ae6f161ec942280c00ad3431bf1b1746b863655f
[deliverable/binutils-gdb.git] / gdb / breakpoint.c
1 /* Everything about breakpoints, for GDB.
2
3 Copyright (C) 1986-2018 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20 #include "defs.h"
21 #include "arch-utils.h"
22 #include <ctype.h>
23 #include "hashtab.h"
24 #include "symtab.h"
25 #include "frame.h"
26 #include "breakpoint.h"
27 #include "tracepoint.h"
28 #include "gdbtypes.h"
29 #include "expression.h"
30 #include "gdbcore.h"
31 #include "gdbcmd.h"
32 #include "value.h"
33 #include "command.h"
34 #include "inferior.h"
35 #include "infrun.h"
36 #include "gdbthread.h"
37 #include "target.h"
38 #include "language.h"
39 #include "gdb-demangle.h"
40 #include "filenames.h"
41 #include "annotate.h"
42 #include "symfile.h"
43 #include "objfiles.h"
44 #include "source.h"
45 #include "linespec.h"
46 #include "completer.h"
47 #include "ui-out.h"
48 #include "cli/cli-script.h"
49 #include "block.h"
50 #include "solib.h"
51 #include "solist.h"
52 #include "observable.h"
53 #include "memattr.h"
54 #include "ada-lang.h"
55 #include "top.h"
56 #include "valprint.h"
57 #include "jit.h"
58 #include "parser-defs.h"
59 #include "gdb_regex.h"
60 #include "probe.h"
61 #include "cli/cli-utils.h"
62 #include "continuations.h"
63 #include "stack.h"
64 #include "skip.h"
65 #include "ax-gdb.h"
66 #include "dummy-frame.h"
67 #include "interps.h"
68 #include "format.h"
69 #include "thread-fsm.h"
70 #include "tid-parse.h"
71
72 /* readline include files */
73 #include "readline/readline.h"
74 #include "readline/history.h"
75
76 /* readline defines this. */
77 #undef savestring
78
79 #include "mi/mi-common.h"
80 #include "extension.h"
81 #include <algorithm>
82 #include "progspace-and-thread.h"
83 #include "common/array-view.h"
84 #include "common/gdb_optional.h"
85
86 /* Enums for exception-handling support. */
87 enum exception_event_kind
88 {
89 EX_EVENT_THROW,
90 EX_EVENT_RETHROW,
91 EX_EVENT_CATCH
92 };
93
94 /* Prototypes for local functions. */
95
96 static void map_breakpoint_numbers (const char *,
97 gdb::function_view<void (breakpoint *)>);
98
99 static void breakpoint_re_set_default (struct breakpoint *);
100
101 static void
102 create_sals_from_location_default (const struct event_location *location,
103 struct linespec_result *canonical,
104 enum bptype type_wanted);
105
106 static void create_breakpoints_sal_default (struct gdbarch *,
107 struct linespec_result *,
108 gdb::unique_xmalloc_ptr<char>,
109 gdb::unique_xmalloc_ptr<char>,
110 enum bptype,
111 enum bpdisp, int, int,
112 int,
113 const struct breakpoint_ops *,
114 int, int, int, unsigned);
115
116 static std::vector<symtab_and_line> decode_location_default
117 (struct breakpoint *b, const struct event_location *location,
118 struct program_space *search_pspace);
119
120 static int can_use_hardware_watchpoint
121 (const std::vector<value_ref_ptr> &vals);
122
123 static void mention (struct breakpoint *);
124
125 static struct breakpoint *set_raw_breakpoint_without_location (struct gdbarch *,
126 enum bptype,
127 const struct breakpoint_ops *);
128 static struct bp_location *add_location_to_breakpoint (struct breakpoint *,
129 const struct symtab_and_line *);
130
131 /* This function is used in gdbtk sources and thus can not be made
132 static. */
133 struct breakpoint *set_raw_breakpoint (struct gdbarch *gdbarch,
134 struct symtab_and_line,
135 enum bptype,
136 const struct breakpoint_ops *);
137
138 static struct breakpoint *
139 momentary_breakpoint_from_master (struct breakpoint *orig,
140 enum bptype type,
141 const struct breakpoint_ops *ops,
142 int loc_enabled);
143
144 static void breakpoint_adjustment_warning (CORE_ADDR, CORE_ADDR, int, int);
145
146 static CORE_ADDR adjust_breakpoint_address (struct gdbarch *gdbarch,
147 CORE_ADDR bpaddr,
148 enum bptype bptype);
149
150 static void describe_other_breakpoints (struct gdbarch *,
151 struct program_space *, CORE_ADDR,
152 struct obj_section *, int);
153
154 static int watchpoint_locations_match (struct bp_location *loc1,
155 struct bp_location *loc2);
156
157 static int breakpoint_location_address_match (struct bp_location *bl,
158 const struct address_space *aspace,
159 CORE_ADDR addr);
160
161 static int breakpoint_location_address_range_overlap (struct bp_location *,
162 const address_space *,
163 CORE_ADDR, int);
164
165 static int remove_breakpoint (struct bp_location *);
166 static int remove_breakpoint_1 (struct bp_location *, enum remove_bp_reason);
167
168 static enum print_stop_action print_bp_stop_message (bpstat bs);
169
170 static int hw_breakpoint_used_count (void);
171
172 static int hw_watchpoint_use_count (struct breakpoint *);
173
174 static int hw_watchpoint_used_count_others (struct breakpoint *except,
175 enum bptype type,
176 int *other_type_used);
177
178 static void enable_breakpoint_disp (struct breakpoint *, enum bpdisp,
179 int count);
180
181 static void free_bp_location (struct bp_location *loc);
182 static void incref_bp_location (struct bp_location *loc);
183 static void decref_bp_location (struct bp_location **loc);
184
185 static struct bp_location *allocate_bp_location (struct breakpoint *bpt);
186
187 /* update_global_location_list's modes of operation wrt to whether to
188 insert locations now. */
189 enum ugll_insert_mode
190 {
191 /* Don't insert any breakpoint locations into the inferior, only
192 remove already-inserted locations that no longer should be
193 inserted. Functions that delete a breakpoint or breakpoints
194 should specify this mode, so that deleting a breakpoint doesn't
195 have the side effect of inserting the locations of other
196 breakpoints that are marked not-inserted, but should_be_inserted
197 returns true on them.
198
199 This behavior is useful is situations close to tear-down -- e.g.,
200 after an exec, while the target still has execution, but
201 breakpoint shadows of the previous executable image should *NOT*
202 be restored to the new image; or before detaching, where the
203 target still has execution and wants to delete breakpoints from
204 GDB's lists, and all breakpoints had already been removed from
205 the inferior. */
206 UGLL_DONT_INSERT,
207
208 /* May insert breakpoints iff breakpoints_should_be_inserted_now
209 claims breakpoints should be inserted now. */
210 UGLL_MAY_INSERT,
211
212 /* Insert locations now, irrespective of
213 breakpoints_should_be_inserted_now. E.g., say all threads are
214 stopped right now, and the user did "continue". We need to
215 insert breakpoints _before_ resuming the target, but
216 UGLL_MAY_INSERT wouldn't insert them, because
217 breakpoints_should_be_inserted_now returns false at that point,
218 as no thread is running yet. */
219 UGLL_INSERT
220 };
221
222 static void update_global_location_list (enum ugll_insert_mode);
223
224 static void update_global_location_list_nothrow (enum ugll_insert_mode);
225
226 static int is_hardware_watchpoint (const struct breakpoint *bpt);
227
228 static void insert_breakpoint_locations (void);
229
230 static void trace_pass_command (const char *, int);
231
232 static void set_tracepoint_count (int num);
233
234 static int is_masked_watchpoint (const struct breakpoint *b);
235
236 static struct bp_location **get_first_locp_gte_addr (CORE_ADDR address);
237
238 /* Return 1 if B refers to a static tracepoint set by marker ("-m"), zero
239 otherwise. */
240
241 static int strace_marker_p (struct breakpoint *b);
242
243 /* The breakpoint_ops structure to be inherited by all breakpoint_ops
244 that are implemented on top of software or hardware breakpoints
245 (user breakpoints, internal and momentary breakpoints, etc.). */
246 static struct breakpoint_ops bkpt_base_breakpoint_ops;
247
248 /* Internal breakpoints class type. */
249 static struct breakpoint_ops internal_breakpoint_ops;
250
251 /* Momentary breakpoints class type. */
252 static struct breakpoint_ops momentary_breakpoint_ops;
253
254 /* The breakpoint_ops structure to be used in regular user created
255 breakpoints. */
256 struct breakpoint_ops bkpt_breakpoint_ops;
257
258 /* Breakpoints set on probes. */
259 static struct breakpoint_ops bkpt_probe_breakpoint_ops;
260
261 /* Dynamic printf class type. */
262 struct breakpoint_ops dprintf_breakpoint_ops;
263
264 /* The style in which to perform a dynamic printf. This is a user
265 option because different output options have different tradeoffs;
266 if GDB does the printing, there is better error handling if there
267 is a problem with any of the arguments, but using an inferior
268 function lets you have special-purpose printers and sending of
269 output to the same place as compiled-in print functions. */
270
271 static const char dprintf_style_gdb[] = "gdb";
272 static const char dprintf_style_call[] = "call";
273 static const char dprintf_style_agent[] = "agent";
274 static const char *const dprintf_style_enums[] = {
275 dprintf_style_gdb,
276 dprintf_style_call,
277 dprintf_style_agent,
278 NULL
279 };
280 static const char *dprintf_style = dprintf_style_gdb;
281
282 /* The function to use for dynamic printf if the preferred style is to
283 call into the inferior. The value is simply a string that is
284 copied into the command, so it can be anything that GDB can
285 evaluate to a callable address, not necessarily a function name. */
286
287 static char *dprintf_function;
288
289 /* The channel to use for dynamic printf if the preferred style is to
290 call into the inferior; if a nonempty string, it will be passed to
291 the call as the first argument, with the format string as the
292 second. As with the dprintf function, this can be anything that
293 GDB knows how to evaluate, so in addition to common choices like
294 "stderr", this could be an app-specific expression like
295 "mystreams[curlogger]". */
296
297 static char *dprintf_channel;
298
299 /* True if dprintf commands should continue to operate even if GDB
300 has disconnected. */
301 static int disconnected_dprintf = 1;
302
303 struct command_line *
304 breakpoint_commands (struct breakpoint *b)
305 {
306 return b->commands ? b->commands.get () : NULL;
307 }
308
309 /* Flag indicating that a command has proceeded the inferior past the
310 current breakpoint. */
311
312 static int breakpoint_proceeded;
313
314 const char *
315 bpdisp_text (enum bpdisp disp)
316 {
317 /* NOTE: the following values are a part of MI protocol and
318 represent values of 'disp' field returned when inferior stops at
319 a breakpoint. */
320 static const char * const bpdisps[] = {"del", "dstp", "dis", "keep"};
321
322 return bpdisps[(int) disp];
323 }
324
325 /* Prototypes for exported functions. */
326 /* If FALSE, gdb will not use hardware support for watchpoints, even
327 if such is available. */
328 static int can_use_hw_watchpoints;
329
330 static void
331 show_can_use_hw_watchpoints (struct ui_file *file, int from_tty,
332 struct cmd_list_element *c,
333 const char *value)
334 {
335 fprintf_filtered (file,
336 _("Debugger's willingness to use "
337 "watchpoint hardware is %s.\n"),
338 value);
339 }
340
341 /* If AUTO_BOOLEAN_FALSE, gdb will not attempt to create pending breakpoints.
342 If AUTO_BOOLEAN_TRUE, gdb will automatically create pending breakpoints
343 for unrecognized breakpoint locations.
344 If AUTO_BOOLEAN_AUTO, gdb will query when breakpoints are unrecognized. */
345 static enum auto_boolean pending_break_support;
346 static void
347 show_pending_break_support (struct ui_file *file, int from_tty,
348 struct cmd_list_element *c,
349 const char *value)
350 {
351 fprintf_filtered (file,
352 _("Debugger's behavior regarding "
353 "pending breakpoints is %s.\n"),
354 value);
355 }
356
357 /* If 1, gdb will automatically use hardware breakpoints for breakpoints
358 set with "break" but falling in read-only memory.
359 If 0, gdb will warn about such breakpoints, but won't automatically
360 use hardware breakpoints. */
361 static int automatic_hardware_breakpoints;
362 static void
363 show_automatic_hardware_breakpoints (struct ui_file *file, int from_tty,
364 struct cmd_list_element *c,
365 const char *value)
366 {
367 fprintf_filtered (file,
368 _("Automatic usage of hardware breakpoints is %s.\n"),
369 value);
370 }
371
372 /* If on, GDB keeps breakpoints inserted even if the inferior is
373 stopped, and immediately inserts any new breakpoints as soon as
374 they're created. If off (default), GDB keeps breakpoints off of
375 the target as long as possible. That is, it delays inserting
376 breakpoints until the next resume, and removes them again when the
377 target fully stops. This is a bit safer in case GDB crashes while
378 processing user input. */
379 static int always_inserted_mode = 0;
380
381 static void
382 show_always_inserted_mode (struct ui_file *file, int from_tty,
383 struct cmd_list_element *c, const char *value)
384 {
385 fprintf_filtered (file, _("Always inserted breakpoint mode is %s.\n"),
386 value);
387 }
388
389 /* See breakpoint.h. */
390
391 int
392 breakpoints_should_be_inserted_now (void)
393 {
394 if (gdbarch_has_global_breakpoints (target_gdbarch ()))
395 {
396 /* If breakpoints are global, they should be inserted even if no
397 thread under gdb's control is running, or even if there are
398 no threads under GDB's control yet. */
399 return 1;
400 }
401 else if (target_has_execution)
402 {
403 struct thread_info *tp;
404
405 if (always_inserted_mode)
406 {
407 /* The user wants breakpoints inserted even if all threads
408 are stopped. */
409 return 1;
410 }
411
412 if (threads_are_executing ())
413 return 1;
414
415 /* Don't remove breakpoints yet if, even though all threads are
416 stopped, we still have events to process. */
417 ALL_NON_EXITED_THREADS (tp)
418 if (tp->resumed
419 && tp->suspend.waitstatus_pending_p)
420 return 1;
421 }
422 return 0;
423 }
424
425 static const char condition_evaluation_both[] = "host or target";
426
427 /* Modes for breakpoint condition evaluation. */
428 static const char condition_evaluation_auto[] = "auto";
429 static const char condition_evaluation_host[] = "host";
430 static const char condition_evaluation_target[] = "target";
431 static const char *const condition_evaluation_enums[] = {
432 condition_evaluation_auto,
433 condition_evaluation_host,
434 condition_evaluation_target,
435 NULL
436 };
437
438 /* Global that holds the current mode for breakpoint condition evaluation. */
439 static const char *condition_evaluation_mode_1 = condition_evaluation_auto;
440
441 /* Global that we use to display information to the user (gets its value from
442 condition_evaluation_mode_1. */
443 static const char *condition_evaluation_mode = condition_evaluation_auto;
444
445 /* Translate a condition evaluation mode MODE into either "host"
446 or "target". This is used mostly to translate from "auto" to the
447 real setting that is being used. It returns the translated
448 evaluation mode. */
449
450 static const char *
451 translate_condition_evaluation_mode (const char *mode)
452 {
453 if (mode == condition_evaluation_auto)
454 {
455 if (target_supports_evaluation_of_breakpoint_conditions ())
456 return condition_evaluation_target;
457 else
458 return condition_evaluation_host;
459 }
460 else
461 return mode;
462 }
463
464 /* Discovers what condition_evaluation_auto translates to. */
465
466 static const char *
467 breakpoint_condition_evaluation_mode (void)
468 {
469 return translate_condition_evaluation_mode (condition_evaluation_mode);
470 }
471
472 /* Return true if GDB should evaluate breakpoint conditions or false
473 otherwise. */
474
475 static int
476 gdb_evaluates_breakpoint_condition_p (void)
477 {
478 const char *mode = breakpoint_condition_evaluation_mode ();
479
480 return (mode == condition_evaluation_host);
481 }
482
483 /* Are we executing breakpoint commands? */
484 static int executing_breakpoint_commands;
485
486 /* Are overlay event breakpoints enabled? */
487 static int overlay_events_enabled;
488
489 /* See description in breakpoint.h. */
490 int target_exact_watchpoints = 0;
491
492 /* Walk the following statement or block through all breakpoints.
493 ALL_BREAKPOINTS_SAFE does so even if the statement deletes the
494 current breakpoint. */
495
496 #define ALL_BREAKPOINTS(B) for (B = breakpoint_chain; B; B = B->next)
497
498 #define ALL_BREAKPOINTS_SAFE(B,TMP) \
499 for (B = breakpoint_chain; \
500 B ? (TMP=B->next, 1): 0; \
501 B = TMP)
502
503 /* Similar iterator for the low-level breakpoints. SAFE variant is
504 not provided so update_global_location_list must not be called
505 while executing the block of ALL_BP_LOCATIONS. */
506
507 #define ALL_BP_LOCATIONS(B,BP_TMP) \
508 for (BP_TMP = bp_locations; \
509 BP_TMP < bp_locations + bp_locations_count && (B = *BP_TMP);\
510 BP_TMP++)
511
512 /* Iterates through locations with address ADDRESS for the currently selected
513 program space. BP_LOCP_TMP points to each object. BP_LOCP_START points
514 to where the loop should start from.
515 If BP_LOCP_START is a NULL pointer, the macro automatically seeks the
516 appropriate location to start with. */
517
518 #define ALL_BP_LOCATIONS_AT_ADDR(BP_LOCP_TMP, BP_LOCP_START, ADDRESS) \
519 for (BP_LOCP_START = BP_LOCP_START == NULL ? get_first_locp_gte_addr (ADDRESS) : BP_LOCP_START, \
520 BP_LOCP_TMP = BP_LOCP_START; \
521 BP_LOCP_START \
522 && (BP_LOCP_TMP < bp_locations + bp_locations_count \
523 && (*BP_LOCP_TMP)->address == ADDRESS); \
524 BP_LOCP_TMP++)
525
526 /* Iterator for tracepoints only. */
527
528 #define ALL_TRACEPOINTS(B) \
529 for (B = breakpoint_chain; B; B = B->next) \
530 if (is_tracepoint (B))
531
532 /* Chains of all breakpoints defined. */
533
534 struct breakpoint *breakpoint_chain;
535
536 /* Array is sorted by bp_locations_compare - primarily by the ADDRESS. */
537
538 static struct bp_location **bp_locations;
539
540 /* Number of elements of BP_LOCATIONS. */
541
542 static unsigned bp_locations_count;
543
544 /* Maximum alignment offset between bp_target_info.PLACED_ADDRESS and
545 ADDRESS for the current elements of BP_LOCATIONS which get a valid
546 result from bp_location_has_shadow. You can use it for roughly
547 limiting the subrange of BP_LOCATIONS to scan for shadow bytes for
548 an address you need to read. */
549
550 static CORE_ADDR bp_locations_placed_address_before_address_max;
551
552 /* Maximum offset plus alignment between bp_target_info.PLACED_ADDRESS
553 + bp_target_info.SHADOW_LEN and ADDRESS for the current elements of
554 BP_LOCATIONS which get a valid result from bp_location_has_shadow.
555 You can use it for roughly limiting the subrange of BP_LOCATIONS to
556 scan for shadow bytes for an address you need to read. */
557
558 static CORE_ADDR bp_locations_shadow_len_after_address_max;
559
560 /* The locations that no longer correspond to any breakpoint, unlinked
561 from the bp_locations array, but for which a hit may still be
562 reported by a target. */
563 VEC(bp_location_p) *moribund_locations = NULL;
564
565 /* Number of last breakpoint made. */
566
567 static int breakpoint_count;
568
569 /* The value of `breakpoint_count' before the last command that
570 created breakpoints. If the last (break-like) command created more
571 than one breakpoint, then the difference between BREAKPOINT_COUNT
572 and PREV_BREAKPOINT_COUNT is more than one. */
573 static int prev_breakpoint_count;
574
575 /* Number of last tracepoint made. */
576
577 static int tracepoint_count;
578
579 static struct cmd_list_element *breakpoint_set_cmdlist;
580 static struct cmd_list_element *breakpoint_show_cmdlist;
581 struct cmd_list_element *save_cmdlist;
582
583 /* See declaration at breakpoint.h. */
584
585 struct breakpoint *
586 breakpoint_find_if (int (*func) (struct breakpoint *b, void *d),
587 void *user_data)
588 {
589 struct breakpoint *b = NULL;
590
591 ALL_BREAKPOINTS (b)
592 {
593 if (func (b, user_data) != 0)
594 break;
595 }
596
597 return b;
598 }
599
600 /* Return whether a breakpoint is an active enabled breakpoint. */
601 static int
602 breakpoint_enabled (struct breakpoint *b)
603 {
604 return (b->enable_state == bp_enabled);
605 }
606
607 /* Set breakpoint count to NUM. */
608
609 static void
610 set_breakpoint_count (int num)
611 {
612 prev_breakpoint_count = breakpoint_count;
613 breakpoint_count = num;
614 set_internalvar_integer (lookup_internalvar ("bpnum"), num);
615 }
616
617 /* Used by `start_rbreak_breakpoints' below, to record the current
618 breakpoint count before "rbreak" creates any breakpoint. */
619 static int rbreak_start_breakpoint_count;
620
621 /* Called at the start an "rbreak" command to record the first
622 breakpoint made. */
623
624 scoped_rbreak_breakpoints::scoped_rbreak_breakpoints ()
625 {
626 rbreak_start_breakpoint_count = breakpoint_count;
627 }
628
629 /* Called at the end of an "rbreak" command to record the last
630 breakpoint made. */
631
632 scoped_rbreak_breakpoints::~scoped_rbreak_breakpoints ()
633 {
634 prev_breakpoint_count = rbreak_start_breakpoint_count;
635 }
636
637 /* Used in run_command to zero the hit count when a new run starts. */
638
639 void
640 clear_breakpoint_hit_counts (void)
641 {
642 struct breakpoint *b;
643
644 ALL_BREAKPOINTS (b)
645 b->hit_count = 0;
646 }
647
648 \f
649 /* Return the breakpoint with the specified number, or NULL
650 if the number does not refer to an existing breakpoint. */
651
652 struct breakpoint *
653 get_breakpoint (int num)
654 {
655 struct breakpoint *b;
656
657 ALL_BREAKPOINTS (b)
658 if (b->number == num)
659 return b;
660
661 return NULL;
662 }
663
664 \f
665
666 /* Mark locations as "conditions have changed" in case the target supports
667 evaluating conditions on its side. */
668
669 static void
670 mark_breakpoint_modified (struct breakpoint *b)
671 {
672 struct bp_location *loc;
673
674 /* This is only meaningful if the target is
675 evaluating conditions and if the user has
676 opted for condition evaluation on the target's
677 side. */
678 if (gdb_evaluates_breakpoint_condition_p ()
679 || !target_supports_evaluation_of_breakpoint_conditions ())
680 return;
681
682 if (!is_breakpoint (b))
683 return;
684
685 for (loc = b->loc; loc; loc = loc->next)
686 loc->condition_changed = condition_modified;
687 }
688
689 /* Mark location as "conditions have changed" in case the target supports
690 evaluating conditions on its side. */
691
692 static void
693 mark_breakpoint_location_modified (struct bp_location *loc)
694 {
695 /* This is only meaningful if the target is
696 evaluating conditions and if the user has
697 opted for condition evaluation on the target's
698 side. */
699 if (gdb_evaluates_breakpoint_condition_p ()
700 || !target_supports_evaluation_of_breakpoint_conditions ())
701
702 return;
703
704 if (!is_breakpoint (loc->owner))
705 return;
706
707 loc->condition_changed = condition_modified;
708 }
709
710 /* Sets the condition-evaluation mode using the static global
711 condition_evaluation_mode. */
712
713 static void
714 set_condition_evaluation_mode (const char *args, int from_tty,
715 struct cmd_list_element *c)
716 {
717 const char *old_mode, *new_mode;
718
719 if ((condition_evaluation_mode_1 == condition_evaluation_target)
720 && !target_supports_evaluation_of_breakpoint_conditions ())
721 {
722 condition_evaluation_mode_1 = condition_evaluation_mode;
723 warning (_("Target does not support breakpoint condition evaluation.\n"
724 "Using host evaluation mode instead."));
725 return;
726 }
727
728 new_mode = translate_condition_evaluation_mode (condition_evaluation_mode_1);
729 old_mode = translate_condition_evaluation_mode (condition_evaluation_mode);
730
731 /* Flip the switch. Flip it even if OLD_MODE == NEW_MODE as one of the
732 settings was "auto". */
733 condition_evaluation_mode = condition_evaluation_mode_1;
734
735 /* Only update the mode if the user picked a different one. */
736 if (new_mode != old_mode)
737 {
738 struct bp_location *loc, **loc_tmp;
739 /* If the user switched to a different evaluation mode, we
740 need to synch the changes with the target as follows:
741
742 "host" -> "target": Send all (valid) conditions to the target.
743 "target" -> "host": Remove all the conditions from the target.
744 */
745
746 if (new_mode == condition_evaluation_target)
747 {
748 /* Mark everything modified and synch conditions with the
749 target. */
750 ALL_BP_LOCATIONS (loc, loc_tmp)
751 mark_breakpoint_location_modified (loc);
752 }
753 else
754 {
755 /* Manually mark non-duplicate locations to synch conditions
756 with the target. We do this to remove all the conditions the
757 target knows about. */
758 ALL_BP_LOCATIONS (loc, loc_tmp)
759 if (is_breakpoint (loc->owner) && loc->inserted)
760 loc->needs_update = 1;
761 }
762
763 /* Do the update. */
764 update_global_location_list (UGLL_MAY_INSERT);
765 }
766
767 return;
768 }
769
770 /* Shows the current mode of breakpoint condition evaluation. Explicitly shows
771 what "auto" is translating to. */
772
773 static void
774 show_condition_evaluation_mode (struct ui_file *file, int from_tty,
775 struct cmd_list_element *c, const char *value)
776 {
777 if (condition_evaluation_mode == condition_evaluation_auto)
778 fprintf_filtered (file,
779 _("Breakpoint condition evaluation "
780 "mode is %s (currently %s).\n"),
781 value,
782 breakpoint_condition_evaluation_mode ());
783 else
784 fprintf_filtered (file, _("Breakpoint condition evaluation mode is %s.\n"),
785 value);
786 }
787
788 /* A comparison function for bp_location AP and BP that is used by
789 bsearch. This comparison function only cares about addresses, unlike
790 the more general bp_locations_compare function. */
791
792 static int
793 bp_locations_compare_addrs (const void *ap, const void *bp)
794 {
795 const struct bp_location *a = *(const struct bp_location **) ap;
796 const struct bp_location *b = *(const struct bp_location **) bp;
797
798 if (a->address == b->address)
799 return 0;
800 else
801 return ((a->address > b->address) - (a->address < b->address));
802 }
803
804 /* Helper function to skip all bp_locations with addresses
805 less than ADDRESS. It returns the first bp_location that
806 is greater than or equal to ADDRESS. If none is found, just
807 return NULL. */
808
809 static struct bp_location **
810 get_first_locp_gte_addr (CORE_ADDR address)
811 {
812 struct bp_location dummy_loc;
813 struct bp_location *dummy_locp = &dummy_loc;
814 struct bp_location **locp_found = NULL;
815
816 /* Initialize the dummy location's address field. */
817 dummy_loc.address = address;
818
819 /* Find a close match to the first location at ADDRESS. */
820 locp_found = ((struct bp_location **)
821 bsearch (&dummy_locp, bp_locations, bp_locations_count,
822 sizeof (struct bp_location **),
823 bp_locations_compare_addrs));
824
825 /* Nothing was found, nothing left to do. */
826 if (locp_found == NULL)
827 return NULL;
828
829 /* We may have found a location that is at ADDRESS but is not the first in the
830 location's list. Go backwards (if possible) and locate the first one. */
831 while ((locp_found - 1) >= bp_locations
832 && (*(locp_found - 1))->address == address)
833 locp_found--;
834
835 return locp_found;
836 }
837
838 void
839 set_breakpoint_condition (struct breakpoint *b, const char *exp,
840 int from_tty)
841 {
842 xfree (b->cond_string);
843 b->cond_string = NULL;
844
845 if (is_watchpoint (b))
846 {
847 struct watchpoint *w = (struct watchpoint *) b;
848
849 w->cond_exp.reset ();
850 }
851 else
852 {
853 struct bp_location *loc;
854
855 for (loc = b->loc; loc; loc = loc->next)
856 {
857 loc->cond.reset ();
858
859 /* No need to free the condition agent expression
860 bytecode (if we have one). We will handle this
861 when we go through update_global_location_list. */
862 }
863 }
864
865 if (*exp == 0)
866 {
867 if (from_tty)
868 printf_filtered (_("Breakpoint %d now unconditional.\n"), b->number);
869 }
870 else
871 {
872 const char *arg = exp;
873
874 /* I don't know if it matters whether this is the string the user
875 typed in or the decompiled expression. */
876 b->cond_string = xstrdup (arg);
877 b->condition_not_parsed = 0;
878
879 if (is_watchpoint (b))
880 {
881 struct watchpoint *w = (struct watchpoint *) b;
882
883 innermost_block.reset ();
884 arg = exp;
885 w->cond_exp = parse_exp_1 (&arg, 0, 0, 0);
886 if (*arg)
887 error (_("Junk at end of expression"));
888 w->cond_exp_valid_block = innermost_block.block ();
889 }
890 else
891 {
892 struct bp_location *loc;
893
894 for (loc = b->loc; loc; loc = loc->next)
895 {
896 arg = exp;
897 loc->cond =
898 parse_exp_1 (&arg, loc->address,
899 block_for_pc (loc->address), 0);
900 if (*arg)
901 error (_("Junk at end of expression"));
902 }
903 }
904 }
905 mark_breakpoint_modified (b);
906
907 gdb::observers::breakpoint_modified.notify (b);
908 }
909
910 /* Completion for the "condition" command. */
911
912 static void
913 condition_completer (struct cmd_list_element *cmd,
914 completion_tracker &tracker,
915 const char *text, const char *word)
916 {
917 const char *space;
918
919 text = skip_spaces (text);
920 space = skip_to_space (text);
921 if (*space == '\0')
922 {
923 int len;
924 struct breakpoint *b;
925
926 if (text[0] == '$')
927 {
928 /* We don't support completion of history indices. */
929 if (!isdigit (text[1]))
930 complete_internalvar (tracker, &text[1]);
931 return;
932 }
933
934 /* We're completing the breakpoint number. */
935 len = strlen (text);
936
937 ALL_BREAKPOINTS (b)
938 {
939 char number[50];
940
941 xsnprintf (number, sizeof (number), "%d", b->number);
942
943 if (strncmp (number, text, len) == 0)
944 {
945 gdb::unique_xmalloc_ptr<char> copy (xstrdup (number));
946 tracker.add_completion (std::move (copy));
947 }
948 }
949
950 return;
951 }
952
953 /* We're completing the expression part. */
954 text = skip_spaces (space);
955 expression_completer (cmd, tracker, text, word);
956 }
957
958 /* condition N EXP -- set break condition of breakpoint N to EXP. */
959
960 static void
961 condition_command (const char *arg, int from_tty)
962 {
963 struct breakpoint *b;
964 const char *p;
965 int bnum;
966
967 if (arg == 0)
968 error_no_arg (_("breakpoint number"));
969
970 p = arg;
971 bnum = get_number (&p);
972 if (bnum == 0)
973 error (_("Bad breakpoint argument: '%s'"), arg);
974
975 ALL_BREAKPOINTS (b)
976 if (b->number == bnum)
977 {
978 /* Check if this breakpoint has a "stop" method implemented in an
979 extension language. This method and conditions entered into GDB
980 from the CLI are mutually exclusive. */
981 const struct extension_language_defn *extlang
982 = get_breakpoint_cond_ext_lang (b, EXT_LANG_NONE);
983
984 if (extlang != NULL)
985 {
986 error (_("Only one stop condition allowed. There is currently"
987 " a %s stop condition defined for this breakpoint."),
988 ext_lang_capitalized_name (extlang));
989 }
990 set_breakpoint_condition (b, p, from_tty);
991
992 if (is_breakpoint (b))
993 update_global_location_list (UGLL_MAY_INSERT);
994
995 return;
996 }
997
998 error (_("No breakpoint number %d."), bnum);
999 }
1000
1001 /* Check that COMMAND do not contain commands that are suitable
1002 only for tracepoints and not suitable for ordinary breakpoints.
1003 Throw if any such commands is found. */
1004
1005 static void
1006 check_no_tracepoint_commands (struct command_line *commands)
1007 {
1008 struct command_line *c;
1009
1010 for (c = commands; c; c = c->next)
1011 {
1012 int i;
1013
1014 if (c->control_type == while_stepping_control)
1015 error (_("The 'while-stepping' command can "
1016 "only be used for tracepoints"));
1017
1018 for (i = 0; i < c->body_count; ++i)
1019 check_no_tracepoint_commands ((c->body_list)[i]);
1020
1021 /* Not that command parsing removes leading whitespace and comment
1022 lines and also empty lines. So, we only need to check for
1023 command directly. */
1024 if (strstr (c->line, "collect ") == c->line)
1025 error (_("The 'collect' command can only be used for tracepoints"));
1026
1027 if (strstr (c->line, "teval ") == c->line)
1028 error (_("The 'teval' command can only be used for tracepoints"));
1029 }
1030 }
1031
1032 struct longjmp_breakpoint : public breakpoint
1033 {
1034 ~longjmp_breakpoint () override;
1035 };
1036
1037 /* Encapsulate tests for different types of tracepoints. */
1038
1039 static bool
1040 is_tracepoint_type (bptype type)
1041 {
1042 return (type == bp_tracepoint
1043 || type == bp_fast_tracepoint
1044 || type == bp_static_tracepoint);
1045 }
1046
1047 static bool
1048 is_longjmp_type (bptype type)
1049 {
1050 return type == bp_longjmp || type == bp_exception;
1051 }
1052
1053 int
1054 is_tracepoint (const struct breakpoint *b)
1055 {
1056 return is_tracepoint_type (b->type);
1057 }
1058
1059 /* Factory function to create an appropriate instance of breakpoint given
1060 TYPE. */
1061
1062 static std::unique_ptr<breakpoint>
1063 new_breakpoint_from_type (bptype type)
1064 {
1065 breakpoint *b;
1066
1067 if (is_tracepoint_type (type))
1068 b = new tracepoint ();
1069 else if (is_longjmp_type (type))
1070 b = new longjmp_breakpoint ();
1071 else
1072 b = new breakpoint ();
1073
1074 return std::unique_ptr<breakpoint> (b);
1075 }
1076
1077 /* A helper function that validates that COMMANDS are valid for a
1078 breakpoint. This function will throw an exception if a problem is
1079 found. */
1080
1081 static void
1082 validate_commands_for_breakpoint (struct breakpoint *b,
1083 struct command_line *commands)
1084 {
1085 if (is_tracepoint (b))
1086 {
1087 struct tracepoint *t = (struct tracepoint *) b;
1088 struct command_line *c;
1089 struct command_line *while_stepping = 0;
1090
1091 /* Reset the while-stepping step count. The previous commands
1092 might have included a while-stepping action, while the new
1093 ones might not. */
1094 t->step_count = 0;
1095
1096 /* We need to verify that each top-level element of commands is
1097 valid for tracepoints, that there's at most one
1098 while-stepping element, and that the while-stepping's body
1099 has valid tracing commands excluding nested while-stepping.
1100 We also need to validate the tracepoint action line in the
1101 context of the tracepoint --- validate_actionline actually
1102 has side effects, like setting the tracepoint's
1103 while-stepping STEP_COUNT, in addition to checking if the
1104 collect/teval actions parse and make sense in the
1105 tracepoint's context. */
1106 for (c = commands; c; c = c->next)
1107 {
1108 if (c->control_type == while_stepping_control)
1109 {
1110 if (b->type == bp_fast_tracepoint)
1111 error (_("The 'while-stepping' command "
1112 "cannot be used for fast tracepoint"));
1113 else if (b->type == bp_static_tracepoint)
1114 error (_("The 'while-stepping' command "
1115 "cannot be used for static tracepoint"));
1116
1117 if (while_stepping)
1118 error (_("The 'while-stepping' command "
1119 "can be used only once"));
1120 else
1121 while_stepping = c;
1122 }
1123
1124 validate_actionline (c->line, b);
1125 }
1126 if (while_stepping)
1127 {
1128 struct command_line *c2;
1129
1130 gdb_assert (while_stepping->body_count == 1);
1131 c2 = while_stepping->body_list[0];
1132 for (; c2; c2 = c2->next)
1133 {
1134 if (c2->control_type == while_stepping_control)
1135 error (_("The 'while-stepping' command cannot be nested"));
1136 }
1137 }
1138 }
1139 else
1140 {
1141 check_no_tracepoint_commands (commands);
1142 }
1143 }
1144
1145 /* Return a vector of all the static tracepoints set at ADDR. The
1146 caller is responsible for releasing the vector. */
1147
1148 VEC(breakpoint_p) *
1149 static_tracepoints_here (CORE_ADDR addr)
1150 {
1151 struct breakpoint *b;
1152 VEC(breakpoint_p) *found = 0;
1153 struct bp_location *loc;
1154
1155 ALL_BREAKPOINTS (b)
1156 if (b->type == bp_static_tracepoint)
1157 {
1158 for (loc = b->loc; loc; loc = loc->next)
1159 if (loc->address == addr)
1160 VEC_safe_push(breakpoint_p, found, b);
1161 }
1162
1163 return found;
1164 }
1165
1166 /* Set the command list of B to COMMANDS. If breakpoint is tracepoint,
1167 validate that only allowed commands are included. */
1168
1169 void
1170 breakpoint_set_commands (struct breakpoint *b,
1171 command_line_up &&commands)
1172 {
1173 validate_commands_for_breakpoint (b, commands.get ());
1174
1175 b->commands = std::move (commands);
1176 gdb::observers::breakpoint_modified.notify (b);
1177 }
1178
1179 /* Set the internal `silent' flag on the breakpoint. Note that this
1180 is not the same as the "silent" that may appear in the breakpoint's
1181 commands. */
1182
1183 void
1184 breakpoint_set_silent (struct breakpoint *b, int silent)
1185 {
1186 int old_silent = b->silent;
1187
1188 b->silent = silent;
1189 if (old_silent != silent)
1190 gdb::observers::breakpoint_modified.notify (b);
1191 }
1192
1193 /* Set the thread for this breakpoint. If THREAD is -1, make the
1194 breakpoint work for any thread. */
1195
1196 void
1197 breakpoint_set_thread (struct breakpoint *b, int thread)
1198 {
1199 int old_thread = b->thread;
1200
1201 b->thread = thread;
1202 if (old_thread != thread)
1203 gdb::observers::breakpoint_modified.notify (b);
1204 }
1205
1206 /* Set the task for this breakpoint. If TASK is 0, make the
1207 breakpoint work for any task. */
1208
1209 void
1210 breakpoint_set_task (struct breakpoint *b, int task)
1211 {
1212 int old_task = b->task;
1213
1214 b->task = task;
1215 if (old_task != task)
1216 gdb::observers::breakpoint_modified.notify (b);
1217 }
1218
1219 void
1220 check_tracepoint_command (char *line, void *closure)
1221 {
1222 struct breakpoint *b = (struct breakpoint *) closure;
1223
1224 validate_actionline (line, b);
1225 }
1226
1227 static void
1228 commands_command_1 (const char *arg, int from_tty,
1229 struct command_line *control)
1230 {
1231 counted_command_line cmd;
1232
1233 std::string new_arg;
1234
1235 if (arg == NULL || !*arg)
1236 {
1237 if (breakpoint_count - prev_breakpoint_count > 1)
1238 new_arg = string_printf ("%d-%d", prev_breakpoint_count + 1,
1239 breakpoint_count);
1240 else if (breakpoint_count > 0)
1241 new_arg = string_printf ("%d", breakpoint_count);
1242 arg = new_arg.c_str ();
1243 }
1244
1245 map_breakpoint_numbers
1246 (arg, [&] (breakpoint *b)
1247 {
1248 if (cmd == NULL)
1249 {
1250 if (control != NULL)
1251 cmd = copy_command_lines (control->body_list[0]);
1252 else
1253 {
1254 std::string str
1255 = string_printf (_("Type commands for breakpoint(s) "
1256 "%s, one per line."),
1257 arg);
1258
1259 cmd = read_command_lines (&str[0],
1260 from_tty, 1,
1261 (is_tracepoint (b)
1262 ? check_tracepoint_command : 0),
1263 b);
1264 }
1265 }
1266
1267 /* If a breakpoint was on the list more than once, we don't need to
1268 do anything. */
1269 if (b->commands != cmd)
1270 {
1271 validate_commands_for_breakpoint (b, cmd.get ());
1272 b->commands = cmd;
1273 gdb::observers::breakpoint_modified.notify (b);
1274 }
1275 });
1276 }
1277
1278 static void
1279 commands_command (const char *arg, int from_tty)
1280 {
1281 commands_command_1 (arg, from_tty, NULL);
1282 }
1283
1284 /* Like commands_command, but instead of reading the commands from
1285 input stream, takes them from an already parsed command structure.
1286
1287 This is used by cli-script.c to DTRT with breakpoint commands
1288 that are part of if and while bodies. */
1289 enum command_control_type
1290 commands_from_control_command (const char *arg, struct command_line *cmd)
1291 {
1292 commands_command_1 (arg, 0, cmd);
1293 return simple_control;
1294 }
1295
1296 /* Return non-zero if BL->TARGET_INFO contains valid information. */
1297
1298 static int
1299 bp_location_has_shadow (struct bp_location *bl)
1300 {
1301 if (bl->loc_type != bp_loc_software_breakpoint)
1302 return 0;
1303 if (!bl->inserted)
1304 return 0;
1305 if (bl->target_info.shadow_len == 0)
1306 /* BL isn't valid, or doesn't shadow memory. */
1307 return 0;
1308 return 1;
1309 }
1310
1311 /* Update BUF, which is LEN bytes read from the target address
1312 MEMADDR, by replacing a memory breakpoint with its shadowed
1313 contents.
1314
1315 If READBUF is not NULL, this buffer must not overlap with the of
1316 the breakpoint location's shadow_contents buffer. Otherwise, a
1317 failed assertion internal error will be raised. */
1318
1319 static void
1320 one_breakpoint_xfer_memory (gdb_byte *readbuf, gdb_byte *writebuf,
1321 const gdb_byte *writebuf_org,
1322 ULONGEST memaddr, LONGEST len,
1323 struct bp_target_info *target_info,
1324 struct gdbarch *gdbarch)
1325 {
1326 /* Now do full processing of the found relevant range of elements. */
1327 CORE_ADDR bp_addr = 0;
1328 int bp_size = 0;
1329 int bptoffset = 0;
1330
1331 if (!breakpoint_address_match (target_info->placed_address_space, 0,
1332 current_program_space->aspace, 0))
1333 {
1334 /* The breakpoint is inserted in a different address space. */
1335 return;
1336 }
1337
1338 /* Addresses and length of the part of the breakpoint that
1339 we need to copy. */
1340 bp_addr = target_info->placed_address;
1341 bp_size = target_info->shadow_len;
1342
1343 if (bp_addr + bp_size <= memaddr)
1344 {
1345 /* The breakpoint is entirely before the chunk of memory we are
1346 reading. */
1347 return;
1348 }
1349
1350 if (bp_addr >= memaddr + len)
1351 {
1352 /* The breakpoint is entirely after the chunk of memory we are
1353 reading. */
1354 return;
1355 }
1356
1357 /* Offset within shadow_contents. */
1358 if (bp_addr < memaddr)
1359 {
1360 /* Only copy the second part of the breakpoint. */
1361 bp_size -= memaddr - bp_addr;
1362 bptoffset = memaddr - bp_addr;
1363 bp_addr = memaddr;
1364 }
1365
1366 if (bp_addr + bp_size > memaddr + len)
1367 {
1368 /* Only copy the first part of the breakpoint. */
1369 bp_size -= (bp_addr + bp_size) - (memaddr + len);
1370 }
1371
1372 if (readbuf != NULL)
1373 {
1374 /* Verify that the readbuf buffer does not overlap with the
1375 shadow_contents buffer. */
1376 gdb_assert (target_info->shadow_contents >= readbuf + len
1377 || readbuf >= (target_info->shadow_contents
1378 + target_info->shadow_len));
1379
1380 /* Update the read buffer with this inserted breakpoint's
1381 shadow. */
1382 memcpy (readbuf + bp_addr - memaddr,
1383 target_info->shadow_contents + bptoffset, bp_size);
1384 }
1385 else
1386 {
1387 const unsigned char *bp;
1388 CORE_ADDR addr = target_info->reqstd_address;
1389 int placed_size;
1390
1391 /* Update the shadow with what we want to write to memory. */
1392 memcpy (target_info->shadow_contents + bptoffset,
1393 writebuf_org + bp_addr - memaddr, bp_size);
1394
1395 /* Determine appropriate breakpoint contents and size for this
1396 address. */
1397 bp = gdbarch_breakpoint_from_pc (gdbarch, &addr, &placed_size);
1398
1399 /* Update the final write buffer with this inserted
1400 breakpoint's INSN. */
1401 memcpy (writebuf + bp_addr - memaddr, bp + bptoffset, bp_size);
1402 }
1403 }
1404
1405 /* Update BUF, which is LEN bytes read from the target address MEMADDR,
1406 by replacing any memory breakpoints with their shadowed contents.
1407
1408 If READBUF is not NULL, this buffer must not overlap with any of
1409 the breakpoint location's shadow_contents buffers. Otherwise,
1410 a failed assertion internal error will be raised.
1411
1412 The range of shadowed area by each bp_location is:
1413 bl->address - bp_locations_placed_address_before_address_max
1414 up to bl->address + bp_locations_shadow_len_after_address_max
1415 The range we were requested to resolve shadows for is:
1416 memaddr ... memaddr + len
1417 Thus the safe cutoff boundaries for performance optimization are
1418 memaddr + len <= (bl->address
1419 - bp_locations_placed_address_before_address_max)
1420 and:
1421 bl->address + bp_locations_shadow_len_after_address_max <= memaddr */
1422
1423 void
1424 breakpoint_xfer_memory (gdb_byte *readbuf, gdb_byte *writebuf,
1425 const gdb_byte *writebuf_org,
1426 ULONGEST memaddr, LONGEST len)
1427 {
1428 /* Left boundary, right boundary and median element of our binary
1429 search. */
1430 unsigned bc_l, bc_r, bc;
1431
1432 /* Find BC_L which is a leftmost element which may affect BUF
1433 content. It is safe to report lower value but a failure to
1434 report higher one. */
1435
1436 bc_l = 0;
1437 bc_r = bp_locations_count;
1438 while (bc_l + 1 < bc_r)
1439 {
1440 struct bp_location *bl;
1441
1442 bc = (bc_l + bc_r) / 2;
1443 bl = bp_locations[bc];
1444
1445 /* Check first BL->ADDRESS will not overflow due to the added
1446 constant. Then advance the left boundary only if we are sure
1447 the BC element can in no way affect the BUF content (MEMADDR
1448 to MEMADDR + LEN range).
1449
1450 Use the BP_LOCATIONS_SHADOW_LEN_AFTER_ADDRESS_MAX safety
1451 offset so that we cannot miss a breakpoint with its shadow
1452 range tail still reaching MEMADDR. */
1453
1454 if ((bl->address + bp_locations_shadow_len_after_address_max
1455 >= bl->address)
1456 && (bl->address + bp_locations_shadow_len_after_address_max
1457 <= memaddr))
1458 bc_l = bc;
1459 else
1460 bc_r = bc;
1461 }
1462
1463 /* Due to the binary search above, we need to make sure we pick the
1464 first location that's at BC_L's address. E.g., if there are
1465 multiple locations at the same address, BC_L may end up pointing
1466 at a duplicate location, and miss the "master"/"inserted"
1467 location. Say, given locations L1, L2 and L3 at addresses A and
1468 B:
1469
1470 L1@A, L2@A, L3@B, ...
1471
1472 BC_L could end up pointing at location L2, while the "master"
1473 location could be L1. Since the `loc->inserted' flag is only set
1474 on "master" locations, we'd forget to restore the shadow of L1
1475 and L2. */
1476 while (bc_l > 0
1477 && bp_locations[bc_l]->address == bp_locations[bc_l - 1]->address)
1478 bc_l--;
1479
1480 /* Now do full processing of the found relevant range of elements. */
1481
1482 for (bc = bc_l; bc < bp_locations_count; bc++)
1483 {
1484 struct bp_location *bl = bp_locations[bc];
1485
1486 /* bp_location array has BL->OWNER always non-NULL. */
1487 if (bl->owner->type == bp_none)
1488 warning (_("reading through apparently deleted breakpoint #%d?"),
1489 bl->owner->number);
1490
1491 /* Performance optimization: any further element can no longer affect BUF
1492 content. */
1493
1494 if (bl->address >= bp_locations_placed_address_before_address_max
1495 && memaddr + len <= (bl->address
1496 - bp_locations_placed_address_before_address_max))
1497 break;
1498
1499 if (!bp_location_has_shadow (bl))
1500 continue;
1501
1502 one_breakpoint_xfer_memory (readbuf, writebuf, writebuf_org,
1503 memaddr, len, &bl->target_info, bl->gdbarch);
1504 }
1505 }
1506
1507 \f
1508
1509 /* Return true if BPT is either a software breakpoint or a hardware
1510 breakpoint. */
1511
1512 int
1513 is_breakpoint (const struct breakpoint *bpt)
1514 {
1515 return (bpt->type == bp_breakpoint
1516 || bpt->type == bp_hardware_breakpoint
1517 || bpt->type == bp_dprintf);
1518 }
1519
1520 /* Return true if BPT is of any hardware watchpoint kind. */
1521
1522 static int
1523 is_hardware_watchpoint (const struct breakpoint *bpt)
1524 {
1525 return (bpt->type == bp_hardware_watchpoint
1526 || bpt->type == bp_read_watchpoint
1527 || bpt->type == bp_access_watchpoint);
1528 }
1529
1530 /* Return true if BPT is of any watchpoint kind, hardware or
1531 software. */
1532
1533 int
1534 is_watchpoint (const struct breakpoint *bpt)
1535 {
1536 return (is_hardware_watchpoint (bpt)
1537 || bpt->type == bp_watchpoint);
1538 }
1539
1540 /* Returns true if the current thread and its running state are safe
1541 to evaluate or update watchpoint B. Watchpoints on local
1542 expressions need to be evaluated in the context of the thread that
1543 was current when the watchpoint was created, and, that thread needs
1544 to be stopped to be able to select the correct frame context.
1545 Watchpoints on global expressions can be evaluated on any thread,
1546 and in any state. It is presently left to the target allowing
1547 memory accesses when threads are running. */
1548
1549 static int
1550 watchpoint_in_thread_scope (struct watchpoint *b)
1551 {
1552 return (b->pspace == current_program_space
1553 && (ptid_equal (b->watchpoint_thread, null_ptid)
1554 || (ptid_equal (inferior_ptid, b->watchpoint_thread)
1555 && !is_executing (inferior_ptid))));
1556 }
1557
1558 /* Set watchpoint B to disp_del_at_next_stop, even including its possible
1559 associated bp_watchpoint_scope breakpoint. */
1560
1561 static void
1562 watchpoint_del_at_next_stop (struct watchpoint *w)
1563 {
1564 if (w->related_breakpoint != w)
1565 {
1566 gdb_assert (w->related_breakpoint->type == bp_watchpoint_scope);
1567 gdb_assert (w->related_breakpoint->related_breakpoint == w);
1568 w->related_breakpoint->disposition = disp_del_at_next_stop;
1569 w->related_breakpoint->related_breakpoint = w->related_breakpoint;
1570 w->related_breakpoint = w;
1571 }
1572 w->disposition = disp_del_at_next_stop;
1573 }
1574
1575 /* Extract a bitfield value from value VAL using the bit parameters contained in
1576 watchpoint W. */
1577
1578 static struct value *
1579 extract_bitfield_from_watchpoint_value (struct watchpoint *w, struct value *val)
1580 {
1581 struct value *bit_val;
1582
1583 if (val == NULL)
1584 return NULL;
1585
1586 bit_val = allocate_value (value_type (val));
1587
1588 unpack_value_bitfield (bit_val,
1589 w->val_bitpos,
1590 w->val_bitsize,
1591 value_contents_for_printing (val),
1592 value_offset (val),
1593 val);
1594
1595 return bit_val;
1596 }
1597
1598 /* Allocate a dummy location and add it to B, which must be a software
1599 watchpoint. This is required because even if a software watchpoint
1600 is not watching any memory, bpstat_stop_status requires a location
1601 to be able to report stops. */
1602
1603 static void
1604 software_watchpoint_add_no_memory_location (struct breakpoint *b,
1605 struct program_space *pspace)
1606 {
1607 gdb_assert (b->type == bp_watchpoint && b->loc == NULL);
1608
1609 b->loc = allocate_bp_location (b);
1610 b->loc->pspace = pspace;
1611 b->loc->address = -1;
1612 b->loc->length = -1;
1613 }
1614
1615 /* Returns true if B is a software watchpoint that is not watching any
1616 memory (e.g., "watch $pc"). */
1617
1618 static int
1619 is_no_memory_software_watchpoint (struct breakpoint *b)
1620 {
1621 return (b->type == bp_watchpoint
1622 && b->loc != NULL
1623 && b->loc->next == NULL
1624 && b->loc->address == -1
1625 && b->loc->length == -1);
1626 }
1627
1628 /* Assuming that B is a watchpoint:
1629 - Reparse watchpoint expression, if REPARSE is non-zero
1630 - Evaluate expression and store the result in B->val
1631 - Evaluate the condition if there is one, and store the result
1632 in b->loc->cond.
1633 - Update the list of values that must be watched in B->loc.
1634
1635 If the watchpoint disposition is disp_del_at_next_stop, then do
1636 nothing. If this is local watchpoint that is out of scope, delete
1637 it.
1638
1639 Even with `set breakpoint always-inserted on' the watchpoints are
1640 removed + inserted on each stop here. Normal breakpoints must
1641 never be removed because they might be missed by a running thread
1642 when debugging in non-stop mode. On the other hand, hardware
1643 watchpoints (is_hardware_watchpoint; processed here) are specific
1644 to each LWP since they are stored in each LWP's hardware debug
1645 registers. Therefore, such LWP must be stopped first in order to
1646 be able to modify its hardware watchpoints.
1647
1648 Hardware watchpoints must be reset exactly once after being
1649 presented to the user. It cannot be done sooner, because it would
1650 reset the data used to present the watchpoint hit to the user. And
1651 it must not be done later because it could display the same single
1652 watchpoint hit during multiple GDB stops. Note that the latter is
1653 relevant only to the hardware watchpoint types bp_read_watchpoint
1654 and bp_access_watchpoint. False hit by bp_hardware_watchpoint is
1655 not user-visible - its hit is suppressed if the memory content has
1656 not changed.
1657
1658 The following constraints influence the location where we can reset
1659 hardware watchpoints:
1660
1661 * target_stopped_by_watchpoint and target_stopped_data_address are
1662 called several times when GDB stops.
1663
1664 [linux]
1665 * Multiple hardware watchpoints can be hit at the same time,
1666 causing GDB to stop. GDB only presents one hardware watchpoint
1667 hit at a time as the reason for stopping, and all the other hits
1668 are presented later, one after the other, each time the user
1669 requests the execution to be resumed. Execution is not resumed
1670 for the threads still having pending hit event stored in
1671 LWP_INFO->STATUS. While the watchpoint is already removed from
1672 the inferior on the first stop the thread hit event is kept being
1673 reported from its cached value by linux_nat_stopped_data_address
1674 until the real thread resume happens after the watchpoint gets
1675 presented and thus its LWP_INFO->STATUS gets reset.
1676
1677 Therefore the hardware watchpoint hit can get safely reset on the
1678 watchpoint removal from inferior. */
1679
1680 static void
1681 update_watchpoint (struct watchpoint *b, int reparse)
1682 {
1683 int within_current_scope;
1684 struct frame_id saved_frame_id;
1685 int frame_saved;
1686
1687 /* If this is a local watchpoint, we only want to check if the
1688 watchpoint frame is in scope if the current thread is the thread
1689 that was used to create the watchpoint. */
1690 if (!watchpoint_in_thread_scope (b))
1691 return;
1692
1693 if (b->disposition == disp_del_at_next_stop)
1694 return;
1695
1696 frame_saved = 0;
1697
1698 /* Determine if the watchpoint is within scope. */
1699 if (b->exp_valid_block == NULL)
1700 within_current_scope = 1;
1701 else
1702 {
1703 struct frame_info *fi = get_current_frame ();
1704 struct gdbarch *frame_arch = get_frame_arch (fi);
1705 CORE_ADDR frame_pc = get_frame_pc (fi);
1706
1707 /* If we're at a point where the stack has been destroyed
1708 (e.g. in a function epilogue), unwinding may not work
1709 properly. Do not attempt to recreate locations at this
1710 point. See similar comments in watchpoint_check. */
1711 if (gdbarch_stack_frame_destroyed_p (frame_arch, frame_pc))
1712 return;
1713
1714 /* Save the current frame's ID so we can restore it after
1715 evaluating the watchpoint expression on its own frame. */
1716 /* FIXME drow/2003-09-09: It would be nice if evaluate_expression
1717 took a frame parameter, so that we didn't have to change the
1718 selected frame. */
1719 frame_saved = 1;
1720 saved_frame_id = get_frame_id (get_selected_frame (NULL));
1721
1722 fi = frame_find_by_id (b->watchpoint_frame);
1723 within_current_scope = (fi != NULL);
1724 if (within_current_scope)
1725 select_frame (fi);
1726 }
1727
1728 /* We don't free locations. They are stored in the bp_location array
1729 and update_global_location_list will eventually delete them and
1730 remove breakpoints if needed. */
1731 b->loc = NULL;
1732
1733 if (within_current_scope && reparse)
1734 {
1735 const char *s;
1736
1737 b->exp.reset ();
1738 s = b->exp_string_reparse ? b->exp_string_reparse : b->exp_string;
1739 b->exp = parse_exp_1 (&s, 0, b->exp_valid_block, 0);
1740 /* If the meaning of expression itself changed, the old value is
1741 no longer relevant. We don't want to report a watchpoint hit
1742 to the user when the old value and the new value may actually
1743 be completely different objects. */
1744 b->val = NULL;
1745 b->val_valid = 0;
1746
1747 /* Note that unlike with breakpoints, the watchpoint's condition
1748 expression is stored in the breakpoint object, not in the
1749 locations (re)created below. */
1750 if (b->cond_string != NULL)
1751 {
1752 b->cond_exp.reset ();
1753
1754 s = b->cond_string;
1755 b->cond_exp = parse_exp_1 (&s, 0, b->cond_exp_valid_block, 0);
1756 }
1757 }
1758
1759 /* If we failed to parse the expression, for example because
1760 it refers to a global variable in a not-yet-loaded shared library,
1761 don't try to insert watchpoint. We don't automatically delete
1762 such watchpoint, though, since failure to parse expression
1763 is different from out-of-scope watchpoint. */
1764 if (!target_has_execution)
1765 {
1766 /* Without execution, memory can't change. No use to try and
1767 set watchpoint locations. The watchpoint will be reset when
1768 the target gains execution, through breakpoint_re_set. */
1769 if (!can_use_hw_watchpoints)
1770 {
1771 if (b->ops->works_in_software_mode (b))
1772 b->type = bp_watchpoint;
1773 else
1774 error (_("Can't set read/access watchpoint when "
1775 "hardware watchpoints are disabled."));
1776 }
1777 }
1778 else if (within_current_scope && b->exp)
1779 {
1780 int pc = 0;
1781 std::vector<value_ref_ptr> val_chain;
1782 struct value *v, *result, *next;
1783 struct program_space *frame_pspace;
1784
1785 fetch_subexp_value (b->exp.get (), &pc, &v, &result, &val_chain, 0);
1786
1787 /* Avoid setting b->val if it's already set. The meaning of
1788 b->val is 'the last value' user saw, and we should update
1789 it only if we reported that last value to user. As it
1790 happens, the code that reports it updates b->val directly.
1791 We don't keep track of the memory value for masked
1792 watchpoints. */
1793 if (!b->val_valid && !is_masked_watchpoint (b))
1794 {
1795 if (b->val_bitsize != 0)
1796 v = extract_bitfield_from_watchpoint_value (b, v);
1797 b->val = release_value (v);
1798 b->val_valid = 1;
1799 }
1800
1801 frame_pspace = get_frame_program_space (get_selected_frame (NULL));
1802
1803 /* Look at each value on the value chain. */
1804 gdb_assert (!val_chain.empty ());
1805 for (const value_ref_ptr &iter : val_chain)
1806 {
1807 v = iter.get ();
1808
1809 /* If it's a memory location, and GDB actually needed
1810 its contents to evaluate the expression, then we
1811 must watch it. If the first value returned is
1812 still lazy, that means an error occurred reading it;
1813 watch it anyway in case it becomes readable. */
1814 if (VALUE_LVAL (v) == lval_memory
1815 && (v == val_chain[0] || ! value_lazy (v)))
1816 {
1817 struct type *vtype = check_typedef (value_type (v));
1818
1819 /* We only watch structs and arrays if user asked
1820 for it explicitly, never if they just happen to
1821 appear in the middle of some value chain. */
1822 if (v == result
1823 || (TYPE_CODE (vtype) != TYPE_CODE_STRUCT
1824 && TYPE_CODE (vtype) != TYPE_CODE_ARRAY))
1825 {
1826 CORE_ADDR addr;
1827 enum target_hw_bp_type type;
1828 struct bp_location *loc, **tmp;
1829 int bitpos = 0, bitsize = 0;
1830
1831 if (value_bitsize (v) != 0)
1832 {
1833 /* Extract the bit parameters out from the bitfield
1834 sub-expression. */
1835 bitpos = value_bitpos (v);
1836 bitsize = value_bitsize (v);
1837 }
1838 else if (v == result && b->val_bitsize != 0)
1839 {
1840 /* If VAL_BITSIZE != 0 then RESULT is actually a bitfield
1841 lvalue whose bit parameters are saved in the fields
1842 VAL_BITPOS and VAL_BITSIZE. */
1843 bitpos = b->val_bitpos;
1844 bitsize = b->val_bitsize;
1845 }
1846
1847 addr = value_address (v);
1848 if (bitsize != 0)
1849 {
1850 /* Skip the bytes that don't contain the bitfield. */
1851 addr += bitpos / 8;
1852 }
1853
1854 type = hw_write;
1855 if (b->type == bp_read_watchpoint)
1856 type = hw_read;
1857 else if (b->type == bp_access_watchpoint)
1858 type = hw_access;
1859
1860 loc = allocate_bp_location (b);
1861 for (tmp = &(b->loc); *tmp != NULL; tmp = &((*tmp)->next))
1862 ;
1863 *tmp = loc;
1864 loc->gdbarch = get_type_arch (value_type (v));
1865
1866 loc->pspace = frame_pspace;
1867 loc->address = address_significant (loc->gdbarch, addr);
1868
1869 if (bitsize != 0)
1870 {
1871 /* Just cover the bytes that make up the bitfield. */
1872 loc->length = ((bitpos % 8) + bitsize + 7) / 8;
1873 }
1874 else
1875 loc->length = TYPE_LENGTH (value_type (v));
1876
1877 loc->watchpoint_type = type;
1878 }
1879 }
1880 }
1881
1882 /* Change the type of breakpoint between hardware assisted or
1883 an ordinary watchpoint depending on the hardware support
1884 and free hardware slots. REPARSE is set when the inferior
1885 is started. */
1886 if (reparse)
1887 {
1888 int reg_cnt;
1889 enum bp_loc_type loc_type;
1890 struct bp_location *bl;
1891
1892 reg_cnt = can_use_hardware_watchpoint (val_chain);
1893
1894 if (reg_cnt)
1895 {
1896 int i, target_resources_ok, other_type_used;
1897 enum bptype type;
1898
1899 /* Use an exact watchpoint when there's only one memory region to be
1900 watched, and only one debug register is needed to watch it. */
1901 b->exact = target_exact_watchpoints && reg_cnt == 1;
1902
1903 /* We need to determine how many resources are already
1904 used for all other hardware watchpoints plus this one
1905 to see if we still have enough resources to also fit
1906 this watchpoint in as well. */
1907
1908 /* If this is a software watchpoint, we try to turn it
1909 to a hardware one -- count resources as if B was of
1910 hardware watchpoint type. */
1911 type = b->type;
1912 if (type == bp_watchpoint)
1913 type = bp_hardware_watchpoint;
1914
1915 /* This watchpoint may or may not have been placed on
1916 the list yet at this point (it won't be in the list
1917 if we're trying to create it for the first time,
1918 through watch_command), so always account for it
1919 manually. */
1920
1921 /* Count resources used by all watchpoints except B. */
1922 i = hw_watchpoint_used_count_others (b, type, &other_type_used);
1923
1924 /* Add in the resources needed for B. */
1925 i += hw_watchpoint_use_count (b);
1926
1927 target_resources_ok
1928 = target_can_use_hardware_watchpoint (type, i, other_type_used);
1929 if (target_resources_ok <= 0)
1930 {
1931 int sw_mode = b->ops->works_in_software_mode (b);
1932
1933 if (target_resources_ok == 0 && !sw_mode)
1934 error (_("Target does not support this type of "
1935 "hardware watchpoint."));
1936 else if (target_resources_ok < 0 && !sw_mode)
1937 error (_("There are not enough available hardware "
1938 "resources for this watchpoint."));
1939
1940 /* Downgrade to software watchpoint. */
1941 b->type = bp_watchpoint;
1942 }
1943 else
1944 {
1945 /* If this was a software watchpoint, we've just
1946 found we have enough resources to turn it to a
1947 hardware watchpoint. Otherwise, this is a
1948 nop. */
1949 b->type = type;
1950 }
1951 }
1952 else if (!b->ops->works_in_software_mode (b))
1953 {
1954 if (!can_use_hw_watchpoints)
1955 error (_("Can't set read/access watchpoint when "
1956 "hardware watchpoints are disabled."));
1957 else
1958 error (_("Expression cannot be implemented with "
1959 "read/access watchpoint."));
1960 }
1961 else
1962 b->type = bp_watchpoint;
1963
1964 loc_type = (b->type == bp_watchpoint? bp_loc_other
1965 : bp_loc_hardware_watchpoint);
1966 for (bl = b->loc; bl; bl = bl->next)
1967 bl->loc_type = loc_type;
1968 }
1969
1970 /* If a software watchpoint is not watching any memory, then the
1971 above left it without any location set up. But,
1972 bpstat_stop_status requires a location to be able to report
1973 stops, so make sure there's at least a dummy one. */
1974 if (b->type == bp_watchpoint && b->loc == NULL)
1975 software_watchpoint_add_no_memory_location (b, frame_pspace);
1976 }
1977 else if (!within_current_scope)
1978 {
1979 printf_filtered (_("\
1980 Watchpoint %d deleted because the program has left the block\n\
1981 in which its expression is valid.\n"),
1982 b->number);
1983 watchpoint_del_at_next_stop (b);
1984 }
1985
1986 /* Restore the selected frame. */
1987 if (frame_saved)
1988 select_frame (frame_find_by_id (saved_frame_id));
1989 }
1990
1991
1992 /* Returns 1 iff breakpoint location should be
1993 inserted in the inferior. We don't differentiate the type of BL's owner
1994 (breakpoint vs. tracepoint), although insert_location in tracepoint's
1995 breakpoint_ops is not defined, because in insert_bp_location,
1996 tracepoint's insert_location will not be called. */
1997 static int
1998 should_be_inserted (struct bp_location *bl)
1999 {
2000 if (bl->owner == NULL || !breakpoint_enabled (bl->owner))
2001 return 0;
2002
2003 if (bl->owner->disposition == disp_del_at_next_stop)
2004 return 0;
2005
2006 if (!bl->enabled || bl->shlib_disabled || bl->duplicate)
2007 return 0;
2008
2009 if (user_breakpoint_p (bl->owner) && bl->pspace->executing_startup)
2010 return 0;
2011
2012 /* This is set for example, when we're attached to the parent of a
2013 vfork, and have detached from the child. The child is running
2014 free, and we expect it to do an exec or exit, at which point the
2015 OS makes the parent schedulable again (and the target reports
2016 that the vfork is done). Until the child is done with the shared
2017 memory region, do not insert breakpoints in the parent, otherwise
2018 the child could still trip on the parent's breakpoints. Since
2019 the parent is blocked anyway, it won't miss any breakpoint. */
2020 if (bl->pspace->breakpoints_not_allowed)
2021 return 0;
2022
2023 /* Don't insert a breakpoint if we're trying to step past its
2024 location, except if the breakpoint is a single-step breakpoint,
2025 and the breakpoint's thread is the thread which is stepping past
2026 a breakpoint. */
2027 if ((bl->loc_type == bp_loc_software_breakpoint
2028 || bl->loc_type == bp_loc_hardware_breakpoint)
2029 && stepping_past_instruction_at (bl->pspace->aspace,
2030 bl->address)
2031 /* The single-step breakpoint may be inserted at the location
2032 we're trying to step if the instruction branches to itself.
2033 However, the instruction won't be executed at all and it may
2034 break the semantics of the instruction, for example, the
2035 instruction is a conditional branch or updates some flags.
2036 We can't fix it unless GDB is able to emulate the instruction
2037 or switch to displaced stepping. */
2038 && !(bl->owner->type == bp_single_step
2039 && thread_is_stepping_over_breakpoint (bl->owner->thread)))
2040 {
2041 if (debug_infrun)
2042 {
2043 fprintf_unfiltered (gdb_stdlog,
2044 "infrun: skipping breakpoint: "
2045 "stepping past insn at: %s\n",
2046 paddress (bl->gdbarch, bl->address));
2047 }
2048 return 0;
2049 }
2050
2051 /* Don't insert watchpoints if we're trying to step past the
2052 instruction that triggered one. */
2053 if ((bl->loc_type == bp_loc_hardware_watchpoint)
2054 && stepping_past_nonsteppable_watchpoint ())
2055 {
2056 if (debug_infrun)
2057 {
2058 fprintf_unfiltered (gdb_stdlog,
2059 "infrun: stepping past non-steppable watchpoint. "
2060 "skipping watchpoint at %s:%d\n",
2061 paddress (bl->gdbarch, bl->address),
2062 bl->length);
2063 }
2064 return 0;
2065 }
2066
2067 return 1;
2068 }
2069
2070 /* Same as should_be_inserted but does the check assuming
2071 that the location is not duplicated. */
2072
2073 static int
2074 unduplicated_should_be_inserted (struct bp_location *bl)
2075 {
2076 int result;
2077 const int save_duplicate = bl->duplicate;
2078
2079 bl->duplicate = 0;
2080 result = should_be_inserted (bl);
2081 bl->duplicate = save_duplicate;
2082 return result;
2083 }
2084
2085 /* Parses a conditional described by an expression COND into an
2086 agent expression bytecode suitable for evaluation
2087 by the bytecode interpreter. Return NULL if there was
2088 any error during parsing. */
2089
2090 static agent_expr_up
2091 parse_cond_to_aexpr (CORE_ADDR scope, struct expression *cond)
2092 {
2093 if (cond == NULL)
2094 return NULL;
2095
2096 agent_expr_up aexpr;
2097
2098 /* We don't want to stop processing, so catch any errors
2099 that may show up. */
2100 TRY
2101 {
2102 aexpr = gen_eval_for_expr (scope, cond);
2103 }
2104
2105 CATCH (ex, RETURN_MASK_ERROR)
2106 {
2107 /* If we got here, it means the condition could not be parsed to a valid
2108 bytecode expression and thus can't be evaluated on the target's side.
2109 It's no use iterating through the conditions. */
2110 }
2111 END_CATCH
2112
2113 /* We have a valid agent expression. */
2114 return aexpr;
2115 }
2116
2117 /* Based on location BL, create a list of breakpoint conditions to be
2118 passed on to the target. If we have duplicated locations with different
2119 conditions, we will add such conditions to the list. The idea is that the
2120 target will evaluate the list of conditions and will only notify GDB when
2121 one of them is true. */
2122
2123 static void
2124 build_target_condition_list (struct bp_location *bl)
2125 {
2126 struct bp_location **locp = NULL, **loc2p;
2127 int null_condition_or_parse_error = 0;
2128 int modified = bl->needs_update;
2129 struct bp_location *loc;
2130
2131 /* Release conditions left over from a previous insert. */
2132 bl->target_info.conditions.clear ();
2133
2134 /* This is only meaningful if the target is
2135 evaluating conditions and if the user has
2136 opted for condition evaluation on the target's
2137 side. */
2138 if (gdb_evaluates_breakpoint_condition_p ()
2139 || !target_supports_evaluation_of_breakpoint_conditions ())
2140 return;
2141
2142 /* Do a first pass to check for locations with no assigned
2143 conditions or conditions that fail to parse to a valid agent expression
2144 bytecode. If any of these happen, then it's no use to send conditions
2145 to the target since this location will always trigger and generate a
2146 response back to GDB. */
2147 ALL_BP_LOCATIONS_AT_ADDR (loc2p, locp, bl->address)
2148 {
2149 loc = (*loc2p);
2150 if (is_breakpoint (loc->owner) && loc->pspace->num == bl->pspace->num)
2151 {
2152 if (modified)
2153 {
2154 /* Re-parse the conditions since something changed. In that
2155 case we already freed the condition bytecodes (see
2156 force_breakpoint_reinsertion). We just
2157 need to parse the condition to bytecodes again. */
2158 loc->cond_bytecode = parse_cond_to_aexpr (bl->address,
2159 loc->cond.get ());
2160 }
2161
2162 /* If we have a NULL bytecode expression, it means something
2163 went wrong or we have a null condition expression. */
2164 if (!loc->cond_bytecode)
2165 {
2166 null_condition_or_parse_error = 1;
2167 break;
2168 }
2169 }
2170 }
2171
2172 /* If any of these happened, it means we will have to evaluate the conditions
2173 for the location's address on gdb's side. It is no use keeping bytecodes
2174 for all the other duplicate locations, thus we free all of them here.
2175
2176 This is so we have a finer control over which locations' conditions are
2177 being evaluated by GDB or the remote stub. */
2178 if (null_condition_or_parse_error)
2179 {
2180 ALL_BP_LOCATIONS_AT_ADDR (loc2p, locp, bl->address)
2181 {
2182 loc = (*loc2p);
2183 if (is_breakpoint (loc->owner) && loc->pspace->num == bl->pspace->num)
2184 {
2185 /* Only go as far as the first NULL bytecode is
2186 located. */
2187 if (!loc->cond_bytecode)
2188 return;
2189
2190 loc->cond_bytecode.reset ();
2191 }
2192 }
2193 }
2194
2195 /* No NULL conditions or failed bytecode generation. Build a condition list
2196 for this location's address. */
2197 ALL_BP_LOCATIONS_AT_ADDR (loc2p, locp, bl->address)
2198 {
2199 loc = (*loc2p);
2200 if (loc->cond
2201 && is_breakpoint (loc->owner)
2202 && loc->pspace->num == bl->pspace->num
2203 && loc->owner->enable_state == bp_enabled
2204 && loc->enabled)
2205 {
2206 /* Add the condition to the vector. This will be used later
2207 to send the conditions to the target. */
2208 bl->target_info.conditions.push_back (loc->cond_bytecode.get ());
2209 }
2210 }
2211
2212 return;
2213 }
2214
2215 /* Parses a command described by string CMD into an agent expression
2216 bytecode suitable for evaluation by the bytecode interpreter.
2217 Return NULL if there was any error during parsing. */
2218
2219 static agent_expr_up
2220 parse_cmd_to_aexpr (CORE_ADDR scope, char *cmd)
2221 {
2222 const char *cmdrest;
2223 const char *format_start, *format_end;
2224 struct gdbarch *gdbarch = get_current_arch ();
2225
2226 if (cmd == NULL)
2227 return NULL;
2228
2229 cmdrest = cmd;
2230
2231 if (*cmdrest == ',')
2232 ++cmdrest;
2233 cmdrest = skip_spaces (cmdrest);
2234
2235 if (*cmdrest++ != '"')
2236 error (_("No format string following the location"));
2237
2238 format_start = cmdrest;
2239
2240 format_pieces fpieces (&cmdrest);
2241
2242 format_end = cmdrest;
2243
2244 if (*cmdrest++ != '"')
2245 error (_("Bad format string, non-terminated '\"'."));
2246
2247 cmdrest = skip_spaces (cmdrest);
2248
2249 if (!(*cmdrest == ',' || *cmdrest == '\0'))
2250 error (_("Invalid argument syntax"));
2251
2252 if (*cmdrest == ',')
2253 cmdrest++;
2254 cmdrest = skip_spaces (cmdrest);
2255
2256 /* For each argument, make an expression. */
2257
2258 std::vector<struct expression *> argvec;
2259 while (*cmdrest != '\0')
2260 {
2261 const char *cmd1;
2262
2263 cmd1 = cmdrest;
2264 expression_up expr = parse_exp_1 (&cmd1, scope, block_for_pc (scope), 1);
2265 argvec.push_back (expr.release ());
2266 cmdrest = cmd1;
2267 if (*cmdrest == ',')
2268 ++cmdrest;
2269 }
2270
2271 agent_expr_up aexpr;
2272
2273 /* We don't want to stop processing, so catch any errors
2274 that may show up. */
2275 TRY
2276 {
2277 aexpr = gen_printf (scope, gdbarch, 0, 0,
2278 format_start, format_end - format_start,
2279 argvec.size (), argvec.data ());
2280 }
2281 CATCH (ex, RETURN_MASK_ERROR)
2282 {
2283 /* If we got here, it means the command could not be parsed to a valid
2284 bytecode expression and thus can't be evaluated on the target's side.
2285 It's no use iterating through the other commands. */
2286 }
2287 END_CATCH
2288
2289 /* We have a valid agent expression, return it. */
2290 return aexpr;
2291 }
2292
2293 /* Based on location BL, create a list of breakpoint commands to be
2294 passed on to the target. If we have duplicated locations with
2295 different commands, we will add any such to the list. */
2296
2297 static void
2298 build_target_command_list (struct bp_location *bl)
2299 {
2300 struct bp_location **locp = NULL, **loc2p;
2301 int null_command_or_parse_error = 0;
2302 int modified = bl->needs_update;
2303 struct bp_location *loc;
2304
2305 /* Clear commands left over from a previous insert. */
2306 bl->target_info.tcommands.clear ();
2307
2308 if (!target_can_run_breakpoint_commands ())
2309 return;
2310
2311 /* For now, limit to agent-style dprintf breakpoints. */
2312 if (dprintf_style != dprintf_style_agent)
2313 return;
2314
2315 /* For now, if we have any duplicate location that isn't a dprintf,
2316 don't install the target-side commands, as that would make the
2317 breakpoint not be reported to the core, and we'd lose
2318 control. */
2319 ALL_BP_LOCATIONS_AT_ADDR (loc2p, locp, bl->address)
2320 {
2321 loc = (*loc2p);
2322 if (is_breakpoint (loc->owner)
2323 && loc->pspace->num == bl->pspace->num
2324 && loc->owner->type != bp_dprintf)
2325 return;
2326 }
2327
2328 /* Do a first pass to check for locations with no assigned
2329 conditions or conditions that fail to parse to a valid agent expression
2330 bytecode. If any of these happen, then it's no use to send conditions
2331 to the target since this location will always trigger and generate a
2332 response back to GDB. */
2333 ALL_BP_LOCATIONS_AT_ADDR (loc2p, locp, bl->address)
2334 {
2335 loc = (*loc2p);
2336 if (is_breakpoint (loc->owner) && loc->pspace->num == bl->pspace->num)
2337 {
2338 if (modified)
2339 {
2340 /* Re-parse the commands since something changed. In that
2341 case we already freed the command bytecodes (see
2342 force_breakpoint_reinsertion). We just
2343 need to parse the command to bytecodes again. */
2344 loc->cmd_bytecode
2345 = parse_cmd_to_aexpr (bl->address,
2346 loc->owner->extra_string);
2347 }
2348
2349 /* If we have a NULL bytecode expression, it means something
2350 went wrong or we have a null command expression. */
2351 if (!loc->cmd_bytecode)
2352 {
2353 null_command_or_parse_error = 1;
2354 break;
2355 }
2356 }
2357 }
2358
2359 /* If anything failed, then we're not doing target-side commands,
2360 and so clean up. */
2361 if (null_command_or_parse_error)
2362 {
2363 ALL_BP_LOCATIONS_AT_ADDR (loc2p, locp, bl->address)
2364 {
2365 loc = (*loc2p);
2366 if (is_breakpoint (loc->owner)
2367 && loc->pspace->num == bl->pspace->num)
2368 {
2369 /* Only go as far as the first NULL bytecode is
2370 located. */
2371 if (loc->cmd_bytecode == NULL)
2372 return;
2373
2374 loc->cmd_bytecode.reset ();
2375 }
2376 }
2377 }
2378
2379 /* No NULL commands or failed bytecode generation. Build a command list
2380 for this location's address. */
2381 ALL_BP_LOCATIONS_AT_ADDR (loc2p, locp, bl->address)
2382 {
2383 loc = (*loc2p);
2384 if (loc->owner->extra_string
2385 && is_breakpoint (loc->owner)
2386 && loc->pspace->num == bl->pspace->num
2387 && loc->owner->enable_state == bp_enabled
2388 && loc->enabled)
2389 {
2390 /* Add the command to the vector. This will be used later
2391 to send the commands to the target. */
2392 bl->target_info.tcommands.push_back (loc->cmd_bytecode.get ());
2393 }
2394 }
2395
2396 bl->target_info.persist = 0;
2397 /* Maybe flag this location as persistent. */
2398 if (bl->owner->type == bp_dprintf && disconnected_dprintf)
2399 bl->target_info.persist = 1;
2400 }
2401
2402 /* Return the kind of breakpoint on address *ADDR. Get the kind
2403 of breakpoint according to ADDR except single-step breakpoint.
2404 Get the kind of single-step breakpoint according to the current
2405 registers state. */
2406
2407 static int
2408 breakpoint_kind (struct bp_location *bl, CORE_ADDR *addr)
2409 {
2410 if (bl->owner->type == bp_single_step)
2411 {
2412 struct thread_info *thr = find_thread_global_id (bl->owner->thread);
2413 struct regcache *regcache;
2414
2415 regcache = get_thread_regcache (thr->ptid);
2416
2417 return gdbarch_breakpoint_kind_from_current_state (bl->gdbarch,
2418 regcache, addr);
2419 }
2420 else
2421 return gdbarch_breakpoint_kind_from_pc (bl->gdbarch, addr);
2422 }
2423
2424 /* Insert a low-level "breakpoint" of some type. BL is the breakpoint
2425 location. Any error messages are printed to TMP_ERROR_STREAM; and
2426 DISABLED_BREAKS, and HW_BREAKPOINT_ERROR are used to report problems.
2427 Returns 0 for success, 1 if the bp_location type is not supported or
2428 -1 for failure.
2429
2430 NOTE drow/2003-09-09: This routine could be broken down to an
2431 object-style method for each breakpoint or catchpoint type. */
2432 static int
2433 insert_bp_location (struct bp_location *bl,
2434 struct ui_file *tmp_error_stream,
2435 int *disabled_breaks,
2436 int *hw_breakpoint_error,
2437 int *hw_bp_error_explained_already)
2438 {
2439 gdb_exception bp_excpt = exception_none;
2440
2441 if (!should_be_inserted (bl) || (bl->inserted && !bl->needs_update))
2442 return 0;
2443
2444 /* Note we don't initialize bl->target_info, as that wipes out
2445 the breakpoint location's shadow_contents if the breakpoint
2446 is still inserted at that location. This in turn breaks
2447 target_read_memory which depends on these buffers when
2448 a memory read is requested at the breakpoint location:
2449 Once the target_info has been wiped, we fail to see that
2450 we have a breakpoint inserted at that address and thus
2451 read the breakpoint instead of returning the data saved in
2452 the breakpoint location's shadow contents. */
2453 bl->target_info.reqstd_address = bl->address;
2454 bl->target_info.placed_address_space = bl->pspace->aspace;
2455 bl->target_info.length = bl->length;
2456
2457 /* When working with target-side conditions, we must pass all the conditions
2458 for the same breakpoint address down to the target since GDB will not
2459 insert those locations. With a list of breakpoint conditions, the target
2460 can decide when to stop and notify GDB. */
2461
2462 if (is_breakpoint (bl->owner))
2463 {
2464 build_target_condition_list (bl);
2465 build_target_command_list (bl);
2466 /* Reset the modification marker. */
2467 bl->needs_update = 0;
2468 }
2469
2470 if (bl->loc_type == bp_loc_software_breakpoint
2471 || bl->loc_type == bp_loc_hardware_breakpoint)
2472 {
2473 if (bl->owner->type != bp_hardware_breakpoint)
2474 {
2475 /* If the explicitly specified breakpoint type
2476 is not hardware breakpoint, check the memory map to see
2477 if the breakpoint address is in read only memory or not.
2478
2479 Two important cases are:
2480 - location type is not hardware breakpoint, memory
2481 is readonly. We change the type of the location to
2482 hardware breakpoint.
2483 - location type is hardware breakpoint, memory is
2484 read-write. This means we've previously made the
2485 location hardware one, but then the memory map changed,
2486 so we undo.
2487
2488 When breakpoints are removed, remove_breakpoints will use
2489 location types we've just set here, the only possible
2490 problem is that memory map has changed during running
2491 program, but it's not going to work anyway with current
2492 gdb. */
2493 struct mem_region *mr
2494 = lookup_mem_region (bl->target_info.reqstd_address);
2495
2496 if (mr)
2497 {
2498 if (automatic_hardware_breakpoints)
2499 {
2500 enum bp_loc_type new_type;
2501
2502 if (mr->attrib.mode != MEM_RW)
2503 new_type = bp_loc_hardware_breakpoint;
2504 else
2505 new_type = bp_loc_software_breakpoint;
2506
2507 if (new_type != bl->loc_type)
2508 {
2509 static int said = 0;
2510
2511 bl->loc_type = new_type;
2512 if (!said)
2513 {
2514 fprintf_filtered (gdb_stdout,
2515 _("Note: automatically using "
2516 "hardware breakpoints for "
2517 "read-only addresses.\n"));
2518 said = 1;
2519 }
2520 }
2521 }
2522 else if (bl->loc_type == bp_loc_software_breakpoint
2523 && mr->attrib.mode != MEM_RW)
2524 {
2525 fprintf_unfiltered (tmp_error_stream,
2526 _("Cannot insert breakpoint %d.\n"
2527 "Cannot set software breakpoint "
2528 "at read-only address %s\n"),
2529 bl->owner->number,
2530 paddress (bl->gdbarch, bl->address));
2531 return 1;
2532 }
2533 }
2534 }
2535
2536 /* First check to see if we have to handle an overlay. */
2537 if (overlay_debugging == ovly_off
2538 || bl->section == NULL
2539 || !(section_is_overlay (bl->section)))
2540 {
2541 /* No overlay handling: just set the breakpoint. */
2542 TRY
2543 {
2544 int val;
2545
2546 val = bl->owner->ops->insert_location (bl);
2547 if (val)
2548 bp_excpt = gdb_exception {RETURN_ERROR, GENERIC_ERROR};
2549 }
2550 CATCH (e, RETURN_MASK_ALL)
2551 {
2552 bp_excpt = e;
2553 }
2554 END_CATCH
2555 }
2556 else
2557 {
2558 /* This breakpoint is in an overlay section.
2559 Shall we set a breakpoint at the LMA? */
2560 if (!overlay_events_enabled)
2561 {
2562 /* Yes -- overlay event support is not active,
2563 so we must try to set a breakpoint at the LMA.
2564 This will not work for a hardware breakpoint. */
2565 if (bl->loc_type == bp_loc_hardware_breakpoint)
2566 warning (_("hardware breakpoint %d not supported in overlay!"),
2567 bl->owner->number);
2568 else
2569 {
2570 CORE_ADDR addr = overlay_unmapped_address (bl->address,
2571 bl->section);
2572 /* Set a software (trap) breakpoint at the LMA. */
2573 bl->overlay_target_info = bl->target_info;
2574 bl->overlay_target_info.reqstd_address = addr;
2575
2576 /* No overlay handling: just set the breakpoint. */
2577 TRY
2578 {
2579 int val;
2580
2581 bl->overlay_target_info.kind
2582 = breakpoint_kind (bl, &addr);
2583 bl->overlay_target_info.placed_address = addr;
2584 val = target_insert_breakpoint (bl->gdbarch,
2585 &bl->overlay_target_info);
2586 if (val)
2587 bp_excpt
2588 = gdb_exception {RETURN_ERROR, GENERIC_ERROR};
2589 }
2590 CATCH (e, RETURN_MASK_ALL)
2591 {
2592 bp_excpt = e;
2593 }
2594 END_CATCH
2595
2596 if (bp_excpt.reason != 0)
2597 fprintf_unfiltered (tmp_error_stream,
2598 "Overlay breakpoint %d "
2599 "failed: in ROM?\n",
2600 bl->owner->number);
2601 }
2602 }
2603 /* Shall we set a breakpoint at the VMA? */
2604 if (section_is_mapped (bl->section))
2605 {
2606 /* Yes. This overlay section is mapped into memory. */
2607 TRY
2608 {
2609 int val;
2610
2611 val = bl->owner->ops->insert_location (bl);
2612 if (val)
2613 bp_excpt = gdb_exception {RETURN_ERROR, GENERIC_ERROR};
2614 }
2615 CATCH (e, RETURN_MASK_ALL)
2616 {
2617 bp_excpt = e;
2618 }
2619 END_CATCH
2620 }
2621 else
2622 {
2623 /* No. This breakpoint will not be inserted.
2624 No error, but do not mark the bp as 'inserted'. */
2625 return 0;
2626 }
2627 }
2628
2629 if (bp_excpt.reason != 0)
2630 {
2631 /* Can't set the breakpoint. */
2632
2633 /* In some cases, we might not be able to insert a
2634 breakpoint in a shared library that has already been
2635 removed, but we have not yet processed the shlib unload
2636 event. Unfortunately, some targets that implement
2637 breakpoint insertion themselves can't tell why the
2638 breakpoint insertion failed (e.g., the remote target
2639 doesn't define error codes), so we must treat generic
2640 errors as memory errors. */
2641 if (bp_excpt.reason == RETURN_ERROR
2642 && (bp_excpt.error == GENERIC_ERROR
2643 || bp_excpt.error == MEMORY_ERROR)
2644 && bl->loc_type == bp_loc_software_breakpoint
2645 && (solib_name_from_address (bl->pspace, bl->address)
2646 || shared_objfile_contains_address_p (bl->pspace,
2647 bl->address)))
2648 {
2649 /* See also: disable_breakpoints_in_shlibs. */
2650 bl->shlib_disabled = 1;
2651 gdb::observers::breakpoint_modified.notify (bl->owner);
2652 if (!*disabled_breaks)
2653 {
2654 fprintf_unfiltered (tmp_error_stream,
2655 "Cannot insert breakpoint %d.\n",
2656 bl->owner->number);
2657 fprintf_unfiltered (tmp_error_stream,
2658 "Temporarily disabling shared "
2659 "library breakpoints:\n");
2660 }
2661 *disabled_breaks = 1;
2662 fprintf_unfiltered (tmp_error_stream,
2663 "breakpoint #%d\n", bl->owner->number);
2664 return 0;
2665 }
2666 else
2667 {
2668 if (bl->loc_type == bp_loc_hardware_breakpoint)
2669 {
2670 *hw_breakpoint_error = 1;
2671 *hw_bp_error_explained_already = bp_excpt.message != NULL;
2672 fprintf_unfiltered (tmp_error_stream,
2673 "Cannot insert hardware breakpoint %d%s",
2674 bl->owner->number,
2675 bp_excpt.message ? ":" : ".\n");
2676 if (bp_excpt.message != NULL)
2677 fprintf_unfiltered (tmp_error_stream, "%s.\n",
2678 bp_excpt.message);
2679 }
2680 else
2681 {
2682 if (bp_excpt.message == NULL)
2683 {
2684 std::string message
2685 = memory_error_message (TARGET_XFER_E_IO,
2686 bl->gdbarch, bl->address);
2687
2688 fprintf_unfiltered (tmp_error_stream,
2689 "Cannot insert breakpoint %d.\n"
2690 "%s\n",
2691 bl->owner->number, message.c_str ());
2692 }
2693 else
2694 {
2695 fprintf_unfiltered (tmp_error_stream,
2696 "Cannot insert breakpoint %d: %s\n",
2697 bl->owner->number,
2698 bp_excpt.message);
2699 }
2700 }
2701 return 1;
2702
2703 }
2704 }
2705 else
2706 bl->inserted = 1;
2707
2708 return 0;
2709 }
2710
2711 else if (bl->loc_type == bp_loc_hardware_watchpoint
2712 /* NOTE drow/2003-09-08: This state only exists for removing
2713 watchpoints. It's not clear that it's necessary... */
2714 && bl->owner->disposition != disp_del_at_next_stop)
2715 {
2716 int val;
2717
2718 gdb_assert (bl->owner->ops != NULL
2719 && bl->owner->ops->insert_location != NULL);
2720
2721 val = bl->owner->ops->insert_location (bl);
2722
2723 /* If trying to set a read-watchpoint, and it turns out it's not
2724 supported, try emulating one with an access watchpoint. */
2725 if (val == 1 && bl->watchpoint_type == hw_read)
2726 {
2727 struct bp_location *loc, **loc_temp;
2728
2729 /* But don't try to insert it, if there's already another
2730 hw_access location that would be considered a duplicate
2731 of this one. */
2732 ALL_BP_LOCATIONS (loc, loc_temp)
2733 if (loc != bl
2734 && loc->watchpoint_type == hw_access
2735 && watchpoint_locations_match (bl, loc))
2736 {
2737 bl->duplicate = 1;
2738 bl->inserted = 1;
2739 bl->target_info = loc->target_info;
2740 bl->watchpoint_type = hw_access;
2741 val = 0;
2742 break;
2743 }
2744
2745 if (val == 1)
2746 {
2747 bl->watchpoint_type = hw_access;
2748 val = bl->owner->ops->insert_location (bl);
2749
2750 if (val)
2751 /* Back to the original value. */
2752 bl->watchpoint_type = hw_read;
2753 }
2754 }
2755
2756 bl->inserted = (val == 0);
2757 }
2758
2759 else if (bl->owner->type == bp_catchpoint)
2760 {
2761 int val;
2762
2763 gdb_assert (bl->owner->ops != NULL
2764 && bl->owner->ops->insert_location != NULL);
2765
2766 val = bl->owner->ops->insert_location (bl);
2767 if (val)
2768 {
2769 bl->owner->enable_state = bp_disabled;
2770
2771 if (val == 1)
2772 warning (_("\
2773 Error inserting catchpoint %d: Your system does not support this type\n\
2774 of catchpoint."), bl->owner->number);
2775 else
2776 warning (_("Error inserting catchpoint %d."), bl->owner->number);
2777 }
2778
2779 bl->inserted = (val == 0);
2780
2781 /* We've already printed an error message if there was a problem
2782 inserting this catchpoint, and we've disabled the catchpoint,
2783 so just return success. */
2784 return 0;
2785 }
2786
2787 return 0;
2788 }
2789
2790 /* This function is called when program space PSPACE is about to be
2791 deleted. It takes care of updating breakpoints to not reference
2792 PSPACE anymore. */
2793
2794 void
2795 breakpoint_program_space_exit (struct program_space *pspace)
2796 {
2797 struct breakpoint *b, *b_temp;
2798 struct bp_location *loc, **loc_temp;
2799
2800 /* Remove any breakpoint that was set through this program space. */
2801 ALL_BREAKPOINTS_SAFE (b, b_temp)
2802 {
2803 if (b->pspace == pspace)
2804 delete_breakpoint (b);
2805 }
2806
2807 /* Breakpoints set through other program spaces could have locations
2808 bound to PSPACE as well. Remove those. */
2809 ALL_BP_LOCATIONS (loc, loc_temp)
2810 {
2811 struct bp_location *tmp;
2812
2813 if (loc->pspace == pspace)
2814 {
2815 /* ALL_BP_LOCATIONS bp_location has LOC->OWNER always non-NULL. */
2816 if (loc->owner->loc == loc)
2817 loc->owner->loc = loc->next;
2818 else
2819 for (tmp = loc->owner->loc; tmp->next != NULL; tmp = tmp->next)
2820 if (tmp->next == loc)
2821 {
2822 tmp->next = loc->next;
2823 break;
2824 }
2825 }
2826 }
2827
2828 /* Now update the global location list to permanently delete the
2829 removed locations above. */
2830 update_global_location_list (UGLL_DONT_INSERT);
2831 }
2832
2833 /* Make sure all breakpoints are inserted in inferior.
2834 Throws exception on any error.
2835 A breakpoint that is already inserted won't be inserted
2836 again, so calling this function twice is safe. */
2837 void
2838 insert_breakpoints (void)
2839 {
2840 struct breakpoint *bpt;
2841
2842 ALL_BREAKPOINTS (bpt)
2843 if (is_hardware_watchpoint (bpt))
2844 {
2845 struct watchpoint *w = (struct watchpoint *) bpt;
2846
2847 update_watchpoint (w, 0 /* don't reparse. */);
2848 }
2849
2850 /* Updating watchpoints creates new locations, so update the global
2851 location list. Explicitly tell ugll to insert locations and
2852 ignore breakpoints_always_inserted_mode. */
2853 update_global_location_list (UGLL_INSERT);
2854 }
2855
2856 /* Invoke CALLBACK for each of bp_location. */
2857
2858 void
2859 iterate_over_bp_locations (walk_bp_location_callback callback)
2860 {
2861 struct bp_location *loc, **loc_tmp;
2862
2863 ALL_BP_LOCATIONS (loc, loc_tmp)
2864 {
2865 callback (loc, NULL);
2866 }
2867 }
2868
2869 /* This is used when we need to synch breakpoint conditions between GDB and the
2870 target. It is the case with deleting and disabling of breakpoints when using
2871 always-inserted mode. */
2872
2873 static void
2874 update_inserted_breakpoint_locations (void)
2875 {
2876 struct bp_location *bl, **blp_tmp;
2877 int error_flag = 0;
2878 int val = 0;
2879 int disabled_breaks = 0;
2880 int hw_breakpoint_error = 0;
2881 int hw_bp_details_reported = 0;
2882
2883 string_file tmp_error_stream;
2884
2885 /* Explicitly mark the warning -- this will only be printed if
2886 there was an error. */
2887 tmp_error_stream.puts ("Warning:\n");
2888
2889 scoped_restore_current_pspace_and_thread restore_pspace_thread;
2890
2891 ALL_BP_LOCATIONS (bl, blp_tmp)
2892 {
2893 /* We only want to update software breakpoints and hardware
2894 breakpoints. */
2895 if (!is_breakpoint (bl->owner))
2896 continue;
2897
2898 /* We only want to update locations that are already inserted
2899 and need updating. This is to avoid unwanted insertion during
2900 deletion of breakpoints. */
2901 if (!bl->inserted || (bl->inserted && !bl->needs_update))
2902 continue;
2903
2904 switch_to_program_space_and_thread (bl->pspace);
2905
2906 /* For targets that support global breakpoints, there's no need
2907 to select an inferior to insert breakpoint to. In fact, even
2908 if we aren't attached to any process yet, we should still
2909 insert breakpoints. */
2910 if (!gdbarch_has_global_breakpoints (target_gdbarch ())
2911 && ptid_equal (inferior_ptid, null_ptid))
2912 continue;
2913
2914 val = insert_bp_location (bl, &tmp_error_stream, &disabled_breaks,
2915 &hw_breakpoint_error, &hw_bp_details_reported);
2916 if (val)
2917 error_flag = val;
2918 }
2919
2920 if (error_flag)
2921 {
2922 target_terminal::ours_for_output ();
2923 error_stream (tmp_error_stream);
2924 }
2925 }
2926
2927 /* Used when starting or continuing the program. */
2928
2929 static void
2930 insert_breakpoint_locations (void)
2931 {
2932 struct breakpoint *bpt;
2933 struct bp_location *bl, **blp_tmp;
2934 int error_flag = 0;
2935 int val = 0;
2936 int disabled_breaks = 0;
2937 int hw_breakpoint_error = 0;
2938 int hw_bp_error_explained_already = 0;
2939
2940 string_file tmp_error_stream;
2941
2942 /* Explicitly mark the warning -- this will only be printed if
2943 there was an error. */
2944 tmp_error_stream.puts ("Warning:\n");
2945
2946 scoped_restore_current_pspace_and_thread restore_pspace_thread;
2947
2948 ALL_BP_LOCATIONS (bl, blp_tmp)
2949 {
2950 if (!should_be_inserted (bl) || (bl->inserted && !bl->needs_update))
2951 continue;
2952
2953 /* There is no point inserting thread-specific breakpoints if
2954 the thread no longer exists. ALL_BP_LOCATIONS bp_location
2955 has BL->OWNER always non-NULL. */
2956 if (bl->owner->thread != -1
2957 && !valid_global_thread_id (bl->owner->thread))
2958 continue;
2959
2960 switch_to_program_space_and_thread (bl->pspace);
2961
2962 /* For targets that support global breakpoints, there's no need
2963 to select an inferior to insert breakpoint to. In fact, even
2964 if we aren't attached to any process yet, we should still
2965 insert breakpoints. */
2966 if (!gdbarch_has_global_breakpoints (target_gdbarch ())
2967 && ptid_equal (inferior_ptid, null_ptid))
2968 continue;
2969
2970 val = insert_bp_location (bl, &tmp_error_stream, &disabled_breaks,
2971 &hw_breakpoint_error, &hw_bp_error_explained_already);
2972 if (val)
2973 error_flag = val;
2974 }
2975
2976 /* If we failed to insert all locations of a watchpoint, remove
2977 them, as half-inserted watchpoint is of limited use. */
2978 ALL_BREAKPOINTS (bpt)
2979 {
2980 int some_failed = 0;
2981 struct bp_location *loc;
2982
2983 if (!is_hardware_watchpoint (bpt))
2984 continue;
2985
2986 if (!breakpoint_enabled (bpt))
2987 continue;
2988
2989 if (bpt->disposition == disp_del_at_next_stop)
2990 continue;
2991
2992 for (loc = bpt->loc; loc; loc = loc->next)
2993 if (!loc->inserted && should_be_inserted (loc))
2994 {
2995 some_failed = 1;
2996 break;
2997 }
2998 if (some_failed)
2999 {
3000 for (loc = bpt->loc; loc; loc = loc->next)
3001 if (loc->inserted)
3002 remove_breakpoint (loc);
3003
3004 hw_breakpoint_error = 1;
3005 tmp_error_stream.printf ("Could not insert "
3006 "hardware watchpoint %d.\n",
3007 bpt->number);
3008 error_flag = -1;
3009 }
3010 }
3011
3012 if (error_flag)
3013 {
3014 /* If a hardware breakpoint or watchpoint was inserted, add a
3015 message about possibly exhausted resources. */
3016 if (hw_breakpoint_error && !hw_bp_error_explained_already)
3017 {
3018 tmp_error_stream.printf ("Could not insert hardware breakpoints:\n\
3019 You may have requested too many hardware breakpoints/watchpoints.\n");
3020 }
3021 target_terminal::ours_for_output ();
3022 error_stream (tmp_error_stream);
3023 }
3024 }
3025
3026 /* Used when the program stops.
3027 Returns zero if successful, or non-zero if there was a problem
3028 removing a breakpoint location. */
3029
3030 int
3031 remove_breakpoints (void)
3032 {
3033 struct bp_location *bl, **blp_tmp;
3034 int val = 0;
3035
3036 ALL_BP_LOCATIONS (bl, blp_tmp)
3037 {
3038 if (bl->inserted && !is_tracepoint (bl->owner))
3039 val |= remove_breakpoint (bl);
3040 }
3041 return val;
3042 }
3043
3044 /* When a thread exits, remove breakpoints that are related to
3045 that thread. */
3046
3047 static void
3048 remove_threaded_breakpoints (struct thread_info *tp, int silent)
3049 {
3050 struct breakpoint *b, *b_tmp;
3051
3052 ALL_BREAKPOINTS_SAFE (b, b_tmp)
3053 {
3054 if (b->thread == tp->global_num && user_breakpoint_p (b))
3055 {
3056 b->disposition = disp_del_at_next_stop;
3057
3058 printf_filtered (_("\
3059 Thread-specific breakpoint %d deleted - thread %s no longer in the thread list.\n"),
3060 b->number, print_thread_id (tp));
3061
3062 /* Hide it from the user. */
3063 b->number = 0;
3064 }
3065 }
3066 }
3067
3068 /* Remove breakpoints of process PID. */
3069
3070 int
3071 remove_breakpoints_pid (int pid)
3072 {
3073 struct bp_location *bl, **blp_tmp;
3074 int val;
3075 struct inferior *inf = find_inferior_pid (pid);
3076
3077 ALL_BP_LOCATIONS (bl, blp_tmp)
3078 {
3079 if (bl->pspace != inf->pspace)
3080 continue;
3081
3082 if (bl->inserted && !bl->target_info.persist)
3083 {
3084 val = remove_breakpoint (bl);
3085 if (val != 0)
3086 return val;
3087 }
3088 }
3089 return 0;
3090 }
3091
3092 static int internal_breakpoint_number = -1;
3093
3094 /* Set the breakpoint number of B, depending on the value of INTERNAL.
3095 If INTERNAL is non-zero, the breakpoint number will be populated
3096 from internal_breakpoint_number and that variable decremented.
3097 Otherwise the breakpoint number will be populated from
3098 breakpoint_count and that value incremented. Internal breakpoints
3099 do not set the internal var bpnum. */
3100 static void
3101 set_breakpoint_number (int internal, struct breakpoint *b)
3102 {
3103 if (internal)
3104 b->number = internal_breakpoint_number--;
3105 else
3106 {
3107 set_breakpoint_count (breakpoint_count + 1);
3108 b->number = breakpoint_count;
3109 }
3110 }
3111
3112 static struct breakpoint *
3113 create_internal_breakpoint (struct gdbarch *gdbarch,
3114 CORE_ADDR address, enum bptype type,
3115 const struct breakpoint_ops *ops)
3116 {
3117 symtab_and_line sal;
3118 sal.pc = address;
3119 sal.section = find_pc_overlay (sal.pc);
3120 sal.pspace = current_program_space;
3121
3122 breakpoint *b = set_raw_breakpoint (gdbarch, sal, type, ops);
3123 b->number = internal_breakpoint_number--;
3124 b->disposition = disp_donttouch;
3125
3126 return b;
3127 }
3128
3129 static const char *const longjmp_names[] =
3130 {
3131 "longjmp", "_longjmp", "siglongjmp", "_siglongjmp"
3132 };
3133 #define NUM_LONGJMP_NAMES ARRAY_SIZE(longjmp_names)
3134
3135 /* Per-objfile data private to breakpoint.c. */
3136 struct breakpoint_objfile_data
3137 {
3138 /* Minimal symbol for "_ovly_debug_event" (if any). */
3139 struct bound_minimal_symbol overlay_msym {};
3140
3141 /* Minimal symbol(s) for "longjmp", "siglongjmp", etc. (if any). */
3142 struct bound_minimal_symbol longjmp_msym[NUM_LONGJMP_NAMES] {};
3143
3144 /* True if we have looked for longjmp probes. */
3145 int longjmp_searched = 0;
3146
3147 /* SystemTap probe points for longjmp (if any). These are non-owning
3148 references. */
3149 std::vector<probe *> longjmp_probes;
3150
3151 /* Minimal symbol for "std::terminate()" (if any). */
3152 struct bound_minimal_symbol terminate_msym {};
3153
3154 /* Minimal symbol for "_Unwind_DebugHook" (if any). */
3155 struct bound_minimal_symbol exception_msym {};
3156
3157 /* True if we have looked for exception probes. */
3158 int exception_searched = 0;
3159
3160 /* SystemTap probe points for unwinding (if any). These are non-owning
3161 references. */
3162 std::vector<probe *> exception_probes;
3163 };
3164
3165 static const struct objfile_data *breakpoint_objfile_key;
3166
3167 /* Minimal symbol not found sentinel. */
3168 static struct minimal_symbol msym_not_found;
3169
3170 /* Returns TRUE if MSYM point to the "not found" sentinel. */
3171
3172 static int
3173 msym_not_found_p (const struct minimal_symbol *msym)
3174 {
3175 return msym == &msym_not_found;
3176 }
3177
3178 /* Return per-objfile data needed by breakpoint.c.
3179 Allocate the data if necessary. */
3180
3181 static struct breakpoint_objfile_data *
3182 get_breakpoint_objfile_data (struct objfile *objfile)
3183 {
3184 struct breakpoint_objfile_data *bp_objfile_data;
3185
3186 bp_objfile_data = ((struct breakpoint_objfile_data *)
3187 objfile_data (objfile, breakpoint_objfile_key));
3188 if (bp_objfile_data == NULL)
3189 {
3190 bp_objfile_data = new breakpoint_objfile_data ();
3191 set_objfile_data (objfile, breakpoint_objfile_key, bp_objfile_data);
3192 }
3193 return bp_objfile_data;
3194 }
3195
3196 static void
3197 free_breakpoint_objfile_data (struct objfile *obj, void *data)
3198 {
3199 struct breakpoint_objfile_data *bp_objfile_data
3200 = (struct breakpoint_objfile_data *) data;
3201
3202 delete bp_objfile_data;
3203 }
3204
3205 static void
3206 create_overlay_event_breakpoint (void)
3207 {
3208 struct objfile *objfile;
3209 const char *const func_name = "_ovly_debug_event";
3210
3211 ALL_OBJFILES (objfile)
3212 {
3213 struct breakpoint *b;
3214 struct breakpoint_objfile_data *bp_objfile_data;
3215 CORE_ADDR addr;
3216 struct explicit_location explicit_loc;
3217
3218 bp_objfile_data = get_breakpoint_objfile_data (objfile);
3219
3220 if (msym_not_found_p (bp_objfile_data->overlay_msym.minsym))
3221 continue;
3222
3223 if (bp_objfile_data->overlay_msym.minsym == NULL)
3224 {
3225 struct bound_minimal_symbol m;
3226
3227 m = lookup_minimal_symbol_text (func_name, objfile);
3228 if (m.minsym == NULL)
3229 {
3230 /* Avoid future lookups in this objfile. */
3231 bp_objfile_data->overlay_msym.minsym = &msym_not_found;
3232 continue;
3233 }
3234 bp_objfile_data->overlay_msym = m;
3235 }
3236
3237 addr = BMSYMBOL_VALUE_ADDRESS (bp_objfile_data->overlay_msym);
3238 b = create_internal_breakpoint (get_objfile_arch (objfile), addr,
3239 bp_overlay_event,
3240 &internal_breakpoint_ops);
3241 initialize_explicit_location (&explicit_loc);
3242 explicit_loc.function_name = ASTRDUP (func_name);
3243 b->location = new_explicit_location (&explicit_loc);
3244
3245 if (overlay_debugging == ovly_auto)
3246 {
3247 b->enable_state = bp_enabled;
3248 overlay_events_enabled = 1;
3249 }
3250 else
3251 {
3252 b->enable_state = bp_disabled;
3253 overlay_events_enabled = 0;
3254 }
3255 }
3256 }
3257
3258 static void
3259 create_longjmp_master_breakpoint (void)
3260 {
3261 struct program_space *pspace;
3262
3263 scoped_restore_current_program_space restore_pspace;
3264
3265 ALL_PSPACES (pspace)
3266 {
3267 struct objfile *objfile;
3268
3269 set_current_program_space (pspace);
3270
3271 ALL_OBJFILES (objfile)
3272 {
3273 int i;
3274 struct gdbarch *gdbarch;
3275 struct breakpoint_objfile_data *bp_objfile_data;
3276
3277 gdbarch = get_objfile_arch (objfile);
3278
3279 bp_objfile_data = get_breakpoint_objfile_data (objfile);
3280
3281 if (!bp_objfile_data->longjmp_searched)
3282 {
3283 std::vector<probe *> ret
3284 = find_probes_in_objfile (objfile, "libc", "longjmp");
3285
3286 if (!ret.empty ())
3287 {
3288 /* We are only interested in checking one element. */
3289 probe *p = ret[0];
3290
3291 if (!p->can_evaluate_arguments ())
3292 {
3293 /* We cannot use the probe interface here, because it does
3294 not know how to evaluate arguments. */
3295 ret.clear ();
3296 }
3297 }
3298 bp_objfile_data->longjmp_probes = ret;
3299 bp_objfile_data->longjmp_searched = 1;
3300 }
3301
3302 if (!bp_objfile_data->longjmp_probes.empty ())
3303 {
3304 struct gdbarch *gdbarch = get_objfile_arch (objfile);
3305
3306 for (probe *p : bp_objfile_data->longjmp_probes)
3307 {
3308 struct breakpoint *b;
3309
3310 b = create_internal_breakpoint (gdbarch,
3311 p->get_relocated_address (objfile),
3312 bp_longjmp_master,
3313 &internal_breakpoint_ops);
3314 b->location = new_probe_location ("-probe-stap libc:longjmp");
3315 b->enable_state = bp_disabled;
3316 }
3317
3318 continue;
3319 }
3320
3321 if (!gdbarch_get_longjmp_target_p (gdbarch))
3322 continue;
3323
3324 for (i = 0; i < NUM_LONGJMP_NAMES; i++)
3325 {
3326 struct breakpoint *b;
3327 const char *func_name;
3328 CORE_ADDR addr;
3329 struct explicit_location explicit_loc;
3330
3331 if (msym_not_found_p (bp_objfile_data->longjmp_msym[i].minsym))
3332 continue;
3333
3334 func_name = longjmp_names[i];
3335 if (bp_objfile_data->longjmp_msym[i].minsym == NULL)
3336 {
3337 struct bound_minimal_symbol m;
3338
3339 m = lookup_minimal_symbol_text (func_name, objfile);
3340 if (m.minsym == NULL)
3341 {
3342 /* Prevent future lookups in this objfile. */
3343 bp_objfile_data->longjmp_msym[i].minsym = &msym_not_found;
3344 continue;
3345 }
3346 bp_objfile_data->longjmp_msym[i] = m;
3347 }
3348
3349 addr = BMSYMBOL_VALUE_ADDRESS (bp_objfile_data->longjmp_msym[i]);
3350 b = create_internal_breakpoint (gdbarch, addr, bp_longjmp_master,
3351 &internal_breakpoint_ops);
3352 initialize_explicit_location (&explicit_loc);
3353 explicit_loc.function_name = ASTRDUP (func_name);
3354 b->location = new_explicit_location (&explicit_loc);
3355 b->enable_state = bp_disabled;
3356 }
3357 }
3358 }
3359 }
3360
3361 /* Create a master std::terminate breakpoint. */
3362 static void
3363 create_std_terminate_master_breakpoint (void)
3364 {
3365 struct program_space *pspace;
3366 const char *const func_name = "std::terminate()";
3367
3368 scoped_restore_current_program_space restore_pspace;
3369
3370 ALL_PSPACES (pspace)
3371 {
3372 struct objfile *objfile;
3373 CORE_ADDR addr;
3374
3375 set_current_program_space (pspace);
3376
3377 ALL_OBJFILES (objfile)
3378 {
3379 struct breakpoint *b;
3380 struct breakpoint_objfile_data *bp_objfile_data;
3381 struct explicit_location explicit_loc;
3382
3383 bp_objfile_data = get_breakpoint_objfile_data (objfile);
3384
3385 if (msym_not_found_p (bp_objfile_data->terminate_msym.minsym))
3386 continue;
3387
3388 if (bp_objfile_data->terminate_msym.minsym == NULL)
3389 {
3390 struct bound_minimal_symbol m;
3391
3392 m = lookup_minimal_symbol (func_name, NULL, objfile);
3393 if (m.minsym == NULL || (MSYMBOL_TYPE (m.minsym) != mst_text
3394 && MSYMBOL_TYPE (m.minsym) != mst_file_text))
3395 {
3396 /* Prevent future lookups in this objfile. */
3397 bp_objfile_data->terminate_msym.minsym = &msym_not_found;
3398 continue;
3399 }
3400 bp_objfile_data->terminate_msym = m;
3401 }
3402
3403 addr = BMSYMBOL_VALUE_ADDRESS (bp_objfile_data->terminate_msym);
3404 b = create_internal_breakpoint (get_objfile_arch (objfile), addr,
3405 bp_std_terminate_master,
3406 &internal_breakpoint_ops);
3407 initialize_explicit_location (&explicit_loc);
3408 explicit_loc.function_name = ASTRDUP (func_name);
3409 b->location = new_explicit_location (&explicit_loc);
3410 b->enable_state = bp_disabled;
3411 }
3412 }
3413 }
3414
3415 /* Install a master breakpoint on the unwinder's debug hook. */
3416
3417 static void
3418 create_exception_master_breakpoint (void)
3419 {
3420 struct objfile *objfile;
3421 const char *const func_name = "_Unwind_DebugHook";
3422
3423 ALL_OBJFILES (objfile)
3424 {
3425 struct breakpoint *b;
3426 struct gdbarch *gdbarch;
3427 struct breakpoint_objfile_data *bp_objfile_data;
3428 CORE_ADDR addr;
3429 struct explicit_location explicit_loc;
3430
3431 bp_objfile_data = get_breakpoint_objfile_data (objfile);
3432
3433 /* We prefer the SystemTap probe point if it exists. */
3434 if (!bp_objfile_data->exception_searched)
3435 {
3436 std::vector<probe *> ret
3437 = find_probes_in_objfile (objfile, "libgcc", "unwind");
3438
3439 if (!ret.empty ())
3440 {
3441 /* We are only interested in checking one element. */
3442 probe *p = ret[0];
3443
3444 if (!p->can_evaluate_arguments ())
3445 {
3446 /* We cannot use the probe interface here, because it does
3447 not know how to evaluate arguments. */
3448 ret.clear ();
3449 }
3450 }
3451 bp_objfile_data->exception_probes = ret;
3452 bp_objfile_data->exception_searched = 1;
3453 }
3454
3455 if (!bp_objfile_data->exception_probes.empty ())
3456 {
3457 struct gdbarch *gdbarch = get_objfile_arch (objfile);
3458
3459 for (probe *p : bp_objfile_data->exception_probes)
3460 {
3461 struct breakpoint *b;
3462
3463 b = create_internal_breakpoint (gdbarch,
3464 p->get_relocated_address (objfile),
3465 bp_exception_master,
3466 &internal_breakpoint_ops);
3467 b->location = new_probe_location ("-probe-stap libgcc:unwind");
3468 b->enable_state = bp_disabled;
3469 }
3470
3471 continue;
3472 }
3473
3474 /* Otherwise, try the hook function. */
3475
3476 if (msym_not_found_p (bp_objfile_data->exception_msym.minsym))
3477 continue;
3478
3479 gdbarch = get_objfile_arch (objfile);
3480
3481 if (bp_objfile_data->exception_msym.minsym == NULL)
3482 {
3483 struct bound_minimal_symbol debug_hook;
3484
3485 debug_hook = lookup_minimal_symbol (func_name, NULL, objfile);
3486 if (debug_hook.minsym == NULL)
3487 {
3488 bp_objfile_data->exception_msym.minsym = &msym_not_found;
3489 continue;
3490 }
3491
3492 bp_objfile_data->exception_msym = debug_hook;
3493 }
3494
3495 addr = BMSYMBOL_VALUE_ADDRESS (bp_objfile_data->exception_msym);
3496 addr = gdbarch_convert_from_func_ptr_addr (gdbarch, addr,
3497 &current_target);
3498 b = create_internal_breakpoint (gdbarch, addr, bp_exception_master,
3499 &internal_breakpoint_ops);
3500 initialize_explicit_location (&explicit_loc);
3501 explicit_loc.function_name = ASTRDUP (func_name);
3502 b->location = new_explicit_location (&explicit_loc);
3503 b->enable_state = bp_disabled;
3504 }
3505 }
3506
3507 /* Does B have a location spec? */
3508
3509 static int
3510 breakpoint_event_location_empty_p (const struct breakpoint *b)
3511 {
3512 return b->location != NULL && event_location_empty_p (b->location.get ());
3513 }
3514
3515 void
3516 update_breakpoints_after_exec (void)
3517 {
3518 struct breakpoint *b, *b_tmp;
3519 struct bp_location *bploc, **bplocp_tmp;
3520
3521 /* We're about to delete breakpoints from GDB's lists. If the
3522 INSERTED flag is true, GDB will try to lift the breakpoints by
3523 writing the breakpoints' "shadow contents" back into memory. The
3524 "shadow contents" are NOT valid after an exec, so GDB should not
3525 do that. Instead, the target is responsible from marking
3526 breakpoints out as soon as it detects an exec. We don't do that
3527 here instead, because there may be other attempts to delete
3528 breakpoints after detecting an exec and before reaching here. */
3529 ALL_BP_LOCATIONS (bploc, bplocp_tmp)
3530 if (bploc->pspace == current_program_space)
3531 gdb_assert (!bploc->inserted);
3532
3533 ALL_BREAKPOINTS_SAFE (b, b_tmp)
3534 {
3535 if (b->pspace != current_program_space)
3536 continue;
3537
3538 /* Solib breakpoints must be explicitly reset after an exec(). */
3539 if (b->type == bp_shlib_event)
3540 {
3541 delete_breakpoint (b);
3542 continue;
3543 }
3544
3545 /* JIT breakpoints must be explicitly reset after an exec(). */
3546 if (b->type == bp_jit_event)
3547 {
3548 delete_breakpoint (b);
3549 continue;
3550 }
3551
3552 /* Thread event breakpoints must be set anew after an exec(),
3553 as must overlay event and longjmp master breakpoints. */
3554 if (b->type == bp_thread_event || b->type == bp_overlay_event
3555 || b->type == bp_longjmp_master || b->type == bp_std_terminate_master
3556 || b->type == bp_exception_master)
3557 {
3558 delete_breakpoint (b);
3559 continue;
3560 }
3561
3562 /* Step-resume breakpoints are meaningless after an exec(). */
3563 if (b->type == bp_step_resume || b->type == bp_hp_step_resume)
3564 {
3565 delete_breakpoint (b);
3566 continue;
3567 }
3568
3569 /* Just like single-step breakpoints. */
3570 if (b->type == bp_single_step)
3571 {
3572 delete_breakpoint (b);
3573 continue;
3574 }
3575
3576 /* Longjmp and longjmp-resume breakpoints are also meaningless
3577 after an exec. */
3578 if (b->type == bp_longjmp || b->type == bp_longjmp_resume
3579 || b->type == bp_longjmp_call_dummy
3580 || b->type == bp_exception || b->type == bp_exception_resume)
3581 {
3582 delete_breakpoint (b);
3583 continue;
3584 }
3585
3586 if (b->type == bp_catchpoint)
3587 {
3588 /* For now, none of the bp_catchpoint breakpoints need to
3589 do anything at this point. In the future, if some of
3590 the catchpoints need to something, we will need to add
3591 a new method, and call this method from here. */
3592 continue;
3593 }
3594
3595 /* bp_finish is a special case. The only way we ought to be able
3596 to see one of these when an exec() has happened, is if the user
3597 caught a vfork, and then said "finish". Ordinarily a finish just
3598 carries them to the call-site of the current callee, by setting
3599 a temporary bp there and resuming. But in this case, the finish
3600 will carry them entirely through the vfork & exec.
3601
3602 We don't want to allow a bp_finish to remain inserted now. But
3603 we can't safely delete it, 'cause finish_command has a handle to
3604 the bp on a bpstat, and will later want to delete it. There's a
3605 chance (and I've seen it happen) that if we delete the bp_finish
3606 here, that its storage will get reused by the time finish_command
3607 gets 'round to deleting the "use to be a bp_finish" breakpoint.
3608 We really must allow finish_command to delete a bp_finish.
3609
3610 In the absence of a general solution for the "how do we know
3611 it's safe to delete something others may have handles to?"
3612 problem, what we'll do here is just uninsert the bp_finish, and
3613 let finish_command delete it.
3614
3615 (We know the bp_finish is "doomed" in the sense that it's
3616 momentary, and will be deleted as soon as finish_command sees
3617 the inferior stopped. So it doesn't matter that the bp's
3618 address is probably bogus in the new a.out, unlike e.g., the
3619 solib breakpoints.) */
3620
3621 if (b->type == bp_finish)
3622 {
3623 continue;
3624 }
3625
3626 /* Without a symbolic address, we have little hope of the
3627 pre-exec() address meaning the same thing in the post-exec()
3628 a.out. */
3629 if (breakpoint_event_location_empty_p (b))
3630 {
3631 delete_breakpoint (b);
3632 continue;
3633 }
3634 }
3635 }
3636
3637 int
3638 detach_breakpoints (ptid_t ptid)
3639 {
3640 struct bp_location *bl, **blp_tmp;
3641 int val = 0;
3642 scoped_restore save_inferior_ptid = make_scoped_restore (&inferior_ptid);
3643 struct inferior *inf = current_inferior ();
3644
3645 if (ptid_get_pid (ptid) == ptid_get_pid (inferior_ptid))
3646 error (_("Cannot detach breakpoints of inferior_ptid"));
3647
3648 /* Set inferior_ptid; remove_breakpoint_1 uses this global. */
3649 inferior_ptid = ptid;
3650 ALL_BP_LOCATIONS (bl, blp_tmp)
3651 {
3652 if (bl->pspace != inf->pspace)
3653 continue;
3654
3655 /* This function must physically remove breakpoints locations
3656 from the specified ptid, without modifying the breakpoint
3657 package's state. Locations of type bp_loc_other are only
3658 maintained at GDB side. So, there is no need to remove
3659 these bp_loc_other locations. Moreover, removing these
3660 would modify the breakpoint package's state. */
3661 if (bl->loc_type == bp_loc_other)
3662 continue;
3663
3664 if (bl->inserted)
3665 val |= remove_breakpoint_1 (bl, DETACH_BREAKPOINT);
3666 }
3667
3668 return val;
3669 }
3670
3671 /* Remove the breakpoint location BL from the current address space.
3672 Note that this is used to detach breakpoints from a child fork.
3673 When we get here, the child isn't in the inferior list, and neither
3674 do we have objects to represent its address space --- we should
3675 *not* look at bl->pspace->aspace here. */
3676
3677 static int
3678 remove_breakpoint_1 (struct bp_location *bl, enum remove_bp_reason reason)
3679 {
3680 int val;
3681
3682 /* BL is never in moribund_locations by our callers. */
3683 gdb_assert (bl->owner != NULL);
3684
3685 /* The type of none suggests that owner is actually deleted.
3686 This should not ever happen. */
3687 gdb_assert (bl->owner->type != bp_none);
3688
3689 if (bl->loc_type == bp_loc_software_breakpoint
3690 || bl->loc_type == bp_loc_hardware_breakpoint)
3691 {
3692 /* "Normal" instruction breakpoint: either the standard
3693 trap-instruction bp (bp_breakpoint), or a
3694 bp_hardware_breakpoint. */
3695
3696 /* First check to see if we have to handle an overlay. */
3697 if (overlay_debugging == ovly_off
3698 || bl->section == NULL
3699 || !(section_is_overlay (bl->section)))
3700 {
3701 /* No overlay handling: just remove the breakpoint. */
3702
3703 /* If we're trying to uninsert a memory breakpoint that we
3704 know is set in a dynamic object that is marked
3705 shlib_disabled, then either the dynamic object was
3706 removed with "remove-symbol-file" or with
3707 "nosharedlibrary". In the former case, we don't know
3708 whether another dynamic object might have loaded over the
3709 breakpoint's address -- the user might well let us know
3710 about it next with add-symbol-file (the whole point of
3711 add-symbol-file is letting the user manually maintain a
3712 list of dynamically loaded objects). If we have the
3713 breakpoint's shadow memory, that is, this is a software
3714 breakpoint managed by GDB, check whether the breakpoint
3715 is still inserted in memory, to avoid overwriting wrong
3716 code with stale saved shadow contents. Note that HW
3717 breakpoints don't have shadow memory, as they're
3718 implemented using a mechanism that is not dependent on
3719 being able to modify the target's memory, and as such
3720 they should always be removed. */
3721 if (bl->shlib_disabled
3722 && bl->target_info.shadow_len != 0
3723 && !memory_validate_breakpoint (bl->gdbarch, &bl->target_info))
3724 val = 0;
3725 else
3726 val = bl->owner->ops->remove_location (bl, reason);
3727 }
3728 else
3729 {
3730 /* This breakpoint is in an overlay section.
3731 Did we set a breakpoint at the LMA? */
3732 if (!overlay_events_enabled)
3733 {
3734 /* Yes -- overlay event support is not active, so we
3735 should have set a breakpoint at the LMA. Remove it.
3736 */
3737 /* Ignore any failures: if the LMA is in ROM, we will
3738 have already warned when we failed to insert it. */
3739 if (bl->loc_type == bp_loc_hardware_breakpoint)
3740 target_remove_hw_breakpoint (bl->gdbarch,
3741 &bl->overlay_target_info);
3742 else
3743 target_remove_breakpoint (bl->gdbarch,
3744 &bl->overlay_target_info,
3745 reason);
3746 }
3747 /* Did we set a breakpoint at the VMA?
3748 If so, we will have marked the breakpoint 'inserted'. */
3749 if (bl->inserted)
3750 {
3751 /* Yes -- remove it. Previously we did not bother to
3752 remove the breakpoint if the section had been
3753 unmapped, but let's not rely on that being safe. We
3754 don't know what the overlay manager might do. */
3755
3756 /* However, we should remove *software* breakpoints only
3757 if the section is still mapped, or else we overwrite
3758 wrong code with the saved shadow contents. */
3759 if (bl->loc_type == bp_loc_hardware_breakpoint
3760 || section_is_mapped (bl->section))
3761 val = bl->owner->ops->remove_location (bl, reason);
3762 else
3763 val = 0;
3764 }
3765 else
3766 {
3767 /* No -- not inserted, so no need to remove. No error. */
3768 val = 0;
3769 }
3770 }
3771
3772 /* In some cases, we might not be able to remove a breakpoint in
3773 a shared library that has already been removed, but we have
3774 not yet processed the shlib unload event. Similarly for an
3775 unloaded add-symbol-file object - the user might not yet have
3776 had the chance to remove-symbol-file it. shlib_disabled will
3777 be set if the library/object has already been removed, but
3778 the breakpoint hasn't been uninserted yet, e.g., after
3779 "nosharedlibrary" or "remove-symbol-file" with breakpoints
3780 always-inserted mode. */
3781 if (val
3782 && (bl->loc_type == bp_loc_software_breakpoint
3783 && (bl->shlib_disabled
3784 || solib_name_from_address (bl->pspace, bl->address)
3785 || shared_objfile_contains_address_p (bl->pspace,
3786 bl->address))))
3787 val = 0;
3788
3789 if (val)
3790 return val;
3791 bl->inserted = (reason == DETACH_BREAKPOINT);
3792 }
3793 else if (bl->loc_type == bp_loc_hardware_watchpoint)
3794 {
3795 gdb_assert (bl->owner->ops != NULL
3796 && bl->owner->ops->remove_location != NULL);
3797
3798 bl->inserted = (reason == DETACH_BREAKPOINT);
3799 bl->owner->ops->remove_location (bl, reason);
3800
3801 /* Failure to remove any of the hardware watchpoints comes here. */
3802 if (reason == REMOVE_BREAKPOINT && bl->inserted)
3803 warning (_("Could not remove hardware watchpoint %d."),
3804 bl->owner->number);
3805 }
3806 else if (bl->owner->type == bp_catchpoint
3807 && breakpoint_enabled (bl->owner)
3808 && !bl->duplicate)
3809 {
3810 gdb_assert (bl->owner->ops != NULL
3811 && bl->owner->ops->remove_location != NULL);
3812
3813 val = bl->owner->ops->remove_location (bl, reason);
3814 if (val)
3815 return val;
3816
3817 bl->inserted = (reason == DETACH_BREAKPOINT);
3818 }
3819
3820 return 0;
3821 }
3822
3823 static int
3824 remove_breakpoint (struct bp_location *bl)
3825 {
3826 /* BL is never in moribund_locations by our callers. */
3827 gdb_assert (bl->owner != NULL);
3828
3829 /* The type of none suggests that owner is actually deleted.
3830 This should not ever happen. */
3831 gdb_assert (bl->owner->type != bp_none);
3832
3833 scoped_restore_current_pspace_and_thread restore_pspace_thread;
3834
3835 switch_to_program_space_and_thread (bl->pspace);
3836
3837 return remove_breakpoint_1 (bl, REMOVE_BREAKPOINT);
3838 }
3839
3840 /* Clear the "inserted" flag in all breakpoints. */
3841
3842 void
3843 mark_breakpoints_out (void)
3844 {
3845 struct bp_location *bl, **blp_tmp;
3846
3847 ALL_BP_LOCATIONS (bl, blp_tmp)
3848 if (bl->pspace == current_program_space)
3849 bl->inserted = 0;
3850 }
3851
3852 /* Clear the "inserted" flag in all breakpoints and delete any
3853 breakpoints which should go away between runs of the program.
3854
3855 Plus other such housekeeping that has to be done for breakpoints
3856 between runs.
3857
3858 Note: this function gets called at the end of a run (by
3859 generic_mourn_inferior) and when a run begins (by
3860 init_wait_for_inferior). */
3861
3862
3863
3864 void
3865 breakpoint_init_inferior (enum inf_context context)
3866 {
3867 struct breakpoint *b, *b_tmp;
3868 struct bp_location *bl;
3869 int ix;
3870 struct program_space *pspace = current_program_space;
3871
3872 /* If breakpoint locations are shared across processes, then there's
3873 nothing to do. */
3874 if (gdbarch_has_global_breakpoints (target_gdbarch ()))
3875 return;
3876
3877 mark_breakpoints_out ();
3878
3879 ALL_BREAKPOINTS_SAFE (b, b_tmp)
3880 {
3881 if (b->loc && b->loc->pspace != pspace)
3882 continue;
3883
3884 switch (b->type)
3885 {
3886 case bp_call_dummy:
3887 case bp_longjmp_call_dummy:
3888
3889 /* If the call dummy breakpoint is at the entry point it will
3890 cause problems when the inferior is rerun, so we better get
3891 rid of it. */
3892
3893 case bp_watchpoint_scope:
3894
3895 /* Also get rid of scope breakpoints. */
3896
3897 case bp_shlib_event:
3898
3899 /* Also remove solib event breakpoints. Their addresses may
3900 have changed since the last time we ran the program.
3901 Actually we may now be debugging against different target;
3902 and so the solib backend that installed this breakpoint may
3903 not be used in by the target. E.g.,
3904
3905 (gdb) file prog-linux
3906 (gdb) run # native linux target
3907 ...
3908 (gdb) kill
3909 (gdb) file prog-win.exe
3910 (gdb) tar rem :9999 # remote Windows gdbserver.
3911 */
3912
3913 case bp_step_resume:
3914
3915 /* Also remove step-resume breakpoints. */
3916
3917 case bp_single_step:
3918
3919 /* Also remove single-step breakpoints. */
3920
3921 delete_breakpoint (b);
3922 break;
3923
3924 case bp_watchpoint:
3925 case bp_hardware_watchpoint:
3926 case bp_read_watchpoint:
3927 case bp_access_watchpoint:
3928 {
3929 struct watchpoint *w = (struct watchpoint *) b;
3930
3931 /* Likewise for watchpoints on local expressions. */
3932 if (w->exp_valid_block != NULL)
3933 delete_breakpoint (b);
3934 else
3935 {
3936 /* Get rid of existing locations, which are no longer
3937 valid. New ones will be created in
3938 update_watchpoint, when the inferior is restarted.
3939 The next update_global_location_list call will
3940 garbage collect them. */
3941 b->loc = NULL;
3942
3943 if (context == inf_starting)
3944 {
3945 /* Reset val field to force reread of starting value in
3946 insert_breakpoints. */
3947 w->val.reset (nullptr);
3948 w->val_valid = 0;
3949 }
3950 }
3951 }
3952 break;
3953 default:
3954 break;
3955 }
3956 }
3957
3958 /* Get rid of the moribund locations. */
3959 for (ix = 0; VEC_iterate (bp_location_p, moribund_locations, ix, bl); ++ix)
3960 decref_bp_location (&bl);
3961 VEC_free (bp_location_p, moribund_locations);
3962 }
3963
3964 /* These functions concern about actual breakpoints inserted in the
3965 target --- to e.g. check if we need to do decr_pc adjustment or if
3966 we need to hop over the bkpt --- so we check for address space
3967 match, not program space. */
3968
3969 /* breakpoint_here_p (PC) returns non-zero if an enabled breakpoint
3970 exists at PC. It returns ordinary_breakpoint_here if it's an
3971 ordinary breakpoint, or permanent_breakpoint_here if it's a
3972 permanent breakpoint.
3973 - When continuing from a location with an ordinary breakpoint, we
3974 actually single step once before calling insert_breakpoints.
3975 - When continuing from a location with a permanent breakpoint, we
3976 need to use the `SKIP_PERMANENT_BREAKPOINT' macro, provided by
3977 the target, to advance the PC past the breakpoint. */
3978
3979 enum breakpoint_here
3980 breakpoint_here_p (const address_space *aspace, CORE_ADDR pc)
3981 {
3982 struct bp_location *bl, **blp_tmp;
3983 int any_breakpoint_here = 0;
3984
3985 ALL_BP_LOCATIONS (bl, blp_tmp)
3986 {
3987 if (bl->loc_type != bp_loc_software_breakpoint
3988 && bl->loc_type != bp_loc_hardware_breakpoint)
3989 continue;
3990
3991 /* ALL_BP_LOCATIONS bp_location has BL->OWNER always non-NULL. */
3992 if ((breakpoint_enabled (bl->owner)
3993 || bl->permanent)
3994 && breakpoint_location_address_match (bl, aspace, pc))
3995 {
3996 if (overlay_debugging
3997 && section_is_overlay (bl->section)
3998 && !section_is_mapped (bl->section))
3999 continue; /* unmapped overlay -- can't be a match */
4000 else if (bl->permanent)
4001 return permanent_breakpoint_here;
4002 else
4003 any_breakpoint_here = 1;
4004 }
4005 }
4006
4007 return any_breakpoint_here ? ordinary_breakpoint_here : no_breakpoint_here;
4008 }
4009
4010 /* See breakpoint.h. */
4011
4012 int
4013 breakpoint_in_range_p (const address_space *aspace,
4014 CORE_ADDR addr, ULONGEST len)
4015 {
4016 struct bp_location *bl, **blp_tmp;
4017
4018 ALL_BP_LOCATIONS (bl, blp_tmp)
4019 {
4020 if (bl->loc_type != bp_loc_software_breakpoint
4021 && bl->loc_type != bp_loc_hardware_breakpoint)
4022 continue;
4023
4024 if ((breakpoint_enabled (bl->owner)
4025 || bl->permanent)
4026 && breakpoint_location_address_range_overlap (bl, aspace,
4027 addr, len))
4028 {
4029 if (overlay_debugging
4030 && section_is_overlay (bl->section)
4031 && !section_is_mapped (bl->section))
4032 {
4033 /* Unmapped overlay -- can't be a match. */
4034 continue;
4035 }
4036
4037 return 1;
4038 }
4039 }
4040
4041 return 0;
4042 }
4043
4044 /* Return true if there's a moribund breakpoint at PC. */
4045
4046 int
4047 moribund_breakpoint_here_p (const address_space *aspace, CORE_ADDR pc)
4048 {
4049 struct bp_location *loc;
4050 int ix;
4051
4052 for (ix = 0; VEC_iterate (bp_location_p, moribund_locations, ix, loc); ++ix)
4053 if (breakpoint_location_address_match (loc, aspace, pc))
4054 return 1;
4055
4056 return 0;
4057 }
4058
4059 /* Returns non-zero iff BL is inserted at PC, in address space
4060 ASPACE. */
4061
4062 static int
4063 bp_location_inserted_here_p (struct bp_location *bl,
4064 const address_space *aspace, CORE_ADDR pc)
4065 {
4066 if (bl->inserted
4067 && breakpoint_address_match (bl->pspace->aspace, bl->address,
4068 aspace, pc))
4069 {
4070 if (overlay_debugging
4071 && section_is_overlay (bl->section)
4072 && !section_is_mapped (bl->section))
4073 return 0; /* unmapped overlay -- can't be a match */
4074 else
4075 return 1;
4076 }
4077 return 0;
4078 }
4079
4080 /* Returns non-zero iff there's a breakpoint inserted at PC. */
4081
4082 int
4083 breakpoint_inserted_here_p (const address_space *aspace, CORE_ADDR pc)
4084 {
4085 struct bp_location **blp, **blp_tmp = NULL;
4086
4087 ALL_BP_LOCATIONS_AT_ADDR (blp, blp_tmp, pc)
4088 {
4089 struct bp_location *bl = *blp;
4090
4091 if (bl->loc_type != bp_loc_software_breakpoint
4092 && bl->loc_type != bp_loc_hardware_breakpoint)
4093 continue;
4094
4095 if (bp_location_inserted_here_p (bl, aspace, pc))
4096 return 1;
4097 }
4098 return 0;
4099 }
4100
4101 /* This function returns non-zero iff there is a software breakpoint
4102 inserted at PC. */
4103
4104 int
4105 software_breakpoint_inserted_here_p (const address_space *aspace,
4106 CORE_ADDR pc)
4107 {
4108 struct bp_location **blp, **blp_tmp = NULL;
4109
4110 ALL_BP_LOCATIONS_AT_ADDR (blp, blp_tmp, pc)
4111 {
4112 struct bp_location *bl = *blp;
4113
4114 if (bl->loc_type != bp_loc_software_breakpoint)
4115 continue;
4116
4117 if (bp_location_inserted_here_p (bl, aspace, pc))
4118 return 1;
4119 }
4120
4121 return 0;
4122 }
4123
4124 /* See breakpoint.h. */
4125
4126 int
4127 hardware_breakpoint_inserted_here_p (const address_space *aspace,
4128 CORE_ADDR pc)
4129 {
4130 struct bp_location **blp, **blp_tmp = NULL;
4131
4132 ALL_BP_LOCATIONS_AT_ADDR (blp, blp_tmp, pc)
4133 {
4134 struct bp_location *bl = *blp;
4135
4136 if (bl->loc_type != bp_loc_hardware_breakpoint)
4137 continue;
4138
4139 if (bp_location_inserted_here_p (bl, aspace, pc))
4140 return 1;
4141 }
4142
4143 return 0;
4144 }
4145
4146 int
4147 hardware_watchpoint_inserted_in_range (const address_space *aspace,
4148 CORE_ADDR addr, ULONGEST len)
4149 {
4150 struct breakpoint *bpt;
4151
4152 ALL_BREAKPOINTS (bpt)
4153 {
4154 struct bp_location *loc;
4155
4156 if (bpt->type != bp_hardware_watchpoint
4157 && bpt->type != bp_access_watchpoint)
4158 continue;
4159
4160 if (!breakpoint_enabled (bpt))
4161 continue;
4162
4163 for (loc = bpt->loc; loc; loc = loc->next)
4164 if (loc->pspace->aspace == aspace && loc->inserted)
4165 {
4166 CORE_ADDR l, h;
4167
4168 /* Check for intersection. */
4169 l = std::max<CORE_ADDR> (loc->address, addr);
4170 h = std::min<CORE_ADDR> (loc->address + loc->length, addr + len);
4171 if (l < h)
4172 return 1;
4173 }
4174 }
4175 return 0;
4176 }
4177 \f
4178
4179 /* bpstat stuff. External routines' interfaces are documented
4180 in breakpoint.h. */
4181
4182 int
4183 is_catchpoint (struct breakpoint *ep)
4184 {
4185 return (ep->type == bp_catchpoint);
4186 }
4187
4188 /* Frees any storage that is part of a bpstat. Does not walk the
4189 'next' chain. */
4190
4191 bpstats::~bpstats ()
4192 {
4193 if (bp_location_at != NULL)
4194 decref_bp_location (&bp_location_at);
4195 }
4196
4197 /* Clear a bpstat so that it says we are not at any breakpoint.
4198 Also free any storage that is part of a bpstat. */
4199
4200 void
4201 bpstat_clear (bpstat *bsp)
4202 {
4203 bpstat p;
4204 bpstat q;
4205
4206 if (bsp == 0)
4207 return;
4208 p = *bsp;
4209 while (p != NULL)
4210 {
4211 q = p->next;
4212 delete p;
4213 p = q;
4214 }
4215 *bsp = NULL;
4216 }
4217
4218 bpstats::bpstats (const bpstats &other)
4219 : next (NULL),
4220 bp_location_at (other.bp_location_at),
4221 breakpoint_at (other.breakpoint_at),
4222 commands (other.commands),
4223 print (other.print),
4224 stop (other.stop),
4225 print_it (other.print_it)
4226 {
4227 if (other.old_val != NULL)
4228 old_val = release_value (value_copy (other.old_val.get ()));
4229 incref_bp_location (bp_location_at);
4230 }
4231
4232 /* Return a copy of a bpstat. Like "bs1 = bs2" but all storage that
4233 is part of the bpstat is copied as well. */
4234
4235 bpstat
4236 bpstat_copy (bpstat bs)
4237 {
4238 bpstat p = NULL;
4239 bpstat tmp;
4240 bpstat retval = NULL;
4241
4242 if (bs == NULL)
4243 return bs;
4244
4245 for (; bs != NULL; bs = bs->next)
4246 {
4247 tmp = new bpstats (*bs);
4248
4249 if (p == NULL)
4250 /* This is the first thing in the chain. */
4251 retval = tmp;
4252 else
4253 p->next = tmp;
4254 p = tmp;
4255 }
4256 p->next = NULL;
4257 return retval;
4258 }
4259
4260 /* Find the bpstat associated with this breakpoint. */
4261
4262 bpstat
4263 bpstat_find_breakpoint (bpstat bsp, struct breakpoint *breakpoint)
4264 {
4265 if (bsp == NULL)
4266 return NULL;
4267
4268 for (; bsp != NULL; bsp = bsp->next)
4269 {
4270 if (bsp->breakpoint_at == breakpoint)
4271 return bsp;
4272 }
4273 return NULL;
4274 }
4275
4276 /* See breakpoint.h. */
4277
4278 int
4279 bpstat_explains_signal (bpstat bsp, enum gdb_signal sig)
4280 {
4281 for (; bsp != NULL; bsp = bsp->next)
4282 {
4283 if (bsp->breakpoint_at == NULL)
4284 {
4285 /* A moribund location can never explain a signal other than
4286 GDB_SIGNAL_TRAP. */
4287 if (sig == GDB_SIGNAL_TRAP)
4288 return 1;
4289 }
4290 else
4291 {
4292 if (bsp->breakpoint_at->ops->explains_signal (bsp->breakpoint_at,
4293 sig))
4294 return 1;
4295 }
4296 }
4297
4298 return 0;
4299 }
4300
4301 /* Put in *NUM the breakpoint number of the first breakpoint we are
4302 stopped at. *BSP upon return is a bpstat which points to the
4303 remaining breakpoints stopped at (but which is not guaranteed to be
4304 good for anything but further calls to bpstat_num).
4305
4306 Return 0 if passed a bpstat which does not indicate any breakpoints.
4307 Return -1 if stopped at a breakpoint that has been deleted since
4308 we set it.
4309 Return 1 otherwise. */
4310
4311 int
4312 bpstat_num (bpstat *bsp, int *num)
4313 {
4314 struct breakpoint *b;
4315
4316 if ((*bsp) == NULL)
4317 return 0; /* No more breakpoint values */
4318
4319 /* We assume we'll never have several bpstats that correspond to a
4320 single breakpoint -- otherwise, this function might return the
4321 same number more than once and this will look ugly. */
4322 b = (*bsp)->breakpoint_at;
4323 *bsp = (*bsp)->next;
4324 if (b == NULL)
4325 return -1; /* breakpoint that's been deleted since */
4326
4327 *num = b->number; /* We have its number */
4328 return 1;
4329 }
4330
4331 /* See breakpoint.h. */
4332
4333 void
4334 bpstat_clear_actions (void)
4335 {
4336 struct thread_info *tp;
4337 bpstat bs;
4338
4339 if (ptid_equal (inferior_ptid, null_ptid))
4340 return;
4341
4342 tp = find_thread_ptid (inferior_ptid);
4343 if (tp == NULL)
4344 return;
4345
4346 for (bs = tp->control.stop_bpstat; bs != NULL; bs = bs->next)
4347 {
4348 bs->commands = NULL;
4349 bs->old_val.reset (nullptr);
4350 }
4351 }
4352
4353 /* Called when a command is about to proceed the inferior. */
4354
4355 static void
4356 breakpoint_about_to_proceed (void)
4357 {
4358 if (!ptid_equal (inferior_ptid, null_ptid))
4359 {
4360 struct thread_info *tp = inferior_thread ();
4361
4362 /* Allow inferior function calls in breakpoint commands to not
4363 interrupt the command list. When the call finishes
4364 successfully, the inferior will be standing at the same
4365 breakpoint as if nothing happened. */
4366 if (tp->control.in_infcall)
4367 return;
4368 }
4369
4370 breakpoint_proceeded = 1;
4371 }
4372
4373 /* Return non-zero iff CMD as the first line of a command sequence is `silent'
4374 or its equivalent. */
4375
4376 static int
4377 command_line_is_silent (struct command_line *cmd)
4378 {
4379 return cmd && (strcmp ("silent", cmd->line) == 0);
4380 }
4381
4382 /* Execute all the commands associated with all the breakpoints at
4383 this location. Any of these commands could cause the process to
4384 proceed beyond this point, etc. We look out for such changes by
4385 checking the global "breakpoint_proceeded" after each command.
4386
4387 Returns true if a breakpoint command resumed the inferior. In that
4388 case, it is the caller's responsibility to recall it again with the
4389 bpstat of the current thread. */
4390
4391 static int
4392 bpstat_do_actions_1 (bpstat *bsp)
4393 {
4394 bpstat bs;
4395 int again = 0;
4396
4397 /* Avoid endless recursion if a `source' command is contained
4398 in bs->commands. */
4399 if (executing_breakpoint_commands)
4400 return 0;
4401
4402 scoped_restore save_executing
4403 = make_scoped_restore (&executing_breakpoint_commands, 1);
4404
4405 scoped_restore preventer = prevent_dont_repeat ();
4406
4407 /* This pointer will iterate over the list of bpstat's. */
4408 bs = *bsp;
4409
4410 breakpoint_proceeded = 0;
4411 for (; bs != NULL; bs = bs->next)
4412 {
4413 struct command_line *cmd = NULL;
4414
4415 /* Take ownership of the BSP's command tree, if it has one.
4416
4417 The command tree could legitimately contain commands like
4418 'step' and 'next', which call clear_proceed_status, which
4419 frees stop_bpstat's command tree. To make sure this doesn't
4420 free the tree we're executing out from under us, we need to
4421 take ownership of the tree ourselves. Since a given bpstat's
4422 commands are only executed once, we don't need to copy it; we
4423 can clear the pointer in the bpstat, and make sure we free
4424 the tree when we're done. */
4425 counted_command_line ccmd = bs->commands;
4426 bs->commands = NULL;
4427 if (ccmd != NULL)
4428 cmd = ccmd.get ();
4429 if (command_line_is_silent (cmd))
4430 {
4431 /* The action has been already done by bpstat_stop_status. */
4432 cmd = cmd->next;
4433 }
4434
4435 while (cmd != NULL)
4436 {
4437 execute_control_command (cmd);
4438
4439 if (breakpoint_proceeded)
4440 break;
4441 else
4442 cmd = cmd->next;
4443 }
4444
4445 if (breakpoint_proceeded)
4446 {
4447 if (current_ui->async)
4448 /* If we are in async mode, then the target might be still
4449 running, not stopped at any breakpoint, so nothing for
4450 us to do here -- just return to the event loop. */
4451 ;
4452 else
4453 /* In sync mode, when execute_control_command returns
4454 we're already standing on the next breakpoint.
4455 Breakpoint commands for that stop were not run, since
4456 execute_command does not run breakpoint commands --
4457 only command_line_handler does, but that one is not
4458 involved in execution of breakpoint commands. So, we
4459 can now execute breakpoint commands. It should be
4460 noted that making execute_command do bpstat actions is
4461 not an option -- in this case we'll have recursive
4462 invocation of bpstat for each breakpoint with a
4463 command, and can easily blow up GDB stack. Instead, we
4464 return true, which will trigger the caller to recall us
4465 with the new stop_bpstat. */
4466 again = 1;
4467 break;
4468 }
4469 }
4470 return again;
4471 }
4472
4473 void
4474 bpstat_do_actions (void)
4475 {
4476 struct cleanup *cleanup_if_error = make_bpstat_clear_actions_cleanup ();
4477
4478 /* Do any commands attached to breakpoint we are stopped at. */
4479 while (!ptid_equal (inferior_ptid, null_ptid)
4480 && target_has_execution
4481 && !is_exited (inferior_ptid)
4482 && !is_executing (inferior_ptid))
4483 /* Since in sync mode, bpstat_do_actions may resume the inferior,
4484 and only return when it is stopped at the next breakpoint, we
4485 keep doing breakpoint actions until it returns false to
4486 indicate the inferior was not resumed. */
4487 if (!bpstat_do_actions_1 (&inferior_thread ()->control.stop_bpstat))
4488 break;
4489
4490 discard_cleanups (cleanup_if_error);
4491 }
4492
4493 /* Print out the (old or new) value associated with a watchpoint. */
4494
4495 static void
4496 watchpoint_value_print (struct value *val, struct ui_file *stream)
4497 {
4498 if (val == NULL)
4499 fprintf_unfiltered (stream, _("<unreadable>"));
4500 else
4501 {
4502 struct value_print_options opts;
4503 get_user_print_options (&opts);
4504 value_print (val, stream, &opts);
4505 }
4506 }
4507
4508 /* Print the "Thread ID hit" part of "Thread ID hit Breakpoint N" if
4509 debugging multiple threads. */
4510
4511 void
4512 maybe_print_thread_hit_breakpoint (struct ui_out *uiout)
4513 {
4514 if (uiout->is_mi_like_p ())
4515 return;
4516
4517 uiout->text ("\n");
4518
4519 if (show_thread_that_caused_stop ())
4520 {
4521 const char *name;
4522 struct thread_info *thr = inferior_thread ();
4523
4524 uiout->text ("Thread ");
4525 uiout->field_fmt ("thread-id", "%s", print_thread_id (thr));
4526
4527 name = thr->name != NULL ? thr->name : target_thread_name (thr);
4528 if (name != NULL)
4529 {
4530 uiout->text (" \"");
4531 uiout->field_fmt ("name", "%s", name);
4532 uiout->text ("\"");
4533 }
4534
4535 uiout->text (" hit ");
4536 }
4537 }
4538
4539 /* Generic routine for printing messages indicating why we
4540 stopped. The behavior of this function depends on the value
4541 'print_it' in the bpstat structure. Under some circumstances we
4542 may decide not to print anything here and delegate the task to
4543 normal_stop(). */
4544
4545 static enum print_stop_action
4546 print_bp_stop_message (bpstat bs)
4547 {
4548 switch (bs->print_it)
4549 {
4550 case print_it_noop:
4551 /* Nothing should be printed for this bpstat entry. */
4552 return PRINT_UNKNOWN;
4553 break;
4554
4555 case print_it_done:
4556 /* We still want to print the frame, but we already printed the
4557 relevant messages. */
4558 return PRINT_SRC_AND_LOC;
4559 break;
4560
4561 case print_it_normal:
4562 {
4563 struct breakpoint *b = bs->breakpoint_at;
4564
4565 /* bs->breakpoint_at can be NULL if it was a momentary breakpoint
4566 which has since been deleted. */
4567 if (b == NULL)
4568 return PRINT_UNKNOWN;
4569
4570 /* Normal case. Call the breakpoint's print_it method. */
4571 return b->ops->print_it (bs);
4572 }
4573 break;
4574
4575 default:
4576 internal_error (__FILE__, __LINE__,
4577 _("print_bp_stop_message: unrecognized enum value"));
4578 break;
4579 }
4580 }
4581
4582 /* A helper function that prints a shared library stopped event. */
4583
4584 static void
4585 print_solib_event (int is_catchpoint)
4586 {
4587 bool any_deleted = !current_program_space->deleted_solibs.empty ();
4588 int any_added
4589 = !VEC_empty (so_list_ptr, current_program_space->added_solibs);
4590
4591 if (!is_catchpoint)
4592 {
4593 if (any_added || any_deleted)
4594 current_uiout->text (_("Stopped due to shared library event:\n"));
4595 else
4596 current_uiout->text (_("Stopped due to shared library event (no "
4597 "libraries added or removed)\n"));
4598 }
4599
4600 if (current_uiout->is_mi_like_p ())
4601 current_uiout->field_string ("reason",
4602 async_reason_lookup (EXEC_ASYNC_SOLIB_EVENT));
4603
4604 if (any_deleted)
4605 {
4606 current_uiout->text (_(" Inferior unloaded "));
4607 ui_out_emit_list list_emitter (current_uiout, "removed");
4608 for (int ix = 0; ix < current_program_space->deleted_solibs.size (); ix++)
4609 {
4610 const std::string &name = current_program_space->deleted_solibs[ix];
4611
4612 if (ix > 0)
4613 current_uiout->text (" ");
4614 current_uiout->field_string ("library", name);
4615 current_uiout->text ("\n");
4616 }
4617 }
4618
4619 if (any_added)
4620 {
4621 struct so_list *iter;
4622 int ix;
4623
4624 current_uiout->text (_(" Inferior loaded "));
4625 ui_out_emit_list list_emitter (current_uiout, "added");
4626 for (ix = 0;
4627 VEC_iterate (so_list_ptr, current_program_space->added_solibs,
4628 ix, iter);
4629 ++ix)
4630 {
4631 if (ix > 0)
4632 current_uiout->text (" ");
4633 current_uiout->field_string ("library", iter->so_name);
4634 current_uiout->text ("\n");
4635 }
4636 }
4637 }
4638
4639 /* Print a message indicating what happened. This is called from
4640 normal_stop(). The input to this routine is the head of the bpstat
4641 list - a list of the eventpoints that caused this stop. KIND is
4642 the target_waitkind for the stopping event. This
4643 routine calls the generic print routine for printing a message
4644 about reasons for stopping. This will print (for example) the
4645 "Breakpoint n," part of the output. The return value of this
4646 routine is one of:
4647
4648 PRINT_UNKNOWN: Means we printed nothing.
4649 PRINT_SRC_AND_LOC: Means we printed something, and expect subsequent
4650 code to print the location. An example is
4651 "Breakpoint 1, " which should be followed by
4652 the location.
4653 PRINT_SRC_ONLY: Means we printed something, but there is no need
4654 to also print the location part of the message.
4655 An example is the catch/throw messages, which
4656 don't require a location appended to the end.
4657 PRINT_NOTHING: We have done some printing and we don't need any
4658 further info to be printed. */
4659
4660 enum print_stop_action
4661 bpstat_print (bpstat bs, int kind)
4662 {
4663 enum print_stop_action val;
4664
4665 /* Maybe another breakpoint in the chain caused us to stop.
4666 (Currently all watchpoints go on the bpstat whether hit or not.
4667 That probably could (should) be changed, provided care is taken
4668 with respect to bpstat_explains_signal). */
4669 for (; bs; bs = bs->next)
4670 {
4671 val = print_bp_stop_message (bs);
4672 if (val == PRINT_SRC_ONLY
4673 || val == PRINT_SRC_AND_LOC
4674 || val == PRINT_NOTHING)
4675 return val;
4676 }
4677
4678 /* If we had hit a shared library event breakpoint,
4679 print_bp_stop_message would print out this message. If we hit an
4680 OS-level shared library event, do the same thing. */
4681 if (kind == TARGET_WAITKIND_LOADED)
4682 {
4683 print_solib_event (0);
4684 return PRINT_NOTHING;
4685 }
4686
4687 /* We reached the end of the chain, or we got a null BS to start
4688 with and nothing was printed. */
4689 return PRINT_UNKNOWN;
4690 }
4691
4692 /* Evaluate the boolean expression EXP and return the result. */
4693
4694 static bool
4695 breakpoint_cond_eval (expression *exp)
4696 {
4697 struct value *mark = value_mark ();
4698 bool res = value_true (evaluate_expression (exp));
4699
4700 value_free_to_mark (mark);
4701 return res;
4702 }
4703
4704 /* Allocate a new bpstat. Link it to the FIFO list by BS_LINK_POINTER. */
4705
4706 bpstats::bpstats (struct bp_location *bl, bpstat **bs_link_pointer)
4707 : next (NULL),
4708 bp_location_at (bl),
4709 breakpoint_at (bl->owner),
4710 commands (NULL),
4711 print (0),
4712 stop (0),
4713 print_it (print_it_normal)
4714 {
4715 incref_bp_location (bl);
4716 **bs_link_pointer = this;
4717 *bs_link_pointer = &next;
4718 }
4719
4720 bpstats::bpstats ()
4721 : next (NULL),
4722 bp_location_at (NULL),
4723 breakpoint_at (NULL),
4724 commands (NULL),
4725 print (0),
4726 stop (0),
4727 print_it (print_it_normal)
4728 {
4729 }
4730 \f
4731 /* The target has stopped with waitstatus WS. Check if any hardware
4732 watchpoints have triggered, according to the target. */
4733
4734 int
4735 watchpoints_triggered (struct target_waitstatus *ws)
4736 {
4737 int stopped_by_watchpoint = target_stopped_by_watchpoint ();
4738 CORE_ADDR addr;
4739 struct breakpoint *b;
4740
4741 if (!stopped_by_watchpoint)
4742 {
4743 /* We were not stopped by a watchpoint. Mark all watchpoints
4744 as not triggered. */
4745 ALL_BREAKPOINTS (b)
4746 if (is_hardware_watchpoint (b))
4747 {
4748 struct watchpoint *w = (struct watchpoint *) b;
4749
4750 w->watchpoint_triggered = watch_triggered_no;
4751 }
4752
4753 return 0;
4754 }
4755
4756 if (!target_stopped_data_address (&current_target, &addr))
4757 {
4758 /* We were stopped by a watchpoint, but we don't know where.
4759 Mark all watchpoints as unknown. */
4760 ALL_BREAKPOINTS (b)
4761 if (is_hardware_watchpoint (b))
4762 {
4763 struct watchpoint *w = (struct watchpoint *) b;
4764
4765 w->watchpoint_triggered = watch_triggered_unknown;
4766 }
4767
4768 return 1;
4769 }
4770
4771 /* The target could report the data address. Mark watchpoints
4772 affected by this data address as triggered, and all others as not
4773 triggered. */
4774
4775 ALL_BREAKPOINTS (b)
4776 if (is_hardware_watchpoint (b))
4777 {
4778 struct watchpoint *w = (struct watchpoint *) b;
4779 struct bp_location *loc;
4780
4781 w->watchpoint_triggered = watch_triggered_no;
4782 for (loc = b->loc; loc; loc = loc->next)
4783 {
4784 if (is_masked_watchpoint (b))
4785 {
4786 CORE_ADDR newaddr = addr & w->hw_wp_mask;
4787 CORE_ADDR start = loc->address & w->hw_wp_mask;
4788
4789 if (newaddr == start)
4790 {
4791 w->watchpoint_triggered = watch_triggered_yes;
4792 break;
4793 }
4794 }
4795 /* Exact match not required. Within range is sufficient. */
4796 else if (target_watchpoint_addr_within_range (&current_target,
4797 addr, loc->address,
4798 loc->length))
4799 {
4800 w->watchpoint_triggered = watch_triggered_yes;
4801 break;
4802 }
4803 }
4804 }
4805
4806 return 1;
4807 }
4808
4809 /* Possible return values for watchpoint_check. */
4810 enum wp_check_result
4811 {
4812 /* The watchpoint has been deleted. */
4813 WP_DELETED = 1,
4814
4815 /* The value has changed. */
4816 WP_VALUE_CHANGED = 2,
4817
4818 /* The value has not changed. */
4819 WP_VALUE_NOT_CHANGED = 3,
4820
4821 /* Ignore this watchpoint, no matter if the value changed or not. */
4822 WP_IGNORE = 4,
4823 };
4824
4825 #define BP_TEMPFLAG 1
4826 #define BP_HARDWAREFLAG 2
4827
4828 /* Evaluate watchpoint condition expression and check if its value
4829 changed. */
4830
4831 static wp_check_result
4832 watchpoint_check (bpstat bs)
4833 {
4834 struct watchpoint *b;
4835 struct frame_info *fr;
4836 int within_current_scope;
4837
4838 /* BS is built from an existing struct breakpoint. */
4839 gdb_assert (bs->breakpoint_at != NULL);
4840 b = (struct watchpoint *) bs->breakpoint_at;
4841
4842 /* If this is a local watchpoint, we only want to check if the
4843 watchpoint frame is in scope if the current thread is the thread
4844 that was used to create the watchpoint. */
4845 if (!watchpoint_in_thread_scope (b))
4846 return WP_IGNORE;
4847
4848 if (b->exp_valid_block == NULL)
4849 within_current_scope = 1;
4850 else
4851 {
4852 struct frame_info *frame = get_current_frame ();
4853 struct gdbarch *frame_arch = get_frame_arch (frame);
4854 CORE_ADDR frame_pc = get_frame_pc (frame);
4855
4856 /* stack_frame_destroyed_p() returns a non-zero value if we're
4857 still in the function but the stack frame has already been
4858 invalidated. Since we can't rely on the values of local
4859 variables after the stack has been destroyed, we are treating
4860 the watchpoint in that state as `not changed' without further
4861 checking. Don't mark watchpoints as changed if the current
4862 frame is in an epilogue - even if they are in some other
4863 frame, our view of the stack is likely to be wrong and
4864 frame_find_by_id could error out. */
4865 if (gdbarch_stack_frame_destroyed_p (frame_arch, frame_pc))
4866 return WP_IGNORE;
4867
4868 fr = frame_find_by_id (b->watchpoint_frame);
4869 within_current_scope = (fr != NULL);
4870
4871 /* If we've gotten confused in the unwinder, we might have
4872 returned a frame that can't describe this variable. */
4873 if (within_current_scope)
4874 {
4875 struct symbol *function;
4876
4877 function = get_frame_function (fr);
4878 if (function == NULL
4879 || !contained_in (b->exp_valid_block,
4880 SYMBOL_BLOCK_VALUE (function)))
4881 within_current_scope = 0;
4882 }
4883
4884 if (within_current_scope)
4885 /* If we end up stopping, the current frame will get selected
4886 in normal_stop. So this call to select_frame won't affect
4887 the user. */
4888 select_frame (fr);
4889 }
4890
4891 if (within_current_scope)
4892 {
4893 /* We use value_{,free_to_}mark because it could be a *long*
4894 time before we return to the command level and call
4895 free_all_values. We can't call free_all_values because we
4896 might be in the middle of evaluating a function call. */
4897
4898 int pc = 0;
4899 struct value *mark;
4900 struct value *new_val;
4901
4902 if (is_masked_watchpoint (b))
4903 /* Since we don't know the exact trigger address (from
4904 stopped_data_address), just tell the user we've triggered
4905 a mask watchpoint. */
4906 return WP_VALUE_CHANGED;
4907
4908 mark = value_mark ();
4909 fetch_subexp_value (b->exp.get (), &pc, &new_val, NULL, NULL, 0);
4910
4911 if (b->val_bitsize != 0)
4912 new_val = extract_bitfield_from_watchpoint_value (b, new_val);
4913
4914 /* We use value_equal_contents instead of value_equal because
4915 the latter coerces an array to a pointer, thus comparing just
4916 the address of the array instead of its contents. This is
4917 not what we want. */
4918 if ((b->val != NULL) != (new_val != NULL)
4919 || (b->val != NULL && !value_equal_contents (b->val.get (),
4920 new_val)))
4921 {
4922 bs->old_val = b->val;
4923 b->val = release_value (new_val);
4924 b->val_valid = 1;
4925 if (new_val != NULL)
4926 value_free_to_mark (mark);
4927 return WP_VALUE_CHANGED;
4928 }
4929 else
4930 {
4931 /* Nothing changed. */
4932 value_free_to_mark (mark);
4933 return WP_VALUE_NOT_CHANGED;
4934 }
4935 }
4936 else
4937 {
4938 /* This seems like the only logical thing to do because
4939 if we temporarily ignored the watchpoint, then when
4940 we reenter the block in which it is valid it contains
4941 garbage (in the case of a function, it may have two
4942 garbage values, one before and one after the prologue).
4943 So we can't even detect the first assignment to it and
4944 watch after that (since the garbage may or may not equal
4945 the first value assigned). */
4946 /* We print all the stop information in
4947 breakpoint_ops->print_it, but in this case, by the time we
4948 call breakpoint_ops->print_it this bp will be deleted
4949 already. So we have no choice but print the information
4950 here. */
4951
4952 SWITCH_THRU_ALL_UIS ()
4953 {
4954 struct ui_out *uiout = current_uiout;
4955
4956 if (uiout->is_mi_like_p ())
4957 uiout->field_string
4958 ("reason", async_reason_lookup (EXEC_ASYNC_WATCHPOINT_SCOPE));
4959 uiout->text ("\nWatchpoint ");
4960 uiout->field_int ("wpnum", b->number);
4961 uiout->text (" deleted because the program has left the block in\n"
4962 "which its expression is valid.\n");
4963 }
4964
4965 /* Make sure the watchpoint's commands aren't executed. */
4966 b->commands = NULL;
4967 watchpoint_del_at_next_stop (b);
4968
4969 return WP_DELETED;
4970 }
4971 }
4972
4973 /* Return true if it looks like target has stopped due to hitting
4974 breakpoint location BL. This function does not check if we should
4975 stop, only if BL explains the stop. */
4976
4977 static int
4978 bpstat_check_location (const struct bp_location *bl,
4979 const address_space *aspace, CORE_ADDR bp_addr,
4980 const struct target_waitstatus *ws)
4981 {
4982 struct breakpoint *b = bl->owner;
4983
4984 /* BL is from an existing breakpoint. */
4985 gdb_assert (b != NULL);
4986
4987 return b->ops->breakpoint_hit (bl, aspace, bp_addr, ws);
4988 }
4989
4990 /* Determine if the watched values have actually changed, and we
4991 should stop. If not, set BS->stop to 0. */
4992
4993 static void
4994 bpstat_check_watchpoint (bpstat bs)
4995 {
4996 const struct bp_location *bl;
4997 struct watchpoint *b;
4998
4999 /* BS is built for existing struct breakpoint. */
5000 bl = bs->bp_location_at;
5001 gdb_assert (bl != NULL);
5002 b = (struct watchpoint *) bs->breakpoint_at;
5003 gdb_assert (b != NULL);
5004
5005 {
5006 int must_check_value = 0;
5007
5008 if (b->type == bp_watchpoint)
5009 /* For a software watchpoint, we must always check the
5010 watched value. */
5011 must_check_value = 1;
5012 else if (b->watchpoint_triggered == watch_triggered_yes)
5013 /* We have a hardware watchpoint (read, write, or access)
5014 and the target earlier reported an address watched by
5015 this watchpoint. */
5016 must_check_value = 1;
5017 else if (b->watchpoint_triggered == watch_triggered_unknown
5018 && b->type == bp_hardware_watchpoint)
5019 /* We were stopped by a hardware watchpoint, but the target could
5020 not report the data address. We must check the watchpoint's
5021 value. Access and read watchpoints are out of luck; without
5022 a data address, we can't figure it out. */
5023 must_check_value = 1;
5024
5025 if (must_check_value)
5026 {
5027 wp_check_result e;
5028
5029 TRY
5030 {
5031 e = watchpoint_check (bs);
5032 }
5033 CATCH (ex, RETURN_MASK_ALL)
5034 {
5035 exception_fprintf (gdb_stderr, ex,
5036 "Error evaluating expression "
5037 "for watchpoint %d\n",
5038 b->number);
5039
5040 SWITCH_THRU_ALL_UIS ()
5041 {
5042 printf_filtered (_("Watchpoint %d deleted.\n"),
5043 b->number);
5044 }
5045 watchpoint_del_at_next_stop (b);
5046 e = WP_DELETED;
5047 }
5048 END_CATCH
5049
5050 switch (e)
5051 {
5052 case WP_DELETED:
5053 /* We've already printed what needs to be printed. */
5054 bs->print_it = print_it_done;
5055 /* Stop. */
5056 break;
5057 case WP_IGNORE:
5058 bs->print_it = print_it_noop;
5059 bs->stop = 0;
5060 break;
5061 case WP_VALUE_CHANGED:
5062 if (b->type == bp_read_watchpoint)
5063 {
5064 /* There are two cases to consider here:
5065
5066 1. We're watching the triggered memory for reads.
5067 In that case, trust the target, and always report
5068 the watchpoint hit to the user. Even though
5069 reads don't cause value changes, the value may
5070 have changed since the last time it was read, and
5071 since we're not trapping writes, we will not see
5072 those, and as such we should ignore our notion of
5073 old value.
5074
5075 2. We're watching the triggered memory for both
5076 reads and writes. There are two ways this may
5077 happen:
5078
5079 2.1. This is a target that can't break on data
5080 reads only, but can break on accesses (reads or
5081 writes), such as e.g., x86. We detect this case
5082 at the time we try to insert read watchpoints.
5083
5084 2.2. Otherwise, the target supports read
5085 watchpoints, but, the user set an access or write
5086 watchpoint watching the same memory as this read
5087 watchpoint.
5088
5089 If we're watching memory writes as well as reads,
5090 ignore watchpoint hits when we find that the
5091 value hasn't changed, as reads don't cause
5092 changes. This still gives false positives when
5093 the program writes the same value to memory as
5094 what there was already in memory (we will confuse
5095 it for a read), but it's much better than
5096 nothing. */
5097
5098 int other_write_watchpoint = 0;
5099
5100 if (bl->watchpoint_type == hw_read)
5101 {
5102 struct breakpoint *other_b;
5103
5104 ALL_BREAKPOINTS (other_b)
5105 if (other_b->type == bp_hardware_watchpoint
5106 || other_b->type == bp_access_watchpoint)
5107 {
5108 struct watchpoint *other_w =
5109 (struct watchpoint *) other_b;
5110
5111 if (other_w->watchpoint_triggered
5112 == watch_triggered_yes)
5113 {
5114 other_write_watchpoint = 1;
5115 break;
5116 }
5117 }
5118 }
5119
5120 if (other_write_watchpoint
5121 || bl->watchpoint_type == hw_access)
5122 {
5123 /* We're watching the same memory for writes,
5124 and the value changed since the last time we
5125 updated it, so this trap must be for a write.
5126 Ignore it. */
5127 bs->print_it = print_it_noop;
5128 bs->stop = 0;
5129 }
5130 }
5131 break;
5132 case WP_VALUE_NOT_CHANGED:
5133 if (b->type == bp_hardware_watchpoint
5134 || b->type == bp_watchpoint)
5135 {
5136 /* Don't stop: write watchpoints shouldn't fire if
5137 the value hasn't changed. */
5138 bs->print_it = print_it_noop;
5139 bs->stop = 0;
5140 }
5141 /* Stop. */
5142 break;
5143 default:
5144 /* Can't happen. */
5145 break;
5146 }
5147 }
5148 else /* must_check_value == 0 */
5149 {
5150 /* This is a case where some watchpoint(s) triggered, but
5151 not at the address of this watchpoint, or else no
5152 watchpoint triggered after all. So don't print
5153 anything for this watchpoint. */
5154 bs->print_it = print_it_noop;
5155 bs->stop = 0;
5156 }
5157 }
5158 }
5159
5160 /* For breakpoints that are currently marked as telling gdb to stop,
5161 check conditions (condition proper, frame, thread and ignore count)
5162 of breakpoint referred to by BS. If we should not stop for this
5163 breakpoint, set BS->stop to 0. */
5164
5165 static void
5166 bpstat_check_breakpoint_conditions (bpstat bs, ptid_t ptid)
5167 {
5168 const struct bp_location *bl;
5169 struct breakpoint *b;
5170 /* Assume stop. */
5171 bool condition_result = true;
5172 struct expression *cond;
5173
5174 gdb_assert (bs->stop);
5175
5176 /* BS is built for existing struct breakpoint. */
5177 bl = bs->bp_location_at;
5178 gdb_assert (bl != NULL);
5179 b = bs->breakpoint_at;
5180 gdb_assert (b != NULL);
5181
5182 /* Even if the target evaluated the condition on its end and notified GDB, we
5183 need to do so again since GDB does not know if we stopped due to a
5184 breakpoint or a single step breakpoint. */
5185
5186 if (frame_id_p (b->frame_id)
5187 && !frame_id_eq (b->frame_id, get_stack_frame_id (get_current_frame ())))
5188 {
5189 bs->stop = 0;
5190 return;
5191 }
5192
5193 /* If this is a thread/task-specific breakpoint, don't waste cpu
5194 evaluating the condition if this isn't the specified
5195 thread/task. */
5196 if ((b->thread != -1 && b->thread != ptid_to_global_thread_id (ptid))
5197 || (b->task != 0 && b->task != ada_get_task_number (ptid)))
5198
5199 {
5200 bs->stop = 0;
5201 return;
5202 }
5203
5204 /* Evaluate extension language breakpoints that have a "stop" method
5205 implemented. */
5206 bs->stop = breakpoint_ext_lang_cond_says_stop (b);
5207
5208 if (is_watchpoint (b))
5209 {
5210 struct watchpoint *w = (struct watchpoint *) b;
5211
5212 cond = w->cond_exp.get ();
5213 }
5214 else
5215 cond = bl->cond.get ();
5216
5217 if (cond && b->disposition != disp_del_at_next_stop)
5218 {
5219 int within_current_scope = 1;
5220 struct watchpoint * w;
5221
5222 /* We use value_mark and value_free_to_mark because it could
5223 be a long time before we return to the command level and
5224 call free_all_values. We can't call free_all_values
5225 because we might be in the middle of evaluating a
5226 function call. */
5227 struct value *mark = value_mark ();
5228
5229 if (is_watchpoint (b))
5230 w = (struct watchpoint *) b;
5231 else
5232 w = NULL;
5233
5234 /* Need to select the frame, with all that implies so that
5235 the conditions will have the right context. Because we
5236 use the frame, we will not see an inlined function's
5237 variables when we arrive at a breakpoint at the start
5238 of the inlined function; the current frame will be the
5239 call site. */
5240 if (w == NULL || w->cond_exp_valid_block == NULL)
5241 select_frame (get_current_frame ());
5242 else
5243 {
5244 struct frame_info *frame;
5245
5246 /* For local watchpoint expressions, which particular
5247 instance of a local is being watched matters, so we
5248 keep track of the frame to evaluate the expression
5249 in. To evaluate the condition however, it doesn't
5250 really matter which instantiation of the function
5251 where the condition makes sense triggers the
5252 watchpoint. This allows an expression like "watch
5253 global if q > 10" set in `func', catch writes to
5254 global on all threads that call `func', or catch
5255 writes on all recursive calls of `func' by a single
5256 thread. We simply always evaluate the condition in
5257 the innermost frame that's executing where it makes
5258 sense to evaluate the condition. It seems
5259 intuitive. */
5260 frame = block_innermost_frame (w->cond_exp_valid_block);
5261 if (frame != NULL)
5262 select_frame (frame);
5263 else
5264 within_current_scope = 0;
5265 }
5266 if (within_current_scope)
5267 {
5268 TRY
5269 {
5270 condition_result = breakpoint_cond_eval (cond);
5271 }
5272 CATCH (ex, RETURN_MASK_ALL)
5273 {
5274 exception_fprintf (gdb_stderr, ex,
5275 "Error in testing breakpoint condition:\n");
5276 }
5277 END_CATCH
5278 }
5279 else
5280 {
5281 warning (_("Watchpoint condition cannot be tested "
5282 "in the current scope"));
5283 /* If we failed to set the right context for this
5284 watchpoint, unconditionally report it. */
5285 }
5286 /* FIXME-someday, should give breakpoint #. */
5287 value_free_to_mark (mark);
5288 }
5289
5290 if (cond && !condition_result)
5291 {
5292 bs->stop = 0;
5293 }
5294 else if (b->ignore_count > 0)
5295 {
5296 b->ignore_count--;
5297 bs->stop = 0;
5298 /* Increase the hit count even though we don't stop. */
5299 ++(b->hit_count);
5300 gdb::observers::breakpoint_modified.notify (b);
5301 }
5302 }
5303
5304 /* Returns true if we need to track moribund locations of LOC's type
5305 on the current target. */
5306
5307 static int
5308 need_moribund_for_location_type (struct bp_location *loc)
5309 {
5310 return ((loc->loc_type == bp_loc_software_breakpoint
5311 && !target_supports_stopped_by_sw_breakpoint ())
5312 || (loc->loc_type == bp_loc_hardware_breakpoint
5313 && !target_supports_stopped_by_hw_breakpoint ()));
5314 }
5315
5316
5317 /* Get a bpstat associated with having just stopped at address
5318 BP_ADDR in thread PTID.
5319
5320 Determine whether we stopped at a breakpoint, etc, or whether we
5321 don't understand this stop. Result is a chain of bpstat's such
5322 that:
5323
5324 if we don't understand the stop, the result is a null pointer.
5325
5326 if we understand why we stopped, the result is not null.
5327
5328 Each element of the chain refers to a particular breakpoint or
5329 watchpoint at which we have stopped. (We may have stopped for
5330 several reasons concurrently.)
5331
5332 Each element of the chain has valid next, breakpoint_at,
5333 commands, FIXME??? fields. */
5334
5335 bpstat
5336 bpstat_stop_status (const address_space *aspace,
5337 CORE_ADDR bp_addr, ptid_t ptid,
5338 const struct target_waitstatus *ws)
5339 {
5340 struct breakpoint *b = NULL;
5341 struct bp_location *bl;
5342 struct bp_location *loc;
5343 /* First item of allocated bpstat's. */
5344 bpstat bs_head = NULL, *bs_link = &bs_head;
5345 /* Pointer to the last thing in the chain currently. */
5346 bpstat bs;
5347 int ix;
5348 int need_remove_insert;
5349 int removed_any;
5350
5351 /* First, build the bpstat chain with locations that explain a
5352 target stop, while being careful to not set the target running,
5353 as that may invalidate locations (in particular watchpoint
5354 locations are recreated). Resuming will happen here with
5355 breakpoint conditions or watchpoint expressions that include
5356 inferior function calls. */
5357
5358 ALL_BREAKPOINTS (b)
5359 {
5360 if (!breakpoint_enabled (b))
5361 continue;
5362
5363 for (bl = b->loc; bl != NULL; bl = bl->next)
5364 {
5365 /* For hardware watchpoints, we look only at the first
5366 location. The watchpoint_check function will work on the
5367 entire expression, not the individual locations. For
5368 read watchpoints, the watchpoints_triggered function has
5369 checked all locations already. */
5370 if (b->type == bp_hardware_watchpoint && bl != b->loc)
5371 break;
5372
5373 if (!bl->enabled || bl->shlib_disabled)
5374 continue;
5375
5376 if (!bpstat_check_location (bl, aspace, bp_addr, ws))
5377 continue;
5378
5379 /* Come here if it's a watchpoint, or if the break address
5380 matches. */
5381
5382 bs = new bpstats (bl, &bs_link); /* Alloc a bpstat to
5383 explain stop. */
5384
5385 /* Assume we stop. Should we find a watchpoint that is not
5386 actually triggered, or if the condition of the breakpoint
5387 evaluates as false, we'll reset 'stop' to 0. */
5388 bs->stop = 1;
5389 bs->print = 1;
5390
5391 /* If this is a scope breakpoint, mark the associated
5392 watchpoint as triggered so that we will handle the
5393 out-of-scope event. We'll get to the watchpoint next
5394 iteration. */
5395 if (b->type == bp_watchpoint_scope && b->related_breakpoint != b)
5396 {
5397 struct watchpoint *w = (struct watchpoint *) b->related_breakpoint;
5398
5399 w->watchpoint_triggered = watch_triggered_yes;
5400 }
5401 }
5402 }
5403
5404 /* Check if a moribund breakpoint explains the stop. */
5405 if (!target_supports_stopped_by_sw_breakpoint ()
5406 || !target_supports_stopped_by_hw_breakpoint ())
5407 {
5408 for (ix = 0; VEC_iterate (bp_location_p, moribund_locations, ix, loc); ++ix)
5409 {
5410 if (breakpoint_location_address_match (loc, aspace, bp_addr)
5411 && need_moribund_for_location_type (loc))
5412 {
5413 bs = new bpstats (loc, &bs_link);
5414 /* For hits of moribund locations, we should just proceed. */
5415 bs->stop = 0;
5416 bs->print = 0;
5417 bs->print_it = print_it_noop;
5418 }
5419 }
5420 }
5421
5422 /* A bit of special processing for shlib breakpoints. We need to
5423 process solib loading here, so that the lists of loaded and
5424 unloaded libraries are correct before we handle "catch load" and
5425 "catch unload". */
5426 for (bs = bs_head; bs != NULL; bs = bs->next)
5427 {
5428 if (bs->breakpoint_at && bs->breakpoint_at->type == bp_shlib_event)
5429 {
5430 handle_solib_event ();
5431 break;
5432 }
5433 }
5434
5435 /* Now go through the locations that caused the target to stop, and
5436 check whether we're interested in reporting this stop to higher
5437 layers, or whether we should resume the target transparently. */
5438
5439 removed_any = 0;
5440
5441 for (bs = bs_head; bs != NULL; bs = bs->next)
5442 {
5443 if (!bs->stop)
5444 continue;
5445
5446 b = bs->breakpoint_at;
5447 b->ops->check_status (bs);
5448 if (bs->stop)
5449 {
5450 bpstat_check_breakpoint_conditions (bs, ptid);
5451
5452 if (bs->stop)
5453 {
5454 ++(b->hit_count);
5455 gdb::observers::breakpoint_modified.notify (b);
5456
5457 /* We will stop here. */
5458 if (b->disposition == disp_disable)
5459 {
5460 --(b->enable_count);
5461 if (b->enable_count <= 0)
5462 b->enable_state = bp_disabled;
5463 removed_any = 1;
5464 }
5465 if (b->silent)
5466 bs->print = 0;
5467 bs->commands = b->commands;
5468 if (command_line_is_silent (bs->commands
5469 ? bs->commands.get () : NULL))
5470 bs->print = 0;
5471
5472 b->ops->after_condition_true (bs);
5473 }
5474
5475 }
5476
5477 /* Print nothing for this entry if we don't stop or don't
5478 print. */
5479 if (!bs->stop || !bs->print)
5480 bs->print_it = print_it_noop;
5481 }
5482
5483 /* If we aren't stopping, the value of some hardware watchpoint may
5484 not have changed, but the intermediate memory locations we are
5485 watching may have. Don't bother if we're stopping; this will get
5486 done later. */
5487 need_remove_insert = 0;
5488 if (! bpstat_causes_stop (bs_head))
5489 for (bs = bs_head; bs != NULL; bs = bs->next)
5490 if (!bs->stop
5491 && bs->breakpoint_at
5492 && is_hardware_watchpoint (bs->breakpoint_at))
5493 {
5494 struct watchpoint *w = (struct watchpoint *) bs->breakpoint_at;
5495
5496 update_watchpoint (w, 0 /* don't reparse. */);
5497 need_remove_insert = 1;
5498 }
5499
5500 if (need_remove_insert)
5501 update_global_location_list (UGLL_MAY_INSERT);
5502 else if (removed_any)
5503 update_global_location_list (UGLL_DONT_INSERT);
5504
5505 return bs_head;
5506 }
5507
5508 static void
5509 handle_jit_event (void)
5510 {
5511 struct frame_info *frame;
5512 struct gdbarch *gdbarch;
5513
5514 if (debug_infrun)
5515 fprintf_unfiltered (gdb_stdlog, "handling bp_jit_event\n");
5516
5517 /* Switch terminal for any messages produced by
5518 breakpoint_re_set. */
5519 target_terminal::ours_for_output ();
5520
5521 frame = get_current_frame ();
5522 gdbarch = get_frame_arch (frame);
5523
5524 jit_event_handler (gdbarch);
5525
5526 target_terminal::inferior ();
5527 }
5528
5529 /* Prepare WHAT final decision for infrun. */
5530
5531 /* Decide what infrun needs to do with this bpstat. */
5532
5533 struct bpstat_what
5534 bpstat_what (bpstat bs_head)
5535 {
5536 struct bpstat_what retval;
5537 bpstat bs;
5538
5539 retval.main_action = BPSTAT_WHAT_KEEP_CHECKING;
5540 retval.call_dummy = STOP_NONE;
5541 retval.is_longjmp = 0;
5542
5543 for (bs = bs_head; bs != NULL; bs = bs->next)
5544 {
5545 /* Extract this BS's action. After processing each BS, we check
5546 if its action overrides all we've seem so far. */
5547 enum bpstat_what_main_action this_action = BPSTAT_WHAT_KEEP_CHECKING;
5548 enum bptype bptype;
5549
5550 if (bs->breakpoint_at == NULL)
5551 {
5552 /* I suspect this can happen if it was a momentary
5553 breakpoint which has since been deleted. */
5554 bptype = bp_none;
5555 }
5556 else
5557 bptype = bs->breakpoint_at->type;
5558
5559 switch (bptype)
5560 {
5561 case bp_none:
5562 break;
5563 case bp_breakpoint:
5564 case bp_hardware_breakpoint:
5565 case bp_single_step:
5566 case bp_until:
5567 case bp_finish:
5568 case bp_shlib_event:
5569 if (bs->stop)
5570 {
5571 if (bs->print)
5572 this_action = BPSTAT_WHAT_STOP_NOISY;
5573 else
5574 this_action = BPSTAT_WHAT_STOP_SILENT;
5575 }
5576 else
5577 this_action = BPSTAT_WHAT_SINGLE;
5578 break;
5579 case bp_watchpoint:
5580 case bp_hardware_watchpoint:
5581 case bp_read_watchpoint:
5582 case bp_access_watchpoint:
5583 if (bs->stop)
5584 {
5585 if (bs->print)
5586 this_action = BPSTAT_WHAT_STOP_NOISY;
5587 else
5588 this_action = BPSTAT_WHAT_STOP_SILENT;
5589 }
5590 else
5591 {
5592 /* There was a watchpoint, but we're not stopping.
5593 This requires no further action. */
5594 }
5595 break;
5596 case bp_longjmp:
5597 case bp_longjmp_call_dummy:
5598 case bp_exception:
5599 if (bs->stop)
5600 {
5601 this_action = BPSTAT_WHAT_SET_LONGJMP_RESUME;
5602 retval.is_longjmp = bptype != bp_exception;
5603 }
5604 else
5605 this_action = BPSTAT_WHAT_SINGLE;
5606 break;
5607 case bp_longjmp_resume:
5608 case bp_exception_resume:
5609 if (bs->stop)
5610 {
5611 this_action = BPSTAT_WHAT_CLEAR_LONGJMP_RESUME;
5612 retval.is_longjmp = bptype == bp_longjmp_resume;
5613 }
5614 else
5615 this_action = BPSTAT_WHAT_SINGLE;
5616 break;
5617 case bp_step_resume:
5618 if (bs->stop)
5619 this_action = BPSTAT_WHAT_STEP_RESUME;
5620 else
5621 {
5622 /* It is for the wrong frame. */
5623 this_action = BPSTAT_WHAT_SINGLE;
5624 }
5625 break;
5626 case bp_hp_step_resume:
5627 if (bs->stop)
5628 this_action = BPSTAT_WHAT_HP_STEP_RESUME;
5629 else
5630 {
5631 /* It is for the wrong frame. */
5632 this_action = BPSTAT_WHAT_SINGLE;
5633 }
5634 break;
5635 case bp_watchpoint_scope:
5636 case bp_thread_event:
5637 case bp_overlay_event:
5638 case bp_longjmp_master:
5639 case bp_std_terminate_master:
5640 case bp_exception_master:
5641 this_action = BPSTAT_WHAT_SINGLE;
5642 break;
5643 case bp_catchpoint:
5644 if (bs->stop)
5645 {
5646 if (bs->print)
5647 this_action = BPSTAT_WHAT_STOP_NOISY;
5648 else
5649 this_action = BPSTAT_WHAT_STOP_SILENT;
5650 }
5651 else
5652 {
5653 /* There was a catchpoint, but we're not stopping.
5654 This requires no further action. */
5655 }
5656 break;
5657 case bp_jit_event:
5658 this_action = BPSTAT_WHAT_SINGLE;
5659 break;
5660 case bp_call_dummy:
5661 /* Make sure the action is stop (silent or noisy),
5662 so infrun.c pops the dummy frame. */
5663 retval.call_dummy = STOP_STACK_DUMMY;
5664 this_action = BPSTAT_WHAT_STOP_SILENT;
5665 break;
5666 case bp_std_terminate:
5667 /* Make sure the action is stop (silent or noisy),
5668 so infrun.c pops the dummy frame. */
5669 retval.call_dummy = STOP_STD_TERMINATE;
5670 this_action = BPSTAT_WHAT_STOP_SILENT;
5671 break;
5672 case bp_tracepoint:
5673 case bp_fast_tracepoint:
5674 case bp_static_tracepoint:
5675 /* Tracepoint hits should not be reported back to GDB, and
5676 if one got through somehow, it should have been filtered
5677 out already. */
5678 internal_error (__FILE__, __LINE__,
5679 _("bpstat_what: tracepoint encountered"));
5680 break;
5681 case bp_gnu_ifunc_resolver:
5682 /* Step over it (and insert bp_gnu_ifunc_resolver_return). */
5683 this_action = BPSTAT_WHAT_SINGLE;
5684 break;
5685 case bp_gnu_ifunc_resolver_return:
5686 /* The breakpoint will be removed, execution will restart from the
5687 PC of the former breakpoint. */
5688 this_action = BPSTAT_WHAT_KEEP_CHECKING;
5689 break;
5690
5691 case bp_dprintf:
5692 if (bs->stop)
5693 this_action = BPSTAT_WHAT_STOP_SILENT;
5694 else
5695 this_action = BPSTAT_WHAT_SINGLE;
5696 break;
5697
5698 default:
5699 internal_error (__FILE__, __LINE__,
5700 _("bpstat_what: unhandled bptype %d"), (int) bptype);
5701 }
5702
5703 retval.main_action = std::max (retval.main_action, this_action);
5704 }
5705
5706 return retval;
5707 }
5708
5709 void
5710 bpstat_run_callbacks (bpstat bs_head)
5711 {
5712 bpstat bs;
5713
5714 for (bs = bs_head; bs != NULL; bs = bs->next)
5715 {
5716 struct breakpoint *b = bs->breakpoint_at;
5717
5718 if (b == NULL)
5719 continue;
5720 switch (b->type)
5721 {
5722 case bp_jit_event:
5723 handle_jit_event ();
5724 break;
5725 case bp_gnu_ifunc_resolver:
5726 gnu_ifunc_resolver_stop (b);
5727 break;
5728 case bp_gnu_ifunc_resolver_return:
5729 gnu_ifunc_resolver_return_stop (b);
5730 break;
5731 }
5732 }
5733 }
5734
5735 /* Nonzero if we should step constantly (e.g. watchpoints on machines
5736 without hardware support). This isn't related to a specific bpstat,
5737 just to things like whether watchpoints are set. */
5738
5739 int
5740 bpstat_should_step (void)
5741 {
5742 struct breakpoint *b;
5743
5744 ALL_BREAKPOINTS (b)
5745 if (breakpoint_enabled (b) && b->type == bp_watchpoint && b->loc != NULL)
5746 return 1;
5747 return 0;
5748 }
5749
5750 int
5751 bpstat_causes_stop (bpstat bs)
5752 {
5753 for (; bs != NULL; bs = bs->next)
5754 if (bs->stop)
5755 return 1;
5756
5757 return 0;
5758 }
5759
5760 \f
5761
5762 /* Compute a string of spaces suitable to indent the next line
5763 so it starts at the position corresponding to the table column
5764 named COL_NAME in the currently active table of UIOUT. */
5765
5766 static char *
5767 wrap_indent_at_field (struct ui_out *uiout, const char *col_name)
5768 {
5769 static char wrap_indent[80];
5770 int i, total_width, width, align;
5771 const char *text;
5772
5773 total_width = 0;
5774 for (i = 1; uiout->query_table_field (i, &width, &align, &text); i++)
5775 {
5776 if (strcmp (text, col_name) == 0)
5777 {
5778 gdb_assert (total_width < sizeof wrap_indent);
5779 memset (wrap_indent, ' ', total_width);
5780 wrap_indent[total_width] = 0;
5781
5782 return wrap_indent;
5783 }
5784
5785 total_width += width + 1;
5786 }
5787
5788 return NULL;
5789 }
5790
5791 /* Determine if the locations of this breakpoint will have their conditions
5792 evaluated by the target, host or a mix of both. Returns the following:
5793
5794 "host": Host evals condition.
5795 "host or target": Host or Target evals condition.
5796 "target": Target evals condition.
5797 */
5798
5799 static const char *
5800 bp_condition_evaluator (struct breakpoint *b)
5801 {
5802 struct bp_location *bl;
5803 char host_evals = 0;
5804 char target_evals = 0;
5805
5806 if (!b)
5807 return NULL;
5808
5809 if (!is_breakpoint (b))
5810 return NULL;
5811
5812 if (gdb_evaluates_breakpoint_condition_p ()
5813 || !target_supports_evaluation_of_breakpoint_conditions ())
5814 return condition_evaluation_host;
5815
5816 for (bl = b->loc; bl; bl = bl->next)
5817 {
5818 if (bl->cond_bytecode)
5819 target_evals++;
5820 else
5821 host_evals++;
5822 }
5823
5824 if (host_evals && target_evals)
5825 return condition_evaluation_both;
5826 else if (target_evals)
5827 return condition_evaluation_target;
5828 else
5829 return condition_evaluation_host;
5830 }
5831
5832 /* Determine the breakpoint location's condition evaluator. This is
5833 similar to bp_condition_evaluator, but for locations. */
5834
5835 static const char *
5836 bp_location_condition_evaluator (struct bp_location *bl)
5837 {
5838 if (bl && !is_breakpoint (bl->owner))
5839 return NULL;
5840
5841 if (gdb_evaluates_breakpoint_condition_p ()
5842 || !target_supports_evaluation_of_breakpoint_conditions ())
5843 return condition_evaluation_host;
5844
5845 if (bl && bl->cond_bytecode)
5846 return condition_evaluation_target;
5847 else
5848 return condition_evaluation_host;
5849 }
5850
5851 /* Print the LOC location out of the list of B->LOC locations. */
5852
5853 static void
5854 print_breakpoint_location (struct breakpoint *b,
5855 struct bp_location *loc)
5856 {
5857 struct ui_out *uiout = current_uiout;
5858
5859 scoped_restore_current_program_space restore_pspace;
5860
5861 if (loc != NULL && loc->shlib_disabled)
5862 loc = NULL;
5863
5864 if (loc != NULL)
5865 set_current_program_space (loc->pspace);
5866
5867 if (b->display_canonical)
5868 uiout->field_string ("what", event_location_to_string (b->location.get ()));
5869 else if (loc && loc->symtab)
5870 {
5871 const struct symbol *sym = loc->symbol;
5872
5873 if (sym == NULL)
5874 sym = find_pc_sect_function (loc->address, loc->section);
5875
5876 if (sym)
5877 {
5878 uiout->text ("in ");
5879 uiout->field_string ("func", SYMBOL_PRINT_NAME (sym));
5880 uiout->text (" ");
5881 uiout->wrap_hint (wrap_indent_at_field (uiout, "what"));
5882 uiout->text ("at ");
5883 }
5884 uiout->field_string ("file",
5885 symtab_to_filename_for_display (loc->symtab));
5886 uiout->text (":");
5887
5888 if (uiout->is_mi_like_p ())
5889 uiout->field_string ("fullname", symtab_to_fullname (loc->symtab));
5890
5891 uiout->field_int ("line", loc->line_number);
5892 }
5893 else if (loc)
5894 {
5895 string_file stb;
5896
5897 print_address_symbolic (loc->gdbarch, loc->address, &stb,
5898 demangle, "");
5899 uiout->field_stream ("at", stb);
5900 }
5901 else
5902 {
5903 uiout->field_string ("pending",
5904 event_location_to_string (b->location.get ()));
5905 /* If extra_string is available, it could be holding a condition
5906 or dprintf arguments. In either case, make sure it is printed,
5907 too, but only for non-MI streams. */
5908 if (!uiout->is_mi_like_p () && b->extra_string != NULL)
5909 {
5910 if (b->type == bp_dprintf)
5911 uiout->text (",");
5912 else
5913 uiout->text (" ");
5914 uiout->text (b->extra_string);
5915 }
5916 }
5917
5918 if (loc && is_breakpoint (b)
5919 && breakpoint_condition_evaluation_mode () == condition_evaluation_target
5920 && bp_condition_evaluator (b) == condition_evaluation_both)
5921 {
5922 uiout->text (" (");
5923 uiout->field_string ("evaluated-by",
5924 bp_location_condition_evaluator (loc));
5925 uiout->text (")");
5926 }
5927 }
5928
5929 static const char *
5930 bptype_string (enum bptype type)
5931 {
5932 struct ep_type_description
5933 {
5934 enum bptype type;
5935 const char *description;
5936 };
5937 static struct ep_type_description bptypes[] =
5938 {
5939 {bp_none, "?deleted?"},
5940 {bp_breakpoint, "breakpoint"},
5941 {bp_hardware_breakpoint, "hw breakpoint"},
5942 {bp_single_step, "sw single-step"},
5943 {bp_until, "until"},
5944 {bp_finish, "finish"},
5945 {bp_watchpoint, "watchpoint"},
5946 {bp_hardware_watchpoint, "hw watchpoint"},
5947 {bp_read_watchpoint, "read watchpoint"},
5948 {bp_access_watchpoint, "acc watchpoint"},
5949 {bp_longjmp, "longjmp"},
5950 {bp_longjmp_resume, "longjmp resume"},
5951 {bp_longjmp_call_dummy, "longjmp for call dummy"},
5952 {bp_exception, "exception"},
5953 {bp_exception_resume, "exception resume"},
5954 {bp_step_resume, "step resume"},
5955 {bp_hp_step_resume, "high-priority step resume"},
5956 {bp_watchpoint_scope, "watchpoint scope"},
5957 {bp_call_dummy, "call dummy"},
5958 {bp_std_terminate, "std::terminate"},
5959 {bp_shlib_event, "shlib events"},
5960 {bp_thread_event, "thread events"},
5961 {bp_overlay_event, "overlay events"},
5962 {bp_longjmp_master, "longjmp master"},
5963 {bp_std_terminate_master, "std::terminate master"},
5964 {bp_exception_master, "exception master"},
5965 {bp_catchpoint, "catchpoint"},
5966 {bp_tracepoint, "tracepoint"},
5967 {bp_fast_tracepoint, "fast tracepoint"},
5968 {bp_static_tracepoint, "static tracepoint"},
5969 {bp_dprintf, "dprintf"},
5970 {bp_jit_event, "jit events"},
5971 {bp_gnu_ifunc_resolver, "STT_GNU_IFUNC resolver"},
5972 {bp_gnu_ifunc_resolver_return, "STT_GNU_IFUNC resolver return"},
5973 };
5974
5975 if (((int) type >= (sizeof (bptypes) / sizeof (bptypes[0])))
5976 || ((int) type != bptypes[(int) type].type))
5977 internal_error (__FILE__, __LINE__,
5978 _("bptypes table does not describe type #%d."),
5979 (int) type);
5980
5981 return bptypes[(int) type].description;
5982 }
5983
5984 /* For MI, output a field named 'thread-groups' with a list as the value.
5985 For CLI, prefix the list with the string 'inf'. */
5986
5987 static void
5988 output_thread_groups (struct ui_out *uiout,
5989 const char *field_name,
5990 const std::vector<int> &inf_nums,
5991 int mi_only)
5992 {
5993 int is_mi = uiout->is_mi_like_p ();
5994
5995 /* For backward compatibility, don't display inferiors in CLI unless
5996 there are several. Always display them for MI. */
5997 if (!is_mi && mi_only)
5998 return;
5999
6000 ui_out_emit_list list_emitter (uiout, field_name);
6001
6002 for (size_t i = 0; i < inf_nums.size (); i++)
6003 {
6004 if (is_mi)
6005 {
6006 char mi_group[10];
6007
6008 xsnprintf (mi_group, sizeof (mi_group), "i%d", inf_nums[i]);
6009 uiout->field_string (NULL, mi_group);
6010 }
6011 else
6012 {
6013 if (i == 0)
6014 uiout->text (" inf ");
6015 else
6016 uiout->text (", ");
6017
6018 uiout->text (plongest (inf_nums[i]));
6019 }
6020 }
6021 }
6022
6023 /* Print B to gdb_stdout. */
6024
6025 static void
6026 print_one_breakpoint_location (struct breakpoint *b,
6027 struct bp_location *loc,
6028 int loc_number,
6029 struct bp_location **last_loc,
6030 int allflag)
6031 {
6032 struct command_line *l;
6033 static char bpenables[] = "nynny";
6034
6035 struct ui_out *uiout = current_uiout;
6036 int header_of_multiple = 0;
6037 int part_of_multiple = (loc != NULL);
6038 struct value_print_options opts;
6039
6040 get_user_print_options (&opts);
6041
6042 gdb_assert (!loc || loc_number != 0);
6043 /* See comment in print_one_breakpoint concerning treatment of
6044 breakpoints with single disabled location. */
6045 if (loc == NULL
6046 && (b->loc != NULL
6047 && (b->loc->next != NULL || !b->loc->enabled)))
6048 header_of_multiple = 1;
6049 if (loc == NULL)
6050 loc = b->loc;
6051
6052 annotate_record ();
6053
6054 /* 1 */
6055 annotate_field (0);
6056 if (part_of_multiple)
6057 {
6058 char *formatted;
6059 formatted = xstrprintf ("%d.%d", b->number, loc_number);
6060 uiout->field_string ("number", formatted);
6061 xfree (formatted);
6062 }
6063 else
6064 {
6065 uiout->field_int ("number", b->number);
6066 }
6067
6068 /* 2 */
6069 annotate_field (1);
6070 if (part_of_multiple)
6071 uiout->field_skip ("type");
6072 else
6073 uiout->field_string ("type", bptype_string (b->type));
6074
6075 /* 3 */
6076 annotate_field (2);
6077 if (part_of_multiple)
6078 uiout->field_skip ("disp");
6079 else
6080 uiout->field_string ("disp", bpdisp_text (b->disposition));
6081
6082
6083 /* 4 */
6084 annotate_field (3);
6085 if (part_of_multiple)
6086 uiout->field_string ("enabled", loc->enabled ? "y" : "n");
6087 else
6088 uiout->field_fmt ("enabled", "%c", bpenables[(int) b->enable_state]);
6089 uiout->spaces (2);
6090
6091
6092 /* 5 and 6 */
6093 if (b->ops != NULL && b->ops->print_one != NULL)
6094 {
6095 /* Although the print_one can possibly print all locations,
6096 calling it here is not likely to get any nice result. So,
6097 make sure there's just one location. */
6098 gdb_assert (b->loc == NULL || b->loc->next == NULL);
6099 b->ops->print_one (b, last_loc);
6100 }
6101 else
6102 switch (b->type)
6103 {
6104 case bp_none:
6105 internal_error (__FILE__, __LINE__,
6106 _("print_one_breakpoint: bp_none encountered\n"));
6107 break;
6108
6109 case bp_watchpoint:
6110 case bp_hardware_watchpoint:
6111 case bp_read_watchpoint:
6112 case bp_access_watchpoint:
6113 {
6114 struct watchpoint *w = (struct watchpoint *) b;
6115
6116 /* Field 4, the address, is omitted (which makes the columns
6117 not line up too nicely with the headers, but the effect
6118 is relatively readable). */
6119 if (opts.addressprint)
6120 uiout->field_skip ("addr");
6121 annotate_field (5);
6122 uiout->field_string ("what", w->exp_string);
6123 }
6124 break;
6125
6126 case bp_breakpoint:
6127 case bp_hardware_breakpoint:
6128 case bp_single_step:
6129 case bp_until:
6130 case bp_finish:
6131 case bp_longjmp:
6132 case bp_longjmp_resume:
6133 case bp_longjmp_call_dummy:
6134 case bp_exception:
6135 case bp_exception_resume:
6136 case bp_step_resume:
6137 case bp_hp_step_resume:
6138 case bp_watchpoint_scope:
6139 case bp_call_dummy:
6140 case bp_std_terminate:
6141 case bp_shlib_event:
6142 case bp_thread_event:
6143 case bp_overlay_event:
6144 case bp_longjmp_master:
6145 case bp_std_terminate_master:
6146 case bp_exception_master:
6147 case bp_tracepoint:
6148 case bp_fast_tracepoint:
6149 case bp_static_tracepoint:
6150 case bp_dprintf:
6151 case bp_jit_event:
6152 case bp_gnu_ifunc_resolver:
6153 case bp_gnu_ifunc_resolver_return:
6154 if (opts.addressprint)
6155 {
6156 annotate_field (4);
6157 if (header_of_multiple)
6158 uiout->field_string ("addr", "<MULTIPLE>");
6159 else if (b->loc == NULL || loc->shlib_disabled)
6160 uiout->field_string ("addr", "<PENDING>");
6161 else
6162 uiout->field_core_addr ("addr",
6163 loc->gdbarch, loc->address);
6164 }
6165 annotate_field (5);
6166 if (!header_of_multiple)
6167 print_breakpoint_location (b, loc);
6168 if (b->loc)
6169 *last_loc = b->loc;
6170 break;
6171 }
6172
6173
6174 if (loc != NULL && !header_of_multiple)
6175 {
6176 struct inferior *inf;
6177 std::vector<int> inf_nums;
6178 int mi_only = 1;
6179
6180 ALL_INFERIORS (inf)
6181 {
6182 if (inf->pspace == loc->pspace)
6183 inf_nums.push_back (inf->num);
6184 }
6185
6186 /* For backward compatibility, don't display inferiors in CLI unless
6187 there are several. Always display for MI. */
6188 if (allflag
6189 || (!gdbarch_has_global_breakpoints (target_gdbarch ())
6190 && (number_of_program_spaces () > 1
6191 || number_of_inferiors () > 1)
6192 /* LOC is for existing B, it cannot be in
6193 moribund_locations and thus having NULL OWNER. */
6194 && loc->owner->type != bp_catchpoint))
6195 mi_only = 0;
6196 output_thread_groups (uiout, "thread-groups", inf_nums, mi_only);
6197 }
6198
6199 if (!part_of_multiple)
6200 {
6201 if (b->thread != -1)
6202 {
6203 /* FIXME: This seems to be redundant and lost here; see the
6204 "stop only in" line a little further down. */
6205 uiout->text (" thread ");
6206 uiout->field_int ("thread", b->thread);
6207 }
6208 else if (b->task != 0)
6209 {
6210 uiout->text (" task ");
6211 uiout->field_int ("task", b->task);
6212 }
6213 }
6214
6215 uiout->text ("\n");
6216
6217 if (!part_of_multiple)
6218 b->ops->print_one_detail (b, uiout);
6219
6220 if (part_of_multiple && frame_id_p (b->frame_id))
6221 {
6222 annotate_field (6);
6223 uiout->text ("\tstop only in stack frame at ");
6224 /* FIXME: cagney/2002-12-01: Shouldn't be poking around inside
6225 the frame ID. */
6226 uiout->field_core_addr ("frame",
6227 b->gdbarch, b->frame_id.stack_addr);
6228 uiout->text ("\n");
6229 }
6230
6231 if (!part_of_multiple && b->cond_string)
6232 {
6233 annotate_field (7);
6234 if (is_tracepoint (b))
6235 uiout->text ("\ttrace only if ");
6236 else
6237 uiout->text ("\tstop only if ");
6238 uiout->field_string ("cond", b->cond_string);
6239
6240 /* Print whether the target is doing the breakpoint's condition
6241 evaluation. If GDB is doing the evaluation, don't print anything. */
6242 if (is_breakpoint (b)
6243 && breakpoint_condition_evaluation_mode ()
6244 == condition_evaluation_target)
6245 {
6246 uiout->text (" (");
6247 uiout->field_string ("evaluated-by",
6248 bp_condition_evaluator (b));
6249 uiout->text (" evals)");
6250 }
6251 uiout->text ("\n");
6252 }
6253
6254 if (!part_of_multiple && b->thread != -1)
6255 {
6256 /* FIXME should make an annotation for this. */
6257 uiout->text ("\tstop only in thread ");
6258 if (uiout->is_mi_like_p ())
6259 uiout->field_int ("thread", b->thread);
6260 else
6261 {
6262 struct thread_info *thr = find_thread_global_id (b->thread);
6263
6264 uiout->field_string ("thread", print_thread_id (thr));
6265 }
6266 uiout->text ("\n");
6267 }
6268
6269 if (!part_of_multiple)
6270 {
6271 if (b->hit_count)
6272 {
6273 /* FIXME should make an annotation for this. */
6274 if (is_catchpoint (b))
6275 uiout->text ("\tcatchpoint");
6276 else if (is_tracepoint (b))
6277 uiout->text ("\ttracepoint");
6278 else
6279 uiout->text ("\tbreakpoint");
6280 uiout->text (" already hit ");
6281 uiout->field_int ("times", b->hit_count);
6282 if (b->hit_count == 1)
6283 uiout->text (" time\n");
6284 else
6285 uiout->text (" times\n");
6286 }
6287 else
6288 {
6289 /* Output the count also if it is zero, but only if this is mi. */
6290 if (uiout->is_mi_like_p ())
6291 uiout->field_int ("times", b->hit_count);
6292 }
6293 }
6294
6295 if (!part_of_multiple && b->ignore_count)
6296 {
6297 annotate_field (8);
6298 uiout->text ("\tignore next ");
6299 uiout->field_int ("ignore", b->ignore_count);
6300 uiout->text (" hits\n");
6301 }
6302
6303 /* Note that an enable count of 1 corresponds to "enable once"
6304 behavior, which is reported by the combination of enablement and
6305 disposition, so we don't need to mention it here. */
6306 if (!part_of_multiple && b->enable_count > 1)
6307 {
6308 annotate_field (8);
6309 uiout->text ("\tdisable after ");
6310 /* Tweak the wording to clarify that ignore and enable counts
6311 are distinct, and have additive effect. */
6312 if (b->ignore_count)
6313 uiout->text ("additional ");
6314 else
6315 uiout->text ("next ");
6316 uiout->field_int ("enable", b->enable_count);
6317 uiout->text (" hits\n");
6318 }
6319
6320 if (!part_of_multiple && is_tracepoint (b))
6321 {
6322 struct tracepoint *tp = (struct tracepoint *) b;
6323
6324 if (tp->traceframe_usage)
6325 {
6326 uiout->text ("\ttrace buffer usage ");
6327 uiout->field_int ("traceframe-usage", tp->traceframe_usage);
6328 uiout->text (" bytes\n");
6329 }
6330 }
6331
6332 l = b->commands ? b->commands.get () : NULL;
6333 if (!part_of_multiple && l)
6334 {
6335 annotate_field (9);
6336 ui_out_emit_tuple tuple_emitter (uiout, "script");
6337 print_command_lines (uiout, l, 4);
6338 }
6339
6340 if (is_tracepoint (b))
6341 {
6342 struct tracepoint *t = (struct tracepoint *) b;
6343
6344 if (!part_of_multiple && t->pass_count)
6345 {
6346 annotate_field (10);
6347 uiout->text ("\tpass count ");
6348 uiout->field_int ("pass", t->pass_count);
6349 uiout->text (" \n");
6350 }
6351
6352 /* Don't display it when tracepoint or tracepoint location is
6353 pending. */
6354 if (!header_of_multiple && loc != NULL && !loc->shlib_disabled)
6355 {
6356 annotate_field (11);
6357
6358 if (uiout->is_mi_like_p ())
6359 uiout->field_string ("installed",
6360 loc->inserted ? "y" : "n");
6361 else
6362 {
6363 if (loc->inserted)
6364 uiout->text ("\t");
6365 else
6366 uiout->text ("\tnot ");
6367 uiout->text ("installed on target\n");
6368 }
6369 }
6370 }
6371
6372 if (uiout->is_mi_like_p () && !part_of_multiple)
6373 {
6374 if (is_watchpoint (b))
6375 {
6376 struct watchpoint *w = (struct watchpoint *) b;
6377
6378 uiout->field_string ("original-location", w->exp_string);
6379 }
6380 else if (b->location != NULL
6381 && event_location_to_string (b->location.get ()) != NULL)
6382 uiout->field_string ("original-location",
6383 event_location_to_string (b->location.get ()));
6384 }
6385 }
6386
6387 static void
6388 print_one_breakpoint (struct breakpoint *b,
6389 struct bp_location **last_loc,
6390 int allflag)
6391 {
6392 struct ui_out *uiout = current_uiout;
6393
6394 {
6395 ui_out_emit_tuple tuple_emitter (uiout, "bkpt");
6396
6397 print_one_breakpoint_location (b, NULL, 0, last_loc, allflag);
6398 }
6399
6400 /* If this breakpoint has custom print function,
6401 it's already printed. Otherwise, print individual
6402 locations, if any. */
6403 if (b->ops == NULL || b->ops->print_one == NULL)
6404 {
6405 /* If breakpoint has a single location that is disabled, we
6406 print it as if it had several locations, since otherwise it's
6407 hard to represent "breakpoint enabled, location disabled"
6408 situation.
6409
6410 Note that while hardware watchpoints have several locations
6411 internally, that's not a property exposed to user. */
6412 if (b->loc
6413 && !is_hardware_watchpoint (b)
6414 && (b->loc->next || !b->loc->enabled))
6415 {
6416 struct bp_location *loc;
6417 int n = 1;
6418
6419 for (loc = b->loc; loc; loc = loc->next, ++n)
6420 {
6421 ui_out_emit_tuple tuple_emitter (uiout, NULL);
6422 print_one_breakpoint_location (b, loc, n, last_loc, allflag);
6423 }
6424 }
6425 }
6426 }
6427
6428 static int
6429 breakpoint_address_bits (struct breakpoint *b)
6430 {
6431 int print_address_bits = 0;
6432 struct bp_location *loc;
6433
6434 /* Software watchpoints that aren't watching memory don't have an
6435 address to print. */
6436 if (is_no_memory_software_watchpoint (b))
6437 return 0;
6438
6439 for (loc = b->loc; loc; loc = loc->next)
6440 {
6441 int addr_bit;
6442
6443 addr_bit = gdbarch_addr_bit (loc->gdbarch);
6444 if (addr_bit > print_address_bits)
6445 print_address_bits = addr_bit;
6446 }
6447
6448 return print_address_bits;
6449 }
6450
6451 /* See breakpoint.h. */
6452
6453 void
6454 print_breakpoint (breakpoint *b)
6455 {
6456 struct bp_location *dummy_loc = NULL;
6457 print_one_breakpoint (b, &dummy_loc, 0);
6458 }
6459
6460 /* Return true if this breakpoint was set by the user, false if it is
6461 internal or momentary. */
6462
6463 int
6464 user_breakpoint_p (struct breakpoint *b)
6465 {
6466 return b->number > 0;
6467 }
6468
6469 /* See breakpoint.h. */
6470
6471 int
6472 pending_breakpoint_p (struct breakpoint *b)
6473 {
6474 return b->loc == NULL;
6475 }
6476
6477 /* Print information on user settable breakpoint (watchpoint, etc)
6478 number BNUM. If BNUM is -1 print all user-settable breakpoints.
6479 If ALLFLAG is non-zero, include non-user-settable breakpoints. If
6480 FILTER is non-NULL, call it on each breakpoint and only include the
6481 ones for which it returns non-zero. Return the total number of
6482 breakpoints listed. */
6483
6484 static int
6485 breakpoint_1 (const char *args, int allflag,
6486 int (*filter) (const struct breakpoint *))
6487 {
6488 struct breakpoint *b;
6489 struct bp_location *last_loc = NULL;
6490 int nr_printable_breakpoints;
6491 struct value_print_options opts;
6492 int print_address_bits = 0;
6493 int print_type_col_width = 14;
6494 struct ui_out *uiout = current_uiout;
6495
6496 get_user_print_options (&opts);
6497
6498 /* Compute the number of rows in the table, as well as the size
6499 required for address fields. */
6500 nr_printable_breakpoints = 0;
6501 ALL_BREAKPOINTS (b)
6502 {
6503 /* If we have a filter, only list the breakpoints it accepts. */
6504 if (filter && !filter (b))
6505 continue;
6506
6507 /* If we have an "args" string, it is a list of breakpoints to
6508 accept. Skip the others. */
6509 if (args != NULL && *args != '\0')
6510 {
6511 if (allflag && parse_and_eval_long (args) != b->number)
6512 continue;
6513 if (!allflag && !number_is_in_list (args, b->number))
6514 continue;
6515 }
6516
6517 if (allflag || user_breakpoint_p (b))
6518 {
6519 int addr_bit, type_len;
6520
6521 addr_bit = breakpoint_address_bits (b);
6522 if (addr_bit > print_address_bits)
6523 print_address_bits = addr_bit;
6524
6525 type_len = strlen (bptype_string (b->type));
6526 if (type_len > print_type_col_width)
6527 print_type_col_width = type_len;
6528
6529 nr_printable_breakpoints++;
6530 }
6531 }
6532
6533 {
6534 ui_out_emit_table table_emitter (uiout,
6535 opts.addressprint ? 6 : 5,
6536 nr_printable_breakpoints,
6537 "BreakpointTable");
6538
6539 if (nr_printable_breakpoints > 0)
6540 annotate_breakpoints_headers ();
6541 if (nr_printable_breakpoints > 0)
6542 annotate_field (0);
6543 uiout->table_header (7, ui_left, "number", "Num"); /* 1 */
6544 if (nr_printable_breakpoints > 0)
6545 annotate_field (1);
6546 uiout->table_header (print_type_col_width, ui_left, "type", "Type"); /* 2 */
6547 if (nr_printable_breakpoints > 0)
6548 annotate_field (2);
6549 uiout->table_header (4, ui_left, "disp", "Disp"); /* 3 */
6550 if (nr_printable_breakpoints > 0)
6551 annotate_field (3);
6552 uiout->table_header (3, ui_left, "enabled", "Enb"); /* 4 */
6553 if (opts.addressprint)
6554 {
6555 if (nr_printable_breakpoints > 0)
6556 annotate_field (4);
6557 if (print_address_bits <= 32)
6558 uiout->table_header (10, ui_left, "addr", "Address"); /* 5 */
6559 else
6560 uiout->table_header (18, ui_left, "addr", "Address"); /* 5 */
6561 }
6562 if (nr_printable_breakpoints > 0)
6563 annotate_field (5);
6564 uiout->table_header (40, ui_noalign, "what", "What"); /* 6 */
6565 uiout->table_body ();
6566 if (nr_printable_breakpoints > 0)
6567 annotate_breakpoints_table ();
6568
6569 ALL_BREAKPOINTS (b)
6570 {
6571 QUIT;
6572 /* If we have a filter, only list the breakpoints it accepts. */
6573 if (filter && !filter (b))
6574 continue;
6575
6576 /* If we have an "args" string, it is a list of breakpoints to
6577 accept. Skip the others. */
6578
6579 if (args != NULL && *args != '\0')
6580 {
6581 if (allflag) /* maintenance info breakpoint */
6582 {
6583 if (parse_and_eval_long (args) != b->number)
6584 continue;
6585 }
6586 else /* all others */
6587 {
6588 if (!number_is_in_list (args, b->number))
6589 continue;
6590 }
6591 }
6592 /* We only print out user settable breakpoints unless the
6593 allflag is set. */
6594 if (allflag || user_breakpoint_p (b))
6595 print_one_breakpoint (b, &last_loc, allflag);
6596 }
6597 }
6598
6599 if (nr_printable_breakpoints == 0)
6600 {
6601 /* If there's a filter, let the caller decide how to report
6602 empty list. */
6603 if (!filter)
6604 {
6605 if (args == NULL || *args == '\0')
6606 uiout->message ("No breakpoints or watchpoints.\n");
6607 else
6608 uiout->message ("No breakpoint or watchpoint matching '%s'.\n",
6609 args);
6610 }
6611 }
6612 else
6613 {
6614 if (last_loc && !server_command)
6615 set_next_address (last_loc->gdbarch, last_loc->address);
6616 }
6617
6618 /* FIXME? Should this be moved up so that it is only called when
6619 there have been breakpoints? */
6620 annotate_breakpoints_table_end ();
6621
6622 return nr_printable_breakpoints;
6623 }
6624
6625 /* Display the value of default-collect in a way that is generally
6626 compatible with the breakpoint list. */
6627
6628 static void
6629 default_collect_info (void)
6630 {
6631 struct ui_out *uiout = current_uiout;
6632
6633 /* If it has no value (which is frequently the case), say nothing; a
6634 message like "No default-collect." gets in user's face when it's
6635 not wanted. */
6636 if (!*default_collect)
6637 return;
6638
6639 /* The following phrase lines up nicely with per-tracepoint collect
6640 actions. */
6641 uiout->text ("default collect ");
6642 uiout->field_string ("default-collect", default_collect);
6643 uiout->text (" \n");
6644 }
6645
6646 static void
6647 info_breakpoints_command (const char *args, int from_tty)
6648 {
6649 breakpoint_1 (args, 0, NULL);
6650
6651 default_collect_info ();
6652 }
6653
6654 static void
6655 info_watchpoints_command (const char *args, int from_tty)
6656 {
6657 int num_printed = breakpoint_1 (args, 0, is_watchpoint);
6658 struct ui_out *uiout = current_uiout;
6659
6660 if (num_printed == 0)
6661 {
6662 if (args == NULL || *args == '\0')
6663 uiout->message ("No watchpoints.\n");
6664 else
6665 uiout->message ("No watchpoint matching '%s'.\n", args);
6666 }
6667 }
6668
6669 static void
6670 maintenance_info_breakpoints (const char *args, int from_tty)
6671 {
6672 breakpoint_1 (args, 1, NULL);
6673
6674 default_collect_info ();
6675 }
6676
6677 static int
6678 breakpoint_has_pc (struct breakpoint *b,
6679 struct program_space *pspace,
6680 CORE_ADDR pc, struct obj_section *section)
6681 {
6682 struct bp_location *bl = b->loc;
6683
6684 for (; bl; bl = bl->next)
6685 {
6686 if (bl->pspace == pspace
6687 && bl->address == pc
6688 && (!overlay_debugging || bl->section == section))
6689 return 1;
6690 }
6691 return 0;
6692 }
6693
6694 /* Print a message describing any user-breakpoints set at PC. This
6695 concerns with logical breakpoints, so we match program spaces, not
6696 address spaces. */
6697
6698 static void
6699 describe_other_breakpoints (struct gdbarch *gdbarch,
6700 struct program_space *pspace, CORE_ADDR pc,
6701 struct obj_section *section, int thread)
6702 {
6703 int others = 0;
6704 struct breakpoint *b;
6705
6706 ALL_BREAKPOINTS (b)
6707 others += (user_breakpoint_p (b)
6708 && breakpoint_has_pc (b, pspace, pc, section));
6709 if (others > 0)
6710 {
6711 if (others == 1)
6712 printf_filtered (_("Note: breakpoint "));
6713 else /* if (others == ???) */
6714 printf_filtered (_("Note: breakpoints "));
6715 ALL_BREAKPOINTS (b)
6716 if (user_breakpoint_p (b) && breakpoint_has_pc (b, pspace, pc, section))
6717 {
6718 others--;
6719 printf_filtered ("%d", b->number);
6720 if (b->thread == -1 && thread != -1)
6721 printf_filtered (" (all threads)");
6722 else if (b->thread != -1)
6723 printf_filtered (" (thread %d)", b->thread);
6724 printf_filtered ("%s%s ",
6725 ((b->enable_state == bp_disabled
6726 || b->enable_state == bp_call_disabled)
6727 ? " (disabled)"
6728 : ""),
6729 (others > 1) ? ","
6730 : ((others == 1) ? " and" : ""));
6731 }
6732 printf_filtered (_("also set at pc "));
6733 fputs_filtered (paddress (gdbarch, pc), gdb_stdout);
6734 printf_filtered (".\n");
6735 }
6736 }
6737 \f
6738
6739 /* Return true iff it is meaningful to use the address member of
6740 BPT locations. For some breakpoint types, the locations' address members
6741 are irrelevant and it makes no sense to attempt to compare them to other
6742 addresses (or use them for any other purpose either).
6743
6744 More specifically, each of the following breakpoint types will
6745 always have a zero valued location address and we don't want to mark
6746 breakpoints of any of these types to be a duplicate of an actual
6747 breakpoint location at address zero:
6748
6749 bp_watchpoint
6750 bp_catchpoint
6751
6752 */
6753
6754 static int
6755 breakpoint_address_is_meaningful (struct breakpoint *bpt)
6756 {
6757 enum bptype type = bpt->type;
6758
6759 return (type != bp_watchpoint && type != bp_catchpoint);
6760 }
6761
6762 /* Assuming LOC1 and LOC2's owners are hardware watchpoints, returns
6763 true if LOC1 and LOC2 represent the same watchpoint location. */
6764
6765 static int
6766 watchpoint_locations_match (struct bp_location *loc1,
6767 struct bp_location *loc2)
6768 {
6769 struct watchpoint *w1 = (struct watchpoint *) loc1->owner;
6770 struct watchpoint *w2 = (struct watchpoint *) loc2->owner;
6771
6772 /* Both of them must exist. */
6773 gdb_assert (w1 != NULL);
6774 gdb_assert (w2 != NULL);
6775
6776 /* If the target can evaluate the condition expression in hardware,
6777 then we we need to insert both watchpoints even if they are at
6778 the same place. Otherwise the watchpoint will only trigger when
6779 the condition of whichever watchpoint was inserted evaluates to
6780 true, not giving a chance for GDB to check the condition of the
6781 other watchpoint. */
6782 if ((w1->cond_exp
6783 && target_can_accel_watchpoint_condition (loc1->address,
6784 loc1->length,
6785 loc1->watchpoint_type,
6786 w1->cond_exp.get ()))
6787 || (w2->cond_exp
6788 && target_can_accel_watchpoint_condition (loc2->address,
6789 loc2->length,
6790 loc2->watchpoint_type,
6791 w2->cond_exp.get ())))
6792 return 0;
6793
6794 /* Note that this checks the owner's type, not the location's. In
6795 case the target does not support read watchpoints, but does
6796 support access watchpoints, we'll have bp_read_watchpoint
6797 watchpoints with hw_access locations. Those should be considered
6798 duplicates of hw_read locations. The hw_read locations will
6799 become hw_access locations later. */
6800 return (loc1->owner->type == loc2->owner->type
6801 && loc1->pspace->aspace == loc2->pspace->aspace
6802 && loc1->address == loc2->address
6803 && loc1->length == loc2->length);
6804 }
6805
6806 /* See breakpoint.h. */
6807
6808 int
6809 breakpoint_address_match (const address_space *aspace1, CORE_ADDR addr1,
6810 const address_space *aspace2, CORE_ADDR addr2)
6811 {
6812 return ((gdbarch_has_global_breakpoints (target_gdbarch ())
6813 || aspace1 == aspace2)
6814 && addr1 == addr2);
6815 }
6816
6817 /* Returns true if {ASPACE2,ADDR2} falls within the range determined by
6818 {ASPACE1,ADDR1,LEN1}. In most targets, this can only be true if ASPACE1
6819 matches ASPACE2. On targets that have global breakpoints, the address
6820 space doesn't really matter. */
6821
6822 static int
6823 breakpoint_address_match_range (const address_space *aspace1,
6824 CORE_ADDR addr1,
6825 int len1, const address_space *aspace2,
6826 CORE_ADDR addr2)
6827 {
6828 return ((gdbarch_has_global_breakpoints (target_gdbarch ())
6829 || aspace1 == aspace2)
6830 && addr2 >= addr1 && addr2 < addr1 + len1);
6831 }
6832
6833 /* Returns true if {ASPACE,ADDR} matches the breakpoint BL. BL may be
6834 a ranged breakpoint. In most targets, a match happens only if ASPACE
6835 matches the breakpoint's address space. On targets that have global
6836 breakpoints, the address space doesn't really matter. */
6837
6838 static int
6839 breakpoint_location_address_match (struct bp_location *bl,
6840 const address_space *aspace,
6841 CORE_ADDR addr)
6842 {
6843 return (breakpoint_address_match (bl->pspace->aspace, bl->address,
6844 aspace, addr)
6845 || (bl->length
6846 && breakpoint_address_match_range (bl->pspace->aspace,
6847 bl->address, bl->length,
6848 aspace, addr)));
6849 }
6850
6851 /* Returns true if the [ADDR,ADDR+LEN) range in ASPACE overlaps
6852 breakpoint BL. BL may be a ranged breakpoint. In most targets, a
6853 match happens only if ASPACE matches the breakpoint's address
6854 space. On targets that have global breakpoints, the address space
6855 doesn't really matter. */
6856
6857 static int
6858 breakpoint_location_address_range_overlap (struct bp_location *bl,
6859 const address_space *aspace,
6860 CORE_ADDR addr, int len)
6861 {
6862 if (gdbarch_has_global_breakpoints (target_gdbarch ())
6863 || bl->pspace->aspace == aspace)
6864 {
6865 int bl_len = bl->length != 0 ? bl->length : 1;
6866
6867 if (mem_ranges_overlap (addr, len, bl->address, bl_len))
6868 return 1;
6869 }
6870 return 0;
6871 }
6872
6873 /* If LOC1 and LOC2's owners are not tracepoints, returns false directly.
6874 Then, if LOC1 and LOC2 represent the same tracepoint location, returns
6875 true, otherwise returns false. */
6876
6877 static int
6878 tracepoint_locations_match (struct bp_location *loc1,
6879 struct bp_location *loc2)
6880 {
6881 if (is_tracepoint (loc1->owner) && is_tracepoint (loc2->owner))
6882 /* Since tracepoint locations are never duplicated with others', tracepoint
6883 locations at the same address of different tracepoints are regarded as
6884 different locations. */
6885 return (loc1->address == loc2->address && loc1->owner == loc2->owner);
6886 else
6887 return 0;
6888 }
6889
6890 /* Assuming LOC1 and LOC2's types' have meaningful target addresses
6891 (breakpoint_address_is_meaningful), returns true if LOC1 and LOC2
6892 represent the same location. */
6893
6894 static int
6895 breakpoint_locations_match (struct bp_location *loc1,
6896 struct bp_location *loc2)
6897 {
6898 int hw_point1, hw_point2;
6899
6900 /* Both of them must not be in moribund_locations. */
6901 gdb_assert (loc1->owner != NULL);
6902 gdb_assert (loc2->owner != NULL);
6903
6904 hw_point1 = is_hardware_watchpoint (loc1->owner);
6905 hw_point2 = is_hardware_watchpoint (loc2->owner);
6906
6907 if (hw_point1 != hw_point2)
6908 return 0;
6909 else if (hw_point1)
6910 return watchpoint_locations_match (loc1, loc2);
6911 else if (is_tracepoint (loc1->owner) || is_tracepoint (loc2->owner))
6912 return tracepoint_locations_match (loc1, loc2);
6913 else
6914 /* We compare bp_location.length in order to cover ranged breakpoints. */
6915 return (breakpoint_address_match (loc1->pspace->aspace, loc1->address,
6916 loc2->pspace->aspace, loc2->address)
6917 && loc1->length == loc2->length);
6918 }
6919
6920 static void
6921 breakpoint_adjustment_warning (CORE_ADDR from_addr, CORE_ADDR to_addr,
6922 int bnum, int have_bnum)
6923 {
6924 /* The longest string possibly returned by hex_string_custom
6925 is 50 chars. These must be at least that big for safety. */
6926 char astr1[64];
6927 char astr2[64];
6928
6929 strcpy (astr1, hex_string_custom ((unsigned long) from_addr, 8));
6930 strcpy (astr2, hex_string_custom ((unsigned long) to_addr, 8));
6931 if (have_bnum)
6932 warning (_("Breakpoint %d address previously adjusted from %s to %s."),
6933 bnum, astr1, astr2);
6934 else
6935 warning (_("Breakpoint address adjusted from %s to %s."), astr1, astr2);
6936 }
6937
6938 /* Adjust a breakpoint's address to account for architectural
6939 constraints on breakpoint placement. Return the adjusted address.
6940 Note: Very few targets require this kind of adjustment. For most
6941 targets, this function is simply the identity function. */
6942
6943 static CORE_ADDR
6944 adjust_breakpoint_address (struct gdbarch *gdbarch,
6945 CORE_ADDR bpaddr, enum bptype bptype)
6946 {
6947 if (bptype == bp_watchpoint
6948 || bptype == bp_hardware_watchpoint
6949 || bptype == bp_read_watchpoint
6950 || bptype == bp_access_watchpoint
6951 || bptype == bp_catchpoint)
6952 {
6953 /* Watchpoints and the various bp_catch_* eventpoints should not
6954 have their addresses modified. */
6955 return bpaddr;
6956 }
6957 else if (bptype == bp_single_step)
6958 {
6959 /* Single-step breakpoints should not have their addresses
6960 modified. If there's any architectural constrain that
6961 applies to this address, then it should have already been
6962 taken into account when the breakpoint was created in the
6963 first place. If we didn't do this, stepping through e.g.,
6964 Thumb-2 IT blocks would break. */
6965 return bpaddr;
6966 }
6967 else
6968 {
6969 CORE_ADDR adjusted_bpaddr = bpaddr;
6970
6971 if (gdbarch_adjust_breakpoint_address_p (gdbarch))
6972 {
6973 /* Some targets have architectural constraints on the placement
6974 of breakpoint instructions. Obtain the adjusted address. */
6975 adjusted_bpaddr = gdbarch_adjust_breakpoint_address (gdbarch, bpaddr);
6976 }
6977
6978 adjusted_bpaddr = address_significant (gdbarch, adjusted_bpaddr);
6979
6980 /* An adjusted breakpoint address can significantly alter
6981 a user's expectations. Print a warning if an adjustment
6982 is required. */
6983 if (adjusted_bpaddr != bpaddr)
6984 breakpoint_adjustment_warning (bpaddr, adjusted_bpaddr, 0, 0);
6985
6986 return adjusted_bpaddr;
6987 }
6988 }
6989
6990 bp_location::bp_location (const bp_location_ops *ops, breakpoint *owner)
6991 {
6992 bp_location *loc = this;
6993
6994 gdb_assert (ops != NULL);
6995
6996 loc->ops = ops;
6997 loc->owner = owner;
6998 loc->cond_bytecode = NULL;
6999 loc->shlib_disabled = 0;
7000 loc->enabled = 1;
7001
7002 switch (owner->type)
7003 {
7004 case bp_breakpoint:
7005 case bp_single_step:
7006 case bp_until:
7007 case bp_finish:
7008 case bp_longjmp:
7009 case bp_longjmp_resume:
7010 case bp_longjmp_call_dummy:
7011 case bp_exception:
7012 case bp_exception_resume:
7013 case bp_step_resume:
7014 case bp_hp_step_resume:
7015 case bp_watchpoint_scope:
7016 case bp_call_dummy:
7017 case bp_std_terminate:
7018 case bp_shlib_event:
7019 case bp_thread_event:
7020 case bp_overlay_event:
7021 case bp_jit_event:
7022 case bp_longjmp_master:
7023 case bp_std_terminate_master:
7024 case bp_exception_master:
7025 case bp_gnu_ifunc_resolver:
7026 case bp_gnu_ifunc_resolver_return:
7027 case bp_dprintf:
7028 loc->loc_type = bp_loc_software_breakpoint;
7029 mark_breakpoint_location_modified (loc);
7030 break;
7031 case bp_hardware_breakpoint:
7032 loc->loc_type = bp_loc_hardware_breakpoint;
7033 mark_breakpoint_location_modified (loc);
7034 break;
7035 case bp_hardware_watchpoint:
7036 case bp_read_watchpoint:
7037 case bp_access_watchpoint:
7038 loc->loc_type = bp_loc_hardware_watchpoint;
7039 break;
7040 case bp_watchpoint:
7041 case bp_catchpoint:
7042 case bp_tracepoint:
7043 case bp_fast_tracepoint:
7044 case bp_static_tracepoint:
7045 loc->loc_type = bp_loc_other;
7046 break;
7047 default:
7048 internal_error (__FILE__, __LINE__, _("unknown breakpoint type"));
7049 }
7050
7051 loc->refc = 1;
7052 }
7053
7054 /* Allocate a struct bp_location. */
7055
7056 static struct bp_location *
7057 allocate_bp_location (struct breakpoint *bpt)
7058 {
7059 return bpt->ops->allocate_location (bpt);
7060 }
7061
7062 static void
7063 free_bp_location (struct bp_location *loc)
7064 {
7065 loc->ops->dtor (loc);
7066 delete loc;
7067 }
7068
7069 /* Increment reference count. */
7070
7071 static void
7072 incref_bp_location (struct bp_location *bl)
7073 {
7074 ++bl->refc;
7075 }
7076
7077 /* Decrement reference count. If the reference count reaches 0,
7078 destroy the bp_location. Sets *BLP to NULL. */
7079
7080 static void
7081 decref_bp_location (struct bp_location **blp)
7082 {
7083 gdb_assert ((*blp)->refc > 0);
7084
7085 if (--(*blp)->refc == 0)
7086 free_bp_location (*blp);
7087 *blp = NULL;
7088 }
7089
7090 /* Add breakpoint B at the end of the global breakpoint chain. */
7091
7092 static breakpoint *
7093 add_to_breakpoint_chain (std::unique_ptr<breakpoint> &&b)
7094 {
7095 struct breakpoint *b1;
7096 struct breakpoint *result = b.get ();
7097
7098 /* Add this breakpoint to the end of the chain so that a list of
7099 breakpoints will come out in order of increasing numbers. */
7100
7101 b1 = breakpoint_chain;
7102 if (b1 == 0)
7103 breakpoint_chain = b.release ();
7104 else
7105 {
7106 while (b1->next)
7107 b1 = b1->next;
7108 b1->next = b.release ();
7109 }
7110
7111 return result;
7112 }
7113
7114 /* Initializes breakpoint B with type BPTYPE and no locations yet. */
7115
7116 static void
7117 init_raw_breakpoint_without_location (struct breakpoint *b,
7118 struct gdbarch *gdbarch,
7119 enum bptype bptype,
7120 const struct breakpoint_ops *ops)
7121 {
7122 gdb_assert (ops != NULL);
7123
7124 b->ops = ops;
7125 b->type = bptype;
7126 b->gdbarch = gdbarch;
7127 b->language = current_language->la_language;
7128 b->input_radix = input_radix;
7129 b->related_breakpoint = b;
7130 }
7131
7132 /* Helper to set_raw_breakpoint below. Creates a breakpoint
7133 that has type BPTYPE and has no locations as yet. */
7134
7135 static struct breakpoint *
7136 set_raw_breakpoint_without_location (struct gdbarch *gdbarch,
7137 enum bptype bptype,
7138 const struct breakpoint_ops *ops)
7139 {
7140 std::unique_ptr<breakpoint> b = new_breakpoint_from_type (bptype);
7141
7142 init_raw_breakpoint_without_location (b.get (), gdbarch, bptype, ops);
7143 return add_to_breakpoint_chain (std::move (b));
7144 }
7145
7146 /* Initialize loc->function_name. EXPLICIT_LOC says no indirect function
7147 resolutions should be made as the user specified the location explicitly
7148 enough. */
7149
7150 static void
7151 set_breakpoint_location_function (struct bp_location *loc, int explicit_loc)
7152 {
7153 gdb_assert (loc->owner != NULL);
7154
7155 if (loc->owner->type == bp_breakpoint
7156 || loc->owner->type == bp_hardware_breakpoint
7157 || is_tracepoint (loc->owner))
7158 {
7159 const char *function_name;
7160
7161 if (loc->msymbol != NULL
7162 && (MSYMBOL_TYPE (loc->msymbol) == mst_text_gnu_ifunc
7163 || MSYMBOL_TYPE (loc->msymbol) == mst_data_gnu_ifunc)
7164 && !explicit_loc)
7165 {
7166 struct breakpoint *b = loc->owner;
7167
7168 function_name = MSYMBOL_LINKAGE_NAME (loc->msymbol);
7169
7170 if (b->type == bp_breakpoint && b->loc == loc
7171 && loc->next == NULL && b->related_breakpoint == b)
7172 {
7173 /* Create only the whole new breakpoint of this type but do not
7174 mess more complicated breakpoints with multiple locations. */
7175 b->type = bp_gnu_ifunc_resolver;
7176 /* Remember the resolver's address for use by the return
7177 breakpoint. */
7178 loc->related_address = loc->address;
7179 }
7180 }
7181 else
7182 find_pc_partial_function (loc->address, &function_name, NULL, NULL);
7183
7184 if (function_name)
7185 loc->function_name = xstrdup (function_name);
7186 }
7187 }
7188
7189 /* Attempt to determine architecture of location identified by SAL. */
7190 struct gdbarch *
7191 get_sal_arch (struct symtab_and_line sal)
7192 {
7193 if (sal.section)
7194 return get_objfile_arch (sal.section->objfile);
7195 if (sal.symtab)
7196 return get_objfile_arch (SYMTAB_OBJFILE (sal.symtab));
7197
7198 return NULL;
7199 }
7200
7201 /* Low level routine for partially initializing a breakpoint of type
7202 BPTYPE. The newly created breakpoint's address, section, source
7203 file name, and line number are provided by SAL.
7204
7205 It is expected that the caller will complete the initialization of
7206 the newly created breakpoint struct as well as output any status
7207 information regarding the creation of a new breakpoint. */
7208
7209 static void
7210 init_raw_breakpoint (struct breakpoint *b, struct gdbarch *gdbarch,
7211 struct symtab_and_line sal, enum bptype bptype,
7212 const struct breakpoint_ops *ops)
7213 {
7214 init_raw_breakpoint_without_location (b, gdbarch, bptype, ops);
7215
7216 add_location_to_breakpoint (b, &sal);
7217
7218 if (bptype != bp_catchpoint)
7219 gdb_assert (sal.pspace != NULL);
7220
7221 /* Store the program space that was used to set the breakpoint,
7222 except for ordinary breakpoints, which are independent of the
7223 program space. */
7224 if (bptype != bp_breakpoint && bptype != bp_hardware_breakpoint)
7225 b->pspace = sal.pspace;
7226 }
7227
7228 /* set_raw_breakpoint is a low level routine for allocating and
7229 partially initializing a breakpoint of type BPTYPE. The newly
7230 created breakpoint's address, section, source file name, and line
7231 number are provided by SAL. The newly created and partially
7232 initialized breakpoint is added to the breakpoint chain and
7233 is also returned as the value of this function.
7234
7235 It is expected that the caller will complete the initialization of
7236 the newly created breakpoint struct as well as output any status
7237 information regarding the creation of a new breakpoint. In
7238 particular, set_raw_breakpoint does NOT set the breakpoint
7239 number! Care should be taken to not allow an error to occur
7240 prior to completing the initialization of the breakpoint. If this
7241 should happen, a bogus breakpoint will be left on the chain. */
7242
7243 struct breakpoint *
7244 set_raw_breakpoint (struct gdbarch *gdbarch,
7245 struct symtab_and_line sal, enum bptype bptype,
7246 const struct breakpoint_ops *ops)
7247 {
7248 std::unique_ptr<breakpoint> b = new_breakpoint_from_type (bptype);
7249
7250 init_raw_breakpoint (b.get (), gdbarch, sal, bptype, ops);
7251 return add_to_breakpoint_chain (std::move (b));
7252 }
7253
7254 /* Call this routine when stepping and nexting to enable a breakpoint
7255 if we do a longjmp() or 'throw' in TP. FRAME is the frame which
7256 initiated the operation. */
7257
7258 void
7259 set_longjmp_breakpoint (struct thread_info *tp, struct frame_id frame)
7260 {
7261 struct breakpoint *b, *b_tmp;
7262 int thread = tp->global_num;
7263
7264 /* To avoid having to rescan all objfile symbols at every step,
7265 we maintain a list of continually-inserted but always disabled
7266 longjmp "master" breakpoints. Here, we simply create momentary
7267 clones of those and enable them for the requested thread. */
7268 ALL_BREAKPOINTS_SAFE (b, b_tmp)
7269 if (b->pspace == current_program_space
7270 && (b->type == bp_longjmp_master
7271 || b->type == bp_exception_master))
7272 {
7273 enum bptype type = b->type == bp_longjmp_master ? bp_longjmp : bp_exception;
7274 struct breakpoint *clone;
7275
7276 /* longjmp_breakpoint_ops ensures INITIATING_FRAME is cleared again
7277 after their removal. */
7278 clone = momentary_breakpoint_from_master (b, type,
7279 &momentary_breakpoint_ops, 1);
7280 clone->thread = thread;
7281 }
7282
7283 tp->initiating_frame = frame;
7284 }
7285
7286 /* Delete all longjmp breakpoints from THREAD. */
7287 void
7288 delete_longjmp_breakpoint (int thread)
7289 {
7290 struct breakpoint *b, *b_tmp;
7291
7292 ALL_BREAKPOINTS_SAFE (b, b_tmp)
7293 if (b->type == bp_longjmp || b->type == bp_exception)
7294 {
7295 if (b->thread == thread)
7296 delete_breakpoint (b);
7297 }
7298 }
7299
7300 void
7301 delete_longjmp_breakpoint_at_next_stop (int thread)
7302 {
7303 struct breakpoint *b, *b_tmp;
7304
7305 ALL_BREAKPOINTS_SAFE (b, b_tmp)
7306 if (b->type == bp_longjmp || b->type == bp_exception)
7307 {
7308 if (b->thread == thread)
7309 b->disposition = disp_del_at_next_stop;
7310 }
7311 }
7312
7313 /* Place breakpoints of type bp_longjmp_call_dummy to catch longjmp for
7314 INFERIOR_PTID thread. Chain them all by RELATED_BREAKPOINT and return
7315 pointer to any of them. Return NULL if this system cannot place longjmp
7316 breakpoints. */
7317
7318 struct breakpoint *
7319 set_longjmp_breakpoint_for_call_dummy (void)
7320 {
7321 struct breakpoint *b, *retval = NULL;
7322
7323 ALL_BREAKPOINTS (b)
7324 if (b->pspace == current_program_space && b->type == bp_longjmp_master)
7325 {
7326 struct breakpoint *new_b;
7327
7328 new_b = momentary_breakpoint_from_master (b, bp_longjmp_call_dummy,
7329 &momentary_breakpoint_ops,
7330 1);
7331 new_b->thread = ptid_to_global_thread_id (inferior_ptid);
7332
7333 /* Link NEW_B into the chain of RETVAL breakpoints. */
7334
7335 gdb_assert (new_b->related_breakpoint == new_b);
7336 if (retval == NULL)
7337 retval = new_b;
7338 new_b->related_breakpoint = retval;
7339 while (retval->related_breakpoint != new_b->related_breakpoint)
7340 retval = retval->related_breakpoint;
7341 retval->related_breakpoint = new_b;
7342 }
7343
7344 return retval;
7345 }
7346
7347 /* Verify all existing dummy frames and their associated breakpoints for
7348 TP. Remove those which can no longer be found in the current frame
7349 stack.
7350
7351 You should call this function only at places where it is safe to currently
7352 unwind the whole stack. Failed stack unwind would discard live dummy
7353 frames. */
7354
7355 void
7356 check_longjmp_breakpoint_for_call_dummy (struct thread_info *tp)
7357 {
7358 struct breakpoint *b, *b_tmp;
7359
7360 ALL_BREAKPOINTS_SAFE (b, b_tmp)
7361 if (b->type == bp_longjmp_call_dummy && b->thread == tp->global_num)
7362 {
7363 struct breakpoint *dummy_b = b->related_breakpoint;
7364
7365 while (dummy_b != b && dummy_b->type != bp_call_dummy)
7366 dummy_b = dummy_b->related_breakpoint;
7367 if (dummy_b->type != bp_call_dummy
7368 || frame_find_by_id (dummy_b->frame_id) != NULL)
7369 continue;
7370
7371 dummy_frame_discard (dummy_b->frame_id, tp->ptid);
7372
7373 while (b->related_breakpoint != b)
7374 {
7375 if (b_tmp == b->related_breakpoint)
7376 b_tmp = b->related_breakpoint->next;
7377 delete_breakpoint (b->related_breakpoint);
7378 }
7379 delete_breakpoint (b);
7380 }
7381 }
7382
7383 void
7384 enable_overlay_breakpoints (void)
7385 {
7386 struct breakpoint *b;
7387
7388 ALL_BREAKPOINTS (b)
7389 if (b->type == bp_overlay_event)
7390 {
7391 b->enable_state = bp_enabled;
7392 update_global_location_list (UGLL_MAY_INSERT);
7393 overlay_events_enabled = 1;
7394 }
7395 }
7396
7397 void
7398 disable_overlay_breakpoints (void)
7399 {
7400 struct breakpoint *b;
7401
7402 ALL_BREAKPOINTS (b)
7403 if (b->type == bp_overlay_event)
7404 {
7405 b->enable_state = bp_disabled;
7406 update_global_location_list (UGLL_DONT_INSERT);
7407 overlay_events_enabled = 0;
7408 }
7409 }
7410
7411 /* Set an active std::terminate breakpoint for each std::terminate
7412 master breakpoint. */
7413 void
7414 set_std_terminate_breakpoint (void)
7415 {
7416 struct breakpoint *b, *b_tmp;
7417
7418 ALL_BREAKPOINTS_SAFE (b, b_tmp)
7419 if (b->pspace == current_program_space
7420 && b->type == bp_std_terminate_master)
7421 {
7422 momentary_breakpoint_from_master (b, bp_std_terminate,
7423 &momentary_breakpoint_ops, 1);
7424 }
7425 }
7426
7427 /* Delete all the std::terminate breakpoints. */
7428 void
7429 delete_std_terminate_breakpoint (void)
7430 {
7431 struct breakpoint *b, *b_tmp;
7432
7433 ALL_BREAKPOINTS_SAFE (b, b_tmp)
7434 if (b->type == bp_std_terminate)
7435 delete_breakpoint (b);
7436 }
7437
7438 struct breakpoint *
7439 create_thread_event_breakpoint (struct gdbarch *gdbarch, CORE_ADDR address)
7440 {
7441 struct breakpoint *b;
7442
7443 b = create_internal_breakpoint (gdbarch, address, bp_thread_event,
7444 &internal_breakpoint_ops);
7445
7446 b->enable_state = bp_enabled;
7447 /* location has to be used or breakpoint_re_set will delete me. */
7448 b->location = new_address_location (b->loc->address, NULL, 0);
7449
7450 update_global_location_list_nothrow (UGLL_MAY_INSERT);
7451
7452 return b;
7453 }
7454
7455 struct lang_and_radix
7456 {
7457 enum language lang;
7458 int radix;
7459 };
7460
7461 /* Create a breakpoint for JIT code registration and unregistration. */
7462
7463 struct breakpoint *
7464 create_jit_event_breakpoint (struct gdbarch *gdbarch, CORE_ADDR address)
7465 {
7466 return create_internal_breakpoint (gdbarch, address, bp_jit_event,
7467 &internal_breakpoint_ops);
7468 }
7469
7470 /* Remove JIT code registration and unregistration breakpoint(s). */
7471
7472 void
7473 remove_jit_event_breakpoints (void)
7474 {
7475 struct breakpoint *b, *b_tmp;
7476
7477 ALL_BREAKPOINTS_SAFE (b, b_tmp)
7478 if (b->type == bp_jit_event
7479 && b->loc->pspace == current_program_space)
7480 delete_breakpoint (b);
7481 }
7482
7483 void
7484 remove_solib_event_breakpoints (void)
7485 {
7486 struct breakpoint *b, *b_tmp;
7487
7488 ALL_BREAKPOINTS_SAFE (b, b_tmp)
7489 if (b->type == bp_shlib_event
7490 && b->loc->pspace == current_program_space)
7491 delete_breakpoint (b);
7492 }
7493
7494 /* See breakpoint.h. */
7495
7496 void
7497 remove_solib_event_breakpoints_at_next_stop (void)
7498 {
7499 struct breakpoint *b, *b_tmp;
7500
7501 ALL_BREAKPOINTS_SAFE (b, b_tmp)
7502 if (b->type == bp_shlib_event
7503 && b->loc->pspace == current_program_space)
7504 b->disposition = disp_del_at_next_stop;
7505 }
7506
7507 /* Helper for create_solib_event_breakpoint /
7508 create_and_insert_solib_event_breakpoint. Allows specifying which
7509 INSERT_MODE to pass through to update_global_location_list. */
7510
7511 static struct breakpoint *
7512 create_solib_event_breakpoint_1 (struct gdbarch *gdbarch, CORE_ADDR address,
7513 enum ugll_insert_mode insert_mode)
7514 {
7515 struct breakpoint *b;
7516
7517 b = create_internal_breakpoint (gdbarch, address, bp_shlib_event,
7518 &internal_breakpoint_ops);
7519 update_global_location_list_nothrow (insert_mode);
7520 return b;
7521 }
7522
7523 struct breakpoint *
7524 create_solib_event_breakpoint (struct gdbarch *gdbarch, CORE_ADDR address)
7525 {
7526 return create_solib_event_breakpoint_1 (gdbarch, address, UGLL_MAY_INSERT);
7527 }
7528
7529 /* See breakpoint.h. */
7530
7531 struct breakpoint *
7532 create_and_insert_solib_event_breakpoint (struct gdbarch *gdbarch, CORE_ADDR address)
7533 {
7534 struct breakpoint *b;
7535
7536 /* Explicitly tell update_global_location_list to insert
7537 locations. */
7538 b = create_solib_event_breakpoint_1 (gdbarch, address, UGLL_INSERT);
7539 if (!b->loc->inserted)
7540 {
7541 delete_breakpoint (b);
7542 return NULL;
7543 }
7544 return b;
7545 }
7546
7547 /* Disable any breakpoints that are on code in shared libraries. Only
7548 apply to enabled breakpoints, disabled ones can just stay disabled. */
7549
7550 void
7551 disable_breakpoints_in_shlibs (void)
7552 {
7553 struct bp_location *loc, **locp_tmp;
7554
7555 ALL_BP_LOCATIONS (loc, locp_tmp)
7556 {
7557 /* ALL_BP_LOCATIONS bp_location has LOC->OWNER always non-NULL. */
7558 struct breakpoint *b = loc->owner;
7559
7560 /* We apply the check to all breakpoints, including disabled for
7561 those with loc->duplicate set. This is so that when breakpoint
7562 becomes enabled, or the duplicate is removed, gdb will try to
7563 insert all breakpoints. If we don't set shlib_disabled here,
7564 we'll try to insert those breakpoints and fail. */
7565 if (((b->type == bp_breakpoint)
7566 || (b->type == bp_jit_event)
7567 || (b->type == bp_hardware_breakpoint)
7568 || (is_tracepoint (b)))
7569 && loc->pspace == current_program_space
7570 && !loc->shlib_disabled
7571 && solib_name_from_address (loc->pspace, loc->address)
7572 )
7573 {
7574 loc->shlib_disabled = 1;
7575 }
7576 }
7577 }
7578
7579 /* Disable any breakpoints and tracepoints that are in SOLIB upon
7580 notification of unloaded_shlib. Only apply to enabled breakpoints,
7581 disabled ones can just stay disabled. */
7582
7583 static void
7584 disable_breakpoints_in_unloaded_shlib (struct so_list *solib)
7585 {
7586 struct bp_location *loc, **locp_tmp;
7587 int disabled_shlib_breaks = 0;
7588
7589 ALL_BP_LOCATIONS (loc, locp_tmp)
7590 {
7591 /* ALL_BP_LOCATIONS bp_location has LOC->OWNER always non-NULL. */
7592 struct breakpoint *b = loc->owner;
7593
7594 if (solib->pspace == loc->pspace
7595 && !loc->shlib_disabled
7596 && (((b->type == bp_breakpoint
7597 || b->type == bp_jit_event
7598 || b->type == bp_hardware_breakpoint)
7599 && (loc->loc_type == bp_loc_hardware_breakpoint
7600 || loc->loc_type == bp_loc_software_breakpoint))
7601 || is_tracepoint (b))
7602 && solib_contains_address_p (solib, loc->address))
7603 {
7604 loc->shlib_disabled = 1;
7605 /* At this point, we cannot rely on remove_breakpoint
7606 succeeding so we must mark the breakpoint as not inserted
7607 to prevent future errors occurring in remove_breakpoints. */
7608 loc->inserted = 0;
7609
7610 /* This may cause duplicate notifications for the same breakpoint. */
7611 gdb::observers::breakpoint_modified.notify (b);
7612
7613 if (!disabled_shlib_breaks)
7614 {
7615 target_terminal::ours_for_output ();
7616 warning (_("Temporarily disabling breakpoints "
7617 "for unloaded shared library \"%s\""),
7618 solib->so_name);
7619 }
7620 disabled_shlib_breaks = 1;
7621 }
7622 }
7623 }
7624
7625 /* Disable any breakpoints and tracepoints in OBJFILE upon
7626 notification of free_objfile. Only apply to enabled breakpoints,
7627 disabled ones can just stay disabled. */
7628
7629 static void
7630 disable_breakpoints_in_freed_objfile (struct objfile *objfile)
7631 {
7632 struct breakpoint *b;
7633
7634 if (objfile == NULL)
7635 return;
7636
7637 /* OBJF_SHARED|OBJF_USERLOADED objfiles are dynamic modules manually
7638 managed by the user with add-symbol-file/remove-symbol-file.
7639 Similarly to how breakpoints in shared libraries are handled in
7640 response to "nosharedlibrary", mark breakpoints in such modules
7641 shlib_disabled so they end up uninserted on the next global
7642 location list update. Shared libraries not loaded by the user
7643 aren't handled here -- they're already handled in
7644 disable_breakpoints_in_unloaded_shlib, called by solib.c's
7645 solib_unloaded observer. We skip objfiles that are not
7646 OBJF_SHARED as those aren't considered dynamic objects (e.g. the
7647 main objfile). */
7648 if ((objfile->flags & OBJF_SHARED) == 0
7649 || (objfile->flags & OBJF_USERLOADED) == 0)
7650 return;
7651
7652 ALL_BREAKPOINTS (b)
7653 {
7654 struct bp_location *loc;
7655 int bp_modified = 0;
7656
7657 if (!is_breakpoint (b) && !is_tracepoint (b))
7658 continue;
7659
7660 for (loc = b->loc; loc != NULL; loc = loc->next)
7661 {
7662 CORE_ADDR loc_addr = loc->address;
7663
7664 if (loc->loc_type != bp_loc_hardware_breakpoint
7665 && loc->loc_type != bp_loc_software_breakpoint)
7666 continue;
7667
7668 if (loc->shlib_disabled != 0)
7669 continue;
7670
7671 if (objfile->pspace != loc->pspace)
7672 continue;
7673
7674 if (loc->loc_type != bp_loc_hardware_breakpoint
7675 && loc->loc_type != bp_loc_software_breakpoint)
7676 continue;
7677
7678 if (is_addr_in_objfile (loc_addr, objfile))
7679 {
7680 loc->shlib_disabled = 1;
7681 /* At this point, we don't know whether the object was
7682 unmapped from the inferior or not, so leave the
7683 inserted flag alone. We'll handle failure to
7684 uninsert quietly, in case the object was indeed
7685 unmapped. */
7686
7687 mark_breakpoint_location_modified (loc);
7688
7689 bp_modified = 1;
7690 }
7691 }
7692
7693 if (bp_modified)
7694 gdb::observers::breakpoint_modified.notify (b);
7695 }
7696 }
7697
7698 /* FORK & VFORK catchpoints. */
7699
7700 /* An instance of this type is used to represent a fork or vfork
7701 catchpoint. A breakpoint is really of this type iff its ops pointer points
7702 to CATCH_FORK_BREAKPOINT_OPS. */
7703
7704 struct fork_catchpoint : public breakpoint
7705 {
7706 /* Process id of a child process whose forking triggered this
7707 catchpoint. This field is only valid immediately after this
7708 catchpoint has triggered. */
7709 ptid_t forked_inferior_pid;
7710 };
7711
7712 /* Implement the "insert" breakpoint_ops method for fork
7713 catchpoints. */
7714
7715 static int
7716 insert_catch_fork (struct bp_location *bl)
7717 {
7718 return target_insert_fork_catchpoint (ptid_get_pid (inferior_ptid));
7719 }
7720
7721 /* Implement the "remove" breakpoint_ops method for fork
7722 catchpoints. */
7723
7724 static int
7725 remove_catch_fork (struct bp_location *bl, enum remove_bp_reason reason)
7726 {
7727 return target_remove_fork_catchpoint (ptid_get_pid (inferior_ptid));
7728 }
7729
7730 /* Implement the "breakpoint_hit" breakpoint_ops method for fork
7731 catchpoints. */
7732
7733 static int
7734 breakpoint_hit_catch_fork (const struct bp_location *bl,
7735 const address_space *aspace, CORE_ADDR bp_addr,
7736 const struct target_waitstatus *ws)
7737 {
7738 struct fork_catchpoint *c = (struct fork_catchpoint *) bl->owner;
7739
7740 if (ws->kind != TARGET_WAITKIND_FORKED)
7741 return 0;
7742
7743 c->forked_inferior_pid = ws->value.related_pid;
7744 return 1;
7745 }
7746
7747 /* Implement the "print_it" breakpoint_ops method for fork
7748 catchpoints. */
7749
7750 static enum print_stop_action
7751 print_it_catch_fork (bpstat bs)
7752 {
7753 struct ui_out *uiout = current_uiout;
7754 struct breakpoint *b = bs->breakpoint_at;
7755 struct fork_catchpoint *c = (struct fork_catchpoint *) bs->breakpoint_at;
7756
7757 annotate_catchpoint (b->number);
7758 maybe_print_thread_hit_breakpoint (uiout);
7759 if (b->disposition == disp_del)
7760 uiout->text ("Temporary catchpoint ");
7761 else
7762 uiout->text ("Catchpoint ");
7763 if (uiout->is_mi_like_p ())
7764 {
7765 uiout->field_string ("reason", async_reason_lookup (EXEC_ASYNC_FORK));
7766 uiout->field_string ("disp", bpdisp_text (b->disposition));
7767 }
7768 uiout->field_int ("bkptno", b->number);
7769 uiout->text (" (forked process ");
7770 uiout->field_int ("newpid", ptid_get_pid (c->forked_inferior_pid));
7771 uiout->text ("), ");
7772 return PRINT_SRC_AND_LOC;
7773 }
7774
7775 /* Implement the "print_one" breakpoint_ops method for fork
7776 catchpoints. */
7777
7778 static void
7779 print_one_catch_fork (struct breakpoint *b, struct bp_location **last_loc)
7780 {
7781 struct fork_catchpoint *c = (struct fork_catchpoint *) b;
7782 struct value_print_options opts;
7783 struct ui_out *uiout = current_uiout;
7784
7785 get_user_print_options (&opts);
7786
7787 /* Field 4, the address, is omitted (which makes the columns not
7788 line up too nicely with the headers, but the effect is relatively
7789 readable). */
7790 if (opts.addressprint)
7791 uiout->field_skip ("addr");
7792 annotate_field (5);
7793 uiout->text ("fork");
7794 if (!ptid_equal (c->forked_inferior_pid, null_ptid))
7795 {
7796 uiout->text (", process ");
7797 uiout->field_int ("what", ptid_get_pid (c->forked_inferior_pid));
7798 uiout->spaces (1);
7799 }
7800
7801 if (uiout->is_mi_like_p ())
7802 uiout->field_string ("catch-type", "fork");
7803 }
7804
7805 /* Implement the "print_mention" breakpoint_ops method for fork
7806 catchpoints. */
7807
7808 static void
7809 print_mention_catch_fork (struct breakpoint *b)
7810 {
7811 printf_filtered (_("Catchpoint %d (fork)"), b->number);
7812 }
7813
7814 /* Implement the "print_recreate" breakpoint_ops method for fork
7815 catchpoints. */
7816
7817 static void
7818 print_recreate_catch_fork (struct breakpoint *b, struct ui_file *fp)
7819 {
7820 fprintf_unfiltered (fp, "catch fork");
7821 print_recreate_thread (b, fp);
7822 }
7823
7824 /* The breakpoint_ops structure to be used in fork catchpoints. */
7825
7826 static struct breakpoint_ops catch_fork_breakpoint_ops;
7827
7828 /* Implement the "insert" breakpoint_ops method for vfork
7829 catchpoints. */
7830
7831 static int
7832 insert_catch_vfork (struct bp_location *bl)
7833 {
7834 return target_insert_vfork_catchpoint (ptid_get_pid (inferior_ptid));
7835 }
7836
7837 /* Implement the "remove" breakpoint_ops method for vfork
7838 catchpoints. */
7839
7840 static int
7841 remove_catch_vfork (struct bp_location *bl, enum remove_bp_reason reason)
7842 {
7843 return target_remove_vfork_catchpoint (ptid_get_pid (inferior_ptid));
7844 }
7845
7846 /* Implement the "breakpoint_hit" breakpoint_ops method for vfork
7847 catchpoints. */
7848
7849 static int
7850 breakpoint_hit_catch_vfork (const struct bp_location *bl,
7851 const address_space *aspace, CORE_ADDR bp_addr,
7852 const struct target_waitstatus *ws)
7853 {
7854 struct fork_catchpoint *c = (struct fork_catchpoint *) bl->owner;
7855
7856 if (ws->kind != TARGET_WAITKIND_VFORKED)
7857 return 0;
7858
7859 c->forked_inferior_pid = ws->value.related_pid;
7860 return 1;
7861 }
7862
7863 /* Implement the "print_it" breakpoint_ops method for vfork
7864 catchpoints. */
7865
7866 static enum print_stop_action
7867 print_it_catch_vfork (bpstat bs)
7868 {
7869 struct ui_out *uiout = current_uiout;
7870 struct breakpoint *b = bs->breakpoint_at;
7871 struct fork_catchpoint *c = (struct fork_catchpoint *) b;
7872
7873 annotate_catchpoint (b->number);
7874 maybe_print_thread_hit_breakpoint (uiout);
7875 if (b->disposition == disp_del)
7876 uiout->text ("Temporary catchpoint ");
7877 else
7878 uiout->text ("Catchpoint ");
7879 if (uiout->is_mi_like_p ())
7880 {
7881 uiout->field_string ("reason", async_reason_lookup (EXEC_ASYNC_VFORK));
7882 uiout->field_string ("disp", bpdisp_text (b->disposition));
7883 }
7884 uiout->field_int ("bkptno", b->number);
7885 uiout->text (" (vforked process ");
7886 uiout->field_int ("newpid", ptid_get_pid (c->forked_inferior_pid));
7887 uiout->text ("), ");
7888 return PRINT_SRC_AND_LOC;
7889 }
7890
7891 /* Implement the "print_one" breakpoint_ops method for vfork
7892 catchpoints. */
7893
7894 static void
7895 print_one_catch_vfork (struct breakpoint *b, struct bp_location **last_loc)
7896 {
7897 struct fork_catchpoint *c = (struct fork_catchpoint *) b;
7898 struct value_print_options opts;
7899 struct ui_out *uiout = current_uiout;
7900
7901 get_user_print_options (&opts);
7902 /* Field 4, the address, is omitted (which makes the columns not
7903 line up too nicely with the headers, but the effect is relatively
7904 readable). */
7905 if (opts.addressprint)
7906 uiout->field_skip ("addr");
7907 annotate_field (5);
7908 uiout->text ("vfork");
7909 if (!ptid_equal (c->forked_inferior_pid, null_ptid))
7910 {
7911 uiout->text (", process ");
7912 uiout->field_int ("what", ptid_get_pid (c->forked_inferior_pid));
7913 uiout->spaces (1);
7914 }
7915
7916 if (uiout->is_mi_like_p ())
7917 uiout->field_string ("catch-type", "vfork");
7918 }
7919
7920 /* Implement the "print_mention" breakpoint_ops method for vfork
7921 catchpoints. */
7922
7923 static void
7924 print_mention_catch_vfork (struct breakpoint *b)
7925 {
7926 printf_filtered (_("Catchpoint %d (vfork)"), b->number);
7927 }
7928
7929 /* Implement the "print_recreate" breakpoint_ops method for vfork
7930 catchpoints. */
7931
7932 static void
7933 print_recreate_catch_vfork (struct breakpoint *b, struct ui_file *fp)
7934 {
7935 fprintf_unfiltered (fp, "catch vfork");
7936 print_recreate_thread (b, fp);
7937 }
7938
7939 /* The breakpoint_ops structure to be used in vfork catchpoints. */
7940
7941 static struct breakpoint_ops catch_vfork_breakpoint_ops;
7942
7943 /* An instance of this type is used to represent an solib catchpoint.
7944 A breakpoint is really of this type iff its ops pointer points to
7945 CATCH_SOLIB_BREAKPOINT_OPS. */
7946
7947 struct solib_catchpoint : public breakpoint
7948 {
7949 ~solib_catchpoint () override;
7950
7951 /* True for "catch load", false for "catch unload". */
7952 unsigned char is_load;
7953
7954 /* Regular expression to match, if any. COMPILED is only valid when
7955 REGEX is non-NULL. */
7956 char *regex;
7957 std::unique_ptr<compiled_regex> compiled;
7958 };
7959
7960 solib_catchpoint::~solib_catchpoint ()
7961 {
7962 xfree (this->regex);
7963 }
7964
7965 static int
7966 insert_catch_solib (struct bp_location *ignore)
7967 {
7968 return 0;
7969 }
7970
7971 static int
7972 remove_catch_solib (struct bp_location *ignore, enum remove_bp_reason reason)
7973 {
7974 return 0;
7975 }
7976
7977 static int
7978 breakpoint_hit_catch_solib (const struct bp_location *bl,
7979 const address_space *aspace,
7980 CORE_ADDR bp_addr,
7981 const struct target_waitstatus *ws)
7982 {
7983 struct solib_catchpoint *self = (struct solib_catchpoint *) bl->owner;
7984 struct breakpoint *other;
7985
7986 if (ws->kind == TARGET_WAITKIND_LOADED)
7987 return 1;
7988
7989 ALL_BREAKPOINTS (other)
7990 {
7991 struct bp_location *other_bl;
7992
7993 if (other == bl->owner)
7994 continue;
7995
7996 if (other->type != bp_shlib_event)
7997 continue;
7998
7999 if (self->pspace != NULL && other->pspace != self->pspace)
8000 continue;
8001
8002 for (other_bl = other->loc; other_bl != NULL; other_bl = other_bl->next)
8003 {
8004 if (other->ops->breakpoint_hit (other_bl, aspace, bp_addr, ws))
8005 return 1;
8006 }
8007 }
8008
8009 return 0;
8010 }
8011
8012 static void
8013 check_status_catch_solib (struct bpstats *bs)
8014 {
8015 struct solib_catchpoint *self
8016 = (struct solib_catchpoint *) bs->breakpoint_at;
8017
8018 if (self->is_load)
8019 {
8020 struct so_list *iter;
8021
8022 for (int ix = 0;
8023 VEC_iterate (so_list_ptr, current_program_space->added_solibs,
8024 ix, iter);
8025 ++ix)
8026 {
8027 if (!self->regex
8028 || self->compiled->exec (iter->so_name, 0, NULL, 0) == 0)
8029 return;
8030 }
8031 }
8032 else
8033 {
8034 for (const std::string &iter : current_program_space->deleted_solibs)
8035 {
8036 if (!self->regex
8037 || self->compiled->exec (iter.c_str (), 0, NULL, 0) == 0)
8038 return;
8039 }
8040 }
8041
8042 bs->stop = 0;
8043 bs->print_it = print_it_noop;
8044 }
8045
8046 static enum print_stop_action
8047 print_it_catch_solib (bpstat bs)
8048 {
8049 struct breakpoint *b = bs->breakpoint_at;
8050 struct ui_out *uiout = current_uiout;
8051
8052 annotate_catchpoint (b->number);
8053 maybe_print_thread_hit_breakpoint (uiout);
8054 if (b->disposition == disp_del)
8055 uiout->text ("Temporary catchpoint ");
8056 else
8057 uiout->text ("Catchpoint ");
8058 uiout->field_int ("bkptno", b->number);
8059 uiout->text ("\n");
8060 if (uiout->is_mi_like_p ())
8061 uiout->field_string ("disp", bpdisp_text (b->disposition));
8062 print_solib_event (1);
8063 return PRINT_SRC_AND_LOC;
8064 }
8065
8066 static void
8067 print_one_catch_solib (struct breakpoint *b, struct bp_location **locs)
8068 {
8069 struct solib_catchpoint *self = (struct solib_catchpoint *) b;
8070 struct value_print_options opts;
8071 struct ui_out *uiout = current_uiout;
8072 char *msg;
8073
8074 get_user_print_options (&opts);
8075 /* Field 4, the address, is omitted (which makes the columns not
8076 line up too nicely with the headers, but the effect is relatively
8077 readable). */
8078 if (opts.addressprint)
8079 {
8080 annotate_field (4);
8081 uiout->field_skip ("addr");
8082 }
8083
8084 annotate_field (5);
8085 if (self->is_load)
8086 {
8087 if (self->regex)
8088 msg = xstrprintf (_("load of library matching %s"), self->regex);
8089 else
8090 msg = xstrdup (_("load of library"));
8091 }
8092 else
8093 {
8094 if (self->regex)
8095 msg = xstrprintf (_("unload of library matching %s"), self->regex);
8096 else
8097 msg = xstrdup (_("unload of library"));
8098 }
8099 uiout->field_string ("what", msg);
8100 xfree (msg);
8101
8102 if (uiout->is_mi_like_p ())
8103 uiout->field_string ("catch-type", self->is_load ? "load" : "unload");
8104 }
8105
8106 static void
8107 print_mention_catch_solib (struct breakpoint *b)
8108 {
8109 struct solib_catchpoint *self = (struct solib_catchpoint *) b;
8110
8111 printf_filtered (_("Catchpoint %d (%s)"), b->number,
8112 self->is_load ? "load" : "unload");
8113 }
8114
8115 static void
8116 print_recreate_catch_solib (struct breakpoint *b, struct ui_file *fp)
8117 {
8118 struct solib_catchpoint *self = (struct solib_catchpoint *) b;
8119
8120 fprintf_unfiltered (fp, "%s %s",
8121 b->disposition == disp_del ? "tcatch" : "catch",
8122 self->is_load ? "load" : "unload");
8123 if (self->regex)
8124 fprintf_unfiltered (fp, " %s", self->regex);
8125 fprintf_unfiltered (fp, "\n");
8126 }
8127
8128 static struct breakpoint_ops catch_solib_breakpoint_ops;
8129
8130 /* Shared helper function (MI and CLI) for creating and installing
8131 a shared object event catchpoint. If IS_LOAD is non-zero then
8132 the events to be caught are load events, otherwise they are
8133 unload events. If IS_TEMP is non-zero the catchpoint is a
8134 temporary one. If ENABLED is non-zero the catchpoint is
8135 created in an enabled state. */
8136
8137 void
8138 add_solib_catchpoint (const char *arg, int is_load, int is_temp, int enabled)
8139 {
8140 struct gdbarch *gdbarch = get_current_arch ();
8141
8142 if (!arg)
8143 arg = "";
8144 arg = skip_spaces (arg);
8145
8146 std::unique_ptr<solib_catchpoint> c (new solib_catchpoint ());
8147
8148 if (*arg != '\0')
8149 {
8150 c->compiled.reset (new compiled_regex (arg, REG_NOSUB,
8151 _("Invalid regexp")));
8152 c->regex = xstrdup (arg);
8153 }
8154
8155 c->is_load = is_load;
8156 init_catchpoint (c.get (), gdbarch, is_temp, NULL,
8157 &catch_solib_breakpoint_ops);
8158
8159 c->enable_state = enabled ? bp_enabled : bp_disabled;
8160
8161 install_breakpoint (0, std::move (c), 1);
8162 }
8163
8164 /* A helper function that does all the work for "catch load" and
8165 "catch unload". */
8166
8167 static void
8168 catch_load_or_unload (const char *arg, int from_tty, int is_load,
8169 struct cmd_list_element *command)
8170 {
8171 int tempflag;
8172 const int enabled = 1;
8173
8174 tempflag = get_cmd_context (command) == CATCH_TEMPORARY;
8175
8176 add_solib_catchpoint (arg, is_load, tempflag, enabled);
8177 }
8178
8179 static void
8180 catch_load_command_1 (const char *arg, int from_tty,
8181 struct cmd_list_element *command)
8182 {
8183 catch_load_or_unload (arg, from_tty, 1, command);
8184 }
8185
8186 static void
8187 catch_unload_command_1 (const char *arg, int from_tty,
8188 struct cmd_list_element *command)
8189 {
8190 catch_load_or_unload (arg, from_tty, 0, command);
8191 }
8192
8193 /* Initialize a new breakpoint of the bp_catchpoint kind. If TEMPFLAG
8194 is non-zero, then make the breakpoint temporary. If COND_STRING is
8195 not NULL, then store it in the breakpoint. OPS, if not NULL, is
8196 the breakpoint_ops structure associated to the catchpoint. */
8197
8198 void
8199 init_catchpoint (struct breakpoint *b,
8200 struct gdbarch *gdbarch, int tempflag,
8201 const char *cond_string,
8202 const struct breakpoint_ops *ops)
8203 {
8204 symtab_and_line sal;
8205 sal.pspace = current_program_space;
8206
8207 init_raw_breakpoint (b, gdbarch, sal, bp_catchpoint, ops);
8208
8209 b->cond_string = (cond_string == NULL) ? NULL : xstrdup (cond_string);
8210 b->disposition = tempflag ? disp_del : disp_donttouch;
8211 }
8212
8213 void
8214 install_breakpoint (int internal, std::unique_ptr<breakpoint> &&arg, int update_gll)
8215 {
8216 breakpoint *b = add_to_breakpoint_chain (std::move (arg));
8217 set_breakpoint_number (internal, b);
8218 if (is_tracepoint (b))
8219 set_tracepoint_count (breakpoint_count);
8220 if (!internal)
8221 mention (b);
8222 gdb::observers::breakpoint_created.notify (b);
8223
8224 if (update_gll)
8225 update_global_location_list (UGLL_MAY_INSERT);
8226 }
8227
8228 static void
8229 create_fork_vfork_event_catchpoint (struct gdbarch *gdbarch,
8230 int tempflag, const char *cond_string,
8231 const struct breakpoint_ops *ops)
8232 {
8233 std::unique_ptr<fork_catchpoint> c (new fork_catchpoint ());
8234
8235 init_catchpoint (c.get (), gdbarch, tempflag, cond_string, ops);
8236
8237 c->forked_inferior_pid = null_ptid;
8238
8239 install_breakpoint (0, std::move (c), 1);
8240 }
8241
8242 /* Exec catchpoints. */
8243
8244 /* An instance of this type is used to represent an exec catchpoint.
8245 A breakpoint is really of this type iff its ops pointer points to
8246 CATCH_EXEC_BREAKPOINT_OPS. */
8247
8248 struct exec_catchpoint : public breakpoint
8249 {
8250 ~exec_catchpoint () override;
8251
8252 /* Filename of a program whose exec triggered this catchpoint.
8253 This field is only valid immediately after this catchpoint has
8254 triggered. */
8255 char *exec_pathname;
8256 };
8257
8258 /* Exec catchpoint destructor. */
8259
8260 exec_catchpoint::~exec_catchpoint ()
8261 {
8262 xfree (this->exec_pathname);
8263 }
8264
8265 static int
8266 insert_catch_exec (struct bp_location *bl)
8267 {
8268 return target_insert_exec_catchpoint (ptid_get_pid (inferior_ptid));
8269 }
8270
8271 static int
8272 remove_catch_exec (struct bp_location *bl, enum remove_bp_reason reason)
8273 {
8274 return target_remove_exec_catchpoint (ptid_get_pid (inferior_ptid));
8275 }
8276
8277 static int
8278 breakpoint_hit_catch_exec (const struct bp_location *bl,
8279 const address_space *aspace, CORE_ADDR bp_addr,
8280 const struct target_waitstatus *ws)
8281 {
8282 struct exec_catchpoint *c = (struct exec_catchpoint *) bl->owner;
8283
8284 if (ws->kind != TARGET_WAITKIND_EXECD)
8285 return 0;
8286
8287 c->exec_pathname = xstrdup (ws->value.execd_pathname);
8288 return 1;
8289 }
8290
8291 static enum print_stop_action
8292 print_it_catch_exec (bpstat bs)
8293 {
8294 struct ui_out *uiout = current_uiout;
8295 struct breakpoint *b = bs->breakpoint_at;
8296 struct exec_catchpoint *c = (struct exec_catchpoint *) b;
8297
8298 annotate_catchpoint (b->number);
8299 maybe_print_thread_hit_breakpoint (uiout);
8300 if (b->disposition == disp_del)
8301 uiout->text ("Temporary catchpoint ");
8302 else
8303 uiout->text ("Catchpoint ");
8304 if (uiout->is_mi_like_p ())
8305 {
8306 uiout->field_string ("reason", async_reason_lookup (EXEC_ASYNC_EXEC));
8307 uiout->field_string ("disp", bpdisp_text (b->disposition));
8308 }
8309 uiout->field_int ("bkptno", b->number);
8310 uiout->text (" (exec'd ");
8311 uiout->field_string ("new-exec", c->exec_pathname);
8312 uiout->text ("), ");
8313
8314 return PRINT_SRC_AND_LOC;
8315 }
8316
8317 static void
8318 print_one_catch_exec (struct breakpoint *b, struct bp_location **last_loc)
8319 {
8320 struct exec_catchpoint *c = (struct exec_catchpoint *) b;
8321 struct value_print_options opts;
8322 struct ui_out *uiout = current_uiout;
8323
8324 get_user_print_options (&opts);
8325
8326 /* Field 4, the address, is omitted (which makes the columns
8327 not line up too nicely with the headers, but the effect
8328 is relatively readable). */
8329 if (opts.addressprint)
8330 uiout->field_skip ("addr");
8331 annotate_field (5);
8332 uiout->text ("exec");
8333 if (c->exec_pathname != NULL)
8334 {
8335 uiout->text (", program \"");
8336 uiout->field_string ("what", c->exec_pathname);
8337 uiout->text ("\" ");
8338 }
8339
8340 if (uiout->is_mi_like_p ())
8341 uiout->field_string ("catch-type", "exec");
8342 }
8343
8344 static void
8345 print_mention_catch_exec (struct breakpoint *b)
8346 {
8347 printf_filtered (_("Catchpoint %d (exec)"), b->number);
8348 }
8349
8350 /* Implement the "print_recreate" breakpoint_ops method for exec
8351 catchpoints. */
8352
8353 static void
8354 print_recreate_catch_exec (struct breakpoint *b, struct ui_file *fp)
8355 {
8356 fprintf_unfiltered (fp, "catch exec");
8357 print_recreate_thread (b, fp);
8358 }
8359
8360 static struct breakpoint_ops catch_exec_breakpoint_ops;
8361
8362 static int
8363 hw_breakpoint_used_count (void)
8364 {
8365 int i = 0;
8366 struct breakpoint *b;
8367 struct bp_location *bl;
8368
8369 ALL_BREAKPOINTS (b)
8370 {
8371 if (b->type == bp_hardware_breakpoint && breakpoint_enabled (b))
8372 for (bl = b->loc; bl; bl = bl->next)
8373 {
8374 /* Special types of hardware breakpoints may use more than
8375 one register. */
8376 i += b->ops->resources_needed (bl);
8377 }
8378 }
8379
8380 return i;
8381 }
8382
8383 /* Returns the resources B would use if it were a hardware
8384 watchpoint. */
8385
8386 static int
8387 hw_watchpoint_use_count (struct breakpoint *b)
8388 {
8389 int i = 0;
8390 struct bp_location *bl;
8391
8392 if (!breakpoint_enabled (b))
8393 return 0;
8394
8395 for (bl = b->loc; bl; bl = bl->next)
8396 {
8397 /* Special types of hardware watchpoints may use more than
8398 one register. */
8399 i += b->ops->resources_needed (bl);
8400 }
8401
8402 return i;
8403 }
8404
8405 /* Returns the sum the used resources of all hardware watchpoints of
8406 type TYPE in the breakpoints list. Also returns in OTHER_TYPE_USED
8407 the sum of the used resources of all hardware watchpoints of other
8408 types _not_ TYPE. */
8409
8410 static int
8411 hw_watchpoint_used_count_others (struct breakpoint *except,
8412 enum bptype type, int *other_type_used)
8413 {
8414 int i = 0;
8415 struct breakpoint *b;
8416
8417 *other_type_used = 0;
8418 ALL_BREAKPOINTS (b)
8419 {
8420 if (b == except)
8421 continue;
8422 if (!breakpoint_enabled (b))
8423 continue;
8424
8425 if (b->type == type)
8426 i += hw_watchpoint_use_count (b);
8427 else if (is_hardware_watchpoint (b))
8428 *other_type_used = 1;
8429 }
8430
8431 return i;
8432 }
8433
8434 void
8435 disable_watchpoints_before_interactive_call_start (void)
8436 {
8437 struct breakpoint *b;
8438
8439 ALL_BREAKPOINTS (b)
8440 {
8441 if (is_watchpoint (b) && breakpoint_enabled (b))
8442 {
8443 b->enable_state = bp_call_disabled;
8444 update_global_location_list (UGLL_DONT_INSERT);
8445 }
8446 }
8447 }
8448
8449 void
8450 enable_watchpoints_after_interactive_call_stop (void)
8451 {
8452 struct breakpoint *b;
8453
8454 ALL_BREAKPOINTS (b)
8455 {
8456 if (is_watchpoint (b) && b->enable_state == bp_call_disabled)
8457 {
8458 b->enable_state = bp_enabled;
8459 update_global_location_list (UGLL_MAY_INSERT);
8460 }
8461 }
8462 }
8463
8464 void
8465 disable_breakpoints_before_startup (void)
8466 {
8467 current_program_space->executing_startup = 1;
8468 update_global_location_list (UGLL_DONT_INSERT);
8469 }
8470
8471 void
8472 enable_breakpoints_after_startup (void)
8473 {
8474 current_program_space->executing_startup = 0;
8475 breakpoint_re_set ();
8476 }
8477
8478 /* Create a new single-step breakpoint for thread THREAD, with no
8479 locations. */
8480
8481 static struct breakpoint *
8482 new_single_step_breakpoint (int thread, struct gdbarch *gdbarch)
8483 {
8484 std::unique_ptr<breakpoint> b (new breakpoint ());
8485
8486 init_raw_breakpoint_without_location (b.get (), gdbarch, bp_single_step,
8487 &momentary_breakpoint_ops);
8488
8489 b->disposition = disp_donttouch;
8490 b->frame_id = null_frame_id;
8491
8492 b->thread = thread;
8493 gdb_assert (b->thread != 0);
8494
8495 return add_to_breakpoint_chain (std::move (b));
8496 }
8497
8498 /* Set a momentary breakpoint of type TYPE at address specified by
8499 SAL. If FRAME_ID is valid, the breakpoint is restricted to that
8500 frame. */
8501
8502 breakpoint_up
8503 set_momentary_breakpoint (struct gdbarch *gdbarch, struct symtab_and_line sal,
8504 struct frame_id frame_id, enum bptype type)
8505 {
8506 struct breakpoint *b;
8507
8508 /* If FRAME_ID is valid, it should be a real frame, not an inlined or
8509 tail-called one. */
8510 gdb_assert (!frame_id_artificial_p (frame_id));
8511
8512 b = set_raw_breakpoint (gdbarch, sal, type, &momentary_breakpoint_ops);
8513 b->enable_state = bp_enabled;
8514 b->disposition = disp_donttouch;
8515 b->frame_id = frame_id;
8516
8517 /* If we're debugging a multi-threaded program, then we want
8518 momentary breakpoints to be active in only a single thread of
8519 control. */
8520 if (in_thread_list (inferior_ptid))
8521 b->thread = ptid_to_global_thread_id (inferior_ptid);
8522
8523 update_global_location_list_nothrow (UGLL_MAY_INSERT);
8524
8525 return breakpoint_up (b);
8526 }
8527
8528 /* Make a momentary breakpoint based on the master breakpoint ORIG.
8529 The new breakpoint will have type TYPE, use OPS as its
8530 breakpoint_ops, and will set enabled to LOC_ENABLED. */
8531
8532 static struct breakpoint *
8533 momentary_breakpoint_from_master (struct breakpoint *orig,
8534 enum bptype type,
8535 const struct breakpoint_ops *ops,
8536 int loc_enabled)
8537 {
8538 struct breakpoint *copy;
8539
8540 copy = set_raw_breakpoint_without_location (orig->gdbarch, type, ops);
8541 copy->loc = allocate_bp_location (copy);
8542 set_breakpoint_location_function (copy->loc, 1);
8543
8544 copy->loc->gdbarch = orig->loc->gdbarch;
8545 copy->loc->requested_address = orig->loc->requested_address;
8546 copy->loc->address = orig->loc->address;
8547 copy->loc->section = orig->loc->section;
8548 copy->loc->pspace = orig->loc->pspace;
8549 copy->loc->probe = orig->loc->probe;
8550 copy->loc->line_number = orig->loc->line_number;
8551 copy->loc->symtab = orig->loc->symtab;
8552 copy->loc->enabled = loc_enabled;
8553 copy->frame_id = orig->frame_id;
8554 copy->thread = orig->thread;
8555 copy->pspace = orig->pspace;
8556
8557 copy->enable_state = bp_enabled;
8558 copy->disposition = disp_donttouch;
8559 copy->number = internal_breakpoint_number--;
8560
8561 update_global_location_list_nothrow (UGLL_DONT_INSERT);
8562 return copy;
8563 }
8564
8565 /* Make a deep copy of momentary breakpoint ORIG. Returns NULL if
8566 ORIG is NULL. */
8567
8568 struct breakpoint *
8569 clone_momentary_breakpoint (struct breakpoint *orig)
8570 {
8571 /* If there's nothing to clone, then return nothing. */
8572 if (orig == NULL)
8573 return NULL;
8574
8575 return momentary_breakpoint_from_master (orig, orig->type, orig->ops, 0);
8576 }
8577
8578 breakpoint_up
8579 set_momentary_breakpoint_at_pc (struct gdbarch *gdbarch, CORE_ADDR pc,
8580 enum bptype type)
8581 {
8582 struct symtab_and_line sal;
8583
8584 sal = find_pc_line (pc, 0);
8585 sal.pc = pc;
8586 sal.section = find_pc_overlay (pc);
8587 sal.explicit_pc = 1;
8588
8589 return set_momentary_breakpoint (gdbarch, sal, null_frame_id, type);
8590 }
8591 \f
8592
8593 /* Tell the user we have just set a breakpoint B. */
8594
8595 static void
8596 mention (struct breakpoint *b)
8597 {
8598 b->ops->print_mention (b);
8599 current_uiout->text ("\n");
8600 }
8601 \f
8602
8603 static int bp_loc_is_permanent (struct bp_location *loc);
8604
8605 static struct bp_location *
8606 add_location_to_breakpoint (struct breakpoint *b,
8607 const struct symtab_and_line *sal)
8608 {
8609 struct bp_location *loc, **tmp;
8610 CORE_ADDR adjusted_address;
8611 struct gdbarch *loc_gdbarch = get_sal_arch (*sal);
8612
8613 if (loc_gdbarch == NULL)
8614 loc_gdbarch = b->gdbarch;
8615
8616 /* Adjust the breakpoint's address prior to allocating a location.
8617 Once we call allocate_bp_location(), that mostly uninitialized
8618 location will be placed on the location chain. Adjustment of the
8619 breakpoint may cause target_read_memory() to be called and we do
8620 not want its scan of the location chain to find a breakpoint and
8621 location that's only been partially initialized. */
8622 adjusted_address = adjust_breakpoint_address (loc_gdbarch,
8623 sal->pc, b->type);
8624
8625 /* Sort the locations by their ADDRESS. */
8626 loc = allocate_bp_location (b);
8627 for (tmp = &(b->loc); *tmp != NULL && (*tmp)->address <= adjusted_address;
8628 tmp = &((*tmp)->next))
8629 ;
8630 loc->next = *tmp;
8631 *tmp = loc;
8632
8633 loc->requested_address = sal->pc;
8634 loc->address = adjusted_address;
8635 loc->pspace = sal->pspace;
8636 loc->probe.prob = sal->prob;
8637 loc->probe.objfile = sal->objfile;
8638 gdb_assert (loc->pspace != NULL);
8639 loc->section = sal->section;
8640 loc->gdbarch = loc_gdbarch;
8641 loc->line_number = sal->line;
8642 loc->symtab = sal->symtab;
8643 loc->symbol = sal->symbol;
8644 loc->msymbol = sal->msymbol;
8645 loc->objfile = sal->objfile;
8646
8647 set_breakpoint_location_function (loc,
8648 sal->explicit_pc || sal->explicit_line);
8649
8650 /* While by definition, permanent breakpoints are already present in the
8651 code, we don't mark the location as inserted. Normally one would expect
8652 that GDB could rely on that breakpoint instruction to stop the program,
8653 thus removing the need to insert its own breakpoint, except that executing
8654 the breakpoint instruction can kill the target instead of reporting a
8655 SIGTRAP. E.g., on SPARC, when interrupts are disabled, executing the
8656 instruction resets the CPU, so QEMU 2.0.0 for SPARC correspondingly dies
8657 with "Trap 0x02 while interrupts disabled, Error state". Letting the
8658 breakpoint be inserted normally results in QEMU knowing about the GDB
8659 breakpoint, and thus trap before the breakpoint instruction is executed.
8660 (If GDB later needs to continue execution past the permanent breakpoint,
8661 it manually increments the PC, thus avoiding executing the breakpoint
8662 instruction.) */
8663 if (bp_loc_is_permanent (loc))
8664 loc->permanent = 1;
8665
8666 return loc;
8667 }
8668 \f
8669
8670 /* See breakpoint.h. */
8671
8672 int
8673 program_breakpoint_here_p (struct gdbarch *gdbarch, CORE_ADDR address)
8674 {
8675 int len;
8676 CORE_ADDR addr;
8677 const gdb_byte *bpoint;
8678 gdb_byte *target_mem;
8679
8680 addr = address;
8681 bpoint = gdbarch_breakpoint_from_pc (gdbarch, &addr, &len);
8682
8683 /* Software breakpoints unsupported? */
8684 if (bpoint == NULL)
8685 return 0;
8686
8687 target_mem = (gdb_byte *) alloca (len);
8688
8689 /* Enable the automatic memory restoration from breakpoints while
8690 we read the memory. Otherwise we could say about our temporary
8691 breakpoints they are permanent. */
8692 scoped_restore restore_memory
8693 = make_scoped_restore_show_memory_breakpoints (0);
8694
8695 if (target_read_memory (address, target_mem, len) == 0
8696 && memcmp (target_mem, bpoint, len) == 0)
8697 return 1;
8698
8699 return 0;
8700 }
8701
8702 /* Return 1 if LOC is pointing to a permanent breakpoint,
8703 return 0 otherwise. */
8704
8705 static int
8706 bp_loc_is_permanent (struct bp_location *loc)
8707 {
8708 gdb_assert (loc != NULL);
8709
8710 /* If we have a catchpoint or a watchpoint, just return 0. We should not
8711 attempt to read from the addresses the locations of these breakpoint types
8712 point to. program_breakpoint_here_p, below, will attempt to read
8713 memory. */
8714 if (!breakpoint_address_is_meaningful (loc->owner))
8715 return 0;
8716
8717 scoped_restore_current_pspace_and_thread restore_pspace_thread;
8718 switch_to_program_space_and_thread (loc->pspace);
8719 return program_breakpoint_here_p (loc->gdbarch, loc->address);
8720 }
8721
8722 /* Build a command list for the dprintf corresponding to the current
8723 settings of the dprintf style options. */
8724
8725 static void
8726 update_dprintf_command_list (struct breakpoint *b)
8727 {
8728 char *dprintf_args = b->extra_string;
8729 char *printf_line = NULL;
8730
8731 if (!dprintf_args)
8732 return;
8733
8734 dprintf_args = skip_spaces (dprintf_args);
8735
8736 /* Allow a comma, as it may have terminated a location, but don't
8737 insist on it. */
8738 if (*dprintf_args == ',')
8739 ++dprintf_args;
8740 dprintf_args = skip_spaces (dprintf_args);
8741
8742 if (*dprintf_args != '"')
8743 error (_("Bad format string, missing '\"'."));
8744
8745 if (strcmp (dprintf_style, dprintf_style_gdb) == 0)
8746 printf_line = xstrprintf ("printf %s", dprintf_args);
8747 else if (strcmp (dprintf_style, dprintf_style_call) == 0)
8748 {
8749 if (!dprintf_function)
8750 error (_("No function supplied for dprintf call"));
8751
8752 if (dprintf_channel && strlen (dprintf_channel) > 0)
8753 printf_line = xstrprintf ("call (void) %s (%s,%s)",
8754 dprintf_function,
8755 dprintf_channel,
8756 dprintf_args);
8757 else
8758 printf_line = xstrprintf ("call (void) %s (%s)",
8759 dprintf_function,
8760 dprintf_args);
8761 }
8762 else if (strcmp (dprintf_style, dprintf_style_agent) == 0)
8763 {
8764 if (target_can_run_breakpoint_commands ())
8765 printf_line = xstrprintf ("agent-printf %s", dprintf_args);
8766 else
8767 {
8768 warning (_("Target cannot run dprintf commands, falling back to GDB printf"));
8769 printf_line = xstrprintf ("printf %s", dprintf_args);
8770 }
8771 }
8772 else
8773 internal_error (__FILE__, __LINE__,
8774 _("Invalid dprintf style."));
8775
8776 gdb_assert (printf_line != NULL);
8777 /* Manufacture a printf sequence. */
8778 {
8779 struct command_line *printf_cmd_line = XNEW (struct command_line);
8780
8781 printf_cmd_line->control_type = simple_control;
8782 printf_cmd_line->body_count = 0;
8783 printf_cmd_line->body_list = NULL;
8784 printf_cmd_line->next = NULL;
8785 printf_cmd_line->line = printf_line;
8786
8787 breakpoint_set_commands (b, command_line_up (printf_cmd_line));
8788 }
8789 }
8790
8791 /* Update all dprintf commands, making their command lists reflect
8792 current style settings. */
8793
8794 static void
8795 update_dprintf_commands (const char *args, int from_tty,
8796 struct cmd_list_element *c)
8797 {
8798 struct breakpoint *b;
8799
8800 ALL_BREAKPOINTS (b)
8801 {
8802 if (b->type == bp_dprintf)
8803 update_dprintf_command_list (b);
8804 }
8805 }
8806
8807 /* Create a breakpoint with SAL as location. Use LOCATION
8808 as a description of the location, and COND_STRING
8809 as condition expression. If LOCATION is NULL then create an
8810 "address location" from the address in the SAL. */
8811
8812 static void
8813 init_breakpoint_sal (struct breakpoint *b, struct gdbarch *gdbarch,
8814 gdb::array_view<const symtab_and_line> sals,
8815 event_location_up &&location,
8816 gdb::unique_xmalloc_ptr<char> filter,
8817 gdb::unique_xmalloc_ptr<char> cond_string,
8818 gdb::unique_xmalloc_ptr<char> extra_string,
8819 enum bptype type, enum bpdisp disposition,
8820 int thread, int task, int ignore_count,
8821 const struct breakpoint_ops *ops, int from_tty,
8822 int enabled, int internal, unsigned flags,
8823 int display_canonical)
8824 {
8825 int i;
8826
8827 if (type == bp_hardware_breakpoint)
8828 {
8829 int target_resources_ok;
8830
8831 i = hw_breakpoint_used_count ();
8832 target_resources_ok =
8833 target_can_use_hardware_watchpoint (bp_hardware_breakpoint,
8834 i + 1, 0);
8835 if (target_resources_ok == 0)
8836 error (_("No hardware breakpoint support in the target."));
8837 else if (target_resources_ok < 0)
8838 error (_("Hardware breakpoints used exceeds limit."));
8839 }
8840
8841 gdb_assert (!sals.empty ());
8842
8843 for (const auto &sal : sals)
8844 {
8845 struct bp_location *loc;
8846
8847 if (from_tty)
8848 {
8849 struct gdbarch *loc_gdbarch = get_sal_arch (sal);
8850 if (!loc_gdbarch)
8851 loc_gdbarch = gdbarch;
8852
8853 describe_other_breakpoints (loc_gdbarch,
8854 sal.pspace, sal.pc, sal.section, thread);
8855 }
8856
8857 if (&sal == &sals[0])
8858 {
8859 init_raw_breakpoint (b, gdbarch, sal, type, ops);
8860 b->thread = thread;
8861 b->task = task;
8862
8863 b->cond_string = cond_string.release ();
8864 b->extra_string = extra_string.release ();
8865 b->ignore_count = ignore_count;
8866 b->enable_state = enabled ? bp_enabled : bp_disabled;
8867 b->disposition = disposition;
8868
8869 if ((flags & CREATE_BREAKPOINT_FLAGS_INSERTED) != 0)
8870 b->loc->inserted = 1;
8871
8872 if (type == bp_static_tracepoint)
8873 {
8874 struct tracepoint *t = (struct tracepoint *) b;
8875 struct static_tracepoint_marker marker;
8876
8877 if (strace_marker_p (b))
8878 {
8879 /* We already know the marker exists, otherwise, we
8880 wouldn't see a sal for it. */
8881 const char *p
8882 = &event_location_to_string (b->location.get ())[3];
8883 const char *endp;
8884
8885 p = skip_spaces (p);
8886
8887 endp = skip_to_space (p);
8888
8889 t->static_trace_marker_id.assign (p, endp - p);
8890
8891 printf_filtered (_("Probed static tracepoint "
8892 "marker \"%s\"\n"),
8893 t->static_trace_marker_id.c_str ());
8894 }
8895 else if (target_static_tracepoint_marker_at (sal.pc, &marker))
8896 {
8897 t->static_trace_marker_id = std::move (marker.str_id);
8898
8899 printf_filtered (_("Probed static tracepoint "
8900 "marker \"%s\"\n"),
8901 t->static_trace_marker_id.c_str ());
8902 }
8903 else
8904 warning (_("Couldn't determine the static "
8905 "tracepoint marker to probe"));
8906 }
8907
8908 loc = b->loc;
8909 }
8910 else
8911 {
8912 loc = add_location_to_breakpoint (b, &sal);
8913 if ((flags & CREATE_BREAKPOINT_FLAGS_INSERTED) != 0)
8914 loc->inserted = 1;
8915 }
8916
8917 if (b->cond_string)
8918 {
8919 const char *arg = b->cond_string;
8920
8921 loc->cond = parse_exp_1 (&arg, loc->address,
8922 block_for_pc (loc->address), 0);
8923 if (*arg)
8924 error (_("Garbage '%s' follows condition"), arg);
8925 }
8926
8927 /* Dynamic printf requires and uses additional arguments on the
8928 command line, otherwise it's an error. */
8929 if (type == bp_dprintf)
8930 {
8931 if (b->extra_string)
8932 update_dprintf_command_list (b);
8933 else
8934 error (_("Format string required"));
8935 }
8936 else if (b->extra_string)
8937 error (_("Garbage '%s' at end of command"), b->extra_string);
8938 }
8939
8940 b->display_canonical = display_canonical;
8941 if (location != NULL)
8942 b->location = std::move (location);
8943 else
8944 b->location = new_address_location (b->loc->address, NULL, 0);
8945 b->filter = filter.release ();
8946 }
8947
8948 static void
8949 create_breakpoint_sal (struct gdbarch *gdbarch,
8950 gdb::array_view<const symtab_and_line> sals,
8951 event_location_up &&location,
8952 gdb::unique_xmalloc_ptr<char> filter,
8953 gdb::unique_xmalloc_ptr<char> cond_string,
8954 gdb::unique_xmalloc_ptr<char> extra_string,
8955 enum bptype type, enum bpdisp disposition,
8956 int thread, int task, int ignore_count,
8957 const struct breakpoint_ops *ops, int from_tty,
8958 int enabled, int internal, unsigned flags,
8959 int display_canonical)
8960 {
8961 std::unique_ptr<breakpoint> b = new_breakpoint_from_type (type);
8962
8963 init_breakpoint_sal (b.get (), gdbarch,
8964 sals, std::move (location),
8965 std::move (filter),
8966 std::move (cond_string),
8967 std::move (extra_string),
8968 type, disposition,
8969 thread, task, ignore_count,
8970 ops, from_tty,
8971 enabled, internal, flags,
8972 display_canonical);
8973
8974 install_breakpoint (internal, std::move (b), 0);
8975 }
8976
8977 /* Add SALS.nelts breakpoints to the breakpoint table. For each
8978 SALS.sal[i] breakpoint, include the corresponding ADDR_STRING[i]
8979 value. COND_STRING, if not NULL, specified the condition to be
8980 used for all breakpoints. Essentially the only case where
8981 SALS.nelts is not 1 is when we set a breakpoint on an overloaded
8982 function. In that case, it's still not possible to specify
8983 separate conditions for different overloaded functions, so
8984 we take just a single condition string.
8985
8986 NOTE: If the function succeeds, the caller is expected to cleanup
8987 the arrays ADDR_STRING, COND_STRING, and SALS (but not the
8988 array contents). If the function fails (error() is called), the
8989 caller is expected to cleanups both the ADDR_STRING, COND_STRING,
8990 COND and SALS arrays and each of those arrays contents. */
8991
8992 static void
8993 create_breakpoints_sal (struct gdbarch *gdbarch,
8994 struct linespec_result *canonical,
8995 gdb::unique_xmalloc_ptr<char> cond_string,
8996 gdb::unique_xmalloc_ptr<char> extra_string,
8997 enum bptype type, enum bpdisp disposition,
8998 int thread, int task, int ignore_count,
8999 const struct breakpoint_ops *ops, int from_tty,
9000 int enabled, int internal, unsigned flags)
9001 {
9002 if (canonical->pre_expanded)
9003 gdb_assert (canonical->lsals.size () == 1);
9004
9005 for (const auto &lsal : canonical->lsals)
9006 {
9007 /* Note that 'location' can be NULL in the case of a plain
9008 'break', without arguments. */
9009 event_location_up location
9010 = (canonical->location != NULL
9011 ? copy_event_location (canonical->location.get ()) : NULL);
9012 gdb::unique_xmalloc_ptr<char> filter_string
9013 (lsal.canonical != NULL ? xstrdup (lsal.canonical) : NULL);
9014
9015 create_breakpoint_sal (gdbarch, lsal.sals,
9016 std::move (location),
9017 std::move (filter_string),
9018 std::move (cond_string),
9019 std::move (extra_string),
9020 type, disposition,
9021 thread, task, ignore_count, ops,
9022 from_tty, enabled, internal, flags,
9023 canonical->special_display);
9024 }
9025 }
9026
9027 /* Parse LOCATION which is assumed to be a SAL specification possibly
9028 followed by conditionals. On return, SALS contains an array of SAL
9029 addresses found. LOCATION points to the end of the SAL (for
9030 linespec locations).
9031
9032 The array and the line spec strings are allocated on the heap, it is
9033 the caller's responsibility to free them. */
9034
9035 static void
9036 parse_breakpoint_sals (const struct event_location *location,
9037 struct linespec_result *canonical)
9038 {
9039 struct symtab_and_line cursal;
9040
9041 if (event_location_type (location) == LINESPEC_LOCATION)
9042 {
9043 const char *spec = get_linespec_location (location)->spec_string;
9044
9045 if (spec == NULL)
9046 {
9047 /* The last displayed codepoint, if it's valid, is our default
9048 breakpoint address. */
9049 if (last_displayed_sal_is_valid ())
9050 {
9051 /* Set sal's pspace, pc, symtab, and line to the values
9052 corresponding to the last call to print_frame_info.
9053 Be sure to reinitialize LINE with NOTCURRENT == 0
9054 as the breakpoint line number is inappropriate otherwise.
9055 find_pc_line would adjust PC, re-set it back. */
9056 symtab_and_line sal = get_last_displayed_sal ();
9057 CORE_ADDR pc = sal.pc;
9058
9059 sal = find_pc_line (pc, 0);
9060
9061 /* "break" without arguments is equivalent to "break *PC"
9062 where PC is the last displayed codepoint's address. So
9063 make sure to set sal.explicit_pc to prevent GDB from
9064 trying to expand the list of sals to include all other
9065 instances with the same symtab and line. */
9066 sal.pc = pc;
9067 sal.explicit_pc = 1;
9068
9069 struct linespec_sals lsal;
9070 lsal.sals = {sal};
9071 lsal.canonical = NULL;
9072
9073 canonical->lsals.push_back (std::move (lsal));
9074 return;
9075 }
9076 else
9077 error (_("No default breakpoint address now."));
9078 }
9079 }
9080
9081 /* Force almost all breakpoints to be in terms of the
9082 current_source_symtab (which is decode_line_1's default).
9083 This should produce the results we want almost all of the
9084 time while leaving default_breakpoint_* alone.
9085
9086 ObjC: However, don't match an Objective-C method name which
9087 may have a '+' or '-' succeeded by a '['. */
9088 cursal = get_current_source_symtab_and_line ();
9089 if (last_displayed_sal_is_valid ())
9090 {
9091 const char *spec = NULL;
9092
9093 if (event_location_type (location) == LINESPEC_LOCATION)
9094 spec = get_linespec_location (location)->spec_string;
9095
9096 if (!cursal.symtab
9097 || (spec != NULL
9098 && strchr ("+-", spec[0]) != NULL
9099 && spec[1] != '['))
9100 {
9101 decode_line_full (location, DECODE_LINE_FUNFIRSTLINE, NULL,
9102 get_last_displayed_symtab (),
9103 get_last_displayed_line (),
9104 canonical, NULL, NULL);
9105 return;
9106 }
9107 }
9108
9109 decode_line_full (location, DECODE_LINE_FUNFIRSTLINE, NULL,
9110 cursal.symtab, cursal.line, canonical, NULL, NULL);
9111 }
9112
9113
9114 /* Convert each SAL into a real PC. Verify that the PC can be
9115 inserted as a breakpoint. If it can't throw an error. */
9116
9117 static void
9118 breakpoint_sals_to_pc (std::vector<symtab_and_line> &sals)
9119 {
9120 for (auto &sal : sals)
9121 resolve_sal_pc (&sal);
9122 }
9123
9124 /* Fast tracepoints may have restrictions on valid locations. For
9125 instance, a fast tracepoint using a jump instead of a trap will
9126 likely have to overwrite more bytes than a trap would, and so can
9127 only be placed where the instruction is longer than the jump, or a
9128 multi-instruction sequence does not have a jump into the middle of
9129 it, etc. */
9130
9131 static void
9132 check_fast_tracepoint_sals (struct gdbarch *gdbarch,
9133 gdb::array_view<const symtab_and_line> sals)
9134 {
9135 for (const auto &sal : sals)
9136 {
9137 struct gdbarch *sarch;
9138
9139 sarch = get_sal_arch (sal);
9140 /* We fall back to GDBARCH if there is no architecture
9141 associated with SAL. */
9142 if (sarch == NULL)
9143 sarch = gdbarch;
9144 std::string msg;
9145 if (!gdbarch_fast_tracepoint_valid_at (sarch, sal.pc, &msg))
9146 error (_("May not have a fast tracepoint at %s%s"),
9147 paddress (sarch, sal.pc), msg.c_str ());
9148 }
9149 }
9150
9151 /* Given TOK, a string specification of condition and thread, as
9152 accepted by the 'break' command, extract the condition
9153 string and thread number and set *COND_STRING and *THREAD.
9154 PC identifies the context at which the condition should be parsed.
9155 If no condition is found, *COND_STRING is set to NULL.
9156 If no thread is found, *THREAD is set to -1. */
9157
9158 static void
9159 find_condition_and_thread (const char *tok, CORE_ADDR pc,
9160 char **cond_string, int *thread, int *task,
9161 char **rest)
9162 {
9163 *cond_string = NULL;
9164 *thread = -1;
9165 *task = 0;
9166 *rest = NULL;
9167
9168 while (tok && *tok)
9169 {
9170 const char *end_tok;
9171 int toklen;
9172 const char *cond_start = NULL;
9173 const char *cond_end = NULL;
9174
9175 tok = skip_spaces (tok);
9176
9177 if ((*tok == '"' || *tok == ',') && rest)
9178 {
9179 *rest = savestring (tok, strlen (tok));
9180 return;
9181 }
9182
9183 end_tok = skip_to_space (tok);
9184
9185 toklen = end_tok - tok;
9186
9187 if (toklen >= 1 && strncmp (tok, "if", toklen) == 0)
9188 {
9189 tok = cond_start = end_tok + 1;
9190 parse_exp_1 (&tok, pc, block_for_pc (pc), 0);
9191 cond_end = tok;
9192 *cond_string = savestring (cond_start, cond_end - cond_start);
9193 }
9194 else if (toklen >= 1 && strncmp (tok, "thread", toklen) == 0)
9195 {
9196 const char *tmptok;
9197 struct thread_info *thr;
9198
9199 tok = end_tok + 1;
9200 thr = parse_thread_id (tok, &tmptok);
9201 if (tok == tmptok)
9202 error (_("Junk after thread keyword."));
9203 *thread = thr->global_num;
9204 tok = tmptok;
9205 }
9206 else if (toklen >= 1 && strncmp (tok, "task", toklen) == 0)
9207 {
9208 char *tmptok;
9209
9210 tok = end_tok + 1;
9211 *task = strtol (tok, &tmptok, 0);
9212 if (tok == tmptok)
9213 error (_("Junk after task keyword."));
9214 if (!valid_task_id (*task))
9215 error (_("Unknown task %d."), *task);
9216 tok = tmptok;
9217 }
9218 else if (rest)
9219 {
9220 *rest = savestring (tok, strlen (tok));
9221 return;
9222 }
9223 else
9224 error (_("Junk at end of arguments."));
9225 }
9226 }
9227
9228 /* Decode a static tracepoint marker spec. */
9229
9230 static std::vector<symtab_and_line>
9231 decode_static_tracepoint_spec (const char **arg_p)
9232 {
9233 const char *p = &(*arg_p)[3];
9234 const char *endp;
9235
9236 p = skip_spaces (p);
9237
9238 endp = skip_to_space (p);
9239
9240 std::string marker_str (p, endp - p);
9241
9242 std::vector<static_tracepoint_marker> markers
9243 = target_static_tracepoint_markers_by_strid (marker_str.c_str ());
9244 if (markers.empty ())
9245 error (_("No known static tracepoint marker named %s"),
9246 marker_str.c_str ());
9247
9248 std::vector<symtab_and_line> sals;
9249 sals.reserve (markers.size ());
9250
9251 for (const static_tracepoint_marker &marker : markers)
9252 {
9253 symtab_and_line sal = find_pc_line (marker.address, 0);
9254 sal.pc = marker.address;
9255 sals.push_back (sal);
9256 }
9257
9258 *arg_p = endp;
9259 return sals;
9260 }
9261
9262 /* See breakpoint.h. */
9263
9264 int
9265 create_breakpoint (struct gdbarch *gdbarch,
9266 const struct event_location *location,
9267 const char *cond_string,
9268 int thread, const char *extra_string,
9269 int parse_extra,
9270 int tempflag, enum bptype type_wanted,
9271 int ignore_count,
9272 enum auto_boolean pending_break_support,
9273 const struct breakpoint_ops *ops,
9274 int from_tty, int enabled, int internal,
9275 unsigned flags)
9276 {
9277 struct linespec_result canonical;
9278 struct cleanup *bkpt_chain = NULL;
9279 int pending = 0;
9280 int task = 0;
9281 int prev_bkpt_count = breakpoint_count;
9282
9283 gdb_assert (ops != NULL);
9284
9285 /* If extra_string isn't useful, set it to NULL. */
9286 if (extra_string != NULL && *extra_string == '\0')
9287 extra_string = NULL;
9288
9289 TRY
9290 {
9291 ops->create_sals_from_location (location, &canonical, type_wanted);
9292 }
9293 CATCH (e, RETURN_MASK_ERROR)
9294 {
9295 /* If caller is interested in rc value from parse, set
9296 value. */
9297 if (e.error == NOT_FOUND_ERROR)
9298 {
9299 /* If pending breakpoint support is turned off, throw
9300 error. */
9301
9302 if (pending_break_support == AUTO_BOOLEAN_FALSE)
9303 throw_exception (e);
9304
9305 exception_print (gdb_stderr, e);
9306
9307 /* If pending breakpoint support is auto query and the user
9308 selects no, then simply return the error code. */
9309 if (pending_break_support == AUTO_BOOLEAN_AUTO
9310 && !nquery (_("Make %s pending on future shared library load? "),
9311 bptype_string (type_wanted)))
9312 return 0;
9313
9314 /* At this point, either the user was queried about setting
9315 a pending breakpoint and selected yes, or pending
9316 breakpoint behavior is on and thus a pending breakpoint
9317 is defaulted on behalf of the user. */
9318 pending = 1;
9319 }
9320 else
9321 throw_exception (e);
9322 }
9323 END_CATCH
9324
9325 if (!pending && canonical.lsals.empty ())
9326 return 0;
9327
9328 /* ----------------------------- SNIP -----------------------------
9329 Anything added to the cleanup chain beyond this point is assumed
9330 to be part of a breakpoint. If the breakpoint create succeeds
9331 then the memory is not reclaimed. */
9332 bkpt_chain = make_cleanup (null_cleanup, 0);
9333
9334 /* Resolve all line numbers to PC's and verify that the addresses
9335 are ok for the target. */
9336 if (!pending)
9337 {
9338 for (auto &lsal : canonical.lsals)
9339 breakpoint_sals_to_pc (lsal.sals);
9340 }
9341
9342 /* Fast tracepoints may have additional restrictions on location. */
9343 if (!pending && type_wanted == bp_fast_tracepoint)
9344 {
9345 for (const auto &lsal : canonical.lsals)
9346 check_fast_tracepoint_sals (gdbarch, lsal.sals);
9347 }
9348
9349 /* Verify that condition can be parsed, before setting any
9350 breakpoints. Allocate a separate condition expression for each
9351 breakpoint. */
9352 if (!pending)
9353 {
9354 gdb::unique_xmalloc_ptr<char> cond_string_copy;
9355 gdb::unique_xmalloc_ptr<char> extra_string_copy;
9356
9357 if (parse_extra)
9358 {
9359 char *rest;
9360 char *cond;
9361
9362 const linespec_sals &lsal = canonical.lsals[0];
9363
9364 /* Here we only parse 'arg' to separate condition
9365 from thread number, so parsing in context of first
9366 sal is OK. When setting the breakpoint we'll
9367 re-parse it in context of each sal. */
9368
9369 find_condition_and_thread (extra_string, lsal.sals[0].pc,
9370 &cond, &thread, &task, &rest);
9371 cond_string_copy.reset (cond);
9372 extra_string_copy.reset (rest);
9373 }
9374 else
9375 {
9376 if (type_wanted != bp_dprintf
9377 && extra_string != NULL && *extra_string != '\0')
9378 error (_("Garbage '%s' at end of location"), extra_string);
9379
9380 /* Create a private copy of condition string. */
9381 if (cond_string)
9382 cond_string_copy.reset (xstrdup (cond_string));
9383 /* Create a private copy of any extra string. */
9384 if (extra_string)
9385 extra_string_copy.reset (xstrdup (extra_string));
9386 }
9387
9388 ops->create_breakpoints_sal (gdbarch, &canonical,
9389 std::move (cond_string_copy),
9390 std::move (extra_string_copy),
9391 type_wanted,
9392 tempflag ? disp_del : disp_donttouch,
9393 thread, task, ignore_count, ops,
9394 from_tty, enabled, internal, flags);
9395 }
9396 else
9397 {
9398 std::unique_ptr <breakpoint> b = new_breakpoint_from_type (type_wanted);
9399
9400 init_raw_breakpoint_without_location (b.get (), gdbarch, type_wanted, ops);
9401 b->location = copy_event_location (location);
9402
9403 if (parse_extra)
9404 b->cond_string = NULL;
9405 else
9406 {
9407 /* Create a private copy of condition string. */
9408 b->cond_string = cond_string != NULL ? xstrdup (cond_string) : NULL;
9409 b->thread = thread;
9410 }
9411
9412 /* Create a private copy of any extra string. */
9413 b->extra_string = extra_string != NULL ? xstrdup (extra_string) : NULL;
9414 b->ignore_count = ignore_count;
9415 b->disposition = tempflag ? disp_del : disp_donttouch;
9416 b->condition_not_parsed = 1;
9417 b->enable_state = enabled ? bp_enabled : bp_disabled;
9418 if ((type_wanted != bp_breakpoint
9419 && type_wanted != bp_hardware_breakpoint) || thread != -1)
9420 b->pspace = current_program_space;
9421
9422 install_breakpoint (internal, std::move (b), 0);
9423 }
9424
9425 if (canonical.lsals.size () > 1)
9426 {
9427 warning (_("Multiple breakpoints were set.\nUse the "
9428 "\"delete\" command to delete unwanted breakpoints."));
9429 prev_breakpoint_count = prev_bkpt_count;
9430 }
9431
9432 /* That's it. Discard the cleanups for data inserted into the
9433 breakpoint. */
9434 discard_cleanups (bkpt_chain);
9435
9436 /* error call may happen here - have BKPT_CHAIN already discarded. */
9437 update_global_location_list (UGLL_MAY_INSERT);
9438
9439 return 1;
9440 }
9441
9442 /* Set a breakpoint.
9443 ARG is a string describing breakpoint address,
9444 condition, and thread.
9445 FLAG specifies if a breakpoint is hardware on,
9446 and if breakpoint is temporary, using BP_HARDWARE_FLAG
9447 and BP_TEMPFLAG. */
9448
9449 static void
9450 break_command_1 (const char *arg, int flag, int from_tty)
9451 {
9452 int tempflag = flag & BP_TEMPFLAG;
9453 enum bptype type_wanted = (flag & BP_HARDWAREFLAG
9454 ? bp_hardware_breakpoint
9455 : bp_breakpoint);
9456 struct breakpoint_ops *ops;
9457
9458 event_location_up location = string_to_event_location (&arg, current_language);
9459
9460 /* Matching breakpoints on probes. */
9461 if (location != NULL
9462 && event_location_type (location.get ()) == PROBE_LOCATION)
9463 ops = &bkpt_probe_breakpoint_ops;
9464 else
9465 ops = &bkpt_breakpoint_ops;
9466
9467 create_breakpoint (get_current_arch (),
9468 location.get (),
9469 NULL, 0, arg, 1 /* parse arg */,
9470 tempflag, type_wanted,
9471 0 /* Ignore count */,
9472 pending_break_support,
9473 ops,
9474 from_tty,
9475 1 /* enabled */,
9476 0 /* internal */,
9477 0);
9478 }
9479
9480 /* Helper function for break_command_1 and disassemble_command. */
9481
9482 void
9483 resolve_sal_pc (struct symtab_and_line *sal)
9484 {
9485 CORE_ADDR pc;
9486
9487 if (sal->pc == 0 && sal->symtab != NULL)
9488 {
9489 if (!find_line_pc (sal->symtab, sal->line, &pc))
9490 error (_("No line %d in file \"%s\"."),
9491 sal->line, symtab_to_filename_for_display (sal->symtab));
9492 sal->pc = pc;
9493
9494 /* If this SAL corresponds to a breakpoint inserted using a line
9495 number, then skip the function prologue if necessary. */
9496 if (sal->explicit_line)
9497 skip_prologue_sal (sal);
9498 }
9499
9500 if (sal->section == 0 && sal->symtab != NULL)
9501 {
9502 const struct blockvector *bv;
9503 const struct block *b;
9504 struct symbol *sym;
9505
9506 bv = blockvector_for_pc_sect (sal->pc, 0, &b,
9507 SYMTAB_COMPUNIT (sal->symtab));
9508 if (bv != NULL)
9509 {
9510 sym = block_linkage_function (b);
9511 if (sym != NULL)
9512 {
9513 fixup_symbol_section (sym, SYMTAB_OBJFILE (sal->symtab));
9514 sal->section = SYMBOL_OBJ_SECTION (SYMTAB_OBJFILE (sal->symtab),
9515 sym);
9516 }
9517 else
9518 {
9519 /* It really is worthwhile to have the section, so we'll
9520 just have to look harder. This case can be executed
9521 if we have line numbers but no functions (as can
9522 happen in assembly source). */
9523
9524 scoped_restore_current_pspace_and_thread restore_pspace_thread;
9525 switch_to_program_space_and_thread (sal->pspace);
9526
9527 bound_minimal_symbol msym = lookup_minimal_symbol_by_pc (sal->pc);
9528 if (msym.minsym)
9529 sal->section = MSYMBOL_OBJ_SECTION (msym.objfile, msym.minsym);
9530 }
9531 }
9532 }
9533 }
9534
9535 void
9536 break_command (const char *arg, int from_tty)
9537 {
9538 break_command_1 (arg, 0, from_tty);
9539 }
9540
9541 void
9542 tbreak_command (const char *arg, int from_tty)
9543 {
9544 break_command_1 (arg, BP_TEMPFLAG, from_tty);
9545 }
9546
9547 static void
9548 hbreak_command (const char *arg, int from_tty)
9549 {
9550 break_command_1 (arg, BP_HARDWAREFLAG, from_tty);
9551 }
9552
9553 static void
9554 thbreak_command (const char *arg, int from_tty)
9555 {
9556 break_command_1 (arg, (BP_TEMPFLAG | BP_HARDWAREFLAG), from_tty);
9557 }
9558
9559 static void
9560 stop_command (const char *arg, int from_tty)
9561 {
9562 printf_filtered (_("Specify the type of breakpoint to set.\n\
9563 Usage: stop in <function | address>\n\
9564 stop at <line>\n"));
9565 }
9566
9567 static void
9568 stopin_command (const char *arg, int from_tty)
9569 {
9570 int badInput = 0;
9571
9572 if (arg == (char *) NULL)
9573 badInput = 1;
9574 else if (*arg != '*')
9575 {
9576 const char *argptr = arg;
9577 int hasColon = 0;
9578
9579 /* Look for a ':'. If this is a line number specification, then
9580 say it is bad, otherwise, it should be an address or
9581 function/method name. */
9582 while (*argptr && !hasColon)
9583 {
9584 hasColon = (*argptr == ':');
9585 argptr++;
9586 }
9587
9588 if (hasColon)
9589 badInput = (*argptr != ':'); /* Not a class::method */
9590 else
9591 badInput = isdigit (*arg); /* a simple line number */
9592 }
9593
9594 if (badInput)
9595 printf_filtered (_("Usage: stop in <function | address>\n"));
9596 else
9597 break_command_1 (arg, 0, from_tty);
9598 }
9599
9600 static void
9601 stopat_command (const char *arg, int from_tty)
9602 {
9603 int badInput = 0;
9604
9605 if (arg == (char *) NULL || *arg == '*') /* no line number */
9606 badInput = 1;
9607 else
9608 {
9609 const char *argptr = arg;
9610 int hasColon = 0;
9611
9612 /* Look for a ':'. If there is a '::' then get out, otherwise
9613 it is probably a line number. */
9614 while (*argptr && !hasColon)
9615 {
9616 hasColon = (*argptr == ':');
9617 argptr++;
9618 }
9619
9620 if (hasColon)
9621 badInput = (*argptr == ':'); /* we have class::method */
9622 else
9623 badInput = !isdigit (*arg); /* not a line number */
9624 }
9625
9626 if (badInput)
9627 printf_filtered (_("Usage: stop at <line>\n"));
9628 else
9629 break_command_1 (arg, 0, from_tty);
9630 }
9631
9632 /* The dynamic printf command is mostly like a regular breakpoint, but
9633 with a prewired command list consisting of a single output command,
9634 built from extra arguments supplied on the dprintf command
9635 line. */
9636
9637 static void
9638 dprintf_command (const char *arg, int from_tty)
9639 {
9640 event_location_up location = string_to_event_location (&arg, current_language);
9641
9642 /* If non-NULL, ARG should have been advanced past the location;
9643 the next character must be ','. */
9644 if (arg != NULL)
9645 {
9646 if (arg[0] != ',' || arg[1] == '\0')
9647 error (_("Format string required"));
9648 else
9649 {
9650 /* Skip the comma. */
9651 ++arg;
9652 }
9653 }
9654
9655 create_breakpoint (get_current_arch (),
9656 location.get (),
9657 NULL, 0, arg, 1 /* parse arg */,
9658 0, bp_dprintf,
9659 0 /* Ignore count */,
9660 pending_break_support,
9661 &dprintf_breakpoint_ops,
9662 from_tty,
9663 1 /* enabled */,
9664 0 /* internal */,
9665 0);
9666 }
9667
9668 static void
9669 agent_printf_command (const char *arg, int from_tty)
9670 {
9671 error (_("May only run agent-printf on the target"));
9672 }
9673
9674 /* Implement the "breakpoint_hit" breakpoint_ops method for
9675 ranged breakpoints. */
9676
9677 static int
9678 breakpoint_hit_ranged_breakpoint (const struct bp_location *bl,
9679 const address_space *aspace,
9680 CORE_ADDR bp_addr,
9681 const struct target_waitstatus *ws)
9682 {
9683 if (ws->kind != TARGET_WAITKIND_STOPPED
9684 || ws->value.sig != GDB_SIGNAL_TRAP)
9685 return 0;
9686
9687 return breakpoint_address_match_range (bl->pspace->aspace, bl->address,
9688 bl->length, aspace, bp_addr);
9689 }
9690
9691 /* Implement the "resources_needed" breakpoint_ops method for
9692 ranged breakpoints. */
9693
9694 static int
9695 resources_needed_ranged_breakpoint (const struct bp_location *bl)
9696 {
9697 return target_ranged_break_num_registers ();
9698 }
9699
9700 /* Implement the "print_it" breakpoint_ops method for
9701 ranged breakpoints. */
9702
9703 static enum print_stop_action
9704 print_it_ranged_breakpoint (bpstat bs)
9705 {
9706 struct breakpoint *b = bs->breakpoint_at;
9707 struct bp_location *bl = b->loc;
9708 struct ui_out *uiout = current_uiout;
9709
9710 gdb_assert (b->type == bp_hardware_breakpoint);
9711
9712 /* Ranged breakpoints have only one location. */
9713 gdb_assert (bl && bl->next == NULL);
9714
9715 annotate_breakpoint (b->number);
9716
9717 maybe_print_thread_hit_breakpoint (uiout);
9718
9719 if (b->disposition == disp_del)
9720 uiout->text ("Temporary ranged breakpoint ");
9721 else
9722 uiout->text ("Ranged breakpoint ");
9723 if (uiout->is_mi_like_p ())
9724 {
9725 uiout->field_string ("reason",
9726 async_reason_lookup (EXEC_ASYNC_BREAKPOINT_HIT));
9727 uiout->field_string ("disp", bpdisp_text (b->disposition));
9728 }
9729 uiout->field_int ("bkptno", b->number);
9730 uiout->text (", ");
9731
9732 return PRINT_SRC_AND_LOC;
9733 }
9734
9735 /* Implement the "print_one" breakpoint_ops method for
9736 ranged breakpoints. */
9737
9738 static void
9739 print_one_ranged_breakpoint (struct breakpoint *b,
9740 struct bp_location **last_loc)
9741 {
9742 struct bp_location *bl = b->loc;
9743 struct value_print_options opts;
9744 struct ui_out *uiout = current_uiout;
9745
9746 /* Ranged breakpoints have only one location. */
9747 gdb_assert (bl && bl->next == NULL);
9748
9749 get_user_print_options (&opts);
9750
9751 if (opts.addressprint)
9752 /* We don't print the address range here, it will be printed later
9753 by print_one_detail_ranged_breakpoint. */
9754 uiout->field_skip ("addr");
9755 annotate_field (5);
9756 print_breakpoint_location (b, bl);
9757 *last_loc = bl;
9758 }
9759
9760 /* Implement the "print_one_detail" breakpoint_ops method for
9761 ranged breakpoints. */
9762
9763 static void
9764 print_one_detail_ranged_breakpoint (const struct breakpoint *b,
9765 struct ui_out *uiout)
9766 {
9767 CORE_ADDR address_start, address_end;
9768 struct bp_location *bl = b->loc;
9769 string_file stb;
9770
9771 gdb_assert (bl);
9772
9773 address_start = bl->address;
9774 address_end = address_start + bl->length - 1;
9775
9776 uiout->text ("\taddress range: ");
9777 stb.printf ("[%s, %s]",
9778 print_core_address (bl->gdbarch, address_start),
9779 print_core_address (bl->gdbarch, address_end));
9780 uiout->field_stream ("addr", stb);
9781 uiout->text ("\n");
9782 }
9783
9784 /* Implement the "print_mention" breakpoint_ops method for
9785 ranged breakpoints. */
9786
9787 static void
9788 print_mention_ranged_breakpoint (struct breakpoint *b)
9789 {
9790 struct bp_location *bl = b->loc;
9791 struct ui_out *uiout = current_uiout;
9792
9793 gdb_assert (bl);
9794 gdb_assert (b->type == bp_hardware_breakpoint);
9795
9796 uiout->message (_("Hardware assisted ranged breakpoint %d from %s to %s."),
9797 b->number, paddress (bl->gdbarch, bl->address),
9798 paddress (bl->gdbarch, bl->address + bl->length - 1));
9799 }
9800
9801 /* Implement the "print_recreate" breakpoint_ops method for
9802 ranged breakpoints. */
9803
9804 static void
9805 print_recreate_ranged_breakpoint (struct breakpoint *b, struct ui_file *fp)
9806 {
9807 fprintf_unfiltered (fp, "break-range %s, %s",
9808 event_location_to_string (b->location.get ()),
9809 event_location_to_string (b->location_range_end.get ()));
9810 print_recreate_thread (b, fp);
9811 }
9812
9813 /* The breakpoint_ops structure to be used in ranged breakpoints. */
9814
9815 static struct breakpoint_ops ranged_breakpoint_ops;
9816
9817 /* Find the address where the end of the breakpoint range should be
9818 placed, given the SAL of the end of the range. This is so that if
9819 the user provides a line number, the end of the range is set to the
9820 last instruction of the given line. */
9821
9822 static CORE_ADDR
9823 find_breakpoint_range_end (struct symtab_and_line sal)
9824 {
9825 CORE_ADDR end;
9826
9827 /* If the user provided a PC value, use it. Otherwise,
9828 find the address of the end of the given location. */
9829 if (sal.explicit_pc)
9830 end = sal.pc;
9831 else
9832 {
9833 int ret;
9834 CORE_ADDR start;
9835
9836 ret = find_line_pc_range (sal, &start, &end);
9837 if (!ret)
9838 error (_("Could not find location of the end of the range."));
9839
9840 /* find_line_pc_range returns the start of the next line. */
9841 end--;
9842 }
9843
9844 return end;
9845 }
9846
9847 /* Implement the "break-range" CLI command. */
9848
9849 static void
9850 break_range_command (const char *arg, int from_tty)
9851 {
9852 const char *arg_start;
9853 struct linespec_result canonical_start, canonical_end;
9854 int bp_count, can_use_bp, length;
9855 CORE_ADDR end;
9856 struct breakpoint *b;
9857
9858 /* We don't support software ranged breakpoints. */
9859 if (target_ranged_break_num_registers () < 0)
9860 error (_("This target does not support hardware ranged breakpoints."));
9861
9862 bp_count = hw_breakpoint_used_count ();
9863 bp_count += target_ranged_break_num_registers ();
9864 can_use_bp = target_can_use_hardware_watchpoint (bp_hardware_breakpoint,
9865 bp_count, 0);
9866 if (can_use_bp < 0)
9867 error (_("Hardware breakpoints used exceeds limit."));
9868
9869 arg = skip_spaces (arg);
9870 if (arg == NULL || arg[0] == '\0')
9871 error(_("No address range specified."));
9872
9873 arg_start = arg;
9874 event_location_up start_location = string_to_event_location (&arg,
9875 current_language);
9876 parse_breakpoint_sals (start_location.get (), &canonical_start);
9877
9878 if (arg[0] != ',')
9879 error (_("Too few arguments."));
9880 else if (canonical_start.lsals.empty ())
9881 error (_("Could not find location of the beginning of the range."));
9882
9883 const linespec_sals &lsal_start = canonical_start.lsals[0];
9884
9885 if (canonical_start.lsals.size () > 1
9886 || lsal_start.sals.size () != 1)
9887 error (_("Cannot create a ranged breakpoint with multiple locations."));
9888
9889 const symtab_and_line &sal_start = lsal_start.sals[0];
9890 std::string addr_string_start (arg_start, arg - arg_start);
9891
9892 arg++; /* Skip the comma. */
9893 arg = skip_spaces (arg);
9894
9895 /* Parse the end location. */
9896
9897 arg_start = arg;
9898
9899 /* We call decode_line_full directly here instead of using
9900 parse_breakpoint_sals because we need to specify the start location's
9901 symtab and line as the default symtab and line for the end of the
9902 range. This makes it possible to have ranges like "foo.c:27, +14",
9903 where +14 means 14 lines from the start location. */
9904 event_location_up end_location = string_to_event_location (&arg,
9905 current_language);
9906 decode_line_full (end_location.get (), DECODE_LINE_FUNFIRSTLINE, NULL,
9907 sal_start.symtab, sal_start.line,
9908 &canonical_end, NULL, NULL);
9909
9910 if (canonical_end.lsals.empty ())
9911 error (_("Could not find location of the end of the range."));
9912
9913 const linespec_sals &lsal_end = canonical_end.lsals[0];
9914 if (canonical_end.lsals.size () > 1
9915 || lsal_end.sals.size () != 1)
9916 error (_("Cannot create a ranged breakpoint with multiple locations."));
9917
9918 const symtab_and_line &sal_end = lsal_end.sals[0];
9919
9920 end = find_breakpoint_range_end (sal_end);
9921 if (sal_start.pc > end)
9922 error (_("Invalid address range, end precedes start."));
9923
9924 length = end - sal_start.pc + 1;
9925 if (length < 0)
9926 /* Length overflowed. */
9927 error (_("Address range too large."));
9928 else if (length == 1)
9929 {
9930 /* This range is simple enough to be handled by
9931 the `hbreak' command. */
9932 hbreak_command (&addr_string_start[0], 1);
9933
9934 return;
9935 }
9936
9937 /* Now set up the breakpoint. */
9938 b = set_raw_breakpoint (get_current_arch (), sal_start,
9939 bp_hardware_breakpoint, &ranged_breakpoint_ops);
9940 set_breakpoint_count (breakpoint_count + 1);
9941 b->number = breakpoint_count;
9942 b->disposition = disp_donttouch;
9943 b->location = std::move (start_location);
9944 b->location_range_end = std::move (end_location);
9945 b->loc->length = length;
9946
9947 mention (b);
9948 gdb::observers::breakpoint_created.notify (b);
9949 update_global_location_list (UGLL_MAY_INSERT);
9950 }
9951
9952 /* Return non-zero if EXP is verified as constant. Returned zero
9953 means EXP is variable. Also the constant detection may fail for
9954 some constant expressions and in such case still falsely return
9955 zero. */
9956
9957 static int
9958 watchpoint_exp_is_const (const struct expression *exp)
9959 {
9960 int i = exp->nelts;
9961
9962 while (i > 0)
9963 {
9964 int oplenp, argsp;
9965
9966 /* We are only interested in the descriptor of each element. */
9967 operator_length (exp, i, &oplenp, &argsp);
9968 i -= oplenp;
9969
9970 switch (exp->elts[i].opcode)
9971 {
9972 case BINOP_ADD:
9973 case BINOP_SUB:
9974 case BINOP_MUL:
9975 case BINOP_DIV:
9976 case BINOP_REM:
9977 case BINOP_MOD:
9978 case BINOP_LSH:
9979 case BINOP_RSH:
9980 case BINOP_LOGICAL_AND:
9981 case BINOP_LOGICAL_OR:
9982 case BINOP_BITWISE_AND:
9983 case BINOP_BITWISE_IOR:
9984 case BINOP_BITWISE_XOR:
9985 case BINOP_EQUAL:
9986 case BINOP_NOTEQUAL:
9987 case BINOP_LESS:
9988 case BINOP_GTR:
9989 case BINOP_LEQ:
9990 case BINOP_GEQ:
9991 case BINOP_REPEAT:
9992 case BINOP_COMMA:
9993 case BINOP_EXP:
9994 case BINOP_MIN:
9995 case BINOP_MAX:
9996 case BINOP_INTDIV:
9997 case BINOP_CONCAT:
9998 case TERNOP_COND:
9999 case TERNOP_SLICE:
10000
10001 case OP_LONG:
10002 case OP_FLOAT:
10003 case OP_LAST:
10004 case OP_COMPLEX:
10005 case OP_STRING:
10006 case OP_ARRAY:
10007 case OP_TYPE:
10008 case OP_TYPEOF:
10009 case OP_DECLTYPE:
10010 case OP_TYPEID:
10011 case OP_NAME:
10012 case OP_OBJC_NSSTRING:
10013
10014 case UNOP_NEG:
10015 case UNOP_LOGICAL_NOT:
10016 case UNOP_COMPLEMENT:
10017 case UNOP_ADDR:
10018 case UNOP_HIGH:
10019 case UNOP_CAST:
10020
10021 case UNOP_CAST_TYPE:
10022 case UNOP_REINTERPRET_CAST:
10023 case UNOP_DYNAMIC_CAST:
10024 /* Unary, binary and ternary operators: We have to check
10025 their operands. If they are constant, then so is the
10026 result of that operation. For instance, if A and B are
10027 determined to be constants, then so is "A + B".
10028
10029 UNOP_IND is one exception to the rule above, because the
10030 value of *ADDR is not necessarily a constant, even when
10031 ADDR is. */
10032 break;
10033
10034 case OP_VAR_VALUE:
10035 /* Check whether the associated symbol is a constant.
10036
10037 We use SYMBOL_CLASS rather than TYPE_CONST because it's
10038 possible that a buggy compiler could mark a variable as
10039 constant even when it is not, and TYPE_CONST would return
10040 true in this case, while SYMBOL_CLASS wouldn't.
10041
10042 We also have to check for function symbols because they
10043 are always constant. */
10044 {
10045 struct symbol *s = exp->elts[i + 2].symbol;
10046
10047 if (SYMBOL_CLASS (s) != LOC_BLOCK
10048 && SYMBOL_CLASS (s) != LOC_CONST
10049 && SYMBOL_CLASS (s) != LOC_CONST_BYTES)
10050 return 0;
10051 break;
10052 }
10053
10054 /* The default action is to return 0 because we are using
10055 the optimistic approach here: If we don't know something,
10056 then it is not a constant. */
10057 default:
10058 return 0;
10059 }
10060 }
10061
10062 return 1;
10063 }
10064
10065 /* Watchpoint destructor. */
10066
10067 watchpoint::~watchpoint ()
10068 {
10069 xfree (this->exp_string);
10070 xfree (this->exp_string_reparse);
10071 }
10072
10073 /* Implement the "re_set" breakpoint_ops method for watchpoints. */
10074
10075 static void
10076 re_set_watchpoint (struct breakpoint *b)
10077 {
10078 struct watchpoint *w = (struct watchpoint *) b;
10079
10080 /* Watchpoint can be either on expression using entirely global
10081 variables, or it can be on local variables.
10082
10083 Watchpoints of the first kind are never auto-deleted, and even
10084 persist across program restarts. Since they can use variables
10085 from shared libraries, we need to reparse expression as libraries
10086 are loaded and unloaded.
10087
10088 Watchpoints on local variables can also change meaning as result
10089 of solib event. For example, if a watchpoint uses both a local
10090 and a global variables in expression, it's a local watchpoint,
10091 but unloading of a shared library will make the expression
10092 invalid. This is not a very common use case, but we still
10093 re-evaluate expression, to avoid surprises to the user.
10094
10095 Note that for local watchpoints, we re-evaluate it only if
10096 watchpoints frame id is still valid. If it's not, it means the
10097 watchpoint is out of scope and will be deleted soon. In fact,
10098 I'm not sure we'll ever be called in this case.
10099
10100 If a local watchpoint's frame id is still valid, then
10101 w->exp_valid_block is likewise valid, and we can safely use it.
10102
10103 Don't do anything about disabled watchpoints, since they will be
10104 reevaluated again when enabled. */
10105 update_watchpoint (w, 1 /* reparse */);
10106 }
10107
10108 /* Implement the "insert" breakpoint_ops method for hardware watchpoints. */
10109
10110 static int
10111 insert_watchpoint (struct bp_location *bl)
10112 {
10113 struct watchpoint *w = (struct watchpoint *) bl->owner;
10114 int length = w->exact ? 1 : bl->length;
10115
10116 return target_insert_watchpoint (bl->address, length, bl->watchpoint_type,
10117 w->cond_exp.get ());
10118 }
10119
10120 /* Implement the "remove" breakpoint_ops method for hardware watchpoints. */
10121
10122 static int
10123 remove_watchpoint (struct bp_location *bl, enum remove_bp_reason reason)
10124 {
10125 struct watchpoint *w = (struct watchpoint *) bl->owner;
10126 int length = w->exact ? 1 : bl->length;
10127
10128 return target_remove_watchpoint (bl->address, length, bl->watchpoint_type,
10129 w->cond_exp.get ());
10130 }
10131
10132 static int
10133 breakpoint_hit_watchpoint (const struct bp_location *bl,
10134 const address_space *aspace, CORE_ADDR bp_addr,
10135 const struct target_waitstatus *ws)
10136 {
10137 struct breakpoint *b = bl->owner;
10138 struct watchpoint *w = (struct watchpoint *) b;
10139
10140 /* Continuable hardware watchpoints are treated as non-existent if the
10141 reason we stopped wasn't a hardware watchpoint (we didn't stop on
10142 some data address). Otherwise gdb won't stop on a break instruction
10143 in the code (not from a breakpoint) when a hardware watchpoint has
10144 been defined. Also skip watchpoints which we know did not trigger
10145 (did not match the data address). */
10146 if (is_hardware_watchpoint (b)
10147 && w->watchpoint_triggered == watch_triggered_no)
10148 return 0;
10149
10150 return 1;
10151 }
10152
10153 static void
10154 check_status_watchpoint (bpstat bs)
10155 {
10156 gdb_assert (is_watchpoint (bs->breakpoint_at));
10157
10158 bpstat_check_watchpoint (bs);
10159 }
10160
10161 /* Implement the "resources_needed" breakpoint_ops method for
10162 hardware watchpoints. */
10163
10164 static int
10165 resources_needed_watchpoint (const struct bp_location *bl)
10166 {
10167 struct watchpoint *w = (struct watchpoint *) bl->owner;
10168 int length = w->exact? 1 : bl->length;
10169
10170 return target_region_ok_for_hw_watchpoint (bl->address, length);
10171 }
10172
10173 /* Implement the "works_in_software_mode" breakpoint_ops method for
10174 hardware watchpoints. */
10175
10176 static int
10177 works_in_software_mode_watchpoint (const struct breakpoint *b)
10178 {
10179 /* Read and access watchpoints only work with hardware support. */
10180 return b->type == bp_watchpoint || b->type == bp_hardware_watchpoint;
10181 }
10182
10183 static enum print_stop_action
10184 print_it_watchpoint (bpstat bs)
10185 {
10186 struct breakpoint *b;
10187 enum print_stop_action result;
10188 struct watchpoint *w;
10189 struct ui_out *uiout = current_uiout;
10190
10191 gdb_assert (bs->bp_location_at != NULL);
10192
10193 b = bs->breakpoint_at;
10194 w = (struct watchpoint *) b;
10195
10196 annotate_watchpoint (b->number);
10197 maybe_print_thread_hit_breakpoint (uiout);
10198
10199 string_file stb;
10200
10201 gdb::optional<ui_out_emit_tuple> tuple_emitter;
10202 switch (b->type)
10203 {
10204 case bp_watchpoint:
10205 case bp_hardware_watchpoint:
10206 if (uiout->is_mi_like_p ())
10207 uiout->field_string
10208 ("reason", async_reason_lookup (EXEC_ASYNC_WATCHPOINT_TRIGGER));
10209 mention (b);
10210 tuple_emitter.emplace (uiout, "value");
10211 uiout->text ("\nOld value = ");
10212 watchpoint_value_print (bs->old_val.get (), &stb);
10213 uiout->field_stream ("old", stb);
10214 uiout->text ("\nNew value = ");
10215 watchpoint_value_print (w->val.get (), &stb);
10216 uiout->field_stream ("new", stb);
10217 uiout->text ("\n");
10218 /* More than one watchpoint may have been triggered. */
10219 result = PRINT_UNKNOWN;
10220 break;
10221
10222 case bp_read_watchpoint:
10223 if (uiout->is_mi_like_p ())
10224 uiout->field_string
10225 ("reason", async_reason_lookup (EXEC_ASYNC_READ_WATCHPOINT_TRIGGER));
10226 mention (b);
10227 tuple_emitter.emplace (uiout, "value");
10228 uiout->text ("\nValue = ");
10229 watchpoint_value_print (w->val.get (), &stb);
10230 uiout->field_stream ("value", stb);
10231 uiout->text ("\n");
10232 result = PRINT_UNKNOWN;
10233 break;
10234
10235 case bp_access_watchpoint:
10236 if (bs->old_val != NULL)
10237 {
10238 if (uiout->is_mi_like_p ())
10239 uiout->field_string
10240 ("reason",
10241 async_reason_lookup (EXEC_ASYNC_ACCESS_WATCHPOINT_TRIGGER));
10242 mention (b);
10243 tuple_emitter.emplace (uiout, "value");
10244 uiout->text ("\nOld value = ");
10245 watchpoint_value_print (bs->old_val.get (), &stb);
10246 uiout->field_stream ("old", stb);
10247 uiout->text ("\nNew value = ");
10248 }
10249 else
10250 {
10251 mention (b);
10252 if (uiout->is_mi_like_p ())
10253 uiout->field_string
10254 ("reason",
10255 async_reason_lookup (EXEC_ASYNC_ACCESS_WATCHPOINT_TRIGGER));
10256 tuple_emitter.emplace (uiout, "value");
10257 uiout->text ("\nValue = ");
10258 }
10259 watchpoint_value_print (w->val.get (), &stb);
10260 uiout->field_stream ("new", stb);
10261 uiout->text ("\n");
10262 result = PRINT_UNKNOWN;
10263 break;
10264 default:
10265 result = PRINT_UNKNOWN;
10266 }
10267
10268 return result;
10269 }
10270
10271 /* Implement the "print_mention" breakpoint_ops method for hardware
10272 watchpoints. */
10273
10274 static void
10275 print_mention_watchpoint (struct breakpoint *b)
10276 {
10277 struct watchpoint *w = (struct watchpoint *) b;
10278 struct ui_out *uiout = current_uiout;
10279 const char *tuple_name;
10280
10281 switch (b->type)
10282 {
10283 case bp_watchpoint:
10284 uiout->text ("Watchpoint ");
10285 tuple_name = "wpt";
10286 break;
10287 case bp_hardware_watchpoint:
10288 uiout->text ("Hardware watchpoint ");
10289 tuple_name = "wpt";
10290 break;
10291 case bp_read_watchpoint:
10292 uiout->text ("Hardware read watchpoint ");
10293 tuple_name = "hw-rwpt";
10294 break;
10295 case bp_access_watchpoint:
10296 uiout->text ("Hardware access (read/write) watchpoint ");
10297 tuple_name = "hw-awpt";
10298 break;
10299 default:
10300 internal_error (__FILE__, __LINE__,
10301 _("Invalid hardware watchpoint type."));
10302 }
10303
10304 ui_out_emit_tuple tuple_emitter (uiout, tuple_name);
10305 uiout->field_int ("number", b->number);
10306 uiout->text (": ");
10307 uiout->field_string ("exp", w->exp_string);
10308 }
10309
10310 /* Implement the "print_recreate" breakpoint_ops method for
10311 watchpoints. */
10312
10313 static void
10314 print_recreate_watchpoint (struct breakpoint *b, struct ui_file *fp)
10315 {
10316 struct watchpoint *w = (struct watchpoint *) b;
10317
10318 switch (b->type)
10319 {
10320 case bp_watchpoint:
10321 case bp_hardware_watchpoint:
10322 fprintf_unfiltered (fp, "watch");
10323 break;
10324 case bp_read_watchpoint:
10325 fprintf_unfiltered (fp, "rwatch");
10326 break;
10327 case bp_access_watchpoint:
10328 fprintf_unfiltered (fp, "awatch");
10329 break;
10330 default:
10331 internal_error (__FILE__, __LINE__,
10332 _("Invalid watchpoint type."));
10333 }
10334
10335 fprintf_unfiltered (fp, " %s", w->exp_string);
10336 print_recreate_thread (b, fp);
10337 }
10338
10339 /* Implement the "explains_signal" breakpoint_ops method for
10340 watchpoints. */
10341
10342 static int
10343 explains_signal_watchpoint (struct breakpoint *b, enum gdb_signal sig)
10344 {
10345 /* A software watchpoint cannot cause a signal other than
10346 GDB_SIGNAL_TRAP. */
10347 if (b->type == bp_watchpoint && sig != GDB_SIGNAL_TRAP)
10348 return 0;
10349
10350 return 1;
10351 }
10352
10353 /* The breakpoint_ops structure to be used in hardware watchpoints. */
10354
10355 static struct breakpoint_ops watchpoint_breakpoint_ops;
10356
10357 /* Implement the "insert" breakpoint_ops method for
10358 masked hardware watchpoints. */
10359
10360 static int
10361 insert_masked_watchpoint (struct bp_location *bl)
10362 {
10363 struct watchpoint *w = (struct watchpoint *) bl->owner;
10364
10365 return target_insert_mask_watchpoint (bl->address, w->hw_wp_mask,
10366 bl->watchpoint_type);
10367 }
10368
10369 /* Implement the "remove" breakpoint_ops method for
10370 masked hardware watchpoints. */
10371
10372 static int
10373 remove_masked_watchpoint (struct bp_location *bl, enum remove_bp_reason reason)
10374 {
10375 struct watchpoint *w = (struct watchpoint *) bl->owner;
10376
10377 return target_remove_mask_watchpoint (bl->address, w->hw_wp_mask,
10378 bl->watchpoint_type);
10379 }
10380
10381 /* Implement the "resources_needed" breakpoint_ops method for
10382 masked hardware watchpoints. */
10383
10384 static int
10385 resources_needed_masked_watchpoint (const struct bp_location *bl)
10386 {
10387 struct watchpoint *w = (struct watchpoint *) bl->owner;
10388
10389 return target_masked_watch_num_registers (bl->address, w->hw_wp_mask);
10390 }
10391
10392 /* Implement the "works_in_software_mode" breakpoint_ops method for
10393 masked hardware watchpoints. */
10394
10395 static int
10396 works_in_software_mode_masked_watchpoint (const struct breakpoint *b)
10397 {
10398 return 0;
10399 }
10400
10401 /* Implement the "print_it" breakpoint_ops method for
10402 masked hardware watchpoints. */
10403
10404 static enum print_stop_action
10405 print_it_masked_watchpoint (bpstat bs)
10406 {
10407 struct breakpoint *b = bs->breakpoint_at;
10408 struct ui_out *uiout = current_uiout;
10409
10410 /* Masked watchpoints have only one location. */
10411 gdb_assert (b->loc && b->loc->next == NULL);
10412
10413 annotate_watchpoint (b->number);
10414 maybe_print_thread_hit_breakpoint (uiout);
10415
10416 switch (b->type)
10417 {
10418 case bp_hardware_watchpoint:
10419 if (uiout->is_mi_like_p ())
10420 uiout->field_string
10421 ("reason", async_reason_lookup (EXEC_ASYNC_WATCHPOINT_TRIGGER));
10422 break;
10423
10424 case bp_read_watchpoint:
10425 if (uiout->is_mi_like_p ())
10426 uiout->field_string
10427 ("reason", async_reason_lookup (EXEC_ASYNC_READ_WATCHPOINT_TRIGGER));
10428 break;
10429
10430 case bp_access_watchpoint:
10431 if (uiout->is_mi_like_p ())
10432 uiout->field_string
10433 ("reason",
10434 async_reason_lookup (EXEC_ASYNC_ACCESS_WATCHPOINT_TRIGGER));
10435 break;
10436 default:
10437 internal_error (__FILE__, __LINE__,
10438 _("Invalid hardware watchpoint type."));
10439 }
10440
10441 mention (b);
10442 uiout->text (_("\n\
10443 Check the underlying instruction at PC for the memory\n\
10444 address and value which triggered this watchpoint.\n"));
10445 uiout->text ("\n");
10446
10447 /* More than one watchpoint may have been triggered. */
10448 return PRINT_UNKNOWN;
10449 }
10450
10451 /* Implement the "print_one_detail" breakpoint_ops method for
10452 masked hardware watchpoints. */
10453
10454 static void
10455 print_one_detail_masked_watchpoint (const struct breakpoint *b,
10456 struct ui_out *uiout)
10457 {
10458 struct watchpoint *w = (struct watchpoint *) b;
10459
10460 /* Masked watchpoints have only one location. */
10461 gdb_assert (b->loc && b->loc->next == NULL);
10462
10463 uiout->text ("\tmask ");
10464 uiout->field_core_addr ("mask", b->loc->gdbarch, w->hw_wp_mask);
10465 uiout->text ("\n");
10466 }
10467
10468 /* Implement the "print_mention" breakpoint_ops method for
10469 masked hardware watchpoints. */
10470
10471 static void
10472 print_mention_masked_watchpoint (struct breakpoint *b)
10473 {
10474 struct watchpoint *w = (struct watchpoint *) b;
10475 struct ui_out *uiout = current_uiout;
10476 const char *tuple_name;
10477
10478 switch (b->type)
10479 {
10480 case bp_hardware_watchpoint:
10481 uiout->text ("Masked hardware watchpoint ");
10482 tuple_name = "wpt";
10483 break;
10484 case bp_read_watchpoint:
10485 uiout->text ("Masked hardware read watchpoint ");
10486 tuple_name = "hw-rwpt";
10487 break;
10488 case bp_access_watchpoint:
10489 uiout->text ("Masked hardware access (read/write) watchpoint ");
10490 tuple_name = "hw-awpt";
10491 break;
10492 default:
10493 internal_error (__FILE__, __LINE__,
10494 _("Invalid hardware watchpoint type."));
10495 }
10496
10497 ui_out_emit_tuple tuple_emitter (uiout, tuple_name);
10498 uiout->field_int ("number", b->number);
10499 uiout->text (": ");
10500 uiout->field_string ("exp", w->exp_string);
10501 }
10502
10503 /* Implement the "print_recreate" breakpoint_ops method for
10504 masked hardware watchpoints. */
10505
10506 static void
10507 print_recreate_masked_watchpoint (struct breakpoint *b, struct ui_file *fp)
10508 {
10509 struct watchpoint *w = (struct watchpoint *) b;
10510 char tmp[40];
10511
10512 switch (b->type)
10513 {
10514 case bp_hardware_watchpoint:
10515 fprintf_unfiltered (fp, "watch");
10516 break;
10517 case bp_read_watchpoint:
10518 fprintf_unfiltered (fp, "rwatch");
10519 break;
10520 case bp_access_watchpoint:
10521 fprintf_unfiltered (fp, "awatch");
10522 break;
10523 default:
10524 internal_error (__FILE__, __LINE__,
10525 _("Invalid hardware watchpoint type."));
10526 }
10527
10528 sprintf_vma (tmp, w->hw_wp_mask);
10529 fprintf_unfiltered (fp, " %s mask 0x%s", w->exp_string, tmp);
10530 print_recreate_thread (b, fp);
10531 }
10532
10533 /* The breakpoint_ops structure to be used in masked hardware watchpoints. */
10534
10535 static struct breakpoint_ops masked_watchpoint_breakpoint_ops;
10536
10537 /* Tell whether the given watchpoint is a masked hardware watchpoint. */
10538
10539 static int
10540 is_masked_watchpoint (const struct breakpoint *b)
10541 {
10542 return b->ops == &masked_watchpoint_breakpoint_ops;
10543 }
10544
10545 /* accessflag: hw_write: watch write,
10546 hw_read: watch read,
10547 hw_access: watch access (read or write) */
10548 static void
10549 watch_command_1 (const char *arg, int accessflag, int from_tty,
10550 int just_location, int internal)
10551 {
10552 struct breakpoint *scope_breakpoint = NULL;
10553 const struct block *exp_valid_block = NULL, *cond_exp_valid_block = NULL;
10554 struct value *mark, *result;
10555 int saved_bitpos = 0, saved_bitsize = 0;
10556 const char *exp_start = NULL;
10557 const char *exp_end = NULL;
10558 const char *tok, *end_tok;
10559 int toklen = -1;
10560 const char *cond_start = NULL;
10561 const char *cond_end = NULL;
10562 enum bptype bp_type;
10563 int thread = -1;
10564 int pc = 0;
10565 /* Flag to indicate whether we are going to use masks for
10566 the hardware watchpoint. */
10567 int use_mask = 0;
10568 CORE_ADDR mask = 0;
10569
10570 /* Make sure that we actually have parameters to parse. */
10571 if (arg != NULL && arg[0] != '\0')
10572 {
10573 const char *value_start;
10574
10575 exp_end = arg + strlen (arg);
10576
10577 /* Look for "parameter value" pairs at the end
10578 of the arguments string. */
10579 for (tok = exp_end - 1; tok > arg; tok--)
10580 {
10581 /* Skip whitespace at the end of the argument list. */
10582 while (tok > arg && (*tok == ' ' || *tok == '\t'))
10583 tok--;
10584
10585 /* Find the beginning of the last token.
10586 This is the value of the parameter. */
10587 while (tok > arg && (*tok != ' ' && *tok != '\t'))
10588 tok--;
10589 value_start = tok + 1;
10590
10591 /* Skip whitespace. */
10592 while (tok > arg && (*tok == ' ' || *tok == '\t'))
10593 tok--;
10594
10595 end_tok = tok;
10596
10597 /* Find the beginning of the second to last token.
10598 This is the parameter itself. */
10599 while (tok > arg && (*tok != ' ' && *tok != '\t'))
10600 tok--;
10601 tok++;
10602 toklen = end_tok - tok + 1;
10603
10604 if (toklen == 6 && startswith (tok, "thread"))
10605 {
10606 struct thread_info *thr;
10607 /* At this point we've found a "thread" token, which means
10608 the user is trying to set a watchpoint that triggers
10609 only in a specific thread. */
10610 const char *endp;
10611
10612 if (thread != -1)
10613 error(_("You can specify only one thread."));
10614
10615 /* Extract the thread ID from the next token. */
10616 thr = parse_thread_id (value_start, &endp);
10617
10618 /* Check if the user provided a valid thread ID. */
10619 if (*endp != ' ' && *endp != '\t' && *endp != '\0')
10620 invalid_thread_id_error (value_start);
10621
10622 thread = thr->global_num;
10623 }
10624 else if (toklen == 4 && startswith (tok, "mask"))
10625 {
10626 /* We've found a "mask" token, which means the user wants to
10627 create a hardware watchpoint that is going to have the mask
10628 facility. */
10629 struct value *mask_value, *mark;
10630
10631 if (use_mask)
10632 error(_("You can specify only one mask."));
10633
10634 use_mask = just_location = 1;
10635
10636 mark = value_mark ();
10637 mask_value = parse_to_comma_and_eval (&value_start);
10638 mask = value_as_address (mask_value);
10639 value_free_to_mark (mark);
10640 }
10641 else
10642 /* We didn't recognize what we found. We should stop here. */
10643 break;
10644
10645 /* Truncate the string and get rid of the "parameter value" pair before
10646 the arguments string is parsed by the parse_exp_1 function. */
10647 exp_end = tok;
10648 }
10649 }
10650 else
10651 exp_end = arg;
10652
10653 /* Parse the rest of the arguments. From here on out, everything
10654 is in terms of a newly allocated string instead of the original
10655 ARG. */
10656 innermost_block.reset ();
10657 std::string expression (arg, exp_end - arg);
10658 exp_start = arg = expression.c_str ();
10659 expression_up exp = parse_exp_1 (&arg, 0, 0, 0);
10660 exp_end = arg;
10661 /* Remove trailing whitespace from the expression before saving it.
10662 This makes the eventual display of the expression string a bit
10663 prettier. */
10664 while (exp_end > exp_start && (exp_end[-1] == ' ' || exp_end[-1] == '\t'))
10665 --exp_end;
10666
10667 /* Checking if the expression is not constant. */
10668 if (watchpoint_exp_is_const (exp.get ()))
10669 {
10670 int len;
10671
10672 len = exp_end - exp_start;
10673 while (len > 0 && isspace (exp_start[len - 1]))
10674 len--;
10675 error (_("Cannot watch constant value `%.*s'."), len, exp_start);
10676 }
10677
10678 exp_valid_block = innermost_block.block ();
10679 mark = value_mark ();
10680 struct value *val_as_value = nullptr;
10681 fetch_subexp_value (exp.get (), &pc, &val_as_value, &result, NULL,
10682 just_location);
10683
10684 if (val_as_value != NULL && just_location)
10685 {
10686 saved_bitpos = value_bitpos (val_as_value);
10687 saved_bitsize = value_bitsize (val_as_value);
10688 }
10689
10690 value_ref_ptr val;
10691 if (just_location)
10692 {
10693 int ret;
10694
10695 exp_valid_block = NULL;
10696 val = release_value (value_addr (result));
10697 value_free_to_mark (mark);
10698
10699 if (use_mask)
10700 {
10701 ret = target_masked_watch_num_registers (value_as_address (val.get ()),
10702 mask);
10703 if (ret == -1)
10704 error (_("This target does not support masked watchpoints."));
10705 else if (ret == -2)
10706 error (_("Invalid mask or memory region."));
10707 }
10708 }
10709 else if (val_as_value != NULL)
10710 val = release_value (val_as_value);
10711
10712 tok = skip_spaces (arg);
10713 end_tok = skip_to_space (tok);
10714
10715 toklen = end_tok - tok;
10716 if (toklen >= 1 && strncmp (tok, "if", toklen) == 0)
10717 {
10718 innermost_block.reset ();
10719 tok = cond_start = end_tok + 1;
10720 parse_exp_1 (&tok, 0, 0, 0);
10721
10722 /* The watchpoint expression may not be local, but the condition
10723 may still be. E.g.: `watch global if local > 0'. */
10724 cond_exp_valid_block = innermost_block.block ();
10725
10726 cond_end = tok;
10727 }
10728 if (*tok)
10729 error (_("Junk at end of command."));
10730
10731 frame_info *wp_frame = block_innermost_frame (exp_valid_block);
10732
10733 /* Save this because create_internal_breakpoint below invalidates
10734 'wp_frame'. */
10735 frame_id watchpoint_frame = get_frame_id (wp_frame);
10736
10737 /* If the expression is "local", then set up a "watchpoint scope"
10738 breakpoint at the point where we've left the scope of the watchpoint
10739 expression. Create the scope breakpoint before the watchpoint, so
10740 that we will encounter it first in bpstat_stop_status. */
10741 if (exp_valid_block != NULL && wp_frame != NULL)
10742 {
10743 frame_id caller_frame_id = frame_unwind_caller_id (wp_frame);
10744
10745 if (frame_id_p (caller_frame_id))
10746 {
10747 gdbarch *caller_arch = frame_unwind_caller_arch (wp_frame);
10748 CORE_ADDR caller_pc = frame_unwind_caller_pc (wp_frame);
10749
10750 scope_breakpoint
10751 = create_internal_breakpoint (caller_arch, caller_pc,
10752 bp_watchpoint_scope,
10753 &momentary_breakpoint_ops);
10754
10755 /* create_internal_breakpoint could invalidate WP_FRAME. */
10756 wp_frame = NULL;
10757
10758 scope_breakpoint->enable_state = bp_enabled;
10759
10760 /* Automatically delete the breakpoint when it hits. */
10761 scope_breakpoint->disposition = disp_del;
10762
10763 /* Only break in the proper frame (help with recursion). */
10764 scope_breakpoint->frame_id = caller_frame_id;
10765
10766 /* Set the address at which we will stop. */
10767 scope_breakpoint->loc->gdbarch = caller_arch;
10768 scope_breakpoint->loc->requested_address = caller_pc;
10769 scope_breakpoint->loc->address
10770 = adjust_breakpoint_address (scope_breakpoint->loc->gdbarch,
10771 scope_breakpoint->loc->requested_address,
10772 scope_breakpoint->type);
10773 }
10774 }
10775
10776 /* Now set up the breakpoint. We create all watchpoints as hardware
10777 watchpoints here even if hardware watchpoints are turned off, a call
10778 to update_watchpoint later in this function will cause the type to
10779 drop back to bp_watchpoint (software watchpoint) if required. */
10780
10781 if (accessflag == hw_read)
10782 bp_type = bp_read_watchpoint;
10783 else if (accessflag == hw_access)
10784 bp_type = bp_access_watchpoint;
10785 else
10786 bp_type = bp_hardware_watchpoint;
10787
10788 std::unique_ptr<watchpoint> w (new watchpoint ());
10789
10790 if (use_mask)
10791 init_raw_breakpoint_without_location (w.get (), NULL, bp_type,
10792 &masked_watchpoint_breakpoint_ops);
10793 else
10794 init_raw_breakpoint_without_location (w.get (), NULL, bp_type,
10795 &watchpoint_breakpoint_ops);
10796 w->thread = thread;
10797 w->disposition = disp_donttouch;
10798 w->pspace = current_program_space;
10799 w->exp = std::move (exp);
10800 w->exp_valid_block = exp_valid_block;
10801 w->cond_exp_valid_block = cond_exp_valid_block;
10802 if (just_location)
10803 {
10804 struct type *t = value_type (val.get ());
10805 CORE_ADDR addr = value_as_address (val.get ());
10806
10807 w->exp_string_reparse
10808 = current_language->la_watch_location_expression (t, addr).release ();
10809
10810 w->exp_string = xstrprintf ("-location %.*s",
10811 (int) (exp_end - exp_start), exp_start);
10812 }
10813 else
10814 w->exp_string = savestring (exp_start, exp_end - exp_start);
10815
10816 if (use_mask)
10817 {
10818 w->hw_wp_mask = mask;
10819 }
10820 else
10821 {
10822 w->val = val;
10823 w->val_bitpos = saved_bitpos;
10824 w->val_bitsize = saved_bitsize;
10825 w->val_valid = 1;
10826 }
10827
10828 if (cond_start)
10829 w->cond_string = savestring (cond_start, cond_end - cond_start);
10830 else
10831 w->cond_string = 0;
10832
10833 if (frame_id_p (watchpoint_frame))
10834 {
10835 w->watchpoint_frame = watchpoint_frame;
10836 w->watchpoint_thread = inferior_ptid;
10837 }
10838 else
10839 {
10840 w->watchpoint_frame = null_frame_id;
10841 w->watchpoint_thread = null_ptid;
10842 }
10843
10844 if (scope_breakpoint != NULL)
10845 {
10846 /* The scope breakpoint is related to the watchpoint. We will
10847 need to act on them together. */
10848 w->related_breakpoint = scope_breakpoint;
10849 scope_breakpoint->related_breakpoint = w.get ();
10850 }
10851
10852 if (!just_location)
10853 value_free_to_mark (mark);
10854
10855 /* Finally update the new watchpoint. This creates the locations
10856 that should be inserted. */
10857 update_watchpoint (w.get (), 1);
10858
10859 install_breakpoint (internal, std::move (w), 1);
10860 }
10861
10862 /* Return count of debug registers needed to watch the given expression.
10863 If the watchpoint cannot be handled in hardware return zero. */
10864
10865 static int
10866 can_use_hardware_watchpoint (const std::vector<value_ref_ptr> &vals)
10867 {
10868 int found_memory_cnt = 0;
10869
10870 /* Did the user specifically forbid us to use hardware watchpoints? */
10871 if (!can_use_hw_watchpoints)
10872 return 0;
10873
10874 gdb_assert (!vals.empty ());
10875 struct value *head = vals[0].get ();
10876
10877 /* Make sure that the value of the expression depends only upon
10878 memory contents, and values computed from them within GDB. If we
10879 find any register references or function calls, we can't use a
10880 hardware watchpoint.
10881
10882 The idea here is that evaluating an expression generates a series
10883 of values, one holding the value of every subexpression. (The
10884 expression a*b+c has five subexpressions: a, b, a*b, c, and
10885 a*b+c.) GDB's values hold almost enough information to establish
10886 the criteria given above --- they identify memory lvalues,
10887 register lvalues, computed values, etcetera. So we can evaluate
10888 the expression, and then scan the chain of values that leaves
10889 behind to decide whether we can detect any possible change to the
10890 expression's final value using only hardware watchpoints.
10891
10892 However, I don't think that the values returned by inferior
10893 function calls are special in any way. So this function may not
10894 notice that an expression involving an inferior function call
10895 can't be watched with hardware watchpoints. FIXME. */
10896 for (const value_ref_ptr &iter : vals)
10897 {
10898 struct value *v = iter.get ();
10899
10900 if (VALUE_LVAL (v) == lval_memory)
10901 {
10902 if (v != head && value_lazy (v))
10903 /* A lazy memory lvalue in the chain is one that GDB never
10904 needed to fetch; we either just used its address (e.g.,
10905 `a' in `a.b') or we never needed it at all (e.g., `a'
10906 in `a,b'). This doesn't apply to HEAD; if that is
10907 lazy then it was not readable, but watch it anyway. */
10908 ;
10909 else
10910 {
10911 /* Ahh, memory we actually used! Check if we can cover
10912 it with hardware watchpoints. */
10913 struct type *vtype = check_typedef (value_type (v));
10914
10915 /* We only watch structs and arrays if user asked for it
10916 explicitly, never if they just happen to appear in a
10917 middle of some value chain. */
10918 if (v == head
10919 || (TYPE_CODE (vtype) != TYPE_CODE_STRUCT
10920 && TYPE_CODE (vtype) != TYPE_CODE_ARRAY))
10921 {
10922 CORE_ADDR vaddr = value_address (v);
10923 int len;
10924 int num_regs;
10925
10926 len = (target_exact_watchpoints
10927 && is_scalar_type_recursive (vtype))?
10928 1 : TYPE_LENGTH (value_type (v));
10929
10930 num_regs = target_region_ok_for_hw_watchpoint (vaddr, len);
10931 if (!num_regs)
10932 return 0;
10933 else
10934 found_memory_cnt += num_regs;
10935 }
10936 }
10937 }
10938 else if (VALUE_LVAL (v) != not_lval
10939 && deprecated_value_modifiable (v) == 0)
10940 return 0; /* These are values from the history (e.g., $1). */
10941 else if (VALUE_LVAL (v) == lval_register)
10942 return 0; /* Cannot watch a register with a HW watchpoint. */
10943 }
10944
10945 /* The expression itself looks suitable for using a hardware
10946 watchpoint, but give the target machine a chance to reject it. */
10947 return found_memory_cnt;
10948 }
10949
10950 void
10951 watch_command_wrapper (const char *arg, int from_tty, int internal)
10952 {
10953 watch_command_1 (arg, hw_write, from_tty, 0, internal);
10954 }
10955
10956 /* A helper function that looks for the "-location" argument and then
10957 calls watch_command_1. */
10958
10959 static void
10960 watch_maybe_just_location (const char *arg, int accessflag, int from_tty)
10961 {
10962 int just_location = 0;
10963
10964 if (arg
10965 && (check_for_argument (&arg, "-location", sizeof ("-location") - 1)
10966 || check_for_argument (&arg, "-l", sizeof ("-l") - 1)))
10967 {
10968 arg = skip_spaces (arg);
10969 just_location = 1;
10970 }
10971
10972 watch_command_1 (arg, accessflag, from_tty, just_location, 0);
10973 }
10974
10975 static void
10976 watch_command (const char *arg, int from_tty)
10977 {
10978 watch_maybe_just_location (arg, hw_write, from_tty);
10979 }
10980
10981 void
10982 rwatch_command_wrapper (const char *arg, int from_tty, int internal)
10983 {
10984 watch_command_1 (arg, hw_read, from_tty, 0, internal);
10985 }
10986
10987 static void
10988 rwatch_command (const char *arg, int from_tty)
10989 {
10990 watch_maybe_just_location (arg, hw_read, from_tty);
10991 }
10992
10993 void
10994 awatch_command_wrapper (const char *arg, int from_tty, int internal)
10995 {
10996 watch_command_1 (arg, hw_access, from_tty, 0, internal);
10997 }
10998
10999 static void
11000 awatch_command (const char *arg, int from_tty)
11001 {
11002 watch_maybe_just_location (arg, hw_access, from_tty);
11003 }
11004 \f
11005
11006 /* Data for the FSM that manages the until(location)/advance commands
11007 in infcmd.c. Here because it uses the mechanisms of
11008 breakpoints. */
11009
11010 struct until_break_fsm
11011 {
11012 /* The base class. */
11013 struct thread_fsm thread_fsm;
11014
11015 /* The thread that as current when the command was executed. */
11016 int thread;
11017
11018 /* The breakpoint set at the destination location. */
11019 struct breakpoint *location_breakpoint;
11020
11021 /* Breakpoint set at the return address in the caller frame. May be
11022 NULL. */
11023 struct breakpoint *caller_breakpoint;
11024 };
11025
11026 static void until_break_fsm_clean_up (struct thread_fsm *self,
11027 struct thread_info *thread);
11028 static int until_break_fsm_should_stop (struct thread_fsm *self,
11029 struct thread_info *thread);
11030 static enum async_reply_reason
11031 until_break_fsm_async_reply_reason (struct thread_fsm *self);
11032
11033 /* until_break_fsm's vtable. */
11034
11035 static struct thread_fsm_ops until_break_fsm_ops =
11036 {
11037 NULL, /* dtor */
11038 until_break_fsm_clean_up,
11039 until_break_fsm_should_stop,
11040 NULL, /* return_value */
11041 until_break_fsm_async_reply_reason,
11042 };
11043
11044 /* Allocate a new until_break_command_fsm. */
11045
11046 static struct until_break_fsm *
11047 new_until_break_fsm (struct interp *cmd_interp, int thread,
11048 breakpoint_up &&location_breakpoint,
11049 breakpoint_up &&caller_breakpoint)
11050 {
11051 struct until_break_fsm *sm;
11052
11053 sm = XCNEW (struct until_break_fsm);
11054 thread_fsm_ctor (&sm->thread_fsm, &until_break_fsm_ops, cmd_interp);
11055
11056 sm->thread = thread;
11057 sm->location_breakpoint = location_breakpoint.release ();
11058 sm->caller_breakpoint = caller_breakpoint.release ();
11059
11060 return sm;
11061 }
11062
11063 /* Implementation of the 'should_stop' FSM method for the
11064 until(location)/advance commands. */
11065
11066 static int
11067 until_break_fsm_should_stop (struct thread_fsm *self,
11068 struct thread_info *tp)
11069 {
11070 struct until_break_fsm *sm = (struct until_break_fsm *) self;
11071
11072 if (bpstat_find_breakpoint (tp->control.stop_bpstat,
11073 sm->location_breakpoint) != NULL
11074 || (sm->caller_breakpoint != NULL
11075 && bpstat_find_breakpoint (tp->control.stop_bpstat,
11076 sm->caller_breakpoint) != NULL))
11077 thread_fsm_set_finished (self);
11078
11079 return 1;
11080 }
11081
11082 /* Implementation of the 'clean_up' FSM method for the
11083 until(location)/advance commands. */
11084
11085 static void
11086 until_break_fsm_clean_up (struct thread_fsm *self,
11087 struct thread_info *thread)
11088 {
11089 struct until_break_fsm *sm = (struct until_break_fsm *) self;
11090
11091 /* Clean up our temporary breakpoints. */
11092 if (sm->location_breakpoint != NULL)
11093 {
11094 delete_breakpoint (sm->location_breakpoint);
11095 sm->location_breakpoint = NULL;
11096 }
11097 if (sm->caller_breakpoint != NULL)
11098 {
11099 delete_breakpoint (sm->caller_breakpoint);
11100 sm->caller_breakpoint = NULL;
11101 }
11102 delete_longjmp_breakpoint (sm->thread);
11103 }
11104
11105 /* Implementation of the 'async_reply_reason' FSM method for the
11106 until(location)/advance commands. */
11107
11108 static enum async_reply_reason
11109 until_break_fsm_async_reply_reason (struct thread_fsm *self)
11110 {
11111 return EXEC_ASYNC_LOCATION_REACHED;
11112 }
11113
11114 void
11115 until_break_command (const char *arg, int from_tty, int anywhere)
11116 {
11117 struct frame_info *frame;
11118 struct gdbarch *frame_gdbarch;
11119 struct frame_id stack_frame_id;
11120 struct frame_id caller_frame_id;
11121 struct cleanup *old_chain;
11122 int thread;
11123 struct thread_info *tp;
11124 struct until_break_fsm *sm;
11125
11126 clear_proceed_status (0);
11127
11128 /* Set a breakpoint where the user wants it and at return from
11129 this function. */
11130
11131 event_location_up location = string_to_event_location (&arg, current_language);
11132
11133 std::vector<symtab_and_line> sals
11134 = (last_displayed_sal_is_valid ()
11135 ? decode_line_1 (location.get (), DECODE_LINE_FUNFIRSTLINE, NULL,
11136 get_last_displayed_symtab (),
11137 get_last_displayed_line ())
11138 : decode_line_1 (location.get (), DECODE_LINE_FUNFIRSTLINE,
11139 NULL, (struct symtab *) NULL, 0));
11140
11141 if (sals.size () != 1)
11142 error (_("Couldn't get information on specified line."));
11143
11144 symtab_and_line &sal = sals[0];
11145
11146 if (*arg)
11147 error (_("Junk at end of arguments."));
11148
11149 resolve_sal_pc (&sal);
11150
11151 tp = inferior_thread ();
11152 thread = tp->global_num;
11153
11154 old_chain = make_cleanup (null_cleanup, NULL);
11155
11156 /* Note linespec handling above invalidates the frame chain.
11157 Installing a breakpoint also invalidates the frame chain (as it
11158 may need to switch threads), so do any frame handling before
11159 that. */
11160
11161 frame = get_selected_frame (NULL);
11162 frame_gdbarch = get_frame_arch (frame);
11163 stack_frame_id = get_stack_frame_id (frame);
11164 caller_frame_id = frame_unwind_caller_id (frame);
11165
11166 /* Keep within the current frame, or in frames called by the current
11167 one. */
11168
11169 breakpoint_up caller_breakpoint;
11170 if (frame_id_p (caller_frame_id))
11171 {
11172 struct symtab_and_line sal2;
11173 struct gdbarch *caller_gdbarch;
11174
11175 sal2 = find_pc_line (frame_unwind_caller_pc (frame), 0);
11176 sal2.pc = frame_unwind_caller_pc (frame);
11177 caller_gdbarch = frame_unwind_caller_arch (frame);
11178 caller_breakpoint = set_momentary_breakpoint (caller_gdbarch,
11179 sal2,
11180 caller_frame_id,
11181 bp_until);
11182
11183 set_longjmp_breakpoint (tp, caller_frame_id);
11184 make_cleanup (delete_longjmp_breakpoint_cleanup, &thread);
11185 }
11186
11187 /* set_momentary_breakpoint could invalidate FRAME. */
11188 frame = NULL;
11189
11190 breakpoint_up location_breakpoint;
11191 if (anywhere)
11192 /* If the user told us to continue until a specified location,
11193 we don't specify a frame at which we need to stop. */
11194 location_breakpoint = set_momentary_breakpoint (frame_gdbarch, sal,
11195 null_frame_id, bp_until);
11196 else
11197 /* Otherwise, specify the selected frame, because we want to stop
11198 only at the very same frame. */
11199 location_breakpoint = set_momentary_breakpoint (frame_gdbarch, sal,
11200 stack_frame_id, bp_until);
11201
11202 sm = new_until_break_fsm (command_interp (), tp->global_num,
11203 std::move (location_breakpoint),
11204 std::move (caller_breakpoint));
11205 tp->thread_fsm = &sm->thread_fsm;
11206
11207 discard_cleanups (old_chain);
11208
11209 proceed (-1, GDB_SIGNAL_DEFAULT);
11210 }
11211
11212 /* This function attempts to parse an optional "if <cond>" clause
11213 from the arg string. If one is not found, it returns NULL.
11214
11215 Else, it returns a pointer to the condition string. (It does not
11216 attempt to evaluate the string against a particular block.) And,
11217 it updates arg to point to the first character following the parsed
11218 if clause in the arg string. */
11219
11220 const char *
11221 ep_parse_optional_if_clause (const char **arg)
11222 {
11223 const char *cond_string;
11224
11225 if (((*arg)[0] != 'i') || ((*arg)[1] != 'f') || !isspace ((*arg)[2]))
11226 return NULL;
11227
11228 /* Skip the "if" keyword. */
11229 (*arg) += 2;
11230
11231 /* Skip any extra leading whitespace, and record the start of the
11232 condition string. */
11233 *arg = skip_spaces (*arg);
11234 cond_string = *arg;
11235
11236 /* Assume that the condition occupies the remainder of the arg
11237 string. */
11238 (*arg) += strlen (cond_string);
11239
11240 return cond_string;
11241 }
11242
11243 /* Commands to deal with catching events, such as signals, exceptions,
11244 process start/exit, etc. */
11245
11246 typedef enum
11247 {
11248 catch_fork_temporary, catch_vfork_temporary,
11249 catch_fork_permanent, catch_vfork_permanent
11250 }
11251 catch_fork_kind;
11252
11253 static void
11254 catch_fork_command_1 (const char *arg, int from_tty,
11255 struct cmd_list_element *command)
11256 {
11257 struct gdbarch *gdbarch = get_current_arch ();
11258 const char *cond_string = NULL;
11259 catch_fork_kind fork_kind;
11260 int tempflag;
11261
11262 fork_kind = (catch_fork_kind) (uintptr_t) get_cmd_context (command);
11263 tempflag = (fork_kind == catch_fork_temporary
11264 || fork_kind == catch_vfork_temporary);
11265
11266 if (!arg)
11267 arg = "";
11268 arg = skip_spaces (arg);
11269
11270 /* The allowed syntax is:
11271 catch [v]fork
11272 catch [v]fork if <cond>
11273
11274 First, check if there's an if clause. */
11275 cond_string = ep_parse_optional_if_clause (&arg);
11276
11277 if ((*arg != '\0') && !isspace (*arg))
11278 error (_("Junk at end of arguments."));
11279
11280 /* If this target supports it, create a fork or vfork catchpoint
11281 and enable reporting of such events. */
11282 switch (fork_kind)
11283 {
11284 case catch_fork_temporary:
11285 case catch_fork_permanent:
11286 create_fork_vfork_event_catchpoint (gdbarch, tempflag, cond_string,
11287 &catch_fork_breakpoint_ops);
11288 break;
11289 case catch_vfork_temporary:
11290 case catch_vfork_permanent:
11291 create_fork_vfork_event_catchpoint (gdbarch, tempflag, cond_string,
11292 &catch_vfork_breakpoint_ops);
11293 break;
11294 default:
11295 error (_("unsupported or unknown fork kind; cannot catch it"));
11296 break;
11297 }
11298 }
11299
11300 static void
11301 catch_exec_command_1 (const char *arg, int from_tty,
11302 struct cmd_list_element *command)
11303 {
11304 struct gdbarch *gdbarch = get_current_arch ();
11305 int tempflag;
11306 const char *cond_string = NULL;
11307
11308 tempflag = get_cmd_context (command) == CATCH_TEMPORARY;
11309
11310 if (!arg)
11311 arg = "";
11312 arg = skip_spaces (arg);
11313
11314 /* The allowed syntax is:
11315 catch exec
11316 catch exec if <cond>
11317
11318 First, check if there's an if clause. */
11319 cond_string = ep_parse_optional_if_clause (&arg);
11320
11321 if ((*arg != '\0') && !isspace (*arg))
11322 error (_("Junk at end of arguments."));
11323
11324 std::unique_ptr<exec_catchpoint> c (new exec_catchpoint ());
11325 init_catchpoint (c.get (), gdbarch, tempflag, cond_string,
11326 &catch_exec_breakpoint_ops);
11327 c->exec_pathname = NULL;
11328
11329 install_breakpoint (0, std::move (c), 1);
11330 }
11331
11332 void
11333 init_ada_exception_breakpoint (struct breakpoint *b,
11334 struct gdbarch *gdbarch,
11335 struct symtab_and_line sal,
11336 const char *addr_string,
11337 const struct breakpoint_ops *ops,
11338 int tempflag,
11339 int enabled,
11340 int from_tty)
11341 {
11342 if (from_tty)
11343 {
11344 struct gdbarch *loc_gdbarch = get_sal_arch (sal);
11345 if (!loc_gdbarch)
11346 loc_gdbarch = gdbarch;
11347
11348 describe_other_breakpoints (loc_gdbarch,
11349 sal.pspace, sal.pc, sal.section, -1);
11350 /* FIXME: brobecker/2006-12-28: Actually, re-implement a special
11351 version for exception catchpoints, because two catchpoints
11352 used for different exception names will use the same address.
11353 In this case, a "breakpoint ... also set at..." warning is
11354 unproductive. Besides, the warning phrasing is also a bit
11355 inappropriate, we should use the word catchpoint, and tell
11356 the user what type of catchpoint it is. The above is good
11357 enough for now, though. */
11358 }
11359
11360 init_raw_breakpoint (b, gdbarch, sal, bp_breakpoint, ops);
11361
11362 b->enable_state = enabled ? bp_enabled : bp_disabled;
11363 b->disposition = tempflag ? disp_del : disp_donttouch;
11364 b->location = string_to_event_location (&addr_string,
11365 language_def (language_ada));
11366 b->language = language_ada;
11367 }
11368
11369 static void
11370 catch_command (const char *arg, int from_tty)
11371 {
11372 error (_("Catch requires an event name."));
11373 }
11374 \f
11375
11376 static void
11377 tcatch_command (const char *arg, int from_tty)
11378 {
11379 error (_("Catch requires an event name."));
11380 }
11381
11382 /* Compare two breakpoints and return a strcmp-like result. */
11383
11384 static int
11385 compare_breakpoints (const breakpoint *a, const breakpoint *b)
11386 {
11387 uintptr_t ua = (uintptr_t) a;
11388 uintptr_t ub = (uintptr_t) b;
11389
11390 if (a->number < b->number)
11391 return -1;
11392 else if (a->number > b->number)
11393 return 1;
11394
11395 /* Now sort by address, in case we see, e..g, two breakpoints with
11396 the number 0. */
11397 if (ua < ub)
11398 return -1;
11399 return ua > ub ? 1 : 0;
11400 }
11401
11402 /* Delete breakpoints by address or line. */
11403
11404 static void
11405 clear_command (const char *arg, int from_tty)
11406 {
11407 struct breakpoint *b;
11408 int default_match;
11409
11410 std::vector<symtab_and_line> decoded_sals;
11411 symtab_and_line last_sal;
11412 gdb::array_view<symtab_and_line> sals;
11413 if (arg)
11414 {
11415 decoded_sals
11416 = decode_line_with_current_source (arg,
11417 (DECODE_LINE_FUNFIRSTLINE
11418 | DECODE_LINE_LIST_MODE));
11419 default_match = 0;
11420 sals = decoded_sals;
11421 }
11422 else
11423 {
11424 /* Set sal's line, symtab, pc, and pspace to the values
11425 corresponding to the last call to print_frame_info. If the
11426 codepoint is not valid, this will set all the fields to 0. */
11427 last_sal = get_last_displayed_sal ();
11428 if (last_sal.symtab == 0)
11429 error (_("No source file specified."));
11430
11431 default_match = 1;
11432 sals = last_sal;
11433 }
11434
11435 /* We don't call resolve_sal_pc here. That's not as bad as it
11436 seems, because all existing breakpoints typically have both
11437 file/line and pc set. So, if clear is given file/line, we can
11438 match this to existing breakpoint without obtaining pc at all.
11439
11440 We only support clearing given the address explicitly
11441 present in breakpoint table. Say, we've set breakpoint
11442 at file:line. There were several PC values for that file:line,
11443 due to optimization, all in one block.
11444
11445 We've picked one PC value. If "clear" is issued with another
11446 PC corresponding to the same file:line, the breakpoint won't
11447 be cleared. We probably can still clear the breakpoint, but
11448 since the other PC value is never presented to user, user
11449 can only find it by guessing, and it does not seem important
11450 to support that. */
11451
11452 /* For each line spec given, delete bps which correspond to it. Do
11453 it in two passes, solely to preserve the current behavior that
11454 from_tty is forced true if we delete more than one
11455 breakpoint. */
11456
11457 std::vector<struct breakpoint *> found;
11458 for (const auto &sal : sals)
11459 {
11460 const char *sal_fullname;
11461
11462 /* If exact pc given, clear bpts at that pc.
11463 If line given (pc == 0), clear all bpts on specified line.
11464 If defaulting, clear all bpts on default line
11465 or at default pc.
11466
11467 defaulting sal.pc != 0 tests to do
11468
11469 0 1 pc
11470 1 1 pc _and_ line
11471 0 0 line
11472 1 0 <can't happen> */
11473
11474 sal_fullname = (sal.symtab == NULL
11475 ? NULL : symtab_to_fullname (sal.symtab));
11476
11477 /* Find all matching breakpoints and add them to 'found'. */
11478 ALL_BREAKPOINTS (b)
11479 {
11480 int match = 0;
11481 /* Are we going to delete b? */
11482 if (b->type != bp_none && !is_watchpoint (b))
11483 {
11484 struct bp_location *loc = b->loc;
11485 for (; loc; loc = loc->next)
11486 {
11487 /* If the user specified file:line, don't allow a PC
11488 match. This matches historical gdb behavior. */
11489 int pc_match = (!sal.explicit_line
11490 && sal.pc
11491 && (loc->pspace == sal.pspace)
11492 && (loc->address == sal.pc)
11493 && (!section_is_overlay (loc->section)
11494 || loc->section == sal.section));
11495 int line_match = 0;
11496
11497 if ((default_match || sal.explicit_line)
11498 && loc->symtab != NULL
11499 && sal_fullname != NULL
11500 && sal.pspace == loc->pspace
11501 && loc->line_number == sal.line
11502 && filename_cmp (symtab_to_fullname (loc->symtab),
11503 sal_fullname) == 0)
11504 line_match = 1;
11505
11506 if (pc_match || line_match)
11507 {
11508 match = 1;
11509 break;
11510 }
11511 }
11512 }
11513
11514 if (match)
11515 found.push_back (b);
11516 }
11517 }
11518
11519 /* Now go thru the 'found' chain and delete them. */
11520 if (found.empty ())
11521 {
11522 if (arg)
11523 error (_("No breakpoint at %s."), arg);
11524 else
11525 error (_("No breakpoint at this line."));
11526 }
11527
11528 /* Remove duplicates from the vec. */
11529 std::sort (found.begin (), found.end (),
11530 [] (const breakpoint *a, const breakpoint *b)
11531 {
11532 return compare_breakpoints (a, b) < 0;
11533 });
11534 found.erase (std::unique (found.begin (), found.end (),
11535 [] (const breakpoint *a, const breakpoint *b)
11536 {
11537 return compare_breakpoints (a, b) == 0;
11538 }),
11539 found.end ());
11540
11541 if (found.size () > 1)
11542 from_tty = 1; /* Always report if deleted more than one. */
11543 if (from_tty)
11544 {
11545 if (found.size () == 1)
11546 printf_unfiltered (_("Deleted breakpoint "));
11547 else
11548 printf_unfiltered (_("Deleted breakpoints "));
11549 }
11550
11551 for (breakpoint *iter : found)
11552 {
11553 if (from_tty)
11554 printf_unfiltered ("%d ", iter->number);
11555 delete_breakpoint (iter);
11556 }
11557 if (from_tty)
11558 putchar_unfiltered ('\n');
11559 }
11560 \f
11561 /* Delete breakpoint in BS if they are `delete' breakpoints and
11562 all breakpoints that are marked for deletion, whether hit or not.
11563 This is called after any breakpoint is hit, or after errors. */
11564
11565 void
11566 breakpoint_auto_delete (bpstat bs)
11567 {
11568 struct breakpoint *b, *b_tmp;
11569
11570 for (; bs; bs = bs->next)
11571 if (bs->breakpoint_at
11572 && bs->breakpoint_at->disposition == disp_del
11573 && bs->stop)
11574 delete_breakpoint (bs->breakpoint_at);
11575
11576 ALL_BREAKPOINTS_SAFE (b, b_tmp)
11577 {
11578 if (b->disposition == disp_del_at_next_stop)
11579 delete_breakpoint (b);
11580 }
11581 }
11582
11583 /* A comparison function for bp_location AP and BP being interfaced to
11584 qsort. Sort elements primarily by their ADDRESS (no matter what
11585 does breakpoint_address_is_meaningful say for its OWNER),
11586 secondarily by ordering first permanent elements and
11587 terciarily just ensuring the array is sorted stable way despite
11588 qsort being an unstable algorithm. */
11589
11590 static int
11591 bp_locations_compare (const void *ap, const void *bp)
11592 {
11593 const struct bp_location *a = *(const struct bp_location **) ap;
11594 const struct bp_location *b = *(const struct bp_location **) bp;
11595
11596 if (a->address != b->address)
11597 return (a->address > b->address) - (a->address < b->address);
11598
11599 /* Sort locations at the same address by their pspace number, keeping
11600 locations of the same inferior (in a multi-inferior environment)
11601 grouped. */
11602
11603 if (a->pspace->num != b->pspace->num)
11604 return ((a->pspace->num > b->pspace->num)
11605 - (a->pspace->num < b->pspace->num));
11606
11607 /* Sort permanent breakpoints first. */
11608 if (a->permanent != b->permanent)
11609 return (a->permanent < b->permanent) - (a->permanent > b->permanent);
11610
11611 /* Make the internal GDB representation stable across GDB runs
11612 where A and B memory inside GDB can differ. Breakpoint locations of
11613 the same type at the same address can be sorted in arbitrary order. */
11614
11615 if (a->owner->number != b->owner->number)
11616 return ((a->owner->number > b->owner->number)
11617 - (a->owner->number < b->owner->number));
11618
11619 return (a > b) - (a < b);
11620 }
11621
11622 /* Set bp_locations_placed_address_before_address_max and
11623 bp_locations_shadow_len_after_address_max according to the current
11624 content of the bp_locations array. */
11625
11626 static void
11627 bp_locations_target_extensions_update (void)
11628 {
11629 struct bp_location *bl, **blp_tmp;
11630
11631 bp_locations_placed_address_before_address_max = 0;
11632 bp_locations_shadow_len_after_address_max = 0;
11633
11634 ALL_BP_LOCATIONS (bl, blp_tmp)
11635 {
11636 CORE_ADDR start, end, addr;
11637
11638 if (!bp_location_has_shadow (bl))
11639 continue;
11640
11641 start = bl->target_info.placed_address;
11642 end = start + bl->target_info.shadow_len;
11643
11644 gdb_assert (bl->address >= start);
11645 addr = bl->address - start;
11646 if (addr > bp_locations_placed_address_before_address_max)
11647 bp_locations_placed_address_before_address_max = addr;
11648
11649 /* Zero SHADOW_LEN would not pass bp_location_has_shadow. */
11650
11651 gdb_assert (bl->address < end);
11652 addr = end - bl->address;
11653 if (addr > bp_locations_shadow_len_after_address_max)
11654 bp_locations_shadow_len_after_address_max = addr;
11655 }
11656 }
11657
11658 /* Download tracepoint locations if they haven't been. */
11659
11660 static void
11661 download_tracepoint_locations (void)
11662 {
11663 struct breakpoint *b;
11664 enum tribool can_download_tracepoint = TRIBOOL_UNKNOWN;
11665
11666 scoped_restore_current_pspace_and_thread restore_pspace_thread;
11667
11668 ALL_TRACEPOINTS (b)
11669 {
11670 struct bp_location *bl;
11671 struct tracepoint *t;
11672 int bp_location_downloaded = 0;
11673
11674 if ((b->type == bp_fast_tracepoint
11675 ? !may_insert_fast_tracepoints
11676 : !may_insert_tracepoints))
11677 continue;
11678
11679 if (can_download_tracepoint == TRIBOOL_UNKNOWN)
11680 {
11681 if (target_can_download_tracepoint ())
11682 can_download_tracepoint = TRIBOOL_TRUE;
11683 else
11684 can_download_tracepoint = TRIBOOL_FALSE;
11685 }
11686
11687 if (can_download_tracepoint == TRIBOOL_FALSE)
11688 break;
11689
11690 for (bl = b->loc; bl; bl = bl->next)
11691 {
11692 /* In tracepoint, locations are _never_ duplicated, so
11693 should_be_inserted is equivalent to
11694 unduplicated_should_be_inserted. */
11695 if (!should_be_inserted (bl) || bl->inserted)
11696 continue;
11697
11698 switch_to_program_space_and_thread (bl->pspace);
11699
11700 target_download_tracepoint (bl);
11701
11702 bl->inserted = 1;
11703 bp_location_downloaded = 1;
11704 }
11705 t = (struct tracepoint *) b;
11706 t->number_on_target = b->number;
11707 if (bp_location_downloaded)
11708 gdb::observers::breakpoint_modified.notify (b);
11709 }
11710 }
11711
11712 /* Swap the insertion/duplication state between two locations. */
11713
11714 static void
11715 swap_insertion (struct bp_location *left, struct bp_location *right)
11716 {
11717 const int left_inserted = left->inserted;
11718 const int left_duplicate = left->duplicate;
11719 const int left_needs_update = left->needs_update;
11720 const struct bp_target_info left_target_info = left->target_info;
11721
11722 /* Locations of tracepoints can never be duplicated. */
11723 if (is_tracepoint (left->owner))
11724 gdb_assert (!left->duplicate);
11725 if (is_tracepoint (right->owner))
11726 gdb_assert (!right->duplicate);
11727
11728 left->inserted = right->inserted;
11729 left->duplicate = right->duplicate;
11730 left->needs_update = right->needs_update;
11731 left->target_info = right->target_info;
11732 right->inserted = left_inserted;
11733 right->duplicate = left_duplicate;
11734 right->needs_update = left_needs_update;
11735 right->target_info = left_target_info;
11736 }
11737
11738 /* Force the re-insertion of the locations at ADDRESS. This is called
11739 once a new/deleted/modified duplicate location is found and we are evaluating
11740 conditions on the target's side. Such conditions need to be updated on
11741 the target. */
11742
11743 static void
11744 force_breakpoint_reinsertion (struct bp_location *bl)
11745 {
11746 struct bp_location **locp = NULL, **loc2p;
11747 struct bp_location *loc;
11748 CORE_ADDR address = 0;
11749 int pspace_num;
11750
11751 address = bl->address;
11752 pspace_num = bl->pspace->num;
11753
11754 /* This is only meaningful if the target is
11755 evaluating conditions and if the user has
11756 opted for condition evaluation on the target's
11757 side. */
11758 if (gdb_evaluates_breakpoint_condition_p ()
11759 || !target_supports_evaluation_of_breakpoint_conditions ())
11760 return;
11761
11762 /* Flag all breakpoint locations with this address and
11763 the same program space as the location
11764 as "its condition has changed". We need to
11765 update the conditions on the target's side. */
11766 ALL_BP_LOCATIONS_AT_ADDR (loc2p, locp, address)
11767 {
11768 loc = *loc2p;
11769
11770 if (!is_breakpoint (loc->owner)
11771 || pspace_num != loc->pspace->num)
11772 continue;
11773
11774 /* Flag the location appropriately. We use a different state to
11775 let everyone know that we already updated the set of locations
11776 with addr bl->address and program space bl->pspace. This is so
11777 we don't have to keep calling these functions just to mark locations
11778 that have already been marked. */
11779 loc->condition_changed = condition_updated;
11780
11781 /* Free the agent expression bytecode as well. We will compute
11782 it later on. */
11783 loc->cond_bytecode.reset ();
11784 }
11785 }
11786 /* Called whether new breakpoints are created, or existing breakpoints
11787 deleted, to update the global location list and recompute which
11788 locations are duplicate of which.
11789
11790 The INSERT_MODE flag determines whether locations may not, may, or
11791 shall be inserted now. See 'enum ugll_insert_mode' for more
11792 info. */
11793
11794 static void
11795 update_global_location_list (enum ugll_insert_mode insert_mode)
11796 {
11797 struct breakpoint *b;
11798 struct bp_location **locp, *loc;
11799 /* Last breakpoint location address that was marked for update. */
11800 CORE_ADDR last_addr = 0;
11801 /* Last breakpoint location program space that was marked for update. */
11802 int last_pspace_num = -1;
11803
11804 /* Used in the duplicates detection below. When iterating over all
11805 bp_locations, points to the first bp_location of a given address.
11806 Breakpoints and watchpoints of different types are never
11807 duplicates of each other. Keep one pointer for each type of
11808 breakpoint/watchpoint, so we only need to loop over all locations
11809 once. */
11810 struct bp_location *bp_loc_first; /* breakpoint */
11811 struct bp_location *wp_loc_first; /* hardware watchpoint */
11812 struct bp_location *awp_loc_first; /* access watchpoint */
11813 struct bp_location *rwp_loc_first; /* read watchpoint */
11814
11815 /* Saved former bp_locations array which we compare against the newly
11816 built bp_locations from the current state of ALL_BREAKPOINTS. */
11817 struct bp_location **old_locp;
11818 unsigned old_locations_count;
11819 gdb::unique_xmalloc_ptr<struct bp_location *> old_locations (bp_locations);
11820
11821 old_locations_count = bp_locations_count;
11822 bp_locations = NULL;
11823 bp_locations_count = 0;
11824
11825 ALL_BREAKPOINTS (b)
11826 for (loc = b->loc; loc; loc = loc->next)
11827 bp_locations_count++;
11828
11829 bp_locations = XNEWVEC (struct bp_location *, bp_locations_count);
11830 locp = bp_locations;
11831 ALL_BREAKPOINTS (b)
11832 for (loc = b->loc; loc; loc = loc->next)
11833 *locp++ = loc;
11834 qsort (bp_locations, bp_locations_count, sizeof (*bp_locations),
11835 bp_locations_compare);
11836
11837 bp_locations_target_extensions_update ();
11838
11839 /* Identify bp_location instances that are no longer present in the
11840 new list, and therefore should be freed. Note that it's not
11841 necessary that those locations should be removed from inferior --
11842 if there's another location at the same address (previously
11843 marked as duplicate), we don't need to remove/insert the
11844 location.
11845
11846 LOCP is kept in sync with OLD_LOCP, each pointing to the current
11847 and former bp_location array state respectively. */
11848
11849 locp = bp_locations;
11850 for (old_locp = old_locations.get ();
11851 old_locp < old_locations.get () + old_locations_count;
11852 old_locp++)
11853 {
11854 struct bp_location *old_loc = *old_locp;
11855 struct bp_location **loc2p;
11856
11857 /* Tells if 'old_loc' is found among the new locations. If
11858 not, we have to free it. */
11859 int found_object = 0;
11860 /* Tells if the location should remain inserted in the target. */
11861 int keep_in_target = 0;
11862 int removed = 0;
11863
11864 /* Skip LOCP entries which will definitely never be needed.
11865 Stop either at or being the one matching OLD_LOC. */
11866 while (locp < bp_locations + bp_locations_count
11867 && (*locp)->address < old_loc->address)
11868 locp++;
11869
11870 for (loc2p = locp;
11871 (loc2p < bp_locations + bp_locations_count
11872 && (*loc2p)->address == old_loc->address);
11873 loc2p++)
11874 {
11875 /* Check if this is a new/duplicated location or a duplicated
11876 location that had its condition modified. If so, we want to send
11877 its condition to the target if evaluation of conditions is taking
11878 place there. */
11879 if ((*loc2p)->condition_changed == condition_modified
11880 && (last_addr != old_loc->address
11881 || last_pspace_num != old_loc->pspace->num))
11882 {
11883 force_breakpoint_reinsertion (*loc2p);
11884 last_pspace_num = old_loc->pspace->num;
11885 }
11886
11887 if (*loc2p == old_loc)
11888 found_object = 1;
11889 }
11890
11891 /* We have already handled this address, update it so that we don't
11892 have to go through updates again. */
11893 last_addr = old_loc->address;
11894
11895 /* Target-side condition evaluation: Handle deleted locations. */
11896 if (!found_object)
11897 force_breakpoint_reinsertion (old_loc);
11898
11899 /* If this location is no longer present, and inserted, look if
11900 there's maybe a new location at the same address. If so,
11901 mark that one inserted, and don't remove this one. This is
11902 needed so that we don't have a time window where a breakpoint
11903 at certain location is not inserted. */
11904
11905 if (old_loc->inserted)
11906 {
11907 /* If the location is inserted now, we might have to remove
11908 it. */
11909
11910 if (found_object && should_be_inserted (old_loc))
11911 {
11912 /* The location is still present in the location list,
11913 and still should be inserted. Don't do anything. */
11914 keep_in_target = 1;
11915 }
11916 else
11917 {
11918 /* This location still exists, but it won't be kept in the
11919 target since it may have been disabled. We proceed to
11920 remove its target-side condition. */
11921
11922 /* The location is either no longer present, or got
11923 disabled. See if there's another location at the
11924 same address, in which case we don't need to remove
11925 this one from the target. */
11926
11927 /* OLD_LOC comes from existing struct breakpoint. */
11928 if (breakpoint_address_is_meaningful (old_loc->owner))
11929 {
11930 for (loc2p = locp;
11931 (loc2p < bp_locations + bp_locations_count
11932 && (*loc2p)->address == old_loc->address);
11933 loc2p++)
11934 {
11935 struct bp_location *loc2 = *loc2p;
11936
11937 if (breakpoint_locations_match (loc2, old_loc))
11938 {
11939 /* Read watchpoint locations are switched to
11940 access watchpoints, if the former are not
11941 supported, but the latter are. */
11942 if (is_hardware_watchpoint (old_loc->owner))
11943 {
11944 gdb_assert (is_hardware_watchpoint (loc2->owner));
11945 loc2->watchpoint_type = old_loc->watchpoint_type;
11946 }
11947
11948 /* loc2 is a duplicated location. We need to check
11949 if it should be inserted in case it will be
11950 unduplicated. */
11951 if (loc2 != old_loc
11952 && unduplicated_should_be_inserted (loc2))
11953 {
11954 swap_insertion (old_loc, loc2);
11955 keep_in_target = 1;
11956 break;
11957 }
11958 }
11959 }
11960 }
11961 }
11962
11963 if (!keep_in_target)
11964 {
11965 if (remove_breakpoint (old_loc))
11966 {
11967 /* This is just about all we can do. We could keep
11968 this location on the global list, and try to
11969 remove it next time, but there's no particular
11970 reason why we will succeed next time.
11971
11972 Note that at this point, old_loc->owner is still
11973 valid, as delete_breakpoint frees the breakpoint
11974 only after calling us. */
11975 printf_filtered (_("warning: Error removing "
11976 "breakpoint %d\n"),
11977 old_loc->owner->number);
11978 }
11979 removed = 1;
11980 }
11981 }
11982
11983 if (!found_object)
11984 {
11985 if (removed && target_is_non_stop_p ()
11986 && need_moribund_for_location_type (old_loc))
11987 {
11988 /* This location was removed from the target. In
11989 non-stop mode, a race condition is possible where
11990 we've removed a breakpoint, but stop events for that
11991 breakpoint are already queued and will arrive later.
11992 We apply an heuristic to be able to distinguish such
11993 SIGTRAPs from other random SIGTRAPs: we keep this
11994 breakpoint location for a bit, and will retire it
11995 after we see some number of events. The theory here
11996 is that reporting of events should, "on the average",
11997 be fair, so after a while we'll see events from all
11998 threads that have anything of interest, and no longer
11999 need to keep this breakpoint location around. We
12000 don't hold locations forever so to reduce chances of
12001 mistaking a non-breakpoint SIGTRAP for a breakpoint
12002 SIGTRAP.
12003
12004 The heuristic failing can be disastrous on
12005 decr_pc_after_break targets.
12006
12007 On decr_pc_after_break targets, like e.g., x86-linux,
12008 if we fail to recognize a late breakpoint SIGTRAP,
12009 because events_till_retirement has reached 0 too
12010 soon, we'll fail to do the PC adjustment, and report
12011 a random SIGTRAP to the user. When the user resumes
12012 the inferior, it will most likely immediately crash
12013 with SIGILL/SIGBUS/SIGSEGV, or worse, get silently
12014 corrupted, because of being resumed e.g., in the
12015 middle of a multi-byte instruction, or skipped a
12016 one-byte instruction. This was actually seen happen
12017 on native x86-linux, and should be less rare on
12018 targets that do not support new thread events, like
12019 remote, due to the heuristic depending on
12020 thread_count.
12021
12022 Mistaking a random SIGTRAP for a breakpoint trap
12023 causes similar symptoms (PC adjustment applied when
12024 it shouldn't), but then again, playing with SIGTRAPs
12025 behind the debugger's back is asking for trouble.
12026
12027 Since hardware watchpoint traps are always
12028 distinguishable from other traps, so we don't need to
12029 apply keep hardware watchpoint moribund locations
12030 around. We simply always ignore hardware watchpoint
12031 traps we can no longer explain. */
12032
12033 old_loc->events_till_retirement = 3 * (thread_count () + 1);
12034 old_loc->owner = NULL;
12035
12036 VEC_safe_push (bp_location_p, moribund_locations, old_loc);
12037 }
12038 else
12039 {
12040 old_loc->owner = NULL;
12041 decref_bp_location (&old_loc);
12042 }
12043 }
12044 }
12045
12046 /* Rescan breakpoints at the same address and section, marking the
12047 first one as "first" and any others as "duplicates". This is so
12048 that the bpt instruction is only inserted once. If we have a
12049 permanent breakpoint at the same place as BPT, make that one the
12050 official one, and the rest as duplicates. Permanent breakpoints
12051 are sorted first for the same address.
12052
12053 Do the same for hardware watchpoints, but also considering the
12054 watchpoint's type (regular/access/read) and length. */
12055
12056 bp_loc_first = NULL;
12057 wp_loc_first = NULL;
12058 awp_loc_first = NULL;
12059 rwp_loc_first = NULL;
12060 ALL_BP_LOCATIONS (loc, locp)
12061 {
12062 /* ALL_BP_LOCATIONS bp_location has LOC->OWNER always
12063 non-NULL. */
12064 struct bp_location **loc_first_p;
12065 b = loc->owner;
12066
12067 if (!unduplicated_should_be_inserted (loc)
12068 || !breakpoint_address_is_meaningful (b)
12069 /* Don't detect duplicate for tracepoint locations because they are
12070 never duplicated. See the comments in field `duplicate' of
12071 `struct bp_location'. */
12072 || is_tracepoint (b))
12073 {
12074 /* Clear the condition modification flag. */
12075 loc->condition_changed = condition_unchanged;
12076 continue;
12077 }
12078
12079 if (b->type == bp_hardware_watchpoint)
12080 loc_first_p = &wp_loc_first;
12081 else if (b->type == bp_read_watchpoint)
12082 loc_first_p = &rwp_loc_first;
12083 else if (b->type == bp_access_watchpoint)
12084 loc_first_p = &awp_loc_first;
12085 else
12086 loc_first_p = &bp_loc_first;
12087
12088 if (*loc_first_p == NULL
12089 || (overlay_debugging && loc->section != (*loc_first_p)->section)
12090 || !breakpoint_locations_match (loc, *loc_first_p))
12091 {
12092 *loc_first_p = loc;
12093 loc->duplicate = 0;
12094
12095 if (is_breakpoint (loc->owner) && loc->condition_changed)
12096 {
12097 loc->needs_update = 1;
12098 /* Clear the condition modification flag. */
12099 loc->condition_changed = condition_unchanged;
12100 }
12101 continue;
12102 }
12103
12104
12105 /* This and the above ensure the invariant that the first location
12106 is not duplicated, and is the inserted one.
12107 All following are marked as duplicated, and are not inserted. */
12108 if (loc->inserted)
12109 swap_insertion (loc, *loc_first_p);
12110 loc->duplicate = 1;
12111
12112 /* Clear the condition modification flag. */
12113 loc->condition_changed = condition_unchanged;
12114 }
12115
12116 if (insert_mode == UGLL_INSERT || breakpoints_should_be_inserted_now ())
12117 {
12118 if (insert_mode != UGLL_DONT_INSERT)
12119 insert_breakpoint_locations ();
12120 else
12121 {
12122 /* Even though the caller told us to not insert new
12123 locations, we may still need to update conditions on the
12124 target's side of breakpoints that were already inserted
12125 if the target is evaluating breakpoint conditions. We
12126 only update conditions for locations that are marked
12127 "needs_update". */
12128 update_inserted_breakpoint_locations ();
12129 }
12130 }
12131
12132 if (insert_mode != UGLL_DONT_INSERT)
12133 download_tracepoint_locations ();
12134 }
12135
12136 void
12137 breakpoint_retire_moribund (void)
12138 {
12139 struct bp_location *loc;
12140 int ix;
12141
12142 for (ix = 0; VEC_iterate (bp_location_p, moribund_locations, ix, loc); ++ix)
12143 if (--(loc->events_till_retirement) == 0)
12144 {
12145 decref_bp_location (&loc);
12146 VEC_unordered_remove (bp_location_p, moribund_locations, ix);
12147 --ix;
12148 }
12149 }
12150
12151 static void
12152 update_global_location_list_nothrow (enum ugll_insert_mode insert_mode)
12153 {
12154
12155 TRY
12156 {
12157 update_global_location_list (insert_mode);
12158 }
12159 CATCH (e, RETURN_MASK_ERROR)
12160 {
12161 }
12162 END_CATCH
12163 }
12164
12165 /* Clear BKP from a BPS. */
12166
12167 static void
12168 bpstat_remove_bp_location (bpstat bps, struct breakpoint *bpt)
12169 {
12170 bpstat bs;
12171
12172 for (bs = bps; bs; bs = bs->next)
12173 if (bs->breakpoint_at == bpt)
12174 {
12175 bs->breakpoint_at = NULL;
12176 bs->old_val = NULL;
12177 /* bs->commands will be freed later. */
12178 }
12179 }
12180
12181 /* Callback for iterate_over_threads. */
12182 static int
12183 bpstat_remove_breakpoint_callback (struct thread_info *th, void *data)
12184 {
12185 struct breakpoint *bpt = (struct breakpoint *) data;
12186
12187 bpstat_remove_bp_location (th->control.stop_bpstat, bpt);
12188 return 0;
12189 }
12190
12191 /* Helper for breakpoint and tracepoint breakpoint_ops->mention
12192 callbacks. */
12193
12194 static void
12195 say_where (struct breakpoint *b)
12196 {
12197 struct value_print_options opts;
12198
12199 get_user_print_options (&opts);
12200
12201 /* i18n: cagney/2005-02-11: Below needs to be merged into a
12202 single string. */
12203 if (b->loc == NULL)
12204 {
12205 /* For pending locations, the output differs slightly based
12206 on b->extra_string. If this is non-NULL, it contains either
12207 a condition or dprintf arguments. */
12208 if (b->extra_string == NULL)
12209 {
12210 printf_filtered (_(" (%s) pending."),
12211 event_location_to_string (b->location.get ()));
12212 }
12213 else if (b->type == bp_dprintf)
12214 {
12215 printf_filtered (_(" (%s,%s) pending."),
12216 event_location_to_string (b->location.get ()),
12217 b->extra_string);
12218 }
12219 else
12220 {
12221 printf_filtered (_(" (%s %s) pending."),
12222 event_location_to_string (b->location.get ()),
12223 b->extra_string);
12224 }
12225 }
12226 else
12227 {
12228 if (opts.addressprint || b->loc->symtab == NULL)
12229 {
12230 printf_filtered (" at ");
12231 fputs_filtered (paddress (b->loc->gdbarch, b->loc->address),
12232 gdb_stdout);
12233 }
12234 if (b->loc->symtab != NULL)
12235 {
12236 /* If there is a single location, we can print the location
12237 more nicely. */
12238 if (b->loc->next == NULL)
12239 printf_filtered (": file %s, line %d.",
12240 symtab_to_filename_for_display (b->loc->symtab),
12241 b->loc->line_number);
12242 else
12243 /* This is not ideal, but each location may have a
12244 different file name, and this at least reflects the
12245 real situation somewhat. */
12246 printf_filtered (": %s.",
12247 event_location_to_string (b->location.get ()));
12248 }
12249
12250 if (b->loc->next)
12251 {
12252 struct bp_location *loc = b->loc;
12253 int n = 0;
12254 for (; loc; loc = loc->next)
12255 ++n;
12256 printf_filtered (" (%d locations)", n);
12257 }
12258 }
12259 }
12260
12261 /* Default bp_location_ops methods. */
12262
12263 static void
12264 bp_location_dtor (struct bp_location *self)
12265 {
12266 xfree (self->function_name);
12267 }
12268
12269 static const struct bp_location_ops bp_location_ops =
12270 {
12271 bp_location_dtor
12272 };
12273
12274 /* Destructor for the breakpoint base class. */
12275
12276 breakpoint::~breakpoint ()
12277 {
12278 xfree (this->cond_string);
12279 xfree (this->extra_string);
12280 xfree (this->filter);
12281 }
12282
12283 static struct bp_location *
12284 base_breakpoint_allocate_location (struct breakpoint *self)
12285 {
12286 return new bp_location (&bp_location_ops, self);
12287 }
12288
12289 static void
12290 base_breakpoint_re_set (struct breakpoint *b)
12291 {
12292 /* Nothing to re-set. */
12293 }
12294
12295 #define internal_error_pure_virtual_called() \
12296 gdb_assert_not_reached ("pure virtual function called")
12297
12298 static int
12299 base_breakpoint_insert_location (struct bp_location *bl)
12300 {
12301 internal_error_pure_virtual_called ();
12302 }
12303
12304 static int
12305 base_breakpoint_remove_location (struct bp_location *bl,
12306 enum remove_bp_reason reason)
12307 {
12308 internal_error_pure_virtual_called ();
12309 }
12310
12311 static int
12312 base_breakpoint_breakpoint_hit (const struct bp_location *bl,
12313 const address_space *aspace,
12314 CORE_ADDR bp_addr,
12315 const struct target_waitstatus *ws)
12316 {
12317 internal_error_pure_virtual_called ();
12318 }
12319
12320 static void
12321 base_breakpoint_check_status (bpstat bs)
12322 {
12323 /* Always stop. */
12324 }
12325
12326 /* A "works_in_software_mode" breakpoint_ops method that just internal
12327 errors. */
12328
12329 static int
12330 base_breakpoint_works_in_software_mode (const struct breakpoint *b)
12331 {
12332 internal_error_pure_virtual_called ();
12333 }
12334
12335 /* A "resources_needed" breakpoint_ops method that just internal
12336 errors. */
12337
12338 static int
12339 base_breakpoint_resources_needed (const struct bp_location *bl)
12340 {
12341 internal_error_pure_virtual_called ();
12342 }
12343
12344 static enum print_stop_action
12345 base_breakpoint_print_it (bpstat bs)
12346 {
12347 internal_error_pure_virtual_called ();
12348 }
12349
12350 static void
12351 base_breakpoint_print_one_detail (const struct breakpoint *self,
12352 struct ui_out *uiout)
12353 {
12354 /* nothing */
12355 }
12356
12357 static void
12358 base_breakpoint_print_mention (struct breakpoint *b)
12359 {
12360 internal_error_pure_virtual_called ();
12361 }
12362
12363 static void
12364 base_breakpoint_print_recreate (struct breakpoint *b, struct ui_file *fp)
12365 {
12366 internal_error_pure_virtual_called ();
12367 }
12368
12369 static void
12370 base_breakpoint_create_sals_from_location
12371 (const struct event_location *location,
12372 struct linespec_result *canonical,
12373 enum bptype type_wanted)
12374 {
12375 internal_error_pure_virtual_called ();
12376 }
12377
12378 static void
12379 base_breakpoint_create_breakpoints_sal (struct gdbarch *gdbarch,
12380 struct linespec_result *c,
12381 gdb::unique_xmalloc_ptr<char> cond_string,
12382 gdb::unique_xmalloc_ptr<char> extra_string,
12383 enum bptype type_wanted,
12384 enum bpdisp disposition,
12385 int thread,
12386 int task, int ignore_count,
12387 const struct breakpoint_ops *o,
12388 int from_tty, int enabled,
12389 int internal, unsigned flags)
12390 {
12391 internal_error_pure_virtual_called ();
12392 }
12393
12394 static std::vector<symtab_and_line>
12395 base_breakpoint_decode_location (struct breakpoint *b,
12396 const struct event_location *location,
12397 struct program_space *search_pspace)
12398 {
12399 internal_error_pure_virtual_called ();
12400 }
12401
12402 /* The default 'explains_signal' method. */
12403
12404 static int
12405 base_breakpoint_explains_signal (struct breakpoint *b, enum gdb_signal sig)
12406 {
12407 return 1;
12408 }
12409
12410 /* The default "after_condition_true" method. */
12411
12412 static void
12413 base_breakpoint_after_condition_true (struct bpstats *bs)
12414 {
12415 /* Nothing to do. */
12416 }
12417
12418 struct breakpoint_ops base_breakpoint_ops =
12419 {
12420 base_breakpoint_allocate_location,
12421 base_breakpoint_re_set,
12422 base_breakpoint_insert_location,
12423 base_breakpoint_remove_location,
12424 base_breakpoint_breakpoint_hit,
12425 base_breakpoint_check_status,
12426 base_breakpoint_resources_needed,
12427 base_breakpoint_works_in_software_mode,
12428 base_breakpoint_print_it,
12429 NULL,
12430 base_breakpoint_print_one_detail,
12431 base_breakpoint_print_mention,
12432 base_breakpoint_print_recreate,
12433 base_breakpoint_create_sals_from_location,
12434 base_breakpoint_create_breakpoints_sal,
12435 base_breakpoint_decode_location,
12436 base_breakpoint_explains_signal,
12437 base_breakpoint_after_condition_true,
12438 };
12439
12440 /* Default breakpoint_ops methods. */
12441
12442 static void
12443 bkpt_re_set (struct breakpoint *b)
12444 {
12445 /* FIXME: is this still reachable? */
12446 if (breakpoint_event_location_empty_p (b))
12447 {
12448 /* Anything without a location can't be re-set. */
12449 delete_breakpoint (b);
12450 return;
12451 }
12452
12453 breakpoint_re_set_default (b);
12454 }
12455
12456 static int
12457 bkpt_insert_location (struct bp_location *bl)
12458 {
12459 CORE_ADDR addr = bl->target_info.reqstd_address;
12460
12461 bl->target_info.kind = breakpoint_kind (bl, &addr);
12462 bl->target_info.placed_address = addr;
12463
12464 if (bl->loc_type == bp_loc_hardware_breakpoint)
12465 return target_insert_hw_breakpoint (bl->gdbarch, &bl->target_info);
12466 else
12467 return target_insert_breakpoint (bl->gdbarch, &bl->target_info);
12468 }
12469
12470 static int
12471 bkpt_remove_location (struct bp_location *bl, enum remove_bp_reason reason)
12472 {
12473 if (bl->loc_type == bp_loc_hardware_breakpoint)
12474 return target_remove_hw_breakpoint (bl->gdbarch, &bl->target_info);
12475 else
12476 return target_remove_breakpoint (bl->gdbarch, &bl->target_info, reason);
12477 }
12478
12479 static int
12480 bkpt_breakpoint_hit (const struct bp_location *bl,
12481 const address_space *aspace, CORE_ADDR bp_addr,
12482 const struct target_waitstatus *ws)
12483 {
12484 if (ws->kind != TARGET_WAITKIND_STOPPED
12485 || ws->value.sig != GDB_SIGNAL_TRAP)
12486 return 0;
12487
12488 if (!breakpoint_address_match (bl->pspace->aspace, bl->address,
12489 aspace, bp_addr))
12490 return 0;
12491
12492 if (overlay_debugging /* unmapped overlay section */
12493 && section_is_overlay (bl->section)
12494 && !section_is_mapped (bl->section))
12495 return 0;
12496
12497 return 1;
12498 }
12499
12500 static int
12501 dprintf_breakpoint_hit (const struct bp_location *bl,
12502 const address_space *aspace, CORE_ADDR bp_addr,
12503 const struct target_waitstatus *ws)
12504 {
12505 if (dprintf_style == dprintf_style_agent
12506 && target_can_run_breakpoint_commands ())
12507 {
12508 /* An agent-style dprintf never causes a stop. If we see a trap
12509 for this address it must be for a breakpoint that happens to
12510 be set at the same address. */
12511 return 0;
12512 }
12513
12514 return bkpt_breakpoint_hit (bl, aspace, bp_addr, ws);
12515 }
12516
12517 static int
12518 bkpt_resources_needed (const struct bp_location *bl)
12519 {
12520 gdb_assert (bl->owner->type == bp_hardware_breakpoint);
12521
12522 return 1;
12523 }
12524
12525 static enum print_stop_action
12526 bkpt_print_it (bpstat bs)
12527 {
12528 struct breakpoint *b;
12529 const struct bp_location *bl;
12530 int bp_temp;
12531 struct ui_out *uiout = current_uiout;
12532
12533 gdb_assert (bs->bp_location_at != NULL);
12534
12535 bl = bs->bp_location_at;
12536 b = bs->breakpoint_at;
12537
12538 bp_temp = b->disposition == disp_del;
12539 if (bl->address != bl->requested_address)
12540 breakpoint_adjustment_warning (bl->requested_address,
12541 bl->address,
12542 b->number, 1);
12543 annotate_breakpoint (b->number);
12544 maybe_print_thread_hit_breakpoint (uiout);
12545
12546 if (bp_temp)
12547 uiout->text ("Temporary breakpoint ");
12548 else
12549 uiout->text ("Breakpoint ");
12550 if (uiout->is_mi_like_p ())
12551 {
12552 uiout->field_string ("reason",
12553 async_reason_lookup (EXEC_ASYNC_BREAKPOINT_HIT));
12554 uiout->field_string ("disp", bpdisp_text (b->disposition));
12555 }
12556 uiout->field_int ("bkptno", b->number);
12557 uiout->text (", ");
12558
12559 return PRINT_SRC_AND_LOC;
12560 }
12561
12562 static void
12563 bkpt_print_mention (struct breakpoint *b)
12564 {
12565 if (current_uiout->is_mi_like_p ())
12566 return;
12567
12568 switch (b->type)
12569 {
12570 case bp_breakpoint:
12571 case bp_gnu_ifunc_resolver:
12572 if (b->disposition == disp_del)
12573 printf_filtered (_("Temporary breakpoint"));
12574 else
12575 printf_filtered (_("Breakpoint"));
12576 printf_filtered (_(" %d"), b->number);
12577 if (b->type == bp_gnu_ifunc_resolver)
12578 printf_filtered (_(" at gnu-indirect-function resolver"));
12579 break;
12580 case bp_hardware_breakpoint:
12581 printf_filtered (_("Hardware assisted breakpoint %d"), b->number);
12582 break;
12583 case bp_dprintf:
12584 printf_filtered (_("Dprintf %d"), b->number);
12585 break;
12586 }
12587
12588 say_where (b);
12589 }
12590
12591 static void
12592 bkpt_print_recreate (struct breakpoint *tp, struct ui_file *fp)
12593 {
12594 if (tp->type == bp_breakpoint && tp->disposition == disp_del)
12595 fprintf_unfiltered (fp, "tbreak");
12596 else if (tp->type == bp_breakpoint)
12597 fprintf_unfiltered (fp, "break");
12598 else if (tp->type == bp_hardware_breakpoint
12599 && tp->disposition == disp_del)
12600 fprintf_unfiltered (fp, "thbreak");
12601 else if (tp->type == bp_hardware_breakpoint)
12602 fprintf_unfiltered (fp, "hbreak");
12603 else
12604 internal_error (__FILE__, __LINE__,
12605 _("unhandled breakpoint type %d"), (int) tp->type);
12606
12607 fprintf_unfiltered (fp, " %s",
12608 event_location_to_string (tp->location.get ()));
12609
12610 /* Print out extra_string if this breakpoint is pending. It might
12611 contain, for example, conditions that were set by the user. */
12612 if (tp->loc == NULL && tp->extra_string != NULL)
12613 fprintf_unfiltered (fp, " %s", tp->extra_string);
12614
12615 print_recreate_thread (tp, fp);
12616 }
12617
12618 static void
12619 bkpt_create_sals_from_location (const struct event_location *location,
12620 struct linespec_result *canonical,
12621 enum bptype type_wanted)
12622 {
12623 create_sals_from_location_default (location, canonical, type_wanted);
12624 }
12625
12626 static void
12627 bkpt_create_breakpoints_sal (struct gdbarch *gdbarch,
12628 struct linespec_result *canonical,
12629 gdb::unique_xmalloc_ptr<char> cond_string,
12630 gdb::unique_xmalloc_ptr<char> extra_string,
12631 enum bptype type_wanted,
12632 enum bpdisp disposition,
12633 int thread,
12634 int task, int ignore_count,
12635 const struct breakpoint_ops *ops,
12636 int from_tty, int enabled,
12637 int internal, unsigned flags)
12638 {
12639 create_breakpoints_sal_default (gdbarch, canonical,
12640 std::move (cond_string),
12641 std::move (extra_string),
12642 type_wanted,
12643 disposition, thread, task,
12644 ignore_count, ops, from_tty,
12645 enabled, internal, flags);
12646 }
12647
12648 static std::vector<symtab_and_line>
12649 bkpt_decode_location (struct breakpoint *b,
12650 const struct event_location *location,
12651 struct program_space *search_pspace)
12652 {
12653 return decode_location_default (b, location, search_pspace);
12654 }
12655
12656 /* Virtual table for internal breakpoints. */
12657
12658 static void
12659 internal_bkpt_re_set (struct breakpoint *b)
12660 {
12661 switch (b->type)
12662 {
12663 /* Delete overlay event and longjmp master breakpoints; they
12664 will be reset later by breakpoint_re_set. */
12665 case bp_overlay_event:
12666 case bp_longjmp_master:
12667 case bp_std_terminate_master:
12668 case bp_exception_master:
12669 delete_breakpoint (b);
12670 break;
12671
12672 /* This breakpoint is special, it's set up when the inferior
12673 starts and we really don't want to touch it. */
12674 case bp_shlib_event:
12675
12676 /* Like bp_shlib_event, this breakpoint type is special. Once
12677 it is set up, we do not want to touch it. */
12678 case bp_thread_event:
12679 break;
12680 }
12681 }
12682
12683 static void
12684 internal_bkpt_check_status (bpstat bs)
12685 {
12686 if (bs->breakpoint_at->type == bp_shlib_event)
12687 {
12688 /* If requested, stop when the dynamic linker notifies GDB of
12689 events. This allows the user to get control and place
12690 breakpoints in initializer routines for dynamically loaded
12691 objects (among other things). */
12692 bs->stop = stop_on_solib_events;
12693 bs->print = stop_on_solib_events;
12694 }
12695 else
12696 bs->stop = 0;
12697 }
12698
12699 static enum print_stop_action
12700 internal_bkpt_print_it (bpstat bs)
12701 {
12702 struct breakpoint *b;
12703
12704 b = bs->breakpoint_at;
12705
12706 switch (b->type)
12707 {
12708 case bp_shlib_event:
12709 /* Did we stop because the user set the stop_on_solib_events
12710 variable? (If so, we report this as a generic, "Stopped due
12711 to shlib event" message.) */
12712 print_solib_event (0);
12713 break;
12714
12715 case bp_thread_event:
12716 /* Not sure how we will get here.
12717 GDB should not stop for these breakpoints. */
12718 printf_filtered (_("Thread Event Breakpoint: gdb should not stop!\n"));
12719 break;
12720
12721 case bp_overlay_event:
12722 /* By analogy with the thread event, GDB should not stop for these. */
12723 printf_filtered (_("Overlay Event Breakpoint: gdb should not stop!\n"));
12724 break;
12725
12726 case bp_longjmp_master:
12727 /* These should never be enabled. */
12728 printf_filtered (_("Longjmp Master Breakpoint: gdb should not stop!\n"));
12729 break;
12730
12731 case bp_std_terminate_master:
12732 /* These should never be enabled. */
12733 printf_filtered (_("std::terminate Master Breakpoint: "
12734 "gdb should not stop!\n"));
12735 break;
12736
12737 case bp_exception_master:
12738 /* These should never be enabled. */
12739 printf_filtered (_("Exception Master Breakpoint: "
12740 "gdb should not stop!\n"));
12741 break;
12742 }
12743
12744 return PRINT_NOTHING;
12745 }
12746
12747 static void
12748 internal_bkpt_print_mention (struct breakpoint *b)
12749 {
12750 /* Nothing to mention. These breakpoints are internal. */
12751 }
12752
12753 /* Virtual table for momentary breakpoints */
12754
12755 static void
12756 momentary_bkpt_re_set (struct breakpoint *b)
12757 {
12758 /* Keep temporary breakpoints, which can be encountered when we step
12759 over a dlopen call and solib_add is resetting the breakpoints.
12760 Otherwise these should have been blown away via the cleanup chain
12761 or by breakpoint_init_inferior when we rerun the executable. */
12762 }
12763
12764 static void
12765 momentary_bkpt_check_status (bpstat bs)
12766 {
12767 /* Nothing. The point of these breakpoints is causing a stop. */
12768 }
12769
12770 static enum print_stop_action
12771 momentary_bkpt_print_it (bpstat bs)
12772 {
12773 return PRINT_UNKNOWN;
12774 }
12775
12776 static void
12777 momentary_bkpt_print_mention (struct breakpoint *b)
12778 {
12779 /* Nothing to mention. These breakpoints are internal. */
12780 }
12781
12782 /* Ensure INITIATING_FRAME is cleared when no such breakpoint exists.
12783
12784 It gets cleared already on the removal of the first one of such placed
12785 breakpoints. This is OK as they get all removed altogether. */
12786
12787 longjmp_breakpoint::~longjmp_breakpoint ()
12788 {
12789 thread_info *tp = find_thread_global_id (this->thread);
12790
12791 if (tp != NULL)
12792 tp->initiating_frame = null_frame_id;
12793 }
12794
12795 /* Specific methods for probe breakpoints. */
12796
12797 static int
12798 bkpt_probe_insert_location (struct bp_location *bl)
12799 {
12800 int v = bkpt_insert_location (bl);
12801
12802 if (v == 0)
12803 {
12804 /* The insertion was successful, now let's set the probe's semaphore
12805 if needed. */
12806 bl->probe.prob->set_semaphore (bl->probe.objfile, bl->gdbarch);
12807 }
12808
12809 return v;
12810 }
12811
12812 static int
12813 bkpt_probe_remove_location (struct bp_location *bl,
12814 enum remove_bp_reason reason)
12815 {
12816 /* Let's clear the semaphore before removing the location. */
12817 bl->probe.prob->clear_semaphore (bl->probe.objfile, bl->gdbarch);
12818
12819 return bkpt_remove_location (bl, reason);
12820 }
12821
12822 static void
12823 bkpt_probe_create_sals_from_location (const struct event_location *location,
12824 struct linespec_result *canonical,
12825 enum bptype type_wanted)
12826 {
12827 struct linespec_sals lsal;
12828
12829 lsal.sals = parse_probes (location, NULL, canonical);
12830 lsal.canonical
12831 = xstrdup (event_location_to_string (canonical->location.get ()));
12832 canonical->lsals.push_back (std::move (lsal));
12833 }
12834
12835 static std::vector<symtab_and_line>
12836 bkpt_probe_decode_location (struct breakpoint *b,
12837 const struct event_location *location,
12838 struct program_space *search_pspace)
12839 {
12840 std::vector<symtab_and_line> sals = parse_probes (location, search_pspace, NULL);
12841 if (sals.empty ())
12842 error (_("probe not found"));
12843 return sals;
12844 }
12845
12846 /* The breakpoint_ops structure to be used in tracepoints. */
12847
12848 static void
12849 tracepoint_re_set (struct breakpoint *b)
12850 {
12851 breakpoint_re_set_default (b);
12852 }
12853
12854 static int
12855 tracepoint_breakpoint_hit (const struct bp_location *bl,
12856 const address_space *aspace, CORE_ADDR bp_addr,
12857 const struct target_waitstatus *ws)
12858 {
12859 /* By definition, the inferior does not report stops at
12860 tracepoints. */
12861 return 0;
12862 }
12863
12864 static void
12865 tracepoint_print_one_detail (const struct breakpoint *self,
12866 struct ui_out *uiout)
12867 {
12868 struct tracepoint *tp = (struct tracepoint *) self;
12869 if (!tp->static_trace_marker_id.empty ())
12870 {
12871 gdb_assert (self->type == bp_static_tracepoint);
12872
12873 uiout->text ("\tmarker id is ");
12874 uiout->field_string ("static-tracepoint-marker-string-id",
12875 tp->static_trace_marker_id);
12876 uiout->text ("\n");
12877 }
12878 }
12879
12880 static void
12881 tracepoint_print_mention (struct breakpoint *b)
12882 {
12883 if (current_uiout->is_mi_like_p ())
12884 return;
12885
12886 switch (b->type)
12887 {
12888 case bp_tracepoint:
12889 printf_filtered (_("Tracepoint"));
12890 printf_filtered (_(" %d"), b->number);
12891 break;
12892 case bp_fast_tracepoint:
12893 printf_filtered (_("Fast tracepoint"));
12894 printf_filtered (_(" %d"), b->number);
12895 break;
12896 case bp_static_tracepoint:
12897 printf_filtered (_("Static tracepoint"));
12898 printf_filtered (_(" %d"), b->number);
12899 break;
12900 default:
12901 internal_error (__FILE__, __LINE__,
12902 _("unhandled tracepoint type %d"), (int) b->type);
12903 }
12904
12905 say_where (b);
12906 }
12907
12908 static void
12909 tracepoint_print_recreate (struct breakpoint *self, struct ui_file *fp)
12910 {
12911 struct tracepoint *tp = (struct tracepoint *) self;
12912
12913 if (self->type == bp_fast_tracepoint)
12914 fprintf_unfiltered (fp, "ftrace");
12915 else if (self->type == bp_static_tracepoint)
12916 fprintf_unfiltered (fp, "strace");
12917 else if (self->type == bp_tracepoint)
12918 fprintf_unfiltered (fp, "trace");
12919 else
12920 internal_error (__FILE__, __LINE__,
12921 _("unhandled tracepoint type %d"), (int) self->type);
12922
12923 fprintf_unfiltered (fp, " %s",
12924 event_location_to_string (self->location.get ()));
12925 print_recreate_thread (self, fp);
12926
12927 if (tp->pass_count)
12928 fprintf_unfiltered (fp, " passcount %d\n", tp->pass_count);
12929 }
12930
12931 static void
12932 tracepoint_create_sals_from_location (const struct event_location *location,
12933 struct linespec_result *canonical,
12934 enum bptype type_wanted)
12935 {
12936 create_sals_from_location_default (location, canonical, type_wanted);
12937 }
12938
12939 static void
12940 tracepoint_create_breakpoints_sal (struct gdbarch *gdbarch,
12941 struct linespec_result *canonical,
12942 gdb::unique_xmalloc_ptr<char> cond_string,
12943 gdb::unique_xmalloc_ptr<char> extra_string,
12944 enum bptype type_wanted,
12945 enum bpdisp disposition,
12946 int thread,
12947 int task, int ignore_count,
12948 const struct breakpoint_ops *ops,
12949 int from_tty, int enabled,
12950 int internal, unsigned flags)
12951 {
12952 create_breakpoints_sal_default (gdbarch, canonical,
12953 std::move (cond_string),
12954 std::move (extra_string),
12955 type_wanted,
12956 disposition, thread, task,
12957 ignore_count, ops, from_tty,
12958 enabled, internal, flags);
12959 }
12960
12961 static std::vector<symtab_and_line>
12962 tracepoint_decode_location (struct breakpoint *b,
12963 const struct event_location *location,
12964 struct program_space *search_pspace)
12965 {
12966 return decode_location_default (b, location, search_pspace);
12967 }
12968
12969 struct breakpoint_ops tracepoint_breakpoint_ops;
12970
12971 /* The breakpoint_ops structure to be use on tracepoints placed in a
12972 static probe. */
12973
12974 static void
12975 tracepoint_probe_create_sals_from_location
12976 (const struct event_location *location,
12977 struct linespec_result *canonical,
12978 enum bptype type_wanted)
12979 {
12980 /* We use the same method for breakpoint on probes. */
12981 bkpt_probe_create_sals_from_location (location, canonical, type_wanted);
12982 }
12983
12984 static std::vector<symtab_and_line>
12985 tracepoint_probe_decode_location (struct breakpoint *b,
12986 const struct event_location *location,
12987 struct program_space *search_pspace)
12988 {
12989 /* We use the same method for breakpoint on probes. */
12990 return bkpt_probe_decode_location (b, location, search_pspace);
12991 }
12992
12993 static struct breakpoint_ops tracepoint_probe_breakpoint_ops;
12994
12995 /* Dprintf breakpoint_ops methods. */
12996
12997 static void
12998 dprintf_re_set (struct breakpoint *b)
12999 {
13000 breakpoint_re_set_default (b);
13001
13002 /* extra_string should never be non-NULL for dprintf. */
13003 gdb_assert (b->extra_string != NULL);
13004
13005 /* 1 - connect to target 1, that can run breakpoint commands.
13006 2 - create a dprintf, which resolves fine.
13007 3 - disconnect from target 1
13008 4 - connect to target 2, that can NOT run breakpoint commands.
13009
13010 After steps #3/#4, you'll want the dprintf command list to
13011 be updated, because target 1 and 2 may well return different
13012 answers for target_can_run_breakpoint_commands().
13013 Given absence of finer grained resetting, we get to do
13014 it all the time. */
13015 if (b->extra_string != NULL)
13016 update_dprintf_command_list (b);
13017 }
13018
13019 /* Implement the "print_recreate" breakpoint_ops method for dprintf. */
13020
13021 static void
13022 dprintf_print_recreate (struct breakpoint *tp, struct ui_file *fp)
13023 {
13024 fprintf_unfiltered (fp, "dprintf %s,%s",
13025 event_location_to_string (tp->location.get ()),
13026 tp->extra_string);
13027 print_recreate_thread (tp, fp);
13028 }
13029
13030 /* Implement the "after_condition_true" breakpoint_ops method for
13031 dprintf.
13032
13033 dprintf's are implemented with regular commands in their command
13034 list, but we run the commands here instead of before presenting the
13035 stop to the user, as dprintf's don't actually cause a stop. This
13036 also makes it so that the commands of multiple dprintfs at the same
13037 address are all handled. */
13038
13039 static void
13040 dprintf_after_condition_true (struct bpstats *bs)
13041 {
13042 struct bpstats tmp_bs;
13043 struct bpstats *tmp_bs_p = &tmp_bs;
13044
13045 /* dprintf's never cause a stop. This wasn't set in the
13046 check_status hook instead because that would make the dprintf's
13047 condition not be evaluated. */
13048 bs->stop = 0;
13049
13050 /* Run the command list here. Take ownership of it instead of
13051 copying. We never want these commands to run later in
13052 bpstat_do_actions, if a breakpoint that causes a stop happens to
13053 be set at same address as this dprintf, or even if running the
13054 commands here throws. */
13055 tmp_bs.commands = bs->commands;
13056 bs->commands = NULL;
13057
13058 bpstat_do_actions_1 (&tmp_bs_p);
13059
13060 /* 'tmp_bs.commands' will usually be NULL by now, but
13061 bpstat_do_actions_1 may return early without processing the whole
13062 list. */
13063 }
13064
13065 /* The breakpoint_ops structure to be used on static tracepoints with
13066 markers (`-m'). */
13067
13068 static void
13069 strace_marker_create_sals_from_location (const struct event_location *location,
13070 struct linespec_result *canonical,
13071 enum bptype type_wanted)
13072 {
13073 struct linespec_sals lsal;
13074 const char *arg_start, *arg;
13075
13076 arg = arg_start = get_linespec_location (location)->spec_string;
13077 lsal.sals = decode_static_tracepoint_spec (&arg);
13078
13079 std::string str (arg_start, arg - arg_start);
13080 const char *ptr = str.c_str ();
13081 canonical->location
13082 = new_linespec_location (&ptr, symbol_name_match_type::FULL);
13083
13084 lsal.canonical
13085 = xstrdup (event_location_to_string (canonical->location.get ()));
13086 canonical->lsals.push_back (std::move (lsal));
13087 }
13088
13089 static void
13090 strace_marker_create_breakpoints_sal (struct gdbarch *gdbarch,
13091 struct linespec_result *canonical,
13092 gdb::unique_xmalloc_ptr<char> cond_string,
13093 gdb::unique_xmalloc_ptr<char> extra_string,
13094 enum bptype type_wanted,
13095 enum bpdisp disposition,
13096 int thread,
13097 int task, int ignore_count,
13098 const struct breakpoint_ops *ops,
13099 int from_tty, int enabled,
13100 int internal, unsigned flags)
13101 {
13102 const linespec_sals &lsal = canonical->lsals[0];
13103
13104 /* If the user is creating a static tracepoint by marker id
13105 (strace -m MARKER_ID), then store the sals index, so that
13106 breakpoint_re_set can try to match up which of the newly
13107 found markers corresponds to this one, and, don't try to
13108 expand multiple locations for each sal, given than SALS
13109 already should contain all sals for MARKER_ID. */
13110
13111 for (size_t i = 0; i < lsal.sals.size (); i++)
13112 {
13113 event_location_up location
13114 = copy_event_location (canonical->location.get ());
13115
13116 std::unique_ptr<tracepoint> tp (new tracepoint ());
13117 init_breakpoint_sal (tp.get (), gdbarch, lsal.sals[i],
13118 std::move (location), NULL,
13119 std::move (cond_string),
13120 std::move (extra_string),
13121 type_wanted, disposition,
13122 thread, task, ignore_count, ops,
13123 from_tty, enabled, internal, flags,
13124 canonical->special_display);
13125 /* Given that its possible to have multiple markers with
13126 the same string id, if the user is creating a static
13127 tracepoint by marker id ("strace -m MARKER_ID"), then
13128 store the sals index, so that breakpoint_re_set can
13129 try to match up which of the newly found markers
13130 corresponds to this one */
13131 tp->static_trace_marker_id_idx = i;
13132
13133 install_breakpoint (internal, std::move (tp), 0);
13134 }
13135 }
13136
13137 static std::vector<symtab_and_line>
13138 strace_marker_decode_location (struct breakpoint *b,
13139 const struct event_location *location,
13140 struct program_space *search_pspace)
13141 {
13142 struct tracepoint *tp = (struct tracepoint *) b;
13143 const char *s = get_linespec_location (location)->spec_string;
13144
13145 std::vector<symtab_and_line> sals = decode_static_tracepoint_spec (&s);
13146 if (sals.size () > tp->static_trace_marker_id_idx)
13147 {
13148 sals[0] = sals[tp->static_trace_marker_id_idx];
13149 sals.resize (1);
13150 return sals;
13151 }
13152 else
13153 error (_("marker %s not found"), tp->static_trace_marker_id.c_str ());
13154 }
13155
13156 static struct breakpoint_ops strace_marker_breakpoint_ops;
13157
13158 static int
13159 strace_marker_p (struct breakpoint *b)
13160 {
13161 return b->ops == &strace_marker_breakpoint_ops;
13162 }
13163
13164 /* Delete a breakpoint and clean up all traces of it in the data
13165 structures. */
13166
13167 void
13168 delete_breakpoint (struct breakpoint *bpt)
13169 {
13170 struct breakpoint *b;
13171
13172 gdb_assert (bpt != NULL);
13173
13174 /* Has this bp already been deleted? This can happen because
13175 multiple lists can hold pointers to bp's. bpstat lists are
13176 especial culprits.
13177
13178 One example of this happening is a watchpoint's scope bp. When
13179 the scope bp triggers, we notice that the watchpoint is out of
13180 scope, and delete it. We also delete its scope bp. But the
13181 scope bp is marked "auto-deleting", and is already on a bpstat.
13182 That bpstat is then checked for auto-deleting bp's, which are
13183 deleted.
13184
13185 A real solution to this problem might involve reference counts in
13186 bp's, and/or giving them pointers back to their referencing
13187 bpstat's, and teaching delete_breakpoint to only free a bp's
13188 storage when no more references were extent. A cheaper bandaid
13189 was chosen. */
13190 if (bpt->type == bp_none)
13191 return;
13192
13193 /* At least avoid this stale reference until the reference counting
13194 of breakpoints gets resolved. */
13195 if (bpt->related_breakpoint != bpt)
13196 {
13197 struct breakpoint *related;
13198 struct watchpoint *w;
13199
13200 if (bpt->type == bp_watchpoint_scope)
13201 w = (struct watchpoint *) bpt->related_breakpoint;
13202 else if (bpt->related_breakpoint->type == bp_watchpoint_scope)
13203 w = (struct watchpoint *) bpt;
13204 else
13205 w = NULL;
13206 if (w != NULL)
13207 watchpoint_del_at_next_stop (w);
13208
13209 /* Unlink bpt from the bpt->related_breakpoint ring. */
13210 for (related = bpt; related->related_breakpoint != bpt;
13211 related = related->related_breakpoint);
13212 related->related_breakpoint = bpt->related_breakpoint;
13213 bpt->related_breakpoint = bpt;
13214 }
13215
13216 /* watch_command_1 creates a watchpoint but only sets its number if
13217 update_watchpoint succeeds in creating its bp_locations. If there's
13218 a problem in that process, we'll be asked to delete the half-created
13219 watchpoint. In that case, don't announce the deletion. */
13220 if (bpt->number)
13221 gdb::observers::breakpoint_deleted.notify (bpt);
13222
13223 if (breakpoint_chain == bpt)
13224 breakpoint_chain = bpt->next;
13225
13226 ALL_BREAKPOINTS (b)
13227 if (b->next == bpt)
13228 {
13229 b->next = bpt->next;
13230 break;
13231 }
13232
13233 /* Be sure no bpstat's are pointing at the breakpoint after it's
13234 been freed. */
13235 /* FIXME, how can we find all bpstat's? We just check stop_bpstat
13236 in all threads for now. Note that we cannot just remove bpstats
13237 pointing at bpt from the stop_bpstat list entirely, as breakpoint
13238 commands are associated with the bpstat; if we remove it here,
13239 then the later call to bpstat_do_actions (&stop_bpstat); in
13240 event-top.c won't do anything, and temporary breakpoints with
13241 commands won't work. */
13242
13243 iterate_over_threads (bpstat_remove_breakpoint_callback, bpt);
13244
13245 /* Now that breakpoint is removed from breakpoint list, update the
13246 global location list. This will remove locations that used to
13247 belong to this breakpoint. Do this before freeing the breakpoint
13248 itself, since remove_breakpoint looks at location's owner. It
13249 might be better design to have location completely
13250 self-contained, but it's not the case now. */
13251 update_global_location_list (UGLL_DONT_INSERT);
13252
13253 /* On the chance that someone will soon try again to delete this
13254 same bp, we mark it as deleted before freeing its storage. */
13255 bpt->type = bp_none;
13256 delete bpt;
13257 }
13258
13259 /* Iterator function to call a user-provided callback function once
13260 for each of B and its related breakpoints. */
13261
13262 static void
13263 iterate_over_related_breakpoints (struct breakpoint *b,
13264 gdb::function_view<void (breakpoint *)> function)
13265 {
13266 struct breakpoint *related;
13267
13268 related = b;
13269 do
13270 {
13271 struct breakpoint *next;
13272
13273 /* FUNCTION may delete RELATED. */
13274 next = related->related_breakpoint;
13275
13276 if (next == related)
13277 {
13278 /* RELATED is the last ring entry. */
13279 function (related);
13280
13281 /* FUNCTION may have deleted it, so we'd never reach back to
13282 B. There's nothing left to do anyway, so just break
13283 out. */
13284 break;
13285 }
13286 else
13287 function (related);
13288
13289 related = next;
13290 }
13291 while (related != b);
13292 }
13293
13294 static void
13295 delete_command (const char *arg, int from_tty)
13296 {
13297 struct breakpoint *b, *b_tmp;
13298
13299 dont_repeat ();
13300
13301 if (arg == 0)
13302 {
13303 int breaks_to_delete = 0;
13304
13305 /* Delete all breakpoints if no argument. Do not delete
13306 internal breakpoints, these have to be deleted with an
13307 explicit breakpoint number argument. */
13308 ALL_BREAKPOINTS (b)
13309 if (user_breakpoint_p (b))
13310 {
13311 breaks_to_delete = 1;
13312 break;
13313 }
13314
13315 /* Ask user only if there are some breakpoints to delete. */
13316 if (!from_tty
13317 || (breaks_to_delete && query (_("Delete all breakpoints? "))))
13318 {
13319 ALL_BREAKPOINTS_SAFE (b, b_tmp)
13320 if (user_breakpoint_p (b))
13321 delete_breakpoint (b);
13322 }
13323 }
13324 else
13325 map_breakpoint_numbers
13326 (arg, [&] (breakpoint *b)
13327 {
13328 iterate_over_related_breakpoints (b, delete_breakpoint);
13329 });
13330 }
13331
13332 /* Return true if all locations of B bound to PSPACE are pending. If
13333 PSPACE is NULL, all locations of all program spaces are
13334 considered. */
13335
13336 static int
13337 all_locations_are_pending (struct breakpoint *b, struct program_space *pspace)
13338 {
13339 struct bp_location *loc;
13340
13341 for (loc = b->loc; loc != NULL; loc = loc->next)
13342 if ((pspace == NULL
13343 || loc->pspace == pspace)
13344 && !loc->shlib_disabled
13345 && !loc->pspace->executing_startup)
13346 return 0;
13347 return 1;
13348 }
13349
13350 /* Subroutine of update_breakpoint_locations to simplify it.
13351 Return non-zero if multiple fns in list LOC have the same name.
13352 Null names are ignored. */
13353
13354 static int
13355 ambiguous_names_p (struct bp_location *loc)
13356 {
13357 struct bp_location *l;
13358 htab_t htab = htab_create_alloc (13, htab_hash_string, streq_hash, NULL,
13359 xcalloc, xfree);
13360
13361 for (l = loc; l != NULL; l = l->next)
13362 {
13363 const char **slot;
13364 const char *name = l->function_name;
13365
13366 /* Allow for some names to be NULL, ignore them. */
13367 if (name == NULL)
13368 continue;
13369
13370 slot = (const char **) htab_find_slot (htab, (const void *) name,
13371 INSERT);
13372 /* NOTE: We can assume slot != NULL here because xcalloc never
13373 returns NULL. */
13374 if (*slot != NULL)
13375 {
13376 htab_delete (htab);
13377 return 1;
13378 }
13379 *slot = name;
13380 }
13381
13382 htab_delete (htab);
13383 return 0;
13384 }
13385
13386 /* When symbols change, it probably means the sources changed as well,
13387 and it might mean the static tracepoint markers are no longer at
13388 the same address or line numbers they used to be at last we
13389 checked. Losing your static tracepoints whenever you rebuild is
13390 undesirable. This function tries to resync/rematch gdb static
13391 tracepoints with the markers on the target, for static tracepoints
13392 that have not been set by marker id. Static tracepoint that have
13393 been set by marker id are reset by marker id in breakpoint_re_set.
13394 The heuristic is:
13395
13396 1) For a tracepoint set at a specific address, look for a marker at
13397 the old PC. If one is found there, assume to be the same marker.
13398 If the name / string id of the marker found is different from the
13399 previous known name, assume that means the user renamed the marker
13400 in the sources, and output a warning.
13401
13402 2) For a tracepoint set at a given line number, look for a marker
13403 at the new address of the old line number. If one is found there,
13404 assume to be the same marker. If the name / string id of the
13405 marker found is different from the previous known name, assume that
13406 means the user renamed the marker in the sources, and output a
13407 warning.
13408
13409 3) If a marker is no longer found at the same address or line, it
13410 may mean the marker no longer exists. But it may also just mean
13411 the code changed a bit. Maybe the user added a few lines of code
13412 that made the marker move up or down (in line number terms). Ask
13413 the target for info about the marker with the string id as we knew
13414 it. If found, update line number and address in the matching
13415 static tracepoint. This will get confused if there's more than one
13416 marker with the same ID (possible in UST, although unadvised
13417 precisely because it confuses tools). */
13418
13419 static struct symtab_and_line
13420 update_static_tracepoint (struct breakpoint *b, struct symtab_and_line sal)
13421 {
13422 struct tracepoint *tp = (struct tracepoint *) b;
13423 struct static_tracepoint_marker marker;
13424 CORE_ADDR pc;
13425
13426 pc = sal.pc;
13427 if (sal.line)
13428 find_line_pc (sal.symtab, sal.line, &pc);
13429
13430 if (target_static_tracepoint_marker_at (pc, &marker))
13431 {
13432 if (tp->static_trace_marker_id != marker.str_id)
13433 warning (_("static tracepoint %d changed probed marker from %s to %s"),
13434 b->number, tp->static_trace_marker_id.c_str (),
13435 marker.str_id.c_str ());
13436
13437 tp->static_trace_marker_id = std::move (marker.str_id);
13438
13439 return sal;
13440 }
13441
13442 /* Old marker wasn't found on target at lineno. Try looking it up
13443 by string ID. */
13444 if (!sal.explicit_pc
13445 && sal.line != 0
13446 && sal.symtab != NULL
13447 && !tp->static_trace_marker_id.empty ())
13448 {
13449 std::vector<static_tracepoint_marker> markers
13450 = target_static_tracepoint_markers_by_strid
13451 (tp->static_trace_marker_id.c_str ());
13452
13453 if (!markers.empty ())
13454 {
13455 struct symbol *sym;
13456 struct static_tracepoint_marker *tpmarker;
13457 struct ui_out *uiout = current_uiout;
13458 struct explicit_location explicit_loc;
13459
13460 tpmarker = &markers[0];
13461
13462 tp->static_trace_marker_id = std::move (tpmarker->str_id);
13463
13464 warning (_("marker for static tracepoint %d (%s) not "
13465 "found at previous line number"),
13466 b->number, tp->static_trace_marker_id.c_str ());
13467
13468 symtab_and_line sal2 = find_pc_line (tpmarker->address, 0);
13469 sym = find_pc_sect_function (tpmarker->address, NULL);
13470 uiout->text ("Now in ");
13471 if (sym)
13472 {
13473 uiout->field_string ("func", SYMBOL_PRINT_NAME (sym));
13474 uiout->text (" at ");
13475 }
13476 uiout->field_string ("file",
13477 symtab_to_filename_for_display (sal2.symtab));
13478 uiout->text (":");
13479
13480 if (uiout->is_mi_like_p ())
13481 {
13482 const char *fullname = symtab_to_fullname (sal2.symtab);
13483
13484 uiout->field_string ("fullname", fullname);
13485 }
13486
13487 uiout->field_int ("line", sal2.line);
13488 uiout->text ("\n");
13489
13490 b->loc->line_number = sal2.line;
13491 b->loc->symtab = sym != NULL ? sal2.symtab : NULL;
13492
13493 b->location.reset (NULL);
13494 initialize_explicit_location (&explicit_loc);
13495 explicit_loc.source_filename
13496 = ASTRDUP (symtab_to_filename_for_display (sal2.symtab));
13497 explicit_loc.line_offset.offset = b->loc->line_number;
13498 explicit_loc.line_offset.sign = LINE_OFFSET_NONE;
13499 b->location = new_explicit_location (&explicit_loc);
13500
13501 /* Might be nice to check if function changed, and warn if
13502 so. */
13503 }
13504 }
13505 return sal;
13506 }
13507
13508 /* Returns 1 iff locations A and B are sufficiently same that
13509 we don't need to report breakpoint as changed. */
13510
13511 static int
13512 locations_are_equal (struct bp_location *a, struct bp_location *b)
13513 {
13514 while (a && b)
13515 {
13516 if (a->address != b->address)
13517 return 0;
13518
13519 if (a->shlib_disabled != b->shlib_disabled)
13520 return 0;
13521
13522 if (a->enabled != b->enabled)
13523 return 0;
13524
13525 a = a->next;
13526 b = b->next;
13527 }
13528
13529 if ((a == NULL) != (b == NULL))
13530 return 0;
13531
13532 return 1;
13533 }
13534
13535 /* Split all locations of B that are bound to PSPACE out of B's
13536 location list to a separate list and return that list's head. If
13537 PSPACE is NULL, hoist out all locations of B. */
13538
13539 static struct bp_location *
13540 hoist_existing_locations (struct breakpoint *b, struct program_space *pspace)
13541 {
13542 struct bp_location head;
13543 struct bp_location *i = b->loc;
13544 struct bp_location **i_link = &b->loc;
13545 struct bp_location *hoisted = &head;
13546
13547 if (pspace == NULL)
13548 {
13549 i = b->loc;
13550 b->loc = NULL;
13551 return i;
13552 }
13553
13554 head.next = NULL;
13555
13556 while (i != NULL)
13557 {
13558 if (i->pspace == pspace)
13559 {
13560 *i_link = i->next;
13561 i->next = NULL;
13562 hoisted->next = i;
13563 hoisted = i;
13564 }
13565 else
13566 i_link = &i->next;
13567 i = *i_link;
13568 }
13569
13570 return head.next;
13571 }
13572
13573 /* Create new breakpoint locations for B (a hardware or software
13574 breakpoint) based on SALS and SALS_END. If SALS_END.NELTS is not
13575 zero, then B is a ranged breakpoint. Only recreates locations for
13576 FILTER_PSPACE. Locations of other program spaces are left
13577 untouched. */
13578
13579 void
13580 update_breakpoint_locations (struct breakpoint *b,
13581 struct program_space *filter_pspace,
13582 gdb::array_view<const symtab_and_line> sals,
13583 gdb::array_view<const symtab_and_line> sals_end)
13584 {
13585 struct bp_location *existing_locations;
13586
13587 if (!sals_end.empty () && (sals.size () != 1 || sals_end.size () != 1))
13588 {
13589 /* Ranged breakpoints have only one start location and one end
13590 location. */
13591 b->enable_state = bp_disabled;
13592 printf_unfiltered (_("Could not reset ranged breakpoint %d: "
13593 "multiple locations found\n"),
13594 b->number);
13595 return;
13596 }
13597
13598 /* If there's no new locations, and all existing locations are
13599 pending, don't do anything. This optimizes the common case where
13600 all locations are in the same shared library, that was unloaded.
13601 We'd like to retain the location, so that when the library is
13602 loaded again, we don't loose the enabled/disabled status of the
13603 individual locations. */
13604 if (all_locations_are_pending (b, filter_pspace) && sals.empty ())
13605 return;
13606
13607 existing_locations = hoist_existing_locations (b, filter_pspace);
13608
13609 for (const auto &sal : sals)
13610 {
13611 struct bp_location *new_loc;
13612
13613 switch_to_program_space_and_thread (sal.pspace);
13614
13615 new_loc = add_location_to_breakpoint (b, &sal);
13616
13617 /* Reparse conditions, they might contain references to the
13618 old symtab. */
13619 if (b->cond_string != NULL)
13620 {
13621 const char *s;
13622
13623 s = b->cond_string;
13624 TRY
13625 {
13626 new_loc->cond = parse_exp_1 (&s, sal.pc,
13627 block_for_pc (sal.pc),
13628 0);
13629 }
13630 CATCH (e, RETURN_MASK_ERROR)
13631 {
13632 warning (_("failed to reevaluate condition "
13633 "for breakpoint %d: %s"),
13634 b->number, e.message);
13635 new_loc->enabled = 0;
13636 }
13637 END_CATCH
13638 }
13639
13640 if (!sals_end.empty ())
13641 {
13642 CORE_ADDR end = find_breakpoint_range_end (sals_end[0]);
13643
13644 new_loc->length = end - sals[0].pc + 1;
13645 }
13646 }
13647
13648 /* If possible, carry over 'disable' status from existing
13649 breakpoints. */
13650 {
13651 struct bp_location *e = existing_locations;
13652 /* If there are multiple breakpoints with the same function name,
13653 e.g. for inline functions, comparing function names won't work.
13654 Instead compare pc addresses; this is just a heuristic as things
13655 may have moved, but in practice it gives the correct answer
13656 often enough until a better solution is found. */
13657 int have_ambiguous_names = ambiguous_names_p (b->loc);
13658
13659 for (; e; e = e->next)
13660 {
13661 if (!e->enabled && e->function_name)
13662 {
13663 struct bp_location *l = b->loc;
13664 if (have_ambiguous_names)
13665 {
13666 for (; l; l = l->next)
13667 if (breakpoint_locations_match (e, l))
13668 {
13669 l->enabled = 0;
13670 break;
13671 }
13672 }
13673 else
13674 {
13675 for (; l; l = l->next)
13676 if (l->function_name
13677 && strcmp (e->function_name, l->function_name) == 0)
13678 {
13679 l->enabled = 0;
13680 break;
13681 }
13682 }
13683 }
13684 }
13685 }
13686
13687 if (!locations_are_equal (existing_locations, b->loc))
13688 gdb::observers::breakpoint_modified.notify (b);
13689 }
13690
13691 /* Find the SaL locations corresponding to the given LOCATION.
13692 On return, FOUND will be 1 if any SaL was found, zero otherwise. */
13693
13694 static std::vector<symtab_and_line>
13695 location_to_sals (struct breakpoint *b, struct event_location *location,
13696 struct program_space *search_pspace, int *found)
13697 {
13698 struct gdb_exception exception = exception_none;
13699
13700 gdb_assert (b->ops != NULL);
13701
13702 std::vector<symtab_and_line> sals;
13703
13704 TRY
13705 {
13706 sals = b->ops->decode_location (b, location, search_pspace);
13707 }
13708 CATCH (e, RETURN_MASK_ERROR)
13709 {
13710 int not_found_and_ok = 0;
13711
13712 exception = e;
13713
13714 /* For pending breakpoints, it's expected that parsing will
13715 fail until the right shared library is loaded. User has
13716 already told to create pending breakpoints and don't need
13717 extra messages. If breakpoint is in bp_shlib_disabled
13718 state, then user already saw the message about that
13719 breakpoint being disabled, and don't want to see more
13720 errors. */
13721 if (e.error == NOT_FOUND_ERROR
13722 && (b->condition_not_parsed
13723 || (b->loc != NULL
13724 && search_pspace != NULL
13725 && b->loc->pspace != search_pspace)
13726 || (b->loc && b->loc->shlib_disabled)
13727 || (b->loc && b->loc->pspace->executing_startup)
13728 || b->enable_state == bp_disabled))
13729 not_found_and_ok = 1;
13730
13731 if (!not_found_and_ok)
13732 {
13733 /* We surely don't want to warn about the same breakpoint
13734 10 times. One solution, implemented here, is disable
13735 the breakpoint on error. Another solution would be to
13736 have separate 'warning emitted' flag. Since this
13737 happens only when a binary has changed, I don't know
13738 which approach is better. */
13739 b->enable_state = bp_disabled;
13740 throw_exception (e);
13741 }
13742 }
13743 END_CATCH
13744
13745 if (exception.reason == 0 || exception.error != NOT_FOUND_ERROR)
13746 {
13747 for (auto &sal : sals)
13748 resolve_sal_pc (&sal);
13749 if (b->condition_not_parsed && b->extra_string != NULL)
13750 {
13751 char *cond_string, *extra_string;
13752 int thread, task;
13753
13754 find_condition_and_thread (b->extra_string, sals[0].pc,
13755 &cond_string, &thread, &task,
13756 &extra_string);
13757 gdb_assert (b->cond_string == NULL);
13758 if (cond_string)
13759 b->cond_string = cond_string;
13760 b->thread = thread;
13761 b->task = task;
13762 if (extra_string)
13763 {
13764 xfree (b->extra_string);
13765 b->extra_string = extra_string;
13766 }
13767 b->condition_not_parsed = 0;
13768 }
13769
13770 if (b->type == bp_static_tracepoint && !strace_marker_p (b))
13771 sals[0] = update_static_tracepoint (b, sals[0]);
13772
13773 *found = 1;
13774 }
13775 else
13776 *found = 0;
13777
13778 return sals;
13779 }
13780
13781 /* The default re_set method, for typical hardware or software
13782 breakpoints. Reevaluate the breakpoint and recreate its
13783 locations. */
13784
13785 static void
13786 breakpoint_re_set_default (struct breakpoint *b)
13787 {
13788 struct program_space *filter_pspace = current_program_space;
13789 std::vector<symtab_and_line> expanded, expanded_end;
13790
13791 int found;
13792 std::vector<symtab_and_line> sals = location_to_sals (b, b->location.get (),
13793 filter_pspace, &found);
13794 if (found)
13795 expanded = std::move (sals);
13796
13797 if (b->location_range_end != NULL)
13798 {
13799 std::vector<symtab_and_line> sals_end
13800 = location_to_sals (b, b->location_range_end.get (),
13801 filter_pspace, &found);
13802 if (found)
13803 expanded_end = std::move (sals_end);
13804 }
13805
13806 update_breakpoint_locations (b, filter_pspace, expanded, expanded_end);
13807 }
13808
13809 /* Default method for creating SALs from an address string. It basically
13810 calls parse_breakpoint_sals. Return 1 for success, zero for failure. */
13811
13812 static void
13813 create_sals_from_location_default (const struct event_location *location,
13814 struct linespec_result *canonical,
13815 enum bptype type_wanted)
13816 {
13817 parse_breakpoint_sals (location, canonical);
13818 }
13819
13820 /* Call create_breakpoints_sal for the given arguments. This is the default
13821 function for the `create_breakpoints_sal' method of
13822 breakpoint_ops. */
13823
13824 static void
13825 create_breakpoints_sal_default (struct gdbarch *gdbarch,
13826 struct linespec_result *canonical,
13827 gdb::unique_xmalloc_ptr<char> cond_string,
13828 gdb::unique_xmalloc_ptr<char> extra_string,
13829 enum bptype type_wanted,
13830 enum bpdisp disposition,
13831 int thread,
13832 int task, int ignore_count,
13833 const struct breakpoint_ops *ops,
13834 int from_tty, int enabled,
13835 int internal, unsigned flags)
13836 {
13837 create_breakpoints_sal (gdbarch, canonical,
13838 std::move (cond_string),
13839 std::move (extra_string),
13840 type_wanted, disposition,
13841 thread, task, ignore_count, ops, from_tty,
13842 enabled, internal, flags);
13843 }
13844
13845 /* Decode the line represented by S by calling decode_line_full. This is the
13846 default function for the `decode_location' method of breakpoint_ops. */
13847
13848 static std::vector<symtab_and_line>
13849 decode_location_default (struct breakpoint *b,
13850 const struct event_location *location,
13851 struct program_space *search_pspace)
13852 {
13853 struct linespec_result canonical;
13854
13855 decode_line_full (location, DECODE_LINE_FUNFIRSTLINE, search_pspace,
13856 (struct symtab *) NULL, 0,
13857 &canonical, multiple_symbols_all,
13858 b->filter);
13859
13860 /* We should get 0 or 1 resulting SALs. */
13861 gdb_assert (canonical.lsals.size () < 2);
13862
13863 if (!canonical.lsals.empty ())
13864 {
13865 const linespec_sals &lsal = canonical.lsals[0];
13866 return std::move (lsal.sals);
13867 }
13868 return {};
13869 }
13870
13871 /* Reset a breakpoint. */
13872
13873 static void
13874 breakpoint_re_set_one (breakpoint *b)
13875 {
13876 input_radix = b->input_radix;
13877 set_language (b->language);
13878
13879 b->ops->re_set (b);
13880 }
13881
13882 /* Re-set breakpoint locations for the current program space.
13883 Locations bound to other program spaces are left untouched. */
13884
13885 void
13886 breakpoint_re_set (void)
13887 {
13888 struct breakpoint *b, *b_tmp;
13889
13890 {
13891 scoped_restore_current_language save_language;
13892 scoped_restore save_input_radix = make_scoped_restore (&input_radix);
13893 scoped_restore_current_pspace_and_thread restore_pspace_thread;
13894
13895 /* Note: we must not try to insert locations until after all
13896 breakpoints have been re-set. Otherwise, e.g., when re-setting
13897 breakpoint 1, we'd insert the locations of breakpoint 2, which
13898 hadn't been re-set yet, and thus may have stale locations. */
13899
13900 ALL_BREAKPOINTS_SAFE (b, b_tmp)
13901 {
13902 TRY
13903 {
13904 breakpoint_re_set_one (b);
13905 }
13906 CATCH (ex, RETURN_MASK_ALL)
13907 {
13908 exception_fprintf (gdb_stderr, ex,
13909 "Error in re-setting breakpoint %d: ",
13910 b->number);
13911 }
13912 END_CATCH
13913 }
13914
13915 jit_breakpoint_re_set ();
13916 }
13917
13918 create_overlay_event_breakpoint ();
13919 create_longjmp_master_breakpoint ();
13920 create_std_terminate_master_breakpoint ();
13921 create_exception_master_breakpoint ();
13922
13923 /* Now we can insert. */
13924 update_global_location_list (UGLL_MAY_INSERT);
13925 }
13926 \f
13927 /* Reset the thread number of this breakpoint:
13928
13929 - If the breakpoint is for all threads, leave it as-is.
13930 - Else, reset it to the current thread for inferior_ptid. */
13931 void
13932 breakpoint_re_set_thread (struct breakpoint *b)
13933 {
13934 if (b->thread != -1)
13935 {
13936 if (in_thread_list (inferior_ptid))
13937 b->thread = ptid_to_global_thread_id (inferior_ptid);
13938
13939 /* We're being called after following a fork. The new fork is
13940 selected as current, and unless this was a vfork will have a
13941 different program space from the original thread. Reset that
13942 as well. */
13943 b->loc->pspace = current_program_space;
13944 }
13945 }
13946
13947 /* Set ignore-count of breakpoint number BPTNUM to COUNT.
13948 If from_tty is nonzero, it prints a message to that effect,
13949 which ends with a period (no newline). */
13950
13951 void
13952 set_ignore_count (int bptnum, int count, int from_tty)
13953 {
13954 struct breakpoint *b;
13955
13956 if (count < 0)
13957 count = 0;
13958
13959 ALL_BREAKPOINTS (b)
13960 if (b->number == bptnum)
13961 {
13962 if (is_tracepoint (b))
13963 {
13964 if (from_tty && count != 0)
13965 printf_filtered (_("Ignore count ignored for tracepoint %d."),
13966 bptnum);
13967 return;
13968 }
13969
13970 b->ignore_count = count;
13971 if (from_tty)
13972 {
13973 if (count == 0)
13974 printf_filtered (_("Will stop next time "
13975 "breakpoint %d is reached."),
13976 bptnum);
13977 else if (count == 1)
13978 printf_filtered (_("Will ignore next crossing of breakpoint %d."),
13979 bptnum);
13980 else
13981 printf_filtered (_("Will ignore next %d "
13982 "crossings of breakpoint %d."),
13983 count, bptnum);
13984 }
13985 gdb::observers::breakpoint_modified.notify (b);
13986 return;
13987 }
13988
13989 error (_("No breakpoint number %d."), bptnum);
13990 }
13991
13992 /* Command to set ignore-count of breakpoint N to COUNT. */
13993
13994 static void
13995 ignore_command (const char *args, int from_tty)
13996 {
13997 const char *p = args;
13998 int num;
13999
14000 if (p == 0)
14001 error_no_arg (_("a breakpoint number"));
14002
14003 num = get_number (&p);
14004 if (num == 0)
14005 error (_("bad breakpoint number: '%s'"), args);
14006 if (*p == 0)
14007 error (_("Second argument (specified ignore-count) is missing."));
14008
14009 set_ignore_count (num,
14010 longest_to_int (value_as_long (parse_and_eval (p))),
14011 from_tty);
14012 if (from_tty)
14013 printf_filtered ("\n");
14014 }
14015 \f
14016
14017 /* Call FUNCTION on each of the breakpoints with numbers in the range
14018 defined by BP_NUM_RANGE (an inclusive range). */
14019
14020 static void
14021 map_breakpoint_number_range (std::pair<int, int> bp_num_range,
14022 gdb::function_view<void (breakpoint *)> function)
14023 {
14024 if (bp_num_range.first == 0)
14025 {
14026 warning (_("bad breakpoint number at or near '%d'"),
14027 bp_num_range.first);
14028 }
14029 else
14030 {
14031 struct breakpoint *b, *tmp;
14032
14033 for (int i = bp_num_range.first; i <= bp_num_range.second; i++)
14034 {
14035 bool match = false;
14036
14037 ALL_BREAKPOINTS_SAFE (b, tmp)
14038 if (b->number == i)
14039 {
14040 match = true;
14041 function (b);
14042 break;
14043 }
14044 if (!match)
14045 printf_unfiltered (_("No breakpoint number %d.\n"), i);
14046 }
14047 }
14048 }
14049
14050 /* Call FUNCTION on each of the breakpoints whose numbers are given in
14051 ARGS. */
14052
14053 static void
14054 map_breakpoint_numbers (const char *args,
14055 gdb::function_view<void (breakpoint *)> function)
14056 {
14057 if (args == NULL || *args == '\0')
14058 error_no_arg (_("one or more breakpoint numbers"));
14059
14060 number_or_range_parser parser (args);
14061
14062 while (!parser.finished ())
14063 {
14064 int num = parser.get_number ();
14065 map_breakpoint_number_range (std::make_pair (num, num), function);
14066 }
14067 }
14068
14069 /* Return the breakpoint location structure corresponding to the
14070 BP_NUM and LOC_NUM values. */
14071
14072 static struct bp_location *
14073 find_location_by_number (int bp_num, int loc_num)
14074 {
14075 struct breakpoint *b;
14076
14077 ALL_BREAKPOINTS (b)
14078 if (b->number == bp_num)
14079 {
14080 break;
14081 }
14082
14083 if (!b || b->number != bp_num)
14084 error (_("Bad breakpoint number '%d'"), bp_num);
14085
14086 if (loc_num == 0)
14087 error (_("Bad breakpoint location number '%d'"), loc_num);
14088
14089 int n = 0;
14090 for (bp_location *loc = b->loc; loc != NULL; loc = loc->next)
14091 if (++n == loc_num)
14092 return loc;
14093
14094 error (_("Bad breakpoint location number '%d'"), loc_num);
14095 }
14096
14097 /* Modes of operation for extract_bp_num. */
14098 enum class extract_bp_kind
14099 {
14100 /* Extracting a breakpoint number. */
14101 bp,
14102
14103 /* Extracting a location number. */
14104 loc,
14105 };
14106
14107 /* Extract a breakpoint or location number (as determined by KIND)
14108 from the string starting at START. TRAILER is a character which
14109 can be found after the number. If you don't want a trailer, use
14110 '\0'. If END_OUT is not NULL, it is set to point after the parsed
14111 string. This always returns a positive integer. */
14112
14113 static int
14114 extract_bp_num (extract_bp_kind kind, const char *start,
14115 int trailer, const char **end_out = NULL)
14116 {
14117 const char *end = start;
14118 int num = get_number_trailer (&end, trailer);
14119 if (num < 0)
14120 error (kind == extract_bp_kind::bp
14121 ? _("Negative breakpoint number '%.*s'")
14122 : _("Negative breakpoint location number '%.*s'"),
14123 int (end - start), start);
14124 if (num == 0)
14125 error (kind == extract_bp_kind::bp
14126 ? _("Bad breakpoint number '%.*s'")
14127 : _("Bad breakpoint location number '%.*s'"),
14128 int (end - start), start);
14129
14130 if (end_out != NULL)
14131 *end_out = end;
14132 return num;
14133 }
14134
14135 /* Extract a breakpoint or location range (as determined by KIND) in
14136 the form NUM1-NUM2 stored at &ARG[arg_offset]. Returns a std::pair
14137 representing the (inclusive) range. The returned pair's elements
14138 are always positive integers. */
14139
14140 static std::pair<int, int>
14141 extract_bp_or_bp_range (extract_bp_kind kind,
14142 const std::string &arg,
14143 std::string::size_type arg_offset)
14144 {
14145 std::pair<int, int> range;
14146 const char *bp_loc = &arg[arg_offset];
14147 std::string::size_type dash = arg.find ('-', arg_offset);
14148 if (dash != std::string::npos)
14149 {
14150 /* bp_loc is a range (x-z). */
14151 if (arg.length () == dash + 1)
14152 error (kind == extract_bp_kind::bp
14153 ? _("Bad breakpoint number at or near: '%s'")
14154 : _("Bad breakpoint location number at or near: '%s'"),
14155 bp_loc);
14156
14157 const char *end;
14158 const char *start_first = bp_loc;
14159 const char *start_second = &arg[dash + 1];
14160 range.first = extract_bp_num (kind, start_first, '-');
14161 range.second = extract_bp_num (kind, start_second, '\0', &end);
14162
14163 if (range.first > range.second)
14164 error (kind == extract_bp_kind::bp
14165 ? _("Inverted breakpoint range at '%.*s'")
14166 : _("Inverted breakpoint location range at '%.*s'"),
14167 int (end - start_first), start_first);
14168 }
14169 else
14170 {
14171 /* bp_loc is a single value. */
14172 range.first = extract_bp_num (kind, bp_loc, '\0');
14173 range.second = range.first;
14174 }
14175 return range;
14176 }
14177
14178 /* Extract the breakpoint/location range specified by ARG. Returns
14179 the breakpoint range in BP_NUM_RANGE, and the location range in
14180 BP_LOC_RANGE.
14181
14182 ARG may be in any of the following forms:
14183
14184 x where 'x' is a breakpoint number.
14185 x-y where 'x' and 'y' specify a breakpoint numbers range.
14186 x.y where 'x' is a breakpoint number and 'y' a location number.
14187 x.y-z where 'x' is a breakpoint number and 'y' and 'z' specify a
14188 location number range.
14189 */
14190
14191 static void
14192 extract_bp_number_and_location (const std::string &arg,
14193 std::pair<int, int> &bp_num_range,
14194 std::pair<int, int> &bp_loc_range)
14195 {
14196 std::string::size_type dot = arg.find ('.');
14197
14198 if (dot != std::string::npos)
14199 {
14200 /* Handle 'x.y' and 'x.y-z' cases. */
14201
14202 if (arg.length () == dot + 1 || dot == 0)
14203 error (_("Bad breakpoint number at or near: '%s'"), arg.c_str ());
14204
14205 bp_num_range.first
14206 = extract_bp_num (extract_bp_kind::bp, arg.c_str (), '.');
14207 bp_num_range.second = bp_num_range.first;
14208
14209 bp_loc_range = extract_bp_or_bp_range (extract_bp_kind::loc,
14210 arg, dot + 1);
14211 }
14212 else
14213 {
14214 /* Handle x and x-y cases. */
14215
14216 bp_num_range = extract_bp_or_bp_range (extract_bp_kind::bp, arg, 0);
14217 bp_loc_range.first = 0;
14218 bp_loc_range.second = 0;
14219 }
14220 }
14221
14222 /* Enable or disable a breakpoint location BP_NUM.LOC_NUM. ENABLE
14223 specifies whether to enable or disable. */
14224
14225 static void
14226 enable_disable_bp_num_loc (int bp_num, int loc_num, bool enable)
14227 {
14228 struct bp_location *loc = find_location_by_number (bp_num, loc_num);
14229 if (loc != NULL)
14230 {
14231 if (loc->enabled != enable)
14232 {
14233 loc->enabled = enable;
14234 mark_breakpoint_location_modified (loc);
14235 }
14236 if (target_supports_enable_disable_tracepoint ()
14237 && current_trace_status ()->running && loc->owner
14238 && is_tracepoint (loc->owner))
14239 target_disable_tracepoint (loc);
14240 }
14241 update_global_location_list (UGLL_DONT_INSERT);
14242 }
14243
14244 /* Enable or disable a range of breakpoint locations. BP_NUM is the
14245 number of the breakpoint, and BP_LOC_RANGE specifies the
14246 (inclusive) range of location numbers of that breakpoint to
14247 enable/disable. ENABLE specifies whether to enable or disable the
14248 location. */
14249
14250 static void
14251 enable_disable_breakpoint_location_range (int bp_num,
14252 std::pair<int, int> &bp_loc_range,
14253 bool enable)
14254 {
14255 for (int i = bp_loc_range.first; i <= bp_loc_range.second; i++)
14256 enable_disable_bp_num_loc (bp_num, i, enable);
14257 }
14258
14259 /* Set ignore-count of breakpoint number BPTNUM to COUNT.
14260 If from_tty is nonzero, it prints a message to that effect,
14261 which ends with a period (no newline). */
14262
14263 void
14264 disable_breakpoint (struct breakpoint *bpt)
14265 {
14266 /* Never disable a watchpoint scope breakpoint; we want to
14267 hit them when we leave scope so we can delete both the
14268 watchpoint and its scope breakpoint at that time. */
14269 if (bpt->type == bp_watchpoint_scope)
14270 return;
14271
14272 bpt->enable_state = bp_disabled;
14273
14274 /* Mark breakpoint locations modified. */
14275 mark_breakpoint_modified (bpt);
14276
14277 if (target_supports_enable_disable_tracepoint ()
14278 && current_trace_status ()->running && is_tracepoint (bpt))
14279 {
14280 struct bp_location *location;
14281
14282 for (location = bpt->loc; location; location = location->next)
14283 target_disable_tracepoint (location);
14284 }
14285
14286 update_global_location_list (UGLL_DONT_INSERT);
14287
14288 gdb::observers::breakpoint_modified.notify (bpt);
14289 }
14290
14291 /* Enable or disable the breakpoint(s) or breakpoint location(s)
14292 specified in ARGS. ARGS may be in any of the formats handled by
14293 extract_bp_number_and_location. ENABLE specifies whether to enable
14294 or disable the breakpoints/locations. */
14295
14296 static void
14297 enable_disable_command (const char *args, int from_tty, bool enable)
14298 {
14299 if (args == 0)
14300 {
14301 struct breakpoint *bpt;
14302
14303 ALL_BREAKPOINTS (bpt)
14304 if (user_breakpoint_p (bpt))
14305 {
14306 if (enable)
14307 enable_breakpoint (bpt);
14308 else
14309 disable_breakpoint (bpt);
14310 }
14311 }
14312 else
14313 {
14314 std::string num = extract_arg (&args);
14315
14316 while (!num.empty ())
14317 {
14318 std::pair<int, int> bp_num_range, bp_loc_range;
14319
14320 extract_bp_number_and_location (num, bp_num_range, bp_loc_range);
14321
14322 if (bp_loc_range.first == bp_loc_range.second
14323 && bp_loc_range.first == 0)
14324 {
14325 /* Handle breakpoint ids with formats 'x' or 'x-z'. */
14326 map_breakpoint_number_range (bp_num_range,
14327 enable
14328 ? enable_breakpoint
14329 : disable_breakpoint);
14330 }
14331 else
14332 {
14333 /* Handle breakpoint ids with formats 'x.y' or
14334 'x.y-z'. */
14335 enable_disable_breakpoint_location_range
14336 (bp_num_range.first, bp_loc_range, enable);
14337 }
14338 num = extract_arg (&args);
14339 }
14340 }
14341 }
14342
14343 /* The disable command disables the specified breakpoints/locations
14344 (or all defined breakpoints) so they're no longer effective in
14345 stopping the inferior. ARGS may be in any of the forms defined in
14346 extract_bp_number_and_location. */
14347
14348 static void
14349 disable_command (const char *args, int from_tty)
14350 {
14351 enable_disable_command (args, from_tty, false);
14352 }
14353
14354 static void
14355 enable_breakpoint_disp (struct breakpoint *bpt, enum bpdisp disposition,
14356 int count)
14357 {
14358 int target_resources_ok;
14359
14360 if (bpt->type == bp_hardware_breakpoint)
14361 {
14362 int i;
14363 i = hw_breakpoint_used_count ();
14364 target_resources_ok =
14365 target_can_use_hardware_watchpoint (bp_hardware_breakpoint,
14366 i + 1, 0);
14367 if (target_resources_ok == 0)
14368 error (_("No hardware breakpoint support in the target."));
14369 else if (target_resources_ok < 0)
14370 error (_("Hardware breakpoints used exceeds limit."));
14371 }
14372
14373 if (is_watchpoint (bpt))
14374 {
14375 /* Initialize it just to avoid a GCC false warning. */
14376 enum enable_state orig_enable_state = bp_disabled;
14377
14378 TRY
14379 {
14380 struct watchpoint *w = (struct watchpoint *) bpt;
14381
14382 orig_enable_state = bpt->enable_state;
14383 bpt->enable_state = bp_enabled;
14384 update_watchpoint (w, 1 /* reparse */);
14385 }
14386 CATCH (e, RETURN_MASK_ALL)
14387 {
14388 bpt->enable_state = orig_enable_state;
14389 exception_fprintf (gdb_stderr, e, _("Cannot enable watchpoint %d: "),
14390 bpt->number);
14391 return;
14392 }
14393 END_CATCH
14394 }
14395
14396 bpt->enable_state = bp_enabled;
14397
14398 /* Mark breakpoint locations modified. */
14399 mark_breakpoint_modified (bpt);
14400
14401 if (target_supports_enable_disable_tracepoint ()
14402 && current_trace_status ()->running && is_tracepoint (bpt))
14403 {
14404 struct bp_location *location;
14405
14406 for (location = bpt->loc; location; location = location->next)
14407 target_enable_tracepoint (location);
14408 }
14409
14410 bpt->disposition = disposition;
14411 bpt->enable_count = count;
14412 update_global_location_list (UGLL_MAY_INSERT);
14413
14414 gdb::observers::breakpoint_modified.notify (bpt);
14415 }
14416
14417
14418 void
14419 enable_breakpoint (struct breakpoint *bpt)
14420 {
14421 enable_breakpoint_disp (bpt, bpt->disposition, 0);
14422 }
14423
14424 /* The enable command enables the specified breakpoints/locations (or
14425 all defined breakpoints) so they once again become (or continue to
14426 be) effective in stopping the inferior. ARGS may be in any of the
14427 forms defined in extract_bp_number_and_location. */
14428
14429 static void
14430 enable_command (const char *args, int from_tty)
14431 {
14432 enable_disable_command (args, from_tty, true);
14433 }
14434
14435 static void
14436 enable_once_command (const char *args, int from_tty)
14437 {
14438 map_breakpoint_numbers
14439 (args, [&] (breakpoint *b)
14440 {
14441 iterate_over_related_breakpoints
14442 (b, [&] (breakpoint *bpt)
14443 {
14444 enable_breakpoint_disp (bpt, disp_disable, 1);
14445 });
14446 });
14447 }
14448
14449 static void
14450 enable_count_command (const char *args, int from_tty)
14451 {
14452 int count;
14453
14454 if (args == NULL)
14455 error_no_arg (_("hit count"));
14456
14457 count = get_number (&args);
14458
14459 map_breakpoint_numbers
14460 (args, [&] (breakpoint *b)
14461 {
14462 iterate_over_related_breakpoints
14463 (b, [&] (breakpoint *bpt)
14464 {
14465 enable_breakpoint_disp (bpt, disp_disable, count);
14466 });
14467 });
14468 }
14469
14470 static void
14471 enable_delete_command (const char *args, int from_tty)
14472 {
14473 map_breakpoint_numbers
14474 (args, [&] (breakpoint *b)
14475 {
14476 iterate_over_related_breakpoints
14477 (b, [&] (breakpoint *bpt)
14478 {
14479 enable_breakpoint_disp (bpt, disp_del, 1);
14480 });
14481 });
14482 }
14483 \f
14484 static void
14485 set_breakpoint_cmd (const char *args, int from_tty)
14486 {
14487 }
14488
14489 static void
14490 show_breakpoint_cmd (const char *args, int from_tty)
14491 {
14492 }
14493
14494 /* Invalidate last known value of any hardware watchpoint if
14495 the memory which that value represents has been written to by
14496 GDB itself. */
14497
14498 static void
14499 invalidate_bp_value_on_memory_change (struct inferior *inferior,
14500 CORE_ADDR addr, ssize_t len,
14501 const bfd_byte *data)
14502 {
14503 struct breakpoint *bp;
14504
14505 ALL_BREAKPOINTS (bp)
14506 if (bp->enable_state == bp_enabled
14507 && bp->type == bp_hardware_watchpoint)
14508 {
14509 struct watchpoint *wp = (struct watchpoint *) bp;
14510
14511 if (wp->val_valid && wp->val != nullptr)
14512 {
14513 struct bp_location *loc;
14514
14515 for (loc = bp->loc; loc != NULL; loc = loc->next)
14516 if (loc->loc_type == bp_loc_hardware_watchpoint
14517 && loc->address + loc->length > addr
14518 && addr + len > loc->address)
14519 {
14520 wp->val = NULL;
14521 wp->val_valid = 0;
14522 }
14523 }
14524 }
14525 }
14526
14527 /* Create and insert a breakpoint for software single step. */
14528
14529 void
14530 insert_single_step_breakpoint (struct gdbarch *gdbarch,
14531 const address_space *aspace,
14532 CORE_ADDR next_pc)
14533 {
14534 struct thread_info *tp = inferior_thread ();
14535 struct symtab_and_line sal;
14536 CORE_ADDR pc = next_pc;
14537
14538 if (tp->control.single_step_breakpoints == NULL)
14539 {
14540 tp->control.single_step_breakpoints
14541 = new_single_step_breakpoint (tp->global_num, gdbarch);
14542 }
14543
14544 sal = find_pc_line (pc, 0);
14545 sal.pc = pc;
14546 sal.section = find_pc_overlay (pc);
14547 sal.explicit_pc = 1;
14548 add_location_to_breakpoint (tp->control.single_step_breakpoints, &sal);
14549
14550 update_global_location_list (UGLL_INSERT);
14551 }
14552
14553 /* Insert single step breakpoints according to the current state. */
14554
14555 int
14556 insert_single_step_breakpoints (struct gdbarch *gdbarch)
14557 {
14558 struct regcache *regcache = get_current_regcache ();
14559 std::vector<CORE_ADDR> next_pcs;
14560
14561 next_pcs = gdbarch_software_single_step (gdbarch, regcache);
14562
14563 if (!next_pcs.empty ())
14564 {
14565 struct frame_info *frame = get_current_frame ();
14566 const address_space *aspace = get_frame_address_space (frame);
14567
14568 for (CORE_ADDR pc : next_pcs)
14569 insert_single_step_breakpoint (gdbarch, aspace, pc);
14570
14571 return 1;
14572 }
14573 else
14574 return 0;
14575 }
14576
14577 /* See breakpoint.h. */
14578
14579 int
14580 breakpoint_has_location_inserted_here (struct breakpoint *bp,
14581 const address_space *aspace,
14582 CORE_ADDR pc)
14583 {
14584 struct bp_location *loc;
14585
14586 for (loc = bp->loc; loc != NULL; loc = loc->next)
14587 if (loc->inserted
14588 && breakpoint_location_address_match (loc, aspace, pc))
14589 return 1;
14590
14591 return 0;
14592 }
14593
14594 /* Check whether a software single-step breakpoint is inserted at
14595 PC. */
14596
14597 int
14598 single_step_breakpoint_inserted_here_p (const address_space *aspace,
14599 CORE_ADDR pc)
14600 {
14601 struct breakpoint *bpt;
14602
14603 ALL_BREAKPOINTS (bpt)
14604 {
14605 if (bpt->type == bp_single_step
14606 && breakpoint_has_location_inserted_here (bpt, aspace, pc))
14607 return 1;
14608 }
14609 return 0;
14610 }
14611
14612 /* Tracepoint-specific operations. */
14613
14614 /* Set tracepoint count to NUM. */
14615 static void
14616 set_tracepoint_count (int num)
14617 {
14618 tracepoint_count = num;
14619 set_internalvar_integer (lookup_internalvar ("tpnum"), num);
14620 }
14621
14622 static void
14623 trace_command (const char *arg, int from_tty)
14624 {
14625 struct breakpoint_ops *ops;
14626
14627 event_location_up location = string_to_event_location (&arg,
14628 current_language);
14629 if (location != NULL
14630 && event_location_type (location.get ()) == PROBE_LOCATION)
14631 ops = &tracepoint_probe_breakpoint_ops;
14632 else
14633 ops = &tracepoint_breakpoint_ops;
14634
14635 create_breakpoint (get_current_arch (),
14636 location.get (),
14637 NULL, 0, arg, 1 /* parse arg */,
14638 0 /* tempflag */,
14639 bp_tracepoint /* type_wanted */,
14640 0 /* Ignore count */,
14641 pending_break_support,
14642 ops,
14643 from_tty,
14644 1 /* enabled */,
14645 0 /* internal */, 0);
14646 }
14647
14648 static void
14649 ftrace_command (const char *arg, int from_tty)
14650 {
14651 event_location_up location = string_to_event_location (&arg,
14652 current_language);
14653 create_breakpoint (get_current_arch (),
14654 location.get (),
14655 NULL, 0, arg, 1 /* parse arg */,
14656 0 /* tempflag */,
14657 bp_fast_tracepoint /* type_wanted */,
14658 0 /* Ignore count */,
14659 pending_break_support,
14660 &tracepoint_breakpoint_ops,
14661 from_tty,
14662 1 /* enabled */,
14663 0 /* internal */, 0);
14664 }
14665
14666 /* strace command implementation. Creates a static tracepoint. */
14667
14668 static void
14669 strace_command (const char *arg, int from_tty)
14670 {
14671 struct breakpoint_ops *ops;
14672 event_location_up location;
14673
14674 /* Decide if we are dealing with a static tracepoint marker (`-m'),
14675 or with a normal static tracepoint. */
14676 if (arg && startswith (arg, "-m") && isspace (arg[2]))
14677 {
14678 ops = &strace_marker_breakpoint_ops;
14679 location = new_linespec_location (&arg, symbol_name_match_type::FULL);
14680 }
14681 else
14682 {
14683 ops = &tracepoint_breakpoint_ops;
14684 location = string_to_event_location (&arg, current_language);
14685 }
14686
14687 create_breakpoint (get_current_arch (),
14688 location.get (),
14689 NULL, 0, arg, 1 /* parse arg */,
14690 0 /* tempflag */,
14691 bp_static_tracepoint /* type_wanted */,
14692 0 /* Ignore count */,
14693 pending_break_support,
14694 ops,
14695 from_tty,
14696 1 /* enabled */,
14697 0 /* internal */, 0);
14698 }
14699
14700 /* Set up a fake reader function that gets command lines from a linked
14701 list that was acquired during tracepoint uploading. */
14702
14703 static struct uploaded_tp *this_utp;
14704 static int next_cmd;
14705
14706 static char *
14707 read_uploaded_action (void)
14708 {
14709 char *rslt = nullptr;
14710
14711 if (next_cmd < this_utp->cmd_strings.size ())
14712 {
14713 rslt = this_utp->cmd_strings[next_cmd];
14714 next_cmd++;
14715 }
14716
14717 return rslt;
14718 }
14719
14720 /* Given information about a tracepoint as recorded on a target (which
14721 can be either a live system or a trace file), attempt to create an
14722 equivalent GDB tracepoint. This is not a reliable process, since
14723 the target does not necessarily have all the information used when
14724 the tracepoint was originally defined. */
14725
14726 struct tracepoint *
14727 create_tracepoint_from_upload (struct uploaded_tp *utp)
14728 {
14729 const char *addr_str;
14730 char small_buf[100];
14731 struct tracepoint *tp;
14732
14733 if (utp->at_string)
14734 addr_str = utp->at_string;
14735 else
14736 {
14737 /* In the absence of a source location, fall back to raw
14738 address. Since there is no way to confirm that the address
14739 means the same thing as when the trace was started, warn the
14740 user. */
14741 warning (_("Uploaded tracepoint %d has no "
14742 "source location, using raw address"),
14743 utp->number);
14744 xsnprintf (small_buf, sizeof (small_buf), "*%s", hex_string (utp->addr));
14745 addr_str = small_buf;
14746 }
14747
14748 /* There's not much we can do with a sequence of bytecodes. */
14749 if (utp->cond && !utp->cond_string)
14750 warning (_("Uploaded tracepoint %d condition "
14751 "has no source form, ignoring it"),
14752 utp->number);
14753
14754 event_location_up location = string_to_event_location (&addr_str,
14755 current_language);
14756 if (!create_breakpoint (get_current_arch (),
14757 location.get (),
14758 utp->cond_string, -1, addr_str,
14759 0 /* parse cond/thread */,
14760 0 /* tempflag */,
14761 utp->type /* type_wanted */,
14762 0 /* Ignore count */,
14763 pending_break_support,
14764 &tracepoint_breakpoint_ops,
14765 0 /* from_tty */,
14766 utp->enabled /* enabled */,
14767 0 /* internal */,
14768 CREATE_BREAKPOINT_FLAGS_INSERTED))
14769 return NULL;
14770
14771 /* Get the tracepoint we just created. */
14772 tp = get_tracepoint (tracepoint_count);
14773 gdb_assert (tp != NULL);
14774
14775 if (utp->pass > 0)
14776 {
14777 xsnprintf (small_buf, sizeof (small_buf), "%d %d", utp->pass,
14778 tp->number);
14779
14780 trace_pass_command (small_buf, 0);
14781 }
14782
14783 /* If we have uploaded versions of the original commands, set up a
14784 special-purpose "reader" function and call the usual command line
14785 reader, then pass the result to the breakpoint command-setting
14786 function. */
14787 if (!utp->cmd_strings.empty ())
14788 {
14789 command_line_up cmd_list;
14790
14791 this_utp = utp;
14792 next_cmd = 0;
14793
14794 cmd_list = read_command_lines_1 (read_uploaded_action, 1, NULL, NULL);
14795
14796 breakpoint_set_commands (tp, std::move (cmd_list));
14797 }
14798 else if (!utp->actions.empty ()
14799 || !utp->step_actions.empty ())
14800 warning (_("Uploaded tracepoint %d actions "
14801 "have no source form, ignoring them"),
14802 utp->number);
14803
14804 /* Copy any status information that might be available. */
14805 tp->hit_count = utp->hit_count;
14806 tp->traceframe_usage = utp->traceframe_usage;
14807
14808 return tp;
14809 }
14810
14811 /* Print information on tracepoint number TPNUM_EXP, or all if
14812 omitted. */
14813
14814 static void
14815 info_tracepoints_command (const char *args, int from_tty)
14816 {
14817 struct ui_out *uiout = current_uiout;
14818 int num_printed;
14819
14820 num_printed = breakpoint_1 (args, 0, is_tracepoint);
14821
14822 if (num_printed == 0)
14823 {
14824 if (args == NULL || *args == '\0')
14825 uiout->message ("No tracepoints.\n");
14826 else
14827 uiout->message ("No tracepoint matching '%s'.\n", args);
14828 }
14829
14830 default_collect_info ();
14831 }
14832
14833 /* The 'enable trace' command enables tracepoints.
14834 Not supported by all targets. */
14835 static void
14836 enable_trace_command (const char *args, int from_tty)
14837 {
14838 enable_command (args, from_tty);
14839 }
14840
14841 /* The 'disable trace' command disables tracepoints.
14842 Not supported by all targets. */
14843 static void
14844 disable_trace_command (const char *args, int from_tty)
14845 {
14846 disable_command (args, from_tty);
14847 }
14848
14849 /* Remove a tracepoint (or all if no argument). */
14850 static void
14851 delete_trace_command (const char *arg, int from_tty)
14852 {
14853 struct breakpoint *b, *b_tmp;
14854
14855 dont_repeat ();
14856
14857 if (arg == 0)
14858 {
14859 int breaks_to_delete = 0;
14860
14861 /* Delete all breakpoints if no argument.
14862 Do not delete internal or call-dummy breakpoints, these
14863 have to be deleted with an explicit breakpoint number
14864 argument. */
14865 ALL_TRACEPOINTS (b)
14866 if (is_tracepoint (b) && user_breakpoint_p (b))
14867 {
14868 breaks_to_delete = 1;
14869 break;
14870 }
14871
14872 /* Ask user only if there are some breakpoints to delete. */
14873 if (!from_tty
14874 || (breaks_to_delete && query (_("Delete all tracepoints? "))))
14875 {
14876 ALL_BREAKPOINTS_SAFE (b, b_tmp)
14877 if (is_tracepoint (b) && user_breakpoint_p (b))
14878 delete_breakpoint (b);
14879 }
14880 }
14881 else
14882 map_breakpoint_numbers
14883 (arg, [&] (breakpoint *b)
14884 {
14885 iterate_over_related_breakpoints (b, delete_breakpoint);
14886 });
14887 }
14888
14889 /* Helper function for trace_pass_command. */
14890
14891 static void
14892 trace_pass_set_count (struct tracepoint *tp, int count, int from_tty)
14893 {
14894 tp->pass_count = count;
14895 gdb::observers::breakpoint_modified.notify (tp);
14896 if (from_tty)
14897 printf_filtered (_("Setting tracepoint %d's passcount to %d\n"),
14898 tp->number, count);
14899 }
14900
14901 /* Set passcount for tracepoint.
14902
14903 First command argument is passcount, second is tracepoint number.
14904 If tracepoint number omitted, apply to most recently defined.
14905 Also accepts special argument "all". */
14906
14907 static void
14908 trace_pass_command (const char *args, int from_tty)
14909 {
14910 struct tracepoint *t1;
14911 ULONGEST count;
14912
14913 if (args == 0 || *args == 0)
14914 error (_("passcount command requires an "
14915 "argument (count + optional TP num)"));
14916
14917 count = strtoulst (args, &args, 10); /* Count comes first, then TP num. */
14918
14919 args = skip_spaces (args);
14920 if (*args && strncasecmp (args, "all", 3) == 0)
14921 {
14922 struct breakpoint *b;
14923
14924 args += 3; /* Skip special argument "all". */
14925 if (*args)
14926 error (_("Junk at end of arguments."));
14927
14928 ALL_TRACEPOINTS (b)
14929 {
14930 t1 = (struct tracepoint *) b;
14931 trace_pass_set_count (t1, count, from_tty);
14932 }
14933 }
14934 else if (*args == '\0')
14935 {
14936 t1 = get_tracepoint_by_number (&args, NULL);
14937 if (t1)
14938 trace_pass_set_count (t1, count, from_tty);
14939 }
14940 else
14941 {
14942 number_or_range_parser parser (args);
14943 while (!parser.finished ())
14944 {
14945 t1 = get_tracepoint_by_number (&args, &parser);
14946 if (t1)
14947 trace_pass_set_count (t1, count, from_tty);
14948 }
14949 }
14950 }
14951
14952 struct tracepoint *
14953 get_tracepoint (int num)
14954 {
14955 struct breakpoint *t;
14956
14957 ALL_TRACEPOINTS (t)
14958 if (t->number == num)
14959 return (struct tracepoint *) t;
14960
14961 return NULL;
14962 }
14963
14964 /* Find the tracepoint with the given target-side number (which may be
14965 different from the tracepoint number after disconnecting and
14966 reconnecting). */
14967
14968 struct tracepoint *
14969 get_tracepoint_by_number_on_target (int num)
14970 {
14971 struct breakpoint *b;
14972
14973 ALL_TRACEPOINTS (b)
14974 {
14975 struct tracepoint *t = (struct tracepoint *) b;
14976
14977 if (t->number_on_target == num)
14978 return t;
14979 }
14980
14981 return NULL;
14982 }
14983
14984 /* Utility: parse a tracepoint number and look it up in the list.
14985 If STATE is not NULL, use, get_number_or_range_state and ignore ARG.
14986 If the argument is missing, the most recent tracepoint
14987 (tracepoint_count) is returned. */
14988
14989 struct tracepoint *
14990 get_tracepoint_by_number (const char **arg,
14991 number_or_range_parser *parser)
14992 {
14993 struct breakpoint *t;
14994 int tpnum;
14995 const char *instring = arg == NULL ? NULL : *arg;
14996
14997 if (parser != NULL)
14998 {
14999 gdb_assert (!parser->finished ());
15000 tpnum = parser->get_number ();
15001 }
15002 else if (arg == NULL || *arg == NULL || ! **arg)
15003 tpnum = tracepoint_count;
15004 else
15005 tpnum = get_number (arg);
15006
15007 if (tpnum <= 0)
15008 {
15009 if (instring && *instring)
15010 printf_filtered (_("bad tracepoint number at or near '%s'\n"),
15011 instring);
15012 else
15013 printf_filtered (_("No previous tracepoint\n"));
15014 return NULL;
15015 }
15016
15017 ALL_TRACEPOINTS (t)
15018 if (t->number == tpnum)
15019 {
15020 return (struct tracepoint *) t;
15021 }
15022
15023 printf_unfiltered ("No tracepoint number %d.\n", tpnum);
15024 return NULL;
15025 }
15026
15027 void
15028 print_recreate_thread (struct breakpoint *b, struct ui_file *fp)
15029 {
15030 if (b->thread != -1)
15031 fprintf_unfiltered (fp, " thread %d", b->thread);
15032
15033 if (b->task != 0)
15034 fprintf_unfiltered (fp, " task %d", b->task);
15035
15036 fprintf_unfiltered (fp, "\n");
15037 }
15038
15039 /* Save information on user settable breakpoints (watchpoints, etc) to
15040 a new script file named FILENAME. If FILTER is non-NULL, call it
15041 on each breakpoint and only include the ones for which it returns
15042 non-zero. */
15043
15044 static void
15045 save_breakpoints (const char *filename, int from_tty,
15046 int (*filter) (const struct breakpoint *))
15047 {
15048 struct breakpoint *tp;
15049 int any = 0;
15050 int extra_trace_bits = 0;
15051
15052 if (filename == 0 || *filename == 0)
15053 error (_("Argument required (file name in which to save)"));
15054
15055 /* See if we have anything to save. */
15056 ALL_BREAKPOINTS (tp)
15057 {
15058 /* Skip internal and momentary breakpoints. */
15059 if (!user_breakpoint_p (tp))
15060 continue;
15061
15062 /* If we have a filter, only save the breakpoints it accepts. */
15063 if (filter && !filter (tp))
15064 continue;
15065
15066 any = 1;
15067
15068 if (is_tracepoint (tp))
15069 {
15070 extra_trace_bits = 1;
15071
15072 /* We can stop searching. */
15073 break;
15074 }
15075 }
15076
15077 if (!any)
15078 {
15079 warning (_("Nothing to save."));
15080 return;
15081 }
15082
15083 gdb::unique_xmalloc_ptr<char> expanded_filename (tilde_expand (filename));
15084
15085 stdio_file fp;
15086
15087 if (!fp.open (expanded_filename.get (), "w"))
15088 error (_("Unable to open file '%s' for saving (%s)"),
15089 expanded_filename.get (), safe_strerror (errno));
15090
15091 if (extra_trace_bits)
15092 save_trace_state_variables (&fp);
15093
15094 ALL_BREAKPOINTS (tp)
15095 {
15096 /* Skip internal and momentary breakpoints. */
15097 if (!user_breakpoint_p (tp))
15098 continue;
15099
15100 /* If we have a filter, only save the breakpoints it accepts. */
15101 if (filter && !filter (tp))
15102 continue;
15103
15104 tp->ops->print_recreate (tp, &fp);
15105
15106 /* Note, we can't rely on tp->number for anything, as we can't
15107 assume the recreated breakpoint numbers will match. Use $bpnum
15108 instead. */
15109
15110 if (tp->cond_string)
15111 fp.printf (" condition $bpnum %s\n", tp->cond_string);
15112
15113 if (tp->ignore_count)
15114 fp.printf (" ignore $bpnum %d\n", tp->ignore_count);
15115
15116 if (tp->type != bp_dprintf && tp->commands)
15117 {
15118 fp.puts (" commands\n");
15119
15120 current_uiout->redirect (&fp);
15121 TRY
15122 {
15123 print_command_lines (current_uiout, tp->commands.get (), 2);
15124 }
15125 CATCH (ex, RETURN_MASK_ALL)
15126 {
15127 current_uiout->redirect (NULL);
15128 throw_exception (ex);
15129 }
15130 END_CATCH
15131
15132 current_uiout->redirect (NULL);
15133 fp.puts (" end\n");
15134 }
15135
15136 if (tp->enable_state == bp_disabled)
15137 fp.puts ("disable $bpnum\n");
15138
15139 /* If this is a multi-location breakpoint, check if the locations
15140 should be individually disabled. Watchpoint locations are
15141 special, and not user visible. */
15142 if (!is_watchpoint (tp) && tp->loc && tp->loc->next)
15143 {
15144 struct bp_location *loc;
15145 int n = 1;
15146
15147 for (loc = tp->loc; loc != NULL; loc = loc->next, n++)
15148 if (!loc->enabled)
15149 fp.printf ("disable $bpnum.%d\n", n);
15150 }
15151 }
15152
15153 if (extra_trace_bits && *default_collect)
15154 fp.printf ("set default-collect %s\n", default_collect);
15155
15156 if (from_tty)
15157 printf_filtered (_("Saved to file '%s'.\n"), expanded_filename.get ());
15158 }
15159
15160 /* The `save breakpoints' command. */
15161
15162 static void
15163 save_breakpoints_command (const char *args, int from_tty)
15164 {
15165 save_breakpoints (args, from_tty, NULL);
15166 }
15167
15168 /* The `save tracepoints' command. */
15169
15170 static void
15171 save_tracepoints_command (const char *args, int from_tty)
15172 {
15173 save_breakpoints (args, from_tty, is_tracepoint);
15174 }
15175
15176 /* Create a vector of all tracepoints. */
15177
15178 VEC(breakpoint_p) *
15179 all_tracepoints (void)
15180 {
15181 VEC(breakpoint_p) *tp_vec = 0;
15182 struct breakpoint *tp;
15183
15184 ALL_TRACEPOINTS (tp)
15185 {
15186 VEC_safe_push (breakpoint_p, tp_vec, tp);
15187 }
15188
15189 return tp_vec;
15190 }
15191
15192 \f
15193 /* This help string is used to consolidate all the help string for specifying
15194 locations used by several commands. */
15195
15196 #define LOCATION_HELP_STRING \
15197 "Linespecs are colon-separated lists of location parameters, such as\n\
15198 source filename, function name, label name, and line number.\n\
15199 Example: To specify the start of a label named \"the_top\" in the\n\
15200 function \"fact\" in the file \"factorial.c\", use\n\
15201 \"factorial.c:fact:the_top\".\n\
15202 \n\
15203 Address locations begin with \"*\" and specify an exact address in the\n\
15204 program. Example: To specify the fourth byte past the start function\n\
15205 \"main\", use \"*main + 4\".\n\
15206 \n\
15207 Explicit locations are similar to linespecs but use an option/argument\n\
15208 syntax to specify location parameters.\n\
15209 Example: To specify the start of the label named \"the_top\" in the\n\
15210 function \"fact\" in the file \"factorial.c\", use \"-source factorial.c\n\
15211 -function fact -label the_top\".\n\
15212 \n\
15213 By default, a specified function is matched against the program's\n\
15214 functions in all scopes. For C++, this means in all namespaces and\n\
15215 classes. For Ada, this means in all packages. E.g., in C++,\n\
15216 \"func()\" matches \"A::func()\", \"A::B::func()\", etc. The\n\
15217 \"-qualified\" flag overrides this behavior, making GDB interpret the\n\
15218 specified name as a complete fully-qualified name instead.\n"
15219
15220 /* This help string is used for the break, hbreak, tbreak and thbreak
15221 commands. It is defined as a macro to prevent duplication.
15222 COMMAND should be a string constant containing the name of the
15223 command. */
15224
15225 #define BREAK_ARGS_HELP(command) \
15226 command" [PROBE_MODIFIER] [LOCATION] [thread THREADNUM] [if CONDITION]\n\
15227 PROBE_MODIFIER shall be present if the command is to be placed in a\n\
15228 probe point. Accepted values are `-probe' (for a generic, automatically\n\
15229 guessed probe type), `-probe-stap' (for a SystemTap probe) or \n\
15230 `-probe-dtrace' (for a DTrace probe).\n\
15231 LOCATION may be a linespec, address, or explicit location as described\n\
15232 below.\n\
15233 \n\
15234 With no LOCATION, uses current execution address of the selected\n\
15235 stack frame. This is useful for breaking on return to a stack frame.\n\
15236 \n\
15237 THREADNUM is the number from \"info threads\".\n\
15238 CONDITION is a boolean expression.\n\
15239 \n" LOCATION_HELP_STRING "\n\
15240 Multiple breakpoints at one place are permitted, and useful if their\n\
15241 conditions are different.\n\
15242 \n\
15243 Do \"help breakpoints\" for info on other commands dealing with breakpoints."
15244
15245 /* List of subcommands for "catch". */
15246 static struct cmd_list_element *catch_cmdlist;
15247
15248 /* List of subcommands for "tcatch". */
15249 static struct cmd_list_element *tcatch_cmdlist;
15250
15251 void
15252 add_catch_command (const char *name, const char *docstring,
15253 cmd_const_sfunc_ftype *sfunc,
15254 completer_ftype *completer,
15255 void *user_data_catch,
15256 void *user_data_tcatch)
15257 {
15258 struct cmd_list_element *command;
15259
15260 command = add_cmd (name, class_breakpoint, docstring,
15261 &catch_cmdlist);
15262 set_cmd_sfunc (command, sfunc);
15263 set_cmd_context (command, user_data_catch);
15264 set_cmd_completer (command, completer);
15265
15266 command = add_cmd (name, class_breakpoint, docstring,
15267 &tcatch_cmdlist);
15268 set_cmd_sfunc (command, sfunc);
15269 set_cmd_context (command, user_data_tcatch);
15270 set_cmd_completer (command, completer);
15271 }
15272
15273 static void
15274 save_command (const char *arg, int from_tty)
15275 {
15276 printf_unfiltered (_("\"save\" must be followed by "
15277 "the name of a save subcommand.\n"));
15278 help_list (save_cmdlist, "save ", all_commands, gdb_stdout);
15279 }
15280
15281 struct breakpoint *
15282 iterate_over_breakpoints (int (*callback) (struct breakpoint *, void *),
15283 void *data)
15284 {
15285 struct breakpoint *b, *b_tmp;
15286
15287 ALL_BREAKPOINTS_SAFE (b, b_tmp)
15288 {
15289 if ((*callback) (b, data))
15290 return b;
15291 }
15292
15293 return NULL;
15294 }
15295
15296 /* Zero if any of the breakpoint's locations could be a location where
15297 functions have been inlined, nonzero otherwise. */
15298
15299 static int
15300 is_non_inline_function (struct breakpoint *b)
15301 {
15302 /* The shared library event breakpoint is set on the address of a
15303 non-inline function. */
15304 if (b->type == bp_shlib_event)
15305 return 1;
15306
15307 return 0;
15308 }
15309
15310 /* Nonzero if the specified PC cannot be a location where functions
15311 have been inlined. */
15312
15313 int
15314 pc_at_non_inline_function (const address_space *aspace, CORE_ADDR pc,
15315 const struct target_waitstatus *ws)
15316 {
15317 struct breakpoint *b;
15318 struct bp_location *bl;
15319
15320 ALL_BREAKPOINTS (b)
15321 {
15322 if (!is_non_inline_function (b))
15323 continue;
15324
15325 for (bl = b->loc; bl != NULL; bl = bl->next)
15326 {
15327 if (!bl->shlib_disabled
15328 && bpstat_check_location (bl, aspace, pc, ws))
15329 return 1;
15330 }
15331 }
15332
15333 return 0;
15334 }
15335
15336 /* Remove any references to OBJFILE which is going to be freed. */
15337
15338 void
15339 breakpoint_free_objfile (struct objfile *objfile)
15340 {
15341 struct bp_location **locp, *loc;
15342
15343 ALL_BP_LOCATIONS (loc, locp)
15344 if (loc->symtab != NULL && SYMTAB_OBJFILE (loc->symtab) == objfile)
15345 loc->symtab = NULL;
15346 }
15347
15348 void
15349 initialize_breakpoint_ops (void)
15350 {
15351 static int initialized = 0;
15352
15353 struct breakpoint_ops *ops;
15354
15355 if (initialized)
15356 return;
15357 initialized = 1;
15358
15359 /* The breakpoint_ops structure to be inherit by all kinds of
15360 breakpoints (real breakpoints, i.e., user "break" breakpoints,
15361 internal and momentary breakpoints, etc.). */
15362 ops = &bkpt_base_breakpoint_ops;
15363 *ops = base_breakpoint_ops;
15364 ops->re_set = bkpt_re_set;
15365 ops->insert_location = bkpt_insert_location;
15366 ops->remove_location = bkpt_remove_location;
15367 ops->breakpoint_hit = bkpt_breakpoint_hit;
15368 ops->create_sals_from_location = bkpt_create_sals_from_location;
15369 ops->create_breakpoints_sal = bkpt_create_breakpoints_sal;
15370 ops->decode_location = bkpt_decode_location;
15371
15372 /* The breakpoint_ops structure to be used in regular breakpoints. */
15373 ops = &bkpt_breakpoint_ops;
15374 *ops = bkpt_base_breakpoint_ops;
15375 ops->re_set = bkpt_re_set;
15376 ops->resources_needed = bkpt_resources_needed;
15377 ops->print_it = bkpt_print_it;
15378 ops->print_mention = bkpt_print_mention;
15379 ops->print_recreate = bkpt_print_recreate;
15380
15381 /* Ranged breakpoints. */
15382 ops = &ranged_breakpoint_ops;
15383 *ops = bkpt_breakpoint_ops;
15384 ops->breakpoint_hit = breakpoint_hit_ranged_breakpoint;
15385 ops->resources_needed = resources_needed_ranged_breakpoint;
15386 ops->print_it = print_it_ranged_breakpoint;
15387 ops->print_one = print_one_ranged_breakpoint;
15388 ops->print_one_detail = print_one_detail_ranged_breakpoint;
15389 ops->print_mention = print_mention_ranged_breakpoint;
15390 ops->print_recreate = print_recreate_ranged_breakpoint;
15391
15392 /* Internal breakpoints. */
15393 ops = &internal_breakpoint_ops;
15394 *ops = bkpt_base_breakpoint_ops;
15395 ops->re_set = internal_bkpt_re_set;
15396 ops->check_status = internal_bkpt_check_status;
15397 ops->print_it = internal_bkpt_print_it;
15398 ops->print_mention = internal_bkpt_print_mention;
15399
15400 /* Momentary breakpoints. */
15401 ops = &momentary_breakpoint_ops;
15402 *ops = bkpt_base_breakpoint_ops;
15403 ops->re_set = momentary_bkpt_re_set;
15404 ops->check_status = momentary_bkpt_check_status;
15405 ops->print_it = momentary_bkpt_print_it;
15406 ops->print_mention = momentary_bkpt_print_mention;
15407
15408 /* Probe breakpoints. */
15409 ops = &bkpt_probe_breakpoint_ops;
15410 *ops = bkpt_breakpoint_ops;
15411 ops->insert_location = bkpt_probe_insert_location;
15412 ops->remove_location = bkpt_probe_remove_location;
15413 ops->create_sals_from_location = bkpt_probe_create_sals_from_location;
15414 ops->decode_location = bkpt_probe_decode_location;
15415
15416 /* Watchpoints. */
15417 ops = &watchpoint_breakpoint_ops;
15418 *ops = base_breakpoint_ops;
15419 ops->re_set = re_set_watchpoint;
15420 ops->insert_location = insert_watchpoint;
15421 ops->remove_location = remove_watchpoint;
15422 ops->breakpoint_hit = breakpoint_hit_watchpoint;
15423 ops->check_status = check_status_watchpoint;
15424 ops->resources_needed = resources_needed_watchpoint;
15425 ops->works_in_software_mode = works_in_software_mode_watchpoint;
15426 ops->print_it = print_it_watchpoint;
15427 ops->print_mention = print_mention_watchpoint;
15428 ops->print_recreate = print_recreate_watchpoint;
15429 ops->explains_signal = explains_signal_watchpoint;
15430
15431 /* Masked watchpoints. */
15432 ops = &masked_watchpoint_breakpoint_ops;
15433 *ops = watchpoint_breakpoint_ops;
15434 ops->insert_location = insert_masked_watchpoint;
15435 ops->remove_location = remove_masked_watchpoint;
15436 ops->resources_needed = resources_needed_masked_watchpoint;
15437 ops->works_in_software_mode = works_in_software_mode_masked_watchpoint;
15438 ops->print_it = print_it_masked_watchpoint;
15439 ops->print_one_detail = print_one_detail_masked_watchpoint;
15440 ops->print_mention = print_mention_masked_watchpoint;
15441 ops->print_recreate = print_recreate_masked_watchpoint;
15442
15443 /* Tracepoints. */
15444 ops = &tracepoint_breakpoint_ops;
15445 *ops = base_breakpoint_ops;
15446 ops->re_set = tracepoint_re_set;
15447 ops->breakpoint_hit = tracepoint_breakpoint_hit;
15448 ops->print_one_detail = tracepoint_print_one_detail;
15449 ops->print_mention = tracepoint_print_mention;
15450 ops->print_recreate = tracepoint_print_recreate;
15451 ops->create_sals_from_location = tracepoint_create_sals_from_location;
15452 ops->create_breakpoints_sal = tracepoint_create_breakpoints_sal;
15453 ops->decode_location = tracepoint_decode_location;
15454
15455 /* Probe tracepoints. */
15456 ops = &tracepoint_probe_breakpoint_ops;
15457 *ops = tracepoint_breakpoint_ops;
15458 ops->create_sals_from_location = tracepoint_probe_create_sals_from_location;
15459 ops->decode_location = tracepoint_probe_decode_location;
15460
15461 /* Static tracepoints with marker (`-m'). */
15462 ops = &strace_marker_breakpoint_ops;
15463 *ops = tracepoint_breakpoint_ops;
15464 ops->create_sals_from_location = strace_marker_create_sals_from_location;
15465 ops->create_breakpoints_sal = strace_marker_create_breakpoints_sal;
15466 ops->decode_location = strace_marker_decode_location;
15467
15468 /* Fork catchpoints. */
15469 ops = &catch_fork_breakpoint_ops;
15470 *ops = base_breakpoint_ops;
15471 ops->insert_location = insert_catch_fork;
15472 ops->remove_location = remove_catch_fork;
15473 ops->breakpoint_hit = breakpoint_hit_catch_fork;
15474 ops->print_it = print_it_catch_fork;
15475 ops->print_one = print_one_catch_fork;
15476 ops->print_mention = print_mention_catch_fork;
15477 ops->print_recreate = print_recreate_catch_fork;
15478
15479 /* Vfork catchpoints. */
15480 ops = &catch_vfork_breakpoint_ops;
15481 *ops = base_breakpoint_ops;
15482 ops->insert_location = insert_catch_vfork;
15483 ops->remove_location = remove_catch_vfork;
15484 ops->breakpoint_hit = breakpoint_hit_catch_vfork;
15485 ops->print_it = print_it_catch_vfork;
15486 ops->print_one = print_one_catch_vfork;
15487 ops->print_mention = print_mention_catch_vfork;
15488 ops->print_recreate = print_recreate_catch_vfork;
15489
15490 /* Exec catchpoints. */
15491 ops = &catch_exec_breakpoint_ops;
15492 *ops = base_breakpoint_ops;
15493 ops->insert_location = insert_catch_exec;
15494 ops->remove_location = remove_catch_exec;
15495 ops->breakpoint_hit = breakpoint_hit_catch_exec;
15496 ops->print_it = print_it_catch_exec;
15497 ops->print_one = print_one_catch_exec;
15498 ops->print_mention = print_mention_catch_exec;
15499 ops->print_recreate = print_recreate_catch_exec;
15500
15501 /* Solib-related catchpoints. */
15502 ops = &catch_solib_breakpoint_ops;
15503 *ops = base_breakpoint_ops;
15504 ops->insert_location = insert_catch_solib;
15505 ops->remove_location = remove_catch_solib;
15506 ops->breakpoint_hit = breakpoint_hit_catch_solib;
15507 ops->check_status = check_status_catch_solib;
15508 ops->print_it = print_it_catch_solib;
15509 ops->print_one = print_one_catch_solib;
15510 ops->print_mention = print_mention_catch_solib;
15511 ops->print_recreate = print_recreate_catch_solib;
15512
15513 ops = &dprintf_breakpoint_ops;
15514 *ops = bkpt_base_breakpoint_ops;
15515 ops->re_set = dprintf_re_set;
15516 ops->resources_needed = bkpt_resources_needed;
15517 ops->print_it = bkpt_print_it;
15518 ops->print_mention = bkpt_print_mention;
15519 ops->print_recreate = dprintf_print_recreate;
15520 ops->after_condition_true = dprintf_after_condition_true;
15521 ops->breakpoint_hit = dprintf_breakpoint_hit;
15522 }
15523
15524 /* Chain containing all defined "enable breakpoint" subcommands. */
15525
15526 static struct cmd_list_element *enablebreaklist = NULL;
15527
15528 void
15529 _initialize_breakpoint (void)
15530 {
15531 struct cmd_list_element *c;
15532
15533 initialize_breakpoint_ops ();
15534
15535 gdb::observers::solib_unloaded.attach (disable_breakpoints_in_unloaded_shlib);
15536 gdb::observers::free_objfile.attach (disable_breakpoints_in_freed_objfile);
15537 gdb::observers::memory_changed.attach (invalidate_bp_value_on_memory_change);
15538
15539 breakpoint_objfile_key
15540 = register_objfile_data_with_cleanup (NULL, free_breakpoint_objfile_data);
15541
15542 breakpoint_chain = 0;
15543 /* Don't bother to call set_breakpoint_count. $bpnum isn't useful
15544 before a breakpoint is set. */
15545 breakpoint_count = 0;
15546
15547 tracepoint_count = 0;
15548
15549 add_com ("ignore", class_breakpoint, ignore_command, _("\
15550 Set ignore-count of breakpoint number N to COUNT.\n\
15551 Usage is `ignore N COUNT'."));
15552
15553 add_com ("commands", class_breakpoint, commands_command, _("\
15554 Set commands to be executed when the given breakpoints are hit.\n\
15555 Give a space-separated breakpoint list as argument after \"commands\".\n\
15556 A list element can be a breakpoint number (e.g. `5') or a range of numbers\n\
15557 (e.g. `5-7').\n\
15558 With no argument, the targeted breakpoint is the last one set.\n\
15559 The commands themselves follow starting on the next line.\n\
15560 Type a line containing \"end\" to indicate the end of them.\n\
15561 Give \"silent\" as the first line to make the breakpoint silent;\n\
15562 then no output is printed when it is hit, except what the commands print."));
15563
15564 c = add_com ("condition", class_breakpoint, condition_command, _("\
15565 Specify breakpoint number N to break only if COND is true.\n\
15566 Usage is `condition N COND', where N is an integer and COND is an\n\
15567 expression to be evaluated whenever breakpoint N is reached."));
15568 set_cmd_completer (c, condition_completer);
15569
15570 c = add_com ("tbreak", class_breakpoint, tbreak_command, _("\
15571 Set a temporary breakpoint.\n\
15572 Like \"break\" except the breakpoint is only temporary,\n\
15573 so it will be deleted when hit. Equivalent to \"break\" followed\n\
15574 by using \"enable delete\" on the breakpoint number.\n\
15575 \n"
15576 BREAK_ARGS_HELP ("tbreak")));
15577 set_cmd_completer (c, location_completer);
15578
15579 c = add_com ("hbreak", class_breakpoint, hbreak_command, _("\
15580 Set a hardware assisted breakpoint.\n\
15581 Like \"break\" except the breakpoint requires hardware support,\n\
15582 some target hardware may not have this support.\n\
15583 \n"
15584 BREAK_ARGS_HELP ("hbreak")));
15585 set_cmd_completer (c, location_completer);
15586
15587 c = add_com ("thbreak", class_breakpoint, thbreak_command, _("\
15588 Set a temporary hardware assisted breakpoint.\n\
15589 Like \"hbreak\" except the breakpoint is only temporary,\n\
15590 so it will be deleted when hit.\n\
15591 \n"
15592 BREAK_ARGS_HELP ("thbreak")));
15593 set_cmd_completer (c, location_completer);
15594
15595 add_prefix_cmd ("enable", class_breakpoint, enable_command, _("\
15596 Enable some breakpoints.\n\
15597 Give breakpoint numbers (separated by spaces) as arguments.\n\
15598 With no subcommand, breakpoints are enabled until you command otherwise.\n\
15599 This is used to cancel the effect of the \"disable\" command.\n\
15600 With a subcommand you can enable temporarily."),
15601 &enablelist, "enable ", 1, &cmdlist);
15602
15603 add_com_alias ("en", "enable", class_breakpoint, 1);
15604
15605 add_prefix_cmd ("breakpoints", class_breakpoint, enable_command, _("\
15606 Enable some breakpoints.\n\
15607 Give breakpoint numbers (separated by spaces) as arguments.\n\
15608 This is used to cancel the effect of the \"disable\" command.\n\
15609 May be abbreviated to simply \"enable\".\n"),
15610 &enablebreaklist, "enable breakpoints ", 1, &enablelist);
15611
15612 add_cmd ("once", no_class, enable_once_command, _("\
15613 Enable breakpoints for one hit. Give breakpoint numbers.\n\
15614 If a breakpoint is hit while enabled in this fashion, it becomes disabled."),
15615 &enablebreaklist);
15616
15617 add_cmd ("delete", no_class, enable_delete_command, _("\
15618 Enable breakpoints and delete when hit. Give breakpoint numbers.\n\
15619 If a breakpoint is hit while enabled in this fashion, it is deleted."),
15620 &enablebreaklist);
15621
15622 add_cmd ("count", no_class, enable_count_command, _("\
15623 Enable breakpoints for COUNT hits. Give count and then breakpoint numbers.\n\
15624 If a breakpoint is hit while enabled in this fashion,\n\
15625 the count is decremented; when it reaches zero, the breakpoint is disabled."),
15626 &enablebreaklist);
15627
15628 add_cmd ("delete", no_class, enable_delete_command, _("\
15629 Enable breakpoints and delete when hit. Give breakpoint numbers.\n\
15630 If a breakpoint is hit while enabled in this fashion, it is deleted."),
15631 &enablelist);
15632
15633 add_cmd ("once", no_class, enable_once_command, _("\
15634 Enable breakpoints for one hit. Give breakpoint numbers.\n\
15635 If a breakpoint is hit while enabled in this fashion, it becomes disabled."),
15636 &enablelist);
15637
15638 add_cmd ("count", no_class, enable_count_command, _("\
15639 Enable breakpoints for COUNT hits. Give count and then breakpoint numbers.\n\
15640 If a breakpoint is hit while enabled in this fashion,\n\
15641 the count is decremented; when it reaches zero, the breakpoint is disabled."),
15642 &enablelist);
15643
15644 add_prefix_cmd ("disable", class_breakpoint, disable_command, _("\
15645 Disable some breakpoints.\n\
15646 Arguments are breakpoint numbers with spaces in between.\n\
15647 To disable all breakpoints, give no argument.\n\
15648 A disabled breakpoint is not forgotten, but has no effect until re-enabled."),
15649 &disablelist, "disable ", 1, &cmdlist);
15650 add_com_alias ("dis", "disable", class_breakpoint, 1);
15651 add_com_alias ("disa", "disable", class_breakpoint, 1);
15652
15653 add_cmd ("breakpoints", class_alias, disable_command, _("\
15654 Disable some breakpoints.\n\
15655 Arguments are breakpoint numbers with spaces in between.\n\
15656 To disable all breakpoints, give no argument.\n\
15657 A disabled breakpoint is not forgotten, but has no effect until re-enabled.\n\
15658 This command may be abbreviated \"disable\"."),
15659 &disablelist);
15660
15661 add_prefix_cmd ("delete", class_breakpoint, delete_command, _("\
15662 Delete some breakpoints or auto-display expressions.\n\
15663 Arguments are breakpoint numbers with spaces in between.\n\
15664 To delete all breakpoints, give no argument.\n\
15665 \n\
15666 Also a prefix command for deletion of other GDB objects.\n\
15667 The \"unset\" command is also an alias for \"delete\"."),
15668 &deletelist, "delete ", 1, &cmdlist);
15669 add_com_alias ("d", "delete", class_breakpoint, 1);
15670 add_com_alias ("del", "delete", class_breakpoint, 1);
15671
15672 add_cmd ("breakpoints", class_alias, delete_command, _("\
15673 Delete some breakpoints or auto-display expressions.\n\
15674 Arguments are breakpoint numbers with spaces in between.\n\
15675 To delete all breakpoints, give no argument.\n\
15676 This command may be abbreviated \"delete\"."),
15677 &deletelist);
15678
15679 add_com ("clear", class_breakpoint, clear_command, _("\
15680 Clear breakpoint at specified location.\n\
15681 Argument may be a linespec, explicit, or address location as described below.\n\
15682 \n\
15683 With no argument, clears all breakpoints in the line that the selected frame\n\
15684 is executing in.\n"
15685 "\n" LOCATION_HELP_STRING "\n\
15686 See also the \"delete\" command which clears breakpoints by number."));
15687 add_com_alias ("cl", "clear", class_breakpoint, 1);
15688
15689 c = add_com ("break", class_breakpoint, break_command, _("\
15690 Set breakpoint at specified location.\n"
15691 BREAK_ARGS_HELP ("break")));
15692 set_cmd_completer (c, location_completer);
15693
15694 add_com_alias ("b", "break", class_run, 1);
15695 add_com_alias ("br", "break", class_run, 1);
15696 add_com_alias ("bre", "break", class_run, 1);
15697 add_com_alias ("brea", "break", class_run, 1);
15698
15699 if (dbx_commands)
15700 {
15701 add_abbrev_prefix_cmd ("stop", class_breakpoint, stop_command, _("\
15702 Break in function/address or break at a line in the current file."),
15703 &stoplist, "stop ", 1, &cmdlist);
15704 add_cmd ("in", class_breakpoint, stopin_command,
15705 _("Break in function or address."), &stoplist);
15706 add_cmd ("at", class_breakpoint, stopat_command,
15707 _("Break at a line in the current file."), &stoplist);
15708 add_com ("status", class_info, info_breakpoints_command, _("\
15709 Status of user-settable breakpoints, or breakpoint number NUMBER.\n\
15710 The \"Type\" column indicates one of:\n\
15711 \tbreakpoint - normal breakpoint\n\
15712 \twatchpoint - watchpoint\n\
15713 The \"Disp\" column contains one of \"keep\", \"del\", or \"dis\" to indicate\n\
15714 the disposition of the breakpoint after it gets hit. \"dis\" means that the\n\
15715 breakpoint will be disabled. The \"Address\" and \"What\" columns indicate the\n\
15716 address and file/line number respectively.\n\
15717 \n\
15718 Convenience variable \"$_\" and default examine address for \"x\"\n\
15719 are set to the address of the last breakpoint listed unless the command\n\
15720 is prefixed with \"server \".\n\n\
15721 Convenience variable \"$bpnum\" contains the number of the last\n\
15722 breakpoint set."));
15723 }
15724
15725 add_info ("breakpoints", info_breakpoints_command, _("\
15726 Status of specified breakpoints (all user-settable breakpoints if no argument).\n\
15727 The \"Type\" column indicates one of:\n\
15728 \tbreakpoint - normal breakpoint\n\
15729 \twatchpoint - watchpoint\n\
15730 The \"Disp\" column contains one of \"keep\", \"del\", or \"dis\" to indicate\n\
15731 the disposition of the breakpoint after it gets hit. \"dis\" means that the\n\
15732 breakpoint will be disabled. The \"Address\" and \"What\" columns indicate the\n\
15733 address and file/line number respectively.\n\
15734 \n\
15735 Convenience variable \"$_\" and default examine address for \"x\"\n\
15736 are set to the address of the last breakpoint listed unless the command\n\
15737 is prefixed with \"server \".\n\n\
15738 Convenience variable \"$bpnum\" contains the number of the last\n\
15739 breakpoint set."));
15740
15741 add_info_alias ("b", "breakpoints", 1);
15742
15743 add_cmd ("breakpoints", class_maintenance, maintenance_info_breakpoints, _("\
15744 Status of all breakpoints, or breakpoint number NUMBER.\n\
15745 The \"Type\" column indicates one of:\n\
15746 \tbreakpoint - normal breakpoint\n\
15747 \twatchpoint - watchpoint\n\
15748 \tlongjmp - internal breakpoint used to step through longjmp()\n\
15749 \tlongjmp resume - internal breakpoint at the target of longjmp()\n\
15750 \tuntil - internal breakpoint used by the \"until\" command\n\
15751 \tfinish - internal breakpoint used by the \"finish\" command\n\
15752 The \"Disp\" column contains one of \"keep\", \"del\", or \"dis\" to indicate\n\
15753 the disposition of the breakpoint after it gets hit. \"dis\" means that the\n\
15754 breakpoint will be disabled. The \"Address\" and \"What\" columns indicate the\n\
15755 address and file/line number respectively.\n\
15756 \n\
15757 Convenience variable \"$_\" and default examine address for \"x\"\n\
15758 are set to the address of the last breakpoint listed unless the command\n\
15759 is prefixed with \"server \".\n\n\
15760 Convenience variable \"$bpnum\" contains the number of the last\n\
15761 breakpoint set."),
15762 &maintenanceinfolist);
15763
15764 add_prefix_cmd ("catch", class_breakpoint, catch_command, _("\
15765 Set catchpoints to catch events."),
15766 &catch_cmdlist, "catch ",
15767 0/*allow-unknown*/, &cmdlist);
15768
15769 add_prefix_cmd ("tcatch", class_breakpoint, tcatch_command, _("\
15770 Set temporary catchpoints to catch events."),
15771 &tcatch_cmdlist, "tcatch ",
15772 0/*allow-unknown*/, &cmdlist);
15773
15774 add_catch_command ("fork", _("Catch calls to fork."),
15775 catch_fork_command_1,
15776 NULL,
15777 (void *) (uintptr_t) catch_fork_permanent,
15778 (void *) (uintptr_t) catch_fork_temporary);
15779 add_catch_command ("vfork", _("Catch calls to vfork."),
15780 catch_fork_command_1,
15781 NULL,
15782 (void *) (uintptr_t) catch_vfork_permanent,
15783 (void *) (uintptr_t) catch_vfork_temporary);
15784 add_catch_command ("exec", _("Catch calls to exec."),
15785 catch_exec_command_1,
15786 NULL,
15787 CATCH_PERMANENT,
15788 CATCH_TEMPORARY);
15789 add_catch_command ("load", _("Catch loads of shared libraries.\n\
15790 Usage: catch load [REGEX]\n\
15791 If REGEX is given, only stop for libraries matching the regular expression."),
15792 catch_load_command_1,
15793 NULL,
15794 CATCH_PERMANENT,
15795 CATCH_TEMPORARY);
15796 add_catch_command ("unload", _("Catch unloads of shared libraries.\n\
15797 Usage: catch unload [REGEX]\n\
15798 If REGEX is given, only stop for libraries matching the regular expression."),
15799 catch_unload_command_1,
15800 NULL,
15801 CATCH_PERMANENT,
15802 CATCH_TEMPORARY);
15803
15804 c = add_com ("watch", class_breakpoint, watch_command, _("\
15805 Set a watchpoint for an expression.\n\
15806 Usage: watch [-l|-location] EXPRESSION\n\
15807 A watchpoint stops execution of your program whenever the value of\n\
15808 an expression changes.\n\
15809 If -l or -location is given, this evaluates EXPRESSION and watches\n\
15810 the memory to which it refers."));
15811 set_cmd_completer (c, expression_completer);
15812
15813 c = add_com ("rwatch", class_breakpoint, rwatch_command, _("\
15814 Set a read watchpoint for an expression.\n\
15815 Usage: rwatch [-l|-location] EXPRESSION\n\
15816 A watchpoint stops execution of your program whenever the value of\n\
15817 an expression is read.\n\
15818 If -l or -location is given, this evaluates EXPRESSION and watches\n\
15819 the memory to which it refers."));
15820 set_cmd_completer (c, expression_completer);
15821
15822 c = add_com ("awatch", class_breakpoint, awatch_command, _("\
15823 Set a watchpoint for an expression.\n\
15824 Usage: awatch [-l|-location] EXPRESSION\n\
15825 A watchpoint stops execution of your program whenever the value of\n\
15826 an expression is either read or written.\n\
15827 If -l or -location is given, this evaluates EXPRESSION and watches\n\
15828 the memory to which it refers."));
15829 set_cmd_completer (c, expression_completer);
15830
15831 add_info ("watchpoints", info_watchpoints_command, _("\
15832 Status of specified watchpoints (all watchpoints if no argument)."));
15833
15834 /* XXX: cagney/2005-02-23: This should be a boolean, and should
15835 respond to changes - contrary to the description. */
15836 add_setshow_zinteger_cmd ("can-use-hw-watchpoints", class_support,
15837 &can_use_hw_watchpoints, _("\
15838 Set debugger's willingness to use watchpoint hardware."), _("\
15839 Show debugger's willingness to use watchpoint hardware."), _("\
15840 If zero, gdb will not use hardware for new watchpoints, even if\n\
15841 such is available. (However, any hardware watchpoints that were\n\
15842 created before setting this to nonzero, will continue to use watchpoint\n\
15843 hardware.)"),
15844 NULL,
15845 show_can_use_hw_watchpoints,
15846 &setlist, &showlist);
15847
15848 can_use_hw_watchpoints = 1;
15849
15850 /* Tracepoint manipulation commands. */
15851
15852 c = add_com ("trace", class_breakpoint, trace_command, _("\
15853 Set a tracepoint at specified location.\n\
15854 \n"
15855 BREAK_ARGS_HELP ("trace") "\n\
15856 Do \"help tracepoints\" for info on other tracepoint commands."));
15857 set_cmd_completer (c, location_completer);
15858
15859 add_com_alias ("tp", "trace", class_alias, 0);
15860 add_com_alias ("tr", "trace", class_alias, 1);
15861 add_com_alias ("tra", "trace", class_alias, 1);
15862 add_com_alias ("trac", "trace", class_alias, 1);
15863
15864 c = add_com ("ftrace", class_breakpoint, ftrace_command, _("\
15865 Set a fast tracepoint at specified location.\n\
15866 \n"
15867 BREAK_ARGS_HELP ("ftrace") "\n\
15868 Do \"help tracepoints\" for info on other tracepoint commands."));
15869 set_cmd_completer (c, location_completer);
15870
15871 c = add_com ("strace", class_breakpoint, strace_command, _("\
15872 Set a static tracepoint at location or marker.\n\
15873 \n\
15874 strace [LOCATION] [if CONDITION]\n\
15875 LOCATION may be a linespec, explicit, or address location (described below) \n\
15876 or -m MARKER_ID.\n\n\
15877 If a marker id is specified, probe the marker with that name. With\n\
15878 no LOCATION, uses current execution address of the selected stack frame.\n\
15879 Static tracepoints accept an extra collect action -- ``collect $_sdata''.\n\
15880 This collects arbitrary user data passed in the probe point call to the\n\
15881 tracing library. You can inspect it when analyzing the trace buffer,\n\
15882 by printing the $_sdata variable like any other convenience variable.\n\
15883 \n\
15884 CONDITION is a boolean expression.\n\
15885 \n" LOCATION_HELP_STRING "\n\
15886 Multiple tracepoints at one place are permitted, and useful if their\n\
15887 conditions are different.\n\
15888 \n\
15889 Do \"help breakpoints\" for info on other commands dealing with breakpoints.\n\
15890 Do \"help tracepoints\" for info on other tracepoint commands."));
15891 set_cmd_completer (c, location_completer);
15892
15893 add_info ("tracepoints", info_tracepoints_command, _("\
15894 Status of specified tracepoints (all tracepoints if no argument).\n\
15895 Convenience variable \"$tpnum\" contains the number of the\n\
15896 last tracepoint set."));
15897
15898 add_info_alias ("tp", "tracepoints", 1);
15899
15900 add_cmd ("tracepoints", class_trace, delete_trace_command, _("\
15901 Delete specified tracepoints.\n\
15902 Arguments are tracepoint numbers, separated by spaces.\n\
15903 No argument means delete all tracepoints."),
15904 &deletelist);
15905 add_alias_cmd ("tr", "tracepoints", class_trace, 1, &deletelist);
15906
15907 c = add_cmd ("tracepoints", class_trace, disable_trace_command, _("\
15908 Disable specified tracepoints.\n\
15909 Arguments are tracepoint numbers, separated by spaces.\n\
15910 No argument means disable all tracepoints."),
15911 &disablelist);
15912 deprecate_cmd (c, "disable");
15913
15914 c = add_cmd ("tracepoints", class_trace, enable_trace_command, _("\
15915 Enable specified tracepoints.\n\
15916 Arguments are tracepoint numbers, separated by spaces.\n\
15917 No argument means enable all tracepoints."),
15918 &enablelist);
15919 deprecate_cmd (c, "enable");
15920
15921 add_com ("passcount", class_trace, trace_pass_command, _("\
15922 Set the passcount for a tracepoint.\n\
15923 The trace will end when the tracepoint has been passed 'count' times.\n\
15924 Usage: passcount COUNT TPNUM, where TPNUM may also be \"all\";\n\
15925 if TPNUM is omitted, passcount refers to the last tracepoint defined."));
15926
15927 add_prefix_cmd ("save", class_breakpoint, save_command,
15928 _("Save breakpoint definitions as a script."),
15929 &save_cmdlist, "save ",
15930 0/*allow-unknown*/, &cmdlist);
15931
15932 c = add_cmd ("breakpoints", class_breakpoint, save_breakpoints_command, _("\
15933 Save current breakpoint definitions as a script.\n\
15934 This includes all types of breakpoints (breakpoints, watchpoints,\n\
15935 catchpoints, tracepoints). Use the 'source' command in another debug\n\
15936 session to restore them."),
15937 &save_cmdlist);
15938 set_cmd_completer (c, filename_completer);
15939
15940 c = add_cmd ("tracepoints", class_trace, save_tracepoints_command, _("\
15941 Save current tracepoint definitions as a script.\n\
15942 Use the 'source' command in another debug session to restore them."),
15943 &save_cmdlist);
15944 set_cmd_completer (c, filename_completer);
15945
15946 c = add_com_alias ("save-tracepoints", "save tracepoints", class_trace, 0);
15947 deprecate_cmd (c, "save tracepoints");
15948
15949 add_prefix_cmd ("breakpoint", class_maintenance, set_breakpoint_cmd, _("\
15950 Breakpoint specific settings\n\
15951 Configure various breakpoint-specific variables such as\n\
15952 pending breakpoint behavior"),
15953 &breakpoint_set_cmdlist, "set breakpoint ",
15954 0/*allow-unknown*/, &setlist);
15955 add_prefix_cmd ("breakpoint", class_maintenance, show_breakpoint_cmd, _("\
15956 Breakpoint specific settings\n\
15957 Configure various breakpoint-specific variables such as\n\
15958 pending breakpoint behavior"),
15959 &breakpoint_show_cmdlist, "show breakpoint ",
15960 0/*allow-unknown*/, &showlist);
15961
15962 add_setshow_auto_boolean_cmd ("pending", no_class,
15963 &pending_break_support, _("\
15964 Set debugger's behavior regarding pending breakpoints."), _("\
15965 Show debugger's behavior regarding pending breakpoints."), _("\
15966 If on, an unrecognized breakpoint location will cause gdb to create a\n\
15967 pending breakpoint. If off, an unrecognized breakpoint location results in\n\
15968 an error. If auto, an unrecognized breakpoint location results in a\n\
15969 user-query to see if a pending breakpoint should be created."),
15970 NULL,
15971 show_pending_break_support,
15972 &breakpoint_set_cmdlist,
15973 &breakpoint_show_cmdlist);
15974
15975 pending_break_support = AUTO_BOOLEAN_AUTO;
15976
15977 add_setshow_boolean_cmd ("auto-hw", no_class,
15978 &automatic_hardware_breakpoints, _("\
15979 Set automatic usage of hardware breakpoints."), _("\
15980 Show automatic usage of hardware breakpoints."), _("\
15981 If set, the debugger will automatically use hardware breakpoints for\n\
15982 breakpoints set with \"break\" but falling in read-only memory. If not set,\n\
15983 a warning will be emitted for such breakpoints."),
15984 NULL,
15985 show_automatic_hardware_breakpoints,
15986 &breakpoint_set_cmdlist,
15987 &breakpoint_show_cmdlist);
15988
15989 add_setshow_boolean_cmd ("always-inserted", class_support,
15990 &always_inserted_mode, _("\
15991 Set mode for inserting breakpoints."), _("\
15992 Show mode for inserting breakpoints."), _("\
15993 When this mode is on, breakpoints are inserted immediately as soon as\n\
15994 they're created, kept inserted even when execution stops, and removed\n\
15995 only when the user deletes them. When this mode is off (the default),\n\
15996 breakpoints are inserted only when execution continues, and removed\n\
15997 when execution stops."),
15998 NULL,
15999 &show_always_inserted_mode,
16000 &breakpoint_set_cmdlist,
16001 &breakpoint_show_cmdlist);
16002
16003 add_setshow_enum_cmd ("condition-evaluation", class_breakpoint,
16004 condition_evaluation_enums,
16005 &condition_evaluation_mode_1, _("\
16006 Set mode of breakpoint condition evaluation."), _("\
16007 Show mode of breakpoint condition evaluation."), _("\
16008 When this is set to \"host\", breakpoint conditions will be\n\
16009 evaluated on the host's side by GDB. When it is set to \"target\",\n\
16010 breakpoint conditions will be downloaded to the target (if the target\n\
16011 supports such feature) and conditions will be evaluated on the target's side.\n\
16012 If this is set to \"auto\" (default), this will be automatically set to\n\
16013 \"target\" if it supports condition evaluation, otherwise it will\n\
16014 be set to \"gdb\""),
16015 &set_condition_evaluation_mode,
16016 &show_condition_evaluation_mode,
16017 &breakpoint_set_cmdlist,
16018 &breakpoint_show_cmdlist);
16019
16020 add_com ("break-range", class_breakpoint, break_range_command, _("\
16021 Set a breakpoint for an address range.\n\
16022 break-range START-LOCATION, END-LOCATION\n\
16023 where START-LOCATION and END-LOCATION can be one of the following:\n\
16024 LINENUM, for that line in the current file,\n\
16025 FILE:LINENUM, for that line in that file,\n\
16026 +OFFSET, for that number of lines after the current line\n\
16027 or the start of the range\n\
16028 FUNCTION, for the first line in that function,\n\
16029 FILE:FUNCTION, to distinguish among like-named static functions.\n\
16030 *ADDRESS, for the instruction at that address.\n\
16031 \n\
16032 The breakpoint will stop execution of the inferior whenever it executes\n\
16033 an instruction at any address within the [START-LOCATION, END-LOCATION]\n\
16034 range (including START-LOCATION and END-LOCATION)."));
16035
16036 c = add_com ("dprintf", class_breakpoint, dprintf_command, _("\
16037 Set a dynamic printf at specified location.\n\
16038 dprintf location,format string,arg1,arg2,...\n\
16039 location may be a linespec, explicit, or address location.\n"
16040 "\n" LOCATION_HELP_STRING));
16041 set_cmd_completer (c, location_completer);
16042
16043 add_setshow_enum_cmd ("dprintf-style", class_support,
16044 dprintf_style_enums, &dprintf_style, _("\
16045 Set the style of usage for dynamic printf."), _("\
16046 Show the style of usage for dynamic printf."), _("\
16047 This setting chooses how GDB will do a dynamic printf.\n\
16048 If the value is \"gdb\", then the printing is done by GDB to its own\n\
16049 console, as with the \"printf\" command.\n\
16050 If the value is \"call\", the print is done by calling a function in your\n\
16051 program; by default printf(), but you can choose a different function or\n\
16052 output stream by setting dprintf-function and dprintf-channel."),
16053 update_dprintf_commands, NULL,
16054 &setlist, &showlist);
16055
16056 dprintf_function = xstrdup ("printf");
16057 add_setshow_string_cmd ("dprintf-function", class_support,
16058 &dprintf_function, _("\
16059 Set the function to use for dynamic printf"), _("\
16060 Show the function to use for dynamic printf"), NULL,
16061 update_dprintf_commands, NULL,
16062 &setlist, &showlist);
16063
16064 dprintf_channel = xstrdup ("");
16065 add_setshow_string_cmd ("dprintf-channel", class_support,
16066 &dprintf_channel, _("\
16067 Set the channel to use for dynamic printf"), _("\
16068 Show the channel to use for dynamic printf"), NULL,
16069 update_dprintf_commands, NULL,
16070 &setlist, &showlist);
16071
16072 add_setshow_boolean_cmd ("disconnected-dprintf", no_class,
16073 &disconnected_dprintf, _("\
16074 Set whether dprintf continues after GDB disconnects."), _("\
16075 Show whether dprintf continues after GDB disconnects."), _("\
16076 Use this to let dprintf commands continue to hit and produce output\n\
16077 even if GDB disconnects or detaches from the target."),
16078 NULL,
16079 NULL,
16080 &setlist, &showlist);
16081
16082 add_com ("agent-printf", class_vars, agent_printf_command, _("\
16083 agent-printf \"printf format string\", arg1, arg2, arg3, ..., argn\n\
16084 (target agent only) This is useful for formatted output in user-defined commands."));
16085
16086 automatic_hardware_breakpoints = 1;
16087
16088 gdb::observers::about_to_proceed.attach (breakpoint_about_to_proceed);
16089 gdb::observers::thread_exit.attach (remove_threaded_breakpoints);
16090 }
This page took 0.540759 seconds and 4 git commands to generate.