup_bkpt);
10318
10319 return;
10320 }
10321
10322 /* Now set up the breakpoint. */
10323 b = set_raw_breakpoint (get_current_arch (), sal_start,
10324 bp_hardware_breakpoint, &ranged_breakpoint_ops);
10325 set_breakpoint_count (breakpoint_count + 1);
10326 b->number = breakpoint_count;
10327 b->disposition = disp_donttouch;
10328 b->location = std::move (start_location);
10329 b->location_range_end = std::move (end_location);
10330 b->loc->length = length;
10331
10332 do_cleanups (cleanup_bkpt);
10333
10334 mention (b);
10335 observer_notify_breakpoint_created (b);
10336 update_global_location_list (UGLL_MAY_INSERT);
10337 }
10338
10339 /* Return non-zero if EXP is verified as constant. Returned zero
10340 means EXP is variable. Also the constant detection may fail for
10341 some constant expressions and in such case still falsely return
10342 zero. */
10343
10344 static int
10345 watchpoint_exp_is_const (const struct expression *exp)
10346 {
10347 int i = exp->nelts;
10348
10349 while (i > 0)
10350 {
10351 int oplenp, argsp;
10352
10353 /* We are only interested in the descriptor of each element. */
10354 operator_length (exp, i, &oplenp, &argsp);
10355 i -= oplenp;
10356
10357 switch (exp->elts[i].opcode)
10358 {
10359 case BINOP_ADD:
10360 case BINOP_SUB:
10361 case BINOP_MUL:
10362 case BINOP_DIV:
10363 case BINOP_REM:
10364 case BINOP_MOD:
10365 case BINOP_LSH:
10366 case BINOP_RSH:
10367 case BINOP_LOGICAL_AND:
10368 case BINOP_LOGICAL_OR:
10369 case BINOP_BITWISE_AND:
10370 case BINOP_BITWISE_IOR:
10371 case BINOP_BITWISE_XOR:
10372 case BINOP_EQUAL:
10373 case BINOP_NOTEQUAL:
10374 case BINOP_LESS:
10375 case BINOP_GTR:
10376 case BINOP_LEQ:
10377 case BINOP_GEQ:
10378 case BINOP_REPEAT:
10379 case BINOP_COMMA:
10380 case BINOP_EXP:
10381 case BINOP_MIN:
10382 case BINOP_MAX:
10383 case BINOP_INTDIV:
10384 case BINOP_CONCAT:
10385 case TERNOP_COND:
10386 case TERNOP_SLICE:
10387
10388 case OP_LONG:
10389 case OP_DOUBLE:
10390 case OP_DECFLOAT:
10391 case OP_LAST:
10392 case OP_COMPLEX:
10393 case OP_STRING:
10394 case OP_ARRAY:
10395 case OP_TYPE:
10396 case OP_TYPEOF:
10397 case OP_DECLTYPE:
10398 case OP_TYPEID:
10399 case OP_NAME:
10400 case OP_OBJC_NSSTRING:
10401
10402 case UNOP_NEG:
10403 case UNOP_LOGICAL_NOT:
10404 case UNOP_COMPLEMENT:
10405 case UNOP_ADDR:
10406 case UNOP_HIGH:
10407 case UNOP_CAST:
10408
10409 case UNOP_CAST_TYPE:
10410 case UNOP_REINTERPRET_CAST:
10411 case UNOP_DYNAMIC_CAST:
10412 /* Unary, binary and ternary operators: We have to check
10413 their operands. If they are constant, then so is the
10414 result of that operation. For instance, if A and B are
10415 determined to be constants, then so is "A + B".
10416
10417 UNOP_IND is one exception to the rule above, because the
10418 value of *ADDR is not necessarily a constant, even when
10419 ADDR is. */
10420 break;
10421
10422 case OP_VAR_VALUE:
10423 /* Check whether the associated symbol is a constant.
10424
10425 We use SYMBOL_CLASS rather than TYPE_CONST because it's
10426 possible that a buggy compiler could mark a variable as
10427 constant even when it is not, and TYPE_CONST would return
10428 true in this case, while SYMBOL_CLASS wouldn't.
10429
10430 We also have to check for function symbols because they
10431 are always constant. */
10432 {
10433 struct symbol *s = exp->elts[i + 2].symbol;
10434
10435 if (SYMBOL_CLASS (s) != LOC_BLOCK
10436 && SYMBOL_CLASS (s) != LOC_CONST
10437 && SYMBOL_CLASS (s) != LOC_CONST_BYTES)
10438 return 0;
10439 break;
10440 }
10441
10442 /* The default action is to return 0 because we are using
10443 the optimistic approach here: If we don't know something,
10444 then it is not a constant. */
10445 default:
10446 return 0;
10447 }
10448 }
10449
10450 return 1;
10451 }
10452
10453 /* Watchpoint destructor. */
10454
10455 watchpoint::~watchpoint ()
10456 {
10457 xfree (this->exp_string);
10458 xfree (this->exp_string_reparse);
10459 value_free (this->val);
10460 }
10461
10462 /* Implement the "re_set" breakpoint_ops method for watchpoints. */
10463
10464 static void
10465 re_set_watchpoint (struct breakpoint *b)
10466 {
10467 struct watchpoint *w = (struct watchpoint *) b;
10468
10469 /* Watchpoint can be either on expression using entirely global
10470 variables, or it can be on local variables.
10471
10472 Watchpoints of the first kind are never auto-deleted, and even
10473 persist across program restarts. Since they can use variables
10474 from shared libraries, we need to reparse expression as libraries
10475 are loaded and unloaded.
10476
10477 Watchpoints on local variables can also change meaning as result
10478 of solib event. For example, if a watchpoint uses both a local
10479 and a global variables in expression, it's a local watchpoint,
10480 but unloading of a shared library will make the expression
10481 invalid. This is not a very common use case, but we still
10482 re-evaluate expression, to avoid surprises to the user.
10483
10484 Note that for local watchpoints, we re-evaluate it only if
10485 watchpoints frame id is still valid. If it's not, it means the
10486 watchpoint is out of scope and will be deleted soon. In fact,
10487 I'm not sure we'll ever be called in this case.
10488
10489 If a local watchpoint's frame id is still valid, then
10490 w->exp_valid_block is likewise valid, and we can safely use it.
10491
10492 Don't do anything about disabled watchpoints, since they will be
10493 reevaluated again when enabled. */
10494 update_watchpoint (w, 1 /* reparse */);
10495 }
10496
10497 /* Implement the "insert" breakpoint_ops method for hardware watchpoints. */
10498
10499 static int
10500 insert_watchpoint (struct bp_location *bl)
10501 {
10502 struct watchpoint *w = (struct watchpoint *) bl->owner;
10503 int length = w->exact ? 1 : bl->length;
10504
10505 return target_insert_watchpoint (bl->address, length, bl->watchpoint_type,
10506 w->cond_exp.get ());
10507 }
10508
10509 /* Implement the "remove" breakpoint_ops method for hardware watchpoints. */
10510
10511 static int
10512 remove_watchpoint (struct bp_location *bl, enum remove_bp_reason reason)
10513 {
10514 struct watchpoint *w = (struct watchpoint *) bl->owner;
10515 int length = w->exact ? 1 : bl->length;
10516
10517 return target_remove_watchpoint (bl->address, length, bl->watchpoint_type,
10518 w->cond_exp.get ());
10519 }
10520
10521 static int
10522 breakpoint_hit_watchpoint (const struct bp_location *bl,
10523 struct address_space *aspace, CORE_ADDR bp_addr,
10524 const struct target_waitstatus *ws)
10525 {
10526 struct breakpoint *b = bl->owner;
10527 struct watchpoint *w = (struct watchpoint *) b;
10528
10529 /* Continuable hardware watchpoints are treated as non-existent if the
10530 reason we stopped wasn't a hardware watchpoint (we didn't stop on
10531 some data address). Otherwise gdb won't stop on a break instruction
10532 in the code (not from a breakpoint) when a hardware watchpoint has
10533 been defined. Also skip watchpoints which we know did not trigger
10534 (did not match the data address). */
10535 if (is_hardware_watchpoint (b)
10536 && w->watchpoint_triggered == watch_triggered_no)
10537 return 0;
10538
10539 return 1;
10540 }
10541
10542 static void
10543 check_status_watchpoint (bpstat bs)
10544 {
10545 gdb_assert (is_watchpoint (bs->breakpoint_at));
10546
10547 bpstat_check_watchpoint (bs);
10548 }
10549
10550 /* Implement the "resources_needed" breakpoint_ops method for
10551 hardware watchpoints. */
10552
10553 static int
10554 resources_needed_watchpoint (const struct bp_location *bl)
10555 {
10556 struct watchpoint *w = (struct watchpoint *) bl->owner;
10557 int length = w->exact? 1 : bl->length;
10558
10559 return target_region_ok_for_hw_watchpoint (bl->address, length);
10560 }
10561
10562 /* Implement the "works_in_software_mode" breakpoint_ops method for
10563 hardware watchpoints. */
10564
10565 static int
10566 works_in_software_mode_watchpoint (const struct breakpoint *b)
10567 {
10568 /* Read and access watchpoints only work with hardware support. */
10569 return b->type == bp_watchpoint || b->type == bp_hardware_watchpoint;
10570 }
10571
10572 static enum print_stop_action
10573 print_it_watchpoint (bpstat bs)
10574 {
10575 struct cleanup *old_chain;
10576 struct breakpoint *b;
10577 enum print_stop_action result;
10578 struct watchpoint *w;
10579 struct ui_out *uiout = current_uiout;
10580
10581 gdb_assert (bs->bp_location_at != NULL);
10582
10583 b = bs->breakpoint_at;
10584 w = (struct watchpoint *) b;
10585
10586 old_chain = make_cleanup (null_cleanup, NULL);
10587
10588 annotate_watchpoint (b->number);
10589 maybe_print_thread_hit_breakpoint (uiout);
10590
10591 string_file stb;
10592
10593 switch (b->type)
10594 {
10595 case bp_watchpoint:
10596 case bp_hardware_watchpoint:
10597 if (uiout->is_mi_like_p ())
10598 uiout->field_string
10599 ("reason", async_reason_lookup (EXEC_ASYNC_WATCHPOINT_TRIGGER));
10600 mention (b);
10601 make_cleanup_ui_out_tuple_begin_end (uiout, "value");
10602 uiout->text ("\nOld value = ");
10603 watchpoint_value_print (bs->old_val, &stb);
10604 uiout->field_stream ("old", stb);
10605 uiout->text ("\nNew value = ");
10606 watchpoint_value_print (w->val, &stb);
10607 uiout->field_stream ("new", stb);
10608 uiout->text ("\n");
10609 /* More than one watchpoint may have been triggered. */
10610 result = PRINT_UNKNOWN;
10611 break;
10612
10613 case bp_read_watchpoint:
10614 if (uiout->is_mi_like_p ())
10615 uiout->field_string
10616 ("reason", async_reason_lookup (EXEC_ASYNC_READ_WATCHPOINT_TRIGGER));
10617 mention (b);
10618 make_cleanup_ui_out_tuple_begin_end (uiout, "value");
10619 uiout->text ("\nValue = ");
10620 watchpoint_value_print (w->val, &stb);
10621 uiout->field_stream ("value", stb);
10622 uiout->text ("\n");
10623 result = PRINT_UNKNOWN;
10624 break;
10625
10626 case bp_access_watchpoint:
10627 if (bs->old_val != NULL)
10628 {
10629 if (uiout->is_mi_like_p ())
10630 uiout->field_string
10631 ("reason",
10632 async_reason_lookup (EXEC_ASYNC_ACCESS_WATCHPOINT_TRIGGER));
10633 mention (b);
10634 make_cleanup_ui_out_tuple_begin_end (uiout, "value");
10635 uiout->text ("\nOld value = ");
10636 watchpoint_value_print (bs->old_val, &stb);
10637 uiout->field_stream ("old", stb);
10638 uiout->text ("\nNew value = ");
10639 }
10640 else
10641 {
10642 mention (b);
10643 if (uiout->is_mi_like_p ())
10644 uiout->field_string
10645 ("reason",
10646 async_reason_lookup (EXEC_ASYNC_ACCESS_WATCHPOINT_TRIGGER));
10647 make_cleanup_ui_out_tuple_begin_end (uiout, "value");
10648 uiout->text ("\nValue = ");
10649 }
10650 watchpoint_value_print (w->val, &stb);
10651 uiout->field_stream ("new", stb);
10652 uiout->text ("\n");
10653 result = PRINT_UNKNOWN;
10654 break;
10655 default:
10656 result = PRINT_UNKNOWN;
10657 }
10658
10659 do_cleanups (old_chain);
10660 return result;
10661 }
10662
10663 /* Implement the "print_mention" breakpoint_ops method for hardware
10664 watchpoints. */
10665
10666 static void
10667 print_mention_watchpoint (struct breakpoint *b)
10668 {
10669 struct watchpoint *w = (struct watchpoint *) b;
10670 struct ui_out *uiout = current_uiout;
10671 const char *tuple_name;
10672
10673 switch (b->type)
10674 {
10675 case bp_watchpoint:
10676 uiout->text ("Watchpoint ");
10677 tuple_name = "wpt";
10678 break;
10679 case bp_hardware_watchpoint:
10680 uiout->text ("Hardware watchpoint ");
10681 tuple_name = "wpt";
10682 break;
10683 case bp_read_watchpoint:
10684 uiout->text ("Hardware read watchpoint ");
10685 tuple_name = "hw-rwpt";
10686 break;
10687 case bp_access_watchpoint:
10688 uiout->text ("Hardware access (read/write) watchpoint ");
10689 tuple_name = "hw-awpt";
10690 break;
10691 default:
10692 internal_error (__FILE__, __LINE__,
10693 _("Invalid hardware watchpoint type."));
10694 }
10695
10696 ui_out_emit_tuple tuple_emitter (uiout, tuple_name);
10697 uiout->field_int ("number", b->number);
10698 uiout->text (": ");
10699 uiout->field_string ("exp", w->exp_string);
10700 }
10701
10702 /* Implement the "print_recreate" breakpoint_ops method for
10703 watchpoints. */
10704
10705 static void
10706 print_recreate_watchpoint (struct breakpoint *b, struct ui_file *fp)
10707 {
10708 struct watchpoint *w = (struct watchpoint *) b;
10709
10710 switch (b->type)
10711 {
10712 case bp_watchpoint:
10713 case bp_hardware_watchpoint:
10714 fprintf_unfiltered (fp, "watch");
10715 break;
10716 case bp_read_watchpoint:
10717 fprintf_unfiltered (fp, "rwatch");
10718 break;
10719 case bp_access_watchpoint:
10720 fprintf_unfiltered (fp, "awatch");
10721 break;
10722 default:
10723 internal_error (__FILE__, __LINE__,
10724 _("Invalid watchpoint type."));
10725 }
10726
10727 fprintf_unfiltered (fp, " %s", w->exp_string);
10728 print_recreate_thread (b, fp);
10729 }
10730
10731 /* Implement the "explains_signal" breakpoint_ops method for
10732 watchpoints. */
10733
10734 static int
10735 explains_signal_watchpoint (struct breakpoint *b, enum gdb_signal sig)
10736 {
10737 /* A software watchpoint cannot cause a signal other than
10738 GDB_SIGNAL_TRAP. */
10739 if (b->type == bp_watchpoint && sig != GDB_SIGNAL_TRAP)
10740 return 0;
10741
10742 return 1;
10743 }
10744
10745 /* The breakpoint_ops structure to be used in hardware watchpoints. */
10746
10747 static struct breakpoint_ops watchpoint_breakpoint_ops;
10748
10749 /* Implement the "insert" breakpoint_ops method for
10750 masked hardware watchpoints. */
10751
10752 static int
10753 insert_masked_watchpoint (struct bp_location *bl)
10754 {
10755 struct watchpoint *w = (struct watchpoint *) bl->owner;
10756
10757 return target_insert_mask_watchpoint (bl->address, w->hw_wp_mask,
10758 bl->watchpoint_type);
10759 }
10760
10761 /* Implement the "remove" breakpoint_ops method for
10762 masked hardware watchpoints. */
10763
10764 static int
10765 remove_masked_watchpoint (struct bp_location *bl, enum remove_bp_reason reason)
10766 {
10767 struct watchpoint *w = (struct watchpoint *) bl->owner;
10768
10769 return target_remove_mask_watchpoint (bl->address, w->hw_wp_mask,
10770 bl->watchpoint_type);
10771 }
10772
10773 /* Implement the "resources_needed" breakpoint_ops method for
10774 masked hardware watchpoints. */
10775
10776 static int
10777 resources_needed_masked_watchpoint (const struct bp_location *bl)
10778 {
10779 struct watchpoint *w = (struct watchpoint *) bl->owner;
10780
10781 return target_masked_watch_num_registers (bl->address, w->hw_wp_mask);
10782 }
10783
10784 /* Implement the "works_in_software_mode" breakpoint_ops method for
10785 masked hardware watchpoints. */
10786
10787 static int
10788 works_in_software_mode_masked_watchpoint (const struct breakpoint *b)
10789 {
10790 return 0;
10791 }
10792
10793 /* Implement the "print_it" breakpoint_ops method for
10794 masked hardware watchpoints. */
10795
10796 static enum print_stop_action
10797 print_it_masked_watchpoint (bpstat bs)
10798 {
10799 struct breakpoint *b = bs->breakpoint_at;
10800 struct ui_out *uiout = current_uiout;
10801
10802 /* Masked watchpoints have only one location. */
10803 gdb_assert (b->loc && b->loc->next == NULL);
10804
10805 annotate_watchpoint (b->number);
10806 maybe_print_thread_hit_breakpoint (uiout);
10807
10808 switch (b->type)
10809 {
10810 case bp_hardware_watchpoint:
10811 if (uiout->is_mi_like_p ())
10812 uiout->field_string
10813 ("reason", async_reason_lookup (EXEC_ASYNC_WATCHPOINT_TRIGGER));
10814 break;
10815
10816 case bp_read_watchpoint:
10817 if (uiout->is_mi_like_p ())
10818 uiout->field_string
10819 ("reason", async_reason_lookup (EXEC_ASYNC_READ_WATCHPOINT_TRIGGER));
10820 break;
10821
10822 case bp_access_watchpoint:
10823 if (uiout->is_mi_like_p ())
10824 uiout->field_string
10825 ("reason",
10826 async_reason_lookup (EXEC_ASYNC_ACCESS_WATCHPOINT_TRIGGER));
10827 break;
10828 default:
10829 internal_error (__FILE__, __LINE__,
10830 _("Invalid hardware watchpoint type."));
10831 }
10832
10833 mention (b);
10834 uiout->text (_("\n\
10835 Check the underlying instruction at PC for the memory\n\
10836 address and value which triggered this watchpoint.\n"));
10837 uiout->text ("\n");
10838
10839 /* More than one watchpoint may have been triggered. */
10840 return PRINT_UNKNOWN;
10841 }
10842
10843 /* Implement the "print_one_detail" breakpoint_ops method for
10844 masked hardware watchpoints. */
10845
10846 static void
10847 print_one_detail_masked_watchpoint (const struct breakpoint *b,
10848 struct ui_out *uiout)
10849 {
10850 struct watchpoint *w = (struct watchpoint *) b;
10851
10852 /* Masked watchpoints have only one location. */
10853 gdb_assert (b->loc && b->loc->next == NULL);
10854
10855 uiout->text ("\tmask ");
10856 uiout->field_core_addr ("mask", b->loc->gdbarch, w->hw_wp_mask);
10857 uiout->text ("\n");
10858 }
10859
10860 /* Implement the "print_mention" breakpoint_ops method for
10861 masked hardware watchpoints. */
10862
10863 static void
10864 print_mention_masked_watchpoint (struct breakpoint *b)
10865 {
10866 struct watchpoint *w = (struct watchpoint *) b;
10867 struct ui_out *uiout = current_uiout;
10868 const char *tuple_name;
10869
10870 switch (b->type)
10871 {
10872 case bp_hardware_watchpoint:
10873 uiout->text ("Masked hardware watchpoint ");
10874 tuple_name = "wpt";
10875 break;
10876 case bp_read_watchpoint:
10877 uiout->text ("Masked hardware read watchpoint ");
10878 tuple_name = "hw-rwpt";
10879 break;
10880 case bp_access_watchpoint:
10881 uiout->text ("Masked hardware access (read/write) watchpoint ");
10882 tuple_name = "hw-awpt";
10883 break;
10884 default:
10885 internal_error (__FILE__, __LINE__,
10886 _("Invalid hardware watchpoint type."));
10887 }
10888
10889 ui_out_emit_tuple tuple_emitter (uiout, tuple_name);
10890 uiout->field_int ("number", b->number);
10891 uiout->text (": ");
10892 uiout->field_string ("exp", w->exp_string);
10893 }
10894
10895 /* Implement the "print_recreate" breakpoint_ops method for
10896 masked hardware watchpoints. */
10897
10898 static void
10899 print_recreate_masked_watchpoint (struct breakpoint *b, struct ui_file *fp)
10900 {
10901 struct watchpoint *w = (struct watchpoint *) b;
10902 char tmp[40];
10903
10904 switch (b->type)
10905 {
10906 case bp_hardware_watchpoint:
10907 fprintf_unfiltered (fp, "watch");
10908 break;
10909 case bp_read_watchpoint:
10910 fprintf_unfiltered (fp, "rwatch");
10911 break;
10912 case bp_access_watchpoint:
10913 fprintf_unfiltered (fp, "awatch");
10914 break;
10915 default:
10916 internal_error (__FILE__, __LINE__,
10917 _("Invalid hardware watchpoint type."));
10918 }
10919
10920 sprintf_vma (tmp, w->hw_wp_mask);
10921 fprintf_unfiltered (fp, " %s mask 0x%s", w->exp_string, tmp);
10922 print_recreate_thread (b, fp);
10923 }
10924
10925 /* The breakpoint_ops structure to be used in masked hardware watchpoints. */
10926
10927 static struct breakpoint_ops masked_watchpoint_breakpoint_ops;
10928
10929 /* Tell whether the given watchpoint is a masked hardware watchpoint. */
10930
10931 static int
10932 is_masked_watchpoint (const struct breakpoint *b)
10933 {
10934 return b->ops == &masked_watchpoint_breakpoint_ops;
10935 }
10936
10937 /* accessflag: hw_write: watch write,
10938 hw_read: watch read,
10939 hw_access: watch access (read or write) */
10940 static void
10941 watch_command_1 (const char *arg, int accessflag, int from_tty,
10942 int just_location, int internal)
10943 {
10944 struct breakpoint *scope_breakpoint = NULL;
10945 const struct block *exp_valid_block = NULL, *cond_exp_valid_block = NULL;
10946 struct value *val, *mark, *result;
10947 int saved_bitpos = 0, saved_bitsize = 0;
10948 const char *exp_start = NULL;
10949 const char *exp_end = NULL;
10950 const char *tok, *end_tok;
10951 int toklen = -1;
10952 const char *cond_start = NULL;
10953 const char *cond_end = NULL;
10954 enum bptype bp_type;
10955 int thread = -1;
10956 int pc = 0;
10957 /* Flag to indicate whether we are going to use masks for
10958 the hardware watchpoint. */
10959 int use_mask = 0;
10960 CORE_ADDR mask = 0;
10961 char *expression;
10962 struct cleanup *back_to;
10963
10964 /* Make sure that we actually have parameters to parse. */
10965 if (arg != NULL && arg[0] != '\0')
10966 {
10967 const char *value_start;
10968
10969 exp_end = arg + strlen (arg);
10970
10971 /* Look for "parameter value" pairs at the end
10972 of the arguments string. */
10973 for (tok = exp_end - 1; tok > arg; tok--)
10974 {
10975 /* Skip whitespace at the end of the argument list. */
10976 while (tok > arg && (*tok == ' ' || *tok == '\t'))
10977 tok--;
10978
10979 /* Find the beginning of the last token.
10980 This is the value of the parameter. */
10981 while (tok > arg && (*tok != ' ' && *tok != '\t'))
10982 tok--;
10983 value_start = tok + 1;
10984
10985 /* Skip whitespace. */
10986 while (tok > arg && (*tok == ' ' || *tok == '\t'))
10987 tok--;
10988
10989 end_tok = tok;
10990
10991 /* Find the beginning of the second to last token.
10992 This is the parameter itself. */
10993 while (tok > arg && (*tok != ' ' && *tok != '\t'))
10994 tok--;
10995 tok++;
10996 toklen = end_tok - tok + 1;
10997
10998 if (toklen == 6 && startswith (tok, "thread"))
10999 {
11000 struct thread_info *thr;
11001 /* At this point we've found a "thread" token, which means
11002 the user is trying to set a watchpoint that triggers
11003 only in a specific thread. */
11004 const char *endp;
11005
11006 if (thread != -1)
11007 error(_("You can specify only one thread."));
11008
11009 /* Extract the thread ID from the next token. */
11010 thr = parse_thread_id (value_start, &endp);
11011
11012 /* Check if the user provided a valid thread ID. */
11013 if (*endp != ' ' && *endp != '\t' && *endp != '\0')
11014 invalid_thread_id_error (value_start);
11015
11016 thread = thr->global_num;
11017 }
11018 else if (toklen == 4 && startswith (tok, "mask"))
11019 {
11020 /* We've found a "mask" token, which means the user wants to
11021 create a hardware watchpoint that is going to have the mask
11022 facility. */
11023 struct value *mask_value, *mark;
11024
11025 if (use_mask)
11026 error(_("You can specify only one mask."));
11027
11028 use_mask = just_location = 1;
11029
11030 mark = value_mark ();
11031 mask_value = parse_to_comma_and_eval (&value_start);
11032 mask = value_as_address (mask_value);
11033 value_free_to_mark (mark);
11034 }
11035 else
11036 /* We didn't recognize what we found. We should stop here. */
11037 break;
11038
11039 /* Truncate the string and get rid of the "parameter value" pair before
11040 the arguments string is parsed by the parse_exp_1 function. */
11041 exp_end = tok;
11042 }
11043 }
11044 else
11045 exp_end = arg;
11046
11047 /* Parse the rest of the arguments. From here on out, everything
11048 is in terms of a newly allocated string instead of the original
11049 ARG. */
11050 innermost_block = NULL;
11051 expression = savestring (arg, exp_end - arg);
11052 back_to = make_cleanup (xfree, expression);
11053 exp_start = arg = expression;
11054 expression_up exp = parse_exp_1 (&arg, 0, 0, 0);
11055 exp_end = arg;
11056 /* Remove trailing whitespace from the expression before saving it.
11057 This makes the eventual display of the expression string a bit
11058 prettier. */
11059 while (exp_end > exp_start && (exp_end[-1] == ' ' || exp_end[-1] == '\t'))
11060 --exp_end;
11061
11062 /* Checking if the expression is not constant. */
11063 if (watchpoint_exp_is_const (exp.get ()))
11064 {
11065 int len;
11066
11067 len = exp_end - exp_start;
11068 while (len > 0 && isspace (exp_start[len - 1]))
11069 len--;
11070 error (_("Cannot watch constant value `%.*s'."), len, exp_start);
11071 }
11072
11073 exp_valid_block = innermost_block;
11074 mark = value_mark ();
11075 fetch_subexp_value (exp.get (), &pc, &val, &result, NULL, just_location);
11076
11077 if (val != NULL && just_location)
11078 {
11079 saved_bitpos = value_bitpos (val);
11080 saved_bitsize = value_bitsize (val);
11081 }
11082
11083 if (just_location)
11084 {
11085 int ret;
11086
11087 exp_valid_block = NULL;
11088 val = value_addr (result);
11089 release_value (val);
11090 value_free_to_mark (mark);
11091
11092 if (use_mask)
11093 {
11094 ret = target_masked_watch_num_registers (value_as_address (val),
11095 mask);
11096 if (ret == -1)
11097 error (_("This target does not support masked watchpoints."));
11098 else if (ret == -2)
11099 error (_("Invalid mask or memory region."));
11100 }
11101 }
11102 else if (val != NULL)
11103 release_value (val);
11104
11105 tok = skip_spaces_const (arg);
11106 end_tok = skip_to_space_const (tok);
11107
11108 toklen = end_tok - tok;
11109 if (toklen >= 1 && strncmp (tok, "if", toklen) == 0)
11110 {
11111 innermost_block = NULL;
11112 tok = cond_start = end_tok + 1;
11113 parse_exp_1 (&tok, 0, 0, 0);
11114
11115 /* The watchpoint expression may not be local, but the condition
11116 may still be. E.g.: `watch global if local > 0'. */
11117 cond_exp_valid_block = innermost_block;
11118
11119 cond_end = tok;
11120 }
11121 if (*tok)
11122 error (_("Junk at end of command."));
11123
11124 frame_info *wp_frame = block_innermost_frame (exp_valid_block);
11125
11126 /* Save this because create_internal_breakpoint below invalidates
11127 'wp_frame'. */
11128 frame_id watchpoint_frame = get_frame_id (wp_frame);
11129
11130 /* If the expression is "local", then set up a "watchpoint scope"
11131 breakpoint at the point where we've left the scope of the watchpoint
11132 expression. Create the scope breakpoint before the watchpoint, so
11133 that we will encounter it first in bpstat_stop_status. */
11134 if (exp_valid_block != NULL && wp_frame != NULL)
11135 {
11136 frame_id caller_frame_id = frame_unwind_caller_id (wp_frame);
11137
11138 if (frame_id_p (caller_frame_id))
11139 {
11140 gdbarch *caller_arch = frame_unwind_caller_arch (wp_frame);
11141 CORE_ADDR caller_pc = frame_unwind_caller_pc (wp_frame);
11142
11143 scope_breakpoint
11144 = create_internal_breakpoint (caller_arch, caller_pc,
11145 bp_watchpoint_scope,
11146 &momentary_breakpoint_ops);
11147
11148 /* create_internal_breakpoint could invalidate WP_FRAME. */
11149 wp_frame = NULL;
11150
11151 scope_breakpoint->enable_state = bp_enabled;
11152
11153 /* Automatically delete the breakpoint when it hits. */
11154 scope_breakpoint->disposition = disp_del;
11155
11156 /* Only break in the proper frame (help with recursion). */
11157 scope_breakpoint->frame_id = caller_frame_id;
11158
11159 /* Set the address at which we will stop. */
11160 scope_breakpoint->loc->gdbarch = caller_arch;
11161 scope_breakpoint->loc->requested_address = caller_pc;
11162 scope_breakpoint->loc->address
11163 = adjust_breakpoint_address (scope_breakpoint->loc->gdbarch,
11164 scope_breakpoint->loc->requested_address,
11165 scope_breakpoint->type);
11166 }
11167 }
11168
11169 /* Now set up the breakpoint. We create all watchpoints as hardware
11170 watchpoints here even if hardware watchpoints are turned off, a call
11171 to update_watchpoint later in this function will cause the type to
11172 drop back to bp_watchpoint (software watchpoint) if required. */
11173
11174 if (accessflag == hw_read)
11175 bp_type = bp_read_watchpoint;
11176 else if (accessflag == hw_access)
11177 bp_type = bp_access_watchpoint;
11178 else
11179 bp_type = bp_hardware_watchpoint;
11180
11181 std::unique_ptr<watchpoint> w (new watchpoint ());
11182
11183 if (use_mask)
11184 init_raw_breakpoint_without_location (w.get (), NULL, bp_type,
11185 &masked_watchpoint_breakpoint_ops);
11186 else
11187 init_raw_breakpoint_without_location (w.get (), NULL, bp_type,
11188 &watchpoint_breakpoint_ops);
11189 w->thread = thread;
11190 w->disposition = disp_donttouch;
11191 w->pspace = current_program_space;
11192 w->exp = std::move (exp);
11193 w->exp_valid_block = exp_valid_block;
11194 w->cond_exp_valid_block = cond_exp_valid_block;
11195 if (just_location)
11196 {
11197 struct type *t = value_type (val);
11198 CORE_ADDR addr = value_as_address (val);
11199
11200 w->exp_string_reparse
11201 = current_language->la_watch_location_expression (t, addr).release ();
11202
11203 w->exp_string = xstrprintf ("-location %.*s",
11204 (int) (exp_end - exp_start), exp_start);
11205 }
11206 else
11207 w->exp_string = savestring (exp_start, exp_end - exp_start);
11208
11209 if (use_mask)
11210 {
11211 w->hw_wp_mask = mask;
11212 }
11213 else
11214 {
11215 w->val = val;
11216 w->val_bitpos = saved_bitpos;
11217 w->val_bitsize = saved_bitsize;
11218 w->val_valid = 1;
11219 }
11220
11221 if (cond_start)
11222 w->cond_string = savestring (cond_start, cond_end - cond_start);
11223 else
11224 w->cond_string = 0;
11225
11226 if (frame_id_p (watchpoint_frame))
11227 {
11228 w->watchpoint_frame = watchpoint_frame;
11229 w->watchpoint_thread = inferior_ptid;
11230 }
11231 else
11232 {
11233 w->watchpoint_frame = null_frame_id;
11234 w->watchpoint_thread = null_ptid;
11235 }
11236
11237 if (scope_breakpoint != NULL)
11238 {
11239 /* The scope breakpoint is related to the watchpoint. We will
11240 need to act on them together. */
11241 w->related_breakpoint = scope_breakpoint;
11242 scope_breakpoint->related_breakpoint = w.get ();
11243 }
11244
11245 if (!just_location)
11246 value_free_to_mark (mark);
11247
11248 /* Finally update the new watchpoint. This creates the locations
11249 that should be inserted. */
11250 update_watchpoint (w.get (), 1);
11251
11252 install_breakpoint (internal, std::move (w), 1);
11253 do_cleanups (back_to);
11254 }
11255
11256 /* Return count of debug registers needed to watch the given expression.
11257 If the watchpoint cannot be handled in hardware return zero. */
11258
11259 static int
11260 can_use_hardware_watchpoint (struct value *v)
11261 {
11262 int found_memory_cnt = 0;
11263 struct value *head = v;
11264
11265 /* Did the user specifically forbid us to use hardware watchpoints? */
11266 if (!can_use_hw_watchpoints)
11267 return 0;
11268
11269 /* Make sure that the value of the expression depends only upon
11270 memory contents, and values computed from them within GDB. If we
11271 find any register references or function calls, we can't use a
11272 hardware watchpoint.
11273
11274 The idea here is that evaluating an expression generates a series
11275 of values, one holding the value of every subexpression. (The
11276 expression a*b+c has five subexpressions: a, b, a*b, c, and
11277 a*b+c.) GDB's values hold almost enough information to establish
11278 the criteria given above --- they identify memory lvalues,
11279 register lvalues, computed values, etcetera. So we can evaluate
11280 the expression, and then scan the chain of values that leaves
11281 behind to decide whether we can detect any possible change to the
11282 expression's final value using only hardware watchpoints.
11283
11284 However, I don't think that the values returned by inferior
11285 function calls are special in any way. So this function may not
11286 notice that an expression involving an inferior function call
11287 can't be watched with hardware watchpoints. FIXME. */
11288 for (; v; v = value_next (v))
11289 {
11290 if (VALUE_LVAL (v) == lval_memory)
11291 {
11292 if (v != head && value_lazy (v))
11293 /* A lazy memory lvalue in the chain is one that GDB never
11294 needed to fetch; we either just used its address (e.g.,
11295 `a' in `a.b') or we never needed it at all (e.g., `a'
11296 in `a,b'). This doesn't apply to HEAD; if that is
11297 lazy then it was not readable, but watch it anyway. */
11298 ;
11299 else
11300 {
11301 /* Ahh, memory we actually used! Check if we can cover
11302 it with hardware watchpoints. */
11303 struct type *vtype = check_typedef (value_type (v));
11304
11305 /* We only watch structs and arrays if user asked for it
11306 explicitly, never if they just happen to appear in a
11307 middle of some value chain. */
11308 if (v == head
11309 || (TYPE_CODE (vtype) != TYPE_CODE_STRUCT
11310 && TYPE_CODE (vtype) != TYPE_CODE_ARRAY))
11311 {
11312 CORE_ADDR vaddr = value_address (v);
11313 int len;
11314 int num_regs;
11315
11316 len = (target_exact_watchpoints
11317 && is_scalar_type_recursive (vtype))?
11318 1 : TYPE_LENGTH (value_type (v));
11319
11320 num_regs = target_region_ok_for_hw_watchpoint (vaddr, len);
11321 if (!num_regs)
11322 return 0;
11323 else
11324 found_memory_cnt += num_regs;
11325 }
11326 }
11327 }
11328 else if (VALUE_LVAL (v) != not_lval
11329 && deprecated_value_modifiable (v) == 0)
11330 return 0; /* These are values from the history (e.g., $1). */
11331 else if (VALUE_LVAL (v) == lval_register)
11332 return 0; /* Cannot watch a register with a HW watchpoint. */
11333 }
11334
11335 /* The expression itself looks suitable for using a hardware
11336 watchpoint, but give the target machine a chance to reject it. */
11337 return found_memory_cnt;
11338 }
11339
11340 void
11341 watch_command_wrapper (char *arg, int from_tty, int internal)
11342 {
11343 watch_command_1 (arg, hw_write, from_tty, 0, internal);
11344 }
11345
11346 /* A helper function that looks for the "-location" argument and then
11347 calls watch_command_1. */
11348
11349 static void
11350 watch_maybe_just_location (char *arg, int accessflag, int from_tty)
11351 {
11352 int just_location = 0;
11353
11354 if (arg
11355 && (check_for_argument (&arg, "-location", sizeof ("-location") - 1)
11356 || check_for_argument (&arg, "-l", sizeof ("-l") - 1)))
11357 {
11358 arg = skip_spaces (arg);
11359 just_location = 1;
11360 }
11361
11362 watch_command_1 (arg, accessflag, from_tty, just_location, 0);
11363 }
11364
11365 static void
11366 watch_command (char *arg, int from_tty)
11367 {
11368 watch_maybe_just_location (arg, hw_write, from_tty);
11369 }
11370
11371 void
11372 rwatch_command_wrapper (char *arg, int from_tty, int internal)
11373 {
11374 watch_command_1 (arg, hw_read, from_tty, 0, internal);
11375 }
11376
11377 static void
11378 rwatch_command (char *arg, int from_tty)
11379 {
11380 watch_maybe_just_location (arg, hw_read, from_tty);
11381 }
11382
11383 void
11384 awatch_command_wrapper (char *arg, int from_tty, int internal)
11385 {
11386 watch_command_1 (arg, hw_access, from_tty, 0, internal);
11387 }
11388
11389 static void
11390 awatch_command (char *arg, int from_tty)
11391 {
11392 watch_maybe_just_location (arg, hw_access, from_tty);
11393 }
11394 \f
11395
11396 /* Data for the FSM that manages the until(location)/advance commands
11397 in infcmd.c. Here because it uses the mechanisms of
11398 breakpoints. */
11399
11400 struct until_break_fsm
11401 {
11402 /* The base class. */
11403 struct thread_fsm thread_fsm;
11404
11405 /* The thread that as current when the command was executed. */
11406 int thread;
11407
11408 /* The breakpoint set at the destination location. */
11409 struct breakpoint *location_breakpoint;
11410
11411 /* Breakpoint set at the return address in the caller frame. May be
11412 NULL. */
11413 struct breakpoint *caller_breakpoint;
11414 };
11415
11416 static void until_break_fsm_clean_up (struct thread_fsm *self,
11417 struct thread_info *thread);
11418 static int until_break_fsm_should_stop (struct thread_fsm *self,
11419 struct thread_info *thread);
11420 static enum async_reply_reason
11421 until_break_fsm_async_reply_reason (struct thread_fsm *self);
11422
11423 /* until_break_fsm's vtable. */
11424
11425 static struct thread_fsm_ops until_break_fsm_ops =
11426 {
11427 NULL, /* dtor */
11428 until_break_fsm_clean_up,
11429 until_break_fsm_should_stop,
11430 NULL, /* return_value */
11431 until_break_fsm_async_reply_reason,
11432 };
11433
11434 /* Allocate a new until_break_command_fsm. */
11435
11436 static struct until_break_fsm *
11437 new_until_break_fsm (struct interp *cmd_interp, int thread,
11438 struct breakpoint *location_breakpoint,
11439 struct breakpoint *caller_breakpoint)
11440 {
11441 struct until_break_fsm *sm;
11442
11443 sm = XCNEW (struct until_break_fsm);
11444 thread_fsm_ctor (&sm->thread_fsm, &until_break_fsm_ops, cmd_interp);
11445
11446 sm->thread = thread;
11447 sm->location_breakpoint = location_breakpoint;
11448 sm->caller_breakpoint = caller_breakpoint;
11449
11450 return sm;
11451 }
11452
11453 /* Implementation of the 'should_stop' FSM method for the
11454 until(location)/advance commands. */
11455
11456 static int
11457 until_break_fsm_should_stop (struct thread_fsm *self,
11458 struct thread_info *tp)
11459 {
11460 struct until_break_fsm *sm = (struct until_break_fsm *) self;
11461
11462 if (bpstat_find_breakpoint (tp->control.stop_bpstat,
11463 sm->location_breakpoint) != NULL
11464 || (sm->caller_breakpoint != NULL
11465 && bpstat_find_breakpoint (tp->control.stop_bpstat,
11466 sm->caller_breakpoint) != NULL))
11467 thread_fsm_set_finished (self);
11468
11469 return 1;
11470 }
11471
11472 /* Implementation of the 'clean_up' FSM method for the
11473 until(location)/advance commands. */
11474
11475 static void
11476 until_break_fsm_clean_up (struct thread_fsm *self,
11477 struct thread_info *thread)
11478 {
11479 struct until_break_fsm *sm = (struct until_break_fsm *) self;
11480
11481 /* Clean up our temporary breakpoints. */
11482 if (sm->location_breakpoint != NULL)
11483 {
11484 delete_breakpoint (sm->location_breakpoint);
11485 sm->location_breakpoint = NULL;
11486 }
11487 if (sm->caller_breakpoint != NULL)
11488 {
11489 delete_breakpoint (sm->caller_breakpoint);
11490 sm->caller_breakpoint = NULL;
11491 }
11492 delete_longjmp_breakpoint (sm->thread);
11493 }
11494
11495 /* Implementation of the 'async_reply_reason' FSM method for the
11496 until(location)/advance commands. */
11497
11498 static enum async_reply_reason
11499 until_break_fsm_async_reply_reason (struct thread_fsm *self)
11500 {
11501 return EXEC_ASYNC_LOCATION_REACHED;
11502 }
11503
11504 void
11505 until_break_command (char *arg, int from_tty, int anywhere)
11506 {
11507 struct symtabs_and_lines sals;
11508 struct symtab_and_line sal;
11509 struct frame_info *frame;
11510 struct gdbarch *frame_gdbarch;
11511 struct frame_id stack_frame_id;
11512 struct frame_id caller_frame_id;
11513 struct breakpoint *location_breakpoint;
11514 struct breakpoint *caller_breakpoint = NULL;
11515 struct cleanup *old_chain;
11516 int thread;
11517 struct thread_info *tp;
11518 struct until_break_fsm *sm;
11519
11520 clear_proceed_status (0);
11521
11522 /* Set a breakpoint where the user wants it and at return from
11523 this function. */
11524
11525 event_location_up location = string_to_event_location (&arg, current_language);
11526
11527 if (last_displayed_sal_is_valid ())
11528 sals = decode_line_1 (location.get (), DECODE_LINE_FUNFIRSTLINE, NULL,
11529 get_last_displayed_symtab (),
11530 get_last_displayed_line ());
11531 else
11532 sals = decode_line_1 (location.get (), DECODE_LINE_FUNFIRSTLINE,
11533 NULL, (struct symtab *) NULL, 0);
11534
11535 if (sals.nelts != 1)
11536 error (_("Couldn't get information on specified line."));
11537
11538 sal = sals.sals[0];
11539 xfree (sals.sals); /* malloc'd, so freed. */
11540
11541 if (*arg)
11542 error (_("Junk at end of arguments."));
11543
11544 resolve_sal_pc (&sal);
11545
11546 tp = inferior_thread ();
11547 thread = tp->global_num;
11548
11549 old_chain = make_cleanup (null_cleanup, NULL);
11550
11551 /* Note linespec handling above invalidates the frame chain.
11552 Installing a breakpoint also invalidates the frame chain (as it
11553 may need to switch threads), so do any frame handling before
11554 that. */
11555
11556 frame = get_selected_frame (NULL);
11557 frame_gdbarch = get_frame_arch (frame);
11558 stack_frame_id = get_stack_frame_id (frame);
11559 caller_frame_id = frame_unwind_caller_id (frame);
11560
11561 /* Keep within the current frame, or in frames called by the current
11562 one. */
11563
11564 if (frame_id_p (caller_frame_id))
11565 {
11566 struct symtab_and_line sal2;
11567 struct gdbarch *caller_gdbarch;
11568
11569 sal2 = find_pc_line (frame_unwind_caller_pc (frame), 0);
11570 sal2.pc = frame_unwind_caller_pc (frame);
11571 caller_gdbarch = frame_unwind_caller_arch (frame);
11572 caller_breakpoint = set_momentary_breakpoint (caller_gdbarch,
11573 sal2,
11574 caller_frame_id,
11575 bp_until);
11576 make_cleanup_delete_breakpoint (caller_breakpoint);
11577
11578 set_longjmp_breakpoint (tp, caller_frame_id);
11579 make_cleanup (delete_longjmp_breakpoint_cleanup, &thread);
11580 }
11581
11582 /* set_momentary_breakpoint could invalidate FRAME. */
11583 frame = NULL;
11584
11585 if (anywhere)
11586 /* If the user told us to continue until a specified location,
11587 we don't specify a frame at which we need to stop. */
11588 location_breakpoint = set_momentary_breakpoint (frame_gdbarch, sal,
11589 null_frame_id, bp_until);
11590 else
11591 /* Otherwise, specify the selected frame, because we want to stop
11592 only at the very same frame. */
11593 location_breakpoint = set_momentary_breakpoint (frame_gdbarch, sal,
11594 stack_frame_id, bp_until);
11595 make_cleanup_delete_breakpoint (location_breakpoint);
11596
11597 sm = new_until_break_fsm (command_interp (), tp->global_num,
11598 location_breakpoint, caller_breakpoint);
11599 tp->thread_fsm = &sm->thread_fsm;
11600
11601 discard_cleanups (old_chain);
11602
11603 proceed (-1, GDB_SIGNAL_DEFAULT);
11604 }
11605
11606 /* This function attempts to parse an optional "if <cond>" clause
11607 from the arg string. If one is not found, it returns NULL.
11608
11609 Else, it returns a pointer to the condition string. (It does not
11610 attempt to evaluate the string against a particular block.) And,
11611 it updates arg to point to the first character following the parsed
11612 if clause in the arg string. */
11613
11614 const char *
11615 ep_parse_optional_if_clause (const char **arg)
11616 {
11617 const char *cond_string;
11618
11619 if (((*arg)[0] != 'i') || ((*arg)[1] != 'f') || !isspace ((*arg)[2]))
11620 return NULL;
11621
11622 /* Skip the "if" keyword. */
11623 (*arg) += 2;
11624
11625 /* Skip any extra leading whitespace, and record the start of the
11626 condition string. */
11627 *arg = skip_spaces_const (*arg);
11628 cond_string = *arg;
11629
11630 /* Assume that the condition occupies the remainder of the arg
11631 string. */
11632 (*arg) += strlen (cond_string);
11633
11634 return cond_string;
11635 }
11636
11637 /* Commands to deal with catching events, such as signals, exceptions,
11638 process start/exit, etc. */
11639
11640 typedef enum
11641 {
11642 catch_fork_temporary, catch_vfork_temporary,
11643 catch_fork_permanent, catch_vfork_permanent
11644 }
11645 catch_fork_kind;
11646
11647 static void
11648 catch_fork_command_1 (char *arg_entry, int from_tty,
11649 struct cmd_list_element *command)
11650 {
11651 const char *arg = arg_entry;
11652 struct gdbarch *gdbarch = get_current_arch ();
11653 const char *cond_string = NULL;
11654 catch_fork_kind fork_kind;
11655 int tempflag;
11656
11657 fork_kind = (catch_fork_kind) (uintptr_t) get_cmd_context (command);
11658 tempflag = (fork_kind == catch_fork_temporary
11659 || fork_kind == catch_vfork_temporary);
11660
11661 if (!arg)
11662 arg = "";
11663 arg = skip_spaces_const (arg);
11664
11665 /* The allowed syntax is:
11666 catch [v]fork
11667 catch [v]fork if <cond>
11668
11669 First, check if there's an if clause. */
11670 cond_string = ep_parse_optional_if_clause (&arg);
11671
11672 if ((*arg != '\0') && !isspace (*arg))
11673 error (_("Junk at end of arguments."));
11674
11675 /* If this target supports it, create a fork or vfork catchpoint
11676 and enable reporting of such events. */
11677 switch (fork_kind)
11678 {
11679 case catch_fork_temporary:
11680 case catch_fork_permanent:
11681 create_fork_vfork_event_catchpoint (gdbarch, tempflag, cond_string,
11682 &catch_fork_breakpoint_ops);
11683 break;
11684 case catch_vfork_temporary:
11685 case catch_vfork_permanent:
11686 create_fork_vfork_event_catchpoint (gdbarch, tempflag, cond_string,
11687 &catch_vfork_breakpoint_ops);
11688 break;
11689 default:
11690 error (_("unsupported or unknown fork kind; cannot catch it"));
11691 break;
11692 }
11693 }
11694
11695 static void
11696 catch_exec_command_1 (char *arg_entry, int from_tty,
11697 struct cmd_list_element *command)
11698 {
11699 const char *arg = arg_entry;
11700 struct gdbarch *gdbarch = get_current_arch ();
11701 int tempflag;
11702 const char *cond_string = NULL;
11703
11704 tempflag = get_cmd_context (command) == CATCH_TEMPORARY;
11705
11706 if (!arg)
11707 arg = "";
11708 arg = skip_spaces_const (arg);
11709
11710 /* The allowed syntax is:
11711 catch exec
11712 catch exec if <cond>
11713
11714 First, check if there's an if clause. */
11715 cond_string = ep_parse_optional_if_clause (&arg);
11716
11717 if ((*arg != '\0') && !isspace (*arg))
11718 error (_("Junk at end of arguments."));
11719
11720 std::unique_ptr<exec_catchpoint> c (new exec_catchpoint ());
11721 init_catchpoint (c.get (), gdbarch, tempflag, cond_string,
11722 &catch_exec_breakpoint_ops);
11723 c->exec_pathname = NULL;
11724
11725 install_breakpoint (0, std::move (c), 1);
11726 }
11727
11728 void
11729 init_ada_exception_breakpoint (struct breakpoint *b,
11730 struct gdbarch *gdbarch,
11731 struct symtab_and_line sal,
11732 char *addr_string,
11733 const struct breakpoint_ops *ops,
11734 int tempflag,
11735 int enabled,
11736 int from_tty)
11737 {
11738 if (from_tty)
11739 {
11740 struct gdbarch *loc_gdbarch = get_sal_arch (sal);
11741 if (!loc_gdbarch)
11742 loc_gdbarch = gdbarch;
11743
11744 describe_other_breakpoints (loc_gdbarch,
11745 sal.pspace, sal.pc, sal.section, -1);
11746 /* FIXME: brobecker/2006-12-28: Actually, re-implement a special
11747 version for exception catchpoints, because two catchpoints
11748 used for different exception names will use the same address.
11749 In this case, a "breakpoint ... also set at..." warning is
11750 unproductive. Besides, the warning phrasing is also a bit
11751 inappropriate, we should use the word catchpoint, and tell
11752 the user what type of catchpoint it is. The above is good
11753 enough for now, though. */
11754 }
11755
11756 init_raw_breakpoint (b, gdbarch, sal, bp_breakpoint, ops);
11757
11758 b->enable_state = enabled ? bp_enabled : bp_disabled;
11759 b->disposition = tempflag ? disp_del : disp_donttouch;
11760 b->location = string_to_event_location (&addr_string,
11761 language_def (language_ada));
11762 b->language = language_ada;
11763 }
11764
11765 static void
11766 catch_command (char *arg, int from_tty)
11767 {
11768 error (_("Catch requires an event name."));
11769 }
11770 \f
11771
11772 static void
11773 tcatch_command (char *arg, int from_tty)
11774 {
11775 error (_("Catch requires an event name."));
11776 }
11777
11778 /* A qsort comparison function that sorts breakpoints in order. */
11779
11780 static int
11781 compare_breakpoints (const void *a, const void *b)
11782 {
11783 const breakpoint_p *ba = (const breakpoint_p *) a;
11784 uintptr_t ua = (uintptr_t) *ba;
11785 const breakpoint_p *bb = (const breakpoint_p *) b;
11786 uintptr_t ub = (uintptr_t) *bb;
11787
11788 if ((*ba)->number < (*bb)->number)
11789 return -1;
11790 else if ((*ba)->number > (*bb)->number)
11791 return 1;
11792
11793 /* Now sort by address, in case we see, e..g, two breakpoints with
11794 the number 0. */
11795 if (ua < ub)
11796 return -1;
11797 return ua > ub ? 1 : 0;
11798 }
11799
11800 /* Delete breakpoints by address or line. */
11801
11802 static void
11803 clear_command (char *arg, int from_tty)
11804 {
11805 struct breakpoint *b, *prev;
11806 VEC(breakpoint_p) *found = 0;
11807 int ix;
11808 int default_match;
11809 struct symtabs_and_lines sals;
11810 struct symtab_and_line sal;
11811 int i;
11812 struct cleanup *cleanups = make_cleanup (null_cleanup, NULL);
11813
11814 if (arg)
11815 {
11816 sals = decode_line_with_current_source (arg,
11817 (DECODE_LINE_FUNFIRSTLINE
11818 | DECODE_LINE_LIST_MODE));
11819 make_cleanup (xfree, sals.sals);
11820 default_match = 0;
11821 }
11822 else
11823 {
11824 sals.sals = XNEW (struct symtab_and_line);
11825 make_cleanup (xfree, sals.sals);
11826 init_sal (&sal); /* Initialize to zeroes. */
11827
11828 /* Set sal's line, symtab, pc, and pspace to the values
11829 corresponding to the last call to print_frame_info. If the
11830 codepoint is not valid, this will set all the fields to 0. */
11831 get_last_displayed_sal (&sal);
11832 if (sal.symtab == 0)
11833 error (_("No source file specified."));
11834
11835 sals.sals[0] = sal;
11836 sals.nelts = 1;
11837
11838 default_match = 1;
11839 }
11840
11841 /* We don't call resolve_sal_pc here. That's not as bad as it
11842 seems, because all existing breakpoints typically have both
11843 file/line and pc set. So, if clear is given file/line, we can
11844 match this to existing breakpoint without obtaining pc at all.
11845
11846 We only support clearing given the address explicitly
11847 present in breakpoint table. Say, we've set breakpoint
11848 at file:line. There were several PC values for that file:line,
11849 due to optimization, all in one block.
11850
11851 We've picked one PC value. If "clear" is issued with another
11852 PC corresponding to the same file:line, the breakpoint won't
11853 be cleared. We probably can still clear the breakpoint, but
11854 since the other PC value is never presented to user, user
11855 can only find it by guessing, and it does not seem important
11856 to support that. */
11857
11858 /* For each line spec given, delete bps which correspond to it. Do
11859 it in two passes, solely to preserve the current behavior that
11860 from_tty is forced true if we delete more than one
11861 breakpoint. */
11862
11863 found = NULL;
11864 make_cleanup (VEC_cleanup (breakpoint_p), &found);
11865 for (i = 0; i < sals.nelts; i++)
11866 {
11867 const char *sal_fullname;
11868
11869 /* If exact pc given, clear bpts at that pc.
11870 If line given (pc == 0), clear all bpts on specified line.
11871 If defaulting, clear all bpts on default line
11872 or at default pc.
11873
11874 defaulting sal.pc != 0 tests to do
11875
11876 0 1 pc
11877 1 1 pc _and_ line
11878 0 0 line
11879 1 0 <can't happen> */
11880
11881 sal = sals.sals[i];
11882 sal_fullname = (sal.symtab == NULL
11883 ? NULL : symtab_to_fullname (sal.symtab));
11884
11885 /* Find all matching breakpoints and add them to 'found'. */
11886 ALL_BREAKPOINTS (b)
11887 {
11888 int match = 0;
11889 /* Are we going to delete b? */
11890 if (b->type != bp_none && !is_watchpoint (b))
11891 {
11892 struct bp_location *loc = b->loc;
11893 for (; loc; loc = loc->next)
11894 {
11895 /* If the user specified file:line, don't allow a PC
11896 match. This matches historical gdb behavior. */
11897 int pc_match = (!sal.explicit_line
11898 && sal.pc
11899 && (loc->pspace == sal.pspace)
11900 && (loc->address == sal.pc)
11901 && (!section_is_overlay (loc->section)
11902 || loc->section == sal.section));
11903 int line_match = 0;
11904
11905 if ((default_match || sal.explicit_line)
11906 && loc->symtab != NULL
11907 && sal_fullname != NULL
11908 && sal.pspace == loc->pspace
11909 && loc->line_number == sal.line
11910 && filename_cmp (symtab_to_fullname (loc->symtab),
11911 sal_fullname) == 0)
11912 line_match = 1;
11913
11914 if (pc_match || line_match)
11915 {
11916 match = 1;
11917 break;
11918 }
11919 }
11920 }
11921
11922 if (match)
11923 VEC_safe_push(breakpoint_p, found, b);
11924 }
11925 }
11926
11927 /* Now go thru the 'found' chain and delete them. */
11928 if (VEC_empty(breakpoint_p, found))
11929 {
11930 if (arg)
11931 error (_("No breakpoint at %s."), arg);
11932 else
11933 error (_("No breakpoint at this line."));
11934 }
11935
11936 /* Remove duplicates from the vec. */
11937 qsort (VEC_address (breakpoint_p, found),
11938 VEC_length (breakpoint_p, found),
11939 sizeof (breakpoint_p),
11940 compare_breakpoints);
11941 prev = VEC_index (breakpoint_p, found, 0);
11942 for (ix = 1; VEC_iterate (breakpoint_p, found, ix, b); ++ix)
11943 {
11944 if (b == prev)
11945 {
11946 VEC_ordered_remove (breakpoint_p, found, ix);
11947 --ix;
11948 }
11949 }
11950
11951 if (VEC_length(breakpoint_p, found) > 1)
11952 from_tty = 1; /* Always report if deleted more than one. */
11953 if (from_tty)
11954 {
11955 if (VEC_length(breakpoint_p, found) == 1)
11956 printf_unfiltered (_("Deleted breakpoint "));
11957 else
11958 printf_unfiltered (_("Deleted breakpoints "));
11959 }
11960
11961 for (ix = 0; VEC_iterate(breakpoint_p, found, ix, b); ix++)
11962 {
11963 if (from_tty)
11964 printf_unfiltered ("%d ", b->number);
11965 delete_breakpoint (b);
11966 }
11967 if (from_tty)
11968 putchar_unfiltered ('\n');
11969
11970 do_cleanups (cleanups);
11971 }
11972 \f
11973 /* Delete breakpoint in BS if they are `delete' breakpoints and
11974 all breakpoints that are marked for deletion, whether hit or not.
11975 This is called after any breakpoint is hit, or after errors. */
11976
11977 void
11978 breakpoint_auto_delete (bpstat bs)
11979 {
11980 struct breakpoint *b, *b_tmp;
11981
11982 for (; bs; bs = bs->next)
11983 if (bs->breakpoint_at
11984 && bs->breakpoint_at->disposition == disp_del
11985 && bs->stop)
11986 delete_breakpoint (bs->breakpoint_at);
11987
11988 ALL_BREAKPOINTS_SAFE (b, b_tmp)
11989 {
11990 if (b->disposition == disp_del_at_next_stop)
11991 delete_breakpoint (b);
11992 }
11993 }
11994
11995 /* A comparison function for bp_location AP and BP being interfaced to
11996 qsort. Sort elements primarily by their ADDRESS (no matter what
11997 does breakpoint_address_is_meaningful say for its OWNER),
11998 secondarily by ordering first permanent elements and
11999 terciarily just ensuring the array is sorted stable way despite
12000 qsort being an unstable algorithm. */
12001
12002 static int
12003 bp_locations_compare (const void *ap, const void *bp)
12004 {
12005 const struct bp_location *a = *(const struct bp_location **) ap;
12006 const struct bp_location *b = *(const struct bp_location **) bp;
12007
12008 if (a->address != b->address)
12009 return (a->address > b->address) - (a->address < b->address);
12010
12011 /* Sort locations at the same address by their pspace number, keeping
12012 locations of the same inferior (in a multi-inferior environment)
12013 grouped. */
12014
12015 if (a->pspace->num != b->pspace->num)
12016 return ((a->pspace->num > b->pspace->num)
12017 - (a->pspace->num < b->pspace->num));
12018
12019 /* Sort permanent breakpoints first. */
12020 if (a->permanent != b->permanent)
12021 return (a->permanent < b->permanent) - (a->permanent > b->permanent);
12022
12023 /* Make the internal GDB representation stable across GDB runs
12024 where A and B memory inside GDB can differ. Breakpoint locations of
12025 the same type at the same address can be sorted in arbitrary order. */
12026
12027 if (a->owner->number != b->owner->number)
12028 return ((a->owner->number > b->owner->number)
12029 - (a->owner->number < b->owner->number));
12030
12031 return (a > b) - (a < b);
12032 }
12033
12034 /* Set bp_locations_placed_address_before_address_max and
12035 bp_locations_shadow_len_after_address_max according to the current
12036 content of the bp_locations array. */
12037
12038 static void
12039 bp_locations_target_extensions_update (void)
12040 {
12041 struct bp_location *bl, **blp_tmp;
12042
12043 bp_locations_placed_address_before_address_max = 0;
12044 bp_locations_shadow_len_after_address_max = 0;
12045
12046 ALL_BP_LOCATIONS (bl, blp_tmp)
12047 {
12048 CORE_ADDR start, end, addr;
12049
12050 if (!bp_location_has_shadow (bl))
12051 continue;
12052
12053 start = bl->target_info.placed_address;
12054 end = start + bl->target_info.shadow_len;
12055
12056 gdb_assert (bl->address >= start);
12057 addr = bl->address - start;
12058 if (addr > bp_locations_placed_address_before_address_max)
12059 bp_locations_placed_address_before_address_max = addr;
12060
12061 /* Zero SHADOW_LEN would not pass bp_location_has_shadow. */
12062
12063 gdb_assert (bl->address < end);
12064 addr = end - bl->address;
12065 if (addr > bp_locations_shadow_len_after_address_max)
12066 bp_locations_shadow_len_after_address_max = addr;
12067 }
12068 }
12069
12070 /* Download tracepoint locations if they haven't been. */
12071
12072 static void
12073 download_tracepoint_locations (void)
12074 {
12075 struct breakpoint *b;
12076 enum tribool can_download_tracepoint = TRIBOOL_UNKNOWN;
12077
12078 scoped_restore_current_pspace_and_thread restore_pspace_thread;
12079
12080 ALL_TRACEPOINTS (b)
12081 {
12082 struct bp_location *bl;
12083 struct tracepoint *t;
12084 int bp_location_downloaded = 0;
12085
12086 if ((b->type == bp_fast_tracepoint
12087 ? !may_insert_fast_tracepoints
12088 : !may_insert_tracepoints))
12089 continue;
12090
12091 if (can_download_tracepoint == TRIBOOL_UNKNOWN)
12092 {
12093 if (target_can_download_tracepoint ())
12094 can_download_tracepoint = TRIBOOL_TRUE;
12095 else
12096 can_download_tracepoint = TRIBOOL_FALSE;
12097 }
12098
12099 if (can_download_tracepoint == TRIBOOL_FALSE)
12100 break;
12101
12102 for (bl = b->loc; bl; bl = bl->next)
12103 {
12104 /* In tracepoint, locations are _never_ duplicated, so
12105 should_be_inserted is equivalent to
12106 unduplicated_should_be_inserted. */
12107 if (!should_be_inserted (bl) || bl->inserted)
12108 continue;
12109
12110 switch_to_program_space_and_thread (bl->pspace);
12111
12112 target_download_tracepoint (bl);
12113
12114 bl->inserted = 1;
12115 bp_location_downloaded = 1;
12116 }
12117 t = (struct tracepoint *) b;
12118 t->number_on_target = b->number;
12119 if (bp_location_downloaded)
12120 observer_notify_breakpoint_modified (b);
12121 }
12122 }
12123
12124 /* Swap the insertion/duplication state between two locations. */
12125
12126 static void
12127 swap_insertion (struct bp_location *left, struct bp_location *right)
12128 {
12129 const int left_inserted = left->inserted;
12130 const int left_duplicate = left->duplicate;
12131 const int left_needs_update = left->needs_update;
12132 const struct bp_target_info left_target_info = left->target_info;
12133
12134 /* Locations of tracepoints can never be duplicated. */
12135 if (is_tracepoint (left->owner))
12136 gdb_assert (!left->duplicate);
12137 if (is_tracepoint (right->owner))
12138 gdb_assert (!right->duplicate);
12139
12140 left->inserted = right->inserted;
12141 left->duplicate = right->duplicate;
12142 left->needs_update = right->needs_update;
12143 left->target_info = right->target_info;
12144 right->inserted = left_inserted;
12145 right->duplicate = left_duplicate;
12146 right->needs_update = left_needs_update;
12147 right->target_info = left_target_info;
12148 }
12149
12150 /* Force the re-insertion of the locations at ADDRESS. This is called
12151 once a new/deleted/modified duplicate location is found and we are evaluating
12152 conditions on the target's side. Such conditions need to be updated on
12153 the target. */
12154
12155 static void
12156 force_breakpoint_reinsertion (struct bp_location *bl)
12157 {
12158 struct bp_location **locp = NULL, **loc2p;
12159 struct bp_location *loc;
12160 CORE_ADDR address = 0;
12161 int pspace_num;
12162
12163 address = bl->address;
12164 pspace_num = bl->pspace->num;
12165
12166 /* This is only meaningful if the target is
12167 evaluating conditions and if the user has
12168 opted for condition evaluation on the target's
12169 side. */
12170 if (gdb_evaluates_breakpoint_condition_p ()
12171 || !target_supports_evaluation_of_breakpoint_conditions ())
12172 return;
12173
12174 /* Flag all breakpoint locations with this address and
12175 the same program space as the location
12176 as "its condition has changed". We need to
12177 update the conditions on the target's side. */
12178 ALL_BP_LOCATIONS_AT_ADDR (loc2p, locp, address)
12179 {
12180 loc = *loc2p;
12181
12182 if (!is_breakpoint (loc->owner)
12183 || pspace_num != loc->pspace->num)
12184 continue;
12185
12186 /* Flag the location appropriately. We use a different state to
12187 let everyone know that we already updated the set of locations
12188 with addr bl->address and program space bl->pspace. This is so
12189 we don't have to keep calling these functions just to mark locations
12190 that have already been marked. */
12191 loc->condition_changed = condition_updated;
12192
12193 /* Free the agent expression bytecode as well. We will compute
12194 it later on. */
12195 loc->cond_bytecode.reset ();
12196 }
12197 }
12198 /* Called whether new breakpoints are created, or existing breakpoints
12199 deleted, to update the global location list and recompute which
12200 locations are duplicate of which.
12201
12202 The INSERT_MODE flag determines whether locations may not, may, or
12203 shall be inserted now. See 'enum ugll_insert_mode' for more
12204 info. */
12205
12206 static void
12207 update_global_location_list (enum ugll_insert_mode insert_mode)
12208 {
12209 struct breakpoint *b;
12210 struct bp_location **locp, *loc;
12211 struct cleanup *cleanups;
12212 /* Last breakpoint location address that was marked for update. */
12213 CORE_ADDR last_addr = 0;
12214 /* Last breakpoint location program space that was marked for update. */
12215 int last_pspace_num = -1;
12216
12217 /* Used in the duplicates detection below. When iterating over all
12218 bp_locations, points to the first bp_location of a given address.
12219 Breakpoints and watchpoints of different types are never
12220 duplicates of each other. Keep one pointer for each type of
12221 breakpoint/watchpoint, so we only need to loop over all locations
12222 once. */
12223 struct bp_location *bp_loc_first; /* breakpoint */
12224 struct bp_location *wp_loc_first; /* hardware watchpoint */
12225 struct bp_location *awp_loc_first; /* access watchpoint */
12226 struct bp_location *rwp_loc_first; /* read watchpoint */
12227
12228 /* Saved former bp_locations array which we compare against the newly
12229 built bp_locations from the current state of ALL_BREAKPOINTS. */
12230 struct bp_location **old_locations, **old_locp;
12231 unsigned old_locations_count;
12232
12233 old_locations = bp_locations;
12234 old_locations_count = bp_locations_count;
12235 bp_locations = NULL;
12236 bp_locations_count = 0;
12237 cleanups = make_cleanup (xfree, old_locations);
12238
12239 ALL_BREAKPOINTS (b)
12240 for (loc = b->loc; loc; loc = loc->next)
12241 bp_locations_count++;
12242
12243 bp_locations = XNEWVEC (struct bp_location *, bp_locations_count);
12244 locp = bp_locations;
12245 ALL_BREAKPOINTS (b)
12246 for (loc = b->loc; loc; loc = loc->next)
12247 *locp++ = loc;
12248 qsort (bp_locations, bp_locations_count, sizeof (*bp_locations),
12249 bp_locations_compare);
12250
12251 bp_locations_target_extensions_update ();
12252
12253 /* Identify bp_location instances that are no longer present in the
12254 new list, and therefore should be freed. Note that it's not
12255 necessary that those locations should be removed from inferior --
12256 if there's another location at the same address (previously
12257 marked as duplicate), we don't need to remove/insert the
12258 location.
12259
12260 LOCP is kept in sync with OLD_LOCP, each pointing to the current
12261 and former bp_location array state respectively. */
12262
12263 locp = bp_locations;
12264 for (old_locp = old_locations;
12265 old_locp < old_locations + old_locations_count;
12266 old_locp++)
12267 {
12268 struct bp_location *old_loc = *old_locp;
12269 struct bp_location **loc2p;
12270
12271 /* Tells if 'old_loc' is found among the new locations. If
12272 not, we have to free it. */
12273 int found_object = 0;
12274 /* Tells if the location should remain inserted in the target. */
12275 int keep_in_target = 0;
12276 int removed = 0;
12277
12278 /* Skip LOCP entries which will definitely never be needed.
12279 Stop either at or being the one matching OLD_LOC. */
12280 while (locp < bp_locations + bp_locations_count
12281 && (*locp)->address < old_loc->address)
12282 locp++;
12283
12284 for (loc2p = locp;
12285 (loc2p < bp_locations + bp_locations_count
12286 && (*loc2p)->address == old_loc->address);
12287 loc2p++)
12288 {
12289 /* Check if this is a new/duplicated location or a duplicated
12290 location that had its condition modified. If so, we want to send
12291 its condition to the target if evaluation of conditions is taking
12292 place there. */
12293 if ((*loc2p)->condition_changed == condition_modified
12294 && (last_addr != old_loc->address
12295 || last_pspace_num != old_loc->pspace->num))
12296 {
12297 force_breakpoint_reinsertion (*loc2p);
12298 last_pspace_num = old_loc->pspace->num;
12299 }
12300
12301 if (*loc2p == old_loc)
12302 found_object = 1;
12303 }
12304
12305 /* We have already handled this address, update it so that we don't
12306 have to go through updates again. */
12307 last_addr = old_loc->address;
12308
12309 /* Target-side condition evaluation: Handle deleted locations. */
12310 if (!found_object)
12311 force_breakpoint_reinsertion (old_loc);
12312
12313 /* If this location is no longer present, and inserted, look if
12314 there's maybe a new location at the same address. If so,
12315 mark that one inserted, and don't remove this one. This is
12316 needed so that we don't have a time window where a breakpoint
12317 at certain location is not inserted. */
12318
12319 if (old_loc->inserted)
12320 {
12321 /* If the location is inserted now, we might have to remove
12322 it. */
12323
12324 if (found_object && should_be_inserted (old_loc))
12325 {
12326 /* The location is still present in the location list,
12327 and still should be inserted. Don't do anything. */
12328 keep_in_target = 1;
12329 }
12330 else
12331 {
12332 /* This location still exists, but it won't be kept in the
12333 target since it may have been disabled. We proceed to
12334 remove its target-side condition. */
12335
12336 /* The location is either no longer present, or got
12337 disabled. See if there's another location at the
12338 same address, in which case we don't need to remove
12339 this one from the target. */
12340
12341 /* OLD_LOC comes from existing struct breakpoint. */
12342 if (breakpoint_address_is_meaningful (old_loc->owner))
12343 {
12344 for (loc2p = locp;
12345 (loc2p < bp_locations + bp_locations_count
12346 && (*loc2p)->address == old_loc->address);
12347 loc2p++)
12348 {
12349 struct bp_location *loc2 = *loc2p;
12350
12351 if (breakpoint_locations_match (loc2, old_loc))
12352 {
12353 /* Read watchpoint locations are switched to
12354 access watchpoints, if the former are not
12355 supported, but the latter are. */
12356 if (is_hardware_watchpoint (old_loc->owner))
12357 {
12358 gdb_assert (is_hardware_watchpoint (loc2->owner));
12359 loc2->watchpoint_type = old_loc->watchpoint_type;
12360 }
12361
12362 /* loc2 is a duplicated location. We need to check
12363 if it should be inserted in case it will be
12364 unduplicated. */
12365 if (loc2 != old_loc
12366 && unduplicated_should_be_inserted (loc2))
12367 {
12368 swap_insertion (old_loc, loc2);
12369 keep_in_target = 1;
12370 break;
12371 }
12372 }
12373 }
12374 }
12375 }
12376
12377 if (!keep_in_target)
12378 {
12379 if (remove_breakpoint (old_loc))
12380 {
12381 /* This is just about all we can do. We could keep
12382 this location on the global list, and try to
12383 remove it next time, but there's no particular
12384 reason why we will succeed next time.
12385
12386 Note that at this point, old_loc->owner is still
12387 valid, as delete_breakpoint frees the breakpoint
12388 only after calling us. */
12389 printf_filtered (_("warning: Error removing "
12390 "breakpoint %d\n"),
12391 old_loc->owner->number);
12392 }
12393 removed = 1;
12394 }
12395 }
12396
12397 if (!found_object)
12398 {
12399 if (removed && target_is_non_stop_p ()
12400 && need_moribund_for_location_type (old_loc))
12401 {
12402 /* This location was removed from the target. In
12403 non-stop mode, a race condition is possible where
12404 we've removed a breakpoint, but stop events for that
12405 breakpoint are already queued and will arrive later.
12406 We apply an heuristic to be able to distinguish such
12407 SIGTRAPs from other random SIGTRAPs: we keep this
12408 breakpoint location for a bit, and will retire it
12409 after we see some number of events. The theory here
12410 is that reporting of events should, "on the average",
12411 be fair, so after a while we'll see events from all
12412 threads that have anything of interest, and no longer
12413 need to keep this breakpoint location around. We
12414 don't hold locations forever so to reduce chances of
12415 mistaking a non-breakpoint SIGTRAP for a breakpoint
12416 SIGTRAP.
12417
12418 The heuristic failing can be disastrous on
12419 decr_pc_after_break targets.
12420
12421 On decr_pc_after_break targets, like e.g., x86-linux,
12422 if we fail to recognize a late breakpoint SIGTRAP,
12423 because events_till_retirement has reached 0 too
12424 soon, we'll fail to do the PC adjustment, and report
12425 a random SIGTRAP to the user. When the user resumes
12426 the inferior, it will most likely immediately crash
12427 with SIGILL/SIGBUS/SIGSEGV, or worse, get silently
12428 corrupted, because of being resumed e.g., in the
12429 middle of a multi-byte instruction, or skipped a
12430 one-byte instruction. This was actually seen happen
12431 on native x86-linux, and should be less rare on
12432 targets that do not support new thread events, like
12433 remote, due to the heuristic depending on
12434 thread_count.
12435
12436 Mistaking a random SIGTRAP for a breakpoint trap
12437 causes similar symptoms (PC adjustment applied when
12438 it shouldn't), but then again, playing with SIGTRAPs
12439 behind the debugger's back is asking for trouble.
12440
12441 Since hardware watchpoint traps are always
12442 distinguishable from other traps, so we don't need to
12443 apply keep hardware watchpoint moribund locations
12444 around. We simply always ignore hardware watchpoint
12445 traps we can no longer explain. */
12446
12447 old_loc->events_till_retirement = 3 * (thread_count () + 1);
12448 old_loc->owner = NULL;
12449
12450 VEC_safe_push (bp_location_p, moribund_locations, old_loc);
12451 }
12452 else
12453 {
12454 old_loc->owner = NULL;
12455 decref_bp_location (&old_loc);
12456 }
12457 }
12458 }
12459
12460 /* Rescan breakpoints at the same address and section, marking the
12461 first one as "first" and any others as "duplicates". This is so
12462 that the bpt instruction is only inserted once. If we have a
12463 permanent breakpoint at the same place as BPT, make that one the
12464 official one, and the rest as duplicates. Permanent breakpoints
12465 are sorted first for the same address.
12466
12467 Do the same for hardware watchpoints, but also considering the
12468 watchpoint's type (regular/access/read) and length. */
12469
12470 bp_loc_first = NULL;
12471 wp_loc_first = NULL;
12472 awp_loc_first = NULL;
12473 rwp_loc_first = NULL;
12474 ALL_BP_LOCATIONS (loc, locp)
12475 {
12476 /* ALL_BP_LOCATIONS bp_location has LOC->OWNER always
12477 non-NULL. */
12478 struct bp_location **loc_first_p;
12479 b = loc->owner;
12480
12481 if (!unduplicated_should_be_inserted (loc)
12482 || !breakpoint_address_is_meaningful (b)
12483 /* Don't detect duplicate for tracepoint locations because they are
12484 never duplicated. See the comments in field `duplicate' of
12485 `struct bp_location'. */
12486 || is_tracepoint (b))
12487 {
12488 /* Clear the condition modification flag. */
12489 loc->condition_changed = condition_unchanged;
12490 continue;
12491 }
12492
12493 if (b->type == bp_hardware_watchpoint)
12494 loc_first_p = &wp_loc_first;
12495 else if (b->type == bp_read_watchpoint)
12496 loc_first_p = &rwp_loc_first;
12497 else if (b->type == bp_access_watchpoint)
12498 loc_first_p = &awp_loc_first;
12499 else
12500 loc_first_p = &bp_loc_first;
12501
12502 if (*loc_first_p == NULL
12503 || (overlay_debugging && loc->section != (*loc_first_p)->section)
12504 || !breakpoint_locations_match (loc, *loc_first_p))
12505 {
12506 *loc_first_p = loc;
12507 loc->duplicate = 0;
12508
12509 if (is_breakpoint (loc->owner) && loc->condition_changed)
12510 {
12511 loc->needs_update = 1;
12512 /* Clear the condition modification flag. */
12513 loc->condition_changed = condition_unchanged;
12514 }
12515 continue;
12516 }
12517
12518
12519 /* This and the above ensure the invariant that the first location
12520 is not duplicated, and is the inserted one.
12521 All following are marked as duplicated, and are not inserted. */
12522 if (loc->inserted)
12523 swap_insertion (loc, *loc_first_p);
12524 loc->duplicate = 1;
12525
12526 /* Clear the condition modification flag. */
12527 loc->condition_changed = condition_unchanged;
12528 }
12529
12530 if (insert_mode == UGLL_INSERT || breakpoints_should_be_inserted_now ())
12531 {
12532 if (insert_mode != UGLL_DONT_INSERT)
12533 insert_breakpoint_locations ();
12534 else
12535 {
12536 /* Even though the caller told us to not insert new
12537 locations, we may still need to update conditions on the
12538 target's side of breakpoints that were already inserted
12539 if the target is evaluating breakpoint conditions. We
12540 only update conditions for locations that are marked
12541 "needs_update". */
12542 update_inserted_breakpoint_locations ();
12543 }
12544 }
12545
12546 if (insert_mode != UGLL_DONT_INSERT)
12547 download_tracepoint_locations ();
12548
12549 do_cleanups (cleanups);
12550 }
12551
12552 void
12553 breakpoint_retire_moribund (void)
12554 {
12555 struct bp_location *loc;
12556 int ix;
12557
12558 for (ix = 0; VEC_iterate (bp_location_p, moribund_locations, ix, loc); ++ix)
12559 if (--(loc->events_till_retirement) == 0)
12560 {
12561 decref_bp_location (&loc);
12562 VEC_unordered_remove (bp_location_p, moribund_locations, ix);
12563 --ix;
12564 }
12565 }
12566
12567 static void
12568 update_global_location_list_nothrow (enum ugll_insert_mode insert_mode)
12569 {
12570
12571 TRY
12572 {
12573 update_global_location_list (insert_mode);
12574 }
12575 CATCH (e, RETURN_MASK_ERROR)
12576 {
12577 }
12578 END_CATCH
12579 }
12580
12581 /* Clear BKP from a BPS. */
12582
12583 static void
12584 bpstat_remove_bp_location (bpstat bps, struct breakpoint *bpt)
12585 {
12586 bpstat bs;
12587
12588 for (bs = bps; bs; bs = bs->next)
12589 if (bs->breakpoint_at == bpt)
12590 {
12591 bs->breakpoint_at = NULL;
12592 bs->old_val = NULL;
12593 /* bs->commands will be freed later. */
12594 }
12595 }
12596
12597 /* Callback for iterate_over_threads. */
12598 static int
12599 bpstat_remove_breakpoint_callback (struct thread_info *th, void *data)
12600 {
12601 struct breakpoint *bpt = (struct breakpoint *) data;
12602
12603 bpstat_remove_bp_location (th->control.stop_bpstat, bpt);
12604 return 0;
12605 }
12606
12607 /* Helper for breakpoint and tracepoint breakpoint_ops->mention
12608 callbacks. */
12609
12610 static void
12611 say_where (struct breakpoint *b)
12612 {
12613 struct value_print_options opts;
12614
12615 get_user_print_options (&opts);
12616
12617 /* i18n: cagney/2005-02-11: Below needs to be merged into a
12618 single string. */
12619 if (b->loc == NULL)
12620 {
12621 /* For pending locations, the output differs slightly based
12622 on b->extra_string. If this is non-NULL, it contains either
12623 a condition or dprintf arguments. */
12624 if (b->extra_string == NULL)
12625 {
12626 printf_filtered (_(" (%s) pending."),
12627 event_location_to_string (b->location.get ()));
12628 }
12629 else if (b->type == bp_dprintf)
12630 {
12631 printf_filtered (_(" (%s,%s) pending."),
12632 event_location_to_string (b->location.get ()),
12633 b->extra_string);
12634 }
12635 else
12636 {
12637 printf_filtered (_(" (%s %s) pending."),
12638 event_location_to_string (b->location.get ()),
12639 b->extra_string);
12640 }
12641 }
12642 else
12643 {
12644 if (opts.addressprint || b->loc->symtab == NULL)
12645 {
12646 printf_filtered (" at ");
12647 fputs_filtered (paddress (b->loc->gdbarch, b->loc->address),
12648 gdb_stdout);
12649 }
12650 if (b->loc->symtab != NULL)
12651 {
12652 /* If there is a single location, we can print the location
12653 more nicely. */
12654 if (b->loc->next == NULL)
12655 printf_filtered (": file %s, line %d.",
12656 symtab_to_filename_for_display (b->loc->symtab),
12657 b->loc->line_number);
12658 else
12659 /* This is not ideal, but each location may have a
12660 different file name, and this at least reflects the
12661 real situation somewhat. */
12662 printf_filtered (": %s.",
12663 event_location_to_string (b->location.get ()));
12664 }
12665
12666 if (b->loc->next)
12667 {
12668 struct bp_location *loc = b->loc;
12669 int n = 0;
12670 for (; loc; loc = loc->next)
12671 ++n;
12672 printf_filtered (" (%d locations)", n);
12673 }
12674 }
12675 }
12676
12677 /* Default bp_location_ops methods. */
12678
12679 static void
12680 bp_location_dtor (struct bp_location *self)
12681 {
12682 xfree (self->function_name);
12683 }
12684
12685 static const struct bp_location_ops bp_location_ops =
12686 {
12687 bp_location_dtor
12688 };
12689
12690 /* Destructor for the breakpoint base class. */
12691
12692 breakpoint::~breakpoint ()
12693 {
12694 decref_counted_command_line (&this->commands);
12695 xfree (this->cond_string);
12696 xfree (this->extra_string);
12697 xfree (this->filter);
12698 }
12699
12700 static struct bp_location *
12701 base_breakpoint_allocate_location (struct breakpoint *self)
12702 {
12703 return new bp_location (&bp_location_ops, self);
12704 }
12705
12706 static void
12707 base_breakpoint_re_set (struct breakpoint *b)
12708 {
12709 /* Nothing to re-set. */
12710 }
12711
12712 #define internal_error_pure_virtual_called() \
12713 gdb_assert_not_reached ("pure virtual function called")
12714
12715 static int
12716 base_breakpoint_insert_location (struct bp_location *bl)
12717 {
12718 internal_error_pure_virtual_called ();
12719 }
12720
12721 static int
12722 base_breakpoint_remove_location (struct bp_location *bl,
12723 enum remove_bp_reason reason)
12724 {
12725 internal_error_pure_virtual_called ();
12726 }
12727
12728 static int
12729 base_breakpoint_breakpoint_hit (const struct bp_location *bl,
12730 struct address_space *aspace,
12731 CORE_ADDR bp_addr,
12732 const struct target_waitstatus *ws)
12733 {
12734 internal_error_pure_virtual_called ();
12735 }
12736
12737 static void
12738 base_breakpoint_check_status (bpstat bs)
12739 {
12740 /* Always stop. */
12741 }
12742
12743 /* A "works_in_software_mode" breakpoint_ops method that just internal
12744 errors. */
12745
12746 static int
12747 base_breakpoint_works_in_software_mode (const struct breakpoint *b)
12748 {
12749 internal_error_pure_virtual_called ();
12750 }
12751
12752 /* A "resources_needed" breakpoint_ops method that just internal
12753 errors. */
12754
12755 static int
12756 base_breakpoint_resources_needed (const struct bp_location *bl)
12757 {
12758 internal_error_pure_virtual_called ();
12759 }
12760
12761 static enum print_stop_action
12762 base_breakpoint_print_it (bpstat bs)
12763 {
12764 internal_error_pure_virtual_called ();
12765 }
12766
12767 static void
12768 base_breakpoint_print_one_detail (const struct breakpoint *self,
12769 struct ui_out *uiout)
12770 {
12771 /* nothing */
12772 }
12773
12774 static void
12775 base_breakpoint_print_mention (struct breakpoint *b)
12776 {
12777 internal_error_pure_virtual_called ();
12778 }
12779
12780 static void
12781 base_breakpoint_print_recreate (struct breakpoint *b, struct ui_file *fp)
12782 {
12783 internal_error_pure_virtual_called ();
12784 }
12785
12786 static void
12787 base_breakpoint_create_sals_from_location
12788 (const struct event_location *location,
12789 struct linespec_result *canonical,
12790 enum bptype type_wanted)
12791 {
12792 internal_error_pure_virtual_called ();
12793 }
12794
12795 static void
12796 base_breakpoint_create_breakpoints_sal (struct gdbarch *gdbarch,
12797 struct linespec_result *c,
12798 gdb::unique_xmalloc_ptr<char> cond_string,
12799 gdb::unique_xmalloc_ptr<char> extra_string,
12800 enum bptype type_wanted,
12801 enum bpdisp disposition,
12802 int thread,
12803 int task, int ignore_count,
12804 const struct breakpoint_ops *o,
12805 int from_tty, int enabled,
12806 int internal, unsigned flags)
12807 {
12808 internal_error_pure_virtual_called ();
12809 }
12810
12811 static void
12812 base_breakpoint_decode_location (struct breakpoint *b,
12813 const struct event_location *location,
12814 struct program_space *search_pspace,
12815 struct symtabs_and_lines *sals)
12816 {
12817 internal_error_pure_virtual_called ();
12818 }
12819
12820 /* The default 'explains_signal' method. */
12821
12822 static int
12823 base_breakpoint_explains_signal (struct breakpoint *b, enum gdb_signal sig)
12824 {
12825 return 1;
12826 }
12827
12828 /* The default "after_condition_true" method. */
12829
12830 static void
12831 base_breakpoint_after_condition_true (struct bpstats *bs)
12832 {
12833 /* Nothing to do. */
12834 }
12835
12836 struct breakpoint_ops base_breakpoint_ops =
12837 {
12838 base_breakpoint_allocate_location,
12839 base_breakpoint_re_set,
12840 base_breakpoint_insert_location,
12841 base_breakpoint_remove_location,
12842 base_breakpoint_breakpoint_hit,
12843 base_breakpoint_check_status,
12844 base_breakpoint_resources_needed,
12845 base_breakpoint_works_in_software_mode,
12846 base_breakpoint_print_it,
12847 NULL,
12848 base_breakpoint_print_one_detail,
12849 base_breakpoint_print_mention,
12850 base_breakpoint_print_recreate,
12851 base_breakpoint_create_sals_from_location,
12852 base_breakpoint_create_breakpoints_sal,
12853 base_breakpoint_decode_location,
12854 base_breakpoint_explains_signal,
12855 base_breakpoint_after_condition_true,
12856 };
12857
12858 /* Default breakpoint_ops methods. */
12859
12860 static void
12861 bkpt_re_set (struct breakpoint *b)
12862 {
12863 /* FIXME: is this still reachable? */
12864 if (breakpoint_event_location_empty_p (b))
12865 {
12866 /* Anything without a location can't be re-set. */
12867 delete_breakpoint (b);
12868 return;
12869 }
12870
12871 breakpoint_re_set_default (b);
12872 }
12873
12874 static int
12875 bkpt_insert_location (struct bp_location *bl)
12876 {
12877 CORE_ADDR addr = bl->target_info.reqstd_address;
12878
12879 bl->target_info.kind = breakpoint_kind (bl, &addr);
12880 bl->target_info.placed_address = addr;
12881
12882 if (bl->loc_type == bp_loc_hardware_breakpoint)
12883 return target_insert_hw_breakpoint (bl->gdbarch, &bl->target_info);
12884 else
12885 return target_insert_breakpoint (bl->gdbarch, &bl->target_info);
12886 }
12887
12888 static int
12889 bkpt_remove_location (struct bp_location *bl, enum remove_bp_reason reason)
12890 {
12891 if (bl->loc_type == bp_loc_hardware_breakpoint)
12892 return target_remove_hw_breakpoint (bl->gdbarch, &bl->target_info);
12893 else
12894 return target_remove_breakpoint (bl->gdbarch, &bl->target_info, reason);
12895 }
12896
12897 static int
12898 bkpt_breakpoint_hit (const struct bp_location *bl,
12899 struct address_space *aspace, CORE_ADDR bp_addr,
12900 const struct target_waitstatus *ws)
12901 {
12902 if (ws->kind != TARGET_WAITKIND_STOPPED
12903 || ws->value.sig != GDB_SIGNAL_TRAP)
12904 return 0;
12905
12906 if (!breakpoint_address_match (bl->pspace->aspace, bl->address,
12907 aspace, bp_addr))
12908 return 0;
12909
12910 if (overlay_debugging /* unmapped overlay section */
12911 && section_is_overlay (bl->section)
12912 && !section_is_mapped (bl->section))
12913 return 0;
12914
12915 return 1;
12916 }
12917
12918 static int
12919 dprintf_breakpoint_hit (const struct bp_location *bl,
12920 struct address_space *aspace, CORE_ADDR bp_addr,
12921 const struct target_waitstatus *ws)
12922 {
12923 if (dprintf_style == dprintf_style_agent
12924 && target_can_run_breakpoint_commands ())
12925 {
12926 /* An agent-style dprintf never causes a stop. If we see a trap
12927 for this address it must be for a breakpoint that happens to
12928 be set at the same address. */
12929 return 0;
12930 }
12931
12932 return bkpt_breakpoint_hit (bl, aspace, bp_addr, ws);
12933 }
12934
12935 static int
12936 bkpt_resources_needed (const struct bp_location *bl)
12937 {
12938 gdb_assert (bl->owner->type == bp_hardware_breakpoint);
12939
12940 return 1;
12941 }
12942
12943 static enum print_stop_action
12944 bkpt_print_it (bpstat bs)
12945 {
12946 struct breakpoint *b;
12947 const struct bp_location *bl;
12948 int bp_temp;
12949 struct ui_out *uiout = current_uiout;
12950
12951 gdb_assert (bs->bp_location_at != NULL);
12952
12953 bl = bs->bp_location_at;
12954 b = bs->breakpoint_at;
12955
12956 bp_temp = b->disposition == disp_del;
12957 if (bl->address != bl->requested_address)
12958 breakpoint_adjustment_warning (bl->requested_address,
12959 bl->address,
12960 b->number, 1);
12961 annotate_breakpoint (b->number);
12962 maybe_print_thread_hit_breakpoint (uiout);
12963
12964 if (bp_temp)
12965 uiout->text ("Temporary breakpoint ");
12966 else
12967 uiout->text ("Breakpoint ");
12968 if (uiout->is_mi_like_p ())
12969 {
12970 uiout->field_string ("reason",
12971 async_reason_lookup (EXEC_ASYNC_BREAKPOINT_HIT));
12972 uiout->field_string ("disp", bpdisp_text (b->disposition));
12973 }
12974 uiout->field_int ("bkptno", b->number);
12975 uiout->text (", ");
12976
12977 return PRINT_SRC_AND_LOC;
12978 }
12979
12980 static void
12981 bkpt_print_mention (struct breakpoint *b)
12982 {
12983 if (current_uiout->is_mi_like_p ())
12984 return;
12985
12986 switch (b->type)
12987 {
12988 case bp_breakpoint:
12989 case bp_gnu_ifunc_resolver:
12990 if (b->disposition == disp_del)
12991 printf_filtered (_("Temporary breakpoint"));
12992 else
12993 printf_filtered (_("Breakpoint"));
12994 printf_filtered (_(" %d"), b->number);
12995 if (b->type == bp_gnu_ifunc_resolver)
12996 printf_filtered (_(" at gnu-indirect-function resolver"));
12997 break;
12998 case bp_hardware_breakpoint:
12999 printf_filtered (_("Hardware assisted breakpoint %d"), b->number);
13000 break;
13001 case bp_dprintf:
13002 printf_filtered (_("Dprintf %d"), b->number);
13003 break;
13004 }
13005
13006 say_where (b);
13007 }
13008
13009 static void
13010 bkpt_print_recreate (struct breakpoint *tp, struct ui_file *fp)
13011 {
13012 if (tp->type == bp_breakpoint && tp->disposition == disp_del)
13013 fprintf_unfiltered (fp, "tbreak");
13014 else if (tp->type == bp_breakpoint)
13015 fprintf_unfiltered (fp, "break");
13016 else if (tp->type == bp_hardware_breakpoint
13017 && tp->disposition == disp_del)
13018 fprintf_unfiltered (fp, "thbreak");
13019 else if (tp->type == bp_hardware_breakpoint)
13020 fprintf_unfiltered (fp, "hbreak");
13021 else
13022 internal_error (__FILE__, __LINE__,
13023 _("unhandled breakpoint type %d"), (int) tp->type);
13024
13025 fprintf_unfiltered (fp, " %s",
13026 event_location_to_string (tp->location.get ()));
13027
13028 /* Print out extra_string if this breakpoint is pending. It might
13029 contain, for example, conditions that were set by the user. */
13030 if (tp->loc == NULL && tp->extra_string != NULL)
13031 fprintf_unfiltered (fp, " %s", tp->extra_string);
13032
13033 print_recreate_thread (tp, fp);
13034 }
13035
13036 static void
13037 bkpt_create_sals_from_location (const struct event_location *location,
13038 struct linespec_result *canonical,
13039 enum bptype type_wanted)
13040 {
13041 create_sals_from_location_default (location, canonical, type_wanted);
13042 }
13043
13044 static void
13045 bkpt_create_breakpoints_sal (struct gdbarch *gdbarch,
13046 struct linespec_result *canonical,
13047 gdb::unique_xmalloc_ptr<char> cond_string,
13048 gdb::unique_xmalloc_ptr<char> extra_string,
13049 enum bptype type_wanted,
13050 enum bpdisp disposition,
13051 int thread,
13052 int task, int ignore_count,
13053 const struct breakpoint_ops *ops,
13054 int from_tty, int enabled,
13055 int internal, unsigned flags)
13056 {
13057 create_breakpoints_sal_default (gdbarch, canonical,
13058 std::move (cond_string),
13059 std::move (extra_string),
13060 type_wanted,
13061 disposition, thread, task,
13062 ignore_count, ops, from_tty,
13063 enabled, internal, flags);
13064 }
13065
13066 static void
13067 bkpt_decode_location (struct breakpoint *b,
13068 const struct event_location *location,
13069 struct program_space *search_pspace,
13070 struct symtabs_and_lines *sals)
13071 {
13072 decode_location_default (b, location, search_pspace, sals);
13073 }
13074
13075 /* Virtual table for internal breakpoints. */
13076
13077 static void
13078 internal_bkpt_re_set (struct breakpoint *b)
13079 {
13080 switch (b->type)
13081 {
13082 /* Delete overlay event and longjmp master breakpoints; they
13083 will be reset later by breakpoint_re_set. */
13084 case bp_overlay_event:
13085 case bp_longjmp_master:
13086 case bp_std_terminate_master:
13087 case bp_exception_master:
13088 delete_breakpoint (b);
13089 break;
13090
13091 /* This breakpoint is special, it's set up when the inferior
13092 starts and we really don't want to touch it. */
13093 case bp_shlib_event:
13094
13095 /* Like bp_shlib_event, this breakpoint type is special. Once
13096 it is set up, we do not want to touch it. */
13097 case bp_thread_event:
13098 break;
13099 }
13100 }
13101
13102 static void
13103 internal_bkpt_check_status (bpstat bs)
13104 {
13105 if (bs->breakpoint_at->type == bp_shlib_event)
13106 {
13107 /* If requested, stop when the dynamic linker notifies GDB of
13108 events. This allows the user to get control and place
13109 breakpoints in initializer routines for dynamically loaded
13110 objects (among other things). */
13111 bs->stop = stop_on_solib_events;
13112 bs->print = stop_on_solib_events;
13113 }
13114 else
13115 bs->stop = 0;
13116 }
13117
13118 static enum print_stop_action
13119 internal_bkpt_print_it (bpstat bs)
13120 {
13121 struct breakpoint *b;
13122
13123 b = bs->breakpoint_at;
13124
13125 switch (b->type)
13126 {
13127 case bp_shlib_event:
13128 /* Did we stop because the user set the stop_on_solib_events
13129 variable? (If so, we report this as a generic, "Stopped due
13130 to shlib event" message.) */
13131 print_solib_event (0);
13132 break;
13133
13134 case bp_thread_event:
13135 /* Not sure how we will get here.
13136 GDB should not stop for these breakpoints. */
13137 printf_filtered (_("Thread Event Breakpoint: gdb should not stop!\n"));
13138 break;
13139
13140 case bp_overlay_event:
13141 /* By analogy with the thread event, GDB should not stop for these. */
13142 printf_filtered (_("Overlay Event Breakpoint: gdb should not stop!\n"));
13143 break;
13144
13145 case bp_longjmp_master:
13146 /* These should never be enabled. */
13147 printf_filtered (_("Longjmp Master Breakpoint: gdb should not stop!\n"));
13148 break;
13149
13150 case bp_std_terminate_master:
13151 /* These should never be enabled. */
13152 printf_filtered (_("std::terminate Master Breakpoint: "
13153 "gdb should not stop!\n"));
13154 break;
13155
13156 case bp_exception_master:
13157 /* These should never be enabled. */
13158 printf_filtered (_("Exception Master Breakpoint: "
13159 "gdb should not stop!\n"));
13160 break;
13161 }
13162
13163 return PRINT_NOTHING;
13164 }
13165
13166 static void
13167 internal_bkpt_print_mention (struct breakpoint *b)
13168 {
13169 /* Nothing to mention. These breakpoints are internal. */
13170 }
13171
13172 /* Virtual table for momentary breakpoints */
13173
13174 static void
13175 momentary_bkpt_re_set (struct breakpoint *b)
13176 {
13177 /* Keep temporary breakpoints, which can be encountered when we step
13178 over a dlopen call and solib_add is resetting the breakpoints.
13179 Otherwise these should have been blown away via the cleanup chain
13180 or by breakpoint_init_inferior when we rerun the executable. */
13181 }
13182
13183 static void
13184 momentary_bkpt_check_status (bpstat bs)
13185 {
13186 /* Nothing. The point of these breakpoints is causing a stop. */
13187 }
13188
13189 static enum print_stop_action
13190 momentary_bkpt_print_it (bpstat bs)
13191 {
13192 return PRINT_UNKNOWN;
13193 }
13194
13195 static void
13196 momentary_bkpt_print_mention (struct breakpoint *b)
13197 {
13198 /* Nothing to mention. These breakpoints are internal. */
13199 }
13200
13201 /* Ensure INITIATING_FRAME is cleared when no such breakpoint exists.
13202
13203 It gets cleared already on the removal of the first one of such placed
13204 breakpoints. This is OK as they get all removed altogether. */
13205
13206 longjmp_breakpoint::~longjmp_breakpoint ()
13207 {
13208 thread_info *tp = find_thread_global_id (this->thread);
13209
13210 if (tp != NULL)
13211 tp->initiating_frame = null_frame_id;
13212 }
13213
13214 /* Specific methods for probe breakpoints. */
13215
13216 static int
13217 bkpt_probe_insert_location (struct bp_location *bl)
13218 {
13219 int v = bkpt_insert_location (bl);
13220
13221 if (v == 0)
13222 {
13223 /* The insertion was successful, now let's set the probe's semaphore
13224 if needed. */
13225 if (bl->probe.probe->pops->set_semaphore != NULL)
13226 bl->probe.probe->pops->set_semaphore (bl->probe.probe,
13227 bl->probe.objfile,
13228 bl->gdbarch);
13229 }
13230
13231 return v;
13232 }
13233
13234 static int
13235 bkpt_probe_remove_location (struct bp_location *bl,
13236 enum remove_bp_reason reason)
13237 {
13238 /* Let's clear the semaphore before removing the location. */
13239 if (bl->probe.probe->pops->clear_semaphore != NULL)
13240 bl->probe.probe->pops->clear_semaphore (bl->probe.probe,
13241 bl->probe.objfile,
13242 bl->gdbarch);
13243
13244 return bkpt_remove_location (bl, reason);
13245 }
13246
13247 static void
13248 bkpt_probe_create_sals_from_location (const struct event_location *location,
13249 struct linespec_result *canonical,
13250 enum bptype type_wanted)
13251 {
13252 struct linespec_sals lsal;
13253
13254 lsal.sals = parse_probes (location, NULL, canonical);
13255 lsal.canonical
13256 = xstrdup (event_location_to_string (canonical->location.get ()));
13257 VEC_safe_push (linespec_sals, canonical->sals, &lsal);
13258 }
13259
13260 static void
13261 bkpt_probe_decode_location (struct breakpoint *b,
13262 const struct event_location *location,
13263 struct program_space *search_pspace,
13264 struct symtabs_and_lines *sals)
13265 {
13266 *sals = parse_probes (location, search_pspace, NULL);
13267 if (!sals->sals)
13268 error (_("probe not found"));
13269 }
13270
13271 /* The breakpoint_ops structure to be used in tracepoints. */
13272
13273 static void
13274 tracepoint_re_set (struct breakpoint *b)
13275 {
13276 breakpoint_re_set_default (b);
13277 }
13278
13279 static int
13280 tracepoint_breakpoint_hit (const struct bp_location *bl,
13281 struct address_space *aspace, CORE_ADDR bp_addr,
13282 const struct target_waitstatus *ws)
13283 {
13284 /* By definition, the inferior does not report stops at
13285 tracepoints. */
13286 return 0;
13287 }
13288
13289 static void
13290 tracepoint_print_one_detail (const struct breakpoint *self,
13291 struct ui_out *uiout)
13292 {
13293 struct tracepoint *tp = (struct tracepoint *) self;
13294 if (tp->static_trace_marker_id)
13295 {
13296 gdb_assert (self->type == bp_static_tracepoint);
13297
13298 uiout->text ("\tmarker id is ");
13299 uiout->field_string ("static-tracepoint-marker-string-id",
13300 tp->static_trace_marker_id);
13301 uiout->text ("\n");
13302 }
13303 }
13304
13305 static void
13306 tracepoint_print_mention (struct breakpoint *b)
13307 {
13308 if (current_uiout->is_mi_like_p ())
13309 return;
13310
13311 switch (b->type)
13312 {
13313 case bp_tracepoint:
13314 printf_filtered (_("Tracepoint"));
13315 printf_filtered (_(" %d"), b->number);
13316 break;
13317 case bp_fast_tracepoint:
13318 printf_filtered (_("Fast tracepoint"));
13319 printf_filtered (_(" %d"), b->number);
13320 break;
13321 case bp_static_tracepoint:
13322 printf_filtered (_("Static tracepoint"));
13323 printf_filtered (_(" %d"), b->number);
13324 break;
13325 default:
13326 internal_error (__FILE__, __LINE__,
13327 _("unhandled tracepoint type %d"), (int) b->type);
13328 }
13329
13330 say_where (b);
13331 }
13332
13333 static void
13334 tracepoint_print_recreate (struct breakpoint *self, struct ui_file *fp)
13335 {
13336 struct tracepoint *tp = (struct tracepoint *) self;
13337
13338 if (self->type == bp_fast_tracepoint)
13339 fprintf_unfiltered (fp, "ftrace");
13340 else if (self->type == bp_static_tracepoint)
13341 fprintf_unfiltered (fp, "strace");
13342 else if (self->type == bp_tracepoint)
13343 fprintf_unfiltered (fp, "trace");
13344 else
13345 internal_error (__FILE__, __LINE__,
13346 _("unhandled tracepoint type %d"), (int) self->type);
13347
13348 fprintf_unfiltered (fp, " %s",
13349 event_location_to_string (self->location.get ()));
13350 print_recreate_thread (self, fp);
13351
13352 if (tp->pass_count)
13353 fprintf_unfiltered (fp, " passcount %d\n", tp->pass_count);
13354 }
13355
13356 static void
13357 tracepoint_create_sals_from_location (const struct event_location *location,
13358 struct linespec_result *canonical,
13359 enum bptype type_wanted)
13360 {
13361 create_sals_from_location_default (location, canonical, type_wanted);
13362 }
13363
13364 static void
13365 tracepoint_create_breakpoints_sal (struct gdbarch *gdbarch,
13366 struct linespec_result *canonical,
13367 gdb::unique_xmalloc_ptr<char> cond_string,
13368 gdb::unique_xmalloc_ptr<char> extra_string,
13369 enum bptype type_wanted,
13370 enum bpdisp disposition,
13371 int thread,
13372 int task, int ignore_count,
13373 const struct breakpoint_ops *ops,
13374 int from_tty, int enabled,
13375 int internal, unsigned flags)
13376 {
13377 create_breakpoints_sal_default (gdbarch, canonical,
13378 std::move (cond_string),
13379 std::move (extra_string),
13380 type_wanted,
13381 disposition, thread, task,
13382 ignore_count, ops, from_tty,
13383 enabled, internal, flags);
13384 }
13385
13386 static void
13387 tracepoint_decode_location (struct breakpoint *b,
13388 const struct event_location *location,
13389 struct program_space *search_pspace,
13390 struct symtabs_and_lines *sals)
13391 {
13392 decode_location_default (b, location, search_pspace, sals);
13393 }
13394
13395 struct breakpoint_ops tracepoint_breakpoint_ops;
13396
13397 /* The breakpoint_ops structure to be use on tracepoints placed in a
13398 static probe. */
13399
13400 static void
13401 tracepoint_probe_create_sals_from_location
13402 (const struct event_location *location,
13403 struct linespec_result *canonical,
13404 enum bptype type_wanted)
13405 {
13406 /* We use the same method for breakpoint on probes. */
13407 bkpt_probe_create_sals_from_location (location, canonical, type_wanted);
13408 }
13409
13410 static void
13411 tracepoint_probe_decode_location (struct breakpoint *b,
13412 const struct event_location *location,
13413 struct program_space *search_pspace,
13414 struct symtabs_and_lines *sals)
13415 {
13416 /* We use the same method for breakpoint on probes. */
13417 bkpt_probe_decode_location (b, location, search_pspace, sals);
13418 }
13419
13420 static struct breakpoint_ops tracepoint_probe_breakpoint_ops;
13421
13422 /* Dprintf breakpoint_ops methods. */
13423
13424 static void
13425 dprintf_re_set (struct breakpoint *b)
13426 {
13427 breakpoint_re_set_default (b);
13428
13429 /* extra_string should never be non-NULL for dprintf. */
13430 gdb_assert (b->extra_string != NULL);
13431
13432 /* 1 - connect to target 1, that can run breakpoint commands.
13433 2 - create a dprintf, which resolves fine.
13434 3 - disconnect from target 1
13435 4 - connect to target 2, that can NOT run breakpoint commands.
13436
13437 After steps #3/#4, you'll want the dprintf command list to
13438 be updated, because target 1 and 2 may well return different
13439 answers for target_can_run_breakpoint_commands().
13440 Given absence of finer grained resetting, we get to do
13441 it all the time. */
13442 if (b->extra_string != NULL)
13443 update_dprintf_command_list (b);
13444 }
13445
13446 /* Implement the "print_recreate" breakpoint_ops method for dprintf. */
13447
13448 static void
13449 dprintf_print_recreate (struct breakpoint *tp, struct ui_file *fp)
13450 {
13451 fprintf_unfiltered (fp, "dprintf %s,%s",
13452 event_location_to_string (tp->location.get ()),
13453 tp->extra_string);
13454 print_recreate_thread (tp, fp);
13455 }
13456
13457 /* Implement the "after_condition_true" breakpoint_ops method for
13458 dprintf.
13459
13460 dprintf's are implemented with regular commands in their command
13461 list, but we run the commands here instead of before presenting the
13462 stop to the user, as dprintf's don't actually cause a stop. This
13463 also makes it so that the commands of multiple dprintfs at the same
13464 address are all handled. */
13465
13466 static void
13467 dprintf_after_condition_true (struct bpstats *bs)
13468 {
13469 struct cleanup *old_chain;
13470 struct bpstats tmp_bs = { NULL };
13471 struct bpstats *tmp_bs_p = &tmp_bs;
13472
13473 /* dprintf's never cause a stop. This wasn't set in the
13474 check_status hook instead because that would make the dprintf's
13475 condition not be evaluated. */
13476 bs->stop = 0;
13477
13478 /* Run the command list here. Take ownership of it instead of
13479 copying. We never want these commands to run later in
13480 bpstat_do_actions, if a breakpoint that causes a stop happens to
13481 be set at same address as this dprintf, or even if running the
13482 commands here throws. */
13483 tmp_bs.commands = bs->commands;
13484 bs->commands = NULL;
13485 old_chain = make_cleanup_decref_counted_command_line (&tmp_bs.commands);
13486
13487 bpstat_do_actions_1 (&tmp_bs_p);
13488
13489 /* 'tmp_bs.commands' will usually be NULL by now, but
13490 bpstat_do_actions_1 may return early without processing the whole
13491 list. */
13492 do_cleanups (old_chain);
13493 }
13494
13495 /* The breakpoint_ops structure to be used on static tracepoints with
13496 markers (`-m'). */
13497
13498 static void
13499 strace_marker_create_sals_from_location (const struct event_location *location,
13500 struct linespec_result *canonical,
13501 enum bptype type_wanted)
13502 {
13503 struct linespec_sals lsal;
13504 const char *arg_start, *arg;
13505 char *str;
13506 struct cleanup *cleanup;
13507
13508 arg = arg_start = get_linespec_location (location);
13509 lsal.sals = decode_static_tracepoint_spec (&arg);
13510
13511 str = savestring (arg_start, arg - arg_start);
13512 cleanup = make_cleanup (xfree, str);
13513 canonical->location = new_linespec_location (&str);
13514 do_cleanups (cleanup);
13515
13516 lsal.canonical
13517 = xstrdup (event_location_to_string (canonical->location.get ()));
13518 VEC_safe_push (linespec_sals, canonical->sals, &lsal);
13519 }
13520
13521 static void
13522 strace_marker_create_breakpoints_sal (struct gdbarch *gdbarch,
13523 struct linespec_result *canonical,
13524 gdb::unique_xmalloc_ptr<char> cond_string,
13525 gdb::unique_xmalloc_ptr<char> extra_string,
13526 enum bptype type_wanted,
13527 enum bpdisp disposition,
13528 int thread,
13529 int task, int ignore_count,
13530 const struct breakpoint_ops *ops,
13531 int from_tty, int enabled,
13532 int internal, unsigned flags)
13533 {
13534 int i;
13535 struct linespec_sals *lsal = VEC_index (linespec_sals,
13536 canonical->sals, 0);
13537
13538 /* If the user is creating a static tracepoint by marker id
13539 (strace -m MARKER_ID), then store the sals index, so that
13540 breakpoint_re_set can try to match up which of the newly
13541 found markers corresponds to this one, and, don't try to
13542 expand multiple locations for each sal, given than SALS
13543 already should contain all sals for MARKER_ID. */
13544
13545 for (i = 0; i < lsal->sals.nelts; ++i)
13546 {
13547 struct symtabs_and_lines expanded;
13548 event_location_up location;
13549
13550 expanded.nelts = 1;
13551 expanded.sals = &lsal->sals.sals[i];
13552
13553 location = copy_event_location (canonical->location.get ());
13554
13555 std::unique_ptr<tracepoint> tp (new tracepoint ());
13556 init_breakpoint_sal (tp.get (), gdbarch, expanded,
13557 std::move (location), NULL,
13558 std::move (cond_string),
13559 std::move (extra_string),
13560 type_wanted, disposition,
13561 thread, task, ignore_count, ops,
13562 from_tty, enabled, internal, flags,
13563 canonical->special_display);
13564 /* Given that its possible to have multiple markers with
13565 the same string id, if the user is creating a static
13566 tracepoint by marker id ("strace -m MARKER_ID"), then
13567 store the sals index, so that breakpoint_re_set can
13568 try to match up which of the newly found markers
13569 corresponds to this one */
13570 tp->static_trace_marker_id_idx = i;
13571
13572 install_breakpoint (internal, std::move (tp), 0);
13573 }
13574 }
13575
13576 static void
13577 strace_marker_decode_location (struct breakpoint *b,
13578 const struct event_location *location,
13579 struct program_space *search_pspace,
13580 struct symtabs_and_lines *sals)
13581 {
13582 struct tracepoint *tp = (struct tracepoint *) b;
13583 const char *s = get_linespec_location (location);
13584
13585 *sals = decode_static_tracepoint_spec (&s);
13586 if (sals->nelts > tp->static_trace_marker_id_idx)
13587 {
13588 sals->sals[0] = sals->sals[tp->static_trace_marker_id_idx];
13589 sals->nelts = 1;
13590 }
13591 else
13592 error (_("marker %s not found"), tp->static_trace_marker_id);
13593 }
13594
13595 static struct breakpoint_ops strace_marker_breakpoint_ops;
13596
13597 static int
13598 strace_marker_p (struct breakpoint *b)
13599 {
13600 return b->ops == &strace_marker_breakpoint_ops;
13601 }
13602
13603 /* Delete a breakpoint and clean up all traces of it in the data
13604 structures. */
13605
13606 void
13607 delete_breakpoint (struct breakpoint *bpt)
13608 {
13609 struct breakpoint *b;
13610
13611 gdb_assert (bpt != NULL);
13612
13613 /* Has this bp already been deleted? This can happen because
13614 multiple lists can hold pointers to bp's. bpstat lists are
13615 especial culprits.
13616
13617 One example of this happening is a watchpoint's scope bp. When
13618 the scope bp triggers, we notice that the watchpoint is out of
13619 scope, and delete it. We also delete its scope bp. But the
13620 scope bp is marked "auto-deleting", and is already on a bpstat.
13621 That bpstat is then checked for auto-deleting bp's, which are
13622 deleted.
13623
13624 A real solution to this problem might involve reference counts in
13625 bp's, and/or giving them pointers back to their referencing
13626 bpstat's, and teaching delete_breakpoint to only free a bp's
13627 storage when no more references were extent. A cheaper bandaid
13628 was chosen. */
13629 if (bpt->type == bp_none)
13630 return;
13631
13632 /* At least avoid this stale reference until the reference counting
13633 of breakpoints gets resolved. */
13634 if (bpt->related_breakpoint != bpt)
13635 {
13636 struct breakpoint *related;
13637 struct watchpoint *w;
13638
13639 if (bpt->type == bp_watchpoint_scope)
13640 w = (struct watchpoint *) bpt->related_breakpoint;
13641 else if (bpt->related_breakpoint->type == bp_watchpoint_scope)
13642 w = (struct watchpoint *) bpt;
13643 else
13644 w = NULL;
13645 if (w != NULL)
13646 watchpoint_del_at_next_stop (w);
13647
13648 /* Unlink bpt from the bpt->related_breakpoint ring. */
13649 for (related = bpt; related->related_breakpoint != bpt;
13650 related = related->related_breakpoint);
13651 related->related_breakpoint = bpt->related_breakpoint;
13652 bpt->related_breakpoint = bpt;
13653 }
13654
13655 /* watch_command_1 creates a watchpoint but only sets its number if
13656 update_watchpoint succeeds in creating its bp_locations. If there's
13657 a problem in that process, we'll be asked to delete the half-created
13658 watchpoint. In that case, don't announce the deletion. */
13659 if (bpt->number)
13660 observer_notify_breakpoint_deleted (bpt);
13661
13662 if (breakpoint_chain == bpt)
13663 breakpoint_chain = bpt->next;
13664
13665 ALL_BREAKPOINTS (b)
13666 if (b->next == bpt)
13667 {
13668 b->next = bpt->next;
13669 break;
13670 }
13671
13672 /* Be sure no bpstat's are pointing at the breakpoint after it's
13673 been freed. */
13674 /* FIXME, how can we find all bpstat's? We just check stop_bpstat
13675 in all threads for now. Note that we cannot just remove bpstats
13676 pointing at bpt from the stop_bpstat list entirely, as breakpoint
13677 commands are associated with the bpstat; if we remove it here,
13678 then the later call to bpstat_do_actions (&stop_bpstat); in
13679 event-top.c won't do anything, and temporary breakpoints with
13680 commands won't work. */
13681
13682 iterate_over_threads (bpstat_remove_breakpoint_callback, bpt);
13683
13684 /* Now that breakpoint is removed from breakpoint list, update the
13685 global location list. This will remove locations that used to
13686 belong to this breakpoint. Do this before freeing the breakpoint
13687 itself, since remove_breakpoint looks at location's owner. It
13688 might be better design to have location completely
13689 self-contained, but it's not the case now. */
13690 update_global_location_list (UGLL_DONT_INSERT);
13691
13692 /* On the chance that someone will soon try again to delete this
13693 same bp, we mark it as deleted before freeing its storage. */
13694 bpt->type = bp_none;
13695 delete bpt;
13696 }
13697
13698 static void
13699 do_delete_breakpoint_cleanup (void *b)
13700 {
13701 delete_breakpoint ((struct breakpoint *) b);
13702 }
13703
13704 struct cleanup *
13705 make_cleanup_delete_breakpoint (struct breakpoint *b)
13706 {
13707 return make_cleanup (do_delete_breakpoint_cleanup, b);
13708 }
13709
13710 /* Iterator function to call a user-provided callback function once
13711 for each of B and its related breakpoints. */
13712
13713 static void
13714 iterate_over_related_breakpoints (struct breakpoint *b,
13715 void (*function) (struct breakpoint *,
13716 void *),
13717 void *data)
13718 {
13719 struct breakpoint *related;
13720
13721 related = b;
13722 do
13723 {
13724 struct breakpoint *next;
13725
13726 /* FUNCTION may delete RELATED. */
13727 next = related->related_breakpoint;
13728
13729 if (next == related)
13730 {
13731 /* RELATED is the last ring entry. */
13732 function (related, data);
13733
13734 /* FUNCTION may have deleted it, so we'd never reach back to
13735 B. There's nothing left to do anyway, so just break
13736 out. */
13737 break;
13738 }
13739 else
13740 function (related, data);
13741
13742 related = next;
13743 }
13744 while (related != b);
13745 }
13746
13747 static void
13748 do_delete_breakpoint (struct breakpoint *b, void *ignore)
13749 {
13750 delete_breakpoint (b);
13751 }
13752
13753 /* A callback for map_breakpoint_numbers that calls
13754 delete_breakpoint. */
13755
13756 static void
13757 do_map_delete_breakpoint (struct breakpoint *b, void *ignore)
13758 {
13759 iterate_over_related_breakpoints (b, do_delete_breakpoint, NULL);
13760 }
13761
13762 void
13763 delete_command (char *arg, int from_tty)
13764 {
13765 struct breakpoint *b, *b_tmp;
13766
13767 dont_repeat ();
13768
13769 if (arg == 0)
13770 {
13771 int breaks_to_delete = 0;
13772
13773 /* Delete all breakpoints if no argument. Do not delete
13774 internal breakpoints, these have to be deleted with an
13775 explicit breakpoint number argument. */
13776 ALL_BREAKPOINTS (b)
13777 if (user_breakpoint_p (b))
13778 {
13779 breaks_to_delete = 1;
13780 break;
13781 }
13782
13783 /* Ask user only if there are some breakpoints to delete. */
13784 if (!from_tty
13785 || (breaks_to_delete && query (_("Delete all breakpoints? "))))
13786 {
13787 ALL_BREAKPOINTS_SAFE (b, b_tmp)
13788 if (user_breakpoint_p (b))
13789 delete_breakpoint (b);
13790 }
13791 }
13792 else
13793 map_breakpoint_numbers (arg, do_map_delete_breakpoint, NULL);
13794 }
13795
13796 /* Return true if all locations of B bound to PSPACE are pending. If
13797 PSPACE is NULL, all locations of all program spaces are
13798 considered. */
13799
13800 static int
13801 all_locations_are_pending (struct breakpoint *b, struct program_space *pspace)
13802 {
13803 struct bp_location *loc;
13804
13805 for (loc = b->loc; loc != NULL; loc = loc->next)
13806 if ((pspace == NULL
13807 || loc->pspace == pspace)
13808 && !loc->shlib_disabled
13809 && !loc->pspace->executing_startup)
13810 return 0;
13811 return 1;
13812 }
13813
13814 /* Subroutine of update_breakpoint_locations to simplify it.
13815 Return non-zero if multiple fns in list LOC have the same name.
13816 Null names are ignored. */
13817
13818 static int
13819 ambiguous_names_p (struct bp_location *loc)
13820 {
13821 struct bp_location *l;
13822 htab_t htab = htab_create_alloc (13, htab_hash_string,
13823 (int (*) (const void *,
13824 const void *)) streq,
13825 NULL, xcalloc, xfree);
13826
13827 for (l = loc; l != NULL; l = l->next)
13828 {
13829 const char **slot;
13830 const char *name = l->function_name;
13831
13832 /* Allow for some names to be NULL, ignore them. */
13833 if (name == NULL)
13834 continue;
13835
13836 slot = (const char **) htab_find_slot (htab, (const void *) name,
13837 INSERT);
13838 /* NOTE: We can assume slot != NULL here because xcalloc never
13839 returns NULL. */
13840 if (*slot != NULL)
13841 {
13842 htab_delete (htab);
13843 return 1;
13844 }
13845 *slot = name;
13846 }
13847
13848 htab_delete (htab);
13849 return 0;
13850 }
13851
13852 /* When symbols change, it probably means the sources changed as well,
13853 and it might mean the static tracepoint markers are no longer at
13854 the same address or line numbers they used to be at last we
13855 checked. Losing your static tracepoints whenever you rebuild is
13856 undesirable. This function tries to resync/rematch gdb static
13857 tracepoints with the markers on the target, for static tracepoints
13858 that have not been set by marker id. Static tracepoint that have
13859 been set by marker id are reset by marker id in breakpoint_re_set.
13860 The heuristic is:
13861
13862 1) For a tracepoint set at a specific address, look for a marker at
13863 the old PC. If one is found there, assume to be the same marker.
13864 If the name / string id of the marker found is different from the
13865 previous known name, assume that means the user renamed the marker
13866 in the sources, and output a warning.
13867
13868 2) For a tracepoint set at a given line number, look for a marker
13869 at the new address of the old line number. If one is found there,
13870 assume to be the same marker. If the name / string id of the
13871 marker found is different from the previous known name, assume that
13872 means the user renamed the marker in the sources, and output a
13873 warning.
13874
13875 3) If a marker is no longer found at the same address or line, it
13876 may mean the marker no longer exists. But it may also just mean
13877 the code changed a bit. Maybe the user added a few lines of code
13878 that made the marker move up or down (in line number terms). Ask
13879 the target for info about the marker with the string id as we knew
13880 it. If found, update line number and address in the matching
13881 static tracepoint. This will get confused if there's more than one
13882 marker with the same ID (possible in UST, although unadvised
13883 precisely because it confuses tools). */
13884
13885 static struct symtab_and_line
13886 update_static_tracepoint (struct breakpoint *b, struct symtab_and_line sal)
13887 {
13888 struct tracepoint *tp = (struct tracepoint *) b;
13889 struct static_tracepoint_marker marker;
13890 CORE_ADDR pc;
13891
13892 pc = sal.pc;
13893 if (sal.line)
13894 find_line_pc (sal.symtab, sal.line, &pc);
13895
13896 if (target_static_tracepoint_marker_at (pc, &marker))
13897 {
13898 if (strcmp (tp->static_trace_marker_id, marker.str_id) != 0)
13899 warning (_("static tracepoint %d changed probed marker from %s to %s"),
13900 b->number,
13901 tp->static_trace_marker_id, marker.str_id);
13902
13903 xfree (tp->static_trace_marker_id);
13904 tp->static_trace_marker_id = xstrdup (marker.str_id);
13905 release_static_tracepoint_marker (&marker);
13906
13907 return sal;
13908 }
13909
13910 /* Old marker wasn't found on target at lineno. Try looking it up
13911 by string ID. */
13912 if (!sal.explicit_pc
13913 && sal.line != 0
13914 && sal.symtab != NULL
13915 && tp->static_trace_marker_id != NULL)
13916 {
13917 VEC(static_tracepoint_marker_p) *markers;
13918
13919 markers
13920 = target_static_tracepoint_markers_by_strid (tp->static_trace_marker_id);
13921
13922 if (!VEC_empty(static_tracepoint_marker_p, markers))
13923 {
13924 struct symtab_and_line sal2;
13925 struct symbol *sym;
13926 struct static_tracepoint_marker *tpmarker;
13927 struct ui_out *uiout = current_uiout;
13928 struct explicit_location explicit_loc;
13929
13930 tpmarker = VEC_index (static_tracepoint_marker_p, markers, 0);
13931
13932 xfree (tp->static_trace_marker_id);
13933 tp->static_trace_marker_id = xstrdup (tpmarker->str_id);
13934
13935 warning (_("marker for static tracepoint %d (%s) not "
13936 "found at previous line number"),
13937 b->number, tp->static_trace_marker_id);
13938
13939 init_sal (&sal2);
13940
13941 sal2.pc = tpmarker->address;
13942
13943 sal2 = find_pc_line (tpmarker->address, 0);
13944 sym = find_pc_sect_function (tpmarker->address, NULL);
13945 uiout->text ("Now in ");
13946 if (sym)
13947 {
13948 uiout->field_string ("func", SYMBOL_PRINT_NAME (sym));
13949 uiout->text (" at ");
13950 }
13951 uiout->field_string ("file",
13952 symtab_to_filename_for_display (sal2.symtab));
13953 uiout->text (":");
13954
13955 if (uiout->is_mi_like_p ())
13956 {
13957 const char *fullname = symtab_to_fullname (sal2.symtab);
13958
13959 uiout->field_string ("fullname", fullname);
13960 }
13961
13962 uiout->field_int ("line", sal2.line);
13963 uiout->text ("\n");
13964
13965 b->loc->line_number = sal2.line;
13966 b->loc->symtab = sym != NULL ? sal2.symtab : NULL;
13967
13968 b->location.reset (NULL);
13969 initialize_explicit_location (&explicit_loc);
13970 explicit_loc.source_filename
13971 = ASTRDUP (symtab_to_filename_for_display (sal2.symtab));
13972 explicit_loc.line_offset.offset = b->loc->line_number;
13973 explicit_loc.line_offset.sign = LINE_OFFSET_NONE;
13974 b->location = new_explicit_location (&explicit_loc);
13975
13976 /* Might be nice to check if function changed, and warn if
13977 so. */
13978
13979 release_static_tracepoint_marker (tpmarker);
13980 }
13981 }
13982 return sal;
13983 }
13984
13985 /* Returns 1 iff locations A and B are sufficiently same that
13986 we don't need to report breakpoint as changed. */
13987
13988 static int
13989 locations_are_equal (struct bp_location *a, struct bp_location *b)
13990 {
13991 while (a && b)
13992 {
13993 if (a->address != b->address)
13994 return 0;
13995
13996 if (a->shlib_disabled != b->shlib_disabled)
13997 return 0;
13998
13999 if (a->enabled != b->enabled)
14000 return 0;
14001
14002 a = a->next;
14003 b = b->next;
14004 }
14005
14006 if ((a == NULL) != (b == NULL))
14007 return 0;
14008
14009 return 1;
14010 }
14011
14012 /* Split all locations of B that are bound to PSPACE out of B's
14013 location list to a separate list and return that list's head. If
14014 PSPACE is NULL, hoist out all locations of B. */
14015
14016 static struct bp_location *
14017 hoist_existing_locations (struct breakpoint *b, struct program_space *pspace)
14018 {
14019 struct bp_location head;
14020 struct bp_location *i = b->loc;
14021 struct bp_location **i_link = &b->loc;
14022 struct bp_location *hoisted = &head;
14023
14024 if (pspace == NULL)
14025 {
14026 i = b->loc;
14027 b->loc = NULL;
14028 return i;
14029 }
14030
14031 head.next = NULL;
14032
14033 while (i != NULL)
14034 {
14035 if (i->pspace == pspace)
14036 {
14037 *i_link = i->next;
14038 i->next = NULL;
14039 hoisted->next = i;
14040 hoisted = i;
14041 }
14042 else
14043 i_link = &i->next;
14044 i = *i_link;
14045 }
14046
14047 return head.next;
14048 }
14049
14050 /* Create new breakpoint locations for B (a hardware or software
14051 breakpoint) based on SALS and SALS_END. If SALS_END.NELTS is not
14052 zero, then B is a ranged breakpoint. Only recreates locations for
14053 FILTER_PSPACE. Locations of other program spaces are left
14054 untouched. */
14055
14056 void
14057 update_breakpoint_locations (struct breakpoint *b,
14058 struct program_space *filter_pspace,
14059 struct symtabs_and_lines sals,
14060 struct symtabs_and_lines sals_end)
14061 {
14062 int i;
14063 struct bp_location *existing_locations;
14064
14065 if (sals_end.nelts != 0 && (sals.nelts != 1 || sals_end.nelts != 1))
14066 {
14067 /* Ranged breakpoints have only one start location and one end
14068 location. */
14069 b->enable_state = bp_disabled;
14070 printf_unfiltered (_("Could not reset ranged breakpoint %d: "
14071 "multiple locations found\n"),
14072 b->number);
14073 return;
14074 }
14075
14076 /* If there's no new locations, and all existing locations are
14077 pending, don't do anything. This optimizes the common case where
14078 all locations are in the same shared library, that was unloaded.
14079 We'd like to retain the location, so that when the library is
14080 loaded again, we don't loose the enabled/disabled status of the
14081 individual locations. */
14082 if (all_locations_are_pending (b, filter_pspace) && sals.nelts == 0)
14083 return;
14084
14085 existing_locations = hoist_existing_locations (b, filter_pspace);
14086
14087 for (i = 0; i < sals.nelts; ++i)
14088 {
14089 struct bp_location *new_loc;
14090
14091 switch_to_program_space_and_thread (sals.sals[i].pspace);
14092
14093 new_loc = add_location_to_breakpoint (b, &(sals.sals[i]));
14094
14095 /* Reparse conditions, they might contain references to the
14096 old symtab. */
14097 if (b->cond_string != NULL)
14098 {
14099 const char *s;
14100
14101 s = b->cond_string;
14102 TRY
14103 {
14104 new_loc->cond = parse_exp_1 (&s, sals.sals[i].pc,
14105 block_for_pc (sals.sals[i].pc),
14106 0);
14107 }
14108 CATCH (e, RETURN_MASK_ERROR)
14109 {
14110 warning (_("failed to reevaluate condition "
14111 "for breakpoint %d: %s"),
14112 b->number, e.message);
14113 new_loc->enabled = 0;
14114 }
14115 END_CATCH
14116 }
14117
14118 if (sals_end.nelts)
14119 {
14120 CORE_ADDR end = find_breakpoint_range_end (sals_end.sals[0]);
14121
14122 new_loc->length = end - sals.sals[0].pc + 1;
14123 }
14124 }
14125
14126 /* If possible, carry over 'disable' status from existing
14127 breakpoints. */
14128 {
14129 struct bp_location *e = existing_locations;
14130 /* If there are multiple breakpoints with the same function name,
14131 e.g. for inline functions, comparing function names won't work.
14132 Instead compare pc addresses; this is just a heuristic as things
14133 may have moved, but in practice it gives the correct answer
14134 often enough until a better solution is found. */
14135 int have_ambiguous_names = ambiguous_names_p (b->loc);
14136
14137 for (; e; e = e->next)
14138 {
14139 if (!e->enabled && e->function_name)
14140 {
14141 struct bp_location *l = b->loc;
14142 if (have_ambiguous_names)
14143 {
14144 for (; l; l = l->next)
14145 if (breakpoint_locations_match (e, l))
14146 {
14147 l->enabled = 0;
14148 break;
14149 }
14150 }
14151 else
14152 {
14153 for (; l; l = l->next)
14154 if (l->function_name
14155 && strcmp (e->function_name, l->function_name) == 0)
14156 {
14157 l->enabled = 0;
14158 break;
14159 }
14160 }
14161 }
14162 }
14163 }
14164
14165 if (!locations_are_equal (existing_locations, b->loc))
14166 observer_notify_breakpoint_modified (b);
14167 }
14168
14169 /* Find the SaL locations corresponding to the given LOCATION.
14170 On return, FOUND will be 1 if any SaL was found, zero otherwise. */
14171
14172 static struct symtabs_and_lines
14173 location_to_sals (struct breakpoint *b, struct event_location *location,
14174 struct program_space *search_pspace, int *found)
14175 {
14176 struct symtabs_and_lines sals = {0};
14177 struct gdb_exception exception = exception_none;
14178
14179 gdb_assert (b->ops != NULL);
14180
14181 TRY
14182 {
14183 b->ops->decode_location (b, location, search_pspace, &sals);
14184 }
14185 CATCH (e, RETURN_MASK_ERROR)
14186 {
14187 int not_found_and_ok = 0;
14188
14189 exception = e;
14190
14191 /* For pending breakpoints, it's expected that parsing will
14192 fail until the right shared library is loaded. User has
14193 already told to create pending breakpoints and don't need
14194 extra messages. If breakpoint is in bp_shlib_disabled
14195 state, then user already saw the message about that
14196 breakpoint being disabled, and don't want to see more
14197 errors. */
14198 if (e.error == NOT_FOUND_ERROR
14199 && (b->condition_not_parsed
14200 || (b->loc != NULL
14201 && search_pspace != NULL
14202 && b->loc->pspace != search_pspace)
14203 || (b->loc && b->loc->shlib_disabled)
14204 || (b->loc && b->loc->pspace->executing_startup)
14205 || b->enable_state == bp_disabled))
14206 not_found_and_ok = 1;
14207
14208 if (!not_found_and_ok)
14209 {
14210 /* We surely don't want to warn about the same breakpoint
14211 10 times. One solution, implemented here, is disable
14212 the breakpoint on error. Another solution would be to
14213 have separate 'warning emitted' flag. Since this
14214 happens only when a binary has changed, I don't know
14215 which approach is better. */
14216 b->enable_state = bp_disabled;
14217 throw_exception (e);
14218 }
14219 }
14220 END_CATCH
14221
14222 if (exception.reason == 0 || exception.error != NOT_FOUND_ERROR)
14223 {
14224 int i;
14225
14226 for (i = 0; i < sals.nelts; ++i)
14227 resolve_sal_pc (&sals.sals[i]);
14228 if (b->condition_not_parsed && b->extra_string != NULL)
14229 {
14230 char *cond_string, *extra_string;
14231 int thread, task;
14232
14233 find_condition_and_thread (b->extra_string, sals.sals[0].pc,
14234 &cond_string, &thread, &task,
14235 &extra_string);
14236 gdb_assert (b->cond_string == NULL);
14237 if (cond_string)
14238 b->cond_string = cond_string;
14239 b->thread = thread;
14240 b->task = task;
14241 if (extra_string)
14242 {
14243 xfree (b->extra_string);
14244 b->extra_string = extra_string;
14245 }
14246 b->condition_not_parsed = 0;
14247 }
14248
14249 if (b->type == bp_static_tracepoint && !strace_marker_p (b))
14250 sals.sals[0] = update_static_tracepoint (b, sals.sals[0]);
14251
14252 *found = 1;
14253 }
14254 else
14255 *found = 0;
14256
14257 return sals;
14258 }
14259
14260 /* The default re_set method, for typical hardware or software
14261 breakpoints. Reevaluate the breakpoint and recreate its
14262 locations. */
14263
14264 static void
14265 breakpoint_re_set_default (struct breakpoint *b)
14266 {
14267 int found;
14268 struct symtabs_and_lines sals, sals_end;
14269 struct symtabs_and_lines expanded = {0};
14270 struct symtabs_and_lines expanded_end = {0};
14271 struct program_space *filter_pspace = current_program_space;
14272
14273 sals = location_to_sals (b, b->location.get (), filter_pspace, &found);
14274 if (found)
14275 {
14276 make_cleanup (xfree, sals.sals);
14277 expanded = sals;
14278 }
14279
14280 if (b->location_range_end != NULL)
14281 {
14282 sals_end = location_to_sals (b, b->location_range_end.get (),
14283 filter_pspace, &found);
14284 if (found)
14285 {
14286 make_cleanup (xfree, sals_end.sals);
14287 expanded_end = sals_end;
14288 }
14289 }
14290
14291 update_breakpoint_locations (b, filter_pspace, expanded, expanded_end);
14292 }
14293
14294 /* Default method for creating SALs from an address string. It basically
14295 calls parse_breakpoint_sals. Return 1 for success, zero for failure. */
14296
14297 static void
14298 create_sals_from_location_default (const struct event_location *location,
14299 struct linespec_result *canonical,
14300 enum bptype type_wanted)
14301 {
14302 parse_breakpoint_sals (location, canonical);
14303 }
14304
14305 /* Call create_breakpoints_sal for the given arguments. This is the default
14306 function for the `create_breakpoints_sal' method of
14307 breakpoint_ops. */
14308
14309 static void
14310 create_breakpoints_sal_default (struct gdbarch *gdbarch,
14311 struct linespec_result *canonical,
14312 gdb::unique_xmalloc_ptr<char> cond_string,
14313 gdb::unique_xmalloc_ptr<char> extra_string,
14314 enum bptype type_wanted,
14315 enum bpdisp disposition,
14316 int thread,
14317 int task, int ignore_count,
14318 const struct breakpoint_ops *ops,
14319 int from_tty, int enabled,
14320 int internal, unsigned flags)
14321 {
14322 create_breakpoints_sal (gdbarch, canonical,
14323 std::move (cond_string),
14324 std::move (extra_string),
14325 type_wanted, disposition,
14326 thread, task, ignore_count, ops, from_tty,
14327 enabled, internal, flags);
14328 }
14329
14330 /* Decode the line represented by S by calling decode_line_full. This is the
14331 default function for the `decode_location' method of breakpoint_ops. */
14332
14333 static void
14334 decode_location_default (struct breakpoint *b,
14335 const struct event_location *location,
14336 struct program_space *search_pspace,
14337 struct symtabs_and_lines *sals)
14338 {
14339 struct linespec_result canonical;
14340
14341 decode_line_full (location, DECODE_LINE_FUNFIRSTLINE, search_pspace,
14342 (struct symtab *) NULL, 0,
14343 &canonical, multiple_symbols_all,
14344 b->filter);
14345
14346 /* We should get 0 or 1 resulting SALs. */
14347 gdb_assert (VEC_length (linespec_sals, canonical.sals) < 2);
14348
14349 if (VEC_length (linespec_sals, canonical.sals) > 0)
14350 {
14351 struct linespec_sals *lsal;
14352
14353 lsal = VEC_index (linespec_sals, canonical.sals, 0);
14354 *sals = lsal->sals;
14355 /* Arrange it so the destructor does not free the
14356 contents. */
14357 lsal->sals.sals = NULL;
14358 }
14359 }
14360
14361 /* Prepare the global context for a re-set of breakpoint B. */
14362
14363 static struct cleanup *
14364 prepare_re_set_context (struct breakpoint *b)
14365 {
14366 input_radix = b->input_radix;
14367 set_language (b->language);
14368
14369 return make_cleanup (null_cleanup, NULL);
14370 }
14371
14372 /* Reset a breakpoint given it's struct breakpoint * BINT.
14373 The value we return ends up being the return value from catch_errors.
14374 Unused in this case. */
14375
14376 static int
14377 breakpoint_re_set_one (void *bint)
14378 {
14379 /* Get past catch_errs. */
14380 struct breakpoint *b = (struct breakpoint *) bint;
14381 struct cleanup *cleanups;
14382
14383 cleanups = prepare_re_set_context (b);
14384 b->ops->re_set (b);
14385 do_cleanups (cleanups);
14386 return 0;
14387 }
14388
14389 /* Re-set breakpoint locations for the current program space.
14390 Locations bound to other program spaces are left untouched. */
14391
14392 void
14393 breakpoint_re_set (void)
14394 {
14395 struct breakpoint *b, *b_tmp;
14396 enum language save_language;
14397 int save_input_radix;
14398
14399 save_language = current_language->la_language;
14400 save_input_radix = input_radix;
14401
14402 {
14403 scoped_restore_current_pspace_and_thread restore_pspace_thread;
14404
14405 /* Note: we must not try to insert locations until after all
14406 breakpoints have been re-set. Otherwise, e.g., when re-setting
14407 breakpoint 1, we'd insert the locations of breakpoint 2, which
14408 hadn't been re-set yet, and thus may have stale locations. */
14409
14410 ALL_BREAKPOINTS_SAFE (b, b_tmp)
14411 {
14412 /* Format possible error msg. */
14413 char *message = xstrprintf ("Error in re-setting breakpoint %d: ",
14414 b->number);
14415 struct cleanup *cleanups = make_cleanup (xfree, message);
14416 catch_errors (breakpoint_re_set_one, b, message, RETURN_MASK_ALL);
14417 do_cleanups (cleanups);
14418 }
14419 set_language (save_language);
14420 input_radix = save_input_radix;
14421
14422 jit_breakpoint_re_set ();
14423 }
14424
14425 create_overlay_event_breakpoint ();
14426 create_longjmp_master_breakpoint ();
14427 create_std_terminate_master_breakpoint ();
14428 create_exception_master_breakpoint ();
14429
14430 /* Now we can insert. */
14431 update_global_location_list (UGLL_MAY_INSERT);
14432 }
14433 \f
14434 /* Reset the thread number of this breakpoint:
14435
14436 - If the breakpoint is for all threads, leave it as-is.
14437 - Else, reset it to the current thread for inferior_ptid. */
14438 void
14439 breakpoint_re_set_thread (struct breakpoint *b)
14440 {
14441 if (b->thread != -1)
14442 {
14443 if (in_thread_list (inferior_ptid))
14444 b->thread = ptid_to_global_thread_id (inferior_ptid);
14445
14446 /* We're being called after following a fork. The new fork is
14447 selected as current, and unless this was a vfork will have a
14448 different program space from the original thread. Reset that
14449 as well. */
14450 b->loc->pspace = current_program_space;
14451 }
14452 }
14453
14454 /* Set ignore-count of breakpoint number BPTNUM to COUNT.
14455 If from_tty is nonzero, it prints a message to that effect,
14456 which ends with a period (no newline). */
14457
14458 void
14459 set_ignore_count (int bptnum, int count, int from_tty)
14460 {
14461 struct breakpoint *b;
14462
14463 if (count < 0)
14464 count = 0;
14465
14466 ALL_BREAKPOINTS (b)
14467 if (b->number == bptnum)
14468 {
14469 if (is_tracepoint (b))
14470 {
14471 if (from_tty && count != 0)
14472 printf_filtered (_("Ignore count ignored for tracepoint %d."),
14473 bptnum);
14474 return;
14475 }
14476
14477 b->ignore_count = count;
14478 if (from_tty)
14479 {
14480 if (count == 0)
14481 printf_filtered (_("Will stop next time "
14482 "breakpoint %d is reached."),
14483 bptnum);
14484 else if (count == 1)
14485 printf_filtered (_("Will ignore next crossing of breakpoint %d."),
14486 bptnum);
14487 else
14488 printf_filtered (_("Will ignore next %d "
14489 "crossings of breakpoint %d."),
14490 count, bptnum);
14491 }
14492 observer_notify_breakpoint_modified (b);
14493 return;
14494 }
14495
14496 error (_("No breakpoint number %d."), bptnum);
14497 }
14498
14499 /* Command to set ignore-count of breakpoint N to COUNT. */
14500
14501 static void
14502 ignore_command (char *args, int from_tty)
14503 {
14504 char *p = args;
14505 int num;
14506
14507 if (p == 0)
14508 error_no_arg (_("a breakpoint number"));
14509
14510 num = get_number (&p);
14511 if (num == 0)
14512 error (_("bad breakpoint number: '%s'"), args);
14513 if (*p == 0)
14514 error (_("Second argument (specified ignore-count) is missing."));
14515
14516 set_ignore_count (num,
14517 longest_to_int (value_as_long (parse_and_eval (p))),
14518 from_tty);
14519 if (from_tty)
14520 printf_filtered ("\n");
14521 }
14522 \f
14523 /* Call FUNCTION on each of the breakpoints
14524 whose numbers are given in ARGS. */
14525
14526 static void
14527 map_breakpoint_numbers (const char *args,
14528 void (*function) (struct breakpoint *,
14529 void *),
14530 void *data)
14531 {
14532 int num;
14533 struct breakpoint *b, *tmp;
14534
14535 if (args == 0 || *args == '\0')
14536 error_no_arg (_("one or more breakpoint numbers"));
14537
14538 number_or_range_parser parser (args);
14539
14540 while (!parser.finished ())
14541 {
14542 const char *p = parser.cur_tok ();
14543 bool match = false;
14544
14545 num = parser.get_number ();
14546 if (num == 0)
14547 {
14548 warning (_("bad breakpoint number at or near '%s'"), p);
14549 }
14550 else
14551 {
14552 ALL_BREAKPOINTS_SAFE (b, tmp)
14553 if (b->number == num)
14554 {
14555 match = true;
14556 function (b, data);
14557 break;
14558 }
14559 if (!match)
14560 printf_unfiltered (_("No breakpoint number %d.\n"), num);
14561 }
14562 }
14563 }
14564
14565 static struct bp_location *
14566 find_location_by_number (char *number)
14567 {
14568 char *dot = strchr (number, '.');
14569 char *p1;
14570 int bp_num;
14571 int loc_num;
14572 struct breakpoint *b;
14573 struct bp_location *loc;
14574
14575 *dot = '\0';
14576
14577 p1 = number;
14578 bp_num = get_number (&p1);
14579 if (bp_num == 0)
14580 error (_("Bad breakpoint number '%s'"), number);
14581
14582 ALL_BREAKPOINTS (b)
14583 if (b->number == bp_num)
14584 {
14585 break;
14586 }
14587
14588 if (!b || b->number != bp_num)
14589 error (_("Bad breakpoint number '%s'"), number);
14590
14591 p1 = dot+1;
14592 loc_num = get_number (&p1);
14593 if (loc_num == 0)
14594 error (_("Bad breakpoint location number '%s'"), number);
14595
14596 --loc_num;
14597 loc = b->loc;
14598 for (;loc_num && loc; --loc_num, loc = loc->next)
14599 ;
14600 if (!loc)
14601 error (_("Bad breakpoint location number '%s'"), dot+1);
14602
14603 return loc;
14604 }
14605
14606
14607 /* Set ignore-count of breakpoint number BPTNUM to COUNT.
14608 If from_tty is nonzero, it prints a message to that effect,
14609 which ends with a period (no newline). */
14610
14611 void
14612 disable_breakpoint (struct breakpoint *bpt)
14613 {
14614 /* Never disable a watchpoint scope breakpoint; we want to
14615 hit them when we leave scope so we can delete both the
14616 watchpoint and its scope breakpoint at that time. */
14617 if (bpt->type == bp_watchpoint_scope)
14618 return;
14619
14620 bpt->enable_state = bp_disabled;
14621
14622 /* Mark breakpoint locations modified. */
14623 mark_breakpoint_modified (bpt);
14624
14625 if (target_supports_enable_disable_tracepoint ()
14626 && current_trace_status ()->running && is_tracepoint (bpt))
14627 {
14628 struct bp_location *location;
14629
14630 for (location = bpt->loc; location; location = location->next)
14631 target_disable_tracepoint (location);
14632 }
14633
14634 update_global_location_list (UGLL_DONT_INSERT);
14635
14636 observer_notify_breakpoint_modified (bpt);
14637 }
14638
14639 /* A callback for iterate_over_related_breakpoints. */
14640
14641 static void
14642 do_disable_breakpoint (struct breakpoint *b, void *ignore)
14643 {
14644 disable_breakpoint (b);
14645 }
14646
14647 /* A callback for map_breakpoint_numbers that calls
14648 disable_breakpoint. */
14649
14650 static void
14651 do_map_disable_breakpoint (struct breakpoint *b, void *ignore)
14652 {
14653 iterate_over_related_breakpoints (b, do_disable_breakpoint, NULL);
14654 }
14655
14656 static void
14657 disable_command (char *args, int from_tty)
14658 {
14659 if (args == 0)
14660 {
14661 struct breakpoint *bpt;
14662
14663 ALL_BREAKPOINTS (bpt)
14664 if (user_breakpoint_p (bpt))
14665 disable_breakpoint (bpt);
14666 }
14667 else
14668 {
14669 char *num = extract_arg (&args);
14670
14671 while (num)
14672 {
14673 if (strchr (num, '.'))
14674 {
14675 struct bp_location *loc = find_location_by_number (num);
14676
14677 if (loc)
14678 {
14679 if (loc->enabled)
14680 {
14681 loc->enabled = 0;
14682 mark_breakpoint_location_modified (loc);
14683 }
14684 if (target_supports_enable_disable_tracepoint ()
14685 && current_trace_status ()->running && loc->owner
14686 && is_tracepoint (loc->owner))
14687 target_disable_tracepoint (loc);
14688 }
14689 update_global_location_list (UGLL_DONT_INSERT);
14690 }
14691 else
14692 map_breakpoint_numbers (num, do_map_disable_breakpoint, NULL);
14693 num = extract_arg (&args);
14694 }
14695 }
14696 }
14697
14698 static void
14699 enable_breakpoint_disp (struct breakpoint *bpt, enum bpdisp disposition,
14700 int count)
14701 {
14702 int target_resources_ok;
14703
14704 if (bpt->type == bp_hardware_breakpoint)
14705 {
14706 int i;
14707 i = hw_breakpoint_used_count ();
14708 target_resources_ok =
14709 target_can_use_hardware_watchpoint (bp_hardware_breakpoint,
14710 i + 1, 0);
14711 if (target_resources_ok == 0)
14712 error (_("No hardware breakpoint support in the target."));
14713 else if (target_resources_ok < 0)
14714 error (_("Hardware breakpoints used exceeds limit."));
14715 }
14716
14717 if (is_watchpoint (bpt))
14718 {
14719 /* Initialize it just to avoid a GCC false warning. */
14720 enum enable_state orig_enable_state = bp_disabled;
14721
14722 TRY
14723 {
14724 struct watchpoint *w = (struct watchpoint *) bpt;
14725
14726 orig_enable_state = bpt->enable_state;
14727 bpt->enable_state = bp_enabled;
14728 update_watchpoint (w, 1 /* reparse */);
14729 }
14730 CATCH (e, RETURN_MASK_ALL)
14731 {
14732 bpt->enable_state = orig_enable_state;
14733 exception_fprintf (gdb_stderr, e, _("Cannot enable watchpoint %d: "),
14734 bpt->number);
14735 return;
14736 }
14737 END_CATCH
14738 }
14739
14740 bpt->enable_state = bp_enabled;
14741
14742 /* Mark breakpoint locations modified. */
14743 mark_breakpoint_modified (bpt);
14744
14745 if (target_supports_enable_disable_tracepoint ()
14746 && current_trace_status ()->running && is_tracepoint (bpt))
14747 {
14748 struct bp_location *location;
14749
14750 for (location = bpt->loc; location; location = location->next)
14751 target_enable_tracepoint (location);
14752 }
14753
14754 bpt->disposition = disposition;
14755 bpt->enable_count = count;
14756 update_global_location_list (UGLL_MAY_INSERT);
14757
14758 observer_notify_breakpoint_modified (bpt);
14759 }
14760
14761
14762 void
14763 enable_breakpoint (struct breakpoint *bpt)
14764 {
14765 enable_breakpoint_disp (bpt, bpt->disposition, 0);
14766 }
14767
14768 static void
14769 do_enable_breakpoint (struct breakpoint *bpt, void *arg)
14770 {
14771 enable_breakpoint (bpt);
14772 }
14773
14774 /* A callback for map_breakpoint_numbers that calls
14775 enable_breakpoint. */
14776
14777 static void
14778 do_map_enable_breakpoint (struct breakpoint *b, void *ignore)
14779 {
14780 iterate_over_related_breakpoints (b, do_enable_breakpoint, NULL);
14781 }
14782
14783 /* The enable command enables the specified breakpoints (or all defined
14784 breakpoints) so they once again become (or continue to be) effective
14785 in stopping the inferior. */
14786
14787 static void
14788 enable_command (char *args, int from_tty)
14789 {
14790 if (args == 0)
14791 {
14792 struct breakpoint *bpt;
14793
14794 ALL_BREAKPOINTS (bpt)
14795 if (user_breakpoint_p (bpt))
14796 enable_breakpoint (bpt);
14797 }
14798 else
14799 {
14800 char *num = extract_arg (&args);
14801
14802 while (num)
14803 {
14804 if (strchr (num, '.'))
14805 {
14806 struct bp_location *loc = find_location_by_number (num);
14807
14808 if (loc)
14809 {
14810 if (!loc->enabled)
14811 {
14812 loc->enabled = 1;
14813 mark_breakpoint_location_modified (loc);
14814 }
14815 if (target_supports_enable_disable_tracepoint ()
14816 && current_trace_status ()->running && loc->owner
14817 && is_tracepoint (loc->owner))
14818 target_enable_tracepoint (loc);
14819 }
14820 update_global_location_list (UGLL_MAY_INSERT);
14821 }
14822 else
14823 map_breakpoint_numbers (num, do_map_enable_breakpoint, NULL);
14824 num = extract_arg (&args);
14825 }
14826 }
14827 }
14828
14829 /* This struct packages up disposition data for application to multiple
14830 breakpoints. */
14831
14832 struct disp_data
14833 {
14834 enum bpdisp disp;
14835 int count;
14836 };
14837
14838 static void
14839 do_enable_breakpoint_disp (struct breakpoint *bpt, void *arg)
14840 {
14841 struct disp_data disp_data = *(struct disp_data *) arg;
14842
14843 enable_breakpoint_disp (bpt, disp_data.disp, disp_data.count);
14844 }
14845
14846 static void
14847 do_map_enable_once_breakpoint (struct breakpoint *bpt, void *ignore)
14848 {
14849 struct disp_data disp = { disp_disable, 1 };
14850
14851 iterate_over_related_breakpoints (bpt, do_enable_breakpoint_disp, &disp);
14852 }
14853
14854 static void
14855 enable_once_command (char *args, int from_tty)
14856 {
14857 map_breakpoint_numbers (args, do_map_enable_once_breakpoint, NULL);
14858 }
14859
14860 static void
14861 do_map_enable_count_breakpoint (struct breakpoint *bpt, void *countptr)
14862 {
14863 struct disp_data disp = { disp_disable, *(int *) countptr };
14864
14865 iterate_over_related_breakpoints (bpt, do_enable_breakpoint_disp, &disp);
14866 }
14867
14868 static void
14869 enable_count_command (char *args, int from_tty)
14870 {
14871 int count;
14872
14873 if (args == NULL)
14874 error_no_arg (_("hit count"));
14875
14876 count = get_number (&args);
14877
14878 map_breakpoint_numbers (args, do_map_enable_count_breakpoint, &count);
14879 }
14880
14881 static void
14882 do_map_enable_delete_breakpoint (struct breakpoint *bpt, void *ignore)
14883 {
14884 struct disp_data disp = { disp_del, 1 };
14885
14886 iterate_over_related_breakpoints (bpt, do_enable_breakpoint_disp, &disp);
14887 }
14888
14889 static void
14890 enable_delete_command (char *args, int from_tty)
14891 {
14892 map_breakpoint_numbers (args, do_map_enable_delete_breakpoint, NULL);
14893 }
14894 \f
14895 static void
14896 set_breakpoint_cmd (char *args, int from_tty)
14897 {
14898 }
14899
14900 static void
14901 show_breakpoint_cmd (char *args, int from_tty)
14902 {
14903 }
14904
14905 /* Invalidate last known value of any hardware watchpoint if
14906 the memory which that value represents has been written to by
14907 GDB itself. */
14908
14909 static void
14910 invalidate_bp_value_on_memory_change (struct inferior *inferior,
14911 CORE_ADDR addr, ssize_t len,
14912 const bfd_byte *data)
14913 {
14914 struct breakpoint *bp;
14915
14916 ALL_BREAKPOINTS (bp)
14917 if (bp->enable_state == bp_enabled
14918 && bp->type == bp_hardware_watchpoint)
14919 {
14920 struct watchpoint *wp = (struct watchpoint *) bp;
14921
14922 if (wp->val_valid && wp->val)
14923 {
14924 struct bp_location *loc;
14925
14926 for (loc = bp->loc; loc != NULL; loc = loc->next)
14927 if (loc->loc_type == bp_loc_hardware_watchpoint
14928 && loc->address + loc->length > addr
14929 && addr + len > loc->address)
14930 {
14931 value_free (wp->val);
14932 wp->val = NULL;
14933 wp->val_valid = 0;
14934 }
14935 }
14936 }
14937 }
14938
14939 /* Create and insert a breakpoint for software single step. */
14940
14941 void
14942 insert_single_step_breakpoint (struct gdbarch *gdbarch,
14943 struct address_space *aspace,
14944 CORE_ADDR next_pc)
14945 {
14946 struct thread_info *tp = inferior_thread ();
14947 struct symtab_and_line sal;
14948 CORE_ADDR pc = next_pc;
14949
14950 if (tp->control.single_step_breakpoints == NULL)
14951 {
14952 tp->control.single_step_breakpoints
14953 = new_single_step_breakpoint (tp->global_num, gdbarch);
14954 }
14955
14956 sal = find_pc_line (pc, 0);
14957 sal.pc = pc;
14958 sal.section = find_pc_overlay (pc);
14959 sal.explicit_pc = 1;
14960 add_location_to_breakpoint (tp->control.single_step_breakpoints, &sal);
14961
14962 update_global_location_list (UGLL_INSERT);
14963 }
14964
14965 /* Insert single step breakpoints according to the current state. */
14966
14967 int
14968 insert_single_step_breakpoints (struct gdbarch *gdbarch)
14969 {
14970 struct regcache *regcache = get_current_regcache ();
14971 std::vector<CORE_ADDR> next_pcs;
14972
14973 next_pcs = gdbarch_software_single_step (gdbarch, regcache);
14974
14975 if (!next_pcs.empty ())
14976 {
14977 struct frame_info *frame = get_current_frame ();
14978 struct address_space *aspace = get_frame_address_space (frame);
14979
14980 for (CORE_ADDR pc : next_pcs)
14981 insert_single_step_breakpoint (gdbarch, aspace, pc);
14982
14983 return 1;
14984 }
14985 else
14986 return 0;
14987 }
14988
14989 /* See breakpoint.h. */
14990
14991 int
14992 breakpoint_has_location_inserted_here (struct breakpoint *bp,
14993 struct address_space *aspace,
14994 CORE_ADDR pc)
14995 {
14996 struct bp_location *loc;
14997
14998 for (loc = bp->loc; loc != NULL; loc = loc->next)
14999 if (loc->inserted
15000 && breakpoint_location_address_match (loc, aspace, pc))
15001 return 1;
15002
15003 return 0;
15004 }
15005
15006 /* Check whether a software single-step breakpoint is inserted at
15007 PC. */
15008
15009 int
15010 single_step_breakpoint_inserted_here_p (struct address_space *aspace,
15011 CORE_ADDR pc)
15012 {
15013 struct breakpoint *bpt;
15014
15015 ALL_BREAKPOINTS (bpt)
15016 {
15017 if (bpt->type == bp_single_step
15018 && breakpoint_has_location_inserted_here (bpt, aspace, pc))
15019 return 1;
15020 }
15021 return 0;
15022 }
15023
15024 /* Tracepoint-specific operations. */
15025
15026 /* Set tracepoint count to NUM. */
15027 static void
15028 set_tracepoint_count (int num)
15029 {
15030 tracepoint_count = num;
15031 set_internalvar_integer (lookup_internalvar ("tpnum"), num);
15032 }
15033
15034 static void
15035 trace_command (char *arg, int from_tty)
15036 {
15037 struct breakpoint_ops *ops;
15038
15039 event_location_up location = string_to_event_location (&arg,
15040 current_language);
15041 if (location != NULL
15042 && event_location_type (location.get ()) == PROBE_LOCATION)
15043 ops = &tracepoint_probe_breakpoint_ops;
15044 else
15045 ops = &tracepoint_breakpoint_ops;
15046
15047 create_breakpoint (get_current_arch (),
15048 location.get (),
15049 NULL, 0, arg, 1 /* parse arg */,
15050 0 /* tempflag */,
15051 bp_tracepoint /* type_wanted */,
15052 0 /* Ignore count */,
15053 pending_break_support,
15054 ops,
15055 from_tty,
15056 1 /* enabled */,
15057 0 /* internal */, 0);
15058 }
15059
15060 static void
15061 ftrace_command (char *arg, int from_tty)
15062 {
15063 event_location_up location = string_to_event_location (&arg,
15064 current_language);
15065 create_breakpoint (get_current_arch (),
15066 location.get (),
15067 NULL, 0, arg, 1 /* parse arg */,
15068 0 /* tempflag */,
15069 bp_fast_tracepoint /* type_wanted */,
15070 0 /* Ignore count */,
15071 pending_break_support,
15072 &tracepoint_breakpoint_ops,
15073 from_tty,
15074 1 /* enabled */,
15075 0 /* internal */, 0);
15076 }
15077
15078 /* strace command implementation. Creates a static tracepoint. */
15079
15080 static void
15081 strace_command (char *arg, int from_tty)
15082 {
15083 struct breakpoint_ops *ops;
15084 event_location_up location;
15085 struct cleanup *back_to;
15086
15087 /* Decide if we are dealing with a static tracepoint marker (`-m'),
15088 or with a normal static tracepoint. */
15089 if (arg && startswith (arg, "-m") && isspace (arg[2]))
15090 {
15091 ops = &strace_marker_breakpoint_ops;
15092 location = new_linespec_location (&arg);
15093 }
15094 else
15095 {
15096 ops = &tracepoint_breakpoint_ops;
15097 location = string_to_event_location (&arg, current_language);
15098 }
15099
15100 create_breakpoint (get_current_arch (),
15101 location.get (),
15102 NULL, 0, arg, 1 /* parse arg */,
15103 0 /* tempflag */,
15104 bp_static_tracepoint /* type_wanted */,
15105 0 /* Ignore count */,
15106 pending_break_support,
15107 ops,
15108 from_tty,
15109 1 /* enabled */,
15110 0 /* internal */, 0);
15111 }
15112
15113 /* Set up a fake reader function that gets command lines from a linked
15114 list that was acquired during tracepoint uploading. */
15115
15116 static struct uploaded_tp *this_utp;
15117 static int next_cmd;
15118
15119 static char *
15120 read_uploaded_action (void)
15121 {
15122 char *rslt;
15123
15124 VEC_iterate (char_ptr, this_utp->cmd_strings, next_cmd, rslt);
15125
15126 next_cmd++;
15127
15128 return rslt;
15129 }
15130
15131 /* Given information about a tracepoint as recorded on a target (which
15132 can be either a live system or a trace file), attempt to create an
15133 equivalent GDB tracepoint. This is not a reliable process, since
15134 the target does not necessarily have all the information used when
15135 the tracepoint was originally defined. */
15136
15137 struct tracepoint *
15138 create_tracepoint_from_upload (struct uploaded_tp *utp)
15139 {
15140 char *addr_str, small_buf[100];
15141 struct tracepoint *tp;
15142
15143 if (utp->at_string)
15144 addr_str = utp->at_string;
15145 else
15146 {
15147 /* In the absence of a source location, fall back to raw
15148 address. Since there is no way to confirm that the address
15149 means the same thing as when the trace was started, warn the
15150 user. */
15151 warning (_("Uploaded tracepoint %d has no "
15152 "source location, using raw address"),
15153 utp->number);
15154 xsnprintf (small_buf, sizeof (small_buf), "*%s", hex_string (utp->addr));
15155 addr_str = small_buf;
15156 }
15157
15158 /* There's not much we can do with a sequence of bytecodes. */
15159 if (utp->cond && !utp->cond_string)
15160 warning (_("Uploaded tracepoint %d condition "
15161 "has no source form, ignoring it"),
15162 utp->number);
15163
15164 event_location_up location = string_to_event_location (&addr_str,
15165 current_language);
15166 if (!create_breakpoint (get_current_arch (),
15167 location.get (),
15168 utp->cond_string, -1, addr_str,
15169 0 /* parse cond/thread */,
15170 0 /* tempflag */,
15171 utp->type /* type_wanted */,
15172 0 /* Ignore count */,
15173 pending_break_support,
15174 &tracepoint_breakpoint_ops,
15175 0 /* from_tty */,
15176 utp->enabled /* enabled */,
15177 0 /* internal */,
15178 CREATE_BREAKPOINT_FLAGS_INSERTED))
15179 return NULL;
15180
15181 /* Get the tracepoint we just created. */
15182 tp = get_tracepoint (tracepoint_count);
15183 gdb_assert (tp != NULL);
15184
15185 if (utp->pass > 0)
15186 {
15187 xsnprintf (small_buf, sizeof (small_buf), "%d %d", utp->pass,
15188 tp->number);
15189
15190 trace_pass_command (small_buf, 0);
15191 }
15192
15193 /* If we have uploaded versions of the original commands, set up a
15194 special-purpose "reader" function and call the usual command line
15195 reader, then pass the result to the breakpoint command-setting
15196 function. */
15197 if (!VEC_empty (char_ptr, utp->cmd_strings))
15198 {
15199 command_line_up cmd_list;
15200
15201 this_utp = utp;
15202 next_cmd = 0;
15203
15204 cmd_list = read_command_lines_1 (read_uploaded_action, 1, NULL, NULL);
15205
15206 breakpoint_set_commands (tp, std::move (cmd_list));
15207 }
15208 else if (!VEC_empty (char_ptr, utp->actions)
15209 || !VEC_empty (char_ptr, utp->step_actions))
15210 warning (_("Uploaded tracepoint %d actions "
15211 "have no source form, ignoring them"),
15212 utp->number);
15213
15214 /* Copy any status information that might be available. */
15215 tp->hit_count = utp->hit_count;
15216 tp->traceframe_usage = utp->traceframe_usage;
15217
15218 return tp;
15219 }
15220
15221 /* Print information on tracepoint number TPNUM_EXP, or all if
15222 omitted. */
15223
15224 static void
15225 info_tracepoints_command (char *args, int from_tty)
15226 {
15227 struct ui_out *uiout = current_uiout;
15228 int num_printed;
15229
15230 num_printed = breakpoint_1 (args, 0, is_tracepoint);
15231
15232 if (num_printed == 0)
15233 {
15234 if (args == NULL || *args == '\0')
15235 uiout->message ("No tracepoints.\n");
15236 else
15237 uiout->message ("No tracepoint matching '%s'.\n", args);
15238 }
15239
15240 default_collect_info ();
15241 }
15242
15243 /* The 'enable trace' command enables tracepoints.
15244 Not supported by all targets. */
15245 static void
15246 enable_trace_command (char *args, int from_tty)
15247 {
15248 enable_command (args, from_tty);
15249 }
15250
15251 /* The 'disable trace' command disables tracepoints.
15252 Not supported by all targets. */
15253 static void
15254 disable_trace_command (char *args, int from_tty)
15255 {
15256 disable_command (args, from_tty);
15257 }
15258
15259 /* Remove a tracepoint (or all if no argument). */
15260 static void
15261 delete_trace_command (char *arg, int from_tty)
15262 {
15263 struct breakpoint *b, *b_tmp;
15264
15265 dont_repeat ();
15266
15267 if (arg == 0)
15268 {
15269 int breaks_to_delete = 0;
15270
15271 /* Delete all breakpoints if no argument.
15272 Do not delete internal or call-dummy breakpoints, these
15273 have to be deleted with an explicit breakpoint number
15274 argument. */
15275 ALL_TRACEPOINTS (b)
15276 if (is_tracepoint (b) && user_breakpoint_p (b))
15277 {
15278 breaks_to_delete = 1;
15279 break;
15280 }
15281
15282 /* Ask user only if there are some breakpoints to delete. */
15283 if (!from_tty
15284 || (breaks_to_delete && query (_("Delete all tracepoints? "))))
15285 {
15286 ALL_BREAKPOINTS_SAFE (b, b_tmp)
15287 if (is_tracepoint (b) && user_breakpoint_p (b))
15288 delete_breakpoint (b);
15289 }
15290 }
15291 else
15292 map_breakpoint_numbers (arg, do_map_delete_breakpoint, NULL);
15293 }
15294
15295 /* Helper function for trace_pass_command. */
15296
15297 static void
15298 trace_pass_set_count (struct tracepoint *tp, int count, int from_tty)
15299 {
15300 tp->pass_count = count;
15301 observer_notify_breakpoint_modified (tp);
15302 if (from_tty)
15303 printf_filtered (_("Setting tracepoint %d's passcount to %d\n"),
15304 tp->number, count);
15305 }
15306
15307 /* Set passcount for tracepoint.
15308
15309 First command argument is passcount, second is tracepoint number.
15310 If tracepoint number omitted, apply to most recently defined.
15311 Also accepts special argument "all". */
15312
15313 static void
15314 trace_pass_command (char *args, int from_tty)
15315 {
15316 struct tracepoint *t1;
15317 unsigned int count;
15318
15319 if (args == 0 || *args == 0)
15320 error (_("passcount command requires an "
15321 "argument (count + optional TP num)"));
15322
15323 count = strtoul (args, &args, 10); /* Count comes first, then TP num. */
15324
15325 args = skip_spaces (args);
15326 if (*args && strncasecmp (args, "all", 3) == 0)
15327 {
15328 struct breakpoint *b;
15329
15330 args += 3; /* Skip special argument "all". */
15331 if (*args)
15332 error (_("Junk at end of arguments."));
15333
15334 ALL_TRACEPOINTS (b)
15335 {
15336 t1 = (struct tracepoint *) b;
15337 trace_pass_set_count (t1, count, from_tty);
15338 }
15339 }
15340 else if (*args == '\0')
15341 {
15342 t1 = get_tracepoint_by_number (&args, NULL);
15343 if (t1)
15344 trace_pass_set_count (t1, count, from_tty);
15345 }
15346 else
15347 {
15348 number_or_range_parser parser (args);
15349 while (!parser.finished ())
15350 {
15351 t1 = get_tracepoint_by_number (&args, &parser);
15352 if (t1)
15353 trace_pass_set_count (t1, count, from_tty);
15354 }
15355 }
15356 }
15357
15358 struct tracepoint *
15359 get_tracepoint (int num)
15360 {
15361 struct breakpoint *t;
15362
15363 ALL_TRACEPOINTS (t)
15364 if (t->number == num)
15365 return (struct tracepoint *) t;
15366
15367 return NULL;
15368 }
15369
15370 /* Find the tracepoint with the given target-side number (which may be
15371 different from the tracepoint number after disconnecting and
15372 reconnecting). */
15373
15374 struct tracepoint *
15375 get_tracepoint_by_number_on_target (int num)
15376 {
15377 struct breakpoint *b;
15378
15379 ALL_TRACEPOINTS (b)
15380 {
15381 struct tracepoint *t = (struct tracepoint *) b;
15382
15383 if (t->number_on_target == num)
15384 return t;
15385 }
15386
15387 return NULL;
15388 }
15389
15390 /* Utility: parse a tracepoint number and look it up in the list.
15391 If STATE is not NULL, use, get_number_or_range_state and ignore ARG.
15392 If the argument is missing, the most recent tracepoint
15393 (tracepoint_count) is returned. */
15394
15395 struct tracepoint *
15396 get_tracepoint_by_number (char **arg,
15397 number_or_range_parser *parser)
15398 {
15399 struct breakpoint *t;
15400 int tpnum;
15401 char *instring = arg == NULL ? NULL : *arg;
15402
15403 if (parser != NULL)
15404 {
15405 gdb_assert (!parser->finished ());
15406 tpnum = parser->get_number ();
15407 }
15408 else if (arg == NULL || *arg == NULL || ! **arg)
15409 tpnum = tracepoint_count;
15410 else
15411 tpnum = get_number (arg);
15412
15413 if (tpnum <= 0)
15414 {
15415 if (instring && *instring)
15416 printf_filtered (_("bad tracepoint number at or near '%s'\n"),
15417 instring);
15418 else
15419 printf_filtered (_("No previous tracepoint\n"));
15420 return NULL;
15421 }
15422
15423 ALL_TRACEPOINTS (t)
15424 if (t->number == tpnum)
15425 {
15426 return (struct tracepoint *) t;
15427 }
15428
15429 printf_unfiltered ("No tracepoint number %d.\n", tpnum);
15430 return NULL;
15431 }
15432
15433 void
15434 print_recreate_thread (struct breakpoint *b, struct ui_file *fp)
15435 {
15436 if (b->thread != -1)
15437 fprintf_unfiltered (fp, " thread %d", b->thread);
15438
15439 if (b->task != 0)
15440 fprintf_unfiltered (fp, " task %d", b->task);
15441
15442 fprintf_unfiltered (fp, "\n");
15443 }
15444
15445 /* Save information on user settable breakpoints (watchpoints, etc) to
15446 a new script file named FILENAME. If FILTER is non-NULL, call it
15447 on each breakpoint and only include the ones for which it returns
15448 non-zero. */
15449
15450 static void
15451 save_breakpoints (char *filename, int from_tty,
15452 int (*filter) (const struct breakpoint *))
15453 {
15454 struct breakpoint *tp;
15455 int any = 0;
15456 int extra_trace_bits = 0;
15457
15458 if (filename == 0 || *filename == 0)
15459 error (_("Argument required (file name in which to save)"));
15460
15461 /* See if we have anything to save. */
15462 ALL_BREAKPOINTS (tp)
15463 {
15464 /* Skip internal and momentary breakpoints. */
15465 if (!user_breakpoint_p (tp))
15466 continue;
15467
15468 /* If we have a filter, only save the breakpoints it accepts. */
15469 if (filter && !filter (tp))
15470 continue;
15471
15472 any = 1;
15473
15474 if (is_tracepoint (tp))
15475 {
15476 extra_trace_bits = 1;
15477
15478 /* We can stop searching. */
15479 break;
15480 }
15481 }
15482
15483 if (!any)
15484 {
15485 warning (_("Nothing to save."));
15486 return;
15487 }
15488
15489 gdb::unique_xmalloc_ptr<char> expanded_filename (tilde_expand (filename));
15490
15491 stdio_file fp;
15492
15493 if (!fp.open (expanded_filename.get (), "w"))
15494 error (_("Unable to open file '%s' for saving (%s)"),
15495 expanded_filename.get (), safe_strerror (errno));
15496
15497 if (extra_trace_bits)
15498 save_trace_state_variables (&fp);
15499
15500 ALL_BREAKPOINTS (tp)
15501 {
15502 /* Skip internal and momentary breakpoints. */
15503 if (!user_breakpoint_p (tp))
15504 continue;
15505
15506 /* If we have a filter, only save the breakpoints it accepts. */
15507 if (filter && !filter (tp))
15508 continue;
15509
15510 tp->ops->print_recreate (tp, &fp);
15511
15512 /* Note, we can't rely on tp->number for anything, as we can't
15513 assume the recreated breakpoint numbers will match. Use $bpnum
15514 instead. */
15515
15516 if (tp->cond_string)
15517 fp.printf (" condition $bpnum %s\n", tp->cond_string);
15518
15519 if (tp->ignore_count)
15520 fp.printf (" ignore $bpnum %d\n", tp->ignore_count);
15521
15522 if (tp->type != bp_dprintf && tp->commands)
15523 {
15524 fp.puts (" commands\n");
15525
15526 current_uiout->redirect (&fp);
15527 TRY
15528 {
15529 print_command_lines (current_uiout, tp->commands->commands, 2);
15530 }
15531 CATCH (ex, RETURN_MASK_ALL)
15532 {
15533 current_uiout->redirect (NULL);
15534 throw_exception (ex);
15535 }
15536 END_CATCH
15537
15538 current_uiout->redirect (NULL);
15539 fp.puts (" end\n");
15540 }
15541
15542 if (tp->enable_state == bp_disabled)
15543 fp.puts ("disable $bpnum\n");
15544
15545 /* If this is a multi-location breakpoint, check if the locations
15546 should be individually disabled. Watchpoint locations are
15547 special, and not user visible. */
15548 if (!is_watchpoint (tp) && tp->loc && tp->loc->next)
15549 {
15550 struct bp_location *loc;
15551 int n = 1;
15552
15553 for (loc = tp->loc; loc != NULL; loc = loc->next, n++)
15554 if (!loc->enabled)
15555 fp.printf ("disable $bpnum.%d\n", n);
15556 }
15557 }
15558
15559 if (extra_trace_bits && *default_collect)
15560 fp.printf ("set default-collect %s\n", default_collect);
15561
15562 if (from_tty)
15563 printf_filtered (_("Saved to file '%s'.\n"), expanded_filename.get ());
15564 }
15565
15566 /* The `save breakpoints' command. */
15567
15568 static void
15569 save_breakpoints_command (char *args, int from_tty)
15570 {
15571 save_breakpoints (args, from_tty, NULL);
15572 }
15573
15574 /* The `save tracepoints' command. */
15575
15576 static void
15577 save_tracepoints_command (char *args, int from_tty)
15578 {
15579 save_breakpoints (args, from_tty, is_tracepoint);
15580 }
15581
15582 /* Create a vector of all tracepoints. */
15583
15584 VEC(breakpoint_p) *
15585 all_tracepoints (void)
15586 {
15587 VEC(breakpoint_p) *tp_vec = 0;
15588 struct breakpoint *tp;
15589
15590 ALL_TRACEPOINTS (tp)
15591 {
15592 VEC_safe_push (breakpoint_p, tp_vec, tp);
15593 }
15594
15595 return tp_vec;
15596 }
15597
15598 \f
15599 /* This help string is used to consolidate all the help string for specifying
15600 locations used by several commands. */
15601
15602 #define LOCATION_HELP_STRING \
15603 "Linespecs are colon-separated lists of location parameters, such as\n\
15604 source filename, function name, label name, and line number.\n\
15605 Example: To specify the start of a label named \"the_top\" in the\n\
15606 function \"fact\" in the file \"factorial.c\", use\n\
15607 \"factorial.c:fact:the_top\".\n\
15608 \n\
15609 Address locations begin with \"*\" and specify an exact address in the\n\
15610 program. Example: To specify the fourth byte past the start function\n\
15611 \"main\", use \"*main + 4\".\n\
15612 \n\
15613 Explicit locations are similar to linespecs but use an option/argument\n\
15614 syntax to specify location parameters.\n\
15615 Example: To specify the start of the label named \"the_top\" in the\n\
15616 function \"fact\" in the file \"factorial.c\", use \"-source factorial.c\n\
15617 -function fact -label the_top\".\n"
15618
15619 /* This help string is used for the break, hbreak, tbreak and thbreak
15620 commands. It is defined as a macro to prevent duplication.
15621 COMMAND should be a string constant containing the name of the
15622 command. */
15623
15624 #define BREAK_ARGS_HELP(command) \
15625 command" [PROBE_MODIFIER] [LOCATION] [thread THREADNUM] [if CONDITION]\n\
15626 PROBE_MODIFIER shall be present if the command is to be placed in a\n\
15627 probe point. Accepted values are `-probe' (for a generic, automatically\n\
15628 guessed probe type), `-probe-stap' (for a SystemTap probe) or \n\
15629 `-probe-dtrace' (for a DTrace probe).\n\
15630 LOCATION may be a linespec, address, or explicit location as described\n\
15631 below.\n\
15632 \n\
15633 With no LOCATION, uses current execution address of the selected\n\
15634 stack frame. This is useful for breaking on return to a stack frame.\n\
15635 \n\
15636 THREADNUM is the number from \"info threads\".\n\
15637 CONDITION is a boolean expression.\n\
15638 \n" LOCATION_HELP_STRING "\n\
15639 Multiple breakpoints at one place are permitted, and useful if their\n\
15640 conditions are different.\n\
15641 \n\
15642 Do \"help breakpoints\" for info on other commands dealing with breakpoints."
15643
15644 /* List of subcommands for "catch". */
15645 static struct cmd_list_element *catch_cmdlist;
15646
15647 /* List of subcommands for "tcatch". */
15648 static struct cmd_list_element *tcatch_cmdlist;
15649
15650 void
15651 add_catch_command (const char *name, const char *docstring,
15652 cmd_sfunc_ftype *sfunc,
15653 completer_ftype *completer,
15654 void *user_data_catch,
15655 void *user_data_tcatch)
15656 {
15657 struct cmd_list_element *command;
15658
15659 command = add_cmd (name, class_breakpoint, NULL, docstring,
15660 &catch_cmdlist);
15661 set_cmd_sfunc (command, sfunc);
15662 set_cmd_context (command, user_data_catch);
15663 set_cmd_completer (command, completer);
15664
15665 command = add_cmd (name, class_breakpoint, NULL, docstring,
15666 &tcatch_cmdlist);
15667 set_cmd_sfunc (command, sfunc);
15668 set_cmd_context (command, user_data_tcatch);
15669 set_cmd_completer (command, completer);
15670 }
15671
15672 static void
15673 save_command (char *arg, int from_tty)
15674 {
15675 printf_unfiltered (_("\"save\" must be followed by "
15676 "the name of a save subcommand.\n"));
15677 help_list (save_cmdlist, "save ", all_commands, gdb_stdout);
15678 }
15679
15680 struct breakpoint *
15681 iterate_over_breakpoints (int (*callback) (struct breakpoint *, void *),
15682 void *data)
15683 {
15684 struct breakpoint *b, *b_tmp;
15685
15686 ALL_BREAKPOINTS_SAFE (b, b_tmp)
15687 {
15688 if ((*callback) (b, data))
15689 return b;
15690 }
15691
15692 return NULL;
15693 }
15694
15695 /* Zero if any of the breakpoint's locations could be a location where
15696 functions have been inlined, nonzero otherwise. */
15697
15698 static int
15699 is_non_inline_function (struct breakpoint *b)
15700 {
15701 /* The shared library event breakpoint is set on the address of a
15702 non-inline function. */
15703 if (b->type == bp_shlib_event)
15704 return 1;
15705
15706 return 0;
15707 }
15708
15709 /* Nonzero if the specified PC cannot be a location where functions
15710 have been inlined. */
15711
15712 int
15713 pc_at_non_inline_function (struct address_space *aspace, CORE_ADDR pc,
15714 const struct target_waitstatus *ws)
15715 {
15716 struct breakpoint *b;
15717 struct bp_location *bl;
15718
15719 ALL_BREAKPOINTS (b)
15720 {
15721 if (!is_non_inline_function (b))
15722 continue;
15723
15724 for (bl = b->loc; bl != NULL; bl = bl->next)
15725 {
15726 if (!bl->shlib_disabled
15727 && bpstat_check_location (bl, aspace, pc, ws))
15728 return 1;
15729 }
15730 }
15731
15732 return 0;
15733 }
15734
15735 /* Remove any references to OBJFILE which is going to be freed. */
15736
15737 void
15738 breakpoint_free_objfile (struct objfile *objfile)
15739 {
15740 struct bp_location **locp, *loc;
15741
15742 ALL_BP_LOCATIONS (loc, locp)
15743 if (loc->symtab != NULL && SYMTAB_OBJFILE (loc->symtab) == objfile)
15744 loc->symtab = NULL;
15745 }
15746
15747 void
15748 initialize_breakpoint_ops (void)
15749 {
15750 static int initialized = 0;
15751
15752 struct breakpoint_ops *ops;
15753
15754 if (initialized)
15755 return;
15756 initialized = 1;
15757
15758 /* The breakpoint_ops structure to be inherit by all kinds of
15759 breakpoints (real breakpoints, i.e., user "break" breakpoints,
15760 internal and momentary breakpoints, etc.). */
15761 ops = &bkpt_base_breakpoint_ops;
15762 *ops = base_breakpoint_ops;
15763 ops->re_set = bkpt_re_set;
15764 ops->insert_location = bkpt_insert_location;
15765 ops->remove_location = bkpt_remove_location;
15766 ops->breakpoint_hit = bkpt_breakpoint_hit;
15767 ops->create_sals_from_location = bkpt_create_sals_from_location;
15768 ops->create_breakpoints_sal = bkpt_create_breakpoints_sal;
15769 ops->decode_location = bkpt_decode_location;
15770
15771 /* The breakpoint_ops structure to be used in regular breakpoints. */
15772 ops = &bkpt_breakpoint_ops;
15773 *ops = bkpt_base_breakpoint_ops;
15774 ops->re_set = bkpt_re_set;
15775 ops->resources_needed = bkpt_resources_needed;
15776 ops->print_it = bkpt_print_it;
15777 ops->print_mention = bkpt_print_mention;
15778 ops->print_recreate = bkpt_print_recreate;
15779
15780 /* Ranged breakpoints. */
15781 ops = &ranged_breakpoint_ops;
15782 *ops = bkpt_breakpoint_ops;
15783 ops->breakpoint_hit = breakpoint_hit_ranged_breakpoint;
15784 ops->resources_needed = resources_needed_ranged_breakpoint;
15785 ops->print_it = print_it_ranged_breakpoint;
15786 ops->print_one = print_one_ranged_breakpoint;
15787 ops->print_one_detail = print_one_detail_ranged_breakpoint;
15788 ops->print_mention = print_mention_ranged_breakpoint;
15789 ops->print_recreate = print_recreate_ranged_breakpoint;
15790
15791 /* Internal breakpoints. */
15792 ops = &internal_breakpoint_ops;
15793 *ops = bkpt_base_breakpoint_ops;
15794 ops->re_set = internal_bkpt_re_set;
15795 ops->check_status = internal_bkpt_check_status;
15796 ops->print_it = internal_bkpt_print_it;
15797 ops->print_mention = internal_bkpt_print_mention;
15798
15799 /* Momentary breakpoints. */
15800 ops = &momentary_breakpoint_ops;
15801 *ops = bkpt_base_breakpoint_ops;
15802 ops->re_set = momentary_bkpt_re_set;
15803 ops->check_status = momentary_bkpt_check_status;
15804 ops->print_it = momentary_bkpt_print_it;
15805 ops->print_mention = momentary_bkpt_print_mention;
15806
15807 /* Probe breakpoints. */
15808 ops = &bkpt_probe_breakpoint_ops;
15809 *ops = bkpt_breakpoint_ops;
15810 ops->insert_location = bkpt_probe_insert_location;
15811 ops->remove_location = bkpt_probe_remove_location;
15812 ops->create_sals_from_location = bkpt_probe_create_sals_from_location;
15813 ops->decode_location = bkpt_probe_decode_location;
15814
15815 /* Watchpoints. */
15816 ops = &watchpoint_breakpoint_ops;
15817 *ops = base_breakpoint_ops;
15818 ops->re_set = re_set_watchpoint;
15819 ops->insert_location = insert_watchpoint;
15820 ops->remove_location = remove_watchpoint;
15821 ops->breakpoint_hit = breakpoint_hit_watchpoint;
15822 ops->check_status = check_status_watchpoint;
15823 ops->resources_needed = resources_needed_watchpoint;
15824 ops->works_in_software_mode = works_in_software_mode_watchpoint;
15825 ops->print_it = print_it_watchpoint;
15826 ops->print_mention = print_mention_watchpoint;
15827 ops->print_recreate = print_recreate_watchpoint;
15828 ops->explains_signal = explains_signal_watchpoint;
15829
15830 /* Masked watchpoints. */
15831 ops = &masked_watchpoint_breakpoint_ops;
15832 *ops = watchpoint_breakpoint_ops;
15833 ops->insert_location = insert_masked_watchpoint;
15834 ops->remove_location = remove_masked_watchpoint;
15835 ops->resources_needed = resources_needed_masked_watchpoint;
15836 ops->works_in_software_mode = works_in_software_mode_masked_watchpoint;
15837 ops->print_it = print_it_masked_watchpoint;
15838 ops->print_one_detail = print_one_detail_masked_watchpoint;
15839 ops->print_mention = print_mention_masked_watchpoint;
15840 ops->print_recreate = print_recreate_masked_watchpoint;
15841
15842 /* Tracepoints. */
15843 ops = &tracepoint_breakpoint_ops;
15844 *ops = base_breakpoint_ops;
15845 ops->re_set = tracepoint_re_set;
15846 ops->breakpoint_hit = tracepoint_breakpoint_hit;
15847 ops->print_one_detail = tracepoint_print_one_detail;
15848 ops->print_mention = tracepoint_print_mention;
15849 ops->print_recreate = tracepoint_print_recreate;
15850 ops->create_sals_from_location = tracepoint_create_sals_from_location;
15851 ops->create_breakpoints_sal = tracepoint_create_breakpoints_sal;
15852 ops->decode_location = tracepoint_decode_location;
15853
15854 /* Probe tracepoints. */
15855 ops = &tracepoint_probe_breakpoint_ops;
15856 *ops = tracepoint_breakpoint_ops;
15857 ops->create_sals_from_location = tracepoint_probe_create_sals_from_location;
15858 ops->decode_location = tracepoint_probe_decode_location;
15859
15860 /* Static tracepoints with marker (`-m'). */
15861 ops = &strace_marker_breakpoint_ops;
15862 *ops = tracepoint_breakpoint_ops;
15863 ops->create_sals_from_location = strace_marker_create_sals_from_location;
15864 ops->create_breakpoints_sal = strace_marker_create_breakpoints_sal;
15865 ops->decode_location = strace_marker_decode_location;
15866
15867 /* Fork catchpoints. */
15868 ops = &catch_fork_breakpoint_ops;
15869 *ops = base_breakpoint_ops;
15870 ops->insert_location = insert_catch_fork;
15871 ops->remove_location = remove_catch_fork;
15872 ops->breakpoint_hit = breakpoint_hit_catch_fork;
15873 ops->print_it = print_it_catch_fork;
15874 ops->print_one = print_one_catch_fork;
15875 ops->print_mention = print_mention_catch_fork;
15876 ops->print_recreate = print_recreate_catch_fork;
15877
15878 /* Vfork catchpoints. */
15879 ops = &catch_vfork_breakpoint_ops;
15880 *ops = base_breakpoint_ops;
15881 ops->insert_location = insert_catch_vfork;
15882 ops->remove_location = remove_catch_vfork;
15883 ops->breakpoint_hit = breakpoint_hit_catch_vfork;
15884 ops->print_it = print_it_catch_vfork;
15885 ops->print_one = print_one_catch_vfork;
15886 ops->print_mention = print_mention_catch_vfork;
15887 ops->print_recreate = print_recreate_catch_vfork;
15888
15889 /* Exec catchpoints. */
15890 ops = &catch_exec_breakpoint_ops;
15891 *ops = base_breakpoint_ops;
15892 ops->insert_location = insert_catch_exec;
15893 ops->remove_location = remove_catch_exec;
15894 ops->breakpoint_hit = breakpoint_hit_catch_exec;
15895 ops->print_it = print_it_catch_exec;
15896 ops->print_one = print_one_catch_exec;
15897 ops->print_mention = print_mention_catch_exec;
15898 ops->print_recreate = print_recreate_catch_exec;
15899
15900 /* Solib-related catchpoints. */
15901 ops = &catch_solib_breakpoint_ops;
15902 *ops = base_breakpoint_ops;
15903 ops->insert_location = insert_catch_solib;
15904 ops->remove_location = remove_catch_solib;
15905 ops->breakpoint_hit = breakpoint_hit_catch_solib;
15906 ops->check_status = check_status_catch_solib;
15907 ops->print_it = print_it_catch_solib;
15908 ops->print_one = print_one_catch_solib;
15909 ops->print_mention = print_mention_catch_solib;
15910 ops->print_recreate = print_recreate_catch_solib;
15911
15912 ops = &dprintf_breakpoint_ops;
15913 *ops = bkpt_base_breakpoint_ops;
15914 ops->re_set = dprintf_re_set;
15915 ops->resources_needed = bkpt_resources_needed;
15916 ops->print_it = bkpt_print_it;
15917 ops->print_mention = bkpt_print_mention;
15918 ops->print_recreate = dprintf_print_recreate;
15919 ops->after_condition_true = dprintf_after_condition_true;
15920 ops->breakpoint_hit = dprintf_breakpoint_hit;
15921 }
15922
15923 /* Chain containing all defined "enable breakpoint" subcommands. */
15924
15925 static struct cmd_list_element *enablebreaklist = NULL;
15926
15927 void
15928 _initialize_breakpoint (void)
15929 {
15930 struct cmd_list_element *c;
15931
15932 initialize_breakpoint_ops ();
15933
15934 observer_attach_solib_unloaded (disable_breakpoints_in_unloaded_shlib);
15935 observer_attach_free_objfile (disable_breakpoints_in_freed_objfile);
15936 observer_attach_memory_changed (invalidate_bp_value_on_memory_change);
15937
15938 breakpoint_objfile_key
15939 = register_objfile_data_with_cleanup (NULL, free_breakpoint_probes);
15940
15941 breakpoint_chain = 0;
15942 /* Don't bother to call set_breakpoint_count. $bpnum isn't useful
15943 before a breakpoint is set. */
15944 breakpoint_count = 0;
15945
15946 tracepoint_count = 0;
15947
15948 add_com ("ignore", class_breakpoint, ignore_command, _("\
15949 Set ignore-count of breakpoint number N to COUNT.\n\
15950 Usage is `ignore N COUNT'."));
15951
15952 add_com ("commands", class_breakpoint, commands_command, _("\
15953 Set commands to be executed when the given breakpoints are hit.\n\
15954 Give a space-separated breakpoint list as argument after \"commands\".\n\
15955 A list element can be a breakpoint number (e.g. `5') or a range of numbers\n\
15956 (e.g. `5-7').\n\
15957 With no argument, the targeted breakpoint is the last one set.\n\
15958 The commands themselves follow starting on the next line.\n\
15959 Type a line containing \"end\" to indicate the end of them.\n\
15960 Give \"silent\" as the first line to make the breakpoint silent;\n\
15961 then no output is printed when it is hit, except what the commands print."));
15962
15963 c = add_com ("condition", class_breakpoint, condition_command, _("\
15964 Specify breakpoint number N to break only if COND is true.\n\
15965 Usage is `condition N COND', where N is an integer and COND is an\n\
15966 expression to be evaluated whenever breakpoint N is reached."));
15967 set_cmd_completer (c, condition_completer);
15968
15969 c = add_com ("tbreak", class_breakpoint, tbreak_command, _("\
15970 Set a temporary breakpoint.\n\
15971 Like \"break\" except the breakpoint is only temporary,\n\
15972 so it will be deleted when hit. Equivalent to \"break\" followed\n\
15973 by using \"enable delete\" on the breakpoint number.\n\
15974 \n"
15975 BREAK_ARGS_HELP ("tbreak")));
15976 set_cmd_completer (c, location_completer);
15977
15978 c = add_com ("hbreak", class_breakpoint, hbreak_command, _("\
15979 Set a hardware assisted breakpoint.\n\
15980 Like \"break\" except the breakpoint requires hardware support,\n\
15981 some target hardware may not have this support.\n\
15982 \n"
15983 BREAK_ARGS_HELP ("hbreak")));
15984 set_cmd_completer (c, location_completer);
15985
15986 c = add_com ("thbreak", class_breakpoint, thbreak_command, _("\
15987 Set a temporary hardware assisted breakpoint.\n\
15988 Like \"hbreak\" except the breakpoint is only temporary,\n\
15989 so it will be deleted when hit.\n\
15990 \n"
15991 BREAK_ARGS_HELP ("thbreak")));
15992 set_cmd_completer (c, location_completer);
15993
15994 add_prefix_cmd ("enable", class_breakpoint, enable_command, _("\
15995 Enable some breakpoints.\n\
15996 Give breakpoint numbers (separated by spaces) as arguments.\n\
15997 With no subcommand, breakpoints are enabled until you command otherwise.\n\
15998 This is used to cancel the effect of the \"disable\" command.\n\
15999 With a subcommand you can enable temporarily."),
16000 &enablelist, "enable ", 1, &cmdlist);
16001
16002 add_com_alias ("en", "enable", class_breakpoint, 1);
16003
16004 add_prefix_cmd ("breakpoints", class_breakpoint, enable_command, _("\
16005 Enable some breakpoints.\n\
16006 Give breakpoint numbers (separated by spaces) as arguments.\n\
16007 This is used to cancel the effect of the \"disable\" command.\n\
16008 May be abbreviated to simply \"enable\".\n"),
16009 &enablebreaklist, "enable breakpoints ", 1, &enablelist);
16010
16011 add_cmd ("once", no_class, enable_once_command, _("\
16012 Enable breakpoints for one hit. Give breakpoint numbers.\n\
16013 If a breakpoint is hit while enabled in this fashion, it becomes disabled."),
16014 &enablebreaklist);
16015
16016 add_cmd ("delete", no_class, enable_delete_command, _("\
16017 Enable breakpoints and delete when hit. Give breakpoint numbers.\n\
16018 If a breakpoint is hit while enabled in this fashion, it is deleted."),
16019 &enablebreaklist);
16020
16021 add_cmd ("count", no_class, enable_count_command, _("\
16022 Enable breakpoints for COUNT hits. Give count and then breakpoint numbers.\n\
16023 If a breakpoint is hit while enabled in this fashion,\n\
16024 the count is decremented; when it reaches zero, the breakpoint is disabled."),
16025 &enablebreaklist);
16026
16027 add_cmd ("delete", no_class, enable_delete_command, _("\
16028 Enable breakpoints and delete when hit. Give breakpoint numbers.\n\
16029 If a breakpoint is hit while enabled in this fashion, it is deleted."),
16030 &enablelist);
16031
16032 add_cmd ("once", no_class, enable_once_command, _("\
16033 Enable breakpoints for one hit. Give breakpoint numbers.\n\
16034 If a breakpoint is hit while enabled in this fashion, it becomes disabled."),
16035 &enablelist);
16036
16037 add_cmd ("count", no_class, enable_count_command, _("\
16038 Enable breakpoints for COUNT hits. Give count and then breakpoint numbers.\n\
16039 If a breakpoint is hit while enabled in this fashion,\n\
16040 the count is decremented; when it reaches zero, the breakpoint is disabled."),
16041 &enablelist);
16042
16043 add_prefix_cmd ("disable", class_breakpoint, disable_command, _("\
16044 Disable some breakpoints.\n\
16045 Arguments are breakpoint numbers with spaces in between.\n\
16046 To disable all breakpoints, give no argument.\n\
16047 A disabled breakpoint is not forgotten, but has no effect until re-enabled."),
16048 &disablelist, "disable ", 1, &cmdlist);
16049 add_com_alias ("dis", "disable", class_breakpoint, 1);
16050 add_com_alias ("disa", "disable", class_breakpoint, 1);
16051
16052 add_cmd ("breakpoints", class_alias, disable_command, _("\
16053 Disable some breakpoints.\n\
16054 Arguments are breakpoint numbers with spaces in between.\n\
16055 To disable all breakpoints, give no argument.\n\
16056 A disabled breakpoint is not forgotten, but has no effect until re-enabled.\n\
16057 This command may be abbreviated \"disable\"."),
16058 &disablelist);
16059
16060 add_prefix_cmd ("delete", class_breakpoint, delete_command, _("\
16061 Delete some breakpoints or auto-display expressions.\n\
16062 Arguments are breakpoint numbers with spaces in between.\n\
16063 To delete all breakpoints, give no argument.\n\
16064 \n\
16065 Also a prefix command for deletion of other GDB objects.\n\
16066 The \"unset\" command is also an alias for \"delete\"."),
16067 &deletelist, "delete ", 1, &cmdlist);
16068 add_com_alias ("d", "delete", class_breakpoint, 1);
16069 add_com_alias ("del", "delete", class_breakpoint, 1);
16070
16071 add_cmd ("breakpoints", class_alias, delete_command, _("\
16072 Delete some breakpoints or auto-display expressions.\n\
16073 Arguments are breakpoint numbers with spaces in between.\n\
16074 To delete all breakpoints, give no argument.\n\
16075 This command may be abbreviated \"delete\"."),
16076 &deletelist);
16077
16078 add_com ("clear", class_breakpoint, clear_command, _("\
16079 Clear breakpoint at specified location.\n\
16080 Argument may be a linespec, explicit, or address location as described below.\n\
16081 \n\
16082 With no argument, clears all breakpoints in the line that the selected frame\n\
16083 is executing in.\n"
16084 "\n" LOCATION_HELP_STRING "\n\
16085 See also the \"delete\" command which clears breakpoints by number."));
16086 add_com_alias ("cl", "clear", class_breakpoint, 1);
16087
16088 c = add_com ("break", class_breakpoint, break_command, _("\
16089 Set breakpoint at specified location.\n"
16090 BREAK_ARGS_HELP ("break")));
16091 set_cmd_completer (c, location_completer);
16092
16093 add_com_alias ("b", "break", class_run, 1);
16094 add_com_alias ("br", "break", class_run, 1);
16095 add_com_alias ("bre", "break", class_run, 1);
16096 add_com_alias ("brea", "break", class_run, 1);
16097
16098 if (dbx_commands)
16099 {
16100 add_abbrev_prefix_cmd ("stop", class_breakpoint, stop_command, _("\
16101 Break in function/address or break at a line in the current file."),
16102 &stoplist, "stop ", 1, &cmdlist);
16103 add_cmd ("in", class_breakpoint, stopin_command,
16104 _("Break in function or address."), &stoplist);
16105 add_cmd ("at", class_breakpoint, stopat_command,
16106 _("Break at a line in the current file."), &stoplist);
16107 add_com ("status", class_info, info_breakpoints_command, _("\
16108 Status of user-settable breakpoints, or breakpoint number NUMBER.\n\
16109 The \"Type\" column indicates one of:\n\
16110 \tbreakpoint - normal breakpoint\n\
16111 \twatchpoint - watchpoint\n\
16112 The \"Disp\" column contains one of \"keep\", \"del\", or \"dis\" to indicate\n\
16113 the disposition of the breakpoint after it gets hit. \"dis\" means that the\n\
16114 breakpoint will be disabled. The \"Address\" and \"What\" columns indicate the\n\
16115 address and file/line number respectively.\n\
16116 \n\
16117 Convenience variable \"$_\" and default examine address for \"x\"\n\
16118 are set to the address of the last breakpoint listed unless the command\n\
16119 is prefixed with \"server \".\n\n\
16120 Convenience variable \"$bpnum\" contains the number of the last\n\
16121 breakpoint set."));
16122 }
16123
16124 add_info ("breakpoints", info_breakpoints_command, _("\
16125 Status of specified breakpoints (all user-settable breakpoints if no argument).\n\
16126 The \"Type\" column indicates one of:\n\
16127 \tbreakpoint - normal breakpoint\n\
16128 \twatchpoint - watchpoint\n\
16129 The \"Disp\" column contains one of \"keep\", \"del\", or \"dis\" to indicate\n\
16130 the disposition of the breakpoint after it gets hit. \"dis\" means that the\n\
16131 breakpoint will be disabled. The \"Address\" and \"What\" columns indicate the\n\
16132 address and file/line number respectively.\n\
16133 \n\
16134 Convenience variable \"$_\" and default examine address for \"x\"\n\
16135 are set to the address of the last breakpoint listed unless the command\n\
16136 is prefixed with \"server \".\n\n\
16137 Convenience variable \"$bpnum\" contains the number of the last\n\
16138 breakpoint set."));
16139
16140 add_info_alias ("b", "breakpoints", 1);
16141
16142 add_cmd ("breakpoints", class_maintenance, maintenance_info_breakpoints, _("\
16143 Status of all breakpoints, or breakpoint number NUMBER.\n\
16144 The \"Type\" column indicates one of:\n\
16145 \tbreakpoint - normal breakpoint\n\
16146 \twatchpoint - watchpoint\n\
16147 \tlongjmp - internal breakpoint used to step through longjmp()\n\
16148 \tlongjmp resume - internal breakpoint at the target of longjmp()\n\
16149 \tuntil - internal breakpoint used by the \"until\" command\n\
16150 \tfinish - internal breakpoint used by the \"finish\" command\n\
16151 The \"Disp\" column contains one of \"keep\", \"del\", or \"dis\" to indicate\n\
16152 the disposition of the breakpoint after it gets hit. \"dis\" means that the\n\
16153 breakpoint will be disabled. The \"Address\" and \"What\" columns indicate the\n\
16154 address and file/line number respectively.\n\
16155 \n\
16156 Convenience variable \"$_\" and default examine address for \"x\"\n\
16157 are set to the address of the last breakpoint listed unless the command\n\
16158 is prefixed with \"server \".\n\n\
16159 Convenience variable \"$bpnum\" contains the number of the last\n\
16160 breakpoint set."),
16161 &maintenanceinfolist);
16162
16163 add_prefix_cmd ("catch", class_breakpoint, catch_command, _("\
16164 Set catchpoints to catch events."),
16165 &catch_cmdlist, "catch ",
16166 0/*allow-unknown*/, &cmdlist);
16167
16168 add_prefix_cmd ("tcatch", class_breakpoint, tcatch_command, _("\
16169 Set temporary catchpoints to catch events."),
16170 &tcatch_cmdlist, "tcatch ",
16171 0/*allow-unknown*/, &cmdlist);
16172
16173 add_catch_command ("fork", _("Catch calls to fork."),
16174 catch_fork_command_1,
16175 NULL,
16176 (void *) (uintptr_t) catch_fork_permanent,
16177 (void *) (uintptr_t) catch_fork_temporary);
16178 add_catch_command ("vfork", _("Catch calls to vfork."),
16179 catch_fork_command_1,
16180 NULL,
16181 (void *) (uintptr_t) catch_vfork_permanent,
16182 (void *) (uintptr_t) catch_vfork_temporary);
16183 add_catch_command ("exec", _("Catch calls to exec."),
16184 catch_exec_command_1,
16185 NULL,
16186 CATCH_PERMANENT,
16187 CATCH_TEMPORARY);
16188 add_catch_command ("load", _("Catch loads of shared libraries.\n\
16189 Usage: catch load [REGEX]\n\
16190 If REGEX is given, only stop for libraries matching the regular expression."),
16191 catch_load_command_1,
16192 NULL,
16193 CATCH_PERMANENT,
16194 CATCH_TEMPORARY);
16195 add_catch_command ("unload", _("Catch unloads of shared libraries.\n\
16196 Usage: catch unload [REGEX]\n\
16197 If REGEX is given, only stop for libraries matching the regular expression."),
16198 catch_unload_command_1,
16199 NULL,
16200 CATCH_PERMANENT,
16201 CATCH_TEMPORARY);
16202
16203 c = add_com ("watch", class_breakpoint, watch_command, _("\
16204 Set a watchpoint for an expression.\n\
16205 Usage: watch [-l|-location] EXPRESSION\n\
16206 A watchpoint stops execution of your program whenever the value of\n\
16207 an expression changes.\n\
16208 If -l or -location is given, this evaluates EXPRESSION and watches\n\
16209 the memory to which it refers."));
16210 set_cmd_completer (c, expression_completer);
16211
16212 c = add_com ("rwatch", class_breakpoint, rwatch_command, _("\
16213 Set a read watchpoint for an expression.\n\
16214 Usage: rwatch [-l|-location] EXPRESSION\n\
16215 A watchpoint stops execution of your program whenever the value of\n\
16216 an expression is read.\n\
16217 If -l or -location is given, this evaluates EXPRESSION and watches\n\
16218 the memory to which it refers."));
16219 set_cmd_completer (c, expression_completer);
16220
16221 c = add_com ("awatch", class_breakpoint, awatch_command, _("\
16222 Set a watchpoint for an expression.\n\
16223 Usage: awatch [-l|-location] EXPRESSION\n\
16224 A watchpoint stops execution of your program whenever the value of\n\
16225 an expression is either read or written.\n\
16226 If -l or -location is given, this evaluates EXPRESSION and watches\n\
16227 the memory to which it refers."));
16228 set_cmd_completer (c, expression_completer);
16229
16230 add_info ("watchpoints", info_watchpoints_command, _("\
16231 Status of specified watchpoints (all watchpoints if no argument)."));
16232
16233 /* XXX: cagney/2005-02-23: This should be a boolean, and should
16234 respond to changes - contrary to the description. */
16235 add_setshow_zinteger_cmd ("can-use-hw-watchpoints", class_support,
16236 &can_use_hw_watchpoints, _("\
16237 Set debugger's willingness to use watchpoint hardware."), _("\
16238 Show debugger's willingness to use watchpoint hardware."), _("\
16239 If zero, gdb will not use hardware for new watchpoints, even if\n\
16240 such is available. (However, any hardware watchpoints that were\n\
16241 created before setting this to nonzero, will continue to use watchpoint\n\
16242 hardware.)"),
16243 NULL,
16244 show_can_use_hw_watchpoints,
16245 &setlist, &showlist);
16246
16247 can_use_hw_watchpoints = 1;
16248
16249 /* Tracepoint manipulation commands. */
16250
16251 c = add_com ("trace", class_breakpoint, trace_command, _("\
16252 Set a tracepoint at specified location.\n\
16253 \n"
16254 BREAK_ARGS_HELP ("trace") "\n\
16255 Do \"help tracepoints\" for info on other tracepoint commands."));
16256 set_cmd_completer (c, location_completer);
16257
16258 add_com_alias ("tp", "trace", class_alias, 0);
16259 add_com_alias ("tr", "trace", class_alias, 1);
16260 add_com_alias ("tra", "trace", class_alias, 1);
16261 add_com_alias ("trac", "trace", class_alias, 1);
16262
16263 c = add_com ("ftrace", class_breakpoint, ftrace_command, _("\
16264 Set a fast tracepoint at specified location.\n\
16265 \n"
16266 BREAK_ARGS_HELP ("ftrace") "\n\
16267 Do \"help tracepoints\" for info on other tracepoint commands."));
16268 set_cmd_completer (c, location_completer);
16269
16270 c = add_com ("strace", class_breakpoint, strace_command, _("\
16271 Set a static tracepoint at location or marker.\n\
16272 \n\
16273 strace [LOCATION] [if CONDITION]\n\
16274 LOCATION may be a linespec, explicit, or address location (described below) \n\
16275 or -m MARKER_ID.\n\n\
16276 If a marker id is specified, probe the marker with that name. With\n\
16277 no LOCATION, uses current execution address of the selected stack frame.\n\
16278 Static tracepoints accept an extra collect action -- ``collect $_sdata''.\n\
16279 This collects arbitrary user data passed in the probe point call to the\n\
16280 tracing library. You can inspect it when analyzing the trace buffer,\n\
16281 by printing the $_sdata variable like any other convenience variable.\n\
16282 \n\
16283 CONDITION is a boolean expression.\n\
16284 \n" LOCATION_HELP_STRING "\n\
16285 Multiple tracepoints at one place are permitted, and useful if their\n\
16286 conditions are different.\n\
16287 \n\
16288 Do \"help breakpoints\" for info on other commands dealing with breakpoints.\n\
16289 Do \"help tracepoints\" for info on other tracepoint commands."));
16290 set_cmd_completer (c, location_completer);
16291
16292 add_info ("tracepoints", info_tracepoints_command, _("\
16293 Status of specified tracepoints (all tracepoints if no argument).\n\
16294 Convenience variable \"$tpnum\" contains the number of the\n\
16295 last tracepoint set."));
16296
16297 add_info_alias ("tp", "tracepoints", 1);
16298
16299 add_cmd ("tracepoints", class_trace, delete_trace_command, _("\
16300 Delete specified tracepoints.\n\
16301 Arguments are tracepoint numbers, separated by spaces.\n\
16302 No argument means delete all tracepoints."),
16303 &deletelist);
16304 add_alias_cmd ("tr", "tracepoints", class_trace, 1, &deletelist);
16305
16306 c = add_cmd ("tracepoints", class_trace, disable_trace_command, _("\
16307 Disable specified tracepoints.\n\
16308 Arguments are tracepoint numbers, separated by spaces.\n\
16309 No argument means disable all tracepoints."),
16310 &disablelist);
16311 deprecate_cmd (c, "disable");
16312
16313 c = add_cmd ("tracepoints", class_trace, enable_trace_command, _("\
16314 Enable specified tracepoints.\n\
16315 Arguments are tracepoint numbers, separated by spaces.\n\
16316 No argument means enable all tracepoints."),
16317 &enablelist);
16318 deprecate_cmd (c, "enable");
16319
16320 add_com ("passcount", class_trace, trace_pass_command, _("\
16321 Set the passcount for a tracepoint.\n\
16322 The trace will end when the tracepoint has been passed 'count' times.\n\
16323 Usage: passcount COUNT TPNUM, where TPNUM may also be \"all\";\n\
16324 if TPNUM is omitted, passcount refers to the last tracepoint defined."));
16325
16326 add_prefix_cmd ("save", class_breakpoint, save_command,
16327 _("Save breakpoint definitions as a script."),
16328 &save_cmdlist, "save ",
16329 0/*allow-unknown*/, &cmdlist);
16330
16331 c = add_cmd ("breakpoints", class_breakpoint, save_breakpoints_command, _("\
16332 Save current breakpoint definitions as a script.\n\
16333 This includes all types of breakpoints (breakpoints, watchpoints,\n\
16334 catchpoints, tracepoints). Use the 'source' command in another debug\n\
16335 session to restore them."),
16336 &save_cmdlist);
16337 set_cmd_completer (c, filename_completer);
16338
16339 c = add_cmd ("tracepoints", class_trace, save_tracepoints_command, _("\
16340 Save current tracepoint definitions as a script.\n\
16341 Use the 'source' command in another debug session to restore them."),
16342 &save_cmdlist);
16343 set_cmd_completer (c, filename_completer);
16344
16345 c = add_com_alias ("save-tracepoints", "save tracepoints", class_trace, 0);
16346 deprecate_cmd (c, "save tracepoints");
16347
16348 add_prefix_cmd ("breakpoint", class_maintenance, set_breakpoint_cmd, _("\
16349 Breakpoint specific settings\n\
16350 Configure various breakpoint-specific variables such as\n\
16351 pending breakpoint behavior"),
16352 &breakpoint_set_cmdlist, "set breakpoint ",
16353 0/*allow-unknown*/, &setlist);
16354 add_prefix_cmd ("breakpoint", class_maintenance, show_breakpoint_cmd, _("\
16355 Breakpoint specific settings\n\
16356 Configure various breakpoint-specific variables such as\n\
16357 pending breakpoint behavior"),
16358 &breakpoint_show_cmdlist, "show breakpoint ",
16359 0/*allow-unknown*/, &showlist);
16360
16361 add_setshow_auto_boolean_cmd ("pending", no_class,
16362 &pending_break_support, _("\
16363 Set debugger's behavior regarding pending breakpoints."), _("\
16364 Show debugger's behavior regarding pending breakpoints."), _("\
16365 If on, an unrecognized breakpoint location will cause gdb to create a\n\
16366 pending breakpoint. If off, an unrecognized breakpoint location results in\n\
16367 an error. If auto, an unrecognized breakpoint location results in a\n\
16368 user-query to see if a pending breakpoint should be created."),
16369 NULL,
16370 show_pending_break_support,
16371 &breakpoint_set_cmdlist,
16372 &breakpoint_show_cmdlist);
16373
16374 pending_break_support = AUTO_BOOLEAN_AUTO;
16375
16376 add_setshow_boolean_cmd ("auto-hw", no_class,
16377 &automatic_hardware_breakpoints, _("\
16378 Set automatic usage of hardware breakpoints."), _("\
16379 Show automatic usage of hardware breakpoints."), _("\
16380 If set, the debugger will automatically use hardware breakpoints for\n\
16381 breakpoints set with \"break\" but falling in read-only memory. If not set,\n\
16382 a warning will be emitted for such breakpoints."),
16383 NULL,
16384 show_automatic_hardware_breakpoints,
16385 &breakpoint_set_cmdlist,
16386 &breakpoint_show_cmdlist);
16387
16388 add_setshow_boolean_cmd ("always-inserted", class_support,
16389 &always_inserted_mode, _("\
16390 Set mode for inserting breakpoints."), _("\
16391 Show mode for inserting breakpoints."), _("\
16392 When this mode is on, breakpoints are inserted immediately as soon as\n\
16393 they're created, kept inserted even when execution stops, and removed\n\
16394 only when the user deletes them. When this mode is off (the default),\n\
16395 breakpoints are inserted only when execution continues, and removed\n\
16396 when execution stops."),
16397 NULL,
16398 &show_always_inserted_mode,
16399 &breakpoint_set_cmdlist,
16400 &breakpoint_show_cmdlist);
16401
16402 add_setshow_enum_cmd ("condition-evaluation", class_breakpoint,
16403 condition_evaluation_enums,
16404 &condition_evaluation_mode_1, _("\
16405 Set mode of breakpoint condition evaluation."), _("\
16406 Show mode of breakpoint condition evaluation."), _("\
16407 When this is set to \"host\", breakpoint conditions will be\n\
16408 evaluated on the host's side by GDB. When it is set to \"target\",\n\
16409 breakpoint conditions will be downloaded to the target (if the target\n\
16410 supports such feature) and conditions will be evaluated on the target's side.\n\
16411 If this is set to \"auto\" (default), this will be automatically set to\n\
16412 \"target\" if it supports condition evaluation, otherwise it will\n\
16413 be set to \"gdb\""),
16414 &set_condition_evaluation_mode,
16415 &show_condition_evaluation_mode,
16416 &breakpoint_set_cmdlist,
16417 &breakpoint_show_cmdlist);
16418
16419 add_com ("break-range", class_breakpoint, break_range_command, _("\
16420 Set a breakpoint for an address range.\n\
16421 break-range START-LOCATION, END-LOCATION\n\
16422 where START-LOCATION and END-LOCATION can be one of the following:\n\
16423 LINENUM, for that line in the current file,\n\
16424 FILE:LINENUM, for that line in that file,\n\
16425 +OFFSET, for that number of lines after the current line\n\
16426 or the start of the range\n\
16427 FUNCTION, for the first line in that function,\n\
16428 FILE:FUNCTION, to distinguish among like-named static functions.\n\
16429 *ADDRESS, for the instruction at that address.\n\
16430 \n\
16431 The breakpoint will stop execution of the inferior whenever it executes\n\
16432 an instruction at any address within the [START-LOCATION, END-LOCATION]\n\
16433 range (including START-LOCATION and END-LOCATION)."));
16434
16435 c = add_com ("dprintf", class_breakpoint, dprintf_command, _("\
16436 Set a dynamic printf at specified location.\n\
16437 dprintf location,format string,arg1,arg2,...\n\
16438 location may be a linespec, explicit, or address location.\n"
16439 "\n" LOCATION_HELP_STRING));
16440 set_cmd_completer (c, location_completer);
16441
16442 add_setshow_enum_cmd ("dprintf-style", class_support,
16443 dprintf_style_enums, &dprintf_style, _("\
16444 Set the style of usage for dynamic printf."), _("\
16445 Show the style of usage for dynamic printf."), _("\
16446 This setting chooses how GDB will do a dynamic printf.\n\
16447 If the value is \"gdb\", then the printing is done by GDB to its own\n\
16448 console, as with the \"printf\" command.\n\
16449 If the value is \"call\", the print is done by calling a function in your\n\
16450 program; by default printf(), but you can choose a different function or\n\
16451 output stream by setting dprintf-function and dprintf-channel."),
16452 update_dprintf_commands, NULL,
16453 &setlist, &showlist);
16454
16455 dprintf_function = xstrdup ("printf");
16456 add_setshow_string_cmd ("dprintf-function", class_support,
16457 &dprintf_function, _("\
16458 Set the function to use for dynamic printf"), _("\
16459 Show the function to use for dynamic printf"), NULL,
16460 update_dprintf_commands, NULL,
16461 &setlist, &showlist);
16462
16463 dprintf_channel = xstrdup ("");
16464 add_setshow_string_cmd ("dprintf-channel", class_support,
16465 &dprintf_channel, _("\
16466 Set the channel to use for dynamic printf"), _("\
16467 Show the channel to use for dynamic printf"), NULL,
16468 update_dprintf_commands, NULL,
16469 &setlist, &showlist);
16470
16471 add_setshow_boolean_cmd ("disconnected-dprintf", no_class,
16472 &disconnected_dprintf, _("\
16473 Set whether dprintf continues after GDB disconnects."), _("\
16474 Show whether dprintf continues after GDB disconnects."), _("\
16475 Use this to let dprintf commands continue to hit and produce output\n\
16476 even if GDB disconnects or detaches from the target."),
16477 NULL,
16478 NULL,
16479 &setlist, &showlist);
16480
16481 add_com ("agent-printf", class_vars, agent_printf_command, _("\
16482 agent-printf \"printf format string\", arg1, arg2, arg3, ..., argn\n\
16483 (target agent only) This is useful for formatted output in user-defined commands."));
16484
16485 automatic_hardware_breakpoints = 1;
16486
16487 observer_attach_about_to_proceed (breakpoint_about_to_proceed);
16488 observer_attach_thread_exit (remove_threaded_breakpoints);
16489 }
This page took 0.441503 seconds and 4 git commands to generate.