gdbserver: set ptrace flags after creating inferiors
[deliverable/binutils-gdb.git] / gdb / breakpoint.c
1 /* Everything about breakpoints, for GDB.
2
3 Copyright (C) 1986-2015 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20 #include "defs.h"
21 #include "arch-utils.h"
22 #include <ctype.h>
23 #include "hashtab.h"
24 #include "symtab.h"
25 #include "frame.h"
26 #include "breakpoint.h"
27 #include "tracepoint.h"
28 #include "gdbtypes.h"
29 #include "expression.h"
30 #include "gdbcore.h"
31 #include "gdbcmd.h"
32 #include "value.h"
33 #include "command.h"
34 #include "inferior.h"
35 #include "infrun.h"
36 #include "gdbthread.h"
37 #include "target.h"
38 #include "language.h"
39 #include "gdb-demangle.h"
40 #include "filenames.h"
41 #include "annotate.h"
42 #include "symfile.h"
43 #include "objfiles.h"
44 #include "source.h"
45 #include "linespec.h"
46 #include "completer.h"
47 #include "gdb.h"
48 #include "ui-out.h"
49 #include "cli/cli-script.h"
50 #include "block.h"
51 #include "solib.h"
52 #include "solist.h"
53 #include "observer.h"
54 #include "memattr.h"
55 #include "ada-lang.h"
56 #include "top.h"
57 #include "valprint.h"
58 #include "jit.h"
59 #include "parser-defs.h"
60 #include "gdb_regex.h"
61 #include "probe.h"
62 #include "cli/cli-utils.h"
63 #include "continuations.h"
64 #include "stack.h"
65 #include "skip.h"
66 #include "ax-gdb.h"
67 #include "dummy-frame.h"
68 #include "interps.h"
69 #include "format.h"
70 #include "location.h"
71 #include "thread-fsm.h"
72
73 /* readline include files */
74 #include "readline/readline.h"
75 #include "readline/history.h"
76
77 /* readline defines this. */
78 #undef savestring
79
80 #include "mi/mi-common.h"
81 #include "extension.h"
82
83 /* Enums for exception-handling support. */
84 enum exception_event_kind
85 {
86 EX_EVENT_THROW,
87 EX_EVENT_RETHROW,
88 EX_EVENT_CATCH
89 };
90
91 /* Prototypes for local functions. */
92
93 static void enable_delete_command (char *, int);
94
95 static void enable_once_command (char *, int);
96
97 static void enable_count_command (char *, int);
98
99 static void disable_command (char *, int);
100
101 static void enable_command (char *, int);
102
103 static void map_breakpoint_numbers (char *, void (*) (struct breakpoint *,
104 void *),
105 void *);
106
107 static void ignore_command (char *, int);
108
109 static int breakpoint_re_set_one (void *);
110
111 static void breakpoint_re_set_default (struct breakpoint *);
112
113 static void
114 create_sals_from_location_default (const struct event_location *location,
115 struct linespec_result *canonical,
116 enum bptype type_wanted);
117
118 static void create_breakpoints_sal_default (struct gdbarch *,
119 struct linespec_result *,
120 char *, char *, enum bptype,
121 enum bpdisp, int, int,
122 int,
123 const struct breakpoint_ops *,
124 int, int, int, unsigned);
125
126 static void decode_location_default (struct breakpoint *b,
127 const struct event_location *location,
128 struct symtabs_and_lines *sals);
129
130 static void clear_command (char *, int);
131
132 static void catch_command (char *, int);
133
134 static int can_use_hardware_watchpoint (struct value *);
135
136 static void break_command_1 (char *, int, int);
137
138 static void mention (struct breakpoint *);
139
140 static struct breakpoint *set_raw_breakpoint_without_location (struct gdbarch *,
141 enum bptype,
142 const struct breakpoint_ops *);
143 static struct bp_location *add_location_to_breakpoint (struct breakpoint *,
144 const struct symtab_and_line *);
145
146 /* This function is used in gdbtk sources and thus can not be made
147 static. */
148 struct breakpoint *set_raw_breakpoint (struct gdbarch *gdbarch,
149 struct symtab_and_line,
150 enum bptype,
151 const struct breakpoint_ops *);
152
153 static struct breakpoint *
154 momentary_breakpoint_from_master (struct breakpoint *orig,
155 enum bptype type,
156 const struct breakpoint_ops *ops,
157 int loc_enabled);
158
159 static void breakpoint_adjustment_warning (CORE_ADDR, CORE_ADDR, int, int);
160
161 static CORE_ADDR adjust_breakpoint_address (struct gdbarch *gdbarch,
162 CORE_ADDR bpaddr,
163 enum bptype bptype);
164
165 static void describe_other_breakpoints (struct gdbarch *,
166 struct program_space *, CORE_ADDR,
167 struct obj_section *, int);
168
169 static int watchpoint_locations_match (struct bp_location *loc1,
170 struct bp_location *loc2);
171
172 static int breakpoint_location_address_match (struct bp_location *bl,
173 struct address_space *aspace,
174 CORE_ADDR addr);
175
176 static int breakpoint_location_address_range_overlap (struct bp_location *,
177 struct address_space *,
178 CORE_ADDR, int);
179
180 static void breakpoints_info (char *, int);
181
182 static void watchpoints_info (char *, int);
183
184 static int breakpoint_1 (char *, int,
185 int (*) (const struct breakpoint *));
186
187 static int breakpoint_cond_eval (void *);
188
189 static void cleanup_executing_breakpoints (void *);
190
191 static void commands_command (char *, int);
192
193 static void condition_command (char *, int);
194
195 typedef enum
196 {
197 mark_inserted,
198 mark_uninserted
199 }
200 insertion_state_t;
201
202 static int remove_breakpoint (struct bp_location *, insertion_state_t);
203 static int remove_breakpoint_1 (struct bp_location *, insertion_state_t);
204
205 static enum print_stop_action print_bp_stop_message (bpstat bs);
206
207 static int watchpoint_check (void *);
208
209 static void maintenance_info_breakpoints (char *, int);
210
211 static int hw_breakpoint_used_count (void);
212
213 static int hw_watchpoint_use_count (struct breakpoint *);
214
215 static int hw_watchpoint_used_count_others (struct breakpoint *except,
216 enum bptype type,
217 int *other_type_used);
218
219 static void hbreak_command (char *, int);
220
221 static void thbreak_command (char *, int);
222
223 static void enable_breakpoint_disp (struct breakpoint *, enum bpdisp,
224 int count);
225
226 static void stop_command (char *arg, int from_tty);
227
228 static void stopin_command (char *arg, int from_tty);
229
230 static void stopat_command (char *arg, int from_tty);
231
232 static void tcatch_command (char *arg, int from_tty);
233
234 static void free_bp_location (struct bp_location *loc);
235 static void incref_bp_location (struct bp_location *loc);
236 static void decref_bp_location (struct bp_location **loc);
237
238 static struct bp_location *allocate_bp_location (struct breakpoint *bpt);
239
240 /* update_global_location_list's modes of operation wrt to whether to
241 insert locations now. */
242 enum ugll_insert_mode
243 {
244 /* Don't insert any breakpoint locations into the inferior, only
245 remove already-inserted locations that no longer should be
246 inserted. Functions that delete a breakpoint or breakpoints
247 should specify this mode, so that deleting a breakpoint doesn't
248 have the side effect of inserting the locations of other
249 breakpoints that are marked not-inserted, but should_be_inserted
250 returns true on them.
251
252 This behavior is useful is situations close to tear-down -- e.g.,
253 after an exec, while the target still has execution, but
254 breakpoint shadows of the previous executable image should *NOT*
255 be restored to the new image; or before detaching, where the
256 target still has execution and wants to delete breakpoints from
257 GDB's lists, and all breakpoints had already been removed from
258 the inferior. */
259 UGLL_DONT_INSERT,
260
261 /* May insert breakpoints iff breakpoints_should_be_inserted_now
262 claims breakpoints should be inserted now. */
263 UGLL_MAY_INSERT,
264
265 /* Insert locations now, irrespective of
266 breakpoints_should_be_inserted_now. E.g., say all threads are
267 stopped right now, and the user did "continue". We need to
268 insert breakpoints _before_ resuming the target, but
269 UGLL_MAY_INSERT wouldn't insert them, because
270 breakpoints_should_be_inserted_now returns false at that point,
271 as no thread is running yet. */
272 UGLL_INSERT
273 };
274
275 static void update_global_location_list (enum ugll_insert_mode);
276
277 static void update_global_location_list_nothrow (enum ugll_insert_mode);
278
279 static int is_hardware_watchpoint (const struct breakpoint *bpt);
280
281 static void insert_breakpoint_locations (void);
282
283 static void tracepoints_info (char *, int);
284
285 static void delete_trace_command (char *, int);
286
287 static void enable_trace_command (char *, int);
288
289 static void disable_trace_command (char *, int);
290
291 static void trace_pass_command (char *, int);
292
293 static void set_tracepoint_count (int num);
294
295 static int is_masked_watchpoint (const struct breakpoint *b);
296
297 static struct bp_location **get_first_locp_gte_addr (CORE_ADDR address);
298
299 /* Return 1 if B refers to a static tracepoint set by marker ("-m"), zero
300 otherwise. */
301
302 static int strace_marker_p (struct breakpoint *b);
303
304 /* The breakpoint_ops structure to be inherited by all breakpoint_ops
305 that are implemented on top of software or hardware breakpoints
306 (user breakpoints, internal and momentary breakpoints, etc.). */
307 static struct breakpoint_ops bkpt_base_breakpoint_ops;
308
309 /* Internal breakpoints class type. */
310 static struct breakpoint_ops internal_breakpoint_ops;
311
312 /* Momentary breakpoints class type. */
313 static struct breakpoint_ops momentary_breakpoint_ops;
314
315 /* Momentary breakpoints for bp_longjmp and bp_exception class type. */
316 static struct breakpoint_ops longjmp_breakpoint_ops;
317
318 /* The breakpoint_ops structure to be used in regular user created
319 breakpoints. */
320 struct breakpoint_ops bkpt_breakpoint_ops;
321
322 /* Breakpoints set on probes. */
323 static struct breakpoint_ops bkpt_probe_breakpoint_ops;
324
325 /* Dynamic printf class type. */
326 struct breakpoint_ops dprintf_breakpoint_ops;
327
328 /* The style in which to perform a dynamic printf. This is a user
329 option because different output options have different tradeoffs;
330 if GDB does the printing, there is better error handling if there
331 is a problem with any of the arguments, but using an inferior
332 function lets you have special-purpose printers and sending of
333 output to the same place as compiled-in print functions. */
334
335 static const char dprintf_style_gdb[] = "gdb";
336 static const char dprintf_style_call[] = "call";
337 static const char dprintf_style_agent[] = "agent";
338 static const char *const dprintf_style_enums[] = {
339 dprintf_style_gdb,
340 dprintf_style_call,
341 dprintf_style_agent,
342 NULL
343 };
344 static const char *dprintf_style = dprintf_style_gdb;
345
346 /* The function to use for dynamic printf if the preferred style is to
347 call into the inferior. The value is simply a string that is
348 copied into the command, so it can be anything that GDB can
349 evaluate to a callable address, not necessarily a function name. */
350
351 static char *dprintf_function = "";
352
353 /* The channel to use for dynamic printf if the preferred style is to
354 call into the inferior; if a nonempty string, it will be passed to
355 the call as the first argument, with the format string as the
356 second. As with the dprintf function, this can be anything that
357 GDB knows how to evaluate, so in addition to common choices like
358 "stderr", this could be an app-specific expression like
359 "mystreams[curlogger]". */
360
361 static char *dprintf_channel = "";
362
363 /* True if dprintf commands should continue to operate even if GDB
364 has disconnected. */
365 static int disconnected_dprintf = 1;
366
367 /* A reference-counted struct command_line. This lets multiple
368 breakpoints share a single command list. */
369 struct counted_command_line
370 {
371 /* The reference count. */
372 int refc;
373
374 /* The command list. */
375 struct command_line *commands;
376 };
377
378 struct command_line *
379 breakpoint_commands (struct breakpoint *b)
380 {
381 return b->commands ? b->commands->commands : NULL;
382 }
383
384 /* Flag indicating that a command has proceeded the inferior past the
385 current breakpoint. */
386
387 static int breakpoint_proceeded;
388
389 const char *
390 bpdisp_text (enum bpdisp disp)
391 {
392 /* NOTE: the following values are a part of MI protocol and
393 represent values of 'disp' field returned when inferior stops at
394 a breakpoint. */
395 static const char * const bpdisps[] = {"del", "dstp", "dis", "keep"};
396
397 return bpdisps[(int) disp];
398 }
399
400 /* Prototypes for exported functions. */
401 /* If FALSE, gdb will not use hardware support for watchpoints, even
402 if such is available. */
403 static int can_use_hw_watchpoints;
404
405 static void
406 show_can_use_hw_watchpoints (struct ui_file *file, int from_tty,
407 struct cmd_list_element *c,
408 const char *value)
409 {
410 fprintf_filtered (file,
411 _("Debugger's willingness to use "
412 "watchpoint hardware is %s.\n"),
413 value);
414 }
415
416 /* If AUTO_BOOLEAN_FALSE, gdb will not attempt to create pending breakpoints.
417 If AUTO_BOOLEAN_TRUE, gdb will automatically create pending breakpoints
418 for unrecognized breakpoint locations.
419 If AUTO_BOOLEAN_AUTO, gdb will query when breakpoints are unrecognized. */
420 static enum auto_boolean pending_break_support;
421 static void
422 show_pending_break_support (struct ui_file *file, int from_tty,
423 struct cmd_list_element *c,
424 const char *value)
425 {
426 fprintf_filtered (file,
427 _("Debugger's behavior regarding "
428 "pending breakpoints is %s.\n"),
429 value);
430 }
431
432 /* If 1, gdb will automatically use hardware breakpoints for breakpoints
433 set with "break" but falling in read-only memory.
434 If 0, gdb will warn about such breakpoints, but won't automatically
435 use hardware breakpoints. */
436 static int automatic_hardware_breakpoints;
437 static void
438 show_automatic_hardware_breakpoints (struct ui_file *file, int from_tty,
439 struct cmd_list_element *c,
440 const char *value)
441 {
442 fprintf_filtered (file,
443 _("Automatic usage of hardware breakpoints is %s.\n"),
444 value);
445 }
446
447 /* If on, GDB keeps breakpoints inserted even if the inferior is
448 stopped, and immediately inserts any new breakpoints as soon as
449 they're created. If off (default), GDB keeps breakpoints off of
450 the target as long as possible. That is, it delays inserting
451 breakpoints until the next resume, and removes them again when the
452 target fully stops. This is a bit safer in case GDB crashes while
453 processing user input. */
454 static int always_inserted_mode = 0;
455
456 static void
457 show_always_inserted_mode (struct ui_file *file, int from_tty,
458 struct cmd_list_element *c, const char *value)
459 {
460 fprintf_filtered (file, _("Always inserted breakpoint mode is %s.\n"),
461 value);
462 }
463
464 /* See breakpoint.h. */
465
466 int
467 breakpoints_should_be_inserted_now (void)
468 {
469 if (gdbarch_has_global_breakpoints (target_gdbarch ()))
470 {
471 /* If breakpoints are global, they should be inserted even if no
472 thread under gdb's control is running, or even if there are
473 no threads under GDB's control yet. */
474 return 1;
475 }
476 else if (target_has_execution)
477 {
478 struct thread_info *tp;
479
480 if (always_inserted_mode)
481 {
482 /* The user wants breakpoints inserted even if all threads
483 are stopped. */
484 return 1;
485 }
486
487 if (threads_are_executing ())
488 return 1;
489
490 /* Don't remove breakpoints yet if, even though all threads are
491 stopped, we still have events to process. */
492 ALL_NON_EXITED_THREADS (tp)
493 if (tp->resumed
494 && tp->suspend.waitstatus_pending_p)
495 return 1;
496 }
497 return 0;
498 }
499
500 static const char condition_evaluation_both[] = "host or target";
501
502 /* Modes for breakpoint condition evaluation. */
503 static const char condition_evaluation_auto[] = "auto";
504 static const char condition_evaluation_host[] = "host";
505 static const char condition_evaluation_target[] = "target";
506 static const char *const condition_evaluation_enums[] = {
507 condition_evaluation_auto,
508 condition_evaluation_host,
509 condition_evaluation_target,
510 NULL
511 };
512
513 /* Global that holds the current mode for breakpoint condition evaluation. */
514 static const char *condition_evaluation_mode_1 = condition_evaluation_auto;
515
516 /* Global that we use to display information to the user (gets its value from
517 condition_evaluation_mode_1. */
518 static const char *condition_evaluation_mode = condition_evaluation_auto;
519
520 /* Translate a condition evaluation mode MODE into either "host"
521 or "target". This is used mostly to translate from "auto" to the
522 real setting that is being used. It returns the translated
523 evaluation mode. */
524
525 static const char *
526 translate_condition_evaluation_mode (const char *mode)
527 {
528 if (mode == condition_evaluation_auto)
529 {
530 if (target_supports_evaluation_of_breakpoint_conditions ())
531 return condition_evaluation_target;
532 else
533 return condition_evaluation_host;
534 }
535 else
536 return mode;
537 }
538
539 /* Discovers what condition_evaluation_auto translates to. */
540
541 static const char *
542 breakpoint_condition_evaluation_mode (void)
543 {
544 return translate_condition_evaluation_mode (condition_evaluation_mode);
545 }
546
547 /* Return true if GDB should evaluate breakpoint conditions or false
548 otherwise. */
549
550 static int
551 gdb_evaluates_breakpoint_condition_p (void)
552 {
553 const char *mode = breakpoint_condition_evaluation_mode ();
554
555 return (mode == condition_evaluation_host);
556 }
557
558 void _initialize_breakpoint (void);
559
560 /* Are we executing breakpoint commands? */
561 static int executing_breakpoint_commands;
562
563 /* Are overlay event breakpoints enabled? */
564 static int overlay_events_enabled;
565
566 /* See description in breakpoint.h. */
567 int target_exact_watchpoints = 0;
568
569 /* Walk the following statement or block through all breakpoints.
570 ALL_BREAKPOINTS_SAFE does so even if the statement deletes the
571 current breakpoint. */
572
573 #define ALL_BREAKPOINTS(B) for (B = breakpoint_chain; B; B = B->next)
574
575 #define ALL_BREAKPOINTS_SAFE(B,TMP) \
576 for (B = breakpoint_chain; \
577 B ? (TMP=B->next, 1): 0; \
578 B = TMP)
579
580 /* Similar iterator for the low-level breakpoints. SAFE variant is
581 not provided so update_global_location_list must not be called
582 while executing the block of ALL_BP_LOCATIONS. */
583
584 #define ALL_BP_LOCATIONS(B,BP_TMP) \
585 for (BP_TMP = bp_location; \
586 BP_TMP < bp_location + bp_location_count && (B = *BP_TMP); \
587 BP_TMP++)
588
589 /* Iterates through locations with address ADDRESS for the currently selected
590 program space. BP_LOCP_TMP points to each object. BP_LOCP_START points
591 to where the loop should start from.
592 If BP_LOCP_START is a NULL pointer, the macro automatically seeks the
593 appropriate location to start with. */
594
595 #define ALL_BP_LOCATIONS_AT_ADDR(BP_LOCP_TMP, BP_LOCP_START, ADDRESS) \
596 for (BP_LOCP_START = BP_LOCP_START == NULL ? get_first_locp_gte_addr (ADDRESS) : BP_LOCP_START, \
597 BP_LOCP_TMP = BP_LOCP_START; \
598 BP_LOCP_START \
599 && (BP_LOCP_TMP < bp_location + bp_location_count \
600 && (*BP_LOCP_TMP)->address == ADDRESS); \
601 BP_LOCP_TMP++)
602
603 /* Iterator for tracepoints only. */
604
605 #define ALL_TRACEPOINTS(B) \
606 for (B = breakpoint_chain; B; B = B->next) \
607 if (is_tracepoint (B))
608
609 /* Chains of all breakpoints defined. */
610
611 struct breakpoint *breakpoint_chain;
612
613 /* Array is sorted by bp_location_compare - primarily by the ADDRESS. */
614
615 static struct bp_location **bp_location;
616
617 /* Number of elements of BP_LOCATION. */
618
619 static unsigned bp_location_count;
620
621 /* Maximum alignment offset between bp_target_info.PLACED_ADDRESS and
622 ADDRESS for the current elements of BP_LOCATION which get a valid
623 result from bp_location_has_shadow. You can use it for roughly
624 limiting the subrange of BP_LOCATION to scan for shadow bytes for
625 an address you need to read. */
626
627 static CORE_ADDR bp_location_placed_address_before_address_max;
628
629 /* Maximum offset plus alignment between bp_target_info.PLACED_ADDRESS
630 + bp_target_info.SHADOW_LEN and ADDRESS for the current elements of
631 BP_LOCATION which get a valid result from bp_location_has_shadow.
632 You can use it for roughly limiting the subrange of BP_LOCATION to
633 scan for shadow bytes for an address you need to read. */
634
635 static CORE_ADDR bp_location_shadow_len_after_address_max;
636
637 /* The locations that no longer correspond to any breakpoint, unlinked
638 from bp_location array, but for which a hit may still be reported
639 by a target. */
640 VEC(bp_location_p) *moribund_locations = NULL;
641
642 /* Number of last breakpoint made. */
643
644 static int breakpoint_count;
645
646 /* The value of `breakpoint_count' before the last command that
647 created breakpoints. If the last (break-like) command created more
648 than one breakpoint, then the difference between BREAKPOINT_COUNT
649 and PREV_BREAKPOINT_COUNT is more than one. */
650 static int prev_breakpoint_count;
651
652 /* Number of last tracepoint made. */
653
654 static int tracepoint_count;
655
656 static struct cmd_list_element *breakpoint_set_cmdlist;
657 static struct cmd_list_element *breakpoint_show_cmdlist;
658 struct cmd_list_element *save_cmdlist;
659
660 /* See declaration at breakpoint.h. */
661
662 struct breakpoint *
663 breakpoint_find_if (int (*func) (struct breakpoint *b, void *d),
664 void *user_data)
665 {
666 struct breakpoint *b = NULL;
667
668 ALL_BREAKPOINTS (b)
669 {
670 if (func (b, user_data) != 0)
671 break;
672 }
673
674 return b;
675 }
676
677 /* Return whether a breakpoint is an active enabled breakpoint. */
678 static int
679 breakpoint_enabled (struct breakpoint *b)
680 {
681 return (b->enable_state == bp_enabled);
682 }
683
684 /* Set breakpoint count to NUM. */
685
686 static void
687 set_breakpoint_count (int num)
688 {
689 prev_breakpoint_count = breakpoint_count;
690 breakpoint_count = num;
691 set_internalvar_integer (lookup_internalvar ("bpnum"), num);
692 }
693
694 /* Used by `start_rbreak_breakpoints' below, to record the current
695 breakpoint count before "rbreak" creates any breakpoint. */
696 static int rbreak_start_breakpoint_count;
697
698 /* Called at the start an "rbreak" command to record the first
699 breakpoint made. */
700
701 void
702 start_rbreak_breakpoints (void)
703 {
704 rbreak_start_breakpoint_count = breakpoint_count;
705 }
706
707 /* Called at the end of an "rbreak" command to record the last
708 breakpoint made. */
709
710 void
711 end_rbreak_breakpoints (void)
712 {
713 prev_breakpoint_count = rbreak_start_breakpoint_count;
714 }
715
716 /* Used in run_command to zero the hit count when a new run starts. */
717
718 void
719 clear_breakpoint_hit_counts (void)
720 {
721 struct breakpoint *b;
722
723 ALL_BREAKPOINTS (b)
724 b->hit_count = 0;
725 }
726
727 /* Allocate a new counted_command_line with reference count of 1.
728 The new structure owns COMMANDS. */
729
730 static struct counted_command_line *
731 alloc_counted_command_line (struct command_line *commands)
732 {
733 struct counted_command_line *result = XNEW (struct counted_command_line);
734
735 result->refc = 1;
736 result->commands = commands;
737
738 return result;
739 }
740
741 /* Increment reference count. This does nothing if CMD is NULL. */
742
743 static void
744 incref_counted_command_line (struct counted_command_line *cmd)
745 {
746 if (cmd)
747 ++cmd->refc;
748 }
749
750 /* Decrement reference count. If the reference count reaches 0,
751 destroy the counted_command_line. Sets *CMDP to NULL. This does
752 nothing if *CMDP is NULL. */
753
754 static void
755 decref_counted_command_line (struct counted_command_line **cmdp)
756 {
757 if (*cmdp)
758 {
759 if (--(*cmdp)->refc == 0)
760 {
761 free_command_lines (&(*cmdp)->commands);
762 xfree (*cmdp);
763 }
764 *cmdp = NULL;
765 }
766 }
767
768 /* A cleanup function that calls decref_counted_command_line. */
769
770 static void
771 do_cleanup_counted_command_line (void *arg)
772 {
773 decref_counted_command_line ((struct counted_command_line **) arg);
774 }
775
776 /* Create a cleanup that calls decref_counted_command_line on the
777 argument. */
778
779 static struct cleanup *
780 make_cleanup_decref_counted_command_line (struct counted_command_line **cmdp)
781 {
782 return make_cleanup (do_cleanup_counted_command_line, cmdp);
783 }
784
785 \f
786 /* Return the breakpoint with the specified number, or NULL
787 if the number does not refer to an existing breakpoint. */
788
789 struct breakpoint *
790 get_breakpoint (int num)
791 {
792 struct breakpoint *b;
793
794 ALL_BREAKPOINTS (b)
795 if (b->number == num)
796 return b;
797
798 return NULL;
799 }
800
801 \f
802
803 /* Mark locations as "conditions have changed" in case the target supports
804 evaluating conditions on its side. */
805
806 static void
807 mark_breakpoint_modified (struct breakpoint *b)
808 {
809 struct bp_location *loc;
810
811 /* This is only meaningful if the target is
812 evaluating conditions and if the user has
813 opted for condition evaluation on the target's
814 side. */
815 if (gdb_evaluates_breakpoint_condition_p ()
816 || !target_supports_evaluation_of_breakpoint_conditions ())
817 return;
818
819 if (!is_breakpoint (b))
820 return;
821
822 for (loc = b->loc; loc; loc = loc->next)
823 loc->condition_changed = condition_modified;
824 }
825
826 /* Mark location as "conditions have changed" in case the target supports
827 evaluating conditions on its side. */
828
829 static void
830 mark_breakpoint_location_modified (struct bp_location *loc)
831 {
832 /* This is only meaningful if the target is
833 evaluating conditions and if the user has
834 opted for condition evaluation on the target's
835 side. */
836 if (gdb_evaluates_breakpoint_condition_p ()
837 || !target_supports_evaluation_of_breakpoint_conditions ())
838
839 return;
840
841 if (!is_breakpoint (loc->owner))
842 return;
843
844 loc->condition_changed = condition_modified;
845 }
846
847 /* Sets the condition-evaluation mode using the static global
848 condition_evaluation_mode. */
849
850 static void
851 set_condition_evaluation_mode (char *args, int from_tty,
852 struct cmd_list_element *c)
853 {
854 const char *old_mode, *new_mode;
855
856 if ((condition_evaluation_mode_1 == condition_evaluation_target)
857 && !target_supports_evaluation_of_breakpoint_conditions ())
858 {
859 condition_evaluation_mode_1 = condition_evaluation_mode;
860 warning (_("Target does not support breakpoint condition evaluation.\n"
861 "Using host evaluation mode instead."));
862 return;
863 }
864
865 new_mode = translate_condition_evaluation_mode (condition_evaluation_mode_1);
866 old_mode = translate_condition_evaluation_mode (condition_evaluation_mode);
867
868 /* Flip the switch. Flip it even if OLD_MODE == NEW_MODE as one of the
869 settings was "auto". */
870 condition_evaluation_mode = condition_evaluation_mode_1;
871
872 /* Only update the mode if the user picked a different one. */
873 if (new_mode != old_mode)
874 {
875 struct bp_location *loc, **loc_tmp;
876 /* If the user switched to a different evaluation mode, we
877 need to synch the changes with the target as follows:
878
879 "host" -> "target": Send all (valid) conditions to the target.
880 "target" -> "host": Remove all the conditions from the target.
881 */
882
883 if (new_mode == condition_evaluation_target)
884 {
885 /* Mark everything modified and synch conditions with the
886 target. */
887 ALL_BP_LOCATIONS (loc, loc_tmp)
888 mark_breakpoint_location_modified (loc);
889 }
890 else
891 {
892 /* Manually mark non-duplicate locations to synch conditions
893 with the target. We do this to remove all the conditions the
894 target knows about. */
895 ALL_BP_LOCATIONS (loc, loc_tmp)
896 if (is_breakpoint (loc->owner) && loc->inserted)
897 loc->needs_update = 1;
898 }
899
900 /* Do the update. */
901 update_global_location_list (UGLL_MAY_INSERT);
902 }
903
904 return;
905 }
906
907 /* Shows the current mode of breakpoint condition evaluation. Explicitly shows
908 what "auto" is translating to. */
909
910 static void
911 show_condition_evaluation_mode (struct ui_file *file, int from_tty,
912 struct cmd_list_element *c, const char *value)
913 {
914 if (condition_evaluation_mode == condition_evaluation_auto)
915 fprintf_filtered (file,
916 _("Breakpoint condition evaluation "
917 "mode is %s (currently %s).\n"),
918 value,
919 breakpoint_condition_evaluation_mode ());
920 else
921 fprintf_filtered (file, _("Breakpoint condition evaluation mode is %s.\n"),
922 value);
923 }
924
925 /* A comparison function for bp_location AP and BP that is used by
926 bsearch. This comparison function only cares about addresses, unlike
927 the more general bp_location_compare function. */
928
929 static int
930 bp_location_compare_addrs (const void *ap, const void *bp)
931 {
932 const struct bp_location *a = *(const struct bp_location **) ap;
933 const struct bp_location *b = *(const struct bp_location **) bp;
934
935 if (a->address == b->address)
936 return 0;
937 else
938 return ((a->address > b->address) - (a->address < b->address));
939 }
940
941 /* Helper function to skip all bp_locations with addresses
942 less than ADDRESS. It returns the first bp_location that
943 is greater than or equal to ADDRESS. If none is found, just
944 return NULL. */
945
946 static struct bp_location **
947 get_first_locp_gte_addr (CORE_ADDR address)
948 {
949 struct bp_location dummy_loc;
950 struct bp_location *dummy_locp = &dummy_loc;
951 struct bp_location **locp_found = NULL;
952
953 /* Initialize the dummy location's address field. */
954 memset (&dummy_loc, 0, sizeof (struct bp_location));
955 dummy_loc.address = address;
956
957 /* Find a close match to the first location at ADDRESS. */
958 locp_found = ((struct bp_location **)
959 bsearch (&dummy_locp, bp_location, bp_location_count,
960 sizeof (struct bp_location **),
961 bp_location_compare_addrs));
962
963 /* Nothing was found, nothing left to do. */
964 if (locp_found == NULL)
965 return NULL;
966
967 /* We may have found a location that is at ADDRESS but is not the first in the
968 location's list. Go backwards (if possible) and locate the first one. */
969 while ((locp_found - 1) >= bp_location
970 && (*(locp_found - 1))->address == address)
971 locp_found--;
972
973 return locp_found;
974 }
975
976 void
977 set_breakpoint_condition (struct breakpoint *b, const char *exp,
978 int from_tty)
979 {
980 xfree (b->cond_string);
981 b->cond_string = NULL;
982
983 if (is_watchpoint (b))
984 {
985 struct watchpoint *w = (struct watchpoint *) b;
986
987 xfree (w->cond_exp);
988 w->cond_exp = NULL;
989 }
990 else
991 {
992 struct bp_location *loc;
993
994 for (loc = b->loc; loc; loc = loc->next)
995 {
996 xfree (loc->cond);
997 loc->cond = NULL;
998
999 /* No need to free the condition agent expression
1000 bytecode (if we have one). We will handle this
1001 when we go through update_global_location_list. */
1002 }
1003 }
1004
1005 if (*exp == 0)
1006 {
1007 if (from_tty)
1008 printf_filtered (_("Breakpoint %d now unconditional.\n"), b->number);
1009 }
1010 else
1011 {
1012 const char *arg = exp;
1013
1014 /* I don't know if it matters whether this is the string the user
1015 typed in or the decompiled expression. */
1016 b->cond_string = xstrdup (arg);
1017 b->condition_not_parsed = 0;
1018
1019 if (is_watchpoint (b))
1020 {
1021 struct watchpoint *w = (struct watchpoint *) b;
1022
1023 innermost_block = NULL;
1024 arg = exp;
1025 w->cond_exp = parse_exp_1 (&arg, 0, 0, 0);
1026 if (*arg)
1027 error (_("Junk at end of expression"));
1028 w->cond_exp_valid_block = innermost_block;
1029 }
1030 else
1031 {
1032 struct bp_location *loc;
1033
1034 for (loc = b->loc; loc; loc = loc->next)
1035 {
1036 arg = exp;
1037 loc->cond =
1038 parse_exp_1 (&arg, loc->address,
1039 block_for_pc (loc->address), 0);
1040 if (*arg)
1041 error (_("Junk at end of expression"));
1042 }
1043 }
1044 }
1045 mark_breakpoint_modified (b);
1046
1047 observer_notify_breakpoint_modified (b);
1048 }
1049
1050 /* Completion for the "condition" command. */
1051
1052 static VEC (char_ptr) *
1053 condition_completer (struct cmd_list_element *cmd,
1054 const char *text, const char *word)
1055 {
1056 const char *space;
1057
1058 text = skip_spaces_const (text);
1059 space = skip_to_space_const (text);
1060 if (*space == '\0')
1061 {
1062 int len;
1063 struct breakpoint *b;
1064 VEC (char_ptr) *result = NULL;
1065
1066 if (text[0] == '$')
1067 {
1068 /* We don't support completion of history indices. */
1069 if (isdigit (text[1]))
1070 return NULL;
1071 return complete_internalvar (&text[1]);
1072 }
1073
1074 /* We're completing the breakpoint number. */
1075 len = strlen (text);
1076
1077 ALL_BREAKPOINTS (b)
1078 {
1079 char number[50];
1080
1081 xsnprintf (number, sizeof (number), "%d", b->number);
1082
1083 if (strncmp (number, text, len) == 0)
1084 VEC_safe_push (char_ptr, result, xstrdup (number));
1085 }
1086
1087 return result;
1088 }
1089
1090 /* We're completing the expression part. */
1091 text = skip_spaces_const (space);
1092 return expression_completer (cmd, text, word);
1093 }
1094
1095 /* condition N EXP -- set break condition of breakpoint N to EXP. */
1096
1097 static void
1098 condition_command (char *arg, int from_tty)
1099 {
1100 struct breakpoint *b;
1101 char *p;
1102 int bnum;
1103
1104 if (arg == 0)
1105 error_no_arg (_("breakpoint number"));
1106
1107 p = arg;
1108 bnum = get_number (&p);
1109 if (bnum == 0)
1110 error (_("Bad breakpoint argument: '%s'"), arg);
1111
1112 ALL_BREAKPOINTS (b)
1113 if (b->number == bnum)
1114 {
1115 /* Check if this breakpoint has a "stop" method implemented in an
1116 extension language. This method and conditions entered into GDB
1117 from the CLI are mutually exclusive. */
1118 const struct extension_language_defn *extlang
1119 = get_breakpoint_cond_ext_lang (b, EXT_LANG_NONE);
1120
1121 if (extlang != NULL)
1122 {
1123 error (_("Only one stop condition allowed. There is currently"
1124 " a %s stop condition defined for this breakpoint."),
1125 ext_lang_capitalized_name (extlang));
1126 }
1127 set_breakpoint_condition (b, p, from_tty);
1128
1129 if (is_breakpoint (b))
1130 update_global_location_list (UGLL_MAY_INSERT);
1131
1132 return;
1133 }
1134
1135 error (_("No breakpoint number %d."), bnum);
1136 }
1137
1138 /* Check that COMMAND do not contain commands that are suitable
1139 only for tracepoints and not suitable for ordinary breakpoints.
1140 Throw if any such commands is found. */
1141
1142 static void
1143 check_no_tracepoint_commands (struct command_line *commands)
1144 {
1145 struct command_line *c;
1146
1147 for (c = commands; c; c = c->next)
1148 {
1149 int i;
1150
1151 if (c->control_type == while_stepping_control)
1152 error (_("The 'while-stepping' command can "
1153 "only be used for tracepoints"));
1154
1155 for (i = 0; i < c->body_count; ++i)
1156 check_no_tracepoint_commands ((c->body_list)[i]);
1157
1158 /* Not that command parsing removes leading whitespace and comment
1159 lines and also empty lines. So, we only need to check for
1160 command directly. */
1161 if (strstr (c->line, "collect ") == c->line)
1162 error (_("The 'collect' command can only be used for tracepoints"));
1163
1164 if (strstr (c->line, "teval ") == c->line)
1165 error (_("The 'teval' command can only be used for tracepoints"));
1166 }
1167 }
1168
1169 /* Encapsulate tests for different types of tracepoints. */
1170
1171 static int
1172 is_tracepoint_type (enum bptype type)
1173 {
1174 return (type == bp_tracepoint
1175 || type == bp_fast_tracepoint
1176 || type == bp_static_tracepoint);
1177 }
1178
1179 int
1180 is_tracepoint (const struct breakpoint *b)
1181 {
1182 return is_tracepoint_type (b->type);
1183 }
1184
1185 /* A helper function that validates that COMMANDS are valid for a
1186 breakpoint. This function will throw an exception if a problem is
1187 found. */
1188
1189 static void
1190 validate_commands_for_breakpoint (struct breakpoint *b,
1191 struct command_line *commands)
1192 {
1193 if (is_tracepoint (b))
1194 {
1195 struct tracepoint *t = (struct tracepoint *) b;
1196 struct command_line *c;
1197 struct command_line *while_stepping = 0;
1198
1199 /* Reset the while-stepping step count. The previous commands
1200 might have included a while-stepping action, while the new
1201 ones might not. */
1202 t->step_count = 0;
1203
1204 /* We need to verify that each top-level element of commands is
1205 valid for tracepoints, that there's at most one
1206 while-stepping element, and that the while-stepping's body
1207 has valid tracing commands excluding nested while-stepping.
1208 We also need to validate the tracepoint action line in the
1209 context of the tracepoint --- validate_actionline actually
1210 has side effects, like setting the tracepoint's
1211 while-stepping STEP_COUNT, in addition to checking if the
1212 collect/teval actions parse and make sense in the
1213 tracepoint's context. */
1214 for (c = commands; c; c = c->next)
1215 {
1216 if (c->control_type == while_stepping_control)
1217 {
1218 if (b->type == bp_fast_tracepoint)
1219 error (_("The 'while-stepping' command "
1220 "cannot be used for fast tracepoint"));
1221 else if (b->type == bp_static_tracepoint)
1222 error (_("The 'while-stepping' command "
1223 "cannot be used for static tracepoint"));
1224
1225 if (while_stepping)
1226 error (_("The 'while-stepping' command "
1227 "can be used only once"));
1228 else
1229 while_stepping = c;
1230 }
1231
1232 validate_actionline (c->line, b);
1233 }
1234 if (while_stepping)
1235 {
1236 struct command_line *c2;
1237
1238 gdb_assert (while_stepping->body_count == 1);
1239 c2 = while_stepping->body_list[0];
1240 for (; c2; c2 = c2->next)
1241 {
1242 if (c2->control_type == while_stepping_control)
1243 error (_("The 'while-stepping' command cannot be nested"));
1244 }
1245 }
1246 }
1247 else
1248 {
1249 check_no_tracepoint_commands (commands);
1250 }
1251 }
1252
1253 /* Return a vector of all the static tracepoints set at ADDR. The
1254 caller is responsible for releasing the vector. */
1255
1256 VEC(breakpoint_p) *
1257 static_tracepoints_here (CORE_ADDR addr)
1258 {
1259 struct breakpoint *b;
1260 VEC(breakpoint_p) *found = 0;
1261 struct bp_location *loc;
1262
1263 ALL_BREAKPOINTS (b)
1264 if (b->type == bp_static_tracepoint)
1265 {
1266 for (loc = b->loc; loc; loc = loc->next)
1267 if (loc->address == addr)
1268 VEC_safe_push(breakpoint_p, found, b);
1269 }
1270
1271 return found;
1272 }
1273
1274 /* Set the command list of B to COMMANDS. If breakpoint is tracepoint,
1275 validate that only allowed commands are included. */
1276
1277 void
1278 breakpoint_set_commands (struct breakpoint *b,
1279 struct command_line *commands)
1280 {
1281 validate_commands_for_breakpoint (b, commands);
1282
1283 decref_counted_command_line (&b->commands);
1284 b->commands = alloc_counted_command_line (commands);
1285 observer_notify_breakpoint_modified (b);
1286 }
1287
1288 /* Set the internal `silent' flag on the breakpoint. Note that this
1289 is not the same as the "silent" that may appear in the breakpoint's
1290 commands. */
1291
1292 void
1293 breakpoint_set_silent (struct breakpoint *b, int silent)
1294 {
1295 int old_silent = b->silent;
1296
1297 b->silent = silent;
1298 if (old_silent != silent)
1299 observer_notify_breakpoint_modified (b);
1300 }
1301
1302 /* Set the thread for this breakpoint. If THREAD is -1, make the
1303 breakpoint work for any thread. */
1304
1305 void
1306 breakpoint_set_thread (struct breakpoint *b, int thread)
1307 {
1308 int old_thread = b->thread;
1309
1310 b->thread = thread;
1311 if (old_thread != thread)
1312 observer_notify_breakpoint_modified (b);
1313 }
1314
1315 /* Set the task for this breakpoint. If TASK is 0, make the
1316 breakpoint work for any task. */
1317
1318 void
1319 breakpoint_set_task (struct breakpoint *b, int task)
1320 {
1321 int old_task = b->task;
1322
1323 b->task = task;
1324 if (old_task != task)
1325 observer_notify_breakpoint_modified (b);
1326 }
1327
1328 void
1329 check_tracepoint_command (char *line, void *closure)
1330 {
1331 struct breakpoint *b = (struct breakpoint *) closure;
1332
1333 validate_actionline (line, b);
1334 }
1335
1336 /* A structure used to pass information through
1337 map_breakpoint_numbers. */
1338
1339 struct commands_info
1340 {
1341 /* True if the command was typed at a tty. */
1342 int from_tty;
1343
1344 /* The breakpoint range spec. */
1345 char *arg;
1346
1347 /* Non-NULL if the body of the commands are being read from this
1348 already-parsed command. */
1349 struct command_line *control;
1350
1351 /* The command lines read from the user, or NULL if they have not
1352 yet been read. */
1353 struct counted_command_line *cmd;
1354 };
1355
1356 /* A callback for map_breakpoint_numbers that sets the commands for
1357 commands_command. */
1358
1359 static void
1360 do_map_commands_command (struct breakpoint *b, void *data)
1361 {
1362 struct commands_info *info = (struct commands_info *) data;
1363
1364 if (info->cmd == NULL)
1365 {
1366 struct command_line *l;
1367
1368 if (info->control != NULL)
1369 l = copy_command_lines (info->control->body_list[0]);
1370 else
1371 {
1372 struct cleanup *old_chain;
1373 char *str;
1374
1375 str = xstrprintf (_("Type commands for breakpoint(s) "
1376 "%s, one per line."),
1377 info->arg);
1378
1379 old_chain = make_cleanup (xfree, str);
1380
1381 l = read_command_lines (str,
1382 info->from_tty, 1,
1383 (is_tracepoint (b)
1384 ? check_tracepoint_command : 0),
1385 b);
1386
1387 do_cleanups (old_chain);
1388 }
1389
1390 info->cmd = alloc_counted_command_line (l);
1391 }
1392
1393 /* If a breakpoint was on the list more than once, we don't need to
1394 do anything. */
1395 if (b->commands != info->cmd)
1396 {
1397 validate_commands_for_breakpoint (b, info->cmd->commands);
1398 incref_counted_command_line (info->cmd);
1399 decref_counted_command_line (&b->commands);
1400 b->commands = info->cmd;
1401 observer_notify_breakpoint_modified (b);
1402 }
1403 }
1404
1405 static void
1406 commands_command_1 (char *arg, int from_tty,
1407 struct command_line *control)
1408 {
1409 struct cleanup *cleanups;
1410 struct commands_info info;
1411
1412 info.from_tty = from_tty;
1413 info.control = control;
1414 info.cmd = NULL;
1415 /* If we read command lines from the user, then `info' will hold an
1416 extra reference to the commands that we must clean up. */
1417 cleanups = make_cleanup_decref_counted_command_line (&info.cmd);
1418
1419 if (arg == NULL || !*arg)
1420 {
1421 if (breakpoint_count - prev_breakpoint_count > 1)
1422 arg = xstrprintf ("%d-%d", prev_breakpoint_count + 1,
1423 breakpoint_count);
1424 else if (breakpoint_count > 0)
1425 arg = xstrprintf ("%d", breakpoint_count);
1426 else
1427 {
1428 /* So that we don't try to free the incoming non-NULL
1429 argument in the cleanup below. Mapping breakpoint
1430 numbers will fail in this case. */
1431 arg = NULL;
1432 }
1433 }
1434 else
1435 /* The command loop has some static state, so we need to preserve
1436 our argument. */
1437 arg = xstrdup (arg);
1438
1439 if (arg != NULL)
1440 make_cleanup (xfree, arg);
1441
1442 info.arg = arg;
1443
1444 map_breakpoint_numbers (arg, do_map_commands_command, &info);
1445
1446 if (info.cmd == NULL)
1447 error (_("No breakpoints specified."));
1448
1449 do_cleanups (cleanups);
1450 }
1451
1452 static void
1453 commands_command (char *arg, int from_tty)
1454 {
1455 commands_command_1 (arg, from_tty, NULL);
1456 }
1457
1458 /* Like commands_command, but instead of reading the commands from
1459 input stream, takes them from an already parsed command structure.
1460
1461 This is used by cli-script.c to DTRT with breakpoint commands
1462 that are part of if and while bodies. */
1463 enum command_control_type
1464 commands_from_control_command (char *arg, struct command_line *cmd)
1465 {
1466 commands_command_1 (arg, 0, cmd);
1467 return simple_control;
1468 }
1469
1470 /* Return non-zero if BL->TARGET_INFO contains valid information. */
1471
1472 static int
1473 bp_location_has_shadow (struct bp_location *bl)
1474 {
1475 if (bl->loc_type != bp_loc_software_breakpoint)
1476 return 0;
1477 if (!bl->inserted)
1478 return 0;
1479 if (bl->target_info.shadow_len == 0)
1480 /* BL isn't valid, or doesn't shadow memory. */
1481 return 0;
1482 return 1;
1483 }
1484
1485 /* Update BUF, which is LEN bytes read from the target address
1486 MEMADDR, by replacing a memory breakpoint with its shadowed
1487 contents.
1488
1489 If READBUF is not NULL, this buffer must not overlap with the of
1490 the breakpoint location's shadow_contents buffer. Otherwise, a
1491 failed assertion internal error will be raised. */
1492
1493 static void
1494 one_breakpoint_xfer_memory (gdb_byte *readbuf, gdb_byte *writebuf,
1495 const gdb_byte *writebuf_org,
1496 ULONGEST memaddr, LONGEST len,
1497 struct bp_target_info *target_info,
1498 struct gdbarch *gdbarch)
1499 {
1500 /* Now do full processing of the found relevant range of elements. */
1501 CORE_ADDR bp_addr = 0;
1502 int bp_size = 0;
1503 int bptoffset = 0;
1504
1505 if (!breakpoint_address_match (target_info->placed_address_space, 0,
1506 current_program_space->aspace, 0))
1507 {
1508 /* The breakpoint is inserted in a different address space. */
1509 return;
1510 }
1511
1512 /* Addresses and length of the part of the breakpoint that
1513 we need to copy. */
1514 bp_addr = target_info->placed_address;
1515 bp_size = target_info->shadow_len;
1516
1517 if (bp_addr + bp_size <= memaddr)
1518 {
1519 /* The breakpoint is entirely before the chunk of memory we are
1520 reading. */
1521 return;
1522 }
1523
1524 if (bp_addr >= memaddr + len)
1525 {
1526 /* The breakpoint is entirely after the chunk of memory we are
1527 reading. */
1528 return;
1529 }
1530
1531 /* Offset within shadow_contents. */
1532 if (bp_addr < memaddr)
1533 {
1534 /* Only copy the second part of the breakpoint. */
1535 bp_size -= memaddr - bp_addr;
1536 bptoffset = memaddr - bp_addr;
1537 bp_addr = memaddr;
1538 }
1539
1540 if (bp_addr + bp_size > memaddr + len)
1541 {
1542 /* Only copy the first part of the breakpoint. */
1543 bp_size -= (bp_addr + bp_size) - (memaddr + len);
1544 }
1545
1546 if (readbuf != NULL)
1547 {
1548 /* Verify that the readbuf buffer does not overlap with the
1549 shadow_contents buffer. */
1550 gdb_assert (target_info->shadow_contents >= readbuf + len
1551 || readbuf >= (target_info->shadow_contents
1552 + target_info->shadow_len));
1553
1554 /* Update the read buffer with this inserted breakpoint's
1555 shadow. */
1556 memcpy (readbuf + bp_addr - memaddr,
1557 target_info->shadow_contents + bptoffset, bp_size);
1558 }
1559 else
1560 {
1561 const unsigned char *bp;
1562 CORE_ADDR addr = target_info->reqstd_address;
1563 int placed_size;
1564
1565 /* Update the shadow with what we want to write to memory. */
1566 memcpy (target_info->shadow_contents + bptoffset,
1567 writebuf_org + bp_addr - memaddr, bp_size);
1568
1569 /* Determine appropriate breakpoint contents and size for this
1570 address. */
1571 bp = gdbarch_breakpoint_from_pc (gdbarch, &addr, &placed_size);
1572
1573 /* Update the final write buffer with this inserted
1574 breakpoint's INSN. */
1575 memcpy (writebuf + bp_addr - memaddr, bp + bptoffset, bp_size);
1576 }
1577 }
1578
1579 /* Update BUF, which is LEN bytes read from the target address MEMADDR,
1580 by replacing any memory breakpoints with their shadowed contents.
1581
1582 If READBUF is not NULL, this buffer must not overlap with any of
1583 the breakpoint location's shadow_contents buffers. Otherwise,
1584 a failed assertion internal error will be raised.
1585
1586 The range of shadowed area by each bp_location is:
1587 bl->address - bp_location_placed_address_before_address_max
1588 up to bl->address + bp_location_shadow_len_after_address_max
1589 The range we were requested to resolve shadows for is:
1590 memaddr ... memaddr + len
1591 Thus the safe cutoff boundaries for performance optimization are
1592 memaddr + len <= (bl->address
1593 - bp_location_placed_address_before_address_max)
1594 and:
1595 bl->address + bp_location_shadow_len_after_address_max <= memaddr */
1596
1597 void
1598 breakpoint_xfer_memory (gdb_byte *readbuf, gdb_byte *writebuf,
1599 const gdb_byte *writebuf_org,
1600 ULONGEST memaddr, LONGEST len)
1601 {
1602 /* Left boundary, right boundary and median element of our binary
1603 search. */
1604 unsigned bc_l, bc_r, bc;
1605 size_t i;
1606
1607 /* Find BC_L which is a leftmost element which may affect BUF
1608 content. It is safe to report lower value but a failure to
1609 report higher one. */
1610
1611 bc_l = 0;
1612 bc_r = bp_location_count;
1613 while (bc_l + 1 < bc_r)
1614 {
1615 struct bp_location *bl;
1616
1617 bc = (bc_l + bc_r) / 2;
1618 bl = bp_location[bc];
1619
1620 /* Check first BL->ADDRESS will not overflow due to the added
1621 constant. Then advance the left boundary only if we are sure
1622 the BC element can in no way affect the BUF content (MEMADDR
1623 to MEMADDR + LEN range).
1624
1625 Use the BP_LOCATION_SHADOW_LEN_AFTER_ADDRESS_MAX safety
1626 offset so that we cannot miss a breakpoint with its shadow
1627 range tail still reaching MEMADDR. */
1628
1629 if ((bl->address + bp_location_shadow_len_after_address_max
1630 >= bl->address)
1631 && (bl->address + bp_location_shadow_len_after_address_max
1632 <= memaddr))
1633 bc_l = bc;
1634 else
1635 bc_r = bc;
1636 }
1637
1638 /* Due to the binary search above, we need to make sure we pick the
1639 first location that's at BC_L's address. E.g., if there are
1640 multiple locations at the same address, BC_L may end up pointing
1641 at a duplicate location, and miss the "master"/"inserted"
1642 location. Say, given locations L1, L2 and L3 at addresses A and
1643 B:
1644
1645 L1@A, L2@A, L3@B, ...
1646
1647 BC_L could end up pointing at location L2, while the "master"
1648 location could be L1. Since the `loc->inserted' flag is only set
1649 on "master" locations, we'd forget to restore the shadow of L1
1650 and L2. */
1651 while (bc_l > 0
1652 && bp_location[bc_l]->address == bp_location[bc_l - 1]->address)
1653 bc_l--;
1654
1655 /* Now do full processing of the found relevant range of elements. */
1656
1657 for (bc = bc_l; bc < bp_location_count; bc++)
1658 {
1659 struct bp_location *bl = bp_location[bc];
1660 CORE_ADDR bp_addr = 0;
1661 int bp_size = 0;
1662 int bptoffset = 0;
1663
1664 /* bp_location array has BL->OWNER always non-NULL. */
1665 if (bl->owner->type == bp_none)
1666 warning (_("reading through apparently deleted breakpoint #%d?"),
1667 bl->owner->number);
1668
1669 /* Performance optimization: any further element can no longer affect BUF
1670 content. */
1671
1672 if (bl->address >= bp_location_placed_address_before_address_max
1673 && memaddr + len <= (bl->address
1674 - bp_location_placed_address_before_address_max))
1675 break;
1676
1677 if (!bp_location_has_shadow (bl))
1678 continue;
1679
1680 one_breakpoint_xfer_memory (readbuf, writebuf, writebuf_org,
1681 memaddr, len, &bl->target_info, bl->gdbarch);
1682 }
1683 }
1684
1685 \f
1686
1687 /* Return true if BPT is either a software breakpoint or a hardware
1688 breakpoint. */
1689
1690 int
1691 is_breakpoint (const struct breakpoint *bpt)
1692 {
1693 return (bpt->type == bp_breakpoint
1694 || bpt->type == bp_hardware_breakpoint
1695 || bpt->type == bp_dprintf);
1696 }
1697
1698 /* Return true if BPT is of any hardware watchpoint kind. */
1699
1700 static int
1701 is_hardware_watchpoint (const struct breakpoint *bpt)
1702 {
1703 return (bpt->type == bp_hardware_watchpoint
1704 || bpt->type == bp_read_watchpoint
1705 || bpt->type == bp_access_watchpoint);
1706 }
1707
1708 /* Return true if BPT is of any watchpoint kind, hardware or
1709 software. */
1710
1711 int
1712 is_watchpoint (const struct breakpoint *bpt)
1713 {
1714 return (is_hardware_watchpoint (bpt)
1715 || bpt->type == bp_watchpoint);
1716 }
1717
1718 /* Returns true if the current thread and its running state are safe
1719 to evaluate or update watchpoint B. Watchpoints on local
1720 expressions need to be evaluated in the context of the thread that
1721 was current when the watchpoint was created, and, that thread needs
1722 to be stopped to be able to select the correct frame context.
1723 Watchpoints on global expressions can be evaluated on any thread,
1724 and in any state. It is presently left to the target allowing
1725 memory accesses when threads are running. */
1726
1727 static int
1728 watchpoint_in_thread_scope (struct watchpoint *b)
1729 {
1730 return (b->base.pspace == current_program_space
1731 && (ptid_equal (b->watchpoint_thread, null_ptid)
1732 || (ptid_equal (inferior_ptid, b->watchpoint_thread)
1733 && !is_executing (inferior_ptid))));
1734 }
1735
1736 /* Set watchpoint B to disp_del_at_next_stop, even including its possible
1737 associated bp_watchpoint_scope breakpoint. */
1738
1739 static void
1740 watchpoint_del_at_next_stop (struct watchpoint *w)
1741 {
1742 struct breakpoint *b = &w->base;
1743
1744 if (b->related_breakpoint != b)
1745 {
1746 gdb_assert (b->related_breakpoint->type == bp_watchpoint_scope);
1747 gdb_assert (b->related_breakpoint->related_breakpoint == b);
1748 b->related_breakpoint->disposition = disp_del_at_next_stop;
1749 b->related_breakpoint->related_breakpoint = b->related_breakpoint;
1750 b->related_breakpoint = b;
1751 }
1752 b->disposition = disp_del_at_next_stop;
1753 }
1754
1755 /* Extract a bitfield value from value VAL using the bit parameters contained in
1756 watchpoint W. */
1757
1758 static struct value *
1759 extract_bitfield_from_watchpoint_value (struct watchpoint *w, struct value *val)
1760 {
1761 struct value *bit_val;
1762
1763 if (val == NULL)
1764 return NULL;
1765
1766 bit_val = allocate_value (value_type (val));
1767
1768 unpack_value_bitfield (bit_val,
1769 w->val_bitpos,
1770 w->val_bitsize,
1771 value_contents_for_printing (val),
1772 value_offset (val),
1773 val);
1774
1775 return bit_val;
1776 }
1777
1778 /* Allocate a dummy location and add it to B, which must be a software
1779 watchpoint. This is required because even if a software watchpoint
1780 is not watching any memory, bpstat_stop_status requires a location
1781 to be able to report stops. */
1782
1783 static void
1784 software_watchpoint_add_no_memory_location (struct breakpoint *b,
1785 struct program_space *pspace)
1786 {
1787 gdb_assert (b->type == bp_watchpoint && b->loc == NULL);
1788
1789 b->loc = allocate_bp_location (b);
1790 b->loc->pspace = pspace;
1791 b->loc->address = -1;
1792 b->loc->length = -1;
1793 }
1794
1795 /* Returns true if B is a software watchpoint that is not watching any
1796 memory (e.g., "watch $pc"). */
1797
1798 static int
1799 is_no_memory_software_watchpoint (struct breakpoint *b)
1800 {
1801 return (b->type == bp_watchpoint
1802 && b->loc != NULL
1803 && b->loc->next == NULL
1804 && b->loc->address == -1
1805 && b->loc->length == -1);
1806 }
1807
1808 /* Assuming that B is a watchpoint:
1809 - Reparse watchpoint expression, if REPARSE is non-zero
1810 - Evaluate expression and store the result in B->val
1811 - Evaluate the condition if there is one, and store the result
1812 in b->loc->cond.
1813 - Update the list of values that must be watched in B->loc.
1814
1815 If the watchpoint disposition is disp_del_at_next_stop, then do
1816 nothing. If this is local watchpoint that is out of scope, delete
1817 it.
1818
1819 Even with `set breakpoint always-inserted on' the watchpoints are
1820 removed + inserted on each stop here. Normal breakpoints must
1821 never be removed because they might be missed by a running thread
1822 when debugging in non-stop mode. On the other hand, hardware
1823 watchpoints (is_hardware_watchpoint; processed here) are specific
1824 to each LWP since they are stored in each LWP's hardware debug
1825 registers. Therefore, such LWP must be stopped first in order to
1826 be able to modify its hardware watchpoints.
1827
1828 Hardware watchpoints must be reset exactly once after being
1829 presented to the user. It cannot be done sooner, because it would
1830 reset the data used to present the watchpoint hit to the user. And
1831 it must not be done later because it could display the same single
1832 watchpoint hit during multiple GDB stops. Note that the latter is
1833 relevant only to the hardware watchpoint types bp_read_watchpoint
1834 and bp_access_watchpoint. False hit by bp_hardware_watchpoint is
1835 not user-visible - its hit is suppressed if the memory content has
1836 not changed.
1837
1838 The following constraints influence the location where we can reset
1839 hardware watchpoints:
1840
1841 * target_stopped_by_watchpoint and target_stopped_data_address are
1842 called several times when GDB stops.
1843
1844 [linux]
1845 * Multiple hardware watchpoints can be hit at the same time,
1846 causing GDB to stop. GDB only presents one hardware watchpoint
1847 hit at a time as the reason for stopping, and all the other hits
1848 are presented later, one after the other, each time the user
1849 requests the execution to be resumed. Execution is not resumed
1850 for the threads still having pending hit event stored in
1851 LWP_INFO->STATUS. While the watchpoint is already removed from
1852 the inferior on the first stop the thread hit event is kept being
1853 reported from its cached value by linux_nat_stopped_data_address
1854 until the real thread resume happens after the watchpoint gets
1855 presented and thus its LWP_INFO->STATUS gets reset.
1856
1857 Therefore the hardware watchpoint hit can get safely reset on the
1858 watchpoint removal from inferior. */
1859
1860 static void
1861 update_watchpoint (struct watchpoint *b, int reparse)
1862 {
1863 int within_current_scope;
1864 struct frame_id saved_frame_id;
1865 int frame_saved;
1866
1867 /* If this is a local watchpoint, we only want to check if the
1868 watchpoint frame is in scope if the current thread is the thread
1869 that was used to create the watchpoint. */
1870 if (!watchpoint_in_thread_scope (b))
1871 return;
1872
1873 if (b->base.disposition == disp_del_at_next_stop)
1874 return;
1875
1876 frame_saved = 0;
1877
1878 /* Determine if the watchpoint is within scope. */
1879 if (b->exp_valid_block == NULL)
1880 within_current_scope = 1;
1881 else
1882 {
1883 struct frame_info *fi = get_current_frame ();
1884 struct gdbarch *frame_arch = get_frame_arch (fi);
1885 CORE_ADDR frame_pc = get_frame_pc (fi);
1886
1887 /* If we're at a point where the stack has been destroyed
1888 (e.g. in a function epilogue), unwinding may not work
1889 properly. Do not attempt to recreate locations at this
1890 point. See similar comments in watchpoint_check. */
1891 if (gdbarch_stack_frame_destroyed_p (frame_arch, frame_pc))
1892 return;
1893
1894 /* Save the current frame's ID so we can restore it after
1895 evaluating the watchpoint expression on its own frame. */
1896 /* FIXME drow/2003-09-09: It would be nice if evaluate_expression
1897 took a frame parameter, so that we didn't have to change the
1898 selected frame. */
1899 frame_saved = 1;
1900 saved_frame_id = get_frame_id (get_selected_frame (NULL));
1901
1902 fi = frame_find_by_id (b->watchpoint_frame);
1903 within_current_scope = (fi != NULL);
1904 if (within_current_scope)
1905 select_frame (fi);
1906 }
1907
1908 /* We don't free locations. They are stored in the bp_location array
1909 and update_global_location_list will eventually delete them and
1910 remove breakpoints if needed. */
1911 b->base.loc = NULL;
1912
1913 if (within_current_scope && reparse)
1914 {
1915 const char *s;
1916
1917 if (b->exp)
1918 {
1919 xfree (b->exp);
1920 b->exp = NULL;
1921 }
1922 s = b->exp_string_reparse ? b->exp_string_reparse : b->exp_string;
1923 b->exp = parse_exp_1 (&s, 0, b->exp_valid_block, 0);
1924 /* If the meaning of expression itself changed, the old value is
1925 no longer relevant. We don't want to report a watchpoint hit
1926 to the user when the old value and the new value may actually
1927 be completely different objects. */
1928 value_free (b->val);
1929 b->val = NULL;
1930 b->val_valid = 0;
1931
1932 /* Note that unlike with breakpoints, the watchpoint's condition
1933 expression is stored in the breakpoint object, not in the
1934 locations (re)created below. */
1935 if (b->base.cond_string != NULL)
1936 {
1937 if (b->cond_exp != NULL)
1938 {
1939 xfree (b->cond_exp);
1940 b->cond_exp = NULL;
1941 }
1942
1943 s = b->base.cond_string;
1944 b->cond_exp = parse_exp_1 (&s, 0, b->cond_exp_valid_block, 0);
1945 }
1946 }
1947
1948 /* If we failed to parse the expression, for example because
1949 it refers to a global variable in a not-yet-loaded shared library,
1950 don't try to insert watchpoint. We don't automatically delete
1951 such watchpoint, though, since failure to parse expression
1952 is different from out-of-scope watchpoint. */
1953 if (!target_has_execution)
1954 {
1955 /* Without execution, memory can't change. No use to try and
1956 set watchpoint locations. The watchpoint will be reset when
1957 the target gains execution, through breakpoint_re_set. */
1958 if (!can_use_hw_watchpoints)
1959 {
1960 if (b->base.ops->works_in_software_mode (&b->base))
1961 b->base.type = bp_watchpoint;
1962 else
1963 error (_("Can't set read/access watchpoint when "
1964 "hardware watchpoints are disabled."));
1965 }
1966 }
1967 else if (within_current_scope && b->exp)
1968 {
1969 int pc = 0;
1970 struct value *val_chain, *v, *result, *next;
1971 struct program_space *frame_pspace;
1972
1973 fetch_subexp_value (b->exp, &pc, &v, &result, &val_chain, 0);
1974
1975 /* Avoid setting b->val if it's already set. The meaning of
1976 b->val is 'the last value' user saw, and we should update
1977 it only if we reported that last value to user. As it
1978 happens, the code that reports it updates b->val directly.
1979 We don't keep track of the memory value for masked
1980 watchpoints. */
1981 if (!b->val_valid && !is_masked_watchpoint (&b->base))
1982 {
1983 if (b->val_bitsize != 0)
1984 {
1985 v = extract_bitfield_from_watchpoint_value (b, v);
1986 if (v != NULL)
1987 release_value (v);
1988 }
1989 b->val = v;
1990 b->val_valid = 1;
1991 }
1992
1993 frame_pspace = get_frame_program_space (get_selected_frame (NULL));
1994
1995 /* Look at each value on the value chain. */
1996 for (v = val_chain; v; v = value_next (v))
1997 {
1998 /* If it's a memory location, and GDB actually needed
1999 its contents to evaluate the expression, then we
2000 must watch it. If the first value returned is
2001 still lazy, that means an error occurred reading it;
2002 watch it anyway in case it becomes readable. */
2003 if (VALUE_LVAL (v) == lval_memory
2004 && (v == val_chain || ! value_lazy (v)))
2005 {
2006 struct type *vtype = check_typedef (value_type (v));
2007
2008 /* We only watch structs and arrays if user asked
2009 for it explicitly, never if they just happen to
2010 appear in the middle of some value chain. */
2011 if (v == result
2012 || (TYPE_CODE (vtype) != TYPE_CODE_STRUCT
2013 && TYPE_CODE (vtype) != TYPE_CODE_ARRAY))
2014 {
2015 CORE_ADDR addr;
2016 enum target_hw_bp_type type;
2017 struct bp_location *loc, **tmp;
2018 int bitpos = 0, bitsize = 0;
2019
2020 if (value_bitsize (v) != 0)
2021 {
2022 /* Extract the bit parameters out from the bitfield
2023 sub-expression. */
2024 bitpos = value_bitpos (v);
2025 bitsize = value_bitsize (v);
2026 }
2027 else if (v == result && b->val_bitsize != 0)
2028 {
2029 /* If VAL_BITSIZE != 0 then RESULT is actually a bitfield
2030 lvalue whose bit parameters are saved in the fields
2031 VAL_BITPOS and VAL_BITSIZE. */
2032 bitpos = b->val_bitpos;
2033 bitsize = b->val_bitsize;
2034 }
2035
2036 addr = value_address (v);
2037 if (bitsize != 0)
2038 {
2039 /* Skip the bytes that don't contain the bitfield. */
2040 addr += bitpos / 8;
2041 }
2042
2043 type = hw_write;
2044 if (b->base.type == bp_read_watchpoint)
2045 type = hw_read;
2046 else if (b->base.type == bp_access_watchpoint)
2047 type = hw_access;
2048
2049 loc = allocate_bp_location (&b->base);
2050 for (tmp = &(b->base.loc); *tmp != NULL; tmp = &((*tmp)->next))
2051 ;
2052 *tmp = loc;
2053 loc->gdbarch = get_type_arch (value_type (v));
2054
2055 loc->pspace = frame_pspace;
2056 loc->address = addr;
2057
2058 if (bitsize != 0)
2059 {
2060 /* Just cover the bytes that make up the bitfield. */
2061 loc->length = ((bitpos % 8) + bitsize + 7) / 8;
2062 }
2063 else
2064 loc->length = TYPE_LENGTH (value_type (v));
2065
2066 loc->watchpoint_type = type;
2067 }
2068 }
2069 }
2070
2071 /* Change the type of breakpoint between hardware assisted or
2072 an ordinary watchpoint depending on the hardware support
2073 and free hardware slots. REPARSE is set when the inferior
2074 is started. */
2075 if (reparse)
2076 {
2077 int reg_cnt;
2078 enum bp_loc_type loc_type;
2079 struct bp_location *bl;
2080
2081 reg_cnt = can_use_hardware_watchpoint (val_chain);
2082
2083 if (reg_cnt)
2084 {
2085 int i, target_resources_ok, other_type_used;
2086 enum bptype type;
2087
2088 /* Use an exact watchpoint when there's only one memory region to be
2089 watched, and only one debug register is needed to watch it. */
2090 b->exact = target_exact_watchpoints && reg_cnt == 1;
2091
2092 /* We need to determine how many resources are already
2093 used for all other hardware watchpoints plus this one
2094 to see if we still have enough resources to also fit
2095 this watchpoint in as well. */
2096
2097 /* If this is a software watchpoint, we try to turn it
2098 to a hardware one -- count resources as if B was of
2099 hardware watchpoint type. */
2100 type = b->base.type;
2101 if (type == bp_watchpoint)
2102 type = bp_hardware_watchpoint;
2103
2104 /* This watchpoint may or may not have been placed on
2105 the list yet at this point (it won't be in the list
2106 if we're trying to create it for the first time,
2107 through watch_command), so always account for it
2108 manually. */
2109
2110 /* Count resources used by all watchpoints except B. */
2111 i = hw_watchpoint_used_count_others (&b->base, type, &other_type_used);
2112
2113 /* Add in the resources needed for B. */
2114 i += hw_watchpoint_use_count (&b->base);
2115
2116 target_resources_ok
2117 = target_can_use_hardware_watchpoint (type, i, other_type_used);
2118 if (target_resources_ok <= 0)
2119 {
2120 int sw_mode = b->base.ops->works_in_software_mode (&b->base);
2121
2122 if (target_resources_ok == 0 && !sw_mode)
2123 error (_("Target does not support this type of "
2124 "hardware watchpoint."));
2125 else if (target_resources_ok < 0 && !sw_mode)
2126 error (_("There are not enough available hardware "
2127 "resources for this watchpoint."));
2128
2129 /* Downgrade to software watchpoint. */
2130 b->base.type = bp_watchpoint;
2131 }
2132 else
2133 {
2134 /* If this was a software watchpoint, we've just
2135 found we have enough resources to turn it to a
2136 hardware watchpoint. Otherwise, this is a
2137 nop. */
2138 b->base.type = type;
2139 }
2140 }
2141 else if (!b->base.ops->works_in_software_mode (&b->base))
2142 {
2143 if (!can_use_hw_watchpoints)
2144 error (_("Can't set read/access watchpoint when "
2145 "hardware watchpoints are disabled."));
2146 else
2147 error (_("Expression cannot be implemented with "
2148 "read/access watchpoint."));
2149 }
2150 else
2151 b->base.type = bp_watchpoint;
2152
2153 loc_type = (b->base.type == bp_watchpoint? bp_loc_other
2154 : bp_loc_hardware_watchpoint);
2155 for (bl = b->base.loc; bl; bl = bl->next)
2156 bl->loc_type = loc_type;
2157 }
2158
2159 for (v = val_chain; v; v = next)
2160 {
2161 next = value_next (v);
2162 if (v != b->val)
2163 value_free (v);
2164 }
2165
2166 /* If a software watchpoint is not watching any memory, then the
2167 above left it without any location set up. But,
2168 bpstat_stop_status requires a location to be able to report
2169 stops, so make sure there's at least a dummy one. */
2170 if (b->base.type == bp_watchpoint && b->base.loc == NULL)
2171 software_watchpoint_add_no_memory_location (&b->base, frame_pspace);
2172 }
2173 else if (!within_current_scope)
2174 {
2175 printf_filtered (_("\
2176 Watchpoint %d deleted because the program has left the block\n\
2177 in which its expression is valid.\n"),
2178 b->base.number);
2179 watchpoint_del_at_next_stop (b);
2180 }
2181
2182 /* Restore the selected frame. */
2183 if (frame_saved)
2184 select_frame (frame_find_by_id (saved_frame_id));
2185 }
2186
2187
2188 /* Returns 1 iff breakpoint location should be
2189 inserted in the inferior. We don't differentiate the type of BL's owner
2190 (breakpoint vs. tracepoint), although insert_location in tracepoint's
2191 breakpoint_ops is not defined, because in insert_bp_location,
2192 tracepoint's insert_location will not be called. */
2193 static int
2194 should_be_inserted (struct bp_location *bl)
2195 {
2196 if (bl->owner == NULL || !breakpoint_enabled (bl->owner))
2197 return 0;
2198
2199 if (bl->owner->disposition == disp_del_at_next_stop)
2200 return 0;
2201
2202 if (!bl->enabled || bl->shlib_disabled || bl->duplicate)
2203 return 0;
2204
2205 if (user_breakpoint_p (bl->owner) && bl->pspace->executing_startup)
2206 return 0;
2207
2208 /* This is set for example, when we're attached to the parent of a
2209 vfork, and have detached from the child. The child is running
2210 free, and we expect it to do an exec or exit, at which point the
2211 OS makes the parent schedulable again (and the target reports
2212 that the vfork is done). Until the child is done with the shared
2213 memory region, do not insert breakpoints in the parent, otherwise
2214 the child could still trip on the parent's breakpoints. Since
2215 the parent is blocked anyway, it won't miss any breakpoint. */
2216 if (bl->pspace->breakpoints_not_allowed)
2217 return 0;
2218
2219 /* Don't insert a breakpoint if we're trying to step past its
2220 location. */
2221 if ((bl->loc_type == bp_loc_software_breakpoint
2222 || bl->loc_type == bp_loc_hardware_breakpoint)
2223 && stepping_past_instruction_at (bl->pspace->aspace,
2224 bl->address))
2225 {
2226 if (debug_infrun)
2227 {
2228 fprintf_unfiltered (gdb_stdlog,
2229 "infrun: skipping breakpoint: "
2230 "stepping past insn at: %s\n",
2231 paddress (bl->gdbarch, bl->address));
2232 }
2233 return 0;
2234 }
2235
2236 /* Don't insert watchpoints if we're trying to step past the
2237 instruction that triggered one. */
2238 if ((bl->loc_type == bp_loc_hardware_watchpoint)
2239 && stepping_past_nonsteppable_watchpoint ())
2240 {
2241 if (debug_infrun)
2242 {
2243 fprintf_unfiltered (gdb_stdlog,
2244 "infrun: stepping past non-steppable watchpoint. "
2245 "skipping watchpoint at %s:%d\n",
2246 paddress (bl->gdbarch, bl->address),
2247 bl->length);
2248 }
2249 return 0;
2250 }
2251
2252 return 1;
2253 }
2254
2255 /* Same as should_be_inserted but does the check assuming
2256 that the location is not duplicated. */
2257
2258 static int
2259 unduplicated_should_be_inserted (struct bp_location *bl)
2260 {
2261 int result;
2262 const int save_duplicate = bl->duplicate;
2263
2264 bl->duplicate = 0;
2265 result = should_be_inserted (bl);
2266 bl->duplicate = save_duplicate;
2267 return result;
2268 }
2269
2270 /* Parses a conditional described by an expression COND into an
2271 agent expression bytecode suitable for evaluation
2272 by the bytecode interpreter. Return NULL if there was
2273 any error during parsing. */
2274
2275 static struct agent_expr *
2276 parse_cond_to_aexpr (CORE_ADDR scope, struct expression *cond)
2277 {
2278 struct agent_expr *aexpr = NULL;
2279
2280 if (!cond)
2281 return NULL;
2282
2283 /* We don't want to stop processing, so catch any errors
2284 that may show up. */
2285 TRY
2286 {
2287 aexpr = gen_eval_for_expr (scope, cond);
2288 }
2289
2290 CATCH (ex, RETURN_MASK_ERROR)
2291 {
2292 /* If we got here, it means the condition could not be parsed to a valid
2293 bytecode expression and thus can't be evaluated on the target's side.
2294 It's no use iterating through the conditions. */
2295 return NULL;
2296 }
2297 END_CATCH
2298
2299 /* We have a valid agent expression. */
2300 return aexpr;
2301 }
2302
2303 /* Based on location BL, create a list of breakpoint conditions to be
2304 passed on to the target. If we have duplicated locations with different
2305 conditions, we will add such conditions to the list. The idea is that the
2306 target will evaluate the list of conditions and will only notify GDB when
2307 one of them is true. */
2308
2309 static void
2310 build_target_condition_list (struct bp_location *bl)
2311 {
2312 struct bp_location **locp = NULL, **loc2p;
2313 int null_condition_or_parse_error = 0;
2314 int modified = bl->needs_update;
2315 struct bp_location *loc;
2316
2317 /* Release conditions left over from a previous insert. */
2318 VEC_free (agent_expr_p, bl->target_info.conditions);
2319
2320 /* This is only meaningful if the target is
2321 evaluating conditions and if the user has
2322 opted for condition evaluation on the target's
2323 side. */
2324 if (gdb_evaluates_breakpoint_condition_p ()
2325 || !target_supports_evaluation_of_breakpoint_conditions ())
2326 return;
2327
2328 /* Do a first pass to check for locations with no assigned
2329 conditions or conditions that fail to parse to a valid agent expression
2330 bytecode. If any of these happen, then it's no use to send conditions
2331 to the target since this location will always trigger and generate a
2332 response back to GDB. */
2333 ALL_BP_LOCATIONS_AT_ADDR (loc2p, locp, bl->address)
2334 {
2335 loc = (*loc2p);
2336 if (is_breakpoint (loc->owner) && loc->pspace->num == bl->pspace->num)
2337 {
2338 if (modified)
2339 {
2340 struct agent_expr *aexpr;
2341
2342 /* Re-parse the conditions since something changed. In that
2343 case we already freed the condition bytecodes (see
2344 force_breakpoint_reinsertion). We just
2345 need to parse the condition to bytecodes again. */
2346 aexpr = parse_cond_to_aexpr (bl->address, loc->cond);
2347 loc->cond_bytecode = aexpr;
2348
2349 /* Check if we managed to parse the conditional expression
2350 correctly. If not, we will not send this condition
2351 to the target. */
2352 if (aexpr)
2353 continue;
2354 }
2355
2356 /* If we have a NULL bytecode expression, it means something
2357 went wrong or we have a null condition expression. */
2358 if (!loc->cond_bytecode)
2359 {
2360 null_condition_or_parse_error = 1;
2361 break;
2362 }
2363 }
2364 }
2365
2366 /* If any of these happened, it means we will have to evaluate the conditions
2367 for the location's address on gdb's side. It is no use keeping bytecodes
2368 for all the other duplicate locations, thus we free all of them here.
2369
2370 This is so we have a finer control over which locations' conditions are
2371 being evaluated by GDB or the remote stub. */
2372 if (null_condition_or_parse_error)
2373 {
2374 ALL_BP_LOCATIONS_AT_ADDR (loc2p, locp, bl->address)
2375 {
2376 loc = (*loc2p);
2377 if (is_breakpoint (loc->owner) && loc->pspace->num == bl->pspace->num)
2378 {
2379 /* Only go as far as the first NULL bytecode is
2380 located. */
2381 if (!loc->cond_bytecode)
2382 return;
2383
2384 free_agent_expr (loc->cond_bytecode);
2385 loc->cond_bytecode = NULL;
2386 }
2387 }
2388 }
2389
2390 /* No NULL conditions or failed bytecode generation. Build a condition list
2391 for this location's address. */
2392 ALL_BP_LOCATIONS_AT_ADDR (loc2p, locp, bl->address)
2393 {
2394 loc = (*loc2p);
2395 if (loc->cond
2396 && is_breakpoint (loc->owner)
2397 && loc->pspace->num == bl->pspace->num
2398 && loc->owner->enable_state == bp_enabled
2399 && loc->enabled)
2400 /* Add the condition to the vector. This will be used later to send the
2401 conditions to the target. */
2402 VEC_safe_push (agent_expr_p, bl->target_info.conditions,
2403 loc->cond_bytecode);
2404 }
2405
2406 return;
2407 }
2408
2409 /* Parses a command described by string CMD into an agent expression
2410 bytecode suitable for evaluation by the bytecode interpreter.
2411 Return NULL if there was any error during parsing. */
2412
2413 static struct agent_expr *
2414 parse_cmd_to_aexpr (CORE_ADDR scope, char *cmd)
2415 {
2416 struct cleanup *old_cleanups = 0;
2417 struct expression *expr, **argvec;
2418 struct agent_expr *aexpr = NULL;
2419 const char *cmdrest;
2420 const char *format_start, *format_end;
2421 struct format_piece *fpieces;
2422 int nargs;
2423 struct gdbarch *gdbarch = get_current_arch ();
2424
2425 if (!cmd)
2426 return NULL;
2427
2428 cmdrest = cmd;
2429
2430 if (*cmdrest == ',')
2431 ++cmdrest;
2432 cmdrest = skip_spaces_const (cmdrest);
2433
2434 if (*cmdrest++ != '"')
2435 error (_("No format string following the location"));
2436
2437 format_start = cmdrest;
2438
2439 fpieces = parse_format_string (&cmdrest);
2440
2441 old_cleanups = make_cleanup (free_format_pieces_cleanup, &fpieces);
2442
2443 format_end = cmdrest;
2444
2445 if (*cmdrest++ != '"')
2446 error (_("Bad format string, non-terminated '\"'."));
2447
2448 cmdrest = skip_spaces_const (cmdrest);
2449
2450 if (!(*cmdrest == ',' || *cmdrest == '\0'))
2451 error (_("Invalid argument syntax"));
2452
2453 if (*cmdrest == ',')
2454 cmdrest++;
2455 cmdrest = skip_spaces_const (cmdrest);
2456
2457 /* For each argument, make an expression. */
2458
2459 argvec = (struct expression **) alloca (strlen (cmd)
2460 * sizeof (struct expression *));
2461
2462 nargs = 0;
2463 while (*cmdrest != '\0')
2464 {
2465 const char *cmd1;
2466
2467 cmd1 = cmdrest;
2468 expr = parse_exp_1 (&cmd1, scope, block_for_pc (scope), 1);
2469 argvec[nargs++] = expr;
2470 cmdrest = cmd1;
2471 if (*cmdrest == ',')
2472 ++cmdrest;
2473 }
2474
2475 /* We don't want to stop processing, so catch any errors
2476 that may show up. */
2477 TRY
2478 {
2479 aexpr = gen_printf (scope, gdbarch, 0, 0,
2480 format_start, format_end - format_start,
2481 fpieces, nargs, argvec);
2482 }
2483 CATCH (ex, RETURN_MASK_ERROR)
2484 {
2485 /* If we got here, it means the command could not be parsed to a valid
2486 bytecode expression and thus can't be evaluated on the target's side.
2487 It's no use iterating through the other commands. */
2488 aexpr = NULL;
2489 }
2490 END_CATCH
2491
2492 do_cleanups (old_cleanups);
2493
2494 /* We have a valid agent expression, return it. */
2495 return aexpr;
2496 }
2497
2498 /* Based on location BL, create a list of breakpoint commands to be
2499 passed on to the target. If we have duplicated locations with
2500 different commands, we will add any such to the list. */
2501
2502 static void
2503 build_target_command_list (struct bp_location *bl)
2504 {
2505 struct bp_location **locp = NULL, **loc2p;
2506 int null_command_or_parse_error = 0;
2507 int modified = bl->needs_update;
2508 struct bp_location *loc;
2509
2510 /* Release commands left over from a previous insert. */
2511 VEC_free (agent_expr_p, bl->target_info.tcommands);
2512
2513 if (!target_can_run_breakpoint_commands ())
2514 return;
2515
2516 /* For now, limit to agent-style dprintf breakpoints. */
2517 if (dprintf_style != dprintf_style_agent)
2518 return;
2519
2520 /* For now, if we have any duplicate location that isn't a dprintf,
2521 don't install the target-side commands, as that would make the
2522 breakpoint not be reported to the core, and we'd lose
2523 control. */
2524 ALL_BP_LOCATIONS_AT_ADDR (loc2p, locp, bl->address)
2525 {
2526 loc = (*loc2p);
2527 if (is_breakpoint (loc->owner)
2528 && loc->pspace->num == bl->pspace->num
2529 && loc->owner->type != bp_dprintf)
2530 return;
2531 }
2532
2533 /* Do a first pass to check for locations with no assigned
2534 conditions or conditions that fail to parse to a valid agent expression
2535 bytecode. If any of these happen, then it's no use to send conditions
2536 to the target since this location will always trigger and generate a
2537 response back to GDB. */
2538 ALL_BP_LOCATIONS_AT_ADDR (loc2p, locp, bl->address)
2539 {
2540 loc = (*loc2p);
2541 if (is_breakpoint (loc->owner) && loc->pspace->num == bl->pspace->num)
2542 {
2543 if (modified)
2544 {
2545 struct agent_expr *aexpr;
2546
2547 /* Re-parse the commands since something changed. In that
2548 case we already freed the command bytecodes (see
2549 force_breakpoint_reinsertion). We just
2550 need to parse the command to bytecodes again. */
2551 aexpr = parse_cmd_to_aexpr (bl->address,
2552 loc->owner->extra_string);
2553 loc->cmd_bytecode = aexpr;
2554
2555 if (!aexpr)
2556 continue;
2557 }
2558
2559 /* If we have a NULL bytecode expression, it means something
2560 went wrong or we have a null command expression. */
2561 if (!loc->cmd_bytecode)
2562 {
2563 null_command_or_parse_error = 1;
2564 break;
2565 }
2566 }
2567 }
2568
2569 /* If anything failed, then we're not doing target-side commands,
2570 and so clean up. */
2571 if (null_command_or_parse_error)
2572 {
2573 ALL_BP_LOCATIONS_AT_ADDR (loc2p, locp, bl->address)
2574 {
2575 loc = (*loc2p);
2576 if (is_breakpoint (loc->owner)
2577 && loc->pspace->num == bl->pspace->num)
2578 {
2579 /* Only go as far as the first NULL bytecode is
2580 located. */
2581 if (loc->cmd_bytecode == NULL)
2582 return;
2583
2584 free_agent_expr (loc->cmd_bytecode);
2585 loc->cmd_bytecode = NULL;
2586 }
2587 }
2588 }
2589
2590 /* No NULL commands or failed bytecode generation. Build a command list
2591 for this location's address. */
2592 ALL_BP_LOCATIONS_AT_ADDR (loc2p, locp, bl->address)
2593 {
2594 loc = (*loc2p);
2595 if (loc->owner->extra_string
2596 && is_breakpoint (loc->owner)
2597 && loc->pspace->num == bl->pspace->num
2598 && loc->owner->enable_state == bp_enabled
2599 && loc->enabled)
2600 /* Add the command to the vector. This will be used later
2601 to send the commands to the target. */
2602 VEC_safe_push (agent_expr_p, bl->target_info.tcommands,
2603 loc->cmd_bytecode);
2604 }
2605
2606 bl->target_info.persist = 0;
2607 /* Maybe flag this location as persistent. */
2608 if (bl->owner->type == bp_dprintf && disconnected_dprintf)
2609 bl->target_info.persist = 1;
2610 }
2611
2612 /* Insert a low-level "breakpoint" of some type. BL is the breakpoint
2613 location. Any error messages are printed to TMP_ERROR_STREAM; and
2614 DISABLED_BREAKS, and HW_BREAKPOINT_ERROR are used to report problems.
2615 Returns 0 for success, 1 if the bp_location type is not supported or
2616 -1 for failure.
2617
2618 NOTE drow/2003-09-09: This routine could be broken down to an
2619 object-style method for each breakpoint or catchpoint type. */
2620 static int
2621 insert_bp_location (struct bp_location *bl,
2622 struct ui_file *tmp_error_stream,
2623 int *disabled_breaks,
2624 int *hw_breakpoint_error,
2625 int *hw_bp_error_explained_already)
2626 {
2627 enum errors bp_err = GDB_NO_ERROR;
2628 const char *bp_err_message = NULL;
2629
2630 if (!should_be_inserted (bl) || (bl->inserted && !bl->needs_update))
2631 return 0;
2632
2633 /* Note we don't initialize bl->target_info, as that wipes out
2634 the breakpoint location's shadow_contents if the breakpoint
2635 is still inserted at that location. This in turn breaks
2636 target_read_memory which depends on these buffers when
2637 a memory read is requested at the breakpoint location:
2638 Once the target_info has been wiped, we fail to see that
2639 we have a breakpoint inserted at that address and thus
2640 read the breakpoint instead of returning the data saved in
2641 the breakpoint location's shadow contents. */
2642 bl->target_info.reqstd_address = bl->address;
2643 bl->target_info.placed_address_space = bl->pspace->aspace;
2644 bl->target_info.length = bl->length;
2645
2646 /* When working with target-side conditions, we must pass all the conditions
2647 for the same breakpoint address down to the target since GDB will not
2648 insert those locations. With a list of breakpoint conditions, the target
2649 can decide when to stop and notify GDB. */
2650
2651 if (is_breakpoint (bl->owner))
2652 {
2653 build_target_condition_list (bl);
2654 build_target_command_list (bl);
2655 /* Reset the modification marker. */
2656 bl->needs_update = 0;
2657 }
2658
2659 if (bl->loc_type == bp_loc_software_breakpoint
2660 || bl->loc_type == bp_loc_hardware_breakpoint)
2661 {
2662 if (bl->owner->type != bp_hardware_breakpoint)
2663 {
2664 /* If the explicitly specified breakpoint type
2665 is not hardware breakpoint, check the memory map to see
2666 if the breakpoint address is in read only memory or not.
2667
2668 Two important cases are:
2669 - location type is not hardware breakpoint, memory
2670 is readonly. We change the type of the location to
2671 hardware breakpoint.
2672 - location type is hardware breakpoint, memory is
2673 read-write. This means we've previously made the
2674 location hardware one, but then the memory map changed,
2675 so we undo.
2676
2677 When breakpoints are removed, remove_breakpoints will use
2678 location types we've just set here, the only possible
2679 problem is that memory map has changed during running
2680 program, but it's not going to work anyway with current
2681 gdb. */
2682 struct mem_region *mr
2683 = lookup_mem_region (bl->target_info.reqstd_address);
2684
2685 if (mr)
2686 {
2687 if (automatic_hardware_breakpoints)
2688 {
2689 enum bp_loc_type new_type;
2690
2691 if (mr->attrib.mode != MEM_RW)
2692 new_type = bp_loc_hardware_breakpoint;
2693 else
2694 new_type = bp_loc_software_breakpoint;
2695
2696 if (new_type != bl->loc_type)
2697 {
2698 static int said = 0;
2699
2700 bl->loc_type = new_type;
2701 if (!said)
2702 {
2703 fprintf_filtered (gdb_stdout,
2704 _("Note: automatically using "
2705 "hardware breakpoints for "
2706 "read-only addresses.\n"));
2707 said = 1;
2708 }
2709 }
2710 }
2711 else if (bl->loc_type == bp_loc_software_breakpoint
2712 && mr->attrib.mode != MEM_RW)
2713 {
2714 fprintf_unfiltered (tmp_error_stream,
2715 _("Cannot insert breakpoint %d.\n"
2716 "Cannot set software breakpoint "
2717 "at read-only address %s\n"),
2718 bl->owner->number,
2719 paddress (bl->gdbarch, bl->address));
2720 return 1;
2721 }
2722 }
2723 }
2724
2725 /* First check to see if we have to handle an overlay. */
2726 if (overlay_debugging == ovly_off
2727 || bl->section == NULL
2728 || !(section_is_overlay (bl->section)))
2729 {
2730 /* No overlay handling: just set the breakpoint. */
2731 TRY
2732 {
2733 int val;
2734
2735 val = bl->owner->ops->insert_location (bl);
2736 if (val)
2737 bp_err = GENERIC_ERROR;
2738 }
2739 CATCH (e, RETURN_MASK_ALL)
2740 {
2741 bp_err = e.error;
2742 bp_err_message = e.message;
2743 }
2744 END_CATCH
2745 }
2746 else
2747 {
2748 /* This breakpoint is in an overlay section.
2749 Shall we set a breakpoint at the LMA? */
2750 if (!overlay_events_enabled)
2751 {
2752 /* Yes -- overlay event support is not active,
2753 so we must try to set a breakpoint at the LMA.
2754 This will not work for a hardware breakpoint. */
2755 if (bl->loc_type == bp_loc_hardware_breakpoint)
2756 warning (_("hardware breakpoint %d not supported in overlay!"),
2757 bl->owner->number);
2758 else
2759 {
2760 CORE_ADDR addr = overlay_unmapped_address (bl->address,
2761 bl->section);
2762 /* Set a software (trap) breakpoint at the LMA. */
2763 bl->overlay_target_info = bl->target_info;
2764 bl->overlay_target_info.reqstd_address = addr;
2765
2766 /* No overlay handling: just set the breakpoint. */
2767 TRY
2768 {
2769 int val;
2770
2771 val = target_insert_breakpoint (bl->gdbarch,
2772 &bl->overlay_target_info);
2773 if (val)
2774 bp_err = GENERIC_ERROR;
2775 }
2776 CATCH (e, RETURN_MASK_ALL)
2777 {
2778 bp_err = e.error;
2779 bp_err_message = e.message;
2780 }
2781 END_CATCH
2782
2783 if (bp_err != GDB_NO_ERROR)
2784 fprintf_unfiltered (tmp_error_stream,
2785 "Overlay breakpoint %d "
2786 "failed: in ROM?\n",
2787 bl->owner->number);
2788 }
2789 }
2790 /* Shall we set a breakpoint at the VMA? */
2791 if (section_is_mapped (bl->section))
2792 {
2793 /* Yes. This overlay section is mapped into memory. */
2794 TRY
2795 {
2796 int val;
2797
2798 val = bl->owner->ops->insert_location (bl);
2799 if (val)
2800 bp_err = GENERIC_ERROR;
2801 }
2802 CATCH (e, RETURN_MASK_ALL)
2803 {
2804 bp_err = e.error;
2805 bp_err_message = e.message;
2806 }
2807 END_CATCH
2808 }
2809 else
2810 {
2811 /* No. This breakpoint will not be inserted.
2812 No error, but do not mark the bp as 'inserted'. */
2813 return 0;
2814 }
2815 }
2816
2817 if (bp_err != GDB_NO_ERROR)
2818 {
2819 /* Can't set the breakpoint. */
2820
2821 /* In some cases, we might not be able to insert a
2822 breakpoint in a shared library that has already been
2823 removed, but we have not yet processed the shlib unload
2824 event. Unfortunately, some targets that implement
2825 breakpoint insertion themselves can't tell why the
2826 breakpoint insertion failed (e.g., the remote target
2827 doesn't define error codes), so we must treat generic
2828 errors as memory errors. */
2829 if ((bp_err == GENERIC_ERROR || bp_err == MEMORY_ERROR)
2830 && bl->loc_type == bp_loc_software_breakpoint
2831 && (solib_name_from_address (bl->pspace, bl->address)
2832 || shared_objfile_contains_address_p (bl->pspace,
2833 bl->address)))
2834 {
2835 /* See also: disable_breakpoints_in_shlibs. */
2836 bl->shlib_disabled = 1;
2837 observer_notify_breakpoint_modified (bl->owner);
2838 if (!*disabled_breaks)
2839 {
2840 fprintf_unfiltered (tmp_error_stream,
2841 "Cannot insert breakpoint %d.\n",
2842 bl->owner->number);
2843 fprintf_unfiltered (tmp_error_stream,
2844 "Temporarily disabling shared "
2845 "library breakpoints:\n");
2846 }
2847 *disabled_breaks = 1;
2848 fprintf_unfiltered (tmp_error_stream,
2849 "breakpoint #%d\n", bl->owner->number);
2850 return 0;
2851 }
2852 else
2853 {
2854 if (bl->loc_type == bp_loc_hardware_breakpoint)
2855 {
2856 *hw_breakpoint_error = 1;
2857 *hw_bp_error_explained_already = bp_err_message != NULL;
2858 fprintf_unfiltered (tmp_error_stream,
2859 "Cannot insert hardware breakpoint %d%s",
2860 bl->owner->number, bp_err_message ? ":" : ".\n");
2861 if (bp_err_message != NULL)
2862 fprintf_unfiltered (tmp_error_stream, "%s.\n", bp_err_message);
2863 }
2864 else
2865 {
2866 if (bp_err_message == NULL)
2867 {
2868 char *message
2869 = memory_error_message (TARGET_XFER_E_IO,
2870 bl->gdbarch, bl->address);
2871 struct cleanup *old_chain = make_cleanup (xfree, message);
2872
2873 fprintf_unfiltered (tmp_error_stream,
2874 "Cannot insert breakpoint %d.\n"
2875 "%s\n",
2876 bl->owner->number, message);
2877 do_cleanups (old_chain);
2878 }
2879 else
2880 {
2881 fprintf_unfiltered (tmp_error_stream,
2882 "Cannot insert breakpoint %d: %s\n",
2883 bl->owner->number,
2884 bp_err_message);
2885 }
2886 }
2887 return 1;
2888
2889 }
2890 }
2891 else
2892 bl->inserted = 1;
2893
2894 return 0;
2895 }
2896
2897 else if (bl->loc_type == bp_loc_hardware_watchpoint
2898 /* NOTE drow/2003-09-08: This state only exists for removing
2899 watchpoints. It's not clear that it's necessary... */
2900 && bl->owner->disposition != disp_del_at_next_stop)
2901 {
2902 int val;
2903
2904 gdb_assert (bl->owner->ops != NULL
2905 && bl->owner->ops->insert_location != NULL);
2906
2907 val = bl->owner->ops->insert_location (bl);
2908
2909 /* If trying to set a read-watchpoint, and it turns out it's not
2910 supported, try emulating one with an access watchpoint. */
2911 if (val == 1 && bl->watchpoint_type == hw_read)
2912 {
2913 struct bp_location *loc, **loc_temp;
2914
2915 /* But don't try to insert it, if there's already another
2916 hw_access location that would be considered a duplicate
2917 of this one. */
2918 ALL_BP_LOCATIONS (loc, loc_temp)
2919 if (loc != bl
2920 && loc->watchpoint_type == hw_access
2921 && watchpoint_locations_match (bl, loc))
2922 {
2923 bl->duplicate = 1;
2924 bl->inserted = 1;
2925 bl->target_info = loc->target_info;
2926 bl->watchpoint_type = hw_access;
2927 val = 0;
2928 break;
2929 }
2930
2931 if (val == 1)
2932 {
2933 bl->watchpoint_type = hw_access;
2934 val = bl->owner->ops->insert_location (bl);
2935
2936 if (val)
2937 /* Back to the original value. */
2938 bl->watchpoint_type = hw_read;
2939 }
2940 }
2941
2942 bl->inserted = (val == 0);
2943 }
2944
2945 else if (bl->owner->type == bp_catchpoint)
2946 {
2947 int val;
2948
2949 gdb_assert (bl->owner->ops != NULL
2950 && bl->owner->ops->insert_location != NULL);
2951
2952 val = bl->owner->ops->insert_location (bl);
2953 if (val)
2954 {
2955 bl->owner->enable_state = bp_disabled;
2956
2957 if (val == 1)
2958 warning (_("\
2959 Error inserting catchpoint %d: Your system does not support this type\n\
2960 of catchpoint."), bl->owner->number);
2961 else
2962 warning (_("Error inserting catchpoint %d."), bl->owner->number);
2963 }
2964
2965 bl->inserted = (val == 0);
2966
2967 /* We've already printed an error message if there was a problem
2968 inserting this catchpoint, and we've disabled the catchpoint,
2969 so just return success. */
2970 return 0;
2971 }
2972
2973 return 0;
2974 }
2975
2976 /* This function is called when program space PSPACE is about to be
2977 deleted. It takes care of updating breakpoints to not reference
2978 PSPACE anymore. */
2979
2980 void
2981 breakpoint_program_space_exit (struct program_space *pspace)
2982 {
2983 struct breakpoint *b, *b_temp;
2984 struct bp_location *loc, **loc_temp;
2985
2986 /* Remove any breakpoint that was set through this program space. */
2987 ALL_BREAKPOINTS_SAFE (b, b_temp)
2988 {
2989 if (b->pspace == pspace)
2990 delete_breakpoint (b);
2991 }
2992
2993 /* Breakpoints set through other program spaces could have locations
2994 bound to PSPACE as well. Remove those. */
2995 ALL_BP_LOCATIONS (loc, loc_temp)
2996 {
2997 struct bp_location *tmp;
2998
2999 if (loc->pspace == pspace)
3000 {
3001 /* ALL_BP_LOCATIONS bp_location has LOC->OWNER always non-NULL. */
3002 if (loc->owner->loc == loc)
3003 loc->owner->loc = loc->next;
3004 else
3005 for (tmp = loc->owner->loc; tmp->next != NULL; tmp = tmp->next)
3006 if (tmp->next == loc)
3007 {
3008 tmp->next = loc->next;
3009 break;
3010 }
3011 }
3012 }
3013
3014 /* Now update the global location list to permanently delete the
3015 removed locations above. */
3016 update_global_location_list (UGLL_DONT_INSERT);
3017 }
3018
3019 /* Make sure all breakpoints are inserted in inferior.
3020 Throws exception on any error.
3021 A breakpoint that is already inserted won't be inserted
3022 again, so calling this function twice is safe. */
3023 void
3024 insert_breakpoints (void)
3025 {
3026 struct breakpoint *bpt;
3027
3028 ALL_BREAKPOINTS (bpt)
3029 if (is_hardware_watchpoint (bpt))
3030 {
3031 struct watchpoint *w = (struct watchpoint *) bpt;
3032
3033 update_watchpoint (w, 0 /* don't reparse. */);
3034 }
3035
3036 /* Updating watchpoints creates new locations, so update the global
3037 location list. Explicitly tell ugll to insert locations and
3038 ignore breakpoints_always_inserted_mode. */
3039 update_global_location_list (UGLL_INSERT);
3040 }
3041
3042 /* Invoke CALLBACK for each of bp_location. */
3043
3044 void
3045 iterate_over_bp_locations (walk_bp_location_callback callback)
3046 {
3047 struct bp_location *loc, **loc_tmp;
3048
3049 ALL_BP_LOCATIONS (loc, loc_tmp)
3050 {
3051 callback (loc, NULL);
3052 }
3053 }
3054
3055 /* This is used when we need to synch breakpoint conditions between GDB and the
3056 target. It is the case with deleting and disabling of breakpoints when using
3057 always-inserted mode. */
3058
3059 static void
3060 update_inserted_breakpoint_locations (void)
3061 {
3062 struct bp_location *bl, **blp_tmp;
3063 int error_flag = 0;
3064 int val = 0;
3065 int disabled_breaks = 0;
3066 int hw_breakpoint_error = 0;
3067 int hw_bp_details_reported = 0;
3068
3069 struct ui_file *tmp_error_stream = mem_fileopen ();
3070 struct cleanup *cleanups = make_cleanup_ui_file_delete (tmp_error_stream);
3071
3072 /* Explicitly mark the warning -- this will only be printed if
3073 there was an error. */
3074 fprintf_unfiltered (tmp_error_stream, "Warning:\n");
3075
3076 save_current_space_and_thread ();
3077
3078 ALL_BP_LOCATIONS (bl, blp_tmp)
3079 {
3080 /* We only want to update software breakpoints and hardware
3081 breakpoints. */
3082 if (!is_breakpoint (bl->owner))
3083 continue;
3084
3085 /* We only want to update locations that are already inserted
3086 and need updating. This is to avoid unwanted insertion during
3087 deletion of breakpoints. */
3088 if (!bl->inserted || (bl->inserted && !bl->needs_update))
3089 continue;
3090
3091 switch_to_program_space_and_thread (bl->pspace);
3092
3093 /* For targets that support global breakpoints, there's no need
3094 to select an inferior to insert breakpoint to. In fact, even
3095 if we aren't attached to any process yet, we should still
3096 insert breakpoints. */
3097 if (!gdbarch_has_global_breakpoints (target_gdbarch ())
3098 && ptid_equal (inferior_ptid, null_ptid))
3099 continue;
3100
3101 val = insert_bp_location (bl, tmp_error_stream, &disabled_breaks,
3102 &hw_breakpoint_error, &hw_bp_details_reported);
3103 if (val)
3104 error_flag = val;
3105 }
3106
3107 if (error_flag)
3108 {
3109 target_terminal_ours_for_output ();
3110 error_stream (tmp_error_stream);
3111 }
3112
3113 do_cleanups (cleanups);
3114 }
3115
3116 /* Used when starting or continuing the program. */
3117
3118 static void
3119 insert_breakpoint_locations (void)
3120 {
3121 struct breakpoint *bpt;
3122 struct bp_location *bl, **blp_tmp;
3123 int error_flag = 0;
3124 int val = 0;
3125 int disabled_breaks = 0;
3126 int hw_breakpoint_error = 0;
3127 int hw_bp_error_explained_already = 0;
3128
3129 struct ui_file *tmp_error_stream = mem_fileopen ();
3130 struct cleanup *cleanups = make_cleanup_ui_file_delete (tmp_error_stream);
3131
3132 /* Explicitly mark the warning -- this will only be printed if
3133 there was an error. */
3134 fprintf_unfiltered (tmp_error_stream, "Warning:\n");
3135
3136 save_current_space_and_thread ();
3137
3138 ALL_BP_LOCATIONS (bl, blp_tmp)
3139 {
3140 if (!should_be_inserted (bl) || (bl->inserted && !bl->needs_update))
3141 continue;
3142
3143 /* There is no point inserting thread-specific breakpoints if
3144 the thread no longer exists. ALL_BP_LOCATIONS bp_location
3145 has BL->OWNER always non-NULL. */
3146 if (bl->owner->thread != -1
3147 && !valid_thread_id (bl->owner->thread))
3148 continue;
3149
3150 switch_to_program_space_and_thread (bl->pspace);
3151
3152 /* For targets that support global breakpoints, there's no need
3153 to select an inferior to insert breakpoint to. In fact, even
3154 if we aren't attached to any process yet, we should still
3155 insert breakpoints. */
3156 if (!gdbarch_has_global_breakpoints (target_gdbarch ())
3157 && ptid_equal (inferior_ptid, null_ptid))
3158 continue;
3159
3160 val = insert_bp_location (bl, tmp_error_stream, &disabled_breaks,
3161 &hw_breakpoint_error, &hw_bp_error_explained_already);
3162 if (val)
3163 error_flag = val;
3164 }
3165
3166 /* If we failed to insert all locations of a watchpoint, remove
3167 them, as half-inserted watchpoint is of limited use. */
3168 ALL_BREAKPOINTS (bpt)
3169 {
3170 int some_failed = 0;
3171 struct bp_location *loc;
3172
3173 if (!is_hardware_watchpoint (bpt))
3174 continue;
3175
3176 if (!breakpoint_enabled (bpt))
3177 continue;
3178
3179 if (bpt->disposition == disp_del_at_next_stop)
3180 continue;
3181
3182 for (loc = bpt->loc; loc; loc = loc->next)
3183 if (!loc->inserted && should_be_inserted (loc))
3184 {
3185 some_failed = 1;
3186 break;
3187 }
3188 if (some_failed)
3189 {
3190 for (loc = bpt->loc; loc; loc = loc->next)
3191 if (loc->inserted)
3192 remove_breakpoint (loc, mark_uninserted);
3193
3194 hw_breakpoint_error = 1;
3195 fprintf_unfiltered (tmp_error_stream,
3196 "Could not insert hardware watchpoint %d.\n",
3197 bpt->number);
3198 error_flag = -1;
3199 }
3200 }
3201
3202 if (error_flag)
3203 {
3204 /* If a hardware breakpoint or watchpoint was inserted, add a
3205 message about possibly exhausted resources. */
3206 if (hw_breakpoint_error && !hw_bp_error_explained_already)
3207 {
3208 fprintf_unfiltered (tmp_error_stream,
3209 "Could not insert hardware breakpoints:\n\
3210 You may have requested too many hardware breakpoints/watchpoints.\n");
3211 }
3212 target_terminal_ours_for_output ();
3213 error_stream (tmp_error_stream);
3214 }
3215
3216 do_cleanups (cleanups);
3217 }
3218
3219 /* Used when the program stops.
3220 Returns zero if successful, or non-zero if there was a problem
3221 removing a breakpoint location. */
3222
3223 int
3224 remove_breakpoints (void)
3225 {
3226 struct bp_location *bl, **blp_tmp;
3227 int val = 0;
3228
3229 ALL_BP_LOCATIONS (bl, blp_tmp)
3230 {
3231 if (bl->inserted && !is_tracepoint (bl->owner))
3232 val |= remove_breakpoint (bl, mark_uninserted);
3233 }
3234 return val;
3235 }
3236
3237 /* When a thread exits, remove breakpoints that are related to
3238 that thread. */
3239
3240 static void
3241 remove_threaded_breakpoints (struct thread_info *tp, int silent)
3242 {
3243 struct breakpoint *b, *b_tmp;
3244
3245 ALL_BREAKPOINTS_SAFE (b, b_tmp)
3246 {
3247 if (b->thread == tp->num && user_breakpoint_p (b))
3248 {
3249 b->disposition = disp_del_at_next_stop;
3250
3251 printf_filtered (_("\
3252 Thread-specific breakpoint %d deleted - thread %d no longer in the thread list.\n"),
3253 b->number, tp->num);
3254
3255 /* Hide it from the user. */
3256 b->number = 0;
3257 }
3258 }
3259 }
3260
3261 /* Remove breakpoints of process PID. */
3262
3263 int
3264 remove_breakpoints_pid (int pid)
3265 {
3266 struct bp_location *bl, **blp_tmp;
3267 int val;
3268 struct inferior *inf = find_inferior_pid (pid);
3269
3270 ALL_BP_LOCATIONS (bl, blp_tmp)
3271 {
3272 if (bl->pspace != inf->pspace)
3273 continue;
3274
3275 if (bl->inserted && !bl->target_info.persist)
3276 {
3277 val = remove_breakpoint (bl, mark_uninserted);
3278 if (val != 0)
3279 return val;
3280 }
3281 }
3282 return 0;
3283 }
3284
3285 int
3286 reattach_breakpoints (int pid)
3287 {
3288 struct cleanup *old_chain;
3289 struct bp_location *bl, **blp_tmp;
3290 int val;
3291 struct ui_file *tmp_error_stream;
3292 int dummy1 = 0, dummy2 = 0, dummy3 = 0;
3293 struct inferior *inf;
3294 struct thread_info *tp;
3295
3296 tp = any_live_thread_of_process (pid);
3297 if (tp == NULL)
3298 return 1;
3299
3300 inf = find_inferior_pid (pid);
3301 old_chain = save_inferior_ptid ();
3302
3303 inferior_ptid = tp->ptid;
3304
3305 tmp_error_stream = mem_fileopen ();
3306 make_cleanup_ui_file_delete (tmp_error_stream);
3307
3308 ALL_BP_LOCATIONS (bl, blp_tmp)
3309 {
3310 if (bl->pspace != inf->pspace)
3311 continue;
3312
3313 if (bl->inserted)
3314 {
3315 bl->inserted = 0;
3316 val = insert_bp_location (bl, tmp_error_stream, &dummy1, &dummy2, &dummy3);
3317 if (val != 0)
3318 {
3319 do_cleanups (old_chain);
3320 return val;
3321 }
3322 }
3323 }
3324 do_cleanups (old_chain);
3325 return 0;
3326 }
3327
3328 static int internal_breakpoint_number = -1;
3329
3330 /* Set the breakpoint number of B, depending on the value of INTERNAL.
3331 If INTERNAL is non-zero, the breakpoint number will be populated
3332 from internal_breakpoint_number and that variable decremented.
3333 Otherwise the breakpoint number will be populated from
3334 breakpoint_count and that value incremented. Internal breakpoints
3335 do not set the internal var bpnum. */
3336 static void
3337 set_breakpoint_number (int internal, struct breakpoint *b)
3338 {
3339 if (internal)
3340 b->number = internal_breakpoint_number--;
3341 else
3342 {
3343 set_breakpoint_count (breakpoint_count + 1);
3344 b->number = breakpoint_count;
3345 }
3346 }
3347
3348 static struct breakpoint *
3349 create_internal_breakpoint (struct gdbarch *gdbarch,
3350 CORE_ADDR address, enum bptype type,
3351 const struct breakpoint_ops *ops)
3352 {
3353 struct symtab_and_line sal;
3354 struct breakpoint *b;
3355
3356 init_sal (&sal); /* Initialize to zeroes. */
3357
3358 sal.pc = address;
3359 sal.section = find_pc_overlay (sal.pc);
3360 sal.pspace = current_program_space;
3361
3362 b = set_raw_breakpoint (gdbarch, sal, type, ops);
3363 b->number = internal_breakpoint_number--;
3364 b->disposition = disp_donttouch;
3365
3366 return b;
3367 }
3368
3369 static const char *const longjmp_names[] =
3370 {
3371 "longjmp", "_longjmp", "siglongjmp", "_siglongjmp"
3372 };
3373 #define NUM_LONGJMP_NAMES ARRAY_SIZE(longjmp_names)
3374
3375 /* Per-objfile data private to breakpoint.c. */
3376 struct breakpoint_objfile_data
3377 {
3378 /* Minimal symbol for "_ovly_debug_event" (if any). */
3379 struct bound_minimal_symbol overlay_msym;
3380
3381 /* Minimal symbol(s) for "longjmp", "siglongjmp", etc. (if any). */
3382 struct bound_minimal_symbol longjmp_msym[NUM_LONGJMP_NAMES];
3383
3384 /* True if we have looked for longjmp probes. */
3385 int longjmp_searched;
3386
3387 /* SystemTap probe points for longjmp (if any). */
3388 VEC (probe_p) *longjmp_probes;
3389
3390 /* Minimal symbol for "std::terminate()" (if any). */
3391 struct bound_minimal_symbol terminate_msym;
3392
3393 /* Minimal symbol for "_Unwind_DebugHook" (if any). */
3394 struct bound_minimal_symbol exception_msym;
3395
3396 /* True if we have looked for exception probes. */
3397 int exception_searched;
3398
3399 /* SystemTap probe points for unwinding (if any). */
3400 VEC (probe_p) *exception_probes;
3401 };
3402
3403 static const struct objfile_data *breakpoint_objfile_key;
3404
3405 /* Minimal symbol not found sentinel. */
3406 static struct minimal_symbol msym_not_found;
3407
3408 /* Returns TRUE if MSYM point to the "not found" sentinel. */
3409
3410 static int
3411 msym_not_found_p (const struct minimal_symbol *msym)
3412 {
3413 return msym == &msym_not_found;
3414 }
3415
3416 /* Return per-objfile data needed by breakpoint.c.
3417 Allocate the data if necessary. */
3418
3419 static struct breakpoint_objfile_data *
3420 get_breakpoint_objfile_data (struct objfile *objfile)
3421 {
3422 struct breakpoint_objfile_data *bp_objfile_data;
3423
3424 bp_objfile_data = ((struct breakpoint_objfile_data *)
3425 objfile_data (objfile, breakpoint_objfile_key));
3426 if (bp_objfile_data == NULL)
3427 {
3428 bp_objfile_data =
3429 XOBNEW (&objfile->objfile_obstack, struct breakpoint_objfile_data);
3430
3431 memset (bp_objfile_data, 0, sizeof (*bp_objfile_data));
3432 set_objfile_data (objfile, breakpoint_objfile_key, bp_objfile_data);
3433 }
3434 return bp_objfile_data;
3435 }
3436
3437 static void
3438 free_breakpoint_probes (struct objfile *obj, void *data)
3439 {
3440 struct breakpoint_objfile_data *bp_objfile_data
3441 = (struct breakpoint_objfile_data *) data;
3442
3443 VEC_free (probe_p, bp_objfile_data->longjmp_probes);
3444 VEC_free (probe_p, bp_objfile_data->exception_probes);
3445 }
3446
3447 static void
3448 create_overlay_event_breakpoint (void)
3449 {
3450 struct objfile *objfile;
3451 const char *const func_name = "_ovly_debug_event";
3452
3453 ALL_OBJFILES (objfile)
3454 {
3455 struct breakpoint *b;
3456 struct breakpoint_objfile_data *bp_objfile_data;
3457 CORE_ADDR addr;
3458 struct explicit_location explicit_loc;
3459
3460 bp_objfile_data = get_breakpoint_objfile_data (objfile);
3461
3462 if (msym_not_found_p (bp_objfile_data->overlay_msym.minsym))
3463 continue;
3464
3465 if (bp_objfile_data->overlay_msym.minsym == NULL)
3466 {
3467 struct bound_minimal_symbol m;
3468
3469 m = lookup_minimal_symbol_text (func_name, objfile);
3470 if (m.minsym == NULL)
3471 {
3472 /* Avoid future lookups in this objfile. */
3473 bp_objfile_data->overlay_msym.minsym = &msym_not_found;
3474 continue;
3475 }
3476 bp_objfile_data->overlay_msym = m;
3477 }
3478
3479 addr = BMSYMBOL_VALUE_ADDRESS (bp_objfile_data->overlay_msym);
3480 b = create_internal_breakpoint (get_objfile_arch (objfile), addr,
3481 bp_overlay_event,
3482 &internal_breakpoint_ops);
3483 initialize_explicit_location (&explicit_loc);
3484 explicit_loc.function_name = ASTRDUP (func_name);
3485 b->location = new_explicit_location (&explicit_loc);
3486
3487 if (overlay_debugging == ovly_auto)
3488 {
3489 b->enable_state = bp_enabled;
3490 overlay_events_enabled = 1;
3491 }
3492 else
3493 {
3494 b->enable_state = bp_disabled;
3495 overlay_events_enabled = 0;
3496 }
3497 }
3498 update_global_location_list (UGLL_MAY_INSERT);
3499 }
3500
3501 static void
3502 create_longjmp_master_breakpoint (void)
3503 {
3504 struct program_space *pspace;
3505 struct cleanup *old_chain;
3506
3507 old_chain = save_current_program_space ();
3508
3509 ALL_PSPACES (pspace)
3510 {
3511 struct objfile *objfile;
3512
3513 set_current_program_space (pspace);
3514
3515 ALL_OBJFILES (objfile)
3516 {
3517 int i;
3518 struct gdbarch *gdbarch;
3519 struct breakpoint_objfile_data *bp_objfile_data;
3520
3521 gdbarch = get_objfile_arch (objfile);
3522
3523 bp_objfile_data = get_breakpoint_objfile_data (objfile);
3524
3525 if (!bp_objfile_data->longjmp_searched)
3526 {
3527 VEC (probe_p) *ret;
3528
3529 ret = find_probes_in_objfile (objfile, "libc", "longjmp");
3530 if (ret != NULL)
3531 {
3532 /* We are only interested in checking one element. */
3533 struct probe *p = VEC_index (probe_p, ret, 0);
3534
3535 if (!can_evaluate_probe_arguments (p))
3536 {
3537 /* We cannot use the probe interface here, because it does
3538 not know how to evaluate arguments. */
3539 VEC_free (probe_p, ret);
3540 ret = NULL;
3541 }
3542 }
3543 bp_objfile_data->longjmp_probes = ret;
3544 bp_objfile_data->longjmp_searched = 1;
3545 }
3546
3547 if (bp_objfile_data->longjmp_probes != NULL)
3548 {
3549 int i;
3550 struct probe *probe;
3551 struct gdbarch *gdbarch = get_objfile_arch (objfile);
3552
3553 for (i = 0;
3554 VEC_iterate (probe_p,
3555 bp_objfile_data->longjmp_probes,
3556 i, probe);
3557 ++i)
3558 {
3559 struct breakpoint *b;
3560
3561 b = create_internal_breakpoint (gdbarch,
3562 get_probe_address (probe,
3563 objfile),
3564 bp_longjmp_master,
3565 &internal_breakpoint_ops);
3566 b->location
3567 = new_probe_location ("-probe-stap libc:longjmp");
3568 b->enable_state = bp_disabled;
3569 }
3570
3571 continue;
3572 }
3573
3574 if (!gdbarch_get_longjmp_target_p (gdbarch))
3575 continue;
3576
3577 for (i = 0; i < NUM_LONGJMP_NAMES; i++)
3578 {
3579 struct breakpoint *b;
3580 const char *func_name;
3581 CORE_ADDR addr;
3582 struct explicit_location explicit_loc;
3583
3584 if (msym_not_found_p (bp_objfile_data->longjmp_msym[i].minsym))
3585 continue;
3586
3587 func_name = longjmp_names[i];
3588 if (bp_objfile_data->longjmp_msym[i].minsym == NULL)
3589 {
3590 struct bound_minimal_symbol m;
3591
3592 m = lookup_minimal_symbol_text (func_name, objfile);
3593 if (m.minsym == NULL)
3594 {
3595 /* Prevent future lookups in this objfile. */
3596 bp_objfile_data->longjmp_msym[i].minsym = &msym_not_found;
3597 continue;
3598 }
3599 bp_objfile_data->longjmp_msym[i] = m;
3600 }
3601
3602 addr = BMSYMBOL_VALUE_ADDRESS (bp_objfile_data->longjmp_msym[i]);
3603 b = create_internal_breakpoint (gdbarch, addr, bp_longjmp_master,
3604 &internal_breakpoint_ops);
3605 initialize_explicit_location (&explicit_loc);
3606 explicit_loc.function_name = ASTRDUP (func_name);
3607 b->location = new_explicit_location (&explicit_loc);
3608 b->enable_state = bp_disabled;
3609 }
3610 }
3611 }
3612 update_global_location_list (UGLL_MAY_INSERT);
3613
3614 do_cleanups (old_chain);
3615 }
3616
3617 /* Create a master std::terminate breakpoint. */
3618 static void
3619 create_std_terminate_master_breakpoint (void)
3620 {
3621 struct program_space *pspace;
3622 struct cleanup *old_chain;
3623 const char *const func_name = "std::terminate()";
3624
3625 old_chain = save_current_program_space ();
3626
3627 ALL_PSPACES (pspace)
3628 {
3629 struct objfile *objfile;
3630 CORE_ADDR addr;
3631
3632 set_current_program_space (pspace);
3633
3634 ALL_OBJFILES (objfile)
3635 {
3636 struct breakpoint *b;
3637 struct breakpoint_objfile_data *bp_objfile_data;
3638 struct explicit_location explicit_loc;
3639
3640 bp_objfile_data = get_breakpoint_objfile_data (objfile);
3641
3642 if (msym_not_found_p (bp_objfile_data->terminate_msym.minsym))
3643 continue;
3644
3645 if (bp_objfile_data->terminate_msym.minsym == NULL)
3646 {
3647 struct bound_minimal_symbol m;
3648
3649 m = lookup_minimal_symbol (func_name, NULL, objfile);
3650 if (m.minsym == NULL || (MSYMBOL_TYPE (m.minsym) != mst_text
3651 && MSYMBOL_TYPE (m.minsym) != mst_file_text))
3652 {
3653 /* Prevent future lookups in this objfile. */
3654 bp_objfile_data->terminate_msym.minsym = &msym_not_found;
3655 continue;
3656 }
3657 bp_objfile_data->terminate_msym = m;
3658 }
3659
3660 addr = BMSYMBOL_VALUE_ADDRESS (bp_objfile_data->terminate_msym);
3661 b = create_internal_breakpoint (get_objfile_arch (objfile), addr,
3662 bp_std_terminate_master,
3663 &internal_breakpoint_ops);
3664 initialize_explicit_location (&explicit_loc);
3665 explicit_loc.function_name = ASTRDUP (func_name);
3666 b->location = new_explicit_location (&explicit_loc);
3667 b->enable_state = bp_disabled;
3668 }
3669 }
3670
3671 update_global_location_list (UGLL_MAY_INSERT);
3672
3673 do_cleanups (old_chain);
3674 }
3675
3676 /* Install a master breakpoint on the unwinder's debug hook. */
3677
3678 static void
3679 create_exception_master_breakpoint (void)
3680 {
3681 struct objfile *objfile;
3682 const char *const func_name = "_Unwind_DebugHook";
3683
3684 ALL_OBJFILES (objfile)
3685 {
3686 struct breakpoint *b;
3687 struct gdbarch *gdbarch;
3688 struct breakpoint_objfile_data *bp_objfile_data;
3689 CORE_ADDR addr;
3690 struct explicit_location explicit_loc;
3691
3692 bp_objfile_data = get_breakpoint_objfile_data (objfile);
3693
3694 /* We prefer the SystemTap probe point if it exists. */
3695 if (!bp_objfile_data->exception_searched)
3696 {
3697 VEC (probe_p) *ret;
3698
3699 ret = find_probes_in_objfile (objfile, "libgcc", "unwind");
3700
3701 if (ret != NULL)
3702 {
3703 /* We are only interested in checking one element. */
3704 struct probe *p = VEC_index (probe_p, ret, 0);
3705
3706 if (!can_evaluate_probe_arguments (p))
3707 {
3708 /* We cannot use the probe interface here, because it does
3709 not know how to evaluate arguments. */
3710 VEC_free (probe_p, ret);
3711 ret = NULL;
3712 }
3713 }
3714 bp_objfile_data->exception_probes = ret;
3715 bp_objfile_data->exception_searched = 1;
3716 }
3717
3718 if (bp_objfile_data->exception_probes != NULL)
3719 {
3720 struct gdbarch *gdbarch = get_objfile_arch (objfile);
3721 int i;
3722 struct probe *probe;
3723
3724 for (i = 0;
3725 VEC_iterate (probe_p,
3726 bp_objfile_data->exception_probes,
3727 i, probe);
3728 ++i)
3729 {
3730 struct breakpoint *b;
3731
3732 b = create_internal_breakpoint (gdbarch,
3733 get_probe_address (probe,
3734 objfile),
3735 bp_exception_master,
3736 &internal_breakpoint_ops);
3737 b->location
3738 = new_probe_location ("-probe-stap libgcc:unwind");
3739 b->enable_state = bp_disabled;
3740 }
3741
3742 continue;
3743 }
3744
3745 /* Otherwise, try the hook function. */
3746
3747 if (msym_not_found_p (bp_objfile_data->exception_msym.minsym))
3748 continue;
3749
3750 gdbarch = get_objfile_arch (objfile);
3751
3752 if (bp_objfile_data->exception_msym.minsym == NULL)
3753 {
3754 struct bound_minimal_symbol debug_hook;
3755
3756 debug_hook = lookup_minimal_symbol (func_name, NULL, objfile);
3757 if (debug_hook.minsym == NULL)
3758 {
3759 bp_objfile_data->exception_msym.minsym = &msym_not_found;
3760 continue;
3761 }
3762
3763 bp_objfile_data->exception_msym = debug_hook;
3764 }
3765
3766 addr = BMSYMBOL_VALUE_ADDRESS (bp_objfile_data->exception_msym);
3767 addr = gdbarch_convert_from_func_ptr_addr (gdbarch, addr,
3768 &current_target);
3769 b = create_internal_breakpoint (gdbarch, addr, bp_exception_master,
3770 &internal_breakpoint_ops);
3771 initialize_explicit_location (&explicit_loc);
3772 explicit_loc.function_name = ASTRDUP (func_name);
3773 b->location = new_explicit_location (&explicit_loc);
3774 b->enable_state = bp_disabled;
3775 }
3776
3777 update_global_location_list (UGLL_MAY_INSERT);
3778 }
3779
3780 void
3781 update_breakpoints_after_exec (void)
3782 {
3783 struct breakpoint *b, *b_tmp;
3784 struct bp_location *bploc, **bplocp_tmp;
3785
3786 /* We're about to delete breakpoints from GDB's lists. If the
3787 INSERTED flag is true, GDB will try to lift the breakpoints by
3788 writing the breakpoints' "shadow contents" back into memory. The
3789 "shadow contents" are NOT valid after an exec, so GDB should not
3790 do that. Instead, the target is responsible from marking
3791 breakpoints out as soon as it detects an exec. We don't do that
3792 here instead, because there may be other attempts to delete
3793 breakpoints after detecting an exec and before reaching here. */
3794 ALL_BP_LOCATIONS (bploc, bplocp_tmp)
3795 if (bploc->pspace == current_program_space)
3796 gdb_assert (!bploc->inserted);
3797
3798 ALL_BREAKPOINTS_SAFE (b, b_tmp)
3799 {
3800 if (b->pspace != current_program_space)
3801 continue;
3802
3803 /* Solib breakpoints must be explicitly reset after an exec(). */
3804 if (b->type == bp_shlib_event)
3805 {
3806 delete_breakpoint (b);
3807 continue;
3808 }
3809
3810 /* JIT breakpoints must be explicitly reset after an exec(). */
3811 if (b->type == bp_jit_event)
3812 {
3813 delete_breakpoint (b);
3814 continue;
3815 }
3816
3817 /* Thread event breakpoints must be set anew after an exec(),
3818 as must overlay event and longjmp master breakpoints. */
3819 if (b->type == bp_thread_event || b->type == bp_overlay_event
3820 || b->type == bp_longjmp_master || b->type == bp_std_terminate_master
3821 || b->type == bp_exception_master)
3822 {
3823 delete_breakpoint (b);
3824 continue;
3825 }
3826
3827 /* Step-resume breakpoints are meaningless after an exec(). */
3828 if (b->type == bp_step_resume || b->type == bp_hp_step_resume)
3829 {
3830 delete_breakpoint (b);
3831 continue;
3832 }
3833
3834 /* Just like single-step breakpoints. */
3835 if (b->type == bp_single_step)
3836 {
3837 delete_breakpoint (b);
3838 continue;
3839 }
3840
3841 /* Longjmp and longjmp-resume breakpoints are also meaningless
3842 after an exec. */
3843 if (b->type == bp_longjmp || b->type == bp_longjmp_resume
3844 || b->type == bp_longjmp_call_dummy
3845 || b->type == bp_exception || b->type == bp_exception_resume)
3846 {
3847 delete_breakpoint (b);
3848 continue;
3849 }
3850
3851 if (b->type == bp_catchpoint)
3852 {
3853 /* For now, none of the bp_catchpoint breakpoints need to
3854 do anything at this point. In the future, if some of
3855 the catchpoints need to something, we will need to add
3856 a new method, and call this method from here. */
3857 continue;
3858 }
3859
3860 /* bp_finish is a special case. The only way we ought to be able
3861 to see one of these when an exec() has happened, is if the user
3862 caught a vfork, and then said "finish". Ordinarily a finish just
3863 carries them to the call-site of the current callee, by setting
3864 a temporary bp there and resuming. But in this case, the finish
3865 will carry them entirely through the vfork & exec.
3866
3867 We don't want to allow a bp_finish to remain inserted now. But
3868 we can't safely delete it, 'cause finish_command has a handle to
3869 the bp on a bpstat, and will later want to delete it. There's a
3870 chance (and I've seen it happen) that if we delete the bp_finish
3871 here, that its storage will get reused by the time finish_command
3872 gets 'round to deleting the "use to be a bp_finish" breakpoint.
3873 We really must allow finish_command to delete a bp_finish.
3874
3875 In the absence of a general solution for the "how do we know
3876 it's safe to delete something others may have handles to?"
3877 problem, what we'll do here is just uninsert the bp_finish, and
3878 let finish_command delete it.
3879
3880 (We know the bp_finish is "doomed" in the sense that it's
3881 momentary, and will be deleted as soon as finish_command sees
3882 the inferior stopped. So it doesn't matter that the bp's
3883 address is probably bogus in the new a.out, unlike e.g., the
3884 solib breakpoints.) */
3885
3886 if (b->type == bp_finish)
3887 {
3888 continue;
3889 }
3890
3891 /* Without a symbolic address, we have little hope of the
3892 pre-exec() address meaning the same thing in the post-exec()
3893 a.out. */
3894 if (event_location_empty_p (b->location))
3895 {
3896 delete_breakpoint (b);
3897 continue;
3898 }
3899 }
3900 }
3901
3902 int
3903 detach_breakpoints (ptid_t ptid)
3904 {
3905 struct bp_location *bl, **blp_tmp;
3906 int val = 0;
3907 struct cleanup *old_chain = save_inferior_ptid ();
3908 struct inferior *inf = current_inferior ();
3909
3910 if (ptid_get_pid (ptid) == ptid_get_pid (inferior_ptid))
3911 error (_("Cannot detach breakpoints of inferior_ptid"));
3912
3913 /* Set inferior_ptid; remove_breakpoint_1 uses this global. */
3914 inferior_ptid = ptid;
3915 ALL_BP_LOCATIONS (bl, blp_tmp)
3916 {
3917 if (bl->pspace != inf->pspace)
3918 continue;
3919
3920 /* This function must physically remove breakpoints locations
3921 from the specified ptid, without modifying the breakpoint
3922 package's state. Locations of type bp_loc_other are only
3923 maintained at GDB side. So, there is no need to remove
3924 these bp_loc_other locations. Moreover, removing these
3925 would modify the breakpoint package's state. */
3926 if (bl->loc_type == bp_loc_other)
3927 continue;
3928
3929 if (bl->inserted)
3930 val |= remove_breakpoint_1 (bl, mark_inserted);
3931 }
3932
3933 do_cleanups (old_chain);
3934 return val;
3935 }
3936
3937 /* Remove the breakpoint location BL from the current address space.
3938 Note that this is used to detach breakpoints from a child fork.
3939 When we get here, the child isn't in the inferior list, and neither
3940 do we have objects to represent its address space --- we should
3941 *not* look at bl->pspace->aspace here. */
3942
3943 static int
3944 remove_breakpoint_1 (struct bp_location *bl, insertion_state_t is)
3945 {
3946 int val;
3947
3948 /* BL is never in moribund_locations by our callers. */
3949 gdb_assert (bl->owner != NULL);
3950
3951 /* The type of none suggests that owner is actually deleted.
3952 This should not ever happen. */
3953 gdb_assert (bl->owner->type != bp_none);
3954
3955 if (bl->loc_type == bp_loc_software_breakpoint
3956 || bl->loc_type == bp_loc_hardware_breakpoint)
3957 {
3958 /* "Normal" instruction breakpoint: either the standard
3959 trap-instruction bp (bp_breakpoint), or a
3960 bp_hardware_breakpoint. */
3961
3962 /* First check to see if we have to handle an overlay. */
3963 if (overlay_debugging == ovly_off
3964 || bl->section == NULL
3965 || !(section_is_overlay (bl->section)))
3966 {
3967 /* No overlay handling: just remove the breakpoint. */
3968
3969 /* If we're trying to uninsert a memory breakpoint that we
3970 know is set in a dynamic object that is marked
3971 shlib_disabled, then either the dynamic object was
3972 removed with "remove-symbol-file" or with
3973 "nosharedlibrary". In the former case, we don't know
3974 whether another dynamic object might have loaded over the
3975 breakpoint's address -- the user might well let us know
3976 about it next with add-symbol-file (the whole point of
3977 add-symbol-file is letting the user manually maintain a
3978 list of dynamically loaded objects). If we have the
3979 breakpoint's shadow memory, that is, this is a software
3980 breakpoint managed by GDB, check whether the breakpoint
3981 is still inserted in memory, to avoid overwriting wrong
3982 code with stale saved shadow contents. Note that HW
3983 breakpoints don't have shadow memory, as they're
3984 implemented using a mechanism that is not dependent on
3985 being able to modify the target's memory, and as such
3986 they should always be removed. */
3987 if (bl->shlib_disabled
3988 && bl->target_info.shadow_len != 0
3989 && !memory_validate_breakpoint (bl->gdbarch, &bl->target_info))
3990 val = 0;
3991 else
3992 val = bl->owner->ops->remove_location (bl);
3993 }
3994 else
3995 {
3996 /* This breakpoint is in an overlay section.
3997 Did we set a breakpoint at the LMA? */
3998 if (!overlay_events_enabled)
3999 {
4000 /* Yes -- overlay event support is not active, so we
4001 should have set a breakpoint at the LMA. Remove it.
4002 */
4003 /* Ignore any failures: if the LMA is in ROM, we will
4004 have already warned when we failed to insert it. */
4005 if (bl->loc_type == bp_loc_hardware_breakpoint)
4006 target_remove_hw_breakpoint (bl->gdbarch,
4007 &bl->overlay_target_info);
4008 else
4009 target_remove_breakpoint (bl->gdbarch,
4010 &bl->overlay_target_info);
4011 }
4012 /* Did we set a breakpoint at the VMA?
4013 If so, we will have marked the breakpoint 'inserted'. */
4014 if (bl->inserted)
4015 {
4016 /* Yes -- remove it. Previously we did not bother to
4017 remove the breakpoint if the section had been
4018 unmapped, but let's not rely on that being safe. We
4019 don't know what the overlay manager might do. */
4020
4021 /* However, we should remove *software* breakpoints only
4022 if the section is still mapped, or else we overwrite
4023 wrong code with the saved shadow contents. */
4024 if (bl->loc_type == bp_loc_hardware_breakpoint
4025 || section_is_mapped (bl->section))
4026 val = bl->owner->ops->remove_location (bl);
4027 else
4028 val = 0;
4029 }
4030 else
4031 {
4032 /* No -- not inserted, so no need to remove. No error. */
4033 val = 0;
4034 }
4035 }
4036
4037 /* In some cases, we might not be able to remove a breakpoint in
4038 a shared library that has already been removed, but we have
4039 not yet processed the shlib unload event. Similarly for an
4040 unloaded add-symbol-file object - the user might not yet have
4041 had the chance to remove-symbol-file it. shlib_disabled will
4042 be set if the library/object has already been removed, but
4043 the breakpoint hasn't been uninserted yet, e.g., after
4044 "nosharedlibrary" or "remove-symbol-file" with breakpoints
4045 always-inserted mode. */
4046 if (val
4047 && (bl->loc_type == bp_loc_software_breakpoint
4048 && (bl->shlib_disabled
4049 || solib_name_from_address (bl->pspace, bl->address)
4050 || shared_objfile_contains_address_p (bl->pspace,
4051 bl->address))))
4052 val = 0;
4053
4054 if (val)
4055 return val;
4056 bl->inserted = (is == mark_inserted);
4057 }
4058 else if (bl->loc_type == bp_loc_hardware_watchpoint)
4059 {
4060 gdb_assert (bl->owner->ops != NULL
4061 && bl->owner->ops->remove_location != NULL);
4062
4063 bl->inserted = (is == mark_inserted);
4064 bl->owner->ops->remove_location (bl);
4065
4066 /* Failure to remove any of the hardware watchpoints comes here. */
4067 if ((is == mark_uninserted) && (bl->inserted))
4068 warning (_("Could not remove hardware watchpoint %d."),
4069 bl->owner->number);
4070 }
4071 else if (bl->owner->type == bp_catchpoint
4072 && breakpoint_enabled (bl->owner)
4073 && !bl->duplicate)
4074 {
4075 gdb_assert (bl->owner->ops != NULL
4076 && bl->owner->ops->remove_location != NULL);
4077
4078 val = bl->owner->ops->remove_location (bl);
4079 if (val)
4080 return val;
4081
4082 bl->inserted = (is == mark_inserted);
4083 }
4084
4085 return 0;
4086 }
4087
4088 static int
4089 remove_breakpoint (struct bp_location *bl, insertion_state_t is)
4090 {
4091 int ret;
4092 struct cleanup *old_chain;
4093
4094 /* BL is never in moribund_locations by our callers. */
4095 gdb_assert (bl->owner != NULL);
4096
4097 /* The type of none suggests that owner is actually deleted.
4098 This should not ever happen. */
4099 gdb_assert (bl->owner->type != bp_none);
4100
4101 old_chain = save_current_space_and_thread ();
4102
4103 switch_to_program_space_and_thread (bl->pspace);
4104
4105 ret = remove_breakpoint_1 (bl, is);
4106
4107 do_cleanups (old_chain);
4108 return ret;
4109 }
4110
4111 /* Clear the "inserted" flag in all breakpoints. */
4112
4113 void
4114 mark_breakpoints_out (void)
4115 {
4116 struct bp_location *bl, **blp_tmp;
4117
4118 ALL_BP_LOCATIONS (bl, blp_tmp)
4119 if (bl->pspace == current_program_space)
4120 bl->inserted = 0;
4121 }
4122
4123 /* Clear the "inserted" flag in all breakpoints and delete any
4124 breakpoints which should go away between runs of the program.
4125
4126 Plus other such housekeeping that has to be done for breakpoints
4127 between runs.
4128
4129 Note: this function gets called at the end of a run (by
4130 generic_mourn_inferior) and when a run begins (by
4131 init_wait_for_inferior). */
4132
4133
4134
4135 void
4136 breakpoint_init_inferior (enum inf_context context)
4137 {
4138 struct breakpoint *b, *b_tmp;
4139 struct bp_location *bl, **blp_tmp;
4140 int ix;
4141 struct program_space *pspace = current_program_space;
4142
4143 /* If breakpoint locations are shared across processes, then there's
4144 nothing to do. */
4145 if (gdbarch_has_global_breakpoints (target_gdbarch ()))
4146 return;
4147
4148 mark_breakpoints_out ();
4149
4150 ALL_BREAKPOINTS_SAFE (b, b_tmp)
4151 {
4152 if (b->loc && b->loc->pspace != pspace)
4153 continue;
4154
4155 switch (b->type)
4156 {
4157 case bp_call_dummy:
4158 case bp_longjmp_call_dummy:
4159
4160 /* If the call dummy breakpoint is at the entry point it will
4161 cause problems when the inferior is rerun, so we better get
4162 rid of it. */
4163
4164 case bp_watchpoint_scope:
4165
4166 /* Also get rid of scope breakpoints. */
4167
4168 case bp_shlib_event:
4169
4170 /* Also remove solib event breakpoints. Their addresses may
4171 have changed since the last time we ran the program.
4172 Actually we may now be debugging against different target;
4173 and so the solib backend that installed this breakpoint may
4174 not be used in by the target. E.g.,
4175
4176 (gdb) file prog-linux
4177 (gdb) run # native linux target
4178 ...
4179 (gdb) kill
4180 (gdb) file prog-win.exe
4181 (gdb) tar rem :9999 # remote Windows gdbserver.
4182 */
4183
4184 case bp_step_resume:
4185
4186 /* Also remove step-resume breakpoints. */
4187
4188 case bp_single_step:
4189
4190 /* Also remove single-step breakpoints. */
4191
4192 delete_breakpoint (b);
4193 break;
4194
4195 case bp_watchpoint:
4196 case bp_hardware_watchpoint:
4197 case bp_read_watchpoint:
4198 case bp_access_watchpoint:
4199 {
4200 struct watchpoint *w = (struct watchpoint *) b;
4201
4202 /* Likewise for watchpoints on local expressions. */
4203 if (w->exp_valid_block != NULL)
4204 delete_breakpoint (b);
4205 else if (context == inf_starting)
4206 {
4207 /* Reset val field to force reread of starting value in
4208 insert_breakpoints. */
4209 if (w->val)
4210 value_free (w->val);
4211 w->val = NULL;
4212 w->val_valid = 0;
4213 }
4214 }
4215 break;
4216 default:
4217 break;
4218 }
4219 }
4220
4221 /* Get rid of the moribund locations. */
4222 for (ix = 0; VEC_iterate (bp_location_p, moribund_locations, ix, bl); ++ix)
4223 decref_bp_location (&bl);
4224 VEC_free (bp_location_p, moribund_locations);
4225 }
4226
4227 /* These functions concern about actual breakpoints inserted in the
4228 target --- to e.g. check if we need to do decr_pc adjustment or if
4229 we need to hop over the bkpt --- so we check for address space
4230 match, not program space. */
4231
4232 /* breakpoint_here_p (PC) returns non-zero if an enabled breakpoint
4233 exists at PC. It returns ordinary_breakpoint_here if it's an
4234 ordinary breakpoint, or permanent_breakpoint_here if it's a
4235 permanent breakpoint.
4236 - When continuing from a location with an ordinary breakpoint, we
4237 actually single step once before calling insert_breakpoints.
4238 - When continuing from a location with a permanent breakpoint, we
4239 need to use the `SKIP_PERMANENT_BREAKPOINT' macro, provided by
4240 the target, to advance the PC past the breakpoint. */
4241
4242 enum breakpoint_here
4243 breakpoint_here_p (struct address_space *aspace, CORE_ADDR pc)
4244 {
4245 struct bp_location *bl, **blp_tmp;
4246 int any_breakpoint_here = 0;
4247
4248 ALL_BP_LOCATIONS (bl, blp_tmp)
4249 {
4250 if (bl->loc_type != bp_loc_software_breakpoint
4251 && bl->loc_type != bp_loc_hardware_breakpoint)
4252 continue;
4253
4254 /* ALL_BP_LOCATIONS bp_location has BL->OWNER always non-NULL. */
4255 if ((breakpoint_enabled (bl->owner)
4256 || bl->permanent)
4257 && breakpoint_location_address_match (bl, aspace, pc))
4258 {
4259 if (overlay_debugging
4260 && section_is_overlay (bl->section)
4261 && !section_is_mapped (bl->section))
4262 continue; /* unmapped overlay -- can't be a match */
4263 else if (bl->permanent)
4264 return permanent_breakpoint_here;
4265 else
4266 any_breakpoint_here = 1;
4267 }
4268 }
4269
4270 return any_breakpoint_here ? ordinary_breakpoint_here : no_breakpoint_here;
4271 }
4272
4273 /* See breakpoint.h. */
4274
4275 int
4276 breakpoint_in_range_p (struct address_space *aspace,
4277 CORE_ADDR addr, ULONGEST len)
4278 {
4279 struct bp_location *bl, **blp_tmp;
4280
4281 ALL_BP_LOCATIONS (bl, blp_tmp)
4282 {
4283 if (bl->loc_type != bp_loc_software_breakpoint
4284 && bl->loc_type != bp_loc_hardware_breakpoint)
4285 continue;
4286
4287 if ((breakpoint_enabled (bl->owner)
4288 || bl->permanent)
4289 && breakpoint_location_address_range_overlap (bl, aspace,
4290 addr, len))
4291 {
4292 if (overlay_debugging
4293 && section_is_overlay (bl->section)
4294 && !section_is_mapped (bl->section))
4295 {
4296 /* Unmapped overlay -- can't be a match. */
4297 continue;
4298 }
4299
4300 return 1;
4301 }
4302 }
4303
4304 return 0;
4305 }
4306
4307 /* Return true if there's a moribund breakpoint at PC. */
4308
4309 int
4310 moribund_breakpoint_here_p (struct address_space *aspace, CORE_ADDR pc)
4311 {
4312 struct bp_location *loc;
4313 int ix;
4314
4315 for (ix = 0; VEC_iterate (bp_location_p, moribund_locations, ix, loc); ++ix)
4316 if (breakpoint_location_address_match (loc, aspace, pc))
4317 return 1;
4318
4319 return 0;
4320 }
4321
4322 /* Returns non-zero iff BL is inserted at PC, in address space
4323 ASPACE. */
4324
4325 static int
4326 bp_location_inserted_here_p (struct bp_location *bl,
4327 struct address_space *aspace, CORE_ADDR pc)
4328 {
4329 if (bl->inserted
4330 && breakpoint_address_match (bl->pspace->aspace, bl->address,
4331 aspace, pc))
4332 {
4333 if (overlay_debugging
4334 && section_is_overlay (bl->section)
4335 && !section_is_mapped (bl->section))
4336 return 0; /* unmapped overlay -- can't be a match */
4337 else
4338 return 1;
4339 }
4340 return 0;
4341 }
4342
4343 /* Returns non-zero iff there's a breakpoint inserted at PC. */
4344
4345 int
4346 breakpoint_inserted_here_p (struct address_space *aspace, CORE_ADDR pc)
4347 {
4348 struct bp_location **blp, **blp_tmp = NULL;
4349 struct bp_location *bl;
4350
4351 ALL_BP_LOCATIONS_AT_ADDR (blp, blp_tmp, pc)
4352 {
4353 struct bp_location *bl = *blp;
4354
4355 if (bl->loc_type != bp_loc_software_breakpoint
4356 && bl->loc_type != bp_loc_hardware_breakpoint)
4357 continue;
4358
4359 if (bp_location_inserted_here_p (bl, aspace, pc))
4360 return 1;
4361 }
4362 return 0;
4363 }
4364
4365 /* This function returns non-zero iff there is a software breakpoint
4366 inserted at PC. */
4367
4368 int
4369 software_breakpoint_inserted_here_p (struct address_space *aspace,
4370 CORE_ADDR pc)
4371 {
4372 struct bp_location **blp, **blp_tmp = NULL;
4373 struct bp_location *bl;
4374
4375 ALL_BP_LOCATIONS_AT_ADDR (blp, blp_tmp, pc)
4376 {
4377 struct bp_location *bl = *blp;
4378
4379 if (bl->loc_type != bp_loc_software_breakpoint)
4380 continue;
4381
4382 if (bp_location_inserted_here_p (bl, aspace, pc))
4383 return 1;
4384 }
4385
4386 return 0;
4387 }
4388
4389 /* See breakpoint.h. */
4390
4391 int
4392 hardware_breakpoint_inserted_here_p (struct address_space *aspace,
4393 CORE_ADDR pc)
4394 {
4395 struct bp_location **blp, **blp_tmp = NULL;
4396 struct bp_location *bl;
4397
4398 ALL_BP_LOCATIONS_AT_ADDR (blp, blp_tmp, pc)
4399 {
4400 struct bp_location *bl = *blp;
4401
4402 if (bl->loc_type != bp_loc_hardware_breakpoint)
4403 continue;
4404
4405 if (bp_location_inserted_here_p (bl, aspace, pc))
4406 return 1;
4407 }
4408
4409 return 0;
4410 }
4411
4412 int
4413 hardware_watchpoint_inserted_in_range (struct address_space *aspace,
4414 CORE_ADDR addr, ULONGEST len)
4415 {
4416 struct breakpoint *bpt;
4417
4418 ALL_BREAKPOINTS (bpt)
4419 {
4420 struct bp_location *loc;
4421
4422 if (bpt->type != bp_hardware_watchpoint
4423 && bpt->type != bp_access_watchpoint)
4424 continue;
4425
4426 if (!breakpoint_enabled (bpt))
4427 continue;
4428
4429 for (loc = bpt->loc; loc; loc = loc->next)
4430 if (loc->pspace->aspace == aspace && loc->inserted)
4431 {
4432 CORE_ADDR l, h;
4433
4434 /* Check for intersection. */
4435 l = max (loc->address, addr);
4436 h = min (loc->address + loc->length, addr + len);
4437 if (l < h)
4438 return 1;
4439 }
4440 }
4441 return 0;
4442 }
4443 \f
4444
4445 /* bpstat stuff. External routines' interfaces are documented
4446 in breakpoint.h. */
4447
4448 int
4449 is_catchpoint (struct breakpoint *ep)
4450 {
4451 return (ep->type == bp_catchpoint);
4452 }
4453
4454 /* Frees any storage that is part of a bpstat. Does not walk the
4455 'next' chain. */
4456
4457 static void
4458 bpstat_free (bpstat bs)
4459 {
4460 if (bs->old_val != NULL)
4461 value_free (bs->old_val);
4462 decref_counted_command_line (&bs->commands);
4463 decref_bp_location (&bs->bp_location_at);
4464 xfree (bs);
4465 }
4466
4467 /* Clear a bpstat so that it says we are not at any breakpoint.
4468 Also free any storage that is part of a bpstat. */
4469
4470 void
4471 bpstat_clear (bpstat *bsp)
4472 {
4473 bpstat p;
4474 bpstat q;
4475
4476 if (bsp == 0)
4477 return;
4478 p = *bsp;
4479 while (p != NULL)
4480 {
4481 q = p->next;
4482 bpstat_free (p);
4483 p = q;
4484 }
4485 *bsp = NULL;
4486 }
4487
4488 /* Return a copy of a bpstat. Like "bs1 = bs2" but all storage that
4489 is part of the bpstat is copied as well. */
4490
4491 bpstat
4492 bpstat_copy (bpstat bs)
4493 {
4494 bpstat p = NULL;
4495 bpstat tmp;
4496 bpstat retval = NULL;
4497
4498 if (bs == NULL)
4499 return bs;
4500
4501 for (; bs != NULL; bs = bs->next)
4502 {
4503 tmp = (bpstat) xmalloc (sizeof (*tmp));
4504 memcpy (tmp, bs, sizeof (*tmp));
4505 incref_counted_command_line (tmp->commands);
4506 incref_bp_location (tmp->bp_location_at);
4507 if (bs->old_val != NULL)
4508 {
4509 tmp->old_val = value_copy (bs->old_val);
4510 release_value (tmp->old_val);
4511 }
4512
4513 if (p == NULL)
4514 /* This is the first thing in the chain. */
4515 retval = tmp;
4516 else
4517 p->next = tmp;
4518 p = tmp;
4519 }
4520 p->next = NULL;
4521 return retval;
4522 }
4523
4524 /* Find the bpstat associated with this breakpoint. */
4525
4526 bpstat
4527 bpstat_find_breakpoint (bpstat bsp, struct breakpoint *breakpoint)
4528 {
4529 if (bsp == NULL)
4530 return NULL;
4531
4532 for (; bsp != NULL; bsp = bsp->next)
4533 {
4534 if (bsp->breakpoint_at == breakpoint)
4535 return bsp;
4536 }
4537 return NULL;
4538 }
4539
4540 /* See breakpoint.h. */
4541
4542 int
4543 bpstat_explains_signal (bpstat bsp, enum gdb_signal sig)
4544 {
4545 for (; bsp != NULL; bsp = bsp->next)
4546 {
4547 if (bsp->breakpoint_at == NULL)
4548 {
4549 /* A moribund location can never explain a signal other than
4550 GDB_SIGNAL_TRAP. */
4551 if (sig == GDB_SIGNAL_TRAP)
4552 return 1;
4553 }
4554 else
4555 {
4556 if (bsp->breakpoint_at->ops->explains_signal (bsp->breakpoint_at,
4557 sig))
4558 return 1;
4559 }
4560 }
4561
4562 return 0;
4563 }
4564
4565 /* Put in *NUM the breakpoint number of the first breakpoint we are
4566 stopped at. *BSP upon return is a bpstat which points to the
4567 remaining breakpoints stopped at (but which is not guaranteed to be
4568 good for anything but further calls to bpstat_num).
4569
4570 Return 0 if passed a bpstat which does not indicate any breakpoints.
4571 Return -1 if stopped at a breakpoint that has been deleted since
4572 we set it.
4573 Return 1 otherwise. */
4574
4575 int
4576 bpstat_num (bpstat *bsp, int *num)
4577 {
4578 struct breakpoint *b;
4579
4580 if ((*bsp) == NULL)
4581 return 0; /* No more breakpoint values */
4582
4583 /* We assume we'll never have several bpstats that correspond to a
4584 single breakpoint -- otherwise, this function might return the
4585 same number more than once and this will look ugly. */
4586 b = (*bsp)->breakpoint_at;
4587 *bsp = (*bsp)->next;
4588 if (b == NULL)
4589 return -1; /* breakpoint that's been deleted since */
4590
4591 *num = b->number; /* We have its number */
4592 return 1;
4593 }
4594
4595 /* See breakpoint.h. */
4596
4597 void
4598 bpstat_clear_actions (void)
4599 {
4600 struct thread_info *tp;
4601 bpstat bs;
4602
4603 if (ptid_equal (inferior_ptid, null_ptid))
4604 return;
4605
4606 tp = find_thread_ptid (inferior_ptid);
4607 if (tp == NULL)
4608 return;
4609
4610 for (bs = tp->control.stop_bpstat; bs != NULL; bs = bs->next)
4611 {
4612 decref_counted_command_line (&bs->commands);
4613
4614 if (bs->old_val != NULL)
4615 {
4616 value_free (bs->old_val);
4617 bs->old_val = NULL;
4618 }
4619 }
4620 }
4621
4622 /* Called when a command is about to proceed the inferior. */
4623
4624 static void
4625 breakpoint_about_to_proceed (void)
4626 {
4627 if (!ptid_equal (inferior_ptid, null_ptid))
4628 {
4629 struct thread_info *tp = inferior_thread ();
4630
4631 /* Allow inferior function calls in breakpoint commands to not
4632 interrupt the command list. When the call finishes
4633 successfully, the inferior will be standing at the same
4634 breakpoint as if nothing happened. */
4635 if (tp->control.in_infcall)
4636 return;
4637 }
4638
4639 breakpoint_proceeded = 1;
4640 }
4641
4642 /* Stub for cleaning up our state if we error-out of a breakpoint
4643 command. */
4644 static void
4645 cleanup_executing_breakpoints (void *ignore)
4646 {
4647 executing_breakpoint_commands = 0;
4648 }
4649
4650 /* Return non-zero iff CMD as the first line of a command sequence is `silent'
4651 or its equivalent. */
4652
4653 static int
4654 command_line_is_silent (struct command_line *cmd)
4655 {
4656 return cmd && (strcmp ("silent", cmd->line) == 0);
4657 }
4658
4659 /* Execute all the commands associated with all the breakpoints at
4660 this location. Any of these commands could cause the process to
4661 proceed beyond this point, etc. We look out for such changes by
4662 checking the global "breakpoint_proceeded" after each command.
4663
4664 Returns true if a breakpoint command resumed the inferior. In that
4665 case, it is the caller's responsibility to recall it again with the
4666 bpstat of the current thread. */
4667
4668 static int
4669 bpstat_do_actions_1 (bpstat *bsp)
4670 {
4671 bpstat bs;
4672 struct cleanup *old_chain;
4673 int again = 0;
4674
4675 /* Avoid endless recursion if a `source' command is contained
4676 in bs->commands. */
4677 if (executing_breakpoint_commands)
4678 return 0;
4679
4680 executing_breakpoint_commands = 1;
4681 old_chain = make_cleanup (cleanup_executing_breakpoints, 0);
4682
4683 prevent_dont_repeat ();
4684
4685 /* This pointer will iterate over the list of bpstat's. */
4686 bs = *bsp;
4687
4688 breakpoint_proceeded = 0;
4689 for (; bs != NULL; bs = bs->next)
4690 {
4691 struct counted_command_line *ccmd;
4692 struct command_line *cmd;
4693 struct cleanup *this_cmd_tree_chain;
4694
4695 /* Take ownership of the BSP's command tree, if it has one.
4696
4697 The command tree could legitimately contain commands like
4698 'step' and 'next', which call clear_proceed_status, which
4699 frees stop_bpstat's command tree. To make sure this doesn't
4700 free the tree we're executing out from under us, we need to
4701 take ownership of the tree ourselves. Since a given bpstat's
4702 commands are only executed once, we don't need to copy it; we
4703 can clear the pointer in the bpstat, and make sure we free
4704 the tree when we're done. */
4705 ccmd = bs->commands;
4706 bs->commands = NULL;
4707 this_cmd_tree_chain = make_cleanup_decref_counted_command_line (&ccmd);
4708 cmd = ccmd ? ccmd->commands : NULL;
4709 if (command_line_is_silent (cmd))
4710 {
4711 /* The action has been already done by bpstat_stop_status. */
4712 cmd = cmd->next;
4713 }
4714
4715 while (cmd != NULL)
4716 {
4717 execute_control_command (cmd);
4718
4719 if (breakpoint_proceeded)
4720 break;
4721 else
4722 cmd = cmd->next;
4723 }
4724
4725 /* We can free this command tree now. */
4726 do_cleanups (this_cmd_tree_chain);
4727
4728 if (breakpoint_proceeded)
4729 {
4730 if (interpreter_async)
4731 /* If we are in async mode, then the target might be still
4732 running, not stopped at any breakpoint, so nothing for
4733 us to do here -- just return to the event loop. */
4734 ;
4735 else
4736 /* In sync mode, when execute_control_command returns
4737 we're already standing on the next breakpoint.
4738 Breakpoint commands for that stop were not run, since
4739 execute_command does not run breakpoint commands --
4740 only command_line_handler does, but that one is not
4741 involved in execution of breakpoint commands. So, we
4742 can now execute breakpoint commands. It should be
4743 noted that making execute_command do bpstat actions is
4744 not an option -- in this case we'll have recursive
4745 invocation of bpstat for each breakpoint with a
4746 command, and can easily blow up GDB stack. Instead, we
4747 return true, which will trigger the caller to recall us
4748 with the new stop_bpstat. */
4749 again = 1;
4750 break;
4751 }
4752 }
4753 do_cleanups (old_chain);
4754 return again;
4755 }
4756
4757 void
4758 bpstat_do_actions (void)
4759 {
4760 struct cleanup *cleanup_if_error = make_bpstat_clear_actions_cleanup ();
4761
4762 /* Do any commands attached to breakpoint we are stopped at. */
4763 while (!ptid_equal (inferior_ptid, null_ptid)
4764 && target_has_execution
4765 && !is_exited (inferior_ptid)
4766 && !is_executing (inferior_ptid))
4767 /* Since in sync mode, bpstat_do_actions may resume the inferior,
4768 and only return when it is stopped at the next breakpoint, we
4769 keep doing breakpoint actions until it returns false to
4770 indicate the inferior was not resumed. */
4771 if (!bpstat_do_actions_1 (&inferior_thread ()->control.stop_bpstat))
4772 break;
4773
4774 discard_cleanups (cleanup_if_error);
4775 }
4776
4777 /* Print out the (old or new) value associated with a watchpoint. */
4778
4779 static void
4780 watchpoint_value_print (struct value *val, struct ui_file *stream)
4781 {
4782 if (val == NULL)
4783 fprintf_unfiltered (stream, _("<unreadable>"));
4784 else
4785 {
4786 struct value_print_options opts;
4787 get_user_print_options (&opts);
4788 value_print (val, stream, &opts);
4789 }
4790 }
4791
4792 /* Generic routine for printing messages indicating why we
4793 stopped. The behavior of this function depends on the value
4794 'print_it' in the bpstat structure. Under some circumstances we
4795 may decide not to print anything here and delegate the task to
4796 normal_stop(). */
4797
4798 static enum print_stop_action
4799 print_bp_stop_message (bpstat bs)
4800 {
4801 switch (bs->print_it)
4802 {
4803 case print_it_noop:
4804 /* Nothing should be printed for this bpstat entry. */
4805 return PRINT_UNKNOWN;
4806 break;
4807
4808 case print_it_done:
4809 /* We still want to print the frame, but we already printed the
4810 relevant messages. */
4811 return PRINT_SRC_AND_LOC;
4812 break;
4813
4814 case print_it_normal:
4815 {
4816 struct breakpoint *b = bs->breakpoint_at;
4817
4818 /* bs->breakpoint_at can be NULL if it was a momentary breakpoint
4819 which has since been deleted. */
4820 if (b == NULL)
4821 return PRINT_UNKNOWN;
4822
4823 /* Normal case. Call the breakpoint's print_it method. */
4824 return b->ops->print_it (bs);
4825 }
4826 break;
4827
4828 default:
4829 internal_error (__FILE__, __LINE__,
4830 _("print_bp_stop_message: unrecognized enum value"));
4831 break;
4832 }
4833 }
4834
4835 /* A helper function that prints a shared library stopped event. */
4836
4837 static void
4838 print_solib_event (int is_catchpoint)
4839 {
4840 int any_deleted
4841 = !VEC_empty (char_ptr, current_program_space->deleted_solibs);
4842 int any_added
4843 = !VEC_empty (so_list_ptr, current_program_space->added_solibs);
4844
4845 if (!is_catchpoint)
4846 {
4847 if (any_added || any_deleted)
4848 ui_out_text (current_uiout,
4849 _("Stopped due to shared library event:\n"));
4850 else
4851 ui_out_text (current_uiout,
4852 _("Stopped due to shared library event (no "
4853 "libraries added or removed)\n"));
4854 }
4855
4856 if (ui_out_is_mi_like_p (current_uiout))
4857 ui_out_field_string (current_uiout, "reason",
4858 async_reason_lookup (EXEC_ASYNC_SOLIB_EVENT));
4859
4860 if (any_deleted)
4861 {
4862 struct cleanup *cleanup;
4863 char *name;
4864 int ix;
4865
4866 ui_out_text (current_uiout, _(" Inferior unloaded "));
4867 cleanup = make_cleanup_ui_out_list_begin_end (current_uiout,
4868 "removed");
4869 for (ix = 0;
4870 VEC_iterate (char_ptr, current_program_space->deleted_solibs,
4871 ix, name);
4872 ++ix)
4873 {
4874 if (ix > 0)
4875 ui_out_text (current_uiout, " ");
4876 ui_out_field_string (current_uiout, "library", name);
4877 ui_out_text (current_uiout, "\n");
4878 }
4879
4880 do_cleanups (cleanup);
4881 }
4882
4883 if (any_added)
4884 {
4885 struct so_list *iter;
4886 int ix;
4887 struct cleanup *cleanup;
4888
4889 ui_out_text (current_uiout, _(" Inferior loaded "));
4890 cleanup = make_cleanup_ui_out_list_begin_end (current_uiout,
4891 "added");
4892 for (ix = 0;
4893 VEC_iterate (so_list_ptr, current_program_space->added_solibs,
4894 ix, iter);
4895 ++ix)
4896 {
4897 if (ix > 0)
4898 ui_out_text (current_uiout, " ");
4899 ui_out_field_string (current_uiout, "library", iter->so_name);
4900 ui_out_text (current_uiout, "\n");
4901 }
4902
4903 do_cleanups (cleanup);
4904 }
4905 }
4906
4907 /* Print a message indicating what happened. This is called from
4908 normal_stop(). The input to this routine is the head of the bpstat
4909 list - a list of the eventpoints that caused this stop. KIND is
4910 the target_waitkind for the stopping event. This
4911 routine calls the generic print routine for printing a message
4912 about reasons for stopping. This will print (for example) the
4913 "Breakpoint n," part of the output. The return value of this
4914 routine is one of:
4915
4916 PRINT_UNKNOWN: Means we printed nothing.
4917 PRINT_SRC_AND_LOC: Means we printed something, and expect subsequent
4918 code to print the location. An example is
4919 "Breakpoint 1, " which should be followed by
4920 the location.
4921 PRINT_SRC_ONLY: Means we printed something, but there is no need
4922 to also print the location part of the message.
4923 An example is the catch/throw messages, which
4924 don't require a location appended to the end.
4925 PRINT_NOTHING: We have done some printing and we don't need any
4926 further info to be printed. */
4927
4928 enum print_stop_action
4929 bpstat_print (bpstat bs, int kind)
4930 {
4931 enum print_stop_action val;
4932
4933 /* Maybe another breakpoint in the chain caused us to stop.
4934 (Currently all watchpoints go on the bpstat whether hit or not.
4935 That probably could (should) be changed, provided care is taken
4936 with respect to bpstat_explains_signal). */
4937 for (; bs; bs = bs->next)
4938 {
4939 val = print_bp_stop_message (bs);
4940 if (val == PRINT_SRC_ONLY
4941 || val == PRINT_SRC_AND_LOC
4942 || val == PRINT_NOTHING)
4943 return val;
4944 }
4945
4946 /* If we had hit a shared library event breakpoint,
4947 print_bp_stop_message would print out this message. If we hit an
4948 OS-level shared library event, do the same thing. */
4949 if (kind == TARGET_WAITKIND_LOADED)
4950 {
4951 print_solib_event (0);
4952 return PRINT_NOTHING;
4953 }
4954
4955 /* We reached the end of the chain, or we got a null BS to start
4956 with and nothing was printed. */
4957 return PRINT_UNKNOWN;
4958 }
4959
4960 /* Evaluate the expression EXP and return 1 if value is zero.
4961 This returns the inverse of the condition because it is called
4962 from catch_errors which returns 0 if an exception happened, and if an
4963 exception happens we want execution to stop.
4964 The argument is a "struct expression *" that has been cast to a
4965 "void *" to make it pass through catch_errors. */
4966
4967 static int
4968 breakpoint_cond_eval (void *exp)
4969 {
4970 struct value *mark = value_mark ();
4971 int i = !value_true (evaluate_expression ((struct expression *) exp));
4972
4973 value_free_to_mark (mark);
4974 return i;
4975 }
4976
4977 /* Allocate a new bpstat. Link it to the FIFO list by BS_LINK_POINTER. */
4978
4979 static bpstat
4980 bpstat_alloc (struct bp_location *bl, bpstat **bs_link_pointer)
4981 {
4982 bpstat bs;
4983
4984 bs = (bpstat) xmalloc (sizeof (*bs));
4985 bs->next = NULL;
4986 **bs_link_pointer = bs;
4987 *bs_link_pointer = &bs->next;
4988 bs->breakpoint_at = bl->owner;
4989 bs->bp_location_at = bl;
4990 incref_bp_location (bl);
4991 /* If the condition is false, etc., don't do the commands. */
4992 bs->commands = NULL;
4993 bs->old_val = NULL;
4994 bs->print_it = print_it_normal;
4995 return bs;
4996 }
4997 \f
4998 /* The target has stopped with waitstatus WS. Check if any hardware
4999 watchpoints have triggered, according to the target. */
5000
5001 int
5002 watchpoints_triggered (struct target_waitstatus *ws)
5003 {
5004 int stopped_by_watchpoint = target_stopped_by_watchpoint ();
5005 CORE_ADDR addr;
5006 struct breakpoint *b;
5007
5008 if (!stopped_by_watchpoint)
5009 {
5010 /* We were not stopped by a watchpoint. Mark all watchpoints
5011 as not triggered. */
5012 ALL_BREAKPOINTS (b)
5013 if (is_hardware_watchpoint (b))
5014 {
5015 struct watchpoint *w = (struct watchpoint *) b;
5016
5017 w->watchpoint_triggered = watch_triggered_no;
5018 }
5019
5020 return 0;
5021 }
5022
5023 if (!target_stopped_data_address (&current_target, &addr))
5024 {
5025 /* We were stopped by a watchpoint, but we don't know where.
5026 Mark all watchpoints as unknown. */
5027 ALL_BREAKPOINTS (b)
5028 if (is_hardware_watchpoint (b))
5029 {
5030 struct watchpoint *w = (struct watchpoint *) b;
5031
5032 w->watchpoint_triggered = watch_triggered_unknown;
5033 }
5034
5035 return 1;
5036 }
5037
5038 /* The target could report the data address. Mark watchpoints
5039 affected by this data address as triggered, and all others as not
5040 triggered. */
5041
5042 ALL_BREAKPOINTS (b)
5043 if (is_hardware_watchpoint (b))
5044 {
5045 struct watchpoint *w = (struct watchpoint *) b;
5046 struct bp_location *loc;
5047
5048 w->watchpoint_triggered = watch_triggered_no;
5049 for (loc = b->loc; loc; loc = loc->next)
5050 {
5051 if (is_masked_watchpoint (b))
5052 {
5053 CORE_ADDR newaddr = addr & w->hw_wp_mask;
5054 CORE_ADDR start = loc->address & w->hw_wp_mask;
5055
5056 if (newaddr == start)
5057 {
5058 w->watchpoint_triggered = watch_triggered_yes;
5059 break;
5060 }
5061 }
5062 /* Exact match not required. Within range is sufficient. */
5063 else if (target_watchpoint_addr_within_range (&current_target,
5064 addr, loc->address,
5065 loc->length))
5066 {
5067 w->watchpoint_triggered = watch_triggered_yes;
5068 break;
5069 }
5070 }
5071 }
5072
5073 return 1;
5074 }
5075
5076 /* Possible return values for watchpoint_check (this can't be an enum
5077 because of check_errors). */
5078 /* The watchpoint has been deleted. */
5079 #define WP_DELETED 1
5080 /* The value has changed. */
5081 #define WP_VALUE_CHANGED 2
5082 /* The value has not changed. */
5083 #define WP_VALUE_NOT_CHANGED 3
5084 /* Ignore this watchpoint, no matter if the value changed or not. */
5085 #define WP_IGNORE 4
5086
5087 #define BP_TEMPFLAG 1
5088 #define BP_HARDWAREFLAG 2
5089
5090 /* Evaluate watchpoint condition expression and check if its value
5091 changed.
5092
5093 P should be a pointer to struct bpstat, but is defined as a void *
5094 in order for this function to be usable with catch_errors. */
5095
5096 static int
5097 watchpoint_check (void *p)
5098 {
5099 bpstat bs = (bpstat) p;
5100 struct watchpoint *b;
5101 struct frame_info *fr;
5102 int within_current_scope;
5103
5104 /* BS is built from an existing struct breakpoint. */
5105 gdb_assert (bs->breakpoint_at != NULL);
5106 b = (struct watchpoint *) bs->breakpoint_at;
5107
5108 /* If this is a local watchpoint, we only want to check if the
5109 watchpoint frame is in scope if the current thread is the thread
5110 that was used to create the watchpoint. */
5111 if (!watchpoint_in_thread_scope (b))
5112 return WP_IGNORE;
5113
5114 if (b->exp_valid_block == NULL)
5115 within_current_scope = 1;
5116 else
5117 {
5118 struct frame_info *frame = get_current_frame ();
5119 struct gdbarch *frame_arch = get_frame_arch (frame);
5120 CORE_ADDR frame_pc = get_frame_pc (frame);
5121
5122 /* stack_frame_destroyed_p() returns a non-zero value if we're
5123 still in the function but the stack frame has already been
5124 invalidated. Since we can't rely on the values of local
5125 variables after the stack has been destroyed, we are treating
5126 the watchpoint in that state as `not changed' without further
5127 checking. Don't mark watchpoints as changed if the current
5128 frame is in an epilogue - even if they are in some other
5129 frame, our view of the stack is likely to be wrong and
5130 frame_find_by_id could error out. */
5131 if (gdbarch_stack_frame_destroyed_p (frame_arch, frame_pc))
5132 return WP_IGNORE;
5133
5134 fr = frame_find_by_id (b->watchpoint_frame);
5135 within_current_scope = (fr != NULL);
5136
5137 /* If we've gotten confused in the unwinder, we might have
5138 returned a frame that can't describe this variable. */
5139 if (within_current_scope)
5140 {
5141 struct symbol *function;
5142
5143 function = get_frame_function (fr);
5144 if (function == NULL
5145 || !contained_in (b->exp_valid_block,
5146 SYMBOL_BLOCK_VALUE (function)))
5147 within_current_scope = 0;
5148 }
5149
5150 if (within_current_scope)
5151 /* If we end up stopping, the current frame will get selected
5152 in normal_stop. So this call to select_frame won't affect
5153 the user. */
5154 select_frame (fr);
5155 }
5156
5157 if (within_current_scope)
5158 {
5159 /* We use value_{,free_to_}mark because it could be a *long*
5160 time before we return to the command level and call
5161 free_all_values. We can't call free_all_values because we
5162 might be in the middle of evaluating a function call. */
5163
5164 int pc = 0;
5165 struct value *mark;
5166 struct value *new_val;
5167
5168 if (is_masked_watchpoint (&b->base))
5169 /* Since we don't know the exact trigger address (from
5170 stopped_data_address), just tell the user we've triggered
5171 a mask watchpoint. */
5172 return WP_VALUE_CHANGED;
5173
5174 mark = value_mark ();
5175 fetch_subexp_value (b->exp, &pc, &new_val, NULL, NULL, 0);
5176
5177 if (b->val_bitsize != 0)
5178 new_val = extract_bitfield_from_watchpoint_value (b, new_val);
5179
5180 /* We use value_equal_contents instead of value_equal because
5181 the latter coerces an array to a pointer, thus comparing just
5182 the address of the array instead of its contents. This is
5183 not what we want. */
5184 if ((b->val != NULL) != (new_val != NULL)
5185 || (b->val != NULL && !value_equal_contents (b->val, new_val)))
5186 {
5187 if (new_val != NULL)
5188 {
5189 release_value (new_val);
5190 value_free_to_mark (mark);
5191 }
5192 bs->old_val = b->val;
5193 b->val = new_val;
5194 b->val_valid = 1;
5195 return WP_VALUE_CHANGED;
5196 }
5197 else
5198 {
5199 /* Nothing changed. */
5200 value_free_to_mark (mark);
5201 return WP_VALUE_NOT_CHANGED;
5202 }
5203 }
5204 else
5205 {
5206 struct ui_out *uiout = current_uiout;
5207
5208 /* This seems like the only logical thing to do because
5209 if we temporarily ignored the watchpoint, then when
5210 we reenter the block in which it is valid it contains
5211 garbage (in the case of a function, it may have two
5212 garbage values, one before and one after the prologue).
5213 So we can't even detect the first assignment to it and
5214 watch after that (since the garbage may or may not equal
5215 the first value assigned). */
5216 /* We print all the stop information in
5217 breakpoint_ops->print_it, but in this case, by the time we
5218 call breakpoint_ops->print_it this bp will be deleted
5219 already. So we have no choice but print the information
5220 here. */
5221 if (ui_out_is_mi_like_p (uiout))
5222 ui_out_field_string
5223 (uiout, "reason", async_reason_lookup (EXEC_ASYNC_WATCHPOINT_SCOPE));
5224 ui_out_text (uiout, "\nWatchpoint ");
5225 ui_out_field_int (uiout, "wpnum", b->base.number);
5226 ui_out_text (uiout,
5227 " deleted because the program has left the block in\n\
5228 which its expression is valid.\n");
5229
5230 /* Make sure the watchpoint's commands aren't executed. */
5231 decref_counted_command_line (&b->base.commands);
5232 watchpoint_del_at_next_stop (b);
5233
5234 return WP_DELETED;
5235 }
5236 }
5237
5238 /* Return true if it looks like target has stopped due to hitting
5239 breakpoint location BL. This function does not check if we should
5240 stop, only if BL explains the stop. */
5241
5242 static int
5243 bpstat_check_location (const struct bp_location *bl,
5244 struct address_space *aspace, CORE_ADDR bp_addr,
5245 const struct target_waitstatus *ws)
5246 {
5247 struct breakpoint *b = bl->owner;
5248
5249 /* BL is from an existing breakpoint. */
5250 gdb_assert (b != NULL);
5251
5252 return b->ops->breakpoint_hit (bl, aspace, bp_addr, ws);
5253 }
5254
5255 /* Determine if the watched values have actually changed, and we
5256 should stop. If not, set BS->stop to 0. */
5257
5258 static void
5259 bpstat_check_watchpoint (bpstat bs)
5260 {
5261 const struct bp_location *bl;
5262 struct watchpoint *b;
5263
5264 /* BS is built for existing struct breakpoint. */
5265 bl = bs->bp_location_at;
5266 gdb_assert (bl != NULL);
5267 b = (struct watchpoint *) bs->breakpoint_at;
5268 gdb_assert (b != NULL);
5269
5270 {
5271 int must_check_value = 0;
5272
5273 if (b->base.type == bp_watchpoint)
5274 /* For a software watchpoint, we must always check the
5275 watched value. */
5276 must_check_value = 1;
5277 else if (b->watchpoint_triggered == watch_triggered_yes)
5278 /* We have a hardware watchpoint (read, write, or access)
5279 and the target earlier reported an address watched by
5280 this watchpoint. */
5281 must_check_value = 1;
5282 else if (b->watchpoint_triggered == watch_triggered_unknown
5283 && b->base.type == bp_hardware_watchpoint)
5284 /* We were stopped by a hardware watchpoint, but the target could
5285 not report the data address. We must check the watchpoint's
5286 value. Access and read watchpoints are out of luck; without
5287 a data address, we can't figure it out. */
5288 must_check_value = 1;
5289
5290 if (must_check_value)
5291 {
5292 char *message
5293 = xstrprintf ("Error evaluating expression for watchpoint %d\n",
5294 b->base.number);
5295 struct cleanup *cleanups = make_cleanup (xfree, message);
5296 int e = catch_errors (watchpoint_check, bs, message,
5297 RETURN_MASK_ALL);
5298 do_cleanups (cleanups);
5299 switch (e)
5300 {
5301 case WP_DELETED:
5302 /* We've already printed what needs to be printed. */
5303 bs->print_it = print_it_done;
5304 /* Stop. */
5305 break;
5306 case WP_IGNORE:
5307 bs->print_it = print_it_noop;
5308 bs->stop = 0;
5309 break;
5310 case WP_VALUE_CHANGED:
5311 if (b->base.type == bp_read_watchpoint)
5312 {
5313 /* There are two cases to consider here:
5314
5315 1. We're watching the triggered memory for reads.
5316 In that case, trust the target, and always report
5317 the watchpoint hit to the user. Even though
5318 reads don't cause value changes, the value may
5319 have changed since the last time it was read, and
5320 since we're not trapping writes, we will not see
5321 those, and as such we should ignore our notion of
5322 old value.
5323
5324 2. We're watching the triggered memory for both
5325 reads and writes. There are two ways this may
5326 happen:
5327
5328 2.1. This is a target that can't break on data
5329 reads only, but can break on accesses (reads or
5330 writes), such as e.g., x86. We detect this case
5331 at the time we try to insert read watchpoints.
5332
5333 2.2. Otherwise, the target supports read
5334 watchpoints, but, the user set an access or write
5335 watchpoint watching the same memory as this read
5336 watchpoint.
5337
5338 If we're watching memory writes as well as reads,
5339 ignore watchpoint hits when we find that the
5340 value hasn't changed, as reads don't cause
5341 changes. This still gives false positives when
5342 the program writes the same value to memory as
5343 what there was already in memory (we will confuse
5344 it for a read), but it's much better than
5345 nothing. */
5346
5347 int other_write_watchpoint = 0;
5348
5349 if (bl->watchpoint_type == hw_read)
5350 {
5351 struct breakpoint *other_b;
5352
5353 ALL_BREAKPOINTS (other_b)
5354 if (other_b->type == bp_hardware_watchpoint
5355 || other_b->type == bp_access_watchpoint)
5356 {
5357 struct watchpoint *other_w =
5358 (struct watchpoint *) other_b;
5359
5360 if (other_w->watchpoint_triggered
5361 == watch_triggered_yes)
5362 {
5363 other_write_watchpoint = 1;
5364 break;
5365 }
5366 }
5367 }
5368
5369 if (other_write_watchpoint
5370 || bl->watchpoint_type == hw_access)
5371 {
5372 /* We're watching the same memory for writes,
5373 and the value changed since the last time we
5374 updated it, so this trap must be for a write.
5375 Ignore it. */
5376 bs->print_it = print_it_noop;
5377 bs->stop = 0;
5378 }
5379 }
5380 break;
5381 case WP_VALUE_NOT_CHANGED:
5382 if (b->base.type == bp_hardware_watchpoint
5383 || b->base.type == bp_watchpoint)
5384 {
5385 /* Don't stop: write watchpoints shouldn't fire if
5386 the value hasn't changed. */
5387 bs->print_it = print_it_noop;
5388 bs->stop = 0;
5389 }
5390 /* Stop. */
5391 break;
5392 default:
5393 /* Can't happen. */
5394 case 0:
5395 /* Error from catch_errors. */
5396 printf_filtered (_("Watchpoint %d deleted.\n"), b->base.number);
5397 watchpoint_del_at_next_stop (b);
5398 /* We've already printed what needs to be printed. */
5399 bs->print_it = print_it_done;
5400 break;
5401 }
5402 }
5403 else /* must_check_value == 0 */
5404 {
5405 /* This is a case where some watchpoint(s) triggered, but
5406 not at the address of this watchpoint, or else no
5407 watchpoint triggered after all. So don't print
5408 anything for this watchpoint. */
5409 bs->print_it = print_it_noop;
5410 bs->stop = 0;
5411 }
5412 }
5413 }
5414
5415 /* For breakpoints that are currently marked as telling gdb to stop,
5416 check conditions (condition proper, frame, thread and ignore count)
5417 of breakpoint referred to by BS. If we should not stop for this
5418 breakpoint, set BS->stop to 0. */
5419
5420 static void
5421 bpstat_check_breakpoint_conditions (bpstat bs, ptid_t ptid)
5422 {
5423 const struct bp_location *bl;
5424 struct breakpoint *b;
5425 int value_is_zero = 0;
5426 struct expression *cond;
5427
5428 gdb_assert (bs->stop);
5429
5430 /* BS is built for existing struct breakpoint. */
5431 bl = bs->bp_location_at;
5432 gdb_assert (bl != NULL);
5433 b = bs->breakpoint_at;
5434 gdb_assert (b != NULL);
5435
5436 /* Even if the target evaluated the condition on its end and notified GDB, we
5437 need to do so again since GDB does not know if we stopped due to a
5438 breakpoint or a single step breakpoint. */
5439
5440 if (frame_id_p (b->frame_id)
5441 && !frame_id_eq (b->frame_id, get_stack_frame_id (get_current_frame ())))
5442 {
5443 bs->stop = 0;
5444 return;
5445 }
5446
5447 /* If this is a thread/task-specific breakpoint, don't waste cpu
5448 evaluating the condition if this isn't the specified
5449 thread/task. */
5450 if ((b->thread != -1 && b->thread != pid_to_thread_id (ptid))
5451 || (b->task != 0 && b->task != ada_get_task_number (ptid)))
5452
5453 {
5454 bs->stop = 0;
5455 return;
5456 }
5457
5458 /* Evaluate extension language breakpoints that have a "stop" method
5459 implemented. */
5460 bs->stop = breakpoint_ext_lang_cond_says_stop (b);
5461
5462 if (is_watchpoint (b))
5463 {
5464 struct watchpoint *w = (struct watchpoint *) b;
5465
5466 cond = w->cond_exp;
5467 }
5468 else
5469 cond = bl->cond;
5470
5471 if (cond && b->disposition != disp_del_at_next_stop)
5472 {
5473 int within_current_scope = 1;
5474 struct watchpoint * w;
5475
5476 /* We use value_mark and value_free_to_mark because it could
5477 be a long time before we return to the command level and
5478 call free_all_values. We can't call free_all_values
5479 because we might be in the middle of evaluating a
5480 function call. */
5481 struct value *mark = value_mark ();
5482
5483 if (is_watchpoint (b))
5484 w = (struct watchpoint *) b;
5485 else
5486 w = NULL;
5487
5488 /* Need to select the frame, with all that implies so that
5489 the conditions will have the right context. Because we
5490 use the frame, we will not see an inlined function's
5491 variables when we arrive at a breakpoint at the start
5492 of the inlined function; the current frame will be the
5493 call site. */
5494 if (w == NULL || w->cond_exp_valid_block == NULL)
5495 select_frame (get_current_frame ());
5496 else
5497 {
5498 struct frame_info *frame;
5499
5500 /* For local watchpoint expressions, which particular
5501 instance of a local is being watched matters, so we
5502 keep track of the frame to evaluate the expression
5503 in. To evaluate the condition however, it doesn't
5504 really matter which instantiation of the function
5505 where the condition makes sense triggers the
5506 watchpoint. This allows an expression like "watch
5507 global if q > 10" set in `func', catch writes to
5508 global on all threads that call `func', or catch
5509 writes on all recursive calls of `func' by a single
5510 thread. We simply always evaluate the condition in
5511 the innermost frame that's executing where it makes
5512 sense to evaluate the condition. It seems
5513 intuitive. */
5514 frame = block_innermost_frame (w->cond_exp_valid_block);
5515 if (frame != NULL)
5516 select_frame (frame);
5517 else
5518 within_current_scope = 0;
5519 }
5520 if (within_current_scope)
5521 value_is_zero
5522 = catch_errors (breakpoint_cond_eval, cond,
5523 "Error in testing breakpoint condition:\n",
5524 RETURN_MASK_ALL);
5525 else
5526 {
5527 warning (_("Watchpoint condition cannot be tested "
5528 "in the current scope"));
5529 /* If we failed to set the right context for this
5530 watchpoint, unconditionally report it. */
5531 value_is_zero = 0;
5532 }
5533 /* FIXME-someday, should give breakpoint #. */
5534 value_free_to_mark (mark);
5535 }
5536
5537 if (cond && value_is_zero)
5538 {
5539 bs->stop = 0;
5540 }
5541 else if (b->ignore_count > 0)
5542 {
5543 b->ignore_count--;
5544 bs->stop = 0;
5545 /* Increase the hit count even though we don't stop. */
5546 ++(b->hit_count);
5547 observer_notify_breakpoint_modified (b);
5548 }
5549 }
5550
5551 /* Returns true if we need to track moribund locations of LOC's type
5552 on the current target. */
5553
5554 static int
5555 need_moribund_for_location_type (struct bp_location *loc)
5556 {
5557 return ((loc->loc_type == bp_loc_software_breakpoint
5558 && !target_supports_stopped_by_sw_breakpoint ())
5559 || (loc->loc_type == bp_loc_hardware_breakpoint
5560 && !target_supports_stopped_by_hw_breakpoint ()));
5561 }
5562
5563
5564 /* Get a bpstat associated with having just stopped at address
5565 BP_ADDR in thread PTID.
5566
5567 Determine whether we stopped at a breakpoint, etc, or whether we
5568 don't understand this stop. Result is a chain of bpstat's such
5569 that:
5570
5571 if we don't understand the stop, the result is a null pointer.
5572
5573 if we understand why we stopped, the result is not null.
5574
5575 Each element of the chain refers to a particular breakpoint or
5576 watchpoint at which we have stopped. (We may have stopped for
5577 several reasons concurrently.)
5578
5579 Each element of the chain has valid next, breakpoint_at,
5580 commands, FIXME??? fields. */
5581
5582 bpstat
5583 bpstat_stop_status (struct address_space *aspace,
5584 CORE_ADDR bp_addr, ptid_t ptid,
5585 const struct target_waitstatus *ws)
5586 {
5587 struct breakpoint *b = NULL;
5588 struct bp_location *bl;
5589 struct bp_location *loc;
5590 /* First item of allocated bpstat's. */
5591 bpstat bs_head = NULL, *bs_link = &bs_head;
5592 /* Pointer to the last thing in the chain currently. */
5593 bpstat bs;
5594 int ix;
5595 int need_remove_insert;
5596 int removed_any;
5597
5598 /* First, build the bpstat chain with locations that explain a
5599 target stop, while being careful to not set the target running,
5600 as that may invalidate locations (in particular watchpoint
5601 locations are recreated). Resuming will happen here with
5602 breakpoint conditions or watchpoint expressions that include
5603 inferior function calls. */
5604
5605 ALL_BREAKPOINTS (b)
5606 {
5607 if (!breakpoint_enabled (b))
5608 continue;
5609
5610 for (bl = b->loc; bl != NULL; bl = bl->next)
5611 {
5612 /* For hardware watchpoints, we look only at the first
5613 location. The watchpoint_check function will work on the
5614 entire expression, not the individual locations. For
5615 read watchpoints, the watchpoints_triggered function has
5616 checked all locations already. */
5617 if (b->type == bp_hardware_watchpoint && bl != b->loc)
5618 break;
5619
5620 if (!bl->enabled || bl->shlib_disabled)
5621 continue;
5622
5623 if (!bpstat_check_location (bl, aspace, bp_addr, ws))
5624 continue;
5625
5626 /* Come here if it's a watchpoint, or if the break address
5627 matches. */
5628
5629 bs = bpstat_alloc (bl, &bs_link); /* Alloc a bpstat to
5630 explain stop. */
5631
5632 /* Assume we stop. Should we find a watchpoint that is not
5633 actually triggered, or if the condition of the breakpoint
5634 evaluates as false, we'll reset 'stop' to 0. */
5635 bs->stop = 1;
5636 bs->print = 1;
5637
5638 /* If this is a scope breakpoint, mark the associated
5639 watchpoint as triggered so that we will handle the
5640 out-of-scope event. We'll get to the watchpoint next
5641 iteration. */
5642 if (b->type == bp_watchpoint_scope && b->related_breakpoint != b)
5643 {
5644 struct watchpoint *w = (struct watchpoint *) b->related_breakpoint;
5645
5646 w->watchpoint_triggered = watch_triggered_yes;
5647 }
5648 }
5649 }
5650
5651 /* Check if a moribund breakpoint explains the stop. */
5652 if (!target_supports_stopped_by_sw_breakpoint ()
5653 || !target_supports_stopped_by_hw_breakpoint ())
5654 {
5655 for (ix = 0; VEC_iterate (bp_location_p, moribund_locations, ix, loc); ++ix)
5656 {
5657 if (breakpoint_location_address_match (loc, aspace, bp_addr)
5658 && need_moribund_for_location_type (loc))
5659 {
5660 bs = bpstat_alloc (loc, &bs_link);
5661 /* For hits of moribund locations, we should just proceed. */
5662 bs->stop = 0;
5663 bs->print = 0;
5664 bs->print_it = print_it_noop;
5665 }
5666 }
5667 }
5668
5669 /* A bit of special processing for shlib breakpoints. We need to
5670 process solib loading here, so that the lists of loaded and
5671 unloaded libraries are correct before we handle "catch load" and
5672 "catch unload". */
5673 for (bs = bs_head; bs != NULL; bs = bs->next)
5674 {
5675 if (bs->breakpoint_at && bs->breakpoint_at->type == bp_shlib_event)
5676 {
5677 handle_solib_event ();
5678 break;
5679 }
5680 }
5681
5682 /* Now go through the locations that caused the target to stop, and
5683 check whether we're interested in reporting this stop to higher
5684 layers, or whether we should resume the target transparently. */
5685
5686 removed_any = 0;
5687
5688 for (bs = bs_head; bs != NULL; bs = bs->next)
5689 {
5690 if (!bs->stop)
5691 continue;
5692
5693 b = bs->breakpoint_at;
5694 b->ops->check_status (bs);
5695 if (bs->stop)
5696 {
5697 bpstat_check_breakpoint_conditions (bs, ptid);
5698
5699 if (bs->stop)
5700 {
5701 ++(b->hit_count);
5702 observer_notify_breakpoint_modified (b);
5703
5704 /* We will stop here. */
5705 if (b->disposition == disp_disable)
5706 {
5707 --(b->enable_count);
5708 if (b->enable_count <= 0)
5709 b->enable_state = bp_disabled;
5710 removed_any = 1;
5711 }
5712 if (b->silent)
5713 bs->print = 0;
5714 bs->commands = b->commands;
5715 incref_counted_command_line (bs->commands);
5716 if (command_line_is_silent (bs->commands
5717 ? bs->commands->commands : NULL))
5718 bs->print = 0;
5719
5720 b->ops->after_condition_true (bs);
5721 }
5722
5723 }
5724
5725 /* Print nothing for this entry if we don't stop or don't
5726 print. */
5727 if (!bs->stop || !bs->print)
5728 bs->print_it = print_it_noop;
5729 }
5730
5731 /* If we aren't stopping, the value of some hardware watchpoint may
5732 not have changed, but the intermediate memory locations we are
5733 watching may have. Don't bother if we're stopping; this will get
5734 done later. */
5735 need_remove_insert = 0;
5736 if (! bpstat_causes_stop (bs_head))
5737 for (bs = bs_head; bs != NULL; bs = bs->next)
5738 if (!bs->stop
5739 && bs->breakpoint_at
5740 && is_hardware_watchpoint (bs->breakpoint_at))
5741 {
5742 struct watchpoint *w = (struct watchpoint *) bs->breakpoint_at;
5743
5744 update_watchpoint (w, 0 /* don't reparse. */);
5745 need_remove_insert = 1;
5746 }
5747
5748 if (need_remove_insert)
5749 update_global_location_list (UGLL_MAY_INSERT);
5750 else if (removed_any)
5751 update_global_location_list (UGLL_DONT_INSERT);
5752
5753 return bs_head;
5754 }
5755
5756 static void
5757 handle_jit_event (void)
5758 {
5759 struct frame_info *frame;
5760 struct gdbarch *gdbarch;
5761
5762 if (debug_infrun)
5763 fprintf_unfiltered (gdb_stdlog, "handling bp_jit_event\n");
5764
5765 /* Switch terminal for any messages produced by
5766 breakpoint_re_set. */
5767 target_terminal_ours_for_output ();
5768
5769 frame = get_current_frame ();
5770 gdbarch = get_frame_arch (frame);
5771
5772 jit_event_handler (gdbarch);
5773
5774 target_terminal_inferior ();
5775 }
5776
5777 /* Prepare WHAT final decision for infrun. */
5778
5779 /* Decide what infrun needs to do with this bpstat. */
5780
5781 struct bpstat_what
5782 bpstat_what (bpstat bs_head)
5783 {
5784 struct bpstat_what retval;
5785 int jit_event = 0;
5786 bpstat bs;
5787
5788 retval.main_action = BPSTAT_WHAT_KEEP_CHECKING;
5789 retval.call_dummy = STOP_NONE;
5790 retval.is_longjmp = 0;
5791
5792 for (bs = bs_head; bs != NULL; bs = bs->next)
5793 {
5794 /* Extract this BS's action. After processing each BS, we check
5795 if its action overrides all we've seem so far. */
5796 enum bpstat_what_main_action this_action = BPSTAT_WHAT_KEEP_CHECKING;
5797 enum bptype bptype;
5798
5799 if (bs->breakpoint_at == NULL)
5800 {
5801 /* I suspect this can happen if it was a momentary
5802 breakpoint which has since been deleted. */
5803 bptype = bp_none;
5804 }
5805 else
5806 bptype = bs->breakpoint_at->type;
5807
5808 switch (bptype)
5809 {
5810 case bp_none:
5811 break;
5812 case bp_breakpoint:
5813 case bp_hardware_breakpoint:
5814 case bp_single_step:
5815 case bp_until:
5816 case bp_finish:
5817 case bp_shlib_event:
5818 if (bs->stop)
5819 {
5820 if (bs->print)
5821 this_action = BPSTAT_WHAT_STOP_NOISY;
5822 else
5823 this_action = BPSTAT_WHAT_STOP_SILENT;
5824 }
5825 else
5826 this_action = BPSTAT_WHAT_SINGLE;
5827 break;
5828 case bp_watchpoint:
5829 case bp_hardware_watchpoint:
5830 case bp_read_watchpoint:
5831 case bp_access_watchpoint:
5832 if (bs->stop)
5833 {
5834 if (bs->print)
5835 this_action = BPSTAT_WHAT_STOP_NOISY;
5836 else
5837 this_action = BPSTAT_WHAT_STOP_SILENT;
5838 }
5839 else
5840 {
5841 /* There was a watchpoint, but we're not stopping.
5842 This requires no further action. */
5843 }
5844 break;
5845 case bp_longjmp:
5846 case bp_longjmp_call_dummy:
5847 case bp_exception:
5848 if (bs->stop)
5849 {
5850 this_action = BPSTAT_WHAT_SET_LONGJMP_RESUME;
5851 retval.is_longjmp = bptype != bp_exception;
5852 }
5853 else
5854 this_action = BPSTAT_WHAT_SINGLE;
5855 break;
5856 case bp_longjmp_resume:
5857 case bp_exception_resume:
5858 if (bs->stop)
5859 {
5860 this_action = BPSTAT_WHAT_CLEAR_LONGJMP_RESUME;
5861 retval.is_longjmp = bptype == bp_longjmp_resume;
5862 }
5863 else
5864 this_action = BPSTAT_WHAT_SINGLE;
5865 break;
5866 case bp_step_resume:
5867 if (bs->stop)
5868 this_action = BPSTAT_WHAT_STEP_RESUME;
5869 else
5870 {
5871 /* It is for the wrong frame. */
5872 this_action = BPSTAT_WHAT_SINGLE;
5873 }
5874 break;
5875 case bp_hp_step_resume:
5876 if (bs->stop)
5877 this_action = BPSTAT_WHAT_HP_STEP_RESUME;
5878 else
5879 {
5880 /* It is for the wrong frame. */
5881 this_action = BPSTAT_WHAT_SINGLE;
5882 }
5883 break;
5884 case bp_watchpoint_scope:
5885 case bp_thread_event:
5886 case bp_overlay_event:
5887 case bp_longjmp_master:
5888 case bp_std_terminate_master:
5889 case bp_exception_master:
5890 this_action = BPSTAT_WHAT_SINGLE;
5891 break;
5892 case bp_catchpoint:
5893 if (bs->stop)
5894 {
5895 if (bs->print)
5896 this_action = BPSTAT_WHAT_STOP_NOISY;
5897 else
5898 this_action = BPSTAT_WHAT_STOP_SILENT;
5899 }
5900 else
5901 {
5902 /* There was a catchpoint, but we're not stopping.
5903 This requires no further action. */
5904 }
5905 break;
5906 case bp_jit_event:
5907 jit_event = 1;
5908 this_action = BPSTAT_WHAT_SINGLE;
5909 break;
5910 case bp_call_dummy:
5911 /* Make sure the action is stop (silent or noisy),
5912 so infrun.c pops the dummy frame. */
5913 retval.call_dummy = STOP_STACK_DUMMY;
5914 this_action = BPSTAT_WHAT_STOP_SILENT;
5915 break;
5916 case bp_std_terminate:
5917 /* Make sure the action is stop (silent or noisy),
5918 so infrun.c pops the dummy frame. */
5919 retval.call_dummy = STOP_STD_TERMINATE;
5920 this_action = BPSTAT_WHAT_STOP_SILENT;
5921 break;
5922 case bp_tracepoint:
5923 case bp_fast_tracepoint:
5924 case bp_static_tracepoint:
5925 /* Tracepoint hits should not be reported back to GDB, and
5926 if one got through somehow, it should have been filtered
5927 out already. */
5928 internal_error (__FILE__, __LINE__,
5929 _("bpstat_what: tracepoint encountered"));
5930 break;
5931 case bp_gnu_ifunc_resolver:
5932 /* Step over it (and insert bp_gnu_ifunc_resolver_return). */
5933 this_action = BPSTAT_WHAT_SINGLE;
5934 break;
5935 case bp_gnu_ifunc_resolver_return:
5936 /* The breakpoint will be removed, execution will restart from the
5937 PC of the former breakpoint. */
5938 this_action = BPSTAT_WHAT_KEEP_CHECKING;
5939 break;
5940
5941 case bp_dprintf:
5942 if (bs->stop)
5943 this_action = BPSTAT_WHAT_STOP_SILENT;
5944 else
5945 this_action = BPSTAT_WHAT_SINGLE;
5946 break;
5947
5948 default:
5949 internal_error (__FILE__, __LINE__,
5950 _("bpstat_what: unhandled bptype %d"), (int) bptype);
5951 }
5952
5953 retval.main_action = max (retval.main_action, this_action);
5954 }
5955
5956 return retval;
5957 }
5958
5959 void
5960 bpstat_run_callbacks (bpstat bs_head)
5961 {
5962 bpstat bs;
5963
5964 for (bs = bs_head; bs != NULL; bs = bs->next)
5965 {
5966 struct breakpoint *b = bs->breakpoint_at;
5967
5968 if (b == NULL)
5969 continue;
5970 switch (b->type)
5971 {
5972 case bp_jit_event:
5973 handle_jit_event ();
5974 break;
5975 case bp_gnu_ifunc_resolver:
5976 gnu_ifunc_resolver_stop (b);
5977 break;
5978 case bp_gnu_ifunc_resolver_return:
5979 gnu_ifunc_resolver_return_stop (b);
5980 break;
5981 }
5982 }
5983 }
5984
5985 /* Nonzero if we should step constantly (e.g. watchpoints on machines
5986 without hardware support). This isn't related to a specific bpstat,
5987 just to things like whether watchpoints are set. */
5988
5989 int
5990 bpstat_should_step (void)
5991 {
5992 struct breakpoint *b;
5993
5994 ALL_BREAKPOINTS (b)
5995 if (breakpoint_enabled (b) && b->type == bp_watchpoint && b->loc != NULL)
5996 return 1;
5997 return 0;
5998 }
5999
6000 int
6001 bpstat_causes_stop (bpstat bs)
6002 {
6003 for (; bs != NULL; bs = bs->next)
6004 if (bs->stop)
6005 return 1;
6006
6007 return 0;
6008 }
6009
6010 \f
6011
6012 /* Compute a string of spaces suitable to indent the next line
6013 so it starts at the position corresponding to the table column
6014 named COL_NAME in the currently active table of UIOUT. */
6015
6016 static char *
6017 wrap_indent_at_field (struct ui_out *uiout, const char *col_name)
6018 {
6019 static char wrap_indent[80];
6020 int i, total_width, width, align;
6021 char *text;
6022
6023 total_width = 0;
6024 for (i = 1; ui_out_query_field (uiout, i, &width, &align, &text); i++)
6025 {
6026 if (strcmp (text, col_name) == 0)
6027 {
6028 gdb_assert (total_width < sizeof wrap_indent);
6029 memset (wrap_indent, ' ', total_width);
6030 wrap_indent[total_width] = 0;
6031
6032 return wrap_indent;
6033 }
6034
6035 total_width += width + 1;
6036 }
6037
6038 return NULL;
6039 }
6040
6041 /* Determine if the locations of this breakpoint will have their conditions
6042 evaluated by the target, host or a mix of both. Returns the following:
6043
6044 "host": Host evals condition.
6045 "host or target": Host or Target evals condition.
6046 "target": Target evals condition.
6047 */
6048
6049 static const char *
6050 bp_condition_evaluator (struct breakpoint *b)
6051 {
6052 struct bp_location *bl;
6053 char host_evals = 0;
6054 char target_evals = 0;
6055
6056 if (!b)
6057 return NULL;
6058
6059 if (!is_breakpoint (b))
6060 return NULL;
6061
6062 if (gdb_evaluates_breakpoint_condition_p ()
6063 || !target_supports_evaluation_of_breakpoint_conditions ())
6064 return condition_evaluation_host;
6065
6066 for (bl = b->loc; bl; bl = bl->next)
6067 {
6068 if (bl->cond_bytecode)
6069 target_evals++;
6070 else
6071 host_evals++;
6072 }
6073
6074 if (host_evals && target_evals)
6075 return condition_evaluation_both;
6076 else if (target_evals)
6077 return condition_evaluation_target;
6078 else
6079 return condition_evaluation_host;
6080 }
6081
6082 /* Determine the breakpoint location's condition evaluator. This is
6083 similar to bp_condition_evaluator, but for locations. */
6084
6085 static const char *
6086 bp_location_condition_evaluator (struct bp_location *bl)
6087 {
6088 if (bl && !is_breakpoint (bl->owner))
6089 return NULL;
6090
6091 if (gdb_evaluates_breakpoint_condition_p ()
6092 || !target_supports_evaluation_of_breakpoint_conditions ())
6093 return condition_evaluation_host;
6094
6095 if (bl && bl->cond_bytecode)
6096 return condition_evaluation_target;
6097 else
6098 return condition_evaluation_host;
6099 }
6100
6101 /* Print the LOC location out of the list of B->LOC locations. */
6102
6103 static void
6104 print_breakpoint_location (struct breakpoint *b,
6105 struct bp_location *loc)
6106 {
6107 struct ui_out *uiout = current_uiout;
6108 struct cleanup *old_chain = save_current_program_space ();
6109
6110 if (loc != NULL && loc->shlib_disabled)
6111 loc = NULL;
6112
6113 if (loc != NULL)
6114 set_current_program_space (loc->pspace);
6115
6116 if (b->display_canonical)
6117 ui_out_field_string (uiout, "what",
6118 event_location_to_string (b->location));
6119 else if (loc && loc->symtab)
6120 {
6121 struct symbol *sym
6122 = find_pc_sect_function (loc->address, loc->section);
6123 if (sym)
6124 {
6125 ui_out_text (uiout, "in ");
6126 ui_out_field_string (uiout, "func",
6127 SYMBOL_PRINT_NAME (sym));
6128 ui_out_text (uiout, " ");
6129 ui_out_wrap_hint (uiout, wrap_indent_at_field (uiout, "what"));
6130 ui_out_text (uiout, "at ");
6131 }
6132 ui_out_field_string (uiout, "file",
6133 symtab_to_filename_for_display (loc->symtab));
6134 ui_out_text (uiout, ":");
6135
6136 if (ui_out_is_mi_like_p (uiout))
6137 ui_out_field_string (uiout, "fullname",
6138 symtab_to_fullname (loc->symtab));
6139
6140 ui_out_field_int (uiout, "line", loc->line_number);
6141 }
6142 else if (loc)
6143 {
6144 struct ui_file *stb = mem_fileopen ();
6145 struct cleanup *stb_chain = make_cleanup_ui_file_delete (stb);
6146
6147 print_address_symbolic (loc->gdbarch, loc->address, stb,
6148 demangle, "");
6149 ui_out_field_stream (uiout, "at", stb);
6150
6151 do_cleanups (stb_chain);
6152 }
6153 else
6154 {
6155 ui_out_field_string (uiout, "pending",
6156 event_location_to_string (b->location));
6157 /* If extra_string is available, it could be holding a condition
6158 or dprintf arguments. In either case, make sure it is printed,
6159 too, but only for non-MI streams. */
6160 if (!ui_out_is_mi_like_p (uiout) && b->extra_string != NULL)
6161 {
6162 if (b->type == bp_dprintf)
6163 ui_out_text (uiout, ",");
6164 else
6165 ui_out_text (uiout, " ");
6166 ui_out_text (uiout, b->extra_string);
6167 }
6168 }
6169
6170 if (loc && is_breakpoint (b)
6171 && breakpoint_condition_evaluation_mode () == condition_evaluation_target
6172 && bp_condition_evaluator (b) == condition_evaluation_both)
6173 {
6174 ui_out_text (uiout, " (");
6175 ui_out_field_string (uiout, "evaluated-by",
6176 bp_location_condition_evaluator (loc));
6177 ui_out_text (uiout, ")");
6178 }
6179
6180 do_cleanups (old_chain);
6181 }
6182
6183 static const char *
6184 bptype_string (enum bptype type)
6185 {
6186 struct ep_type_description
6187 {
6188 enum bptype type;
6189 char *description;
6190 };
6191 static struct ep_type_description bptypes[] =
6192 {
6193 {bp_none, "?deleted?"},
6194 {bp_breakpoint, "breakpoint"},
6195 {bp_hardware_breakpoint, "hw breakpoint"},
6196 {bp_single_step, "sw single-step"},
6197 {bp_until, "until"},
6198 {bp_finish, "finish"},
6199 {bp_watchpoint, "watchpoint"},
6200 {bp_hardware_watchpoint, "hw watchpoint"},
6201 {bp_read_watchpoint, "read watchpoint"},
6202 {bp_access_watchpoint, "acc watchpoint"},
6203 {bp_longjmp, "longjmp"},
6204 {bp_longjmp_resume, "longjmp resume"},
6205 {bp_longjmp_call_dummy, "longjmp for call dummy"},
6206 {bp_exception, "exception"},
6207 {bp_exception_resume, "exception resume"},
6208 {bp_step_resume, "step resume"},
6209 {bp_hp_step_resume, "high-priority step resume"},
6210 {bp_watchpoint_scope, "watchpoint scope"},
6211 {bp_call_dummy, "call dummy"},
6212 {bp_std_terminate, "std::terminate"},
6213 {bp_shlib_event, "shlib events"},
6214 {bp_thread_event, "thread events"},
6215 {bp_overlay_event, "overlay events"},
6216 {bp_longjmp_master, "longjmp master"},
6217 {bp_std_terminate_master, "std::terminate master"},
6218 {bp_exception_master, "exception master"},
6219 {bp_catchpoint, "catchpoint"},
6220 {bp_tracepoint, "tracepoint"},
6221 {bp_fast_tracepoint, "fast tracepoint"},
6222 {bp_static_tracepoint, "static tracepoint"},
6223 {bp_dprintf, "dprintf"},
6224 {bp_jit_event, "jit events"},
6225 {bp_gnu_ifunc_resolver, "STT_GNU_IFUNC resolver"},
6226 {bp_gnu_ifunc_resolver_return, "STT_GNU_IFUNC resolver return"},
6227 };
6228
6229 if (((int) type >= (sizeof (bptypes) / sizeof (bptypes[0])))
6230 || ((int) type != bptypes[(int) type].type))
6231 internal_error (__FILE__, __LINE__,
6232 _("bptypes table does not describe type #%d."),
6233 (int) type);
6234
6235 return bptypes[(int) type].description;
6236 }
6237
6238 /* For MI, output a field named 'thread-groups' with a list as the value.
6239 For CLI, prefix the list with the string 'inf'. */
6240
6241 static void
6242 output_thread_groups (struct ui_out *uiout,
6243 const char *field_name,
6244 VEC(int) *inf_num,
6245 int mi_only)
6246 {
6247 struct cleanup *back_to;
6248 int is_mi = ui_out_is_mi_like_p (uiout);
6249 int inf;
6250 int i;
6251
6252 /* For backward compatibility, don't display inferiors in CLI unless
6253 there are several. Always display them for MI. */
6254 if (!is_mi && mi_only)
6255 return;
6256
6257 back_to = make_cleanup_ui_out_list_begin_end (uiout, field_name);
6258
6259 for (i = 0; VEC_iterate (int, inf_num, i, inf); ++i)
6260 {
6261 if (is_mi)
6262 {
6263 char mi_group[10];
6264
6265 xsnprintf (mi_group, sizeof (mi_group), "i%d", inf);
6266 ui_out_field_string (uiout, NULL, mi_group);
6267 }
6268 else
6269 {
6270 if (i == 0)
6271 ui_out_text (uiout, " inf ");
6272 else
6273 ui_out_text (uiout, ", ");
6274
6275 ui_out_text (uiout, plongest (inf));
6276 }
6277 }
6278
6279 do_cleanups (back_to);
6280 }
6281
6282 /* Print B to gdb_stdout. */
6283
6284 static void
6285 print_one_breakpoint_location (struct breakpoint *b,
6286 struct bp_location *loc,
6287 int loc_number,
6288 struct bp_location **last_loc,
6289 int allflag)
6290 {
6291 struct command_line *l;
6292 static char bpenables[] = "nynny";
6293
6294 struct ui_out *uiout = current_uiout;
6295 int header_of_multiple = 0;
6296 int part_of_multiple = (loc != NULL);
6297 struct value_print_options opts;
6298
6299 get_user_print_options (&opts);
6300
6301 gdb_assert (!loc || loc_number != 0);
6302 /* See comment in print_one_breakpoint concerning treatment of
6303 breakpoints with single disabled location. */
6304 if (loc == NULL
6305 && (b->loc != NULL
6306 && (b->loc->next != NULL || !b->loc->enabled)))
6307 header_of_multiple = 1;
6308 if (loc == NULL)
6309 loc = b->loc;
6310
6311 annotate_record ();
6312
6313 /* 1 */
6314 annotate_field (0);
6315 if (part_of_multiple)
6316 {
6317 char *formatted;
6318 formatted = xstrprintf ("%d.%d", b->number, loc_number);
6319 ui_out_field_string (uiout, "number", formatted);
6320 xfree (formatted);
6321 }
6322 else
6323 {
6324 ui_out_field_int (uiout, "number", b->number);
6325 }
6326
6327 /* 2 */
6328 annotate_field (1);
6329 if (part_of_multiple)
6330 ui_out_field_skip (uiout, "type");
6331 else
6332 ui_out_field_string (uiout, "type", bptype_string (b->type));
6333
6334 /* 3 */
6335 annotate_field (2);
6336 if (part_of_multiple)
6337 ui_out_field_skip (uiout, "disp");
6338 else
6339 ui_out_field_string (uiout, "disp", bpdisp_text (b->disposition));
6340
6341
6342 /* 4 */
6343 annotate_field (3);
6344 if (part_of_multiple)
6345 ui_out_field_string (uiout, "enabled", loc->enabled ? "y" : "n");
6346 else
6347 ui_out_field_fmt (uiout, "enabled", "%c",
6348 bpenables[(int) b->enable_state]);
6349 ui_out_spaces (uiout, 2);
6350
6351
6352 /* 5 and 6 */
6353 if (b->ops != NULL && b->ops->print_one != NULL)
6354 {
6355 /* Although the print_one can possibly print all locations,
6356 calling it here is not likely to get any nice result. So,
6357 make sure there's just one location. */
6358 gdb_assert (b->loc == NULL || b->loc->next == NULL);
6359 b->ops->print_one (b, last_loc);
6360 }
6361 else
6362 switch (b->type)
6363 {
6364 case bp_none:
6365 internal_error (__FILE__, __LINE__,
6366 _("print_one_breakpoint: bp_none encountered\n"));
6367 break;
6368
6369 case bp_watchpoint:
6370 case bp_hardware_watchpoint:
6371 case bp_read_watchpoint:
6372 case bp_access_watchpoint:
6373 {
6374 struct watchpoint *w = (struct watchpoint *) b;
6375
6376 /* Field 4, the address, is omitted (which makes the columns
6377 not line up too nicely with the headers, but the effect
6378 is relatively readable). */
6379 if (opts.addressprint)
6380 ui_out_field_skip (uiout, "addr");
6381 annotate_field (5);
6382 ui_out_field_string (uiout, "what", w->exp_string);
6383 }
6384 break;
6385
6386 case bp_breakpoint:
6387 case bp_hardware_breakpoint:
6388 case bp_single_step:
6389 case bp_until:
6390 case bp_finish:
6391 case bp_longjmp:
6392 case bp_longjmp_resume:
6393 case bp_longjmp_call_dummy:
6394 case bp_exception:
6395 case bp_exception_resume:
6396 case bp_step_resume:
6397 case bp_hp_step_resume:
6398 case bp_watchpoint_scope:
6399 case bp_call_dummy:
6400 case bp_std_terminate:
6401 case bp_shlib_event:
6402 case bp_thread_event:
6403 case bp_overlay_event:
6404 case bp_longjmp_master:
6405 case bp_std_terminate_master:
6406 case bp_exception_master:
6407 case bp_tracepoint:
6408 case bp_fast_tracepoint:
6409 case bp_static_tracepoint:
6410 case bp_dprintf:
6411 case bp_jit_event:
6412 case bp_gnu_ifunc_resolver:
6413 case bp_gnu_ifunc_resolver_return:
6414 if (opts.addressprint)
6415 {
6416 annotate_field (4);
6417 if (header_of_multiple)
6418 ui_out_field_string (uiout, "addr", "<MULTIPLE>");
6419 else if (b->loc == NULL || loc->shlib_disabled)
6420 ui_out_field_string (uiout, "addr", "<PENDING>");
6421 else
6422 ui_out_field_core_addr (uiout, "addr",
6423 loc->gdbarch, loc->address);
6424 }
6425 annotate_field (5);
6426 if (!header_of_multiple)
6427 print_breakpoint_location (b, loc);
6428 if (b->loc)
6429 *last_loc = b->loc;
6430 break;
6431 }
6432
6433
6434 if (loc != NULL && !header_of_multiple)
6435 {
6436 struct inferior *inf;
6437 VEC(int) *inf_num = NULL;
6438 int mi_only = 1;
6439
6440 ALL_INFERIORS (inf)
6441 {
6442 if (inf->pspace == loc->pspace)
6443 VEC_safe_push (int, inf_num, inf->num);
6444 }
6445
6446 /* For backward compatibility, don't display inferiors in CLI unless
6447 there are several. Always display for MI. */
6448 if (allflag
6449 || (!gdbarch_has_global_breakpoints (target_gdbarch ())
6450 && (number_of_program_spaces () > 1
6451 || number_of_inferiors () > 1)
6452 /* LOC is for existing B, it cannot be in
6453 moribund_locations and thus having NULL OWNER. */
6454 && loc->owner->type != bp_catchpoint))
6455 mi_only = 0;
6456 output_thread_groups (uiout, "thread-groups", inf_num, mi_only);
6457 VEC_free (int, inf_num);
6458 }
6459
6460 if (!part_of_multiple)
6461 {
6462 if (b->thread != -1)
6463 {
6464 /* FIXME: This seems to be redundant and lost here; see the
6465 "stop only in" line a little further down. */
6466 ui_out_text (uiout, " thread ");
6467 ui_out_field_int (uiout, "thread", b->thread);
6468 }
6469 else if (b->task != 0)
6470 {
6471 ui_out_text (uiout, " task ");
6472 ui_out_field_int (uiout, "task", b->task);
6473 }
6474 }
6475
6476 ui_out_text (uiout, "\n");
6477
6478 if (!part_of_multiple)
6479 b->ops->print_one_detail (b, uiout);
6480
6481 if (part_of_multiple && frame_id_p (b->frame_id))
6482 {
6483 annotate_field (6);
6484 ui_out_text (uiout, "\tstop only in stack frame at ");
6485 /* FIXME: cagney/2002-12-01: Shouldn't be poking around inside
6486 the frame ID. */
6487 ui_out_field_core_addr (uiout, "frame",
6488 b->gdbarch, b->frame_id.stack_addr);
6489 ui_out_text (uiout, "\n");
6490 }
6491
6492 if (!part_of_multiple && b->cond_string)
6493 {
6494 annotate_field (7);
6495 if (is_tracepoint (b))
6496 ui_out_text (uiout, "\ttrace only if ");
6497 else
6498 ui_out_text (uiout, "\tstop only if ");
6499 ui_out_field_string (uiout, "cond", b->cond_string);
6500
6501 /* Print whether the target is doing the breakpoint's condition
6502 evaluation. If GDB is doing the evaluation, don't print anything. */
6503 if (is_breakpoint (b)
6504 && breakpoint_condition_evaluation_mode ()
6505 == condition_evaluation_target)
6506 {
6507 ui_out_text (uiout, " (");
6508 ui_out_field_string (uiout, "evaluated-by",
6509 bp_condition_evaluator (b));
6510 ui_out_text (uiout, " evals)");
6511 }
6512 ui_out_text (uiout, "\n");
6513 }
6514
6515 if (!part_of_multiple && b->thread != -1)
6516 {
6517 /* FIXME should make an annotation for this. */
6518 ui_out_text (uiout, "\tstop only in thread ");
6519 ui_out_field_int (uiout, "thread", b->thread);
6520 ui_out_text (uiout, "\n");
6521 }
6522
6523 if (!part_of_multiple)
6524 {
6525 if (b->hit_count)
6526 {
6527 /* FIXME should make an annotation for this. */
6528 if (is_catchpoint (b))
6529 ui_out_text (uiout, "\tcatchpoint");
6530 else if (is_tracepoint (b))
6531 ui_out_text (uiout, "\ttracepoint");
6532 else
6533 ui_out_text (uiout, "\tbreakpoint");
6534 ui_out_text (uiout, " already hit ");
6535 ui_out_field_int (uiout, "times", b->hit_count);
6536 if (b->hit_count == 1)
6537 ui_out_text (uiout, " time\n");
6538 else
6539 ui_out_text (uiout, " times\n");
6540 }
6541 else
6542 {
6543 /* Output the count also if it is zero, but only if this is mi. */
6544 if (ui_out_is_mi_like_p (uiout))
6545 ui_out_field_int (uiout, "times", b->hit_count);
6546 }
6547 }
6548
6549 if (!part_of_multiple && b->ignore_count)
6550 {
6551 annotate_field (8);
6552 ui_out_text (uiout, "\tignore next ");
6553 ui_out_field_int (uiout, "ignore", b->ignore_count);
6554 ui_out_text (uiout, " hits\n");
6555 }
6556
6557 /* Note that an enable count of 1 corresponds to "enable once"
6558 behavior, which is reported by the combination of enablement and
6559 disposition, so we don't need to mention it here. */
6560 if (!part_of_multiple && b->enable_count > 1)
6561 {
6562 annotate_field (8);
6563 ui_out_text (uiout, "\tdisable after ");
6564 /* Tweak the wording to clarify that ignore and enable counts
6565 are distinct, and have additive effect. */
6566 if (b->ignore_count)
6567 ui_out_text (uiout, "additional ");
6568 else
6569 ui_out_text (uiout, "next ");
6570 ui_out_field_int (uiout, "enable", b->enable_count);
6571 ui_out_text (uiout, " hits\n");
6572 }
6573
6574 if (!part_of_multiple && is_tracepoint (b))
6575 {
6576 struct tracepoint *tp = (struct tracepoint *) b;
6577
6578 if (tp->traceframe_usage)
6579 {
6580 ui_out_text (uiout, "\ttrace buffer usage ");
6581 ui_out_field_int (uiout, "traceframe-usage", tp->traceframe_usage);
6582 ui_out_text (uiout, " bytes\n");
6583 }
6584 }
6585
6586 l = b->commands ? b->commands->commands : NULL;
6587 if (!part_of_multiple && l)
6588 {
6589 struct cleanup *script_chain;
6590
6591 annotate_field (9);
6592 script_chain = make_cleanup_ui_out_tuple_begin_end (uiout, "script");
6593 print_command_lines (uiout, l, 4);
6594 do_cleanups (script_chain);
6595 }
6596
6597 if (is_tracepoint (b))
6598 {
6599 struct tracepoint *t = (struct tracepoint *) b;
6600
6601 if (!part_of_multiple && t->pass_count)
6602 {
6603 annotate_field (10);
6604 ui_out_text (uiout, "\tpass count ");
6605 ui_out_field_int (uiout, "pass", t->pass_count);
6606 ui_out_text (uiout, " \n");
6607 }
6608
6609 /* Don't display it when tracepoint or tracepoint location is
6610 pending. */
6611 if (!header_of_multiple && loc != NULL && !loc->shlib_disabled)
6612 {
6613 annotate_field (11);
6614
6615 if (ui_out_is_mi_like_p (uiout))
6616 ui_out_field_string (uiout, "installed",
6617 loc->inserted ? "y" : "n");
6618 else
6619 {
6620 if (loc->inserted)
6621 ui_out_text (uiout, "\t");
6622 else
6623 ui_out_text (uiout, "\tnot ");
6624 ui_out_text (uiout, "installed on target\n");
6625 }
6626 }
6627 }
6628
6629 if (ui_out_is_mi_like_p (uiout) && !part_of_multiple)
6630 {
6631 if (is_watchpoint (b))
6632 {
6633 struct watchpoint *w = (struct watchpoint *) b;
6634
6635 ui_out_field_string (uiout, "original-location", w->exp_string);
6636 }
6637 else if (b->location != NULL
6638 && event_location_to_string (b->location) != NULL)
6639 ui_out_field_string (uiout, "original-location",
6640 event_location_to_string (b->location));
6641 }
6642 }
6643
6644 static void
6645 print_one_breakpoint (struct breakpoint *b,
6646 struct bp_location **last_loc,
6647 int allflag)
6648 {
6649 struct cleanup *bkpt_chain;
6650 struct ui_out *uiout = current_uiout;
6651
6652 bkpt_chain = make_cleanup_ui_out_tuple_begin_end (uiout, "bkpt");
6653
6654 print_one_breakpoint_location (b, NULL, 0, last_loc, allflag);
6655 do_cleanups (bkpt_chain);
6656
6657 /* If this breakpoint has custom print function,
6658 it's already printed. Otherwise, print individual
6659 locations, if any. */
6660 if (b->ops == NULL || b->ops->print_one == NULL)
6661 {
6662 /* If breakpoint has a single location that is disabled, we
6663 print it as if it had several locations, since otherwise it's
6664 hard to represent "breakpoint enabled, location disabled"
6665 situation.
6666
6667 Note that while hardware watchpoints have several locations
6668 internally, that's not a property exposed to user. */
6669 if (b->loc
6670 && !is_hardware_watchpoint (b)
6671 && (b->loc->next || !b->loc->enabled))
6672 {
6673 struct bp_location *loc;
6674 int n = 1;
6675
6676 for (loc = b->loc; loc; loc = loc->next, ++n)
6677 {
6678 struct cleanup *inner2 =
6679 make_cleanup_ui_out_tuple_begin_end (uiout, NULL);
6680 print_one_breakpoint_location (b, loc, n, last_loc, allflag);
6681 do_cleanups (inner2);
6682 }
6683 }
6684 }
6685 }
6686
6687 static int
6688 breakpoint_address_bits (struct breakpoint *b)
6689 {
6690 int print_address_bits = 0;
6691 struct bp_location *loc;
6692
6693 /* Software watchpoints that aren't watching memory don't have an
6694 address to print. */
6695 if (is_no_memory_software_watchpoint (b))
6696 return 0;
6697
6698 for (loc = b->loc; loc; loc = loc->next)
6699 {
6700 int addr_bit;
6701
6702 addr_bit = gdbarch_addr_bit (loc->gdbarch);
6703 if (addr_bit > print_address_bits)
6704 print_address_bits = addr_bit;
6705 }
6706
6707 return print_address_bits;
6708 }
6709
6710 struct captured_breakpoint_query_args
6711 {
6712 int bnum;
6713 };
6714
6715 static int
6716 do_captured_breakpoint_query (struct ui_out *uiout, void *data)
6717 {
6718 struct captured_breakpoint_query_args *args
6719 = (struct captured_breakpoint_query_args *) data;
6720 struct breakpoint *b;
6721 struct bp_location *dummy_loc = NULL;
6722
6723 ALL_BREAKPOINTS (b)
6724 {
6725 if (args->bnum == b->number)
6726 {
6727 print_one_breakpoint (b, &dummy_loc, 0);
6728 return GDB_RC_OK;
6729 }
6730 }
6731 return GDB_RC_NONE;
6732 }
6733
6734 enum gdb_rc
6735 gdb_breakpoint_query (struct ui_out *uiout, int bnum,
6736 char **error_message)
6737 {
6738 struct captured_breakpoint_query_args args;
6739
6740 args.bnum = bnum;
6741 /* For the moment we don't trust print_one_breakpoint() to not throw
6742 an error. */
6743 if (catch_exceptions_with_msg (uiout, do_captured_breakpoint_query, &args,
6744 error_message, RETURN_MASK_ALL) < 0)
6745 return GDB_RC_FAIL;
6746 else
6747 return GDB_RC_OK;
6748 }
6749
6750 /* Return true if this breakpoint was set by the user, false if it is
6751 internal or momentary. */
6752
6753 int
6754 user_breakpoint_p (struct breakpoint *b)
6755 {
6756 return b->number > 0;
6757 }
6758
6759 /* Print information on user settable breakpoint (watchpoint, etc)
6760 number BNUM. If BNUM is -1 print all user-settable breakpoints.
6761 If ALLFLAG is non-zero, include non-user-settable breakpoints. If
6762 FILTER is non-NULL, call it on each breakpoint and only include the
6763 ones for which it returns non-zero. Return the total number of
6764 breakpoints listed. */
6765
6766 static int
6767 breakpoint_1 (char *args, int allflag,
6768 int (*filter) (const struct breakpoint *))
6769 {
6770 struct breakpoint *b;
6771 struct bp_location *last_loc = NULL;
6772 int nr_printable_breakpoints;
6773 struct cleanup *bkpttbl_chain;
6774 struct value_print_options opts;
6775 int print_address_bits = 0;
6776 int print_type_col_width = 14;
6777 struct ui_out *uiout = current_uiout;
6778
6779 get_user_print_options (&opts);
6780
6781 /* Compute the number of rows in the table, as well as the size
6782 required for address fields. */
6783 nr_printable_breakpoints = 0;
6784 ALL_BREAKPOINTS (b)
6785 {
6786 /* If we have a filter, only list the breakpoints it accepts. */
6787 if (filter && !filter (b))
6788 continue;
6789
6790 /* If we have an "args" string, it is a list of breakpoints to
6791 accept. Skip the others. */
6792 if (args != NULL && *args != '\0')
6793 {
6794 if (allflag && parse_and_eval_long (args) != b->number)
6795 continue;
6796 if (!allflag && !number_is_in_list (args, b->number))
6797 continue;
6798 }
6799
6800 if (allflag || user_breakpoint_p (b))
6801 {
6802 int addr_bit, type_len;
6803
6804 addr_bit = breakpoint_address_bits (b);
6805 if (addr_bit > print_address_bits)
6806 print_address_bits = addr_bit;
6807
6808 type_len = strlen (bptype_string (b->type));
6809 if (type_len > print_type_col_width)
6810 print_type_col_width = type_len;
6811
6812 nr_printable_breakpoints++;
6813 }
6814 }
6815
6816 if (opts.addressprint)
6817 bkpttbl_chain
6818 = make_cleanup_ui_out_table_begin_end (uiout, 6,
6819 nr_printable_breakpoints,
6820 "BreakpointTable");
6821 else
6822 bkpttbl_chain
6823 = make_cleanup_ui_out_table_begin_end (uiout, 5,
6824 nr_printable_breakpoints,
6825 "BreakpointTable");
6826
6827 if (nr_printable_breakpoints > 0)
6828 annotate_breakpoints_headers ();
6829 if (nr_printable_breakpoints > 0)
6830 annotate_field (0);
6831 ui_out_table_header (uiout, 7, ui_left, "number", "Num"); /* 1 */
6832 if (nr_printable_breakpoints > 0)
6833 annotate_field (1);
6834 ui_out_table_header (uiout, print_type_col_width, ui_left,
6835 "type", "Type"); /* 2 */
6836 if (nr_printable_breakpoints > 0)
6837 annotate_field (2);
6838 ui_out_table_header (uiout, 4, ui_left, "disp", "Disp"); /* 3 */
6839 if (nr_printable_breakpoints > 0)
6840 annotate_field (3);
6841 ui_out_table_header (uiout, 3, ui_left, "enabled", "Enb"); /* 4 */
6842 if (opts.addressprint)
6843 {
6844 if (nr_printable_breakpoints > 0)
6845 annotate_field (4);
6846 if (print_address_bits <= 32)
6847 ui_out_table_header (uiout, 10, ui_left,
6848 "addr", "Address"); /* 5 */
6849 else
6850 ui_out_table_header (uiout, 18, ui_left,
6851 "addr", "Address"); /* 5 */
6852 }
6853 if (nr_printable_breakpoints > 0)
6854 annotate_field (5);
6855 ui_out_table_header (uiout, 40, ui_noalign, "what", "What"); /* 6 */
6856 ui_out_table_body (uiout);
6857 if (nr_printable_breakpoints > 0)
6858 annotate_breakpoints_table ();
6859
6860 ALL_BREAKPOINTS (b)
6861 {
6862 QUIT;
6863 /* If we have a filter, only list the breakpoints it accepts. */
6864 if (filter && !filter (b))
6865 continue;
6866
6867 /* If we have an "args" string, it is a list of breakpoints to
6868 accept. Skip the others. */
6869
6870 if (args != NULL && *args != '\0')
6871 {
6872 if (allflag) /* maintenance info breakpoint */
6873 {
6874 if (parse_and_eval_long (args) != b->number)
6875 continue;
6876 }
6877 else /* all others */
6878 {
6879 if (!number_is_in_list (args, b->number))
6880 continue;
6881 }
6882 }
6883 /* We only print out user settable breakpoints unless the
6884 allflag is set. */
6885 if (allflag || user_breakpoint_p (b))
6886 print_one_breakpoint (b, &last_loc, allflag);
6887 }
6888
6889 do_cleanups (bkpttbl_chain);
6890
6891 if (nr_printable_breakpoints == 0)
6892 {
6893 /* If there's a filter, let the caller decide how to report
6894 empty list. */
6895 if (!filter)
6896 {
6897 if (args == NULL || *args == '\0')
6898 ui_out_message (uiout, 0, "No breakpoints or watchpoints.\n");
6899 else
6900 ui_out_message (uiout, 0,
6901 "No breakpoint or watchpoint matching '%s'.\n",
6902 args);
6903 }
6904 }
6905 else
6906 {
6907 if (last_loc && !server_command)
6908 set_next_address (last_loc->gdbarch, last_loc->address);
6909 }
6910
6911 /* FIXME? Should this be moved up so that it is only called when
6912 there have been breakpoints? */
6913 annotate_breakpoints_table_end ();
6914
6915 return nr_printable_breakpoints;
6916 }
6917
6918 /* Display the value of default-collect in a way that is generally
6919 compatible with the breakpoint list. */
6920
6921 static void
6922 default_collect_info (void)
6923 {
6924 struct ui_out *uiout = current_uiout;
6925
6926 /* If it has no value (which is frequently the case), say nothing; a
6927 message like "No default-collect." gets in user's face when it's
6928 not wanted. */
6929 if (!*default_collect)
6930 return;
6931
6932 /* The following phrase lines up nicely with per-tracepoint collect
6933 actions. */
6934 ui_out_text (uiout, "default collect ");
6935 ui_out_field_string (uiout, "default-collect", default_collect);
6936 ui_out_text (uiout, " \n");
6937 }
6938
6939 static void
6940 breakpoints_info (char *args, int from_tty)
6941 {
6942 breakpoint_1 (args, 0, NULL);
6943
6944 default_collect_info ();
6945 }
6946
6947 static void
6948 watchpoints_info (char *args, int from_tty)
6949 {
6950 int num_printed = breakpoint_1 (args, 0, is_watchpoint);
6951 struct ui_out *uiout = current_uiout;
6952
6953 if (num_printed == 0)
6954 {
6955 if (args == NULL || *args == '\0')
6956 ui_out_message (uiout, 0, "No watchpoints.\n");
6957 else
6958 ui_out_message (uiout, 0, "No watchpoint matching '%s'.\n", args);
6959 }
6960 }
6961
6962 static void
6963 maintenance_info_breakpoints (char *args, int from_tty)
6964 {
6965 breakpoint_1 (args, 1, NULL);
6966
6967 default_collect_info ();
6968 }
6969
6970 static int
6971 breakpoint_has_pc (struct breakpoint *b,
6972 struct program_space *pspace,
6973 CORE_ADDR pc, struct obj_section *section)
6974 {
6975 struct bp_location *bl = b->loc;
6976
6977 for (; bl; bl = bl->next)
6978 {
6979 if (bl->pspace == pspace
6980 && bl->address == pc
6981 && (!overlay_debugging || bl->section == section))
6982 return 1;
6983 }
6984 return 0;
6985 }
6986
6987 /* Print a message describing any user-breakpoints set at PC. This
6988 concerns with logical breakpoints, so we match program spaces, not
6989 address spaces. */
6990
6991 static void
6992 describe_other_breakpoints (struct gdbarch *gdbarch,
6993 struct program_space *pspace, CORE_ADDR pc,
6994 struct obj_section *section, int thread)
6995 {
6996 int others = 0;
6997 struct breakpoint *b;
6998
6999 ALL_BREAKPOINTS (b)
7000 others += (user_breakpoint_p (b)
7001 && breakpoint_has_pc (b, pspace, pc, section));
7002 if (others > 0)
7003 {
7004 if (others == 1)
7005 printf_filtered (_("Note: breakpoint "));
7006 else /* if (others == ???) */
7007 printf_filtered (_("Note: breakpoints "));
7008 ALL_BREAKPOINTS (b)
7009 if (user_breakpoint_p (b) && breakpoint_has_pc (b, pspace, pc, section))
7010 {
7011 others--;
7012 printf_filtered ("%d", b->number);
7013 if (b->thread == -1 && thread != -1)
7014 printf_filtered (" (all threads)");
7015 else if (b->thread != -1)
7016 printf_filtered (" (thread %d)", b->thread);
7017 printf_filtered ("%s%s ",
7018 ((b->enable_state == bp_disabled
7019 || b->enable_state == bp_call_disabled)
7020 ? " (disabled)"
7021 : ""),
7022 (others > 1) ? ","
7023 : ((others == 1) ? " and" : ""));
7024 }
7025 printf_filtered (_("also set at pc "));
7026 fputs_filtered (paddress (gdbarch, pc), gdb_stdout);
7027 printf_filtered (".\n");
7028 }
7029 }
7030 \f
7031
7032 /* Return true iff it is meaningful to use the address member of
7033 BPT locations. For some breakpoint types, the locations' address members
7034 are irrelevant and it makes no sense to attempt to compare them to other
7035 addresses (or use them for any other purpose either).
7036
7037 More specifically, each of the following breakpoint types will
7038 always have a zero valued location address and we don't want to mark
7039 breakpoints of any of these types to be a duplicate of an actual
7040 breakpoint location at address zero:
7041
7042 bp_watchpoint
7043 bp_catchpoint
7044
7045 */
7046
7047 static int
7048 breakpoint_address_is_meaningful (struct breakpoint *bpt)
7049 {
7050 enum bptype type = bpt->type;
7051
7052 return (type != bp_watchpoint && type != bp_catchpoint);
7053 }
7054
7055 /* Assuming LOC1 and LOC2's owners are hardware watchpoints, returns
7056 true if LOC1 and LOC2 represent the same watchpoint location. */
7057
7058 static int
7059 watchpoint_locations_match (struct bp_location *loc1,
7060 struct bp_location *loc2)
7061 {
7062 struct watchpoint *w1 = (struct watchpoint *) loc1->owner;
7063 struct watchpoint *w2 = (struct watchpoint *) loc2->owner;
7064
7065 /* Both of them must exist. */
7066 gdb_assert (w1 != NULL);
7067 gdb_assert (w2 != NULL);
7068
7069 /* If the target can evaluate the condition expression in hardware,
7070 then we we need to insert both watchpoints even if they are at
7071 the same place. Otherwise the watchpoint will only trigger when
7072 the condition of whichever watchpoint was inserted evaluates to
7073 true, not giving a chance for GDB to check the condition of the
7074 other watchpoint. */
7075 if ((w1->cond_exp
7076 && target_can_accel_watchpoint_condition (loc1->address,
7077 loc1->length,
7078 loc1->watchpoint_type,
7079 w1->cond_exp))
7080 || (w2->cond_exp
7081 && target_can_accel_watchpoint_condition (loc2->address,
7082 loc2->length,
7083 loc2->watchpoint_type,
7084 w2->cond_exp)))
7085 return 0;
7086
7087 /* Note that this checks the owner's type, not the location's. In
7088 case the target does not support read watchpoints, but does
7089 support access watchpoints, we'll have bp_read_watchpoint
7090 watchpoints with hw_access locations. Those should be considered
7091 duplicates of hw_read locations. The hw_read locations will
7092 become hw_access locations later. */
7093 return (loc1->owner->type == loc2->owner->type
7094 && loc1->pspace->aspace == loc2->pspace->aspace
7095 && loc1->address == loc2->address
7096 && loc1->length == loc2->length);
7097 }
7098
7099 /* See breakpoint.h. */
7100
7101 int
7102 breakpoint_address_match (struct address_space *aspace1, CORE_ADDR addr1,
7103 struct address_space *aspace2, CORE_ADDR addr2)
7104 {
7105 return ((gdbarch_has_global_breakpoints (target_gdbarch ())
7106 || aspace1 == aspace2)
7107 && addr1 == addr2);
7108 }
7109
7110 /* Returns true if {ASPACE2,ADDR2} falls within the range determined by
7111 {ASPACE1,ADDR1,LEN1}. In most targets, this can only be true if ASPACE1
7112 matches ASPACE2. On targets that have global breakpoints, the address
7113 space doesn't really matter. */
7114
7115 static int
7116 breakpoint_address_match_range (struct address_space *aspace1, CORE_ADDR addr1,
7117 int len1, struct address_space *aspace2,
7118 CORE_ADDR addr2)
7119 {
7120 return ((gdbarch_has_global_breakpoints (target_gdbarch ())
7121 || aspace1 == aspace2)
7122 && addr2 >= addr1 && addr2 < addr1 + len1);
7123 }
7124
7125 /* Returns true if {ASPACE,ADDR} matches the breakpoint BL. BL may be
7126 a ranged breakpoint. In most targets, a match happens only if ASPACE
7127 matches the breakpoint's address space. On targets that have global
7128 breakpoints, the address space doesn't really matter. */
7129
7130 static int
7131 breakpoint_location_address_match (struct bp_location *bl,
7132 struct address_space *aspace,
7133 CORE_ADDR addr)
7134 {
7135 return (breakpoint_address_match (bl->pspace->aspace, bl->address,
7136 aspace, addr)
7137 || (bl->length
7138 && breakpoint_address_match_range (bl->pspace->aspace,
7139 bl->address, bl->length,
7140 aspace, addr)));
7141 }
7142
7143 /* Returns true if the [ADDR,ADDR+LEN) range in ASPACE overlaps
7144 breakpoint BL. BL may be a ranged breakpoint. In most targets, a
7145 match happens only if ASPACE matches the breakpoint's address
7146 space. On targets that have global breakpoints, the address space
7147 doesn't really matter. */
7148
7149 static int
7150 breakpoint_location_address_range_overlap (struct bp_location *bl,
7151 struct address_space *aspace,
7152 CORE_ADDR addr, int len)
7153 {
7154 if (gdbarch_has_global_breakpoints (target_gdbarch ())
7155 || bl->pspace->aspace == aspace)
7156 {
7157 int bl_len = bl->length != 0 ? bl->length : 1;
7158
7159 if (mem_ranges_overlap (addr, len, bl->address, bl_len))
7160 return 1;
7161 }
7162 return 0;
7163 }
7164
7165 /* If LOC1 and LOC2's owners are not tracepoints, returns false directly.
7166 Then, if LOC1 and LOC2 represent the same tracepoint location, returns
7167 true, otherwise returns false. */
7168
7169 static int
7170 tracepoint_locations_match (struct bp_location *loc1,
7171 struct bp_location *loc2)
7172 {
7173 if (is_tracepoint (loc1->owner) && is_tracepoint (loc2->owner))
7174 /* Since tracepoint locations are never duplicated with others', tracepoint
7175 locations at the same address of different tracepoints are regarded as
7176 different locations. */
7177 return (loc1->address == loc2->address && loc1->owner == loc2->owner);
7178 else
7179 return 0;
7180 }
7181
7182 /* Assuming LOC1 and LOC2's types' have meaningful target addresses
7183 (breakpoint_address_is_meaningful), returns true if LOC1 and LOC2
7184 represent the same location. */
7185
7186 static int
7187 breakpoint_locations_match (struct bp_location *loc1,
7188 struct bp_location *loc2)
7189 {
7190 int hw_point1, hw_point2;
7191
7192 /* Both of them must not be in moribund_locations. */
7193 gdb_assert (loc1->owner != NULL);
7194 gdb_assert (loc2->owner != NULL);
7195
7196 hw_point1 = is_hardware_watchpoint (loc1->owner);
7197 hw_point2 = is_hardware_watchpoint (loc2->owner);
7198
7199 if (hw_point1 != hw_point2)
7200 return 0;
7201 else if (hw_point1)
7202 return watchpoint_locations_match (loc1, loc2);
7203 else if (is_tracepoint (loc1->owner) || is_tracepoint (loc2->owner))
7204 return tracepoint_locations_match (loc1, loc2);
7205 else
7206 /* We compare bp_location.length in order to cover ranged breakpoints. */
7207 return (breakpoint_address_match (loc1->pspace->aspace, loc1->address,
7208 loc2->pspace->aspace, loc2->address)
7209 && loc1->length == loc2->length);
7210 }
7211
7212 static void
7213 breakpoint_adjustment_warning (CORE_ADDR from_addr, CORE_ADDR to_addr,
7214 int bnum, int have_bnum)
7215 {
7216 /* The longest string possibly returned by hex_string_custom
7217 is 50 chars. These must be at least that big for safety. */
7218 char astr1[64];
7219 char astr2[64];
7220
7221 strcpy (astr1, hex_string_custom ((unsigned long) from_addr, 8));
7222 strcpy (astr2, hex_string_custom ((unsigned long) to_addr, 8));
7223 if (have_bnum)
7224 warning (_("Breakpoint %d address previously adjusted from %s to %s."),
7225 bnum, astr1, astr2);
7226 else
7227 warning (_("Breakpoint address adjusted from %s to %s."), astr1, astr2);
7228 }
7229
7230 /* Adjust a breakpoint's address to account for architectural
7231 constraints on breakpoint placement. Return the adjusted address.
7232 Note: Very few targets require this kind of adjustment. For most
7233 targets, this function is simply the identity function. */
7234
7235 static CORE_ADDR
7236 adjust_breakpoint_address (struct gdbarch *gdbarch,
7237 CORE_ADDR bpaddr, enum bptype bptype)
7238 {
7239 if (!gdbarch_adjust_breakpoint_address_p (gdbarch))
7240 {
7241 /* Very few targets need any kind of breakpoint adjustment. */
7242 return bpaddr;
7243 }
7244 else if (bptype == bp_watchpoint
7245 || bptype == bp_hardware_watchpoint
7246 || bptype == bp_read_watchpoint
7247 || bptype == bp_access_watchpoint
7248 || bptype == bp_catchpoint)
7249 {
7250 /* Watchpoints and the various bp_catch_* eventpoints should not
7251 have their addresses modified. */
7252 return bpaddr;
7253 }
7254 else if (bptype == bp_single_step)
7255 {
7256 /* Single-step breakpoints should not have their addresses
7257 modified. If there's any architectural constrain that
7258 applies to this address, then it should have already been
7259 taken into account when the breakpoint was created in the
7260 first place. If we didn't do this, stepping through e.g.,
7261 Thumb-2 IT blocks would break. */
7262 return bpaddr;
7263 }
7264 else
7265 {
7266 CORE_ADDR adjusted_bpaddr;
7267
7268 /* Some targets have architectural constraints on the placement
7269 of breakpoint instructions. Obtain the adjusted address. */
7270 adjusted_bpaddr = gdbarch_adjust_breakpoint_address (gdbarch, bpaddr);
7271
7272 /* An adjusted breakpoint address can significantly alter
7273 a user's expectations. Print a warning if an adjustment
7274 is required. */
7275 if (adjusted_bpaddr != bpaddr)
7276 breakpoint_adjustment_warning (bpaddr, adjusted_bpaddr, 0, 0);
7277
7278 return adjusted_bpaddr;
7279 }
7280 }
7281
7282 void
7283 init_bp_location (struct bp_location *loc, const struct bp_location_ops *ops,
7284 struct breakpoint *owner)
7285 {
7286 memset (loc, 0, sizeof (*loc));
7287
7288 gdb_assert (ops != NULL);
7289
7290 loc->ops = ops;
7291 loc->owner = owner;
7292 loc->cond = NULL;
7293 loc->cond_bytecode = NULL;
7294 loc->shlib_disabled = 0;
7295 loc->enabled = 1;
7296
7297 switch (owner->type)
7298 {
7299 case bp_breakpoint:
7300 case bp_single_step:
7301 case bp_until:
7302 case bp_finish:
7303 case bp_longjmp:
7304 case bp_longjmp_resume:
7305 case bp_longjmp_call_dummy:
7306 case bp_exception:
7307 case bp_exception_resume:
7308 case bp_step_resume:
7309 case bp_hp_step_resume:
7310 case bp_watchpoint_scope:
7311 case bp_call_dummy:
7312 case bp_std_terminate:
7313 case bp_shlib_event:
7314 case bp_thread_event:
7315 case bp_overlay_event:
7316 case bp_jit_event:
7317 case bp_longjmp_master:
7318 case bp_std_terminate_master:
7319 case bp_exception_master:
7320 case bp_gnu_ifunc_resolver:
7321 case bp_gnu_ifunc_resolver_return:
7322 case bp_dprintf:
7323 loc->loc_type = bp_loc_software_breakpoint;
7324 mark_breakpoint_location_modified (loc);
7325 break;
7326 case bp_hardware_breakpoint:
7327 loc->loc_type = bp_loc_hardware_breakpoint;
7328 mark_breakpoint_location_modified (loc);
7329 break;
7330 case bp_hardware_watchpoint:
7331 case bp_read_watchpoint:
7332 case bp_access_watchpoint:
7333 loc->loc_type = bp_loc_hardware_watchpoint;
7334 break;
7335 case bp_watchpoint:
7336 case bp_catchpoint:
7337 case bp_tracepoint:
7338 case bp_fast_tracepoint:
7339 case bp_static_tracepoint:
7340 loc->loc_type = bp_loc_other;
7341 break;
7342 default:
7343 internal_error (__FILE__, __LINE__, _("unknown breakpoint type"));
7344 }
7345
7346 loc->refc = 1;
7347 }
7348
7349 /* Allocate a struct bp_location. */
7350
7351 static struct bp_location *
7352 allocate_bp_location (struct breakpoint *bpt)
7353 {
7354 return bpt->ops->allocate_location (bpt);
7355 }
7356
7357 static void
7358 free_bp_location (struct bp_location *loc)
7359 {
7360 loc->ops->dtor (loc);
7361 xfree (loc);
7362 }
7363
7364 /* Increment reference count. */
7365
7366 static void
7367 incref_bp_location (struct bp_location *bl)
7368 {
7369 ++bl->refc;
7370 }
7371
7372 /* Decrement reference count. If the reference count reaches 0,
7373 destroy the bp_location. Sets *BLP to NULL. */
7374
7375 static void
7376 decref_bp_location (struct bp_location **blp)
7377 {
7378 gdb_assert ((*blp)->refc > 0);
7379
7380 if (--(*blp)->refc == 0)
7381 free_bp_location (*blp);
7382 *blp = NULL;
7383 }
7384
7385 /* Add breakpoint B at the end of the global breakpoint chain. */
7386
7387 static void
7388 add_to_breakpoint_chain (struct breakpoint *b)
7389 {
7390 struct breakpoint *b1;
7391
7392 /* Add this breakpoint to the end of the chain so that a list of
7393 breakpoints will come out in order of increasing numbers. */
7394
7395 b1 = breakpoint_chain;
7396 if (b1 == 0)
7397 breakpoint_chain = b;
7398 else
7399 {
7400 while (b1->next)
7401 b1 = b1->next;
7402 b1->next = b;
7403 }
7404 }
7405
7406 /* Initializes breakpoint B with type BPTYPE and no locations yet. */
7407
7408 static void
7409 init_raw_breakpoint_without_location (struct breakpoint *b,
7410 struct gdbarch *gdbarch,
7411 enum bptype bptype,
7412 const struct breakpoint_ops *ops)
7413 {
7414 memset (b, 0, sizeof (*b));
7415
7416 gdb_assert (ops != NULL);
7417
7418 b->ops = ops;
7419 b->type = bptype;
7420 b->gdbarch = gdbarch;
7421 b->language = current_language->la_language;
7422 b->input_radix = input_radix;
7423 b->thread = -1;
7424 b->enable_state = bp_enabled;
7425 b->next = 0;
7426 b->silent = 0;
7427 b->ignore_count = 0;
7428 b->commands = NULL;
7429 b->frame_id = null_frame_id;
7430 b->condition_not_parsed = 0;
7431 b->py_bp_object = NULL;
7432 b->related_breakpoint = b;
7433 b->location = NULL;
7434 }
7435
7436 /* Helper to set_raw_breakpoint below. Creates a breakpoint
7437 that has type BPTYPE and has no locations as yet. */
7438
7439 static struct breakpoint *
7440 set_raw_breakpoint_without_location (struct gdbarch *gdbarch,
7441 enum bptype bptype,
7442 const struct breakpoint_ops *ops)
7443 {
7444 struct breakpoint *b = XNEW (struct breakpoint);
7445
7446 init_raw_breakpoint_without_location (b, gdbarch, bptype, ops);
7447 add_to_breakpoint_chain (b);
7448 return b;
7449 }
7450
7451 /* Initialize loc->function_name. EXPLICIT_LOC says no indirect function
7452 resolutions should be made as the user specified the location explicitly
7453 enough. */
7454
7455 static void
7456 set_breakpoint_location_function (struct bp_location *loc, int explicit_loc)
7457 {
7458 gdb_assert (loc->owner != NULL);
7459
7460 if (loc->owner->type == bp_breakpoint
7461 || loc->owner->type == bp_hardware_breakpoint
7462 || is_tracepoint (loc->owner))
7463 {
7464 int is_gnu_ifunc;
7465 const char *function_name;
7466 CORE_ADDR func_addr;
7467
7468 find_pc_partial_function_gnu_ifunc (loc->address, &function_name,
7469 &func_addr, NULL, &is_gnu_ifunc);
7470
7471 if (is_gnu_ifunc && !explicit_loc)
7472 {
7473 struct breakpoint *b = loc->owner;
7474
7475 gdb_assert (loc->pspace == current_program_space);
7476 if (gnu_ifunc_resolve_name (function_name,
7477 &loc->requested_address))
7478 {
7479 /* Recalculate ADDRESS based on new REQUESTED_ADDRESS. */
7480 loc->address = adjust_breakpoint_address (loc->gdbarch,
7481 loc->requested_address,
7482 b->type);
7483 }
7484 else if (b->type == bp_breakpoint && b->loc == loc
7485 && loc->next == NULL && b->related_breakpoint == b)
7486 {
7487 /* Create only the whole new breakpoint of this type but do not
7488 mess more complicated breakpoints with multiple locations. */
7489 b->type = bp_gnu_ifunc_resolver;
7490 /* Remember the resolver's address for use by the return
7491 breakpoint. */
7492 loc->related_address = func_addr;
7493 }
7494 }
7495
7496 if (function_name)
7497 loc->function_name = xstrdup (function_name);
7498 }
7499 }
7500
7501 /* Attempt to determine architecture of location identified by SAL. */
7502 struct gdbarch *
7503 get_sal_arch (struct symtab_and_line sal)
7504 {
7505 if (sal.section)
7506 return get_objfile_arch (sal.section->objfile);
7507 if (sal.symtab)
7508 return get_objfile_arch (SYMTAB_OBJFILE (sal.symtab));
7509
7510 return NULL;
7511 }
7512
7513 /* Low level routine for partially initializing a breakpoint of type
7514 BPTYPE. The newly created breakpoint's address, section, source
7515 file name, and line number are provided by SAL.
7516
7517 It is expected that the caller will complete the initialization of
7518 the newly created breakpoint struct as well as output any status
7519 information regarding the creation of a new breakpoint. */
7520
7521 static void
7522 init_raw_breakpoint (struct breakpoint *b, struct gdbarch *gdbarch,
7523 struct symtab_and_line sal, enum bptype bptype,
7524 const struct breakpoint_ops *ops)
7525 {
7526 init_raw_breakpoint_without_location (b, gdbarch, bptype, ops);
7527
7528 add_location_to_breakpoint (b, &sal);
7529
7530 if (bptype != bp_catchpoint)
7531 gdb_assert (sal.pspace != NULL);
7532
7533 /* Store the program space that was used to set the breakpoint,
7534 except for ordinary breakpoints, which are independent of the
7535 program space. */
7536 if (bptype != bp_breakpoint && bptype != bp_hardware_breakpoint)
7537 b->pspace = sal.pspace;
7538 }
7539
7540 /* set_raw_breakpoint is a low level routine for allocating and
7541 partially initializing a breakpoint of type BPTYPE. The newly
7542 created breakpoint's address, section, source file name, and line
7543 number are provided by SAL. The newly created and partially
7544 initialized breakpoint is added to the breakpoint chain and
7545 is also returned as the value of this function.
7546
7547 It is expected that the caller will complete the initialization of
7548 the newly created breakpoint struct as well as output any status
7549 information regarding the creation of a new breakpoint. In
7550 particular, set_raw_breakpoint does NOT set the breakpoint
7551 number! Care should be taken to not allow an error to occur
7552 prior to completing the initialization of the breakpoint. If this
7553 should happen, a bogus breakpoint will be left on the chain. */
7554
7555 struct breakpoint *
7556 set_raw_breakpoint (struct gdbarch *gdbarch,
7557 struct symtab_and_line sal, enum bptype bptype,
7558 const struct breakpoint_ops *ops)
7559 {
7560 struct breakpoint *b = XNEW (struct breakpoint);
7561
7562 init_raw_breakpoint (b, gdbarch, sal, bptype, ops);
7563 add_to_breakpoint_chain (b);
7564 return b;
7565 }
7566
7567 /* Call this routine when stepping and nexting to enable a breakpoint
7568 if we do a longjmp() or 'throw' in TP. FRAME is the frame which
7569 initiated the operation. */
7570
7571 void
7572 set_longjmp_breakpoint (struct thread_info *tp, struct frame_id frame)
7573 {
7574 struct breakpoint *b, *b_tmp;
7575 int thread = tp->num;
7576
7577 /* To avoid having to rescan all objfile symbols at every step,
7578 we maintain a list of continually-inserted but always disabled
7579 longjmp "master" breakpoints. Here, we simply create momentary
7580 clones of those and enable them for the requested thread. */
7581 ALL_BREAKPOINTS_SAFE (b, b_tmp)
7582 if (b->pspace == current_program_space
7583 && (b->type == bp_longjmp_master
7584 || b->type == bp_exception_master))
7585 {
7586 enum bptype type = b->type == bp_longjmp_master ? bp_longjmp : bp_exception;
7587 struct breakpoint *clone;
7588
7589 /* longjmp_breakpoint_ops ensures INITIATING_FRAME is cleared again
7590 after their removal. */
7591 clone = momentary_breakpoint_from_master (b, type,
7592 &longjmp_breakpoint_ops, 1);
7593 clone->thread = thread;
7594 }
7595
7596 tp->initiating_frame = frame;
7597 }
7598
7599 /* Delete all longjmp breakpoints from THREAD. */
7600 void
7601 delete_longjmp_breakpoint (int thread)
7602 {
7603 struct breakpoint *b, *b_tmp;
7604
7605 ALL_BREAKPOINTS_SAFE (b, b_tmp)
7606 if (b->type == bp_longjmp || b->type == bp_exception)
7607 {
7608 if (b->thread == thread)
7609 delete_breakpoint (b);
7610 }
7611 }
7612
7613 void
7614 delete_longjmp_breakpoint_at_next_stop (int thread)
7615 {
7616 struct breakpoint *b, *b_tmp;
7617
7618 ALL_BREAKPOINTS_SAFE (b, b_tmp)
7619 if (b->type == bp_longjmp || b->type == bp_exception)
7620 {
7621 if (b->thread == thread)
7622 b->disposition = disp_del_at_next_stop;
7623 }
7624 }
7625
7626 /* Place breakpoints of type bp_longjmp_call_dummy to catch longjmp for
7627 INFERIOR_PTID thread. Chain them all by RELATED_BREAKPOINT and return
7628 pointer to any of them. Return NULL if this system cannot place longjmp
7629 breakpoints. */
7630
7631 struct breakpoint *
7632 set_longjmp_breakpoint_for_call_dummy (void)
7633 {
7634 struct breakpoint *b, *retval = NULL;
7635
7636 ALL_BREAKPOINTS (b)
7637 if (b->pspace == current_program_space && b->type == bp_longjmp_master)
7638 {
7639 struct breakpoint *new_b;
7640
7641 new_b = momentary_breakpoint_from_master (b, bp_longjmp_call_dummy,
7642 &momentary_breakpoint_ops,
7643 1);
7644 new_b->thread = pid_to_thread_id (inferior_ptid);
7645
7646 /* Link NEW_B into the chain of RETVAL breakpoints. */
7647
7648 gdb_assert (new_b->related_breakpoint == new_b);
7649 if (retval == NULL)
7650 retval = new_b;
7651 new_b->related_breakpoint = retval;
7652 while (retval->related_breakpoint != new_b->related_breakpoint)
7653 retval = retval->related_breakpoint;
7654 retval->related_breakpoint = new_b;
7655 }
7656
7657 return retval;
7658 }
7659
7660 /* Verify all existing dummy frames and their associated breakpoints for
7661 TP. Remove those which can no longer be found in the current frame
7662 stack.
7663
7664 You should call this function only at places where it is safe to currently
7665 unwind the whole stack. Failed stack unwind would discard live dummy
7666 frames. */
7667
7668 void
7669 check_longjmp_breakpoint_for_call_dummy (struct thread_info *tp)
7670 {
7671 struct breakpoint *b, *b_tmp;
7672
7673 ALL_BREAKPOINTS_SAFE (b, b_tmp)
7674 if (b->type == bp_longjmp_call_dummy && b->thread == tp->num)
7675 {
7676 struct breakpoint *dummy_b = b->related_breakpoint;
7677
7678 while (dummy_b != b && dummy_b->type != bp_call_dummy)
7679 dummy_b = dummy_b->related_breakpoint;
7680 if (dummy_b->type != bp_call_dummy
7681 || frame_find_by_id (dummy_b->frame_id) != NULL)
7682 continue;
7683
7684 dummy_frame_discard (dummy_b->frame_id, tp->ptid);
7685
7686 while (b->related_breakpoint != b)
7687 {
7688 if (b_tmp == b->related_breakpoint)
7689 b_tmp = b->related_breakpoint->next;
7690 delete_breakpoint (b->related_breakpoint);
7691 }
7692 delete_breakpoint (b);
7693 }
7694 }
7695
7696 void
7697 enable_overlay_breakpoints (void)
7698 {
7699 struct breakpoint *b;
7700
7701 ALL_BREAKPOINTS (b)
7702 if (b->type == bp_overlay_event)
7703 {
7704 b->enable_state = bp_enabled;
7705 update_global_location_list (UGLL_MAY_INSERT);
7706 overlay_events_enabled = 1;
7707 }
7708 }
7709
7710 void
7711 disable_overlay_breakpoints (void)
7712 {
7713 struct breakpoint *b;
7714
7715 ALL_BREAKPOINTS (b)
7716 if (b->type == bp_overlay_event)
7717 {
7718 b->enable_state = bp_disabled;
7719 update_global_location_list (UGLL_DONT_INSERT);
7720 overlay_events_enabled = 0;
7721 }
7722 }
7723
7724 /* Set an active std::terminate breakpoint for each std::terminate
7725 master breakpoint. */
7726 void
7727 set_std_terminate_breakpoint (void)
7728 {
7729 struct breakpoint *b, *b_tmp;
7730
7731 ALL_BREAKPOINTS_SAFE (b, b_tmp)
7732 if (b->pspace == current_program_space
7733 && b->type == bp_std_terminate_master)
7734 {
7735 momentary_breakpoint_from_master (b, bp_std_terminate,
7736 &momentary_breakpoint_ops, 1);
7737 }
7738 }
7739
7740 /* Delete all the std::terminate breakpoints. */
7741 void
7742 delete_std_terminate_breakpoint (void)
7743 {
7744 struct breakpoint *b, *b_tmp;
7745
7746 ALL_BREAKPOINTS_SAFE (b, b_tmp)
7747 if (b->type == bp_std_terminate)
7748 delete_breakpoint (b);
7749 }
7750
7751 struct breakpoint *
7752 create_thread_event_breakpoint (struct gdbarch *gdbarch, CORE_ADDR address)
7753 {
7754 struct breakpoint *b;
7755
7756 b = create_internal_breakpoint (gdbarch, address, bp_thread_event,
7757 &internal_breakpoint_ops);
7758
7759 b->enable_state = bp_enabled;
7760 /* location has to be used or breakpoint_re_set will delete me. */
7761 b->location = new_address_location (b->loc->address);
7762
7763 update_global_location_list_nothrow (UGLL_MAY_INSERT);
7764
7765 return b;
7766 }
7767
7768 void
7769 remove_thread_event_breakpoints (void)
7770 {
7771 struct breakpoint *b, *b_tmp;
7772
7773 ALL_BREAKPOINTS_SAFE (b, b_tmp)
7774 if (b->type == bp_thread_event
7775 && b->loc->pspace == current_program_space)
7776 delete_breakpoint (b);
7777 }
7778
7779 struct lang_and_radix
7780 {
7781 enum language lang;
7782 int radix;
7783 };
7784
7785 /* Create a breakpoint for JIT code registration and unregistration. */
7786
7787 struct breakpoint *
7788 create_jit_event_breakpoint (struct gdbarch *gdbarch, CORE_ADDR address)
7789 {
7790 struct breakpoint *b;
7791
7792 b = create_internal_breakpoint (gdbarch, address, bp_jit_event,
7793 &internal_breakpoint_ops);
7794 update_global_location_list_nothrow (UGLL_MAY_INSERT);
7795 return b;
7796 }
7797
7798 /* Remove JIT code registration and unregistration breakpoint(s). */
7799
7800 void
7801 remove_jit_event_breakpoints (void)
7802 {
7803 struct breakpoint *b, *b_tmp;
7804
7805 ALL_BREAKPOINTS_SAFE (b, b_tmp)
7806 if (b->type == bp_jit_event
7807 && b->loc->pspace == current_program_space)
7808 delete_breakpoint (b);
7809 }
7810
7811 void
7812 remove_solib_event_breakpoints (void)
7813 {
7814 struct breakpoint *b, *b_tmp;
7815
7816 ALL_BREAKPOINTS_SAFE (b, b_tmp)
7817 if (b->type == bp_shlib_event
7818 && b->loc->pspace == current_program_space)
7819 delete_breakpoint (b);
7820 }
7821
7822 /* See breakpoint.h. */
7823
7824 void
7825 remove_solib_event_breakpoints_at_next_stop (void)
7826 {
7827 struct breakpoint *b, *b_tmp;
7828
7829 ALL_BREAKPOINTS_SAFE (b, b_tmp)
7830 if (b->type == bp_shlib_event
7831 && b->loc->pspace == current_program_space)
7832 b->disposition = disp_del_at_next_stop;
7833 }
7834
7835 /* Helper for create_solib_event_breakpoint /
7836 create_and_insert_solib_event_breakpoint. Allows specifying which
7837 INSERT_MODE to pass through to update_global_location_list. */
7838
7839 static struct breakpoint *
7840 create_solib_event_breakpoint_1 (struct gdbarch *gdbarch, CORE_ADDR address,
7841 enum ugll_insert_mode insert_mode)
7842 {
7843 struct breakpoint *b;
7844
7845 b = create_internal_breakpoint (gdbarch, address, bp_shlib_event,
7846 &internal_breakpoint_ops);
7847 update_global_location_list_nothrow (insert_mode);
7848 return b;
7849 }
7850
7851 struct breakpoint *
7852 create_solib_event_breakpoint (struct gdbarch *gdbarch, CORE_ADDR address)
7853 {
7854 return create_solib_event_breakpoint_1 (gdbarch, address, UGLL_MAY_INSERT);
7855 }
7856
7857 /* See breakpoint.h. */
7858
7859 struct breakpoint *
7860 create_and_insert_solib_event_breakpoint (struct gdbarch *gdbarch, CORE_ADDR address)
7861 {
7862 struct breakpoint *b;
7863
7864 /* Explicitly tell update_global_location_list to insert
7865 locations. */
7866 b = create_solib_event_breakpoint_1 (gdbarch, address, UGLL_INSERT);
7867 if (!b->loc->inserted)
7868 {
7869 delete_breakpoint (b);
7870 return NULL;
7871 }
7872 return b;
7873 }
7874
7875 /* Disable any breakpoints that are on code in shared libraries. Only
7876 apply to enabled breakpoints, disabled ones can just stay disabled. */
7877
7878 void
7879 disable_breakpoints_in_shlibs (void)
7880 {
7881 struct bp_location *loc, **locp_tmp;
7882
7883 ALL_BP_LOCATIONS (loc, locp_tmp)
7884 {
7885 /* ALL_BP_LOCATIONS bp_location has LOC->OWNER always non-NULL. */
7886 struct breakpoint *b = loc->owner;
7887
7888 /* We apply the check to all breakpoints, including disabled for
7889 those with loc->duplicate set. This is so that when breakpoint
7890 becomes enabled, or the duplicate is removed, gdb will try to
7891 insert all breakpoints. If we don't set shlib_disabled here,
7892 we'll try to insert those breakpoints and fail. */
7893 if (((b->type == bp_breakpoint)
7894 || (b->type == bp_jit_event)
7895 || (b->type == bp_hardware_breakpoint)
7896 || (is_tracepoint (b)))
7897 && loc->pspace == current_program_space
7898 && !loc->shlib_disabled
7899 && solib_name_from_address (loc->pspace, loc->address)
7900 )
7901 {
7902 loc->shlib_disabled = 1;
7903 }
7904 }
7905 }
7906
7907 /* Disable any breakpoints and tracepoints that are in SOLIB upon
7908 notification of unloaded_shlib. Only apply to enabled breakpoints,
7909 disabled ones can just stay disabled. */
7910
7911 static void
7912 disable_breakpoints_in_unloaded_shlib (struct so_list *solib)
7913 {
7914 struct bp_location *loc, **locp_tmp;
7915 int disabled_shlib_breaks = 0;
7916
7917 /* SunOS a.out shared libraries are always mapped, so do not
7918 disable breakpoints; they will only be reported as unloaded
7919 through clear_solib when GDB discards its shared library
7920 list. See clear_solib for more information. */
7921 if (exec_bfd != NULL
7922 && bfd_get_flavour (exec_bfd) == bfd_target_aout_flavour)
7923 return;
7924
7925 ALL_BP_LOCATIONS (loc, locp_tmp)
7926 {
7927 /* ALL_BP_LOCATIONS bp_location has LOC->OWNER always non-NULL. */
7928 struct breakpoint *b = loc->owner;
7929
7930 if (solib->pspace == loc->pspace
7931 && !loc->shlib_disabled
7932 && (((b->type == bp_breakpoint
7933 || b->type == bp_jit_event
7934 || b->type == bp_hardware_breakpoint)
7935 && (loc->loc_type == bp_loc_hardware_breakpoint
7936 || loc->loc_type == bp_loc_software_breakpoint))
7937 || is_tracepoint (b))
7938 && solib_contains_address_p (solib, loc->address))
7939 {
7940 loc->shlib_disabled = 1;
7941 /* At this point, we cannot rely on remove_breakpoint
7942 succeeding so we must mark the breakpoint as not inserted
7943 to prevent future errors occurring in remove_breakpoints. */
7944 loc->inserted = 0;
7945
7946 /* This may cause duplicate notifications for the same breakpoint. */
7947 observer_notify_breakpoint_modified (b);
7948
7949 if (!disabled_shlib_breaks)
7950 {
7951 target_terminal_ours_for_output ();
7952 warning (_("Temporarily disabling breakpoints "
7953 "for unloaded shared library \"%s\""),
7954 solib->so_name);
7955 }
7956 disabled_shlib_breaks = 1;
7957 }
7958 }
7959 }
7960
7961 /* Disable any breakpoints and tracepoints in OBJFILE upon
7962 notification of free_objfile. Only apply to enabled breakpoints,
7963 disabled ones can just stay disabled. */
7964
7965 static void
7966 disable_breakpoints_in_freed_objfile (struct objfile *objfile)
7967 {
7968 struct breakpoint *b;
7969
7970 if (objfile == NULL)
7971 return;
7972
7973 /* OBJF_SHARED|OBJF_USERLOADED objfiles are dynamic modules manually
7974 managed by the user with add-symbol-file/remove-symbol-file.
7975 Similarly to how breakpoints in shared libraries are handled in
7976 response to "nosharedlibrary", mark breakpoints in such modules
7977 shlib_disabled so they end up uninserted on the next global
7978 location list update. Shared libraries not loaded by the user
7979 aren't handled here -- they're already handled in
7980 disable_breakpoints_in_unloaded_shlib, called by solib.c's
7981 solib_unloaded observer. We skip objfiles that are not
7982 OBJF_SHARED as those aren't considered dynamic objects (e.g. the
7983 main objfile). */
7984 if ((objfile->flags & OBJF_SHARED) == 0
7985 || (objfile->flags & OBJF_USERLOADED) == 0)
7986 return;
7987
7988 ALL_BREAKPOINTS (b)
7989 {
7990 struct bp_location *loc;
7991 int bp_modified = 0;
7992
7993 if (!is_breakpoint (b) && !is_tracepoint (b))
7994 continue;
7995
7996 for (loc = b->loc; loc != NULL; loc = loc->next)
7997 {
7998 CORE_ADDR loc_addr = loc->address;
7999
8000 if (loc->loc_type != bp_loc_hardware_breakpoint
8001 && loc->loc_type != bp_loc_software_breakpoint)
8002 continue;
8003
8004 if (loc->shlib_disabled != 0)
8005 continue;
8006
8007 if (objfile->pspace != loc->pspace)
8008 continue;
8009
8010 if (loc->loc_type != bp_loc_hardware_breakpoint
8011 && loc->loc_type != bp_loc_software_breakpoint)
8012 continue;
8013
8014 if (is_addr_in_objfile (loc_addr, objfile))
8015 {
8016 loc->shlib_disabled = 1;
8017 /* At this point, we don't know whether the object was
8018 unmapped from the inferior or not, so leave the
8019 inserted flag alone. We'll handle failure to
8020 uninsert quietly, in case the object was indeed
8021 unmapped. */
8022
8023 mark_breakpoint_location_modified (loc);
8024
8025 bp_modified = 1;
8026 }
8027 }
8028
8029 if (bp_modified)
8030 observer_notify_breakpoint_modified (b);
8031 }
8032 }
8033
8034 /* FORK & VFORK catchpoints. */
8035
8036 /* An instance of this type is used to represent a fork or vfork
8037 catchpoint. It includes a "struct breakpoint" as a kind of base
8038 class; users downcast to "struct breakpoint *" when needed. A
8039 breakpoint is really of this type iff its ops pointer points to
8040 CATCH_FORK_BREAKPOINT_OPS. */
8041
8042 struct fork_catchpoint
8043 {
8044 /* The base class. */
8045 struct breakpoint base;
8046
8047 /* Process id of a child process whose forking triggered this
8048 catchpoint. This field is only valid immediately after this
8049 catchpoint has triggered. */
8050 ptid_t forked_inferior_pid;
8051 };
8052
8053 /* Implement the "insert" breakpoint_ops method for fork
8054 catchpoints. */
8055
8056 static int
8057 insert_catch_fork (struct bp_location *bl)
8058 {
8059 return target_insert_fork_catchpoint (ptid_get_pid (inferior_ptid));
8060 }
8061
8062 /* Implement the "remove" breakpoint_ops method for fork
8063 catchpoints. */
8064
8065 static int
8066 remove_catch_fork (struct bp_location *bl)
8067 {
8068 return target_remove_fork_catchpoint (ptid_get_pid (inferior_ptid));
8069 }
8070
8071 /* Implement the "breakpoint_hit" breakpoint_ops method for fork
8072 catchpoints. */
8073
8074 static int
8075 breakpoint_hit_catch_fork (const struct bp_location *bl,
8076 struct address_space *aspace, CORE_ADDR bp_addr,
8077 const struct target_waitstatus *ws)
8078 {
8079 struct fork_catchpoint *c = (struct fork_catchpoint *) bl->owner;
8080
8081 if (ws->kind != TARGET_WAITKIND_FORKED)
8082 return 0;
8083
8084 c->forked_inferior_pid = ws->value.related_pid;
8085 return 1;
8086 }
8087
8088 /* Implement the "print_it" breakpoint_ops method for fork
8089 catchpoints. */
8090
8091 static enum print_stop_action
8092 print_it_catch_fork (bpstat bs)
8093 {
8094 struct ui_out *uiout = current_uiout;
8095 struct breakpoint *b = bs->breakpoint_at;
8096 struct fork_catchpoint *c = (struct fork_catchpoint *) bs->breakpoint_at;
8097
8098 annotate_catchpoint (b->number);
8099 if (b->disposition == disp_del)
8100 ui_out_text (uiout, "\nTemporary catchpoint ");
8101 else
8102 ui_out_text (uiout, "\nCatchpoint ");
8103 if (ui_out_is_mi_like_p (uiout))
8104 {
8105 ui_out_field_string (uiout, "reason",
8106 async_reason_lookup (EXEC_ASYNC_FORK));
8107 ui_out_field_string (uiout, "disp", bpdisp_text (b->disposition));
8108 }
8109 ui_out_field_int (uiout, "bkptno", b->number);
8110 ui_out_text (uiout, " (forked process ");
8111 ui_out_field_int (uiout, "newpid", ptid_get_pid (c->forked_inferior_pid));
8112 ui_out_text (uiout, "), ");
8113 return PRINT_SRC_AND_LOC;
8114 }
8115
8116 /* Implement the "print_one" breakpoint_ops method for fork
8117 catchpoints. */
8118
8119 static void
8120 print_one_catch_fork (struct breakpoint *b, struct bp_location **last_loc)
8121 {
8122 struct fork_catchpoint *c = (struct fork_catchpoint *) b;
8123 struct value_print_options opts;
8124 struct ui_out *uiout = current_uiout;
8125
8126 get_user_print_options (&opts);
8127
8128 /* Field 4, the address, is omitted (which makes the columns not
8129 line up too nicely with the headers, but the effect is relatively
8130 readable). */
8131 if (opts.addressprint)
8132 ui_out_field_skip (uiout, "addr");
8133 annotate_field (5);
8134 ui_out_text (uiout, "fork");
8135 if (!ptid_equal (c->forked_inferior_pid, null_ptid))
8136 {
8137 ui_out_text (uiout, ", process ");
8138 ui_out_field_int (uiout, "what",
8139 ptid_get_pid (c->forked_inferior_pid));
8140 ui_out_spaces (uiout, 1);
8141 }
8142
8143 if (ui_out_is_mi_like_p (uiout))
8144 ui_out_field_string (uiout, "catch-type", "fork");
8145 }
8146
8147 /* Implement the "print_mention" breakpoint_ops method for fork
8148 catchpoints. */
8149
8150 static void
8151 print_mention_catch_fork (struct breakpoint *b)
8152 {
8153 printf_filtered (_("Catchpoint %d (fork)"), b->number);
8154 }
8155
8156 /* Implement the "print_recreate" breakpoint_ops method for fork
8157 catchpoints. */
8158
8159 static void
8160 print_recreate_catch_fork (struct breakpoint *b, struct ui_file *fp)
8161 {
8162 fprintf_unfiltered (fp, "catch fork");
8163 print_recreate_thread (b, fp);
8164 }
8165
8166 /* The breakpoint_ops structure to be used in fork catchpoints. */
8167
8168 static struct breakpoint_ops catch_fork_breakpoint_ops;
8169
8170 /* Implement the "insert" breakpoint_ops method for vfork
8171 catchpoints. */
8172
8173 static int
8174 insert_catch_vfork (struct bp_location *bl)
8175 {
8176 return target_insert_vfork_catchpoint (ptid_get_pid (inferior_ptid));
8177 }
8178
8179 /* Implement the "remove" breakpoint_ops method for vfork
8180 catchpoints. */
8181
8182 static int
8183 remove_catch_vfork (struct bp_location *bl)
8184 {
8185 return target_remove_vfork_catchpoint (ptid_get_pid (inferior_ptid));
8186 }
8187
8188 /* Implement the "breakpoint_hit" breakpoint_ops method for vfork
8189 catchpoints. */
8190
8191 static int
8192 breakpoint_hit_catch_vfork (const struct bp_location *bl,
8193 struct address_space *aspace, CORE_ADDR bp_addr,
8194 const struct target_waitstatus *ws)
8195 {
8196 struct fork_catchpoint *c = (struct fork_catchpoint *) bl->owner;
8197
8198 if (ws->kind != TARGET_WAITKIND_VFORKED)
8199 return 0;
8200
8201 c->forked_inferior_pid = ws->value.related_pid;
8202 return 1;
8203 }
8204
8205 /* Implement the "print_it" breakpoint_ops method for vfork
8206 catchpoints. */
8207
8208 static enum print_stop_action
8209 print_it_catch_vfork (bpstat bs)
8210 {
8211 struct ui_out *uiout = current_uiout;
8212 struct breakpoint *b = bs->breakpoint_at;
8213 struct fork_catchpoint *c = (struct fork_catchpoint *) b;
8214
8215 annotate_catchpoint (b->number);
8216 if (b->disposition == disp_del)
8217 ui_out_text (uiout, "\nTemporary catchpoint ");
8218 else
8219 ui_out_text (uiout, "\nCatchpoint ");
8220 if (ui_out_is_mi_like_p (uiout))
8221 {
8222 ui_out_field_string (uiout, "reason",
8223 async_reason_lookup (EXEC_ASYNC_VFORK));
8224 ui_out_field_string (uiout, "disp", bpdisp_text (b->disposition));
8225 }
8226 ui_out_field_int (uiout, "bkptno", b->number);
8227 ui_out_text (uiout, " (vforked process ");
8228 ui_out_field_int (uiout, "newpid", ptid_get_pid (c->forked_inferior_pid));
8229 ui_out_text (uiout, "), ");
8230 return PRINT_SRC_AND_LOC;
8231 }
8232
8233 /* Implement the "print_one" breakpoint_ops method for vfork
8234 catchpoints. */
8235
8236 static void
8237 print_one_catch_vfork (struct breakpoint *b, struct bp_location **last_loc)
8238 {
8239 struct fork_catchpoint *c = (struct fork_catchpoint *) b;
8240 struct value_print_options opts;
8241 struct ui_out *uiout = current_uiout;
8242
8243 get_user_print_options (&opts);
8244 /* Field 4, the address, is omitted (which makes the columns not
8245 line up too nicely with the headers, but the effect is relatively
8246 readable). */
8247 if (opts.addressprint)
8248 ui_out_field_skip (uiout, "addr");
8249 annotate_field (5);
8250 ui_out_text (uiout, "vfork");
8251 if (!ptid_equal (c->forked_inferior_pid, null_ptid))
8252 {
8253 ui_out_text (uiout, ", process ");
8254 ui_out_field_int (uiout, "what",
8255 ptid_get_pid (c->forked_inferior_pid));
8256 ui_out_spaces (uiout, 1);
8257 }
8258
8259 if (ui_out_is_mi_like_p (uiout))
8260 ui_out_field_string (uiout, "catch-type", "vfork");
8261 }
8262
8263 /* Implement the "print_mention" breakpoint_ops method for vfork
8264 catchpoints. */
8265
8266 static void
8267 print_mention_catch_vfork (struct breakpoint *b)
8268 {
8269 printf_filtered (_("Catchpoint %d (vfork)"), b->number);
8270 }
8271
8272 /* Implement the "print_recreate" breakpoint_ops method for vfork
8273 catchpoints. */
8274
8275 static void
8276 print_recreate_catch_vfork (struct breakpoint *b, struct ui_file *fp)
8277 {
8278 fprintf_unfiltered (fp, "catch vfork");
8279 print_recreate_thread (b, fp);
8280 }
8281
8282 /* The breakpoint_ops structure to be used in vfork catchpoints. */
8283
8284 static struct breakpoint_ops catch_vfork_breakpoint_ops;
8285
8286 /* An instance of this type is used to represent an solib catchpoint.
8287 It includes a "struct breakpoint" as a kind of base class; users
8288 downcast to "struct breakpoint *" when needed. A breakpoint is
8289 really of this type iff its ops pointer points to
8290 CATCH_SOLIB_BREAKPOINT_OPS. */
8291
8292 struct solib_catchpoint
8293 {
8294 /* The base class. */
8295 struct breakpoint base;
8296
8297 /* True for "catch load", false for "catch unload". */
8298 unsigned char is_load;
8299
8300 /* Regular expression to match, if any. COMPILED is only valid when
8301 REGEX is non-NULL. */
8302 char *regex;
8303 regex_t compiled;
8304 };
8305
8306 static void
8307 dtor_catch_solib (struct breakpoint *b)
8308 {
8309 struct solib_catchpoint *self = (struct solib_catchpoint *) b;
8310
8311 if (self->regex)
8312 regfree (&self->compiled);
8313 xfree (self->regex);
8314
8315 base_breakpoint_ops.dtor (b);
8316 }
8317
8318 static int
8319 insert_catch_solib (struct bp_location *ignore)
8320 {
8321 return 0;
8322 }
8323
8324 static int
8325 remove_catch_solib (struct bp_location *ignore)
8326 {
8327 return 0;
8328 }
8329
8330 static int
8331 breakpoint_hit_catch_solib (const struct bp_location *bl,
8332 struct address_space *aspace,
8333 CORE_ADDR bp_addr,
8334 const struct target_waitstatus *ws)
8335 {
8336 struct solib_catchpoint *self = (struct solib_catchpoint *) bl->owner;
8337 struct breakpoint *other;
8338
8339 if (ws->kind == TARGET_WAITKIND_LOADED)
8340 return 1;
8341
8342 ALL_BREAKPOINTS (other)
8343 {
8344 struct bp_location *other_bl;
8345
8346 if (other == bl->owner)
8347 continue;
8348
8349 if (other->type != bp_shlib_event)
8350 continue;
8351
8352 if (self->base.pspace != NULL && other->pspace != self->base.pspace)
8353 continue;
8354
8355 for (other_bl = other->loc; other_bl != NULL; other_bl = other_bl->next)
8356 {
8357 if (other->ops->breakpoint_hit (other_bl, aspace, bp_addr, ws))
8358 return 1;
8359 }
8360 }
8361
8362 return 0;
8363 }
8364
8365 static void
8366 check_status_catch_solib (struct bpstats *bs)
8367 {
8368 struct solib_catchpoint *self
8369 = (struct solib_catchpoint *) bs->breakpoint_at;
8370 int ix;
8371
8372 if (self->is_load)
8373 {
8374 struct so_list *iter;
8375
8376 for (ix = 0;
8377 VEC_iterate (so_list_ptr, current_program_space->added_solibs,
8378 ix, iter);
8379 ++ix)
8380 {
8381 if (!self->regex
8382 || regexec (&self->compiled, iter->so_name, 0, NULL, 0) == 0)
8383 return;
8384 }
8385 }
8386 else
8387 {
8388 char *iter;
8389
8390 for (ix = 0;
8391 VEC_iterate (char_ptr, current_program_space->deleted_solibs,
8392 ix, iter);
8393 ++ix)
8394 {
8395 if (!self->regex
8396 || regexec (&self->compiled, iter, 0, NULL, 0) == 0)
8397 return;
8398 }
8399 }
8400
8401 bs->stop = 0;
8402 bs->print_it = print_it_noop;
8403 }
8404
8405 static enum print_stop_action
8406 print_it_catch_solib (bpstat bs)
8407 {
8408 struct breakpoint *b = bs->breakpoint_at;
8409 struct ui_out *uiout = current_uiout;
8410
8411 annotate_catchpoint (b->number);
8412 if (b->disposition == disp_del)
8413 ui_out_text (uiout, "\nTemporary catchpoint ");
8414 else
8415 ui_out_text (uiout, "\nCatchpoint ");
8416 ui_out_field_int (uiout, "bkptno", b->number);
8417 ui_out_text (uiout, "\n");
8418 if (ui_out_is_mi_like_p (uiout))
8419 ui_out_field_string (uiout, "disp", bpdisp_text (b->disposition));
8420 print_solib_event (1);
8421 return PRINT_SRC_AND_LOC;
8422 }
8423
8424 static void
8425 print_one_catch_solib (struct breakpoint *b, struct bp_location **locs)
8426 {
8427 struct solib_catchpoint *self = (struct solib_catchpoint *) b;
8428 struct value_print_options opts;
8429 struct ui_out *uiout = current_uiout;
8430 char *msg;
8431
8432 get_user_print_options (&opts);
8433 /* Field 4, the address, is omitted (which makes the columns not
8434 line up too nicely with the headers, but the effect is relatively
8435 readable). */
8436 if (opts.addressprint)
8437 {
8438 annotate_field (4);
8439 ui_out_field_skip (uiout, "addr");
8440 }
8441
8442 annotate_field (5);
8443 if (self->is_load)
8444 {
8445 if (self->regex)
8446 msg = xstrprintf (_("load of library matching %s"), self->regex);
8447 else
8448 msg = xstrdup (_("load of library"));
8449 }
8450 else
8451 {
8452 if (self->regex)
8453 msg = xstrprintf (_("unload of library matching %s"), self->regex);
8454 else
8455 msg = xstrdup (_("unload of library"));
8456 }
8457 ui_out_field_string (uiout, "what", msg);
8458 xfree (msg);
8459
8460 if (ui_out_is_mi_like_p (uiout))
8461 ui_out_field_string (uiout, "catch-type",
8462 self->is_load ? "load" : "unload");
8463 }
8464
8465 static void
8466 print_mention_catch_solib (struct breakpoint *b)
8467 {
8468 struct solib_catchpoint *self = (struct solib_catchpoint *) b;
8469
8470 printf_filtered (_("Catchpoint %d (%s)"), b->number,
8471 self->is_load ? "load" : "unload");
8472 }
8473
8474 static void
8475 print_recreate_catch_solib (struct breakpoint *b, struct ui_file *fp)
8476 {
8477 struct solib_catchpoint *self = (struct solib_catchpoint *) b;
8478
8479 fprintf_unfiltered (fp, "%s %s",
8480 b->disposition == disp_del ? "tcatch" : "catch",
8481 self->is_load ? "load" : "unload");
8482 if (self->regex)
8483 fprintf_unfiltered (fp, " %s", self->regex);
8484 fprintf_unfiltered (fp, "\n");
8485 }
8486
8487 static struct breakpoint_ops catch_solib_breakpoint_ops;
8488
8489 /* Shared helper function (MI and CLI) for creating and installing
8490 a shared object event catchpoint. If IS_LOAD is non-zero then
8491 the events to be caught are load events, otherwise they are
8492 unload events. If IS_TEMP is non-zero the catchpoint is a
8493 temporary one. If ENABLED is non-zero the catchpoint is
8494 created in an enabled state. */
8495
8496 void
8497 add_solib_catchpoint (char *arg, int is_load, int is_temp, int enabled)
8498 {
8499 struct solib_catchpoint *c;
8500 struct gdbarch *gdbarch = get_current_arch ();
8501 struct cleanup *cleanup;
8502
8503 if (!arg)
8504 arg = "";
8505 arg = skip_spaces (arg);
8506
8507 c = XCNEW (struct solib_catchpoint);
8508 cleanup = make_cleanup (xfree, c);
8509
8510 if (*arg != '\0')
8511 {
8512 int errcode;
8513
8514 errcode = regcomp (&c->compiled, arg, REG_NOSUB);
8515 if (errcode != 0)
8516 {
8517 char *err = get_regcomp_error (errcode, &c->compiled);
8518
8519 make_cleanup (xfree, err);
8520 error (_("Invalid regexp (%s): %s"), err, arg);
8521 }
8522 c->regex = xstrdup (arg);
8523 }
8524
8525 c->is_load = is_load;
8526 init_catchpoint (&c->base, gdbarch, is_temp, NULL,
8527 &catch_solib_breakpoint_ops);
8528
8529 c->base.enable_state = enabled ? bp_enabled : bp_disabled;
8530
8531 discard_cleanups (cleanup);
8532 install_breakpoint (0, &c->base, 1);
8533 }
8534
8535 /* A helper function that does all the work for "catch load" and
8536 "catch unload". */
8537
8538 static void
8539 catch_load_or_unload (char *arg, int from_tty, int is_load,
8540 struct cmd_list_element *command)
8541 {
8542 int tempflag;
8543 const int enabled = 1;
8544
8545 tempflag = get_cmd_context (command) == CATCH_TEMPORARY;
8546
8547 add_solib_catchpoint (arg, is_load, tempflag, enabled);
8548 }
8549
8550 static void
8551 catch_load_command_1 (char *arg, int from_tty,
8552 struct cmd_list_element *command)
8553 {
8554 catch_load_or_unload (arg, from_tty, 1, command);
8555 }
8556
8557 static void
8558 catch_unload_command_1 (char *arg, int from_tty,
8559 struct cmd_list_element *command)
8560 {
8561 catch_load_or_unload (arg, from_tty, 0, command);
8562 }
8563
8564 /* Initialize a new breakpoint of the bp_catchpoint kind. If TEMPFLAG
8565 is non-zero, then make the breakpoint temporary. If COND_STRING is
8566 not NULL, then store it in the breakpoint. OPS, if not NULL, is
8567 the breakpoint_ops structure associated to the catchpoint. */
8568
8569 void
8570 init_catchpoint (struct breakpoint *b,
8571 struct gdbarch *gdbarch, int tempflag,
8572 char *cond_string,
8573 const struct breakpoint_ops *ops)
8574 {
8575 struct symtab_and_line sal;
8576
8577 init_sal (&sal);
8578 sal.pspace = current_program_space;
8579
8580 init_raw_breakpoint (b, gdbarch, sal, bp_catchpoint, ops);
8581
8582 b->cond_string = (cond_string == NULL) ? NULL : xstrdup (cond_string);
8583 b->disposition = tempflag ? disp_del : disp_donttouch;
8584 }
8585
8586 void
8587 install_breakpoint (int internal, struct breakpoint *b, int update_gll)
8588 {
8589 add_to_breakpoint_chain (b);
8590 set_breakpoint_number (internal, b);
8591 if (is_tracepoint (b))
8592 set_tracepoint_count (breakpoint_count);
8593 if (!internal)
8594 mention (b);
8595 observer_notify_breakpoint_created (b);
8596
8597 if (update_gll)
8598 update_global_location_list (UGLL_MAY_INSERT);
8599 }
8600
8601 static void
8602 create_fork_vfork_event_catchpoint (struct gdbarch *gdbarch,
8603 int tempflag, char *cond_string,
8604 const struct breakpoint_ops *ops)
8605 {
8606 struct fork_catchpoint *c = XNEW (struct fork_catchpoint);
8607
8608 init_catchpoint (&c->base, gdbarch, tempflag, cond_string, ops);
8609
8610 c->forked_inferior_pid = null_ptid;
8611
8612 install_breakpoint (0, &c->base, 1);
8613 }
8614
8615 /* Exec catchpoints. */
8616
8617 /* An instance of this type is used to represent an exec catchpoint.
8618 It includes a "struct breakpoint" as a kind of base class; users
8619 downcast to "struct breakpoint *" when needed. A breakpoint is
8620 really of this type iff its ops pointer points to
8621 CATCH_EXEC_BREAKPOINT_OPS. */
8622
8623 struct exec_catchpoint
8624 {
8625 /* The base class. */
8626 struct breakpoint base;
8627
8628 /* Filename of a program whose exec triggered this catchpoint.
8629 This field is only valid immediately after this catchpoint has
8630 triggered. */
8631 char *exec_pathname;
8632 };
8633
8634 /* Implement the "dtor" breakpoint_ops method for exec
8635 catchpoints. */
8636
8637 static void
8638 dtor_catch_exec (struct breakpoint *b)
8639 {
8640 struct exec_catchpoint *c = (struct exec_catchpoint *) b;
8641
8642 xfree (c->exec_pathname);
8643
8644 base_breakpoint_ops.dtor (b);
8645 }
8646
8647 static int
8648 insert_catch_exec (struct bp_location *bl)
8649 {
8650 return target_insert_exec_catchpoint (ptid_get_pid (inferior_ptid));
8651 }
8652
8653 static int
8654 remove_catch_exec (struct bp_location *bl)
8655 {
8656 return target_remove_exec_catchpoint (ptid_get_pid (inferior_ptid));
8657 }
8658
8659 static int
8660 breakpoint_hit_catch_exec (const struct bp_location *bl,
8661 struct address_space *aspace, CORE_ADDR bp_addr,
8662 const struct target_waitstatus *ws)
8663 {
8664 struct exec_catchpoint *c = (struct exec_catchpoint *) bl->owner;
8665
8666 if (ws->kind != TARGET_WAITKIND_EXECD)
8667 return 0;
8668
8669 c->exec_pathname = xstrdup (ws->value.execd_pathname);
8670 return 1;
8671 }
8672
8673 static enum print_stop_action
8674 print_it_catch_exec (bpstat bs)
8675 {
8676 struct ui_out *uiout = current_uiout;
8677 struct breakpoint *b = bs->breakpoint_at;
8678 struct exec_catchpoint *c = (struct exec_catchpoint *) b;
8679
8680 annotate_catchpoint (b->number);
8681 if (b->disposition == disp_del)
8682 ui_out_text (uiout, "\nTemporary catchpoint ");
8683 else
8684 ui_out_text (uiout, "\nCatchpoint ");
8685 if (ui_out_is_mi_like_p (uiout))
8686 {
8687 ui_out_field_string (uiout, "reason",
8688 async_reason_lookup (EXEC_ASYNC_EXEC));
8689 ui_out_field_string (uiout, "disp", bpdisp_text (b->disposition));
8690 }
8691 ui_out_field_int (uiout, "bkptno", b->number);
8692 ui_out_text (uiout, " (exec'd ");
8693 ui_out_field_string (uiout, "new-exec", c->exec_pathname);
8694 ui_out_text (uiout, "), ");
8695
8696 return PRINT_SRC_AND_LOC;
8697 }
8698
8699 static void
8700 print_one_catch_exec (struct breakpoint *b, struct bp_location **last_loc)
8701 {
8702 struct exec_catchpoint *c = (struct exec_catchpoint *) b;
8703 struct value_print_options opts;
8704 struct ui_out *uiout = current_uiout;
8705
8706 get_user_print_options (&opts);
8707
8708 /* Field 4, the address, is omitted (which makes the columns
8709 not line up too nicely with the headers, but the effect
8710 is relatively readable). */
8711 if (opts.addressprint)
8712 ui_out_field_skip (uiout, "addr");
8713 annotate_field (5);
8714 ui_out_text (uiout, "exec");
8715 if (c->exec_pathname != NULL)
8716 {
8717 ui_out_text (uiout, ", program \"");
8718 ui_out_field_string (uiout, "what", c->exec_pathname);
8719 ui_out_text (uiout, "\" ");
8720 }
8721
8722 if (ui_out_is_mi_like_p (uiout))
8723 ui_out_field_string (uiout, "catch-type", "exec");
8724 }
8725
8726 static void
8727 print_mention_catch_exec (struct breakpoint *b)
8728 {
8729 printf_filtered (_("Catchpoint %d (exec)"), b->number);
8730 }
8731
8732 /* Implement the "print_recreate" breakpoint_ops method for exec
8733 catchpoints. */
8734
8735 static void
8736 print_recreate_catch_exec (struct breakpoint *b, struct ui_file *fp)
8737 {
8738 fprintf_unfiltered (fp, "catch exec");
8739 print_recreate_thread (b, fp);
8740 }
8741
8742 static struct breakpoint_ops catch_exec_breakpoint_ops;
8743
8744 static int
8745 hw_breakpoint_used_count (void)
8746 {
8747 int i = 0;
8748 struct breakpoint *b;
8749 struct bp_location *bl;
8750
8751 ALL_BREAKPOINTS (b)
8752 {
8753 if (b->type == bp_hardware_breakpoint && breakpoint_enabled (b))
8754 for (bl = b->loc; bl; bl = bl->next)
8755 {
8756 /* Special types of hardware breakpoints may use more than
8757 one register. */
8758 i += b->ops->resources_needed (bl);
8759 }
8760 }
8761
8762 return i;
8763 }
8764
8765 /* Returns the resources B would use if it were a hardware
8766 watchpoint. */
8767
8768 static int
8769 hw_watchpoint_use_count (struct breakpoint *b)
8770 {
8771 int i = 0;
8772 struct bp_location *bl;
8773
8774 if (!breakpoint_enabled (b))
8775 return 0;
8776
8777 for (bl = b->loc; bl; bl = bl->next)
8778 {
8779 /* Special types of hardware watchpoints may use more than
8780 one register. */
8781 i += b->ops->resources_needed (bl);
8782 }
8783
8784 return i;
8785 }
8786
8787 /* Returns the sum the used resources of all hardware watchpoints of
8788 type TYPE in the breakpoints list. Also returns in OTHER_TYPE_USED
8789 the sum of the used resources of all hardware watchpoints of other
8790 types _not_ TYPE. */
8791
8792 static int
8793 hw_watchpoint_used_count_others (struct breakpoint *except,
8794 enum bptype type, int *other_type_used)
8795 {
8796 int i = 0;
8797 struct breakpoint *b;
8798
8799 *other_type_used = 0;
8800 ALL_BREAKPOINTS (b)
8801 {
8802 if (b == except)
8803 continue;
8804 if (!breakpoint_enabled (b))
8805 continue;
8806
8807 if (b->type == type)
8808 i += hw_watchpoint_use_count (b);
8809 else if (is_hardware_watchpoint (b))
8810 *other_type_used = 1;
8811 }
8812
8813 return i;
8814 }
8815
8816 void
8817 disable_watchpoints_before_interactive_call_start (void)
8818 {
8819 struct breakpoint *b;
8820
8821 ALL_BREAKPOINTS (b)
8822 {
8823 if (is_watchpoint (b) && breakpoint_enabled (b))
8824 {
8825 b->enable_state = bp_call_disabled;
8826 update_global_location_list (UGLL_DONT_INSERT);
8827 }
8828 }
8829 }
8830
8831 void
8832 enable_watchpoints_after_interactive_call_stop (void)
8833 {
8834 struct breakpoint *b;
8835
8836 ALL_BREAKPOINTS (b)
8837 {
8838 if (is_watchpoint (b) && b->enable_state == bp_call_disabled)
8839 {
8840 b->enable_state = bp_enabled;
8841 update_global_location_list (UGLL_MAY_INSERT);
8842 }
8843 }
8844 }
8845
8846 void
8847 disable_breakpoints_before_startup (void)
8848 {
8849 current_program_space->executing_startup = 1;
8850 update_global_location_list (UGLL_DONT_INSERT);
8851 }
8852
8853 void
8854 enable_breakpoints_after_startup (void)
8855 {
8856 current_program_space->executing_startup = 0;
8857 breakpoint_re_set ();
8858 }
8859
8860 /* Create a new single-step breakpoint for thread THREAD, with no
8861 locations. */
8862
8863 static struct breakpoint *
8864 new_single_step_breakpoint (int thread, struct gdbarch *gdbarch)
8865 {
8866 struct breakpoint *b = XNEW (struct breakpoint);
8867
8868 init_raw_breakpoint_without_location (b, gdbarch, bp_single_step,
8869 &momentary_breakpoint_ops);
8870
8871 b->disposition = disp_donttouch;
8872 b->frame_id = null_frame_id;
8873
8874 b->thread = thread;
8875 gdb_assert (b->thread != 0);
8876
8877 add_to_breakpoint_chain (b);
8878
8879 return b;
8880 }
8881
8882 /* Set a momentary breakpoint of type TYPE at address specified by
8883 SAL. If FRAME_ID is valid, the breakpoint is restricted to that
8884 frame. */
8885
8886 struct breakpoint *
8887 set_momentary_breakpoint (struct gdbarch *gdbarch, struct symtab_and_line sal,
8888 struct frame_id frame_id, enum bptype type)
8889 {
8890 struct breakpoint *b;
8891
8892 /* If FRAME_ID is valid, it should be a real frame, not an inlined or
8893 tail-called one. */
8894 gdb_assert (!frame_id_artificial_p (frame_id));
8895
8896 b = set_raw_breakpoint (gdbarch, sal, type, &momentary_breakpoint_ops);
8897 b->enable_state = bp_enabled;
8898 b->disposition = disp_donttouch;
8899 b->frame_id = frame_id;
8900
8901 /* If we're debugging a multi-threaded program, then we want
8902 momentary breakpoints to be active in only a single thread of
8903 control. */
8904 if (in_thread_list (inferior_ptid))
8905 b->thread = pid_to_thread_id (inferior_ptid);
8906
8907 update_global_location_list_nothrow (UGLL_MAY_INSERT);
8908
8909 return b;
8910 }
8911
8912 /* Make a momentary breakpoint based on the master breakpoint ORIG.
8913 The new breakpoint will have type TYPE, use OPS as its
8914 breakpoint_ops, and will set enabled to LOC_ENABLED. */
8915
8916 static struct breakpoint *
8917 momentary_breakpoint_from_master (struct breakpoint *orig,
8918 enum bptype type,
8919 const struct breakpoint_ops *ops,
8920 int loc_enabled)
8921 {
8922 struct breakpoint *copy;
8923
8924 copy = set_raw_breakpoint_without_location (orig->gdbarch, type, ops);
8925 copy->loc = allocate_bp_location (copy);
8926 set_breakpoint_location_function (copy->loc, 1);
8927
8928 copy->loc->gdbarch = orig->loc->gdbarch;
8929 copy->loc->requested_address = orig->loc->requested_address;
8930 copy->loc->address = orig->loc->address;
8931 copy->loc->section = orig->loc->section;
8932 copy->loc->pspace = orig->loc->pspace;
8933 copy->loc->probe = orig->loc->probe;
8934 copy->loc->line_number = orig->loc->line_number;
8935 copy->loc->symtab = orig->loc->symtab;
8936 copy->loc->enabled = loc_enabled;
8937 copy->frame_id = orig->frame_id;
8938 copy->thread = orig->thread;
8939 copy->pspace = orig->pspace;
8940
8941 copy->enable_state = bp_enabled;
8942 copy->disposition = disp_donttouch;
8943 copy->number = internal_breakpoint_number--;
8944
8945 update_global_location_list_nothrow (UGLL_DONT_INSERT);
8946 return copy;
8947 }
8948
8949 /* Make a deep copy of momentary breakpoint ORIG. Returns NULL if
8950 ORIG is NULL. */
8951
8952 struct breakpoint *
8953 clone_momentary_breakpoint (struct breakpoint *orig)
8954 {
8955 /* If there's nothing to clone, then return nothing. */
8956 if (orig == NULL)
8957 return NULL;
8958
8959 return momentary_breakpoint_from_master (orig, orig->type, orig->ops, 0);
8960 }
8961
8962 struct breakpoint *
8963 set_momentary_breakpoint_at_pc (struct gdbarch *gdbarch, CORE_ADDR pc,
8964 enum bptype type)
8965 {
8966 struct symtab_and_line sal;
8967
8968 sal = find_pc_line (pc, 0);
8969 sal.pc = pc;
8970 sal.section = find_pc_overlay (pc);
8971 sal.explicit_pc = 1;
8972
8973 return set_momentary_breakpoint (gdbarch, sal, null_frame_id, type);
8974 }
8975 \f
8976
8977 /* Tell the user we have just set a breakpoint B. */
8978
8979 static void
8980 mention (struct breakpoint *b)
8981 {
8982 b->ops->print_mention (b);
8983 if (ui_out_is_mi_like_p (current_uiout))
8984 return;
8985 printf_filtered ("\n");
8986 }
8987 \f
8988
8989 static int bp_loc_is_permanent (struct bp_location *loc);
8990
8991 static struct bp_location *
8992 add_location_to_breakpoint (struct breakpoint *b,
8993 const struct symtab_and_line *sal)
8994 {
8995 struct bp_location *loc, **tmp;
8996 CORE_ADDR adjusted_address;
8997 struct gdbarch *loc_gdbarch = get_sal_arch (*sal);
8998
8999 if (loc_gdbarch == NULL)
9000 loc_gdbarch = b->gdbarch;
9001
9002 /* Adjust the breakpoint's address prior to allocating a location.
9003 Once we call allocate_bp_location(), that mostly uninitialized
9004 location will be placed on the location chain. Adjustment of the
9005 breakpoint may cause target_read_memory() to be called and we do
9006 not want its scan of the location chain to find a breakpoint and
9007 location that's only been partially initialized. */
9008 adjusted_address = adjust_breakpoint_address (loc_gdbarch,
9009 sal->pc, b->type);
9010
9011 /* Sort the locations by their ADDRESS. */
9012 loc = allocate_bp_location (b);
9013 for (tmp = &(b->loc); *tmp != NULL && (*tmp)->address <= adjusted_address;
9014 tmp = &((*tmp)->next))
9015 ;
9016 loc->next = *tmp;
9017 *tmp = loc;
9018
9019 loc->requested_address = sal->pc;
9020 loc->address = adjusted_address;
9021 loc->pspace = sal->pspace;
9022 loc->probe.probe = sal->probe;
9023 loc->probe.objfile = sal->objfile;
9024 gdb_assert (loc->pspace != NULL);
9025 loc->section = sal->section;
9026 loc->gdbarch = loc_gdbarch;
9027 loc->line_number = sal->line;
9028 loc->symtab = sal->symtab;
9029
9030 set_breakpoint_location_function (loc,
9031 sal->explicit_pc || sal->explicit_line);
9032
9033 /* While by definition, permanent breakpoints are already present in the
9034 code, we don't mark the location as inserted. Normally one would expect
9035 that GDB could rely on that breakpoint instruction to stop the program,
9036 thus removing the need to insert its own breakpoint, except that executing
9037 the breakpoint instruction can kill the target instead of reporting a
9038 SIGTRAP. E.g., on SPARC, when interrupts are disabled, executing the
9039 instruction resets the CPU, so QEMU 2.0.0 for SPARC correspondingly dies
9040 with "Trap 0x02 while interrupts disabled, Error state". Letting the
9041 breakpoint be inserted normally results in QEMU knowing about the GDB
9042 breakpoint, and thus trap before the breakpoint instruction is executed.
9043 (If GDB later needs to continue execution past the permanent breakpoint,
9044 it manually increments the PC, thus avoiding executing the breakpoint
9045 instruction.) */
9046 if (bp_loc_is_permanent (loc))
9047 loc->permanent = 1;
9048
9049 return loc;
9050 }
9051 \f
9052
9053 /* See breakpoint.h. */
9054
9055 int
9056 program_breakpoint_here_p (struct gdbarch *gdbarch, CORE_ADDR address)
9057 {
9058 int len;
9059 CORE_ADDR addr;
9060 const gdb_byte *bpoint;
9061 gdb_byte *target_mem;
9062 struct cleanup *cleanup;
9063 int retval = 0;
9064
9065 addr = address;
9066 bpoint = gdbarch_breakpoint_from_pc (gdbarch, &addr, &len);
9067
9068 /* Software breakpoints unsupported? */
9069 if (bpoint == NULL)
9070 return 0;
9071
9072 target_mem = (gdb_byte *) alloca (len);
9073
9074 /* Enable the automatic memory restoration from breakpoints while
9075 we read the memory. Otherwise we could say about our temporary
9076 breakpoints they are permanent. */
9077 cleanup = make_show_memory_breakpoints_cleanup (0);
9078
9079 if (target_read_memory (address, target_mem, len) == 0
9080 && memcmp (target_mem, bpoint, len) == 0)
9081 retval = 1;
9082
9083 do_cleanups (cleanup);
9084
9085 return retval;
9086 }
9087
9088 /* Return 1 if LOC is pointing to a permanent breakpoint,
9089 return 0 otherwise. */
9090
9091 static int
9092 bp_loc_is_permanent (struct bp_location *loc)
9093 {
9094 struct cleanup *cleanup;
9095 int retval;
9096
9097 gdb_assert (loc != NULL);
9098
9099 /* If we have a catchpoint or a watchpoint, just return 0. We should not
9100 attempt to read from the addresses the locations of these breakpoint types
9101 point to. program_breakpoint_here_p, below, will attempt to read
9102 memory. */
9103 if (!breakpoint_address_is_meaningful (loc->owner))
9104 return 0;
9105
9106 cleanup = save_current_space_and_thread ();
9107 switch_to_program_space_and_thread (loc->pspace);
9108
9109 retval = program_breakpoint_here_p (loc->gdbarch, loc->address);
9110
9111 do_cleanups (cleanup);
9112
9113 return retval;
9114 }
9115
9116 /* Build a command list for the dprintf corresponding to the current
9117 settings of the dprintf style options. */
9118
9119 static void
9120 update_dprintf_command_list (struct breakpoint *b)
9121 {
9122 char *dprintf_args = b->extra_string;
9123 char *printf_line = NULL;
9124
9125 if (!dprintf_args)
9126 return;
9127
9128 dprintf_args = skip_spaces (dprintf_args);
9129
9130 /* Allow a comma, as it may have terminated a location, but don't
9131 insist on it. */
9132 if (*dprintf_args == ',')
9133 ++dprintf_args;
9134 dprintf_args = skip_spaces (dprintf_args);
9135
9136 if (*dprintf_args != '"')
9137 error (_("Bad format string, missing '\"'."));
9138
9139 if (strcmp (dprintf_style, dprintf_style_gdb) == 0)
9140 printf_line = xstrprintf ("printf %s", dprintf_args);
9141 else if (strcmp (dprintf_style, dprintf_style_call) == 0)
9142 {
9143 if (!dprintf_function)
9144 error (_("No function supplied for dprintf call"));
9145
9146 if (dprintf_channel && strlen (dprintf_channel) > 0)
9147 printf_line = xstrprintf ("call (void) %s (%s,%s)",
9148 dprintf_function,
9149 dprintf_channel,
9150 dprintf_args);
9151 else
9152 printf_line = xstrprintf ("call (void) %s (%s)",
9153 dprintf_function,
9154 dprintf_args);
9155 }
9156 else if (strcmp (dprintf_style, dprintf_style_agent) == 0)
9157 {
9158 if (target_can_run_breakpoint_commands ())
9159 printf_line = xstrprintf ("agent-printf %s", dprintf_args);
9160 else
9161 {
9162 warning (_("Target cannot run dprintf commands, falling back to GDB printf"));
9163 printf_line = xstrprintf ("printf %s", dprintf_args);
9164 }
9165 }
9166 else
9167 internal_error (__FILE__, __LINE__,
9168 _("Invalid dprintf style."));
9169
9170 gdb_assert (printf_line != NULL);
9171 /* Manufacture a printf sequence. */
9172 {
9173 struct command_line *printf_cmd_line = XNEW (struct command_line);
9174
9175 printf_cmd_line->control_type = simple_control;
9176 printf_cmd_line->body_count = 0;
9177 printf_cmd_line->body_list = NULL;
9178 printf_cmd_line->next = NULL;
9179 printf_cmd_line->line = printf_line;
9180
9181 breakpoint_set_commands (b, printf_cmd_line);
9182 }
9183 }
9184
9185 /* Update all dprintf commands, making their command lists reflect
9186 current style settings. */
9187
9188 static void
9189 update_dprintf_commands (char *args, int from_tty,
9190 struct cmd_list_element *c)
9191 {
9192 struct breakpoint *b;
9193
9194 ALL_BREAKPOINTS (b)
9195 {
9196 if (b->type == bp_dprintf)
9197 update_dprintf_command_list (b);
9198 }
9199 }
9200
9201 /* Create a breakpoint with SAL as location. Use LOCATION
9202 as a description of the location, and COND_STRING
9203 as condition expression. */
9204
9205 static void
9206 init_breakpoint_sal (struct breakpoint *b, struct gdbarch *gdbarch,
9207 struct symtabs_and_lines sals,
9208 struct event_location *location,
9209 char *filter, char *cond_string,
9210 char *extra_string,
9211 enum bptype type, enum bpdisp disposition,
9212 int thread, int task, int ignore_count,
9213 const struct breakpoint_ops *ops, int from_tty,
9214 int enabled, int internal, unsigned flags,
9215 int display_canonical)
9216 {
9217 int i;
9218
9219 if (type == bp_hardware_breakpoint)
9220 {
9221 int target_resources_ok;
9222
9223 i = hw_breakpoint_used_count ();
9224 target_resources_ok =
9225 target_can_use_hardware_watchpoint (bp_hardware_breakpoint,
9226 i + 1, 0);
9227 if (target_resources_ok == 0)
9228 error (_("No hardware breakpoint support in the target."));
9229 else if (target_resources_ok < 0)
9230 error (_("Hardware breakpoints used exceeds limit."));
9231 }
9232
9233 gdb_assert (sals.nelts > 0);
9234
9235 for (i = 0; i < sals.nelts; ++i)
9236 {
9237 struct symtab_and_line sal = sals.sals[i];
9238 struct bp_location *loc;
9239
9240 if (from_tty)
9241 {
9242 struct gdbarch *loc_gdbarch = get_sal_arch (sal);
9243 if (!loc_gdbarch)
9244 loc_gdbarch = gdbarch;
9245
9246 describe_other_breakpoints (loc_gdbarch,
9247 sal.pspace, sal.pc, sal.section, thread);
9248 }
9249
9250 if (i == 0)
9251 {
9252 init_raw_breakpoint (b, gdbarch, sal, type, ops);
9253 b->thread = thread;
9254 b->task = task;
9255
9256 b->cond_string = cond_string;
9257 b->extra_string = extra_string;
9258 b->ignore_count = ignore_count;
9259 b->enable_state = enabled ? bp_enabled : bp_disabled;
9260 b->disposition = disposition;
9261
9262 if ((flags & CREATE_BREAKPOINT_FLAGS_INSERTED) != 0)
9263 b->loc->inserted = 1;
9264
9265 if (type == bp_static_tracepoint)
9266 {
9267 struct tracepoint *t = (struct tracepoint *) b;
9268 struct static_tracepoint_marker marker;
9269
9270 if (strace_marker_p (b))
9271 {
9272 /* We already know the marker exists, otherwise, we
9273 wouldn't see a sal for it. */
9274 const char *p = &event_location_to_string (b->location)[3];
9275 const char *endp;
9276 char *marker_str;
9277
9278 p = skip_spaces_const (p);
9279
9280 endp = skip_to_space_const (p);
9281
9282 marker_str = savestring (p, endp - p);
9283 t->static_trace_marker_id = marker_str;
9284
9285 printf_filtered (_("Probed static tracepoint "
9286 "marker \"%s\"\n"),
9287 t->static_trace_marker_id);
9288 }
9289 else if (target_static_tracepoint_marker_at (sal.pc, &marker))
9290 {
9291 t->static_trace_marker_id = xstrdup (marker.str_id);
9292 release_static_tracepoint_marker (&marker);
9293
9294 printf_filtered (_("Probed static tracepoint "
9295 "marker \"%s\"\n"),
9296 t->static_trace_marker_id);
9297 }
9298 else
9299 warning (_("Couldn't determine the static "
9300 "tracepoint marker to probe"));
9301 }
9302
9303 loc = b->loc;
9304 }
9305 else
9306 {
9307 loc = add_location_to_breakpoint (b, &sal);
9308 if ((flags & CREATE_BREAKPOINT_FLAGS_INSERTED) != 0)
9309 loc->inserted = 1;
9310 }
9311
9312 if (b->cond_string)
9313 {
9314 const char *arg = b->cond_string;
9315
9316 loc->cond = parse_exp_1 (&arg, loc->address,
9317 block_for_pc (loc->address), 0);
9318 if (*arg)
9319 error (_("Garbage '%s' follows condition"), arg);
9320 }
9321
9322 /* Dynamic printf requires and uses additional arguments on the
9323 command line, otherwise it's an error. */
9324 if (type == bp_dprintf)
9325 {
9326 if (b->extra_string)
9327 update_dprintf_command_list (b);
9328 else
9329 error (_("Format string required"));
9330 }
9331 else if (b->extra_string)
9332 error (_("Garbage '%s' at end of command"), b->extra_string);
9333 }
9334
9335 b->display_canonical = display_canonical;
9336 if (location != NULL)
9337 b->location = location;
9338 else
9339 b->location = new_address_location (b->loc->address);
9340 b->filter = filter;
9341 }
9342
9343 static void
9344 create_breakpoint_sal (struct gdbarch *gdbarch,
9345 struct symtabs_and_lines sals,
9346 struct event_location *location,
9347 char *filter, char *cond_string,
9348 char *extra_string,
9349 enum bptype type, enum bpdisp disposition,
9350 int thread, int task, int ignore_count,
9351 const struct breakpoint_ops *ops, int from_tty,
9352 int enabled, int internal, unsigned flags,
9353 int display_canonical)
9354 {
9355 struct breakpoint *b;
9356 struct cleanup *old_chain;
9357
9358 if (is_tracepoint_type (type))
9359 {
9360 struct tracepoint *t;
9361
9362 t = XCNEW (struct tracepoint);
9363 b = &t->base;
9364 }
9365 else
9366 b = XNEW (struct breakpoint);
9367
9368 old_chain = make_cleanup (xfree, b);
9369
9370 init_breakpoint_sal (b, gdbarch,
9371 sals, location,
9372 filter, cond_string, extra_string,
9373 type, disposition,
9374 thread, task, ignore_count,
9375 ops, from_tty,
9376 enabled, internal, flags,
9377 display_canonical);
9378 discard_cleanups (old_chain);
9379
9380 install_breakpoint (internal, b, 0);
9381 }
9382
9383 /* Add SALS.nelts breakpoints to the breakpoint table. For each
9384 SALS.sal[i] breakpoint, include the corresponding ADDR_STRING[i]
9385 value. COND_STRING, if not NULL, specified the condition to be
9386 used for all breakpoints. Essentially the only case where
9387 SALS.nelts is not 1 is when we set a breakpoint on an overloaded
9388 function. In that case, it's still not possible to specify
9389 separate conditions for different overloaded functions, so
9390 we take just a single condition string.
9391
9392 NOTE: If the function succeeds, the caller is expected to cleanup
9393 the arrays ADDR_STRING, COND_STRING, and SALS (but not the
9394 array contents). If the function fails (error() is called), the
9395 caller is expected to cleanups both the ADDR_STRING, COND_STRING,
9396 COND and SALS arrays and each of those arrays contents. */
9397
9398 static void
9399 create_breakpoints_sal (struct gdbarch *gdbarch,
9400 struct linespec_result *canonical,
9401 char *cond_string, char *extra_string,
9402 enum bptype type, enum bpdisp disposition,
9403 int thread, int task, int ignore_count,
9404 const struct breakpoint_ops *ops, int from_tty,
9405 int enabled, int internal, unsigned flags)
9406 {
9407 int i;
9408 struct linespec_sals *lsal;
9409
9410 if (canonical->pre_expanded)
9411 gdb_assert (VEC_length (linespec_sals, canonical->sals) == 1);
9412
9413 for (i = 0; VEC_iterate (linespec_sals, canonical->sals, i, lsal); ++i)
9414 {
9415 /* Note that 'location' can be NULL in the case of a plain
9416 'break', without arguments. */
9417 struct event_location *location
9418 = (canonical->location != NULL
9419 ? copy_event_location (canonical->location) : NULL);
9420 char *filter_string = lsal->canonical ? xstrdup (lsal->canonical) : NULL;
9421 struct cleanup *inner = make_cleanup_delete_event_location (location);
9422
9423 make_cleanup (xfree, filter_string);
9424 create_breakpoint_sal (gdbarch, lsal->sals,
9425 location,
9426 filter_string,
9427 cond_string, extra_string,
9428 type, disposition,
9429 thread, task, ignore_count, ops,
9430 from_tty, enabled, internal, flags,
9431 canonical->special_display);
9432 discard_cleanups (inner);
9433 }
9434 }
9435
9436 /* Parse LOCATION which is assumed to be a SAL specification possibly
9437 followed by conditionals. On return, SALS contains an array of SAL
9438 addresses found. LOCATION points to the end of the SAL (for
9439 linespec locations).
9440
9441 The array and the line spec strings are allocated on the heap, it is
9442 the caller's responsibility to free them. */
9443
9444 static void
9445 parse_breakpoint_sals (const struct event_location *location,
9446 struct linespec_result *canonical)
9447 {
9448 struct symtab_and_line cursal;
9449
9450 if (event_location_type (location) == LINESPEC_LOCATION)
9451 {
9452 const char *address = get_linespec_location (location);
9453
9454 if (address == NULL)
9455 {
9456 /* The last displayed codepoint, if it's valid, is our default
9457 breakpoint address. */
9458 if (last_displayed_sal_is_valid ())
9459 {
9460 struct linespec_sals lsal;
9461 struct symtab_and_line sal;
9462 CORE_ADDR pc;
9463
9464 init_sal (&sal); /* Initialize to zeroes. */
9465 lsal.sals.sals = XNEW (struct symtab_and_line);
9466
9467 /* Set sal's pspace, pc, symtab, and line to the values
9468 corresponding to the last call to print_frame_info.
9469 Be sure to reinitialize LINE with NOTCURRENT == 0
9470 as the breakpoint line number is inappropriate otherwise.
9471 find_pc_line would adjust PC, re-set it back. */
9472 get_last_displayed_sal (&sal);
9473 pc = sal.pc;
9474 sal = find_pc_line (pc, 0);
9475
9476 /* "break" without arguments is equivalent to "break *PC"
9477 where PC is the last displayed codepoint's address. So
9478 make sure to set sal.explicit_pc to prevent GDB from
9479 trying to expand the list of sals to include all other
9480 instances with the same symtab and line. */
9481 sal.pc = pc;
9482 sal.explicit_pc = 1;
9483
9484 lsal.sals.sals[0] = sal;
9485 lsal.sals.nelts = 1;
9486 lsal.canonical = NULL;
9487
9488 VEC_safe_push (linespec_sals, canonical->sals, &lsal);
9489 return;
9490 }
9491 else
9492 error (_("No default breakpoint address now."));
9493 }
9494 }
9495
9496 /* Force almost all breakpoints to be in terms of the
9497 current_source_symtab (which is decode_line_1's default).
9498 This should produce the results we want almost all of the
9499 time while leaving default_breakpoint_* alone.
9500
9501 ObjC: However, don't match an Objective-C method name which
9502 may have a '+' or '-' succeeded by a '['. */
9503 cursal = get_current_source_symtab_and_line ();
9504 if (last_displayed_sal_is_valid ())
9505 {
9506 const char *address = NULL;
9507
9508 if (event_location_type (location) == LINESPEC_LOCATION)
9509 address = get_linespec_location (location);
9510
9511 if (!cursal.symtab
9512 || (address != NULL
9513 && strchr ("+-", address[0]) != NULL
9514 && address[1] != '['))
9515 {
9516 decode_line_full (location, DECODE_LINE_FUNFIRSTLINE,
9517 get_last_displayed_symtab (),
9518 get_last_displayed_line (),
9519 canonical, NULL, NULL);
9520 return;
9521 }
9522 }
9523
9524 decode_line_full (location, DECODE_LINE_FUNFIRSTLINE,
9525 cursal.symtab, cursal.line, canonical, NULL, NULL);
9526 }
9527
9528
9529 /* Convert each SAL into a real PC. Verify that the PC can be
9530 inserted as a breakpoint. If it can't throw an error. */
9531
9532 static void
9533 breakpoint_sals_to_pc (struct symtabs_and_lines *sals)
9534 {
9535 int i;
9536
9537 for (i = 0; i < sals->nelts; i++)
9538 resolve_sal_pc (&sals->sals[i]);
9539 }
9540
9541 /* Fast tracepoints may have restrictions on valid locations. For
9542 instance, a fast tracepoint using a jump instead of a trap will
9543 likely have to overwrite more bytes than a trap would, and so can
9544 only be placed where the instruction is longer than the jump, or a
9545 multi-instruction sequence does not have a jump into the middle of
9546 it, etc. */
9547
9548 static void
9549 check_fast_tracepoint_sals (struct gdbarch *gdbarch,
9550 struct symtabs_and_lines *sals)
9551 {
9552 int i, rslt;
9553 struct symtab_and_line *sal;
9554 char *msg;
9555 struct cleanup *old_chain;
9556
9557 for (i = 0; i < sals->nelts; i++)
9558 {
9559 struct gdbarch *sarch;
9560
9561 sal = &sals->sals[i];
9562
9563 sarch = get_sal_arch (*sal);
9564 /* We fall back to GDBARCH if there is no architecture
9565 associated with SAL. */
9566 if (sarch == NULL)
9567 sarch = gdbarch;
9568 rslt = gdbarch_fast_tracepoint_valid_at (sarch, sal->pc, &msg);
9569 old_chain = make_cleanup (xfree, msg);
9570
9571 if (!rslt)
9572 error (_("May not have a fast tracepoint at 0x%s%s"),
9573 paddress (sarch, sal->pc), (msg ? msg : ""));
9574
9575 do_cleanups (old_chain);
9576 }
9577 }
9578
9579 /* Issue an invalid thread ID error. */
9580
9581 static void ATTRIBUTE_NORETURN
9582 invalid_thread_id_error (int id)
9583 {
9584 error (_("Unknown thread %d."), id);
9585 }
9586
9587 /* Given TOK, a string specification of condition and thread, as
9588 accepted by the 'break' command, extract the condition
9589 string and thread number and set *COND_STRING and *THREAD.
9590 PC identifies the context at which the condition should be parsed.
9591 If no condition is found, *COND_STRING is set to NULL.
9592 If no thread is found, *THREAD is set to -1. */
9593
9594 static void
9595 find_condition_and_thread (const char *tok, CORE_ADDR pc,
9596 char **cond_string, int *thread, int *task,
9597 char **rest)
9598 {
9599 *cond_string = NULL;
9600 *thread = -1;
9601 *task = 0;
9602 *rest = NULL;
9603
9604 while (tok && *tok)
9605 {
9606 const char *end_tok;
9607 int toklen;
9608 const char *cond_start = NULL;
9609 const char *cond_end = NULL;
9610
9611 tok = skip_spaces_const (tok);
9612
9613 if ((*tok == '"' || *tok == ',') && rest)
9614 {
9615 *rest = savestring (tok, strlen (tok));
9616 return;
9617 }
9618
9619 end_tok = skip_to_space_const (tok);
9620
9621 toklen = end_tok - tok;
9622
9623 if (toklen >= 1 && strncmp (tok, "if", toklen) == 0)
9624 {
9625 struct expression *expr;
9626
9627 tok = cond_start = end_tok + 1;
9628 expr = parse_exp_1 (&tok, pc, block_for_pc (pc), 0);
9629 xfree (expr);
9630 cond_end = tok;
9631 *cond_string = savestring (cond_start, cond_end - cond_start);
9632 }
9633 else if (toklen >= 1 && strncmp (tok, "thread", toklen) == 0)
9634 {
9635 char *tmptok;
9636
9637 tok = end_tok + 1;
9638 *thread = strtol (tok, &tmptok, 0);
9639 if (tok == tmptok)
9640 error (_("Junk after thread keyword."));
9641 if (!valid_thread_id (*thread))
9642 invalid_thread_id_error (*thread);
9643 tok = tmptok;
9644 }
9645 else if (toklen >= 1 && strncmp (tok, "task", toklen) == 0)
9646 {
9647 char *tmptok;
9648
9649 tok = end_tok + 1;
9650 *task = strtol (tok, &tmptok, 0);
9651 if (tok == tmptok)
9652 error (_("Junk after task keyword."));
9653 if (!valid_task_id (*task))
9654 error (_("Unknown task %d."), *task);
9655 tok = tmptok;
9656 }
9657 else if (rest)
9658 {
9659 *rest = savestring (tok, strlen (tok));
9660 return;
9661 }
9662 else
9663 error (_("Junk at end of arguments."));
9664 }
9665 }
9666
9667 /* Decode a static tracepoint marker spec. */
9668
9669 static struct symtabs_and_lines
9670 decode_static_tracepoint_spec (const char **arg_p)
9671 {
9672 VEC(static_tracepoint_marker_p) *markers = NULL;
9673 struct symtabs_and_lines sals;
9674 struct cleanup *old_chain;
9675 const char *p = &(*arg_p)[3];
9676 const char *endp;
9677 char *marker_str;
9678 int i;
9679
9680 p = skip_spaces_const (p);
9681
9682 endp = skip_to_space_const (p);
9683
9684 marker_str = savestring (p, endp - p);
9685 old_chain = make_cleanup (xfree, marker_str);
9686
9687 markers = target_static_tracepoint_markers_by_strid (marker_str);
9688 if (VEC_empty(static_tracepoint_marker_p, markers))
9689 error (_("No known static tracepoint marker named %s"), marker_str);
9690
9691 sals.nelts = VEC_length(static_tracepoint_marker_p, markers);
9692 sals.sals = XNEWVEC (struct symtab_and_line, sals.nelts);
9693
9694 for (i = 0; i < sals.nelts; i++)
9695 {
9696 struct static_tracepoint_marker *marker;
9697
9698 marker = VEC_index (static_tracepoint_marker_p, markers, i);
9699
9700 init_sal (&sals.sals[i]);
9701
9702 sals.sals[i] = find_pc_line (marker->address, 0);
9703 sals.sals[i].pc = marker->address;
9704
9705 release_static_tracepoint_marker (marker);
9706 }
9707
9708 do_cleanups (old_chain);
9709
9710 *arg_p = endp;
9711 return sals;
9712 }
9713
9714 /* See breakpoint.h. */
9715
9716 int
9717 create_breakpoint (struct gdbarch *gdbarch,
9718 const struct event_location *location, char *cond_string,
9719 int thread, char *extra_string,
9720 int parse_extra,
9721 int tempflag, enum bptype type_wanted,
9722 int ignore_count,
9723 enum auto_boolean pending_break_support,
9724 const struct breakpoint_ops *ops,
9725 int from_tty, int enabled, int internal,
9726 unsigned flags)
9727 {
9728 struct linespec_result canonical;
9729 struct cleanup *old_chain;
9730 struct cleanup *bkpt_chain = NULL;
9731 int pending = 0;
9732 int task = 0;
9733 int prev_bkpt_count = breakpoint_count;
9734
9735 gdb_assert (ops != NULL);
9736
9737 /* If extra_string isn't useful, set it to NULL. */
9738 if (extra_string != NULL && *extra_string == '\0')
9739 extra_string = NULL;
9740
9741 init_linespec_result (&canonical);
9742
9743 TRY
9744 {
9745 ops->create_sals_from_location (location, &canonical, type_wanted);
9746 }
9747 CATCH (e, RETURN_MASK_ERROR)
9748 {
9749 /* If caller is interested in rc value from parse, set
9750 value. */
9751 if (e.error == NOT_FOUND_ERROR)
9752 {
9753 /* If pending breakpoint support is turned off, throw
9754 error. */
9755
9756 if (pending_break_support == AUTO_BOOLEAN_FALSE)
9757 throw_exception (e);
9758
9759 exception_print (gdb_stderr, e);
9760
9761 /* If pending breakpoint support is auto query and the user
9762 selects no, then simply return the error code. */
9763 if (pending_break_support == AUTO_BOOLEAN_AUTO
9764 && !nquery (_("Make %s pending on future shared library load? "),
9765 bptype_string (type_wanted)))
9766 return 0;
9767
9768 /* At this point, either the user was queried about setting
9769 a pending breakpoint and selected yes, or pending
9770 breakpoint behavior is on and thus a pending breakpoint
9771 is defaulted on behalf of the user. */
9772 pending = 1;
9773 }
9774 else
9775 throw_exception (e);
9776 }
9777 END_CATCH
9778
9779 if (!pending && VEC_empty (linespec_sals, canonical.sals))
9780 return 0;
9781
9782 /* Create a chain of things that always need to be cleaned up. */
9783 old_chain = make_cleanup_destroy_linespec_result (&canonical);
9784
9785 /* ----------------------------- SNIP -----------------------------
9786 Anything added to the cleanup chain beyond this point is assumed
9787 to be part of a breakpoint. If the breakpoint create succeeds
9788 then the memory is not reclaimed. */
9789 bkpt_chain = make_cleanup (null_cleanup, 0);
9790
9791 /* Resolve all line numbers to PC's and verify that the addresses
9792 are ok for the target. */
9793 if (!pending)
9794 {
9795 int ix;
9796 struct linespec_sals *iter;
9797
9798 for (ix = 0; VEC_iterate (linespec_sals, canonical.sals, ix, iter); ++ix)
9799 breakpoint_sals_to_pc (&iter->sals);
9800 }
9801
9802 /* Fast tracepoints may have additional restrictions on location. */
9803 if (!pending && type_wanted == bp_fast_tracepoint)
9804 {
9805 int ix;
9806 struct linespec_sals *iter;
9807
9808 for (ix = 0; VEC_iterate (linespec_sals, canonical.sals, ix, iter); ++ix)
9809 check_fast_tracepoint_sals (gdbarch, &iter->sals);
9810 }
9811
9812 /* Verify that condition can be parsed, before setting any
9813 breakpoints. Allocate a separate condition expression for each
9814 breakpoint. */
9815 if (!pending)
9816 {
9817 if (parse_extra)
9818 {
9819 char *rest;
9820 struct linespec_sals *lsal;
9821
9822 lsal = VEC_index (linespec_sals, canonical.sals, 0);
9823
9824 /* Here we only parse 'arg' to separate condition
9825 from thread number, so parsing in context of first
9826 sal is OK. When setting the breakpoint we'll
9827 re-parse it in context of each sal. */
9828
9829 find_condition_and_thread (extra_string, lsal->sals.sals[0].pc,
9830 &cond_string, &thread, &task, &rest);
9831 if (cond_string)
9832 make_cleanup (xfree, cond_string);
9833 if (rest)
9834 make_cleanup (xfree, rest);
9835 if (rest)
9836 extra_string = rest;
9837 else
9838 extra_string = NULL;
9839 }
9840 else
9841 {
9842 if (type_wanted != bp_dprintf
9843 && extra_string != NULL && *extra_string != '\0')
9844 error (_("Garbage '%s' at end of location"), extra_string);
9845
9846 /* Create a private copy of condition string. */
9847 if (cond_string)
9848 {
9849 cond_string = xstrdup (cond_string);
9850 make_cleanup (xfree, cond_string);
9851 }
9852 /* Create a private copy of any extra string. */
9853 if (extra_string)
9854 {
9855 extra_string = xstrdup (extra_string);
9856 make_cleanup (xfree, extra_string);
9857 }
9858 }
9859
9860 ops->create_breakpoints_sal (gdbarch, &canonical,
9861 cond_string, extra_string, type_wanted,
9862 tempflag ? disp_del : disp_donttouch,
9863 thread, task, ignore_count, ops,
9864 from_tty, enabled, internal, flags);
9865 }
9866 else
9867 {
9868 struct breakpoint *b;
9869
9870 if (is_tracepoint_type (type_wanted))
9871 {
9872 struct tracepoint *t;
9873
9874 t = XCNEW (struct tracepoint);
9875 b = &t->base;
9876 }
9877 else
9878 b = XNEW (struct breakpoint);
9879
9880 init_raw_breakpoint_without_location (b, gdbarch, type_wanted, ops);
9881 b->location = copy_event_location (location);
9882
9883 if (parse_extra)
9884 b->cond_string = NULL;
9885 else
9886 {
9887 /* Create a private copy of condition string. */
9888 if (cond_string)
9889 {
9890 cond_string = xstrdup (cond_string);
9891 make_cleanup (xfree, cond_string);
9892 }
9893 b->cond_string = cond_string;
9894 b->thread = thread;
9895 }
9896
9897 /* Create a private copy of any extra string. */
9898 if (extra_string != NULL)
9899 {
9900 extra_string = xstrdup (extra_string);
9901 make_cleanup (xfree, extra_string);
9902 }
9903 b->extra_string = extra_string;
9904 b->ignore_count = ignore_count;
9905 b->disposition = tempflag ? disp_del : disp_donttouch;
9906 b->condition_not_parsed = 1;
9907 b->enable_state = enabled ? bp_enabled : bp_disabled;
9908 if ((type_wanted != bp_breakpoint
9909 && type_wanted != bp_hardware_breakpoint) || thread != -1)
9910 b->pspace = current_program_space;
9911
9912 install_breakpoint (internal, b, 0);
9913 }
9914
9915 if (VEC_length (linespec_sals, canonical.sals) > 1)
9916 {
9917 warning (_("Multiple breakpoints were set.\nUse the "
9918 "\"delete\" command to delete unwanted breakpoints."));
9919 prev_breakpoint_count = prev_bkpt_count;
9920 }
9921
9922 /* That's it. Discard the cleanups for data inserted into the
9923 breakpoint. */
9924 discard_cleanups (bkpt_chain);
9925 /* But cleanup everything else. */
9926 do_cleanups (old_chain);
9927
9928 /* error call may happen here - have BKPT_CHAIN already discarded. */
9929 update_global_location_list (UGLL_MAY_INSERT);
9930
9931 return 1;
9932 }
9933
9934 /* Set a breakpoint.
9935 ARG is a string describing breakpoint address,
9936 condition, and thread.
9937 FLAG specifies if a breakpoint is hardware on,
9938 and if breakpoint is temporary, using BP_HARDWARE_FLAG
9939 and BP_TEMPFLAG. */
9940
9941 static void
9942 break_command_1 (char *arg, int flag, int from_tty)
9943 {
9944 int tempflag = flag & BP_TEMPFLAG;
9945 enum bptype type_wanted = (flag & BP_HARDWAREFLAG
9946 ? bp_hardware_breakpoint
9947 : bp_breakpoint);
9948 struct breakpoint_ops *ops;
9949 struct event_location *location;
9950 struct cleanup *cleanup;
9951
9952 location = string_to_event_location (&arg, current_language);
9953 cleanup = make_cleanup_delete_event_location (location);
9954
9955 /* Matching breakpoints on probes. */
9956 if (location != NULL
9957 && event_location_type (location) == PROBE_LOCATION)
9958 ops = &bkpt_probe_breakpoint_ops;
9959 else
9960 ops = &bkpt_breakpoint_ops;
9961
9962 create_breakpoint (get_current_arch (),
9963 location,
9964 NULL, 0, arg, 1 /* parse arg */,
9965 tempflag, type_wanted,
9966 0 /* Ignore count */,
9967 pending_break_support,
9968 ops,
9969 from_tty,
9970 1 /* enabled */,
9971 0 /* internal */,
9972 0);
9973 do_cleanups (cleanup);
9974 }
9975
9976 /* Helper function for break_command_1 and disassemble_command. */
9977
9978 void
9979 resolve_sal_pc (struct symtab_and_line *sal)
9980 {
9981 CORE_ADDR pc;
9982
9983 if (sal->pc == 0 && sal->symtab != NULL)
9984 {
9985 if (!find_line_pc (sal->symtab, sal->line, &pc))
9986 error (_("No line %d in file \"%s\"."),
9987 sal->line, symtab_to_filename_for_display (sal->symtab));
9988 sal->pc = pc;
9989
9990 /* If this SAL corresponds to a breakpoint inserted using a line
9991 number, then skip the function prologue if necessary. */
9992 if (sal->explicit_line)
9993 skip_prologue_sal (sal);
9994 }
9995
9996 if (sal->section == 0 && sal->symtab != NULL)
9997 {
9998 const struct blockvector *bv;
9999 const struct block *b;
10000 struct symbol *sym;
10001
10002 bv = blockvector_for_pc_sect (sal->pc, 0, &b,
10003 SYMTAB_COMPUNIT (sal->symtab));
10004 if (bv != NULL)
10005 {
10006 sym = block_linkage_function (b);
10007 if (sym != NULL)
10008 {
10009 fixup_symbol_section (sym, SYMTAB_OBJFILE (sal->symtab));
10010 sal->section = SYMBOL_OBJ_SECTION (SYMTAB_OBJFILE (sal->symtab),
10011 sym);
10012 }
10013 else
10014 {
10015 /* It really is worthwhile to have the section, so we'll
10016 just have to look harder. This case can be executed
10017 if we have line numbers but no functions (as can
10018 happen in assembly source). */
10019
10020 struct bound_minimal_symbol msym;
10021 struct cleanup *old_chain = save_current_space_and_thread ();
10022
10023 switch_to_program_space_and_thread (sal->pspace);
10024
10025 msym = lookup_minimal_symbol_by_pc (sal->pc);
10026 if (msym.minsym)
10027 sal->section = MSYMBOL_OBJ_SECTION (msym.objfile, msym.minsym);
10028
10029 do_cleanups (old_chain);
10030 }
10031 }
10032 }
10033 }
10034
10035 void
10036 break_command (char *arg, int from_tty)
10037 {
10038 break_command_1 (arg, 0, from_tty);
10039 }
10040
10041 void
10042 tbreak_command (char *arg, int from_tty)
10043 {
10044 break_command_1 (arg, BP_TEMPFLAG, from_tty);
10045 }
10046
10047 static void
10048 hbreak_command (char *arg, int from_tty)
10049 {
10050 break_command_1 (arg, BP_HARDWAREFLAG, from_tty);
10051 }
10052
10053 static void
10054 thbreak_command (char *arg, int from_tty)
10055 {
10056 break_command_1 (arg, (BP_TEMPFLAG | BP_HARDWAREFLAG), from_tty);
10057 }
10058
10059 static void
10060 stop_command (char *arg, int from_tty)
10061 {
10062 printf_filtered (_("Specify the type of breakpoint to set.\n\
10063 Usage: stop in <function | address>\n\
10064 stop at <line>\n"));
10065 }
10066
10067 static void
10068 stopin_command (char *arg, int from_tty)
10069 {
10070 int badInput = 0;
10071
10072 if (arg == (char *) NULL)
10073 badInput = 1;
10074 else if (*arg != '*')
10075 {
10076 char *argptr = arg;
10077 int hasColon = 0;
10078
10079 /* Look for a ':'. If this is a line number specification, then
10080 say it is bad, otherwise, it should be an address or
10081 function/method name. */
10082 while (*argptr && !hasColon)
10083 {
10084 hasColon = (*argptr == ':');
10085 argptr++;
10086 }
10087
10088 if (hasColon)
10089 badInput = (*argptr != ':'); /* Not a class::method */
10090 else
10091 badInput = isdigit (*arg); /* a simple line number */
10092 }
10093
10094 if (badInput)
10095 printf_filtered (_("Usage: stop in <function | address>\n"));
10096 else
10097 break_command_1 (arg, 0, from_tty);
10098 }
10099
10100 static void
10101 stopat_command (char *arg, int from_tty)
10102 {
10103 int badInput = 0;
10104
10105 if (arg == (char *) NULL || *arg == '*') /* no line number */
10106 badInput = 1;
10107 else
10108 {
10109 char *argptr = arg;
10110 int hasColon = 0;
10111
10112 /* Look for a ':'. If there is a '::' then get out, otherwise
10113 it is probably a line number. */
10114 while (*argptr && !hasColon)
10115 {
10116 hasColon = (*argptr == ':');
10117 argptr++;
10118 }
10119
10120 if (hasColon)
10121 badInput = (*argptr == ':'); /* we have class::method */
10122 else
10123 badInput = !isdigit (*arg); /* not a line number */
10124 }
10125
10126 if (badInput)
10127 printf_filtered (_("Usage: stop at <line>\n"));
10128 else
10129 break_command_1 (arg, 0, from_tty);
10130 }
10131
10132 /* The dynamic printf command is mostly like a regular breakpoint, but
10133 with a prewired command list consisting of a single output command,
10134 built from extra arguments supplied on the dprintf command
10135 line. */
10136
10137 static void
10138 dprintf_command (char *arg, int from_tty)
10139 {
10140 struct event_location *location;
10141 struct cleanup *cleanup;
10142
10143 location = string_to_event_location (&arg, current_language);
10144 cleanup = make_cleanup_delete_event_location (location);
10145
10146 /* If non-NULL, ARG should have been advanced past the location;
10147 the next character must be ','. */
10148 if (arg != NULL)
10149 {
10150 if (arg[0] != ',' || arg[1] == '\0')
10151 error (_("Format string required"));
10152 else
10153 {
10154 /* Skip the comma. */
10155 ++arg;
10156 }
10157 }
10158
10159 create_breakpoint (get_current_arch (),
10160 location,
10161 NULL, 0, arg, 1 /* parse arg */,
10162 0, bp_dprintf,
10163 0 /* Ignore count */,
10164 pending_break_support,
10165 &dprintf_breakpoint_ops,
10166 from_tty,
10167 1 /* enabled */,
10168 0 /* internal */,
10169 0);
10170 do_cleanups (cleanup);
10171 }
10172
10173 static void
10174 agent_printf_command (char *arg, int from_tty)
10175 {
10176 error (_("May only run agent-printf on the target"));
10177 }
10178
10179 /* Implement the "breakpoint_hit" breakpoint_ops method for
10180 ranged breakpoints. */
10181
10182 static int
10183 breakpoint_hit_ranged_breakpoint (const struct bp_location *bl,
10184 struct address_space *aspace,
10185 CORE_ADDR bp_addr,
10186 const struct target_waitstatus *ws)
10187 {
10188 if (ws->kind != TARGET_WAITKIND_STOPPED
10189 || ws->value.sig != GDB_SIGNAL_TRAP)
10190 return 0;
10191
10192 return breakpoint_address_match_range (bl->pspace->aspace, bl->address,
10193 bl->length, aspace, bp_addr);
10194 }
10195
10196 /* Implement the "resources_needed" breakpoint_ops method for
10197 ranged breakpoints. */
10198
10199 static int
10200 resources_needed_ranged_breakpoint (const struct bp_location *bl)
10201 {
10202 return target_ranged_break_num_registers ();
10203 }
10204
10205 /* Implement the "print_it" breakpoint_ops method for
10206 ranged breakpoints. */
10207
10208 static enum print_stop_action
10209 print_it_ranged_breakpoint (bpstat bs)
10210 {
10211 struct breakpoint *b = bs->breakpoint_at;
10212 struct bp_location *bl = b->loc;
10213 struct ui_out *uiout = current_uiout;
10214
10215 gdb_assert (b->type == bp_hardware_breakpoint);
10216
10217 /* Ranged breakpoints have only one location. */
10218 gdb_assert (bl && bl->next == NULL);
10219
10220 annotate_breakpoint (b->number);
10221 if (b->disposition == disp_del)
10222 ui_out_text (uiout, "\nTemporary ranged breakpoint ");
10223 else
10224 ui_out_text (uiout, "\nRanged breakpoint ");
10225 if (ui_out_is_mi_like_p (uiout))
10226 {
10227 ui_out_field_string (uiout, "reason",
10228 async_reason_lookup (EXEC_ASYNC_BREAKPOINT_HIT));
10229 ui_out_field_string (uiout, "disp", bpdisp_text (b->disposition));
10230 }
10231 ui_out_field_int (uiout, "bkptno", b->number);
10232 ui_out_text (uiout, ", ");
10233
10234 return PRINT_SRC_AND_LOC;
10235 }
10236
10237 /* Implement the "print_one" breakpoint_ops method for
10238 ranged breakpoints. */
10239
10240 static void
10241 print_one_ranged_breakpoint (struct breakpoint *b,
10242 struct bp_location **last_loc)
10243 {
10244 struct bp_location *bl = b->loc;
10245 struct value_print_options opts;
10246 struct ui_out *uiout = current_uiout;
10247
10248 /* Ranged breakpoints have only one location. */
10249 gdb_assert (bl && bl->next == NULL);
10250
10251 get_user_print_options (&opts);
10252
10253 if (opts.addressprint)
10254 /* We don't print the address range here, it will be printed later
10255 by print_one_detail_ranged_breakpoint. */
10256 ui_out_field_skip (uiout, "addr");
10257 annotate_field (5);
10258 print_breakpoint_location (b, bl);
10259 *last_loc = bl;
10260 }
10261
10262 /* Implement the "print_one_detail" breakpoint_ops method for
10263 ranged breakpoints. */
10264
10265 static void
10266 print_one_detail_ranged_breakpoint (const struct breakpoint *b,
10267 struct ui_out *uiout)
10268 {
10269 CORE_ADDR address_start, address_end;
10270 struct bp_location *bl = b->loc;
10271 struct ui_file *stb = mem_fileopen ();
10272 struct cleanup *cleanup = make_cleanup_ui_file_delete (stb);
10273
10274 gdb_assert (bl);
10275
10276 address_start = bl->address;
10277 address_end = address_start + bl->length - 1;
10278
10279 ui_out_text (uiout, "\taddress range: ");
10280 fprintf_unfiltered (stb, "[%s, %s]",
10281 print_core_address (bl->gdbarch, address_start),
10282 print_core_address (bl->gdbarch, address_end));
10283 ui_out_field_stream (uiout, "addr", stb);
10284 ui_out_text (uiout, "\n");
10285
10286 do_cleanups (cleanup);
10287 }
10288
10289 /* Implement the "print_mention" breakpoint_ops method for
10290 ranged breakpoints. */
10291
10292 static void
10293 print_mention_ranged_breakpoint (struct breakpoint *b)
10294 {
10295 struct bp_location *bl = b->loc;
10296 struct ui_out *uiout = current_uiout;
10297
10298 gdb_assert (bl);
10299 gdb_assert (b->type == bp_hardware_breakpoint);
10300
10301 if (ui_out_is_mi_like_p (uiout))
10302 return;
10303
10304 printf_filtered (_("Hardware assisted ranged breakpoint %d from %s to %s."),
10305 b->number, paddress (bl->gdbarch, bl->address),
10306 paddress (bl->gdbarch, bl->address + bl->length - 1));
10307 }
10308
10309 /* Implement the "print_recreate" breakpoint_ops method for
10310 ranged breakpoints. */
10311
10312 static void
10313 print_recreate_ranged_breakpoint (struct breakpoint *b, struct ui_file *fp)
10314 {
10315 fprintf_unfiltered (fp, "break-range %s, %s",
10316 event_location_to_string (b->location),
10317 event_location_to_string (b->location_range_end));
10318 print_recreate_thread (b, fp);
10319 }
10320
10321 /* The breakpoint_ops structure to be used in ranged breakpoints. */
10322
10323 static struct breakpoint_ops ranged_breakpoint_ops;
10324
10325 /* Find the address where the end of the breakpoint range should be
10326 placed, given the SAL of the end of the range. This is so that if
10327 the user provides a line number, the end of the range is set to the
10328 last instruction of the given line. */
10329
10330 static CORE_ADDR
10331 find_breakpoint_range_end (struct symtab_and_line sal)
10332 {
10333 CORE_ADDR end;
10334
10335 /* If the user provided a PC value, use it. Otherwise,
10336 find the address of the end of the given location. */
10337 if (sal.explicit_pc)
10338 end = sal.pc;
10339 else
10340 {
10341 int ret;
10342 CORE_ADDR start;
10343
10344 ret = find_line_pc_range (sal, &start, &end);
10345 if (!ret)
10346 error (_("Could not find location of the end of the range."));
10347
10348 /* find_line_pc_range returns the start of the next line. */
10349 end--;
10350 }
10351
10352 return end;
10353 }
10354
10355 /* Implement the "break-range" CLI command. */
10356
10357 static void
10358 break_range_command (char *arg, int from_tty)
10359 {
10360 char *arg_start, *addr_string_start, *addr_string_end;
10361 struct linespec_result canonical_start, canonical_end;
10362 int bp_count, can_use_bp, length;
10363 CORE_ADDR end;
10364 struct breakpoint *b;
10365 struct symtab_and_line sal_start, sal_end;
10366 struct cleanup *cleanup_bkpt;
10367 struct linespec_sals *lsal_start, *lsal_end;
10368 struct event_location *start_location, *end_location;
10369
10370 /* We don't support software ranged breakpoints. */
10371 if (target_ranged_break_num_registers () < 0)
10372 error (_("This target does not support hardware ranged breakpoints."));
10373
10374 bp_count = hw_breakpoint_used_count ();
10375 bp_count += target_ranged_break_num_registers ();
10376 can_use_bp = target_can_use_hardware_watchpoint (bp_hardware_breakpoint,
10377 bp_count, 0);
10378 if (can_use_bp < 0)
10379 error (_("Hardware breakpoints used exceeds limit."));
10380
10381 arg = skip_spaces (arg);
10382 if (arg == NULL || arg[0] == '\0')
10383 error(_("No address range specified."));
10384
10385 init_linespec_result (&canonical_start);
10386
10387 arg_start = arg;
10388 start_location = string_to_event_location (&arg, current_language);
10389 cleanup_bkpt = make_cleanup_delete_event_location (start_location);
10390 parse_breakpoint_sals (start_location, &canonical_start);
10391 make_cleanup_destroy_linespec_result (&canonical_start);
10392
10393 if (arg[0] != ',')
10394 error (_("Too few arguments."));
10395 else if (VEC_empty (linespec_sals, canonical_start.sals))
10396 error (_("Could not find location of the beginning of the range."));
10397
10398 lsal_start = VEC_index (linespec_sals, canonical_start.sals, 0);
10399
10400 if (VEC_length (linespec_sals, canonical_start.sals) > 1
10401 || lsal_start->sals.nelts != 1)
10402 error (_("Cannot create a ranged breakpoint with multiple locations."));
10403
10404 sal_start = lsal_start->sals.sals[0];
10405 addr_string_start = savestring (arg_start, arg - arg_start);
10406 make_cleanup (xfree, addr_string_start);
10407
10408 arg++; /* Skip the comma. */
10409 arg = skip_spaces (arg);
10410
10411 /* Parse the end location. */
10412
10413 init_linespec_result (&canonical_end);
10414 arg_start = arg;
10415
10416 /* We call decode_line_full directly here instead of using
10417 parse_breakpoint_sals because we need to specify the start location's
10418 symtab and line as the default symtab and line for the end of the
10419 range. This makes it possible to have ranges like "foo.c:27, +14",
10420 where +14 means 14 lines from the start location. */
10421 end_location = string_to_event_location (&arg, current_language);
10422 make_cleanup_delete_event_location (end_location);
10423 decode_line_full (end_location, DECODE_LINE_FUNFIRSTLINE,
10424 sal_start.symtab, sal_start.line,
10425 &canonical_end, NULL, NULL);
10426
10427 make_cleanup_destroy_linespec_result (&canonical_end);
10428
10429 if (VEC_empty (linespec_sals, canonical_end.sals))
10430 error (_("Could not find location of the end of the range."));
10431
10432 lsal_end = VEC_index (linespec_sals, canonical_end.sals, 0);
10433 if (VEC_length (linespec_sals, canonical_end.sals) > 1
10434 || lsal_end->sals.nelts != 1)
10435 error (_("Cannot create a ranged breakpoint with multiple locations."));
10436
10437 sal_end = lsal_end->sals.sals[0];
10438
10439 end = find_breakpoint_range_end (sal_end);
10440 if (sal_start.pc > end)
10441 error (_("Invalid address range, end precedes start."));
10442
10443 length = end - sal_start.pc + 1;
10444 if (length < 0)
10445 /* Length overflowed. */
10446 error (_("Address range too large."));
10447 else if (length == 1)
10448 {
10449 /* This range is simple enough to be handled by
10450 the `hbreak' command. */
10451 hbreak_command (addr_string_start, 1);
10452
10453 do_cleanups (cleanup_bkpt);
10454
10455 return;
10456 }
10457
10458 /* Now set up the breakpoint. */
10459 b = set_raw_breakpoint (get_current_arch (), sal_start,
10460 bp_hardware_breakpoint, &ranged_breakpoint_ops);
10461 set_breakpoint_count (breakpoint_count + 1);
10462 b->number = breakpoint_count;
10463 b->disposition = disp_donttouch;
10464 b->location = copy_event_location (start_location);
10465 b->location_range_end = copy_event_location (end_location);
10466 b->loc->length = length;
10467
10468 do_cleanups (cleanup_bkpt);
10469
10470 mention (b);
10471 observer_notify_breakpoint_created (b);
10472 update_global_location_list (UGLL_MAY_INSERT);
10473 }
10474
10475 /* Return non-zero if EXP is verified as constant. Returned zero
10476 means EXP is variable. Also the constant detection may fail for
10477 some constant expressions and in such case still falsely return
10478 zero. */
10479
10480 static int
10481 watchpoint_exp_is_const (const struct expression *exp)
10482 {
10483 int i = exp->nelts;
10484
10485 while (i > 0)
10486 {
10487 int oplenp, argsp;
10488
10489 /* We are only interested in the descriptor of each element. */
10490 operator_length (exp, i, &oplenp, &argsp);
10491 i -= oplenp;
10492
10493 switch (exp->elts[i].opcode)
10494 {
10495 case BINOP_ADD:
10496 case BINOP_SUB:
10497 case BINOP_MUL:
10498 case BINOP_DIV:
10499 case BINOP_REM:
10500 case BINOP_MOD:
10501 case BINOP_LSH:
10502 case BINOP_RSH:
10503 case BINOP_LOGICAL_AND:
10504 case BINOP_LOGICAL_OR:
10505 case BINOP_BITWISE_AND:
10506 case BINOP_BITWISE_IOR:
10507 case BINOP_BITWISE_XOR:
10508 case BINOP_EQUAL:
10509 case BINOP_NOTEQUAL:
10510 case BINOP_LESS:
10511 case BINOP_GTR:
10512 case BINOP_LEQ:
10513 case BINOP_GEQ:
10514 case BINOP_REPEAT:
10515 case BINOP_COMMA:
10516 case BINOP_EXP:
10517 case BINOP_MIN:
10518 case BINOP_MAX:
10519 case BINOP_INTDIV:
10520 case BINOP_CONCAT:
10521 case TERNOP_COND:
10522 case TERNOP_SLICE:
10523
10524 case OP_LONG:
10525 case OP_DOUBLE:
10526 case OP_DECFLOAT:
10527 case OP_LAST:
10528 case OP_COMPLEX:
10529 case OP_STRING:
10530 case OP_ARRAY:
10531 case OP_TYPE:
10532 case OP_TYPEOF:
10533 case OP_DECLTYPE:
10534 case OP_TYPEID:
10535 case OP_NAME:
10536 case OP_OBJC_NSSTRING:
10537
10538 case UNOP_NEG:
10539 case UNOP_LOGICAL_NOT:
10540 case UNOP_COMPLEMENT:
10541 case UNOP_ADDR:
10542 case UNOP_HIGH:
10543 case UNOP_CAST:
10544
10545 case UNOP_CAST_TYPE:
10546 case UNOP_REINTERPRET_CAST:
10547 case UNOP_DYNAMIC_CAST:
10548 /* Unary, binary and ternary operators: We have to check
10549 their operands. If they are constant, then so is the
10550 result of that operation. For instance, if A and B are
10551 determined to be constants, then so is "A + B".
10552
10553 UNOP_IND is one exception to the rule above, because the
10554 value of *ADDR is not necessarily a constant, even when
10555 ADDR is. */
10556 break;
10557
10558 case OP_VAR_VALUE:
10559 /* Check whether the associated symbol is a constant.
10560
10561 We use SYMBOL_CLASS rather than TYPE_CONST because it's
10562 possible that a buggy compiler could mark a variable as
10563 constant even when it is not, and TYPE_CONST would return
10564 true in this case, while SYMBOL_CLASS wouldn't.
10565
10566 We also have to check for function symbols because they
10567 are always constant. */
10568 {
10569 struct symbol *s = exp->elts[i + 2].symbol;
10570
10571 if (SYMBOL_CLASS (s) != LOC_BLOCK
10572 && SYMBOL_CLASS (s) != LOC_CONST
10573 && SYMBOL_CLASS (s) != LOC_CONST_BYTES)
10574 return 0;
10575 break;
10576 }
10577
10578 /* The default action is to return 0 because we are using
10579 the optimistic approach here: If we don't know something,
10580 then it is not a constant. */
10581 default:
10582 return 0;
10583 }
10584 }
10585
10586 return 1;
10587 }
10588
10589 /* Implement the "dtor" breakpoint_ops method for watchpoints. */
10590
10591 static void
10592 dtor_watchpoint (struct breakpoint *self)
10593 {
10594 struct watchpoint *w = (struct watchpoint *) self;
10595
10596 xfree (w->cond_exp);
10597 xfree (w->exp);
10598 xfree (w->exp_string);
10599 xfree (w->exp_string_reparse);
10600 value_free (w->val);
10601
10602 base_breakpoint_ops.dtor (self);
10603 }
10604
10605 /* Implement the "re_set" breakpoint_ops method for watchpoints. */
10606
10607 static void
10608 re_set_watchpoint (struct breakpoint *b)
10609 {
10610 struct watchpoint *w = (struct watchpoint *) b;
10611
10612 /* Watchpoint can be either on expression using entirely global
10613 variables, or it can be on local variables.
10614
10615 Watchpoints of the first kind are never auto-deleted, and even
10616 persist across program restarts. Since they can use variables
10617 from shared libraries, we need to reparse expression as libraries
10618 are loaded and unloaded.
10619
10620 Watchpoints on local variables can also change meaning as result
10621 of solib event. For example, if a watchpoint uses both a local
10622 and a global variables in expression, it's a local watchpoint,
10623 but unloading of a shared library will make the expression
10624 invalid. This is not a very common use case, but we still
10625 re-evaluate expression, to avoid surprises to the user.
10626
10627 Note that for local watchpoints, we re-evaluate it only if
10628 watchpoints frame id is still valid. If it's not, it means the
10629 watchpoint is out of scope and will be deleted soon. In fact,
10630 I'm not sure we'll ever be called in this case.
10631
10632 If a local watchpoint's frame id is still valid, then
10633 w->exp_valid_block is likewise valid, and we can safely use it.
10634
10635 Don't do anything about disabled watchpoints, since they will be
10636 reevaluated again when enabled. */
10637 update_watchpoint (w, 1 /* reparse */);
10638 }
10639
10640 /* Implement the "insert" breakpoint_ops method for hardware watchpoints. */
10641
10642 static int
10643 insert_watchpoint (struct bp_location *bl)
10644 {
10645 struct watchpoint *w = (struct watchpoint *) bl->owner;
10646 int length = w->exact ? 1 : bl->length;
10647
10648 return target_insert_watchpoint (bl->address, length, bl->watchpoint_type,
10649 w->cond_exp);
10650 }
10651
10652 /* Implement the "remove" breakpoint_ops method for hardware watchpoints. */
10653
10654 static int
10655 remove_watchpoint (struct bp_location *bl)
10656 {
10657 struct watchpoint *w = (struct watchpoint *) bl->owner;
10658 int length = w->exact ? 1 : bl->length;
10659
10660 return target_remove_watchpoint (bl->address, length, bl->watchpoint_type,
10661 w->cond_exp);
10662 }
10663
10664 static int
10665 breakpoint_hit_watchpoint (const struct bp_location *bl,
10666 struct address_space *aspace, CORE_ADDR bp_addr,
10667 const struct target_waitstatus *ws)
10668 {
10669 struct breakpoint *b = bl->owner;
10670 struct watchpoint *w = (struct watchpoint *) b;
10671
10672 /* Continuable hardware watchpoints are treated as non-existent if the
10673 reason we stopped wasn't a hardware watchpoint (we didn't stop on
10674 some data address). Otherwise gdb won't stop on a break instruction
10675 in the code (not from a breakpoint) when a hardware watchpoint has
10676 been defined. Also skip watchpoints which we know did not trigger
10677 (did not match the data address). */
10678 if (is_hardware_watchpoint (b)
10679 && w->watchpoint_triggered == watch_triggered_no)
10680 return 0;
10681
10682 return 1;
10683 }
10684
10685 static void
10686 check_status_watchpoint (bpstat bs)
10687 {
10688 gdb_assert (is_watchpoint (bs->breakpoint_at));
10689
10690 bpstat_check_watchpoint (bs);
10691 }
10692
10693 /* Implement the "resources_needed" breakpoint_ops method for
10694 hardware watchpoints. */
10695
10696 static int
10697 resources_needed_watchpoint (const struct bp_location *bl)
10698 {
10699 struct watchpoint *w = (struct watchpoint *) bl->owner;
10700 int length = w->exact? 1 : bl->length;
10701
10702 return target_region_ok_for_hw_watchpoint (bl->address, length);
10703 }
10704
10705 /* Implement the "works_in_software_mode" breakpoint_ops method for
10706 hardware watchpoints. */
10707
10708 static int
10709 works_in_software_mode_watchpoint (const struct breakpoint *b)
10710 {
10711 /* Read and access watchpoints only work with hardware support. */
10712 return b->type == bp_watchpoint || b->type == bp_hardware_watchpoint;
10713 }
10714
10715 static enum print_stop_action
10716 print_it_watchpoint (bpstat bs)
10717 {
10718 struct cleanup *old_chain;
10719 struct breakpoint *b;
10720 struct ui_file *stb;
10721 enum print_stop_action result;
10722 struct watchpoint *w;
10723 struct ui_out *uiout = current_uiout;
10724
10725 gdb_assert (bs->bp_location_at != NULL);
10726
10727 b = bs->breakpoint_at;
10728 w = (struct watchpoint *) b;
10729
10730 stb = mem_fileopen ();
10731 old_chain = make_cleanup_ui_file_delete (stb);
10732
10733 switch (b->type)
10734 {
10735 case bp_watchpoint:
10736 case bp_hardware_watchpoint:
10737 annotate_watchpoint (b->number);
10738 if (ui_out_is_mi_like_p (uiout))
10739 ui_out_field_string
10740 (uiout, "reason",
10741 async_reason_lookup (EXEC_ASYNC_WATCHPOINT_TRIGGER));
10742 mention (b);
10743 make_cleanup_ui_out_tuple_begin_end (uiout, "value");
10744 ui_out_text (uiout, "\nOld value = ");
10745 watchpoint_value_print (bs->old_val, stb);
10746 ui_out_field_stream (uiout, "old", stb);
10747 ui_out_text (uiout, "\nNew value = ");
10748 watchpoint_value_print (w->val, stb);
10749 ui_out_field_stream (uiout, "new", stb);
10750 ui_out_text (uiout, "\n");
10751 /* More than one watchpoint may have been triggered. */
10752 result = PRINT_UNKNOWN;
10753 break;
10754
10755 case bp_read_watchpoint:
10756 if (ui_out_is_mi_like_p (uiout))
10757 ui_out_field_string
10758 (uiout, "reason",
10759 async_reason_lookup (EXEC_ASYNC_READ_WATCHPOINT_TRIGGER));
10760 mention (b);
10761 make_cleanup_ui_out_tuple_begin_end (uiout, "value");
10762 ui_out_text (uiout, "\nValue = ");
10763 watchpoint_value_print (w->val, stb);
10764 ui_out_field_stream (uiout, "value", stb);
10765 ui_out_text (uiout, "\n");
10766 result = PRINT_UNKNOWN;
10767 break;
10768
10769 case bp_access_watchpoint:
10770 if (bs->old_val != NULL)
10771 {
10772 annotate_watchpoint (b->number);
10773 if (ui_out_is_mi_like_p (uiout))
10774 ui_out_field_string
10775 (uiout, "reason",
10776 async_reason_lookup (EXEC_ASYNC_ACCESS_WATCHPOINT_TRIGGER));
10777 mention (b);
10778 make_cleanup_ui_out_tuple_begin_end (uiout, "value");
10779 ui_out_text (uiout, "\nOld value = ");
10780 watchpoint_value_print (bs->old_val, stb);
10781 ui_out_field_stream (uiout, "old", stb);
10782 ui_out_text (uiout, "\nNew value = ");
10783 }
10784 else
10785 {
10786 mention (b);
10787 if (ui_out_is_mi_like_p (uiout))
10788 ui_out_field_string
10789 (uiout, "reason",
10790 async_reason_lookup (EXEC_ASYNC_ACCESS_WATCHPOINT_TRIGGER));
10791 make_cleanup_ui_out_tuple_begin_end (uiout, "value");
10792 ui_out_text (uiout, "\nValue = ");
10793 }
10794 watchpoint_value_print (w->val, stb);
10795 ui_out_field_stream (uiout, "new", stb);
10796 ui_out_text (uiout, "\n");
10797 result = PRINT_UNKNOWN;
10798 break;
10799 default:
10800 result = PRINT_UNKNOWN;
10801 }
10802
10803 do_cleanups (old_chain);
10804 return result;
10805 }
10806
10807 /* Implement the "print_mention" breakpoint_ops method for hardware
10808 watchpoints. */
10809
10810 static void
10811 print_mention_watchpoint (struct breakpoint *b)
10812 {
10813 struct cleanup *ui_out_chain;
10814 struct watchpoint *w = (struct watchpoint *) b;
10815 struct ui_out *uiout = current_uiout;
10816
10817 switch (b->type)
10818 {
10819 case bp_watchpoint:
10820 ui_out_text (uiout, "Watchpoint ");
10821 ui_out_chain = make_cleanup_ui_out_tuple_begin_end (uiout, "wpt");
10822 break;
10823 case bp_hardware_watchpoint:
10824 ui_out_text (uiout, "Hardware watchpoint ");
10825 ui_out_chain = make_cleanup_ui_out_tuple_begin_end (uiout, "wpt");
10826 break;
10827 case bp_read_watchpoint:
10828 ui_out_text (uiout, "Hardware read watchpoint ");
10829 ui_out_chain = make_cleanup_ui_out_tuple_begin_end (uiout, "hw-rwpt");
10830 break;
10831 case bp_access_watchpoint:
10832 ui_out_text (uiout, "Hardware access (read/write) watchpoint ");
10833 ui_out_chain = make_cleanup_ui_out_tuple_begin_end (uiout, "hw-awpt");
10834 break;
10835 default:
10836 internal_error (__FILE__, __LINE__,
10837 _("Invalid hardware watchpoint type."));
10838 }
10839
10840 ui_out_field_int (uiout, "number", b->number);
10841 ui_out_text (uiout, ": ");
10842 ui_out_field_string (uiout, "exp", w->exp_string);
10843 do_cleanups (ui_out_chain);
10844 }
10845
10846 /* Implement the "print_recreate" breakpoint_ops method for
10847 watchpoints. */
10848
10849 static void
10850 print_recreate_watchpoint (struct breakpoint *b, struct ui_file *fp)
10851 {
10852 struct watchpoint *w = (struct watchpoint *) b;
10853
10854 switch (b->type)
10855 {
10856 case bp_watchpoint:
10857 case bp_hardware_watchpoint:
10858 fprintf_unfiltered (fp, "watch");
10859 break;
10860 case bp_read_watchpoint:
10861 fprintf_unfiltered (fp, "rwatch");
10862 break;
10863 case bp_access_watchpoint:
10864 fprintf_unfiltered (fp, "awatch");
10865 break;
10866 default:
10867 internal_error (__FILE__, __LINE__,
10868 _("Invalid watchpoint type."));
10869 }
10870
10871 fprintf_unfiltered (fp, " %s", w->exp_string);
10872 print_recreate_thread (b, fp);
10873 }
10874
10875 /* Implement the "explains_signal" breakpoint_ops method for
10876 watchpoints. */
10877
10878 static int
10879 explains_signal_watchpoint (struct breakpoint *b, enum gdb_signal sig)
10880 {
10881 /* A software watchpoint cannot cause a signal other than
10882 GDB_SIGNAL_TRAP. */
10883 if (b->type == bp_watchpoint && sig != GDB_SIGNAL_TRAP)
10884 return 0;
10885
10886 return 1;
10887 }
10888
10889 /* The breakpoint_ops structure to be used in hardware watchpoints. */
10890
10891 static struct breakpoint_ops watchpoint_breakpoint_ops;
10892
10893 /* Implement the "insert" breakpoint_ops method for
10894 masked hardware watchpoints. */
10895
10896 static int
10897 insert_masked_watchpoint (struct bp_location *bl)
10898 {
10899 struct watchpoint *w = (struct watchpoint *) bl->owner;
10900
10901 return target_insert_mask_watchpoint (bl->address, w->hw_wp_mask,
10902 bl->watchpoint_type);
10903 }
10904
10905 /* Implement the "remove" breakpoint_ops method for
10906 masked hardware watchpoints. */
10907
10908 static int
10909 remove_masked_watchpoint (struct bp_location *bl)
10910 {
10911 struct watchpoint *w = (struct watchpoint *) bl->owner;
10912
10913 return target_remove_mask_watchpoint (bl->address, w->hw_wp_mask,
10914 bl->watchpoint_type);
10915 }
10916
10917 /* Implement the "resources_needed" breakpoint_ops method for
10918 masked hardware watchpoints. */
10919
10920 static int
10921 resources_needed_masked_watchpoint (const struct bp_location *bl)
10922 {
10923 struct watchpoint *w = (struct watchpoint *) bl->owner;
10924
10925 return target_masked_watch_num_registers (bl->address, w->hw_wp_mask);
10926 }
10927
10928 /* Implement the "works_in_software_mode" breakpoint_ops method for
10929 masked hardware watchpoints. */
10930
10931 static int
10932 works_in_software_mode_masked_watchpoint (const struct breakpoint *b)
10933 {
10934 return 0;
10935 }
10936
10937 /* Implement the "print_it" breakpoint_ops method for
10938 masked hardware watchpoints. */
10939
10940 static enum print_stop_action
10941 print_it_masked_watchpoint (bpstat bs)
10942 {
10943 struct breakpoint *b = bs->breakpoint_at;
10944 struct ui_out *uiout = current_uiout;
10945
10946 /* Masked watchpoints have only one location. */
10947 gdb_assert (b->loc && b->loc->next == NULL);
10948
10949 switch (b->type)
10950 {
10951 case bp_hardware_watchpoint:
10952 annotate_watchpoint (b->number);
10953 if (ui_out_is_mi_like_p (uiout))
10954 ui_out_field_string
10955 (uiout, "reason",
10956 async_reason_lookup (EXEC_ASYNC_WATCHPOINT_TRIGGER));
10957 break;
10958
10959 case bp_read_watchpoint:
10960 if (ui_out_is_mi_like_p (uiout))
10961 ui_out_field_string
10962 (uiout, "reason",
10963 async_reason_lookup (EXEC_ASYNC_READ_WATCHPOINT_TRIGGER));
10964 break;
10965
10966 case bp_access_watchpoint:
10967 if (ui_out_is_mi_like_p (uiout))
10968 ui_out_field_string
10969 (uiout, "reason",
10970 async_reason_lookup (EXEC_ASYNC_ACCESS_WATCHPOINT_TRIGGER));
10971 break;
10972 default:
10973 internal_error (__FILE__, __LINE__,
10974 _("Invalid hardware watchpoint type."));
10975 }
10976
10977 mention (b);
10978 ui_out_text (uiout, _("\n\
10979 Check the underlying instruction at PC for the memory\n\
10980 address and value which triggered this watchpoint.\n"));
10981 ui_out_text (uiout, "\n");
10982
10983 /* More than one watchpoint may have been triggered. */
10984 return PRINT_UNKNOWN;
10985 }
10986
10987 /* Implement the "print_one_detail" breakpoint_ops method for
10988 masked hardware watchpoints. */
10989
10990 static void
10991 print_one_detail_masked_watchpoint (const struct breakpoint *b,
10992 struct ui_out *uiout)
10993 {
10994 struct watchpoint *w = (struct watchpoint *) b;
10995
10996 /* Masked watchpoints have only one location. */
10997 gdb_assert (b->loc && b->loc->next == NULL);
10998
10999 ui_out_text (uiout, "\tmask ");
11000 ui_out_field_core_addr (uiout, "mask", b->loc->gdbarch, w->hw_wp_mask);
11001 ui_out_text (uiout, "\n");
11002 }
11003
11004 /* Implement the "print_mention" breakpoint_ops method for
11005 masked hardware watchpoints. */
11006
11007 static void
11008 print_mention_masked_watchpoint (struct breakpoint *b)
11009 {
11010 struct watchpoint *w = (struct watchpoint *) b;
11011 struct ui_out *uiout = current_uiout;
11012 struct cleanup *ui_out_chain;
11013
11014 switch (b->type)
11015 {
11016 case bp_hardware_watchpoint:
11017 ui_out_text (uiout, "Masked hardware watchpoint ");
11018 ui_out_chain = make_cleanup_ui_out_tuple_begin_end (uiout, "wpt");
11019 break;
11020 case bp_read_watchpoint:
11021 ui_out_text (uiout, "Masked hardware read watchpoint ");
11022 ui_out_chain = make_cleanup_ui_out_tuple_begin_end (uiout, "hw-rwpt");
11023 break;
11024 case bp_access_watchpoint:
11025 ui_out_text (uiout, "Masked hardware access (read/write) watchpoint ");
11026 ui_out_chain = make_cleanup_ui_out_tuple_begin_end (uiout, "hw-awpt");
11027 break;
11028 default:
11029 internal_error (__FILE__, __LINE__,
11030 _("Invalid hardware watchpoint type."));
11031 }
11032
11033 ui_out_field_int (uiout, "number", b->number);
11034 ui_out_text (uiout, ": ");
11035 ui_out_field_string (uiout, "exp", w->exp_string);
11036 do_cleanups (ui_out_chain);
11037 }
11038
11039 /* Implement the "print_recreate" breakpoint_ops method for
11040 masked hardware watchpoints. */
11041
11042 static void
11043 print_recreate_masked_watchpoint (struct breakpoint *b, struct ui_file *fp)
11044 {
11045 struct watchpoint *w = (struct watchpoint *) b;
11046 char tmp[40];
11047
11048 switch (b->type)
11049 {
11050 case bp_hardware_watchpoint:
11051 fprintf_unfiltered (fp, "watch");
11052 break;
11053 case bp_read_watchpoint:
11054 fprintf_unfiltered (fp, "rwatch");
11055 break;
11056 case bp_access_watchpoint:
11057 fprintf_unfiltered (fp, "awatch");
11058 break;
11059 default:
11060 internal_error (__FILE__, __LINE__,
11061 _("Invalid hardware watchpoint type."));
11062 }
11063
11064 sprintf_vma (tmp, w->hw_wp_mask);
11065 fprintf_unfiltered (fp, " %s mask 0x%s", w->exp_string, tmp);
11066 print_recreate_thread (b, fp);
11067 }
11068
11069 /* The breakpoint_ops structure to be used in masked hardware watchpoints. */
11070
11071 static struct breakpoint_ops masked_watchpoint_breakpoint_ops;
11072
11073 /* Tell whether the given watchpoint is a masked hardware watchpoint. */
11074
11075 static int
11076 is_masked_watchpoint (const struct breakpoint *b)
11077 {
11078 return b->ops == &masked_watchpoint_breakpoint_ops;
11079 }
11080
11081 /* accessflag: hw_write: watch write,
11082 hw_read: watch read,
11083 hw_access: watch access (read or write) */
11084 static void
11085 watch_command_1 (const char *arg, int accessflag, int from_tty,
11086 int just_location, int internal)
11087 {
11088 struct breakpoint *b, *scope_breakpoint = NULL;
11089 struct expression *exp;
11090 const struct block *exp_valid_block = NULL, *cond_exp_valid_block = NULL;
11091 struct value *val, *mark, *result;
11092 int saved_bitpos = 0, saved_bitsize = 0;
11093 struct frame_info *frame;
11094 const char *exp_start = NULL;
11095 const char *exp_end = NULL;
11096 const char *tok, *end_tok;
11097 int toklen = -1;
11098 const char *cond_start = NULL;
11099 const char *cond_end = NULL;
11100 enum bptype bp_type;
11101 int thread = -1;
11102 int pc = 0;
11103 /* Flag to indicate whether we are going to use masks for
11104 the hardware watchpoint. */
11105 int use_mask = 0;
11106 CORE_ADDR mask = 0;
11107 struct watchpoint *w;
11108 char *expression;
11109 struct cleanup *back_to;
11110
11111 /* Make sure that we actually have parameters to parse. */
11112 if (arg != NULL && arg[0] != '\0')
11113 {
11114 const char *value_start;
11115
11116 exp_end = arg + strlen (arg);
11117
11118 /* Look for "parameter value" pairs at the end
11119 of the arguments string. */
11120 for (tok = exp_end - 1; tok > arg; tok--)
11121 {
11122 /* Skip whitespace at the end of the argument list. */
11123 while (tok > arg && (*tok == ' ' || *tok == '\t'))
11124 tok--;
11125
11126 /* Find the beginning of the last token.
11127 This is the value of the parameter. */
11128 while (tok > arg && (*tok != ' ' && *tok != '\t'))
11129 tok--;
11130 value_start = tok + 1;
11131
11132 /* Skip whitespace. */
11133 while (tok > arg && (*tok == ' ' || *tok == '\t'))
11134 tok--;
11135
11136 end_tok = tok;
11137
11138 /* Find the beginning of the second to last token.
11139 This is the parameter itself. */
11140 while (tok > arg && (*tok != ' ' && *tok != '\t'))
11141 tok--;
11142 tok++;
11143 toklen = end_tok - tok + 1;
11144
11145 if (toklen == 6 && startswith (tok, "thread"))
11146 {
11147 /* At this point we've found a "thread" token, which means
11148 the user is trying to set a watchpoint that triggers
11149 only in a specific thread. */
11150 char *endp;
11151
11152 if (thread != -1)
11153 error(_("You can specify only one thread."));
11154
11155 /* Extract the thread ID from the next token. */
11156 thread = strtol (value_start, &endp, 0);
11157
11158 /* Check if the user provided a valid numeric value for the
11159 thread ID. */
11160 if (*endp != ' ' && *endp != '\t' && *endp != '\0')
11161 error (_("Invalid thread ID specification %s."), value_start);
11162
11163 /* Check if the thread actually exists. */
11164 if (!valid_thread_id (thread))
11165 invalid_thread_id_error (thread);
11166 }
11167 else if (toklen == 4 && startswith (tok, "mask"))
11168 {
11169 /* We've found a "mask" token, which means the user wants to
11170 create a hardware watchpoint that is going to have the mask
11171 facility. */
11172 struct value *mask_value, *mark;
11173
11174 if (use_mask)
11175 error(_("You can specify only one mask."));
11176
11177 use_mask = just_location = 1;
11178
11179 mark = value_mark ();
11180 mask_value = parse_to_comma_and_eval (&value_start);
11181 mask = value_as_address (mask_value);
11182 value_free_to_mark (mark);
11183 }
11184 else
11185 /* We didn't recognize what we found. We should stop here. */
11186 break;
11187
11188 /* Truncate the string and get rid of the "parameter value" pair before
11189 the arguments string is parsed by the parse_exp_1 function. */
11190 exp_end = tok;
11191 }
11192 }
11193 else
11194 exp_end = arg;
11195
11196 /* Parse the rest of the arguments. From here on out, everything
11197 is in terms of a newly allocated string instead of the original
11198 ARG. */
11199 innermost_block = NULL;
11200 expression = savestring (arg, exp_end - arg);
11201 back_to = make_cleanup (xfree, expression);
11202 exp_start = arg = expression;
11203 exp = parse_exp_1 (&arg, 0, 0, 0);
11204 exp_end = arg;
11205 /* Remove trailing whitespace from the expression before saving it.
11206 This makes the eventual display of the expression string a bit
11207 prettier. */
11208 while (exp_end > exp_start && (exp_end[-1] == ' ' || exp_end[-1] == '\t'))
11209 --exp_end;
11210
11211 /* Checking if the expression is not constant. */
11212 if (watchpoint_exp_is_const (exp))
11213 {
11214 int len;
11215
11216 len = exp_end - exp_start;
11217 while (len > 0 && isspace (exp_start[len - 1]))
11218 len--;
11219 error (_("Cannot watch constant value `%.*s'."), len, exp_start);
11220 }
11221
11222 exp_valid_block = innermost_block;
11223 mark = value_mark ();
11224 fetch_subexp_value (exp, &pc, &val, &result, NULL, just_location);
11225
11226 if (val != NULL && just_location)
11227 {
11228 saved_bitpos = value_bitpos (val);
11229 saved_bitsize = value_bitsize (val);
11230 }
11231
11232 if (just_location)
11233 {
11234 int ret;
11235
11236 exp_valid_block = NULL;
11237 val = value_addr (result);
11238 release_value (val);
11239 value_free_to_mark (mark);
11240
11241 if (use_mask)
11242 {
11243 ret = target_masked_watch_num_registers (value_as_address (val),
11244 mask);
11245 if (ret == -1)
11246 error (_("This target does not support masked watchpoints."));
11247 else if (ret == -2)
11248 error (_("Invalid mask or memory region."));
11249 }
11250 }
11251 else if (val != NULL)
11252 release_value (val);
11253
11254 tok = skip_spaces_const (arg);
11255 end_tok = skip_to_space_const (tok);
11256
11257 toklen = end_tok - tok;
11258 if (toklen >= 1 && strncmp (tok, "if", toklen) == 0)
11259 {
11260 struct expression *cond;
11261
11262 innermost_block = NULL;
11263 tok = cond_start = end_tok + 1;
11264 cond = parse_exp_1 (&tok, 0, 0, 0);
11265
11266 /* The watchpoint expression may not be local, but the condition
11267 may still be. E.g.: `watch global if local > 0'. */
11268 cond_exp_valid_block = innermost_block;
11269
11270 xfree (cond);
11271 cond_end = tok;
11272 }
11273 if (*tok)
11274 error (_("Junk at end of command."));
11275
11276 frame = block_innermost_frame (exp_valid_block);
11277
11278 /* If the expression is "local", then set up a "watchpoint scope"
11279 breakpoint at the point where we've left the scope of the watchpoint
11280 expression. Create the scope breakpoint before the watchpoint, so
11281 that we will encounter it first in bpstat_stop_status. */
11282 if (exp_valid_block && frame)
11283 {
11284 if (frame_id_p (frame_unwind_caller_id (frame)))
11285 {
11286 scope_breakpoint
11287 = create_internal_breakpoint (frame_unwind_caller_arch (frame),
11288 frame_unwind_caller_pc (frame),
11289 bp_watchpoint_scope,
11290 &momentary_breakpoint_ops);
11291
11292 scope_breakpoint->enable_state = bp_enabled;
11293
11294 /* Automatically delete the breakpoint when it hits. */
11295 scope_breakpoint->disposition = disp_del;
11296
11297 /* Only break in the proper frame (help with recursion). */
11298 scope_breakpoint->frame_id = frame_unwind_caller_id (frame);
11299
11300 /* Set the address at which we will stop. */
11301 scope_breakpoint->loc->gdbarch
11302 = frame_unwind_caller_arch (frame);
11303 scope_breakpoint->loc->requested_address
11304 = frame_unwind_caller_pc (frame);
11305 scope_breakpoint->loc->address
11306 = adjust_breakpoint_address (scope_breakpoint->loc->gdbarch,
11307 scope_breakpoint->loc->requested_address,
11308 scope_breakpoint->type);
11309 }
11310 }
11311
11312 /* Now set up the breakpoint. We create all watchpoints as hardware
11313 watchpoints here even if hardware watchpoints are turned off, a call
11314 to update_watchpoint later in this function will cause the type to
11315 drop back to bp_watchpoint (software watchpoint) if required. */
11316
11317 if (accessflag == hw_read)
11318 bp_type = bp_read_watchpoint;
11319 else if (accessflag == hw_access)
11320 bp_type = bp_access_watchpoint;
11321 else
11322 bp_type = bp_hardware_watchpoint;
11323
11324 w = XCNEW (struct watchpoint);
11325 b = &w->base;
11326 if (use_mask)
11327 init_raw_breakpoint_without_location (b, NULL, bp_type,
11328 &masked_watchpoint_breakpoint_ops);
11329 else
11330 init_raw_breakpoint_without_location (b, NULL, bp_type,
11331 &watchpoint_breakpoint_ops);
11332 b->thread = thread;
11333 b->disposition = disp_donttouch;
11334 b->pspace = current_program_space;
11335 w->exp = exp;
11336 w->exp_valid_block = exp_valid_block;
11337 w->cond_exp_valid_block = cond_exp_valid_block;
11338 if (just_location)
11339 {
11340 struct type *t = value_type (val);
11341 CORE_ADDR addr = value_as_address (val);
11342 char *name;
11343
11344 t = check_typedef (TYPE_TARGET_TYPE (check_typedef (t)));
11345 name = type_to_string (t);
11346
11347 w->exp_string_reparse = xstrprintf ("* (%s *) %s", name,
11348 core_addr_to_string (addr));
11349 xfree (name);
11350
11351 w->exp_string = xstrprintf ("-location %.*s",
11352 (int) (exp_end - exp_start), exp_start);
11353
11354 /* The above expression is in C. */
11355 b->language = language_c;
11356 }
11357 else
11358 w->exp_string = savestring (exp_start, exp_end - exp_start);
11359
11360 if (use_mask)
11361 {
11362 w->hw_wp_mask = mask;
11363 }
11364 else
11365 {
11366 w->val = val;
11367 w->val_bitpos = saved_bitpos;
11368 w->val_bitsize = saved_bitsize;
11369 w->val_valid = 1;
11370 }
11371
11372 if (cond_start)
11373 b->cond_string = savestring (cond_start, cond_end - cond_start);
11374 else
11375 b->cond_string = 0;
11376
11377 if (frame)
11378 {
11379 w->watchpoint_frame = get_frame_id (frame);
11380 w->watchpoint_thread = inferior_ptid;
11381 }
11382 else
11383 {
11384 w->watchpoint_frame = null_frame_id;
11385 w->watchpoint_thread = null_ptid;
11386 }
11387
11388 if (scope_breakpoint != NULL)
11389 {
11390 /* The scope breakpoint is related to the watchpoint. We will
11391 need to act on them together. */
11392 b->related_breakpoint = scope_breakpoint;
11393 scope_breakpoint->related_breakpoint = b;
11394 }
11395
11396 if (!just_location)
11397 value_free_to_mark (mark);
11398
11399 TRY
11400 {
11401 /* Finally update the new watchpoint. This creates the locations
11402 that should be inserted. */
11403 update_watchpoint (w, 1);
11404 }
11405 CATCH (e, RETURN_MASK_ALL)
11406 {
11407 delete_breakpoint (b);
11408 throw_exception (e);
11409 }
11410 END_CATCH
11411
11412 install_breakpoint (internal, b, 1);
11413 do_cleanups (back_to);
11414 }
11415
11416 /* Return count of debug registers needed to watch the given expression.
11417 If the watchpoint cannot be handled in hardware return zero. */
11418
11419 static int
11420 can_use_hardware_watchpoint (struct value *v)
11421 {
11422 int found_memory_cnt = 0;
11423 struct value *head = v;
11424
11425 /* Did the user specifically forbid us to use hardware watchpoints? */
11426 if (!can_use_hw_watchpoints)
11427 return 0;
11428
11429 /* Make sure that the value of the expression depends only upon
11430 memory contents, and values computed from them within GDB. If we
11431 find any register references or function calls, we can't use a
11432 hardware watchpoint.
11433
11434 The idea here is that evaluating an expression generates a series
11435 of values, one holding the value of every subexpression. (The
11436 expression a*b+c has five subexpressions: a, b, a*b, c, and
11437 a*b+c.) GDB's values hold almost enough information to establish
11438 the criteria given above --- they identify memory lvalues,
11439 register lvalues, computed values, etcetera. So we can evaluate
11440 the expression, and then scan the chain of values that leaves
11441 behind to decide whether we can detect any possible change to the
11442 expression's final value using only hardware watchpoints.
11443
11444 However, I don't think that the values returned by inferior
11445 function calls are special in any way. So this function may not
11446 notice that an expression involving an inferior function call
11447 can't be watched with hardware watchpoints. FIXME. */
11448 for (; v; v = value_next (v))
11449 {
11450 if (VALUE_LVAL (v) == lval_memory)
11451 {
11452 if (v != head && value_lazy (v))
11453 /* A lazy memory lvalue in the chain is one that GDB never
11454 needed to fetch; we either just used its address (e.g.,
11455 `a' in `a.b') or we never needed it at all (e.g., `a'
11456 in `a,b'). This doesn't apply to HEAD; if that is
11457 lazy then it was not readable, but watch it anyway. */
11458 ;
11459 else
11460 {
11461 /* Ahh, memory we actually used! Check if we can cover
11462 it with hardware watchpoints. */
11463 struct type *vtype = check_typedef (value_type (v));
11464
11465 /* We only watch structs and arrays if user asked for it
11466 explicitly, never if they just happen to appear in a
11467 middle of some value chain. */
11468 if (v == head
11469 || (TYPE_CODE (vtype) != TYPE_CODE_STRUCT
11470 && TYPE_CODE (vtype) != TYPE_CODE_ARRAY))
11471 {
11472 CORE_ADDR vaddr = value_address (v);
11473 int len;
11474 int num_regs;
11475
11476 len = (target_exact_watchpoints
11477 && is_scalar_type_recursive (vtype))?
11478 1 : TYPE_LENGTH (value_type (v));
11479
11480 num_regs = target_region_ok_for_hw_watchpoint (vaddr, len);
11481 if (!num_regs)
11482 return 0;
11483 else
11484 found_memory_cnt += num_regs;
11485 }
11486 }
11487 }
11488 else if (VALUE_LVAL (v) != not_lval
11489 && deprecated_value_modifiable (v) == 0)
11490 return 0; /* These are values from the history (e.g., $1). */
11491 else if (VALUE_LVAL (v) == lval_register)
11492 return 0; /* Cannot watch a register with a HW watchpoint. */
11493 }
11494
11495 /* The expression itself looks suitable for using a hardware
11496 watchpoint, but give the target machine a chance to reject it. */
11497 return found_memory_cnt;
11498 }
11499
11500 void
11501 watch_command_wrapper (char *arg, int from_tty, int internal)
11502 {
11503 watch_command_1 (arg, hw_write, from_tty, 0, internal);
11504 }
11505
11506 /* A helper function that looks for the "-location" argument and then
11507 calls watch_command_1. */
11508
11509 static void
11510 watch_maybe_just_location (char *arg, int accessflag, int from_tty)
11511 {
11512 int just_location = 0;
11513
11514 if (arg
11515 && (check_for_argument (&arg, "-location", sizeof ("-location") - 1)
11516 || check_for_argument (&arg, "-l", sizeof ("-l") - 1)))
11517 {
11518 arg = skip_spaces (arg);
11519 just_location = 1;
11520 }
11521
11522 watch_command_1 (arg, accessflag, from_tty, just_location, 0);
11523 }
11524
11525 static void
11526 watch_command (char *arg, int from_tty)
11527 {
11528 watch_maybe_just_location (arg, hw_write, from_tty);
11529 }
11530
11531 void
11532 rwatch_command_wrapper (char *arg, int from_tty, int internal)
11533 {
11534 watch_command_1 (arg, hw_read, from_tty, 0, internal);
11535 }
11536
11537 static void
11538 rwatch_command (char *arg, int from_tty)
11539 {
11540 watch_maybe_just_location (arg, hw_read, from_tty);
11541 }
11542
11543 void
11544 awatch_command_wrapper (char *arg, int from_tty, int internal)
11545 {
11546 watch_command_1 (arg, hw_access, from_tty, 0, internal);
11547 }
11548
11549 static void
11550 awatch_command (char *arg, int from_tty)
11551 {
11552 watch_maybe_just_location (arg, hw_access, from_tty);
11553 }
11554 \f
11555
11556 /* Data for the FSM that manages the until(location)/advance commands
11557 in infcmd.c. Here because it uses the mechanisms of
11558 breakpoints. */
11559
11560 struct until_break_fsm
11561 {
11562 /* The base class. */
11563 struct thread_fsm thread_fsm;
11564
11565 /* The thread that as current when the command was executed. */
11566 int thread;
11567
11568 /* The breakpoint set at the destination location. */
11569 struct breakpoint *location_breakpoint;
11570
11571 /* Breakpoint set at the return address in the caller frame. May be
11572 NULL. */
11573 struct breakpoint *caller_breakpoint;
11574 };
11575
11576 static void until_break_fsm_clean_up (struct thread_fsm *self);
11577 static int until_break_fsm_should_stop (struct thread_fsm *self);
11578 static enum async_reply_reason
11579 until_break_fsm_async_reply_reason (struct thread_fsm *self);
11580
11581 /* until_break_fsm's vtable. */
11582
11583 static struct thread_fsm_ops until_break_fsm_ops =
11584 {
11585 NULL, /* dtor */
11586 until_break_fsm_clean_up,
11587 until_break_fsm_should_stop,
11588 NULL, /* return_value */
11589 until_break_fsm_async_reply_reason,
11590 };
11591
11592 /* Allocate a new until_break_command_fsm. */
11593
11594 static struct until_break_fsm *
11595 new_until_break_fsm (int thread,
11596 struct breakpoint *location_breakpoint,
11597 struct breakpoint *caller_breakpoint)
11598 {
11599 struct until_break_fsm *sm;
11600
11601 sm = XCNEW (struct until_break_fsm);
11602 thread_fsm_ctor (&sm->thread_fsm, &until_break_fsm_ops);
11603
11604 sm->thread = thread;
11605 sm->location_breakpoint = location_breakpoint;
11606 sm->caller_breakpoint = caller_breakpoint;
11607
11608 return sm;
11609 }
11610
11611 /* Implementation of the 'should_stop' FSM method for the
11612 until(location)/advance commands. */
11613
11614 static int
11615 until_break_fsm_should_stop (struct thread_fsm *self)
11616 {
11617 struct until_break_fsm *sm = (struct until_break_fsm *) self;
11618 struct thread_info *tp = inferior_thread ();
11619
11620 if (bpstat_find_breakpoint (tp->control.stop_bpstat,
11621 sm->location_breakpoint) != NULL
11622 || (sm->caller_breakpoint != NULL
11623 && bpstat_find_breakpoint (tp->control.stop_bpstat,
11624 sm->caller_breakpoint) != NULL))
11625 thread_fsm_set_finished (self);
11626
11627 return 1;
11628 }
11629
11630 /* Implementation of the 'clean_up' FSM method for the
11631 until(location)/advance commands. */
11632
11633 static void
11634 until_break_fsm_clean_up (struct thread_fsm *self)
11635 {
11636 struct until_break_fsm *sm = (struct until_break_fsm *) self;
11637
11638 /* Clean up our temporary breakpoints. */
11639 if (sm->location_breakpoint != NULL)
11640 {
11641 delete_breakpoint (sm->location_breakpoint);
11642 sm->location_breakpoint = NULL;
11643 }
11644 if (sm->caller_breakpoint != NULL)
11645 {
11646 delete_breakpoint (sm->caller_breakpoint);
11647 sm->caller_breakpoint = NULL;
11648 }
11649 delete_longjmp_breakpoint (sm->thread);
11650 }
11651
11652 /* Implementation of the 'async_reply_reason' FSM method for the
11653 until(location)/advance commands. */
11654
11655 static enum async_reply_reason
11656 until_break_fsm_async_reply_reason (struct thread_fsm *self)
11657 {
11658 return EXEC_ASYNC_LOCATION_REACHED;
11659 }
11660
11661 void
11662 until_break_command (char *arg, int from_tty, int anywhere)
11663 {
11664 struct symtabs_and_lines sals;
11665 struct symtab_and_line sal;
11666 struct frame_info *frame;
11667 struct gdbarch *frame_gdbarch;
11668 struct frame_id stack_frame_id;
11669 struct frame_id caller_frame_id;
11670 struct breakpoint *location_breakpoint;
11671 struct breakpoint *caller_breakpoint = NULL;
11672 struct cleanup *old_chain, *cleanup;
11673 int thread;
11674 struct thread_info *tp;
11675 struct event_location *location;
11676 struct until_break_fsm *sm;
11677
11678 clear_proceed_status (0);
11679
11680 /* Set a breakpoint where the user wants it and at return from
11681 this function. */
11682
11683 location = string_to_event_location (&arg, current_language);
11684 cleanup = make_cleanup_delete_event_location (location);
11685
11686 if (last_displayed_sal_is_valid ())
11687 sals = decode_line_1 (location, DECODE_LINE_FUNFIRSTLINE,
11688 get_last_displayed_symtab (),
11689 get_last_displayed_line ());
11690 else
11691 sals = decode_line_1 (location, DECODE_LINE_FUNFIRSTLINE,
11692 (struct symtab *) NULL, 0);
11693
11694 if (sals.nelts != 1)
11695 error (_("Couldn't get information on specified line."));
11696
11697 sal = sals.sals[0];
11698 xfree (sals.sals); /* malloc'd, so freed. */
11699
11700 if (*arg)
11701 error (_("Junk at end of arguments."));
11702
11703 resolve_sal_pc (&sal);
11704
11705 tp = inferior_thread ();
11706 thread = tp->num;
11707
11708 old_chain = make_cleanup (null_cleanup, NULL);
11709
11710 /* Note linespec handling above invalidates the frame chain.
11711 Installing a breakpoint also invalidates the frame chain (as it
11712 may need to switch threads), so do any frame handling before
11713 that. */
11714
11715 frame = get_selected_frame (NULL);
11716 frame_gdbarch = get_frame_arch (frame);
11717 stack_frame_id = get_stack_frame_id (frame);
11718 caller_frame_id = frame_unwind_caller_id (frame);
11719
11720 /* Keep within the current frame, or in frames called by the current
11721 one. */
11722
11723 if (frame_id_p (caller_frame_id))
11724 {
11725 struct symtab_and_line sal2;
11726 struct gdbarch *caller_gdbarch;
11727
11728 sal2 = find_pc_line (frame_unwind_caller_pc (frame), 0);
11729 sal2.pc = frame_unwind_caller_pc (frame);
11730 caller_gdbarch = frame_unwind_caller_arch (frame);
11731 caller_breakpoint = set_momentary_breakpoint (caller_gdbarch,
11732 sal2,
11733 caller_frame_id,
11734 bp_until);
11735 make_cleanup_delete_breakpoint (caller_breakpoint);
11736
11737 set_longjmp_breakpoint (tp, caller_frame_id);
11738 make_cleanup (delete_longjmp_breakpoint_cleanup, &thread);
11739 }
11740
11741 /* set_momentary_breakpoint could invalidate FRAME. */
11742 frame = NULL;
11743
11744 if (anywhere)
11745 /* If the user told us to continue until a specified location,
11746 we don't specify a frame at which we need to stop. */
11747 location_breakpoint = set_momentary_breakpoint (frame_gdbarch, sal,
11748 null_frame_id, bp_until);
11749 else
11750 /* Otherwise, specify the selected frame, because we want to stop
11751 only at the very same frame. */
11752 location_breakpoint = set_momentary_breakpoint (frame_gdbarch, sal,
11753 stack_frame_id, bp_until);
11754 make_cleanup_delete_breakpoint (location_breakpoint);
11755
11756 sm = new_until_break_fsm (tp->num, location_breakpoint, caller_breakpoint);
11757 tp->thread_fsm = &sm->thread_fsm;
11758
11759 discard_cleanups (old_chain);
11760
11761 proceed (-1, GDB_SIGNAL_DEFAULT);
11762
11763 do_cleanups (cleanup);
11764 }
11765
11766 /* This function attempts to parse an optional "if <cond>" clause
11767 from the arg string. If one is not found, it returns NULL.
11768
11769 Else, it returns a pointer to the condition string. (It does not
11770 attempt to evaluate the string against a particular block.) And,
11771 it updates arg to point to the first character following the parsed
11772 if clause in the arg string. */
11773
11774 char *
11775 ep_parse_optional_if_clause (char **arg)
11776 {
11777 char *cond_string;
11778
11779 if (((*arg)[0] != 'i') || ((*arg)[1] != 'f') || !isspace ((*arg)[2]))
11780 return NULL;
11781
11782 /* Skip the "if" keyword. */
11783 (*arg) += 2;
11784
11785 /* Skip any extra leading whitespace, and record the start of the
11786 condition string. */
11787 *arg = skip_spaces (*arg);
11788 cond_string = *arg;
11789
11790 /* Assume that the condition occupies the remainder of the arg
11791 string. */
11792 (*arg) += strlen (cond_string);
11793
11794 return cond_string;
11795 }
11796
11797 /* Commands to deal with catching events, such as signals, exceptions,
11798 process start/exit, etc. */
11799
11800 typedef enum
11801 {
11802 catch_fork_temporary, catch_vfork_temporary,
11803 catch_fork_permanent, catch_vfork_permanent
11804 }
11805 catch_fork_kind;
11806
11807 static void
11808 catch_fork_command_1 (char *arg, int from_tty,
11809 struct cmd_list_element *command)
11810 {
11811 struct gdbarch *gdbarch = get_current_arch ();
11812 char *cond_string = NULL;
11813 catch_fork_kind fork_kind;
11814 int tempflag;
11815
11816 fork_kind = (catch_fork_kind) (uintptr_t) get_cmd_context (command);
11817 tempflag = (fork_kind == catch_fork_temporary
11818 || fork_kind == catch_vfork_temporary);
11819
11820 if (!arg)
11821 arg = "";
11822 arg = skip_spaces (arg);
11823
11824 /* The allowed syntax is:
11825 catch [v]fork
11826 catch [v]fork if <cond>
11827
11828 First, check if there's an if clause. */
11829 cond_string = ep_parse_optional_if_clause (&arg);
11830
11831 if ((*arg != '\0') && !isspace (*arg))
11832 error (_("Junk at end of arguments."));
11833
11834 /* If this target supports it, create a fork or vfork catchpoint
11835 and enable reporting of such events. */
11836 switch (fork_kind)
11837 {
11838 case catch_fork_temporary:
11839 case catch_fork_permanent:
11840 create_fork_vfork_event_catchpoint (gdbarch, tempflag, cond_string,
11841 &catch_fork_breakpoint_ops);
11842 break;
11843 case catch_vfork_temporary:
11844 case catch_vfork_permanent:
11845 create_fork_vfork_event_catchpoint (gdbarch, tempflag, cond_string,
11846 &catch_vfork_breakpoint_ops);
11847 break;
11848 default:
11849 error (_("unsupported or unknown fork kind; cannot catch it"));
11850 break;
11851 }
11852 }
11853
11854 static void
11855 catch_exec_command_1 (char *arg, int from_tty,
11856 struct cmd_list_element *command)
11857 {
11858 struct exec_catchpoint *c;
11859 struct gdbarch *gdbarch = get_current_arch ();
11860 int tempflag;
11861 char *cond_string = NULL;
11862
11863 tempflag = get_cmd_context (command) == CATCH_TEMPORARY;
11864
11865 if (!arg)
11866 arg = "";
11867 arg = skip_spaces (arg);
11868
11869 /* The allowed syntax is:
11870 catch exec
11871 catch exec if <cond>
11872
11873 First, check if there's an if clause. */
11874 cond_string = ep_parse_optional_if_clause (&arg);
11875
11876 if ((*arg != '\0') && !isspace (*arg))
11877 error (_("Junk at end of arguments."));
11878
11879 c = XNEW (struct exec_catchpoint);
11880 init_catchpoint (&c->base, gdbarch, tempflag, cond_string,
11881 &catch_exec_breakpoint_ops);
11882 c->exec_pathname = NULL;
11883
11884 install_breakpoint (0, &c->base, 1);
11885 }
11886
11887 void
11888 init_ada_exception_breakpoint (struct breakpoint *b,
11889 struct gdbarch *gdbarch,
11890 struct symtab_and_line sal,
11891 char *addr_string,
11892 const struct breakpoint_ops *ops,
11893 int tempflag,
11894 int enabled,
11895 int from_tty)
11896 {
11897 if (from_tty)
11898 {
11899 struct gdbarch *loc_gdbarch = get_sal_arch (sal);
11900 if (!loc_gdbarch)
11901 loc_gdbarch = gdbarch;
11902
11903 describe_other_breakpoints (loc_gdbarch,
11904 sal.pspace, sal.pc, sal.section, -1);
11905 /* FIXME: brobecker/2006-12-28: Actually, re-implement a special
11906 version for exception catchpoints, because two catchpoints
11907 used for different exception names will use the same address.
11908 In this case, a "breakpoint ... also set at..." warning is
11909 unproductive. Besides, the warning phrasing is also a bit
11910 inappropriate, we should use the word catchpoint, and tell
11911 the user what type of catchpoint it is. The above is good
11912 enough for now, though. */
11913 }
11914
11915 init_raw_breakpoint (b, gdbarch, sal, bp_breakpoint, ops);
11916
11917 b->enable_state = enabled ? bp_enabled : bp_disabled;
11918 b->disposition = tempflag ? disp_del : disp_donttouch;
11919 b->location = string_to_event_location (&addr_string,
11920 language_def (language_ada));
11921 b->language = language_ada;
11922 }
11923
11924 static void
11925 catch_command (char *arg, int from_tty)
11926 {
11927 error (_("Catch requires an event name."));
11928 }
11929 \f
11930
11931 static void
11932 tcatch_command (char *arg, int from_tty)
11933 {
11934 error (_("Catch requires an event name."));
11935 }
11936
11937 /* A qsort comparison function that sorts breakpoints in order. */
11938
11939 static int
11940 compare_breakpoints (const void *a, const void *b)
11941 {
11942 const breakpoint_p *ba = (const breakpoint_p *) a;
11943 uintptr_t ua = (uintptr_t) *ba;
11944 const breakpoint_p *bb = (const breakpoint_p *) b;
11945 uintptr_t ub = (uintptr_t) *bb;
11946
11947 if ((*ba)->number < (*bb)->number)
11948 return -1;
11949 else if ((*ba)->number > (*bb)->number)
11950 return 1;
11951
11952 /* Now sort by address, in case we see, e..g, two breakpoints with
11953 the number 0. */
11954 if (ua < ub)
11955 return -1;
11956 return ua > ub ? 1 : 0;
11957 }
11958
11959 /* Delete breakpoints by address or line. */
11960
11961 static void
11962 clear_command (char *arg, int from_tty)
11963 {
11964 struct breakpoint *b, *prev;
11965 VEC(breakpoint_p) *found = 0;
11966 int ix;
11967 int default_match;
11968 struct symtabs_and_lines sals;
11969 struct symtab_and_line sal;
11970 int i;
11971 struct cleanup *cleanups = make_cleanup (null_cleanup, NULL);
11972
11973 if (arg)
11974 {
11975 sals = decode_line_with_current_source (arg,
11976 (DECODE_LINE_FUNFIRSTLINE
11977 | DECODE_LINE_LIST_MODE));
11978 make_cleanup (xfree, sals.sals);
11979 default_match = 0;
11980 }
11981 else
11982 {
11983 sals.sals = XNEW (struct symtab_and_line);
11984 make_cleanup (xfree, sals.sals);
11985 init_sal (&sal); /* Initialize to zeroes. */
11986
11987 /* Set sal's line, symtab, pc, and pspace to the values
11988 corresponding to the last call to print_frame_info. If the
11989 codepoint is not valid, this will set all the fields to 0. */
11990 get_last_displayed_sal (&sal);
11991 if (sal.symtab == 0)
11992 error (_("No source file specified."));
11993
11994 sals.sals[0] = sal;
11995 sals.nelts = 1;
11996
11997 default_match = 1;
11998 }
11999
12000 /* We don't call resolve_sal_pc here. That's not as bad as it
12001 seems, because all existing breakpoints typically have both
12002 file/line and pc set. So, if clear is given file/line, we can
12003 match this to existing breakpoint without obtaining pc at all.
12004
12005 We only support clearing given the address explicitly
12006 present in breakpoint table. Say, we've set breakpoint
12007 at file:line. There were several PC values for that file:line,
12008 due to optimization, all in one block.
12009
12010 We've picked one PC value. If "clear" is issued with another
12011 PC corresponding to the same file:line, the breakpoint won't
12012 be cleared. We probably can still clear the breakpoint, but
12013 since the other PC value is never presented to user, user
12014 can only find it by guessing, and it does not seem important
12015 to support that. */
12016
12017 /* For each line spec given, delete bps which correspond to it. Do
12018 it in two passes, solely to preserve the current behavior that
12019 from_tty is forced true if we delete more than one
12020 breakpoint. */
12021
12022 found = NULL;
12023 make_cleanup (VEC_cleanup (breakpoint_p), &found);
12024 for (i = 0; i < sals.nelts; i++)
12025 {
12026 const char *sal_fullname;
12027
12028 /* If exact pc given, clear bpts at that pc.
12029 If line given (pc == 0), clear all bpts on specified line.
12030 If defaulting, clear all bpts on default line
12031 or at default pc.
12032
12033 defaulting sal.pc != 0 tests to do
12034
12035 0 1 pc
12036 1 1 pc _and_ line
12037 0 0 line
12038 1 0 <can't happen> */
12039
12040 sal = sals.sals[i];
12041 sal_fullname = (sal.symtab == NULL
12042 ? NULL : symtab_to_fullname (sal.symtab));
12043
12044 /* Find all matching breakpoints and add them to 'found'. */
12045 ALL_BREAKPOINTS (b)
12046 {
12047 int match = 0;
12048 /* Are we going to delete b? */
12049 if (b->type != bp_none && !is_watchpoint (b))
12050 {
12051 struct bp_location *loc = b->loc;
12052 for (; loc; loc = loc->next)
12053 {
12054 /* If the user specified file:line, don't allow a PC
12055 match. This matches historical gdb behavior. */
12056 int pc_match = (!sal.explicit_line
12057 && sal.pc
12058 && (loc->pspace == sal.pspace)
12059 && (loc->address == sal.pc)
12060 && (!section_is_overlay (loc->section)
12061 || loc->section == sal.section));
12062 int line_match = 0;
12063
12064 if ((default_match || sal.explicit_line)
12065 && loc->symtab != NULL
12066 && sal_fullname != NULL
12067 && sal.pspace == loc->pspace
12068 && loc->line_number == sal.line
12069 && filename_cmp (symtab_to_fullname (loc->symtab),
12070 sal_fullname) == 0)
12071 line_match = 1;
12072
12073 if (pc_match || line_match)
12074 {
12075 match = 1;
12076 break;
12077 }
12078 }
12079 }
12080
12081 if (match)
12082 VEC_safe_push(breakpoint_p, found, b);
12083 }
12084 }
12085
12086 /* Now go thru the 'found' chain and delete them. */
12087 if (VEC_empty(breakpoint_p, found))
12088 {
12089 if (arg)
12090 error (_("No breakpoint at %s."), arg);
12091 else
12092 error (_("No breakpoint at this line."));
12093 }
12094
12095 /* Remove duplicates from the vec. */
12096 qsort (VEC_address (breakpoint_p, found),
12097 VEC_length (breakpoint_p, found),
12098 sizeof (breakpoint_p),
12099 compare_breakpoints);
12100 prev = VEC_index (breakpoint_p, found, 0);
12101 for (ix = 1; VEC_iterate (breakpoint_p, found, ix, b); ++ix)
12102 {
12103 if (b == prev)
12104 {
12105 VEC_ordered_remove (breakpoint_p, found, ix);
12106 --ix;
12107 }
12108 }
12109
12110 if (VEC_length(breakpoint_p, found) > 1)
12111 from_tty = 1; /* Always report if deleted more than one. */
12112 if (from_tty)
12113 {
12114 if (VEC_length(breakpoint_p, found) == 1)
12115 printf_unfiltered (_("Deleted breakpoint "));
12116 else
12117 printf_unfiltered (_("Deleted breakpoints "));
12118 }
12119
12120 for (ix = 0; VEC_iterate(breakpoint_p, found, ix, b); ix++)
12121 {
12122 if (from_tty)
12123 printf_unfiltered ("%d ", b->number);
12124 delete_breakpoint (b);
12125 }
12126 if (from_tty)
12127 putchar_unfiltered ('\n');
12128
12129 do_cleanups (cleanups);
12130 }
12131 \f
12132 /* Delete breakpoint in BS if they are `delete' breakpoints and
12133 all breakpoints that are marked for deletion, whether hit or not.
12134 This is called after any breakpoint is hit, or after errors. */
12135
12136 void
12137 breakpoint_auto_delete (bpstat bs)
12138 {
12139 struct breakpoint *b, *b_tmp;
12140
12141 for (; bs; bs = bs->next)
12142 if (bs->breakpoint_at
12143 && bs->breakpoint_at->disposition == disp_del
12144 && bs->stop)
12145 delete_breakpoint (bs->breakpoint_at);
12146
12147 ALL_BREAKPOINTS_SAFE (b, b_tmp)
12148 {
12149 if (b->disposition == disp_del_at_next_stop)
12150 delete_breakpoint (b);
12151 }
12152 }
12153
12154 /* A comparison function for bp_location AP and BP being interfaced to
12155 qsort. Sort elements primarily by their ADDRESS (no matter what
12156 does breakpoint_address_is_meaningful say for its OWNER),
12157 secondarily by ordering first permanent elements and
12158 terciarily just ensuring the array is sorted stable way despite
12159 qsort being an unstable algorithm. */
12160
12161 static int
12162 bp_location_compare (const void *ap, const void *bp)
12163 {
12164 const struct bp_location *a = *(const struct bp_location **) ap;
12165 const struct bp_location *b = *(const struct bp_location **) bp;
12166
12167 if (a->address != b->address)
12168 return (a->address > b->address) - (a->address < b->address);
12169
12170 /* Sort locations at the same address by their pspace number, keeping
12171 locations of the same inferior (in a multi-inferior environment)
12172 grouped. */
12173
12174 if (a->pspace->num != b->pspace->num)
12175 return ((a->pspace->num > b->pspace->num)
12176 - (a->pspace->num < b->pspace->num));
12177
12178 /* Sort permanent breakpoints first. */
12179 if (a->permanent != b->permanent)
12180 return (a->permanent < b->permanent) - (a->permanent > b->permanent);
12181
12182 /* Make the internal GDB representation stable across GDB runs
12183 where A and B memory inside GDB can differ. Breakpoint locations of
12184 the same type at the same address can be sorted in arbitrary order. */
12185
12186 if (a->owner->number != b->owner->number)
12187 return ((a->owner->number > b->owner->number)
12188 - (a->owner->number < b->owner->number));
12189
12190 return (a > b) - (a < b);
12191 }
12192
12193 /* Set bp_location_placed_address_before_address_max and
12194 bp_location_shadow_len_after_address_max according to the current
12195 content of the bp_location array. */
12196
12197 static void
12198 bp_location_target_extensions_update (void)
12199 {
12200 struct bp_location *bl, **blp_tmp;
12201
12202 bp_location_placed_address_before_address_max = 0;
12203 bp_location_shadow_len_after_address_max = 0;
12204
12205 ALL_BP_LOCATIONS (bl, blp_tmp)
12206 {
12207 CORE_ADDR start, end, addr;
12208
12209 if (!bp_location_has_shadow (bl))
12210 continue;
12211
12212 start = bl->target_info.placed_address;
12213 end = start + bl->target_info.shadow_len;
12214
12215 gdb_assert (bl->address >= start);
12216 addr = bl->address - start;
12217 if (addr > bp_location_placed_address_before_address_max)
12218 bp_location_placed_address_before_address_max = addr;
12219
12220 /* Zero SHADOW_LEN would not pass bp_location_has_shadow. */
12221
12222 gdb_assert (bl->address < end);
12223 addr = end - bl->address;
12224 if (addr > bp_location_shadow_len_after_address_max)
12225 bp_location_shadow_len_after_address_max = addr;
12226 }
12227 }
12228
12229 /* Download tracepoint locations if they haven't been. */
12230
12231 static void
12232 download_tracepoint_locations (void)
12233 {
12234 struct breakpoint *b;
12235 struct cleanup *old_chain;
12236 enum tribool can_download_tracepoint = TRIBOOL_UNKNOWN;
12237
12238 old_chain = save_current_space_and_thread ();
12239
12240 ALL_TRACEPOINTS (b)
12241 {
12242 struct bp_location *bl;
12243 struct tracepoint *t;
12244 int bp_location_downloaded = 0;
12245
12246 if ((b->type == bp_fast_tracepoint
12247 ? !may_insert_fast_tracepoints
12248 : !may_insert_tracepoints))
12249 continue;
12250
12251 if (can_download_tracepoint == TRIBOOL_UNKNOWN)
12252 {
12253 if (target_can_download_tracepoint ())
12254 can_download_tracepoint = TRIBOOL_TRUE;
12255 else
12256 can_download_tracepoint = TRIBOOL_FALSE;
12257 }
12258
12259 if (can_download_tracepoint == TRIBOOL_FALSE)
12260 break;
12261
12262 for (bl = b->loc; bl; bl = bl->next)
12263 {
12264 /* In tracepoint, locations are _never_ duplicated, so
12265 should_be_inserted is equivalent to
12266 unduplicated_should_be_inserted. */
12267 if (!should_be_inserted (bl) || bl->inserted)
12268 continue;
12269
12270 switch_to_program_space_and_thread (bl->pspace);
12271
12272 target_download_tracepoint (bl);
12273
12274 bl->inserted = 1;
12275 bp_location_downloaded = 1;
12276 }
12277 t = (struct tracepoint *) b;
12278 t->number_on_target = b->number;
12279 if (bp_location_downloaded)
12280 observer_notify_breakpoint_modified (b);
12281 }
12282
12283 do_cleanups (old_chain);
12284 }
12285
12286 /* Swap the insertion/duplication state between two locations. */
12287
12288 static void
12289 swap_insertion (struct bp_location *left, struct bp_location *right)
12290 {
12291 const int left_inserted = left->inserted;
12292 const int left_duplicate = left->duplicate;
12293 const int left_needs_update = left->needs_update;
12294 const struct bp_target_info left_target_info = left->target_info;
12295
12296 /* Locations of tracepoints can never be duplicated. */
12297 if (is_tracepoint (left->owner))
12298 gdb_assert (!left->duplicate);
12299 if (is_tracepoint (right->owner))
12300 gdb_assert (!right->duplicate);
12301
12302 left->inserted = right->inserted;
12303 left->duplicate = right->duplicate;
12304 left->needs_update = right->needs_update;
12305 left->target_info = right->target_info;
12306 right->inserted = left_inserted;
12307 right->duplicate = left_duplicate;
12308 right->needs_update = left_needs_update;
12309 right->target_info = left_target_info;
12310 }
12311
12312 /* Force the re-insertion of the locations at ADDRESS. This is called
12313 once a new/deleted/modified duplicate location is found and we are evaluating
12314 conditions on the target's side. Such conditions need to be updated on
12315 the target. */
12316
12317 static void
12318 force_breakpoint_reinsertion (struct bp_location *bl)
12319 {
12320 struct bp_location **locp = NULL, **loc2p;
12321 struct bp_location *loc;
12322 CORE_ADDR address = 0;
12323 int pspace_num;
12324
12325 address = bl->address;
12326 pspace_num = bl->pspace->num;
12327
12328 /* This is only meaningful if the target is
12329 evaluating conditions and if the user has
12330 opted for condition evaluation on the target's
12331 side. */
12332 if (gdb_evaluates_breakpoint_condition_p ()
12333 || !target_supports_evaluation_of_breakpoint_conditions ())
12334 return;
12335
12336 /* Flag all breakpoint locations with this address and
12337 the same program space as the location
12338 as "its condition has changed". We need to
12339 update the conditions on the target's side. */
12340 ALL_BP_LOCATIONS_AT_ADDR (loc2p, locp, address)
12341 {
12342 loc = *loc2p;
12343
12344 if (!is_breakpoint (loc->owner)
12345 || pspace_num != loc->pspace->num)
12346 continue;
12347
12348 /* Flag the location appropriately. We use a different state to
12349 let everyone know that we already updated the set of locations
12350 with addr bl->address and program space bl->pspace. This is so
12351 we don't have to keep calling these functions just to mark locations
12352 that have already been marked. */
12353 loc->condition_changed = condition_updated;
12354
12355 /* Free the agent expression bytecode as well. We will compute
12356 it later on. */
12357 if (loc->cond_bytecode)
12358 {
12359 free_agent_expr (loc->cond_bytecode);
12360 loc->cond_bytecode = NULL;
12361 }
12362 }
12363 }
12364 /* Called whether new breakpoints are created, or existing breakpoints
12365 deleted, to update the global location list and recompute which
12366 locations are duplicate of which.
12367
12368 The INSERT_MODE flag determines whether locations may not, may, or
12369 shall be inserted now. See 'enum ugll_insert_mode' for more
12370 info. */
12371
12372 static void
12373 update_global_location_list (enum ugll_insert_mode insert_mode)
12374 {
12375 struct breakpoint *b;
12376 struct bp_location **locp, *loc;
12377 struct cleanup *cleanups;
12378 /* Last breakpoint location address that was marked for update. */
12379 CORE_ADDR last_addr = 0;
12380 /* Last breakpoint location program space that was marked for update. */
12381 int last_pspace_num = -1;
12382
12383 /* Used in the duplicates detection below. When iterating over all
12384 bp_locations, points to the first bp_location of a given address.
12385 Breakpoints and watchpoints of different types are never
12386 duplicates of each other. Keep one pointer for each type of
12387 breakpoint/watchpoint, so we only need to loop over all locations
12388 once. */
12389 struct bp_location *bp_loc_first; /* breakpoint */
12390 struct bp_location *wp_loc_first; /* hardware watchpoint */
12391 struct bp_location *awp_loc_first; /* access watchpoint */
12392 struct bp_location *rwp_loc_first; /* read watchpoint */
12393
12394 /* Saved former bp_location array which we compare against the newly
12395 built bp_location from the current state of ALL_BREAKPOINTS. */
12396 struct bp_location **old_location, **old_locp;
12397 unsigned old_location_count;
12398
12399 old_location = bp_location;
12400 old_location_count = bp_location_count;
12401 bp_location = NULL;
12402 bp_location_count = 0;
12403 cleanups = make_cleanup (xfree, old_location);
12404
12405 ALL_BREAKPOINTS (b)
12406 for (loc = b->loc; loc; loc = loc->next)
12407 bp_location_count++;
12408
12409 bp_location = XNEWVEC (struct bp_location *, bp_location_count);
12410 locp = bp_location;
12411 ALL_BREAKPOINTS (b)
12412 for (loc = b->loc; loc; loc = loc->next)
12413 *locp++ = loc;
12414 qsort (bp_location, bp_location_count, sizeof (*bp_location),
12415 bp_location_compare);
12416
12417 bp_location_target_extensions_update ();
12418
12419 /* Identify bp_location instances that are no longer present in the
12420 new list, and therefore should be freed. Note that it's not
12421 necessary that those locations should be removed from inferior --
12422 if there's another location at the same address (previously
12423 marked as duplicate), we don't need to remove/insert the
12424 location.
12425
12426 LOCP is kept in sync with OLD_LOCP, each pointing to the current
12427 and former bp_location array state respectively. */
12428
12429 locp = bp_location;
12430 for (old_locp = old_location; old_locp < old_location + old_location_count;
12431 old_locp++)
12432 {
12433 struct bp_location *old_loc = *old_locp;
12434 struct bp_location **loc2p;
12435
12436 /* Tells if 'old_loc' is found among the new locations. If
12437 not, we have to free it. */
12438 int found_object = 0;
12439 /* Tells if the location should remain inserted in the target. */
12440 int keep_in_target = 0;
12441 int removed = 0;
12442
12443 /* Skip LOCP entries which will definitely never be needed.
12444 Stop either at or being the one matching OLD_LOC. */
12445 while (locp < bp_location + bp_location_count
12446 && (*locp)->address < old_loc->address)
12447 locp++;
12448
12449 for (loc2p = locp;
12450 (loc2p < bp_location + bp_location_count
12451 && (*loc2p)->address == old_loc->address);
12452 loc2p++)
12453 {
12454 /* Check if this is a new/duplicated location or a duplicated
12455 location that had its condition modified. If so, we want to send
12456 its condition to the target if evaluation of conditions is taking
12457 place there. */
12458 if ((*loc2p)->condition_changed == condition_modified
12459 && (last_addr != old_loc->address
12460 || last_pspace_num != old_loc->pspace->num))
12461 {
12462 force_breakpoint_reinsertion (*loc2p);
12463 last_pspace_num = old_loc->pspace->num;
12464 }
12465
12466 if (*loc2p == old_loc)
12467 found_object = 1;
12468 }
12469
12470 /* We have already handled this address, update it so that we don't
12471 have to go through updates again. */
12472 last_addr = old_loc->address;
12473
12474 /* Target-side condition evaluation: Handle deleted locations. */
12475 if (!found_object)
12476 force_breakpoint_reinsertion (old_loc);
12477
12478 /* If this location is no longer present, and inserted, look if
12479 there's maybe a new location at the same address. If so,
12480 mark that one inserted, and don't remove this one. This is
12481 needed so that we don't have a time window where a breakpoint
12482 at certain location is not inserted. */
12483
12484 if (old_loc->inserted)
12485 {
12486 /* If the location is inserted now, we might have to remove
12487 it. */
12488
12489 if (found_object && should_be_inserted (old_loc))
12490 {
12491 /* The location is still present in the location list,
12492 and still should be inserted. Don't do anything. */
12493 keep_in_target = 1;
12494 }
12495 else
12496 {
12497 /* This location still exists, but it won't be kept in the
12498 target since it may have been disabled. We proceed to
12499 remove its target-side condition. */
12500
12501 /* The location is either no longer present, or got
12502 disabled. See if there's another location at the
12503 same address, in which case we don't need to remove
12504 this one from the target. */
12505
12506 /* OLD_LOC comes from existing struct breakpoint. */
12507 if (breakpoint_address_is_meaningful (old_loc->owner))
12508 {
12509 for (loc2p = locp;
12510 (loc2p < bp_location + bp_location_count
12511 && (*loc2p)->address == old_loc->address);
12512 loc2p++)
12513 {
12514 struct bp_location *loc2 = *loc2p;
12515
12516 if (breakpoint_locations_match (loc2, old_loc))
12517 {
12518 /* Read watchpoint locations are switched to
12519 access watchpoints, if the former are not
12520 supported, but the latter are. */
12521 if (is_hardware_watchpoint (old_loc->owner))
12522 {
12523 gdb_assert (is_hardware_watchpoint (loc2->owner));
12524 loc2->watchpoint_type = old_loc->watchpoint_type;
12525 }
12526
12527 /* loc2 is a duplicated location. We need to check
12528 if it should be inserted in case it will be
12529 unduplicated. */
12530 if (loc2 != old_loc
12531 && unduplicated_should_be_inserted (loc2))
12532 {
12533 swap_insertion (old_loc, loc2);
12534 keep_in_target = 1;
12535 break;
12536 }
12537 }
12538 }
12539 }
12540 }
12541
12542 if (!keep_in_target)
12543 {
12544 if (remove_breakpoint (old_loc, mark_uninserted))
12545 {
12546 /* This is just about all we can do. We could keep
12547 this location on the global list, and try to
12548 remove it next time, but there's no particular
12549 reason why we will succeed next time.
12550
12551 Note that at this point, old_loc->owner is still
12552 valid, as delete_breakpoint frees the breakpoint
12553 only after calling us. */
12554 printf_filtered (_("warning: Error removing "
12555 "breakpoint %d\n"),
12556 old_loc->owner->number);
12557 }
12558 removed = 1;
12559 }
12560 }
12561
12562 if (!found_object)
12563 {
12564 if (removed && target_is_non_stop_p ()
12565 && need_moribund_for_location_type (old_loc))
12566 {
12567 /* This location was removed from the target. In
12568 non-stop mode, a race condition is possible where
12569 we've removed a breakpoint, but stop events for that
12570 breakpoint are already queued and will arrive later.
12571 We apply an heuristic to be able to distinguish such
12572 SIGTRAPs from other random SIGTRAPs: we keep this
12573 breakpoint location for a bit, and will retire it
12574 after we see some number of events. The theory here
12575 is that reporting of events should, "on the average",
12576 be fair, so after a while we'll see events from all
12577 threads that have anything of interest, and no longer
12578 need to keep this breakpoint location around. We
12579 don't hold locations forever so to reduce chances of
12580 mistaking a non-breakpoint SIGTRAP for a breakpoint
12581 SIGTRAP.
12582
12583 The heuristic failing can be disastrous on
12584 decr_pc_after_break targets.
12585
12586 On decr_pc_after_break targets, like e.g., x86-linux,
12587 if we fail to recognize a late breakpoint SIGTRAP,
12588 because events_till_retirement has reached 0 too
12589 soon, we'll fail to do the PC adjustment, and report
12590 a random SIGTRAP to the user. When the user resumes
12591 the inferior, it will most likely immediately crash
12592 with SIGILL/SIGBUS/SIGSEGV, or worse, get silently
12593 corrupted, because of being resumed e.g., in the
12594 middle of a multi-byte instruction, or skipped a
12595 one-byte instruction. This was actually seen happen
12596 on native x86-linux, and should be less rare on
12597 targets that do not support new thread events, like
12598 remote, due to the heuristic depending on
12599 thread_count.
12600
12601 Mistaking a random SIGTRAP for a breakpoint trap
12602 causes similar symptoms (PC adjustment applied when
12603 it shouldn't), but then again, playing with SIGTRAPs
12604 behind the debugger's back is asking for trouble.
12605
12606 Since hardware watchpoint traps are always
12607 distinguishable from other traps, so we don't need to
12608 apply keep hardware watchpoint moribund locations
12609 around. We simply always ignore hardware watchpoint
12610 traps we can no longer explain. */
12611
12612 old_loc->events_till_retirement = 3 * (thread_count () + 1);
12613 old_loc->owner = NULL;
12614
12615 VEC_safe_push (bp_location_p, moribund_locations, old_loc);
12616 }
12617 else
12618 {
12619 old_loc->owner = NULL;
12620 decref_bp_location (&old_loc);
12621 }
12622 }
12623 }
12624
12625 /* Rescan breakpoints at the same address and section, marking the
12626 first one as "first" and any others as "duplicates". This is so
12627 that the bpt instruction is only inserted once. If we have a
12628 permanent breakpoint at the same place as BPT, make that one the
12629 official one, and the rest as duplicates. Permanent breakpoints
12630 are sorted first for the same address.
12631
12632 Do the same for hardware watchpoints, but also considering the
12633 watchpoint's type (regular/access/read) and length. */
12634
12635 bp_loc_first = NULL;
12636 wp_loc_first = NULL;
12637 awp_loc_first = NULL;
12638 rwp_loc_first = NULL;
12639 ALL_BP_LOCATIONS (loc, locp)
12640 {
12641 /* ALL_BP_LOCATIONS bp_location has LOC->OWNER always
12642 non-NULL. */
12643 struct bp_location **loc_first_p;
12644 b = loc->owner;
12645
12646 if (!unduplicated_should_be_inserted (loc)
12647 || !breakpoint_address_is_meaningful (b)
12648 /* Don't detect duplicate for tracepoint locations because they are
12649 never duplicated. See the comments in field `duplicate' of
12650 `struct bp_location'. */
12651 || is_tracepoint (b))
12652 {
12653 /* Clear the condition modification flag. */
12654 loc->condition_changed = condition_unchanged;
12655 continue;
12656 }
12657
12658 if (b->type == bp_hardware_watchpoint)
12659 loc_first_p = &wp_loc_first;
12660 else if (b->type == bp_read_watchpoint)
12661 loc_first_p = &rwp_loc_first;
12662 else if (b->type == bp_access_watchpoint)
12663 loc_first_p = &awp_loc_first;
12664 else
12665 loc_first_p = &bp_loc_first;
12666
12667 if (*loc_first_p == NULL
12668 || (overlay_debugging && loc->section != (*loc_first_p)->section)
12669 || !breakpoint_locations_match (loc, *loc_first_p))
12670 {
12671 *loc_first_p = loc;
12672 loc->duplicate = 0;
12673
12674 if (is_breakpoint (loc->owner) && loc->condition_changed)
12675 {
12676 loc->needs_update = 1;
12677 /* Clear the condition modification flag. */
12678 loc->condition_changed = condition_unchanged;
12679 }
12680 continue;
12681 }
12682
12683
12684 /* This and the above ensure the invariant that the first location
12685 is not duplicated, and is the inserted one.
12686 All following are marked as duplicated, and are not inserted. */
12687 if (loc->inserted)
12688 swap_insertion (loc, *loc_first_p);
12689 loc->duplicate = 1;
12690
12691 /* Clear the condition modification flag. */
12692 loc->condition_changed = condition_unchanged;
12693 }
12694
12695 if (insert_mode == UGLL_INSERT || breakpoints_should_be_inserted_now ())
12696 {
12697 if (insert_mode != UGLL_DONT_INSERT)
12698 insert_breakpoint_locations ();
12699 else
12700 {
12701 /* Even though the caller told us to not insert new
12702 locations, we may still need to update conditions on the
12703 target's side of breakpoints that were already inserted
12704 if the target is evaluating breakpoint conditions. We
12705 only update conditions for locations that are marked
12706 "needs_update". */
12707 update_inserted_breakpoint_locations ();
12708 }
12709 }
12710
12711 if (insert_mode != UGLL_DONT_INSERT)
12712 download_tracepoint_locations ();
12713
12714 do_cleanups (cleanups);
12715 }
12716
12717 void
12718 breakpoint_retire_moribund (void)
12719 {
12720 struct bp_location *loc;
12721 int ix;
12722
12723 for (ix = 0; VEC_iterate (bp_location_p, moribund_locations, ix, loc); ++ix)
12724 if (--(loc->events_till_retirement) == 0)
12725 {
12726 decref_bp_location (&loc);
12727 VEC_unordered_remove (bp_location_p, moribund_locations, ix);
12728 --ix;
12729 }
12730 }
12731
12732 static void
12733 update_global_location_list_nothrow (enum ugll_insert_mode insert_mode)
12734 {
12735
12736 TRY
12737 {
12738 update_global_location_list (insert_mode);
12739 }
12740 CATCH (e, RETURN_MASK_ERROR)
12741 {
12742 }
12743 END_CATCH
12744 }
12745
12746 /* Clear BKP from a BPS. */
12747
12748 static void
12749 bpstat_remove_bp_location (bpstat bps, struct breakpoint *bpt)
12750 {
12751 bpstat bs;
12752
12753 for (bs = bps; bs; bs = bs->next)
12754 if (bs->breakpoint_at == bpt)
12755 {
12756 bs->breakpoint_at = NULL;
12757 bs->old_val = NULL;
12758 /* bs->commands will be freed later. */
12759 }
12760 }
12761
12762 /* Callback for iterate_over_threads. */
12763 static int
12764 bpstat_remove_breakpoint_callback (struct thread_info *th, void *data)
12765 {
12766 struct breakpoint *bpt = (struct breakpoint *) data;
12767
12768 bpstat_remove_bp_location (th->control.stop_bpstat, bpt);
12769 return 0;
12770 }
12771
12772 /* Helper for breakpoint and tracepoint breakpoint_ops->mention
12773 callbacks. */
12774
12775 static void
12776 say_where (struct breakpoint *b)
12777 {
12778 struct value_print_options opts;
12779
12780 get_user_print_options (&opts);
12781
12782 /* i18n: cagney/2005-02-11: Below needs to be merged into a
12783 single string. */
12784 if (b->loc == NULL)
12785 {
12786 /* For pending locations, the output differs slightly based
12787 on b->extra_string. If this is non-NULL, it contains either
12788 a condition or dprintf arguments. */
12789 if (b->extra_string == NULL)
12790 {
12791 printf_filtered (_(" (%s) pending."),
12792 event_location_to_string (b->location));
12793 }
12794 else if (b->type == bp_dprintf)
12795 {
12796 printf_filtered (_(" (%s,%s) pending."),
12797 event_location_to_string (b->location),
12798 b->extra_string);
12799 }
12800 else
12801 {
12802 printf_filtered (_(" (%s %s) pending."),
12803 event_location_to_string (b->location),
12804 b->extra_string);
12805 }
12806 }
12807 else
12808 {
12809 if (opts.addressprint || b->loc->symtab == NULL)
12810 {
12811 printf_filtered (" at ");
12812 fputs_filtered (paddress (b->loc->gdbarch, b->loc->address),
12813 gdb_stdout);
12814 }
12815 if (b->loc->symtab != NULL)
12816 {
12817 /* If there is a single location, we can print the location
12818 more nicely. */
12819 if (b->loc->next == NULL)
12820 printf_filtered (": file %s, line %d.",
12821 symtab_to_filename_for_display (b->loc->symtab),
12822 b->loc->line_number);
12823 else
12824 /* This is not ideal, but each location may have a
12825 different file name, and this at least reflects the
12826 real situation somewhat. */
12827 printf_filtered (": %s.",
12828 event_location_to_string (b->location));
12829 }
12830
12831 if (b->loc->next)
12832 {
12833 struct bp_location *loc = b->loc;
12834 int n = 0;
12835 for (; loc; loc = loc->next)
12836 ++n;
12837 printf_filtered (" (%d locations)", n);
12838 }
12839 }
12840 }
12841
12842 /* Default bp_location_ops methods. */
12843
12844 static void
12845 bp_location_dtor (struct bp_location *self)
12846 {
12847 xfree (self->cond);
12848 if (self->cond_bytecode)
12849 free_agent_expr (self->cond_bytecode);
12850 xfree (self->function_name);
12851
12852 VEC_free (agent_expr_p, self->target_info.conditions);
12853 VEC_free (agent_expr_p, self->target_info.tcommands);
12854 }
12855
12856 static const struct bp_location_ops bp_location_ops =
12857 {
12858 bp_location_dtor
12859 };
12860
12861 /* Default breakpoint_ops methods all breakpoint_ops ultimately
12862 inherit from. */
12863
12864 static void
12865 base_breakpoint_dtor (struct breakpoint *self)
12866 {
12867 decref_counted_command_line (&self->commands);
12868 xfree (self->cond_string);
12869 xfree (self->extra_string);
12870 xfree (self->filter);
12871 delete_event_location (self->location);
12872 delete_event_location (self->location_range_end);
12873 }
12874
12875 static struct bp_location *
12876 base_breakpoint_allocate_location (struct breakpoint *self)
12877 {
12878 struct bp_location *loc;
12879
12880 loc = XNEW (struct bp_location);
12881 init_bp_location (loc, &bp_location_ops, self);
12882 return loc;
12883 }
12884
12885 static void
12886 base_breakpoint_re_set (struct breakpoint *b)
12887 {
12888 /* Nothing to re-set. */
12889 }
12890
12891 #define internal_error_pure_virtual_called() \
12892 gdb_assert_not_reached ("pure virtual function called")
12893
12894 static int
12895 base_breakpoint_insert_location (struct bp_location *bl)
12896 {
12897 internal_error_pure_virtual_called ();
12898 }
12899
12900 static int
12901 base_breakpoint_remove_location (struct bp_location *bl)
12902 {
12903 internal_error_pure_virtual_called ();
12904 }
12905
12906 static int
12907 base_breakpoint_breakpoint_hit (const struct bp_location *bl,
12908 struct address_space *aspace,
12909 CORE_ADDR bp_addr,
12910 const struct target_waitstatus *ws)
12911 {
12912 internal_error_pure_virtual_called ();
12913 }
12914
12915 static void
12916 base_breakpoint_check_status (bpstat bs)
12917 {
12918 /* Always stop. */
12919 }
12920
12921 /* A "works_in_software_mode" breakpoint_ops method that just internal
12922 errors. */
12923
12924 static int
12925 base_breakpoint_works_in_software_mode (const struct breakpoint *b)
12926 {
12927 internal_error_pure_virtual_called ();
12928 }
12929
12930 /* A "resources_needed" breakpoint_ops method that just internal
12931 errors. */
12932
12933 static int
12934 base_breakpoint_resources_needed (const struct bp_location *bl)
12935 {
12936 internal_error_pure_virtual_called ();
12937 }
12938
12939 static enum print_stop_action
12940 base_breakpoint_print_it (bpstat bs)
12941 {
12942 internal_error_pure_virtual_called ();
12943 }
12944
12945 static void
12946 base_breakpoint_print_one_detail (const struct breakpoint *self,
12947 struct ui_out *uiout)
12948 {
12949 /* nothing */
12950 }
12951
12952 static void
12953 base_breakpoint_print_mention (struct breakpoint *b)
12954 {
12955 internal_error_pure_virtual_called ();
12956 }
12957
12958 static void
12959 base_breakpoint_print_recreate (struct breakpoint *b, struct ui_file *fp)
12960 {
12961 internal_error_pure_virtual_called ();
12962 }
12963
12964 static void
12965 base_breakpoint_create_sals_from_location
12966 (const struct event_location *location,
12967 struct linespec_result *canonical,
12968 enum bptype type_wanted)
12969 {
12970 internal_error_pure_virtual_called ();
12971 }
12972
12973 static void
12974 base_breakpoint_create_breakpoints_sal (struct gdbarch *gdbarch,
12975 struct linespec_result *c,
12976 char *cond_string,
12977 char *extra_string,
12978 enum bptype type_wanted,
12979 enum bpdisp disposition,
12980 int thread,
12981 int task, int ignore_count,
12982 const struct breakpoint_ops *o,
12983 int from_tty, int enabled,
12984 int internal, unsigned flags)
12985 {
12986 internal_error_pure_virtual_called ();
12987 }
12988
12989 static void
12990 base_breakpoint_decode_location (struct breakpoint *b,
12991 const struct event_location *location,
12992 struct symtabs_and_lines *sals)
12993 {
12994 internal_error_pure_virtual_called ();
12995 }
12996
12997 /* The default 'explains_signal' method. */
12998
12999 static int
13000 base_breakpoint_explains_signal (struct breakpoint *b, enum gdb_signal sig)
13001 {
13002 return 1;
13003 }
13004
13005 /* The default "after_condition_true" method. */
13006
13007 static void
13008 base_breakpoint_after_condition_true (struct bpstats *bs)
13009 {
13010 /* Nothing to do. */
13011 }
13012
13013 struct breakpoint_ops base_breakpoint_ops =
13014 {
13015 base_breakpoint_dtor,
13016 base_breakpoint_allocate_location,
13017 base_breakpoint_re_set,
13018 base_breakpoint_insert_location,
13019 base_breakpoint_remove_location,
13020 base_breakpoint_breakpoint_hit,
13021 base_breakpoint_check_status,
13022 base_breakpoint_resources_needed,
13023 base_breakpoint_works_in_software_mode,
13024 base_breakpoint_print_it,
13025 NULL,
13026 base_breakpoint_print_one_detail,
13027 base_breakpoint_print_mention,
13028 base_breakpoint_print_recreate,
13029 base_breakpoint_create_sals_from_location,
13030 base_breakpoint_create_breakpoints_sal,
13031 base_breakpoint_decode_location,
13032 base_breakpoint_explains_signal,
13033 base_breakpoint_after_condition_true,
13034 };
13035
13036 /* Default breakpoint_ops methods. */
13037
13038 static void
13039 bkpt_re_set (struct breakpoint *b)
13040 {
13041 /* FIXME: is this still reachable? */
13042 if (event_location_empty_p (b->location))
13043 {
13044 /* Anything without a location can't be re-set. */
13045 delete_breakpoint (b);
13046 return;
13047 }
13048
13049 breakpoint_re_set_default (b);
13050 }
13051
13052 static int
13053 bkpt_insert_location (struct bp_location *bl)
13054 {
13055 if (bl->loc_type == bp_loc_hardware_breakpoint)
13056 return target_insert_hw_breakpoint (bl->gdbarch, &bl->target_info);
13057 else
13058 return target_insert_breakpoint (bl->gdbarch, &bl->target_info);
13059 }
13060
13061 static int
13062 bkpt_remove_location (struct bp_location *bl)
13063 {
13064 if (bl->loc_type == bp_loc_hardware_breakpoint)
13065 return target_remove_hw_breakpoint (bl->gdbarch, &bl->target_info);
13066 else
13067 return target_remove_breakpoint (bl->gdbarch, &bl->target_info);
13068 }
13069
13070 static int
13071 bkpt_breakpoint_hit (const struct bp_location *bl,
13072 struct address_space *aspace, CORE_ADDR bp_addr,
13073 const struct target_waitstatus *ws)
13074 {
13075 if (ws->kind != TARGET_WAITKIND_STOPPED
13076 || ws->value.sig != GDB_SIGNAL_TRAP)
13077 return 0;
13078
13079 if (!breakpoint_address_match (bl->pspace->aspace, bl->address,
13080 aspace, bp_addr))
13081 return 0;
13082
13083 if (overlay_debugging /* unmapped overlay section */
13084 && section_is_overlay (bl->section)
13085 && !section_is_mapped (bl->section))
13086 return 0;
13087
13088 return 1;
13089 }
13090
13091 static int
13092 dprintf_breakpoint_hit (const struct bp_location *bl,
13093 struct address_space *aspace, CORE_ADDR bp_addr,
13094 const struct target_waitstatus *ws)
13095 {
13096 if (dprintf_style == dprintf_style_agent
13097 && target_can_run_breakpoint_commands ())
13098 {
13099 /* An agent-style dprintf never causes a stop. If we see a trap
13100 for this address it must be for a breakpoint that happens to
13101 be set at the same address. */
13102 return 0;
13103 }
13104
13105 return bkpt_breakpoint_hit (bl, aspace, bp_addr, ws);
13106 }
13107
13108 static int
13109 bkpt_resources_needed (const struct bp_location *bl)
13110 {
13111 gdb_assert (bl->owner->type == bp_hardware_breakpoint);
13112
13113 return 1;
13114 }
13115
13116 static enum print_stop_action
13117 bkpt_print_it (bpstat bs)
13118 {
13119 struct breakpoint *b;
13120 const struct bp_location *bl;
13121 int bp_temp;
13122 struct ui_out *uiout = current_uiout;
13123
13124 gdb_assert (bs->bp_location_at != NULL);
13125
13126 bl = bs->bp_location_at;
13127 b = bs->breakpoint_at;
13128
13129 bp_temp = b->disposition == disp_del;
13130 if (bl->address != bl->requested_address)
13131 breakpoint_adjustment_warning (bl->requested_address,
13132 bl->address,
13133 b->number, 1);
13134 annotate_breakpoint (b->number);
13135 if (bp_temp)
13136 ui_out_text (uiout, "\nTemporary breakpoint ");
13137 else
13138 ui_out_text (uiout, "\nBreakpoint ");
13139 if (ui_out_is_mi_like_p (uiout))
13140 {
13141 ui_out_field_string (uiout, "reason",
13142 async_reason_lookup (EXEC_ASYNC_BREAKPOINT_HIT));
13143 ui_out_field_string (uiout, "disp", bpdisp_text (b->disposition));
13144 }
13145 ui_out_field_int (uiout, "bkptno", b->number);
13146 ui_out_text (uiout, ", ");
13147
13148 return PRINT_SRC_AND_LOC;
13149 }
13150
13151 static void
13152 bkpt_print_mention (struct breakpoint *b)
13153 {
13154 if (ui_out_is_mi_like_p (current_uiout))
13155 return;
13156
13157 switch (b->type)
13158 {
13159 case bp_breakpoint:
13160 case bp_gnu_ifunc_resolver:
13161 if (b->disposition == disp_del)
13162 printf_filtered (_("Temporary breakpoint"));
13163 else
13164 printf_filtered (_("Breakpoint"));
13165 printf_filtered (_(" %d"), b->number);
13166 if (b->type == bp_gnu_ifunc_resolver)
13167 printf_filtered (_(" at gnu-indirect-function resolver"));
13168 break;
13169 case bp_hardware_breakpoint:
13170 printf_filtered (_("Hardware assisted breakpoint %d"), b->number);
13171 break;
13172 case bp_dprintf:
13173 printf_filtered (_("Dprintf %d"), b->number);
13174 break;
13175 }
13176
13177 say_where (b);
13178 }
13179
13180 static void
13181 bkpt_print_recreate (struct breakpoint *tp, struct ui_file *fp)
13182 {
13183 if (tp->type == bp_breakpoint && tp->disposition == disp_del)
13184 fprintf_unfiltered (fp, "tbreak");
13185 else if (tp->type == bp_breakpoint)
13186 fprintf_unfiltered (fp, "break");
13187 else if (tp->type == bp_hardware_breakpoint
13188 && tp->disposition == disp_del)
13189 fprintf_unfiltered (fp, "thbreak");
13190 else if (tp->type == bp_hardware_breakpoint)
13191 fprintf_unfiltered (fp, "hbreak");
13192 else
13193 internal_error (__FILE__, __LINE__,
13194 _("unhandled breakpoint type %d"), (int) tp->type);
13195
13196 fprintf_unfiltered (fp, " %s",
13197 event_location_to_string (tp->location));
13198
13199 /* Print out extra_string if this breakpoint is pending. It might
13200 contain, for example, conditions that were set by the user. */
13201 if (tp->loc == NULL && tp->extra_string != NULL)
13202 fprintf_unfiltered (fp, " %s", tp->extra_string);
13203
13204 print_recreate_thread (tp, fp);
13205 }
13206
13207 static void
13208 bkpt_create_sals_from_location (const struct event_location *location,
13209 struct linespec_result *canonical,
13210 enum bptype type_wanted)
13211 {
13212 create_sals_from_location_default (location, canonical, type_wanted);
13213 }
13214
13215 static void
13216 bkpt_create_breakpoints_sal (struct gdbarch *gdbarch,
13217 struct linespec_result *canonical,
13218 char *cond_string,
13219 char *extra_string,
13220 enum bptype type_wanted,
13221 enum bpdisp disposition,
13222 int thread,
13223 int task, int ignore_count,
13224 const struct breakpoint_ops *ops,
13225 int from_tty, int enabled,
13226 int internal, unsigned flags)
13227 {
13228 create_breakpoints_sal_default (gdbarch, canonical,
13229 cond_string, extra_string,
13230 type_wanted,
13231 disposition, thread, task,
13232 ignore_count, ops, from_tty,
13233 enabled, internal, flags);
13234 }
13235
13236 static void
13237 bkpt_decode_location (struct breakpoint *b,
13238 const struct event_location *location,
13239 struct symtabs_and_lines *sals)
13240 {
13241 decode_location_default (b, location, sals);
13242 }
13243
13244 /* Virtual table for internal breakpoints. */
13245
13246 static void
13247 internal_bkpt_re_set (struct breakpoint *b)
13248 {
13249 switch (b->type)
13250 {
13251 /* Delete overlay event and longjmp master breakpoints; they
13252 will be reset later by breakpoint_re_set. */
13253 case bp_overlay_event:
13254 case bp_longjmp_master:
13255 case bp_std_terminate_master:
13256 case bp_exception_master:
13257 delete_breakpoint (b);
13258 break;
13259
13260 /* This breakpoint is special, it's set up when the inferior
13261 starts and we really don't want to touch it. */
13262 case bp_shlib_event:
13263
13264 /* Like bp_shlib_event, this breakpoint type is special. Once
13265 it is set up, we do not want to touch it. */
13266 case bp_thread_event:
13267 break;
13268 }
13269 }
13270
13271 static void
13272 internal_bkpt_check_status (bpstat bs)
13273 {
13274 if (bs->breakpoint_at->type == bp_shlib_event)
13275 {
13276 /* If requested, stop when the dynamic linker notifies GDB of
13277 events. This allows the user to get control and place
13278 breakpoints in initializer routines for dynamically loaded
13279 objects (among other things). */
13280 bs->stop = stop_on_solib_events;
13281 bs->print = stop_on_solib_events;
13282 }
13283 else
13284 bs->stop = 0;
13285 }
13286
13287 static enum print_stop_action
13288 internal_bkpt_print_it (bpstat bs)
13289 {
13290 struct breakpoint *b;
13291
13292 b = bs->breakpoint_at;
13293
13294 switch (b->type)
13295 {
13296 case bp_shlib_event:
13297 /* Did we stop because the user set the stop_on_solib_events
13298 variable? (If so, we report this as a generic, "Stopped due
13299 to shlib event" message.) */
13300 print_solib_event (0);
13301 break;
13302
13303 case bp_thread_event:
13304 /* Not sure how we will get here.
13305 GDB should not stop for these breakpoints. */
13306 printf_filtered (_("Thread Event Breakpoint: gdb should not stop!\n"));
13307 break;
13308
13309 case bp_overlay_event:
13310 /* By analogy with the thread event, GDB should not stop for these. */
13311 printf_filtered (_("Overlay Event Breakpoint: gdb should not stop!\n"));
13312 break;
13313
13314 case bp_longjmp_master:
13315 /* These should never be enabled. */
13316 printf_filtered (_("Longjmp Master Breakpoint: gdb should not stop!\n"));
13317 break;
13318
13319 case bp_std_terminate_master:
13320 /* These should never be enabled. */
13321 printf_filtered (_("std::terminate Master Breakpoint: "
13322 "gdb should not stop!\n"));
13323 break;
13324
13325 case bp_exception_master:
13326 /* These should never be enabled. */
13327 printf_filtered (_("Exception Master Breakpoint: "
13328 "gdb should not stop!\n"));
13329 break;
13330 }
13331
13332 return PRINT_NOTHING;
13333 }
13334
13335 static void
13336 internal_bkpt_print_mention (struct breakpoint *b)
13337 {
13338 /* Nothing to mention. These breakpoints are internal. */
13339 }
13340
13341 /* Virtual table for momentary breakpoints */
13342
13343 static void
13344 momentary_bkpt_re_set (struct breakpoint *b)
13345 {
13346 /* Keep temporary breakpoints, which can be encountered when we step
13347 over a dlopen call and solib_add is resetting the breakpoints.
13348 Otherwise these should have been blown away via the cleanup chain
13349 or by breakpoint_init_inferior when we rerun the executable. */
13350 }
13351
13352 static void
13353 momentary_bkpt_check_status (bpstat bs)
13354 {
13355 /* Nothing. The point of these breakpoints is causing a stop. */
13356 }
13357
13358 static enum print_stop_action
13359 momentary_bkpt_print_it (bpstat bs)
13360 {
13361 return PRINT_UNKNOWN;
13362 }
13363
13364 static void
13365 momentary_bkpt_print_mention (struct breakpoint *b)
13366 {
13367 /* Nothing to mention. These breakpoints are internal. */
13368 }
13369
13370 /* Ensure INITIATING_FRAME is cleared when no such breakpoint exists.
13371
13372 It gets cleared already on the removal of the first one of such placed
13373 breakpoints. This is OK as they get all removed altogether. */
13374
13375 static void
13376 longjmp_bkpt_dtor (struct breakpoint *self)
13377 {
13378 struct thread_info *tp = find_thread_id (self->thread);
13379
13380 if (tp)
13381 tp->initiating_frame = null_frame_id;
13382
13383 momentary_breakpoint_ops.dtor (self);
13384 }
13385
13386 /* Specific methods for probe breakpoints. */
13387
13388 static int
13389 bkpt_probe_insert_location (struct bp_location *bl)
13390 {
13391 int v = bkpt_insert_location (bl);
13392
13393 if (v == 0)
13394 {
13395 /* The insertion was successful, now let's set the probe's semaphore
13396 if needed. */
13397 if (bl->probe.probe->pops->set_semaphore != NULL)
13398 bl->probe.probe->pops->set_semaphore (bl->probe.probe,
13399 bl->probe.objfile,
13400 bl->gdbarch);
13401 }
13402
13403 return v;
13404 }
13405
13406 static int
13407 bkpt_probe_remove_location (struct bp_location *bl)
13408 {
13409 /* Let's clear the semaphore before removing the location. */
13410 if (bl->probe.probe->pops->clear_semaphore != NULL)
13411 bl->probe.probe->pops->clear_semaphore (bl->probe.probe,
13412 bl->probe.objfile,
13413 bl->gdbarch);
13414
13415 return bkpt_remove_location (bl);
13416 }
13417
13418 static void
13419 bkpt_probe_create_sals_from_location (const struct event_location *location,
13420 struct linespec_result *canonical,
13421 enum bptype type_wanted)
13422 {
13423 struct linespec_sals lsal;
13424
13425 lsal.sals = parse_probes (location, canonical);
13426 lsal.canonical = xstrdup (event_location_to_string (canonical->location));
13427 VEC_safe_push (linespec_sals, canonical->sals, &lsal);
13428 }
13429
13430 static void
13431 bkpt_probe_decode_location (struct breakpoint *b,
13432 const struct event_location *location,
13433 struct symtabs_and_lines *sals)
13434 {
13435 *sals = parse_probes (location, NULL);
13436 if (!sals->sals)
13437 error (_("probe not found"));
13438 }
13439
13440 /* The breakpoint_ops structure to be used in tracepoints. */
13441
13442 static void
13443 tracepoint_re_set (struct breakpoint *b)
13444 {
13445 breakpoint_re_set_default (b);
13446 }
13447
13448 static int
13449 tracepoint_breakpoint_hit (const struct bp_location *bl,
13450 struct address_space *aspace, CORE_ADDR bp_addr,
13451 const struct target_waitstatus *ws)
13452 {
13453 /* By definition, the inferior does not report stops at
13454 tracepoints. */
13455 return 0;
13456 }
13457
13458 static void
13459 tracepoint_print_one_detail (const struct breakpoint *self,
13460 struct ui_out *uiout)
13461 {
13462 struct tracepoint *tp = (struct tracepoint *) self;
13463 if (tp->static_trace_marker_id)
13464 {
13465 gdb_assert (self->type == bp_static_tracepoint);
13466
13467 ui_out_text (uiout, "\tmarker id is ");
13468 ui_out_field_string (uiout, "static-tracepoint-marker-string-id",
13469 tp->static_trace_marker_id);
13470 ui_out_text (uiout, "\n");
13471 }
13472 }
13473
13474 static void
13475 tracepoint_print_mention (struct breakpoint *b)
13476 {
13477 if (ui_out_is_mi_like_p (current_uiout))
13478 return;
13479
13480 switch (b->type)
13481 {
13482 case bp_tracepoint:
13483 printf_filtered (_("Tracepoint"));
13484 printf_filtered (_(" %d"), b->number);
13485 break;
13486 case bp_fast_tracepoint:
13487 printf_filtered (_("Fast tracepoint"));
13488 printf_filtered (_(" %d"), b->number);
13489 break;
13490 case bp_static_tracepoint:
13491 printf_filtered (_("Static tracepoint"));
13492 printf_filtered (_(" %d"), b->number);
13493 break;
13494 default:
13495 internal_error (__FILE__, __LINE__,
13496 _("unhandled tracepoint type %d"), (int) b->type);
13497 }
13498
13499 say_where (b);
13500 }
13501
13502 static void
13503 tracepoint_print_recreate (struct breakpoint *self, struct ui_file *fp)
13504 {
13505 struct tracepoint *tp = (struct tracepoint *) self;
13506
13507 if (self->type == bp_fast_tracepoint)
13508 fprintf_unfiltered (fp, "ftrace");
13509 else if (self->type == bp_static_tracepoint)
13510 fprintf_unfiltered (fp, "strace");
13511 else if (self->type == bp_tracepoint)
13512 fprintf_unfiltered (fp, "trace");
13513 else
13514 internal_error (__FILE__, __LINE__,
13515 _("unhandled tracepoint type %d"), (int) self->type);
13516
13517 fprintf_unfiltered (fp, " %s",
13518 event_location_to_string (self->location));
13519 print_recreate_thread (self, fp);
13520
13521 if (tp->pass_count)
13522 fprintf_unfiltered (fp, " passcount %d\n", tp->pass_count);
13523 }
13524
13525 static void
13526 tracepoint_create_sals_from_location (const struct event_location *location,
13527 struct linespec_result *canonical,
13528 enum bptype type_wanted)
13529 {
13530 create_sals_from_location_default (location, canonical, type_wanted);
13531 }
13532
13533 static void
13534 tracepoint_create_breakpoints_sal (struct gdbarch *gdbarch,
13535 struct linespec_result *canonical,
13536 char *cond_string,
13537 char *extra_string,
13538 enum bptype type_wanted,
13539 enum bpdisp disposition,
13540 int thread,
13541 int task, int ignore_count,
13542 const struct breakpoint_ops *ops,
13543 int from_tty, int enabled,
13544 int internal, unsigned flags)
13545 {
13546 create_breakpoints_sal_default (gdbarch, canonical,
13547 cond_string, extra_string,
13548 type_wanted,
13549 disposition, thread, task,
13550 ignore_count, ops, from_tty,
13551 enabled, internal, flags);
13552 }
13553
13554 static void
13555 tracepoint_decode_location (struct breakpoint *b,
13556 const struct event_location *location,
13557 struct symtabs_and_lines *sals)
13558 {
13559 decode_location_default (b, location, sals);
13560 }
13561
13562 struct breakpoint_ops tracepoint_breakpoint_ops;
13563
13564 /* The breakpoint_ops structure to be use on tracepoints placed in a
13565 static probe. */
13566
13567 static void
13568 tracepoint_probe_create_sals_from_location
13569 (const struct event_location *location,
13570 struct linespec_result *canonical,
13571 enum bptype type_wanted)
13572 {
13573 /* We use the same method for breakpoint on probes. */
13574 bkpt_probe_create_sals_from_location (location, canonical, type_wanted);
13575 }
13576
13577 static void
13578 tracepoint_probe_decode_location (struct breakpoint *b,
13579 const struct event_location *location,
13580 struct symtabs_and_lines *sals)
13581 {
13582 /* We use the same method for breakpoint on probes. */
13583 bkpt_probe_decode_location (b, location, sals);
13584 }
13585
13586 static struct breakpoint_ops tracepoint_probe_breakpoint_ops;
13587
13588 /* Dprintf breakpoint_ops methods. */
13589
13590 static void
13591 dprintf_re_set (struct breakpoint *b)
13592 {
13593 breakpoint_re_set_default (b);
13594
13595 /* extra_string should never be non-NULL for dprintf. */
13596 gdb_assert (b->extra_string != NULL);
13597
13598 /* 1 - connect to target 1, that can run breakpoint commands.
13599 2 - create a dprintf, which resolves fine.
13600 3 - disconnect from target 1
13601 4 - connect to target 2, that can NOT run breakpoint commands.
13602
13603 After steps #3/#4, you'll want the dprintf command list to
13604 be updated, because target 1 and 2 may well return different
13605 answers for target_can_run_breakpoint_commands().
13606 Given absence of finer grained resetting, we get to do
13607 it all the time. */
13608 if (b->extra_string != NULL)
13609 update_dprintf_command_list (b);
13610 }
13611
13612 /* Implement the "print_recreate" breakpoint_ops method for dprintf. */
13613
13614 static void
13615 dprintf_print_recreate (struct breakpoint *tp, struct ui_file *fp)
13616 {
13617 fprintf_unfiltered (fp, "dprintf %s,%s",
13618 event_location_to_string (tp->location),
13619 tp->extra_string);
13620 print_recreate_thread (tp, fp);
13621 }
13622
13623 /* Implement the "after_condition_true" breakpoint_ops method for
13624 dprintf.
13625
13626 dprintf's are implemented with regular commands in their command
13627 list, but we run the commands here instead of before presenting the
13628 stop to the user, as dprintf's don't actually cause a stop. This
13629 also makes it so that the commands of multiple dprintfs at the same
13630 address are all handled. */
13631
13632 static void
13633 dprintf_after_condition_true (struct bpstats *bs)
13634 {
13635 struct cleanup *old_chain;
13636 struct bpstats tmp_bs = { NULL };
13637 struct bpstats *tmp_bs_p = &tmp_bs;
13638
13639 /* dprintf's never cause a stop. This wasn't set in the
13640 check_status hook instead because that would make the dprintf's
13641 condition not be evaluated. */
13642 bs->stop = 0;
13643
13644 /* Run the command list here. Take ownership of it instead of
13645 copying. We never want these commands to run later in
13646 bpstat_do_actions, if a breakpoint that causes a stop happens to
13647 be set at same address as this dprintf, or even if running the
13648 commands here throws. */
13649 tmp_bs.commands = bs->commands;
13650 bs->commands = NULL;
13651 old_chain = make_cleanup_decref_counted_command_line (&tmp_bs.commands);
13652
13653 bpstat_do_actions_1 (&tmp_bs_p);
13654
13655 /* 'tmp_bs.commands' will usually be NULL by now, but
13656 bpstat_do_actions_1 may return early without processing the whole
13657 list. */
13658 do_cleanups (old_chain);
13659 }
13660
13661 /* The breakpoint_ops structure to be used on static tracepoints with
13662 markers (`-m'). */
13663
13664 static void
13665 strace_marker_create_sals_from_location (const struct event_location *location,
13666 struct linespec_result *canonical,
13667 enum bptype type_wanted)
13668 {
13669 struct linespec_sals lsal;
13670 const char *arg_start, *arg;
13671 char *str;
13672 struct cleanup *cleanup;
13673
13674 arg = arg_start = get_linespec_location (location);
13675 lsal.sals = decode_static_tracepoint_spec (&arg);
13676
13677 str = savestring (arg_start, arg - arg_start);
13678 cleanup = make_cleanup (xfree, str);
13679 canonical->location = new_linespec_location (&str);
13680 do_cleanups (cleanup);
13681
13682 lsal.canonical = xstrdup (event_location_to_string (canonical->location));
13683 VEC_safe_push (linespec_sals, canonical->sals, &lsal);
13684 }
13685
13686 static void
13687 strace_marker_create_breakpoints_sal (struct gdbarch *gdbarch,
13688 struct linespec_result *canonical,
13689 char *cond_string,
13690 char *extra_string,
13691 enum bptype type_wanted,
13692 enum bpdisp disposition,
13693 int thread,
13694 int task, int ignore_count,
13695 const struct breakpoint_ops *ops,
13696 int from_tty, int enabled,
13697 int internal, unsigned flags)
13698 {
13699 int i;
13700 struct linespec_sals *lsal = VEC_index (linespec_sals,
13701 canonical->sals, 0);
13702
13703 /* If the user is creating a static tracepoint by marker id
13704 (strace -m MARKER_ID), then store the sals index, so that
13705 breakpoint_re_set can try to match up which of the newly
13706 found markers corresponds to this one, and, don't try to
13707 expand multiple locations for each sal, given than SALS
13708 already should contain all sals for MARKER_ID. */
13709
13710 for (i = 0; i < lsal->sals.nelts; ++i)
13711 {
13712 struct symtabs_and_lines expanded;
13713 struct tracepoint *tp;
13714 struct cleanup *old_chain;
13715 struct event_location *location;
13716
13717 expanded.nelts = 1;
13718 expanded.sals = &lsal->sals.sals[i];
13719
13720 location = copy_event_location (canonical->location);
13721 old_chain = make_cleanup_delete_event_location (location);
13722
13723 tp = XCNEW (struct tracepoint);
13724 init_breakpoint_sal (&tp->base, gdbarch, expanded,
13725 location, NULL,
13726 cond_string, extra_string,
13727 type_wanted, disposition,
13728 thread, task, ignore_count, ops,
13729 from_tty, enabled, internal, flags,
13730 canonical->special_display);
13731 /* Given that its possible to have multiple markers with
13732 the same string id, if the user is creating a static
13733 tracepoint by marker id ("strace -m MARKER_ID"), then
13734 store the sals index, so that breakpoint_re_set can
13735 try to match up which of the newly found markers
13736 corresponds to this one */
13737 tp->static_trace_marker_id_idx = i;
13738
13739 install_breakpoint (internal, &tp->base, 0);
13740
13741 discard_cleanups (old_chain);
13742 }
13743 }
13744
13745 static void
13746 strace_marker_decode_location (struct breakpoint *b,
13747 const struct event_location *location,
13748 struct symtabs_and_lines *sals)
13749 {
13750 struct tracepoint *tp = (struct tracepoint *) b;
13751 const char *s = get_linespec_location (location);
13752
13753 *sals = decode_static_tracepoint_spec (&s);
13754 if (sals->nelts > tp->static_trace_marker_id_idx)
13755 {
13756 sals->sals[0] = sals->sals[tp->static_trace_marker_id_idx];
13757 sals->nelts = 1;
13758 }
13759 else
13760 error (_("marker %s not found"), tp->static_trace_marker_id);
13761 }
13762
13763 static struct breakpoint_ops strace_marker_breakpoint_ops;
13764
13765 static int
13766 strace_marker_p (struct breakpoint *b)
13767 {
13768 return b->ops == &strace_marker_breakpoint_ops;
13769 }
13770
13771 /* Delete a breakpoint and clean up all traces of it in the data
13772 structures. */
13773
13774 void
13775 delete_breakpoint (struct breakpoint *bpt)
13776 {
13777 struct breakpoint *b;
13778
13779 gdb_assert (bpt != NULL);
13780
13781 /* Has this bp already been deleted? This can happen because
13782 multiple lists can hold pointers to bp's. bpstat lists are
13783 especial culprits.
13784
13785 One example of this happening is a watchpoint's scope bp. When
13786 the scope bp triggers, we notice that the watchpoint is out of
13787 scope, and delete it. We also delete its scope bp. But the
13788 scope bp is marked "auto-deleting", and is already on a bpstat.
13789 That bpstat is then checked for auto-deleting bp's, which are
13790 deleted.
13791
13792 A real solution to this problem might involve reference counts in
13793 bp's, and/or giving them pointers back to their referencing
13794 bpstat's, and teaching delete_breakpoint to only free a bp's
13795 storage when no more references were extent. A cheaper bandaid
13796 was chosen. */
13797 if (bpt->type == bp_none)
13798 return;
13799
13800 /* At least avoid this stale reference until the reference counting
13801 of breakpoints gets resolved. */
13802 if (bpt->related_breakpoint != bpt)
13803 {
13804 struct breakpoint *related;
13805 struct watchpoint *w;
13806
13807 if (bpt->type == bp_watchpoint_scope)
13808 w = (struct watchpoint *) bpt->related_breakpoint;
13809 else if (bpt->related_breakpoint->type == bp_watchpoint_scope)
13810 w = (struct watchpoint *) bpt;
13811 else
13812 w = NULL;
13813 if (w != NULL)
13814 watchpoint_del_at_next_stop (w);
13815
13816 /* Unlink bpt from the bpt->related_breakpoint ring. */
13817 for (related = bpt; related->related_breakpoint != bpt;
13818 related = related->related_breakpoint);
13819 related->related_breakpoint = bpt->related_breakpoint;
13820 bpt->related_breakpoint = bpt;
13821 }
13822
13823 /* watch_command_1 creates a watchpoint but only sets its number if
13824 update_watchpoint succeeds in creating its bp_locations. If there's
13825 a problem in that process, we'll be asked to delete the half-created
13826 watchpoint. In that case, don't announce the deletion. */
13827 if (bpt->number)
13828 observer_notify_breakpoint_deleted (bpt);
13829
13830 if (breakpoint_chain == bpt)
13831 breakpoint_chain = bpt->next;
13832
13833 ALL_BREAKPOINTS (b)
13834 if (b->next == bpt)
13835 {
13836 b->next = bpt->next;
13837 break;
13838 }
13839
13840 /* Be sure no bpstat's are pointing at the breakpoint after it's
13841 been freed. */
13842 /* FIXME, how can we find all bpstat's? We just check stop_bpstat
13843 in all threads for now. Note that we cannot just remove bpstats
13844 pointing at bpt from the stop_bpstat list entirely, as breakpoint
13845 commands are associated with the bpstat; if we remove it here,
13846 then the later call to bpstat_do_actions (&stop_bpstat); in
13847 event-top.c won't do anything, and temporary breakpoints with
13848 commands won't work. */
13849
13850 iterate_over_threads (bpstat_remove_breakpoint_callback, bpt);
13851
13852 /* Now that breakpoint is removed from breakpoint list, update the
13853 global location list. This will remove locations that used to
13854 belong to this breakpoint. Do this before freeing the breakpoint
13855 itself, since remove_breakpoint looks at location's owner. It
13856 might be better design to have location completely
13857 self-contained, but it's not the case now. */
13858 update_global_location_list (UGLL_DONT_INSERT);
13859
13860 bpt->ops->dtor (bpt);
13861 /* On the chance that someone will soon try again to delete this
13862 same bp, we mark it as deleted before freeing its storage. */
13863 bpt->type = bp_none;
13864 xfree (bpt);
13865 }
13866
13867 static void
13868 do_delete_breakpoint_cleanup (void *b)
13869 {
13870 delete_breakpoint ((struct breakpoint *) b);
13871 }
13872
13873 struct cleanup *
13874 make_cleanup_delete_breakpoint (struct breakpoint *b)
13875 {
13876 return make_cleanup (do_delete_breakpoint_cleanup, b);
13877 }
13878
13879 /* Iterator function to call a user-provided callback function once
13880 for each of B and its related breakpoints. */
13881
13882 static void
13883 iterate_over_related_breakpoints (struct breakpoint *b,
13884 void (*function) (struct breakpoint *,
13885 void *),
13886 void *data)
13887 {
13888 struct breakpoint *related;
13889
13890 related = b;
13891 do
13892 {
13893 struct breakpoint *next;
13894
13895 /* FUNCTION may delete RELATED. */
13896 next = related->related_breakpoint;
13897
13898 if (next == related)
13899 {
13900 /* RELATED is the last ring entry. */
13901 function (related, data);
13902
13903 /* FUNCTION may have deleted it, so we'd never reach back to
13904 B. There's nothing left to do anyway, so just break
13905 out. */
13906 break;
13907 }
13908 else
13909 function (related, data);
13910
13911 related = next;
13912 }
13913 while (related != b);
13914 }
13915
13916 static void
13917 do_delete_breakpoint (struct breakpoint *b, void *ignore)
13918 {
13919 delete_breakpoint (b);
13920 }
13921
13922 /* A callback for map_breakpoint_numbers that calls
13923 delete_breakpoint. */
13924
13925 static void
13926 do_map_delete_breakpoint (struct breakpoint *b, void *ignore)
13927 {
13928 iterate_over_related_breakpoints (b, do_delete_breakpoint, NULL);
13929 }
13930
13931 void
13932 delete_command (char *arg, int from_tty)
13933 {
13934 struct breakpoint *b, *b_tmp;
13935
13936 dont_repeat ();
13937
13938 if (arg == 0)
13939 {
13940 int breaks_to_delete = 0;
13941
13942 /* Delete all breakpoints if no argument. Do not delete
13943 internal breakpoints, these have to be deleted with an
13944 explicit breakpoint number argument. */
13945 ALL_BREAKPOINTS (b)
13946 if (user_breakpoint_p (b))
13947 {
13948 breaks_to_delete = 1;
13949 break;
13950 }
13951
13952 /* Ask user only if there are some breakpoints to delete. */
13953 if (!from_tty
13954 || (breaks_to_delete && query (_("Delete all breakpoints? "))))
13955 {
13956 ALL_BREAKPOINTS_SAFE (b, b_tmp)
13957 if (user_breakpoint_p (b))
13958 delete_breakpoint (b);
13959 }
13960 }
13961 else
13962 map_breakpoint_numbers (arg, do_map_delete_breakpoint, NULL);
13963 }
13964
13965 static int
13966 all_locations_are_pending (struct bp_location *loc)
13967 {
13968 for (; loc; loc = loc->next)
13969 if (!loc->shlib_disabled
13970 && !loc->pspace->executing_startup)
13971 return 0;
13972 return 1;
13973 }
13974
13975 /* Subroutine of update_breakpoint_locations to simplify it.
13976 Return non-zero if multiple fns in list LOC have the same name.
13977 Null names are ignored. */
13978
13979 static int
13980 ambiguous_names_p (struct bp_location *loc)
13981 {
13982 struct bp_location *l;
13983 htab_t htab = htab_create_alloc (13, htab_hash_string,
13984 (int (*) (const void *,
13985 const void *)) streq,
13986 NULL, xcalloc, xfree);
13987
13988 for (l = loc; l != NULL; l = l->next)
13989 {
13990 const char **slot;
13991 const char *name = l->function_name;
13992
13993 /* Allow for some names to be NULL, ignore them. */
13994 if (name == NULL)
13995 continue;
13996
13997 slot = (const char **) htab_find_slot (htab, (const void *) name,
13998 INSERT);
13999 /* NOTE: We can assume slot != NULL here because xcalloc never
14000 returns NULL. */
14001 if (*slot != NULL)
14002 {
14003 htab_delete (htab);
14004 return 1;
14005 }
14006 *slot = name;
14007 }
14008
14009 htab_delete (htab);
14010 return 0;
14011 }
14012
14013 /* When symbols change, it probably means the sources changed as well,
14014 and it might mean the static tracepoint markers are no longer at
14015 the same address or line numbers they used to be at last we
14016 checked. Losing your static tracepoints whenever you rebuild is
14017 undesirable. This function tries to resync/rematch gdb static
14018 tracepoints with the markers on the target, for static tracepoints
14019 that have not been set by marker id. Static tracepoint that have
14020 been set by marker id are reset by marker id in breakpoint_re_set.
14021 The heuristic is:
14022
14023 1) For a tracepoint set at a specific address, look for a marker at
14024 the old PC. If one is found there, assume to be the same marker.
14025 If the name / string id of the marker found is different from the
14026 previous known name, assume that means the user renamed the marker
14027 in the sources, and output a warning.
14028
14029 2) For a tracepoint set at a given line number, look for a marker
14030 at the new address of the old line number. If one is found there,
14031 assume to be the same marker. If the name / string id of the
14032 marker found is different from the previous known name, assume that
14033 means the user renamed the marker in the sources, and output a
14034 warning.
14035
14036 3) If a marker is no longer found at the same address or line, it
14037 may mean the marker no longer exists. But it may also just mean
14038 the code changed a bit. Maybe the user added a few lines of code
14039 that made the marker move up or down (in line number terms). Ask
14040 the target for info about the marker with the string id as we knew
14041 it. If found, update line number and address in the matching
14042 static tracepoint. This will get confused if there's more than one
14043 marker with the same ID (possible in UST, although unadvised
14044 precisely because it confuses tools). */
14045
14046 static struct symtab_and_line
14047 update_static_tracepoint (struct breakpoint *b, struct symtab_and_line sal)
14048 {
14049 struct tracepoint *tp = (struct tracepoint *) b;
14050 struct static_tracepoint_marker marker;
14051 CORE_ADDR pc;
14052
14053 pc = sal.pc;
14054 if (sal.line)
14055 find_line_pc (sal.symtab, sal.line, &pc);
14056
14057 if (target_static_tracepoint_marker_at (pc, &marker))
14058 {
14059 if (strcmp (tp->static_trace_marker_id, marker.str_id) != 0)
14060 warning (_("static tracepoint %d changed probed marker from %s to %s"),
14061 b->number,
14062 tp->static_trace_marker_id, marker.str_id);
14063
14064 xfree (tp->static_trace_marker_id);
14065 tp->static_trace_marker_id = xstrdup (marker.str_id);
14066 release_static_tracepoint_marker (&marker);
14067
14068 return sal;
14069 }
14070
14071 /* Old marker wasn't found on target at lineno. Try looking it up
14072 by string ID. */
14073 if (!sal.explicit_pc
14074 && sal.line != 0
14075 && sal.symtab != NULL
14076 && tp->static_trace_marker_id != NULL)
14077 {
14078 VEC(static_tracepoint_marker_p) *markers;
14079
14080 markers
14081 = target_static_tracepoint_markers_by_strid (tp->static_trace_marker_id);
14082
14083 if (!VEC_empty(static_tracepoint_marker_p, markers))
14084 {
14085 struct symtab_and_line sal2;
14086 struct symbol *sym;
14087 struct static_tracepoint_marker *tpmarker;
14088 struct ui_out *uiout = current_uiout;
14089 struct explicit_location explicit_loc;
14090
14091 tpmarker = VEC_index (static_tracepoint_marker_p, markers, 0);
14092
14093 xfree (tp->static_trace_marker_id);
14094 tp->static_trace_marker_id = xstrdup (tpmarker->str_id);
14095
14096 warning (_("marker for static tracepoint %d (%s) not "
14097 "found at previous line number"),
14098 b->number, tp->static_trace_marker_id);
14099
14100 init_sal (&sal2);
14101
14102 sal2.pc = tpmarker->address;
14103
14104 sal2 = find_pc_line (tpmarker->address, 0);
14105 sym = find_pc_sect_function (tpmarker->address, NULL);
14106 ui_out_text (uiout, "Now in ");
14107 if (sym)
14108 {
14109 ui_out_field_string (uiout, "func",
14110 SYMBOL_PRINT_NAME (sym));
14111 ui_out_text (uiout, " at ");
14112 }
14113 ui_out_field_string (uiout, "file",
14114 symtab_to_filename_for_display (sal2.symtab));
14115 ui_out_text (uiout, ":");
14116
14117 if (ui_out_is_mi_like_p (uiout))
14118 {
14119 const char *fullname = symtab_to_fullname (sal2.symtab);
14120
14121 ui_out_field_string (uiout, "fullname", fullname);
14122 }
14123
14124 ui_out_field_int (uiout, "line", sal2.line);
14125 ui_out_text (uiout, "\n");
14126
14127 b->loc->line_number = sal2.line;
14128 b->loc->symtab = sym != NULL ? sal2.symtab : NULL;
14129
14130 delete_event_location (b->location);
14131 initialize_explicit_location (&explicit_loc);
14132 explicit_loc.source_filename
14133 = ASTRDUP (symtab_to_filename_for_display (sal2.symtab));
14134 explicit_loc.line_offset.offset = b->loc->line_number;
14135 explicit_loc.line_offset.sign = LINE_OFFSET_NONE;
14136 b->location = new_explicit_location (&explicit_loc);
14137
14138 /* Might be nice to check if function changed, and warn if
14139 so. */
14140
14141 release_static_tracepoint_marker (tpmarker);
14142 }
14143 }
14144 return sal;
14145 }
14146
14147 /* Returns 1 iff locations A and B are sufficiently same that
14148 we don't need to report breakpoint as changed. */
14149
14150 static int
14151 locations_are_equal (struct bp_location *a, struct bp_location *b)
14152 {
14153 while (a && b)
14154 {
14155 if (a->address != b->address)
14156 return 0;
14157
14158 if (a->shlib_disabled != b->shlib_disabled)
14159 return 0;
14160
14161 if (a->enabled != b->enabled)
14162 return 0;
14163
14164 a = a->next;
14165 b = b->next;
14166 }
14167
14168 if ((a == NULL) != (b == NULL))
14169 return 0;
14170
14171 return 1;
14172 }
14173
14174 /* Create new breakpoint locations for B (a hardware or software breakpoint)
14175 based on SALS and SALS_END. If SALS_END.NELTS is not zero, then B is
14176 a ranged breakpoint. */
14177
14178 void
14179 update_breakpoint_locations (struct breakpoint *b,
14180 struct symtabs_and_lines sals,
14181 struct symtabs_and_lines sals_end)
14182 {
14183 int i;
14184 struct bp_location *existing_locations = b->loc;
14185
14186 if (sals_end.nelts != 0 && (sals.nelts != 1 || sals_end.nelts != 1))
14187 {
14188 /* Ranged breakpoints have only one start location and one end
14189 location. */
14190 b->enable_state = bp_disabled;
14191 update_global_location_list (UGLL_MAY_INSERT);
14192 printf_unfiltered (_("Could not reset ranged breakpoint %d: "
14193 "multiple locations found\n"),
14194 b->number);
14195 return;
14196 }
14197
14198 /* If there's no new locations, and all existing locations are
14199 pending, don't do anything. This optimizes the common case where
14200 all locations are in the same shared library, that was unloaded.
14201 We'd like to retain the location, so that when the library is
14202 loaded again, we don't loose the enabled/disabled status of the
14203 individual locations. */
14204 if (all_locations_are_pending (existing_locations) && sals.nelts == 0)
14205 return;
14206
14207 b->loc = NULL;
14208
14209 for (i = 0; i < sals.nelts; ++i)
14210 {
14211 struct bp_location *new_loc;
14212
14213 switch_to_program_space_and_thread (sals.sals[i].pspace);
14214
14215 new_loc = add_location_to_breakpoint (b, &(sals.sals[i]));
14216
14217 /* Reparse conditions, they might contain references to the
14218 old symtab. */
14219 if (b->cond_string != NULL)
14220 {
14221 const char *s;
14222
14223 s = b->cond_string;
14224 TRY
14225 {
14226 new_loc->cond = parse_exp_1 (&s, sals.sals[i].pc,
14227 block_for_pc (sals.sals[i].pc),
14228 0);
14229 }
14230 CATCH (e, RETURN_MASK_ERROR)
14231 {
14232 warning (_("failed to reevaluate condition "
14233 "for breakpoint %d: %s"),
14234 b->number, e.message);
14235 new_loc->enabled = 0;
14236 }
14237 END_CATCH
14238 }
14239
14240 if (sals_end.nelts)
14241 {
14242 CORE_ADDR end = find_breakpoint_range_end (sals_end.sals[0]);
14243
14244 new_loc->length = end - sals.sals[0].pc + 1;
14245 }
14246 }
14247
14248 /* If possible, carry over 'disable' status from existing
14249 breakpoints. */
14250 {
14251 struct bp_location *e = existing_locations;
14252 /* If there are multiple breakpoints with the same function name,
14253 e.g. for inline functions, comparing function names won't work.
14254 Instead compare pc addresses; this is just a heuristic as things
14255 may have moved, but in practice it gives the correct answer
14256 often enough until a better solution is found. */
14257 int have_ambiguous_names = ambiguous_names_p (b->loc);
14258
14259 for (; e; e = e->next)
14260 {
14261 if (!e->enabled && e->function_name)
14262 {
14263 struct bp_location *l = b->loc;
14264 if (have_ambiguous_names)
14265 {
14266 for (; l; l = l->next)
14267 if (breakpoint_locations_match (e, l))
14268 {
14269 l->enabled = 0;
14270 break;
14271 }
14272 }
14273 else
14274 {
14275 for (; l; l = l->next)
14276 if (l->function_name
14277 && strcmp (e->function_name, l->function_name) == 0)
14278 {
14279 l->enabled = 0;
14280 break;
14281 }
14282 }
14283 }
14284 }
14285 }
14286
14287 if (!locations_are_equal (existing_locations, b->loc))
14288 observer_notify_breakpoint_modified (b);
14289
14290 update_global_location_list (UGLL_MAY_INSERT);
14291 }
14292
14293 /* Find the SaL locations corresponding to the given LOCATION.
14294 On return, FOUND will be 1 if any SaL was found, zero otherwise. */
14295
14296 static struct symtabs_and_lines
14297 location_to_sals (struct breakpoint *b, struct event_location *location,
14298 int *found)
14299 {
14300 struct symtabs_and_lines sals = {0};
14301 struct gdb_exception exception = exception_none;
14302
14303 gdb_assert (b->ops != NULL);
14304
14305 TRY
14306 {
14307 b->ops->decode_location (b, location, &sals);
14308 }
14309 CATCH (e, RETURN_MASK_ERROR)
14310 {
14311 int not_found_and_ok = 0;
14312
14313 exception = e;
14314
14315 /* For pending breakpoints, it's expected that parsing will
14316 fail until the right shared library is loaded. User has
14317 already told to create pending breakpoints and don't need
14318 extra messages. If breakpoint is in bp_shlib_disabled
14319 state, then user already saw the message about that
14320 breakpoint being disabled, and don't want to see more
14321 errors. */
14322 if (e.error == NOT_FOUND_ERROR
14323 && (b->condition_not_parsed
14324 || (b->loc && b->loc->shlib_disabled)
14325 || (b->loc && b->loc->pspace->executing_startup)
14326 || b->enable_state == bp_disabled))
14327 not_found_and_ok = 1;
14328
14329 if (!not_found_and_ok)
14330 {
14331 /* We surely don't want to warn about the same breakpoint
14332 10 times. One solution, implemented here, is disable
14333 the breakpoint on error. Another solution would be to
14334 have separate 'warning emitted' flag. Since this
14335 happens only when a binary has changed, I don't know
14336 which approach is better. */
14337 b->enable_state = bp_disabled;
14338 throw_exception (e);
14339 }
14340 }
14341 END_CATCH
14342
14343 if (exception.reason == 0 || exception.error != NOT_FOUND_ERROR)
14344 {
14345 int i;
14346
14347 for (i = 0; i < sals.nelts; ++i)
14348 resolve_sal_pc (&sals.sals[i]);
14349 if (b->condition_not_parsed && b->extra_string != NULL)
14350 {
14351 char *cond_string, *extra_string;
14352 int thread, task;
14353
14354 find_condition_and_thread (b->extra_string, sals.sals[0].pc,
14355 &cond_string, &thread, &task,
14356 &extra_string);
14357 gdb_assert (b->cond_string == NULL);
14358 if (cond_string)
14359 b->cond_string = cond_string;
14360 b->thread = thread;
14361 b->task = task;
14362 if (extra_string)
14363 {
14364 xfree (b->extra_string);
14365 b->extra_string = extra_string;
14366 }
14367 b->condition_not_parsed = 0;
14368 }
14369
14370 if (b->type == bp_static_tracepoint && !strace_marker_p (b))
14371 sals.sals[0] = update_static_tracepoint (b, sals.sals[0]);
14372
14373 *found = 1;
14374 }
14375 else
14376 *found = 0;
14377
14378 return sals;
14379 }
14380
14381 /* The default re_set method, for typical hardware or software
14382 breakpoints. Reevaluate the breakpoint and recreate its
14383 locations. */
14384
14385 static void
14386 breakpoint_re_set_default (struct breakpoint *b)
14387 {
14388 int found;
14389 struct symtabs_and_lines sals, sals_end;
14390 struct symtabs_and_lines expanded = {0};
14391 struct symtabs_and_lines expanded_end = {0};
14392
14393 sals = location_to_sals (b, b->location, &found);
14394 if (found)
14395 {
14396 make_cleanup (xfree, sals.sals);
14397 expanded = sals;
14398 }
14399
14400 if (b->location_range_end != NULL)
14401 {
14402 sals_end = location_to_sals (b, b->location_range_end, &found);
14403 if (found)
14404 {
14405 make_cleanup (xfree, sals_end.sals);
14406 expanded_end = sals_end;
14407 }
14408 }
14409
14410 update_breakpoint_locations (b, expanded, expanded_end);
14411 }
14412
14413 /* Default method for creating SALs from an address string. It basically
14414 calls parse_breakpoint_sals. Return 1 for success, zero for failure. */
14415
14416 static void
14417 create_sals_from_location_default (const struct event_location *location,
14418 struct linespec_result *canonical,
14419 enum bptype type_wanted)
14420 {
14421 parse_breakpoint_sals (location, canonical);
14422 }
14423
14424 /* Call create_breakpoints_sal for the given arguments. This is the default
14425 function for the `create_breakpoints_sal' method of
14426 breakpoint_ops. */
14427
14428 static void
14429 create_breakpoints_sal_default (struct gdbarch *gdbarch,
14430 struct linespec_result *canonical,
14431 char *cond_string,
14432 char *extra_string,
14433 enum bptype type_wanted,
14434 enum bpdisp disposition,
14435 int thread,
14436 int task, int ignore_count,
14437 const struct breakpoint_ops *ops,
14438 int from_tty, int enabled,
14439 int internal, unsigned flags)
14440 {
14441 create_breakpoints_sal (gdbarch, canonical, cond_string,
14442 extra_string,
14443 type_wanted, disposition,
14444 thread, task, ignore_count, ops, from_tty,
14445 enabled, internal, flags);
14446 }
14447
14448 /* Decode the line represented by S by calling decode_line_full. This is the
14449 default function for the `decode_location' method of breakpoint_ops. */
14450
14451 static void
14452 decode_location_default (struct breakpoint *b,
14453 const struct event_location *location,
14454 struct symtabs_and_lines *sals)
14455 {
14456 struct linespec_result canonical;
14457
14458 init_linespec_result (&canonical);
14459 decode_line_full (location, DECODE_LINE_FUNFIRSTLINE,
14460 (struct symtab *) NULL, 0,
14461 &canonical, multiple_symbols_all,
14462 b->filter);
14463
14464 /* We should get 0 or 1 resulting SALs. */
14465 gdb_assert (VEC_length (linespec_sals, canonical.sals) < 2);
14466
14467 if (VEC_length (linespec_sals, canonical.sals) > 0)
14468 {
14469 struct linespec_sals *lsal;
14470
14471 lsal = VEC_index (linespec_sals, canonical.sals, 0);
14472 *sals = lsal->sals;
14473 /* Arrange it so the destructor does not free the
14474 contents. */
14475 lsal->sals.sals = NULL;
14476 }
14477
14478 destroy_linespec_result (&canonical);
14479 }
14480
14481 /* Prepare the global context for a re-set of breakpoint B. */
14482
14483 static struct cleanup *
14484 prepare_re_set_context (struct breakpoint *b)
14485 {
14486 struct cleanup *cleanups;
14487
14488 input_radix = b->input_radix;
14489 cleanups = save_current_space_and_thread ();
14490 if (b->pspace != NULL)
14491 switch_to_program_space_and_thread (b->pspace);
14492 set_language (b->language);
14493
14494 return cleanups;
14495 }
14496
14497 /* Reset a breakpoint given it's struct breakpoint * BINT.
14498 The value we return ends up being the return value from catch_errors.
14499 Unused in this case. */
14500
14501 static int
14502 breakpoint_re_set_one (void *bint)
14503 {
14504 /* Get past catch_errs. */
14505 struct breakpoint *b = (struct breakpoint *) bint;
14506 struct cleanup *cleanups;
14507
14508 cleanups = prepare_re_set_context (b);
14509 b->ops->re_set (b);
14510 do_cleanups (cleanups);
14511 return 0;
14512 }
14513
14514 /* Re-set all breakpoints after symbols have been re-loaded. */
14515 void
14516 breakpoint_re_set (void)
14517 {
14518 struct breakpoint *b, *b_tmp;
14519 enum language save_language;
14520 int save_input_radix;
14521 struct cleanup *old_chain;
14522
14523 save_language = current_language->la_language;
14524 save_input_radix = input_radix;
14525 old_chain = save_current_program_space ();
14526
14527 ALL_BREAKPOINTS_SAFE (b, b_tmp)
14528 {
14529 /* Format possible error msg. */
14530 char *message = xstrprintf ("Error in re-setting breakpoint %d: ",
14531 b->number);
14532 struct cleanup *cleanups = make_cleanup (xfree, message);
14533 catch_errors (breakpoint_re_set_one, b, message, RETURN_MASK_ALL);
14534 do_cleanups (cleanups);
14535 }
14536 set_language (save_language);
14537 input_radix = save_input_radix;
14538
14539 jit_breakpoint_re_set ();
14540
14541 do_cleanups (old_chain);
14542
14543 create_overlay_event_breakpoint ();
14544 create_longjmp_master_breakpoint ();
14545 create_std_terminate_master_breakpoint ();
14546 create_exception_master_breakpoint ();
14547 }
14548 \f
14549 /* Reset the thread number of this breakpoint:
14550
14551 - If the breakpoint is for all threads, leave it as-is.
14552 - Else, reset it to the current thread for inferior_ptid. */
14553 void
14554 breakpoint_re_set_thread (struct breakpoint *b)
14555 {
14556 if (b->thread != -1)
14557 {
14558 if (in_thread_list (inferior_ptid))
14559 b->thread = pid_to_thread_id (inferior_ptid);
14560
14561 /* We're being called after following a fork. The new fork is
14562 selected as current, and unless this was a vfork will have a
14563 different program space from the original thread. Reset that
14564 as well. */
14565 b->loc->pspace = current_program_space;
14566 }
14567 }
14568
14569 /* Set ignore-count of breakpoint number BPTNUM to COUNT.
14570 If from_tty is nonzero, it prints a message to that effect,
14571 which ends with a period (no newline). */
14572
14573 void
14574 set_ignore_count (int bptnum, int count, int from_tty)
14575 {
14576 struct breakpoint *b;
14577
14578 if (count < 0)
14579 count = 0;
14580
14581 ALL_BREAKPOINTS (b)
14582 if (b->number == bptnum)
14583 {
14584 if (is_tracepoint (b))
14585 {
14586 if (from_tty && count != 0)
14587 printf_filtered (_("Ignore count ignored for tracepoint %d."),
14588 bptnum);
14589 return;
14590 }
14591
14592 b->ignore_count = count;
14593 if (from_tty)
14594 {
14595 if (count == 0)
14596 printf_filtered (_("Will stop next time "
14597 "breakpoint %d is reached."),
14598 bptnum);
14599 else if (count == 1)
14600 printf_filtered (_("Will ignore next crossing of breakpoint %d."),
14601 bptnum);
14602 else
14603 printf_filtered (_("Will ignore next %d "
14604 "crossings of breakpoint %d."),
14605 count, bptnum);
14606 }
14607 observer_notify_breakpoint_modified (b);
14608 return;
14609 }
14610
14611 error (_("No breakpoint number %d."), bptnum);
14612 }
14613
14614 /* Command to set ignore-count of breakpoint N to COUNT. */
14615
14616 static void
14617 ignore_command (char *args, int from_tty)
14618 {
14619 char *p = args;
14620 int num;
14621
14622 if (p == 0)
14623 error_no_arg (_("a breakpoint number"));
14624
14625 num = get_number (&p);
14626 if (num == 0)
14627 error (_("bad breakpoint number: '%s'"), args);
14628 if (*p == 0)
14629 error (_("Second argument (specified ignore-count) is missing."));
14630
14631 set_ignore_count (num,
14632 longest_to_int (value_as_long (parse_and_eval (p))),
14633 from_tty);
14634 if (from_tty)
14635 printf_filtered ("\n");
14636 }
14637 \f
14638 /* Call FUNCTION on each of the breakpoints
14639 whose numbers are given in ARGS. */
14640
14641 static void
14642 map_breakpoint_numbers (char *args, void (*function) (struct breakpoint *,
14643 void *),
14644 void *data)
14645 {
14646 int num;
14647 struct breakpoint *b, *tmp;
14648 int match;
14649 struct get_number_or_range_state state;
14650
14651 if (args == 0 || *args == '\0')
14652 error_no_arg (_("one or more breakpoint numbers"));
14653
14654 init_number_or_range (&state, args);
14655
14656 while (!state.finished)
14657 {
14658 const char *p = state.string;
14659
14660 match = 0;
14661
14662 num = get_number_or_range (&state);
14663 if (num == 0)
14664 {
14665 warning (_("bad breakpoint number at or near '%s'"), p);
14666 }
14667 else
14668 {
14669 ALL_BREAKPOINTS_SAFE (b, tmp)
14670 if (b->number == num)
14671 {
14672 match = 1;
14673 function (b, data);
14674 break;
14675 }
14676 if (match == 0)
14677 printf_unfiltered (_("No breakpoint number %d.\n"), num);
14678 }
14679 }
14680 }
14681
14682 static struct bp_location *
14683 find_location_by_number (char *number)
14684 {
14685 char *dot = strchr (number, '.');
14686 char *p1;
14687 int bp_num;
14688 int loc_num;
14689 struct breakpoint *b;
14690 struct bp_location *loc;
14691
14692 *dot = '\0';
14693
14694 p1 = number;
14695 bp_num = get_number (&p1);
14696 if (bp_num == 0)
14697 error (_("Bad breakpoint number '%s'"), number);
14698
14699 ALL_BREAKPOINTS (b)
14700 if (b->number == bp_num)
14701 {
14702 break;
14703 }
14704
14705 if (!b || b->number != bp_num)
14706 error (_("Bad breakpoint number '%s'"), number);
14707
14708 p1 = dot+1;
14709 loc_num = get_number (&p1);
14710 if (loc_num == 0)
14711 error (_("Bad breakpoint location number '%s'"), number);
14712
14713 --loc_num;
14714 loc = b->loc;
14715 for (;loc_num && loc; --loc_num, loc = loc->next)
14716 ;
14717 if (!loc)
14718 error (_("Bad breakpoint location number '%s'"), dot+1);
14719
14720 return loc;
14721 }
14722
14723
14724 /* Set ignore-count of breakpoint number BPTNUM to COUNT.
14725 If from_tty is nonzero, it prints a message to that effect,
14726 which ends with a period (no newline). */
14727
14728 void
14729 disable_breakpoint (struct breakpoint *bpt)
14730 {
14731 /* Never disable a watchpoint scope breakpoint; we want to
14732 hit them when we leave scope so we can delete both the
14733 watchpoint and its scope breakpoint at that time. */
14734 if (bpt->type == bp_watchpoint_scope)
14735 return;
14736
14737 bpt->enable_state = bp_disabled;
14738
14739 /* Mark breakpoint locations modified. */
14740 mark_breakpoint_modified (bpt);
14741
14742 if (target_supports_enable_disable_tracepoint ()
14743 && current_trace_status ()->running && is_tracepoint (bpt))
14744 {
14745 struct bp_location *location;
14746
14747 for (location = bpt->loc; location; location = location->next)
14748 target_disable_tracepoint (location);
14749 }
14750
14751 update_global_location_list (UGLL_DONT_INSERT);
14752
14753 observer_notify_breakpoint_modified (bpt);
14754 }
14755
14756 /* A callback for iterate_over_related_breakpoints. */
14757
14758 static void
14759 do_disable_breakpoint (struct breakpoint *b, void *ignore)
14760 {
14761 disable_breakpoint (b);
14762 }
14763
14764 /* A callback for map_breakpoint_numbers that calls
14765 disable_breakpoint. */
14766
14767 static void
14768 do_map_disable_breakpoint (struct breakpoint *b, void *ignore)
14769 {
14770 iterate_over_related_breakpoints (b, do_disable_breakpoint, NULL);
14771 }
14772
14773 static void
14774 disable_command (char *args, int from_tty)
14775 {
14776 if (args == 0)
14777 {
14778 struct breakpoint *bpt;
14779
14780 ALL_BREAKPOINTS (bpt)
14781 if (user_breakpoint_p (bpt))
14782 disable_breakpoint (bpt);
14783 }
14784 else
14785 {
14786 char *num = extract_arg (&args);
14787
14788 while (num)
14789 {
14790 if (strchr (num, '.'))
14791 {
14792 struct bp_location *loc = find_location_by_number (num);
14793
14794 if (loc)
14795 {
14796 if (loc->enabled)
14797 {
14798 loc->enabled = 0;
14799 mark_breakpoint_location_modified (loc);
14800 }
14801 if (target_supports_enable_disable_tracepoint ()
14802 && current_trace_status ()->running && loc->owner
14803 && is_tracepoint (loc->owner))
14804 target_disable_tracepoint (loc);
14805 }
14806 update_global_location_list (UGLL_DONT_INSERT);
14807 }
14808 else
14809 map_breakpoint_numbers (num, do_map_disable_breakpoint, NULL);
14810 num = extract_arg (&args);
14811 }
14812 }
14813 }
14814
14815 static void
14816 enable_breakpoint_disp (struct breakpoint *bpt, enum bpdisp disposition,
14817 int count)
14818 {
14819 int target_resources_ok;
14820
14821 if (bpt->type == bp_hardware_breakpoint)
14822 {
14823 int i;
14824 i = hw_breakpoint_used_count ();
14825 target_resources_ok =
14826 target_can_use_hardware_watchpoint (bp_hardware_breakpoint,
14827 i + 1, 0);
14828 if (target_resources_ok == 0)
14829 error (_("No hardware breakpoint support in the target."));
14830 else if (target_resources_ok < 0)
14831 error (_("Hardware breakpoints used exceeds limit."));
14832 }
14833
14834 if (is_watchpoint (bpt))
14835 {
14836 /* Initialize it just to avoid a GCC false warning. */
14837 enum enable_state orig_enable_state = bp_disabled;
14838
14839 TRY
14840 {
14841 struct watchpoint *w = (struct watchpoint *) bpt;
14842
14843 orig_enable_state = bpt->enable_state;
14844 bpt->enable_state = bp_enabled;
14845 update_watchpoint (w, 1 /* reparse */);
14846 }
14847 CATCH (e, RETURN_MASK_ALL)
14848 {
14849 bpt->enable_state = orig_enable_state;
14850 exception_fprintf (gdb_stderr, e, _("Cannot enable watchpoint %d: "),
14851 bpt->number);
14852 return;
14853 }
14854 END_CATCH
14855 }
14856
14857 bpt->enable_state = bp_enabled;
14858
14859 /* Mark breakpoint locations modified. */
14860 mark_breakpoint_modified (bpt);
14861
14862 if (target_supports_enable_disable_tracepoint ()
14863 && current_trace_status ()->running && is_tracepoint (bpt))
14864 {
14865 struct bp_location *location;
14866
14867 for (location = bpt->loc; location; location = location->next)
14868 target_enable_tracepoint (location);
14869 }
14870
14871 bpt->disposition = disposition;
14872 bpt->enable_count = count;
14873 update_global_location_list (UGLL_MAY_INSERT);
14874
14875 observer_notify_breakpoint_modified (bpt);
14876 }
14877
14878
14879 void
14880 enable_breakpoint (struct breakpoint *bpt)
14881 {
14882 enable_breakpoint_disp (bpt, bpt->disposition, 0);
14883 }
14884
14885 static void
14886 do_enable_breakpoint (struct breakpoint *bpt, void *arg)
14887 {
14888 enable_breakpoint (bpt);
14889 }
14890
14891 /* A callback for map_breakpoint_numbers that calls
14892 enable_breakpoint. */
14893
14894 static void
14895 do_map_enable_breakpoint (struct breakpoint *b, void *ignore)
14896 {
14897 iterate_over_related_breakpoints (b, do_enable_breakpoint, NULL);
14898 }
14899
14900 /* The enable command enables the specified breakpoints (or all defined
14901 breakpoints) so they once again become (or continue to be) effective
14902 in stopping the inferior. */
14903
14904 static void
14905 enable_command (char *args, int from_tty)
14906 {
14907 if (args == 0)
14908 {
14909 struct breakpoint *bpt;
14910
14911 ALL_BREAKPOINTS (bpt)
14912 if (user_breakpoint_p (bpt))
14913 enable_breakpoint (bpt);
14914 }
14915 else
14916 {
14917 char *num = extract_arg (&args);
14918
14919 while (num)
14920 {
14921 if (strchr (num, '.'))
14922 {
14923 struct bp_location *loc = find_location_by_number (num);
14924
14925 if (loc)
14926 {
14927 if (!loc->enabled)
14928 {
14929 loc->enabled = 1;
14930 mark_breakpoint_location_modified (loc);
14931 }
14932 if (target_supports_enable_disable_tracepoint ()
14933 && current_trace_status ()->running && loc->owner
14934 && is_tracepoint (loc->owner))
14935 target_enable_tracepoint (loc);
14936 }
14937 update_global_location_list (UGLL_MAY_INSERT);
14938 }
14939 else
14940 map_breakpoint_numbers (num, do_map_enable_breakpoint, NULL);
14941 num = extract_arg (&args);
14942 }
14943 }
14944 }
14945
14946 /* This struct packages up disposition data for application to multiple
14947 breakpoints. */
14948
14949 struct disp_data
14950 {
14951 enum bpdisp disp;
14952 int count;
14953 };
14954
14955 static void
14956 do_enable_breakpoint_disp (struct breakpoint *bpt, void *arg)
14957 {
14958 struct disp_data disp_data = *(struct disp_data *) arg;
14959
14960 enable_breakpoint_disp (bpt, disp_data.disp, disp_data.count);
14961 }
14962
14963 static void
14964 do_map_enable_once_breakpoint (struct breakpoint *bpt, void *ignore)
14965 {
14966 struct disp_data disp = { disp_disable, 1 };
14967
14968 iterate_over_related_breakpoints (bpt, do_enable_breakpoint_disp, &disp);
14969 }
14970
14971 static void
14972 enable_once_command (char *args, int from_tty)
14973 {
14974 map_breakpoint_numbers (args, do_map_enable_once_breakpoint, NULL);
14975 }
14976
14977 static void
14978 do_map_enable_count_breakpoint (struct breakpoint *bpt, void *countptr)
14979 {
14980 struct disp_data disp = { disp_disable, *(int *) countptr };
14981
14982 iterate_over_related_breakpoints (bpt, do_enable_breakpoint_disp, &disp);
14983 }
14984
14985 static void
14986 enable_count_command (char *args, int from_tty)
14987 {
14988 int count;
14989
14990 if (args == NULL)
14991 error_no_arg (_("hit count"));
14992
14993 count = get_number (&args);
14994
14995 map_breakpoint_numbers (args, do_map_enable_count_breakpoint, &count);
14996 }
14997
14998 static void
14999 do_map_enable_delete_breakpoint (struct breakpoint *bpt, void *ignore)
15000 {
15001 struct disp_data disp = { disp_del, 1 };
15002
15003 iterate_over_related_breakpoints (bpt, do_enable_breakpoint_disp, &disp);
15004 }
15005
15006 static void
15007 enable_delete_command (char *args, int from_tty)
15008 {
15009 map_breakpoint_numbers (args, do_map_enable_delete_breakpoint, NULL);
15010 }
15011 \f
15012 static void
15013 set_breakpoint_cmd (char *args, int from_tty)
15014 {
15015 }
15016
15017 static void
15018 show_breakpoint_cmd (char *args, int from_tty)
15019 {
15020 }
15021
15022 /* Invalidate last known value of any hardware watchpoint if
15023 the memory which that value represents has been written to by
15024 GDB itself. */
15025
15026 static void
15027 invalidate_bp_value_on_memory_change (struct inferior *inferior,
15028 CORE_ADDR addr, ssize_t len,
15029 const bfd_byte *data)
15030 {
15031 struct breakpoint *bp;
15032
15033 ALL_BREAKPOINTS (bp)
15034 if (bp->enable_state == bp_enabled
15035 && bp->type == bp_hardware_watchpoint)
15036 {
15037 struct watchpoint *wp = (struct watchpoint *) bp;
15038
15039 if (wp->val_valid && wp->val)
15040 {
15041 struct bp_location *loc;
15042
15043 for (loc = bp->loc; loc != NULL; loc = loc->next)
15044 if (loc->loc_type == bp_loc_hardware_watchpoint
15045 && loc->address + loc->length > addr
15046 && addr + len > loc->address)
15047 {
15048 value_free (wp->val);
15049 wp->val = NULL;
15050 wp->val_valid = 0;
15051 }
15052 }
15053 }
15054 }
15055
15056 /* Create and insert a breakpoint for software single step. */
15057
15058 void
15059 insert_single_step_breakpoint (struct gdbarch *gdbarch,
15060 struct address_space *aspace,
15061 CORE_ADDR next_pc)
15062 {
15063 struct thread_info *tp = inferior_thread ();
15064 struct symtab_and_line sal;
15065 CORE_ADDR pc = next_pc;
15066
15067 if (tp->control.single_step_breakpoints == NULL)
15068 {
15069 tp->control.single_step_breakpoints
15070 = new_single_step_breakpoint (tp->num, gdbarch);
15071 }
15072
15073 sal = find_pc_line (pc, 0);
15074 sal.pc = pc;
15075 sal.section = find_pc_overlay (pc);
15076 sal.explicit_pc = 1;
15077 add_location_to_breakpoint (tp->control.single_step_breakpoints, &sal);
15078
15079 update_global_location_list (UGLL_INSERT);
15080 }
15081
15082 /* See breakpoint.h. */
15083
15084 int
15085 breakpoint_has_location_inserted_here (struct breakpoint *bp,
15086 struct address_space *aspace,
15087 CORE_ADDR pc)
15088 {
15089 struct bp_location *loc;
15090
15091 for (loc = bp->loc; loc != NULL; loc = loc->next)
15092 if (loc->inserted
15093 && breakpoint_location_address_match (loc, aspace, pc))
15094 return 1;
15095
15096 return 0;
15097 }
15098
15099 /* Check whether a software single-step breakpoint is inserted at
15100 PC. */
15101
15102 int
15103 single_step_breakpoint_inserted_here_p (struct address_space *aspace,
15104 CORE_ADDR pc)
15105 {
15106 struct breakpoint *bpt;
15107
15108 ALL_BREAKPOINTS (bpt)
15109 {
15110 if (bpt->type == bp_single_step
15111 && breakpoint_has_location_inserted_here (bpt, aspace, pc))
15112 return 1;
15113 }
15114 return 0;
15115 }
15116
15117 /* Tracepoint-specific operations. */
15118
15119 /* Set tracepoint count to NUM. */
15120 static void
15121 set_tracepoint_count (int num)
15122 {
15123 tracepoint_count = num;
15124 set_internalvar_integer (lookup_internalvar ("tpnum"), num);
15125 }
15126
15127 static void
15128 trace_command (char *arg, int from_tty)
15129 {
15130 struct breakpoint_ops *ops;
15131 struct event_location *location;
15132 struct cleanup *back_to;
15133
15134 location = string_to_event_location (&arg, current_language);
15135 back_to = make_cleanup_delete_event_location (location);
15136 if (location != NULL
15137 && event_location_type (location) == PROBE_LOCATION)
15138 ops = &tracepoint_probe_breakpoint_ops;
15139 else
15140 ops = &tracepoint_breakpoint_ops;
15141
15142 create_breakpoint (get_current_arch (),
15143 location,
15144 NULL, 0, arg, 1 /* parse arg */,
15145 0 /* tempflag */,
15146 bp_tracepoint /* type_wanted */,
15147 0 /* Ignore count */,
15148 pending_break_support,
15149 ops,
15150 from_tty,
15151 1 /* enabled */,
15152 0 /* internal */, 0);
15153 do_cleanups (back_to);
15154 }
15155
15156 static void
15157 ftrace_command (char *arg, int from_tty)
15158 {
15159 struct event_location *location;
15160 struct cleanup *back_to;
15161
15162 location = string_to_event_location (&arg, current_language);
15163 back_to = make_cleanup_delete_event_location (location);
15164 create_breakpoint (get_current_arch (),
15165 location,
15166 NULL, 0, arg, 1 /* parse arg */,
15167 0 /* tempflag */,
15168 bp_fast_tracepoint /* type_wanted */,
15169 0 /* Ignore count */,
15170 pending_break_support,
15171 &tracepoint_breakpoint_ops,
15172 from_tty,
15173 1 /* enabled */,
15174 0 /* internal */, 0);
15175 do_cleanups (back_to);
15176 }
15177
15178 /* strace command implementation. Creates a static tracepoint. */
15179
15180 static void
15181 strace_command (char *arg, int from_tty)
15182 {
15183 struct breakpoint_ops *ops;
15184 struct event_location *location;
15185 struct cleanup *back_to;
15186
15187 /* Decide if we are dealing with a static tracepoint marker (`-m'),
15188 or with a normal static tracepoint. */
15189 if (arg && startswith (arg, "-m") && isspace (arg[2]))
15190 {
15191 ops = &strace_marker_breakpoint_ops;
15192 location = new_linespec_location (&arg);
15193 }
15194 else
15195 {
15196 ops = &tracepoint_breakpoint_ops;
15197 location = string_to_event_location (&arg, current_language);
15198 }
15199
15200 back_to = make_cleanup_delete_event_location (location);
15201 create_breakpoint (get_current_arch (),
15202 location,
15203 NULL, 0, arg, 1 /* parse arg */,
15204 0 /* tempflag */,
15205 bp_static_tracepoint /* type_wanted */,
15206 0 /* Ignore count */,
15207 pending_break_support,
15208 ops,
15209 from_tty,
15210 1 /* enabled */,
15211 0 /* internal */, 0);
15212 do_cleanups (back_to);
15213 }
15214
15215 /* Set up a fake reader function that gets command lines from a linked
15216 list that was acquired during tracepoint uploading. */
15217
15218 static struct uploaded_tp *this_utp;
15219 static int next_cmd;
15220
15221 static char *
15222 read_uploaded_action (void)
15223 {
15224 char *rslt;
15225
15226 VEC_iterate (char_ptr, this_utp->cmd_strings, next_cmd, rslt);
15227
15228 next_cmd++;
15229
15230 return rslt;
15231 }
15232
15233 /* Given information about a tracepoint as recorded on a target (which
15234 can be either a live system or a trace file), attempt to create an
15235 equivalent GDB tracepoint. This is not a reliable process, since
15236 the target does not necessarily have all the information used when
15237 the tracepoint was originally defined. */
15238
15239 struct tracepoint *
15240 create_tracepoint_from_upload (struct uploaded_tp *utp)
15241 {
15242 char *addr_str, small_buf[100];
15243 struct tracepoint *tp;
15244 struct event_location *location;
15245 struct cleanup *cleanup;
15246
15247 if (utp->at_string)
15248 addr_str = utp->at_string;
15249 else
15250 {
15251 /* In the absence of a source location, fall back to raw
15252 address. Since there is no way to confirm that the address
15253 means the same thing as when the trace was started, warn the
15254 user. */
15255 warning (_("Uploaded tracepoint %d has no "
15256 "source location, using raw address"),
15257 utp->number);
15258 xsnprintf (small_buf, sizeof (small_buf), "*%s", hex_string (utp->addr));
15259 addr_str = small_buf;
15260 }
15261
15262 /* There's not much we can do with a sequence of bytecodes. */
15263 if (utp->cond && !utp->cond_string)
15264 warning (_("Uploaded tracepoint %d condition "
15265 "has no source form, ignoring it"),
15266 utp->number);
15267
15268 location = string_to_event_location (&addr_str, current_language);
15269 cleanup = make_cleanup_delete_event_location (location);
15270 if (!create_breakpoint (get_current_arch (),
15271 location,
15272 utp->cond_string, -1, addr_str,
15273 0 /* parse cond/thread */,
15274 0 /* tempflag */,
15275 utp->type /* type_wanted */,
15276 0 /* Ignore count */,
15277 pending_break_support,
15278 &tracepoint_breakpoint_ops,
15279 0 /* from_tty */,
15280 utp->enabled /* enabled */,
15281 0 /* internal */,
15282 CREATE_BREAKPOINT_FLAGS_INSERTED))
15283 {
15284 do_cleanups (cleanup);
15285 return NULL;
15286 }
15287
15288 do_cleanups (cleanup);
15289
15290 /* Get the tracepoint we just created. */
15291 tp = get_tracepoint (tracepoint_count);
15292 gdb_assert (tp != NULL);
15293
15294 if (utp->pass > 0)
15295 {
15296 xsnprintf (small_buf, sizeof (small_buf), "%d %d", utp->pass,
15297 tp->base.number);
15298
15299 trace_pass_command (small_buf, 0);
15300 }
15301
15302 /* If we have uploaded versions of the original commands, set up a
15303 special-purpose "reader" function and call the usual command line
15304 reader, then pass the result to the breakpoint command-setting
15305 function. */
15306 if (!VEC_empty (char_ptr, utp->cmd_strings))
15307 {
15308 struct command_line *cmd_list;
15309
15310 this_utp = utp;
15311 next_cmd = 0;
15312
15313 cmd_list = read_command_lines_1 (read_uploaded_action, 1, NULL, NULL);
15314
15315 breakpoint_set_commands (&tp->base, cmd_list);
15316 }
15317 else if (!VEC_empty (char_ptr, utp->actions)
15318 || !VEC_empty (char_ptr, utp->step_actions))
15319 warning (_("Uploaded tracepoint %d actions "
15320 "have no source form, ignoring them"),
15321 utp->number);
15322
15323 /* Copy any status information that might be available. */
15324 tp->base.hit_count = utp->hit_count;
15325 tp->traceframe_usage = utp->traceframe_usage;
15326
15327 return tp;
15328 }
15329
15330 /* Print information on tracepoint number TPNUM_EXP, or all if
15331 omitted. */
15332
15333 static void
15334 tracepoints_info (char *args, int from_tty)
15335 {
15336 struct ui_out *uiout = current_uiout;
15337 int num_printed;
15338
15339 num_printed = breakpoint_1 (args, 0, is_tracepoint);
15340
15341 if (num_printed == 0)
15342 {
15343 if (args == NULL || *args == '\0')
15344 ui_out_message (uiout, 0, "No tracepoints.\n");
15345 else
15346 ui_out_message (uiout, 0, "No tracepoint matching '%s'.\n", args);
15347 }
15348
15349 default_collect_info ();
15350 }
15351
15352 /* The 'enable trace' command enables tracepoints.
15353 Not supported by all targets. */
15354 static void
15355 enable_trace_command (char *args, int from_tty)
15356 {
15357 enable_command (args, from_tty);
15358 }
15359
15360 /* The 'disable trace' command disables tracepoints.
15361 Not supported by all targets. */
15362 static void
15363 disable_trace_command (char *args, int from_tty)
15364 {
15365 disable_command (args, from_tty);
15366 }
15367
15368 /* Remove a tracepoint (or all if no argument). */
15369 static void
15370 delete_trace_command (char *arg, int from_tty)
15371 {
15372 struct breakpoint *b, *b_tmp;
15373
15374 dont_repeat ();
15375
15376 if (arg == 0)
15377 {
15378 int breaks_to_delete = 0;
15379
15380 /* Delete all breakpoints if no argument.
15381 Do not delete internal or call-dummy breakpoints, these
15382 have to be deleted with an explicit breakpoint number
15383 argument. */
15384 ALL_TRACEPOINTS (b)
15385 if (is_tracepoint (b) && user_breakpoint_p (b))
15386 {
15387 breaks_to_delete = 1;
15388 break;
15389 }
15390
15391 /* Ask user only if there are some breakpoints to delete. */
15392 if (!from_tty
15393 || (breaks_to_delete && query (_("Delete all tracepoints? "))))
15394 {
15395 ALL_BREAKPOINTS_SAFE (b, b_tmp)
15396 if (is_tracepoint (b) && user_breakpoint_p (b))
15397 delete_breakpoint (b);
15398 }
15399 }
15400 else
15401 map_breakpoint_numbers (arg, do_map_delete_breakpoint, NULL);
15402 }
15403
15404 /* Helper function for trace_pass_command. */
15405
15406 static void
15407 trace_pass_set_count (struct tracepoint *tp, int count, int from_tty)
15408 {
15409 tp->pass_count = count;
15410 observer_notify_breakpoint_modified (&tp->base);
15411 if (from_tty)
15412 printf_filtered (_("Setting tracepoint %d's passcount to %d\n"),
15413 tp->base.number, count);
15414 }
15415
15416 /* Set passcount for tracepoint.
15417
15418 First command argument is passcount, second is tracepoint number.
15419 If tracepoint number omitted, apply to most recently defined.
15420 Also accepts special argument "all". */
15421
15422 static void
15423 trace_pass_command (char *args, int from_tty)
15424 {
15425 struct tracepoint *t1;
15426 unsigned int count;
15427
15428 if (args == 0 || *args == 0)
15429 error (_("passcount command requires an "
15430 "argument (count + optional TP num)"));
15431
15432 count = strtoul (args, &args, 10); /* Count comes first, then TP num. */
15433
15434 args = skip_spaces (args);
15435 if (*args && strncasecmp (args, "all", 3) == 0)
15436 {
15437 struct breakpoint *b;
15438
15439 args += 3; /* Skip special argument "all". */
15440 if (*args)
15441 error (_("Junk at end of arguments."));
15442
15443 ALL_TRACEPOINTS (b)
15444 {
15445 t1 = (struct tracepoint *) b;
15446 trace_pass_set_count (t1, count, from_tty);
15447 }
15448 }
15449 else if (*args == '\0')
15450 {
15451 t1 = get_tracepoint_by_number (&args, NULL);
15452 if (t1)
15453 trace_pass_set_count (t1, count, from_tty);
15454 }
15455 else
15456 {
15457 struct get_number_or_range_state state;
15458
15459 init_number_or_range (&state, args);
15460 while (!state.finished)
15461 {
15462 t1 = get_tracepoint_by_number (&args, &state);
15463 if (t1)
15464 trace_pass_set_count (t1, count, from_tty);
15465 }
15466 }
15467 }
15468
15469 struct tracepoint *
15470 get_tracepoint (int num)
15471 {
15472 struct breakpoint *t;
15473
15474 ALL_TRACEPOINTS (t)
15475 if (t->number == num)
15476 return (struct tracepoint *) t;
15477
15478 return NULL;
15479 }
15480
15481 /* Find the tracepoint with the given target-side number (which may be
15482 different from the tracepoint number after disconnecting and
15483 reconnecting). */
15484
15485 struct tracepoint *
15486 get_tracepoint_by_number_on_target (int num)
15487 {
15488 struct breakpoint *b;
15489
15490 ALL_TRACEPOINTS (b)
15491 {
15492 struct tracepoint *t = (struct tracepoint *) b;
15493
15494 if (t->number_on_target == num)
15495 return t;
15496 }
15497
15498 return NULL;
15499 }
15500
15501 /* Utility: parse a tracepoint number and look it up in the list.
15502 If STATE is not NULL, use, get_number_or_range_state and ignore ARG.
15503 If the argument is missing, the most recent tracepoint
15504 (tracepoint_count) is returned. */
15505
15506 struct tracepoint *
15507 get_tracepoint_by_number (char **arg,
15508 struct get_number_or_range_state *state)
15509 {
15510 struct breakpoint *t;
15511 int tpnum;
15512 char *instring = arg == NULL ? NULL : *arg;
15513
15514 if (state)
15515 {
15516 gdb_assert (!state->finished);
15517 tpnum = get_number_or_range (state);
15518 }
15519 else if (arg == NULL || *arg == NULL || ! **arg)
15520 tpnum = tracepoint_count;
15521 else
15522 tpnum = get_number (arg);
15523
15524 if (tpnum <= 0)
15525 {
15526 if (instring && *instring)
15527 printf_filtered (_("bad tracepoint number at or near '%s'\n"),
15528 instring);
15529 else
15530 printf_filtered (_("No previous tracepoint\n"));
15531 return NULL;
15532 }
15533
15534 ALL_TRACEPOINTS (t)
15535 if (t->number == tpnum)
15536 {
15537 return (struct tracepoint *) t;
15538 }
15539
15540 printf_unfiltered ("No tracepoint number %d.\n", tpnum);
15541 return NULL;
15542 }
15543
15544 void
15545 print_recreate_thread (struct breakpoint *b, struct ui_file *fp)
15546 {
15547 if (b->thread != -1)
15548 fprintf_unfiltered (fp, " thread %d", b->thread);
15549
15550 if (b->task != 0)
15551 fprintf_unfiltered (fp, " task %d", b->task);
15552
15553 fprintf_unfiltered (fp, "\n");
15554 }
15555
15556 /* Save information on user settable breakpoints (watchpoints, etc) to
15557 a new script file named FILENAME. If FILTER is non-NULL, call it
15558 on each breakpoint and only include the ones for which it returns
15559 non-zero. */
15560
15561 static void
15562 save_breakpoints (char *filename, int from_tty,
15563 int (*filter) (const struct breakpoint *))
15564 {
15565 struct breakpoint *tp;
15566 int any = 0;
15567 struct cleanup *cleanup;
15568 struct ui_file *fp;
15569 int extra_trace_bits = 0;
15570
15571 if (filename == 0 || *filename == 0)
15572 error (_("Argument required (file name in which to save)"));
15573
15574 /* See if we have anything to save. */
15575 ALL_BREAKPOINTS (tp)
15576 {
15577 /* Skip internal and momentary breakpoints. */
15578 if (!user_breakpoint_p (tp))
15579 continue;
15580
15581 /* If we have a filter, only save the breakpoints it accepts. */
15582 if (filter && !filter (tp))
15583 continue;
15584
15585 any = 1;
15586
15587 if (is_tracepoint (tp))
15588 {
15589 extra_trace_bits = 1;
15590
15591 /* We can stop searching. */
15592 break;
15593 }
15594 }
15595
15596 if (!any)
15597 {
15598 warning (_("Nothing to save."));
15599 return;
15600 }
15601
15602 filename = tilde_expand (filename);
15603 cleanup = make_cleanup (xfree, filename);
15604 fp = gdb_fopen (filename, "w");
15605 if (!fp)
15606 error (_("Unable to open file '%s' for saving (%s)"),
15607 filename, safe_strerror (errno));
15608 make_cleanup_ui_file_delete (fp);
15609
15610 if (extra_trace_bits)
15611 save_trace_state_variables (fp);
15612
15613 ALL_BREAKPOINTS (tp)
15614 {
15615 /* Skip internal and momentary breakpoints. */
15616 if (!user_breakpoint_p (tp))
15617 continue;
15618
15619 /* If we have a filter, only save the breakpoints it accepts. */
15620 if (filter && !filter (tp))
15621 continue;
15622
15623 tp->ops->print_recreate (tp, fp);
15624
15625 /* Note, we can't rely on tp->number for anything, as we can't
15626 assume the recreated breakpoint numbers will match. Use $bpnum
15627 instead. */
15628
15629 if (tp->cond_string)
15630 fprintf_unfiltered (fp, " condition $bpnum %s\n", tp->cond_string);
15631
15632 if (tp->ignore_count)
15633 fprintf_unfiltered (fp, " ignore $bpnum %d\n", tp->ignore_count);
15634
15635 if (tp->type != bp_dprintf && tp->commands)
15636 {
15637 struct gdb_exception exception;
15638
15639 fprintf_unfiltered (fp, " commands\n");
15640
15641 ui_out_redirect (current_uiout, fp);
15642 TRY
15643 {
15644 print_command_lines (current_uiout, tp->commands->commands, 2);
15645 }
15646 CATCH (ex, RETURN_MASK_ALL)
15647 {
15648 ui_out_redirect (current_uiout, NULL);
15649 throw_exception (ex);
15650 }
15651 END_CATCH
15652
15653 ui_out_redirect (current_uiout, NULL);
15654 fprintf_unfiltered (fp, " end\n");
15655 }
15656
15657 if (tp->enable_state == bp_disabled)
15658 fprintf_unfiltered (fp, "disable $bpnum\n");
15659
15660 /* If this is a multi-location breakpoint, check if the locations
15661 should be individually disabled. Watchpoint locations are
15662 special, and not user visible. */
15663 if (!is_watchpoint (tp) && tp->loc && tp->loc->next)
15664 {
15665 struct bp_location *loc;
15666 int n = 1;
15667
15668 for (loc = tp->loc; loc != NULL; loc = loc->next, n++)
15669 if (!loc->enabled)
15670 fprintf_unfiltered (fp, "disable $bpnum.%d\n", n);
15671 }
15672 }
15673
15674 if (extra_trace_bits && *default_collect)
15675 fprintf_unfiltered (fp, "set default-collect %s\n", default_collect);
15676
15677 if (from_tty)
15678 printf_filtered (_("Saved to file '%s'.\n"), filename);
15679 do_cleanups (cleanup);
15680 }
15681
15682 /* The `save breakpoints' command. */
15683
15684 static void
15685 save_breakpoints_command (char *args, int from_tty)
15686 {
15687 save_breakpoints (args, from_tty, NULL);
15688 }
15689
15690 /* The `save tracepoints' command. */
15691
15692 static void
15693 save_tracepoints_command (char *args, int from_tty)
15694 {
15695 save_breakpoints (args, from_tty, is_tracepoint);
15696 }
15697
15698 /* Create a vector of all tracepoints. */
15699
15700 VEC(breakpoint_p) *
15701 all_tracepoints (void)
15702 {
15703 VEC(breakpoint_p) *tp_vec = 0;
15704 struct breakpoint *tp;
15705
15706 ALL_TRACEPOINTS (tp)
15707 {
15708 VEC_safe_push (breakpoint_p, tp_vec, tp);
15709 }
15710
15711 return tp_vec;
15712 }
15713
15714 \f
15715 /* This help string is used to consolidate all the help string for specifying
15716 locations used by several commands. */
15717
15718 #define LOCATION_HELP_STRING \
15719 "Linespecs are colon-separated lists of location parameters, such as\n\
15720 source filename, function name, label name, and line number.\n\
15721 Example: To specify the start of a label named \"the_top\" in the\n\
15722 function \"fact\" in the file \"factorial.c\", use\n\
15723 \"factorial.c:fact:the_top\".\n\
15724 \n\
15725 Address locations begin with \"*\" and specify an exact address in the\n\
15726 program. Example: To specify the fourth byte past the start function\n\
15727 \"main\", use \"*main + 4\".\n\
15728 \n\
15729 Explicit locations are similar to linespecs but use an option/argument\n\
15730 syntax to specify location parameters.\n\
15731 Example: To specify the start of the label named \"the_top\" in the\n\
15732 function \"fact\" in the file \"factorial.c\", use \"-source factorial.c\n\
15733 -function fact -label the_top\".\n"
15734
15735 /* This help string is used for the break, hbreak, tbreak and thbreak
15736 commands. It is defined as a macro to prevent duplication.
15737 COMMAND should be a string constant containing the name of the
15738 command. */
15739
15740 #define BREAK_ARGS_HELP(command) \
15741 command" [PROBE_MODIFIER] [LOCATION] [thread THREADNUM] [if CONDITION]\n\
15742 PROBE_MODIFIER shall be present if the command is to be placed in a\n\
15743 probe point. Accepted values are `-probe' (for a generic, automatically\n\
15744 guessed probe type), `-probe-stap' (for a SystemTap probe) or \n\
15745 `-probe-dtrace' (for a DTrace probe).\n\
15746 LOCATION may be a linespec, address, or explicit location as described\n\
15747 below.\n\
15748 \n\
15749 With no LOCATION, uses current execution address of the selected\n\
15750 stack frame. This is useful for breaking on return to a stack frame.\n\
15751 \n\
15752 THREADNUM is the number from \"info threads\".\n\
15753 CONDITION is a boolean expression.\n\
15754 \n" LOCATION_HELP_STRING "\n\
15755 Multiple breakpoints at one place are permitted, and useful if their\n\
15756 conditions are different.\n\
15757 \n\
15758 Do \"help breakpoints\" for info on other commands dealing with breakpoints."
15759
15760 /* List of subcommands for "catch". */
15761 static struct cmd_list_element *catch_cmdlist;
15762
15763 /* List of subcommands for "tcatch". */
15764 static struct cmd_list_element *tcatch_cmdlist;
15765
15766 void
15767 add_catch_command (char *name, char *docstring,
15768 cmd_sfunc_ftype *sfunc,
15769 completer_ftype *completer,
15770 void *user_data_catch,
15771 void *user_data_tcatch)
15772 {
15773 struct cmd_list_element *command;
15774
15775 command = add_cmd (name, class_breakpoint, NULL, docstring,
15776 &catch_cmdlist);
15777 set_cmd_sfunc (command, sfunc);
15778 set_cmd_context (command, user_data_catch);
15779 set_cmd_completer (command, completer);
15780
15781 command = add_cmd (name, class_breakpoint, NULL, docstring,
15782 &tcatch_cmdlist);
15783 set_cmd_sfunc (command, sfunc);
15784 set_cmd_context (command, user_data_tcatch);
15785 set_cmd_completer (command, completer);
15786 }
15787
15788 static void
15789 save_command (char *arg, int from_tty)
15790 {
15791 printf_unfiltered (_("\"save\" must be followed by "
15792 "the name of a save subcommand.\n"));
15793 help_list (save_cmdlist, "save ", all_commands, gdb_stdout);
15794 }
15795
15796 struct breakpoint *
15797 iterate_over_breakpoints (int (*callback) (struct breakpoint *, void *),
15798 void *data)
15799 {
15800 struct breakpoint *b, *b_tmp;
15801
15802 ALL_BREAKPOINTS_SAFE (b, b_tmp)
15803 {
15804 if ((*callback) (b, data))
15805 return b;
15806 }
15807
15808 return NULL;
15809 }
15810
15811 /* Zero if any of the breakpoint's locations could be a location where
15812 functions have been inlined, nonzero otherwise. */
15813
15814 static int
15815 is_non_inline_function (struct breakpoint *b)
15816 {
15817 /* The shared library event breakpoint is set on the address of a
15818 non-inline function. */
15819 if (b->type == bp_shlib_event)
15820 return 1;
15821
15822 return 0;
15823 }
15824
15825 /* Nonzero if the specified PC cannot be a location where functions
15826 have been inlined. */
15827
15828 int
15829 pc_at_non_inline_function (struct address_space *aspace, CORE_ADDR pc,
15830 const struct target_waitstatus *ws)
15831 {
15832 struct breakpoint *b;
15833 struct bp_location *bl;
15834
15835 ALL_BREAKPOINTS (b)
15836 {
15837 if (!is_non_inline_function (b))
15838 continue;
15839
15840 for (bl = b->loc; bl != NULL; bl = bl->next)
15841 {
15842 if (!bl->shlib_disabled
15843 && bpstat_check_location (bl, aspace, pc, ws))
15844 return 1;
15845 }
15846 }
15847
15848 return 0;
15849 }
15850
15851 /* Remove any references to OBJFILE which is going to be freed. */
15852
15853 void
15854 breakpoint_free_objfile (struct objfile *objfile)
15855 {
15856 struct bp_location **locp, *loc;
15857
15858 ALL_BP_LOCATIONS (loc, locp)
15859 if (loc->symtab != NULL && SYMTAB_OBJFILE (loc->symtab) == objfile)
15860 loc->symtab = NULL;
15861 }
15862
15863 void
15864 initialize_breakpoint_ops (void)
15865 {
15866 static int initialized = 0;
15867
15868 struct breakpoint_ops *ops;
15869
15870 if (initialized)
15871 return;
15872 initialized = 1;
15873
15874 /* The breakpoint_ops structure to be inherit by all kinds of
15875 breakpoints (real breakpoints, i.e., user "break" breakpoints,
15876 internal and momentary breakpoints, etc.). */
15877 ops = &bkpt_base_breakpoint_ops;
15878 *ops = base_breakpoint_ops;
15879 ops->re_set = bkpt_re_set;
15880 ops->insert_location = bkpt_insert_location;
15881 ops->remove_location = bkpt_remove_location;
15882 ops->breakpoint_hit = bkpt_breakpoint_hit;
15883 ops->create_sals_from_location = bkpt_create_sals_from_location;
15884 ops->create_breakpoints_sal = bkpt_create_breakpoints_sal;
15885 ops->decode_location = bkpt_decode_location;
15886
15887 /* The breakpoint_ops structure to be used in regular breakpoints. */
15888 ops = &bkpt_breakpoint_ops;
15889 *ops = bkpt_base_breakpoint_ops;
15890 ops->re_set = bkpt_re_set;
15891 ops->resources_needed = bkpt_resources_needed;
15892 ops->print_it = bkpt_print_it;
15893 ops->print_mention = bkpt_print_mention;
15894 ops->print_recreate = bkpt_print_recreate;
15895
15896 /* Ranged breakpoints. */
15897 ops = &ranged_breakpoint_ops;
15898 *ops = bkpt_breakpoint_ops;
15899 ops->breakpoint_hit = breakpoint_hit_ranged_breakpoint;
15900 ops->resources_needed = resources_needed_ranged_breakpoint;
15901 ops->print_it = print_it_ranged_breakpoint;
15902 ops->print_one = print_one_ranged_breakpoint;
15903 ops->print_one_detail = print_one_detail_ranged_breakpoint;
15904 ops->print_mention = print_mention_ranged_breakpoint;
15905 ops->print_recreate = print_recreate_ranged_breakpoint;
15906
15907 /* Internal breakpoints. */
15908 ops = &internal_breakpoint_ops;
15909 *ops = bkpt_base_breakpoint_ops;
15910 ops->re_set = internal_bkpt_re_set;
15911 ops->check_status = internal_bkpt_check_status;
15912 ops->print_it = internal_bkpt_print_it;
15913 ops->print_mention = internal_bkpt_print_mention;
15914
15915 /* Momentary breakpoints. */
15916 ops = &momentary_breakpoint_ops;
15917 *ops = bkpt_base_breakpoint_ops;
15918 ops->re_set = momentary_bkpt_re_set;
15919 ops->check_status = momentary_bkpt_check_status;
15920 ops->print_it = momentary_bkpt_print_it;
15921 ops->print_mention = momentary_bkpt_print_mention;
15922
15923 /* Momentary breakpoints for bp_longjmp and bp_exception. */
15924 ops = &longjmp_breakpoint_ops;
15925 *ops = momentary_breakpoint_ops;
15926 ops->dtor = longjmp_bkpt_dtor;
15927
15928 /* Probe breakpoints. */
15929 ops = &bkpt_probe_breakpoint_ops;
15930 *ops = bkpt_breakpoint_ops;
15931 ops->insert_location = bkpt_probe_insert_location;
15932 ops->remove_location = bkpt_probe_remove_location;
15933 ops->create_sals_from_location = bkpt_probe_create_sals_from_location;
15934 ops->decode_location = bkpt_probe_decode_location;
15935
15936 /* Watchpoints. */
15937 ops = &watchpoint_breakpoint_ops;
15938 *ops = base_breakpoint_ops;
15939 ops->dtor = dtor_watchpoint;
15940 ops->re_set = re_set_watchpoint;
15941 ops->insert_location = insert_watchpoint;
15942 ops->remove_location = remove_watchpoint;
15943 ops->breakpoint_hit = breakpoint_hit_watchpoint;
15944 ops->check_status = check_status_watchpoint;
15945 ops->resources_needed = resources_needed_watchpoint;
15946 ops->works_in_software_mode = works_in_software_mode_watchpoint;
15947 ops->print_it = print_it_watchpoint;
15948 ops->print_mention = print_mention_watchpoint;
15949 ops->print_recreate = print_recreate_watchpoint;
15950 ops->explains_signal = explains_signal_watchpoint;
15951
15952 /* Masked watchpoints. */
15953 ops = &masked_watchpoint_breakpoint_ops;
15954 *ops = watchpoint_breakpoint_ops;
15955 ops->insert_location = insert_masked_watchpoint;
15956 ops->remove_location = remove_masked_watchpoint;
15957 ops->resources_needed = resources_needed_masked_watchpoint;
15958 ops->works_in_software_mode = works_in_software_mode_masked_watchpoint;
15959 ops->print_it = print_it_masked_watchpoint;
15960 ops->print_one_detail = print_one_detail_masked_watchpoint;
15961 ops->print_mention = print_mention_masked_watchpoint;
15962 ops->print_recreate = print_recreate_masked_watchpoint;
15963
15964 /* Tracepoints. */
15965 ops = &tracepoint_breakpoint_ops;
15966 *ops = base_breakpoint_ops;
15967 ops->re_set = tracepoint_re_set;
15968 ops->breakpoint_hit = tracepoint_breakpoint_hit;
15969 ops->print_one_detail = tracepoint_print_one_detail;
15970 ops->print_mention = tracepoint_print_mention;
15971 ops->print_recreate = tracepoint_print_recreate;
15972 ops->create_sals_from_location = tracepoint_create_sals_from_location;
15973 ops->create_breakpoints_sal = tracepoint_create_breakpoints_sal;
15974 ops->decode_location = tracepoint_decode_location;
15975
15976 /* Probe tracepoints. */
15977 ops = &tracepoint_probe_breakpoint_ops;
15978 *ops = tracepoint_breakpoint_ops;
15979 ops->create_sals_from_location = tracepoint_probe_create_sals_from_location;
15980 ops->decode_location = tracepoint_probe_decode_location;
15981
15982 /* Static tracepoints with marker (`-m'). */
15983 ops = &strace_marker_breakpoint_ops;
15984 *ops = tracepoint_breakpoint_ops;
15985 ops->create_sals_from_location = strace_marker_create_sals_from_location;
15986 ops->create_breakpoints_sal = strace_marker_create_breakpoints_sal;
15987 ops->decode_location = strace_marker_decode_location;
15988
15989 /* Fork catchpoints. */
15990 ops = &catch_fork_breakpoint_ops;
15991 *ops = base_breakpoint_ops;
15992 ops->insert_location = insert_catch_fork;
15993 ops->remove_location = remove_catch_fork;
15994 ops->breakpoint_hit = breakpoint_hit_catch_fork;
15995 ops->print_it = print_it_catch_fork;
15996 ops->print_one = print_one_catch_fork;
15997 ops->print_mention = print_mention_catch_fork;
15998 ops->print_recreate = print_recreate_catch_fork;
15999
16000 /* Vfork catchpoints. */
16001 ops = &catch_vfork_breakpoint_ops;
16002 *ops = base_breakpoint_ops;
16003 ops->insert_location = insert_catch_vfork;
16004 ops->remove_location = remove_catch_vfork;
16005 ops->breakpoint_hit = breakpoint_hit_catch_vfork;
16006 ops->print_it = print_it_catch_vfork;
16007 ops->print_one = print_one_catch_vfork;
16008 ops->print_mention = print_mention_catch_vfork;
16009 ops->print_recreate = print_recreate_catch_vfork;
16010
16011 /* Exec catchpoints. */
16012 ops = &catch_exec_breakpoint_ops;
16013 *ops = base_breakpoint_ops;
16014 ops->dtor = dtor_catch_exec;
16015 ops->insert_location = insert_catch_exec;
16016 ops->remove_location = remove_catch_exec;
16017 ops->breakpoint_hit = breakpoint_hit_catch_exec;
16018 ops->print_it = print_it_catch_exec;
16019 ops->print_one = print_one_catch_exec;
16020 ops->print_mention = print_mention_catch_exec;
16021 ops->print_recreate = print_recreate_catch_exec;
16022
16023 /* Solib-related catchpoints. */
16024 ops = &catch_solib_breakpoint_ops;
16025 *ops = base_breakpoint_ops;
16026 ops->dtor = dtor_catch_solib;
16027 ops->insert_location = insert_catch_solib;
16028 ops->remove_location = remove_catch_solib;
16029 ops->breakpoint_hit = breakpoint_hit_catch_solib;
16030 ops->check_status = check_status_catch_solib;
16031 ops->print_it = print_it_catch_solib;
16032 ops->print_one = print_one_catch_solib;
16033 ops->print_mention = print_mention_catch_solib;
16034 ops->print_recreate = print_recreate_catch_solib;
16035
16036 ops = &dprintf_breakpoint_ops;
16037 *ops = bkpt_base_breakpoint_ops;
16038 ops->re_set = dprintf_re_set;
16039 ops->resources_needed = bkpt_resources_needed;
16040 ops->print_it = bkpt_print_it;
16041 ops->print_mention = bkpt_print_mention;
16042 ops->print_recreate = dprintf_print_recreate;
16043 ops->after_condition_true = dprintf_after_condition_true;
16044 ops->breakpoint_hit = dprintf_breakpoint_hit;
16045 }
16046
16047 /* Chain containing all defined "enable breakpoint" subcommands. */
16048
16049 static struct cmd_list_element *enablebreaklist = NULL;
16050
16051 void
16052 _initialize_breakpoint (void)
16053 {
16054 struct cmd_list_element *c;
16055
16056 initialize_breakpoint_ops ();
16057
16058 observer_attach_solib_unloaded (disable_breakpoints_in_unloaded_shlib);
16059 observer_attach_free_objfile (disable_breakpoints_in_freed_objfile);
16060 observer_attach_memory_changed (invalidate_bp_value_on_memory_change);
16061
16062 breakpoint_objfile_key
16063 = register_objfile_data_with_cleanup (NULL, free_breakpoint_probes);
16064
16065 breakpoint_chain = 0;
16066 /* Don't bother to call set_breakpoint_count. $bpnum isn't useful
16067 before a breakpoint is set. */
16068 breakpoint_count = 0;
16069
16070 tracepoint_count = 0;
16071
16072 add_com ("ignore", class_breakpoint, ignore_command, _("\
16073 Set ignore-count of breakpoint number N to COUNT.\n\
16074 Usage is `ignore N COUNT'."));
16075
16076 add_com ("commands", class_breakpoint, commands_command, _("\
16077 Set commands to be executed when a breakpoint is hit.\n\
16078 Give breakpoint number as argument after \"commands\".\n\
16079 With no argument, the targeted breakpoint is the last one set.\n\
16080 The commands themselves follow starting on the next line.\n\
16081 Type a line containing \"end\" to indicate the end of them.\n\
16082 Give \"silent\" as the first line to make the breakpoint silent;\n\
16083 then no output is printed when it is hit, except what the commands print."));
16084
16085 c = add_com ("condition", class_breakpoint, condition_command, _("\
16086 Specify breakpoint number N to break only if COND is true.\n\
16087 Usage is `condition N COND', where N is an integer and COND is an\n\
16088 expression to be evaluated whenever breakpoint N is reached."));
16089 set_cmd_completer (c, condition_completer);
16090
16091 c = add_com ("tbreak", class_breakpoint, tbreak_command, _("\
16092 Set a temporary breakpoint.\n\
16093 Like \"break\" except the breakpoint is only temporary,\n\
16094 so it will be deleted when hit. Equivalent to \"break\" followed\n\
16095 by using \"enable delete\" on the breakpoint number.\n\
16096 \n"
16097 BREAK_ARGS_HELP ("tbreak")));
16098 set_cmd_completer (c, location_completer);
16099
16100 c = add_com ("hbreak", class_breakpoint, hbreak_command, _("\
16101 Set a hardware assisted breakpoint.\n\
16102 Like \"break\" except the breakpoint requires hardware support,\n\
16103 some target hardware may not have this support.\n\
16104 \n"
16105 BREAK_ARGS_HELP ("hbreak")));
16106 set_cmd_completer (c, location_completer);
16107
16108 c = add_com ("thbreak", class_breakpoint, thbreak_command, _("\
16109 Set a temporary hardware assisted breakpoint.\n\
16110 Like \"hbreak\" except the breakpoint is only temporary,\n\
16111 so it will be deleted when hit.\n\
16112 \n"
16113 BREAK_ARGS_HELP ("thbreak")));
16114 set_cmd_completer (c, location_completer);
16115
16116 add_prefix_cmd ("enable", class_breakpoint, enable_command, _("\
16117 Enable some breakpoints.\n\
16118 Give breakpoint numbers (separated by spaces) as arguments.\n\
16119 With no subcommand, breakpoints are enabled until you command otherwise.\n\
16120 This is used to cancel the effect of the \"disable\" command.\n\
16121 With a subcommand you can enable temporarily."),
16122 &enablelist, "enable ", 1, &cmdlist);
16123
16124 add_com_alias ("en", "enable", class_breakpoint, 1);
16125
16126 add_prefix_cmd ("breakpoints", class_breakpoint, enable_command, _("\
16127 Enable some breakpoints.\n\
16128 Give breakpoint numbers (separated by spaces) as arguments.\n\
16129 This is used to cancel the effect of the \"disable\" command.\n\
16130 May be abbreviated to simply \"enable\".\n"),
16131 &enablebreaklist, "enable breakpoints ", 1, &enablelist);
16132
16133 add_cmd ("once", no_class, enable_once_command, _("\
16134 Enable breakpoints for one hit. Give breakpoint numbers.\n\
16135 If a breakpoint is hit while enabled in this fashion, it becomes disabled."),
16136 &enablebreaklist);
16137
16138 add_cmd ("delete", no_class, enable_delete_command, _("\
16139 Enable breakpoints and delete when hit. Give breakpoint numbers.\n\
16140 If a breakpoint is hit while enabled in this fashion, it is deleted."),
16141 &enablebreaklist);
16142
16143 add_cmd ("count", no_class, enable_count_command, _("\
16144 Enable breakpoints for COUNT hits. Give count and then breakpoint numbers.\n\
16145 If a breakpoint is hit while enabled in this fashion,\n\
16146 the count is decremented; when it reaches zero, the breakpoint is disabled."),
16147 &enablebreaklist);
16148
16149 add_cmd ("delete", no_class, enable_delete_command, _("\
16150 Enable breakpoints and delete when hit. Give breakpoint numbers.\n\
16151 If a breakpoint is hit while enabled in this fashion, it is deleted."),
16152 &enablelist);
16153
16154 add_cmd ("once", no_class, enable_once_command, _("\
16155 Enable breakpoints for one hit. Give breakpoint numbers.\n\
16156 If a breakpoint is hit while enabled in this fashion, it becomes disabled."),
16157 &enablelist);
16158
16159 add_cmd ("count", no_class, enable_count_command, _("\
16160 Enable breakpoints for COUNT hits. Give count and then breakpoint numbers.\n\
16161 If a breakpoint is hit while enabled in this fashion,\n\
16162 the count is decremented; when it reaches zero, the breakpoint is disabled."),
16163 &enablelist);
16164
16165 add_prefix_cmd ("disable", class_breakpoint, disable_command, _("\
16166 Disable some breakpoints.\n\
16167 Arguments are breakpoint numbers with spaces in between.\n\
16168 To disable all breakpoints, give no argument.\n\
16169 A disabled breakpoint is not forgotten, but has no effect until re-enabled."),
16170 &disablelist, "disable ", 1, &cmdlist);
16171 add_com_alias ("dis", "disable", class_breakpoint, 1);
16172 add_com_alias ("disa", "disable", class_breakpoint, 1);
16173
16174 add_cmd ("breakpoints", class_alias, disable_command, _("\
16175 Disable some breakpoints.\n\
16176 Arguments are breakpoint numbers with spaces in between.\n\
16177 To disable all breakpoints, give no argument.\n\
16178 A disabled breakpoint is not forgotten, but has no effect until re-enabled.\n\
16179 This command may be abbreviated \"disable\"."),
16180 &disablelist);
16181
16182 add_prefix_cmd ("delete", class_breakpoint, delete_command, _("\
16183 Delete some breakpoints or auto-display expressions.\n\
16184 Arguments are breakpoint numbers with spaces in between.\n\
16185 To delete all breakpoints, give no argument.\n\
16186 \n\
16187 Also a prefix command for deletion of other GDB objects.\n\
16188 The \"unset\" command is also an alias for \"delete\"."),
16189 &deletelist, "delete ", 1, &cmdlist);
16190 add_com_alias ("d", "delete", class_breakpoint, 1);
16191 add_com_alias ("del", "delete", class_breakpoint, 1);
16192
16193 add_cmd ("breakpoints", class_alias, delete_command, _("\
16194 Delete some breakpoints or auto-display expressions.\n\
16195 Arguments are breakpoint numbers with spaces in between.\n\
16196 To delete all breakpoints, give no argument.\n\
16197 This command may be abbreviated \"delete\"."),
16198 &deletelist);
16199
16200 add_com ("clear", class_breakpoint, clear_command, _("\
16201 Clear breakpoint at specified location.\n\
16202 Argument may be a linespec, explicit, or address location as described below.\n\
16203 \n\
16204 With no argument, clears all breakpoints in the line that the selected frame\n\
16205 is executing in.\n"
16206 "\n" LOCATION_HELP_STRING "\n\
16207 See also the \"delete\" command which clears breakpoints by number."));
16208 add_com_alias ("cl", "clear", class_breakpoint, 1);
16209
16210 c = add_com ("break", class_breakpoint, break_command, _("\
16211 Set breakpoint at specified location.\n"
16212 BREAK_ARGS_HELP ("break")));
16213 set_cmd_completer (c, location_completer);
16214
16215 add_com_alias ("b", "break", class_run, 1);
16216 add_com_alias ("br", "break", class_run, 1);
16217 add_com_alias ("bre", "break", class_run, 1);
16218 add_com_alias ("brea", "break", class_run, 1);
16219
16220 if (dbx_commands)
16221 {
16222 add_abbrev_prefix_cmd ("stop", class_breakpoint, stop_command, _("\
16223 Break in function/address or break at a line in the current file."),
16224 &stoplist, "stop ", 1, &cmdlist);
16225 add_cmd ("in", class_breakpoint, stopin_command,
16226 _("Break in function or address."), &stoplist);
16227 add_cmd ("at", class_breakpoint, stopat_command,
16228 _("Break at a line in the current file."), &stoplist);
16229 add_com ("status", class_info, breakpoints_info, _("\
16230 Status of user-settable breakpoints, or breakpoint number NUMBER.\n\
16231 The \"Type\" column indicates one of:\n\
16232 \tbreakpoint - normal breakpoint\n\
16233 \twatchpoint - watchpoint\n\
16234 The \"Disp\" column contains one of \"keep\", \"del\", or \"dis\" to indicate\n\
16235 the disposition of the breakpoint after it gets hit. \"dis\" means that the\n\
16236 breakpoint will be disabled. The \"Address\" and \"What\" columns indicate the\n\
16237 address and file/line number respectively.\n\
16238 \n\
16239 Convenience variable \"$_\" and default examine address for \"x\"\n\
16240 are set to the address of the last breakpoint listed unless the command\n\
16241 is prefixed with \"server \".\n\n\
16242 Convenience variable \"$bpnum\" contains the number of the last\n\
16243 breakpoint set."));
16244 }
16245
16246 add_info ("breakpoints", breakpoints_info, _("\
16247 Status of specified breakpoints (all user-settable breakpoints if no argument).\n\
16248 The \"Type\" column indicates one of:\n\
16249 \tbreakpoint - normal breakpoint\n\
16250 \twatchpoint - watchpoint\n\
16251 The \"Disp\" column contains one of \"keep\", \"del\", or \"dis\" to indicate\n\
16252 the disposition of the breakpoint after it gets hit. \"dis\" means that the\n\
16253 breakpoint will be disabled. The \"Address\" and \"What\" columns indicate the\n\
16254 address and file/line number respectively.\n\
16255 \n\
16256 Convenience variable \"$_\" and default examine address for \"x\"\n\
16257 are set to the address of the last breakpoint listed unless the command\n\
16258 is prefixed with \"server \".\n\n\
16259 Convenience variable \"$bpnum\" contains the number of the last\n\
16260 breakpoint set."));
16261
16262 add_info_alias ("b", "breakpoints", 1);
16263
16264 add_cmd ("breakpoints", class_maintenance, maintenance_info_breakpoints, _("\
16265 Status of all breakpoints, or breakpoint number NUMBER.\n\
16266 The \"Type\" column indicates one of:\n\
16267 \tbreakpoint - normal breakpoint\n\
16268 \twatchpoint - watchpoint\n\
16269 \tlongjmp - internal breakpoint used to step through longjmp()\n\
16270 \tlongjmp resume - internal breakpoint at the target of longjmp()\n\
16271 \tuntil - internal breakpoint used by the \"until\" command\n\
16272 \tfinish - internal breakpoint used by the \"finish\" command\n\
16273 The \"Disp\" column contains one of \"keep\", \"del\", or \"dis\" to indicate\n\
16274 the disposition of the breakpoint after it gets hit. \"dis\" means that the\n\
16275 breakpoint will be disabled. The \"Address\" and \"What\" columns indicate the\n\
16276 address and file/line number respectively.\n\
16277 \n\
16278 Convenience variable \"$_\" and default examine address for \"x\"\n\
16279 are set to the address of the last breakpoint listed unless the command\n\
16280 is prefixed with \"server \".\n\n\
16281 Convenience variable \"$bpnum\" contains the number of the last\n\
16282 breakpoint set."),
16283 &maintenanceinfolist);
16284
16285 add_prefix_cmd ("catch", class_breakpoint, catch_command, _("\
16286 Set catchpoints to catch events."),
16287 &catch_cmdlist, "catch ",
16288 0/*allow-unknown*/, &cmdlist);
16289
16290 add_prefix_cmd ("tcatch", class_breakpoint, tcatch_command, _("\
16291 Set temporary catchpoints to catch events."),
16292 &tcatch_cmdlist, "tcatch ",
16293 0/*allow-unknown*/, &cmdlist);
16294
16295 add_catch_command ("fork", _("Catch calls to fork."),
16296 catch_fork_command_1,
16297 NULL,
16298 (void *) (uintptr_t) catch_fork_permanent,
16299 (void *) (uintptr_t) catch_fork_temporary);
16300 add_catch_command ("vfork", _("Catch calls to vfork."),
16301 catch_fork_command_1,
16302 NULL,
16303 (void *) (uintptr_t) catch_vfork_permanent,
16304 (void *) (uintptr_t) catch_vfork_temporary);
16305 add_catch_command ("exec", _("Catch calls to exec."),
16306 catch_exec_command_1,
16307 NULL,
16308 CATCH_PERMANENT,
16309 CATCH_TEMPORARY);
16310 add_catch_command ("load", _("Catch loads of shared libraries.\n\
16311 Usage: catch load [REGEX]\n\
16312 If REGEX is given, only stop for libraries matching the regular expression."),
16313 catch_load_command_1,
16314 NULL,
16315 CATCH_PERMANENT,
16316 CATCH_TEMPORARY);
16317 add_catch_command ("unload", _("Catch unloads of shared libraries.\n\
16318 Usage: catch unload [REGEX]\n\
16319 If REGEX is given, only stop for libraries matching the regular expression."),
16320 catch_unload_command_1,
16321 NULL,
16322 CATCH_PERMANENT,
16323 CATCH_TEMPORARY);
16324
16325 c = add_com ("watch", class_breakpoint, watch_command, _("\
16326 Set a watchpoint for an expression.\n\
16327 Usage: watch [-l|-location] EXPRESSION\n\
16328 A watchpoint stops execution of your program whenever the value of\n\
16329 an expression changes.\n\
16330 If -l or -location is given, this evaluates EXPRESSION and watches\n\
16331 the memory to which it refers."));
16332 set_cmd_completer (c, expression_completer);
16333
16334 c = add_com ("rwatch", class_breakpoint, rwatch_command, _("\
16335 Set a read watchpoint for an expression.\n\
16336 Usage: rwatch [-l|-location] EXPRESSION\n\
16337 A watchpoint stops execution of your program whenever the value of\n\
16338 an expression is read.\n\
16339 If -l or -location is given, this evaluates EXPRESSION and watches\n\
16340 the memory to which it refers."));
16341 set_cmd_completer (c, expression_completer);
16342
16343 c = add_com ("awatch", class_breakpoint, awatch_command, _("\
16344 Set a watchpoint for an expression.\n\
16345 Usage: awatch [-l|-location] EXPRESSION\n\
16346 A watchpoint stops execution of your program whenever the value of\n\
16347 an expression is either read or written.\n\
16348 If -l or -location is given, this evaluates EXPRESSION and watches\n\
16349 the memory to which it refers."));
16350 set_cmd_completer (c, expression_completer);
16351
16352 add_info ("watchpoints", watchpoints_info, _("\
16353 Status of specified watchpoints (all watchpoints if no argument)."));
16354
16355 /* XXX: cagney/2005-02-23: This should be a boolean, and should
16356 respond to changes - contrary to the description. */
16357 add_setshow_zinteger_cmd ("can-use-hw-watchpoints", class_support,
16358 &can_use_hw_watchpoints, _("\
16359 Set debugger's willingness to use watchpoint hardware."), _("\
16360 Show debugger's willingness to use watchpoint hardware."), _("\
16361 If zero, gdb will not use hardware for new watchpoints, even if\n\
16362 such is available. (However, any hardware watchpoints that were\n\
16363 created before setting this to nonzero, will continue to use watchpoint\n\
16364 hardware.)"),
16365 NULL,
16366 show_can_use_hw_watchpoints,
16367 &setlist, &showlist);
16368
16369 can_use_hw_watchpoints = 1;
16370
16371 /* Tracepoint manipulation commands. */
16372
16373 c = add_com ("trace", class_breakpoint, trace_command, _("\
16374 Set a tracepoint at specified location.\n\
16375 \n"
16376 BREAK_ARGS_HELP ("trace") "\n\
16377 Do \"help tracepoints\" for info on other tracepoint commands."));
16378 set_cmd_completer (c, location_completer);
16379
16380 add_com_alias ("tp", "trace", class_alias, 0);
16381 add_com_alias ("tr", "trace", class_alias, 1);
16382 add_com_alias ("tra", "trace", class_alias, 1);
16383 add_com_alias ("trac", "trace", class_alias, 1);
16384
16385 c = add_com ("ftrace", class_breakpoint, ftrace_command, _("\
16386 Set a fast tracepoint at specified location.\n\
16387 \n"
16388 BREAK_ARGS_HELP ("ftrace") "\n\
16389 Do \"help tracepoints\" for info on other tracepoint commands."));
16390 set_cmd_completer (c, location_completer);
16391
16392 c = add_com ("strace", class_breakpoint, strace_command, _("\
16393 Set a static tracepoint at location or marker.\n\
16394 \n\
16395 strace [LOCATION] [if CONDITION]\n\
16396 LOCATION may be a linespec, explicit, or address location (described below) \n\
16397 or -m MARKER_ID.\n\n\
16398 If a marker id is specified, probe the marker with that name. With\n\
16399 no LOCATION, uses current execution address of the selected stack frame.\n\
16400 Static tracepoints accept an extra collect action -- ``collect $_sdata''.\n\
16401 This collects arbitrary user data passed in the probe point call to the\n\
16402 tracing library. You can inspect it when analyzing the trace buffer,\n\
16403 by printing the $_sdata variable like any other convenience variable.\n\
16404 \n\
16405 CONDITION is a boolean expression.\n\
16406 \n" LOCATION_HELP_STRING "\n\
16407 Multiple tracepoints at one place are permitted, and useful if their\n\
16408 conditions are different.\n\
16409 \n\
16410 Do \"help breakpoints\" for info on other commands dealing with breakpoints.\n\
16411 Do \"help tracepoints\" for info on other tracepoint commands."));
16412 set_cmd_completer (c, location_completer);
16413
16414 add_info ("tracepoints", tracepoints_info, _("\
16415 Status of specified tracepoints (all tracepoints if no argument).\n\
16416 Convenience variable \"$tpnum\" contains the number of the\n\
16417 last tracepoint set."));
16418
16419 add_info_alias ("tp", "tracepoints", 1);
16420
16421 add_cmd ("tracepoints", class_trace, delete_trace_command, _("\
16422 Delete specified tracepoints.\n\
16423 Arguments are tracepoint numbers, separated by spaces.\n\
16424 No argument means delete all tracepoints."),
16425 &deletelist);
16426 add_alias_cmd ("tr", "tracepoints", class_trace, 1, &deletelist);
16427
16428 c = add_cmd ("tracepoints", class_trace, disable_trace_command, _("\
16429 Disable specified tracepoints.\n\
16430 Arguments are tracepoint numbers, separated by spaces.\n\
16431 No argument means disable all tracepoints."),
16432 &disablelist);
16433 deprecate_cmd (c, "disable");
16434
16435 c = add_cmd ("tracepoints", class_trace, enable_trace_command, _("\
16436 Enable specified tracepoints.\n\
16437 Arguments are tracepoint numbers, separated by spaces.\n\
16438 No argument means enable all tracepoints."),
16439 &enablelist);
16440 deprecate_cmd (c, "enable");
16441
16442 add_com ("passcount", class_trace, trace_pass_command, _("\
16443 Set the passcount for a tracepoint.\n\
16444 The trace will end when the tracepoint has been passed 'count' times.\n\
16445 Usage: passcount COUNT TPNUM, where TPNUM may also be \"all\";\n\
16446 if TPNUM is omitted, passcount refers to the last tracepoint defined."));
16447
16448 add_prefix_cmd ("save", class_breakpoint, save_command,
16449 _("Save breakpoint definitions as a script."),
16450 &save_cmdlist, "save ",
16451 0/*allow-unknown*/, &cmdlist);
16452
16453 c = add_cmd ("breakpoints", class_breakpoint, save_breakpoints_command, _("\
16454 Save current breakpoint definitions as a script.\n\
16455 This includes all types of breakpoints (breakpoints, watchpoints,\n\
16456 catchpoints, tracepoints). Use the 'source' command in another debug\n\
16457 session to restore them."),
16458 &save_cmdlist);
16459 set_cmd_completer (c, filename_completer);
16460
16461 c = add_cmd ("tracepoints", class_trace, save_tracepoints_command, _("\
16462 Save current tracepoint definitions as a script.\n\
16463 Use the 'source' command in another debug session to restore them."),
16464 &save_cmdlist);
16465 set_cmd_completer (c, filename_completer);
16466
16467 c = add_com_alias ("save-tracepoints", "save tracepoints", class_trace, 0);
16468 deprecate_cmd (c, "save tracepoints");
16469
16470 add_prefix_cmd ("breakpoint", class_maintenance, set_breakpoint_cmd, _("\
16471 Breakpoint specific settings\n\
16472 Configure various breakpoint-specific variables such as\n\
16473 pending breakpoint behavior"),
16474 &breakpoint_set_cmdlist, "set breakpoint ",
16475 0/*allow-unknown*/, &setlist);
16476 add_prefix_cmd ("breakpoint", class_maintenance, show_breakpoint_cmd, _("\
16477 Breakpoint specific settings\n\
16478 Configure various breakpoint-specific variables such as\n\
16479 pending breakpoint behavior"),
16480 &breakpoint_show_cmdlist, "show breakpoint ",
16481 0/*allow-unknown*/, &showlist);
16482
16483 add_setshow_auto_boolean_cmd ("pending", no_class,
16484 &pending_break_support, _("\
16485 Set debugger's behavior regarding pending breakpoints."), _("\
16486 Show debugger's behavior regarding pending breakpoints."), _("\
16487 If on, an unrecognized breakpoint location will cause gdb to create a\n\
16488 pending breakpoint. If off, an unrecognized breakpoint location results in\n\
16489 an error. If auto, an unrecognized breakpoint location results in a\n\
16490 user-query to see if a pending breakpoint should be created."),
16491 NULL,
16492 show_pending_break_support,
16493 &breakpoint_set_cmdlist,
16494 &breakpoint_show_cmdlist);
16495
16496 pending_break_support = AUTO_BOOLEAN_AUTO;
16497
16498 add_setshow_boolean_cmd ("auto-hw", no_class,
16499 &automatic_hardware_breakpoints, _("\
16500 Set automatic usage of hardware breakpoints."), _("\
16501 Show automatic usage of hardware breakpoints."), _("\
16502 If set, the debugger will automatically use hardware breakpoints for\n\
16503 breakpoints set with \"break\" but falling in read-only memory. If not set,\n\
16504 a warning will be emitted for such breakpoints."),
16505 NULL,
16506 show_automatic_hardware_breakpoints,
16507 &breakpoint_set_cmdlist,
16508 &breakpoint_show_cmdlist);
16509
16510 add_setshow_boolean_cmd ("always-inserted", class_support,
16511 &always_inserted_mode, _("\
16512 Set mode for inserting breakpoints."), _("\
16513 Show mode for inserting breakpoints."), _("\
16514 When this mode is on, breakpoints are inserted immediately as soon as\n\
16515 they're created, kept inserted even when execution stops, and removed\n\
16516 only when the user deletes them. When this mode is off (the default),\n\
16517 breakpoints are inserted only when execution continues, and removed\n\
16518 when execution stops."),
16519 NULL,
16520 &show_always_inserted_mode,
16521 &breakpoint_set_cmdlist,
16522 &breakpoint_show_cmdlist);
16523
16524 add_setshow_enum_cmd ("condition-evaluation", class_breakpoint,
16525 condition_evaluation_enums,
16526 &condition_evaluation_mode_1, _("\
16527 Set mode of breakpoint condition evaluation."), _("\
16528 Show mode of breakpoint condition evaluation."), _("\
16529 When this is set to \"host\", breakpoint conditions will be\n\
16530 evaluated on the host's side by GDB. When it is set to \"target\",\n\
16531 breakpoint conditions will be downloaded to the target (if the target\n\
16532 supports such feature) and conditions will be evaluated on the target's side.\n\
16533 If this is set to \"auto\" (default), this will be automatically set to\n\
16534 \"target\" if it supports condition evaluation, otherwise it will\n\
16535 be set to \"gdb\""),
16536 &set_condition_evaluation_mode,
16537 &show_condition_evaluation_mode,
16538 &breakpoint_set_cmdlist,
16539 &breakpoint_show_cmdlist);
16540
16541 add_com ("break-range", class_breakpoint, break_range_command, _("\
16542 Set a breakpoint for an address range.\n\
16543 break-range START-LOCATION, END-LOCATION\n\
16544 where START-LOCATION and END-LOCATION can be one of the following:\n\
16545 LINENUM, for that line in the current file,\n\
16546 FILE:LINENUM, for that line in that file,\n\
16547 +OFFSET, for that number of lines after the current line\n\
16548 or the start of the range\n\
16549 FUNCTION, for the first line in that function,\n\
16550 FILE:FUNCTION, to distinguish among like-named static functions.\n\
16551 *ADDRESS, for the instruction at that address.\n\
16552 \n\
16553 The breakpoint will stop execution of the inferior whenever it executes\n\
16554 an instruction at any address within the [START-LOCATION, END-LOCATION]\n\
16555 range (including START-LOCATION and END-LOCATION)."));
16556
16557 c = add_com ("dprintf", class_breakpoint, dprintf_command, _("\
16558 Set a dynamic printf at specified location.\n\
16559 dprintf location,format string,arg1,arg2,...\n\
16560 location may be a linespec, explicit, or address location.\n"
16561 "\n" LOCATION_HELP_STRING));
16562 set_cmd_completer (c, location_completer);
16563
16564 add_setshow_enum_cmd ("dprintf-style", class_support,
16565 dprintf_style_enums, &dprintf_style, _("\
16566 Set the style of usage for dynamic printf."), _("\
16567 Show the style of usage for dynamic printf."), _("\
16568 This setting chooses how GDB will do a dynamic printf.\n\
16569 If the value is \"gdb\", then the printing is done by GDB to its own\n\
16570 console, as with the \"printf\" command.\n\
16571 If the value is \"call\", the print is done by calling a function in your\n\
16572 program; by default printf(), but you can choose a different function or\n\
16573 output stream by setting dprintf-function and dprintf-channel."),
16574 update_dprintf_commands, NULL,
16575 &setlist, &showlist);
16576
16577 dprintf_function = xstrdup ("printf");
16578 add_setshow_string_cmd ("dprintf-function", class_support,
16579 &dprintf_function, _("\
16580 Set the function to use for dynamic printf"), _("\
16581 Show the function to use for dynamic printf"), NULL,
16582 update_dprintf_commands, NULL,
16583 &setlist, &showlist);
16584
16585 dprintf_channel = xstrdup ("");
16586 add_setshow_string_cmd ("dprintf-channel", class_support,
16587 &dprintf_channel, _("\
16588 Set the channel to use for dynamic printf"), _("\
16589 Show the channel to use for dynamic printf"), NULL,
16590 update_dprintf_commands, NULL,
16591 &setlist, &showlist);
16592
16593 add_setshow_boolean_cmd ("disconnected-dprintf", no_class,
16594 &disconnected_dprintf, _("\
16595 Set whether dprintf continues after GDB disconnects."), _("\
16596 Show whether dprintf continues after GDB disconnects."), _("\
16597 Use this to let dprintf commands continue to hit and produce output\n\
16598 even if GDB disconnects or detaches from the target."),
16599 NULL,
16600 NULL,
16601 &setlist, &showlist);
16602
16603 add_com ("agent-printf", class_vars, agent_printf_command, _("\
16604 agent-printf \"printf format string\", arg1, arg2, arg3, ..., argn\n\
16605 (target agent only) This is useful for formatted output in user-defined commands."));
16606
16607 automatic_hardware_breakpoints = 1;
16608
16609 observer_attach_about_to_proceed (breakpoint_about_to_proceed);
16610 observer_attach_thread_exit (remove_threaded_breakpoints);
16611 }
This page took 0.427882 seconds and 4 git commands to generate.