Fix problems with finishing a dummy function call on simulators.
[deliverable/binutils-gdb.git] / gdb / breakpoint.c
1 /* Everything about breakpoints, for GDB.
2
3 Copyright (C) 1986-2015 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20 #include "defs.h"
21 #include "arch-utils.h"
22 #include <ctype.h>
23 #include "hashtab.h"
24 #include "symtab.h"
25 #include "frame.h"
26 #include "breakpoint.h"
27 #include "tracepoint.h"
28 #include "gdbtypes.h"
29 #include "expression.h"
30 #include "gdbcore.h"
31 #include "gdbcmd.h"
32 #include "value.h"
33 #include "command.h"
34 #include "inferior.h"
35 #include "infrun.h"
36 #include "gdbthread.h"
37 #include "target.h"
38 #include "language.h"
39 #include "gdb-demangle.h"
40 #include "filenames.h"
41 #include "annotate.h"
42 #include "symfile.h"
43 #include "objfiles.h"
44 #include "source.h"
45 #include "linespec.h"
46 #include "completer.h"
47 #include "gdb.h"
48 #include "ui-out.h"
49 #include "cli/cli-script.h"
50 #include "block.h"
51 #include "solib.h"
52 #include "solist.h"
53 #include "observer.h"
54 #include "memattr.h"
55 #include "ada-lang.h"
56 #include "top.h"
57 #include "valprint.h"
58 #include "jit.h"
59 #include "parser-defs.h"
60 #include "gdb_regex.h"
61 #include "probe.h"
62 #include "cli/cli-utils.h"
63 #include "continuations.h"
64 #include "stack.h"
65 #include "skip.h"
66 #include "ax-gdb.h"
67 #include "dummy-frame.h"
68 #include "interps.h"
69 #include "format.h"
70
71 /* readline include files */
72 #include "readline/readline.h"
73 #include "readline/history.h"
74
75 /* readline defines this. */
76 #undef savestring
77
78 #include "mi/mi-common.h"
79 #include "extension.h"
80
81 /* Enums for exception-handling support. */
82 enum exception_event_kind
83 {
84 EX_EVENT_THROW,
85 EX_EVENT_RETHROW,
86 EX_EVENT_CATCH
87 };
88
89 /* Prototypes for local functions. */
90
91 static void enable_delete_command (char *, int);
92
93 static void enable_once_command (char *, int);
94
95 static void enable_count_command (char *, int);
96
97 static void disable_command (char *, int);
98
99 static void enable_command (char *, int);
100
101 static void map_breakpoint_numbers (char *, void (*) (struct breakpoint *,
102 void *),
103 void *);
104
105 static void ignore_command (char *, int);
106
107 static int breakpoint_re_set_one (void *);
108
109 static void breakpoint_re_set_default (struct breakpoint *);
110
111 static void create_sals_from_address_default (char **,
112 struct linespec_result *,
113 enum bptype, char *,
114 char **);
115
116 static void create_breakpoints_sal_default (struct gdbarch *,
117 struct linespec_result *,
118 char *, char *, enum bptype,
119 enum bpdisp, int, int,
120 int,
121 const struct breakpoint_ops *,
122 int, int, int, unsigned);
123
124 static void decode_linespec_default (struct breakpoint *, char **,
125 struct symtabs_and_lines *);
126
127 static void clear_command (char *, int);
128
129 static void catch_command (char *, int);
130
131 static int can_use_hardware_watchpoint (struct value *);
132
133 static void break_command_1 (char *, int, int);
134
135 static void mention (struct breakpoint *);
136
137 static struct breakpoint *set_raw_breakpoint_without_location (struct gdbarch *,
138 enum bptype,
139 const struct breakpoint_ops *);
140 static struct bp_location *add_location_to_breakpoint (struct breakpoint *,
141 const struct symtab_and_line *);
142
143 /* This function is used in gdbtk sources and thus can not be made
144 static. */
145 struct breakpoint *set_raw_breakpoint (struct gdbarch *gdbarch,
146 struct symtab_and_line,
147 enum bptype,
148 const struct breakpoint_ops *);
149
150 static struct breakpoint *
151 momentary_breakpoint_from_master (struct breakpoint *orig,
152 enum bptype type,
153 const struct breakpoint_ops *ops,
154 int loc_enabled);
155
156 static void breakpoint_adjustment_warning (CORE_ADDR, CORE_ADDR, int, int);
157
158 static CORE_ADDR adjust_breakpoint_address (struct gdbarch *gdbarch,
159 CORE_ADDR bpaddr,
160 enum bptype bptype);
161
162 static void describe_other_breakpoints (struct gdbarch *,
163 struct program_space *, CORE_ADDR,
164 struct obj_section *, int);
165
166 static int watchpoint_locations_match (struct bp_location *loc1,
167 struct bp_location *loc2);
168
169 static int breakpoint_location_address_match (struct bp_location *bl,
170 struct address_space *aspace,
171 CORE_ADDR addr);
172
173 static void breakpoints_info (char *, int);
174
175 static void watchpoints_info (char *, int);
176
177 static int breakpoint_1 (char *, int,
178 int (*) (const struct breakpoint *));
179
180 static int breakpoint_cond_eval (void *);
181
182 static void cleanup_executing_breakpoints (void *);
183
184 static void commands_command (char *, int);
185
186 static void condition_command (char *, int);
187
188 typedef enum
189 {
190 mark_inserted,
191 mark_uninserted
192 }
193 insertion_state_t;
194
195 static int remove_breakpoint (struct bp_location *, insertion_state_t);
196 static int remove_breakpoint_1 (struct bp_location *, insertion_state_t);
197
198 static enum print_stop_action print_bp_stop_message (bpstat bs);
199
200 static int watchpoint_check (void *);
201
202 static void maintenance_info_breakpoints (char *, int);
203
204 static int hw_breakpoint_used_count (void);
205
206 static int hw_watchpoint_use_count (struct breakpoint *);
207
208 static int hw_watchpoint_used_count_others (struct breakpoint *except,
209 enum bptype type,
210 int *other_type_used);
211
212 static void hbreak_command (char *, int);
213
214 static void thbreak_command (char *, int);
215
216 static void enable_breakpoint_disp (struct breakpoint *, enum bpdisp,
217 int count);
218
219 static void stop_command (char *arg, int from_tty);
220
221 static void stopin_command (char *arg, int from_tty);
222
223 static void stopat_command (char *arg, int from_tty);
224
225 static void tcatch_command (char *arg, int from_tty);
226
227 static void free_bp_location (struct bp_location *loc);
228 static void incref_bp_location (struct bp_location *loc);
229 static void decref_bp_location (struct bp_location **loc);
230
231 static struct bp_location *allocate_bp_location (struct breakpoint *bpt);
232
233 /* update_global_location_list's modes of operation wrt to whether to
234 insert locations now. */
235 enum ugll_insert_mode
236 {
237 /* Don't insert any breakpoint locations into the inferior, only
238 remove already-inserted locations that no longer should be
239 inserted. Functions that delete a breakpoint or breakpoints
240 should specify this mode, so that deleting a breakpoint doesn't
241 have the side effect of inserting the locations of other
242 breakpoints that are marked not-inserted, but should_be_inserted
243 returns true on them.
244
245 This behavior is useful is situations close to tear-down -- e.g.,
246 after an exec, while the target still has execution, but
247 breakpoint shadows of the previous executable image should *NOT*
248 be restored to the new image; or before detaching, where the
249 target still has execution and wants to delete breakpoints from
250 GDB's lists, and all breakpoints had already been removed from
251 the inferior. */
252 UGLL_DONT_INSERT,
253
254 /* May insert breakpoints iff breakpoints_should_be_inserted_now
255 claims breakpoints should be inserted now. */
256 UGLL_MAY_INSERT,
257
258 /* Insert locations now, irrespective of
259 breakpoints_should_be_inserted_now. E.g., say all threads are
260 stopped right now, and the user did "continue". We need to
261 insert breakpoints _before_ resuming the target, but
262 UGLL_MAY_INSERT wouldn't insert them, because
263 breakpoints_should_be_inserted_now returns false at that point,
264 as no thread is running yet. */
265 UGLL_INSERT
266 };
267
268 static void update_global_location_list (enum ugll_insert_mode);
269
270 static void update_global_location_list_nothrow (enum ugll_insert_mode);
271
272 static int is_hardware_watchpoint (const struct breakpoint *bpt);
273
274 static void insert_breakpoint_locations (void);
275
276 static void tracepoints_info (char *, int);
277
278 static void delete_trace_command (char *, int);
279
280 static void enable_trace_command (char *, int);
281
282 static void disable_trace_command (char *, int);
283
284 static void trace_pass_command (char *, int);
285
286 static void set_tracepoint_count (int num);
287
288 static int is_masked_watchpoint (const struct breakpoint *b);
289
290 static struct bp_location **get_first_locp_gte_addr (CORE_ADDR address);
291
292 /* Return 1 if B refers to a static tracepoint set by marker ("-m"), zero
293 otherwise. */
294
295 static int strace_marker_p (struct breakpoint *b);
296
297 /* The breakpoint_ops structure to be inherited by all breakpoint_ops
298 that are implemented on top of software or hardware breakpoints
299 (user breakpoints, internal and momentary breakpoints, etc.). */
300 static struct breakpoint_ops bkpt_base_breakpoint_ops;
301
302 /* Internal breakpoints class type. */
303 static struct breakpoint_ops internal_breakpoint_ops;
304
305 /* Momentary breakpoints class type. */
306 static struct breakpoint_ops momentary_breakpoint_ops;
307
308 /* Momentary breakpoints for bp_longjmp and bp_exception class type. */
309 static struct breakpoint_ops longjmp_breakpoint_ops;
310
311 /* The breakpoint_ops structure to be used in regular user created
312 breakpoints. */
313 struct breakpoint_ops bkpt_breakpoint_ops;
314
315 /* Breakpoints set on probes. */
316 static struct breakpoint_ops bkpt_probe_breakpoint_ops;
317
318 /* Dynamic printf class type. */
319 struct breakpoint_ops dprintf_breakpoint_ops;
320
321 /* The style in which to perform a dynamic printf. This is a user
322 option because different output options have different tradeoffs;
323 if GDB does the printing, there is better error handling if there
324 is a problem with any of the arguments, but using an inferior
325 function lets you have special-purpose printers and sending of
326 output to the same place as compiled-in print functions. */
327
328 static const char dprintf_style_gdb[] = "gdb";
329 static const char dprintf_style_call[] = "call";
330 static const char dprintf_style_agent[] = "agent";
331 static const char *const dprintf_style_enums[] = {
332 dprintf_style_gdb,
333 dprintf_style_call,
334 dprintf_style_agent,
335 NULL
336 };
337 static const char *dprintf_style = dprintf_style_gdb;
338
339 /* The function to use for dynamic printf if the preferred style is to
340 call into the inferior. The value is simply a string that is
341 copied into the command, so it can be anything that GDB can
342 evaluate to a callable address, not necessarily a function name. */
343
344 static char *dprintf_function = "";
345
346 /* The channel to use for dynamic printf if the preferred style is to
347 call into the inferior; if a nonempty string, it will be passed to
348 the call as the first argument, with the format string as the
349 second. As with the dprintf function, this can be anything that
350 GDB knows how to evaluate, so in addition to common choices like
351 "stderr", this could be an app-specific expression like
352 "mystreams[curlogger]". */
353
354 static char *dprintf_channel = "";
355
356 /* True if dprintf commands should continue to operate even if GDB
357 has disconnected. */
358 static int disconnected_dprintf = 1;
359
360 /* A reference-counted struct command_line. This lets multiple
361 breakpoints share a single command list. */
362 struct counted_command_line
363 {
364 /* The reference count. */
365 int refc;
366
367 /* The command list. */
368 struct command_line *commands;
369 };
370
371 struct command_line *
372 breakpoint_commands (struct breakpoint *b)
373 {
374 return b->commands ? b->commands->commands : NULL;
375 }
376
377 /* Flag indicating that a command has proceeded the inferior past the
378 current breakpoint. */
379
380 static int breakpoint_proceeded;
381
382 const char *
383 bpdisp_text (enum bpdisp disp)
384 {
385 /* NOTE: the following values are a part of MI protocol and
386 represent values of 'disp' field returned when inferior stops at
387 a breakpoint. */
388 static const char * const bpdisps[] = {"del", "dstp", "dis", "keep"};
389
390 return bpdisps[(int) disp];
391 }
392
393 /* Prototypes for exported functions. */
394 /* If FALSE, gdb will not use hardware support for watchpoints, even
395 if such is available. */
396 static int can_use_hw_watchpoints;
397
398 static void
399 show_can_use_hw_watchpoints (struct ui_file *file, int from_tty,
400 struct cmd_list_element *c,
401 const char *value)
402 {
403 fprintf_filtered (file,
404 _("Debugger's willingness to use "
405 "watchpoint hardware is %s.\n"),
406 value);
407 }
408
409 /* If AUTO_BOOLEAN_FALSE, gdb will not attempt to create pending breakpoints.
410 If AUTO_BOOLEAN_TRUE, gdb will automatically create pending breakpoints
411 for unrecognized breakpoint locations.
412 If AUTO_BOOLEAN_AUTO, gdb will query when breakpoints are unrecognized. */
413 static enum auto_boolean pending_break_support;
414 static void
415 show_pending_break_support (struct ui_file *file, int from_tty,
416 struct cmd_list_element *c,
417 const char *value)
418 {
419 fprintf_filtered (file,
420 _("Debugger's behavior regarding "
421 "pending breakpoints is %s.\n"),
422 value);
423 }
424
425 /* If 1, gdb will automatically use hardware breakpoints for breakpoints
426 set with "break" but falling in read-only memory.
427 If 0, gdb will warn about such breakpoints, but won't automatically
428 use hardware breakpoints. */
429 static int automatic_hardware_breakpoints;
430 static void
431 show_automatic_hardware_breakpoints (struct ui_file *file, int from_tty,
432 struct cmd_list_element *c,
433 const char *value)
434 {
435 fprintf_filtered (file,
436 _("Automatic usage of hardware breakpoints is %s.\n"),
437 value);
438 }
439
440 /* If on, GDB keeps breakpoints inserted even if the inferior is
441 stopped, and immediately inserts any new breakpoints as soon as
442 they're created. If off (default), GDB keeps breakpoints off of
443 the target as long as possible. That is, it delays inserting
444 breakpoints until the next resume, and removes them again when the
445 target fully stops. This is a bit safer in case GDB crashes while
446 processing user input. */
447 static int always_inserted_mode = 0;
448
449 static void
450 show_always_inserted_mode (struct ui_file *file, int from_tty,
451 struct cmd_list_element *c, const char *value)
452 {
453 fprintf_filtered (file, _("Always inserted breakpoint mode is %s.\n"),
454 value);
455 }
456
457 /* See breakpoint.h. */
458
459 int
460 breakpoints_should_be_inserted_now (void)
461 {
462 if (gdbarch_has_global_breakpoints (target_gdbarch ()))
463 {
464 /* If breakpoints are global, they should be inserted even if no
465 thread under gdb's control is running, or even if there are
466 no threads under GDB's control yet. */
467 return 1;
468 }
469 else if (target_has_execution)
470 {
471 if (always_inserted_mode)
472 {
473 /* The user wants breakpoints inserted even if all threads
474 are stopped. */
475 return 1;
476 }
477
478 if (threads_are_executing ())
479 return 1;
480 }
481 return 0;
482 }
483
484 static const char condition_evaluation_both[] = "host or target";
485
486 /* Modes for breakpoint condition evaluation. */
487 static const char condition_evaluation_auto[] = "auto";
488 static const char condition_evaluation_host[] = "host";
489 static const char condition_evaluation_target[] = "target";
490 static const char *const condition_evaluation_enums[] = {
491 condition_evaluation_auto,
492 condition_evaluation_host,
493 condition_evaluation_target,
494 NULL
495 };
496
497 /* Global that holds the current mode for breakpoint condition evaluation. */
498 static const char *condition_evaluation_mode_1 = condition_evaluation_auto;
499
500 /* Global that we use to display information to the user (gets its value from
501 condition_evaluation_mode_1. */
502 static const char *condition_evaluation_mode = condition_evaluation_auto;
503
504 /* Translate a condition evaluation mode MODE into either "host"
505 or "target". This is used mostly to translate from "auto" to the
506 real setting that is being used. It returns the translated
507 evaluation mode. */
508
509 static const char *
510 translate_condition_evaluation_mode (const char *mode)
511 {
512 if (mode == condition_evaluation_auto)
513 {
514 if (target_supports_evaluation_of_breakpoint_conditions ())
515 return condition_evaluation_target;
516 else
517 return condition_evaluation_host;
518 }
519 else
520 return mode;
521 }
522
523 /* Discovers what condition_evaluation_auto translates to. */
524
525 static const char *
526 breakpoint_condition_evaluation_mode (void)
527 {
528 return translate_condition_evaluation_mode (condition_evaluation_mode);
529 }
530
531 /* Return true if GDB should evaluate breakpoint conditions or false
532 otherwise. */
533
534 static int
535 gdb_evaluates_breakpoint_condition_p (void)
536 {
537 const char *mode = breakpoint_condition_evaluation_mode ();
538
539 return (mode == condition_evaluation_host);
540 }
541
542 void _initialize_breakpoint (void);
543
544 /* Are we executing breakpoint commands? */
545 static int executing_breakpoint_commands;
546
547 /* Are overlay event breakpoints enabled? */
548 static int overlay_events_enabled;
549
550 /* See description in breakpoint.h. */
551 int target_exact_watchpoints = 0;
552
553 /* Walk the following statement or block through all breakpoints.
554 ALL_BREAKPOINTS_SAFE does so even if the statement deletes the
555 current breakpoint. */
556
557 #define ALL_BREAKPOINTS(B) for (B = breakpoint_chain; B; B = B->next)
558
559 #define ALL_BREAKPOINTS_SAFE(B,TMP) \
560 for (B = breakpoint_chain; \
561 B ? (TMP=B->next, 1): 0; \
562 B = TMP)
563
564 /* Similar iterator for the low-level breakpoints. SAFE variant is
565 not provided so update_global_location_list must not be called
566 while executing the block of ALL_BP_LOCATIONS. */
567
568 #define ALL_BP_LOCATIONS(B,BP_TMP) \
569 for (BP_TMP = bp_location; \
570 BP_TMP < bp_location + bp_location_count && (B = *BP_TMP); \
571 BP_TMP++)
572
573 /* Iterates through locations with address ADDRESS for the currently selected
574 program space. BP_LOCP_TMP points to each object. BP_LOCP_START points
575 to where the loop should start from.
576 If BP_LOCP_START is a NULL pointer, the macro automatically seeks the
577 appropriate location to start with. */
578
579 #define ALL_BP_LOCATIONS_AT_ADDR(BP_LOCP_TMP, BP_LOCP_START, ADDRESS) \
580 for (BP_LOCP_START = BP_LOCP_START == NULL ? get_first_locp_gte_addr (ADDRESS) : BP_LOCP_START, \
581 BP_LOCP_TMP = BP_LOCP_START; \
582 BP_LOCP_START \
583 && (BP_LOCP_TMP < bp_location + bp_location_count \
584 && (*BP_LOCP_TMP)->address == ADDRESS); \
585 BP_LOCP_TMP++)
586
587 /* Iterator for tracepoints only. */
588
589 #define ALL_TRACEPOINTS(B) \
590 for (B = breakpoint_chain; B; B = B->next) \
591 if (is_tracepoint (B))
592
593 /* Chains of all breakpoints defined. */
594
595 struct breakpoint *breakpoint_chain;
596
597 /* Array is sorted by bp_location_compare - primarily by the ADDRESS. */
598
599 static struct bp_location **bp_location;
600
601 /* Number of elements of BP_LOCATION. */
602
603 static unsigned bp_location_count;
604
605 /* Maximum alignment offset between bp_target_info.PLACED_ADDRESS and
606 ADDRESS for the current elements of BP_LOCATION which get a valid
607 result from bp_location_has_shadow. You can use it for roughly
608 limiting the subrange of BP_LOCATION to scan for shadow bytes for
609 an address you need to read. */
610
611 static CORE_ADDR bp_location_placed_address_before_address_max;
612
613 /* Maximum offset plus alignment between bp_target_info.PLACED_ADDRESS
614 + bp_target_info.SHADOW_LEN and ADDRESS for the current elements of
615 BP_LOCATION which get a valid result from bp_location_has_shadow.
616 You can use it for roughly limiting the subrange of BP_LOCATION to
617 scan for shadow bytes for an address you need to read. */
618
619 static CORE_ADDR bp_location_shadow_len_after_address_max;
620
621 /* The locations that no longer correspond to any breakpoint, unlinked
622 from bp_location array, but for which a hit may still be reported
623 by a target. */
624 VEC(bp_location_p) *moribund_locations = NULL;
625
626 /* Number of last breakpoint made. */
627
628 static int breakpoint_count;
629
630 /* The value of `breakpoint_count' before the last command that
631 created breakpoints. If the last (break-like) command created more
632 than one breakpoint, then the difference between BREAKPOINT_COUNT
633 and PREV_BREAKPOINT_COUNT is more than one. */
634 static int prev_breakpoint_count;
635
636 /* Number of last tracepoint made. */
637
638 static int tracepoint_count;
639
640 static struct cmd_list_element *breakpoint_set_cmdlist;
641 static struct cmd_list_element *breakpoint_show_cmdlist;
642 struct cmd_list_element *save_cmdlist;
643
644 /* See declaration at breakpoint.h. */
645
646 struct breakpoint *
647 breakpoint_find_if (int (*func) (struct breakpoint *b, void *d),
648 void *user_data)
649 {
650 struct breakpoint *b = NULL;
651
652 ALL_BREAKPOINTS (b)
653 {
654 if (func (b, user_data) != 0)
655 break;
656 }
657
658 return b;
659 }
660
661 /* Return whether a breakpoint is an active enabled breakpoint. */
662 static int
663 breakpoint_enabled (struct breakpoint *b)
664 {
665 return (b->enable_state == bp_enabled);
666 }
667
668 /* Set breakpoint count to NUM. */
669
670 static void
671 set_breakpoint_count (int num)
672 {
673 prev_breakpoint_count = breakpoint_count;
674 breakpoint_count = num;
675 set_internalvar_integer (lookup_internalvar ("bpnum"), num);
676 }
677
678 /* Used by `start_rbreak_breakpoints' below, to record the current
679 breakpoint count before "rbreak" creates any breakpoint. */
680 static int rbreak_start_breakpoint_count;
681
682 /* Called at the start an "rbreak" command to record the first
683 breakpoint made. */
684
685 void
686 start_rbreak_breakpoints (void)
687 {
688 rbreak_start_breakpoint_count = breakpoint_count;
689 }
690
691 /* Called at the end of an "rbreak" command to record the last
692 breakpoint made. */
693
694 void
695 end_rbreak_breakpoints (void)
696 {
697 prev_breakpoint_count = rbreak_start_breakpoint_count;
698 }
699
700 /* Used in run_command to zero the hit count when a new run starts. */
701
702 void
703 clear_breakpoint_hit_counts (void)
704 {
705 struct breakpoint *b;
706
707 ALL_BREAKPOINTS (b)
708 b->hit_count = 0;
709 }
710
711 /* Allocate a new counted_command_line with reference count of 1.
712 The new structure owns COMMANDS. */
713
714 static struct counted_command_line *
715 alloc_counted_command_line (struct command_line *commands)
716 {
717 struct counted_command_line *result
718 = xmalloc (sizeof (struct counted_command_line));
719
720 result->refc = 1;
721 result->commands = commands;
722 return result;
723 }
724
725 /* Increment reference count. This does nothing if CMD is NULL. */
726
727 static void
728 incref_counted_command_line (struct counted_command_line *cmd)
729 {
730 if (cmd)
731 ++cmd->refc;
732 }
733
734 /* Decrement reference count. If the reference count reaches 0,
735 destroy the counted_command_line. Sets *CMDP to NULL. This does
736 nothing if *CMDP is NULL. */
737
738 static void
739 decref_counted_command_line (struct counted_command_line **cmdp)
740 {
741 if (*cmdp)
742 {
743 if (--(*cmdp)->refc == 0)
744 {
745 free_command_lines (&(*cmdp)->commands);
746 xfree (*cmdp);
747 }
748 *cmdp = NULL;
749 }
750 }
751
752 /* A cleanup function that calls decref_counted_command_line. */
753
754 static void
755 do_cleanup_counted_command_line (void *arg)
756 {
757 decref_counted_command_line (arg);
758 }
759
760 /* Create a cleanup that calls decref_counted_command_line on the
761 argument. */
762
763 static struct cleanup *
764 make_cleanup_decref_counted_command_line (struct counted_command_line **cmdp)
765 {
766 return make_cleanup (do_cleanup_counted_command_line, cmdp);
767 }
768
769 \f
770 /* Return the breakpoint with the specified number, or NULL
771 if the number does not refer to an existing breakpoint. */
772
773 struct breakpoint *
774 get_breakpoint (int num)
775 {
776 struct breakpoint *b;
777
778 ALL_BREAKPOINTS (b)
779 if (b->number == num)
780 return b;
781
782 return NULL;
783 }
784
785 \f
786
787 /* Mark locations as "conditions have changed" in case the target supports
788 evaluating conditions on its side. */
789
790 static void
791 mark_breakpoint_modified (struct breakpoint *b)
792 {
793 struct bp_location *loc;
794
795 /* This is only meaningful if the target is
796 evaluating conditions and if the user has
797 opted for condition evaluation on the target's
798 side. */
799 if (gdb_evaluates_breakpoint_condition_p ()
800 || !target_supports_evaluation_of_breakpoint_conditions ())
801 return;
802
803 if (!is_breakpoint (b))
804 return;
805
806 for (loc = b->loc; loc; loc = loc->next)
807 loc->condition_changed = condition_modified;
808 }
809
810 /* Mark location as "conditions have changed" in case the target supports
811 evaluating conditions on its side. */
812
813 static void
814 mark_breakpoint_location_modified (struct bp_location *loc)
815 {
816 /* This is only meaningful if the target is
817 evaluating conditions and if the user has
818 opted for condition evaluation on the target's
819 side. */
820 if (gdb_evaluates_breakpoint_condition_p ()
821 || !target_supports_evaluation_of_breakpoint_conditions ())
822
823 return;
824
825 if (!is_breakpoint (loc->owner))
826 return;
827
828 loc->condition_changed = condition_modified;
829 }
830
831 /* Sets the condition-evaluation mode using the static global
832 condition_evaluation_mode. */
833
834 static void
835 set_condition_evaluation_mode (char *args, int from_tty,
836 struct cmd_list_element *c)
837 {
838 const char *old_mode, *new_mode;
839
840 if ((condition_evaluation_mode_1 == condition_evaluation_target)
841 && !target_supports_evaluation_of_breakpoint_conditions ())
842 {
843 condition_evaluation_mode_1 = condition_evaluation_mode;
844 warning (_("Target does not support breakpoint condition evaluation.\n"
845 "Using host evaluation mode instead."));
846 return;
847 }
848
849 new_mode = translate_condition_evaluation_mode (condition_evaluation_mode_1);
850 old_mode = translate_condition_evaluation_mode (condition_evaluation_mode);
851
852 /* Flip the switch. Flip it even if OLD_MODE == NEW_MODE as one of the
853 settings was "auto". */
854 condition_evaluation_mode = condition_evaluation_mode_1;
855
856 /* Only update the mode if the user picked a different one. */
857 if (new_mode != old_mode)
858 {
859 struct bp_location *loc, **loc_tmp;
860 /* If the user switched to a different evaluation mode, we
861 need to synch the changes with the target as follows:
862
863 "host" -> "target": Send all (valid) conditions to the target.
864 "target" -> "host": Remove all the conditions from the target.
865 */
866
867 if (new_mode == condition_evaluation_target)
868 {
869 /* Mark everything modified and synch conditions with the
870 target. */
871 ALL_BP_LOCATIONS (loc, loc_tmp)
872 mark_breakpoint_location_modified (loc);
873 }
874 else
875 {
876 /* Manually mark non-duplicate locations to synch conditions
877 with the target. We do this to remove all the conditions the
878 target knows about. */
879 ALL_BP_LOCATIONS (loc, loc_tmp)
880 if (is_breakpoint (loc->owner) && loc->inserted)
881 loc->needs_update = 1;
882 }
883
884 /* Do the update. */
885 update_global_location_list (UGLL_MAY_INSERT);
886 }
887
888 return;
889 }
890
891 /* Shows the current mode of breakpoint condition evaluation. Explicitly shows
892 what "auto" is translating to. */
893
894 static void
895 show_condition_evaluation_mode (struct ui_file *file, int from_tty,
896 struct cmd_list_element *c, const char *value)
897 {
898 if (condition_evaluation_mode == condition_evaluation_auto)
899 fprintf_filtered (file,
900 _("Breakpoint condition evaluation "
901 "mode is %s (currently %s).\n"),
902 value,
903 breakpoint_condition_evaluation_mode ());
904 else
905 fprintf_filtered (file, _("Breakpoint condition evaluation mode is %s.\n"),
906 value);
907 }
908
909 /* A comparison function for bp_location AP and BP that is used by
910 bsearch. This comparison function only cares about addresses, unlike
911 the more general bp_location_compare function. */
912
913 static int
914 bp_location_compare_addrs (const void *ap, const void *bp)
915 {
916 struct bp_location *a = *(void **) ap;
917 struct bp_location *b = *(void **) bp;
918
919 if (a->address == b->address)
920 return 0;
921 else
922 return ((a->address > b->address) - (a->address < b->address));
923 }
924
925 /* Helper function to skip all bp_locations with addresses
926 less than ADDRESS. It returns the first bp_location that
927 is greater than or equal to ADDRESS. If none is found, just
928 return NULL. */
929
930 static struct bp_location **
931 get_first_locp_gte_addr (CORE_ADDR address)
932 {
933 struct bp_location dummy_loc;
934 struct bp_location *dummy_locp = &dummy_loc;
935 struct bp_location **locp_found = NULL;
936
937 /* Initialize the dummy location's address field. */
938 memset (&dummy_loc, 0, sizeof (struct bp_location));
939 dummy_loc.address = address;
940
941 /* Find a close match to the first location at ADDRESS. */
942 locp_found = bsearch (&dummy_locp, bp_location, bp_location_count,
943 sizeof (struct bp_location **),
944 bp_location_compare_addrs);
945
946 /* Nothing was found, nothing left to do. */
947 if (locp_found == NULL)
948 return NULL;
949
950 /* We may have found a location that is at ADDRESS but is not the first in the
951 location's list. Go backwards (if possible) and locate the first one. */
952 while ((locp_found - 1) >= bp_location
953 && (*(locp_found - 1))->address == address)
954 locp_found--;
955
956 return locp_found;
957 }
958
959 void
960 set_breakpoint_condition (struct breakpoint *b, const char *exp,
961 int from_tty)
962 {
963 xfree (b->cond_string);
964 b->cond_string = NULL;
965
966 if (is_watchpoint (b))
967 {
968 struct watchpoint *w = (struct watchpoint *) b;
969
970 xfree (w->cond_exp);
971 w->cond_exp = NULL;
972 }
973 else
974 {
975 struct bp_location *loc;
976
977 for (loc = b->loc; loc; loc = loc->next)
978 {
979 xfree (loc->cond);
980 loc->cond = NULL;
981
982 /* No need to free the condition agent expression
983 bytecode (if we have one). We will handle this
984 when we go through update_global_location_list. */
985 }
986 }
987
988 if (*exp == 0)
989 {
990 if (from_tty)
991 printf_filtered (_("Breakpoint %d now unconditional.\n"), b->number);
992 }
993 else
994 {
995 const char *arg = exp;
996
997 /* I don't know if it matters whether this is the string the user
998 typed in or the decompiled expression. */
999 b->cond_string = xstrdup (arg);
1000 b->condition_not_parsed = 0;
1001
1002 if (is_watchpoint (b))
1003 {
1004 struct watchpoint *w = (struct watchpoint *) b;
1005
1006 innermost_block = NULL;
1007 arg = exp;
1008 w->cond_exp = parse_exp_1 (&arg, 0, 0, 0);
1009 if (*arg)
1010 error (_("Junk at end of expression"));
1011 w->cond_exp_valid_block = innermost_block;
1012 }
1013 else
1014 {
1015 struct bp_location *loc;
1016
1017 for (loc = b->loc; loc; loc = loc->next)
1018 {
1019 arg = exp;
1020 loc->cond =
1021 parse_exp_1 (&arg, loc->address,
1022 block_for_pc (loc->address), 0);
1023 if (*arg)
1024 error (_("Junk at end of expression"));
1025 }
1026 }
1027 }
1028 mark_breakpoint_modified (b);
1029
1030 observer_notify_breakpoint_modified (b);
1031 }
1032
1033 /* Completion for the "condition" command. */
1034
1035 static VEC (char_ptr) *
1036 condition_completer (struct cmd_list_element *cmd,
1037 const char *text, const char *word)
1038 {
1039 const char *space;
1040
1041 text = skip_spaces_const (text);
1042 space = skip_to_space_const (text);
1043 if (*space == '\0')
1044 {
1045 int len;
1046 struct breakpoint *b;
1047 VEC (char_ptr) *result = NULL;
1048
1049 if (text[0] == '$')
1050 {
1051 /* We don't support completion of history indices. */
1052 if (isdigit (text[1]))
1053 return NULL;
1054 return complete_internalvar (&text[1]);
1055 }
1056
1057 /* We're completing the breakpoint number. */
1058 len = strlen (text);
1059
1060 ALL_BREAKPOINTS (b)
1061 {
1062 char number[50];
1063
1064 xsnprintf (number, sizeof (number), "%d", b->number);
1065
1066 if (strncmp (number, text, len) == 0)
1067 VEC_safe_push (char_ptr, result, xstrdup (number));
1068 }
1069
1070 return result;
1071 }
1072
1073 /* We're completing the expression part. */
1074 text = skip_spaces_const (space);
1075 return expression_completer (cmd, text, word);
1076 }
1077
1078 /* condition N EXP -- set break condition of breakpoint N to EXP. */
1079
1080 static void
1081 condition_command (char *arg, int from_tty)
1082 {
1083 struct breakpoint *b;
1084 char *p;
1085 int bnum;
1086
1087 if (arg == 0)
1088 error_no_arg (_("breakpoint number"));
1089
1090 p = arg;
1091 bnum = get_number (&p);
1092 if (bnum == 0)
1093 error (_("Bad breakpoint argument: '%s'"), arg);
1094
1095 ALL_BREAKPOINTS (b)
1096 if (b->number == bnum)
1097 {
1098 /* Check if this breakpoint has a "stop" method implemented in an
1099 extension language. This method and conditions entered into GDB
1100 from the CLI are mutually exclusive. */
1101 const struct extension_language_defn *extlang
1102 = get_breakpoint_cond_ext_lang (b, EXT_LANG_NONE);
1103
1104 if (extlang != NULL)
1105 {
1106 error (_("Only one stop condition allowed. There is currently"
1107 " a %s stop condition defined for this breakpoint."),
1108 ext_lang_capitalized_name (extlang));
1109 }
1110 set_breakpoint_condition (b, p, from_tty);
1111
1112 if (is_breakpoint (b))
1113 update_global_location_list (UGLL_MAY_INSERT);
1114
1115 return;
1116 }
1117
1118 error (_("No breakpoint number %d."), bnum);
1119 }
1120
1121 /* Check that COMMAND do not contain commands that are suitable
1122 only for tracepoints and not suitable for ordinary breakpoints.
1123 Throw if any such commands is found. */
1124
1125 static void
1126 check_no_tracepoint_commands (struct command_line *commands)
1127 {
1128 struct command_line *c;
1129
1130 for (c = commands; c; c = c->next)
1131 {
1132 int i;
1133
1134 if (c->control_type == while_stepping_control)
1135 error (_("The 'while-stepping' command can "
1136 "only be used for tracepoints"));
1137
1138 for (i = 0; i < c->body_count; ++i)
1139 check_no_tracepoint_commands ((c->body_list)[i]);
1140
1141 /* Not that command parsing removes leading whitespace and comment
1142 lines and also empty lines. So, we only need to check for
1143 command directly. */
1144 if (strstr (c->line, "collect ") == c->line)
1145 error (_("The 'collect' command can only be used for tracepoints"));
1146
1147 if (strstr (c->line, "teval ") == c->line)
1148 error (_("The 'teval' command can only be used for tracepoints"));
1149 }
1150 }
1151
1152 /* Encapsulate tests for different types of tracepoints. */
1153
1154 static int
1155 is_tracepoint_type (enum bptype type)
1156 {
1157 return (type == bp_tracepoint
1158 || type == bp_fast_tracepoint
1159 || type == bp_static_tracepoint);
1160 }
1161
1162 int
1163 is_tracepoint (const struct breakpoint *b)
1164 {
1165 return is_tracepoint_type (b->type);
1166 }
1167
1168 /* A helper function that validates that COMMANDS are valid for a
1169 breakpoint. This function will throw an exception if a problem is
1170 found. */
1171
1172 static void
1173 validate_commands_for_breakpoint (struct breakpoint *b,
1174 struct command_line *commands)
1175 {
1176 if (is_tracepoint (b))
1177 {
1178 struct tracepoint *t = (struct tracepoint *) b;
1179 struct command_line *c;
1180 struct command_line *while_stepping = 0;
1181
1182 /* Reset the while-stepping step count. The previous commands
1183 might have included a while-stepping action, while the new
1184 ones might not. */
1185 t->step_count = 0;
1186
1187 /* We need to verify that each top-level element of commands is
1188 valid for tracepoints, that there's at most one
1189 while-stepping element, and that the while-stepping's body
1190 has valid tracing commands excluding nested while-stepping.
1191 We also need to validate the tracepoint action line in the
1192 context of the tracepoint --- validate_actionline actually
1193 has side effects, like setting the tracepoint's
1194 while-stepping STEP_COUNT, in addition to checking if the
1195 collect/teval actions parse and make sense in the
1196 tracepoint's context. */
1197 for (c = commands; c; c = c->next)
1198 {
1199 if (c->control_type == while_stepping_control)
1200 {
1201 if (b->type == bp_fast_tracepoint)
1202 error (_("The 'while-stepping' command "
1203 "cannot be used for fast tracepoint"));
1204 else if (b->type == bp_static_tracepoint)
1205 error (_("The 'while-stepping' command "
1206 "cannot be used for static tracepoint"));
1207
1208 if (while_stepping)
1209 error (_("The 'while-stepping' command "
1210 "can be used only once"));
1211 else
1212 while_stepping = c;
1213 }
1214
1215 validate_actionline (c->line, b);
1216 }
1217 if (while_stepping)
1218 {
1219 struct command_line *c2;
1220
1221 gdb_assert (while_stepping->body_count == 1);
1222 c2 = while_stepping->body_list[0];
1223 for (; c2; c2 = c2->next)
1224 {
1225 if (c2->control_type == while_stepping_control)
1226 error (_("The 'while-stepping' command cannot be nested"));
1227 }
1228 }
1229 }
1230 else
1231 {
1232 check_no_tracepoint_commands (commands);
1233 }
1234 }
1235
1236 /* Return a vector of all the static tracepoints set at ADDR. The
1237 caller is responsible for releasing the vector. */
1238
1239 VEC(breakpoint_p) *
1240 static_tracepoints_here (CORE_ADDR addr)
1241 {
1242 struct breakpoint *b;
1243 VEC(breakpoint_p) *found = 0;
1244 struct bp_location *loc;
1245
1246 ALL_BREAKPOINTS (b)
1247 if (b->type == bp_static_tracepoint)
1248 {
1249 for (loc = b->loc; loc; loc = loc->next)
1250 if (loc->address == addr)
1251 VEC_safe_push(breakpoint_p, found, b);
1252 }
1253
1254 return found;
1255 }
1256
1257 /* Set the command list of B to COMMANDS. If breakpoint is tracepoint,
1258 validate that only allowed commands are included. */
1259
1260 void
1261 breakpoint_set_commands (struct breakpoint *b,
1262 struct command_line *commands)
1263 {
1264 validate_commands_for_breakpoint (b, commands);
1265
1266 decref_counted_command_line (&b->commands);
1267 b->commands = alloc_counted_command_line (commands);
1268 observer_notify_breakpoint_modified (b);
1269 }
1270
1271 /* Set the internal `silent' flag on the breakpoint. Note that this
1272 is not the same as the "silent" that may appear in the breakpoint's
1273 commands. */
1274
1275 void
1276 breakpoint_set_silent (struct breakpoint *b, int silent)
1277 {
1278 int old_silent = b->silent;
1279
1280 b->silent = silent;
1281 if (old_silent != silent)
1282 observer_notify_breakpoint_modified (b);
1283 }
1284
1285 /* Set the thread for this breakpoint. If THREAD is -1, make the
1286 breakpoint work for any thread. */
1287
1288 void
1289 breakpoint_set_thread (struct breakpoint *b, int thread)
1290 {
1291 int old_thread = b->thread;
1292
1293 b->thread = thread;
1294 if (old_thread != thread)
1295 observer_notify_breakpoint_modified (b);
1296 }
1297
1298 /* Set the task for this breakpoint. If TASK is 0, make the
1299 breakpoint work for any task. */
1300
1301 void
1302 breakpoint_set_task (struct breakpoint *b, int task)
1303 {
1304 int old_task = b->task;
1305
1306 b->task = task;
1307 if (old_task != task)
1308 observer_notify_breakpoint_modified (b);
1309 }
1310
1311 void
1312 check_tracepoint_command (char *line, void *closure)
1313 {
1314 struct breakpoint *b = closure;
1315
1316 validate_actionline (line, b);
1317 }
1318
1319 /* A structure used to pass information through
1320 map_breakpoint_numbers. */
1321
1322 struct commands_info
1323 {
1324 /* True if the command was typed at a tty. */
1325 int from_tty;
1326
1327 /* The breakpoint range spec. */
1328 char *arg;
1329
1330 /* Non-NULL if the body of the commands are being read from this
1331 already-parsed command. */
1332 struct command_line *control;
1333
1334 /* The command lines read from the user, or NULL if they have not
1335 yet been read. */
1336 struct counted_command_line *cmd;
1337 };
1338
1339 /* A callback for map_breakpoint_numbers that sets the commands for
1340 commands_command. */
1341
1342 static void
1343 do_map_commands_command (struct breakpoint *b, void *data)
1344 {
1345 struct commands_info *info = data;
1346
1347 if (info->cmd == NULL)
1348 {
1349 struct command_line *l;
1350
1351 if (info->control != NULL)
1352 l = copy_command_lines (info->control->body_list[0]);
1353 else
1354 {
1355 struct cleanup *old_chain;
1356 char *str;
1357
1358 str = xstrprintf (_("Type commands for breakpoint(s) "
1359 "%s, one per line."),
1360 info->arg);
1361
1362 old_chain = make_cleanup (xfree, str);
1363
1364 l = read_command_lines (str,
1365 info->from_tty, 1,
1366 (is_tracepoint (b)
1367 ? check_tracepoint_command : 0),
1368 b);
1369
1370 do_cleanups (old_chain);
1371 }
1372
1373 info->cmd = alloc_counted_command_line (l);
1374 }
1375
1376 /* If a breakpoint was on the list more than once, we don't need to
1377 do anything. */
1378 if (b->commands != info->cmd)
1379 {
1380 validate_commands_for_breakpoint (b, info->cmd->commands);
1381 incref_counted_command_line (info->cmd);
1382 decref_counted_command_line (&b->commands);
1383 b->commands = info->cmd;
1384 observer_notify_breakpoint_modified (b);
1385 }
1386 }
1387
1388 static void
1389 commands_command_1 (char *arg, int from_tty,
1390 struct command_line *control)
1391 {
1392 struct cleanup *cleanups;
1393 struct commands_info info;
1394
1395 info.from_tty = from_tty;
1396 info.control = control;
1397 info.cmd = NULL;
1398 /* If we read command lines from the user, then `info' will hold an
1399 extra reference to the commands that we must clean up. */
1400 cleanups = make_cleanup_decref_counted_command_line (&info.cmd);
1401
1402 if (arg == NULL || !*arg)
1403 {
1404 if (breakpoint_count - prev_breakpoint_count > 1)
1405 arg = xstrprintf ("%d-%d", prev_breakpoint_count + 1,
1406 breakpoint_count);
1407 else if (breakpoint_count > 0)
1408 arg = xstrprintf ("%d", breakpoint_count);
1409 else
1410 {
1411 /* So that we don't try to free the incoming non-NULL
1412 argument in the cleanup below. Mapping breakpoint
1413 numbers will fail in this case. */
1414 arg = NULL;
1415 }
1416 }
1417 else
1418 /* The command loop has some static state, so we need to preserve
1419 our argument. */
1420 arg = xstrdup (arg);
1421
1422 if (arg != NULL)
1423 make_cleanup (xfree, arg);
1424
1425 info.arg = arg;
1426
1427 map_breakpoint_numbers (arg, do_map_commands_command, &info);
1428
1429 if (info.cmd == NULL)
1430 error (_("No breakpoints specified."));
1431
1432 do_cleanups (cleanups);
1433 }
1434
1435 static void
1436 commands_command (char *arg, int from_tty)
1437 {
1438 commands_command_1 (arg, from_tty, NULL);
1439 }
1440
1441 /* Like commands_command, but instead of reading the commands from
1442 input stream, takes them from an already parsed command structure.
1443
1444 This is used by cli-script.c to DTRT with breakpoint commands
1445 that are part of if and while bodies. */
1446 enum command_control_type
1447 commands_from_control_command (char *arg, struct command_line *cmd)
1448 {
1449 commands_command_1 (arg, 0, cmd);
1450 return simple_control;
1451 }
1452
1453 /* Return non-zero if BL->TARGET_INFO contains valid information. */
1454
1455 static int
1456 bp_location_has_shadow (struct bp_location *bl)
1457 {
1458 if (bl->loc_type != bp_loc_software_breakpoint)
1459 return 0;
1460 if (!bl->inserted)
1461 return 0;
1462 if (bl->target_info.shadow_len == 0)
1463 /* BL isn't valid, or doesn't shadow memory. */
1464 return 0;
1465 return 1;
1466 }
1467
1468 /* Update BUF, which is LEN bytes read from the target address
1469 MEMADDR, by replacing a memory breakpoint with its shadowed
1470 contents.
1471
1472 If READBUF is not NULL, this buffer must not overlap with the of
1473 the breakpoint location's shadow_contents buffer. Otherwise, a
1474 failed assertion internal error will be raised. */
1475
1476 static void
1477 one_breakpoint_xfer_memory (gdb_byte *readbuf, gdb_byte *writebuf,
1478 const gdb_byte *writebuf_org,
1479 ULONGEST memaddr, LONGEST len,
1480 struct bp_target_info *target_info,
1481 struct gdbarch *gdbarch)
1482 {
1483 /* Now do full processing of the found relevant range of elements. */
1484 CORE_ADDR bp_addr = 0;
1485 int bp_size = 0;
1486 int bptoffset = 0;
1487
1488 if (!breakpoint_address_match (target_info->placed_address_space, 0,
1489 current_program_space->aspace, 0))
1490 {
1491 /* The breakpoint is inserted in a different address space. */
1492 return;
1493 }
1494
1495 /* Addresses and length of the part of the breakpoint that
1496 we need to copy. */
1497 bp_addr = target_info->placed_address;
1498 bp_size = target_info->shadow_len;
1499
1500 if (bp_addr + bp_size <= memaddr)
1501 {
1502 /* The breakpoint is entirely before the chunk of memory we are
1503 reading. */
1504 return;
1505 }
1506
1507 if (bp_addr >= memaddr + len)
1508 {
1509 /* The breakpoint is entirely after the chunk of memory we are
1510 reading. */
1511 return;
1512 }
1513
1514 /* Offset within shadow_contents. */
1515 if (bp_addr < memaddr)
1516 {
1517 /* Only copy the second part of the breakpoint. */
1518 bp_size -= memaddr - bp_addr;
1519 bptoffset = memaddr - bp_addr;
1520 bp_addr = memaddr;
1521 }
1522
1523 if (bp_addr + bp_size > memaddr + len)
1524 {
1525 /* Only copy the first part of the breakpoint. */
1526 bp_size -= (bp_addr + bp_size) - (memaddr + len);
1527 }
1528
1529 if (readbuf != NULL)
1530 {
1531 /* Verify that the readbuf buffer does not overlap with the
1532 shadow_contents buffer. */
1533 gdb_assert (target_info->shadow_contents >= readbuf + len
1534 || readbuf >= (target_info->shadow_contents
1535 + target_info->shadow_len));
1536
1537 /* Update the read buffer with this inserted breakpoint's
1538 shadow. */
1539 memcpy (readbuf + bp_addr - memaddr,
1540 target_info->shadow_contents + bptoffset, bp_size);
1541 }
1542 else
1543 {
1544 const unsigned char *bp;
1545 CORE_ADDR addr = target_info->reqstd_address;
1546 int placed_size;
1547
1548 /* Update the shadow with what we want to write to memory. */
1549 memcpy (target_info->shadow_contents + bptoffset,
1550 writebuf_org + bp_addr - memaddr, bp_size);
1551
1552 /* Determine appropriate breakpoint contents and size for this
1553 address. */
1554 bp = gdbarch_breakpoint_from_pc (gdbarch, &addr, &placed_size);
1555
1556 /* Update the final write buffer with this inserted
1557 breakpoint's INSN. */
1558 memcpy (writebuf + bp_addr - memaddr, bp + bptoffset, bp_size);
1559 }
1560 }
1561
1562 /* Update BUF, which is LEN bytes read from the target address MEMADDR,
1563 by replacing any memory breakpoints with their shadowed contents.
1564
1565 If READBUF is not NULL, this buffer must not overlap with any of
1566 the breakpoint location's shadow_contents buffers. Otherwise,
1567 a failed assertion internal error will be raised.
1568
1569 The range of shadowed area by each bp_location is:
1570 bl->address - bp_location_placed_address_before_address_max
1571 up to bl->address + bp_location_shadow_len_after_address_max
1572 The range we were requested to resolve shadows for is:
1573 memaddr ... memaddr + len
1574 Thus the safe cutoff boundaries for performance optimization are
1575 memaddr + len <= (bl->address
1576 - bp_location_placed_address_before_address_max)
1577 and:
1578 bl->address + bp_location_shadow_len_after_address_max <= memaddr */
1579
1580 void
1581 breakpoint_xfer_memory (gdb_byte *readbuf, gdb_byte *writebuf,
1582 const gdb_byte *writebuf_org,
1583 ULONGEST memaddr, LONGEST len)
1584 {
1585 /* Left boundary, right boundary and median element of our binary
1586 search. */
1587 unsigned bc_l, bc_r, bc;
1588 size_t i;
1589
1590 /* Find BC_L which is a leftmost element which may affect BUF
1591 content. It is safe to report lower value but a failure to
1592 report higher one. */
1593
1594 bc_l = 0;
1595 bc_r = bp_location_count;
1596 while (bc_l + 1 < bc_r)
1597 {
1598 struct bp_location *bl;
1599
1600 bc = (bc_l + bc_r) / 2;
1601 bl = bp_location[bc];
1602
1603 /* Check first BL->ADDRESS will not overflow due to the added
1604 constant. Then advance the left boundary only if we are sure
1605 the BC element can in no way affect the BUF content (MEMADDR
1606 to MEMADDR + LEN range).
1607
1608 Use the BP_LOCATION_SHADOW_LEN_AFTER_ADDRESS_MAX safety
1609 offset so that we cannot miss a breakpoint with its shadow
1610 range tail still reaching MEMADDR. */
1611
1612 if ((bl->address + bp_location_shadow_len_after_address_max
1613 >= bl->address)
1614 && (bl->address + bp_location_shadow_len_after_address_max
1615 <= memaddr))
1616 bc_l = bc;
1617 else
1618 bc_r = bc;
1619 }
1620
1621 /* Due to the binary search above, we need to make sure we pick the
1622 first location that's at BC_L's address. E.g., if there are
1623 multiple locations at the same address, BC_L may end up pointing
1624 at a duplicate location, and miss the "master"/"inserted"
1625 location. Say, given locations L1, L2 and L3 at addresses A and
1626 B:
1627
1628 L1@A, L2@A, L3@B, ...
1629
1630 BC_L could end up pointing at location L2, while the "master"
1631 location could be L1. Since the `loc->inserted' flag is only set
1632 on "master" locations, we'd forget to restore the shadow of L1
1633 and L2. */
1634 while (bc_l > 0
1635 && bp_location[bc_l]->address == bp_location[bc_l - 1]->address)
1636 bc_l--;
1637
1638 /* Now do full processing of the found relevant range of elements. */
1639
1640 for (bc = bc_l; bc < bp_location_count; bc++)
1641 {
1642 struct bp_location *bl = bp_location[bc];
1643 CORE_ADDR bp_addr = 0;
1644 int bp_size = 0;
1645 int bptoffset = 0;
1646
1647 /* bp_location array has BL->OWNER always non-NULL. */
1648 if (bl->owner->type == bp_none)
1649 warning (_("reading through apparently deleted breakpoint #%d?"),
1650 bl->owner->number);
1651
1652 /* Performance optimization: any further element can no longer affect BUF
1653 content. */
1654
1655 if (bl->address >= bp_location_placed_address_before_address_max
1656 && memaddr + len <= (bl->address
1657 - bp_location_placed_address_before_address_max))
1658 break;
1659
1660 if (!bp_location_has_shadow (bl))
1661 continue;
1662
1663 one_breakpoint_xfer_memory (readbuf, writebuf, writebuf_org,
1664 memaddr, len, &bl->target_info, bl->gdbarch);
1665 }
1666 }
1667
1668 \f
1669
1670 /* Return true if BPT is either a software breakpoint or a hardware
1671 breakpoint. */
1672
1673 int
1674 is_breakpoint (const struct breakpoint *bpt)
1675 {
1676 return (bpt->type == bp_breakpoint
1677 || bpt->type == bp_hardware_breakpoint
1678 || bpt->type == bp_dprintf);
1679 }
1680
1681 /* Return true if BPT is of any hardware watchpoint kind. */
1682
1683 static int
1684 is_hardware_watchpoint (const struct breakpoint *bpt)
1685 {
1686 return (bpt->type == bp_hardware_watchpoint
1687 || bpt->type == bp_read_watchpoint
1688 || bpt->type == bp_access_watchpoint);
1689 }
1690
1691 /* Return true if BPT is of any watchpoint kind, hardware or
1692 software. */
1693
1694 int
1695 is_watchpoint (const struct breakpoint *bpt)
1696 {
1697 return (is_hardware_watchpoint (bpt)
1698 || bpt->type == bp_watchpoint);
1699 }
1700
1701 /* Returns true if the current thread and its running state are safe
1702 to evaluate or update watchpoint B. Watchpoints on local
1703 expressions need to be evaluated in the context of the thread that
1704 was current when the watchpoint was created, and, that thread needs
1705 to be stopped to be able to select the correct frame context.
1706 Watchpoints on global expressions can be evaluated on any thread,
1707 and in any state. It is presently left to the target allowing
1708 memory accesses when threads are running. */
1709
1710 static int
1711 watchpoint_in_thread_scope (struct watchpoint *b)
1712 {
1713 return (b->base.pspace == current_program_space
1714 && (ptid_equal (b->watchpoint_thread, null_ptid)
1715 || (ptid_equal (inferior_ptid, b->watchpoint_thread)
1716 && !is_executing (inferior_ptid))));
1717 }
1718
1719 /* Set watchpoint B to disp_del_at_next_stop, even including its possible
1720 associated bp_watchpoint_scope breakpoint. */
1721
1722 static void
1723 watchpoint_del_at_next_stop (struct watchpoint *w)
1724 {
1725 struct breakpoint *b = &w->base;
1726
1727 if (b->related_breakpoint != b)
1728 {
1729 gdb_assert (b->related_breakpoint->type == bp_watchpoint_scope);
1730 gdb_assert (b->related_breakpoint->related_breakpoint == b);
1731 b->related_breakpoint->disposition = disp_del_at_next_stop;
1732 b->related_breakpoint->related_breakpoint = b->related_breakpoint;
1733 b->related_breakpoint = b;
1734 }
1735 b->disposition = disp_del_at_next_stop;
1736 }
1737
1738 /* Extract a bitfield value from value VAL using the bit parameters contained in
1739 watchpoint W. */
1740
1741 static struct value *
1742 extract_bitfield_from_watchpoint_value (struct watchpoint *w, struct value *val)
1743 {
1744 struct value *bit_val;
1745
1746 if (val == NULL)
1747 return NULL;
1748
1749 bit_val = allocate_value (value_type (val));
1750
1751 unpack_value_bitfield (bit_val,
1752 w->val_bitpos,
1753 w->val_bitsize,
1754 value_contents_for_printing (val),
1755 value_offset (val),
1756 val);
1757
1758 return bit_val;
1759 }
1760
1761 /* Assuming that B is a watchpoint:
1762 - Reparse watchpoint expression, if REPARSE is non-zero
1763 - Evaluate expression and store the result in B->val
1764 - Evaluate the condition if there is one, and store the result
1765 in b->loc->cond.
1766 - Update the list of values that must be watched in B->loc.
1767
1768 If the watchpoint disposition is disp_del_at_next_stop, then do
1769 nothing. If this is local watchpoint that is out of scope, delete
1770 it.
1771
1772 Even with `set breakpoint always-inserted on' the watchpoints are
1773 removed + inserted on each stop here. Normal breakpoints must
1774 never be removed because they might be missed by a running thread
1775 when debugging in non-stop mode. On the other hand, hardware
1776 watchpoints (is_hardware_watchpoint; processed here) are specific
1777 to each LWP since they are stored in each LWP's hardware debug
1778 registers. Therefore, such LWP must be stopped first in order to
1779 be able to modify its hardware watchpoints.
1780
1781 Hardware watchpoints must be reset exactly once after being
1782 presented to the user. It cannot be done sooner, because it would
1783 reset the data used to present the watchpoint hit to the user. And
1784 it must not be done later because it could display the same single
1785 watchpoint hit during multiple GDB stops. Note that the latter is
1786 relevant only to the hardware watchpoint types bp_read_watchpoint
1787 and bp_access_watchpoint. False hit by bp_hardware_watchpoint is
1788 not user-visible - its hit is suppressed if the memory content has
1789 not changed.
1790
1791 The following constraints influence the location where we can reset
1792 hardware watchpoints:
1793
1794 * target_stopped_by_watchpoint and target_stopped_data_address are
1795 called several times when GDB stops.
1796
1797 [linux]
1798 * Multiple hardware watchpoints can be hit at the same time,
1799 causing GDB to stop. GDB only presents one hardware watchpoint
1800 hit at a time as the reason for stopping, and all the other hits
1801 are presented later, one after the other, each time the user
1802 requests the execution to be resumed. Execution is not resumed
1803 for the threads still having pending hit event stored in
1804 LWP_INFO->STATUS. While the watchpoint is already removed from
1805 the inferior on the first stop the thread hit event is kept being
1806 reported from its cached value by linux_nat_stopped_data_address
1807 until the real thread resume happens after the watchpoint gets
1808 presented and thus its LWP_INFO->STATUS gets reset.
1809
1810 Therefore the hardware watchpoint hit can get safely reset on the
1811 watchpoint removal from inferior. */
1812
1813 static void
1814 update_watchpoint (struct watchpoint *b, int reparse)
1815 {
1816 int within_current_scope;
1817 struct frame_id saved_frame_id;
1818 int frame_saved;
1819
1820 /* If this is a local watchpoint, we only want to check if the
1821 watchpoint frame is in scope if the current thread is the thread
1822 that was used to create the watchpoint. */
1823 if (!watchpoint_in_thread_scope (b))
1824 return;
1825
1826 if (b->base.disposition == disp_del_at_next_stop)
1827 return;
1828
1829 frame_saved = 0;
1830
1831 /* Determine if the watchpoint is within scope. */
1832 if (b->exp_valid_block == NULL)
1833 within_current_scope = 1;
1834 else
1835 {
1836 struct frame_info *fi = get_current_frame ();
1837 struct gdbarch *frame_arch = get_frame_arch (fi);
1838 CORE_ADDR frame_pc = get_frame_pc (fi);
1839
1840 /* If we're at a point where the stack has been destroyed
1841 (e.g. in a function epilogue), unwinding may not work
1842 properly. Do not attempt to recreate locations at this
1843 point. See similar comments in watchpoint_check. */
1844 if (gdbarch_stack_frame_destroyed_p (frame_arch, frame_pc))
1845 return;
1846
1847 /* Save the current frame's ID so we can restore it after
1848 evaluating the watchpoint expression on its own frame. */
1849 /* FIXME drow/2003-09-09: It would be nice if evaluate_expression
1850 took a frame parameter, so that we didn't have to change the
1851 selected frame. */
1852 frame_saved = 1;
1853 saved_frame_id = get_frame_id (get_selected_frame (NULL));
1854
1855 fi = frame_find_by_id (b->watchpoint_frame);
1856 within_current_scope = (fi != NULL);
1857 if (within_current_scope)
1858 select_frame (fi);
1859 }
1860
1861 /* We don't free locations. They are stored in the bp_location array
1862 and update_global_location_list will eventually delete them and
1863 remove breakpoints if needed. */
1864 b->base.loc = NULL;
1865
1866 if (within_current_scope && reparse)
1867 {
1868 const char *s;
1869
1870 if (b->exp)
1871 {
1872 xfree (b->exp);
1873 b->exp = NULL;
1874 }
1875 s = b->exp_string_reparse ? b->exp_string_reparse : b->exp_string;
1876 b->exp = parse_exp_1 (&s, 0, b->exp_valid_block, 0);
1877 /* If the meaning of expression itself changed, the old value is
1878 no longer relevant. We don't want to report a watchpoint hit
1879 to the user when the old value and the new value may actually
1880 be completely different objects. */
1881 value_free (b->val);
1882 b->val = NULL;
1883 b->val_valid = 0;
1884
1885 /* Note that unlike with breakpoints, the watchpoint's condition
1886 expression is stored in the breakpoint object, not in the
1887 locations (re)created below. */
1888 if (b->base.cond_string != NULL)
1889 {
1890 if (b->cond_exp != NULL)
1891 {
1892 xfree (b->cond_exp);
1893 b->cond_exp = NULL;
1894 }
1895
1896 s = b->base.cond_string;
1897 b->cond_exp = parse_exp_1 (&s, 0, b->cond_exp_valid_block, 0);
1898 }
1899 }
1900
1901 /* If we failed to parse the expression, for example because
1902 it refers to a global variable in a not-yet-loaded shared library,
1903 don't try to insert watchpoint. We don't automatically delete
1904 such watchpoint, though, since failure to parse expression
1905 is different from out-of-scope watchpoint. */
1906 if (!target_has_execution)
1907 {
1908 /* Without execution, memory can't change. No use to try and
1909 set watchpoint locations. The watchpoint will be reset when
1910 the target gains execution, through breakpoint_re_set. */
1911 if (!can_use_hw_watchpoints)
1912 {
1913 if (b->base.ops->works_in_software_mode (&b->base))
1914 b->base.type = bp_watchpoint;
1915 else
1916 error (_("Can't set read/access watchpoint when "
1917 "hardware watchpoints are disabled."));
1918 }
1919 }
1920 else if (within_current_scope && b->exp)
1921 {
1922 int pc = 0;
1923 struct value *val_chain, *v, *result, *next;
1924 struct program_space *frame_pspace;
1925
1926 fetch_subexp_value (b->exp, &pc, &v, &result, &val_chain, 0);
1927
1928 /* Avoid setting b->val if it's already set. The meaning of
1929 b->val is 'the last value' user saw, and we should update
1930 it only if we reported that last value to user. As it
1931 happens, the code that reports it updates b->val directly.
1932 We don't keep track of the memory value for masked
1933 watchpoints. */
1934 if (!b->val_valid && !is_masked_watchpoint (&b->base))
1935 {
1936 if (b->val_bitsize != 0)
1937 {
1938 v = extract_bitfield_from_watchpoint_value (b, v);
1939 if (v != NULL)
1940 release_value (v);
1941 }
1942 b->val = v;
1943 b->val_valid = 1;
1944 }
1945
1946 frame_pspace = get_frame_program_space (get_selected_frame (NULL));
1947
1948 /* Look at each value on the value chain. */
1949 for (v = val_chain; v; v = value_next (v))
1950 {
1951 /* If it's a memory location, and GDB actually needed
1952 its contents to evaluate the expression, then we
1953 must watch it. If the first value returned is
1954 still lazy, that means an error occurred reading it;
1955 watch it anyway in case it becomes readable. */
1956 if (VALUE_LVAL (v) == lval_memory
1957 && (v == val_chain || ! value_lazy (v)))
1958 {
1959 struct type *vtype = check_typedef (value_type (v));
1960
1961 /* We only watch structs and arrays if user asked
1962 for it explicitly, never if they just happen to
1963 appear in the middle of some value chain. */
1964 if (v == result
1965 || (TYPE_CODE (vtype) != TYPE_CODE_STRUCT
1966 && TYPE_CODE (vtype) != TYPE_CODE_ARRAY))
1967 {
1968 CORE_ADDR addr;
1969 int type;
1970 struct bp_location *loc, **tmp;
1971 int bitpos = 0, bitsize = 0;
1972
1973 if (value_bitsize (v) != 0)
1974 {
1975 /* Extract the bit parameters out from the bitfield
1976 sub-expression. */
1977 bitpos = value_bitpos (v);
1978 bitsize = value_bitsize (v);
1979 }
1980 else if (v == result && b->val_bitsize != 0)
1981 {
1982 /* If VAL_BITSIZE != 0 then RESULT is actually a bitfield
1983 lvalue whose bit parameters are saved in the fields
1984 VAL_BITPOS and VAL_BITSIZE. */
1985 bitpos = b->val_bitpos;
1986 bitsize = b->val_bitsize;
1987 }
1988
1989 addr = value_address (v);
1990 if (bitsize != 0)
1991 {
1992 /* Skip the bytes that don't contain the bitfield. */
1993 addr += bitpos / 8;
1994 }
1995
1996 type = hw_write;
1997 if (b->base.type == bp_read_watchpoint)
1998 type = hw_read;
1999 else if (b->base.type == bp_access_watchpoint)
2000 type = hw_access;
2001
2002 loc = allocate_bp_location (&b->base);
2003 for (tmp = &(b->base.loc); *tmp != NULL; tmp = &((*tmp)->next))
2004 ;
2005 *tmp = loc;
2006 loc->gdbarch = get_type_arch (value_type (v));
2007
2008 loc->pspace = frame_pspace;
2009 loc->address = addr;
2010
2011 if (bitsize != 0)
2012 {
2013 /* Just cover the bytes that make up the bitfield. */
2014 loc->length = ((bitpos % 8) + bitsize + 7) / 8;
2015 }
2016 else
2017 loc->length = TYPE_LENGTH (value_type (v));
2018
2019 loc->watchpoint_type = type;
2020 }
2021 }
2022 }
2023
2024 /* Change the type of breakpoint between hardware assisted or
2025 an ordinary watchpoint depending on the hardware support
2026 and free hardware slots. REPARSE is set when the inferior
2027 is started. */
2028 if (reparse)
2029 {
2030 int reg_cnt;
2031 enum bp_loc_type loc_type;
2032 struct bp_location *bl;
2033
2034 reg_cnt = can_use_hardware_watchpoint (val_chain);
2035
2036 if (reg_cnt)
2037 {
2038 int i, target_resources_ok, other_type_used;
2039 enum bptype type;
2040
2041 /* Use an exact watchpoint when there's only one memory region to be
2042 watched, and only one debug register is needed to watch it. */
2043 b->exact = target_exact_watchpoints && reg_cnt == 1;
2044
2045 /* We need to determine how many resources are already
2046 used for all other hardware watchpoints plus this one
2047 to see if we still have enough resources to also fit
2048 this watchpoint in as well. */
2049
2050 /* If this is a software watchpoint, we try to turn it
2051 to a hardware one -- count resources as if B was of
2052 hardware watchpoint type. */
2053 type = b->base.type;
2054 if (type == bp_watchpoint)
2055 type = bp_hardware_watchpoint;
2056
2057 /* This watchpoint may or may not have been placed on
2058 the list yet at this point (it won't be in the list
2059 if we're trying to create it for the first time,
2060 through watch_command), so always account for it
2061 manually. */
2062
2063 /* Count resources used by all watchpoints except B. */
2064 i = hw_watchpoint_used_count_others (&b->base, type, &other_type_used);
2065
2066 /* Add in the resources needed for B. */
2067 i += hw_watchpoint_use_count (&b->base);
2068
2069 target_resources_ok
2070 = target_can_use_hardware_watchpoint (type, i, other_type_used);
2071 if (target_resources_ok <= 0)
2072 {
2073 int sw_mode = b->base.ops->works_in_software_mode (&b->base);
2074
2075 if (target_resources_ok == 0 && !sw_mode)
2076 error (_("Target does not support this type of "
2077 "hardware watchpoint."));
2078 else if (target_resources_ok < 0 && !sw_mode)
2079 error (_("There are not enough available hardware "
2080 "resources for this watchpoint."));
2081
2082 /* Downgrade to software watchpoint. */
2083 b->base.type = bp_watchpoint;
2084 }
2085 else
2086 {
2087 /* If this was a software watchpoint, we've just
2088 found we have enough resources to turn it to a
2089 hardware watchpoint. Otherwise, this is a
2090 nop. */
2091 b->base.type = type;
2092 }
2093 }
2094 else if (!b->base.ops->works_in_software_mode (&b->base))
2095 {
2096 if (!can_use_hw_watchpoints)
2097 error (_("Can't set read/access watchpoint when "
2098 "hardware watchpoints are disabled."));
2099 else
2100 error (_("Expression cannot be implemented with "
2101 "read/access watchpoint."));
2102 }
2103 else
2104 b->base.type = bp_watchpoint;
2105
2106 loc_type = (b->base.type == bp_watchpoint? bp_loc_other
2107 : bp_loc_hardware_watchpoint);
2108 for (bl = b->base.loc; bl; bl = bl->next)
2109 bl->loc_type = loc_type;
2110 }
2111
2112 for (v = val_chain; v; v = next)
2113 {
2114 next = value_next (v);
2115 if (v != b->val)
2116 value_free (v);
2117 }
2118
2119 /* If a software watchpoint is not watching any memory, then the
2120 above left it without any location set up. But,
2121 bpstat_stop_status requires a location to be able to report
2122 stops, so make sure there's at least a dummy one. */
2123 if (b->base.type == bp_watchpoint && b->base.loc == NULL)
2124 {
2125 struct breakpoint *base = &b->base;
2126 base->loc = allocate_bp_location (base);
2127 base->loc->pspace = frame_pspace;
2128 base->loc->address = -1;
2129 base->loc->length = -1;
2130 base->loc->watchpoint_type = -1;
2131 }
2132 }
2133 else if (!within_current_scope)
2134 {
2135 printf_filtered (_("\
2136 Watchpoint %d deleted because the program has left the block\n\
2137 in which its expression is valid.\n"),
2138 b->base.number);
2139 watchpoint_del_at_next_stop (b);
2140 }
2141
2142 /* Restore the selected frame. */
2143 if (frame_saved)
2144 select_frame (frame_find_by_id (saved_frame_id));
2145 }
2146
2147
2148 /* Returns 1 iff breakpoint location should be
2149 inserted in the inferior. We don't differentiate the type of BL's owner
2150 (breakpoint vs. tracepoint), although insert_location in tracepoint's
2151 breakpoint_ops is not defined, because in insert_bp_location,
2152 tracepoint's insert_location will not be called. */
2153 static int
2154 should_be_inserted (struct bp_location *bl)
2155 {
2156 if (bl->owner == NULL || !breakpoint_enabled (bl->owner))
2157 return 0;
2158
2159 if (bl->owner->disposition == disp_del_at_next_stop)
2160 return 0;
2161
2162 if (!bl->enabled || bl->shlib_disabled || bl->duplicate)
2163 return 0;
2164
2165 if (user_breakpoint_p (bl->owner) && bl->pspace->executing_startup)
2166 return 0;
2167
2168 /* This is set for example, when we're attached to the parent of a
2169 vfork, and have detached from the child. The child is running
2170 free, and we expect it to do an exec or exit, at which point the
2171 OS makes the parent schedulable again (and the target reports
2172 that the vfork is done). Until the child is done with the shared
2173 memory region, do not insert breakpoints in the parent, otherwise
2174 the child could still trip on the parent's breakpoints. Since
2175 the parent is blocked anyway, it won't miss any breakpoint. */
2176 if (bl->pspace->breakpoints_not_allowed)
2177 return 0;
2178
2179 /* Don't insert a breakpoint if we're trying to step past its
2180 location. */
2181 if ((bl->loc_type == bp_loc_software_breakpoint
2182 || bl->loc_type == bp_loc_hardware_breakpoint)
2183 && stepping_past_instruction_at (bl->pspace->aspace,
2184 bl->address))
2185 {
2186 if (debug_infrun)
2187 {
2188 fprintf_unfiltered (gdb_stdlog,
2189 "infrun: skipping breakpoint: "
2190 "stepping past insn at: %s\n",
2191 paddress (bl->gdbarch, bl->address));
2192 }
2193 return 0;
2194 }
2195
2196 /* Don't insert watchpoints if we're trying to step past the
2197 instruction that triggered one. */
2198 if ((bl->loc_type == bp_loc_hardware_watchpoint)
2199 && stepping_past_nonsteppable_watchpoint ())
2200 {
2201 if (debug_infrun)
2202 {
2203 fprintf_unfiltered (gdb_stdlog,
2204 "infrun: stepping past non-steppable watchpoint. "
2205 "skipping watchpoint at %s:%d\n",
2206 paddress (bl->gdbarch, bl->address),
2207 bl->length);
2208 }
2209 return 0;
2210 }
2211
2212 return 1;
2213 }
2214
2215 /* Same as should_be_inserted but does the check assuming
2216 that the location is not duplicated. */
2217
2218 static int
2219 unduplicated_should_be_inserted (struct bp_location *bl)
2220 {
2221 int result;
2222 const int save_duplicate = bl->duplicate;
2223
2224 bl->duplicate = 0;
2225 result = should_be_inserted (bl);
2226 bl->duplicate = save_duplicate;
2227 return result;
2228 }
2229
2230 /* Parses a conditional described by an expression COND into an
2231 agent expression bytecode suitable for evaluation
2232 by the bytecode interpreter. Return NULL if there was
2233 any error during parsing. */
2234
2235 static struct agent_expr *
2236 parse_cond_to_aexpr (CORE_ADDR scope, struct expression *cond)
2237 {
2238 struct agent_expr *aexpr = NULL;
2239
2240 if (!cond)
2241 return NULL;
2242
2243 /* We don't want to stop processing, so catch any errors
2244 that may show up. */
2245 TRY
2246 {
2247 aexpr = gen_eval_for_expr (scope, cond);
2248 }
2249
2250 CATCH (ex, RETURN_MASK_ERROR)
2251 {
2252 /* If we got here, it means the condition could not be parsed to a valid
2253 bytecode expression and thus can't be evaluated on the target's side.
2254 It's no use iterating through the conditions. */
2255 return NULL;
2256 }
2257 END_CATCH
2258
2259 /* We have a valid agent expression. */
2260 return aexpr;
2261 }
2262
2263 /* Based on location BL, create a list of breakpoint conditions to be
2264 passed on to the target. If we have duplicated locations with different
2265 conditions, we will add such conditions to the list. The idea is that the
2266 target will evaluate the list of conditions and will only notify GDB when
2267 one of them is true. */
2268
2269 static void
2270 build_target_condition_list (struct bp_location *bl)
2271 {
2272 struct bp_location **locp = NULL, **loc2p;
2273 int null_condition_or_parse_error = 0;
2274 int modified = bl->needs_update;
2275 struct bp_location *loc;
2276
2277 /* Release conditions left over from a previous insert. */
2278 VEC_free (agent_expr_p, bl->target_info.conditions);
2279
2280 /* This is only meaningful if the target is
2281 evaluating conditions and if the user has
2282 opted for condition evaluation on the target's
2283 side. */
2284 if (gdb_evaluates_breakpoint_condition_p ()
2285 || !target_supports_evaluation_of_breakpoint_conditions ())
2286 return;
2287
2288 /* Do a first pass to check for locations with no assigned
2289 conditions or conditions that fail to parse to a valid agent expression
2290 bytecode. If any of these happen, then it's no use to send conditions
2291 to the target since this location will always trigger and generate a
2292 response back to GDB. */
2293 ALL_BP_LOCATIONS_AT_ADDR (loc2p, locp, bl->address)
2294 {
2295 loc = (*loc2p);
2296 if (is_breakpoint (loc->owner) && loc->pspace->num == bl->pspace->num)
2297 {
2298 if (modified)
2299 {
2300 struct agent_expr *aexpr;
2301
2302 /* Re-parse the conditions since something changed. In that
2303 case we already freed the condition bytecodes (see
2304 force_breakpoint_reinsertion). We just
2305 need to parse the condition to bytecodes again. */
2306 aexpr = parse_cond_to_aexpr (bl->address, loc->cond);
2307 loc->cond_bytecode = aexpr;
2308
2309 /* Check if we managed to parse the conditional expression
2310 correctly. If not, we will not send this condition
2311 to the target. */
2312 if (aexpr)
2313 continue;
2314 }
2315
2316 /* If we have a NULL bytecode expression, it means something
2317 went wrong or we have a null condition expression. */
2318 if (!loc->cond_bytecode)
2319 {
2320 null_condition_or_parse_error = 1;
2321 break;
2322 }
2323 }
2324 }
2325
2326 /* If any of these happened, it means we will have to evaluate the conditions
2327 for the location's address on gdb's side. It is no use keeping bytecodes
2328 for all the other duplicate locations, thus we free all of them here.
2329
2330 This is so we have a finer control over which locations' conditions are
2331 being evaluated by GDB or the remote stub. */
2332 if (null_condition_or_parse_error)
2333 {
2334 ALL_BP_LOCATIONS_AT_ADDR (loc2p, locp, bl->address)
2335 {
2336 loc = (*loc2p);
2337 if (is_breakpoint (loc->owner) && loc->pspace->num == bl->pspace->num)
2338 {
2339 /* Only go as far as the first NULL bytecode is
2340 located. */
2341 if (!loc->cond_bytecode)
2342 return;
2343
2344 free_agent_expr (loc->cond_bytecode);
2345 loc->cond_bytecode = NULL;
2346 }
2347 }
2348 }
2349
2350 /* No NULL conditions or failed bytecode generation. Build a condition list
2351 for this location's address. */
2352 ALL_BP_LOCATIONS_AT_ADDR (loc2p, locp, bl->address)
2353 {
2354 loc = (*loc2p);
2355 if (loc->cond
2356 && is_breakpoint (loc->owner)
2357 && loc->pspace->num == bl->pspace->num
2358 && loc->owner->enable_state == bp_enabled
2359 && loc->enabled)
2360 /* Add the condition to the vector. This will be used later to send the
2361 conditions to the target. */
2362 VEC_safe_push (agent_expr_p, bl->target_info.conditions,
2363 loc->cond_bytecode);
2364 }
2365
2366 return;
2367 }
2368
2369 /* Parses a command described by string CMD into an agent expression
2370 bytecode suitable for evaluation by the bytecode interpreter.
2371 Return NULL if there was any error during parsing. */
2372
2373 static struct agent_expr *
2374 parse_cmd_to_aexpr (CORE_ADDR scope, char *cmd)
2375 {
2376 struct cleanup *old_cleanups = 0;
2377 struct expression *expr, **argvec;
2378 struct agent_expr *aexpr = NULL;
2379 const char *cmdrest;
2380 const char *format_start, *format_end;
2381 struct format_piece *fpieces;
2382 int nargs;
2383 struct gdbarch *gdbarch = get_current_arch ();
2384
2385 if (!cmd)
2386 return NULL;
2387
2388 cmdrest = cmd;
2389
2390 if (*cmdrest == ',')
2391 ++cmdrest;
2392 cmdrest = skip_spaces_const (cmdrest);
2393
2394 if (*cmdrest++ != '"')
2395 error (_("No format string following the location"));
2396
2397 format_start = cmdrest;
2398
2399 fpieces = parse_format_string (&cmdrest);
2400
2401 old_cleanups = make_cleanup (free_format_pieces_cleanup, &fpieces);
2402
2403 format_end = cmdrest;
2404
2405 if (*cmdrest++ != '"')
2406 error (_("Bad format string, non-terminated '\"'."));
2407
2408 cmdrest = skip_spaces_const (cmdrest);
2409
2410 if (!(*cmdrest == ',' || *cmdrest == '\0'))
2411 error (_("Invalid argument syntax"));
2412
2413 if (*cmdrest == ',')
2414 cmdrest++;
2415 cmdrest = skip_spaces_const (cmdrest);
2416
2417 /* For each argument, make an expression. */
2418
2419 argvec = (struct expression **) alloca (strlen (cmd)
2420 * sizeof (struct expression *));
2421
2422 nargs = 0;
2423 while (*cmdrest != '\0')
2424 {
2425 const char *cmd1;
2426
2427 cmd1 = cmdrest;
2428 expr = parse_exp_1 (&cmd1, scope, block_for_pc (scope), 1);
2429 argvec[nargs++] = expr;
2430 cmdrest = cmd1;
2431 if (*cmdrest == ',')
2432 ++cmdrest;
2433 }
2434
2435 /* We don't want to stop processing, so catch any errors
2436 that may show up. */
2437 TRY
2438 {
2439 aexpr = gen_printf (scope, gdbarch, 0, 0,
2440 format_start, format_end - format_start,
2441 fpieces, nargs, argvec);
2442 }
2443 CATCH (ex, RETURN_MASK_ERROR)
2444 {
2445 /* If we got here, it means the command could not be parsed to a valid
2446 bytecode expression and thus can't be evaluated on the target's side.
2447 It's no use iterating through the other commands. */
2448 aexpr = NULL;
2449 }
2450 END_CATCH
2451
2452 do_cleanups (old_cleanups);
2453
2454 /* We have a valid agent expression, return it. */
2455 return aexpr;
2456 }
2457
2458 /* Based on location BL, create a list of breakpoint commands to be
2459 passed on to the target. If we have duplicated locations with
2460 different commands, we will add any such to the list. */
2461
2462 static void
2463 build_target_command_list (struct bp_location *bl)
2464 {
2465 struct bp_location **locp = NULL, **loc2p;
2466 int null_command_or_parse_error = 0;
2467 int modified = bl->needs_update;
2468 struct bp_location *loc;
2469
2470 /* Release commands left over from a previous insert. */
2471 VEC_free (agent_expr_p, bl->target_info.tcommands);
2472
2473 if (!target_can_run_breakpoint_commands ())
2474 return;
2475
2476 /* For now, limit to agent-style dprintf breakpoints. */
2477 if (dprintf_style != dprintf_style_agent)
2478 return;
2479
2480 /* For now, if we have any duplicate location that isn't a dprintf,
2481 don't install the target-side commands, as that would make the
2482 breakpoint not be reported to the core, and we'd lose
2483 control. */
2484 ALL_BP_LOCATIONS_AT_ADDR (loc2p, locp, bl->address)
2485 {
2486 loc = (*loc2p);
2487 if (is_breakpoint (loc->owner)
2488 && loc->pspace->num == bl->pspace->num
2489 && loc->owner->type != bp_dprintf)
2490 return;
2491 }
2492
2493 /* Do a first pass to check for locations with no assigned
2494 conditions or conditions that fail to parse to a valid agent expression
2495 bytecode. If any of these happen, then it's no use to send conditions
2496 to the target since this location will always trigger and generate a
2497 response back to GDB. */
2498 ALL_BP_LOCATIONS_AT_ADDR (loc2p, locp, bl->address)
2499 {
2500 loc = (*loc2p);
2501 if (is_breakpoint (loc->owner) && loc->pspace->num == bl->pspace->num)
2502 {
2503 if (modified)
2504 {
2505 struct agent_expr *aexpr;
2506
2507 /* Re-parse the commands since something changed. In that
2508 case we already freed the command bytecodes (see
2509 force_breakpoint_reinsertion). We just
2510 need to parse the command to bytecodes again. */
2511 aexpr = parse_cmd_to_aexpr (bl->address,
2512 loc->owner->extra_string);
2513 loc->cmd_bytecode = aexpr;
2514
2515 if (!aexpr)
2516 continue;
2517 }
2518
2519 /* If we have a NULL bytecode expression, it means something
2520 went wrong or we have a null command expression. */
2521 if (!loc->cmd_bytecode)
2522 {
2523 null_command_or_parse_error = 1;
2524 break;
2525 }
2526 }
2527 }
2528
2529 /* If anything failed, then we're not doing target-side commands,
2530 and so clean up. */
2531 if (null_command_or_parse_error)
2532 {
2533 ALL_BP_LOCATIONS_AT_ADDR (loc2p, locp, bl->address)
2534 {
2535 loc = (*loc2p);
2536 if (is_breakpoint (loc->owner)
2537 && loc->pspace->num == bl->pspace->num)
2538 {
2539 /* Only go as far as the first NULL bytecode is
2540 located. */
2541 if (loc->cmd_bytecode == NULL)
2542 return;
2543
2544 free_agent_expr (loc->cmd_bytecode);
2545 loc->cmd_bytecode = NULL;
2546 }
2547 }
2548 }
2549
2550 /* No NULL commands or failed bytecode generation. Build a command list
2551 for this location's address. */
2552 ALL_BP_LOCATIONS_AT_ADDR (loc2p, locp, bl->address)
2553 {
2554 loc = (*loc2p);
2555 if (loc->owner->extra_string
2556 && is_breakpoint (loc->owner)
2557 && loc->pspace->num == bl->pspace->num
2558 && loc->owner->enable_state == bp_enabled
2559 && loc->enabled)
2560 /* Add the command to the vector. This will be used later
2561 to send the commands to the target. */
2562 VEC_safe_push (agent_expr_p, bl->target_info.tcommands,
2563 loc->cmd_bytecode);
2564 }
2565
2566 bl->target_info.persist = 0;
2567 /* Maybe flag this location as persistent. */
2568 if (bl->owner->type == bp_dprintf && disconnected_dprintf)
2569 bl->target_info.persist = 1;
2570 }
2571
2572 /* Insert a low-level "breakpoint" of some type. BL is the breakpoint
2573 location. Any error messages are printed to TMP_ERROR_STREAM; and
2574 DISABLED_BREAKS, and HW_BREAKPOINT_ERROR are used to report problems.
2575 Returns 0 for success, 1 if the bp_location type is not supported or
2576 -1 for failure.
2577
2578 NOTE drow/2003-09-09: This routine could be broken down to an
2579 object-style method for each breakpoint or catchpoint type. */
2580 static int
2581 insert_bp_location (struct bp_location *bl,
2582 struct ui_file *tmp_error_stream,
2583 int *disabled_breaks,
2584 int *hw_breakpoint_error,
2585 int *hw_bp_error_explained_already)
2586 {
2587 enum errors bp_err = GDB_NO_ERROR;
2588 const char *bp_err_message = NULL;
2589
2590 if (!should_be_inserted (bl) || (bl->inserted && !bl->needs_update))
2591 return 0;
2592
2593 /* Note we don't initialize bl->target_info, as that wipes out
2594 the breakpoint location's shadow_contents if the breakpoint
2595 is still inserted at that location. This in turn breaks
2596 target_read_memory which depends on these buffers when
2597 a memory read is requested at the breakpoint location:
2598 Once the target_info has been wiped, we fail to see that
2599 we have a breakpoint inserted at that address and thus
2600 read the breakpoint instead of returning the data saved in
2601 the breakpoint location's shadow contents. */
2602 bl->target_info.reqstd_address = bl->address;
2603 bl->target_info.placed_address_space = bl->pspace->aspace;
2604 bl->target_info.length = bl->length;
2605
2606 /* When working with target-side conditions, we must pass all the conditions
2607 for the same breakpoint address down to the target since GDB will not
2608 insert those locations. With a list of breakpoint conditions, the target
2609 can decide when to stop and notify GDB. */
2610
2611 if (is_breakpoint (bl->owner))
2612 {
2613 build_target_condition_list (bl);
2614 build_target_command_list (bl);
2615 /* Reset the modification marker. */
2616 bl->needs_update = 0;
2617 }
2618
2619 if (bl->loc_type == bp_loc_software_breakpoint
2620 || bl->loc_type == bp_loc_hardware_breakpoint)
2621 {
2622 if (bl->owner->type != bp_hardware_breakpoint)
2623 {
2624 /* If the explicitly specified breakpoint type
2625 is not hardware breakpoint, check the memory map to see
2626 if the breakpoint address is in read only memory or not.
2627
2628 Two important cases are:
2629 - location type is not hardware breakpoint, memory
2630 is readonly. We change the type of the location to
2631 hardware breakpoint.
2632 - location type is hardware breakpoint, memory is
2633 read-write. This means we've previously made the
2634 location hardware one, but then the memory map changed,
2635 so we undo.
2636
2637 When breakpoints are removed, remove_breakpoints will use
2638 location types we've just set here, the only possible
2639 problem is that memory map has changed during running
2640 program, but it's not going to work anyway with current
2641 gdb. */
2642 struct mem_region *mr
2643 = lookup_mem_region (bl->target_info.reqstd_address);
2644
2645 if (mr)
2646 {
2647 if (automatic_hardware_breakpoints)
2648 {
2649 enum bp_loc_type new_type;
2650
2651 if (mr->attrib.mode != MEM_RW)
2652 new_type = bp_loc_hardware_breakpoint;
2653 else
2654 new_type = bp_loc_software_breakpoint;
2655
2656 if (new_type != bl->loc_type)
2657 {
2658 static int said = 0;
2659
2660 bl->loc_type = new_type;
2661 if (!said)
2662 {
2663 fprintf_filtered (gdb_stdout,
2664 _("Note: automatically using "
2665 "hardware breakpoints for "
2666 "read-only addresses.\n"));
2667 said = 1;
2668 }
2669 }
2670 }
2671 else if (bl->loc_type == bp_loc_software_breakpoint
2672 && mr->attrib.mode != MEM_RW)
2673 {
2674 fprintf_unfiltered (tmp_error_stream,
2675 _("Cannot insert breakpoint %d.\n"
2676 "Cannot set software breakpoint "
2677 "at read-only address %s\n"),
2678 bl->owner->number,
2679 paddress (bl->gdbarch, bl->address));
2680 return 1;
2681 }
2682 }
2683 }
2684
2685 /* First check to see if we have to handle an overlay. */
2686 if (overlay_debugging == ovly_off
2687 || bl->section == NULL
2688 || !(section_is_overlay (bl->section)))
2689 {
2690 /* No overlay handling: just set the breakpoint. */
2691 TRY
2692 {
2693 int val;
2694
2695 val = bl->owner->ops->insert_location (bl);
2696 if (val)
2697 bp_err = GENERIC_ERROR;
2698 }
2699 CATCH (e, RETURN_MASK_ALL)
2700 {
2701 bp_err = e.error;
2702 bp_err_message = e.message;
2703 }
2704 END_CATCH
2705 }
2706 else
2707 {
2708 /* This breakpoint is in an overlay section.
2709 Shall we set a breakpoint at the LMA? */
2710 if (!overlay_events_enabled)
2711 {
2712 /* Yes -- overlay event support is not active,
2713 so we must try to set a breakpoint at the LMA.
2714 This will not work for a hardware breakpoint. */
2715 if (bl->loc_type == bp_loc_hardware_breakpoint)
2716 warning (_("hardware breakpoint %d not supported in overlay!"),
2717 bl->owner->number);
2718 else
2719 {
2720 CORE_ADDR addr = overlay_unmapped_address (bl->address,
2721 bl->section);
2722 /* Set a software (trap) breakpoint at the LMA. */
2723 bl->overlay_target_info = bl->target_info;
2724 bl->overlay_target_info.reqstd_address = addr;
2725
2726 /* No overlay handling: just set the breakpoint. */
2727 TRY
2728 {
2729 int val;
2730
2731 val = target_insert_breakpoint (bl->gdbarch,
2732 &bl->overlay_target_info);
2733 if (val)
2734 bp_err = GENERIC_ERROR;
2735 }
2736 CATCH (e, RETURN_MASK_ALL)
2737 {
2738 bp_err = e.error;
2739 bp_err_message = e.message;
2740 }
2741 END_CATCH
2742
2743 if (bp_err != GDB_NO_ERROR)
2744 fprintf_unfiltered (tmp_error_stream,
2745 "Overlay breakpoint %d "
2746 "failed: in ROM?\n",
2747 bl->owner->number);
2748 }
2749 }
2750 /* Shall we set a breakpoint at the VMA? */
2751 if (section_is_mapped (bl->section))
2752 {
2753 /* Yes. This overlay section is mapped into memory. */
2754 TRY
2755 {
2756 int val;
2757
2758 val = bl->owner->ops->insert_location (bl);
2759 if (val)
2760 bp_err = GENERIC_ERROR;
2761 }
2762 CATCH (e, RETURN_MASK_ALL)
2763 {
2764 bp_err = e.error;
2765 bp_err_message = e.message;
2766 }
2767 END_CATCH
2768 }
2769 else
2770 {
2771 /* No. This breakpoint will not be inserted.
2772 No error, but do not mark the bp as 'inserted'. */
2773 return 0;
2774 }
2775 }
2776
2777 if (bp_err != GDB_NO_ERROR)
2778 {
2779 /* Can't set the breakpoint. */
2780
2781 /* In some cases, we might not be able to insert a
2782 breakpoint in a shared library that has already been
2783 removed, but we have not yet processed the shlib unload
2784 event. Unfortunately, some targets that implement
2785 breakpoint insertion themselves can't tell why the
2786 breakpoint insertion failed (e.g., the remote target
2787 doesn't define error codes), so we must treat generic
2788 errors as memory errors. */
2789 if ((bp_err == GENERIC_ERROR || bp_err == MEMORY_ERROR)
2790 && bl->loc_type == bp_loc_software_breakpoint
2791 && (solib_name_from_address (bl->pspace, bl->address)
2792 || shared_objfile_contains_address_p (bl->pspace,
2793 bl->address)))
2794 {
2795 /* See also: disable_breakpoints_in_shlibs. */
2796 bl->shlib_disabled = 1;
2797 observer_notify_breakpoint_modified (bl->owner);
2798 if (!*disabled_breaks)
2799 {
2800 fprintf_unfiltered (tmp_error_stream,
2801 "Cannot insert breakpoint %d.\n",
2802 bl->owner->number);
2803 fprintf_unfiltered (tmp_error_stream,
2804 "Temporarily disabling shared "
2805 "library breakpoints:\n");
2806 }
2807 *disabled_breaks = 1;
2808 fprintf_unfiltered (tmp_error_stream,
2809 "breakpoint #%d\n", bl->owner->number);
2810 return 0;
2811 }
2812 else
2813 {
2814 if (bl->loc_type == bp_loc_hardware_breakpoint)
2815 {
2816 *hw_breakpoint_error = 1;
2817 *hw_bp_error_explained_already = bp_err_message != NULL;
2818 fprintf_unfiltered (tmp_error_stream,
2819 "Cannot insert hardware breakpoint %d%s",
2820 bl->owner->number, bp_err_message ? ":" : ".\n");
2821 if (bp_err_message != NULL)
2822 fprintf_unfiltered (tmp_error_stream, "%s.\n", bp_err_message);
2823 }
2824 else
2825 {
2826 if (bp_err_message == NULL)
2827 {
2828 char *message
2829 = memory_error_message (TARGET_XFER_E_IO,
2830 bl->gdbarch, bl->address);
2831 struct cleanup *old_chain = make_cleanup (xfree, message);
2832
2833 fprintf_unfiltered (tmp_error_stream,
2834 "Cannot insert breakpoint %d.\n"
2835 "%s\n",
2836 bl->owner->number, message);
2837 do_cleanups (old_chain);
2838 }
2839 else
2840 {
2841 fprintf_unfiltered (tmp_error_stream,
2842 "Cannot insert breakpoint %d: %s\n",
2843 bl->owner->number,
2844 bp_err_message);
2845 }
2846 }
2847 return 1;
2848
2849 }
2850 }
2851 else
2852 bl->inserted = 1;
2853
2854 return 0;
2855 }
2856
2857 else if (bl->loc_type == bp_loc_hardware_watchpoint
2858 /* NOTE drow/2003-09-08: This state only exists for removing
2859 watchpoints. It's not clear that it's necessary... */
2860 && bl->owner->disposition != disp_del_at_next_stop)
2861 {
2862 int val;
2863
2864 gdb_assert (bl->owner->ops != NULL
2865 && bl->owner->ops->insert_location != NULL);
2866
2867 val = bl->owner->ops->insert_location (bl);
2868
2869 /* If trying to set a read-watchpoint, and it turns out it's not
2870 supported, try emulating one with an access watchpoint. */
2871 if (val == 1 && bl->watchpoint_type == hw_read)
2872 {
2873 struct bp_location *loc, **loc_temp;
2874
2875 /* But don't try to insert it, if there's already another
2876 hw_access location that would be considered a duplicate
2877 of this one. */
2878 ALL_BP_LOCATIONS (loc, loc_temp)
2879 if (loc != bl
2880 && loc->watchpoint_type == hw_access
2881 && watchpoint_locations_match (bl, loc))
2882 {
2883 bl->duplicate = 1;
2884 bl->inserted = 1;
2885 bl->target_info = loc->target_info;
2886 bl->watchpoint_type = hw_access;
2887 val = 0;
2888 break;
2889 }
2890
2891 if (val == 1)
2892 {
2893 bl->watchpoint_type = hw_access;
2894 val = bl->owner->ops->insert_location (bl);
2895
2896 if (val)
2897 /* Back to the original value. */
2898 bl->watchpoint_type = hw_read;
2899 }
2900 }
2901
2902 bl->inserted = (val == 0);
2903 }
2904
2905 else if (bl->owner->type == bp_catchpoint)
2906 {
2907 int val;
2908
2909 gdb_assert (bl->owner->ops != NULL
2910 && bl->owner->ops->insert_location != NULL);
2911
2912 val = bl->owner->ops->insert_location (bl);
2913 if (val)
2914 {
2915 bl->owner->enable_state = bp_disabled;
2916
2917 if (val == 1)
2918 warning (_("\
2919 Error inserting catchpoint %d: Your system does not support this type\n\
2920 of catchpoint."), bl->owner->number);
2921 else
2922 warning (_("Error inserting catchpoint %d."), bl->owner->number);
2923 }
2924
2925 bl->inserted = (val == 0);
2926
2927 /* We've already printed an error message if there was a problem
2928 inserting this catchpoint, and we've disabled the catchpoint,
2929 so just return success. */
2930 return 0;
2931 }
2932
2933 return 0;
2934 }
2935
2936 /* This function is called when program space PSPACE is about to be
2937 deleted. It takes care of updating breakpoints to not reference
2938 PSPACE anymore. */
2939
2940 void
2941 breakpoint_program_space_exit (struct program_space *pspace)
2942 {
2943 struct breakpoint *b, *b_temp;
2944 struct bp_location *loc, **loc_temp;
2945
2946 /* Remove any breakpoint that was set through this program space. */
2947 ALL_BREAKPOINTS_SAFE (b, b_temp)
2948 {
2949 if (b->pspace == pspace)
2950 delete_breakpoint (b);
2951 }
2952
2953 /* Breakpoints set through other program spaces could have locations
2954 bound to PSPACE as well. Remove those. */
2955 ALL_BP_LOCATIONS (loc, loc_temp)
2956 {
2957 struct bp_location *tmp;
2958
2959 if (loc->pspace == pspace)
2960 {
2961 /* ALL_BP_LOCATIONS bp_location has LOC->OWNER always non-NULL. */
2962 if (loc->owner->loc == loc)
2963 loc->owner->loc = loc->next;
2964 else
2965 for (tmp = loc->owner->loc; tmp->next != NULL; tmp = tmp->next)
2966 if (tmp->next == loc)
2967 {
2968 tmp->next = loc->next;
2969 break;
2970 }
2971 }
2972 }
2973
2974 /* Now update the global location list to permanently delete the
2975 removed locations above. */
2976 update_global_location_list (UGLL_DONT_INSERT);
2977 }
2978
2979 /* Make sure all breakpoints are inserted in inferior.
2980 Throws exception on any error.
2981 A breakpoint that is already inserted won't be inserted
2982 again, so calling this function twice is safe. */
2983 void
2984 insert_breakpoints (void)
2985 {
2986 struct breakpoint *bpt;
2987
2988 ALL_BREAKPOINTS (bpt)
2989 if (is_hardware_watchpoint (bpt))
2990 {
2991 struct watchpoint *w = (struct watchpoint *) bpt;
2992
2993 update_watchpoint (w, 0 /* don't reparse. */);
2994 }
2995
2996 /* Updating watchpoints creates new locations, so update the global
2997 location list. Explicitly tell ugll to insert locations and
2998 ignore breakpoints_always_inserted_mode. */
2999 update_global_location_list (UGLL_INSERT);
3000 }
3001
3002 /* Invoke CALLBACK for each of bp_location. */
3003
3004 void
3005 iterate_over_bp_locations (walk_bp_location_callback callback)
3006 {
3007 struct bp_location *loc, **loc_tmp;
3008
3009 ALL_BP_LOCATIONS (loc, loc_tmp)
3010 {
3011 callback (loc, NULL);
3012 }
3013 }
3014
3015 /* This is used when we need to synch breakpoint conditions between GDB and the
3016 target. It is the case with deleting and disabling of breakpoints when using
3017 always-inserted mode. */
3018
3019 static void
3020 update_inserted_breakpoint_locations (void)
3021 {
3022 struct bp_location *bl, **blp_tmp;
3023 int error_flag = 0;
3024 int val = 0;
3025 int disabled_breaks = 0;
3026 int hw_breakpoint_error = 0;
3027 int hw_bp_details_reported = 0;
3028
3029 struct ui_file *tmp_error_stream = mem_fileopen ();
3030 struct cleanup *cleanups = make_cleanup_ui_file_delete (tmp_error_stream);
3031
3032 /* Explicitly mark the warning -- this will only be printed if
3033 there was an error. */
3034 fprintf_unfiltered (tmp_error_stream, "Warning:\n");
3035
3036 save_current_space_and_thread ();
3037
3038 ALL_BP_LOCATIONS (bl, blp_tmp)
3039 {
3040 /* We only want to update software breakpoints and hardware
3041 breakpoints. */
3042 if (!is_breakpoint (bl->owner))
3043 continue;
3044
3045 /* We only want to update locations that are already inserted
3046 and need updating. This is to avoid unwanted insertion during
3047 deletion of breakpoints. */
3048 if (!bl->inserted || (bl->inserted && !bl->needs_update))
3049 continue;
3050
3051 switch_to_program_space_and_thread (bl->pspace);
3052
3053 /* For targets that support global breakpoints, there's no need
3054 to select an inferior to insert breakpoint to. In fact, even
3055 if we aren't attached to any process yet, we should still
3056 insert breakpoints. */
3057 if (!gdbarch_has_global_breakpoints (target_gdbarch ())
3058 && ptid_equal (inferior_ptid, null_ptid))
3059 continue;
3060
3061 val = insert_bp_location (bl, tmp_error_stream, &disabled_breaks,
3062 &hw_breakpoint_error, &hw_bp_details_reported);
3063 if (val)
3064 error_flag = val;
3065 }
3066
3067 if (error_flag)
3068 {
3069 target_terminal_ours_for_output ();
3070 error_stream (tmp_error_stream);
3071 }
3072
3073 do_cleanups (cleanups);
3074 }
3075
3076 /* Used when starting or continuing the program. */
3077
3078 static void
3079 insert_breakpoint_locations (void)
3080 {
3081 struct breakpoint *bpt;
3082 struct bp_location *bl, **blp_tmp;
3083 int error_flag = 0;
3084 int val = 0;
3085 int disabled_breaks = 0;
3086 int hw_breakpoint_error = 0;
3087 int hw_bp_error_explained_already = 0;
3088
3089 struct ui_file *tmp_error_stream = mem_fileopen ();
3090 struct cleanup *cleanups = make_cleanup_ui_file_delete (tmp_error_stream);
3091
3092 /* Explicitly mark the warning -- this will only be printed if
3093 there was an error. */
3094 fprintf_unfiltered (tmp_error_stream, "Warning:\n");
3095
3096 save_current_space_and_thread ();
3097
3098 ALL_BP_LOCATIONS (bl, blp_tmp)
3099 {
3100 if (!should_be_inserted (bl) || (bl->inserted && !bl->needs_update))
3101 continue;
3102
3103 /* There is no point inserting thread-specific breakpoints if
3104 the thread no longer exists. ALL_BP_LOCATIONS bp_location
3105 has BL->OWNER always non-NULL. */
3106 if (bl->owner->thread != -1
3107 && !valid_thread_id (bl->owner->thread))
3108 continue;
3109
3110 switch_to_program_space_and_thread (bl->pspace);
3111
3112 /* For targets that support global breakpoints, there's no need
3113 to select an inferior to insert breakpoint to. In fact, even
3114 if we aren't attached to any process yet, we should still
3115 insert breakpoints. */
3116 if (!gdbarch_has_global_breakpoints (target_gdbarch ())
3117 && ptid_equal (inferior_ptid, null_ptid))
3118 continue;
3119
3120 val = insert_bp_location (bl, tmp_error_stream, &disabled_breaks,
3121 &hw_breakpoint_error, &hw_bp_error_explained_already);
3122 if (val)
3123 error_flag = val;
3124 }
3125
3126 /* If we failed to insert all locations of a watchpoint, remove
3127 them, as half-inserted watchpoint is of limited use. */
3128 ALL_BREAKPOINTS (bpt)
3129 {
3130 int some_failed = 0;
3131 struct bp_location *loc;
3132
3133 if (!is_hardware_watchpoint (bpt))
3134 continue;
3135
3136 if (!breakpoint_enabled (bpt))
3137 continue;
3138
3139 if (bpt->disposition == disp_del_at_next_stop)
3140 continue;
3141
3142 for (loc = bpt->loc; loc; loc = loc->next)
3143 if (!loc->inserted && should_be_inserted (loc))
3144 {
3145 some_failed = 1;
3146 break;
3147 }
3148 if (some_failed)
3149 {
3150 for (loc = bpt->loc; loc; loc = loc->next)
3151 if (loc->inserted)
3152 remove_breakpoint (loc, mark_uninserted);
3153
3154 hw_breakpoint_error = 1;
3155 fprintf_unfiltered (tmp_error_stream,
3156 "Could not insert hardware watchpoint %d.\n",
3157 bpt->number);
3158 error_flag = -1;
3159 }
3160 }
3161
3162 if (error_flag)
3163 {
3164 /* If a hardware breakpoint or watchpoint was inserted, add a
3165 message about possibly exhausted resources. */
3166 if (hw_breakpoint_error && !hw_bp_error_explained_already)
3167 {
3168 fprintf_unfiltered (tmp_error_stream,
3169 "Could not insert hardware breakpoints:\n\
3170 You may have requested too many hardware breakpoints/watchpoints.\n");
3171 }
3172 target_terminal_ours_for_output ();
3173 error_stream (tmp_error_stream);
3174 }
3175
3176 do_cleanups (cleanups);
3177 }
3178
3179 /* Used when the program stops.
3180 Returns zero if successful, or non-zero if there was a problem
3181 removing a breakpoint location. */
3182
3183 int
3184 remove_breakpoints (void)
3185 {
3186 struct bp_location *bl, **blp_tmp;
3187 int val = 0;
3188
3189 ALL_BP_LOCATIONS (bl, blp_tmp)
3190 {
3191 if (bl->inserted && !is_tracepoint (bl->owner))
3192 val |= remove_breakpoint (bl, mark_uninserted);
3193 }
3194 return val;
3195 }
3196
3197 /* When a thread exits, remove breakpoints that are related to
3198 that thread. */
3199
3200 static void
3201 remove_threaded_breakpoints (struct thread_info *tp, int silent)
3202 {
3203 struct breakpoint *b, *b_tmp;
3204
3205 ALL_BREAKPOINTS_SAFE (b, b_tmp)
3206 {
3207 if (b->thread == tp->num && user_breakpoint_p (b))
3208 {
3209 b->disposition = disp_del_at_next_stop;
3210
3211 printf_filtered (_("\
3212 Thread-specific breakpoint %d deleted - thread %d no longer in the thread list.\n"),
3213 b->number, tp->num);
3214
3215 /* Hide it from the user. */
3216 b->number = 0;
3217 }
3218 }
3219 }
3220
3221 /* Remove breakpoints of process PID. */
3222
3223 int
3224 remove_breakpoints_pid (int pid)
3225 {
3226 struct bp_location *bl, **blp_tmp;
3227 int val;
3228 struct inferior *inf = find_inferior_pid (pid);
3229
3230 ALL_BP_LOCATIONS (bl, blp_tmp)
3231 {
3232 if (bl->pspace != inf->pspace)
3233 continue;
3234
3235 if (bl->inserted && !bl->target_info.persist)
3236 {
3237 val = remove_breakpoint (bl, mark_uninserted);
3238 if (val != 0)
3239 return val;
3240 }
3241 }
3242 return 0;
3243 }
3244
3245 int
3246 reattach_breakpoints (int pid)
3247 {
3248 struct cleanup *old_chain;
3249 struct bp_location *bl, **blp_tmp;
3250 int val;
3251 struct ui_file *tmp_error_stream;
3252 int dummy1 = 0, dummy2 = 0, dummy3 = 0;
3253 struct inferior *inf;
3254 struct thread_info *tp;
3255
3256 tp = any_live_thread_of_process (pid);
3257 if (tp == NULL)
3258 return 1;
3259
3260 inf = find_inferior_pid (pid);
3261 old_chain = save_inferior_ptid ();
3262
3263 inferior_ptid = tp->ptid;
3264
3265 tmp_error_stream = mem_fileopen ();
3266 make_cleanup_ui_file_delete (tmp_error_stream);
3267
3268 ALL_BP_LOCATIONS (bl, blp_tmp)
3269 {
3270 if (bl->pspace != inf->pspace)
3271 continue;
3272
3273 if (bl->inserted)
3274 {
3275 bl->inserted = 0;
3276 val = insert_bp_location (bl, tmp_error_stream, &dummy1, &dummy2, &dummy3);
3277 if (val != 0)
3278 {
3279 do_cleanups (old_chain);
3280 return val;
3281 }
3282 }
3283 }
3284 do_cleanups (old_chain);
3285 return 0;
3286 }
3287
3288 static int internal_breakpoint_number = -1;
3289
3290 /* Set the breakpoint number of B, depending on the value of INTERNAL.
3291 If INTERNAL is non-zero, the breakpoint number will be populated
3292 from internal_breakpoint_number and that variable decremented.
3293 Otherwise the breakpoint number will be populated from
3294 breakpoint_count and that value incremented. Internal breakpoints
3295 do not set the internal var bpnum. */
3296 static void
3297 set_breakpoint_number (int internal, struct breakpoint *b)
3298 {
3299 if (internal)
3300 b->number = internal_breakpoint_number--;
3301 else
3302 {
3303 set_breakpoint_count (breakpoint_count + 1);
3304 b->number = breakpoint_count;
3305 }
3306 }
3307
3308 static struct breakpoint *
3309 create_internal_breakpoint (struct gdbarch *gdbarch,
3310 CORE_ADDR address, enum bptype type,
3311 const struct breakpoint_ops *ops)
3312 {
3313 struct symtab_and_line sal;
3314 struct breakpoint *b;
3315
3316 init_sal (&sal); /* Initialize to zeroes. */
3317
3318 sal.pc = address;
3319 sal.section = find_pc_overlay (sal.pc);
3320 sal.pspace = current_program_space;
3321
3322 b = set_raw_breakpoint (gdbarch, sal, type, ops);
3323 b->number = internal_breakpoint_number--;
3324 b->disposition = disp_donttouch;
3325
3326 return b;
3327 }
3328
3329 static const char *const longjmp_names[] =
3330 {
3331 "longjmp", "_longjmp", "siglongjmp", "_siglongjmp"
3332 };
3333 #define NUM_LONGJMP_NAMES ARRAY_SIZE(longjmp_names)
3334
3335 /* Per-objfile data private to breakpoint.c. */
3336 struct breakpoint_objfile_data
3337 {
3338 /* Minimal symbol for "_ovly_debug_event" (if any). */
3339 struct bound_minimal_symbol overlay_msym;
3340
3341 /* Minimal symbol(s) for "longjmp", "siglongjmp", etc. (if any). */
3342 struct bound_minimal_symbol longjmp_msym[NUM_LONGJMP_NAMES];
3343
3344 /* True if we have looked for longjmp probes. */
3345 int longjmp_searched;
3346
3347 /* SystemTap probe points for longjmp (if any). */
3348 VEC (probe_p) *longjmp_probes;
3349
3350 /* Minimal symbol for "std::terminate()" (if any). */
3351 struct bound_minimal_symbol terminate_msym;
3352
3353 /* Minimal symbol for "_Unwind_DebugHook" (if any). */
3354 struct bound_minimal_symbol exception_msym;
3355
3356 /* True if we have looked for exception probes. */
3357 int exception_searched;
3358
3359 /* SystemTap probe points for unwinding (if any). */
3360 VEC (probe_p) *exception_probes;
3361 };
3362
3363 static const struct objfile_data *breakpoint_objfile_key;
3364
3365 /* Minimal symbol not found sentinel. */
3366 static struct minimal_symbol msym_not_found;
3367
3368 /* Returns TRUE if MSYM point to the "not found" sentinel. */
3369
3370 static int
3371 msym_not_found_p (const struct minimal_symbol *msym)
3372 {
3373 return msym == &msym_not_found;
3374 }
3375
3376 /* Return per-objfile data needed by breakpoint.c.
3377 Allocate the data if necessary. */
3378
3379 static struct breakpoint_objfile_data *
3380 get_breakpoint_objfile_data (struct objfile *objfile)
3381 {
3382 struct breakpoint_objfile_data *bp_objfile_data;
3383
3384 bp_objfile_data = objfile_data (objfile, breakpoint_objfile_key);
3385 if (bp_objfile_data == NULL)
3386 {
3387 bp_objfile_data = obstack_alloc (&objfile->objfile_obstack,
3388 sizeof (*bp_objfile_data));
3389
3390 memset (bp_objfile_data, 0, sizeof (*bp_objfile_data));
3391 set_objfile_data (objfile, breakpoint_objfile_key, bp_objfile_data);
3392 }
3393 return bp_objfile_data;
3394 }
3395
3396 static void
3397 free_breakpoint_probes (struct objfile *obj, void *data)
3398 {
3399 struct breakpoint_objfile_data *bp_objfile_data = data;
3400
3401 VEC_free (probe_p, bp_objfile_data->longjmp_probes);
3402 VEC_free (probe_p, bp_objfile_data->exception_probes);
3403 }
3404
3405 static void
3406 create_overlay_event_breakpoint (void)
3407 {
3408 struct objfile *objfile;
3409 const char *const func_name = "_ovly_debug_event";
3410
3411 ALL_OBJFILES (objfile)
3412 {
3413 struct breakpoint *b;
3414 struct breakpoint_objfile_data *bp_objfile_data;
3415 CORE_ADDR addr;
3416
3417 bp_objfile_data = get_breakpoint_objfile_data (objfile);
3418
3419 if (msym_not_found_p (bp_objfile_data->overlay_msym.minsym))
3420 continue;
3421
3422 if (bp_objfile_data->overlay_msym.minsym == NULL)
3423 {
3424 struct bound_minimal_symbol m;
3425
3426 m = lookup_minimal_symbol_text (func_name, objfile);
3427 if (m.minsym == NULL)
3428 {
3429 /* Avoid future lookups in this objfile. */
3430 bp_objfile_data->overlay_msym.minsym = &msym_not_found;
3431 continue;
3432 }
3433 bp_objfile_data->overlay_msym = m;
3434 }
3435
3436 addr = BMSYMBOL_VALUE_ADDRESS (bp_objfile_data->overlay_msym);
3437 b = create_internal_breakpoint (get_objfile_arch (objfile), addr,
3438 bp_overlay_event,
3439 &internal_breakpoint_ops);
3440 b->addr_string = xstrdup (func_name);
3441
3442 if (overlay_debugging == ovly_auto)
3443 {
3444 b->enable_state = bp_enabled;
3445 overlay_events_enabled = 1;
3446 }
3447 else
3448 {
3449 b->enable_state = bp_disabled;
3450 overlay_events_enabled = 0;
3451 }
3452 }
3453 update_global_location_list (UGLL_MAY_INSERT);
3454 }
3455
3456 static void
3457 create_longjmp_master_breakpoint (void)
3458 {
3459 struct program_space *pspace;
3460 struct cleanup *old_chain;
3461
3462 old_chain = save_current_program_space ();
3463
3464 ALL_PSPACES (pspace)
3465 {
3466 struct objfile *objfile;
3467
3468 set_current_program_space (pspace);
3469
3470 ALL_OBJFILES (objfile)
3471 {
3472 int i;
3473 struct gdbarch *gdbarch;
3474 struct breakpoint_objfile_data *bp_objfile_data;
3475
3476 gdbarch = get_objfile_arch (objfile);
3477
3478 bp_objfile_data = get_breakpoint_objfile_data (objfile);
3479
3480 if (!bp_objfile_data->longjmp_searched)
3481 {
3482 VEC (probe_p) *ret;
3483
3484 ret = find_probes_in_objfile (objfile, "libc", "longjmp");
3485 if (ret != NULL)
3486 {
3487 /* We are only interested in checking one element. */
3488 struct probe *p = VEC_index (probe_p, ret, 0);
3489
3490 if (!can_evaluate_probe_arguments (p))
3491 {
3492 /* We cannot use the probe interface here, because it does
3493 not know how to evaluate arguments. */
3494 VEC_free (probe_p, ret);
3495 ret = NULL;
3496 }
3497 }
3498 bp_objfile_data->longjmp_probes = ret;
3499 bp_objfile_data->longjmp_searched = 1;
3500 }
3501
3502 if (bp_objfile_data->longjmp_probes != NULL)
3503 {
3504 int i;
3505 struct probe *probe;
3506 struct gdbarch *gdbarch = get_objfile_arch (objfile);
3507
3508 for (i = 0;
3509 VEC_iterate (probe_p,
3510 bp_objfile_data->longjmp_probes,
3511 i, probe);
3512 ++i)
3513 {
3514 struct breakpoint *b;
3515
3516 b = create_internal_breakpoint (gdbarch,
3517 get_probe_address (probe,
3518 objfile),
3519 bp_longjmp_master,
3520 &internal_breakpoint_ops);
3521 b->addr_string = xstrdup ("-probe-stap libc:longjmp");
3522 b->enable_state = bp_disabled;
3523 }
3524
3525 continue;
3526 }
3527
3528 if (!gdbarch_get_longjmp_target_p (gdbarch))
3529 continue;
3530
3531 for (i = 0; i < NUM_LONGJMP_NAMES; i++)
3532 {
3533 struct breakpoint *b;
3534 const char *func_name;
3535 CORE_ADDR addr;
3536
3537 if (msym_not_found_p (bp_objfile_data->longjmp_msym[i].minsym))
3538 continue;
3539
3540 func_name = longjmp_names[i];
3541 if (bp_objfile_data->longjmp_msym[i].minsym == NULL)
3542 {
3543 struct bound_minimal_symbol m;
3544
3545 m = lookup_minimal_symbol_text (func_name, objfile);
3546 if (m.minsym == NULL)
3547 {
3548 /* Prevent future lookups in this objfile. */
3549 bp_objfile_data->longjmp_msym[i].minsym = &msym_not_found;
3550 continue;
3551 }
3552 bp_objfile_data->longjmp_msym[i] = m;
3553 }
3554
3555 addr = BMSYMBOL_VALUE_ADDRESS (bp_objfile_data->longjmp_msym[i]);
3556 b = create_internal_breakpoint (gdbarch, addr, bp_longjmp_master,
3557 &internal_breakpoint_ops);
3558 b->addr_string = xstrdup (func_name);
3559 b->enable_state = bp_disabled;
3560 }
3561 }
3562 }
3563 update_global_location_list (UGLL_MAY_INSERT);
3564
3565 do_cleanups (old_chain);
3566 }
3567
3568 /* Create a master std::terminate breakpoint. */
3569 static void
3570 create_std_terminate_master_breakpoint (void)
3571 {
3572 struct program_space *pspace;
3573 struct cleanup *old_chain;
3574 const char *const func_name = "std::terminate()";
3575
3576 old_chain = save_current_program_space ();
3577
3578 ALL_PSPACES (pspace)
3579 {
3580 struct objfile *objfile;
3581 CORE_ADDR addr;
3582
3583 set_current_program_space (pspace);
3584
3585 ALL_OBJFILES (objfile)
3586 {
3587 struct breakpoint *b;
3588 struct breakpoint_objfile_data *bp_objfile_data;
3589
3590 bp_objfile_data = get_breakpoint_objfile_data (objfile);
3591
3592 if (msym_not_found_p (bp_objfile_data->terminate_msym.minsym))
3593 continue;
3594
3595 if (bp_objfile_data->terminate_msym.minsym == NULL)
3596 {
3597 struct bound_minimal_symbol m;
3598
3599 m = lookup_minimal_symbol (func_name, NULL, objfile);
3600 if (m.minsym == NULL || (MSYMBOL_TYPE (m.minsym) != mst_text
3601 && MSYMBOL_TYPE (m.minsym) != mst_file_text))
3602 {
3603 /* Prevent future lookups in this objfile. */
3604 bp_objfile_data->terminate_msym.minsym = &msym_not_found;
3605 continue;
3606 }
3607 bp_objfile_data->terminate_msym = m;
3608 }
3609
3610 addr = BMSYMBOL_VALUE_ADDRESS (bp_objfile_data->terminate_msym);
3611 b = create_internal_breakpoint (get_objfile_arch (objfile), addr,
3612 bp_std_terminate_master,
3613 &internal_breakpoint_ops);
3614 b->addr_string = xstrdup (func_name);
3615 b->enable_state = bp_disabled;
3616 }
3617 }
3618
3619 update_global_location_list (UGLL_MAY_INSERT);
3620
3621 do_cleanups (old_chain);
3622 }
3623
3624 /* Install a master breakpoint on the unwinder's debug hook. */
3625
3626 static void
3627 create_exception_master_breakpoint (void)
3628 {
3629 struct objfile *objfile;
3630 const char *const func_name = "_Unwind_DebugHook";
3631
3632 ALL_OBJFILES (objfile)
3633 {
3634 struct breakpoint *b;
3635 struct gdbarch *gdbarch;
3636 struct breakpoint_objfile_data *bp_objfile_data;
3637 CORE_ADDR addr;
3638
3639 bp_objfile_data = get_breakpoint_objfile_data (objfile);
3640
3641 /* We prefer the SystemTap probe point if it exists. */
3642 if (!bp_objfile_data->exception_searched)
3643 {
3644 VEC (probe_p) *ret;
3645
3646 ret = find_probes_in_objfile (objfile, "libgcc", "unwind");
3647
3648 if (ret != NULL)
3649 {
3650 /* We are only interested in checking one element. */
3651 struct probe *p = VEC_index (probe_p, ret, 0);
3652
3653 if (!can_evaluate_probe_arguments (p))
3654 {
3655 /* We cannot use the probe interface here, because it does
3656 not know how to evaluate arguments. */
3657 VEC_free (probe_p, ret);
3658 ret = NULL;
3659 }
3660 }
3661 bp_objfile_data->exception_probes = ret;
3662 bp_objfile_data->exception_searched = 1;
3663 }
3664
3665 if (bp_objfile_data->exception_probes != NULL)
3666 {
3667 struct gdbarch *gdbarch = get_objfile_arch (objfile);
3668 int i;
3669 struct probe *probe;
3670
3671 for (i = 0;
3672 VEC_iterate (probe_p,
3673 bp_objfile_data->exception_probes,
3674 i, probe);
3675 ++i)
3676 {
3677 struct breakpoint *b;
3678
3679 b = create_internal_breakpoint (gdbarch,
3680 get_probe_address (probe,
3681 objfile),
3682 bp_exception_master,
3683 &internal_breakpoint_ops);
3684 b->addr_string = xstrdup ("-probe-stap libgcc:unwind");
3685 b->enable_state = bp_disabled;
3686 }
3687
3688 continue;
3689 }
3690
3691 /* Otherwise, try the hook function. */
3692
3693 if (msym_not_found_p (bp_objfile_data->exception_msym.minsym))
3694 continue;
3695
3696 gdbarch = get_objfile_arch (objfile);
3697
3698 if (bp_objfile_data->exception_msym.minsym == NULL)
3699 {
3700 struct bound_minimal_symbol debug_hook;
3701
3702 debug_hook = lookup_minimal_symbol (func_name, NULL, objfile);
3703 if (debug_hook.minsym == NULL)
3704 {
3705 bp_objfile_data->exception_msym.minsym = &msym_not_found;
3706 continue;
3707 }
3708
3709 bp_objfile_data->exception_msym = debug_hook;
3710 }
3711
3712 addr = BMSYMBOL_VALUE_ADDRESS (bp_objfile_data->exception_msym);
3713 addr = gdbarch_convert_from_func_ptr_addr (gdbarch, addr,
3714 &current_target);
3715 b = create_internal_breakpoint (gdbarch, addr, bp_exception_master,
3716 &internal_breakpoint_ops);
3717 b->addr_string = xstrdup (func_name);
3718 b->enable_state = bp_disabled;
3719 }
3720
3721 update_global_location_list (UGLL_MAY_INSERT);
3722 }
3723
3724 void
3725 update_breakpoints_after_exec (void)
3726 {
3727 struct breakpoint *b, *b_tmp;
3728 struct bp_location *bploc, **bplocp_tmp;
3729
3730 /* We're about to delete breakpoints from GDB's lists. If the
3731 INSERTED flag is true, GDB will try to lift the breakpoints by
3732 writing the breakpoints' "shadow contents" back into memory. The
3733 "shadow contents" are NOT valid after an exec, so GDB should not
3734 do that. Instead, the target is responsible from marking
3735 breakpoints out as soon as it detects an exec. We don't do that
3736 here instead, because there may be other attempts to delete
3737 breakpoints after detecting an exec and before reaching here. */
3738 ALL_BP_LOCATIONS (bploc, bplocp_tmp)
3739 if (bploc->pspace == current_program_space)
3740 gdb_assert (!bploc->inserted);
3741
3742 ALL_BREAKPOINTS_SAFE (b, b_tmp)
3743 {
3744 if (b->pspace != current_program_space)
3745 continue;
3746
3747 /* Solib breakpoints must be explicitly reset after an exec(). */
3748 if (b->type == bp_shlib_event)
3749 {
3750 delete_breakpoint (b);
3751 continue;
3752 }
3753
3754 /* JIT breakpoints must be explicitly reset after an exec(). */
3755 if (b->type == bp_jit_event)
3756 {
3757 delete_breakpoint (b);
3758 continue;
3759 }
3760
3761 /* Thread event breakpoints must be set anew after an exec(),
3762 as must overlay event and longjmp master breakpoints. */
3763 if (b->type == bp_thread_event || b->type == bp_overlay_event
3764 || b->type == bp_longjmp_master || b->type == bp_std_terminate_master
3765 || b->type == bp_exception_master)
3766 {
3767 delete_breakpoint (b);
3768 continue;
3769 }
3770
3771 /* Step-resume breakpoints are meaningless after an exec(). */
3772 if (b->type == bp_step_resume || b->type == bp_hp_step_resume)
3773 {
3774 delete_breakpoint (b);
3775 continue;
3776 }
3777
3778 /* Just like single-step breakpoints. */
3779 if (b->type == bp_single_step)
3780 {
3781 delete_breakpoint (b);
3782 continue;
3783 }
3784
3785 /* Longjmp and longjmp-resume breakpoints are also meaningless
3786 after an exec. */
3787 if (b->type == bp_longjmp || b->type == bp_longjmp_resume
3788 || b->type == bp_longjmp_call_dummy
3789 || b->type == bp_exception || b->type == bp_exception_resume)
3790 {
3791 delete_breakpoint (b);
3792 continue;
3793 }
3794
3795 if (b->type == bp_catchpoint)
3796 {
3797 /* For now, none of the bp_catchpoint breakpoints need to
3798 do anything at this point. In the future, if some of
3799 the catchpoints need to something, we will need to add
3800 a new method, and call this method from here. */
3801 continue;
3802 }
3803
3804 /* bp_finish is a special case. The only way we ought to be able
3805 to see one of these when an exec() has happened, is if the user
3806 caught a vfork, and then said "finish". Ordinarily a finish just
3807 carries them to the call-site of the current callee, by setting
3808 a temporary bp there and resuming. But in this case, the finish
3809 will carry them entirely through the vfork & exec.
3810
3811 We don't want to allow a bp_finish to remain inserted now. But
3812 we can't safely delete it, 'cause finish_command has a handle to
3813 the bp on a bpstat, and will later want to delete it. There's a
3814 chance (and I've seen it happen) that if we delete the bp_finish
3815 here, that its storage will get reused by the time finish_command
3816 gets 'round to deleting the "use to be a bp_finish" breakpoint.
3817 We really must allow finish_command to delete a bp_finish.
3818
3819 In the absence of a general solution for the "how do we know
3820 it's safe to delete something others may have handles to?"
3821 problem, what we'll do here is just uninsert the bp_finish, and
3822 let finish_command delete it.
3823
3824 (We know the bp_finish is "doomed" in the sense that it's
3825 momentary, and will be deleted as soon as finish_command sees
3826 the inferior stopped. So it doesn't matter that the bp's
3827 address is probably bogus in the new a.out, unlike e.g., the
3828 solib breakpoints.) */
3829
3830 if (b->type == bp_finish)
3831 {
3832 continue;
3833 }
3834
3835 /* Without a symbolic address, we have little hope of the
3836 pre-exec() address meaning the same thing in the post-exec()
3837 a.out. */
3838 if (b->addr_string == NULL)
3839 {
3840 delete_breakpoint (b);
3841 continue;
3842 }
3843 }
3844 }
3845
3846 int
3847 detach_breakpoints (ptid_t ptid)
3848 {
3849 struct bp_location *bl, **blp_tmp;
3850 int val = 0;
3851 struct cleanup *old_chain = save_inferior_ptid ();
3852 struct inferior *inf = current_inferior ();
3853
3854 if (ptid_get_pid (ptid) == ptid_get_pid (inferior_ptid))
3855 error (_("Cannot detach breakpoints of inferior_ptid"));
3856
3857 /* Set inferior_ptid; remove_breakpoint_1 uses this global. */
3858 inferior_ptid = ptid;
3859 ALL_BP_LOCATIONS (bl, blp_tmp)
3860 {
3861 if (bl->pspace != inf->pspace)
3862 continue;
3863
3864 /* This function must physically remove breakpoints locations
3865 from the specified ptid, without modifying the breakpoint
3866 package's state. Locations of type bp_loc_other are only
3867 maintained at GDB side. So, there is no need to remove
3868 these bp_loc_other locations. Moreover, removing these
3869 would modify the breakpoint package's state. */
3870 if (bl->loc_type == bp_loc_other)
3871 continue;
3872
3873 if (bl->inserted)
3874 val |= remove_breakpoint_1 (bl, mark_inserted);
3875 }
3876
3877 do_cleanups (old_chain);
3878 return val;
3879 }
3880
3881 /* Remove the breakpoint location BL from the current address space.
3882 Note that this is used to detach breakpoints from a child fork.
3883 When we get here, the child isn't in the inferior list, and neither
3884 do we have objects to represent its address space --- we should
3885 *not* look at bl->pspace->aspace here. */
3886
3887 static int
3888 remove_breakpoint_1 (struct bp_location *bl, insertion_state_t is)
3889 {
3890 int val;
3891
3892 /* BL is never in moribund_locations by our callers. */
3893 gdb_assert (bl->owner != NULL);
3894
3895 /* The type of none suggests that owner is actually deleted.
3896 This should not ever happen. */
3897 gdb_assert (bl->owner->type != bp_none);
3898
3899 if (bl->loc_type == bp_loc_software_breakpoint
3900 || bl->loc_type == bp_loc_hardware_breakpoint)
3901 {
3902 /* "Normal" instruction breakpoint: either the standard
3903 trap-instruction bp (bp_breakpoint), or a
3904 bp_hardware_breakpoint. */
3905
3906 /* First check to see if we have to handle an overlay. */
3907 if (overlay_debugging == ovly_off
3908 || bl->section == NULL
3909 || !(section_is_overlay (bl->section)))
3910 {
3911 /* No overlay handling: just remove the breakpoint. */
3912
3913 /* If we're trying to uninsert a memory breakpoint that we
3914 know is set in a dynamic object that is marked
3915 shlib_disabled, then either the dynamic object was
3916 removed with "remove-symbol-file" or with
3917 "nosharedlibrary". In the former case, we don't know
3918 whether another dynamic object might have loaded over the
3919 breakpoint's address -- the user might well let us know
3920 about it next with add-symbol-file (the whole point of
3921 add-symbol-file is letting the user manually maintain a
3922 list of dynamically loaded objects). If we have the
3923 breakpoint's shadow memory, that is, this is a software
3924 breakpoint managed by GDB, check whether the breakpoint
3925 is still inserted in memory, to avoid overwriting wrong
3926 code with stale saved shadow contents. Note that HW
3927 breakpoints don't have shadow memory, as they're
3928 implemented using a mechanism that is not dependent on
3929 being able to modify the target's memory, and as such
3930 they should always be removed. */
3931 if (bl->shlib_disabled
3932 && bl->target_info.shadow_len != 0
3933 && !memory_validate_breakpoint (bl->gdbarch, &bl->target_info))
3934 val = 0;
3935 else
3936 val = bl->owner->ops->remove_location (bl);
3937 }
3938 else
3939 {
3940 /* This breakpoint is in an overlay section.
3941 Did we set a breakpoint at the LMA? */
3942 if (!overlay_events_enabled)
3943 {
3944 /* Yes -- overlay event support is not active, so we
3945 should have set a breakpoint at the LMA. Remove it.
3946 */
3947 /* Ignore any failures: if the LMA is in ROM, we will
3948 have already warned when we failed to insert it. */
3949 if (bl->loc_type == bp_loc_hardware_breakpoint)
3950 target_remove_hw_breakpoint (bl->gdbarch,
3951 &bl->overlay_target_info);
3952 else
3953 target_remove_breakpoint (bl->gdbarch,
3954 &bl->overlay_target_info);
3955 }
3956 /* Did we set a breakpoint at the VMA?
3957 If so, we will have marked the breakpoint 'inserted'. */
3958 if (bl->inserted)
3959 {
3960 /* Yes -- remove it. Previously we did not bother to
3961 remove the breakpoint if the section had been
3962 unmapped, but let's not rely on that being safe. We
3963 don't know what the overlay manager might do. */
3964
3965 /* However, we should remove *software* breakpoints only
3966 if the section is still mapped, or else we overwrite
3967 wrong code with the saved shadow contents. */
3968 if (bl->loc_type == bp_loc_hardware_breakpoint
3969 || section_is_mapped (bl->section))
3970 val = bl->owner->ops->remove_location (bl);
3971 else
3972 val = 0;
3973 }
3974 else
3975 {
3976 /* No -- not inserted, so no need to remove. No error. */
3977 val = 0;
3978 }
3979 }
3980
3981 /* In some cases, we might not be able to remove a breakpoint in
3982 a shared library that has already been removed, but we have
3983 not yet processed the shlib unload event. Similarly for an
3984 unloaded add-symbol-file object - the user might not yet have
3985 had the chance to remove-symbol-file it. shlib_disabled will
3986 be set if the library/object has already been removed, but
3987 the breakpoint hasn't been uninserted yet, e.g., after
3988 "nosharedlibrary" or "remove-symbol-file" with breakpoints
3989 always-inserted mode. */
3990 if (val
3991 && (bl->loc_type == bp_loc_software_breakpoint
3992 && (bl->shlib_disabled
3993 || solib_name_from_address (bl->pspace, bl->address)
3994 || shared_objfile_contains_address_p (bl->pspace,
3995 bl->address))))
3996 val = 0;
3997
3998 if (val)
3999 return val;
4000 bl->inserted = (is == mark_inserted);
4001 }
4002 else if (bl->loc_type == bp_loc_hardware_watchpoint)
4003 {
4004 gdb_assert (bl->owner->ops != NULL
4005 && bl->owner->ops->remove_location != NULL);
4006
4007 bl->inserted = (is == mark_inserted);
4008 bl->owner->ops->remove_location (bl);
4009
4010 /* Failure to remove any of the hardware watchpoints comes here. */
4011 if ((is == mark_uninserted) && (bl->inserted))
4012 warning (_("Could not remove hardware watchpoint %d."),
4013 bl->owner->number);
4014 }
4015 else if (bl->owner->type == bp_catchpoint
4016 && breakpoint_enabled (bl->owner)
4017 && !bl->duplicate)
4018 {
4019 gdb_assert (bl->owner->ops != NULL
4020 && bl->owner->ops->remove_location != NULL);
4021
4022 val = bl->owner->ops->remove_location (bl);
4023 if (val)
4024 return val;
4025
4026 bl->inserted = (is == mark_inserted);
4027 }
4028
4029 return 0;
4030 }
4031
4032 static int
4033 remove_breakpoint (struct bp_location *bl, insertion_state_t is)
4034 {
4035 int ret;
4036 struct cleanup *old_chain;
4037
4038 /* BL is never in moribund_locations by our callers. */
4039 gdb_assert (bl->owner != NULL);
4040
4041 /* The type of none suggests that owner is actually deleted.
4042 This should not ever happen. */
4043 gdb_assert (bl->owner->type != bp_none);
4044
4045 old_chain = save_current_space_and_thread ();
4046
4047 switch_to_program_space_and_thread (bl->pspace);
4048
4049 ret = remove_breakpoint_1 (bl, is);
4050
4051 do_cleanups (old_chain);
4052 return ret;
4053 }
4054
4055 /* Clear the "inserted" flag in all breakpoints. */
4056
4057 void
4058 mark_breakpoints_out (void)
4059 {
4060 struct bp_location *bl, **blp_tmp;
4061
4062 ALL_BP_LOCATIONS (bl, blp_tmp)
4063 if (bl->pspace == current_program_space)
4064 bl->inserted = 0;
4065 }
4066
4067 /* Clear the "inserted" flag in all breakpoints and delete any
4068 breakpoints which should go away between runs of the program.
4069
4070 Plus other such housekeeping that has to be done for breakpoints
4071 between runs.
4072
4073 Note: this function gets called at the end of a run (by
4074 generic_mourn_inferior) and when a run begins (by
4075 init_wait_for_inferior). */
4076
4077
4078
4079 void
4080 breakpoint_init_inferior (enum inf_context context)
4081 {
4082 struct breakpoint *b, *b_tmp;
4083 struct bp_location *bl, **blp_tmp;
4084 int ix;
4085 struct program_space *pspace = current_program_space;
4086
4087 /* If breakpoint locations are shared across processes, then there's
4088 nothing to do. */
4089 if (gdbarch_has_global_breakpoints (target_gdbarch ()))
4090 return;
4091
4092 mark_breakpoints_out ();
4093
4094 ALL_BREAKPOINTS_SAFE (b, b_tmp)
4095 {
4096 if (b->loc && b->loc->pspace != pspace)
4097 continue;
4098
4099 switch (b->type)
4100 {
4101 case bp_call_dummy:
4102 case bp_longjmp_call_dummy:
4103
4104 /* If the call dummy breakpoint is at the entry point it will
4105 cause problems when the inferior is rerun, so we better get
4106 rid of it. */
4107
4108 case bp_watchpoint_scope:
4109
4110 /* Also get rid of scope breakpoints. */
4111
4112 case bp_shlib_event:
4113
4114 /* Also remove solib event breakpoints. Their addresses may
4115 have changed since the last time we ran the program.
4116 Actually we may now be debugging against different target;
4117 and so the solib backend that installed this breakpoint may
4118 not be used in by the target. E.g.,
4119
4120 (gdb) file prog-linux
4121 (gdb) run # native linux target
4122 ...
4123 (gdb) kill
4124 (gdb) file prog-win.exe
4125 (gdb) tar rem :9999 # remote Windows gdbserver.
4126 */
4127
4128 case bp_step_resume:
4129
4130 /* Also remove step-resume breakpoints. */
4131
4132 case bp_single_step:
4133
4134 /* Also remove single-step breakpoints. */
4135
4136 delete_breakpoint (b);
4137 break;
4138
4139 case bp_watchpoint:
4140 case bp_hardware_watchpoint:
4141 case bp_read_watchpoint:
4142 case bp_access_watchpoint:
4143 {
4144 struct watchpoint *w = (struct watchpoint *) b;
4145
4146 /* Likewise for watchpoints on local expressions. */
4147 if (w->exp_valid_block != NULL)
4148 delete_breakpoint (b);
4149 else if (context == inf_starting)
4150 {
4151 /* Reset val field to force reread of starting value in
4152 insert_breakpoints. */
4153 if (w->val)
4154 value_free (w->val);
4155 w->val = NULL;
4156 w->val_valid = 0;
4157 }
4158 }
4159 break;
4160 default:
4161 break;
4162 }
4163 }
4164
4165 /* Get rid of the moribund locations. */
4166 for (ix = 0; VEC_iterate (bp_location_p, moribund_locations, ix, bl); ++ix)
4167 decref_bp_location (&bl);
4168 VEC_free (bp_location_p, moribund_locations);
4169 }
4170
4171 /* These functions concern about actual breakpoints inserted in the
4172 target --- to e.g. check if we need to do decr_pc adjustment or if
4173 we need to hop over the bkpt --- so we check for address space
4174 match, not program space. */
4175
4176 /* breakpoint_here_p (PC) returns non-zero if an enabled breakpoint
4177 exists at PC. It returns ordinary_breakpoint_here if it's an
4178 ordinary breakpoint, or permanent_breakpoint_here if it's a
4179 permanent breakpoint.
4180 - When continuing from a location with an ordinary breakpoint, we
4181 actually single step once before calling insert_breakpoints.
4182 - When continuing from a location with a permanent breakpoint, we
4183 need to use the `SKIP_PERMANENT_BREAKPOINT' macro, provided by
4184 the target, to advance the PC past the breakpoint. */
4185
4186 enum breakpoint_here
4187 breakpoint_here_p (struct address_space *aspace, CORE_ADDR pc)
4188 {
4189 struct bp_location *bl, **blp_tmp;
4190 int any_breakpoint_here = 0;
4191
4192 ALL_BP_LOCATIONS (bl, blp_tmp)
4193 {
4194 if (bl->loc_type != bp_loc_software_breakpoint
4195 && bl->loc_type != bp_loc_hardware_breakpoint)
4196 continue;
4197
4198 /* ALL_BP_LOCATIONS bp_location has BL->OWNER always non-NULL. */
4199 if ((breakpoint_enabled (bl->owner)
4200 || bl->permanent)
4201 && breakpoint_location_address_match (bl, aspace, pc))
4202 {
4203 if (overlay_debugging
4204 && section_is_overlay (bl->section)
4205 && !section_is_mapped (bl->section))
4206 continue; /* unmapped overlay -- can't be a match */
4207 else if (bl->permanent)
4208 return permanent_breakpoint_here;
4209 else
4210 any_breakpoint_here = 1;
4211 }
4212 }
4213
4214 return any_breakpoint_here ? ordinary_breakpoint_here : 0;
4215 }
4216
4217 /* Return true if there's a moribund breakpoint at PC. */
4218
4219 int
4220 moribund_breakpoint_here_p (struct address_space *aspace, CORE_ADDR pc)
4221 {
4222 struct bp_location *loc;
4223 int ix;
4224
4225 for (ix = 0; VEC_iterate (bp_location_p, moribund_locations, ix, loc); ++ix)
4226 if (breakpoint_location_address_match (loc, aspace, pc))
4227 return 1;
4228
4229 return 0;
4230 }
4231
4232 /* Returns non-zero iff BL is inserted at PC, in address space
4233 ASPACE. */
4234
4235 static int
4236 bp_location_inserted_here_p (struct bp_location *bl,
4237 struct address_space *aspace, CORE_ADDR pc)
4238 {
4239 if (bl->inserted
4240 && breakpoint_address_match (bl->pspace->aspace, bl->address,
4241 aspace, pc))
4242 {
4243 if (overlay_debugging
4244 && section_is_overlay (bl->section)
4245 && !section_is_mapped (bl->section))
4246 return 0; /* unmapped overlay -- can't be a match */
4247 else
4248 return 1;
4249 }
4250 return 0;
4251 }
4252
4253 /* Returns non-zero iff there's a breakpoint inserted at PC. */
4254
4255 int
4256 breakpoint_inserted_here_p (struct address_space *aspace, CORE_ADDR pc)
4257 {
4258 struct bp_location **blp, **blp_tmp = NULL;
4259 struct bp_location *bl;
4260
4261 ALL_BP_LOCATIONS_AT_ADDR (blp, blp_tmp, pc)
4262 {
4263 struct bp_location *bl = *blp;
4264
4265 if (bl->loc_type != bp_loc_software_breakpoint
4266 && bl->loc_type != bp_loc_hardware_breakpoint)
4267 continue;
4268
4269 if (bp_location_inserted_here_p (bl, aspace, pc))
4270 return 1;
4271 }
4272 return 0;
4273 }
4274
4275 /* This function returns non-zero iff there is a software breakpoint
4276 inserted at PC. */
4277
4278 int
4279 software_breakpoint_inserted_here_p (struct address_space *aspace,
4280 CORE_ADDR pc)
4281 {
4282 struct bp_location **blp, **blp_tmp = NULL;
4283 struct bp_location *bl;
4284
4285 ALL_BP_LOCATIONS_AT_ADDR (blp, blp_tmp, pc)
4286 {
4287 struct bp_location *bl = *blp;
4288
4289 if (bl->loc_type != bp_loc_software_breakpoint)
4290 continue;
4291
4292 if (bp_location_inserted_here_p (bl, aspace, pc))
4293 return 1;
4294 }
4295
4296 return 0;
4297 }
4298
4299 /* See breakpoint.h. */
4300
4301 int
4302 hardware_breakpoint_inserted_here_p (struct address_space *aspace,
4303 CORE_ADDR pc)
4304 {
4305 struct bp_location **blp, **blp_tmp = NULL;
4306 struct bp_location *bl;
4307
4308 ALL_BP_LOCATIONS_AT_ADDR (blp, blp_tmp, pc)
4309 {
4310 struct bp_location *bl = *blp;
4311
4312 if (bl->loc_type != bp_loc_hardware_breakpoint)
4313 continue;
4314
4315 if (bp_location_inserted_here_p (bl, aspace, pc))
4316 return 1;
4317 }
4318
4319 return 0;
4320 }
4321
4322 int
4323 hardware_watchpoint_inserted_in_range (struct address_space *aspace,
4324 CORE_ADDR addr, ULONGEST len)
4325 {
4326 struct breakpoint *bpt;
4327
4328 ALL_BREAKPOINTS (bpt)
4329 {
4330 struct bp_location *loc;
4331
4332 if (bpt->type != bp_hardware_watchpoint
4333 && bpt->type != bp_access_watchpoint)
4334 continue;
4335
4336 if (!breakpoint_enabled (bpt))
4337 continue;
4338
4339 for (loc = bpt->loc; loc; loc = loc->next)
4340 if (loc->pspace->aspace == aspace && loc->inserted)
4341 {
4342 CORE_ADDR l, h;
4343
4344 /* Check for intersection. */
4345 l = max (loc->address, addr);
4346 h = min (loc->address + loc->length, addr + len);
4347 if (l < h)
4348 return 1;
4349 }
4350 }
4351 return 0;
4352 }
4353 \f
4354
4355 /* bpstat stuff. External routines' interfaces are documented
4356 in breakpoint.h. */
4357
4358 int
4359 is_catchpoint (struct breakpoint *ep)
4360 {
4361 return (ep->type == bp_catchpoint);
4362 }
4363
4364 /* Frees any storage that is part of a bpstat. Does not walk the
4365 'next' chain. */
4366
4367 static void
4368 bpstat_free (bpstat bs)
4369 {
4370 if (bs->old_val != NULL)
4371 value_free (bs->old_val);
4372 decref_counted_command_line (&bs->commands);
4373 decref_bp_location (&bs->bp_location_at);
4374 xfree (bs);
4375 }
4376
4377 /* Clear a bpstat so that it says we are not at any breakpoint.
4378 Also free any storage that is part of a bpstat. */
4379
4380 void
4381 bpstat_clear (bpstat *bsp)
4382 {
4383 bpstat p;
4384 bpstat q;
4385
4386 if (bsp == 0)
4387 return;
4388 p = *bsp;
4389 while (p != NULL)
4390 {
4391 q = p->next;
4392 bpstat_free (p);
4393 p = q;
4394 }
4395 *bsp = NULL;
4396 }
4397
4398 /* Return a copy of a bpstat. Like "bs1 = bs2" but all storage that
4399 is part of the bpstat is copied as well. */
4400
4401 bpstat
4402 bpstat_copy (bpstat bs)
4403 {
4404 bpstat p = NULL;
4405 bpstat tmp;
4406 bpstat retval = NULL;
4407
4408 if (bs == NULL)
4409 return bs;
4410
4411 for (; bs != NULL; bs = bs->next)
4412 {
4413 tmp = (bpstat) xmalloc (sizeof (*tmp));
4414 memcpy (tmp, bs, sizeof (*tmp));
4415 incref_counted_command_line (tmp->commands);
4416 incref_bp_location (tmp->bp_location_at);
4417 if (bs->old_val != NULL)
4418 {
4419 tmp->old_val = value_copy (bs->old_val);
4420 release_value (tmp->old_val);
4421 }
4422
4423 if (p == NULL)
4424 /* This is the first thing in the chain. */
4425 retval = tmp;
4426 else
4427 p->next = tmp;
4428 p = tmp;
4429 }
4430 p->next = NULL;
4431 return retval;
4432 }
4433
4434 /* Find the bpstat associated with this breakpoint. */
4435
4436 bpstat
4437 bpstat_find_breakpoint (bpstat bsp, struct breakpoint *breakpoint)
4438 {
4439 if (bsp == NULL)
4440 return NULL;
4441
4442 for (; bsp != NULL; bsp = bsp->next)
4443 {
4444 if (bsp->breakpoint_at == breakpoint)
4445 return bsp;
4446 }
4447 return NULL;
4448 }
4449
4450 /* See breakpoint.h. */
4451
4452 int
4453 bpstat_explains_signal (bpstat bsp, enum gdb_signal sig)
4454 {
4455 for (; bsp != NULL; bsp = bsp->next)
4456 {
4457 if (bsp->breakpoint_at == NULL)
4458 {
4459 /* A moribund location can never explain a signal other than
4460 GDB_SIGNAL_TRAP. */
4461 if (sig == GDB_SIGNAL_TRAP)
4462 return 1;
4463 }
4464 else
4465 {
4466 if (bsp->breakpoint_at->ops->explains_signal (bsp->breakpoint_at,
4467 sig))
4468 return 1;
4469 }
4470 }
4471
4472 return 0;
4473 }
4474
4475 /* Put in *NUM the breakpoint number of the first breakpoint we are
4476 stopped at. *BSP upon return is a bpstat which points to the
4477 remaining breakpoints stopped at (but which is not guaranteed to be
4478 good for anything but further calls to bpstat_num).
4479
4480 Return 0 if passed a bpstat which does not indicate any breakpoints.
4481 Return -1 if stopped at a breakpoint that has been deleted since
4482 we set it.
4483 Return 1 otherwise. */
4484
4485 int
4486 bpstat_num (bpstat *bsp, int *num)
4487 {
4488 struct breakpoint *b;
4489
4490 if ((*bsp) == NULL)
4491 return 0; /* No more breakpoint values */
4492
4493 /* We assume we'll never have several bpstats that correspond to a
4494 single breakpoint -- otherwise, this function might return the
4495 same number more than once and this will look ugly. */
4496 b = (*bsp)->breakpoint_at;
4497 *bsp = (*bsp)->next;
4498 if (b == NULL)
4499 return -1; /* breakpoint that's been deleted since */
4500
4501 *num = b->number; /* We have its number */
4502 return 1;
4503 }
4504
4505 /* See breakpoint.h. */
4506
4507 void
4508 bpstat_clear_actions (void)
4509 {
4510 struct thread_info *tp;
4511 bpstat bs;
4512
4513 if (ptid_equal (inferior_ptid, null_ptid))
4514 return;
4515
4516 tp = find_thread_ptid (inferior_ptid);
4517 if (tp == NULL)
4518 return;
4519
4520 for (bs = tp->control.stop_bpstat; bs != NULL; bs = bs->next)
4521 {
4522 decref_counted_command_line (&bs->commands);
4523
4524 if (bs->old_val != NULL)
4525 {
4526 value_free (bs->old_val);
4527 bs->old_val = NULL;
4528 }
4529 }
4530 }
4531
4532 /* Called when a command is about to proceed the inferior. */
4533
4534 static void
4535 breakpoint_about_to_proceed (void)
4536 {
4537 if (!ptid_equal (inferior_ptid, null_ptid))
4538 {
4539 struct thread_info *tp = inferior_thread ();
4540
4541 /* Allow inferior function calls in breakpoint commands to not
4542 interrupt the command list. When the call finishes
4543 successfully, the inferior will be standing at the same
4544 breakpoint as if nothing happened. */
4545 if (tp->control.in_infcall)
4546 return;
4547 }
4548
4549 breakpoint_proceeded = 1;
4550 }
4551
4552 /* Stub for cleaning up our state if we error-out of a breakpoint
4553 command. */
4554 static void
4555 cleanup_executing_breakpoints (void *ignore)
4556 {
4557 executing_breakpoint_commands = 0;
4558 }
4559
4560 /* Return non-zero iff CMD as the first line of a command sequence is `silent'
4561 or its equivalent. */
4562
4563 static int
4564 command_line_is_silent (struct command_line *cmd)
4565 {
4566 return cmd && (strcmp ("silent", cmd->line) == 0);
4567 }
4568
4569 /* Execute all the commands associated with all the breakpoints at
4570 this location. Any of these commands could cause the process to
4571 proceed beyond this point, etc. We look out for such changes by
4572 checking the global "breakpoint_proceeded" after each command.
4573
4574 Returns true if a breakpoint command resumed the inferior. In that
4575 case, it is the caller's responsibility to recall it again with the
4576 bpstat of the current thread. */
4577
4578 static int
4579 bpstat_do_actions_1 (bpstat *bsp)
4580 {
4581 bpstat bs;
4582 struct cleanup *old_chain;
4583 int again = 0;
4584
4585 /* Avoid endless recursion if a `source' command is contained
4586 in bs->commands. */
4587 if (executing_breakpoint_commands)
4588 return 0;
4589
4590 executing_breakpoint_commands = 1;
4591 old_chain = make_cleanup (cleanup_executing_breakpoints, 0);
4592
4593 prevent_dont_repeat ();
4594
4595 /* This pointer will iterate over the list of bpstat's. */
4596 bs = *bsp;
4597
4598 breakpoint_proceeded = 0;
4599 for (; bs != NULL; bs = bs->next)
4600 {
4601 struct counted_command_line *ccmd;
4602 struct command_line *cmd;
4603 struct cleanup *this_cmd_tree_chain;
4604
4605 /* Take ownership of the BSP's command tree, if it has one.
4606
4607 The command tree could legitimately contain commands like
4608 'step' and 'next', which call clear_proceed_status, which
4609 frees stop_bpstat's command tree. To make sure this doesn't
4610 free the tree we're executing out from under us, we need to
4611 take ownership of the tree ourselves. Since a given bpstat's
4612 commands are only executed once, we don't need to copy it; we
4613 can clear the pointer in the bpstat, and make sure we free
4614 the tree when we're done. */
4615 ccmd = bs->commands;
4616 bs->commands = NULL;
4617 this_cmd_tree_chain = make_cleanup_decref_counted_command_line (&ccmd);
4618 cmd = ccmd ? ccmd->commands : NULL;
4619 if (command_line_is_silent (cmd))
4620 {
4621 /* The action has been already done by bpstat_stop_status. */
4622 cmd = cmd->next;
4623 }
4624
4625 while (cmd != NULL)
4626 {
4627 execute_control_command (cmd);
4628
4629 if (breakpoint_proceeded)
4630 break;
4631 else
4632 cmd = cmd->next;
4633 }
4634
4635 /* We can free this command tree now. */
4636 do_cleanups (this_cmd_tree_chain);
4637
4638 if (breakpoint_proceeded)
4639 {
4640 if (interpreter_async && target_can_async_p ())
4641 /* If we are in async mode, then the target might be still
4642 running, not stopped at any breakpoint, so nothing for
4643 us to do here -- just return to the event loop. */
4644 ;
4645 else
4646 /* In sync mode, when execute_control_command returns
4647 we're already standing on the next breakpoint.
4648 Breakpoint commands for that stop were not run, since
4649 execute_command does not run breakpoint commands --
4650 only command_line_handler does, but that one is not
4651 involved in execution of breakpoint commands. So, we
4652 can now execute breakpoint commands. It should be
4653 noted that making execute_command do bpstat actions is
4654 not an option -- in this case we'll have recursive
4655 invocation of bpstat for each breakpoint with a
4656 command, and can easily blow up GDB stack. Instead, we
4657 return true, which will trigger the caller to recall us
4658 with the new stop_bpstat. */
4659 again = 1;
4660 break;
4661 }
4662 }
4663 do_cleanups (old_chain);
4664 return again;
4665 }
4666
4667 void
4668 bpstat_do_actions (void)
4669 {
4670 struct cleanup *cleanup_if_error = make_bpstat_clear_actions_cleanup ();
4671
4672 /* Do any commands attached to breakpoint we are stopped at. */
4673 while (!ptid_equal (inferior_ptid, null_ptid)
4674 && target_has_execution
4675 && !is_exited (inferior_ptid)
4676 && !is_executing (inferior_ptid))
4677 /* Since in sync mode, bpstat_do_actions may resume the inferior,
4678 and only return when it is stopped at the next breakpoint, we
4679 keep doing breakpoint actions until it returns false to
4680 indicate the inferior was not resumed. */
4681 if (!bpstat_do_actions_1 (&inferior_thread ()->control.stop_bpstat))
4682 break;
4683
4684 discard_cleanups (cleanup_if_error);
4685 }
4686
4687 /* Print out the (old or new) value associated with a watchpoint. */
4688
4689 static void
4690 watchpoint_value_print (struct value *val, struct ui_file *stream)
4691 {
4692 if (val == NULL)
4693 fprintf_unfiltered (stream, _("<unreadable>"));
4694 else
4695 {
4696 struct value_print_options opts;
4697 get_user_print_options (&opts);
4698 value_print (val, stream, &opts);
4699 }
4700 }
4701
4702 /* Generic routine for printing messages indicating why we
4703 stopped. The behavior of this function depends on the value
4704 'print_it' in the bpstat structure. Under some circumstances we
4705 may decide not to print anything here and delegate the task to
4706 normal_stop(). */
4707
4708 static enum print_stop_action
4709 print_bp_stop_message (bpstat bs)
4710 {
4711 switch (bs->print_it)
4712 {
4713 case print_it_noop:
4714 /* Nothing should be printed for this bpstat entry. */
4715 return PRINT_UNKNOWN;
4716 break;
4717
4718 case print_it_done:
4719 /* We still want to print the frame, but we already printed the
4720 relevant messages. */
4721 return PRINT_SRC_AND_LOC;
4722 break;
4723
4724 case print_it_normal:
4725 {
4726 struct breakpoint *b = bs->breakpoint_at;
4727
4728 /* bs->breakpoint_at can be NULL if it was a momentary breakpoint
4729 which has since been deleted. */
4730 if (b == NULL)
4731 return PRINT_UNKNOWN;
4732
4733 /* Normal case. Call the breakpoint's print_it method. */
4734 return b->ops->print_it (bs);
4735 }
4736 break;
4737
4738 default:
4739 internal_error (__FILE__, __LINE__,
4740 _("print_bp_stop_message: unrecognized enum value"));
4741 break;
4742 }
4743 }
4744
4745 /* A helper function that prints a shared library stopped event. */
4746
4747 static void
4748 print_solib_event (int is_catchpoint)
4749 {
4750 int any_deleted
4751 = !VEC_empty (char_ptr, current_program_space->deleted_solibs);
4752 int any_added
4753 = !VEC_empty (so_list_ptr, current_program_space->added_solibs);
4754
4755 if (!is_catchpoint)
4756 {
4757 if (any_added || any_deleted)
4758 ui_out_text (current_uiout,
4759 _("Stopped due to shared library event:\n"));
4760 else
4761 ui_out_text (current_uiout,
4762 _("Stopped due to shared library event (no "
4763 "libraries added or removed)\n"));
4764 }
4765
4766 if (ui_out_is_mi_like_p (current_uiout))
4767 ui_out_field_string (current_uiout, "reason",
4768 async_reason_lookup (EXEC_ASYNC_SOLIB_EVENT));
4769
4770 if (any_deleted)
4771 {
4772 struct cleanup *cleanup;
4773 char *name;
4774 int ix;
4775
4776 ui_out_text (current_uiout, _(" Inferior unloaded "));
4777 cleanup = make_cleanup_ui_out_list_begin_end (current_uiout,
4778 "removed");
4779 for (ix = 0;
4780 VEC_iterate (char_ptr, current_program_space->deleted_solibs,
4781 ix, name);
4782 ++ix)
4783 {
4784 if (ix > 0)
4785 ui_out_text (current_uiout, " ");
4786 ui_out_field_string (current_uiout, "library", name);
4787 ui_out_text (current_uiout, "\n");
4788 }
4789
4790 do_cleanups (cleanup);
4791 }
4792
4793 if (any_added)
4794 {
4795 struct so_list *iter;
4796 int ix;
4797 struct cleanup *cleanup;
4798
4799 ui_out_text (current_uiout, _(" Inferior loaded "));
4800 cleanup = make_cleanup_ui_out_list_begin_end (current_uiout,
4801 "added");
4802 for (ix = 0;
4803 VEC_iterate (so_list_ptr, current_program_space->added_solibs,
4804 ix, iter);
4805 ++ix)
4806 {
4807 if (ix > 0)
4808 ui_out_text (current_uiout, " ");
4809 ui_out_field_string (current_uiout, "library", iter->so_name);
4810 ui_out_text (current_uiout, "\n");
4811 }
4812
4813 do_cleanups (cleanup);
4814 }
4815 }
4816
4817 /* Print a message indicating what happened. This is called from
4818 normal_stop(). The input to this routine is the head of the bpstat
4819 list - a list of the eventpoints that caused this stop. KIND is
4820 the target_waitkind for the stopping event. This
4821 routine calls the generic print routine for printing a message
4822 about reasons for stopping. This will print (for example) the
4823 "Breakpoint n," part of the output. The return value of this
4824 routine is one of:
4825
4826 PRINT_UNKNOWN: Means we printed nothing.
4827 PRINT_SRC_AND_LOC: Means we printed something, and expect subsequent
4828 code to print the location. An example is
4829 "Breakpoint 1, " which should be followed by
4830 the location.
4831 PRINT_SRC_ONLY: Means we printed something, but there is no need
4832 to also print the location part of the message.
4833 An example is the catch/throw messages, which
4834 don't require a location appended to the end.
4835 PRINT_NOTHING: We have done some printing and we don't need any
4836 further info to be printed. */
4837
4838 enum print_stop_action
4839 bpstat_print (bpstat bs, int kind)
4840 {
4841 int val;
4842
4843 /* Maybe another breakpoint in the chain caused us to stop.
4844 (Currently all watchpoints go on the bpstat whether hit or not.
4845 That probably could (should) be changed, provided care is taken
4846 with respect to bpstat_explains_signal). */
4847 for (; bs; bs = bs->next)
4848 {
4849 val = print_bp_stop_message (bs);
4850 if (val == PRINT_SRC_ONLY
4851 || val == PRINT_SRC_AND_LOC
4852 || val == PRINT_NOTHING)
4853 return val;
4854 }
4855
4856 /* If we had hit a shared library event breakpoint,
4857 print_bp_stop_message would print out this message. If we hit an
4858 OS-level shared library event, do the same thing. */
4859 if (kind == TARGET_WAITKIND_LOADED)
4860 {
4861 print_solib_event (0);
4862 return PRINT_NOTHING;
4863 }
4864
4865 /* We reached the end of the chain, or we got a null BS to start
4866 with and nothing was printed. */
4867 return PRINT_UNKNOWN;
4868 }
4869
4870 /* Evaluate the expression EXP and return 1 if value is zero.
4871 This returns the inverse of the condition because it is called
4872 from catch_errors which returns 0 if an exception happened, and if an
4873 exception happens we want execution to stop.
4874 The argument is a "struct expression *" that has been cast to a
4875 "void *" to make it pass through catch_errors. */
4876
4877 static int
4878 breakpoint_cond_eval (void *exp)
4879 {
4880 struct value *mark = value_mark ();
4881 int i = !value_true (evaluate_expression ((struct expression *) exp));
4882
4883 value_free_to_mark (mark);
4884 return i;
4885 }
4886
4887 /* Allocate a new bpstat. Link it to the FIFO list by BS_LINK_POINTER. */
4888
4889 static bpstat
4890 bpstat_alloc (struct bp_location *bl, bpstat **bs_link_pointer)
4891 {
4892 bpstat bs;
4893
4894 bs = (bpstat) xmalloc (sizeof (*bs));
4895 bs->next = NULL;
4896 **bs_link_pointer = bs;
4897 *bs_link_pointer = &bs->next;
4898 bs->breakpoint_at = bl->owner;
4899 bs->bp_location_at = bl;
4900 incref_bp_location (bl);
4901 /* If the condition is false, etc., don't do the commands. */
4902 bs->commands = NULL;
4903 bs->old_val = NULL;
4904 bs->print_it = print_it_normal;
4905 return bs;
4906 }
4907 \f
4908 /* The target has stopped with waitstatus WS. Check if any hardware
4909 watchpoints have triggered, according to the target. */
4910
4911 int
4912 watchpoints_triggered (struct target_waitstatus *ws)
4913 {
4914 int stopped_by_watchpoint = target_stopped_by_watchpoint ();
4915 CORE_ADDR addr;
4916 struct breakpoint *b;
4917
4918 if (!stopped_by_watchpoint)
4919 {
4920 /* We were not stopped by a watchpoint. Mark all watchpoints
4921 as not triggered. */
4922 ALL_BREAKPOINTS (b)
4923 if (is_hardware_watchpoint (b))
4924 {
4925 struct watchpoint *w = (struct watchpoint *) b;
4926
4927 w->watchpoint_triggered = watch_triggered_no;
4928 }
4929
4930 return 0;
4931 }
4932
4933 if (!target_stopped_data_address (&current_target, &addr))
4934 {
4935 /* We were stopped by a watchpoint, but we don't know where.
4936 Mark all watchpoints as unknown. */
4937 ALL_BREAKPOINTS (b)
4938 if (is_hardware_watchpoint (b))
4939 {
4940 struct watchpoint *w = (struct watchpoint *) b;
4941
4942 w->watchpoint_triggered = watch_triggered_unknown;
4943 }
4944
4945 return 1;
4946 }
4947
4948 /* The target could report the data address. Mark watchpoints
4949 affected by this data address as triggered, and all others as not
4950 triggered. */
4951
4952 ALL_BREAKPOINTS (b)
4953 if (is_hardware_watchpoint (b))
4954 {
4955 struct watchpoint *w = (struct watchpoint *) b;
4956 struct bp_location *loc;
4957
4958 w->watchpoint_triggered = watch_triggered_no;
4959 for (loc = b->loc; loc; loc = loc->next)
4960 {
4961 if (is_masked_watchpoint (b))
4962 {
4963 CORE_ADDR newaddr = addr & w->hw_wp_mask;
4964 CORE_ADDR start = loc->address & w->hw_wp_mask;
4965
4966 if (newaddr == start)
4967 {
4968 w->watchpoint_triggered = watch_triggered_yes;
4969 break;
4970 }
4971 }
4972 /* Exact match not required. Within range is sufficient. */
4973 else if (target_watchpoint_addr_within_range (&current_target,
4974 addr, loc->address,
4975 loc->length))
4976 {
4977 w->watchpoint_triggered = watch_triggered_yes;
4978 break;
4979 }
4980 }
4981 }
4982
4983 return 1;
4984 }
4985
4986 /* Possible return values for watchpoint_check (this can't be an enum
4987 because of check_errors). */
4988 /* The watchpoint has been deleted. */
4989 #define WP_DELETED 1
4990 /* The value has changed. */
4991 #define WP_VALUE_CHANGED 2
4992 /* The value has not changed. */
4993 #define WP_VALUE_NOT_CHANGED 3
4994 /* Ignore this watchpoint, no matter if the value changed or not. */
4995 #define WP_IGNORE 4
4996
4997 #define BP_TEMPFLAG 1
4998 #define BP_HARDWAREFLAG 2
4999
5000 /* Evaluate watchpoint condition expression and check if its value
5001 changed.
5002
5003 P should be a pointer to struct bpstat, but is defined as a void *
5004 in order for this function to be usable with catch_errors. */
5005
5006 static int
5007 watchpoint_check (void *p)
5008 {
5009 bpstat bs = (bpstat) p;
5010 struct watchpoint *b;
5011 struct frame_info *fr;
5012 int within_current_scope;
5013
5014 /* BS is built from an existing struct breakpoint. */
5015 gdb_assert (bs->breakpoint_at != NULL);
5016 b = (struct watchpoint *) bs->breakpoint_at;
5017
5018 /* If this is a local watchpoint, we only want to check if the
5019 watchpoint frame is in scope if the current thread is the thread
5020 that was used to create the watchpoint. */
5021 if (!watchpoint_in_thread_scope (b))
5022 return WP_IGNORE;
5023
5024 if (b->exp_valid_block == NULL)
5025 within_current_scope = 1;
5026 else
5027 {
5028 struct frame_info *frame = get_current_frame ();
5029 struct gdbarch *frame_arch = get_frame_arch (frame);
5030 CORE_ADDR frame_pc = get_frame_pc (frame);
5031
5032 /* stack_frame_destroyed_p() returns a non-zero value if we're
5033 still in the function but the stack frame has already been
5034 invalidated. Since we can't rely on the values of local
5035 variables after the stack has been destroyed, we are treating
5036 the watchpoint in that state as `not changed' without further
5037 checking. Don't mark watchpoints as changed if the current
5038 frame is in an epilogue - even if they are in some other
5039 frame, our view of the stack is likely to be wrong and
5040 frame_find_by_id could error out. */
5041 if (gdbarch_stack_frame_destroyed_p (frame_arch, frame_pc))
5042 return WP_IGNORE;
5043
5044 fr = frame_find_by_id (b->watchpoint_frame);
5045 within_current_scope = (fr != NULL);
5046
5047 /* If we've gotten confused in the unwinder, we might have
5048 returned a frame that can't describe this variable. */
5049 if (within_current_scope)
5050 {
5051 struct symbol *function;
5052
5053 function = get_frame_function (fr);
5054 if (function == NULL
5055 || !contained_in (b->exp_valid_block,
5056 SYMBOL_BLOCK_VALUE (function)))
5057 within_current_scope = 0;
5058 }
5059
5060 if (within_current_scope)
5061 /* If we end up stopping, the current frame will get selected
5062 in normal_stop. So this call to select_frame won't affect
5063 the user. */
5064 select_frame (fr);
5065 }
5066
5067 if (within_current_scope)
5068 {
5069 /* We use value_{,free_to_}mark because it could be a *long*
5070 time before we return to the command level and call
5071 free_all_values. We can't call free_all_values because we
5072 might be in the middle of evaluating a function call. */
5073
5074 int pc = 0;
5075 struct value *mark;
5076 struct value *new_val;
5077
5078 if (is_masked_watchpoint (&b->base))
5079 /* Since we don't know the exact trigger address (from
5080 stopped_data_address), just tell the user we've triggered
5081 a mask watchpoint. */
5082 return WP_VALUE_CHANGED;
5083
5084 mark = value_mark ();
5085 fetch_subexp_value (b->exp, &pc, &new_val, NULL, NULL, 0);
5086
5087 if (b->val_bitsize != 0)
5088 new_val = extract_bitfield_from_watchpoint_value (b, new_val);
5089
5090 /* We use value_equal_contents instead of value_equal because
5091 the latter coerces an array to a pointer, thus comparing just
5092 the address of the array instead of its contents. This is
5093 not what we want. */
5094 if ((b->val != NULL) != (new_val != NULL)
5095 || (b->val != NULL && !value_equal_contents (b->val, new_val)))
5096 {
5097 if (new_val != NULL)
5098 {
5099 release_value (new_val);
5100 value_free_to_mark (mark);
5101 }
5102 bs->old_val = b->val;
5103 b->val = new_val;
5104 b->val_valid = 1;
5105 return WP_VALUE_CHANGED;
5106 }
5107 else
5108 {
5109 /* Nothing changed. */
5110 value_free_to_mark (mark);
5111 return WP_VALUE_NOT_CHANGED;
5112 }
5113 }
5114 else
5115 {
5116 struct ui_out *uiout = current_uiout;
5117
5118 /* This seems like the only logical thing to do because
5119 if we temporarily ignored the watchpoint, then when
5120 we reenter the block in which it is valid it contains
5121 garbage (in the case of a function, it may have two
5122 garbage values, one before and one after the prologue).
5123 So we can't even detect the first assignment to it and
5124 watch after that (since the garbage may or may not equal
5125 the first value assigned). */
5126 /* We print all the stop information in
5127 breakpoint_ops->print_it, but in this case, by the time we
5128 call breakpoint_ops->print_it this bp will be deleted
5129 already. So we have no choice but print the information
5130 here. */
5131 if (ui_out_is_mi_like_p (uiout))
5132 ui_out_field_string
5133 (uiout, "reason", async_reason_lookup (EXEC_ASYNC_WATCHPOINT_SCOPE));
5134 ui_out_text (uiout, "\nWatchpoint ");
5135 ui_out_field_int (uiout, "wpnum", b->base.number);
5136 ui_out_text (uiout,
5137 " deleted because the program has left the block in\n\
5138 which its expression is valid.\n");
5139
5140 /* Make sure the watchpoint's commands aren't executed. */
5141 decref_counted_command_line (&b->base.commands);
5142 watchpoint_del_at_next_stop (b);
5143
5144 return WP_DELETED;
5145 }
5146 }
5147
5148 /* Return true if it looks like target has stopped due to hitting
5149 breakpoint location BL. This function does not check if we should
5150 stop, only if BL explains the stop. */
5151
5152 static int
5153 bpstat_check_location (const struct bp_location *bl,
5154 struct address_space *aspace, CORE_ADDR bp_addr,
5155 const struct target_waitstatus *ws)
5156 {
5157 struct breakpoint *b = bl->owner;
5158
5159 /* BL is from an existing breakpoint. */
5160 gdb_assert (b != NULL);
5161
5162 return b->ops->breakpoint_hit (bl, aspace, bp_addr, ws);
5163 }
5164
5165 /* Determine if the watched values have actually changed, and we
5166 should stop. If not, set BS->stop to 0. */
5167
5168 static void
5169 bpstat_check_watchpoint (bpstat bs)
5170 {
5171 const struct bp_location *bl;
5172 struct watchpoint *b;
5173
5174 /* BS is built for existing struct breakpoint. */
5175 bl = bs->bp_location_at;
5176 gdb_assert (bl != NULL);
5177 b = (struct watchpoint *) bs->breakpoint_at;
5178 gdb_assert (b != NULL);
5179
5180 {
5181 int must_check_value = 0;
5182
5183 if (b->base.type == bp_watchpoint)
5184 /* For a software watchpoint, we must always check the
5185 watched value. */
5186 must_check_value = 1;
5187 else if (b->watchpoint_triggered == watch_triggered_yes)
5188 /* We have a hardware watchpoint (read, write, or access)
5189 and the target earlier reported an address watched by
5190 this watchpoint. */
5191 must_check_value = 1;
5192 else if (b->watchpoint_triggered == watch_triggered_unknown
5193 && b->base.type == bp_hardware_watchpoint)
5194 /* We were stopped by a hardware watchpoint, but the target could
5195 not report the data address. We must check the watchpoint's
5196 value. Access and read watchpoints are out of luck; without
5197 a data address, we can't figure it out. */
5198 must_check_value = 1;
5199
5200 if (must_check_value)
5201 {
5202 char *message
5203 = xstrprintf ("Error evaluating expression for watchpoint %d\n",
5204 b->base.number);
5205 struct cleanup *cleanups = make_cleanup (xfree, message);
5206 int e = catch_errors (watchpoint_check, bs, message,
5207 RETURN_MASK_ALL);
5208 do_cleanups (cleanups);
5209 switch (e)
5210 {
5211 case WP_DELETED:
5212 /* We've already printed what needs to be printed. */
5213 bs->print_it = print_it_done;
5214 /* Stop. */
5215 break;
5216 case WP_IGNORE:
5217 bs->print_it = print_it_noop;
5218 bs->stop = 0;
5219 break;
5220 case WP_VALUE_CHANGED:
5221 if (b->base.type == bp_read_watchpoint)
5222 {
5223 /* There are two cases to consider here:
5224
5225 1. We're watching the triggered memory for reads.
5226 In that case, trust the target, and always report
5227 the watchpoint hit to the user. Even though
5228 reads don't cause value changes, the value may
5229 have changed since the last time it was read, and
5230 since we're not trapping writes, we will not see
5231 those, and as such we should ignore our notion of
5232 old value.
5233
5234 2. We're watching the triggered memory for both
5235 reads and writes. There are two ways this may
5236 happen:
5237
5238 2.1. This is a target that can't break on data
5239 reads only, but can break on accesses (reads or
5240 writes), such as e.g., x86. We detect this case
5241 at the time we try to insert read watchpoints.
5242
5243 2.2. Otherwise, the target supports read
5244 watchpoints, but, the user set an access or write
5245 watchpoint watching the same memory as this read
5246 watchpoint.
5247
5248 If we're watching memory writes as well as reads,
5249 ignore watchpoint hits when we find that the
5250 value hasn't changed, as reads don't cause
5251 changes. This still gives false positives when
5252 the program writes the same value to memory as
5253 what there was already in memory (we will confuse
5254 it for a read), but it's much better than
5255 nothing. */
5256
5257 int other_write_watchpoint = 0;
5258
5259 if (bl->watchpoint_type == hw_read)
5260 {
5261 struct breakpoint *other_b;
5262
5263 ALL_BREAKPOINTS (other_b)
5264 if (other_b->type == bp_hardware_watchpoint
5265 || other_b->type == bp_access_watchpoint)
5266 {
5267 struct watchpoint *other_w =
5268 (struct watchpoint *) other_b;
5269
5270 if (other_w->watchpoint_triggered
5271 == watch_triggered_yes)
5272 {
5273 other_write_watchpoint = 1;
5274 break;
5275 }
5276 }
5277 }
5278
5279 if (other_write_watchpoint
5280 || bl->watchpoint_type == hw_access)
5281 {
5282 /* We're watching the same memory for writes,
5283 and the value changed since the last time we
5284 updated it, so this trap must be for a write.
5285 Ignore it. */
5286 bs->print_it = print_it_noop;
5287 bs->stop = 0;
5288 }
5289 }
5290 break;
5291 case WP_VALUE_NOT_CHANGED:
5292 if (b->base.type == bp_hardware_watchpoint
5293 || b->base.type == bp_watchpoint)
5294 {
5295 /* Don't stop: write watchpoints shouldn't fire if
5296 the value hasn't changed. */
5297 bs->print_it = print_it_noop;
5298 bs->stop = 0;
5299 }
5300 /* Stop. */
5301 break;
5302 default:
5303 /* Can't happen. */
5304 case 0:
5305 /* Error from catch_errors. */
5306 printf_filtered (_("Watchpoint %d deleted.\n"), b->base.number);
5307 watchpoint_del_at_next_stop (b);
5308 /* We've already printed what needs to be printed. */
5309 bs->print_it = print_it_done;
5310 break;
5311 }
5312 }
5313 else /* must_check_value == 0 */
5314 {
5315 /* This is a case where some watchpoint(s) triggered, but
5316 not at the address of this watchpoint, or else no
5317 watchpoint triggered after all. So don't print
5318 anything for this watchpoint. */
5319 bs->print_it = print_it_noop;
5320 bs->stop = 0;
5321 }
5322 }
5323 }
5324
5325 /* For breakpoints that are currently marked as telling gdb to stop,
5326 check conditions (condition proper, frame, thread and ignore count)
5327 of breakpoint referred to by BS. If we should not stop for this
5328 breakpoint, set BS->stop to 0. */
5329
5330 static void
5331 bpstat_check_breakpoint_conditions (bpstat bs, ptid_t ptid)
5332 {
5333 const struct bp_location *bl;
5334 struct breakpoint *b;
5335 int value_is_zero = 0;
5336 struct expression *cond;
5337
5338 gdb_assert (bs->stop);
5339
5340 /* BS is built for existing struct breakpoint. */
5341 bl = bs->bp_location_at;
5342 gdb_assert (bl != NULL);
5343 b = bs->breakpoint_at;
5344 gdb_assert (b != NULL);
5345
5346 /* Even if the target evaluated the condition on its end and notified GDB, we
5347 need to do so again since GDB does not know if we stopped due to a
5348 breakpoint or a single step breakpoint. */
5349
5350 if (frame_id_p (b->frame_id)
5351 && !frame_id_eq (b->frame_id, get_stack_frame_id (get_current_frame ())))
5352 {
5353 bs->stop = 0;
5354 return;
5355 }
5356
5357 /* If this is a thread/task-specific breakpoint, don't waste cpu
5358 evaluating the condition if this isn't the specified
5359 thread/task. */
5360 if ((b->thread != -1 && b->thread != pid_to_thread_id (ptid))
5361 || (b->task != 0 && b->task != ada_get_task_number (ptid)))
5362
5363 {
5364 bs->stop = 0;
5365 return;
5366 }
5367
5368 /* Evaluate extension language breakpoints that have a "stop" method
5369 implemented. */
5370 bs->stop = breakpoint_ext_lang_cond_says_stop (b);
5371
5372 if (is_watchpoint (b))
5373 {
5374 struct watchpoint *w = (struct watchpoint *) b;
5375
5376 cond = w->cond_exp;
5377 }
5378 else
5379 cond = bl->cond;
5380
5381 if (cond && b->disposition != disp_del_at_next_stop)
5382 {
5383 int within_current_scope = 1;
5384 struct watchpoint * w;
5385
5386 /* We use value_mark and value_free_to_mark because it could
5387 be a long time before we return to the command level and
5388 call free_all_values. We can't call free_all_values
5389 because we might be in the middle of evaluating a
5390 function call. */
5391 struct value *mark = value_mark ();
5392
5393 if (is_watchpoint (b))
5394 w = (struct watchpoint *) b;
5395 else
5396 w = NULL;
5397
5398 /* Need to select the frame, with all that implies so that
5399 the conditions will have the right context. Because we
5400 use the frame, we will not see an inlined function's
5401 variables when we arrive at a breakpoint at the start
5402 of the inlined function; the current frame will be the
5403 call site. */
5404 if (w == NULL || w->cond_exp_valid_block == NULL)
5405 select_frame (get_current_frame ());
5406 else
5407 {
5408 struct frame_info *frame;
5409
5410 /* For local watchpoint expressions, which particular
5411 instance of a local is being watched matters, so we
5412 keep track of the frame to evaluate the expression
5413 in. To evaluate the condition however, it doesn't
5414 really matter which instantiation of the function
5415 where the condition makes sense triggers the
5416 watchpoint. This allows an expression like "watch
5417 global if q > 10" set in `func', catch writes to
5418 global on all threads that call `func', or catch
5419 writes on all recursive calls of `func' by a single
5420 thread. We simply always evaluate the condition in
5421 the innermost frame that's executing where it makes
5422 sense to evaluate the condition. It seems
5423 intuitive. */
5424 frame = block_innermost_frame (w->cond_exp_valid_block);
5425 if (frame != NULL)
5426 select_frame (frame);
5427 else
5428 within_current_scope = 0;
5429 }
5430 if (within_current_scope)
5431 value_is_zero
5432 = catch_errors (breakpoint_cond_eval, cond,
5433 "Error in testing breakpoint condition:\n",
5434 RETURN_MASK_ALL);
5435 else
5436 {
5437 warning (_("Watchpoint condition cannot be tested "
5438 "in the current scope"));
5439 /* If we failed to set the right context for this
5440 watchpoint, unconditionally report it. */
5441 value_is_zero = 0;
5442 }
5443 /* FIXME-someday, should give breakpoint #. */
5444 value_free_to_mark (mark);
5445 }
5446
5447 if (cond && value_is_zero)
5448 {
5449 bs->stop = 0;
5450 }
5451 else if (b->ignore_count > 0)
5452 {
5453 b->ignore_count--;
5454 bs->stop = 0;
5455 /* Increase the hit count even though we don't stop. */
5456 ++(b->hit_count);
5457 observer_notify_breakpoint_modified (b);
5458 }
5459 }
5460
5461 /* Returns true if we need to track moribund locations of LOC's type
5462 on the current target. */
5463
5464 static int
5465 need_moribund_for_location_type (struct bp_location *loc)
5466 {
5467 return ((loc->loc_type == bp_loc_software_breakpoint
5468 && !target_supports_stopped_by_sw_breakpoint ())
5469 || (loc->loc_type == bp_loc_hardware_breakpoint
5470 && !target_supports_stopped_by_hw_breakpoint ()));
5471 }
5472
5473
5474 /* Get a bpstat associated with having just stopped at address
5475 BP_ADDR in thread PTID.
5476
5477 Determine whether we stopped at a breakpoint, etc, or whether we
5478 don't understand this stop. Result is a chain of bpstat's such
5479 that:
5480
5481 if we don't understand the stop, the result is a null pointer.
5482
5483 if we understand why we stopped, the result is not null.
5484
5485 Each element of the chain refers to a particular breakpoint or
5486 watchpoint at which we have stopped. (We may have stopped for
5487 several reasons concurrently.)
5488
5489 Each element of the chain has valid next, breakpoint_at,
5490 commands, FIXME??? fields. */
5491
5492 bpstat
5493 bpstat_stop_status (struct address_space *aspace,
5494 CORE_ADDR bp_addr, ptid_t ptid,
5495 const struct target_waitstatus *ws)
5496 {
5497 struct breakpoint *b = NULL;
5498 struct bp_location *bl;
5499 struct bp_location *loc;
5500 /* First item of allocated bpstat's. */
5501 bpstat bs_head = NULL, *bs_link = &bs_head;
5502 /* Pointer to the last thing in the chain currently. */
5503 bpstat bs;
5504 int ix;
5505 int need_remove_insert;
5506 int removed_any;
5507
5508 /* First, build the bpstat chain with locations that explain a
5509 target stop, while being careful to not set the target running,
5510 as that may invalidate locations (in particular watchpoint
5511 locations are recreated). Resuming will happen here with
5512 breakpoint conditions or watchpoint expressions that include
5513 inferior function calls. */
5514
5515 ALL_BREAKPOINTS (b)
5516 {
5517 if (!breakpoint_enabled (b))
5518 continue;
5519
5520 for (bl = b->loc; bl != NULL; bl = bl->next)
5521 {
5522 /* For hardware watchpoints, we look only at the first
5523 location. The watchpoint_check function will work on the
5524 entire expression, not the individual locations. For
5525 read watchpoints, the watchpoints_triggered function has
5526 checked all locations already. */
5527 if (b->type == bp_hardware_watchpoint && bl != b->loc)
5528 break;
5529
5530 if (!bl->enabled || bl->shlib_disabled)
5531 continue;
5532
5533 if (!bpstat_check_location (bl, aspace, bp_addr, ws))
5534 continue;
5535
5536 /* Come here if it's a watchpoint, or if the break address
5537 matches. */
5538
5539 bs = bpstat_alloc (bl, &bs_link); /* Alloc a bpstat to
5540 explain stop. */
5541
5542 /* Assume we stop. Should we find a watchpoint that is not
5543 actually triggered, or if the condition of the breakpoint
5544 evaluates as false, we'll reset 'stop' to 0. */
5545 bs->stop = 1;
5546 bs->print = 1;
5547
5548 /* If this is a scope breakpoint, mark the associated
5549 watchpoint as triggered so that we will handle the
5550 out-of-scope event. We'll get to the watchpoint next
5551 iteration. */
5552 if (b->type == bp_watchpoint_scope && b->related_breakpoint != b)
5553 {
5554 struct watchpoint *w = (struct watchpoint *) b->related_breakpoint;
5555
5556 w->watchpoint_triggered = watch_triggered_yes;
5557 }
5558 }
5559 }
5560
5561 /* Check if a moribund breakpoint explains the stop. */
5562 if (!target_supports_stopped_by_sw_breakpoint ()
5563 || !target_supports_stopped_by_hw_breakpoint ())
5564 {
5565 for (ix = 0; VEC_iterate (bp_location_p, moribund_locations, ix, loc); ++ix)
5566 {
5567 if (breakpoint_location_address_match (loc, aspace, bp_addr)
5568 && need_moribund_for_location_type (loc))
5569 {
5570 bs = bpstat_alloc (loc, &bs_link);
5571 /* For hits of moribund locations, we should just proceed. */
5572 bs->stop = 0;
5573 bs->print = 0;
5574 bs->print_it = print_it_noop;
5575 }
5576 }
5577 }
5578
5579 /* A bit of special processing for shlib breakpoints. We need to
5580 process solib loading here, so that the lists of loaded and
5581 unloaded libraries are correct before we handle "catch load" and
5582 "catch unload". */
5583 for (bs = bs_head; bs != NULL; bs = bs->next)
5584 {
5585 if (bs->breakpoint_at && bs->breakpoint_at->type == bp_shlib_event)
5586 {
5587 handle_solib_event ();
5588 break;
5589 }
5590 }
5591
5592 /* Now go through the locations that caused the target to stop, and
5593 check whether we're interested in reporting this stop to higher
5594 layers, or whether we should resume the target transparently. */
5595
5596 removed_any = 0;
5597
5598 for (bs = bs_head; bs != NULL; bs = bs->next)
5599 {
5600 if (!bs->stop)
5601 continue;
5602
5603 b = bs->breakpoint_at;
5604 b->ops->check_status (bs);
5605 if (bs->stop)
5606 {
5607 bpstat_check_breakpoint_conditions (bs, ptid);
5608
5609 if (bs->stop)
5610 {
5611 ++(b->hit_count);
5612 observer_notify_breakpoint_modified (b);
5613
5614 /* We will stop here. */
5615 if (b->disposition == disp_disable)
5616 {
5617 --(b->enable_count);
5618 if (b->enable_count <= 0)
5619 b->enable_state = bp_disabled;
5620 removed_any = 1;
5621 }
5622 if (b->silent)
5623 bs->print = 0;
5624 bs->commands = b->commands;
5625 incref_counted_command_line (bs->commands);
5626 if (command_line_is_silent (bs->commands
5627 ? bs->commands->commands : NULL))
5628 bs->print = 0;
5629
5630 b->ops->after_condition_true (bs);
5631 }
5632
5633 }
5634
5635 /* Print nothing for this entry if we don't stop or don't
5636 print. */
5637 if (!bs->stop || !bs->print)
5638 bs->print_it = print_it_noop;
5639 }
5640
5641 /* If we aren't stopping, the value of some hardware watchpoint may
5642 not have changed, but the intermediate memory locations we are
5643 watching may have. Don't bother if we're stopping; this will get
5644 done later. */
5645 need_remove_insert = 0;
5646 if (! bpstat_causes_stop (bs_head))
5647 for (bs = bs_head; bs != NULL; bs = bs->next)
5648 if (!bs->stop
5649 && bs->breakpoint_at
5650 && is_hardware_watchpoint (bs->breakpoint_at))
5651 {
5652 struct watchpoint *w = (struct watchpoint *) bs->breakpoint_at;
5653
5654 update_watchpoint (w, 0 /* don't reparse. */);
5655 need_remove_insert = 1;
5656 }
5657
5658 if (need_remove_insert)
5659 update_global_location_list (UGLL_MAY_INSERT);
5660 else if (removed_any)
5661 update_global_location_list (UGLL_DONT_INSERT);
5662
5663 return bs_head;
5664 }
5665
5666 static void
5667 handle_jit_event (void)
5668 {
5669 struct frame_info *frame;
5670 struct gdbarch *gdbarch;
5671
5672 /* Switch terminal for any messages produced by
5673 breakpoint_re_set. */
5674 target_terminal_ours_for_output ();
5675
5676 frame = get_current_frame ();
5677 gdbarch = get_frame_arch (frame);
5678
5679 jit_event_handler (gdbarch);
5680
5681 target_terminal_inferior ();
5682 }
5683
5684 /* Prepare WHAT final decision for infrun. */
5685
5686 /* Decide what infrun needs to do with this bpstat. */
5687
5688 struct bpstat_what
5689 bpstat_what (bpstat bs_head)
5690 {
5691 struct bpstat_what retval;
5692 int jit_event = 0;
5693 bpstat bs;
5694
5695 retval.main_action = BPSTAT_WHAT_KEEP_CHECKING;
5696 retval.call_dummy = STOP_NONE;
5697 retval.is_longjmp = 0;
5698
5699 for (bs = bs_head; bs != NULL; bs = bs->next)
5700 {
5701 /* Extract this BS's action. After processing each BS, we check
5702 if its action overrides all we've seem so far. */
5703 enum bpstat_what_main_action this_action = BPSTAT_WHAT_KEEP_CHECKING;
5704 enum bptype bptype;
5705
5706 if (bs->breakpoint_at == NULL)
5707 {
5708 /* I suspect this can happen if it was a momentary
5709 breakpoint which has since been deleted. */
5710 bptype = bp_none;
5711 }
5712 else
5713 bptype = bs->breakpoint_at->type;
5714
5715 switch (bptype)
5716 {
5717 case bp_none:
5718 break;
5719 case bp_breakpoint:
5720 case bp_hardware_breakpoint:
5721 case bp_single_step:
5722 case bp_until:
5723 case bp_finish:
5724 case bp_shlib_event:
5725 if (bs->stop)
5726 {
5727 if (bs->print)
5728 this_action = BPSTAT_WHAT_STOP_NOISY;
5729 else
5730 this_action = BPSTAT_WHAT_STOP_SILENT;
5731 }
5732 else
5733 this_action = BPSTAT_WHAT_SINGLE;
5734 break;
5735 case bp_watchpoint:
5736 case bp_hardware_watchpoint:
5737 case bp_read_watchpoint:
5738 case bp_access_watchpoint:
5739 if (bs->stop)
5740 {
5741 if (bs->print)
5742 this_action = BPSTAT_WHAT_STOP_NOISY;
5743 else
5744 this_action = BPSTAT_WHAT_STOP_SILENT;
5745 }
5746 else
5747 {
5748 /* There was a watchpoint, but we're not stopping.
5749 This requires no further action. */
5750 }
5751 break;
5752 case bp_longjmp:
5753 case bp_longjmp_call_dummy:
5754 case bp_exception:
5755 this_action = BPSTAT_WHAT_SET_LONGJMP_RESUME;
5756 retval.is_longjmp = bptype != bp_exception;
5757 break;
5758 case bp_longjmp_resume:
5759 case bp_exception_resume:
5760 this_action = BPSTAT_WHAT_CLEAR_LONGJMP_RESUME;
5761 retval.is_longjmp = bptype == bp_longjmp_resume;
5762 break;
5763 case bp_step_resume:
5764 if (bs->stop)
5765 this_action = BPSTAT_WHAT_STEP_RESUME;
5766 else
5767 {
5768 /* It is for the wrong frame. */
5769 this_action = BPSTAT_WHAT_SINGLE;
5770 }
5771 break;
5772 case bp_hp_step_resume:
5773 if (bs->stop)
5774 this_action = BPSTAT_WHAT_HP_STEP_RESUME;
5775 else
5776 {
5777 /* It is for the wrong frame. */
5778 this_action = BPSTAT_WHAT_SINGLE;
5779 }
5780 break;
5781 case bp_watchpoint_scope:
5782 case bp_thread_event:
5783 case bp_overlay_event:
5784 case bp_longjmp_master:
5785 case bp_std_terminate_master:
5786 case bp_exception_master:
5787 this_action = BPSTAT_WHAT_SINGLE;
5788 break;
5789 case bp_catchpoint:
5790 if (bs->stop)
5791 {
5792 if (bs->print)
5793 this_action = BPSTAT_WHAT_STOP_NOISY;
5794 else
5795 this_action = BPSTAT_WHAT_STOP_SILENT;
5796 }
5797 else
5798 {
5799 /* There was a catchpoint, but we're not stopping.
5800 This requires no further action. */
5801 }
5802 break;
5803 case bp_jit_event:
5804 jit_event = 1;
5805 this_action = BPSTAT_WHAT_SINGLE;
5806 break;
5807 case bp_call_dummy:
5808 /* Make sure the action is stop (silent or noisy),
5809 so infrun.c pops the dummy frame. */
5810 retval.call_dummy = STOP_STACK_DUMMY;
5811 this_action = BPSTAT_WHAT_STOP_SILENT;
5812 break;
5813 case bp_std_terminate:
5814 /* Make sure the action is stop (silent or noisy),
5815 so infrun.c pops the dummy frame. */
5816 retval.call_dummy = STOP_STD_TERMINATE;
5817 this_action = BPSTAT_WHAT_STOP_SILENT;
5818 break;
5819 case bp_tracepoint:
5820 case bp_fast_tracepoint:
5821 case bp_static_tracepoint:
5822 /* Tracepoint hits should not be reported back to GDB, and
5823 if one got through somehow, it should have been filtered
5824 out already. */
5825 internal_error (__FILE__, __LINE__,
5826 _("bpstat_what: tracepoint encountered"));
5827 break;
5828 case bp_gnu_ifunc_resolver:
5829 /* Step over it (and insert bp_gnu_ifunc_resolver_return). */
5830 this_action = BPSTAT_WHAT_SINGLE;
5831 break;
5832 case bp_gnu_ifunc_resolver_return:
5833 /* The breakpoint will be removed, execution will restart from the
5834 PC of the former breakpoint. */
5835 this_action = BPSTAT_WHAT_KEEP_CHECKING;
5836 break;
5837
5838 case bp_dprintf:
5839 if (bs->stop)
5840 this_action = BPSTAT_WHAT_STOP_SILENT;
5841 else
5842 this_action = BPSTAT_WHAT_SINGLE;
5843 break;
5844
5845 default:
5846 internal_error (__FILE__, __LINE__,
5847 _("bpstat_what: unhandled bptype %d"), (int) bptype);
5848 }
5849
5850 retval.main_action = max (retval.main_action, this_action);
5851 }
5852
5853 /* These operations may affect the bs->breakpoint_at state so they are
5854 delayed after MAIN_ACTION is decided above. */
5855
5856 if (jit_event)
5857 {
5858 if (debug_infrun)
5859 fprintf_unfiltered (gdb_stdlog, "bpstat_what: bp_jit_event\n");
5860
5861 handle_jit_event ();
5862 }
5863
5864 for (bs = bs_head; bs != NULL; bs = bs->next)
5865 {
5866 struct breakpoint *b = bs->breakpoint_at;
5867
5868 if (b == NULL)
5869 continue;
5870 switch (b->type)
5871 {
5872 case bp_gnu_ifunc_resolver:
5873 gnu_ifunc_resolver_stop (b);
5874 break;
5875 case bp_gnu_ifunc_resolver_return:
5876 gnu_ifunc_resolver_return_stop (b);
5877 break;
5878 }
5879 }
5880
5881 return retval;
5882 }
5883
5884 /* Nonzero if we should step constantly (e.g. watchpoints on machines
5885 without hardware support). This isn't related to a specific bpstat,
5886 just to things like whether watchpoints are set. */
5887
5888 int
5889 bpstat_should_step (void)
5890 {
5891 struct breakpoint *b;
5892
5893 ALL_BREAKPOINTS (b)
5894 if (breakpoint_enabled (b) && b->type == bp_watchpoint && b->loc != NULL)
5895 return 1;
5896 return 0;
5897 }
5898
5899 int
5900 bpstat_causes_stop (bpstat bs)
5901 {
5902 for (; bs != NULL; bs = bs->next)
5903 if (bs->stop)
5904 return 1;
5905
5906 return 0;
5907 }
5908
5909 \f
5910
5911 /* Compute a string of spaces suitable to indent the next line
5912 so it starts at the position corresponding to the table column
5913 named COL_NAME in the currently active table of UIOUT. */
5914
5915 static char *
5916 wrap_indent_at_field (struct ui_out *uiout, const char *col_name)
5917 {
5918 static char wrap_indent[80];
5919 int i, total_width, width, align;
5920 char *text;
5921
5922 total_width = 0;
5923 for (i = 1; ui_out_query_field (uiout, i, &width, &align, &text); i++)
5924 {
5925 if (strcmp (text, col_name) == 0)
5926 {
5927 gdb_assert (total_width < sizeof wrap_indent);
5928 memset (wrap_indent, ' ', total_width);
5929 wrap_indent[total_width] = 0;
5930
5931 return wrap_indent;
5932 }
5933
5934 total_width += width + 1;
5935 }
5936
5937 return NULL;
5938 }
5939
5940 /* Determine if the locations of this breakpoint will have their conditions
5941 evaluated by the target, host or a mix of both. Returns the following:
5942
5943 "host": Host evals condition.
5944 "host or target": Host or Target evals condition.
5945 "target": Target evals condition.
5946 */
5947
5948 static const char *
5949 bp_condition_evaluator (struct breakpoint *b)
5950 {
5951 struct bp_location *bl;
5952 char host_evals = 0;
5953 char target_evals = 0;
5954
5955 if (!b)
5956 return NULL;
5957
5958 if (!is_breakpoint (b))
5959 return NULL;
5960
5961 if (gdb_evaluates_breakpoint_condition_p ()
5962 || !target_supports_evaluation_of_breakpoint_conditions ())
5963 return condition_evaluation_host;
5964
5965 for (bl = b->loc; bl; bl = bl->next)
5966 {
5967 if (bl->cond_bytecode)
5968 target_evals++;
5969 else
5970 host_evals++;
5971 }
5972
5973 if (host_evals && target_evals)
5974 return condition_evaluation_both;
5975 else if (target_evals)
5976 return condition_evaluation_target;
5977 else
5978 return condition_evaluation_host;
5979 }
5980
5981 /* Determine the breakpoint location's condition evaluator. This is
5982 similar to bp_condition_evaluator, but for locations. */
5983
5984 static const char *
5985 bp_location_condition_evaluator (struct bp_location *bl)
5986 {
5987 if (bl && !is_breakpoint (bl->owner))
5988 return NULL;
5989
5990 if (gdb_evaluates_breakpoint_condition_p ()
5991 || !target_supports_evaluation_of_breakpoint_conditions ())
5992 return condition_evaluation_host;
5993
5994 if (bl && bl->cond_bytecode)
5995 return condition_evaluation_target;
5996 else
5997 return condition_evaluation_host;
5998 }
5999
6000 /* Print the LOC location out of the list of B->LOC locations. */
6001
6002 static void
6003 print_breakpoint_location (struct breakpoint *b,
6004 struct bp_location *loc)
6005 {
6006 struct ui_out *uiout = current_uiout;
6007 struct cleanup *old_chain = save_current_program_space ();
6008
6009 if (loc != NULL && loc->shlib_disabled)
6010 loc = NULL;
6011
6012 if (loc != NULL)
6013 set_current_program_space (loc->pspace);
6014
6015 if (b->display_canonical)
6016 ui_out_field_string (uiout, "what", b->addr_string);
6017 else if (loc && loc->symtab)
6018 {
6019 struct symbol *sym
6020 = find_pc_sect_function (loc->address, loc->section);
6021 if (sym)
6022 {
6023 ui_out_text (uiout, "in ");
6024 ui_out_field_string (uiout, "func",
6025 SYMBOL_PRINT_NAME (sym));
6026 ui_out_text (uiout, " ");
6027 ui_out_wrap_hint (uiout, wrap_indent_at_field (uiout, "what"));
6028 ui_out_text (uiout, "at ");
6029 }
6030 ui_out_field_string (uiout, "file",
6031 symtab_to_filename_for_display (loc->symtab));
6032 ui_out_text (uiout, ":");
6033
6034 if (ui_out_is_mi_like_p (uiout))
6035 ui_out_field_string (uiout, "fullname",
6036 symtab_to_fullname (loc->symtab));
6037
6038 ui_out_field_int (uiout, "line", loc->line_number);
6039 }
6040 else if (loc)
6041 {
6042 struct ui_file *stb = mem_fileopen ();
6043 struct cleanup *stb_chain = make_cleanup_ui_file_delete (stb);
6044
6045 print_address_symbolic (loc->gdbarch, loc->address, stb,
6046 demangle, "");
6047 ui_out_field_stream (uiout, "at", stb);
6048
6049 do_cleanups (stb_chain);
6050 }
6051 else
6052 ui_out_field_string (uiout, "pending", b->addr_string);
6053
6054 if (loc && is_breakpoint (b)
6055 && breakpoint_condition_evaluation_mode () == condition_evaluation_target
6056 && bp_condition_evaluator (b) == condition_evaluation_both)
6057 {
6058 ui_out_text (uiout, " (");
6059 ui_out_field_string (uiout, "evaluated-by",
6060 bp_location_condition_evaluator (loc));
6061 ui_out_text (uiout, ")");
6062 }
6063
6064 do_cleanups (old_chain);
6065 }
6066
6067 static const char *
6068 bptype_string (enum bptype type)
6069 {
6070 struct ep_type_description
6071 {
6072 enum bptype type;
6073 char *description;
6074 };
6075 static struct ep_type_description bptypes[] =
6076 {
6077 {bp_none, "?deleted?"},
6078 {bp_breakpoint, "breakpoint"},
6079 {bp_hardware_breakpoint, "hw breakpoint"},
6080 {bp_single_step, "sw single-step"},
6081 {bp_until, "until"},
6082 {bp_finish, "finish"},
6083 {bp_watchpoint, "watchpoint"},
6084 {bp_hardware_watchpoint, "hw watchpoint"},
6085 {bp_read_watchpoint, "read watchpoint"},
6086 {bp_access_watchpoint, "acc watchpoint"},
6087 {bp_longjmp, "longjmp"},
6088 {bp_longjmp_resume, "longjmp resume"},
6089 {bp_longjmp_call_dummy, "longjmp for call dummy"},
6090 {bp_exception, "exception"},
6091 {bp_exception_resume, "exception resume"},
6092 {bp_step_resume, "step resume"},
6093 {bp_hp_step_resume, "high-priority step resume"},
6094 {bp_watchpoint_scope, "watchpoint scope"},
6095 {bp_call_dummy, "call dummy"},
6096 {bp_std_terminate, "std::terminate"},
6097 {bp_shlib_event, "shlib events"},
6098 {bp_thread_event, "thread events"},
6099 {bp_overlay_event, "overlay events"},
6100 {bp_longjmp_master, "longjmp master"},
6101 {bp_std_terminate_master, "std::terminate master"},
6102 {bp_exception_master, "exception master"},
6103 {bp_catchpoint, "catchpoint"},
6104 {bp_tracepoint, "tracepoint"},
6105 {bp_fast_tracepoint, "fast tracepoint"},
6106 {bp_static_tracepoint, "static tracepoint"},
6107 {bp_dprintf, "dprintf"},
6108 {bp_jit_event, "jit events"},
6109 {bp_gnu_ifunc_resolver, "STT_GNU_IFUNC resolver"},
6110 {bp_gnu_ifunc_resolver_return, "STT_GNU_IFUNC resolver return"},
6111 };
6112
6113 if (((int) type >= (sizeof (bptypes) / sizeof (bptypes[0])))
6114 || ((int) type != bptypes[(int) type].type))
6115 internal_error (__FILE__, __LINE__,
6116 _("bptypes table does not describe type #%d."),
6117 (int) type);
6118
6119 return bptypes[(int) type].description;
6120 }
6121
6122 /* For MI, output a field named 'thread-groups' with a list as the value.
6123 For CLI, prefix the list with the string 'inf'. */
6124
6125 static void
6126 output_thread_groups (struct ui_out *uiout,
6127 const char *field_name,
6128 VEC(int) *inf_num,
6129 int mi_only)
6130 {
6131 struct cleanup *back_to;
6132 int is_mi = ui_out_is_mi_like_p (uiout);
6133 int inf;
6134 int i;
6135
6136 /* For backward compatibility, don't display inferiors in CLI unless
6137 there are several. Always display them for MI. */
6138 if (!is_mi && mi_only)
6139 return;
6140
6141 back_to = make_cleanup_ui_out_list_begin_end (uiout, field_name);
6142
6143 for (i = 0; VEC_iterate (int, inf_num, i, inf); ++i)
6144 {
6145 if (is_mi)
6146 {
6147 char mi_group[10];
6148
6149 xsnprintf (mi_group, sizeof (mi_group), "i%d", inf);
6150 ui_out_field_string (uiout, NULL, mi_group);
6151 }
6152 else
6153 {
6154 if (i == 0)
6155 ui_out_text (uiout, " inf ");
6156 else
6157 ui_out_text (uiout, ", ");
6158
6159 ui_out_text (uiout, plongest (inf));
6160 }
6161 }
6162
6163 do_cleanups (back_to);
6164 }
6165
6166 /* Print B to gdb_stdout. */
6167
6168 static void
6169 print_one_breakpoint_location (struct breakpoint *b,
6170 struct bp_location *loc,
6171 int loc_number,
6172 struct bp_location **last_loc,
6173 int allflag)
6174 {
6175 struct command_line *l;
6176 static char bpenables[] = "nynny";
6177
6178 struct ui_out *uiout = current_uiout;
6179 int header_of_multiple = 0;
6180 int part_of_multiple = (loc != NULL);
6181 struct value_print_options opts;
6182
6183 get_user_print_options (&opts);
6184
6185 gdb_assert (!loc || loc_number != 0);
6186 /* See comment in print_one_breakpoint concerning treatment of
6187 breakpoints with single disabled location. */
6188 if (loc == NULL
6189 && (b->loc != NULL
6190 && (b->loc->next != NULL || !b->loc->enabled)))
6191 header_of_multiple = 1;
6192 if (loc == NULL)
6193 loc = b->loc;
6194
6195 annotate_record ();
6196
6197 /* 1 */
6198 annotate_field (0);
6199 if (part_of_multiple)
6200 {
6201 char *formatted;
6202 formatted = xstrprintf ("%d.%d", b->number, loc_number);
6203 ui_out_field_string (uiout, "number", formatted);
6204 xfree (formatted);
6205 }
6206 else
6207 {
6208 ui_out_field_int (uiout, "number", b->number);
6209 }
6210
6211 /* 2 */
6212 annotate_field (1);
6213 if (part_of_multiple)
6214 ui_out_field_skip (uiout, "type");
6215 else
6216 ui_out_field_string (uiout, "type", bptype_string (b->type));
6217
6218 /* 3 */
6219 annotate_field (2);
6220 if (part_of_multiple)
6221 ui_out_field_skip (uiout, "disp");
6222 else
6223 ui_out_field_string (uiout, "disp", bpdisp_text (b->disposition));
6224
6225
6226 /* 4 */
6227 annotate_field (3);
6228 if (part_of_multiple)
6229 ui_out_field_string (uiout, "enabled", loc->enabled ? "y" : "n");
6230 else
6231 ui_out_field_fmt (uiout, "enabled", "%c",
6232 bpenables[(int) b->enable_state]);
6233 ui_out_spaces (uiout, 2);
6234
6235
6236 /* 5 and 6 */
6237 if (b->ops != NULL && b->ops->print_one != NULL)
6238 {
6239 /* Although the print_one can possibly print all locations,
6240 calling it here is not likely to get any nice result. So,
6241 make sure there's just one location. */
6242 gdb_assert (b->loc == NULL || b->loc->next == NULL);
6243 b->ops->print_one (b, last_loc);
6244 }
6245 else
6246 switch (b->type)
6247 {
6248 case bp_none:
6249 internal_error (__FILE__, __LINE__,
6250 _("print_one_breakpoint: bp_none encountered\n"));
6251 break;
6252
6253 case bp_watchpoint:
6254 case bp_hardware_watchpoint:
6255 case bp_read_watchpoint:
6256 case bp_access_watchpoint:
6257 {
6258 struct watchpoint *w = (struct watchpoint *) b;
6259
6260 /* Field 4, the address, is omitted (which makes the columns
6261 not line up too nicely with the headers, but the effect
6262 is relatively readable). */
6263 if (opts.addressprint)
6264 ui_out_field_skip (uiout, "addr");
6265 annotate_field (5);
6266 ui_out_field_string (uiout, "what", w->exp_string);
6267 }
6268 break;
6269
6270 case bp_breakpoint:
6271 case bp_hardware_breakpoint:
6272 case bp_single_step:
6273 case bp_until:
6274 case bp_finish:
6275 case bp_longjmp:
6276 case bp_longjmp_resume:
6277 case bp_longjmp_call_dummy:
6278 case bp_exception:
6279 case bp_exception_resume:
6280 case bp_step_resume:
6281 case bp_hp_step_resume:
6282 case bp_watchpoint_scope:
6283 case bp_call_dummy:
6284 case bp_std_terminate:
6285 case bp_shlib_event:
6286 case bp_thread_event:
6287 case bp_overlay_event:
6288 case bp_longjmp_master:
6289 case bp_std_terminate_master:
6290 case bp_exception_master:
6291 case bp_tracepoint:
6292 case bp_fast_tracepoint:
6293 case bp_static_tracepoint:
6294 case bp_dprintf:
6295 case bp_jit_event:
6296 case bp_gnu_ifunc_resolver:
6297 case bp_gnu_ifunc_resolver_return:
6298 if (opts.addressprint)
6299 {
6300 annotate_field (4);
6301 if (header_of_multiple)
6302 ui_out_field_string (uiout, "addr", "<MULTIPLE>");
6303 else if (b->loc == NULL || loc->shlib_disabled)
6304 ui_out_field_string (uiout, "addr", "<PENDING>");
6305 else
6306 ui_out_field_core_addr (uiout, "addr",
6307 loc->gdbarch, loc->address);
6308 }
6309 annotate_field (5);
6310 if (!header_of_multiple)
6311 print_breakpoint_location (b, loc);
6312 if (b->loc)
6313 *last_loc = b->loc;
6314 break;
6315 }
6316
6317
6318 if (loc != NULL && !header_of_multiple)
6319 {
6320 struct inferior *inf;
6321 VEC(int) *inf_num = NULL;
6322 int mi_only = 1;
6323
6324 ALL_INFERIORS (inf)
6325 {
6326 if (inf->pspace == loc->pspace)
6327 VEC_safe_push (int, inf_num, inf->num);
6328 }
6329
6330 /* For backward compatibility, don't display inferiors in CLI unless
6331 there are several. Always display for MI. */
6332 if (allflag
6333 || (!gdbarch_has_global_breakpoints (target_gdbarch ())
6334 && (number_of_program_spaces () > 1
6335 || number_of_inferiors () > 1)
6336 /* LOC is for existing B, it cannot be in
6337 moribund_locations and thus having NULL OWNER. */
6338 && loc->owner->type != bp_catchpoint))
6339 mi_only = 0;
6340 output_thread_groups (uiout, "thread-groups", inf_num, mi_only);
6341 VEC_free (int, inf_num);
6342 }
6343
6344 if (!part_of_multiple)
6345 {
6346 if (b->thread != -1)
6347 {
6348 /* FIXME: This seems to be redundant and lost here; see the
6349 "stop only in" line a little further down. */
6350 ui_out_text (uiout, " thread ");
6351 ui_out_field_int (uiout, "thread", b->thread);
6352 }
6353 else if (b->task != 0)
6354 {
6355 ui_out_text (uiout, " task ");
6356 ui_out_field_int (uiout, "task", b->task);
6357 }
6358 }
6359
6360 ui_out_text (uiout, "\n");
6361
6362 if (!part_of_multiple)
6363 b->ops->print_one_detail (b, uiout);
6364
6365 if (part_of_multiple && frame_id_p (b->frame_id))
6366 {
6367 annotate_field (6);
6368 ui_out_text (uiout, "\tstop only in stack frame at ");
6369 /* FIXME: cagney/2002-12-01: Shouldn't be poking around inside
6370 the frame ID. */
6371 ui_out_field_core_addr (uiout, "frame",
6372 b->gdbarch, b->frame_id.stack_addr);
6373 ui_out_text (uiout, "\n");
6374 }
6375
6376 if (!part_of_multiple && b->cond_string)
6377 {
6378 annotate_field (7);
6379 if (is_tracepoint (b))
6380 ui_out_text (uiout, "\ttrace only if ");
6381 else
6382 ui_out_text (uiout, "\tstop only if ");
6383 ui_out_field_string (uiout, "cond", b->cond_string);
6384
6385 /* Print whether the target is doing the breakpoint's condition
6386 evaluation. If GDB is doing the evaluation, don't print anything. */
6387 if (is_breakpoint (b)
6388 && breakpoint_condition_evaluation_mode ()
6389 == condition_evaluation_target)
6390 {
6391 ui_out_text (uiout, " (");
6392 ui_out_field_string (uiout, "evaluated-by",
6393 bp_condition_evaluator (b));
6394 ui_out_text (uiout, " evals)");
6395 }
6396 ui_out_text (uiout, "\n");
6397 }
6398
6399 if (!part_of_multiple && b->thread != -1)
6400 {
6401 /* FIXME should make an annotation for this. */
6402 ui_out_text (uiout, "\tstop only in thread ");
6403 ui_out_field_int (uiout, "thread", b->thread);
6404 ui_out_text (uiout, "\n");
6405 }
6406
6407 if (!part_of_multiple)
6408 {
6409 if (b->hit_count)
6410 {
6411 /* FIXME should make an annotation for this. */
6412 if (is_catchpoint (b))
6413 ui_out_text (uiout, "\tcatchpoint");
6414 else if (is_tracepoint (b))
6415 ui_out_text (uiout, "\ttracepoint");
6416 else
6417 ui_out_text (uiout, "\tbreakpoint");
6418 ui_out_text (uiout, " already hit ");
6419 ui_out_field_int (uiout, "times", b->hit_count);
6420 if (b->hit_count == 1)
6421 ui_out_text (uiout, " time\n");
6422 else
6423 ui_out_text (uiout, " times\n");
6424 }
6425 else
6426 {
6427 /* Output the count also if it is zero, but only if this is mi. */
6428 if (ui_out_is_mi_like_p (uiout))
6429 ui_out_field_int (uiout, "times", b->hit_count);
6430 }
6431 }
6432
6433 if (!part_of_multiple && b->ignore_count)
6434 {
6435 annotate_field (8);
6436 ui_out_text (uiout, "\tignore next ");
6437 ui_out_field_int (uiout, "ignore", b->ignore_count);
6438 ui_out_text (uiout, " hits\n");
6439 }
6440
6441 /* Note that an enable count of 1 corresponds to "enable once"
6442 behavior, which is reported by the combination of enablement and
6443 disposition, so we don't need to mention it here. */
6444 if (!part_of_multiple && b->enable_count > 1)
6445 {
6446 annotate_field (8);
6447 ui_out_text (uiout, "\tdisable after ");
6448 /* Tweak the wording to clarify that ignore and enable counts
6449 are distinct, and have additive effect. */
6450 if (b->ignore_count)
6451 ui_out_text (uiout, "additional ");
6452 else
6453 ui_out_text (uiout, "next ");
6454 ui_out_field_int (uiout, "enable", b->enable_count);
6455 ui_out_text (uiout, " hits\n");
6456 }
6457
6458 if (!part_of_multiple && is_tracepoint (b))
6459 {
6460 struct tracepoint *tp = (struct tracepoint *) b;
6461
6462 if (tp->traceframe_usage)
6463 {
6464 ui_out_text (uiout, "\ttrace buffer usage ");
6465 ui_out_field_int (uiout, "traceframe-usage", tp->traceframe_usage);
6466 ui_out_text (uiout, " bytes\n");
6467 }
6468 }
6469
6470 l = b->commands ? b->commands->commands : NULL;
6471 if (!part_of_multiple && l)
6472 {
6473 struct cleanup *script_chain;
6474
6475 annotate_field (9);
6476 script_chain = make_cleanup_ui_out_tuple_begin_end (uiout, "script");
6477 print_command_lines (uiout, l, 4);
6478 do_cleanups (script_chain);
6479 }
6480
6481 if (is_tracepoint (b))
6482 {
6483 struct tracepoint *t = (struct tracepoint *) b;
6484
6485 if (!part_of_multiple && t->pass_count)
6486 {
6487 annotate_field (10);
6488 ui_out_text (uiout, "\tpass count ");
6489 ui_out_field_int (uiout, "pass", t->pass_count);
6490 ui_out_text (uiout, " \n");
6491 }
6492
6493 /* Don't display it when tracepoint or tracepoint location is
6494 pending. */
6495 if (!header_of_multiple && loc != NULL && !loc->shlib_disabled)
6496 {
6497 annotate_field (11);
6498
6499 if (ui_out_is_mi_like_p (uiout))
6500 ui_out_field_string (uiout, "installed",
6501 loc->inserted ? "y" : "n");
6502 else
6503 {
6504 if (loc->inserted)
6505 ui_out_text (uiout, "\t");
6506 else
6507 ui_out_text (uiout, "\tnot ");
6508 ui_out_text (uiout, "installed on target\n");
6509 }
6510 }
6511 }
6512
6513 if (ui_out_is_mi_like_p (uiout) && !part_of_multiple)
6514 {
6515 if (is_watchpoint (b))
6516 {
6517 struct watchpoint *w = (struct watchpoint *) b;
6518
6519 ui_out_field_string (uiout, "original-location", w->exp_string);
6520 }
6521 else if (b->addr_string)
6522 ui_out_field_string (uiout, "original-location", b->addr_string);
6523 }
6524 }
6525
6526 static void
6527 print_one_breakpoint (struct breakpoint *b,
6528 struct bp_location **last_loc,
6529 int allflag)
6530 {
6531 struct cleanup *bkpt_chain;
6532 struct ui_out *uiout = current_uiout;
6533
6534 bkpt_chain = make_cleanup_ui_out_tuple_begin_end (uiout, "bkpt");
6535
6536 print_one_breakpoint_location (b, NULL, 0, last_loc, allflag);
6537 do_cleanups (bkpt_chain);
6538
6539 /* If this breakpoint has custom print function,
6540 it's already printed. Otherwise, print individual
6541 locations, if any. */
6542 if (b->ops == NULL || b->ops->print_one == NULL)
6543 {
6544 /* If breakpoint has a single location that is disabled, we
6545 print it as if it had several locations, since otherwise it's
6546 hard to represent "breakpoint enabled, location disabled"
6547 situation.
6548
6549 Note that while hardware watchpoints have several locations
6550 internally, that's not a property exposed to user. */
6551 if (b->loc
6552 && !is_hardware_watchpoint (b)
6553 && (b->loc->next || !b->loc->enabled))
6554 {
6555 struct bp_location *loc;
6556 int n = 1;
6557
6558 for (loc = b->loc; loc; loc = loc->next, ++n)
6559 {
6560 struct cleanup *inner2 =
6561 make_cleanup_ui_out_tuple_begin_end (uiout, NULL);
6562 print_one_breakpoint_location (b, loc, n, last_loc, allflag);
6563 do_cleanups (inner2);
6564 }
6565 }
6566 }
6567 }
6568
6569 static int
6570 breakpoint_address_bits (struct breakpoint *b)
6571 {
6572 int print_address_bits = 0;
6573 struct bp_location *loc;
6574
6575 for (loc = b->loc; loc; loc = loc->next)
6576 {
6577 int addr_bit;
6578
6579 /* Software watchpoints that aren't watching memory don't have
6580 an address to print. */
6581 if (b->type == bp_watchpoint && loc->watchpoint_type == -1)
6582 continue;
6583
6584 addr_bit = gdbarch_addr_bit (loc->gdbarch);
6585 if (addr_bit > print_address_bits)
6586 print_address_bits = addr_bit;
6587 }
6588
6589 return print_address_bits;
6590 }
6591
6592 struct captured_breakpoint_query_args
6593 {
6594 int bnum;
6595 };
6596
6597 static int
6598 do_captured_breakpoint_query (struct ui_out *uiout, void *data)
6599 {
6600 struct captured_breakpoint_query_args *args = data;
6601 struct breakpoint *b;
6602 struct bp_location *dummy_loc = NULL;
6603
6604 ALL_BREAKPOINTS (b)
6605 {
6606 if (args->bnum == b->number)
6607 {
6608 print_one_breakpoint (b, &dummy_loc, 0);
6609 return GDB_RC_OK;
6610 }
6611 }
6612 return GDB_RC_NONE;
6613 }
6614
6615 enum gdb_rc
6616 gdb_breakpoint_query (struct ui_out *uiout, int bnum,
6617 char **error_message)
6618 {
6619 struct captured_breakpoint_query_args args;
6620
6621 args.bnum = bnum;
6622 /* For the moment we don't trust print_one_breakpoint() to not throw
6623 an error. */
6624 if (catch_exceptions_with_msg (uiout, do_captured_breakpoint_query, &args,
6625 error_message, RETURN_MASK_ALL) < 0)
6626 return GDB_RC_FAIL;
6627 else
6628 return GDB_RC_OK;
6629 }
6630
6631 /* Return true if this breakpoint was set by the user, false if it is
6632 internal or momentary. */
6633
6634 int
6635 user_breakpoint_p (struct breakpoint *b)
6636 {
6637 return b->number > 0;
6638 }
6639
6640 /* Print information on user settable breakpoint (watchpoint, etc)
6641 number BNUM. If BNUM is -1 print all user-settable breakpoints.
6642 If ALLFLAG is non-zero, include non-user-settable breakpoints. If
6643 FILTER is non-NULL, call it on each breakpoint and only include the
6644 ones for which it returns non-zero. Return the total number of
6645 breakpoints listed. */
6646
6647 static int
6648 breakpoint_1 (char *args, int allflag,
6649 int (*filter) (const struct breakpoint *))
6650 {
6651 struct breakpoint *b;
6652 struct bp_location *last_loc = NULL;
6653 int nr_printable_breakpoints;
6654 struct cleanup *bkpttbl_chain;
6655 struct value_print_options opts;
6656 int print_address_bits = 0;
6657 int print_type_col_width = 14;
6658 struct ui_out *uiout = current_uiout;
6659
6660 get_user_print_options (&opts);
6661
6662 /* Compute the number of rows in the table, as well as the size
6663 required for address fields. */
6664 nr_printable_breakpoints = 0;
6665 ALL_BREAKPOINTS (b)
6666 {
6667 /* If we have a filter, only list the breakpoints it accepts. */
6668 if (filter && !filter (b))
6669 continue;
6670
6671 /* If we have an "args" string, it is a list of breakpoints to
6672 accept. Skip the others. */
6673 if (args != NULL && *args != '\0')
6674 {
6675 if (allflag && parse_and_eval_long (args) != b->number)
6676 continue;
6677 if (!allflag && !number_is_in_list (args, b->number))
6678 continue;
6679 }
6680
6681 if (allflag || user_breakpoint_p (b))
6682 {
6683 int addr_bit, type_len;
6684
6685 addr_bit = breakpoint_address_bits (b);
6686 if (addr_bit > print_address_bits)
6687 print_address_bits = addr_bit;
6688
6689 type_len = strlen (bptype_string (b->type));
6690 if (type_len > print_type_col_width)
6691 print_type_col_width = type_len;
6692
6693 nr_printable_breakpoints++;
6694 }
6695 }
6696
6697 if (opts.addressprint)
6698 bkpttbl_chain
6699 = make_cleanup_ui_out_table_begin_end (uiout, 6,
6700 nr_printable_breakpoints,
6701 "BreakpointTable");
6702 else
6703 bkpttbl_chain
6704 = make_cleanup_ui_out_table_begin_end (uiout, 5,
6705 nr_printable_breakpoints,
6706 "BreakpointTable");
6707
6708 if (nr_printable_breakpoints > 0)
6709 annotate_breakpoints_headers ();
6710 if (nr_printable_breakpoints > 0)
6711 annotate_field (0);
6712 ui_out_table_header (uiout, 7, ui_left, "number", "Num"); /* 1 */
6713 if (nr_printable_breakpoints > 0)
6714 annotate_field (1);
6715 ui_out_table_header (uiout, print_type_col_width, ui_left,
6716 "type", "Type"); /* 2 */
6717 if (nr_printable_breakpoints > 0)
6718 annotate_field (2);
6719 ui_out_table_header (uiout, 4, ui_left, "disp", "Disp"); /* 3 */
6720 if (nr_printable_breakpoints > 0)
6721 annotate_field (3);
6722 ui_out_table_header (uiout, 3, ui_left, "enabled", "Enb"); /* 4 */
6723 if (opts.addressprint)
6724 {
6725 if (nr_printable_breakpoints > 0)
6726 annotate_field (4);
6727 if (print_address_bits <= 32)
6728 ui_out_table_header (uiout, 10, ui_left,
6729 "addr", "Address"); /* 5 */
6730 else
6731 ui_out_table_header (uiout, 18, ui_left,
6732 "addr", "Address"); /* 5 */
6733 }
6734 if (nr_printable_breakpoints > 0)
6735 annotate_field (5);
6736 ui_out_table_header (uiout, 40, ui_noalign, "what", "What"); /* 6 */
6737 ui_out_table_body (uiout);
6738 if (nr_printable_breakpoints > 0)
6739 annotate_breakpoints_table ();
6740
6741 ALL_BREAKPOINTS (b)
6742 {
6743 QUIT;
6744 /* If we have a filter, only list the breakpoints it accepts. */
6745 if (filter && !filter (b))
6746 continue;
6747
6748 /* If we have an "args" string, it is a list of breakpoints to
6749 accept. Skip the others. */
6750
6751 if (args != NULL && *args != '\0')
6752 {
6753 if (allflag) /* maintenance info breakpoint */
6754 {
6755 if (parse_and_eval_long (args) != b->number)
6756 continue;
6757 }
6758 else /* all others */
6759 {
6760 if (!number_is_in_list (args, b->number))
6761 continue;
6762 }
6763 }
6764 /* We only print out user settable breakpoints unless the
6765 allflag is set. */
6766 if (allflag || user_breakpoint_p (b))
6767 print_one_breakpoint (b, &last_loc, allflag);
6768 }
6769
6770 do_cleanups (bkpttbl_chain);
6771
6772 if (nr_printable_breakpoints == 0)
6773 {
6774 /* If there's a filter, let the caller decide how to report
6775 empty list. */
6776 if (!filter)
6777 {
6778 if (args == NULL || *args == '\0')
6779 ui_out_message (uiout, 0, "No breakpoints or watchpoints.\n");
6780 else
6781 ui_out_message (uiout, 0,
6782 "No breakpoint or watchpoint matching '%s'.\n",
6783 args);
6784 }
6785 }
6786 else
6787 {
6788 if (last_loc && !server_command)
6789 set_next_address (last_loc->gdbarch, last_loc->address);
6790 }
6791
6792 /* FIXME? Should this be moved up so that it is only called when
6793 there have been breakpoints? */
6794 annotate_breakpoints_table_end ();
6795
6796 return nr_printable_breakpoints;
6797 }
6798
6799 /* Display the value of default-collect in a way that is generally
6800 compatible with the breakpoint list. */
6801
6802 static void
6803 default_collect_info (void)
6804 {
6805 struct ui_out *uiout = current_uiout;
6806
6807 /* If it has no value (which is frequently the case), say nothing; a
6808 message like "No default-collect." gets in user's face when it's
6809 not wanted. */
6810 if (!*default_collect)
6811 return;
6812
6813 /* The following phrase lines up nicely with per-tracepoint collect
6814 actions. */
6815 ui_out_text (uiout, "default collect ");
6816 ui_out_field_string (uiout, "default-collect", default_collect);
6817 ui_out_text (uiout, " \n");
6818 }
6819
6820 static void
6821 breakpoints_info (char *args, int from_tty)
6822 {
6823 breakpoint_1 (args, 0, NULL);
6824
6825 default_collect_info ();
6826 }
6827
6828 static void
6829 watchpoints_info (char *args, int from_tty)
6830 {
6831 int num_printed = breakpoint_1 (args, 0, is_watchpoint);
6832 struct ui_out *uiout = current_uiout;
6833
6834 if (num_printed == 0)
6835 {
6836 if (args == NULL || *args == '\0')
6837 ui_out_message (uiout, 0, "No watchpoints.\n");
6838 else
6839 ui_out_message (uiout, 0, "No watchpoint matching '%s'.\n", args);
6840 }
6841 }
6842
6843 static void
6844 maintenance_info_breakpoints (char *args, int from_tty)
6845 {
6846 breakpoint_1 (args, 1, NULL);
6847
6848 default_collect_info ();
6849 }
6850
6851 static int
6852 breakpoint_has_pc (struct breakpoint *b,
6853 struct program_space *pspace,
6854 CORE_ADDR pc, struct obj_section *section)
6855 {
6856 struct bp_location *bl = b->loc;
6857
6858 for (; bl; bl = bl->next)
6859 {
6860 if (bl->pspace == pspace
6861 && bl->address == pc
6862 && (!overlay_debugging || bl->section == section))
6863 return 1;
6864 }
6865 return 0;
6866 }
6867
6868 /* Print a message describing any user-breakpoints set at PC. This
6869 concerns with logical breakpoints, so we match program spaces, not
6870 address spaces. */
6871
6872 static void
6873 describe_other_breakpoints (struct gdbarch *gdbarch,
6874 struct program_space *pspace, CORE_ADDR pc,
6875 struct obj_section *section, int thread)
6876 {
6877 int others = 0;
6878 struct breakpoint *b;
6879
6880 ALL_BREAKPOINTS (b)
6881 others += (user_breakpoint_p (b)
6882 && breakpoint_has_pc (b, pspace, pc, section));
6883 if (others > 0)
6884 {
6885 if (others == 1)
6886 printf_filtered (_("Note: breakpoint "));
6887 else /* if (others == ???) */
6888 printf_filtered (_("Note: breakpoints "));
6889 ALL_BREAKPOINTS (b)
6890 if (user_breakpoint_p (b) && breakpoint_has_pc (b, pspace, pc, section))
6891 {
6892 others--;
6893 printf_filtered ("%d", b->number);
6894 if (b->thread == -1 && thread != -1)
6895 printf_filtered (" (all threads)");
6896 else if (b->thread != -1)
6897 printf_filtered (" (thread %d)", b->thread);
6898 printf_filtered ("%s%s ",
6899 ((b->enable_state == bp_disabled
6900 || b->enable_state == bp_call_disabled)
6901 ? " (disabled)"
6902 : ""),
6903 (others > 1) ? ","
6904 : ((others == 1) ? " and" : ""));
6905 }
6906 printf_filtered (_("also set at pc "));
6907 fputs_filtered (paddress (gdbarch, pc), gdb_stdout);
6908 printf_filtered (".\n");
6909 }
6910 }
6911 \f
6912
6913 /* Return true iff it is meaningful to use the address member of
6914 BPT. For some breakpoint types, the address member is irrelevant
6915 and it makes no sense to attempt to compare it to other addresses
6916 (or use it for any other purpose either).
6917
6918 More specifically, each of the following breakpoint types will
6919 always have a zero valued address and we don't want to mark
6920 breakpoints of any of these types to be a duplicate of an actual
6921 breakpoint at address zero:
6922
6923 bp_watchpoint
6924 bp_catchpoint
6925
6926 */
6927
6928 static int
6929 breakpoint_address_is_meaningful (struct breakpoint *bpt)
6930 {
6931 enum bptype type = bpt->type;
6932
6933 return (type != bp_watchpoint && type != bp_catchpoint);
6934 }
6935
6936 /* Assuming LOC1 and LOC2's owners are hardware watchpoints, returns
6937 true if LOC1 and LOC2 represent the same watchpoint location. */
6938
6939 static int
6940 watchpoint_locations_match (struct bp_location *loc1,
6941 struct bp_location *loc2)
6942 {
6943 struct watchpoint *w1 = (struct watchpoint *) loc1->owner;
6944 struct watchpoint *w2 = (struct watchpoint *) loc2->owner;
6945
6946 /* Both of them must exist. */
6947 gdb_assert (w1 != NULL);
6948 gdb_assert (w2 != NULL);
6949
6950 /* If the target can evaluate the condition expression in hardware,
6951 then we we need to insert both watchpoints even if they are at
6952 the same place. Otherwise the watchpoint will only trigger when
6953 the condition of whichever watchpoint was inserted evaluates to
6954 true, not giving a chance for GDB to check the condition of the
6955 other watchpoint. */
6956 if ((w1->cond_exp
6957 && target_can_accel_watchpoint_condition (loc1->address,
6958 loc1->length,
6959 loc1->watchpoint_type,
6960 w1->cond_exp))
6961 || (w2->cond_exp
6962 && target_can_accel_watchpoint_condition (loc2->address,
6963 loc2->length,
6964 loc2->watchpoint_type,
6965 w2->cond_exp)))
6966 return 0;
6967
6968 /* Note that this checks the owner's type, not the location's. In
6969 case the target does not support read watchpoints, but does
6970 support access watchpoints, we'll have bp_read_watchpoint
6971 watchpoints with hw_access locations. Those should be considered
6972 duplicates of hw_read locations. The hw_read locations will
6973 become hw_access locations later. */
6974 return (loc1->owner->type == loc2->owner->type
6975 && loc1->pspace->aspace == loc2->pspace->aspace
6976 && loc1->address == loc2->address
6977 && loc1->length == loc2->length);
6978 }
6979
6980 /* See breakpoint.h. */
6981
6982 int
6983 breakpoint_address_match (struct address_space *aspace1, CORE_ADDR addr1,
6984 struct address_space *aspace2, CORE_ADDR addr2)
6985 {
6986 return ((gdbarch_has_global_breakpoints (target_gdbarch ())
6987 || aspace1 == aspace2)
6988 && addr1 == addr2);
6989 }
6990
6991 /* Returns true if {ASPACE2,ADDR2} falls within the range determined by
6992 {ASPACE1,ADDR1,LEN1}. In most targets, this can only be true if ASPACE1
6993 matches ASPACE2. On targets that have global breakpoints, the address
6994 space doesn't really matter. */
6995
6996 static int
6997 breakpoint_address_match_range (struct address_space *aspace1, CORE_ADDR addr1,
6998 int len1, struct address_space *aspace2,
6999 CORE_ADDR addr2)
7000 {
7001 return ((gdbarch_has_global_breakpoints (target_gdbarch ())
7002 || aspace1 == aspace2)
7003 && addr2 >= addr1 && addr2 < addr1 + len1);
7004 }
7005
7006 /* Returns true if {ASPACE,ADDR} matches the breakpoint BL. BL may be
7007 a ranged breakpoint. In most targets, a match happens only if ASPACE
7008 matches the breakpoint's address space. On targets that have global
7009 breakpoints, the address space doesn't really matter. */
7010
7011 static int
7012 breakpoint_location_address_match (struct bp_location *bl,
7013 struct address_space *aspace,
7014 CORE_ADDR addr)
7015 {
7016 return (breakpoint_address_match (bl->pspace->aspace, bl->address,
7017 aspace, addr)
7018 || (bl->length
7019 && breakpoint_address_match_range (bl->pspace->aspace,
7020 bl->address, bl->length,
7021 aspace, addr)));
7022 }
7023
7024 /* If LOC1 and LOC2's owners are not tracepoints, returns false directly.
7025 Then, if LOC1 and LOC2 represent the same tracepoint location, returns
7026 true, otherwise returns false. */
7027
7028 static int
7029 tracepoint_locations_match (struct bp_location *loc1,
7030 struct bp_location *loc2)
7031 {
7032 if (is_tracepoint (loc1->owner) && is_tracepoint (loc2->owner))
7033 /* Since tracepoint locations are never duplicated with others', tracepoint
7034 locations at the same address of different tracepoints are regarded as
7035 different locations. */
7036 return (loc1->address == loc2->address && loc1->owner == loc2->owner);
7037 else
7038 return 0;
7039 }
7040
7041 /* Assuming LOC1 and LOC2's types' have meaningful target addresses
7042 (breakpoint_address_is_meaningful), returns true if LOC1 and LOC2
7043 represent the same location. */
7044
7045 static int
7046 breakpoint_locations_match (struct bp_location *loc1,
7047 struct bp_location *loc2)
7048 {
7049 int hw_point1, hw_point2;
7050
7051 /* Both of them must not be in moribund_locations. */
7052 gdb_assert (loc1->owner != NULL);
7053 gdb_assert (loc2->owner != NULL);
7054
7055 hw_point1 = is_hardware_watchpoint (loc1->owner);
7056 hw_point2 = is_hardware_watchpoint (loc2->owner);
7057
7058 if (hw_point1 != hw_point2)
7059 return 0;
7060 else if (hw_point1)
7061 return watchpoint_locations_match (loc1, loc2);
7062 else if (is_tracepoint (loc1->owner) || is_tracepoint (loc2->owner))
7063 return tracepoint_locations_match (loc1, loc2);
7064 else
7065 /* We compare bp_location.length in order to cover ranged breakpoints. */
7066 return (breakpoint_address_match (loc1->pspace->aspace, loc1->address,
7067 loc2->pspace->aspace, loc2->address)
7068 && loc1->length == loc2->length);
7069 }
7070
7071 static void
7072 breakpoint_adjustment_warning (CORE_ADDR from_addr, CORE_ADDR to_addr,
7073 int bnum, int have_bnum)
7074 {
7075 /* The longest string possibly returned by hex_string_custom
7076 is 50 chars. These must be at least that big for safety. */
7077 char astr1[64];
7078 char astr2[64];
7079
7080 strcpy (astr1, hex_string_custom ((unsigned long) from_addr, 8));
7081 strcpy (astr2, hex_string_custom ((unsigned long) to_addr, 8));
7082 if (have_bnum)
7083 warning (_("Breakpoint %d address previously adjusted from %s to %s."),
7084 bnum, astr1, astr2);
7085 else
7086 warning (_("Breakpoint address adjusted from %s to %s."), astr1, astr2);
7087 }
7088
7089 /* Adjust a breakpoint's address to account for architectural
7090 constraints on breakpoint placement. Return the adjusted address.
7091 Note: Very few targets require this kind of adjustment. For most
7092 targets, this function is simply the identity function. */
7093
7094 static CORE_ADDR
7095 adjust_breakpoint_address (struct gdbarch *gdbarch,
7096 CORE_ADDR bpaddr, enum bptype bptype)
7097 {
7098 if (!gdbarch_adjust_breakpoint_address_p (gdbarch))
7099 {
7100 /* Very few targets need any kind of breakpoint adjustment. */
7101 return bpaddr;
7102 }
7103 else if (bptype == bp_watchpoint
7104 || bptype == bp_hardware_watchpoint
7105 || bptype == bp_read_watchpoint
7106 || bptype == bp_access_watchpoint
7107 || bptype == bp_catchpoint)
7108 {
7109 /* Watchpoints and the various bp_catch_* eventpoints should not
7110 have their addresses modified. */
7111 return bpaddr;
7112 }
7113 else if (bptype == bp_single_step)
7114 {
7115 /* Single-step breakpoints should not have their addresses
7116 modified. If there's any architectural constrain that
7117 applies to this address, then it should have already been
7118 taken into account when the breakpoint was created in the
7119 first place. If we didn't do this, stepping through e.g.,
7120 Thumb-2 IT blocks would break. */
7121 return bpaddr;
7122 }
7123 else
7124 {
7125 CORE_ADDR adjusted_bpaddr;
7126
7127 /* Some targets have architectural constraints on the placement
7128 of breakpoint instructions. Obtain the adjusted address. */
7129 adjusted_bpaddr = gdbarch_adjust_breakpoint_address (gdbarch, bpaddr);
7130
7131 /* An adjusted breakpoint address can significantly alter
7132 a user's expectations. Print a warning if an adjustment
7133 is required. */
7134 if (adjusted_bpaddr != bpaddr)
7135 breakpoint_adjustment_warning (bpaddr, adjusted_bpaddr, 0, 0);
7136
7137 return adjusted_bpaddr;
7138 }
7139 }
7140
7141 void
7142 init_bp_location (struct bp_location *loc, const struct bp_location_ops *ops,
7143 struct breakpoint *owner)
7144 {
7145 memset (loc, 0, sizeof (*loc));
7146
7147 gdb_assert (ops != NULL);
7148
7149 loc->ops = ops;
7150 loc->owner = owner;
7151 loc->cond = NULL;
7152 loc->cond_bytecode = NULL;
7153 loc->shlib_disabled = 0;
7154 loc->enabled = 1;
7155
7156 switch (owner->type)
7157 {
7158 case bp_breakpoint:
7159 case bp_single_step:
7160 case bp_until:
7161 case bp_finish:
7162 case bp_longjmp:
7163 case bp_longjmp_resume:
7164 case bp_longjmp_call_dummy:
7165 case bp_exception:
7166 case bp_exception_resume:
7167 case bp_step_resume:
7168 case bp_hp_step_resume:
7169 case bp_watchpoint_scope:
7170 case bp_call_dummy:
7171 case bp_std_terminate:
7172 case bp_shlib_event:
7173 case bp_thread_event:
7174 case bp_overlay_event:
7175 case bp_jit_event:
7176 case bp_longjmp_master:
7177 case bp_std_terminate_master:
7178 case bp_exception_master:
7179 case bp_gnu_ifunc_resolver:
7180 case bp_gnu_ifunc_resolver_return:
7181 case bp_dprintf:
7182 loc->loc_type = bp_loc_software_breakpoint;
7183 mark_breakpoint_location_modified (loc);
7184 break;
7185 case bp_hardware_breakpoint:
7186 loc->loc_type = bp_loc_hardware_breakpoint;
7187 mark_breakpoint_location_modified (loc);
7188 break;
7189 case bp_hardware_watchpoint:
7190 case bp_read_watchpoint:
7191 case bp_access_watchpoint:
7192 loc->loc_type = bp_loc_hardware_watchpoint;
7193 break;
7194 case bp_watchpoint:
7195 case bp_catchpoint:
7196 case bp_tracepoint:
7197 case bp_fast_tracepoint:
7198 case bp_static_tracepoint:
7199 loc->loc_type = bp_loc_other;
7200 break;
7201 default:
7202 internal_error (__FILE__, __LINE__, _("unknown breakpoint type"));
7203 }
7204
7205 loc->refc = 1;
7206 }
7207
7208 /* Allocate a struct bp_location. */
7209
7210 static struct bp_location *
7211 allocate_bp_location (struct breakpoint *bpt)
7212 {
7213 return bpt->ops->allocate_location (bpt);
7214 }
7215
7216 static void
7217 free_bp_location (struct bp_location *loc)
7218 {
7219 loc->ops->dtor (loc);
7220 xfree (loc);
7221 }
7222
7223 /* Increment reference count. */
7224
7225 static void
7226 incref_bp_location (struct bp_location *bl)
7227 {
7228 ++bl->refc;
7229 }
7230
7231 /* Decrement reference count. If the reference count reaches 0,
7232 destroy the bp_location. Sets *BLP to NULL. */
7233
7234 static void
7235 decref_bp_location (struct bp_location **blp)
7236 {
7237 gdb_assert ((*blp)->refc > 0);
7238
7239 if (--(*blp)->refc == 0)
7240 free_bp_location (*blp);
7241 *blp = NULL;
7242 }
7243
7244 /* Add breakpoint B at the end of the global breakpoint chain. */
7245
7246 static void
7247 add_to_breakpoint_chain (struct breakpoint *b)
7248 {
7249 struct breakpoint *b1;
7250
7251 /* Add this breakpoint to the end of the chain so that a list of
7252 breakpoints will come out in order of increasing numbers. */
7253
7254 b1 = breakpoint_chain;
7255 if (b1 == 0)
7256 breakpoint_chain = b;
7257 else
7258 {
7259 while (b1->next)
7260 b1 = b1->next;
7261 b1->next = b;
7262 }
7263 }
7264
7265 /* Initializes breakpoint B with type BPTYPE and no locations yet. */
7266
7267 static void
7268 init_raw_breakpoint_without_location (struct breakpoint *b,
7269 struct gdbarch *gdbarch,
7270 enum bptype bptype,
7271 const struct breakpoint_ops *ops)
7272 {
7273 memset (b, 0, sizeof (*b));
7274
7275 gdb_assert (ops != NULL);
7276
7277 b->ops = ops;
7278 b->type = bptype;
7279 b->gdbarch = gdbarch;
7280 b->language = current_language->la_language;
7281 b->input_radix = input_radix;
7282 b->thread = -1;
7283 b->enable_state = bp_enabled;
7284 b->next = 0;
7285 b->silent = 0;
7286 b->ignore_count = 0;
7287 b->commands = NULL;
7288 b->frame_id = null_frame_id;
7289 b->condition_not_parsed = 0;
7290 b->py_bp_object = NULL;
7291 b->related_breakpoint = b;
7292 }
7293
7294 /* Helper to set_raw_breakpoint below. Creates a breakpoint
7295 that has type BPTYPE and has no locations as yet. */
7296
7297 static struct breakpoint *
7298 set_raw_breakpoint_without_location (struct gdbarch *gdbarch,
7299 enum bptype bptype,
7300 const struct breakpoint_ops *ops)
7301 {
7302 struct breakpoint *b = XNEW (struct breakpoint);
7303
7304 init_raw_breakpoint_without_location (b, gdbarch, bptype, ops);
7305 add_to_breakpoint_chain (b);
7306 return b;
7307 }
7308
7309 /* Initialize loc->function_name. EXPLICIT_LOC says no indirect function
7310 resolutions should be made as the user specified the location explicitly
7311 enough. */
7312
7313 static void
7314 set_breakpoint_location_function (struct bp_location *loc, int explicit_loc)
7315 {
7316 gdb_assert (loc->owner != NULL);
7317
7318 if (loc->owner->type == bp_breakpoint
7319 || loc->owner->type == bp_hardware_breakpoint
7320 || is_tracepoint (loc->owner))
7321 {
7322 int is_gnu_ifunc;
7323 const char *function_name;
7324 CORE_ADDR func_addr;
7325
7326 find_pc_partial_function_gnu_ifunc (loc->address, &function_name,
7327 &func_addr, NULL, &is_gnu_ifunc);
7328
7329 if (is_gnu_ifunc && !explicit_loc)
7330 {
7331 struct breakpoint *b = loc->owner;
7332
7333 gdb_assert (loc->pspace == current_program_space);
7334 if (gnu_ifunc_resolve_name (function_name,
7335 &loc->requested_address))
7336 {
7337 /* Recalculate ADDRESS based on new REQUESTED_ADDRESS. */
7338 loc->address = adjust_breakpoint_address (loc->gdbarch,
7339 loc->requested_address,
7340 b->type);
7341 }
7342 else if (b->type == bp_breakpoint && b->loc == loc
7343 && loc->next == NULL && b->related_breakpoint == b)
7344 {
7345 /* Create only the whole new breakpoint of this type but do not
7346 mess more complicated breakpoints with multiple locations. */
7347 b->type = bp_gnu_ifunc_resolver;
7348 /* Remember the resolver's address for use by the return
7349 breakpoint. */
7350 loc->related_address = func_addr;
7351 }
7352 }
7353
7354 if (function_name)
7355 loc->function_name = xstrdup (function_name);
7356 }
7357 }
7358
7359 /* Attempt to determine architecture of location identified by SAL. */
7360 struct gdbarch *
7361 get_sal_arch (struct symtab_and_line sal)
7362 {
7363 if (sal.section)
7364 return get_objfile_arch (sal.section->objfile);
7365 if (sal.symtab)
7366 return get_objfile_arch (SYMTAB_OBJFILE (sal.symtab));
7367
7368 return NULL;
7369 }
7370
7371 /* Low level routine for partially initializing a breakpoint of type
7372 BPTYPE. The newly created breakpoint's address, section, source
7373 file name, and line number are provided by SAL.
7374
7375 It is expected that the caller will complete the initialization of
7376 the newly created breakpoint struct as well as output any status
7377 information regarding the creation of a new breakpoint. */
7378
7379 static void
7380 init_raw_breakpoint (struct breakpoint *b, struct gdbarch *gdbarch,
7381 struct symtab_and_line sal, enum bptype bptype,
7382 const struct breakpoint_ops *ops)
7383 {
7384 init_raw_breakpoint_without_location (b, gdbarch, bptype, ops);
7385
7386 add_location_to_breakpoint (b, &sal);
7387
7388 if (bptype != bp_catchpoint)
7389 gdb_assert (sal.pspace != NULL);
7390
7391 /* Store the program space that was used to set the breakpoint,
7392 except for ordinary breakpoints, which are independent of the
7393 program space. */
7394 if (bptype != bp_breakpoint && bptype != bp_hardware_breakpoint)
7395 b->pspace = sal.pspace;
7396 }
7397
7398 /* set_raw_breakpoint is a low level routine for allocating and
7399 partially initializing a breakpoint of type BPTYPE. The newly
7400 created breakpoint's address, section, source file name, and line
7401 number are provided by SAL. The newly created and partially
7402 initialized breakpoint is added to the breakpoint chain and
7403 is also returned as the value of this function.
7404
7405 It is expected that the caller will complete the initialization of
7406 the newly created breakpoint struct as well as output any status
7407 information regarding the creation of a new breakpoint. In
7408 particular, set_raw_breakpoint does NOT set the breakpoint
7409 number! Care should be taken to not allow an error to occur
7410 prior to completing the initialization of the breakpoint. If this
7411 should happen, a bogus breakpoint will be left on the chain. */
7412
7413 struct breakpoint *
7414 set_raw_breakpoint (struct gdbarch *gdbarch,
7415 struct symtab_and_line sal, enum bptype bptype,
7416 const struct breakpoint_ops *ops)
7417 {
7418 struct breakpoint *b = XNEW (struct breakpoint);
7419
7420 init_raw_breakpoint (b, gdbarch, sal, bptype, ops);
7421 add_to_breakpoint_chain (b);
7422 return b;
7423 }
7424
7425 /* Call this routine when stepping and nexting to enable a breakpoint
7426 if we do a longjmp() or 'throw' in TP. FRAME is the frame which
7427 initiated the operation. */
7428
7429 void
7430 set_longjmp_breakpoint (struct thread_info *tp, struct frame_id frame)
7431 {
7432 struct breakpoint *b, *b_tmp;
7433 int thread = tp->num;
7434
7435 /* To avoid having to rescan all objfile symbols at every step,
7436 we maintain a list of continually-inserted but always disabled
7437 longjmp "master" breakpoints. Here, we simply create momentary
7438 clones of those and enable them for the requested thread. */
7439 ALL_BREAKPOINTS_SAFE (b, b_tmp)
7440 if (b->pspace == current_program_space
7441 && (b->type == bp_longjmp_master
7442 || b->type == bp_exception_master))
7443 {
7444 enum bptype type = b->type == bp_longjmp_master ? bp_longjmp : bp_exception;
7445 struct breakpoint *clone;
7446
7447 /* longjmp_breakpoint_ops ensures INITIATING_FRAME is cleared again
7448 after their removal. */
7449 clone = momentary_breakpoint_from_master (b, type,
7450 &longjmp_breakpoint_ops, 1);
7451 clone->thread = thread;
7452 }
7453
7454 tp->initiating_frame = frame;
7455 }
7456
7457 /* Delete all longjmp breakpoints from THREAD. */
7458 void
7459 delete_longjmp_breakpoint (int thread)
7460 {
7461 struct breakpoint *b, *b_tmp;
7462
7463 ALL_BREAKPOINTS_SAFE (b, b_tmp)
7464 if (b->type == bp_longjmp || b->type == bp_exception)
7465 {
7466 if (b->thread == thread)
7467 delete_breakpoint (b);
7468 }
7469 }
7470
7471 void
7472 delete_longjmp_breakpoint_at_next_stop (int thread)
7473 {
7474 struct breakpoint *b, *b_tmp;
7475
7476 ALL_BREAKPOINTS_SAFE (b, b_tmp)
7477 if (b->type == bp_longjmp || b->type == bp_exception)
7478 {
7479 if (b->thread == thread)
7480 b->disposition = disp_del_at_next_stop;
7481 }
7482 }
7483
7484 /* Place breakpoints of type bp_longjmp_call_dummy to catch longjmp for
7485 INFERIOR_PTID thread. Chain them all by RELATED_BREAKPOINT and return
7486 pointer to any of them. Return NULL if this system cannot place longjmp
7487 breakpoints. */
7488
7489 struct breakpoint *
7490 set_longjmp_breakpoint_for_call_dummy (void)
7491 {
7492 struct breakpoint *b, *retval = NULL;
7493
7494 ALL_BREAKPOINTS (b)
7495 if (b->pspace == current_program_space && b->type == bp_longjmp_master)
7496 {
7497 struct breakpoint *new_b;
7498
7499 new_b = momentary_breakpoint_from_master (b, bp_longjmp_call_dummy,
7500 &momentary_breakpoint_ops,
7501 1);
7502 new_b->thread = pid_to_thread_id (inferior_ptid);
7503
7504 /* Link NEW_B into the chain of RETVAL breakpoints. */
7505
7506 gdb_assert (new_b->related_breakpoint == new_b);
7507 if (retval == NULL)
7508 retval = new_b;
7509 new_b->related_breakpoint = retval;
7510 while (retval->related_breakpoint != new_b->related_breakpoint)
7511 retval = retval->related_breakpoint;
7512 retval->related_breakpoint = new_b;
7513 }
7514
7515 return retval;
7516 }
7517
7518 /* Verify all existing dummy frames and their associated breakpoints for
7519 TP. Remove those which can no longer be found in the current frame
7520 stack.
7521
7522 You should call this function only at places where it is safe to currently
7523 unwind the whole stack. Failed stack unwind would discard live dummy
7524 frames. */
7525
7526 void
7527 check_longjmp_breakpoint_for_call_dummy (struct thread_info *tp)
7528 {
7529 struct breakpoint *b, *b_tmp;
7530
7531 ALL_BREAKPOINTS_SAFE (b, b_tmp)
7532 if (b->type == bp_longjmp_call_dummy && b->thread == tp->num)
7533 {
7534 struct breakpoint *dummy_b = b->related_breakpoint;
7535
7536 while (dummy_b != b && dummy_b->type != bp_call_dummy)
7537 dummy_b = dummy_b->related_breakpoint;
7538 if (dummy_b->type != bp_call_dummy
7539 || frame_find_by_id (dummy_b->frame_id) != NULL)
7540 continue;
7541
7542 dummy_frame_discard (dummy_b->frame_id, tp->ptid);
7543
7544 while (b->related_breakpoint != b)
7545 {
7546 if (b_tmp == b->related_breakpoint)
7547 b_tmp = b->related_breakpoint->next;
7548 delete_breakpoint (b->related_breakpoint);
7549 }
7550 delete_breakpoint (b);
7551 }
7552 }
7553
7554 void
7555 enable_overlay_breakpoints (void)
7556 {
7557 struct breakpoint *b;
7558
7559 ALL_BREAKPOINTS (b)
7560 if (b->type == bp_overlay_event)
7561 {
7562 b->enable_state = bp_enabled;
7563 update_global_location_list (UGLL_MAY_INSERT);
7564 overlay_events_enabled = 1;
7565 }
7566 }
7567
7568 void
7569 disable_overlay_breakpoints (void)
7570 {
7571 struct breakpoint *b;
7572
7573 ALL_BREAKPOINTS (b)
7574 if (b->type == bp_overlay_event)
7575 {
7576 b->enable_state = bp_disabled;
7577 update_global_location_list (UGLL_DONT_INSERT);
7578 overlay_events_enabled = 0;
7579 }
7580 }
7581
7582 /* Set an active std::terminate breakpoint for each std::terminate
7583 master breakpoint. */
7584 void
7585 set_std_terminate_breakpoint (void)
7586 {
7587 struct breakpoint *b, *b_tmp;
7588
7589 ALL_BREAKPOINTS_SAFE (b, b_tmp)
7590 if (b->pspace == current_program_space
7591 && b->type == bp_std_terminate_master)
7592 {
7593 momentary_breakpoint_from_master (b, bp_std_terminate,
7594 &momentary_breakpoint_ops, 1);
7595 }
7596 }
7597
7598 /* Delete all the std::terminate breakpoints. */
7599 void
7600 delete_std_terminate_breakpoint (void)
7601 {
7602 struct breakpoint *b, *b_tmp;
7603
7604 ALL_BREAKPOINTS_SAFE (b, b_tmp)
7605 if (b->type == bp_std_terminate)
7606 delete_breakpoint (b);
7607 }
7608
7609 struct breakpoint *
7610 create_thread_event_breakpoint (struct gdbarch *gdbarch, CORE_ADDR address)
7611 {
7612 struct breakpoint *b;
7613
7614 b = create_internal_breakpoint (gdbarch, address, bp_thread_event,
7615 &internal_breakpoint_ops);
7616
7617 b->enable_state = bp_enabled;
7618 /* addr_string has to be used or breakpoint_re_set will delete me. */
7619 b->addr_string
7620 = xstrprintf ("*%s", paddress (b->loc->gdbarch, b->loc->address));
7621
7622 update_global_location_list_nothrow (UGLL_MAY_INSERT);
7623
7624 return b;
7625 }
7626
7627 void
7628 remove_thread_event_breakpoints (void)
7629 {
7630 struct breakpoint *b, *b_tmp;
7631
7632 ALL_BREAKPOINTS_SAFE (b, b_tmp)
7633 if (b->type == bp_thread_event
7634 && b->loc->pspace == current_program_space)
7635 delete_breakpoint (b);
7636 }
7637
7638 struct lang_and_radix
7639 {
7640 enum language lang;
7641 int radix;
7642 };
7643
7644 /* Create a breakpoint for JIT code registration and unregistration. */
7645
7646 struct breakpoint *
7647 create_jit_event_breakpoint (struct gdbarch *gdbarch, CORE_ADDR address)
7648 {
7649 struct breakpoint *b;
7650
7651 b = create_internal_breakpoint (gdbarch, address, bp_jit_event,
7652 &internal_breakpoint_ops);
7653 update_global_location_list_nothrow (UGLL_MAY_INSERT);
7654 return b;
7655 }
7656
7657 /* Remove JIT code registration and unregistration breakpoint(s). */
7658
7659 void
7660 remove_jit_event_breakpoints (void)
7661 {
7662 struct breakpoint *b, *b_tmp;
7663
7664 ALL_BREAKPOINTS_SAFE (b, b_tmp)
7665 if (b->type == bp_jit_event
7666 && b->loc->pspace == current_program_space)
7667 delete_breakpoint (b);
7668 }
7669
7670 void
7671 remove_solib_event_breakpoints (void)
7672 {
7673 struct breakpoint *b, *b_tmp;
7674
7675 ALL_BREAKPOINTS_SAFE (b, b_tmp)
7676 if (b->type == bp_shlib_event
7677 && b->loc->pspace == current_program_space)
7678 delete_breakpoint (b);
7679 }
7680
7681 /* See breakpoint.h. */
7682
7683 void
7684 remove_solib_event_breakpoints_at_next_stop (void)
7685 {
7686 struct breakpoint *b, *b_tmp;
7687
7688 ALL_BREAKPOINTS_SAFE (b, b_tmp)
7689 if (b->type == bp_shlib_event
7690 && b->loc->pspace == current_program_space)
7691 b->disposition = disp_del_at_next_stop;
7692 }
7693
7694 /* Helper for create_solib_event_breakpoint /
7695 create_and_insert_solib_event_breakpoint. Allows specifying which
7696 INSERT_MODE to pass through to update_global_location_list. */
7697
7698 static struct breakpoint *
7699 create_solib_event_breakpoint_1 (struct gdbarch *gdbarch, CORE_ADDR address,
7700 enum ugll_insert_mode insert_mode)
7701 {
7702 struct breakpoint *b;
7703
7704 b = create_internal_breakpoint (gdbarch, address, bp_shlib_event,
7705 &internal_breakpoint_ops);
7706 update_global_location_list_nothrow (insert_mode);
7707 return b;
7708 }
7709
7710 struct breakpoint *
7711 create_solib_event_breakpoint (struct gdbarch *gdbarch, CORE_ADDR address)
7712 {
7713 return create_solib_event_breakpoint_1 (gdbarch, address, UGLL_MAY_INSERT);
7714 }
7715
7716 /* See breakpoint.h. */
7717
7718 struct breakpoint *
7719 create_and_insert_solib_event_breakpoint (struct gdbarch *gdbarch, CORE_ADDR address)
7720 {
7721 struct breakpoint *b;
7722
7723 /* Explicitly tell update_global_location_list to insert
7724 locations. */
7725 b = create_solib_event_breakpoint_1 (gdbarch, address, UGLL_INSERT);
7726 if (!b->loc->inserted)
7727 {
7728 delete_breakpoint (b);
7729 return NULL;
7730 }
7731 return b;
7732 }
7733
7734 /* Disable any breakpoints that are on code in shared libraries. Only
7735 apply to enabled breakpoints, disabled ones can just stay disabled. */
7736
7737 void
7738 disable_breakpoints_in_shlibs (void)
7739 {
7740 struct bp_location *loc, **locp_tmp;
7741
7742 ALL_BP_LOCATIONS (loc, locp_tmp)
7743 {
7744 /* ALL_BP_LOCATIONS bp_location has LOC->OWNER always non-NULL. */
7745 struct breakpoint *b = loc->owner;
7746
7747 /* We apply the check to all breakpoints, including disabled for
7748 those with loc->duplicate set. This is so that when breakpoint
7749 becomes enabled, or the duplicate is removed, gdb will try to
7750 insert all breakpoints. If we don't set shlib_disabled here,
7751 we'll try to insert those breakpoints and fail. */
7752 if (((b->type == bp_breakpoint)
7753 || (b->type == bp_jit_event)
7754 || (b->type == bp_hardware_breakpoint)
7755 || (is_tracepoint (b)))
7756 && loc->pspace == current_program_space
7757 && !loc->shlib_disabled
7758 && solib_name_from_address (loc->pspace, loc->address)
7759 )
7760 {
7761 loc->shlib_disabled = 1;
7762 }
7763 }
7764 }
7765
7766 /* Disable any breakpoints and tracepoints that are in SOLIB upon
7767 notification of unloaded_shlib. Only apply to enabled breakpoints,
7768 disabled ones can just stay disabled. */
7769
7770 static void
7771 disable_breakpoints_in_unloaded_shlib (struct so_list *solib)
7772 {
7773 struct bp_location *loc, **locp_tmp;
7774 int disabled_shlib_breaks = 0;
7775
7776 /* SunOS a.out shared libraries are always mapped, so do not
7777 disable breakpoints; they will only be reported as unloaded
7778 through clear_solib when GDB discards its shared library
7779 list. See clear_solib for more information. */
7780 if (exec_bfd != NULL
7781 && bfd_get_flavour (exec_bfd) == bfd_target_aout_flavour)
7782 return;
7783
7784 ALL_BP_LOCATIONS (loc, locp_tmp)
7785 {
7786 /* ALL_BP_LOCATIONS bp_location has LOC->OWNER always non-NULL. */
7787 struct breakpoint *b = loc->owner;
7788
7789 if (solib->pspace == loc->pspace
7790 && !loc->shlib_disabled
7791 && (((b->type == bp_breakpoint
7792 || b->type == bp_jit_event
7793 || b->type == bp_hardware_breakpoint)
7794 && (loc->loc_type == bp_loc_hardware_breakpoint
7795 || loc->loc_type == bp_loc_software_breakpoint))
7796 || is_tracepoint (b))
7797 && solib_contains_address_p (solib, loc->address))
7798 {
7799 loc->shlib_disabled = 1;
7800 /* At this point, we cannot rely on remove_breakpoint
7801 succeeding so we must mark the breakpoint as not inserted
7802 to prevent future errors occurring in remove_breakpoints. */
7803 loc->inserted = 0;
7804
7805 /* This may cause duplicate notifications for the same breakpoint. */
7806 observer_notify_breakpoint_modified (b);
7807
7808 if (!disabled_shlib_breaks)
7809 {
7810 target_terminal_ours_for_output ();
7811 warning (_("Temporarily disabling breakpoints "
7812 "for unloaded shared library \"%s\""),
7813 solib->so_name);
7814 }
7815 disabled_shlib_breaks = 1;
7816 }
7817 }
7818 }
7819
7820 /* Disable any breakpoints and tracepoints in OBJFILE upon
7821 notification of free_objfile. Only apply to enabled breakpoints,
7822 disabled ones can just stay disabled. */
7823
7824 static void
7825 disable_breakpoints_in_freed_objfile (struct objfile *objfile)
7826 {
7827 struct breakpoint *b;
7828
7829 if (objfile == NULL)
7830 return;
7831
7832 /* OBJF_SHARED|OBJF_USERLOADED objfiles are dynamic modules manually
7833 managed by the user with add-symbol-file/remove-symbol-file.
7834 Similarly to how breakpoints in shared libraries are handled in
7835 response to "nosharedlibrary", mark breakpoints in such modules
7836 shlib_disabled so they end up uninserted on the next global
7837 location list update. Shared libraries not loaded by the user
7838 aren't handled here -- they're already handled in
7839 disable_breakpoints_in_unloaded_shlib, called by solib.c's
7840 solib_unloaded observer. We skip objfiles that are not
7841 OBJF_SHARED as those aren't considered dynamic objects (e.g. the
7842 main objfile). */
7843 if ((objfile->flags & OBJF_SHARED) == 0
7844 || (objfile->flags & OBJF_USERLOADED) == 0)
7845 return;
7846
7847 ALL_BREAKPOINTS (b)
7848 {
7849 struct bp_location *loc;
7850 int bp_modified = 0;
7851
7852 if (!is_breakpoint (b) && !is_tracepoint (b))
7853 continue;
7854
7855 for (loc = b->loc; loc != NULL; loc = loc->next)
7856 {
7857 CORE_ADDR loc_addr = loc->address;
7858
7859 if (loc->loc_type != bp_loc_hardware_breakpoint
7860 && loc->loc_type != bp_loc_software_breakpoint)
7861 continue;
7862
7863 if (loc->shlib_disabled != 0)
7864 continue;
7865
7866 if (objfile->pspace != loc->pspace)
7867 continue;
7868
7869 if (loc->loc_type != bp_loc_hardware_breakpoint
7870 && loc->loc_type != bp_loc_software_breakpoint)
7871 continue;
7872
7873 if (is_addr_in_objfile (loc_addr, objfile))
7874 {
7875 loc->shlib_disabled = 1;
7876 /* At this point, we don't know whether the object was
7877 unmapped from the inferior or not, so leave the
7878 inserted flag alone. We'll handle failure to
7879 uninsert quietly, in case the object was indeed
7880 unmapped. */
7881
7882 mark_breakpoint_location_modified (loc);
7883
7884 bp_modified = 1;
7885 }
7886 }
7887
7888 if (bp_modified)
7889 observer_notify_breakpoint_modified (b);
7890 }
7891 }
7892
7893 /* FORK & VFORK catchpoints. */
7894
7895 /* An instance of this type is used to represent a fork or vfork
7896 catchpoint. It includes a "struct breakpoint" as a kind of base
7897 class; users downcast to "struct breakpoint *" when needed. A
7898 breakpoint is really of this type iff its ops pointer points to
7899 CATCH_FORK_BREAKPOINT_OPS. */
7900
7901 struct fork_catchpoint
7902 {
7903 /* The base class. */
7904 struct breakpoint base;
7905
7906 /* Process id of a child process whose forking triggered this
7907 catchpoint. This field is only valid immediately after this
7908 catchpoint has triggered. */
7909 ptid_t forked_inferior_pid;
7910 };
7911
7912 /* Implement the "insert" breakpoint_ops method for fork
7913 catchpoints. */
7914
7915 static int
7916 insert_catch_fork (struct bp_location *bl)
7917 {
7918 return target_insert_fork_catchpoint (ptid_get_pid (inferior_ptid));
7919 }
7920
7921 /* Implement the "remove" breakpoint_ops method for fork
7922 catchpoints. */
7923
7924 static int
7925 remove_catch_fork (struct bp_location *bl)
7926 {
7927 return target_remove_fork_catchpoint (ptid_get_pid (inferior_ptid));
7928 }
7929
7930 /* Implement the "breakpoint_hit" breakpoint_ops method for fork
7931 catchpoints. */
7932
7933 static int
7934 breakpoint_hit_catch_fork (const struct bp_location *bl,
7935 struct address_space *aspace, CORE_ADDR bp_addr,
7936 const struct target_waitstatus *ws)
7937 {
7938 struct fork_catchpoint *c = (struct fork_catchpoint *) bl->owner;
7939
7940 if (ws->kind != TARGET_WAITKIND_FORKED)
7941 return 0;
7942
7943 c->forked_inferior_pid = ws->value.related_pid;
7944 return 1;
7945 }
7946
7947 /* Implement the "print_it" breakpoint_ops method for fork
7948 catchpoints. */
7949
7950 static enum print_stop_action
7951 print_it_catch_fork (bpstat bs)
7952 {
7953 struct ui_out *uiout = current_uiout;
7954 struct breakpoint *b = bs->breakpoint_at;
7955 struct fork_catchpoint *c = (struct fork_catchpoint *) bs->breakpoint_at;
7956
7957 annotate_catchpoint (b->number);
7958 if (b->disposition == disp_del)
7959 ui_out_text (uiout, "\nTemporary catchpoint ");
7960 else
7961 ui_out_text (uiout, "\nCatchpoint ");
7962 if (ui_out_is_mi_like_p (uiout))
7963 {
7964 ui_out_field_string (uiout, "reason",
7965 async_reason_lookup (EXEC_ASYNC_FORK));
7966 ui_out_field_string (uiout, "disp", bpdisp_text (b->disposition));
7967 }
7968 ui_out_field_int (uiout, "bkptno", b->number);
7969 ui_out_text (uiout, " (forked process ");
7970 ui_out_field_int (uiout, "newpid", ptid_get_pid (c->forked_inferior_pid));
7971 ui_out_text (uiout, "), ");
7972 return PRINT_SRC_AND_LOC;
7973 }
7974
7975 /* Implement the "print_one" breakpoint_ops method for fork
7976 catchpoints. */
7977
7978 static void
7979 print_one_catch_fork (struct breakpoint *b, struct bp_location **last_loc)
7980 {
7981 struct fork_catchpoint *c = (struct fork_catchpoint *) b;
7982 struct value_print_options opts;
7983 struct ui_out *uiout = current_uiout;
7984
7985 get_user_print_options (&opts);
7986
7987 /* Field 4, the address, is omitted (which makes the columns not
7988 line up too nicely with the headers, but the effect is relatively
7989 readable). */
7990 if (opts.addressprint)
7991 ui_out_field_skip (uiout, "addr");
7992 annotate_field (5);
7993 ui_out_text (uiout, "fork");
7994 if (!ptid_equal (c->forked_inferior_pid, null_ptid))
7995 {
7996 ui_out_text (uiout, ", process ");
7997 ui_out_field_int (uiout, "what",
7998 ptid_get_pid (c->forked_inferior_pid));
7999 ui_out_spaces (uiout, 1);
8000 }
8001
8002 if (ui_out_is_mi_like_p (uiout))
8003 ui_out_field_string (uiout, "catch-type", "fork");
8004 }
8005
8006 /* Implement the "print_mention" breakpoint_ops method for fork
8007 catchpoints. */
8008
8009 static void
8010 print_mention_catch_fork (struct breakpoint *b)
8011 {
8012 printf_filtered (_("Catchpoint %d (fork)"), b->number);
8013 }
8014
8015 /* Implement the "print_recreate" breakpoint_ops method for fork
8016 catchpoints. */
8017
8018 static void
8019 print_recreate_catch_fork (struct breakpoint *b, struct ui_file *fp)
8020 {
8021 fprintf_unfiltered (fp, "catch fork");
8022 print_recreate_thread (b, fp);
8023 }
8024
8025 /* The breakpoint_ops structure to be used in fork catchpoints. */
8026
8027 static struct breakpoint_ops catch_fork_breakpoint_ops;
8028
8029 /* Implement the "insert" breakpoint_ops method for vfork
8030 catchpoints. */
8031
8032 static int
8033 insert_catch_vfork (struct bp_location *bl)
8034 {
8035 return target_insert_vfork_catchpoint (ptid_get_pid (inferior_ptid));
8036 }
8037
8038 /* Implement the "remove" breakpoint_ops method for vfork
8039 catchpoints. */
8040
8041 static int
8042 remove_catch_vfork (struct bp_location *bl)
8043 {
8044 return target_remove_vfork_catchpoint (ptid_get_pid (inferior_ptid));
8045 }
8046
8047 /* Implement the "breakpoint_hit" breakpoint_ops method for vfork
8048 catchpoints. */
8049
8050 static int
8051 breakpoint_hit_catch_vfork (const struct bp_location *bl,
8052 struct address_space *aspace, CORE_ADDR bp_addr,
8053 const struct target_waitstatus *ws)
8054 {
8055 struct fork_catchpoint *c = (struct fork_catchpoint *) bl->owner;
8056
8057 if (ws->kind != TARGET_WAITKIND_VFORKED)
8058 return 0;
8059
8060 c->forked_inferior_pid = ws->value.related_pid;
8061 return 1;
8062 }
8063
8064 /* Implement the "print_it" breakpoint_ops method for vfork
8065 catchpoints. */
8066
8067 static enum print_stop_action
8068 print_it_catch_vfork (bpstat bs)
8069 {
8070 struct ui_out *uiout = current_uiout;
8071 struct breakpoint *b = bs->breakpoint_at;
8072 struct fork_catchpoint *c = (struct fork_catchpoint *) b;
8073
8074 annotate_catchpoint (b->number);
8075 if (b->disposition == disp_del)
8076 ui_out_text (uiout, "\nTemporary catchpoint ");
8077 else
8078 ui_out_text (uiout, "\nCatchpoint ");
8079 if (ui_out_is_mi_like_p (uiout))
8080 {
8081 ui_out_field_string (uiout, "reason",
8082 async_reason_lookup (EXEC_ASYNC_VFORK));
8083 ui_out_field_string (uiout, "disp", bpdisp_text (b->disposition));
8084 }
8085 ui_out_field_int (uiout, "bkptno", b->number);
8086 ui_out_text (uiout, " (vforked process ");
8087 ui_out_field_int (uiout, "newpid", ptid_get_pid (c->forked_inferior_pid));
8088 ui_out_text (uiout, "), ");
8089 return PRINT_SRC_AND_LOC;
8090 }
8091
8092 /* Implement the "print_one" breakpoint_ops method for vfork
8093 catchpoints. */
8094
8095 static void
8096 print_one_catch_vfork (struct breakpoint *b, struct bp_location **last_loc)
8097 {
8098 struct fork_catchpoint *c = (struct fork_catchpoint *) b;
8099 struct value_print_options opts;
8100 struct ui_out *uiout = current_uiout;
8101
8102 get_user_print_options (&opts);
8103 /* Field 4, the address, is omitted (which makes the columns not
8104 line up too nicely with the headers, but the effect is relatively
8105 readable). */
8106 if (opts.addressprint)
8107 ui_out_field_skip (uiout, "addr");
8108 annotate_field (5);
8109 ui_out_text (uiout, "vfork");
8110 if (!ptid_equal (c->forked_inferior_pid, null_ptid))
8111 {
8112 ui_out_text (uiout, ", process ");
8113 ui_out_field_int (uiout, "what",
8114 ptid_get_pid (c->forked_inferior_pid));
8115 ui_out_spaces (uiout, 1);
8116 }
8117
8118 if (ui_out_is_mi_like_p (uiout))
8119 ui_out_field_string (uiout, "catch-type", "vfork");
8120 }
8121
8122 /* Implement the "print_mention" breakpoint_ops method for vfork
8123 catchpoints. */
8124
8125 static void
8126 print_mention_catch_vfork (struct breakpoint *b)
8127 {
8128 printf_filtered (_("Catchpoint %d (vfork)"), b->number);
8129 }
8130
8131 /* Implement the "print_recreate" breakpoint_ops method for vfork
8132 catchpoints. */
8133
8134 static void
8135 print_recreate_catch_vfork (struct breakpoint *b, struct ui_file *fp)
8136 {
8137 fprintf_unfiltered (fp, "catch vfork");
8138 print_recreate_thread (b, fp);
8139 }
8140
8141 /* The breakpoint_ops structure to be used in vfork catchpoints. */
8142
8143 static struct breakpoint_ops catch_vfork_breakpoint_ops;
8144
8145 /* An instance of this type is used to represent an solib catchpoint.
8146 It includes a "struct breakpoint" as a kind of base class; users
8147 downcast to "struct breakpoint *" when needed. A breakpoint is
8148 really of this type iff its ops pointer points to
8149 CATCH_SOLIB_BREAKPOINT_OPS. */
8150
8151 struct solib_catchpoint
8152 {
8153 /* The base class. */
8154 struct breakpoint base;
8155
8156 /* True for "catch load", false for "catch unload". */
8157 unsigned char is_load;
8158
8159 /* Regular expression to match, if any. COMPILED is only valid when
8160 REGEX is non-NULL. */
8161 char *regex;
8162 regex_t compiled;
8163 };
8164
8165 static void
8166 dtor_catch_solib (struct breakpoint *b)
8167 {
8168 struct solib_catchpoint *self = (struct solib_catchpoint *) b;
8169
8170 if (self->regex)
8171 regfree (&self->compiled);
8172 xfree (self->regex);
8173
8174 base_breakpoint_ops.dtor (b);
8175 }
8176
8177 static int
8178 insert_catch_solib (struct bp_location *ignore)
8179 {
8180 return 0;
8181 }
8182
8183 static int
8184 remove_catch_solib (struct bp_location *ignore)
8185 {
8186 return 0;
8187 }
8188
8189 static int
8190 breakpoint_hit_catch_solib (const struct bp_location *bl,
8191 struct address_space *aspace,
8192 CORE_ADDR bp_addr,
8193 const struct target_waitstatus *ws)
8194 {
8195 struct solib_catchpoint *self = (struct solib_catchpoint *) bl->owner;
8196 struct breakpoint *other;
8197
8198 if (ws->kind == TARGET_WAITKIND_LOADED)
8199 return 1;
8200
8201 ALL_BREAKPOINTS (other)
8202 {
8203 struct bp_location *other_bl;
8204
8205 if (other == bl->owner)
8206 continue;
8207
8208 if (other->type != bp_shlib_event)
8209 continue;
8210
8211 if (self->base.pspace != NULL && other->pspace != self->base.pspace)
8212 continue;
8213
8214 for (other_bl = other->loc; other_bl != NULL; other_bl = other_bl->next)
8215 {
8216 if (other->ops->breakpoint_hit (other_bl, aspace, bp_addr, ws))
8217 return 1;
8218 }
8219 }
8220
8221 return 0;
8222 }
8223
8224 static void
8225 check_status_catch_solib (struct bpstats *bs)
8226 {
8227 struct solib_catchpoint *self
8228 = (struct solib_catchpoint *) bs->breakpoint_at;
8229 int ix;
8230
8231 if (self->is_load)
8232 {
8233 struct so_list *iter;
8234
8235 for (ix = 0;
8236 VEC_iterate (so_list_ptr, current_program_space->added_solibs,
8237 ix, iter);
8238 ++ix)
8239 {
8240 if (!self->regex
8241 || regexec (&self->compiled, iter->so_name, 0, NULL, 0) == 0)
8242 return;
8243 }
8244 }
8245 else
8246 {
8247 char *iter;
8248
8249 for (ix = 0;
8250 VEC_iterate (char_ptr, current_program_space->deleted_solibs,
8251 ix, iter);
8252 ++ix)
8253 {
8254 if (!self->regex
8255 || regexec (&self->compiled, iter, 0, NULL, 0) == 0)
8256 return;
8257 }
8258 }
8259
8260 bs->stop = 0;
8261 bs->print_it = print_it_noop;
8262 }
8263
8264 static enum print_stop_action
8265 print_it_catch_solib (bpstat bs)
8266 {
8267 struct breakpoint *b = bs->breakpoint_at;
8268 struct ui_out *uiout = current_uiout;
8269
8270 annotate_catchpoint (b->number);
8271 if (b->disposition == disp_del)
8272 ui_out_text (uiout, "\nTemporary catchpoint ");
8273 else
8274 ui_out_text (uiout, "\nCatchpoint ");
8275 ui_out_field_int (uiout, "bkptno", b->number);
8276 ui_out_text (uiout, "\n");
8277 if (ui_out_is_mi_like_p (uiout))
8278 ui_out_field_string (uiout, "disp", bpdisp_text (b->disposition));
8279 print_solib_event (1);
8280 return PRINT_SRC_AND_LOC;
8281 }
8282
8283 static void
8284 print_one_catch_solib (struct breakpoint *b, struct bp_location **locs)
8285 {
8286 struct solib_catchpoint *self = (struct solib_catchpoint *) b;
8287 struct value_print_options opts;
8288 struct ui_out *uiout = current_uiout;
8289 char *msg;
8290
8291 get_user_print_options (&opts);
8292 /* Field 4, the address, is omitted (which makes the columns not
8293 line up too nicely with the headers, but the effect is relatively
8294 readable). */
8295 if (opts.addressprint)
8296 {
8297 annotate_field (4);
8298 ui_out_field_skip (uiout, "addr");
8299 }
8300
8301 annotate_field (5);
8302 if (self->is_load)
8303 {
8304 if (self->regex)
8305 msg = xstrprintf (_("load of library matching %s"), self->regex);
8306 else
8307 msg = xstrdup (_("load of library"));
8308 }
8309 else
8310 {
8311 if (self->regex)
8312 msg = xstrprintf (_("unload of library matching %s"), self->regex);
8313 else
8314 msg = xstrdup (_("unload of library"));
8315 }
8316 ui_out_field_string (uiout, "what", msg);
8317 xfree (msg);
8318
8319 if (ui_out_is_mi_like_p (uiout))
8320 ui_out_field_string (uiout, "catch-type",
8321 self->is_load ? "load" : "unload");
8322 }
8323
8324 static void
8325 print_mention_catch_solib (struct breakpoint *b)
8326 {
8327 struct solib_catchpoint *self = (struct solib_catchpoint *) b;
8328
8329 printf_filtered (_("Catchpoint %d (%s)"), b->number,
8330 self->is_load ? "load" : "unload");
8331 }
8332
8333 static void
8334 print_recreate_catch_solib (struct breakpoint *b, struct ui_file *fp)
8335 {
8336 struct solib_catchpoint *self = (struct solib_catchpoint *) b;
8337
8338 fprintf_unfiltered (fp, "%s %s",
8339 b->disposition == disp_del ? "tcatch" : "catch",
8340 self->is_load ? "load" : "unload");
8341 if (self->regex)
8342 fprintf_unfiltered (fp, " %s", self->regex);
8343 fprintf_unfiltered (fp, "\n");
8344 }
8345
8346 static struct breakpoint_ops catch_solib_breakpoint_ops;
8347
8348 /* Shared helper function (MI and CLI) for creating and installing
8349 a shared object event catchpoint. If IS_LOAD is non-zero then
8350 the events to be caught are load events, otherwise they are
8351 unload events. If IS_TEMP is non-zero the catchpoint is a
8352 temporary one. If ENABLED is non-zero the catchpoint is
8353 created in an enabled state. */
8354
8355 void
8356 add_solib_catchpoint (char *arg, int is_load, int is_temp, int enabled)
8357 {
8358 struct solib_catchpoint *c;
8359 struct gdbarch *gdbarch = get_current_arch ();
8360 struct cleanup *cleanup;
8361
8362 if (!arg)
8363 arg = "";
8364 arg = skip_spaces (arg);
8365
8366 c = XCNEW (struct solib_catchpoint);
8367 cleanup = make_cleanup (xfree, c);
8368
8369 if (*arg != '\0')
8370 {
8371 int errcode;
8372
8373 errcode = regcomp (&c->compiled, arg, REG_NOSUB);
8374 if (errcode != 0)
8375 {
8376 char *err = get_regcomp_error (errcode, &c->compiled);
8377
8378 make_cleanup (xfree, err);
8379 error (_("Invalid regexp (%s): %s"), err, arg);
8380 }
8381 c->regex = xstrdup (arg);
8382 }
8383
8384 c->is_load = is_load;
8385 init_catchpoint (&c->base, gdbarch, is_temp, NULL,
8386 &catch_solib_breakpoint_ops);
8387
8388 c->base.enable_state = enabled ? bp_enabled : bp_disabled;
8389
8390 discard_cleanups (cleanup);
8391 install_breakpoint (0, &c->base, 1);
8392 }
8393
8394 /* A helper function that does all the work for "catch load" and
8395 "catch unload". */
8396
8397 static void
8398 catch_load_or_unload (char *arg, int from_tty, int is_load,
8399 struct cmd_list_element *command)
8400 {
8401 int tempflag;
8402 const int enabled = 1;
8403
8404 tempflag = get_cmd_context (command) == CATCH_TEMPORARY;
8405
8406 add_solib_catchpoint (arg, is_load, tempflag, enabled);
8407 }
8408
8409 static void
8410 catch_load_command_1 (char *arg, int from_tty,
8411 struct cmd_list_element *command)
8412 {
8413 catch_load_or_unload (arg, from_tty, 1, command);
8414 }
8415
8416 static void
8417 catch_unload_command_1 (char *arg, int from_tty,
8418 struct cmd_list_element *command)
8419 {
8420 catch_load_or_unload (arg, from_tty, 0, command);
8421 }
8422
8423 /* Initialize a new breakpoint of the bp_catchpoint kind. If TEMPFLAG
8424 is non-zero, then make the breakpoint temporary. If COND_STRING is
8425 not NULL, then store it in the breakpoint. OPS, if not NULL, is
8426 the breakpoint_ops structure associated to the catchpoint. */
8427
8428 void
8429 init_catchpoint (struct breakpoint *b,
8430 struct gdbarch *gdbarch, int tempflag,
8431 char *cond_string,
8432 const struct breakpoint_ops *ops)
8433 {
8434 struct symtab_and_line sal;
8435
8436 init_sal (&sal);
8437 sal.pspace = current_program_space;
8438
8439 init_raw_breakpoint (b, gdbarch, sal, bp_catchpoint, ops);
8440
8441 b->cond_string = (cond_string == NULL) ? NULL : xstrdup (cond_string);
8442 b->disposition = tempflag ? disp_del : disp_donttouch;
8443 }
8444
8445 void
8446 install_breakpoint (int internal, struct breakpoint *b, int update_gll)
8447 {
8448 add_to_breakpoint_chain (b);
8449 set_breakpoint_number (internal, b);
8450 if (is_tracepoint (b))
8451 set_tracepoint_count (breakpoint_count);
8452 if (!internal)
8453 mention (b);
8454 observer_notify_breakpoint_created (b);
8455
8456 if (update_gll)
8457 update_global_location_list (UGLL_MAY_INSERT);
8458 }
8459
8460 static void
8461 create_fork_vfork_event_catchpoint (struct gdbarch *gdbarch,
8462 int tempflag, char *cond_string,
8463 const struct breakpoint_ops *ops)
8464 {
8465 struct fork_catchpoint *c = XNEW (struct fork_catchpoint);
8466
8467 init_catchpoint (&c->base, gdbarch, tempflag, cond_string, ops);
8468
8469 c->forked_inferior_pid = null_ptid;
8470
8471 install_breakpoint (0, &c->base, 1);
8472 }
8473
8474 /* Exec catchpoints. */
8475
8476 /* An instance of this type is used to represent an exec catchpoint.
8477 It includes a "struct breakpoint" as a kind of base class; users
8478 downcast to "struct breakpoint *" when needed. A breakpoint is
8479 really of this type iff its ops pointer points to
8480 CATCH_EXEC_BREAKPOINT_OPS. */
8481
8482 struct exec_catchpoint
8483 {
8484 /* The base class. */
8485 struct breakpoint base;
8486
8487 /* Filename of a program whose exec triggered this catchpoint.
8488 This field is only valid immediately after this catchpoint has
8489 triggered. */
8490 char *exec_pathname;
8491 };
8492
8493 /* Implement the "dtor" breakpoint_ops method for exec
8494 catchpoints. */
8495
8496 static void
8497 dtor_catch_exec (struct breakpoint *b)
8498 {
8499 struct exec_catchpoint *c = (struct exec_catchpoint *) b;
8500
8501 xfree (c->exec_pathname);
8502
8503 base_breakpoint_ops.dtor (b);
8504 }
8505
8506 static int
8507 insert_catch_exec (struct bp_location *bl)
8508 {
8509 return target_insert_exec_catchpoint (ptid_get_pid (inferior_ptid));
8510 }
8511
8512 static int
8513 remove_catch_exec (struct bp_location *bl)
8514 {
8515 return target_remove_exec_catchpoint (ptid_get_pid (inferior_ptid));
8516 }
8517
8518 static int
8519 breakpoint_hit_catch_exec (const struct bp_location *bl,
8520 struct address_space *aspace, CORE_ADDR bp_addr,
8521 const struct target_waitstatus *ws)
8522 {
8523 struct exec_catchpoint *c = (struct exec_catchpoint *) bl->owner;
8524
8525 if (ws->kind != TARGET_WAITKIND_EXECD)
8526 return 0;
8527
8528 c->exec_pathname = xstrdup (ws->value.execd_pathname);
8529 return 1;
8530 }
8531
8532 static enum print_stop_action
8533 print_it_catch_exec (bpstat bs)
8534 {
8535 struct ui_out *uiout = current_uiout;
8536 struct breakpoint *b = bs->breakpoint_at;
8537 struct exec_catchpoint *c = (struct exec_catchpoint *) b;
8538
8539 annotate_catchpoint (b->number);
8540 if (b->disposition == disp_del)
8541 ui_out_text (uiout, "\nTemporary catchpoint ");
8542 else
8543 ui_out_text (uiout, "\nCatchpoint ");
8544 if (ui_out_is_mi_like_p (uiout))
8545 {
8546 ui_out_field_string (uiout, "reason",
8547 async_reason_lookup (EXEC_ASYNC_EXEC));
8548 ui_out_field_string (uiout, "disp", bpdisp_text (b->disposition));
8549 }
8550 ui_out_field_int (uiout, "bkptno", b->number);
8551 ui_out_text (uiout, " (exec'd ");
8552 ui_out_field_string (uiout, "new-exec", c->exec_pathname);
8553 ui_out_text (uiout, "), ");
8554
8555 return PRINT_SRC_AND_LOC;
8556 }
8557
8558 static void
8559 print_one_catch_exec (struct breakpoint *b, struct bp_location **last_loc)
8560 {
8561 struct exec_catchpoint *c = (struct exec_catchpoint *) b;
8562 struct value_print_options opts;
8563 struct ui_out *uiout = current_uiout;
8564
8565 get_user_print_options (&opts);
8566
8567 /* Field 4, the address, is omitted (which makes the columns
8568 not line up too nicely with the headers, but the effect
8569 is relatively readable). */
8570 if (opts.addressprint)
8571 ui_out_field_skip (uiout, "addr");
8572 annotate_field (5);
8573 ui_out_text (uiout, "exec");
8574 if (c->exec_pathname != NULL)
8575 {
8576 ui_out_text (uiout, ", program \"");
8577 ui_out_field_string (uiout, "what", c->exec_pathname);
8578 ui_out_text (uiout, "\" ");
8579 }
8580
8581 if (ui_out_is_mi_like_p (uiout))
8582 ui_out_field_string (uiout, "catch-type", "exec");
8583 }
8584
8585 static void
8586 print_mention_catch_exec (struct breakpoint *b)
8587 {
8588 printf_filtered (_("Catchpoint %d (exec)"), b->number);
8589 }
8590
8591 /* Implement the "print_recreate" breakpoint_ops method for exec
8592 catchpoints. */
8593
8594 static void
8595 print_recreate_catch_exec (struct breakpoint *b, struct ui_file *fp)
8596 {
8597 fprintf_unfiltered (fp, "catch exec");
8598 print_recreate_thread (b, fp);
8599 }
8600
8601 static struct breakpoint_ops catch_exec_breakpoint_ops;
8602
8603 static int
8604 hw_breakpoint_used_count (void)
8605 {
8606 int i = 0;
8607 struct breakpoint *b;
8608 struct bp_location *bl;
8609
8610 ALL_BREAKPOINTS (b)
8611 {
8612 if (b->type == bp_hardware_breakpoint && breakpoint_enabled (b))
8613 for (bl = b->loc; bl; bl = bl->next)
8614 {
8615 /* Special types of hardware breakpoints may use more than
8616 one register. */
8617 i += b->ops->resources_needed (bl);
8618 }
8619 }
8620
8621 return i;
8622 }
8623
8624 /* Returns the resources B would use if it were a hardware
8625 watchpoint. */
8626
8627 static int
8628 hw_watchpoint_use_count (struct breakpoint *b)
8629 {
8630 int i = 0;
8631 struct bp_location *bl;
8632
8633 if (!breakpoint_enabled (b))
8634 return 0;
8635
8636 for (bl = b->loc; bl; bl = bl->next)
8637 {
8638 /* Special types of hardware watchpoints may use more than
8639 one register. */
8640 i += b->ops->resources_needed (bl);
8641 }
8642
8643 return i;
8644 }
8645
8646 /* Returns the sum the used resources of all hardware watchpoints of
8647 type TYPE in the breakpoints list. Also returns in OTHER_TYPE_USED
8648 the sum of the used resources of all hardware watchpoints of other
8649 types _not_ TYPE. */
8650
8651 static int
8652 hw_watchpoint_used_count_others (struct breakpoint *except,
8653 enum bptype type, int *other_type_used)
8654 {
8655 int i = 0;
8656 struct breakpoint *b;
8657
8658 *other_type_used = 0;
8659 ALL_BREAKPOINTS (b)
8660 {
8661 if (b == except)
8662 continue;
8663 if (!breakpoint_enabled (b))
8664 continue;
8665
8666 if (b->type == type)
8667 i += hw_watchpoint_use_count (b);
8668 else if (is_hardware_watchpoint (b))
8669 *other_type_used = 1;
8670 }
8671
8672 return i;
8673 }
8674
8675 void
8676 disable_watchpoints_before_interactive_call_start (void)
8677 {
8678 struct breakpoint *b;
8679
8680 ALL_BREAKPOINTS (b)
8681 {
8682 if (is_watchpoint (b) && breakpoint_enabled (b))
8683 {
8684 b->enable_state = bp_call_disabled;
8685 update_global_location_list (UGLL_DONT_INSERT);
8686 }
8687 }
8688 }
8689
8690 void
8691 enable_watchpoints_after_interactive_call_stop (void)
8692 {
8693 struct breakpoint *b;
8694
8695 ALL_BREAKPOINTS (b)
8696 {
8697 if (is_watchpoint (b) && b->enable_state == bp_call_disabled)
8698 {
8699 b->enable_state = bp_enabled;
8700 update_global_location_list (UGLL_MAY_INSERT);
8701 }
8702 }
8703 }
8704
8705 void
8706 disable_breakpoints_before_startup (void)
8707 {
8708 current_program_space->executing_startup = 1;
8709 update_global_location_list (UGLL_DONT_INSERT);
8710 }
8711
8712 void
8713 enable_breakpoints_after_startup (void)
8714 {
8715 current_program_space->executing_startup = 0;
8716 breakpoint_re_set ();
8717 }
8718
8719 /* Create a new single-step breakpoint for thread THREAD, with no
8720 locations. */
8721
8722 static struct breakpoint *
8723 new_single_step_breakpoint (int thread, struct gdbarch *gdbarch)
8724 {
8725 struct breakpoint *b = XNEW (struct breakpoint);
8726
8727 init_raw_breakpoint_without_location (b, gdbarch, bp_single_step,
8728 &momentary_breakpoint_ops);
8729
8730 b->disposition = disp_donttouch;
8731 b->frame_id = null_frame_id;
8732
8733 b->thread = thread;
8734 gdb_assert (b->thread != 0);
8735
8736 add_to_breakpoint_chain (b);
8737
8738 return b;
8739 }
8740
8741 /* Set a momentary breakpoint of type TYPE at address specified by
8742 SAL. If FRAME_ID is valid, the breakpoint is restricted to that
8743 frame. */
8744
8745 struct breakpoint *
8746 set_momentary_breakpoint (struct gdbarch *gdbarch, struct symtab_and_line sal,
8747 struct frame_id frame_id, enum bptype type)
8748 {
8749 struct breakpoint *b;
8750
8751 /* If FRAME_ID is valid, it should be a real frame, not an inlined or
8752 tail-called one. */
8753 gdb_assert (!frame_id_artificial_p (frame_id));
8754
8755 b = set_raw_breakpoint (gdbarch, sal, type, &momentary_breakpoint_ops);
8756 b->enable_state = bp_enabled;
8757 b->disposition = disp_donttouch;
8758 b->frame_id = frame_id;
8759
8760 /* If we're debugging a multi-threaded program, then we want
8761 momentary breakpoints to be active in only a single thread of
8762 control. */
8763 if (in_thread_list (inferior_ptid))
8764 b->thread = pid_to_thread_id (inferior_ptid);
8765
8766 update_global_location_list_nothrow (UGLL_MAY_INSERT);
8767
8768 return b;
8769 }
8770
8771 /* Make a momentary breakpoint based on the master breakpoint ORIG.
8772 The new breakpoint will have type TYPE, use OPS as its
8773 breakpoint_ops, and will set enabled to LOC_ENABLED. */
8774
8775 static struct breakpoint *
8776 momentary_breakpoint_from_master (struct breakpoint *orig,
8777 enum bptype type,
8778 const struct breakpoint_ops *ops,
8779 int loc_enabled)
8780 {
8781 struct breakpoint *copy;
8782
8783 copy = set_raw_breakpoint_without_location (orig->gdbarch, type, ops);
8784 copy->loc = allocate_bp_location (copy);
8785 set_breakpoint_location_function (copy->loc, 1);
8786
8787 copy->loc->gdbarch = orig->loc->gdbarch;
8788 copy->loc->requested_address = orig->loc->requested_address;
8789 copy->loc->address = orig->loc->address;
8790 copy->loc->section = orig->loc->section;
8791 copy->loc->pspace = orig->loc->pspace;
8792 copy->loc->probe = orig->loc->probe;
8793 copy->loc->line_number = orig->loc->line_number;
8794 copy->loc->symtab = orig->loc->symtab;
8795 copy->loc->enabled = loc_enabled;
8796 copy->frame_id = orig->frame_id;
8797 copy->thread = orig->thread;
8798 copy->pspace = orig->pspace;
8799
8800 copy->enable_state = bp_enabled;
8801 copy->disposition = disp_donttouch;
8802 copy->number = internal_breakpoint_number--;
8803
8804 update_global_location_list_nothrow (UGLL_DONT_INSERT);
8805 return copy;
8806 }
8807
8808 /* Make a deep copy of momentary breakpoint ORIG. Returns NULL if
8809 ORIG is NULL. */
8810
8811 struct breakpoint *
8812 clone_momentary_breakpoint (struct breakpoint *orig)
8813 {
8814 /* If there's nothing to clone, then return nothing. */
8815 if (orig == NULL)
8816 return NULL;
8817
8818 return momentary_breakpoint_from_master (orig, orig->type, orig->ops, 0);
8819 }
8820
8821 struct breakpoint *
8822 set_momentary_breakpoint_at_pc (struct gdbarch *gdbarch, CORE_ADDR pc,
8823 enum bptype type)
8824 {
8825 struct symtab_and_line sal;
8826
8827 sal = find_pc_line (pc, 0);
8828 sal.pc = pc;
8829 sal.section = find_pc_overlay (pc);
8830 sal.explicit_pc = 1;
8831
8832 return set_momentary_breakpoint (gdbarch, sal, null_frame_id, type);
8833 }
8834 \f
8835
8836 /* Tell the user we have just set a breakpoint B. */
8837
8838 static void
8839 mention (struct breakpoint *b)
8840 {
8841 b->ops->print_mention (b);
8842 if (ui_out_is_mi_like_p (current_uiout))
8843 return;
8844 printf_filtered ("\n");
8845 }
8846 \f
8847
8848 static int bp_loc_is_permanent (struct bp_location *loc);
8849
8850 static struct bp_location *
8851 add_location_to_breakpoint (struct breakpoint *b,
8852 const struct symtab_and_line *sal)
8853 {
8854 struct bp_location *loc, **tmp;
8855 CORE_ADDR adjusted_address;
8856 struct gdbarch *loc_gdbarch = get_sal_arch (*sal);
8857
8858 if (loc_gdbarch == NULL)
8859 loc_gdbarch = b->gdbarch;
8860
8861 /* Adjust the breakpoint's address prior to allocating a location.
8862 Once we call allocate_bp_location(), that mostly uninitialized
8863 location will be placed on the location chain. Adjustment of the
8864 breakpoint may cause target_read_memory() to be called and we do
8865 not want its scan of the location chain to find a breakpoint and
8866 location that's only been partially initialized. */
8867 adjusted_address = adjust_breakpoint_address (loc_gdbarch,
8868 sal->pc, b->type);
8869
8870 /* Sort the locations by their ADDRESS. */
8871 loc = allocate_bp_location (b);
8872 for (tmp = &(b->loc); *tmp != NULL && (*tmp)->address <= adjusted_address;
8873 tmp = &((*tmp)->next))
8874 ;
8875 loc->next = *tmp;
8876 *tmp = loc;
8877
8878 loc->requested_address = sal->pc;
8879 loc->address = adjusted_address;
8880 loc->pspace = sal->pspace;
8881 loc->probe.probe = sal->probe;
8882 loc->probe.objfile = sal->objfile;
8883 gdb_assert (loc->pspace != NULL);
8884 loc->section = sal->section;
8885 loc->gdbarch = loc_gdbarch;
8886 loc->line_number = sal->line;
8887 loc->symtab = sal->symtab;
8888
8889 set_breakpoint_location_function (loc,
8890 sal->explicit_pc || sal->explicit_line);
8891
8892 /* While by definition, permanent breakpoints are already present in the
8893 code, we don't mark the location as inserted. Normally one would expect
8894 that GDB could rely on that breakpoint instruction to stop the program,
8895 thus removing the need to insert its own breakpoint, except that executing
8896 the breakpoint instruction can kill the target instead of reporting a
8897 SIGTRAP. E.g., on SPARC, when interrupts are disabled, executing the
8898 instruction resets the CPU, so QEMU 2.0.0 for SPARC correspondingly dies
8899 with "Trap 0x02 while interrupts disabled, Error state". Letting the
8900 breakpoint be inserted normally results in QEMU knowing about the GDB
8901 breakpoint, and thus trap before the breakpoint instruction is executed.
8902 (If GDB later needs to continue execution past the permanent breakpoint,
8903 it manually increments the PC, thus avoiding executing the breakpoint
8904 instruction.) */
8905 if (bp_loc_is_permanent (loc))
8906 loc->permanent = 1;
8907
8908 return loc;
8909 }
8910 \f
8911
8912 /* See breakpoint.h. */
8913
8914 int
8915 program_breakpoint_here_p (struct gdbarch *gdbarch, CORE_ADDR address)
8916 {
8917 int len;
8918 CORE_ADDR addr;
8919 const gdb_byte *bpoint;
8920 gdb_byte *target_mem;
8921 struct cleanup *cleanup;
8922 int retval = 0;
8923
8924 addr = address;
8925 bpoint = gdbarch_breakpoint_from_pc (gdbarch, &addr, &len);
8926
8927 /* Software breakpoints unsupported? */
8928 if (bpoint == NULL)
8929 return 0;
8930
8931 target_mem = alloca (len);
8932
8933 /* Enable the automatic memory restoration from breakpoints while
8934 we read the memory. Otherwise we could say about our temporary
8935 breakpoints they are permanent. */
8936 cleanup = make_show_memory_breakpoints_cleanup (0);
8937
8938 if (target_read_memory (address, target_mem, len) == 0
8939 && memcmp (target_mem, bpoint, len) == 0)
8940 retval = 1;
8941
8942 do_cleanups (cleanup);
8943
8944 return retval;
8945 }
8946
8947 /* Return 1 if LOC is pointing to a permanent breakpoint,
8948 return 0 otherwise. */
8949
8950 static int
8951 bp_loc_is_permanent (struct bp_location *loc)
8952 {
8953 struct cleanup *cleanup;
8954 int retval;
8955
8956 gdb_assert (loc != NULL);
8957
8958 cleanup = save_current_space_and_thread ();
8959 switch_to_program_space_and_thread (loc->pspace);
8960
8961 retval = program_breakpoint_here_p (loc->gdbarch, loc->address);
8962
8963 do_cleanups (cleanup);
8964
8965 return retval;
8966 }
8967
8968 /* Build a command list for the dprintf corresponding to the current
8969 settings of the dprintf style options. */
8970
8971 static void
8972 update_dprintf_command_list (struct breakpoint *b)
8973 {
8974 char *dprintf_args = b->extra_string;
8975 char *printf_line = NULL;
8976
8977 if (!dprintf_args)
8978 return;
8979
8980 dprintf_args = skip_spaces (dprintf_args);
8981
8982 /* Allow a comma, as it may have terminated a location, but don't
8983 insist on it. */
8984 if (*dprintf_args == ',')
8985 ++dprintf_args;
8986 dprintf_args = skip_spaces (dprintf_args);
8987
8988 if (*dprintf_args != '"')
8989 error (_("Bad format string, missing '\"'."));
8990
8991 if (strcmp (dprintf_style, dprintf_style_gdb) == 0)
8992 printf_line = xstrprintf ("printf %s", dprintf_args);
8993 else if (strcmp (dprintf_style, dprintf_style_call) == 0)
8994 {
8995 if (!dprintf_function)
8996 error (_("No function supplied for dprintf call"));
8997
8998 if (dprintf_channel && strlen (dprintf_channel) > 0)
8999 printf_line = xstrprintf ("call (void) %s (%s,%s)",
9000 dprintf_function,
9001 dprintf_channel,
9002 dprintf_args);
9003 else
9004 printf_line = xstrprintf ("call (void) %s (%s)",
9005 dprintf_function,
9006 dprintf_args);
9007 }
9008 else if (strcmp (dprintf_style, dprintf_style_agent) == 0)
9009 {
9010 if (target_can_run_breakpoint_commands ())
9011 printf_line = xstrprintf ("agent-printf %s", dprintf_args);
9012 else
9013 {
9014 warning (_("Target cannot run dprintf commands, falling back to GDB printf"));
9015 printf_line = xstrprintf ("printf %s", dprintf_args);
9016 }
9017 }
9018 else
9019 internal_error (__FILE__, __LINE__,
9020 _("Invalid dprintf style."));
9021
9022 gdb_assert (printf_line != NULL);
9023 /* Manufacture a printf sequence. */
9024 {
9025 struct command_line *printf_cmd_line
9026 = xmalloc (sizeof (struct command_line));
9027
9028 printf_cmd_line->control_type = simple_control;
9029 printf_cmd_line->body_count = 0;
9030 printf_cmd_line->body_list = NULL;
9031 printf_cmd_line->next = NULL;
9032 printf_cmd_line->line = printf_line;
9033
9034 breakpoint_set_commands (b, printf_cmd_line);
9035 }
9036 }
9037
9038 /* Update all dprintf commands, making their command lists reflect
9039 current style settings. */
9040
9041 static void
9042 update_dprintf_commands (char *args, int from_tty,
9043 struct cmd_list_element *c)
9044 {
9045 struct breakpoint *b;
9046
9047 ALL_BREAKPOINTS (b)
9048 {
9049 if (b->type == bp_dprintf)
9050 update_dprintf_command_list (b);
9051 }
9052 }
9053
9054 /* Create a breakpoint with SAL as location. Use ADDR_STRING
9055 as textual description of the location, and COND_STRING
9056 as condition expression. */
9057
9058 static void
9059 init_breakpoint_sal (struct breakpoint *b, struct gdbarch *gdbarch,
9060 struct symtabs_and_lines sals, char *addr_string,
9061 char *filter, char *cond_string,
9062 char *extra_string,
9063 enum bptype type, enum bpdisp disposition,
9064 int thread, int task, int ignore_count,
9065 const struct breakpoint_ops *ops, int from_tty,
9066 int enabled, int internal, unsigned flags,
9067 int display_canonical)
9068 {
9069 int i;
9070
9071 if (type == bp_hardware_breakpoint)
9072 {
9073 int target_resources_ok;
9074
9075 i = hw_breakpoint_used_count ();
9076 target_resources_ok =
9077 target_can_use_hardware_watchpoint (bp_hardware_breakpoint,
9078 i + 1, 0);
9079 if (target_resources_ok == 0)
9080 error (_("No hardware breakpoint support in the target."));
9081 else if (target_resources_ok < 0)
9082 error (_("Hardware breakpoints used exceeds limit."));
9083 }
9084
9085 gdb_assert (sals.nelts > 0);
9086
9087 for (i = 0; i < sals.nelts; ++i)
9088 {
9089 struct symtab_and_line sal = sals.sals[i];
9090 struct bp_location *loc;
9091
9092 if (from_tty)
9093 {
9094 struct gdbarch *loc_gdbarch = get_sal_arch (sal);
9095 if (!loc_gdbarch)
9096 loc_gdbarch = gdbarch;
9097
9098 describe_other_breakpoints (loc_gdbarch,
9099 sal.pspace, sal.pc, sal.section, thread);
9100 }
9101
9102 if (i == 0)
9103 {
9104 init_raw_breakpoint (b, gdbarch, sal, type, ops);
9105 b->thread = thread;
9106 b->task = task;
9107
9108 b->cond_string = cond_string;
9109 b->extra_string = extra_string;
9110 b->ignore_count = ignore_count;
9111 b->enable_state = enabled ? bp_enabled : bp_disabled;
9112 b->disposition = disposition;
9113
9114 if ((flags & CREATE_BREAKPOINT_FLAGS_INSERTED) != 0)
9115 b->loc->inserted = 1;
9116
9117 if (type == bp_static_tracepoint)
9118 {
9119 struct tracepoint *t = (struct tracepoint *) b;
9120 struct static_tracepoint_marker marker;
9121
9122 if (strace_marker_p (b))
9123 {
9124 /* We already know the marker exists, otherwise, we
9125 wouldn't see a sal for it. */
9126 char *p = &addr_string[3];
9127 char *endp;
9128 char *marker_str;
9129
9130 p = skip_spaces (p);
9131
9132 endp = skip_to_space (p);
9133
9134 marker_str = savestring (p, endp - p);
9135 t->static_trace_marker_id = marker_str;
9136
9137 printf_filtered (_("Probed static tracepoint "
9138 "marker \"%s\"\n"),
9139 t->static_trace_marker_id);
9140 }
9141 else if (target_static_tracepoint_marker_at (sal.pc, &marker))
9142 {
9143 t->static_trace_marker_id = xstrdup (marker.str_id);
9144 release_static_tracepoint_marker (&marker);
9145
9146 printf_filtered (_("Probed static tracepoint "
9147 "marker \"%s\"\n"),
9148 t->static_trace_marker_id);
9149 }
9150 else
9151 warning (_("Couldn't determine the static "
9152 "tracepoint marker to probe"));
9153 }
9154
9155 loc = b->loc;
9156 }
9157 else
9158 {
9159 loc = add_location_to_breakpoint (b, &sal);
9160 if ((flags & CREATE_BREAKPOINT_FLAGS_INSERTED) != 0)
9161 loc->inserted = 1;
9162 }
9163
9164 if (b->cond_string)
9165 {
9166 const char *arg = b->cond_string;
9167
9168 loc->cond = parse_exp_1 (&arg, loc->address,
9169 block_for_pc (loc->address), 0);
9170 if (*arg)
9171 error (_("Garbage '%s' follows condition"), arg);
9172 }
9173
9174 /* Dynamic printf requires and uses additional arguments on the
9175 command line, otherwise it's an error. */
9176 if (type == bp_dprintf)
9177 {
9178 if (b->extra_string)
9179 update_dprintf_command_list (b);
9180 else
9181 error (_("Format string required"));
9182 }
9183 else if (b->extra_string)
9184 error (_("Garbage '%s' at end of command"), b->extra_string);
9185 }
9186
9187 b->display_canonical = display_canonical;
9188 if (addr_string)
9189 b->addr_string = addr_string;
9190 else
9191 /* addr_string has to be used or breakpoint_re_set will delete
9192 me. */
9193 b->addr_string
9194 = xstrprintf ("*%s", paddress (b->loc->gdbarch, b->loc->address));
9195 b->filter = filter;
9196 }
9197
9198 static void
9199 create_breakpoint_sal (struct gdbarch *gdbarch,
9200 struct symtabs_and_lines sals, char *addr_string,
9201 char *filter, char *cond_string,
9202 char *extra_string,
9203 enum bptype type, enum bpdisp disposition,
9204 int thread, int task, int ignore_count,
9205 const struct breakpoint_ops *ops, int from_tty,
9206 int enabled, int internal, unsigned flags,
9207 int display_canonical)
9208 {
9209 struct breakpoint *b;
9210 struct cleanup *old_chain;
9211
9212 if (is_tracepoint_type (type))
9213 {
9214 struct tracepoint *t;
9215
9216 t = XCNEW (struct tracepoint);
9217 b = &t->base;
9218 }
9219 else
9220 b = XNEW (struct breakpoint);
9221
9222 old_chain = make_cleanup (xfree, b);
9223
9224 init_breakpoint_sal (b, gdbarch,
9225 sals, addr_string,
9226 filter, cond_string, extra_string,
9227 type, disposition,
9228 thread, task, ignore_count,
9229 ops, from_tty,
9230 enabled, internal, flags,
9231 display_canonical);
9232 discard_cleanups (old_chain);
9233
9234 install_breakpoint (internal, b, 0);
9235 }
9236
9237 /* Add SALS.nelts breakpoints to the breakpoint table. For each
9238 SALS.sal[i] breakpoint, include the corresponding ADDR_STRING[i]
9239 value. COND_STRING, if not NULL, specified the condition to be
9240 used for all breakpoints. Essentially the only case where
9241 SALS.nelts is not 1 is when we set a breakpoint on an overloaded
9242 function. In that case, it's still not possible to specify
9243 separate conditions for different overloaded functions, so
9244 we take just a single condition string.
9245
9246 NOTE: If the function succeeds, the caller is expected to cleanup
9247 the arrays ADDR_STRING, COND_STRING, and SALS (but not the
9248 array contents). If the function fails (error() is called), the
9249 caller is expected to cleanups both the ADDR_STRING, COND_STRING,
9250 COND and SALS arrays and each of those arrays contents. */
9251
9252 static void
9253 create_breakpoints_sal (struct gdbarch *gdbarch,
9254 struct linespec_result *canonical,
9255 char *cond_string, char *extra_string,
9256 enum bptype type, enum bpdisp disposition,
9257 int thread, int task, int ignore_count,
9258 const struct breakpoint_ops *ops, int from_tty,
9259 int enabled, int internal, unsigned flags)
9260 {
9261 int i;
9262 struct linespec_sals *lsal;
9263
9264 if (canonical->pre_expanded)
9265 gdb_assert (VEC_length (linespec_sals, canonical->sals) == 1);
9266
9267 for (i = 0; VEC_iterate (linespec_sals, canonical->sals, i, lsal); ++i)
9268 {
9269 /* Note that 'addr_string' can be NULL in the case of a plain
9270 'break', without arguments. */
9271 char *addr_string = (canonical->addr_string
9272 ? xstrdup (canonical->addr_string)
9273 : NULL);
9274 char *filter_string = lsal->canonical ? xstrdup (lsal->canonical) : NULL;
9275 struct cleanup *inner = make_cleanup (xfree, addr_string);
9276
9277 make_cleanup (xfree, filter_string);
9278 create_breakpoint_sal (gdbarch, lsal->sals,
9279 addr_string,
9280 filter_string,
9281 cond_string, extra_string,
9282 type, disposition,
9283 thread, task, ignore_count, ops,
9284 from_tty, enabled, internal, flags,
9285 canonical->special_display);
9286 discard_cleanups (inner);
9287 }
9288 }
9289
9290 /* Parse ADDRESS which is assumed to be a SAL specification possibly
9291 followed by conditionals. On return, SALS contains an array of SAL
9292 addresses found. ADDR_STRING contains a vector of (canonical)
9293 address strings. ADDRESS points to the end of the SAL.
9294
9295 The array and the line spec strings are allocated on the heap, it is
9296 the caller's responsibility to free them. */
9297
9298 static void
9299 parse_breakpoint_sals (char **address,
9300 struct linespec_result *canonical)
9301 {
9302 /* If no arg given, or if first arg is 'if ', use the default
9303 breakpoint. */
9304 if ((*address) == NULL || linespec_lexer_lex_keyword (*address))
9305 {
9306 /* The last displayed codepoint, if it's valid, is our default breakpoint
9307 address. */
9308 if (last_displayed_sal_is_valid ())
9309 {
9310 struct linespec_sals lsal;
9311 struct symtab_and_line sal;
9312 CORE_ADDR pc;
9313
9314 init_sal (&sal); /* Initialize to zeroes. */
9315 lsal.sals.sals = (struct symtab_and_line *)
9316 xmalloc (sizeof (struct symtab_and_line));
9317
9318 /* Set sal's pspace, pc, symtab, and line to the values
9319 corresponding to the last call to print_frame_info.
9320 Be sure to reinitialize LINE with NOTCURRENT == 0
9321 as the breakpoint line number is inappropriate otherwise.
9322 find_pc_line would adjust PC, re-set it back. */
9323 get_last_displayed_sal (&sal);
9324 pc = sal.pc;
9325 sal = find_pc_line (pc, 0);
9326
9327 /* "break" without arguments is equivalent to "break *PC"
9328 where PC is the last displayed codepoint's address. So
9329 make sure to set sal.explicit_pc to prevent GDB from
9330 trying to expand the list of sals to include all other
9331 instances with the same symtab and line. */
9332 sal.pc = pc;
9333 sal.explicit_pc = 1;
9334
9335 lsal.sals.sals[0] = sal;
9336 lsal.sals.nelts = 1;
9337 lsal.canonical = NULL;
9338
9339 VEC_safe_push (linespec_sals, canonical->sals, &lsal);
9340 }
9341 else
9342 error (_("No default breakpoint address now."));
9343 }
9344 else
9345 {
9346 struct symtab_and_line cursal = get_current_source_symtab_and_line ();
9347
9348 /* Force almost all breakpoints to be in terms of the
9349 current_source_symtab (which is decode_line_1's default).
9350 This should produce the results we want almost all of the
9351 time while leaving default_breakpoint_* alone.
9352
9353 ObjC: However, don't match an Objective-C method name which
9354 may have a '+' or '-' succeeded by a '['. */
9355 if (last_displayed_sal_is_valid ()
9356 && (!cursal.symtab
9357 || ((strchr ("+-", (*address)[0]) != NULL)
9358 && ((*address)[1] != '['))))
9359 decode_line_full (address, DECODE_LINE_FUNFIRSTLINE,
9360 get_last_displayed_symtab (),
9361 get_last_displayed_line (),
9362 canonical, NULL, NULL);
9363 else
9364 decode_line_full (address, DECODE_LINE_FUNFIRSTLINE,
9365 cursal.symtab, cursal.line, canonical, NULL, NULL);
9366 }
9367 }
9368
9369
9370 /* Convert each SAL into a real PC. Verify that the PC can be
9371 inserted as a breakpoint. If it can't throw an error. */
9372
9373 static void
9374 breakpoint_sals_to_pc (struct symtabs_and_lines *sals)
9375 {
9376 int i;
9377
9378 for (i = 0; i < sals->nelts; i++)
9379 resolve_sal_pc (&sals->sals[i]);
9380 }
9381
9382 /* Fast tracepoints may have restrictions on valid locations. For
9383 instance, a fast tracepoint using a jump instead of a trap will
9384 likely have to overwrite more bytes than a trap would, and so can
9385 only be placed where the instruction is longer than the jump, or a
9386 multi-instruction sequence does not have a jump into the middle of
9387 it, etc. */
9388
9389 static void
9390 check_fast_tracepoint_sals (struct gdbarch *gdbarch,
9391 struct symtabs_and_lines *sals)
9392 {
9393 int i, rslt;
9394 struct symtab_and_line *sal;
9395 char *msg;
9396 struct cleanup *old_chain;
9397
9398 for (i = 0; i < sals->nelts; i++)
9399 {
9400 struct gdbarch *sarch;
9401
9402 sal = &sals->sals[i];
9403
9404 sarch = get_sal_arch (*sal);
9405 /* We fall back to GDBARCH if there is no architecture
9406 associated with SAL. */
9407 if (sarch == NULL)
9408 sarch = gdbarch;
9409 rslt = gdbarch_fast_tracepoint_valid_at (sarch, sal->pc,
9410 NULL, &msg);
9411 old_chain = make_cleanup (xfree, msg);
9412
9413 if (!rslt)
9414 error (_("May not have a fast tracepoint at 0x%s%s"),
9415 paddress (sarch, sal->pc), (msg ? msg : ""));
9416
9417 do_cleanups (old_chain);
9418 }
9419 }
9420
9421 /* Issue an invalid thread ID error. */
9422
9423 static void ATTRIBUTE_NORETURN
9424 invalid_thread_id_error (int id)
9425 {
9426 error (_("Unknown thread %d."), id);
9427 }
9428
9429 /* Given TOK, a string specification of condition and thread, as
9430 accepted by the 'break' command, extract the condition
9431 string and thread number and set *COND_STRING and *THREAD.
9432 PC identifies the context at which the condition should be parsed.
9433 If no condition is found, *COND_STRING is set to NULL.
9434 If no thread is found, *THREAD is set to -1. */
9435
9436 static void
9437 find_condition_and_thread (const char *tok, CORE_ADDR pc,
9438 char **cond_string, int *thread, int *task,
9439 char **rest)
9440 {
9441 *cond_string = NULL;
9442 *thread = -1;
9443 *task = 0;
9444 *rest = NULL;
9445
9446 while (tok && *tok)
9447 {
9448 const char *end_tok;
9449 int toklen;
9450 const char *cond_start = NULL;
9451 const char *cond_end = NULL;
9452
9453 tok = skip_spaces_const (tok);
9454
9455 if ((*tok == '"' || *tok == ',') && rest)
9456 {
9457 *rest = savestring (tok, strlen (tok));
9458 return;
9459 }
9460
9461 end_tok = skip_to_space_const (tok);
9462
9463 toklen = end_tok - tok;
9464
9465 if (toklen >= 1 && strncmp (tok, "if", toklen) == 0)
9466 {
9467 struct expression *expr;
9468
9469 tok = cond_start = end_tok + 1;
9470 expr = parse_exp_1 (&tok, pc, block_for_pc (pc), 0);
9471 xfree (expr);
9472 cond_end = tok;
9473 *cond_string = savestring (cond_start, cond_end - cond_start);
9474 }
9475 else if (toklen >= 1 && strncmp (tok, "thread", toklen) == 0)
9476 {
9477 char *tmptok;
9478
9479 tok = end_tok + 1;
9480 *thread = strtol (tok, &tmptok, 0);
9481 if (tok == tmptok)
9482 error (_("Junk after thread keyword."));
9483 if (!valid_thread_id (*thread))
9484 invalid_thread_id_error (*thread);
9485 tok = tmptok;
9486 }
9487 else if (toklen >= 1 && strncmp (tok, "task", toklen) == 0)
9488 {
9489 char *tmptok;
9490
9491 tok = end_tok + 1;
9492 *task = strtol (tok, &tmptok, 0);
9493 if (tok == tmptok)
9494 error (_("Junk after task keyword."));
9495 if (!valid_task_id (*task))
9496 error (_("Unknown task %d."), *task);
9497 tok = tmptok;
9498 }
9499 else if (rest)
9500 {
9501 *rest = savestring (tok, strlen (tok));
9502 return;
9503 }
9504 else
9505 error (_("Junk at end of arguments."));
9506 }
9507 }
9508
9509 /* Decode a static tracepoint marker spec. */
9510
9511 static struct symtabs_and_lines
9512 decode_static_tracepoint_spec (char **arg_p)
9513 {
9514 VEC(static_tracepoint_marker_p) *markers = NULL;
9515 struct symtabs_and_lines sals;
9516 struct cleanup *old_chain;
9517 char *p = &(*arg_p)[3];
9518 char *endp;
9519 char *marker_str;
9520 int i;
9521
9522 p = skip_spaces (p);
9523
9524 endp = skip_to_space (p);
9525
9526 marker_str = savestring (p, endp - p);
9527 old_chain = make_cleanup (xfree, marker_str);
9528
9529 markers = target_static_tracepoint_markers_by_strid (marker_str);
9530 if (VEC_empty(static_tracepoint_marker_p, markers))
9531 error (_("No known static tracepoint marker named %s"), marker_str);
9532
9533 sals.nelts = VEC_length(static_tracepoint_marker_p, markers);
9534 sals.sals = xmalloc (sizeof *sals.sals * sals.nelts);
9535
9536 for (i = 0; i < sals.nelts; i++)
9537 {
9538 struct static_tracepoint_marker *marker;
9539
9540 marker = VEC_index (static_tracepoint_marker_p, markers, i);
9541
9542 init_sal (&sals.sals[i]);
9543
9544 sals.sals[i] = find_pc_line (marker->address, 0);
9545 sals.sals[i].pc = marker->address;
9546
9547 release_static_tracepoint_marker (marker);
9548 }
9549
9550 do_cleanups (old_chain);
9551
9552 *arg_p = endp;
9553 return sals;
9554 }
9555
9556 /* Set a breakpoint. This function is shared between CLI and MI
9557 functions for setting a breakpoint. This function has two major
9558 modes of operations, selected by the PARSE_ARG parameter. If
9559 non-zero, the function will parse ARG, extracting location,
9560 condition, thread and extra string. Otherwise, ARG is just the
9561 breakpoint's location, with condition, thread, and extra string
9562 specified by the COND_STRING, THREAD and EXTRA_STRING parameters.
9563 If INTERNAL is non-zero, the breakpoint number will be allocated
9564 from the internal breakpoint count. Returns true if any breakpoint
9565 was created; false otherwise. */
9566
9567 int
9568 create_breakpoint (struct gdbarch *gdbarch,
9569 char *arg, char *cond_string,
9570 int thread, char *extra_string,
9571 int parse_arg,
9572 int tempflag, enum bptype type_wanted,
9573 int ignore_count,
9574 enum auto_boolean pending_break_support,
9575 const struct breakpoint_ops *ops,
9576 int from_tty, int enabled, int internal,
9577 unsigned flags)
9578 {
9579 char *copy_arg = NULL;
9580 char *addr_start = arg;
9581 struct linespec_result canonical;
9582 struct cleanup *old_chain;
9583 struct cleanup *bkpt_chain = NULL;
9584 int pending = 0;
9585 int task = 0;
9586 int prev_bkpt_count = breakpoint_count;
9587
9588 gdb_assert (ops != NULL);
9589
9590 init_linespec_result (&canonical);
9591
9592 TRY
9593 {
9594 ops->create_sals_from_address (&arg, &canonical, type_wanted,
9595 addr_start, &copy_arg);
9596 }
9597 CATCH (e, RETURN_MASK_ERROR)
9598 {
9599 /* If caller is interested in rc value from parse, set
9600 value. */
9601 if (e.error == NOT_FOUND_ERROR)
9602 {
9603 /* If pending breakpoint support is turned off, throw
9604 error. */
9605
9606 if (pending_break_support == AUTO_BOOLEAN_FALSE)
9607 throw_exception (e);
9608
9609 exception_print (gdb_stderr, e);
9610
9611 /* If pending breakpoint support is auto query and the user
9612 selects no, then simply return the error code. */
9613 if (pending_break_support == AUTO_BOOLEAN_AUTO
9614 && !nquery (_("Make %s pending on future shared library load? "),
9615 bptype_string (type_wanted)))
9616 return 0;
9617
9618 /* At this point, either the user was queried about setting
9619 a pending breakpoint and selected yes, or pending
9620 breakpoint behavior is on and thus a pending breakpoint
9621 is defaulted on behalf of the user. */
9622 {
9623 struct linespec_sals lsal;
9624
9625 copy_arg = xstrdup (addr_start);
9626 lsal.canonical = xstrdup (copy_arg);
9627 lsal.sals.nelts = 1;
9628 lsal.sals.sals = XNEW (struct symtab_and_line);
9629 init_sal (&lsal.sals.sals[0]);
9630 pending = 1;
9631 VEC_safe_push (linespec_sals, canonical.sals, &lsal);
9632 }
9633 }
9634 else
9635 throw_exception (e);
9636 }
9637 END_CATCH
9638
9639 if (VEC_empty (linespec_sals, canonical.sals))
9640 return 0;
9641
9642 /* Create a chain of things that always need to be cleaned up. */
9643 old_chain = make_cleanup_destroy_linespec_result (&canonical);
9644
9645 /* ----------------------------- SNIP -----------------------------
9646 Anything added to the cleanup chain beyond this point is assumed
9647 to be part of a breakpoint. If the breakpoint create succeeds
9648 then the memory is not reclaimed. */
9649 bkpt_chain = make_cleanup (null_cleanup, 0);
9650
9651 /* Resolve all line numbers to PC's and verify that the addresses
9652 are ok for the target. */
9653 if (!pending)
9654 {
9655 int ix;
9656 struct linespec_sals *iter;
9657
9658 for (ix = 0; VEC_iterate (linespec_sals, canonical.sals, ix, iter); ++ix)
9659 breakpoint_sals_to_pc (&iter->sals);
9660 }
9661
9662 /* Fast tracepoints may have additional restrictions on location. */
9663 if (!pending && type_wanted == bp_fast_tracepoint)
9664 {
9665 int ix;
9666 struct linespec_sals *iter;
9667
9668 for (ix = 0; VEC_iterate (linespec_sals, canonical.sals, ix, iter); ++ix)
9669 check_fast_tracepoint_sals (gdbarch, &iter->sals);
9670 }
9671
9672 /* Verify that condition can be parsed, before setting any
9673 breakpoints. Allocate a separate condition expression for each
9674 breakpoint. */
9675 if (!pending)
9676 {
9677 if (parse_arg)
9678 {
9679 char *rest;
9680 struct linespec_sals *lsal;
9681
9682 lsal = VEC_index (linespec_sals, canonical.sals, 0);
9683
9684 /* Here we only parse 'arg' to separate condition
9685 from thread number, so parsing in context of first
9686 sal is OK. When setting the breakpoint we'll
9687 re-parse it in context of each sal. */
9688
9689 find_condition_and_thread (arg, lsal->sals.sals[0].pc, &cond_string,
9690 &thread, &task, &rest);
9691 if (cond_string)
9692 make_cleanup (xfree, cond_string);
9693 if (rest)
9694 make_cleanup (xfree, rest);
9695 if (rest)
9696 extra_string = rest;
9697 }
9698 else
9699 {
9700 if (*arg != '\0')
9701 error (_("Garbage '%s' at end of location"), arg);
9702
9703 /* Create a private copy of condition string. */
9704 if (cond_string)
9705 {
9706 cond_string = xstrdup (cond_string);
9707 make_cleanup (xfree, cond_string);
9708 }
9709 /* Create a private copy of any extra string. */
9710 if (extra_string)
9711 {
9712 extra_string = xstrdup (extra_string);
9713 make_cleanup (xfree, extra_string);
9714 }
9715 }
9716
9717 ops->create_breakpoints_sal (gdbarch, &canonical,
9718 cond_string, extra_string, type_wanted,
9719 tempflag ? disp_del : disp_donttouch,
9720 thread, task, ignore_count, ops,
9721 from_tty, enabled, internal, flags);
9722 }
9723 else
9724 {
9725 struct breakpoint *b;
9726
9727 make_cleanup (xfree, copy_arg);
9728
9729 if (is_tracepoint_type (type_wanted))
9730 {
9731 struct tracepoint *t;
9732
9733 t = XCNEW (struct tracepoint);
9734 b = &t->base;
9735 }
9736 else
9737 b = XNEW (struct breakpoint);
9738
9739 init_raw_breakpoint_without_location (b, gdbarch, type_wanted, ops);
9740
9741 b->addr_string = copy_arg;
9742 if (parse_arg)
9743 {
9744 b->cond_string = NULL;
9745 b->extra_string = NULL;
9746 }
9747 else
9748 {
9749 /* Create a private copy of condition string. */
9750 if (cond_string)
9751 {
9752 cond_string = xstrdup (cond_string);
9753 make_cleanup (xfree, cond_string);
9754 }
9755 /* Create a private copy of any extra string. */
9756 if (extra_string != NULL)
9757 {
9758 extra_string = xstrdup (extra_string);
9759 make_cleanup (xfree, extra_string);
9760 }
9761 b->cond_string = cond_string;
9762 b->extra_string = extra_string;
9763 b->thread = thread;
9764 }
9765 b->ignore_count = ignore_count;
9766 b->disposition = tempflag ? disp_del : disp_donttouch;
9767 b->condition_not_parsed = 1;
9768 b->enable_state = enabled ? bp_enabled : bp_disabled;
9769 if ((type_wanted != bp_breakpoint
9770 && type_wanted != bp_hardware_breakpoint) || thread != -1)
9771 b->pspace = current_program_space;
9772
9773 install_breakpoint (internal, b, 0);
9774 }
9775
9776 if (VEC_length (linespec_sals, canonical.sals) > 1)
9777 {
9778 warning (_("Multiple breakpoints were set.\nUse the "
9779 "\"delete\" command to delete unwanted breakpoints."));
9780 prev_breakpoint_count = prev_bkpt_count;
9781 }
9782
9783 /* That's it. Discard the cleanups for data inserted into the
9784 breakpoint. */
9785 discard_cleanups (bkpt_chain);
9786 /* But cleanup everything else. */
9787 do_cleanups (old_chain);
9788
9789 /* error call may happen here - have BKPT_CHAIN already discarded. */
9790 update_global_location_list (UGLL_MAY_INSERT);
9791
9792 return 1;
9793 }
9794
9795 /* Set a breakpoint.
9796 ARG is a string describing breakpoint address,
9797 condition, and thread.
9798 FLAG specifies if a breakpoint is hardware on,
9799 and if breakpoint is temporary, using BP_HARDWARE_FLAG
9800 and BP_TEMPFLAG. */
9801
9802 static void
9803 break_command_1 (char *arg, int flag, int from_tty)
9804 {
9805 int tempflag = flag & BP_TEMPFLAG;
9806 enum bptype type_wanted = (flag & BP_HARDWAREFLAG
9807 ? bp_hardware_breakpoint
9808 : bp_breakpoint);
9809 struct breakpoint_ops *ops;
9810 const char *arg_cp = arg;
9811
9812 /* Matching breakpoints on probes. */
9813 if (arg && probe_linespec_to_ops (&arg_cp) != NULL)
9814 ops = &bkpt_probe_breakpoint_ops;
9815 else
9816 ops = &bkpt_breakpoint_ops;
9817
9818 create_breakpoint (get_current_arch (),
9819 arg,
9820 NULL, 0, NULL, 1 /* parse arg */,
9821 tempflag, type_wanted,
9822 0 /* Ignore count */,
9823 pending_break_support,
9824 ops,
9825 from_tty,
9826 1 /* enabled */,
9827 0 /* internal */,
9828 0);
9829 }
9830
9831 /* Helper function for break_command_1 and disassemble_command. */
9832
9833 void
9834 resolve_sal_pc (struct symtab_and_line *sal)
9835 {
9836 CORE_ADDR pc;
9837
9838 if (sal->pc == 0 && sal->symtab != NULL)
9839 {
9840 if (!find_line_pc (sal->symtab, sal->line, &pc))
9841 error (_("No line %d in file \"%s\"."),
9842 sal->line, symtab_to_filename_for_display (sal->symtab));
9843 sal->pc = pc;
9844
9845 /* If this SAL corresponds to a breakpoint inserted using a line
9846 number, then skip the function prologue if necessary. */
9847 if (sal->explicit_line)
9848 skip_prologue_sal (sal);
9849 }
9850
9851 if (sal->section == 0 && sal->symtab != NULL)
9852 {
9853 const struct blockvector *bv;
9854 const struct block *b;
9855 struct symbol *sym;
9856
9857 bv = blockvector_for_pc_sect (sal->pc, 0, &b,
9858 SYMTAB_COMPUNIT (sal->symtab));
9859 if (bv != NULL)
9860 {
9861 sym = block_linkage_function (b);
9862 if (sym != NULL)
9863 {
9864 fixup_symbol_section (sym, SYMTAB_OBJFILE (sal->symtab));
9865 sal->section = SYMBOL_OBJ_SECTION (SYMTAB_OBJFILE (sal->symtab),
9866 sym);
9867 }
9868 else
9869 {
9870 /* It really is worthwhile to have the section, so we'll
9871 just have to look harder. This case can be executed
9872 if we have line numbers but no functions (as can
9873 happen in assembly source). */
9874
9875 struct bound_minimal_symbol msym;
9876 struct cleanup *old_chain = save_current_space_and_thread ();
9877
9878 switch_to_program_space_and_thread (sal->pspace);
9879
9880 msym = lookup_minimal_symbol_by_pc (sal->pc);
9881 if (msym.minsym)
9882 sal->section = MSYMBOL_OBJ_SECTION (msym.objfile, msym.minsym);
9883
9884 do_cleanups (old_chain);
9885 }
9886 }
9887 }
9888 }
9889
9890 void
9891 break_command (char *arg, int from_tty)
9892 {
9893 break_command_1 (arg, 0, from_tty);
9894 }
9895
9896 void
9897 tbreak_command (char *arg, int from_tty)
9898 {
9899 break_command_1 (arg, BP_TEMPFLAG, from_tty);
9900 }
9901
9902 static void
9903 hbreak_command (char *arg, int from_tty)
9904 {
9905 break_command_1 (arg, BP_HARDWAREFLAG, from_tty);
9906 }
9907
9908 static void
9909 thbreak_command (char *arg, int from_tty)
9910 {
9911 break_command_1 (arg, (BP_TEMPFLAG | BP_HARDWAREFLAG), from_tty);
9912 }
9913
9914 static void
9915 stop_command (char *arg, int from_tty)
9916 {
9917 printf_filtered (_("Specify the type of breakpoint to set.\n\
9918 Usage: stop in <function | address>\n\
9919 stop at <line>\n"));
9920 }
9921
9922 static void
9923 stopin_command (char *arg, int from_tty)
9924 {
9925 int badInput = 0;
9926
9927 if (arg == (char *) NULL)
9928 badInput = 1;
9929 else if (*arg != '*')
9930 {
9931 char *argptr = arg;
9932 int hasColon = 0;
9933
9934 /* Look for a ':'. If this is a line number specification, then
9935 say it is bad, otherwise, it should be an address or
9936 function/method name. */
9937 while (*argptr && !hasColon)
9938 {
9939 hasColon = (*argptr == ':');
9940 argptr++;
9941 }
9942
9943 if (hasColon)
9944 badInput = (*argptr != ':'); /* Not a class::method */
9945 else
9946 badInput = isdigit (*arg); /* a simple line number */
9947 }
9948
9949 if (badInput)
9950 printf_filtered (_("Usage: stop in <function | address>\n"));
9951 else
9952 break_command_1 (arg, 0, from_tty);
9953 }
9954
9955 static void
9956 stopat_command (char *arg, int from_tty)
9957 {
9958 int badInput = 0;
9959
9960 if (arg == (char *) NULL || *arg == '*') /* no line number */
9961 badInput = 1;
9962 else
9963 {
9964 char *argptr = arg;
9965 int hasColon = 0;
9966
9967 /* Look for a ':'. If there is a '::' then get out, otherwise
9968 it is probably a line number. */
9969 while (*argptr && !hasColon)
9970 {
9971 hasColon = (*argptr == ':');
9972 argptr++;
9973 }
9974
9975 if (hasColon)
9976 badInput = (*argptr == ':'); /* we have class::method */
9977 else
9978 badInput = !isdigit (*arg); /* not a line number */
9979 }
9980
9981 if (badInput)
9982 printf_filtered (_("Usage: stop at <line>\n"));
9983 else
9984 break_command_1 (arg, 0, from_tty);
9985 }
9986
9987 /* The dynamic printf command is mostly like a regular breakpoint, but
9988 with a prewired command list consisting of a single output command,
9989 built from extra arguments supplied on the dprintf command
9990 line. */
9991
9992 static void
9993 dprintf_command (char *arg, int from_tty)
9994 {
9995 create_breakpoint (get_current_arch (),
9996 arg,
9997 NULL, 0, NULL, 1 /* parse arg */,
9998 0, bp_dprintf,
9999 0 /* Ignore count */,
10000 pending_break_support,
10001 &dprintf_breakpoint_ops,
10002 from_tty,
10003 1 /* enabled */,
10004 0 /* internal */,
10005 0);
10006 }
10007
10008 static void
10009 agent_printf_command (char *arg, int from_tty)
10010 {
10011 error (_("May only run agent-printf on the target"));
10012 }
10013
10014 /* Implement the "breakpoint_hit" breakpoint_ops method for
10015 ranged breakpoints. */
10016
10017 static int
10018 breakpoint_hit_ranged_breakpoint (const struct bp_location *bl,
10019 struct address_space *aspace,
10020 CORE_ADDR bp_addr,
10021 const struct target_waitstatus *ws)
10022 {
10023 if (ws->kind != TARGET_WAITKIND_STOPPED
10024 || ws->value.sig != GDB_SIGNAL_TRAP)
10025 return 0;
10026
10027 return breakpoint_address_match_range (bl->pspace->aspace, bl->address,
10028 bl->length, aspace, bp_addr);
10029 }
10030
10031 /* Implement the "resources_needed" breakpoint_ops method for
10032 ranged breakpoints. */
10033
10034 static int
10035 resources_needed_ranged_breakpoint (const struct bp_location *bl)
10036 {
10037 return target_ranged_break_num_registers ();
10038 }
10039
10040 /* Implement the "print_it" breakpoint_ops method for
10041 ranged breakpoints. */
10042
10043 static enum print_stop_action
10044 print_it_ranged_breakpoint (bpstat bs)
10045 {
10046 struct breakpoint *b = bs->breakpoint_at;
10047 struct bp_location *bl = b->loc;
10048 struct ui_out *uiout = current_uiout;
10049
10050 gdb_assert (b->type == bp_hardware_breakpoint);
10051
10052 /* Ranged breakpoints have only one location. */
10053 gdb_assert (bl && bl->next == NULL);
10054
10055 annotate_breakpoint (b->number);
10056 if (b->disposition == disp_del)
10057 ui_out_text (uiout, "\nTemporary ranged breakpoint ");
10058 else
10059 ui_out_text (uiout, "\nRanged breakpoint ");
10060 if (ui_out_is_mi_like_p (uiout))
10061 {
10062 ui_out_field_string (uiout, "reason",
10063 async_reason_lookup (EXEC_ASYNC_BREAKPOINT_HIT));
10064 ui_out_field_string (uiout, "disp", bpdisp_text (b->disposition));
10065 }
10066 ui_out_field_int (uiout, "bkptno", b->number);
10067 ui_out_text (uiout, ", ");
10068
10069 return PRINT_SRC_AND_LOC;
10070 }
10071
10072 /* Implement the "print_one" breakpoint_ops method for
10073 ranged breakpoints. */
10074
10075 static void
10076 print_one_ranged_breakpoint (struct breakpoint *b,
10077 struct bp_location **last_loc)
10078 {
10079 struct bp_location *bl = b->loc;
10080 struct value_print_options opts;
10081 struct ui_out *uiout = current_uiout;
10082
10083 /* Ranged breakpoints have only one location. */
10084 gdb_assert (bl && bl->next == NULL);
10085
10086 get_user_print_options (&opts);
10087
10088 if (opts.addressprint)
10089 /* We don't print the address range here, it will be printed later
10090 by print_one_detail_ranged_breakpoint. */
10091 ui_out_field_skip (uiout, "addr");
10092 annotate_field (5);
10093 print_breakpoint_location (b, bl);
10094 *last_loc = bl;
10095 }
10096
10097 /* Implement the "print_one_detail" breakpoint_ops method for
10098 ranged breakpoints. */
10099
10100 static void
10101 print_one_detail_ranged_breakpoint (const struct breakpoint *b,
10102 struct ui_out *uiout)
10103 {
10104 CORE_ADDR address_start, address_end;
10105 struct bp_location *bl = b->loc;
10106 struct ui_file *stb = mem_fileopen ();
10107 struct cleanup *cleanup = make_cleanup_ui_file_delete (stb);
10108
10109 gdb_assert (bl);
10110
10111 address_start = bl->address;
10112 address_end = address_start + bl->length - 1;
10113
10114 ui_out_text (uiout, "\taddress range: ");
10115 fprintf_unfiltered (stb, "[%s, %s]",
10116 print_core_address (bl->gdbarch, address_start),
10117 print_core_address (bl->gdbarch, address_end));
10118 ui_out_field_stream (uiout, "addr", stb);
10119 ui_out_text (uiout, "\n");
10120
10121 do_cleanups (cleanup);
10122 }
10123
10124 /* Implement the "print_mention" breakpoint_ops method for
10125 ranged breakpoints. */
10126
10127 static void
10128 print_mention_ranged_breakpoint (struct breakpoint *b)
10129 {
10130 struct bp_location *bl = b->loc;
10131 struct ui_out *uiout = current_uiout;
10132
10133 gdb_assert (bl);
10134 gdb_assert (b->type == bp_hardware_breakpoint);
10135
10136 if (ui_out_is_mi_like_p (uiout))
10137 return;
10138
10139 printf_filtered (_("Hardware assisted ranged breakpoint %d from %s to %s."),
10140 b->number, paddress (bl->gdbarch, bl->address),
10141 paddress (bl->gdbarch, bl->address + bl->length - 1));
10142 }
10143
10144 /* Implement the "print_recreate" breakpoint_ops method for
10145 ranged breakpoints. */
10146
10147 static void
10148 print_recreate_ranged_breakpoint (struct breakpoint *b, struct ui_file *fp)
10149 {
10150 fprintf_unfiltered (fp, "break-range %s, %s", b->addr_string,
10151 b->addr_string_range_end);
10152 print_recreate_thread (b, fp);
10153 }
10154
10155 /* The breakpoint_ops structure to be used in ranged breakpoints. */
10156
10157 static struct breakpoint_ops ranged_breakpoint_ops;
10158
10159 /* Find the address where the end of the breakpoint range should be
10160 placed, given the SAL of the end of the range. This is so that if
10161 the user provides a line number, the end of the range is set to the
10162 last instruction of the given line. */
10163
10164 static CORE_ADDR
10165 find_breakpoint_range_end (struct symtab_and_line sal)
10166 {
10167 CORE_ADDR end;
10168
10169 /* If the user provided a PC value, use it. Otherwise,
10170 find the address of the end of the given location. */
10171 if (sal.explicit_pc)
10172 end = sal.pc;
10173 else
10174 {
10175 int ret;
10176 CORE_ADDR start;
10177
10178 ret = find_line_pc_range (sal, &start, &end);
10179 if (!ret)
10180 error (_("Could not find location of the end of the range."));
10181
10182 /* find_line_pc_range returns the start of the next line. */
10183 end--;
10184 }
10185
10186 return end;
10187 }
10188
10189 /* Implement the "break-range" CLI command. */
10190
10191 static void
10192 break_range_command (char *arg, int from_tty)
10193 {
10194 char *arg_start, *addr_string_start, *addr_string_end;
10195 struct linespec_result canonical_start, canonical_end;
10196 int bp_count, can_use_bp, length;
10197 CORE_ADDR end;
10198 struct breakpoint *b;
10199 struct symtab_and_line sal_start, sal_end;
10200 struct cleanup *cleanup_bkpt;
10201 struct linespec_sals *lsal_start, *lsal_end;
10202
10203 /* We don't support software ranged breakpoints. */
10204 if (target_ranged_break_num_registers () < 0)
10205 error (_("This target does not support hardware ranged breakpoints."));
10206
10207 bp_count = hw_breakpoint_used_count ();
10208 bp_count += target_ranged_break_num_registers ();
10209 can_use_bp = target_can_use_hardware_watchpoint (bp_hardware_breakpoint,
10210 bp_count, 0);
10211 if (can_use_bp < 0)
10212 error (_("Hardware breakpoints used exceeds limit."));
10213
10214 arg = skip_spaces (arg);
10215 if (arg == NULL || arg[0] == '\0')
10216 error(_("No address range specified."));
10217
10218 init_linespec_result (&canonical_start);
10219
10220 arg_start = arg;
10221 parse_breakpoint_sals (&arg, &canonical_start);
10222
10223 cleanup_bkpt = make_cleanup_destroy_linespec_result (&canonical_start);
10224
10225 if (arg[0] != ',')
10226 error (_("Too few arguments."));
10227 else if (VEC_empty (linespec_sals, canonical_start.sals))
10228 error (_("Could not find location of the beginning of the range."));
10229
10230 lsal_start = VEC_index (linespec_sals, canonical_start.sals, 0);
10231
10232 if (VEC_length (linespec_sals, canonical_start.sals) > 1
10233 || lsal_start->sals.nelts != 1)
10234 error (_("Cannot create a ranged breakpoint with multiple locations."));
10235
10236 sal_start = lsal_start->sals.sals[0];
10237 addr_string_start = savestring (arg_start, arg - arg_start);
10238 make_cleanup (xfree, addr_string_start);
10239
10240 arg++; /* Skip the comma. */
10241 arg = skip_spaces (arg);
10242
10243 /* Parse the end location. */
10244
10245 init_linespec_result (&canonical_end);
10246 arg_start = arg;
10247
10248 /* We call decode_line_full directly here instead of using
10249 parse_breakpoint_sals because we need to specify the start location's
10250 symtab and line as the default symtab and line for the end of the
10251 range. This makes it possible to have ranges like "foo.c:27, +14",
10252 where +14 means 14 lines from the start location. */
10253 decode_line_full (&arg, DECODE_LINE_FUNFIRSTLINE,
10254 sal_start.symtab, sal_start.line,
10255 &canonical_end, NULL, NULL);
10256
10257 make_cleanup_destroy_linespec_result (&canonical_end);
10258
10259 if (VEC_empty (linespec_sals, canonical_end.sals))
10260 error (_("Could not find location of the end of the range."));
10261
10262 lsal_end = VEC_index (linespec_sals, canonical_end.sals, 0);
10263 if (VEC_length (linespec_sals, canonical_end.sals) > 1
10264 || lsal_end->sals.nelts != 1)
10265 error (_("Cannot create a ranged breakpoint with multiple locations."));
10266
10267 sal_end = lsal_end->sals.sals[0];
10268 addr_string_end = savestring (arg_start, arg - arg_start);
10269 make_cleanup (xfree, addr_string_end);
10270
10271 end = find_breakpoint_range_end (sal_end);
10272 if (sal_start.pc > end)
10273 error (_("Invalid address range, end precedes start."));
10274
10275 length = end - sal_start.pc + 1;
10276 if (length < 0)
10277 /* Length overflowed. */
10278 error (_("Address range too large."));
10279 else if (length == 1)
10280 {
10281 /* This range is simple enough to be handled by
10282 the `hbreak' command. */
10283 hbreak_command (addr_string_start, 1);
10284
10285 do_cleanups (cleanup_bkpt);
10286
10287 return;
10288 }
10289
10290 /* Now set up the breakpoint. */
10291 b = set_raw_breakpoint (get_current_arch (), sal_start,
10292 bp_hardware_breakpoint, &ranged_breakpoint_ops);
10293 set_breakpoint_count (breakpoint_count + 1);
10294 b->number = breakpoint_count;
10295 b->disposition = disp_donttouch;
10296 b->addr_string = xstrdup (addr_string_start);
10297 b->addr_string_range_end = xstrdup (addr_string_end);
10298 b->loc->length = length;
10299
10300 do_cleanups (cleanup_bkpt);
10301
10302 mention (b);
10303 observer_notify_breakpoint_created (b);
10304 update_global_location_list (UGLL_MAY_INSERT);
10305 }
10306
10307 /* Return non-zero if EXP is verified as constant. Returned zero
10308 means EXP is variable. Also the constant detection may fail for
10309 some constant expressions and in such case still falsely return
10310 zero. */
10311
10312 static int
10313 watchpoint_exp_is_const (const struct expression *exp)
10314 {
10315 int i = exp->nelts;
10316
10317 while (i > 0)
10318 {
10319 int oplenp, argsp;
10320
10321 /* We are only interested in the descriptor of each element. */
10322 operator_length (exp, i, &oplenp, &argsp);
10323 i -= oplenp;
10324
10325 switch (exp->elts[i].opcode)
10326 {
10327 case BINOP_ADD:
10328 case BINOP_SUB:
10329 case BINOP_MUL:
10330 case BINOP_DIV:
10331 case BINOP_REM:
10332 case BINOP_MOD:
10333 case BINOP_LSH:
10334 case BINOP_RSH:
10335 case BINOP_LOGICAL_AND:
10336 case BINOP_LOGICAL_OR:
10337 case BINOP_BITWISE_AND:
10338 case BINOP_BITWISE_IOR:
10339 case BINOP_BITWISE_XOR:
10340 case BINOP_EQUAL:
10341 case BINOP_NOTEQUAL:
10342 case BINOP_LESS:
10343 case BINOP_GTR:
10344 case BINOP_LEQ:
10345 case BINOP_GEQ:
10346 case BINOP_REPEAT:
10347 case BINOP_COMMA:
10348 case BINOP_EXP:
10349 case BINOP_MIN:
10350 case BINOP_MAX:
10351 case BINOP_INTDIV:
10352 case BINOP_CONCAT:
10353 case TERNOP_COND:
10354 case TERNOP_SLICE:
10355
10356 case OP_LONG:
10357 case OP_DOUBLE:
10358 case OP_DECFLOAT:
10359 case OP_LAST:
10360 case OP_COMPLEX:
10361 case OP_STRING:
10362 case OP_ARRAY:
10363 case OP_TYPE:
10364 case OP_TYPEOF:
10365 case OP_DECLTYPE:
10366 case OP_TYPEID:
10367 case OP_NAME:
10368 case OP_OBJC_NSSTRING:
10369
10370 case UNOP_NEG:
10371 case UNOP_LOGICAL_NOT:
10372 case UNOP_COMPLEMENT:
10373 case UNOP_ADDR:
10374 case UNOP_HIGH:
10375 case UNOP_CAST:
10376
10377 case UNOP_CAST_TYPE:
10378 case UNOP_REINTERPRET_CAST:
10379 case UNOP_DYNAMIC_CAST:
10380 /* Unary, binary and ternary operators: We have to check
10381 their operands. If they are constant, then so is the
10382 result of that operation. For instance, if A and B are
10383 determined to be constants, then so is "A + B".
10384
10385 UNOP_IND is one exception to the rule above, because the
10386 value of *ADDR is not necessarily a constant, even when
10387 ADDR is. */
10388 break;
10389
10390 case OP_VAR_VALUE:
10391 /* Check whether the associated symbol is a constant.
10392
10393 We use SYMBOL_CLASS rather than TYPE_CONST because it's
10394 possible that a buggy compiler could mark a variable as
10395 constant even when it is not, and TYPE_CONST would return
10396 true in this case, while SYMBOL_CLASS wouldn't.
10397
10398 We also have to check for function symbols because they
10399 are always constant. */
10400 {
10401 struct symbol *s = exp->elts[i + 2].symbol;
10402
10403 if (SYMBOL_CLASS (s) != LOC_BLOCK
10404 && SYMBOL_CLASS (s) != LOC_CONST
10405 && SYMBOL_CLASS (s) != LOC_CONST_BYTES)
10406 return 0;
10407 break;
10408 }
10409
10410 /* The default action is to return 0 because we are using
10411 the optimistic approach here: If we don't know something,
10412 then it is not a constant. */
10413 default:
10414 return 0;
10415 }
10416 }
10417
10418 return 1;
10419 }
10420
10421 /* Implement the "dtor" breakpoint_ops method for watchpoints. */
10422
10423 static void
10424 dtor_watchpoint (struct breakpoint *self)
10425 {
10426 struct watchpoint *w = (struct watchpoint *) self;
10427
10428 xfree (w->cond_exp);
10429 xfree (w->exp);
10430 xfree (w->exp_string);
10431 xfree (w->exp_string_reparse);
10432 value_free (w->val);
10433
10434 base_breakpoint_ops.dtor (self);
10435 }
10436
10437 /* Implement the "re_set" breakpoint_ops method for watchpoints. */
10438
10439 static void
10440 re_set_watchpoint (struct breakpoint *b)
10441 {
10442 struct watchpoint *w = (struct watchpoint *) b;
10443
10444 /* Watchpoint can be either on expression using entirely global
10445 variables, or it can be on local variables.
10446
10447 Watchpoints of the first kind are never auto-deleted, and even
10448 persist across program restarts. Since they can use variables
10449 from shared libraries, we need to reparse expression as libraries
10450 are loaded and unloaded.
10451
10452 Watchpoints on local variables can also change meaning as result
10453 of solib event. For example, if a watchpoint uses both a local
10454 and a global variables in expression, it's a local watchpoint,
10455 but unloading of a shared library will make the expression
10456 invalid. This is not a very common use case, but we still
10457 re-evaluate expression, to avoid surprises to the user.
10458
10459 Note that for local watchpoints, we re-evaluate it only if
10460 watchpoints frame id is still valid. If it's not, it means the
10461 watchpoint is out of scope and will be deleted soon. In fact,
10462 I'm not sure we'll ever be called in this case.
10463
10464 If a local watchpoint's frame id is still valid, then
10465 w->exp_valid_block is likewise valid, and we can safely use it.
10466
10467 Don't do anything about disabled watchpoints, since they will be
10468 reevaluated again when enabled. */
10469 update_watchpoint (w, 1 /* reparse */);
10470 }
10471
10472 /* Implement the "insert" breakpoint_ops method for hardware watchpoints. */
10473
10474 static int
10475 insert_watchpoint (struct bp_location *bl)
10476 {
10477 struct watchpoint *w = (struct watchpoint *) bl->owner;
10478 int length = w->exact ? 1 : bl->length;
10479
10480 return target_insert_watchpoint (bl->address, length, bl->watchpoint_type,
10481 w->cond_exp);
10482 }
10483
10484 /* Implement the "remove" breakpoint_ops method for hardware watchpoints. */
10485
10486 static int
10487 remove_watchpoint (struct bp_location *bl)
10488 {
10489 struct watchpoint *w = (struct watchpoint *) bl->owner;
10490 int length = w->exact ? 1 : bl->length;
10491
10492 return target_remove_watchpoint (bl->address, length, bl->watchpoint_type,
10493 w->cond_exp);
10494 }
10495
10496 static int
10497 breakpoint_hit_watchpoint (const struct bp_location *bl,
10498 struct address_space *aspace, CORE_ADDR bp_addr,
10499 const struct target_waitstatus *ws)
10500 {
10501 struct breakpoint *b = bl->owner;
10502 struct watchpoint *w = (struct watchpoint *) b;
10503
10504 /* Continuable hardware watchpoints are treated as non-existent if the
10505 reason we stopped wasn't a hardware watchpoint (we didn't stop on
10506 some data address). Otherwise gdb won't stop on a break instruction
10507 in the code (not from a breakpoint) when a hardware watchpoint has
10508 been defined. Also skip watchpoints which we know did not trigger
10509 (did not match the data address). */
10510 if (is_hardware_watchpoint (b)
10511 && w->watchpoint_triggered == watch_triggered_no)
10512 return 0;
10513
10514 return 1;
10515 }
10516
10517 static void
10518 check_status_watchpoint (bpstat bs)
10519 {
10520 gdb_assert (is_watchpoint (bs->breakpoint_at));
10521
10522 bpstat_check_watchpoint (bs);
10523 }
10524
10525 /* Implement the "resources_needed" breakpoint_ops method for
10526 hardware watchpoints. */
10527
10528 static int
10529 resources_needed_watchpoint (const struct bp_location *bl)
10530 {
10531 struct watchpoint *w = (struct watchpoint *) bl->owner;
10532 int length = w->exact? 1 : bl->length;
10533
10534 return target_region_ok_for_hw_watchpoint (bl->address, length);
10535 }
10536
10537 /* Implement the "works_in_software_mode" breakpoint_ops method for
10538 hardware watchpoints. */
10539
10540 static int
10541 works_in_software_mode_watchpoint (const struct breakpoint *b)
10542 {
10543 /* Read and access watchpoints only work with hardware support. */
10544 return b->type == bp_watchpoint || b->type == bp_hardware_watchpoint;
10545 }
10546
10547 static enum print_stop_action
10548 print_it_watchpoint (bpstat bs)
10549 {
10550 struct cleanup *old_chain;
10551 struct breakpoint *b;
10552 struct ui_file *stb;
10553 enum print_stop_action result;
10554 struct watchpoint *w;
10555 struct ui_out *uiout = current_uiout;
10556
10557 gdb_assert (bs->bp_location_at != NULL);
10558
10559 b = bs->breakpoint_at;
10560 w = (struct watchpoint *) b;
10561
10562 stb = mem_fileopen ();
10563 old_chain = make_cleanup_ui_file_delete (stb);
10564
10565 switch (b->type)
10566 {
10567 case bp_watchpoint:
10568 case bp_hardware_watchpoint:
10569 annotate_watchpoint (b->number);
10570 if (ui_out_is_mi_like_p (uiout))
10571 ui_out_field_string
10572 (uiout, "reason",
10573 async_reason_lookup (EXEC_ASYNC_WATCHPOINT_TRIGGER));
10574 mention (b);
10575 make_cleanup_ui_out_tuple_begin_end (uiout, "value");
10576 ui_out_text (uiout, "\nOld value = ");
10577 watchpoint_value_print (bs->old_val, stb);
10578 ui_out_field_stream (uiout, "old", stb);
10579 ui_out_text (uiout, "\nNew value = ");
10580 watchpoint_value_print (w->val, stb);
10581 ui_out_field_stream (uiout, "new", stb);
10582 ui_out_text (uiout, "\n");
10583 /* More than one watchpoint may have been triggered. */
10584 result = PRINT_UNKNOWN;
10585 break;
10586
10587 case bp_read_watchpoint:
10588 if (ui_out_is_mi_like_p (uiout))
10589 ui_out_field_string
10590 (uiout, "reason",
10591 async_reason_lookup (EXEC_ASYNC_READ_WATCHPOINT_TRIGGER));
10592 mention (b);
10593 make_cleanup_ui_out_tuple_begin_end (uiout, "value");
10594 ui_out_text (uiout, "\nValue = ");
10595 watchpoint_value_print (w->val, stb);
10596 ui_out_field_stream (uiout, "value", stb);
10597 ui_out_text (uiout, "\n");
10598 result = PRINT_UNKNOWN;
10599 break;
10600
10601 case bp_access_watchpoint:
10602 if (bs->old_val != NULL)
10603 {
10604 annotate_watchpoint (b->number);
10605 if (ui_out_is_mi_like_p (uiout))
10606 ui_out_field_string
10607 (uiout, "reason",
10608 async_reason_lookup (EXEC_ASYNC_ACCESS_WATCHPOINT_TRIGGER));
10609 mention (b);
10610 make_cleanup_ui_out_tuple_begin_end (uiout, "value");
10611 ui_out_text (uiout, "\nOld value = ");
10612 watchpoint_value_print (bs->old_val, stb);
10613 ui_out_field_stream (uiout, "old", stb);
10614 ui_out_text (uiout, "\nNew value = ");
10615 }
10616 else
10617 {
10618 mention (b);
10619 if (ui_out_is_mi_like_p (uiout))
10620 ui_out_field_string
10621 (uiout, "reason",
10622 async_reason_lookup (EXEC_ASYNC_ACCESS_WATCHPOINT_TRIGGER));
10623 make_cleanup_ui_out_tuple_begin_end (uiout, "value");
10624 ui_out_text (uiout, "\nValue = ");
10625 }
10626 watchpoint_value_print (w->val, stb);
10627 ui_out_field_stream (uiout, "new", stb);
10628 ui_out_text (uiout, "\n");
10629 result = PRINT_UNKNOWN;
10630 break;
10631 default:
10632 result = PRINT_UNKNOWN;
10633 }
10634
10635 do_cleanups (old_chain);
10636 return result;
10637 }
10638
10639 /* Implement the "print_mention" breakpoint_ops method for hardware
10640 watchpoints. */
10641
10642 static void
10643 print_mention_watchpoint (struct breakpoint *b)
10644 {
10645 struct cleanup *ui_out_chain;
10646 struct watchpoint *w = (struct watchpoint *) b;
10647 struct ui_out *uiout = current_uiout;
10648
10649 switch (b->type)
10650 {
10651 case bp_watchpoint:
10652 ui_out_text (uiout, "Watchpoint ");
10653 ui_out_chain = make_cleanup_ui_out_tuple_begin_end (uiout, "wpt");
10654 break;
10655 case bp_hardware_watchpoint:
10656 ui_out_text (uiout, "Hardware watchpoint ");
10657 ui_out_chain = make_cleanup_ui_out_tuple_begin_end (uiout, "wpt");
10658 break;
10659 case bp_read_watchpoint:
10660 ui_out_text (uiout, "Hardware read watchpoint ");
10661 ui_out_chain = make_cleanup_ui_out_tuple_begin_end (uiout, "hw-rwpt");
10662 break;
10663 case bp_access_watchpoint:
10664 ui_out_text (uiout, "Hardware access (read/write) watchpoint ");
10665 ui_out_chain = make_cleanup_ui_out_tuple_begin_end (uiout, "hw-awpt");
10666 break;
10667 default:
10668 internal_error (__FILE__, __LINE__,
10669 _("Invalid hardware watchpoint type."));
10670 }
10671
10672 ui_out_field_int (uiout, "number", b->number);
10673 ui_out_text (uiout, ": ");
10674 ui_out_field_string (uiout, "exp", w->exp_string);
10675 do_cleanups (ui_out_chain);
10676 }
10677
10678 /* Implement the "print_recreate" breakpoint_ops method for
10679 watchpoints. */
10680
10681 static void
10682 print_recreate_watchpoint (struct breakpoint *b, struct ui_file *fp)
10683 {
10684 struct watchpoint *w = (struct watchpoint *) b;
10685
10686 switch (b->type)
10687 {
10688 case bp_watchpoint:
10689 case bp_hardware_watchpoint:
10690 fprintf_unfiltered (fp, "watch");
10691 break;
10692 case bp_read_watchpoint:
10693 fprintf_unfiltered (fp, "rwatch");
10694 break;
10695 case bp_access_watchpoint:
10696 fprintf_unfiltered (fp, "awatch");
10697 break;
10698 default:
10699 internal_error (__FILE__, __LINE__,
10700 _("Invalid watchpoint type."));
10701 }
10702
10703 fprintf_unfiltered (fp, " %s", w->exp_string);
10704 print_recreate_thread (b, fp);
10705 }
10706
10707 /* Implement the "explains_signal" breakpoint_ops method for
10708 watchpoints. */
10709
10710 static int
10711 explains_signal_watchpoint (struct breakpoint *b, enum gdb_signal sig)
10712 {
10713 /* A software watchpoint cannot cause a signal other than
10714 GDB_SIGNAL_TRAP. */
10715 if (b->type == bp_watchpoint && sig != GDB_SIGNAL_TRAP)
10716 return 0;
10717
10718 return 1;
10719 }
10720
10721 /* The breakpoint_ops structure to be used in hardware watchpoints. */
10722
10723 static struct breakpoint_ops watchpoint_breakpoint_ops;
10724
10725 /* Implement the "insert" breakpoint_ops method for
10726 masked hardware watchpoints. */
10727
10728 static int
10729 insert_masked_watchpoint (struct bp_location *bl)
10730 {
10731 struct watchpoint *w = (struct watchpoint *) bl->owner;
10732
10733 return target_insert_mask_watchpoint (bl->address, w->hw_wp_mask,
10734 bl->watchpoint_type);
10735 }
10736
10737 /* Implement the "remove" breakpoint_ops method for
10738 masked hardware watchpoints. */
10739
10740 static int
10741 remove_masked_watchpoint (struct bp_location *bl)
10742 {
10743 struct watchpoint *w = (struct watchpoint *) bl->owner;
10744
10745 return target_remove_mask_watchpoint (bl->address, w->hw_wp_mask,
10746 bl->watchpoint_type);
10747 }
10748
10749 /* Implement the "resources_needed" breakpoint_ops method for
10750 masked hardware watchpoints. */
10751
10752 static int
10753 resources_needed_masked_watchpoint (const struct bp_location *bl)
10754 {
10755 struct watchpoint *w = (struct watchpoint *) bl->owner;
10756
10757 return target_masked_watch_num_registers (bl->address, w->hw_wp_mask);
10758 }
10759
10760 /* Implement the "works_in_software_mode" breakpoint_ops method for
10761 masked hardware watchpoints. */
10762
10763 static int
10764 works_in_software_mode_masked_watchpoint (const struct breakpoint *b)
10765 {
10766 return 0;
10767 }
10768
10769 /* Implement the "print_it" breakpoint_ops method for
10770 masked hardware watchpoints. */
10771
10772 static enum print_stop_action
10773 print_it_masked_watchpoint (bpstat bs)
10774 {
10775 struct breakpoint *b = bs->breakpoint_at;
10776 struct ui_out *uiout = current_uiout;
10777
10778 /* Masked watchpoints have only one location. */
10779 gdb_assert (b->loc && b->loc->next == NULL);
10780
10781 switch (b->type)
10782 {
10783 case bp_hardware_watchpoint:
10784 annotate_watchpoint (b->number);
10785 if (ui_out_is_mi_like_p (uiout))
10786 ui_out_field_string
10787 (uiout, "reason",
10788 async_reason_lookup (EXEC_ASYNC_WATCHPOINT_TRIGGER));
10789 break;
10790
10791 case bp_read_watchpoint:
10792 if (ui_out_is_mi_like_p (uiout))
10793 ui_out_field_string
10794 (uiout, "reason",
10795 async_reason_lookup (EXEC_ASYNC_READ_WATCHPOINT_TRIGGER));
10796 break;
10797
10798 case bp_access_watchpoint:
10799 if (ui_out_is_mi_like_p (uiout))
10800 ui_out_field_string
10801 (uiout, "reason",
10802 async_reason_lookup (EXEC_ASYNC_ACCESS_WATCHPOINT_TRIGGER));
10803 break;
10804 default:
10805 internal_error (__FILE__, __LINE__,
10806 _("Invalid hardware watchpoint type."));
10807 }
10808
10809 mention (b);
10810 ui_out_text (uiout, _("\n\
10811 Check the underlying instruction at PC for the memory\n\
10812 address and value which triggered this watchpoint.\n"));
10813 ui_out_text (uiout, "\n");
10814
10815 /* More than one watchpoint may have been triggered. */
10816 return PRINT_UNKNOWN;
10817 }
10818
10819 /* Implement the "print_one_detail" breakpoint_ops method for
10820 masked hardware watchpoints. */
10821
10822 static void
10823 print_one_detail_masked_watchpoint (const struct breakpoint *b,
10824 struct ui_out *uiout)
10825 {
10826 struct watchpoint *w = (struct watchpoint *) b;
10827
10828 /* Masked watchpoints have only one location. */
10829 gdb_assert (b->loc && b->loc->next == NULL);
10830
10831 ui_out_text (uiout, "\tmask ");
10832 ui_out_field_core_addr (uiout, "mask", b->loc->gdbarch, w->hw_wp_mask);
10833 ui_out_text (uiout, "\n");
10834 }
10835
10836 /* Implement the "print_mention" breakpoint_ops method for
10837 masked hardware watchpoints. */
10838
10839 static void
10840 print_mention_masked_watchpoint (struct breakpoint *b)
10841 {
10842 struct watchpoint *w = (struct watchpoint *) b;
10843 struct ui_out *uiout = current_uiout;
10844 struct cleanup *ui_out_chain;
10845
10846 switch (b->type)
10847 {
10848 case bp_hardware_watchpoint:
10849 ui_out_text (uiout, "Masked hardware watchpoint ");
10850 ui_out_chain = make_cleanup_ui_out_tuple_begin_end (uiout, "wpt");
10851 break;
10852 case bp_read_watchpoint:
10853 ui_out_text (uiout, "Masked hardware read watchpoint ");
10854 ui_out_chain = make_cleanup_ui_out_tuple_begin_end (uiout, "hw-rwpt");
10855 break;
10856 case bp_access_watchpoint:
10857 ui_out_text (uiout, "Masked hardware access (read/write) watchpoint ");
10858 ui_out_chain = make_cleanup_ui_out_tuple_begin_end (uiout, "hw-awpt");
10859 break;
10860 default:
10861 internal_error (__FILE__, __LINE__,
10862 _("Invalid hardware watchpoint type."));
10863 }
10864
10865 ui_out_field_int (uiout, "number", b->number);
10866 ui_out_text (uiout, ": ");
10867 ui_out_field_string (uiout, "exp", w->exp_string);
10868 do_cleanups (ui_out_chain);
10869 }
10870
10871 /* Implement the "print_recreate" breakpoint_ops method for
10872 masked hardware watchpoints. */
10873
10874 static void
10875 print_recreate_masked_watchpoint (struct breakpoint *b, struct ui_file *fp)
10876 {
10877 struct watchpoint *w = (struct watchpoint *) b;
10878 char tmp[40];
10879
10880 switch (b->type)
10881 {
10882 case bp_hardware_watchpoint:
10883 fprintf_unfiltered (fp, "watch");
10884 break;
10885 case bp_read_watchpoint:
10886 fprintf_unfiltered (fp, "rwatch");
10887 break;
10888 case bp_access_watchpoint:
10889 fprintf_unfiltered (fp, "awatch");
10890 break;
10891 default:
10892 internal_error (__FILE__, __LINE__,
10893 _("Invalid hardware watchpoint type."));
10894 }
10895
10896 sprintf_vma (tmp, w->hw_wp_mask);
10897 fprintf_unfiltered (fp, " %s mask 0x%s", w->exp_string, tmp);
10898 print_recreate_thread (b, fp);
10899 }
10900
10901 /* The breakpoint_ops structure to be used in masked hardware watchpoints. */
10902
10903 static struct breakpoint_ops masked_watchpoint_breakpoint_ops;
10904
10905 /* Tell whether the given watchpoint is a masked hardware watchpoint. */
10906
10907 static int
10908 is_masked_watchpoint (const struct breakpoint *b)
10909 {
10910 return b->ops == &masked_watchpoint_breakpoint_ops;
10911 }
10912
10913 /* accessflag: hw_write: watch write,
10914 hw_read: watch read,
10915 hw_access: watch access (read or write) */
10916 static void
10917 watch_command_1 (const char *arg, int accessflag, int from_tty,
10918 int just_location, int internal)
10919 {
10920 struct breakpoint *b, *scope_breakpoint = NULL;
10921 struct expression *exp;
10922 const struct block *exp_valid_block = NULL, *cond_exp_valid_block = NULL;
10923 struct value *val, *mark, *result;
10924 int saved_bitpos = 0, saved_bitsize = 0;
10925 struct frame_info *frame;
10926 const char *exp_start = NULL;
10927 const char *exp_end = NULL;
10928 const char *tok, *end_tok;
10929 int toklen = -1;
10930 const char *cond_start = NULL;
10931 const char *cond_end = NULL;
10932 enum bptype bp_type;
10933 int thread = -1;
10934 int pc = 0;
10935 /* Flag to indicate whether we are going to use masks for
10936 the hardware watchpoint. */
10937 int use_mask = 0;
10938 CORE_ADDR mask = 0;
10939 struct watchpoint *w;
10940 char *expression;
10941 struct cleanup *back_to;
10942
10943 /* Make sure that we actually have parameters to parse. */
10944 if (arg != NULL && arg[0] != '\0')
10945 {
10946 const char *value_start;
10947
10948 exp_end = arg + strlen (arg);
10949
10950 /* Look for "parameter value" pairs at the end
10951 of the arguments string. */
10952 for (tok = exp_end - 1; tok > arg; tok--)
10953 {
10954 /* Skip whitespace at the end of the argument list. */
10955 while (tok > arg && (*tok == ' ' || *tok == '\t'))
10956 tok--;
10957
10958 /* Find the beginning of the last token.
10959 This is the value of the parameter. */
10960 while (tok > arg && (*tok != ' ' && *tok != '\t'))
10961 tok--;
10962 value_start = tok + 1;
10963
10964 /* Skip whitespace. */
10965 while (tok > arg && (*tok == ' ' || *tok == '\t'))
10966 tok--;
10967
10968 end_tok = tok;
10969
10970 /* Find the beginning of the second to last token.
10971 This is the parameter itself. */
10972 while (tok > arg && (*tok != ' ' && *tok != '\t'))
10973 tok--;
10974 tok++;
10975 toklen = end_tok - tok + 1;
10976
10977 if (toklen == 6 && startswith (tok, "thread"))
10978 {
10979 /* At this point we've found a "thread" token, which means
10980 the user is trying to set a watchpoint that triggers
10981 only in a specific thread. */
10982 char *endp;
10983
10984 if (thread != -1)
10985 error(_("You can specify only one thread."));
10986
10987 /* Extract the thread ID from the next token. */
10988 thread = strtol (value_start, &endp, 0);
10989
10990 /* Check if the user provided a valid numeric value for the
10991 thread ID. */
10992 if (*endp != ' ' && *endp != '\t' && *endp != '\0')
10993 error (_("Invalid thread ID specification %s."), value_start);
10994
10995 /* Check if the thread actually exists. */
10996 if (!valid_thread_id (thread))
10997 invalid_thread_id_error (thread);
10998 }
10999 else if (toklen == 4 && startswith (tok, "mask"))
11000 {
11001 /* We've found a "mask" token, which means the user wants to
11002 create a hardware watchpoint that is going to have the mask
11003 facility. */
11004 struct value *mask_value, *mark;
11005
11006 if (use_mask)
11007 error(_("You can specify only one mask."));
11008
11009 use_mask = just_location = 1;
11010
11011 mark = value_mark ();
11012 mask_value = parse_to_comma_and_eval (&value_start);
11013 mask = value_as_address (mask_value);
11014 value_free_to_mark (mark);
11015 }
11016 else
11017 /* We didn't recognize what we found. We should stop here. */
11018 break;
11019
11020 /* Truncate the string and get rid of the "parameter value" pair before
11021 the arguments string is parsed by the parse_exp_1 function. */
11022 exp_end = tok;
11023 }
11024 }
11025 else
11026 exp_end = arg;
11027
11028 /* Parse the rest of the arguments. From here on out, everything
11029 is in terms of a newly allocated string instead of the original
11030 ARG. */
11031 innermost_block = NULL;
11032 expression = savestring (arg, exp_end - arg);
11033 back_to = make_cleanup (xfree, expression);
11034 exp_start = arg = expression;
11035 exp = parse_exp_1 (&arg, 0, 0, 0);
11036 exp_end = arg;
11037 /* Remove trailing whitespace from the expression before saving it.
11038 This makes the eventual display of the expression string a bit
11039 prettier. */
11040 while (exp_end > exp_start && (exp_end[-1] == ' ' || exp_end[-1] == '\t'))
11041 --exp_end;
11042
11043 /* Checking if the expression is not constant. */
11044 if (watchpoint_exp_is_const (exp))
11045 {
11046 int len;
11047
11048 len = exp_end - exp_start;
11049 while (len > 0 && isspace (exp_start[len - 1]))
11050 len--;
11051 error (_("Cannot watch constant value `%.*s'."), len, exp_start);
11052 }
11053
11054 exp_valid_block = innermost_block;
11055 mark = value_mark ();
11056 fetch_subexp_value (exp, &pc, &val, &result, NULL, just_location);
11057
11058 if (val != NULL && just_location)
11059 {
11060 saved_bitpos = value_bitpos (val);
11061 saved_bitsize = value_bitsize (val);
11062 }
11063
11064 if (just_location)
11065 {
11066 int ret;
11067
11068 exp_valid_block = NULL;
11069 val = value_addr (result);
11070 release_value (val);
11071 value_free_to_mark (mark);
11072
11073 if (use_mask)
11074 {
11075 ret = target_masked_watch_num_registers (value_as_address (val),
11076 mask);
11077 if (ret == -1)
11078 error (_("This target does not support masked watchpoints."));
11079 else if (ret == -2)
11080 error (_("Invalid mask or memory region."));
11081 }
11082 }
11083 else if (val != NULL)
11084 release_value (val);
11085
11086 tok = skip_spaces_const (arg);
11087 end_tok = skip_to_space_const (tok);
11088
11089 toklen = end_tok - tok;
11090 if (toklen >= 1 && strncmp (tok, "if", toklen) == 0)
11091 {
11092 struct expression *cond;
11093
11094 innermost_block = NULL;
11095 tok = cond_start = end_tok + 1;
11096 cond = parse_exp_1 (&tok, 0, 0, 0);
11097
11098 /* The watchpoint expression may not be local, but the condition
11099 may still be. E.g.: `watch global if local > 0'. */
11100 cond_exp_valid_block = innermost_block;
11101
11102 xfree (cond);
11103 cond_end = tok;
11104 }
11105 if (*tok)
11106 error (_("Junk at end of command."));
11107
11108 frame = block_innermost_frame (exp_valid_block);
11109
11110 /* If the expression is "local", then set up a "watchpoint scope"
11111 breakpoint at the point where we've left the scope of the watchpoint
11112 expression. Create the scope breakpoint before the watchpoint, so
11113 that we will encounter it first in bpstat_stop_status. */
11114 if (exp_valid_block && frame)
11115 {
11116 if (frame_id_p (frame_unwind_caller_id (frame)))
11117 {
11118 scope_breakpoint
11119 = create_internal_breakpoint (frame_unwind_caller_arch (frame),
11120 frame_unwind_caller_pc (frame),
11121 bp_watchpoint_scope,
11122 &momentary_breakpoint_ops);
11123
11124 scope_breakpoint->enable_state = bp_enabled;
11125
11126 /* Automatically delete the breakpoint when it hits. */
11127 scope_breakpoint->disposition = disp_del;
11128
11129 /* Only break in the proper frame (help with recursion). */
11130 scope_breakpoint->frame_id = frame_unwind_caller_id (frame);
11131
11132 /* Set the address at which we will stop. */
11133 scope_breakpoint->loc->gdbarch
11134 = frame_unwind_caller_arch (frame);
11135 scope_breakpoint->loc->requested_address
11136 = frame_unwind_caller_pc (frame);
11137 scope_breakpoint->loc->address
11138 = adjust_breakpoint_address (scope_breakpoint->loc->gdbarch,
11139 scope_breakpoint->loc->requested_address,
11140 scope_breakpoint->type);
11141 }
11142 }
11143
11144 /* Now set up the breakpoint. We create all watchpoints as hardware
11145 watchpoints here even if hardware watchpoints are turned off, a call
11146 to update_watchpoint later in this function will cause the type to
11147 drop back to bp_watchpoint (software watchpoint) if required. */
11148
11149 if (accessflag == hw_read)
11150 bp_type = bp_read_watchpoint;
11151 else if (accessflag == hw_access)
11152 bp_type = bp_access_watchpoint;
11153 else
11154 bp_type = bp_hardware_watchpoint;
11155
11156 w = XCNEW (struct watchpoint);
11157 b = &w->base;
11158 if (use_mask)
11159 init_raw_breakpoint_without_location (b, NULL, bp_type,
11160 &masked_watchpoint_breakpoint_ops);
11161 else
11162 init_raw_breakpoint_without_location (b, NULL, bp_type,
11163 &watchpoint_breakpoint_ops);
11164 b->thread = thread;
11165 b->disposition = disp_donttouch;
11166 b->pspace = current_program_space;
11167 w->exp = exp;
11168 w->exp_valid_block = exp_valid_block;
11169 w->cond_exp_valid_block = cond_exp_valid_block;
11170 if (just_location)
11171 {
11172 struct type *t = value_type (val);
11173 CORE_ADDR addr = value_as_address (val);
11174 char *name;
11175
11176 t = check_typedef (TYPE_TARGET_TYPE (check_typedef (t)));
11177 name = type_to_string (t);
11178
11179 w->exp_string_reparse = xstrprintf ("* (%s *) %s", name,
11180 core_addr_to_string (addr));
11181 xfree (name);
11182
11183 w->exp_string = xstrprintf ("-location %.*s",
11184 (int) (exp_end - exp_start), exp_start);
11185
11186 /* The above expression is in C. */
11187 b->language = language_c;
11188 }
11189 else
11190 w->exp_string = savestring (exp_start, exp_end - exp_start);
11191
11192 if (use_mask)
11193 {
11194 w->hw_wp_mask = mask;
11195 }
11196 else
11197 {
11198 w->val = val;
11199 w->val_bitpos = saved_bitpos;
11200 w->val_bitsize = saved_bitsize;
11201 w->val_valid = 1;
11202 }
11203
11204 if (cond_start)
11205 b->cond_string = savestring (cond_start, cond_end - cond_start);
11206 else
11207 b->cond_string = 0;
11208
11209 if (frame)
11210 {
11211 w->watchpoint_frame = get_frame_id (frame);
11212 w->watchpoint_thread = inferior_ptid;
11213 }
11214 else
11215 {
11216 w->watchpoint_frame = null_frame_id;
11217 w->watchpoint_thread = null_ptid;
11218 }
11219
11220 if (scope_breakpoint != NULL)
11221 {
11222 /* The scope breakpoint is related to the watchpoint. We will
11223 need to act on them together. */
11224 b->related_breakpoint = scope_breakpoint;
11225 scope_breakpoint->related_breakpoint = b;
11226 }
11227
11228 if (!just_location)
11229 value_free_to_mark (mark);
11230
11231 TRY
11232 {
11233 /* Finally update the new watchpoint. This creates the locations
11234 that should be inserted. */
11235 update_watchpoint (w, 1);
11236 }
11237 CATCH (e, RETURN_MASK_ALL)
11238 {
11239 delete_breakpoint (b);
11240 throw_exception (e);
11241 }
11242 END_CATCH
11243
11244 install_breakpoint (internal, b, 1);
11245 do_cleanups (back_to);
11246 }
11247
11248 /* Return count of debug registers needed to watch the given expression.
11249 If the watchpoint cannot be handled in hardware return zero. */
11250
11251 static int
11252 can_use_hardware_watchpoint (struct value *v)
11253 {
11254 int found_memory_cnt = 0;
11255 struct value *head = v;
11256
11257 /* Did the user specifically forbid us to use hardware watchpoints? */
11258 if (!can_use_hw_watchpoints)
11259 return 0;
11260
11261 /* Make sure that the value of the expression depends only upon
11262 memory contents, and values computed from them within GDB. If we
11263 find any register references or function calls, we can't use a
11264 hardware watchpoint.
11265
11266 The idea here is that evaluating an expression generates a series
11267 of values, one holding the value of every subexpression. (The
11268 expression a*b+c has five subexpressions: a, b, a*b, c, and
11269 a*b+c.) GDB's values hold almost enough information to establish
11270 the criteria given above --- they identify memory lvalues,
11271 register lvalues, computed values, etcetera. So we can evaluate
11272 the expression, and then scan the chain of values that leaves
11273 behind to decide whether we can detect any possible change to the
11274 expression's final value using only hardware watchpoints.
11275
11276 However, I don't think that the values returned by inferior
11277 function calls are special in any way. So this function may not
11278 notice that an expression involving an inferior function call
11279 can't be watched with hardware watchpoints. FIXME. */
11280 for (; v; v = value_next (v))
11281 {
11282 if (VALUE_LVAL (v) == lval_memory)
11283 {
11284 if (v != head && value_lazy (v))
11285 /* A lazy memory lvalue in the chain is one that GDB never
11286 needed to fetch; we either just used its address (e.g.,
11287 `a' in `a.b') or we never needed it at all (e.g., `a'
11288 in `a,b'). This doesn't apply to HEAD; if that is
11289 lazy then it was not readable, but watch it anyway. */
11290 ;
11291 else
11292 {
11293 /* Ahh, memory we actually used! Check if we can cover
11294 it with hardware watchpoints. */
11295 struct type *vtype = check_typedef (value_type (v));
11296
11297 /* We only watch structs and arrays if user asked for it
11298 explicitly, never if they just happen to appear in a
11299 middle of some value chain. */
11300 if (v == head
11301 || (TYPE_CODE (vtype) != TYPE_CODE_STRUCT
11302 && TYPE_CODE (vtype) != TYPE_CODE_ARRAY))
11303 {
11304 CORE_ADDR vaddr = value_address (v);
11305 int len;
11306 int num_regs;
11307
11308 len = (target_exact_watchpoints
11309 && is_scalar_type_recursive (vtype))?
11310 1 : TYPE_LENGTH (value_type (v));
11311
11312 num_regs = target_region_ok_for_hw_watchpoint (vaddr, len);
11313 if (!num_regs)
11314 return 0;
11315 else
11316 found_memory_cnt += num_regs;
11317 }
11318 }
11319 }
11320 else if (VALUE_LVAL (v) != not_lval
11321 && deprecated_value_modifiable (v) == 0)
11322 return 0; /* These are values from the history (e.g., $1). */
11323 else if (VALUE_LVAL (v) == lval_register)
11324 return 0; /* Cannot watch a register with a HW watchpoint. */
11325 }
11326
11327 /* The expression itself looks suitable for using a hardware
11328 watchpoint, but give the target machine a chance to reject it. */
11329 return found_memory_cnt;
11330 }
11331
11332 void
11333 watch_command_wrapper (char *arg, int from_tty, int internal)
11334 {
11335 watch_command_1 (arg, hw_write, from_tty, 0, internal);
11336 }
11337
11338 /* A helper function that looks for the "-location" argument and then
11339 calls watch_command_1. */
11340
11341 static void
11342 watch_maybe_just_location (char *arg, int accessflag, int from_tty)
11343 {
11344 int just_location = 0;
11345
11346 if (arg
11347 && (check_for_argument (&arg, "-location", sizeof ("-location") - 1)
11348 || check_for_argument (&arg, "-l", sizeof ("-l") - 1)))
11349 {
11350 arg = skip_spaces (arg);
11351 just_location = 1;
11352 }
11353
11354 watch_command_1 (arg, accessflag, from_tty, just_location, 0);
11355 }
11356
11357 static void
11358 watch_command (char *arg, int from_tty)
11359 {
11360 watch_maybe_just_location (arg, hw_write, from_tty);
11361 }
11362
11363 void
11364 rwatch_command_wrapper (char *arg, int from_tty, int internal)
11365 {
11366 watch_command_1 (arg, hw_read, from_tty, 0, internal);
11367 }
11368
11369 static void
11370 rwatch_command (char *arg, int from_tty)
11371 {
11372 watch_maybe_just_location (arg, hw_read, from_tty);
11373 }
11374
11375 void
11376 awatch_command_wrapper (char *arg, int from_tty, int internal)
11377 {
11378 watch_command_1 (arg, hw_access, from_tty, 0, internal);
11379 }
11380
11381 static void
11382 awatch_command (char *arg, int from_tty)
11383 {
11384 watch_maybe_just_location (arg, hw_access, from_tty);
11385 }
11386 \f
11387
11388 /* Helper routines for the until_command routine in infcmd.c. Here
11389 because it uses the mechanisms of breakpoints. */
11390
11391 struct until_break_command_continuation_args
11392 {
11393 struct breakpoint *breakpoint;
11394 struct breakpoint *breakpoint2;
11395 int thread_num;
11396 };
11397
11398 /* This function is called by fetch_inferior_event via the
11399 cmd_continuation pointer, to complete the until command. It takes
11400 care of cleaning up the temporary breakpoints set up by the until
11401 command. */
11402 static void
11403 until_break_command_continuation (void *arg, int err)
11404 {
11405 struct until_break_command_continuation_args *a = arg;
11406
11407 delete_breakpoint (a->breakpoint);
11408 if (a->breakpoint2)
11409 delete_breakpoint (a->breakpoint2);
11410 delete_longjmp_breakpoint (a->thread_num);
11411 }
11412
11413 void
11414 until_break_command (char *arg, int from_tty, int anywhere)
11415 {
11416 struct symtabs_and_lines sals;
11417 struct symtab_and_line sal;
11418 struct frame_info *frame;
11419 struct gdbarch *frame_gdbarch;
11420 struct frame_id stack_frame_id;
11421 struct frame_id caller_frame_id;
11422 struct breakpoint *breakpoint;
11423 struct breakpoint *breakpoint2 = NULL;
11424 struct cleanup *old_chain;
11425 int thread;
11426 struct thread_info *tp;
11427
11428 clear_proceed_status (0);
11429
11430 /* Set a breakpoint where the user wants it and at return from
11431 this function. */
11432
11433 if (last_displayed_sal_is_valid ())
11434 sals = decode_line_1 (&arg, DECODE_LINE_FUNFIRSTLINE,
11435 get_last_displayed_symtab (),
11436 get_last_displayed_line ());
11437 else
11438 sals = decode_line_1 (&arg, DECODE_LINE_FUNFIRSTLINE,
11439 (struct symtab *) NULL, 0);
11440
11441 if (sals.nelts != 1)
11442 error (_("Couldn't get information on specified line."));
11443
11444 sal = sals.sals[0];
11445 xfree (sals.sals); /* malloc'd, so freed. */
11446
11447 if (*arg)
11448 error (_("Junk at end of arguments."));
11449
11450 resolve_sal_pc (&sal);
11451
11452 tp = inferior_thread ();
11453 thread = tp->num;
11454
11455 old_chain = make_cleanup (null_cleanup, NULL);
11456
11457 /* Note linespec handling above invalidates the frame chain.
11458 Installing a breakpoint also invalidates the frame chain (as it
11459 may need to switch threads), so do any frame handling before
11460 that. */
11461
11462 frame = get_selected_frame (NULL);
11463 frame_gdbarch = get_frame_arch (frame);
11464 stack_frame_id = get_stack_frame_id (frame);
11465 caller_frame_id = frame_unwind_caller_id (frame);
11466
11467 /* Keep within the current frame, or in frames called by the current
11468 one. */
11469
11470 if (frame_id_p (caller_frame_id))
11471 {
11472 struct symtab_and_line sal2;
11473
11474 sal2 = find_pc_line (frame_unwind_caller_pc (frame), 0);
11475 sal2.pc = frame_unwind_caller_pc (frame);
11476 breakpoint2 = set_momentary_breakpoint (frame_unwind_caller_arch (frame),
11477 sal2,
11478 caller_frame_id,
11479 bp_until);
11480 make_cleanup_delete_breakpoint (breakpoint2);
11481
11482 set_longjmp_breakpoint (tp, caller_frame_id);
11483 make_cleanup (delete_longjmp_breakpoint_cleanup, &thread);
11484 }
11485
11486 /* set_momentary_breakpoint could invalidate FRAME. */
11487 frame = NULL;
11488
11489 if (anywhere)
11490 /* If the user told us to continue until a specified location,
11491 we don't specify a frame at which we need to stop. */
11492 breakpoint = set_momentary_breakpoint (frame_gdbarch, sal,
11493 null_frame_id, bp_until);
11494 else
11495 /* Otherwise, specify the selected frame, because we want to stop
11496 only at the very same frame. */
11497 breakpoint = set_momentary_breakpoint (frame_gdbarch, sal,
11498 stack_frame_id, bp_until);
11499 make_cleanup_delete_breakpoint (breakpoint);
11500
11501 proceed (-1, GDB_SIGNAL_DEFAULT);
11502
11503 /* If we are running asynchronously, and proceed call above has
11504 actually managed to start the target, arrange for breakpoints to
11505 be deleted when the target stops. Otherwise, we're already
11506 stopped and delete breakpoints via cleanup chain. */
11507
11508 if (target_can_async_p () && is_running (inferior_ptid))
11509 {
11510 struct until_break_command_continuation_args *args;
11511 args = xmalloc (sizeof (*args));
11512
11513 args->breakpoint = breakpoint;
11514 args->breakpoint2 = breakpoint2;
11515 args->thread_num = thread;
11516
11517 discard_cleanups (old_chain);
11518 add_continuation (inferior_thread (),
11519 until_break_command_continuation, args,
11520 xfree);
11521 }
11522 else
11523 do_cleanups (old_chain);
11524 }
11525
11526 /* This function attempts to parse an optional "if <cond>" clause
11527 from the arg string. If one is not found, it returns NULL.
11528
11529 Else, it returns a pointer to the condition string. (It does not
11530 attempt to evaluate the string against a particular block.) And,
11531 it updates arg to point to the first character following the parsed
11532 if clause in the arg string. */
11533
11534 char *
11535 ep_parse_optional_if_clause (char **arg)
11536 {
11537 char *cond_string;
11538
11539 if (((*arg)[0] != 'i') || ((*arg)[1] != 'f') || !isspace ((*arg)[2]))
11540 return NULL;
11541
11542 /* Skip the "if" keyword. */
11543 (*arg) += 2;
11544
11545 /* Skip any extra leading whitespace, and record the start of the
11546 condition string. */
11547 *arg = skip_spaces (*arg);
11548 cond_string = *arg;
11549
11550 /* Assume that the condition occupies the remainder of the arg
11551 string. */
11552 (*arg) += strlen (cond_string);
11553
11554 return cond_string;
11555 }
11556
11557 /* Commands to deal with catching events, such as signals, exceptions,
11558 process start/exit, etc. */
11559
11560 typedef enum
11561 {
11562 catch_fork_temporary, catch_vfork_temporary,
11563 catch_fork_permanent, catch_vfork_permanent
11564 }
11565 catch_fork_kind;
11566
11567 static void
11568 catch_fork_command_1 (char *arg, int from_tty,
11569 struct cmd_list_element *command)
11570 {
11571 struct gdbarch *gdbarch = get_current_arch ();
11572 char *cond_string = NULL;
11573 catch_fork_kind fork_kind;
11574 int tempflag;
11575
11576 fork_kind = (catch_fork_kind) (uintptr_t) get_cmd_context (command);
11577 tempflag = (fork_kind == catch_fork_temporary
11578 || fork_kind == catch_vfork_temporary);
11579
11580 if (!arg)
11581 arg = "";
11582 arg = skip_spaces (arg);
11583
11584 /* The allowed syntax is:
11585 catch [v]fork
11586 catch [v]fork if <cond>
11587
11588 First, check if there's an if clause. */
11589 cond_string = ep_parse_optional_if_clause (&arg);
11590
11591 if ((*arg != '\0') && !isspace (*arg))
11592 error (_("Junk at end of arguments."));
11593
11594 /* If this target supports it, create a fork or vfork catchpoint
11595 and enable reporting of such events. */
11596 switch (fork_kind)
11597 {
11598 case catch_fork_temporary:
11599 case catch_fork_permanent:
11600 create_fork_vfork_event_catchpoint (gdbarch, tempflag, cond_string,
11601 &catch_fork_breakpoint_ops);
11602 break;
11603 case catch_vfork_temporary:
11604 case catch_vfork_permanent:
11605 create_fork_vfork_event_catchpoint (gdbarch, tempflag, cond_string,
11606 &catch_vfork_breakpoint_ops);
11607 break;
11608 default:
11609 error (_("unsupported or unknown fork kind; cannot catch it"));
11610 break;
11611 }
11612 }
11613
11614 static void
11615 catch_exec_command_1 (char *arg, int from_tty,
11616 struct cmd_list_element *command)
11617 {
11618 struct exec_catchpoint *c;
11619 struct gdbarch *gdbarch = get_current_arch ();
11620 int tempflag;
11621 char *cond_string = NULL;
11622
11623 tempflag = get_cmd_context (command) == CATCH_TEMPORARY;
11624
11625 if (!arg)
11626 arg = "";
11627 arg = skip_spaces (arg);
11628
11629 /* The allowed syntax is:
11630 catch exec
11631 catch exec if <cond>
11632
11633 First, check if there's an if clause. */
11634 cond_string = ep_parse_optional_if_clause (&arg);
11635
11636 if ((*arg != '\0') && !isspace (*arg))
11637 error (_("Junk at end of arguments."));
11638
11639 c = XNEW (struct exec_catchpoint);
11640 init_catchpoint (&c->base, gdbarch, tempflag, cond_string,
11641 &catch_exec_breakpoint_ops);
11642 c->exec_pathname = NULL;
11643
11644 install_breakpoint (0, &c->base, 1);
11645 }
11646
11647 void
11648 init_ada_exception_breakpoint (struct breakpoint *b,
11649 struct gdbarch *gdbarch,
11650 struct symtab_and_line sal,
11651 char *addr_string,
11652 const struct breakpoint_ops *ops,
11653 int tempflag,
11654 int enabled,
11655 int from_tty)
11656 {
11657 if (from_tty)
11658 {
11659 struct gdbarch *loc_gdbarch = get_sal_arch (sal);
11660 if (!loc_gdbarch)
11661 loc_gdbarch = gdbarch;
11662
11663 describe_other_breakpoints (loc_gdbarch,
11664 sal.pspace, sal.pc, sal.section, -1);
11665 /* FIXME: brobecker/2006-12-28: Actually, re-implement a special
11666 version for exception catchpoints, because two catchpoints
11667 used for different exception names will use the same address.
11668 In this case, a "breakpoint ... also set at..." warning is
11669 unproductive. Besides, the warning phrasing is also a bit
11670 inappropriate, we should use the word catchpoint, and tell
11671 the user what type of catchpoint it is. The above is good
11672 enough for now, though. */
11673 }
11674
11675 init_raw_breakpoint (b, gdbarch, sal, bp_breakpoint, ops);
11676
11677 b->enable_state = enabled ? bp_enabled : bp_disabled;
11678 b->disposition = tempflag ? disp_del : disp_donttouch;
11679 b->addr_string = addr_string;
11680 b->language = language_ada;
11681 }
11682
11683 static void
11684 catch_command (char *arg, int from_tty)
11685 {
11686 error (_("Catch requires an event name."));
11687 }
11688 \f
11689
11690 static void
11691 tcatch_command (char *arg, int from_tty)
11692 {
11693 error (_("Catch requires an event name."));
11694 }
11695
11696 /* A qsort comparison function that sorts breakpoints in order. */
11697
11698 static int
11699 compare_breakpoints (const void *a, const void *b)
11700 {
11701 const breakpoint_p *ba = a;
11702 uintptr_t ua = (uintptr_t) *ba;
11703 const breakpoint_p *bb = b;
11704 uintptr_t ub = (uintptr_t) *bb;
11705
11706 if ((*ba)->number < (*bb)->number)
11707 return -1;
11708 else if ((*ba)->number > (*bb)->number)
11709 return 1;
11710
11711 /* Now sort by address, in case we see, e..g, two breakpoints with
11712 the number 0. */
11713 if (ua < ub)
11714 return -1;
11715 return ua > ub ? 1 : 0;
11716 }
11717
11718 /* Delete breakpoints by address or line. */
11719
11720 static void
11721 clear_command (char *arg, int from_tty)
11722 {
11723 struct breakpoint *b, *prev;
11724 VEC(breakpoint_p) *found = 0;
11725 int ix;
11726 int default_match;
11727 struct symtabs_and_lines sals;
11728 struct symtab_and_line sal;
11729 int i;
11730 struct cleanup *cleanups = make_cleanup (null_cleanup, NULL);
11731
11732 if (arg)
11733 {
11734 sals = decode_line_with_current_source (arg,
11735 (DECODE_LINE_FUNFIRSTLINE
11736 | DECODE_LINE_LIST_MODE));
11737 make_cleanup (xfree, sals.sals);
11738 default_match = 0;
11739 }
11740 else
11741 {
11742 sals.sals = (struct symtab_and_line *)
11743 xmalloc (sizeof (struct symtab_and_line));
11744 make_cleanup (xfree, sals.sals);
11745 init_sal (&sal); /* Initialize to zeroes. */
11746
11747 /* Set sal's line, symtab, pc, and pspace to the values
11748 corresponding to the last call to print_frame_info. If the
11749 codepoint is not valid, this will set all the fields to 0. */
11750 get_last_displayed_sal (&sal);
11751 if (sal.symtab == 0)
11752 error (_("No source file specified."));
11753
11754 sals.sals[0] = sal;
11755 sals.nelts = 1;
11756
11757 default_match = 1;
11758 }
11759
11760 /* We don't call resolve_sal_pc here. That's not as bad as it
11761 seems, because all existing breakpoints typically have both
11762 file/line and pc set. So, if clear is given file/line, we can
11763 match this to existing breakpoint without obtaining pc at all.
11764
11765 We only support clearing given the address explicitly
11766 present in breakpoint table. Say, we've set breakpoint
11767 at file:line. There were several PC values for that file:line,
11768 due to optimization, all in one block.
11769
11770 We've picked one PC value. If "clear" is issued with another
11771 PC corresponding to the same file:line, the breakpoint won't
11772 be cleared. We probably can still clear the breakpoint, but
11773 since the other PC value is never presented to user, user
11774 can only find it by guessing, and it does not seem important
11775 to support that. */
11776
11777 /* For each line spec given, delete bps which correspond to it. Do
11778 it in two passes, solely to preserve the current behavior that
11779 from_tty is forced true if we delete more than one
11780 breakpoint. */
11781
11782 found = NULL;
11783 make_cleanup (VEC_cleanup (breakpoint_p), &found);
11784 for (i = 0; i < sals.nelts; i++)
11785 {
11786 const char *sal_fullname;
11787
11788 /* If exact pc given, clear bpts at that pc.
11789 If line given (pc == 0), clear all bpts on specified line.
11790 If defaulting, clear all bpts on default line
11791 or at default pc.
11792
11793 defaulting sal.pc != 0 tests to do
11794
11795 0 1 pc
11796 1 1 pc _and_ line
11797 0 0 line
11798 1 0 <can't happen> */
11799
11800 sal = sals.sals[i];
11801 sal_fullname = (sal.symtab == NULL
11802 ? NULL : symtab_to_fullname (sal.symtab));
11803
11804 /* Find all matching breakpoints and add them to 'found'. */
11805 ALL_BREAKPOINTS (b)
11806 {
11807 int match = 0;
11808 /* Are we going to delete b? */
11809 if (b->type != bp_none && !is_watchpoint (b))
11810 {
11811 struct bp_location *loc = b->loc;
11812 for (; loc; loc = loc->next)
11813 {
11814 /* If the user specified file:line, don't allow a PC
11815 match. This matches historical gdb behavior. */
11816 int pc_match = (!sal.explicit_line
11817 && sal.pc
11818 && (loc->pspace == sal.pspace)
11819 && (loc->address == sal.pc)
11820 && (!section_is_overlay (loc->section)
11821 || loc->section == sal.section));
11822 int line_match = 0;
11823
11824 if ((default_match || sal.explicit_line)
11825 && loc->symtab != NULL
11826 && sal_fullname != NULL
11827 && sal.pspace == loc->pspace
11828 && loc->line_number == sal.line
11829 && filename_cmp (symtab_to_fullname (loc->symtab),
11830 sal_fullname) == 0)
11831 line_match = 1;
11832
11833 if (pc_match || line_match)
11834 {
11835 match = 1;
11836 break;
11837 }
11838 }
11839 }
11840
11841 if (match)
11842 VEC_safe_push(breakpoint_p, found, b);
11843 }
11844 }
11845
11846 /* Now go thru the 'found' chain and delete them. */
11847 if (VEC_empty(breakpoint_p, found))
11848 {
11849 if (arg)
11850 error (_("No breakpoint at %s."), arg);
11851 else
11852 error (_("No breakpoint at this line."));
11853 }
11854
11855 /* Remove duplicates from the vec. */
11856 qsort (VEC_address (breakpoint_p, found),
11857 VEC_length (breakpoint_p, found),
11858 sizeof (breakpoint_p),
11859 compare_breakpoints);
11860 prev = VEC_index (breakpoint_p, found, 0);
11861 for (ix = 1; VEC_iterate (breakpoint_p, found, ix, b); ++ix)
11862 {
11863 if (b == prev)
11864 {
11865 VEC_ordered_remove (breakpoint_p, found, ix);
11866 --ix;
11867 }
11868 }
11869
11870 if (VEC_length(breakpoint_p, found) > 1)
11871 from_tty = 1; /* Always report if deleted more than one. */
11872 if (from_tty)
11873 {
11874 if (VEC_length(breakpoint_p, found) == 1)
11875 printf_unfiltered (_("Deleted breakpoint "));
11876 else
11877 printf_unfiltered (_("Deleted breakpoints "));
11878 }
11879
11880 for (ix = 0; VEC_iterate(breakpoint_p, found, ix, b); ix++)
11881 {
11882 if (from_tty)
11883 printf_unfiltered ("%d ", b->number);
11884 delete_breakpoint (b);
11885 }
11886 if (from_tty)
11887 putchar_unfiltered ('\n');
11888
11889 do_cleanups (cleanups);
11890 }
11891 \f
11892 /* Delete breakpoint in BS if they are `delete' breakpoints and
11893 all breakpoints that are marked for deletion, whether hit or not.
11894 This is called after any breakpoint is hit, or after errors. */
11895
11896 void
11897 breakpoint_auto_delete (bpstat bs)
11898 {
11899 struct breakpoint *b, *b_tmp;
11900
11901 for (; bs; bs = bs->next)
11902 if (bs->breakpoint_at
11903 && bs->breakpoint_at->disposition == disp_del
11904 && bs->stop)
11905 delete_breakpoint (bs->breakpoint_at);
11906
11907 ALL_BREAKPOINTS_SAFE (b, b_tmp)
11908 {
11909 if (b->disposition == disp_del_at_next_stop)
11910 delete_breakpoint (b);
11911 }
11912 }
11913
11914 /* A comparison function for bp_location AP and BP being interfaced to
11915 qsort. Sort elements primarily by their ADDRESS (no matter what
11916 does breakpoint_address_is_meaningful say for its OWNER),
11917 secondarily by ordering first permanent elements and
11918 terciarily just ensuring the array is sorted stable way despite
11919 qsort being an unstable algorithm. */
11920
11921 static int
11922 bp_location_compare (const void *ap, const void *bp)
11923 {
11924 struct bp_location *a = *(void **) ap;
11925 struct bp_location *b = *(void **) bp;
11926
11927 if (a->address != b->address)
11928 return (a->address > b->address) - (a->address < b->address);
11929
11930 /* Sort locations at the same address by their pspace number, keeping
11931 locations of the same inferior (in a multi-inferior environment)
11932 grouped. */
11933
11934 if (a->pspace->num != b->pspace->num)
11935 return ((a->pspace->num > b->pspace->num)
11936 - (a->pspace->num < b->pspace->num));
11937
11938 /* Sort permanent breakpoints first. */
11939 if (a->permanent != b->permanent)
11940 return (a->permanent < b->permanent) - (a->permanent > b->permanent);
11941
11942 /* Make the internal GDB representation stable across GDB runs
11943 where A and B memory inside GDB can differ. Breakpoint locations of
11944 the same type at the same address can be sorted in arbitrary order. */
11945
11946 if (a->owner->number != b->owner->number)
11947 return ((a->owner->number > b->owner->number)
11948 - (a->owner->number < b->owner->number));
11949
11950 return (a > b) - (a < b);
11951 }
11952
11953 /* Set bp_location_placed_address_before_address_max and
11954 bp_location_shadow_len_after_address_max according to the current
11955 content of the bp_location array. */
11956
11957 static void
11958 bp_location_target_extensions_update (void)
11959 {
11960 struct bp_location *bl, **blp_tmp;
11961
11962 bp_location_placed_address_before_address_max = 0;
11963 bp_location_shadow_len_after_address_max = 0;
11964
11965 ALL_BP_LOCATIONS (bl, blp_tmp)
11966 {
11967 CORE_ADDR start, end, addr;
11968
11969 if (!bp_location_has_shadow (bl))
11970 continue;
11971
11972 start = bl->target_info.placed_address;
11973 end = start + bl->target_info.shadow_len;
11974
11975 gdb_assert (bl->address >= start);
11976 addr = bl->address - start;
11977 if (addr > bp_location_placed_address_before_address_max)
11978 bp_location_placed_address_before_address_max = addr;
11979
11980 /* Zero SHADOW_LEN would not pass bp_location_has_shadow. */
11981
11982 gdb_assert (bl->address < end);
11983 addr = end - bl->address;
11984 if (addr > bp_location_shadow_len_after_address_max)
11985 bp_location_shadow_len_after_address_max = addr;
11986 }
11987 }
11988
11989 /* Download tracepoint locations if they haven't been. */
11990
11991 static void
11992 download_tracepoint_locations (void)
11993 {
11994 struct breakpoint *b;
11995 struct cleanup *old_chain;
11996
11997 if (!target_can_download_tracepoint ())
11998 return;
11999
12000 old_chain = save_current_space_and_thread ();
12001
12002 ALL_TRACEPOINTS (b)
12003 {
12004 struct bp_location *bl;
12005 struct tracepoint *t;
12006 int bp_location_downloaded = 0;
12007
12008 if ((b->type == bp_fast_tracepoint
12009 ? !may_insert_fast_tracepoints
12010 : !may_insert_tracepoints))
12011 continue;
12012
12013 for (bl = b->loc; bl; bl = bl->next)
12014 {
12015 /* In tracepoint, locations are _never_ duplicated, so
12016 should_be_inserted is equivalent to
12017 unduplicated_should_be_inserted. */
12018 if (!should_be_inserted (bl) || bl->inserted)
12019 continue;
12020
12021 switch_to_program_space_and_thread (bl->pspace);
12022
12023 target_download_tracepoint (bl);
12024
12025 bl->inserted = 1;
12026 bp_location_downloaded = 1;
12027 }
12028 t = (struct tracepoint *) b;
12029 t->number_on_target = b->number;
12030 if (bp_location_downloaded)
12031 observer_notify_breakpoint_modified (b);
12032 }
12033
12034 do_cleanups (old_chain);
12035 }
12036
12037 /* Swap the insertion/duplication state between two locations. */
12038
12039 static void
12040 swap_insertion (struct bp_location *left, struct bp_location *right)
12041 {
12042 const int left_inserted = left->inserted;
12043 const int left_duplicate = left->duplicate;
12044 const int left_needs_update = left->needs_update;
12045 const struct bp_target_info left_target_info = left->target_info;
12046
12047 /* Locations of tracepoints can never be duplicated. */
12048 if (is_tracepoint (left->owner))
12049 gdb_assert (!left->duplicate);
12050 if (is_tracepoint (right->owner))
12051 gdb_assert (!right->duplicate);
12052
12053 left->inserted = right->inserted;
12054 left->duplicate = right->duplicate;
12055 left->needs_update = right->needs_update;
12056 left->target_info = right->target_info;
12057 right->inserted = left_inserted;
12058 right->duplicate = left_duplicate;
12059 right->needs_update = left_needs_update;
12060 right->target_info = left_target_info;
12061 }
12062
12063 /* Force the re-insertion of the locations at ADDRESS. This is called
12064 once a new/deleted/modified duplicate location is found and we are evaluating
12065 conditions on the target's side. Such conditions need to be updated on
12066 the target. */
12067
12068 static void
12069 force_breakpoint_reinsertion (struct bp_location *bl)
12070 {
12071 struct bp_location **locp = NULL, **loc2p;
12072 struct bp_location *loc;
12073 CORE_ADDR address = 0;
12074 int pspace_num;
12075
12076 address = bl->address;
12077 pspace_num = bl->pspace->num;
12078
12079 /* This is only meaningful if the target is
12080 evaluating conditions and if the user has
12081 opted for condition evaluation on the target's
12082 side. */
12083 if (gdb_evaluates_breakpoint_condition_p ()
12084 || !target_supports_evaluation_of_breakpoint_conditions ())
12085 return;
12086
12087 /* Flag all breakpoint locations with this address and
12088 the same program space as the location
12089 as "its condition has changed". We need to
12090 update the conditions on the target's side. */
12091 ALL_BP_LOCATIONS_AT_ADDR (loc2p, locp, address)
12092 {
12093 loc = *loc2p;
12094
12095 if (!is_breakpoint (loc->owner)
12096 || pspace_num != loc->pspace->num)
12097 continue;
12098
12099 /* Flag the location appropriately. We use a different state to
12100 let everyone know that we already updated the set of locations
12101 with addr bl->address and program space bl->pspace. This is so
12102 we don't have to keep calling these functions just to mark locations
12103 that have already been marked. */
12104 loc->condition_changed = condition_updated;
12105
12106 /* Free the agent expression bytecode as well. We will compute
12107 it later on. */
12108 if (loc->cond_bytecode)
12109 {
12110 free_agent_expr (loc->cond_bytecode);
12111 loc->cond_bytecode = NULL;
12112 }
12113 }
12114 }
12115 /* Called whether new breakpoints are created, or existing breakpoints
12116 deleted, to update the global location list and recompute which
12117 locations are duplicate of which.
12118
12119 The INSERT_MODE flag determines whether locations may not, may, or
12120 shall be inserted now. See 'enum ugll_insert_mode' for more
12121 info. */
12122
12123 static void
12124 update_global_location_list (enum ugll_insert_mode insert_mode)
12125 {
12126 struct breakpoint *b;
12127 struct bp_location **locp, *loc;
12128 struct cleanup *cleanups;
12129 /* Last breakpoint location address that was marked for update. */
12130 CORE_ADDR last_addr = 0;
12131 /* Last breakpoint location program space that was marked for update. */
12132 int last_pspace_num = -1;
12133
12134 /* Used in the duplicates detection below. When iterating over all
12135 bp_locations, points to the first bp_location of a given address.
12136 Breakpoints and watchpoints of different types are never
12137 duplicates of each other. Keep one pointer for each type of
12138 breakpoint/watchpoint, so we only need to loop over all locations
12139 once. */
12140 struct bp_location *bp_loc_first; /* breakpoint */
12141 struct bp_location *wp_loc_first; /* hardware watchpoint */
12142 struct bp_location *awp_loc_first; /* access watchpoint */
12143 struct bp_location *rwp_loc_first; /* read watchpoint */
12144
12145 /* Saved former bp_location array which we compare against the newly
12146 built bp_location from the current state of ALL_BREAKPOINTS. */
12147 struct bp_location **old_location, **old_locp;
12148 unsigned old_location_count;
12149
12150 old_location = bp_location;
12151 old_location_count = bp_location_count;
12152 bp_location = NULL;
12153 bp_location_count = 0;
12154 cleanups = make_cleanup (xfree, old_location);
12155
12156 ALL_BREAKPOINTS (b)
12157 for (loc = b->loc; loc; loc = loc->next)
12158 bp_location_count++;
12159
12160 bp_location = xmalloc (sizeof (*bp_location) * bp_location_count);
12161 locp = bp_location;
12162 ALL_BREAKPOINTS (b)
12163 for (loc = b->loc; loc; loc = loc->next)
12164 *locp++ = loc;
12165 qsort (bp_location, bp_location_count, sizeof (*bp_location),
12166 bp_location_compare);
12167
12168 bp_location_target_extensions_update ();
12169
12170 /* Identify bp_location instances that are no longer present in the
12171 new list, and therefore should be freed. Note that it's not
12172 necessary that those locations should be removed from inferior --
12173 if there's another location at the same address (previously
12174 marked as duplicate), we don't need to remove/insert the
12175 location.
12176
12177 LOCP is kept in sync with OLD_LOCP, each pointing to the current
12178 and former bp_location array state respectively. */
12179
12180 locp = bp_location;
12181 for (old_locp = old_location; old_locp < old_location + old_location_count;
12182 old_locp++)
12183 {
12184 struct bp_location *old_loc = *old_locp;
12185 struct bp_location **loc2p;
12186
12187 /* Tells if 'old_loc' is found among the new locations. If
12188 not, we have to free it. */
12189 int found_object = 0;
12190 /* Tells if the location should remain inserted in the target. */
12191 int keep_in_target = 0;
12192 int removed = 0;
12193
12194 /* Skip LOCP entries which will definitely never be needed.
12195 Stop either at or being the one matching OLD_LOC. */
12196 while (locp < bp_location + bp_location_count
12197 && (*locp)->address < old_loc->address)
12198 locp++;
12199
12200 for (loc2p = locp;
12201 (loc2p < bp_location + bp_location_count
12202 && (*loc2p)->address == old_loc->address);
12203 loc2p++)
12204 {
12205 /* Check if this is a new/duplicated location or a duplicated
12206 location that had its condition modified. If so, we want to send
12207 its condition to the target if evaluation of conditions is taking
12208 place there. */
12209 if ((*loc2p)->condition_changed == condition_modified
12210 && (last_addr != old_loc->address
12211 || last_pspace_num != old_loc->pspace->num))
12212 {
12213 force_breakpoint_reinsertion (*loc2p);
12214 last_pspace_num = old_loc->pspace->num;
12215 }
12216
12217 if (*loc2p == old_loc)
12218 found_object = 1;
12219 }
12220
12221 /* We have already handled this address, update it so that we don't
12222 have to go through updates again. */
12223 last_addr = old_loc->address;
12224
12225 /* Target-side condition evaluation: Handle deleted locations. */
12226 if (!found_object)
12227 force_breakpoint_reinsertion (old_loc);
12228
12229 /* If this location is no longer present, and inserted, look if
12230 there's maybe a new location at the same address. If so,
12231 mark that one inserted, and don't remove this one. This is
12232 needed so that we don't have a time window where a breakpoint
12233 at certain location is not inserted. */
12234
12235 if (old_loc->inserted)
12236 {
12237 /* If the location is inserted now, we might have to remove
12238 it. */
12239
12240 if (found_object && should_be_inserted (old_loc))
12241 {
12242 /* The location is still present in the location list,
12243 and still should be inserted. Don't do anything. */
12244 keep_in_target = 1;
12245 }
12246 else
12247 {
12248 /* This location still exists, but it won't be kept in the
12249 target since it may have been disabled. We proceed to
12250 remove its target-side condition. */
12251
12252 /* The location is either no longer present, or got
12253 disabled. See if there's another location at the
12254 same address, in which case we don't need to remove
12255 this one from the target. */
12256
12257 /* OLD_LOC comes from existing struct breakpoint. */
12258 if (breakpoint_address_is_meaningful (old_loc->owner))
12259 {
12260 for (loc2p = locp;
12261 (loc2p < bp_location + bp_location_count
12262 && (*loc2p)->address == old_loc->address);
12263 loc2p++)
12264 {
12265 struct bp_location *loc2 = *loc2p;
12266
12267 if (breakpoint_locations_match (loc2, old_loc))
12268 {
12269 /* Read watchpoint locations are switched to
12270 access watchpoints, if the former are not
12271 supported, but the latter are. */
12272 if (is_hardware_watchpoint (old_loc->owner))
12273 {
12274 gdb_assert (is_hardware_watchpoint (loc2->owner));
12275 loc2->watchpoint_type = old_loc->watchpoint_type;
12276 }
12277
12278 /* loc2 is a duplicated location. We need to check
12279 if it should be inserted in case it will be
12280 unduplicated. */
12281 if (loc2 != old_loc
12282 && unduplicated_should_be_inserted (loc2))
12283 {
12284 swap_insertion (old_loc, loc2);
12285 keep_in_target = 1;
12286 break;
12287 }
12288 }
12289 }
12290 }
12291 }
12292
12293 if (!keep_in_target)
12294 {
12295 if (remove_breakpoint (old_loc, mark_uninserted))
12296 {
12297 /* This is just about all we can do. We could keep
12298 this location on the global list, and try to
12299 remove it next time, but there's no particular
12300 reason why we will succeed next time.
12301
12302 Note that at this point, old_loc->owner is still
12303 valid, as delete_breakpoint frees the breakpoint
12304 only after calling us. */
12305 printf_filtered (_("warning: Error removing "
12306 "breakpoint %d\n"),
12307 old_loc->owner->number);
12308 }
12309 removed = 1;
12310 }
12311 }
12312
12313 if (!found_object)
12314 {
12315 if (removed && non_stop
12316 && need_moribund_for_location_type (old_loc))
12317 {
12318 /* This location was removed from the target. In
12319 non-stop mode, a race condition is possible where
12320 we've removed a breakpoint, but stop events for that
12321 breakpoint are already queued and will arrive later.
12322 We apply an heuristic to be able to distinguish such
12323 SIGTRAPs from other random SIGTRAPs: we keep this
12324 breakpoint location for a bit, and will retire it
12325 after we see some number of events. The theory here
12326 is that reporting of events should, "on the average",
12327 be fair, so after a while we'll see events from all
12328 threads that have anything of interest, and no longer
12329 need to keep this breakpoint location around. We
12330 don't hold locations forever so to reduce chances of
12331 mistaking a non-breakpoint SIGTRAP for a breakpoint
12332 SIGTRAP.
12333
12334 The heuristic failing can be disastrous on
12335 decr_pc_after_break targets.
12336
12337 On decr_pc_after_break targets, like e.g., x86-linux,
12338 if we fail to recognize a late breakpoint SIGTRAP,
12339 because events_till_retirement has reached 0 too
12340 soon, we'll fail to do the PC adjustment, and report
12341 a random SIGTRAP to the user. When the user resumes
12342 the inferior, it will most likely immediately crash
12343 with SIGILL/SIGBUS/SIGSEGV, or worse, get silently
12344 corrupted, because of being resumed e.g., in the
12345 middle of a multi-byte instruction, or skipped a
12346 one-byte instruction. This was actually seen happen
12347 on native x86-linux, and should be less rare on
12348 targets that do not support new thread events, like
12349 remote, due to the heuristic depending on
12350 thread_count.
12351
12352 Mistaking a random SIGTRAP for a breakpoint trap
12353 causes similar symptoms (PC adjustment applied when
12354 it shouldn't), but then again, playing with SIGTRAPs
12355 behind the debugger's back is asking for trouble.
12356
12357 Since hardware watchpoint traps are always
12358 distinguishable from other traps, so we don't need to
12359 apply keep hardware watchpoint moribund locations
12360 around. We simply always ignore hardware watchpoint
12361 traps we can no longer explain. */
12362
12363 old_loc->events_till_retirement = 3 * (thread_count () + 1);
12364 old_loc->owner = NULL;
12365
12366 VEC_safe_push (bp_location_p, moribund_locations, old_loc);
12367 }
12368 else
12369 {
12370 old_loc->owner = NULL;
12371 decref_bp_location (&old_loc);
12372 }
12373 }
12374 }
12375
12376 /* Rescan breakpoints at the same address and section, marking the
12377 first one as "first" and any others as "duplicates". This is so
12378 that the bpt instruction is only inserted once. If we have a
12379 permanent breakpoint at the same place as BPT, make that one the
12380 official one, and the rest as duplicates. Permanent breakpoints
12381 are sorted first for the same address.
12382
12383 Do the same for hardware watchpoints, but also considering the
12384 watchpoint's type (regular/access/read) and length. */
12385
12386 bp_loc_first = NULL;
12387 wp_loc_first = NULL;
12388 awp_loc_first = NULL;
12389 rwp_loc_first = NULL;
12390 ALL_BP_LOCATIONS (loc, locp)
12391 {
12392 /* ALL_BP_LOCATIONS bp_location has LOC->OWNER always
12393 non-NULL. */
12394 struct bp_location **loc_first_p;
12395 b = loc->owner;
12396
12397 if (!unduplicated_should_be_inserted (loc)
12398 || !breakpoint_address_is_meaningful (b)
12399 /* Don't detect duplicate for tracepoint locations because they are
12400 never duplicated. See the comments in field `duplicate' of
12401 `struct bp_location'. */
12402 || is_tracepoint (b))
12403 {
12404 /* Clear the condition modification flag. */
12405 loc->condition_changed = condition_unchanged;
12406 continue;
12407 }
12408
12409 if (b->type == bp_hardware_watchpoint)
12410 loc_first_p = &wp_loc_first;
12411 else if (b->type == bp_read_watchpoint)
12412 loc_first_p = &rwp_loc_first;
12413 else if (b->type == bp_access_watchpoint)
12414 loc_first_p = &awp_loc_first;
12415 else
12416 loc_first_p = &bp_loc_first;
12417
12418 if (*loc_first_p == NULL
12419 || (overlay_debugging && loc->section != (*loc_first_p)->section)
12420 || !breakpoint_locations_match (loc, *loc_first_p))
12421 {
12422 *loc_first_p = loc;
12423 loc->duplicate = 0;
12424
12425 if (is_breakpoint (loc->owner) && loc->condition_changed)
12426 {
12427 loc->needs_update = 1;
12428 /* Clear the condition modification flag. */
12429 loc->condition_changed = condition_unchanged;
12430 }
12431 continue;
12432 }
12433
12434
12435 /* This and the above ensure the invariant that the first location
12436 is not duplicated, and is the inserted one.
12437 All following are marked as duplicated, and are not inserted. */
12438 if (loc->inserted)
12439 swap_insertion (loc, *loc_first_p);
12440 loc->duplicate = 1;
12441
12442 /* Clear the condition modification flag. */
12443 loc->condition_changed = condition_unchanged;
12444 }
12445
12446 if (insert_mode == UGLL_INSERT || breakpoints_should_be_inserted_now ())
12447 {
12448 if (insert_mode != UGLL_DONT_INSERT)
12449 insert_breakpoint_locations ();
12450 else
12451 {
12452 /* Even though the caller told us to not insert new
12453 locations, we may still need to update conditions on the
12454 target's side of breakpoints that were already inserted
12455 if the target is evaluating breakpoint conditions. We
12456 only update conditions for locations that are marked
12457 "needs_update". */
12458 update_inserted_breakpoint_locations ();
12459 }
12460 }
12461
12462 if (insert_mode != UGLL_DONT_INSERT)
12463 download_tracepoint_locations ();
12464
12465 do_cleanups (cleanups);
12466 }
12467
12468 void
12469 breakpoint_retire_moribund (void)
12470 {
12471 struct bp_location *loc;
12472 int ix;
12473
12474 for (ix = 0; VEC_iterate (bp_location_p, moribund_locations, ix, loc); ++ix)
12475 if (--(loc->events_till_retirement) == 0)
12476 {
12477 decref_bp_location (&loc);
12478 VEC_unordered_remove (bp_location_p, moribund_locations, ix);
12479 --ix;
12480 }
12481 }
12482
12483 static void
12484 update_global_location_list_nothrow (enum ugll_insert_mode insert_mode)
12485 {
12486
12487 TRY
12488 {
12489 update_global_location_list (insert_mode);
12490 }
12491 CATCH (e, RETURN_MASK_ERROR)
12492 {
12493 }
12494 END_CATCH
12495 }
12496
12497 /* Clear BKP from a BPS. */
12498
12499 static void
12500 bpstat_remove_bp_location (bpstat bps, struct breakpoint *bpt)
12501 {
12502 bpstat bs;
12503
12504 for (bs = bps; bs; bs = bs->next)
12505 if (bs->breakpoint_at == bpt)
12506 {
12507 bs->breakpoint_at = NULL;
12508 bs->old_val = NULL;
12509 /* bs->commands will be freed later. */
12510 }
12511 }
12512
12513 /* Callback for iterate_over_threads. */
12514 static int
12515 bpstat_remove_breakpoint_callback (struct thread_info *th, void *data)
12516 {
12517 struct breakpoint *bpt = data;
12518
12519 bpstat_remove_bp_location (th->control.stop_bpstat, bpt);
12520 return 0;
12521 }
12522
12523 /* Helper for breakpoint and tracepoint breakpoint_ops->mention
12524 callbacks. */
12525
12526 static void
12527 say_where (struct breakpoint *b)
12528 {
12529 struct value_print_options opts;
12530
12531 get_user_print_options (&opts);
12532
12533 /* i18n: cagney/2005-02-11: Below needs to be merged into a
12534 single string. */
12535 if (b->loc == NULL)
12536 {
12537 printf_filtered (_(" (%s) pending."), b->addr_string);
12538 }
12539 else
12540 {
12541 if (opts.addressprint || b->loc->symtab == NULL)
12542 {
12543 printf_filtered (" at ");
12544 fputs_filtered (paddress (b->loc->gdbarch, b->loc->address),
12545 gdb_stdout);
12546 }
12547 if (b->loc->symtab != NULL)
12548 {
12549 /* If there is a single location, we can print the location
12550 more nicely. */
12551 if (b->loc->next == NULL)
12552 printf_filtered (": file %s, line %d.",
12553 symtab_to_filename_for_display (b->loc->symtab),
12554 b->loc->line_number);
12555 else
12556 /* This is not ideal, but each location may have a
12557 different file name, and this at least reflects the
12558 real situation somewhat. */
12559 printf_filtered (": %s.", b->addr_string);
12560 }
12561
12562 if (b->loc->next)
12563 {
12564 struct bp_location *loc = b->loc;
12565 int n = 0;
12566 for (; loc; loc = loc->next)
12567 ++n;
12568 printf_filtered (" (%d locations)", n);
12569 }
12570 }
12571 }
12572
12573 /* Default bp_location_ops methods. */
12574
12575 static void
12576 bp_location_dtor (struct bp_location *self)
12577 {
12578 xfree (self->cond);
12579 if (self->cond_bytecode)
12580 free_agent_expr (self->cond_bytecode);
12581 xfree (self->function_name);
12582
12583 VEC_free (agent_expr_p, self->target_info.conditions);
12584 VEC_free (agent_expr_p, self->target_info.tcommands);
12585 }
12586
12587 static const struct bp_location_ops bp_location_ops =
12588 {
12589 bp_location_dtor
12590 };
12591
12592 /* Default breakpoint_ops methods all breakpoint_ops ultimately
12593 inherit from. */
12594
12595 static void
12596 base_breakpoint_dtor (struct breakpoint *self)
12597 {
12598 decref_counted_command_line (&self->commands);
12599 xfree (self->cond_string);
12600 xfree (self->extra_string);
12601 xfree (self->addr_string);
12602 xfree (self->filter);
12603 xfree (self->addr_string_range_end);
12604 }
12605
12606 static struct bp_location *
12607 base_breakpoint_allocate_location (struct breakpoint *self)
12608 {
12609 struct bp_location *loc;
12610
12611 loc = XNEW (struct bp_location);
12612 init_bp_location (loc, &bp_location_ops, self);
12613 return loc;
12614 }
12615
12616 static void
12617 base_breakpoint_re_set (struct breakpoint *b)
12618 {
12619 /* Nothing to re-set. */
12620 }
12621
12622 #define internal_error_pure_virtual_called() \
12623 gdb_assert_not_reached ("pure virtual function called")
12624
12625 static int
12626 base_breakpoint_insert_location (struct bp_location *bl)
12627 {
12628 internal_error_pure_virtual_called ();
12629 }
12630
12631 static int
12632 base_breakpoint_remove_location (struct bp_location *bl)
12633 {
12634 internal_error_pure_virtual_called ();
12635 }
12636
12637 static int
12638 base_breakpoint_breakpoint_hit (const struct bp_location *bl,
12639 struct address_space *aspace,
12640 CORE_ADDR bp_addr,
12641 const struct target_waitstatus *ws)
12642 {
12643 internal_error_pure_virtual_called ();
12644 }
12645
12646 static void
12647 base_breakpoint_check_status (bpstat bs)
12648 {
12649 /* Always stop. */
12650 }
12651
12652 /* A "works_in_software_mode" breakpoint_ops method that just internal
12653 errors. */
12654
12655 static int
12656 base_breakpoint_works_in_software_mode (const struct breakpoint *b)
12657 {
12658 internal_error_pure_virtual_called ();
12659 }
12660
12661 /* A "resources_needed" breakpoint_ops method that just internal
12662 errors. */
12663
12664 static int
12665 base_breakpoint_resources_needed (const struct bp_location *bl)
12666 {
12667 internal_error_pure_virtual_called ();
12668 }
12669
12670 static enum print_stop_action
12671 base_breakpoint_print_it (bpstat bs)
12672 {
12673 internal_error_pure_virtual_called ();
12674 }
12675
12676 static void
12677 base_breakpoint_print_one_detail (const struct breakpoint *self,
12678 struct ui_out *uiout)
12679 {
12680 /* nothing */
12681 }
12682
12683 static void
12684 base_breakpoint_print_mention (struct breakpoint *b)
12685 {
12686 internal_error_pure_virtual_called ();
12687 }
12688
12689 static void
12690 base_breakpoint_print_recreate (struct breakpoint *b, struct ui_file *fp)
12691 {
12692 internal_error_pure_virtual_called ();
12693 }
12694
12695 static void
12696 base_breakpoint_create_sals_from_address (char **arg,
12697 struct linespec_result *canonical,
12698 enum bptype type_wanted,
12699 char *addr_start,
12700 char **copy_arg)
12701 {
12702 internal_error_pure_virtual_called ();
12703 }
12704
12705 static void
12706 base_breakpoint_create_breakpoints_sal (struct gdbarch *gdbarch,
12707 struct linespec_result *c,
12708 char *cond_string,
12709 char *extra_string,
12710 enum bptype type_wanted,
12711 enum bpdisp disposition,
12712 int thread,
12713 int task, int ignore_count,
12714 const struct breakpoint_ops *o,
12715 int from_tty, int enabled,
12716 int internal, unsigned flags)
12717 {
12718 internal_error_pure_virtual_called ();
12719 }
12720
12721 static void
12722 base_breakpoint_decode_linespec (struct breakpoint *b, char **s,
12723 struct symtabs_and_lines *sals)
12724 {
12725 internal_error_pure_virtual_called ();
12726 }
12727
12728 /* The default 'explains_signal' method. */
12729
12730 static int
12731 base_breakpoint_explains_signal (struct breakpoint *b, enum gdb_signal sig)
12732 {
12733 return 1;
12734 }
12735
12736 /* The default "after_condition_true" method. */
12737
12738 static void
12739 base_breakpoint_after_condition_true (struct bpstats *bs)
12740 {
12741 /* Nothing to do. */
12742 }
12743
12744 struct breakpoint_ops base_breakpoint_ops =
12745 {
12746 base_breakpoint_dtor,
12747 base_breakpoint_allocate_location,
12748 base_breakpoint_re_set,
12749 base_breakpoint_insert_location,
12750 base_breakpoint_remove_location,
12751 base_breakpoint_breakpoint_hit,
12752 base_breakpoint_check_status,
12753 base_breakpoint_resources_needed,
12754 base_breakpoint_works_in_software_mode,
12755 base_breakpoint_print_it,
12756 NULL,
12757 base_breakpoint_print_one_detail,
12758 base_breakpoint_print_mention,
12759 base_breakpoint_print_recreate,
12760 base_breakpoint_create_sals_from_address,
12761 base_breakpoint_create_breakpoints_sal,
12762 base_breakpoint_decode_linespec,
12763 base_breakpoint_explains_signal,
12764 base_breakpoint_after_condition_true,
12765 };
12766
12767 /* Default breakpoint_ops methods. */
12768
12769 static void
12770 bkpt_re_set (struct breakpoint *b)
12771 {
12772 /* FIXME: is this still reachable? */
12773 if (b->addr_string == NULL)
12774 {
12775 /* Anything without a string can't be re-set. */
12776 delete_breakpoint (b);
12777 return;
12778 }
12779
12780 breakpoint_re_set_default (b);
12781 }
12782
12783 static int
12784 bkpt_insert_location (struct bp_location *bl)
12785 {
12786 if (bl->loc_type == bp_loc_hardware_breakpoint)
12787 return target_insert_hw_breakpoint (bl->gdbarch, &bl->target_info);
12788 else
12789 return target_insert_breakpoint (bl->gdbarch, &bl->target_info);
12790 }
12791
12792 static int
12793 bkpt_remove_location (struct bp_location *bl)
12794 {
12795 if (bl->loc_type == bp_loc_hardware_breakpoint)
12796 return target_remove_hw_breakpoint (bl->gdbarch, &bl->target_info);
12797 else
12798 return target_remove_breakpoint (bl->gdbarch, &bl->target_info);
12799 }
12800
12801 static int
12802 bkpt_breakpoint_hit (const struct bp_location *bl,
12803 struct address_space *aspace, CORE_ADDR bp_addr,
12804 const struct target_waitstatus *ws)
12805 {
12806 if (ws->kind != TARGET_WAITKIND_STOPPED
12807 || ws->value.sig != GDB_SIGNAL_TRAP)
12808 return 0;
12809
12810 if (!breakpoint_address_match (bl->pspace->aspace, bl->address,
12811 aspace, bp_addr))
12812 return 0;
12813
12814 if (overlay_debugging /* unmapped overlay section */
12815 && section_is_overlay (bl->section)
12816 && !section_is_mapped (bl->section))
12817 return 0;
12818
12819 return 1;
12820 }
12821
12822 static int
12823 dprintf_breakpoint_hit (const struct bp_location *bl,
12824 struct address_space *aspace, CORE_ADDR bp_addr,
12825 const struct target_waitstatus *ws)
12826 {
12827 if (dprintf_style == dprintf_style_agent
12828 && target_can_run_breakpoint_commands ())
12829 {
12830 /* An agent-style dprintf never causes a stop. If we see a trap
12831 for this address it must be for a breakpoint that happens to
12832 be set at the same address. */
12833 return 0;
12834 }
12835
12836 return bkpt_breakpoint_hit (bl, aspace, bp_addr, ws);
12837 }
12838
12839 static int
12840 bkpt_resources_needed (const struct bp_location *bl)
12841 {
12842 gdb_assert (bl->owner->type == bp_hardware_breakpoint);
12843
12844 return 1;
12845 }
12846
12847 static enum print_stop_action
12848 bkpt_print_it (bpstat bs)
12849 {
12850 struct breakpoint *b;
12851 const struct bp_location *bl;
12852 int bp_temp;
12853 struct ui_out *uiout = current_uiout;
12854
12855 gdb_assert (bs->bp_location_at != NULL);
12856
12857 bl = bs->bp_location_at;
12858 b = bs->breakpoint_at;
12859
12860 bp_temp = b->disposition == disp_del;
12861 if (bl->address != bl->requested_address)
12862 breakpoint_adjustment_warning (bl->requested_address,
12863 bl->address,
12864 b->number, 1);
12865 annotate_breakpoint (b->number);
12866 if (bp_temp)
12867 ui_out_text (uiout, "\nTemporary breakpoint ");
12868 else
12869 ui_out_text (uiout, "\nBreakpoint ");
12870 if (ui_out_is_mi_like_p (uiout))
12871 {
12872 ui_out_field_string (uiout, "reason",
12873 async_reason_lookup (EXEC_ASYNC_BREAKPOINT_HIT));
12874 ui_out_field_string (uiout, "disp", bpdisp_text (b->disposition));
12875 }
12876 ui_out_field_int (uiout, "bkptno", b->number);
12877 ui_out_text (uiout, ", ");
12878
12879 return PRINT_SRC_AND_LOC;
12880 }
12881
12882 static void
12883 bkpt_print_mention (struct breakpoint *b)
12884 {
12885 if (ui_out_is_mi_like_p (current_uiout))
12886 return;
12887
12888 switch (b->type)
12889 {
12890 case bp_breakpoint:
12891 case bp_gnu_ifunc_resolver:
12892 if (b->disposition == disp_del)
12893 printf_filtered (_("Temporary breakpoint"));
12894 else
12895 printf_filtered (_("Breakpoint"));
12896 printf_filtered (_(" %d"), b->number);
12897 if (b->type == bp_gnu_ifunc_resolver)
12898 printf_filtered (_(" at gnu-indirect-function resolver"));
12899 break;
12900 case bp_hardware_breakpoint:
12901 printf_filtered (_("Hardware assisted breakpoint %d"), b->number);
12902 break;
12903 case bp_dprintf:
12904 printf_filtered (_("Dprintf %d"), b->number);
12905 break;
12906 }
12907
12908 say_where (b);
12909 }
12910
12911 static void
12912 bkpt_print_recreate (struct breakpoint *tp, struct ui_file *fp)
12913 {
12914 if (tp->type == bp_breakpoint && tp->disposition == disp_del)
12915 fprintf_unfiltered (fp, "tbreak");
12916 else if (tp->type == bp_breakpoint)
12917 fprintf_unfiltered (fp, "break");
12918 else if (tp->type == bp_hardware_breakpoint
12919 && tp->disposition == disp_del)
12920 fprintf_unfiltered (fp, "thbreak");
12921 else if (tp->type == bp_hardware_breakpoint)
12922 fprintf_unfiltered (fp, "hbreak");
12923 else
12924 internal_error (__FILE__, __LINE__,
12925 _("unhandled breakpoint type %d"), (int) tp->type);
12926
12927 fprintf_unfiltered (fp, " %s", tp->addr_string);
12928 print_recreate_thread (tp, fp);
12929 }
12930
12931 static void
12932 bkpt_create_sals_from_address (char **arg,
12933 struct linespec_result *canonical,
12934 enum bptype type_wanted,
12935 char *addr_start, char **copy_arg)
12936 {
12937 create_sals_from_address_default (arg, canonical, type_wanted,
12938 addr_start, copy_arg);
12939 }
12940
12941 static void
12942 bkpt_create_breakpoints_sal (struct gdbarch *gdbarch,
12943 struct linespec_result *canonical,
12944 char *cond_string,
12945 char *extra_string,
12946 enum bptype type_wanted,
12947 enum bpdisp disposition,
12948 int thread,
12949 int task, int ignore_count,
12950 const struct breakpoint_ops *ops,
12951 int from_tty, int enabled,
12952 int internal, unsigned flags)
12953 {
12954 create_breakpoints_sal_default (gdbarch, canonical,
12955 cond_string, extra_string,
12956 type_wanted,
12957 disposition, thread, task,
12958 ignore_count, ops, from_tty,
12959 enabled, internal, flags);
12960 }
12961
12962 static void
12963 bkpt_decode_linespec (struct breakpoint *b, char **s,
12964 struct symtabs_and_lines *sals)
12965 {
12966 decode_linespec_default (b, s, sals);
12967 }
12968
12969 /* Virtual table for internal breakpoints. */
12970
12971 static void
12972 internal_bkpt_re_set (struct breakpoint *b)
12973 {
12974 switch (b->type)
12975 {
12976 /* Delete overlay event and longjmp master breakpoints; they
12977 will be reset later by breakpoint_re_set. */
12978 case bp_overlay_event:
12979 case bp_longjmp_master:
12980 case bp_std_terminate_master:
12981 case bp_exception_master:
12982 delete_breakpoint (b);
12983 break;
12984
12985 /* This breakpoint is special, it's set up when the inferior
12986 starts and we really don't want to touch it. */
12987 case bp_shlib_event:
12988
12989 /* Like bp_shlib_event, this breakpoint type is special. Once
12990 it is set up, we do not want to touch it. */
12991 case bp_thread_event:
12992 break;
12993 }
12994 }
12995
12996 static void
12997 internal_bkpt_check_status (bpstat bs)
12998 {
12999 if (bs->breakpoint_at->type == bp_shlib_event)
13000 {
13001 /* If requested, stop when the dynamic linker notifies GDB of
13002 events. This allows the user to get control and place
13003 breakpoints in initializer routines for dynamically loaded
13004 objects (among other things). */
13005 bs->stop = stop_on_solib_events;
13006 bs->print = stop_on_solib_events;
13007 }
13008 else
13009 bs->stop = 0;
13010 }
13011
13012 static enum print_stop_action
13013 internal_bkpt_print_it (bpstat bs)
13014 {
13015 struct breakpoint *b;
13016
13017 b = bs->breakpoint_at;
13018
13019 switch (b->type)
13020 {
13021 case bp_shlib_event:
13022 /* Did we stop because the user set the stop_on_solib_events
13023 variable? (If so, we report this as a generic, "Stopped due
13024 to shlib event" message.) */
13025 print_solib_event (0);
13026 break;
13027
13028 case bp_thread_event:
13029 /* Not sure how we will get here.
13030 GDB should not stop for these breakpoints. */
13031 printf_filtered (_("Thread Event Breakpoint: gdb should not stop!\n"));
13032 break;
13033
13034 case bp_overlay_event:
13035 /* By analogy with the thread event, GDB should not stop for these. */
13036 printf_filtered (_("Overlay Event Breakpoint: gdb should not stop!\n"));
13037 break;
13038
13039 case bp_longjmp_master:
13040 /* These should never be enabled. */
13041 printf_filtered (_("Longjmp Master Breakpoint: gdb should not stop!\n"));
13042 break;
13043
13044 case bp_std_terminate_master:
13045 /* These should never be enabled. */
13046 printf_filtered (_("std::terminate Master Breakpoint: "
13047 "gdb should not stop!\n"));
13048 break;
13049
13050 case bp_exception_master:
13051 /* These should never be enabled. */
13052 printf_filtered (_("Exception Master Breakpoint: "
13053 "gdb should not stop!\n"));
13054 break;
13055 }
13056
13057 return PRINT_NOTHING;
13058 }
13059
13060 static void
13061 internal_bkpt_print_mention (struct breakpoint *b)
13062 {
13063 /* Nothing to mention. These breakpoints are internal. */
13064 }
13065
13066 /* Virtual table for momentary breakpoints */
13067
13068 static void
13069 momentary_bkpt_re_set (struct breakpoint *b)
13070 {
13071 /* Keep temporary breakpoints, which can be encountered when we step
13072 over a dlopen call and solib_add is resetting the breakpoints.
13073 Otherwise these should have been blown away via the cleanup chain
13074 or by breakpoint_init_inferior when we rerun the executable. */
13075 }
13076
13077 static void
13078 momentary_bkpt_check_status (bpstat bs)
13079 {
13080 /* Nothing. The point of these breakpoints is causing a stop. */
13081 }
13082
13083 static enum print_stop_action
13084 momentary_bkpt_print_it (bpstat bs)
13085 {
13086 struct ui_out *uiout = current_uiout;
13087
13088 if (ui_out_is_mi_like_p (uiout))
13089 {
13090 struct breakpoint *b = bs->breakpoint_at;
13091
13092 switch (b->type)
13093 {
13094 case bp_finish:
13095 ui_out_field_string
13096 (uiout, "reason",
13097 async_reason_lookup (EXEC_ASYNC_FUNCTION_FINISHED));
13098 break;
13099
13100 case bp_until:
13101 ui_out_field_string
13102 (uiout, "reason",
13103 async_reason_lookup (EXEC_ASYNC_LOCATION_REACHED));
13104 break;
13105 }
13106 }
13107
13108 return PRINT_UNKNOWN;
13109 }
13110
13111 static void
13112 momentary_bkpt_print_mention (struct breakpoint *b)
13113 {
13114 /* Nothing to mention. These breakpoints are internal. */
13115 }
13116
13117 /* Ensure INITIATING_FRAME is cleared when no such breakpoint exists.
13118
13119 It gets cleared already on the removal of the first one of such placed
13120 breakpoints. This is OK as they get all removed altogether. */
13121
13122 static void
13123 longjmp_bkpt_dtor (struct breakpoint *self)
13124 {
13125 struct thread_info *tp = find_thread_id (self->thread);
13126
13127 if (tp)
13128 tp->initiating_frame = null_frame_id;
13129
13130 momentary_breakpoint_ops.dtor (self);
13131 }
13132
13133 /* Specific methods for probe breakpoints. */
13134
13135 static int
13136 bkpt_probe_insert_location (struct bp_location *bl)
13137 {
13138 int v = bkpt_insert_location (bl);
13139
13140 if (v == 0)
13141 {
13142 /* The insertion was successful, now let's set the probe's semaphore
13143 if needed. */
13144 if (bl->probe.probe->pops->set_semaphore != NULL)
13145 bl->probe.probe->pops->set_semaphore (bl->probe.probe,
13146 bl->probe.objfile,
13147 bl->gdbarch);
13148 }
13149
13150 return v;
13151 }
13152
13153 static int
13154 bkpt_probe_remove_location (struct bp_location *bl)
13155 {
13156 /* Let's clear the semaphore before removing the location. */
13157 if (bl->probe.probe->pops->clear_semaphore != NULL)
13158 bl->probe.probe->pops->clear_semaphore (bl->probe.probe,
13159 bl->probe.objfile,
13160 bl->gdbarch);
13161
13162 return bkpt_remove_location (bl);
13163 }
13164
13165 static void
13166 bkpt_probe_create_sals_from_address (char **arg,
13167 struct linespec_result *canonical,
13168 enum bptype type_wanted,
13169 char *addr_start, char **copy_arg)
13170 {
13171 struct linespec_sals lsal;
13172
13173 lsal.sals = parse_probes (arg, canonical);
13174
13175 *copy_arg = xstrdup (canonical->addr_string);
13176 lsal.canonical = xstrdup (*copy_arg);
13177
13178 VEC_safe_push (linespec_sals, canonical->sals, &lsal);
13179 }
13180
13181 static void
13182 bkpt_probe_decode_linespec (struct breakpoint *b, char **s,
13183 struct symtabs_and_lines *sals)
13184 {
13185 *sals = parse_probes (s, NULL);
13186 if (!sals->sals)
13187 error (_("probe not found"));
13188 }
13189
13190 /* The breakpoint_ops structure to be used in tracepoints. */
13191
13192 static void
13193 tracepoint_re_set (struct breakpoint *b)
13194 {
13195 breakpoint_re_set_default (b);
13196 }
13197
13198 static int
13199 tracepoint_breakpoint_hit (const struct bp_location *bl,
13200 struct address_space *aspace, CORE_ADDR bp_addr,
13201 const struct target_waitstatus *ws)
13202 {
13203 /* By definition, the inferior does not report stops at
13204 tracepoints. */
13205 return 0;
13206 }
13207
13208 static void
13209 tracepoint_print_one_detail (const struct breakpoint *self,
13210 struct ui_out *uiout)
13211 {
13212 struct tracepoint *tp = (struct tracepoint *) self;
13213 if (tp->static_trace_marker_id)
13214 {
13215 gdb_assert (self->type == bp_static_tracepoint);
13216
13217 ui_out_text (uiout, "\tmarker id is ");
13218 ui_out_field_string (uiout, "static-tracepoint-marker-string-id",
13219 tp->static_trace_marker_id);
13220 ui_out_text (uiout, "\n");
13221 }
13222 }
13223
13224 static void
13225 tracepoint_print_mention (struct breakpoint *b)
13226 {
13227 if (ui_out_is_mi_like_p (current_uiout))
13228 return;
13229
13230 switch (b->type)
13231 {
13232 case bp_tracepoint:
13233 printf_filtered (_("Tracepoint"));
13234 printf_filtered (_(" %d"), b->number);
13235 break;
13236 case bp_fast_tracepoint:
13237 printf_filtered (_("Fast tracepoint"));
13238 printf_filtered (_(" %d"), b->number);
13239 break;
13240 case bp_static_tracepoint:
13241 printf_filtered (_("Static tracepoint"));
13242 printf_filtered (_(" %d"), b->number);
13243 break;
13244 default:
13245 internal_error (__FILE__, __LINE__,
13246 _("unhandled tracepoint type %d"), (int) b->type);
13247 }
13248
13249 say_where (b);
13250 }
13251
13252 static void
13253 tracepoint_print_recreate (struct breakpoint *self, struct ui_file *fp)
13254 {
13255 struct tracepoint *tp = (struct tracepoint *) self;
13256
13257 if (self->type == bp_fast_tracepoint)
13258 fprintf_unfiltered (fp, "ftrace");
13259 if (self->type == bp_static_tracepoint)
13260 fprintf_unfiltered (fp, "strace");
13261 else if (self->type == bp_tracepoint)
13262 fprintf_unfiltered (fp, "trace");
13263 else
13264 internal_error (__FILE__, __LINE__,
13265 _("unhandled tracepoint type %d"), (int) self->type);
13266
13267 fprintf_unfiltered (fp, " %s", self->addr_string);
13268 print_recreate_thread (self, fp);
13269
13270 if (tp->pass_count)
13271 fprintf_unfiltered (fp, " passcount %d\n", tp->pass_count);
13272 }
13273
13274 static void
13275 tracepoint_create_sals_from_address (char **arg,
13276 struct linespec_result *canonical,
13277 enum bptype type_wanted,
13278 char *addr_start, char **copy_arg)
13279 {
13280 create_sals_from_address_default (arg, canonical, type_wanted,
13281 addr_start, copy_arg);
13282 }
13283
13284 static void
13285 tracepoint_create_breakpoints_sal (struct gdbarch *gdbarch,
13286 struct linespec_result *canonical,
13287 char *cond_string,
13288 char *extra_string,
13289 enum bptype type_wanted,
13290 enum bpdisp disposition,
13291 int thread,
13292 int task, int ignore_count,
13293 const struct breakpoint_ops *ops,
13294 int from_tty, int enabled,
13295 int internal, unsigned flags)
13296 {
13297 create_breakpoints_sal_default (gdbarch, canonical,
13298 cond_string, extra_string,
13299 type_wanted,
13300 disposition, thread, task,
13301 ignore_count, ops, from_tty,
13302 enabled, internal, flags);
13303 }
13304
13305 static void
13306 tracepoint_decode_linespec (struct breakpoint *b, char **s,
13307 struct symtabs_and_lines *sals)
13308 {
13309 decode_linespec_default (b, s, sals);
13310 }
13311
13312 struct breakpoint_ops tracepoint_breakpoint_ops;
13313
13314 /* The breakpoint_ops structure to be use on tracepoints placed in a
13315 static probe. */
13316
13317 static void
13318 tracepoint_probe_create_sals_from_address (char **arg,
13319 struct linespec_result *canonical,
13320 enum bptype type_wanted,
13321 char *addr_start, char **copy_arg)
13322 {
13323 /* We use the same method for breakpoint on probes. */
13324 bkpt_probe_create_sals_from_address (arg, canonical, type_wanted,
13325 addr_start, copy_arg);
13326 }
13327
13328 static void
13329 tracepoint_probe_decode_linespec (struct breakpoint *b, char **s,
13330 struct symtabs_and_lines *sals)
13331 {
13332 /* We use the same method for breakpoint on probes. */
13333 bkpt_probe_decode_linespec (b, s, sals);
13334 }
13335
13336 static struct breakpoint_ops tracepoint_probe_breakpoint_ops;
13337
13338 /* Dprintf breakpoint_ops methods. */
13339
13340 static void
13341 dprintf_re_set (struct breakpoint *b)
13342 {
13343 breakpoint_re_set_default (b);
13344
13345 /* This breakpoint could have been pending, and be resolved now, and
13346 if so, we should now have the extra string. If we don't, the
13347 dprintf was malformed when created, but we couldn't tell because
13348 we can't extract the extra string until the location is
13349 resolved. */
13350 if (b->loc != NULL && b->extra_string == NULL)
13351 error (_("Format string required"));
13352
13353 /* 1 - connect to target 1, that can run breakpoint commands.
13354 2 - create a dprintf, which resolves fine.
13355 3 - disconnect from target 1
13356 4 - connect to target 2, that can NOT run breakpoint commands.
13357
13358 After steps #3/#4, you'll want the dprintf command list to
13359 be updated, because target 1 and 2 may well return different
13360 answers for target_can_run_breakpoint_commands().
13361 Given absence of finer grained resetting, we get to do
13362 it all the time. */
13363 if (b->extra_string != NULL)
13364 update_dprintf_command_list (b);
13365 }
13366
13367 /* Implement the "print_recreate" breakpoint_ops method for dprintf. */
13368
13369 static void
13370 dprintf_print_recreate (struct breakpoint *tp, struct ui_file *fp)
13371 {
13372 fprintf_unfiltered (fp, "dprintf %s%s", tp->addr_string,
13373 tp->extra_string);
13374 print_recreate_thread (tp, fp);
13375 }
13376
13377 /* Implement the "after_condition_true" breakpoint_ops method for
13378 dprintf.
13379
13380 dprintf's are implemented with regular commands in their command
13381 list, but we run the commands here instead of before presenting the
13382 stop to the user, as dprintf's don't actually cause a stop. This
13383 also makes it so that the commands of multiple dprintfs at the same
13384 address are all handled. */
13385
13386 static void
13387 dprintf_after_condition_true (struct bpstats *bs)
13388 {
13389 struct cleanup *old_chain;
13390 struct bpstats tmp_bs = { NULL };
13391 struct bpstats *tmp_bs_p = &tmp_bs;
13392
13393 /* dprintf's never cause a stop. This wasn't set in the
13394 check_status hook instead because that would make the dprintf's
13395 condition not be evaluated. */
13396 bs->stop = 0;
13397
13398 /* Run the command list here. Take ownership of it instead of
13399 copying. We never want these commands to run later in
13400 bpstat_do_actions, if a breakpoint that causes a stop happens to
13401 be set at same address as this dprintf, or even if running the
13402 commands here throws. */
13403 tmp_bs.commands = bs->commands;
13404 bs->commands = NULL;
13405 old_chain = make_cleanup_decref_counted_command_line (&tmp_bs.commands);
13406
13407 bpstat_do_actions_1 (&tmp_bs_p);
13408
13409 /* 'tmp_bs.commands' will usually be NULL by now, but
13410 bpstat_do_actions_1 may return early without processing the whole
13411 list. */
13412 do_cleanups (old_chain);
13413 }
13414
13415 /* The breakpoint_ops structure to be used on static tracepoints with
13416 markers (`-m'). */
13417
13418 static void
13419 strace_marker_create_sals_from_address (char **arg,
13420 struct linespec_result *canonical,
13421 enum bptype type_wanted,
13422 char *addr_start, char **copy_arg)
13423 {
13424 struct linespec_sals lsal;
13425
13426 lsal.sals = decode_static_tracepoint_spec (arg);
13427
13428 *copy_arg = savestring (addr_start, *arg - addr_start);
13429
13430 canonical->addr_string = xstrdup (*copy_arg);
13431 lsal.canonical = xstrdup (*copy_arg);
13432 VEC_safe_push (linespec_sals, canonical->sals, &lsal);
13433 }
13434
13435 static void
13436 strace_marker_create_breakpoints_sal (struct gdbarch *gdbarch,
13437 struct linespec_result *canonical,
13438 char *cond_string,
13439 char *extra_string,
13440 enum bptype type_wanted,
13441 enum bpdisp disposition,
13442 int thread,
13443 int task, int ignore_count,
13444 const struct breakpoint_ops *ops,
13445 int from_tty, int enabled,
13446 int internal, unsigned flags)
13447 {
13448 int i;
13449 struct linespec_sals *lsal = VEC_index (linespec_sals,
13450 canonical->sals, 0);
13451
13452 /* If the user is creating a static tracepoint by marker id
13453 (strace -m MARKER_ID), then store the sals index, so that
13454 breakpoint_re_set can try to match up which of the newly
13455 found markers corresponds to this one, and, don't try to
13456 expand multiple locations for each sal, given than SALS
13457 already should contain all sals for MARKER_ID. */
13458
13459 for (i = 0; i < lsal->sals.nelts; ++i)
13460 {
13461 struct symtabs_and_lines expanded;
13462 struct tracepoint *tp;
13463 struct cleanup *old_chain;
13464 char *addr_string;
13465
13466 expanded.nelts = 1;
13467 expanded.sals = &lsal->sals.sals[i];
13468
13469 addr_string = xstrdup (canonical->addr_string);
13470 old_chain = make_cleanup (xfree, addr_string);
13471
13472 tp = XCNEW (struct tracepoint);
13473 init_breakpoint_sal (&tp->base, gdbarch, expanded,
13474 addr_string, NULL,
13475 cond_string, extra_string,
13476 type_wanted, disposition,
13477 thread, task, ignore_count, ops,
13478 from_tty, enabled, internal, flags,
13479 canonical->special_display);
13480 /* Given that its possible to have multiple markers with
13481 the same string id, if the user is creating a static
13482 tracepoint by marker id ("strace -m MARKER_ID"), then
13483 store the sals index, so that breakpoint_re_set can
13484 try to match up which of the newly found markers
13485 corresponds to this one */
13486 tp->static_trace_marker_id_idx = i;
13487
13488 install_breakpoint (internal, &tp->base, 0);
13489
13490 discard_cleanups (old_chain);
13491 }
13492 }
13493
13494 static void
13495 strace_marker_decode_linespec (struct breakpoint *b, char **s,
13496 struct symtabs_and_lines *sals)
13497 {
13498 struct tracepoint *tp = (struct tracepoint *) b;
13499
13500 *sals = decode_static_tracepoint_spec (s);
13501 if (sals->nelts > tp->static_trace_marker_id_idx)
13502 {
13503 sals->sals[0] = sals->sals[tp->static_trace_marker_id_idx];
13504 sals->nelts = 1;
13505 }
13506 else
13507 error (_("marker %s not found"), tp->static_trace_marker_id);
13508 }
13509
13510 static struct breakpoint_ops strace_marker_breakpoint_ops;
13511
13512 static int
13513 strace_marker_p (struct breakpoint *b)
13514 {
13515 return b->ops == &strace_marker_breakpoint_ops;
13516 }
13517
13518 /* Delete a breakpoint and clean up all traces of it in the data
13519 structures. */
13520
13521 void
13522 delete_breakpoint (struct breakpoint *bpt)
13523 {
13524 struct breakpoint *b;
13525
13526 gdb_assert (bpt != NULL);
13527
13528 /* Has this bp already been deleted? This can happen because
13529 multiple lists can hold pointers to bp's. bpstat lists are
13530 especial culprits.
13531
13532 One example of this happening is a watchpoint's scope bp. When
13533 the scope bp triggers, we notice that the watchpoint is out of
13534 scope, and delete it. We also delete its scope bp. But the
13535 scope bp is marked "auto-deleting", and is already on a bpstat.
13536 That bpstat is then checked for auto-deleting bp's, which are
13537 deleted.
13538
13539 A real solution to this problem might involve reference counts in
13540 bp's, and/or giving them pointers back to their referencing
13541 bpstat's, and teaching delete_breakpoint to only free a bp's
13542 storage when no more references were extent. A cheaper bandaid
13543 was chosen. */
13544 if (bpt->type == bp_none)
13545 return;
13546
13547 /* At least avoid this stale reference until the reference counting
13548 of breakpoints gets resolved. */
13549 if (bpt->related_breakpoint != bpt)
13550 {
13551 struct breakpoint *related;
13552 struct watchpoint *w;
13553
13554 if (bpt->type == bp_watchpoint_scope)
13555 w = (struct watchpoint *) bpt->related_breakpoint;
13556 else if (bpt->related_breakpoint->type == bp_watchpoint_scope)
13557 w = (struct watchpoint *) bpt;
13558 else
13559 w = NULL;
13560 if (w != NULL)
13561 watchpoint_del_at_next_stop (w);
13562
13563 /* Unlink bpt from the bpt->related_breakpoint ring. */
13564 for (related = bpt; related->related_breakpoint != bpt;
13565 related = related->related_breakpoint);
13566 related->related_breakpoint = bpt->related_breakpoint;
13567 bpt->related_breakpoint = bpt;
13568 }
13569
13570 /* watch_command_1 creates a watchpoint but only sets its number if
13571 update_watchpoint succeeds in creating its bp_locations. If there's
13572 a problem in that process, we'll be asked to delete the half-created
13573 watchpoint. In that case, don't announce the deletion. */
13574 if (bpt->number)
13575 observer_notify_breakpoint_deleted (bpt);
13576
13577 if (breakpoint_chain == bpt)
13578 breakpoint_chain = bpt->next;
13579
13580 ALL_BREAKPOINTS (b)
13581 if (b->next == bpt)
13582 {
13583 b->next = bpt->next;
13584 break;
13585 }
13586
13587 /* Be sure no bpstat's are pointing at the breakpoint after it's
13588 been freed. */
13589 /* FIXME, how can we find all bpstat's? We just check stop_bpstat
13590 in all threads for now. Note that we cannot just remove bpstats
13591 pointing at bpt from the stop_bpstat list entirely, as breakpoint
13592 commands are associated with the bpstat; if we remove it here,
13593 then the later call to bpstat_do_actions (&stop_bpstat); in
13594 event-top.c won't do anything, and temporary breakpoints with
13595 commands won't work. */
13596
13597 iterate_over_threads (bpstat_remove_breakpoint_callback, bpt);
13598
13599 /* Now that breakpoint is removed from breakpoint list, update the
13600 global location list. This will remove locations that used to
13601 belong to this breakpoint. Do this before freeing the breakpoint
13602 itself, since remove_breakpoint looks at location's owner. It
13603 might be better design to have location completely
13604 self-contained, but it's not the case now. */
13605 update_global_location_list (UGLL_DONT_INSERT);
13606
13607 bpt->ops->dtor (bpt);
13608 /* On the chance that someone will soon try again to delete this
13609 same bp, we mark it as deleted before freeing its storage. */
13610 bpt->type = bp_none;
13611 xfree (bpt);
13612 }
13613
13614 static void
13615 do_delete_breakpoint_cleanup (void *b)
13616 {
13617 delete_breakpoint (b);
13618 }
13619
13620 struct cleanup *
13621 make_cleanup_delete_breakpoint (struct breakpoint *b)
13622 {
13623 return make_cleanup (do_delete_breakpoint_cleanup, b);
13624 }
13625
13626 /* Iterator function to call a user-provided callback function once
13627 for each of B and its related breakpoints. */
13628
13629 static void
13630 iterate_over_related_breakpoints (struct breakpoint *b,
13631 void (*function) (struct breakpoint *,
13632 void *),
13633 void *data)
13634 {
13635 struct breakpoint *related;
13636
13637 related = b;
13638 do
13639 {
13640 struct breakpoint *next;
13641
13642 /* FUNCTION may delete RELATED. */
13643 next = related->related_breakpoint;
13644
13645 if (next == related)
13646 {
13647 /* RELATED is the last ring entry. */
13648 function (related, data);
13649
13650 /* FUNCTION may have deleted it, so we'd never reach back to
13651 B. There's nothing left to do anyway, so just break
13652 out. */
13653 break;
13654 }
13655 else
13656 function (related, data);
13657
13658 related = next;
13659 }
13660 while (related != b);
13661 }
13662
13663 static void
13664 do_delete_breakpoint (struct breakpoint *b, void *ignore)
13665 {
13666 delete_breakpoint (b);
13667 }
13668
13669 /* A callback for map_breakpoint_numbers that calls
13670 delete_breakpoint. */
13671
13672 static void
13673 do_map_delete_breakpoint (struct breakpoint *b, void *ignore)
13674 {
13675 iterate_over_related_breakpoints (b, do_delete_breakpoint, NULL);
13676 }
13677
13678 void
13679 delete_command (char *arg, int from_tty)
13680 {
13681 struct breakpoint *b, *b_tmp;
13682
13683 dont_repeat ();
13684
13685 if (arg == 0)
13686 {
13687 int breaks_to_delete = 0;
13688
13689 /* Delete all breakpoints if no argument. Do not delete
13690 internal breakpoints, these have to be deleted with an
13691 explicit breakpoint number argument. */
13692 ALL_BREAKPOINTS (b)
13693 if (user_breakpoint_p (b))
13694 {
13695 breaks_to_delete = 1;
13696 break;
13697 }
13698
13699 /* Ask user only if there are some breakpoints to delete. */
13700 if (!from_tty
13701 || (breaks_to_delete && query (_("Delete all breakpoints? "))))
13702 {
13703 ALL_BREAKPOINTS_SAFE (b, b_tmp)
13704 if (user_breakpoint_p (b))
13705 delete_breakpoint (b);
13706 }
13707 }
13708 else
13709 map_breakpoint_numbers (arg, do_map_delete_breakpoint, NULL);
13710 }
13711
13712 static int
13713 all_locations_are_pending (struct bp_location *loc)
13714 {
13715 for (; loc; loc = loc->next)
13716 if (!loc->shlib_disabled
13717 && !loc->pspace->executing_startup)
13718 return 0;
13719 return 1;
13720 }
13721
13722 /* Subroutine of update_breakpoint_locations to simplify it.
13723 Return non-zero if multiple fns in list LOC have the same name.
13724 Null names are ignored. */
13725
13726 static int
13727 ambiguous_names_p (struct bp_location *loc)
13728 {
13729 struct bp_location *l;
13730 htab_t htab = htab_create_alloc (13, htab_hash_string,
13731 (int (*) (const void *,
13732 const void *)) streq,
13733 NULL, xcalloc, xfree);
13734
13735 for (l = loc; l != NULL; l = l->next)
13736 {
13737 const char **slot;
13738 const char *name = l->function_name;
13739
13740 /* Allow for some names to be NULL, ignore them. */
13741 if (name == NULL)
13742 continue;
13743
13744 slot = (const char **) htab_find_slot (htab, (const void *) name,
13745 INSERT);
13746 /* NOTE: We can assume slot != NULL here because xcalloc never
13747 returns NULL. */
13748 if (*slot != NULL)
13749 {
13750 htab_delete (htab);
13751 return 1;
13752 }
13753 *slot = name;
13754 }
13755
13756 htab_delete (htab);
13757 return 0;
13758 }
13759
13760 /* When symbols change, it probably means the sources changed as well,
13761 and it might mean the static tracepoint markers are no longer at
13762 the same address or line numbers they used to be at last we
13763 checked. Losing your static tracepoints whenever you rebuild is
13764 undesirable. This function tries to resync/rematch gdb static
13765 tracepoints with the markers on the target, for static tracepoints
13766 that have not been set by marker id. Static tracepoint that have
13767 been set by marker id are reset by marker id in breakpoint_re_set.
13768 The heuristic is:
13769
13770 1) For a tracepoint set at a specific address, look for a marker at
13771 the old PC. If one is found there, assume to be the same marker.
13772 If the name / string id of the marker found is different from the
13773 previous known name, assume that means the user renamed the marker
13774 in the sources, and output a warning.
13775
13776 2) For a tracepoint set at a given line number, look for a marker
13777 at the new address of the old line number. If one is found there,
13778 assume to be the same marker. If the name / string id of the
13779 marker found is different from the previous known name, assume that
13780 means the user renamed the marker in the sources, and output a
13781 warning.
13782
13783 3) If a marker is no longer found at the same address or line, it
13784 may mean the marker no longer exists. But it may also just mean
13785 the code changed a bit. Maybe the user added a few lines of code
13786 that made the marker move up or down (in line number terms). Ask
13787 the target for info about the marker with the string id as we knew
13788 it. If found, update line number and address in the matching
13789 static tracepoint. This will get confused if there's more than one
13790 marker with the same ID (possible in UST, although unadvised
13791 precisely because it confuses tools). */
13792
13793 static struct symtab_and_line
13794 update_static_tracepoint (struct breakpoint *b, struct symtab_and_line sal)
13795 {
13796 struct tracepoint *tp = (struct tracepoint *) b;
13797 struct static_tracepoint_marker marker;
13798 CORE_ADDR pc;
13799
13800 pc = sal.pc;
13801 if (sal.line)
13802 find_line_pc (sal.symtab, sal.line, &pc);
13803
13804 if (target_static_tracepoint_marker_at (pc, &marker))
13805 {
13806 if (strcmp (tp->static_trace_marker_id, marker.str_id) != 0)
13807 warning (_("static tracepoint %d changed probed marker from %s to %s"),
13808 b->number,
13809 tp->static_trace_marker_id, marker.str_id);
13810
13811 xfree (tp->static_trace_marker_id);
13812 tp->static_trace_marker_id = xstrdup (marker.str_id);
13813 release_static_tracepoint_marker (&marker);
13814
13815 return sal;
13816 }
13817
13818 /* Old marker wasn't found on target at lineno. Try looking it up
13819 by string ID. */
13820 if (!sal.explicit_pc
13821 && sal.line != 0
13822 && sal.symtab != NULL
13823 && tp->static_trace_marker_id != NULL)
13824 {
13825 VEC(static_tracepoint_marker_p) *markers;
13826
13827 markers
13828 = target_static_tracepoint_markers_by_strid (tp->static_trace_marker_id);
13829
13830 if (!VEC_empty(static_tracepoint_marker_p, markers))
13831 {
13832 struct symtab_and_line sal2;
13833 struct symbol *sym;
13834 struct static_tracepoint_marker *tpmarker;
13835 struct ui_out *uiout = current_uiout;
13836
13837 tpmarker = VEC_index (static_tracepoint_marker_p, markers, 0);
13838
13839 xfree (tp->static_trace_marker_id);
13840 tp->static_trace_marker_id = xstrdup (tpmarker->str_id);
13841
13842 warning (_("marker for static tracepoint %d (%s) not "
13843 "found at previous line number"),
13844 b->number, tp->static_trace_marker_id);
13845
13846 init_sal (&sal2);
13847
13848 sal2.pc = tpmarker->address;
13849
13850 sal2 = find_pc_line (tpmarker->address, 0);
13851 sym = find_pc_sect_function (tpmarker->address, NULL);
13852 ui_out_text (uiout, "Now in ");
13853 if (sym)
13854 {
13855 ui_out_field_string (uiout, "func",
13856 SYMBOL_PRINT_NAME (sym));
13857 ui_out_text (uiout, " at ");
13858 }
13859 ui_out_field_string (uiout, "file",
13860 symtab_to_filename_for_display (sal2.symtab));
13861 ui_out_text (uiout, ":");
13862
13863 if (ui_out_is_mi_like_p (uiout))
13864 {
13865 const char *fullname = symtab_to_fullname (sal2.symtab);
13866
13867 ui_out_field_string (uiout, "fullname", fullname);
13868 }
13869
13870 ui_out_field_int (uiout, "line", sal2.line);
13871 ui_out_text (uiout, "\n");
13872
13873 b->loc->line_number = sal2.line;
13874 b->loc->symtab = sym != NULL ? sal2.symtab : NULL;
13875
13876 xfree (b->addr_string);
13877 b->addr_string = xstrprintf ("%s:%d",
13878 symtab_to_filename_for_display (sal2.symtab),
13879 b->loc->line_number);
13880
13881 /* Might be nice to check if function changed, and warn if
13882 so. */
13883
13884 release_static_tracepoint_marker (tpmarker);
13885 }
13886 }
13887 return sal;
13888 }
13889
13890 /* Returns 1 iff locations A and B are sufficiently same that
13891 we don't need to report breakpoint as changed. */
13892
13893 static int
13894 locations_are_equal (struct bp_location *a, struct bp_location *b)
13895 {
13896 while (a && b)
13897 {
13898 if (a->address != b->address)
13899 return 0;
13900
13901 if (a->shlib_disabled != b->shlib_disabled)
13902 return 0;
13903
13904 if (a->enabled != b->enabled)
13905 return 0;
13906
13907 a = a->next;
13908 b = b->next;
13909 }
13910
13911 if ((a == NULL) != (b == NULL))
13912 return 0;
13913
13914 return 1;
13915 }
13916
13917 /* Create new breakpoint locations for B (a hardware or software breakpoint)
13918 based on SALS and SALS_END. If SALS_END.NELTS is not zero, then B is
13919 a ranged breakpoint. */
13920
13921 void
13922 update_breakpoint_locations (struct breakpoint *b,
13923 struct symtabs_and_lines sals,
13924 struct symtabs_and_lines sals_end)
13925 {
13926 int i;
13927 struct bp_location *existing_locations = b->loc;
13928
13929 if (sals_end.nelts != 0 && (sals.nelts != 1 || sals_end.nelts != 1))
13930 {
13931 /* Ranged breakpoints have only one start location and one end
13932 location. */
13933 b->enable_state = bp_disabled;
13934 update_global_location_list (UGLL_MAY_INSERT);
13935 printf_unfiltered (_("Could not reset ranged breakpoint %d: "
13936 "multiple locations found\n"),
13937 b->number);
13938 return;
13939 }
13940
13941 /* If there's no new locations, and all existing locations are
13942 pending, don't do anything. This optimizes the common case where
13943 all locations are in the same shared library, that was unloaded.
13944 We'd like to retain the location, so that when the library is
13945 loaded again, we don't loose the enabled/disabled status of the
13946 individual locations. */
13947 if (all_locations_are_pending (existing_locations) && sals.nelts == 0)
13948 return;
13949
13950 b->loc = NULL;
13951
13952 for (i = 0; i < sals.nelts; ++i)
13953 {
13954 struct bp_location *new_loc;
13955
13956 switch_to_program_space_and_thread (sals.sals[i].pspace);
13957
13958 new_loc = add_location_to_breakpoint (b, &(sals.sals[i]));
13959
13960 /* Reparse conditions, they might contain references to the
13961 old symtab. */
13962 if (b->cond_string != NULL)
13963 {
13964 const char *s;
13965
13966 s = b->cond_string;
13967 TRY
13968 {
13969 new_loc->cond = parse_exp_1 (&s, sals.sals[i].pc,
13970 block_for_pc (sals.sals[i].pc),
13971 0);
13972 }
13973 CATCH (e, RETURN_MASK_ERROR)
13974 {
13975 warning (_("failed to reevaluate condition "
13976 "for breakpoint %d: %s"),
13977 b->number, e.message);
13978 new_loc->enabled = 0;
13979 }
13980 END_CATCH
13981 }
13982
13983 if (sals_end.nelts)
13984 {
13985 CORE_ADDR end = find_breakpoint_range_end (sals_end.sals[0]);
13986
13987 new_loc->length = end - sals.sals[0].pc + 1;
13988 }
13989 }
13990
13991 /* If possible, carry over 'disable' status from existing
13992 breakpoints. */
13993 {
13994 struct bp_location *e = existing_locations;
13995 /* If there are multiple breakpoints with the same function name,
13996 e.g. for inline functions, comparing function names won't work.
13997 Instead compare pc addresses; this is just a heuristic as things
13998 may have moved, but in practice it gives the correct answer
13999 often enough until a better solution is found. */
14000 int have_ambiguous_names = ambiguous_names_p (b->loc);
14001
14002 for (; e; e = e->next)
14003 {
14004 if (!e->enabled && e->function_name)
14005 {
14006 struct bp_location *l = b->loc;
14007 if (have_ambiguous_names)
14008 {
14009 for (; l; l = l->next)
14010 if (breakpoint_locations_match (e, l))
14011 {
14012 l->enabled = 0;
14013 break;
14014 }
14015 }
14016 else
14017 {
14018 for (; l; l = l->next)
14019 if (l->function_name
14020 && strcmp (e->function_name, l->function_name) == 0)
14021 {
14022 l->enabled = 0;
14023 break;
14024 }
14025 }
14026 }
14027 }
14028 }
14029
14030 if (!locations_are_equal (existing_locations, b->loc))
14031 observer_notify_breakpoint_modified (b);
14032
14033 update_global_location_list (UGLL_MAY_INSERT);
14034 }
14035
14036 /* Find the SaL locations corresponding to the given ADDR_STRING.
14037 On return, FOUND will be 1 if any SaL was found, zero otherwise. */
14038
14039 static struct symtabs_and_lines
14040 addr_string_to_sals (struct breakpoint *b, char *addr_string, int *found)
14041 {
14042 char *s;
14043 struct symtabs_and_lines sals = {0};
14044 struct gdb_exception exception = exception_none;
14045
14046 gdb_assert (b->ops != NULL);
14047 s = addr_string;
14048
14049 TRY
14050 {
14051 b->ops->decode_linespec (b, &s, &sals);
14052 }
14053 CATCH (e, RETURN_MASK_ERROR)
14054 {
14055 int not_found_and_ok = 0;
14056
14057 exception = e;
14058
14059 /* For pending breakpoints, it's expected that parsing will
14060 fail until the right shared library is loaded. User has
14061 already told to create pending breakpoints and don't need
14062 extra messages. If breakpoint is in bp_shlib_disabled
14063 state, then user already saw the message about that
14064 breakpoint being disabled, and don't want to see more
14065 errors. */
14066 if (e.error == NOT_FOUND_ERROR
14067 && (b->condition_not_parsed
14068 || (b->loc && b->loc->shlib_disabled)
14069 || (b->loc && b->loc->pspace->executing_startup)
14070 || b->enable_state == bp_disabled))
14071 not_found_and_ok = 1;
14072
14073 if (!not_found_and_ok)
14074 {
14075 /* We surely don't want to warn about the same breakpoint
14076 10 times. One solution, implemented here, is disable
14077 the breakpoint on error. Another solution would be to
14078 have separate 'warning emitted' flag. Since this
14079 happens only when a binary has changed, I don't know
14080 which approach is better. */
14081 b->enable_state = bp_disabled;
14082 throw_exception (e);
14083 }
14084 }
14085 END_CATCH
14086
14087 if (exception.reason == 0 || exception.error != NOT_FOUND_ERROR)
14088 {
14089 int i;
14090
14091 for (i = 0; i < sals.nelts; ++i)
14092 resolve_sal_pc (&sals.sals[i]);
14093 if (b->condition_not_parsed && s && s[0])
14094 {
14095 char *cond_string, *extra_string;
14096 int thread, task;
14097
14098 find_condition_and_thread (s, sals.sals[0].pc,
14099 &cond_string, &thread, &task,
14100 &extra_string);
14101 if (cond_string)
14102 b->cond_string = cond_string;
14103 b->thread = thread;
14104 b->task = task;
14105 if (extra_string)
14106 b->extra_string = extra_string;
14107 b->condition_not_parsed = 0;
14108 }
14109
14110 if (b->type == bp_static_tracepoint && !strace_marker_p (b))
14111 sals.sals[0] = update_static_tracepoint (b, sals.sals[0]);
14112
14113 *found = 1;
14114 }
14115 else
14116 *found = 0;
14117
14118 return sals;
14119 }
14120
14121 /* The default re_set method, for typical hardware or software
14122 breakpoints. Reevaluate the breakpoint and recreate its
14123 locations. */
14124
14125 static void
14126 breakpoint_re_set_default (struct breakpoint *b)
14127 {
14128 int found;
14129 struct symtabs_and_lines sals, sals_end;
14130 struct symtabs_and_lines expanded = {0};
14131 struct symtabs_and_lines expanded_end = {0};
14132
14133 sals = addr_string_to_sals (b, b->addr_string, &found);
14134 if (found)
14135 {
14136 make_cleanup (xfree, sals.sals);
14137 expanded = sals;
14138 }
14139
14140 if (b->addr_string_range_end)
14141 {
14142 sals_end = addr_string_to_sals (b, b->addr_string_range_end, &found);
14143 if (found)
14144 {
14145 make_cleanup (xfree, sals_end.sals);
14146 expanded_end = sals_end;
14147 }
14148 }
14149
14150 update_breakpoint_locations (b, expanded, expanded_end);
14151 }
14152
14153 /* Default method for creating SALs from an address string. It basically
14154 calls parse_breakpoint_sals. Return 1 for success, zero for failure. */
14155
14156 static void
14157 create_sals_from_address_default (char **arg,
14158 struct linespec_result *canonical,
14159 enum bptype type_wanted,
14160 char *addr_start, char **copy_arg)
14161 {
14162 parse_breakpoint_sals (arg, canonical);
14163 }
14164
14165 /* Call create_breakpoints_sal for the given arguments. This is the default
14166 function for the `create_breakpoints_sal' method of
14167 breakpoint_ops. */
14168
14169 static void
14170 create_breakpoints_sal_default (struct gdbarch *gdbarch,
14171 struct linespec_result *canonical,
14172 char *cond_string,
14173 char *extra_string,
14174 enum bptype type_wanted,
14175 enum bpdisp disposition,
14176 int thread,
14177 int task, int ignore_count,
14178 const struct breakpoint_ops *ops,
14179 int from_tty, int enabled,
14180 int internal, unsigned flags)
14181 {
14182 create_breakpoints_sal (gdbarch, canonical, cond_string,
14183 extra_string,
14184 type_wanted, disposition,
14185 thread, task, ignore_count, ops, from_tty,
14186 enabled, internal, flags);
14187 }
14188
14189 /* Decode the line represented by S by calling decode_line_full. This is the
14190 default function for the `decode_linespec' method of breakpoint_ops. */
14191
14192 static void
14193 decode_linespec_default (struct breakpoint *b, char **s,
14194 struct symtabs_and_lines *sals)
14195 {
14196 struct linespec_result canonical;
14197
14198 init_linespec_result (&canonical);
14199 decode_line_full (s, DECODE_LINE_FUNFIRSTLINE,
14200 (struct symtab *) NULL, 0,
14201 &canonical, multiple_symbols_all,
14202 b->filter);
14203
14204 /* We should get 0 or 1 resulting SALs. */
14205 gdb_assert (VEC_length (linespec_sals, canonical.sals) < 2);
14206
14207 if (VEC_length (linespec_sals, canonical.sals) > 0)
14208 {
14209 struct linespec_sals *lsal;
14210
14211 lsal = VEC_index (linespec_sals, canonical.sals, 0);
14212 *sals = lsal->sals;
14213 /* Arrange it so the destructor does not free the
14214 contents. */
14215 lsal->sals.sals = NULL;
14216 }
14217
14218 destroy_linespec_result (&canonical);
14219 }
14220
14221 /* Prepare the global context for a re-set of breakpoint B. */
14222
14223 static struct cleanup *
14224 prepare_re_set_context (struct breakpoint *b)
14225 {
14226 struct cleanup *cleanups;
14227
14228 input_radix = b->input_radix;
14229 cleanups = save_current_space_and_thread ();
14230 if (b->pspace != NULL)
14231 switch_to_program_space_and_thread (b->pspace);
14232 set_language (b->language);
14233
14234 return cleanups;
14235 }
14236
14237 /* Reset a breakpoint given it's struct breakpoint * BINT.
14238 The value we return ends up being the return value from catch_errors.
14239 Unused in this case. */
14240
14241 static int
14242 breakpoint_re_set_one (void *bint)
14243 {
14244 /* Get past catch_errs. */
14245 struct breakpoint *b = (struct breakpoint *) bint;
14246 struct cleanup *cleanups;
14247
14248 cleanups = prepare_re_set_context (b);
14249 b->ops->re_set (b);
14250 do_cleanups (cleanups);
14251 return 0;
14252 }
14253
14254 /* Re-set all breakpoints after symbols have been re-loaded. */
14255 void
14256 breakpoint_re_set (void)
14257 {
14258 struct breakpoint *b, *b_tmp;
14259 enum language save_language;
14260 int save_input_radix;
14261 struct cleanup *old_chain;
14262
14263 save_language = current_language->la_language;
14264 save_input_radix = input_radix;
14265 old_chain = save_current_program_space ();
14266
14267 ALL_BREAKPOINTS_SAFE (b, b_tmp)
14268 {
14269 /* Format possible error msg. */
14270 char *message = xstrprintf ("Error in re-setting breakpoint %d: ",
14271 b->number);
14272 struct cleanup *cleanups = make_cleanup (xfree, message);
14273 catch_errors (breakpoint_re_set_one, b, message, RETURN_MASK_ALL);
14274 do_cleanups (cleanups);
14275 }
14276 set_language (save_language);
14277 input_radix = save_input_radix;
14278
14279 jit_breakpoint_re_set ();
14280
14281 do_cleanups (old_chain);
14282
14283 create_overlay_event_breakpoint ();
14284 create_longjmp_master_breakpoint ();
14285 create_std_terminate_master_breakpoint ();
14286 create_exception_master_breakpoint ();
14287 }
14288 \f
14289 /* Reset the thread number of this breakpoint:
14290
14291 - If the breakpoint is for all threads, leave it as-is.
14292 - Else, reset it to the current thread for inferior_ptid. */
14293 void
14294 breakpoint_re_set_thread (struct breakpoint *b)
14295 {
14296 if (b->thread != -1)
14297 {
14298 if (in_thread_list (inferior_ptid))
14299 b->thread = pid_to_thread_id (inferior_ptid);
14300
14301 /* We're being called after following a fork. The new fork is
14302 selected as current, and unless this was a vfork will have a
14303 different program space from the original thread. Reset that
14304 as well. */
14305 b->loc->pspace = current_program_space;
14306 }
14307 }
14308
14309 /* Set ignore-count of breakpoint number BPTNUM to COUNT.
14310 If from_tty is nonzero, it prints a message to that effect,
14311 which ends with a period (no newline). */
14312
14313 void
14314 set_ignore_count (int bptnum, int count, int from_tty)
14315 {
14316 struct breakpoint *b;
14317
14318 if (count < 0)
14319 count = 0;
14320
14321 ALL_BREAKPOINTS (b)
14322 if (b->number == bptnum)
14323 {
14324 if (is_tracepoint (b))
14325 {
14326 if (from_tty && count != 0)
14327 printf_filtered (_("Ignore count ignored for tracepoint %d."),
14328 bptnum);
14329 return;
14330 }
14331
14332 b->ignore_count = count;
14333 if (from_tty)
14334 {
14335 if (count == 0)
14336 printf_filtered (_("Will stop next time "
14337 "breakpoint %d is reached."),
14338 bptnum);
14339 else if (count == 1)
14340 printf_filtered (_("Will ignore next crossing of breakpoint %d."),
14341 bptnum);
14342 else
14343 printf_filtered (_("Will ignore next %d "
14344 "crossings of breakpoint %d."),
14345 count, bptnum);
14346 }
14347 observer_notify_breakpoint_modified (b);
14348 return;
14349 }
14350
14351 error (_("No breakpoint number %d."), bptnum);
14352 }
14353
14354 /* Command to set ignore-count of breakpoint N to COUNT. */
14355
14356 static void
14357 ignore_command (char *args, int from_tty)
14358 {
14359 char *p = args;
14360 int num;
14361
14362 if (p == 0)
14363 error_no_arg (_("a breakpoint number"));
14364
14365 num = get_number (&p);
14366 if (num == 0)
14367 error (_("bad breakpoint number: '%s'"), args);
14368 if (*p == 0)
14369 error (_("Second argument (specified ignore-count) is missing."));
14370
14371 set_ignore_count (num,
14372 longest_to_int (value_as_long (parse_and_eval (p))),
14373 from_tty);
14374 if (from_tty)
14375 printf_filtered ("\n");
14376 }
14377 \f
14378 /* Call FUNCTION on each of the breakpoints
14379 whose numbers are given in ARGS. */
14380
14381 static void
14382 map_breakpoint_numbers (char *args, void (*function) (struct breakpoint *,
14383 void *),
14384 void *data)
14385 {
14386 int num;
14387 struct breakpoint *b, *tmp;
14388 int match;
14389 struct get_number_or_range_state state;
14390
14391 if (args == 0 || *args == '\0')
14392 error_no_arg (_("one or more breakpoint numbers"));
14393
14394 init_number_or_range (&state, args);
14395
14396 while (!state.finished)
14397 {
14398 const char *p = state.string;
14399
14400 match = 0;
14401
14402 num = get_number_or_range (&state);
14403 if (num == 0)
14404 {
14405 warning (_("bad breakpoint number at or near '%s'"), p);
14406 }
14407 else
14408 {
14409 ALL_BREAKPOINTS_SAFE (b, tmp)
14410 if (b->number == num)
14411 {
14412 match = 1;
14413 function (b, data);
14414 break;
14415 }
14416 if (match == 0)
14417 printf_unfiltered (_("No breakpoint number %d.\n"), num);
14418 }
14419 }
14420 }
14421
14422 static struct bp_location *
14423 find_location_by_number (char *number)
14424 {
14425 char *dot = strchr (number, '.');
14426 char *p1;
14427 int bp_num;
14428 int loc_num;
14429 struct breakpoint *b;
14430 struct bp_location *loc;
14431
14432 *dot = '\0';
14433
14434 p1 = number;
14435 bp_num = get_number (&p1);
14436 if (bp_num == 0)
14437 error (_("Bad breakpoint number '%s'"), number);
14438
14439 ALL_BREAKPOINTS (b)
14440 if (b->number == bp_num)
14441 {
14442 break;
14443 }
14444
14445 if (!b || b->number != bp_num)
14446 error (_("Bad breakpoint number '%s'"), number);
14447
14448 p1 = dot+1;
14449 loc_num = get_number (&p1);
14450 if (loc_num == 0)
14451 error (_("Bad breakpoint location number '%s'"), number);
14452
14453 --loc_num;
14454 loc = b->loc;
14455 for (;loc_num && loc; --loc_num, loc = loc->next)
14456 ;
14457 if (!loc)
14458 error (_("Bad breakpoint location number '%s'"), dot+1);
14459
14460 return loc;
14461 }
14462
14463
14464 /* Set ignore-count of breakpoint number BPTNUM to COUNT.
14465 If from_tty is nonzero, it prints a message to that effect,
14466 which ends with a period (no newline). */
14467
14468 void
14469 disable_breakpoint (struct breakpoint *bpt)
14470 {
14471 /* Never disable a watchpoint scope breakpoint; we want to
14472 hit them when we leave scope so we can delete both the
14473 watchpoint and its scope breakpoint at that time. */
14474 if (bpt->type == bp_watchpoint_scope)
14475 return;
14476
14477 bpt->enable_state = bp_disabled;
14478
14479 /* Mark breakpoint locations modified. */
14480 mark_breakpoint_modified (bpt);
14481
14482 if (target_supports_enable_disable_tracepoint ()
14483 && current_trace_status ()->running && is_tracepoint (bpt))
14484 {
14485 struct bp_location *location;
14486
14487 for (location = bpt->loc; location; location = location->next)
14488 target_disable_tracepoint (location);
14489 }
14490
14491 update_global_location_list (UGLL_DONT_INSERT);
14492
14493 observer_notify_breakpoint_modified (bpt);
14494 }
14495
14496 /* A callback for iterate_over_related_breakpoints. */
14497
14498 static void
14499 do_disable_breakpoint (struct breakpoint *b, void *ignore)
14500 {
14501 disable_breakpoint (b);
14502 }
14503
14504 /* A callback for map_breakpoint_numbers that calls
14505 disable_breakpoint. */
14506
14507 static void
14508 do_map_disable_breakpoint (struct breakpoint *b, void *ignore)
14509 {
14510 iterate_over_related_breakpoints (b, do_disable_breakpoint, NULL);
14511 }
14512
14513 static void
14514 disable_command (char *args, int from_tty)
14515 {
14516 if (args == 0)
14517 {
14518 struct breakpoint *bpt;
14519
14520 ALL_BREAKPOINTS (bpt)
14521 if (user_breakpoint_p (bpt))
14522 disable_breakpoint (bpt);
14523 }
14524 else
14525 {
14526 char *num = extract_arg (&args);
14527
14528 while (num)
14529 {
14530 if (strchr (num, '.'))
14531 {
14532 struct bp_location *loc = find_location_by_number (num);
14533
14534 if (loc)
14535 {
14536 if (loc->enabled)
14537 {
14538 loc->enabled = 0;
14539 mark_breakpoint_location_modified (loc);
14540 }
14541 if (target_supports_enable_disable_tracepoint ()
14542 && current_trace_status ()->running && loc->owner
14543 && is_tracepoint (loc->owner))
14544 target_disable_tracepoint (loc);
14545 }
14546 update_global_location_list (UGLL_DONT_INSERT);
14547 }
14548 else
14549 map_breakpoint_numbers (num, do_map_disable_breakpoint, NULL);
14550 num = extract_arg (&args);
14551 }
14552 }
14553 }
14554
14555 static void
14556 enable_breakpoint_disp (struct breakpoint *bpt, enum bpdisp disposition,
14557 int count)
14558 {
14559 int target_resources_ok;
14560
14561 if (bpt->type == bp_hardware_breakpoint)
14562 {
14563 int i;
14564 i = hw_breakpoint_used_count ();
14565 target_resources_ok =
14566 target_can_use_hardware_watchpoint (bp_hardware_breakpoint,
14567 i + 1, 0);
14568 if (target_resources_ok == 0)
14569 error (_("No hardware breakpoint support in the target."));
14570 else if (target_resources_ok < 0)
14571 error (_("Hardware breakpoints used exceeds limit."));
14572 }
14573
14574 if (is_watchpoint (bpt))
14575 {
14576 /* Initialize it just to avoid a GCC false warning. */
14577 enum enable_state orig_enable_state = 0;
14578
14579 TRY
14580 {
14581 struct watchpoint *w = (struct watchpoint *) bpt;
14582
14583 orig_enable_state = bpt->enable_state;
14584 bpt->enable_state = bp_enabled;
14585 update_watchpoint (w, 1 /* reparse */);
14586 }
14587 CATCH (e, RETURN_MASK_ALL)
14588 {
14589 bpt->enable_state = orig_enable_state;
14590 exception_fprintf (gdb_stderr, e, _("Cannot enable watchpoint %d: "),
14591 bpt->number);
14592 return;
14593 }
14594 END_CATCH
14595 }
14596
14597 bpt->enable_state = bp_enabled;
14598
14599 /* Mark breakpoint locations modified. */
14600 mark_breakpoint_modified (bpt);
14601
14602 if (target_supports_enable_disable_tracepoint ()
14603 && current_trace_status ()->running && is_tracepoint (bpt))
14604 {
14605 struct bp_location *location;
14606
14607 for (location = bpt->loc; location; location = location->next)
14608 target_enable_tracepoint (location);
14609 }
14610
14611 bpt->disposition = disposition;
14612 bpt->enable_count = count;
14613 update_global_location_list (UGLL_MAY_INSERT);
14614
14615 observer_notify_breakpoint_modified (bpt);
14616 }
14617
14618
14619 void
14620 enable_breakpoint (struct breakpoint *bpt)
14621 {
14622 enable_breakpoint_disp (bpt, bpt->disposition, 0);
14623 }
14624
14625 static void
14626 do_enable_breakpoint (struct breakpoint *bpt, void *arg)
14627 {
14628 enable_breakpoint (bpt);
14629 }
14630
14631 /* A callback for map_breakpoint_numbers that calls
14632 enable_breakpoint. */
14633
14634 static void
14635 do_map_enable_breakpoint (struct breakpoint *b, void *ignore)
14636 {
14637 iterate_over_related_breakpoints (b, do_enable_breakpoint, NULL);
14638 }
14639
14640 /* The enable command enables the specified breakpoints (or all defined
14641 breakpoints) so they once again become (or continue to be) effective
14642 in stopping the inferior. */
14643
14644 static void
14645 enable_command (char *args, int from_tty)
14646 {
14647 if (args == 0)
14648 {
14649 struct breakpoint *bpt;
14650
14651 ALL_BREAKPOINTS (bpt)
14652 if (user_breakpoint_p (bpt))
14653 enable_breakpoint (bpt);
14654 }
14655 else
14656 {
14657 char *num = extract_arg (&args);
14658
14659 while (num)
14660 {
14661 if (strchr (num, '.'))
14662 {
14663 struct bp_location *loc = find_location_by_number (num);
14664
14665 if (loc)
14666 {
14667 if (!loc->enabled)
14668 {
14669 loc->enabled = 1;
14670 mark_breakpoint_location_modified (loc);
14671 }
14672 if (target_supports_enable_disable_tracepoint ()
14673 && current_trace_status ()->running && loc->owner
14674 && is_tracepoint (loc->owner))
14675 target_enable_tracepoint (loc);
14676 }
14677 update_global_location_list (UGLL_MAY_INSERT);
14678 }
14679 else
14680 map_breakpoint_numbers (num, do_map_enable_breakpoint, NULL);
14681 num = extract_arg (&args);
14682 }
14683 }
14684 }
14685
14686 /* This struct packages up disposition data for application to multiple
14687 breakpoints. */
14688
14689 struct disp_data
14690 {
14691 enum bpdisp disp;
14692 int count;
14693 };
14694
14695 static void
14696 do_enable_breakpoint_disp (struct breakpoint *bpt, void *arg)
14697 {
14698 struct disp_data disp_data = *(struct disp_data *) arg;
14699
14700 enable_breakpoint_disp (bpt, disp_data.disp, disp_data.count);
14701 }
14702
14703 static void
14704 do_map_enable_once_breakpoint (struct breakpoint *bpt, void *ignore)
14705 {
14706 struct disp_data disp = { disp_disable, 1 };
14707
14708 iterate_over_related_breakpoints (bpt, do_enable_breakpoint_disp, &disp);
14709 }
14710
14711 static void
14712 enable_once_command (char *args, int from_tty)
14713 {
14714 map_breakpoint_numbers (args, do_map_enable_once_breakpoint, NULL);
14715 }
14716
14717 static void
14718 do_map_enable_count_breakpoint (struct breakpoint *bpt, void *countptr)
14719 {
14720 struct disp_data disp = { disp_disable, *(int *) countptr };
14721
14722 iterate_over_related_breakpoints (bpt, do_enable_breakpoint_disp, &disp);
14723 }
14724
14725 static void
14726 enable_count_command (char *args, int from_tty)
14727 {
14728 int count;
14729
14730 if (args == NULL)
14731 error_no_arg (_("hit count"));
14732
14733 count = get_number (&args);
14734
14735 map_breakpoint_numbers (args, do_map_enable_count_breakpoint, &count);
14736 }
14737
14738 static void
14739 do_map_enable_delete_breakpoint (struct breakpoint *bpt, void *ignore)
14740 {
14741 struct disp_data disp = { disp_del, 1 };
14742
14743 iterate_over_related_breakpoints (bpt, do_enable_breakpoint_disp, &disp);
14744 }
14745
14746 static void
14747 enable_delete_command (char *args, int from_tty)
14748 {
14749 map_breakpoint_numbers (args, do_map_enable_delete_breakpoint, NULL);
14750 }
14751 \f
14752 static void
14753 set_breakpoint_cmd (char *args, int from_tty)
14754 {
14755 }
14756
14757 static void
14758 show_breakpoint_cmd (char *args, int from_tty)
14759 {
14760 }
14761
14762 /* Invalidate last known value of any hardware watchpoint if
14763 the memory which that value represents has been written to by
14764 GDB itself. */
14765
14766 static void
14767 invalidate_bp_value_on_memory_change (struct inferior *inferior,
14768 CORE_ADDR addr, ssize_t len,
14769 const bfd_byte *data)
14770 {
14771 struct breakpoint *bp;
14772
14773 ALL_BREAKPOINTS (bp)
14774 if (bp->enable_state == bp_enabled
14775 && bp->type == bp_hardware_watchpoint)
14776 {
14777 struct watchpoint *wp = (struct watchpoint *) bp;
14778
14779 if (wp->val_valid && wp->val)
14780 {
14781 struct bp_location *loc;
14782
14783 for (loc = bp->loc; loc != NULL; loc = loc->next)
14784 if (loc->loc_type == bp_loc_hardware_watchpoint
14785 && loc->address + loc->length > addr
14786 && addr + len > loc->address)
14787 {
14788 value_free (wp->val);
14789 wp->val = NULL;
14790 wp->val_valid = 0;
14791 }
14792 }
14793 }
14794 }
14795
14796 /* Create and insert a breakpoint for software single step. */
14797
14798 void
14799 insert_single_step_breakpoint (struct gdbarch *gdbarch,
14800 struct address_space *aspace,
14801 CORE_ADDR next_pc)
14802 {
14803 struct thread_info *tp = inferior_thread ();
14804 struct symtab_and_line sal;
14805 CORE_ADDR pc = next_pc;
14806
14807 if (tp->control.single_step_breakpoints == NULL)
14808 {
14809 tp->control.single_step_breakpoints
14810 = new_single_step_breakpoint (tp->num, gdbarch);
14811 }
14812
14813 sal = find_pc_line (pc, 0);
14814 sal.pc = pc;
14815 sal.section = find_pc_overlay (pc);
14816 sal.explicit_pc = 1;
14817 add_location_to_breakpoint (tp->control.single_step_breakpoints, &sal);
14818
14819 update_global_location_list (UGLL_INSERT);
14820 }
14821
14822 /* See breakpoint.h. */
14823
14824 int
14825 breakpoint_has_location_inserted_here (struct breakpoint *bp,
14826 struct address_space *aspace,
14827 CORE_ADDR pc)
14828 {
14829 struct bp_location *loc;
14830
14831 for (loc = bp->loc; loc != NULL; loc = loc->next)
14832 if (loc->inserted
14833 && breakpoint_location_address_match (loc, aspace, pc))
14834 return 1;
14835
14836 return 0;
14837 }
14838
14839 /* Check whether a software single-step breakpoint is inserted at
14840 PC. */
14841
14842 int
14843 single_step_breakpoint_inserted_here_p (struct address_space *aspace,
14844 CORE_ADDR pc)
14845 {
14846 struct breakpoint *bpt;
14847
14848 ALL_BREAKPOINTS (bpt)
14849 {
14850 if (bpt->type == bp_single_step
14851 && breakpoint_has_location_inserted_here (bpt, aspace, pc))
14852 return 1;
14853 }
14854 return 0;
14855 }
14856
14857 /* Tracepoint-specific operations. */
14858
14859 /* Set tracepoint count to NUM. */
14860 static void
14861 set_tracepoint_count (int num)
14862 {
14863 tracepoint_count = num;
14864 set_internalvar_integer (lookup_internalvar ("tpnum"), num);
14865 }
14866
14867 static void
14868 trace_command (char *arg, int from_tty)
14869 {
14870 struct breakpoint_ops *ops;
14871 const char *arg_cp = arg;
14872
14873 if (arg && probe_linespec_to_ops (&arg_cp))
14874 ops = &tracepoint_probe_breakpoint_ops;
14875 else
14876 ops = &tracepoint_breakpoint_ops;
14877
14878 create_breakpoint (get_current_arch (),
14879 arg,
14880 NULL, 0, NULL, 1 /* parse arg */,
14881 0 /* tempflag */,
14882 bp_tracepoint /* type_wanted */,
14883 0 /* Ignore count */,
14884 pending_break_support,
14885 ops,
14886 from_tty,
14887 1 /* enabled */,
14888 0 /* internal */, 0);
14889 }
14890
14891 static void
14892 ftrace_command (char *arg, int from_tty)
14893 {
14894 create_breakpoint (get_current_arch (),
14895 arg,
14896 NULL, 0, NULL, 1 /* parse arg */,
14897 0 /* tempflag */,
14898 bp_fast_tracepoint /* type_wanted */,
14899 0 /* Ignore count */,
14900 pending_break_support,
14901 &tracepoint_breakpoint_ops,
14902 from_tty,
14903 1 /* enabled */,
14904 0 /* internal */, 0);
14905 }
14906
14907 /* strace command implementation. Creates a static tracepoint. */
14908
14909 static void
14910 strace_command (char *arg, int from_tty)
14911 {
14912 struct breakpoint_ops *ops;
14913
14914 /* Decide if we are dealing with a static tracepoint marker (`-m'),
14915 or with a normal static tracepoint. */
14916 if (arg && startswith (arg, "-m") && isspace (arg[2]))
14917 ops = &strace_marker_breakpoint_ops;
14918 else
14919 ops = &tracepoint_breakpoint_ops;
14920
14921 create_breakpoint (get_current_arch (),
14922 arg,
14923 NULL, 0, NULL, 1 /* parse arg */,
14924 0 /* tempflag */,
14925 bp_static_tracepoint /* type_wanted */,
14926 0 /* Ignore count */,
14927 pending_break_support,
14928 ops,
14929 from_tty,
14930 1 /* enabled */,
14931 0 /* internal */, 0);
14932 }
14933
14934 /* Set up a fake reader function that gets command lines from a linked
14935 list that was acquired during tracepoint uploading. */
14936
14937 static struct uploaded_tp *this_utp;
14938 static int next_cmd;
14939
14940 static char *
14941 read_uploaded_action (void)
14942 {
14943 char *rslt;
14944
14945 VEC_iterate (char_ptr, this_utp->cmd_strings, next_cmd, rslt);
14946
14947 next_cmd++;
14948
14949 return rslt;
14950 }
14951
14952 /* Given information about a tracepoint as recorded on a target (which
14953 can be either a live system or a trace file), attempt to create an
14954 equivalent GDB tracepoint. This is not a reliable process, since
14955 the target does not necessarily have all the information used when
14956 the tracepoint was originally defined. */
14957
14958 struct tracepoint *
14959 create_tracepoint_from_upload (struct uploaded_tp *utp)
14960 {
14961 char *addr_str, small_buf[100];
14962 struct tracepoint *tp;
14963
14964 if (utp->at_string)
14965 addr_str = utp->at_string;
14966 else
14967 {
14968 /* In the absence of a source location, fall back to raw
14969 address. Since there is no way to confirm that the address
14970 means the same thing as when the trace was started, warn the
14971 user. */
14972 warning (_("Uploaded tracepoint %d has no "
14973 "source location, using raw address"),
14974 utp->number);
14975 xsnprintf (small_buf, sizeof (small_buf), "*%s", hex_string (utp->addr));
14976 addr_str = small_buf;
14977 }
14978
14979 /* There's not much we can do with a sequence of bytecodes. */
14980 if (utp->cond && !utp->cond_string)
14981 warning (_("Uploaded tracepoint %d condition "
14982 "has no source form, ignoring it"),
14983 utp->number);
14984
14985 if (!create_breakpoint (get_current_arch (),
14986 addr_str,
14987 utp->cond_string, -1, NULL,
14988 0 /* parse cond/thread */,
14989 0 /* tempflag */,
14990 utp->type /* type_wanted */,
14991 0 /* Ignore count */,
14992 pending_break_support,
14993 &tracepoint_breakpoint_ops,
14994 0 /* from_tty */,
14995 utp->enabled /* enabled */,
14996 0 /* internal */,
14997 CREATE_BREAKPOINT_FLAGS_INSERTED))
14998 return NULL;
14999
15000 /* Get the tracepoint we just created. */
15001 tp = get_tracepoint (tracepoint_count);
15002 gdb_assert (tp != NULL);
15003
15004 if (utp->pass > 0)
15005 {
15006 xsnprintf (small_buf, sizeof (small_buf), "%d %d", utp->pass,
15007 tp->base.number);
15008
15009 trace_pass_command (small_buf, 0);
15010 }
15011
15012 /* If we have uploaded versions of the original commands, set up a
15013 special-purpose "reader" function and call the usual command line
15014 reader, then pass the result to the breakpoint command-setting
15015 function. */
15016 if (!VEC_empty (char_ptr, utp->cmd_strings))
15017 {
15018 struct command_line *cmd_list;
15019
15020 this_utp = utp;
15021 next_cmd = 0;
15022
15023 cmd_list = read_command_lines_1 (read_uploaded_action, 1, NULL, NULL);
15024
15025 breakpoint_set_commands (&tp->base, cmd_list);
15026 }
15027 else if (!VEC_empty (char_ptr, utp->actions)
15028 || !VEC_empty (char_ptr, utp->step_actions))
15029 warning (_("Uploaded tracepoint %d actions "
15030 "have no source form, ignoring them"),
15031 utp->number);
15032
15033 /* Copy any status information that might be available. */
15034 tp->base.hit_count = utp->hit_count;
15035 tp->traceframe_usage = utp->traceframe_usage;
15036
15037 return tp;
15038 }
15039
15040 /* Print information on tracepoint number TPNUM_EXP, or all if
15041 omitted. */
15042
15043 static void
15044 tracepoints_info (char *args, int from_tty)
15045 {
15046 struct ui_out *uiout = current_uiout;
15047 int num_printed;
15048
15049 num_printed = breakpoint_1 (args, 0, is_tracepoint);
15050
15051 if (num_printed == 0)
15052 {
15053 if (args == NULL || *args == '\0')
15054 ui_out_message (uiout, 0, "No tracepoints.\n");
15055 else
15056 ui_out_message (uiout, 0, "No tracepoint matching '%s'.\n", args);
15057 }
15058
15059 default_collect_info ();
15060 }
15061
15062 /* The 'enable trace' command enables tracepoints.
15063 Not supported by all targets. */
15064 static void
15065 enable_trace_command (char *args, int from_tty)
15066 {
15067 enable_command (args, from_tty);
15068 }
15069
15070 /* The 'disable trace' command disables tracepoints.
15071 Not supported by all targets. */
15072 static void
15073 disable_trace_command (char *args, int from_tty)
15074 {
15075 disable_command (args, from_tty);
15076 }
15077
15078 /* Remove a tracepoint (or all if no argument). */
15079 static void
15080 delete_trace_command (char *arg, int from_tty)
15081 {
15082 struct breakpoint *b, *b_tmp;
15083
15084 dont_repeat ();
15085
15086 if (arg == 0)
15087 {
15088 int breaks_to_delete = 0;
15089
15090 /* Delete all breakpoints if no argument.
15091 Do not delete internal or call-dummy breakpoints, these
15092 have to be deleted with an explicit breakpoint number
15093 argument. */
15094 ALL_TRACEPOINTS (b)
15095 if (is_tracepoint (b) && user_breakpoint_p (b))
15096 {
15097 breaks_to_delete = 1;
15098 break;
15099 }
15100
15101 /* Ask user only if there are some breakpoints to delete. */
15102 if (!from_tty
15103 || (breaks_to_delete && query (_("Delete all tracepoints? "))))
15104 {
15105 ALL_BREAKPOINTS_SAFE (b, b_tmp)
15106 if (is_tracepoint (b) && user_breakpoint_p (b))
15107 delete_breakpoint (b);
15108 }
15109 }
15110 else
15111 map_breakpoint_numbers (arg, do_map_delete_breakpoint, NULL);
15112 }
15113
15114 /* Helper function for trace_pass_command. */
15115
15116 static void
15117 trace_pass_set_count (struct tracepoint *tp, int count, int from_tty)
15118 {
15119 tp->pass_count = count;
15120 observer_notify_breakpoint_modified (&tp->base);
15121 if (from_tty)
15122 printf_filtered (_("Setting tracepoint %d's passcount to %d\n"),
15123 tp->base.number, count);
15124 }
15125
15126 /* Set passcount for tracepoint.
15127
15128 First command argument is passcount, second is tracepoint number.
15129 If tracepoint number omitted, apply to most recently defined.
15130 Also accepts special argument "all". */
15131
15132 static void
15133 trace_pass_command (char *args, int from_tty)
15134 {
15135 struct tracepoint *t1;
15136 unsigned int count;
15137
15138 if (args == 0 || *args == 0)
15139 error (_("passcount command requires an "
15140 "argument (count + optional TP num)"));
15141
15142 count = strtoul (args, &args, 10); /* Count comes first, then TP num. */
15143
15144 args = skip_spaces (args);
15145 if (*args && strncasecmp (args, "all", 3) == 0)
15146 {
15147 struct breakpoint *b;
15148
15149 args += 3; /* Skip special argument "all". */
15150 if (*args)
15151 error (_("Junk at end of arguments."));
15152
15153 ALL_TRACEPOINTS (b)
15154 {
15155 t1 = (struct tracepoint *) b;
15156 trace_pass_set_count (t1, count, from_tty);
15157 }
15158 }
15159 else if (*args == '\0')
15160 {
15161 t1 = get_tracepoint_by_number (&args, NULL);
15162 if (t1)
15163 trace_pass_set_count (t1, count, from_tty);
15164 }
15165 else
15166 {
15167 struct get_number_or_range_state state;
15168
15169 init_number_or_range (&state, args);
15170 while (!state.finished)
15171 {
15172 t1 = get_tracepoint_by_number (&args, &state);
15173 if (t1)
15174 trace_pass_set_count (t1, count, from_tty);
15175 }
15176 }
15177 }
15178
15179 struct tracepoint *
15180 get_tracepoint (int num)
15181 {
15182 struct breakpoint *t;
15183
15184 ALL_TRACEPOINTS (t)
15185 if (t->number == num)
15186 return (struct tracepoint *) t;
15187
15188 return NULL;
15189 }
15190
15191 /* Find the tracepoint with the given target-side number (which may be
15192 different from the tracepoint number after disconnecting and
15193 reconnecting). */
15194
15195 struct tracepoint *
15196 get_tracepoint_by_number_on_target (int num)
15197 {
15198 struct breakpoint *b;
15199
15200 ALL_TRACEPOINTS (b)
15201 {
15202 struct tracepoint *t = (struct tracepoint *) b;
15203
15204 if (t->number_on_target == num)
15205 return t;
15206 }
15207
15208 return NULL;
15209 }
15210
15211 /* Utility: parse a tracepoint number and look it up in the list.
15212 If STATE is not NULL, use, get_number_or_range_state and ignore ARG.
15213 If the argument is missing, the most recent tracepoint
15214 (tracepoint_count) is returned. */
15215
15216 struct tracepoint *
15217 get_tracepoint_by_number (char **arg,
15218 struct get_number_or_range_state *state)
15219 {
15220 struct breakpoint *t;
15221 int tpnum;
15222 char *instring = arg == NULL ? NULL : *arg;
15223
15224 if (state)
15225 {
15226 gdb_assert (!state->finished);
15227 tpnum = get_number_or_range (state);
15228 }
15229 else if (arg == NULL || *arg == NULL || ! **arg)
15230 tpnum = tracepoint_count;
15231 else
15232 tpnum = get_number (arg);
15233
15234 if (tpnum <= 0)
15235 {
15236 if (instring && *instring)
15237 printf_filtered (_("bad tracepoint number at or near '%s'\n"),
15238 instring);
15239 else
15240 printf_filtered (_("No previous tracepoint\n"));
15241 return NULL;
15242 }
15243
15244 ALL_TRACEPOINTS (t)
15245 if (t->number == tpnum)
15246 {
15247 return (struct tracepoint *) t;
15248 }
15249
15250 printf_unfiltered ("No tracepoint number %d.\n", tpnum);
15251 return NULL;
15252 }
15253
15254 void
15255 print_recreate_thread (struct breakpoint *b, struct ui_file *fp)
15256 {
15257 if (b->thread != -1)
15258 fprintf_unfiltered (fp, " thread %d", b->thread);
15259
15260 if (b->task != 0)
15261 fprintf_unfiltered (fp, " task %d", b->task);
15262
15263 fprintf_unfiltered (fp, "\n");
15264 }
15265
15266 /* Save information on user settable breakpoints (watchpoints, etc) to
15267 a new script file named FILENAME. If FILTER is non-NULL, call it
15268 on each breakpoint and only include the ones for which it returns
15269 non-zero. */
15270
15271 static void
15272 save_breakpoints (char *filename, int from_tty,
15273 int (*filter) (const struct breakpoint *))
15274 {
15275 struct breakpoint *tp;
15276 int any = 0;
15277 struct cleanup *cleanup;
15278 struct ui_file *fp;
15279 int extra_trace_bits = 0;
15280
15281 if (filename == 0 || *filename == 0)
15282 error (_("Argument required (file name in which to save)"));
15283
15284 /* See if we have anything to save. */
15285 ALL_BREAKPOINTS (tp)
15286 {
15287 /* Skip internal and momentary breakpoints. */
15288 if (!user_breakpoint_p (tp))
15289 continue;
15290
15291 /* If we have a filter, only save the breakpoints it accepts. */
15292 if (filter && !filter (tp))
15293 continue;
15294
15295 any = 1;
15296
15297 if (is_tracepoint (tp))
15298 {
15299 extra_trace_bits = 1;
15300
15301 /* We can stop searching. */
15302 break;
15303 }
15304 }
15305
15306 if (!any)
15307 {
15308 warning (_("Nothing to save."));
15309 return;
15310 }
15311
15312 filename = tilde_expand (filename);
15313 cleanup = make_cleanup (xfree, filename);
15314 fp = gdb_fopen (filename, "w");
15315 if (!fp)
15316 error (_("Unable to open file '%s' for saving (%s)"),
15317 filename, safe_strerror (errno));
15318 make_cleanup_ui_file_delete (fp);
15319
15320 if (extra_trace_bits)
15321 save_trace_state_variables (fp);
15322
15323 ALL_BREAKPOINTS (tp)
15324 {
15325 /* Skip internal and momentary breakpoints. */
15326 if (!user_breakpoint_p (tp))
15327 continue;
15328
15329 /* If we have a filter, only save the breakpoints it accepts. */
15330 if (filter && !filter (tp))
15331 continue;
15332
15333 tp->ops->print_recreate (tp, fp);
15334
15335 /* Note, we can't rely on tp->number for anything, as we can't
15336 assume the recreated breakpoint numbers will match. Use $bpnum
15337 instead. */
15338
15339 if (tp->cond_string)
15340 fprintf_unfiltered (fp, " condition $bpnum %s\n", tp->cond_string);
15341
15342 if (tp->ignore_count)
15343 fprintf_unfiltered (fp, " ignore $bpnum %d\n", tp->ignore_count);
15344
15345 if (tp->type != bp_dprintf && tp->commands)
15346 {
15347 struct gdb_exception exception;
15348
15349 fprintf_unfiltered (fp, " commands\n");
15350
15351 ui_out_redirect (current_uiout, fp);
15352 TRY
15353 {
15354 print_command_lines (current_uiout, tp->commands->commands, 2);
15355 }
15356 CATCH (ex, RETURN_MASK_ALL)
15357 {
15358 ui_out_redirect (current_uiout, NULL);
15359 throw_exception (ex);
15360 }
15361 END_CATCH
15362
15363 ui_out_redirect (current_uiout, NULL);
15364 fprintf_unfiltered (fp, " end\n");
15365 }
15366
15367 if (tp->enable_state == bp_disabled)
15368 fprintf_unfiltered (fp, "disable $bpnum\n");
15369
15370 /* If this is a multi-location breakpoint, check if the locations
15371 should be individually disabled. Watchpoint locations are
15372 special, and not user visible. */
15373 if (!is_watchpoint (tp) && tp->loc && tp->loc->next)
15374 {
15375 struct bp_location *loc;
15376 int n = 1;
15377
15378 for (loc = tp->loc; loc != NULL; loc = loc->next, n++)
15379 if (!loc->enabled)
15380 fprintf_unfiltered (fp, "disable $bpnum.%d\n", n);
15381 }
15382 }
15383
15384 if (extra_trace_bits && *default_collect)
15385 fprintf_unfiltered (fp, "set default-collect %s\n", default_collect);
15386
15387 if (from_tty)
15388 printf_filtered (_("Saved to file '%s'.\n"), filename);
15389 do_cleanups (cleanup);
15390 }
15391
15392 /* The `save breakpoints' command. */
15393
15394 static void
15395 save_breakpoints_command (char *args, int from_tty)
15396 {
15397 save_breakpoints (args, from_tty, NULL);
15398 }
15399
15400 /* The `save tracepoints' command. */
15401
15402 static void
15403 save_tracepoints_command (char *args, int from_tty)
15404 {
15405 save_breakpoints (args, from_tty, is_tracepoint);
15406 }
15407
15408 /* Create a vector of all tracepoints. */
15409
15410 VEC(breakpoint_p) *
15411 all_tracepoints (void)
15412 {
15413 VEC(breakpoint_p) *tp_vec = 0;
15414 struct breakpoint *tp;
15415
15416 ALL_TRACEPOINTS (tp)
15417 {
15418 VEC_safe_push (breakpoint_p, tp_vec, tp);
15419 }
15420
15421 return tp_vec;
15422 }
15423
15424 \f
15425 /* This help string is used for the break, hbreak, tbreak and thbreak
15426 commands. It is defined as a macro to prevent duplication.
15427 COMMAND should be a string constant containing the name of the
15428 command. */
15429 #define BREAK_ARGS_HELP(command) \
15430 command" [PROBE_MODIFIER] [LOCATION] [thread THREADNUM] [if CONDITION]\n\
15431 PROBE_MODIFIER shall be present if the command is to be placed in a\n\
15432 probe point. Accepted values are `-probe' (for a generic, automatically\n\
15433 guessed probe type), `-probe-stap' (for a SystemTap probe) or \n\
15434 `-probe-dtrace' (for a DTrace probe).\n\
15435 LOCATION may be a line number, function name, or \"*\" and an address.\n\
15436 If a line number is specified, break at start of code for that line.\n\
15437 If a function is specified, break at start of code for that function.\n\
15438 If an address is specified, break at that exact address.\n\
15439 With no LOCATION, uses current execution address of the selected\n\
15440 stack frame. This is useful for breaking on return to a stack frame.\n\
15441 \n\
15442 THREADNUM is the number from \"info threads\".\n\
15443 CONDITION is a boolean expression.\n\
15444 \n\
15445 Multiple breakpoints at one place are permitted, and useful if their\n\
15446 conditions are different.\n\
15447 \n\
15448 Do \"help breakpoints\" for info on other commands dealing with breakpoints."
15449
15450 /* List of subcommands for "catch". */
15451 static struct cmd_list_element *catch_cmdlist;
15452
15453 /* List of subcommands for "tcatch". */
15454 static struct cmd_list_element *tcatch_cmdlist;
15455
15456 void
15457 add_catch_command (char *name, char *docstring,
15458 cmd_sfunc_ftype *sfunc,
15459 completer_ftype *completer,
15460 void *user_data_catch,
15461 void *user_data_tcatch)
15462 {
15463 struct cmd_list_element *command;
15464
15465 command = add_cmd (name, class_breakpoint, NULL, docstring,
15466 &catch_cmdlist);
15467 set_cmd_sfunc (command, sfunc);
15468 set_cmd_context (command, user_data_catch);
15469 set_cmd_completer (command, completer);
15470
15471 command = add_cmd (name, class_breakpoint, NULL, docstring,
15472 &tcatch_cmdlist);
15473 set_cmd_sfunc (command, sfunc);
15474 set_cmd_context (command, user_data_tcatch);
15475 set_cmd_completer (command, completer);
15476 }
15477
15478 static void
15479 save_command (char *arg, int from_tty)
15480 {
15481 printf_unfiltered (_("\"save\" must be followed by "
15482 "the name of a save subcommand.\n"));
15483 help_list (save_cmdlist, "save ", all_commands, gdb_stdout);
15484 }
15485
15486 struct breakpoint *
15487 iterate_over_breakpoints (int (*callback) (struct breakpoint *, void *),
15488 void *data)
15489 {
15490 struct breakpoint *b, *b_tmp;
15491
15492 ALL_BREAKPOINTS_SAFE (b, b_tmp)
15493 {
15494 if ((*callback) (b, data))
15495 return b;
15496 }
15497
15498 return NULL;
15499 }
15500
15501 /* Zero if any of the breakpoint's locations could be a location where
15502 functions have been inlined, nonzero otherwise. */
15503
15504 static int
15505 is_non_inline_function (struct breakpoint *b)
15506 {
15507 /* The shared library event breakpoint is set on the address of a
15508 non-inline function. */
15509 if (b->type == bp_shlib_event)
15510 return 1;
15511
15512 return 0;
15513 }
15514
15515 /* Nonzero if the specified PC cannot be a location where functions
15516 have been inlined. */
15517
15518 int
15519 pc_at_non_inline_function (struct address_space *aspace, CORE_ADDR pc,
15520 const struct target_waitstatus *ws)
15521 {
15522 struct breakpoint *b;
15523 struct bp_location *bl;
15524
15525 ALL_BREAKPOINTS (b)
15526 {
15527 if (!is_non_inline_function (b))
15528 continue;
15529
15530 for (bl = b->loc; bl != NULL; bl = bl->next)
15531 {
15532 if (!bl->shlib_disabled
15533 && bpstat_check_location (bl, aspace, pc, ws))
15534 return 1;
15535 }
15536 }
15537
15538 return 0;
15539 }
15540
15541 /* Remove any references to OBJFILE which is going to be freed. */
15542
15543 void
15544 breakpoint_free_objfile (struct objfile *objfile)
15545 {
15546 struct bp_location **locp, *loc;
15547
15548 ALL_BP_LOCATIONS (loc, locp)
15549 if (loc->symtab != NULL && SYMTAB_OBJFILE (loc->symtab) == objfile)
15550 loc->symtab = NULL;
15551 }
15552
15553 void
15554 initialize_breakpoint_ops (void)
15555 {
15556 static int initialized = 0;
15557
15558 struct breakpoint_ops *ops;
15559
15560 if (initialized)
15561 return;
15562 initialized = 1;
15563
15564 /* The breakpoint_ops structure to be inherit by all kinds of
15565 breakpoints (real breakpoints, i.e., user "break" breakpoints,
15566 internal and momentary breakpoints, etc.). */
15567 ops = &bkpt_base_breakpoint_ops;
15568 *ops = base_breakpoint_ops;
15569 ops->re_set = bkpt_re_set;
15570 ops->insert_location = bkpt_insert_location;
15571 ops->remove_location = bkpt_remove_location;
15572 ops->breakpoint_hit = bkpt_breakpoint_hit;
15573 ops->create_sals_from_address = bkpt_create_sals_from_address;
15574 ops->create_breakpoints_sal = bkpt_create_breakpoints_sal;
15575 ops->decode_linespec = bkpt_decode_linespec;
15576
15577 /* The breakpoint_ops structure to be used in regular breakpoints. */
15578 ops = &bkpt_breakpoint_ops;
15579 *ops = bkpt_base_breakpoint_ops;
15580 ops->re_set = bkpt_re_set;
15581 ops->resources_needed = bkpt_resources_needed;
15582 ops->print_it = bkpt_print_it;
15583 ops->print_mention = bkpt_print_mention;
15584 ops->print_recreate = bkpt_print_recreate;
15585
15586 /* Ranged breakpoints. */
15587 ops = &ranged_breakpoint_ops;
15588 *ops = bkpt_breakpoint_ops;
15589 ops->breakpoint_hit = breakpoint_hit_ranged_breakpoint;
15590 ops->resources_needed = resources_needed_ranged_breakpoint;
15591 ops->print_it = print_it_ranged_breakpoint;
15592 ops->print_one = print_one_ranged_breakpoint;
15593 ops->print_one_detail = print_one_detail_ranged_breakpoint;
15594 ops->print_mention = print_mention_ranged_breakpoint;
15595 ops->print_recreate = print_recreate_ranged_breakpoint;
15596
15597 /* Internal breakpoints. */
15598 ops = &internal_breakpoint_ops;
15599 *ops = bkpt_base_breakpoint_ops;
15600 ops->re_set = internal_bkpt_re_set;
15601 ops->check_status = internal_bkpt_check_status;
15602 ops->print_it = internal_bkpt_print_it;
15603 ops->print_mention = internal_bkpt_print_mention;
15604
15605 /* Momentary breakpoints. */
15606 ops = &momentary_breakpoint_ops;
15607 *ops = bkpt_base_breakpoint_ops;
15608 ops->re_set = momentary_bkpt_re_set;
15609 ops->check_status = momentary_bkpt_check_status;
15610 ops->print_it = momentary_bkpt_print_it;
15611 ops->print_mention = momentary_bkpt_print_mention;
15612
15613 /* Momentary breakpoints for bp_longjmp and bp_exception. */
15614 ops = &longjmp_breakpoint_ops;
15615 *ops = momentary_breakpoint_ops;
15616 ops->dtor = longjmp_bkpt_dtor;
15617
15618 /* Probe breakpoints. */
15619 ops = &bkpt_probe_breakpoint_ops;
15620 *ops = bkpt_breakpoint_ops;
15621 ops->insert_location = bkpt_probe_insert_location;
15622 ops->remove_location = bkpt_probe_remove_location;
15623 ops->create_sals_from_address = bkpt_probe_create_sals_from_address;
15624 ops->decode_linespec = bkpt_probe_decode_linespec;
15625
15626 /* Watchpoints. */
15627 ops = &watchpoint_breakpoint_ops;
15628 *ops = base_breakpoint_ops;
15629 ops->dtor = dtor_watchpoint;
15630 ops->re_set = re_set_watchpoint;
15631 ops->insert_location = insert_watchpoint;
15632 ops->remove_location = remove_watchpoint;
15633 ops->breakpoint_hit = breakpoint_hit_watchpoint;
15634 ops->check_status = check_status_watchpoint;
15635 ops->resources_needed = resources_needed_watchpoint;
15636 ops->works_in_software_mode = works_in_software_mode_watchpoint;
15637 ops->print_it = print_it_watchpoint;
15638 ops->print_mention = print_mention_watchpoint;
15639 ops->print_recreate = print_recreate_watchpoint;
15640 ops->explains_signal = explains_signal_watchpoint;
15641
15642 /* Masked watchpoints. */
15643 ops = &masked_watchpoint_breakpoint_ops;
15644 *ops = watchpoint_breakpoint_ops;
15645 ops->insert_location = insert_masked_watchpoint;
15646 ops->remove_location = remove_masked_watchpoint;
15647 ops->resources_needed = resources_needed_masked_watchpoint;
15648 ops->works_in_software_mode = works_in_software_mode_masked_watchpoint;
15649 ops->print_it = print_it_masked_watchpoint;
15650 ops->print_one_detail = print_one_detail_masked_watchpoint;
15651 ops->print_mention = print_mention_masked_watchpoint;
15652 ops->print_recreate = print_recreate_masked_watchpoint;
15653
15654 /* Tracepoints. */
15655 ops = &tracepoint_breakpoint_ops;
15656 *ops = base_breakpoint_ops;
15657 ops->re_set = tracepoint_re_set;
15658 ops->breakpoint_hit = tracepoint_breakpoint_hit;
15659 ops->print_one_detail = tracepoint_print_one_detail;
15660 ops->print_mention = tracepoint_print_mention;
15661 ops->print_recreate = tracepoint_print_recreate;
15662 ops->create_sals_from_address = tracepoint_create_sals_from_address;
15663 ops->create_breakpoints_sal = tracepoint_create_breakpoints_sal;
15664 ops->decode_linespec = tracepoint_decode_linespec;
15665
15666 /* Probe tracepoints. */
15667 ops = &tracepoint_probe_breakpoint_ops;
15668 *ops = tracepoint_breakpoint_ops;
15669 ops->create_sals_from_address = tracepoint_probe_create_sals_from_address;
15670 ops->decode_linespec = tracepoint_probe_decode_linespec;
15671
15672 /* Static tracepoints with marker (`-m'). */
15673 ops = &strace_marker_breakpoint_ops;
15674 *ops = tracepoint_breakpoint_ops;
15675 ops->create_sals_from_address = strace_marker_create_sals_from_address;
15676 ops->create_breakpoints_sal = strace_marker_create_breakpoints_sal;
15677 ops->decode_linespec = strace_marker_decode_linespec;
15678
15679 /* Fork catchpoints. */
15680 ops = &catch_fork_breakpoint_ops;
15681 *ops = base_breakpoint_ops;
15682 ops->insert_location = insert_catch_fork;
15683 ops->remove_location = remove_catch_fork;
15684 ops->breakpoint_hit = breakpoint_hit_catch_fork;
15685 ops->print_it = print_it_catch_fork;
15686 ops->print_one = print_one_catch_fork;
15687 ops->print_mention = print_mention_catch_fork;
15688 ops->print_recreate = print_recreate_catch_fork;
15689
15690 /* Vfork catchpoints. */
15691 ops = &catch_vfork_breakpoint_ops;
15692 *ops = base_breakpoint_ops;
15693 ops->insert_location = insert_catch_vfork;
15694 ops->remove_location = remove_catch_vfork;
15695 ops->breakpoint_hit = breakpoint_hit_catch_vfork;
15696 ops->print_it = print_it_catch_vfork;
15697 ops->print_one = print_one_catch_vfork;
15698 ops->print_mention = print_mention_catch_vfork;
15699 ops->print_recreate = print_recreate_catch_vfork;
15700
15701 /* Exec catchpoints. */
15702 ops = &catch_exec_breakpoint_ops;
15703 *ops = base_breakpoint_ops;
15704 ops->dtor = dtor_catch_exec;
15705 ops->insert_location = insert_catch_exec;
15706 ops->remove_location = remove_catch_exec;
15707 ops->breakpoint_hit = breakpoint_hit_catch_exec;
15708 ops->print_it = print_it_catch_exec;
15709 ops->print_one = print_one_catch_exec;
15710 ops->print_mention = print_mention_catch_exec;
15711 ops->print_recreate = print_recreate_catch_exec;
15712
15713 /* Solib-related catchpoints. */
15714 ops = &catch_solib_breakpoint_ops;
15715 *ops = base_breakpoint_ops;
15716 ops->dtor = dtor_catch_solib;
15717 ops->insert_location = insert_catch_solib;
15718 ops->remove_location = remove_catch_solib;
15719 ops->breakpoint_hit = breakpoint_hit_catch_solib;
15720 ops->check_status = check_status_catch_solib;
15721 ops->print_it = print_it_catch_solib;
15722 ops->print_one = print_one_catch_solib;
15723 ops->print_mention = print_mention_catch_solib;
15724 ops->print_recreate = print_recreate_catch_solib;
15725
15726 ops = &dprintf_breakpoint_ops;
15727 *ops = bkpt_base_breakpoint_ops;
15728 ops->re_set = dprintf_re_set;
15729 ops->resources_needed = bkpt_resources_needed;
15730 ops->print_it = bkpt_print_it;
15731 ops->print_mention = bkpt_print_mention;
15732 ops->print_recreate = dprintf_print_recreate;
15733 ops->after_condition_true = dprintf_after_condition_true;
15734 ops->breakpoint_hit = dprintf_breakpoint_hit;
15735 }
15736
15737 /* Chain containing all defined "enable breakpoint" subcommands. */
15738
15739 static struct cmd_list_element *enablebreaklist = NULL;
15740
15741 void
15742 _initialize_breakpoint (void)
15743 {
15744 struct cmd_list_element *c;
15745
15746 initialize_breakpoint_ops ();
15747
15748 observer_attach_solib_unloaded (disable_breakpoints_in_unloaded_shlib);
15749 observer_attach_free_objfile (disable_breakpoints_in_freed_objfile);
15750 observer_attach_memory_changed (invalidate_bp_value_on_memory_change);
15751
15752 breakpoint_objfile_key
15753 = register_objfile_data_with_cleanup (NULL, free_breakpoint_probes);
15754
15755 breakpoint_chain = 0;
15756 /* Don't bother to call set_breakpoint_count. $bpnum isn't useful
15757 before a breakpoint is set. */
15758 breakpoint_count = 0;
15759
15760 tracepoint_count = 0;
15761
15762 add_com ("ignore", class_breakpoint, ignore_command, _("\
15763 Set ignore-count of breakpoint number N to COUNT.\n\
15764 Usage is `ignore N COUNT'."));
15765
15766 add_com ("commands", class_breakpoint, commands_command, _("\
15767 Set commands to be executed when a breakpoint is hit.\n\
15768 Give breakpoint number as argument after \"commands\".\n\
15769 With no argument, the targeted breakpoint is the last one set.\n\
15770 The commands themselves follow starting on the next line.\n\
15771 Type a line containing \"end\" to indicate the end of them.\n\
15772 Give \"silent\" as the first line to make the breakpoint silent;\n\
15773 then no output is printed when it is hit, except what the commands print."));
15774
15775 c = add_com ("condition", class_breakpoint, condition_command, _("\
15776 Specify breakpoint number N to break only if COND is true.\n\
15777 Usage is `condition N COND', where N is an integer and COND is an\n\
15778 expression to be evaluated whenever breakpoint N is reached."));
15779 set_cmd_completer (c, condition_completer);
15780
15781 c = add_com ("tbreak", class_breakpoint, tbreak_command, _("\
15782 Set a temporary breakpoint.\n\
15783 Like \"break\" except the breakpoint is only temporary,\n\
15784 so it will be deleted when hit. Equivalent to \"break\" followed\n\
15785 by using \"enable delete\" on the breakpoint number.\n\
15786 \n"
15787 BREAK_ARGS_HELP ("tbreak")));
15788 set_cmd_completer (c, location_completer);
15789
15790 c = add_com ("hbreak", class_breakpoint, hbreak_command, _("\
15791 Set a hardware assisted breakpoint.\n\
15792 Like \"break\" except the breakpoint requires hardware support,\n\
15793 some target hardware may not have this support.\n\
15794 \n"
15795 BREAK_ARGS_HELP ("hbreak")));
15796 set_cmd_completer (c, location_completer);
15797
15798 c = add_com ("thbreak", class_breakpoint, thbreak_command, _("\
15799 Set a temporary hardware assisted breakpoint.\n\
15800 Like \"hbreak\" except the breakpoint is only temporary,\n\
15801 so it will be deleted when hit.\n\
15802 \n"
15803 BREAK_ARGS_HELP ("thbreak")));
15804 set_cmd_completer (c, location_completer);
15805
15806 add_prefix_cmd ("enable", class_breakpoint, enable_command, _("\
15807 Enable some breakpoints.\n\
15808 Give breakpoint numbers (separated by spaces) as arguments.\n\
15809 With no subcommand, breakpoints are enabled until you command otherwise.\n\
15810 This is used to cancel the effect of the \"disable\" command.\n\
15811 With a subcommand you can enable temporarily."),
15812 &enablelist, "enable ", 1, &cmdlist);
15813
15814 add_com_alias ("en", "enable", class_breakpoint, 1);
15815
15816 add_prefix_cmd ("breakpoints", class_breakpoint, enable_command, _("\
15817 Enable some breakpoints.\n\
15818 Give breakpoint numbers (separated by spaces) as arguments.\n\
15819 This is used to cancel the effect of the \"disable\" command.\n\
15820 May be abbreviated to simply \"enable\".\n"),
15821 &enablebreaklist, "enable breakpoints ", 1, &enablelist);
15822
15823 add_cmd ("once", no_class, enable_once_command, _("\
15824 Enable breakpoints for one hit. Give breakpoint numbers.\n\
15825 If a breakpoint is hit while enabled in this fashion, it becomes disabled."),
15826 &enablebreaklist);
15827
15828 add_cmd ("delete", no_class, enable_delete_command, _("\
15829 Enable breakpoints and delete when hit. Give breakpoint numbers.\n\
15830 If a breakpoint is hit while enabled in this fashion, it is deleted."),
15831 &enablebreaklist);
15832
15833 add_cmd ("count", no_class, enable_count_command, _("\
15834 Enable breakpoints for COUNT hits. Give count and then breakpoint numbers.\n\
15835 If a breakpoint is hit while enabled in this fashion,\n\
15836 the count is decremented; when it reaches zero, the breakpoint is disabled."),
15837 &enablebreaklist);
15838
15839 add_cmd ("delete", no_class, enable_delete_command, _("\
15840 Enable breakpoints and delete when hit. Give breakpoint numbers.\n\
15841 If a breakpoint is hit while enabled in this fashion, it is deleted."),
15842 &enablelist);
15843
15844 add_cmd ("once", no_class, enable_once_command, _("\
15845 Enable breakpoints for one hit. Give breakpoint numbers.\n\
15846 If a breakpoint is hit while enabled in this fashion, it becomes disabled."),
15847 &enablelist);
15848
15849 add_cmd ("count", no_class, enable_count_command, _("\
15850 Enable breakpoints for COUNT hits. Give count and then breakpoint numbers.\n\
15851 If a breakpoint is hit while enabled in this fashion,\n\
15852 the count is decremented; when it reaches zero, the breakpoint is disabled."),
15853 &enablelist);
15854
15855 add_prefix_cmd ("disable", class_breakpoint, disable_command, _("\
15856 Disable some breakpoints.\n\
15857 Arguments are breakpoint numbers with spaces in between.\n\
15858 To disable all breakpoints, give no argument.\n\
15859 A disabled breakpoint is not forgotten, but has no effect until re-enabled."),
15860 &disablelist, "disable ", 1, &cmdlist);
15861 add_com_alias ("dis", "disable", class_breakpoint, 1);
15862 add_com_alias ("disa", "disable", class_breakpoint, 1);
15863
15864 add_cmd ("breakpoints", class_alias, disable_command, _("\
15865 Disable some breakpoints.\n\
15866 Arguments are breakpoint numbers with spaces in between.\n\
15867 To disable all breakpoints, give no argument.\n\
15868 A disabled breakpoint is not forgotten, but has no effect until re-enabled.\n\
15869 This command may be abbreviated \"disable\"."),
15870 &disablelist);
15871
15872 add_prefix_cmd ("delete", class_breakpoint, delete_command, _("\
15873 Delete some breakpoints or auto-display expressions.\n\
15874 Arguments are breakpoint numbers with spaces in between.\n\
15875 To delete all breakpoints, give no argument.\n\
15876 \n\
15877 Also a prefix command for deletion of other GDB objects.\n\
15878 The \"unset\" command is also an alias for \"delete\"."),
15879 &deletelist, "delete ", 1, &cmdlist);
15880 add_com_alias ("d", "delete", class_breakpoint, 1);
15881 add_com_alias ("del", "delete", class_breakpoint, 1);
15882
15883 add_cmd ("breakpoints", class_alias, delete_command, _("\
15884 Delete some breakpoints or auto-display expressions.\n\
15885 Arguments are breakpoint numbers with spaces in between.\n\
15886 To delete all breakpoints, give no argument.\n\
15887 This command may be abbreviated \"delete\"."),
15888 &deletelist);
15889
15890 add_com ("clear", class_breakpoint, clear_command, _("\
15891 Clear breakpoint at specified line or function.\n\
15892 Argument may be line number, function name, or \"*\" and an address.\n\
15893 If line number is specified, all breakpoints in that line are cleared.\n\
15894 If function is specified, breakpoints at beginning of function are cleared.\n\
15895 If an address is specified, breakpoints at that address are cleared.\n\
15896 \n\
15897 With no argument, clears all breakpoints in the line that the selected frame\n\
15898 is executing in.\n\
15899 \n\
15900 See also the \"delete\" command which clears breakpoints by number."));
15901 add_com_alias ("cl", "clear", class_breakpoint, 1);
15902
15903 c = add_com ("break", class_breakpoint, break_command, _("\
15904 Set breakpoint at specified line or function.\n"
15905 BREAK_ARGS_HELP ("break")));
15906 set_cmd_completer (c, location_completer);
15907
15908 add_com_alias ("b", "break", class_run, 1);
15909 add_com_alias ("br", "break", class_run, 1);
15910 add_com_alias ("bre", "break", class_run, 1);
15911 add_com_alias ("brea", "break", class_run, 1);
15912
15913 if (dbx_commands)
15914 {
15915 add_abbrev_prefix_cmd ("stop", class_breakpoint, stop_command, _("\
15916 Break in function/address or break at a line in the current file."),
15917 &stoplist, "stop ", 1, &cmdlist);
15918 add_cmd ("in", class_breakpoint, stopin_command,
15919 _("Break in function or address."), &stoplist);
15920 add_cmd ("at", class_breakpoint, stopat_command,
15921 _("Break at a line in the current file."), &stoplist);
15922 add_com ("status", class_info, breakpoints_info, _("\
15923 Status of user-settable breakpoints, or breakpoint number NUMBER.\n\
15924 The \"Type\" column indicates one of:\n\
15925 \tbreakpoint - normal breakpoint\n\
15926 \twatchpoint - watchpoint\n\
15927 The \"Disp\" column contains one of \"keep\", \"del\", or \"dis\" to indicate\n\
15928 the disposition of the breakpoint after it gets hit. \"dis\" means that the\n\
15929 breakpoint will be disabled. The \"Address\" and \"What\" columns indicate the\n\
15930 address and file/line number respectively.\n\
15931 \n\
15932 Convenience variable \"$_\" and default examine address for \"x\"\n\
15933 are set to the address of the last breakpoint listed unless the command\n\
15934 is prefixed with \"server \".\n\n\
15935 Convenience variable \"$bpnum\" contains the number of the last\n\
15936 breakpoint set."));
15937 }
15938
15939 add_info ("breakpoints", breakpoints_info, _("\
15940 Status of specified breakpoints (all user-settable breakpoints if no argument).\n\
15941 The \"Type\" column indicates one of:\n\
15942 \tbreakpoint - normal breakpoint\n\
15943 \twatchpoint - watchpoint\n\
15944 The \"Disp\" column contains one of \"keep\", \"del\", or \"dis\" to indicate\n\
15945 the disposition of the breakpoint after it gets hit. \"dis\" means that the\n\
15946 breakpoint will be disabled. The \"Address\" and \"What\" columns indicate the\n\
15947 address and file/line number respectively.\n\
15948 \n\
15949 Convenience variable \"$_\" and default examine address for \"x\"\n\
15950 are set to the address of the last breakpoint listed unless the command\n\
15951 is prefixed with \"server \".\n\n\
15952 Convenience variable \"$bpnum\" contains the number of the last\n\
15953 breakpoint set."));
15954
15955 add_info_alias ("b", "breakpoints", 1);
15956
15957 add_cmd ("breakpoints", class_maintenance, maintenance_info_breakpoints, _("\
15958 Status of all breakpoints, or breakpoint number NUMBER.\n\
15959 The \"Type\" column indicates one of:\n\
15960 \tbreakpoint - normal breakpoint\n\
15961 \twatchpoint - watchpoint\n\
15962 \tlongjmp - internal breakpoint used to step through longjmp()\n\
15963 \tlongjmp resume - internal breakpoint at the target of longjmp()\n\
15964 \tuntil - internal breakpoint used by the \"until\" command\n\
15965 \tfinish - internal breakpoint used by the \"finish\" command\n\
15966 The \"Disp\" column contains one of \"keep\", \"del\", or \"dis\" to indicate\n\
15967 the disposition of the breakpoint after it gets hit. \"dis\" means that the\n\
15968 breakpoint will be disabled. The \"Address\" and \"What\" columns indicate the\n\
15969 address and file/line number respectively.\n\
15970 \n\
15971 Convenience variable \"$_\" and default examine address for \"x\"\n\
15972 are set to the address of the last breakpoint listed unless the command\n\
15973 is prefixed with \"server \".\n\n\
15974 Convenience variable \"$bpnum\" contains the number of the last\n\
15975 breakpoint set."),
15976 &maintenanceinfolist);
15977
15978 add_prefix_cmd ("catch", class_breakpoint, catch_command, _("\
15979 Set catchpoints to catch events."),
15980 &catch_cmdlist, "catch ",
15981 0/*allow-unknown*/, &cmdlist);
15982
15983 add_prefix_cmd ("tcatch", class_breakpoint, tcatch_command, _("\
15984 Set temporary catchpoints to catch events."),
15985 &tcatch_cmdlist, "tcatch ",
15986 0/*allow-unknown*/, &cmdlist);
15987
15988 add_catch_command ("fork", _("Catch calls to fork."),
15989 catch_fork_command_1,
15990 NULL,
15991 (void *) (uintptr_t) catch_fork_permanent,
15992 (void *) (uintptr_t) catch_fork_temporary);
15993 add_catch_command ("vfork", _("Catch calls to vfork."),
15994 catch_fork_command_1,
15995 NULL,
15996 (void *) (uintptr_t) catch_vfork_permanent,
15997 (void *) (uintptr_t) catch_vfork_temporary);
15998 add_catch_command ("exec", _("Catch calls to exec."),
15999 catch_exec_command_1,
16000 NULL,
16001 CATCH_PERMANENT,
16002 CATCH_TEMPORARY);
16003 add_catch_command ("load", _("Catch loads of shared libraries.\n\
16004 Usage: catch load [REGEX]\n\
16005 If REGEX is given, only stop for libraries matching the regular expression."),
16006 catch_load_command_1,
16007 NULL,
16008 CATCH_PERMANENT,
16009 CATCH_TEMPORARY);
16010 add_catch_command ("unload", _("Catch unloads of shared libraries.\n\
16011 Usage: catch unload [REGEX]\n\
16012 If REGEX is given, only stop for libraries matching the regular expression."),
16013 catch_unload_command_1,
16014 NULL,
16015 CATCH_PERMANENT,
16016 CATCH_TEMPORARY);
16017
16018 c = add_com ("watch", class_breakpoint, watch_command, _("\
16019 Set a watchpoint for an expression.\n\
16020 Usage: watch [-l|-location] EXPRESSION\n\
16021 A watchpoint stops execution of your program whenever the value of\n\
16022 an expression changes.\n\
16023 If -l or -location is given, this evaluates EXPRESSION and watches\n\
16024 the memory to which it refers."));
16025 set_cmd_completer (c, expression_completer);
16026
16027 c = add_com ("rwatch", class_breakpoint, rwatch_command, _("\
16028 Set a read watchpoint for an expression.\n\
16029 Usage: rwatch [-l|-location] EXPRESSION\n\
16030 A watchpoint stops execution of your program whenever the value of\n\
16031 an expression is read.\n\
16032 If -l or -location is given, this evaluates EXPRESSION and watches\n\
16033 the memory to which it refers."));
16034 set_cmd_completer (c, expression_completer);
16035
16036 c = add_com ("awatch", class_breakpoint, awatch_command, _("\
16037 Set a watchpoint for an expression.\n\
16038 Usage: awatch [-l|-location] EXPRESSION\n\
16039 A watchpoint stops execution of your program whenever the value of\n\
16040 an expression is either read or written.\n\
16041 If -l or -location is given, this evaluates EXPRESSION and watches\n\
16042 the memory to which it refers."));
16043 set_cmd_completer (c, expression_completer);
16044
16045 add_info ("watchpoints", watchpoints_info, _("\
16046 Status of specified watchpoints (all watchpoints if no argument)."));
16047
16048 /* XXX: cagney/2005-02-23: This should be a boolean, and should
16049 respond to changes - contrary to the description. */
16050 add_setshow_zinteger_cmd ("can-use-hw-watchpoints", class_support,
16051 &can_use_hw_watchpoints, _("\
16052 Set debugger's willingness to use watchpoint hardware."), _("\
16053 Show debugger's willingness to use watchpoint hardware."), _("\
16054 If zero, gdb will not use hardware for new watchpoints, even if\n\
16055 such is available. (However, any hardware watchpoints that were\n\
16056 created before setting this to nonzero, will continue to use watchpoint\n\
16057 hardware.)"),
16058 NULL,
16059 show_can_use_hw_watchpoints,
16060 &setlist, &showlist);
16061
16062 can_use_hw_watchpoints = 1;
16063
16064 /* Tracepoint manipulation commands. */
16065
16066 c = add_com ("trace", class_breakpoint, trace_command, _("\
16067 Set a tracepoint at specified line or function.\n\
16068 \n"
16069 BREAK_ARGS_HELP ("trace") "\n\
16070 Do \"help tracepoints\" for info on other tracepoint commands."));
16071 set_cmd_completer (c, location_completer);
16072
16073 add_com_alias ("tp", "trace", class_alias, 0);
16074 add_com_alias ("tr", "trace", class_alias, 1);
16075 add_com_alias ("tra", "trace", class_alias, 1);
16076 add_com_alias ("trac", "trace", class_alias, 1);
16077
16078 c = add_com ("ftrace", class_breakpoint, ftrace_command, _("\
16079 Set a fast tracepoint at specified line or function.\n\
16080 \n"
16081 BREAK_ARGS_HELP ("ftrace") "\n\
16082 Do \"help tracepoints\" for info on other tracepoint commands."));
16083 set_cmd_completer (c, location_completer);
16084
16085 c = add_com ("strace", class_breakpoint, strace_command, _("\
16086 Set a static tracepoint at specified line, function or marker.\n\
16087 \n\
16088 strace [LOCATION] [if CONDITION]\n\
16089 LOCATION may be a line number, function name, \"*\" and an address,\n\
16090 or -m MARKER_ID.\n\
16091 If a line number is specified, probe the marker at start of code\n\
16092 for that line. If a function is specified, probe the marker at start\n\
16093 of code for that function. If an address is specified, probe the marker\n\
16094 at that exact address. If a marker id is specified, probe the marker\n\
16095 with that name. With no LOCATION, uses current execution address of\n\
16096 the selected stack frame.\n\
16097 Static tracepoints accept an extra collect action -- ``collect $_sdata''.\n\
16098 This collects arbitrary user data passed in the probe point call to the\n\
16099 tracing library. You can inspect it when analyzing the trace buffer,\n\
16100 by printing the $_sdata variable like any other convenience variable.\n\
16101 \n\
16102 CONDITION is a boolean expression.\n\
16103 \n\
16104 Multiple tracepoints at one place are permitted, and useful if their\n\
16105 conditions are different.\n\
16106 \n\
16107 Do \"help breakpoints\" for info on other commands dealing with breakpoints.\n\
16108 Do \"help tracepoints\" for info on other tracepoint commands."));
16109 set_cmd_completer (c, location_completer);
16110
16111 add_info ("tracepoints", tracepoints_info, _("\
16112 Status of specified tracepoints (all tracepoints if no argument).\n\
16113 Convenience variable \"$tpnum\" contains the number of the\n\
16114 last tracepoint set."));
16115
16116 add_info_alias ("tp", "tracepoints", 1);
16117
16118 add_cmd ("tracepoints", class_trace, delete_trace_command, _("\
16119 Delete specified tracepoints.\n\
16120 Arguments are tracepoint numbers, separated by spaces.\n\
16121 No argument means delete all tracepoints."),
16122 &deletelist);
16123 add_alias_cmd ("tr", "tracepoints", class_trace, 1, &deletelist);
16124
16125 c = add_cmd ("tracepoints", class_trace, disable_trace_command, _("\
16126 Disable specified tracepoints.\n\
16127 Arguments are tracepoint numbers, separated by spaces.\n\
16128 No argument means disable all tracepoints."),
16129 &disablelist);
16130 deprecate_cmd (c, "disable");
16131
16132 c = add_cmd ("tracepoints", class_trace, enable_trace_command, _("\
16133 Enable specified tracepoints.\n\
16134 Arguments are tracepoint numbers, separated by spaces.\n\
16135 No argument means enable all tracepoints."),
16136 &enablelist);
16137 deprecate_cmd (c, "enable");
16138
16139 add_com ("passcount", class_trace, trace_pass_command, _("\
16140 Set the passcount for a tracepoint.\n\
16141 The trace will end when the tracepoint has been passed 'count' times.\n\
16142 Usage: passcount COUNT TPNUM, where TPNUM may also be \"all\";\n\
16143 if TPNUM is omitted, passcount refers to the last tracepoint defined."));
16144
16145 add_prefix_cmd ("save", class_breakpoint, save_command,
16146 _("Save breakpoint definitions as a script."),
16147 &save_cmdlist, "save ",
16148 0/*allow-unknown*/, &cmdlist);
16149
16150 c = add_cmd ("breakpoints", class_breakpoint, save_breakpoints_command, _("\
16151 Save current breakpoint definitions as a script.\n\
16152 This includes all types of breakpoints (breakpoints, watchpoints,\n\
16153 catchpoints, tracepoints). Use the 'source' command in another debug\n\
16154 session to restore them."),
16155 &save_cmdlist);
16156 set_cmd_completer (c, filename_completer);
16157
16158 c = add_cmd ("tracepoints", class_trace, save_tracepoints_command, _("\
16159 Save current tracepoint definitions as a script.\n\
16160 Use the 'source' command in another debug session to restore them."),
16161 &save_cmdlist);
16162 set_cmd_completer (c, filename_completer);
16163
16164 c = add_com_alias ("save-tracepoints", "save tracepoints", class_trace, 0);
16165 deprecate_cmd (c, "save tracepoints");
16166
16167 add_prefix_cmd ("breakpoint", class_maintenance, set_breakpoint_cmd, _("\
16168 Breakpoint specific settings\n\
16169 Configure various breakpoint-specific variables such as\n\
16170 pending breakpoint behavior"),
16171 &breakpoint_set_cmdlist, "set breakpoint ",
16172 0/*allow-unknown*/, &setlist);
16173 add_prefix_cmd ("breakpoint", class_maintenance, show_breakpoint_cmd, _("\
16174 Breakpoint specific settings\n\
16175 Configure various breakpoint-specific variables such as\n\
16176 pending breakpoint behavior"),
16177 &breakpoint_show_cmdlist, "show breakpoint ",
16178 0/*allow-unknown*/, &showlist);
16179
16180 add_setshow_auto_boolean_cmd ("pending", no_class,
16181 &pending_break_support, _("\
16182 Set debugger's behavior regarding pending breakpoints."), _("\
16183 Show debugger's behavior regarding pending breakpoints."), _("\
16184 If on, an unrecognized breakpoint location will cause gdb to create a\n\
16185 pending breakpoint. If off, an unrecognized breakpoint location results in\n\
16186 an error. If auto, an unrecognized breakpoint location results in a\n\
16187 user-query to see if a pending breakpoint should be created."),
16188 NULL,
16189 show_pending_break_support,
16190 &breakpoint_set_cmdlist,
16191 &breakpoint_show_cmdlist);
16192
16193 pending_break_support = AUTO_BOOLEAN_AUTO;
16194
16195 add_setshow_boolean_cmd ("auto-hw", no_class,
16196 &automatic_hardware_breakpoints, _("\
16197 Set automatic usage of hardware breakpoints."), _("\
16198 Show automatic usage of hardware breakpoints."), _("\
16199 If set, the debugger will automatically use hardware breakpoints for\n\
16200 breakpoints set with \"break\" but falling in read-only memory. If not set,\n\
16201 a warning will be emitted for such breakpoints."),
16202 NULL,
16203 show_automatic_hardware_breakpoints,
16204 &breakpoint_set_cmdlist,
16205 &breakpoint_show_cmdlist);
16206
16207 add_setshow_boolean_cmd ("always-inserted", class_support,
16208 &always_inserted_mode, _("\
16209 Set mode for inserting breakpoints."), _("\
16210 Show mode for inserting breakpoints."), _("\
16211 When this mode is on, breakpoints are inserted immediately as soon as\n\
16212 they're created, kept inserted even when execution stops, and removed\n\
16213 only when the user deletes them. When this mode is off (the default),\n\
16214 breakpoints are inserted only when execution continues, and removed\n\
16215 when execution stops."),
16216 NULL,
16217 &show_always_inserted_mode,
16218 &breakpoint_set_cmdlist,
16219 &breakpoint_show_cmdlist);
16220
16221 add_setshow_enum_cmd ("condition-evaluation", class_breakpoint,
16222 condition_evaluation_enums,
16223 &condition_evaluation_mode_1, _("\
16224 Set mode of breakpoint condition evaluation."), _("\
16225 Show mode of breakpoint condition evaluation."), _("\
16226 When this is set to \"host\", breakpoint conditions will be\n\
16227 evaluated on the host's side by GDB. When it is set to \"target\",\n\
16228 breakpoint conditions will be downloaded to the target (if the target\n\
16229 supports such feature) and conditions will be evaluated on the target's side.\n\
16230 If this is set to \"auto\" (default), this will be automatically set to\n\
16231 \"target\" if it supports condition evaluation, otherwise it will\n\
16232 be set to \"gdb\""),
16233 &set_condition_evaluation_mode,
16234 &show_condition_evaluation_mode,
16235 &breakpoint_set_cmdlist,
16236 &breakpoint_show_cmdlist);
16237
16238 add_com ("break-range", class_breakpoint, break_range_command, _("\
16239 Set a breakpoint for an address range.\n\
16240 break-range START-LOCATION, END-LOCATION\n\
16241 where START-LOCATION and END-LOCATION can be one of the following:\n\
16242 LINENUM, for that line in the current file,\n\
16243 FILE:LINENUM, for that line in that file,\n\
16244 +OFFSET, for that number of lines after the current line\n\
16245 or the start of the range\n\
16246 FUNCTION, for the first line in that function,\n\
16247 FILE:FUNCTION, to distinguish among like-named static functions.\n\
16248 *ADDRESS, for the instruction at that address.\n\
16249 \n\
16250 The breakpoint will stop execution of the inferior whenever it executes\n\
16251 an instruction at any address within the [START-LOCATION, END-LOCATION]\n\
16252 range (including START-LOCATION and END-LOCATION)."));
16253
16254 c = add_com ("dprintf", class_breakpoint, dprintf_command, _("\
16255 Set a dynamic printf at specified line or function.\n\
16256 dprintf location,format string,arg1,arg2,...\n\
16257 location may be a line number, function name, or \"*\" and an address.\n\
16258 If a line number is specified, break at start of code for that line.\n\
16259 If a function is specified, break at start of code for that function."));
16260 set_cmd_completer (c, location_completer);
16261
16262 add_setshow_enum_cmd ("dprintf-style", class_support,
16263 dprintf_style_enums, &dprintf_style, _("\
16264 Set the style of usage for dynamic printf."), _("\
16265 Show the style of usage for dynamic printf."), _("\
16266 This setting chooses how GDB will do a dynamic printf.\n\
16267 If the value is \"gdb\", then the printing is done by GDB to its own\n\
16268 console, as with the \"printf\" command.\n\
16269 If the value is \"call\", the print is done by calling a function in your\n\
16270 program; by default printf(), but you can choose a different function or\n\
16271 output stream by setting dprintf-function and dprintf-channel."),
16272 update_dprintf_commands, NULL,
16273 &setlist, &showlist);
16274
16275 dprintf_function = xstrdup ("printf");
16276 add_setshow_string_cmd ("dprintf-function", class_support,
16277 &dprintf_function, _("\
16278 Set the function to use for dynamic printf"), _("\
16279 Show the function to use for dynamic printf"), NULL,
16280 update_dprintf_commands, NULL,
16281 &setlist, &showlist);
16282
16283 dprintf_channel = xstrdup ("");
16284 add_setshow_string_cmd ("dprintf-channel", class_support,
16285 &dprintf_channel, _("\
16286 Set the channel to use for dynamic printf"), _("\
16287 Show the channel to use for dynamic printf"), NULL,
16288 update_dprintf_commands, NULL,
16289 &setlist, &showlist);
16290
16291 add_setshow_boolean_cmd ("disconnected-dprintf", no_class,
16292 &disconnected_dprintf, _("\
16293 Set whether dprintf continues after GDB disconnects."), _("\
16294 Show whether dprintf continues after GDB disconnects."), _("\
16295 Use this to let dprintf commands continue to hit and produce output\n\
16296 even if GDB disconnects or detaches from the target."),
16297 NULL,
16298 NULL,
16299 &setlist, &showlist);
16300
16301 add_com ("agent-printf", class_vars, agent_printf_command, _("\
16302 agent-printf \"printf format string\", arg1, arg2, arg3, ..., argn\n\
16303 (target agent only) This is useful for formatted output in user-defined commands."));
16304
16305 automatic_hardware_breakpoints = 1;
16306
16307 observer_attach_about_to_proceed (breakpoint_about_to_proceed);
16308 observer_attach_thread_exit (remove_threaded_breakpoints);
16309 }
This page took 0.398891 seconds and 4 git commands to generate.